

500 HOUR LIFE GUARANTEE

Due largely to improved brush design, CPPC size 8 DC motors qualify to catalogue specification after $500+$ hours of continuous duty or 200,000 cycles of intermittent duty in controlled environments.

PRECISION CONSTRUCTION

Featuring a 12 -bar commutator ($1 / 4^{\prime \prime}$ dia.), stain.
less steel ball bearings, and corrosion resistant materials, the DC-8 family of motors is designed for miniature instrument systems. Weight 40 gms ., Length $1.380^{\prime \prime}$ max., dia., .750".

OUTSTANDING EFFICIENCY

The typical performance curves (below) exhibit a linear torque-speed characteristic. The efficiencyup to 60% at .25 in . oz. torque-considerably surpasses that of other types of Servomotors.
*without overhaul

For full information, write or call: Sales Dept., 5050 State Road, Drexel Hill, Pa., MAdison 2.1000, TWX Lnsdwn, Pa., 1122(U), or our Representatives.

CLIFTON PRECISION PRODUCTS CO., INC.
 CLIFTON HEIGHTS. PA

ENGINEERS - Join a pioneer in the rotary components field. Write David D. Brown, Director of Personnel.

COVER: A series of end-fire, dielectricoptical rod antennas has been made possible by combining exotic materials, tight machining, and in-line coaxial feed. Results: reduction in cross section and weight, increase in temperature. In the cover design the artist has broken down the old horn antenna to show replacement by the di-optic antenna. At the same time it shows the size difference between old and new. For the story, see p 76.

Selected Topics In This Issue

Data Processing
Low-Cost Analog System Records or Plays Back Dc to 400 Cps ... 78

Maintainability

Designing for Maintainability
Where It Comes From; Where It's Going30

Techniques in Designing for Maintainability Maintainability in Action 42 Check List of 241 Design Features for Maintainable Equipment
No Time-Base Needed in Signal Corps Maintainability Specifi-
cations 58
Products for Maintainable Design

Microwaves

Di-Opric Antenna Cuts Cross Section by 50, Replaces Horn

Missiles and Space

Infrared Transmission Materials Would Be Ur.affected by Radiation in Space

Science and Technology

What the Two Presidential Candidates Have to Say About
Science 4

Sidelights of the Issue

Technology and Politics

 Teaders accustomed to circuit drawings and photos of components in our Nows Department may be a itile startled at p 4 of this issue, where the faniliar faces of Vice President Nixon and Senator Kennedy are shown.I is, of course, extremely seldo:n that ELECTRONIC DESIGN finds itself delving inio political realms, but in this elect on yea; we felt the role of science and rechnology to be so important that the candidates' views in this field should be given the widest possible circulation.
Accord.ng!y, Managing Ed.tor James A. Lippke sent telegrams to both men, inviting their answers to several queslions which we believed to be highly signiticant.
Noi all the questions were answered directly in the statements sup. plied to ED by the candidates' spokesmen, bui boih $m \geq n$ made their views clear and we feel they are interesting, provocalive, and informative

Repori on Maintainability
When ELECTRONIC DESIGN was soliciting information from hundreds of manufacturers for its Staff Reports, "Designing for Maintainability," an all too common reply was, "Of course, our product is mainiainable. You never have to repair it."
Our report stems from the realization that nothing lasts forever.
As basic reliability goes up, requirements for maintainability drop, and this report seeks to evaluate and explain iust what maintainability is, where it came from, where it is going, and how to design with the concept in mind. One ED editor, incidentally, reported his own experience with maintainability during World War II. In a line shack on a Marine Corps airstrip, he was trying to adjust a radio transmitter with kicks and four-letter words. Suddenly, with the eniisted man's sixth sense of the presence of an officer, he turned around to find a major general glowering of him. The general stared for a minute, then said, "Always like to see young men take an interest in their work Carry on, son."
Ou Staff Report doesn't discuss how to mointain with uninhibited language, but it goes into almost everything else. it sto son p 30 .

RCLE 2 ON READER-SERVICE CARD \geqslant
Surest Way To :Count Anything
1
1
1
1
1
1
1
1
1
1
1
1
i
1 1 I

From Apples $\stackrel{\text { To Oranges }}{ }$

Raytheon's versatile decade counter tubes provide long reliable service in equipment and systems designed for counting, sampling, or coding anything from apples to oranges.

The Raytheon CK6909, CK6910, CK 6802, and CK6476 are cold cathode bidirectional ring stepping types providing visual neon glow and electrical readout. They feature negligible power dissipation, short resolution time, no moving parts, extremely long life, and the use of simple, low cost circuitry.
Complete Raytheon engineering facilities are available to aid you in the application of these tubes to any operation you may be planning-timing, frequency dividing, matrixing, telemetering, controlling, counting, sampling, or coding. For additional information and technical data on these or any of Raytheon's expanding line of industrial and military gas-filled tubes, please write to: Raytheon Industrial Components Division, 55 Chapel St., Newton 58, Massachusetts.

CHARACTERISTICS AND TYPICAL OPERATION

TYPES	CK6909 CK6910	CK6476" CK6802
DC Supply	450 volts	425 volts
Anode Resistor	0.27 meg ohms	0.82 meg ohms
Nominal Tube Drop	235 volts	195 volts
Cathode Resistor	24 K ohms	100 K ohms
Output (Across Cathode Resistor)	15 volts	30 volts
Speed	to 100 kc	to 4 kc

"All ten cathodes brought out independently for electrical readout.

For Small Order or Prototype Requirements See your Local Franchised Raytheon Distributor

$\boldsymbol{\operatorname { c o s }}$ Ligna-Sweep ${ }^{\circ}$ mooes SKV

 SWEEPING OSCILLATOR COVERS W-I-D-E RANGE 200 CPS TO 220 MC.ELECTRONIC DESIGN News
What the Two Candidates Say About Science4
Ultra-Miniature Preamps for Balloon-Borne Satellite Detector 10
Classified ASW Sessions Featured at NEREM 12
Electronic Wrist Watch Offers Greater Accuracy 18
Wealth of Information Featured at NEC Sessions 20
Washington Report 22
Boiling Liquid Cools Radar Power Supplies 26
Science, Electronics, and Elections 29
An Editorial
Designing For Maintainability—An ELECTRONIC DESIGN Staff Report 30
Maintainability - Where It Comes From; Where It's Going 30
How maintainability acquired the importance it now enjoys. Why itis due for much more. This Staff Report includes new information onthe status of maintainability efforts by the military, and on the statusof maintainability's many conflicts.
Techniques In Designing For Maintainability
Principal approaches to designing for maintainability. And more than 100 key features which can be easily overlooked in designing equip-ment-J. Corso, J. McKendry, G. Grant
Maintainability In Action
How far-sighted manufacturers have incorporated maintainability features in their equipments.
Check List of 241 Design Features For Maintainable Equipment50 A check list which will form the heart of the forthcoming Signal Corps Specifications.
No Time-Base Needed In Signal Corps Maintainability Specifications A new approach to measuring and specifying maintainability which does not depend on hard-to-measure time factors-R. Redfern
Products For Maintainable Designs
Typical products which engineers can use to enhance the maintainability of their systems.4

Coming Next Jssue

Like many other aspects of the technology, microminiature electronics was foaled out of Necessity by Economy. With the immense cost of orbiting payloads in space, smaller systems to perform better jobs were required. On the ground, as the jobs that computers were expected to do got bigger, so did the computers In every field, microminiaturization seemed to be the answer.

But there were many problems, and many of them still remain. In the Nov. 9 issue, ELECTRONIC DESIGN will publish a Staff Report delineating the problem areas, the advantages, and the approaches to microminiature design.

LECTRONIC DESIGN
 Hayden Publishing Co．，Inc． 830 Third Avenue，Now York 22，N．Y

All－Pass Networks－Part 2：Using the Networks To ShapeTransient ResponseHow to use an all－pass network to improve transient response is illustrated bya detailed example－Y．J．Lubkin
Infrared Transmission Materials Would Be Unaffected By Radiation In Space 74It would take more than a century＇s exposure to radiation in space to have aneffect on 15 materials tested－T．E．Lusk
Di－Optic Antenna Cuts Cross－Section By 50，Replaces Horn 76
High－temperature，high－dielectric materials yield versatile microwave radiator．Low－Cost Analog Tape System Records or Plays Back Dc to 400 Cps78
System uses pulse－frequency modulation to record low－frequency data onmagnetic tape．
Design Decisions 128
Pulser Uses 50－V Trigger To Short Four 200－V Diodes ．．．．．．．．．．．．．．．．．．．．． 128
ELECTRONIC DESIGN Engineering Data 131
Estimation of External Surface Case Temperature Rise For Closed Elec－tronic Equipment131
Ideas For Design 138
Four Extra Diodes Insure Load Sharing In High－Voltage Bridge 138
Dual Frequency Oscillator Built With 6EZ8 Tube 138
Russian Translations 142 ，
Limiting Values of Active Resistances In Rc Phase－Shift Generators ．．
80
New Products
133
New Literature
140
Patents
Standards And Specs 146
Careers 148
Your Career 148
Advertisers＇Index 152
$N_{B} P$ BPRI BPA
Eliec ONIC DESIGN is published biweekly by Hayden pyblishing Company，Inc．， 830 Third Avenue，New York 22，N．Y．，or Prd Gascoigne，Chairman of the Boord；Jomes 5 Mulhollond，Jr．，President；Robert E．Ahrensdort，Publisher．Pirinted\％）Theth Press，Brisol，Conn．Accepped as controhted circulation at Bristol．Conn．Additional entry．New York，N．Y ．Wh ht © Hoyden Publishing Compony，Inc．．，1200， 37,100 copies this issue．
LECT ONIC DESIGN • October 26， 1960

GETTING ENERGY＂AROUND THE CORNER＂HAS BEEN AN ENDURING PROBLEM FOR THE MICROWAVE ENGINEER DEALING WITH WAVEGUIDE． THE ROTARY JOINT．STANDARD EQUIPMENT ON HOMO－SAPIENS SINCE THE FIRST MODEL WAS TURNED OUT AT THE EDEN PLANT．IS THE OBVIOUS－IF DIFFICULT TO ATTAIN－ANSWER．CANOGA ROTARY JOINTS－IN－LINE AND RIGHT－ANGLE－PROVIDE．THROUGH THEIR UNIQUE DESIGN．AMAZING FLEXIBILITY FOR TEMS AND ANTENNA MECHANISMS．IN BETWEEN ING，WRITE CANOGA FOR COMPLETE SPEC－
 RADAR SYS． ELBOW BEND－ IFICATIONS． PRESSURIZED MODELS AVAILABLE THROUGH Ku HIGH POWER

Cー円ワロー

CANoGA CORPORATION／A SUBSDLARY OF UNDERWOOD，VAN NUYS，CALIF．and FT．WALTON beach．FLA． CIRCLE 4 ON READER－SERVICE CARD

Candidates' Views on Science and Technology

Nixon Asks Government-Aided Establishment of Basic-Research Centers; Kennedy Calls for a 'National Peace Agency' to Coordinate Efforts

I^{N}
N THE YEARS since World War II, the U.S researcher has been thrown into the political arena by the force of great events. But if civilization is to survive and if science and technology is to benefit mankind, he must take an even more active role than he has to date.
These are the general views of both Vice President Richard M. Nixon and Sen. John F. Kennedy as expressed in statements supplied to Electronic Design by the two candidates' spokesmen.

Mr. Nixon called it "essential that we recognize science as a many-purpose tool, fully as necessary to human progress as it is to the security of free men."

He added that "our nation demands a strong science and a vigorous technology to defend it-

Vice President Richard M. Nixon
self, to advance personal liberty, and to raise standards of living."
Mr. Kennedy said: "Today, while automation is displacing human labor, science and technology is lengthening life, curbing disease, ending famine, and producing the luxuries of life in ever-increasing quantity
"But these technological blessings are creating economic problems which call for political solutions. Today there is no longer any question but that the world of science and that of politics have a strong interaction."
The remarks of the two candidates came as the result of a telegram sent to each by James A. Lippke, Managing Editor of Electronic Design. In it, he asked the views of both men "concerning the role science and technology should play in the future of the nation." He stated that at the present time "more than 40 independent agencies and administrative departments are engaged in scientific activity, ranging from agronomical research to nuclear detection to Project Mercury." Each candidate was asked if he felt that more centralized responsibility and coordination were necessary, such as the creation of a Cabinet-level Department of Science.

Kennedy Calls For 'Planning

In response to a question on attacking the problem of disarmament, Senator Kennedy said the immediate necessity was a "national peace agency" for disarmament planning and research to muster the scientific ingenuity, coordination, continuity, and seriousness of purpose which are now lacking in our arms-control effort."

This agency, the Democratic platform plank quoted by the candidate said, "would develop the technical and scientific data necessary for serious disarmament negotiations, would conduct research in cooperation with the Defense Department and Atomic Energy Commission on methods of inspecting and monitoring armscontrol agreements, particularly agreements to
control nuclear testing, and would provide continuous technical advice to our disarmament negotiators [See "Design for Peace," ED, July 20, p 38]."

The Democratic candidate went on to say tha "when the hoped-for goal of disarmament is achieved, vast resources will be freed for peace ful use and, through proper planning, these re sources will be applied to wipe out our backlog of public needs and provide this nation and other nations with the means for a new international attack on the problem of world poverty,

Nixon Stresses Decentralization

 In Basic-Research ProgramThe Vice President called for new aid for re search with a decentralized system. "I believe.

Sen. John F. Kennedy
his statement said, "the next Congress should ado, tegislation authorizing the National Scince Foundation to take the leadership in spousoring a major new program for basic research.
"By sponsor, I do not mean control, finance, and operate. The program should be conducted through a number of basic-research institutes located in the principal geographic areas of the country. Financial support of these institutes should be as much as possible on joint public and private enterprise with both federal and state governments participating on one hand, and universities, private industry, and foundations on the other. The federal funds should be made available on a matching basis with the state and private contributions.
"The research institutes should be established cooperatively by our universities which engage in graduate research programs. They should be governed by these universities. A liaison with the National Science Foundation would be desirable but essentially the system of administration would be comparable to that of the Brookhaven National Laboratory on Long Island, an inter-disciplinary facility established to explore the peaceful uses of nuclear energy."
The GOP standard-bearer added that the new institutes would complement in an important way the work of existing government-supported research. He also said the institutes should be small rather than large, since "bigness results in departmentalization and compartmentalization" and tends to preclude cross-fertilization of ideas among investigators.

Candidates Stress Information Exchange

Concerning dissemination of scientific information, which the telegram asked about, Mr. Nixon said this would come under the aegis of the proposed new research centers. "A logical extension of the nascent merging of different sciences in a common cause," he said, "is the mutual use of theory, techniques, and instrumentation which once were the province of a single science. This fusion has created a new dimension in science. Its fulfillment is usually beyond the ability of our conventional research structure."
Answering a question on weather-control, the Vice President said: "In 1958, the U.S. produced paly 14 Ph. D.'s in meteorology. The meteorlogy departments of universities cannot hope o provide essential tools for modern research In "eather. These include high-altitude airplanes, upper-atmosphere rockets and the means 0 la nch them, giant wind tunnels, and the like. The most logical facility for the jol) would be ${ }^{1}$ nit tional meteorological institute. Already fuch an institute has specifically been recom-

ELEC RONIC DESIGN • October 26, 1960

For more information call or write us direct, or call your nearest KIN TEL representative.

5725 Kearny Villa Road, San Diego 11,

KIN TEL manufactures electronic instruments for measurement and control, and closed circuit TV. Representatives in all major cities. Write for detailed literature or demonstration.

This is a KIN TEL 601A AC voltage standard, the nearest AC equivalent

The 601A produces 1 to 501 volts, at 60,400 or 1000 cps . Voltage accuracy is $\pm 0.1 \%$. Frequency accuracy is $\pm 1.0 \%$. Harmonic distortion is less than 0.3\%. Power output capability is 5 amps up to 5 volts and 25 watts above. The output is completely floating and isolated from AC line and chassis ground.

If you calibrate high-accuracy AC measuring instruments, or design servo or gyro equipment, or evaluate magnetic properties, you probably need this new kind of voltage standard.

California, Phone: BRowning 7-6700
KINTEL
-OHU

CIRCLE 5 ON READER-SERVICE CARD

JOHN FLUKE precision High Voltage Power Supplies offer complete coverage up to 10 KV . In addition to high calibration voltage resolution, and excellent long term stability; many other plus features are provided the design engineer. For example: difficulties resulting from corona, jitter, bounce or overshoot are non-existent in jf supplies. The capability of the John Fluke Co. to keep pace with industry demand is evidenced by the fact that most of these instruments have been introduced within the past year.

MODEL	VOLTAGE	CURRENT	REGULATION		STABILITY PER HOUR	MAX. RIPPLE RMS	RESOLUTION	PRICE
			LINE	LOAD				
4013	170.1530V	0.3 ma	0.01\%	0.4\%	$\begin{aligned} & 0.02 \% \\ & \text { (Per Day) } \end{aligned}$	0.002\%	85 V steps	\$335.00
402m	500-1600V	$0-1 \mathrm{ma}$	0.03\%	0.03\%	0.01\%	5 mv	100 mv	\$320.00
412A	500-2010V	0.15 ma	0.01\%	0.01\%	0.005\%	5 mv	10 mv	\$455.00
405	600-3100V	$0-15 \mathrm{ma}$	0.01\%	0.005\%	0.005\%	5 mv	10 mv	\$595.00
4081	500-6010V	$0-20$ ma	0.01\%	0.01\%	0.005\%	5 mv	10 mv	\$695.00
4100	1000-10,010V	0.10 ma	0.01\%	0.01\%	0.005\%	5 mv	10mv	\$1095.00
All prices quoted, f.0.B., factory, Seatte. Prices and technical data subject to change without notice.								
JOHN FLUKE (7i)			MANUFACTURING CO., INC. P. O. BOX 7161, SEATTLE 33, WASHINGTON					

mended by representatives of 14 universitie who considered the problem, at government re quest, for many months."

Mr. Kennedy, tracing the history of the Demo cratic Party's Advisory Committee on Scienc and Technology, said the committee, if he were elected President, would pursue a program o information dissemination on a national level
"After the war," Mr. Kennedy's statemen said, "scientists entered politics to advocate civilian agency for the development of atomic energy. In recent years, scientists stimulated public and political discussion of the hazard of radioactive fallout.
"The Democratic Party," he went on to say "recognized that the citizen-scientist wanted to think about the problems of science and societ and to see that his ideas had an effect on nationa policy. Consequently, the Democratic Party formed its Advisory Committee on Science an Technology.
"This committee recommended, and the Dem ocratic Party accepted, the establishment of an independent government agency for dealing with the technical problems of arms control and with the technology of aiding underdeveloped coun tries in health and welfare."
The Democratic nominee said these recom mendations were incorporated into party polic in the platform adopted at the convention Los Angeles.
"I know," Mr. Kennedy went on to say, "that the Advisory Committee on Science and Tech nology will continue to formulate realistic plans for coordination of governmental research, for proper dissemination of scientific information and for handling the problems which it falls t the government to solve."

