

GIVE YOUR PRODUCTS

 MORE RELIABILITY AND BETTER PERFORMANCE WITH -
 IIMB BOI COMPLETE jRAMscomed AND IMSTRUMENT CATALOGs.

COVER: The handy tables and chart included in this issue's Diode Report provide ELECTRONIC DESIGN's art'st with a sound basis for his abstraction The Report discusses the steps leading to a more realistic diode inventory in addition to offering aids aimed at reducing diode selection time.

Selected Topics in this Issue Communications
Tiros Transmits Weather Data p
Weird Antennas
Stereophonic Broadcasting p 136
Components
Developments in Storaga Tubes p
Diode Staff Report
Diode Selection Game
High-1-Poiential Testing
Neon Lamp Matrix Store

Computers

Controlling Air Traffic
Flexible-Disk Memory
Exclusive-OR Logic
Design
Industrial Design
Delayed Patent Application
Rectifier Fires Its Mate
Biased Emitter Follower
Clamping Diodes Safeguard Light Intensity Control

Materials
Thermal Factors in Transformer Design

Semiconductors, Circuits
Ruby Maser
Double-Emitter Transistor
Diode Staff Report
Choke-Zener Duo Reduces Kipple

Sidelights Of This Issue

Less than a year ago, ELECTRONIC DESIGN (June 10, 1959) focused attention on a problem that was rapidly reaching the critical stage. Design engineers were having a difficult time choosing a diode for a particular application. Over 4000 types existed making quick and efficient selection impossible.
The solution was obvious-standardization. Many users were losing pafience with "improved" types that furned out to be identical to older types. Even manufacturers were concerned with the reigning confusion. But, although most agreed that standardization was necessary, many felt that it would take years to achieve.
Top executives in the diode industry and top civilian authorities in the Department of Defense were asked by ED what they thought could be done. The interest that was stirred up resulted in a meeting called by the Office of the Director of Defense Research and Engineering in Washington, D.C. Accepting an invitation to the meeting, ED editors James A. Lippke and Howard Bierman discussed with DOD and EIA officials the need for steps to alleviate confusion. The military spokesmen indicated they were at work in classifying preferred and guidance types. The results of their efforts appear in this issue.
A few months later, EIA tightened its rules on new-type registration. EIA's Standards Laboratory in Newark, N.J., is now said to serve as a standards bureau for manufacturers.
Most encouraging was the voluntary assistance of an industry member to help ED compile a "most popular" diode guide for common applications.
But fewer types and handy tables and charts don't necessarily make for routine diode selection. An expert in the field, Nick DeWolf, Transitron's chief elecrronic engineer, offers some interesting ideas in his article, "The Diode Selection Game." It complements ED's Diode Report in this issue.

Things are slowly returning to normal for ED's revered editor, Ed Grazda. Recently his wife gave birth to a girlHooray for more than one reason-Ed already has three boys! The suspense is over! Congratulations!

At Bogue Electric Mig. Co..... .

where stability is vital
 RED LINE
 thming relays guard agalnst extreme heat

In the high cycle motor generators produced by the Bogue Electric Mfg. Co., the stability of the thermal relay is a vital operating factor. That is why Bogue design engineers selected G-V Red/ Line Thermal Timing Relays over all others to delay the operation of the water pressure protective circuit while water pressure is built up in the cooling coils during starting of the motor generator. The Timing Relay then inserts the protective circuit and thus dangerous extremes of heat are avoided, insuring the efficient performance of the generators. So, at Bogue the high quality of G-V Timing Relays is "paying off".

More and more companies are finding the reliable performance of G.V Red/Line Timing Relays makes them best for their products. G-V Red/Line Relays will "pay off" in your product, too. Your customers appreciate the importance of high quality, reliable components. G-V Red/Line Timing Relays are specially designed for industrial applications. They have the precision, reliability and long life needed to "pay off" in industrial use.

Your G-V distributor has them in
stock now. Call him or write for Bulletin 131 today.

G-V Controls inc. Livingston, Now Jersey

WELD-PACK REVOLUTIONIZES COMPONENT ASSEMBLY

Cutting size and weight 75% or more, the new "Weld-Pack" construction as produced by Sippican Corporation for MIT's Instrumentation Laboratory stacks components in true three-dimensional packaging of almost any shape or module. Packaging densities ranging to 260,000 components per cubic foot are achieved only through Weldmatic welding, which cannot damage adjacent components through unwanted heat. "Weld-Pack" eliminates unnecessary weight of phenolics and lack of continuity in printed wiring - gives designers unlimited freedom. For this fresh, new concept in packaging, Sippican Corporation depends on weldmatic electronic welders chosen after careful evaluation of all stored-energy equipment. Unvarying uniformity of welds; accurate, repeatable pressure - these are some of the weldmatic features so important to constructing "logic sticks" and other component packages to new standards of quality.
imagine reliability of only one reject in one million welds. . . no cold joints...no flux contamination...greater mechanical strength.
FIND out how Weldmatic welding can help you with difficult metaljoining production problems.
(Above) Sippican assembler uses two Model 1032 Welding Heads and companion Weldmàtic Power Supply in performing two separate welding operations on a "Weld-Pack" without changing electrodes or fixtures.

WELDMATIC

What Are You Doing to Lessen Diode Confusion?
An Editorial

Abstract

Diode Staff Report How much progress has been achieved in diode standardization since last year? Can diode selection be simplified? ELECTRONIC DESIGN's 1960 Diode Report discusses the efforts by the military and industry to stem the swelling diode listung. Through indusiry cooperation, a handy gude has been prepared as as rapid means ior for the military equipment designer, a complete list of military approved ion. For the military equipment designer, a complete list of m diode typas is given with specfication references-H. Bierman

The Diode Selection Game
The finer points involved in diode selection plus derating consintorations are discussed by a semiconductor expert- N . DeWolf

Thermal Factors in Transformer Design

40
Cooling mechanisms and types of insulation are discussed; graphs includedW. W. Wahlgren

An Industrial Designer Discusses, Part 5
Several examples of marking redesign for improved operator efficiency and lower cost-P. Wrablica

High-Potential Testing-A Semidestructive Process?
Hundreds of tests on rotating components settle a thorny question-B. Sachs
Delayed Patent Application-What Can You Lose?
What happens when an inventor delays applying for a patent and the rights he may lose-A. W. Gray

Rugged Memory Stores Data On Paper Thin Disk
To compete with magnetic drums, this flexible-disk memory can be used in any orientation
Design Decisions 104

Flexible PC Card, Oil Filling And Simple Heat Sink Densify Component
\qquad
Engineering Data
Radiation Resistance Of A Loop Antenna-D. N. Travers

BPA

NBP

ELECTRONIC DESIGN is publishod bl-wookly by Hayden Publishing Compony, Inc., 230 Third Avenus, Now York 22, N. Y., T. Richord Gascoigno, Choiman of the Board, Jamer 5. Mulholland, de. President, Printed at Hildreath Preve Bietol, Come Accoptod of controlled circulation al Brittol Conn. Additional entry. Now Yort, N. Y. Coprright 1960 Maydon Publiahting Compony, 34, j25 copies this issue.

ELECTRONIC DESIGN
Morden Publishing Co., Inc.,
830 Third Avenue, Now York 22, N. Y.

ELECTRONIC DESIGN News

Ruby Maser

Automatic Landing System
Evaluation Stepped Up Double-Emitter Transistor May
Simplify Emitter Designp
Computer for Air Traffic Control p 10
Tiros I Marks Satellite Advances p 12

Temperature Control Key to Satellite Designp 14 Antennas Shaping Up As Weird Creationsp 16 Tunnel Diode Future Unsettled p 18 Market Research Urgedp 20
Price and Availabilityp 21

Ideas For Design

Microwave Mixer Diode Makes Sensitive Video Detectorp 116 Triggering Of Controlled Rectifier Fires Its Series Mate p 119
Biased Emmitter Follower Limits Pulse Amplifierpp 120 Neon Lamp Matrix Store Data..................... 120

Clamping Diodes Safeguard Light Intensity Controlp 121 Pulse Transformer Helps Provide
Exclusive Or Losic Exclusive-Or Logicp 12 Choke-Zener Duo Reduces Ripple $\cdots{ }^{\ldots 2}{ }^{122}$

Russian Translations

Mutual Inductance Elements Lead To Fewer Filter Circuit Components p 128
German Abstracts ... 136
Stereophonic Broadcasting ...p 136
ELECTRONIC DESIGN Digest .. 138
Resistance Network Solves Potential Distribution Problemsp 138
Washington Report 22 Report Briefs 148
New Products 56 Standards and Specs 150
New Literature 108 Careers 152
Patents 124
Your Career 152
Books 126
Advertisers' Index 158

New Publisher Appointed

ELECTRONIC DESIGN is pleased to announce the appointment of Robert \mathbf{E}. Ahrensdorf as Publisher. Founders and co-publishers J. S. Mulholland, Jr., and T. R. Gascoigne move up to President and Chairman of the Board, respectively, of Hayden Publishing Company. The move makes possible an immediate program of enlargement and the acquisition of new publishing properties.
Well known in publishing circles, Mr. Ahrensdorf brings 15 years of valuable sales, industry and publishing experience to the magazine. As head of his own firm, he has managed western space sales for ELECTRONIC DESIGN for seven years, and was previously Eastern Manager, Vice President and then General Manager of Rogers Publishing Co.

Engineering notes from the

REPORTER

by stanley m. ingersoll, Capabilities Engineer

Report No. 6

TR 130 Absolute Pressure Transducer
and TR 131 Differential Pressure Transducer
These SM/I pressure transducers are precision built 400-cycle instruments using a cruciform cross-section helically twisted Bourdon tube with an electromagnetic pick-off to generate an electrical signal proportional to absolute pressure (TR 130) or differential pressure (TR 131) for use by computers and precision instrumentation. The design completely eliminates any mechanical friction or stiction and reduces hysteresis to an absolute minimum. The relation between output voltage and input pressure is linear.
They are particularly well adapted for use in aircraft because of high accuracy, low threshold, rugged, compact design and inherent repeatability of performance. The units have a mean time to failure of over 5,000 hours logged in in-flight operations. They meet the requirements of military specification MIL-E-5400.
Typical Performance Specifications

Scale factor Applied pres. ranse.	. 0.0001487 volt $/$ volt/mm Hg. .. 0 to 787 mm Hg . (Ebsolute)
Damping \qquad (Restoration time)	. 0.1 second from full scale deflection to zero scale
Ambient temp. ranse. Acceleration	..-65° F. to $+175^{\circ}$ F. (continuous duty) .Will withstand 30 g without damage
Output voltage	0 volt to 3.50 volts for 30 volts of 400 eycles power applied and at load impedance of 20,000 $\pm 2 \%$ ohms
Frequency range. .	. 380 to 420 cps

For more information and complete operating specifications, write or wire SM/I today. Address your inquiry to Stanley M. Ingersoll, Capabilities Engineer.

Loe Angoles Division
12500 Aviation Boulevard Hawthorne, Callfornla

naceromeo oseas NEWS

U. S. Air Agency Intensifies Drive For Fully Automatic Landing System

Spurred by British Autoland Advances, FAA is Pressing Three-Phase Program to Replace Present ILS and GCA

STEPPED up activity in evaluation of automatic aircraft landing systems is slated for this year by the Federal Aviation Agency's National Aviation Facilities Experimental Center, Atlantic City, N.J. Renewed interest in all-weather landing systems has been stirred in this country by the British plan to use automatic equipment to land commercial aircraft. The British Autoland system, along with a variety of United States-designed equipment, is being studied by the FAA under a three-phase program.

The first phase of the program is the improvement of present Instrument Landing System (ILS) and Ground Controlled Approach (GCA) equipment. The second phase calls for interim testing of an all-weather landing system where the need is urgent. The third phase is the development of new techniques for an automatic landing system for air traffic of the future.
The following evaluation timetable has been set up by the FAA at the Atlantic City experimental center:

- A Bell Aircraft landing system installed in mid-January should reach completion by late August. (ED, March 30, p. 35).
- The Air Force AN/APN-114 system, due to arrive in early September, is set for completion by April, 1961.
- The REGAL system (Range and Elevation Guidance for Approach and Landing) installed in mid-February is scheduled for completion by January, 1961.

Schedule May Be Compressed

This time schedule may be compressed because of the importance of the program.
The system receiving high consideration for the second phase of the FAA program is the AN/APN-114 system, industry sources indicate. This system, using a flare computer developed by the Autonetics Div, of North American Aviation, Inc., Downey, Calif., and a low-level radar altimeter developed by the Government Electronics Div. of Emerson Radio, Silver Spring, Md., can be adapted to existing ILS equipment.

Sign of things to come? Boeing 707 is landed automatically with Bel Avionics AN/GSN-5 landing system. The system, one of several being tested by the FAA, uses a computer to calculate flight paths. Computations are based on data input of precision tracking radar. Radio link carries corrective commands.

The Bell Aircraft system, involving extensive ground equipment, and the REGAL and Airborne Instruments systems, could be used to replace present ILS installations; so they are more likely to be considered for use in the third phase of the FAA program. The British Autoland system, which requires two cables to be installed for a considerable distance off the end of runways, also fits into this category.
North American's Autoflare system uses a combination of the best features of a vertical accelerometer and a radar altimeter to achieve a precise altitude rate and accuracy of $2 \mathrm{ft} \pm 2$ per cent from 0 to $1,000 \mathrm{ft}$.

Biangular Sysfem Developed

A biangular antenna system developed by Airbome Instruments Laboratory is now being tested

Midget Maser Put

25-Lb. Ruby Device Uses a 12-Oz. Magnet Instead of 500-Pounder

DEVELOPMENT of a mobile, tactical radar to spot the mushroom cloud of atomic blasts is being speeded at the Army Signal Corps Laboratories, Fort Monmouth. N.J. The sensitivity and mobility essential to the radar appear to have been met by the development of an ultra-miniature ruby maser, now being tested in the system.
An extension of present weather radars, the new system would permit detection and calculation of the range of the cloud-and thus its fallout zone-in darkness and poor visibility and at distances beyond optical observation.
Safer and more rapid troop movements into an area in the wake of atomic bombardment would result. The accuracy of an atomic bombardment could also be observed by the new radar.
A high order of sensitivity is required of the system to detect the comparatively small cloud of a sub-kiloton tactical weapon. Intervening cloud formations also complicate the detection problem. Nevertheless an effective range on the order of 100 mi is sought.

Small Ruby Cuts Magnet Size

The new maser weighs only 25 lb and develops but 10 K of thermal noise. Key to the successful miniaturization is the very small ($1 / 8 \mathrm{in}$. thick by $1 / 2 \mathrm{in}$. sq) ruby used. The ruby fits into a very
at MacArthur Field, Islip, L.I., N.Y. This system can provide distance-to-go as well as elevation angle to instruments in an aircraft from two ground-based scanning-beam antennas spaced about $4,000 \mathrm{ft}$ apart along a runway.
Pulses transmitted by the two antennas are coded according to the elevation angle of the beam. Identification coding is used for each beam. One single-channel receiver receives signals from both antennas by time-sharing.
When flare-out position is reached, at about $1,000 \mathrm{ft}$ short of the runway, a simple circuit in the receiver measures the difference between the two angles to produce a signal proportional to the distance to the runway.
A computer then dead-reckons for about 10 sec to touchdown based on this computed ground (contimued on p 7)

in A-Bomb Radar

Key elements of Signal Corps' new, miniature maser. The $12-0 z$. magnet in foreground costs about $\$ 10$ and does the job of a $500-\mathrm{lb} \$ 4,000$ magnet used in conventional masers. Also displayed by engineer are the maser's ruby and copper transition section.
narrow waveguide section, which presents a very narrow air gap for the maser magnet. As a result, a $12-0$ m magnet is sufficient to provide the 4,000-gauss field necessary for operation. Con-
(constinued on p 6)

Sharper Definition ... Improved Gray Scale... with
 RAYTHEON "KILOLNE" RECORDING STORAGE TUBES

A Raytheon-designed tetrode gun insures higher resolution - $1,000 \mathrm{TV}$ lines at 50% modulation - and improved control over beam cut-off in Raytheon's new CK7571/QK685 and CK7575/QK787 recording storage tubes. A new multiple collimating lens improves background uniformity and results in a signal-to-shading ratio of ten.

These advanced design features, plus low noise and stable operating characteristics, make Raytheon recording storage tubes ideal for frequency and scan conversion. Among the applications where these tubes play an important role are:

- Scan conversion for bright display and target trails.
- Slow-down video for transmission of still pictures over telephone lines.
- Stop motion to permit analysis of production machinery or to stop action in a sporting event.
- Signal-to-noise improvement of radar or other still pictures by integration.
- Conversion of television pictures from one transmission standard to another.
- Indication of moving targets by electrical comparison of pictures taken at different times.

For scan conversion applications, both r.f. read-out and video cancellation techniques have proved equally effective with Raytheon single- and dual-gun storage tubes.
Raytheon's single-gun CK7571/QK685 and dual-gun CK7575/QK787 recording storage tubes are available from stock in sample quantities. Detailed technical data bulletins are yours for the asking - write direct to Dept. 2527.

TYPICAL OPERATING CHARACTERISTICS CK7571/QK685 and CK7575/QK787

Anode Voltage......................................4,000 Vdc
Magnetic Focus Resolution.,1,000 Lines (nominal)
Electrostatic Resolution............... 700 Lines (nominal)
Output capacitances:
CK7571/QK685.......................... 12 $\mu \mu \mathrm{\mu}$ (nominal)
CK7575/QK787.......................... 27 н μ (nominal)
Maximum Deflection Angle...................... 30 Degrees
TYPICAL RESOLUTION CURVE

nesolution (numern of fi limea)

RAYTHEO
 INDUSTRIAL COMPONENTS DIVISION
 53 Chapol Street, Mewton 58, Massachusotts

Les Ameples - Normandy 5.4221 Dallas - Fibetwood 1-4185 Chlcage - National 5.4000 Ortande - Garden 3-1553 Now Yorts - Wisconsin 7.6400

CIRCLE 5 ON READER-SERVICE CARD

Measure 10cps to 110Mc with one compact meter

Comprehensive range for only $\$ 1895$. Never before has so broad a range been offered for so low a price - a combination made possible by closely integrating a simple heterodyne converter with a top-notch 10 Mc counter. Frequencies up to 10 Mc are measured by direct counting. To measure frequencies above 10 Mc , the operator simply rotates reference frequency selector until panel meter shows strong deflection, then reads counter indication. Measurements take less than a minute to make. Accuracy far exceeds FCC requirements over communications range. Possible error is $.00004 \%$ or less from 1 Mc to 110 Mc .

Froquency moasuring range

 10cps to 110sonsilivity
100 my rms into 1 M ohms up to 10 Mc 100 mv rms into 100 ohms accuracy Oscillator accuracy $\pm 1 \mathrm{cps}$ inscillater stability
3 oants in 10'
10 per week 3 parts in 10^{\prime} per w Recarding facriity Reade signals to actuate Beckman printer Dimensions?
$836^{\prime \prime} \times 19^{\prime \prime}$ panel, $17^{\prime \prime}$ deeo Weaght for reck: aporon. 47 lbs In cabinet: approt, 60 ibs. Price \$189s

Write for technical bulletin on Model 7175.

Beckman

Emerson low-level radar altimeter weighs 20 lb . It operates at C -band using an $\mathrm{fm} / \mathrm{cw}$ signal to provide an over-all accuracy of 2 per cent over an altitude range from 0 to $3,000 \mathrm{ff}$. A servo system continually adjusts transmitter modulation according to the difference between transmitted and received signals, so that stepping errors normally found in radar alfimeters are eliminated, Emerson says.

Landing Systems

(continued from p5)
speed. Because of the shallow angle, very small height errors are caused even by extreme distance errors, according to Mr. Battle. Accuracy is about $\pm 150 \mathrm{ft}$ in distance and $\pm 5 \mathrm{ft}$ in height at the $1,000 \mathrm{ft}$ point. This improves to about $\pm 2 \mathrm{ft}$ altitude error at touchdown.

REGAL was developed by Gilfillan Bros., Inc., Los Angeles. It resembles the Airborne Instruments system in offering a pulse code to an airborne receiver-decoder, depending on elevation angle. It determines distance, however, by triggering the airborne unit with the elevation signal, so that two pulses are transmitted. These cause the transmitter on the ground to return two similar pulses, so that the time difference can be used to establish range. - ■

Velocity meter adapted from a North American Aviation, Inc., inertial-guidance system integrates vertical acceleration to provide a velocity signal in the AN/APN-114 automatic landing system. Radar altimeter height is differentiated to provide an initial altifude rate signal for the integration. The filter eliminates the high-frequency portion of the altimeter signal.

NOW - Two important contributions to printed circuit design -

The Microminiature Kernel ATE-34 Adjustoroid ${ }^{\text {a }}$ and a New Line of Miniature Encapsulated Adjustoroids

Newest addition to the Burnell Adjustorold line is the microminiature Kernel ${ }^{(4)}$ ATE-34 and the miniature ATE-11, ATE-O and ATE-4. One of the unique features of these new Adjustoroids is a flush slotted head providing for ease of adjustment and economy in helght.
The new microminiature Kernel ATE-34 Adjustorold and the minlature ATE-11. ATE-0 and ATE-4 are variable over a 10% range of their inductance. Fully encapsulated, they will withstand high acceleration, shock and vibration environments. All of the above meet MIL-T specifications, 27 Grade 4 Class R and MIL-E 15305 A. Write for Stock Sheet AT-34.

	tength/ Dia.	Hot.	Wr.	Useful Frea. Range	Mox 0	Man. 1. in hyo
ATE. 0	1114"	1"	$11 / 2$ or.	1 kc to 20 kc	10 he	5 hri
ATE. 4	$19 / 10^{\prime \prime}$	$12 / 10^{\prime \prime}$	3.5 oz .	1 tec to 16 ke	- kc	15 hys
ATE. 6	11/10"	$1 "$	$11 / 208$.	10 ke to 100 ke	30 kc	. 75 hys
ATE. 10	$19 / 10^{\circ}$	$18 / 10^{\prime \prime}$	1 oz .	3 tec 10 so ke	20 kc	. 75 hri
ATE.11	\%/4	$19 / 10^{\prime \prime}$. 75 or.	2 kc 10 25 kc	15 te	5 hri
ATE-12	\%/"	$12 / 10^{\prime \prime}$. 75 or.	15 kc to 150 kc	60 tc	1 hr
ATE.34	11/44"	11/82"	1 or.	3 kc 10 30 kc	55 kc	1 hy

PAT. 1.7e2.020
If you haven't already done so-send for your free membership in the Space Shrinkers Club.

RST Navy Militarized SSB Transmitter
Generates Cleaner Signal Using HERMES CRYSTAL FILTERS

Hermes Crystal Filler Model 2MUB, Carrier Fiequency 2 Mc . Shown approx. $1 / 2$ size.

Singie-Sideband Transmitter, Model AN;WRT-2 developed by Westinghouse Electric Corporation for the U. S. Navy uses Hermes Crystal Fitters Model 2 MUB and 2MIB.

Recently installed on the atomic submarine SKIPJACK (SSN585), the Westinghouse Electric AN/WRT-2 SSB Transmitter is now standard Navy equipment.

Single sideband signals are generated in the AN/WRT-2 by the selective filter method employing Hermes 2MUB and 2MLB Crystal Filters. These 2.0 Mc Crystal Filters not only offer all the basic advantages of the filter SSB generation method, but reduce the number of heterodyning stages required to translate the modulated signal to the required output frequency. The attendant decrease in unwanted signal generation results in a cleaner signal. The AN/WRT-2 is also a more reliable transmitter because fewer components are used.

In addition to the 2.0 Mc Crystal Filters. Hermes has also supplied SSB units at $87 \mathrm{Kc}, 100 \mathrm{Kc}, 137 \mathrm{Kc}, 1.4 \mathrm{Mc}, 1.75 \mathrm{Mc}$, $3.2 \mathrm{Mc}, 6 \mathrm{Mc}, 8 \mathrm{Mc}, 10 \mathrm{Mc}$ and 16 Mc . These Crystal Filters are presently installed in airborne HF, mobile VHF and point to point UHF SSB systems.

Whether your selectivity problems are in transmission or reception, AM or FM, mobile or fixed equipment, you can call on Hermes engineering specialists to assist in the design of circuitry and the selection of filter characteristics best suited to your needs. Write for Crystal Filter Short Form Catalog.

A limited number of opportunities are available to experi-
enced circuit designers. Send résumé to Dr. D. I. Kosowsky.

Hermes

ELECTRONICS CO.
is cameaioge paekwar, camerioge 42, massacmusetis
CIRCLE A ON READER-SERVICE CARD

Double-Emitter Transistor May Simplify Receiver Design

DESIGNERS may soon be sampling a transistor developed to provide improved automatic gain control in transistorized broadcast. band receivers. The transistor, a double-emitter, drift-field device for mixer-oscillator application promises to simplify the design of portable and automobile radios, according to Radio Corp. of America, which is still developing the device. The company describes it as the first practicable transistor of its kind in the semiconductor industry.

Key to the operation of the transistor is its construction, which permits the device to function as both an oscillator and a mixer in the same circuit. The two emitters are processed to function independently of each other. Both emitters are p-types. The base is n-type; the collector is p-type.

In an ordinary triode, emitter current cannot be cut off, because this would interrupt oscillator current. With reduced oscillator current, feedback would decrease below the

Developmental Receiver Uses Double-Emitter Transistor

A developmental, portable broadcast-band receiver has been designed by RCA engineers to incorporate the double-emitter transistor and take advantage of its characteristics. The if and if sections of the receiver use the mixer-oscillator transistor in a common base configuration. The if circuit uses a neutralized 2 N 373 drift-field transistor. The mixer circuit provides a conversion power gain to 25 db into a 300,000 -ohm, 455 -kc if load. The if stage contributes an additional 27 db of if gain.

The audio circuit consists of a driver stage and a push-pull output circuit, both of which use 2N407 conventional alloy transistors. The over-all gain of the audio circuit is 73 db . The output circuit can deliver 150 mw of audio power to the speaker with less than 10 -per-cent distortion.

The receiver has an average sensitivity of $500 \mu \mathrm{v}$ per meter across the band for 50 mw of audio ourput. The image and if rejections are 28 db and 44 db at the high end of the band and 49 db and 35 db at the low end of the band. From a $100,000-\mu \mathrm{v}$-per-meter reference, the age figure of merit is 46 db . A signal-fo-noise ratio of 20 db occurs at $600 \mu \mathrm{v}$ per meter.

Two emilters combined in a single package enable this drift-field transistor to separate mixer and oscillator functions in providing improved age in transistorized, broadcast-band portable and automobile receivers. Both emitters and collector are p-lype, base is n-type.
level of positive feedback needed for self-oscillation, and oscillation would stop.

In the RCA multi-purpose transistor, there is complete separation of oscillation and mixing functions. This makes it possible to apply age directly to the mixer portion of the transistor's circuitry without affecting the oscillator portion.

In conventional transistor radios, RCA notes, only limited age can be applied to the converter.

Another advantage claimed for the double-emitter transistor is freedom from oscillator blocking under strong signal conditions.

Technical feasibility of the device and its application in a combination oscillator-mixer capable of being gain-controlled have been demonstrated, the company reports. Among the first significant results expected of the double emitter transistor will be "the design of broadcast-band receivers exhibiting excellent agc performance with only a frequency converter stage and a single intermediate-frequency amplifier stage without an overload or clamping diode." -

PHILCO...FOR HIIGH SPEED SILICON SWITCHES

PHILCO hich freauency NPN slilicon transistors offer exceptionally low saturation voltage

Available in quantities 1-999 from your locel
Philco Industrial Semiconductor Distributor.

The high frequency response, together with the very low saturation voltage of these silicon Surface Alloy Diffusedbase Transistors (typically 0.125 V), permits practical design of 5 mc pulse circuits, using conventional saturated switching configurations. With non-saturating techniques, pulse rates as high as 30 mc are obtainable. The typical switching circuit shown above will operate satisfactorily at trigger pulse rates up to 15 mc . When triggered with a 4 -volt pulse at a 10 mc rate, the rise time will be typically less than 24 $m \mu$ sec over a temperature range of $-60^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$. The typical fall time will be less than $36 \mathrm{~m} \mu \mathrm{sec}$ over the same temperature range
Both of these transistors have demonstrated consistently more stable characteristics over a wide temperature range than any other silicon transistors available. Both meet the environmental and life test requirements of MIL-S-19500B.
NEW, MORE COMPLETE DATA SHEETS The new data sheets on these transistors, for the first time. provide the designer with complete information upon which he may predict switching speeds in any circuit. They also contain the full military environmental and life test specifications, in accordance with MIL-S-19500B. Copies are available on request. Write Dept. ED- 360 - Req. U.S. Pat. Off.

new printed DC Servo Motors

For full particulars on this dynamie new product - by partment A. 55% es Sea Clif Aes. Glen Cove, N. Y.

By any standard of comparison, new PMI smooth torque DC Servo Motors are establishing exciting new perimeters in military and industrial applications. Now in full production these low inductance (<500 micro-henries), fast response motors offer the optimum in smooth torque from a fraction of an RPM to rated 3000 RPM.
A major technological advance, the new direct drive DC Servos-with printed armatures-feature high torque to inertia ratio and greatest capability of high pulse torque in intermittent use. The new servos are low impedance devices and as such are suitable for use with semi-conductor circuits.

Inerle
Running
Bechanice
Pulse Torgue (Intermitient

PRINTED MOTORS, |NC.

ENGINEERING, MANUFACTURING ANDSALES EY PHOTOCIRCUITS CORPORATION CIRCLE 10 ON READER-SERVICE CARD

Now operating at the FAA's experimental center is this "data-processing central" built around a Librascope digital computer. The computer is a high-speed, stored-program unit, whose stored data are accessible by either fixedaddress or random search. ing.

FAA Testing Computer as

Automatic Digital System Design to Process 440 Flight Plans an Hour and Store 1,000

THE computer planned as the highly reliable core of the nation's future air traffic control system is undergoing tests at the Federal Aviation Agency's experimental center near Atlantic City, N.J.
General Precision's Librascope Div., which developed the computer, says it is the first specifically designed for air traffic control.
The computer is designed to file, search, compute and determine flight conflicts in the nation's air lanes. Such work is now done manually by controllers.
The digital system can be programmed to process and print 1,600 fight strips an hour, process 440 flight plans an hour, store 1,000 fight plans and sequence the arrival and departure of a total of 180 aircraft.
To insure reliability of operation, Librascope reports, designers used wide-tolerance transistor circuitry. Information safety is protected by circuit redundancy and advanced checking techniques. According to Librascope, data-transfer units are parity checked, and dual arithmetic units, buffer storage and magnetic drum files are incorporated. In regular operation the computer will be backed up by a stand-by unit.
The computer is a binary-coded, decimal, par-allel-serial, single-address unit with a word length of eight characters. Company designers report

Key to Air Traffic Control

that the unit performs internal computations or input-output message handling while a file search is in progress.
The 4.000 -word core memory operates on a $24-\mu$ sec read-write cycle. The basic clock rate is 500 kc . Librascope claims that the computer system has search capabilities exceeding those of other present medium-sized data processors by a factor of 100 . Search of the computer's entire 256,000-word memory file reportedly requires 0.5 sec. Additions and subtratctions are said to require an average of $30 \mu \mathrm{sec}$, multiplication and division, $266 \mu \mathrm{sec}$. $=$

Wide-tolerance transistor circuitry and advanced checking rechniques are used in computer designed specifically for air-traffic control.

At one time Sprague Electric was the only manufacturer offering true high reliability capacitors. The buyer had no problem. But today there are many manufacturers who claim that their capacitors meet high reliability standards. Some are even so bold as to claim that theirs are the most reliable.

Check the record before you choose

The only sound approach to evaluate these claims is to investigate the reliability record achieved by each of the companies under consideration. Remember, it takes test data to establish the reliability of a product. Claims are not enough.

Now let's look at the record

Sprague Electric can substantiate its claim that its HYREL ${ }^{\oplus}$ Q Capacitors are "the most reliable capacitors made" with the most extensive test data available in the entire electronic industry. The performance of HYREL Q Capacitors is virtually
impossible to surpass... now and for some years to come.

But let's start at the beginningthe specifications. Sprague Electric's high reliability capacitors were originally made under Sprague Electric Specification PV-100-the first high reliability capacitor specification for missiles and other critical applications. This specification and a later revision, PV-100A, have proven so comprehensive and so successful in providing "the highest order of reliability known to capacitor manufacturing" that their provisions are currently reflected in every military specification covering high reliability capacitors. This is a distinction shared by no other capacitor manufacturer.

Now look af the record of HYREL Q Capacifors

On accelerated life tests the failure rate of HYREL Q Capacitors has been less than 0.05%, after more than 16 million unit hours accumulated on tests of 250 hours at 140% rated CIRCLE II ON READER-SERVICE CARD
voltage, 125 C . On high frequency vibration tests, there hasn't been a single failure in the more than 50,000 units tested. On seal, moisture resistance, and temperature cycling and immersion tests, the failure rate has been less than 0.1%.

Such performance from production line capacitors can only be achieved through the most intensive (and expensive) kind of reliability program-in design and development, in production engineering, in manufacturing facilities, in testing intensity and extensity-all of which should be investigated thoroughly.

After you've checked the record, then decide for yourself which capacitor is "the most reliable made."

For complete facts and figures on HYREL Q Capacitors, call your Sprague District Office or Representative, or write for HYREL Bulletin 2900A and Specification PV-100A to Technical LiteratureSection,Sprague Electric Company, 347 Marshall St., North Adams, Massachusetts.

UNPRECEDENTED EFFICIENCIES IN HARMONIC GENERATION...

ine new examples of Microwave ssociates' capabilities in the design of irmonic generators are available now. hese models feature exceptionally gh output power with conversion sses well below existing devices.
ew designs incorporating solid state tments can be used to eliminate costly ystrons, DC bias supplies and high Ntage power supplies. All units feare broadband fixed-tuned operation, iers eliminating unwanted harmonics, d versatile coaxial, waveguide and
strip-line packaging.
These models are typical examples of our progress to date . . . presently we are working for even greater efficiencies and performance. Additional models in development converting 1 watt at 2000 Mc to 100 mw or more, at 4000 and 6000 Mc , to be announced soon.
Your specific application problems are of prime interest to us. Our Applications Engineers would welcome the opportunity to design harmonic generators to meet your specifications.

SPECIFICATIONS
INPUT
OUTPUT

Frequency
Input kMc $/ \mathrm{s}$,

P
x
x
x
x
,
x
X

Band	input	Connector Type UG.
P	20	23/U
1	100	23/u
x	500	596/U
x	500	596/U
x	500	596/U
X	500	596/U
x	500	600/U
x	500	600/U
X	500	600/U

Frequency Outpul kMc/s	Band	Conversion Loss imax	Output mw
$1.30-1.43$	1	13db	1
$5.22-5.72$	C	15db	3
$18.0 \pm 300 \mathrm{Mc}$	k	17db	10
$20.0 \pm 300 \mathrm{Mc}$	K	17db	10
$22.0 \pm 300 \mathrm{Mc}$	K	17db	10
$24.0 \pm 300 \mathrm{Mc}$	k	17db	10
$27.0 \pm 300 \mathrm{Mc}$	Ka	20db	5
$30.0 \pm 300 \mathrm{Mc}$	Ka	2086	5
$33.0 \pm 300 \mathrm{Mc}$	Ka	20db	5

Write or call:
MICROWAVE ASSOCIATES, INC.
bURLINGTON, MASSAChUSETTS
Western Union FAX-TWX: Burlington, Mass., 92 - BRowning 2-3000
CIRCLE 12 ON READER-SERVICE CARD

NEWS

Tiros I, U.S. Weather Eye, Shows Significant

Tiros insfrumentation is monitored as satellite rotates between two magnetic coils, simulating effects of earth's field.

Advances in Design

TIROS I, the United States weather satellite, represents significant progress in the design and control of satellites.

A Bell Telephone Laboratories precision guidance system put the drum-shaped satellite into a near-circular orbit at about 450 mi above the earth, with only 32 mi variation between apogee and perigee. The radio-inertial command guidance system was designed by Bell for the Titan ICBM.
Two identical half-inch vidicons-one with a wide-angle lens for 800 sq mi of coverage, the other with a narrow field of view to cover about

Wide-angle lens projects from cylindrical base plate of Tiros satellite. Vidicon camera behind lens is adjusted by technician.

Tiros sent back these photos of cloud cover. Above, clouds over eastern United States from wide-angle lens camera. Below, clouds over eastern U. S. viewed by higher-resolution vidicon camera.

30 sq mi-are being used. The vidicon cameras, designed by Radio Corp. of America's AstroElectronics Products Div. in Princeton, N.J., are set to take still pictures rather than a continuous scene. On command from the ground and timed so that Tiros is pointed toward the earth over a daylight area, the cameras take individual pictures of cloud cover with a $1.5-\mathrm{msec}$ shutter speed.

Two 2-w fm transmitters return video signals to ground stations at 235 mc . Compressed bandwidth transmitters were designed to permit the frequency-modulated video signals to be transmitted at such a low power level, according to Max Mesner, RCA project engineer in charge of TV camera design for Tiros.

The video signals are sent either directly from the vidicon cameras or are stored on magnetic tape in the satellite and then transmitted.

Infrared horizon-sensing equipment establishes the orientation of the spin axis of the satellite, which rotates at 12 rpm . North is established through the use of nine solar cells covered by plates containing narrow slits arranged around the vehicle. A characteristic pulse is generated when each of the cells faces the sun through the slit. ■ ■

ELECTRONIC DESIGN • April 27, 1960

IN RACK AND PANEL CONNECTORS

Right here in the socket contact lies the heart of the AMPin-cert Connector line: the AMP cantilever spring. Seated in the slot of the socket to meet the pin shaft, it is your key to top connector reliability.
It provides you with positive wiping action . . . consistently sound electrical contact . . . firm pin grip . . . and stable resistance-yet has an extremely low. uniform insertion and withdrawal force. And, regardless of the metal plating you choose or the thickness you require, all pins and sockets are provided with an underplating of nickel to give long life reliability in all critical applications.
Add to this cantilever construction, many other plus features including AMP's industry proven solderless crimping technique to help you design and manufacture products of the highest reliability and lowest cost.
Take your pick: AMPin-cert Connectors in Series D, M and W as well as environmentally sealed or un. sealed Series A-all tough enough to soak up heavy punishment while providing the dry circuit sensitivity you need for your most critical applications.

The complete story is available in catalog form. Write today for your copy.

AMP INCORPORATED

GENERAL OFFICES: HARRISBURG, PENNSYLVANIA AMP products and angineering assistance are available through subsidiary companies in: Australia - Canade - England e france - Holland * Italy * Japan - Weast Germany CIRCLE 13 ON READER-SERVICE CARD

> Now your present electronic counter becomes a really good, accurate DIGITAL VOLTMETER by simply adding this self-contained, inexpensive

2210 Voltage-to-Frequency

CONVERTER

Now it is simplicity itself to read voltages in direct digital form using your present electronic counter and this new Dymec DY-2210 Converter. You can also measure the time integral of fluctuating voltages directly in volt-seconds - no more tedious, costly manual data reduction and analysis. Unique design principle of the DY-2210 makes it insensitive to most kinds of noise on the input signal.
The DY-2210 generates pulses at a rate accurately
proportional to the dc input voltage. Zero input produces zero output cycles, 1 volt produces $10,000 \mathrm{cps}$. A front-panel attenuator provides additional input ranges of $10 \mathrm{v}, 100 \mathrm{v}$ and 1000 v . Positive or negative inputs sensed automatically. Models available for ac inputs and remote programming applications. Price: $\$ 660$ cabinet, $\$ 650$ rack-mount.

For details and demonstration, see your Dymec/ Hewlett-Packard representative or write direct.

RACK MODEL, PANEL HEIGHT ONLY $3 \frac{1}{2}$ "

[^0]
Dymec/ fiold representatives in all principal areas

NEWS

Temperature Control Key to Design Of 'Transit' Satellite Electronics

Temperature control was cited as the major problem in designing instrumentation for "Transit 18 ," the Navy's successfully orbiting navigation satellite. Since navigation data is derived from doppler measurements of the satellite's transmissions, scientists at Johns Hopkins University's Applied Physics Laboratory went to great lengths in designing out thermally induced frequency variations.
Two ultra-stable crystal oscillators delivering 3 mc with an accuracy of 2 parts in a billion are mounted in Dewar flasks to prevent short-term thermal variations as the satellite moves in and out of the earth's shadow. The Dewar flasks are suspended from the instrument tray by thin nylon cords, and the tray itself is likewise suspended within the satellite. In addition to the usual heatstabilizing paint job on the outside of the vehicle, the inside of the sphere is lined with reflective gold plating and insulated by a multi-layer blanket of aluminum foil and fiberglass.
Crystal frequency is stepped up to $54,162,216$, and 324 mc . These frequencies are transmitted simultaneously and continuously by a broad-band, logarithmic spiral antenna silver painted on the outside of the vehicle. As a result, APL engineers have dubbed it "our flying barber pole."

The $162-\mathrm{mc}$ band carries seven telemetry chan-nels-six of which report on temperatures within the satellite. The seventh carries information on the charging current for the nickel-cadmium batteries supplied by 1680 solar cells mounted around the waist of the sphere.
Radiated power varies from 200 mw at 54 mc to approximately 60 mw at 324 mc . The extreme upper and lower transmitting channels are powered by a silver-zinc battery expected to last about 45 days. Mean time before failure for the entire instrument package is thought to be "several months."
The satellite also carries an infra-red scanner which measures satellite rotation. Its operation and telemetry scheme are still classified.
Six ground tracking stations (five in the U. S. and one in England) are reporting data to a central computer at APL. The experiments scheduled include selection of optimum transmission frequency, measurement of ionospheric refraction characteristics, and orbit calculation.
"Transit IB" is a furerunner of a complete satellite navigation system for use by Polarislaunching submarines and is expected to be ready by 1962. Each of the four satellites to be used will be equipped with a memory system. Pre-
dicted orbit data will be transmitted daily to each satellite which will in turn telemeter this information to the ships and submarines using it for navigation. Orbit data and doppler shift of the transmitted signals as measured by an automatic navigation computer will pinpoint the position of the submarine
APL scientists, working with the Navy's Bureau of Weapons hope to design a five-year life into the operational satellites. Civilian vessels and airplanes will also be able to take advantage of the system, though equipment for this purpose will probably not be as automated and accurate as that now being designed for the Navy.

Avco Unit Sends Teletype Messages At Ten Times Normal Speed

Equipment for sending standard teletype messages over telephone lines at ten times normal speed has been developed.

Teletype data is recorded on magnetic tape and then fed to a Bell Telephone Data-Phone unit for transmission over ordinary or leased telephone cables at 1 ips . Word speeds of 600 to 1000 wpm are said to have been achieved.

Although telephone transmission normally is more expensive than teletype, the high speed of the unit, developed by Avco Corp.'s Crosley Div., Cincinnati, is reported to have made telephone transmission economical.
The rental cost of the device, called the Comex 104 , is $\$ 130$ per month plus a $\$ 130$ installation charge. The data phone equipment rents for $\$ 40$ per month. Two-way transmission between points is accomplished by using both units at each end of the transmission path.

Comex feeds the data phone unit an on-or-off type square wave. This is converted into two frequencies by the data phone set. One frequency represents the off condition and the other the on condition.

In use, an operator dials the number where a second Comex unit is to receive a transmission. The phone is answered, and the Comex unit is switched on to receive data. Th in the receiving telephone is hung up. The call is completed automatically with a signal from the transmitting Comex.

Additional work on the device is expected to produce fully automatic units so that the telephone does not have to be answered physically at the receiving end. Instead, the operator will dial the desired number along with a code number that will automatically turn on the Comex equipment at the receiving end. Comex 104 units can be adapted for use with Friden TeleData, IBM transceivers and similar equipment.

*'s In test after test conducted by independent evaluation laboratories, Clarostat GREENOHM "V" resistors have exceeded applicable military requirements without a single failure. These wire-wound power resistors are the newest
in concept and quality-the development and product of the most experienced specialists in resistors, controls and resistance devices-CLAROSTAT.

Available in all commercial sizes from 5 to 200 watts, in rubular and stackmounting styles. Also in all military types, Characteristics $\mathbf{G} . \mathbf{V}$ and \mathbf{Y}

WRITE FOR COMPLEEE TECHNICAL DETALIS
CLAROSTAT MFG. CO., INC.
DOVER. NEW HAMPSHIRE
In Conoda: CANADIAN MARCONI CO. LTD, Toronto 17. Ont
direct
line
service

NEWS

Antennas Shaping Up As Weird Creations

SYSTEM requirements that are literally out of this world are pressing the antenna designer for more power, higher gain, electronic scanningsometimes all at the same time. Special applications may require special configurations, or portability, or perhaps multiple functions.
Antenna designers are looking for novel ap-proaches-and finding them. The results are many strange shapes, hardly recognizable as microwave radiators. The geometry seems to depart farther and farther from the simplicity of the parabola. $\mathrm{E}=$

Geodesic radome is under test at General Electric's HMED facility. Bliss-designed dome silhouetres multi-bean AN/FPS-7 antenna.

Air pressure maintains the shape for this air-transportable 15 - ft parabola. A dual-polarized horn eliminates the duplexer in the Colins scatter communications system.

Stacked array, 26 ft high, mixes horizontally polarized uhf and vertically polarized vhf dipoles. Flat strip power divider drives this Gabriel-designed, commandcontrol antenna.

Spiral antenna (above) reduces fading by 30 per cent. This AllProducts Co. half-ton 70 -footer has gain comparable to a rhombic with $300-\mathrm{ft}$ legs.

Tiros salellite is controlled by this vhf-uhf GB Electronics anrenna. Triple array is for command, tracking and telemetry.

Torus reflector, $165 \mathrm{ft} \times 400 \mathrm{ft}$, is representative of ixed, high-powered antennas. This Kennedy unit is part of General Electric' BMEWS system.

Nose-cone antenna is scanned over most of forward hemisphere. Hughes-developed, it replaces flushmounted antennas.

Passive refector for drone radar augmentation combines the Luneberg and the Eaton-Lipman lenses. Bistatic and mono-static reflection are achieved in this Dalmo-Victor reflector.

ELECTRONIC DESIGN • April 27, 1960

Advance-engineered diffusion techniques are now applied to CBS silicon diodes. Fast switching . . . high conductance . . . high temperatures . . . high voltage . . . low capacitance . . . and low reverse current are achieved.
The diffusion technique offers many other advantages over the alloying method: Close process control of all parameters, great uniformity, and high reverse voltage for a given resistivity through the graded junction. Hermetic sealing of miniature glass package also contributes to the exceptional life.
Now you can have proven CBS reliability in diffused silicon diodes. Watch for further announcements on this growing CBS silicon line.

a comprehensive line for computers

Note the two major classifications particularly designed for computers in missiles, rockets, airborne and industrial equipment. Typical applications include switching, pulse, flip-flop, modulator, demodulator, discriminator, clamping, gating and detector circuits. Write for complete technical Bulletins E-373 and E-374.

FAST RECOVERY TYPES

Typo	$\begin{aligned} & \text { Min Rev. } \\ & \text { Voltare } \\ & \text { (at } 100 \mu \mathrm{~A} \\ & \text { (volts) } \end{aligned}$	Min. Forward Current		Maximum Reverse Curtent				Reverse Recovery Characteristics	
				$6.25^{\circ} \mathrm{C}$		(1) $100^{\circ} \mathrm{C}$			
		$\begin{gathered} \operatorname{Tr}_{(\mathrm{mA}} \\ \hline \end{gathered}$	$\begin{aligned} & E_{F} \\ & \text { (volls) } \end{aligned}$	$\prod_{(\mu \mathrm{A})}^{\mathrm{I}_{1}}$	$\begin{gathered} E_{f} \\ \text { (volts) } \end{gathered}$	$\sum_{(\mu \mathrm{A})}^{I_{n}}$	$\begin{gathered} E_{n}^{\prime \prime} \\ \text { (volts) } \end{gathered}$	$\begin{array}{c\|} \hline \begin{array}{c} \text { Zrec } \\ \text { (Kohms) } \end{array} \\ \hline \end{array}$	$\underset{(\mu \mathrm{sec})}{\mathrm{t}}$
1M625	-35	4	1.5	1	-20	30	-20	400	1.0
IN828	-50	4	1.5	1	-35	30	-35	400	1.0
1N827	-100	4	1.5	1	-75	30	-75	400	1.0
1N828	-150	4	1.5	1	-125	30	-125	400	1.0
1 W628	-200	4	1.5	1	-175	30	-175	400	1.0

-JEOEC $\begin{aligned} & 14.5 .1 \text { (Moditied IBM-Y reverse recovery circuit wilh: } \\ & I_{F}=30 \mathrm{~mA}, \mathrm{E}_{\mathrm{K}}=-35 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \text { ohms } \text {) }\end{aligned}$
high CONDUCTANCE TYPES

Typo		$\left\lvert\, \begin{gathered} \text { Max Fwd } \\ \text { voliaze } \\ \text { (11. } 100 \mathrm{~mA} \\ \text { (volts) } \end{gathered}\right.$	Marimum Reverse Current				Max. Avg.Fwd. Current	
			$625^{\circ} \mathrm{C}$		(6) $150^{\circ} \mathrm{C}$			
			(4 A (${ }_{\text {a }}$	$\begin{gathered} \varepsilon_{n}^{\varepsilon_{n}} \\ \text { (volis) } \end{gathered}$	${ }_{(\mu \mathrm{A}}^{\mathrm{Im}}$)	$\underset{\substack{\varepsilon_{\Pi} \\ \text { (volis) }}}{ }$		${ }^{(a) 1500^{\circ} \mathrm{C}}$
13482	-40	1.1	0.25	-30	30	-30	100	25
19 ¢83	-80	1.1	0.25	-60	${ }^{30}$	-60	100	25
19484	-150	1.1	0.25	-125	30	-125	100	25
IM405	-200	1.1	0.25	-175	30	-175	100	25

Active portion and conscquently the capacitance of these diodes are minimized by etching away all but a small difuss'd sirtion. Rugged construction providee resistance to shock and vibration esceeding MLL-STD. 202A.

More reliable products through Advanced Engineering

CBS semiconductors

CB8 ELECTRONIC8, Semiconductor Operations • A Division ol Columbla Broadcasting System, Inc.
Seles Officas: Lowell, Mass., 900 Chelmsford St., GLenview 4-0446 - Neurark, N. J., 231 Johnaon Ave., TAlbot 4-2450 - Melroen Park, IU., 1990 N. Manabeim Rd., EStebrook 9-2100 - Los Angeles, Celif., 2120 S. Gurfield Ave., RAymond 9-9081 - Altanta, Ga., Cary Chapman © Co., 672 Whitehall St., JAckeon $4-7388$ Rd., EStebroot 9-2100 - Linneapolis, Miam., The Meimana Co., 1711 Hawthorne Ave., FEderal 2-5457 - Toromto, Ont., Canadian General Electric Co., Led., LEnnoz 4-6311

CIRCLE 16 ON READER-SERVICE CARD

NEWS

Improved Flood Guns Planned For Direct-View Storage Tubes

An improved flood-gun configuration for direct view storage tubes, giving better brightness and linearity, is under development by Allen B. DuMont Laboratories, Inc., Clifton, N. J.
Annular flood guns and axial write guns will be used in the new design. Present DuMont storage tubes have axial flood guns and offset write guns. Although specific design details were not disclosed, a DuMont spokesman said that an annular cathode ring or a series of flood guns surrounding the axis of a tube might be used.
The centered write gun gives better lizearity than an offset gun and permits other electron optics improvements, according to Marshall Wilder, manager of DuMont's Storage Tube Dept. Deflection power requirements in an elec tromagnetic deflection tube are reduced to about one-half those needed in conventional DuMont storage tubes.
Extra-flood electrons provided with the new design give a brighter display.
Many difficulties are involved in the annular flooding arrangement, it was explained. A relatively simple collimating electrostatic field can be used with the centered flood gun. but a complex field is necessary with other constructions.
Either electrostatic or electromagnetic deflection can be used with the new flood gun.

Tunnel Diodes Future Unsettled Cincinnati Conference Reveals

Although equipment using tunnel diodes will soon be on the market, the future of this component is unsettled, specialists agreed at the IRE Spring Technical Conference in Cincinnati.

A tunnel-diode oscillator operating in the lower L-band will soon be introduced by Radio Corp. of America, Electronic Design learned. Power output will be of the order of 0.1 mw .
Tunnel-diode amplifiers or high-speed switching circuits suitable for field use are offering much more trouble than oscillator design, speakers indicated. A major problem is the bilateral nature of the device, it was said during a state-of-the-art discussion of the diode. This establishes high and low limits on self oscillation, so that stability becomes vital in amplifier design.
Microcircuitry offers promising prospects for tunnel diodes according to Jeffrey Bowle, of Sperry Rand Corp., Norwalk, Conn.
CIRCLE 17 ON MEADER-SERVICE CARD

The device is relatively simple, he said, so that any of them can be put on a single piece of miconductor material, such as germanium, with reasonable number being operable. Redundancy n provide reliability.
Although alloying is not ordinarily desirable microcircuits, the tunnel diode is a special case ecause of the high, relatively non-critical doping vel, he said.
Peak voltage is easily controlled by spacing, e continued, whereas peak current and capaciance are a function of surface area which is also ontrollable. The extremely high-frequency reponse of the tunnel diode makes it particularly ttractive for these applications because the need or long leads, undesirable in the kmc region, is liminated.
Problems cited by Mr. Bowle include the inluctance and capacitance of the junction and esistance of the semiconductor material next to he junction.
Possibilities such as evaporated germanium lms on germanium, which have not proved suitble for transistors, may be feasible for tunnel liodes in microcircuits, Mr. Bowle said.
Several speakers urged designers to have patience and give the tunnel diode "a chance to srow."

Conference on Relays Set For May 3-5

Ideas, developments, research, results and problems of users, designers and manufacturers of relays will be discussed at the 8th National Conference on Electromagnetic Relays.
The conference, scheduled for May 3-5 at Oklahoma State University, Stillwater, Okla., will be sponsored by the National Association of Relay Manufacturers and the university's School of Electrical Engineering.
Forty-six papers and seven discussion periods will concentrate on new ideas and advances in relay design, application, testing, production processing and materials.

Correction Notice

CBS Electronics not CBS Laboratories is the developer of the news item 84-Bit Memory Plane For Airborne Computers on page 9 of the March 16 issue.

AVAILABLE NOW FROM TI 100:1 miniaturization with
 semiconductor networks

Now - 3 years ahead of industry's expectations Solld Clrculf semiconductor networks from Texas Instruments for many of your high-reliability minialurized systems 1

Solid Circuit networks are a major departure from conventional components because they integrate resistor, capacitor, diode, and transistor functions into a single high-purity semiconductor wafer. Protection and packaging of discrete elements is eliminated, and contacts between dissimilar materials are minimized, reducing element interconnections as much as 80%. Fabrication steps have been reduced to one-tenth those required for the same circuit function using conventional components.

SEMICONDUCTOR NETWORK CONCEPT

The concept of a semiconductor network is the relation of conductance paths in a semiconductor to the classical circuit elements, establishing an orderly design approach based on circuit knowledge. In this manner, semiconductor networks may be designed to perform the functions of a wide variety of existing circuits. Through the proper selection and shaping of semiconductor conductance paths, it is possible to realize such electronic functions as amplification, pulse formation, switching, attenuation, and rectification.

An assembly of 13 Solld Circuit networks, actual size, performs a full serial adder function, replacing 85 conventional compo. nents with a $100: 1$ size reduction. Weight: 1.5 gm . Volume: 0.02 cubic inch.

-Trademark of TEXAS INSTRUMENTS INCORPORATED

Only a few process steps and time-proved TI mesa production techniques permit a high degree of process control in Solid Circuit network fabrication. The result of these facts: reliability is built into each Solid Circuit network.
If you need to reduce equipment size and weight -or to design a more complex system in the same size-investigate Solid Circuit networks for your missile, satellite, space vehicle, and other microelectronic programs. TI engineers are ready to custom design this concept to your requirements. Contact your nearest TI Sales Engineer today. The TI Type 502 Solid Circuit network is immediately available for your evaluation.

INSTRUMENTS INCORPORATED MOAT OFFICE BOX 312 , DALLAS. TEXAS

CIRCIE IS ON READER-SERVICE CARO

First complete line of Solderable Magnet Wires for the Electronics Industry!

NYLEZE ${ }^{\oplus}$ Class $\mathrm{B}\left(130^{\circ} \mathrm{C}\right)$

S-Y BONDEZE ${ }^{\text {© }}$

SODEREZE ${ }^{*}$

GRIP-EZE*
a tough, all-purpose, solderable wire for your most severe applications. Especially suited for use in high speed automatic winding equipment or wherever extreme varnish or compound treatment is involved.
a self-bonding wire with underlying Nyleze ${ }^{\oplus}$ film, solderable at low temperatures. The high temperature cutthru resistance of the Nyleze ${ }^{\text {© }}$ film will reduce the number of shorts in your coils.
the solderable wire with exceptional " Q " characteristics proven over the years in thousands of customer applications.
the solderable film wire with controlled surface friction for use in lattice-wound coils. A special surface treatment provides mechanical gripping between turns and keeps the wire in place.

All Phelps Dodge solderable magnet wires are red in color.
Any time your problem is magnet wire, consull Phelps Dodge for the quickest, surest answerl

Market Research Urged To Avoid Design Errors

Haphazard market research by design engineers can result in costly mistakes for companies, delegates to the Semiconductor Marketing Seminar of the Electronic Industries Association were told.
"Design engineers have been doing their own market research for years without knowing it," said Dr. Wendell R. Smith, director of market research and development for the Radio Corp. of America. An engineer, from his knowledge and
contacts in the field, determines the need for new equipment and evolves designs accordingly. This is actually market research, Dr. Smith said, though it may involve only a phone call from Joe at company A to Sam at company B. But such haphazard methods sometimes lead to new products for which there is no real need, Dr. Smith noted.

Three Spots for Market Studies

He said there were three points during the development of a new product at which market research should be used. He listed these as:

- Before the commitment of R\&D funds.
- When a prototype is available and the successful end of $\mathrm{R} \& D$ is in sight.
- Before full-scale production is decided upon.

At each stage market-research men should present the concept or product to experts and potential users to determine its chances for commercial success, Dr. Smith said. The feedback of ideas obtained in this way has often improved product designs and suggested new markets, he noted.

Engineers Sometimes Resist Findings

Many engineers have been reluctant to accept the findings of market research, Dr. Smith ob-served-especially if the conclusions run counter to the ideas of the engineering department. Since market researchers are usually not trained as engineers, their findings may be discounted by technical men.
However, good market research requires skilled interviewing and statistical analysis rather than technical skill, Dr. Smith asserted. The market researcher, he added, by the very fact of his limited technical knowledge may prove more receptive to new concepts that an engineer may summarily dismiss as technically unfeasible.
"In today's highly competitive market," Dr. Smith said, "market research is a logical partner to technical research."
The seminar was held in New York.

Clevite Corp. Acquires Shockley Transistor Corp.

The Clevite Corp., Cleveland, Ohio, has acquired the assets of the Shockley Transistor Corp., Palo Alto, Calif., a subsidiary of Beckman Instruments, Inc.
Clevite President, W. G. Laffer, said the acquision will substantially augment the company's activities in the semiconductor component field. The Shockley unit, headed by Nobel Prizewinning physicist, Dr. William Shockley, will become part of Clevite's Transistor Div. in Waltham, Mass.

space-age assignment:

 TOTAL RELIABILITYThe incredible complex of electronic instruments and equipment required to assure the safe return of early voyagers in space presents a great challenge to the electronics industry.
The Gudeman Company maintains a comprehensive components research and development program, dedicated to an ultimate goal of total reliability. The success of this and similar programs of progressive manufacturers throughout the nation can assure continuing progress for America's conquest of space.

A new Gudeman Development! The new Gudeman MR463 MEGA.REL capacitors (25% smaller than MIL-C-14157A \& MIL-C-26244 (USAF) requirements, yet equivalent electrically and environmentally) reflect the creative engineering and constant design improvements that mark all Gudeman products.

CAPACITORS BY GUDEMAN
THE GUDEMAN COMPANY
MAIN OFFICE-340 W. Huron St., Chicago 10, III. MFG. BRANCHES: Terryville, Conn.; Visalia, Calif. CIRCLE 21 ON READER-SERVICE CARD

WASHINGTON

 \$ REPORT

Ephraim Kahn

ELECTRONIC ENVIRONMENT TEST Pacility to cost over \$22 million is to be built at Ft. Huachuca, Ariz. Object is to find out what incompatibilities exist among the electronic devices in current field use by the Army. Ground warfare today would find an Army corps with about 23,000 electro-magnetic-emission devices in a square 60 miles on a side. As recently as 1948, there would have been about 9,000 such devices in the same area.

COST ANALYSIS OF SUBCONTRACTS is required by the latest revision in the Armed Services Procurement Regulation. Where subcontracts have been let without competition, this is mandatory. It is also required when "reasonable subcontract prices" have not resulted from competition. "In all significant subcontract transactions," price (as distinguished from cost) analysis is demanded.

FEDERAL PATENT POLICY CHANGE this year becomes less likely as sharp differences in opinion become known to Congress. Capitol Hill observers see the sharp split that has developed on this point within the House Science and Astronautics committee. They note that in an election year a concerted effort to ease matters for industry by "giving away" patent rights to inventions Pinanced by the government would certainly have political implications. They believe, too, that while such a measure could be pushed through the House, it would bog down in the Senate.

ARMY CRITERIA FOR R\&D CONTRACTING have been outlined for a House Appropriations subcommittee. The Army says it considers several factors, including technical competence, costs, managerial capability, and past performance. In evaluating technical competence, the Army looks at each prospective contractor's understanding of the scope of the work as evidenced by the proposed scientific or technical approach to the problem, the availability and competence of experienced personnel, whether the firm has the requisite facilities, the company's experience or pertinent novel ideas advanced in the specific science or technology involved, and the proposed contractor's willingness to devote resources to the proposed work. Since these are carefully weighed, the Army says that "no R\&D contracts normally would be awarded to contractors who have large backlogs of mork."

SUBSTITUTE FOR ELECTRONICS-pneumatic devices-are being explored as rapidly as possible by the military. Basic concept is use of a low energy flow of fluid or gas to direct a high energy fluid or gas stream. This control action, the Army says, permits elements and systems capable of
amplification, feedback, memory, logic functions, analog computation and digital computation. Combinations of these six techniques make it possible to design a "pure pneumatic" analog of most electronic circuits. Extreme ruggedness, high reliability, very low cost, and indefinite shelf life are cited among the advantages possessed by pneumatics. Though their ilmitations are not yet fully established, such "pure" pneumatic systems seem at present to be confined to frequencies under 20 kc .

ELECTRONICS PROCUREMENT MANAGEMENT improvements, under study by the Armed Forces Supply Support Center, probably will not be decided upon until November at the earliest. Almost 800,000 items are covered by the combined elec-trical-electronic categories in military supply, and there is a wide range of complexity and reliability need. Chances are that no single procurement method or technique will be recommended for buying military electronic equipment. Single procurement may be proposed for some areas of electronics, but a "commodity management center," to co-ordinate purchasing while allowing a good deal of latitude to the individual Services is also getting serious study.

RELIABILITY STUDIES for the military will be centralized within the Advanced Research Projects Agency. So Par, ARPA has been assigned the job of making "preliminary" reliability analyses of the MIDAS and SAMOS early warning and surveillance systems and the TRANSIT and NOTUS navigation and commanications satellites. In addition, ARPA, will undertake to "monitor," on a continuing basis, the efforts of military contractors and the Defense Department to achieve higher reliability.

ANTITRUST PROBE OF ELECTRONICS on a continuing basis is planned by the Justice Department. It believes that "vigorous application" of the antitrust laws "particularly in those sectors of our economy with the greatest grovih potential-industries in their early stages of development-can shape their ultimate competitive structures to assure the competitive vigor essential to price stability and economic grovth." One Justice Department project is a review of antitrust decrees in which stress will be laid on those involving patents and research. In hopes to find out vhether compulsory licensing provisions, for example, "have had the offect of stimulating industrial research and technological development activities of defendants."

EVALUATION OF THE WEAPONS SYSTEM method of military procurement will be made by the General Accounting office in the course of its procurement auditing activities. Efforts will be concentrated on selected procurement programs in order to assure that major activities will be covered. The watchdog agency will spot check virtually all major aircraft purchasing, as well as the Bomare, Jupiter, and Polaris missile programs. Congress has been told that "particular attention" is to be paid to "missiles, electronics, communications, and construction."

test...test...test...

If you feel you must make your own pots to get exactly what you need, don't overlook quality control along the way! And this can be a messy business, what with special. elaborate techniques to quality-check every production stage! Oh, you'll get involved in maddening bouts with visual comparitors, ratiometers, environmental testing labs - and when you've finished - and made a few hundred revisions - you might have the quality you want!

So. before you go fly a kite - consider Ace. We've been all through this before, and have what is regarded to be the finest quality control system in the industry. It enables us to keep our final costs down, by rejecting sub-standards at each stage, without waiting for the final inspection. AIthough it's more work this way, we can offer a higher degree of resolution and linearity at a lower price. So. for precision-at-price, see your ACErep!

Here's 0.3% linearily in a $\frac{1 / 2 \prime \prime}{\prime \prime}$ pot: the Series 500 ACEPOT*. Singleturn, -55° to $125^{\circ} \mathrm{C}$ range. As with all Ace components, tested in every slage of ils manu/acture!

The assembling of highly-flexible electronic systems and subsystems into a modular package . . . for fast inspection, testing, service, and replacement of components . . . calls for standard-ized-type plugs throughout the system. Reliability and optimum flexibility in shell designs and types of layouts are the design criteria for the more than 18 different basic Cannon Modular and Rack/Panel Plug Series. This Series is available in standard, miniature, or subminiature sizes ... for standard or printed circuitry. Up to 180 contacts and a varied combination of contacts for control, audio, thermocouple, co-ax, twin-ax, and pneumatic connections. Single or double-gang. With or without shells. The Rack/Panel Series ranges from the tiny "D" subminiature to the heavy-duty DPD Rack/Panel Plug. For further Information on Cannon Modular and Rack/Panel Plugs write for Cannon DP Catalog, Cannon Electric Co., 3208 Humboldt St., Los Angeles 31. Please refer to Dept. 438 Factories in Los Angeles, Santa Ana, Salem, Toronto, London, Paris, Melbourne, Tokyo. Distributors and Representatives in the principal cities of the world.

Maximum Flexibility for Modular and Rack/Panel Applications

CHANGES IN

PRICES \& AVAILABILITY LOW CURRENT SILICON REC. TIFIERS have been reduced in price by General Electric Co., Syracuse, N.Y. Thirty-nine models are affected in price by 4 per cent to 50 per cent. The new prices apply to both commercial and military types. All rectifier cells in the low current lines rated at 500 v are priced the same as the 400 F v cells. As an example, types 1 N540 a 400 v unit and the 1 N1095 rated at 500 v have been reduced 10 per cent and 49 per cent respectively, and now are identically priced at $\$ 1.80$ each, in large quantities to original equipment manufacturers. All models are immediately available in production lots.

PRINTED CIRCUIT MOTORS have been reduced in price by the Photocircuits Corp., Glen Cove, N.Y. Model PM368 is $\$ 190$ and model PM488 is $\$ 240$. The new figures represent an average reduction in price of 40 per cent over one year ago. Then, the motors were $\$ 300$ and $\$ 450$ respectively.

