

MLSO II THIS ISSUE:

Seagoing Electronics-2 \ldots p 34 - Digital Communications continued...p 98

COVER: To present graphically ELEC TRONIC DESIGN's complete break. down of the transistor types in this issue, our Art Director cut apart a symbol of a transistor and arranged the pieces iig saw-fashion, on a black field. For ED's report and the Eighth Annual Transistor Data Chart, furn to page 46.

Selected Topics In This Issue

Instrumentation

Point Plotter Gives Accuracy of 0.0015 ln .
p 108
Pen Recorder Drives Slotted
Line for Accurate VSWR Plots

Materials
Metal, Metallic Compounds Crystals Grown
Potting Method Puts Waterproof Seal Around Teflon Wire

$$
\begin{array}{ll}
\text { p } 108 \\
\text { p } 148
\end{array}
$$

Missiles and Rockets
Rounding Them UpTransit II-A in Orbit ASROC Fired at Sea IBM Computer Test-Fires Saturn

Systems

Automatic Navigator Projects Aircraft Position for Pilot
Oceanography-Opportunities for Systems Design
PCM Terminal and Repeater Methods

Transistors

New Bell Epitaxial Transistor p
Signal Corps' Most Frequently
Used Transistors
Airlines' Preferred Transistor List
Eighth Annual Transistor Data Chart

JUL -5 1960

Sidelights of This Issue

Transistors-1960

On page 46 of this issue begins LECTRONIC DESIGN's annual transistor report, which this year runs to more than 50 pages. It includes the Eighth Annual Transistor Data Chart, with specifications for 1,088 transistors. Also in the report are articles and tables on the transistors most preferred by the military and the airlines, the latter being a $\$ 50$ million electronics customer. Convenient charts classify approved types into application categories. And be sure to see the article on selecting transistors for logic applications. Associate Editor Howard Bierman spent more than three months preparing this annual report and we think the report is the most complete coverage available.

Twelve Years After HISTORY AGAIN? In June of 1948, Bell Laboratories first announced the transistor. Last month, almost 12 years to the day from its announcement, Bell came forth with another announcement about transistors which has industry in a high state of excitement. This one told of the development of an epitaxial diffused transisior, which has reduced switching time by a factor of 10 and has also comparably lowered collector resistance. ED's editors, checking around the semiconductor industry, heard comments like "significant breakthrough," "great advance which appears to make the mesa the universal transistor," and "opens the way to tremendous flexibility." The designer can read about this Bell development and its significance in our story on page 4.

A Program for RFI

If's official now. Radio frequency inferference is a major problem. At the RFI conference in Washington, plans ware announced by government spokesmen for establishing a compatibility program for all major pieces of elecitronic equipment. Details are available in the news story on page 4. ED has to ig known how critical the RFI situation is Readers will remember the Special R. port in the Feb. 3 issue. And in the Jine 22 issue we printed for the first tiree anywhere the new three-service s' andard on radiation measurements.

CIRCLE 2 ON READER-SERVICE CARD \rightarrow

A Pair of Smoothies For Series Regulator Service

The Raytheon CK6336A and CK6528 are mechanically rugged, longlife twin power triodes. They are designed to handle large currents over a wide voltage range and at high temperatures in regulated power supplies. Zirconium coated graphite anodes, ceramic insulators, gold plated molybdenum grid wires, and hard glass envelopes are some of the advanced design features of both types.

Stringent power supply regulation requirements are no problem for these "smoothies." Get full technical data on the CK6336A and CK6528 as well as Raytheon's expanding line of high voltage rectifiers, pulse modulators, and transmitting types. Please write to: Raytheon, Industrial Components Division, 55 Chapel St., Newton 58, Mass.
For Small Order or Prototype Requirements See Your Local Franchised Raytheon Distriburor.
RATINGS

	Max. Plate Voltage	Max. Plate Dissipation Watts	Max. Plate Current (per plate)	Amplification Factor
CK6336A	400	2×30	400 mAdc	2.7
CK6528	400	2×30	300 mAdc	9

RAYTHEON COMPANY

RAYTHEON

 СК6336А AND CK6528

- Fixed Center Frequencies Set to

Your Specifications - 1 mc to 260 mc .

- Narrow Sweep Widths Available.
- 24 Pulse-Type, Crystal-Controlled Markers

Set to Your Specifications.

- Provides Fundamental Frequency Sweeps Oveí 6 Switched Bands - No Spurious Output. - Missile System Receivers and Transmitters, Communications Front Ends, IF Strips, Doppler Radar.

S P E C I F I C A T I O N S

SWEEP WIOTH: 70% of center frequencies selected 100 and 260 mc an 60 to 70 mc for frequencies WEEP RATE: $\mathbf{~} \mathbf{~ c p s}$; locks to line frequency.
RF OUTPUT: 0.5 volt rms into nominal 70 or 50 ohms. Higher for lower frequency units. Output sweep by AGC clircult.
2ERO REFERENCE: A true zero base line produced on oscilloscope during retrace time.
ATrEwuATORS: Switched $20 \mathrm{db} .20 \mathrm{db}, 10 \mathrm{db}, 6 \mathrm{db}$,
3 db plus continuously variable 6 db .

MARKERS: Accurate to $\pm 0.05 \%$. Markers are placed four to a swept band; no individual switches on markers. MARKER AMPLITUDE: Continuously variable from zero 10 approximately 10 volts peak with sweeping Regular sawtooth symchronized with sweeping oscillator. Amplitude approxi-
mately 7.0 volts peak. POWER SUPPLY: Input approx. 150° watts 117-V $(\pm 10 \%) 50-60 \mathrm{cps}$. B+ electronically regulated. (IMEMSIONS: $83 h^{\prime \prime} \times 19^{m}$ rack panal, $13^{\prime \prime \prime}$ deep.
Suitable for rack mount ${ }^{-2}$ supplied also with Suitable for rack mount - supplied also with
cabinet
WEIGHT: 34 lbs.
PRICE: $\$ 650.00$ including cabinet, f.0.b. factory. Crystal Marks $\$ 17.00$ each, extra.

cav Rada-Sweep ${ }^{\circ} 300$

SPECIALIZED SWEEPINE OSCILLATOR SIMILA IN SPECIFICATION TO RADA-SWEEP SR. 1 mc TO 350 mc .

- Any 12 Fixed Center Frequencies Set to - Up to 30 Pulse-Type, Crystal-Controlled - Markers Set to Your Specifications. Price: $\$ 850.00$, f.o.b. factory, plus markers at
$\$ 17.00$ each.

Write for Now Kay Catalog
KAY ELEETHRAE COMPANY
Dept. ED-7
Maple Ave., Pine Brook, N. J.
CApital 6-4800

cav Rada-Sweep ${ }^{\circ}$

- Stenderer Center Freauncless -30 mc .60 mc .
 so\% of Each Band.) - Ma trers - Pul seir Tpe Crystal. positioned
 Price: $\$ 450.00$, f.o.b. factory, with 4 Crystal
Markers.

ELECTRONIC DESIGN
 Hoyden Publishing Co., Inc., B30 Third Avenue, Now York 22. N. Y

ELECTRONIC DESIGN News4
DOD Sets Up RFI Compatibility PlanVapor Phase Devices Made by Bell, IBM4Month Marked by Significant Firings4
8Ronth Marked byGE Plans Multi-Function Compactron Tubes12
Engineers Concentrate Efforts On "Flat-Screen" Television 16Guidance System Uses Micromodules17
18Honeywell Ceramic Gyro Employs Gas Bearing21
British Show Design Ideas At New York Exhibition26
Space Computer Designed At MIT32For Pilot32
34
Oceanography-Opportunities In Systems Design, Part 2 50
Guide To Military Transistor Specs
142
Design Decisions
Pen Recorder Drives Slotted Line For Accurate VSWR Plots148
Ideas For Design
148
148
Special Potting Method Provides Waterproof Seal Around Teflon Wire
Special Potting Method Provides Waterproof Seal Around Teflon Wire
150
150
Hold Onto Your Hat With A Rubber Grommet
Hold Onto Your Hat With A Rubber Grommet 15
Washington Report 22
New Products 112
New Literature 144
Patents 152
Books 154
Report Briefs 156
Letters 157
Careers 158
Your Career 158
Career Brochures 160
Advertisers' Index 160

ELECTRONIC DESIGN is published bi-weekly by Hoyden Publishing Company, Inc., 830 Third Avonuo/ Now York 22, N.Y., T. Richord Gascoigne. Chairman of the Board; James s. Mulhollond. Jr., President. Printed gy trildreth Pross, Bristol, Conn. Accoptod os controllod circulation ar Bristol, Conn. Additiona' entr:, Now York, N. Y/ Copyright 1960 Hayden

The problem: Effective manual tracking of satellite on the 225 megacycle telemetry band. The customer: Lockheed Missiles and Space Division, Sunnyvale, California. Date of order: Friday the 13th, (they did everything they could to make us prove our point), May, 1960. The job: To design, manufacture and deliver within 10 days a quad helix antenna. Date of delivery: Friday, May 20, 1960. Address purchase orders to: Canoga, subsidiary of Underwood Corp. Van Nuys, Calif. or Fort Walton Beach, Fla. If you're in a real hurry, TWX

DOD Sets Up RFI Compatibility Plan

Military Electronic Equipment to Be Checked;
 Analysis and Prediction Center Will Be Set Up

ARADIO frequency interference compatibility program designed to reduce and control RFI between pieces of electronic equipment has been launched by the Department of Defense. Henry Randall of the Office of Defense Research and Engineering outlined the program to engineers attending the 2nd National Symposium of Radio Frequency Interference in Washington, D.C.
Heart of the new program will be an electromagnetic analysis and prediction center to be completed within the next year and a half. It will be operated by one of the military services and will collect and catalog the efforts of the individual services working in the interference field.
As part of the program, all types of military
electronics equipment will be examined to establish:

- Interference measurement and instrumentation techniques.
- Test equipment standards for measurement.
- Equipment specifications which will reduce the extent and effect of spurious emissions. This will also involve setting up receiver susceptibility limits.
- Compatibility requirements and spurious emission levels.
- A library of equipment spectrum signatures.
- An environmental file which will catalog the amount and types of equipment, their location, frequency, duty cycle, etc.
- An electromagnetic analysis center to serve as a clearing house for interference research and study.
Initial emphasis of the program will be on radar. A series of new standards will be estab lished which will set radar band-width limits and frequency allocations, spurious radiation levels, and antenna side lobe power levels.
The library of spectrum signatures and the environmental file will be stored at the analysi: center. The spectrum library will be made up o frequency-response characteristics which will have to be furnished with each piece of equipment sup plied for the military. These spectrum signatures together with the spectrum-like characteristic

Vapor-Phase Devices Made by Bell, IBM

Many Other Semiconductor Makers Planning Early Switch to New Fabrication Process

SUCCESSFUL fabrication of high-quality semiconductor devices using vapor-phase growth techniques has led to widespread excitement throughout the semiconductor industry. Bell Telephone Laboratories has produced what it calls an "epitaxial diffused transistor," offering an order of magnitude decrease in both switching time and collector resistance when compared to conventional devices. The term epitaxial indicates that a film grown on a semiconductor wafer is a direct extension of the singlecrystal structure of the substrate.
International Business Machines Corp, has fab-
ricated tunnel diodes, an improved variable capacitance diode, and other devices of good quality using vapor-phase processes: Some of the IBM work is being conducted under a one-year Army Signal Corps contract ending in July (ED, June 8, p 4), and other work is the result of a threeyear internal research program.

Some of the work going on in this field was outlined at the recent Solid State Research Conference in Pittsburgh. Previous vapor-phase work at Merck \& Co., Inc., Rahway, N. J., (ED, March $16, \mathrm{p} 66$) has been primarily in developing materials rather than fabricating devices.

Conventional diffused-base transistor, leff, is compäred to Bell Labs epitaxial-growth type, right. Collectors and emitters are n material, bases p material.

Transistor manufacturers told Electronic D_{t} sige that they are particularly enthusiastic abou the Bell Labs development, because it can b easily adapted to present production lines. D_{E} vices produced by this method will soon be the market, they said.
Dr. C. Lester Hogan, general manager of Mo torola, Inc.'s Semiconductor Products Div., Phoe nix, Ariz., said that his company planned to shill over to the new technique immediately on mesu transistor production lines.
Dr. Hogan feels that although the proce adds one more step to production, the high yields resulting from precise control of materia can lead to lower costs. The particular proce being considered by Motorola involves the de composition of germanium tetrachloride and th directing of the vapor formed over a seed cryst by means of a stream of hydrogen carrier gas.

Collector Resistance Problem Solved

The problem with diffused-base transistor (continued on page
for propagation path attenuation, plus information taken from the environmental file will be fed into a computer. The computer will then be able to calculate the electromagnetic radiation picture at a given geographic location.

RF Spectrum Standard Now Available

Made available for the first time at the Symposium were copies of MIL-STD-449, the military standard titled "Measurement of Radio Frequency Spectrum Characteristics." This standard previously reported in Electronic Design (June $2.2, \mathrm{pp} 4-5$) is mandatory for use by all three services. It establishes uniform measurement techniques for determining the rf spectral characteristics of military electronic equipment.

Planned for issuance in the near future, is a modification of the Navy interference specification MIL-I-16910. To be assigned a "B" designation, this specification will deal with:

- Susceptibility requirements for receivers.
- Interference limits on high voltage power transmission lines.
- Line-impedance stabilization networks. Design information will be given for these networks which are to be flat to 100 mc .
- Radar design standards. This section will limit radar bandwidths, skirt values, spurious radiation levels, etc.
- Clamp-on devices. The measurement of conducted interference will be permitted with clampon devices.
The Navy also disclosed at the symposium that it is interested in frequencies up to 100 kmc and is already making measurements in that frequency area. A spectroscope which will operate from 10 kc up to 100 kmc is under development. It will be operable in seven or eight bands and the display will appear on a $17-\mathrm{in}$. tube.

Areas of Spec Improvement

Of great interest at the Symposium was a round table discussion on RFI and compatibility specifications. Each of the services as well as the Federal Communications Commission was represented on the panel. Albert R. Kall, president of the ARK Engineering Co., Philadelphia, outlined the industry position, noting that early military specifications and present FCC regulations, dealt mainly with outgoing interference sources and that only recently was emphasis placed on linniting receiver susceptibility. He also detailed areas where government RFI specifications could bc improved. Some of his suggestions:

- Because the power of pure random noise varies directly with receiver bandwidth, and the vclage varies as the square-root of the bandw dth, the standard unit of random-noise inter(continued on page 6)

HOW YOU CAN PUT TELEVISION TO WORK

A brief report on how to use KIN TEL closed circuit TV systems to cut costs, reduce errors, up efficiency

Today, hundreds of companies are solving a wide variety of business and industrial problems with KIN TEL closed circuit TV systems.

For example:
U.S. Steel uses a KIN TEL system to see inside open hearth furnaces. The Los Angeles Department of Water and Power uses one for remote viewing of water-level meters.
Convair, Douglas, Lockheed, and Northrop all watch rocket tests with KIN TEL systems.
Westinghouse watches nuclear power reactor tests with one.
American Potash and Chemical monitors conveyor line and warehousing operations with one.
The San Francisco Naval Shipyard uses one to guard against pilferage.
These, and many other KIN TEL customers - both large and small - have dis. covered a significant fact: Closed circuit television is no longer a novelty. It's a proven, practical piece of equipment that, in many instances, pays for itself within a year. It's a modern, money-making piece of equipment that you can use in your business, in your plant, in your operation.
What Is a Kin Tel Closed Circuit TV System?
The basic system manufactured by Kin TeL consists of a rugged yet sensitive camera that is small enough to hold in your hand; a receiver that displays pictures that are twice as sharp as you can get on your home TV set; and a camera control unit that is so automatic the only control you have to touch is the on-off switch.
More Than Likely, Your Business Can Use Such a System.
You can use one to watch events or operations
that are tedious, difficult, dangerous, or even
that are tedious, difficult, dangerous, or eve impossible for men to watch.

Dependable KIN TEL TV systems see where men cannot survive; withstand tremendous extremes in temperature and pressure ; perform both critical and routine jobs inexpensively, faultlessly. safely, tirelessly.

All types of visual information-from blue prints to fingerprints to graphs-are trans mitted over great distances quickly, accurately. Such systems save money, reduce errors and confusion, speed operations.

KIN TEL cameras scan vast areas; guard valuable equipment and property; never blink, quit, sleep, or make an error; watch many operations at once; transmit all information to a central monitoring point.

Students study operations viewed by a KIN TEL camera. Such systems permit mass teaching that gives each student an unobstructed view; provide on-the-spot real-
ism; end expensive, disturbing plant tours.

Here's What a Kin Tel System Can Do for Your Business

It can do what it is doing, right now, for hundreds of other firms. It can infor hundreds of other firms. It can in-
crease the over-all efficiency of your crease the over-all efficiency of your
entire operation. It can help you tighten entire operation. It can help you tighten production and inventory controls, help
you better your services to customers you better your services to customers and clients. It can reduce errors and confusion and duplication. It can cut costs. It can save you time and money. It can free valuable men from tedious and routine tasks. It can give you the modern tools you need to keep pace in this highly competitive market.
For a more specific analysis of how KIN TEL TV can go to work for you, write direct for catalog 6-103 and the name of your nearest KIN TEL engineering representative.

8 Reasons Why So Many Firms

 lissist on Kin Tel TV Systems1. Reliability. KIN TEL equipment is designed to keep working, day in and day out. It's the first choice for ICBM and other missile programs that depend on
TV, that can't afford to compromise with reliability.
2. Picture Quality. Full 650 -line resolution provides maximum delineation, essential for qualitative observation of complex perations, and for transmission of printed material.
3. Automatic Operation. KIN TEL TV is the only closed circuit system that pro. vides entirely automatic, through-the-lens compensation for light-level changes of several thousand to one.
4. Sensitivity. With KIN TEL equipment. the light needed to read this page is enough for sharp, clear pictures; and usable pictures can be provided with less than one foot-candle illumination.
5. Ease of Installation. No site preparation is needed, no interacting electrical adjustments are required. All units fit in standard 19 -inch racks.
6. Simplicity of Operation. With no changes in lens iris to make, the only thing the operator has to know is the location of the on-off switch.
7. Adaptability. A complete line of shelf. item system components and a variety of cameras and monitors permit observations of nearly every kind of uperation. under all kinds of conditions.
8. Application Help. You don't have to waste your money and time on applicaion engineering. At no obligation, KIN EL's nationwide factory.trained hield engineers will determine whether or not in your intended application.

A PROVEN INSTRUMENT

The Model 803 is the end result of more than six years of concentrated engineering effort in the Differential Voltmeter field. Excellent customer acceptance plus service records which reflect extreme reliability are evidence that this Voltmeter is truly a proven instrument.

FEATURES

DIRECT IN-LINE READOUT

 STANDARD CELL REFERENCE AUTOMATIC LIGHTED DECIMAL DC- Accurcey 0.05% of input vatiogo
- Four scarch ranges and four null Bomidivitior
- Infinito input racistonese at null
- Aceurecy 0.2% of input voltage
- Convertor frequency responso +30 CPS to 5KC
- Mocaures RMS value of true sine wave

GENERAL SPECIFICATIONS

Voltage Ranges: AC-5, 50, and 500V DC- $0.5,5,50$, and 500 V
Accuracy: $\quad A C- \pm 0.2 \%$ from 0.5 to 500 VAC, 30
AC- $\pm 0.2 \%$ from 0.5 to 500 VAC,
CPS 15 KC
DC- $\pm 0.05 \%$ from 0.1 to 500 VDC $\pm 0.1 \%$ or 500 uv, whichever is
reater, below 0.1V

Null Sensitivity $A C-100 \mathrm{~V}, 10 \mathrm{~V}, 1 \mathrm{~V}, 0.1 \mathrm{~V}$, and 0.01 V ranges: $\quad \mathrm{DC}-10 \mathrm{~V}, 1 \mathrm{~V}, 0.1 \mathrm{~V}$, and 0.01 V
Mas, Meter
Resolution:
Inpurt AC- 1 Megohm, 25uufd
mpedance: DC-Infinite at null
Dimensions. Cabinet- $9344^{\text {"W W }} \times 13^{\text {" }} \mathrm{H} \times 16^{\text {n }}$ D
Weight: Cabinet-30 lbs., Rack- 33 lbs .
Price: Cabinet- $\$ 875.00$, Rack- $\$ 895.00$

Prices and fechrical dato subject to change without notice.

The if 800 series differential volimeters may be used to measure DC voltages in excess of 500 volts by utilizing an appropriate voltage divider (Volt Box). The division ratio of all models is aceurate to 0.01% and long form stability is befter than 0.01% per year. The approximate magnitude and the polarity of the unknown high voltage may be easily observed with the nowly incorporated center zero panel meter.

NEWS

R FI

ference should be microvolts-per-square-roobandwidth. However, specification interference is divided into just two classes: narrow band (or cv') and broadband impulsive (or pulsed cw). The former does not involve bandwidth and the latter varies directly with bandwidth. FCC specijications restrict limits solely to microvolts or micr()-volts-per-meter, with no distinction based en whether the measured disturbance is narrow band or broadband. The FCC limits of Part 15 and 18, based on field intensity at various specified distances, should take into account, for broad band interference, the bandwidth of the measur ing receiver.

- More exact limits should be given when de termining whether a piece of equipment complies with a given interference specification. To this end, he outlined three areas of compliance-absolute compliance, absolute non-compliance, and transitional compliance.
- To decrease the time involved in making in

Vapor-Phase

(continued from page
has been the requirement for a relatively high resistivity collector region in order to attain low capacitance and high voltage breakdown. This region has been in general about 30 times thicker than required electrically, since ease in mechanical handling has been a prime requirement.

The excess thickness has increased collector resistance, and, through carrier storage, the switch. ing time.

Bell overcame the problem by growing lightly doped epitaxial films onto a low-resistivity germa nium and silicon wafers, thus attaining the desired combination of electrical properties and mechan ical strength.

IBM researchers feel that the advantages of the vapor-growth processes they are developing include:

- Closely controlled, arbitrary impurity dis tributions.
- Heterogeneous junctions are possible-be tween germanium and gallium arsenide for example.
- Resistivity layers can be deposited between junctions-as in the Bell Labs work.
- Entire diode or transistor matrices might be made at once.
- Multilayer microcircuit films seem feasible.
- Large area junctions, useful in solar cells
tel !erence measurements, it may be wise to go o janoramic sweep techniques to augment present point-by-point methods. Also, the point-bypont method could be supplemented by a single reading on a vacuum tube voltmeter peak-type
desector circuit.
- In the area of susceptibility testing, there should be special rf radiated tests based on the fractical situation which the piece of equipment will encounter. These tests would be in addition 10 the rf radiated, rf conducted, and audio-line conducted tests currently specified. Thus, for exmple, a computer to be installed near a radar would be irradiated by a radar transmitter havmg similar characteristics. This will help determine the threshold level at which malfunctioning occurs. The acceptable level should then be set on the basis of the actual rf environment to be encountered, with a reasonable safety factor inluded.
- There should be a clearer definition of conditions which require RFI measurements in the beld, instead of in a shielded enclosure. This defipition should be tied in with consideration of equipment classification and area of use. - -

Most of the IBM work has been done with ompounds of iodine and semiconductors, with apors formed passing over a seed crystal in a ower temperature region. A closed-tube process leveloped by IBM provides higher purity with ess process tending.

A more conventional open tube process is pore suitable for quantity production, however,
IBM has found that hybrid transistors such as ell Labs has produced are better than those made ompletely by vapor deposition. A primary proben has been to get enough doping in the emitter -bepri If doping levels are raised to necessity vels, poor injection efficiencies result.
In silicon work it has been difficult to clean bistrate crystals before deposition because of xtremely stable silicon oxide surface layers.
Work with germanium and intermetallic como inds has been much more successful, according pIBM. - -

BULOVA
 PORTABLE
 FREQUENCY STANDARD

Whatever the beat you wish to "equal" or check out, you'll find the Bulova portable lab and field standard assures an uncompromised balance between stability and reliability.
For instance, the FS. 100 will hold to $\pm 1 \mathrm{pp} 10^{\prime}$ in the 10 kc thru 20 mc range... or to $\pm 1 \mathrm{ppl} 0^{2}$ in the 50 kc thru 10 mc group-for a full twenty-four hours. Its output is IV P to P into 1K, sine or square wave, in either rating, with a 115 v ac input Department 1672, Bulova Electronics, Woodside 77, New York. circle 7 on reader-service card
or with its own self -contained, rechargeable power pack. Though it measures only a scant $6 \times 8 \times 8$ inches-power supply and all-the advanced design and transistor construction of the FS-100 underwrites a life expectancy of over 25,000 hours.

For more information on how the Bulova FS-100's portability, reliability and stability 1K, sine or square wave, in either rating, with a 115 v ac input Department 1672, Bulova Electronics, Woodside 77, New York.

TEN MEGACYCLE PULSE GENERATOR

FEATURING ...HIGH REPETITION RATE WITH A LOWER THAN 8 MILLIMICROSECONDS RISE AND FALL TIME

Rutherford

${ }^{\text {most }}$ B-5-A

This unit features an electronic pulse delay that can be
set to zero or is continuously variable from . 030 microseconds to 500 microseconds in five ranges. Pulse width is continuously variable from . 02 to 12.5 microseconds in four ranges.

SPECIFICATIONS: Amplitude: 40 volts positive, 45 volts negative - Attenuator: 60 db in $1 / 2$ steps . Polarity: Both positive and negative pulses simultaneously available - Output Impedance: 185 ohms Output Decay Constant: 750 microseconds when terminated in 185 ohms - Synchronizing Pulse Out: 10 volts, positive - Rise Time: Less than 02 microsecond . Width: 03 microsecond External Trigger: Pulse required: 10 volts minimum with rise time less than .05 microsecond - Pulse Repetition Rate: Continuously variable from $1 \mathrm{cycle} / \mathrm{sec}$ to $10 \mathrm{mc} / \mathrm{sec}$ in seven ranges - Delay: A fixed delay of 11 microsecond occurs between the synchronizing pulse out and the main pulse. $\$ 2,400.00$ F.O.B. Culver City, Calif.
Also available in 10 MC double pulse version B5.2

TIME DELAY GENERATOR

EXTREME ACCURACY: After calibration: $\pm .1 \%$ of full scale. Long term: $\pm 1 \%$ of full scale. FEATURES: 8 to 100,000 microseconds in

5 decimally related ranges.
Low jitter - Linear scoles - Small repelition rale Low iitter. Exinear scoles - Small repetition rele effects. External connector provided for deloy volioge so that unit may be externally time modu. $\$ 750.00$ F.O.B. Culver City, Calif.

ENGINEERS: If your field is Pulse Circuitry Design, a bright future waits you at Putherford Electronics Company. Send resume to Glen Stout, Industrial Relations Manager.

ELECTRONICS CO.
Dept. ED-7 - 8944 Lindblade Street - Culver City, California - TWK-CVR-CY- 4133 pulse generators / pulse systems / accurate time delay generators CIRCIE \& ON READER-SERVICE CARD

NEWS

Static firing of all eight Saturn engines will provide data for processing by Marshall Space Flight Center's new IBM 7090.

Month Marked by Significant Firings

June Missiles Busted Out All Over; Saturn, Satellites, ASROC Successful

E- LECTRONICS missile men-in fact, all missile men-were elated. In the space of a few days, a number of significant firings were achieved and the skies which sometimes had seemed grey now seemed almost black-with missiles.
At Huntsville, Ala., the Saturn heavy space vehicle underwent its
eighth completely successful test firing with an IBM 7090 computer processing all the data.

Aboard the U.S.S. Norfolk off Key West, Fla., the Navy's new antisubmarine rocket ASROC was successfully tested against a target nuclear submarine. Rear Adm. P. O. Stroop, chief of the Navy's Bureau

ASROC ballistic missile, new Sunday punch for the Navy's anti-submarine forces, is programed and launched from shipboard by digital computer.

Transit II-A and the radiation-m ing satellite above it orbited tos

Spe
$7(190$, rector Cente are sc Aight, single the se fourth R\&D Then, blast o
of Weapons, called it "a significant advance in the Navy's anti-submarine warfare program."

And most spectacular of all, an Air Force Thor-Able-Star rocket was launched from Cape Canaveral and successfully put into orbit two Navy-developed satellites.

Saturn: Tons info Space in '64
For two minutes, the Alabama hills reverberated with the roar of Saturn's eight rocket engines delivering a thrust of 1.3 million lb to bring closer the day when the huge space vehicle will put a multi-ton payload in orbit.

Speaking at the dedication of the 7090, Dr. Wernher von Braun, director of the Marshall Space Flight Center at Huntsville, said 11 flights are scheduled for Saturn. The first flight, next summer, will use only a single stage of the vehicle, as will the second and third flights. The fourth to the tenth flights will be R\&D flights, using other stages. Then, in May, 1964, Saturn will blast off with its huge payload.

The 7090 , IBM's most powerful commercially installed computer, will process information from nearly 1,000 instrument channels attached to the Saturn booster. Instrument readings, taken at rates up to 50 per second, will yield information on some 300 pressures, 200 temperatures, 24 flow rates and vibration and strain.

The solid-state 7090 will calibrate all measurements, change them into engineering units, and convert all parameters to equivalent vacuum conditions. It will compute thrust, pressure losses in different parts of the plumbing, loads on members where strain is not measured, and specific impulse (a measurement of rocket efficiency equal to flow rate/ thrust).

ASROC: Tests Successful
ASROC, the Navy's newest, most effective anti-submarine weapons s! stem, was tested in the waters off Key West in a blaze of glory. With ASROC, it is possible to deliver an
(continued on p 10)

TAANTATUMI

Solid Electrolyte Tantalum Electrolytic Capacitors - Type STP

Efcon Features -

- Same day quotations
- Delivery within 24 to 48 hours
- Complete product uniformity
- Extensive size range
- Positive hermetic seal

Type STP Features -

- $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation
- $\pm 10 \%$, $\pm 20 \%$ tolerance
- Polar operation
- Meets or exceed MIL-C-26655A electrically and mechanically
- 100% stabilized for 250 hours during production

- Low power loss, high insulation resistance
- Minimum size, long life and stable operation

Quite today
For complete information New catalogs

- Solid Tantalum
- Miniature Mylar
- High Temperature Teflon
- Miniature Polystyrene

Milgray Electronics. Inc New York

Electronic Whoiesalers. Inc Washington: 0 C

Philadelphia Electronics. Inc Philadelphıa. Pennsylvanıa

Latayette Radıo Corporation Boston. Massachusetts
M. G Electric Supoly Birmingham. Aldbama

THOMAS A.
 EDISON Servo Motor-Generators are designed specifically for your systems applications

Sdison Servo Mofor-Generetors are available with any type or size gear head or gear train.

Unlike ordinary "off-che-shelf" components, Edison Servo Motor-Generators are designed specifically to operate as part of an electro-mechanical system.

For example, their motor sections are built to have minimum time constants and reversing times. To insure precise coupling with mating gear trains, output pinions are fabricated to better than $A G M A$ standards. Damping constants, from unit to unit, are held to very close tolerances.
In addition to these special system features, Edison Servo Motor-Generators are made to the highest
quality standards. They outperform MIL-S-17087 (for motors) and MIL-S-17806 (for generators).
Edison engineers provide you with the exact servo moror-generator your system calls for-not a cataloged component that will only approximate your needs. For this reason, they will work closely with you in developing components that will assure you of the best system performance.

For additional information on Edison Servo Motors, Motor-Generators and other fotary components, write for Catalog 3044.

$$
\begin{array}{r}
\text { Thomas A. Edison Industries } \\
\text { INSTRUMENT DIVISION } \\
\text { 55 LAKESIDE AVENUE, WEST ORANGE, N. J. }
\end{array}
$$

NEWS

acoustic homing torpedo or depth charge to in enemy submarine thousands of yards beyond the range of present-day ship-launched torpedoes.
The new system uses sonar to detect and track targets, then programs the missile by means of digital computer and launches it.
After the missile is accelerated, the rocket en gine is dropped and the missile continues on its way. Just prior to entering the water in the viciniiy of the target, the weapon drops its airframe and a torpedo is dropped by parachute for a soft landing on the surface. If a depth charge is the warhead, it is dropped without parachute.
ASROC is a ballistic missile whose trajectory and range is pre-set. Because of relatively simple plumbing and instrumentation, it is cheap, has a shelf life as long as the ship itself, and can be transferred at sea. The fact that setting is done by digital computer means that the missile itself need not be modified or scrapped as detection gear improves in quality.
The launcher is a pepper-box design, with each cell serving as an individual launcher. All eight cells turn together and each pair of over-under cells elevates individually. ASROC can be fired as rapidly as 10 seconds apart.
Prime contractor was Minneapolis-Honeywell, under direction of the Naval Ordnance Test Center at Pasadena, Calif. Librascope developed the computer and Universal Match Corp.'s Armament Div. the launcher.

Transit II-A: Two Up

Early performance of the Transit II-A navigational satellite launched late last month in tandem with a radiation-measuring package, is exceeding hopes of its designers, who attribute much of the success to a single design decision. The decision: to use a new type of solar-cell array in conjunction with nickel-cadmium batteries as the orl power supply for the package.
This eliminated the silver-zinc battery pack tha was used as an alternate power supply in Transit I-B, and saved enough space and weight to permit inclusion of a binary clock, an infrared scanner and a galactic-noise receiver in the package. The use of a single, nickel-cadmium supply may be the start of a trend toward this type of powe source for many new satellites, reports the Applied Physics Laboratory of Johns Hopkins University prime contractor for the Navy on the transit pro gram.
Transit II-A, which is now orbiting between 400 and 490 mi above the earth, differs from the
still-circling Transit I-B in the following respects:

- The usual heavy quartz shielding protecting the solar cells has been replaced by thin glass covers over each cell shingle. This reduces weight of the array and provides optical filtering of solar radiation. Because of the weight saving, the number of cells in Transit II-A is about double that of Transit I-B.
- The telemetry system has been redesigned to provide an $\mathrm{fm} / \mathrm{pm}$ channel independent of the Doppler transmissions. In Transit I-B, one of the Doppler links was used for telemetering the orbital and frequency data that are the heart of the navigational system. With an independent pm telemetry link, more bandwidth is available more of the time to transmit greatly increased quantities of data. In effect, the satellite's duty cycle has been lengthened.
- A more rugged crystal, developed by Bliley Electric Co., Erie, Pa., is operating in the ultrastable oscillators used in the system.
- The de-spin equipment in Transit II-A uses shunted coils for greater efficiency. The coils enhance the electromagnetic effect of the highpermeability rods, which are mounted in the satellite to counter the earth's magnetic field.
- An infrared scanner was included to measure rotation of the earth, partly as a check on the effectiveness of the de-spinning system.
- The binary clock, developed by the Applied Physics Laboratory, counts down from the crystaloscillator frequency in binary steps to an 11-sec interval, which is used to trigger the telemetry cycling system. By detecting leading edges of the pulse train, ground-based stations are able to calibrate time signals to an accuracy of 1 msec , about an order of magnitude better than present worldwide time standards. With special stations, a global time-standard service may eventually provide accuracies of about 1 microsec.
- The galactic-noise receiver riding in the Transit package was developed by the Defense Research Telecommunications Establishment, Ottawa, Canada. Its operation was part of a program jointly pursued by DRTE, APL and NASA to measure galactic noise at various frequencies. This data will be used later for making radiosonde measurements from above the ionosphere. The ultra-sensitive Canadian receiver operated at 3.8 me until the set was turned off by plan last week. The "piggy-back" satellite launched with Transit II-A was designed by the Naval Research laboratory to measure solar-generated X-rays and Iyman-alpha ultraviolet radiation. This data is i, ieing transmitted on an 8 -channel $108-\mathrm{mc}$ telenetry link by a 2 -transistor transmitter that delivirs about 40 mw to the antenna system. $=$ -

NEWI SPRAGUE LOGILINE* CIRCUITRY

for digital system design

LOGILINE circuitry features a series of $5 \mathrm{mc} / \mathrm{s}$ transistor switching circuits in building block form. Basically a pulse-level system, LOGILINE circuitry performs all of the digital functions required by computer designers, including combinational logic, temporary storage, pulse source, and pulse amplification. Because LOGILINE "building blocks" are pre-designed to incorporate standardized switching circuits, you can save many hours of valuable design time. The basic plug-in feature, which has gained wide acceptance throughout the digital industry, is another note-worthy time saver.

Abstract

LOGILINE offers designers the flexibility of encapsulated packages and the versatility of conventional wiring board construction for standard equipmont assombly.

LOGIPAK* encapsulated packages (see above phoio)

- Epoxy encapsulated for protection against severe environmental conditions - Smaller in size than standard wiring board assemblies, in keeping with the modern trend toward miniaturization - Priced lower than standard assemblies, due to simplified production techniques - Transistors are accessible for rest or replacement - Pins have standard grid module spacing of 0.1 inch - Standardized configuration-ideal for prototype design, equally suitable in final production.

Legipak serios includos:			
110021	Inverter	210025	Dolay
110022	Diode	310021	Clock
110023	Complomentary Trigger	310022	Pulse Gonerator
210021	FlipoFlop	310023	Pulse Amplinar
210022	Trigger Nelwork	310024	Indicator Driver

LOGICARD* wiring board cards

- Epoxy glass etched wiring board and twentytwo pin connector in aluminum frame - Designed for insertion into pre-wired rack mounted panel e Completely interchangeable with com. parable units.

Logicard serios Includess			
100021	Invertor	200024	3-Digit Shift Rogistor
100022	Diode	300021	Clock
2000z1	Filp-Flop	- 300022	Pulse Amplitier
200022	Dual Flip-Flop	300028	Pulse Goneretar
200023	Delay	300024	Indicentor Driver

SOMETHING NEW IN A SUITCASE.

...Comp, zte transistorized

EECO Digital System Breadboard

Designers who want to go places fast systemswise can be sure of getting there on time with an EECO suitcase. It's packed with a complete and integrated breadboarding system de signed around mutually compatible EECO T-Series Germanium circuit modules, N-Series transistorized decades, and R-Series Minisig (8) sensitive indicators.
Standard 19" amateur-notched panels have the necessary permanent wiring to accommodate any standard EECO Ger manium circuit module, and all other circuit interconnections are made by patch cords or plugs, with unique, prepunched circuit cards to guide you. No soldering is required, and experi-

FEATURES

- Permits rapid formulation of digital electrical systems.
- System may be operated slowly to permit inspection of Its mode of operation, or over-speed to indicate system derating.
- Operation may be analyzed with a minimum of test equipment.
- Provides a means for rapidly building and testing alternate ways of formulating a system.
- Minimizes wiring errors and the inclusion of defective parts.
- Circuit cards provide a means for rapidly visualizing
the system, and facilitate drawing a circuit diagram.
- Circuit cards enable the designer to determine the elements involved, as well as the cost of the system.

A request, on your company letterhead, will bring detailed information on the flexibility of the EECO T-Series Bread boarding equipment, and a demonstration if desired.
 Circuit cards are selected according to the system it is placed on the panel in align. ment with the jack pattern.
merresponding T.Series circuit modules are plugged in above

CIrcuit interconnections are Circuit interconnections are
made by patching through
holes in the circult cards. hades in the circult cards
holes
Resulting pattern of symbol Resulting pattern of symbol
cards and patch cords shows a cards and patch cords shows al
schematic and bill of material's or the system, once it is

Russian Reader Uses Defocused Optics

Will Read 1,000 Characters per Second;
Can Adapt to Any Language or Type Face

AN OPTICAL system designed to read automatically Russian text at 1,000 characters per second is scheduled for delivery to the Rome Air Development Center, Rome, N. Y., this fall.
Russian text will be photographed on $70-\mathrm{mm}$ film for input into the reading machine, now being developed by BairdAtomic, Inc., Cambridge, Mass. The output of the machine, coded to represent the character being identified, will be stored on magnetic tape for subsequent input to a translating computer under development by International Business Machines Corp., New York. Currently input to the IBM translator is manual, by typewriter keyboard, at about 40 characters per minute.

Signal Subtraction Process

The reading machine uses defocussing optics and a novel signal subtraction
process. The ability to read punctuation marks easily, and to be adapted to any type font or language, are key features of the equipment. Character identification is accomplished by simultaneous correlation of the outputs of an array of photodetectors, each representing a character in a type font, with a decision made electronically. No time-consuming scanning is required unless the text includes more than one type font.
In operation, a beam from an arc source is directed through a dispersive lens, and then through the image of the character on the $70-\mathrm{mm}$ negative.
The dispersed light then passes through a master negative containing images of all the characters in the type font being read. An array of photodetectors is located behind this master negative. Each of these detectors "looks" at the character being identified through a different character aperture in the master set.

(a)

(b)

(c)

Fig. 2. A system in which the amount of light transmitted by each character in the master type font apertures is balanced by the amount of light not transmitted is represented by (a). A similar effect can be achieved in an optical system by using positive and negative masks, such as (b) and (c), with shaded areas blocking the light. Apertures (b) would transmit a maximum amount of light shining through the character " A " being identified, and aperture (c) would block a maximum amount of light.

Because of the optical properties of this dispersed light system, the largest signal is generated by the detector which looks at the character being read through the same character in the master set.
For example, if the letter being read is an A, most of the light coming through that letter would be transmitted through the A aperture in the master set. Much of the light would be blocked, however, by the B aperture, or any other aperture in the set, because of the difference in shape of the other letters and symbols.
Thus the A photodetector would provide a maximum output for this character, so that a set clipping point in the A photodetector amplifier is exceeded. This would cause a signal representing an A to be generated and recorded on magnetic tape.
Actually, the system under development is more complex than this, so that larger signal differences are provided. Distinguishing a comma from a period, or an O from a Q, for instance, would be difficult with the simple system because of the small differences in light reaching the photodetectors.
From a theoretical standpoint, a system which gave positive weight to the amount of light transmitted, and negative weight to the light not transmitted by each character in the master set, would provide more information for making an identification.
Such a system is illustrated by parts (b) and (c) of Fig. 2. In addition to a complete master aperture set, a set of blocking images and a second array of photodetectors would be required for this scheme.

One More Aperture

A more efficient technique has been developed, h(wever, which requires only one additional a) erture in the master set and one added photodetector.

If the positive transmittance for any particular

UNIVERSAL 밀ㄹ

Fairchild FDzeo, ectual size

High Conductance, Ultra

satisfies all of today's diode requirements and forestalls obsolescence by fulfilling foreseeable future demands for logic, switching and general-purpose applications with these advanced specifications.

- Over 100 mA forward conductance at 1.0 V
- Less than 50 mısec reverse recovery time
- Capacitance under $5 \mu \mu \mathrm{f}$ at O V
- 200 V minimum breakdown voltage

RELIABILITY is significantly advanced by the introduction of Fairchild's latest semiconductor state-of-the-art development the Planar Structure.

UNIFORM CHARACTERISTICS and minimal parameter spreads give unvarying results and consistent performance from every FD200 diode.

IMMEDIATE AVAILABILITY-Call your local distributor or sales office. Complete listing attached. Complete line of Fairchild 1 N . types to current specifications complement the FD200.

Fast Silicon Planar Diode

ELECTRICAL SPECIFICATIONS (25 ${ }^{\circ} \mathrm{C}$ Unless noted)

metes:
(1) Masimum ratmes are lumilung volues chove which life or cutisfectary performence may be (2) Rocovery to 10 ma .
(3) Ccpacititance os messurees on Boomton Electronic Corporation mosel Mo. 75A.ss crancitence

A wholly owned subsidiary of Fairchild Camora and Instrument Corporation

4300 Redwood Highway, Sen Rafzel, Califormia - CLenwood 6-1130 - Tux: SRF 26

KNAPIC specializes in Silicon and Germanium Crystals for Semiconductor, Solar Cell and Infrared uses

Major manufacturers of semiconductor devices have found that Knapic Electro-Physics, Inc. can provide production quantities of highest quality silicon and germanium monocrystals far quicker. more economically, and to much tighter specifications than they can produce themselves.
The reason? Knapic Electro-Physics are specialists with accelerated experience in growing new materials to specification.
Why not let us grow your crystals ton?

Check These Advantages

Extremely low dislocation densities.
Tight horizontal and vertical resistivity tolerances.
Diameters from $1 / 4^{\prime \prime}$ to $2^{\prime \prime}$. Wt. to 250 grams per crystal. Individual crystal lengths to $10^{\prime \prime}$ Low Oxyeen content 1×10^{11} per cc.., 1×10^{16} lor special Knapic small diameter material. Doping subiect to customer specilication, usually boron for P type, phosphorous for N type.
 seconds: 100 to 1000 ohm cm -- over 300 microseconds. Special Knapic small diameter maleral over 1000 microseconds.

Write for specification sheets

NEWS

aperture in the master set is designated P_{1}, and the negative transmittance for the ith charact is N_{b}, then the function provided by such a systen can be designated $P_{i}-N_{b}$.

The same result might be obtained by a systein providing the function $2 P_{i}-\left(P_{i}+N_{6}\right)$. The $2 P$ term might be obtained by doubling the output of each character's photodetector.

The ($P_{i}-N_{i}$) term is supplied for each char acter by adding an aperture to the master set which amalgamates the shapes of all characters The photodetector behind this aperture receive all the light that would pass through any aperture plus all of the light that would be blocked by that aperture-which is $P_{8}+N_{6}$.

Although it has not been proven theoretically, tests have indicated that a signal at least 15 per cent higher than any other signal is provided by the proper character in the master set. This permits positive identification of any character with out too much difficulty.
Actual applications of the system bring severa important problems. In some texts type fonts may

GE Plans Multi-Functiofom

TUBES combining several functions into single envelope are being developed for the entertainment market by General Electric Co.'s Tube Department, Owensboro, Ky.
GE expects its "compactrons" to lead to func tion-for-function price decreases of 20 per cent in comparison with conventional tubes. The ex tremely small size of the new units should mak much tighter packaging of tube-type entertain ment equipment possible.

Compactrons being readied for production are 12 -pin types with base diameters of 0.075 -in.
Six units are now under development, and GE expects to introduce nine others within the nex year. An eventual line of 75 to 100 compactrons is planned.
To illustrate the compact designs possible, $\mathbf{G E}$ built a five-tube radio using two compactrons The unit measures $2-1 / 2 \times 2-1 / 2 \times 10-1 / 2 \mathrm{in}$., with extra width required to accommodate the speaker.
A TV receiver can be built using 10 com pactrons to replace the conventional 15 tubes and three diodes, or 24 transistors and 11 diodes, ac cording to GE.
te interspersed. In the machine being built for the Air Force 12 Russian type-font master aperture sets are being prepared. When the machine can not identify a character it will automatically search through the 12 sets in order of decreasing likelihood of occurrence.
Sizes of letters also differ, so that the machine nay not be capable of reading larger size characters mixed with ordinary type sizes.
If the machine fails to identify a character, an inage of the line being read will be presented on a cathode ray tube on the operator's panel. A trace underneath the line of text will have gaps in it wherever characters can not be identified. This will permit the operator to identify the character manually.
Currently, research is being directed toward a system similar to the one described, but with the ability to read original documents rather than filmed versions of them.
Since photography permits sharpening of character images and elimination of fingerprints or other spurious marks on a document, direct reading offers more problems.
Plans for the reading equipment after the Air Force development is completed are not yet firm, according to a company spokesman. - :

tic fompactron Tubes

The compactrons under development for table radios are a combined oscillator, converter and if amplifier to replace the 12BA6 and 12BE6, and a combined second detector, audio amplifier, audio power output amplifier and rectifier to replace the $35 \mathrm{~W} 4,50 \mathrm{C} 5$, and 12AV6.
Television receiver compactrons being developed, followed by the tube types they will replace in parentheses, are:

- Horizontal oscillator and afc (6CG7 and 6AL5).
- Horizontal damping diode (6AX4GTB).
- Vertical deflection amplifier and oscillator (6DN7).
- Horizontal deflection amplifier (6DQ6B).

Some compactrons are being designed to replace only a single tube because of power and voltage limitations.

The move to multi-function tubes was indicated at the IRE Convention in New York in March. 7 ung-Sol Electric Inc. and CBS-Electronics both s owed 12-pin units (ED, Apr. 13, p 105).
Further engineering details on the compactrons \checkmark ill appear in a future issue. - -

Engineers Concentrate Efforts On 'Flat-Screen' Television

To achieve "picture-on-the-wall" TV, the ultimate in flat-screen picture-tube efforts, considerable development effort is being concentrated on increasing kinescope-deflection angle to decrease over-all tube length. Since deflection-power requirements are increased as tube length is shortened, more efficient sweep circuits and deflection yokes are being sought.

Another approach to reduce sweep power for conventional ac-operated TV as well as batterypowered transistor TV involves scan magnification techniques. Efforts to achieve these goals and advance the status of transistorized TV were described at the Chicago Spring Conference on Broadcast and TV Receivers.
In 1946, 10-in. "round" picture tubes possessed a deflection angle of 53 deg while 1959 17-in. and $21-\mathrm{in}$. rectangular tubes were 110 deg types, this represents a $2: 1$ improvement in length-todiagonal ratio.

By departing from the conventional uniform $1-1 / 8 \mathrm{in}$. diameter common to $110-\mathrm{deg}$ kinescopes and modifying the region in the yoke vicinity to a $3 / 4-\mathrm{in}$. diam, an $18-\mathrm{in}$., 122-deg tube has been developed.
Philco engineer R. A. Bloomsburgh revealed that the new tube structure, plus a toroidal yoke design coupled with circuit optimization, has resulted in full deflection with 20 per cent saving in horizontal deflection power and 30 per cent less vertical sweep energy than existing $110-\mathrm{deg}$ receivers. The substantial over-all bulb decrease and power savings are decided contributions for the quest of more compact, cooler-operating TV portables.

Scan Magnification Success Still Distant

Another area for power saving, the heater supply, was discussed by H. E. Smithgall of Sylvania Electric Products, Inc. Under a Signal Corps sponsored contract, a $1.5-\mathrm{v}, 150$-ma cathode-heater arrangement has been developed for portable scopes and military equipment. This represents a 94 per cent saving over conventional $6.3-\mathrm{v}, 600-\mathrm{ma}$ kinescopes. However, Mr. Smithgall pointed to the need for automation in fabrication and test before high-quality, low-cost TV could be considered.
Post-acceleration schemes for scan magnification could decrease deflection-power requirements by as much as 50 per cent. Two- and three-ring internal aquadag coating techniques plus meshtype screens in front of the kinescope faceplate are under consideration.

HERMACH-ENGELHARD multi-range transfer volt-

ammeter with 0.05% accuracy through a frequency range d-c to 50,000 cps.

This multi-range instrument satisfies the exacting calibration requirements over a wide range of currents and voltages. High accuracy is attained without use of correction factors. The functional design of this transfer standard, employing the null principle, provides operation sufficiently simple for non-technical operators. Results are read on the external d-c potentiometer in a conventional way and multiplied by convenient round numbers to give measured current or voltage to 0.05%, without correction, continuously over the frequency spectrum from d-c to $50,000 \mathrm{cps}$. To achieve the accuracy which the Hermach-Engelhard Transfer Volt-Ammeter provides across the whole audio frequency range, a whole battery of the usual measuring devices would be needed.
To provide efficient adaptability to various conditions of application, several models can be obtained. They are portable, simple and economical to maintain.

INSTRUMENTS AND SYSTEMS DIVISION - 850 PASSAIC AVENUE EAST NEWARK, N. J.
CIRCLE 230 ON READER-SERVICE CARD

a complete range of brush materials

 for printed circuit applications.Send for complete literature.

Because the correct choice of contact materials for use on printed circuits is wholly dependent upon such factors as type of circuit, circuit function and mechanical design, the final selection of materials is generally obtained on an emfinal selection
pirical basis.
Baker engineers and metallurgists are prepared to offer very broad, specialized experience, together with extensive records of performance data that can be extremely useful to you. They will be pleased to assist in resolving your particular problems in this field.
Baker-developed alloys and powdered metal products meet the full range of brush material requirements for printed circuit applications. Complete facilities are available here for reliable design and manufacture. Send for literature.

BAKER CONTACT DIVISION - 207 GRANT AVE., E. NEWARK
harrison p. o., N. J.

CONTACT
DIVISION

CIRCLE 231 ON READER-SERVICE CARD

prompt precious metal scrap recovery service - engelhard procedures reco

Simplification With Flexibility Is Keynote of British IEA Show

Five hundred exhibitors from 15 countries displayed their wares at the Third International Instruments, Electronics, and Automation Exhibition at London's Olympia exhibition hall last month. The accent was on simplification with flexibility. Observers noted a tendency towards more complex instruments and systems packaged in smaller and more flexible subassemblies.
Mullard Equipment Ltd. showed four ranges of electronic subassembly "building bricks" and counters, described as "the shortest route from block diagram to complete equipment":

1. Preset counters for multiple programs in industrial control equipment.
2. Plug-in decade counting units.
3. Combi-element "building bricks" for electronic equipment-a comprehensive set of completely transistorized circuits, including flip-flops, multivibrators, pulse-shapers and inverters. These units can be used for nonsynchronous of synchronous logic.
4. Norbit "building bricks" for industrial control systems, using transistors as the basic switching unit. Applications include machine or lathe control and shape recognition and control.

Computer of Compact Versatility

Ferranti Ltd. played a variation on the same theme of compact simplicity without sacrifice of functional versatility. At Olympia the company displayed the prototype of a small, general-purpose, all-transistorized, digital computer called Sirius.

The basic store in Sirius is 1,000 words, each of 10 decimal digits. It can be extended to a maximum of 10,000 words by inserting plug-in packages. Basic digit frequency is 500 kc . Word-time is $80 \mu \mathrm{sec}$. The computer uses pulse techniques with transformers. Union transformer circuit is arranged to provide an output when a majority of the inputs are positive. Any of the four primary windings on the transformer can be reversed to provide an inhibit input.
Many potential users have distinctive needs which can be met neither by a "fixed" computer nor by a "fixed" data-processing system. For those firms the only answer is a flexible nucleus, around which ad hoc systems can be built.
Such are the new Stantec Computing Systems, exhibited by Standard Telephones and Cables Ltd. In each system the nucleus is a Stantec Computer.
The basic Stantec has a word-time of $312 \mu \mathrm{sec}$. Its main store is a magnetic drum (capacity 8,192 words; speed $6,000 \mathrm{rpm}$). For additional storage, various magnetic-tape equipment is available.

Ready Now! A Reliable Family of Transistorized Time Delay Devices - available on time from Hydro-Aire

These fully-transistorized time delay devices are but nine of a widely diversified family including relays, sequence timers, computer timing modules and time-programmed, system supervising units - all custom-designed, built and on-time delivered by Hydro-Aire. Perhaps one of these proven designs meets your specifications. If not, we will custom-design to your requirement. All of our time delay devices are compactly designed, available for AC or DC operation, and conform to applicable Mil Specs. These devices typify the many reliable electronic products being designed, developed, produced and on-time delivered by Hydro-Aire.

CHARACTERISTICS: TIME DELAY RELAY MODEL 50.085
Size- $23 /$ / $^{\prime \prime} \times 11 / 2^{\prime \prime} \times 11 / 2^{\prime \prime}$
Weight-4 oz.
Time delay range - adjustable over one decade; 6 to 60 seconds with $\pm 5 \%$ accuracy Life: $\mathbf{1 0 0 , 0 0 0}$ operations at rated contact load
Maximum power required: 50 ma at $\mathbf{2 4 - 3 1}$ VDC
Temperature range: $-55^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$ as standard; to $+125^{\circ} \mathrm{C}$ available on special request
WRITE FOR ELECTRONICS CATALOG. A note on your letterhead brings a free copy, containing detailed facts and specifications. If you have a time delay device requirement, include your specifications for a prompt quote.

NEWS

Guidance Systen

Could Be Employed In Aircraft, Missiles

AN OPERATING inertial guid. ance system using micromod. ule electronics has been built by Radio Corp. of America's Missile Electronics and Controls Div., Burlington, Mass.

Performance of the system could typically navigate an aircraft within 1 to 3 mph , or control missile cutoff velocity within 0.05 per cent. Significant improvements over this performance are expected in planned micromodule inertial systems, according to RCA engineers. A digital differential analyzer will include about 1,500 transistors and 600 diodes in 600 micromodules. Some of the modules will not be full

Basic operation of the digital velocity meter for use with the RCA micromodule inertial guidance system is shown. Posifive and negative signals used to null an intertial mass are gated. These nulling voltages can be integrated by computer circuits to provide velocity measure. ments.

< CIRCLE 16 ON READER-SERVICE CARD

Ises Micromodules

Model of micromodule digital differential analyzer being builf by RCA for use with the micromodule inertial guidance system.
sized so that circuit interconnection problems are simplified, RCA engineers explained.

Some Electronics on Inner Gimbal

Micromodularized preamplifiers are carried on the inner gimbal of the system, allowing the number of slip-rings to be cut by 30 per cent. This could have been reduced further, but it was felt that the use of alternate current paths to increase reliability was a more important consideration.
An "egg-crate" type package has been used for micromodules. Each module is held tightly in place by a frame spring insert, designed to carry heat from module wall to the crate wall.
The inertial system can provide as gimbal output angles either a resolver or synchro output with accuracy up to 1 min , or an unambiguous 14-bit digital serial output. A digital velocity meter has been designed for use with the inertial system. If the inertial mass in this system moves in one direction, an on-off servo provides a nulling signal. The nulling signals are directed into a gating system which is also receiving clock pulses.

The gating logic combined with the clock pulses supplies an acceleration input to the navigation comluter. This is integrated to provide - velocity measurement. - -

CIRCLE 17 ON READER-SERVICE CARD $>$

SMALL APPETITE NOISE SOURCES

service-proved and available now

Until recently bignal simulators for monitoring radar receivers or microwave relays were of two types. One was a big and heavy ampere eater with cumbersome auxiliary equipment; and the other was a sensitive though delicate instrument suitable only for the laboratory.

We call your attention now to the Litton 2000 series of miniature gas noise sources. The Litton 2000 for waveguide use is pictured above. It has a first cousin, the Litton 2007 designed for coaxial cable use. We call your attention because most tubes in this series are now in production and we suspect there are frustrated design engineers who will receive this announcement with keen interest.
Our gas noise sources may properly be called miniature. They require only inches of space, smaller, lighter auxiliary equipment, and small voltages and currents. Around 500 volts fires them; $\mathbf{1 0 0}$ milliamperes maintaine them. These characteristics, plus others, have caused them to find numerous applications: for in-flight calibration and test of aircraft
microwave receivers; as automatic watchdogs on airborne radar systems; and in other systems which require various immunities to vibration, shock, humidity, and temperature cycling.

The Litton family of miniature gas noise sources, like all Electron Tube Division products, was designed to solve specific end item functions. We have found that this philosophy contributes to consistent reliability: tubes do their jobs more efficiently, for longer periods of time, and at lower overall cost to the buyer. Other advantages also result. For example, these noise sources require no ageing-in and the L-2000 is replaceable in the field without changing the mount.

Specific frequency ranges in L, S, C, X and K bands are covered. If you are concerned with radar transmission, or with microwave data links of any kind, we'll gladly send you more information. Write to Litton Industries Electron Tube Division, Office E42, 960 Industrial Road, San Carlos, Calif.

\square
LITTON INDUSTRIES Electron Tube Division barratron (8) transmitting tubes - magnetrons - klystrons - traveling wave tubes - backward wave oscillators - Gas discharge tubes - noise sources - Crossed.field amplifiers - high definition crt direct. writing crt - color Crt - storage tubes - microwave filters - duplexers - tr tubes

CAPABILITY

 THAT CAN CHANGE YouR PLANNING
NEWS

Nuclear Weather Detector To Aid Nation＇s Forecasters

A nuclear weather detector，called Tracersonde， is under development by Tracerlab of Waltham， Mass．，for the U．S．Weather Bureau．

The Tracersonde will be similar in size，weight， and appearance to a conventional Weather Bu－ reau Weathersonde normally borne aloft by a balloon to radio back to earth information about temperature，barometric pressure，and humidity at various heights．In operation，the Tracersonde will differ from the Weathersonde in that it will use ultrasensitive radio－chemical detection tech－ niques to determine ozone and radioactive chem－ ical，＂clathrate，＂in the apparatus．

This reaction produces an effluent radioactive gas which is detected by a Geiger tube．The amount of gas that is produced is proportional to the concentration of ozone at any given point．
Tracersonde has grown out of two recent sci－ entific breakthroughs．First is the development by Tracerlab scientists of＂clathrate，＂and the sec－ ond is the meteorological theory that weather patterns could be more readily predicted if our weathermen had more information about the ozone clouds caused by solar radiation．

3－D Closed－Circuit System Employs Double Polarized Image

A three－dimensional closed－circuit television system has been developed by Kin Tel Div．of Cohu Electronics，Inc．

The system consists of two standard Kin Tel closed－circuit cameras，two camera－control units， and a polarized optical system．The optical sys－ tem presents the overlapping images from each camera on a single viewing plane，with one image polarized vertically and the other horizontally．
Watching the image through special polarized glasses or a viewing hood gives a 3－D effect．
The system has automatic compensation for light levels up to 4,000 to 1 and maximum full－ range adjustment time of 0.25 sec ．One line，the 1988，uses equal horizontal and vertical resolu－ tion greater than 500 lines；the 1986 system has a vertical resolution of 650 lines and a horizontal resolution of 525 lines．Depth perception may be accentuated by camera separation and the unit may be switched from 3－D to normal two－dimen－ sional viewing．

The standard unit employs 14 in ．monitors，but the manufacturer can supply systems with moni－ tors ranging in size from 8 in ．to 27 in ．Price on the standard model is $\$ 9,500$ ．

Cas semiconductors acGent Rellablitr

－ENTERTAINMENT USE

NPN SWITCHING TRANSISTORS

TYPE	$\begin{gathered} \text { Min. } \\ \text { BVc. } \\ \text { (VIts) } \end{gathered}$	$\underset{\substack{\text { Typical } \\ \text { fab }}}{ }$ Mc．	Case	Bulletin
24308	20	I	A	E．－354
21312	15	2	A	E－346
${ }_{2}^{211356}$	${ }_{30}^{20}$	3 3	A	E－297A
21335	20	6	A	E－297A
2×351	20	9	A	E－297A
2337	25	5	A	E．335
21385	25	6	A	${ }^{\text {E．335 }}$
2338	25	8	A	E．335
	30 30	4	A	E．－336
2 mman	30	8	A	${ }_{\text {E－336 }}$
${ }^{2 m 439}$	30	8	A	E－336
${ }^{2104000}$	${ }_{30}^{30}$	12	A	${ }_{\text {E．}-336}$
${ }_{2 \text { m }}^{2 \text { man }}$	30 15	12	A	${ }_{\substack{\text { E．e．336 } \\ \text { E．35 }}}^{\text {c．}}$
${ }_{2145}$	15	3	A	E．354
${ }_{20} 2105$	15	8	A	E．354
2 2M ${ }^{1 / 5}$	15	10	A	E．354
${ }^{213556}$	25	1	A	E．366
	15	8		E．316
${ }_{20}^{2 m 03}$	20	8 12	A	E． $\mathrm{E} \cdot 349$
2 mas	20	17	A	E．349
${ }_{210}^{2110012}$	40 40	9	A	¢

PNP POWER TRANSISTORS

TrPE	Max．w Diss．1	Max． Vaten	Case	Bulletin
2M101	17	-30	E	2 N101
2 W1GB	17	-60	E	$2 N 143$

TPEE

WPE	Max. W Diss.t	Max.	Case	Bulletin
2nm	20	-120	c	E.383
$2{ }^{2}$	20	-120	c.	E.383
${ }^{211504}$	20	-80	${ }^{\text {c }}$	E-384
[1.	20	-30	${ }_{c}^{\text {c }}$	cierezer
IT. 3 20a	20	-30	B	E-288A
$17.50{ }^{\text {a }}$	20	-60	E	E.288A
(17.5093	${ }_{20}^{20}$	-60	c	ce-288A
IT. 51004	20	- 120	${ }^{\text {a }}$	E.288A
ITSm	40	-30	E	E-288A
It. 5 me	40	-30	c	E-288A
(17.5100	40	-60	${ }_{c}^{\text {E }}$	${ }_{\text {E-288 }}^{\text {E-28A }}$
${ }_{\text {IT }}^{10100}$	40	-80	C	E-288A
IT. 315	20	-60	E	E-288A

N POWER TRANSISTORS

TPE	Max. W Diss.t	Max.	Case	Bulletin
21102	17	30	E	2 N 102
${ }_{210104}^{2104}$	17	60 35	E	${ }_{\text {E-355 }}^{2114}$
211282	25	35	B	E.355
${ }^{21123}$	25	${ }^{60}$	8	E.355
21128	25	80	8	${ }_{\text {c/-355 }}^{\text {E-355 }}$
${ }^{21123818}$	25	100	${ }^{8}$	${ }_{\text {E }}^{\text {E.355 }}$
	25 25	35 60	c	E.360
211323	25	80	c	E.350
	${ }_{25}^{25}$	100 35	c	ce.360
21130	25	60	E	E.350
21132	25	80	E	E.360
21133	25	100	E	E. 360

FFUSED-SILICON DIODES

NEW PRODUCTS COMING

CBS MADT transistors
CBS MAT transistors
CBS high-power NPN and PNP transistors
Watch for them

CBS
semiconductors

Honeywell Ceramic Gyro
 Employs a Gas Bearing

Using a new sapphire-hard ceramic and a selfgenerating gas bearing, Minneapolis-Honeywell has developed what it says is the aerospace industry's first ceramic gyroscope.
The gyro is also said to represent a 10 -fold improvement in gyro accuracy. The combination of ceramics and gas bearings has purportedly reduced the prime causes of gyro drift inaccuracies.

A film of helium gas only 25 millionths of an inch thick flows between the bearing and the seat. The 8 -oz gyro is 2.82 in . long and has a diameter of 2 in .

The tiny ceramic spin motor of the gyro is encased in its gimbal, also of ceramic. The ability of the ceramic material to withstand heat up to $1,500 \mathrm{~F}$ without losing its original dimensions represents a major improvement over ball bearings.

The bell-shaped part of the gyro is the new ceramic spin motor. Its interior spins at $24,000 \mathrm{rpm}$ suspended on a film of helium gas only 25 millionths-in. thick.

Latest additions to the large, fastgrowing MPB family are ultra-preci-
M尸В
announces... 3 new R's of instrument bearings sion R2, R3, and R4 instrument bearings.
To their many familiar applications such as computers, servos, synchros, gyros and generators, MPB's R Series bearings bring quieter performance, longer life and reduced friction - the results of MPB's advanced production techniques, thorough quality control and constant emphasis on yrecise, accurate bearing geometry.
 stainless steel. A new type ribbon retainer, for low uniform torque, is available, as are duplexed mountings and preloaded pairs. ABEC Class 7 tolerances maintained in all types and sizes. Standard dimensions are

Find out now how MPB bearings and technology can benefit your products. Call your MPB Sales Engineer or write for information. Miniature Precision Bearings, Inc., 907 Precision Park, Keene, N. H.

Helps you
perform miracles in miniaturization CIRCLE 19 ON READER-SERVICE CARD

WASHINGTON

Ephraim Kahn

VEGA-AGENA B HASSLE, which the General Accounting office claims to have lost the government at least $\$ 15$ million, may spur officials to make sure that they have covered all bases when they check out proposed new programs. An extensive system of informational interchange already exists. In the case of the Vega and Agena-B, both upper stages for use with the Atlas as a booster, the Accounting Office's major objection seems to be that the two projects did not represent "the calculated pursuit of two alternative approaches to better insure success." The auditing agency asserts that "there was no evident communication by the Department of Defense of NASA of planning for the Atlas-B, " despite that NASA (which has since cancelled the Vega) first spoke of it to representatives of the military in December 1959.

MULTIPLE SOURCES of supply for complex electronic guidance systems for missiles are being carefully examined at the Pentagon. As production needs grow, the military is getting more than a mite uncomfortable at the thought of being tied to a single producer-one that might be knocked out in a single attack, leaving a major arm of defense in the lurch. Steps have been taken to double-track supply of the Polaris guidance system in anticipation of a goahead this summer for stepped-up production.

SKYBOLT MISSILE'S COST is put at $\$ 800$ million by the Air Force. Through 1965, about $\$ 200$ million will go for research, development, test and evaluation of this airlaunched ballistic missile while $\$ 600$ million will be spent on procurement. Costs have not been projected beyond 1965 , but about $\$ 60$ million is in the 1961 budget.

INVENTIVE PROPOSALS PROCEDURE has been standardized by the Army. From now on, when unsolicited inventive proposels are received, they will be sent to the technical service thought to have primary interest. After a preliminary (and non-technical) analysis one of the following actions will be taken: (1) it will be re-referred to another technical service if this seems desirable; (2) it will be sent to the Commerce Department's National Inventors Council if the Army does not want to investigate further.