'Greater Public Respect and Support'-Nixon

Mr. Nixon said the public should have a new awareness of the researcher, and likened D_{r} Jonas Salk's discovery of the polio vaccine to "the capping stone on the pinnacle of a pyramid." He said, "the men who built the rest of the pyramid are the unsung men of science who are known only to their colleagues. They deserv far greater respect and support by the people whom they serve than they now receive."
He added that it was true, if paradoxical that as technology advances, one thing that can be predicted with certainty is that major break throughs will produce the unpredictable. But he added, "Let us be clear that new and unpre dictable discoveries should not disconcert us We must have leadership which is constantly on the alert for them and their implications. For
nev knowledge can readily be phased into, modify or even alter former plans. Imaginative leaders liip must exist not only in the Executive and Le sislative branches of government, but in private industry, agriculture, mining, and all parts of the economy."
Mr. Kennedy stressed the military aspect of . lem, and said that "science and technology have

Electrical 'Memory' Switch Device Stores Multiple-Digit Numbers

An electrical "memory" switch, capable of storing multiple-digit numbers by using principles of the ordinary combination lock, has been developed by P. D. Shannon of the Massachusetts Institute of Technology Instrumentation Laboratory.
So closely does the switch follow combinationock principles that Mr. Shannon obtained parts for his first prototype by stripping discarded Laboratory locks. In operation the switch is first "cleared" and then digits are set into it by furning the shaft alternately right and left with one less revolution each time, after the fashion a combination lock
Mr. Shannon developed the new device, called the "N-Digit Decade Switch," as a possible nethod of simplifying automatic control of elecrical currents used in testing gyroscopes emloyed in inertial-guidance systems for missiles nd space vehicles.

Iccuracy Is Our Policy . . .

Several pieces of erroneous information manged to appear in our Product Feature "Ultraligh Regulation Featured in All-Transistor upply" (ED, Aug. 3, p 102). The supply manuactured by the Krohn-Hite Corp., Cambridge, lass., can operate from standard voltage sources f $115 \pm 10 \mathrm{v}$ and $230 \pm 20 \mathrm{v}$. Its temperature oefficient is 0.01 per cent per $\operatorname{deg} \mathrm{C}$, or 1 mv instead of 7 mv) per deg C . The $1-\mathrm{mv}$ change pplis up to an output of 10 v . Beyond that, he 0$) 11$ per cent applies. Under short circuit r ov load conditions, the output current will ot exceed the selected limit current by more man 30 per cent, rather than 10 per cent. aken political action in the past only when conditions forced them to do so," and he cited an example the development of the atomic bomb, when "a handful of scientists took the nitiative." - .

BULOVA PRECISION CRYSTAL FILTERS

Whatever the frequency you wish to "isolate", Bulova experience with prototype and production quantities of precision filters assures maximum sensitivity and stability. The following examples show Bulova's mastery of the most difficult problems in high-performance filter engineering.
BAND PASS FILTERS - In a band of 30 filters, insertion loss variation between filters, and over the temperature range $25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$, held to .3 db between highest and lowest. Part \#69-A-RP-18$2 N$ (1 thru 30)
SINGLE SIDE BAND FILTERS - Band ripple
held to $\pm 1 / 2 \mathrm{db}$, both 1 and 3 db points defined, over the temperature range $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and 300 to 2000 cps
vibration at 30G level. Part \# 117B-FC-22-4WU
DISCRIMINATOR-Center frequency held to within 10 cps , frequencies equally spaced from center, held to 5.4 v peak $\pm 5 \%$. Part \# 186C-TN-22A-WD
BAND SUPPRESSION FILTERS-2kc wide band attenuated 60 db , right next to it a pass band held flat to $\pm 1 / 4 \mathrm{db}$ for 150 kc . Part \#158-TF15-6R
If you're faced with tough filtering problems, need additional information or practical application assistance, contact Bulova for engineering specialists to assist in selection of filters best to 2000 cps Electronics, Woodside 77, N.Y.

ELECTRONICS
DIVISION

One of the pulse generators acts as a trigger source for the second, third and fourth units. Except for the repetition rate (to 2 mc) the delays, widths, output, pulse position, polarity and the rise and fall time are completely independent of each other. The stacked units may be placed in a 19"0 rack type cabinet. Each of the four B7-B models can be disassembled and returned to laboratories for use as individual pulse generators, thus eliminating the necessity for the expensive multi-pulse instruments working from a common power supply.

Rutherford introduces a complete line of accessories such as: mixer assemblies, adaptors, extension cables, terminations, attenuators, air filter end covers, designed to greatly enhance efficiency and performance, ease of operation for use in pulse instrumentation. Write for complete catalog and price list.

Bilitili
 Rutherford
 Dept. ED 1026 - 8944 Lindblade Street - Culver City, California - IWK-CVR-CY-4133 pulse generators / pulse systems / accurate time delay generators CIRCLE 8 ON READER-SERVICE CARD

NEWS

-Shockley 4-LAyer diodes used in Roto-Tellite two-lamp reliability alarm circuit designed by Master Specialties Company, Los Angeles, California.

ALARM CIRCUIT RELIABILITY

When alarm circuits are required by critical military and industrial applications, two lamps are often connected in parallel for maximum reliability. The circuit shown above, now in production by Master Specialties Company, Los Angeles, uses the Shockley 4-layer diode to provide a shunt path around the defective lamp when one lamp fails.
The 4-layer diode, the semiconductor equivalent of a single directional relay, is ideal for alarm circuits where space, weight and positive operation are important. This simple, inexpensive and
dependable device performs a function which formerly required four or five components in alarm and annunciator circuits. It is suitable for circuits of every type-a basic alarm with one lamp or twoflashing or continuous master light indication-high or low power alarm signal.
For application notes on alarm circuits...or on pulse modulators, flip-flops, ring counters, dc to ac inverters, pulse generators...or just plain solid state switching-call or write your local Shockley representative or write Dept.11-2.

CLEVITE

56 High-Gain Units Must Be In Single Jam-Jar-Sized Cylin

SUCCESS of recently disclosed plans for balloon-borne infrared telescope to detect ut announced satellites may well hinge on the abb ity of Electro Optical Systems, Inc. engineers design the ultra-miniature preamplifiers requir in the system. According to Stuart Hauser, pro ect engineer at the Pasadena, Calif. firm, 56 hig gain units (one for each element in the infrara detector array) must be packaged in a $3-1 / 2$ i in diameter cylinder no more than several inch long.

In order to reduce stray pickup on lead wir the preamps must be located immediately b hind the detectors. Since the detectors are the selves in the optical path of the reflecting-ty telescope employed in the system, the pream are likewise in the path and should be extrem small so as to minimize light loss.
The following design approaches are current under study:

- Amplifiers assembled on small, axia stacked disks, with several stacks arranged parallel within the cylinder.
- Several amplifiers assembled on full, 3 in diameter disks again stacked within the ey der.
- Thin, tubular amplifiers extending down cylinder, with several amplifier bundles stacl in the length of the cylinder.
Molecular-electronic constructions are app ently not in the running for this application 2 the amplifiers will thus be assembled by hii density packaging of conventional miniad components. Breadboards of each type are be developed and tested and Electro Optical spot men appear confident of meeting the Sum

Miniature infrared detector developed by Eq Optical Systems for use in balloon telescope. Unir sists of 0.1 mm lead sulfide element behind 2 strontium titanite lens.
ELECTRONIC DESIGN • October 26,

eds Ultramin. Preamps

961 deadline set for testing of the first balloon-

orne unit.

The system will include a specially-modified 0 -in. focal length Bouwers telescope with optics onsisting of a spherical mirror, a concentric corector plate and an aspheric corrector plate. hese elements will be color-corrected for the 8 - to 2.5 -micron spectrum of the detectors. The lescope and electronics package are to be susended 300 ft beneath the gas bag. In the first nit, no attempt will be made to stabilize the ondola and it has been calculated that natural cillations of the system may run to 0.5 deg . If should become necessary, the cab could be abilized by gas jets or the telescope mounted n a stable platform.
A 0.5 -hp electric motor will swing the teleope in azimuth at a rate varying from 0.5 to 2 tations per second. Initially, the telescope will e aimed about 15 deg above the horizon.
When a satellite is detected, elevation will be creased stepwise after each rotation to a maxium of 75 deg . This will provide a series of inrcept signals from which the satellite's orbit n be established.
Each of the 56 detectors consists of a $0.1-\mathrm{mm}$ ad sulfide deposit behind a $2-\mathrm{mm}$ strontium anite lens. The field of view of each detector approximately 1 milliradian (mrad) x 50 mrad . owever, the detectors are arranged in a linear ray giving a 3 -deg high vertical field of view. pus, the satellite image moves along the indidual elements of the array at each successive eep of the telescope.

mpling Rate of 50,000 Per Sec

The detectors are sampled at a rate of 50,000 I sec by an electronic commutator. In addition, ch preamp feeds a discriminator which deles, on the basis of established statistical conlerations whether the output is due to noise or e to the infrared energy reflected or generated the satellite. Signals are then telemetered to a und station for interpretation and display. lemetry is to be $\mathrm{fm} / \mathrm{fm}$ at 10 w .
The telescope will be ground-controlled as to vation and scan rates. Power supply and winds ft will permit on-station time of one or two s after which the telescope is returned by achute. A world-wide surveillance system of nature would require perhaps 20 telescopes station at all times. In addition, the infrared ection system could be modified to provide a sile early warning capability, according to ctro Optical Systems scientists. - -

See
 What Tubular Capacitor leads all others in MOISTURE RESISTANCE!

A DIFILM ${ }^{\otimes}$ DUAL DIELECTRIC (PAPER and POLYESTER FILM) with HCX © solid impregnant and molded phenolic case
B PAPER DIELECTRIC with HCX solid impregnant and modad mandic essa
c DIFILM DUAL DIELECTRIC (PAPER and POLYESTER FILM) with HCX solid imprognant and dipped cyory msin coating
D PAPER DIELECTRIC with wax or oill impresanant and modeded menolic case
E POLYESTER FILM DIELECTRIC with modted case
F PAPER DIELECTRIC with HCX solid imprognant and waxed cardbarad jackat
G PAPER DIELECTRIC with wax or ofl impresuant and waxed cardboard jochet

The graph tells the story simply and to the point!
DIfilm ${ }^{\circledR}$ BLACK BEAUTY ${ }^{\circledR}$ MOLDED TUBULAR CAPACITORS withstand more than 2500 hours (95 to 100% R.H. at 40 C) with no change in bumidity resistance!
No other tubular comes even close to this performance. Difilm Capacitors are the true answer to moisture problems in entertainment and commer. cial electronics.

For complete technical data on Difilm Black Beauty Capacitors, write for Engineering Bulletin 2025 to Technical Literature Section, Sprague Electric Co., 347 Marshall St., North Adams, Mass.

SPRAGUE
THE MARK OF RELIABILITY

EPRAGUE COMPONENTE:
RFERENCE FILTERS * PULSE NETWORKS *
CAPACITORS - RESISTORS * MAGNETIC COMPONENTS \& TRANSISTORS • INTERIERENCE MILTERS MIOH TEMPERATURE MAGNETIC WIRE - CERAMIC-BASE PRINTED NETWORKS - PACKAGED COMPONENT ASSEMBLIES

now you can choose
In designing digital systems and equipment employing EECO T.Series Transistor Circuits, you now have an extra choice-EECO Magnetic Core Circuits that are both physically and electrically compatible with the EECO T-Series. This new family of compatible magnetic core circuits for the frequency range 0 to 250 kcs includes a large selection of shift registers (in single or dual units), pulse gates, and core drivers.

ADVANTAGES

The ability of magnetic cores to maintain one of two discrete states makes them ideal for shift registers, or counters. A pulse sent through one set of windings will set the core to the "High-Level" state. A pulse sent through another set of windings wil resel the core to the Low-Level state. Thus you get mip it is normally necessary to use two transistor for each flip-flop. or each filip-flop.
Core circuits are used to good advantage in our line of shift registers. They offer versatility and space saving at a price lower than that of an equivalent transistor circuit.

COMPATIBILITY WITH T-SERIES
EECO Magnetic Core Circuits are electrically and physically compatible with EECO T-Series Transistor Circuits. They are packaged in T-Series containers, measuring $\geqslant /^{\prime \prime}$ diameter $\times 2 K_{0}{ }^{\circ}$ seated height, and they plug into the same miniature tube sockets as the T-Series. ELECTRONICS Company

Write, wire, or 'phone today for detailed information on EECO Magnetic Core Circuits.
ENGINEERED ELECTRONICS COMPANY
1441 east chestnut avenue - santa ana, california

SARUS, Echo Papers Key NEREM Meeting

Navy Will Sponsor Two Classified ASW Sessions; More Than 100 Papers Scheduled for Delivery

THE FIRST technical papers delivered on the SARUS and Echo projects will highlight the 1960 Northeast Electronic and Engineering Meeting. It will be the first time that papers on either project have been delivered.
In addition, the Boston meeting from Nov. 15-17 will feature among its 40 technical sessions two classified sessions on anti-submarine warfare. According to the show's sponsors, this will represent the first time the Navy has sponsored classified sessions as part of a national meeting.
A session on Engineering Manpower Utilization will also be a key feature of the meeting with its discussion of practical ways to eliminate wasteful competitive bidding among military contractors.
SARUS, which stands for Search And Rescue Using Satellites, is a system developed by Space Electronics Corp. It is capable of locating quickly and accurately anything on the earth's surface, using miniature emergency transmitters, artificial earth satellites, and ground interrogation stations. Project Echo involves bouncing signals off satellite balloons. Some of the results of these Echo experiments will be detailed in the paper, which will come from Jet Propulsion Laboratories, the organization responsible for the West Coast transmit-receive station used in Project Echo.

Sub-Detection Methods
 To Be Discussed

The classified ASW sessions will concern themselves with the various methods which can be employed to detect unfriendly submarines, according to L. Mautner of the Hughes Aircraft Co., who will be chairman of one session.
These methods, he said, will include magnetic anomaly, radar, sonar, and others. In addition, the communications problems connected with carrying efficient airborne searches will come under discussion, he said.

For example, Mr. Mautner said, the Julie airborne detection system will be covered, with communications and data problems between sonobuoys and aircraft and also among the search aircraft themselves presumably coming into the realm of discussion.

Engineering Manpower Loss
 Is a Matter for Concern

The session on eliminating waste of engineering manpower will concern itself with the money now being spent preparing presentations for bids on specific contracts.

At present, the industry has the spec tacle of 10 to 20 large firms each spend ing as much as $\$ 100,000$ on proposal during competitions on medium- to large sized contracts, Mr. Mautner said. Onl one of these firms, of course, will be awarded the contract. The waste of en gineering talent in the other firms, h said, is a waste of one of this country most precious resources: engineering manpower.

On an industry-wide basis, the cont petitive bidding process has made engi neers only 50 per cent effective, Mr Mautner claimed. Two solutions that Mit Mautner expects will be discussed dur ing the session will be the use of less els pensive preliminary competitions an government selection teams. In bot

Clearance Needed For ASW Sessions

The two classified sessions on ASII sponsored by the Navy's Bureau of Weapons, will be open only to those NEREM registrants who have submitted their clearance in advance, certifying their need-to-know. Requests for clear ance forms, and non-member request for these forms, must be on busines letterheads and should be addressed to Mr. Lewis Winner, 152 W. 42nd St New York 36, N. Y.
ases, the objective will be to narrow the ompetitions down to a half-dozen firms.

Long-Range Proposals Cited As Partly Responsible

The longer-range, more ambitious proposals that have come about as the result of government plans for space exploration have been partly responsible for the worsening situation on competitive bidding, Mr. Mautner told Electronic Design.
Problems in command and control systems, raised by the audience, will be discussed by a panel of experts, which will include Maj. Gen. Kenneth P. Bergquist of the Air Research and Development Command and Maj. Gen. Clyde H. Mitchel of the Air Materiel Command.
"And there are many problem areas," said Arthur P. Hill of the Mitre Corp., who will be in the chair for the session. He said a few of them were: standardization, centralization, people vs automatic equipment, and complexity and compatibility of equipment.

U.S., Foreign Experts to Speak

At 40 Technical Sessions
The above are only the keynote features of the meeting, whose sponsors claim many firsts. U.S. and foreign experts will deliver more than 100 papers at the 40 technical sessions. "In fact," according to Lewis Winner, one of the NEREM coordinators, "as far as regional IRE meetings go, this one will beat all the others. It will have the largest number of technical papers and exhibits."
Mr. Winner estimated that 95 per cent of the papers have never been given before and that the balance have only been heard by small, select meetings and never gained wide circulation. He added that there would be 350 exhibits.
A relatively new subject, electro-hydraulic and pneumatic controls, will receive considerable attention at the meeting, Mr. Winner said. B. M. Horton of Diamond Ordnance Fuze Laboratories will present a paper of particular inter"st on the subject-"Amplification by Fluid-Stream Interaction."
All papers delivered at the meeting will be published in the NEREM-60 Record, which will be distributed free to ach technical registrant. The NEREM fechnical registration fee is $\$ 2$ for IRE nembers, $\$ 4$ for non-members. - -

practical circuit miniaturization now... with Centralab's $<$ Rec packaged electronic circuits

This is the circuit miniaturization technique that permits component densities up to $2,500,000$ per cubic foot today . . . with semi-conductors, capacitors, fixed and variable resistors integrated in a single component . . . with the size and shape flexible to meet your equipment requirements . . . and sensibly priced for commercial applications. Centralab's engineering department will work with you in designing practical economical PEC circuits to your requirements.

* A similar CENTRALAB 4-stage amplifier received the Certificate of Excellence in the 1959 Miniaturization Awards Competition, sponsored by Miniature Precision Bearings, Inc., Keene, New Hampshire.

NOR CIRCUIT
Size: $3 / 8^{\prime \prime} \times 3 / 8^{\prime \prime} \times 13 / 32^{\prime \prime}$ 8 resistors-1 transistor transisto
$171 / \mathrm{in} .^{3}$ 295,000/ft. ${ }^{3}$

FLIP-FLOP CIRCUIT Size: $245^{\prime \prime} \times .500^{\prime \prime} \times .990^{\prime \prime}$ 2 transistors, 6 diodes ${ }_{8}^{2}$ resistors, 6 capacitors 8 resisto
$176 /$ in. 3 304,000/ft. ${ }^{3}$

The Electronics Division of Globe-Union Inc. 960K East Keefe Avenue - Milwaukee 1, Wis. In Canada: P. O. Box 400, Ajax, Ontario

NEWS

Experiments Prove Feasibility Of Ultra-High-Power Microwave Tubes

The new design concepts for ultra-high-power microwave tubes are being developed by General Electric's Power Tube Dept., Schenectady, N. Y., for classified military applications. One of the tubes will be a multiple-beam klystron which is said to employ unique methods for combining a number of beams in one rf structure within a single vacuum chamber. The other tube, to be known as an "Orthotron," is a cross-field, travel-ing-wave type.
Although actual prototypes of the two tubes have yet to be built, GE spokesmen stated that laboratory experiments have proven the feasibility of the new operating principles. Accordingly, GE has established a Superpower Microwave Tube Laboratory within the Power Tube Dept. to handle advanced development and production design of these tubes. The first production models are not expected to be available until late 1963.