GERMANIUM POWER TRAN. SISTORS have been reduced up to 33 per cent by Motorola Inc., Phoenix, Ariz. General price reductions of up to 40 per cent have also been made on many of the firm's rectifier products. Motorola's 25 amp line is now priced to original equipment manufacturers from $\$ 5$ to $\$ 10$ in 100 to 999 quantities, as compared with a former $\$ 6$ to $\$ 15$ price range. Other reductions include the Motorola 3 -amp and $10-\mathrm{amp}$ power transistor series now priced from $\$ 1.70$ to $\$ 12$ and $\$ 3$ to $\$ 9.50$, respectively, both OEM prices for 100 to 999 quantities.
In addition to the new pricing structure, Motorola has announced two new low cost industrial power transistor series rated for 5 - and 15 -amp applications. The 5 -amp line is priced from $\$ 1.65$ to $\$ 8.50$, the 15 amp from $\$ 3$ to $\$ 8.50$. Both are OEM prices for 100 to 999 quantity orders.
< circle 23 on reader-service card CIRCLE 810 ON READER-SERVICE CARD $>$

HERE IS YOUR NEW HUGHES SEMICONDUCTOR ALL-PRODUCTS CATALOG
note to secondary readers :
if someone beat you to this invaluable four color, eight page catalog, just CIRCLE 810 ON READER. SERVICE CARD
or write:
Semiconductor Division
Hughes Products
Box 278
Newport Beach, California
(See reverse side for complete list of Hughes sales offices and distributors.)
from the House of Semiconductors

Hughes Semiconductors

SILICON GENERAL PURPOSE DIODES Package A

Type	Minimum Breakdown Voltage © $100 \mu \mathrm{~A}$ @ $25^{\circ} \mathrm{C}$	Minimum Forward Current in mA at $+1 \mathbf{V}$	Maximum Inverse Current @ Specified D.C. Test Voltage			Maximum Average Forward Current (mA) @ $25^{\circ} \mathrm{C}$	Maximum Peak Recurrent Forward Current (mA)	Maximum Forward Surge Current 1 Sec. (mA)	Maximum D C Inverse Voltage (Volts)
			@ 25 C	(c) $150{ }^{\circ} \mathrm{C}$	Volts				
1N456	30	40	. $025 \mu \mathrm{~A}$. 005 mA	25	90	270	700	25
t1N457	70	20	. $025 \mu \mathrm{~A}$	005 mA	60	75	225	600	60
t1N458	150	7	. $025 \mu \mathrm{~A}$	005 mA	125	55	165	500	125
+1N459	200	3	. $025 \mu \mathrm{~A}$. 005 mA	175	40	120	400	175
1 N461	30	15	. $5 \mu \mathrm{~A}$. 030 mA	25	60	180	550	25
1N462	70	5	. $5 \mu \mathrm{~A}$	030 mA	60	50	150	500	60
IN463	200	1	. $5 \mu \mathrm{~A}$.030 mA	175	30	100	400	175
1N464	150	3	. $5 \mu \mathrm{~A}$	030 mA	125	40	120	400	125

IJAN Approved

SILICON COMPUTER DIODES Package A

Type	Minimum Es (@ $100 \mu \mathrm{~A}$)	Minimum Forward Current@ $25^{\circ} \mathrm{C}$ at specified voltage	Maximum Reverse Current ($\mu \mathrm{A}$)		Reverse Recovery	
			@ $25^{\circ} \mathrm{C}$	@ $100^{\circ} \mathrm{C}$	Reverse Resistance (R) (ohms)	Maximum Recovery Time ($\mu \mathrm{sec}$)
IN625	30	4 @ 1.5	1.0 @ - 20V	30 ए- 20 V	400 K	1.0 *
IN626	50	4 @ 1.5	1.0 @ - 35V	30 @ - 35V	400 K	$1.0{ }^{\circ}=$
1N627	100	4 @ 1.5	1.0 @ - 75V	30 @ - 75V	400 K	1.0°
1N628	150	4 @ 1.5	1.0 @ -125V	30 @ -125V	400 K	1.0**
1N629	200	4 @ 1.5	1.0 @ -175V	30 a-175v	400 K	1.0**
1N643	200	10 @ 1.0	$\begin{aligned} & .025 @-10 \mathrm{~V} \\ & 1.0 @-100 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 5 @-10 V \\ 15 @-100 \mathrm{~V} \end{array}$	200 K	$0.3 \dagger$
1N643A	200	100 @ 1.0	$\begin{aligned} & .025 @-10 \mathrm{~V} \\ & 1.0 @-100 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 5 @-10 V \\ 15-100 V \end{array}$	200 K	$0.3 \dagger$
1N658	120	100 @ 1.0	05 @ - 50V	$\begin{gathered} 25 @-50 \mathrm{~V} \\ \text { (At } 150 \mathrm{C}) \end{gathered}$	80 K	$0.3+$
1N659	60	6 @ 1.0	5.0 @ - 50V	25@-50V	400 K	$0.3{ }^{\circ}$
1N662	100	10 @ 1.0	$\begin{array}{r} 1.0 @-10 \mathrm{~V} \\ 200 @-50 \mathrm{~V} \end{array}$	$\begin{array}{r} 20 @-10 \mathrm{~V} \\ 100 @-50 \mathrm{~V} \end{array}$	100 K	$0.5 \dagger$
1N662A	100	100 @ 1.0	$\begin{array}{r} 1.0 \text { @ }-10 \mathrm{~V} \\ 20.0 @-50 \mathrm{~V} \\ \hline \end{array}$	$\begin{array}{r} 20 @-10 \mathrm{~V} \\ 100 @-50 \mathrm{~V} \end{array}$	100 K	$0.5 \dagger$
1 N663	100	100 @ 1.0	5.0 @ - 75V	50 ¢ - 75V	200 K	$0.5 \dagger$
1N837	100	150 @ 1.0	0.1 @ - 75V	15 @ - 75V	400 K	$0.5{ }^{\circ}$
1 N838	150	150 @ 1.0	0.1 @ -125 V	15 @-125V	400 K	0.5 *
1 N839	200	150 @ 1.0	0.1 @ -175V	15 @-175V	400 K	$0.5{ }^{\circ}$
1 N844	100	200 @ 1.0	0.1 @ - 80V	15 @ - 80V	400 K	$0.5{ }^{\circ}$
1 N845	200	200 @ 10	0.1 @ -160V	15 @-160V	- 400 K	$0.5{ }^{\circ}$

- Measured in modified IBM "Y" test circuit when switched from 30 mA fonward current to $\mathbf{- 3 5 V}$.
tMeasured in JAN 256 test circuit and switched from 5 mA forward current to -40V.
-Measured in JAN 256 test circuit and awitched from 30 mA forward current to -35V.
HIGH CONDUCTANCE SILICON JUNCTION DIODES Package A

Type	Minimum Breakdown Voltage @ $100 \mu \mathrm{~A}$ @ 25 C	Maximum Forward Vollage @ 100 mA (Volts)	Maximum Inverse Current @ specified D.C. Test Voltage			Maximum Average Forward Current (mA) @ $25^{\circ} \mathrm{C}$	Maximum Peak Recurrent Forward Current (mA)	Maximum Forward Surge Current 10 mSec (Amperes)	Maximum D.C Inverse Voltag, (Volts)
			© $25{ }^{\circ} \mathrm{C}$	@ $150^{\circ} \mathrm{C}$	Volts				
1N482	40	1.1	$25 \mu \mathrm{~A}$	030 mA	-30	100	400	1.0	36
1N482A	40	1.0	$025 \mu \mathrm{~A}$	015 mA	-30	200	650	2.0	36
1N482B	40	1.0	. $025 \mu \mathrm{~A}$	005 mA	-30	200	650	2.0	36
1 N483	80	1.1	$25 \mu \mathrm{~A}$	030 mA	-60	100	400	1.0	70
1N483A	80	1.0	025 A	015 mA	-60	200	650	2.0	70
1 N 483 B	80	1.0	. 025 / A	.005 mA	-60	200	650	2.0	70
1 N484	150	1.1	$25 \mu \mathrm{~A}$	030 mA	-125	100	400	1.0	130
1N484A	150	1.0	. $025 \mu \mathrm{~A}$	015 mA	-125	200	650	2.0	130
1N484B	150	1.0	$025 \mu \mathrm{~A}$	005 mA	-125	200	650	2.0	130
1N485	200	1.1	. 25 HA	030 mA	-175	100	400	1.0	180
IN485A	200	1.0	. $025 \mu \mathrm{~A}$	015 mA	-175	200	650	2.0	180
IN4858	200	10	. $025 \mu \mathrm{~A}$	005 mA	-175	200	650	2.0	180
1N486	250	1.1	. 25 HA	. 050 mA	-225	100	400	1.0	225
1N486A	250	1.0	. $05 \mu \mathrm{~A}$	025 mA	-225	200	650	2.0	225
1N487	330	1.1	. 25 HA	050 mA	-300	100	400	1.0	300
1N487A	330	1.0	. 12 A A	. 025 mA	-300	200	650	2.0	300
IN488	420	1.1	. 25 HA	050 mA	-380	100	400	1.0	380
IN488A	420	10	. 1 a A	025 mA	-380	200	650	20	380

SILICON GENERAL PURPOSE DIODES Package A

SILICON HIGH VOLTAGE DIODES Package A

Type	$\begin{aligned} & \text { PIV } \\ & \text { AAf } \end{aligned}$	Minimum Forwerd Current @ $25^{\circ} \mathrm{Cat}$ 1.0 Volts (mA)	meximum Reverse Current © PIV (1 A)	Average Rectifted frorwerd Current (mA)	Ninimum Breakdown Voltege (4) $25^{\circ} \mathrm{C}$ (a) $100 \mu \mathrm{~A}$
H06861	225	200	. 050	200	275
H06862	300	200	050	200	360
H06863	400	-200	050	200	480
H0686	500	200	. 050	200	600
HD8865	500	200	. 058	200	720
HD6066	700	200	. 050	200	820
H0er67	800	200	. 050	200	920
HD6868	, mi	200	050	200	1020

SILICON COMPUTER DIODES Package A

Type	Minimum Breakdown Voltage (V) (1) 100	Minimum Forward Current © $25^{\circ} \mathrm{C}$ (1. $1.5 \mathrm{~V}(\mathrm{~mA})$	meximum Roverse Current ($\mu \mathrm{A}$)		Roverse Recovery	
			- $25^{\circ} \mathrm{C}$	(1) $100^{\circ} \mathrm{C}$	Reverse Resistance R (ohms)	Maximum Reeovery Time fr aes)
HD6635	50	15	1.0 - - 8 -	30 e-35V	400K	1.000
H06641	150	15	1.0 @ - 1234	$100-125 V$	400k	$1.00^{\circ 0}$
HDS642	50	6	10 ¢ 1030	$100-35 v$	souk	1.00°
HD6647	35	6	10 @ - 2ov	30 - $20 V$	400K	1.00°
HD6648	100	6	1.0 숭 - 7	30 @ - 75V	400k	1.000
HD6649	200	6	$1.000^{\circ}-1 \mid t$	30 © - -175 V	400k	1.000
HD6551	100	15	$100-\mathrm{rsk}$	30 . ${ }^{\text {a }}$ - 75 V	400k	$1.0{ }^{\circ 0}$
HD665?	200	15.	1.0 - -179	30 Q $-175 V$	400 K	$1.0{ }^{\circ}$

- Measured in modified IBM " Y " teat circuit when switched from 30mA forward current to -35V.

HIGH CONDUCTANCE SILICON JUNCTION DIODES Package A

STANDARD EIA COLOR CODE

Typical E.I.A. color coding: Manufacturer is identified by gold letter " H " on anode end. Color code reads from cathode end.

SILICON PNP HIGH SPEED SWITCHING TRANSISTORS Package D (Operating Temperature Range: $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$) D. C. Characteristics:

Type	Collector to Base Voltaget ($\mathrm{BV}_{\text {cso }}$)	Emitter to Base Voltaget ($\mathrm{BV}_{\mathrm{E} \in \mathrm{BO}}$)	Collector to Emitter Voltagot ($\mathrm{BV}_{\mathrm{CE}} \mathrm{O}$)	Typ D.C. Current Gain (hes)$I_{c}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{ce}}=-1 \mathrm{~V}$	Max. Collector Saturation Voltage (V_{CE})	
					$\begin{aligned} & I_{C}=-10 \mathrm{~mA} \\ & I_{D}=-2 \mathrm{~mA} \end{aligned}$	$V_{\text {c }}$
2N1254	-15 V	-5V	-15 V	20	-0.3 Vde	-
2N1255*	-15 V	-5 V	-15 V	50	-0.3 Vde	-1
2N1256	$-30 \mathrm{~V}$	-5V	$-30 \mathrm{~V}$	20	-0.3 Vde	
2N1257*	-30 V	-5V	-30 V	50	-0.3 Vde	
2N1258+	-50 V	-5V	-50 V	20	-0.3 Vde	
2N1259+	-50 V	-5V	-50 V	50	-0.3 Vde	

SILICON PNP FUSED JUNCTION TRANSISTORS $\dagger \dagger$ Package C, D (Operating Temperature Range: $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$)

2N1228 2N1238	-15 V	-15 V	-15 V	14	-0.2 Vde
$\begin{aligned} & \text { 2N1238® } \\ & \text { 2N1229 } \end{aligned}$					
2N1239	-15 V	-15 V	-15 V	30	-0.2 Vde
$\begin{aligned} & \text { 2N1230 } \\ & \text { 2N1240 } \end{aligned}$	-35 V	-35 V	-35 V	14	-0.2 Vde
$\begin{aligned} & \text { 2N1231星 } \\ & \text { 2N1241 } \end{aligned}$	-35 V	-35 V	-35 V	30	-0.2 Vde
$\begin{aligned} & \text { 2N1232॰。 } \\ & 2 N 1242^{\circ} \end{aligned}$	-60 V	-60 V	-60 V	14	-0.2 Vde
$\begin{aligned} & \text { 2N1233 } \\ & \text { 2N1243 } \end{aligned}$	-60 V	-60 V	-60 V	30	-0.2 Vdc
$\begin{aligned} & \text { 2N1234." } \\ & \text { 2N1244 } \end{aligned}$	$-110 \mathrm{~V}$	$-110 \mathrm{~V}$	$-110 \mathrm{~V}$	14	-0.2 Vde

SILICON PNP HIGH FREQUENCY TRANSISTOR Package D (Operating Temperature Range: $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$)

Type	Collector to Base Voltage ($\mathrm{V}_{\mathrm{cBO}}$)$I_{C B O}=-100 \mu \mathrm{~A}$	Emitter to Base Voltage$\begin{gathered} \left(V_{E B O}\right) \\ I_{E B O}=-100 \mu \mathrm{~A} \end{gathered}$	Collector to Emitter Voltage ($\mathrm{V}_{\mathrm{c} \in \mathrm{o}}$)$I_{C E O}=-100 \mu \mathrm{~A}$	Power Gsin (PG)				Maximum Collector Cutoff Current$\begin{gathered} \left(I_{C B O}\right) \\ v_{C B}=-20 \mathrm{~V} \end{gathered}$	Fri
				$\mathrm{l}_{\mathrm{E}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{ce}}=-10 \mathrm{~V}$		$\begin{gathered} I_{E}=2 \mathrm{~mA}, V_{C E}=-10 \mathrm{~V} \\ \mathrm{~V}=12.5 \mathrm{mc} \end{gathered}$			
				min.	typ.	min.	typ.		mi
2N1196	-70 V	-4V	-70 V	24db	28db			$0.25 \mu \mathrm{~A}$	25
2N1197	-70 V	-4V	-70 V			20 db	22db	0.25 A	25

SILICON RECTIFIERS Package A

Tурө	PIV	RMS Volts	Max. Average Rectified Current mA	Max. Surse Current One Cycle (amp)
1 N846	50	35	200	2A
1 N847	100	70	200	2A
JN8A8	200	140	200	2A
1N849	300	210	200	2A
1N850	400	280	200	2 A
1 N851	500	350	200	2 A
1 N852	600	420	200	2 A
1 N853	700	490	200	2 A
1 N854	800	560	200	2A
1 N855	900	630	200	2 A
1N856	1000	700	200	2 A
1N857	50	35	150	1.5
1 N858	100	70	150	1.5
1 N859	200	140	150	1.5
1N860	300	210	150	1.5
1 N861	400	280	150	1.5
1 N862	500	350	150	1.5
1N863	600	420	150	1.5
1N864	700	490	150	1.5
1N865	800	560	150	1.5
1N866	900	630	150	1.5
1N867	1000	700	150	1.5

RECTIFIER STUD PACKAGE Package F

Type	PIV	Average Rectified Current	Max. Roverse Current ${ }^{\circ}$	Temper. ature ${ }^{\circ}$	Surce
1 N253	95 V	1000 mA	0.1 mA	$135{ }^{\circ} \mathrm{C}$	
1 N254	190 V	400 mA	0.1 mA	$135{ }^{\circ} \mathrm{C}$	
1N255	380 V	400 ma	0.15 mA	$135^{\circ} \mathrm{C}$	
1 N256	570 V	200 mA	0.25 mA	$135{ }^{\circ} \mathrm{C}$	
1 N562	800 V	400 mA	$1.5 \mu \mathrm{~A}+$	$100^{\circ} \mathrm{C}$	
1 N563	1000V	400 ma	2.0 m +	$100^{\circ} \mathrm{C}$	
HR10671	100 V	3 Amp	0.5 mA	$150^{\circ} \mathrm{C}$	
HR10673	200 V	3 Amp	0.5 mA	$150^{\circ} \mathrm{C}$	
HR10675	300 V	3 Amp	0.5 mA	$150^{\circ} \mathrm{C}$	
HR10677	400 V	3 Amp	0.5 mA	$150{ }^{\circ} \mathrm{C}$	
HR10679	500 V	2 Amp	0.5 mA	$135{ }^{\circ} \mathrm{C}$	
HR10681	600 V	2 Amp	0.5 mA	$135{ }^{\circ} \mathrm{C}$	

RECTIFIER TOP HAT PACKAGE Package E

1N536	50 V	250 mA	0.4 mA	$150^{\circ} \mathrm{C}$	15Amp
1 N537	100 V	250 mA	0.4 mA	$150^{\circ} \mathrm{C}$	15Amp
1 N538	200V	250 mA	0.3 mA	$150^{\circ} \mathrm{C}$	15 Amp
1 N539	300 V	250 mA	0.3 mA	$150^{\circ} \mathrm{C}$	15Amp
1 N540	400 V	250 mA	0.3 mA	$150^{\circ} \mathrm{C}$	15 Amp
1 N547	600 V	250 mA	0.35 mA	$150^{\circ} \mathrm{C}$	15Amp
IN560	800 V	250 mA	$0.375 \mathrm{~mA}+$	$100^{\circ} \mathrm{C}$	2Amp
1N561	1000 V	250 mA	$0.500 \mathrm{~mA}+$	$100^{\circ} \mathrm{C}$	2Amp

[^1]- ffull cycle average in operational test.

Packege F

Small Signal Characteristics:

Max. Colloctor \& Emittor Cutoff Currents (Icso. Isso, Δ)						AC Current Gain (hfe)$V_{C B}=-10 \mathrm{~V}, I_{\mathrm{E}}=2 \mathrm{~mA}, f=1 \mathrm{Kc} .$			Frequency Cutoff (F_{a}, b)$V_{C B}=-10 \mathrm{~V}, I_{\mathrm{E}}=2 \mathrm{~mA}$	
=	$v_{00}=-25 v$	Co				Min.	Typ.	Max.	Min.	Typ.
$\begin{aligned} & -0.2 \mu \text { Adc } \triangle \\ & -0.2 \mu \mathrm{Adc} \triangle \end{aligned}$	$-0.2 \mu \mathrm{Adc} \triangle$ $-0.2 \mu \mathrm{Adc} \triangle$		$\begin{aligned} & -0.2 \mu \mathrm{Adc} \Delta \\ & -0.2 \mu \mathrm{Adc} \triangle \end{aligned}$			$\begin{aligned} & 10 \\ & 25 \\ & 10 \\ & 25 \\ & 10 \\ & 25 \end{aligned}$	$\begin{aligned} & 25 \\ & 55 \\ & 25 \\ & 55 \\ & 25 \\ & 55 \end{aligned}$		25 Mc 40 Mc 25 Mc 40 Mc 25 Mc 40 Mc	$\begin{aligned} & 55 \\ & 75 \\ & 55 \\ & 75 \\ & 55 \\ & 75 \end{aligned}$

		$V_{C B}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}, \mathrm{f}=1 \mathrm{Kc}$		$V_{\mathrm{CB}}=-5 \mathrm{~V}_{,} \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}$
		14	32	1.2 Mc
		28	65	1.2 Mc
		14	32	1.2 Mc
		28	65	1.2 Mc
-0.1mAdc		14	32	1.0 Mc
$-0.1 \mu \mathrm{Adc}$		28	65	1.0 Mc
	$-0.1 \mu \mathrm{Adc}$	14	32	0.8 Mc

$\dagger+$ Collector current-limited by power dissipation

+ TO. 5 package -250 mw (free air), derate $1.8 \mathrm{mw} /{ }^{\circ} \mathrm{C}$

$\begin{gathered} \text { Frequency Cutoft } \\ \text { (F } F_{a_{b}}^{\prime} \\ v_{c B}=-10 \mathrm{~V} \\ 1_{E}=2 \mathrm{~mA} \end{gathered}$		Typical Output Capacity (C ob) $V_{C D}=-10 \mathrm{~V}, \mathrm{I}_{E}=\mathrm{at}=140 \mathrm{KC}$	Noise Fimure (NF)				Typical Input Impedance (h / b)$\mathrm{V}_{\mathrm{CB}}=-10 \mathrm{~V}, \mathrm{t}_{\mathrm{E}}=2 \mathrm{~mA}, \mathrm{f}=1 \mathrm{KC}$	
		$\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=2 \mathrm{~mA}, \mathrm{~S}=4.3 \mathrm{mc}$	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=2 \mathrm{mA.f}=12.5 \mathrm{mc}$					
min.	typ.		typ.	max.	typ.	max.		
25 mc	45 mc		$3 \mu \mu \mathrm{fd}$	7	10			20 ohms
25 mc	55 mc	3 unfd			7	10	20 ohms	

HIGH VOLTAGE SILICON CARTRIDGE RECTIFIERS

$\begin{aligned} & \text { JEDEC } \\ & \text { Type } \\ & \text { Mumber } \end{aligned}$	Case Style	Rated Peak Inverse Voltage'	Absolute Maximum Ratings			Electrical Characteristics ${ }^{2} 5^{\circ} \mathrm{C}$		
				Rectified DC Output Current		Max. DC Forward Voltage Drop © 100 mA DC	Max. DC Reverse Current - Rated PIV ($\mu \mathrm{A})$	
				$25^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$		- $25^{\circ} \mathrm{C}$, $100^{\circ} \mathrm{C}$
1N1730	1	1000	700	200	100	5	10	100
1N1731	1	1500	1050	200	100	5	10	100
1N1732	2	2000	1400	200	100	9	10	100
1N1733	2	3000	2100	150	75	12	10	100
1N2382	3	4000	2800	150	75	18	10	100
1N1734	3	5000	3500	100	50	18	10	100
1N2383	4	6000	4200	100	50	27	10	100
IN2384	4	8000	5000	70	35	27	10	100
1N2385	5	10000	7000	70	35	39	10	100
1N596	1	600	420	150	90	3	10	100
1N597	1	800	560	150	90	3	10	100
1N598	1	1000	700	150	90	3	10	100
1N1406	1	600	420	125	70	5	10	100
1N1407	1	800	560	125	70	5	10	100
1N1408	1	1000	700	125	70	5	10	100
IN1409	1	1200	840	125	70	5	10	100
IN1410	1	1500	1050	125	70	6.25	10	100
1N1411	2	1800	1260	125	70	7.50	10	100
1N1412	2	2000	1400	125	70	6.25	10	100
1N1413	2	2400	1680	125	70	7.50	10	100

1. Continuous DC rating same as P.I.V
2. Resistive or inductive load

Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ ambient.

4

POINT CONTACT GERMANIUM DIODES Package A

Type	Maximum PIV (Volts)	Forward Current (1) $25^{\circ} \mathrm{CAt}+1 \mathrm{~V}$ (mA Min.)	Meximum Reverse Current (12) $25^{\circ} \mathrm{C}$ (mA)	Continuous D.C. Fonward Current (mA)	Forward Surge Current 1 Sec. (mA)
1N67A	100	4	.050mA @ -50V	40	300
1N68A	130	3	. 625 mA (1)-100V	40	350
1 N89	100	3.5	.100mA © -50V	40	250
1 N90	75	5	500 mA (1) -50 V	45	250
1N95	75	10	. 500 mA @ -50 V	45	250
1 N96	75	20	.500mA © -50V	45	250
1 N97	100	10	. 100 mA @ -50V	45	250
1N98	100	20	.100mA @ -50V	45	250
1N99	100	10	.050mA © 050 V	45	300
IN100	100	20	. 050 mA (10) -50V	45	300
1N116	75	5	. 100 mA @ -50V	45	250
1N117	75	10	.100mA @ -50V	45	250
1N118	75	20	.100mA @ -50V	45	250
tIN126A	75	5	.850mA © -50 V	45	350
t1N127A	125	3	. 300 mA (1) -50V	40	300
1N128	50	3	-10mA @ -10V	40	300
1N191	60	5	.125mA @ -50V	45	300
1N192	60	5	.25mA @ -50v	45	300
1/N198	100	5	.050mA @ -50V	40	300

GOLD BONDED GERMANIUM DIODES Package A

1N96A	75	40	. 500 @ -50V	70	400
1N98A	100	40	. 100 (1) -50V	70	400
1N100A	100	40	. 050 @ -50V	70	400
1N118A	75	40	. 100 (1) -50V	70	400
t1N270	100	200	. 100 (1)-50V	90	500
1 N273	35	100	. 020 @ - 20V	80	450
+1N276	60	40	. 100 -50V	40	400
11N277	125	100	. 250 (1)-50V	75	400
1 N278	60*	20	. 125 ¢ $-50 \mathrm{~V}^{\circ}$	35°	$175{ }^{\text {e }}$
1N279	30	100	. 200 -20V	80	450
t1N281	75	100	. 500 -50V	80	400
1N283	25	200	. 020 - 10 V	100	500
†JAN Approved					

INFRARED OPTICS - in a variety of shapes
Hughes has developed a techniqua for casting pure polycrystalline silicon of the highest optical quality. Sterting with the cast silicon blanks in shapes of flats, domes (up to 9 " diameter), lenses. and prisms, Hughes has greatly reduced the necessity of extensive grinding techniques.

Repeated spectrophotometric and scattering tests have proven that the optical properties of cast polycrystalline silicon are identical to those of single crystal silicon.
Infrared optics of germanium are also being cast utilizing the same technique.
thermal and mechanical design insuring maximum space utilization, improved temperature and mechanical stability and maximum internal electrical insulation between elements.

PARAMETRIC AMPLIFIER DIODES Package A; Package B (shown)

JEDEC Type	Package Type	Saturation Voltege (V_{s}) Min. B $10 \mu \mathrm{~A}$	Parallel Capacitance (Cp) Note 1		Q(:) 1 KMC and Zoro Blas Min.	Power Dissipation (2) $25^{\circ} \mathrm{C}$ Max.
			Min.	Max.		
1N836	A	5 V	2.0 ¢ μ f	4.0 μ al	8	80 mW
1N896	A	5V	2.0mal	3.5 maf	10	$80 \mathrm{~mW}{ }^{\circ}$
1N895	A	5 V	2.0amf	3.0 map	14	80 mW -
2N896	A	5 V	2.0pal	$2.5 \mu \mu \mathrm{f}$	18	$80 \mathrm{~mW}{ }^{\circ}$
1N2386	8	5 V	2.0 map	4.0 mal	8	$100 \mathrm{~mW}+$
1N2627	B	5 V	2.0 ми ${ }^{\text {P }}$	$3.5 \mu \mu \mathrm{l}$	10	$100 \mathrm{~mW} \uparrow$
J N2628	B	5 V	2.0 мuf	3.0 $\mu \mu \mathrm{l}$	14	$100 \mathrm{~mW} \uparrow$
1N2629	B	5V	2.0puf	$2.5 \mu \mu \%$	18	$100 \mathrm{~mW}+$

1. Net Parallel Capacitance measured at 100 KC and Zero Bias. Stray Capacitance (C) of the type " A " package $0.1 \mu \mu \mathrm{f}$, and $0.2 \mu \mu$ f for the type " \mathbf{B} " package.
"The derating factor of the " A " type package is $1.6 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ in free air.
tThe derating factor of the " B " type package is $2.6 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ with crystal end mounted in standard coaxial microwave fixture.

VOLTAGE REGULATOR DIODES Package A

Type	Zener Breakdown Voltage (Volts)		Test Current (i) $25^{\circ} \mathrm{C}$ (mA)	Max. Dynamic ${ }^{\bullet}$ Resistance (ohms)	Mex. Total Power Dissipation (mw)	
	Min.	Max.			(325 $5^{\circ} \mathrm{C}$	(.15) $150^{\circ} \mathrm{C}$
1N702	2.0	3.2	5	60	250	100
1N703	3.0	3.9	5	55	250	100
1N704	3.7	4.5	5	45	250	100
1N705	4.3	5.4	5	35	250	100
1N706	5.2	6.4	5	20	250	100
1N707	6.2	8.0	5	10	250	100

*Dynamic resistance measured at 10 mAdc with 1 mA RMS ac superimposed. Special types are available upon request. Other E.I.A. types available: 1 N708.720, 1N465-470, 1N1984-1995, 1N761-769. Standard Package $\pm \mathbf{1 0 \%}$ Tolerance. Suffix A ($\pm \mathbf{5 \%}$ Tolerance).

SILICON DIODES Dumet-stud heat sink Package G
Specifications @ $25^{\circ} \mathrm{C}$

Type	$\begin{aligned} & \text { PIV } \\ & \text { (V) } \end{aligned}$	Average Rectified Forward Curront (mA)		Peak Recurrent Fonward Current (Amp)	Min. Breakdown Voltere (V) (20) $+100^{\circ} \mathrm{C}$	Mox. Reverse Current © PIV (uA)		Max. Voltage Drop et $I,=400 \mathrm{~mA}$ (v)
		(a) $25^{\circ} \mathrm{C}$	(2.850 $15{ }^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	
1N645	225	400	150	1.25	275	0.2	15	1.0
1N646	300	400	150	1.25	360	8.2	15	1.0
1N647	400	400	150	1.25	480	0.2	20	10
1N648	500	400	150	125	600	0.2	20	1.0
IN649	600	400	150	1.25	720	0.2	25	1.0

Power Dissipation . . 600 mW
1 Sec. Surge Current @ $+25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$. . 3 Amps
Operating Temperature . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

CRYSTAL FILTERS

Types - Frequency	Bandwidth (Kc)	Shape Factor $60 \mathrm{db} / 3 \mathrm{db}$	Maximum Passband Ripple (db)	Moximum Insertion Loss (db)	Impedance In. Out (ohms)	Carrier Rejection (db)	Approximate Slzo (cubic inches)
10Mc Bandpass Filter	40 @ 3db	2.2:1	0.75	6	1.5K		2.5
100Kc Bandpass Filter	2 cps (1) 6db	$\begin{gathered} 5: 1 \\ (30 d b / 6 d b) \end{gathered}$		14	1 K		11.7
30Mc Bandpass Filter	108 \& 3db	2.1:1	± 1	8	2.0K		3
1.75 Mc Upper Sideband Filter	2.7 (1) 3db	$\begin{gathered} 1.3: 1 \\ \text { (Carrier Side) } \end{gathered}$	± 0.5	3	50	55	8.8
2Mc Upper Sideband Filter	7.0 (8)3d	$\begin{gathered} 1.3: 1 \\ \text { (Carrier Side) } \end{gathered}$	± 0.5	6	6.6K	27.5	8
1.75Mc Lower Sidebend Filter	2.7 3 3db	$\begin{gathered} \text { 1.3:1 } \\ \text { (Carrier Side) } \end{gathered}$	± 0.5	3	50	55	8.5
1Mc Discriminator	± 1.5		Linearity $\pm 2 \%$ over 90% band	Efficiency DC out / AC in 0.7 min.	$\begin{gathered} \text { In }=50 \\ \text { Out }=1 \mathrm{meg} \end{gathered}$		3.7

All specifications determined at room temperature

SEMICONDUCTOR DIVISION
SALES OFFICES:
sosion, 4 Foderal Street
Woburn, Mas sachu setts ; WEIIs 3 -482
CWICACO, 1515 North Hartem Avenue
CIMCIMMATI, 816 Swifton Cent
Cincinnat1 37, Ohio; ELmhurst 1.5665, 6, 7
EnNVER, Suite 213, 3385 South Bannoch
Englewood, Colorado: SUnset 9-0549
DETROIT, 18440 Livernois Avenue;
Detrolt, Michigan UNiversity 3.6700
OMG ISLAND, 600 OId Country Road;
Garden City, Lons Island, New York; Ploneer 1-46 LOS AMEELES, 690 North Sepulveda Boulevard; EI Sezundo, California; OReEOn 8-612
aIMMEAPolis, 6121 Excelsior;
; WEst 9.0461
Newark 2, New Jersey; MArket $\mathbf{3 . 3 5 2 0}$ OnLAMDO, 104 East Gore Avenue
Orlando, Florida; CHerry 1-2538
Philadelpmia, 1 Bala Avenue:
ala-Cynwyd. Pennsylvania; MOhawk 4-8365, 6
Colit
M FRAMCISCO, 535 Middlefient 2.0404,
Palo Alto, California; DAvenport 6.7780
braACuSE, 224 Harrison Street;
yracuse 2, New York: GRanite i-0163
Washington, D.C.; EXecutive 3.1305

DISTRIBUTORS:

akron Electronic Supply
107 South Arlington: Aliron 6 , Ohio
Radio Specialities Co., Ine.
209 Pennsylvania Avenue; Alamogordo, New Mexic Kann-Ellort Electrenies, Inc. South Howard Street; Baltimore, Maryland hadio Shack Corparation 730 Commonwealth Avenue: Bosion 17, Massachus Summit Distributors, Ine.鲑 Deace, ine.
618 First Street, N.W.; Cedar Rapids, low Allies Radio Corperation
100 North Western Avenue, Cricaro 30,1 insis 100 Nor 1 Mewart Electric Company隹: Chicago 6, Illinois 2145 Florence
Whalosale Electronic
2800 Ross Avenue; Dallas 1 , Texas Ward Terry Company Rio Grande Bouleyard; Denver 4, Colorado Resio spacialtios Co .
456 Charlotte Avenue: Detroit 1, Michiga Wofford Electronte Company
1423 Holman Street; Mouston 4, Texas Mowark Electric Company
inglewood, California 820 West Olympic Bivd.;
Ros
Eest Coast hadie and TV Ce.
soo North West Miam.
Arrow Eloctronies, Inc.

Low Boan ce.
Radie shach Corsaration
230 Crown Street; New
Mudson Radie and TV Corp
48 West 48 th Street; New
48 West 48 Street; New York 19. New Yort
236 Wast 17 th Stree EImer Electronics, Inc.
140 Eleventh Street: Oakland 7, California aratie Electric Service Ce. of Pannaylvania, Ime.
7th and Arch Streats; Philadelphia 6, Pennsylvania Radio spocialties and Appliameo Corparation aadio spaciallies ant appliamee Corparatien
917 North Seventh Street; Phoenin, Arizona Westorn Racte ana felovision Supply Company 1410 India Street; San Dieco, California ramn-Ellert Eloctronles, Iac.
2alt Readie Drive: Silver Spring, Maryiand
Marris Distributing Co., Ine.
1153 West Fayette Street; Syracuse, New York

Semiconductor Division

HUGHES

HUGHES AIRCRAFT COMPANY
Newport Beach, California

Electronics Head Sees Wide Challenge Ahead

Electronics will be used soon to disperse smog, convert sea water into fresh water and diagnose illness, an industry leader has forecast.
The predictions came from Robert S. Bell, president of Packard Bell Electronics Corp., at a luncheon meeting of the Electric League of Los Angeles.
Commenting on the television industry, Mr. Bell scoffed at the idea that color television never would be practical. Color television sales last year exceeded $\$ 50$ million, he said, adding:
"By this time next year color programing by the networks will be improved and expanded. This will increase the demand for color sets, and other manufacturers will scramble to get into the business."

Another burgeoning field for manufacturers, he predicted, will be industrial television. It will be used increasingly in control processes, security work (as in banks) and educational institutions, he said.
Mr. Bell noted that industry sales to the military, other industries and individual consumers were a record $\$ 9.2$ billion last year. He predicted that by 1970 the electronics industry would account for $\$ 20$ billion of the gross national product.

New Projection Process Steadies OId TV Films

A new projection process promises to make old films on television late shows look like they are being rerun for the first time.
The images filmed in the days of $16-\mathrm{mm}$ photography are reported to be steadier, because the effects of scratches and dirt on the film are eliminated. Nowadays $35-\mathrm{mm}$ film is used for motion pictures.
The process was designed by Eastman Kodak Co. for use with General Electric's Vidicon television camera. The heart of the system embodies tilting and rotating mirrors that reflect a stable image. The device can compensate automatically for film shrinkage.

CIRCLE 24 ON READER-SERVICE CARD \rightarrow

When precise temperature control is mandatory

STEMCO TYPE MX THERMOSTATS

are a must

In missiles, avionics, astrionics, or any electronic application requiring the closest temperature control, check into Stemco Type MX Thermostats first. 'They're compact for minimum cubage . . . light in weight... withstand high G loads... are absolutely reliable under wide ambient temperature swings.
Basic design flexibility of Stemco Type MX Thermostats means they can be supplied from regular production runs in a wide variety of models. Semi-enclosed types with metal bases: hermetically sealed types in round enclosures or crystal cans. Wide selection of terminal arrangements, mounting provisions, brackets, etc., available. Units individually packaged in polyethylene with inspectors' readings of disc opening and closing temperatures.
Stemco Type MX Thermostats give you precision performance . . small cubage . . . rugged reliability . at a realistic cost.
A
2° to $6^{\circ} \mathrm{F}$ differentials available 1° to $4^{\circ} \mathrm{F}$ differentials on special order

 LFALFEI)-vilectrically independent bimetaldise Kated 3 amperes.

 Wlectrically identical to Type
MX Ifermetically Sealed. Booth T'ypes available with one terminal grounded or both terminals in. sulated.

COAX HYFEN

CONNECTORS
with crimp-type

Snap-lock action of Burndy coax HYFEN connectors recommends them for many applications. Contacts may be installed on cable wherever convenient and then snapped in or out as required.

These connectors are now in use in critical circuits

ME7X ..Rack-and-panel Coax HYFEN with one-piece de-cast shell and oneexisting solder types.

COAX MODULOK .. Modular terminal block. Modules snap are mounted on cadmlum plated ateol track.

CONNECT QUICKLY ...high speed toollng for volume production results in low installed costs.
CONNECT EASILY
... snap-lock action and simple design with fow parts make installation -asy-tool crimps contacts in any
circumforential position.
CONNECT RELIABLY ...tool-contralled crimp provides strain rellef for conductors, guarantees a uniform Indent for measurable quallity control. There is quality control. There insulation.

FOR OTHER REQUIREMENTS OR APPLICATIONS, CONTACT OMATOM DIVISION

Norwalk, Connect.

In Europe: Antwerp, Belgium CIRCLE 25 ON READER-SERVICE CARD

Toronto, Canada
NYLOCLIP®, a product of the Burndy Corpo ration's Omaton Division, is a pre-formed molded nylon cable hanger which has been time-proven and widely accepted by industry.

NYLOCLIPS weigh only 30% as much as comparable metal clips and yet have high tensile strength. In addition to their light weight, the cable hangers are temperature resistant from $-60^{\circ} \mathrm{F}$ to $250^{\circ} \mathrm{F}$ for sustained periods and they are unaffected by oils, gasoline, alcohol, or hydraulic fluids, including non-inflammable types.

NYLOCLIPS are available in seventeen standard diameter sizes, accommodating single cables or groups of cables from $1 / 8^{\prime \prime}$ to over $2^{\prime \prime}$. Their flexibility makes them easy to install because they are pre-formed in an almost closed position allowing them to be snapped onto cable and stay in place until mounted. Cable insulation is protected by rounded edges and matte-finish on inside surfaces prevent slippage of cable under vibration, without injuring insulation. Inside serrations provide positive alignment when screw is tightened.

BURNDY type HP-N NYLOCLIPS are selfinsulating and thus cannot cause grounds or shorts, and are free from hysteresis losses. One, two, and three hole tongue types give maximum efficient diameter range with each size cable hanger.

Burndy Corporation,
Norwalk, Connect.
CIRCLE 26 ON READER-SERVICE CARD
ELECTRONIC DESIGN • April 27, 1960

EDITORIAL

What Are You Doing to Lessen Diode Confusion?

The military is updating a preferred diode list, the Electronic Industry Association has stiffened registration controls, the diode industry, working with Electronic Design, lists in this issue the most "tried and true" diodes for various applications. These are positive steps taken to curb the avalanche of diodes that swamp you, the overworked engineer, who has to choose one. But what have you done? Have you made an effort to solve your engineering problem with a currently available type, or have you engineered a new one by issuing your own spec?
Despite the encouraging steps taken in the last ten monthsit was last June that this column deplored the too-many-diode mess-the problem is not solved. The rate of producing new types has slowed, but there are still some 1,500 more this year than last. With the recent advent of tunnel diodes having manifold characteristics, lists could approach telephone-book size. You must resist the temptation to add to this list by asking for another special.

Every tightly specified device produces another ten or so, as the manufacturer must dispose of those falling outside of tylerance. Conceivably this lowers your price because you are not paying for the total output.
Some designers, no doubt, feel that the availability of many types lowers equipment costs because they can shop around to get the best price. With only sparse differences existing between diode types, they can pick any one of several.
The initial picture does show an obvious cost saving in the production of new equipment if there is wide rather than nearrow latitude in diode types. However, when the scene shifts to remote military bases, airline maintenance depots, or to ships at sea, initial equipment costs are dwarfed by the cost of stocking, requisitioning, and cataloging large varieties. Standardizaton is good business, and it is your business.

 linearity to 10 ppm

PANEL MOUNT DEKAPOTS* Linearity to $\mathbf{5 0} \mathbf{~ p p m}$. Resolution to 0.0003%. Three or four decades (with 100 Div. Pot.). Available in standard resistance values of 1 K , 10K and 100K. Order from stock. Price - \$95 to \$175.

BASE MOUNT DERAVIDERS* Linearity to $\mathbf{5 0} \mathbf{~ p p m}$. Resolution to 0.0003%. Three decades (plus 100 Div. Pot.) and four decades Available in standard resistance values of 10 K and 100 K . Order from stock. Price $-\$ 145$ to $\$ 160$.

RACK MOUNT DEKAVIDER ${ }^{\text {m }}$ - Precision resistors closely matched for maximum accuracy. Linearity - 10 ppm. Resolution - 0.0001%. Standard resistance value - 10K. 30-day delivery. Price $\mathbf{-} \mathbf{\$ 4 5 0}$.

PRECISION DECADE RESISTIVE VOLTAGE DIVIDERS providing known voltage and current ratios for meter calibration, linearity checking, ratio measuring, synchro testing, computer standardization, many other applications requiring the high resolution and accuracy of the Kelvin-Varley circuit. In-line control knob on the rack-mounted divider and the exclusive ESI DEKADIAL ${ }^{\text {® }}$ coaxial dial of the other units simplify dial settings, permit easy in-line readings. Low reactance design of the precision mica card resistors and minimum capacitrance arrangement of the circuits provide audio frequency performance comparable to high dc accuracy.

A UNIQUE FABRICATION PROCESS FOR THE HOFFMAN MESA TRANSISTOR

BY MORMAN GOLDEN Vice-President, Research and Development Moftwan Electronics Corporation Semiconductor Division
The Moffman mesa transistor is a high-frequency, diffused-junction silicon semiconductor device, usable at temperatures well above the boiling point of water. The manufacturing method of this device is unique in that it uses exclusively photographic techniques for the precise registration of the contacts and mesa area. Low-resistivity, n-type (negative electrons) sili-. con slices are carefully lapped and polished to cun sirres finish, flat and parallel to four millionths of an inch. Then an extremely complex cleaning procedure is performed, involving the use of high-turbulence ultrasonic agitation with relatively Low average power, but peaks of 500 watts. This remeves all trace of contamination, yet does not mar the transistor finish. A total of 13 cleaning solutions is used in conjunction with the agitation to attain the required degree of micro-cleanliness and meot the specified Heffman standard.
An oxide film only two millionths of an inch thick is grown on both surfaces by heating the silicon in wet oxygen at 2200° Fahrenheit Then sallium is diffused throush the oxide layer so that the material is converted from n-type to p-type (positive electrons) conductivity within 130 millinaths of an inch.
A photo-sensitive coating is deposited on the silicon slice, and an image of the 260 emitters is photegraphically printed on the waler. By means of acid treatment, the oxide film is re. means or ond the strips where the emitters are to moved from the strips where the emitters are to tection for the remainder of the slice.
A phosphorus diffusion follows, converting the un-oxidized portions of the silicon to n-type conductivity with an approximate depth of 100 millionths of an inch.
At this stage of the Moffman precess, we have made 250 tiny transisters on each slice. How. ever, some of the mest difficult problems still remain to be sotred.

PMOTOGRAPMIC REEISTRATION
For example, aluminum emitter strips must be registered into each of the 260 diffused phesphorous regions. Here each of the enitter contacts on the evaporation mask is registered with a $.001^{\prime \prime}$ tolerance to the emitter region. In addition, none of the base contacts may short into any of the omitter regions. Mere again, the tolerance is a maximum of .001 ". The registration itself is done under demanding optical conditions since the process is photographic. The aluminumin is evaporated through photographi. cally developed holes. Illumination must be restricted in wavelength, shert in duration, and low in intensity. However, the nighest accuracy of resistration is still required, despite the fact that the emitter diffused regions show up as having only slightly different reflectivity than the base silicon. The registration is done on an optical comparator under conditions of essen. tially monochromatic illumination. A special fix-

For seven years - practically the full span of semiconductor historyHoffman Semiconductor Division has werked exclusively with silicon devices. Company achievements include the world's first commercial silicon diodes, zener diodes and solar celis. Moffman makes the most extensive line of silicon devices in the industry.
2 MORE EXPERIENCE IM DIF. FUSED.JUNCTION DEVICES.
The diffused-junction concept, one of the most important in transistor technology, was adapted by Hoffman as early as 1955. To date, the com-

For further information and comp ploto thelhniesl specifications, cent fact the factory or your area doftume selos tugineer.
diffused junction devices-mere 4 RELIABILITY BACKED BY NUM than any other company in the olectronics industry.
3 - NEW CONCEPT IN QUALITY CONTROL.
Hoffman has developed a com. pletely new quality assuraace and quality control concopt which will enable the company to ship devices that meet the most stringent mili-

ERS
Hofrman has made and shipped more than ten million silicon semiconductor devices.
5 a FACILITY DESIGNED ESPE. HALLY FOR TRANSISTORS.
Hoffman's new 109,000-square-foot facility was designed especially for the development, production and lesting of transistors. It houses ex

Hoffman / Ezectronics CORPORATION

Semicondwctor Division
1001 Anden Dilve, El Monte. Callfornla Plants: EI Monte, Callfornia and Eveneton, allinols

Diode Selection: New Aids Emerge

Abstract

Last year ELECTRONIC DESIGN (June 10, 1959) described a confusing situation: too many diode types with superfluous type numbers and specifications. Since then, significant steps have been taken to improve the picture. The military has updated its approved semiconductor diode list, Electronic Industries Association (EIA) has moved to enforce more strictly its rules for diode registration, and industry has cooperated with ELECTRONIC DESIGN in the preparation of helpful guides to diode selection. In this report, the recommended types are arranged in convenient tables to facilitate finding the best diode for the job. Factors other than catalog specs influence final diod choice-these points are discussed in Nick DeWolf's "Diode Selection Game" on page 36.

Defense Dept. Prepares New Diode List

IN LAST year's Electronic Design Diode Report some rather strong accusations were directed toward industry and the military for not taking concrete steps to limit the seemingly endless number of diode types on the market. Selecting one type for a particular application out of others that appeared similar was exhausting. Evaluating "new" diode devices only to discover they were no better than existing units wasted valuable engineering time. Trying to locate alternate sources of supply or stockpiles of obsolete types for replacement wasted more time and money.
During the last year, the military has increased its efforts to update MIL-STD-200, listing preferred and guidance type tubes and semiconductor diodes. Preferred types are defined as the "best
available, have been in production and are covered in a military specification." Guidance types denote "best available, with a military specification available or in preparation."
The latest military listing, 200E, supersedes 200D, released in May, 1958. The new document, approved by the Dept. of Defense, specifies the diode types to be used in the design and production of new equipment. Joint cooperation by the Signal Corps, Bureau of Ships and the Air Force to evaluate the best available types on the basis of performance and reliability helps prevent a confusing logistic problem. Formal approval of the MIL-STD-200E listing was not completed at deadline time for this report. However, close sources reveal that our compilation is accurate and complete.

As a guide to the circuit engineer engaged in military equipment design, MIL-STD-200E types have been grouped into four categories; small signal and rectifier (see Table 2) and microwave and switching (Table 1). For those needing specification details on single-service or JAN-approved types, a tabulation of approved types with spec number and date of issue is contained in Table 3.

Table 1. MIL-STD-200E Approved Microwave and Switching Diodes.

Microwave			
UHF			EHF
IN25	IN2IC	1N23C	
	IN2IWE	IN23WE	
		1N23CR	1N26
	1N32	1N31	
	1N263	1N78	INJ3
Switching			
1N251	1N658	IN643	1N662

Table 2. Silicon Small Signal and Rectifier Devices Approved on MIL-STD-200E Listing.

Fonward Voltage(v)	$\begin{gathered} 2-10 \\ \hline \end{gathered}$	25	$\begin{array}{r} 50 \\ \mathrm{MA} \end{array}$	100	$\begin{aligned} & 150 \\ & M A \end{aligned}$	$\begin{aligned} & 200 \\ & \mathrm{MA} \end{aligned}$	$\begin{aligned} & 250 \\ & \text { MA } \end{aligned}$	$\begin{aligned} & 400 \\ & M A \end{aligned}$	1	5 \mathbf{A}	12	20	50
50	1N198	1N457	IN276			1N270							
100	1N458			1N277					IN253			IN249B	1N2173
200	1N459				IN645		1N538			IN1614	IN1202	IN250B	IN2174
300													1N1682
400					1N647		IN540	IN255		1N1615	IN1204		
500													
600					1N649	1N256	IN547			1N1616	INI206		

EIA Enforcing Registration Rules

0NE malpractice responsible for the swelling diode listing over the years has been the wanton registration by a few manufacturers of "new" types, seemingly identical with previously registered units. By submitting data at points other than those specified by the original registrant, exact comparison was near impossible, and new types numbers were granted by EIA.

Well then, critics asked, why not prepare a standard format for data submission so that all manufacturers' data could easily be compared? A seemingly simple solution. However, when EIA suggested that its prepared formats be used for the reservation and registration of diodes types, cooperation was not universal.

Submission on Standard Formats Mandatory

Finally EIA altered its rules pertaining to reservation and registration. At a November, 1959 meeting, the JEDEC Semiconductor Council ruled that reservation requests and registration releases would not be processed unless data were presented on a standard format. Values for certain key characteristics must be included-no blank spaces. Manufacturers are advised to include any additional data that may be needed to define the diode and distinguish it from previously registered types.

Registration Foe Aids "Soul-Searching"

Another key to the growing diode list over the years has been the registration-again by a fewof long listings of Zener or reference devices. A typical case involved one manufacturer who demanded new type numbers for a new batch of more than 60 Zener values-each type number separated from the next by 0.1 v . "Does a need exist for $4.2-\mathrm{v}$ and $4.3-\mathrm{v}$ and 4.4 v , etc., units?
critics asked. Perbaps. But there was certainly no need to register such devices, the critics argued. when it was well known they could be selected for a particular customer when desired. Just imagine, said the critics, the interminable tabulation that could result if each manufacturer were to resort to such ridiculous extremes.

Here again EIA simplified the problem of "soulsearching" by those contemplating the registration of a type. A fee of $\$ 50$ for members, $\$ 100$ for non-members, is now required to accompany each registration application. Needless to say, company executives now take a long, hard look before submitting 70 "new" types, say, for registration and paying up to $\$ 7000$ in fees. For a series of truly new and upgraded diodes, an outlay of several hundred dollars to cover EIA lab and filing fees

Staff engineer Reuben Wechsler, of E.I.A.'s Standards Lab, checks test setup for thermal resistance check of transistors. Other projects at the Standards Lab include rest evaluations for slow. and high-speed diode reverse recovery lests.
would not be overly costly. But for "gimmick" purposes, the fees give a reason for another look.

EIA Standards Lab Checks Now Types

EIA's Standards Laboratory in Newark, N.J., is entrusted with the investigation of proposed methods of testing electronic devices plus determination of the degree to which average characteristics of products differ among manufac turers. In addition it serves as a standards bureau for the manufacturers of receiving and cathoderay tubes and semiconductors.

Semiconductor Activities Cited

According to G. F. Hohn, manager of the laboratory, semiconductor activity is currently concerned with the completion of a slow-speed diode reverse recovery test to serve as an industry standard; a simple-to-operate, high-precision bridge arrangement for measurement of transistor lowfrequency parameters; and a test method for accurate determination of the thermal resistance characteristics of transistors. Next to be investigated will be a test setup for high-speed diode reverse recovery figures.
In addition the EIA laboratory is processing the reservation and registration of semiconductor devices. To simplify research and to provide prompt answers on diode or transistor characteristics, an automatic card selector system was rocently installed. With data submission arriving on standard formats and then translated to the card system, it becomes relatively simple to ascertain quickly whether a new diode type has already been registered. The Standards Laboratory evaluates the submitted material and, when questions arise, follows up until a final decision is reached.
(Report continued on following pages)
from Transitron...industry's broadest line of

MICRO-DIODES

MICRO-MINIATURIZATION POSSIBLE NOW!

YES - FASTEST DIFFUSED SULCOW MICRO-DIODES AVALASLE They combine advanced diffusion techniques with extremely small size, to provide milli-micro-second switching speeds, excellent static, forward and inverse characteristics.

YES - OMY SEDES OF HIEM OUALUTY MICRO-REGULATORS. Series of 8 diffused-silicon micro-regulators provides stable voltage regulation and reference sources previously found only in considerably larger devices. Excellent dynamic resistance characteristics.

YES - BASIC FAMMY OF MULTI-PURPOSE MICRO-DIODES. Series of 3 high quality diffused-silicon micro-diodes provides voltage ratings up to 200 volts, current rating up to 50 milliamperes. May be considered for switching applications. Exceptional static, forward and inverse characteristics.

YES - EVEN A MICRO-STABSTOR.
This diffused-silicon stabistor is the micro-counterpart of Transitron's universally-known SG-22.
All of these new micro-diodea are COMPLETELY COMPATIBLE with present circuitry . . . provide the same excellent performance as larger Transitron diodes in $1 / 10$ th the space! Here is your chance to micro-miniaturize circuits TODAY!

For further information,
vrito for Bulletine:
PB-71A (High Conductance), PB-71B (Fast Switching), PB-71C (Vory Fast Switching). PB-71D (Stabistor), PB-71E (Regulators); AN 1358A Application Notes.

Transitron

OFF-TME-SHELF DELVERY FROM THESE FULLY-STOCKED TRMMSIROW IMDUSTRIAL DISTRIBUTORS In quantimes
 Alpine 4235 Cal CALIFOANIA, Inglewoon
Lideryy flertionicis Caip ORepon B. 116 G .
CAL LIFORNIA. Long B

 CANAOA, Montesi. Quebec
Allas Wholezie Rado inc. Allas Wholeale
Rfjent $3-7135$
 COLORADO COLORADO. Denver
Kimball Distituting Co.
ACOma D. c., Wesshngeton
 PLORIDA, cucon
Thuiow Distibulars

 Thurom Dosstiouta
CHury $1-3685$ PLOMIDA. Tampa Thurom Distributa
TAmpa 21885
 MaWAII, Monowlu
Industhal Eletioncs. I

 INDIANA. Souln Bend 26
 ATluntic 8.4656
IOWA. Cosas Repons
 EMplet 4.6151 ,
KANEAS, Wichite

 massachusetrs. Botion Damamerne Ratio Su
ALronquin 4.9000 maszachusett mo.

 Thimy 1.124 minnesota. St. Paul Copher Electronicic
CApito 4.9555 Miesount, Konsus City
 M1880UR1, Sr. Louns 16
 NEW MAMP EMinE, Manchesive
Demambio hadio Supol, Co, Ime.
 new mexico. Albuquergue

NEW YORK, Binghame
 Plonet 8.8211
 MAD ison ITYO NEW YORK. Cone Ialand City B H. . . Dalis. ink.
Eimpure $1 \cdot 1000$ NEW YORN, Nem York 7
 NEW YORK, Mou Yaih 13 Mile
Blechectronics Con
Cor
3 MORTM CAROLINA.
 orio. Cincinnti

 Tan 1 1-6060
omio. Dapion? OPIO. Darion ?
Slotts Sinedman Co.
Bantwin 1.1111
orklamoma, tulss

 Radio Electite Serma OHODE IBLANO, Prowdomen
Demimbro Racio Supal Co. inc Jechison 1.5600 TEXAS. Oalus
Conlace tifectronics, ine.

 UTAM, Sall Late Cilt Mimball Disthibuting
IMpare 3 -sill WashingTon, Semme
cock Ratio Supply Co.

FOR TECHNICAL ASSISTANCE AND SERVICE CONTACT THE TRANSITRON FIELD OFFICE NEAREST YOU AS LISTED BELOW

ICACO 6611 . Morth Arenue, Oth Parh, III......... VIlloge 8.5556	

Trangitron

 olectronic corporation 1 sucs orfices in mimarm arits nmoverour die u. : A Cuar noomess tmicoCIRCLE 29 ON READER-SERVICE CARD

Table 3. Tabulation of Single Service and JAN Approved Diodes
(Complete with specifications and issue date.)

	ectifiers	
Type	Spec	Issue Date
$\begin{aligned} & 1 \mathrm{~N} 93 \\ & \text { •1N249B } \end{aligned}$	MIL-E-1 895B (NAVY) MIL-E-1/1148 (SIGC)	$\begin{array}{cc} 5 & \text { Jul } \\ 27 \\ 27 & \text { Jun } \\ 58 \end{array}$
$\begin{aligned} & \text { 1 N250B } \\ & \text { *JAN-1 N253 } \end{aligned}$	MIL-E-1/1149 (SIGC) MIL-E-1/1024A	$\begin{aligned} & 27 \text { Jun } 58 \\ & 28 \text { Jan } 58 \end{aligned}$
JAN-1 N254	MIL-E-1/989B	28 Jan 58
**JAN-1 N255	MIL-E-1/990B	28 Jan 58
$\begin{aligned} & \because \cdot A N-1 \text { N256 } \\ & \text { IN315 (Ge) } \end{aligned}$	$\begin{aligned} & \text { MIL-E-1/991B } \\ & \text { MIL-E-1/1088 (USAF) } \end{aligned}$	$\begin{aligned} & 28 \text { Jan } 58 \\ & 24 \text { May } 57 \end{aligned}$
$\begin{aligned} & * \text { JAN-1 N538 } \\ & \text { **JAN-1 N540 } \end{aligned}$	MIL-E-1/1084F MIL-E-1/1085A	$\begin{aligned} & 28 \text { Jan } 58 \\ & 28 \text { Jan } 58 \end{aligned}$
$\begin{aligned} & * * J A N-1 \text { N547 } \\ & \dagger 1 \text { N1130 } \end{aligned}$	$\begin{aligned} & \text { MIL-E-1/ } 1083 \text { A } \\ & \text { MIL-E-1/1287 (SIGC) } \end{aligned}$	$\begin{aligned} & 28 \text { Jan } 58 \\ & 26 \text { May } 59 \end{aligned}$
$\begin{aligned} & \text { +1 N1131 } \\ & \text { † N1147 } \end{aligned}$	MIL-E-1 1287 (SIGC) MIL-E-1/1305 (SIGC)	$\begin{aligned} & 26 \text { May } 59 \\ & 13 \text { Aug } 59 \end{aligned}$
+1 N1149	MIL-E-1 1306 (SIGC)	13 Aug 59
+1 N1183	MIL-E-1/1135 (USAF)	28 Oct 57
$\begin{array}{r} \text { +1 N1184 } \\ \text { 1 N1185 } \end{array}$	MIL-E-1 1135 (USAF) MIL-E-1/1135 (USAF)	$\begin{array}{lll} 28 & \text { Oct } 57 \\ 28 & \text { Oct } & 57 \end{array}$
+1 N1186 $\dagger 1$ N1187	MIL-E-1/1135 (USAF) MIL-E-1/1135 (USAF)	$\begin{aligned} & 28 \text { Oct } 57 \\ & 28 \text { Oct } 57 \end{aligned}$
t1N1188 I N1189	MIL-E-1 1135 (USAF) MIL-E-1/1135 (USAF)	$\begin{aligned} & 28 \text { Oct } 57 \\ & 28 \text { Oct } 57 \end{aligned}$
$\begin{aligned} & \text { † N N1190 } \\ & \text { † } 1 \text { N1199 } \end{aligned}$	MIL-E-1/1135 (USAF) MIL-E-1/1108 (USAF)	$\begin{aligned} & 28 \text { Oct } 57 \\ & 25 \text { Mar } 58 \end{aligned}$
1 N1200	MIL-E-1 1108 (USAF)	25 Mar 58
1N1201	MIL-E-1/1108 (USAF)	25 Mar 58
$\begin{aligned} & \text { 1 N1202 } \\ & \text { 1N1203 } \end{aligned}$	MIL-E-1/1108 (USAF) MIL-E-1/1108 (USAF)	$\begin{aligned} & 25 \text { Mar } 58 \\ & 25 \text { Mar } 58 \end{aligned}$
$\begin{aligned} & \text { IN1204 } \\ & \text { 1N1206 } \end{aligned}$	MIL-E-1 1108 (USAF) MIL-E-1/1108 (USAF)	$\begin{aligned} & 25 \text { Mar } 58 \\ & 25 \text { Mar } 58 \end{aligned}$
$\begin{aligned} & \text { 1 N1281 } \\ & \text { 1 N1282 } \end{aligned}$	MIL-E-1/1136 (USAF) MIL-E-1/1136 (USAF)	$\begin{aligned} & 28 \text { Oct } 57 \\ & 28 \text { Oct } 57 \end{aligned}$
$\begin{aligned} & \text { 1 N1283 } \\ & \text { 1 N1284 } \end{aligned}$	MIL-E-1 1136 (USAF) MIL-E-1/1136 (USAF)	$\begin{aligned} & 28 \text { Oct } 57 \\ & 28 \text { Oct } 57 \end{aligned}$
1 N1285	MIL-E-1. 1136 (USAF)	28 Oct 57
1 N1286	MIL-E-1/1136 (USAF)	28 Oct 57
$\begin{aligned} & \text { 1 N1287 } \\ & \text { I N1341 } \end{aligned}$	$\begin{aligned} & \text { MIL-E-1 } 1136 \text { (USAF) } \\ & \text { MIL-E-1/1186 (USAF) } \end{aligned}$	28 Oct 57
$\begin{aligned} & \text { 1 N1342 } \\ & \text { I N1343 } \end{aligned}$	MIL-E-1/1187 (USAF) MIL-E-1/1188 (USAF)	
$\begin{aligned} & \text { 1N1344 } \\ & \text { IN1345 } \end{aligned}$	MIL-E-1 1189 (USAF) MIL-E-1/1190 (USAF)	
$\begin{aligned} & \text { 1N1346 } \\ & \text { 1 N1347 } \end{aligned}$	MIL-E-1 1191 (USAF) MIL-E-1/1192 (USAF)	
1N1348	MIL-E-1/1193 (USAF)	
1 N1408	MIL-E-1/1172 (SIGC) (to be cancelled)	4 Jun 58
1 N1413	MIL-E-1/1173 (SIGC) (to be cancelled)	4 Jun 58
IN1614	MIL-E-1/1240 (SIGC)	30 Oct 58
1N1615 IN1616	$\begin{aligned} & \text { MIL-E-1 } 1241 \text { (SIGC) } \\ & \text { MIL-E-1/1242 (SIGC) } \end{aligned}$	$\begin{array}{lll} 30 & \text { Oct } & 58 \\ 30 & \text { Oct } & 58 \end{array}$
$\begin{array}{r} \text { 1N1682 } \\ \text { †1 N1731 } \end{array}$	$\begin{aligned} & \text { MIL-E-1 } 1195 \\ & \text { MIL-E-1/1302 (SIGC) } \end{aligned}$	$\begin{array}{r} 1 \text { Dec } 59 \\ 13 \text { Aug } 59 \end{array}$
$\begin{aligned} & \text { +1 N1733 } \\ & \text { 1 } 1 \text { N1734 } \end{aligned}$	MIL-E-1 1303 (SIGC) MIL-E-1/1304 (SIGC)	13 Aug 59 13 Aug 59
IN2135A	MIL-E-1/1256 (SIGC) 28	26 Jan 59
1 N2172	MIL-E-1/1196	1 Dec 59
$\begin{aligned} & \text { •1 N2173 } \\ & \text {-1 N2174 } \end{aligned}$	$\begin{aligned} & \text { MIL-E-1/1151 } \\ & \text { MIL-E-1/1194 } \end{aligned}$	$\begin{aligned} & 1 \text { Dec } 59 \\ & 1 \text { Dec } 59 \end{aligned}$

Reference

Type +1 N429 +1 N430 1N709 1N716 1N718 1 N720 1 N722 $\dagger 1$ N746A +1N747A $\dagger 1$ N748A +1N749A 1 N750 +1 N750A +1 N751A +1 N752A +1N753A \dagger 1N754A +1N755A +1N756A +1 N757A $\dagger 1$ N758A t1N759A 1N1324 1N1353 1 N1358 1N1361 1N1777 1N1778
N1778
N1781
1N1791 1N1795 INI804 1N1807 MIL-E-1/1236 (SIGC) 10 Nov 58 +1N1816A \& RA MIL-E-1 1259 (NAVY) A Jun 59 †1N1817A \& RA MIL-E-1/1259 (NAVY) Jun 59 +1N1818A \& RA MIL-E-1/1259 (NAVY) \& Jun 59 †1 N1819A \& RA MIL-E-1/1259 (NAVY) Q Jun 59 †1 N1820A \& RA MIL-E-1/1259 (NAVY) \& Jun 59 †1N1821A\&RA MIL-E-1/1259 (NAVY) 4 Jun 59 †1 N1822A \& RA MIL-E-1/1259 (NAVY) 4 Jun 59 †1N1823A \& RA MIL-E-1/1259 (NAVY) \& Jun 59 t1 N1824A \& RA MIL-E-1/1259 (NAVY) 4 Jun 59 †1N1825A \& RA MIL-E-1/1259 (NAVY) 4 Jun 59 t1 N1826A \& RA MIL-E-1/1259 (NAVY) 4 Jun 59 t1 N1827A \& RA MIL-E-1/1259 (NAVY) A Jun 59 +1N1828A \& RA MIL-E-1/1259 (NAVY) a Jun 59 †1 N1829A\& RA MIL-E-1/1259 (NAVY) 4 Jun 59 t1N1830A \& RA MIL-E-1/1259 (NAVY) 4 Jun 59 t1 N1831A \& RA MIL-E-1/1259 (NAVY) I Jun 59 †1 N1832A \& RA MIL-E-1, 1259 (NAVY) 4 Jun 59 +1N1833A \& RA MIL-E-1/1259 (NAVY) 4 Jun 59 +1 N1834A \& RA MIL-E-1/1259 (NAVY) 4 Jun 59 t1N1835A \& RA MIL-E-1/1259 (NAVY) A Jun 59 †1 N1836A \& RA MIL-E-1/1259 (NAVY) 4 Jun 59

[^2]Small Signal

Type	Spec	Issue Date
JAN-IN38B (Ge) 1 N39 (Ge)	$\begin{aligned} & \text { MIL-E-1 492B } \\ & \text { MIL-E-1;777B (NAVY) } \end{aligned}$	$\begin{array}{ccc} 17 & \text { App } & 57 \\ 28 & \text { Jul } & 54 \end{array}$
$\begin{aligned} & 1 \text { N44 (Ge) } \\ & \text { 1N48 (Ge) } \end{aligned}$	MIL-E-1/377 (NAVY) MIL-E-1/378 (NAVY)	$\begin{array}{r} 3 \text { Aug } 53 \\ 10 \text { Aug } 53 \end{array}$
1 N55A (Ge)	MIL-E-1/487A (NAVY)	23 Sept 54
1N55B (Ge)	MIL-E-1/481A (NAVY)	9 Sept 54
JN56A (Ge) 1 N63 (Ge)	MIL-E-1 549A (NAVY) MIL-E-1/376B (NAVY)	$\begin{array}{r} 28 \text { Jul } 54 \\ 8 \text { Feb } 54 \end{array}$
$\begin{array}{r} \text { 1N67A (Ge) } \\ \text { JAN-1N69A (Ge) } \end{array}$	MIL-E-1/508A (NAVY) MIL-E-1/142D	$\begin{aligned} & 15 \text { Dec } 53 \\ & 17 \text { Apr } 57 \end{aligned}$
JAN-1 N70A (Ge) JAN-1 N81A (Ge)	MIL-E-1,154D MIL-E-1/155D	$\begin{aligned} & 17 \text { Apr } 57 \\ & 17 \text { Apr } 57 \end{aligned}$
JAN-1N126A (Ge) JAN-1N127A (Ge)	MIL-E-1/156C MIL-E-1/157C	$\begin{aligned} & 17 \text { Apr } 57 \\ & 17 \text { Apr } 57 \end{aligned}$
JAN-1 N128 (Ge)	MIL-E-1/158B	4 Mar 54
1 N145 (Ge)	MIL-E-1/811 (NAVY)	21 Sept 54
*JAN-1N198 (Ge) 1N212	$\begin{aligned} & \text { MIL-E-1/700 } \\ & \text { MIL-E-1/932A (NAVY) } \end{aligned}$	$\begin{array}{r} 13 \text { Aug } 54 \\ 1 \text { Fob } 56 \end{array}$
$\begin{aligned} & \text { JAN-1 N270 (Ge) } \\ & \text { JAN-1 N276 (Ge) } \end{aligned}$	MIL-E-1/992A MIL-E-1/1025	$\begin{aligned} & 17 \text { Apr } 57 \\ & 25 \text { Jun } 56 \end{aligned}$
$\begin{aligned} & \text { "JAN-1 N277 (Ge) } \\ & \text { JAN-1 N28 1(Ge) } \end{aligned}$	MIL-E-1/993A MIL-E-1/961	17 Apr 57 23 Aug 55
$\begin{aligned} & \text { * "JAN-1 N457 } \\ & \text { *JAN-1 N458 } \end{aligned}$	$\begin{aligned} & \text { MIL-E-1/ } 1026 \\ & \text { MIL-E-1/1027 } \end{aligned}$	$\begin{array}{ccc} 25 & \text { Jul } & 56 \\ 25 \mathrm{Jul} & 56 \end{array}$
* JAN-1 N459	MIL-E-1/1028	25 Jul 56
$\dagger 1$ N483B	Proposed (NAVY)	
+1 N484B $\dagger 1$ N486B	Proposed (NAVY) Proposed (NAVY)	
*1 N645 1 N646	MIL-E-1/1143 (USAF) MIL-E-1/1143 (USAF)	$\begin{aligned} & 22 \text { Apr } 58 \\ & 22 \text { Apr } 58 \end{aligned}$
-1 N647 1N648	MIL-E-1 1143 (USAF) MIL-E-1/1143 (USAF)	$\begin{aligned} & 22 \text { Apr } 58 \\ & 22 \text { Apr } 58 \end{aligned}$
$\begin{aligned} & \text { "1N649 } \\ & \text { T12G (Ge) } \end{aligned}$	MIL-E-1/1143 (USAF) MIL-E-1/1154 (NAVY)	22 Apr 58
	Microwave	
Type	Spec	Issue Dafe
JAN-1 N21B	MIL-E-1/656	25 Mar 54
$\begin{array}{r} * J A N-1 N 21 C \\ \text { 1N21E } \end{array}$	MIL-E-1/657 MIL-E-1/1155 (USAF)	23 Mar 54
*JAN-1N21WE JAN-1N23B	MIL-E-1/1115 MIL-E-1/618	$\begin{gathered} 14 \text { Oct } 58 \\ 4 \text { Mar } 54 \end{gathered}$
-JAN-1N23C	MIL-E-1/295B	17 May 55
*JAN-1 N23CR	MIL-E-1/550A	4 Mar 54
1N23E	MIL-E-1/1231 (SIGC)	30 Sept 58
- JAN-1 N23WE	MIL-E-1/1117	14 Oct 58
* JAN-1 N25	MIL-E-1/658	13 Aug 54
- JAN-1 N26	MIL-E-1/659	23 Jun 55
**AN-1 N31	MIL-E-1/661A	23 Jun 55
**JN-1N32	MIL-E-1/27A	13 Aug 54
*.JAN-1 N53	MIL-E-1/497B	17 May 55
1 N72	MIL-E-1/780A (NAVY)	23 Sept 54
- JAN-1N78	MIL-E-1/662A	23 Jun 55
- JAN-1 N263	MIL-E-1/809B	14 Oct 58
	Switching	
Type	Spec	Issue Date
-*JAN-1N251	MIL-E-1/1023	25 Jul 56
-1 N643	MIL-E-1/1171 (SIGC)	16 May 58
* 1 N658	MIL-E-1/1160 (SIGC)	27 Jun 58
${ }^{1} 1$ N662	MIL-E-1/1139 (SIGC)	26 Feb 58
1 N663	MIL-E-1/1140 (SIGC)	26 Feb 58
$\dagger 1$ N691	Proposed Navy	
†1 N696	Proposed Navy	

"Most Popular" Diodes Compiled

AS A result of Electronic Design's charge last year that design engineers were spending too much time scanning listings of thousands of diodes, an industry representative offered to compile a group of charts containing the "most popular" types manufactured. The ambitious volunteer, who prefers to remain anonymous, has been closely identified with the semiconductor industry since its early days and is an active member of various industry committees.
To confirm the validity of the submitted listings, Electronic Design sent them to all diode manufacturers in the U. S. and invited their comments as well as their inclusion of any additional diode types that might have been overlooked. Here again a forward step was taken by the in-
dustry. An overwhelming percentage of manufacturers responded with reserve; there was no mad dash to include their "favorites." Suggested changes were evaluated and incorporated when valid.