DESIGN PLAN for an advanced communications satellite system proposed by the Army is understood to have been approved by the Advanced Research Projects Agency. Knom as "Project Decree," it is expected to use at least three satellites for world-wide coverage.

AIR FORCE BASIC RESEARCH will be raised over the years to just about double current levels. Target is annual expenditure of $\$ 70$ million for basic inquiry.

HEFTIER MILITARX BUDGETS are urged on the Senate by Gen. Maxwell Taylor. With more emphasis than has been permitted to military men on active duty, Taylor suggested that the Defense Department be allowed to program its needs over Pive years, with financing to be based on "an annual sum approximating 10 per cent of the gross national product." This would add about $\$ 9$ billion to the military's spending money.

USERS OF ELECTRONIC SYSTEMS in the Air Force will be represented when the systems are being planned by the Command and Control Systems Office, Hanscom Field, Bedford, Mass. Though the office does not yet represent all elements of the Air Force-SAC and TAC are not yet there-it expects eventually to be able to examine and criticize proposed design improvements and new systems from the viewpoints of all the men who will be working with them.

9500 MILLION NATO AIR DEFENSE costs will be shared by the U.S., which expects to pony up about \$125 million. In fiscal 1960, about $\$ 30$ million was scheduled for buying both large and gap-filler radar equipment, and NATO is expected to get almost $\$ 70$ million more toward its air dePense system in fiscal 1961. In addition, foreign allies of the U.S. Will be supplied with missiles worth more than $\$ 210$ million (including almost $\$ 22$ million worth of spares and maintenance equipment). Total foreign military assistance is to cost about $\$ 2$ billion in fiscal 1961.

PATENT POLICY CHANGE is under serious study at the Defense Department. If changes are made, they will not necessarily conform to the proposals embodied in the Housepassed NASA bill. If more restrictive patent policies (such as those observed before 1955) are recommended, the Pentagon will have to decide whether the contracting of ficer or a higher authority will be empowered to decide whether the government or the contractor should get title to patents developed in the course of work under federally financed contracts.

COMPETENCE AND EXPERIENCE are keys to Navy R\&D contracts. Rear Adm. Charles D. Martell, Assistant Chief of Naval Operations (Development) suggests that seekers after such pacts weigh their abilities carefully and concentrate on fields in which they excel.

BETTER QUALITY CONTROL throughout the contract cycle is urged on industry by Col. J. G. Schneider, quality control chief for the Air Materiel Command. Stressing that success of a quality control program "depends as much on the industry partner of the team as on the Air Force," Col. Schneider predicts that the quality controls now being applied to ballistic missiles and space systems will in short order be expanded to other weapons systems.

GRMCME ${ }^{\circ}$

BBSM VACUUM VALVES say, "STOP" and "GO" and Mean It!

The new Series BBSM KINNEY Vacuum Valves form a reliable force of "Traffic Cops" for your Vacuum systems. In sizes $1^{\prime \prime}, 11 / 2^{\prime \prime}, 2^{\prime \prime}$ and $3^{\prime \prime}$, these Bronze Bellows Sweat Fitted Valves are especially designed for Vacuum applications having soldered or brazed manifolding. They are of the globe type with nonrising stem, with positive isolation of rotating parts. The brass bellows is sealed to the seat disc and bonnet flange by static " O " rings of Bund N .
Assembly of KINNEY BBSM Valves into the Vacuum system is supremely simple. Removal of stem, cover and bellows assembly as a unit from the body of the Valve is accomplished by unscrewing four cap screws - thus replacement of bellows is no problem. Each KINNEY BBSM V alve is mass spectrometer leak tested to assure vacuum tightness.

KHNNEYvacuum division

THE NEW YORK AIR BRAKE COMPAMY

WRITE FOR CATALOG
BULLETIN
NO. 3421.1A
TODAY!

Please send me Bulletins 3421.1A and 3421.3 giving full information and prices on KINNEY BBSM Vacuum Valves.

Name
Company
Address
City
CIRCLE 20 ON READER-SERVICE CARD

three for dependability at low cost

MEET P\&B's FAMILY OF "K SERIES" RELAYS

Here are only three of a large family of " K Series" relays by P\&B. Blood brothers all, they are distinguished by fine craftsmanship and design maturity. Together they will handle a multitude of switching requirements.
Many design engineers find it saves time, saves money to integrate their circuits with related $\mathrm{P} \& \mathrm{~B}$ relays. Makes sense, doesn't it?
KR-A small, lightweight relay used widely in communications and automation. Engineered communications and automation. Engineered
for long life and dependability. 3PDT max. AC or DC. (See engineering data.)
$\boldsymbol{\kappa T}$-Designed for antenna switching. Capacitance: 0.5 mmfds between contacts. Termina board is glass melamine and stack insulation is glass silicone for minimum RF losses to switch 300 ohm antenna line. 3 PDT max. AC or DC.
KC-Low cost plate circuit relay with sensitivity of 125 mw per pole. Factory adjusted to pull-in on specific current values. Available open, hermetically sealed or in clear plastic dust cover with standard octal-type plug. 3 PDT max. DC.

pab stamoard relays are avallable at your local electronic parts distributor

KR ENGINEERING DATA
Bhookdown Vollage: 500 volis rms minimum betwoen oll olements.
Tomparature Rango:
DC Coils $45^{\circ} \mathrm{C}$ to
DC Coils- $45^{\circ} \mathrm{C} 1085^{\circ} \mathrm{C}$.
AC Coils- $45^{\circ} \mathrm{C}$ 10 $70^{\circ} \mathrm{C}$.
Terminals:
Pierced solder lugs standard. Octal 8 and 11 pin plug-in headers available.
Enclosures: Type K-Hermetically sealed.
Type P ciear collulose ocolate dust cover.
Type P clear collulose actiate dust cover.
CONTACTS:
Arrengements: $\mathbf{3}$ Form C (3PDT) max
Matarial: $1 /{ }^{*}$ "dia. Ane silver (g old plated).
Other materials available to
Load: 5 amperes 115 V 60 cycle resistive.
colls:
Resistence: 16,500 ohms max. $A C$ or $D C$
Power: 1.1 watts minimum to 4 watts maximum for
DC at $25^{\circ} \mathrm{C}$ ambient.
ambion
Duty: Continuous.
Insulation: Contrifi
Insulation: Contrifically impregnated with insulating varnish.

CHANGES IN PRICES and avallability

DIFFUSED-JUNCTION SILICCN RECTIFIERS, having peak inverse voltage ratings from 100 to 600 v, have been reduced in price ranging up to 45 per cent by Radio Corp. of America of Somerville, N.J. Types affected are the following: 1N444B 1N445B, 1N537B, 1N538, $1 N 5 i 9$ 1N540, 1N547 and 1N1095.

MICRO-DIODES have been re duced in price by Pacific Semicon ductors, Inc. of Los Angeles, Calif The price was set at $\$ 20$ each a little less than a year ago. This an nouncement pegs the Micro-Diode price at the same level as several EIA counterpart types for an aver age price of $\$ 3.29$ each in 100 to 999 quantities. For example, Micro Diode type 1 N 914 is priced at $\$ 4.50$; IN663 at $\$ 3.15 ; 1 \mathrm{~N} 643$ at $\$ 2.97$; 1N658 at $\$ 3.40 ; 1 \mathrm{~N} 547$ at $\$ 2.75$; 1N458 at $\$ 3.03$ and 1 N 459 at $\$ 3.23$

MOLDED CASE CIRCUIT BREAKERS, panel boards, safety switches, bus duct, and circuil breaker and fusable load centers have been increased 10 per cent in price by I-T-E Circuit Breaker Co of Philadelphia, Pa.

CAPACITORS and other electronic products have been increased in price by Cornell-Dubilier Electric Corp. of Plainfield, N.J. The price changes include from 5 to 10 per cent on most dc electrolytic capacitors; 10 per cent on paper, metalized paper, oil and film types of tubular capacitors; 3 per cent on fluorescent ballast oil type capacitors and 10 per cent on most other oil type capacitors; 5 per cent on filters; 5 to 10 per cent on selected types of vibrators and power supplies.

Is your company making changes in prices or availability of its products? Send the details to ELECTRONIC DE SIGN, 830 Third Ave., New York 22, N.Y.
<CIRCLE 21 ON READER-SERVICE CARD
CIRCLE 22 ON READER-SERVICE CARD

British Show Design Ideas At New York Exhibition

An aircraft-control system using jirection finders to track planes and closed-circuit TV system to dislay the tracking data was introfuced at the British Exhibition in Vew York by Standard Telephone md Cables, Ltd., England.
The system was part of a wide ssortment of British electronic quipment on display from both ndustrial and commercial segnents of the industry
The STC system uses wide aperwre direction finders at several loations operating on communicaons frequencies to locate aircraft y triangulation. The bearing is sent i a control center and displayed n a cathode-ray tube indicator in he form of a bearing line.
Mirrors over various crt's relect bearing traces so that they can e superimposed onto a TV display nap of the area.

utomated Cigarette Equipment

 hown

Bill Bruce and his latest torture machine...

To people, Bill Bruce may be the essence of gentleness, but to new industrial receiving tubes he's a demon!
As head of RCA Receiving-Tube Test Engineering, Bill delights in tormenting our tubes: seeing what they will deliver, how much they'll take. When existing torture methods aren't cruel enough. Bill gleefully designs new ones.
The object before him is a good example. It's a test set he designed to put our new RCA-7360 Beam-Deflection Tube through its paces. The 7360, which is rapidly revolutionizing SSB circuitry, utilizes such a radically new design concept that no existing equipment could prove its capabilities.
Bill's latest testing device, built for a single tube type, is an indication of how far we go at RCA to insure top quality in every tube. It's another reason why you know the tube will do the job when it's made by RCA.

The Most Trusted Name in Electronics radio corporation of america

Cross section, RCA-7360 seam Defortion Tube Special donfoctine electrodes pormir how of oloc: current. This assures high consitivity ond of plus excellonl SSB carrier supprossion.
FREE rechnicol liraralure oxplaim principlos and copabilifitios of RCA-7300. Writo Commercial Engi-
nooring, RCA Election Tubo Div., Marrison, N. J.
mea electron tube division-field offices DETROIT 2, MICH. 714 Now Cantor Blde. TRS. 5600
NEWARK 2, N. J., 744 Broad $\$ 5$., HU 5.3900 CHICAGO S4, $1 i 1$.., Suite 1154 , Morchandise Mart Plozo. WH 4.2900: LOS ANGELES 22, CAL, 0333 E. Woshingion Blvd., RA 3-8361. BURLINGAME.

Space Computer Designed at MIT

Use of "Core Rope" Linear Select Memory, Split Clock Cycles Used in Mars Computer

ACOMPUTER for a three-year round trip to Mars has been accomplished by Massachusetts Institute of Technology's Instrumentation Laboratory.

The object of the program was to develop design approaches to the space-computer problem rather than a specific machine, Dr. R. L. Alonzo, Instrumentation Lab staff member, explained at the recent National Specialists Meeting on Guid-
ance of Aerospace Vehicles in Boston. A typical machine was designed, however, to illustrate the principles evolved.
The critical periods for a computer on such a flight would be at in-flight correction points and during the approach to Mars, according to Dr. Alonzo and his co-worker, Dr. J. Halcombe Laning Jr., deputy associate director of the Lab.
Because of the long, relatively inactive periods

Breadboarded 256 core rope is capable of holdi 256 words of 8 bits each in fixed storage.
between these points in the flight it was decide to make power consumption proportional to spee of operation, so that low-powered, leisurely con putation can be performed during these period

Need Flexibility for Emergencies

Flexibility is required because the problems a Mars flight are not completely known and t computer must be programed for emergencies.
 $\stackrel{1}{=}$
Fig. 1. Selection of a core in an eight-core rope is illustrated. Numbered vertical strips represent cores, and wires $A, A^{\prime}, B, B^{\prime}, C$ and C^{\prime} are inhibit wires. Slashes represent the direction of wire threading through the core. All cores are initially at ZERO. At time one a pulse in the set line attempts to set all cores to ONE. With electronic switches a, b and c as shown, however, the pulse only passes through positions A, B and C. Where an inhibit wire is threaded through the core as indicated by slashes, the setting is prevented. Thus wire A inhibits cores $4,5,6$ and 7 ; wire B inhibits cores 0 and 1 ; and wire C inhibits core 2. Thus core 3 is selected by this position of the switches a, b and c. Cores are selected by setting these switches.

Fig. 2. Organization of the space computer designed MIT's Instrumentation Lab shows how central registers o split into two groups. During the first, or α, portion of clock pulse information flows through the left sense-wit amplifier toward the buffers. During the second, or β po tion of the clock cycle the flow is in the reverse directio toward the erasable storage.

rasable.

rasable-storage unit has 16 registers capable of plding 12 bits each. A core rope for selecting a gister is at the center.

During the flight, a priority circuit continursly monitors some 100 input lines from various oints in the vehicle. Activity in one of these lines presents an alarm, so that the computer immeately stops the task it is working on to deal with e input.
The speed of computation can be increased acrding to the input requirements, and then owed again when the computer automatically turns to its previous task.
Continuous monitoring is felt to be more effient than a sequential-type scan, Dr. Alonzo id, because scanning would require an increase computer speed with added input channels.

igh-Density Storage Cuts Size

To minimize size and weight, various portions the computer have been designed to handle ore than one task. Addition is synthesized using t by bit OR circuits, and multiplication is perrmed by use of a subroutine.
The computer memory is based on the "core pe" memory developed by Lincoln Laboratories, exington, Mass. Cores are used as ac-coupled ansformers for fixed storage so that the number bits stored per core depends on the number of condary windings on the cores.
The erasable-storage section requires one core
suct The major computer storage requirements t such a trip, however, is for constants and ed program.
In the MIT design, about 4,000 words of fixed prige and 128 words of volatile storage are ec ified.
Fixed-memory storage density is about 1,000 Its per cu in.-about 100 times greater than presIt computer memories, according to Dr. Alonzo.

INTERCHANGEABLE MODULES add versatility...interchange with basic control
section.
Secion

Slimmer, flatter, push-button fast... Librascope's newest, most advanced plotter is the result of per-sonally-conducted field research by Librascope engineers. Compact design permits rack mounting in groups, saves desk space. Many new conveniences have been added to answer your needs.

OPERATING INFORMATION
INPUT SENSITIVITY: . 5 millivolts per inch to 500 volts per inch with calibrated per inch
button scales at 5 . $1,5,10$ and 50 milli. volts per inch and. $1,5,1,5$ and 10 volts per inch. Vernier control's permit continuous ser.
sitivity adjustment between fixed scales, persitivity adiustment between fixed scales, per-
mitting full scale plotting for any sensitivity, ACCURACY: Static $.1 \%$, dynamic $.2 \%$ at 10° per second.
PLOTTER CALIBRATION ACCURACY: $.05 \%$ on all scales.
SLEWING SPEED: 20° per second.

For full details - dimensions, applications, list of accessory equipment, call our Sales Engineering Department or send for illustrated brochure on Model 210, XY Plotter. For information on career opportunities at Librascope, write Glen Seltzer, Employment Manager.

-180 watts
INPUT: X and Y induts isolated from each other and
from ground. INPUT RESISTANCE:
INPUT RESISTANCE:
2 megohms nominal on
2 megohms nominel on
volt on 5 millivolts per inch
.1 volts per inch scales.

FOUR MAGNESIUM DEVELOPMENTS ANSWER DESIGNERS' PROBLEMS

Abstract

New Dow developments in magnesium provide solutions to critical problems for aircraft, missile and electronics designers. Among them are: a special bend sheet; new close sheet tolerances; precision extrusions; elevated temperature alloys.

Heated dies are not necessary with Special Bend sheet.
new special bend sheet bends easily on standard bending equipment at room temperature. This AZ31B-O Special Bend sheet can be cold-bent
without cracking through an angle of 90 degrees around a mandrel radius equal to the bend factor times the nominal sheet thickness . . . bend factor for $.040^{\prime \prime}$ to $.100^{\prime \prime}$ sheet thickness is 2.0! And tensile yield strength meets the requirements of Federal Specification QQ-M-44.
new Close sheet tolerances can now be obtained on standard gauges when required. For example, on .090" gauge, 48-inch-wide sheet, tolerances can now be held as close as plus or minus . $002^{\prime \prime}$. Standard tolerances run plus or minus .004". These closer tolerances help to cut down on weight

Magnesium gives greater rigidity for equal weight than other metals.
penalty, so important in missile and aircraft design.
PRECISION MAGNESIUM EXTRUSIONS from Dow give you exact-tolerance parts without costly multiple machining operations. Sharp V's, deep notches, thin slots, accurate serrations . . . all can be economically produced in Dow's Madison, Illinois, extrusion plant. large extrusions. A huge 13,200 -ton press easily handles large sections, stepped extrusions, combined extrusion forgings and single unit extrusions to replace fabrications. This giant can handle sections of up to a 30 -inch circumscribed circle!
ELEVATED TEMPERATURE ALLOYS are available from Dow for extruded and rolled products. These alloys have excellent static and creep properties, some up to or above $700^{\circ} \mathrm{F}$. Because of magnesium's high specific heat, it's an excellent heat sink for instruments and components!
Compared pound for pound with other metals, magnesium permits the use of heavier-gauge, more rigid sections for extra structural strength . . . and substantial weight savings!

Dow precision-extrudes magnesium in almost any cross-sectional shape.

For more informationon these products, and on Dow's fabrication facilities for magnesium and aluminum, contact the nearest Dow sales office, or write THE dow metal products company, Midland, Michigan, Merchandising Department 1002BC7-6.

THE DOW METAL PRODUCTS COMPANY
Division of The Dow Chemical Company

NEWS

A 16-word erasable-storage system has been buiil with bit density of about 100 per cu in.

All memory transfers are performed in paralle rather than serially, requiring less power. Transi tors used in the memory only draw power wie actually transferring data.
The complete memory system consists of fixe storage, erasable storage, and a group of erasall type central registers under direct control of th computer logic.
Because of the special electrical requiremen of the erasable registers, it was decided to spl the central registers into two separate section Each clock pulse is divided into two equal part designated α and β.
During the α portion of the cycle, informatio flows from the upper registers toward the buffe through the sense amplifier at the left in Fig. During the β portion, information flows towar the erasable storage through the sense amplifier
These operations do not occur simultaneous because of the chance that a single core might cleared and written into at the same time.
Address registers are used to address the fixe and erasable storage sections through energizin the proper inhibit and sense wires.
Other special central registers are designed perform specific functions in the computer spea fied by particular instructions.

Sequence Generator Provides Logic
The sequence generator is the logic section the computer. It provides control-pulse sequenct associated with instructions stored in the fixed or erasable-storage sections.

Sequences are provided by threading or nd threading a wire through cores in a row of a con

Space Computer Specifications

Power (proportional to speed)
Clock rate
Size (estimated)
Weight (estimated)
Memory (parallel transfer)
Program and constants
Volatile
Word length
Life (estimated)
Average speeds at 100 kc
Multiplication
Addition
Transistors
Diodes
ELECTRONIC DESIGN • July 6, 196
$0.1-20$ w
0.100 kc
trix. Different sequences are provided by varyg core threading combinations from row to row. Selection of sequences is provided by selecting row in the matrix. When the row is selected all ores in the row are set to one, and a one is also t on the first core of a controlling shift register w at the bottom of the matrix.
As the one is shifted across the shift register, quential switching of the cores in the selected ow from one to zero occurs. A wire across the w will carry a pulse whenever a core through hich it is threaded shifts from one to zero. If a wire is threaded through every core in the w a pulse is generated with each cycle of the ontrolling shift register, providing a continuous ulse sequence. If two or more wires are threaded frough cores in the selected row, a sequence of alses is generated in each wire corresponding to he threading pattern.
Various trick techniques permit optimal use of he sequence generator in providing control sigals for the central registers. -

\& D Costs Hit \$8.2 Billion n 1958, Science Report Says

Research and development accounted for $\$ 8.2$ illion of American industry expenditures in 1958, ccording to a report by the National Science oundation. This was a seven per cent increase ver the figure for 1957, and more than double hat of 1953.
The $\$ 8.2$ billion for industry represents about oree-fourths of the national dollar volume of rearch and development, estimated at $\$ 11$ billion or 1958. The remaining fourth was performed by he federal government, colleges and universities, nd other nonprofit institutions.
The report, based on a survey conducted for he foundation by the Bureau of the Census, cites 10 per cent increase in research and develophent for the electrical equipment and communiation industry.

NASA Sets Up New Office Df Information and Education

The National Aeronautics and Space Adminisration has established a new Office of Technical information and Educational Programs. Shelby Thompson, formerly with the Atomic Energy Onmission's Div. of Information Services, has en appointed director.
The new office is expected to consolidate ASA's present public information services, such : he distribution of brochures.

NEW PROTECTION AND COST SAVINGS

 with $\sqrt{\text { LKRERS }}$ 。 CAPTI $_{\text {OLT }}$ SURGE PROTECTORS for Silicon Rectifiers

To protect silicon rectifiers against destructive voltage surges, design engineers are using rectifiers rated considerably higher than the normal operating level. This is a costly practice, and doesn't always guarantee reliable rectifier performance and freedom from breakdown.

The new Vickers CaptiVolt Surge Protector, with its non-linear resistance characteristics, eliminates the need for extreme derating of cells . . . assures greater reliability and longer rectifier life. Connected across the secondary of the transformer supplying AC to the rectifier circuit, the CaptiVolt absorbs excessive intermittent energy up to 3000 watts. Extreme decrease in CaptiVolt resistance with small increase in voltage shunts destructive voltages ... protects the rectifier. Under normal operating voltages the high resistance of the surge protector consumes less than 5 watts.

Chart below shows the remarkable savings with-just one of these low-cost devices.

The CaptiVolt has been field tested for more than a year, laboratory surge tested for more than $20,000,000$ cycles.

STANDARD TYPES AND RATINGS

Type No.	Rated Pank Volte, Recurrent Continuous Duty Acrese AC Line	Rald RMS Volter Comininuous Duty Acroses Sinusoidal AC Line	Maximum Discipation. Averrap Watte	Moximum Reconusurded Surgo Amperea Inctantancous (Convection Cooling)	PRICE EACH (NET)
SP105	50	35	12	5	\$1.95
SP110	100	70	14	5	2.20
SP115	150	105	17	5	2.50
SP120	200	140	20	5	2.70
SP125	250	175	23	5	2.95
SP130	300	210	26	5	3.15
SP140	400	280	32	5	3.70
SP150	500	350	38	5	4.20
SP160	600	420	44	5	4.65

IIf fan cooling at volocity of 600 LFM is amployed, multiply waths by two (2).

EPA $3130-1$
ORDER SAMPLES TODAY-One-Day Shipment Bulletin 3135-1 Also Available

VICKERS INCORPORATED
 DIVISION OF SPERRY RAND CORPORATION
 ELEGTRIC PRODUCTS DIVISION

1841 LOCUST sTREET / BAINT LOUIB 3, MIBSOURI
Sales Engineoring Offices:
BOSTON (Rop.)-CEdar 5-6815 ST. LOUIS-CEntral 1.5830
CHICACO-JUniper 8-2125 ST. LOUIS (Rop.) - JAckson 1.4877 CLEVELAND-EDison 3-1355 SYRACUSE (Rop.)-GRanite 4-4889 DETROIT-TOwnsend 8.5100 SAN FRANCISCO (Rop.)Flroside 1-3433

LOS ANGELES-DAvenport 6.8550 NEW YORK CITY-LEInOX 9-1515 WASHINGTON, D.C.EXecutive 3-2650

 extra security into printed-circuit assemblies. For a cost you count in pennies. A Transipad mounting is rock solid. It eliminates strain on delicate leads, provides vibration-proof separation between them. It isolates the transistor case from contact with printed conductors. And, perhaps most important, it provides a built-in air space to dissipate the heat of soldering (how many transistors have you lost lately through heat shock?). Transipads come in sizes and styles to fit most transistor types; some will convert lead arrangements from in-line to pin-circle, or vice-versa; others will widen lead spacing. Samples and drawings are yours for the asking. A note or a phone call will bring them.

MR
THE MILTON ROSS COMPANY
236 Jacksonville Road, Hatboro, Pa. Phone: OSborne 2-0551

NEWS

Automatic Navigator Designed to Project Aircraft Position on Map Screen for Pilot

Engineer at International Business Machines laboratory at Owego, N.Y. inspects the glass hemisphere in a new navigation system. The 6 -in. globe has a map of half the earth photographically repro duced on its inner surface.

AN EXPERIMENTAL naviga tion system may eventually en able pilots of supersonic planes to check their position by merel! glancing at a screen on the instru ment panel. The system. under de velopment at International Busines Machines Corp., Federal System Div., Owego, N.Y., uses a map projection technique.
It reportedly projects a highl accurate circular map of an are 400 miles in diameter (125,000 s, miles) on a $7-1 / 2$ in. screen. An airf borne computer perforns all the cal culations to position the map on the screen and to pinpoint the plane position.

The key unit in the system is glass hemisphere of about 6 in diam. A detailed map of half tha earth is reproduced photograpla cally on the inside of the glass. beam of light illuminates a sma section of the map, which is the projected onto a flat, translucea screen in front of the pilot. As the plane moves, computer automa cally adjusts map presentation.
IBM says a similar device cou be used in space navigation.
To use the system in space, technique known as stellar ine

Mop projection techhique used in the navijot:on system is illusfated during a laboralory test. The system, still Inder development, uses - computer to position - map of half the earth whide a glass hemiphere in such a way fiot the area over which plane is flying is profected onto a display creen. Engineers RichIrd W. Kern (left) and ohn F. Creedon are resently working tojards refinement of the ystem.

If You Will Remember ONE New Name P.A.DT

You Can Forget FIVE Old Transistor Problems

Amperex ${ }^{\circ}$

High Gain VHF Transistors manufactured by the Post Alloy Diffusion Technique

are unrivalled for:

1. RELIABILITY
2. OPERATING STABILITY
3. UNIFORMITY
4. PRICE
5. AVAILABILITY

At last, you can realistically use high frequency transistors for RF and IF amplifiers in production FM receivers; as mixers, oscillators and RF and IF amplifiers in mobile radio equipment, car radios and short wave receivers; and as broadband amplifiers in instrumentation and industrial applications. Implemented and fully proven by Amperex. a unique manufacturing technique originating with Philips of the Netherlands now enables Amperex to provide you with production VHF Post Alloy Diffused Transistors* of unparalleled laboratory quality at truly reasonable prices.
The new Amperex "Post-Alloy-Diffusion". P-N.P Transistors combine the best qualities of both the alloy and the diffusion approaches to transistor construction. As a result of the special "self-jigging" techniques, a maximum degree of uniformity is achieved. Thus the necessity for "selection" is completely eliminated.
The 2N1516 is designed for use as a mixer oscillator in short wave receivers, as an IF amplifier in FM receivers, and as a broadband linear amplifier for instrumentation and industrial applications. The 2N1516 features a high cut-off frequency of 70 Mc and a low collector-to-base capacitance of $1.8 \mu \mu \mathrm{f}$.
The 2N1515 is designed for high gain IF amplifier service in medium and short wave receivers.
The 2N1517 is designed for usic as a local oscillator and preamplifier in FM receivers and has a power gain of 12 db at 100 Mc .

This is, of course, only the beginning of the Amperex PADT stor: A aila ability is further assured by a new Amperex PADT plant in Slatersville. Rhode Island. A range of new PADT transistors, now in the final stages of development will provide UHF performance at VHF prices and give every development will provide UHF periormance at VHF prices
promise of providing increased reliability and uniformity.

ask Amperex

the industry's rellable eource of quallity
translafors and dlodes for industrial and entertainment applleations.

Amperex Electronic Corp., 230 Duffy Avenue, Hicksville, Long Island, " = whet In Canada: Rogers Electronic Tubes \& Components, 116 Vanderhoof Avenue, Toroni

This concluding section of ELECTRONIC DESIGN'S report on electronics in oceanography describes some of the systems for collecting, transmitting and processing the data obtained with the measuring instruments discussed in the first part of the report. Oceanographic systems afford the possibility for long-run production and may thus be of greater interest to industry than the measuring instruments, which although of sophisticated design, are generally less complex and required in only limited quantities.

Oceanography-Opportunities in Systems Design

Manfred W. Meisels
Assistant Editor

0CEANOGRAPHY, perhaps more than any other science, must resort to the design and construction of its own electronic instruments. Little else beyond basic components is available "off the shelf." Instruments are hand-tailored and the electronics section of an oceanographic laboratory typically resembles a prototype shop in land-based industry.
In the absence of commercially available systems or sub-systems, an inordinate amount of time is spent in assembling power supplies, modu-
lators, transmitters, sonar packages, etc. Though requirements may differ somewhat for each particular experiment, much of the electronic gear could be assembled from standard packages-if such packages were available.
With the anticipated growth of oceanography in the ' 60 s , many areas of instrumentation may prove attractive for commercial exploitation. Some of the more promising opportunities for industry are described here. Ingenuity of design has been the keynote of oceanographic equipment

'Please Go Near the Water!'

Electronic engineers at the various oceanographic institutes have learned by repoated experience that it pays to go to sea.
"Once you've heen seasick and had to work on a piece of equipment, you build it differently," is how Bernard Luskin, chief engineer at the Lamont Geological Observatory, put it. "You have to human engineer your devices for use by people who are not at their best."
This means leaving out knobs and switches which, in accordarice with the principle of perverse probability, will inevitably be set to the wrong position. Printed circuits and miniaturization make sense in missiles, but to repair such packages off a vibrating, rolling ship is next to impossiblecold solder joints are all that can be produced.
Stable power supplies are taken for granted ashore, but the performance of a ship's electrical system cannot approach that of your local utility company. The result-equipment that checks out in the lab but is useless on shipboard.

Nothing on ship stays dry, so design your equipment accordingly. Don't wait for packaged proto-types-get your breadboard to sea and avoid unpleasant surprises later. Survey ships may be at sea for 10 months or more, so design for reliability. Are your computers and other equipment designed to operate in a clean, well lit, air conditioned environment? Go aboard an oceanographic vessel and face reality.
These rules, which apply in spades for the design of electronic gear for the Navy, are often ignored. The first Loran-C receivers delivered to the Navy were marvels of packaging and miniaturization but were soon replaced by less glamorous units designed for easier servicing. The leftovers have been offered gratis for oceanographic use but have found no takers. SINS equipment is another instance where designers found themselves at sea by not going to sea in the first place.
The rule to be followed in designing electronics for the sea is "Please go near the water."
and will be a continuing requirement. The design problems are complex and the funds available are as yet limited; but the field is growing and oceanographers stress that now is the time for industry to get in on the ground floor.

Telemetry

The buoy is to oceanography what the satellite is to space exploration. Each vehicle carries instruments to regions where man cannot go in safety or convenience. In each, telemetry devices are necessary to recover the data collected by the instruments.
At sea, two modes of telemetry are possibleradio telemetry for a floating buoy, and acoustic telemetry from a submerged instrument package. Each method is presently limited by an almost total lack of equipment to do the job.
Sonar techniques have been used successfully to track and locate submersible and "Swallow" buoys. Passive, active, and transponding methods are employed. In addition, sonar is now being exploited as a means of underwater telemetry and communication. Pulse-coded and frequency modulation of the acoustic signal offer the most likely possibilities at present. Amplitude modulation is restricted by the variable attenuating properties of the scattering and thermal layers in the oceans. Sub-carrier and multiplexing also appear feasible. but further development is needed in applying these techniques to an acoustic carrier.
As in ASW devices, the trend is toward the use of lower frequencies. (The attenuation of a low-frequency acoustic signal is roughly 0.2 (in kc) db per thousand yards.) Unlike most so nars, however, the telemetry device must operate at great depths, where pressures exceed $10,0001 \mathrm{lb}$ per sq in. Ordinary crystal transducers, when backed with oil or otherwise designed to with

The Schooner "Vema," research ship
of the Lamont Geological Observatory of Columbia University. "Vema," now circumnavigating the Antarctic, is typical of the vessels being used in oceanography. Modern ships, soon to be built, will certainly be more efficient but hardly as glamorous.
stand these pressures, deteriorate markedly in ef ficiency. Magnetostrictive transducers, which are free-flooding and hence not pressure-sensitive. are inefficient to begin with. Clearly, a family of efficient, high-pressure transducers would greatly extend the range of practical applications for acoustic telemetry.

Wanted: Acoustic Telemetry Packages

Transducers should cover a frequency range from 1 kc to 30 kc at efficiencies of 30 per cent or more. Such orders of efficiency are needed to provide a reasonably long operating life with pres ently available power sources. Accompanying the transducers there should be a line of packaged acoustic equipment including generators, data samplers, modulators, transponders, repeating beepers, etc. Modular construction and matched components would permit the oceanographer to ass mble an acoustic telemetry or beacon system with maximum ease.
Design problems are greatly simplified by the ow data transmission rates involved. A capacity of 10 measurements per minute would be more than adequate for an acoustic telemetry system. Or: the other hand, design for high-pressure oper-
ation must be total. Oceanographers report instances where transducers and hydrophones claimed to be designed for use at $10,000 \mathrm{lb}$ per sq in. came equipped with ordinary connectors and feedthroughs. Occasionally, equipment is delivered in which the instrument case is used for a chassis ground, a procedure totally unsuited for immersible equipment.
Oceanographers have ambitious plans for submersible buoys. Ocean-bottom seismographs, temperature and current monitors, and navigation beacons are in active development. All require acoustic equipment which no oceanographic laboratory is equipped to build in quantity.

Emphasis on Low-Frequency Radio Telemetry

Radio telemetry from a surfaced buoy is a more straightforward affair in that the design problems have long since been solved. The need here is for equipment designed to operate at suitably low frequencies. The emphasis in telemetry has been on missile and space applications where the high data-transmission rates involved have led to the use of vhf equipment. The resultant line-of-sight transmission range makes such gear of little use to oceanographers, who are thinking of transmission
ranges of up to 1,000 miles. Winter and rough weather generally curtail oceanography and a system of telemetering buoys could make it a yearround trade.
A complete line of telemetry equipinent in the 2 to 4 mc range would satisfy the bulk of oceanographic requirements. In certain applications, such as weather buoys, frequencies might go to perhaps 15 mc , but no higher. Data rates are again comparatively low. Ten cps per channel with up to 8 channels would suffice for any buoys now in sight. Some of the modulation schemes developed for missile use, particularly $\mathrm{fm} / \mathrm{fm}$, are of interest to oceanographers, who would like to see them adapted for use at lower frequencies. Data conversion should present no difficulty. The greater part of oceanographic measurements involve temperature and pressure, the telemetry of which is routine in space and missile tests.

Buoys in Gulf Stream

Present activity in radio telemetry by oceanographers is rather limited. Woods Hole has a chain of temperature and current measuring buoys in the Gulf Stream, the Bureau of Standards and the Naval Research Laboratory have been ex-

perimenting with weather buoys, and the Scrip ps Oceanographic Institution at La Jolla, Calif. cb. tains wave measurements from a remote measuring station.
The Woods Hole buoys are part of an order of 40 buoys being filled by Prodelin Inc. of Kearn y y, N.J. These units are interrogable and transrait ocean-temperature data from a 25 -unit thermist or chain. Telemetry is in the 2 to 3 mc range at about 20 w giving a range of about 100 miles. A $20-w$ transistor operating in this frequency range, said to be in development, will increase operating life and improve reliability. The buoys are priced at about $\$ 1,500$ each.

The shortage of trained oceanographers will lead to the increased use of buoys for data collection as our oceanographic efforts accelerate, and every buoy launched will be equipped with a telemetering device. The implication to electronics designers is obvious.

Power Sources

New power sources are needed for the heavily instrumented, long-lived buoys being designed for oceanography. The carbon-zinc and lead-acid cells now in general use are adequate for small vehicles, but weather buoys, ocean-bottom instrument packages, and radar and sonar beacons call for more sophisticated power devices.

Emphasis in battery design has been on high output, short-lived cells for missile use whereas oceanographic requirements are for low drain, long-lived sources. Weight and volume, so critica in missiles, are of limited importance in the science of oceanography.

But even generous weight allowances preclude the continued use of ordinary cells. A constant drain of only 1 ma amounts to 9 amp hr per year. A good many milliamps, often at more than 2 are required in oceanographic systems. For example, one prototype weather buoy developed b! the National Bureau of Standards draws an aver age current of 175 ma at 12 v . Transistorized circuitry and improved design would reduce current demand, but the power required by weather buoys and other complex systems is nevertheles quite considerable.

Every Possibility to Be Tried

Thus, oceanographers are willing to examin every reasonable possibility leading to new powe sources. Among the methods now under study are: wind-powered generators, wave-powere generators, solar cells, fuel cells, nuclear batteries and sea water activated cells.
NBS, as a part of its work on weather buoys is considering a variety of power sources. Twi circle 3i on reader-service card
ELECTRONIC DESIGN • July 6, 1961
vind-powered generators having a combined outfut of 30 w in a 10 -knot wind will be tested on a weather buoy this summer. Wind powered generators are at first glance an ideal means of powering a surfaced buoy, but their reliability and uniformity of power output have yet to be determined. In arctic regions, the chance of icing rules out their use.

By next year, NBS will test a propane-gaspowered fuel cell using thermoelectric elements. A catalyst will be used to generate heat without an open flame and a single propane cylinder is expected to be sufficient for a year's operation. Such cells are, of course, usable only on surfaced buoys.

Solar Cells, Too

NBS has also investigated solar cells to power its buoy. A 1 sq ft array of solar cells can deliver up to 7 ma at 15 v . Salt spray and humidity do not affect performance and solar cells would appear ideally suited for use in tropical waters. The cost of solar cells, however, is considered excessive; the array tested ran to about $\$ 500$.
The Naval Research Laboratory, also working on weather buoys, is planning to test a nuclearpowered battery in about two years. Power requirements for large NRL weather buoys are equivalent to 1 w -hr continuous drain; the nuclear cell is expected to deliver about 5 w -hr. The cell will use heat from strontium- 90 decay to power a thermopile.
The NRL buoys drift with the ocean currents and the possibility exists that someone could irradiate himself if a buoy with a nuclear battery drifted ashore. One buoy that landed recently in Nicaragua was opened with a machete before the Navy could recover it.
The Scripps Institution is developing a carbonmagnesium, sea-water activated cell. Results are not yet available, but this or perhaps other electrode combinations offer interesting possibilities.

Shipboard Equipment

Shipboard equipment will account for a significant share of oceanography's electronic budget. Up to $\$ 1$ million worth of instruments is to be installed on each of the new survey ships now being planned. U.S. oceanographers would like to have as many as 25 of these new ships and stand a reasonable chance of getting at least a large share of them in the next 10 years. Stepped-up occanographic activity in other western countries will lead to the construction of still more survey ships. It has been estimated that a full-scale, world-wide program of oceanography would require the construction of more than 100 new vessel, each crammed to the gunwales with electronic equipment.
Until now shipboard electronics has been a crazy-quilt affair, growing in complexity and re-

AT ORACE ELECTRONICS the pledge of high quality silicon meeting your specifications is not a promise without meaning. The reason: Perfection is standard at Grace!
The fact that nothing is left to chance means greater yields per pound from Grace Silicon. Impurity levels are kept to a minimum throughout the process, resulting in bulk and monocrystalline
silicon with boron content as low as 0.1 ppb . This means minimum compensation and therefore superior device characteristics for you.
Grace Silicon is available in all grades and forms. Bulk: Grades I, II and III; P and N type. Grace Float Zone and Czochralski monocrystals from 0.1 to 1000 ohm -cm . Polycrystalline rods. Monocrystalline slices. Write today for details.

GRACE ELECTRONIC CHEMICALS, INC.
101 N. Charles St., Baltimore, Md. Subsldiary of W. R. Grace \& Co. - West Coact Rop.: Chafin \& Assoclatos, Loo Angoles and San Francieco

SEAGOING ELECTRONICS-2

dundancy with each introduction of a new instrument. A systems approach in the design of shipboard electronics is urgently needed and equipment desigus reflecting this attitude will certainly be selected.

Funds Available

Funds have been allocated for the first of the new survey ships and construction will begin

Large, seagoing weather buoy developed by Na . tional Bureau of Standards. The buoy collects and telemeters a wide variety of oceanographic and weather data and could readily accommodate other sensors. Transmission is programed for six-hour intervals, but cuts in more frequently during storms. As shown in block diagram, output of each sensor is fed, in turn, to self-balancing bridge amplifier. Transmission is by morse-coded cw system.

For direct, accurate Microwave AVAILABLE NOW
REFLECTOMETER
COUPLERS

Microline Reflectometer Couplers provide a quick, simple and accurate means of measuring voltage standing wave ratios. Each is actually two couplers, and can do many of the jobs of two. yet is considerably more compact.

The outputs of the coupler at the barretter mounts are incident power and reflected power respectively. These outputs may be coupled to the Microline 29A1 SWR Indicator through a 29A2 Input Switch; by noting differences in db. VSWR may be simply calculated. The Input Switch provides convenient audio switching between the barretter mounts.
With one arm terminated (normally the "REFL" arm), the other can be coupled to a frequency meter, or to power measuring or other monitoring equipment, and used as any standard coupler. With both the "Load" and "REFL" arms terminated-using matched components such as Microline 42 or 43 series terminations-the coupler serves as an excellent fixed attenuation standard. unaffected by variations in temperature or humidity. Calibrated against primary attenuation standards, the coupling values of this circuit become the attenuation values at all frequencies over the range.
Available for immediate delivery from stock, the Reflectometer Couplers are another in the Microline family of high quality, matched microwave instruments . . . the most complete, most dependable, mos advanced line for today's high precision microwave applications.

SPECIFICATIONS:

Frequency Range:

Waveguide Size:	Recommended Barretter Mount	Recommended Barretter
$3^{\prime \prime} \times 11 / 1 /{ }^{\prime \prime}$	$33 S 2$	821
$2^{\prime \prime} \times 1^{\prime \prime}$	$33 C 2$	560
$l^{\prime \prime} \times 1^{\prime \prime \prime}$	33×2	560

Mod. 24S1 . . $2.60-3.95 \mathrm{kmc}$ Mod. 24C1 . . $3.95-5.85 \mathrm{kmc}$ Mod. 24X1 . . 8.2-12.4 kmc

Nominal Coupling: 10 db VSWR of Primary Line: 1.05 Coupling Variation Over Range: ± 0.5 Tracking Between Arms: $\pm 0.05 \mathrm{db}$ Minimum Effective Directivity: 40db

CONTACT: LOUIS A. GARTEN \& ASSOCIATES: WEST ORANGE, N. J. 645 Eagle Rock Ave., REdwood 1-1800; NEW YORK. N. Y. BOwling Green 9-4339: PHILADELPHIA, PA. 730 Washington Lane, Jenkintown, Waverly 7-1200
TECHNICAL INSTRUMENTS. INC.: READING, MASS. 90 Main St., REading 2.3930: LIVERPOOL, N. Y. 916 Liverpool Rd., OLdfield 2-2535; ERIDGEPORT, CONN. 1115 Main St., FOrest 8-4582.

PRICES: Mod. 24S1, $\$ 600$ Mod. 24C1, \$350 Mod. 24X1, \$175

Matched Nicroline ${ }^{\circ}$ Instruments

 IMMEDIATE DELIVERY
29 A2

INPUT SWITCH

The Microline 29A2 Input Switch is an accessory for use with the SWR Indicator, providing audio switching between two inputs. In an appropriate circuit it will permit direct reading of insertion loss. A gain adjustment is provided on one of the inputs. This adjustment does not affect bolometer bias. Connected as illustrated, the SWR Indicator, 29A2 Input Switch and a Microline Reflectometer Coupler with barretter mounts form a versatile reflectometer for impedance measurement.

2941

SWR INDICATOR

The ideal amplifier for measuring standing wave ratios and relative power in microwave systems . . . and the ideal indicator in frequency measurement. It is the only instrument providing two bandwidth selections: Wide Band, 300-5000 cps (fixed); or Narrow Band, 30-150 cps (variable), with resultant high stability, sensitivity, and freedom from modulator drift error.
The 29A1 incorporates an expanded scale and automatic compensation for increased accuracy in low VSWR measurement. A "Plus 5 db " gain step facilitates accurate upper-scale readout on the meter. Many other advantages, such as a pushhutton bolometer current reading . . . positive diode proteclion againsi bolometer burnout . . . "wide" position switching climinating the tuned circuit . . . easy readability and operability . . . make the 29A1 the most desirable instrument of is hind. It is handsomely designed-a light blue case. brushed aluminum control pancl. and contrasting gray sub-panel.
Available for immediate delivery from stock, the SWR Indicator is another in the Microline family of high quality, hat hed microwave instruments . . . the most complete. most dependable, most advanced line for today's high precision nic'owave applications.

CONTACT: LOUIS A GARTEN \& ASSOCIATES: WEST ORANGE, N. J. 645 Eagle Rock ve REdwood 1-1800; NEW YORK, N. Y. BOwling Green 9-4339; PHILADELPHIA. io Washington Lane, Jenkintown, WAverly 7.1200
ECH IICAL INSTRUMENTS, INC.: READING, MASS, 90 Main St., REading 2.3930: NVE POOL, N. Y. 916 Liverpool Rd., Oldfield 2-2535; BRIDGEPORT, CONN Main St., FOrest 8-4582.
shortly. The electronics aboard this vessel will minclude the following:

- Multichannel precision-depth recorders.
- Multiple sonar arrays with provisions to vary frequency, pulse rate, pulse duration, beam width, etc. Four or five depth sounders will be included in the array.
- Navigation and communication equipment.
- Magnetometers, both of the flux-gate and nuclear-precision types, together with associated electronics.
n Gravity meters mounted on a gyro-stabilized platform.
- Auxiliary acoustic generators such as spark gaps, gas burners, thumpers and explosives.
- Auxiliary power sources.
- Test equipment.
- Hydrophones both hull-mounted and vari-able-depth types for seismic work.
The standard depth sounder for oceanography is the Navy's UQN-1E sonar apparatus, thought to be the best of its type. English Kelvin Hughes and German Elac depth sounders have also been used but do not quite match the performance of the UQN-1E. Elac equipment is known to be in service aboard Russian oceanographic ships.
Aboard the Lamont Geological Observatory's "Vema" the UQN-1E is used together with a Westrex Mark 5 precision depth recorder. An accurate time standard, perhaps the major consideration in depth sounding, was developed by Westrex from the tuning-fork standards used in its facsimile machines. The Mark 5 is a versatile chart recorder equipped for automatic scale changing, variable gating and simultaneous recording on the chart of ship's heading, logged miles, magnetometer data, and all other pertinent information.
The next advance in depth sounding equipment will be the integration of recorders and sonars into a single system. Lamont, to which the first new survey ship has been assigned. plans to install a system of this type aboard the vessel.

Static Converters and Test Equipment Needed

Static power converters are another "must" for oceanographic ships. Many measurements are taken under "quiet ship" conditions in which not even ventilating fans are permitted to operate. Storage batteries are now used to power equipment at such times, but static dc-dc and dc-ac converters would be of major convenience and would permit the use of a greater variety of instruments not readily adaptable to hattery operation. Converters should deliver several kilowatts at stable voltages and with great reliability.
Shipboard test equipment should, wherever possible, be designed for battery operation. This is desirable for portability in making "on the deck" repairs and adjustments and to assure stable

Like man－Honeywell＇s Adaptive Autopilot can accommodate， in fact，can adapt．Anthropomorphic？Perhaps－nonetheless，this system has the capacity to change its own parameters through an internal process of measurement，evaluation，and adjustment．It operates independently of air data information and complex gain scheduling－and is unaffected by changes in aerodynamic characteristics．Simply，it adjusts itself in response to its own performance．

professional opportunities at Honeywell Aeronautical

INERTIAL SYSTEM DEVELOPMENT

Systems Analyst－employs mathematical techniques such as operational calculus， matrix algebra，and difference equations to the solution of problems concerning per－ formance characteristics of various system configurations including analysis for error introduced by sensors and computer，re－ quirements for alignment，and optimization of the system configuration．
Digital System and Logic Designer－requires familiarity with capabilities of various digi－ tal computer configurations and ability to employ system and logic relations in speci－ fying necessary configuration for solving inertial navigation problem．
Electronic and Mechanical Designers－engi－ neers with background in transistor circuitry， inertial sensor development and evaluation， and precision mechanical equipment design are needed to perform component develop－ ment and evaluation，and to design mount－ ing and alignment equipment．

APPLIED RESEARCH

Programmer Analyst－mathematician with experience in the use of medium and large scale digital computers for analysis of scien－ tific problems．
Human Factors Engineer－capable of analysis and direction of experiments in human motor skills，and application to man－machine sys－ tems involving automatic control techniques．

> To explore professional opportunities in other Honeywell operations coast to coast，send your application to H．K．Eckstrom，Honeywell， Minneapolis 8，Minnesota．

Systems Analyst－capable of conducting re－ search studies involving new techniques of space navigation and guidance．

DESIGN AND DEVELOPMENT

Flight Confrol Systems－analytical，systems， and component engineers to work in areas such as advanced flight reference and guid－ ance systems．Positions range from analyz－ ing stability and control problems，systems engineering－through design，testing，and proof of electrical and mechanical equipment －including flight test and production test． Advanced Gyro Design－Engineers with two and up to twenty years＇experience in pre－ cision gyro and accelerometer development， servo techniques，digital techniques，solid state electronic development，advanced in－ strumentation and magnetic component design．
Electronic Circuir Designers－experienced in the areas of analog／digital computers，tran－ sistor circuits，servos，instrumentation，and／ or gyro stabilization．
For the less experienced professional engineer， there are opportunities in the Evaluation Laboratory which lead to careers in any of the above fields．
To investigate any of the above professional opportunities，please write in confidence to Mr．J．G．Burg，Technical Director，Dept．734， Honeywell Aeronautical Division， 1433 Stin－ son Blvd．N．E．，Minneapolis 13，Minnesota．

SEAGOING ELECTRONICS－2

power for such instruments as oscilloscopes，fre－ quency generators and counters．
A complete line of battery－operated test equip． ment designed for use at sea would be welcomid by oceanographers who now have to fuss with power packs，adapters，and other jury－rigs．

Data Collection and Processing

Equipment for the storage，recovery，and proc－ essing of instrument data is a critical need in oceanography．＂The first rule in this business，＂ according to Bernard Luskin，chief engineer at the Lamont Geological Observatory，＂is to look at your data right away－you may never be able to find the place again．If something interesting turns up，you＇ve got to exploit it then and there．＂This rule is not always observed，with consequent loss of much valuable information．Data processing on shipboard can thus give oceanographers greater mileage from the information they collect．
The data input to a well－equipped survey ship is enormous and justifies the use of the most mod． ern，high speed data－reduction and computing equipment．Typical input rates to a ship are：
－Depth soundings－1 per second．
－Gravity measurements－continuous．
－Magnetic measurements－1 per 6 seconds．
－Seismic measurements－up to 5，000 per day．
－Temperature，current and pressure reading

Small weather buoy designed by National Bureal of Standards measures and telemeters wind direction and velocity，air temperature，and barometric pressure Buoy＇s electronic package at right includes programe and transmitter（top），barometer and magnetic compass
telemetered from buoys or taken over the sidemany thousands per day.

Chart recorders are a time-honored means of reducing data for immediate visual inspection. For depth soundings, they can hardly be improved upon. Nevertheless, ingenuity of design, such as demonstrated in the thermal contour plotter, can improve the utility of chart recorders and help to present data in a more significant form.

Combined Displays a Good Idea

Seismic measurements are charted as a series of pips along a time base and must be interpreted by trained observers. A major advance would be the development of an integrated graphic display of seismic, sonar, gravity and magnetic data to give a complete picture of the bottom and subbottom structure.
Similarly, temperature, current, density and other related measurements might be automatically combined into a graphic display of the ocean's tine structure. Here again, sonar readings could be presented together with data telemetered from buoys to illustrate the relation of bottom topography upon these measurements.
Conventional digital computers would form an important part of any such integrated data-reduction and display system. Even now, computers would prove useful in shipboard data reduction, but the design or modification of a business or scientific type of digital computer for operation at sea is a job that has yet to be tackled.
Data storage in buoys can be important in reducing power requirements since telemetry equipment represents the largest part of the energy expended. An obvious solution here would be the use of a tape recorder, but the models available are generally overdesigned-and hence overpriced-for oceanographic use.
Time compression would be a necessary feature of any buoy-storage system. Measurements taken continuously over several hours should be transmitted in a small fraction of that time. Ideally. a ratio of 100 to 1 is desired. So far, in work at the Scripps Institution, a ratio of 64 to 1 has been achieved.
Other storage means, including electrostatic tubes, magnetic cores, or film, might prove applicable, but no serious attempts have been made to adapt these techniques to oceanography. Pioneer V "s telebit memory, though perhaps too limited in capacity for use in buoys is indicative of the lype of equipment required here.

Weather Buoys

Weather is made over the oceans, which cover F0 per cent of the earth's surface. Yet, as Dr. Columbus O'D. Iselin, former head of the Woods

every aspect of Ward Leonard bulletin "HR" relays is designed for maximum reliability. . . these are components you can buy, install and then forget

Ward Leonard "HR" relays are engineered for industrial and electronic applications requiring: ultra-long life, high speed, high reliability, compactness and versatility.
Consider the powerful solenoids, just one of the features shown above. Every HR relay, AC or DC, is equipped with a powerful solenoid to assure fast, consistent, long-life operation so essential in the circuitry of any high reliability relay. The "E-I" laminated magnet ar-
mature is free-floatins and self-aligning to minimize noise level. DC sol moids feature exceptionally fast operation. Nylon armature guides minimize operational friction. All AC and DC power plants are readily interchangeable.
2 to 8 pole "HR" relays are but one of five w/L lines of industrial power relays . . . all designed with emphasis on reliability. Write for bulletin 4470. Ward Leonard Electric Co., 17 South Street, Mount Veinon, N.Y.
CIRCLE 35 on ReAder-service card

LIVE BETTER...Electrically

ADVANCED OPPORTUNITIES FOR SENIOR ENGINEERS

Bendix-Pacific Division, North Hollywood, California, as a member of the Bendix Corporation "EAGLE" Development Team, is a major contributor to the Navy's newest air-to-air Missile "EAGLE." This weapon system is a second generation air-fo-air Fleet Defense System and offers challenging design opportunities to the creative engineer.
ADVANCED POSITIONS ARE OPEN TO MEN WITH BACHELOR, MASTER AND DOCTOR DEGREES IN ELECTRICAL AND MECHANICAL ENGINEERING WITH EXPERIENCE IN ELECTRONIC CIRCUIT DESIGN AND mechanical packaging. other high-level electronic engineering positions available
Please send resume to
W. C. WALKER,

ENGINEERING EMPLOYMENT MANAGER

Bendix-Pacific Division
north hourwooo, cal fornia

CIRCLE 901 ON CAREER INQUIRY FORM, PAGE 159

Special Purpose Wire

CIRCLE 36 ON READER-SERVICE CARD

X-Y RECORDER

Model HR-92
Unconditionally Guaranteed For One Year

Rugged. simple ($81 / 2^{\prime \prime} \times 11^{\prime \prime}$) plotter contains all essential features for 95% of all X-Y applications. Basic Model HR-92.1 is $\$ 595.00$ (USAl with 10 mv /in. sensitivity. 1/2\% accuracy.
houston instrument corporation
Box 22234 • Houston 27, Texas M0 7.7405
CIRCLE 37 ON READER-SERVICE CARD

SEAGOING ELECTRONICS-2

Hole Oceanographic Institution, points out, "Ve practically run out of weather information at the water's edge."
Some weather reports are received from ships and aircraft in transit and a very small number of weather ships are maintained on station by the U.S. and other countries. But operating costs for a single weather ship can run to $\$ 1,000$ a day without including the cost of other ships in dry. dock and in transit which are needed to support year-round operation.

\$10 Million Market Possible

Thus, unmanned weather buoys present an attractive alternative to weather ships from the standpoint of cost and area of coverage. Accord ing to Dr. Iselin, 1,000 weather buoys would be needed for world-wide coverage. Some 250 of these might be stationed in the Atlantic, where a program of this kind would probably be initiated Projected costs for such buoys would be on the order of $\$ 5,000-10,000$ each, if manufactured in quantity.
A more likely proposal is one put forward by Texas A \& M University for a chain of 10 weather buoys in the Gulf of Mexico to warn of incipient hurricanes. This proposal is based on a weather buoy under clevelopment by the National Bureau of Standards.

NBS has anchored a weather buoy 300 miles out in the Gulf of Mexico for the last two summers. The heavily instrumented device measures and telemeters the following data:

- Water temperatures down to 1.000 feet at 40 foot intervals
- Air temperature
- Barometric pressure
- Wind direction and speed

The buoy is programmed to telemeter at 6-hour intervals, but a wind-velocity switch cuts in fo transmission every three hours during storms.
Instrument readings are encoded into a three letter Morse code group. The sampling, encoding aud transmitting operation requires approximately four minutes.
Telemetry frequency is 5.34 mc with data trans mitted by rf pulse modulation. Peak pulse powe is 4 kw . A pulse length of $250 \mu \mathrm{sec}$ at 180 pulse per second gives an average power of about 180 w . The output stage is a 3 E 29 dual triode and feeds a vertical, grounded antenna.
It was found necessary to increase peak n power from 1 kw for adequate reception over the required $: 300$ mile range.

ELECTRONIC DESIGN • July 6, 1960

I more ambitious weather-buoy program, enco npassing ship-launched and air-dropped types, is being conducted by the Naval Research Laboratory. NRL is putting its money on drifting rather than on anchored buoys. Anchoring problems have never been adequately solved and a free buoy can "roll with the punch" in heavy seas, thus reducing wear and tear on the electronic devices it contains.

Improvements on the Way

The first version of the new free ship-launched buoy, tested last fall, carried the same types of measuring instruments as the NBS buoy. Temperature sensors, however, consisted of wirewound resistance thermometers rather than the thermistors commonly used in oceanography. Although thermistors are accurate, they are not very uniform and must be individually calibrated. NRL, thinking in terms of larger systems prefers to avoid this nuisance.
The buoy broadcasts at a frequency of 15 mc by day and 9 mc by night at an average power of 75 w . Morse code cw modulation is employed and usable signals have been heard at a distance up to 4,000 miles.
This summer, four improved models of the buoy will be spotted in the Caribbean hurricane zone. Provisions have been made for the inclusion of "Splashnik" wave meters and other oceanographic gear. Command receivers will permit interrogation of the buoy in addition to the usual 6-hr telemetry program. Storage batteries will permit up to a year of operation.
Air-launched buoys, smaller than ship-launched but carrying similar instrumentation, are being readied for use during this year's hurricane season. NRL hopes to drop these buoys into actual hurricanes in order to obtain accurate on-the-spot weather data.

Sophisticated Telemetry and

Shore Stations Envisioned

For large-scale systems composed of many laborately instrumented buoys, present Morse code telemetry methods must give way to more sophisticated, higher-speed transmission techhiques. Telemetry will have to be compatible with fata storage devices aboard the buoys which will provide rapid playback of continuous readings ccumulated over a long period.
Shore stations containing the receiving and lata-processing equipment for a weather-buoy ystem have yet to be designed. Certainly, a shore tation would have to include telemetry receivers, firection finders, command transmitters, computi rs for reduction and analysis of data and comhur ications equipment to forward the data to vea her forecasting centers. - -

that operates dependably at settings as low as $-40^{\circ} \mathrm{F}$. and as high as $+300^{\circ} \mathrm{F}$.
G.v's C8 Series of hermetically sealed electrical thermostats is specially designed to meet the difficult operating conditions of electronic and arcraft applications. Operating points. regard less of settings, are not changed by exposure to temperatures ranging from $-100^{\circ} \mathrm{F}$, to $+300^{\circ}$ F. Shocks up to 150 g for 3 milliseconds. vibration of 25 g up to 1000 cps . and vibration of 10 g up to 2000 cDS do not damage these thermostats nor change their setting

Write for complete technical and application data

G-V G-V controls inc. uvincston, new Jerser

Just published by KODAK

If you are working with infrared-actuated devices, you need this new Kodak folder, Kodak Ektron Detectors. It tells what you need to know about types and availabilities of these photosensitive resistors.
There are curves for the six different depositions ovailable in Ektron Detectors that give specific responsivity and detectivity (signal-to-noise ratio) against wave length. Also description of physical forms available and a quick summary of basic effects.

To get your free copy, write to Special Products Sales,
EASTMAN KODAK COMPANY Rochester 4, N.Y.

Kodak

CIRCLE 40 ON READER-SERVICE CARD

"The relay I need must not fail!"

Perhaps the relay is a key element in a missile guidance system . . . the firecontrol system of a supersonic fighter the rocket-launching mechanism for a nuclear sub . . . and, it must not fail!

That's where General Electric comes in. Though absolute reliability is impos sible, making "super-reliable" sealed relays is a way of life at General Elec tric But we don't make industry's mos rich But mos reliable sealed relays with good inten tions alone. It all stems from GE's ad-
vanced technology, manufacturing techvanced technology, manufactu
nique, and testing procedure.

For reliability-advanced technology
G-E technological leadership is best exemplified by the application of in ert arc welding in sealing Unimite and 4-pole micro-miniature relays. Solder and solder flux-long a major source of contamination-are completely eliminated . . . reliability is boosted!

For reliability-superior manufacturing Automatic wash-cycles . . . 3-unit console to automatically check 12 electrical characteristics in one setup 100% contact resistance checks by the scope method . . . these are but a few of the manufacturing techniques General Electric employs to minimize the human factor in relay assembly.

And, in the General Electric Micro White Room-perhaps the most exacting relay assembly facility ever conceived-relays are built in an atmosphere a hundred times more pure than that in which we live. What's more, operators are judged primarily on quality. So, the incentive to achieve perfection is paramount!

For reliability-exhaustive testing
Before a G-E relay qualifies for production, it must withstand a battery of
excrutiating tests. It's never tested to arbitrary specifications . . . but to the limits of its capability! Once the relay is accepted, these same exhaustive testing procedures-simulating actual operting and atmospheric conditions-are repeated . . . continually . . . to verify its high level of reliability.
For reliability-call General Electric
When you need a sealed relay that has to operate, you can't afford anything less than the best! Call your General Electric Apparatus Sales Engineer today. Specialty Control Department, Waynesboro, Virginia.

Progress /s Our Most Important Product
general (3) ElECTRIC

GENERAL ELECTRIC SEALED RELAYS-UNMATCHED FOR RELIABILITY

EDITORIAL

Missing From the Transistor Data Chart

Electronic Design has been justly proud of its annual Tran－ sistor Data Chart．Despite the increasing growth of the number of transistors－ 1,088 this year－we have tried to keep our charts to manageable size by eliminating less important data and im－ proving the organization．Missing from this year＇s chart，as in previous years，is reliability data．

Semiconductor materials inherently have an indefinite life－ if perfectly sealed off in an ideal environment of their own． Unfortunately，even 12 years after the appearance of the first transistor，engineers and scientists know little about surface phenomena．Transistor characteristics do change，largely as a result of surface changes，and what reliability has been achieved has been accomplished by empirical approaches．

The reliability that has been achieved is pretty vague．There is no standard definition of what constitutes a failure．Neither are there standards established for the conditions of tests．One company can get a million－dollar transistor－testing contract and boast about achieving a reliability failure rate that is not as good as that carried in other companies＇ads！

Some organizations are reluctant to specify transistors for de－ sign in their equipment until performance over its intended operating life has been proven（See ARINC specifying prac－ ties，p．54）．Premature use of transistors has often caused sari－ ous trouble．However，it is encouraging to note that proven high reliability transistors are better than the most reliable tubes yet made．

Much must be done to get greater reliability in more types． At the Solid State Conference earlier this year，several spokes－ men admitted that the industry had no standards for reliability but claimed that a reliable product must be produced before standards can be established．We agree that a reliable product is needed，but we disagree that a standard can＇t be set now． Reliability indexes would be a desirable addition to next year＇s Transistor Data Chart．

C覓
 \%
 Selecting Transistors and Diodes for Logic Applications

Charles Askansas
Chief Automation Eng.

Carl Uretsky
Senior Applications Eng.

General Transistor Corp. Jamaica, N. Y.

Logic arrangements such as direct-coupled transistor logic (DCTL), resistor-transistor logic (RTL), resistor capacitor transistor logic (RCTL), diode logic (DL) and current mode logic (CML) are discussed and pertinent factors affecting semiconductor require. ments are evaluated for each.

WITH MORE than 1100 different transistor types and over 1500 small signal diode types available to the design engineer, selection of one particular device for a specific logic function can be complicated. However, by careful evaluation of the semiconductor requirements involved for each logic mode, key parameters become apparent and final choice can rapidly be narrowed down.

Direct Coupled Transistor Logic (DCTL)

An important set of computer circuits to consider are those designed to use the transistor as both the logical gating and power amplifying element. Although it requires many transistors, it does not use interstage coupling elements between gates, or between gates and amplifiers. The same building block could be used as an AND gate, OR gate, inverter or flip-flop. A single low voltage supply (4 or 5 v) is the only one required for this logic mode.

With DCTL, circuit logic is performed by combinations of direct coupled transistors in series and in parallel. Since it is necessary for $V_{C r:}$ of an "on" transistor to be less than $V_{B E}$ of the coupled transistor, saturated switching is required. $V_{C l}$ and $V_{m:}$ measured with the transistor in saturation define the two logic levels, illustrating the need for $V_{C E}$ to be much lower than V_{m} to insure stability and circuit flexibility.

Fig. la shows a DCTL flip-flop. When T_{1} is "on", the $V_{1,}$ voltage of T_{1} is very low (0.1 v) and not sufficient to turn T_{2} "on" while $V_{\text {cre }}$ of T_{2}, is about 0.4 v holding T_{1} "on." When T_{1} is momentarily turned off by an external trigger, the $V_{\text {ce: }}$ of T_{1} will increase calusing T_{2} to turn "on" which will then lower the $V_{B E}$ applied to T_{1} and caluse T_{1} to turn "off."

In Fig. 2 is shown a parallel and a series logic gate. The importance of extremely low $V_{C^{\prime} E}$ when the transistors are "on" is particularly apparent in the series gate.

A sizable portion of the $\$ 200$ million spent on transistors last year can be attributed to overspecification, insist co-authors Charles Askansas (right) and Carl Uretsky (left). They are convinced that, by specs and designing around selection limits rather selection ymits characteristics design engineers could produce more efficient cir. cuitry at lower cost.

The output voltage V_{o} must be about 0.1 when all transistors in the series chain have bee turned "on." If this does not occur, the couple logic will not recognize the negative AND sit nal. Important consideration must be given tightly controlled saturated gain, charge stora and input voltage. Since these parameters mu remain within close limits during the entire op erating life of the transistor, a wide operatin temperature range is not possible.

The charge storage of the transistor, as will explained in greater detail later, is an indicatio of the time to turn a transistor off. Excessi charge storage in transistors used for DCT could easily cause a malfunction by not turni "off" with a small trigger voltage excursion the base.

With the realization of small voltage swing in the order of 0.5 v and the fact that only r sistive components are used, it becomes obvio that the transistor is the only speed limitin

Basic Guide

1. Specify what the circuit actually requires.
2. Select compatible limits for all necessary parameters.
3. Whenever possible, select a registered specification type.
4. Allow for parameter change with operating point.
5. Design around selection limits, not typical characteristics.
device in the system. For high speed operation, ransistors with high common emitter cut-off freyuencies or high frequency gain specifications hould be selected. This will help to insure fast ise and fall times when the transistors are switching. Maximum voltage ratings are of minimum mportance since the supply voltage is usually less than 6 v . The small collector to emitter voltgge keeps the power dissipation very low and helps to make this mode of operation well suited (o miniaturization. The load resistors as seen in Figs. 1 and 2 are carrying essentially a constant current at all times and are alternately being upplied by either the base or collector of a ransistor. It is for this reason, that DCTL is ometimes referred to as operating in the current node.

esistor Transistor Logic (RTL)

RTL circuits are straightforward saturated witching circuits designed for medium speed, nedium current logic operations; Fig. 3 shows a RTL NOR circuit.
All logic operations can be performed by this al attention should be given to voltage ratings, Ic heta, and charge storage Q_{s}.
When selecting a transistor, the first considerafion should be given to the maximum voltage besor is in the "off" condition. In many instances his voltage can exceed the rated $V_{\text {CEE }}$ of the ransistor depending on the value of R_{B} and V_{B} n lig. 3. As the reverse bias is increased, the ${ }^{\prime}$ i breakdown will increase. Always specify the ${ }_{C E}$ rating with the base reverse biased by V_{11} ad \boldsymbol{R}_{B}.
The required dc gain $\left(h_{F E}\right)$ should be specified the operating current of the circuit. If a mini(i:) saturated gain is required at a specific col-

Fig. 1. Direct-coupled transistor logic (DCTL) flip-flop circuit. When T_{1} is on, the $V_{C E}$ voltage of T_{1} is too low to turn on T_{2}. When T_{1} is triggered off, T_{1} 's $V_{C E}$ increases, permitting T_{2} to conduct; the $V_{B E}$ applied to T_{1} decreases causing T_{1} to furn off.