CW and Pulsed Operation Possible

Both tubes will reportedly be capable of CW as well as pulsed operation, in each case at "substantially higher power levels" than conventional units. Size, power, frequency, and other details of the new tubes remain classified. However, the Orthotron's frequency is said to extend into the "micromicrowave" range. Company officials were also vague as to the number beams that could be combined in the multiple-beam klystron. They indicated, however, that more beams could be added to the present design if required. Both tubes can be either air- or liquidcooled without imposing any design constraints.
Apart from the classified application for which these tubes are earmarked, GE officials also foresaw their eventual use in long-range communications, satellite and space-probe tracking, radar astronomy, and plasma devices (such as sources of high-power, high-frequency magnetic fields for thermonuclear power generators).
The company also hinted at possible uses in wireless, direct-beam power transmission by microwaves, but did not elaborate.
The new superpowe: laboratory is headed by E. D. McArthur, who developed the planar triode "Lighthouse" radar tube during World War II. Also on the staff is Dr. D. A. Wilbur, a codeveloper of the voltage-tunable magnetron principle and an authority on cross-field interactions.

Combat Communications Network Set by AF, Western Union Contract

A contract for the construction and leasing of a high-speed, high-capacity combat logistics communication network has been signed between the Air Force and Western Union. The new system, known as COMLOGNET, will link more than 450 bases, depots, and civilian suppliers in the continental U.S. and will include entry points for overseas communications.
Initial capacity of the system, to be activated early in 1962 will be 7 million punched cards or an equivalent 100 million words daily. The yearly rental for COMLOGNET will be $\$ 22$ million. According to Western Union officials, the $\$ 50$ million development costs for the system were not government funded. COMLOGNET will eventually include ten high-speed switching centers using advanced data processing and handling equipment developed by RCA. Computers will be similar to the company's commercial 601 units. Initially, the system will include only five switching centers linking some 240 terminals, but will be gradually expanded to its designed capacity.
Since COMLOGNET will be an integral part of the Air Force's global communications complex, it will be capable of interchanging traffic with other Defense networks on an automatic, compatible basis.
Four of the five centers will have a capacity of 50 message-switching channels and 50 circuitswitching channels. The fifth center provides an additional 50 message channels. Provision is made for modular expansion to 100 message and 200 circuit channels. The channels will have an initial capacity of up to 4,800 bauds, but can be increased to 50,000 bauds by future expansion.
The system emphasizes digital transmission, but includes facilities for analog signals such as voice and facsimile. Bandpass of the analog switching circuits is at least 50 kc . Since all data trunks are link-encrypted, separate analog trunks are provided.

All digital channels will be operated in full duplex to provide simultaneous two-way operation. Switching centers can operate with halfduplex channels for alternate two-way transmission or with open-loop, one-way channels where necessary.
The common language chosen for COMLOGNET is an eight-element code that includes one bit for parity check. Alphanumeric characters are transmitted in accordance with the Air Force's recently adopted Fieldata code. Transmission will be at 150 bauds in the eight-level code. Automatic error detection will limit undetected errors to one in 10 million characters.

MEASURE FREQUENCIES TO 18 KMC

with counter accuracy

New fixed tuned (40p harmonic mixers offer "low frequency" measuring ease and accuracy, have high sensitivity, obviate tuning delays.
12.4 to 18 KMC P-Band New P9s2A Harmonic Mixer mounts directly in your waveguide system and operates with an 540A or 540B Transfer Oscillator, as indicated in the block diagram. The 540 Oscillator output is applied directly to the mixer, which generates harmonics and mixes them with the unknown waveguide frequency. The mixer's beat frequency output is applied to the 540 's oscilloscope, the oscillator tuned for zero beat scope indication, and the oscillator frequency setting noted. Simple multiplication of the 540 dial frequency by the harmonic number yields the unknown to within 0.5%. Measuring the oscillator frequency on an 524 series counter increases accuracy of measurement on clean cw signals up to 1 part in 10^{7}.
P932A maximum input power is 100 mw , minimum video output is 0.1 mv rms with 0 dbm input, output impedance 1000 ohms with $35 \mu \mu \mathrm{f}$ shunt, sensitivity approximately - 10 dbm. \$250.00.

5 to 12.4 KMC Now 934A Harmonic Mixer operates from 2 to 12.4 KMC , extends the range of the ©540A Transfer Oscillator from 5 KMC to 12.4 KMC and offers the same advantages as the P932A, including the fixed tuned feature eliminating tedious adjustment. including the fixed tuned feature eliminating tedious adjustment.
Maximum input power is 100 mw , typical sensitivity is -45 dbm at Maximum input power is 100 mw , typical sensitivity is -db dbm at
mid-range points, minimum video output is 0.5 mv rms (0 dbm input) and output impedance is the same as \oplus P982A. Model $984 \mathrm{~A} \$ 150.00$.
220 MC to 5 KMC or 12.4 KMC Hewlett-Packard 540 Transfer Oscillators (see diagram) extend the range of the 524 series counters to 5 KMC (540A) and 12.4 KMC (540B), making possible frequency measurements with counter accuracy well into the microwave region. These oscillators also measure carrier frequency of pulses, determine carrier frequency and deviation of FM signals, and measure frequency accurately despite high noise. $4540 \mathrm{~A}, \$ 615.00 . \$ 540 \mathrm{~B}$, $\$ 750.00$. (Rack mount models $\$ 15.00$ less.)

frequency ranee	Equipment	total price
0.10 mc	524 C or 5240 Frmauency Counter	52.150.00
10. 100 MC	$32 \mathrm{Cl} / \mathrm{O}+525 \mathrm{~A}$ Converter $(0.10 \mathrm{MC})(10.100 \mathrm{MC})$	82,400:00
100-220 MC		\$2,400.00
220 mo .3 kmC		\$2,013.00
$220 \mathrm{MC}-12.4 \mathrm{kMC}$		\$0,165.00
22.4-28 KMC		80,285,0000

HEWLETT-PACKARD COMPANY

1048K Page Mill Road
Cable "HEWPACK"
HEWLETT-PACKARD S. A
Cable "HEWPACKSA"
CIRCLE 14 ON READER-SERVICE CARO

New Allen-Bradley

 LINE OFDiscoidal Capacitors provides
SUPERIOR PERFORMANCE, PHYSICAL UNIFORMITY

NEWS

New TH Microwave Relay

Large-Scale TWT Application Is Said to Be First in Country

ANEW 6,000-mc high-capacity microwave relay system between Denver and Salt Lake City scheduled to enter service early next year is now undergoing final tests by the Long Lines Div. of the American Telephone and Telegraph Co.
The new link, designated TH, affords eight $10-\mathrm{mc}$ transmitting channels in each direction, with each channel having a capacity of 1,860 telephone conversations. Each of the 16 stations in the system will employ a total of $36-444 \mathrm{~A}$ traveling-wave tubes as oscillators and final amplifiers. According to a Bell Telephone Laboratories spokesman, this marks the first large-scale commercial application of TWTs in this country.

A peak frequency deviation of $\pm 4 \mathrm{mc}$ is permitted for each of the 16 -transmitting channels. In addition, there are four narrow-band auxiliary channels for inter-system communication. Total utilization of space within the 5,925 to $6,425-\mathrm{mc}$ common-carrier band is 90 per cent; only 10 per cent is reserved for group separation and guard bands.

This high percentage of band utilization is primarily due to frequency and polarization interleaving among channels. Adjacent channels are alternately polarized horizontally and vertically. Parabolic horn reflectors and circular waveguides capable of handling both polarizations are therefore used in the antenna and feed system. Polarity-sensitive elements achieve a 20 db discrimination between the two polarizations.
In addition, retransmission of signals repeater station is at a frequency different than that of the incoming signal. Messages received on a lowfrequency channel are retransmitted over a highfrequency channel and vice-versa. The typical frequency shift is about 250 mc .

Diodes Permit

High-Speed Switching
Four of the 16 transmission channels are held in reserve as protection against equipment failure, propagation difficulties over a particular channel, and for use during routine maintenance. Automatic switching between channels is performed by high-speed diode circuits. Switching time is on the order of 35 msec , of which all but a few microseconds is consumed in set-up time for the switchover. In the event of fading, however, the need for switchover is automatically anticipated and set-up is performed before

Being Tested in Rockies

the signal deteriorates to the point wher switching is required. Actual switching thus o: curs in on'y a few microseconds. Similarly, the switc'. overs required during normal maintenanc are also set up in advance to minimize switc' ing time. Only in the relatively infrequent cas of equipment failure are the full 35 msec re q:ired. This rapid switching capability was bui ${ }^{1}$ into the system in anticipation of future digita data transmission traffic.

Common Microwave Supply

Drives 20 Carrier Frequencies

The 20 carrier frequencies are driven from a single 14.826 mc crystal oscillator. The 17 th , 24 th, 408 th, and 425 th harmonics are then generated and are appropriately combined by gold bonded germanium-diode modulators in eac! transmitter. The two higher-order harmonics are amplified by TWT's before mixing
This common frequency supply permits a sharp reduction in the number of vacuum tubes needed as compared with a system using indi-vidual-frequency generators for each transmitter. Elements of the common system are of course provided in duplicate against failure

The carrier frequency is amplified in the transmitter by a TWT and modulated by an information carrying intermediate frequency in a second gold-bonded germanium diode. The modulated signal is amplified by a second TWT and impressed upon the feed line through an isolator and combining filter.

Receivers employ silicon-diode modulators rather than TWT's to generate the intermediate frequency. While system noise is somewhat increased, this arrangement permits operation of the modulator at the lowest possible level to minimize interference due to cross modulation with adjacent channels. The beat-frequency signals are derived from the common microwave carrier supply in the same manner as for the transmitter.

Broad-Band Traveling-Wave Tube
 Requires Few Adjustments

The 444A TWT as used in the transmitter output stage develops 5 w . Its broadband performance in the 6 kmc range permits it to be used interchangeably among transmitters with only minor adjustment. One TWT could conceivably scrve as the final oscillator for all channels.
TWT gain at 5 w is a minimum of 30 db . The |he's noise figure is $28.5 \mathrm{db} . \square=$

Now available for evaluation

For customer evaluation, CBS Electronics offers a working 16 -bit sample memory cube. Its "newconcept" design features plastic-encapsulated ferrites and deposited conductors, resulting in compactness, light weight, and shock resistance never before achieved.

Check the features, unique construction and technical information. Order the CBS M-267 sample memory cube from stock. . . nominal charge $\$ 50.00$. Evaluate for yourself, firsthand, the benefits of its advanced design.

CUSTOMIZED SYSTEMS

After your evaluation of the M-267, CBS Electronics can supply development facilities for custom-designing memory systems for your military computer requirements. This typical CBS customized memory pack, a multi-aperture, nondestructively-sensed, word-organized system, achieves a density of 15,456 bits in less than 23 cubic inches. Other CBS custom designs include nondestructive readout memories and ferrite logic systems. The ferrite cores in the memories meet a wide range of requirements for signal output, switching time, and current drive.

UnIQUE PACKAGIMG OFFERS MAMY FEATURES
Minlaturization . . techniques used result in significant reductions in volume and weight, with densitios up to
2,000 bits per cubic inch. Conventional wiring frame and most hand wiring are oliminated.

Uniformity .. the "ONE" outputs of the 16 bits in the test cube reach amplitudes within $\rightarrow 5 \%$ of each other.

Environmental ... improved temperature, humidity, shock and vibration characteristics are provided, yet onccapsuthe ferrites.

TYPICAL OPERATIMG CHARACTERISTICS CBS M-267 at $40^{\circ} \mathrm{C}$

CBS
microelectronics

CB8 ELECTRONIC8, Danvers, Massachusetts, A Division of Columbia Broadcasting System, Inc. CI.CLE 16 ON READER-SERVICE CARD

temperature-compensated motor-tachometers

Only af Daystrom's Transicoll Division can you find such a splendid array of temperature compensated high-accuracy motor-tachometers.

Here's the lineup:
4 - and 6-pole in Sizes 8 and 11; 4- and 8-pole in Sizes 15 and 18; and a special high-torque 4-pole model in Size 18. But this is only the beginningit doesn't include all the variations in motor windings and shaft configurations that we can conjure up to meet unusual requirements.

And what about performance? Let us merely assure you that these are the most temperature stable servo components of their kind we've ever had the opportunity to test.

Ask to see our specification sheets and then discuss your needs with Daystrom's Transicoil Division.
Foreign: Daystrom International Div., 100 Empire St. Newark 12, New Jersey. In Canada: Daystrom, Ltd., 840 Caledonia Rd., Toronto 19, Ontario.

NEWS

Electronic Watch

Transistorized Timepiece Employs Tuning Fork

ATRANSISTORIZED wrist watch, called Accutron, has been designed by the Bulova Watch Co. Inc. of Woodside, N.Y. The timepiece is approximately 10 times as accurate as a conventional wrist watch, according to the company. It is guaranteed not to gain or lose more than a minute a month. Accutron has 12 moving parts, compared to 19 in manually-wound watches and 26 in self-winding watches.

All conventional watches "tick," signifying the periodic release of energy through interaction of the escapement and the balance wheel and hairspring mechanisms, causing the gear train to move the hands.

No Tick, but a Hum

The Accutron does not tick; it hums. The humming sound in electric timepieces is caused by the vibrations of a tiny electromagnetically driven tuning fork and its associated index mechanism.
Another external difference is the absence of a winding and setting stem. Accutron's power source is a 1.3-v mercury cell. The setting mechanism is engaged by a small recessed handle on the back of the case adjacent to the screw cap that hermetically seals the opening in the case for the power cell.
The things that make the new Bulova watch unique are:

- The use of a precision tuning fork as the time standard.
- The successful miniaturization of the entire circuit and the mechanical assembly to its 0.5 cu -in. size.
- The development of a highly efficient mechanism and circuit which require such a small amount of power that the self-contained power cell has a life of at least 12 months.
Briefly described, the Accutron is

Has More Accuracy

a wrist watch controlled by a tuning fork. Energy from the power cell, controlled by a transistorized pulser, causes the tuning fork to vibrate continuously at 360 cps . Vibrations are converted mechanically to rotary motions that are transmitted through a gear train to the hands.

Balance Wheel Eliminated

The most recent development in watch design was the electric watch, in which the mainspring was replaced with a battery as the source of power. Use of the battery eliminated the need for winding, but the design retained the balance wheel, which tends to be the weakest part and the greastest source of trouble in a watch. Make-and-break electrical contacts in electric watches are another source of trouble. In the Accutron design, the balance wheel and escapement mechanisms are eliminated, and there are no complicated elements or make-and-break contacts. The Accutron was designed to be serviced by watchmakers.
The greatest difference between Accutron and conventional watches is the use of the tuning fork as the time standard instead of the traditional balance wheel and hairspring. Attached to one tine of the fork is a tiny finger-like index spring. On the top of the index spring is a jewel that engages ratchet teeth on an index wheel. As the fork vibrates, the jewel-tipped spring moves back and forth with it, advancing the index wheel one tooth for each cycle of the tuning fork.
Micro-miniaturization in the device is perhaps best represented by the index wheel. The index wheel is $0.095-\mathrm{in}$. in diameter and $0.0015-$ i.1. thick; yet, it has 300 precisely machined ratchet teeth. Teeth are sparated by a 0.001 in . space. -

CIRCLE 18 ON READER-SERVICE CARD \rightarrow

2 NEW RUGGEDIZED AMPLIFRAME* TUBES... 7737 and 7308

 military and industrial applications in high shock and vibration environments

New

Amperex AMPLIFRAME 7308

Premium Quality
HIGH-GAIN TWIN TRIODE
Extra-rugged. low-microphonic version of the 6922 .. for use in radar, oocillosopes, computers,
amplifiers and critical airborne applications.

about Ampliframe tubes for ultra-critical military and industrial applications
AMPEREX ELECTRONIC CORPORATION 230 Duffy Ave., Hicksville, Long Island, N.Y. In Canada: Rogers Electronic Tubes \& Com-

Extra-rugged, low-mierophonic version of the 6688 for critical airborno applications, coaxial cable ampli-
fiers, video and broadband $I F$ amplifiers in communihers, video and broadband 1F an
cation links and TV equipment.

nuMOMr

Write for complete details electronic tube division
 U MONT offers the most complete-yet individually specializedfamily of cathode-ray tubes available for work in the high to ultrahigh (kilomegacycle) frequency range. Du Mont has contributed special developments on electrode adjustments, plate mounts, timing marker plates, integral mu-metal shields, r-f coaxial connectors, and many other designs specifically oriented to the high-frequency field Only Du Mont can provide such completeness in selection and design

Shaded areas indicate traveling wave types																
TYPE	$\begin{aligned} & A_{1} \\ & (K \mathrm{~V} .) \end{aligned}$	$\begin{aligned} & A_{1} \\ & \left(\alpha V_{1}\right) \end{aligned}$	SENSIBILITY (V/TRACE WIDTH)				uSEFUL SCAN (IN.)				USEFUL SCAN (TRACE WIDTHS)				$\left(\begin{array}{c} \text { FREQ. } \\ 3 \text { db } \\ \text { OOWN } \\ \text { OOC. } \\ \text { (VERT. } \end{array}\right)$	$\left\lvert\, \begin{aligned} & \text { WRITING } \\ & \text { SPEEOT } \\ & \text { ITW/US.I } \end{aligned}\right.$
				mor.		vert.		HOR.		VERT.		HOR		ERT		
58hP	10	165		154		033		39		16		195		80	220	9000
\cdots	12	2		2.90		0.94		4.25		1.6		220		80	460	9000
K1409	30	7.5		2.5		1.75		4.2		2.8		420		80	1650	120,000
K1524	35	10		2.2		0.65		3.5		0.75		435		90	2800	205.000
K1546	24	4		4.2		1.0		4.0		1.6		160		05	325	33,600
K2082	12	1.4		1.65		0.43		3.94		1.97		120		60	4100	9000
K1570	35	10	$\mathrm{D}_{1} \mathrm{O}_{2}$	$\mathrm{D}_{2} \mathrm{D}_{2} \mathrm{D}_{6}$	D, Da	D,	O_{2}	$2 D_{5} D_{0}$	$\mathrm{O}_{2} \mathrm{O}_{4}$	D_{7}	$D_{1} D_{2}$	D, D.	D, D,	D,	1400	205,000
			1.4	1.6	1.0	p. 55	4.5	3.5	1.25	1.75	650	575	200	280		

\dagger Writing speed determined at 25 ua beam current. Tests made

precision electronics is our business

acure mentàl vision or discernment, keen.

Midwest Is "Stagnancy" Center, Stanford Provost Says at NEC

The Midwest, dulled by insufficient research funds and by unimaginative challenge to graduate students, has been cited as the center of "electronic stagnancy" by a leading educator.
Largely responsible, according to Dr. Frederick E. Terman, Provost of Stanford University, are a lack of new-product development and waste of intellectual resources at local universities. He made his remarks at the National Electronics Conference, held in Chicago Oct. 12-15.
Although present industry in the Midwest is not in dire straits, Dr. Terman said, both East and West Coast companies will enjoy progress at the Midwest's expense, unless a drastic change in policy goes into effect. The key to progress, he pointed out, is the stimulation of advanced graduate training for local students who will have the incentive to remain and contribute to the Midwest's development. Present students at Midwestern institutions, he said, tend to switch to schools in other areas for advanced training and then to remain in those areas for employment.