By dividing the application areas into four groups-silicon general-purpose, silicon computer, silicon reference and germanium-the listings offer the design engineer a choice of 178 diode types. Only registered JEDEC types are shown; "house" numbers, available from single sources, are not included. Obviously many types (of the 4,000 available) are omitted; the intent of the charts is to present the diode types that are produced in large quantities and thus generally supplied from
(text concluded on page 36)

Table 4. Silicon Voltage Regulator

$V($ nom $)$	$1 / 4 W$	$1 W$	$10 W$
2.6	IN702		
3.3	IN746		
3.6	IN703		
	IN747		
3.9	IN748	IN1518	IN1599
4.2	IN704		
	IN749		
4.7	IN750	IN1519	IN1600
	IN705		IN2041
5.1	IN751		
5.6	IN708	IN1765	IN1803
	IN752		IN2042
6.2	IN753	IN1766	IN1804
	IN709	IN1485	
	IN429		
6.8	IN710	IN1767	IN1805
	IN754	IN1521	IN1602
7.5	IN711	IN1768	INI806
	IN755		

Table 5. "Most Popular" General Purpose Silicon Diodes.

Table 6. "Most Popular" Silicon Computer Types.

ELECTRONIC DESIGN • April 27, 1960

nd Reference Diodes.

V (nom)	I/4W	I W	10 W
8.2	IN756	IN1425	IN1416
	IN712	IN1769	IN1807
	IN430	IN1522	IN1603
9.1	IN757		
	IN713		
10.0	IN758	IN1771	IN1351
	IN714		
12.0	IN759	IN1426	IN1417
	IN716	IN1773	IN1353
13.0	IN717	IN1774	IN1354
15.0	IN718	IN1427	IN1335
		IN1775	IN1418
16.0	IN719	IN1776	IN1356
18.0	IN720	IN1428	IN1357
		IN1777	IN1419
20.0	IN721	IN1778	IN1820
22.0	IN722		IN1358
27.0	IN724	IN178I	IN1361
68.0	IN734	IN1791	IN1833
100.0	IN738	IN1795	IN1836

Table 7. "Most Popular" Germanium Types.

DIFFUSED SILICON PNPN CONTROLLED RECTIFIER

A three-junction, three-terminal device for use in power control and in switching applications requiring up to 16 amps., D.C. In the reverse direction (anode negative) it will block current up to its rated PIV, while in the forward direction (anode positive) it will block up to its minimum breakover voltage, at which point it will quickly switch to the high conduction state. It may at which point it will quickly switch to the high conduction state. It may
also be turned on when an appropriate voltage is impressed between gate and also be turned on when an appropriate voltage is impressed between gate and
cathode. In this latter respect it is analogous to a thyratron. In the "on" cathode. In this latter respect it is analogous to a thyratron. In the "on"
conduction state, the forward voltage drop is essentially that of a standard silicon diode. Tentative specifications are as follows:

MAXIMUM RATINGS

Peak inverse voltage (PIV) .. 25 to 400 volts Peak inverse gate voltage (V ${ }_{k r}$) 5 volts Average forward current (1). up to 16 amps Storage temperature-65 to $175^{\circ} \mathrm{C}$ Peak surge current (one cycle).... 150 amps Operating temperature-65 to $125^{\circ} \mathrm{C}$

SPECIFICATIONS AT $25^{\circ} \mathrm{C}$

Min. breakover voltage $\left(V_{n o}\right)$. 25 to 400 volts Max. gate current to fire $\left(I_{g r}\right) \ldots \ldots . .80$ ma Max. leakage current (I,) and (Is)...... 5 ma Typical gate current to fire (I_{81})...... 20 ma Max. forward voltage $\left(V\right.$, avg.)......0.9 volts Typical holding current $\left(I_{\mathrm{B}}\right) \ldots$. Max. gate voltage to fire (V_{g})..... 3.0 volts Min. gate voltage to fire $\left(\mathrm{V}_{\mathrm{gr}}\right)$. 0.3 volts
Turn on time............................... $<20 \mu \mathrm{sec}$

*JAN

Low Leakage, High Temp., Fast Recovery Type
71 Linden street. West Lynn. Massachusette LYnng-48no CIRCLE 31 ON READER-SERVICE CARD
several sources. These are used sufficiently to be recognized as dependable. Many types are indicated as approved by military; non-military types are listed where applicable in the same category, so as to provide a price advantage where a MIL type is not required. In some cases the latest improved diode types, possibly single-source now but destined for additional suppliers, are included to alert the design engineer to what the industry
and military expect to use heavily.
Reference diodes, as an example, can be obtained from many sources under different type numbers than those listed. In addition considerable smaller voltage increments are available. Here again it is emphasized that the charts are intended as a helpful guide and not to be considered as a preferred or mandatory listing to be followed strictly.

There's More to Selection Than Charts

However, charts and tables are but one step in reaching a final decision on diode selection. An expert in the field, Nick DeWolf, Transitron's chief electronic engineer, offers helpful ideas in the article below, "The Diode Selection (Yame." Derating for reliability, with suggested rules for determining the choice of a device and supplier, are clearly outlined. -

Catalog Sheets Don't Tell All

The Diode Selection Game

N. DeWolf
Chief Electronics Engineer
Transitron Electronic Corp. Wakefield, Mass.

Nick DeWolf, head of Transitron's electronic engineering depart. ment, has firmly estab lished himself as one of men in the well-popumen in the well-populated semiconductor feid. Apparently unre-
stricted by conventional stricted by conventional drawstrings, Nick often creates quite a stir by bringing up controverfor obvious commercial reasons, would rather not mentlon. His dis cussion of the diode slituation le typical.

> Diode selection involves more than fitting a catalog spec to a circuit design. Price availability and source are important factors; general rules before reaching a final decision are outlined. ELECTRONIC DESIGN invites comments, for possible publication, on Nick DeWolf's philosophy.

IT APPEARS that many believe that an adequate selection of a diode type may be made by perusal of specification charts and sheets and by matching circuit requirements to diode specifications. However, in practice the usual electrical specifications are among the least important factors in proper selection!

Just How Good Are Diodes?

Underlying this conflict are several very important practical facts about present-day diodes. Modern diodes are usually far better in most characteristics than circuitry actually requires. The forward drop is not only very low, but remarkably uniform and in most cases not limiting. Improvements in forward drop at typical current levels are unlikely since they are determined mainly by the basic material from which the diode is made. Leakage current is very low, and in silicon diodes is often a measurement challenge. Leakage specifications have improved more slowly than diodes and the bulk of modern diodes far exceed published specifications. Volt-
age ratings are, if trusted, higher than normally required, particularly for transistorized equipment.

Another hitch is that many diodes are neither stable nor faultless in workmanship. An occasional individual diode may be notoriously unreliable although the average diode may be remarkably resistant to environment. Ratings are, by present convention, not trustworthy as operating points and are actually guarantees of conditions that will induce some failures eventually. A relative comparison of these difficulties is assuredly not published on specification lists or specs.

Catalogs Don't Tell All

As a result, the bulk of diodes are today purchased under special tightened internal specifications which are aimed at reliability rather than parameter characteristics. Many of the normally unpublished specs are direct reliability indexes and tests, others are tests believed indirectly to be reliability measures. Over half of today's diodes are purchased to special specifications, which

How Mach Derating for High
 Diode Reliability?

Temperature

The general feeling is not to use germanium types above 65 C nor silicon above 125 C.

Power Dissipation and Current Ratings

Since catalog ratings tend to be very unconservative, particularly in silicon devices, values should be reduced often by a factor of three.

Voltage Ratings

Although derating may be painful, silicon devices should not be used over 300 v nor germanium above 40 v without life-test proof of adequate reliability. Generally, use of half the voltage rating is reasonable when it is below the above figures.
often are comprised of over a dozen pages of environmental and life tests, plus quality control requirements.
The design and manufacturing techniques employed vary greatly between manufacturers and between diode families. These fundamental diode differences greatly affect reliability and high frequency properties, but are not reflected in simple specification listings. The largest single determinant in diode selection is the choice of manufacturer and family of diode. A given type number may be of entirely different construction from each producer. The resultant differences are often of far greater importance than the differences between initial specifications. These differences do not appear on condensed spec listings and are usually not evident on specification sheets. The advertising pages are more indicative here, although "dirty linen" is rarely confessed.

Derating For Reliability

The necessity for derating and conservative allowance for changes and drift cause the initial

You get an extra measure of design freedom with

... POWDERED PERMALLOY FILTOROID* CORES*

The high permeability and low core loss of powdered permalloy Filtoroid cores can remove design roadblocks for you. You can build extra frequency stability into filter networks with these cores. Their permeability remains stable with changes in time and flux levels. Distortion factors are held to a bare minimum. Temperature coefficient of inductance is tightly controlled.

There's extra design flexibility for you, too, in
the broad range of Filtoroid cores available. They're made in three standard permeabilities 150,125 and 60 -in sizes up to $1.570^{\prime \prime}$ O.D., all carried in stock for immediate shipment.

Our engineers are ready right now to help you select the proper Filtoroid core for your filter circuits. Write or call for a discussion of your needs, or send for Bulletin G-1.

transformer laminations - motor laminations - lape-wound cores powdered molybdenum permalloy cores - electromagnetic shiolds Magnetic Metale Company - Hayes Avenue of 21 st Street, Camden 1, N. J. CIRCLE 32 on reader service card
spec to serve properly only as a guidepost and starting point. Varying degrees of conservatism in ratings should result in varying degrees of derating. The inaccuracies of arbitrary percentage derating methods rather than knowledgeable deratings can cause unrealistic comparisons and false diode selection.
Price is a dirty word, but the lack of pricing formulae recommends a careful study. Many diodes appear overpriced, an occasional one is a bargain. The game of picking out the lowest priced diode may result in a loss of manufacturer interest, with concurrent loss of many internal specifications and quality control. The higher priced diodes generally command the cream of the crop from a given production line.

Availability Key Factor in Selection

Availability is another important area. The most up-to-date good buy is almost inevitably short in supply. Diode consumption has increased very rapidly and manufacture can barely keep abreast. Many programs depend dangerously on regular delivery of appreciable quantities of the diodes that are most difficult to make and most likely to fail the tight lot inspections.

Manufacturer service, applications help, disposition towards rejects, reputation and product improvement are just as important in semiconductor diodes as in any other industrial product and should affect manufacturers choice.

Factors Affecting Choice

There are therefore many factors to consider in choosing a diode which should not be simplified or ignored. The relative importance of these points depends on the user's circumstances. A few of these factors are:

- Reliability demands and systems' mean-time to failure
- Quantity used per system
- System performance requirements
- Miniaturization and weight requirements
- Environmental capability of equipment
- Availability of evaluation engineering
- Scheduling
- Budgeting and competition
- Importance of maintenance difficulties

Recommended Rules For Diode Selection

A method for type selection is very difficult to define absolutely, but the following recommendations are urged as a basis for type selection.

1. Establish and use a component's standards engineering group who can study and specialize in the fine flavors of diode manufacture and so extend diode selection beyond mere specifications. Circuit designers should establish close liaison with this group.
2. Use your experience and the experience of others, but be careful of generalities. A diode you may have disfavored last year because the paint chipped may be today's best diode.
3. Carefully study all requirements businesswise as well as technically. Almost every area of equipment manufacture and marketing may affect type selection.
4. Be familiar with specifications, prices and advertising literature. This is the easiest part of the job.
5. Evaluate samples of all products at least by family and continue this effort as changes take place.
6. Visit the manufacturers' plants to assess their capability. - -

Roundup of Tunnel Diode Specifications

The Esaki or tunnel diode has been heralded as the most promising semiconductor development since the transistor. Low noise amplification, high frequency oscillation and super-fast switching are but a few of the predicted applications. Tabulated below are typical values of key characteristics of types available on or before March 28, 1960.

Type No.	Mfg.	Mat.	Ip(ma)	Iv	Ep mv)	Ev	$\mathbf{P r}_{\text {mw }}$	Ip/lv	$\mathrm{T}_{\text {op }}$
ZJ6-10	G.E.	GaAs	22	1.5	160	600	50	15	$-55+150 \mathrm{C}$
ZJ6-22	G.E.	GaAs		0.7	160	600	50	15	$-55+150 \mathrm{C}$
IN2939	G.E.	Ge	1.0	0.1	55	350	50	10	$-55+100 \mathrm{C}$
IN2940	G.E.	Ge	1.0	0.2	55	350	50	10	$-55+100 \mathrm{C}$
IN2941	G.E.	Ge	4.7	0.6	55	350	50	10	$-55+100 \mathrm{C}$
TD. 1	G.T.	Ge	2.0	-	50	200	20	up to 10	$-55+100 \mathrm{C}$
HT. 1 to	Hoffman	Si	1.0 to	-	65	420	20	3.5	$-85+200 \mathrm{C}$
HT-10	Hoffman	Si	5.6	-	65	420	20	3.5	$-85+200 \mathrm{C}$
TD100 to	R.C.A.	Ge	1.5 to	-	65	280	25	4.5	$-55+100 \mathrm{C}$
TD111	R.C.A.	Ge	7.6 \}	-	65	280	-25	4.5	$-554+100 \mathrm{C}$
TD200	R.C.A.	GaAs	50		100	500	125	>10	$-85+200 \mathrm{C}$
T101	Sperry	Ge	0.8	0.18	55	300	100	4.5	$-55 .+100 \mathrm{C}$
T102	Sperry	Ge	1.5	0.33	55	300	100	4.5	$-55+100 \mathrm{C}$
T103	Sperry	Ge	3.5	0.8	55	300	100	4.5	$-55+100 \mathrm{C}$
T104	Sperry	Ge	7.0	1.5	55	300	100	4.5	$-55+100 \mathrm{C}$
IN650	T.I.	GaAs	10	0.5	100	450	30	>15	-65 + 175C
IN651	T.I.	GaAs	10	0.5	100	450	30	>10	$-65+175 \mathrm{C}$
IN652	T.I.	GaAs	5.0	0.5	100	450	30	>5	$-65+175 \mathrm{C}$
IN653	T.I.	GaAs	5.0	0.5	100	450	30	>5	$-65+175 \mathrm{C}$

Diode Manufacturers

Amperex Electronic Co., 230 Duffy Ave., Hicksville, L. I., N. Y. Audio Devices Inc., 620 East Dyer Road. Santa Ana, Calif. Bendix Aviation Corp., Westwood Ave.. Long Branch, N. J. Bogue Electric Mifg. Co., 100 Pennsylvania Ave., Paterson 3, N. J. Bomac Labs., Inc., Salem Road, Beverly, Mass.
Bradley Semiconductor Corp., 168 Columbus Ave., New Haven 11. Conn. CBS Electronics, 900 Chelmsford St., Lowell, Mass.
Continental Device Corp., 12911 Cerise Ave., Hawthorne, Calif. Clevite Transistor Products, 241 Crescent St., Waltham 54, Mass. Columbus Semiconductor Mfg. Div., 1010 Saw Mill Road, Yonkers, N. Y.
Dallons Semiconductors, 5066 Santa Monica Blvd., Los Angeles 29, Calif. Delco Div. of General Motors, Kokomo, Ind.

- Erie Electronics Div., 644 W. 12th St., Erie, Pa.

Fansteel Rectifier-Capacitor Div., North Chicago, III.
Gahagan, Inc., Waterman Ave., Esmond 17, R. I.

- General Electric Co., 1224 W Genesee St., Syracuse, N. Y.

General Instrument Corp., 65 Gouvernor St., Newark 4, N. J.
General Transistor Corp., 95-18 Sutphin Blvd., Jamaica 45, N. Y. Hoffman Electronics, 930 Pitner Ave., Evanston, III. Hughes Products Semicon. Div.. Intl. Airport Station, Los Angeles 45, Calif.

- International Rectifier Corp., 1521 E. Grand Ave., El Segundo, Calif. International Resistance Co., Box 393, Boone, N. C.
ITT Semiconductor Components Dept., 100 Kingsland Road, Clifton, N. J. Kemtron Electron Products, 14 Prince Place, Newburyport, Mass. P. R. Mallory \& Co., Indianapolis 6. Ind.

Microwave Associates, Inc., Eurlington, Mass.
Motorola Semiconductor Div., 5005 E. McDowell Road. Phoenix, Ariz.

- North American Electronics, 212 Broad St., Lynn, Mass.

Nucleonics Products Co., P. O. Box 5552. Metro Sta., Los Angeles 55. Calif. Ohio Semiconductors, Inc , 1035 W. 3rd Ave., Columbus 8, Ohio

Ohmite Mifg. Co., 3601 Howard St., Skokie, III.

- Philco Corp., Lansdale Tube Co., Lansdale, Pa.
- Pacific Semiconductors, Inc., 10451 W. Jefferson Blvd., Culver City, Calif. Qutronic Semiconductor Corp., 525 Broadway New York 12. N. Y.
- Raytheon Semiconductor Div., 215 First Ave., Needham Heights 94, Mass.
R.C.A. Semiconductor Div., Somerville, $\mathbf{N} \boldsymbol{J}$.

Rheom Semiconductor Corp., 327 Moffett Blvd., Mountain View, Calif. Sarkes Tarzian, Inc , 415 North College Ave., Bloomington, Ind. Semicon. Inc., 258 East St., Lexington 73, Mass. Semi-Elements, Inc., Saxonburg Blvd., Saxonburg, Pa.

- Shockley Transiator Corp., 391 S. San Antonio Rd., Mountain View, Calif. Silicon Transistor Corp., 150 Glen Cove Road, Carle Place. L. I., N. Y. Sperry Gyroscope Co., Great Neck, N. Y.
Solid State Products, Ind., One Pingree St., Salem, Mass.
- Sylvania Semiconductor Div., 100 Sylvan Road, Woburn, Mass.

Syntron Co., Homer City, Pa.
Transitron Electronic Corp., 168 Albion St., Wakefield, Mass.
Texas Research Associates, 1701 Guadalupe St., Austin 1. Tex.

- Texas Instruments Semicon.-Components Div., P. O. Box 312, Dallas, Tex. Trans-Sil Corp., 55 Honeck St., Englewood. N. J.
Tung-Sol Electric, Inc., 95 Eighth Ave., Newark 4, N. J.
United Components, 360 Henry St., Orange, N. J.
U. S. Dynamics Corp., 1250 Columbus Ave., Boston 20, Mass.
U. S. Semiconductor Products, P. O. Box 11125, Phoenix, Ariz. Vickers Electric Products, 1815 Locust St., St. Louis 3, Mo.
Western Electric Co., 120 Broadway, Now York 5, N. Y. Westinghouse Semiconductor Dept., Youngwood, Pa.

YOU WRITE THE SPECS...

Ahove are tho examples of Alpha's diversified range of custom cabling capabilities - 10 meet MII. or your oun specitications. There are virtually no minimum quantities required. In fact, the completce order for Cahle B called for 10 sections each of 13 -ieet 4 -inch lengths.

This single, ultra-sensitive display system does the work of 40 separate meters... provides quick-look convenience and accuracy for innumerable monitoring applications. Any 40 variables-related or unrelated -that can be converted into electrical signals can be studied, measured, and compared at once on the 17 -inch scope of the Model 40BG.
Output of each of the channels is scanned ten times per second by means of a synchronous motor driven switch. Ultrastable circuits provide maximum accuracy... line voltage variations cannot affect performance.

For complete information contact your ITT Instruments representative, or write us for Data File ED-1022-1.

BACKGROUND FOR DESIGNERS

W. Wahlgren, president of Electro Engineering Works, wrote this article to abate the delusion that large, husky transformers are always better and more reliable than the new smaller types.

Thermal Factors In

Transformer Design

Wallace W. Wahlgren
Technical Director Electro Engineering Works

SIZE, temperature rise, and life expectancy of transformers subjected to high temperature are determined by the cooling mechanism and the kind of insulation used. An adequate cooling mechanism can drastically reduce the temperature rise in a transformer, and when more effective,

Fig. 2. Materials shown in the graph are: A, Teflon coated glass cloth (0.009 in .); B, silicon rubber glass cloth; C, epoxy bonded flake mica sheef (0.01 in .); D , epoxy impregnated asbestos paper (0.009 in.); E, epoxy bonded reconstituted mica or glass cloth (0.011 in .); F, epoxy impregnated Kraft paper (0.01 in .).

Fig. 1. Temperature vs life expectancy.
cooling is provided, transformer size can also be reduced.

Temperature rise is caused by core loss, and coil or copper loss. Core loss seldom presents a problem because the heat is generally conducted through the mounting device. Since the core does not ordinarily deteriorate as a result of high temperature operation, core loss does not have a significant effect on transformer life expectancy.

But copper loss is of great significance. As the transformer temperature rises, the winding resistance increases, sometimes as much as 60 per cent. This increased resistance causes a drop in output voltage under load.
Transformer insulation can change in electrical characteristics and its life expectancy can be reduced sharply as operating temperature increases. The relationship between temperature and life expectancy of various kinds of insulating materials used in transformers is shown in Fig. 1.

Causes of Failure

Transformers may fail due to reduction of insulation resistance of physical deterioration of the insulating material caused by excessive transformer temperature rise. Failure can be accelerated by hot spots which affect only a part of the insulation; this alone can cause premature transformer breakdown. The electrical insulation resistance of various insulating materials affected by heat is illustrated in Fig. 2. Glass, for example, can change from an insulator to a conductor at very high temperatures.
Temperature rise and hot spots can be minimized by use of insulating materials which are good thermal conductors. Hot spots are often

COMMUNICATIONS SYSTEM POWER UNIT

POWER...IN THE SPAN OF A MAN'S HAND...FC. 75 COOLED!

This remarkably small 1 KW linear power amplifier (entire unit is approximately the size of an $81 / 2^{\prime \prime}$ sion of Hughes Aircraft for the U. S. Air Force B-58 bomber.
With a blend of 3M Company's FC-75 and FC-43 as a dielectric coolant, the amplifier provides all the high-power output required by this huge aircraft's HF communications system, yet withstands all HF communications system, yet withstands all
military environments at temperatures from $-55^{\circ} \mathrm{F}$. military environments at temperatures irom $-55^{\circ} \mathrm{F}$.
to $+200^{\circ} \mathrm{F}$. Here's why: the circuitry of the amplifier is immersed in this non-corrosive, non-flammable inert fluid which protects it against internally generated heat through a highly efficient evaporative
cooling process. There are no hot spots, and a uniform temperature is maintained throughout.
By using FC-75 and FC-43 in this way, Hughes Communications Division engineers were able to achieve a "compression in volume of a factor of 6" when developing this amplifier for use in an area where space is at a premium. Other areas of application now under investigation include submarines and ground base systems.
Why not investigate the remarkable properties of 3M Inert Fluids in terms of your product design, miniaturization or performance problems? For complete data, write: 3M Chemical Division, Dept. KAP-40, St. Paul 6, Minn.

CHEMICAL DIVISION

Minnisota Minimg ano Manuiacturing companu

.. WHERE RESEARCH IS THEKEYTO TOMORROW

For research and more accurate production of hyperpure materials for semi-conductors-the new Lindberg Floating Zone Scanner

This newly developed Floating Zone Scanner is a product of Lindberg's technical staff, widely recognized for many significant developments in the application of heat to industry. Expertly designed, it provides more accurate and more precise production of semi-conductors as well as serving as ideal research equipment. Already, a number of important companies in the semi-conductor field are using this equipment for research and production. Lindberg Induction Heating Units have been specifically designed for use as research and production equipment for crystal growing and zone refining of semi-conductors and other materials. Write for our Bulletin No. 1600.

High Frequency Division

LINDBERG ENGINEERING COMPANY

2456 WEST HUBBARD STREET, CHICAGO 12 , ILLINOIS Los Angeles Plant: 11937 South Regentview Avenue, at Downey, California In Canada: Birlefeo-Lindberg, LId., Toronto

LINDBERG neas tor industry

caused by trapped air since air, as shown in Fig. 3 , is one of the poorest conductors of heat. Most organic insulation materials are poor heat conductors and are on the threshold between thermal conductors and thermal insulators. Inorganic ma terials are also relatively poor heat conductors.

New Insulating Materials

In the absence of insulation materials which have the desired combinations of characteristics, new insulating materials have been created by blending available materials. These new materials are formed by combining epoxy resins with other insulating materials. Since epoxy is a term which identifies a whole chemical family of materials, the results obtained depend upon the formulation of the epoxy compound.
The true value of epoxy as a transformer insulation is realized by combining it with other materials. When epoxy is blended with another compatible material, a new material, in effect, is formed which possesses characteristics of both. While the "new" material may be poor in some respects, it generally is far superior in other respects than either of the two original materials.

When epoxy resin is filled with an inorganic material, its coefficient of expansion is greatly improved because of the lower coefficient of the filler. So is its mechanical stability under temperatures. The improvement in insulation resistance charac-
 WATTS PER SQUARE INCH OF COOLING SURFACE
Fig. 4. Coil temperature rise of: A, old style potted or end bell construction; B, modern resin potted and molded units; C, steel plate vertical surface; D, best small encapsulated transformers (not molded); E, steel plate top surface.
teristics at high temperatures of such commonly used insulation materials as asbestos paper, glass cloth and kraft paper, when impregnated in an epoxy compound is shown in Fig. 2.

- Life expectancy of a typical small transformer asing ordinary class A kraft paper insulation is around 400 hr when operated at 170 C . When impregnated in an epoxy compound, test units operated for approximately 9000 hr at 170 C , and insulation resistance remained essentially constant for more than 8000 hr .

Hot Spots Reduced

High temperature transformers are now being manufactured which are thoroughly impregnated and encapsulated in an epoxy compound, making the coil 100 per cent solid. Voids are virtually absent and all of the materials are effectively saturated in the compound. Since the wire insulation is completely wetted, without the usual microscopic film of separation, improved heat flow from one part of the coil to another is realized. Hot spot temperatures and the thermal gradient within the coil are reduced.
The practical results of these techniques are shown graphically in Fig. 4. More than a 10,000 hr life is being obtained at 170 C . Tests are being conducted to determine life expectancy at 250 C as well as to determine top limits for $1000-\mathrm{hr}$ life. - -

Now you can scale down your circuits still further. These new Ohmite tantalum wire capacitors are the smallest of their type ever produced. And, like all Ohmite tantalum capacitors, they must pass severe performance tests in Ohmite's laboratory under conditions similar to official ASESA qualifications.
Ohmite Series TW tantalum wire capacitors provide amazingly high capacitance for their size. Compared to aluminum electrolytics, they offer smaller size, longer shelf life, better electrical stability, and superior performance under temperature extremes. The anode is specially processed tantalum wire; the cathode is a silver case which also contains the electrolyte. Operating range is $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Power factor less than 50%. DC leakage current is less than .09 $\mathrm{ua} / \mathrm{mfd} / \mathrm{v}$ for units of 0.5 mfd and up; less than 0.4 for units under 0.5 mfd . Capacitances from .01 to 80 mfds ; voltage ratings to 150. Many stock sizes are available as well as made-to-order units. Write Sor Bulletin 148.

OHMITE MANUFACTURING COMPANY
 3643 Howard Street, Skokie, Illinois

RHEOSTATS • RESISTORS • TAP SWITCHES
RELAYS - R.F. CHOKES - TANTALUM CAPACITORS VARIABLE TRANSFORMERS - GERMANIUM DIODES

CIRCLE 37 ON READER-SERVICE CARD

NOW 13
CASE SIZES
IN ALL
(Shown Actual Size)

NEW
SINGLE-END TERMINATION TERMINATIO Avalleble on Capacliors

Markings can materially improve product appearance and increase operator efficiency. The basic factors involved are discussed and several examples illustrated. (Knob design was covered in Electronic Design, Feb. 17, panel redesign in March 2, cases and housings redesign in March 16, and packaging concepts in March 30.

Paul Wrablica
Paul Wrablica Associates
New York, N. Y.

T^{N}N ADDITION to serving as a means of product identification, markings on electronic equipment play an important role in improving operator efficiency and reducing human error factors. Typical methods of transforming line and symbol to a product include etching, embossing, silk screening, hot stamping and the use of adhesive plates.

Basic Rules For Markings

To realize utmost benefits from nomenclature, lettering must be clear and visible and located for most convenient operator viewing. Brief descriptive terms (Off, Lo-Speed, Hi-Speed) are more desirable than meaningless numerals (Off, 1, 2) requiring reference to an instruction manual. Obvious details should not be included since any unnecessary cluttering leads to operator confusion. Common rather than abstract words must be selected and non-standard abbreviations avoided.

Functionally related controls and terminals or test jacks should be grouped together and organized so that an obvious relationship is evident. Close attention to these details make possible high operator efficiency even with relatively unskilled personnel.

Marking Technique Set By Application

Although etched or embossed markings are more durable than ink stamping, adhesive sticker or silk screen methods, the latter techniques are often more economical and are capable of greater dramatic impact. Careful evaluation of the par-
ticular application must be weighed before a final decision can be made.

For example, an adhesive foil sticker was originally used for company and product identification on the Rena heat control, see Fig. 1a. Lettering is relatively large and a minimum amount of information is to be presented. By converting to

Fig. I. Changing from an adhesive sticker (a) to a silk-screened impression reduced marking cost from 12 cents to three cents.

[^3]for an immediate demonstration or delivery of Simpson Laboratory Test Equipment.
CALIFORNIA
R. V. WEATHERFORD COMPAN 6921 San Fornando Road
GLENDALE 1 , victoria 9.247 NEWARK ELECTRONICS CORP 4747 W. Century Blvd.
INGLEWOOD, ORegon $8-0441$ INGLEWOOD, ORegon $8-0441$
ELECTRONIC SUPPLY CORPORATION ELECTRONIC SUPPLY CORPORAT
2085 East Foothill Blud. PASADENA. SYcamora 5-5901
COLORADO
WARD TERRY \& COMPANY
70 Rio Grande Blvd.
DENVER. AMherst 6.318
FLORIDA
THUROW DISTRIBUTORS
121 South Water Street
GEORGIA
ELECTRO TECH EQUIPMENT COMPANY
E90 Murphy Avenue S.W.
ATLANTA 10, PLaza $3-4128$
ILLINOIS
ALLIED RADIO CORPORATION
100 N. Western Avenue 11.6800
CHICAGO 80, HAymarket NEWARK ELECTRONICS CORP. 223 W. Madison Street
CHICAGO 6, STate 2-2944 INDIANA
WARREN RADIO COMPANY
1716 S. Harrison St.
FORT WAYNE. HArrison 1232
MORT WANE. HA
MASSACHUSETTS
730 Commonwealth Avenue
BOSTON, RE 4-1000
MICHIGAN
RADIO DISTRIBUTING COMPANY
15600 Woodrow Wilson
DETROIT, TO 9.7900
RADIO SPECIALTIES COMPANY
456 Charlotte Avenue
DETROIT 1, TEmple
MINNESOTA
NORTHWEST RADIO \&
ELECTRONICS SUPPLY CO
52 South Twelith Street
MINNEAPOLIS 3. FEderal 9.6346
GOPHER ELECTRONICS COMPANY
GOPMER ELECTR Streot
370 Minnesota Som
SAINT PAUL
SAINT PA
MISSOURI
MISSOURI
SCHERRER INSTRUMENTS
5449 Delmar BIVd.
5449. LOulmar 12. FOrest 7.9800
ST. LOUIS

NEW YORK
STACK INDUSTRIAL ELECTRONICS, INC.
25 Susquehanna Street
BINGHAMTON. Phone: 3.6326
SUMMIT DISTRIBUTORS INC.
916 Main Street
BUFFALO 2, Phone: GRant 3100 HARRISON RADIO CORPORATION MARRISON RADIO CORPORATI
225 Greanwich Stroet
NEW YORK 7. BArclay 7.7777 NEW YORK 7. BAr
IORTH CAROLINA
NORTH CAROLINA
DALTON-HEGE RADIO SUPPLY CO., INC.
DALTON-HEGE RADIO SUPPLY CO.
938 Burke Street
WINSTON SALEM, Phone: 5.8711
OHIO
PIONEER ELECTRONIC SUPPLY CO.
2115 Prospect Ave.
2115 Prospect Ave.
CLEVELAND, SUperior 1.9411
OREGON
LOU JOHNSON
1506 N.W. Inving St.
PORTLANO. CADitol 2.9551
PENNSYLVANIA
CONSOLIDATED RADIO COMPANY
612 Arch Stroet
PHILADELPHIA 6 , WAInut 5.7873 PHILADELPHIA 6, WAInut 5.7871
SUNSHINE SCIENTIFIC INSTRUMENTS SUNSHINE SCIENTIFIC INSTRUMENT
IB10 Grant Avenue, Orchard $3-5600$
PHILADELPHIA 15, PHILADELPHIA 15, Orchard $3-5600$
TEXAS
ENGINEERING SUPPLY COMPANY 6000 Danton Drive
DALLAS 35. FLeetwood 7.6121 MIDLAND SPECIALTY COMPANY EL WASO, KEystone 3 -9555 BUSACKER ELECTRONIC EQUIP. CO., INC QUSACKER ELECTRONIC EQUIP
1216 WOst Clay
HOUSTON 19. JAckson 9-4626 HOUSTON 19. JAckson 9-4626 HARRISON EQUIPMENT COMPANY, INC. 1422 San Jacinto Street
HOUSTON 1. CApitol 4-9131
CIRCLE 38 ON READER-SERVICE CARD ELECTRONIC DESIGN • April 27, 1960

NEW Simpson LABORATORY ©INE

PULSE GENERATOR . . . model 2620

No Other Unis Offors Such Accuracy, Vorsatillty, and Sop-Up Speed Wishin This Price Range

Twin meters read pulse repetition frequency and pulse duration simultaneously. Rise time is 0.02 microseconds; decay time, 0.03 microseconds. Pulse duration, continuously variable from 0.1 to 1000 microseconds. Jitter, less than 0.005 microseconds. Pulse repetition rate, continuously variable from 10 to 100,000 pps in \$ $\mathbf{6} 25$

WRITE FOR COMPLETE SPECIFICATIONS

WIDE-BAND OSCILLOSCOPE . . . model 2610
for the 1001 Jobs Where You Don's Need an Expensive Specialized Scope

Here's a high-gain scope that makes your test equipment appropriation go farther. Vertical sensitivity, 6 mv RMS. Vertical calibration accuracy, $\pm 3 \%$. Response (linear position): DC to $5.0 \mathrm{mc} / \mathrm{sec}, \pm 0.5 \mathrm{db} ;$ DC to $8.0 \mathrm{mc} / \mathrm{sec}, \pm 1.5 \mathrm{db}$. Response (transient position): DC to $3.5 \mathrm{mc} / \mathrm{sec},-3 \mathrm{db}$, and -6 db at $5.0 \mathrm{mc} / \mathrm{sec}$. Triggered and recurrent sweeps. Precalibrated sweep positions of $5,50,500,5000$ microsec. $\$ 575$ onds. Price
WRITE FOR COMPLETE SPECIFICATIONS

LABORATORY STANDARD

VOLT-OHM-MILLIAMMETERmodel 2600
A Solf-Powered Callbrator for Electrical Instrumont Mainfonance and High Accuracy Teafing
Two terminal connections cover all 49 ranges for unusually fast operation. DC accuracy is $\pm 0.5 \%$ F.S.; AC, $\pm 0.75 \%$ F.S. (at 77° F, $25^{\circ} \mathrm{C}$). Separate meters (self shielded movements) for $\$ \mathbf{1 5 2 0}$
DC and AC readings. Price WRITE FOR COMPLETE SPECIFICATIONS

AVAILABLE FROM MANY INDUSTRIAL ELECTRONIC DISTRIBUTORS, COAST-TO-COAST Write to Factory for Detalls
manufacturens of ELETRONIC TESY LQUIPMENT FOR OVER $s 0$ YEARS

Sinlo2SOM ELECTRIC COMPANY In Canada: Bach-Simpson Lid., London, Ontaria CIRCLE 39 ON READER-SERVICE CARD
a silk screen operation, Fig. lb, the cost of product marking dropped from 12 cents to 3 cents.

Now consider the problem of applying a relatively large number of lines and letters to a small surface containing raised areas, such as a Klixon switch, manufactured by Spencer Thermostat, shown in Fig. 2 (left). Here silk screening is impractical since clean, unsmeared detail would be difficult to achieve. Etching was considered but was abandoned due to its high cost. An anodized pressure sticker, as shown in Fig. 2 (right) proved to be the most practical and pleasing solution.
Redesign of a medical unit, an Acousticon screening audiometer shown in Fig. 3a, centered around markings and an acceptable color scheme. Patients are generally troubled and dejected during initial examinations; the presence of a grim, black box does little to dampen their fears. The change in equipment design to a bright, off white-
teal blue combination serves to convey a clean, refreshing impression. The interrupter switch is devoid of function identification in the original design; specific details are included in the redesigned version shown in Fig. 3b.

The markings for the Trio Labs vtvm, shown in Fig. 4a, were considered confusing and conducive to operator errors. For example, identification of the function selector switch settings (at the right) could be interpreted as applying to the cen-ter-adjust control.
By encircling the switch and applying radial markings, as shown in Fig. 4b, operator doubts are dispelled. Similarly, the range selector switch and associated input terminals are functionally bound together by an encompassing arc. Finally, to limit lettering on the instrument panel to specific operating details, the company trademark was moved to the meter bezel. ■ -

Fig. 2. Silk screening on small areas requiring much linework is impractical. For this type application, the use of an adhesive sticker is preferable.

Fig. 3. Controls and switches should be identified and their functions specifically indicated. The interrupter switch in (a) does not disclose its three position settings; confusion is eliminated by appropriate marking applied as shown in (b).

Fig. 4. By applying a circular pattern to unite lettering details to specific controls, as shown in (b), improved appearance together with a reduction of potential operator confusion are achieved.

OFF-THE-SHELF DEUNERY FROM THESE FULLY-STOCKED TRMMSIROM
 Anmont manic MLDine 12339 CALIFORNIA, Ingle
Lisomy Eleatronica Coip ORegon P-7163
CALI PORNIA, LONE CALIPORNIA, Long

Califonicia, Los Angetes a
Bell fiectronic Car Peat Ementironic Cor

calporornia, sen fronaseo
Fortune Elictionk Ca
CAMAOA, Montreal Qubber REsent $1 \cdot 7135$
CAMADA, Downswies, Ontario

COLORADO. Denver
Kimbnill Distibuth
ACome
2.6208
D. e.. Weashingroa

plonioa, Cocose
PLoniona, Cocos Inc.
WE 6.6331
plomion, Miemi
We s-0.05s
Ploniont Orlenso
Cnery 1.350s
Ploriona, Tampe TAmpe 2-1885

wintr 2821

.. 206 -20

tsobrool 9.2121
monama, Sounh Bend 24
ATluank B. bose
10wa, Cesid mosids
EMara 1.61 sispoly

maseachuerte, boston
Nomanbuon A. A.9000 Supoly Co. Inc.
massachuserts, Wocenter wasmingoton, Soutio

wasminetom, 1 comm
C 86 hidio Sumedy
${ }^{c} 86$ Recio Suply
POR TECHNICAL ASSISTANCE AND SERVICE CONTACT THE TRANSITRON FIELD OFFICE NEAREST YOU AS LISTED BELOW.

 AALLAO SII Bunin Rinwor Bide

WOARK 1080 日roes Sinm.
MAM PRANCIECO S35 miodivion
CATHLE H66 E Maman way
rinacuer 2300 immas Stroot
Mnoton-ealem 10 W. fouth sucis

Transitron

electronle corporation TI wakefleid, masesschusette
 CIRCLE 40 ON READER-SERVICE CARD

CONTROLLED RECTIFIERS \& SWITCHES

SILICON CONTROLLED RECTIFIERS are now available in both the $1 / 60^{\prime \prime}$ hex and $1 / 1 / 0^{\circ}$ hex base packages. Replacing thyratrons and magnetic amplifiers in many applications these rugged devices offer greater reliability and increased efficiency. Some typical applications are:

- industrial control
- lighting control
- solid state inverters
- overvoltage protection
- short circuit protection

Write for Bulletin TE-1s56

THE TRANSWITCH is a new bi-stable silicon computer element that can be turned OFF with a gate current. Extremely uniform electrical characteristics over a wide current range ($2-50 \mathrm{~ms}$) permit the device to fulfill low level logic and medium power needs. The device is designed for:

- ministurized memory circuit
- ring counters
- shift registers
- controlled rectifier driver
- flip-flop equivalent

Write for Bulletin TE-1s57A

SPECIFICATIONS AMD tYpical characteristics (otherwise Stated)

		Typical	Maximum		Test Conditions
Sefuration Voltage	Vis	1.0	1.5	Volts	$\mathrm{Ic}=50 \mathrm{~mA}$
Forward Leakage Current It		0.1	10	${ }^{\mu \mathrm{A}}$)	at rated VOLTAGE
Reverse Leskoge Current Is		0.1	10	${ }_{\sim}^{4}$ A	
Forward Leahage Current If		20	50	${ }^{\mu A}$	at $125^{\circ} \mathrm{C}$
Gate Voltage to Switch "ON"	V ${ }_{\text {coa }}$	0.7	1.0	Vols	$\mathrm{R}_{L}=1 \mathrm{~K}$
Gate Current to Switch "ON"	Ic on	0.1	1.0	mA	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}$
Gate Voltage to Switch "OFF"	V_{6} off	1.2	4.0	Volls	$\mathrm{Ic}=50 \mathrm{~mA}$
Cate Current to Switch "OFF"	Is off	7.0	10	mA	$\mathrm{Ic}_{\mathrm{c}}=50 \mathrm{~mA}$
Molding Current	Im	2.0	5.0	mA	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}$

Transitron

electronic corporation • wakefield, massachusetts

Is high-potential testing of rotating components semi-destructive? Some engineers say it is; claim that each successive hi-potting weakens all units, and back it up with test data. Others hold to the "weak sister" theory which claims that hi-pot tests weed out the weak units leaving a population of superior unitsand also back it up with test data!

In this article, author Ben Sachs points up the basis for this difference of opinion, and establishes the actual semi-destructive nature of the tests. He feels that experiments now being made may eventually resolve the difficulty. Meanwhile, an awareness of the damage caused by hi-potting can prevent many unnecessary equipment failures.

High-Potential Testing . . .

A Semidestructive Process?

Fig. 1. Repeated hi-pot tests at $900 \vee$ continued to cause rotor and stator failures. Flash testing accelerated the rate of failure.

Benjamin Sachs

Manager of Advanced Planning and Quality Control Ketay Dept., Norden Div.,
United Aircraft Corp.
Commack, L.I., N.Y.

0F ALL the tests to which rotating components are subjected, only the high-potential test presents a question of classification as semidestructive or non-destructive. There is no such doubt regarding the non-destructive nature of the other important tests, which include static and dynamic accuracy, null voltage, transformation ratio and impedance. A way of distinguishing between non-destructive and semi-destructive tests is the following:
A non-destructive test does not physically affect the items tested and may therefore be repeated as many times as desired.
A semi-destructive test physically affects the item tested and the number of exposures or time duration of exposure is part of the specification of the test.

The "Weak Sister" Theory
Some engineers assume that components with sound insulation will not be affected by highpotential tests. They consider it a regular performance test and do not hesitate to repeat it when desired. In effect, they assume that the units which fail are "weak sisters" which are to be weeded out, leaving a population of "supermen" which will not be affected by additional tests.
In a typical expression of this point of view, L. B. Kilman and J. P. Dallas state in AIEE Transactions, (Electrical Engineering, Vol. 75, II, September 1956, p. 189), "The common concern over insulation damage is not justified when

H NTETYCT DEVELOPERS OF THE ULTRA-VIOLET PRINCIPLE OF OSCILLOGRAPHY, PRESENT THREE VERSATILE VISICORDER MODELS AND ASSOCIATED SIGNAL-CONDITIONING EQUIPMENT,

Honeywell

MODEL 906 VISICORDER

... pioneer in the field of Ultra-Violet direct recording

Two models of the 906 Series Visicorder give you a choice of recording capacity on $6^{\prime \prime}$ paper. The Model 906 B-1 uses high -sensitivity Series M sub-miniature plug-in type galvanometers that are directly interchangeable among all Honey well oscillographs of the sub-miniature galvanometer type. Optical arms, therefore galvanometer sensitivities, are an identical 11.8 inches in all instruments.

The 906 B-l provides for 14 channels of recording including two static reference traces -each channel operating at frequencies from DC to 5000 cps . It has provisions for recording intensity control; trace identification; grid line system (either inches or millimeters) and selectable record speeds (a choice of 5 interchangeable systems, each covering 4 speeds).
The Model 906 B-2 is identical to the $906 \mathrm{~B} \cdot 1$, except that it uses solid-frame galvanometers with a capacity of 8 rhannels, including 2 timing or event marking channels.
Accessories available for both models of the 906 B include a record takeup unit; record takeup and latensifier; relay rack adapters; and the Visicorder 'Timing Unit.

Honeywell MODEL 1108 VISICORDER

...newest of the Honeywell directrecording oscillographs

The Model 1108 delivers direct-writing Visicorder oscillography at the lowest cost per channel. Intermediate in size between the 14 -channel 906 and the 36 -channel 1012 , the 1108 simultaneously records up to 24 channels of data on a record 8 inches wide. This instrument, like other Visicorders, records at frequencies from DC to 5000 cps with unparalleled galvanometer sensitivities.
Pushbutton controls give a choice of 15 record speeds from 05 to 80 inches per second. and time line intervals of $1 . .1$ and .01 seconds. Such built-in features as automatic record length control, grid-line intensity control, galvanometer spot intensity control, record numbering, reversible record drive, trace identification, provivision for remote operation, and many others contribute to maximum convenience in recording high-speed analog data.
As in all Honeywell Visicorders, paper loading, access to the interior, and galvanometer adjustment is easy and convenient.

Honeywell

MODEL 1012 VISICORDER

. . . the most complete, convenient multichannel oscillograph on the market today

The Model 1012 has been accepted as "t the most versatile instrument ever devised for converting dynamic data into immediately visible readout." It will record up to 36 channels of data simultaneously on $12^{\prime \prime}$ wide paper. It gives complete push-button control of 15 different paper speeds, from 0.1 to 160 in . sec., with automatic recording intensity control. Designed into the 1012 are many other convenience features: daylight paper loading; reversible record drive choice; switch selection of 5 different timing intervals (.001 to 10.0 seconds); simultaneous recording of amplitude reference (grid) lines; trace identification; automatic record length control; record numbering; jump-speed control and provisions for remote and/or multiplexed operation.
Like other Visicorders, the 1012 makes use of the sub-miniature galvanometer. All instruments are readily adaptable to rack and shock-mounting.

Honeywell

SIGNAL-CONDITIONING SYSTEMS

A. The Model 119 Amplifier System . . . a simple and accurate 6-channel carrier amplifier, for use in oscillographic recording, which may be converted to a linear/integrating system simply by installing linear/integrating channels in the same case. 'The carrier amplifier is designed to amplify signals from resistive, variable-reluc. tance, differential-transformer, and capacitive transflucers. The linear/integrate amplifier is used in conjunction with self-generating transducers such as vibration pickups, etc. The carrier system provides recordings in the $0-1000 \mathrm{cps}$ range at galvanometer amplitudes of $8^{\prime \prime \prime}$ peak-to-peak. The linear-integrate system accommodates frequencies from 5-5000 cps.
IB. The Model 130-2C. Carrier Amplifier . . . a two-channel unit for use with resistance, reluctance, differential transformer, and caparitive transducers. Produces 8 -inch (peak-to-peak) galvanometer deflections up to 1000 cps from as little as 0.5 mv gage output.
C. The Model 82-6 Bridge Balance and Strain Indicator . . . a simple, accurate 6 -channel unit for calibrating, balancing. controlling, and measuring static and dynamic phenomena from resistive transducers. All three of these units are suitable for convenient rack mounting.

OTHER USES of the Visicorder as a direct readout unit IN RECORDING AND MONITORING SYSTEMS ... IN MISSILE AND ENGINE ANALYSIS for test stand recording . . . for analog recording OF TELEMETERED SIGNALS . . IN CONTROL to monitor reference and error signals . . . IN NUCLEAR TEST to record temperatures, pressures, impacts, etc. ... IN LABORATORIES for all-purpose analysis...IN PRODUCTION for final dynamic inspection... IN COMPUTING for immediately-readable analog records... IN PILOT COMPONENT TESTS for rapid evaluation of prototyper... IN ALL TESTS which are non-repetitive in sequence, making oscilloscopes impractical.
Write for your free copy of the new 36 -page Visicorder Applications Manual, a comprehensive, detailed guidebook to many varied uses of the Visicorder.

Honeywell H Audustrial Products Group

For further information including prices and delivery, urite
Minneapolis-Honeyucll Regulator Companv. Industrial Products Group. Heiland Division, 5200 E. Euans Ave., Denter 22, Colorado.

Fig. 2. Repealed hi-pot tests al 750 v confirmed results of lests at 900 V
proper high-potential test methods are used on equipment insulation which is up to acceptable standards." The same authors, in an article entitled "High Potential Tests for Aircraft and Missile Electrical Insulation" (Electrical Manufacturing, December 1959. p. 124) present data supporting this conclusion and point out that "no (previous) actual test data on repeated one minute high-potential tests have been located by the writers."

The Kilman and Dallas data, while substantial. result from tests of insulating materials by themselves before use in a manufactured item. Kilman and Dallas point out that: The "net" or effective electrical insulation of a given equipment is, of course, less than its initial thickness when applied. "Bedding" of the conductors into the insulation, core-surface irregularities, cold flow caused by winding tension, vibration, and thermal cycling all tend to reduce the net insulation thickness. This is one of the major problems of insulationsystem design for electrical equipment. The tabulated data given here are not intended to deal with these problems. It is precisely this problem of insulation in equipment which is dealt with here. As might be anticipated, the results, as determined in actual test, turn out to be substantially different.

Experimental Results-Full Potential

Hundreds of experimental high-potential sequences were performed by the Ketay Quality
< CIRCLE 192 ON READER-SERVICE CARD
ELECTRONIC DESIGN • April 27, 1960

Control department on synchro rotors and stators which were unusable for other reasons, such as accuracy or null-voltage failure. These tests prove that repeated high-potential tests will continue to produce additional failures at the same or possibly at an increasing rate. Therefore, the units which survive additional high-potential tests at full voltage very likely have a lower probability of acceptance on the next test than did the survivors of the preceding test. This is the converse of the "weak sister" theory which maintains that the first one or two high-potential tests will eliminate marginal units and that there will subsequently be no failures in repeated testing.
The tests illustrated are representative of those obtained when rotors and stators of conventional synchros are subjected to repeated high-potential tests. Since these tests were run on components which were removed from finished units because of unrelated defects (for example, high electrical errors or null voltages) they had already been subjected to the normal manufacturing and inspection high-potential tests prior to the tests on which these graphs are based.

Fig. 1 shows the results of $900-\mathrm{v}$ high-potential tests on rotors and stators of conventional size 23 synchros after the regular testing is completed. ${ }^{1}$ The first six rotor tests resulted in no failures, the seventh test produced one failure and the next test produced two additional failures. Since many of the conditions to which synchros are exposed produce more sudden voltage build-ups than the
specified "slow" high-potential tests, the test components were subjected to some "Glash" high-potential tests. The results are shown on the graphs after 15 or 16 "slow" high-potential tests. The use of the flash high-potential produces an accelerating number of failures.

Repeated Full-Potential Tests Prohibited

It is apparent then, that the present state of the art requires certain practical precautions. The most important of these is to avoid repeating fullvoltage high-potential tests on rotary component windings. NAVORD Instruction 8200.3 , issued about six years ago, required the disconnection of all synchros prior to high-potential testing of equipment in which they are contained. It also provided that wherever synchros must be highpotential tested, the test is to be performed at 80 per cent of the original high-potential voltage $\pm 20 \mathrm{v}$. The Government inspection officers were therefore authorized to modify NAVORD OCD'S (Ordnance Classification of Defects) accordingly.
This principle of performing all subsequent high-potential tests at no more than 80 per cent of the original high-potential test voltage was included in the SAE Industry Specification ARP. 461 for rotating components. This provision has now been included by the Department of Defense in Synchro Specification MIL-S-20708.

Ketay has been including with each of its

N5 Adds New Dimensions To High Speed Gyro Rotor Bearings!

At speeds up to 24,000 RPM precision rotor bearings in inertial guidance and navigational systems are highly critical components. Early research and development in design and manufacturing at New Departure is solving the problem and thus winning vital roles for N.D. integral rotor bearings in missile projects. For example, " B " Series bearings with separable inner ring developed by N.D. are helping set performance records in such inertial guidance systems as the AChiever.

New Departure is also supplying high-precision rofor bearings for the inertial guidance system in Polaris.

These bearings, through advanced manufacturing techniques, exacting inspections and controlled environmental tests, backed by 50 years of laboratory testing experience, give precision and uniformity far above the most precise industry standards. They promise new performance and reliability for the submarine-launched IRBM. You can look to improved performance and reliability when you include an N.D. Miniature/Instrument Bearing Specialist in early design level discussions. Call or write Department L.S., New Departure Division, General Motors Corporation, Bristol, Connecticut.

-CAUTION-

"This precision instrument passed a $\mathbf{9 0 0}$ volt high-potential test before shipment. High potential is a destructive test. Government specifications prohibit further high-potential tests of this component at voltage exceeding 740 volts."

Experimental Results—Reduced Potential

But does even this precaution provide full protection against unit destruction? Since the present military specifications provide for use of reduced voltage when repeating high-potential tests, a group of size 15 rotors and stators were tested in this manner. The results are shown in Fig 2. These tests show as clearly as tests 1 and 2 the futility of repeating high-potential tests for quality assurance purposes even at reduced voltages!

What would this mean in an over-ambitious quality inspection routine? Consider, for example, the rotors represented in test 3 . Assume that an over-zealous inspector has decided to perform repeated high-potential tests to assure the quality. From test 3, there is in fact no rotor about to fail. Our inspector performs not one but two complete high-potential tests on each of the 30 rotors. Encountering no failures, he is now content that this is a superior group of components, at least from the insulation point of view.
As test 3 clearly shows, however, all our inspector has accomplished is to bring these particular units to the point where they are ready to start failing. The quality level of the group is now distinctly inferior to what it was efore these tests because the units are now in such condition that the next high-potential exposure will fail a unit. The next high-potential exposure will fail an additional unit. Let us assume that we have a superzealous inspector and he is performing four highpotential tests on each unit so he has rejected these two units. He assumes that the survivors must be fully acceptable units but, as graph 3 indicates, this is where the trouble really starts. After the fourth repeated high-potential test the units are in such a condition that the next high-potential exposure will produce five additional failures and a subsequent high-potential exposure will produce another four failures. From the fifth to eighth high-potential exposures, 12 of the original 30 rotors will fail. ${ }^{2}$

Another Test Procedure Needed

Obviously, repeating high-potential tests is not a satisfactory means of assuring insulation quality. Since this is a most important characteristic, considerable attention has been devoted to finding a satisfactory substitute. While this effort is con-
tinuing, present indications are that the use of a measured value provides a more appropriate test. For example, if the actual insulation resistance (or leakage current) value is measured and recorded, a numerical indication of insulation quality is obtained. If the insulation resistance is measured successively, and the value has not declined, a fairly good indication of insulation stability is provided. If the insulation resistance value is declining, even though the unit may still meet the high-potential and insulation resistance test specifications, there should be a presumption of instability.
One of the characteristics studied in these experiments is the relationship between frequency and high-potential endurance. Virtually all the engineers queried expressed the opinion that the $400-\mathrm{cps}$ high-potential test is more destructive than the 60 -cps test at the same voltage. The results obtained so far run completely counter to this theory. The 60 -cps tests have shown up substantially more failures. Because of this conflict, it was decided to run additional tests before publishing any conclusions on this phase of the experiment.

It is hoped that the reader will not receive an unnecessarily discouraging impression from this data. First, it must be remembered that all of the units represented had passed the high-potential tests performed by the synchro manufacturer prior to shipment. In every case, the units could have withstood at least one additional highpotential test before the failures began. Furthermore, tests are now being conducted on a new family of synchros designed to meet the requirements of MIL-S-20708.
These units, known as "throughbore" types because of the stator ID and bearing bores are produced by the same machining operation, incorporate numerous mechanical improvements. It is anticipated that these units will also exhibit superior insulation performance as measured by resistance to repeated high-potential exposures. $=$

Foolnotes

1. The tests were performed using a conventional Milwaukee high-potential tester set for high (1 ma) sensitivity. With the exception of the special "flash" tests noted, all tests were performed by bringing the voltage up slowly, holding it for one minute, and then reducing it slowly, in accordance with military specifications. A minimum of five minutes elapsed between successive tests of a given rotor or stator. The plant in which the tests were performed is fully air-conditioned. The tests in each sequence were performed on one day and the variation of temperature and humidity was negligible.
2. The data presented here can not be used to assess the effects of 900- vs 750-v tests, since the two sets of results were obtained using two different sizes of components.

ADVANCED DESIGN POWER TRANSISTORS FROM CLEVITE

Three new lines of germanium power transistors by Clevite feature new advances in controlled gain spread, fully specified collector-to-emitter voltage characteristics and low current leakage - even at maximum voltages and high temperatures.

The new 8 ampere suitching series can be used to replace the older, more costly ring-emitter types in 3 to 8 ampere service.

The new 25 ampere sucitching lype offers exceptionally low saturation voltage and is available with either pin terminals or solder lugs.

The new Spacesaver design not only affords important savings in space and weight, but its significantly improved frequency response means higher audio fidelity, faster switching and better performance in regulated
power supply applications. Its low base resistance gives lower input impedance for equal power gain and lower saturation resistance, resulting in lower "switched-on" voltage drop. Lower cut off current results in better temperature stability in direct coupled circuits and a higher "switched-off" impedance.

CLEVITE NOW OFFERS THESE COMPLETE LINES	
Switching Types	Amplifier Types
5 ampere	2 watt
8 ampere	4 watt
15 ampere	2 watt Spacesaver
25 ampere	

3 ampere Spacesaver
All Clevite germanium power transistors are designed for low thermal resistance, low base input voltage, low saturation voltage and superior current gain.

For latest dala und prices or application assistance, urite for Bullelin 60...

A division of
CLERUTTE

Reliability in volume . . .
CLEVITE TRANSISTOR
254 Crescent Street Waltham 54, Mass. Tel: TWinbrook 4-9330
CIRCLE 43 ON READER-SERVICE CARD

MoS $2_{2}+$

FORMULA FOR
 TOMORROW'S LUBRICANT

One-time lubrication . . . permanent, dry lubrication . . . applied with the greatest of ease to virtually any type of material-that's just a small part of the amazing story of what Poxylube can do for you.

Poxylube replaces conventional greases and oils, does away forever with the need for lubrication, and can be bonded permanently to structural metals, metal products, wood, plastics and glass. Poxylube can be applied by spraying, dipping or brushing, with
no surface pre-treatment except degreasing.

Poxylube performs! It supports pressures up to $90,000 \mathrm{psi}$, operates in temperatures between $-100^{\circ} \mathrm{F}$. and $+500^{\circ} \mathrm{F}$., and has a coefficient of friction range of from . 08 to 0.1 . It's effective in thicknesses between .0001 and .0004 inch.

How does Poxylube do it? The molybdenum disulfide pigment making up most of the Poxylube film consists of a multitude of flat laminar platelets- $\mathbf{4 0}$ molecular layers to a millionth of an inch-of alternating molybdenum and sulfur atoms. These layers permit approximately 39 slippage planes to a millionth of an inch . . . thus achieving high film strength and adhesion.
Whether you're lubricating eggbeaters or engines, hinges or helicopters, Poxylube can help you do the job better, permanently, and at less overall cost. Poxylube is currently being used in major missile and space projects. Write for information today.

Pioneering in Industrial Dry Lubricants

[^4]Inventor cannot retain the benefits of a monopoly and apply for a patent only when danger of competition forces him to make application.

Holding out a reasonable reward to inventors and giving them an exclusive right . . . stimulates inventive effort.

Delay in applying for a patent may result in a forfeiture of your patent rights. Author Gray discusses the legal reasoning behind this decision.

Delayed Patent Application... What you can lose

Albert W. Gray

IN A SUIT brought in Massachusetts for the infringement of the patent of a radio loudspeaker, the defense was that the patent claimed to be infringed was itself invalid.

In this defense of invalidity it was argued that the inventor had delayed eight years after his discovery before he had applied for a patent. Under the patent law an inventor is not entitled to a patent if his invention was known or used by others in this or a foreign country before the invention by the patent applicant.
In a decision before the United States Supreme Court several years ago, an inventor had delayed in filing his application for a patent seven years after he had perfected his discovery.
In deciding that case, the court ques-
tioned the meaning of the phrase, in reference to inventions, that application for a patent of a discovery would be granted when the invention was "not known or used before the application." That it should not mean that the thing invented was not known or used before the application, commented the court, would bar the inventor from the only means of obtaining a patent.
These words, for a rational interpretation, must mean that the invention had not been used or known by others before the application. One great object of the patent law, asserted the court, is to stimulate inventive effort.
But the main object is to promote the progress of science and the useful arts. This, according to that decision, could be
best done by allowing the public a right to use the invention at as early a period as possible, commensurate with a benefit to the inventor for his effort.