Fig. 2. A parallel DCTL logic gate (a) and a series gate (b). Only small voltage swings, in the order of 0.5 v , are handled and the switching speed is limited only by the transistor selected
lector current, the transistor should be selected to just meet that condition.
Transistors with a very high gain will insure fast turn-on time ($t_{d}+t_{r}$), but must sacrifice turn-off time $\left(t_{s}+t_{f}\right)$. This is due to the fact that operating the transistor in saturation produces charge storage effects which are proportional to the degree of saturation. Thus, as the charge storage $\left(Q_{8}\right)$ and the storage time of the transistor increases, it will take a longer period of time for the stored charge to leave the base region of the transistor and pennit it to turn off. Further, it should be noted that $h_{F E}$ is a function of I_{r}; although a transistor might meet a minimum $h_{F E}$ requirement at say 5 ma , there is no guarantee that $h_{\text {Fi: }}$ would be acceptable at $I_{c}=50 \mathrm{ma}$.
RTL circuits can also be operated in an unsaturated switching mode. This would eliminate the charge storage effects. Unfortunately though, it will require greater power dissipation in the transistor and more components. The logic levels will also be closer together than they would be in the saturated mode.

Resistor Capacitor Transistor Logic (RCTL)

Resistor-capacitor logic (RCTL) is basically the same as the RTL with the addition of speed up capacitors to minimize the storage time by supplying a charge equal to the stored base charge. The additional components, and a carefully selected charge storage $\left(Q_{s}\right)$ specification will optimize the RTL circuits as illustrated in Fig. 4, where the value of the speed up capacitor is chosen so that

Fig. 3. Resistor-transistor logic (RTL) circuits are popular for medium speed, medium current applications since relatively cheap transistors can be used.

Fig. 4. By adding a capacitor to compensate for stored charge effects in the RTL arrangement, an RCTL circuit is created for faster speed applications. An RCTL NOR circuit is shown.
it will effectively compensate for the stored charge.

The value of C may be calculated by

$$
\frac{Q_{s}}{V_{i n}}=C
$$

where Q_{s} is the maximum rated value of charge storage and $V_{i n}$ is the input voltage swing.
As expected, this transistor will be slightly more expensive since it is a well specified, highly efficient switching transistor. The maximum pulse repetition rate for most practical circuits will be limited by the RC time constant in the base.

Diode Logic (DL)

Diode logic has the advantages of high speed, low cost, and simplified circuitry. Diodes perform the logic, and transistors are used as amplifiers and inverters since there is no inversion in diode logic. A diode AND circuit is shown in Fig. 5a.

The output voltage of the AND circuit ap-

(a)

Fig. 5. A diode AND circuit for positive inputs (a). Diode logic (DL) permits high speed at low cost; transistors are used as amplifiers and inverters following the logic operation. In (b) is shown a diode OR circuit for positive inputs.
proximately equals the most negative input voltage. This is true regardless of the number of inputs. An OR circuit for positive inputs, where the output voltage approximately equals the most positive input voltage is shown in Fig. 5b.

The back resistance of diodes in AND/OR circuits acts as a load on the driving circuits. When this effective back resistance is too low, the driving source (another diode circuit or emitter follower) cannot supply enough current to maintain proper down levels, or maintain required rise and fall times. Diode AND/OR circuits with six or seven inputs are used and these circuits present the problem of lowered effective back resistance.

If cascaded inputs are used, back resistance can be greatly increased. Figs. 6a and 6 b show how cascaded diode logic will improve the load impedance as seen by the driving source (-20 v). (The back resistance of each diode is approximately 400 K .)
The rise and fall times of diode logic circuits are primarily a function of the circuit capacitance including the diode capacitance and the limiting resistor. Usually, for circuit design, the rise or fall time and the stray capacitance are known, and by transient analysis the value of limiting resistance can be calculated. For an AND circuit the fall time usually follows the input, while for

Table 1. A Comparison of Five Semiconductor Logic Arrangements with Comments on the Criteria for Device Selection.

Logic Mode	Features	Limitafions	Semiconductor Parameters to be Specified
DCTL	1) Simple Circuitry. 2) Saturating logic. 3) Low power dissipation 4) Small supply voltages. 5) High speed. 6) Transistors that have low breakdown voltages can be used.	1) Storage effect limits turn off time. 2) Small voltage swings. 3) Expensive, requires a large number of transistors.	1) Strict control of $\begin{aligned} & V_{C E}, \quad V_{B E} \\ & V_{C E} \& V_{B E} \end{aligned}$ 2) Low charge storage. 3) High common emitter frequency characteristics. 4) Gain at operating condi tions.
RTL	1) Economical use of transistors. 2) Large voltage swings can be handled. All logic functions can be performed.	i) Medium speed. 2) Serious charge storage limiting tort speed. 3) Higher power dissipation than DCTL.	1) Collector-emitter avalanche voltage. 2) Gain at operating collector current. 3) Charge Storage. 4) $V_{\text {Cbo }}$ and $V_{\text {PI }}$
RCTL	Same as RTL except higher speed possible.	Additional components required (speed up capacitor).	Same as RTL except charge storage requirements are more critical.
DL (Diode Logic)	1) Very economical. 2) Relatively simple design. 3) High speed easily obtained. 4) Low power dissipation. 5) Large number of inputs possible.	1) Logic does not perform inversions.	1) Peak inverse voltage. 2) Maximum reverse dc operating voltages. 3) Forward voltage and current characteristics. 4) Reverse recovery time. 5) Reverse impedance.
CML (Current Mode Logic)	1) Uses full potential speed of the transistor. 2) No charge storage problems. 3) Relatively unaffected by noise. 4) Increased base drive for faster $t_{\text {on }}$, without sacrificing topr.	1) Higher dissipation than other modes. 2) Small voltage swings. 3) Requires additional transistors. 4) Requires constant current supply.	1) $f_{a b}$ or gain-bandwidth product. 2) Unsaturated low current gain.

an OR circuit the rise time usually follows the input.

Specification of the diodes should include pea inverse voltage, maximum reverse dc opera ain voltage, forward voltage and current and rever recovery time. From the reverse dc condition th value of back resistance can be calculated fro which to select a minimum design value.
The maximum reverse voltage should be se lected such that the diode will not break dow under the worst bias conditions existing in th circuit. Recovery time should be specified relatir to the clock rate of the computer to insure th the diodes will recover between operations. A ways specify recovery time simulating actual cii cuit conditions as closely as possible.
Selection of transistors for inversion and arnpl fication would be the same as for RTL circuit except that switching times should be selected be compatible with the switching speed of th diodes. The use of transistors unsuitable for DCT circuits, low impedances and low voltage swing the lack of serious noise problems, as well as th small number of transistors required, make thi mode of operation very desirable.

Current Mode Logic (CML)

Another important type of operation is curre mode logic which makes use of the full potentia speed of switching transistors. Biasing the circuil so that the transistor will not go into saturatio will eliminate the problem of charge storage discussed earlier. Since it is known that the cuta frequency and the collector capacitance vary wit operating point, operating conditions can be lected to give a maximum cutoff frequency and at the same time, a minimum output capacitana Collector capacitance is proportional to the squar root of $1 / V_{C B}$ and frequency cut-off is a functio of I_{E} and $V_{C B}$. From this guide, it can be show that an operating point of about $5 \mathrm{v} V_{C B}$ and ma for I_{E} will satisfy both conditions and gin good frequency response.

Drift transistors are ideally suited for curre mode switching. They are biased by constant cul rent supplies to keep them out of saturatio Voltage excursions are small, but the circuitry relatively unaffected by noise.
Fig. 7 shows a typical current mode NOR cuit. The transient response of the transistor very nearly the same as for common-base oper tion. Because of the current source in the emitt the entire common-base frequency response of transistor can be realized.

When specifying drift transistors for comput circuits, certain parameters should be particular selected. The collector emitter breakdown voltas should be specified so as not to be exceeded the voltage of the constant current supply. cause of the high frequency cut-off of drift tr

(b)

Fig. 6. By cascading diode logic inputs (b), the driving source impedance increases to 250 k (assuming each diode has a reverse resistance of 400 k) compared to 80 k when all inputs are in parallel (a).

Fig. 7. Current mode logic (CML) NOR circuit with inverter. Biasing is such that the transistor does not saturate thereby eliminating the charge storage problem which limits speed.
sistors, a gain bandwidth measurement is substituted for the common base cut-off frequency. Gain bandwidth is measured in the common emitter configuration and defined as the gain frequency product when the gain fall off with frequency is 6 db per octave, and is approximately 0.7 of the frequency cut-off. This relationship differs for each type of transistor. In the mesa transistor, GBW is usually considerably larger than $f \alpha_{b}$, while for some types of drift transistors, the GBW can be only half of the $f a_{b}$. In other words, a transistor with GBW of 30 mc could have a frequency cut-off of $50-60 \mathrm{mc}$.
Other important parameters to specify are dc gain ($h_{F E}$) in an unsaturated condition, usually $1_{n}=500 \mu \mathrm{a}$, and $\mathrm{V}_{O B}=1 \mathrm{v}$. The 2 N 602 and 2.N603 are specially designed drift transistors for very high speed and reliable current mode logic ciicuits. ■ ■

Bibliography

Design of Transistorized Circuits for Digital Com-piters-A. Pressman; Rider 1959.
Pulse and Digital Circuits-J. Millman-H. Taub; McG aw-Hill 1956.
Transistor Circuit Engineering-W. F. Chow et al; John II ley \& Sons 1957.

For transistorized circuits...

TWO NEW MALLORY TUBULAR ELECTROLYTICS

COMPACT
LOW COST DEPENDABLE

Here are two new Mallory tubular electrolytic capacitors you can use in your low voltage transistorized circuit designs. Their small size, high capacity per unit size, excellent performance characteristics and long life fit the exacting demands of these space-squeezed applications.
Both the Mallory Type TCW aluminum tubular and the Type KETA plastic case tubular feature rugged, leak-proof construction. All-
welded terminals prevent intermittent open circuits and noise which often plague low voltage circuits when capacitor connections are crimped or riveted.

Both the TCW and the KETA exhibit exceptionally low leakage current characteristics-an indication of their reliability, long life and high temperature capability.

Type	Capacity Range	WVDC	Temperature Range	Case Diameter Range	Case Length Range
TCW	2.750 mfd .	150.3v.	-40 to $+85^{\circ} \mathrm{C}$	3/8"-5/8"	$5 / 8^{\prime \prime} \cdot 1^{13} / 16^{\prime \prime}$
KETA	1.1400 mfd .	50.3 v .	-30 to $+65^{\circ} \mathrm{C}$	$3 / 16^{\prime \prime}+5 / 8^{\prime \prime}$	$5 / 8^{\prime \prime} \cdot 2^{\prime \prime}$

Type KETA available in dual ratings, in $1 / 2^{\prime \prime}$ and $5 / 8^{\prime \prime}$ diameter cases; and in non-polarized ratings of approximately one-half the above capacitance values.

Write today for complete data on the Types TCW and KETA . . . and for a consultation with a Mallory capacitor specialist on your specific circuit requirements.
Mallory Capacitor Co. • Indianapolis 6, Indiana
a division of

CIRCLE 45 ON READER-SERVICE CARD

- CIRCLE 44 ON READER-SERVICE CARD

Transistors Most Frequently Used In Signal Corps R\&D Equipment

Irving J. Ross
U. S. Army Signal Research and Development Laboratory Fort Monmouth, N. J.

THE MOST frequently used types of transistors used in Signal Corps research and development equipment are shown in Tables I and II. The tables show a breakdown by categories of transistor application and by quantities of transistors used. The information for this report was based primarily on submissions of transistor complement reports by contractors of Signal Corps research and development equipment. It must be realized that in the design of research and devel-
opment equipment, the transistor complements are not frozen and may change with subsequent circuit design modifications. The information given is, therefore, the status as of April 30, 1960.
The total number of development equipment models represented in this compilation is roughly 4,900 and encompasses the full range of military equipment being developed for the Signal Corps. Included are such categories as data processing (computers), radar, communications, countermeas-
ures, and instrumentation (test equipment).
The tables include only those transistor types for which military specifications have been prepared. This includes all silicon types shown in Table II. It should be noted that the majority of transistor types are germanium (24 types) as against silicon (17). It is expected that the trend for silicon transistors will be increased as high junction temperatures are required for compact, high performance military equipment. ■

Table 1. Most frequently used germanium transistors covered by military specifications.

Category	$\begin{array}{r} 500 \\ -1,000 \\ \hline \end{array}$	$\begin{array}{r} 1,000 \\ -2,000 \end{array}$	$\begin{array}{r} 2,000 \\ -5,000 \\ \hline \end{array}$	$\begin{array}{r} 5,000 \\ -10,000 \\ \hline \end{array}$	>10,000
NPN Low Power Low Freq.	*2N119	$\begin{aligned} & \text { 2N335 } \\ & \text { 2N1247 } \end{aligned}$	$\begin{aligned} & \text { 2N332 } \\ & \text { 2N333 } \end{aligned}$		
PNP Low Power Low Freq.		2N1026			
NPN Med Freq 3-30 Mc		2N495	2N338		
PNP Switch Low Speed $<5 \mu \mathrm{sec}$	2N328A				
NPN Med Speed Switch $1-5 \mu \mathrm{sec}$	2N545				-
NPN High Speed $>1 \mu \mathrm{sec}$				2N706	
NPN Med Pwr 300 mw-3w	2N342	2N341	2N697		2N718
NPN 3w-30w	2N497				

Table 2. Most frequently used silicon transistors covered by military specificatons.

Category	$\begin{array}{r} 500 \\ -1,000 \\ \hline \end{array}$	$\begin{array}{r} 1,000 \\ -2,000 \\ \hline \end{array}$	$\begin{array}{r} 2,000 \\ -5,000 \\ \hline \end{array}$	$\begin{array}{r} 5,000 \\ 10,000 \end{array}$	$\begin{array}{\|r\|} \hline 10,000 \\ -20,000 \\ \hline \end{array}$	$>20,000$
PNP Low Power Low Freq.	$\begin{aligned} & \text { 2N467 } \\ & \text { 2N526 } \end{aligned}$		$\begin{array}{r} * 2 N 43 A \\ \text { 2N465 } \end{array}$		2N466	
PNP Med Freq. $3-30 \mathrm{Mc}$		$\begin{aligned} & 2 \mathrm{~N} 274 \\ & \text { 2N416 } \end{aligned}$				
PNP High Freq. 30 Mc	2N502A	2N499		2N384		
PNP Med Speed Switch $1-5 \mu \mathrm{sec}$				2N404	$\begin{array}{r} \text { *2N123 } \\ \text { *2N240 } \\ \text { 2N248 } \end{array}$	
NPN Med Speed Switch $1-5 \mu \mathrm{sec}$	2N1000			2N388	2N167	
PNP High Speed Switch $>1 \mu \mathrm{sec}$				2N501A		$\begin{aligned} & \text { 2N393 } \\ & \text { 2N1411 } \end{aligned}$
PNP High Powe $>30 \mathrm{w}$	2N575	2N297A	2N174			

*These types are not recommended for future Signal Corps R\&D equipment.

CIRCIE 46 ON READER-SERVICE CARD E.ECTRONIC DESIGN • July 6, 1960

no other

transistor has such

 an ideal combination of parametersas the Hughes 2N1196 or 2 N1197 transistor amplifier

No other transistor gives you such ideal parameters; no other gives you such reliability. These Hughes high-frequency devices meet or exceed every possible amplifying requirement of a PNP silicon transistor. They have high operating voltage, high temperature rating, high alpha cutof frequency, high gain at high frequencies, low collector shunt capacitance good power dissipation, and low signal distortion. In a 5000 -hour storage life test at $200^{\circ} \mathrm{C}$, the units re-proved their ruggedness and reliability by showing no significant changes in the beta or leakage current.
The Hughes 2N1196 \& 2N1197 transistors were originally developed in conjunction with the U.S. Army Signal Corps on an IPS contract for military devices, and meet the exacting requirements of MIL.T.19500A
Now they're available for you. If you need high-frequency, double-diffused, mesa transistors for i.f. amplifiers, h.f. amplifiers, oscillators, for
communication telemetering, or similar electronic equipment, order from Hughes today. Just call or write your nearest Hughes Semiconductor sales office or authorized distributor-or write Hughes Semiconductor Division, Marketing Department, 500 Superior Avenue, Newport Beach, California.

Creating a new world with ELECTRONICS

HUGHES

smiconouctor oivision

For designs up to 50 V

Tung-Sol 2N381, 2N382, 2N383 Transistors

Service-proved reliability for:

- Small signal and audio amplifiers
- Class B push-pull output stages
- Medium speed switching circuits

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right)$

fest and compations	$\begin{gathered} \text { sim. } \\ \hline 00 \mathrm{~L} \end{gathered}$	2 M 381			2N302			2N383			umits
		MIIN	TV	max	MIW	TVP	max	MIM	TVP	max	
Collector Cut-off Current $V_{C B}=-25 v$	Icso		6	10		6	10		6	10	${ }^{\mu} \mathrm{A}$
Eminter Cut-ofs Current $V_{E B}=-20 \mathrm{~V}$	IEso		5	10		5	10		5	10	$\mu \mathrm{A}$
$\begin{aligned} & \text { Fonward Current Ratio } \\ & \text { Ic }=20 \mathrm{~mA}, \mathrm{VCE}=-1.0 \mathrm{~V} \end{aligned}$	A_{fE}	35		65	60		90	75		120	
$\begin{aligned} & \text { Forwart Current Retio } \\ & l_{c}=100 \mathrm{~mA}, V_{C E}=-1.0 \mathrm{~V} \end{aligned}$	Mre	30	45		50			65			
Forwart Curront Ratio $\mathrm{VC}=10 \mathrm{~mA}, \mathrm{VCE}=-5.0 \mathrm{v}, \mathrm{I}=1 \mathrm{ke}$	mo	35	60	15	70	50	135	50	115	155	
Froquancy Cut-efl $l_{C=1} 1 \mathrm{~mA}_{\mathrm{V}} V_{c s}=-6.0 \mathrm{~V}$	lab		3			4			5		Mc

Colluctor to Base Voltage	$\mathrm{BV}_{\text {c80 }}$	-50V
Emitter to Base Voltage	BVEbo	-20V
Collector to Emiller Voltage	BVCER $($ Rae $=10 \mathrm{~K})-25 \mathrm{~V}$	
Collector Dissipation (Free Air)	Pc	200 mW
Collector Dissipation (infinite Heat Sink)	Pc	500 mW
Collector Current	Ic	400 mA
Junction Temperature	T_{i}	-65 to $+100^{\circ} \mathrm{C}$

The striking superiority of these service-proved germanium transistors is evidenced by their long and successful use in any number of exacting applications, where they have established outstanding performance records under the toughest environmental extremes. When long-life reliability and electrical stability are demanded, these versatile units are ideally suited.
ane

Packaged in the standard JEDEC TO-5 outline with the base lead connected to the case, these units can be supplied in any quantity immediately from stock.

Like all Tung-Sol components, these transistors are the products of the highest manufacturing standards and severe quality assurance practises which have made Tung-Sol the name synonymous with the finest componentry.
Write for full technical details. Tung-Sol Electric Inc., Newark 4, N. J.

Technical assistance is available through the following sales cffices: Atlanta, Ga: Columbus, Ohio: Culver City, Calif:; Dallas, Texas; Denver, Colo.; Detroit, Nich;; Irvington, N. J.; Melrose Park, III.; Newark, N. J.; Philadelphia, Pa.; Seattle, Wash. Canada: Toronto, Ontario.

CIRCLE 48 ON READER-SERVICE CARD

ToO FACILITATE logistic support of transistorized military equipment a limited number of transistor types have been approved, by the Department of Defense, for engineers to consider during design and production. In MIL-STD-701A, see p 55, a list of preferred and guid. ance type transistors are given under joint approval of the Departments of the Army, Navy, and Air Force, In MIL-STD-701A, preferred types are "the best available, those which have been in production, comply to particular military specif. cations and are listed on a Qualified Products List." Guidance types are "the best available, comply to a particular specification completed or in preparation, and possess a type designation acceptable to the military departments."
In addition, each service has its own particular list of approved types. A complete tabulation of all approved types that have been issued and their current status are presented on the facing page. .

Military-Approved Transistor Types

Detail specification	Date Of Issue	Transistor Type	Remarks	Detail Specification	Dafe Of Issue	Transistor Type	Remarks
*4-T-19500/1	14 June 1957	JAN-2N220		MIL-T-19500/50A(SigC)	3 February 1959	2N465	
Ll-T-19500/2	12 December 1957	JAN-2N118		MIL-T-19500/51A(SigC)	3 February 1959	2N466	
(1L-T-19500/3(NAVY)	- -	2N230	Dropped	MIL-T-19500/52B(SigC)	3 February 1959	2N467	
ML-T-19500/4A	16 January 1958	JAN-2N331		MIL-T-19500/53(SigC)	- . -	2N325	
IL-T-19500/5(USAF)	- .	2N200	Dropped				MIL-T-19500/61
IL-T-19500/6(USAF)	10 April 1958	2N44A	Amendment 1				(SigC)
IL-T-19500/7(NAVY)	- -	2N43A	$\begin{aligned} & \text { Dropped-See } \\ & \text { MIL-T-19500/18(USAF) } \end{aligned}$	MIL-T-19500/54A(SigC) MIL-T-19500/55(SigC)	13 August 1959 21 July 1958	$\begin{aligned} & \text { 2N495 } \\ & \text { 2N300 } \end{aligned}$	
M-T-19500/8(SigC)	21 July 1958	2N129		MIL-T-19500/56A(SigC)	3 February 1959	2N416	
IL-T-19500/9A	12 June 1959	JAN-2N128		MIL-T-19500/57A(SigC)	3 February 1959	2N417	
IL-T-19500/10(USAF)	- -	2N78	Dropped	MIL-T-19500/58A(SigC)	17 November 1958	2N665	
(LTT-19500/11 (USAF)	3 April 1958	2 N 167	Amendment 1	MIL-T-19500/59(Pro JAN)	- . .	JAN-2N333	Work temporarily
IL-T-19500/12(NAVY)	- . -	2 N 17	Dropped-See MIL-T-19500/35(Navy)	MIL-T-19500/60B(NAVY)	29 June 1959	JAN-2N335 2N526	suspended
IL-T-19500/13A	8 January 1958	JAN-2N174		MIL-T-19500/61(SigC)	23 October 1958	2N325	
(L-T-19500/14(USAF)	8 January	2N245	Dropped	MIL-T-19500/62(SigC)	5 December 1958	2N501A	
IL-T-19500/15(USAF)	- - .	2N246	Dropped	MIL-T-19500/63A(NAVY)	26 June 1959	2N358A	
IL-T-19500/16A	8 January 1958	JAN-2N342		MIL-S-19500/64A(NAVY)	14 September 1959	2N396A	
		JAN-2N343		MIL-T-19500/65(NAVY)	20 March 1959	2N388	
L-T-19500/17(USAF)	- . -	2N343	Dropped-See	MIL-T-19500/66A(NAVY)	26 June 1959	2 N 422	
			MIL-T-19500/16A	MIL-T-19500/67(SigC)	22 January 1959	2 N 1011	
1-T-19500/18(USAF)	10 November 1958	2N43A	Amendment 2	MIL-T-19500/68(SigC)	10 February 1959	2 N 1120	
L-T-19500/19	- .	\cdots	Never Used	MIL-T-19500/69A(NAVY)	26 June 1959	2N337	
1.T-19500/20(USAF)	25 March 1959	2N404				2N338	
L-T-19500/21 (USAF)	10 April 1958	2 N 431	Obsolete	MIL-T-19500/70(NAVY)	14 May 1959	2N463	
[1.T-19500/22 (USAF)	10 April 1958	2N432	Obsolete	MIL-T-19500/71 A(NAVY)	29 June 1959	2N1195	
1-T-19500/23(USAF)	10 April 1958	2N433	Obsolete	MIL-T-19500/72(SigC)	5 March 1959	2N499	
(-T-19500/24(NAVY)	20 September 1957	2N158		MIL-T-19500/73(NAVY)	26 June 1959	2N560	
(-T-19500/25(NAVY)	20 November 1957	2N240		MIL-T-19500/74(NAVY)	30 June 1959	2N497	
1-T-19500/26(SigC)	3 October 1957	2N274				2N498	
-T-19500/27(SigC)	14 October 1957	2N384				2N656	
1-T-19500/28(USAF)	-	2N333	$\begin{gathered} \text { Dropped-See } \\ \text { MIL-T-19500/37A(NAVY) } \end{gathered}$	MIL-T-19500/75(USAF)	- - -	$\begin{aligned} & \text { 2N657 } \\ & \text { 2N489 } \end{aligned}$	Undated
T-19500/29(USAF)	- - -	2N144	Dropped			2N490	
1.T-19500/30(USAF)	4 February 1959	2N123				2N491	
I-T-19500/31 (USAF)	Febuar 195	2N339	Undated			2N492	
		2N340				2N493	
		2N341				2 N 494	
-T-19500/32	$\cdots \cdot$	-	Never Used	MIL-T-19500/76(NAVY)	4 February 1960	2N1100	Undated
-T-19500/33	. . .	- .	Never Used	MIL-T-19500/77A(SigC)	30 October 1959	2N393	
-T-19500/34(USAF)	- - .	2N243	Dropped	MIL-T-19500/78A(SigC)	7 December 1959	2N1025	
		2N244				2 N 1026	
T-19500/35(NAVY)	15 March 1958	2 N 117				2N1026A	
		2N118		MIL-T-19500/79(SigC)	22 June 1959	2 Nl 1000	
		2N119		MIL-T-19500/80(SigC)	22 June 1959	3N35	
-T-19500/36A(SigC)	17 November 1958	2N297A		MIL-T-19500/81(SigC)	17 Joly 1959	2N1001	
-T-19500/37A(NAVY)	18 June 1959	2N332		MIL-T-19500/82	10 August 1959	2N624	Never Used
		2N333		MIL-T-19500/83(SigC)	10 August 1959	2N1002	
		2N334		MIL-T-19500/84(USN)		2N545	
		2N335		MIL-T-19500/85	14 Oct 1959	2N496	
T-19500/38(NAVY)	28 May 1958	2N539		MIL-T-19500/89(USN)		2N1039, 1041	
T. 19500/39(Pro JAN)	. . .	2N299	Dropped	MIL-T-19500/99A	1 April 1960	2N696,697	
=		JAN-2N325 JAN-2N326		MIL-T-19500/100	30 Nov 1959	2N537	
T. 19500/41 A(SigC)	26 January 1959	2N425		MIL-T-19500/101	30 Nov 1959	2N1201	
T.19500/42A(SigC)	26 January 1959	2N426		MIL-T-19500/102(USAF)		2N1016B	
T. 19500/43A(SigC)	26 January 1959	2N427		MIL-T-19500/103	18 Dec 1959	2N1082	
T. $19500 / 44 \mathrm{~A}(\mathrm{SigC})$	26 June 1959	2N428		MIL-T-19500/105	28 Dec 1959	2N1200	
$\begin{aligned} & \text { T-19500/45(USAF) } \\ & \boldsymbol{T} \cdot 19500 / 46(\mathrm{SigC}) \end{aligned}$	$\begin{aligned} & 7 \text { July } 1958 \\ & 22 \text { May } 1958 \end{aligned}$	$\begin{aligned} & \text { 2N461 } \\ & \text { 2N574 } \end{aligned}$		MIL-T-19500/110	1 April 1960	2N328A	
T-19500/47(SigC)	22 May 1958	2N575		MIL-T-19500/111	1 April 1960	2N329A	
T-19500/48(USAF)	- -	2N247	Dropped	MIL-T-19500/112	4 April 1960	2N502A	
T. $19500 / 49 \mathrm{~B}(\mathrm{SigC})$	3 February 1959	2N464		MIL-T-19500/113	4 April 1960	2NII58A	

Airline Industry Completes Transistor Preferred List

A
N OUTSTANDING example of a concentrated and well organized effort to prepare a transistor "Preferred List" is that of the Airlines Electronic Engineering Committee (AEEC), a body within Aeronautical Radio, Inc. (ARINC).
Activities of ARINC, a corporation in which U.S. scheduled airlines are major stockholders, include the operation of an extensive system of domestic and overseas land stations, allocation and
assignment of operating frequencies, coordination of communication and electronic systems and the formulation of standards such as the ARINC Preferred Tube List and Preferred Transistor List.

Glamour vs Reliability

In 1947, an ARINC committee and the Military jointly prepared a listing of 10 tube types as a basis for the ARINC Preferred Tube List and the

Table 1. Arinc Transistor Preferred List					
		GERMANIUM PNP NPN		PNP ${ }^{\text {SILICON }}$ NPN	
Low Power	Audio < 300 mw	$\begin{aligned} & \text { 2N525 } \\ & \text { 2N526 } \\ & \text { 2N466 } \\ & \text { CV 7008* } \\ & \text { CV 7006* } \\ & \hline \end{aligned}$	2N388	$\begin{aligned} & \text { 2N327A } \\ & \text { 2N328A } \\ & \text { CV 7044* } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N333 } \\ & \text { 2N335 } \\ & \text { 2N336 } \\ & \hline \end{aligned}$
	Med. Freq. 3 to 30 mc	$\begin{aligned} & \text { 2N1224 } \\ & \text { CV } 7003^{*} \\ & \hline \end{aligned}$	2N388	2N1132	$\begin{aligned} & \text { 2N697 } \\ & \text { 2N337 } \\ & \text { 2N338 } \\ & \hline \end{aligned}$
	High Freq. 30 mc to 100 mc	$\begin{aligned} & 2 \mathrm{~N} 1225 \\ & (\mathrm{OC} 171)^{* * *} \end{aligned}$			3N35
	Higher Freq. 100 mc up	$\begin{aligned} & \text { 2N1195 } \\ & \text { 2N700 } \end{aligned}$			2N716
Switching	Low Speed >5 usec.	$\begin{aligned} & \text { 2N398 } \\ & \text { CV 7007* } \end{aligned}$		$\begin{aligned} & \text { 2N327A } \\ & \text { 2N328A } \end{aligned}$	
	Med. Speed 1 to 5 usec.	$\begin{aligned} & \text { 2N404 } \\ & \text { 2N396A } \end{aligned}$	$\begin{aligned} & \text { 2N167 } \\ & \text { 2N388 } \end{aligned}$	2N491	$\begin{aligned} & \text { 2N337 } \\ & \text { 2N338 } \\ & \hline \end{aligned}$
	Fast <1 usec.	CV 7087*		2N1132	2N697
Power	300 mw to 3 w	$\begin{aligned} & \text { 2N1039 } \\ & \text { 2N1041 } \\ & \hline \end{aligned}$			$\begin{aligned} & \text { 2N697 } \\ & \text { 2N341 } \\ & \text { 2N343 } \\ & \hline \end{aligned}$
	3 to 30 w	2N158A CV 7083*	2N326		$\begin{aligned} & \text { 2N498 } \\ & \text { 2N657 } \\ & \text { 2N1486 } \end{aligned}$
	$>30 \mathrm{w}$	$\begin{aligned} & \text { 2N174 } \\ & \text { 2N1011 } \\ & \text { 2N677C } \\ & \text { 2N1412 } \\ & \text { 2N1120 } \end{aligned}$			1016B

* Non-U. S. proposed types.
** U. S. equipment manufacturers indicate no immedlate requirements for this application; however, U. S. types will be added when the need arises.
***Non-U. S. proposed type which has not yet been assigned a "CV" number.

Military Standard Preferred List of Electro Tubes. In later years, 15 additional types added to the ARINC list while the military a wider scope of applications) included 65 types.

Tube and equipment manufacturers criticiz the stubborn attitude of the ARINC body b cause of the failure to include latest high g_{m}, hi power or "super-performance" tubes. Howe stacks of carefully collected data on long-life eration and in-service reliability have helped convince many former opponents of ARINC th it is perhaps wiser to "stick with old standb until the "new, glittering" devices have prov their performance.

Based on the wide acceptance and success the ARINC Preferred Tube List, the ARI Transistor Preferred List project was started the fall of 1959.

39 U.S. Types on ARINC Transistor List

A total of 21 germanium and 18 silicon types (plus eight British types awaiting Europ Airline Electronics Committee approval) were cluded in the ARINC Preferred Transistor completed April 1960, shown in Table I. Of th types, 64 per cent appear on the MIL-STD-7 listing, shown in Table II; military representatii at the ARINC meetings indicated that the ni STD-701 revision will include several ARI types presently off the MIL-STD chart. At time, at least 85 per cent of the ARINC t will be MIL-STD approved. The eight Bri types, indicated as non-U.S. devices on Tabl are included in recognition of the practical that non-U.S. equipment manufacturers need cal" availability sources for production and 10 tics purposes.

How Transistor Types Were Selected

Criteria for inclusion of a particular transia type include:
(1) The type must meet the requirements maximum number of future applications.
(2) The type should be reliable and of sound l design with sufficient production experience prove its process and performance.
(3) The type inust be available, not a deve
ent device. Multiple source supply is desirable ith essentially continuous quantity production su ed.
A MIL spec should exist which can be met in event the airlines should wish to buy topuality, high-yield devices.
) The cost should be commensurate with permance and reliability.
Equipment manufacturers who wish to use a in- IRINC type are advised to contact ARINC, 00 K St. N.W., Washington 6, D.C. The reans for not approving the type will be outlined recommendations for future inclusion will be rwarded to the Airlines Electronic Engineering ominittee.

ansistor Manufacturer, User and Military
 lased at Outcome

Although some transistor manufacturers were estfallen during early standardization meetings hen "pet" types were not endorsed, the final RINC transistor draft appeared favorable to all. addition, the air-borne equipment manufacrers active during the list preparation indicated at their needs could be well covered by the deces approved. Finally, military representatives tive in their individual service standardization forts were pleased with the close compatibility hieved.

fline Customers Can Wait, Military Cannot

Equipment manufacturers are not forced to hform with the ARINC Preferred Transistor st. However, based on the emphasis which the line customers have previously (and still) place the ARINC tube types, it might be considered ther unwise for an airborne equipment maker include unlisted transistor types. Sufficient tification for the need of a non-preferred type well as extensive reliability and performance ta would be needed before acceptance would approved, in many cases.
While the practice of incorporating non-MIL e components is certainly not uncommon in ny tightly specified military contracts, waivers often granted to the manufacturer to permit "to get the job out on time." No waivers, no ivery.
The military urgently needs small, lightweight ice's requiring a minimum of battery powerrefore, they are often forced to grant waivers. a airline industry, representing an estimated 50 lion dollar annual electronic equipment cusher is not in dire need of transistorized equipIt. Planes are equipped with reliable, tube aplemented equipment which have reached a ht where preventive maintenance, parts invena a d repair are well under control. for space economy, cooler operation and hopes

			$\begin{aligned} & \text { GERM/ } \\ & \text { PNP } \end{aligned}$	ANIUM PNP	PNP ${ }^{\text {S }}$	ICON NPN
Low Power	Audio $<300 \mathrm{mw}$.	Preferred	$\begin{aligned} & \text { 2N220 } \\ & \text { 2N331 } \\ & \text { 2N526 } \end{aligned}$			2N335
		Guidance	$\begin{aligned} & \text { 2N43A } \\ & \text { 2N465 } \\ & \text { 2N535B } \end{aligned}$		2N1026	2N333
	Med. Freq. 3 to 30 mc .	Preferred				
		Guidance			2N495	2N338
		Preferred				
	High Freq. $>30 \mathrm{mc}$.	Guidance	$\begin{aligned} & \text { 2N537 } \\ & \text { 2N384 } \\ & \text { 2N700 } \end{aligned}$			3N35
Switching	Low speed >5 usec total time	Preferred				
		Guidance	2N398		$\begin{aligned} & \text { 2N328A } \\ & \text { 2N329A } \end{aligned}$	
	Medium speed 1 tol5 $\mu \mathrm{sec}$.	Preferred	$\begin{aligned} & \text { 2N404 } \\ & \text { 2N428 } \\ & \hline \end{aligned}$			
		Guidance	$\begin{aligned} & \text { 2N599 } \\ & \text { 2N396A } \end{aligned}$	$\begin{aligned} & \text { 2N1310 } \\ & \text { 2N358A } \\ & \text { 2N388 } \end{aligned}$	$\begin{aligned} & \text { 2N491 } \\ & \text { 2N496 } \end{aligned}$	2N337
	Fast Speed <1 usec.	Preferred	2N393		2N1132	2N697
		Guidance	$\begin{aligned} & \text { 2N695 } \\ & \text { 2N1195 } \\ & \text { 2N501A } \\ & \hline \end{aligned}$			2N560
	Bilateral Switch med. speed	Preferred				
		Guidance				
Power	300 mw to 3 w	Preferred				
		Guidance	2N1039			$\begin{aligned} & \text { 2N343 } \\ & \text { 2N341 } \end{aligned}$
	3 to 30 w	Preferred				
		Guidance	2N539	2N326		$\begin{aligned} & \text { 2N498 } \\ & \text { 2N657 } \\ & \text { 2N1016E } \\ & \text { 2N497 } \\ & \text { 2N656 } \\ & \hline \end{aligned}$
	>30 w	Preferred	2N297A			
		Guidance	2N665 2N174 2N463 2N1120 2N1165			$\begin{aligned} & \text { 2N389 } \\ & \text { 2N424 } \\ & \text { 2N1050 } \end{aligned}$

of longer life operation, the airlines are obviously interested in using transistors. However, they are adamant in their demands to sacrifice nothing in the way of reliability, maintenance, or operation.

This briefly means that the airline industry, as a group or as a single airline, will be extremely reluctant to buy a piece of equipment which includes non-ARINC preferred transistors. They
may be quite content to wait, say another year, for the equipment manufacturer to redesign his proposed gear using preferred types or for sufficient data and proof to indicate that the nonARINC type is suitable. Meanwhile, of course, another manufacturer of similar equipment may submit prototypes using ARINC approved types and walk off with quantity orders. -

Audio...p 58
Power...p 62

High Frequency ...p 72

Special...p 80
High Level...p 82
Low Level...p 86
Cross Index...p 94

HRRANSESSTOR DETEA CEEAERT

ELECTRONIC DESIGN's Eighth Annual Transistor Data Chart, following last year's pattern, has been specially tailored to meet the specific needs of the design engineer.

Contrary to existing lists which group transistors by manufacturer or in numerical sequence (fine for salesmen, of limited use to engineers), the 1960 Data Chart has transistors organized into six application categories:

- Audio-mostly general purpose types, under 1-w power rating. Types are listed in order of increasing forward-current transfer ratio.
- Power devices-transistors rated at 1 w and above are listed
in order of increasing collector power dissipation.
- High frequency-types ranging up to and above the vhf range and tabulated in order of increasing alpha-cutoff frequency.
- High-level switching-devices intended to handle high currents are listed in order of increasing alpha-cutoff frequency.
- Low-level switching-low power devices for switching signal circuits are tabulated in order of increasing alpha-cutoff frequency. For both high- and low-level switching devices, rise, storage and fall time are given when supplied by manufacturers. - Special types-low noise, high power/high frequency and other miscellaneous types are included.

By this system of listing transistors, the design engineer is offered a rapid method of selecting a particular type based on a parameter value. In addition, close substitutes are apparent and multiple sources of supply are listed when applicable.

For example, if a 5 -w power transistor is required, it is merely necessary to scan down the "Wc" columns in the "Power Transistor" group until " 5 w " is found. Various units, together with significant characteristics and manufacturers, will be tabulated. Immediately several types are shown and final selection is up to the design engineer. Similar arrangement of the other groups by a key parameter grouping offers rapid selection and sufficient information for initial guidance to proper types. Only U. S. manufactured types are tabulated.

One word of caution is included. Quite a few similar number types, made by several companies, were submitted with different characteristics due to the non-conformity in test methods among manufacturers. The manufacturer whose data is used for each particular type is listed under "Mfg." Other suppliers of the same types are found under "Remarks." There is no implication that the company listed under "Mfg." is a prime supplier, a cheaper source or the original EIA registrant. The final choice of supplier is obviously up to the design engineer. It is thus advisable to use this listing as a guide to selection and then follow up with a detailed evaluation of specific test methods and data as outlined in each manufacturer's specification sheet.

A cross index is included to identify a type number with its listed category. The JEDEC type numbers are tabulated in numerical order and the category group is indicated.

Audio

TypoNe.	Mig.	Typo	$h_{\text {he }}^{h_{\text {FE }}}$	Mer. Rating,					Cherecteristics				Remarks	Trpo
				$\begin{gathered} \mathbf{w}_{\mathbf{c}} \\ (m w) \end{gathered}$	$\begin{aligned} & T_{i} \\ & (c) \\ & (c) \end{aligned}$	mw/c	v_{c}	$\begin{gathered} I_{c} \\ \text { ma } \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\mathrm{co}} \\ & \mu 0 \end{aligned}$	$\begin{aligned} & \hline \mathrm{NF} \\ & \mathrm{db} \end{aligned}$	$\begin{gathered} \mathbf{C}_{\mathbf{c}} \\ \mu \mu \end{gathered}$	$\begin{aligned} & \mathbf{C a}_{a_{e}} \\ & \text { mo } \end{aligned}$		
2 M 461	MO	pnp.AJ,ge	.768.98S	200	100	2.67	45	-	0.22	20	40	. 5		2 M 61
2 N 160	RD	npn, CJ, si	0.93	150	175	-	40	25	0.2	25	7	4		${ }^{2} \mathrm{~N} 160$
2 211604	RDR	npn, GJ, ai	0.93	150	175	-	40	25	0.2	25	7	4		${ }_{2}^{2 N 1604}$
2 N 319 2N161	RDR		0.96	150	175	-	125	25	0.2	25	7	5		2 N 161
2 N 161 A	RDR	npn,GJ, si	0.96	150	175	-	40	25	0.2	25	7	5		2N161A
21048	RDR	npn,GJ,ai	0.\%	750	175	-	90	50	10	-	-	3		${ }^{2 N 348}$
2 N1096	RDR	npn, GJ, si	0.96	500	175	-	90	30	6	-	-	3		2 N 1096
21047	RDR	npn,GJ,sil	0.98	750	175	-	60	60	10	-	-	3		
$2 \mathrm{NTO95}$	R	npn,GJ, $\mathrm{sil}^{\text {a }}$	0.98	500	175	-	60	40	0	25	-	3^{3}		${ }^{2 N 1095}$
2 21163	RDR	npp,GJ,al	0.99	150	175	-	40	25	0.2	25	7	6		2 N 163
${ }_{952}^{2 N 163 A}$	TI		$\begin{aligned} & 0.99 \\ & 6 \end{aligned}$	150 750	175 150	-	40 80	25 50	${ }_{0}^{0.2}$	${ }^{25}$	7	8	2N1155	${ }_{952}^{29163 A}$
951	TI	${ }_{\text {npn, }}^{\text {nj, }}$, $\mathrm{mi}^{\text {a }}$		750	150	6	50	60	5	-	-	8	2N1154	951
953	1	npp,GJ,si	9	750	150	6	120	40	8	-	-	8	2N1156	953
2 N 117	TI	npn, GR, si	9.20	150	175	1	45	25	2	20	-	4		2 N 117
2 N332	TI	npn,GR,si	9.20	150	175	1	45	25	2	20	-	6	GE, RDR, TR	2N332
903	TI	npn,GJ, si	920	150	175	1	45	${ }_{60}^{25}$	${ }_{1}$	25	-	4	2N1149	${ }_{2}^{903}$
25043	TI	npp,GJ,ai	932	750	150	6	60	60	1	-	-	7		${ }^{2 \mathrm{~N} 213}$
$2 \mathrm{H} 5^{\circ}$	GT	pnp,AJ, ge°	12	150	100	2	45		10	22	40	-	-MIL	2N45*
2011309	NA	pnp, A, sic	12	100	200	2.28	50	100	0.01	12	25	1	oudiomed. pow.	139
${ }^{\text {G7327A }}$	GT	pnp. AJ, si	14	150	150 75	1.2	${ }_{30}^{50}$		0.1	18	70	0.5	2N327A	${ }_{\text {cis }}$
2 2 282	AMP	pnp,AJ, 00	15	125	75	2.5	32	${ }^{125}$	-	-	-	-		${ }_{2}^{2 N 284}$
$\begin{aligned} & 2 \mathrm{~N} 28 \mathrm{~A} \\ & 2 \mathrm{~N} 339 \mathrm{~A} \end{aligned}$	${ }_{\text {A }}^{\text {A P }}$	$\begin{aligned} & \text { pp }, A J, g e \\ & n p n, D J, s i \end{aligned}$	15 15	$\begin{aligned} & 125 \\ & 1000 \end{aligned}$	200	${ }_{8}^{2.5}$	60 55	125 .1	1	-	-	-		${ }_{\text {2N393A }}$
													${ }_{31 \mathrm{c}} \mathrm{l}$ levals	
2 n 310 A	TR	npn, DJ, si	15	1000	200	8	85		1	-	-		Sevel	2N340A
$2 \mathrm{TH314}$	TR	mpn, D, sic	15	1000	200	8	125	. 1	1	-	-	-	berctopeces ot	2 N 31 A
$2{ }^{2} 14140$	NA	Pnp,AJ, si	15	400	200	2.28		100	0.01	12	25	1		${ }_{2}^{2 N 1410}$
2 NT 123	RA	Prp, $A \mathrm{~J}, \mathrm{si}$	15	250	160	0.54	20	50	. 005	${ }_{18}^{18}$	70	. 1		${ }_{2}^{2 \mathrm{~N} 1623}$
${ }^{2 N 1655}$	RA	pnn, AJ, si	15	250	160	0.54	125	50	. 005	18		. 2		${ }^{2 N 1655}$
tras	IND	pnp,AJ,90	15	120	85	3	40	150	10	15	15	1.6		TR34
2N472A	TR	npr, DG, si	16	200	200	1.1	45		. 02	22		8	100^{e} e reliability assurance	2NATza
$2 \mathrm{N118}$	TI	nen,GR,si	18-40	150	175	1	15	25	2	20	-	5	TR	$2 \mathrm{NHI8}$
2N333	T1	npn, GR, si	18.40	150	175	1	45	25	2	20		8	GE, TR	${ }^{2 N 333}$
904	TI	nen, GR,ai	18-40	150	175	1	45	25	2	25	-	5	2N1150	904
2N334	1	npn, GR, si	18.90	150	175	1	45	25	2	20	-	10	GE, TR	2 N 34
9043	1	non, GR, si	18.90	150	175	1	45	25	2	25	-	8	2NIISI	9044
${ }_{\text {2 }}^{2}$		Pno,A, ${ }^{\text {pos }}$	19.49 20	150 30	${ }^{85}$	-			-	-	${ }^{33}$			${ }_{2}^{2 N 368}$
${ }_{\text {2N1051 }}$	${ }_{\text {PH }}$		20	30 600	85 150	. 25	3.0 40	5.0	-		-	${ }_{80} 80$	SPR MIL only	2N129 2N1051
OC200	AMP	Pnp,PADT, =	20	250	150	-	25	50	10			1		OC200
2 M 06	SY	pnp,A, A,ge	20.80	150		3.	20	35	14			250		2N106
TRT22	IND	pnp, A d, 0°	22	150	2.5	3	45	200	10	15	20	2.5		TRT2
CK22A	RA	pnp, AJ.9e	22.5		85	-	20	100	2	6.5		1.2	micromin	ск22A
CKG	RA	Prp,FA,ge	23	80	85	-	29	100	2	22	-	0.8		CKGA
CK6a	RA	pnp, A, 90	22.5	80	85	-	29	100		22		0.8	micromin	ck64a
2 N 1240	GE		24	200	85	4	25	200	16	-	40	0.8		2 N 1854
2 N 189 $2 \mathrm{Nas1}$	${ }_{\text {GY }}^{\text {GE }}$	pnp A, A, g_{0}	${ }_{24}^{24}$	${ }_{200}^{75}$	85 85	3.3	25	200	16 20	15	40	0.8 10		${ }^{2} 21189$
2N44	GE	Pnp, $A J, 9{ }^{\circ}$	25	240	100	,	45	300	16	-	40	1	MIL, GT	2 N 44
2N209	sY	npn,AJ,go	25 min	50	75	1	10		100	-	-	800		2N229
2N330A	SSC	Pnp,AJ, si	25		160	3	30	50	is		-	0.5		${ }^{2 N 330 A}$
2 M 02	mH	pmp, FJ,90	25	180	85	3.3	25	200	15	12	∞	0.6	AF driver	2 M 02
2NA60	TS	Pnp,A A, 90	25	200	100	. 3	45	400	15		$\stackrel{\rightharpoonup}{0}$			2 N 160
2 NSS 4	IND	pro, A J,go	25	150	85	2.5	30	300	3	12	20	0.8	us	2 N 54
2N592	GT	pnp,A A ,90	25	150	100	. 2	20		5	16	35	0.4	Bilateral	$2 \mathrm{2N92}$
2N612	WH	pNP, FJ,90	25	180	85	3.3	25	200	15	12	∞	0.6	driver	2N612
${ }^{2 \mathrm{~N} 1265}$	SY	pnp, A, , ge	25				10 50	100 100	100 0.01	12	25	0.6	audio/med. pow.	2 N 1265 2 N 141
GT328A	NM		25	400	200 150	2.28	50		0.1	18	20	1	2N328A	GTこ:8A
2 21101	SY	npon, $A, 90$	25.50	180	75	3.6	20	100	50	-	-	0.01	RCa	2 N 1101
2N1102	SY	npn, A 1,90	25.50	180	75	3.6		1100	50	-	-	0.01		${ }^{2 \mathrm{~N} 1102}$
$2 \mathrm{Na4}$	SY	pno, $\mathrm{J}, 00^{0}$	${ }_{25}^{25.125}$	150	75	${ }_{3}^{3}$	∞	100	50 50	-	-	0.01	Driver	
$\begin{aligned} & 2 N 35 \\ & 2 N 306 \end{aligned}$	SY	npm, $\mathrm{A}, \mathrm{A}, 9 \mathrm{ge}$		150 50	$\begin{aligned} & 75 \\ & 85 \end{aligned}$	${ }^{3} 8$	$\begin{aligned} & 40 \\ & 20 \end{aligned}$	100 100	100	-	-	. 01	Diver	$\begin{aligned} & 2 N 35 \\ & 2 N 306 \end{aligned}$
2N464	Ind	pnp,A, A.ge	26	150	85	2.5	45	200	6	15	20	0.7	Mo, Ro, US, GT	2 N 644
2 ren	II	mpn, G, si	22-90	750	150	-	60	60	1	-	-	0.08		$2 \mathrm{H24}$
2 N 118		npn,GR,s1	29	5 25	75		45	25	${ }^{2} 1$	20		5		${ }_{20}^{2 N 18}$
2 V 28	AMP	pno, AJ, ∞	30	25	75	2.5	20	10	110	10		${ }_{0}^{0.15}$		2N679
$2 \mathrm{M} / 575$		nnn, DG, st	30	200			45		. 02				100° c reliobiliny assuramce	

Index of Manufacturers

Abbrev.	Company	Location
AMP	Amperex Electronic Co.	Hicksville, N.
BE	Bendix Aviation Corp.	Long Branch, I. J .
CBS	CBS-Hytron, Semicon. Operations	Lowell, Mass.
CL	Clevite Transistor Products	Waltham, Mass.
CR	C. P. Clare Transistor Corp.	Glen Head, L. I.,
DE	Delco, General Motors Corp.	Kokomo, Ind.
FA	Fairchild Semicond. Corp.	Palo Alto, Calif.
GE	General Electric Co.	Syracuse, N. Y.
GT	General Transistor Corp.	Jamaica, N. Y.
HO	Hoffman Semiconductor Div.	El Monte, Calif.
HU	Hughes Products, Semicon. Div.	Los Angeles, Calil.
IND	Industro Transistor Corp.	Long Island Cily,
MH	MinneapolisHoneywell	Minneapolis, Minn
M08	Motorola, Semiconductor Products Div.	Phoenix, Ariz.
NA	National Semiconductor Corp.	Danbury, Conn.
PH	Philco Corp.	Lansdale, Pa.
PSI	Pacific Semiconductors, Inc.	Culver City, Colii
RCA	Radio Corp. of America	Somerville, N. J.
RA	Raytheon Mfg. Co.	Newton, Mass.
Rh	Rheem Mfg. Co.	Mountain View, ${ }^{\text {c }}$
RRD	Radio Development and Research Corp.	Paterson, N. J.
STC	Silicon Transistor Corp.	Long Island City,
SSD	Sperry Semiconductor Div.	South Norwalk,
SPR	Sprague Electric Co.	North Adams, M
5 Y	Sylvania Semiconductor Div.	Woburn, Mass.

Audio (continued)

$\begin{aligned} & \text { Type } \\ & \text { Ne. } \end{aligned}$	Mig.	Type	$\begin{aligned} & h_{f 0} \\ & \text { or } \\ & h_{\text {FE }} \end{aligned}$	Max. Rating:					Charactaristics				Remarks	$\begin{aligned} & \text { Type } \\ & \text { Ne. } \end{aligned}$
				$\begin{gathered} w_{c} \\ (m w) \end{gathered}$	$\begin{aligned} & T_{i} \\ & \text { (c) } \end{aligned}$	mw/c	$\begin{gathered} v_{c} \\ v \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathbf{c}} \\ \text { ma } \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\mathrm{co}} \\ & \mu \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{NF} \\ & \mathrm{db} \end{aligned}$	$\begin{gathered} \mathrm{C}_{\mathbf{c}} \\ \mu \mu f \end{gathered}$	$\begin{aligned} & \mathrm{f}_{\mathrm{ae}} \\ & \mathrm{me} \end{aligned}$		
2N524	SY	prp,AJ,ge	30	225	100	3	45	500	10	-	-	2	GE	2N524
2N594	GT		30	100	85	1.67	20	-	2	16	15	2	Bilateral	2N594
2N1248	TR	npn,DG, si	30	30	150	0.24	6	-	2.0	1.1	9	5	Lownoiso	2N1248
2N146	IND	pnp,AJ,go	30	200	85	3.33	45	400	5	6	20	2		2N1466
2N1654	RA	pnp, A J.si	30	250	160	0.54	80	50	. 005	18	70	. 2		2N1654
2N1656	RA	pnp, AJ, si	30	250	160	0.54	125	50	5	18	70	. 2		2N1666
CK25A	RA	pnp,AJ,ge	30	-80	85	-	20	400	2	-	14	4	micromin RF	CK25A
OC201	AMP	Pnp,PADT,si	30	250	150	-	25	50	10			4		OC201
2N331	MO	pnp,AJ.ge	30-70	75	85	1.2	30		1	20	50	4		2 N 331
2N650A	MO	pmp,AJ, 0°	30-70	200	100	2.67	45	500	. 33	15	25	. 75		2N650A
2 N 1372	SY	prp, AJ, ge	30-90	150	100	2	25	200	100	-	-	-		2N1372
2N1373	SY	pnp,AJ, pe	30-90	150	100	2	45	200	100	-	-	-		2 N 1373
2 N 1432	SY	pnp,DD,ge	30-120	80	85	1.3	35	10	15	-	-	250		2 N 1432
2N1380	SY	pmp, AJ,ge	30-300	150	100	2	15	200	14	-	-	-		2N1380
2N1381	SY	pnp.AJ,ge	30-300	150	100	2	25	200	100	-	-	-		2N1381
2 N319	GE	pnp,AJ,go	34	225	85	4	20	200	16	-	25	2.20		2 N 19
2 N 103	WH	pnp, FJ, ge	35	180	85	3.3	25	200	15	12	40	0.85	driv	2 N 03
2N405	RCA	pnp,AJ,ge	35	150	85	2.5	20	70	14	-	-	0.25	SYL	2M405
2 N 406	RCA	pnp, AJ, ge	35	150	85	-	20	70	14	-		0.		2N00
2N593	GT	pnp,AJ,go	35	150	100	2	35	-	5	16	35	0.6	Bilareral	2 H 93
2 N 613	WH	pnp, FJ, ge	35	180	85	3.3	25	200	15	12	40	0.85	doiver	2N613
2N734	T1	Pnp,MS, si	35	1.0	175	-	80	50	1	20	5	50	TO-18	2N734
2N1010	RCA	npn, AJ, gr	35	20	55	-	10	2	10	5	-	2		2N1010
2N1564	II	npn,MS, si	35	1.2	175	-	80	50	1	20	5	50	T0.5	2N1564
OC57	AMP	Pnp, PADT, ge	35	10	55	-	7	10	1.5			1.4		OC57
OC53	AMP	pnp,AJ, ge	35	10	55	0.7	3	5	0.1	10	-	0.01	Hearing oid	0 C 53
${ }^{2} \mathrm{~N} 383$	SY	pnp,AJ, ge	35.110	200	85	3.3	30	200	20	-	70	10		2 N 383
2N187A	GE	pnp,AJ, $\mathrm{ge}^{\text {e }}$	36	200	85	4	25	200	16	-	40	1		2N187A
${ }^{2} \mathrm{~N} 190$	GE	pnp,AJ,ge	36	75	85	2	25	50	16	15	40	1		2N190
2N119	TI	npn,GR,si	36-90	150	175	1	45	25	2	20	-	6	TR	2N119
2 N 335	T1	npn,GR, si	36.90	150	175	1	45	25	2	20	-	13	TR, GE	2N335
905	TI	npn, GR,si	36-90	150	175	1	45	25	2	25	-	6	2N1152	905
2 N 650	MO	pnp, AJ, ge	40	200	100	2.8	25	250	4	10	20	2	US	2N650
2N653	MO	pnp, AJ, 90	40	200	100	2.8	15	250	4	10	20	2		2N653
2N742	NA	npn,MS, si	40	-	200	1.71	60	100	0.1	-	5	200	Switch	2N742
2N1009	SY	pnp,AJ,ge	40	150	85	2.5	25	20	1	-	-	-		2N1009
2N1191	MO	pno.AJ.ge	40	175	85	2.8	25	200	4	10	20	1.5		2N1191
CK4	RA	pnp,AJ.ge	40	80	85	-	24	100	2		14	6	Submin. RF	
CK4A	RA	Pnp,AJ,go	40	80	85	-	24	100	2	-	14	6	-	CK4A
CK26A	RA	Pnp,AJ, 90	40	80	85	-	18	400	2	-	14	6	swifch micromin RF switch	CK26A
TR-650	IND	pon, A J, ge	40	150	85	2.5	45	400	1.0	10	20	2	2N6SO	TR-650
TR-653	IND	pnp,AJ, 0_{0}	40	150	85	2.5	30	400	1.0	10	20	2		TR-653
2N382	SY	pno, AL, ge	40-76	200	85	3.3	25	200	20	-	-	10		2N382
2 M 43	GE	Pnp,AJ, $¢$	42	240	100	4	45	300	16	6	40	1.3		$2 \mathrm{M} / 3$
OC79	AMP	Pnp, PAD T,ge	42	550	75	-	26	300	10		-	1.2		OC79
2N104	RCA	pnp,AJ,go	44	150	85	-	30	50	10	12	-	0.7		2 NiO
${ }^{2} \mathrm{~N} 215$	RCA	pno,AJ,ge	44	150	85	\square	30	50	10	12	-	0.7		2N215
2N525	GE	pnp,AJ,go	44	225	100	5	45	500	10	6	25	2.5	Sy	2N525
2N238	TI	pnp,AJ, ge	45	150	85	2.5	25	150	6	7.5	-	1.5		2N238
2×291	11	Pnp,AJ,ge	45	180	85	3	25	200	6	7.5	-	1.5		2N291
2 N 322	GE	pnp, AJ, ge	45	140	85	4	16	100	16		25	2.0	Driver	2N322
2N465	IND	pnp,AJ,ge	45	150	85	2.5	45	200	6	15	20	0.8	Mu, Ro, US, GT	2M465
2N595	GT	npn,AJ,ge	45	100	85	1.65	20	0	2	16	15	1	Bilateral	2N595
2N1098	GE	Pnp,AJ.ge	45	140	85	4	16	100	16	16	25	- D	Driver	2N1098
2N1442	NA	pnp, A J, si	45	400	200	2.28	50	100	0.01	12	25	1	oudio/med. power	2N142
2N1145	GE	pnp,AJ,ge	45	140	85	4	16	100	16	-	40		Driver	2 N 1145
2N1372	TI	pnp,AJ,ge	45	250	100	3.3	25	200	3	7	-	1.5		2 N 1372
2N1373	1	Pnp,AJ,go	45	250	100	3.3	45	200	3	7	-	1.5		2 N 1373
2 N 1447	IND	pnp,A A, ge	45	200	85	3.3	45	400	5	0	20	3		$2 \mathrm{N147}$
2N1451	IND	pnp,AJ,ge	45	200	85	3.3	45	400	7.5	9	20	1.5		2N1451
CK65	RA	pnp, FA, ge	45	50	85	-	24	100	2	22	-	1		CK65
CK65A	RA	pnp,AJ,go	45	80	85	-	24	100	2	22		1.0	micromin	CK65A
TRT21	IND	pnp,AJ,ge	45	150	2.5	3	30	200	10	15	20	3		TRT21
24280	AMP	pnp,AJ,ge	47	25	75	2.5	20	10	150	10	-	0.1		2N200
2N/3A*	GT	pnp,AJ,ge	48	155	100	-	45	-	8	10	40	2	MIL GE	2N43A
2N61	WH	pnp, FI,ge	48	180	85	3.3	25	200	15	12	40	1		2N61
2 N 611	WH	pnp.FJ, go	48	180	85	3.3	25	200	15	12	40	1		2 N 611
TR320	IND	pnp.AJ.ga	48	150	85	3	25	100	10	-	25	2.5	2N320	TR320
${ }^{2} \mathrm{~N} 369$	TI	pnp, A, , ge	49.142	150	85	2	30	50	7	-	33	1.3		2N369
2N320	GE	pnp,AJ,go	50	225	85	4	20	200	16	-	25	2.5		2N020

Audio（continued）

Tome	ms．	Tym	$\begin{aligned} & m_{60} \\ & m_{\mathrm{FE}} \end{aligned}$	Max．Ratioge					Charectoristes				Romats	
				$\left.\begin{array}{\|c\|c\|} \hline w_{c} \\ (m \times 1) \end{array}\right)$		mm／	v_{c}	$\mathrm{c}_{\mathrm{m}}^{\mathrm{c}_{\mathrm{c}}}$	$\begin{aligned} & \text { Too } \\ & \text { vo } \end{aligned}$	$\begin{gathered} \mathrm{NF} \\ \mathrm{db} \end{gathered}$	$\begin{aligned} & c_{c} \\ & \text { wuf } \end{aligned}$	$\begin{aligned} & \hline \mathrm{lac} \\ & \mathrm{mc} \end{aligned}$		
2231	RCA	pnp，$A, 00$	50	200	85	25	30	200	16	9		1.16	${ }_{\text {cto }}^{\text {GT，BE，IND }}$	212331
$\underbrace{\substack{\text { N363 }}}_{\substack{\text { 2ren }}}$	${ }_{\text {RA }}^{\text {RNO }}$		50	$\left\|\begin{array}{l\|l\|} 150 \\ 150 \end{array}\right\|$	${ }_{85}^{85}$	2.5	20	${ }^{200}$	${ }^{10} 6$	6.5		0.8		
2 N 1251	5r	mon，A， 90				2.5			50			7.5		2 N 1251
$2 \mathrm{2N127}$	T1	pon， $\mathrm{A}, \mathrm{cos}^{\circ}$	50	150	as	2.5	15	150	3	6.5				2 N 1273
21274	II	pno，A， $\mathrm{A}, \mathrm{go}^{\circ}$	50	150	os	2.5	25	150	3	6.5		－		$2 \mathrm{Nr1274}$
${ }^{2} 213383$	T1	mpo， 1,90	50	200	85	3．3		200	7	7	2	1.5		
			S0，100	${ }_{180}^{150}$	${ }_{85}^{85}$	${ }_{3}^{2.5}$		${ }^{2}$	7．5	－	$\stackrel{20}{-}$	2．01	${ }_{\text {a }}$	
${ }_{2}$	Sr		${ }_{50-100}$	50	d	3	40	100	${ }_{100}$	－	－			2 N 228
2 vesta	sr	pno	50.100	200	85	3.3	30	200	16	－	－	10		2 trasia
					S	2．3	25	75	12	－	－	101		2 N 270
1059		oni	${ }^{\text {colico }}$	${ }_{180}^{200}$				120						${ }_{2}{ }^{2} 1059$
2 T SSIA	mo	pm， A, co	50．120	200	100	2.67	45	500	${ }^{33}$	15	25	1.0		2 mssiA
108	sr	pno		150	85	2.5		70	14	－	-	－		2 mas
${ }_{2}^{21209}$	5 sr	mp，A，s	50．150	50	85	． 9	25	75	12	－	-	－		
	${ }_{\text {Sr }}^{5 Y}$			140	${ }_{85}^{85}$	2.3	25 16	$1{ }^{10}$	12	三	－	800		${ }_{21823}^{212127}$
$2 \mathrm{2N1374}$	${ }_{5}$		50.150		100	2	25	200	100	－	－	$-$		2 N 1374
2 N 1375	${ }^{\text {SY }}$	pnp，A， 0°	${ }^{50} 150$	150	100		45	3200	100	－	－	12		211375
－ 2 l 1183	${ }_{\text {ck }}^{\text {GE }}$		${ }_{54}^{54}$	${ }_{75}^{200}$	${ }_{8}^{85}$	${ }_{2}^{4}$	25	200	16 16	is	${ }_{40}^{40}$	${ }_{1}^{1.2}$	Diven	1
22105	ras	pnp，$A, 90$	55	． 60	${ }_{85}^{85}$		25	15	7	16.5	2	0.75		2 W 105
2 H ¢ 6	ino	pnp，A，00				2.5							us	
$\stackrel{2}{2 N 1097}$	${ }_{\text {ct }}^{\text {GE }}$	pnp，A］，90	55	$\left\|\begin{array}{l} 140 \\ 140 \end{array}\right\|$	${ }_{85}^{85}$	4	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	100	16	－	25 40	＝	Ditiver	210307
CK27A	RA	mpp， 1 ，，00	${ }_{55}$	${ }_{80}$	${ }_{85}$	$-$	15	${ }^{400}$	16	－	14	11		Ck27A
${ }^{\text {OCS }}$	AMP	pno． $\mathrm{A}, 000$	55	10	55	0.7	3	5	0.1	10	－	0.01	（indich in	ocs
		pmp，PADT												
	${ }_{\text {TR }}$		${ }_{60}^{60}$	$\begin{aligned} & 250 \\ & 200 \end{aligned}$	720	${ }^{9.1}$	$\begin{aligned} & 30 \\ & 45 \\ & 45 \end{aligned}$	${ }^{150}$－	${ }^{\circ} \mathrm{O}$	20	${ }_{7}^{120}$	11	100%	${ }_{2 \text { 2M80a }}$
	GT		60	100	${ }^{\text {a }}$					16	15			2N5\％
${ }^{2 N} 2303$	IND	pno	60	150	${ }_{85}^{85}$	2.5	${ }_{3}$	， 200	10^{2}	－	$-$	0.8	Ro，U	－ $\begin{aligned} & 2 N 63 \\ & \text { OC50 }\end{aligned}$
2 N 526		mpo				3.7							GE	2 H 526
22175	${ }^{\text {RCA }}$	pmp， $\mathrm{A}, 90$	65	50	${ }^{85}$	－	10	2	12	6	－	0.85		$2 \mathrm{2N175}$
$\underset{\substack{\text { 2M20］}}}{2 \text { 2420 }}$	${ }_{\text {ReA }}^{\text {RCA }}$		65	500	${ }_{85}^{85}$	－	10 20	$7{ }^{2}$	${ }_{14}^{12}$	6	三	0.85	Sr	$\underset{\substack{2 N 200}}{2 \times 200}$
2 M 08	RCA	Pnp， $\mathrm{A}, 90$	65	150	${ }_{85}$	－	20	70	14	－	－	－		2 M 008
2 NGH	rca		65	100	85	33	20	100	14					${ }^{2 N 149}$
	1 ND		65	200	${ }_{85}^{85}$	${ }^{3.33}$	45	100	7.5	$\stackrel{6}{9}$	20	2.2		${ }_{211452}$
－	${ }_{\text {AMP }}^{\text {AMP }}$		65 65	10 50	75	0.7	22^{3}	30^{5}	${ }_{10}^{120}$	15		－i．s	horing aid	OC54
2 H 323	GE		68		85	4		100		－	25		Driver	$2{ }^{21323}$
$2{ }^{2} 2231$	AMP	pmopait，	70	1165 150		2.5			4.5		－			${ }_{2}^{2 \times 2361}$
	$\underset{\substack{\text { ROPA } \\ \text { RA }}}{ }$		70	100	${ }^{85}$	2.5	42 32 20	200	7	－	－	－		${ }^{212351}$
$2 \mathrm{NG47}$	${ }^{\text {RCA }}$	npm，A， g°	70	100	${ }^{85}$	－	25	${ }^{100}$	14	0				${ }^{2 \mathrm{~N} 487}$
	TR	npn，MS，s npn，DG，s	70	$1 \begin{array}{r}1000 \\ 30\end{array}$	${ }^{175}$	－ 0.24	${ }^{80} 6$	so	0.8	20	9	50	Lols	${ }_{2 \text { 21247 }}^{2043}$
2 N 1352	1 No	mp，A，¢， 9	70	150	85	2.5	30	200	2.5		18	2.5		2 N 1352.
	${ }_{\text {sr }}$		${ }_{7}^{70} 70$	1200	0	2.3	880	100	so	${ }_{20}-$	40	50.01	to．	${ }_{201513}^{2 N 1565}$
TR．383	1 ND				\％	3.33							${ }^{2 \times 383}$	
	${ }_{\text {ce }}^{G E}$		73 73	$\left\|\begin{array}{l\|l\|} \hline 100 \\ 200 \end{array}\right\|$	${ }_{85}^{85}$	${ }_{4}^{3}$			16 16			1.3 1.3 1		
${ }_{2}^{2 N 60}$	${ }_{\text {che }}^{\text {mH }}$	${ }^{\text {ppp，} 5,590}$	75	180	${ }_{8}^{85}$	3.3	25	200	15	12	40	1.5		2286
2 N 192					${ }_{8}$	2		，		15	40	1.5		2 N 129
${ }_{2}^{212317}$	RCA	pno．A， 90	75	150	85				14		io	－1．		${ }^{221217}$
$\underset{\text { 2N651 }}{2 \text { 2n61 }}$	${ }_{\text {m }}^{\text {m }}$	${ }_{\text {pnp }}^{\text {pnp }}$	75	180 200		3．8	25							${ }_{2051}^{2012}$
$2 \mathrm{2N64} 4$	mo	pmp，$\sim_{\text {d，}}$	75	200	100	2.8			4	10	20	2.5	us	2 mest
－	Mo	PnpA，A，ge	75	$\left\|\begin{array}{l\|l\|} 175 \\ 200 \end{array}\right\|$	200	${ }_{2.28}^{2.88}$	250	${ }^{5}$	$0.0{ }^{4}$	12	20 20		asiormod．	－
	GT			150			25	．				－		
$\left.\right\|_{T R-323} ^{\text {cTon }}$	${ }_{\text {a }}^{1 \times 1}$	$\begin{aligned} & \text { pnp.AJ.ge } \\ & \text { pnp. A J.ge } \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\left\|\begin{array}{\|l\|} 150 \\ 150 \end{array}\right\|$	$\left.\right\|_{0} ^{1000}{ }_{85}$	2.5	25	200	7.5	$\stackrel{16}{16}$	20	2.5	2 N 323	
2 N 1376	sY	mpa，A，90	75	S0	100	2	25	200	100	－	－			$2 \mathrm{2N1336}$
2 N 131														2N181

				ax．R atiape				
Ma．	mig．	Tro	$M_{\text {FE }}$	$\begin{aligned} & \mathbf{w}_{c} \\ & (m \times 1) \end{aligned}$	$\begin{aligned} & \hline T_{i} \\ & (c) \\ & \left(\begin{array}{l} \text { an } \end{array}\right. \end{aligned}$	m＊＊		
2 N 12 O	T	npn，${ }^{\text {ch，si }}$	76.333	150	175			
24336	TI	npn，GR，ai	$76-333$	150	175			
910	T	npn，GR，si	76－333	150	175			
2 N 125	T1	pnp，A U，go	80	150	85	2.		
${ }^{2}{ }^{3} 321$	GE	pnp，AJ， 9 e	80	25	85	3．		
2 N 527	SY	mpr， $\mathrm{A}, 90$	80	${ }_{150}^{25 .}$	${ }_{85}^{85}$	3.7		
$\begin{aligned} & 2 \mathrm{~N} 1370 \\ & 2 \mathrm{~N} 137 \mathrm{I} \end{aligned}$	TI		80 80	150 150	85 85	${ }^{2.5}$		
2 N 1374	1	pnp，AJ，ge	80	250	100	3.3		
2 N 1375	1	prp，AJ，g	80	250	100	3．3		
2 N 138	T	pnp，$A, \ldots, 90$	80	200	85	${ }^{3.3}$		
2 N 149	IND	pnp，A， 90	80	200	85	${ }^{3.3}$		
CK28A	RA	pnp，A, \ldots	80	80	85			
OCss	AMP	pro，A, λ°	80	19	55	0.7		
$0 \mathrm{OC59}$	AMP		80 80	10 150	85	2.5		
${ }_{2}$ 2N527	GE	${ }_{\text {pnp，}}$	81	25	100	2.5		
2 N324	GE	pnp，A， A ¢	85	140	85	4		
2 N 24	PH	pno，AJ，ge	90	250	75	5.0		
2 M 46	MO	pnp，AJ．90	90	150	85	2.5		
CK22	RA	pnp．FA， 90	90	85	85	－		
CK66A	RA		90 90	880		＝		
OC75	AMP	Pnp，PADT，go	90	115	75			
2 Cl 376	II	pnp，A， $\mathrm{A}, 9$	95	250	100	3.3	5.5	
${ }_{2}^{2 N 137}$	T1	Pnp，AJ，90	100	1250	100	3.3 3.3	35	
$\left\lvert\, \begin{aligned} & 2 \text { 2N59 } \\ & 2 \mathrm{~N} 207 \end{aligned}\right.$	¢ ${ }_{\text {PH }}$	pnp，FJ． 90 pnp，AJ．g	$\left\lvert\, \begin{aligned} & 100 \\ & 100 \end{aligned}\right.$	$\begin{gathered} 180 \\ 50 \end{gathered}$	85 65	${ }^{3.25}$	12	
2 2207A	PH	pro，AJ，go	100	50	65	1.25		
$2{ }^{212078}$	PH	pnp，A, ，ge	100	50	65	${ }^{1.25}$		
${ }_{2}^{2 N 360}$	RA	pnp， $\mathrm{A}, 90$	100	150	85	2.5		
2N362	${ }_{\text {l }}^{\text {IND }}$		100	${ }^{150}$	85	2.5		
2 N 535	PH	prp，AJ， 8 e	100	50	85	0.83		
$2 \mathrm{NS34}$	PH	prp，AJ，go	100	25	65	1.13		
2 2535A	PH	pnp．AJ，90	100	50	85	0.83		
2 2 535 B	PH	pnp， N, ga	100	50	85	0.80	2	
${ }_{2} 2 \mathrm{~N} 568$	N\％	${ }^{\text {Ppp，} A, ~} A, 90$	100 100	${ }_{180}^{150}$	${ }_{85} 85$	${ }_{3.3}^{2.5}$		
2N609	WH	pref J， 80	100	180	85	3.3		
${ }_{2}^{2 N 632}$	${ }_{\text {IND }}$	pnp，A, ，os	1100	150	${ }^{85}$	2.5		
2－1736	${ }_{\text {PH }}$		100 100	1000 300	（175	5.0		
2 N 1128	PH	Pnp，A A，go	100	150	85	2.5		
2N1380	TI		100	250	100	3.3		
2 N 1381	T	pnp，A，A，${ }^{\text {a }}$	100	250	100	3.3		
TR383	IND	pnp， $\mathrm{A}, 98$	100	150	${ }^{85}$	3		
2Nes2A	MO	pnp，A， $\mathrm{A}^{\text {a }}$ ¢	100－225	200	1100	2.67		
${ }_{2 \text { 2N213A }}$	$\left.\right\|_{o u} ^{S Y}$	npr，AJ，$\underbrace{\circ}$	${ }^{100-250}$	150				
2 N 23	PH	pnp，$A, \mathrm{~A}^{\circ} \mathrm{P}$	110	250		5.0		
2 N 265	GE	pnp．A． A ， 9	110	75	85	2		
G7109	GT	prp，AJ， $\mathrm{S}^{\text {e }}$	110	150	100	2		
2N508	GE	pro，AJ，${ }^{\text {a }}$	112	140	85	4		
2 W 1018	RA		120	80	85			14
TR． 508	IND	pnp，AJ，go	125	150	85	2.5		
2N513A	TR	npn，DG，si	130	200	200	1.1		
2N359	RA	pnp，$A J, 90$	150	150	85	2.5		
2 2570	IND	pnp，$A, 90$	150	150	85	2.5		20
2N631 2N1008	${ }_{\text {SY }}{ }_{\text {IND }}$	pnp，AJ， 90	150 150	150 400	85 85	2.5		
		Pmp，A， g°				6.6		
2 N 1471	IND	pnp，AJ，ge	150	200	85	3.30		
2 N S52	m0	Pnp，A，A，90	160	200	100	2.8		20
${ }_{2}^{2 \mathrm{~N} 655}$	MO	pnp，$A, J_{\text {do }}$	160 160	200 150 105	100 85	${ }_{2 .}^{2.8}$		20
2 N 1193	мо		160	175	${ }_{85}$	${ }_{2.8}^{2.8}$		125
2 M 67	ind	pmp，AJ．go	180			2.5		
CK67	RA	Pnp，FA，go	180	80	85	－		
CK67A	RA	pnp，A，so	180	80	85	－		
2N1129	PH	pnp，AJ，go	190	150	85	2.5		
2 S 72	ind		200	150	85	2.5		125
2 N 1378	T1		200	250	100	3.3		
2 N 1379	1	pnp，A， $\mathrm{S}^{\text {cos }}$	200	250	100	${ }^{3.3}$		
70								

DATA CHART puntinued)

For control circuit application in the 10 to 1250 ma output current range

- HIGH SENSITIVITY
only 2 mA input to control one ampere (continuous) at $100^{\circ} \mathrm{C}$.
- HIGH TEMPERATURE
stable operation to $150^{\circ} \mathrm{C}$.
- LOW LEAKAGE

10 uA cutoff current at full voltage.