Midwesterners Blame Geography
 But Critics Dispute Contention

Midwestern representatives at the conference said geographic climate was a key excuse, but critics suggested lack of aggressive leadership and failure of local industry and educational groups were primarily to blame for the situation.
Conference sessions on microminiaturization drew large crowds eager to glean the latest development trends, which were outlined in 12 papers. Representatives from Bell Telephone Laboratories, Motorola, General Electric, Lock heed, and Wright Air Development Center discussed progress in thin-film efforts in the micromin field. Although deposition techniques are capable of supplying high-density assemblies, additional time and study are needed to achieve high yield and reliability.
In addition, they said, the approach must be equipped with some reasonable degree of mechanization to lure customers other than space-program contractors
Highlighting the new-product announcements from NEC were epitaxial transistors by Rheem Semiconductors Corp., Mountain View, Calif. Motorola, Inc., Phoenix, and Sylvania Electric Products. The new devices, with their lower col lector resistance and highly improved switching times, are expected to find rapid use in high speed computer applications.

Better Instrumentation Is Required To Show Astronauts' Stress, Strain

Designers of instrumentation for measuring hysiological parameters have not kept pace with those producing devices for instrumenting machine systems. Needed, in the space effort especially, are a battery of instruments for monitoring stress and strain patterns of space travelers.
This theme ran through the American Rocket Society's Conference on Anatomy of MannedSpace Operations, Oct. 10-12 in Dayton, Ohio.
Dr. S. A. Talbot, Johns Hopkins Medical School, Baltimore, told participants in the conference that not only should such parameters of physiological environment as departures from normal air pressures, oxygen, carbon dioxide, temperature, humidity, and ventilation be measured and monitored, but the more difficult psychological and physiological parameters constituting the "strain pattern" must also be monitored. Included in these measurements would be data on normal and abnormal systolic pressure, respiration, hearts rates, brain activity as indicated by electroencephalograph (EEG) measurements, changes in bodyweight (despite conditions of weightlessness), and waste elimination.

Greater Challange for Designers

Seen in Different Sifuations
Dr. Talbot said that many other physiological measures might be required, depending on specific situations. Some of these greater challenges would be measures of electrocardiogram pattern, perspiration, galvanic and other reflexes, and sensory activity.

He added that in addition to devices for measuring and monitoring actual patterns of stress and strain, equipment has to be developed for analyzing and remedying the causes of strains and impaired performance.

Designers are attacking the problem areas described by Dr. Talbot. At the conference, Capt. George Potor Jr., Wright-Patterson Air Force Base, Dayton, Ohio, reported on designs that solve or approach solving some of the problems.

These include an amplifier with a stable com-mon-mode rejection reportedly well over 100,000 to]. Input impedence is 500 K , output impedance, 20 K , and amplification is 2,000 . Another amplifier, designed in Europe for EEG equipment fits eight channels and a battery power supply into a $1.5-x-5-x-7-\mathrm{in}$. volume. A versatile llectrode of new design has also been developed at Wright Air Development Div. It consists of a conductive cloth, silver deposited on nylon, : retched on a flat sponge-rubber pad. Although is resistance is about 50 K , it is said to be an aportant improvement over existing electroxles 1 cause it operates dry.
 CIRCLE 20 ON READER-SERVICE CARD

THE Nems-Clarke Divel Ombiner greatly reduces the problem of data redu by combining outputs of re antennas. A single outpur all information received it
om separate recordings operating with separate the combiner contains 2, 3 or 4 receivers.

NEMS•CLARIE CO.
a division or vitro corporation of america

WASHINGTON \$ REPORT

Ephraim Kahn

PRIVATE USE OF SPACE SATELLITES is an almost distant prospect, though experiments will start in a matter of months. Statements by T. Keith Glennan of NASA that the "nation's great communications organizations" are seriously considering "the undertaking of substantial expenditure from their own corporate fund for the development of such systems" raises far more basic questions than have been answered. There is general agreement, to be sure, that private enterprise should participate to the maximum possible extent in development of space communications. There are major differences, however, when it comes to deciding what is appropriate for private enterprise and the reward that private enterprise should reap for its participation. The new Administration's attitude will be controlling; present policy (to the extent it has been formulated) is at best firm only through Jan. 20, 1961.

CONGRESS WILL UNDOUBTEDLY take this up next year. In fact, both Senate and House space committee staffs are looking into it now. The Commerce Committees too, may interest themselves from the standpoint of communications. So wlll executive agencies FCC, NASA, and the DOD. But before any problems can be solved to the mutual satisfaction of both government and industry, some fundamental decisions have to be made.

THE BASIC QUESTIONS are raised quite starkly by Glennan's statement. One is that of patent policy. The appropriateness of turning over to industry for use as a profit a huge amount of government-paid R\&D is certain to be raised. The question whether there should be government regulation-and how much-is another. If there is to be control, who will exercise it? Can private industry handle the international problems involved? Would it be proper to grant a state communications monopoly to any firm? If so should it be one of the existing companies? Or should provision be made for entry of new comers into the area on equal terms?

YET TO BE DECIDED, too, is the almost philosophic question of the motivations of the firms which seek to get into the field. It is known that NASA has already had conferences with five or six companies. The feeling in some government circles is that no solution will be reached without a good deal of statesmanship on all sides, and that it will take a lot of soul-searching to come up with the decision which will do the least harm and the most good.

GOVERNMENT OFFICIALS are certain to be wary of any industry approach that plays a mini-max game-which tries to treat obtaining a favorable position in space communications as a purely economic problem in which the objective is to put in as little money as possible consistent with obtaining a pre-eminent position.

ALUE-ENGINEERING PROVISIONS will be written into Air Force contracts soon. Hitherto, the Air Force has tried to push contractors to make components cheaper-without adversely affecting reliability-but it has not incorporated this concept in its contracts. Now proposed legal language is being studied. The formal value-engineering program will be applied both to prime and subcontractors. It will, for all practical purposes, be inseparable from contract management. Technically speaking, the objective is to save money by re-engineering and by modifying specifications. In effect, this could boil down to a change of suppliers, elimination of needlessly elaborate devices, and keeping a sharper eye on overhead costs.

CHARGES OF OVERCOMPLEXITY in the Minuteman and other missile programs have been dismissed by Air Force experts as exaggerations based on insufficient knowledge. Minuteman has been pushed forward to 1962, they acknowledge, even though this means that reliability will fall short of perfection during the first year or so. They insist, however, that even so it will be cheaper than either Atlas or Polaris in terms of cost-effectiveness. Minuteman costs will run, a recent study shows, about 45 per cent for hardware and 55 per cent for on-the-ground costs, including construction. Increasing complexity, though not to be sought for its own sake, is a fact of life. "We simply couldn't do the things we're doing if we didn't have such complex equipment," is the general tenor of comment.

OFFSHORE-BUYING POLICY REVERSAL will have limited impact on electronics. Largely because of Treasury pressure, the military abruptly switched from granting prefercntial status toforeign purchasing of goods meant for allies of the U.S. to favoring American sources of supply unless it "is essential to support overriding U.S. Poreign policy and Military Assistance Program objectives." Foreign purchases will be paid for "to the maximum extent" with foreign currencies held by this country. In any case, contracts for foreign goods will be let "only if they conform to sound military procurement practices."

COURIER SATELLITE IS PRACTICAL for low-priority military communications, according to Army officials (see p 8). Though usually considered a first step toward far more complicated devices, its early performance has indicated that it could be used operationally right now. Long-term reliability-and budget considerations-would be major factors if a decision to set up a Courier satellite system ever has to be made. As things stand, a single satellite of this type probably could handle all the Army's bulk, low-priority, "store-and-forward" messages for the next three years or so.

SLAP ON THE WRIST to small business-an unusual occurrence-has been administered by the Air Force Deputy Chief of Staff for Materiel, General Bradley. Aware of Congress' tender feelings for little firms, the military rarely criticizes them. But Bradley has noted that they are sometimes guilty of "overreaching" in their search for government contracts-that is, they try to get contracts which they are incapable of performing satisfactorily. ft the same time, Bradley notes, they sometimes fail to bid on purchases that they could handle very well.

CIRCLE 22 ON READER-SERVICE CARD

All New Hughes 10 mc MEMO-SCOPE ${ }^{\text {® }}$ Oscilloscope 2 PRECISION INSTRUMENTS IN 1

CONVENTIONAL MODE

- DC to 10 mc Band Pass
- Sweep Range: 0.1μ secs/division:
$5 \times$ Magnifier for speeds to $.02 \mu$ secs/division: Multiplier for sweeps long as 10 secs/division
- Rise Time: 35 nanoseconds
- Built-in Delay Line (0.25μ secs)
- Numerous Trigger Selections
- Electron Beam Position Indicators
- Plug-in Preamplifiers

STORAGE MODE

(All features of Conventional Mode, PLUS:)

- $1,000,000^{\prime \prime} /$ sec Writing Speed
- Unlimited Storage Time
- Fast Erase (Less than 150 millisecs)
- X-Y Plotting
- Single Shot Trigger
- Photograph or Trace Directly Off Scope Face

This unique, high frequency instrument combines the benefits of a precision laboratory oscilloscope and a Hughes storage oscilloscope. The new Model 105 MEMO-SCOPE oscilloscope provides high frequency response (10 mc) and fast writing speed ($1,000,000$ inches $/ \mathrm{sec}$). And, in addition, it can store non-recurring transients on the scope for any desired period, keeping them visible until intentionally erased.

For complete details or an interesting demonstration of the MEMO-SCOPE oscilloscope and its many accessories. write, teletype (TWX INGL 4117) or call collect: HUGHES Industrial Systems Division, P.O. Box 90904, International Airport Station, Los Angeles 45, California. For export information, please write:
Hughes International, Culver City, California,

Circle 23 on reader-service card

NEWS

Broad Use of Optical Masers
 Seen by Experts at BTL Meeting

Leading scientists predicted wide use of opti cal masers in scientific, industrial, and military systems at a recent demonstration of such a de vice by the Bell Telephone Laboratories. New applications transcending the already proposed communications, radar, and death-ray systems were foreseen by Drs. Arthur L. Schawlow and Charles H. Townes, who in 1958 first suggested the development of optical masers.

The control of chemical processes by opticalmaser beams was considered a likely possibility by Dr. Schawlow. "We know that many chemical and physical reactions are affected by light and we now can look forward to a source of intense, highly controllable light for this purpose," Dr. Schawlow said. The optical maser was also seen as a tool for studying the interactions between light and matter so as to discover new effects of light upon physical and chemical processes.

Dr. Schawlow also suggested the possibility of shifting the orbit of a satellite by the light pressure of continuously applied optical maser beams. This could prove feasible for the remote control of lightweight bodies. One can envision maser "duels" in which an enemy observation satellite is shifted with maser beams while the enemy uses the same technique to keep the vehicle in its assigned orbit.

Dr. Townes predicted significant increases in measuring accuracies through use of optical masers. Velocity measurements by optical doppler methods and distance measurement at ranges of many miles by interference patterns could give accuracies several orders of magnitude higher than present methods, Dr. Townes said.

Both scientists agreed that currently available materials limited masers to optical frequencies, but that ultraviolet and X-ray masers might eventually be developed.

CHANGES IN

PRICE AND AVAILABILITY

GALLIUM ARSENIDE TUNNEL DIODES have been reduced 93 per cent in price by Canadian General Electric Co., Ltd. The new prices are now $\$ 5.17$ each and $\$ 6.90$ each in large quantities to original equipment manufacturers. They previously sold for $\$ 63.25$ each and $\$ 97.75$ each.

ELECTRONIC DESIGN • October 26, 1960

broad-Band Communications System Sends, Receives, 'Intelligent Noise'

A new broad-band military-communications system, known as "Phantom" system, will receive and transmit "intelligent noise or static" without interrupting or causing static on local radios.
It represents a different approach from the conventional narrow-band military communications technique in which each transmitter and receiver is allocated a specific narrow bandwidth to avoid interference and to crowd as many channels as possible into the electro-magnetic spectrum.
In broad-band communications the transmission bandwidth is many times larger than the intelligence bandwidth, or signal being relayed. For military communications broad-band techniques provide three types of security: security against jamming because of the tremendous amounts of power required to interfere with the transmitted signal; transmission security since the average power is spread over a wide bandwidth making the signal extremely difficult to detect; and message security in that even if the signal is detected, it can be made very difficult for an unauthorized listener to understand what is being transmitted.

The system is under development at General Electric's Military Electronic Dept. of Syracuse, N.Y.

Raytheon Hot-Spot Detector

A lipstick-size electronic device developed by Raytheon Co. of Waltham, Mass., is reported the smallest-known infrared detector and is capable of spotting objects warmer than the human body from miles away. Used ir. detection units, it peers through the night to pick out heat emitted by aircraft, missiles, launching pads, and rocket-test areas. The detector generates no telltale beam from which the enemy might trace its location. 1 . long-range operation, small size, and metal casing make it particularly applicable for aircraft and missiles.

- circle 24 on reader-service card

E ECTRONIC DESIGN • October 26, 1960

New Chassis-Trak Utility Slides Support 15 Times Their Own Weight

Three Models TILT, TILT-DETENT, and NON-TILT

With the introduction of the C-230 Utility Slide, Chassis-Trak can now offer a complete line of electronic cabinet slides in a capacity range from 50 to 275 lbs . The new Utility Slide can be used in any standard rack and in any type of mobile or stationary installation where the chassis load does not exceed 100 lbs .

Chassis-Trak's famous "pencil thin" design is an outstanding advantage of the new C-230. A pair of these fully-extendable slides take up only $.620^{\prime \prime}$ of usable chassis space -far less than any other slides of equal capacity.

Made of hard, cold-rolled steel, each slide is cadmium plated and then coated with Poxylube 75. This is a bonded film of molybdenum disulfide which provides permanent dry lubrication and protects the metal against solvents, acids and corrosion.
Chassis-Trak C-230 slides are available in seven lengths-12" to $24^{\prime \prime}$-and in a choice of tilt, tiltdetent or non-tilt models. The detent model locks in three positions -90° up, horizontal, and 90° down -for convenience in servicing both tube and circuitry sections.

For complete details and specifications on the new C-230 Utility Slide, write for Engineering Data Sheet No. 1600.

CHASSIS-TRAK, INC. 525 SOUTH WEBSTER AVE. • INDIANAPOLIS 19, INDIANA
CHASSIS-TRAK, INC. 525 SOUTH WEBSTER AVE. $\begin{gathered}\text { CIRCLE } 25 \text { ON READER-SERVICE CARD }\end{gathered}$
CIRCLE 25 ON READER-SERVICE CARD

/TWMXT TRIMMERS...
 there's little difference in shape not much difference in size but a BIG DIFFERENCE INSIDE

Reliability thru proven manufacturing techniques is inherent in TIC Trimmers. TIC Standard Trimmers are not only dependable but are AVAILABLE FROM STOCK throughout the nation for fast deliveries.

And as an extra feature TIC has simplificd your selection military types in a choice of 4 mountings - all have a temperature range of $-55^{\circ} \mathrm{C}$ to $-225^{\circ} \mathrm{C}$.

TIC box trimmers with recessed lid are designed for the most efficient four point sealing against moisture and dust.
Standard box trimmers are individually subjected to bubble testing.

All welded connections and dual contacts on both resistance clement and slip rings are quality manufacturing features of TIC Trimmers.
COMPARE you'll see the BIG DIFFERENCE INSIDE

distributed nationally by A V $\mathrm{N}=$?

Tres

RTW-WI (Wire Leads)
RTW-L. 1 (Solder Lugs)
RTW-L2 (Solder Lugs)

RTW-PI (Printed Circuit Pins)
25 turn lead serew adjustment $\left(9000^{\circ}\right)$. Standard Resistance Values: $50-100 \mathrm{~K}$ ohins. Non-standard values between 10 ohms and 125 K ohms available on special order. Values below 10 ohms and between 125 K and 225 K ohms also available through the use of special techniques.

Subminiature TPC-P 1 for printed circuit application.
 37 turn lead screw adjustment
 $\left(13320^{\circ}\right)$. Standard Resistance

 Values $50-30 \mathrm{~K}$ ohms. Non-standard values between 10 ohms and 30 K ohins available on special order.

TYPE RWT-CI (Wire Leads)

25 turn lead screw adjustment (9000°).
Commercial type, low cost
 trimmers have a temperature range of $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Anodized inctal cases and cyclet mounts permit stacking multiple units in limited areas. Standard Resistance Values $50-20 \mathrm{~K}$ ohms. Non-standard resistance values between 10 ohms and 25 K ohms available on special order.

For full details write, wire, or call
TECHNOLOGY INSTRUMENT CORP. 71.

130 West Pacific Ave., Fianklin Park, Illinois, Gladstone 1.1140 Subsidiary of TECHNOLOGY INSTRUMENT CORPORATION 531 Main Street, Acton, Mossochuselts. COlonial 3.7756

Hot klystron boils fluorochemical fluid with high heat of vaporization. Klystron is packed inside its power supply in the new flexible liner packaging approach.
through an FC-75 vapor condenser. Maximum output of this supply is 15 kv dc at 125 ma , regulated for line voltage and load changes.

Placing the klystron inside the powersupply package eliminates the need for a multi-pin, high-voltage connector designed for corona-less operation at high altitudes, which offers a difficult mating problem. Careful shielding to protect stray pickup and testing of the high voltage cable between the supply and the exterior klystron is also eliminated.

Plastic Foam Lowers Fluid Required

Since FC-75 is expensive, low thermal dissipation areas within the supply are filled with lightweight plastic foam to reduce the amount of fluid required.

In response to questions at the Packaging Conference Mr. Renaud indicated that the properties of FC-75 were not affected by long periods of boiling under Raytheon tests. It is necessary to maintain an adequate supply of fluid to handle heat transfer requirements, he commented, or there is danger of burning out the klystron. Even with advanced sealing techniques there still will be some leakage of fluid over long operating periods, he commented. - -

There's a lot to like in TAN-O-MITE ${ }^{\text {© }}$

 OHMITE TANTALUM SLUG CAPACITORS

FAST DELIVERY of MIL and stock values from factory and distributors
 Power Ressistors
Precision Resistors Variable Transformers OHMITE Tap Switches Germanium Diodes Gicromodules
OHMITE MANUFACTURING COMPANY 3643 Howard Street, Skokie, lllinois CIRCLE 27 ON READER-SERVICE CARD

"I can't test every relay!"

You shouldn't have to! Besides, quality can't be "tested into" relays-it has to be built in at every step of the production cycle. At General Electric it is.

Not simply individual tests for shock, vibration, etc., but complete quality control is what gives General Electric relays exceptional reliability.

Quality control begins with stringent material tolerances General Electric demands of its vendors, monitored by frequent appraisals on everything from tool calibration to their reporting procedures, and checked by G.E.'s careful processing of incoming materials. Result: less than 1% of incoming material must be rejected.

Quality control continues with equally exacting measures in our own plant:

- Of average relay manufacturing time, General Electric spends 30% in planned quality checks-much more for specials.
- More than 25% of total factory floor space is used to test relays.
- Advanced equipment and techniques are used, including the unitized testing console. This automatic, on-line testing center eliminates human error from production acceptance tests, eliminating another variable of relay reliability.

But, quality control doesn't end here General Electric quality control even follows relays into the field to analyze
malfunctions and, if necessary, re-assess testing procedures, or design.

It all adds up to complete quality control-a highly developed monitor and feedback network that guides General Electric's manufacturing process through the consistent production of industry's most reliable sealed relays.

For information on our special cus-tomer-requested testing program, or more on quality control, see your G-E Sales Engineer. General Electric Co., Specialty Control Dept., Waynesboro, Va.