Can't Keep Monopoly

The consequences from permitting such an indefinite delay such as that assumed in the filing of the patent application for this loudspeaker would be that the discoverer could withhold from the public the secret of his invention and retain indefinitely his monopoly of the discovery. In that way he could garner all the benefits of the monopoly and apply for a patent only when the danger of competition forced him to do so for his own protection. By so doing he could not only extend the duration of his patent monopoly but gain a preference over those more prompt in making their applications.
In a later case, the inventor of a machine had withheld his application for a patent for seven years after his discovery. When he was granted a patent and suit was brought by him for an infringement, the earlier decision was followed by the court as an authority.
Every inventor. said the court, has the right to give to the public the benefits of his discovery. On the other hand he may forfeit his rights to a patent by postponing the filing of an application for a patent until the same improvement or discovery has been made by others.
While inventors are bound to faimess in their dealings with the public, commented the court, they are nevertheless entitled to protection against the frauds and wrong doing of others done with the purpose of pirating the results of perhaps a lifetime of thought and labor.
On the authority of these early decisions, the Federal Court said, in its denial of the right of the patentee to recover for the infringement of the patent of the loudspeaker, that the inventor, because of his delay in applying for this patent, without adequate excuse, had thereby forfeited any and all rights under the patent which he otherwise would have had. : =

Reforences

Utah Radio Products v. Boudette, 78 Fed. 2d 793
Pennock v. Diologue, 2 Peters (U.S.) I
Kendall v. Windsor, 21 How. (U.S.) 322
Macbeth-Evans Class Co. v. General Electric, 246 Fed. 695

mcdonnell VOODOO

Above 1200 mph , it isn't enough to put just mechanical "muscle" at the pilot's command; he needs an assist with "mental" aerobatics, too.
Teaming-up with McDonnell engineers. the specialists of the Aeronautical Division at Minneapolis-Honeywell Regulator Company turned out it mechanical co-pilot specifically for the F-101B. For nerves and sinews in this M-H Autopilot, they specified Hitemp Teflon* coated wire and cable.
As the leading specialist in high temperature insulated wires and cables, Hitemp Wires, Inc. is proud to stand among those devoted to safeguarding our country

HITEMP WIRES, INC.

1200 SHAMES DRIVE, WESTBURY, NEW YORK
-Registered trademark for Du Pont fluorocarbon resins.

sub-miniature test and sensing components for front-panel servicing

Alden front-panel testing means: up-front visibility for easier

 monitoring - up-front accessibility for easier servicing.

1
The Alden Pan-i-lite - 3 times greater light efficiency. $1 / 6$ the size of miniature bayonet bulbs : Quick and easy to replace from front end of panel - Visible from any angle, any distance . Non-refracting. No bulky focusing or refracting devices. Variety of colors and voltages ($6 \mathrm{v}, 12 \mathrm{v}, 28 \mathrm{v}$ incandescent, and $110-220 \mathrm{v}$ Neon)

2
The Alden Pan-I-lile swilch - a tiny push button indicator that gives positive indication - 180° visibility . Onepiece, quickly replaceable bulb lens. Use as self-monitoring remote control switch for pulsing relays, solenoids, or as press-to-test indicator. In 6, 12, 28v incandescent blue, red, green, white, yellow - Quick snap-ring mount

3
Alden Stak-In Test Jack-Exclusive moldedin eyelet permits fast, lowocost machine assembly . Eliminates nuts, washers, sleeves. Won't vibrate loose, turn, or fall out . Rugged Nylon insulation - Reliable 360° Beryllium contact.

Send for free engineering samples today. Use your letterhead.

PRODUCTS COMPANY 4139 N. Main Streel, Brockton, Mass.
from alden: a Complete line of front-panel test and sensing devices
CIRCLE 46 ON READER-SERVICE CARD

Rugged Memory Stores Data

On Paper-Thin Disk

TODAY, a paper-thin, magnetic-memory disk is a commercial reality. Just six months ago, the developmental ancestor of this flexible-disk memory made its debut at the Eastern Joint Computer Conference (ED, January 6. 1960).

At the Western Joint Computer Conference next week, the first commercial model of the LFE Bernoulli-Disk Data Storage Device will be shown. A 100,000 bit memory, the BD-103 is manufactured by the Computer Products Div. of Laboratory for Electronics, 1079 Commonwealth Ave., Boston.

On the surface of a $7-1 / 2 \mathrm{in}$. wide, 2 mil thick disk of oxide-coated Mylar, the memory has 40 tracks for data, clock pulses, revolver loops, and spares. A

Flexible-disk memory in cutaway view, showing: (A) oxide-coated Mylar disk, (B) stabilizing headplate, (C) read-write heads, (D) motor shaft, (E) air orifice, (F) dust cover for read-write electronics and selection matrix, (G) plug board, (H) cooling fan, (J) motor housing. (K) "O" ring seal.

1/20th-hp motor drives the disk at 3600 rpm a 180 -kc bit rate for each track.

When the magnetic-tape disk is rotated, air flows under the tape, through a hole in the tape-drive shaft, up through the shaft through a hole on top of the shaft, then out between the headplate and the tape to return to the underside of the tape. The air flowing between the flattened, rotating disk and the head plate helps maintain a $3 / 4$-mil head-totape separation.

The read-write heads, spirally-placed with about 30 heads to the radial inch, are mounted fl ish with the tape side of the head plate. The heads provide a read amplitude of 20 mv and require 250 ma of write current.

Heart of the memory, showing the Myla disk and the headplate before heads are installed.

Compact disk memory fills only a 9 -in. cube, weighs put 15 lb .

Unlike drum-type memories, the Bernoulli Disk can be panel- or deck-mounted or used as a bench unit in any orientation. It requires no varmup and can withstand severe thermal shock. Designed for ground-environment operation, fixed station and mobile, it can operate in a temperature range of +30 to +150 F .
The entire package, including the memory, a cooling fan, a metal wrap-around, and a plastic dust cover, fits in a 9 -in. cube, and weighs 15 lb .

The plastic cover can include either a patchcord plugboard on top, for system mock-up, or rear-mounted connectors to be used for permanent installations.

Read-write and switching circuitry for either parallel operation of the data tracks or timethared operation will be available by August 1st. The circuitry will fit inside the dust cover.

The BD-103, which sells for under $\$ 4,000$, will be available on 90 -to-120-day delivery for initial orders. It is the first in the BD- 100 series which will include 100,000 -bit memories for operation from 1800 to 8000 rpm for bit rates from 90 to 400 kc . Synchronous and induction motors will be available for 60 or 400 cps , single- or threephase operation.
Planned for sale in November, the BD-1000 series will be a million-bit store. By the end of December, the BD-500, a 500,000 -bit store should be available.
All units will be available with pre-recorded clock tracks, if required, or with variations in head placement, bit density, number of data tracks, clock tracks, and revolving-loop tracks.
For more information on this disk memory, turn to the Reader-Service Card and circle 250.

ATDRM

WRRNIIGG......

Atmospheric turbulence has the characteristic of reflecting microwave signals, with the degree of reflection depending on the severity of the turbulonce. Returned to the aircraft, this roflected radar warning is displayed in a manner that warns the pllot of the exact location and oxtent of the turbulence, onabling him to change his course and ny around dangerous storms. Since the radar display also shows him "holes" in storms where there is little or no turbulence, the pilot can choose a course that will result in maximum safoty and minimum dolay.
Commorcial airlines use Varian klyatron-equipped weather radar to assure the comfort and safoty of passengers and the reduction to a minimum of storm hazarde and dolays. Photo above shows radar antonna inside the Radome nose of a United Air Lines plane.
In addition to the technical advantages of Varian klyatrons to the equipmont designor, their rugeed mechanical construction and long lito aro Fital bonefts to the user. These characteristics aro reasons why Vartan has become the world's largeat manufacturer of klystrons.

VARIAN Besoolatos

Reprecentetives thruout the world

NEW PRODUCTS

Covering all new products that might generally be specified by an electronics engineer engaged in the design of original equipment.

Control Unit Handles All Available SCR's

Called Silicontrol, this unit will drive all makes and ratings of silicon controlled rectifiers. A phase shifting network applies 60 -cycle, steep pulses of constant amplitude to rectifier gates and varies their phase angle over a full 180 deg to control the rectifier output from zero to maximum. It will control one or two SCR's, half or full wave or inverse parallel, up to 70 amp each. Loss of control signal turns off the SCR's; no bias is required. The silicon rectifier is proportionately controlled up to a maximum output with less than 4-mw dc control signal.
Vectrol Engineering, Inc., Dept. ED, P. O. Box 1089, Stamford. Conn. Availability: From stock.

Microwave Mixer Diode Has 7.5-Db Noise Figure
Having a maximum conversion loss of 5.7 db , the type 1N78D silicon, point-contact diode is rated for an overall noise figure of 7.5 db . It is designed for $16,000 \mathrm{mc}$, first detector operation. The unit is hermetically sealed and can operate in temperatures up to 150 C . The if impedance range is 400 to 565 ohms; rf impedance, vswr, is 1.5. For balanced mixer operations, the unit is available in matched pairs.
Philco Corp., Lansdale Div., Dept. ED. Lanstlale, Pa.
Price d Availability: Units available from stock in production quantities. Price is $\$ 85$ per unit in quantities from 1 to $9, \$ 52$ per unit from 100 up.

Voltage Reference Elements

 Conform To Mil RequirementsConforming to MIL-E-1/1060 (Navy), the type USN-1N430 silicon Zener voltage reference elenent provides a reference voltage of 8.4 v , average, at 10 -ma bias current and a dynamic resistance of 11 ohms, average. The unit's stability is $\pm 16 \mathrm{mv}$ or better over a temperature range of rom -55 to +100 C ; temperature coefficient is $\pm 0.00 \%$ per deg C. Also available, but not covred by individual military specifications, are the N430A and 1 N 430 B reference elements.
International Rectifier Corp., Dept. ED, 1521 E. Grand Ave., El Segundo, Calif.

Price \& Availability: The USN-IN430 can be ielivered from stock; price is $\$ 18$ each in quanities of 1 to 99.

WPHTO 30 AMPS. DC

UP

MODEL	$\begin{gathered} \text { DC } \\ \text { OUTPUT } \\ \text { VOLTS } \end{gathered}$	DC OUTPUT AMPS	$\begin{array}{r} \text { REGULA } \\ \text { LOAD } \\ \text { OMAX } \\ \% \text { or } \triangle v \\ \hline \end{array}$		$\begin{gathered} \text { ATION } \\ \substack{105.125 \\ \text { LINE } \\ \% \\ \hline} \end{gathered}$	$\begin{aligned} & \text { RIPPLE } \\ & \text { (RMS) } \end{aligned}$	OUT IMPED OHMS DC- IKC	PPUT ANCE MAX. 1KC 100KC	$w^{\text {DIM }}$	WENSIO	D.
SM14.30	0.14	0.30	0.1	3 mv	0.1	1 mv .	0.001	0.01	19-	83/4	13\% ${ }^{-}$
SM36-15	0.36	0.15	0.1	3 mv	0.1	1 mv .	0.005	0.05	19°	83/4	13\% $\%^{\circ}$
SM 75.8	0.75	0.8	0.1	3 mv .	0.1	1 mv .	0.01	0.1	19-	8\%	13\% ${ }^{\circ}$
SM 160.4	0.160	0.4	0.1	10 mv .	0.1	1 mv .	0.08	0.8	19-	83/6	13\% ${ }^{\circ}$
SM 325-2	0.325	0.2	0.1	10 mv .	0.1	1 mv .	0.3	30	19 -	83/4	13\% ${ }^{\circ}$

- Line/Load regulation. Stability: Less than 0.1\%.*
- Recovery time: 50 microseconds.
- Operational Simplicity: No optimizing controls. range switches.
- Output Voltage control continuously variable from 0 to maximum.
- Remote error sensing feature provides means of maintaining regulation directly at load.
- Moderately priced.
* 0.01% REGULATION ON SPECIAL ORDER
write for complete specifications

131-36 SANFORD AVENUE • FLUSHING 55, N. Y. • IN 1-7000 • TWX \# NY 4.5196 CIRCLE 50 ON READER-SERVICE CARD

EG\&G's NEW, COMPLETE LINE OF MINIATURIZED CERAMIC-METAL HYDROGEN THYRATRONS...
Offer the design engineer ...

	$\begin{gathered} \text { Model } \\ 7322 / 1802 \end{gathered}$	$\begin{gathered} \text { Model } \\ 7620 / H Y-1 \end{gathered}$	Model 7621/HY-2
- compact modular circuitry (length) \qquad (dia.) \qquad	$\begin{aligned} & 5-3 / 4^{n} \\ & 3-3 / 8^{n} \\ & \hline \end{aligned}$	$\begin{aligned} & 4-5 / 8^{n \prime \prime} \\ & 2.5 / 16^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \cdot 3 / 4^{\prime \prime} \\ & 1-1 / 5^{\prime \prime} \\ & \hline \end{aligned}$
- light weight (Ibs.)	2.07	0.82	0.13
- max. peak anode voltage	25,000	20,000	8,000
- max. peak anode current (amps)	1,500	500	90
- max. average current (amps)	1.5	0.5	0.1
- wide temperature capability	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ambient; $400^{\circ} \mathrm{C}$ envelope max.		
- long life ...	unique hydrogen reservoir in all models.		
- rugged dependability	all models pass vigorous shock and vibration tests.		
- fast warm-up	10 min .	5 min .	30 sec .
- high piate dissipation factor	$20 \times 10^{\circ}$	$10 \times 10^{\circ}$	$1 \times 10^{\circ}$

For complete specifications, prices and information
on applications exceeding the above ratings, write or call,

Applications Engineering Department
EDGERTON, GERMESHAUSEN \& GRIER, INC. 160 Brookline Ave., Boston 15. Mass., ITeI: COpley 7-9700)

NEW PRODUCTS

Rotary Switch

Covers 1 to $\mathbf{2 0}$ poles

Available in both standard and custom lines, this switch can be made to cover from 1 to 20 poles and can be arranged in $1,2,3$, or 4 rows. The design utilizes sensitive, miniature, snap-action switches that are actuated by nylon cams on the main shaft. One to 15 detent stations are available with rotation at specified degrees, the minimum being 24 deg . The unit has been adapted to missile test equipment, attenuators, and other electronic assemblies.
P. R. Mallory \& Co., Inc., MilliSwitch Corp., Dept. ED. Gladwyne, Pa .
Price d Availability: Male on order only. Delivered between 60 to 90 days. Price is generally from $\$ 10$ to $\$ 25$, depending on specifications and quantity.

Diffused Silicon Rectifiers
 PIV range is 50 to 1000 v

These miniature diffused silicon rectifiers have from 50 to 1000 v piv-ratings at 100 to 750 ma . The units are pressure-molded and her-metically-sealed. Of axial design, they measure 0.2 in . OD and $3 / 8$ in. long.

Solitron Devices, Inc., Dept. ED, 67 S. Lexington Ave., White Plains, N.Y.

Price \& Availability: Standard units
are priced from $\$ 0.40$ to $\$ 3$ ea. Units can be molded to customer specifications.

Capacitance Bridge

687
Range is 0.1 to $11,000 \mathrm{mf}$
Designed for the measurement of capacity, power factor, and leakage current of electrolytic capacitors, model DB 154-D bridge has a range of 0.1 to $11,000 \mu$ f. Accuracy is $\pm 1 \%$. The leakage current is read on a 0 - to $50-\mu$ a meter having a range of 50 ma .
United Mineral \& Chemical Corp., Dept. ED, 16 Hudson St., New York, N.Y.
Price \& Availability: \$693; units will be available in June 1960.

Power Supplies

Come in seven models

The PI series of dc power supplies are miniaturized all-solid-state units for power-source applications in small packages. Models PI 82, 241 , and 50.5 , cover every voltage in the range from 1 to 50 v , adjustable over a $1-v$ band. Current ranges up to 2 amp are available from these units. Other PI models cover ranges up to 100 v , some with limited adjustment, others with wide-range adjustment.

Deltron Inc., Dept. ED, 2905 N. Leithgow St., Philadelphia, Pa.
Price d Availability: Available from stock. Delivered within 3 weeks. Prices are: Pl Series 1092, \$45; 1090. $\$ 55$; 1148, \$65; 82-X, \$95; 241-X, \$107: 50.5-X and 100.1, \$112, fob Philadelphia, Pa.

Test Instrument

Measures attenuation and delay

Type 453-A test set measures the attenuation and relative delay characteristics of transmission lines, lumped-constant networks, and other transmission systems having characteristic impedances of 600 ohms. Measurements are made over a carrier frequency range of 500 cps to 50 kc . Over-all accuracy of delay measurement is $\pm 5 \mu \mathrm{sec}$. The frequency indicator dial has an accuracy of $\pm 2 \%$ of the reading.

Acton Laboratories Inc., Dept. ED, 533 Main St., Acton, Mass.
Price \& Availability: Price is $\$ 5142.10$ ea for 1 to 9 units; $\$ 4842.10$ ea for 10 to 24 units. Delivery time is 90 days.

KU-Band Phase Shifter

676
Frequency range is 15 to 17 kmc

Model 5106001 Ku-band phase shifter operates over the frequency range of 15 to 17 kmc . Phase shift is 112 deg , insertion loss is 0.5 db max, input vswr is 1.12 max, and peak power is 3 kw . Measuring 2 in . in length, the unit is for use in confined areas. It operates in ambient temperatures from -10 to +100 C .

Kearfott Div., General Precision Inc., Dept. ED, 14844 Oxnard St., Van Nuys, Calif.

Address Correction Notice

The correct address of Electro-Logic Corp. in Venice, Calif. is 515 Boccaccio Ave., not 1515 Boccaccio Ave. as it appeared in their Digital Voltmeter article on p 74 of the March 30 issue.

Maximum flexibility and versatility, Fin taiming n adding or subtracting either high or lew level informiation chemels. No back currents. Pulse rates up to 25 KC . Usable as eill:a PANi, PDM or PCM sampting switch. Non-linearity less than 0.1%. Input range: high level 0 to 5 volts, low level 0 to 10 millivolts. Solid state pulse-width modulator available to operate with the commutator

MEDEPT.
VECTOR
MANUFACTURING c.umpany inc. SOUThAmpton. PA
CIRCLE 49 ON READER-SERVICE CARD

NOX SEMETET
 USN•USAF-SAC standards are met by SYLVANIA TRANSISTORS

SYLVANIA-1655 .. . for example, is used extensively in POLARIS. Imagine the complexity of the electronic system that must obtain target data, translate it into launching information and transmit intelligence to the guidance system of the "bird." Here, there can be no compromise with reliability. That's exactly why SYLVANIA has become a principal source of supply for NAVY-type R-212 (SYLVANIA-type SYL-1655) PNP-transistors used in the Polaris "bird" and its underwater "nest."

SYLVANIA-2N388 meets all requirements of MIL-T-19500/65 (NAVY). Originated by SYLVANIA, this NPN unit is designed and controlled specifically for computer applications where reliability, high gain and rapid switching capabilities are needed.

SYLVANIA-2N404 meets all requirements of MIL-T-19500/20 (USAF). This Sylvania PNP-type incorporates many of the features of the ultra-reliable SYL-1655 used in Polaris.

SYLVANIA-1729 is an NPN switching-transistor developed especially for SAC PROJECT 465L, the world-wide digital communications system. SYL-1729 is further proof of SYLVANIA capability in the design, production - and delivery - of reliable semiconductors.

Sylvania is prepared to custom-design semiconductor devices to your specific requirements, too. Contact your Sylvania Representative. For technical data on current types. write Semiconductor Division, Sylvania Electric Products Inc., Dept. 184A, Woburn, Mass.

Subsidiary of GENERAL TELEPHONE \& ELECTRONICS
CIRCLE 190 ON READER-SERVICE CARD

NEW PRODUCTS

Standing Wave Amplifier
Inherent noise is $0.007 \mu v$

Model 277-B standing wave amplifier has an inherent noise of $0.007 \mu \mathrm{v}$ and an attenuation range of 85 db in $5-\mathrm{db}$ steps. The unit has four regular vswr scales plus one expanded scale. Other specifications are: front panel adjustment of gain in the $15-\mathrm{db}$ range, bandwidth from 4 to 40 cps , and center-frequency, 1000 cps , adjustable over a 2% range. The instrument is designed primarily for use with slotted sections; it can also be used in conjunction with crystal or bolometer detectors for relative power and attenuation measurements.

Polytechnic Research \& Development Co., Inc., Dept. ED, 202 Tillary St., Brooklyn 1, N.Y.
Price \& Availability: \$195; units will be in stock in August 1960.

Transistor-Diode Tester
667
Checks dc parameters

Designed for checking the dc parameters of transistors and diodes, model TDT-200A tester is able to check reverse and leakage currents of silicon as well as germanium transistors and diodes. It checks voltage, reverse and forward current, and current gain. It can be used in maintenance, incoming inspection, and design work.

Transistor Electronics Corp., Dept. ED, 3357 Republic Ave., Minneapolis 26, Minn.
Price d Availability: $\$ 325$ fob Minneapolis; delivery from stock.

Variable Delay Line
Forms intergral part of rotary switch

Type S32 variable, lumped-constant delay line is molded as an integral part of a 32-contact rotary switch. The package measures $2.75 \times 1.75 \mathrm{in}$. Weight of the unit is 14 oz . The following total delays are offered: $0.5,1,2,5,7.5$, and $10 \mu \mathrm{sec}$. Each line has a $10: 1$ delay-to-rise time ratio at the maximum delay. Impedance ranges from 100 to 500 ohms. The line is designed for use with a pulse generator as a double-pulse oscillator to provide variable time intervals between pulses. Other applications are: radar ranging and distance calibration, adjustment of delay triggering, phase-angle measurement, and signal time measurement.

Valor Instruments, Inc., Dept. ED, 13214 Crenshaw Blvd., Gardena, Calif.
Price \& Availability: \$135 ea for one to four units. Delivery time is two to four weeks.

Transistor Transformers

Primaries are center-tapped

Types DO-T37 through DO-T44 transistor transformers are metal cased and hermetically sealed to meet MIL-T-27A, grade 4. The units weigh 1/10 oz. Type DO-T37 has a center-tapped primary of 2000 to 2500 ohms and a split secondary ratio of 8000 to 10,000 ohms. Type DOT44 has a center-tapped primary of 80 to 100 ohms and a split secondary of 32 to 40 ohms.

United Transformer Corp., Dept. ED, 150 Varick St., New York 13, N.Y.

Delay lines at ESCare now scheduled,

 produced and inspected under the control of a completely automated, electronic IBMIntegrated
Data Processing System. The new system enables

ESC to know, within minutes, the status of every delay line order. Vital delivery information can now be presented with greater precision. Statistics, now immediately available on production runs, serve as invaluable tools in maintaining a consistently high quality level. Thus, a new dimension In quality and flow control is added to exceptional research, production and jnspection facilities; more reasons why the world's leading manufacturer of custom-built and stock delay lines is...
exceptional employment opportunities for engineers experienced in computer components... excellent profit-sharing plan.

[^5] CIRCLE 191 ON READER-SERVICE CARD

7000 and 9000 Series

- Lowest Cost
- Rugged Construction
- Reliable Performance
- Interchangeable
- Wide Selection of Time Delays
- Wide Range of

Operating Voltages

THOMAS A.

EDISON

MINIATURE TIME DELAY RELAYS FOR MISSILES AND JET AIRCRAFT

Here's an opportunity to lower costs and at the same time improve the performance of your electronic products or equipment by using Edison Model 250 Miniature Time Delay Relays. An exceptionally rigid internal construction permits this relay to withstand vibration to 1500 cps for jet aircraft and missile applications while providing highly reliable performance. Since the operating structure of the relay is independent of the outer shell, damage or deformation of the latter does not affect the timing. The fast rate of contact closure insures positive contact operation under the most severe environmental conditions. These permanently calibrated and hermetically sealed relays are available in a wide range of time delays and operating voltages to meet your particular application requirements. Whether you need time delay relays for tube protection, gyro-erection or for other purposes, you will get better performance at lowest cost with Edison relays. Write for Bulletin 3046 showing timing ranges and operating performance or send your special requirements to:

Thomas A. Edison Industries INSTRUMENT DIVISION
55 LAKESIDE AVENUE, WEST ORANGE, N. J.

NEW PRODUCTS

Casting Compound

Flame retardant

Type 15-032 casting compound is made of flexible epoxy and is flame retardant. It conforms to ASTM D635-56T, MIL T27, as well as commercial requirements.
Hyson Corp., Dept. ED. Olean, N.Y.

Availability: The product is not a regular stock item as yet.

Telemetry System
 603

Multiplexes and encodes 64 analog channels
Designed entirely with solidstate devices, this pulse code modulation telemetry system multiplexes and encodes 64 analog channels, and processes five 8 -bit parallel digital data channels plus a series digital data channel at a nominal bit rate of 200 kc . The multiplexer handles low and high-level data, or a combination of both, with a single lowlevel amplifier. Overall accuracy of the system is $\pm 0.25 \%$.
Texas Instruments Inc., Apparatus Div., Dept. ED, 6000 Lemmon Ave., Dallas 9, Tex.
Price \& Availability: Dependent on format and complexity required by customer.

Crystal Growing Furnace

 601Grows a $530-\mathrm{g}$ ingot in 150 min
Using the Czochralski method, this furnace is capable of growing a crystal ingot weighing up to 530 g in 150 min or less. Each operating cycle, including pre-gas, meltdown, pulling, and drawing, is pushbutton controlled. Also automated is the speed of the seed rotation, withdrawal time of the ingot, and cooling rate of the molten silicon.
Hoffman Electronics Corp., Dept. ED. 3761 S. Hill St., Los Angeles 7, Calif.
Price \& Availability: Made on order only. Price is approximately $\$ 12,500$, depending upon specifications and quantity.

- CIRCLE 51 on reader-SERVICE CARD

Battery
Delivers about 6000 w
Capable of delivering about 6000 w, model P-1517 battery consists of 18 cells of $20 \mathrm{amp}-\mathrm{hr}$ nominal capacity. It has an output of 35.8 w-hr per lb and 1.75 w -hr per cu in. Discharge rates range from 25 amp at 27 v nominal for 60 min , to 250 amp at 23 v for 2 min . Activation time is 2 sec . The battery weighs 20 lb , including activating mechanism, and has an overall volume of 500 cu in.

Yardney Electric Corp., Dept. ED. 40-50 Leonard St., New York City, N.Y.
Price d Availability: Can be delivered within 90 days after order received. Quote on request.

Electronic Filter

Provides linear phase shift

Electronic filter model 1660 provides linear phase shift, 36 db per octave terminal slope, and cut-off frequency selectable in tenth-decade steps from 10 to $80,000 \mathrm{cps}$. It has 100 K input impedance and 1-ohm output impedance. Random signals are filtered with u minimum of information distortion in the allowed bandwidth. Each instrument has an individual fully isolated power supply, with voltage steps from 0.1 to 1 v . and 0.1% linearity.
Dynamics Instrumentation Co.. Dept. ED, 1118 S. Mission St., S. Pasadena, Calif.
Price \& Availability: Delivered 30 to 60 days after order received. Price is $\$ 735$ per unit.

CIRCLE 52 ON READER-SERVICE CARD
\qquad

The smallest rotary switch ever made!

' Daven's New Series G Sub-Miniature Switch...1/2" Diameter!

A new sub-miniature rotary selector switch, developed by DAVEN, is specifically suited for application in missiles, aircraft, handy talkies, field pack sets, frog man communication equipment, and all types of mobile apparatus. This explosion-proof, waterproof switch has the same reliability as its bigger brothers . . . but in a fraction of the space. It meets applicable military specifications on temperature, humidity, corrosion, vibration, acceleration, shock and immersion.

This unit is available as a single pole, 10 position switch and can be obtained with up to four poles on a single deck.

Contact Resistance: Less than .008 ohm.
Contact Rating: 1 ampere, 250 V D. C. Into resistive load. 350 MA, 100V D. C. into inductive load

Insulation Resistance: 200,000 megohms between any tivo terminals or between any terminal and shell. Measured at $25^{\circ} \mathrm{C}$. $50 \% \mathrm{RH}$, at sea level

Lite Expectancy: 50,000 cycles minimum Shaft and case: Stainless steel
Panel and hub: Glass filled epoxy
Contacts and terminals: Silver alloy
Rotors: Rhodium plated beryllium coppei

CIRCLE 193 ON READER-SERVICE CARD

THE MOST IMPORTANT DEVELOPMENT IN SEMICONDUCTORS SINCE THE MESA, THE PLANAR STRUCTURE GUARANTEES A NEW ORDER OF RELIABILITY: SILICON SEMICONDUCTOR PRODUCTS WITH COMPLETE SURFACE STABILITY. DEVELOPED THROUGH FAIRCHILD RESEARCH, THÉ PLANAR STRUCTURE HAS BEEN APPLIED AND TESTED IN TRANSISTORS AND DIODES TO AN ACCUMU. LATION OF MORE THAN $5,000,000$ SEMICONDUCTOR HOURS.

GUARANTEED USEFUL BETAS FROM

 $100 \mu A$ to 0.5A:$15 @ 1 \mathrm{~mA} 20 @ 1 \mathrm{~mA} 30 @ 150 \mathrm{~mA} 15 @ 500 \mathrm{~mA}$ Guaranteed minimum Beta over a 5,000 to 1 range of collector current makes the 2N1613 the most versatile transistor presently on the market. WIDE RANGE OF APPLICATIONS: in Fast Switching (logic and high current): Amplifiers (low level, low (logic and high current): Ampii
RELIABILITY IN A NEW DIMENSION: The Planar
tentative specificationsFAIRCHILD 2N1613

ft typical	100 mc
PC@ $25^{\circ} \mathrm{C}$. Case Temperature h_{FE} (see Beta paragraph above)	$\begin{array}{r} 3 W \\ \operatorname{Min} 30 \end{array}$
VCER.	40V
$V_{\text {CBO }}$	V
$V_{\text {BE }}$ SAT. (Max.)	1.3 V
VCESAT. (Max.)	1.5 V
${ }^{\text {I CBO @ }} 25^{\circ} \mathrm{C}$. (Max.) m	
at 60 V	

Transistor is the most thoroughly proven transistor ever introduced commercially, with over 5,000,000 transistor hours plus $300^{\circ} \mathrm{C}$. stabilization on all units.
SOME IMPORTANT PARAMETERS: 7 db -Noise Figure: 100 megacycles-Gain-bandwidth product; $0.0005 \mu \mathrm{~A}$ ICBO typical at $60 \mathrm{~V}, 25^{\circ} \mathrm{C}$.
IMMEDIATE AVAILABILITY: Ouantities from 1-999 from franchised Fairchild distributors at factory prices.

545 WHISMAN ROAD / MOUNTAIN VIEW, CALIF. / YOrishire 8-8161 For full specifications, write Dept. ©

A WHOLLY OWNED SUBSIDIARY OF
FAIRCHILD CAMERA AND INSTRUMENT COMPANY

a new symbol of magnetic progress

LOUD-SPEAKER Indox V ceramic permanent magenergy level educes speaker length and weight.

MEMORY SYSTEM New microstack unit for coincident current memory of space required by conventional stack, yet is more reliable.

Two established leaders - Indiana Steel Products and General Ceramics - Combine to Serve You Better
This trademark is the calling card of a new leader in science-age materials - Indiana General Corporation. It is born of a union between two established leaders - The Indiana Steel Products Company in permanent magnets . . .t the General Ceramics Company in ferrites and memory systems. Together, as Indiana General Corporation, they serve you better by placing at your disposal the brains and resources of two scientifically oriented concerns. Research and development have been the backbone of both of the original companies; both have records of significant achievement in their particular fields.
Indiana General can help you "design-engineer" your products with the latest magnetic innovations. If you have a design problem, the Indiana General sales engineer in your area will be most happy to advise you. And, behind him, our experienced scientists and design engineers are available for consultations - at no cost or obligation. Write us outlining your problems.

MAGNETRON
Powerful Hyflux Alnico V magnets improve performtypes of microwave equipment.

automatic DIRECTION FINDER Ferramic "E"mag. netic core materineers createangew neers create a new
concept in aircraft antenna design.

This is Indiana General Corporation

INDIANA STEEL PRODUCTS DIVISION Valparaiso, Indiana - Metallic and Ceramic Permanent Magnets
GENERAL CERAMICS DIVISION Keasboy, New Jersey - Ferrites, Momory Produeth, Technical Ceramicı and Chemical Stonoware
ADVANCED VACUUM PRODUCTS (Subsidiary) Stamford, Connecticut - Alumina Ceramic-io-metal Hermetic Terminals
STEARNS MAGNETIC PRODUCTS DIVISION Milwaukee, Wisconsin • Magnetic Materlals Mandling and Separation Equipment
THE INDIANA STEEL PRODUCTS COMPANY OF CANADA LIMITED Kitchener, Ontarlo - Permanent Magnets and Stainlens Steal Castings
If your product involves magnets or ferrites, Indiana General ©an help you make it better

NEW PRODUCTS

Digital Logic Module

Pulse repetition rate is 5 mc max

Designed for applications in digital systems and test equipment, type 6000A logic module oper ates at a maximum pulse repetition rate of 5 mc . It contains two solid-state switching circuits, which can be interconnected to form all major building blocks needed in digital systems. Each switching circuit has a four-input diode gate, an inverting amplifier, and a transition-triggered pulse generator. The module functions as a nor-gate, flipflop, binary counter, delay flop, and shift register stage. The inverting amplifier output has a 40 musec rise time and an 80 musec fall time. The pulse has a half-amplitude duration of 100 musec . Power consumption is less than 1 w . The unit measures $2-1 / 8 \times 7 / 8 \times 3 / 8 \mathrm{in}$. and operates from 0 to 130 F .

Tele-Dynamics, Dept. ED, 5000 Parkside Ave., Philadelphia 31, Pa.
Availability: Sample quantities are immediately available.

DC Power Supply

666
Delivers 0 to 300 v at 0 to 500 ma

Model RR303 power supply delivers 0 to 300 v dc at 0 to 500 ma operating from an input of 105 to 125 v ac at 55 to 400 cps . Line regulation is 0.1%, load regulation is 0.1%, and ripple and noise are 1.5 mv ms max. The filament output is 6.3 v CT at 15 amp . The unit measures 5.25 x $19 \times 14.25 \mathrm{in}$. and can be furnished with 3.5 in . meters.

Trans Electronics, Inc., Dept. ED. 7349 Canoga Ave., Canoga Park, Calif.
Price: $\$ 320$ without meters and $\$ 360$ with meters.
ELECTRONIC DESIGN • April 27, 1960

for enginearing test or application

Any quantities available for immediate delivery from any Avnol office.

For dependable service

and immediate delivery ${ }^{\circ}$ AVNET

ANNET-70 State St., Westbury. N. Y.- ED 3-5800 AVNET-751 Main Si., Waltham, Mass. TW 9.8330 AVNETAH180 Kellering Blvi, Dayton 39, Onia-AX 8-145: AVNE T-2728 N. Mannheim Ro., Melrose Park, III.-GL 5-8160 CIRCLE 56 ON READER-SERVICE CARD

tentative specifications

Type	(TYPICAL VALUES) (mak				
T101	0.8	4.5	55	300	-55 to $100^{\circ} \mathrm{C}$
T102	1.5	4.5	55	300	-55 to $100^{\circ} \mathrm{C}$
T103	3.5	4.5	55	300	-55 to $100^{\circ} \mathrm{C}$
T104	7.0	4.5	55	300	-55 to $100^{\circ} \mathrm{C}$

SPERRY STOCKING DISTRIBUTORS:
AVNET ELECTRONICS CORPORATION
70 State Street Westbury, L. I., N. Y.
Tel, EDgewood 3-5800 TWX: Westbury NY 2617
aVNET ELECTRONICS CORP. OF
751 Main Street Waltham, Massachusett
rel. TWinbrook 9-8330

AVNET ELECTRONICS CORP. OF OMIO 4180 Kettering Boulevard Dayton 39, Ohio Tel. AXminister 8.1458 TWX: DY 410
AVNET ELECTRONICS CORPORATION OF ILLINOIS
2728 No. Mannheim Road Melrose Park, Illinois Tel. GLadstone 5-8160 TWX: Franklin Pk. 2187
RADIO PRODUCTS SALES, INC.
1501 South Hill Street Los Angeles 15, Calif
Tel. Rlchmond 9-7471

SPERRY SEMICONDUCTOR DIVISION SPERRY RANO CORPORATION SOUTH NORWALK, CONNECTICUT Call or wrltet Sperry Semfeonductor, WIIson Avenue, SOUTH NORWALK, COnn., VOIunteer e-tbiti in NEW YORK PLeza 2-OBEB; 3555 W. Peterion Ave., CHICAGO i5, III., KEyatone g-1776: 2200 East Imperlal Highway, EL SEGUNDO, Callf., ORegon B.B22b. CIRCLE 57 ON READER-SERVICE CARD

NEW PRODUCTS
Oscilloscope

Low frequency type

Model 401-B low-frequency, general purpose oscilloscope has a bandwidth of 300 kc at 3 db down. Gain and pattern stability over an 8 -hr period are better than 2% and drift averages less than 5 mv per hr. Sensitivity is 10 mv per mc with identical X and Y amplifiers. Synchronization includes both intermal and external dccoupling, trigger leveling, single sweep, and automatic synchronization. The single sweep mode permits only one driven sweep of the time base to appear on the crt until the sweep is reset. The common mode rejection ratio is better than $100: 1$.
Allen B. Du Mont Labs., Inc., Dept. ED, 750 Bloomfield Ave., Clifton, N.J.
Price \& Availability: The unit is low priced and will be acailable by early summer.

Cathode Ray Bulb

Has 35,000 separate wire conductors

This cathode ray bulb has 35,000 separate wire conductors embedded in a face plate measuring $3 \times 0.25 \mathrm{in}$. Developed for electronic printing at speeds to 20,000 characters per sec, it can also be used to transmit graphic or printed materials by microwave or wire systems. Each conductor in the rectangular matrix of the face plate measures 0.001 in . in diam; space between conductors is 0.003 in .

Corning Glass Works, Dept. ED, Corning, N.Y. Availability: Units are made on order. Delivery time is four to six weeks.

NOW for L-Band Small-size, light-weight

 Tunable Magnetrons power output, highTWO POSSIBLE VTM APPLICATIONS

COUNTER-MEASURE BYBTEM

ALTIMETER APPLICATION

Is well as S-Band.

General Electric Voltage-

oscillate with uniform

efficiency, linear tuning.

NEW PRODUCTS

Toroidal Winding

For wire sizes 25 to 29
This toroidal winding machine handles wires with sizes from 25 to 29. For use in the manufacture of TV vertical $110-\mathrm{deg}$, deflection coil, the unit operates at speeds to 600 rpm . Maximum number of layers is 12 , maximum winding section is 120 deg , and minimum winding section is 8 deg . Controls are electromechanical.
Universal Manufacturing Co., Inc., Dept. ED, 1168 Grove St., Irvington 11, N.J.
Price d Availability: \$4950: three months.

Tape Converter

Is bi-directional
Model D104 bi-directional tape converter handles the flow of data between remote stations and a central computer installation. In one mode, this unit converts data directly from punched paper tape produced by teletype transceivers to magnetic tape in any parallel 7 bit alphanumeric code. In the other mode, data on magnetic tape produced by the computer are converted directly to their corresponding form on teletype paper tape.

Digitronics Corp., Dept. ED, Al-

COMPLETE SERVO ASSEMBLIES

We are not an assembly station. We are a manufacturer!
Steel and copper come into our factory. Housings are turned and gears are hobbed from the solid stock. Laminations are stamped from strip steel. Copper is wound right off the reel.

Every operation between raw stock and servo assembly is performed in our own plant, under our own supervision. And because we exercise this complete control over manufacture, we can honestly vouch for the quality and reliability of every motor, generator, synchro, and gear train carrying our name.

Undivided responsibility isn't a new idea by any means, but it is increasingly difficult to find in this age of overspecialization. If you'd care to sample the benefits of this integrated approach, why not call on us now?

SERVO ASSEMBLY-Type 9 motor generator driving iwe Type il CT aynchros through a slip clutch and a gear train having ratio of 1500 to 1.
lector current is 100 ma and maximum junction temperature is 150 C. The unit will dissipate 600 mw at 25 C in free air. It meets MIL-S-19500B.
Western Electric Co., Inc., Dept. ED, 195 Broadway, New York 7, N.Y.

Availability: The unit is sold to government agencies only. Delivery is immediate.

Resistance Decade Box 600

Has an accuracy of 5% or better
Designed for experimental work on transistor and vacuum-tube circuits, type RD-1 decade box has a range of 0 to 11,110 ohms, and is accurate to 5% or better. There are no short or open circuits, and therefore no current surges. The unit is made in two unconnected circuits, 0 to 110 ohms, and 0 to 11,000 ohms. When the full decade is needed, the two sections may be connected in series by means of a jumper. Dimensions are $12 \times 2-1 / 2$ $\times 3-1 / 4$, and total weight is 17 oz . Kurston Electronics, Dept. ED, 702 Bay St., Staten Island 4, N.Y. Price \& Availability: Available from stock about May 1; made on order until then. Can be delivered within 7 to 21 days. Price is $\$ 16$ per unit; quantity discounts available. Price may vary according to customer specifications.

Power Supply

For photomultipliers
Designed for use with photomultiplier tubes, model 60 power supply has a total output of 900 to 1200 v. Normally the plus side of the high voltage supply is brought out along the anode and the $6-v$ dc input leads. Neither side of the $6-\mathrm{v}$ input is connected to the high voltage. Ripple is less than 0.1 v peak-to-peak or 0.01% referred to the total supply voltage. Normal current drain from the input is about 12 ma . The unit weighs 7 oz and measures $2-1 / 8 \mathrm{in}$. in diam and $3-3 / 4 \mathrm{in}$. in over-all length.
Components Corp., Dept. ED, Denville, N.J.
Price: $\$ 300$ fob Denville.
CIRCLE 60 ON READER-SERVICE CARD \rightarrow ELECTRONIC DESIGN • April 27, 1960

Features Orthonull,* a unique mechanical ganging arrangement of the Bridge's variable elements that eliminates sliding balances when making low-Q measurements.
"U. S. Patent $2,82,639$

- Completely self contained with built-in 1 -kc oscillator and selective null detector ... powered by four "D" batteries... total drain is less than 10 ma , providing 1 -year battery life for typical laboratory use.
- Useful for measurements from 20c to 20 kc with external generator.
- Unique cabinet design allows panel to be tilted to any convenient angle ... closes and becomes a rugged carrying case for complete protection.
- Provision for applying polarization voltages to capacitors, biasing voltages to diodes, and small currents to inductors for measurements at various $d \cdot c$ levels.
- wide ranges -

R: 0.001Ω to $10 \mathrm{M} \Omega \quad$ L: 1μ h to 1000 h

c: 1 | $\mu \mathrm{f}$ to $1000 \mu \mathrm{f}$ | $\mathrm{D}: 0.001$ to 50 at 1 kc. |
| :--- | :--- | $\mathrm{a}: 0.02$ to 1000 at 1 kc

- accuract -
1% for L and C from 20 c to 20 kc
1% for R from 20 c to 5 kc
5% for D and Q (ranges are a function of frequency)
Type 1650-A Universal Impedance Bridge . . . \$450
Write for Complete Information

GENERAL RADIO COMPANY

Since 1915 - Manufachurers of Electronic Apparalu: for Science and Indiu
NEw YORK AREA: Tal. N. Y. WOrth 4-2722. N. J. Whitney 3-3140 chicago: Tel VIllage 8.9400 Philadelphia: Tel. MAncock 4.7419 WasmingTom D. C.: Tel. JUniper 5-1088 PHILADELPHIA: TEI. HAnCOCk A.719
SAN FRANCISCO: Tel. WHiteclif 8-8233 LOS ANGELES 38: Tel HOllywood 9-6201 In CAMADA, TORONTO: Tel. CHerry 6-2171

The first general purpose R.L-C Bridge was our type 650 . A which was introduced in 1933. It or successor designs, including the latest fype 1650-A. and manufacturing plant today.

POTTER SETS THE PACE

WITH...THE ONLY PERFORATED STRIP READER IN ITS CLASS

A single speed, unidirectional, photo-electric, perforated strip reader, the Potter 909 is

OBEDIENT...stops on the stop character at speeds up to 600 characters per second and it can be stepped one character at a time where synchronous readout is needed.
VERSATILE...output is a timed, shaped pulse for input to a computer, high speed printer, or control system.
...parallel NPN, PNP amplifier output circuir supplies up 1040 ma to loads refurned to any bias voltage.
FAST...operates at speeds up to 1000 characters per second with complete dependability.
SENSITIVE... a broad image light source eliminates the effects of filament variations in the lamp.
COMPACT...fits into a $101 / 2 \mathrm{in}$. case - with its own power supply and amplifiers.
The Potter 909 perforated tape reader includes a lape tronsport system, tape reading system, power system, and control system. It is designed for panel, rack, or cabinet mounting. Accessories available include tape spoolers and rape bin, cooling fan, mounting adapters and extension frames.
WRITE FOR DETAILED BPECB AND LATEST PRICE AND DELIVERY INFORMATION

MODEL وe9 PERHORATED STRIP READER WITH MODEL 3299 SPOOLER

TAPE HANDLER FOR YOUR MONEV

The Potter 906 II is the high speed digital magnetic tape handler that gives you higher performance, greater reliability, and lower cost than any other tape handler on the market-bar none.

Only with the 906 II do you get such advantages as:
...full forward reverse cycling at 120 ips with 1 inch tape.
...low skew tape guide that permits conventional recording at 400 bpi density.
... 1500 bpi recording densities which are made possible by using the 906 II with the Potter Contiguous Double Transition System, 450,000 8 -bit characters per second can be recorded on 1 inch tape.
...transistorized control of all functions that simplifies computer design.
...simplified packaging for easy maintenance.
... a price - far below other makes - that proves the economy of superior design.
Compare them any way you like-spec for spec, dollar for dollar, space for space - and you'll agree that the high performance, low cost Potter 906 II is the most tape transport at any price.
WRITE FOR DETAILED SPECS AND LATEST PRICE AND DELIVERY INFORMATION

NEW PRODUCTS

Microwave Diodes

Cover 10 to 20 kmc

These video-detector, microwave diodes cover the frequency range of 10 to 20 kmc . Type D-4104 has a minimum tangential signal sensitivity of -40 dbm and a minimum figure of merit of 15 . Type D-4104A has a minimum sensitivity of -45 dbm and a minimum figure of merit of 30 . Both diodes use a non-tri polar coaxial package and have a maximum video impedance of 18 , 000 ohms.
Sylvania Electric Products, Inc., Dept. ED, 730 Third Ave., New York 17, N.Y.

Tube Socket

For continuous operation at 1000 F
No. 8715 tube socket, for triode No. 7296, can be operated continuously at 1000 F. A high alumina ceramic is used as the insulator Contacts, which are made of spring tempered Inconel-X. are nickelplated and gold-plated. Two holes are provided on the $1.172-\mathrm{in}$. centers for fastening the socket to a chassis or print-board.
Jettron Products, Inc., Dept. ED, 56 Route 10. Hanover, N.J.
Price d Availability: Units are in stock. Price is $\$ 9.50$ ea for 1 to 12.

Vertical Acceleration 696 Indicator

Sensitivity is $\pm \mathbf{2 m v}$

Able to supply vertical acceleration data by means of a dc input, model T8615-11 indicator has a sensitivity of $\pm 2 \mathrm{mv}$. The information is displayed on a dial. The scale factor is 10 mv for 1000 lb . Construction is in accordance with MIL-I-983B and MIL-E-5400. A dc-to-ac chopper, an ac servo, a miniature transistorized amplifier, and a sensitivity control are contained in the unit.
Kearfott Div., General Precision Inc., Dept. ED. Little Falls. N.J.

- CIRCLE 61 ON READER-SERVICE CARD

CIRCLE 62 ON READER-SERVICE CARD $>$

Range................................... Telemetering Band (216-260 Mcps)
Passband. ± 0.300 Mcps
Input Power. 50 Watts max
Insertion Loss in Passband............ $\leqslant 1.25$ DB at $125^{\circ} \mathrm{C}$ $\leqslant 1.15 \mathrm{DB}$ at room temperature
VSWR in Passband. \qquad
Isolation between Adjacent Channels at 5 Mcps Spacing.
$\leqslant 1.20$
at 5 Mcps Spacing.
$\geqslant 20 \mathrm{DB}$

Vibration. .

Triple Filter for "MINUTEMAN" Missile

 Telemetry System
Allen-Bradley Triplexer is designed

 to permit three simultaneous telemetry signals through one antenna without mutual interference.These high-efficiency triple filters-employed in the Minuteman Test Program-enable three transmitters to send in-flight performance data simultaneously from a single antenna. Although extremely compact and light in weight, the Triplexer is ruggedly constructed to withstand shock and vibration-and it is gold plated to reflect high temperatures. This highly advanced filter system-developed and built by Allen-Bradleyillustrates their extensive experience in advanced electronic research, and capabilities in precision manufacturing. Allen-Bradley scientists and engineers will be pleased to cooperate in solving your problems.

ALLEN-BRADLEY

 Quality Electronic ComponentsAllen-Bradley Co., 222 W. Greenfield Ave., Milwaukee 4, Wis.

ALLEN-BRADLEY ELECTRONIC COMPONENTS

The standard of quality for long life and dependable performance

RESISTORS

 fubes. Solid, hot molded resistor. $1 / 4$ And I watt units derate to 0 at $165^{\circ} \mathrm{C}$; $1 / 6$ wall unit to 0 at $120^{\circ} \mathrm{C}$. Available in values to 22 meg.

ADJUSTABLE FIXED RESISTOR with hot molded dual track resistance element. Quiel, stable. Rated $1 / 4$ watt, $70^{\circ} \mathrm{C}$. Values to 2.5 mag . Molded case, length $11 / 4^{\prime \prime}$.

POTENTIOMETERS

STANDARD - Type J. Solid molded element. Quiet, reliable. Rated 2 watts, $70^{\circ} \mathrm{C}$. Values to 5 meg. - less than 10% change in 100,000 cycles. Exceeds MIL-R-948.

miniature - Type G. Solid molded element. Only $1 / 2^{\prime \prime}$ in diam. Plain or lock bushing: also with line switch. Rated 0.5 watt at $70^{-} \mathrm{C}$. Values to 5 megohms. Exceeds MIL-R-948.

TYPE K
high temperature - Type K. Same as Type 1 but rated 3 watts, $70^{\circ} \mathrm{C}$; 2 watts, $100^{\circ} \mathrm{C}$; 1 watt, $125^{\circ} \mathrm{C}$. Only $1^{\prime \prime}$ diam. Type 1 same as Type G but rated 0.5 watt, $100^{\circ} \mathrm{C}$.

SPECLAL TYPES with solid molded elements. Type F for printed wiring boards has gold-plated terminals. Screwdriver adjustment. Thin Type T uses molded cover as actuator.

CAPACITORS

CERAMIC DIELECTRIC capacitors are ONE size -0.55 inch diam for most capacitance values. No "rundown" on leads. Made in many types. Quality appearance.

CERAMIC ENCASED capacitors for use where reliability and superior performance al high temp are im. portant. Rated 500v DC at 150 C . Tol: $5 \%, 10 \%$, and 20%.

FEED.thRU a stand.off discoidal capacitors for VHF and UHF range. No parallel resonance effects at 1,000 Mcps or less. Nominal values 4.7 to $1,000 \mathrm{mmf}$.

BARE DISC ceramic capacitors for direct mounting in printed circuit boards. Mechanically strong to avoid breakage in handling, in. stalling, and soldering.

FERRITES

ferrite cores including lightweight flared yokes, cup cores, and others for TV. Also, U,E,L, O, and doughnut foroids. Wide range of sizes. All have uniform magnetic properties.

FILTERS

high frequency low pass cascaded ceramic filters for eliminafion of radiation. Max ratings: 500v DC of $125^{\circ} \mathrm{C}$; RF current 0.25 amp; DC or LF current 5 amp.

QUALITY MOTOR CONTROLS

Manual Starter

Allen-Bradley also makes a com plete line of manual and automatic, full voltage and reduced voltage starters-plus a full line of pilot controls, such as relays, limit switches,
 Magnetic

Reduced
Combination Starter Voltage Starter push buthons, pressure and temperafure switches, and other devices. Allen-Bradley motor controls are universally recognized for their long life and reliability.
 T

QUALITY ELECTRONIC COMPONENTS

Memory Exerciser

Tests core memory systems
Designed to locate defects automatically in coincident-current-core memory systems, this memory exerciser, type 1513, can be used with systems having planes up to 128 by 128. In its sequence of operation, a pattem of information is read-in, read-out, and checked for accuracy. The machine will then recycle with either the same pattern or its complement being read into any particular digit. When detected, an error lights an indicator bulb on the front panel and is counted.
Digital Equipment Corp., Dept. ED, Maynard, Mass.
Price \& Availability: Made on order only. Delivered 90 days after order received. Price is between $\$ 15,000$ and \$25.000.

Miniature Switches 622

Stand high shock and vibration
Able to stand high shock and vibration, these miniature switches are rated at 3 amp , inductive, and 5 amp , resistive, at sea level. The maximum in-rush is 24 amp . In addition to a basic spdt switch, toggle switches, roller leaf switches, and dpdt tandem toggles are offered as standard items. Straight leaf, formed leaf, and tandem roller leaf types are available on special order. Contact materials are beryllium-copper, spring-silver.
Crown Electric Products Co., Dept. ED, P.O. Box 171, Orange, N.J.

Magnetic Amplifier 625

Conversion gain is 70

Model 300 second-harmonic, magnetic amplifier is temperature-compensated to operate from 0 to 100 C. Conversion gain is 70 and maximum sensitivity is 0 to 1 mv input. The unit is internally shielded and shock mounted; it comes in a drawn metal case measuring $1.25 \times 1.5 \times$ 2.5 in

Coldstream Engineering Co., Dept. ED, Box 1893, Tulsa, Okla. Availability: Delivery is in six weeks.

CIRCLE 63 ON READER-SERVICE CARD >1
\& CIRCLE 62 on reader-service card ELECTRONIC DESIGN • April 27, 1960

General Electric RTV silicone rubber

New Liquid rubber cures without heat, useful from - $\mathbf{7 0}$ F to +600 F, ideal for sealing, electrical insulation and fexible molds.

HEAT RESISTANT SEALING, such as shown on this Douglas DC-8 Jetliner, is made possible with RTV (room temperature vulcanizing) silicone rubber. RTV cures without application of heat : won't shrink (no solvents) ; forms no voids. It has excellent bond strength. plus resistance to high temperatures. moisture, weathering. ozone. aircraft fuels and solvents.

ENCAPSULATION OF STATOR WINDINGS, introduced by General Electric motor departments, extends service life of motors. RTV's resistance to moisture and other contaminants enables these dripproof motors to meet certain applications formerly requiring enclosed units.
applicains formerly requiring ensused units.

PRECISION MOLDING of protntype and engineering models and replacement parts is simplified and improved with RTV flexible mold material. G-E RTV's low shrinkage permits close tolerances and fine surface detail.

LOW-COST TOOLING with flexible RTV mold material offers added savings in time and expense. RTV's "built-in" release agent provides easy removal of this epoxy coilwinding form from mold. Total cost reduced 81%, delivery time 90%.

For application data and samples of General Electric RTV silicone rubber write Section L414, General Electric Company, Silicone Products Department, Watarford, New York

general (6) ELECTRIC

For unmatched reliability... BOMAC BEACON MAGNETRONS NEW PRODUCTS

Life - up to 500 hours guaranteed - over 3000 hours reported Frequency stability - less than 2 Mc drift per 100 hours (C band) Power stability - drop of less than 1 db per 1000 hours of constant voltage input
Duty cycle stability - less than 3 Mc frequency shift for a change in duty cycle of 0.00005 to 0.002 (C band)
Vibration - less than 2.5 Mc frequency shift from 55 to 2000 cps
Shock - withstands 100 g 's (6 millisecond duration)
Lightweight - 7 to 10 oz.
Miniaturized
Tunable over a broad band

Model HD-1A sweep generator has a centerfrequency range of 1 to 900 mc and a sweep width that is adjustable up to 200 mc in the lower part of the range. Two uhf swept oscillators, each having a range of 400 to 900 mc , are combined in a heterodyne circuit to produce a third signal tunable over the range of 1 to 400 mc . The output of one oscillator is used for the upper range. Sweep widths are 200 kc to 200 mc in the heterodyne portion of the range; over 400 mc , sweep width is 0.06% to 10% of the center frequency. The rf output is 0.75 v , peak to peak, across the lower range, and 2 v , in the high range. Voltages are adjustable by a turret attenuator. Settings are provided for $0,10,20,30,40$, and 50 db attenuations plus a 0 to 10 db vernier. The unit is suitable for laboratory and production line use.
Telonic Industries, Inc., Dept. ED. Beech Grove, Ind.
Price b Availability: Price is $\$ 995$. The unit can be delivered 30 days after receipt of order.

ir Flow Switch

Stands shock and vibration
Type 113MF-E air flow interlock ritch, for use in air-cooled equipznt, is designed for military applitions requiring immunity to shock d vibration. The switch will oper3 on static pressure or on the sum static pressure plus the velocity essure for 0.2 to 3.15 in . water lumn. Rated at 5 amp at 250 v ac , 2 unit has a life of 300,000 operans and measures $1 / 4 \times 1-7 / 8 \times$ $1 / 16 \times 1-3 / 8 \mathrm{in}$. It is totally ensed and has screw type terminals. Henry G. Dietz Co., Inc., Dept.), 12-16 Astoria Blvd., Long IsId City 2, N.Y.
ailability: Delivery of engineering nple for evaluation can be made m stock.
omputer Diode
Has 30 ma min forward current at 1 v
Suited for use in medium speed ta system applications, type 1934 diode has a minimum forard current of 30 ma at 1 v , and naximum reverse current of 0.025 at -60 v . Recovery time at 400 is $2 \mu \mathrm{sec}$ when switching from 30 ma to -20 v . The unit may be d as a replacement for the 457.

United Components, Inc., Dept.), 358 Henry St., Orange, N.J.

ata Recorder

Handles up to 28 channels

Capable of handling up to 28 annels in receiving and recording log computer data, this recorder fully automatic and reproduces ta at speeds from 1 to 60 ips . pe loops can be of any length m 2 to 75 ft : other lengths can be ommodated. Standard units are ailable for tapes $1 / 4,1 / 2$, and 1 wide. Operating temperature ge is from 32 to 120 F . Power uirements are 105 to $125 \mathrm{v}, 60$, single phase.
felectro Industries Corp., Dept. ?, 36-16 37th St., Long Island y 1, N.Y. fully accomplished the base must be relatively thick and the thickness very accurately controlled in order that during the fusion process the collector and emitter elements do not flow through the base and short the transistor. This relatively thick base increases the transit time, precluding any usable response above 20 Mc . In the diffusion process the base is formed on the collector oy gaseous diffusion in a high temperature oven very transit time and very high cut off frequencies. In this process the problem lies in attaching the emitter junction and base lead.
In the AMPEREX Post Alloy Diffusion Process, alloying and diffusion take place simuttaneously. The transistor is built up on a piece of P-type germanium. Two small pellets are placed on the germanium. Pellet B, the base peliet, con-
tains only an N-tyoe imourity. Pellet E, the emitter pellet, contains a P-type and an N-type impurity.
When this assembly is heated at a certain temperature, the germanium dissolves into the metal pellet: until satura. tion is reached, and the pellet impurities diffuse into the solid germanium.
However, the P-type impurity in pellet E has such a low diffusion constant, that for practical purposes it does not lets E and B has a much greater diffusion constant and readily penetrates into the solid germanium to form a diffused N-type layer underneath the pellets.
When the assembly is cooled down a layer of germanium recrystallizes from the pellets as in the normal alloy tech-
niaue. The recrystallized layer of pellet E contains many nique. The recrystallized layer of pellet E contains many
atoms of the P-type impurity and is, therefore a P.type germanium layer. The germanium layer recrystalized from pellet B is, of course, the N -type because there are no other impurities in the pellet.
mpurities in the pellet. Connections are made the germanium and the metal pellets and a "mesa-like" P-N.P transistor is obtainea. The original P-type germanium is the collector, pellet B the base, and pellet E the emitter.
sistors with a base layer of a few ten to mass produce tranfor very short transit time and high cut-off fequencies. The yield is also very high which enables AMPEREX to supply these transistors at low pricas.

maximum ratings	2N1515	2N1516	2N1517	
- V_{c} ¢	20 V	20 V	20 V	
-le	10 mA	10 mA	10 mA	
P_{c} at $T_{m n n} \leq 25^{\circ} \mathrm{C}$ TYPICAL CHARACTEBRISTICS	83 mW	83 mW	83 mW	
Gain-Bandwidth Product $\left(\mathrm{f}_{\mathrm{l}}, \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}\right)$	70 Mc	70 Mc	70 Mc	
Gain-Bandwidth Product ($f_{1}, I_{\mathrm{E}}=4 \mathrm{~mA}$) ...	-	180 Mc	180 Mc	
Power Gain $\begin{aligned} & G \text { at } 0.45 \mathrm{Mc}\left(I_{\mathrm{E}}=1 \mathrm{~mA}\right) \cdots \\ & G \text { at } 10.7 \mathrm{Mc}\left(\\|_{E}=1 \mathrm{~mA}\right) \cdots \\ & G \text { at } 100 \mathrm{Mc}\left(I_{\mathrm{E}}=1 \mathrm{~mA}\right) \cdots \end{aligned}$	- $\begin{array}{r}35 \mathrm{db} \\ 22 \mathrm{db} \\ \hline\end{array}$	35 db 24	12 db	
Conversion Gain G_{C} at 26 Mc ..	-	18 db	,	
Noise figure NF at $0.45 \mathrm{Mc} \ldots$. NF at 10.7 Mc	3 db 5 5 db	3 cbb 4	$\overline{9 d b}$	PAD. T \title{

If You Will Remember
 \title{ \section*{If You Will Remember ONE New Name -}

 ONE New Name -}}

You Can Forget

FIVE Old Transistor Problems

Amperex

High Gain VHF Transistors manufactured by the Post Alloy Diffusion Technique

are unrivalled for:
1. RELIABILITY
2. OPERATING STABILITY
3. UNIFORMITY
4. PRICE
5. AVAILABILITY

At last, you can realistically use high frequency transistors for RF and It amplifiers in production FM receivers; as mixers, oscillators and RF and IF amplifiers in mobile radio equipment. car radios and short wave receivers and as broadband amplifiers in instrumentation and industrial applications Implemented and fully proven by Amperex, a unique manufacturing tech nique originating with Philips of the Netherlands now enables Amperex il provide you with production VHF Post Alloy Diffused Transistors * 0 unparalleled laboratory quality at truly reasonable prices.
The new Amperex "Post-Alloy-Diffusion" P-N-P Transistors combine th best qualities of both the alloy and the diffusion approaches to transisto construction. As a result of the special "self-jigging" techniques. a maximun degree of uniformity is achieved. Thus the necessity for "selection" is com pletely eliminated.
The 2 N1516 is designed for use as a mixer oscillator in short wave receivers as an IF amplifier in FM receivers, and as a broadband linear amplifier fo instrumentation and industrial applications. The $2 N T 16$ features a cut-off frequency of 70 Mc and a low collector-to-base capacitance o $1.8 \mu \mu \mathrm{f}$.
The 2 N 1515 is designed for high gain IF amplifier service in medium an short wave receivers.
The 2 N 1517 is designed for use as a local oscillator and preamplifier in FN receivers and has a power gain of 12 db at 100 Mc .
This is, of course, only the legeinning of the Amperer PADT storv. Availa ability is further assured hy a ncw Amperex PADT plant in Slatersville Rhode Island. A ranse of ncil PADT transistors. now in the final stages a development will provide UHF performance at HF prices and give even promise of providing increused reliability and uniformity.

ask Amperex

the industry's rellable source of quallity
translsfors and dlodes for Industrial and
entertalnment appllicatlons.
Amperex Electronic Corp., 230 Dufly Avenue, Micksville, Long Island, Mew Yorlu In Canade: Rogers Electronic Tubes a Components, 116 Vanderhoof Avenue, Toronto 17, Ontaria

NEW PRODUCTS

Vibration Fatigue Tester

Has 23 g maximum capacity

Model 150 VP-D vibration fatigue tester has a table load capacity of 150 lb at 10 g of acceleration. For higher g values, the load must be reduced. Maximum capacity is about 23 g . Acceleration and deceleration are regulated by an automatic frequency control device. Starting at 10 cps , frequency may be increased uniformly up to 60 cps ; frequencies can also be changed manually.

All American Tool \& Manufacturing Co., Dept. ED, 8021-C Lawndale Ave., Skokie, Ill.
Price \& Availability: Made on order only. Can be delivered within 35 days after order received. Price is $\$ 2725$ per unit, regardless of quantity.

Thermal and

COMPACT, RELIABLE, VERSATILE . . . this is P\&E's miniature MH relay

I'he MH is not a new relay.
As a matter of fact, we've been building and selling this series for seven or eight years. Its reliability and exceptional longevity have been proved in business machines, airborne computers and a host of other products.
Engineers like its fast action, its small size, its light weight. They like the wide selection of contact forms . . . up to 18 springs (9 per stack, DC) as well as the fact MH relays can be furnished to switch loads ranging from dry circuit to over 5 amps at 115 volts, 60 cycle resistive.
A multiple choice of terminations add to the MH's versatility. This relay, for example, can be adapted for printed circuits, furnished with taper tabs or a long list of other terminals. Get all the facts by calling your nearest $\mathrm{P}_{\&} \mathrm{~B}$ sales engineer today.

GENERAL:

Malorial: Y'in 0 silver stondard, Palla-
dium or gold olloy also available. dium or sold olloy also available. Laed: Dry circuits to 5 amps (a)
115 V AC res. COILS:
Mosiatance: 22,000 ohms mar. Power: 100 mm per movable min. 104 watts at $25^{\circ} \mathrm{C}$ man. 1200 mm
min. . .0 meal max, shock/vibration $\underset{\text { spec.) }}{\substack{\text { min. to } \\ \text { men }}}$
Duty: $D C$: Continuous. AC: Imer.
militent (Two pole ralay masi miltent ((owo pole relay max.)
open. Scaled wnits suppliod with full wave rectilier inside can. Volitager: $D C: U_{p}$ to 110 volts.
$A C$: $U_{p} 10230$ volts 80 eyeles.

MH SEAL-TEMP
Feotures seolod coil to minimize contact contamination. sealed relay only.

Life is 150,000 operations

Type CE-100 thermal and thermostatic switches have a minimum life of 150,000 operations. The time range is 10 sec to $15 \mathrm{~min} \pm 10 \%$ at 25 C. Temperature-compensated units with a range of -55 to +85 C are available. The heater voltage is 2 to 115 v ac or dc. Offered in spdt and dpdt types, the switches are rated at 5 amp at 115 v ac and at 3 amp at 30 vdc . Power rating is 2 to 4 w . They have standard 8 -pin bases. The switch circuit has a common terminal, a normally open terminal, and a normally closed terminal. Switching is positive snap action. Typical applications are: power supplies, plate circuits, circuit breakers, and protection of circuits in transmitters and receivers.
Crown Electric Products Co., Dept. ED, P.O. Box 171, Orange, N.J.

Price: For 1 to 9 units, spdt types are priced at $\$ 6.75$ and dpdt types, \$11.75. Temperature-compensated units are priced at $\$ 0.50$ more.

NOW AVAILABLE FROM YOUR CORNING DISTRIBUTOR

Now you can produce experimental or small-production-run printed circuits fast and economically in your own lab... just 15 minutes of simple processing with this new copper-clad FOTOCERAM grid board from Corning
Ideal for use under severe conditions. Its strong non-organic glass ceramic base material is dimensionally stable, non-flammable and unaffected by temperatures up to $250^{\circ} \mathrm{C}$. Copper circuit pattern stays put. FOTOCERAM has zero water absorption and is impervious to chemicals that tend to peel the circuits from ordinary grid boards.
Replace components again and again if you wish . . . resolder them up to 50 times without circuit-run failure. Unexcelled through-hole plating permits two-side circuitry.
Obtain FOTOCERAM grid boards fast from your distributor. . . same day delivery at factory prices. Call him now for samples and complete information.