- SIMPLIFIED MOUNTING
no need for insulating hardware stud is electrically isolated.

Type	Maximum Anode Voltage (DC or Peak AC) \pm Volts	MaximumAvorageForwardCurront$100{ }^{\circ} \mathrm{C}$ CaseAmps	Maximum Gate Current to "Fire" mA	Gato Voltage to Fire + Volts	
				Min.	Max.
38305	30	1.0	2	. 40	2.5
38605	60	1.0	2	. 40	2.5
381005	100	1.0	2	. 40	2.5
3 Bl 505	150	1.0	2	. 40	2.5
382005	200	1.0	2	. 40	2.5

FROM SOLID STATE

These devices offer significant circuit advantages in that they are specifically designed for operation in the 10 to 1250 mA current range. It is no longer necessary to derate higher power units, with attendant losses in efficiency.
The miniature SCR combines a current rating of 1 ampere at $100^{\circ} \mathrm{C}$ with extremely small size. It features high peak recurrent and surge current ratings. Switching efficiency up to 98% is practical. High gain, low loss control of loads up to 300 watts can now be achieved along with significant miniaturization. The internally insulated junction eliminates the need for external mica washers. Assembly is therefore simplified and reliability improved.
The miniature SCR is useful in applications such as AC and DC static switching, proportioning control, D.C. to D.C. converters, servo motor driving, squib firing, protective circuits, and related applications.
Encapsulated in the unique SSPI cold welded copper case, the SCR offers a high degree of mechanical ruggedness and long term reliability.

WRITE FOR BUILETIN CAIS-OI

Build
 RELIABILITY

 into Your Productwith Honeywell
Power Transistors

Outstanding Honeywell Features:

- Maximum reliability
- Dynamic testing for dependability
- Accurate, complete specifications
- Smaller size per watt output
- Rugged, thermally efficient stud mounting

Honeywell offers a complete line of germanium, PNP transistors (1 to 100 watts), 1 to 30 amperes. Many to MIL specifications. For immediate delivery, call your authorized distributor listed below. For application assistance or production quantities, call your nearest Honeywell sales office.

Honeywell Semiconductor Products Sales Offices
UNION, NEW JERSEY • WASHINGTON, D. C. - BOSTON, MASSACHUSETTS • LOS ANGELES, CALLFORNIA • CHICAGO, ILLINOIS TORONTO, ONTARIO • OTTAWA, ONTARIO • MONTREAL, QUEBEC • GENERAL SALES, MINNEAPOLIS, MINNEAPOLIS

Honeywell Semiconductor Distributors
Peorloss Radio Distributors, Inc.
Jamaica, Now York
JAmaica 3-3456
Stark Electronics Supply Co.
Minneapolis, Minn.
FEderal 6-9220
Electronic Supply Co.
Melbourne, Florida
PArkway 3-1441
Elmor Electronics
Oaklond, Calif.
TEmplebar 4-3311
Kierulff Electronics, Inc.
Los Angeles, Calif. Los Angoles, Calif.
Rlehmond 8-2444

Atlos Electronics, Inc. San Diego, Calif. BRoadway 4.3131

Flight Electronics Supply Corp. Inglewood, Calif. ORegon 8-5122
T. F. Cushing, Inc. Springfeld, Massachusetts STate 8.7341

Pioneer Electronic Supply Co Cloveland, Ohio SUperior 1.9411

Electronic Industrial Sales, Inc Washington, D. C.
HUdson 3-5200
Busacker Electronic Equipment, Inc. Houston 19, Texas JAckson 6.4661

C\& Electronics Co. Seartle, Wash. MAin 4-4355

Contact Electronics, Inc.
Dallas, Texas
Rlverside $7-98$
CIRCLE 50 ON READER-SERVICE CARD

Allied Radio Corp.
Chicago, III.
HAymarket $1-6800$

rocteristics			
Powr. Goin db	$\begin{aligned} & \text { Powr. } \\ & \text { Out. } \end{aligned}$	Romorks	Type No.
30303030	-	TRTR	2×339
			2 N 330
		TRTR	${ }_{2}^{2 N 311}$
	-		2 N 312
3030	-	TR	$2 \mathrm{N3} 42 \mathrm{~A}$
		TR	2N313 2 N 1206
	-	т0.5	${ }_{2} \mathbf{N} 1566$
-			2N1207
me		high froquency. high power	2N1335
			2N1336
me		high triequency, high power	
mc		high froquency. high power	2N1339
me		hioh frowuency,	2N1340
mc		high power high frequency, high power	2 N 1341
mc		high frequency, high power high frequency, high power	2N1561
c			2N1562
${ }_{\text {nc }}^{\text {nc }}$			OC30
		TR TR	2 N 998
	-		2NG56
c 34		$\begin{aligned} & \text { TR } \\ & \text { driver } \end{aligned}$	2 N 657
			2 N 1172
			2 N 1480
mc			2 N 481
\cdots			$2 \mathrm{NN1482}$
-	-		${ }_{\text {H3A }}^{\text {2N1067 }}$
-	-		HHA
-	-		2 N 326
			2N1183 2N1183A
			2N11838
			2 N 1184
			2N118A 2N1188
23	-	2N234A, CL	2 N 255
${ }^{26}$	2	$2 \mathrm{~N} 234 \mathrm{~A}, \mathrm{CL}$	${ }^{2 N 256}$
28	-		2 N 122
${ }_{32} 35.5$		Rec, Mo, Be_{0} Mo_{0}	$2 N 176$ $2 N 350$
32 34	4		$2 N 350$ $2 N 351$
35	4		2 N 376
40	-		2N669
		STC	2 N 1068
40.120 40.120			CDFI310 CDT 1311
$40-120$ 40.120			CDF 1311 CDT 1312
40.120			CDT1313
28.33		.	CST1740
32.35			
¢			Cs51742
${ }_{28,37}$			CST174
28.33			Csti74s
$32-37$ 38			${ }^{\text {cstili4 }}$
28 30	1.2 1.2		CTPl1os
30 27	$\begin{aligned} & 1.2 \\ & 0.6 \end{aligned}$		cTPl10s CTPl108

Important New Developments From Honeywell!

New Power Transistors

3N49, 3N5O, 3N51, 3N52: Power tetrodes in a new, single ended, cold weld package mechanically interchangeable with TO-6 case. 12 ampere, 75 watt at $25^{\circ} \mathrm{C}, 60$ and 80 volts Vcb. Tetrode design provides exceptional gain linearity. Circuit stability achieved through control of leakage current. Electrically identical with 3N45, 3N46, 3N47 and 3N48.

2N1658: New medium power general purpose unit in stud mounted, cold weld package. Gain specified at 1 ampere, 15 watt at $25^{\circ} \mathrm{C}, 80$ volt Vcb. Suitable for pulse amplifiers, switching servo and audio amplifiers. Frequency response, low leakage characteristics and small package are unique in this power class.

Higher Voltage at no increase in price!

2N1261, 2N1262, 2N1263: VcB now 80 volts (previously 60). 3.5 amperes, 32 watt at $25^{\circ} \mathrm{C}$. Typical applications include power conversion, voltage regulation switching and servo amplifiers.

Special Price Reductions

2N538, 2N538A: High quality power transistors at a 20% price decrease. 3.5 amperes, 32 watt at $25^{\circ} \mathrm{C}$, rated at 80 volts Vcb. Designed for high power amplifiers (servo and audio), power converters, voltage regulators and switching circuits.

2N1501, 2N1502: Standard units now in the lower price range. 3.5 amperes, 32 watt at $25^{\circ} \mathrm{C}$, VCB of 40 and 60 . Ideal for servo amplifiers, power conversion and switching.

Honeywell

 Finst in Control
 since 1.0 s

-7 eh
4 pioheenine tme puture

We have the facilities; the know-how is free

Consider these three, of many, reasons why it is to your advantage to let us fabricate your laminated plastics parts.
First, we have the facilities for the job. Saws, millers, drills, lathes, punch presses, planers, sanders. Hundreds of them. Many are standard machine tools modified to machine laminated plastics quickly and easily.

Others are special, designed primarily for the high-speed production possible with laminated plastics.
Second, behind the machines are people who know practically every trick in the book for turning out a first-class job fast. They also know what to avoid doing.

Finally, it will hardly pay you to handle your own fabrication-in
terms of money, in headaches, in possible errors, waste or delays. Call a Synthane representative near you for a quotation-you'll find him in any principal city or write Synthane Corp., 42 River Road, Oaks, Pa.

SYNTHANE

You furnish the print-we'll furnish the part

Sheets . Rods - Tubes . Fabricated Parts
 of MIL-S-19500B. All are stabilized by storage at $300^{\circ} \mathrm{C}$ and by three temperature cycles from $-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$.

RMEEM SEMICONDUCTOR CORPORATION

a subsidiary of rheem manufacturing company - Dept C1, po Box 1327, Mountain View. California, yorkshire 89211
SALES OFFICES WESTERN 5150 Wishlite Boulevard Los Angeles wEbster 7 -1844 - 327 Moltell Boulevard Mountain Viem Callt, Yorkshire 89211
CENTRAL: 6519 Nicollet Avenue Minneepolis 23 UNion 68751 - 18450 Lvernois Avenue Delloil. UNiversily $3-2879$
1919 N Marlem Avenue Chicago 38, BErhshire 7 4200
EASTERN: 610 East Palisade Avenue Englewood, N. . LOwell 7 4335
401 Lowell Street. Lexington Mass. VElunteer $28850 \cdot 6132$ Batimore Boulevard. Riverdale. Md. UN 4.1642
EXPORT: Dage Colporation, 219 E, atht Street. New York 17, Murray Hill 26755 , Cable Address " Dagecorp"
DISTRIBUTORS
Aunet Electronics Coro of Northerin Caltornia 1262 M Lawience Station Road Sunnyvale Cairf. REgent 6-0300
Westales Electronics Corp. 11334 Playa Street Culver City Callt EXmont 1-6201
CEnTRAL: Alticd Radio Corp. 100 Northwestera Arenue Chicogo MAymarthet 1.6800
EASTERN Almo Radio Co 41216 N . 6 th Street Philadelpha WA 25918 - Arrow Electronics Inc. 525 Jericho Turnpike, Mineaola, L I . N Y . PI 68686
 CIRCLE 53 ON READER-SERVICE CARD

Whatever you need a data printer for,

Clary has a proven model to do the job

At Clary you'll find the world's largest selection of solenoid actuated digital data printers.

These include Parallel Entry Printers, Printing Timers,
Time-Data Printers, and Serial Entry Printers. All are reliable, proven printers... printers whose simple circuitry, low cost, small size, desk top mounting, and modern design have made them the most "asked for" printers in the world.

Clary Printers are now being used
in the following applications:
Automatic Checkout Systems
Recording Scale Systems
Digital Voltmeter Readout
Logging of Time Signals from Dightal Clocks
Shaft Posttion Readout
Instrumentafion Data Recording
Logging of Time and Origin of Alarm Slgnals
Automatic Engineering Data Recording
By-Product Accumulation of Office Machine Operations
Process Control Dafa Recording

ELECTRONICS DIVISION San Gabriel, California

Manufacturer of business machines, electronic data-handling equipment. aircraft and missile components.

CIRCIE 54 ON READER-SERVICE CARD

DATA CHART vinued)

Precision miniature wound field d.c. motors in five basic frame sizes (to $21 / 4^{\prime \prime} \mathrm{OD}$ and to $1 / 10 \mathrm{hp}$) and in countless variations are now available from Globe Industries. You can design them into many military and other high quality products because they meet such an enormous variety of power and duty requirements. Examples:

Split-series units reverse rapidly and simply with a SPDT switch. Series units start with relatively high torque, low current drain. Shunt wound varieties offer means for low current control. Universal motors operate on a.c. or d.c. Globe-designed gear reducers, brakes and clutches can be built into the unit, and Globe can efficiently design and build the motor and accessories into a special motorized device.
If you'd like to look into miniature wound field motors of any description, or combine them with other components, ask the largest manufacturer of precision miniature motors first. Request technical Bulletin WF-1. GLOBE INDUSTRIES, INC., 1784 Stanley Avenue, Dayton 4, Ohio

GLOBE INDUSTRIES, INC.
GLOBE CIRCLE 56 ON READER-SERVICE CARD

Motors insulated with Mylar® are smaller... lighter

Motors above have the same rating. but the smaller, lighter one takes advantage of "Mylar" polyester film for slot and phase insulation.
Because of its excellent electrical and physical properties, "Mylar"can be used in thin gauges to help reduce motor size up to 40% and weight up to 33%. The thermal stability of "Mylar" allows motors to run hotter and develop more horsepower from a given frame size.

Insulation of "Mylar" contributes built-in reliability and longer life to appliance motors because its properties do not change over long periodsof continuous operation at high temperatures or when exposed to chemicals, solvents and lubricants. And because "Mylar" is unaffected by moisture, current leakage and shock hazard are cut to a minimum. And yet, motors insulated with "Mylar' frequently cost no more than those

Tough, thin "Mylar" has this unique combination of properties for superior insulating performance.

- Average 4,000 volts per mil dielectric strength (ASTMD-149). Average power factor of 0.002 at 60 cycles.
- Thermal stability from $\cdot 60^{\circ} \mathrm{C}$. to Class B range.
- Chemical and moisture resistance.
- Resistance to aging, abrasion, tearing and rotting.
using other common types of insulation.

Whether you manufacture or buy electrical products, you can get improved performance with Du Pont "Mylar". And, figured on a squarefoot basis, "Mylar" will often cost you less than your present material. For full facts on "Mylar", write for free booklet. E. I. du Pont de Nemours \& Co. (Inc.), Rm. \#14, Film Department, Wilmington 98, Delaware
""Mylar" is D" Pont's registered trademark for its brand of polyeeter film.

Better Things for Better Living . . . Arrough Chemistry

[^0]CIRCLE 57 ON READER-SERVICE CARD

TRANSISTORS-196

STANDARDS

 and FORK OSCILLATOR UNITS -

Our instruments, 40 to 30,000 cycles, are used extensively by industry and on government projects where onduring accuracy and maximum durability are required. Your inquiries on related products are invited.

PRECISION FORK OSCILLATOR UNITS

TYPE 2003
Size $11 / 2^{\prime \prime}$ dia. $x 4^{41 / 2^{\prime \prime}} H_{\text {. Wght. }} 8$ oz. Frequencies: 200 to $\mathbf{4 0 0 0}$ cycles Accuracies:-
Type 2003 ($\pm .02 \%$ at -65° to $85^{\circ} \mathrm{C}$) at 15° to $35^{\circ} \mathrm{C}$) Type W2003 ($\pm .005 \%$ at -65° to $85^{\circ} \mathrm{C}$) Double triode and 5 pigtail parts required. Input, Tube heater voltage and B voltage Output, approx. 5V into 200,000 ohms

TYPE 2007-6

1

PRECISION FREQUENCY STANDARDS

TYPE 2005A
Size $8^{\prime \prime} x 8^{\prime \prime} x$ 714" n High Weight, 14 lbs.
Frequencies:
50 to 400 cycles (Specify)
Accuracy:
$\pm .001 \%$ from 20° to $30^{\circ} \mathrm{C}$
Output, 10 Watts at 115 V
Input, 115 V . (50 to 400 cy .)

TYPE 2121A

TRANSISTORIZED, Silicon Type Size $1 / 1 / 2^{\prime \prime}$ dia. $x s^{1 / /^{\prime \prime} H}$. Wght. 7 ozs. Frequencies: 360 to 1000 cycles Accuracies:

2007-6 ($\pm .02 \%$ at -50° to $+85^{\circ} \mathrm{C}$ R2007-6 ($\pm .002 \%$ at $+15^{\circ}$ to $+35^{\circ} \mathrm{C}$ W2007-6 ($\pm .005 \%$ at -65° to $+85^{\circ} \mathrm{C}$ Input: 10 to 30 Volts, D. C., at 6 ma. Output: Multitap, 75 to 100,000 ohms

TYPE 2001-2
Size $3 \%^{\prime \prime} x 4^{11 / \mathbf{n}^{\prime \prime} x} \times 6^{\prime \prime}$ H., Wght. 26 oz.
Frequencies: 200 to 3000 cycles
Accuracy: $\pm .001 \%$ at 20° to $30^{\circ} \mathrm{C}$ Output: 5V. at 250,000 ohms Input: Heater voltage, 6.3-12-28 B voltage, 100 to 300 V., at 5 to 10 ma .

ACCESSORY UNITS FOR 2001-2

L-For low frequencies multi-vibrator type, $40-200 \mathrm{cy}$.
D-For low frequencies
counter type, $40-200 \mathrm{cy}$.
H -For high freqs, up to 30 KC . M-Power Amplifier, 2W output. P-Power supply.

TYPE 2IIIC Size, with cover
$10^{\prime \prime}$
$x^{\prime \prime}$

> Panel model
${ }^{\prime \prime} x 19^{\prime \prime} x 83^{\prime \prime}$ H
Weight, 25 lbs.
Frequencies: 50 to 1000 cy . Accuracy:
($\pm .002 \%$ at 15° to $35^{\circ} \mathrm{C}$)
Output: 115V, 75W.
Input: $115 \mathrm{~V}, 50$ to 75 cy .
when requesting information, please specify tipe numaer

Reliability comes in 3 small packages...

Sylvania Silicon Rectifiers

Small in size, giants in performance-Sylvania Silicon Rectifiers are quality-controlled for applications in industrial power supplies and magnetic amplifiers.
SYLVANIA offers excellent availability at com. petitive prices of all registered 1 N -types with p.i.v. to 1000 -Volts and forward current ratings to 1-ampere.
ALL 3 packages conform to military requirements
for environment. Modern production techniques, stringent test procedures, careful controls of purity of materials and surface cleanliness minimize contaminants, result in units that feature low leakage, promise long life operation.
Contact your Sylvania Field Office or your Local Sylvania Franchised Distributor for sales information. For technical data on specific 1 N -types, write Semiconductor Division, Sylvania Electric Products Inc., Dept. 225B, Woburn, Mass.

SYLVANLA

Subsidiar of GENERAL TELEPHONE \& ELECTRONICS

in

Individuality

alone is not a true measure of an engineer's creativeness

Of course, it helps a bit.

But we're not asking you to jog around the neighborhood in Bermuda shorts or a souped up Model A to prove you can think for yourself. If, however, this somehow stimulates your thinking process, be our guest.
The main point is, RCA West Coast does not believe an engineer's creative abilities fit a specific pattern. Some of our engineers are conformists. Some are not. Some are individualists. Some are not. But these prime creative qualities they all share-courage, competence, optimism, and the ability to work together as a team. Solving difficult engineering problems. Right now we're looking for these able additions to this group:

Advanced Systems Engineers, Development and Design Engineers, and Project Engineers, with experience in these areas: Electronic Countermeasures, Data Processing and Computer Systems, and Missile Ground Support Systems.
Interested in the brightness of your future at RCA West Coast? If so, check the box at the right.

RCA
 WEST COAST

Call collect or write:

RADIO CORPORATION OF AMERICA
WEST COAST MISIILE AND SURFACE RADAR DIVISION
The name you know is the place to grow!

Manufacturer makes unique guarantee for new "EVEREADY" Energizers with cathodic envelope construction

New Battery Design Makes These Energizers So Reliable They Can Be Guaranteed Leakproof Up to Value of Device Which Houses Them

Union Carbide Consumer Products Company, in answer to the growing need, now offers "Eveready" brand Energizers designed especially to meet the requirements of modern transistorized devices.

MORE POWER, LOWER COST

These "Eveready" Energizers (now available in many different sizes) are guaranteed leakproof and provide more power, longer life and lower operating cost than conventional battery construction. They also offer the radio set manufacturer many cost savings such as the elimination of the contacts needed when round cell batteries are used.

ENERGIZERS NOW GUARANTEED LEAKPROOF

Proof of the complete reliability of these sensational new cathodic envelope batteries can be read in the unprecedented leakproof guarantee which reads: "If this battery is defective through fault of the manufacturer, satisfactory adjustment will be made within the limits of the value of the electronic device"!

NEW ADVANCE IN BATTERY DESIGN GIVES NO. 2762 OVER 3 TIMES LIFE OF 6 D-CELLS

Cathodic Envelope design doubles anode and cathode areas to give high current, low impedance required for transistor circuits, provides volume efficiency unknown to other carbon zinc cells with no side penalties for peak performance!

COMPLETE PORTABILITY

New "Eveready" Energizers ideal for radios, marine depth finders, telephone amplifiers, barricade flashers and similar devices. Make countless additional electronic devices truly portable.

Energizers now available in many different sizes \rightarrow
Write for complete technical
information on "Eveready" Energizers.

DESIGNERS CITE SEVEN

 MAJOR ADVANTAGES!1. No instrument damage from leakage.
2. Reduction of tooling and manufacturing cost for mounting batteries.
3. Elimination of corrosion of contacts.
4. Ease of battery replacement - no reversed polarities to damage circuit.
5. More compact design because Energizers give more energy per cubic inch.
6. Easy availability of batteries through any "Eveready" distributor.
7. Outstanding service life.
 UNION CARBIDE CONSUMER PRODUCTS COMPAMY. Dividion of Union Cerbide Cerperation - 270 Park Avanua, Now York 17, M. Y.

High Froqu

$\begin{gathered} \text { Trpo } \\ \mathrm{Na} \end{gathered}$	mfg	Typs	${ }^{4}$	Max. Retinf ${ }^{\text {a }}$			
				$\underset{(m w)}{w_{c}}$	$\begin{aligned} & \mathrm{T} \\ & \hline \text { (c) } \end{aligned}$	mm/c	v
2 N 17	RA	pnp,FA,ge	20	150	85	-	10
2N602	GT	pnp,DR,ge	20	120	85	2	20
CK17	RA	Pnp, FA, ge	20	80	85	-	10
CK17A	RA	pnp,AJ, $\mathrm{ge}^{\text {e }}$	20	80	85		0
2 M 95	PH	pnp,SA,ge	21	150	140	1.3	25
2N523A	GT	pnp,AJ,ge	23	150	100	2	20
2N1065	GT	pnp,DR,ge	25	120	85	2	0
2-1118	PH	pnp, 5A T,si	25	150	140	1.3	25
2N11184	PH	pnp,SAT,si	25	150	140	1.3	25
2N247	RCA	prp,DR,ge	30	80	85	-	35
2N274	RCA	pnp,DR,go	30	80	85	-	35
2N370	RCA	Pnp,DR, ge	30	80	85	-	20
2N371	RCA	pnp,DR,ge	30	80	85	-	20
2N372	RCA	pmo.DR.go	30	80	85	-	20
2N373	RCA	pnp,DR,ge	30	80	85	-	25
2N374	RCA	pnp,DR,go	30	80	85	-	25
2N54	RCA	pnp,DR,90	30	80	85	-	18
2N1109	TI	pnp,GD,ge	30	30	85	-	16
2N1224	SY	pnp,DD,ge	30	120	100	1.6	∞
2N1224	RCA	pap,DR,ge	30	120	85	-	10
2N1226	RCA	pnp,DR,ge	30	120	85	-	4
2N1395	RCA	prp,DR,90	30	120	85	-	
2N1425	RCA	pnp,DR,ge	33	120	85	-	21
2N1426	RCA	pnp.DR,ge	33	120	85	-	24
2N1108	TI	Pnp,D,ge	35	30	85	-	
2N1110	T1	pnp,GD,ge	35	30	85	-	16
2 NHIII	TI	pnp,GD,ge	35	30	85	-	2
2N1111A	TI	pnp,GD,go	35	30	85	-	x
2 N 1111 B	TI	pnp,GD,90	36	30	85	-	27
2N603	GT	pnp,DR,ge	40	120	85		
2N750	RA	$n p n, D J, s i$	40	150	175	0.75	
2N1107	TI	pnp,GD,ge	40	30	85		
2N1389	RA	$n p n, D J, s i$	40	300	175	0.5	
2N640	RCA	pnp,DR,ge	42	80	85	-	
2N641	RCA	Pnp,DR,go	42	80	85	-	
2N642	RCA	pnp,DR,go	42	80	85		
2N1196	HU	PRP, Ms,si	45	350	200	2	
2 N 248	TI	Pnp, GD,ge	50	30	75	0.6	
2 N 34	PH	pnp,SB,ge	50	20	55	1.33	
2N345	PH	pnp,SA,ge	50	20	55	1.33	
2N604	GT	pnp, DR,ge	50	120	85	2	
3N36	GE	npn,MB,90	50	30	85	0.5	
PT900	PSI	npn,MS,si	50	$\begin{gathered} 125 \\ \mathrm{w} \end{gathered}$	150	1000	
PT901	PSI	npn,MS,si	50	$\begin{gathered} 125 \\ \mathrm{w} \end{gathered}$	150	1000	
2N1197	HU	Pnp,MS, si	55	350	200	2	
2N393	PH	Pnp,MAD,ge	60	25	85	0.63	
2N749	RA	npn, DJ, si	60	150	175	0.75	
2N1388	RA	npn, DJ,si	60	300	175	0.5	
0 Cl 170	ANP	pnp,DJ,ge	70	60	75	2	
2N346	PH	pmp,SB,90	75	20	55	1.3	
2N696	TR	npn, DJ, si	80	$2 w$	175	13.35	
RT5002	RH	nPn, MS, si	120	$3{ }^{3 W}$	175	20	
2N128	PH	pnp,S8,ge	85	25	85	0.4	45
3N37	GE	npn,MB,ge	90	30	85	0.5	
2N384	RCA	pnp, DR, 90	100	80	85		3
2 N 697	TR	$\mathrm{npn}, \mathrm{DJ}, \mathrm{si}$	100	2 w	175	13.3	
2N1180	RCA	pnp,DR,ge	100	80	85	-	3
2N1225	RCA	pnp,DR,sp	100	120	85	-	9
2N1396	RCA	pnp,DR,po	100	120	85	-	
3N34	TI	npn,GD,si	100	125	150	1	
$0 ¢ 171$	AMP	pnp, DJ, ge	100	60	75	2	2
20497	RH	npn,MS, si	120	4 t	175	26.5	
2 M 98	RH	$\mathrm{np}, \mathrm{MS}, \mathrm{si}$	120	4 4	175	26.5	10
2 N 656	RH	mpn,MS, si^{1}	120	4W	175	26.5	IT
2N657	RH	np n, MS, 3 i	120	4w	175	26.5	10
246\%	RH	npr,MS, si	120	2w	175	13.2	180

DATA CHART

A GOOD RUN FOR YOUR MONEY-

New "SCOTCH" BRAND Heavy Duty Tapes offer exceptional life, low rub-off, good resolution

Have problems of tape-life, rub-off and resolution? To cure your headaches in applications that subject magnetic tape to high speeds, pressures, temperatures and low humidity, "Scotch" brand now prescribes two new tapes-Heavy Duty Tapes 198 and 199. They offer plus-performance in a wide variety of temperature and humidity conditions.

Take the matter of wear, for instance. Field tests show that "Sсотсн" brand Heavy Duty Tapes wear five times longer than standard tapes-yet they maintain good resolution and freedom from dropouts over this long haul. Two factors are decisive in this performance-resistance to rub-off and resistance to high temperatures.

Ordinary tapes age fast if the temperature climbs or the relative humidity drops sharply. The binder softens, allowing the oxides to rub off on those costly and sensitive heads.. Further, as an electrostatic charge builds with each pass, stray contaminants are attracted to the tape-and the tape starts to cling to the equipment. In each case-your dropout count mounts.
Not so with "Scotch" brand Heavy Duty Tapes. They boast an extra tough binder system similar to that used in "Sсотсн" brand Video Tape, which after two years is still the only video tape in commercial use. The heavy duty binder system anchors the oxides firmly to the polyester base in a way that resists very high temperatures-minimizing rub-off. Moreover, Heavy Duty Tapes have a conductivity nearly 1000 times greater than conventional tapes. allowing static charge to drain off. Result? Clean, smooth runs with good resolution-a good run for your money.

Performance of this kind is easy to promisemuch harder to deliver. And only experienced "Scotch" brand technology has such a record of delivering the right tape for every application in data acquisition, reduction or control programming.
Check all the tapes in the "Sсотсн" brand line. High Resolution Tapes 158 and 159 pack more bits per inch, offer extra play time. High Output Tape 128 gives top output in low frequencies, even in temperature extremes. Sandwich Tapes 188 and 189 drastically cut head-wear, eliminate oxide rub-off, and wear 10 times longer than ordinary tapes. Standard Tapes 108 and 109 remain the standard of instrumentation.

Your 3M Representative is close at hand in all major cities-a convenient source of supply and information. For details consult him or write Magnetic Products Div., 3M Co., St. Paul 6, Minn.
© 1980 3M Company
"SCOTCN" is a registered trademark of 3M Company. St. Paul 6, Minnosota Export: 99 Park Avenue. Now York, M.Y. In Canada: London, Ontario

SCOT'T゙' BRAMD MAGNETIC TAPE
FOR INSTRUMENTATION
Mimmisota Mimine ano Mamueacturime compant
... mirre risearenis the kit to tomorrow

3M

CIRCLE 64 ON READER-SERVICE CARD

DAYSTROM, incorporated

weston instruments division Reliability by Design

Grouthle

CAPACITORS

UPRIGHT MOUNTING

ENCAPSULATED IN EPOXY

Slim, trim and compact. The spe Slim, trim and compact. The spe-
cially shaped winding is of extended loil construction-equal in all regards to high quality Good-All tubu
lar designs. These two types diffe in that the 602 incorporates a base of epoxy-glass laminate for flush
mounting on circuit boards.

SPECIFICATIONS
Dielectric
 IR af $25^{\circ} \mathrm{C} \quad 75,000$ megohms Voltage Rating - \quad 50VDC Temp. Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Capacity Tolerance To $\pm 5 \%$

TYPICAL 50 VOLT SIZES

E83F EDGE MOUNTING

axial or rabial leads

These special-purpose versions of popular Good-All Type 663UW use precious apace effleciently. Their ratings are conservative, and are equally
suited for military and instrument grade applications.

Ideal transistor "companions" where hermetic sealing In required. Both MIL-C-25A designs yet exceed all requireme this specification.
Dielectrie SPECIFICATIONS
CasectrieMylar Film WindingExtended Foil In af $25^{\circ} \mathrm{C}$...... $\quad 40,000 \mathrm{meg} \times \mathrm{mfd}$. Type 6276
Temperafure RangeFull rating to
$85^{\circ} \mathrm{C}, 50 \%$ derating af $125^{\circ} \mathrm{C}$ DC Voltage Rating $\quad 50$ volts only Type 617C Tomperature RanzeFull rating to $125^{\circ} \mathrm{C}, 50 \%$ derating at $150^{\circ} \mathrm{C}$ DC Vohage Rating

Good-All Capacitors Are Available at Authorized Distributors

A SUBSIDIARY OF THOMPSON RAMO WOOLDRIDGE INC.

SAVE SPACE, WEIGHT AND MAINTENANCE with Versatile Compact MIL Spec Modules

For your electronic/electromechanical packaging problems, consult Oster specialists. Compact, transistorized, MIL spec, hermetically sealed, plug-in modules are avallable for numerous applications.
Typical bullding block basic units are illustrated. Tomperature range is $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$. Basic units can be modifled

easily or completely redesigned to your specific requirement. Oster engineers are specialists in creating densely packaged black boxes. These boxes can help you design more compactness and less woight into your systems. Phone or write your nearest jorn Oster office today.

GENERAL ENVIRONMENTAL CONDITIONS

A. Temperature-
B. Altitude-
C. Humidity-
D. Vibration-
$-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
-1000 Feet to $+80,000$ feet Section 4.4.3 of MIL-E-5272 0.30 inch double excursion from 3 to 18 cycles per second and $\pm 2 \mathrm{~g}$. acceleration from 18 to 500 cycle (Without vibration isolators) Repeated shocks of 30 g . with duration of 11 milliseconds Section 4.6.1 of MIL-E-5272 Section 4.8.1 of MIL-E-5272 Section 4.11.1 of MIL-E-5272

GENERAL PERFORMANCE SPECIFICATIONS

A. Gain Variation-
B. Linearity-
C. Noise-
D. Phase Shift-

Less than 10% due to any given parameter extreme variation.
Better than 10% through the range of 3% to 80% of full output.
Less than 5% of maximum output: Less than 8 degrees.
F. Sal Almosphere-
G. Fungus Growth-
H. Sand and Dust-
E. Crash Safety-

TYPE 9805-20-
SYNCHRONIZER
Same as 9805.19 except Control Transformer Speed is 10 degrees/
second-Min.

Motor Control Phase Generator Output40/20 volts, 1.7 watts, $400 \quad 0.3$ volts/1000 R.N.M. Min, cycles
Motor Reference Phase_- $\quad 100$ degres/second-Min. 57.5 volts, 2.2 watts, 400 Control Transformercycles
Generator Excitation - Mohn Oster Mfg. Co. 4053-19 Generator Excitation- Motor Generator-
57.5 volts, 3.0 watts, 400 John OsterMio 57.5 volts, 3.0 watts, 400 John Oster Mfo. Co. 6232-17
cycles

TYPE sA1-07-SYNCHRONIZER AMPLIFIER

Input Impedanco Greater than 50,000 ohms Voltage Gain-
Great
Control Phase of Moto
Control Phase of Moto Generat
$9805-20$

TYPE 9616-16-A-CHANMEL
 \section*{TYPE 9616-16-A-CHANNE}

TYPE 918-08-DEMODULATOR
AMPLIFIER

Input Impedance-
Greater than 25,000 ohms
Output Impedance-
2830 ohms (Dual)
Voltage Galn-
Greater than 115
Supply Voltage-
28.0 D.C.
Domodulato Amplitier

TYPE ge16-
AMPLIFIER
Greater than 50,000 Output Impedance400 ohms
Voltage Gain-
Greater than 900
Supply Voltages-
100.0 volts D.C.
28.0 volts D.C.

TYPE MOIL-1S-RELAY AMPLIFIER

Input Impedance-
Greater than 15,000 ohms Relay Closing Voltage-
150.175 Millivolts, 400 150.175
cycles

Relay Opening Voltege
Relay Opening Voitagocycles
Rolay Contacte4 Pole, Double Throw-
Dry Circuit Dry Circuit
Relay Amplifier Supply Voltage-

TYPE 818-06-SUMMING AMPLIFIER (DUAL)

Summing Inputs10 (per channel) Galn-
Nomin Nominal 1.0; variable from Input ImpedanceInput impedance- Summing
Dependent on Sum Channel. (50,000 ohms$500,000 \mathrm{ohms}$)
Load ImpedanceGreater than 10,000 ohms Supply Voltage
28 V.

Abbreviati

AJ Alloyed Junctio
Diffused Base Double Diffuse Grown Diffused DJ Diffused Junction DM Diffused Mesa Drift Fused Alloy FA Fused Alloy FJ Fused Junction GD Grown Diffused GE Germanium GJ Grown Junction GR Grown Rate MB Meliback MD MADT MA Micro Alloy

CIRCLE 67 ON READER-SERVICE CARD

Terms

Mesa
 Rate Grown
 Silicon

Surface Barrier
= Collector to emitter capacitance measured across the output terminals with the input ac open-circuited.
$=$ Frequency at which the magnitude of the for-ward-current transfer ratio (small-signal) is 0.707 of its low frequency value.
= Common Emitter-Small signal forward current transfer ratio.
$=$ Common Emitter-Static value of short-circuited forward current ratio.
$=$ Collector current when collector junction is reverse biased and emitter is dc open-circuited.

MESA transistors in miniature or standard packages

$\begin{gathered} \text { TO.5 } \\ \text { Package } \end{gathered}$	TO.18 Replacement	$\begin{gathered} \text { To.5. } \\ \text { Peckese } \end{gathered}$	$\begin{gathered} \text { TO.18 } \\ \text { Replacement } \end{gathered}$
2N332	2N756	2N335	2N759
2N332A	2N756	2N335A	2N759
2N333	2N757	2N336	2N760
2N333A	2N757	2N336A	2N760
2N334	2N758	2N337	2N761
2N334A	2N758	2N338	2N762

The only 2N332-A and 2N337 series silicon transistors made by mesa technique to offer mesa quality. Also available: a complete line of NPN mesa high-frequency amplifier and switching transistors - plus PNP alloy small-signal amplifier types.

INDOX V opens NEW

 design avenues in permanentmagnet applications

Use of Indiana Steel's Indox V by design engineers continues to grow by leaps and bounds. So much so that the company has just completed a new plant solely for the production of this remarkable ceramic magnet material. Designers find it the answer where other materials didn't measure up. Today it's in big volume demand by major users of permanent magnets.

Here's a summary of basic data on Indox V. Investigate this material. It has helped others outstrip competition -both in prod uct design and cost reduction. It could do the same for you. Whatever you're working on, keep this information close at hand -or write for the complete story on Indox V, and ask about design help on any project that involves permanent magnets.

What Is Indox V?
Indox V is a highly oriented barium ferrite permanent magnet mate-rial-the first to be produced in this country on a commercial scale. Like other ceramics, it is a non-conductor, hard, brittle and lightweight-much lighter than metallic alloy magnets It has an energy product $31 / 2$ times that of non-oriented ceramic magnets.

Typical Characteristics of

 Indox VCoorcive Foree (\mathbf{H}_{c}), oersteds $\quad 2,000$
Residual Induction (Br), gauss 3,840
Peak Energy Product ($\mathrm{Ba}_{\mathrm{a}} \mathrm{Ha}_{\mathrm{A}}$) $\quad 3.5 \times 10_{\mathrm{e}}$
Reversible Pormeability
Tomperature Coofficien
of Reversible Flux Change $\quad-0.19 \% /{ }^{\circ} \mathrm{C}$.
Magnotization Fiold for
Saturation, oarsteds Chemical Composition Specific Gravily

10,000

BaFe $\mathrm{Ha}_{2} \mathrm{O}_{12}$

 5.0 or $.181 \mathrm{lb} / \mathrm{cu}$ inIndox V is made of readily available, non-critical materials - an im portant design consideration for long-range production plans. In the precisely controlled manufacturing process, magnet shapes are dieformed from powdered material under high pressure, then sintered in a special high-temperature furnace Standard shapes of Indox V mag.
nets available from stock include wafers, rings and cylinders in most practical sizes. Special shapes and sizes can be produced for unusual applications.

Special Properties

The unique characteristics of Indox V often have indicated its use in areas of design where the application of permanent magnets formerly was considered impossible.
High resistance to demagnetization. The high coercive force of Indox V permits much shorter magnet lengths than is possible with other materials, but larger magnet area is necessary because of lower flux density.
High resistivity. As a non-conductor, Indox V can be used where other materials would create unwanted current paths. In the presence of high-frequency alternating fields,
eddy current losses and associated heating effects are extremely low.

Low incremental permeability. The change in flux that results from a change in demagnetizing influence is lower in Indox V than in any other magnetic material. Thus, Indox V maintains a more constant field in the presence of external fields because variations in its flux are small.

High energy per unit volume. On an equivalent weight basis, the energy product of Indox V is comparable to that of Alnico V - the strongest permanent magnet material available - and $31 / 2$ times that of nonoriented ceramic magnets. Optimum area is $51 / 3$ times the area of an equal Alnico V magnet, about half the area of a non-oriented ceramic. Optimum length is 28 percent that of Alnico V . Since Indox V requires less magnetic material and less space, the cost per unit of usable energy is extremely low.
Resistance to radiation environments. Recent comprehensive studies of the effects of nuclear radiation on permanent magnet materials indicate that Indox V meets or exceeds environmental requirements for equipment likely to be used in nuclear-powered aircraft and ballistic missiles

Alectronic	Loudspeakers lon pumps
Holding	Door closers: refrigerators Conveyors and automation Magnetic switches Magnetic chucks
Electro-	Synchronous drives: Motors DC fiolds AC rolors Generators
Mechanical	Temperature control Magnetic separation

Indox V has proved successful on the above applications. If you want to know more about this outstanding material in relation to your product write. M-7

INDIANA STEEL PRODUCTS
Division of
Indiana General Corporation
valparalso, indiana

INDIANA PERMANENT MAGNETS

CIRCLE 69 ON READER-SERVICE CARD

TRANSISTORS-1E6 High Lev

Cheiactoristics			Switching		Remerks	$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$
ico	Powr. Goin db		Riso Time нsec	Stor. Time нsec		
. 1	-	-	-	-		2N1238
1	-	-	-	-		2N1239
1	-	-	-	-		2N1240
. 1	-	-	-	-		2 N 1241
. 1	-	-	-	-		2N1242
. 1	-	-	-	-		2N1243
. 1	-	-	-	-		2 N 124
2.0						2 N 1073
2.0						2N1073A
2.0						2N1073 ${ }^{\text {a }}$
2.0						8.1085
	-	-	-	-		2N1651
						2N1653
100		40	20	7	min. goin of	2 2 N 1518
100		40	20	7	min. gain of	f 2 N 1519
100		40	20	7	min. goin	- 2 N 1520
100		40	20	7	min. gain of	- 2 N 1521
100	-	40	20	7	$\begin{aligned} & 12 \text { af } 35 A \\ & \text { min. gain o } \end{aligned}$	2N1522
100	-	40	20	7	min. gain of	+ 2 N 1523
3	-	-	-	-	BE ${ }^{\text {a }}$	2N297
3	-	-	-	-	BE, DE	2N297A
3	-	-	-	-		2N618
05	-	-	-	-	MO	2 N 375
0.5						2 N 378
5	-	-	-	-		2N379
0.5						2N380
1 0.5	-	-	12	12.5	CL	2 M 58
0.5 0.2						2M459
0.2	-	-	11.2	2.5		2N511
0.2	-	-	11.2	2.5		2N5I1A
0.2	-	-	11.2	2.5		2N5118
0.2	-	-	11.2	2.5		2N512
0.2	-	-	11.2	2.5		2N512A
0.2	-	-	11.2	2.5		2N5128
0.2	-	-	10.8	2.0		2NS13
0.2	-	-	10.8	2.0		2N513A
0.2	-	-	10.8	2.0		2N5138
0.2	-	-	10.3	2.0		2N514
0.2	-	-	10.3	2.0		2N514A
0.2	-	-	10.3	2.0		2N5148
100	-	-	5	2	2N1OIISig C	2N1011
1.0	33	5				2N387
0.8	33	5				2N386
50	-	-	-	-		2N1038
50	-	-	-	-		2N1039
50	-	-	-	-		2N1040
100	-	40	15	5		2N1358
100		40	15	5		2 N 1412
0.2	-	-	0.7	1.2		2 N 1046
10	- 40	400 mm	3	1		2N1609
10	- 4	400 mm	3	1		2N1610
10	- 400	400 mm	3	1		2N1611
10 30	- 4	400 mm	3	1		2N1612
						0 C 22
30						0 C 3
30 10						0 C 24
10	-	-	5	1		W×1015
10	-	-	5	1		WX1015B
10	-	-	5	1		W×1015C
10	-	-	5	1		W×10150
10	-	-	5	1		W×1015E
10	-	-	5	1		W×1015F
10	-	-	5	1		WX1016
10	-	-	5	1		Wx10164
10	-	-	5	1		Wx 10168
10	-	-	5	1		Wx1016C
10	-	-	5	1		W×10160
10		-	5	1		W×1016E

- 124 Different Sizes and Types
- Supplied Fully Assembled or as Subassemblies
- Subassemblies: Sections, Shafts with Index, Strut Screws, Spacers, Miscellaneous Hardware
- Phenolic and Steatite Grade Insulations
- 1 to 4 Sections-2 to 23 Positions
- Shorting and Nonshorting

Now you can get fast delivery from stock of popular Oak rotary switches.
Order them as completely assembled units or as subassemblies in quantities from 1 to 249 . All stock switches have one fixed and one adjustable stop; grooved shafts for "break-off" to desired length; double-wiping contacts of silver-plated brass (shorting and nonshorting types). Finishes withstand the 50 -hour salt spray test, enabling the switches to be used in most military as well as commercial applications.
These are the same, quality OEM switches which have formerly been available only as custom units in large production quantities. For years they have boen the industry's standard in all types of electronic equipment.
Don't wait, call your Oak representative or the factory for complete details today.

Send For Catalog 399 Showing Complete Stock Line and Prices. Quantities Available on Letterhead Request.

MANUFACTURING CO
250 Cyboum Avo., Dopt. D, Chisege 10, III. Mhonen MOHowk $4-2220$

SWITCHE CHOPPERS VIBRATORS ROTARY SOLENOIDS TUNERS TIMERE ELECTRONIC SUBASSEMELIES
Weat Coast: Oot Electronics Corp., 11252 Playa Court Culvar City, Callf. Moner Exmom 1-6367

CIRCLE 70 ON READER-SERVICE CARD

MOISTURE ABSORPTION
 IS NAUGHT, NIL, ZERO IN CORNING NF RESISTORS

Glass-enclosed, fusion-sealed Corning NF resistors have boiled merrily in salt water for days without showing a jot of change in their electrical characteristics.
These are resistors that are rugged, completely moisture resistant, highly vibration resistant . . . in short, resistors that exceed the requirements of MIL-R-10509C, Char. B, better than any we've seen or heard of The key to such fortitude is our structure. We start with glass rods with metal oxide applied under heat. This in it-
self makes a moisture-resistant, almost self makes a moisture-resistant, almost know if you have ever used our regular N -style resistors.
We encapsulate this basic unit in a glass envelope and apply glass-to-metal seals at the leads...comparable to those in a vacuum tube.

IMMEDIATE DELIVERY - There are two models of this gem in production, ready for quick shipment: the $1 / 8$-watt NF-60
and the $1 / 4$-watt NF-65. Resistance ranges
from 100 ohms to 360 K ohms. Voltage ratings are 250 v and 300 v . Full rating at $70^{\circ} \mathrm{C}$ with derating to $150^{\circ} \mathrm{C}$ More data
Load life
Voltage coefficient $0.001 \% / \mathrm{v}$
Temp. coefficient $0.03 \% /{ }^{\circ} \mathrm{C}$
nsulation resist. . 100,000 megohms To get this and other data for your file just write and ask for Data Sheet CE-2.02 Address: Corning Glass Works, 540 High Street, Bradford, Pennsylvania.

WX1016F	WH	npn, FJ, si	25	150	150	1.4	300
$2 \mathrm{NTO41}$	TI	npn,AJ,go	33	20	100	27	100
OC28	AMP	Pnp,PADT,ge	- 200	13	90	-	80
0×29	AMP	pnp,PADT,ge	200	13	90	-	60
OC35	AMP	pnp,PADT,ge	200	13	90	-	60
0 C 36	AMP	pnp, PADT,g॰	- 200	13	90		80
2 N 48	BE	pnp,AJ,ge	400	25	100	0.5	80
2 N 42 O	BE	Pnp,AJ,ge	400	25	100	0.5	45
$2 \mathrm{N420A}$	BE	pnp,AL,ge	400	25	100	0.5	70
2N637	BE	pnp,A,ge	400	25	100	0.5	0
2N637A	BE	pnp,AJ,ge	400	25	100	0.5	70
2N6378	BE	Pnp, AJ, ge°	400	25	100	0.5	8
2N638	BE	pnp,AJ,ge	400	25	100	0.5	40
2N638A	BE	Pnp,AJ,ge	400	25	100	0.5	70
2N6388	BE	pnp,AJ,ge	400	25	100	0.5	80
2N456	TI	pnp, AJ,ge	430	50	100	0.67	∞
2N457	TI	pnp,AJ,ge	430	50	100	. 0.67	60
2N671	PH	pnp, AJ,ge	700	1	85	. 017	0
2N673	PH	P,AJ,ge	700	1	85	. 017	25
2N675	PH	P, AJ,90	700	1	85	. 017	75
GA52830	WE	Pnp,AJ,90	4 mc	500	85	60	0
GA53242	WE	pnp, AJ,ge	4 me	500	85	60	0
GF45017	WE	Pnp, AJ,ge	4 me	500	85	60	0
2N547	TR	npn, DJ,si	6 mc	5	200	0.045	60
2N548	TR	npn, DS, si	6 mc	5	200	0.045	30
2N549	TR	$n p n, D J, s i$	6 mc	5	200	0.045	60
2N550	TR	npm, DJ, si	6 mc	5	200	0.045	30
2N551	TR	$n p n, D J, s i$	6 mc	5	200	0.045	60
2N552	TR	npn, DJ, si	6 mc	5	200	0.045	3
2N1116	TR	$n p n, D J, s i$	6 mc	5	200	0.045	60
$2 \mathrm{Wl117}$	TR	$n p n, D J, s i$	6 me	5	200	0.045	60
2N1250	TR	npn, DJ , si	6 mc	85	200	0.267	60
STA01	TR	npn, DJ, si	6 mc	85	200	0.27	45
STA02	TR	npn, DJ, si	6 mc	50	200	0.33	60
ST403	TR	$n p n, D J$ si	6 mc	50	200	0.33	15
2N545	TR	npn, $D \mathrm{~d}, \mathrm{si}$	8 mc	5	200	0.045	60
2N546	TR	$n p n, D J, s i$	8 mc	5	200	0.045	30
2 N 1212	TR	$n p n, D J, s i$	10 mc	45	200	0.267	60
2 N 1208	TR	$n p n, D J, s i$	12 mc	85	200	0.267	60
2N1209	TR	$n p n, D J, s i$	12 mc	85	200	0.267	15
2 N 10464	TI	pnp,DJ,ge	20 me	30	100	0.4	10
2 N 1046 B	TI	pnp, $\mathrm{DJ}^{\text {d,ge }}$	20 mc	30	100	0.4	10
2N1072	WE	ppn, DD, si	60 mc	12	150	65	60
2N696	FA	npn, DM, si	100 mc	2	175	-	0
2N697	FA	npn, DM, si	100 mc	2	175		0
2N730	TI	npn, MS, si	100 me	1.5	175	0.01	60
2N731	T1	npn, Ms, si	100 mc	1.5	175	0.01	60
2 N 1131	FA	pnp,DM, si	100 me	2	175	. 0133	30
2N1132	FA	pnp,DMsi	100 me	2	175	. 0133	30
RT5001	Rh	npn,Mose, 81	120 me	3	175	20	0
RT5002	Rh	npm,Moso,si	120 mc	3	175	20	0
RT5003	Rh	npn,Meso, si	120 me	3	175	20	10
RT5004	Rh	npnoMose, si	120 mc	3	175	20	10
2 N 696	FA	npn, DM_{1}, si	150 mc	2	175	. 0133	\cdots
2N697	FA	npn, DM,si	150	2	175	. 0133	1
2 N 717	FA	npn, DM, si	150 mc	1.5	175	. 010	d
2N718	FA	npn, DM, si	150 mc	1.5	175	. 010	${ }^{4}$
2 N 1613	FA	npn,DPs,si	150me	3	200	. 0172	0
2 N 1409	PSI	$\mathrm{npn}, \mathrm{MS}, \mathrm{si}$	175 mc	2.8	150	0.024	y
2N1410	PSI	npn, MS, si	175mc	2.8	150	0.024	4
2N698	FA	npn, DM, si	180 mc	2	175	. 0133	
2N699	FA	npn, DM, si	180 me	2	175	. 0133	0
2N719	FA	npn, DM, si	180 mc	1.5	175	. 010	∞
2N720	FA	npm,DM,si	180nc	1.5	175	. 010	0
2 N 268 A	CL	pnp,AJ,ge	-	14	90	1.5	*
2 N252	FA	npm,DM, si	-	2	175	. 0133	20
2 N 1253	FA	npn, DM_{3} si	-	2	175	. 0133	0

[
CORNING ELECTRONIC COMPONENTS
CORNING GLASS WORKS, BRADFORD, PA.

DATA CHART

Above-Sola plate-filament transformer is built-in component of $B \& W$ Associates lie detector. It supplies plate and filament voltage regulated within $\pm 3 \%$ even when line voltage varies from 100 to 130 volts helps assure accurate operation in field.

Below-Railway Communications Inc. uses Sola line voltage regulator to improve performance and reliRegulator delivers 118 volts stabilized within $\pm 1 \%$ under line voltage variations as great as $\pm 15 \%$.

Build it in or add it on... Sola voltage regulation helps your equipment give full-rated performance

Whether you build it in as a component or add it on as an accessory, a Sola static-magnetic voltage regulator soon pays for itself by keeping your equipment operating at its designed capability.

These units provide a stabilized output voltage even when input voltage varies over a considerable range, and give you eight important advantages over electronic or motor-driven regulators:

1. Ulira-fast response time of $\mathbf{1 . 5}$ cycles or less reduces effects of transients.
2. No moving or renewable parts or routine maintenance.
3. Automatic, continuous regulation; no manual adjustments.
4. Protection against accidental short circuits and excessive overloads for unit and its load.
5. Versatility: Step-up, step-down, plate, plate-filament, tran-sistor-voltage ratios are available to permit substitution in place of non-regulating transformers.
6. Simple, compact design; light weight.
7. High degree of isolation between input and output circuits.
8. Negligible external magnetic field.

This is the Sola Standard Sinusoidal Constant Voltage Transformer, shown in its usual stant accessory-type structure. It continuously regulates output voltage within $\pm 1 \%$ under line voltage variations of $\pm 15 \%$. Because its output is essentially a commercial sine wave (less than 3\% total rms harmonic content at any load above 25% of rating), it is ideal for exacting laboratory applications and instrument calibration, and with equipment sensitive to wave shape .. . designed d-c voltage levels in the load are not affected.
The entire line of sinusoidal regulators is now available at prices formerly charged for static-magnetic regulators without the patented Sola harmonic-free circuit.

This is the Sola Normal-Harmonic Con stant Voltage Transformer, shown in com-ponent-type structure, with end bells and separate capacitor. It offers the same reliability and $\pm 1 \%$ regulation as Type CVS (above), and is suitable for the many applications where a commercial sine wave voltage supply is not required. It is widely used for voltage regulation on filaments, solenoids and relays.
Because prices of these normal-harmonic units have been substantially reduced, voltage regulation may now be possible in many of your applications.
Sola static-magnetic voltage regulators are available in a wide selection of mechanical structures and ratings in over 40 stock models, and your custom designs can be delivered in production quantities.

SOLA

BOLA ELECTRIC CO
4633 West 16th Street CIRCLE 73 ON READER-SERVICE CARD

TypeNo.	Mfg.	Type	$\begin{aligned} & \mathbf{f}_{\sigma_{0}} \\ & \mathrm{MC} \end{aligned}$	Mox. Roting		
				$\begin{aligned} & w_{c} \\ & (m w) \\ & (m w) \end{aligned}$	$\begin{aligned} & T_{i} \\ & C \end{aligned}$	${ }^{\circ} \mathrm{C}$
2N327A	RA	Pnp,FA,si	0.2	385	160	
2 N 619	RA	npn, FA, si	0.2	385	160	
$2 \mathrm{NlOS4}$	RA	pnp,FA, si	0.2	250	160	
2 N 1074	RA	npn, FA, si	0.2	250	160	-
2 N 1037	RA	pnp,FA, 90	0.25	250	160	
2N328A	RA	Pnp, FA,	0.3	385	160	
2 N 620	RA	npp, FA, si	0.3	385	160	
2 N 1035	RA	pnp, FA, si	0.3	250	160	-
2 N 1075	RA	npn, FA , si	0.3	250	160	
2N1077	RA	npo, FA, si	0.3	385	160	-
2 N1036	RA	pnp, FA, si	0.4	250	160	
2N329A	RA	Pnp,FA, si	0.5	385	160	-
2 N 621	RA	npp, FA, si	0.5	385	160	
2 N 1057	GE	pnp,AJ,go	0.5	240	100	4
2N1076	RA	npn, FA, si	0.5	250	160	-
2N670	PH	pnp, AJ, 90	0.7	300	85	5.0
2N674	PH	Pnp, $\mathrm{A}, \mathrm{s}, \mathrm{g}$	0.7	300	85	5.0
${ }^{2} 1228$	HU	Pnp, FJ, si	0.8	250	200	
2 N 1229	HU	Pnp, FJ, si	0.8	250	200	
1234	HU	pnp, A, s, i	0.8	400	160	3
124	HU	prp, A, si	0.8	1000	160	7.4
2 2327A	Hu	Pnp, $A J, s$	1.0	385	160	
2 N328A	HU	pnp, A, , si	1.0	385	160	3
2N329A	HU	pnp, A, si	1.0	385	160	3
2 N 331	RCA	pnp, AJ, 80	1.0	200	85	3
2 N 1008	BE	pnp,AJ,	1.0	400	85	. 15
2 N 10084	BE	pnp, AJ, 9	1.0	400	85	
${ }^{2}$ N10088	BE	pnp, AJ, 90	1.0	400	${ }^{85}$. 15
2 N 1056	GE	Pnp, $\mathrm{A}, 1,90$	1.0	240	100	,
2 N 1176	BE	pnp,AJ, go	1.0	300	85	0.4
2N1176A	BE	pnp, AJ, go	1.0	300	85	0.4
2 N 1176 B	BE	pnp, AJ, 90	1.0	300	85	0.4
2 N 1230	HU	Pnp, FJ, si	1.0	250	200	
2 N 1231	HU	pnp, FJ, si	1.0	250	200	
2 N 1232	hu	pnp, FJ, si	1.0	250	200	-
2 N 1233	HU	pnp, FJ, s	1.0	250	200	
1232	HU	pnp, A , si	1.0	400	160	3
1233	HU	$\mathrm{pnp}, \mathrm{A}, \mathrm{l}, \mathrm{il}$	1.0	400	160	3
1242	HU	pnp, A, , si	1.0	1000	160	7.4
1243	HU	pro, A, , si	1.0	1000	160	7.4
2 N 1234	HU	Pnp, FJ, si $^{\text {s }}$	1.2	250	200	
1228	HU	pno, A, s, i	1.2	400	160	3
1229	HU	Pnp, A, s, i	1.2	400	160	3
1230	HU	Pnp, A, , si	1.2	400	160	3
1231	HU	Pnp, A, s si	1.2	400	160	3
1238	hu	Pnp, A, si	1.2	1000	160	7.4
1239	HU	Pnp, A, , $\mathrm{s}^{\text {a }}$	1.2	1000	160	7.4
1240	HU	pro, A, , si	1.2	1000	160	7.4
1241	HU	Pnp, A, , i	1.2	1000	160	7.4
2 N 12	SY		1.5	100	85	1.66
2N519	IND	pnp, $A \mathrm{~A}, 80$	1.5	150	85	2.5
2N519A	IND	Pnp, $A \mathrm{~A}, 90$	1.5	150	85	2.5
B.1154A	BE	pnp, A, 80	1.5	400	100	. 15
8.1154	BE	pnp, $A, 1,90$	1.5	400	100	. 15
2N1125	PH	pnp, AJ, 90	1.6	300	85	5
2 N 536	PH	pnp, $A, 90$	2.0	50	85	0.83
${ }_{2} \mathbf{N} 679$	SY		2.0	150 150	85	
2 N 1223	GT	Pnp, A, , si	2.0	150	75	1.2
OC80	AMP	pnp,PADT,98	2.0	550	25	
2N438	SY	npo, AJ, 90	2.5	100	${ }^{85}$	1.6
2 N 356	RCA		3	100	85*	
2 2356A	GT	npn,A, ${ }^{\text {de }}$	3	150	100	12
$2 \mathrm{N1220}$	GT	pnp,A, A, si		150	150	1.2
2 N 1353	IND	pnp, A, ge	3.5	200	85	${ }^{3.33}$
2 N 385		npr, $A J, 8$	4	150	100	

DATA CHART

swristice	Switching

 する

Rise	Stor.
Time	Time

	Remarks	$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$
- - -	GT	$\begin{aligned} & \text { 2N327A } \\ & \text { 2N619 } \\ & \text { 2N1034 } \\ & \text { 2N1074 } \\ & \text { 2N1037 } \end{aligned}$
	GT	$\begin{aligned} & \text { 2N328A } \\ & \text { 2N620 } \\ & \text { 2N1035 } \\ & \text { 2N1075 } \\ & \text { 2N1077 } \end{aligned}$
		$\begin{aligned} & \text { 2N1036 } \\ & \text { 2N329A } \\ & \text { 2N621 } \\ & \text { 2N1057 } \\ & \text { 2N1076 } \end{aligned}$
	Pulse Amp	$\begin{aligned} & \text { 2N670 } \\ & \text { 2N674 } \\ & \text { 2N1228 } \\ & \text { 2N1229 } \end{aligned}$
-	T0.5 Package	1234
	coaxial package TO-5 pockage	$\begin{aligned} & 1244 \\ & 2 \text { N327A } \end{aligned}$
	TO. 5 pockage	2N328A 2N329A
-	$B E, ~ U S$	2 N 331
-		2 N 1008 2N1008A 2N10088
-	neon indicator	2N1056 2N1176
		$\begin{aligned} & \text { 2N1176A } \\ & \text { 2N1176B } \\ & \text { 2N1230 } \\ & \text { 2N1231 } \\ & \text { 2N1232 } \end{aligned}$
-		$\begin{aligned} & 2 \mathrm{~N} 1233 \\ & 1232 \end{aligned}$
	TO-5 package	1233
	cooxial pockage	1242
	coaxial package	1243
-		2N1234
	T0.5 package T0.5 package	
	TO-5 package	1230
	TO-5 package	1231
	cooxial package	1238
	coaxiol pockage	1239
	coaxiol package	1240
	coaxial pockage	1241 2 N312
2-		2N312
	US, CR	2N519
0.7	US, CR	2N519A
-		$\begin{aligned} & \text { B-1154A } \\ & \text { B.1154 } \end{aligned}$
-		2N1125
-		2N536
5	.	2N679
		2N1223 OC80
		2N438
0	GT, SY, CR	2N356
		2N356A
		2N1220 2N1353
		$\begin{aligned} & \text { 2N1353 } \\ & \text { 2N385A } \end{aligned}$

OHMITE RESISTORS

THE EXACT RESISTOR YOU NEED-WHEN YOU NEED IT-FOR EVERY INDUSTRIAL AND MILITARY REQUIREMENT

Fixed . . . adjustable . . . Iapped . . . noninductive . . . precision metal film and encapsulated wire-wound . . . thin type . . . high-current-practically any resistor you need, you can find in the Ohmite line.
World's largest stock for immediate delivery-Chances
are Ohmite's huge stock of several million resistors in are Ohmite's huge stock of several million resistors in more than 2000 sizes and types contains a unit that fits your requirements. Many types are also available through Electronic Parts Distributors located across the Nation.
Y OUR Customers know the value of ohmitr qualityWhen a purchaser sees Ohmite resistors in a piece of equipment, he knows that equipment is designed and built for dependability.