Progress /s Our Mast /mportant Product
GENERAL (⿹ㅏㅇ ELECTRIC

GENERAL ELECTRIC SEALED RELAYS-UNMATCHED FOR RELIABILITY
CIRCLE 28 ON READER-SERVICE CARD

EDITORIAL

Science, Electronics, and Elections

That science and technology has not become an election issue in 1960 comes as no great surprise. Few, if any, can see any issue at stake. But is there really no national policy involved?

Will the benefits of science and technology-new materials, new control over our environment-automatically benefit mankind? Bertrand Russell has said science can enhance among men two great evils, tyranny and war. Are we fully aware of what is at stake?
More scientific and technical information is necessary if we are to make policy decisions on the control of nuclear testing and disarmament. The nation's emphasis on basic research is important; governmental policy must be conducive to free inquiry into all of nature. The Presidential candidates views on these matters are important. How the candidates view the dissemination of scientific information, both to researchers and the public at large, is vitally important. Secrecy defeats scientific inquiry. If the voters do not understand the issues involved, they cannot make informed decisions at the polls.

Scientific objectivity must be separated from political opinion. This has hardly been achieved so far in the U.S., as is indicated by the official reports on the danger of nuclear radiation. If scientists and engineers are to perform the role proposed for them by Prime Minister Macmillan as the first step towards disarmament, they must be able to shun political pressures.

In the past, we have had little way of knowing if our actions have been consistent with our national objectives. We have not yet taken advantage of operations research, or systems research, to determine if the many variables at stake are being properly interrelated. We need such research if we are to achieve any success in, for example, disarmament and weather control.
Britain's new Minister of Science has said, "My purpose is to make the voice of science coherent and articulate under government encouragement and in one sense to make science selfgoverning under governmental inspiration."
Is not this the challenge before us now? The President has a responsibility in these areas and if he does not lead, it is up to those in the technical professions to see that the issues are clear.
(For the views of the two candidates on scientific subjects, see p. 4.)

Bryant Memory Drums For Every Storage Application

Whatever your immediate or long-range computer requirements, Bryant is equipped to provide "right now" response to your needs for prompt delivery of custom-designed memory drums, standard storage units, read/record heads, and other precision memory system components.
Remember-Bryant Magnetic Memory Drums offer these special features:

- Time-proven reliability
- Dynamically balanced at
- Super-precise ball bearing
- suspension
- Precision integral-drive
Induction motors
- Dynamic runout loss than .0001*
- Precision intuction motors
- Exclusive tapered drum design

GENERAL MEMORY
Capacity-20,000 to $2,500,000$ bits @ 130 bits per inch
. . Tracks-40 to 420 . . Speed-600 to 24,000 rpm . . . Size- 5^{n} dia. $\times 2^{n}$ long to 10^{n} dia. $\times 19^{n}$ long . . . Access time -As low as 2.5 ms (one head per track).

MASS MEMORY Capacity-Up to 6,210,500 bits on a single drum ... Tracks -Up to 825 .. . Speed-900, 1800 or 3600 rpm . . . Size - Up to 825 ... Speed-900, 1800 or 3600 rpm. . . Size $-18.5^{\prime \prime}$ dia. x up to 3^{n} long.
16.6 ms (one head per track).

BUFFER APPLICATIONS

Capacity-Up to 225,000 bits . . . Tracks-Up to 150 . . Speed-Up to 60,000 rpm . . . Size- $3^{\prime \prime}$ to $5^{\prime \prime}$ dia. x $1^{\prime \prime}$ to $8^{\prime \prime}$ long . . . Access time-As low as 0.25 ms (4 heads per track (a) $60,000 \mathrm{rpm}$).

AIRBORNE SYSTEMS

 Capacity-60,000 to 180,000 bits . . . Tracks-50 to 150 . . Speed-Up to 18,000 rpm . . . Size-As small as $6^{\prime \prime}$ dia. $\times 6^{\text {" }}$ long . . . Weight—As light as 7 Ibs. . . . Access time-As low as 3.3 ms (one head per track).

SPECIAL PURPOSE MEMORIES

Analog recording . . . Multispeed operation . . . Speed-As low as 2.5 rpm . . . Aerodynamic heads for high density, high frequency recording.. . Flux-sensitive heads for lowspeed playback . . . Air bearing drums . . . Magnetic Disc Files for mass storage up to $150,000,000$ bits.

For more detailed information, or if you'd like to discuss your particular storage drum application problems, contact your Bryant Representative. or write direct.

CIRCLE 30 ON READER-SERVICE CARD

Designing for Maintainability CTON:

An ELECTRONIC DESIGN Staff Report
George Rostky
Associate Editor

Contents

Maintainability-Where It Came From; Where It's Going

36 Techniques in Designing for Maintainability

42 Maintainability in Action
0 Check List of 241 Design Features For Maintainable Equipment

58 No Time-Base Needed in Signal Corps Maintainability Specifications

64 Products for Maintainable Designs

Only recently an infant stepchild of reliabiliv, maintainability philosophy has emerged as an imp tant new discipline. Often in conflict with the demand of its elder, reliability, it has aroused the increasin interest of both industry and the military.

All three military services have spent large sums o money for maintainability studies, but by their 0

Maintainability-Where It|In

the initial equipment costs, and it is essential that more electronic design engineers become proficient in the art of designing for maintainability.
It is with this objective that ELECTRONIC DESIGN's editors have prepared this Staff report and have invited guest contributors to participate in this presentation of maintainability's past, present, and future.

It mes From; Where It's Going

it hard to believe that their beautiful designs could fail in the field. But somehow, fail they did.

They simply didn't stop to think that the man who had to repair the equipment, a man with no engineering degree, might have to work in bitter cold (with gloves), in sweltering heat (with sweat), or in storm-drenched mud.
Even with the full understanding of the electronics designer, the road to maintainable equipment is not a smooth one. There are many obstacles, many roadblocks, and many conflicting requirements. There are times when maintainability features must be traded off for greater reliability. And there are many features which may enhance maintainability but degrade reliability.
Plug-in modules, for example, cornerstones of maintainable equipments, may be anathema from the viewpoint of reliability. Plug and connectors are weak links in reliable equipment.

Interdisciplinary Conflicts
 Breeding New Disciplines

Conflicts like this one, between maintainability and other disciplines, are beginning to breed a new discipline-availability. This new discipline (also called readiness, or operational availability), is supposed to lead to a harmonious unification of maintainability, reliability, and still another discipline-supportability. This last is largely a recognition of the logistics involved in keeping equipment working in the field.
In essence, availability is a philosophical concession to the approach of the line officer: "I don't care how much reliability it has, nor how much maintainability it has. What I want to know is-when I need it, is it ready?"
Ivailability embodies the quest for the best
compromise between the various disciplines for a given system. The need for maintainability itself varies very widely, depending on many factors. As such, maintainability has enthusiastic supporters and equally enthusiastic antagonists.

Military Sees Maintainability In Widely Different Lights

The Air Force, the Army Signal Corps, and the Navy's Bureau of Ships are strong supporters of maintainability efforts. Naval Ordnance, on the other hand, is quite unfriendly to the concept, and insists on greater efforts to improve equipment reliability.
In a talk before the First EIA Conference on Maintainability of Electronic Equipment, H. A. Wilcox, head of the Weapons Development Dept. of the U. S. Naval Ordnance Test station in China Lake, Calif., presented his position this way:
"Your design for easy maintenance has to take into account dirt, rain, ice, heat, cold, vibration, and tooth-tingling shocks in handling. And it has to cope with the bored, curious, intelligent man who wants to take it apart to see how it worksconfident that the 'tuning up' he gives it will improve its operation and relieve a dull afternoon.

If Repair Is Allowed,

Repair Becomes Necessity'

"It is my conviction," Mr. Wilcox elaborated, that most field repairs reduce instead of enhance the reliability of the item 'fixed.' "Repair is a selfjustifying operation. If repair is allowed, the reliability drops so low that repair automatically becomes a necessity."
He emphasized the fact that an ordnance item,
whose sole use is in wartime, should be designed for long shelf life, almost no maintenance, and absolutely no field repair. Insisting that reliability should be uppermost and that equipment must be maintenance-free, Mr. Wilcox summarized his attitude by saying that "test equipment should in fact be eliminated altogether."

BuShips Awards Contract
 To Find Practical Yardstick

Holding the opposite position, the Navy's Bureau of Ships awarded a contract to Federal Electric Corp. of Paramus, N.J., to establish a practical procedure for measuring and predicting the maintainability of fleet electronic equipment during the design stage. This recently completed two-year study is the first step in a long range BuShips program to develop a practical method of numerically specifying maintainability in procurement contracts.
BuShips' Capt. William I. Bull points to special Navy problems which emphasize the need for better maintainability. In common with the other services, the Navy has the problem of a low reenlistment rate (12 to 14 per cent) for first-cruise electronics technicians. But the Navy has mission times which average up to 90 days-far more than the other services.

And where the Army and Air Force can use experienced contract technicians, the Navy normally can not. Captain Bull emphasizes the point that shipboard equipment can rarely go back to the factory during a mission. Naval equipment must have as much self-sufficiency as possible.
Mr. F. N. Stehle, head of the BuShips Reliability and Mainterance Unit, goes a step further in describing the special position of the Navy. The

Designing for Maintainability Th
 Status

size of a ship, he points out, can have a profound effect on the type of maintenance it can support. A destroyer, with relatively few instruments of a given type, and with a relatively small crew, has requirements which differ vastly from those of a carrier.

Air Force Publishes First Maintainability Specifications

The Air Force, another enthusiastic backer of maintainability, holds the distinction of being the first to publish a maintainability specification, Mil-M-26512. Published in June, 1959, it is still the only military specification on maintainability. (The Signal Corps expects to publish one early next year and the Navy hopes to have one by the end of the year.)
Mil-M-26512 defines maintainability in terms of repairability and serviceability. It then defines repairability as a product of two probabilitiesthe probability of correcting a failure in a given time with a given expenditure of manpower, and the probability of the system then operating satisfactorily for a given time.
The parameters given to determine repairability include the time to diagnose and isolate malfunctions, the time to repair malfunctions, the manpower and skill levels required for repair, and the time the equipment operates satisfactorily without corrective maintenance.
Sidney Hirshon, who deserves most of the credit for developing the specification, recognizes that it has generated differences of opinion-some of them rather sharp. He points out that the Air Force will continue to improve the specification of maintainability and that Mil-M-26512 is now undergoing revision. Bulletins are being published which will amplify and clarify some of the less clear aspects of the spec.
The Air Force's Col. George Getz, attempting to get to the root of the maintainability problem, suggests that the situation would be much improved if manufacturers (and electronic designers) knew who their customer was. A very important part of the composite customer, says Col. Getz, is G. I. Joe.

Knowing Customer Through
 Market Research Can Help

He suggests that companies producing equipment for the military services should conduct
some kind of market research so they could better understand their customer and his needs. They should know the proposed environment for equipment they design in terms of the skill, tools, and test equipment available as well as the physical environment.
To help manufacturers know their customer better, the Air Force has conducted several tours of AF maintenance technicians through contractors' factories. Results of these tours, which the Air Force hopes to continue, were highly satisfactory to the Air Force and the contractors, though not always too flattering to the design engineers.
In one case, a corporal, a maintenance technician, educated (and embarrassed) a rather tall design engineer who had mounted a display high on an equipment console. The $5-\mathrm{ft}, 3-\mathrm{in}$. corporal couldn't read the display. In this case, the designer solved the problem quickly. He tilted the display down so it could be read by a short or a tall man.
The Air Force, the Navy's Bureau of Ships, and the Army Signal Corps can all be counted as strong supporters of maintainability. ${ }^{\circ}$ Naval Ordnance holds an opposite position. The "halfway" position can be found at the Bureau of Naval Weapons.

Mr. Henry Thoman, head of the Material Coordination Unit of the Avionics Div. of BuWeap, favors maintainability and is very much impressed with the advantages possible from the use of expendable modules but he leans most heavily toward reliability. \dagger In most cases where a trade-off is necessary between a maintainability feature and a reliability feature, Mr. Thoman says, he would have a tendency to favor the reliability feature.
The different military attitudes toward maintainability find their counterparts in attitudes in industry. It would be hard to find an authoritative executive in industry who would be outspoken in his opposition to maintainability. Instead one finds people who are lukewarm in their support or who offer conditional support. These men are primarily concerned with the harmful effect which too much emphasis on maintain-

- The Signal Corps approach to measuring and specifying maintainability differs substantially from other approaches which depend heavily on measuring time. It is therefore presented separately in this report as an article entitled "No Time-Base Needed in Signal Corps Maintainability Specifications, p 58 ."
\ddagger The Bureau of Aeronautics, now integrated in the Bureau of Naval Weapons, sponsored the National Bureau of Standards research which resulted in the report "Expendable Modules as Bases for Disposal-at-Failure Maintenance." This report is available at $\$ 2.25$, from the Office of Technical Services, Washington 25, D. C.
ability may possibly have on reliability efforts.
As typical of this concern, one can take the comments of W. Van Alan Clark, Jr., president of The Sippican Corp. of Marion, Mass.
"First," he says, "we feel very strongly that undue concern with maintainability has tended to cause designs which require maintenance. In general, complex electronic systems come apart too easily, which means that they do come apart. We feel that the emphasis we find on easy field maintenance has not only made equipment less reliable than it should be, but has had a highly undesirable effect upon the skill and training of the field-maintenance personnel. The military, in particular, are finding the cost of training field-maintenance personnel to be astronomical. Were the equipment to be designed with larger, swappable or chuck-away units, field personnel could concentrate on how the system works, and not worry about individual component or circuit behavior."

Call for Equipment Design

For Different Modes of Maintenance

Mr. Clark goes on to recommend that equipment be designed for different modes of maintenance at different positions in the logistic train As an example, he cites a computer, designed to be disassembled a large number of times in its "shop" mode, which could be put in a "ready" mode by welding every connection and having no mechanical joints of any kind.

This computer could make about four round trips from "shop" to "ready." But this limitation on round trips from service to repair was well compensated by a very high basic reliability and compactness.

Some Observers See Trend
 To Factory Repair of Equipment

Unlike most observers, Mr. Clark sees trends to performing almost all electrical maintenance at the source. "Maintenance activities," he comments, "can damage equipment terribly. Diag. nosis of what is wrong in most equipment is best carried out by specialists who have known the equipment during its design and development stages.
"Equipment is becoming much more compact, which means that it is easier to transport to rear areas or to factories for maintenance. Finally, transportation to any point of the globe is now really rapid, and the money which may be spent maintaining a complex electronic device dwarfs the cost of flying out a sub-system and flying back the other section for factory overhaul."

In supporting these views, Mr. Clark gives an example in which ". . . one fourth the volume of a modular design we are now building is taken
u) by an idiot-proofed test connector; we pay tl is price to make sure that field experts don't wreck the machine."
Speaking in a similar vein, Mr. W. L. Kirchoff of the Walkirt Co. at Inglewood, Calif., says: "Some of the novices in the industry tend to overemphasize maintainability to the detriment of economy, and even to the detriment of maintainability itself."
"This sounds conflicting," Mr. Kirchoff admits, "but it really isn't." Take the case of the trend toward modular circuitry, where, a circuit comprised of perhaps 20 components is unitized as a plug-in device. Modular circuitry certainly enhances maintainability.
"Yet, we still encounter people in the field (although their ranks are thinning) who insist that each component in this modular circuit shall be replaceable. They theorize that it is uneconomical to discard a $\$ 20$ package for the sake of a burned-out 10 -cent resistor. They then have created 'maintainability' to the degree that each component may be replaced."
Though Mr. Kirchoff and Mr. Clark may be lonely in their over-all views on maintainability,
they are by no means alone in their attitudes on module size.

Controversy Continues

On Module Size and Throw-away

Many of the strong supporters of maintainability are strongly opposed to replacing individual components in the field. There is still a lot of discussion on just how large a module should be and the question of throw-away modules is still a matter of controversy. But there are very few who would advocate making low-cost components (like resistors) accessible in the field except in situations where the equipment design is such that the maintenance technician can find a faulty resistor very quickly.
The whole problem of module size is a very touchy one, interrelated as it is with problems of module cost, time required to locate a fault, component density, spare-parts inventory, skill-level of personnel required, length of mission, and others.

In general, it is easier and faster to track a malfunction down to a faulty module and to replace that module with a good one than it is to

locate and replace a faulty component. No one denies this.

But it is easier, in general, to provide logistic support in the form of individual components which can serve an entire system than it is to store spare modules for the many equipments which make up a system.
Even where the module-replacement formula is adopted, this still leaves open the question of whether to repair faulty modules in the field (at leisure), whether to return them for factory repair, or whether to throw them away.
The last choice, of course, affords an advantage in that throw-away modules lend them selves most readily to encapsulation and to the improved reliability which encapsulation may impart.
But, to throw away or not to throw away, that is the question. It has by no means been resolved, although there is growing support for the throw-away concept. A recent National Bureau of Standards study, based on analyzing tube modules only, concluded that, for airborne equipment, an optimum module would include four to eight tubes. Thus study found that the cost of procuring, maintaining, and supporting expendable modules was practically the same as the cost with repairable modules.

Study of Fire-Control System
 Compares Four Philosophies

On the other hand, a study of expected costs of different maintenance philosophies for the Polaris submarine fire-control system gave opposite conclusions. In this study, total cost using the throw-away philosophy is greatest.

Describing this economic analysis by the General Electric Co. in Santa Barbara, Calif., Ernest J. Mosbaek gives results for four maintenance philosophies-use of throw-away modules, repair on the submarine, repair on a tender, and repair at the factory.

In this study, using throw-away modules proved most expensive; repair at the factory was next; repair on a tender followed, and repair on the submarine proved least costly. Using throwaway modules, the study found, would be two and one-half times as costly as the system requiring repair aboard the sub.

Conflicting Results Show Need
 For Separate Systems Studies

The apparent conflict between the findings for a submarine system and those for airborne equipments leads to an important conclusion: One cannot design for maintainability in general.

One can only design maintainability into a specific system. One must know its specific en-

EL CTRONIC DESIGN • October 26, 1960

Nickelonic News
 developments in nickel and nickel alloys and their applications

Metal that acts like air wraps half-mile vacuum

UPTON, N. Y. In the huge new 25-Bev Synchrotron at Brookhaven National Laboratory, Inconel " X "* age-hardenable nickel-chromium alloy - "a metal that acts like air"-is used to contain a $1 / 2$-mile-long proton beam vacuum cavity.

Tube of low-magnotic Inconal "X" alloy carries Synchrotron's 25 - Bev proton beam botween magne $\frac{1}{1 / 2}$ milo around.

Inspecting one of Synchrotron's 240 magnots. This on weighs about 17 fons. Inconol " " x "'snots. Thbe fits Monel speeds sound brazing of resistor caps "Nickel Alloys for Electronic Uses" (see box, below) and T-15; "Engineering Properties of Nickel."

Newly Revised Booklet - "Nickel Al-

 loys for Electronic Uses"-gives you facts on 17 freely available nickel alloys useful in the electronics industry . facts on typical applications, physical and chemical properties, avail-able mill forms. Ask us for your copy.