CORNING
 ELECTRONIC COMPONENTS
 Distributed exclusively by
 EBIE DISTRIBUTOR DIVISION

SPECIFICATIONS

three standard sizes
$3^{\prime \prime} \times 5^{\prime \prime}, 6^{\prime \prime} \times 8^{\prime \prime}, 9^{\prime \prime} \times 12^{\prime \prime}$
thickness $062^{\text {n }}$ component mounting holes $0.52^{\prime \prime}$ diamete $\pm .005^{n}$ on $0.1^{\prime \prime}$ centers

FOTOCERAM GRIDBOARDS
Off-the-shelf delivery at
factory prices from these
Corning distributors

"M" BELOW ERIE, PHILADELPHIA 24, CUmberland 9-5500 ELCO-PACIFIC, 2200 CENTINELA, W, LOS ANGELES 64, GR. 8-0671

Servo Controls

For rack mounting

Made for use in computing systems, indicating gage applications, and all types of control systems, types 692 and 694 servo controls mount in standard relay racks. Type 692 mounts in a panel $19 \times$ 7 in. or in higher panels to accommodate encoders or additional retransmitting slidewires. The drumtype scale is about 22 in . long and the slidewire balancing shaft provides for mounting alarm contacts or retransmitting slidewires. Type 694 has an 11-in. scale and mounts in a rack measuring 19 x $8-3 / 4 \mathrm{in}$. The entire scale range is visible. Retransmitting slidewires, analog-to-digital encoders, and alarm contacts can be mounted.
The Bristol Co., Dept. ED, Waterbury 20, Conn.

Pulse Generator

Linearity is 0.1%

Having a linearity of 0.1%, model 816 pulse generator provides positive or negative pulses as large as 20 v . Two pulse shapes are offered: one having a $10-\mathrm{m} \mu \mathrm{sec}$ rise and a $250-\mu \mathrm{sec}$ decay and one having a $0.25-\mu \mathrm{sec}$ rise and a $2-\mu \mathrm{sec}$ decay. Voltage ranges are 0 to 20,0 to 10,0 to 1,0 to 0.1 , and 0 to 0.01 v ; a 10 -tum potentiometer allows for division into 1000 increments. Line changes from 90 to 125 v change the output amplitude less than 0.04\%. A Zener diode stabilized power supply with standard cell reference, mercury relay switching, and a panel-mounted galvanometer are used. Required input is $117 \mathrm{v}, 50$ or 60 cps , less than 5 w . The unit weighs 10 lb and has dimensions of $5.25 \times 19 \times 5 \mathrm{in}$.
Interstate Electronics Corp., Dept. ED, 707 E. Vermont Ave., Anaheim, Calif.
Price \& Availability: Price is $\$ 295$; delivery time is three to four weeks.

${ }^{(1 p)}$ Audio, telemetry and low frequency oscillators

Pictured here are six of the most widely used oscillators in electronics. All employ the highly stable, dependable, accurate resistance-capacity circuit. They require no zero setting. Output is constant, distortion is low and frequency range is wide. Scales are logarithmic for easy reading; all are compact, rugged and broadly useful basic instruments. Brief specifications are given below; call your (i) rep for demonstration or write direct for complete data on any instrument.

Medel	Frequency Range	$\begin{gathered} \text { Call. } \\ \text { bration } \\ \text { Accuracy } \end{gathered}$	Dutput te 500 ohme	Recom. mended Lead	Maximum Distortion	Maz. Mum	$\left\lvert\, \begin{aligned} & \text { Input } \\ & \text { Power } \end{aligned}\right.$	Price
200A日	$\begin{aligned} & 20 \mathrm{cps} \text { to } \\ & 40 \mathrm{KC} \\ & (4 \mathrm{bands}) \end{aligned}$	$\pm 2 \%$	$\begin{gathered} 1 \\ (24.5 \mathrm{watt} \end{gathered}$	600 ohms	$\begin{array}{\|l\|} \hline 1 \% 20 \mathrm{cps} \\ \text { to } 20 \mathrm{KC} \\ 2 \% 20 \mathrm{KC} \\ 1040 \mathrm{KC} \\ \hline \end{array}$	0.05\%	$\left\lvert\, \begin{gathered} 70 \\ \text { watts } \end{gathered}\right.$	\$150.00
200CD	5 cps to (5 bands)	$\pm 2 \%$	$\begin{aligned} & 160 \mathrm{mw} \\ & 10 \text { volts } \end{aligned}$	600 ohms ${ }^{\circ}$	$\begin{array}{\|c\|} \hline 0.5 \% \text { below } \\ 500 \mathrm{KC} \\ 1 \% \\ \text { and above } \\ \text { and } \\ \hline \end{array}$	0.1\%	$\left\lvert\, \begin{gathered} 75 \\ \text { watts } \end{gathered}\right.$	\$170.00
200J	6 cps to 6 KC (6 bands)	$\pm 1 \% \dagger$	$\begin{aligned} & 160 \mathrm{mw} \\ & 10 \text { volts } \end{aligned}$	600 ohms ${ }^{\circ}$	0.5\%	0.1\%	$\begin{gathered} 110 \\ \text { watts } \end{gathered}$	\$300.00
2001	$\begin{gathered} 250 \mathrm{cps} \text { to } \\ 100 \mathrm{KC} \\ (5 \text { bands }) \end{gathered}$	$\pm 1 \% \dagger$	160 mw 10 volts	600 ohms ${ }^{\circ}$	0.5\%	0.03\%	$\begin{gathered} 160 \\ \text { watts } \end{gathered}$	\$450.00
201 C	$\begin{array}{l\|} \hline 20 \mathrm{cps} \text { to } \\ 20 \mathrm{KC} \\ (3 \text { bands }) \end{array}$	$\pm 1 \% \dagger$	$\begin{aligned} & 3 \text { watts } \\ & (42.5 \mathrm{v}) \end{aligned}$	600 ohms	0.5\% \ddagger	0.03\%	$\left\lvert\, \begin{gathered} 75 \\ \text { watts } \end{gathered}\right.$	\$225.00
202C	1 cps fo 100 KC (5 bands)	$\pm 2 \%$	160 mw	600 ohms ${ }^{\circ}$	0.5\%§	0.1\%	$\begin{gathered} 75 \\ \text { watts } \end{gathered}$	\$300.00

-Internal impedance is 600 ohms. Frequency and distortion unaffected by load resistance. Balanced output with amplitude control at 100 . Use line matching transformer for other con.
trol settings. trol settings. "Internal impedance approximately 600 onms with output attenuator at 10 db
or more. Approximately 75 ohms below 5000 cps with attenuator at zero. \dagger Internal, non-opor more. Approximately 75 onms below 5000 cps with attenuator at zero. †Internal, non-op-
erating controls permit precise calibration of each band. 10.5%, 50 cps to 20 KC at 10 wat erating controls permit precise calibration of each band. $70.5 \%, 50 \mathrm{cps}$ to 20 KC at 1 wat
output. 1.0% over full range at 3 watts output. $50.5 \%, 10 \mathrm{cps}$ to $100 \mathrm{KC} 1.0 \%,$.5 to 10 cps 2.0% at 2 cps . 3.0% at 1 cps . TMeasured with respect to full rated output.

HEWLETT-PACKARD COMPANY

1027K Page Mill Road - Palo Alto, California, U.S.A. Cable "HEWPACK" • DAvenport 5.4451
Hewlett-Packard S.A., Rue du Vieux Billard No. 1, Geneva, Switzerland Cable "HEWPACKSA" • Tel. No. (022) 26. 43. 36 fiold representotives in all principal areas

- 2016

Audio
Oscillator

- 202C

Low Frequency
Oscillator

ELECTRONIC DESIGN • April 27, 1960

This revolutionary instrument incorporates a unique temperature stabilized diode network, operating on the square law principle, to yield a true rms voltage reading, regardless of the AC wave form or IDC. No hot wire elements of any kind are used.

- All-electronic, totally-transistorized
- 0.1% accuracy for crest factors up to two
- 0.1% response from 50 cps through 5KC and at DC
- Higher frequency response (at least 10KC) at reduced accuracy and for certain waveforms
- 3 second balance time, typical
- Calibration accuracy held for minimum of 30 days-typically much longer
- Automatic ranging

Ask your nearest EI sales office or representative for complete information today!
\square

SPECIFICATIONS

Within the range and frequency capability of the instrument, RMS value of crest factor not exceeding two will be indicated to $\pm \mathbf{0 . 1} \%$ of reading or two digits, whichever is greater.
The instrument accurately accounts for:
Harmonic components Sinusoidal response Square wave Triangular wave

50 cps to $5 \mathrm{KC} \quad 0.1 \%$ or 2 digits
50 cps to $5 \mathrm{KC} \quad 0.1 \%$ or 2 digits DC (no polarity sense)
Accuracy maintained 30 days without calibration adjustment. Above accuracies after 45 min . warm-up time.
Range: selected 0.1 volt to 1 volt range.
Balance time: Temperature:

Power: 60 cps , single phase, 125 watts
Dimensions:
\qquad

[^6]Automatic ranging, 1 volt to 999.9 volts with manually 0° to $50^{\circ} \mathrm{C}$.
$19^{\prime \prime}$ wide $\times 83 / 4^{\prime \prime}$ high $\times 20^{\prime \prime}$ deep.

A TRUE RMS

Engineers: Many challenging positions are now open. For details contact Mr. Carl Sebelius.

Electro Instruincientsy incor
 3540 AERO COURT

NEW PRODUCTS

Power Supplies
Provide 0.5 to 32 v dc

Operating from an input of 105 to 125 v at 60 or 400 cps , models 62-140 and 62-143 power supplies provide from 0.5 to 32 v dc at 2 and 15 amp , respectively. For both units, line regulation is 18 mv , load regulation is 18 mv and ripple is 1 mv mm . Dc impedance is 0.009 ohms for model 62-140 and 0.001 ohms for model 62-143; for both units the $500-\mathrm{kc}$ impedance is 0.5 ohms max.

Dressen-Barnes Corp., Dept. ED, 250 N. Vinedo Ave., Pasadena, Calif.
Price \& Availability: Units are in stock. Model $62-140$ is priced at $\$ 640$. Model 62-143 is priced at $\$ 98.5$.

Silicon Computer Diodes

Have recovery times down to $0.3 \mu \mathrm{sec}$
These silicon computer diodes are Signal Corps types that have recovery times down to $0.3 \mu \mathrm{sec}$ with reverse voltages ranging up to 200 v . They are listed under type numbers 1N643 (MIL-E1/1171), 1N658 (MIL-E-1/1160), 1N662 (MIL-E$1 / 1139$), and 1N663 (MIL-E-1/1140). They are sealed in the standard glass package.

Rheem Semiconductor Corp., Dept. ED, Box 1327, Mountain View, Calif.

Toggle Switch

Stands 50 g shock

This miniature toggle switch stands 50 g shock and conforms to the vibration and dielectric requirements of MIL-6745. Rated at 28 v dc and at 1 amp , resistive, the switch is available with either an spdt or a dpdt arrangement and can be supplied with maintained momentary action of the batt handle. The terminals are integrally molded into a diallyl phthalate base. Contact surfaces are silver-to-silver. The unit is housed in a corrosionresistant anodized aluminum cylindrical case and

ELECTRONIC DESIGN • April 27, 1960
has a behind-the-panel mounting length of $45 / 62$ in. max.

Controls Co. Of America, Control Switch Div., Dept. ED, 9555 Soreng Ave., Schiller Park, Ill.

Umbilical Connector
369
Has 300 five-amp contacts

This umbilical connector has 300, 5-amp contacts mounted in an area of 2.75 sq in . Designed for missile use, the entire unit is sealed in a mag-nesium-aluminum casing. Two fluid lines are each capable of carrying 3 gal per min with a pressure drop of 6 psi max. Disengagement is by normal motion of the missile or by manually removing the plug.

Armoux Corp., Dept. ED, 11924 W. Washing ton Blvd., Los Angeles 66, Calif.

Rate Gyro

376

Series RG27 dual-axis, rate gyro is 4 in . long and has a $1-3 / 4 \mathrm{in}$. diam. It measures rates about two different axes, such as pitch and yaw in a missile. The unit has an independent potentiometer pick-off for each axis. Each potentiometer dissipates up to 2 w . Excitation voltage is up to 60 v . Range is 50 to 2000 deg per sec. The gyro is furnished with a 28 or 12 v dc motor. It operates over the temperature range of -65 to +180 F , with up to 100% relative humidity, and extreme vibration, acceleration and shock.
Humphrey, Inc., Dept. ED, 2805 Canon St., San Diego 6, Calif.

> Don't forget to mail your renewal form to continue receiving ELECTRONIC DESIGN.

Get immediate delivery from stock

TANTALUM CAPACITORS

broadest line in the industry. 0.33 to 1300 mfd . Sintered. solid and foil types; temperatures $-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$.

SUB-MINIATURE SNAP-ACTION SWITCHES

Milli-Switch line of precision push-buttons, toggles and auxiliary actuators for slide or cam action. Temperature ranges to $300^{\circ} \mathrm{F}$. Also hermetically sealed units.

HICH-CAPACITY, MEAVY-DUTY ELECTROLYTICS

Types HC (high-capacity) and NP (nonpolarized). Plastic-case; compact, leak-proof design; rated for high ripple currents. cool operation; self-insulated. From $3 v, 6700 \mathrm{mid}$. operation; self-insur
to $450 \mathrm{v}, 88 \mathrm{mfd}$.
P.R.MALLORY \& CO. INC. Distrïbutor Division
P.O. Box 1558

Indianapolis 6, Indiane
When your research, short runs or maintenance calls for short orders of electronic components in a hurry . . . call your Mallory industrial distributor. He makes a specialty of supplying electronic parts to industrial users. He carries selected lines of Mallory components-identical to those which you would receive on direct factory order. He'll keep your schedules safe with fast delivery from stock . . . at factory prices.
Check these Mallory lines for the electronic components to meet your tight schedules:

SELECTOR SWITCHES

Push-button, lever action, rotary, wafer, multi-section; phenolic or ceramic insulation.

VITREOUS EMAME RESISTORS

complete line of wire-wounds. Fixed and adjustable; 5 to 200 watts, to 100,000 ohms. Also a full line of military types.

CERAMIC DISC CAPACITORS

made by Radio Materials Company, a Mallory Division. From 50 v general purpose to 6000 v high-voltage types.

The Mallory
 The Mallory Industrial Distributors
 listed below stock Mallory Industrial Parts indicated by numbers

Standard Radio Parts	1			Tucson, Ariz.
Newark Electronics California Electronics Federated Purchaser Kierulfi Electronics Radio Product Sales Brill Electronics Elmar Electronics Zack Radio Elwyn W. Ley Electronic Supply Shanks \& Wright Peninsula Electronics	$\begin{array}{ll} 1 & \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & \end{array}$	3		Inglewood, Calif. Los Angeles, Calif. Los Angeles. Calif. Los Angeles, Calif. Los Angeles. Calif. Oakland, Calit. Oakland, Calif. Palo Alto Calif. Paramount. Calif. Pasadena, Calil. San Diego. Calif. San Jose. Calif.
Denver Electronics	1			Denver, Colo.
Capitol Radio Electronic Indus. Sates	12		6	Washington, D.C. Washington, D.C
Electronic Equipment Thurow Distributors	1		6	Miami, Fla. Tampa, Fla.
Specialty Dist.		3		Atlanta, Ga.
Allied Radio Chouncey's, Inc. Nowark Electronics Melvin Electronics Bruce Electronics	$\begin{array}{ll} 1 & 2 \\ 1 & 2 \end{array}$	3		Chicago, III. Chicago, III. Chicago, III. Oah Paik, III. Springtield, III.
Graham Electionics	12	3	45	Indianapolis. Ind
Radio Supply			5	Wichita, Kansas
D \& H Distributing Kann-Ellett Election. Radio Elec. Serv.	${ }_{1}^{1} 2$			Baltimore, Ma. Baltimore, Ma. Baltimore, Md.
Cramer Electronics DeMambro Rad. Sup. talayette Radio Radio Shack	$\begin{array}{ll} 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ & 2 \end{array}$		45	Boston, Mass. Boston, Mass. Boston, Mass. Boston. Mass.
Ferguson Electionic	1			Detroit, Mich.
Northwest Radio	2		48	Minneapolis, Minn.
Burstein-Applebee Olive Electronics	1^{2}		5	Kansas City, Me. St. Louis, Mo.
General Radio Eastern Radio Atlas Electronics Federated Purchaser State Electronics	12 12 1 1		6	Camden. N. J. Clíton, N. I. Fords, N. I. Mountainside, N. J. Whippany, N. J.
Federal Electronics Stack Electronics Radio Equipment Wehle Electronics Electronic Center Harrison Radio Harvey Radio Mudson Radio Latavette Radio Terminal Electronics Miggins \& Sheer Elec. Morris Electronics Valley Indus. Elect.	2 2 2 1 2 2 2 2	3		Binghamion, N, Y. Binghamton, N. Y. Buffialo, N. Y. Buffali, N. Y. New York, N. Y. New York, N. Y. New York, N. Y. New York, N. Y. New Yorh, N. Y. New York, N. Y. Poughkeepsie, N.Y Syracuse, N.Y. Utica, N. Y.
United Radio Pioneer Electronics Thompson Radio Whitehead Radio Allied Supply Sorvex Electronics	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathbf{3} \\ & \\ & \mathbf{3} \\ & \mathbf{3} \end{aligned}$		Cincinnati, Ohio Cleveland. Ohio Columbus, Ohio Columbus, Ohio Dayton. Ohio Marion, Ohio
Engineering Supply	1			Tulsa, Okla.
Television Parts Cameradio Co. Radio Parts Almo Radio Radio Elec Serv. Geo. D. Barbey Co.	${ }^{1}$	3		New Brighton. Pa. Pittsburgh, Pa. Pittsburgh, Pa. Philadelphia, Pa. Philadelphia. Pa, Reading, Pa .
Engineering Supply Harrison Equip. Lenert Co.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$		-	Dallas, Teras Houston, leas Mouslon. Teras
Radio Parts		3		Milwaukee Wis.
Canadian Elec. Sup. Alpha Aracon Radio Electro Sonic Sup. Wholosale Radio	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$			Montreal, Que. Toronto. Ont. Toronto. Ont. Toronto, Ont.

ELECTRONIC DESIGN • April 27, 1960

Another New Fansteel Service ...NICKEL PLATED MOLYBDENUM

or punched disks

Fansteel nickel plated molybdenum provides these ideal qualities required in backing plates for silicon: (1) close match to silicon in coefficient of linear expansion, (2) low electrical resistivity, (3) good workability, (4) easily soldered and (5) low cost.

Fansteel's continuous program of new ideas, new products and new services now brings you famous Moly. "D", nickel-plated for easier wetting in soldering operations. Nickel plated molybdenum promises particular advantages in such areas as backing plates in silicon rectifiers.

Because Fansteel molybdenum is plated with extreme care under strict quality control, the nickel plate has a tight adherence. . will not flake or tend to separate in blanking operations . . . and provides excellent conductivity in electrical and thermal applications.

Moly "D" sheets can be supplied plated either on one side or both sides, and punched disks are available in a wide range of sizes.

For complete information, call or write your Fansteel representative or Fansteel direct ... Metals and Fabrications Division.

FANSTEEL

fansteel metallurgical corporation
north снicago, ilunois. u.s.a.
light. Type A-75-10 has a $3 / 4$-in. gage length and type A-200-10, 2 in.
Baldwin-Lima-Hamilton Corp., Electronics \& Instrumentation Div., Dept. ED, Waltham, Mass. Price \& Availability: Price of a package of five units is $\$ 25$. Delivery time is one week.

Thermostat

Operotes from -100 to +300 F
Measuring $1-3 / 16 \mathrm{in}$. in length, and $1 / 4 \mathrm{in}$. in diameter model 196A capsule type thermostat operates from -100 to +300 F . It is rated at 1 amp at 28 v dc, or 1 amp at 115 v ac with a noninductive load. The terminal supports of this twoelement unit are solder sealed to the ends of the triple-coated metalized ceramic tube. It is! available with normally-closed contacts which open with a rise in temperature, or normally-open contacts which close with a rise in temperature.
George Ulanet Co., Defense Products Dept., Dept. ED, 413 Market St., Newark 5, N.J.

Analog Computer

Contains 4 to 64 amplifiers

Model AD-1 analog computer, designed to solve mechanical, electrical, and industrial problems that can be translated into mathematical data, basically contains from 4 to 32 amplifiers and can be expanded to 64. Four amplifiers are housed in each plug-in module. Simultaneous overload balance indicators are supplied on all amplifiers. All integrating capacitors, matched feedback resistors, and summing resistors are built into the unit. Basic reference voltage is 100 v .

Applied Dynamics, Inc., Dept. ED, P.O. Box 2068, Ann Arbor, Mich.
Price: about $\$ 3000$ for the 12 -amplifier unit.

Don't miss an issue
of ELECTRONIC DESIGN;
return your
renewal card today.

SILICON NEWS from Dow Corning

Watchword: Reliability

Silicon Optics Enhance Reliability and Versatility of Infrared Detection Systems

As new infrared guidance and surveillance systems take their "passive" positions in our defense, one major design challenge is to guarantee optimum performance of these vital devices. One way is to employ silicon optics . . . because, in addition to providing over 95% transmission, they offer a unique combination of properties that assure the highest degree of reliability and versatility.

Reliability of product really begins with reliability of sources. Under Dow Corning's stringent quality control program, each new silicon ingot is meticulously quality-checked for transmission rate . . . and a transmissio , curve goes right along with every silicon blank delivered.

Today, Dow Corning can make prompt shipment of optical silicon blanks up to 7 inches in diameter . . . in hollow domes, flat plates, prisms and other shapes to meet the most exacting specifications. Keeping pace with the new, fast-moving infrared industry, Dow Corning will apply latest techniques to larger sizes as the needs develop.

Free Brochure Available - plus latest data on optical silicon for infrared detection. Write today . . . your name will be kept on a special mailing list to receive all new bulletins on this subject. Please address your inquiry to Dept. 1601.

Avion engineer "reflects" on Duw Corning silicon dome during test "f infrared transmission characteristics. Avion's capalaility in infrared technology dates lack to carly rescrarch and deveropment on the famous "Sidewinder" missile. Present interests and projects include airborne detection and tracking devices.

Thansmission oata countesy ortical conting
The black line indicates the percent of transmit. tance for silicon is relatively constant from 1.3 to 6.7 microns. Blue lines show how transmission is increased by coating. Single coating provides maximum transmission on a narrow band: several coatings, dotted blue line, give maximum transmission on a broad band.

Properties of Dow Corning Optical Silicon
Sprecific gravity- 2.329 at 2.5 C
Melting puint Hardness

Thermal conductivity $\ldots .0 .0 .39 \mathrm{cal}\left(\mathrm{cm} \mathrm{sec} \mathrm{C}^{\circ}\right)$ Thermal expansion $4.15 \times 10^{-6} / \mathrm{C}^{\circ}$ Specific heat .-............................ 0.168 at $25^{\circ} \mathrm{C}$
 Elastic modulus (Youngs) -----.-- $19 \times 10^{6} \mathrm{psi}$ Flexural strength

NEW PRODUCTS

LFORD VIBRATION INSTRUMENTATION: The Ford Motor Company entered the experimental gas turbine engine field in 1952. The Ford Turbo Machines Department is now engaged in research and development of a turbine engine and a working model has been tested in a tilt-cab truck. An obsolete engine, the Ford 702, has developed 160 horsepower ot shaft speeds up to $36,000 \mathrm{rpm}$. A new supercharged 300 horsepower turbine engine was recently announced by Ford Engineers. Known as the "704," the engine weighs 650 pounds installed, compared to 2,700 pounds for a truck diesel engine of comparable horse-
power. The engine has two stages of compression, each operating at a $4: 1$ pressure ratio. Two burners are used for driving the dual compressors, the low speed wheel turning at $46,500 \mathrm{rpm}$ and the high speed wheel at $91,500 \mathrm{rpm}$.
THE PROBLEM : The Ford Test program requires a wide variety of instruments to measure, control and record performance data of component parts. Measurement of vibration, for example, is a critical factor in this program. Vibrations that may couse metal fatigue, oil film breakdown, overheating, etc., ore discovered during tests on individual engine "stands."
THE SOLUTION: Ford engineers use a total of six Endevco Series 2200 Accelerometers providing frequency responses up to 6,500 cycles per second. The accelerometers are connected to bearing test rigs, for example (see photo). The accelerometers relay measurements of acceleration movements in turbine shafts from three coordinates (radial vertical, radial horizontal and axiall. Temperatures of the metal housings to which the standard Endevco transducers are attached average up to $+150^{\circ} \mathrm{F}$. Temperatures at which the water-cooled, heat-resistant models are used range up to $+1000^{\circ} \mathrm{F}$ or more The large self-generated output of the Endevco accelerometers eliminates the need for additional stabilization of a power supply.
THE RESULTS: The Endevco transducers are attached with a single-pole threaded bolt. The signal is fed through an Endevco amplifier to an ascilloscope or panoramic analyzer. The analyzer concentrates on a small section of the total signal and may present from 4 to 10 harmonic vibrations of different frequencies being fed from the unit ot one time. This analyzer separates the frequency bands into individual bands, which it then sweeps from 20 to 40,000 cycles every second, measuring the frequency and amplitude in millivolts Ford Technicians convert these vibration records by mathematicolly integrating acceleration with respect to time to obtain the displacement or housing vibration. Thus, they locate the sources of objectionable resonance and take steps to eliminate or reduce vibration in the overall design Endevco accelerometers hove also served as pickups for determining spring rate and damping characteristics of rubber bonded beorings. E ENDEVCO CORPORATION•161 EAST CALIFORNIA BOULEVARD PASADENA, CALIFORNIA • PHONE SYCAMORE 5-0271

Close-up shows two Endevco Accelerometers on bearing test rig in Ford Instrumentation Section.
Dearborn. Michigan. Cable posses to Endevco Amplifier (not shown an rinht).
CIRCLE 75 ON READER-SERVICE CARD

Designed for use in critical missile, aircraft, and ground support equipment, these hermeticallysealed, three-pole, four-position magnetic sequencing switches have a cycling rate of up to 10 pps. Service life is better than 100,000 cycles. Qualified to MIL-E-5272, the switches stand 10 g vibration at 500 cps and operate from -65 to +280 F . Each switch weighs 26 oz and measures 5.8 in . in length by 2.5 in . in diameter.

Lundy Manufacturing Corp., Dept. ED, Glen Head, L.I., N.Y.
Availability: Delivery time is 30 days.

Electronic Computer

Uses a magnetic core memory

Capable of exceeding 60,000 instructions in 1 sec , model 160 solid-state electronic computer has an array of building blocks and uses a magnetic core memory. It handles data transmissions to and from input-output equipment at speeds up to 65,000 characters per sec. Storage cycle time is $6.4 \mu \mathrm{sec}$: basic add time is $12.8 \mu \mathrm{sec}$; average execution time is $15 \mu \mathrm{sec}$ per instruction. Model 160 uses 5 mc logic.

Control Data Corp., Dept. ED, 501 Park Ave., Minneapolis 15, Minn.

DC Power Supply
370
Delivers 6 and 18 r at 30 amp

Having dual outputs, model 163 transistorized power supply provides 6 v dc at 30 amp and 18 v dc at 30 amp . Line regulated, the supply is

ELECTRONIC DESIGN • April 27, 1960
.ccurate to $\pm 0.5 \%$. Tap switches on the front sanel permit the output to be regulated to compensate for load changes. Ripple is 5% max. $\mathrm{Re}-$ quired input is 105 to $125 \mathrm{v} \mathrm{ac}, 60 \mathrm{cps}$, singlephase. The unit mounts in a standard 19-in. relay rack and has a front panel measuring 10.5 in . high.

Mid-Eastern Electronics, Inc., Dept. ED, 32 Commerce St., Springfield, N. J.
Price \& Availability: Price is $\$ 995$ fob Springfield. Delicery is in 30 days.

Reversible Converter

557
For systems using ac carrier signals
Having amplifier, comparator, and conversion networks that will accept frequencies to 100 kc , this reversible analog-to-digital converter is used with systems utilizing ac carrier signals. The device is entirely solid state and can be supplied to provide conversion of voltage-to-binary codes of 8 to 13 bits resolution or binary-decimal codes of 2,3 , or 4 digits resolution. It is accurate to $\pm 0.02 \%$ of full scale, $\pm 1 / 2$ the least significant digit.

Epsco, Inc., Dept. ED. 275 Massachusetts Ave., ,Cambridge, Mass.

Trimmer Potentiometers

For aircraft and missile use

These wirewound trimmer potentiometers meet the resolution and size requirements for aircraft and missile applications. They also provide the stability needed for ground support instruments and systems. The 375 series has the following specifications: power rating, 1 w ; resistance range, 10 to 50 K ; weight, less than 1 g ; and dimensions, $0.375 \times 0.375 \times 0.175 \mathrm{in}$. The 500 series has these specifications: power rating, 2 w ; resistance range, 10 to 100 K , weight, less than 2 g ; and dimensions, $0.5 \times 0.5 \times 0.175 \mathrm{in}$. The units are sealed for use in environmental extremes, have 25 -turn, O-ring sealed adjustments, and are housed in aluminum cases.
Bamford Corp., Dept. ED, 11167 Tennessee Ave., Los Angeles 64, Calif.

Have you sent us your subscription

renewal form?

mFG.
Co.
1260 Clybourn Ave., Dept. D, Chicago 10, Illinois Phone: MOhawk 4-2222

Amphenol Princir receptacles have been used in high-reliability applications ever since their introduction a few years ago. Princir popularity in rough jobs is based upon a unique contact design with these outstanding features:

1. CONTACT CAN'T BE OVERSTRESSED-Even after repeated 1. insertions Princir contacts form-fit any $.055^{\prime \prime}-.073^{\prime \prime}$ board Warped boards or boards varying in thickness are effectively accommodated. Wiping action is excellent.
2. CONTACT CAN'T BE SET-The long spring base of the tough phosphor bronze contacts prevents setting.
3. LOW MILLIVOLT DROP-After 1000 insertions and with. drawals in reliability-durability testing the millivolt drop is negligible. Only after 5000 cycles is it appreciably affected.
4. HARD GOLD-OVER-ALBALOY PLATING-Assures Jow electrical contact resistance, prevents tarnishing.
Princir receptacles are available with from six to twenty two contacts; there are five contact tail types. A complete family of mating Princir plugs and adapters are also available.

CONNECTOR DIVISIOK
 chicago 5o. illinois

Amphenol-Borg Electronics Corporation

NEW PRODUCTS

Coaxial Attenuator
Range is 0 to 1000 mc

Model RDA-971 variable, coaxial attenuator has a variation range of 0 to 25 db with less than $1-\mathrm{db}$ frequency sensitivity over the range of 0 to 1000 mc . Connectors are BNC type. Attenuation is varied by rotating the $1 / 4-\mathrm{in}$. shaft. Maximum insertion loss is 0.5 db and vswr is 1.3. Calibrated dial, different input-output orientation, and N, C, HN, and TNC connectors can be supplied on special order.
Radar Design Corp., Dept. ED, Pickard Dr., Syracuse, N.Y.
Price d Availability: Price is $\$ 280$ for small quantities. Delivery is in four to six weeks.

Coaxial Line Duplexer

Handles 10-kw average power

Type BL-595 balanced coaxial line duplexer consists of two coaxial hybrids and two cavities for plug-in cell type TR tubes. This unit is in the $6-1 / 8-\mathrm{in}$. line and is rated to handle 10 kw of average power. Other units of this type are available in $1-5 / 8$-, $3-1 / 8$-, and $6-1 / 8$-in. coaxial line.
Bomac Laboratories, Inc., Dept. ED, Salem Road, Beverly, Mass.

Digital Printers

378
Use a self-balancing potentiometer

Consisting of a self-balancing potentiometer, plug-in servo amplifier, power supply, servo mo-

The SMITH-FLORENCE, INC. Model 951 was designed for the discriminating Engineer who demands and expeots the ultimate in precision DC voltage measurements.
Though the basic instrument range is from Though the basic instrument range is from
one micro-volt to 10 volts, a precision probe one micro-volt to 10 volts, a precision probe
is included which extends the range to 1 KV without impairing the basic accuracy of the instrument.
Through advance design techniques using module-type construction, rugged mechanical design and the ultimate in component selection, the Smith-Florence Engineers have produced a product beyond comparison.
A few of the important features are: accuracy through a wide temperature range. recorder and oscilliscope outputs, and automatic decimal and range lights.
Request the Smith.Florence Field Engineers to demonstrate this versatile instrument at an early date.

SPECIFICATIONS

RANGE: I miero-voll to I KY DC POTENTIOMETER ACCURACY: . 005% NSTRUMENT ACCURACY . 01% INPUT IMPEDANCE, Infinite at null, below 10 V DRIFTi Less than .5 micro-volt
POTENTIOMETER RANGES: (4) 0-10 V DC
to 0-10 mv DC $(0-100$ V DC and $0-1 \mathrm{KV}$ DC) ${ }^{2 *}$

NULL RANGES (7) 0 to 10 V DC to 0 to 10
NULL RANGES
miero-volts DC
micro-voits 0 PR $\$ 1,795.00$ FOB Factory

- PRECISION PROBE 10/1 + 100/1 heluded for IKV operation
- warch for wioe range precision

AC VOLTMETER AVAILABLE SOON

CIRCLE 78 ON READER-SERVICE CARD
or, precision gear train, and a printing counter series B, P, and V digital printers perform both measuring and recording functions. Visual and printed readouts of weight, pressure, position, voltage, current, temperature, and resistance are provided. Operation is from 115 v ac at 60 cps .
Moran Instrument Corp., Dept. ED, Orange Grove Blvd., Pasadena, Calif.
Price \& Availability: Some units are available from stock; others require 30 to 60 clays for delivery. Price is $\$ 2150$ to $\$ 2485$.

Rotary Switches

Provide from 2 to 20 circuits

Intended for use in thermocouple and resist-ance-thermometer applications, these switches provide from 2 to 20 circuits plus an off position with dummy load contacts. The units have silver-to-silver contact paths, high circuit-to-circuit insulation, and positive detent mechanisms. They are available in explosionproof, fungusproof, splashproof, and sand and dustproof housings.
Winslow Co., Dept. ED, 701 Lehigh Ave., Union, N.J.

Silicon Rectifier Protectors

Cover pir range of 50 to 600 v

Made to protect silicon power rectifiers from breakdown due to transient high voltages, the SP series protectors cover the range of 50 to 600 v . Specifications include: non-linear resistance decreasing with an increase in voltage, built-in capacitance, intermittent surge energy absorbtion to 3000 w , and less than 5 w power consumption under steady conditions.
Vickers, Inc., Electric Products Div., Dept. ED, 1815 Locust St., St. Louis 3, Mo.
Price \& Availability: Price ranges from $\$ 1.95$ to $\$ 4.65$ for quantities of 1 to 49. Units are available from stock.

Don't miss an issue

of ELECTRONIC DESIGN;
return your renewal card today.

Experience-the added alloy in A-L Electrical Steels

.014 and .006 Strip

Greater permeability for Allegheny Ludlum's AL-4750... and it's guaranteed

promises more consistency, higher predictability for magnetic cores

AL-4750 nickel-iron strip now has higher guaranteed permeability values than ever before. For example, at 40 induction gausses AL-4750 now has 57% higher permeability than in the past, using the standard flux density test.

This greater permeability means better consistency and predictability for magnetic core users . . . and allows careful, high performance design.

This improvement in AL-4750 is the result of Allegheny Ludlum's continuing research on electrical alloys and
nickel-bearing steels. Moly Permalloy has been similarly improved in permeability. A-L constantly researches silicon steels, including A-L's well-known grain-oriented silicon, Silectron, and other magnetic alloys.

Complete facilities for the fabrication and heat treatment of laminations are available at Allegheny Ludlum. And A-L's technical know-how guarantees you close gage tolerance, uniformity of gage throughout the coil and minimum spread of gage across the coil-width.

If you have a problem on electrical steels, laminations or magnetic material, call A-L for prompt technical assistance. Write for blue sheet EM-16 for complete data on AL-4750. Allegheny Ludlum Steel Corporation, Oliver Building, Pittsburgh 22, Pa. Address Dept. ED-4. 7481

ALLEGHENY LUDLUM

STEELMAKERE TO THE ELECTRIGAL INDUSTRY
Enport distribution, Electrical Materials: AIRCO IMTERNATIONAL INC., NYC 17
Esport distribution, Laminations: AD. AURIEMA, NYC 4
CIRCLE 79 ON READER-SERVICE CARD

To simplify your design problems -

- new expanded 3-way service!

COMPLETE ENGINEERING AND SAMPLE SERVICE PLUS a NATIONWIDE NETWORK OF FIELD ENGINEERS-

E-I glass-to-metal seals are the industry standard for dependability . . . have been service-proven on vital space age projects and in critical commercial equipment. If you have a seal problem ask E-I for a recommendation. Sales engineers are located in all principal cities.
3. Custom Sealing

Patentod in Canada, No. 523.390; In United Kingdom. No. 734.583; licensed in U. S. under No. 2561520

1. STANDARD SEALS
-The most complete -The most complete
range of range of economical
standera seals of. standerd seals of-
Pords widest design
latitude latitude. Includes single lead termi-
nals, headers, miniature closures and

ELECTRICAL INDUSTRIES
MURRAY HILL. NEW JERSEY
3. CUSTOM SEALING - Complete facilitios - Complete facilities nents or assemblios of your own manulacture. Send sam. ples or drawings for
quolations. Fast service on reason. ble quentities.

CIRCLE 80 ON READER-SERVICE CARD

NEW PRODUCTS

Peaked Amplifier

Model 107-B peaked amplifier, a three-stage, direct-coupled unit with a twin-T filter in the negative feedback loop, has a range of 15 to 2000 cps . The filter gives at least 50 db insertion loss at the balance frequency; normal feedback is 70 db or more, retaining 20 db for stabilization at the peaked frequency and resulting in a sharp, deep-shouldered response curve. Performance of the amplifier is independent of the driving point impedance and can be terminated in any highimpedance load. Q-factors of 100 can be obtained.

CES Electronic Products, Inc., Dept. ED, P. O. Box 7504, San Diego 7, Calif.
Price \& Availability: Price is $\$ 95$; delivery time is two weeks.

Relay
390
For low level switching

Designed for low-level switching, the Flocon mercury relay provides contacts with a capacitance of less than $1 \mu \mu \mathrm{f}$ between signal and relay coil. Capacitance across the open contacts is less than $8 \mu \mu \mathrm{f}$ and leakage resistance exceeds 150 meg . The relay operates at frequencies up to 100 cps . Switching time is less than 3 msec , each way, and mercury bridging time is less than 1 msec . The contact arrangement is spdt, make-before-break.
Beckman Instruments, Inc., Systems Div., Dept. ED, 325 N. Muller Ave., Anaheim, Calif.

ELECTRONIC DESIGN • April 27, 1960

Miter Gear Boxes

Type BA miniature miter boxes are stainless steel clear passivated, and have an aluminum anodized frame. Their approximate overall size is $7 / 8 \times 1-1 / 2$ x 2 in. Precision 2 miter gears offer minimum backlash to better than 10 min , with variable mounting combinations.

PIC Design Corp., Dept. ED, 477 Atlantic Ave., E. Rockaway, Long Island, N.Y.

Price \& Availability: Available from stock and delivered in 10 days. Prices range from $\$ 47.50$ to $\$ 51.75$, depending on unit. Quantity discounts available.

Teflon Hook-Up Wires

643
For use at 105 C , these wires come in sizes 20 through 26. Insulation provides protection up to 260 C. Hook-up wires are offered with a wall thickness of 10 mil .

American Super-Temperature Wires, Inc., Dept. ED, 2 W. Canal St., Winooski, Vt.
Availability: Delivery time is 10 days.

Pressure Sensitive Drafting Materials 644
These templets, grid sheets. die-cast symbols, numbers, letters. and printed-circuit symbols are clearly printed on shrink-resistint durable, transparent materials. They are useful in drafting and design work.

Applied Graphics Corp., Dept. ED. Glenwood Landing. L.I., N. Y.

Availability: Most materials are in stock.

5-Meter Converter

645
Model ME-63 shows if a receiver is properly tuned and indicates the signal strength. Calibration is from 1 to 10 mv or 1 to 5 mv and S 9 to 30 db . Unit has zero adiustment control.
Olson Radio Corp., Dept. ED, 260 S. Forge St., Akron, Ohio.
Price: $\$ 5.88$.

Ulita Fine Wire

646
Called Moleculoy, this ultra fine, low-temperature coefficient wire is now being coated with a hightemperature polyester enamel. The wire is a nickelhased, nonmagnetic, 800 -ohm. ± 10-pprn alloy made in diameters from 0.004 to 0.01 in . It comes in bare, enameled, oxidized, and fabric covered finishes.

Molecu-Wire Corp., Dept. ED, Scobeyville, N.J.

Precious Metal Shapes

647
Five special processed shapes in a variety of precious metals such as karat gold, platinum, and silver, are available. The processed shapes can also be supplied in rare earth metals as well.

Consolidated Reactive Metals, Inc., Dept. ED, 115 Hoyt St., Mamaroneck. N.Y.

TUNING FORK CONTROLLED

PRECISION FREQUENCY PACKAGES

FROM 1.0 TO 4,000 CPS.

Overall accuracies from $\pm .05 \%$ to $\pm .01 \%$ over $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ range, and to $\pm .001 \%$ from zero ${ }^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, without use of ovens.
Silicon and germanium transistorized. Sinewave, squarewave and pulse outputs. 18, 20, 24, and 28 volt DC inputs.
Conservatively designed reliable units, potted in silicone rubber and hermetically sealed, for operation under MIL environmental conditions.
PHONE EDgewood 3.1700, or TWX WBRY 5103, or write:

PHILAMON LABORATORIES INC.

90 HOPPER STREET, WESTBURY, LONG ISLAND, N.Y.

TEMPERATURE-COMPENSATED TACHOMETER GENERATORS

- SPECIFICALLY DESIGNED FOR RIGID AIRCRAFT AND MISSILE PACKAGING AND PERFORMANCE REQUIREMENTS
 - ACCURACIES WITHIN I/10 OF 1\%
 - temperature range from $-55^{\circ} \mathrm{C}$. $\mathrm{TO}+125^{\circ} \mathrm{C}$.
 - LIGHT WEIGHT-AS LOW AS 7 OZ.

Designed for use in computer cir cuits and velocity regulation systems, these integrating Bendix Tachometer Generators offer true laboratory quality at mass production prices. Generators are checked and calibrated by special Bendixdeveloped test equipment that measures speeds to an accuracy of $\mathbf{0 . 0 0 1} \%$ and voltage readings with-
in an 0.005% accuracy.
Supplied in frame sizes 11, 15, 20 , and $23-$ with size 10 now in development. Tailoring to customers' needs also available-for example, with unitized construc tion requiring no external compen sation and with pulse generators for direct indication of speed measurement.

TYPICAL UNIT CHARACTERISTICS

```
Sonsitivity
Sonase shif
Mare min ... ............................................................ . . . 6 minutos 
```



```
In-phase position error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }5\mathrm{ min.
linearity
```

\qquad

```
For full details as related to specific applications, write-
```

Eclipse-Pioneer Division Totorboro, N. J.

District Omeen Burbonk ond San Fronciseo. Calf., Seatho. Wash.; Daypon. Ohia; and Washington, D. C.
 CIRCLE 82 ON READER-SERVICE CARD

NEW PRODUCTS

Latching Relay

Load is 20 amp at 26.5 v dc

Made to remain locked in either the open or the closed position, this latching relay handles a load of 20 amp at 26.5 v dc. A single pulse, regardless of polarity, causes the relay to unlatch, switch to the altemate position, and lock in the new position. Mechanical latching occurs at three different points to assure high resistance to vibration, shock, and other environmental conditions. Energizing current is 0.45 amp at 18 to 32 vdc . The unit operates over the temperature range of -65 to +125 C , at altitudes to $150,000 \mathrm{ft}$, and exceeds MIL-E-5272C for vibration.

Astromics, Dept. ED, 611 W. Harvard St., Glendale 4, Calif.
Price d Availability: For 25 or more units, price is $\$ 85$. Units will be available from stock in May, 1960.

Rotary Panel Switch

> Has in-line readout

Series 7300 rotary panel switch with in-line readout replaces octal or 10 -position switches. This finger-controlled unit provides for 10 -position, sp or dp, binary-coded decimal with variations, and octal $0,1,2$, and 4 coded outputs. Intermal lighting of the readout and color coding of the switch tabs can be specified. The unit is suitable for applications in automation, automatic control systems, computer designs, and other systems requiring numerical constants or coefficients.
The Digitran Co., Dept. ED, 660 S. Arroyo Parkway, Pasadena, Calif.

This is the time of our annual subscription renewal.

CAM COMPENSATOR
Efficient compensating device for servo system error.

The type CP-20-A1 is a simple, entirely mechanical means of correct ing an output data shaft in relation to either servo loop errors, sensing errors, or known environmental fac tors affecting the system. Elimi nates need for adjusting remotely placed or inaccessible units. Ask for full details.

CLUTCHED SYNCHRO

Transmits corrective signal, or establishes new reference.

The type CP-4-A1 is an integrated unit containing a high-precision pygmy Autosyn * synchro and an electro-magnetic clutch. Has gendesired to transpit ation where it is desired to transmit a corrective signal, or to as a result of a temporary condition. Remitation inectro-manetic clutch excitation instanty re-establishes Autosyn, or signal source, at zero. vide for proper out resishrs provide for proper output voitage as
well as correct phase relationship of well as correct phase relationship of Write for fuge to excitation voitage
Write for further information.
nizo. u.
gYRos - ROTATING COMPONENTS radar devices
PACKAGED COMPONENTS INSTRUMENTATION
Eclipse-Pioneer Division

CIRCLE 83 ON READER-SERVICE CARD

Telemetering Mounting Units
Accept 6 and 8 units

Designated models TJS-306 and 308, these telemetering component-mounting units perform identical functions and vary only in size and number of components that can be accommodated. The TJS-306 accepts 6 modular units, and the 308 accepts 8 units. Components that may be mounted include: TAA- 300 composite signal amplifier; TAA-301 voltage amplifier; and the TRE300 voltage regulator. All necessary wiring and connectors are self-contained.
Bendix Aviation Corp., Bendix-Pacific Div., Dept. ED, 11600 Sherman Way, N. Hollywood, Calif.

Generator Regulator

388
With transistors in the switching mode

This solid-state generator regulator uses transistors in the switching mode to minimize power dissipation. The generator output is a function of the average value of the field current. Control of the average field current is maintained by varying the on-time of the switching transistors. By varying this pulse width ratio, the proper output voltage is provided and a small amount of power is dissipated. Made to meet aircraft and military requirements, the unit has a tolerance of $\pm 0.5 \mathrm{v}$ at 28 v dc. For transient conditions in starting, circuitry accepts 1 v for initiating operation. The operating temperature range is -65 to +160 F .
Hydro-Aire Co., Dept. ED, 300 Winona Ave., Burbank, Calif.

Constant output level Constant modulation Ievel $\mathbf{3}$ volt output into $\mathbf{5 0}$ ohms Low envelope distortion

то

New -hp- 606A HF Signal Generator

Here at last is a compact, convenient, moderatelypriced signal generator providing constant output and constant modulation level plus high output from 50 kc to 65 MC . Tedious, error-producing resetting of output level and percent modulation are eliminated.
Covering the high frequency spectrum, (which includes the 30 and 60 MC radar IF bands) the new

SPECIFICATIONS

Frequency Renge: 50 kc to 65 MC in 6 bands.
Froquency Accurocy: Within $\pm 1 \%$.
Frequency Callbrator: Crystal oscillotor provides check points af 100 kc and 1 MC intervals accurale within 0.01% from 0° to $50^{\circ} \mathrm{C}$.
RF Outpur Level: Continuously adiustable from $0.1 \mu v$ to 3 volis inlo a 50 ohm resistive load. Colibration is in volis and dbm 10 inlo a so ohm resing
Outpul Accuracy: Within $\pm 1 \mathrm{db}$ into 50 ohm resislive load.
Frequency Response: Within $\pm 1 \mathrm{db}$ into 50 ohm resistive load over entire frequency range al any outpul level setting.
Output Impedance: 50 ohms, SWR less than 1.1:1 at 0.3 v and below.
HEWLETT-PACKARD COMPANY
(4) 606A is exceptionally useful in driving bridges, antennas and filters, and measuring gain, selectivity and image rejection of receivers and IF circuits. Output is constant within $\pm 1 \mathrm{db}$ over the full frequency range, and is adjustable from +20 dbm (3 volts rms) to - $110 \mathrm{dbm}(0.1 \mu \mathrm{v} \mathrm{rms})$. No level adjustments are required during operation.

Spurious Harmonic Output: Less than 3\%
Leakege: Negligible; permits sensitivity measurements $100.1 \mu \mathrm{v}$. Amplitude Modulation: Continuously adiustable from 0 to 100%. Internal Modulation: 0 to 100% sinusoidal modulation ot 400 cps $\pm 5 \%$ or $1000 \mathrm{cps} \pm 5 \%$
Modulation Bandwidth: Dc to 20 kc maximum.
Extornal Modulation: 010100% sinusoidal medulation de 1020 kc . Envelope Distortion: Less than 3\% envelope distortion from 0 to 70% modulation at output levels of 1 volf or less.
Spurious FM: Less than 0.0001% or 20 cps , whichever is greater. Spurious AM: Hum ond noise sidebands ore 70 db below corrier. Frequency Drift: Less than 0.005% or
5 cps, whichever is greater.
Price: (cobinet) $\$ 1,200.00$. (rack mount) $\$ 1,185.00$.
Data subject to chonge without notice. Prices i.o.b. foclory. PAGE MII ROAD - PAIO ALTO, CALIFORNIA, U.S.A.

CABLE WHEWPACK" • DAVENPORT 5 -4451 - Fiald representatives in all principal areas
(4) world's most complete line of signal generators

 CSflohite DRIVE AND CONTROL IDEAS FOR ENGINEERS

NEW PRODUCTS

Linear Potentiometer

Operates in remperatures to 500 F

For use in missile and aircraft control, model 3-120 linear-motion, wirewound, servo-feedback potentiometer can be used in temperatures to 500 F . It can be used with both hydraulic and electrical actuators. The unit is end-actuated with shaft coupling configurations as required by the application. Standard strokes are 1 to 5 in . in increments of 1 in . Diameter is $1 / 2 \mathrm{in}$. The unit has a high resolution with linearities to 0.05% and meets or exceeds all applicable Mil specs.

Edcliff Instruments, Dept. ED, 1711 S. Mountain Ave., Monrovia, Calif.

Sweep Oscillator

383
Output frequency is 800 to 1400 mc

Type 9128 sweep-signal oscillator has an output frequency of 800 to 1400 mc , and an output power of 10 mw into a 50 -ohm load. Output power in the sweep mode is held flat, with ± 1 db over the entire sweep range, by using a leveler circuit. The sweep mode operates at 30 cps over the full range. The manually-tuned mode also tunes over the full range. Sweeping provides a saw-tooth horizontal output and a phasing control.

CGS Laboratories, Inc.. Dept. ED. 48 Danbury Road, Wilton, Conn.

Have you sent us your subscription

 renewal form?
Moisture Control and the Stability of Transistor Parameters

\mathbf{T}^{H}HE technology of semiconductors is in a large degree the technology of surfaces. The junction is a surface between two layers of semiconductor material. The contact is a surface between the semiconductor and a metal. And, finally, there is a surface between the semiconductor and its environment.
It is on these surfaces that most of the significant actions of the transistor take place, and it is the composition and structure of these surfaces which determine the character of these actions. Moisture can play havoc with surface stability, and ultimately with transistor reliability. Water is, in fact, the primary cause of surface stability problems in transistor production.
If the characteristics of germanium p-n-p alloy transistors are measured immediately after the final vacuum-bake, and again after the surface has been exposed to water vapor it will be found that: Alpha increases: junction breakdown voltage changes; and reverse current increases.
If the transistor is then put through another vacuum-bake, the original characteristics will be restored. Long exposures to water before baking, however, will result in irreversible changes.

Exactly what takes place on the surface is difficult to say, but certain changes do occur in the presence of water. Whether the water actually enters into the change or acts as a catalyst has not been determined. These surface changes have the net effect of altering various paths which a carrier can take.
It would seem that a ready means of overcoming the effect of water would be to hermetically seal the transistor immediately after the vacuum-bake.

This is done in practice, but it results merely in slowing the effect since the transistor is so small that very little water is required for the change to take place and the semiconductor materials have a strong affinity for water. Since it is a practical impossibility to exclude all water during this operation, the use of a hermetic seal alone is insufficient.

There seems to be no simple solution to the problem. Therefore, Tung-Sol subjects every transistor to a multi-level water-control process, which has proved extremely successful.

Elimination of Moisfure During Processing

In the final stages of production prior to encapsulation, Tung-Sol makes sure that surfaces are clean, stable and insensitive to water. First, the surface is etched to remove any impurities which might have
been produced during processing. The entire structure is washed in a bath of highly deionized water. The water is then blown off with pure dry air. Next the germanium is chemically treated to provide a surface which is relatively unaffected by water. And finally the transistor is placed in a vacuum oven and baked. The unit is now ready for encapsulation.

Sealing Water Out

Three essential factors must be considered in sealing: the quality of the seal; the size of the working area; and, the effect of sealing on associated parts.
Seal Quality: The properties of water and the conditions of transistor usage require that the seal be perfect and at the same time rugged. Water in liquid form will enter through a hole as small as 2 x $10-\mathrm{cm}$. Water vapor can enter through apertures approaching the diameter of the water molecule, less than $4 \AA$. The seal must also be strong enough to withstand the tough operating conditions of industrial and military equipment, without developing imperfections.

Size of the Working Area: Since the transistor is a miniature component, the case must be as small as practical. The size of the working area is limited, thus complicating the tooling problem.

The Effect on other Parts: In order to attain the seal. work must be performed on the case. Depending on the kind of work performed, mechanical and thermal stresses may be transmitted to the working parts of the transistor and alter their properties.

The Tung-Sol methods of sealing have overcome these serious problems. The seal is of the highest reliability, yet the processing is such that the size of the working area offers no barrier and the other working parts suffer no stress damage. The following is a capsule digest of Tung-Sol sealing methods:
Connection Leads: Kovar-hard glass seals are used to secure a tight glass to metal seal while providing the necessary electrical insulation without destroying the mechanical insulating properties of the case.

Case Sealing with Electronic Welding: The header is welded to the case by means of an extremely localized heat which is controlled electronically. (This method is more reliable than the previously used pressure fit technique in which the can was forced on to a tight fitting header. An uncertain seal resulted.)
circie 86 ON reader-service card

Case Sealing with Cold-W eld: For larger transistors, a more practical seal is provided by the Cold-Weld technique, an exclusive Tung-Sol development.
 In this process the entire case is made of pure copper. Both the can and the header have matching flanges which are pinched together under pressure. The pressure joins the two pieces together in a true weld without the application of external heat.

Controlling Water Inside the Case

When the transistor case is welded together, water is sealed out. On the other hand, any water that happens to be inside the case is sealed in. In fact there is usually enough water present to cause instability. To prevent the sealed-in water from affecting the semiconductor surface, Tung-Sol employs a "Molecular Sieve".

Molecular sieves, actually zeolite crystals, contain precisely arrayed networks of cavities. They have a great affinity for water molecules, absorbing them in preference to other substances. Under certain conditions molecular sieves reduce the amount of water in a gas or liquid to as low as four parts per million.

In Tung-Sol's transistors, the zeolites, in the form of a small pellet, are placed inside the transistor case. This pellet dries the can and draws off any water from the transistor.
Molecular sieves have a stronger affinity for water than conventional silicone oils and grease. They provide permanent absorption of water at all operating temperatures, and minimize the migration of ions.

Tung-Sol Transistors and "Extra-Reliability"

Moisture control is just part of the wide-ranging care that Tung-Sol takes of every semiconductor product, all aimed at bringing you the most reliable components. Every component is the product of manufacturing processes and quality control practices that have made Tung-Sol the name synonymous with the finest precision componentry.

Write for Full Report on Moisture Control

The latest issue of Tung-Sol's Technical Journal, The Lattice, features a comprehensive description of moisture control problems and their solution. You may get your copy by writing to Tung-Sol on your company stationery.

(5) TUNG-SOL

[^7] ELECTRONIC DESIGN REN ELine sending ELECTRONIC DESIGN bi-weekly

FILL OUT ALL FIVE QUESTIONS IN ORDER TO AUTOMATICALLY QUALIFY FOR RENEWAL \square Materiols 3. Stencil shown is O.K.
plant is \square Aircraft
\square Aircrait
5. The primary end product at my in your plant. rer

YOUR SUBSCRIPTION

HAS EXPIRED

Its Time To Renew Your Free

Subscription To

ELECTRONIC DESIGN

Regardless of when your subscription started, you must fill out and refurn a renewal card.

When you receive your I B M renewal card, please fill it out completely . . . and mail it immediately to insure uninterrupted receipt of ELECTRONIC DESIGN.
Our circulation policy requires that all subscribers requalify each year to continue receiving their free subscription to ELECTRONIC DESIGN.
Please help us to serve you better by requalifying as soon as you receive your card.

NEW PRODUCTS

Voltmeter

Has a range from 0.01 to 1100 v de

Model 25 dc voltmeter covers a range from 0.01 to 1100 v with an accuracy of 0.05%. The unit contains no motors, stepping switches or choppers. It can operate on 60 to 400 cps power for either field or laboratory use. The input resistance is infinite at null on the 110 v range, and is 1 meg on the $1100 v$ range. Case dimensions are 7×11 $x 7$ in.

Electro Metric Co., Dept. ED, 661 19th St., Manhattan Beach, Calif.
Price \& Availability: Can be delivered within 30 days. Price is $\$ 435$, with standard cell reference. Zener reference, \$55 additional. Rack mount, $\$ 20$ additional. All prices fob Manhattan Beach, Calif.

DC Power Supply 389
Provides 0 to 50 V

Operating from an input of 95 to $135 \mathrm{vac}, \mathrm{mms}$, 60 cps , single-phase, this power supply provides a continuously variable output of 0 to 50 vdc at 0 to 0.5 amp . The unit occupies only $5 \times 5 \times 6 \mathrm{in}$. Regulation is 0.02% from no load to full load, ripple is 4 mv rms, and line regulation is 0.01% for a 35 v mms change in input. After an initial stabilization period of 15 sec , the output voltage does not change more than 0.07 v .

Autotronics, Inc., Dept. ED, Box 208, Florissant, Mo.
This is the time of our annual subscription renewal.
from digital voltmeters, shaft position transducers, electronic counters, EPUT
meters, step switch banks,
relay banks, selector
switches, digital clocks
...draws negligible
power from these
sources...

Honeywell Custom Drum Heads in the quantities

 you need... the quality you demand

This special head is typical of the designs precision-produced in quantifies each week by Honey. well's Industrial Systems Division.

Looking for a reliable high volume source of instrumentation magnetic heads? Honeywell can meet your quantity needs. The Honeywell name assures you the quality you demand for computer, business machine or other precision requirements. Standard analog and digital multi-track heads, and single track drum heads are available. Honeywell, with years of experience in magnetic tape and drum systems, is well qualified to supply heads to meet your specific requirements . including read, write, multi-purpose and other high performance heads. Your Honeywell field engineer will be glad to review your requirements and provide you with a quotation and recommendations. Call him today. Minneapolis-Honeywell Regulator Company, Industrial Systems Division, 10721 Hanna Street, Beltsville, Maryland.

Honeywell

Plectron Tube News

...from SYLVANIA

Cool operation sparks home-radio sales when you design around

Originaled by Sylvania-the 100-mA AllAmerican Five requires $1 / 3$ less heater power, opens new design possibilities and offers significant merchandising opportunities. Now, tube layout is comparatively unrestricted, cabinet styling is more flexible. Cost reductions in cabi-
netry, circuitry and components are within easy grasp. Tube reliability is enhanced. Printed circuit techniques can be used advantageously. Here, then, are important advances in home radio design-made possible by the Sylvania 100-mA All-American Five.

Named to the All-Americon Five are: 18FW6, semiremote cut-off pentode: 18FX6, pentagrid converter; 18FY6 high mu triode-double diode; 32ET5, beam power pentode: and the 36AM3, half-wave rectifiera tube complement with proven field experience.

Lower ambient temperatures increase design flexibility and offer substantial economies. Radio cabinets utilizing this.carefully mated complement show temperature reductions of 20 25%. The area of the power output tube shows an even greater temperature decrease-as much as 30%. As a result, less expensive plastics can be used. Vertical chassis can be designed without special heat shielding. Placement of the power output tube is no longer critical because of heatwide, outside "berths" are un-necessary-designs can be compact. Printed circuit boards may be used without deterioration in set life and performance caused by high ambient temperatures.
Tube reliability is increased. Sylvania heater design of the $100-\mathrm{mA}$ line provides for more balanced distribution of the heater voltages in the heater string. Surge voltages across individual tubes are minimized.

Sylvania $100-\mathrm{mA}$ All-American Five can be used in existing $150-\mathrm{mA}$ designs with a minimum of redesign time. The $100-\mathrm{mA}$ tube complement presents many advantages that can be directly translated into consumer benefits and increased home radio sales.

New developments in the $100-\mathrm{mA}$ line. Sylvania is developing further tube complements that will incorporate the inherent advantages of a cooler-operating $100-\mathrm{mA}$ line. These include a four tube line for home radio sets, a complement for FM radio receivers, and two new types that hold exciting possibilities for quantity-produced Hi-Fi.
Your local Sylvania Sales Engineer will gladly give you the whole story on the Sylvania $100-\mathrm{mA}$ line. Call him or write Electronic Tubes Division, Sylvania Electric Products Inc., Dept. 195, 1740 Broadway, New York 19, New York.

Chassis Slides

Lock in three positions

Model (:-300 chassis slides lock in three service positions: horizontal, 90 deg up, and 90 deg down. Able to support up to 50 lb , they are furnished in lengths of $12,14,16,18,20,22$, and 24 in . Construction is of hard, cold-rolled steel. The finish used meets JAN 100 -hr salt-spray requirements.
Chassis-Trak, Inc., Dept. ED, 525 Weloster Ave., Indianapolis 19, Ind.
Price \& Availability: Price ranges from \$9.45 to $\$ 21.15$. Delivery time is two weeks.

Diffusion Furnaces

422
Single and multiple-zone models
For use in the manufacture of semiconductors, these gaseous and solid diffusion furnaces are offered in single and multiple zone models. Multiple tube models can also be supplied. Tube size can be as large as 4 in . ID. Refractory accessory items can be supplied.

Lindberg Engineering Co., Dept. ED. 2450 W. Hubbard St., Chicago 12. Ill,

DC Power Supply

For airborne use

Designed for airborne applications, model 8.5 dc power supply operates from 109 to $125 \mathrm{v}, 400$ cps, in accordance with MIL-E-7894. It provides two output voltages: 32 v nominal at 0 to 2 amp , regulated 0.5% for line and load; and 12 v at 10 ma, unregulated. Ripple on the $32-v$ output is less than 25 mv rms . The unit is completely transistorized and weighs 4 lb .

Metrolog Corp., Dept. ED, 169 N. Halstead St., Pasadena, Calif.
\& CIRCLE as on reader-service card
ELECTRONIC DESIGN • April 27, 1960

From CHASSIS-TRAK - New Feather-Light Detent Slide!
 Model C - 300 Detent locks in three service positions -90° up, horizontal, 90° down

Chassis-Trak continues to set the pace in slide design with the new Model C300 Detent. Never before has a tilt-lock slide come in such a small package, yet despite its space-saving size - $13 / 4^{\prime \prime}$ high, Ko" wide - the Model C-300 Detent will support chassis loads up to 50 lbs . Not the least of the new slide's attractive features is its low price lowest of any detent slide on the market.
Made of hard, cold-rolled steel, each slide is cadmium plated and then coated with Poxylube 75, a bonded film for-

For further information contact:
525 SOUTH WEBSTER, INDIANAPOLIS 19, INDIANA

Model C- 300 Dotent slide ithowir
locked In herizental position. which provides permanent dry lubrication. Solid bearings on all surfaces afford high resistance to shock and vibration.

Model C-300 Detent Slides are available ins seven lengths - 12 to 24 in . and are designed for mounting electronic equipment in any standard rack or cabinet. Like all Chassis-Trak Slides, they are easy to install and smooth and trouble-free in operation.
For engineering assistance on your slide problems, call collect. FL 9-5407.

NEW PRODUCTS

Cable

Capable of withstanding temperature ranges from -320 to +600 F , this flexible, subminiature, multiconductor cable may be used for missile, computer, and strain gage applications. Cables, with connectors, can be fabricated in lengths up to 9 ft and widths determined by the size and number of conductors. The stranded conductors are spaced and molded in a special material developed by the manufacturer.
Cicoil Corp., Dept. ED, 13833 Saticoy St., Van Nuys, Calif.
Availability: Made to customer specifications only. Delivered 30 days after order received.

Multipoint Recorder

Points, actuation, and range can be changed

Model 15 multipoint strip-chart recorder can be easily converted to change the number of points being measured, the actuation, or the range. Applications of the unit include: monitoring in rocket engine and missile tests, nuclear reactor coolants, and in nuclear radiation detection systems. Measurements can be switched from 2 to 3 , $4,6,8,10,12,16,20$, or 24 points.

Minneapolis-Honeywell Regulator Co., Dept. ED, Wayne \& Windrim Ave., Philadelphia, Pa. Price \& Availability: Price is $\$ 1370$. Standard units are in stock; other units can be delivered in 3 to 6 weeks.

resistance welding

A new type of control ignitron with coaxial design, the GL-7670, has been developed by General Electric to control high-current, short-duration power pulses utilized by a new "pulse-power" resistance welding method.

In the new General Electric ignitron, current passes down the inside of the tube from anode to cathode, then back up the wall of the tube to a coaxial cathode terminal at the top. This coaxial flow of current provides a magnetic shield to
prevent the damaging arc deflection which such high peak currents could cause in standard ignitrons.

Available for immediate delivery, the new GL-7670 may be used to advantage in a number of other high peak current applications-such as capacitor discharge circuits. The new tube meets standard size " B " welder ratings, and has the same basic dimensions as the standard "B" welder ignitron. Full information from offices listed at right.

Electric Control Ignitron
 coaxial design. Handles

Accepts 1N2792 crystal for 4-mm band

is vital to radically new

Progress is Our Most Imporrant Product

GENERAL
 ELECTRIC

Phone your nearest General Electric Power Tube Dept. office for samples and application assistance.

Schenectady, N. Y, FRanklin 4-2211

Chicago, lllinola
SPring 7-1600
Clifton, New Jersey GRegory 3-6387

Dayton, Ohio BAldwin 3-7151
Los Angeles, Callf. BRadshaw 2-8566
Newtonville, Mass.
WOodward 9-9422
Washington, D. C.
EXecutlve 3-3600

Model V-CH-1 crystal holder is designed to accept the 1N2792 crystal, developed for the $4-\mathrm{mm}$ band. The holder must be retuned at each frequency and for each new crystal. When matched, vswr is less than 2 for all crystals, and less than 1.5 for selected crystals. It mates with RG 98/U waveguide and uses UG 385/U connectors. It is sealed with an O-ring and can be used in a pressurized system up to 30 psi. Output connector is a miniature BNC or microdot. The holder weighs $2-1 / 2 \mathrm{oz}$ and is about 2 in . long. TRG, Inc., Antenna \& Microwave Dept., Dept. ED, 9 Union Square, Somerville 43, Mass.
Price \& Availability: Available from stock. Can be delivered 5 days after order received. Price is $\$ 220$ per unit.