Ohmite engineming assistance assures the right unitSelecting the right resistor for the job is sometimes a tough problem. Why not call on Ohmite application engineers to help out. Take advantage of their specialized skills and background.

Write on Company Letterhead for
Catalog and Engineering Manual 58

OHMITE

OHMITE MANUFACTURING COMPANY
3643 Howard Street, Skokie, Illinois

Quality Components

RHEOSTATS - RESISTORS - TAP SWITCHES RELAYS - R.F. CHOKES - TANTALUM CAPACITORS VARIABLE TRANSFORMERS - GERMANIUM DIODES

When radio telemetry transmission is the link between airborne data gathering and ground data acquisition, rely on Radiation's Model 3115 FM Transmitter. This ruggedized unit has proved its reliability and dependability again and again in missile projects and on test sleds.
Model 3115 provides true linear FM output. Modulation frequency response is within 0.5 db from 100 to $100,000 \mathrm{cps}$, and carrier frequency stability is within $\pm 0.01 \%$. RF power output is 2 watts. The unit is available in two crystal-controlled models. which cover the 215 to 260 mc telemetry band.

For more complete technical data on the Model 3115, write for a new bulletin, RAD B-102, to Radiation Incorporated, Dept. ED.7, Melbourne, Fla.
the electronics field also melies on radiation for.. RADIPLEX-50-chonnel low-level multiplexer with broad dala processing applications. Fealures rugged solid state circuirry, almost unlimited programming flexibility, nique modular construction for compactness and excep. lional ease of operation and maintenance.

RADICORDER-Multistylus recorder provides high-speed instantaneous readout for wide range of data acquisiion or processing systems. Eliminales necessity of eleccompuler work loads.
tDMs - Telegroph Distortion Monitoring System pin points type and source of trouble on teletype, data processing and similar communications links without inlerrupting iraffic. Ulira-compact TDMS can replace most test equipment now required for teletype main lenonce ond monitoring.

-10)
RADIATION

TRANSISTORS-190

DATA CHART
ntinued)

metron	arics	Switch			
	$\begin{aligned} & c_{\text {coo }} \\ & \mu \mu / \end{aligned}$	$\begin{aligned} & \text { Rese } \\ & \text { Time } \\ & \hline \text { Beoc } \end{aligned}$	$\begin{aligned} & \text { Stor. } \\ & \text { Time } \\ & \text { Himec } \\ & \text { HBC } \end{aligned}$	\% Remarks	Type* No.
2.0	14	1.0	0.3	3 US,5Y,RA, IND,CR	2 M 25
25	-	-	-		2 N 1027
25	7	-	-		2 N 1028
20	$\overline{7}$				${ }^{2} 11605$
2	14	0.5	0.3		CK25
6	12	0.55	0.5	CR	2 N 395
1	14		-	US, CR, SY	2 N 520
1	14	0.9	0.7	7 US, CR	2 H 200 A
6	20	. 70	. 50	TO-S, US, CR	2 N 1302
6	20	. 40	. 9	CR	2 N 1303
2.5	12	. 55	. 5		2 N 1354
. 6					2 N 123
1	14	1.0	0.2	IND, US, CR	2 N 315
1	14	0.9	0.4	IND, US, CR	2 N 315 A
6	-				2 N 364
5	-				2 M14
10	-	0.5	0.7	CR	2M39
6	20	-	-		2 M 50
20	-	2	1		2 N 576
6	-	0.85		, $3 \mathrm{IND}, \mathrm{US}, \mathrm{CR}$	2 N 78
8	-	0.35		SY, CR	2N585
2.5	12	-	-	CR	2 N 658
5	10	0.1	0.1	CR	2 N 1012
10	15	-	-		$2 \mathrm{N1123}$
5	12				2 N 1348
3	10				CT1658
10	-	2.5	0.7	CR	2 N 37
5	-	0.6	0.3	GT, SY,CR	2 N357
3	14	0.5	0.5	CR	2 N357A
2	14	1.0	0.3	US, RA, SY, TR, CR	2M426
3	12	1.0			2 N 1313
2	14	0.5	0.3		CK26
15	-				${ }_{2}^{2 N 100}$
30	-	$\stackrel{0.25}{-}$	0.20		2 N 1090 2 N 1114
50	7	-	-		2 N 1219
	15	0.9	0.5		GT123
6	15	0.45	0.90	SY	2 N 123
5	10	0.6	0.4	SY,CR	$2 \mathrm{N388}$
6	12	0.4	0.6	TI,GT, SY, CR	2N3\%
10	-	2	1		2N576A
6	-	0.36	0.33	$33 \mathrm{IND}, \mathrm{US}$, CR	2 N 79
6	-	0.20	0.20	US, IND, CR	$2 \mathrm{NSE1}$
3	14	0.4	0.5	SY,CR	2 N 38
6	-	0.20	0.20		2 N 53
	15	-	-	CR	2 N 597
s	12	-	-		2 N 622
	10	1.0			2 N 1280
2	15	. 45	. 9		${ }^{2 \mathrm{~N} 12 \mathrm{~A}}$
,	20	. 45	. 50	TO-S, SY, CR	2 N 1304
	20	. 28	. 80	T0.5,CR	2 N 1305
	12				$2 \mathrm{N1347}$
	12				2 N 1350
	12				2 N 1351
	12	. 4	. 6		2 N1355
	12	. 4	. 6		2 N 1356
	15	-	.		211478
	2.5	0.4	0.7	USAF 2 2167-MIL	21167°
	14	0.4	0.4		21358A
	12	-	-	CR	2 ¢394

What you should know about Analog Computers

JTudging from the literature, most discussion of analog computers turns on form rather than function.
Every computer manufacturer, including Donner, is ready to tell you all about their designs, right down to the last microvolt. Few spend their literary effort in telling you how to use them and what kind of problems are amenable to analog computer solution. Not too strangely, this is what you, the prospective user, wanted to find out in the first place.

HOW AN ELECTRONIC ANALOG COMPUTER SOLVES PROBLEMS

A mathematical expression which defines the dynamic behavior of a particular physical system also describes the behavior of all other analogous systems. A general purpose analog computer can be programmed to behave as one of these analogous systems. So programmed, it can be used to explore the characteristics of the system or to "solve" the describing equations. Typical problems range all the way from explaining the laws of classical and modern physics to the physiological relations of life itself. Here are some of the fields where analog computers are in use: antenna design, medical research, cybernetics, electron trajectories, nuclear reactor design, fluid me-

Assombly of Donner 3100 series high accuracy medium size analos computers in quantity lots provides the user with more value at lower cost. Complete Donner 3100 Computer Consoles start at just under $\$ 11,000$.

The Donner 3400 Desk-top Computer functions as a compact, versatile alectrical model of a dynamic system.
chanics, heat transfer analysis, aerodynamics, meteorology, classical and nuclear physics, chemical kinetics, petroleum, engineering, servo system analysis, auto- and cross-correlation, and economic forecasting
Basic computing elements in an electronic analog computer are de amplifiers, precision components (resistors, capacitors, and potentiometers), and non-linear accessories (multipliers, function generators, and transport delay simulators).
By interconnecting the computing elements at a patchboard, varying voltage amplitudes can be integrated, summed, differentiated, multiplied, divided, altered in non-linear fashion, and otherwise operated on as directed by a mathematical equation. The answer, which appears as a varying voltage, can be visually observed on a voltmeter or an oscilloscope and permanently recorded by any one of several plotting devices.
The analog computer user can take an equation, change the coefficients at will, and get whole sets of solutions with amazing ease and speed. He can get these results to accuracies of 0.18 or better for a very modest investment. Small Donner computers begin at just over $\$ 1,000$.

ANALOG OR DIGITAL

The chief advantages of the analog technique are speed, economy, and flexibility. With the analog computer, you get a genuine insight into the response of the system to both internal and external stimuli. No other ap-
proach can bring the investigator into such intimate contact with the system. Digital computers sometimes provide more accurate results, but they seldom give the user the same knowledge because they are at best only machines that compound arithmetic information. Unlike digital computers, analog computers actually behave just like the simulated systems.

two new publications

PROVIDE MORE INFORMATION

If you are interested in learning more about the application of analog computers, copies of Donner Tech Notes *1 and \#2 are available from your nearby Donner engineering representative or directly from the factory. Tech Note *1 is titled "How to Simulate a Non-Linear Control System with an Analog Computer;" Tech Note ${ }^{*} 2$, "How to Use and Program Analog Computers."
Donner Scientific specializes in the manufacture of accurate fixed and general purpose analog systems designed to analyze, measure, and control dynamic inputs. Complete technical information and informed applications assistance can be obtained from your nearby Donner engineering representative or writing Dept. 36

sBe Galindo - CONCORD, CALIFORNIA Phone: Mulberry 2-6161
Soo us at Wescon

Solid State Reliability " 10 mc Counter

The CMC 700 Series is the only major breakthrough in counting, timing and frequency measuring equipment in the past 10 years. Here is the first successful application of transistors to high frequency counting and timing. Transistors perform all the functions in CMC's 700 series that required 63 tubes in old style counting equipment. These are the most reliable counters ever made.

TRUE DIGITAL LOGIC CIRCUITRY

By answering an obvious need for a completely new. up-todate approach to counting and timing instrumentation, CMC has produced solid state instruments with greatly simplified circuitry, using logic "and" and "or" gates.

LIGHT AND SMALL,

LOWER POWER DRAIN

Each 700 series instrument weighs only 27 pounds. measures 7 inches high, 17 inches wide, and 14 inches deep. Power consumption is a meager 46 watts. $1 / 10$ the amount for vacuum tube models.

DO ALL THESE JOES

Measure frequency from dc to 10 mc , time interval from $0.1 \mu \mathrm{sec}$. ratio 1 cps to 1 mc and unlimited multiple period selection. Frequency converters available for higher frequencies. The counter also generates time interval marker pulses from $1 \mu \mathrm{sec}$ to 1 second. Data can be presented on standard decades or inline Nixie tubes. The 700 series will operate digital recording equipment, punches, inline readouts, and other data handling gear.

These Features, Too-Decade count-down time base - frequency divider circuits never need adjustment. Accuracy, ± 1 count \pm oscillator stability. Sensitivity, 0.25 v rms; input impedance, 25 k ohms/volt.

And The Price-Higher than vacuum tube models. But you can save the difference on down time in the first year. Model 727A Universal Counter-Timer, \$2.750; Model 707A Frequency-Period Meter, $\$ 2.575$; Model 757A Time Interval Meter, $\$ 1.975$. Rack mount optional at no extra cost. All prices f.o.b. Sylmar, California.

More Information Available - Your nearby CMC engineering representative will be happy to arrange a demonstration and provide you with complete technical information. Or you may write Department

1上w－－－．	の机运边	こんご馬	気馬びび1	1馬気，		べいべ	ニスさNơ	1 いたざ	1玉ムべす	いだへい	ニス1 N゙	点邱
$\stackrel{\circ}{\circ} \dot{\circ} \dot{\circ}$		1110	姣号，1－¢	－icis	$\dot{0} \quad \infty$		ఒう む̇N	10000	$\dot{j} \circ \circ \text { io }$	1110	1%	
웅	1号，ذid	1110	边，1－	운 㑾	io	1 응ํu		，ioiolio	잉우	1110	160	
						$\begin{aligned} & \overline{\mathrm{z}} \\ & \overline{\mathrm{c}} \end{aligned}$					$\begin{array}{ll} \text { cin } \\ \underset{\sim}{0} & 9 \end{array}$	年边
			${ }_{\omega}^{N}$							N N N N N N N N N N N		\％${ }_{\circ}^{-7}$

NEW DAP TRANSISTORS SWITCH 5 TIMES FASTER

COLLECTOR－EMITTER SATURATION VOLTAGE CHARACTERISTICS FOR 2N1073，A，B

ABSOLUTE MAXIMUM RATINGS							
$\begin{aligned} & \text { TYPE } \\ & \text { MUMBERS } \end{aligned}$	$\begin{aligned} & \text { Vee } \\ & \text { Vdc } \end{aligned}$	$\begin{aligned} & V c b \\ & V d c \end{aligned}$	$\begin{aligned} & \text { Veb } \\ & \text { Vdc } \end{aligned}$	$\begin{gathered} \text { lc } \\ \text { Adc } \end{gathered}$	${ }_{\text {We }}{ }^{\text {P }}$	r Storage	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { 2N1073 } \\ & \text { 2N1073A } \\ & \text { 2N1073B } \end{aligned}$	$\begin{aligned} & -40 \\ & =80 \\ & -120 \end{aligned}$	$\begin{aligned} & =40 \\ & =80 \\ & -120 \end{aligned}$	10	10	35	-60 to +100	100

Ideal for such applications as：ULTRASONICS－HORIZONTAL OUTPUT
AMPLIFIERS FOR TV OR CATHODE RAY TUBES • POWER CONVERTERS HIGH CURRENT AC SWITCHING－CORE DRIVERS • HI－FI

CIRCLE 78 ON READER－SERVICE CARD

Higher breakdown than ordinary transistors also a DAP feature．
Now design engineers are freed from many of the limitations im－ posed by ordinary germanium posed by ordinary germanium manium PNP Diffused－Alloy－ manium PNP Diffused－Alloy－ Power DAP transistors can
switch up to 10 amperes with switch up to 10 amperes with typical speeds of a microsecond． collector－to－emitter breakdown voltage－up to 120 volts－the new transistors provide lower input resistance，controlled current gain， and higher cut－off frequency．Par－ ticularly suited to high current， high frequency switching，the DAP transistor＇s exclusive fea－ tures will suggest to the design engineer many new applications which，until now，have not been feasible．

NEW BENDIX SEMICONDUCTOR CATALOG on our complete line of power transistors，power rectifiers and driver transistors available on request．

Bendix offers many challenging opportunities in semiconductor engineering and sales．Write Personnel Manager for full details．
*trademar
＂trad
SEMICONDUCTOR PRODUCTS
Red Bank Division

17 E Providencio Avonue，Burbonk，Colliformio Midwast Salos Ofice 2N565 York Road，Elmhurst，winois
Now England Sales Office：
Lloyd Road，Towksbury，Massochun
Export Soles Office：Sendix Intornational Division，
205 42 nd Sroel，Now York 17，Now York
Conadion Affiliale Computing Dovises of Conoda，Lid，
P．O，Box 508 ，Ontowa 4，Ontorio，Conado

FOR TECHNICAL ASSISTANCE AND SERVICE CONTACT THE TRANSITRON FIELD OFFICE NEAREST YOU AS LSTED BELOW.
baltimore, Maryland
2319 Maryland Ave.CHesapeake 3-3220
Boston, Massachusetts
168-182 Albion St.
Wakefield, Mass...................CRystal 6.5640
camden, New Jersey
227 S. Sixth St. WOodlawn 6-2877
chicago, Illinois
6641 W. North Ave.
Oak Park, III. \qquad
cleveland, Ohio
14625 Detroit Ave.
Lakewood, OhioACademy 1-9191
dallas, Texas
511 Braniff Airways Bldg.
Dallas 35, TexasFLeetwood 7.9448
DAYton, Ohio
379 W. First St. BAIdwin 4.965t

denver, Colorado

First National Bank Bldg.
621 Seventeenth St.AComa 2-1686
detroit, Michigan
2842 West Grand Blvd.TRinity 5-2440
kansas city, Missouri
Wirtham Bldg.
31st and Troost Sts.VAlentine 1-1819
LOS ANGELES, California
6362 Hollywood Blyd.
Hollywood 28, Calif. Hollywood 2-2381
newark, New Jersey
1060 Broad St.
..........MArket 3-3151
ORLANDO, Florida
\#10 Jacklind Bidg.
205 E. Jackson St.
.................CHerry 1-4526
PhoEnix, Arizona
2727 North Central Ave.CRestwood 7-3366
ST. PAUL, Minnesota
Griggs-Midway Bldg.
1821 University Ave. Mldway 6-1891
SAN FRANCISCO, California
535 Middlefield Rd.
Palo Alto, Calif................... DAvenport 1-2064
seatrle, Washington
3466 East Marginal Way. MAin 4.0783
sYracuse, New York
2360 James St....................... . HOward 3-4502
winston-salem, North Carolina
Nissen Building
310 W. Fourth S
.. PArk 3-0363

Transitron

electronic corporation 4 wakofield, measachucotts
 CIRCLE 79 ON READER-SERVICE CARD

a major advance from Transitron...

DIFFUSED MESA TRANSISTORS for every power range!

...WITH ADVANCED PACKAGES, HIGH VOLTAGES,

- Now in stud-mounted package

For regulated power supplies and amplifier output stages replaces 2 N1047-50 and 2N1483-86-offering low Re0, good Beta linearity and voltage ratings to 120 V .

Type			Maximum Voltace (Volts)	Tyydeal Saluration Rechbtance (Ohms)	Typiced Voliage (Volts)
2 21647	20	25	20.	1.7 - 1a.	2014.
2N164	20	25	1200.	1.7 © 1A.	2 1a.
2N1619	20	46	cov.	1.1 14.	$2 \cdot 1 A$.
2N1650	20	6	120 V .	1.701 A .	2014.

HIGH POWER
TRANSISTORS

Available in two package styles - $11 / 16^{n}$ hex stud mount and square flange

For regulated power supplies and amplifier output stages replaces 2N1015-16, 2N424, 2N389, 2N1487-90 - with low Ra (typical .8 ohms), good Beta linearity, high cut-off frequencies, and high voltage.

Type		$\begin{array}{\|l\|} \hline \text { Maximum } \\ \text { Colicetor } \\ \text { Curront } \\ \text { (amps) } \end{array}$	\square	MaximumSalurationResistance(ohms)	MaximumDC InputVotase(Votis)	$\begin{aligned} & \text { DC 8etp } \\ & 2 \mathrm{amp} \end{aligned}$	
						Min.	Max.
$\begin{aligned} & 2 N 1516 \\ & 2 N 1210 \end{aligned}$	30	5	60	1832.	$3{ }^{\text {a }} 2 \mathrm{Aa}$.	15	75
$\begin{aligned} & 2 N 1617 \\ & 2 N 1217 \end{aligned}$	30	5	80	1824.	$3{ }^{\text {c }} 2 \mathrm{~A}$.	15	75
$\begin{aligned} & 2 N 1618 \\ & 2 N 1620 \end{aligned}$	30	5	100	1; 2A.	3 (3) 2A.	15	75

WRITE FOR BULLETIN TTE-IMG

With these new transistors, Transitron offers improved performance and outstanding features in all power ratings from 100 microamps to 5 amps . Each functions in a wide operating range - permitting use of fewer types, simplifying equipment manufacture. All provide the ruggedness and reliability of mesa silicon construction. All are available now, at prices competitive with lower-performance devices.

COMPUTER DESIGMERS ATTENTION

Watch for announcement of Transitron's revolutionary now switching device coming next month and of WESCON show!

Booth 2638-39

HIGH CUT-OFF FREQUENCIES, LOW R Rs $^{\text {AYD }}$ BETA LINEARITY

For low level high voltage switching and amplification. Re places 2N332-2N343 with higher cut-off frequencies (30 mc), lower $R_{\text {ca, }}$ smaller sized TO-18 package, and higher voltages.

SMALL SIGNAL TO-18						
Tyoe	Maximum Vollage	Minimum DC Beta			$\begin{gathered} \text { Maximum } \\ \text { Powef } \\ \text { Dissipation } \\ \text { E 25 C } \\ \text { Ambient } \\ (\mathrm{mw}) \end{gathered}$	TypicalSaturationResistam(ohma)
		$5 \delta_{\mathrm{ma}}$	$\begin{gathered} I_{c} \\ 5 \mathrm{~m} \end{gathered}$	$\begin{aligned} & \mathrm{l}_{\mathrm{e}} \\ & 50 \mathrm{man} \end{aligned}$		
ST1504	60	15	20	20	300	40
STI505	100	15	20	20	300	50

- Collector lead isolated from case - greatly simplifying heat dissipation measures and increasing roliability
- Include highest standard voltage ratings available (to 125V - for extra safoty margin against overloads.
To replace 2N332-343, with improved high frequency characteristics, good Beta linearity, and low $\mathrm{R}_{\text {es }}$.

Typo	MaximumColilicelorVoltege(volts)	$\begin{gathered} \text { Minimum } \\ \text { Bota } \\ \hline \end{gathered}$			Maximum Power Dissjpation (Watts) $-25^{\circ} \mathrm{C}$ Cese	$\begin{gathered} \text { Maximum } \\ \text { Saturation } \\ \text { Resiatince } \\ \text { (ohms) } \end{gathered}$
		$\begin{aligned} & \mathrm{l}_{\mathrm{c}} \\ & \lim _{\mathrm{AC}} \end{aligned}$	$\begin{gathered} \mathrm{l}_{\mathrm{e}} \\ \mathrm{sman}_{\mathrm{AC}} \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{IC} \\ 50 \mathrm{ma} \\ \mathrm{DCC} \\ \hline \end{array}$		
- 2 N339A 1	60	15	25	20	1	50
-2N340a	85	15	25	20	1	70
-2n3ulat	125	15	25	20	1	70
-02N1054	125	$20(D C) \bigcirc 200 \mathrm{ma}$			5	20
-002N696	60	20(DC) 3 (150 mm			2	10
-000 2N697	60	$40(D C)$ O 150 ma			2	10

- WRITE FOR BULLETIN ITE-1335J1 * WRITE FOR BULLETIN TTE-139E.2
~- WRITE FOR BULLETIN TEE-13558-8 coodWMTE FOR BULLETIN TTE-LEBE-4

Transitron

electronic corporation wakefield, melrose, boston. mass.

Leadership in Semiconductors
NOW
OFF-THE-SHELF DELIVERY FROM THESE FULLY-STOCKED TRANSITROM IMDUSTRIAL DISTRIBUTORS $\begin{aligned} & \text { IN PROANTITIES } \\ & \text { FROM } \\ & \text { I.999 }\end{aligned}$

 CALIFORNIA, Inglowood I
 ORegon D-71163
CALIO
DenNia, Long Boech
 CALIFORNIA, Los A Bell Eloclionic Corp.
1323 W Florence Avo. PLousbin 2-7191
CALFORNI. Menlo Po

LALIS India St
BEtmont 9.0361

 MINNEESTA, ST, Paul 1

Gopher Electronics Co | 331 Minnoserata st. |
| :--- |
| CApilol | $\mathbf{- 9 6 6 6}$. MISSOUR1, Kansas City Bursten Applabee C

$10!2.104 \mathrm{McGios}$ St
 MISSOURI, STL Lowis
Interstal Supoly Co
Co Mats cusine St:
flandors $1-7585$ MEW HAAMPSHIRE

lat
NAtional 4.4005

CALIFORNIA, San Francis
Bothuna
Bien
321

 RE Eent 3.7135 NEW YORK, Long Island City

 COLORADO, Den 621
acomet 2.6208

AComa 2-6208

FLORIDA. Cocos
Thurow EActronics,
sho st. Johns st.
3no sf. Johni
ME 6.6331

FLORIDA, OrIando
25 W. Centr21
CHery 1 1-3693

121 so wale St. OTSH 1.6060
GEORGIA, Allonto The Slotis. Friedmen Co, 100.112 N Jofferzon st.
 $\begin{array}{ll}\text { 63 Junipor sti. } \\ \text { TRinity } 3-252 i & \text { OKLAMOMA, TuI } \\ \text { Redia }\end{array}$

Tol. 506 -095
RLIMOIS, Chrazo
lidel mest Madison Sí.
INDIAMA. South Bend 24 RHODE ISLAND, Providence
NDDIAMA. SOuth Eond 24
Radio iostibuting Co., Inc.

Mis Centen Poininl ko., NE.
KANSAS Wichite
Radio Supoly
cha
115 Lours St.
MARYLAND, Balrimore 11
 URedo 9. 2242 KTAM, Sall Lake anssachuserts, Boston EMpira 3 S.5813 Avo.
 ASSACHUSETTS, 2221 Ird Ave.
MASSACHUSETTS, MAin 4.6355

222 summer s!

Transitron
 olectronle corporation 1 wakefiold, mecoechucotto
 suls Offices im mancipal ciries Thmocrout TME U.SA

 ano Eunore - cace noomsss. TheicoCIRCLE 80 ON READER-SERVICE CARD
CIRCLE OI ON READER-SERVICE CAED

TRRANSISTORS-1960

2N3 2N35 2N43A 2N44 2N4S 2N5 2N59 2N60 2N61 2N6 2N9 2N94 2N94A $2 N 100$ 2N100 2N104 $2 N 104$ $2 N 105$ 2 2 N 109 2 N 117 $2 N 117$ $2 N 118$ 2N118A $2 N 119$ 2N119 2N120 2 N 120 2 N 122 $2 N 122$ 2 N 123 2 N 123 2 N 128 2 N 129 2 N 129 2 N 139 2 N 140 $2 N 139$ $2 N 140$ $2 N 155$ 2N157 2N157A 2N158 2N158A 2N160 2N160 2N160 2N161 2N161A $2 N 163$ $2 N 163$ 2N163 2N168 2N169 $2 N 169$ $2 N 173$ 2N173 2N174 2N174A 2N175 2N176 2N185 2N186A 2N187A 2N187A $2 N 188 A$ 2N188A 2N189 2N190 $2 N 191$ $2 N 192$ 2 N 192 2N193 2N193 2N194 N194

I | 2N293 |
| :--- |
| $2 N 29$ |
| $2 N 297$ |
| $2 N 297$ |
| $2 N 298$ |
| $2 N 30$ |
| $2 N 31$ |
| $2 N 32$ |
| $2 N 33$ |
| $2 N 33$ | EleCTRONIC DESIGN • July 6,

18
 DID YOU SAY PRINTED

「「

A-A-MP Molded Edge Connector affords a solderless, reliable multi-circuit connection on printed circuit board edges.

B-AMPin split tip firmly holds pin in board during solder dipping, assures good capillary flow. AMPin attaches to your leads with high speed A.MP tooling.

C-AMP-edge fits edge slotted boards giving high conductivity without scoring paths. Low cost board edge connections.

D-A.MP Component Tips crimp to component leads for firm mounting during solder dip. Permit stacking of units, pro solder dip. Permit stacking of units, pro

E-AMP-lok-economical multiple quick connect/disconnect of harness to board.

F-A-MP Printed Circuit Connector, for gruelling aircraft environments, is sealed against moisture and arcing, attaches with right angle pins to circuit board edge. Dual leads for each contact.

No matter how you approach printed circuit problems-with single or multiple connector units, with board-edge or face attachments, with or without solder dipping, with or without eyeletting-AMP has just the product you'll need for low-cost top reliability.

Production and assembly speeds are miles ahead of most other techniques. Versatility is unbeatable, permitting A-MP products to be used on different applications and in combination with each other.

For complete information on electrical characteristics, application methods and other specifications, send for our new Printed Circuit Applications Catalog.

GENERAL OFFICES: HARRISBURG, PENNSYLVANIA A-mp products and engineering assistance are available through subsidiary companies in: Canada - England. France - Holland - Japan CIRCLE 82 ON READER-SERVICE CARD

		2N1031B 2N1031C 2N1032 \qquad	P p p p p	2N1132 2N1136 2N1136A 2N1136B
2N647	A	2N1032B	P	2N1137
2N649	A	2N1032C	P	2N1137A
2N650	A	2N1034	LL	2N1137B
2N650A	A	2N1035	LL	2N1138
2N651	A	2N1036	LL	2N1138A
2N651A	A	2N1037	LL	2N1138B
2N652A	A	2N1038	HL	2N1139
2N653	A	2N1039	HL	2N1141
2N654	A	2N1040	HL	2N1142
2N655	A	2N1041	HL	2N1143
2N656	P, HF	2N1042	P	2N1144
2N657	P, HF	2N1043	P	2N1145
2N658	LL	2N1044	P	2N1146
2N659	LL	2N1045	P	2N1146A
2N660	LL	2N1046	HL	2N1146B
2N661	LL	2N1046A	HL	2N1146C
2N662	LL	2N1046B	P	2N1147
2N665	P	2N1047	P	2N1147A
2N669	P	2N1048	P	2N1147B
2N670	LL	2N1049	P	2N1147C
2N671	HL	2N1050	P	2N1157
2N673	HL.	2N1051	A	2N1157A
2N674	LL	2N1056	LL	2N1159
2N675	HL	2N1057	LL	2N1160
2N679	LL	2N1058	HF	2N1162
2N695	HF	2N1059	A	2N1163
2N696	HF, HL	2N1065	HF	2N1164
2N697	HF, HL	2N1066	HF	2N1165
2N698	HF, HL	2N1067	P	2N1166
2N699	HF,HL	2N1068	P	2N1167
2N702	LL	2N1069	P	2N1168
2N705	LL	2N1070	P	2N1172
2N706	LL, HF	2N1072	HL	2N1176
2N707	LL	2N1073	HL	2N1176A
2N710	LL, HF	2N1073A	P	2N1176B
2N711	LL	2N1073B	P	2N1177
2N715	HF	2N1074	LL	2N1178
2N716	HF	2N1075	LL	2N1179
2N717	HL	2N1076	LL	2N1180
2N718	HL	2N1077	LL	2N1183
2N719	HL	2N1078	P	2N1183A
2N720	HL	2N1086	HF	2N1183B
2N725	LL	2N1086A	HF	2N1184
2N728	HF	2N1087	HF	2N1184A
2N729	HF	2N1090	LL, HF	2N1184B
2N730	HL	2N1091	LL, HF	2N1191
2N731	HL	2N1095	A	2N1192
2N734	A	2N1096	A	2N1193
2N735	A	2N1097	A	2N1194
2N736	A	2N1098	A	2N1195
2N741	HF	2N1099	P	2N1196
2N742	A	2N1100	P	2N1197
2N745	LL	2N1101	A	2N1198
2N746	LL	2N1102	A	2N1199
2N747	LL	2N1107	HF	2N1202
2N748	LL	2Nil08	HF	2N1203
2N749	HF	2N1109	HF	2N1205
2N750	HF	2 N 1110	HF	2N1208
2N751	HF	2N1111	HF	2N1209
2N1008	A,LL	2NilliA	HF	2N1210
2N1008A	LL	2N1111B	HF	2N1211
2N1008B	LL	2N1114	LL	2N1212
2N1009	A	2N1116	HL	2N1213
2N1011	P,HL	2N1117	HL	2N1214
2N1012	LL	2N1118	HF	2N1215
2N1014	P	2Nil18A	HF	2N1216
2N1017	LL	2N1119	LL, HF	2N1220
2N1018	A	2N1120	P	2N1221
2N1021	P	2N1121	HF	2N1222
2N1022	P	2N1122	LL	2N1223
2N1023	HF	2N1122A	LL	2N1224
2N1024	HF	2 N 1123	LL	2N1225
2N1025	HF	2N1124	A	2N1226
2N1026	HF	2N1125	LL	2N1228
2N1027	LL	2N1128	A	2N1229
2N1028	LL	2N1129	A	2N1230
2N103!	P	2N1130	A	2N1231
2N1031A	P	2N1131	HL	2N1232

TRANEIETORE-1980

HL	2N1233
P	2N1234
P	2N1238
P	2N1250
P	2N1251
P	2N1252
P	2N1253
P	2N1254
P	2N1255
P	2N1256
LL	2N1257
HF	2N1258
HF	2N1259
HF	2N1261
A	2N1262
A	2N1263
P	2N1264
P	2N1265
P	2N1266
P	2N1267
P	2N1268
P	2N1269
P	2N1270
P	2N1271
P	2N1272
P	2N1273
P	2N1274
P	2N1280
P	2N1281
P	2N1282
P	2N1284
P	2N1291
P	2N1292
P	2N1293
P	2N1294
P	2N1295
LL	2N1296
LL	2N1297
LL	2N1298
HF	2N1299
HF	2N1302
HF	2N1303
HF	2N1304
P	2N1305
P	2N1306
P	2N1307
P	2N1308
P	2N1309
P	2N1310
A	2N1311
A	2N1312
A	2N1313
HF	2N1314
HF	2N1315
HF	2N1316
HF	2N1317
LL	2N1318
LL	2N1320
P	2N1321
P	2N1322
LL	2N1323
HL	2N1324
HL	2N1325
P	2N1326
P	2N1327
HL	2N1328
LL	2N1329
LL	2N1330
LL	2N1331
LL	2N1332
LL	2N1333
LL	2N1334
LL	2N1335
HL	2N1336
HF	2N1337
HF	2N1339
HF	2N1340
LL	2N1341
LL	2N1344
LL	2N1345
LL	2N1346
LL	2N1347

LL	2N1348	LL	2N1469	HF	2N1618
LL	2N1349	LL	2N1470	P	2N1619
HL	2N1350	LL	2N1471	A	2N1623
HL	2N1351	LL	2N1472	LL	2N1651
A	2N1352	A	2N1473	LL	2N1652
HF,HL	2N1353	LL	2N1478	LL	2N1653
HF,HL	2N1354	LL	2N1479	P	2N1654
LL	2N1355	LL	2N1480	P	2N1655
LL	2N1356	LL	2N1481	P	2N1656
LL	2N1357	LL	2N1482	P	2N1665
LL	2N1358	HL	2N1483	P	3N34
LL	2N1359	P	2N1484	P	3N35
LL	2N1360	P	2N1485	P	3N36
P	2N1362	P	2N1486	P	3N37
P	2N1363	P	2N1487	P	3N45
P	2N1364	P	2N1488	P	3N46
P	2N1365	P	2N1489	P	3N47
HF	2N1370	A	2N1490	P	3N48
A	2N1371	A	2N1491	HF	3N49
HF	2N1372	A	2N1492	HF	3N50
HF	2N1373	A	2N1493	HF	3N51
HF	2N1374	A	2N1499	LL	3N52
HF	2N1375	A	2N1500	LL	3N54
HF	2N1376	A	2N1501	P	903
HF	2N1377	A	2N1502	P	904
A	2N1378	A	2N1504	P	904A
A	2N1379	A	2N1505	P,HF	905
LL	2N1380	A	2N1506	P,HF	910
LL	2N1381	A	2N1507	HF	952
LL	2N1382	A	2N1515	HF	953
LL	2N1383	A	2N1517	LL	957
P	2N1385	LL.	2N1518	HL	1228
P	2N1386	LL	2N1519	HL	1229
P	2N1387	LL	2N1520	HL	1230
P	2N1388	HF	2N1521	HL	1231
P	2N1389	HF	2N1522	HL	1232
P	2N1390	HF	2N1523	HL	1233
P	2N1392	Sp	2N1529	P	1234
P	2N1393	Sp	2N1530	P	1238
LL	2N1394	Sp	2N1531	P	1239
LL	2N1395	HF	2N1532	P	1240
LL	2N1396	HF	2N1533	P	124!
LL	2N1397	HF	2N1534	P	1242
LL	2N1408	Sp	2N1535	P	1243
LL	2N1409	HF, HL	2N1536	P	1244
LL	2N1410	HF,HL	2N1537	P	8177
LL	2N1411	LL	2N1538	p	8178
LL	2N1412	HL	2N1539	P	8179
A	2N1417	HF	2N1540	P	B1085
A	2N1418	HF	2N1541	P	81154
A	2N1420	LL,HF	2N1542	P	B1154A
A	2N1425	HF	2N1543	P	CF45017
A	2N1426	HF	2N1544	P	CK4
A	2N1427	LL	2N1545	P	CK4A
LL	2N1428	HF	2N1546	P	CK13
LL	2N1429	HF	2N1547	P	CK14
LL	2N1431	A	2N1548	P	CK16
P	2N1432	A	2N1549	P	CK17
P	2N1437	P	2N1550	P	CK17A
P	2N1438	P	2N1551	P	CK22
P	2N1439	P	2N1552	P	CK22A
P	2N1440	A	2N1553	P	CK25
P	2N1441	A	2N1554	P	CK25A
P	2N1442	A	2N1555	P	CK26
P	2N1446	A	2N1556	P	CK26A
P	2N1447	A	2N1557	P	CK27
P	2N1448	A	2N1558	P	CK27A
P	2N1449	A	2N1559	P	CK28
P	2N1451	A	2N1560	P	CK28A
P	2N1452	A	2N1561	P,HF	CR64
P	2N1453	P	2N1562	P, HF	CK64A
P.LL	2N1454	P	2N1564	A	CK65A
P, HF	2N1455	P	2N1565	A	CK66
P, HF	2 N1456	P	2N1566	P	CK67
HF	2N1457	P	2N1605	LL	CK67A
P, HF	2N1458	P	2N1609	HL	CDT1310
P, HF	2N1461	P	2N1610	HL	CDT1311
P, HF	2N1462	P	2N1611	HL	CDT1312
LL	2N1463	P	2N1612	HL	CDT1312
LL	2N1464	P	2N1613	HF, HL	CDT1313
LL	2N1465	P	2N1616	P	CDT1319
LL	2N1466	P	2N1617	P	CDT1320

CIRCLE E3 ON READER-SERVICE CARD $\$$

DO YOU ENCOUNTER ANY OF THESE PRODUCTS IN YOUR DESIGN WORK?

Accelerometers

Transducers
Amplifiers
Magnetic amplifiers
Tronsformers
Gyros
Strip-line recorders
X-Y recorders
Telemetering devices
Magnetic tape equipment
Magnetic memories
Magnetic tape
Vacuum fube voltmeters
Digital voltmeters
Phase meters
Converters
Power supplies-regulators, reference
Toroidal coils
R.F. coils

Cores
Resistance \& impedance bridges Frequency control components
Modular circuits
Ceramic capacitors
Paper capacitors
Plastic capacitors
Variable capacitors
Tantalum capacitors
Synchros, servos \& resolvers
Signal generators
Pulse generators
Electronic counters
Analog computers
Digital computers
Transistor restors
Microwave test equipment
A-D \& D-A converters
Data processing systems
Computer systems
Comperies
Photo-conductive cells Semiconductor diodes Semiconductor rectifiers Mefallic rectifiers Silicon transistors Germanium transistors Power transistors Receiving tubes Power transmitting tubes Power control tubes Display tubes
Hi-power microwave tubes
Microwave components \& hardware Delay lines
Filters
Ceramic parts and materials
lastic materials
otting compounds
Hermetic seals
Metals \&
Terminals
Switches
Relays
Magnet wire
Cable 8 wire
ixed resistors-wire wound
Yariable resistors-wire wound
Fixed resistors-composition
Variable resistors-composition
Potentiometers
recision potentiometers
rimming porentiometer
Chemicals \& coatings
asteners
Frecision
Precision circuits
Modular circuits

Electronic Design Engineers

Have Helped to Build This Study

Once every year, a random sample of approximately 4,000 Electronic Design subscribers is selected to furnish information of extreme value to the entire electronic industry.

This information is tabulated and published under the title of Hayden's "Continuing Audit of Brand Recognition". It is made available without cost to the sales and marketing executives of any electronic firm desiring a copy.

Your role in this audit is all important-for only you can answer the questions it asks. Every electronic firm, regardless of its specific advertising or promotion programs, wants to know how their products stand in the minds of electronic design engineers . . . the total lasting effect or impression their firm has made when the time comes to select and specify each class of products.

If you receive the questionnaire, please look it over carefully, and consider your answers in the light of the valuable results obtained. Every one concerned with electronics benefits when statistically reliable, original, factual information of this type can be assembled, and published without promotional bias.

Your assistance in this program is very much appreciated.

Hoyden Publishing Co. Inc. 830 Third Avenue, Now York 22, N. Y. Telephono: PLazo l. 5530

Pulse Code Modulation Terminal And Repeater Methods

Because coded pulses can be regenerated, the design of repeaters for PCM systems is an important part of the system design. In this third and concluding part of this series Bob Carbrey details regenerative repeater operation and design
Part 1 of the series
appeared in ED, June 8, p 52 and
Part 2 in ED, June 22, $p 66$.

0
NE OF THE most important advantages of pulse code transmission is that the pulses can be recreated at the receiving end. Thus, all noise and distortion can be eliminated, resulting in a signal generally as clean as the original.
In the process of transmitting coded signals over long lines, the repeaters can be designed to amplify and recreate, or regenerate, these pulses.

Regenerative repeaters have been successfully operated with bit rates ranging from ordinary telegraph to several hundred megabits per second. Ordinary exchange area telephone pairs, coaxial cable, microwave radio, and waveguides have been used as transmission media.
Normal repeater functions are shown in block form in Fig. 13. When pulses are sent over a transmission medium that does not have a flat
pass band, the pulses are "smeared out in time" so that some frequency components of a given pulse appear in the following time slots. A particularly severe example is shown in Fig. 14 which shows what happens to a code group sent over 3000 feet of exchange area telephone cable at a 10 -megabit rate. After appropriate low-frequency loss has been inserted by a simple equalizer, the combination appears as shown at 14c. If flat band loss were the only consideration the equalizer could just as well be located at the output. The equalizer would be used at the output if crosstalk into other systems from the pulse system were controlling. When it is located at the input, however, any noise picked up in the link is also attenuated

Fig. 15a shows a 2 -mc interfering sine wave
added to the binary signal as it appears befor the equalizer. The interference is about 8 greater than the signal transition due to a chang from pulse to space or space to pulse. The sulting output after the amplifier and equaliz is shown in Fig. 15b. The signal is about 1 d greater than the $2-\mathrm{mc}$ interference.
With simple sine wave timing added as show in 15 c , some variation in the regenerated sign is apparent as shown in 15 d . This is adequa unless the following noise is severe. Usually ve little equalization is needed for microwave an coaxial transmission circuits.

The ideal regenerative repeater would be 0 in which no linear amplification is used. Hoin ever, linear amplification is used in repeaters b cause most decision circuits do not have sufficia

Fig. 13. PCM repeater functions.

Fig. 14. Example of how severe noise can cause a "time shiff" in a pulse train.

Fig. 15. Effect of 2 mc interference added to a pulse train and the way the pulses are regenerated.

WAVEFORMS SHOWING MAXIMUM TRANSITION RATE EQUIVALENT TO HALF BIT FREQUENCY
ensitivity and stability to be triggered correctly rom signals which are still far enough above the pise to be easily distinguished. Amplifiers proide a part or all of the gain necessary to make p for the loss of the preceding transmission link nd permit repeaters to be spaced further apart. The amplifier band should be kept only wide fough to prevent excessive intersymbol interrence due to cutoff at the high end, and excesve low frequency "droop" due to cutoff at the av end. Wider bands than this just permit more pise to get through to the decision circuit. The er-all combination of transmission line amplifier Id equalizer for the 10 -megabit signals of Figs. tand 15 , for example was already down 6 db at mc. At 10 mc it was down 18 db .

Nycuist showed that $2 B$ bits per second could
theoretically be transmitted over a system of bandwidth B even in the presence of noise. Although a discussion of Nyquist's theorem, ${ }^{20}$ is beyond the scope of this article, some insight into how this can be done may be gained from a study of Fig. 16.
A sequence of alternate pulses and spaces, 16a, passing through an appropriate filter band appears as a raised cosine wave of half the bit frequency, 16 b . This represents the maximum possible number of transitions from one level to the other. If two or more like bits are put in sequence as shown at 16 c , then there are actually fewer transitions per second; so no more high-frequency bandwidth is necessary.
A transmission bandwidth of at least $28,000 \mathrm{cps}$ per channel would be required to transmit the

56,000 bits per second resulting from coding a $4000-\mathrm{cps}$ speech band as seven digit PCM. If this seems wasteful of bandwidth, it should be recalled that regeneration makes possible use of bandwidth which could not be used for analog signals because of excess distortion and noise.

Timing Methods

The next function shown in Fig. 13 is that of retiming. Ideally the switch should gate a very narrow sample of the input signal through to the decision circuit at the center of each bit interval. This provides the maximum protection against excursion of the bits either forward or backward in time. Fig. 17c shows the result of gating both a noise-free pulse and one with the limiting time perturbation as shown at 17a. The timing pulses

Fig. 17. Result of gating both a noise-free pulse and one with limiting time perturbation (a).
Effect of adding timing
pulses (d) is
shown (f).

Fig. 18. Ideal regenerator characteristic (top) compared to the close approximation (bottom) that can be obtained by cascading enough clipping-tape amplifier stages.
are shown at 17 b . This is a very desirable type of signal to apply to a regenerative trigger circuit.

Two other retiming techniques are frequently used in order to keep the complexity of a repeater to a minimum. These are negative pedestal timing and additive timing. In these, the timing pulses are essentially added to the signal wave as in Fig. 17d. This eliminates both the gate circuit components and the loss through the gate. With negative pedestal timing, ${ }^{21}$ the peaks of the pulses are held at zero. The space interval between pulses holds the signal down below the trigger level thus preventing operation except during the pulse.

If the timing pulse magnitude changes or even drops to zero, the amplitude threshold will still be at the center of the binary signal. As a result,
the timing pulses need not be controlled precisely, and backward acting timing recovery circuits can start without difficulty. The negative pedestal must be added in after the last ac coupling and its power must be comparable to that of the signal.
When the timing wave is added before the last ac coupling, the dc reference is lost, and simple additive timing results. The amplitude threshold will vary as the timing signal varies. With this method, the timing signal can be added at the input of the signal amplifier; so that very little timing signal is required. This is particularly useful where a number of repeaters are driven in parallel at each repeater point. Isolation can be provided between repeaters by attenuation in the timing input circuits.

Generating the idealized pulses of Fig. 17b is not easy to do. Even simple sine wave tin ing can be used, however, as shown in 17 e and 17 f . The timing and signal waves are shown at es ual magnitudes with a resulting timing variation, Δt, remaining. This is a form of partial timing re generation, and the following repeater should clean the timing up almost entirely.

Amplitude Decision

The input-output characteristic of an ideal amplitude regenerator is shown in Fig. 18a. For al input amplitudes below threshold, the output is zero, and for all amplitudes above this the output is a unit height pulse such as that shown to the right. As with most ideal characteristics this one too, is difficult to obtain. It can be approximated as closely as the designer wishes (subject to dc stability and bandwidth limitations) by cascading enough clipping type amplifier stages which suc cessively amplify the center region and limit the upper and lower extremes.
This is really a process of cascading partial re generator characteristics such as that shown a 18b. Fig. 19a is a functional diagram of a partia regenerator stage. Diode A limits the positive swing as soon as the forward breakdown voltage is exceeded. Diode B limits when the negative swing exceeds its forward breakdown. Four such circuits in cascade are shown in Fig. 19b.

When high-level interference is not likely to occur between repeater sections, considerable economy will result by simply using a single sec tion at each repeater thus spreading the regen eration out along the transmission medium. The effect of either the local or spread out cascaded regeneration is indicated by the waveforms Fig. 18. A low level signal such as Curve 1 show on the input axis between the two characteristic would simply be amplified as it passed throug the first repeater stage. The output is shown th the right of partial regenerator characteristic.
At the next repeater this amplified signal ap pears as input Curve 2 which is further amplifee At the input to the third repeater in the strin it would appear as Curve 3 which is already larg enough to show some upper and lower level lim iting action. The resulting input to the fout repeater produces a full height pulse.

Pulse amplification and stretching will be quired after the clipping operation unless clipping is done at high level and unless a 10 signal sample is taken. Repeaters using diode lii iting in a hybrid \mathbf{T} waveguide section have bea used at the Bell Laboratories Holmdel Labor tory to directly regenerate microwave pulses

a) PARTIAL REGENERATOR WITH DIODE CLIPPING

Fig. 19. Partial regenerator (a) shown cascaded (b).

 Positive feedback can be used as at (c).a rate of more than 320 megabits per second. ${ }^{22}$

Positive Feedback Regenerators

Positive feedback trigger circuits such as blocking oscillators and the various types of multivibrators accomplish the effect of cascading a large number of stages in a much more economical manner. The output is simply fed back to the input as indicated in 19c where it is amplified again. The process continues until self-limiting occurs. These circuits provide amplification as well as pulse stretching and can be triggered from a short input sample. Unlike the simple clipping amplifiers, however, some form of "turnof" must be provided in order to bring the circuit back out of the limiting condition.
When control pulses are used to do this, they have to be relatively high power. This is particularly true of transistor circuits which are driven into saturation. The pulse length can be controlled relatively precisely because both turn-on and tum-off are specified.
When internal time constants are used to terminate the pulse, as in a blocking oscillator, no turn-off power is required. The pulse usually must be shorter than the full digit interval in order to allow time for recovery to a stable decision threshold. The duration is subject to somewhat greater variation. Monostable blocking oscillators or negative resistance circuits are probably the most economical of components since they can be built with one active element.

Timing Recovery Control

The regenerative repeater timing frequency must be slave in both frequency and phase to the (ignals which are sent out from the transmitter. The requency can be taken from a separate channel o recovered from the pulse signals themselves

ARNOLD 6T CORES: PROTECTED AGAINST SHOCK, VIBRATION, MOISTURE, HEAT... AVAILABLE FROM STOCK

The hermetically-sealed aluminum casing method developed exclusively for Arnold 6T tape cores is packed full of advantages for you . performance-improving and castsaving advantages.

It is compact: you can design for minimum space/weight requirements. It's extra-rigid to protect against strains. And it gives you maximum protection against environmental hazards. Arnold 6T tape cores are guaranteed against 1000-volt breakdown . . . guaranteed to meet military test specs for
resistance to shock and vibration guaranteed also to meet military specs for operating temperatures. They require no additional insulation before winding, and can be vacuum-impregnated afterward. And now a NEW Arnold service: immediate delivery on your prototype or production requirements for Deltamax 1, 2 and 4-mil Type 6T cores in the proposed EIA standard sizes (see AIEE Publication 430). A revolving stock of approximately 20,000 Deltamax cores in these sizes is ready for you
on warehouse shelves. Subject to prior sale, of course, they're available for shipment the same day your order is received.
Use Arnold 6T cores in your designs. Technical data is available; ask for Bulletin TC-101A and Supplement 2A (dated June' 60). ©Write The Arnold Engineering Company, Main Office and Plant, Marengo, Ill. ADDRISS DIPT. ED-7
 ORANCH OFFICES ond REPRESENTATIVES in PRINCIPAL
CITIES - Find them FAST in the YELIO WAGES

Fig. 20. Squaring up of input signal (b) is followed by differentiation (c), adding timing wave (d) resulting in regenerated output.
as indicated by the switch of Fig. 13.
When separate channel timing is used, a frequency which is either the fundamental bit frequency or a submultiple of it is sent over the same route as the signals. It is subject to the same delay variations as the signal; so it presumably will remain in the correct phase relationship to cause the retiming operation to occur at the midpoint of the binary signals. Noise should be small because a narrow band repeater can be used. It is, however, subject to crosstalk from the system itself which is right in the band. Regenerative type timing repeaters will help minimize the timing signal variations.
The major advantage of a separate channel timing circuit is that the timing information is always the same and the problem is simply one of separating it from the noise. A disadvantage is that a separate transmission path and repeater circuit must be used which, with very little addition, could be used to transmit a full channel of data. Failure can occur as a result of loss of either the timing or the signal path.
A narrow band filter can be used to extract timing information directly from the binary signal train. The filter "averages out" the frequency and phase. Although the timing wave will follow the slow or permanent changes, the broadband of noise will not perturb it.
If the bandwidth of the input amplifier and transmission circuit is kept to a minimum, such as indicated in Fig. 16, there is very little fundamental bit frequency in the input signal train. The most common practice in forward acting timing is to "square-up" the input signal, differentiate the result, and then rectify it as shown in Fig. 20. After rectification all transitions will add in phase with the bit rate timing frequency. The timing

Fig. 21. Loss of regenerators margin due to duty factor variation.
frequency recovery circuit must have a sufficiently high Q to bridge any gaps due to long runs of all pulses or all spaces. A local slave oscillator can be used to provide a source of fixed magnitude signal.
The variation of input signal sequences may cause shifts in either magnitude or phase of the recovered timing wave. This is the principal problem for timing circuits which depend on the pulse train for timing information. Although the pattem effect is small in a single repeater, it may accumulate in a large number of repeaters because the same pattern appears at each one. ${ }^{23,24,25}$
It is important to note that accumulated lowfrequency timing variation will not reduce the signal-to-noise margin due to pulse-to-pulse jitter and distortion. Even though the timing wave variation accumulates through a long chain of repeaters to the point where it is slowly wandering forth and back through many cycles of phase shift with respect to absolute reference, the pulses from which the timing wave is derived are also accumulating a corresponding slow wander.
The penalty, if any, occurs in the demodulation process. If the effective filter bandwidth is sufficiently small, any disturbance for a time separation multiplex signal should be inaudible.
"Squaring-up" the input signals is really a form of partial regeneration with the retiming omitted. With backward acting timing the actual regenerated signal is used as a source of timing frequency. If the pulses occupy the full time interval as shown in Fig. 16a, the same differentiation process would have to be used as with the forward acting case. When the pulses are shorter than a full bit interval, as with a monostable type regenerator, every pulse will contribute to the recovered timing wave. See Fig. 20e.

Backward acting timing depends for control on the slight changes in firing time which occur when either the signal or timing is not in the proper position. A perfect timing control pulse would always cause the regenerator to fire at the same time. Therefore, a timing pulse with a finite rise time should be used. Because the regenerated pulses are used as a source of timing frequency, it is always necessary to design backward acting circuits so that pulses will be produced even though the timing wave disappears.
With either forward or backward acting timing. very long runs of pulses and very long runs of spaces should be avoided, if possible, in any type of repeater. In almost any ac coupled repeater, the duty factor variations cause shifts of the effective decision threshold which reduce the sig-nal-to-noise margin to the point where errors are likely to occur long before the timing goes out. Even with dc coupling, the operating points and decision levels tend to shift with severe change in duty factor. For example, fixed and stray capacity charge, heating, $I_{c o}$, base or grid currents, etc. may shift.

Duty Factor Variation

Fig. 21 illustrates the effect of using ac coupled circuits in regenerative repeaters with baseband signals. Ac coupling is usually desirable both for stability and gain where impedance transformation can be used and for coupling between batanced transmission lines and unbalanced circuits

A long run of pulses, Fig. 21a, is equivalent to a step function. If the run is long compared with the low frequency cut-off, the pulse train will decay back to the coupling reference potential a indicated in 21b. Single time constant is shown. The result will be spaces where pulses should be as in 21c. Even if the run does not last long enough to cause an error directly, the decay will reduce the signal to noise margin. If the circuit is arranged so that the final ac coupling referencel is the decision threshold as indicated in 21d, the pulses will at least decay no further than tho decision level. In this case a long run of spaces is put in equal jeopardy.
The effective decision level for a pulse trair will shift around due to simple variations of duty factor. The long run of all pulses or all spaces ${ }^{\text {? }}$ simply the limiting case. The most obvious soln tion to this problem is to use dc restoration, bu there are two limitations. Spaces must be pro

fig. 22. Reduction of signal-to-noise margin due to dc restoration.
duced frequently enough to insure adequate restoration, and the signal-to-noise margin is cut in half because restoration is to the sum of signal and noise as indicated in Fig. 22a.
L. R. Wrathall ${ }^{21}$ showed that quantized feedback could be used to correct for the duty factor variation. Because the pulses have a fixed shape, they will cause a known low frequency "tail" to appear in going through one or more ac coupled circuits. The decay is really the summation of the tails from a large number of pulses.
With quantized feedback, an equal and opposite set of tails is generated to cancel the original ones by feeding back a part of the short regenerated pulse energy through the same or equivalent time constants. Quantized feedback is very effective, but the balance is subject to variation with general magnitude. In high speed circuits delay variations from the input to the ouput create problems.
Proposals for eliminating or reducing the dc or converting the ordinary binary pulse train to a more favorable one have been made by a number of workers in the field. = ■

Reforences

20. H. Nyquist, "Certain Topics in Telegraph Transaission Theory", Trans AIEE, April 1928, pp. 617-644. al. L. R. Wrathall, "Transistorized Binary Pulse Refeneritor", B. S. T. J., Sept. 1956, pp. 1059-1084.
21. S E Miller, "Waveguide as a Communication Metium", B. S. T. J., Nov. 1954, pp. 1209-1268.
22. C. E. DeLange and M. Pustelnyk, "Experiments on he T ming of Regenerative Repeaters", B. S. T. J., Nov. (158, pp. 1456-1500.
23. H. E. Rowe, "Timing in a Long Chain of Regenera${ }^{2 v 9}$ Einary Repeaters", B. S. T. J., Nov. 1958, pp. 1543, 598
24. W. R. Bennett, "Statistics of Regenerative Digital frans: inssion", B. S. T. J., Nov. 1958, pp. 1501-1542.

Alfred Electronics Model 504 Microwave Amplifiers, in use at Hughes Aircraft Co., Culver City, California

with ALFRED Microwave Amplifiers

These Alfred TWT microwave amplifiers have seen continuous service at Hughes for over 9 months. There has been practically no down time even for replacement of TWT tubes. Used in the RF portion of a missile testing system, the Alfred units provide high gain, wide band, flat response and low spurious modulation from 8 to
12.4 kmc . Hughes engineers praise the functional layout of the Model 504, its simple operation and reliable performance.
In short, Hughes finds the Alfred 504 Microwave Amplifiers good, sound, straightforward reliable instruments. We think you will too.

KEY SPECIFICATIONS-ALFRED MICROWAVE AMPLIFIERS

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& Mode! \& Fraquancy Ranco trine \& $$
\begin{aligned}
& \text { Gain oin } \\
& (\mathrm{min})
\end{aligned}
$$ \& Power Out. put (mia) \& Price

\hline Cemeral Purpose amplifiors for AM, Pulse and Phase Modulation \& $$
\begin{aligned}
& 505 \\
& 501 \\
& 503 \\
& 504 \\
& 549
\end{aligned}
$$ \& $$
\begin{array}{rll}
1 & \text { to } & 2 \\
2 & \text { to } \\
4 & \text { to } \\
8 & 8 \\
10.5 & \text { to } & 12.4
\end{array}
$$ \& 30 db \& 10 mw \& $$
\begin{aligned}
& \$ 1,550 \\
& \$ 1,390 \\
& \$ 1,490 \\
& \$ 1,490 \\
& \$ 3,550
\end{aligned}
$$

\hline \multirow{4}{*}{Medium Power} \& $5-6752$
512 \& $\begin{array}{lll}1 & \text { to } \\ 2 & 2 \\ \text { to } \\ 4\end{array}$ \& $$
\begin{aligned}
& 30 \mathrm{db} \\
& 30 \mathrm{db} \\
& 20 \mathrm{db}
\end{aligned}
$$ \& \& \$2,290

\hline \& -502 \& $\begin{array}{ccc}2 & \text { to } \\ 2 \\ \text { to }\end{array}$ \& 30 db
30

d \& 10, 10 w \& $\$ 1,390$
$\$ 2,850$

\hline \& 506 \& $\left\{\begin{array}{cccc}4 \\ 4.5 & \text { to } \\ \text { to } \\ \hline\end{array}\right.$ \& 27 db \& $\left\{\begin{array}{ccc}5 & w \\ 1 & w\end{array}\right\}$ \& \$2,290

\hline \& $$
\begin{gathered}
5-542 \\
510 \\
509 \\
5-6996
\end{gathered}
$$ \& \& \[

$$
\begin{aligned}
& 25 \mathrm{db} \\
& 20 \mathrm{db} \\
& 27 \mathrm{db} \\
& 30 \mathrm{db}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
1 \\
100 \\
5 \mathrm{~mm} \\
10
\end{gathered}
$$
\] \& $\$ 3,290$

$\$ 3.190$
$\$ 2.150$
3
3,150
3,590

\hline Migh Power Ampilfiers \& 5-6826 \& 2 to 4 \& 30 db \& 1 kw pk \& \$4,850

\hline Low and Medium
Molsmilitare
Amplifiors \& \multicolumn{5}{|l|}{Amplifiers with low and medium noise figures are avallable elther as packaged units of unitized for remote operation of TW tube and solenold. Standard units provide coverage from .5 to 12.4
kmc with noise figures from 7 db up.}

\hline
\end{tabular}

MANY MODELS TO CHOOSE FROM

The 504 is just one model from the industry's most complete line of microwave amplifiers. For technical details and a demonstration arranged at your convenience, contact your nearby Alfred representative or write direct. Please address Dept. 36.

ALFRED ELECTRONICS

897 COMMERCIAL STREET PALO ALTO, CALIFORNIA See us af Wescon, Booth 630

Robert Alan Mammano

 U. S. Naval Ordnance Test Station ${ }^{*}$ Chino Lake, Colif.

A naval officer as well as an engineer, Robert Mammano has been working on semi-conductor applications in missile programing systems. The module he's holding contains the circuit he describes in this article.

ASIMPLE, silicon controlled rectifier (SCR) circuit can be used to automatically fix, or set, the initial turm-on state of a bistable multivibrator.

When power is applied to a bistable multi, it is entirely arbitrary which side of the flip-flop will conduct initially. There will usually be enough unbalance in a flip-flop stage so that it will turn on in the same state. However, this turn-on characteristic is hard to predict and is also unreliable. The SCR circuit described here, sets the initial turn-on state and then allows the multi to be triggered in a balanced, normal manner.

Positive Base Voltage Can Be Used to Set

 Bistable MultiA bistable multivibrator, which uses base turnoff triggering with negative input pulses, is shown in Fig. 1. This multi can be set by putting a positive voltage on one base and saturating the

Fig. 1. Initial furn-on state of a bi-stable multivibrator is hard to predict.
transistor. This voltage can be introduced with the manually operated switch shown in Fig. 2. The positive voltage is applied to the transistor base when the switch is in the SET position. When moved to the OPERATE position, the set flip-flop can operate normally. The value of R is determined from the number of flip-flops to be controlled. An approximate value of R is found from the equation

$$
R=\frac{E-I_{b} R_{b}}{n I_{b}}
$$

where n is the number of multi stages and I_{0} is the base current which is required to saturate the transistor.
This system works quite well. It reliably sets the flip-flops and when switched to allow them to count, no triggering transients are developed. If, at a later time, it is desired to reset the stages, the switch is returned to the SET position. The obvious disadvantage of this system, however, is the need for a manually operated switch.

Pulse-Gated SCR Automatically Sets Initial

 Multi StateFor remote or automatic operation, the manual switch is replaced by a silicon controlled rectifier, Fig. 3. The rectifier's open and closed states correspond to the SET and OPERATE positions of the manual switch. A 3A31 controlled switch made by Solid State Products, Inc. is highly suited for this application. It requires very little firing current $(20 \mu \mathrm{a})$, has a low maximum holding current (less than 2 ma), and is packaged in a standard TO-9 transistor case.

Initially the SCR is open. When the circuit is energized, current flows into the base of the tran-
${ }^{\circ}$ Now with Aeronautical Tactical Weapons Div., Santa Ana, Calif.

Fig. 2. Multi can be set by applying a positive voltage, through the manually operated switch, to the base of one transistor. The voltage is removed by moving the switch to the OPERATE position.

Fig. 3. The manually operated switch is replaced by a silicon controlled rectifier. Multivibrator can now be set electrically.
sistor as in the manually operated case. However, when a positive signal is applied to the rectifier gate, it switches closed and the anode voltage is equal to the saturation voltage of the SCR. For the 3A31 unit this voltage is less than 1 v . This is close enough to ground potential to allow the Aip-flops to operate in their normal manner. Thus, by applying a position gating pulse to the SCR, we have effectively moved the manually operated switch of Fig. 2 to the OPERATE position.
If it is desired to reset the flip-lop, the SCR may be turned off by either manually or electrically reducing the anode current below the holding value.
There are a few points to be considered if the circ it of Fig. 3 is to be used effectively. First,

FOR THE HIGHEST

 $0 / 1$ YOLTAGE RATIO, SPECIFY HOFFMAN SIIICON TUNIEL DIODESWith a voltage ratio as hish as 7.0, the
With a voltage ratio as hish as 7.0, the
Hoffman silicen tunnel diode outperforms Hoffman silicon tunnel diode outperiorms all other tunnel diodes in hish-speed switch ing...as this table of valley-to-peak volt age ratios shows:

Hoffiman silicon tunnel diode 6.3-7.0*
germanium tunnel diode 4.3-6.4**
gallium arsenide tunnel diode 3.8-4.5 ${ }^{\circ}$
*By actual test, "*As advertised

- high temperature stability From $-85^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$. - RUGGEDNESS

Made to withstand severe shock, vibration, acceleration, nuclear radiation.

- UNIFORMITY

All characteristics carefully controlled by advanced manufacturing techniques. - RELIABILITY

Not only are these silicon devices, they are made by Hoffman-the world's leading specialist in silicon semiconductor technology.

CHOOSE FROM 4 VERSATILE PERFORMERS
muffin fan selling prices

WRITE TODAY FOR COMPLETE DETAILS ON THE REMARKABLE ROTRON MUFFIN FAN . .
RORW. ROTRON mfg. CO. inc. In Canada. The Hoover Co., Ltd., Hamilton. On CIRCLE 87 ON READER-SERVICE CARD

Fig. 4. Saturation voltage of switched controlled rectifier varies with temperature.

Fig. 5. With an RC charging circuit, the gating (switching) voltage for the SCR is obtained from the B+ supply.
the value of R has a maximum value determine by the holding current of the SCR. With a maximum holding current of about $2 \mathrm{ma}, \boldsymbol{R}$ would be limited to about 7 or 8 K . For most transistors this would normally not offer much restriction.
Second, instead of going directly to ground, the base resistor now goes to the saturation voltage of the rectifiers. In normal saturated flip-flop design, the off $n p n$ transistor has a negative $V_{B E}$. This negative voltage should be large enough so that when it is increased by the saturation voltage of the SCR, it is still negative.