Our specialists can help you solve metal problems. Contact your Inco Alloy Products distributor or:

HUNTINGTON ALLOY PRODUCTS DIVISION The Infernational Nickel Company, Inc. Huntinghon 17, West Virginia

Principal reason for the selection of Inconel "X" alloy, reports Brookhaven, was its high electrical resistivity. This resistivity, about 740 ohms per circular mil-foot, results in the avoidance of high eddy currents. In addition, the low magnetic permeability of Inconel "X" alloy, approximately the same as air, has virtually no effect on the strong magnetic field passing through the tube walls to guide the proton beam.
Inconel "X" also benefits vacuum cavity fube in other ways
Its high structural strength permits thin-wall construction-tensile strength after heat treatment, above 130,000 psi. Other physical properties important to this application-the alloy's low vapor pressure, good degassing, freedom from porosity.
Inconel "X" alloy provides good fabricability, too-tube is formed in sections from 0.078 -inch sheet, welded and flanged.
Pertinent Literature: Send for 51-B; "Nickel Alloys for Electronic Uses." numbered in above photo.) Designers report why:

Electronic Grade "A" Nickel offers outstanding purity in ribbon (1)

Inco " 220 " Nickel assures proper outgassing in washer ring (2), tube (3), tube shield (4).

Another nickel-chromium alloy retains non-magnetic characteristics in reed (5), and reed coil support (6).

Alnico (nickel-iron alloy) magnets provide stability (7) ; cupro-nickel pole support provides strength, non-magnetic characteristics (8).
Pertinent Literature: Send for 51-B;

Close-up of Menol caps soundly brazed to winding ond leads of semi-finishod resistor. Mad by Soge Electronics Corporation, 302 N. Goodma
St., Rochester 7. N. Y.

Rochester, N. Y.: Monel* nickel-copper alloy now makes possible, fast, sure brazing of connections in resistors designed for severe service by Sage Electronics Corporation (see photo, left). In the caps, Monel alloy also gives excellent resistance to corrosion in
murderous environments... and promurderous environments... and provides essential strength for anchoring leads.
Monel boosts durability in other electronic components, too In one magnetron, for example, Monel alloy provides an output flange and mounting plate with the toughness and strength needed for $6000-\mathrm{hr}$ life. In fastenings, Monel alloy stands up In backing for contact points knocks. in backing for contact points, Monel and brazing properties.
Pertinent Literature: Send for 51-B; Pertinent Literature: Send for 51-B; "Nickel Alloys for Electronic Uses" and T-5 -"Engineering Properties of Mo-

- inco tratemark
vironment, the specific costs of supporting the system (with supplies, test equipment, and maintenance men), and costs of down-time or failure

There are no absolute rules though there are useful guides. One approach is provided by R. E. Kuehn, manager of reliability engineering at IBM Corp. In a paper presented before the Second EIA Conference on Maintainability of Electronic Equipment, Mr. Kuehn recommended that throw-away modules be designed to have a mean-time-to-failure of 2.5 times the design operating life.

Mr. Kuehn provided economic justification for the throw-away module (in aircraft equipment) on the basis of the costs of unreliability and on the higher reliability and volumetric efficiency of the non-repairable module.
In addition to lower cost, he cited supplementary, hard-to-measure advantages of the throwaway module. Using non-repairable units, he said, gives 50 per cent more volume and a 40 per cent lower failure rate.

The contradictory evidence provided by dif ferent maintainability studies shows, not only that each system must be studied separately, but it highlights another fact as well: Maintainability is still young.
Some of the pioneering works in this field are only four years old. ${ }^{\circ}$ At that time, maintainability was a rather unnoticed stepchild of the discipline of reliability.
Its recognition as an important discipline, when it began to stand on its own feet, began three years ago with the First EIA Conference on Maintainability of Electronic Equipment in December 1957. The second conference, ${ }^{\dagger+}$ held in May 1958, solidified maintainability's position as a recognized discipline.
The third such conference will be held in San Antonio on Dec. 5, 6, and 7.ł This conference

- See bibliography for a brief list of some of the important maintainability studies.
\dagger Papers presented at the first and second conferences are included in "Maintainability of Electronic Equipment," available from Engineering Publishers, P. O. Box 2, Elizabeth, N. J. at $\$ 6.00$ for both. Papers to be presented at the Third EIA Conference on Maintainability of Electronic Equipment, are included in "Maintainability of Electronic Equipment-Vol. 3," now available frum the same publisher at $\$ 10.00$.
should resolve or at least shed more light on many of the problems that confront design engineers. For example, Dr. M. J. Marcus of IBM's Military Products Div. will identify those factors wiich remain invariant from one hardware system to the next.
Other speakers will nail down other elusive aspects of designing for maintainability, such as how to determine the operational availability of complex systems, how to evaluate automatic test equipment, and how to forecast the requirements for spare parts.
The Third EIA Conference on Maintainability of Electronic Equipment will surely add maturity to a young field which is growing, and indeed, must grow, very, very rapidly. - =

Bibliography

Electronic Industries Association. Suggestions for Improving the Maintainability of Military Electronic Equipment for the Designer, Installer, User, and Maintainer, N. Y., Dec. 1957.
J. D. Folley, J. W. Altman. Factors Influencing the Maintenance of Electronic Equipment. U. S. Naval Training Device Center, Jan. 1958.
J. D. Folley, J. W. Altman. Guide to Design of Electronic Equipment for Maintainability, WADC Tech, Report 56-218, AD 101729 Wright Air Development Center, April 1958. (Available from O.T.S. at $\$ 4.50$.)
G. Grant and J. McKendry. Design for Maintainability: Final Management Report, Technical Report No. 330-1. U. S. Naval Training Devices Center, Port Washington, N. Y., Sept. 1959.
D. C. Greek. Checklist of Human Engineering Design Principles, North American Aviation Inc., Missile Division, Jan. 1959.
J. M. McKendry, J. F. Corso, G. Grant, and F. A. Scheihing. Design for Maintainability, Technical Supplement 1: An Experimental Investigation of Equipment Packaging for Ease of Maintenance, Technical Report $330-2$, U. S. Naval Training Device Center, Port Washington, N. Y., June 1959.
J. M. McKendry, G. Grant, and J. F. Corso. Design for Maintainability, Technical Supplement II: Survey Information (A) Description of the Training Device Technician, and (B) Engineers Estimates of Circuits and System Maintainability. Technical Report 330-3, U. S. Naval Training Devices Center, Port Washington, N. Y., July 1959.
R. B. Miller and J. D. Folley, Jr. Recommendations on Designing Electronic Equipment for the Job of Maintenance, Human Resources Research Center, Research Bulletin 51-33, Lackland Air Force Base, Dec. 1951.
M. R. Munger and M. P. Willis. Development of an Index of Electronic Maintainability: A Research Report. American Institute for Research, Pittsburgh, Pa., June 1959.
U. S. Navy Electronics Laboratory, NEL Reliability Des:gn Handbook, PB 121839, United States Departmen! of Commerce, Office of Technical Services, 1954. Maintainability of Electronic Equipment, Vol. 1, Vol. 2, and Vol. 3. (Three separate books.) (Proceedings of the first second, and third EIA Conferences.) Engineering Puh ishers, Elizabeth, N. J.

new career opportunities with ACS

SENIOR RADAR DESIGN \& DEVELOPMENT ENGINEERS

BS or MS degree and radar experience in one of the following specialized areas:
... experience in design of blanking circuits, deflection circuits, and video signal amplifiers, plus background in the field of processing of radar information to include smoothing and filtering of radar data as part of human factors engineering.
... experience in video and high-frequency computing circuits. For example, phase deflector multiplier circuits, IF amplifier circuits, summing video circuits, magnetron circuits, AFC circuits, and gated video circuits. Capable of design analysis of circuits and correction of design deficiencies. Experience should include packaging, grounding, and shielding of video and RF circuits.
. . . experience in systems engineering on airborne radar equipment

COMMERCIAL COMMUNICATIONS ENGINEERS

BS or MS in Electronics/Electrical Engineering to perform advanced development, product design, and production engineering of commercial products. Background preferred in VHF and UHF communications, airborne and ground equipment-FM, AM, single sideband, selective signaling encoders and decoders, transistorization of RF, Audio and pulse circuitry.

ENVIRONMENTAL TEST ENGINEERS

Experienced electronic engineers to develop test methods and procedures for complex electronic components and systems.

Inquire abouf other opportunifies in Milwaukee.

For additional information write the Director of Scientific and Professional Employment:

MR. ROBERT ALLEN
Oak Creek Plant, 7929 S. Howell Ave., Milwaukee 1, Wisconsin

AC Spark Plug - The Electronics Division of General Motors Milwoukee, Wisconsin - Los Angeles, Colifornio - Boston, MossochuseHs

in Designing for Maintainability

Though no single maintainability technique can serve all systems with equal value, the guidelines, the general approach, and the specific suggestions in this article should prove invaluable to all designers of maintainable equipment.

J. F. Corso, J. M. McKendry, G. Grant HRB-Singer, Inc.
A unit of the Singer Military Products Div. Singer Manufacturing Co.
State College, Pa.*

SOLUTION of the maintainability problem lies mainly in the designer's hands. The designer must realize that each of the three phases in the maintenance process brings about unique problems.
In fault detection, a technician must sense a change which has some visual, auditory, or tactual consequence. The best way to solve this problem is to display indicators of degraded performance in such a way that the probability of detection is maximized.
The second phase, fault localization, involves a complex problem which mixes elements of problem solving with those of information display. This problem is best solved by decreasing complexity and increasing the probability of information transfer.
Finally, the third phase, fault correction, is primarily a problem of accessibility and skill.
These problems in the maintenance process have stimulated several approaches to their so-

[^0]lution. Each approach has brought with it further problems of its own. One approach attempts to improve the proficiency of the technician by training. But the turnover of military maintenance personnel is so great that there is not sufficient time to train these people.
Another approach tries to provide equipment with maximally effective maintenance manuals. Benefits here are limited by the design techniques which may be available.

A third approach tries to head off troubles before they occur by periodic replacement of parts. But this technique assumes that electronic components gradually wear out in some predictable fashion-a belief which, for the most part, has been contradicted by a large body of research. ${ }^{1,2}$

Offering most promise is the approach of designing for maintainability. But here it is essential that positive steps be taken as early as possible to avoid costly equipment redesign.

Specific suggestions to help the designer through various decisions he must make are presented here.

Maintainability Starts
 With System Specification

Preliminary engineering work traditionally begins with a careful study of customer demands and ends with the production of a preliminary
system description of the proposed equipment in block-diagram form.
The first important step during this phase is to fix responsibility for maintainability. This is best done by assigning one person to the job of insuring that suggestions provided in available guidebooks ${ }^{1}$ are followed. The second step is to study the maintenance structure of the potential user. This should reveal the levels of maintenance support which are available, the skill level of the servicing technicians working at each level, and the peculiarities associated with each work environment.
As the equipment begins to take shape in the form of a rough block diagram, the designer should remember two more points. At this point in the operation he should:

- Try to choose elements or stages with clearly defined output characteristics. The best choice from the technician's viewpoint is something which works in an "all-or-none" fashion.
- Try to eliminate complex feedback loops which confuse the troubleshooter. If the designer cannot eliminate complex feedback, he should provide additional checks on interacting stages. One way is to provide a switch to decouple the feedback

When a tentative block diagram is available,

ON REFLECTION, they agreed ON GACI

Plastic radar reflectors - as pioneered by Goodyear - offer better return on investment because (1) light weight means higher performance, (2) tooling-up is less costly; so are design changes, (3) high impact strength takes dents, hard knocks, (4) plastic fights corrosion, chemicals. Also, plastic offers important insulating, vibration-damping qualities, is readily formed into difficult shapes and is easily repaired. Add Goodyear's long experience in designing, fabricating, erecting and testing in reinforced plastics, metal sandwich-type materials, and structural metals, and you too will specify Goodyear Aircraft Corporation-the source of supply that handles the entire job to your specification. For more information, write Goodyear Aircraft Corporation, Dept. 916TV, Akron 15, Ohio.
CD(D) Ely
Plants in Akron, Ohio, and Litchfield Park, Arizona| Providing all 3 weapon system skills \square MANUFACru/fe

CIRCLE 33 ON READER-SERVICE CARD
methods are all superior to the standard method in reducing fault localization time. The logicalflow method is best.

Clearly Identified Test Points Simplify Checkout Procedures

Clearly identified test points can simplify system checkout procedures. These points should be visible from the top of the equipment and should have jacks so test equipment can be attached easily. Two levels of test points should be used and they should be differentiated by color coding if possible.

The first set should help isolate a fault to a particular equipment in a complex system. The second set should help localize a trouble to a specific subassembly within a unit. The same process can be applied again, at a later stage in design, to provide test points to pinpoint a trouble to a specific module. The test-point system is much easier to achieve with the logical-flow method of packaging.

Intermediate Design Phases
 Become More Specific

In the intermediate phases of design, the work usually starts with specification of circuits and ends with specification of components. Hence, the work becomes progressively more concrete and the maintainability suggestion becomes more specific.
Standardized Circuits can provide three substantial advantages: a saving in design time, a saving in manufacturing cost, and a saving in maintenance time employed for increased reliability and increased familiarity on the part of technicians.
Circuit Simplification, an important maintainability consideration, can best be achieved using these procedures:

1. Use standardized circuits where appropriate.
2. Design and package similar circuits in the same manner for interchangeability and quick substitution checks.
3. Avoid circuits with critical characteristics and close-tolerance parts.
4. Standardize component layout.
5. Package each functional change separately.
6. Avoid criss-crossing of signals between circuits. Test Points should be provided to monitor im-
portant circuit parameters. Highest priority should be given to those parameters which yield most information ${ }^{4}$ in troubleshooting. Most important tube-circuit parameters are:

Pin voltages, Output waveform, Input-signal voltage, Output-signal voltage, Input waveform.
Less important tube-circuit parameters are:
Grid-signal voltage, Plate-signal voltage, Grid waveform, Pine resistance, Plate waveform, Cathode-signal voltage, Cathode waveform.
Most important transistor-circuit parameters:
Output-signal voltage, Output waveform, Pin voltages.
Important transistor-circuit parameters are: Input-signal voltage, Collector-signal volttage, Base-signal voltage, Emitter-signal voltage.
Less important transistor-circuit parameters: Pin resistances, Input waveform, Emitter waveform. Base waveform.
The data for transistor circuits are not as well substantiated as those for tube circuits.
Prototype Layout should lead to rapid location, rapid removal, and rapid replacement of faulty components.

Component Selection

Has Two Prime Guideposts

Component selection should be guided by two dictates: (1) Choose reliable components. (2) Choose components which can be removed and replaced easily.

Beyond these principal considerations, special attention can be given to different component types.

With Tubes-

1. Avoid selected tubes.
2. Don't use tubes in applications which require the use of parameters not controlled by procurement specifications. For example, don't use a thyratron as a noise source.
3. Orient miniature tube sockets with their gaps facing one direction to expedite tube replacement. 4. Make tubes accessible so replacing them does not require unit disassembly
4. Secure tubes and other plug-in items with posi-tive-holding clamps which are easily released.
5. Space unshielded tubes at least $1-1 / 2$ tube diam eters apart.

With Fuses-

1. Fuse each unit of a system separately.
2. Put fuses on front panels where they can be seen and replaced without removing other parts.
3. Provide spare fuses in a convenient location.
4. Have fuses replaceable without tools.
5. Remember that fuses in unpressurized areas of aircraft cannot be replaced in flight.
6. Use indicator-type fuse holders.

With Screws-

1. Use screws with enough tensile strength to take normal wear.
2. Don't use too many screws. If four screws will hold a plate, do not use 16 .
3. Use as few types as possible. Alternation between slotted-head and Phillips-head screws forces the repairman to dig through his tool box.
4. Where different type screws are needed, be sure they can be identified readily.
5. Use different sizes for screws with different thread to avoid screws being forced into wrong holes an stripped.
6. Use bolts which require only a few turns to be secured or loosened.
7. Use rack-mounting bolts or nuts which are semipermanently attached to rack members to avoid the need for holding both nut and bolt.

With Mechanical Fasteners-

1. Avoid hardware requiring non-standard tools.
2. Use captive fasteners
3. Favor hand-operated fasteners which require n tools.

With Connectors-

1. Make cables accessible.
2. Fan them out in junction boxes if other test points with the same information are not provided.

Other Considerations Follow
 Component Selection

After choosing and using components optimally from the maintenance viewpoint, the designer must consider other factors which play an important role.

With Color-Coding-

1. Use vivid, attention-getting, permanent colors. 2. Use no more than 10 colors with one equipment

DESIGN WITH ARNOLD 6T CORES... SAME-DAY SHIPMENT OF STANDARD DELTAMAX CORE SIZES

3. Keep the meaning of a particular color consistent hroughout a prime equipment and its maintenance support.

for Safety-

Provide means to disable each interlock temporarily, so equipment can be serviced with power on.
Use an indicator to show when power is on.
. Place checkpoints away from dangerous components or potentials.

1. Leave extra space around high-voltage parts.
. Don't expose hot leads on disconnected plugs and onnectors.

With Covers and Cases-

1. Mount chassis requiring frequent removal on rollbut racks or slides.
2. Have roll-out chassis lock automatically in a ervicing position.
3. Provide limit stops to prevent pulling a chassis put too far. But have units free to open their full bistance and remain open without being held
4. Design cases to be lifted from units rather than the reverse. Cases are lighter.
5. Design cases to slide easily without interfering with wiring.
b. Make the method of opening covers obvious or ttach a permanent instruction plate to the outside ff the cover.
6. Make it obvious when a cover is in place but not ecure.
7. Make ventilation holes small enough so test probes r other conductors cannot be inserted inadvertently. Provide extra-large holes to pass mounting screws hrough covers or shields.
8. Make cases and covers larger than their units 0 wires and other components aren't damaged when ases are put on or taken off.
9. Use guides, guide pins, or tracks to prevent ases from cocking to one side.
10. Fasten panels, covers, and access doors with Faptive springbolts or screws, drawer bolts, trunk asteners, dogs, levers, and latches to provide quick nd easy access to interiors.
11. Design and space fasteners to be consistent with the required degree of enclosure and frequency of equired access.
12. Use the same type fastener for covers and cases In a siven equipment.
13. Use quick-acting fasteners for dust covers.
14. Use fine-threaded screws for pressurized units. 7. Iesign for only one access panel to be opened or renoving and replacing a unit.
15. I: opening space is a problem, use doubleinge 1 doors.
(continued on p40)

20,000 Deltamax 1, 2 and 4-mil tape cores in the proposed EIA standard sizes (See AIEE Publication No. 430) is ready on warehouse shelves for your convenience. From this revolving stock, you can get immediate shipment (the same day order is received) on cores in quantities from prototype lots to regular production requirements.
Use Arnold 6T cores in your designs for improved performance and reduced cost. They're guaranteed against 1000 -volt breakdown
. guaranteed to meet military
test specifications for resistance to vibration and shock . . . guaranteed also to meet military specifications for operating temperatures. The 6 T hermetic casing method is extra rigid to protect against strains.
Let us supply your requirements. Full data (Bulletin TC-101A and Supplements) on request. - Write The Arnold Engineering Company, Main Office and Plant, Marengo, Ill.

ADDRISS DIPT. ED-10

SPECIALISTS In MAGNETIC MAPERIALS BRANCH OFFICES Ond REPRESENTATIVES in PRINCIPAL

Arnold 6T tape cores (aluminumcased and hermetically-sealed) offer you three very important design advantages. One: Maximum compactness, comparable to or exceeding that previously offered only by plastic-cased cores. Two: Maximum built-in protection against environmental hazards. Three: Require no supplementary insulation prior to winding and can be vacuum impregnated after winding.