Square-Wave Filter

503
Insertion loss is 0.1 db from 0 to 20 r rms

Type LF-125 square-wave filter maintains a constant insertion loss of within 0.1 db over an input signal of 0 to 20 v rms. Designed to convert a 30 -cps, $60-\mathrm{v}$ peak-to-peak square-wave input into a sine wave with less than 1% distortion, the filter can he furnished with an input impedance of 50 or 100 K . Both models are designed for an output to the grid and attenuation of 40 db or more at higher harmonics.
Control Electronics Co., Inc., Dept. ED, 10 Stepar Place, Huntington Station, L.I., N.Y.
Price \& Availability: Price is $\$ 65$ ea for quantities of one to five. Units are made on order and can be delivered in 30 days.

Have you sent us your subscription renewal form?

It's even more exciting - and certainly more real - than looking-glass land and nearer to now than the closest mirror.
Right now, things are really humming at the Link Division of General Precision, Inc. Link is one company which has accepted the challenge of the years ahead with eager enthusiasm. In fact, projects now under way at Link are among the most advanced in the nation.
At Link, engineers are busily engaged with research and development on "Dialog" systems, sub-systems and components. Another example of Link/ability, "Dialog" systems planning combines digital computation with analog measuring. It offers the best of both-in compatible form-to meet the most exacting control, design, analysis and scheduling specifications.
But let's be honest. Without top caliber engineers we can't really do anything. That's why engineers coming to Link today have Opportunity with a capital "O".
If you are an electronics engineer who thinks big-who has original ideas and follow-through to make them click, why not write today, or send your résumé-in complete confidence-to:

Mr. C. E. Darrah	Mr. R. E. Rutman
Link Division	Link Division
General Precision, Inc.	General Precision, Inc.
Binghamton, New York	Palo Allo, California

LINK division

BINGHAMTON, NEW YORK

NEW PRODUCTS

High Voltage Diodes

Delivers $15-\mathrm{mp}$ average current

This forced-air-cooled high-vacuum diode, type XD-18, will withstand $40-\mathrm{kv}$ peak-inverse-voltage and delivers 15 -amp average current. As a clipper or shunt diode, it is rated at 300 amp max. The tube is designed for use in giant-size, radar power supplies and modulators. It measures 10-1/2 in. long with a diameter of $45 / 8 \mathrm{in}$. It can be mounted in a standard CEM socket.

Central Electronic Manufacturers, Dept. ED, 2 Richwood Place, Denville, N.J.

Stepping Relay

Operates up to 230 v ac, 110 v dc

Designed for sequential-switching applications, model CS stepping relay can be supplied for operation on all voltages up to 230 v ac and 110 v dc. Standard contacts will switch 0.25 amp and carry 5 amp . The relay comes in a choice of 2 , $3-, 4$-, $5-, 6-, 9-, 10$-, or 12 -position single-pole, continuous rotation switching, in either shorting or nonshorting versions. It weighs about 5 oz , and measures $3-5 / 16 \times 1-3 / 4 \times 1-7 / 8 \mathrm{in}$.
Artisan Electronics Corp., Dept. ED, 171 Ridgedale Ave., Morristown, N.J.
Availability: Available from stock. Dclivered 6 to 8 weeks after order received.

Engineers:

There's new

opportunity at Link

Among the opportunities at Link, Binghamton, are:
DIGITAL COMPUTER ENGINEERS
Several senior staff enginecr and senior electronic engineer opportunitics have been created by the formation of the new Digital Systems Development Department.
Assignments will include the evaluation of digital systems, covering the responsibility for development project design groups. Important echnical contributions will include development work on "NOR" Logic, Direct-Coupled Transistorized Logic, and other techniques for future digital projects.
Requirements include minimum BSEE or BS (Physics) with experience in digital systems design and computer check-out, and/or transistor circuit design.

semior staff engineer

To prepare, coordinate and evaluate proposals for contract sponsorship of development programs; assist laboratory manager in evaluating ideas for company sponsored development; investigate new product areas for marketability, investment and present L.ink capability to government and industrial concerns.
Minimum BSEE with advanced work in communications. MSEE (communications) preferred.
Experience must include $10-12$ years in electronic system and hardware design and a broad background in several related areas including: early product design experience in military electronics; design of custom electronic products for commercial aviation.
If you are an electronics engineer with an eye towards a brighter, more rewarding future, why not write or submit your resume-in complete confidenceto Mr. C. E. Darrah.

DC Power Supply

Has four adjustable ranges

Model P 617 dc power supply has four adjustable ranges: 1.1 to 1.3 amp at 16.5 to $33.8 \mathrm{w}, 3$ to 6 amp at 16.2 to $216 \mathrm{w}, 6$ to 9 amp at 65 to 292 w , and 3 to 5 amp at 27 to 135 w . It operates from a $208-\mathrm{v}, 400$-cps, three-phase input. Regulation is better than $\pm 0.5 \%$ and outputs have a ripple of less than 1% rms. The unit has a life expectancy of $10,000 \mathrm{hr}$, operates in the ambient temperature range of -40 to +65 C , measures $7 \times 15 \times 7.5 \mathrm{in}$., and weighs 35 lb . Originally designed to supply a constant current to the focusing coils of a klystron, the device also can be used as a current reference in rotating systems, large magnetic systems, and wherever a highly regulated current supply is needed.
Intemational Telephone and Telegraph Corp., Industrial Products Div., Dept. ED, 15191 Bledsoe St., San Fernando, Calif.

Test Chamber

Temperature range is $\mathbf{- 1 2 0}$ to +300 F

Able to provide temperatures from - 120 to +300 F , this environmental chamber also has facilities for altitude, vacuum, and humidity testing. Work area is $19 \times 19 \times 19 \mathrm{in}$. It is electrically welded and resistant to high pressures. A frost proof, multipane door is illuminated by a fluorescent lamp. The unit is powered by a $230 \mathrm{v}, 60 \mathrm{cps}$, single-phase motor. Over-all dimensions are $74 \times$ $32 \times 32 \mathrm{in}$.
Hudson Bay Co., Div. of Labline, Inc., Dept. ED. 3070-82 W. Grand Ave., Chicago 22, Ill.
Have you sent us your subscription renewal form?

SYNTRON SILICON RECTIFIERS

SYNTRON'S exclusive all steel construction provides higher mounting torque, superior contact and reduces corrosion. Maximum mounting torque 50-100 inch \#.

Their 100% welded case, with no blind solder connections, assures positive contact, greater efficiency and long reliable life.

Write for complete technical data or contact your
 nearest SYNTRON Sales Engineer

SYNTRON RECTIFIER DIVISION
Homer City, Penna.
SALES ENGINEERS IN: NEW YORK, CHICACO, CLEVELAND, LOS ANGELES AND CAMADA CIRCLE 93 ON READER-SERVICE CARD

Temperature controlled by the Simplytrol behaves the way you want it to. It doesn't soar or sag. It can't. Simplytrol's special time-proportioning anticipating circuit senses temperature buildups, and modifies the heat cycle well before over-shoots can occur. Control consistently follows the straight-and-narrow . . . within $\pm 1^{\circ} \mathrm{F}$. of set-point.

For all its precise performance, Simplytrol is a surprisingly uncomplicated device. The A.P.I. meter-relay (good for at least ten-million decisive "make-break" operations) is its primary component. Actuated directly from the thermocouple input signal, the meter-relay needs no amplifying circuits or vacuum tubes. Consequently, Simplytrol's operation is exceptionally stable; there is no drift or signal distortion.

There are three basic Simplytrol models available in thirty ranges from $-400^{\circ} \mathrm{F}$. to $3000^{\circ} \mathrm{F}$., and packaged in a variety of mounting cases. One could be just the temperature controller you've been looking for. All are fully described in new Bulletin 108 . . . yours for the asking.

NEW PRODUCTS

Polystyrene Capacitors

These polystyrene capacitors come in three lines, all available in bathtub cases. Types PV and PW capacitors are adjustable within the limits of $\pm 1 \%$ of the nominal capacitance. Type PX units are stabilized and come in capacitance tolerances of $1^{\prime \%}, 0.5 \%, 0.25 \%$ and 0.1%. Capacitance change per year of life is claimed to be less than 0.1%.

Plastic Capacitors, Inc., Dept. ED, 2620 N. Clybourn Ave., Chicago 14, Ill.
Availability: Some models in stock. Delivery is from 30 to 45 days.

Corrugated Vulcanized Fibre

419
Has good insulating properties
This corrugated. vulcanized fibre provides good insulating properties. The corrugations, which are 9/64 in. deep and 0.364 in . apart, act as guide channels to protect lead wires and connections. The material is 0.01 in . thick and has 16.5 corrugations per 6 in . of length.

National Vulcanized Fibre Co., Dept. ED, 1060 Beech St., Wilmington 99, Del.
Price \& Availability: Price ranges from $\$ 0.63$ to $\$ 0.84$ per lb. Dclivery is from stock.

Printed Circuit Boards
508
Use epoxy molding compounds

These miniature printed-circuit boards, using epoxy molding compounds, offer high temperature resistance, high dielectric characteristics, low moisture absorption, and high dimensional sta-
for
Transistorized Circuits

Design compatible with sophisticated transistor logic.
Also can be furnished-

- with standard contact combinations to 8PDT.
- with contacts ranging from bifurcated gold alloy for low level switching to 15 ampere heavy duty; also snap action.
- with operate delay
to .15 second; release delay to .25 second.
- open, with removable dust cover and with dust tight or hermetically sealed enclosure.
- for printed circuits; with taper tab or conventional terminals.
- with plug-in mounting: open, with removable dust cover, and with dust tight or hermetically sealed enclosure.
- to meet applicable military specifications.

Send for literature or tell us what you need

MAGNECRAFT Electric Company

3350 D W. Grand, Chicago 51, III.
CIRCLE 95 ON READER-SERVICE CARD
ELECTRONIC DESIGN • April 27, 1960

MRC proudly presents another series of quality products equally recognized for dependability, and performance. The Micromag, a low-level drift-free magnetic DC amplifier, completely solid state...ideally suited for instrumentation applications where temperature, strain and pressure are to be measured. DC signals in the millivolt region are amplified to the 0 to 5 volts DC range required for telemetering and recording systems.
Typical Specifications:
Power / $26-31$ volts $D C, 10$ milliamps
Input Signal / $0-10$ millivolts DC
Voltage Gain $/ 500 \pm 10 \%$
Output Load / 100 K ohms
Linearity $/ \pm 2 \%$
Gain Stability / $\pm 3 \%$ from $0^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Common Mode Rejection / At DC, 10°
At $60 \mathrm{cps}, 10^{\prime}$
For additional information on MRC's complete line of Micromags, write for Data File No. MA1001.

MAGNETIC RESEARCH CORP.
3160 West El Segundo Blvd. Hawthorne, Callfornia
circie 96 on reader-service card
bility. Circuit canals are molded in the board in accordance with the customer's design. Standard thickness is 0.5 in . Length and width are supplied to fit customer specifications. Shapes other than flat boards can be supplied.
Plastronic Engineering Co., Dept. ED, 721 Boston Post Road, Marlborough, Mass.
Availability: Delivery time is two to three weeks.

DC-DC Converter

For telemetry applications

This dc-dc converter exceeds the requirements of most telemetry applications for regulation, output noise, and efficiency of $250-, 150-$, and $5-\mathrm{v}$ power supplies. It replaces the three power supplies formerly needed for airborne systems and furnished excitation voltages to sub-carrier oscillators and telemetry transmitters.

Temco Electronics, Dept. ED, P.O. Box 6191, 1) illas 22, Tex.

X and Gamma-Ray Detector

Operates from batteries or standard line

Model 607-X gamma and X-ray detector is for detection and measurement of X-rays produced as a secondary emission from: radar transmitters, magnetrons, klystrons, high-potential cathode ray tubes, rectifiers, and beam-type tubes. A portable unit, it has a specially constructed internal shielding for making X-ray measurements accurate to $\pm 15 \%$ over the energy level of 100 to $6(1) \mathrm{kev}$ in the presence of high-intensity, if pulses or other types of electromagnetic, magnetic, and electrical fields. Requirements of MIL-E-4158 are met.

Universal Transistor Products Corp., Dept. ED, 36 Sylvester St., Westbury, L.I., N.Y.
Price \& Availability: For one or two units, price is $\$ 1750$ ea. Delivery is from stock.

Don't forget to mail your renewal form to continue receiving
ELECTRONIC DESIGN.

THE MAGIC ALPHABET

Students of alphabet ology will recognize these letters to be
"M.R.C." written in the magic alphabet. Engineers everywhere recognize MRC for quality, reliability and out standing performance.
The airborne power supply shown below is one of a series of highly
reliable stable power sources designed to operate from a 115 volt,

400 cycle line and supply well regulated
and filtered DC power. Dual magnetic regulation,
an exclusive feature of this series, supresses line transients and compensates for changes in load.
The use of magnetic amplifier circuitry with tantalum capacitors, silicon diodes and rectifiers...coupled with inherent short circuit protection ... combine to achieve a degree of reliability unattainable in other types of circuits.

SPECIFICATIONS
Model 40-103-0 is a typical 5 watt supply used extensively in missile instrumentation:
Input / $95-125 \mathrm{~V} ; 380-420 \mathrm{cps}$
Output / 4.75 to 5.25 V DC (Adjustable), 0 to 1 amp
Regulation $/ \pm 0.1 \%$
Ripple / 0.5% rms max. at full load
For additional information on MRC's complete line of airborne power supplies, write for Data File PS 1000.

MAGNETIC RESEARCH CORPORATION
3160 West El Segundo Boulevard, Hawthorne, California CIRCLE 97 ON READER-SERVICE CARD

Why worry about fabricating laminated plastics? That's our job.

There is not much point to fabricating laminated plastics in your own shop. And there are good reasons why. One is the material itself.

Synthane laminates are available in sheets, rods, and tubes, and in over 33 standard grades. Choice of form and grade for your part is important. For example, a part which is basically tubular may have to be
cut from a sheet rather than a tube. Or the material itself may have to be modified in order to meet your requirements.

When you do your own machining, responsibility rests finally with you. The possibility of errors in dimensions, machining and tolerances, and of waste and delay suggest that you buy your laminated plastics from us

You furnish the print . . . we'll furnish the part CIRCLE 98 ON READER-SERVICE CARD
and let us do the fabricating for you. Call any of our representatives-in principal cities-for a quotation or get in touch directly with Synthane Corp., 42 River Road, Oaks, Pa.

SYNTHANE
 CORPORATION
 OAKS, PENNA.

Sheets - Rods - Tubes • Fabricated Parts Molded-laminated • Molded-macerated

Flexible PC Card And Simpl
 Densify Componen

$W^{\text {HILE }}$ dramatic advances in microminiatur-

Wdenser electronic packaging, they lave little to offer the designer of power-dissipating circuitry with large inductive and capacitive components. The servo-amplifier designer, for example, is still restricted to conventional components. Wafer substrates and other neoteric teeliniques simply can't handle higli-power requirements.
Nevertheless, even with conventional components, the servo designer can still cut size drastically. A review of current servo designs shows that rarely do the electronic components occupy more than 10 per cent of the total available volume. Intercomnections, supporting structurcs, or simply air or potting compounds occupy most of the space.
The amplifier in Fig. 1 slows what can be done to improve the "payload efficiency." This amplifier was developed by Lear Inc. primarily for use in its own instruments. A linear servo amplifier, it can deliver 1.5 w to a $33-\mathrm{v}$ motor in an anllient of 100 deg C . The can measures $7 / 8 \times 78 \times 1-1 / 4$ in. and is one-third the size of conventional designs with comparable performance.

Fig. 1. Shrunk servo amplifier uses flexible printedcircuit board to increase component density. (Coin shows size-not price.)

Featuring the clever and unusual in lackaring. appearance design

il Filling, eat Sink ackaging

Three Contributors to Packaging Density

Contributing to the volume reduction was the exclusive use of the new TO-18-cased silicon transistors, and the elimination of the output transformer by use of a center-tapped motor. However, it is the flexible board, the oil filling, and the simplified transistor heat sink which make the difference and should be of greatest interest to the designer who must package an existing circuit.

The upper half of the module has passive components stacked vertically. This arrangement affords best volume utilization with standard axial-lead components. One drawback of this arrangement has been the difficulty of inserting leads between two parallel boards.

Flexible "S" Board

Eases Lead Insertion And Hole Alignment
This is overcome by using a flexible base material for the printed wiring. This flexibility allows the board to be formed into a rectangular "S" shape. The one board, therefore, eliminates all hook-up wire except transformer leads. It is also the only structural support for the electrical components.
Besides making lead insertion easier, the flexible board makes hole alignment less critical. Also, temperature change and vibration impose less stress on the component lead when a pliable base material is used. This contributes to added reliability.

At elevated temperatures, the output transistors need a heat sink with a thermal resistance of 15 C per watt or less. The sink must provide electrical insulation from the case. The method shown in Fig. 2 satisfies these requirements in a simple and compact manner.

The base flange, the point of heat concentration, is soldered with $60 / 40$ solder to the heatsink bracket. This is an acceptable technique with this silicon transistor since the vendor bakes the

Two new $1 / 2^{"}$ Waters pots conquer a space problem for many a harassed space age engineer. Both require up to 25% less space behind the panel than pots having identical specifications. Available with terminals (shown), wire leads or printed circuit pins. Case lengths are only $3 / 8^{\prime \prime}$. The new APS $1 / 2$ is designed for bushing-type mounting. The WPS $1 / 2$, designed for servo mounting, is the smallest potentiometer available for general use in rugged servo applications. Both are capable of dissipating 2 watts continuously! Reliability test reports available. Write for Bulletin APS-160.

SPACE AGE TV

WITH EIMAC

CERAMIC TUBES

Lockheed's new miniature TV transmitter and camera have special significance for a spacecurious world. They may one day help unravel some of the mysteries of the unknown as they soar through the outer reaches of space in a sophisticated satellite.

At the heart of the tiny trans. mitter is an Eimac ceramic tetrode, the 4CX300A. Eimac ceramic tubes can take tough assignments like this in their stride, with performance "extras" that mean outstanding reliability.
Eimac advanced ceramic design makes possible a compact tube capable of maintaining exceptional stability - even under conditions of severe shock, vibration and accelerations up to 20 g at frequencies from 20 to 2000 cycles per second. Rugged, reliable power in a small package!

Today, over 40 ceramic tube types pioneered by Eimac engineering and research are available for use under adverse conditions. Whenever you have an application that requires compact tubes that can take it, investigate the many advantages of Eimac advanced ceramicmetal construction.

DESIGN DECISIONS

transistor at 300 C . Induction heating is preferred because of better heat control, but hand soldering can give satisfactory results.
To minimize the heat insulation by the dielectric, the heat-sink bracket should have the largest possible contact area to the amplifier base and should be boncled with epoxy resin with aluminum oxide filler.

Aluminum oxide crystal, a good dielectric, is a reasonably good thermal conductor and can be procured in uniform grain size to insure the clesired spacing between bracket and base. Other dielectrics, such as adhesive polyester film, sheet mica, and fiber-glass impregnated with various materials, are ruled out for this application because of poor adhesive qualities, or poor or inconsistent thermal and dielectric properties.

Fig. 2. Oxide-filled epoxy carries off transistor heat.

Oil-Filled Can Allows Factory Repair

The complete amplifier is hermetically sealed and filled with high viscosity silicon oil. Since epoxy has a much higher thermal-conduction coefficient and lower coefficient of expansion, it may seem surprising to find silicon oil in this application. The one overshadowing advantage of the oil is factory repairability.
In this application the primary function of the oil is to support and protect the components which it has done successfully through 10 g's of vibration and 15 g's of shock. The amplifier has also been temperature-cycled from -65 C to +125 C . An air bubble in the can is sufficient to provide for thermal expansion.
Roy Malarik, Packaging Designer, Instrument Div., Lear, Inc., Grand Rapids, Mich.

SPECIFY

RAYTHEON ELECTRICAL COMPONENTS

For instruments that deserve the precision engineered look.

SEND NOW,

GET FULL FACTS
on Raytheon test jacks, panel components and control knobs. Address Raytheon Company, 55 Chapel Street, Nowion, Massachusetts.

RAYTHEON COMPANY Induatrial Compononte Division Industrial Compononit Division
ss Chapel street, Nowton, Mass. CIRCLE 101 ON READER-SERVICE CARD
ELECTRONIC DESIGN • April 27, 1960

Radiation Resistance of a Loop Antenna

D. N. Travers
Senior Research Engineer
Southwest Research Institute

N THE DESIGN of loop antenna systems, parIticularly in direction-finding applications, it is often necessary to determine whether the radiation resistance of the loop lies above or below a certain limit. With the aid of the accompanying nomogram, radiation resistance can be determined rapidly from knowledge of loop area, frequency and number of turns.
Here is an example: determine the radiation resistance of a loop of one square meter, having
three turns, at a frequency of 300 kc .
A line drawn between the area and freduency points intersects the area in square wave lengths axis at 10^{-9}. A line drawn between this point and the point corresponding to three turns intersects the radiation resistance axis at approximately onethird ohm.
The results are accurate within the limits given on the nomograph. The result- are aicturate within the limits given. - -

KEEP TRANSISTORS COOL

Keep transistors at or below maximum operating temperatures with these new Birtcher Transistor Radiators. Provides the transistor with its own heat sink and a greatly increased radiating surface. Easy to install in new or existing equipment. Modifications to fit hundreds of popularly used transistors.

and
teat data
write:

- FOR MOST JETEC 30 TRANSISTORS (Jetec Outline TO-9)

with NEW BIRTCHER
 TRANSISTOR RADIATORS

B

THE BIRTCHER CORPORATION industrial division
4871 Valley Blvd. Loo Angeles 82, Californis

WITH ONE PLANE PRESENTATION

OUTSTAMDING FEATURES

- Reliable, dependable, no moving parts.
- All digits displayed on front surface viewing screen...quickly seen from any angle of viewing. - All digits uniform in size and intensity ...easier and asier 10 read.
High-contrast viewing screen insures utmos visual sharpness.

NEW LITERATURE

Epoxy Resins

This four-page bu!letin is a selection chart for epoxy resins. Data on paste, impregnating, casting and molding, and potting epoxies are given in table form. Consistency, reactor, filler, properties, and suggested applications are given. John C. Dolph Co., Monmouth Junction, N.J.

Relay Manual

This relay manual describes 30 types of relays, with 1000 variations, for communications, computers, industry and the military. Using photographs, line drawings, tables and descriptive material, the manual presents detailed data on pileup relay types, variation in spring arrangement, timing, coil voltage, contact ratings and other specifications. Cook Electric Co., Diaphlex Div., 2700 Southport Ave., Chicago 14, Ill.

DC-DC Converters

This illustrated report, 14 pages, is called "Designing DC-DC Converters." The introductory section presents data on converter design factors, including transistor selection and characteristics of magnetic cores. The second hillf contains step-by-step design data on two theoretical case histories. Magnetics, Inc., Butler, Pa.

Name Plates

This four-page, two-color brochure, entitled "The Fotocoil System," contains datal on the various types of name plates and other etched metal parts which can be made by the company. Miller Dial \& Name Plate Co., 4400 N. Temple City Blvd., El Monte, Calif.

DC Solenoids

Three models of dc solenoids are described in this four-page bulletin, No. 505-A. Mounting dimensions are given in outline drawings, and a characteristic curve depicts holding power and pull graphically. Included are descriptions on remote solenoid controls. Synchro-Start Products Inc., 8151 N. Ridgeway Ave., Skokie, Ill.

Couplings

This 47 -page engineering catalog, No. 60 , includes a description and listing of couplings for use on servo-mechanisms, computers, missiles, and other small devices. Outline drawings, bore sizes, and torque capacities are given. Thomas Flexible Coupling Co., Warren, Pa.

260

262

263

264

265

MAGNETRON CONNECTORS

Magnetroa Input Genmector Cat. soos.c Fits 4152A and similap
Magnetrons. Features Magnetrons. Features
Identical to Cat. $9000-C$. In addition has 75 mi
thick sillcone thick sillcone insulated
cables for higher poten.
tial applications. Made
 capacitor.

Call or write for bulletins on special
,

JETTRON

 PRODUCTS •INC56 Route 10, Hanover, New Jersey Telephones: TUcker 7-0571-0572
Sales Engineers in Principal Cities CIRCLE 104 ON READER-SERVICE CARD ELECTRONIC DESIGN • April 27, 1960
 MEASURING...

- Actual life span of your equipment?
- Consumption of rated life of critical equipment or components?
- Mean-time-to failure?

You can reduce the odds against failure by constant monitoring and timely replace ment of equipment approaching the end o application of the

> YYA LTEHEMM SUB-MINIATURE
> ELAPSED TIME INDICATOR

11/16" O.D. x $1^{15 / 16^{\prime \prime}} 30 Z$.

10,000 Hour Total Readour (Easily Read to Closest Hour) 400 CPS

Whether it's for reliability and life testing, design or system analysis, utilization studies . . or to continuously monitor and log critical equipment or components . . . when you incorporate the Waltham WT- 1 in your plans, you add that "measure of reliability" so important for military acceptance.

The WT-1 meets MIL-E-5272A and is available "FROM STOCK" Write Now for Bulletin 5001

MYAETEERMM unnnn

PRECISION INSTRUMENT COMPANY
Waltham 54, Massachusetts CIRCIE 105 ON READER-SERVICE CARD

RF Power and VSWR Insfruments

266
Catalog No. 12 contains over 60 pages describing rf power and vswr instruments, absorptiontype if wattmeters, calorimetric rf wattmeters, rf load resistors, station guardians and accessories. The illustrated catalog also contains specification tables, outline drawings and photographs of the measuring equipment. M. C. Jones Electronics Co., Inc., 185 N. Main St., Bristol, Conn.

Waveguide Filters

267
Complete design, development, production and testing services for waveguide filters are outlined in this four-page brochure. Various types of filters are pictured and described. Also included is an outline of electrical and mechanical specifications to be submitted with quotation requests. Waveline, Inc., Caldwell, N.J.

Laminafes

268
Two engineering bulletins, one page each, describe grades ARF-HT and G3-HT high temperature phenolic laminated plastics. The sheet properties for each laminate are listed. Synthane Corp., Oaks, Pa.

Electroluminescent Display

269
This illustrated booklet, 46 pages, explains how the principle of electroluminescent lighting has led to the development of dynamic solid-state panel displays. It contains material on information conversion, storage or memory devices, and logic systems. The booklet also contains diagrams of multi-symbol displays designed for use in data processing, computer read-out devices, stock quotation boards, and other applications. Sylvania Electric Products Inc., 1100 Main St., Buffalo, N.Y.

Chopper Stabilization

270
Bulletin No. 375 explains the optional chopper stabilization feature of the company's programable power supplies. Included are detailed stability and regulation specifications along with a list of models available with the chopper stabilized option. Electronic Measurements Co., Inc., Eatontown, N.J.

Tools Cafalog

271
This 48-page catalog illustrates and describes 88 tools including chrome steel tapes, master vernier height gages and calipers, micrometer calipers, inside micrometers, protractors, dividers, trammels, and dial bore gages. L. S. Starrett Co., Athol, Mass.

Polaroid "Slides or Prints in Minutes!
This ONE new Beattic Oscillotron answers your every need in oscilloscope photography. Project new Polaroid ${ }^{*}$ transparent slides minutes after recording or have prints in 60 secs. with new 30000 Speed Film. Object to image ratio - 1 to 0.9. Record up to 9 traces on a single frame. $75 \mathrm{~mm} \mathrm{f} / 2.8$ Wollensak lens. Instantly converted for a wide range of instrumentation photography. "Polaroid" (b) by Polaroid Corp. - Trade Mark

ACCESSORIES: Binocular viewing hood; Datal card to record in frame; Data chamber; f/ 1.9 lens; Electric remote shutter contml.
 CIRCLE 106 ON READER-SERVICE CARD

DESIGN ENGINEERS...
 your: "time saving" "accurate" answer to.

TRANSISTOR TRANSFORMER PROBLEMS

DESIGN-RESEARCH - DEVELOPMENT
 formers gives 96 different designs covering 93% of all applications

NET \$44.50
PILOT AND FULL PRODUCTION
Each of 12 kit models avallable in 5 different case desions

ELECTRONICS INC.

(before) Reverse leakage tracing before immersion in $\mathrm{H}_{2} \mathrm{O}_{2}$
(after) Reverse leakage tracing after immersion in $\mathrm{H}_{2} \mathrm{O}_{2}$

dried without

 washing (virtually no change).
Here's proof!

No increase in reverse leakage when you etch diodes in

BECCO Hydrogen Peroxide!

To test the effect of impurity-free Becco Hydrogen Peroxide across an unsealed diffused silicon junction diode, the following "tor ture test" was performed: 600 volts AC were applied across the diode, and the reverse leakage current depicted on an oscillograph. Then, the diode was immersed in Becco 30\% Reagent Grade Hydrogen Peroxide. The diode, without being washed in any way, was placed on a hot plate and the $\mathrm{H}_{2} \mathrm{O}_{2}$ was evaporated.
The voltage was re-applied and the tracing produced was virtually identical (see above)-proof that no impurities that could affect the diode exist in Becco Hydrogen Peroxide.
Of course, you'll use Becco $\mathrm{H}_{2} \mathrm{O}_{2}$ at a different stage-when you etch the diode. And, of course, good practice still dictates that you wash the diode in pure water following the etch. Nevertheless, this test proves that you need not be too concerned with your wash when you etch in Becco $\mathrm{H}_{2} \mathrm{O}_{2}$, since the peroxide itself, made by an inorganic method, can not deposit any impurities of its own on the diode.
Becco packages its Reagent Grade $\mathrm{H}_{2} \mathrm{O}_{2}$ in returnable or non-returnable polyethylene containers to insure its purity when it arrives at your plant. Write us for further information or specifications, analysis, prices, etc. Address: Dept. ED-6.

Food Machinery and Chemical Corporation Station B, Buffalo 7, New York CIRCLE 108 ON READER-SERVICE CARD

NEW LITERATURE

Technical Digests From Europe

The European Technical Digests provide engineers with English translations of articles chosen from over 1000 teclmical journals appearing in 1:3 comentrics and in 11 different languages. Although the publication deals principally with engineering and equipment, much importance is placed on subjects of general interest, such as corrosion, materials handling, and packaging. As a free service to readers. photocopies of the original articles are supplied on request whenever possille. Price of a yearly subscription is $\$ 12$; sixmonth subscription, \$6. European Technical Digests, Specialized Information Section, Dept. ED. E.P.A. 3, ruc Andre-Pascal, Paris 16, France.

Receiving Systems

272
This eight-page brochure describes the capabilitics and facilities of the company and the range of products developed, including ultra-sensitive receiving systems and equipments in the fields of communications, telemetry, guidance and control, and navigation, LEL, Inc., 380 Oak St., Copiague, L.I., N.Y.

Self-Generating Accelerometers

Bulletin No. 9503 lists prices and specifications of self-generating accelerometers. These units lave high first-resonance, intemal-capacity, sensitivity for a given size and weight, and stable ligh-temperature operation. The bulletin also includes a dimensional outline-drawing, sizes of standard 5 -, 10 - and $20-\mathrm{mv} \mathrm{g}$ units, and optional mounting and connector specifications. Clevite Electronic Components, division of Clevite Corp., 3405 Perkins Ave., Cleveland 14, Ohio.

Data Processing

Model ZA-100 computer language translator is described in this 16-page application information manual. Common translation modes described through block diagrams include: magnetic tape to magnetic tape; IBM punched cards to magnetic tipe; magnetic tape to IBM punched cards; magnetic tape to line printer; and on-line analog input to magnetic tape. An illustrated appendix outlines these systems now in operation in various parts of the U.S. Electronic Engineering Co. of Calif., Technical Literature Section, 1601 E . Chestnut Ave., Santa Ana, Calif.

SPECTROL PRECISION POTENTIOMETERS

Two valid reasons why

 delivers better non-linear pots faster!

COMPUTER DESIGNED

Spectrol uses an IBM 610 computer to turn out complex non-linear precision pots in record time, both single-turn and multi-turn. This in itself saves weeks of time, assures more accurate performance. Spectrol alone maintains computer on the premises for this purpose.
How It Works. Design information in the form of X and Y coordinates or mathematical equations describing the particular parameters of a given non-linear function is entered in the computer. Previously programmed general equations automatically compute from these data points manufacturing directions in terms of winding equipment settings, cam angle and radii. An electric typewriter prints out winding machine set-up information on a form which is sent to production. Simultaneously, a punched tape is made to store data for repeat requirements.

Name Plates

Bulletin No. 900 describes and illustrates a complete line of name plates. Included are data on stock metal name plates, engraved bakelite name plates, and made-to-order name plates. The fourpage bulletin contains wordings available and price listings. Seton Name Plate Co., 431 W . Rock Ave., New IJaven 15, Comn.

Cases and Housings

276
This 14 -page catalog coutains sample vellums detailing standard constructions for combination, transit, storage and 19 -in. rack equipment cases. Listed in the catalog are available sizes, shapes and metals as well as construction details. Mil specifications are included, where applicable. MM Enclosures, Inc., 111 Bloomingdale Road, Hicksville, L.I., N.Y.

Swageable Thermocouple Tubing

277
High-temperature swageable thermocouple tubing is described in this two-page data sheet. Included are datai on stamdard sizes and tolerances of single and multibore tubing. Free samples are available if requested on company letterhead. Saxonburg Ceramics, Inc., Saxonburg, Pa.

Rotary Switches

This four-page catalog illustrates and describes the Type 212 long-life, non-drift, rotary switch. Included are dimensional drawings and a page of standard stock assembly layouts for the instrument and radio switch series. Trolex Corp., Subsidiary of Chicago Telephone Supply Corp., It Iterry. III.

Motors and Relays

279
Typical specifications on a complete line of ace and de fractional horsepower motors, tachometer gencrators and ultra-sensitive relays appear in this four-page folder. Rated horsepower, dimensions, characteristics and typical applications are listed. Reference file No. F-9765 also includes range and style data. Barber-Colman Co., Rockford, III.

Fasfeners

280
Complete specifications and application information on Banc-Lok self-locking inserts and tapped holes are presented in this eight-page catalog. Cross-section drawings show application advantages in plastics, sheet metal, and composition materials. Charts detail thread and hole sizes. and grip lengths. Boots Corp., Newtown Turnpike, Norwalk, Conn.

FOR ADVANCED TECHNIQUES IN:
torooion transformers

- Filters
- Toroidal Transformers
- Phase Split Networks
- Coils

- Baluns

B\&W's specialized facilities and experience in design, engineering and production are ready to solve your unique problems in these fields. You are assured immediate action and short delivery on special components. assemblies and equipment. We invite you to ask for bulletins or better yet. drop us spees covering your specific requirements.

CHOKES

Frequency Multioliers Multipliers Band Swilching iuter
Rolary Coils Antenna Thning Networks Networks Baluns Speral Eencioment Mobile Radio Teletype fouspment Soulpment AMSI SM Tansmit lets and Receivels

Barter \& Wolliamoon, Inc.
Canal Sireet \& Beaver Dam Road - Bristol, Penna CIRCLE 110 ON READER-SERVICE CARD

more

manufacturers are

 placing their electronic catalogs in...
ELECTRONIC

DESIGNERS'

CATALOG

Look for complete product line data in Electronic Designers' Catalog from these leading electronic manufacturers.

```
Accurate Specialtios, Inc.
d-Yu Eloctronics Laboy Inc.
Alphe Wire Corperation
Arneld Engineoring Company
Baird-Atomic
Gohlman Engimeoring Gompany
Bondix-Menfrese Div,
Bamae Laboratories, Ine
Buchaman Electrical Products Corp.
Burndy Gorporation
Burnoll & Company, Ine
Burreughs Corporation
Gannon Eloctric
BS Eloctrenics, Inc
Thassis Trak, Ine
    Hlegs Laboratories, Incm Division of
    Clos,y, Ine.
    GlovitoTransisfor Products, Division of
    Glovite Gerp.
    Elifton Precision Producis Germeration
    Gomputer Gomtrel
    Gompuitor Comirol
    computor Insirumont Corporalio
    coors Parcolain
    Gurtiss-Wright Corporation
    Dage Eloctric Company, Inc.
    Dalo Produets, Ine.
    Davon Company, The
    DoMernay-Benardi
    Dynamics Instrumoniation Company, Divi-
    sion of Alborhill Gorp.
    Elgin Mafional
Elcetrical Industries, Division of Philips
    Eloctrenies
ESC Gorporation
Fairchlld Somiconductor Corporation
Falstrom Company
odoral Tool Engincoring
0-V Gonfrels, Inc.
arant Pulley & Hardware Gorp.
GRM Malliest Co.
Hormes Electronics Company
Ml-B, Ino.
Mofiman Somiconductor
Accurato Speciallies, Ine.
Ad-Yu Electronics Laboy Inc.
Alphe Wire Cerperation
Arnold Engincoring Company
Baird-Atomic
Dahlman Engimooring Company
Bemas Laboratories, Ine
Juchaman Electrical Products Corp.
Burady Corporation
Burnall Company, Inc
Cannon Electric
Chassis Trat ine
Glers Leberatorios, Inc. Division of
Clase, Ime.
Glovite Transistor Products, Division of eliftom Precisio
Cinion Precision Products Corporation
Computer Instrum
cons Perceloin cont Corporation
Gurtiss-Wright Ger
Dage Electric Company, Inc.
Davan Company, Th
Dynamics Instrumonfation Company, Divi sian of Albarhill Corp.
Electrical Industries, Division of Philips iostranies
airchild Somiconductor Corporation
Falsiron eompany
-V Conirols, Inc.
arant Pulley Hardware Gerp.
```

Industrial Timer Corperation
Industre Transistor Corparation infernatienal quectifior corporation Jorrold Electronics Corp. JFD Electrenies Corporation Kin Tol Div., Cohu Industries Kinfronic
Xip Eleclronics Corperation
Knights Company, James
Lambda Eloctronics Corporation
Lansdale Tube Division, Philce Corperation
Librascope, Inc.
Metronix, Inc.
McMillan Laboratory
Microlab
Mid-Easforn Electronies, Inc.
Minneapolis-Honoywall Rogulator Company,
Besfon Division
Marda Ulitrasonies
Orthe Filter corporetion
Orthe Filtor corparation
Parkin-Elmer Earperation
Porkin-Elmer Garperation
Poly Chomicals Division, Chassis Trak, Inc. Power Sources, Inc.
yrofilm Resisfor Company, Inc.
haythoen Company
haytheen-Industrial Components Div.
Sarkes Tarzian, Inc.
siopra Electronies Gopperation
Somith-Flerance Company
Solic State Products, Inc.
Sperry Somiconductor Division, Sperry Rand
Thermal American Fuzed Quartz cem.

pany, lae

Porofol
Transisiron Eloctronic Cormeration Unitok Corporation
Univarsal Manufacturing Company, Iac
Ward Leonard Eloctric Company
Welch Manufacturing Company, W, M.
Zippertubing Gompany

NEW LITERATURE

Microphones

Individual problems, case histories, new ideas, and developments are discussed in the newsletter, "Microphone Facts." Electro-Voice, Inc., Buchanan, Mich.

Transistors

The 2N1177, 2N1178, 2N1179, and 2N1180 drift-field transistors are described in this eightpige bulletin. Included are diagrams and graphs showing collector and performance characteristics. It also gives the electrical and mechanical general data. These transistors are specifically designed for fm and $\mathrm{am} / \mathrm{fm}$ radio receivers and tuners. Radio Corp. of America, Somerville, N.J.

Control Chasis

Bulletin 100-A gives the general description and operation of the K-100 series control chassis. Photographs and block diagrams are included in this two-page bulletin. Datex Corp., 1307 S. Myrtle Ave., Monrovia, Calif.

Flexible Insulators

This full-color data sheet gives complete information on the spectrum of colors available in flexible insulators for Mueller Clips. The illustrated sheet, No. 232, includes ordering data in table form. Mueller Electric Co., 1580H E. 31st St., Cleveland 14, Ohio.

Magnetohydrodynamics

This four-page brochure outlines the work done in magnetohydrodynamics-extracting electric power directly from ionized gas as it passes through a magnetic field. It gives the description, operation, motivating power, advantages, and significance of this new field of power generation. Included are photographs and drawings. General Electric Co., 3198 Chestnut St., Philadelphia 4, Pa.

Elements

This periodic table of elements is designed for use in laboratories. The table includes all elements and numbers of naturally occurring radioactive and stable isotopes. Also shown are atomic numbers in large type, weight, density, boiling and melting points, electronic configuration, half-life, and other atomic constants for physics and chemistry. Central Scientific Co., 1700 Irving Park Road, Chicago, Ill.

282

283

284

285

286
STROMBERG-CARLSON

"BB" SERIES RELAYS

For your automation

 . . computing ...control circuit applications...
"TELEPHONE QUALITY"

at an ordinary price
To meet your needs for precision and durability in automation, computing and control circuitry, this relay provides telephone quality at an ordinary price.

The "BB" Series Relay accommodates up to $\mathbf{1 0 0}$ Form A spring combinations. It incorporates such important advantages as twin contacts, knife-edge pivot and special frame-armature construction. Like all StrombergCarlson relays, it is built to operate under extreme ranges of temperature and humidity Prompt delivery is available on all orders.

For full information write to Telecommunication Industrial Sales, 116 Carlson Road, Rochester 3, New York.

STROMEERG-CARLSON

 GENERAL DYNAMICE

No one is immune to our \#1 health problem

Mental illness hospitalizes MORE people than polio, heart, tuberculosis. cancer-all other diseases combined. Outside the hospital 1 in 10 need psychiatric help. Next-let's Conquer Mental Illness ! :

Give at the Sign of the Ringing Bell

Sound Systems

Industrial sound systems are compared in this folder. A chart shows typical sound systems used in industry. The chart depicts all facilities at a glance. DuKame Corp., St. Charles, Ill.

Wire Alloy

288
Detailed technical data on Chromel-12, a modified 80-20 type nickel chromium 800-ohm alloy, appears in this 8 -page bulletin. Included are performance curves, a table of plasical properties, and specifications tables listing ohms per foot. feet per pound, and ohms per pound for both bare and enameled wire. Hoskins Manufacturing Co., 44.5 I.awton Ave., Detroit 2, Mich.

Printed Circuits

This copy of the Procecolings of the Institute of Printed Circuits Symposium is emtitled "Financial Aspects of Producing and Buying Printed Circuits." Topics discussed include: Cost vs. Tolerances; Cost us. Quality; Cost vs. Complexity; and Cost vs. Quantity. The Proceedings also inclucles a special instruction shect for completing a "Make or Buy" analysis. Send S Sto the Institute of Printed Circuits, Dept. ED, 27 E. Momroe St., Chicago 3, III.

Transistor Applications

One of these two booklets contains an index of available application lab reports pertaining to transistor circuit applications. The other is a guide to transistor applications. It includes tables, charts and graphs. Philco Corp., Lansdale Div., Lansdale, Pa .

Cathode Ray Tubes

290
A chart of the mechanical and electrical characteristics of 165 different industrial and military tube types covers three pages of this six-page brochure. It is conveniently designed for use as a wall chart. Typical operating conditions of the magnetic- and electrostatic-deflection types, overall length, type faceplate, basing deflection angle and deflection factor are included. Thomas Electronics, Inc., 118 Ninth St., Passaic, N.J.

Metalized Ceramic Components

291
Bulletin M-100, a one-page, two-color data sheet, describes metalized ceramic glass and mica components in preparing an electronic insulator for permanent bonding to metal. This process hermetically seals the assembly. The bulletin also lists specifications on types of metalized coatings and the available ceramic base materials. Metalizing Industries, Inc., 338 Hudson St., Hackensack, N.J.

Wiring Devices from (D)ethode

Prinled circuil complement; for guidance device in operational missile includes 32 different circuit configurations. Produced in small quantilies to close tolerances without fion lools.

NEW LITERATURE

Automatic Wave Analysis

This 16-page bulletin, No. DB 9050a, describes and illustrates automatic wave analysis, an engineering tool for Fourier and spectral power studies. Frequencies and amplitudes of vibration, flutter, noise, and other types of complex waves are automatically charted by the analyzer systems. Records can be of linear or squared amplitudes, or on a frequency vs. time basis. The bulletin shows the relation of the magnetic tape recorder, playback loop transport, and wave analyzer. Charts and specifications are included. MinneapolisHoneywell Regulator Co., Industrial Systems Div., 10721 Hanna St., Beltsville, Md.

Generators

 293Bulletin No. 147 describes various generators ranging in complexity from command modulators to audio tone generators. The command modulators consist of audio modulated pulses or pulses of audio frequencies or combinations of both. Descriptions of gated oscillators and tone generators, completely solid state and intended for airbome or ground equipment, are included. Alto Scientific Co., 855 Commercial St., Palo Alto, Calif.

Fasfeners

This 24 -page catalog describes the company's complete line of fasteners. It includes discussion of a variety of tension and featherweight fasteners, selfbroaching fasteners, self-sizing fasteners, pull-thru blind rivets, friction-lock selfplugging blind rivets, and lock spindle self-plugging blind rivets. Driving cycles, strength data, typical applications, grip ranges, dimensional data, hole size recommendations, and installation notes are included for each fastener. Huck Manufacturing Co., 2480 Bellevic Ave., Detroit 7, Mich.

Wiring Devices and Fuses

This specifications list details the firm's wiring devices and fuses complying with federal and REA specifications. The fourpage list contains 538 catalog numbers over a range of nine categories. Complete headings, with descriptions of style and type numbers are included. Eagle Electric Manufacturing Co., Inc., 23-10 Bridgc Plaza S., Long Island City 1, N.Y.

Men who know* prefe

FREE

Monthly Electronics

 Opportunities Bulletin
Shows where you could be in the electronics field

CADILLAC, for thirty years the nation's largest Executive and Professional Placement Sorvice, represents every "Blue Book" Electronics firm in America, over 350 in all. Their BEST jobs, af salaries from $\$ 6,000$ to $\$ 75,000$, appear monthly in our Electronics Opportunities Bullotin. Because you are an Electronics Enginoer, BOTH the Bullotin and our COMPLETELY CONFIDENTIAL Placement Service are available to you absolutoly FREE OF CHARGE.

For your free Bulletin, each month listing America's BEST Eloctronic fobs, send your name and address to:

JACK HIGGINS
Vice Prosident
Cadillac
Associates, Inc.
29 East Madison Bldg.-Dopt. E-2
Chicage 2, III.
CIRCIE 901 ON CAREER INQUIRY FORM, PAGE 153

205 Mountaln Grove sf. Eldgepert. Conn. CIRCLE 187 ON READER-SERVICE CARD
ELECTRONIC DESIGN • April 27, 1960

You join the ranks of those who know * when you specify McMillan absorbers for your "free space" rooms. The list of McMillan customers is a veritable "who's who" in the electronics industry and includes such leaders as - Avco, Bell Labs, Bendix, Cambridge Research Center. Convair, General Electric, Johns Hopkins. MIT Lincoln Labs, Philco, Westinghouse and many others.

McMillan absorbers

* KNOW that from McMillan they can ohtain substantiation to back up performance claims - either in simple, concise form or in advanced. scientific data.
* KNOW that each and every piece of McMillan absorber must pass an adequate source inspection to assure conformance to electrical specifications.
* KNOW that McMillan absorhers can easily be attached and removed by anyone, without special tools and without the use of adhesives and the resulting damage to walls.

McMILLAN LABORATORY, INCORPORATED
brownville avenue - ipswich, massachusetts CIRCLE 116 ON READER-SERVICE CARD

$18-8$ and 316
 STAR STAINLESS SOCKET HEAD CAP SCREWS

Smooth and Knurled Types, Coarse. or Fine Thread. Sizes 0.80 and Up. Splined and Flat Head,

Nylok and Socket Set Seraws
 RIGGT OFF THE SHELF

This juet one line of staris stork of stainloss steol fastenings listed in our 1960 Catalog.
STAINLESS STEEL 300 \& 400 Series

- bOLTS \& MUTS - WASHERS - PIMS
- an \& ms fasteners - hinges

Sand for YOUR Catalog roday, request on letterhead please.

Standard induction heating units such

 as motor generitor sets, control stations. ane fixed installation. as well as portable heating stations, are described and illustrited in this four-page folder. Company technical services including problem analysis. rescarch, design engineering, and manufacture of custom end product, are also explained. Robotron Corp.. 21300 W . Eight Mile Road, Detroit 19, Mich
General Purpose Relay

Specifications and outline drawings of the series No. 10 and 20 general purpose relay are now available from the firm. The rolay is a multiple arm, 16 -spring device, and comes in a variety of contact arrangements. It can be supplied in open or hermetically sealed enclosures. Wheelock Signals, Inc., Long Branch. N.J.

Subminiature Capacitors

This engineering bulletin, No. 2110, describes the Vitamin Q and stabilized wax subminiature metal-clad paper capacitors. In addition to performance characteristics, there are outline drawings illustrating various case styles, and typical tab terminal dimensions. Characteristics curves for hoth types of components, and a nomograph for detemmining ac ratings are included in the bulletin. Sprague Electric Co., N. Adlams, Mass.

Plastics Guide and Catalog

This 56 page 1960 plastics catalog and price list gives complete information on grades, sizes, and tolerances of the firm's stocks of plastic sheet, rod, tubing, and other forms. Among the prolucts listed are: plexiglas, phenolic, rigid and flexible vinyl, teflon, kel-f, fiberglas, delrin and micarta laminates, as well as plastic cements, cleaners, and polishing compounds. Also included in the catalog are tables of properties of the more widely used plastics. Almac Plastics, Inc., 600 Broadway, New York 12, N.Y.

Core Memories

300
This four-page bulletin, No. DF 115.1, describes the type RB general purpose core memories. In addition to a block diagram, the brochure contains complete specifications, and loading and unloading operation data. Telemeter Magnetics, Inc., Box 329, Culver City, Calif.

Microwave Mixer Diode Makes Sensitive, Broadband Video Detector

ABROADBAND video detector of superior performance was devised, using a 1 N 53 B microwave diode. The tests performed on this coaxial crystal verified that sensitivity in excess of -40 dbm were obtainable over the entire $20-40$ kme bandwidth, and probably well beyond. A video bandwidth of at least dc to 8 mc was also verified.
The IN53 is a miniature point-contact coaxial microwave crystal diode designed for mixer applications at a design frequency of 34860 mc . The " B^{\prime} version provides an rf bandwidth capability (for mixer applications) of about 12 per cent. This
diode has also been used as a harmonic generator in the millimeter wavelength region. The cartridge construction relationship is designed to provide an input characteristic impedance of 65 ohms. Its popularity in these applications, because of cost and construction factors, makes it a very promising detector device.
Test results of video sensitivity for eight 1N53B diodes, expressed in terms of db below 1 mw for a video amplifier bandpass of dc to 8 mc were tabulated. The sensitivites are in excess of -40 dbm in all cases, ranging from -40.3 to -48.5 . For such a broad rf bandwidth, these results compare

Fig. 1. Test set-up verified bandwidth and detection sensitivity of microwave crystal.
favorably to advertised sensitivities of video diodes that operate in this frequency range. The 1N446 diode, for example, is specified by the crystal manufacturer as a video diode for the 28.5 kmc to 40 kmc range with a minimum sensitivity of -40 dbm .
The test results reported here do not indicate that the upper and lower if frequency performance limits of the 1N53B as a video detector have been defined. The response at both frequency extremes indicates that this diode is still displaying good response. Hence, the rf bandwidth capability of the 1 N53B diode is greater than reported in this paper.

Performance Verified in Custom-Designed Test Set-Up

Fig. 1 is a schematic diagram of the test setup used to verify the crystal's detector capability. Since a single commercial waveguide crystal holder, as such, did not exist that would accept the cartridge construction of the 1N53B for the entire $20-\mathrm{kmc}-40-\mathrm{kmc}$ frequency spectrum, a broadband horn antenna and detector holder assembly was chosen. This unit, a Sage Laboratories Type 533A, provided the necessary crystal holder probe to accomplish the transformation of the waveguide impedance to a coaxial line impedance of 65 ohms to "match" the crystal. No tuning of this unit is necessary to cover the frequency band.
Separate tests were conducted on this unit to determine its effective aperture in order that power density level measurements obtained at the aperture plane of the antenna could be directly related to diode sensitivities. The effective aperture was determined to be on the order of 0.62 cm^{2}. A photograph of this unit is shown in Fig. 2.
An anechoic chamber, suitably lined with rf absorbing material, was selected as the test site. The rf signal generator used was custom-designed, capable of an of output of at least 1 mw in the 18 -kmc-40-kmc frequency spectrum. This unit also contained, as an integrated assembly, the waveguide plumbing, precision and flap attenuators, directional couplers, frequency meters, and a power monitoring bridge. This integrated assembly permits a known rf output power to be set up at the selected frequency. Standard horn type antennas, with $0.85-\mathrm{cm}$ and $1.25-\mathrm{cm}$ optimum ${ }^{1}$ gain were used. These were fabricated in accordance with NRL design data. ${ }^{2}$ The homs have known gains with accuracies of about $\pm 0.5 \mathrm{db}$. The transmitting and receiving antennas were boresighted in the test set-up alignment.

[^8] vember 1954.

Electronic Products NEWS

 by carborundum ${ }^{\circ}$

Fig. 2. Detector holder used as basis for receiver horn.

Measurement Techniques

The sensitvity measurements were performed with $22 \mu \mathrm{a}$ of forward dc bias applied to the diode. During the tests, it was noted that bias appeared to have an adverse effect on some of the diodes. On those diodes affected, a significant increase in the signal-to-noise ratio was observed with a resulting loss of diode sensitivity of about 2 or 3 db .

A transmitting test distance of 100 in . was used for all measurements. This distance was determined to be outside the Fresnel Zone as defined by the following equation:

$$
\text { Fresnel Zone }=\frac{2 A^{2}}{\lambda}
$$

Where:

$$
\begin{aligned}
A= & \text { longest lines dimension of the } \\
& \text { largest antenna used. } \\
\lambda= & \text { free space wavelength. }
\end{aligned}
$$

The 100 -in. distance was measured from the throat ${ }^{3}$ of the optimum gain transmitting hom to the aperture plane of the Sage 533A receiving antenna.
The "Tangential Signal" was used" as the measurement level criteria, since tangential signal measurements may be repeated by various operators within $\pm 1 \mathrm{db}$. The power density level that produced a tangential signal presentation on oscillo-
3. The "throat" is readily determined for an optimum gain horn and is at the position where the horn flares into the waveguide section.
4. The "Minimum Detectable Signal" level exists when the presence of the signal can just be detected in the noise level. This measurement level is subject to large variations in obtained results when performed by different operators due to the difficulty of determining the signal presence when its location along the oscilloscope trace is not known.

> Smallest sub-miniafure time delay relay made by Wheaton Engineering Corp. relies on GLOBAR ${ }^{\circledR}$ Thermistors

The $1 / 2$-ounce postage stamp sized unit shown here is probably the ultimate in miniaturization of electronic time delay relays. It is a product of Wheaton Engineering Corporation, 920 Manchester Rd., Wheaton, Ill.

High precision time delays over a broad range of operating temperatures are produced by utilizing the negative temperature coefficient characteristic offered by GLOBAR Type 997F Thermistors. Contributory factors influencing their use are small size, extreme ruggedness and closely controlled quality and

Transistor current confrolled by GLOBAR ${ }^{\text {® }}$ Thermistors in Moforola Auto Radios

 New York.

The latest auto radio produced by Motorola Inc. contains a push-pull transistor output stage and 5 tubes designed to operate directly from the car battery.
Transistors are designed to draw $1 / 2 \mathrm{amp}$. Without control, this current would change with operating temperatures. Normal current must, however, be held within reasonable limits to maintain proper impedance. matching and low audio distortion. Motorola uses globar Thermistors of correct resistance and temperature coefficients to control the current through the operating range of -20 C to +65 C .
This application is another example of the growing use of Thermistors in transistorized circuits. For information on types and ratings, write Globar Plant, Refractories Div., Dept. EDT-40, Niagara Falls,

> Crifical requiremenfs mef in ceramic-fo-metal sealed components

The various units above are typical examples of problems involving ceramic-to-metal assemblies solved by Carborundum's Latrobe Plant.
Of particular interest is the assembly at right center. The threaded monel metal housing is attached to the ceramic by an intermediate KOVAR ${ }^{(1)}$ flanged eyelet, which compensates for expansion differentials. The center electrode is beryllium cop-per-brazed to a KOVAR alloy washer which is sealed to the ceramic. The unit on the right is a rectifier housing. The bottom flange and the cap are copper-plated steel bonded to the ceramic. A copper stud is brazed to the cap. Correct design avoided expansion stresses which would damge the ceramic or break the bond.
For assistance in solving similar problems, write Latrobe Plant, Refractories Div., Dept. EDC-40, The Carborundum Co., Latrobe, Pa .

Latest information on ceramic INSULATING TUBING

A new technical bulle. tin is now available on Carborundum's insulating tubing for thermocouples and other applications. Tubing is offered
with single and mul. with single and mul-
tiple holes in a wide tiple holes in a wide variety of dimensions and shapes. For your copy of the bulletin. write Latrobe Latrobe, Pa. Latrobe. Pa.
uniformity. "Were it not for your Thermistors," says Wheaton, "many of our precision timing devices would not be as easily or readily available."
If you have any problems involving temperature compensation, temperature sensing and control, time delay or surge current suppression, perhaps globar silicon carbide Thermistors can help. For more details, write Globar Plant, Refractories Division, Department EDT-40, The Carborundum Company, Niagara Falls, New York.

For ceramic parts and metallized assemblies, Kovar alloy, ceramic resistors, varistors and thermistors . . . count on CAMB ORUNDUM CIRCLE 118 ON READER-SERVICE CARD

Chart-Pak Tapes for Printed Circuits . . . now in NEW TAPE-SAVER DISPENSER (at no extra cost)
ONLY CHART-PAK HAS IT! Keeps tape edges clean No waste . . . use every inch Easy spindle storing Profected from damage

Saves fime math Saves moneyl

CIRCLE 119 ON READER-SERVICE CARD

CIRCLE 120 ON READER-SERYICE CAPD

the key to a truly clean vacuum. without fluids of other contaminants. is an Uiltevac electronic pump. Can operate unattended for montlis ol years on a sealed system; requires no traps, baftiles, or reftrigeration. Maintains vacuums of $10^{-9} \mathrm{~mm}$ Hg and below: power falure does not harm system since it is sealed after Ultevac starts. Serves as its own vacuum gauge. Operates in any position: no hot filaments, nü cooling water.

Fig. 3. Chart for converting sensitivity obtained in lest to results to be expected for other amplifier bandpasses.
scope 2 (see Fig. 1) was determined at the aperture plane of the receiving antenna by the following formula:

$$
P d=\frac{P t-G t}{4-d^{2}}
$$

Where:
$P d=$ power density level in $\mathrm{mw} / \mathrm{cm}^{2}$.
$G t=$ numerical gain of the transmitting antenna.
$P t=$ power transmitted in mw.
$d=$ distance between throat of the transmitting antenna and the aperture plane of the receiving antenna in cm .
The diode sensitivity was determined by multiplying the power density level (in $\mathrm{mw} / \mathrm{cm}^{2}$) by the effective aperture of the Sage 533A unit (0.62 cm^{2}) to give sensitivity in milliwatts. This sensitivity is more usually expressed in db below 1 mw In reporting video diode measurements it is necessary to define the bandpass of the vidco amplifier used. This will permit others to determine the sensitivity that may be expected of the diode in their particular systems. The curve shown in Fig. 3 is a plot of relative video diode response versus amplifier bandpass and may be used to convert sensitivities reported in this paper to expected sensitivities at any other amplifier bandpass. The amplifiers employed in these tests were Tektronix

Series $327 \cdot 2701 / \mathrm{sec}$.

ULTEK CORPORATION, only manufacturer devoted exclusively to ion pump technology, offers stock pumps 1 to 1000 liters/second capacity, plus sorption pumps. foreline traps, and Seaivac litenngs which provide eavites nemparison of product service and invites comparison of product, service, and delvery ume, onernerstardies pumps andecify application quest-specify application.

Contaci ULTEK en its exclusive Coniact
representative. Kinney MIg Mt
Dis. ol Tre New Yorik Air Brake Co. Sales
oflices in major U.S. citios.

SWITCH TO

T[5 5
for
Precision Electrical Resistance Instruments

STEPPING SWITCHES

for automation, telemefering, remote confrol

- Rugged
- Dependable
- Hermetically
sealed
if desired

ROTARY SWITCHES

for all electronic equipment

- Meets or exceeds government specs.
- Printed
circuit and special special
designs
- Quick deliveries
- Long life
- All sizes

CAM SWITCHES

for counting and control

- Decade switch
- Control
switch
Decimal to binary converter

PALISADES PARK, MEW JERSEY

CIRCLE 122 ON READER-SERVICE CARD
oscilloscope types with a measured bandpass of (lc-8 mc.

Sources of Error

The possible sources of error in the measurements reported are as follows:

Source

Possible Error
operator-in reading a tangential

$\pm 1.0 \mathrm{db}$.
$\pm 0.5 \mathrm{db}$.
$\pm 0.5 \mathrm{db}$.
$\pm 0.5 \mathrm{db}$.
Total $\pm 0.5 \mathrm{db}$.

R. L. Thomas, Design Enginecr, Reseda, Calif

Triggering of Controlled Rectifier Fires Its Series Mate

A power supply circuit required two series pairs of silicon-controlled rectifiers.
The circuit had to be simple and yet insure accurate voltage sharing over the entire control range, without the necessity for trimming.
The circuit shown, designed for a 3.50 vdc-16 amp power supply, met these requirements very simply and easily. It provides very nearly equal division of voltages before firing and in all other respects behaves like the usual bridge circuit.

An Avion 410-13 trigger drives the two main control rectifiers exactly as in a conventional circuit. The "slaved" rectifier, that is, the one in series with the main devices, receives a firing pulse from the high-pass filter C_{1} and R_{1}. This pulse is generated whenever a main rectifier fires, since as this $C R$ drops voltage the slave $C R$ gains voltage. This voltage change causes a charging current to flow in the 0.0 .5 uf capacitor in a direction to fire slave. This $C R$ fires almost simultaneously with the main CR. In fact. it is not possible to tell from any measurments at the load that this circuit is using two CR's in series. The diode in series with the gate blocks a reverse polarity pulse which would otherwise appear at the gate when the other half of the bridge fires.

The "main" controlled rectifier is fired by the trigger, a pulse is passed on to its series "slave," and it also fires.

David W. Rodgers, Commercial Products Dept., Avion Div., ACF Industries Inc., Paramus N.J.

ADVAC

CERAMIC SEALS

ITIT IUBES

- For ruggedness

- Greater thermal shock resistance
- Complete reliability

Advac stem-cup and coaxial assemblies with ceramic beads provide International Telephone and Telegraph Corporation with increased electron tube reliability. At the same time, production costs have been substantially reduced. in both design and production stages, advantages listed below.

Advac Seals are manufactured only by -

ADVANCED VACUUM PRODUCTS • INC

430 Fairfield Avenue, Stamford, Connecticut Telephone: DAvis 4-2148

A Division of
GENERAL GERAMIGS

CIRCLE 123 ON READER-SERVICE CARD
 available with several collar-and-terminal arrangements. Tunable types offer a wide choice of tuning sluga tunable. And, the buge family of coil forms continues to grow.

Why rely on "rcundness"? Cambion guarantees concentricity

So much can go wrong when coil forms are even slightly out-of-round that it pays are even sighily out-or-round that it pays to make certain they're concentric!
CAMBION Ceramic Coil Forms are CAMBION Ceramic Coil Forms are
manufactured to extremely close limits of manufactured to extremely close limits of
concentricity. They wind evenly and easily. Finished coils tune smoothly and precisely with no binding of slug. CAMBION Coil Forms are given many other rigorous quality control checks at every step of manufacture: moistureresistance test, plating check of all signifcant surfaces, etc. Result: guaranteed quality... the best basis for successful winding, installation, tuning and performance.
all CAMBION Components follow a careful quality control program because the quality of any component of course limits its reliability. And the ever-increas ing importance of reliability is apparent
on all sides. Take one type of missile with 32,000 components, all interdependent. If each individual component had a reliability factor of .99999 , it would mean failure of 1 out of 4 such missiles. Success demands quality control of all components. And quality control is the reason why all CAMBION Components meet or surpass Government specifications.
Get complete details. Write to Cambridge Thermionic Corporation, 457 Concord Avenue, Cambridge 38, Massachusetts.

Cambion Shielded Coil Forms are available in different configurationa. They include single and double-tuned types and types for both conventional and printed eireuita. One type incorporates CAMBIoN's unique, new traverene tuning which pro-
videa smoother, more preciee tuning.

The guaranteed electronic components

IDEAS FOR DESIGN

Biased Emitter Follower Limits Pulse Amplitude

In transistor pulse circuits, pulse amplitude limiting is usually obtained with biased clipping diodes. However, this can also be clone by applying the desired limiting voltage to the collector of an emitter follower. This method is very convenient, since an emitter follower stage is often included in a complete transistorized pulse circuit design.
A conventional emitter follower is shown in Fig. 1. The collector voltage is usually the same

Fig. I. Conventional emitter follower.
as that supplied to the previous stages. The input voltage swing is always less than, and the output voltage swing can never be greater than, the collector voltage. Therefore, to clip or limit the output pulses at a desired level, it is only necessary to reduce the collector voltage accordingly. This is shown in Fig. 2.
For laboratory work, a potentiometer can be used to set the desired limiting voltage value. Once the optimum resistance ratio is determined, two fixed series resistors can be used as the voltage divider. The output pulse level will be approximately equal to the collector bias voltage. Thus, pulse amplitude limiting is obtained by

Fig. 2. Pulse amplitude limiting is oblained by apply. ing the desired limit voltage to emitter follower collec. tor.

CIRCLE 125 ON READER-SERVICE CARD $>$
ELECTRONIC DESIGN • April 27, 1960

116 reasons why we can help you put your finger on the right plastic faster

85 Phenolite ${ }^{8}$ laminates...

16 grades of vulcanized Fibre...

3 different thermoplastics...

12 grades tor printed circuits...

This will give you an idea of how surely National can help you pinpoint exactly the plastic you want. National has the broadest line in the industry, including standard forms, precision-fabricated parts, and a huge stock of many grades ready for immediate shipment. For
fast help, samples, or more information, contact your nearby NVF sales office. You'll find the 'phone number in Sweet's Product Design File $2 \mathrm{~b} / \mathrm{Na}$. Or write NVF, Dept. T, Wilmington, Del. It's a direct line to the one best material per dollar of design performance.

NATMOTAE vUKCANEZED FHBRECO. WIIMINGTON99. DEIAWARE
In Conado:

Three hundred and sixty standard ratings for quick delivery ．．specials on request．This compact，sturdy unit is avail－ able in a variety of tripping characteristics：standard time delay，short time delay，instantaneous trip．Auxiliary switch optional．Breaker available from 20 milliamps to 50 amps －with maximum voltage range 250 volts a－c or 50 volts $\mathrm{d}-\mathrm{c}$ ．

Call your local Westinghouse Sales Representative for a demonstration of the Hynetic breaker，or write or wire Standard Control Division．Westinghouse Electric Corporation．Beaver．Pa．

J－30314
＊Hynetic is the Westinghouse trade－mark for its new hydraulic－ magnetic breakers designed specifically for the electronics industry．

using only two additional resistors with an existing emitter follower.
William B. Turner, Senior Engineer, Fairchild Astrionics Div., Fairchild Engine \& Airplane Corp., Long Island, N. Y.