Another problem is that the saturation voltage of the SCR varies with both temperature and current. A plot of the variation of this voltage with temperature is given in Fig. 4. Because of this

ELECTRONIC DESIGN • July 6, 1960

Fig. 6. For greater time delays in gating the SCR, a unijunction transistor is added.
variation it may be necessary to check the operation of the circuit at low operating temperatures.
RC Delay Switches SCR Without Separate Gating Pulse
The SCR can also be triggered, after an adjustable time delay, directly from the power source. There are two techniques for this. With each, the separate gating pulse for switching the rectifier is no longer required.
For short delays, an RC charging circuit and a Zener diode are used as shown in Fig. 5. In this circuit, V_{G} must be about 1 v to fire the SCR, R_{T} must be selected so that when the capacitor is charged, the voltage divider of R_{T}, the Zener voltage, and the 1 K biasing resistor allow V_{G} to equal 1 v . For times longer than a few seconds, C will have to be quite large. For delays of less than 1 sec , the Zener diode could be omitted.
The other method uses a unijunction transistor to provide the time delay as shown in Fig. 6. Here the delay can be made as much as a minute, and is fairly stable over changing environmental conditions. The time delay is given approximately by the equation:

$$
T=R_{T} C_{T} \ln \frac{1}{1-k}
$$

where \mathbf{k} is the stand-off ratio of the unijunction transistor. To keep the steady state voltage well below the gate firing voltage of the SCR, R_{1} is limited to about 24 ohms. The diode is included to avoid, after the switch has fired, the paralleling effect of the 24 -ohm resistor. If the gate-to-cathode resistance is lowered, the value of holding current will increase.
This circuit was experimentally built for a 10 sec delay. It performed satisfactorily with a timing olerance of 5 per cent over the temperature range of -50 C to +100 C . Higher temperature could be obtained with a sacrifice in holding urrent by changing the biasing of the controll 'd rectifier. - -

new heat transfer surfaces

tailored to your specs

Bring your electronic cooling problems to Janitrol early in the design stage. We offer a variety of heat transfer techniques, knowhow, and designs that can save you time, space, and money

Our design thinking is not limited to cold plates: we use ultra-thin pin-type plates, corrugated foil, corrugated plates, spiral tubes, or combinations of elements to achieve optimum heat transfer while meeting electronic, mechanical, and other design requirements. a For example, mounting shown above was made to the specifications of a major electronic manufacturer. We solicit your inquiries. Janitrol Aircraft Division, 4200 Surface Road, Columbus 4, Ohio.

Automated coordinalograph extracts cartographic data from aerial photograph. Flexowriter at left prints out coordinates of objects observed through viewing microscope. Operation is controlled from panel atop the electronics cabinet. Robert Conroy (left) and C. W. Hargens, both of the Franklin Institute Laboratories, Philadelphia, demonstrate the machine.

Point Plotter Gives a 0.0015-In. Accuracy

NUMERICAL control techniques and digital position encoders are employed in a newly developed, automated point plotter that has a claimed accuracy of 0.0015 in . The instrument is being manufactured by the Aero Service Co., 210 E. Courtland St., Philadelphia, Pa., and is an automated version of the Swissmade Haag-Streit coordinatograph-a manual plotter widely used in printed circuit layouts, data plotting and other precision drafting applications.
The automated instrument employs two servo-driven carriages mounted on the X and Y rails of the basic HaagStreit machine. Carriage positions are measured by two Datex double-disc, con-tact-type digital encoders having a resolution of 0.001 in . Their accuracy permits carriage position determination to five significant figures over the entire 47-1/4 in.-square working area. This information can be printed out directly by a Flexowriter or used as an error signal in driving the carriages to a desired location on the work table. A solenoid-operated marking pin and a viewing microscope can be interchanged, depending on
whether a point is to be marked on or read off the work table.
When driving the carriages to a desired position by a manual or punched tape input, each decimal digit of the input is examined sequentially and compared against carriage location as derived from the encoders. The most significant decimal digit is compared first and an "increase" or "decrease" circuit is closed to the servo drives. When coincidence is reached, the next significant digit is examined and nulled. This process continues automatically until complete coincidence of all X and Y digits is reached The marking solenoid is then energized

A separate carriage speed is used in zeroing each decimal position. These speeds range from a maximum of 3 ips for the first significant digit to a minimum of 0.003 ips for the thousandths decimal position. Speed changing is performed automatically, a decade at a time, as each successive digit reaches coincidence with the numerical command. The four highest speeds are implemented by various driving combinations of two servo motors working through a differential and

Logic and control system the automated coordinatograph. Input Programer directs Flexowriter input to appropriate X and Y channels. Tape Translator converts 8 -digit binary code to decimal code for use in Comparator. Encoder Translator receives b-nary-coded cyclic decimal infor mation from position encoders ond converts it into decimal code. Bolh decimal codes are then fed to the Decimal Comparator which drives the carriages accordingly.

ELECTRONIC DESIGN • July 6, 1960
coupled to the carriage by a steel tape. A gear-head motor and lead screw at the encoder provide the 0.003 ips drive.
Connections to the encoder heads and servo motors are through Mylar-insulated printed circuit cables. Two 30 -conductor cables are required for each carriage.

Semiconductor And Relay Logic Used

The logic and control circuits, housed in a separate cabinet, employ relay and semiconducting computing elements throughout. All-digital logic and the absence of tubes eliminate drift. Pulse counting is avoided; the logic circuit is static and directly coupled at all times. Binary-to-decimal conversion is through transistor-buffered relay trees and oddeven complementing circuits. Numerical comparisons and decisions are made by diode matrices.
The coordinate origin can be shifted at will; carriage position with respect to the origin is indicated on the control panel by projection-type numbers.
A series of points can be marked one at a time or programed automatically by a punched tape input to the Flexowriter. The coordinatograph can mark or locate successive points at $0.001-\mathrm{in}$. intervals. When operated in this manner, the instrument serves as a highly accurate but slow curve tracer.

Closed Circuit TV Available

The reverse of this operation (such as locating objects in an aerial photograph or determining values from a data curve) can be performed to the same close tolerances as the plotting function. This operation generally requires two men-one at the control console and an observer at the work table. An optional closed-circuit TV system will be made available to experlite viewing and control. Full benefit of the coordinatograph's $0.0015-\mathrm{in}$. accuracy of course requires that reading or plotting be done on glass, metal and other dimensionally stable materials.
The automated coordinatograph was designed by C. W. Hargens of the Franklin Institute Laboratories, Philadelphia. The instrument, including Flexowriter and control console, is priced at $\$ 34,750$. The closed circuit TV system, specially desi gned for mounting on the carriages, is approximately $\$ 6,500$ additional. Delivery is from 90 to 120 days.
Fir more data, tum to the Reader Ser ice card and circle number 250 .

Millimeter

devices

now available

 in six product lines

SMALLER, LIGHTER
BACKWARD-WAVE OSCILLATOR
Type BW-1757 delivers up to 15 mw from $26.5-41 \mathrm{kmc}$ in a streamlined new package. Also available are types from 18 to 26.5 and 40 to 75 kmc . BWO's above $75-100 \mathrm{kmc}$ are in development.

FERRITE CIRCULATORS AND ISOLATORS
In production at Sylvania are Tee circulators and waveguide isolators in the 18 to 26 kilomegacycle range. Development programs are under way for devices above 26 kmc.

MAGNETRONS DELIVERING UP TO 100 KILOWATTS

Sylvania's line of rugged Ka-band magnetrons have output powers from 20 to 100 kw. K-band type M-4154 delivers 55 kw . Samples are available of new, rugged Ka-band type M-4218, weighing only $41 / 2$ pounds. Techniques are available for development of types to 100 kilomegacycles.

new waveguide windows available

Sylvania is now producing two new waveguide windows in K and Ka bands, with flanged mica windows:
$\begin{array}{ll}\text { Type WG-4224 } & 18 \text { to } 26 \mathrm{KMC} \\ \text { Type WG-4223 } & 26 \text { to } 40 \mathrm{KMC}\end{array}$

SYLVANIA TR AND ATR TUBES

Sylvania-developed TR and ATR tubes for Ka-band operation are available with power handling capability up to 100 kw .

in the developmental stage:

Sylvania has proved research and development capability for O and M type devices. One of the important projects now programmed at Sylvania's Bayside Physics Laboratory is a harmonic generator in the 200 to 400 kmc range which takes advantage of the non-linear conductivity characteristics of Germanium. And the Bayside labs are at work on the Tornadotron, with which 0.1 MM will be reached; millimeter amplifiers are also in development.
For further information write Sylvania Special Tube Operations, 500 Evelyn Ave. Mountain View, California, indicating the product lines in which you are interested.

of high quality complex assemblies

The Fairchild Aircraft \& Missiles Division's design and construction capabilities were acquired through long experience in successfully completing varied projects for industry. Just one of the many areas where Fairchild's proved abilities are at work is the production of major assemblies for the Boeing B-52 intercontinental jet bomber. Fairchild utilizes its diverse experience in bonding, plastics and metals to con-

struct honeycomb sandwich wing panels, magnesium laminated wing skins, tapered honeycomb trailing edges and honeycomb wheel and strut doors - many to critical tolerances.

Fairchild's broad facilities, its modern equipment and personnel experienced in the on-time design
and fabrication of systems, subassemblies and products, are available to you. Write today for detailed information.

Represcntative of Fairchild's diverse production capabilities. are: VTOL/STOL projects • High flotation gear • Boeing B-52 assemblies•SD-5 survcillance system \cdot Antenna and installation housing for Project Defender Pincushion radar • F-27 propjet • Aluminum boats, lampposts and brid!ges.

AFFAIRCHILD

Machining of fungsten and other refractory materials is now possible at significantly lower temperatures as a result of the development of large crystals of these metals and compounds.

Large, Single Crystals of And Metallic

Type Available "As Grown" Singta

NEW materials that lend themselves to the solution of a variety of problems encountered in high-temperature electronics are now available. The materials take the shape of large single crystals and are grown from metals and metallic compounds by an arc fusion process.
Made by the Linde Co., a division of Union Carbide Corp., 270 Park Ave., New York 17, N.Y., the crystals have the following claimed advantages:

- Purity.
- Homogeneity.
- Absence of grain boundaries and porosity.
- Controlled crystallographic orientation.

	Material	Largest Diameter (In.)	Maximum Length (In.)
$\begin{aligned} & \text { U } \\ & \stackrel{y}{\mathbf{4}} \end{aligned}$	Tungsten	5/8	12
	Molybdenum	3/4	12
	Vanadium	3/4	12
	Columbium	3/8	12
	Tantalum	5/8	12
$\begin{aligned} & n \\ & 2 \\ & \mathbf{2} \\ & 0 \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$	Titanium Monoxide	3/8	2
	Titanium Sesquioxide	1/4	1/2
	Titanium Carbide	3/8	3/4
	Molybdenum Disilicide	1/4	1/2

ELECTRONIC DESIGN • July 6, 1960

ELE STK

The new large single crystals are produced by the arc fusion process in individual furnaces like the one picłured here.

tals of Metals

Illic

Compounds Grown

Crystals of Refractory Materials

The high purity and non-porosity of tungsten crystal suggests applications as electrical contact points in vacuum switches, lead-ins to vacuum equipment, and other places where outgassing is a problem, according to Dr. C. R. Castor of the Linde Company's Crystal Products Dept. He adds, "the high purity of these crystals also results in low, cold emission, making them of value in several electronic applications."
Some of the non-metal crystals hold promise as semiconductors. Titanium diboride, for instance, is a high-temperature semiconductor.
At present, the company has available in stock nine refractory materials as grown in single crystal form. These are: (metals) tungsten, molybdenum, vanadium, columbium, tantalum; (compounds) titanium carbide, titanium monoxide, titanium sesquioxide, molybdenum disilicide. Other crystals will be available shortly.
These single crystals can be formed and worked at temperatures significantly lower than those normally associated with the refractory group, says Linde. Threads, for example, can be tapped into bolts made from single crystal tungsten without cracking.
The crystals come either in "as grown" cylindrical form, as swaged or in fabricated shapes. Special sample packages for laboratory investigation of properties have been prepared for both the metal and non-metal crystals. These packages are priced at $\$ 90$ each. The cost of large single cry tals depends on a number of variables.
For more information on these crystals, turn to the Reader Service Card and circle 251.

CUBIC Digital systems speak for themselves

An uncluttered, human-engineered front panel and internal engineering and construction demonstrate to the eye that Cubic's is the superior digital instrument. Proof of this superiority is in the operation . . . and side by side in independent evaluations of many instruments, Cubic again and again provides the instrumentation that is specified.

Any phenomenon of science which can be converted to a usable DC Voltage can be measured with the Cubic 4 or 5 -digit Voltmeter (Models V-41, V-51) powered by the Model C-1 Control Unit. Addition of an AC Converter (Model AC-1, manual ranging; Model AC-2, automatic ranging) or a Model PA-1 Preamplifier extends the systems capabilities to the measurements of AC voltages or lower level DC voltages.
Precise resistance measurement is possible using $\mathrm{O}-41$ and $\mathrm{O}-51$ four- and five-digit Ohmmeters, powered by C-1 or C-2 Control Units.
Multiple input channels may be sampled rapidly and accurately with the Model MS-2, a single unit for scanning up to 100 points, or the MS-1, AS-1 MasterAuxiliary combination for scanning up to 1000 points with multiples of one, two, four or five-wire inputs.

Voltage ratio measurements are made with the R-41 and R-51 4 and 5-digit models operating only as Ratiometers or with the VR-41 and VR-51 models, which operate both as Ratiometers and Voltmeters. Measurements can be permanently recorded with the addition of a PC-Series Printer Control Unit, providing input for any quality printer on the market.
AND NEW FROM CUBIC . . . the Talking Meter, instrumentation that really does speak for itself, instrumentation that provides a new dimension in "readout," measurements or other parameters reported to the ear by a clear human voice.

Years-ahead engineering, factory production techniques inspired by pride in the end result, careful quality control and reliability testing . . . all these factors make Cubic's the truly fine instrumentation... Digital Systems that speak for themselves.

NEW PRODUCTS

Covering all new products that might generally be specified by an electronics engineer enanged in the design of original equipment.

Silicon Rectifiers Designed
257

For 2 to 8 Amp Range

Designed for rectifier applications in the 2- to 8 -amp range, these 16 silicon units have piv ratings between 50 to 600 v . Both positive and negative polarity rectifiers are available. All the units. JEDEC numbers 1N1341A through 1N1348A and 1N134RA through 1N1348RA, feature all hard-solder design for maximum thermal fatigue free operation. They have a junction operating and storage temperature range from -65 to +200 C .
General Electric Co., Semiconductor Products Dept., Dept. ED, Syracuse, N.Y.
Price \& Availability: In medium size quantities, the units are priced from $\$ 2.40$ each to $\$ 15.15$ each. No extra charge for reverse polarity units.

Laboratory Kit Fabricates
Micromodules And Circuits
This do-it-yourself laboratory kit enables engineers to design and fabricate micromodules and electronic circuits with packing densities of several hundred thousand parts per cubic foot. Ten feet of workbench and a tank of nitrogen are all the additional equipment required. The micromodule is a series of tiny ceramic wafers with microminiature components applied to them. The kits start with the completed wafers and include all equipment to build and test up to 10 modules.
Radio Corporation of America, Semiconductor and Materials Div, Dept. ED, Somerville, N.J.
Price: $\$ 800$ per unit.

Diode Combines Feature Of General And Computer Types

The type 1 N 661 A , all-purpose silicon diode combines the low leakage specifications of the best general purpose types with the switching speed of the best computer types. At 200 v , the unit has a maximum reverse leakage of $0.025 \mu \mathrm{a}$ at $25 \mathrm{C}, 1 \mu \mathrm{a}$ at 100 C , and $5 \mu \mathrm{a}$ at 150 C . Recovery time is $0.3 \mu \mathrm{sec}$ to 400 K under the switching conditions of +30 ma to -35 v in the JAN 256 circuit. Sealed in a standard glass package, the unit is certified to MIL-S-19500B.

Rheem Semiconductor Corp., Dept. ED, 350 Ellis St., Mountain View, Calif.
Price \& Availability: $\$ 2.74$ at 100 quantity level; immediately available from stock in production quantities.

Miniafure Power Supply

Delivers 20,000 V

These plug-in power supplies, actuated by sources as small as a $1.5-\mathrm{v}$ penlight cell or a $1.3-\mathrm{v}$ mercury cell, deliver voltages as high as $20,000 \mathrm{v}$. They can stand the shock and acceleration found in missiles. Designated Varia-Volt, three models are available. Inputs range from 1.5 to 6 v at 4 to 65 ma ; outputs from 800 to $20,000 \mathrm{vdc}$. Victory Electronics, Inc., Dept. ED, 50 Bond St., Westbury, L.I., N.Y.
Price: Prices start at $\$ 93.80$ each.

Coaxial Cable Operates
 Af 1,500 F

Model 323 coaxial cable operates at temperatures as high as $1,500 \mathrm{~F}$. It uses a specially processed silica dielectric, copper conductors, and a protective stainless steel sheath. It can only be mppilied with type C, N, TNC or BNC rf connectors capable of operating at 500 F or with special connectors that operate at $1,000 \mathrm{~F}$. It is ron ally supplied with a $50 \pm 2 \mathrm{ohm}$ characterstic impedance; other impedances are available. Thomas A. Edison Industries, McGraw-Edison Co., Dept. ED, West Orange, N.J.
Ava lability: Samples available in 8 to 10 weeks.

FromdFI the

 Winiature Trimmer America Knows Best!Whether your circuit requirements call for performance in or out of this world, you can rely on JFD miniature trimmers. Tens of thousands in daily use under severe operating conditions on land, under sea and in space best tell their story of outstanding reliability.
The reasons why JFD precision piston trimmers are preferred make sense. They deliver maximum capacitance range in a minimum size...offer exceptional starility.. High Q. ... - even under conditions of severe shock, vibration and acceleration. The adjusting shaft of the miniature capacitors is self-contained within the capacitur permitting tuning without changing the size of the unit. In short, the design meets the most demanding requirements of the missile age electronics.
The popular model VC20G above is only one of the complete family of JFD miniature and subminiature trimmers. More than 200 models are available from stock. JFD also manufactures trimmers in quantities to meet special needs - plus a wide variety of fixed metalized inductors, LC tuners, fixed and variable, distributed and lumped constant delay lines, pulse forming networks and diplexers.

FEATURES

1. Compactness - (More capacitance per cubic inch).
2. Tuning sensitivity - (multi-turn adjustment).
3. Tuning linearity - (no reversals).
4. Stability-(Glass and invar $\pm 100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$), (Quartz and invar construction has zero temperature coefficient).
5. Anti-backlash design - smooth uniform tuning adjustment.
6. Low loss and low inductance for high frequency use
7. No de-rating up to $125^{\circ} \mathrm{C}$ for glass dielectric $\left(150{ }^{\circ} \mathrm{C}\right.$ for Quartz)
8. Shock and vibration resistant.
9. Special alloy plating gives 50 hour salt spray resistance.
10. Gold plating over special alloy for IR.F. conductivity and freedom from silver migration.
11. High Q.-low dissipation factor.
12. Positive mechanical stops at both ends of adjustment.
13. Available in either glass or quartz dielectric.
14. Sealed interior construction locks out all atmospheric effects in Sealcap series.

JFD
 JFD ELECTRONICS CORPORATION
 6101 Sixteenth Avenue, Brooklyn 4, Now Yort

 Write today for the latest JFD technieal bulletins.western regiomal divisiom
311 Vea Mase regional division JFD CAMADA LTD
JFD InTERMATIONAL
311 Van Mavs Boulevard. Van Nuys. Calitoraia 51 MeCormack Street. Toronte. Ontario. Caneda 15 Moore Stroet. Now York. M. Y.

Gives you accurate, continuously variable voltage outputs

0 to 10 v RMS, 1000 cps 0 to 10 v DC for ch

 of laboratory voltmeters and oscillographsBallantine's Model 420 Calibrator has proven to be an extremely useful instrument for quickly checking the calibration accuracy of voltmeters and oscillographs.
Its long term stability is such that you can rely on it for better than $1 / 4 \%$ when using it with a calibration chart and $1 / 2 \%$ without the chart. Accuracy checks can be made with it in less than a minute. This will help you to reduce materially the out-of-service time for voltmeters that otherwise might have to be sent to a central calibration depaitment.

BALLANTINE MODEL 420-AC-DC CALIBRATOR

Price: 365

SPECIFICATIONS

Infernal Impedance of Outputs: 2 to 20 ohms over range 0 to $10 \mathrm{v}, 1000 \mathrm{cps}$ output; less than 5000 ohms on dc output.
Distortion and Hum: Less than 0.25%.
Setting Resolution: Approaches 0.01% above 10 mv .
Power Supply: $115 \mathrm{v}, 50-60 \mathrm{cps}, 35$ watts; $230 \mathrm{v}, 50-60 \mathrm{cps}$ on request.
Dimensions: $6^{\prime \prime} \mathrm{h}, 63 / 4^{\prime \prime} \mathrm{W}, 107 / 8^{\prime \prime} \mathrm{d}$.
Write for brochure giving many more details

BALLANTINE LABORATORIES is

Boonton, New Jersey

Check with ballantime first for laborarorvac vacuum tube voitmetens. aecaroless of your reouinements for
 114

NEW PRODUCTS

Miniature Solenoids
Come in five types

Series ME solenoids are offered in five standard types ranging from $1 / 2$ to 1 in . in diameter, have high-temperature insulation, and can be push or pull types. Various mounting arrangements can be furnished. The units are for dc applications and are made with ratings to 125 v .
Anderson Controls, Inc., Dept. ED, 9959 Pacific Ave., Franklin Park, Ill.

Silicon Rectifier Stacks

Current ratings are 2 to 35 amp

For all basic circuit configurations, these preassembled silicon rectifier stacks have piv ratings from 50 to 600 v and current ratings from 2 to 35 amp . Sizes are $2 \times 2 \mathrm{in}$., $2 \times 3 \mathrm{in}$., and 5×5 in., all 0.064 in. thick.
Vickers, Inc., Dept. ED, 1815 Locust St., St. Louis 3, Mo.
Availability: Delivery time is two weeks on all standard units.

Ferrite Isolators

Five units cover 2 to 11 kmc

509

510

507

tantalum foil, silver encased, non-polar

iei
oluminum foil,
ceramic and plastic encosed

aluminum foil, aluminum and plastic encased, single and

iei
 SPECIALISTS

in minlature and sub-miniature capacitors

Here's why iei is your best source for virtually any type of miniature or sub. miniature electrolytic capacitor:

- Tantalum foil capacitors in ten different case sizes-less weight-save space.
- Wide voltage and capacity range tantalums-3 WVDC to 150 WVDC -capacities to 5000 UF.
- Aluminum foil electrolytics for every application.
Service engineers are available to give you fast, personalized service. They will assist you in adapting standard capacitors for your special requirements, or will design entirely new capacitors to your individual needs.
Call on iei whenever folerances are fight, and reliable performance at specified temperatures is important.

Write for bulletins 81558 and 2625. International Electronic Industries, Inc Box 9036-P. Nashville, Tennessee.

\square

where reliability replaces probability CIRCLE 95 ON READER-S:RVICE CARD ELECTRONIC DESIGN • July 6, 1960
struction with permanent magnet transverse field and ferrite sections built in. Five models are offered. Model C992100-402 covers 2 to 3 kmc ; model C992100-404, 2 to 4 kmc ; model C992100403,3 to 4 kmc ; model C993100-401, 4 to 8 kmc ; and model C994100-402, 7 to 11 kmc . The vswr is $\mathbf{1 0} \mathbf{w}$ for all units. Type N female terminations are used.
Kearfott Div., Dept. ED, 14844 Oxnard St., Van Nuys, Calif.

Heat Sink

Dissipates 200 w with a rise of 12 C

This heat sink dissipates hundreds of watts with temperature rises of a few degrees, using forced convection or a few watts of power with natural convection. With a $6.75-\mathrm{in}$. stacked structure and 120 cfm of blower-supplied air at 0 pressure, 200 w are dissipated with a temperature rise of 12 C . Thermal resistance is 0.06 C per w.
The Delbert Blinn Co., Dept. ED, P.O. Box 757, Pomona, Calif.
Price: The extrusion is offered in 5-ft lengths at the price of $\$ 10$ per ft for up to 25 ft . For 25 to 100 ft , price is $\$ 9$ per ft.

Torque Tester

436
Static and dynamic characteristics measured
Model 67-M2 torque tester can measure the static and dynamic characteristics of such devices as ball bearings, gyro motors, meter measurements, torsion wires and dampers. The tester has an air bearing that offers low friction and stiff support in both radial and axial directions for the device under test. Measurements are made by summing torque about the air supported shaft. The: maximum axial load is 1 lb and the readout accuracy is 0.1%. The adjustment resolution of the alignment fixture is 20 millionths of an inch. Maximum calibration torque is 5000 dyne cm .
I)ynamics Research Corp., Dept. ED, 38 Montvale Ave., Stoneham, Mass.
Price \& Availability: Made on order only; \$19,958 per unit.

with the New ESC Direct Readout Variable Decade Delay Line

Now you can make your own rapid selection of desired delay with the new Direct Readout Variable Decade Delay Line - the newest product developed and manufactured by ESC, America's leading manufacturer of custom-built and stock delay lines! Increments of $1 / 1,000$ of the total delay may be selected by the turn of a dial. And there are three models:

Model 101 - a total delay of 9.99 usec.
Model 102 - a total delay of 99.9 usec.
Model 103 - a total delay of 999 usec.
There is a constant impedance of 1,000 ohms between input and output terminals for any delay increment.

Delay/rise time ratio at maximum delay is $33: 1$. The ESC Direct Readout Variable Decade Delay Line is a passive delay network and will not introduce noise or jitter. Mechanical and electrical modifications available on special order.

WRITE TODAY FOR COMPLETE TECHNICAL DATA.
exceptional employment opportunities for engineers experienced in computer components...excellent profit-sharing plan.

ELECTRONICS CORP: 534 Bergen Boulevard, Palisados Park, Now Jorsoy
Distributed constant delay limes. Lumpad.constant dolay lizes - Variable delay sotworks - Continuously variable delay lines - Step variable delay lines. Shift registers. Video transformers. Filters of all types. Pubseforming notmorks. Miniature plagin encapsuized circuit assemblies CIRCLE 96 ON READER-SERVICE CARD

NEW PRODUCTS

Tantalum Capacitors 515
Operate from - 80 to +125 C
These capacitors are offered in type ST-12 with an uninsulated case and type ST-13 with an insulated case. Temperature range is -80 to +125 C . Voltage ratings are 6,10 , 15,20 , and 35 v de for operation at +85 C and $4,7,10,13$, and 23 v dc for operation at +125 C. A semiconductor electrolyte is used. Designated Aerotan, the units meet the requirements of the proposed specification MIL-C-26655A.
Aerovox Corp., Dept. ED, New Bedford, Mass.

General Purpose Relay 505
Has built-in neon lamp

Type KRP-N general-purpose re lay, equipped with a built-in indicator lamp, can be furnished for 6 to 110 v dc or 6 to 230 v ac operation. Silver contacts rated at 5 amp and silver-cadmium contacts rated at 10 amp are used for both units. Contact arrangements are up to 3 pdt . Overall dimensions are $2 \times 1-13 / 32 \times 1-13 / 32 \mathrm{in}$.

Potter \& Brumfield, Dept. ED, Princeton, Ind.

Micromodule Socket 514
For printed-circuit boards
Designed to mount on a printedcircuit board, this socket makes it possible to remove and replace the RCA micromodule with the same ease as replacing a tube. Micromodules may be mounted on 0.4 in . centers. The insulating material is

SELECT FROW INDUSTRY'S BROADEST LINE OF SILICON DIODES AND RECTIFIERS

Type	$\begin{gathered} \text { Cose } \\ \text { ype } \end{gathered}$	PIV	v_{2}		Maximum LIb		
					$25^{\circ}{ }^{\circ}$	$100^{\circ} \mathrm{C}$	
INGTS	\cdots	225	275	400	0.2	15	600
IMG15A	N	225	275	100		${ }_{10015}^{15}$	500
						10.604	
arimecs	N	225	275	400	0.2	15	600
$1{ }^{1} \times 6$	n	300	360	400	0.2	15	500
afimets	N	300	360	400	0.2	15	600
1 MGA 7	N	100	480	100	0.2	20	600
Afimeat	N	400	480	100	0.2	20	600
IMG48	N	500	600	400	0.2	20	600
afinge	N	500	600	400	0.2	20	600
1 6 649	n	600	720	100	0.2	25	600
afinges	n	600	720	400	0.2	25	600

CEMERAL PURPOSE SILICON DIODES

Type	$\underset{\text { Typo }}{\text { Cose }}$	PIV	v_{2}		moximum ll_{6}		
					$25^{\circ}{ }^{\circ}$	$1500^{\circ} \mathrm{mo}$	
IM056	N	25	30	40	0.025	5	500
IMessa	n	25	30	100	0.025	5	500
imas7	N	60	70	20	0.025	5	500
imsina	N	60	70	100	0.025	5	500
jan imast	N	60	70	20	0.025	5	500
1 M050	N	125	150	1	0.025	5	500
Imasen	N	125	150	100	0.025	5	500
jan imase	N	125	150	7	0.025	5	500
1ma59	N	175	200	3	0.025	5	500
imasoa	N	175	200	100	0.025	5	500
jan imasa	N	175	200	3	0.025	5	500
1 1m61	N	25	30	15	0.5	30	200
11462	n	60	70	5	0.5	30	200
1 m 463	N	175	200	1	0.5	30	200
IMESS	\%	125	150		0.5	30	200
1 mase	n	30	40	$100{ }^{\circ}$	0.25	30	500
1 masza	n	30	40	100	0.025	15	500
114828	N	30	40	100	0.025	5	500
1 mass	n	60	50	$100{ }^{\circ}$	0.25	30	500
Imassa	N	60	80	100	0.025	15	500
194838	N	60	80	100	0.025	5	500
imese	N	125	150	$100{ }^{\circ}$	0.25	30	500
incena	N	125	150	100	0.025	15	500
Im4ers	N	125	150	100	0.025	5	500
1 1485	N	175	200	$100{ }^{\circ}$	0.25	30	500
1m465a	N	175	200	100	0.025	15	500
Im4858	N	175	200	100	0.025	5	500
IM196	N	225	250	$100{ }^{\circ}$	0.25	50	500
Imas6a	N	225	250	100	0.025	25	500
1 14668	N	225	250	100	0.05	10	500
1M487	N	300	330	$100{ }^{\circ}$	0.25	50	500
$1 \mathrm{mas7a}$	N	300	330	100	0.025	25	500
Inces	N	380	120	100°	0.25	50	500
incsea	N	380	420	100	0.025	25	500
${ }_{\text {cos }}$	m	27	30	3	10,	- 20.0	150
6016	m	45	50	10	$\substack{0.025 \\-106}$	400 -100	150
Gonc	${ }^{\text {m }}$	4.7	5.5	60	0.1	40	150
S05C	m	6.8	7.5	35	0.1	40	150
${ }^{608 C}$	m	10	11	25	0.1	40	150
${ }_{600}$	m	15	17	20	0.1	10	150
6126		22	25	20	0.1	40	150
${ }_{514}$		33	37	20	0.1	40	150
${ }^{6156}$	m	47	52	10	0.2	40	150
${ }_{518}$	+	68	75	10	0.2	10	150
${ }^{2200}$	m	100	110	10	0.2	${ }^{40} 0$	150
622	m	150	170	7	0.2	2000	150
6246	m	220	250	3	0.2	2000	150

Type	$\begin{gathered} \text { Cype } \\ \text { Typ } \end{gathered}$	$\begin{aligned} & \mathrm{c}_{1 \mathrm{p}}^{25^{\circ}} \\ & \mathrm{ma} \end{aligned}$	$\begin{aligned} & 1 \mathrm{p} / \mathrm{lv} \mathrm{v} \\ & \text { © } 225^{\circ} \mathrm{C} \end{aligned}$		
1 12650	1	10 ($\pm 10 \%$)	> 15:1	30 (lyp)	1.10 ($\pm 10 \%)$
1 m 651	u	10 (± 28)	> 10:1	30 (typ)	1.10 (\pm 5\%)
1 C 52	u	$5(\pm 10 \%)$	> $5: 1$	40 (typ)	0.98 ($\pm 10 \%$)
$1 \mathrm{m653}$	\checkmark	5 ($\pm 10 \%$)	> 5:1	60 (typ)	0.98 (typ)

Type	Cispe	PIV	v_{z}	$\begin{aligned} & \text { max. } T_{r} \\ & 025 \\ & 0 \end{aligned}$	$\operatorname{maximum~}_{\text {PIV }} L_{b} \text { © }$		Min Fwd 1 volt mad de
					$\text { (40) }{ }_{\mu \mathrm{a}} 5^{\circ} \mathrm{C}$	$\text { © } 100{ }_{\mu}^{\circ} \mathrm{C}$	
1 10625	\cdots	20	30	17	I	30	3
1 Ms25	n	35	50	$1+$	1	30	$4 \cdot$
1 M627	N	75	100	$1 \uparrow$	1	30	$4 \cdot$
$1 \mathrm{mc28}$	N	125	150	11	1	30	${ }^{\circ}$
1 M629	N	175	200	19	1	30	$4{ }^{\circ}$
$1 \mathrm{m63}$	N	175	200	0.3**	0.025 1®100	10 O. 100 15 15000	10
1 m 58	N	50	120	0.3 :	0.05	25 © $1500^{\circ} \mathrm{C}$	100
1 M659	N	50	55	0.3 ¢	5	25	6
$1 \mathrm{N650}$	N	100	110	0.3 ;	5	50	6
1 N 661	N	200	220	0.3 ;	10	100	6
$1 \mathrm{M652}$	N	80	100	0.55		200 ${ }^{20} 1000$	10
1 1963	N	80	100	0.50	50750	50 CO 75	100
1 M 914	/	15	100	0.0004		$\begin{aligned} & 50 \text { Ge } 150^{\circ} \mathrm{C} \\ & \hline 90 \end{aligned}$	
1 19916	N	75	100	0.0004	- ${ }^{5}$	$50 \text { © } 150^{\circ} \mathrm{C}$	10

high voltage diode stacks

voltage regulaton diodes

Typo	Cype	Zoner Yoliage		Power Diss			Max. Z_{z}(e2 $25^{\circ}{ }^{\circ} \mathrm{C}$(a) (B) 12 Ohms	$\begin{aligned} & \text { Typ } \\ & \text { Tomp } \\ & \text { Coop } \\ & \text { cof } \end{aligned}$
		(1) $5 \mathrm{ma} \mathrm{I}_{2}$	Q $20 \mathrm{ma} \mathrm{I}_{2}$	$25^{\circ} \mathrm{C}$	mw	$150^{\circ} \mathrm{C}$		
1076\%	\%		3.3	400		100	28	-0.062
$19787{ }^{1}$	N		3.6	400		100	24	-0.055
19748	N		3.9	400		100	23	-0.049
177494	N		4.3	400		100	22	-0.036
17150	N		4.7	100		100	19	-0.018
177519	N		5.1	400		100	17	-0.008
1m752¢	N		5.6	100		100	11	+0.006
1 17753 ${ }^{\text {¢ }}$	\cdots		6.2	400		100	7	+0.022
19734	\cdots		6.8	400		100	5	+0.035
17755	\cdots		7.5	400		100	6	+0.005
17756p	N		8.2	400		100	8	+0.052
17757¢	N		9.1	400		100	10	+0.056
17758 ${ }^{\text {¢ }}$	N		10.0	400		100	17	+0.060
17759¢	N		12.0	400		100	30	+0.050
${ }^{650}{ }^{\circ}$	m	3.7-4.5		150		40		
6510°	m	$4.3-5.4$		150		40		
65220	m	$5.2-6.4$		150		40		
653C*	m	$6.2-8.0$		150		40		
6519*	m	$8.5-9.5$		150		40		
655c9*	m	9.5-10.5		150		40		

($\pm 5 \%$ of $\pm 10 \%$ tolerance svalabie)

silicon diodes and rectifiers

For asch hall-wava section
R Sumix denoles anode to stud configuration, i. e. INI124R
SILLCOM CONTROLED RECTIFERS

Type	${ }_{\text {case }}^{\text {cipe }}$	At $80{ }^{\circ} \mathrm{C}$ Cise Tomp		$\begin{aligned} & \text { Mon-Recurrent } \\ & \text { Surge Curront } \\ & 1 \text { Cycle at } 60 \mathrm{cps} \\ & \text { Amps } \end{aligned}$		pIV		$\begin{gathered} \text { masi } \\ \text { casp } \\ \text { cemp } \end{gathered}$				
			$\begin{aligned} & \text { Recurrort } \\ & \text { Pocuct Curront } \\ & \text { Amps } \end{aligned}$									
	$\begin{array}{\|l\|l} \hline A \hat{A} \\ A \hat{1} \\ A \hat{1} \\ A \\ x \\ \hline \end{array}$		$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & \hline \end{aligned}$		50 120 200 300 100 100 200 300 300 50 50 50							$\|$10 10 100 10 10

Surface tolerance is ± 0.065 to ± 0.125
Model $10330-\mathrm{ft}$, parabolic antenna, for use in radio astronomy, radar tracking, and experimental test installations, has a surface tolerance of ± 0.065 to ± 0.125. A tolerance of ± 0.08 can be furnished on special order. The f / d ratio is 0.417 . Use above $10,000 \mathrm{mc}$ is possible. The antenna can be mounted on the top or the side of a tower with azimuth and elevation adjustments, on el-az or equatorial pedestals, self-contained trailer mounts, or other types of mounts.
Antenna Systems, Inc., Dept. ED, Hingham, Mass.
<CIRCLE 97 on reader-service card

NEW PRODUCTS

Power Supplies

For missile and airborne use

This line of dc power supplies is designed for missile and other airborne applications. Made to step up dc power, the units have precise regulation against line and load variation, even under severe changes in environmental conditions. Requirements of MIL-E5272C are met. The units are solid state and are offered in 34 standard models, having outputs of 5 to 250 v .

Arnoux Corp., Dept. ED, 11924 W. Washington Blvd., Los Angeles 66, Calif.

Constant Voltage

Transformer

Comes in 60 - and 400 -cps units
This sine-wave constant-voltage transformer is offered in both 60and 400 -cps units. With a line variation of 95 to 130 v , output remains constant to within $\pm 1.5 \%$. The unit can replace non-regulating transformers in step-up or step-down service. It is hermetically sealed for military application at high temperatures and has a current-limiting feature.

Freed Transformer Co., Inc., Dept. ED, 1718 Weirfield St., Brooklyn 27. N.Y.

DC Power Supply

For missile ground support use
Model M-1348 de power supply with an output of 24 to 32 v at 100 amp is for missile ground support use. The unit has magnetic amplifier regulation with no vacuum tubes or moving or delicate parts. Silicon rectifiers provide resistance to high temperatures and adverse environmental conditions. Regulation is $\pm 0.5 \%$ for line and load. Ripple is 0.5% rms based on an ac input of 208,230 , or $460 \mathrm{v} \pm 5 \%$, three-phase, 60 cps.
Perkin Engineering Corp., Dept. ED, El Segundo, Calif.

What do these 38 prod

Representing only a few of the many items produced by VTP, these 38 products (and others like them now in research, development and manufacturing stages) offeryou "built-in" reliability and highest quality-at competitive prices. These products break down into five broad categories:
Storage Tubes: World's most com plete linel 21 different types. Screen diameters: $3^{\prime \prime}$ to $21^{\prime \prime}$. Electrostatic focusing. Electrostatic or magnetic deflection. Tonotron* Half-tone Display Tubes Typotron ${ }^{\bullet}$ Character Display Tubes. Memotron ${ }^{\bullet}$ Image-retention Tubes.

Special Purpose CRTs: Special con. figurations, phosphors, electrical char-acteristics-orfor special environmental conditions. Screen diameters: $1^{\prime \prime}$ to $18^{\prime \prime}$. Electrostatic or magnetic deflection and focusing. Packaged, shielded versions are available. A choice of 28 different phosphors to meet your exact needs.
Vacuum Gauge Tubes \& Equipment: Most complete line of high vacuum gauge tubes and controls (including: ionization, cold discharge and thermocouple gauge tubes; electronic ultra-high-vacuum pumps.) Single source supply for all of your high-vacuum requirements.

Welders, Controls \& Accessories:
Complete line of precision electronic welding equipment for joining thin metal parts (. $0001^{\prime \prime}$ to $.08^{\prime \prime}$). Half and full cycle AC power supplies, stored energy power supplies, inert-gas shielded-arc welder controls-plus welding heads and accessories.
Rectifiers \& Transmitting Tubes: Heavy-duty rectifiers, xenon thyratrons, clipper diodes and triode transmitting tubes are now available in production quantities to fill all of your requirements. See the complete Vacuum Tube Products lines on display at WESCON, Booths 2826-2827.

Basically, 3 things-

- They are all electronic in nature. - They are all available in production quantities for commercial and military applications. - They are all produced by Hughes Vacuum Tube Products Division.

(1) Monoscope (2) 5° CRT (3) Capacitor Welding Power Supply (4) Thermocouple/lonization Vacuum Gauge Control (5) Seam Welding Handpiece (8) Thermocouple Vacuum Gauge Tube (7) Ionization Gauge Tube (1) 9) $5^{\circ} \& 3^{\circ}$ Tonotron Tubes (10) 17° CRT (11) 5° Tonotron Tube (12) High Vacuum Diode (13) Thermocouple Var uum Gauge Control (14) 5° Typotron Tube (15) 5° Shielded CRT (18) 5° Memotron Tube (17) 5° Tonotron Tube (18) (19) Electrolytic Welding Power Supplys (20)(21) 5° \& 3° CRTs (22) 210° Tonotron Tube (23) Thermocouple Vacuum Gauge Control (24) Philips Vacuum Gauge Control (25) Precision Welding Head (23) Ion Pu:np (27) Power Triode (23) High Vacuum Diode (29) Xenon Thyratron (30) Welding Handpiece (31) Hign Dic le (35) ($\mathbf{3}$ Thermocouple Vacuum Gauge Tube

For full information on reliable, highquality products in any of these fields, write or wire today: HUGHES, Vacuum Tube Products Division, 2020 Short Street, Oceanside, Calif. For export information, write Hughes International, Culver City, Calif.

Creating a new world with ELECTRONICS

HUGHES

VACUUM TUBE PRODUCTS DIVISIOM
hughes aircraft company

Polycrystalline

For floating zone crystal growing
For floating zone crystal growing, these polycrystalline silicon rods are uniform in diameter, have a boron content of 1 ppb , and have a very high density. Standard diameters of the rods are $3 / 4$ to $7 / 8 \mathrm{in}$. with tolerances of $\pm 0.005 \mathrm{in}$. Nominal length is 10 in . Diameters of $3 / 8$ to 1 in . are available on special order. Trancoa Chemical Corp., Dept. ED, Reading, Mass.
Price: $\$ 1$ per gram.

High-Q Coating

For tuned circuits
Type 338-D high-temperature, high-Q coating is particularly suited for use with tuned circuits. One application is in the fabrication of miniature, in-line rf filters. The coating is supplied as a solvent solution that can be brushed, dipped, or sprayed. After a brief drying period, the coating is cured in an oven at 275 to 300 F for 2 hr . Besides having only a negligible effect on the frequency response of assembled units, this coating resists water, oils and solvents.

Plastic Associates, Dept. ED, 185 Mountain Road, Laguna Beach, Calif.
Price \& Availability: Available for immediate delivery, the product is priced at $\$ 4.90$ per lb.

Polarized DC Motor

Operates without commutation
Operating without commutation, this polarized de motor has a starting torque of $4 \mathrm{lb}-\mathrm{in}$., a running torque of $8 \mathrm{lb}-\mathrm{in}$., and a starting and running current of 85 ma at 28 v dc. The motor is useful in areas where there is a limited source of power. Free-arc-operating, the motor is activated by synchronized impulses and a sealed circuit that may be remotely located.
Diaphlex Div., Cook Electric Co., Dept. ED, 2700 N. Southport Ave., Chicago 14, III.

There are all kinds of coils

REPRESENTATIVES OENVER 7, COLORADO Fred A. Pease Company
4921 East 38 th Ave
SYRACUSE B, NEW YORK Leonard Dailien, nc.
Box 32 Salina Station CLEVELAND 13, OHIO Electro Com
1231 Main Avenue TENELFY, NEW JERSEY Harold Gray Associates
$8-10$ 8-10 Highwood Ave. NORTH HOLLYWOOD, CALIF. Samuel O. Jewett Co,
13111 ventura Bivd. SCOTTSDALE, ARIZONA P. O. Box 172
haddenfield, new jersey M. W. Moler co.
C. O. Box 240

ST. PAUL 4, MINNESOTA Northport Engineering, Inc.
1729 Selby Ave. 1729 Selby Ave.
CHICAGO 51, ILLINOIS Edward Schmeichel Co
5968 W, Chicago Ave. 5968 W. Chicago Ave
KANSAS CITY, MISSOURI
E. B. Schwerin ${ }_{4210}$ E. Main Street
ST, Louls 21, MISSOURI ${ }_{81} \mathrm{E} \mathrm{I}_{\mathrm{B}}$ Gerald Ave.
SEATLLE 8, WASHINGTON Testco
Boeing
Testco
Boeing

CIRCLE 99 ON READER-SERVICE CARD

MINIATURE $1 / 16^{\prime \prime}$ INDICATOR

Micro-miniafure moving cail, core mag. Micro-miniature moving coil, core mag;
net indicator; $7 / 16^{\circ}$ diameter, $31 / 32^{\prime \prime}$ length. Weight 10 grams; sealed. Available with a pointer or n̂ag display in a wide variety of electrical sensifivilities and functions. Data on request. Marion Instrument Division, Minneopolis-Honeywell Regulator Co., Manchester, New Hampshire, U.S.A. In Conoda, Honeywell Controls limited, Toronto 17. Ontario.

Honeywell

H....ist in Contad

CIRCIE 101 ON READER-SERVICE CARD

NEW PRODUCTS

Digital Demonstration Unit
For use to 100 kc

Providing continuously adjustable frequencies to 100 kc , this digital demonstration unit can be used as an aid to training personnel in the digital field. Patch cords on the control panel permit inter-connection of circuits to form an adder subtractor, shift registers, binary counters, and binary-coded-decimal counters. Switches allow selection of continuous operation, single-pulse operation, or single cycles of addition or subtraction. The unit has a power supply and eight plug-in modules providing a total of 12 flip-flops. Abacus, Inc., Dept. ED, 3040 Overland Ave. Los Angeles 34, Calif.

Cavity Filters

Center frequencies are 200 to 2400 mc

Having center frequencies ranging from 200 to 2400 mc , the ACF cavity filters allow for bandwidth adjustment, by means of a hex-screw, from 1.5% to 10% of center frequency. They have 2 to 9 cavities. Insertion losses are 0.5 to 3 db . The input and output impedances are normally 50 ohms; units with 75 - or 93 -ohm impedances can also be furnished. The units can be used as fixedtuned pre-selectors or for harmonic suppression or selection on the output of fixed-frequency oscillators. Power rating is 100 w .

Telonic Engineering Corp., Dept. ED, Laguna Beach, Calif.
Price \& Availability: Price ranges from $\$ 200$ to $\$ 1000$ ea; units are made on order and have a 30- to 45-day delivery time.
circle 102 on reader-service card *

for precision electronic manufacturing

Cable Tester
Checks 150 simple circuits

Model 196 military cable tester checks 150 simple circuits, 75 main circuits with up to 75 branch circuits, and any intermediate combination of main and branch. It performs leakage and continuity tests simultaneously. Measurements are made on precision bridges. Continuity testing can be made from 0.3 to 10 ohms at 0.5 to 3 amp ; high-pot testing can be made to 1000 v dc. An ohmmeter measures leakage resistance from 0 to 1000 meg. The equipment meets MIL-T-945A.

California Technical Industries, Div. of Textron, Inc., Dept. ED, 1421 Old Colony Road, Belmont, Calif.
Price \& Availability: $\$ 7000$ ea; 60-day maximum delivery time.

Klystron

Produces 2 megawatts

Somers special process provides pure lin, 80-20 tin-lead and 60-40 coatings of .00002 to . 00008 and .0002 10.0003 on Thinstrip ${ }^{\text {® }}$ copper, brass, bronze, and other alloys from . $012^{\prime \prime}$ $10.002^{\prime \prime}$ thin, $13^{\prime \prime}$ to $121 / 2^{\prime \prime}$ wide. Write for confidential data blank or field engineer for analysis of your special problem - no obligalion, of course.
or exacting standards onty

Soıners Brass Company, Inc. 116 baldwin ave., waterbury, conn. CIRCLE 103 ON READER-SERVICE CARD
CIF fle 102 ON READER-SERVICE CARD

351

Complexitles to SImpllcitles

with HRE-8INGER's Mulflcoupler. one antenna feeds FOUR receivers

A military requirement for a multicoupler to meet a restricted space antenna installation problem was solved by HRB-SINGER's Model 330-M4 amplifier-multicoupler.

HRB's distributed bandpass amplifier techniques provided a 30 to 300 mc response with low noise characteristics and a high degree of reliability. A multiple position requirement was fulfilled by a single antenna and four output multicoupler incorporated with the low noise amplifier, thus eliminating the need for multiple antenna installations.
This is only one of many instances where HRB-SINGER research has been applied in the development of a custom amplifier line. The company has a complete capability to meet customer special performance and environmental specification or design requirement problems for specific UHF and VHF application. Direct your inquiries to Dept. G-10. A comprehensive series of data sheets describing this capability is yours for the asking.
ELECTRONIC RESEARCH AND DEVELOPMENT in the oreas of: Communicotions - Countermeasures - Reconnaissance - Operations Research - Human Factors - Intelligence - Weapons Systems Studies and Analysis - Nuclear Physics - Astrophysics - Antenna Systems

HRE-SINGER, INC.

 Sclence Park, state Collece, PeCIRCLE 104 ON READER-SERVICE CARD
… Every component in the U.S. Navy's TARTAR, newest supersonic surface-toair guided missile must meet the highest standards for statistical reliability.
No exception is the Bristol Syncroverter* chopper used in the TARTAR's guidance system. The TARTAR, produced for the Bureau of Naval Weapons by Convair (Pomona) Division of General Dynamics Corporation, is slated to form the primary antiaircraft weapon aboard destroyers and secondary antiaircraft batteries aboard cruisers.
The Bristol Syncroverter chopper has a long history as a component in U.S. guided missiles. It's the ideal miniature electromechanical chopper for use in d-c analog computers or wherever utmost reliability is required.
BILLIONS OF OPERATIONS have been completed without a failure on Bristol's continuing life tests-aimed at improving the Syncroverter's already superlative characteristics. Just one sample: A group of five choppers, with 400 cps drive and $12 \mathrm{v}, 1$ ma resistive contact load have been going for more than 26,000 hours without failure. That's more than 2.96 years continuous operation or more than 37 billion complete cycles! No matter what your chopper requirements, we're sure you can find the model you need among the wide selection of Syncroverter choppers and high-speed relays available . . . including low-noise, external coil types. For complete data, write: The Bristol Company, Aircraft Equipment Division, 150 Bristol Road, Waterbury 20, Conn.
*T.M. Reg. U.S. Pat. Off.

BRISTOL fine pracison $^{\text {B/ }}$

 INSTRUMENTS FOR OVER SEVENTY YEARS
Navy TARTAR on target

RCLE 105 ON READER-SERVICE CARD

NEW PRODUCTS

Power Supply
Provides 35 kv dc

Model PSC 30-5-1 power supply provides an output of 35 kv at 1 ma and 30 kv at 5 ma . Input is 115 v at 60 cps . Ripple is less than 0.5% per ma rms. The unit is portable, measuring 12×14 $\times 12 \mathrm{in}$. and weighing 60 lb .
Del Electronics Corp., Dept. ED, 521 Homestead Ave., Mt. Vernon, N.Y.

DC Power Supply

359
For laboratory applications

Designed for laboratory work such as circuit testing or transistor testing, this supply delivers 0 to 45 v at 0 to 2.5 amp . It plugs into a $60-\mathrm{cps}$, 95 to 130 v line. The output is stabilized to $\pm 1 \%$ of setting. The unit can be supplied as a portable type or a rack mounting type.
Acme Electric Corp., Dept. ED, Cuba, N.Y.
Price \& Availability: $\$ 131$ for portable type; $\$ 152$ for rack type. Delivery from stock.

Precision Switch

Total resistance is 0.7 milliohms

This precision instrument switch has a total resistance of 0.7 milliohms and remains constant
0 ± 20 micro-ohms. It is for use on instruments that measure electrical potential and resistance.
The Ealing Corp., Dept. ED, 33 University Road, Cambridge 38, Mass.
Price \& Availability: Price is $\$ 29$ per unit when ordered in quantities of 1 to 11, and $\$ 25$ per unit in quantities of 12 or more. Available from stock.

Static Inverter

403
Meets missile requirements

Built to meet missile requirements, this $90-\mathrm{w}$, single-phase static inverter performs over the temperature range of -65 to $+\mathbf{1 8 0}$ F. Efficiency is 70%. It is suitable for any application requiring a $400-\mathrm{cps}$ output in a small, lightweight package, and is able to provide power to mechanical teleetering commutators or to gyros.
Kinetics Corp., Dept. ED, 410 S. Cedros Ave., Solana Beach, Calif.

Code Generator

353
Produces 43 characters

The Codamite transistorized code generator, neasuring $6.25 \times 5.25 \times 2.25 \mathrm{in}$., produces 43 diferent code characters. Circuitry includes a tenbit nagnetic core memory to retain each character Intil transmitted. A speed control provides for ates of transmission from 5 to 40 words per min. R. W. Johnson Co., Dept. ED, 9372 Hillview aci, Anaheim, Calif. rice \& Availability: $\$ 1275$ ea; 60-day delivery

COOL is the word for General Electric NPN silicon transistors, Series 2N332 through 2N338. At 150 mw the junction temperature is $70^{\circ} \mathrm{C}$ at an ambient of $25^{\circ} \mathrm{C}$.
Compare this with the registered derating factor which calls for a junction temperature of $175^{\circ} \mathrm{C}$.

The " A " versions of these transistors dissipate 500 mw at $25^{\circ} \mathrm{C}, 83 \mathrm{mw}$ at $150^{\circ} \mathrm{C}$ - all without a heat sink.

When junction temperatures go down, reliability goes up. The wide safety factor you enjoy with General Electric silicon transistors means better performance and longer life than you may ever have seen achieved before in a similar device. See your G-E Semiconductor Sales Representative for complete details.

On the shelf at your General Electric Distributor.

GENERAL ELECTRIC
 CIRCLE 107 ON READER-SERVICE CARD

MINIATURIZATION plus LOWER COST

Thin Versatile Co-Netic and Netlc Magnetic Shlelding Folls

Permil positioning foil-wrapped components A \& B closely. minimizing interaction due to magnetic fields . . . making possible compact and less cosilly systems.

How thin Co-Netic and Netic foils lower your magnetic shielding costs:

1) Weight reduction. Less shielding material is used because foils (a) are only $.004^{\prime \prime}$ thick and (b) cut and contour easily.
2) Odd shaped and hard-to-get-at components are readily shielded, saving valuable time, minimizing tooling costs.
These foils are non-shock sensitive, non-retentive, require no periodic annealing. When grounded, they effectively shield electrostatic and magnetic fields over a wide range of intensities. Both foils available from stock in any desired length in various widths.
Co-Netic and Netic foils are successfully solving many types of electronic circuitry magnetic shielding problems for commercial, military and laboratory applications. These foils can be your short cut in solving magnetic problems.

readily to any shape
ordinary scissors.

Inserts readily to convert xisting non- shie
enclosures.

Shielding cables reduces pickup.

Wrapping tubes prevents outside magnetic
interference.

PROTECT VITAL MAGNETIC TAPES

When accidentally exposed to unpredictable magnetic fieids, presto! - your valuable data is combined with confusing signals or even erased.

For complete, distortion-free protection of valuable magnetic tapes uuring transportation or storage. Single or multiple reel Rigid
Netic Enclosures available in many convenient sizes and shapes

Rigid Netic
(. 014° and up
in thickness)
Shielding in thickness)
Shielden Rooms
and Enclosures Shind Enclosums
and sale. distortor sale, distor
tion-free stor
age of large age of large
quantitites or recorded m
lapes

Composite pho-
10 demonstrat-
ing that mag.
netic shilding
auallities
nelv shities of
quigid Netic Alloy
Rigid Netic Alloy
Materal are not
significantly al-
significanily at-
lecited by vibra
bumping) etc. Ne bumping) etc
annealing.

Write for further details today.
magnetic shield division perfection mica co 1322 No. Elston Avenue. Chicago 22, Illinois originalors of permanentiv effective neic co netic magnetic shilioing

NEW PRODUCTS

Waveguide Gages

For go/no-go operation

A go/no-go means of checking critical dimensions of standard waveguide transmission lines used in uhf, shf, and ehf instruments, the ID series gages cover from WR 975 (0.75 to 1.12 kmc) to WR 10 (75 to 110 kmc). Each gage is ground to a tolerance of 0.0002 in . The gages are offered in 24 sizes.
Somerset Radiation Laboratory, Inc., Dept. ED, 192 Central Ave., Stirling, N.J.
Price d Availability: $\$ 90$ to $\$ 545$ ea; stock de livery.

Wideband Amplifier

Bandwidth is 10 to 90 mc

Model 1004 wideband amplifier, capable of amplifying sine waves, symmetrical signals, or fast pulses, has a bandwidth of 10 to 90 mc . Gain is 40 db and noise figure is better than 8.5 db at 85 mc . Amplifier delay is about $0.03 \mu \mathrm{sec}$. Input and output impedance is 300 ohms. A power supply is self-contained within the unit.

Community Engineering Corp., Dept. ED, P.O. Box 824, State College, Pa.
Price d Availability: $\$ 195$ ea; 45-day delivery.

Dual-Channel Amplifier

For compensated-resolver applications

For compensated-resolver applications, this transistorized amplifier has a parallel summation input circuit that accepts up to five inputs per channel. Amplifiers and resistors are packaged separately; the dual amplifier plugs into the re-

This is a new series of Tube Cap Connectors using special silicone components for high reliability applications. They provide the highest degree of resistance to temperature extremes and are virtually unaffected by ozone and corona. The excellent dielectric characteristics make them ideal for high volage. Skirs and sealed in leads guard gainst flashover at high altitudes. Add orona cup and long-life spring contacts.
Clip this out - keep handy for part numbers and specs on connectors below for either $1 / 4$ or $3 / 60^{\prime \prime}$ top caps. Prefix 90 for $1 / 4^{\prime \prime \prime} ; 91$ for $t^{\prime \prime}$. Lead wire $18^{\prime \prime}$ long from center of cap or length to your specs.

Besides new silicone types - Alden orovides complete series of connectors for $11_{2}{ }^{2}$, \hbar^{n} and $h i$ cap in your choice of phenolic, mica, polyethylenc. nylon and Kel-F. Complete hi-voltage cable assembies
are available using Alden hi-voltage disconncest are available using alden
and tube cap connectors.

TELL US ABOUT YOUR CONNECTING PROBLEML FOR PROMPT RECOMMENDATIONS - WRITE OI PHONE JACK POLLARD NOW.
ALDEN PRODUCTS CO
(139 North Main St., Brockion, Mass. ELECTRONIC DESIGN • July 6, 196
istor package and is retained by captive screws. rotage transfer accuracies can be maintained Io an accuracy of 0.1% from -55 to +105 C . liatios in the range of 0.1 to 10 can be obtained. The amplifier operates at 400 cps , signal frequency, and provides a $26-\mathrm{v}$ rms output. Total power requirement is 45 v dc at 16 ma .
Reeves Instrument Corp., Dept. ED, Roosevelt Field, Garden City, N.Y.
Availability: Sample quantities are available from tock.

Pressure Transducers
Ranges extend to 100 psi

The 800 series pressure transducers use a freedged, circular diaphragm of Ni-Span-C in the ensor to increase system accuracy. Full scale anges are 1 to 100 psi ; differential or absolute peasurements can be made. Units are sensitive less than 0.01% of full scale for a 0 to 1 atmoshere pressure range. Hysteresis effects are less van 0.03%. Temperature range is -55 to +100 C . he sensor stands 100% overpressure.
Rosemount Engineering Co., Dept. ED, 4900 : 78th St., Minneapolis 24, Minn.
fice \& Availability: Delivery time is 30 to 60 wys. One of the units, for example, is priced at 90 ea.

npulse Counter

Has decade cascade system

The Minichron 10 impulse counter counts timed pulses with a decade cascade system like that of abacus. A cascade of six ring counter decades Ints each pulse of a 400 -cps time base signal pinpoint 16 different operations within a mila count-time period of about 45 min . Proming can be changed in a few minutes and hout disturbing associated wiring or connecps. Operating on 22 to 35 vdc , the unit has furrent drain of 0.2 amp . Designed for proming missiles in flight, the unit can program sequence of events such as automated operins it testing, process control, or production. the Victoreen Instrument Co., Dept. ED, 5 W. Mission Road, Alhambra, Calif.

General Electric silicon transistors are manufactured by the Fixed Bed Mounting process. All parts are firmly fastened to a ceramic disk, with no suspended parts. The transistor reacts as a solid block in resisting shock and vibration.

G-E type 2N332 through 2N338 transistors (including "A" versions and USN versions) have been struck with a golf club, rattled 700 miles in a hub-cap, fired from a shotgun and shot from an artillery piece ($40,000 \mathrm{G}$'s) - and still survived to operate! Call your G-E Semiconductor Sales Representative for full details.

Absoluto Maximum Ratings	2N332-6 ${ }^{\circ}$	2N337-8 \dagger	2N332A-6A
Collector to base voltage	45 Vcıo	45 Vcoo	45 Vc
Emitter to base voltage	$1 \mathrm{~V}_{\text {bo }}$	$1 \mathrm{Vem}_{0}$	$4 \mathrm{~V}_{6}$
Collector current (Ic)	25 ma	20 ma	25 ma
Colloctor dissipation @ $25^{\circ} \mathrm{C}(\mathrm{Pc})$	150 mm	125 mw	500 mm
Operating temperature (TJ)	-65 to $175^{\circ} \mathrm{C}$	$-6510150^{\circ} \mathrm{C}$	$-6510175{ }^{\circ} \mathrm{C}$
"USN versions of all units except 2N332 have QA per MIL-T. 19500/37A. tUSN versions have QA per MIL-T-19500/69B.			
Immediafo delivery from your General Electric Distributor			

ELECTRIC

push-pull design increase stability of new 400-cycle magnetic amplifier relay

unusual potting,

If you pried the bāse off the can of this new magnetic amplifier relay (which you probably wouldn't after paying good money for a hermetically sealed device) you might be surprised. Sitting there in quiet intimacy would be an isolation transformer, reactor, one or two relays and sundry other items - all immersed in a transparent, slightly wiggly material, just like grapes in a gelatin salad. The compound is selected for its ability to soak up shock, vibration and thermal expansion. In that order, the specs for this device are 100 g 's, 10 g to $55 \mathrm{cps},-55^{\circ}$ to $+100^{\circ} \mathrm{C}$.

What you can do with the Series 8300 is the same thing you can almost do with any good transistor- or meter-relay except this one will work on DC inputs as low as $0.2 \mu \mathrm{w}$. and remain stable (circuit is push-pull) under $\pm 10 \%$ variations in line voltage, frequency, and the 155° spread mentioned earlier. Standard models also have single or dual coils, a contact rating of 1 amp . at $28 \mathrm{VDC} / 120$ VAC, resistive, for at least 100,000 operations, and terminals for connecting bias and desensing resistors. The connection schematic looks like this, but has the circular floral arrangement as pictured:

If you have an application that demands an even fancier version with such features as DPDT output contacts, higher vibration and load ratings (and less sensitivity), built-in DC power supplies, reference sources, etc., we may be able to do something for you on a special order basis. First, however, it would probably be a good idea to see our $5 \pm 20 \%$. page Series 8300 Preliminary Bulletin - collated, stapled, 3 -hole punched and unpotted.

SIGMA INSTRUMENTS, INC. 91 Pearl St., So. Braintree 85, Mass.

NEW PRODUCTS

Wirewound Resistors
Exceed MIL-R-26c

The TO-RW series of wirewound resistors are made to exceed the requirements of MIL-R-26c with "V" characteristics. They use alloy terminals which match the thermal expansion of tube and enamel. Minimum wire size is 0.00175 in .
Tru-Ohm Products, Dept. ED, 2800 N. Milwaukee Ave., Chicago, Ill.
Availability: Delivery time is 10 days to two weeks.

Pushbutton Switches

For pulse and digital systems

Designed for pulse and digital electronic systems, these one-shot, switch-circuit, pushbutton assemblies generate a single square-wave pulse, synchronized with a clock pulse at each operation. Pulse frequencies are 4 to 500 kc . The assemblies can be used for manually loading magnetic drums, checking ring counters, resetting flip-flops, radar, telemetering, data reduction, industrial process control and other applications.
Micro Switch, Dept. ED, Chicago \& Spring Streets, Freeport, Ill.
Price \& Availability: \$46 ea; about six weeks for delivery.

Ceramic Coil Forms

Have V-type thread

For use where high stability and uniformity of electrical properties are required, these V threaded, ceramic coil forms are available in the

Williamsgrip electrical cennectors provide quick connect and dis. connect with a flick of the wrist.. plus full positive connection insur ing maximum conductivity without ing maximum conductivity without
the use of springs, slip joints or the use of sprin
riction methods.
The patented Williamsgrip con struction and special thread design prevents slippage and corrosion, re. sulting in cooler operation, greater reliability and longer life.
The self-wiping action of the connector eliminates arcing and excessive heating, and allows the connector to operate from 5° t $25^{\circ} \mathrm{F}$ cooler than the cable, even under conditions of 100 percen overload. Both connectors and adapt ers are constructed to withstan severe environmental conditions: and have successfully withstood temperatures over $2000^{\circ} \mathrm{F}$.
These high current, single circuit connectors covering a wide range of wire and cable sizes have proved their reliability over more than decade of versatile, rugged service for a wide variety of requirements in the military, industrial and commercial fields.

Write today for AiResearch Produd Catalog on "Electrical Connectors:"

AiResearch Manufacturing Divis
Los Angeles 45, Callfornia
CIRCLE 112 ON READER-SERVICE CII
|ollowing sizes: 12-pitch, three-thread; 16-pitch, ive-thread; and 18-pitch, seven-thread. They are made to stand shock and vibration. Silicone fibreflass collars with silver-plated solder lugs are ssembled at both ends of the form's threaded ection.
United Products Co., Dept. ED, 165 Franklin ive., Nutley, N.J.
Price \& Availability: Price is $\$ 0.34$ ea in quantifies of 1000. Delivery is from stock for limited puantities.

Disk Cathodes 485
Miniature

These miniature disk cathodes with triangular pee ceramic insulators provide a minimum heat Es by reducing the area of contact between the mank and the ceramic. The temperature of the thode can be as high as 850 C. Shank diamler is about 0.09 in . and length, 0.22 to 0.28 in . le disk cathodes can be furnished with a 0.365-$0.40-\mathrm{in}$. OD ceramic.
Superior Tube Co., Dept. ED, 1521 Germanwn Ave., Norristown, Pa.
ncoder
Position-to-digital type

lodel 773 13-bit, position-to-digital encoder a resolution of 128° counts per input-shaft plution. Full scale capacity is 8192 counts; acacy is never less than the least significant digit. ting torque is less than $0.2 \mathrm{oz}-\mathrm{in}$. and moment nert a is $0.048 \mathrm{oz}-\mathrm{in} .^{2}$ The unit weighs 7.6 oz . ibre scope Div. of General Precision, Inc., pt.ED, 808 Western Ave., Glendale 1, Calif.

Before any lot of G-E silicon transistors may be delivered, a representative number of units are selected for each of the four restrictive life tests. These tests include operation at maximum power at $25^{\circ} \mathrm{C}$ ambient, operation at high temperatures and peak ratings, storage at $200^{\circ} \mathrm{C}$, and shelf life at $25^{\circ} \mathrm{C}$-all tests for 1000 hours. If the sample fails any one of these tests, the lot cannot be shipped.

Only General Electric silicon transistors (Series 2N332-2N338,
 including " A " and USN versions) are subjected to such rigorous restrictive testing. And we keep them pure inside no grease or surface contaminants that degrade performance are permitted to enter. Write for a full report on the restrictive tests which G-E silicon transistors must pass before they're shipped to you. Section S2370, General Electric Co., Semiconductor Products Dept.,
Electronics Park, Syracuse, N. Y.
At factory-low prices from your General Electric Distributor.

GENERAL ELECTRIC

CIRCLE 113 ON READER-SERVICE CARD

NAVIGATIONAL INSTRUMENTATION

Compact Bendix Indicators with wide application range

Eclipse-Pioneer is long- Omni Magnetic Indicators, Radio experienced in the design, engi- Magnetic Indicators, Distance In neering, and production of lightweight, compact, versatile navigation instrumentation to meet both today's and tomorrow's needs.
Some examples are Bearing Distance Heading Indicators (illustrated), Radio Bearing Indicators,

Magnetic Indicators, Distance Infor use in TACAN, ILS, VOR SONAR, and DOPPLER systems. If you have a navigation instrumentation problem, benefit by our precise skills in this specialized area. Call or write today.