Now we've added a fourth vital advantage: Maximum availability. An initial stock of approximately

ELEC TRONIC DESIGN • October 26, 1960

With Controls-

1. Minimize the number of controls and indicators. 2. Make all controls, knobs, switches, and dials uniform when they are used for a similar purpose. 3. Use selector switches for scales and functions rather than multinle jacks.
2. Arrange controls by order of operation.
3. Distribute tasks for both hands equally.
4. Indentify control positions unambiguously.
5. Design controls to turn in a way compatible with the usual human tendencies-clockwise for increase, counterclockwise for decrease.
6. Mount often-used controls at elbow height but have them near displays they affect, if possible.
7. When order is important, design equipment so controls will not operate unless proper sequence is followed.
8. Position knobs and settings for a particular instrument in the same place on new models.
9. Prefer less complex controls such as toggle switches, jacks and plugs, pushbuttons, and selector switches.
10. Wire toggle switches so "on" is in the upper or right-hand position, and "off" is in the lower or 1 an mition.
11. Don't require too much finger pressure on push buttons.
12. Yrovide enough spring loading so selector switches are not left between detents.
13. Design linear-control knobs, so a slight movement of the knob does not result in a disproportionately large display change and large movement of the knob does not produce a disproportionately small display change.
14. Use hand-operated knobs for frequently used controls rather than tool-operated knobs.
15. Increase the size of knobs as the force required to operate a control increases.
16. Locate maintenance controls where they can be seen and operated without disassembly or removal of any part of the installation.
17. Have maintenance controls screwdriver-adjustable, and those which are used also as operating controls knob-adjustable.
18. Keep controls away from high voltages and hot tubes.
19. Keep adjustments in a single area.
20. Use round knobs for smooth, continuous movements in operation.
21. Use bar or pointer-type knobs for detent-type switching.

With Displays-

1. Locate displays used in system checkout so they can be observed frgm one position.
2. Mount checkout displays at proper eye height.
3. Arrange displays so an operator can't cover a display while manipulating a control.
4. If a display must be located in a difficult viewing position, provide a mirror.
5. Arrange dial elements to be coplanar to avoid parallax.
6. Have display devices providing special warnings and cautions as near as possible to parts of the equipment to which they apply, and have them indicate that they are directly usable without further corrections or interpretations.
7. Have display scales provide only the information actually needed.
8. Make the indicators on center-null displays fall out of the in-tolerance position if power fails.
9. For increasing functions, have a pointer move clockwise past a fixed scale or have a moving scale move counterclockwise past a fixed pointer.
10. Provide for pilot-lamp replacement from the front.
11. Distinguish between different scales in the same instrument.
instrument.
12. Make apertures in open-window dials wide enough to show at least two numbers.
13. Use similar scale progressions on dials on the same panel.
14. Provide displays which show when an instrument is not operating properly.
15. Use numerical scales only when a technician must have quantitative information.
16. Avoid irregular scale breakdowns.
17. Differentiate scales by color coding.
18. Label displays with the functions indicated.
19. Avoid the need for scale conversion. If arbitrary scales are essential, list necessary conversions in a table attached to the instrument.

With Test Points-

1. Label test points clearly.
2. Indicate standards and tolerances at each test point.
3. Show location of all test points on a plate on the outside of the equipment.
4. Label test points to correspond with similar designation on schematics.
5. Label test points with the designation of the unit being tested.

Test Equipment Planning Must Take Place Early

Early in the planning stages, the prime-equipment designer must consider the types of tests and test equipment which will be required, the maintenance procedures and materials, and the logistics support. He will have to decide whether tests should be made by general-purpose test equipment, built-in monitoring equipment, or automatic or semiautomatic-checkout equipment.

In specifying test equipment, the designer must remember that technicians often do not use certain test equipments because they believe they are inaccurate, inoperative, or difficult to operate. It is therefore essential that test-equipment design be simplified. The following measures can help.

With Test Equipment-

1. Provide a simple method for checking the accuracy of test equipment with an auxiliary calibration instrument.
2. Build in some signal which will indicate when the equipment is functioning and when it is not.
3. Provide devices to show that a correct manipula. tion has been performed before actual testing is done.
4. Minimize the amount and variety of test equipment required by a procedure.
5. Obviate conversion of one type of reading to another, such as milliwatts to dbm.
6. Use standard test equipment at all echelons of repair.
7. Provide sturdy test equipment in square or rec tangular form, with recessed or hinged handles.
8. Provide adequate storage space for leads, adapters, and other removable items in the lid or cover 9. Have closing of the lid shut off power.
9. Provide break- and scratch-resistant windows for dials.
10. Keep dial pointers stationary while equipment is being transported.
11. Prefer selector switches to plug-in connections. 13. Where plugs are necessary in test equipment use plugs with pins that are stronger than those which would be used for regular equipment.
12. Attach test leads to test equipment permanently
13. Use shock mounts on fragile test equipment.
14. Design for eye appeal. Drab and unattractive equipments invite rougher treatment.

Write Maintenance Manual
 For User-Not Designer

To help the maintenance technician, each equipment should have a good maintenance manual. It should be scaled to his exact needs at each logistic level.
In general, the manual should be kept as simple as possible. Its preparation should begin if the early design stages and its developmen should parallel design progress. In its final form it should be written by a communications spe cialist in the language of the maintenance mannot the designer.

Manual Should Include -

1. Essential test voltages and waveforms.
2. Typical performance limits
3. Typical maintenance routines.
4. Symptoms of malfunctioning equipment related to probable causes.

Whole Must Be Accessible

As Well As Parts

So much of designing for maintainability entails accessibility to parts of equipment that some designers, in concentrating on parts accessibility, forget over-all accessibility. Designers, in all cases, must consider the environment in which equipment must operate.
It is of little use to provide rear-access doors on an equipment which must be mounted rigidly against a wall. It is just as bad to provide access to the top of an equipment which will stand just a few inches from the roof of a van.
It may be a fine practice to mount seldom-used controls behind an access port, but the advantage is negated if the access port is too small for a hand or a tool to get into and move. - ■

References

1. J. McKendry, G. Grant, J. F. Corso, R. Brubaker, Maintainability Handbook for Electronic Equipment Design, Technical Report, NAVTRADEVCEN 330-1-4, U. S. Naval Training Device Center, Port Washington, N. Y., April 1960.
2. Reliability of Military Electronic Equipment, U. S. Government Printing Office, June 1957.
3. J. McKendry, J. F. Corso, G. Grant, The Design and Evaluation of Maintainable Packaging Methods for Electronic Equipment, Ergonomics, August, 1960.
4. J. McKendry, J. F. Corso, and G. Grant, Designing Maintainable Circuits (In Press).

Acknowledgmen

This article is based on work supported by the U. S. Navy under Contract N61-339-330, monitored by the Flight Trainers Div., Human Engineering Dept., of the U. S. Naval Training Device Center, Port Washington, N. Y. The opinions and conclusions in this paper are those of the authors. They are not to be construed as reflecting the views or endorsement of the Department of the Navy. Acknowledgment is made to The Singer Milit ry Products Division and to members of the technical staff at HRB-Singer: George Herlt, Frank Baxder, Fred Scheihing, Robert Brubaker, Paul Baker, and Chat les Smith. In addition, assistance and enthusiastic bupp it were contributed at the Naval Training Devices Cen! r by: Halim Ozkaptain, Martha Guestella, and fiar I Voss.
 aircraft, machine control, computers, Doppler navigation and data processing. Accuracy that counts is the by-word of a Librascope Encoder... backed by the
superior technology and reputation of one of the world's largest producers of Computers that Pace Man's Expanding Mind.

	other popula	Llbrascop	encoders		Resolutio
		Code	Model no.	Full scale capacity	Shatt turn
new	new	Binary	773	13 bits	128 counts
noncontact	subminiature		0.773 oil-filled unit for increased life		
magnetic encoder	size 8 encoder	Binary	$710 \quad 10$ bits		1024 counts
			707 (7070 ${ }^{\text {) }}$	7 bits	128
MODEL NO. 807	MODEL NOS. 787 \& 793	Binary	713 (7130)	13 bits	128 "
			717 (7170)	17 bits	128 "
FEATURES: Long life, high reliability, high speed natural binary V -Scan readout.	FEATURES: Low torque, low inertia, long Seve. high reliability, withstands severe environments.		719 (7190)	19 bits	128 "
		Self-Decoding Binary	0.713 oil-filled unit for increased life		
			$740 \quad 10$ bits		1024 counts
Output Code: natural binary Resolution: (per input shaft turn) 128 counts Full Scale Capacity: 7 bits Speed: operating from 0 to Life Expect Life Expectancy: 20,000 hours at 4,000 rpm; 4×109 revolutions Starting Torgue: 0.1 in-oz. max. Diameter: ${ }^{2}$ Weight: 5 ounces also available in 13. 17, and 19	SPECIFICATIONS: Output Code: natural binary ensolution: iper Full Scale Capacity: 7 bits, 13 bits Speod: operating 200 rpm , Speed: operating 200 rpm , slew 600 rpm Life Expectancy: 2×10^{6} revolutions at 200 Starting Torque: 0.5 oz-in. maximum Dianter. 750^{0} Woight: 3 ounces	B/C/D	723 (7230)	2,000 counts	200
			724 (72409)	20,000 "	
				3,60036,000	200 ".
			734 (7340\%)		200
			735	360,000	200
		Sine/Cosine	757-5 ${ }^{\circ 00}$	4 quadrants per turn	7 bits per quad rant + limit 1
			7558.		
		Gray	708	8 bits	256 counts
		${ }^{\circ}$ Contain isolation diodes for multiplexing		${ }^{0}$ Servo driven, hermetically sealed	
new catalog	BURBANK BRANCH				
NE AVAILABLE	LIBRASCOPE DIVISION GENERAL PRECISION	opoortunities, writ John Schmide Engineering Emp			
write foday for your copy					
for your copy	100 East Tujunga • Burbank, Calif.			ineering Emp	loyment

noncontact magnetic encoder

MODEL NO. 807
Long life, high reliability, high speed.
natural binary V.Scan readout. SPECIFICATIONS: Output Code: natural binary
Resolution: Resolution: (per input shaft turn) Full Scall Capacity: 7 bits.
Spread: operating from 0 to Speod: operating from 0 to at 4, oxpectancy: 20,000 hours Starting Torgue: 0.1 in-oz. max. Dength: ${ }^{1} 13 / 16^{\circ}$
eight: 5 ounces
ALso avaiciale im 13, 17, and 19
nEW CATALOG AVAILABLE
write foday for your copy

subminiature

MODEL NOS. 787 \& 793
EATURES:
Low torque, low inertia, long
life, high reliability, withstands severe environments.
Output Code: natural binary
Resolution: (Der input shaft
turn) 128 counts
speed:operating 200 rpm,
Life Expectancy: 2×10^{6}
revolutions at 200 rom
evolutions at 200 rpm 0.5 oz-in. maximum

Weight: 3 ounces

BURBANK BRANCH

LIERASCOPE DIVISION

100 East Tujunga • Burbank, Calif.

Maintainability in Action

HUNDREDS of features can contribute to equipment maintainability. Though almost all these features seem obvious, and though it would seem that even a modicum of "common sense" would dictate their use, truly maintainable designs stand out as exceptions rather than the rule.
Many of these design features are small points, mere details, easily overlooked in the scramble to rush an equipment into production. Presence of these details is rarely noticed. Their absence is recognized immediately by the maintenance technician whose colorful comments it might be good for the designer to hear.

Fig. 1. Swing-out door provides if shielding and dripproofing for drawer-mounted chassis in this piece of Lockheed equipment.

Fig. 2. Push-to-unlatch catches give quick access to drawer-mounted chassis.

Recent military emphasis on maintainability has prompted many manufacturers to become conscious of this discipline. Other manufacturers have been designing for maintainability for years. Results of some efforts are shown here.

Key Feature, Accessibility,

 Embodies Other FeaturesAccessibility is probably the most important single feature in maintainable equipment. A very broad quality, it encompasses many other features. It is served by roll-out and swing-out cabinets, conveniently placed test points, open con-

Fig. 3. Chassis slides out to give top access, then tilt up for bottom access.
struction, quick-acting fasteners and coupling properly grouped controls, well designed layouts, modular construction, and a host of other design features. Examples of accessibility can be seen in virtually all maintainable equipments.

Accessibility at many levels is incorporated in a complex system designed by Lockheed Elec. tronics Co. of Plainfield, N. J. The photograph in Figs. 1 to 3 show several levels of access.

Output Monitors Give Front-Panel Fault Warning

Richard Holmberg, manager of LEC's Ship board Electronics Dept., cites other aspects o the equipment which further improve its main tainability. Monitors, attached to the output of each pulse-circuit board, energize front-panel lights, whenever there's a malfunction. The equipment thus localizes a trouble to an indi vidual plug-in circuit board which can quickly be replaced.
On analog circuits, pulse monitors are not fective, so another approach is used. Meters are provided to monitor signals between individual modules, and test signals are provided to furthe isolate a fault to a module. A separate module tester can check every module in the system.

Computer Like an Open Book,

Gives Rapid, Easy Access
An unusual approach to accessibility is ap parent in the PB- 250 general purpose comput manufactured by Packard Bell Electronics Cor in Los Angeles. The computer (Figs. 4 to 6) book-shaped.
Industrial designer Bernard Caminker mechanical designer Jack Peterson are respon sible for the unusual mechanical features of thi computer. In addition to these maintainability features, the machine also includes a diagnostif test routine.
For error diagnoses, a special tape is π
ELECTRONIC DESIGN - October 26, 1960

through the machine and pushbuttons can select any of 13 levels of test. The machine will print out any failures and identify a specific function group responsible.
If a technician finds, for example, that an adder group is at fault, he can remove an entire group of perhaps four or more cards, replace them with spares, and test the other cards separately. To simplify this maintenance job, Packard Bell hopes to have a special card tester available in a few months.

Fig. 6. Back of book exposes connections and plug-in modules of which there are only 13 types.

Fig. 5. Computer opens to expose pages of wiring and input cables which travel up spine and branch out to logic modules.

Book-Type Package

Serves Large Computers, Too
The book-type package can be used in large computers as well as in small ones. It is used, in fact, in one of the largest-scale, general-purpose computers available, the 1604, manufactured by Control Data Corp. of Minneapolis.
In the 1604 (Figs. 7 and 8), pages of the book are substantially larger than they would be in a small computer, and there are eight of them, each with room for 1,000 PC cards.

Mr. C. T. Casale, senior engineer responsible for the layout of the 1604, cites additional maintainability features. Scope access to every single card in the machine is provided, even with the computer operating. In the storage sections of the machine, replaceable magnetic-core arrays are located near their associated PC cards.
The storage section on each of the eight chassis is identical so maintenance personnel need learn the locations of only a small number of cards. Within each storage section, cards are grouped along the same functional lines.
Functional grouping is used throughout the computer so maintenance men rarely have to refer to diagrams. The computer console can reveal any failure in any chassis, then a built-in algorithm, the Storage Sweep mode, can be cycled through the core storage to pinpoint an ailing PC card.

Sit or Stand to Reach

Maintenance Controls

To further enhance accessibility and ease in fault location, the 1604 has a combined maintenance and operator's console with all necessary controls. Maintenance and operator switches, though they are separate, are positioned so they can be used from either a sitting or standing position.
Diagnostic routines and a high order of accessibility are by no means unusual in computers.
Virtually every computer manufactured in the

Designing for Maintainability ? \int_{0}^{a}

Fig. 9. Only il basic modules serve entire numerical control system designed by Hughes Aircraft Co. Unusual modules have components neatly stacked in cordwood fashion and soldered in slots in plastic spacers.
past few years shows a great deal of attention to improved maintainability and reduced downtime.

Sophisticated Routines
 Can Pinpoint Troubles

Several sophisticated routines appear in the Mobidic computer, developed at Needham, Mass., by Sylvania's Data Systems Operations. These routines differ from most others in that,

with the aid of a special manual, they can localize a fault to a small group of transistors, or even to a single transistor. A preventive maintenance system in Mobidic can be used to force all marginally operating transistors to fail during a scheduled maintenance period.
Describing some of Mobidic's maintainability features, Joel Cohen and Lewis Whitaker point to the console. It has built-in alarm indicators
that quickly indicate certain types of machin malfunctions or program errors.

Cordwood-Stacked Modules Instead of Printed Circuits

A departure from the conventional, PC-carl modules appears in Hughes Aircraft Co.s NC-200 numerical control system for machine tools. In this system, according to Don Davern who heads the machine-tool controls group, most components that can fail are in the logic circuits. These are packaged in modules of which there are only 11 basic types (Fig. 9), and these can be stored in a spare-parts kit.

If the machine-tool control system should stop working, even an unskilled workman can simply pull out and replace one module after another until the machine starts again. All modules are clearly labeled and keyed to the chassis.

Accessibility Features
 Take Many Forms

A variety of accessibility features can be seen in some of the equipment manufactured by Radio Engineering Laboratories, Inc. of Long Island City, N. Y. Figs. 10 to 14 show a number of these features, including wheel-out carriages for klystron assemblies, swing-out and lift-out doors, and some unusually simple coil supports.

Fig. 10. Receivers (above), for the Aflantic Pact, manufactured by Radio Engineering Laboratories, provide front- and rear-door access.

Fig. 11. Convenience outlets (left) on NATO communications re ceiver allow test equipment and tools to be plugged in right at working area.

Fig. 12. Stepped coil supports (right), easily turned aside with a few furns of a screwdriver, allow large coils on klystron carriage to be lowered easily, then returned to their exact original position.

Fig. 13. Entire klystron carriage (left) rides on wheels on NATO "Ace High" 10-kw power amplifiers. Tracks guide entire assembly which can be rolled in or out for maintenance.

ELECTRONIC DESIGN • October 26, 1960

Plig-in modules can be used to house not only conventional electronic components, but lectromechanical components as well. The amlificr of Fig. 15 includes a number of such lug-in modules (Fig. 16). Each is secured to the hassis by two screws. The front panel has conectors for making all system interconnections s well as a convenient test-point area.
A key part of the HU2K-1 helicopter autonatic stabilization system, this particular module oncept was evolved in broad terms by the Caman Aircraft Corp. of Bloomfield, Conn., vith the final design detail and manufacturing ccomplished by John Oster Manufacturing Co. Racine, Wis.

9 Per Cent Plug-In

n Digital Voltmeter Series
Some rather new devices showing very close ttention to maintainability factors are the digil voltmeters manufactured by Non-Linear ystems, Inc. of Del Mar, Calif. In these meters, lug-in stepping switches can be changed in rree minutes rather than the two to twelve ours normally required. Voltage-divider decade esistors are also packaged in plug-in containers they, too, are completely interchangeable. In the Series 20 instruments (Fig. 17), four of e circuit boards are completely interchange-

g. 14. Performance-monitor panels on BMEWS comUnica ons equipment, designed by REL, are mounted h hinces which are secured through special slottings. pnel can be swung out or removed entirely.

When you're faced with a rush job that requires high stability resistors, do this:

1. Specify the components from Corning's complete line of glass resistors;
2. Call your local Corning distributor and tell him what you need;
3. Send him a confirming order.