Clamping Diodes Safeguard Variable Light Intensity Control

The idea for a variable light-intensity control, Fig. 1, (Electronic Design, Dec. 9, 1959 p 159) has considerable application. However, one cirsuit error could cause damage to the 2 N 123 transistor, due to excessive voltage from collector to base in the off condition (-36 v).
The addition of diodes D1 and D2, Fig. 2, clamp the base and collector voltages of the 2 N 123 , preventing the occurrence of over-voltage. The ciruit operation is not altered by these additional components.

Fig. 1. Light intensity control circuit based on variable duty cycle as published in ELECTRONIC DESIGN. Dec. 9, 1959, p 159.

Fig. 2. The 2 N 123 transistor of Fig. 1 is safeguarded by adding clamp diodes D1 and D2.

Roy P, Foerster, Engineer, The Martin Co., Baltimore 3, Md.

Up-to-the-minute news about transistors

NEW DAP TRANSISTORS SWITCH 5 TIMES FASTER

$\mathrm{V}_{\text {be }}$ BASE-TO-EMITTER TURN OFF VOLTAGE IN Voc
COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS FOR 2N1073, A, B

ABSOLUTE MAXIMUM RATINGS							
$\begin{aligned} & \text { TYPE } \\ & \text { WUMEEMS } \end{aligned}$	$\begin{aligned} & \text { vee } \\ & \text { vel } \end{aligned}$	$\begin{aligned} & V c b \\ & V d c \end{aligned}$	vei vac	le Adc ce	${ }_{\text {Wc }}$	I Storage	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { 2N1073 } \\ & \text { 2N1073A } \\ & \text { 2N1073B } \end{aligned}$	$\begin{aligned} & -80 \\ & -80 \\ & -120 \end{aligned}$	$\begin{aligned} & -40 \\ & =80 \\ & -120 \end{aligned}$	10	10	35	-60 to +100	1000

[^9]Higher breakdown than ordinary transistors also a DAP feature.

Now design engineers are freed from many of the limitations im posed by ordinary germanium alloy transistors. Bendix* ger manium PNP Diffused-Alloy Power DAP* transistors can switch up to 10 amperes with typical speeds of a microsecond.
While maintaining high collector-to-emitter breakdown voltage - up to 120 volts- the new transistors provide lower input resistance, controlled current gain, and higher cut-off frequency. Particularly suited to high current, ticularly suited to high current, high frequency switching, the
DAP transistor's exclusive feaDAP transistor's exclusive fea-
tures will suggest to the design engineer many new applications which, until now, have not been feasible.
NEW BENDIX SEMICONDUCTOR CATALOG on our complete line of power transistors, power rectifiers and driver transistors available on request.

Bendix offers many challenging opportunities in semiconductor engineering and sales. Write Personnel Manager for full details.

- Trademarm

SEMICONDUCTOR PRODUCTS
Red Bank Division iona manch. n. o.

117 E Providencia Avenue, Burbant, Callfomia Midwent Salen Office, 2N565 York Road, Elmhurfl, Illinol Now England Soles Office: 4 lloyd Road. Towksbury, Massachiunem Export Sales Ollice: Bendiz Intornational Division,
205 $£ 4$ nd Street, Now York 17, Now Yort Canadion Afiliale: Computing Devices of Canada, LId.

IDEAS FOR DESIGN

Pulse Transformer Helps Provide Two-Input, Exclusive-Or Logic

A high-speed, two-input. Exclusive-Or gate was needed which would work with pulse widths of about $0.2 \mu \mathrm{sec}$, and give good rise and fall times. It had to be a reliable, small and simple system.

The circuit shown, using a tiny pulse transformer, perforns the Exclusive-Or logic usually indicated by: $\mathrm{AB}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}$. With negative pulses at either A or B (the other terminal at ground) there will be a negative pulse at output C. If there are negative pulses at A and B simultaneously, there will be no output at C because of the flux cancellation between the two input windings.
Diodes D_{1} and D_{2} clamp the input pulses to the same level. This insures goorl flux cancellation when both inputs are present.

The circuit performs the Exclusive-Or logic of $\mathrm{AE}^{\prime}+$ $\mathrm{A}^{\prime} \mathrm{B}$.
Jack Shirman, Supervisory Engineer, Strom-berg-Carlson, Rochester, N.Y.

Choke-Zener Duo Reduces Regulator Ripple

We wanted to reduce the ripple voltage in a simple, emitter follower voltage regulator. without using bulky capacitors or heavy line chokes.
We did it by placing a small choke in series with the resistor R. The ripple voltage across the Zener diode is then attenuated by a factor $\frac{R_{z}}{\omega L+R+R}$, where R_{z} is the dynamic resistance of the Zener and ωL is the impedance of the choke. The regulated output voltage follows the

A choke-Zener diode combination reduces the out. put ripple in this emitter follower voltage regulator

ElECTRONIC DESIGN'S

Career Inquiry Form:
Your Personal Representative

"I like to select my applicants through ELECTRONIC DESIGN'S Resume Form-it saves time. Because of its completeness, I am able to match the applicants' total needs with the many opportunities at General Mills.'
says Mr. Graham Lambert, Personnel Manager of General Mills' Mechanical Division.

Personnel Managers throughout the electronic industry are voicing favorable comments about ELECTRONIC DESIGN'S Career Inquiry Service. They've found that it saves precious time, and allows them to get in touch with you sooner.

Why not take advantage of this convenient, time-saving form, and let it serve as your personal representative to the companies of your choice.

* No Holding Power Solenoid Actuated

SPECIFICATIONS
IMPEDANCE 50 ohms
VSWR
INSERTION
LOSS
CROSSTALK
.4 db

WEIGHT
30 db
8.7 oz.

- also new from TRANSCO Waveguide Transfer Switch

SEND FOR COMPLETE PRODUCT DATA

TRANSCO

PRODUCTS INC.

12210 NEBRASKA AVE. LOS ANGELES 25, CALIF CIRCLE 130 ON READER-SERVICE CARD

Zener diode voltage, resulting in a very low output ripple.

Note that the resistance of the choke becomes part of resistor R. and that the choke carries only a fraction of the load current.

Matthew E. A. Hermans, Project Engineer, The Western Union Telegraph Co., New York, N. Y.

Neon Lamp Matrix Stores Information Visually

The neon lamp matrix shown is a memory device for storing information visually. Any number of lamps cam be selected simply by pushing the appropriate row and column pushbuttons. The lamps are extinguished by operating the EXT pushbutton. The selection method lends itself very readily to automatic operation by relay contacts, stepping relays, and saturated transistors. Also, the matrix can have a wide range of rows and columns.
The maintenance voltage V_{m} is large enough to keep an ignited neon lamp on, but is too low to fire it alone. The series addition of V, is sufficient for firing. A particular lamp is turned on by pressing the corresponding row and column pushbuttons, as shown for lamp C_{2}. This connects V_{f} to the resistors of lamps A2, B2 and C2. Lamps $A 2$ and $B 2$ do not trigger because they are shunted through their diodes to V_{m}. $C 2$ is shunted to an open circuit, so it triggers. When the pushbuttons are released, C2 remains on, supplied by V_{m} through the EXT pushbutton and the series diode.

Row and column pushbuttons select desired neon lamp in visual storage device.
A. Hemel, Project Engineer, Applied Research Dept., Motorola Inc., Chicago, Ill.

Time Delay Relays DESIGNED FOR YOUR APPLICATIONS

As represented above, Curtiss-Wright is manufacturing Time Delay Relays for your special applications. Included among the features are:
Instantaneous resetting contacts - Chatter-free operation Voltage and High Temperature compensation - Snap action Hermetically sealed • Resistance to severe shock and vibration Multiple load contacts

Our application engineers are available to assist you with your individual time delay requirements. Many of the features indicated above are presently included in our standard relay line.
ultrasonic delay lines Curtiss-Wright produces
WRITE
FOR
COMPONENTS
CATALOG
260 A

Magnetostrictive Delay Lines featuring delays from 5 to 12,000 microseconds, small size, hermetically sealed, and light in weight. Delay lines are designed to meet your application.

COMPONENTS DEPARTMENT.ELECTRONICS DIVISION
CURTISS M WRIGHT
CORPORATION - EAST PATERSON, N.J.
time delay relays - delar lines - ROTARY SOLENOIDS - digital MOTORS - TIMING DEVICES - DUAL RELAYS - SOLID STATE COMPONENTS CIRCLE 131 ON READER-SERVICE CARD
\because

NEW ALUMINUM-CASE HIPERMAGG CORE DEFIES ABUSE, PROTECTS PERFORMANCE

All-new Westinghouse aluminum-case Hipermag cores bring you three exclusive advantages:

- Minimum height, maximum seal, excellent winding contour are provided by the new overlap flange closing of case.
- Ample insulation of wire wound directly on the case is assured by its hard, tough, black anodized coating.
- Full protection against continuous vibration, shock and temperature cycling is made possible by a new silicone damping medium developed by Westinghouse Research Laboratories. Moreover, protection of core magnetic characteristics is effective at all operating temperature ranges.
Aluminum-case Hipermag cores are tested in accordance with EIA standards and are available in EIA standard sizes. Special tests and sizes can be secured. These cores, as well as polyclad hermetically sealed Hipermag cores, are available in Hipernik $\otimes \mathrm{V}$ (50% oriented nickel-iron) and 4-79 Permalloy (square loop) in a variety of thicknesses.
Forcomplete information, call your Westinghouse representative or writeSpecialty Transformer Department, Westinghouse Electric Corporation, P.O. Box 231, Greenville, Pennsylvania.
no can WATCH "WESTINGHOUSE LUCILLE BALL-DESI ARNAZ SHOWS" CBS TV ALTERNATE FRIDAYS

Broad-Band Backward-Wave Amplifier Patent No. 2,911,558. M. R. Curie. (Assigned to Hughes Aircraft Co.)

Backward-wave amplifiers usually have small bandwidths. For a given electronbeam velocity there is only a narrow band of frequencies in the traveling wave which can be amplified. Formerly two stagger-tuned helices were used to increase the bandwidth. Unfortunately, this also reduced the gain. The invention lies in splitting the cathode in half and operating the sections at different voltages. With stagger tuning, discrete frequency amplification bands are produced, giving a much greater operating gain-bandwidth product.

In the schematic, cathode 26 is split and the sections are biased by battery 34 to produce two separate electron streams. The input and output helices are isolated by drift tube 44 to permit stagger tuning. The dispersive characteristic of the two beams result in the composite broadband characteristic 58. The cathode can be split into four sections or more, since back-ward-wave amplifiers essentially are low current devices.

Line Cord Antenna

Patent No. 2,915,627. J. C. Spindler. (Assigned to Zenith Radio Corp.)
An economical, simple and electrically

MIXER-PREAMPLIFIERS
for

EXTREME MINIATURIZATION

Featuring rugged construction and small ize, low weight and power consumption, the LEL MMX-4 Mixer-Preamplifier utilizes all solid-state components to provide design engineers with an ideal microwave receiver front end, for wide applications.

Noise Figure

Noise Figure10db typical . Power Requirements $\ldots+20 \mathrm{v}$ © 10ma. -20 v

 Bandwidth 20 mc Send for comprebensive Microuare, IF, RF Amplifier Catalog. ZEL .as 380 OAK STREET, COPIAGUE, ' N. Y.

CIRCLE 132 ON READER-SERVICE CARD
ELECTRONIC DESIGN • April 27, 1960
safe indoor antenna is made from a section of power line cord. It is adaptable to TV receivers having a 300 -ohm balanced antenna input.

Bifilar cord 19 is covered by an ordinary wire shield, 23 , and coiled within housing 10. Interwound wire 24 holds the coil rigid. The coil diameter is about
one inch, and is made from a line cord section $29-1 / 2 \mathrm{in}$. long, effectively about 3/8 wavelength in the vhf television band. Some compensation is obtained by switching in capacitor 42 , capacitor 43 or choke 44. The receiver of terminals are brought to wires 39 , which are connected to the ends of the stranded wire braid 23.

circle 133 on reader-service cand
ELECTRONIC DESIGN • April 27, 1960

ROTO-TELLITE
 WORD INDICATOR LIGHT

REBULBS FROM FRONT WITHOUT TOOLS

REBULB, FROM FRONT in seconds. Just push one edge of capsule with finger - the capsule rotates, for easy replacement of bulbs (or legends) without tools.
MOUNTS FLUSH - the ROTO-TELLITE protrudes only $1 / 8^{\prime \prime}$ from -panel surface, making a clean installation. Mounting can be arranged in any configuration . . . modules stacked horizontally and/or vertically. Fortyfour standard configurations.
QUALIFIED to MIL-5272B, MIL-T-5422 and BU AER XEL-818. Indestructible, high-temperature nylon construction.

REMOVABLE CONTROL CAPSULES

AVAILABLE FOR:

115 Vac, 60 cps circuitry (eliminates transformers) Master press to test
Dim-bright operation
Feedback prevention
ALSO AVAILABLE:
Two color lights (automatic 'go-no go' color change) Divided lights (separate colors and legends)
Switch lights (with all ROTO-TELLITE features)

Write for complete catalog
MASTERSPECIALTIES CO.
956EASTIOEIMSTREET

LOS ANGELES 59, CALIF. CIRCLE 134 ON READER-SERVICE CARD

BEFORE YOU BUY

PRECISION GEARS	QUALITY FEATURES	APPCO GEARS	Compeliior A	Competior B
Qtrict adherence to all A.G.M.A. specifications	YES	NO	NO	
All numbers of teeth available in aluminum and stainless steel	YES	YES	NO	
Consecutive tooth sizes in all pitches	YES	NO	YES	
Choice of four (4) bore sizes in flat gears at no cost	YES	NO	NO	
Tapes supplied at no cost on all precision gears	YES	NO	NO	
Blank configurations proportional to their diametral pith	YES	NO	NO	
Gears "Mylar" sealed on trays to protect the precision	YES	NO	NO	

ONLY APPCO Certified STOCK GEARS

OFFER ALL THESE FEATURESI

You get extra value in every APPCO Precision Gear. Extra value in the finest qualities not offered by other gear manufacturers. Compare them before you specify or buy!

Every APPCO Gear is made to A.G.M.A. specifications. Held to tolerances. Certified to precision-fit shaflings, and components. Each gear is sealed in plastic to be free of dirt, dust or corrosion and assure its arrival at your plant "factory-fresh" ready to use on the most critical assemblies.
APPCO Certified Precision Stock Gears are available in $32,48,64,72,96$ and 120 diametral pitches of $141 / 2^{\circ}$ and 20° pressure angles. Spur gears, pin or clamp type ... hubless and anti-backlash. For complete technical data and catalog write to .. .

ATLAS PRECISION PRODUCTS COMPANY
Division of Prudential Industries
Philadelphia, Pa.
APPGD

Symposium on Basic Research

Dael Wolfle, Editor, American Associa tion For The Advancement Of Science, 1515 Massachusetts Ave., N.W., Washington 5, D. C., 308 pp, \$3.00.

Collected here are the papers presented at the Basic Research Symposium held in New York City in May, 1959. Discussed was the kind and amount of support society ought to give the scientists engaged in basic and applied research. Sponsored by The National Academy of Sciences, The American Association for the Advancement of Science, and The Alfred P. Sloan Foundation, the Symposium also dealt with the role of government, industry and the private institution in supporting research activities. In summarizing their discussion, the
scientists emphasized that any proper program of basic research in science must include support for creative scholarship in the humanities, in the fine arts, and in the "whole range of man's intellectual life".

Among the authors of papers in this volume are Dwight D. Eisenhower, J. Robert Oppenheimer, James R. Killian, Jr. and James B. Fiske.

Value Engineering 1959

Proceedings of the EIA Conference on Value Enginecring, Engineering Publishers, P. O. Box 2, Elizabeth, N.J., 165 $p p, \$ 6.00$.

The complete versions of all of the technical papers presented at the Electronic Industries Association Conference

The Miniature Agastat time delay relay is a space-saving answer to aircraft, missile and computer problems. You get all these valuable features in one small package:

- Easily adjustod riming ranges as short as .030 seconds.
- Ropeot accuracy of $\pm \mathbf{5 \%}$.
- Time delay on onergizing or do-onorgizing.
- For DC or AC operation.
- Hormetizally soaled or dust-proof housings.

Write today for the fill details on the new miniature Agastat. Dept. A36-424.
AGA ELASTIC STOP NUT CORPORATION OF AMERICA
1027 Nowork Avenue, Elizaboth, N. J.
Gasactumulator Co., (Canada) Lid., 12 Gower Streat, Toronto 16. Ontario CINCLE 136 ON READER-SERVICE CARD

ELECTRONIC DESIGN • April 27, 1960
on Value Engineering are contained in his text. Held at the University of Pennylvania, October 6 and 7. 1959, it was the irst comprehensive industry conference pn this subject. The papers cover basic oncepts and philosophies, techniques, pplications, and relationships with other vork areas. Customer, manufacturer. and endor viewpoints are represented.
Value Engineering, or Value Analysis s it is frequently called. is a new engireering specialty seen to pay large divilents to both supplier and customer. Originating in naval shipyards several ears ago, its success attracted wide atention. Several important electronic cquipment manufacturers, among others, dopted its principles with very encourkging results.

Electrical Circuits, Signals, And Systems
;amuel J. Mason and Henry J. Zimmermann, John Wiley d Sons, Inc., 440 Park Ave. S., New York 16, N. Y., 616 pp , \$12.50.
Based upon an understanding of ele-
mentary electric circuit theory, this text presents matrix, topological, and signal flow methods for circuit and system analysis. In each case the formulation and solution of electronic circuit problems is stressed, but the methods are applicable to many other fields.

The treatment of signals is based on the correlation function, the Fourier integral, and the Fourier series. Pulse, periodic, almost-periodic and random signals are analyzed and synthesized. Amplifier circuits are used to illustrate the transmission of signals through linear systems, with transform techniques and convolution providing the basic mathematical tools. These tools are also applied to nonlinear and time-varying linear systems. The negative-feedback concept is introluced and its implications are illustrated by a number of examples.
This book is one of several resulting from a recent revision of the Electrical Engineering Course at The Massachusetts Institute of Technology. Although designed for an undergraduate curriculum, it covers material which many colleges offer on a post-graduate level.

New Precision Hallgenerators reliable magnetic test equipment
siemens hallgenerators - ten different types available from stock.
GAUSSMETERS - portable and stationary technical instruments, laboratory precision meters-no amplifier.
COERCIMETERS - for instant indication of $\mathrm{H}_{\text {, }}$ between 200 and 5000 oersteds.

CIRCLE 137 ON READER-SERVICE CARD

Designed for integration with high-temperature aircraft/missile components, this newest addition to Airborne's line of miniaturized capacitors offers a working itemperature range of -65 to $+700^{\circ} \mathrm{F}$ without voltage derating and with low capacitance variation.
As a dielectric for this new Airborne capacitor, we use a ribbon of thin, pure mica-because mica maintains its characteristics at temperatures well above $700^{\circ} \mathrm{F}$. The conductor is aluminum foil, and the completed winding is encased in a stainless steel can for maximum corrosion resistance. A new copper spray technique has also been developed to provide high-temperature end connections. For terminals a special ceramic is used. These and other refinements provide the characteristics listed in the column opposite.

If you have requirements in hightemperature miniaturized capacitors, consult Airborne. Besides mica construction, we offer metallized Mylar* and Teflon typesnoted, as are all Airborne capacitors, for their electrical and mechanical reliability. Mylar is recamended to $300^{\circ} \mathrm{F}$: Teflon to $400^{\circ} \mathrm{F}$. Contact any of our offices or write for Product Bulletin PS -GA.
STANDARD CHARACTERISTICS AIRBORNE HIOH-TEMPERATURE MICA capacitors
Temperature: -65 to $+700^{\circ} \mathrm{F}$
Rated voltage: 300 VC
Ute: 250 hr . min. © 340 VDC and 700 ${ }^{\circ}$ F
\ddagger Capaeitaneo tolerance: 10% Sid. Dissipation factor © room temp. 10,000 megohm/ mfd © $25^{\circ} \mathrm{C}$
Du Port's TM for ins polyester film
tD Port's TM for its tetrafluoroethylene resins
tcloser tolerances on special order

Engineered Equipment for Aircraft and Industry
AIRBORNE ACCESSORIES CORPORATION HILLSIDE 5, NEW JERSEY - Offices in Los Angeles and Dallas CIRCLE 139 ON READER-SERVICE CARD

RUSSIAN TRANSLATIONS

J. George Adashko

Mutual Inductance Elements Lead to

Fewer Filter Circuit Components

Fig. 1. An equivalent circuit, without mutual inductonce elements, can be found from this circuit's mesh equations.

FILTER CIRCUIT designers will recognize that there are several filter configurations which appear fairly frequently in their designs. If two-port networks with mutual inductances are used in these filters, the required number of filter elements can usually be reduced. The attenuation characteristic of the mutual inductance filter will be the same as the one it replaces.
Several common filters without mutual inductance elements are presented here, together with their mutual inductance equivalents. In working out the design equations for the "mutual" filters, a "work backwards" approach is used. That is, we start with a mutual filter and from its princi-
al network equations the equivalent "nonputual" filter is deduced. Working in this way, a ble was obtained of mutual and non-mutual quivalents.

etermining The Mutual-Non-Mutual Filter

 quivalentsWe will illustrate our approach with the mutual rductance circuit of Fig. 1. Using the symbols dicated in the figure and assuming equal couling coefficients between the windings, the mesh quations are:
$\eta_{1}=I_{1}\left(Z_{2}+Z_{3}+2 Z_{23}\right)$

$$
+I_{3}\left(Z_{2}+Z_{12}+Z_{13}+Z_{23}\right)
$$

$$
\begin{equation*}
+I_{4}\left(Z_{3}+Z_{23}\right)+U_{2} \tag{1}
\end{equation*}
$$

$=I_{1}\left(Z_{2}+Z_{12}+Z_{13}+Z_{23}\right)$
$+I_{3}\left(Z_{1}+Z_{2}+2 Z_{12}+Z_{4}\right)$
$+I_{4}\left(Z_{13}+Z_{23}\right)$
(2)
$=I_{1}\left(Z_{3}+Z_{23}\right)+I_{3}\left(Z_{13}+Z_{23}\right)$
$+I_{4}\left(Z_{3}+Z_{5}\right)$,
(3)
here

$$
\begin{align*}
& Z_{12}=k \sqrt{Z_{1} Z_{2}} \\
& Z_{13}=k \sqrt{Z_{1} Z_{3}} \tag{5}\\
& Z_{23}=k \sqrt{Z_{2} Z_{3}} \tag{6}
\end{align*}
$$

Eliminating the currents I_{3} and I_{1} from Eqs. 1 3, and noting that $I_{1}=I_{2}$, we obtain the prinpal equations for the four-terminal network:

$$
\begin{align*}
U_{1} & =U_{2}+I_{2} Z, \tag{7}\\
I_{1} & =I_{2} . \tag{8}
\end{align*}
$$

Here:
$=\frac{Z_{1} Z_{5}\left(Z_{2}+Z_{3}+2 Z_{23}\right)+Z_{a}{ }^{3}}{Z_{3} Z_{4}+Z_{5}\left(Z_{1}+Z_{2}+2 Z_{12}+Z_{4}\right)+Z_{b}{ }^{2}}$, , 9$)$ here:
${ }^{3}=Z_{1} Z_{2} Z_{3}\left(1-3 k^{2}+2 k^{3}\right)+\left(1-k^{2}\right)$

$$
\left\{Z_{2} Z_{3} Z_{4}+Z_{\overline{7}}\left[Z_{1}\left(Z_{2}+Z_{7}\right)+Z_{2} Z_{7}\right]\right\}
$$

$$
\begin{equation*}
+2\left(1-k^{\prime}\right) Z_{6}\left(Z_{12} Z_{3}+Z_{1} Z_{23}-Z_{2} Z_{13}\right) \tag{10}
\end{equation*}
$$

$b^{2}=(1-k) Z_{3}\left[(1+k)\left(Z_{1}+Z_{2}\right)+2 Z_{12}\right]$. (11)
The simple, two-port network, Fig. 2, with im-

Fig. 2. This is the circuit representation of Eqs. 7 and 8.

PFrers nonevwell gioncenino tme futune
for the most reliable answer...

New Decimal-to-Binary Switch

for Computing Applications

This new Decimal-to-Binary Rotary Input Switch is the most reliable ever designed for use on computers. It saves space in the control console, requires only 1.3 square inches of mounting surface. All operating positions are detented to give the operator positive feel of the switching action. Important design differences make this micro switch Decimal-to-Binary a better answer than ordinary wafer-type rotaries. Here is a convincing comparison of the two types:

MICRO SWITCH Decimal-to-Binary

I Switching elements are en closed.
2 Contact is made by snap-action gold contact
3 Wiring requires only 8 connections to 8 terminals.
4 Wiring is done in just one plane.
5 Virtually tamper proof.

Wafer-Type Rotary

1 Switching elements are open, unprotected.
2 Contact is made by sliding contact.
3 Wiring requires making 26 connections to 15 terminals.
4 Wires must be radially attached.
5 Easily subject to tampering.

Write to micro switch for Data Sheet 170 on this new Decimal-to-Binary Rotary Input Switch, or call the nearby branch office listed in the Yellow Pages.

MICRO SWITCH . . . FREEPORT. ILLINOIS
A division of Honeywell
In Canada: Honeswell Controls Limised, Toronto 17, Ontario

H
Honeywell
MICRO SWITCH Precision Switches
CIRCLE 140 ON READER-SERVICE CARD
 zualley

ILLINOIS UP-RIGHT Miniature

Electrolytic Capacitors ... Type SMTU finest for TRANSSTTORZED CICCUITRY
Aluminum cesed, with exclusive patenned hormeite sealling. seable under lomparafure entromes - stable to shoek and vibration.
Guerantied long life. Fully tostod and epproved. Millions now in use.

Type SMTUCN

Dual Common Negetive

Separate Anodes
Compact construction permits exceptional space savings and economy which is highly desirable in medern transistor circuity. One capacitor soves space where eormally two Individual capacitors were revieualy needed These dual units are deal for bypass, Altering or coupling where a commen ground exists.

Type SMTUCP
Oual Common Positive Separate Cothodes
These dual section common anode constructed capacitors have cathodes which are electrically soparated and isolated. Unique construction with "floating" cathodes makes these ideal for coupling, filtor and bypass cirevits for "ebove ground" applications.

Fomperarure Range: -40 ro $+65^{\circ} \mathrm{C}$ atse availabla -30 to $+85^{\circ} \mathrm{C}$
Volloge Range: 3 to 250 volis

ILLINOIS
 CONDENSER COMPANY 1616 NORTH THROOP STREET CHICAGO 22, ILL EV 4-1300

Expent Depertment: is Moore Streot, Now York A. Now York

CIRCLE IA! ÖN READER-SERVICE CARD

WORKING WITH

RUSSIAN TRANSLATIONS

pedance Z in the longitudinal branch, corresponds to Eqs. 7 and 8.

In the case of very strong coupling between the windings of Fig. 1, a case of great practical interest, we have:

$$
\begin{equation*}
k=1 \tag{12}
\end{equation*}
$$

Then $Z_{a}{ }^{3}=Z_{b_{0}}{ }^{2}$, and:

$$
\begin{equation*}
Z=\frac{Z_{3} Z_{4} Z_{5}\left(1+\varphi_{2}\right)^{2}}{Z_{3} Z_{4}+Z_{5}\left(Z_{2}\left(1+\varphi_{1}\right)^{2}+Z_{4}\right)}, \tag{13}
\end{equation*}
$$

where:

$$
\begin{align*}
& \varphi_{1}=\sqrt{\frac{Z_{1}}{Z_{2}}}, \tag{14}\\
& \varphi_{2}=\sqrt{\frac{Z_{2}}{Z_{3}}} . \tag{15}
\end{align*}
$$

The circuit of Fig. 1 is balanced if $k=1$ and if:

$$
\begin{equation*}
Z_{2}=Z_{3} . \tag{16}
\end{equation*}
$$

In this case $\varphi_{2}=1$ and we obtain from Eq. 13:

$$
\begin{equation*}
\frac{1}{Z}=\frac{1}{4 Z_{2}}+\frac{\left(1+\varphi_{1}\right)^{2}}{4 Z_{i}}+\frac{1}{4 Z_{5}} \tag{17}
\end{equation*}
$$

The impedance arrangement corresponding to this equation is shown in Fig. 3. For the case $k=$ 1 and $Z_{2}=Z_{3}$, we have the equivalent circuit I shown in the Table.

From the equations above, and Figs. 2 and 3, we can derive the equivalent circuits, II to VII. of the Table. The relations between the elements of the equivalent pairs are indicated in the figures. In spite of the asymmetry in the structure of some of the two-port networks, all these circuits are balanced.

Next we will find the equivalent two-port network, without mutual inductances, to the circuit shown in Fig. 4. The coupling coefficients between all windings are assumed equal. We then

Fig. 3. General form of the circuit, without mutual inductance elements, is equivalent to the mulual inductance circuits of Fig. 1.

S:C
mrcon
tubular
capacitors
ultra-high precision with a
NEW DEGREE of
RELIABILITY

SOUTHERN ELECTRINICS CORP, has long been a leader in the design and manufacture of high-precision tubular capacitors, and has pioneered in supplying them for critical applications in computers. missiles, communications and other high-grade military and com mercial equipment. They are made to the same standards as our high pre cision polystrene capacitors so widely accepted for military applications.
SEC tubular capacitors are manufac tured under unusually critical quality tured under unusually critical quality control standards, resulting in toler and hermetic sealing guarantees accu racy over wide environmental changes
SIC eubuiars are available in a wide sec tublars are available in a wide range 100 mm d to any higher value in rolystrene, myla metallized mylar, dertrics. dielectrics.
All SEC tubular capacitors meet or xceed the most rigid MIL-SPECS.
In addition, we manufacture a com lete line of fubular capacitors fo ommercial applications. Let us know your requirements.

Write today for detailed technical data and general catalog.

Time has lirought decisive progress in the fight against cancer. Ten years ago one in four persons with cancer was saved. Today it's one in three. But time alone will not conquer cancer.Time plus research will. And research needs your dollars. Send your contri-, bution today to "Cancer," c/o your local post office.

american cancer society

Fig. 4. This circuit, with 3 mutual inductance elements, has the same electrical characteristics as its nonmutual inductance equivalent, Fig. 5.

Fig. 5. Equivalent pairs VIII and IX are derived from this circuit and the circuit of Fig. 4.

Fig. 6. Using circuit V from the Table, an equivalent, with mutual inductance elements, to this filter circuit can be found.
obtain, for matched connection of all windings:

$$
\begin{gathered}
U_{1}=2 I_{1}\left(Z_{1}+Z_{11}\right)+2 I_{3} Z_{12}+U_{2}^{\prime}, \\
0=2 I_{1} Z_{12}+I_{3}\left(Z_{2}+Z_{3}\right),
\end{gathered}
$$

where:

$$
\begin{gather*}
Z_{11}=k Z_{1} \tag{20}\\
Z_{12}=k \sqrt{Z_{1} Z_{2}} \tag{21}
\end{gather*}
$$

Eliminating the current I_{3} from Eqs. 18 and 19 and noting that $I_{1}=I_{2}$, we find that the principal equations of the network of Fig. 4 are the same as Eqs. 7 and 8 if:

$$
\begin{equation*}
Z=2 Z_{1} \frac{Z_{2}\left(1+k-2 k^{2}\right)+Z_{3}(1+k)}{Z_{2}+Z_{3}} \tag{22}
\end{equation*}
$$

Thus, the circuit of Fig. 4, like that of Fig. 1, is equivalent to the four-terminal network shown in Fig. 2.

Eq. 22 can be rewritten:
$Z=2 Z_{1}\left(1+k-2 k^{2}\right)+\frac{1}{\frac{1}{4 Z_{1} k^{2}}+\frac{1}{4 Z_{3} k^{2} \varphi_{1}{ }^{2}}}$,
where φ_{1} is determined from Eq. 14.
 systems often require temperature control within close limits - while ambient temperatures fluctuate widely. Eastern refrigera-tion-type cooling systems are ideal for such conditions.

Designed for the strictest military requirements, these vapor-cycle closed-system packages are built around a highly efficient compressor powered by a special 400 -cycle motor. Unique condensing and special cooling methods are called upon to meet the most unusual operating requirements, the most demanding specifications.

Capacities range from 100 to $\mathbf{6 0 0 0}$ watts; operating altitudes extend to 100,000 feet. Some units, of the "boil-off" type, perform almost without regard for extremes in altitude and temperature.

Call on Eastern for imaginative solutions to all avionic cooling problems . . . and write for new Bulletin 360.

other refrigeration units for aircraft and missile electronics

EASTERN INDUSTRIES INCORPORATED

CIRCLE 145 ON READER-SERVICE CARD

The New Standard Of STABILITY At $5 \mathrm{mc} .$.

BLILEY TYPE: BG6IAH-5

ONE PART PER

 BILLION(with temperoture control)

Bliley BG61A-5 units have long been the unanimous choice for stability at 5 mc . Now, this outstanding crystal has been RUGGEDIZED for applications that demand high stability under shock and vibration. The
ruggedized unit, Bliley type BG61AH-5, will withstand vibration from 10 to 200 cps at 10 G and acceleration of 50G
with frequency change less than
1×10^{3}. Request
Bulletin 519.

BLILEY ELECTRIC COMPANY
 UNION STATION BUILDING
 ERIE, PENNSYLVANIA

CIRCLE 146 ON READER-SERVICE CARD

ELECTRONIC DESIGN PERSONNEL REQUISITION

Position to be filled: Assistant editor-Engineering writer
Department:
Editorial Department
Job Description: Report on new developments and trends. Classification and evaluation of all New Products announced by industry.
Qualifications needed by applicant:
Education: EE degree or equivalent educational background
Experience: One or two years as components engineer and/or work in Engineering Standards Department. Some experience in writing evalvation reports.
Date position open: NOW
Salary to be paid: $\$ 6,000$ to $\$ 8,000$ depending on qualifications of applicant.

> Edward E. Grazda,
> Approved
> Editor-in-Chief ELECTRONIC DESIGN
> HOW DO YOU APPLY FOR THIS OPENING?
> Send lether oultining your experience and bockground to
> Edward E. Grazda, Editor ELECTRONIC DESIGN
> Hayden Publishing Co., Inc.
> B30 Third Avenuo, Now York 22, Now York

RUSSIAN TRANSLATIONS

The circuit corresponding to this expression is shown in Fig. 5.
Using the circuits of Figs. 2 and 5. we can obtain the equivalent circuits VIII and IX, listed in the Table.

Filter circuits with mutual inductance elements can replace their non-mutual inductance equivalent as shown in this table of filter pairs.

I

III

(a)
(b)

IV

As basic to construction as nuts and bolts, the fast pulse generator is a main. stay in all phases of pulse circuitrydesign and development.
Crosby-Teletronics' Model PG.200AA is a wide range, precision instrument which generates adjustable rectangular waveforms with fast rise and decay times. Accurately calibrated wide ranges of pulse duration, amplitude, recurrence rate and positioning are provided. The unit may be driven by an external sig. nal of almost any waveform or may be operated self-synchronous. Either way, it furnishes a fast trigger to synchronize auxiliary equipment.

Modol PO-200AA
Fast-Pulee Coneratormseso.
Modol PBA-210
Range Extender -seo
The PG-200AA provides calibrated pulse position and duration ranges of 0.1 to 50 microseconds. With Range Extenders (Model PGA-210), both may be increased to 1000 microseconds. Write for operating data and specifications material.

Crosby-

 Teletronics Corporatlo54 Kinkel Street, Westbury, L. I., M. Y. CIRCLE 148 ON READER-SERVICE CARD ELECTRONIC DESIGN • April 27, 1960

THE AIL TYPE 132
This high precision instrument combines a high gain, low noise figure, intermediate frequency receiver with a secondary standard of attenuation to deliver extremely accurate measurements in a variety of applications:

Convenient and accurate method for the measurement of
NOISE FIGURE.

- Ideally suited to high accuracy. quick laboratory calibration of ff attenuators at all frequencies
Rapid and accurate in measure ment of the selectivity
characteristics of rif filters,
preselectors and similar devices.
- Valuable for measurement of coupling factors and directivities

The Type 132 is designed to operate from the i-f output of a wide variety of standard microwave mixers. In combination with these and a suitable local oscillator it becomes a sensitive detector of microwave energy.

Write for descriptive literature.

(A)AIRBORNE INSTRUMENTS LABORATORY
deEr park, long istand. new york A DIVISION
OF CUTLER-HAMMER, INC. CIRCLE IA9 ON READER-SERVICE CARD

(a)
(b)
V

(a)
(b)

V/

(a)
(b)

VII

(b)

VIII

(a)
(b)
$I X$

Applying the Equivalent Filter Circuits of the Table

Assume we are given the filter of Fig. 6 and we would like to find a mutual inductance equiva-

PRECISION POTENTIOMETERS

Immediate delivery from
local stock! CLAROSTAT DIIRECT LINE SERVICE

A complete line of precision and industrial electronic resistance devices as close as your telephone
right at your Clarostat industrial distributor.

DOVER. NEW HAMPSHIRE
DIAN MARCONI CO., LTD., TORONTO 17, ONT

CIRCLE 150 ON READER-SERVICE CARD

PRIZE PROGRAMMED PULSE

 PACKAGE. . for the engineer who needs fully controlled, bi-polar, high amplitude current pulses for R \& D in thin magnetic films and high speed ferrites. For eight step programming, large load handling capacity. multiple current outputs Rese Model 1020 Programmed Current Pulse Generator Write for Bulletin 57-B.

CIRCIE 151 ON READER-SERVICE CARD

CABLE RETRACTOR INSTALLED One support rail is shown cut away to more clearly illustrate complete TOP - insellabion sag at every stage MIDDIE - chassis partly withdrawn BOTTOM - slide extended, chassis tilted

PREVENTS ENTANGLING COMPONENTS

CABLE RETRACTOR

Withdrawal of a chassis for service and its refurn to position no longer presents the old bugaboo of cable entanglement with and damage to tubes and components in the chassis immediafely below if.
This new cable retractor's double action maintains a constant tension and correct suspension of cable at all times-permits adequate cable length for full extension and tilting of chassis without hazard of snagging.
May be used with all types of chassis or drawer slides, is adjustable to fit varying chassis lengths, is simple to install, and has proven thoroughly reliable in operation. Mounts on rear support rails on standard $13 / /^{\prime \prime}$ hole increments. Cadmium plated cold rolled steel.

Write for complete data
WESTERN DEVICES, INC. OME SOURCE:

600 W. FLORENCE AVE, INGLEWOOD, CALIF.

CIRCLE 152 ON READER-SERVICE CARD

CAM type capacitors. No derating to $65^{\circ} \mathrm{C} .70 \%$ rated voltage at $85^{\circ} \mathrm{C}$.
STAND OUT PERFORMANEE
More and more designers are counting on Chicago Condenser for capacitors of consistent quality. The high voltage capacitors shown above provide unusually small size combined with a high volts-per-mil rating and a high dielectric constant. Capacity tolerance is standard $\pm 10 \%$, or to your specifications.
Write for catalog showing complete line of MYLAR®, POLYSTYRENE, TEFLON ${ }^{\oplus}$, and other type capactiors.

Territories open for Representatives

CHICAGO CONDENSER CORPORATION
3255 W. Armitage Ave. / Chicago 47. lllinois CIRCLE 153 ON READER-SERVICE CARD

RUSSIAN TRANSLATIONS

(a)

Fig. 7. The filter of Fig. 6 consists of two identical halves.

Fig. 8. These circuits are electrically equivalent to those of Fig. 7.

Fig. 9. With mutual inductance elements this filter is electrically equivalent to the filter of Fig. 6 and has fewer components.
lent. This circuit can be divided into two parts, Fig. 7. Comparing Fig. 7a with circuit V of the Table, we can write:

$$
\begin{aligned}
i \omega L_{1} & =2 Z_{2} \\
\frac{1}{i \omega C_{1}} & =2 Z_{4}
\end{aligned}
$$

Hence:

$$
\begin{aligned}
& Z_{2}=i \omega \frac{L_{1}}{2} \\
& Z_{4}=\frac{1}{i \omega 2 C_{1}}
\end{aligned}
$$

Thus, the circuit of Fig. 7a can be replaced

WITH AN ALLISON FILTER

You can evaluate the amount of a noise and its frequency characteristics with an Allison Filter. You can make this evaluation regardless of whether the noise is continuous or intermittent, or whether it has sharp peaks. Allison Filters do not ring on transient noises. This analysis can be very important in testing equipment, preventing hearing loss, and controlling harmful or irritating industrial noises.
Allison Filters have been in constant use for a wide range of laboratory and industrial applications for nearly a decade.
ALLISON SERIES 2 FILTER SPECIFICATIONS - Continuously variable passive network --
no power supply

- Frequency range, 2A, 15 to 10,080 cycles; 2B, 60 to 20,160 cycles: 2C, 9 KC to 670 KC - Designed for use in 600 OHM circult and
with transformers for other impedances
- Low loss - approximately $2 d \mathrm{db}$ in pass band
- Aftenuation rate - 30 db per octave
- Size: $14^{\prime \prime}$ high, $7^{\prime \prime}$ deep, $51 / 4^{\prime \prime}$ wide
- Portable and rack models available

D/LISOW Wrise today for complete literature and prices
 Allison

Laboratories, Inc.
11301-E Orean Avenue, la Mobra. Callfornia CIRCLE 154 ON READER-SERVICE CARD ELECTRONIC DESIGN • April 27, 1960

For System Applications

- symbol for inductrol voltage afgulatons

NEW

Complete line of General Electric

 $400-$ cyde $\operatorname{Inductrol}{ }^{\dagger}$ Voltage RegulatorsInduction regulation is the only reliable answer to many system control problems Ratings, 1000 kva and above- 120 to 600 volts, single- and three-phase.

FEATURES

- Built to meet MIL specifications
- No brushes
- No harmful waveform distortion
- Drit-Iree fubeless controls
- Voltage adjustment up to 100%
- Automotic, motor-driven, or hond-operated
- Compact-high capacity
- Temperature, power foctor, and frequency compensated
- Highly relioble

FOR MORE INFORMATION about G.E.'s complete line of Inductrol regulators, contact the General Electric voltage regulator representative at your nearby G-E Apparalus Sales Office, or write to Section 457-02, General Electric Company, Schenectady 5, N. Y. -Roginered Tradomort of General Electric Co.
Progress Is Our Most Impontant Product

GENERAL (9\%) ELECTRIC

with the circuit of Fig. 8a. Similarly, we can replace Fig. 7b with the circuit of Fig. 8b. Combining these circuits we have the circuit of Fig. 9, equivalent to the filter of Fig. 6. The mutual inductance elements reduce the required filter components.

In deriving a filter erpuivalent, any of the networks I. II, III, VIII or IX of the Table could have been used. A feature of these networks is that their design formulas include a transformation coefficient φ_{1}, which can be specified arbitrarily. Thus, it is possible to specify, for example, capacitors of standard size.

Suppose we wish to replace Fig. 7a by circuit IIa of the Table. Comparing the two circuits, we caln write:

$$
\begin{gather*}
i \| L_{1}=2 Z_{2} \tag{28}\\
\frac{1}{i \omega C_{1}}=\frac{2 Z_{4}}{\left(1+\varphi_{1}\right)^{2}} \tag{29}
\end{gather*}
$$

Hence

$$
\begin{align*}
& Z_{2}=i \omega \frac{L_{1}}{2} \tag{30}\\
& Z_{4}=\frac{\left(1+\varphi_{1}\right)^{2}}{i \omega 2 C_{1}} \tag{31}
\end{align*}
$$

The inductance of the winding Z_{1} of the transformer of circuit IIb is given, on the basis of $\mathrm{Eqs}_{\mathrm{q}}$. 14 and 31 , by:

$$
\begin{equation*}
Z_{1}=\varphi_{1}^{2} Z_{2}=i \omega \varphi_{1}^{2} \frac{L_{1}}{2} \tag{32}
\end{equation*}
$$

Thus, instead of Fig. 7a we can use the circuit of Fig. 10. For this filter, the value of φ_{1} can be arbitrarily specified.
(Translated from Use Of Simple Two-Port Network With Mutual Inductances In Electric Filters by Kh. I. Cherne, Elektrosvyaz', No. 1, 1960, pp 6.5-70.)

Fig. 10. Working with circuit lla of the Table yields this circuit as the equivalent as shown in this table of filter pairs.

LONG-LOK

self-locking TERMINAL STRIP SCREWS

- Eliminate lock washers
- Will not shake loose
- Insure reliability of circuits

These specially developed self-locking screws resist shock and vibration, eliminating the possibility of short circuits due to screws work. ing loose. They will not affect conductivity.
Because they eliminate lock washers, they save weight and speed assembly time.
They are reusable, meet MIL. F. 18240 specifications and can be head marked for self. lock identification.
LONG.LOK Self-Locking Terminal Strip Screws are available in all thread sizes and styles. For original equipment installation or overhaul-military or commercial-they provide highest reliability of component and system.

LONG-LOK

CORPORATION
2601 Colorado Avenue - Santa Monica. Calif.
UPTon 0.6335 • TWX S MON 7146
LONG-LOK EASTERN CORPORATION
68 Urban Avenue. Westbury, L.I., Now York
LICENSEES AND REPRESENTATIVES IN PRINCIPAL CITIES CIRCLE 156 ON READER-SERVICE CARD

on high voltage transistor regulated power supplies

- for critical commercial and military applications
- full five year warranty includes all components
- guaranteed to meet published specs.
- short circuit protected

[^10]Write for complete specifications
Speady pown sounces

BY

POWER SOURCES, INC. Burlington, Masanchusotts
CIRCLE ISE ON READER-SERVICE CARD

GERMAN ABSTRACTS

E. Brenner

Stereophonic Broadcasting

Fig. 1. Block diagram of the auxiliary am-carrier system for stereophonic transmission.

SEVERAL single carrier systems can be designed for the transmission of stereophonic broadcasts. The suitability of any one method may be judged from the following criteria: (1) The signal should be compatible-monaural receivers should be usable with no deterioration of quality. (2) The receiving circuit should be simple. (3) Sig-nal-to-noise ratio must be acceptable for both stereo and monaural reception. (4) Reasonable bandwidth is desirable. In addition one may wish to provide for the transmission of two distinct programs when stereo transmisison is not in progress.

Auxiliary Carrier Method

A system that has remarkable receiver simplicity is the fm system, with auxiliary carrier, shown in Fig. 1. Starting with the two signals, $A(t)$ and $B(t)$, the amplitude moluluted signal a $[1+A(t)-B(t)]$ coswt is generated and added to $A(t)+B(t)$ to give the signal:
$c(t)=A(t)+b(t)+a[1+A(t)-B(t)] \cos \omega t$ This is used to frequency modulate the ultra-short-wave carrier. The two filters shown in Fig. 1 require uniform time delay characteristics. Butterworth filters can provide crosstalk-damping of 30 to 40 db .
In the receiver, a symmetrical ratio-detector furnishes the input to a two-diode stereo demodulator, Fig. 2. De-emphasis is provided by the time constants in the stereo demodulator. When the
auxiliary (am) carrier frequency is half of the frequency deviation (for example, 37.5 kc for a $75-\mathrm{kc}$ deviation), $A(t)$ and $B(t)$ are obtained as the output of the stereo demodulator. In other cases, the resistor R, Fig. 3, produces crosstalk which is then balanced out with a variable resistor (100 k , Fig. 3) in the audio frequency section. For monaural operation, switch S, Fig. 2, is closed.
The system requires $55-\mu \mathrm{v}$ input for a stereo output signal-to-noise ratio of 50 db . This, together with a loss in signal-to-noise ratio for the compatible signal, is the principal disadvantage of the system.

Pulse Amplitude Modulation (PAM)

A compatible PAM stereo system is shown in Fig. 4. It is assumed that the signal is bandlimited to 15 kc . A $30-\mathrm{kc}$ pulse generator furnishes alternately positive and negative pulses that are modulated by $A(t)$ and $B(t)$ respectively. After filtering, the modulated pulses are the modulating sig-

Fig. 2. Ratio detector and stereo demodulator.
nal for the fm transmitter. To assure that the transmitted signal contains the fundamental, $30-\mathrm{kc}$ pulse frequency with zero signal, a dc component corresponding to 10 per cent of the peak frequency deviation is added to each of the original signals.
For stereo reception the receiver if bandwidth needs to be expanded to about 210 kc . A synchronized decoder separates the time interlaced signals. For this purpose either a synchronized local oscillator or a "self-synchronized" circuit can be used. Fig. 5 shows a self-synchronized circuit requiring two envelopes and five germanium diodes. The filtered signal from the fm-detector is fed through a cathode follower to the diode decoder and the sharply tuned, $30-\mathrm{kc}$, two-stage pentode amplifier. The amplifier output is limited and used for switching. The 10 -per cent zero signal component mentioned above is adequate to provide reliable operation. After decoding each signal is de-emphasized and amplified.
Abstracted from two articles in Elektronische Rundschau, Vol. 13, Nov. 12, December 1958: Use of Auxiliary AM Carricr by F.L.H.M. Stumpers and R. Schutte, pp 445-446; PAM System by G. Jants, pp 447-449.

Fig. 3. Crosstalk-compensated audio stage.

Fig. 4. Block diagram of the PAM system.

Fig. 5. Synchronized decoder.

FOR PRECISE 400-CYCLE POWER

Kearfott 60-to-400 cycle motor generator frequency converters are in active use wherever precise 400 -cycle power must be supplied . . . including laboratories and in such other representative applications as production testing, high speed tool operation and ground support. These generator systems, which consist of a 60 cycle synchronous motor and a 400 cycle generator, can be supplied with controls and generator as an integral, compact unit-or with controls and generator separately located.

PERFORMANCE SPECIFICATIONS

Frequency: 400 cycles under any rated load condition with 60 cycle input. Voltage Regulation: Within $\pm 1 \%$ of rated voltage when (1) load varies between no-load and 125% of rated load. and/or (2) load power factor varies between 0.8 lagging and unity, and/or (3) equipment temperature varies after approximately 10 minutes' operation.
Voltage Recovery: When rated load is suddenly applied or removed. voltage will return to and remain within regulating band within 0.25 seconds.
Voltage Adjustment: Continuously adjustable to $\pm 10 \%$ of rated value.
Deviation Factor: Maximum 4\% between no load and full load.
Overload: Equipment delivers 125% of rated load for 2 hours.
Amplitude Modulation: Maximum 1% of peak-to-peak voltage at any load between no load and full load, at any power factor between 0.8 lagging and unity.
Frequency Modulation: Maximum 0.5\% at any load from no load to 125% of rated load.

KEARFOTT DIVISION

GENERAL PRECISION, INC.

LTTLE FALLE, NEW JERBEY

Sales and Engineering Offices: 1500 Main Ave., Clifton, N. J.
Midwest Office: 23 W . Calendar Ave.. La Grange, III.
South Central Office: 6211 Denton Drive. Dallas. Texas
West Coast Office: 253 N . Vinedo Avenue, Pasadena, Calif.
CIRCLE 159 ON READER-SERVICE CARD

The future ... from your point of view

A good day's growth for a hard day's work.

A position to suit your talents, experience and ambition.
Opportunity to exercise full initiative in Research, Radar, Doppler Navigational Systems, Magnetic Memory Systems, Microwave and Computers.

PLUS

Management awareness encouraging exploration beyond the range of present knowledge.

APPOINTMENTS NOW AVAILABLE:

SENIOR ENGINEER

Alr Traflic Control Systems

Experienced in problems involving the relation of overall ground-air environment to such elements as Navigation, Data Acquisition, Processing and Display.

SENIOR ENGINEER

Radar Systems \& Techniques

Thoroughly grounded in existing systems, philosophies and techniques. To study, design and plan advanced programs for varied applications.

SENIOR ENGINEER

Alrborne Electronic Weapon Systems

Experienced in existing systems and requirements. To plan the optimum integration of such various subsystems as radar, navigation, central data computers, communications, etc.

For a confidential discussion, please write:

Eugene Rust
Laboratory for Electronics
75 Pitts Street, Boston 14, Massachusetts
LABORATORY FOR ELECTRONICS
CIRCLE 907 ON CAREER INQUIRY FORM, PAGE 153

ELECTRONIC DESIGN
DIGEST
of recent papers and literature

Resistance Network Solves Potential Distribution Problems

MANY electron-optical problems require the solution of the Laplace equation:

$$
\begin{equation*}
\frac{\delta^{2} w}{\delta x^{2}}+\frac{\delta^{2} w}{\delta y^{2}}+\frac{\delta^{2} w}{\delta z^{2}}=0 \tag{1}
\end{equation*}
$$

This equation can represent, for example, the potential distribution in the space-charge free region surrounding the focusing electrodes of an electron gun. A very interesting and rapid analog technique for solving Eq. 1 involves the use of a rectangular resistance network. An approximate method, it is applicable to two-dimensional problems where there is rotational symmetry.

A Finite-Difference Operator Replaces
The Usual Differential Operator
Eq. 1 can be rewritten using the Laplacian op-

Fig. 1. In deriving the difference operator L, pairs of points are selec. ted equidistant from center point O.

CIRCLE 161 ON READER-SERVICE CARD
ELECTRONIC DESIGN • April 27, 1960

New from L\&N...100-Channel

 Data Logging System

For countless research, testing and process applications, this new L\&N 100-Channel Sequential Data Logging System provides unique flexibility of operation . . . optimum reliability of measurement. Vital information in the form of temperatures, flows, pressures, or electrical quantities is converted into d-c millivolt signals. A Speedomax ${ }^{8}$ G recorder with a shaftposition encoder and translator furnishes digital data to a typewriter equipped with a paper-tape punch. The system, using plug-in modules, can easily be expanded to accommodate additional inputs.

Leeds \& Northrup is currently designing, building and testing both sequential and simultaneous data systems and computing systems for a variety of applications.

Write for Application Data Sheet N-07(1) to your nearest L\&N Office or to Leeds \& Northrup Company, 4908 Stenton Ave., Philadelphia 44, Pa.

CIRCLE 162 ON READER-SERVICE CARD
erator ∇^{2} Thus, it becomes:

$$
\nabla^{2} w=0
$$

where

$$
\begin{equation*}
\nabla^{2}=\frac{\delta^{2}}{\delta x^{2}}+\frac{\delta^{2}}{\delta y^{2}}+\frac{\delta^{2}}{\delta z^{2}} \tag{1a}
\end{equation*}
$$

From the differential operator ∇^{2}, a finite difference operator L is derived:

$$
\begin{equation*}
L W \approx \nabla^{2} W \tag{2}
\end{equation*}
$$

To derive L we select an arbitrary point O and three pairs of points, P and Q, R and S, and T and U, lying respectively in the x, y and z directions at a distance a on either side of O, Fig. l. The difference between the values of w_{0} and w_{0} at points Q and O can be expressed by using Taylor's theorem. This yields the difference in terms of a and the derivatives of w with respect to x at point O :

$$
\begin{align*}
w_{Q}-w_{o} & =a\left(\frac{\delta w}{\delta x}\right)_{o}+\frac{a^{2}}{2!}\left(\frac{\delta^{2} w}{\delta x^{2}}\right)_{o}+ \\
& +\frac{a^{3}}{3!}\left(\frac{\delta^{3} w}{\delta x^{3}}\right)_{o}+\frac{a^{4}}{4!}\left(\frac{\delta^{4} w}{\delta x^{4}}\right)_{o}+\ldots \tag{3a}
\end{align*}
$$

By replacing a in the above by $-a$, we obtain a similar series for $w_{p}-w_{0}$:
$w_{P}-w_{0}=-a\left(\frac{\delta w}{\delta x}\right)_{o}+\frac{a^{2}}{2!}\left(\frac{\delta^{2} w}{\delta x^{2}}\right)_{o}-$

$$
\begin{equation*}
-\frac{a^{3}}{3!}\left(\frac{\delta^{3} w}{\delta x^{3}}\right)_{o}+\frac{a^{4}}{4!}\left(\frac{\delta^{4} w}{\delta x^{4}}\right)_{o}- \tag{3b}
\end{equation*}
$$

Adding these two series and solving for ($\delta^{2} w / \delta$ $\left.x^{2}\right)_{o}$, we obtain:
$\left(\frac{\delta^{2} w}{\delta x^{2}}\right)_{o}=\frac{1}{a^{2}}\left\{\left(w_{Q}-w_{o}\right)+\left(w_{P}-w_{o}\right)\right\}-$

$$
\begin{equation*}
-\frac{a^{2}}{12}\left(\frac{\delta^{4} w}{\delta x^{4}}\right)_{o}-\ldots \tag{4}
\end{equation*}
$$

The differential coefficient $\left(\delta^{2} w / \delta x^{2}\right)_{o}$ is thus expressed in terms of the differences $\left(w_{0}-w_{0}\right)$ and ($w_{p}-u_{o}$) plus a number of correction terms, whose total value can be made as small as desired by making a small enough.
$\left(\delta^{2} w / \delta y^{2}\right)_{n}$ and $\left(\delta^{2} w / \delta z^{2}\right)_{o}$, the other differential coefficients occurring in Eq. 1, can be expressed as differences in an analogous manner. Inserting in Eq. 1 the expressious thus obtained, we have:
$\left(\nabla^{2} w\right)_{o}=\frac{1}{a^{2}}\left(w_{P}+w_{Q}+w_{R}+w_{S}+w_{T}+w_{U}-6 w_{O}\right)-$

$$
\begin{equation*}
-\frac{a^{2}}{12}\left(\frac{\delta^{4} w}{\delta x^{4}}+\frac{\delta^{4} w}{\delta y^{4}}+\frac{\delta^{4} w}{\delta z^{4}}\right)_{o}-\ldots \tag{5}
\end{equation*}
$$

Zoster on Education

"Education is the process of moving from cocksure ignorance to thoughtful uncertainty," said Dr. Herpes Sophocles Zoster (1823-1887), famed Athenian teacher, inventor of the Patent Disciplinator for Hardnosed Pupils, summing up some of our modern no-go missile experience years ahead of his time. We know one missileman who has handhouse wind sentiment in needlepoint to hang by his block VII-C Rocket Destructor
But dawn is imminent. Emergine from its brown study of thoughtful uncertainty, HOOVER ELECTRONICS COMPANY has Taken Steps, and a whole family of accurate, reliable, versatile, flexible (even repeatable) Elec rate, reliable, versatile, fexible (even repeatable) Elecdata translators, tracking equipment, instrumentationcontrol vans, and others. Steps toward Carefree Certainty, to say the least.

Well, to gel to the point quickly, space in this magazine being priced beyond rubies, we HOOVER ELECTRONICS have Droduced a hand. some folder sbout the EGSE hinted at coyly above. We wouldn't be reluctant to send
copy, if you'd just put youl name and addres copy, if you'd just put yölu name and address
on a letterhead. Today. eh?

HOOVER

ELECTRONICS COMPANY
sussidiany of the hooven company
110 WEST TIMONIUM ROAD - TIMONIUM, MARYLAND

Design with versatile, POLYPENCO ${ }^{\circ}$ Teflon*TFE shapes

Machined from ROD
Insulators for high temperature hermetic feed thru terminals, economically machined from POLYPENCO TFE-fluorocarbon rod. Used n transformers, capacitors, relays, etc., terminals have outstanding electrical properties (Photo courtesy, Lundey Associates)

Stamped from STRIP
TFE washer stamped from POLYPENCO in record player. Low surface friction on contact permits easy turning of wheel. Resilience and non-adhesive characteristics were also important.
(Photo courtesy, Glaser-Sieers Corp.)

TEFLON SHAPES AND SIZES
AVAILABLE FROM NATIONWIDE
STOCE LOCATIONS
ROD
Diameter: $1 / 8^{\circ}$ to $71^{\prime \prime}$ in various lengths TUBING
O.D. $1 / 2^{\circ}$ to $12^{\prime \prime}$ I.D. $1 / 4^{\prime \prime}$ to 61° depending on O.D.

SHEET
Thickness: $1 / 10^{\circ}$ to 2°
Sizes. $12^{\circ} \times 12^{\circ} .24^{\circ} \times 24^{\circ}$, and $48^{\circ} \times 48^{\circ}$ TAPE

Thickness: . $001^{\prime \prime}$ to 125°
Widths: $1 / 4^{\circ}$ to 24°
Ten fade-proof colors
SPAGHETTI TUBING
AWG sizes 30 to 0 .
Thin and regular wall thicknesses
Ten fade-proof colors for coding
THIN WALL TUBING
I.D. $1 / n^{\circ}$ to 1°

Wail thickness: $.030^{\circ}$ to $.050^{\circ}$
ROUND AND SQUARE BEADING
Round: Diam. .030 10 . 150° Square: $.020^{\circ}$ to $.156^{\circ}$ across the sides Rectangular and Square Bars also available

CIRCLE 164 ON READER-SERVICE CARD

DIGEST

Introducing the operator L, we now put:
$(L w)_{o}=\frac{1}{a^{2}}\left(w_{P}+w_{Q}+w_{R}+w_{S}+w_{T}+w_{U}-6 w_{0}\right)$. (6)
We see from Eq. 5 that $(L w)_{o}$ is an approximation to $\left(\Gamma^{-2} w\right)_{0}$, approaching it all the more closely as a is made smaller. L is the finite-diference opcrator. It is so called because L denotes an operation whereby the finite differences $w_{p}-w_{0}$, etc., are used.

A Resistance Network for
 Two-Dimensional Problems

Confining ourselves to two-dimensional cases, Laplace's equation assumes the form:

$$
\frac{\delta^{2} \varphi}{\delta x^{2}}+\frac{\delta^{2} \varphi}{\delta y^{2}}=0
$$

Let us consider the example shown in Fig. 2. The three closed outlines s_{1}, s_{2} and s_{3} represent sections taken at right angles through three infinitely long prisms. On the periphery of each prism, φ has a known constant value. The problem is to find a function φ which satisfies Eq. 7 in the area within s_{3} but ouside s_{1} and s_{2}, and which assumes the prescribed values along s_{1}, s_{2} and s_{3}.
Over s_{1}, s_{2} and s_{3} we place a square grid, whose lines are parallel to the x and y axes and spaced at intervals of a. The "grid lines" intersect at "grid points." Two grid points are "adjacent" if their distance apart is the mesh width a. We shall refer to grid points located on the outlines s_{1}, s_{2} and s_{3} as "boundary grid points," and to the remaining ones in the area wherein φ has to be determined as "internal grid points."
The following proposition underlies the principle of the resistance network.

Fig. 2. The unknown function φ has known values along the outlines s_{1}, s_{2} and s_{s}. Throughout the area inside s_{3}, but outside s_{1} and s_{2}, it must satisfy the Laplace equation.

TUBE PROBLEM:

When the 6AF4 tube was replaced in UHF TV tuners, servicemen sometimes got a big surprise. Reason: the tubes were not standardized, ańd a replacement was likely to bring in one channel where another should have been.

SONOTONE SOLVES IT:

First, Sonotone se up extremely tigh controls on all materials going into the 6AF4 components. Second, Sonotone used a more thorough exhaust process.

RESULT:

The Sonotone AF4 family of reliable tubes has been accepted by the industry as standard for initial production and replacement.

Let Sonotone help solve your tube problems, too.

DESIGN AND ENGINEERING HELP
Design and engineering assistance, or help on any industrial plastics problem is as near as your telephone-and yours without obligation Take advantage of Polymer's experience an plastics know-how by calling or writing today!
$\bullet D_{u}$ Pont TRADEMARK for
fluorocarbon resins fluorocarbon resins

The Polymer Corporation

 of Pennsylvania Reading, Pa

TFE spaghetti tubing in telemetering equipment maintains exceptional insulating properties at elevated temperatures, 100% relative humidity, and under constant vibration. Tubing is unaffected by soldering heats, and bending and flexing during assembly.
 s

more applications maximum economy

PANORAMIC'S SPA-3/25 SPECTRUM ANALYZER $200 \mathrm{cps}-25 \mathrm{mc}$

Ono compact, low-cest unit for all these uses . . . and MOREz

Video Band Analysis
Broadband Noise Studies
Communications Chonnel Analysis
Telemetry Subcarrier Channel Analysis
Frequency
networks, efc. to
netren

Combining the most desirable features of o whole series of equipments, Panoramic's "workhorse" Model SPA-3/25 feotures:

- 0.3me aweop width continuously callbrated. Variable center freguency control colibroted from 0 to 23.5 mc . Adjustable resolufion; selectivity, 200 cps to
30 kc . Varioble sweep rote 1 cps fo 60 cps. - Lin, 40db log and square lows emplifude scales. Migh sensifivity: $20 \mu v$ full scale.
Calibrated $100 d$ input aftenuators

Also available: Model SPA-3 200 cps - 15 mc . Some os SPA-3/25 except voriable center frequency control is colibroted 0 to 13.5 mc .

Write, wire, phone NOW for detailed specification bulletin NEW Catalog specirication oulietin. . . NEW Catalog igest \ddot{P} ANORAMIC ANALYZER, " feoa pionser turing application dota.

RADIO PRODUCTS, INC.

PANORAMIC RADIO PRODUCTS, INC 324 So. Fulton Ave., Mount Vornón, N.Y. Cobles: Panoramic, Mt. Vornon, N. Y. S

Fig. 3. Resistors R_{1}, R_{2}, R_{3} and R_{4} meet at O, a junction in the resistance network. In the two-dimensional casc, $P Q$ represents a line parallel to the x-axis, and RS a line parallel to the y-axis; in the rotationally-symmetric three-dimensional case $P Q$ represents a line parallel to the z-axis, $R S$ one parallel to the r-axis.

If each internal grid point is given a value φ° so that between the value φ° and the values at adjacent grid points the relationship $L \varphi^{\bullet}=0$ exists, and if at the boundary grid points φ° has the boundary values specified for the required function φ then the difference between φ° and φ at the internal grid points will approach zero as the mesh width a approaches zero.

To find the φ^{\bullet} values a network of resistors is built up. The junctions of the resistance network will correspond to the grid points in Fig. 2. Thus, four resistors will meet at each junction, Fig. 3. We shall refer to junctions corresponding to boundary grid points as "boundary junctions." Between the boundary junctions we may apply voltages that are proportional to the differences betweeen φ values at the corresponding boundary grid points. If the lowest value of φ at any of the boundary grid points is $\varphi_{\text {min }}$ and if we take the potential of the corresponding boundary junction as a datum for measuring the potentials V_{b} of other boundary junctions, then any of these latter potentials is given by

$$
\begin{equation*}
V_{b}=\left(\varphi_{b}-\varphi_{m i n}\right) / \beta \tag{8}
\end{equation*}
$$

The suffix b indicates a relation to the boundary grid points. $1 / \beta$ is a constant of proportionality. We now allot to each internal grid point a value

$$
\begin{equation*}
\varphi^{\bullet}=\beta V+\varphi_{m \text { in }} \tag{9}
\end{equation*}
$$

where V is the potential measured at the corresponding junction in the resistance network. Through the resistor connecting two adjacent junctions in the network, for example, that between P and O in Fig. 3, flows a current having the value

neseou

G-20 \& G-21 MINIATURE

ALL-GLASS

HC-18/U TYPE
CRYSTAL UNITS
Possess all of the quality and dependability for which the McCoy line of metal encased crystal units is famous.

Check these advantages:

Excellent Long-Term Stability

Minimum Aging
Choice of Leads Pins or Flexible Wire
Maximum Resistance to Shock and Vibration 30 vector G's from 20 to 2000 cps - vibration 100 G's - shock

True Hermetic Seal Altitude is no problem

Meets new CR-73/U and CR-74/U Specs

Wide Range of Frequencies Available 5000 KC to 200,000 KC

Extremely Small Size

Write teday for our free illustrated eatalag which includes complete listing of military specifications. For specific needs, write, wire or phome us. Our research section in anxious to assist you.