Eclipse-Pioneer Division
Teterboro, N. J.

 circie 114 ON reader-service card

NEW PRODUCTS

Monitor Receiver

Operates from 225 to 399.9 mc

Model 36 monitor receiver is offered in fm and am models. The fm unit is capable of receiving fm voice, frequency shift keying messages, telemetry, and digital transmissions. The unit is for various missile uses. The am model is designed for uhf aircraft traffic control, airport tower operations, am voice, am frequency division, and am-fm telemetry. The units are self-contained, integrating the power supply and the basic receiver. Input is 115 v at 60 cps .

Electronic Communications, Inc., Dept. ED, 1501-72nd St. N., St. Petersburg, Fla. Availability: Units are built to customer specs.

Leak Detector

Spectrometer-type

Model 24-210B leak detector, a spectrometertype unit, has a sensitivity such that it can detect one part of helium in $10,000,000$ parts of air. A liquid-nitrogen cold trap removes condensable vapors before they can enter the analyzer section. Response time is less than 1 sec for 50% full-scale deflection of the leak-rate meter on the x 1 scale. Attenuations are $\mathrm{x} 1, \mathrm{x} 5, \mathrm{x} 10, \mathrm{x} 100$, and $x 1000$. Residual fluctuation and noise level are less than 2%, full-scale peak-to-peak. Input is 105 to 125 v ac.

Consolidated Electrodynamics Corp., Dept. ED, 360 Sierra Madre Villa, Pasadena, Calif.

Subcarrier Oscillator

For airborne applications

Model TS-56 voltage-controlled subcarrier oscillator converts information in the form of

398

GEAR HEADS

Compaet units that provide outfut motor speed reductions.

These easily detachable heads are available in various frame sizes, and supply reductions in ratios anging from 7.22 : 1 to 42,41 Ball bearings are Class A. B. E. C. 5, or better, and gears are cut to better, with backlash held to metter, with backlash held or better. Adaptable minutes, or better. Adaptable erators. Write for details.
$1 / 2$-INCH LOW INERTIA MOTOR
Designed for instane response in servo systems.

The CK-1066-40-A1 Bendix 10 inertia motor is a two-phase, four inertia motor 400 -cycle induction type an is one of the smallest motors avall able for servo systems. Measure ength. Unit consists of a squirre cage rotor that rotates on precisiot ball bearings, a two-phase statom and a stainless steel housing Standard motor has tapered shat but units can be obtained with othe type shafts and with center-tapp control windings.

Manufaclurers of
GYROS - ROTATING COMPONENTS RadAR DEVICES - INSTRUMENTATIO PACKAGED COMPONENTS

Eclipse-Pioneer Division

Totorboro, N. J.
CIRCLE 115 ON READER-SERVICE CA ELECTRONIC DESIGN • July 6,
raying dc voltage amplitude into a frequencymodulated subcarrier signal suitable for transmission by wire or radio to distant receiver stations. Available in all standard RDB channels, the unit is for use in airborne applications. Input requirement is 6 v dc $\pm 0.1 \%$ at about 12 ma . Input impedance is 1 meg and output impedance s 47 K . The output voltage is 2 v rms min . Vector Manufacturing Co., Inc., Dept. ED, Keystone Road, Southampton, Pa.

DC Differential Amplifier

Input resistance is 500 meg

Model 2900 dc differential amplifier has over in-meg input resistance, voltage gains of 2 to 0) and over-all linearity of 0.05%. A missile-grade rechanical chopper and a silicon-transistor carir amplifier are used. Output voltage is $\pm 5 \mathrm{v}$. ower consumption is 140 ma from an unreguted $28-\mathrm{v}$ source. Construction is of cast magnemalloy.
Dynamics Instrumentation Co., Dept. ED, 583 lonterey Pass Road, Monterey, Calif.
rice \& Availability: Units will be in stock by pht 30, 1960. Price is $\$ 2700$ ea for quantities of 1099.

rimmer Potentiometer

Value range is 10 to 100,000 ohms

Designated W-51, this subminiature trimmer ventiometer comes in resistance values from to 100,000 ohms. It operates from -55 to ${ }^{5} \mathrm{C}$, and withstands 20 g vibration, 30 g accelation, and a shock of 100 g for 10 msec . It can furnished with standard soldering lugs, printed fuit leads, flexible insulated wire leads, or side punted solid leads. The component weighs about g , and has case dimensions of $0.89 \times 0.312 \times$ 11 in .
Atolim Electronics, Dept. ED, 7648 San FerNido Road, Sun Valley, Calif.
ice $\&$ Availability: Delivery is from stock. tres range from $\$ 5.10$ to $\$ 7.50$ for 1 to 24 units, pen ling on resistance value. All prices fob Sun

The performance of General Electric's silicon transistors is sensational:
Fised Bed Mounting provides the most sugged construction yet
atevelaped for tansistors
By operating at a low junction temperature, reliability and stability are inherently increased.
Beta hold-up at low current is superint.
The "A" versions offer a 4 V emitter-to-base breakdown and a 45 V collector-to-emitter breakdown.
Every lot of transistors is sethecied to four types of
restrictive life tests.
USN versions are available in the Series 2N333 through 2N338.
Units tested to 5000 hours have shown an overall performance rate greater than 99 per cent.
Send for the complete specifications and test data and prove to yourself how G.E.'s silicon transistors will do a sensational job in your design. Section \$2370. General Electric Company, Semiconductor Products Dept., Electronics Park, Syracuse, N. Y.

GENERAL ELECTRIC
CIRCLE 116 ON READER-SERVICE CARD

Whether it's regulating critical line

 voltages aboard ship or making industrial test equipment work better, there's a Sorensen line-voltage regulator to do the job.Sorensen a.c line regulators come in 26 standard catalog models for every requirement including both the tried and true standard Sorensen electronic circuit and the latest refinements in tubeless line regulators. And there are militarized models, high-precision ($\pm 0.01 \%$) models, 400 -cycle models, a fastresponse low-distortion model and a precision a.c meter calibrator covering the range from zero to 799.9 vac in 0.1 V steps.

SORENSEN

A-C line regulators for every job... 26 models...up to 15 kva output... high

... THE WIDEST LINE MEANS THE WISEST CHOICE

NEW PRODUCTS

Spring Motors
Provide constant torque

These constant-torque spring motors, using a wide band of spring material, have a long, tubular shape. The units are suitable for applications such as internal mounting in drums and instrument chart drives. The spring material shown is a flat strip of stainless steel, 0.0033 in . thick and $7-7 / 8 \mathrm{in}$. wide. It has been given a curvature by continuous heavy forming so that in the relaxed condition, it is a tightly wound roll of flat material. A constant torque of $6 \mathrm{lb}-\mathrm{in}$. is developed through 50 revolutions of the output pulley at all positions of cable extensions.
Hunter Spring Co., Dept. ED, 1 Spring Ave., Lansdale, Pa.

Attenuators

Have range of 0 to 61.5 db

Four separate attenuators cover a range of 0 to 61.5 db in 0.5 db steps to an accuracy of 0.1 db . Insertion loss is less than 0.05 db with a power rating of 1 w . The frequency range is dc to 70 mc with characteristic impedances of $50,75,92$, and 600 ohms.
Wayne Kerr Corp., Dept. ED, 1633 Race St., Philadelphia 3, Pa.
Price \& Availability: Prices from $\$ 110$ to $\$ 130$. Available from stock to 4 weeks.

Synchronous Motor

MANDEX
OFFERS YOU THE MOST COMPLET LINEOF TERMINA STRIPS

NEW..

CICOIL Super-Flex STRANDED-WIRE FLAT CABLE for the ultimate in

FLEXIBILITY

Regulation is $\mathbf{0 . 1 \%}$ or 0.5%

This line of ac to dc power supplies provides 0.1% regulation for line and load variations on units rated at 5 v and up, and a 0.5% regulation on units rated below 5 v . Response time is less than $100 \mu \mathrm{sec}$ for 10% line transient or 50% load transient. Ripple is 0.02% or 5 mv rms. Temperature coefficient is 0.01% per deg C. Outputs are 2 to 305 v dc from 100 ma to 1 amp . The units are plug-in type and are built on heat-sink chassis. Consolidated Avionics Corp., Dept. ED, 800 Shames Drive, Westbury, N.Y.
Price \& Availability: $\$ 175$ ea; from stock.

Laminate

Has $1,000,000$ meg resistance
Textolite 11577, a self-extinguishing, epoxy, paper-base laminate has $1,000,000 \mathrm{meg}$ resistance at 35 C and twice the impact and flexural strengths of XXXP standards. It stands cyanide plating solutions and provides good bonding strength between copper and laminate for increased circuit reliability. Peel strength after UL aging test, 1544 hr at 128 C , is 4 to 6 lb . Standard sheet sizes are $36 \times 36 \mathrm{in}$. and $36 \times 72 \mathrm{in}$. from 0.031 to 0.250 in . thick.

General Electric Co., Dept. ED, Schenectady 5, N.Y.

Price \& Availability: Price is between $\$ 1.09$ per sq ft and $\$ 5.76$ per sq ft when ordered in quantities of 500 sq ft or more, depending on thickness of core material, thickness of copper and whether copper is on one or both sides.

CICOIL Super-Flex multi-conductor cable is ature, movement and vibration preclude the use of other materials in missile packages, computers, gyro and radar systems. They provide light, reliable and compact harnessing of even the most complex electronic Super-flex cables are made of stranded conductors, precisely spaced in CICOIL's specially processed silicone rubber base compound. Cables are made in lengths up to 8 feet, and widths determined by the size and number of conductors.
Cable termination can be supplied bare or with commercial or military grade connectors Special connectors can be molded by
cicoll to meet your requirements. Write for newuirements.

Write for new brochure
and complete technical data

CICOIL
 CORPORATION
 Hz3 SATICOY StreEt VAN NUYS, CALIFORNIA

CIICLE 119 ON READER-SERVICE CARD \&LECTRONIC DESIGN • July 6, 1960

THE AMCO MODULAR INSTRUMENT ENCLOSURE SYSTEM

TWO COMPLETELY NEW LINES ADDED IN STEEL AND ALUMINUM TO GIVE 3 COMPLETE MODULAR FRAME LINES IN ONE OVER-ALL SYSTEM

A Amee Cusfom Line. Removable multipanels and cowlings based on 199° incre ments of width. Custom, single-unit appearance for frames mounted in series -
Ideally suited for complex console ar rangements. The $191 / 6^{\circ}$ width of frame saves space in series mounting of frames. Constructed of doublechannel 16 gauge cold-rolled steel. Conforms to EIA
mounting standards.
mouning atandard.

- Amce Somi-Custom Line. Removable multi-width cowlings provide a semiframes mounted in series. Extra rugged wide box-type channel frames provide greater internal mounting area. 19° wide panels of any thickness can be recessed
- from a flush-mounted position to any desired depth. Box type channel construction of 14 gauge cold-rolled steel. Conforms to EIA mounting standards.
C Amee Aluminum Line. This system of aluminum box extrusions and cast corners allows easy assembly of cabinets width or depth. Corners and extrusions
lock together by hand with built-in locking device. All sizes are standard. Ideal for stocking and odd-ball sizes. Cast and hardened corners of 356 -T6 aluminum as described in Federal Spec. QQuminum as described in Federal Spec. QQ-A-270a.
D Amco Accossorios. A full line of Amco integrated accessories such as blowers, chassia slidees and mounts, lighting, doors, drawers, dollies and many more available for A, B and C shown.
Cost savings. All the above-or any part thereof-may be ordered under one termined by order dollar value. Orders received at one time with one delivery date may also be combined. Free preassembly by Amco provides additional savings in time and installation.
3 wook dollivory on all sfondord perta. We welcome inspection of our plant and faciuties. Send for your free literature now.

Fextor-trined nopresentaives in al primipa U. S. citios and in Conch
AMCO ENGINEERING CO.

7333 W. Ainslle Street, Chicago 31, Illinols CIRCLE 120 ON READER-SERVICE CARD

Temperature controlled by the Simplytrol behaves the way you want it to. It doesn't soar or sag. It can't. Simplytrol's special time-proportioning anticipating circuit senses temperature buildups, and modifies the heat cycle well before over-shoots can occur. Control consistently follows the straight-and-narrow . . . within $\pm 1^{\circ} \mathrm{F}$. of set-point.

For all its precise performance, Simplytrol is a surprisingly uncomplicated device. The A.P.I. meter-relay (good for at least ten-million decisive "make-break" operations) is its primary component. Actuated directly from the thermocouple input signal, the meter-relay needs no amplifying circuits or vacuum tubes. Consequently, Simplytrol's operation is exceptionally stable; there is no drift or signal distortion.
There are three basic Simplytrol models available in thirty ranges from $-400^{\circ} \mathrm{F}$. to $3000^{\circ} \mathrm{F}$., and packaged in a variety of mounting cases. One could be just the temperature controller you've been looking for. All are fully described in new Bulletin 108 . . . yours for the asking.

EP

ASSEMBLY PRODUCTS, INC.
Chesterland 17, Ohio

NEW PRODUCTS

Cathode-Ray Tube

Has 7.5-in. diameter screen

Type 7BCP- magnetic focus and deflection cathode-ray tube is designed for flying spot scanner applications. It has a minimum useful screen diameter of $6-3 / 4 \mathrm{in}$., an over-all length of $18-3 / 8$ $\pm 4 \mathrm{in}$., and a spot size of 0.0035 in . average. Accelerator voltage is $37,000 \mathrm{v}$ dc and screen current is $300 \mu \mathrm{a}$.

Allen B. Du Mont Labs., Inc., Electronics Tube Div., Dept. ED, 750 Bloomfield Ave., Clifton, N. J.

Price \& Availability: Price is $\$ 300$ ea. Delivery is 4 to 6 weeks.

Subcarrier Oscillator

Handles low-level signals

This solid-state subcarrier oscillator incorporates electronic commutation and a multi-input amplifier. Input signals vary from 50 mv full scale to 5 v full scale. Over-all system drift is $\pm 0.5 \%$ over a 24 -hr period. Signal linearity is $\pm 0.5 \%$. The basic input module has a volume of 8 cu in. and weighs about 8 oz ; each additive plug-in has a volume of about 5 in . A 22 -input unit occupies less than 30 cu in .
Solidtronics Div. of Electrosolids Corp., Dept. ED, 14751 Keswick St., Van Nuys, Calif.
Price d Availability: $\$ 200$ to $\$ 650$ ea; delivery is in six to 41 weeks.

Servo Amplifier
Temperature range is -55 to +150 C

Model A419 servo amplifier operates servo motors up to size 15 at 6 w output over the tem-

418

-delivers highly

 regulated, variable voltage from an unregulated sourceUpgrades power supplies. The Valor makes your low-voltage, unregulated power supply a regulated unit, at low cost. You can vary the voltage output, or use more than one Valor to get multiple voltages-positive or negative.
Regulates DC sources. In the laboratory or in missiles, for example, you can use it to regulate a master 28 -volt supply.
Increases computer efficiency. You can locate these regulators directly at points of use, thus eliminating wire impedance.
Eight models cover a range from 6 to 35 volts. Line regulation: 0.1%. Load: 0.2% at 25 volts. Size is only $3^{\prime \prime} \times 3^{\prime \prime} \times 5^{\prime \prime} \ldots$ weight only 16 ounces. Models available with fixed outputs, and to Mil. specs. Off-the-shelf deliveries. Bulletin VR 1059 on request. Price: $\$ 95.00$.

INSTRUMENTS, IMC.
13216 Crenshaw BIvd., Gardena, Calif.
Transistorized Power Supplies and Pulse Generators - Voltage Regulators - Transistor Checkers - Delay Lines - Pulse Transformers.

CIRCLE 122 ON READER-SERVICE CARD
ELECTRONIC DESIGN • July 6, 1960

For mounting circuitry, they're neater .- quicker -- and cost a lot less

What could be neater? Or quicker? Leads are locked firmly. There's no pre-forming. No feeding through holes. No wrapping around a post. In experimental circuitry, components can be snapped out, re-used. In production equipment, terminals can be staked quickly, automatically or by hand. components can be mounted in place and soldered on production line basis. Heat is dissipated faster - in the terminal, not in the component.
Best news: the cost . . . far lower than conventional terminals. Average price: about $3 / 4$ á apiece.

Alden miniaturized ratchet terminals are part of an integrated building block system that lets you lay out and package a single unit or a complete electronics system with "oft-the-shelf" Alden components for Dlup.in, modular construction.
or complete information, write:

PR O DUCTS COMPANY
II39 North Main Street, Brockton, Mass. :IRCLE 123 ON READER-SERVICE CARD
perature range of -55 to +150 C . The self-contained power supply operates from 115 v at 400 cps. Input impedance is 10,000 ohms, nominal. Input signal is 25 v max and voltage gain is up to 2500 .
Westamp, Inc., Dept. ED, 11277 Massachusetts Ave., Los Angeles 25, Calif.
Price \& Availability: $\$ 450$ to $\$ 550$ ea in quantities of one to four. Made on order, units are delivered in eight weeks.

Synchronous Motor
412
For low speed operation

The Hyspersyn motor drives a spindle in an automated machine tool. Two identical counterrotating motors are contained in the housing; one is connected to the 60 -cps line and the other to a variable-frequency power supply. If the variable frequency is 60 cps , the output shaft is stationary and opposes rotation with the full motor torque. An increase or decrease of the variable frequency begins to turn the shaft forward or reverse. With 60.6 cps applied the shaft speed is 18 rpm at 66 cps and the shaft speed is 180 rpm . Motors can be built with $1 / 50$ to 1 hp .

Genisco, Inc., Dept. ED, Bekey Electric Div., Dept. ED, 2233 Federal Ave., Los Angeles 64, Calif.
Availability: Made on order.

Glass Laminates

Thicknesses up to 2 in .
Glass silicone laminated plastic, Grade G-7, is available in sheets up to 2 in . thick. Made with a glass fabric reinforced with silicone binder, the laminate is claimed to have good dielectric loss factor and insulation resistance properties under humid conditions, and excellent heat and arc resistance. Thicknesses of not less than $1 / 4 \mathrm{in}$. and up to 2 in . are available in sheets measuring 24 x 36 in.

Synthane Corp., Dept. ED, Oaks, Pa.
Price \& Availability: Made on order usually; delivery 5 to 6 days after order received. Prices range from $\$ 6.82$ per lb when under 50 lb ordered to $\$ 6.50$ per lb when over 300 lb and over ordered.

THEORY \& APPLICATION: Since certain control and instrumentation systems require amplification of DC signals, it is desirable to employ a static signal require amplification of DC signals, it is desirable to employ a static signal
converter. Magnitude of these available DC signals is so small that instability converter. Magnitude of these available DC signals is so small that instability
of DC amplifying systems results when signal is brought to usable level. Therefore of DC amplifying systems results when signal is brought to usable level. Therefore
a stable AC amplifier is required to convert low level DC to AC. A magnetic a stable AC amplifier is required to convert low level DC to AC. A magnetic
modulator serves this function with the added advantage that a "polarity reversible" modulator serves this function with the added advantage that a "polarity reversible
$+2 v_{x}$
DC input is converted to a "phase reversible" output. The

TEST CIRCUIT $\begin{aligned} & \text { device. Innut impeance is is rela } \\ & \text { impedance is inherently low. }\end{aligned}$

SPECIFICATIONS: Model MM-0027

ELECTRICAL CHARACTERISTICS:

 DC Resistance 1-2 $\quad 7.38 \pm 20 \%$ $\begin{array}{ll}1-2 & 7.3 \Omega \pm 20 \% \\ 3-4 & 500 \Omega \\ 5-20 \% \\ 5 & 1200 \Omega \\ \pm 20 \%\end{array}$ $\begin{array}{rrr}5-6 & 1200 \Omega & \pm 20 \% \\ 7-8 & 60 \Omega & \pm 20 \%\end{array}$
Frequency 400 cycles
MECHANICAL CHARACTERISTICS:
$\begin{array}{ll}\text { Diameter } & 1.13^{\prime \prime} \text { maximum } \\ \text { Height } & .68^{\prime \prime} \text { maximum }\end{array}$ $\begin{array}{ll}\text { Height } & .68^{\prime \prime} \text { maximum } \\ \text { Lead Length } & 2.00^{n} \text { minimum }\end{array}$ $\begin{array}{ll}\text { Lead Length } & 2.00^{\prime \prime} \text { minimum } \\ \text { Mounting } & .125^{\prime \prime} \text { clearance hole }\end{array}$ ENVIRONMENT CONDITIONS: Storage Temperature -65° to $+100^{\circ} \mathrm{C}$ Operating Temperature -40° to $+70^{\circ} \mathrm{C}$ Vibration $.060^{\prime \prime}$ total excursion $10-5 \mathrm{cps}$ Shock 15 g's Altitude 50,000 feet
Prices on request. Quotations without obligation on your other special components.

PACIFIC COMPONENTS DIVISION 18151 Napa St.
P. O. Box 161
 Dollas phone BRoadway 6-5141

Phone Dlckens 5.2250
\&LE GTRONIC DESIGN • July 6, 1960

Here's what they've done with this remarkable READALL ${ }^{*}$ instrument

Several weeks ago, we used the ad you see in the picture to ask a question and give some facts. We said that the Readall readout instrument was about the size of a candy bar, and that it could display, store or transfer up to 64 different numbers, letters or symbols without using complicated conversion equipment and "black boxes."

We explained that the Readall instrument was originally developed for data display in flight control equipment. We described the Readall instrument as an electro-mechanical, D.C. operated, readout device for displaying characters in accordance with a pre-determined binary code. . . a compact self-contained device . . . which can be applied to the output of digital computers, teletype receiving equipment, telemetering systems, or wherever data must be displayed. And we wound up by asking about new applications for our Readall instrument. Here are some of the answers to our question:

1. A leading aircraft corporation is using Readall instruments in a visual intercom system in patrol aircraft that's connected with anti-submarine warfare.
2. Another company uses Readall instruments in ground checkout equipment for a new Air Force bomber.
3. An oil company uses these readout instruments in a data reduction system that converts magnetic tape seismographic data to printed digital data and graphic chart strips.
4. A missile manufacturer uses Readall instruments in an automated "Missile Skin" milling machine.
5. These readout devices are being applied in nuclear reactor work for remote control and indication of rod position.
6. Readall instruments are now used in an electric power station monitoring system in Philadelphia.
7. Readall instruments are being used in display boards for the Air Defense Headquarters.
8. Another aircraft manufacturer uses Readall instruments in a flight simulator.
9. A branch of the military designed the Readall instruments into an airborne bomb-direction computer.
10. An aircraft systems manufacturer uses Readall instruments for display and print-out of data with a computer in a high altitude weather reconnaissance project.

We would be happy to tell you more about the Readall and its applications.
We would be happy to hear from you about possible applications. Please write to us at the address below.

"Pooneers in Cuwh-Cuutton Science"

UNION SWITCH \& SIGNAL DIVISION OF WESTINGHOUSE AIR BRAKE COMPANY PITTSBURGH 18. PENNSYLVANIA CIRCLE 125 ON READER-SERVICE CARD

NEW PRODUCTS

Sensitive Relays

These multiple-arm, sensitive relays can be furnished with spst and spdt circuit arrangements and in several combinations. Series 50 ac coil windings are rated at 2.5 to 5 va. Series 60 dc coil windings are rated at 2 and 0.1 w . Standard contact material is silver or palladium. The magnetic circuit is substantially square.
F. A. Scherma Manufacturing Co., Inc., Dept ED, 424 Broome St., New York 13, N.Y.

Gold-Finished Rivets
498
Are as small as 1/32 in. in diameter

Designed for electronic and instrument uses, these rivets have 24 -carat gold shot-burnished finish and are offered in range of lengths varying in fractional increments of $1 / 32 \mathrm{in}$. and in a range of diameters down to $1 / 32 \mathrm{in}$. The head form is a modified brazier with low contour and minimum functional diameter for the stresses imposed. Nonmagnetic brass is used with the alloy controlled for ease in setting and uniformity of the swaged or upset clinch.
Circon Component Corp., Dept. ED, Santa Barbara Municipal Airport, Goleta, Calif.
Price \& Availability: $\$ 2.23$ to $\$ 8.68$ per 100; from stock.

Multiple.orm type

VITREOSIL PURE

FUSED QUARTZ

IDEAL FOR

SEMI-CONDUCTOR METALS

Our unique process enables us to sup. ply semi-conductor quality VITREOSI to close tolerances in crucibles and special fabricated shapes. Write us about your requirements. See our ad in Chemical Engineering Catalog.

SPECTROSIL

FOR HYPER-PURITY IN SEMI-CONDUCTOR WORK
PURITY - purest form of fused silica TRANSPARENCY - unique optical properties HOMOCENEITY - completely homogeneous and free from granularity
AVALLABLITY - block material for lense: prisms, etc; red, fiber, weol; hellor ware as tubing, crucibles, and specia apparatus.
Write for somplete, illustroted eatelog.
SBED THERMAL AMERICAN fused quartz co.. inc 18-20 Solem St, Dover, N.J

CIRCLE 126 ON READER-SERVICE CARO

Insulating Materials 610

Have high dimensional stability
These insulating materials, designated 800 Rod, have high dimensional stability under high moisture conditions. The paper base type has a flexural strength of 28,000 psi and a tensile strength of $16,700 \mathrm{psi}$. The linen base type has a flexural strength of 26,000 psi and a tensile strength of $21,000 \mathrm{psi}$. The materials can be supplied in bulk form or fabricated to precise dimensions as specified by the user.

Spaulding Fibre Co., Inc., Dept. ED, 310 Wheeler St., Tonawanda, N.Y.

Availability: From stock.

Wirewound Potentiometers

Case length is $3 / 8 \mathrm{in}$.
Type APS $1 / 2$ wirewound potentiometers have a case length of $3 / 8$ in. and a diameter of $1 / 2 \mathrm{in}$. Capable of dissipating 2 w continuously, they are for use in industrial and military equipment where reliability is an important consideration. The units are made for bushing-type mounting and are furnished with terminals, wire leads, or printed-circuit pins. They have a sealed construction.
Waters Manufacturing, Inc., Dept. ED, Boston Post Road, Wayland, Mass.

Microwave Oscillators 591

Come in three models
Three high-power sources have been added to the company's line of microwave oscillators. Model 814-S-31 covers a range from 3700 to 4300 mc and delivers 1 w . Models 814-C-31 and 814-C-32 are tunable over a range of 5900 to 6400 mc and 5400 to 5900 mc respectively, and deliver an output power of 1 and 1.5 w . All units have an incidental fm of less than 5 parts in 0^{8}, and stabilities of better than 1 part in 10^{6} over a one-hour period. Laboratory For Electronics, Inc., Jept. ED, 1079 Commonwealth ive., Boston 15, Mass.

CIRCLE 127 ON READER-SERVICE CARD $>$

...at "RACKING UP" RELIABILITY

That incredibly short ($31 / 2^{\prime \prime}$) rack-mounting counter-timer tucked under Max Schweizer's forearm is a tribute to the many yeảrs of specialized experience he brings to the position of Chief Mechanical Engineer at TSI. Every one of the 2162 components in the Model 361-R APTI*-METER* is logically located, thermally protected and instantly accessible. No "sardine packing" here! Incidentally, Max found his job about 800 components easier, because our circuits group has achieved what we call "reliability through sophisticated simplicity" in the 360 Series. His superb packaging job further enhanced that reliability - and the Model $361-R$ bears a 5 -year guarantee.

If you like sharp contrasts, compare this cool, compact, all-solidstate beauty with the hot-as-apistol vacuum-tube monsters five times its height and weight, not nearly as versatile or convenient. Why plod along with old-fashioned counters? Let us send you literature on the newest - Model 361-R APTI@-METER, the only 1 MC solid-state counter!
*APTI®-METER is our registered trade-mark for an ACTIONS-PER-TIME-INTERVAL meter. Model s61-R counts from $0-1 M C$, has crystal-plus-oven stability of o.s ppm/week, IN-LINE NIXIE READOUT, and identical-twin, high-impedance, high-sensitivity amplifiers. Features galore, unlimited flexibility, yet the sensible-compromise price is only $\$ 1680$.

T1i TRANSISTOR SPECIALTIES
 INCORPORATED Sophisticated Digital Instrumentation

TERMINAL DRIVE, PLAINVIEW, NEW YORK - WELLS 5-8700 CIRCLE 128 ON READER-SERVICE CARD

NEW PRODUCTS

Coaxial Latching Switch

Needs no holding power

This solenoid-actuated, coaxial, latching switch requires no holding power. The solenoids operate from 28 v dc, drawing $3.2 \mu \mathrm{a}$ per hr and have a switching time of 10 msec . The 50 -ohm switch is a make-before-break type, weighing 8.7 oz. Frequency range extends to 11 kmc . The device has the following characteristics at 7 kmc ; vswr, 1.4 ; insertion loss, 0.4 db ; and crosstalk, 30 db .
Transco Products, Inc., Dept. ED, 12210 Nebraska Ave., Los Angeles 25, Calif.
Availability: Delivery time is 45 to 60 days.

Environmental Test Chambers

Altitude up to $150,000 \mathrm{ft}$

This environmental test chamber has a temperature range of from -100 F to $+1000 \pm 5 \mathrm{~F}$. It produces high and low temperatures by convection, and by radiation from all six sides, thus reproducing high altitude conditions around the test specimen. The free test space measures $4 \times 4 \times 4$ ft . Mechanical refrigeration capable of dissipating a heat load at the rate of 7500 w at -70 F is provided.

The American Research Corp., Dept. ED, Farmington, Conn.

Silver-Zinc Battery

Model P13A silver-zinc primary battery, shaped to fit curved missile skin, is a main power supply for missile equipment and instruments, guidance and control systems, telemetry equipment, and warhead arming. The 40 dry-charged cells are activated by an electrically ignited solid propellant gas generator. Output is 11 kw ; current rating is 180 to $3,700 \mathrm{amp}$. The capacity of the $56-\mathrm{v}$ battery is $7.5 \mathrm{amp}-\mathrm{hr}$ with a shorting time of 2.5 min . The activation signal is 115 v at 4 amp .

Cook Batteries, Dept. ED, 3850 Olive St., Denver, Colo.

429

Quality meters on the panel indicate quality throughout-and HOYT Panel Meters are quality in appearance and function... the complete line of match. ing $A C$ and $D C$ Meters for original equipment and replacement applications. Get accuracy, readability, and reliability; plus economy. Specify HOYT Electrical Instruments-compatible components for production, research, and test requirements.

Black Bakelite
Moving coil, rectifier, and repulsion types available promptly in a wide assortment of sizes, ranges, cases, shapes, and colors; some with parallaxfree mirror scales -all with standard mounting dimensions. custom designed io the most exacting specifications.

ELECTRICAL

 INSTRUMENTS
BURTON-ROGERS COMPANY

Sales Division-Dept. ED
42 Carleton Street, Cambridge 42, Mass. circle 129 on reader-service card
ELECTRONIC DESIGN • July 6, 1960

Rotary Solenoid 399

This rotary solenoid is designed for computer, aircraft, and missile applications. It is offered in sizes as small as $3 / 4 \mathrm{in}$. in diameter. Linear force is translated into torque by means of roller bearings moving over precision cams. The output shaft has no linear motion. Units have a high accuracy, operate under environmental extremes, and will function for millions of cycles.

PSP Engineering Co., Dept. ED, 6058 Walker Ave., Maywood, Calif. Booth 2229.

Silicon Transistors

For industrial applications

This complete line of silicon transistors is for industrial applications. The $2 \mathrm{~N} 1586 / \mathrm{J}-503$ and J-623 gen-eral-purpose units are for operation to 100 C , have 15,30 , and 60 v $B V_{c b o}$ and $B V_{\text {ceo, }}$ and guarantees beta spreads of $9: 27,25: 75$, and 70:210. The J-581 grown-junction, medium-power amplifier series has the same ratings with beta spreads of $10: 30,20: 60$, and $40: 150$. The J-460 series, for NOR logic circuitry, available in kits, have a $30-\mathrm{v} B V_{\text {cbo }}$ at $50 \mu \mathrm{a}$, operate from -40 to +100 C , and have minimum dc betas of 3 to 50 .
Texas Instruments, Inc., Dept. ED, P. O. Box 312, Dallas Tex. Availability: Production quantities are immediately available.

Servo Amplifiers

448
For open- or closed-loop systems
The Trans-mag line of servo amplifiers, using ac or dc inputs for 60 and 400 cps systems, are designed for open- or closed-loop servo systems. Semiconductors are used in the low power preamplifier stage. The units meet Mil specs. Applications are in military and industrial control such as in radar antenna lositioning, inertial platforms, computers, and optical tracking.
Magnetic Amplifiers, Inc., Dept. D, 632 Tinton Ave., New York 55, N,Y.
CIRCLE 130 ON READER-SERVICE CARD $>$

semi-conductors electronic tubes

 thermistors ferritesJ. T. BAKER ELECTRONIC CHEMICALS

Acetic Acid, Glacial	Cobalt Carbonate	Nickelous Nitrate
Acetone	Cobalt Oxide	Nickelous Sulfate
Aluminum Nitrate	Cobalt Nitrate	Nitric Acid
Aluminum Sulfare	Ether, Anhydrous	Petroleum Ether
Ammonium Carbonate	Hydrochloric Acid	Potassium Dichromate
Ammonium Chloride	Hydrofluoric Acid	Potassium Hydroxide
Ammonium Hydroxide	Hydrogen Peroxide,	iso-Propyl Alcohol
Ammonium Phosphate	30\% and 3\% Solution	Radio Mixture No. 3
Antimony Trioxide	Lithium Carbonate	Silicic Acid
Barium Acetate	Lithium Chloride	Sodium Carbonate
Barium Carbonate	Lithium Nitrate	Sodium Chloride
Barium Fluoride	Lithium Sulfate	Sodium Hydroxide
Barium Nitrate	Magnesium Corbonate	Sodium Phosphate Dibasic
Benzene	Magnesium Chloride	Strontium Carbonate
Boric Acid	Magnesium Oxide	Strontium Nitrate
Codmium Chloride	Manganese Dioxide	Sulfuric Acid
Cadmium Nitrate	Manganese Nitrate	Tolvene
Cadmium Sulfare	Manganese Sesquioxide	Trichloroethylene
Cakium Carbonate	Manganous Carbonate	Triple Carbonate
Calcium Chloride	Methanol	Xylene
Calcium Fluoride	Nickel Carbonate	Zinc Chlorid
Calcium Nitrate	Nickel Oxide, Black	Zinc Nitrate
Calcium Phosphate	Nickel Oxide, Green	Zinc Oxide
Carbon Tetrachloride	Nickelous Chloride	

```
ELECTRONICCOHEMICALS
    DEFINEDDPURITV
    'Baker Analyzed' Reagent/$
```

This new brochure . . . just off the press... tells you how Baker Electronic Chemicals can help you achieve operating economies.
The Electronic Chemicals listed on the left bring you these benefits:

1. Highest purity defined to meet your critical electronic manufacturing needs.
2. Purity is proved - the 'Baker Analyzed' Reagent label shows the actual lot analysis.
3. Prices are economical for electronic processing use.
4. Deliveries are fast in each marketing area.
Write for your copy of "Electronic Chemicals of Defined Purity." Address J. T. Baker Chemical Co., Phillipsburg, New Jersey, Depart ment ED.

J. T. Baker Chemical Co.
Phillipsburg. New Jersey

Capable Transistor Transformer design is simple as

Capable transistor transformer design is simple at ADC. The problems are no different than those for vacuum tube circuits. And ADC has been solving these design problems for 25 years.

The transformer shown below at right, was ADC designed as an experimental output transformer for use by Minneapolis Honeywell with their H200E Power Tetrode. This transformer is capable of delivering up to 20 watts with low distortion through the frequency range of 20 to 20,000 cycles. A typical application is pictured below in the class A amplifier circuit.

The tiny transistor transformers such as those illustrated at the right are for low power applications. Introduction of new, low distortion, power transistors has required larger transformers, especially for operation at low fre-
 quency. While these may be new to transistor circuits, the design problems and solutions are identical with those of vacuum tube circuitry.

Whether you are interested in transformers for use with transistors or vacuum tubes, it will be to your advantage to come to a firm with the design experience of a pioneer like ADC.

Write for Bulletin on Miniature Transformers for Transistor and Printed Circuit Applications

ADC INCORPORATED
2835-I3TH AVENUE SOUTH - MINNEAPOLIS 7. MINNESOTA paciric Pnanch North Hollywood, California
transformers - reactors - Filters - jacks and plugs - jack panels CIRCLE 131 ON READER-SERVICE CARD

NEW PRODUCTS

Trimmer Potentiometers

Have 100 to 25,000 ohms resistance

Type $1187 / 8$-in. trimmer potentiometers are offered in eight resistance values ranging from 100 to 25,000 ohms. The units are manufactured with 20 ppm resistance wire and can dissipate 1 w at 125 C for 2000 hr . Units meet MIL-STD-202A and NAS710.

Carter Manufacturing Corp., Dept. ED, 23 Washington St., Hudson, Mass.
Price \& Availability: $\$ 15$ to $\$ 25$ ea; stock to four weeks.

Ultrasonic Cleaner

For large missile parts

Model BC-2500 ultrasonic cleaner, designed for cleaning large missile parts, is for use with automatic or semi-automatic washers and degreasers, manual washers, or for automatic plating. The frequency is adjustable from 36 to 40 kc . Input is 6 kw at 220 v or $440 \mathrm{v}, 60 \mathrm{cps}$, single phase. Frequency output averages 3 kw . The unit measures $22 \times 54 \times 18 \mathrm{in}$. and weighs 350 lb . The fluid capacity of the tank is 75 gal .

Circo Ultrasonic Corp., Dept. ED, 51 Terminal Ave., Clark, N.J.

Power Meter

Reads from $30 \mu \mathrm{w}$ to mw

Model B832T temperature-compensated power meter measures cw or pulsed rf power in five full scale direct-reading ranges from $30 \mu \mathrm{w}$ to 3 mw . Values can be read in mw or dbm . Readings are

IINIATIIRE CIRCIIITS

ACTUAL SIZE
$1.125^{\prime \prime} \times 1.225^{\prime \prime} \times .413^{\prime \prime}$
DID YOU KNOW . . . That Walkirt has achieved package densities of over ONE MILLION PARTS PER CUBIC FOOT? The popular "cartridge" style module pictured above has "flown" with many Missiles and Satellites where small size and high reliability are mandatory. Nothing etched or deposited here . . only standard components of proved reliability. We have hundreds of digital and logic circuits that are available in this popular package style which is a logical compromise between Micro-Min. iaturization and cost. May we send you a price list and technical data? You'll be surprised at the performance, economy and the huge selection of Walkirt Circuit Modules.

Write for technical
information on dicital and LOEIC circuitry.
sales offices in principal cities
 miniatuaizatiom specialists sime teas 141 W . HAZEL ST., INGLEWOOD 3, CALIF.
CIRCLE 132 ON READER-SERVICE CARD ELECTRONIC DESIGN • July 6, 1960

virtually drift free. The unit is transistorized and is energized by a self-contained, rechargeable nickel-cadmium battery. The charging circuit operates from 105 to 125 v ac at 50 to 400 cps . Use-to-charge ratio is $2: 1$.

FXR, Inc., Dept. ED, 26-12 Borough Place, Woodside 77, N.Y.
Price d Availability: Price is $\$ 450$ ea. A limited number of units can be furnished from stock.

Pen Motor

366

Model OS-600 40-mm pen motor records signals from dc to 100 cycles and over. An interchangeable electric stylus is available for electric writing. Specifications of the unit with the firm's DA-101 compensated driver-amplifier are: current sensitivity, 28 ma per mm ; linearity, dc to $120 \mathrm{cps}, 3 \mathrm{db}$ down; hysteresis, less than $1 / 4 \mathrm{~mm}$. The motor weighs $1-1 / 2 \mathrm{lb}$ and measures $1-3 / 16$ $\times 2-1 / 2 \times 5-1 / 8 \mathrm{in}$.

Cohu Electronics, Inc., MASSA Div., Dept. ED, 5 Fottler Road, Hingham, Mass.
Price \& Availability: Price is $\$ 175$ in single quantities; immediate delivery available from stock.

Power Supplies

433
Outputs are up to 150 kv at 50 ma
These dc power supplies provide output voltages up to 150 kv at 50 ma . Output voltage and current are indicated on separate 4.5 -in., wideview rectangular meters. The bench type cabinet may be supplied in units with outputs up to 45 kv ; mobile cabinets are used in models up to 120 kv ; the caster-mounted console houses the larger supplies.
Associated Research, Inc., Dept. ED, 3777 W. Belmont Ave., Chicago 18, Ill.
Price \& Availability: Prices range from $\$ 497.50$ to \$5480. Some available from stock, others requise 6-8 weeks after receipt of order.

The future . . from your point of view

A good day's growth for a hard day's work.
A position to suit your talents, experience and ambition.
Opportunity to exercise full initiative in Research, Radar, Doppler Navigational Systems, Magnetic Memory Systems, Microwave and Computers.

plus

Management awareness encouraging exploration beyond the range of present knowledge.

APPOINTMENTS NOW AVAILABLE:

DESIGN ENGINEER

Radar Circuitry
Experience and state-of-the-art knowledge in one or more of these: oscillators, cw or pulse modulators, video, IF or microwave amplifiers, differentiators, integrators, power supplies, pulse coders and decoders, phase detectors, MTI cancellers. Projects include: R\&D of advanced techniques; ground, airborne, space equipment.

PHYSICIST

Applied Research
Advanced degree in physics or engineering physics, plus an appreciation of theory. To design a series of experiments in plasma physics, taking responsibility for equipment specification and installation plus all other experimental considerations.

For confidential discussion, please write:
Eugene Rust
Laboratory for Electronics
75 Pitts Street, Boston 14, Massachusetts
Laboratory for Electronics
circle 902 on career inquiry form, page 159

Regulated, multiple voltage output +250 volts, +150 volts, +70 volts, +70 volts, +250 volts, -35 volts, -50 volts, -60 power capacity approx. 15 KW

EXPERIENCE and SKILL are an inherent component of every ACME ELECTRIC built POWER SUPPLY

"Know your supplier" is pertinent advice as it applies to the design, engineering and construction of power supplies. Acme Electric not only knows the state of the art but is Acme Electric not only knows the state of the art but is specific advantages based on engineering experience, and specific advantages by manuacturing facilities and trained manpower. If power supplies are an important part of your products, If power supplies are an important part of your products,
it will pay you to investigate the part Actme Electric can it will pay you to investigate the
play in your procurement program.

Series regulated Output 120. $\pm 1 \%$ dc © 0.6 amps.

acme electric corporation
 907 Water St.

In Canada: Acme Electric Corp. Lid., 50 Northline Rd., Yoronto, Onf.

Acme Thin Flectric

40

NEW PRODUCTS

Telephone Type Relay

Coil resistance is 10 K

Series TW medium power telephone type relay is available with contact arrangements up to 4 pdt . In voltages from 6 to 220 vac and dc, $3 / 16$ in . diam contacts made of fine silver and gold flashed are rated at 5 amp at 115 v , and 60 cps , noninductive. Coil resistance is 10 K as standard, higher on request. Applications include: communications equipment, computers, industrial programing devices, and other applications requiring a small, fast-acting multi-contact relay.
Line Electric Co., Dept. ED, 229 River St., Orange, N.J.
Price \& Availability: Price is $\$ 5.50$ to $\$ 8.05$. Delivered in 8 weeks.

Schering Bridge

400

Available as a cable-tester

This Schering bridge is offered as a general purpose bridge and as a cable test bridge. Units measure the power factor and capacitance of insulating materials. The general purpose bridge has a range of 0.0000025 to $1 \mu \mathrm{f}$; the cable test bridge, from 0.0000025 to 2μ. Capacitance accuracy is $\pm 0.2 \%$.
Industrial Instruments, Inc., Dept. ED, 89 Commercial Road, Cedar Grove, N.J.
Price \& Availability: $\$ 6950$ ea; 70-day delivery time.

Shield-Bezel Assemblies
355
For CRT use

This series of CRT bezel assemblies includes complete assemblies for 3,5 , and $7-\mathrm{in}$. curved and flat-faced tubes. Assemblies consist of cast alu-

Rate Generator or Angle Reader

Gurley Photoelectric Pulse Generator is a shaft-driven device delivering electrical pulses at output terminals
.Pulse frequency is directly proportional to shaft rpm
.Two basic uses: as a rate generator (output frequency may be read in terms of shaft rpm) or as an angle-measuring device ("total angle" is determined by "totalizing" individual pulses). Write for brochure.
W. \& L.E.Gurley

525 Fulton Street, Troy, Now York

THERE'S A STANDARD ELASTIC STOP NUT FOR EVERY BOLTED ASSEMBLY

Whether you need a self-locking fastener that measures $1 / 10$ inch across the fat-or a husky hex nut that can stand up under the heaviest vibration-look to ESNA.
No amount of vibration, shock, or impact can make an Elastic Stop ${ }^{\star}$ nut break loose. Exclusive nylon locking insert grips like a vise-yet never deforms bolt threads and may be re-used again and again. Try it for prestressed or positioned settings-it stays put anywhere on the bolt you set it. For details write Dept. S49-435, Elastic Stop Nut Corporation, 2330 Vauxhall Road, Union, New Jersey.

ELASTIC STOP NUT

CORPORATION OF AMERICA
CIRCLE 136 ON reader-Service card
ELECTRONIC DESIGN - July 6, 1960

CIRCLE 137 ON READER-SEEVICE CARD

CIRCLE 138 ON READER-SERVICE CARD
minum and/or molded plastic bezel, scale-calibrated reticule, colored light filter, molded rubber shock cushion, and mounting hardware. Bezels are non-reflecting, black baked enamel throughout.
Jan Hardware Manufacturing Co., Inc., Dept. ED, 38-01 Queens Blvd., Long Island City 1, N.Y.

Waveguide Switches

420
Range is 3.95 to 40 kmc

Series 641 waveguide switches cover the range of 3.95 to 40 kmc . Each switch operates over the full waveguide bandwidth. They can be operated manually or driven by a 28 v dc solenoid actuator. Maximum vswr is 1.1 ; minimum isolation is 60 db for 3.95 to 26.5 kmc and 50 db for 26.5 to 40 kmc .

FXR, Inc., Dept. ED, 26-12 Borough Place, Woodside 77, N.Y.
Price \& Availability: Manually-operated units are from $\$ 225$ for X-band type to $\$ 350$ for H-band type. Electrically-operated units are from $\$ 250$ for X-band to $\$ 400$ for H-band. Delivery is in 30 to 90 days.

Digital Readout System

For quality control, statistical testing

Having applications in high-volume, high-speed testing operations for quality control and statistical testing, this digital readout system consists of the firm's universal testing instrument equipped with encoders, memory storage units and associated assemblies. Through binary decimal code, the system converts information normally presented in graphic form directly into automatic printing digital form. Specific characteristics of materials to be evaluated are preselected and their values are sorted in magnetic memory units during the test. The values are automatically printed out after the test.

Instron Engineering Corp., Dept. ED, 2500 Washington St., Canton, Mass.
Price \& Availability: Made on order only; delivered 120 days order received. Price depends on the number and kind of parameters to be printed in digital form.

ELf CTRONIC DESIGN • July 6, 1960

THERMOSTATS TYYPE A-Adjustable
 - Slow make or break contacts - For operating temperatures up to $550^{\circ} \mathrm{F}$.
 TYPE HL
 - Single pole, single throw or double - Manual or automatic reset - Preset, snap action, non-adjustable - For operating temperatures up to $300^{\circ} \mathrm{F}$.
 - Resistive load-
 40 amperes at 125 VAC

 TYPE 11 T .11
 Best suifted for controlling temporatwos
 same ratings as TYPE 11T-21
 Designed for surface mounting
 also available for watertight mounting
 - High ratings with minimum size | single pole, double throw |
| :--- | - Preset, snap action, non- ad justable up to $350^{\circ} \%$. Resistive load- 6000 manclosed disc

 - Resistive load- 6000 watts at 240 VAC- Inductive load_ 3000 watts at 120 VAC
10 amps, full load at 120 VAC
5 amps, full load at 240 VAC
\langle TYPE AF \& AL

Desiened for surface momating (with or without mounting bracket)

- Preset, snap action, non-adjustable
- Single pole, single throw
- Blade or screw terminals, exposed or $350^{\circ} \mathrm{F}$
enclosed disc
- Resistive load- 2500 watts at 240 VAC
- inductive load -
4.4 amps, full load at 120 VAC
2.2 amps, full load at 240 VAC

THERM-O-DISC, Incorporated Mansfield, Ohio CIRCLE 139 ON READER-SERVICE CARD

DRESSEN-BARNES STOCKS MIL-SPEC COMPONENT MODULAR DC POWER SUPPLIES

Featuring the clever and unuaual Featuring the clever and unusual and circuitry in electronic equipmen

Pen Recorder
 Drives Slotted Line
 For Accurate VSWR Plots

THE USUAL way to measure the vswr of co axial microwave components involves connecting them to a slotted line, then carefully reading vswr for many discrete positions of the slotted-line probe. With luck, these readings can be closely duplicated on a second run.
A simpler and faster technique, and one which makes for more accurate measurements is one devised by engineers at General Radio Co. in West Concord, Mass. They chain-drive the probe carriage on a slotted line directly from a G-R Graphic Level Recorder.
They can thus plot vswr directly on paper and can repeat measurements to within 0.1 per cent. By making separate runs for the line alone and for the line with a component to be tested, they can cancel the vswr introduced by the line.

Graphic recorder plots vswr of components connected to chain-driven slotted line.

ELECTRONIC DESIGN • July 6, 1960

Cic PRECISION FILM POTS
 AVAILABLE FROM STOCK!

You can have any of these precision film pots on their way to you within hours. No need to wait for "custom" pots.
LINEAR SINGLE TURN FILM POTENTIOMETERS

SINE-COSINE SINGLE TURN FILM POTENTIOMETERS
Diametor Rosistance Conformity
1-3/32" $10 \mathrm{~K} \quad \pm 75 \%$

2"	10K..........士 . 25

3" 20 $\pm .25 \%$
10K......... $\pm .15 \%$
20K......
15%
LINEAR MOTION FILM POTENTIOMETERS Size Resistance Stroke Hinearity 1 Sq. $10 \mathrm{~K} \ldots \mathrm{I}^{\prime \prime}$ Stroke $\pm .5 \%$
 $\begin{array}{ll}\text { 10K....." } 2^{\prime \prime} \text { Stroke } \\ 20 K & \pm .25 \% \\ 25 \%\end{array}$ $20 \mathrm{~K} \ldots \mathbf{2}^{\prime \prime}$ Stroke $\pm .25 \%$
$10 \mathrm{~K} . .3^{\prime \prime}$ Stroke $\pm .1 \%$ 20K....3" Stroke $\pm .1 \%$
 Write or call in your order Potentiometers will we ins.

90 MADISON AVE, HEMPSTEAD, L. I., N. Y.
CIRCLE 143 ON READER-SERVICE CARD ELEETRONIC DESIGN • July 6, 1960

WIRE-WOUND. . . THE HARD WAY

All current carried by a single frag ile hair-like wire. Cutting any one furn causes no-warning, catastrophic failure-for 2,000 furns, 2,000 chances for element failure!
Single bar contact wiper - one microscopic dust particle can cause an open - 1:1 odds on failure!
In one traverse wiper must make switch-like contact to each furn for continuity - for 2,000 furns, 2,000 chances for opens!

FILM POT... THE EASY WAY

Current carried by broad band of hard carbon film with an infinite number of current paths - ZERO probability of element failure!

Multiple fingered wiper - each finger with different natural frequency - odds on opens 1:161
Wiper rides on continuous film, glass smooth, self-lubricating carbon - ZERO probability of opens!

CIRCLE 144 ON READER-SERVICE CARD

The modern way to boost electronic power-system reliability is also the best way to cut cost, size, heat-loss, and complexity ... by interposing a precisely-regulated motor-alternator set as a buffer-regulator between your DC power supplies and the power line. Typical Savings: 50-90\%.
This technique often eliminates the need for regulated supplies...simple brute-force rectifiers suffice. If regulation is still necessary, the stress on the regulator is greatly reduced, hence remarkable savings in cost, etc. Everybody's doing it ... in Computers, Automation, Telemetry, Ground Support. Incidentally, Ignore old-fashioned prejudices about rotary equip. ment. . .this is "turn-it-on-and-forget-it" gear....we even build them brush. less, if you object to routine once-a-year maintenance.

Skeptical? Write today for this complete, authoritative, 32-page illustrated technical manual describing ESCO.RI PRECISE POWER manual des
SYSTEMS.

electric
SPECIALTY CO.
202 SOUTH STREET. STAMFORD, CONNECTICUT Fireside 8-6203

REGULATORS, INC.

NEW LITERATURE

Slip Ring Assemblies

260
This 28 -page catalog describes the conpany's line of seven standard slip ring assemblies with ring envelope diameters from 1 through 10-1/2 in. Custom assemblies are also described and illustrated. Breeze Corp., Inc., 700 Liberty Ave., Union, N.J.

Converting to Solid State

261
State-of-the-art advancements on new systems and components are graphically presented in this 42 -page brochure, "Solid State Conversions." Among the categories discussed are: Voltage Level Sensing Systems-Ac; Voltage Level Sensing Systems-DC; Static Inverters; Power Supplies; Ice Detection Systems, and Solid State Components. The booklet intends to show how size reduction and environmental range extension are possible by using solid state techniques. Cook Electric Co., Diaphlex Div., 2700 Southport Ave., Chicago 14, Ill.

Metal Tubing

26
Bulletin No. 42, 12 pages, is a selection guide to metal tubing. It brielly summarizes the important properties of $\delta 1$ tubing analyses in seven groups: carbon steels, stainless steels, alloy steels, nickel and nickel alloys, copper base alloys, glass sealing alloys and reactive metals. Alloys are described in tabular style which provides AISI type number, available form, characteristics and applications. Superior Tube Co., 1521 Germantown Ave., Norristown, Pa.

Carbon Film Resistors

263
This 12-page catalog describes the company's line of carbon film resistors. In addition to specifications, the catalog contains three histograms on the four basic types of resistors. In graph form, these show the results of continuing temperature cycling, load life and moisture tests. Electra Manufacturing Co., 4051 Broadway, Kansas City, Mo.

CIRCLE 147 ON READER-SERVICE CARD
ELECTRONIC DESIGN • July 6, 1960

Elastomefers

Bulletin No. 902, six pages, contains a chart that covers physical and chemical roperties, processing properties, and environmental resistance of ten general dastometer types. Some of the types covered are: silicone rubbers, styrene butadiene rubber and fluorinated elastomers. Lord Manufacturing Co., Erie, Pa.

Heating Element

The Electro-Mesh heating element is described in this 16 -page catalog. Complete technical data includes physical properties and thermal characteristics, as well as a visual description of the varied components now being used in the aircraft, missile and space age fields. Electrofilm, Inc., 7116 Laurel Canyon Blvd., N. Hollywood, Calif.

Fractional Horsepower Mofors 266
Characteristics of the full line of fractional horsepower Form G general purpose motors appear in this 12 -page brochure. Capacitor-start, split-phase, per-manent-split capacitor, shaded-pole and
polyphase motors are included. Sixteen different kinds of motors are shown in NEMA frame sizes 48 through 56. General Electric Co., Schenectady 5, N.Y.

Industrial Alloy Transistors

Industrial alloy transistors types $2 \mathrm{~N} 650 \mathrm{~A}, 2 \mathrm{~N} 651 \mathrm{~A}$ and 2 N 652 A are described in this six-page technical data sheet. Results of acceptance tests are given in table form; performance curves are included for collector characteristics, current versus base drive voltage and current gain versus collector current. Motorola Semiconductor, 5005 E. McDowell Road, Phoenix, Ariz.

Servometer-Amplifier

Type R1040-6 servometer-amplifier is described in this four-page bulletin, No. 910-4B. Specifications include resistance and capacitance balance, temperature characteristics, frequency response, and output indication. Associated equipment described in the bulletin includes a stick force, a rudder force and a wheel force dynamometer. Radiation, Inc., Melbourne, Fla.

NEW TRANSISTORIZED

MODEL PS-3 $\$ 6950$ nef $0-25 v$. DC variable output voltage
EGULATED DC POWER SUPPLY
Now service technicians and industrial users can afford the performance of a regulated variable-voltage power supply. Set It and Forget It-Voltage remains essentially constant at any output voltage setting regardless of load (within ratings) and AC supply voltage fluctuations.
Extremely Low Ripple-Less than 1 MV (. 001 V) RMS for all conditions of rated operation... less than $1 / 2 \mathrm{MV}(.0005 \mathrm{~V})$ for AC line voltage between 115 and 120 volts.
Output-0-200 MA, $0-15$ volts. $0-100 \mathrm{MA}, 0-25$ volts.
Input Voltage-110 to 130 volts, 60 cycles.
Regulation- 500 MV maximum, for above mentioned ratings.
Sold by Leading Electronic Distributors. Send for Catalog Sheet PS-3
Electro Products Laboratories
as01-U Ravenswood, chicago 40 / Canada: Atlas Radio Corp., Ltd., Toronto, Ont.
AT ONE-HALF THE COST!

WHEN YOU START USING GRANT SELF-ALIGNING SLIDES...

Time and labor saving Self-Aligning slides compensate for cabinet or chassis construction inaccuracies by an exclusive "built-in" design feature which results in slide action of the same efficient degree as within ordinary, wholly square chassis. All Grant Self-Aligning slides meet military specifications for material and finish. Load ratings on Grant Self-Aligning slides are the same as those * for regular Grant Slides.

* Grant Self-Aligning slides are manufactured under U.S. Pat. No. 2,370,861.

We'll be pleased to send you additional data on request.

GRANT INDUSTRIAL SLIDES
 GRANT PULLEY \& HARDWARE CORPORATION

Eastern Division / 21 High Street, West Nyack, N. Y. Western Division / 944 Long Beach Ave., Los Angeles 21. Calif. CIRCLE 150 ON READER-SERVICE CARD

NEW LITERATURE

Memory Core Tester

Type 2101 automatic memory core tester is described in this four-page folder. The folder contains block diagrams of sensing and decision circuitry, four different programs of current driving pulses, and examples of test accept and reject criteria. Digital Equipment Corp., Maynard, Mass.

Filters and Toroids

270
This four-page illustrated catalog lists various toroid types and shows typical performance curves. A new standard line of encapsulated toroids is described and illustrated, and information is given on how to specify size, style, types of leads and mountings by a system of designators. The catalog has a section on the ordering of filters, with a listing of requirements under eight general groups which cover the information necessary to develop suitable characteristics. Barker \& Williamson, Inc., Canal St. \& Beaver Dam Road, Bristol, Pa.

Time Delay Relays

271
This 1960 catalog on thermal time delay relays contains separate sheets describing different models. Dimension drawings are given for each model in addition to complete specifications. Schematics also show delay, ignition timer, sequence operation, and rapid reset-no operation typical circuit applications. Thermal Controls, Inc., 43 River Road, N. Arlington, N.J.

Ceramic Insulated Wire

272
Entitled "Secon Ceramic Insulated Wire For Use in High Temperature and Nuclear Environments," this brochure outlines many of the pitfalls which must be avoided if components are to operate successfully at temperatures in the 800 to 1200 F range. Part I covers the physical and electrical properties of the insulation. The next section contains data on conductors for use under various conditions. The last section is concerned with potting, sealing and termination. Secon Metals Corp., 7 Intervale St., White Plains, N.Y.

Decimal Scalers

273
Series SC-750 transistorized decimal scalers are described in this data sheet, No. D-750, two pages. A photograph and block diagram of the equipment are included. Specifications cover resolution, count storage, input pulse requirements, gating modes and threshold control. Eldorado Electronics, 2821 Tenth St., Berkeley 10, Calif.

This compact stabilizer design
occupies a minimum of space and is especially able as a component in electronic devices where output voltages must be maintained $\pm 1 \%$ of normal. Available in ratings of $15,25,50 \mathrm{VA}$.

Input voltage: 95/130 Output voltage: $120 ; 6.3$

For applications requiring steady-state voltage for laboratory use or electronic circuitry this heavy duty design is available in the follow. ing stock ratings and voltage ranges.

Capacities: 100; 200; 300; 500 VA
Input voltage: 95/130; 190/260; 190/260
Output voltage: $120 \quad 120 \quad 240$

This unit has been designed to provide instantaneous response to voltage fluctuation in large loads. Voltage output regulation between no load and full load is constant regardless of input voltage. Current limiting protection under overload conditions.

Available in ratings of 1000 and 2000 VA Input voltage: 95/130; 190/260; 190/260

Output voltage:

ACME ELECTRIC CORPORATION

907 Water St. - Cuba, N. Y.
In Canada: Aeme Electric Corp. Ltd. - 50 Northline Rd. - Toronto, Ont.
sM1 3820/1013

Acme
 $\begin{array}{llllllllllll}\text { T } & \text { A } & A & N & 5 & F & \square & R & M & E & A & 5\end{array}$

CIRCLE 151 ON READER-SERVICE CARD
ELECTRONIC DESIGN • July 6, 1960

INDUSTRIAL ELECTRONICS DIVISIONS

SEMICONDUCTOR DIRECTORY

Write to Dept. EDG
 at any of the addresses below for your FREE COpy of directory BK-1300

моTOROLA

TEXAS INSTRUMENTS

RAYTHEOM

ALSO AUTHORIZED INDUSTRIAL DISTRIBUTORS FOR
GENERAL RADIO - VITRAMON • CENTRALAB POTTER \& BRUMFIELD - DALE - OHMITE MALLORY - UTC • SOLA • SPRAGUE ELMENCO • KURMAN • UNIMAX • AEROVOX CLAROSTAT • JBT

FACTORY PRICES

IMMEDIATE OFF-THE-SHELF DELIVERY

Complete One-Stop Source for R \& D - Laboratory - Industry
LAFAYETTE RADIO

	"ENTERPRISE" NUMBERS IN major cities	

CIRCLE 152 ON READER-SERVICE CARD

Patent Preparation

Entitled "Preparing for Patent-Hood," this 19page booklet tells you what to do with your invention idea; when to talk with a patent attomey; importance of dates and a verifier; about the patent office; applications handling; revising claims; claims and patents; economic importance of patents; and foreign patents. CGS Laboratories, Inc., Trak Electronics Co., Wilton, Conn.

Transistor Servo Amplifiers

275
One of these two four-page bulletins describes standard and stock lines of transistor servo amplifiers of miniature size and a stock line of magnetic control amplifiers for controlling silicon control rectifiers. The other bulletin describes the toroidal winding, inductor and magnetic amplifier facilities of the company. Magnetico Inc., 6 Richter Court, E. Northport, Long Island, N.Y.

Rare Earth Elements
276
Complete technical information about various chemicals, metals and alloys of the rare earth group of elements, thorium, scandium and yttrium, appears in this eight-page bulletin. In addition to potential uses, it describes manufacture and lists detailed properties and chemical analyses of more than 50 products. Vitro Chemical Co., 342 Madison Ave., New York 17, N.Y.

Digital Readout System

277
Brochure No. 7 describes the company's dynamic digital readout system. The six-page brochure contains a block diagram of the system. Included in the summary of specifications are data on the digital equipment, slope and maximum load detectors, power requirements, and accessories. Instron Engineering Corp., 2500 Washington St., Canton, Mass.

Speed Detecting Governors

278
Three types of housed speed detecting governors, as well as smaller components for original equipment, are described in this one-page bulletin, No. 284. In addition, operating principles of the detectors are covered. Torq Engineered Products, Inc., 32 W. Monroe St., Bedford, Ohio.

Transistor Adaptors

279
Five transistor adaptors, type Q-601, are described in two-page illustrated bulletin No. WK-Q-601. Brief specifications, purpose, and design features are included in the bulletin. Wayne Kerr Corp., 1633 Race St., Philadelphia 3, Pa.

transistorized ALLEN Type "C" audio frequency oscillators
During the past twenty years Allen Organ Company has produced, for their organs, millions of audio frequency oscillators. These semi-precision oscillators are unusual in that they represent a happy combination of stability and relatively low cost.
Such units are of necessity a basic part of electronic musical instruments. The skills acquired in producing these oscillators are now available to those having oscillator requirements for other purposes. The Allen Type C audio oscillator is a moderately priced compact and reliable unit suitable for many applications. The transistorized package is completely encapsulated and provides a construction that is extremely rugged. The oscillator is primarily a sine wave source which operates from a low voltage direct current source.
FOR INFORMATION, CONTACT Dept. 2207
隹
COMPONENTS DIVISION
MACUNGIE, PA., PHONE WOOdring 5-9801 CIICLE IS3 ON READER-SERVICE CARO

For Improving Your silicon Rectifier Design

New ADVAC

 designs using the new ADVAC ceramic insulated heat sink assembly are setting new design standards with improved performance characteristics.

ADVAC Seals Offer 4 Important Advantages:

1. High thermal conductivity permitting higher current covols at any case tempera.
ture or smaller heat sink dosign.
2. Botter electrical insula. tion-Flashover point is 1800 Volts minimum (tab to stud).
3. Uniform heat transfor charactoristics
groater stability,
4. Production techniques are 4implified-no components to be assembled.

Write ADVAC today, describing your application, to learn how these ceramic seals can help improve our semi-conductor or vacuum tube designs. Specify ADVAC CERA MIC SEALS for diode closures, transistor bases, mounting studs and other precision insulated components.

ADVAC Seals are manufactured only by -

ADVANCED VACUUM PRODUCTS • INC

430 Fairfield Avenue, Stamford Connecticut

Subsidiary of

Telephone: DAvis 4-2148

CIRCLE 154 ON READER-SERVICE CARD

IDEAS FOR DESIGN

Get $\$ 10.00$ plus a by-line for the time it takes you to jot down your clever design idea. Payment is made when the idea is accepted for publication.

Special Potting Method Provides

 Waterproof Seal Around Teflon WirePotting around Teflon-covered wire and cables can be made permanently watertight and highly resistant to shock impact by pre-treating the wire with an etching compound called Tetra-Etch. Introduced recently by W. L. Gore \& Associates, Inc., Tetra-Etch reacts with fluorocarbon resin to produce a carbonaceous film on the treated surface. This film then serves as a medium for tightly bonding the potting compound to the Teflon.

The accompanying photos illustrate the steps involved jn attaching and potting plug assemblies to flat, multiple-conductor ribbon cable

After the cable ends have been slit between conductors and stripped of insulation, they are dipped in the etchant, Fig. 1, for approximately 2 min . After the wires are removed from the etchant, they're wiped off with a damp cloth or flushed with water. The etched area will show a definite change of color to light brown. As a final preparatory step, all surfaces are wiped with acetone.
Next, the wire ends are tinned and all leads are soldered into the plug. After soldering, all surfaces are wined clean with MEK solvent (methyl ethyl ketone) to make certain they're

Fig. 1. After the cable is slit, it is immersed in the etchant for about 2 min ; then residue is removed with water and all surfaces are wiped with acetone. Carbonaceous film formed on the Teflon is the key to tight bonding.

TADANAC]BRAND Special Research Grade INDIUM

The purity of this specially refined indium is such that no individual impurity exceeds 0.1 ppm . It was developed primarily for use in the production of intermetallic compounds. Other TADANAC Brand high purity metals or compounds include: Special Research Grade antimony and tin, High Purity Grade bismuth, cadmium, indium. lead, silver, tin, zinc and indium antimonide. Send for our brochure on TADANAC Brand High Purity Metals.

COMNTCO

the consolionteo minimg and smetting company of camada lumited

CIRCLE 155 ON READER-SERVICE CARD

Now MARK shates WIRES for $1 / 2$ your present cost!

Brady Pressure-Sensitive, All-Temperature Wire Markers for small gage wires are exactly $3 / 4$ " long to fit wires under $1 / 4^{\prime \prime}$ o.d. They cut your small gage wire marking costs in half because

1. They cost half the price of Standard Markers, and
2. Thoy go on the wire twice as fast.

You can't drop Brady Wire Markers - they stick to your finger from Card to wire. ${ }^{*}$ Stick and stay stuck - at temperatures to 300° F.! Choose from over 3,000 different stock markers-both Standard and Small Gage Size. Stocked by Brady Distributors in all principal cities. Specials made to order. Write for big new bulletin and free testing samples today! -Romember, too, Brady makes the only marker that can be "Romombor, rood
W. H. BBADI CO., 787 West Glendale Ave., Milwoukee 9, Wis. Manufacturors of Quality Prossure-Sensitive Industrial Tape Products,
 CIRCLE 156 ON READER-SERVICE CARD
ELECTRONIC DESIGN • July 6, 1960

PROBLEM:

Cramped for space and need BOTH INDICATOR LITES and SWITCHES?

SOLUTION: Use TEC-LITE BUTTON LITES. combination switch and combination switch and
lite units that also may be wired as push-to-test lites. Recommended for computers, data processors,
control and signal systems. control and signal systems. $1 / 2^{\prime \prime}$ diameter body. Either incandescent or neon, with series current limiting reseries current limiting re-
sistor if desired. Available sistor if desired. Available
with normally open or normally closed switch contacts.

SWITCH LIFE: 500,000 operations min. @ $1 / 10 \mathrm{amp}$.

Write for new TEC MBL series catalog sheet and prices. Transistor Electronics Corporution
3357 REPUBLIC AVENUE MINNEAPOLIS 26, MINNESOTA
CIRCLE 157 ON READER-SERVICE CARD
 CIRCIE 158 on reader-Service card E.ECTRONIC DESIGN • July 6, 1960

Fig. 2. Primer is brushed on sparingly, then allowed to dry for several minutes. Duct seal is applied to all areas where uncured resin might leak out.
completely free of possible contaminants such as grease, oils and sealants.
Now the assembly is ready for priming as in Fig. 2. A thin coat of 3-M Scotchcast resin No. XR-5001 is brushed sparingly on all surfaces to be potted, then allowed to dry for several minutes. In preparation for potting, the unit is placed in a mechanical fixture to assure rigid clamping during the resin cure. At the same time, duct seal is applied to all areas where uncured resin might possibly leak out.
Finally, the uinit is potted as in Fig. 3. Depending upon specific requirements, Scotchcast No. 212 or No. 1120 can be used.

Pofted Unit Withstands Wear and Tear

That the resulting assembly will stand up to surprisingly rough treatment was demonstrated in tests run on the first plug-and-cable unit potted in this manner.
After potting and curing was completed on the back of the plug, the front was closed off tightly with duct seal. Then the entire assembly was submerged in 2 ft of water, with only the extreme opposite end of the cable extending above the surface. After the unit had soaked for an entire week, all adjacent wires were tested with a $500-\mathrm{v}$ dc megger; no measurable leakage could be detected from wire to wire, or from any wire to the water.
Next, the potted assembly was subjected to severe manhandling. Each wire was pulled and wiggled many times by several people. The entire

GENERAL DYNAMICS' Electric Boat Division specifies Gremar hull antenna fittings for our latest atomic powered, POLARIS armed, missile subs: George Washington and Patrick Henry. Why Gremar?
-BECAUSE GREMAR CONNECTRONICS ${ }^{\text {TM }}$ concentrates engineering, production and quality control on RF Connectors only . . . guarantees 100% conformance to your most exacting specs.
BECAUSE GREMAR DELIVERS . . . by stocking America's most complete line of RF Connectors and Fittings ... by maintaining a shelf stock of more than 500,000 assembled units . . . of over 2,000 types . . . and $4,000,000$ component parts ready for fast assembly!
SPECIFY GREMAR for top-level reliability and performance in RF Connectors. Write for literature on any series of standard RF Connectors or send us your specs on special requirements.

Helium mase apectromoter leak test pertormed on critical bermetic seal problema can derect Alont that yeurs! Juate ooe of 142 eoparate quality checks performod to matt Gremar RP Coone octoris eppecithed for use in all major misaile programa.

RELIABILITY THROUGH QUALITY CONTROL Dept. B, Wakefield, Mass., CRystal 9-4580 CIRCLE 159 ON READER-SERVICE CARD

Fig. 3. Finally, the unit is potted. Mechanical fixture assures rigid clamping during subsequent resin cure under heat lamps.
cable was bent, twisted and pulled. Following this mechanical abuse, the plug was again soaked for a full week-this time in a solution of borax and water to decrease surface tension and increase conductivity. And once again, results of the $500-\mathrm{v}$ megger test were completely negative, with no measurable leakage.

Harry D. Wintle, Manager Electrical Engineering Dept., Kollmorgen Optical Corp., Northampton, Mass.

Hold Onto Your Hat With a Rubber Grommet

"Top hat" type diodes can be securely mounted atop a chassis by using a rubber grommet as

TOROIDAL COIL WINDER${ }^{5} 1250$ COMPLETE

2-lb. loading capacity

This is the largest of the Harder Toroidal Coil Winders. Its big, 24 -inch diameter winding ring will handle coil stacks 6 -inches high and 6 -inches in diameter. Up to two pounds of wire may be stored in the oversize winding ring. Smaller rings are available when maximum fill is required. This machine is an outstanding buy priced at only $\$ 1250$ complete.
Harder Coil Winding Machines are made in five models to handle ring sizes from 3 through 24 inches. This permits the production of coils rang. ing in size from miniature to heavy duty. The design was developed in Government Laboratories and accepted by the Navy as outstanding in its field. Hundreds in use at leading companies. Write for free booklet. Donald C. Harder Company, 2580 "K" Street, San Diego 2, Calif.

- harder co.

CIRCLE 162 ON READER-SERVICE CARD ELECTRONIC DESIGN • July 6, 1960
a measure of perfection... IDEAL PRECISION

Panel Meters

the complete line for every application

Here's the demand line that's setting sales records across the nation .: engineered and produced to the highest standards ... assembled in controlled atmospheric and climatic conditions ... 100% inspected at every step of production to ensure highest quality and dependability.

- Accurate to within 2% of full scale
- All sizes and sypes available
- Scales to customers specifications

For complete information, write to

IDEAL

IDEAL PRECISION METER CO., INC. 214 Franklin Street, Brcoklyn 22, N. Y.

Sold to Electronic Parts Distributors
oxelusivaly through

UALDOM

WALDOM ELECTRONICS, INC. 4625 W. 53rd Street, Chicago 32, ill. CIRCLE 163 ON READER-SERVICE CARD
shown in the figure. The amount of holding force can be changed by varying the diameter of the hole in which the grommet is fixed. Using the grommet, mounting gear is held to an absolute minimum.
J. C. Mueller, Mechanical Design Engineer, Crosley-Avco, Cincinnati, Ohio.

Heat-Sensitive Diode Calibrates RMS Meter For Noise Voltage Readings

A temperature-limited diode can be used to recalibrate a standard rns meter to give correct readings of noise. This recalibration is necessary because an rms meter is designed to measure pure sinusoids only. The waveform of a noise signal is decidedly nonsinusoidal.
The calibrating device works on the principle that the current through a temperature-limited diode is a function of the heat generated in its filament. Since the heat generated is proportional to the rms voltage applied, the current through the diode is also a function of its rms filament voltage. Thus, if a noise voltage is applied to the diode filament, its plate current will be a measure of the rms value of the voltage.

Known Sine Wave Signal Calibrates Meter

The calibrating circuit shown in the figure uses a low impedance amplifier to drive the diode's

filament. The rms voltmeter can be calibrated by the following procedure.
A known sine wave signal is applied to the input of the amplifier. The current through the diode and the deflection of the rms meter is noted. A sample of the noise to be measured is next applied and adjusted to give the same current reading as recorded for the sine wave. The noise voltage is then measured on the meter. The ratio of the sine wave voltage reading to the noise voltage reading is the calibrating factor. That is, the quantity the rms meter readings must be multiplied by this factor to give the correct rms noise voltage value.
Gwynn M. Reel, Design Specialist, Airborne Electronics, Martin-Orlando, Orlando, Fla.

I LECTRONIC DESIGN • July 6, 1960

NEW

 HIGH CURRENT Miniaturized TRANSPAC

> NEW
> SOLID STATE SHORTCIRCUIT AND TRANSIENT PROOF POWER PACKS

FEATURES:

- New High Current Solid-State Designs
- Battery Voltage Outputs
- Advanced Thermal Design
- Low Ripple Content
- Short-Circuit Proof Automatic Recovery
- Thermal Transistor Stud Temperature Monitor and Automatic Cut-off
- All Components Accessible
- Minimum Size and Weight
- Moderately

Priced
(®Reg. U.S. Pat. Off

SAVE SPACE, WEIGHT and WIRING

ERA's new high current transistorized Transpacs are miniaturized self-contained AC operated units which provide regulated DC outputs at all standard battery voltages. These units may be used to replace battery sources for laboratory and test purposes or wired into equipment to supply a rugged reliable source of DC power for miniature or standard size electronic devices.

SPECIFICATIONS

Input $105-125$ VAC. $60-400 \mathrm{cps}$. Line or load regulation better than 0.05% or 5 millivolts. Rlpple less than 1 millivolt.
Models
listed are specified for operating
temperaturea up to $55^{\circ} \mathrm{C}$. but may be derated for extended temperatures Ex. tremely high temperature and military designs also avallable
ou order. Units include provision for 5% minimum voltage
adjustment.

ELECTRONIC RESEARCH ASSOCIATES, INC.

67 Factory PI., Cedar Grove, N. J. CEnter 9-3000 * TWX NJ1144 SUBSIDIARIES

See these Producte at the 1960 WESCON Convention Booth No. 938-939 CIRCLE 164 ON READER-SERVICE CARD

MICRO-PROCESSED FOR EXTRA RELIABILITY!
Micro-processed I.S beryllium copper compression springs, being nonand having good electrical conduc. tivity, are exceptionally well suited for critical applications. Undesirable internal stresses are removed dur ter current carrying capacity, lower drift and higher endurance life. The exclusive process by which I.S Micro-processed springs are manufactured make it possible to fulfill

IJS

Beryllium Copper Springs

Call or write for I.S catalog

 including data on:- Compression springs - FLAT SPRINGS - STRIP SPRINGS - CONTACT RINGS pon fumpere cirt oun
- CONTACT STRIPS SWEETS.
- SCREW MACHINE PRODUCTS
all respects. Unusually close toler inces are held on diameters rang tory certified beryllium copper wir in standard B \& S gages from 0025 to $.072^{\prime \prime}$ with a tensile strength o
 quality control is maintained to in sure correct spring rate and load requirements.

INSTRUMENT SPECIALTIES

 CO•INC 270 Bergen Blvd Little Falls, N. J.Telephone: CLifford
CIRCLE 165 ON READER-SERVICE CARD
 CIRCLE 166 ON READER-SERVICE CARD

PATENTS

Benjamin Bernstein

Low Noise TWT
Patent No. 2,936,393. M. R. Currie and D. C. Forster (Assigned to Hughes Aircraft Co).
A low-noise electron gun is achieved by accelerating and decelerating the electron beam in the immediate vicinity of the emissive cathode. A beam-forming electrode at a higher potential than the anode is inserted next to the cathode.

This causes a saddle point to develop there. The potential profile along the tube axis is initially accelerating. However, this condition is then followed by a long drift region. It is believed that the crossover at the cathode increases the emission from the edges of the cathode. This factor ultimately contributes to the low noise figure.
A TWT having an electron gun

NOW in 50 WAHES for miniature and
 SUBMINIATURE PRODUCTION SOLDERING JOBS

the NEW, American Beauty
BANTAM " X " series

Designed with 50 watt input. these fine soldering irons will give greater productivity and do industry's most exacting soldering jobs easier, faster, better. SLOTTED ing jobs easier, faster, better. SL MAK THE HANDLES REALLY COOL, ending operator complaints. There's no waiting or fumbling with these light, flexible tools - they're always ready. American Beauty soldering irons are known the world over for their dependability, durability and efficiency. Learn more about these fine soldering tools today.
rou can't beat a solderid connection waite for descniptive catalog sheet. form no. m-ct

Shown below are other shapes and fip-size irons ovailable in the BANTAM

AMERICAN ELECTRICAL HEATER COMPANY DETROIT 2, MICHIGAN

CIRCLE 167 ON READER-SERVICE CARD
ELECTRONIC DESIGN • July 6, 1960

mounted in a strong solenoid focusing coil 38 is shown. The field shaping ring $30(p)$ is at potential V_{3} which is higher than the potential on the first accelerator 32 (A). The resultant potential profile includes the desired cross-over in the cathode region.

Wide-Band Amplifiers

Patent No. 2,935,696. C. F. Ault (Assigned to A. B. DuMont Labs).
A wide-band amplifier is obtained by placing a dc amplifier in shunt with the load of an ac amplifier. To operate correctly in the low frequency range a dc difference amplifier is used.
The signal to be amplified is applied to terminals 10 and 11. The ac amplifier is coupled to the voltage divided load consisting of capacitor 18 and resistors 25 and 26. Within the flat frequency response range of amplifier 16, the dc amplifier 20 has equal inputs. The dc unit's contribution to the load is zero. At lower frequencies, the inputs to the difference amplifier become unequal. The resultant output is essentially the amplified signal produced by this amplifier.

NEW PHOTOMULTIPLIERS

CBS Laboratories new line of photomultiplicrs are specially designed for counting or scanning applications.
Unique photocathode geometry (1) and improved linear dynode structure (2) are combined to provide excellent uniformity of response across the face of the tube and extremely short transit time spread.

The new, rugged photomultipliers are available as illustrated in $\mathbf{2}^{\prime \prime}, 3^{\prime \prime}$ and $5^{\prime \prime}$ diam. eathodes with visible (S-11) or infra-red (S-1) response and 10 stages of multiplication: or with quartz windows in $\underline{\varrho}^{\prime \prime}$ and $3^{\prime \prime}$ diam. with ultraviolet (S-13) response. Special types can be developed to order. For technical bulletins or complete information, write: CBS LaboratoRies, Electron Tube Department.

cbs laboratories

 CIRCIE 168 ON READER-SERVICE CARD

This portable instrument in one complete package enables you to measure both frequency and frequency deviations in the maintenance of mobile communications systems.
As optional equipment the FM-7 Frequency Meter can be combined with the new DM-3 Deviation Meter as illustrated. The DM-3 is a dual-range deviation meter with 15 kc and 7.5 kc full scales.
By combining the FM-7 and the DM-3 you get a single instrument capable of measuring and generating carrier frequencies plus reading peal modulation deviation.

GERTSCH PRODUCTS, Inc.
3211 South La Cienega Boulevard, Los Angeles 16, California • UPTon 0.2761 - Vermont 9-2201 CIRCLE 169 ON READER-SERVICE CARD

HOPKINS

metallized Mylar* film capacitors

- high performance
in small size

These film-wrapped units are built to meet exacting requirements. For example; High insulation resistance-100,000 megohms is typical.
Operating temperature-units operate to $125^{\circ} \mathrm{C}$.
Sub-miniature size-a Hopkins .1 mfd capacitor rated at 200 volts is only $5 / 32^{\prime \prime}$ thick $\times 7 / 32^{\prime \prime}$ wide $\times 3 / 4^{\prime \prime}$ long.
Construction. These units have copperweld leads for maximum vibration resistance... are built with the highest quality materials available, and produced under rigid quality control.
Available as film-wrapped types, and in all case styles in hermetically sealed brass tubes and bathtubs. Rated .005 to 8 mfds ., 200 to 600 VDC. Prompt deliveries. Send for catalog C-103A.
HOPKins fagnexing company
-DuPont Trade Name
12900 Foothill Blvd., San Farnando. Calif. . Tel. EMpire 1-8691 See us at the WESCON SHOW Booth \#860 CIRCLE 170 ON READER-SERVICE CARD

NEW-GOOLS TRANSISTORS

 GETS 46 WATTSAT ROOM
TEMPERATURE

POWER TRAMSISTORS mounfod in our nowly dovoloped LF-100 Sarles Heat Exchangers generate up to 46W (with some transistors 50 W) wirhout They are dosigned to operate in a ducted air fow from one to ffficen cfm. The above graph
howe the thermal Impedance betmeen stud roos and input air to be as low as $.7^{\circ} \mathrm{C} /$ watt. The ame principle is applied to our 200 Series Meot echangors (not shown) which operate in unducted circulating air. These Exchangers also give markable results.
send for complete information.

CIRCLE 171 ON READER-SERVICE CARD

CIRCLE 172 ON READER-SERVICE CARD

Fibooks

Direct Conversion of Heat to Electricity Joseph Kaye and John A. Welsh, John Wiley \& Sons, Inc., 440 Park Ave. S., New York 16, N. Y., 220 p, \$8.75.

An edited collection of papers issued at an MIT seminar, this volume is one of the first published sources of reference material in the field of direct conversion of heat to electricity. The papers were presented at a special summer program titled "Direct Conversion of Heat to Electricity," that took place July 6 to 17, 1959. At the time they represented the latest advances in research.

The book has been divided into five general sections. These include fundamental discussions in thermoelectric energy conversion (the thermocouple), thermionic energy conversion (the vacuum tube and the gaseous tube), magneto-hydrodynamic conversion (separating the positive and
negative charges in a gas), and fuel cells (the separation of positive and negative charges during a chemical reaction). Also presented are examples of practical applications and problems associated with each type of conversion scheme.

Transistor Projects

Compiled by the staff of Gernsback Library, Gernsback Library, Inc., 154 W. 14th St., New York 11, N.Y., 160 pp, $\$ 2.90$.
Strictly a practical book, this volume passes very lightly over transistor theory and gets right down to detailing a large variety of transistor construction projects. Outlined are projects on radios, instruments and accessories, and miscellaneous devices such as a remote transistor ear, an electronic compass, and an electronic counter.

HOW HICH IS A CLOUD?

It's easy to tell with this radar, cloud height detector!

SEND TODAY for this valuable FREE CATALOG!

HOUSED IN

Lindsay Structure!

Weathertight, easily-insulated Lindsay components form the housing for these units-de signed and built by Olympic which measure and record on paper tape the profile of cloud paper tape the profile of cloud feet directly overhead. Transmeet direculy overhead. Transequipment are protected by the $6 \times 10 \times 7 \mathrm{ft}$. Lindsay housing, which is also the base for sending and receiving antennas. R.F.I. shielding, vital to such installations is a natural bonus with Lindsay Structure. Flexibility in design permits leakproof doors and openings wherever desired.
LINDSAY STRUCTURE DIVISION INTERATIONAL STEEL COMPANY

Gentlemen:	Name
Send me your in-	Title
formative folder	
TOOL XIT for building	Company
Housings, Enclosures,	Address
Containers, Processing Towers, Mobile Units.	

ELECTRONIC DESIGN • July 6, 1960

An Introduction To Statistical Communication Theory
David Middleton, McGraw-Hill Book Co., 330 W. 42nd St., New York 36, N. Y., $1140 \mathrm{pp}, \$ 25.00$.
Broadly speaking, statistical communication theory may be described as a theory which applies probability concepts and statistical methods to the random phenomena (messages, signals, and noise) that influence and control the design, operation and evaluation of communication systems. Although the specific treatment in this book is directed toward electronic and electrical systems, such as radio, radar, etc., the general methods and philosophy described are applicable in other areas of communication science, as well.
According to the author, this is the first text to appear on the subject of statistical communication theory as distinct from special works on information theory, noise, and stochastic processes. It offers a systematic approach to the functional design of optimal communication systems, including evaluation and comparison with suboptimum systems. Sufficient development of the mathematical techniques re-
quired for the solution of advanced problems is included.
The book is divided into four main parts. Part I introduces and describes some of the statistical techniques required in the analysis of communication systems and concludes with an introductory chapter on information theory. Part 2 considers the random noise processes and some of the processes derived from it, and gives a short account of the physical models of shot and thermal noise. Part 3 is concerned mainly with various nonlinear operations that are common in transmission and reception, such as modulation and demodulation, and the calculation of signal-to-noise ratios. Linear measurement, filtering, and prediction and more general distribution problems, the results of which are needed in the general analysis of Part 4, are also examined here. Finally, Part 4 gives a detailed development of a statistical communication theory for the basic single-link communication system consisting of message or signal source, transmitter, medium of propagation (or channel), and receiver and decision-making elements.

Precise control of voltage and current. Put the D-1480 to work for you. Reduce costly transistor burn-outs.
Overloading cuts current off. Regulation better than 0.3%.
Less than 0.25 mv . ripple. Full short circuit protection.
Mefer reads voltage and current.
Available from stock ... factory or Allied Radio. (Allied Slock No. 82PX245) price $\$ 160.00$.

WRITE US FOR FURTHER INFORMATION
402 EAST GUITIERREZ STAEET, P.O. BOX 1500 SANTA BARBARA, CALIFORHIA - TEEEPHOME WOOdIand 3116

VECTOR ELECTRONIC COMPANY
1100 FLOWER STREET, GLENDALE 1. CALIFORNIA
TELEPHONE: CHapman 5-1076
circle 175 on reader-service card

FAST, POSITIVE ACTION
LONG SERVICE LIFE•MOISTURE-PROOF
A broad line of sinusoidal toggle spring switches designed for compactness, light weight and high reliability in airborne and ground support missile control syatems. Extremely fast, audegligible minimum. Positive snap action mechanism cannot be teased on or off contact. All contacts made of heavy coin silver for long life and low contact resistance. Available with color coded buttons. These switches exceed military requirements for vibration, shock, humidity and corrosion resistance. Western Distributor: Western-Electromotive, Inc., Los Angeles.

The UCINITE COMPANY Divielon of Unlted-Carr Fastoner Corporation, Nowtonville 60, Mase

 cancar 176 ON READER-SEVIICE CAROCIRCLE 174 ON READER-SERVICE CARD
EleCTRONIC DESIGN • July 6, 1960

Glass-Tite

 Industries ImprovesTransistor-Headers' Reliability with Autronex* Acid Gold Electroplate

One of 3 Sel.Rex Platers in which Glass. Tite "barrol-plates"
The famous glass-to-metal, hermetically sealed transistor bases produced by Glass-Tite Industries, Iransistor bases produced by Glass-Tite Industries,
Incovidence, R. I., end up in multi-million dollar missiles, rockets and computers. In applications like these, only the best is good enough. That's why Glass-Tite and leading electronic component manufacturers the world over, specify Autronex Acid Gold for electroplating.
Sel-Rex patented processes retain the unique advantages of the precious metals without the shortcomings of conventional electroplate. Technical data on request...specify application.
-Trade mark for Sel-Rex patented Acid Gold Plating Process

SEL-REX CORPORATION
World's largost solling procious motal plating processes

CIRCLE 177 ON READER-SERVICE CARD

CIRCLE 178 ON READER-SERVICE CARD

REPORT BRIEFS

Asynchronous Logic Networks

The systems considered are asynchronous, dclevel sequential switching circuits. They do not have clock pulses, and the signals are represented, not by pulses, but by variables that can assume values in either of two non-overlapping ranges. The analysis of these circnits is discussed, with emphasis on the problem of choosing state variables. A relationship is established between the number of rows of a reduced flow matrix and the feedback index of the associated circuit. The major portion of the research is devoted to a study of the effects of stray delays on the operation of sequential switching circuits. A Study Of Asynchronous Logical Feed Back Networks, Stephen H. Unger, Research Laboratory of Electronics, MIT, Cambridge, Mass., 26 April 1957, 47 pp, Microfilm $\$ 3.30$, Photostat $\$ 7.80$. Order PB 145436 from Library of Congress, Washington 25, D.C.

Voice Data Processing

The system programing, the results of a feasibility study, and the design and development of transistorized plug-in modules for a digital Voice Data Processing System are presented. This system, being fabricated to support the development of a speech bandwidth compression technique, is a special purpose computer operating from a 400 -kc clock. Several operational modes are provided to enable use of the Voice Data Processing System as a data accumulating and sorting device and then as a complete communication system simulator. The mathematical design analysis and the description of the operational evaluation tests for one of the circuit modules are included as appendices. Voice Data Processing System, L. P. Schoene, Melpar, Inc., Falls Church, Va., 15 Oct. 1959, 121 pp, Microfilm $\$ 6.30$, Photocopy $\$ 19.80$. Order PB 144797 from Library of Congress, Washington 25, D.C.

Supersonic Delay Lines

Structural features of supersonic delay lines, together with some investigations bearing on their acoustic and electrical properties, are described. The lines were designed specifically for laboratory use as signal storage devices for an MTI (Moving Target Indication) system and have delays of the order of 0.5 to 1.6 ms . Supersonic Delay Lines, Herbert Shapiro, Office of Scientific Research and Development, Washington, D.C. 15 March 1946, 46 pp, Microfilm \$3.30, Photostat $\$ 7.80$. Order PB 137822 from Library of Congress, Washington 25, D.C.

LABORATORY FOR ELECTRONICS COMPUTER PRODUCTS DIVISION 1079 COMMONWEALTH AVE
BOSTON, MASS., DOPT. 7-E
\square Please send me a copy of the now Ulitasonic Delay Line catalog
Name
Title
Company
Division
Address

CIRCLE 179 ON READER-SERVICE CARO

TIME-SAVING GUIDE FOR SPECIFYING DEFLECTION YOKES

Helps speed your project. Eliminates confusion in choosing the right yoke. Engineers have saved countless hours, many dollars and numerous headaches by using this simple Guide Sheet For Specify ing Deflection Yokes.
Offered as a public service to engineers by SYNTRONIC INSTRUMENTS, INC., YOKE SPECIALISTS, the only firm devoted primarily to deffection yoke manufacture; therefore preeminently qualified to help you specify the correct yoke for your application. Complete line for every military and special purpose-in production quantities or custom designed to your specific requirement.
to your specific requirement.
Phone our nearest rep. today for your Time-Saving Guide Sheet.
New York Area: Jules J. Bressler Co. Phone: N.Y. OXXOrd 5.0255;
Philadelphia Area: Ma ssey Associates Phone: MOhawk 4.4200
Washington-Baltimore Area:
Massey Associates
Phone: GRa nite 4.207
Indianapolis: Joe Murphy
Phone: Victor 6.0359
Los Angoles: Ash M. Wood
Los Angoles: Ash M. Wood Co.
Phone: CUmberland 3 . 1201
No obligation. We are glad to help you.

syntronic
 N.STRUMENTS, IN:
 4i. Industrial Road. Addison, llinois

CICLE 180 ON READER-SERVICE CARD ELE ETRONIC DESIGN • July 6, 1960

LETTERS

Patent Law Point Clarified

Dear Sir:
In the Electronic Design issue of April 27, 1960, there is an article entitled "Delayed Patent Application . . . What You Can Lose." The article's second paragraph contains an erroneous statement, which reads:
"Under the patent law an inventor is not entitled to a patent if his invention was known or used by others in this or a foreign country before the invention by the patent applicant."
The patent law under 35 U.S.C. 102 states that: "A person shall be entitled to a patent unless the invention was known or used by others in this country, or patented or described in a printed publication in this or a foreign country, before the invention thereof by the applicant for patent."
As you can readily see, the author of the quoted article leads one to believe that foreign knowledge or use is an anticipation. However, only domestic knowledge or use, or a foreign patent or printed publication, is an anticipation.

Sincerely,

R. R. Skolnick

Patent Administrator Ford Instrument Co. Long Island City, N. Y.

Load Lines Simplify but Equations Don't

In your otherwise well written article "Load Lines Simplify Transistor Amplifier Analysis," a few errors have sneaked in: On page 22 of your March 2nd issue, the equation

$$
i_{1}=\frac{v_{1}-i_{1} r_{i n}+(B+1) R_{e}}{R_{b}}
$$

should read

$$
i_{1}=\frac{e_{1}-i_{1} r_{i n}-(B+1) R_{e}^{r} i_{1}}{R_{b}}
$$

The next equation

$$
i_{1}=\frac{v_{1}-i_{1}\left[r_{m}+(B+1) R_{b}\right]}{R_{b}}
$$

should read
$i_{1}=\frac{\boldsymbol{v}_{1}-i_{1}\left[r_{\text {in }}+(B+1) R_{b}\right]}{R_{b}}$
Adam A. Jorgensen Stromberg Carlson Co. Rochester, N. Y.

...by WESTERN are betterI
Because now, at no extra cost, the principle hazard
found in ordinary seal rings has been removed by Western's No Splic method of one-piece construction. In addition, dimensional requirements are maintained at less cost and service is vastly improved. Don't use a spliced ring for technical seal applications, but profit from our more than 50 years Write or phone for information or a visit by our sales engineer in your area.

MESTERN RUBBER CO. GOSHEN 7, INDINNA
mOLDED AND LATHE.CUT RUBBER PARTS FOR ALL INDUSTRIES CIRCLE 181 ON READER-SERVICE CARD

A Model and Size DISPLAYS

Series 120000

- All digifs displayed on front viewing screen
- All digits uniform in size and intensily
- High-contrast viewing sereen
- Digir style of your choice
- Colored digits of your choice
- Individual units may be group assembled for panal mounting
ereme
Roprciontativos E ह 5

Industrial Electronic Engineers. Inc In principo
cifios 5528 vineland Avenue. North Hollywood. California CIRCLE 182 ON READER-SERVICE CARD

opportunities in design engineering

COLLLNS

Ideas - and experienced design engineers who can turn them into performing products - are the moving force behind Collins Radio Company. Right now, design engineers are needed for a wide range of electronic projects at Collins' three locations; Dallas, Texas, Burbank, California, and Cedar Rapids, Iowa. Projects include design and development problems on airborne communication, flight control, navigation and identification systems. missie and cation, high speed digital data transmission, antenna design. amateur radio and broadcast. They afford full scope to your creative ingenuity. They give you unusual opportunities for advancement and professional recognition.
Collins past achievements promise an outstanding future Collins design engineers have been responsible for the integrated electronics systems for America's newest Air Force and Navy fighters and bombers. These systems provide UHF communication, TACAN navigation. radar identification, UHF direction finding, navigation indicators.

From its inception, Collins has placed strong emphasis on research and development. The R\&D division accounts for about 3,500 employees, of which 40% are engineers, physicists, mathematicians, and scientists. About $\$ 22$ million is spent annually on R\&D activities.
Collins is a growth leader in the electronics field. Engineering minded management has balanced government and commercial business to the point where stable employment is backlog Military-commerci
The steady growth of Collins is noted by comparing 1937 sales of $\$ 500$ thousand and 1945 sales of $\$ 43.3$ milion with 1959 sales in excess of $\$ 117$ milion.

If you are a qualified design engineer, you are invited to subconfidence resume in complet your choice: L. R. Nuss, Collins Radio Company, 855 35th St . N.E., Cedar Rapids, Iowa; B. E. Jeffries, Collins Radio Company, 1930 Hi-Line Dr., Dallas Rexas or R. 0700 W Olive Ave., Burbank, California.

COLLINS RADIO COMPANY - CEDAR RAPIDS, IOWA - DALLAS, TEXAS - BURBANK, CALIFORNIA

YOUR CAREER ENGINEER-IMPROVEMENT COURSES AND SEMINARS

Below are courses and seminars in-
Below are courses and seminars intended to provide the engineer with a better knowledge of various specialties. Our grouping includes sev. National Courses-those held on conescutive days and intended to draw attendees from all geographica areas; One-Day Seminars-one-da? intensive seminars which move fron city to city; and Regional Lecture -regional symposia or lecture series which generally run one night a week for several weeks.

National Courses

Modulation Theory and Systems, Aug. 1-12, Massachusetfs Institute of Techonology

This program on "Modulation Theory and Systems" is planned particularly for practicing communications engineers with an active interest in communication systems and techniques. Emphasis will be on theory and methodology, rather than current practice. Familiarity with Fourier techniques and an understanding of the basic concepts of probability and noise theory will be assumed. The program, which will run from August 1-12, requires a $\$ 300$ tuition payabble upon notification of admission. Academic credit is not offered. For information, contact Professor Elie J. Baghdady of the Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, Mass.

PAPER DEADLINES

Convention Program Chairmen have issued the following deadlines o authors wishing to have their papers considered for presentation.

July 30: Deadline for $50-200$ word abstracts of papers for the Conference on Reliability of Semiconductor Devices to be held Jan. 12-13, 1961, at the Western Union Auditorium, 60 Hudson St., New York, N.Y. Papers are requested to cover the following: transistors, diodes and rectifiers made of germanium, silicon and other semiconductor material. The papers should be basically empirical in nature, covering observation of the devices alone, or the devices in circuitry and systems, under various conditions of operation and/or storage. A concise description of device structure and fabrication should be included. All material included in the papers must be unclassified. Send titles, abstracts and papers to: Mr. John E. Shwop, Chairman, Program Commit tee, U. S. Army Signal Supply Agency, 225 S. 18th St., Philadelphia 3, Pa., ATTN: Production Development Div., 15th Floor.

ELECTRONIC DESIGN • July 6, 1960

Advancement Your Goal?

Use CONFIDENTIAL

Action Form

ELECTRONIC DESIGN's Confidential Career Inquiry Service helps engineers "sell" themsolves to employers-as confidentially and discreetly as they would do in person. The sorvice is fast. It is the first of its kind in the dectronics field and is receiving high praise from personnel managers.
To present your job qualifications immediately to companies, simply fill in the attached nesume.
Study the employment opportunity ads in this section. Then circle the numbers of the oottom of the form that correspond to the numbers of the ads that interest you.
ELECTRONIC DESIGN will act as your secretary, type neat duplicates of your applica. tion and send them to all companies you select-the same day the resume is received. The standardized form permits personnel managers to inspect your qualifications rapidy. If they are interested, they will get in touch with you.
Painstaking procedures have been set up to ensure that your application receives complete, confidential protection. We take the following precautions:
All forms ore delivered unopened to one eliable specialist at ELECTRONIC DESIGN.

Your form is kept confidential and is processed only by this specialist.
The "circle number" portion of the form is belacted before the application is sent to an employer, so that no company will know how hony numbers you have circled.

All uriginal appications are placed in condenticl files at ELECTRONIC DESIGN, and fiter a reasonable lapse of time, they are lestro ed.
If you are seeking a new job, oct nowl

eiectromic oesise CAREER INQUIRY SERVICE

After completing, mail career form to ELECTRONIC DESIGN, 830 Third Avenue, New York, N. Y. Our Reader Service Department will forward copies to the companies you select below.
(Please print with a soft pencil or type.)
Name
Telephone \qquad
Home Address \qquad City \qquad Zone \qquad State \qquad
Date of Birth \qquad Place of Birth \qquad Citizenship

Position Desired \qquad
Educational History

College	Dates	Degree	Major	Honors

Recent Special Training \qquad

Outstanding Engineering and Administrative Experience

Professional Societies
Published Articles
Minimum Salary Requirements (Optional)
Use section below instead of Reader Service Card. Do not write personal data below this line. This section will be detached before processing.

Circle Career Inquiry numbers of companies that interest you

| $\mathbf{y 0 0}$ | 901 | 902 | 903 | 904 | 905 | 906 | 907 | 908 | 909 | 910 | 911 | 912 | 913 | 914 | 915 | 916 | 917 | 918 | 919 | 920 | 921 | 922 | 923 | 921 |
| :--- |
| 925 | 926 | 927 | 928 | 929 | 930 | 031 | 932 | 933 | 934 | 935 | 936 | $9: 37$ | $9: 38$ | $9: 14$ | 940 | 941 | 942 | 943 | 944 | 945 | 946 | 947 | 948 | 949 |

CAREER OPPORTUNITIES BROCHURES

REWARDS

and CREATIVITY at

PHILCO Palo Alto
 On the San Francisco Peninsula

You'll find exceptional opportunities and commensurate rewards with rapidly expanding Philco Western Development Laboratories, at the center of the San Francisco Bay Area's electronic industry. These are our immediate needs. Do they match your experience and interests?

SYSTEMS ENGINEERS

As an active participant in the formulation and design of microwave data telemetry and tracking systems, your responsibilities will include analysis of equipment design and performance, specification and technical direction of system test, analysis of flight test data, and preparasis of ion of system test report.
tion

DESIGN ENGINEERS

Direct your ingenuity to the design of circuits forming integral parts of CW range measuring equipment and the integration of complex timing and coding circuitry for earth satellites. You will also establish and supervise test programs, direct the testing of setups, component parts, circuits and complete ranging systems, supervise and monitor electrical and environmental testing for qualification. Familiarity with tran sistor switching circuitry is required.
RANGE DESIGN ENGINEERS
Challenging assignments can be yours in the production of installation criteria, specifications, instruc tions and drawings required to implement advanced radar, telemetry, data processing, computing and communications systems.
RANGING AND TRACKING ENGINEERS
If your experience includes low-frequency phase measurements, tracking or radar, openings exist at PHILCO WDL for engineers to de-
sign, develop and insure fabrication of specialized test equipment. RELIABILITY ASSURANCE Your assignments will include evaluation of electronic components, preparation of specifications and drawings of components, analysis of failure of semi-conductors, tubes, or electromechanical devices.

QUALITY ASSURANCE

Qualified engineers are required immediately for in-process, final acceptance and testing of electronic and electromechanical equipment associated with missile and satellite tracking systems. Types of equipment include data processing, UHF and VHF transmitters and receivers, antenna systems.
Consider a career at Philco Western Development Laboratories, elite electronics center on the San Francisco Peninsula. For you ... the encouragement of graduate study on a Tuition Refund basis at any of the excellent surrounding educational institutions, liberal employee benefits, and the facilities of Philco's new, modern R \& D laboratories. For you and your family . . . the perfect climate, whether seasonal or cultural, in which to pursue all-year recreational activities. Only 45 minutes from cosmopolitan, dynamic San Francisco. We invite your inquiry in confidence as a first step toward expanding your skills at Philco, Palo Alto. Resumes may be sent to Mr. J. R. Miner.

Bendir YORK
 offers the opportunity and the challenge of key assignments in... GUIDED MISSILE ELECTRONICS ELECTRONIC
 ENGINEERS MECHANICAL
 ENGINEERS

Here is your chance to prove your ability doing important work on missile fuzing, beacons, guidance, packaging and related test equipment. We have key openings that offer you the opportunity to move ahead rapidly in your profession. At Bendix York, you benefit from the advantages of a small company atmosphere in a growing division of one of the growing division of one of the
nation's largest engineering and nation's largest engineering and manufacturing corporations. Also, you'll enjoy the "good life" in our
beautiful suburban community. beautiful suburban community.
Good salaries, all employee benefits.

Drop us a eard, briefly stating
your education $\&$ experi ence. Wo'll act immediately to get fogether with you and falk if over.

ADDRESS: PROFESSIONAL DEPT. D

C ORPORATION YORK DIVISION Yoant. Peonne. Yoak 47.1951

IRCLE 906 ON CAREER INQUIRY FORM ilec: ronic desicn • July 6, 1960

Opportunities to Grow with Kollsman

AIR DATA INSTRUMENTS \& SYSTEMS

Senior Project Engineers, EE \& ME. For aircraft and missile instrumentation. 5 to 10 years project experience in precision electromechanical devices, pressure transducers.

AUTOMATIC ASTRO TRACKING SYSTEMS

Project Engineers, EE. For automatic astro tracking systems. Up to 5 years' related experience.

STAFF ENGINEERS \& SPECIALISTS

a) Experience in the research and development of transistors in servo, digita and instrumentation application- Minimum 3 years' experience de. sired in transistor circuit design for military applications.
b) Experienced with IR to UV radiation properties and applications, noise theory and detectors.
c) Optics-IR through visual optical design, lens design, materials.
d) Digital computers-logic or packaging experience.
e) Theoretical mechanics-inertial and trajectory studies.

Kolloman's leadership and contimuing growth in the field of automatic navigation
and and
excellent opportunities for for
qualifed men. Please send resume to T. A. DeLuca.

KO|SMan instrument corporation \rightarrow
so-00 asu avenue, elmunast, mew renx - subsioinar of Standord cour prosuers ca, me.

CIRCLE 907 ON READER-SERVICE CARD

RIGHT NOW-YOU CAN BECOME AN EDITOR

ELECTRONIC DESIGN is growing and seeks additional engineers to fill new editorial spots.
Men who will fill these jobs have an EE background or degree, and like to communicate with others. They enjoy working on their own . . . enjoy pulling out the 'important,' and then making their findings known to other engineers. They are creative: not only engineering-wise, but also in using words to convey ideas.
These men like working where their efforts are rewarded . . . they like the idea of working for a young company that offers engineers career opportunities with excellent advancement potential.

are you one of these men?

Nowly creafed posifions include:
Assistanf Edifor: To report on current developments, write reviews, edit manuscripts, interview industry leaders, compile research for reports.
Products Edifor: To review new products, interview manufacturers, extract vital information from releases, help develop overall new product program by classifying and evaluating all new products announced by industry.
Salary: To $\$ 8,000$, depending on individual qualifications.

TO APPLY, Circle \#908 on Career Inquiry Form on page 159

HOW TO EARN

\$50,000 More!

The average Electronics Engineer will earn approximately $\$ 516,000$ in his lifetime ($\$ 12,000$ average annual acome over a period of 43 years), or over one-half mil lion dollars! Yet most engineers still choose their jobs after only the most cursory survey of available positions.
We have proved in hundreds of cases that our skilled professional techniques, coupled with complete national coverage of the electronics employment market, can increase any electronics man's earnings by a minimum of 10% over the period of his working life

So the average Electronica Engineer earns over $\mathbf{\$ 5 0 , 0 0 0}$ more by the use of our services when it's time to change jobs. Above-average engineers gain even more.

And our services are entirely free to the applicant. Our clients include over 400 leading electronics firms practically the entire Blue Book of the Electronic: Industry. Starting salaries: $\mathbf{\$, 0 0 0}$ to $\mathbf{\$ 6 0 , 0 0 0}$
Confidential? Your resume is kept in our locked files
we do not contact present or past employers; and appli
cant's names are never divulged to any other company or individual without his permission in each case.

Sure it makes sense! A man can't risk $\$ 50,000$ or
more without using the best help he can get. So send your resume direct, or circle No. 912 on Career Inquiry Form. For your free Bulletin each month listing
America's best electronics jobs, circle merica's best electronics jobs, circle

DAVIES - SHEA ${ }^{332}$ South Michigan
Suite 1915 Chicago 4 III. WEbster 9.3833 Electronics Personnel Consultants

ELECTRONICS JOBS $\$ 6,000$ to $\$ 75,000$ Go Begging

It's true! Cadillac, the nation's largest Executive and Professional placement service, has many more electronic positions available than we can fill.

We represent every "Blue Book" Electronics firm in America, over 350 in all. Because of this, Cadillac is able to offer Electronics Engineers a choice of positions unequalled by any other firm.

FREE MONTHLY BULLETIN

Because you are on Electronics Engineer, our monthly Electronics Opportunities Bulletin and our Completaly Confidential Placement Service are available to you FREE OF CHARGE.
"For your free Bulletin, each month listing America's BEST Electronics jobs, send your name and home address 10:"

Jack Higgina
Vice President
Cadillac
Associates, Inc.
29 E. Modisen Eldg., Dopt. E2
Chicage 2, III.

One of your payments should be to yourself. Many families make out a check for U.S. Savings Bonds along with the ones that
pay the monthly bills. The check for pay the monthly comes back to them- $\$ 4$ for $\$ 3$
Bonds in 7 years, 9 months.

So You Think You Can't Save Money?

It's all a matter of finding a way to spend less than you earn. Millions of people have discovered a good way to do just that. They use the Payroll Savings Plan to buy U. S. Savings Bonds. Under the Plan any amount they choose is set aside from their pay for Bonds. This makes saving very easy because they've found that the money they don't touch is money they're sure to save-and can't dribble away.

Why U. S. Savings Bonds are such a good way to save

- You can save automatically with the Payroll Savings Plan. - You now earn $33 / 4 \%$ interest at maturity. You invest without risk under a U.S. Government guarantee. - Your money can't be lost or stolen. - Buy
Bonds where you work or bank. Bonds where you work or bank.

You save more than money with U.S. Savings Bonds

ADVERTISERS' INDEX

JULY 6, 1960

Advertiser
ADC, Inc.
AMP, Inc.
Acme Electric Corp.
Acme Electric Corp. .
Adel Precision Products
Advanced Vacuum Products. Inc
Alden Products Co.
Alfred Electronics
Allen-Bradley Co.
Allen Organ Co.
Allen Organ Co.
Amco Engineering Co.
American Electrical Heater Co.
American Time Products, Inc.
Amperex Electronic Corp.
Arnold Engineering Co.
Assembly Products, Inc.

Baird-Atomic, Inc
Baird-Atomic, Inc.
Baker, J. T. Chemical Co. .
Ballantine Laboratories, Inc. Beckman Helipot
Bendix Aviation Corp., Eclipse Pioneer Div. 145, 165
Bendix Aviar., Eclipse Pioneer Div. 128
Bendix Aviation Corp., Pacific Div. 42
Bendix Aviation Corp., Red Bank Div. 91
Bendir Aviation Corp., Red Bank Div
Bendix Aviation Corp., York Div.
Birtcher Corporation, The
Brady, W. H. Company
Bristol Co., The
Bryant Computer Products 122
Bulova Electronics
Bulova Electronic
$\begin{array}{cr}. . & 45 \\ \ldots & 7\end{array}$
Burton-Rogers Co. 136

CBS Electronics
20. 21

CBS Laboratories
Cadillac Associates. Inc.
Cannon Electric Co.
Canoge, Subsidiary of Underwood Corp.
Cicoil Corp.
.....................
Clarostat Ma
a...................................... 131

Clary Corp.
.....................
Clevite Transistor Products 86
Clifton Precision Products Co., Inc. Cover II
Collins Radio Corp.
Company
................ 158
Communications Accessories Company
................ 120
Communication Measurements Laboratory, Inc. .
Computer Instruments Corp.
Computer-Measurements Co.
Consolidated Mining \& Smelting Co.
Continental Connector Corp.
Corning Glass Works .
Cubic Corp.

D\&R Limited
Davies-Shea
.. 153
Davies-Shea
.... 162
Dow Metal Products Co., The
Dressen-Barnes Corp.

\square	\mathbf{D}	\mathbf{R}	\mathbf{A}	\mathbf{F}	\mathbf{T}	\mathbf{I}	\mathbf{N}	\mathbf{G}
		\mathbf{T}	\mathbf{R}	\mathbf{E}	\mathbf{N}	\mathbf{D}	\mathbf{S}	

This versatile, easy-to-handle, adjustable triangle is made of yellow-tinted opticalgrade acrylic plastic. A clean-cut oval track fitted with metal knurled knob assures ease of operation and lasting tight fit.

New combination protractor-triangle speeds up drafting

Architects, Engineers, Builders, Field Surveyors, Mathematicians-anyone wroblems indirectly to determinent problems indirectly to determine a manted measurement graphically or Matk Adjustable Triangle a handy tool. It eliminates much of the graphic work necessary in estimating results or in checking for correct answers.

Versatility with accuracy

 Basically, the new Post Trig-Matk Adjustable Triangle is a mathematician's tool-accurate to two decimal places. It combines the functions of a protractor and a triangle into a simple unit, with two fundamental trigonometric relationships of a right triangle.The Trig-Matk provides accuracy The Trig-Matk provides accuracy
within 1% in problems dealing with within 1% in problems dealing with
any of the six trigonometric ratios of any of the six trigonometric
The adjustable protractor has three sets of graduations. One set is gradand permits the use of the Trig-Matk as a protractor setting for determining as a protractor setting or determining
any
Slope, shows set of graduations, labeled Slope, shows directly the Secant trigo-
nometric ratio of the angle indicated on the degree scale. The third scale, labeled Rise, indicates directly the Tangent trigonometric ratio shown on the degree scale.

Examples

This new tool has a host of drafting and engineering applications. Highway designers find the Trig-Matk very useful when making cross sections of roadways at ground level or below. By

An indicated angle of 40 degrees on the TrigMatk (1589) shows directly that the Rise is 8.4 to the base of 10 .
setting the Slope scale to the degree desired, road-curve grades are automatically determined. The protractor can be used to determine the angle of highway ingress and egress lanes.
Structural Engineers will find the Trig-Matk Adjustable Triangle a simple tool, eliminating the use of both a scale and individual triangles. In addition to the time saved, many of the errors usually associated with the older method are avoided. The TrigMatk design eliminates the need of information on various bevels.

Two Bases

'I'he Trig-Matk No. 1589-12 has a $12^{\prime \prime}$ base for handy calculations in feet and inches. Number 1589-10 has a base of 10 for decimal calculations.
Keep posted on all the latest trends in drafting. Consult your local POST dealer, or write to Frederick Post Co.,s64f $\stackrel{\text { or }}{ }$ North Avondale Ave., Chicago 18, Ill.

SENSITIZED PAPERS \& CLOTHS - TRACING \& DRAWING MEDIUMS - DRAWING INSTRUMENTS \& SLIDE RULES ENGINEERING EQUIPMENT \& DRAFTING SUPPLIES - FIELD EQUIPMENT \& DRAFTING FURNITURE

CIRCLE 183 ON READER-SERVICE CARD

NEW
 GENERAL ELECTRIC GLOW LAMPS
 FOR BETTER VIEWING...AND BETTER LOOKING INDICATORS!

New shape of the Round End Glow Lamp brings its electrodes nearer to the end of the bulb--giving it a much wider viewing angle when flush mounted (see illustration above). And if the Round End Glow Lamp is placed beneath translucent material, the lighted area has a more uniform appearance.

The rounded end of clear-glass gives a distortion-free light when viewed endon from any angle. Because of its smooth round end, this lamp can be used as a protruding element, thus improving the appearance of the panel

New General Electric NE-2M and NE-2P Glow Lamps are more thoroughly described in the engineering data sheet, \#3-9289. For your free copy, write: General Electric Co., Miniature Lamp Department M-023, Nela Park, Cleveland 12, Ohio.

Progress is Our Most Important Product GENERAL

ELECTRIC
CIRCLE 184 on reader-service card

[^1]
ESC Corporation

ETA Products Co. of America
Eastman Kodak Company
Edison, Thomas A., Industries Efcon. Inc.
Elastic Stop Nut Corp. of America
Electric Specialty Co.
Electro Products Laboratories Electronic Batteries. Inc. Electronic Batteries.
Electronic Design
\qquad
\qquad Electronic Research Associates, Inc Elgin-Advance Relays, Elgin National Watch Co., Engineered Electronics Company Engelhard Industries, Inc.

Fairchild Semiconductor Corp. Fairchild Engine \& Airplane Corp Fairmount Chemical Co., Inc. Fastex Div., Illinois Tool Works Fluke, John, Mfg. Co., Inc. . .

G-V Controls, Inc. Garrett Corp., The Garrett Corp., T
Gasket Mfg. Co.
\qquad
\qquad General Electric Co., Miniature Lamp Dept General Electric Co., Semiconductor Products Dept.
General Electric Co., Specialty Control Dept. General Transistor Corp., Inc Gertsch Products, Inc. Globe Industries, Inc.
Cood-All Electric Mfg. Co
Grant Pulley \& Hardware Corp.
Grace Electronic Chemicals. Inc
Gremar Mig. Co., Inc. Gudebrod Brothers Silk Co., Inc.
Gurley, w. \& L. E.

HRB Singer, Inc.
Harder Co., Donald C.
Harrel, Inc.
Hayden Publishing Co., Inc.
Hermetic Seal Transformer Corp.
Hewlett-Packard Company
Hoffman Electronics Corp.
Honeywell Aeronautical Div.
Hopkins Engineering Co. .
Houston Instrument Corp.

Hughes Aircraft Co.
1788 First Avenue New York 28, N. Y. SAcramento 2-3683
deal Precision Meter Co., Inc.
Indiana Steel Products Div., Indiana General Corp. Industrial Electronic Engineers, Inc. Instrument Specialties Co., Inc,
 HARREL RELIABILITY IN HIGH PRECISION TEMPERATURE CONTROL

Proportional Controllers
Reliable - Completely solid state. No vacuum tubes, moving parts or relays to wear our. Precise - Control to a fraction f a degree.
Smooth Control - Furnishes exact amount of steady power to hold temperature to desired value.
High Pouer - From a few
watts to several kilowatts.
Mil Spec. - Meet all applica-
ble MIL specs.
for close temperature con-
trol of floated gyros, delay lines, or other electronic or industrial equipment. Models for 60 cps , 400 cps , or dc operation.

Pure DC Output Models
same proportional control as standard, but output is pure dc for applications such as gyro rest tables where noise output of relay or standard proportional controller is objectionable.

Oven Controls
where really precise control of ovens is required. For crystal drawing, fractional distillation, etc. 500 watts to several kilowatts.

Relay Type Controllers
where low initial cost is a prime requirement and close temperature control and extreme reliability of proportional control not needed.

HARREL,

 inropprated CIRCLE 185 ON READER-SERVICE CARO
ONIC DESIGN • July 6, 196

No one is immune to our \#1 health problem

Mental illness hospitalizes MORE people than polio. heart, tuberculosis, cancer-all other diseases combined. Outside the hospital 1 in 10 need psychiatric help.
Next-let's Conquer
Mental Illness! !

> Give at the Sign of the Ringing Bell

Advertiser

JFD Electronics Corp.
JF D Electronics Corp. 113
Janitrol Aircraft
Jerrold Electronics Corp. 122

Kay Electric Co.
Kinney Mfg. Div., The New York Air Brake Co.
Kintel, A Div, of Cohu Electronics, Inc
Knapic Electro-Physics, Inc.
Kollsman Instrument Corp.

Laboratory for Electronics, Inc
Lafayette Radio
Librascope, Div. of General Precision, Inc.
Lindsay Structure Div., International Steel Co. Little Falls Alloys, Inc
Litton Industries

Magnetic Shield Div., Perfection Mica Co.
Mallory, P. R. Co
124

Mandex Mfg. Co.
49
130
Marion Instrument Div., Minneapolis-Honeywell Regulator Co 120 Martin Co., Denver 144A
Microwave Assocs., Inc.
44A
Microwave Assocs., Inc.
Minneapolis-Honeywell Co., Aeronautical Div. 40
Minneapolis-Honeywell Co., Semiconductor Div.
Transistors \ldots..............
Minnesota Mining \& Mfg.
Monitor Products Co.
Motorola Semiconductor Products, Inc
Mystik Adhesive Products, Inc. 141

National Semiconductor Corp. 81
Navigation Computer Corp. .. 139

Oak Mfg. Co. 83
Ohmite Mfg. Co. 87
Oster, John, Mfg. Co. 80

LAB ACCURACI IN A PANBL MOUNTED METER? .. . it's your with BECKMAN Bxpanded Scale Metors. Your knowledge of power supplies... whether in the lab or on the launching pad... is only as ac curate as the instruments you read.
Precision built by Helipot Divi sion, s.crman Expanded Scale Volt meters always tell the truth. The critical voltage range - the one you want to know the most about - is expanded across the entire arc of a fully linear scale, thus eliminating unnecessary and unusable calibrations.
Resolution of a typical 110-120v AC meter is one-tenth volt; combine that resolution with $\pm 0.3 \%$ accuracy, and you have an instrument that will perform like highly special ized bench model ... yet is fully rugsedized and sealed, ready for the most demanding application. And this meter doesn't care what shape the waveform is in. Be it square, zig-zag, or what-have-you...this meter always reads direct rms. Noth ing average here-not even the sensing device!
becioun Expanded Scale Meters come in a variety of shapes, sizes, come in a variety of shapes, aizes, and ranges...including AC and DC voltmeters, frequency meters and
linear scale ammeters. Fach is available in both commercial and military models... and delivery is superb: 30 days on standard models, 60 days on specials.
For the whole truth about your power supply, use seckman Expanded Scale Meters. For the whole truth about bicicman Expanded Scale Meters...send for Data File.

Beckmari/Helipot
POTS : MOTORS : METERS
Helipot Division of
Beckman Instruments, Inc. Fullerton, California

UNPRECEDENTED EFFICIENCIES IN HARMONIC GENERATION...

11 kMc inpute 500 mw

Nine new examples of Microwave Associates' capabilities in the design of harmonic generators are available now. These models feature exceptionally high output power with conversion losses well below existing devices.
New designs incorporating solid state elements can be used to eliminate costly klystrons, DC bias supplies and high voltage power supplies. All units feature broadband fixed-tuned operation, filters eliminating unwanted harmonics, and versatile coaxial, waveguide and
strip transmission line packaging. These models are typical examples of our progress to date . . . presently we are working for even greater efficiencies and performance. Additional models in development converting 1 watt at 2000 Mc to 100 mw or more, at 4000 and 6000 Mc , to be announced soon.
Your specific application problems are of prime interest to us. Our Applications Engineers would welcome the opportunity to design harmonic generators to meet your specifications.

SPECIFICATIONS

	INPUT			OUTPUT					
Model	$\begin{aligned} & \text { Connector } \\ & \text { Type UG. } \end{aligned}$	Frequency Incut hMc is	Band	mw input	$\begin{aligned} & \text { Connector } \\ & \text { Type UG. } \end{aligned}$	Frequency Output kMc/s	Band	Conversion Loss max.)	$\underset{\sim}{\text { Output }}$
ma79	23/0	$0.28-0.28$	P	20	23/U	1.30-1.43	\downarrow	13ab	1
ma797	23/0	1.30-1.43	t	100	23/U	$5.22-5.72$	c	15db	3
ma798a	39/0	$9.0 \pm 150 \mathrm{Mc}$	x	500	596/U	$18.0 \pm 300 \mathrm{Mc}$	k	17db	10
ma798B	39/4	$10.0 \pm 150 \mathrm{Mc}$	x	500	596/U	$20.0 \pm 300 \mathrm{Mc}$	k	17db	10
ma798C	39/4	$11.0 \pm 150 \mathrm{Mc}$	x	500	596/U	$22.0 \pm 300 \mathrm{Mc}$	k	17db	10
MA798D	39/U	$12.0 \pm 150 \mathrm{Mc}$	x	500	596/U	$24.0 \pm 300 \mathrm{Mc}$	K	17db	10
ma799n	39/0	$9.0 \pm 100 \mathrm{Mc}$	x	500	600/U	$27.0 \pm 300 \mathrm{Mc}$	ka	20db	5
ma7998	39/4	$10.0 \pm 100 \mathrm{Mc}$	x	500	600/U	$30.0 \pm 300 \mathrm{Mc}$	Ka	208b	5
ma799C	39/4	$11.0 \pm 100 \mathrm{Mc}$	\times	500	600/u	$33.0 \pm 300 \mathrm{Mc}$	Kı	2006	5

Write or call:
MICROWAVE ASSOCIATES, INC.
BURLINGTON, MASSACHUSETTS
Westorn Union FAX-TWX: Burlington, Mass., 992•BRowning 2-3000 CIRCLE 188 ON READER-SERVICE CARD

Schweber Electronics
Sel-Rex Corp.
Set Screw \& Mfg. Co.
Sigma Instruments., Inc Silicon Transistors Sola Electric Co Solid State Products, Inc Somers Brass Co., Inc. Sonotone Corp. Sorensen \& Co., Inc. Space Technology Laboratories, Inc. Sperry Semiconductor Div., Sperry Rand Corp

ADVERTISING REPRESENTATIVES

ADVERTISING SALES MANAGER Bryce Gray, Jr., NEW YORK: Owen A Kean, Robert W. Gascoigne, Richard Parker, Blair McClenachan, James P. Quinn, Ralph Richardson, Donald J. Liska, John P. Corcoran, Charles J. Liska, Joh P Core , Chat 1-5530; CHICAGO: Thomas P. Kavooras 1-5530; CHICAGO: Thomas P. Kavooras, Berry Conner, Jr., Fred T. Bruce, 664 N.
Michigan Avenue, SUperior 7-8054; LOS Michigan Avenue, SUperior 7-8054; LOS
ANGELES: John V. Quillman, 3275 WilANGELES: John V. Quillman, 3275 Wilshire Blvd., DUnkirk 2-7337; SAN FRAN CISCO: Stanley I. Ehrenclou, 292 Walter Hays Drive, Palo Alto, DAvenport 1-M SOUTHEASTERN. V. Brown, G. H gan Pirnie, Harold ${ }^{\text {g }}$. Baverty Blvd., At lanta, Ga. JAckson 2-8113; LONDON EC4: Brad Nichols, 151 Fleet Street.

TUBE

 PROBLEM:When the 6AF4 tube was replaced in UHF TV tuners, servicemen sometimes got a big surprise. Reason: the tubes were not standardized, and a replacement was likely to bring in one channel where another should have been.

SONOTONE

 SOLVES IT:First, Sonotone set up extremely tight controls on all materials going into the 6AF4 components Second, Sonotone used a more thorough exhaust process.

RESULT:

The Sonotone AF4 family of reliable tubes has been accepted by the industry as standard for initial production and replacement.

Let Sonotone help solve your tube problems, too.

Elactronle Appolications Division, Depl. T23-701 ELMBFORD, NEW YORK

It's no accident that Gudelace is the best lacing tape you can buy. Excellence is engineered into Gudelace. A sturdy nylon mesh is meticulously combined with the optimum amount of special microcrystalline wax. Careful selection of raw materials and superior methods of combining them give Gudelace outstanding strength, toughness, and stability. Gudelace is the original flat lacing tape which distributes stress evenly over a wide area. It is engineered to stay flat; it will not stretch out of shape when pulled. Gudelace's nonskid surface prevents slipping, eliminating the too-tight pull that causes strangulation and cold flow. Durability and dependability make Gudelace your most economic buywith no cut insulation, fingers, or feelings.
Write for Data Book with specifications on Gudelace and Gudebrod's complete line of braided lacing tapes and dial cords-Temp-Lace, Stur-D-Lace, and Gude-Glass.

GUDEBROD
 BROS. SILK CO., INC.

Electronic Division
225 West 34 th Street. New York I, N.Y
Executive Offices
12 South 12th Street, Philadelphia 7. Pa.
\qquad
CIE CLE 190 ON READER-SERVICE CARD
ELEC TRONIC DESIGN • July 6, 1960

IMPUISE
 A DIGEST OF NEW DEVELOPMENTS IN ELECTRONICS AND AUTOMATION

EDITOR: Edward E. Grazda; MANAG ING EDITOR: J. A. Lippke; ASSOCIATE EDITORS: G. H. Rostky, H. Bierman R. N. DeFloria, L. N. Tolopko; ASSISTANT EDITORS: T. E. Mount, A. Corner etto, A. Rosenblatt, J. A. Ferro, M. W Meisels, R. Haavind; COPY EDITOR D. Murray; CONTRIBUTING EDITORS: S. H. Hubelbank, E. Brenner, B. Bernstein, B. B. Daien; EDITORIAL ASSISTANTS: R. M. Moore, D. Langer, R. N. Ross, J. Rosenfield, A. Dzamba, P. A. DeLain; EDITORIAL PRODUCTION: D. S. Viebig; EDITORIAL PRODUCTION ASST.: A. R. Abramoff; ART DIRECTOR: R. A. Schulze: ART ASSISTANTS: 0 Mitch, J. Aruego; TECHNICAL ILLUSTRATOR: P. Rios; PRODUCTION MANAGER: T. V. Sedita; ASST. PRODUCAGER: TION MASER: H. De Polo; PRODUCTION MANAGER: H. De Polo; PRODUCTION ASSISTANTS: C. E. Moodhe, P.
Bergang; CIRCULATION MANAGER: Bergang: CIRCULATION MANAGER:
N. M. Elston; ASST. CIRCULATION N. M. Elston; ASST. CIRCULATION
MANAGER: A. C. Lovett; READERSERVICE: N. M. Elston.

PUBLISHER

Robert E. Ahrensdorf

ACCURACY POLICY

Recognizing the power of the printed word to influence, it is ELECTRONIC DESIGN's policy:

To make all reasonable efforts to insure accuracy of editorial matter.
To publish promptly corrections brought to our attention.
To not knowingly publish misleading advertisements.
To reserve the right to refuse any advertisement.
Readers noting errors or misstatements of facts are encouraged to write the editor.

SUBSCRIPTION POLICY

ELECTRONIC DESIGN is circulated only to qualified design engineers of U. S manufacturing companies, industrial consultants and government agencies. If design for manufacturing is your responsibility, you qualify for subscription without charge provided you send us the following information on your company's letterhead: Your name and engineering letterhead. Your name and engineering title, your company's main products and description of your design duties. The letter must be signed by you personally ANY ADDRESS CHANGES FOR OLD SUBSCRIBERS NECESSITATE A RESTATEMENT OF THESE QUALIFICA TIONS. Subscription rate for non-quali fied subscribers- $\$ 25.00$ per year U. S. A. $\$ 30.00$ per year all other countries. Single copy $\$ 1.50$.

NOW HEAR THIS. Japanese hearing aids now coming into the U.S. market could mean real competition, since some units are priced as low as $\$ 29.95$. This compares with $\$ 100$ average price for U.S.-made aids. Recently published figures indicate that between 300 and 360 thousand hearing aids were sold here last year. Yet the Japanese, in planning their market strategy, estimate that some $15,000,000$ Americans have some hearing difficulty. Despite the difference between current sales and this figure, it definitely looks like an expanding market. Manufacturers of electronic components are particularly interested in the trend toward the binaural eyeglass-type aid, since it uses separate microphones, amplifiers and earphones for each ear and, therefore, requires twice as many components as used by conventional-type aids.

UP 30 PER CENT. Shipments of electronic components jumped more than 30 per cent from 1958 to 1959 to reach a new all-time record. A Commerce Department report spells out all the details, gives quantities and values by major category, and breaks totals down into military and non-military use. If you'd like a copy, write to the Commerce Department and ask for BD-60-64.

ELECTRONIC VOLLEYBALL. Ways of knocking out unfriendly ICBM's without shooting them down are being looked into with great interest by the Pentagon. Among the more dramatic is a plan to supply missiles with extra energy at the height of their flight in space and, thus, cause them to overshoot their intended target by a very comfortable margin. Only a small amount of energy would be needed. But the big problem is how to apply it. The whole problem of anti-missile killing mechanisms of all kinds is coming in for more attention these days. The Advanced Research Projects Agency is increasing funds for this purpose to $\$ 9$ million for 1961. It's a wide-open field and it looks like anybody and everybody is invited to participate.

NEW WAY TO SPARK. A major electronics firm in this country is developing a revolutionary automobile system that would use microwave energy as the igniting agent. In this system, a microwave pulser, wave guides and timing pickup would replace the traditional ignition coil and condenser, distributor and timing drive, high-voltage wires and spark plugs.

CABLEMAN'S CORNER. The old adage "Don't put the cart before the horse" was never so true as it is in these days of automation and instrumentation. With all the intricate pieces of equipment being designed these days, it is important that careful consideration be given to the wire and cable that may be employed in any system. Often forgotten is the unromantic aspect of the connecting links of the system. Cables are the arteries through which must flow the power and informational pulses necessary for reliable performance.

Don't take a chance on being able to obtain a cable that will fit into what is left. Many times, important characteristics such as conductor size, insulating walls, protective sheaths, flexibility and flex-life have to be sacrificed. Don't sacrifice reliability in your cables for an existing space or connector fittings.

For $\mathbf{1 0 0 \%}$ reliability in multi-conductor cables, call on a cable specialistand call on him as soon as possible. Phone Rome 3000, or write: Rome Cable Division of Alcoa, Dept. 1170, Rome, New York.

These news items represent a digest of information found in many of the publications and periodicals of the electronics industry or related industries. They appear in brief here for easy and concentrated reading. Further information on each can

CIRCLE 191 ON READER-SERVICE CARD
(2)

Sales and Service Representatives in North America

${ }_{80}$ G Mat io sir pe
GRover $1 \cdot 3456$
Edward A. Rochortor 10 , Now n York
830 Linden Avenue
LUdlow 6.49 N

${ }^{2363}$ dames street
\rightarrow mead

149 Front st
STillwell 5-0296

- Washington, D. C. Area
Rockrolile, Maryland
Horman Associate. Inc

FAzelwod $7-7.5$ fin

SOUTHEASTERN STATES
Atlanta s. Georgia
 Made Drive
CEdar $3.752 ?$

- High Point, North Carolina

$882-6873$

 (Direct 5 line to All anta)
Orlando, Florida
 ${ }^{126}$ Garden $5-55+1$

 ELLen 5-i.9.

CENTRAL, SOUTH CENTRAL STATES

- Chicago 45, illinois

- Cleveland 24, Ohio
 ${ }^{58}$ HIllerest $2-8080$
Continued on Next Page

Al/-New, Transistorized
344AR Noise Figure Meter

The new 344AR Noise Figure Meter assures you that your radar is continuously operating at peak performance, and you are enjoying maximum range. The instrument's fast meter response lets you optimize or adjust the system during operation or maintenance. Model 344 AR is designed for the utmost in de-pendability-it is militarized, transistorized, very compact and very rugged. With this new $514^{\prime \prime}$ high instrument systom noise figure is measured on a timeshared basis with the radar scan. The unit has high sensitivity to minimize signal and transmitter losses; the noise source may be decoupled 20 db from the main transmitter line. Two alarm func-
tons give visible and electrical indicaton when an allowable noise figure is exceeded, or a noise source malfunctions.
High voltage on antenna slip rings is eliminated with a remote noise source modulator operated with low voltage triggers. Other features include quick, easy front panel calibration, and remote metering and alarms if desired.

free application notes include CONSIDERATIONS FOR AUTOMATIC measurement of noise figure on a continuous basis

Write direct for Application Note 43-"Continuous Monitoring of Radar Noise Frequency". Discussion includes description of 344AR and its application to radar systems.

PAGES
MISSING
ARE NOT
AVAILABLE

[^0]: DU PONT
 MYLAR
 POLVESTER FILM

[^1]: Du Pont, E. I. de Nemours \& Co.,
 Dynamics Instrumentation Co.