ELECTRONICS CO.
Depr. ED. 4
MT. HOLLY SPRINGS, PA. Phone HUnter 6-3411

BOOKS

SELECTED SEMICONDUCTOR CIRCUITS HANDBOOK

Edited by Seymour Schwartz. Transistor Applications, Inc. 8 co-authors. Just Publishedan accurate, convenient reference to more than 150 semiconductor circuits, including the general theory from which they were developed. Chosen for inventiveness and reliability, they represent the most advanced techniques. Circuits cover such topics as: direct-coupled, low- and high-frequency amplifiers; oscillators; switching and logic circuits; a-c to d-c power supplies; small nonlinear circuits; and transistorized mag. netic circuits. Sections on design philosophies give designers valuable information on further development of these circuits and aid in work. ing out new circuits. 1960. $\$ 12$ pages. $\$ 12.00$.

Send now for your on-approval copy
JOHN WILEY \& SONS, Inc.
440 Park Avenue South, New York 16, N.Y

CIRCLE 168 ON READER-SERVICE CARD

at our expense
to end corrosion due to soldering
Why take chances on corrosion resulting from your soldering operations? It's expensive . . . dangerous as simply as hundreds of other prominent firms with as simply as hundreds of other prominent firms with modern Superior No. 30 NON-CORROSIVE SOFT so different that it is patented. It's positively NON. so difrerent that it is patented. It's positively NON. or gum. Non-hygroscopic, non-conductive, nonfuming. Residue is water soluble. Works marvelfuming. Residue is water soluble. Works marvel-ously- ends corrosion problems. Convince yourself - send coupon for free sample today. When you

COMPARE THE AMAZING DIFFERENCE YOURSELF
in SUPERIOR No. 30 NON-CORROSIVE
SOFT SOLDER LIQUID FLUX

I Send free sample Mo. 30 FLUX \square Send prieses and details 1 Firm
Aldiress
f Citr
CIRCLE 169 ON READER-SERVICE CARD

DIGEST

$\left(V_{P}-V_{O}\right) / R_{1}$. Applying Kirchoff's law to junction O, we find that:

$$
\frac{V_{P}-V_{O}}{R_{1}}+\frac{V_{Q}-V_{O}}{R_{2}}+\frac{V_{R}-V_{O}}{R_{3}}+\frac{V_{S}-V_{O}}{R_{4}}=0 .
$$

From this and from Eq. 9 it follows that for any grid point O,

$$
\begin{align*}
\frac{\varphi P^{*}-\varphi 0^{*}}{R_{1}} & +\frac{\varphi 0^{*}-\varphi 0^{*}}{R_{2}}+ \\
& +\frac{\varphi R^{*}-\varphi 0^{*}}{R_{3}}+\frac{\varphi B^{*}-\varphi 0^{*}}{R_{4}}=0 . \tag{10}
\end{align*}
$$

If all four resistors have the same value,

$$
\left(L \varphi^{*}\right)_{o}=0
$$

at any gricl point O. Since, in addition, φ° on the boundary curves has the boundary values laid down for $\varphi, \varphi^{\bullet}$ constitutes an approximation to the required function φ, provided all resistors composing the network are of the same value.

Three-Dimensional Problems

With Rotational Symmetry
If the rectangular coordinates are converted to cylindrical coordinates (r, z and ε in Fig. 4)," the z-axis being made to coincide with the axis of symmetry; the Laplace equation assumes the form:

$$
\begin{equation*}
\frac{\delta^{2} \varphi}{\delta r^{2}}+\frac{1}{r} \frac{\delta \varphi}{\delta r}+\frac{\delta^{2} \varphi}{\delta z^{2}}=0 \tag{11}
\end{equation*}
$$

Owing to the rotational symmetry, ε does not appear in the equation. The Laplacian operator is now

$$
\begin{equation*}
\frac{\delta^{2}}{\delta r^{2}}+\frac{1}{r} \frac{\delta}{\delta r}+\frac{\delta^{2}}{\delta z^{2}} \tag{12}
\end{equation*}
$$

To derive a finite-difference operator from Eq. 12, we let Eq. 12 operate on an arbitrary function $u(\approx, r)$, and consider a point O and the two pairs of points P, Q and R, S which lie in the z and r directions respectively, at a distance a on opposite sides of O. Again expressing the differential coefficients as differences, we arrive at the following:

$$
\begin{align*}
&\left(\frac{\delta^{2} u}{\delta r^{2}}+\frac{1}{r} \frac{\delta u}{\delta r}+\frac{\delta^{2} u}{\delta z^{2}}\right)_{o}=(M u)_{o} \\
&-\frac{a^{2}}{12}\left(\frac{\delta^{4} u}{\delta r^{4}}+\frac{2}{r} \frac{\delta^{3} u}{\delta r^{3}}+\frac{\delta^{4} u}{\delta z^{4}}\right)_{o}-\ldots \tag{13}
\end{align*}
$$

where:
$(M u)_{0}=\frac{1}{a^{2}}\left\{\left(u_{P}-u_{0}\right)+\left(u_{Q}-u_{0}\right)+\right.$
$\left.+\left(1-\frac{a}{2 r}\right)\left(u_{R}-u_{0}\right)+\left(1+\frac{a}{2 r}\right)\left(u_{S}-u_{0}\right)\right\}$

NEW

low cost multi-purpose electronic counter

Model $\mathbf{7 2 0}$ events-per-unit-time counter is designed for uses requiring flexibility. Measurement of most physical variables such as flow. RPM. frequency or time interval is simple with NIXIE in-line readout, which reduces operator fatigue and errors. Low cost starts at $\$ 475$ for 3 -decade model. Send for technical literature.

DECADES:	$3,4,5$ or 6
FREQUENCY	
RANEE:	0 to 120,000 pulses $/ \mathrm{sec}$.
SENSITIVITY:	50 Millivolts RMS
ACCURACY:	\pm one count \pm time base error
ISPLAY TIME:	0.2 to 6 sec or infinite
SIZE:	$19^{\prime \prime} \times 544^{\prime \prime} \times 12^{\prime \prime}$
WEIGNT:	25 lbs.

Manufacturers of digital counting and timing instruments and systems for military and com mercial use.

ERIE

INSTRU/MATION

ERIE PACIFIC DIVISION
ERIE RESISTOR CORPORATION 12932 S. Weber Way, Hawthorne, Calif. Phone: ORegon 8.5418 CIRCLE 170 ON READER-SERVICE CARD

mand
 Hermetically Sealed

Connectors

CONSECO connectors represent an achievement of more experience in design and manufacture of glasssealed hermetic items than can be found in any other organization in the United States. This unique, specialized "know how" is at your service in these available units, or for consultation on applications not normally stocked.

MULTIPLE
CONTACT MS TYPE CONNECTOR

Really rugged, CONSECO connectors provide genuine hermetic sealing. They are engineered out of top technical experience to meet military specifications and to perform under the toughest going.

Write for FREE literature.

Connector Seals Corp.

300 North Lake Ave. • Pasadena, California TWX PSA 8584 CIRCLE 171 ON READER-SERVICE CARO ELECTRONIC DESIGN • April 27, 1960

\author{

- 1960
}

Opportunities at UNVAC...

Investigate these immediate opportunities at Remington Rand Univac. In addition to an attractive salary, you will work with techniques that have made significant advances in solid-state development, ultra-reliable military computers and other challenging programs.

If you are interested in advancing beyond your present position, be sure to investigate these openings.

TRANSISTOR CIRCUIT DESIGNERS
Electrical Engineering degree with Electrical Engineering degree with
experlence in transiatorized pulse clrcuitry

COMMUNICATIONS ENGINEERS

Electrical Engineering degree with
experience in HF transmission, nelwork
theory and antenna design.

SERVO-ENGINEERS

Electrical Engineering degree with experience In servo-amplifiers, servo-
mechanisms and airborne electronlce.
QUALITY CONTROL ENGINEERS
Electrical Engineering degree with experience in rellability, statistical methods, and test procedures for electronic equipment.

ENGINEER WRITERS

Engineering or Science degree with expert ence in the preparation of maintenance and operational manuals for electronic equipment.

PRODUCTION ENGINEERS

Engineering or Sclence degree with production engineering experience on business machines.

RELIABILITY ENGINEERS
Engineering or Sclence degree with experience in design, quality control, and manufacturing processes relating to electronic equipment. This is a relatlvely new field with exceptional growth possibilities.

CONTRACT REPRESENTATIVES

Engineering or Science degree with experience in government electronic R\&D contracts.

STANDARDS AND SPECIFICATIONS ENGINEERS
To prepare engineering standards and component specifications for electronic with experience In military specifications for electronic equipment.

MILITARY SYSTEMS ANALYSTS Engineering, Mathematics, or Physics degree with experience in weapons and misslle guidance systems involving digital
control, digital converaion, radar and control, digital conversion, radar and diaplay and output equipment.

Send complete resume of education and experience to:
R. K. PATTERSON, Dept. C-4

Temington Thand Thivac

DIVISION OF SPERRY RAND CORPORATION 2750 West Seventh Street, St. Paul 16, Minnesota.

There are also immediate openings in all areas of digital computer development at our other laboratories. Inquiries should be addressed to

F. E. NAGLE

Department C-
REMINGTON RAND UNIVAC
Division of Sperry Rand Corporation
Philadelohia 29, Pen
Philadelphia 29, Pennsylvania R. F. MARTIN

REMINGTON RAND UNIVAC Division of Sperry Rand Corporation
Division of Sperry Rand Corpor
South Norwalk,
South Norwaik, Connecticut
CIRCLE 908 ON CAREER INOUIRY FORM, PAGE 153

Metallurgical Memo from General Electric

G-E thermistor in the wall control eliminates fluctuations in room temperature

A thermistor is a small, inexpensive and troublefree resistor that is extremely sensitive to temperature. Mounted in the wall control, this element signals any temperature variation from the dial setting, even as small as $1 / 10$ degree. These signals are transmitted by low voltage wiring through a tube-type or transistorized amplifier to a fuel control valve which automatically regulates the burner flame. Room heat loss is immediately replaced. Thus the thermistor supplants bi-metals, false-starting mercury capsules, and other undesirable moving parts.
Other applications for thermistors in the industrial and home heating fields include time delays of fuel oil valve operation and heat pump cycling. Use G-E thermistors in your heat control design!

If you have a temperature compensation or current inrush suppression problem, it may be solved by a thermistor, too. Send for literature and one of our sample kits, then write for assistance of a G-E engineer for your specific application-Magnetic Materials Section, General Electric Company, 7820 N. Neff Street, Edmore, Michigan.

TRY-IT-YOURSELF APPRAISAL KITSI

Sond for Kit B. Contains 2 each of 6 high resistance thermistors for laboratory study and evaluation. Price $\$ 12.50$.
magnetic materials section

GENERAL (96) ELECTRIC

CArboloy cemented carbides - man-made damonds - magnetic materials - thermistors - thyrite - vacuum-melted allous CIRCLE 172 ON READER-SERVICE CARD

DIGEST

ator L (see Eq. 6) as an approximation to the Laplace operator for points along the z-axis. The reason we abandoned L in favor of operator M when analyzing the three-dimensional case was that the former would have led to a three-dimensional network. This objection does not, however, apply to points on the axis of symmetry. Let us consider a point O on that axis. At this point:
$u_{r}=u_{r}=u_{c}=v_{s}$
For such a point, therefore, we can rewrite Eq. 6 in the form:
$\left(L_{w^{2}}\right)_{v}=\frac{1}{a^{2}}\left\{\left(u_{P}-w_{o}\right)+\left(w_{\varphi}-w_{0}\right)+\right.$

$$
\begin{equation*}
\left.+2\left(w_{H}-w_{o}\right)+2\left(w_{s}-w_{o}\right)\right\} \cdots \tag{18}
\end{equation*}
$$

Comparison of Eq. 11 with the above expression makes it clear that, in the grid points on the z-axis, φ° will satisfy $L \varphi^{\circ}=0$ provided that:

$$
\begin{equation*}
\frac{1}{R_{1}}: \frac{1}{R_{2}}: \frac{1}{R_{3}}: \frac{1}{R_{1}}=1: 1: 2: 2 \tag{19}
\end{equation*}
$$

These conditions have in fact been satisfied in the

Fig. 5. Part of a network for rotationally-symmetrie three-dimensional problems. Resistors meeting at junctions at which $i=0$ have values satisfying relation (17). For $i=\mathrm{O}$ (junctions on the axis) the resistors satisfy (19).

CIRCLE 173 ON READER-SERVICE CARD $>$
ELECTRONIC DESIGN • April 27, 1960

This is a cutaway of an Epoxy encapsulated stator wound with Epoxy magnet wire. All-Epoxy-an ideal combination for severe applications.

EPOXY MAGNET WIRE...IDEAL FOR ENCAPSULATED SYSTEMS UP TO $130^{\circ} \mathrm{C}$

A magnet wire must offer you all these important advantages when used in encapsulated systems.

The wire must have outstanding compatibility-a requirement for good bond strength at elevated temperatures-high dielectric strength under adverse moisture conditions.

The ideal magnet wire must also have excellent thermal and high-impact shock resistance. And-it must be able to resist corrosive and abrasive atmospheres.

Anaconda Epoxy meets all these requirements and more. For this $130^{\circ} \mathrm{C}$ (AIEE Class B) magnet wire is compatible with virtually every encapsulating compound tested to date. Equally important. Anaconda Epoxy contains no polyester modifiers -therefore offering greater resistance to hydrolysis.

In addition, Anaconda Epoxy costs no more than most

Class A magnet wires-which means you can olten thermally upgrade your components to Class B without additional cost. It's readily available, too - in a full range of round, square and rectangular sizes.

Epoxy can also be furnished in combination with Vitrotex (glass-seried) for added thermal overload protection.

So you can see how it offers you many interesting possibilities for cutting costs and simplifying production through standardization.
Our technical staff and Research and Development Laboratory facilities are available to give you assistance in your encapsulating and other magnet wire problems. See the Man from Anaconda. Or write: Anaconda Wire \& Cable Company, 25 Broadway, New York 4, N. Y.

${ }_{\text {mou }}^{\text {moun }}$ ANACONDA

for EPOXY MAGNET WIRE

ANATHERM $155^{\circ} \mathrm{C}$ (AIEE Class FI
high lemperature resistance

PLAIN ENAMEL $105^{\circ} \mathrm{C}$ IAIEE ClOSS AI

ANALAC $105^{\circ} \mathrm{C}$ IAIEE Closs A solderable magnet wire

AREFAST, POSITIVE, RELIABLE

Installation of the three parts of the Lion Fastener, shown above, is quick but not critical. Unique in design and performance, these mil spec (MIL-F 5591A-ASG) fasteners make possible quick access and smooth positive locking by only a $1 / 4$ turn.

ALIGNMENT NOT CRITICAL

Both stud and receptacle "float" to accommodate misalignment. The hole, which retains the stud, is twice as large as the stud cross-section. This permits a float of .070 in all directions. The leaf spring receptacle also floats to accommodate stud position.
WIDE VARIATIONS IN STACK HEIGHT Total sheet thickness may vary as
much as +.035 and -.015 without affecting operation. A Lion stud, specified for .160 total thickness, for example, will accommodate any stack height between . 195 and . 145 .

SWAGED-NOSE STUD

Extra strength and smooth operation are made possible by the swaged-nose design. All the metal in the stud goes to work. There are no thin cross pins, holes or milled slots to weaken the cross-section. Case hardening is further assurance of long, trouble-free service.

WIDE VARIETY

Lion Fasteners are available in 3 sizes - No. 5, No. 2, and Miniature.

An assortment of head styles aro supplied-oval, flush, wing, ring, notched or knurled-according to individual requirements.

FREE!
FASTENER HANDBOOK

Send for your free copy of Southco Fastener Handbook No. 9 . Gives complefe engineering data on Lion Fasteners and other special fosteners. Write to Southco Division, South Chester Corporation, 235 Industrial High. way, Lester, Pennsylvania.

${ }^{\bullet} 1959$

Reduce cosfs

 Simplify assembly Improve appearance with DIE CAST ZINC ALLOY \& MOLDED NYLON faSteners
WING NUTS

Just a of the wide renge srock are including extra low, hish and ound series 10 in threed Ond blank sizes from It thiru Y". Patented ceessed wings, smoth-
\qquad REPRODUCER CORF

- High in quality
- Low in cest
- Wide range of styles, types. sizos and threads
Produced in one high speed
automatic operafion, GRC.s ex-
clusive methods assue clusive methods assure uniform-
ity, smooth, rustproof of corrosion resistant surfaces ond the
lowest possible cost. New kinds lowest possible cost. New kinds of resteners never before avail-
able... modifications in stock fosteners for specialized use. anfinite variety in styles, typees and sizes, have been made pos-
sible bry
matic die special autamatic die casting and molding machines
Writa NOW for prices, RIGH NOW for prices, your copy of GRC's NEW ENER BULLETIN

Word's Foromest Producar of small Dic Cassinge
40 Second Si., Now Rochelle, N.Y. NEw Rochello 3-8600 CIRCLE 175 ON READER-SERVICE CARD

With this simple, 6-step routine you'll etch circuits which will pass any inspection. Even inexperienced people will catch on quickly to this KPR method, quickly permitting you to enjoy every economy it allows.
(1) Start with clean metal. Power Always short exposure regardless brush is fastest way of temperature, humidily, or storage.
(2) Quick ocid rinse will assure unquestionable KPR adhesion.
3) Coat plates (Dip, whirl, or (3) Coor plake turing slock, or pray in advance during slack fime. (6) Etch, using standard techniques. KPR is so stable you can store plates You'll have fewest rejects ever, for ffect on KPR exposure im, no KPR protects circuit imoge during clean when panel is skoted on lin. (4) Exposs to high intensity orcs. lead solder.

Write for Industrial Uses of Kodak Photo Resist. No tatement or suggestion in this advertisement is to be considered a recommendation or inducement of any use, manufacture, or sale that may infringe any pat ents now or hereafter in existence.

EASTMAN KODAK COMPANY
Rochester 4, N. Y.

Fig. 6. Network (a) is equivalent to that in Fig. 5, the $2 R$ resistors along the z-axis having been replaced by two parallel $4 R$ resistors. Because of the symmetry, the lower half can be removed without affecting the upper half, as in (b).
network of Fig. 5, where the resistors forming the axis have the value $2 R$.
The network of Fig. 5 is not used in practice. Practical versions extend to one side of the z-axis only. Such networks are perfectly satisfactory if the axial resistors are given a value of $4 R$ instead of $2 R$. The validity of this can be confirmed by reasoning as follows. Imagine the $2 R$ resistance along the z-axis in Fig. 5 to have been replaced by two $4 R$ resistances in parallel, as in Fig. 6a. On account of the rotational symmetry of the system, no current flows from the upper portion to the portion under the z-axis. The lower portion can therefore be omitted, Fig. 6b, without making any difference to the upper portion.

Design and Use of the
 Resistance Network

Resistance networks for two-dimensional problems and for three-dimensional problems with rotational symmetry are identical apart from the values of the resistors. Thus, we shall only describe the network for solving rotationally symmetric three-dimensional problems.
This network is constructed according to the arrangement shown in Fig. 6b. It extends over 50 meshes in the z-direction and over 25 in the r direction. It is composed of $(51 \times 25)+(26 \times 50)$ $=2575$ resistors in all, which are mounted on the back of a sheet of insulating material. The junctions have silver-plated contact pins that pass through to the front of the panel, Fig. 8.

To determine the potential distribution in some electrode assembly, that of Fig. 7, for example, the system is simulated on the resistance network by linking the junctions corresponding to the electrode outlines with copper wire. In principle it would be possible to apply voltages across the simulated electrodes in the manner described above. This is not necessary, however. By the following simple procedure the required potential distribution can be found more conveniently. One of the electrodes. G, for example, is connected

schedule maintenance - study productivity Gloss-to-metal sealed ELAPSED TIME indicators. Compoct, low cost, tamper-proof. Stondord ASA/MIL dimensions, $21 /{ }^{\prime \prime}$ and $3^{1 / 2} 2^{\omega}$ sizes. Eosy to read stand 90999.9 or hour steps 1099999 Hermetically sealed. Shielded. Starts, operates Hermeticoly seoled. Shielded. Starts, operotes
continuously from - 55 C to $+85^{\circ} \mathrm{C}$. For 110 . 125 or 220-250 volts 60 cycle AC. Bulletin on request. Marion Instrument Division, Minneapolis. Honeywell Regulator Co., Manchester, N. H. U.S.A. In Conada. Honeywell Controls Limiled, Toronto 17, Ontario.

Honeywell

NEW EUSTOMEDE SOLDER PREFORMS IMPROVE AUTOMATIC SOLDERIIMG

Naw customed preforms consist of an accurately predetermined amount of a specific alloy. The proper melting temperature and correct volume of solder are assured. Labor costs are lowered. Production increases. Scrap is eliminated. Get the facts todayl Write for 8 page Guide to Preform Soldering.
21-01 4srd Ave., Long Island City 1, N. Y. CIRCLE 178 ON READER-SERVICE CARO

12 FT. DIA. COMBINATION PRESSURE AND RF GASKET DEVELOPED AND MANUFACTURED BY METEX.

METEX COMPLETE LINE OF SHIELDING PRODUCTS ■ electronic weather stripping $■$ RF gaskets $\boldsymbol{\square}$ combination gaskets heat dissipating tube shields

METEX DESIGN, ENGINEERING AND PRODUCTION FACILITIES a customer engineering service available for design consultation complete program of research and new product development materials may be chosen from any alloy or metal capable of being drawn into wire. Metex now offers iridited electronic aluminum weather stripping, to conform to military specifications for salt spray and corrosion.

Fig. 8. The resistance network is mounted on the back of a large board of insulating material. The electrode configuration of Fig. 7 is outlined with lengths of copper wire attached to the appropriate contact points.
in the resistance themselves, being from a tenth to a hundredth thereof. This is because the statistical properties of the network level the errors out. The temperature coefficient of manganin is so small, the voltage employed (usually about 2 v) is so low and the physical dimensions of the resistors are so large that there is no fear of errors due to heating-up of the resistors.
The upper limit to the (in principle, arbitrary) value of R (see Fig. 6b) is fixed by the requirement that the highest value in the network, which is $4 R$, shall not be an unreasonably high one for wirewound resistors. On the other hand the smallest resistors must not have too low a value. If they did, current through them would be large enough to set up appreciable potential differences in the copper wires representing the electrode outlines. In the present networks. R has the value 3600Ω. The extreme resistance values are therefore $4 R=14400$ ohms and $R / 50=72$ ohms.
A vacuum tube voltmeter serves as the null indicator. It is a dc millivoltmeter combining great sensitivity (readings down to $2 \mu \mathrm{v}$ can be obtained) with a high internal resistance (0.6 meg). The null current is therefore less than about 3×10^{-12} A, which is so small that it makes no perceptible difference to the potential distribution. If it was other than very small it could give rise to appreciable errors, particularly in measurements on the axis of symmetry, where the highest-valued resistors lie.
The potentiometer must be very accurate, since its errors show up unchanged in the results. The potentiometer employed had an average accuracy of 1 in 10^{3}.

Digested from "The Resistance Network, A Simple and Accurate Aid to the Solution of Potential Problems" by J. C. Francken, Philips Technical Review, Vol. 21, 1959-60.

Globe Industries has developed a control circuit for our d.c. permanent magnet motors which causes the motor to run synchronously with a reference frequency while getting full power from a d.c. source. Thus now you can have. in one package, the high torque per weight and size advantage of our d.c. motors combined with precise speed regulation. The system does not disturb the speed-torque performance of the motor even during starting.
The control is fully transistorized. No contacts or other moving parts are used, so that long reiiable speed regulation is assured.
One version of this control, in a two cubic-inch package, provides speed regulation of $+.1 \% /-.5 \%$ over load and/or voltage variations. (The motor runs in exact synch with the built-in reference frequency but the frequency generator also has a $.1 \%$ error over the range -20 C to $50^{\circ} \mathrm{C}$.)
Speed regulation with accuracy measured in parts per million is being approached through development of a very stable separate frequency generator to be fitted into a five cubic-inch package.
We are ready to discuss your application problems. Our wide experience in making motors for literally thousands of military applications-involving the fullest range of environmental requirements-assures you of a quick solution to specific problems. Globe Industries, Inc., 1784 Stanley Avenue, Dayton 4, Ohio. Telephone BAldwin 2.3741.

GLOBE INDUSTRIES, INC.
pheciston miniature a.c. o d.c. motors. actuators. timens. steppers, blowens a fans, motonized devices

GLOBE

REPORT BRIEFS

Space Vehicle Communications

This report makes a preliminary evaluation of the various propagational and equipment factors affecting space vehicle communication. It is based on theoretical considerations and the limited experimental evidence from the existing satellites, moon-radar experiments, and radio astronomy measurements. A discussion is given of the noise and equipment limitations, the proper choice of earth station locations and the other factors that affect the signal-to-noise ratio at the receiver. Some of the newer terhnical developments that increase sensitivity to weak signals are evaluated for their potential increase in communication distance. Some consideration is given to the effects of the ionosphere, including absorption, angle errors, Faraday rotation of polarization, meteor trail and auroral interference, and to the effects of oxygen, water vapor, and other gases that cause absorption, angular deviation, and noise. Included is a selection of the better frequencies for line-ofsight and for over-the-horizon communication with space vehicles and the frequencies that would be less subject to mutual interference with earth stations for communication between vehicles. Tentative Evaluation of Transmission Factors for Space Vehicle Communications, Luther C. Kelley, Sol Perlman and others. Army Signal Radio Propagation Agency, Fort Monmouth, N. J., Sept. 1958, 145pp, Microfilm \$7.20, Photocopy \$22.80. Order PB 143142 from Library of Congress, Washington 25, D. C.
specify aneem for relability RHEEM'S new High Current Switching transistors feature:

LOW SATURATION VOLTAGE 1.5 volts @ 500 mA HIGH COLLECTOR CURRENT 1 amp CORE SWITCHING $0.1 \mu s e c$.

RHEEM SEMICONDUCTOR CORPORATION a subsidary of rheem manufacturing company
Dept. E4, P.O. Box 1327, Mountain View, California, Phone Yortshire 8.9211. Roflonal Sales Ofmces: LOS ANGELES, 5150 wilshire Blvd. - SAM ERANCISCO, 327 Morift Bliva., Mountain View. Calir. - MINNEAPOLIS, 6519 Nicoliet Ave. - DETROIT, 18950 Livernois Ave. - CHICAGO, 1919 N. Harlem Ane. © EMGLEWOOD, M. L., 610 East Palisade Ame. Distribrorts: NEW JEASEY, Eastern Radio Coro, 312 Clifton Ave., Clifton, New Jersey. Phone, GReoory 1-6600- CHICAGO, Allied Radio Corp., 100 Northwestern Ave., Chicapo, Illinois, Phone. HAymarket 1-6800' - PHILADELPHIA.
 Lumence Station Rd., Sunnyale, Calit, Phone. NEpent $6-0300$ - LOS ANGELES. Avnet Corp., 5877 Rodeo Rd., Los Anoeles, Calif., Phone, UPton $0-6141$ of VErmont 7.7111 • Westates Electronies Corp., 11334 Playa St., Culver City. Calif., Phone, EXmont 1.6201 or UPTon 0.4544.

Magnetic Pulse Generation

The efficiency of magnetic pulse generators is analyzed by locating their core losses. Because of saturation of magnetic components, the major portion of losses can be found in the cores. The wattmeter and calorimetric methods are used to determine the losses of single components as well as those of the whole system. In addition, an evaluation of the voltage pulse into a resistive load is made. The results obtained in different ways vary only a few per cent and indicate almost fifty per cent efficiency for a threestage pulse generator. Tests are reported on a pulse generator that is capable of changing the repetition rate by a ratio of $1: 2$, and also on a pulse generator with continuous changing repetition rate. Methods of pulse width control mentioned in earlier reports have been tested on the magnetron power level and indicate a successful solution for a variable pulse width. New Methods of Magnetic Pulse Generation, B. M. Wolfframm, Magnetic Research Corp., El Segundo, Calif., Dec., 1957, 55pp, \$1.50, Order PB 131651 from OTS, Washington 25, D C.

Nuclear Resonance Filters

A method of artificially "shimming" the inhomogeneous field of a small magnet with a series of radio frequency pulses applied to the nuclear induction sample has been investigated. The investigation was directed toward the development of a sharp, tunable bandpass filter. Both analytical and experimental results show that two difficulties present themselves. First, the method is unstable with respect to small variations in the amplitude or width of the shimming pulses. Second, to obtain a "quiet" sample under no-signal conditions, the shimming pulses must be of impractically short duration. For the case of an initial transverse relaxation time of $200 \mu \mathrm{sec}$, it is shown that 1000 shimming pulses must be applied during the transient signal build-up (20 msec) in a glycerine sample, if spurious output is to be kept below a reasonable level. Under these same conditions the shimming pulse length should be about 100 musec. Fractional variation in the amplitude times width value of the pulses must be held to 7×10^{-6}. A brief analysis of the steady state response of a filter is given under the assumption that the pulse qualites can be met; however, a conclusion is reached that it is impractical to meet these requirements. Nuclear Resonance Filters For Radar and Communications Applications, R. T. Daly and M. Newstein, Technical Research Group, New York, N. Y., Sept. 14, 1957, $108 p p$, Microfilm $\$ 5.70$, Photocopy $\$ 16.80$. Order PB 138551 from Library of Congress, Washington 25, D. C.

Antenna-Multicoupler Systems

This is the third in a series of reports on the design of antenna-multicoupler systems for use where several transmitters and receivers are operated simultaneously with a single antenna system. The design formulas for the two- and three-resonator, tunable, narrow-band, symmetrical, mini-mum-loss, capacitively coupled filters, developed in the two previous reports, are adapted to the design of inductively coupled filters. With either type of coupling, the way in which the filter element values must vary with frequency is shown to depend upon the method of tuning employed in the resonators. Three resonator tuning methods are considered, in which either $C, L_{\text {s }}$, or the ratio C/L is taken as a parameter. Tables of filter design formulas are given which apply when any of the three resonator tuning methods is used. Shorter, approximate filter design formulas are given which are reasonably accurate for minimum center-frequency insertion-loss values up to about 1 db. Design Data For Antenna-Multicoupler Systems, J. F. Cline, Stanford Research Institute, Menlo Park, Calif., Sept. 1958, 24 pp, Microfilm \$2.70, Photocopy \$4.80. Order PB 138601 from Library of Congress, Washington 25, D.C.

These new Millimicrosecond Diodes feature:
RECOVERY TIME $.004 \mu s e c$.

VERY LOW CAPACITANCE
$1 \mu \mu f$ @ -6 volts

RHEEM SEMICONDUCTOR CORPORATION

Dept. E4, P.O. Box 1327, Mountain View, California, Phone Yortshire 8-9211. Roglonal Salos ofices: LOS ANGELES, 5150 Wilshire Blvd. - SAM FRANCISCO, 327 Moffett BIvd., Mountain View, Calif. - MINNEAPOLIS. 6519 Nicollet Ave. - DETROIT, 18450 Livernois Ave. CHICAGO. 1919 N. Harlem Ave. - ENGLEWODD. N. J., 610 East Palisade Ave. Distributors: NEW JERSEY. Eastern Radio Corp., 312 Clifton Ave., Clifton, New dersey, Phone, GRegory 1.6600 - CHICAGO. Allied Radio Corp., 100 Northwestern Ave., Chicago, Mlinois, Phone, MAymarthet 1-6800 - PMILADELPMIA
 0.6141 or VErmont 7.7111 - Westates Electronics Corp., 11334 Playa St., Culver City, Calif., Phone, EXmont 1-6201 of UPton 0-4544.

RHEEM OFFERS THE IMDUSTRY'S BROADEST LINE OF SILICON DIODES

STANDARDS
AND
SPECS

New Unit Prefixes

The National Bureau of Standards has adopted four new prefixes: tera, giga, nano, and pico. These prefixes were suggested by the International Committee on Weights and Measures as additions to the eight common prefixes.

Multiple or	
Sub-multiple	Symbol
10^{12}	T
10^{9}	G
10^{6}	M
10^{3}	k
10^{2}	h
10	dk
10^{-1}	d
10^{-2}	c
10^{-3}	m
10^{-6}	u
10^{-9}	n
10^{-12}	p

${ }^{\circ}$ Tera is pronounced like "terra" in "terra firma." Giga has the initial g pronounced as a j, i is pronounced as "eye," and the final ga is like the ga in gal. Nano is pronounced "nane-o." Pico is pronounced "pike-o."

Standards Style Manual

Prepared by the American Standards Association, this style manual will help anyone preparing standards or specs. Use of this manual should make for more uniform and consistent spec preparation.
Included in the manual are: general principles; an outline of reference data that should be included to help a reader use the standard (this reference data does not include technical content); a list of reference source material used as a guide; outline form and numbering of sections; certain special work usages; abbreviation principles; principles for letter symbols and formulas.

In addition, the manual shows how to present tables and figures, how to refer to other specs and how to indicate errata. It also includes recommendations on format and on preparing the manuscript.

This 24 -page, indexed manual is available from the American Standards Association, 70 E. 45th St., New York 17, N.Y., \$1.50. Specify ASA Style Manual.

Following RCA's announcement of the nuvistor concept and subsequent announcement of the first commercial nuvistor type-the 7586 generalpurpose industrial triode-comes news that a nuvistor tetrode is now available to equipment manufacturers on a limited sampling basis. This developmental small-signal tetrode-RCA Dev. No. A-2654-promises to extend the horizons of the nuvistor concept far into the entertainment, industrial, and military electronic fields.

Incorporating all the advantages of nuvistor design, this small-signal general-purpose tetrode is Step 2 of a daring electron-tube-improvement program by RCA. Our developmental work indicates that the nuvistor tetrode will establish new high standards of tube performance for the electronics industry.

Dynamic in Concept

RCA had as its objective in the design of the nuvistor tetrode superior performance in many amplifier applications, particularly at the higher radio frequencies. The new tube is $1 / 3$ the size of conventional rf-amplifier tetrodes, and consumes approximately $1 / 2$ the heater power.

The nuvistor method of construction eliminates or minimizes many of the known causes of tube failure. Use of only ceramics and strong metals provides a structure of extreme ruggedness. Brazing of all connections in a hydrogen atmosphere at extremely high temperatures eliminates structural strain and element distortion. Exhaust and seal-off at very high temperatures minimizes gases and impurities from metal parts.

Opening a New Era:

"Nuvistorization"

The nuvistor tetrode shows great promise for mixer, oscillator-mixer, if-amplifier and low-level video-amplifier service.
Application tests in laboratory circuits show that the nuvistor tetrode will give top performance in industrial and military equipment. Out-
standing performance has been obtained in the mixer and if-amplifier stages of such equipment.

Nuvistor Developmental Small Signal Tetrode A-2654
electrical:

Heater, for Unipetential Cathede: Volrege (AC or DC) Current	$\begin{gathered} 6.3 \pm 10 \% \\ 0.165 \end{gathered}$	$\begin{aligned} & \text { volls } \\ & \text { amp } \end{aligned}$
direct interelectrode capacitances lopprox. I:		
Grid No. 1 to plate	0.01	$\mu \boldsymbol{\prime \prime}$
Grid No. 1 to cathode heoter, grid No. 2, metal thell and internal shield	6.0	unf
Plate to cathede, heoler, grid No. 2. matal shell and internal thield	1.4	$\mu \boldsymbol{\prime}$
Heater to cathode	1.4	ниf
Characteristics, CLASS A AMPLIFIER:		
Plate Supply Voltage	125	volts
Grid No. 2 (Screon-Grid) Vollage	50	volts
Cathode Resistor	${ }^{88}$	ohms
Plate Resistance (approz.)	0.2	megohm
Transconductance	10.400	umhat
Plate Current	9.6	m0
Grid-No. 2 Curreat	2.9	ma
Grid-No. I Vallage (apprez.) for plate current of 10 но	-5	volts
MAXIMUM RATINGS, ABSOLUTE-MAXIMUM VALUES:		
PLATE VOITAGE	250 max.	volis
GRID-NO. 2 VOITAGE	110 max.	volts
GRID-NO. 1 VOLTAGE:		
Negative bias value	55 mar.	volts
Positive bias value	2 max.	valis
GRID-NO. 2 INPUT	0.2 max.	woll
plate dissipation	2.2 max.	watts
GRID-NO. I CURRENT	2 max.	mo
Cathode current	20 max.	mo
PEAK HEATER-CATHODE VOLTAGE,		
Heater negative with respect to cathode	100 mman	volts
maximum ciacuit values:		
Grid-No. I Cirevit Resistonce: For cathede-bles eperation	1.0 maz.	megohm

DESIGN ENGINEERS: You will want to evaluate this tetrode for possible use in your equipment designs. For more details on nuvistors and information on how you may obtain samples of the tetrode call your RCA Field Representative at the Field Office nearest you.

Among other nuvistor types in development at RCA is a beam power tube for military, industrial, and entertainment applications. Half the size of its present-day counterpart, the nuvistor beam power tube will have a maximum platedissipation rating of 30 watts, and an output of several watts with less than 75 volts on the plate.

EAST: 744 Broad Street, Nowerk 2, Now Jorsoy. MUmboldt 5-3900. MID-WEST: Suite 1154 , Merchandlse Mart Plara, Chicago 54, Illinois. Whitholl 4-2900. WEST: 6355 E, Washington Blvd., Les Angolea 22, California, RAymond 3-8361

Airbome High-Frequency Single Sideband Am System

Requirements for airborme transmitter-receivers which can transmit and receive high frequency radio intelligence are established by this Aeronautical Radio, Inc. spec. Four basic requirements are covered in this spec.
First, SSB full-carrier transmission of voice and tone signals and am double-sideband reception. Second, SSB suppressed-carrier transmission and SSB suppressed-carrier reception of voice and other signals which do not need exact frequency synchronism.
Third, SSB floating-carrier transmission and SSB-afc reception of voice signals and data transmissions requiring frequency synchronization, but not phase synchronization.
Fourth, transmission and reception for special data applications. This document covers definitions, interchangeability standards, design, and antenna requirements. One of its purposes is to assure uniform design requirements for all airline SSB airbome equipment. This publication also takes the uncertainty of SSB application into account. Issued February 15, 1960, copies may be obtained from Aeronautical Radio, Inc., 1700 K St., Washington 6, D.C. Specify ARINC No. 533, Airborne HF SSB/AM System.

Mechanical Recliffer Defnitions

Equipment terms and functional terms for mechanical rectifiers are laid down in Transaction Paper 60-35 of the AIEE. The paper also defines terms for parts and auxiliaries, rectifier circuits, excitation and control circuits and functions, ratings, rectifier characteristics, and operating faults.
These definitions were proposed by the Mechanical Rectifier Subcommittee of the AIEE Industrial Power Rectifier Committee.
The paper is available from the American Institute of Electrical Engineers, 33 W. 39th St. New York 18, N.Y. Price is 50 to members, $\$ 1.00$ to non-members.

Mathod of Measuring Audio Output

Primarily issued for home-type audio equipment, this EIA standard establishes a method of measuring and expressing the capability of an amplifier to supply signal energy to its load.
As used in this standard, music power output is the single frequency (1000 cps) power obtained at 5 per cent total harmonic distortion or less, when measured immediately after the sudden application of a signal and during a time interval so short that supply voltages within the amplifier have not changed from their no-signal value.
Copies of this standard may be obtained from the Electronics Industries Association, 11 W. 42nd St., New York 36, N.Y., 25¢. Specify EIA RS-234, Power Output Ratings of Packaged Audio Equipment for Home Use, issued February 1960.

ELECTRONICS JOBS $\$ 6,000$ to $\$ 75,000$ Go Begging

It's Irue! Cadillac, the nation's largest Executive and Professional placement service, has many more alectronic positions available than we can fill.
We represent every "Blue Book" Electronics firm in Americo, over 350 in all. Because of this, Cadilloc is oble to offer Electronics Engineers a choice of positions unequalled by any other firm.

FREE MONTHLY BULLETIN

Because you are on Electronics Engineer, our monthly Electronics Opportunities Bulletin and our Completely Confidential Placement Service are available to you FREE OF CHARGE.
"For your free Bulletin, each month listing America's BEST Electronics jobs, send your name and home address to:"

Jack Miggina
Vice President
Cadillac Associates, Inc. 29 E. Madicon Bldg., Dept. E2 Chicage 2, III.

CIRCLE Y02 ON CAREER INQUIRY FORM

Opportunities for Research and Development Engineers Created by Vickers Continued Expansion

FEEDBACK CONTROL SYSTEMS

B.S., E.E. or B.S.M.E., advanced degree desirable. Three yeara' minimum experience in analysis and design of feedback control systems and components. Analogue computer experience (course work acceptable) for use in the design of servo systems and components. Hydraulic and/or pneumatic background desirable.

SENIOR PROGRAMMING ENGINEER

B.S. or M.A. Applied Math (Engineering Minor) or Engineering Degree (Math or Engineering Mechanics Minor). Two years programming experience on any of the inlowing: I.B.M. -650 or any 700 series computer; Univac-1, 11 or 1103; Datatron205. Experience to include numerical solution of partial differential equations. Required to assist and instruct programmers on Univac " 90 ". Perform numerical analysis to obtain machine solutions.

SERVO VALVE ENGINEER

B.S. minimum, M.S. preferred in M.E., A.E. or E.E. Heavy experience in the design, analysis and application of servo valves or related equipment. To direct major servo valve development projects including conception, design, test and test evaluation.

VICKERS INCORPORATED

DIVISION OF SPERRY RAND CORPORATION ADMINISTRATIVE AND ENGINEERING CENTER
P. O. Box 302, Detroir 32, Michigan

Attention: R. E. Barlow, Employment Manager

YOUR CAREER

NEWS AND NOTES

A woman engineer has made a career of telling her male colleagues to watch their language.
The woman is Eleanor McElwee, technical editor in the Commercial Engineering Dept., Electron Tube Div., Radio Corp. of America, Harrison, N.J.
Most men whose work she edits are not hostile, she said. "They generally welcome my comments, as long as the sense of the material is not changed," she observed. "Some may resist the revisions at first, but usually they agree that the edited copy is easier to understand than their original draft."
Several of her male colleagues have rewarded her assistance with gifts. One of RCA's Chinese scientists gave her a pound of an exotic tea blend and a sandalwood fan.

Miss McElwee, who reviews, rewrites and edits hundreds of engineering manuscripts annually, offers these guides to better technical writing:

- Consider the reader's background, needs and language limitations.

- Outline content and organization.
- Insert headings and subheadings to help the reader follow the development of ideas.
- Check for correct grammar.
- Simplify tables and graphs, and put captions on all illustrations.

Western Gear Corp Foundation has donated $\$ 125,000$ to the engineering building fund of the University of Santa Clara, indicative of the increasing interest shown by industry in the education of future talent.

A thousand top companies in the U.S. are being asked what they are doing to help their technical personnel write better. The survey is being conducted by the Technical Writing Improvement Society of Pasadena, Calif., with special attention to engineers. Replies to questionnaires are expected to show if the reasons for poor technical writing are basically financial, a lack of instructors, a lack of books and teaching materials, or other factors. Results are to be published by the society in June.

Said a mouse, with a terrible sneeze,
"Space travel is surely no breeze,
What with dips in the ocean
And orbital motion
And a moon that's not really
green cheese!"

electromic oesian CAREER INQUIRY SERVICE

Advancement Your Goal? Use COMFIDENTIAL Action Form

ELECTRONIC DESIGN's Confidential Career

 Inquiry Service helps engineers "sell" themselves to employers-as confidentially and discreetly as they would do in person. The service is fast. It is the first of its kind in the electronics field and is receiving high praise from personnel managers.To present your job qualifications immediately to companies, simply fill in the attached resume.
Study the employment opportunity ads in this section. Then circle the numbers at the Dottom of the form that correspond to the numbers of the ads that interest you.
ELECTRONIC DESIGN will act as your secretary, type neat duplicates of your application and send them to all companies you select-the same day the resume is received.
The standardized form permits personnel managers to inspect your qualifications rapidly. If they are interested, they will get in touch with you.

Painstaking procedures have been set up to ensure that your application receives complete, confidential protection. Safeguards include:

- All forms are delivered unopened to one reliable specialist at ELECTRONIC DESIGN.
- Your form is processed only by this specialist.
- The "circle number" portion of the form is detached before the application is sent to an employer, so that no company will know how many numbers you have circled.
- All original applications are placed in confidential files at ELECTRONIC DESIGN, and after a reasonable lapse of time, they are destroyed.
If you are seeking a new job, act nowl

After completing, mail career form to ELECTRONIC DESIGN, 830 Third Avenue, New York, N. Y. Our Reader Service Department will forward copies to the companies you select below.
(Please print with a soft pencil or type.)
Name
Telephone
Home Address \qquad City \qquad Zone \qquad State Date of Birth \qquad Place of Birth \qquad Citizenship

Position Desired \qquad

Educational History				
College	Dates	Degree	Major	Honors

Recent Special Training

Employment History

Company	City and State	Dates	Title	Engineering Specialty

Outstanding Engineering and Administrative Experience \qquad

Professional Societies
Published Articles
Minimum Salary Requirements (Optional) \qquad
Use section below instead of Reader Service Card. Do not write personal
data below this line. This section will be detached before processing.
Circle Career Inquiry numbers of companies that interest you

| 900 | 901 | 902 | 903 | 904 | 905 | 906 | 907 | 908 | 909 | 910 | 911 | 912 | 913 | 914 | 915 | 916 | 917 | 918 | 919 | 920 | 921 | 922 | 923 | 924 |
| :--- |

THEY BUILT AN ELECTRONIC MARVEL WHERE THE JUICY ORANGES GROW

Starting from scratch, the men of Martin-Orlando designed and built a package of over 290,000 electronic parts- the Missile Master. Now operational, Army's Missile Master is the nation's first and most reliable (99.2%) air defense control system. Production is continuing now down where oranges ripen in almost perpetual sunshine. It's a land where engineers and scientists bring more to their work because they can relax at the nearby shore... or any of 54 lakes . . . on fairways . . . tennis
courts . . . or shady patios. From these men have come:
Bullpup-operational guided missile for the Navy (GAM-83A in R\&D for the Air Force) -so reliable it's handled as an ordinary round of ammunition. Lacrossenow operational - is the Army's most accurate surface to surface missile. Pershing - Army's selective combat range artillery missile -now in advanced development.
Wouldn't you like to work in one of

America's most advanced electronic and missile centers down where the big careers and the juicy oranges grow? Take the first step now.

Write: C. H. Lang, Director of Employment. The Martin Company. Orlando 1. Florida, for your copy of the descriptive booklet, "Portrait of a Missile Maker."
CURRENT OPENINGS for engineers in these areas: ground and airborne electronics - advance design - systems aerodynamics • quality and test • reliability - electronics manufacturing

Work in the Climate of Achievement

ENGINEER-IMPROVEMENT COURSES AND SEMINARS

Below are courses and seminars intended to provide the engineer with a better knowledge of various specialties. Our grouping includes several different types of meetings: National Courses-those held on consecutive days and intended to draw attendees from all geographical areas; One-Day Seminars-one-day intensive seminars which move from city to city; and Regional Lectures -regional symposia or lecture seriea which generally run one night a week for several weeks.

National Courses

Product and Brand Managemens Course, New York City

The Marketing Division of the American Management Association will inaugurate a new course in product and brand management the week of May 2, at the Hotel Astor, New York City.

The new two-week program is designed to increase the ability of the product manager to develop a "total marketing" effort behind his product, brand or product group. Course sessions will be divided into two non-continuous units. The first group will meet May 2-6 and June 20-24.

The first unit of the course will focus on the way in which the product manager develops plans for his product or brand; the second will stress the execution, control and evaluation of these plans. Lectures by marketing executives will be supplemented by case studies and project sessions. In addition to general sessions for all registrants, separate group meetings for product managers from consumer goods industries and industrial products firms will be featured in the program.
A second course session will begin Aug. 15-19 on the campus of Colgate University in Hamilton, N. Y. and will conclude in New York Sept. 19-23. A third course has been scheduled for New York Oct. 24-28 and Nov. 28-Dec. 2. For further information write American Management Association, 1515 Broadway, Times Square, New York 36, N. Y.
Space Vehicle Guidance Series,

University of Michigan

The Institute of Science and Technology at the University of Michigan is sponsoring a seminar series on space vehicle guidance. On May 4 and 5, Lester M. Field (Ph.D.), associate director of research, Hughes Aircraft Corp., will address the group on "Space Communication." Prof. Samuel Silver of the University of California's Electrical Engineering Dept. will lecture on "Antennas and Antenna Techniques" May 25 and 26. The lectures will be held at $3: 30 \mathrm{pm}$ each day in the CIRCLE 906 ON READER-SERVICE CARD $>$

HIGH INFORMATION

Placing the man in a man-machine system

The operator shown above is on dutv at the radar display console of an air defense svstem.

How effective would this system be if the operator were unable to detect the direction of movement of a target because of flickering noise pips?
Interestingly enough, this was the case. The solution to the problem came from fundamental studies by IBM systemsengineers and engineering psychologists.
Data was collected on the performance of individuals at the display in relation to the rate at which the radar trails were presented. The display was redesigned by systems engineers to present radar trails at a much higher rate-making the radar data clearly visible at all times by reducing its "on-off" character
Engineering and human factors
At IBM, when an engineering team first
meets to set up the requirements for a svstem. the possible extent and nature of human participation are carefully analyzed. Before a prototipe is built and tested, design recommendations are made based on simulation research. Task and system function analysis are emploved to develop and improve total system operability and reliability.
New theories answer future questions
The IBM systems specialist has ample opportunity to investigate general theories which might answer future questions concerning the characteristics of man communicating with machines. Studies are being conducted on deci-sion-making, memory and learning processes. and constrained handwriting as a data processing technique
Opportunities for achievement
But perhaps human factors engineer-
ing is not vour primary interest. Yoll might be more interested in what IBM people are doing in semiconductors, inertial guidance, or microwaves. Or the advances thev are making in cryogenics and optics. In all these fields, you'll find IBM offers a world of opportunity for engineering achievement.

Right now, there are several kev openings in IBM's expanding research and development staff. If you have a degree in engineering, mathematics, or one of the sciences-plus experience in your ield-please write, describing vour qualifications, to:

Manager of Technical Emplovment IBM Corporation, Dept. 555P4 590 Madison Ave.
minermational business machines corporation

CAREER COURSES

Cooley Memorial Laboratory, North Campus. For information contact: Chuck Wixom, University of Michigan, Ann Arbor, Michigan (NOrmandy 3-1511, Ext. 2955).

Regional Courses

Course in Electronic Packaging for Design Engineers, UCLA, May 2-13, Los Angeles
An intensive two-week course in Electronic Packaging for Design Engineers, covering fundamentals and new developments in the field, will be held at UCLA.
Emphasis will be on military specifications, and on the three major areas of schematic diagrams, wiring diagrams, and general design considerations for the mechanical placement of electronic components, according to Sol Maniloff of Frank Mayer Engineering Company, who will be the instructor. Enrollment will be limited. Information on the course and housing accommodations may be obtained through Engineering Extension, University of California. Los Angeles 24 (BRadshaw 2-26161, Ext. 369).

PAPER DEADLINES

Convention Program Chairmen have issued the following deadlines have issued the following deadlines
to authors wishing to have their to authors wishing to have their
May 16: Deadline for 10 copies of an 800 -word abstract for the Seventh National Symposium on Reliability and Quality Control in Electronics, jointly sponsored by the IRE, the AIEE and the ASQC to be held January 9-11, 1961, at the Bellevue-Stratford Hotel, Philadelphia, Pa. Abstract should include the title of the paper (not to exceed 50 letters, including spaces), the author's name, position and affiliation. In the case of more than one author, please indicate who will present the paper. 10 copies of a biographical sketch of each author must accompany the abstract. Authors will be notified of acceptance by June 27, 1960. Final papers will be due October 10, 1960. Send abstracts and biographical sketches to: R. E. Kuehn, IBM Oswego, Oswego, N. Y. May 31: Deadline for 3 copies of a 1000-word abstract for a Symposium on Adaptive Control Systems, sponsored by the Long Island Section of the IRE, to be held October 17, 18, and 19 at the Garden City Hotel, Garden City, Long Island, N. Y. Suggested topics include: theoretical aspects, practical realization and experimental results, and analytical techniques. Final manuscripts of accepted papers will be due August 31, 1960. Send abstracts to: Harold Levenstein. Chairman of the Program Committee, in care of W. L. Maxson Corp., 460 W. 34th St., New York 1, N. Y.

Now offering... creative careers in ordnance

Expanding operations in an exciting, growing company have created unusual career opportunities for ordnance engineers. Assignments on research and development projects will require the mature judgement of from two to ten years experience in the field and present a combination of stimulating challenge and an ideal professional climate for contribution and personal development.
The company: the Crosley Division of Avco Corporation. There, confidence and personnel morale stem from aggressive management, a progressive approach to individual effort, and maximum support for all projects. Definite creative career opportunities are available now. Experienced personnel can choose from:

- Ballistics
- Arming and Fuzing
- Non-nuclear Weapons Systems Analysis
- Target Damage Evaluation
- Warhead Design
- Shells System Design
- Microminiature Electronic

Assemblies Design

- Projectile Design

For complete information, write or call: Mr. P. B. Olney, Manager of Scientific and Administrative Personnel, Dept. T-460, Crosley Division, Aveo Corporation, 1.929 Arlington Street, Cincinnati 25, Ohio. Phone: KIrby 1-6600.

ENGINEERS CIENTISTS

FUTURISM

 in contemporary R\&DRadical departures from traditional forms of scientific investigation are the keynote of Republic Aviation's forward-looking programs in space exploration and upper atmosphere flight. In an environment that regards with skepticism the seeming validity of conventional conclusions, engineers and scientists seek below. the-surface solutions of problems... bypassing the superficial.
Expanding the scope and depth of present programs is Republic's recently completed $\$ 14$ million Research and Development Center. Extensive facilities here are an invitation to professional men to realize the future by solving today's most perplexing problems.

SENIOR LEVEL OPENINGS EXIST IN THESE IMPORTANT AREAS:
Navigation \& Guidance Systems / Radar Systems / Information Theory / Radio Astronomy / Solid State \& Thermionic Devices / Microwave Circuitry \& Components / Countermeasures / Digital Computer Development / Radome \& Antenna Design / Receiver \& Transmitter Design / MiniaturizationTransistorization / Radiation \& Propagation (RF, IR, UV) / TelemetrySSB Technique

Please forward resumes to:
Mr. George R. Hickman Terhnical Employment Manager Department 12 D-5

Farmingdale
Long' Island, New York

the careers of
these S / C enginers are
assured at $T / 1$ in 60

Device Development Engineer. Mission: Probing the unknown to evolve a variety of new advanced semiconductor-component devices.

Circuit Development Engineer. Mission: Discovering through experience and educated imagination, new uses for transistors and specialized semiconductor devices by exploring new frontiers in thought.

Device and Circuit Development Engineers we seek, want liberal freedom of thought and action and advanced physical facilities to permit maximum creative productivity. They desire broad and rapid expansion of their professional horizons with solid financial security and recognition matching personal achievements.

Our Device Development Engineer would be equally intrigued with studies in solid-state diffusion and nuclear radiation experimentation on semiconductor materials and devices. Our Circuit Development Engineer would be productively stimulated by participation in transistorization projects ranging from AM, FM and TV receivers to computer system logic.

You qualify as our Device Development Engineer if you hold a degree in Electrical Engineering, Chemistry or Physics and experience in semiconductor or related development areas. An Electrical Engineering degree and knowledge of transistor circuitry are required for Circuit Development Engineers.

START NOW TO SUCCEED IN 'GO AT TEXAS INSTRUMENTS

INTERVIEWS will soon be held in your area. If you qualify for either of these positions, please send a resume immediately to C. A. Besio. Dept. 108.
Whether or not you apply now, send for TIPS booklet today and get better acquainted with TI's S-C division.

TEXAS INSTRUMENTS SEMICONDUCTOR - COMPONENTS DIVISION POST OFFICE BOX 312 . DALLAS. TEKAS

DIGITAL BUILDING BLOCKS BY AERONUTRONIC

If your diagnosis is insufficient computer systems reliability, consider prescribing these new, application-proved digital building blocks from Aeronutronic. High-capacity MEMO DISC A reliable, adaptable memory with 500,000 -bit storage capacity. Holds up to 100 read-write heads -each precisely positioned to the magnetic surface by a cushion of air which automatically compensates for any surface irregularities, eliminates disc and head damage. Heads are adjustable in seconds.

Outputs of upto 200 mv at a bit density of $150 / \mathrm{inch}$ are standard. 300 kc operation is provided in both $12^{\prime \prime}$ and $16^{\prime \prime}$ models. System-proved DIGITAL CIRCUIT BOARDS-available in a variety of standard types with high output current capability. All boards provide 600 kc operation, DC level output, with extremely high reliability. Interested? For additional technical data, write Aeronutronic, a Division of Ford Motor Company. Ford Road, Newport Beach, California, Department 5160.

SUBSCRIPTION POLICY
ELECTRONIC DESIGN is circulated only to qualified design engineers of \mathbb{U}. S . manufacturing companies, industrial consultants and government agencies. If design for manufacturing is your responsibility, you qualify for subscription without charge provided you send us the following information on your company's letterhead: Your name and engineering title. your company's main products and description of your design duties. The letter must be signed by you personally.
ANY ADDRESS CHANGES FOR OLD SUBSCRIBERS NECESSITATE A RE. STATEMENT OF THESE QUALIFICATIONS. Subscription rate for non-qualifed subscribers- $\mathbf{2 5 5 . 0 0}$ per year U. S. A., $\$ 30.00$ per year all other countries. Single copy $\$ 1.50$.

- CIRCLE 183 ON READER-SERVICE CARD

[^11]
ADVERTISERS' INDEX

April 27, 1960
Advertiser Page

AGA Div. of Elastic Stop Nut Corp. 126 AMP, Inc 13 Ace Electronics Associates, Inc. Advanced Vacuum Products Inc.
Aeronutronic, a Div. of Ford Motor Aeronutronic, a Div. of Pord Motor Co. ... 15 Airborne Accessories Corp Alden Products Allegheny Ludlum sio..... Allegheny Lua Co Steel Corp. ${ }_{87} 5$ Allison-Bradey Co. $\ldots \ldots \ldots$ between $72 \& 73$ Allison Laboratories, Inc. 134 Alpha Wire Cod Amperex Electronic Corp. Amphenol Borg Electronics Corp at Atlas Co Products Inc. Alas Precision Products Co. Avco Crosley Crosley …...................... 126

Barker \& Williamson, Inc 111 Bead Chain Mig. Co. Beartie-Coleman, Inc.
Beckman/Berkeley Div
Beeco Chemical Div.
Beeo Chemical Div. 6
endir Aviation Corp., Eclipse Pioneer Div. 90 Bendix Aviation Corp, Red Bank Div.
Birtcher Corporation The
Bliley Electric Company
Bomac Laboratories, Inc
urndy Corporatio
Burnell \& Co., Inc.
CBS Electronics. Semiconductor Operations 17 Cadillac Associates, Inc. 114, 152 Cambridge Thermionic Corp. 120 Cannon Electric Co. 24 Carborundum Co. The
Chart-Pak, Inc.
Chassis-Trak Inc.
(1.27......... 97 Clarostat Manufacturing Co Inc $13{ }_{1} 134$ Clary Corp.
Clary Corp. 95
51
Connector Seal Corp 143 Crosley Teletronics Laboratories
Curtiss-Wright Corp.
123

Daven Co., The
Daven Co.. The
Daystrom Inc.. Transicoil Div.
Dow Corning Corp. Motors Corp. ${ }_{83} 159$
Dymec, a Div. of Hewlett-Packard Co. .. 14
E H Research Laboratories, Inc
ESC Corporation
ESI/Electro Scientific Industries
Eastern Industries, loc.
Edean Kodak Company.
Edison. Thomas A., Iddustries,

Eitel-McCullough. Inc.
Eleo Corp.
Electrical Industries
Electro Instruments, Inc. Electronic Designero Catalos Endevco Corp.
(10..................... 84

NEW DELCO 50-AM

 TRANSISTORS

 TRANSISTORS}

HIGHER CURRENT THAN EVER BEFORE FOR MILITARY AND COMMERCIAL USE

	2N1518	2N1519	2 N1520	2N1521	2N1522	2N1523
Maximum Collector Current (Amps.)	25	25	35	35	50	50
Maximum Collector to Base Volts. Emitter Open, Max lco 4ma	50	80	50	80	50	80
Minimum Open Base Volts (l-Amp. Sweep Method)	40	60	40	60	40	60
Maximum Saturation Volts at Maximum Collector Current	0.7	0.7	0.6	0.6	0.5	0.5
Gain at Ic at 15 Amps.	$15-40$	$15-40$	$17-35$	$17-35$	$22-45$	$22-45$
Minimum Gain at Maximum Collector Current	12	12	12	12	12	12
Thermal Resistance Junction to Mounting Base (${ }^{(}$C/Watt)	0.8	0.8	0.8	0.8	0.8	0.8

Characteristics at $25^{\circ} \mathrm{C}$ Maximum Junction Temperature $95^{\circ} \mathrm{C}$

Chicago, Illinois 5750 West 51st Street

Santa Monica, California 726 Santa Monica Boulevard

A new family of high current transis ors featuring the 50 -ampere 2 N1522 and 2 N1523. Two 25. and two 35 . ampere types round out the line. All thoroughly tested and completely reliable. Available in production quanti. ties. Call or write your nearest Delco Radio sales office for full product information and applications assistance.

DELCO RADIO

Division of General Motors Kokomo, Indiana

Newark, New Jersey 80 Raymond Boulevard rel: Mitchell 2-6165

Tel: Portsmouth 7.3500 Tel: Exbrook 3-1465 Tel: Portsmouth 7-3500 Tel: Exbrook 3-1465 CIRCLE 184 ON READER-SERVICE CARD

Detroit, Michigan 57 Harper Avenue Tel: TRinity 3.6560

The First 5\% Standard Tolerance Series at Existing 10\% Prices

AVAILABLE IMMEDIATELY
 AT YOUR LOCAL DISTRIBUTOR UP TO 999 PIECES AT OEM PRICES

U. S. Semiconductor Products' experience and highly developed diffusion techniques permit a new level of precision in zener diodes! U. S. Semcor now offers most existing EIA registered 10 watt zener diodes in the standard DO-4 ($7 / 16^{\prime \prime}$ hex) package in a 5% tolerance series at the same prices which you are currently paying for 10% units. Write, wire or phone today for complete specifications and prices.
U. S. SEMICONDUCTOR PRODUCTS UNITEDIVINOSTRRIAL

[^12]GRH Hallteat 127
G-V Controls, Inc. 68
General Electrio Co., Metallurgical 144
General Electric Co., Silicone Products 78
General Electric Co., Power Tubes 68, 69, 98, 99 General Radio Co.,
Globe Industries, Inc. 135
71
Gries Reproducer Corp. 145
22
Heiland. Div. of Minneapolis Honeywell
Hermes Electronics CoHewlett-Packard CompanyHeyman Mfg. Co. .i-Temp Wires, Inc.Hofman Electronics CorpHughes Aircraft Co. between 24 \& 25
1 T \& T, Industrial Products Div. 40
Minois Condenser Co. ndiana General Corp. 130
68
Electronic Engineers, Corp. 155
James Electronics, Inc. 109
Kearfott Co., Inc 137
$\underset{\text { Eester Solder }}{\text { Kol }}$ 118
Laboratory for Electronics, Inc 138
Leeds \& Northrup Co. 124Lindberg Englneering Co
Lindberg Englneering Co. 42
101
Long Lok Corp.
McCoy Electronics Co. 141
McMillan Laboratory, Inc 14. 118
Magnecraft Electric108
87
Magnetic Research Corp. 108
81
Marr. R. Ren Div,
onoywell Regulator Co.
onoywell Regulator Co. 154
Master Specialties Co. 125
Metal Teatilo Corp. 113
Micco Switch, Div. of Minneapolis 129Microwave Assocs., Inc.
Minneapolis-Honeywell
Co.,
Industrial
Minneapolis-H
System Div 日8
Minnesota Mining \& Mfg. Co., Chemicel41
Mitre Corp., The156
National Vulcanized Fibre Co. between 120 \& 181Nems-Clarke, Inc. 128New Departure, Div. of General Motors
North American Electronles Inc.80
35
Oak Mig. Co. 85
48

Panoramic Radio Products, Inc. Phelps Dodge Copper Products Co. Philamon Laboratarios, Inc. Philco, Lansdale Photocircuits Corp
 Wilshire Blvd., DUnkirk 2-7337; LONDON EC4: Brad Nichols, 151 Fleet Street.
CIRCLE 186 ON READER-SERVICE CARD $>$

simplify

Here's the most significant advance yet made in SSB tube design. It's the RCA-7360, the wonderworker that operates simultaneously as a balanced-mixer and oscillator or balanced-modulator and oscillator-at frequencies up to 100 Mc .

- Sell-excitation-operates as a balanced mixer or a balanced modulator without a separate oscillator.
- Exceptional gain and signal-handling capabilities-make it possible to eliminate intermediate or bufferamplifier stage.
- Balanced push-pull output frem single-ended AF and RF inputs-makes it possible to eliminate audio-input transformer in balanced-modulator circuits.
- Ultra-stable-tuning "stays put" over wide dynamic ranges and temperature range and with life.
- Excellent carrier suppression -60 db in balanced modulators, 80 db in filter-type SSB exciters. $40-\mathrm{db}$ oscillator-signal suppression as a self-excited balanced mixer.
- High transcenductance; high input impedance.
- High sensitivity; low distortion.

Find out today how you can achieve better SSB performance and simpler circuits with the new RCA-7360! Call your RCA representative at the office nearest you or, for technical information, write directly to RCA, Commercial Engineering, Section D-18-dE-2. Harrison, N. J. The RCA-7360 is also available through your local RCA Industrial Tube Distributor.

BLOCK DIAGRAM OF TYPICAL SSB TRANSMITTER. new hca. 7360 tube makes it possible to eliminate the stages shown in red!

[^0]: GOG3A PAGE MILL ROAD, PALO ALTO. CALIFORNIA, U.S.A.
 DAvenport 6-1755

[^1]: © applies to all forward and reverse current measurements
 except those marked + which are measured at $25^{\circ} \mathrm{C}$

[^2]: ** MIL-STD- 200 Preferred Types

 * MIL-STD-200 Guidance Types
 + Novy Guidance Types

[^3]: Reprints of this series will be available from Paul Wrablica Associates, 120 E. 56 St., New York, 22, N. Y.

[^4]: POLY CHEM - 541 South Webster Avenue, Indianapolis 19, Indiana circle 44 on reader-service caro

[^5]: Distributed constant delay lines. Lumped constant delay lines - Variable delay networks = Continuously variable delay lines - Pushbutlon decade delay lines - Shift registers. Pulse transtormers. Medium and low power transtormers = filters of all types. Pulse forming networks. Miniature plug in encapsulated circuit assemblies

[^6]:

[^7]: Tung-Sol Electric Inc., Newark 4, New Jersey

[^8]: 1. An optimum horn has aperture dimensions chosen to give maximum gain when the slant height is held fixed. 2. "Design and Calibration of Microwave Gain Standards," by W. T. Slayton, NRL Report No. 4433, No-
[^9]: deal for such applications as: ULTRASONICS HORIZONTAL OUTPUT AMPLIFIERS FOR TV OR CATHODE RAY TUBES - POWER CONVERTERS * HIGM CURRENT AC SWITCHING - CORE DRIVERS - HI-FI

[^10]: Note 1: If meters not desired deduct $\$ 30$ and drop "M" from model number
 Note 2: If fixed output desired (± 5 volts) deduct $\$ 40$ and add "0F" to model Note 2: If number followed by nominal output voltage desired.

[^11]: SEE THESE PRODUCTS at the WESTERN JOINT COMPUTER CONFERENCE, SAN FRANCISCO, MAY 2.5, BOOTH 301.02.

[^12]: 3540 WEST OSBORN ROAD • PHOENIX, ARIZONA • BRowning 2-1341