Almost before the order is typed-depending on the distance from the distributor and/or the speed of your typist-you'll have the components . . . in plenty of time to meet your deadline.
Your Corning distributor takes pride in this fast service. He's in business to help your production line or test lab. Give him a call. Watch him go to work.
For the name of your nearest Corning distributor write to: Electronics Distributor Division - ERIE RESISTOR CORPORATION • Erie, Pennsylvania

CORNING

ELECTRONIC COMPONENTS

EBLE DISTRIBUTOR DIVISION

This Corning fusion-sealed glass resistor defies all environmental conditions . . . heat, moisture, vibration. See for yourself. Boil it in water as shown here. Bounce it. Drop it. It's practically indestructible.

Designing for Maintainability Kin

Fig. 15. Some of the plugin modules in this amplifier (left) contain conventional electronic circuits. Others house mechanical assemblies. Module design is joint effort of Kaman Aircraft Corp. and John Oster Manufacturing Co .

Fig. 16. A typical electro mechanical module (right) before and after being hermetically sealed.
able. A failure of any one of them does not cause the instrument to fail completely. Instead, the malfunctioning circuit board can be inserted in the least significant decade and the voltmeter can be used as a three-digit instrument rather than a four-digit instrument.
Test-equipment manufacturer Hewlett-Packard of Palo Alto, Calif., has several approaches to improving maintainability. In each equipment, H-P lays out components to assure accessibility. Internal controls required for periodic maintenance and/or recalibration are grouped and clearly identified.
Infrequently used controls are normally not accessible to the operator. This reduces the possibility of accidental or unintentional adjustment. Frequently used calibration controls are often grouped behind access doors so the instrument can be calibrated without being removed from its cabinet.

Fig. 17. More than 99 per cent of the components on this Non-Linear Systems digital voltmeter are on plug-in modules. Even the digital readout snaps out for easy lamp replacement.

H-P also provides manuals with very thorough maintenance information and troubleshooting procedures.

Different Techniques Needed
 For Different Requirements

Mr. R. E. Young, electronics manager at Sir W. G. Armstrong Whitworth Aircraft Ltd. of Coventry, England, reports on a number of techniques used to improve equipment maintainability. The "open" construction illustrated in Fig. 18 maximizes access to components. The standard base on which the components are mounted also serves as an excellent heat sink.
Of course, where high component density is a paramount consideration, this approach is not satisfactory; the one shown in Fig. 19 is better. Here, specific functions are isolated within appropriate equipment blocks which are easily withdrawn from a larger assembly. The isolation helps eliminate undesirable interaction between circuits during tuning and adjustment.
In this Armstrong Whitworth Aircraft equipment, each module is laid out to protect vulnerable parts from damage during service. Thus, when a module is placed on its side for service, it will rest on a pair of pillars or on a sturdy, metal-cased capacitor.

Patchboard Test-Point Area

Provides Circuit Nerve Center

Engineers at Hagan Chemicals \& Controls, Inc. in Pittsburgh rely heavily on the use of modular construction to improve maintainability. Each module has a patchboard (Fig. 20), with test points wired to important circuit junctions.

Product-engineering manager, Robert Nelson, points to an additional advantage of these access points in an analog control system. For special system requirements, they can be wired to ex-
ternal relays or switches to provide addition circuit flexibility.
In the Hagan equipment, the use of acue points is carried over to a system nerve cent (Fig. 21), where interconnections between opa ational-amplifier modules, panel-control station transducers, and final control elements ar

Fig. 18. Airy, open construction in this Armstro Whitworth Aircraft Ltd. uhf receiver makes everythir easy to get at. But component density is low.

Fig. 19. For higher component densities, AWA isoled functions to specific plug-in blocks.
brought to another patchboard. There, each module is identified by a number and each wire by a letter.

Centralized Nerve Center

In Pull-Out Drawer
A particularly convenient application of the "nerve-center" approach appears in MinneapolisHoneywell's load and frequency-control system. All critical test and calibration points in this system are brought out to a single, pull-out drawer (Fig. 22), providing a centralized, accessible, test area. The Honeywell system also uses plug-in modules for all major components of the system.

Expendable Module Concept To Lower Operation Cost

The plug-in module has become an accepted feature in a vast array of equipments in the past few years. It was popular even before great emphasis centered on maintainability. But with the growing emphasis on maintainability, a new ype module has come to be recognized, and vith it, a new philosophy has come to receive more and more serious attention.
In about 1 cu-in., the new type module is, of course, the expendable one-designed to be hrown away if it should fail. Lear, Inc. of Grand Rapids, Mich., has designed such a module-a hermetically sealed, oil-filled, throw-away modfle with components mounted on a flexible pc poard (Fig. 23).
Roy Malarik, responsible for the design of the ear module, points out that the most complex f these standard modules, a seven-transistor mplifier, has a predicted mean time to failure of 200 hr and a price of about $\$ 180$. These charcteristics compare very favorably with the opmum module size proposed by the National Bueau of Standards. ${ }^{\circ}$
The NBS study, considering only vacuumibe modules, concluded that an optimum exendable module should have from four to eight ibes; it should have an average mean time etween failures of 1,000 to $2,000 \mathrm{hr}$; and it nould cost between $\$ 95$ and $\$ 185$.

aried Approaches

- Power-Supply Design

That there are different approaches to maininability is apparent in the power supplies

- Thr. NBS report, "Expendable Modules as Bases for sposat †-at-Failure Maintenance," is available at $\$ 2.25$ pm the Office of Technical Services, U. S. Dept. of enmerce, Washington 25, D. C. A digest of this report pear in Electronic Design, Aug. 17, 1960, pp

VARIAN ANNOUNCES

A KLYSTRON POWER SUPPLY

EXTREMELY LOW RIPPLE . WIDE OUTPUT RANGE

CIRCLE 37 ON READER-SERVICE CARD
ECT ONIC DESIGN • October 26, 1960

Fig. 20. Chassis patchboard gives access to important circuit junctions in this piece of equipment designed by Hagan Chemicals \& Controls.

Fig. 21. System patchboard serves as nerve center for entire equipment.
designed by two manufacturers-Mid-Eastern Electronics, Inc. of Springfield, N. J., and Victory Electronics, Inc. of Westbury, N. Y.
Mid-Eastern, a test-equipment manufacturer who made no power supplies, conducted a survey and learned that power-supply users were complaining. They objected to the fact that if something went wrong in a power supply, it was extremely difficult to troubleshoot the unit since parts layout was awkward and parts were inaccessible. The power-supply users also complained about the use of balanced amplifiers with selected transistors.
In response, Mid-Eastern provided a line of 19 power supplies using pre-assembled, standard, plug-in modules (Fig. 24). Three of the modules are interchangeable for all models in the series. Five other modules can be used for a variety of different voltage-current combinations. The entire series uses identical color coding.
Since there are no selected parts in the units, and since they all are designed along identical
lines, a technician who learned to repair any model could easily repair all 19.

Power Supply in Two Parts

To Reduce Down Time
A somewhat simpler approach to power-supply design appears in the supplies manufactured by Victory Electronics. Reasoning that the basic power supply, with a transformer, choke, and silicon diodes is quite reliable, and that elements for close regulation-transistors and feedback circuitry-are less reliable, Victory designed two separate units.

A basic supply provides 1 per cent regulation. A separate regulator, for 0.25 per cent regulation or one for 0.05 per cent regulation, can be mounted on the basic supply without any change of wiring. Both basic supply and external regulator can be operated independently.

By separating the more complex regulator from the basic supply, Victory feels that maintainability is enhanced.

Flat-Tray Chassis

Simplify Component Testing

Another approach to accessibility appears the marine radio-telephone equipment manu factured by Pearce-Simpson, Inc. of Miami. E gineers at Pearce-Simpson design all chassis 2 basically flat trays. They never use deep chass as designers at the company feel that deep cha sis invariably cover up many components an make testing and replacement difficult if no well-nigh impossible.
In component placement, they try to avoi layer construction. But where they must cov one component with another, they make th more reliable component the one which is more inaccessible.

Integral Units Needed
 In Individual Subassemblies

At Shepherd Industries, Inc. in Nutley, N. the concept of individual subassemblies is us

Fig. 22. Centralized test and calibration area, mounted on a pull-out drawer, serves as nerve center in Minneapolis-Honeywell control system.

Fig. 23. Lear's expendable module, with flexible PC board, has all input, output, and reference signals conveniently available for maintenance at the header. The I cu-in. module is available with several basic configurations.

Fig. 24. Basic modules can be used in 19 different power supplies designed by MidEastern Electronics.

Fig. 25. Integrated, individual sub-ossi blies fit together easily in Shepherd dustries' tape transports.
in the design of tape transports. But in the Shi pherd equipment, each subassembly must constitute an integral unit as shown in Fig. 25. Most subassemblies in the tape transport are easily removed by releasing a connector and unscrewing four bolts. Test points are located on PC boards with their associated circuitry.
An important feature cited by William Murphy, manager of electronic circuit development, is the close-tolerance spacing from the mounting surface of magnetic heads to the first track. If it ever becomes necessary to replace a head, it is necessary only to unplug and unscrew the old head and replace it with a new one. In most cases, no adjustment is necessary to align the head on the transport.

Large, Round-the-Clock Systems Need Special Features

Large systems, especially those which must operate on a round-the-clock basis, often require special maintenance features not necessary with systems designed for intermittent operation. One example is the Air Traffic Control Beacon Ground Station designed by Telecomputing Corp. in Hollywood.
This system features a standby channel which can be switched into operation at any time. It can be operated, tested, or serviced without affecting the operating channel. For those portions of the circuit that cannot be channelized, spare units are installed next to operating units so connections can be switched rapidly. All units in the system are designed for servicing from the front of the system.
In addition, small components, terminals of large components, test points, and adjustments are accessible when the front door of the unit is opened. Small components are mounted on vertical terminal boards that swing 45 deg to the right or left to improve access in the equipment. All wiring is color-coded and symbol designations of all components are marked adjacent to the components.

Common Features

Mark All Maintenance Units
To the extent that any equipment is designed for maintainability, it will share certain features with all other such equipments. If not in the details, then certainly in the broad concept, each will show attention to the needs of the maintenance man.
From the broadest viewpoint, these needs reduce to two-the need to localize faults quickly and the need to put a system back in operation qui kly. The success of any maintainability effort can be measured by these two yardsticks. - ■

WHICH C-BAMD BEACON FITS YOUR MEEDS?

VOUGHT ELECTRONICS HAS BOTHI

For moderate range and sensitivity (-41 dbm)...the economical, solid state crystal video beacon. For long range and high sensitivity (-65 dbm) Vought Electronics offers a transistorized superheterodyne beacon.

Flight tested, off-the-shelf delivery. Both beacons have been flight tested and successfully operated at theoretical line-of-sight ranges to 60,000 feet Lightweight, compact and rugged enough to operate under extreme field conditions, the aluminum alloy casting packages are pressurized, designed for hard mounting to the airframe. Accessible parts and readily available adjustments insure easy service. Both beacons are completely transistorized throughout, except for the magnetron and local oscillator.

Compatibilify Vought Electronics beacons are designed to be compatible with existing C-Band radars (FPS-16, MPS-26, etc.) and with primary power and antennas available on modern aircraft.

FOR FULL PERFORMANCE AND DELIVERY DETAILS, write:

CHANCE VOUGHT
 \square
 ELECTRONICS DIVISION
 dallas, texas

Designing for Maintainability

CHECK LIST

Check List of 241 Design Features For Maintainable Equipment

IN "NO TIME-BASE Needed in Signal Corps Maintainability Specifications," (p 58), author Robert Redfern cites the key role played by a check list of design features for maintainable electronic equipment.
Implicit in Mr. Redfern's approach is the concept that it is a lot easier to determine, for example, if all displays can be observed from one position, than it is to measure the average time required by a technician with average skills to localize an average fault and to effect an average repair under average environmental conditions. And the more easily obtained results are more meaningful and more useful in arriving at
an evaluation of the maintainability of a given equipment.

With the kind permission of the copyright holders, American Institute for Research, of Pittsburgh, Pa., Electronic Design is pleased to present this checklist. It is taken from a research report, "Development of an Index of Electronic Maintainability," authored by M. R. Munger and M. P. Willis, and prepared by AIR for the U. S. Army Signal Material Support Agency
The editors of Electronic Design feel that this check list should prove of great value to all electronics engineers who must design equipment for maintainability.

Displays and Controls

1. Are all displays in equipment checkout located so they can be observed from one position?
2. On units with operator's display, are maintenance displays behind an access door on the operator's panel?
3. On units without an operator's panel, are maintenance displays on an accessible face of the equipment?
4. Are all displays located so they can be observed without disassembling or removing any portion of the installation?
5. Do labels tell which block in the block diagram of the equipment is being monitored?
6. Do labels tell what function is displayed rather than just what electrical characteristic is indicated?
7. Do display scales give only information needed by the maintenance technician?
8. Where center-null displays are used, is the circuit designed so the indicator will not rest in the in-tolerance position if power fails?
9. Are moving-pointer, fixed-scale indicators used for displays for adjustment procedures?
10. Are all-or-none type displays used when they will convey sufficient information?
11. Are numerical scales used only when the maintenance technician needs quantitative information?
12. Do display scales show the tolerance band as well as correct reading? Tolerance band should be shown as a single, center-scale colored area.
13. If arithmetic must be applied to measured data, are decimal transformation factors provided (in the manual or on the equipment) to simplify the calculations?
14. Do display scales have only enough graduations to give the required accuracy without interpolation becoming necessary?
15. Are special calibration points provided either on the dial face or on a separate overlay if the edges and midpoint of the tolerance range are not sufficient for accurate calibration?
16. Do loud auditory signals supplement telelights for displays that are not constantly monitored when it is important to note changes in their indications immediately?
17. Do indicators provide immediate adjustment information during the adjustment procedure?
18. Are all adjustment controls located on a single panel?
19. Are all controls located where they can be seen and operated without disassembling or removing any part of the installation?
20. Are front-panel maintenance controls covered by an access door?
21. Are controls placed on the panel in the order in which they normally are used?
22. Are controls numbered in the sequence of their operation when they are used in a fixed procedure?
23. Do knobs for precision settings have about $2-$ in. in diameter?
24. Do labels state the function of the controls?
25. Are control-position markings descriptive rather than coded?
26. Are scales on controls fine enough to give only required accuracy?
27. Do controls move smoothly except at detents?
28. Do multiposition selector switches have sufficient spring loading so a switch cannot be left between detents inadvertently?
29. Are push-buttons spring-loaded so they do nct produce inconvenient pressure against the finger?
30. Do tool-operated controis take a screwdrive or other medium-size tool?
31. Does each step in adjustment procedure re quire only one control to obtain an in-tolerance indication?
32. Are all related displays and controls put on the same panel?
33. Is each display placed so it can be read ac: curately and conveniently while the control is operated?
34. Are display labels and control labels corre lated so the display label suggests which controls affect the reading?
35. When large display movements are required are they obtained through small control movements?
36. When fine adjustments are required, are they obtained through large control movements?
37. Where a precise setting in a wide range of display movement is required, is a coarse-fine control provided?

External Accessibility

1. Are maintenance accesses installed on equip ment faces that will be accessible when the equipment is installed?
2. Is each access labeled uniquely so each one can be clearly named in job instructions?
3. Does each access label indicate the items which are accessible?
4. Does each access label indicate what auxiliary equipment is to be used at the access?
5. Does each access label indicate the recommended time period for performing maintenance operations?
6. Is a transparent cover or a quick-opening metal cover used for visual-inspection?
7. Are access openings without covers used where they are not likely to impair performance?
8. Are hinged doors used instead of cover plates held by screws?
9. If there is insufficient space for opening hinged doors, are cover plates with captive quick-opening fasteners used?
10. Are no more than four screws used in screwfastened access plates?
11. On hinged access doors, is there some means to hold the door open?
12. Are all units and parts labeled fully?
13. Are parts, such as resistors, capacitors and tubes, marked with relevant information about their electrical characteristics?
14. Is each terminal labeled with the same code symbol as the wire attached to it?
15. Are labels etched or embossed into the components or chassis rather than painted or stamped on the surface?
16. Are labels visible?
17. Is the color code explicit in job instructions and/or on a panel of the color-coded equipment?
18. Is the meaning of a particular color consistent for a given application (resistor, capacitor, wiring)?
19. Do color-coded markings resist chipping, and are they located away from points of physical wear?
20. Is each wire labeled uniquely to facilitate tracing?
21. Is there an overload indicator for each major component even if it may be desirable to keep overloaded circuits operating?
22. Are capacitors and other parts that retain heat ir voltage after the equipment is turned off located where technicians are not likely to touch them while changing parts such as tubes?
23. Are internal controls such as switches and adjustment screws located away from high voltages?
24. If screwdriver adjustments must be made blind, are the screw shafts vertical so the screwdriver will not fall out of the slot?
25. Are screwdriver guides provided on adjustment points near high voltages?
26. Are controls located away from high-voltage points and hot tubes?
27. Are internal displays lighted when necessary? 28. Are units that frequently must be pulled out for checking mounted on roll-out racks, slides, or hinges?
28. Are stops always provided on roll-out racks and drawers to prevent their being dropped?
29. Is it easy to override stops for replacement of racks and drawers?
30. Can units in drawers and slide-out racks be pulled out without breaking electrical connections?
31. Are units and assemblies positioned so replacing one unit does not require removing other units for access?
32. Are parts mounted in an orderly array on a two-dimensional surface and not stacked on one another?
33. Are parts mounted on one side of a surface and associated wiring (including printed or soldered circuits) on the other side?
34. Are easily damaged components (such as miniature tubes) mounted so they are protected from damage?
35. Are parts such as resistors, capacitors, tube sockets, etc., mounted on subassemblies rather than on the unit's chassis?
36. Are all replaceable parts made accessible by fold-out construction or other special construction techniques when necessary?
37. When fold-out construction is used, are parts and wiring positioned to prevent damage when the assembly is opened or closed?
38. Are hinged assemblies braced or otherwise held in the "out" position while they are being repaired?
39. Are easily damaged conductors such as waveguides, high-frequency cables, or insulated highvoltage cables protected?
40. Are field-replaceable units independently mounted to the housing and not to each other so only the unit to be replaced need be moved?

Test Points

1. Are test points accessible?
2. Are internal test points clustered where they will be most accessible when installed?
. Are test points located so parts of equipment do not impede access to them?
3. Are test points grouped conveniently for sequential checking?

Is each test point labeled uniquely?
6. Is each test point labeled with the proper signal
(with tolerance limits) that should be measured there? Does each test-point label indicate the unit whose output is available at the test point?

Are test points color-coded so they can be eas ly located?

Are luminescent markings used so test points
ELECTRONIC DESIGN • October 26, 1960

> Ready for you now! Primary standard accuracy for power measurements to 1,000 watts!

Frequency coverage dc through 12.4 KMC.

Guaranteed power measuring accuracy of 1\%. Probable accuracy better than 0.5%. Precise ac wattmeter, calorimeter and heat exchanger in one neat, rack unit. Separate dual loads for

 dc to 4 KMC , also $\mathrm{C}, \mathrm{XB}, \mathrm{X}$ bands. Direct reading linear scale.Above are highlights of the new Sierra 290B Calorimetric Wattmeter Test Set-the industry's closest approach to absolute power measurements in this range.
Model 290B measures power in three distinct modes.

1. For power levels 30 to 1,000 watts, a null-balance mode provides measurement accuracies of 1% or better, with probable error as low as 0.5%.
2. For wider range power levels from 10 to 1,500 watts, a directreading mode provides excellent linearity in thermal readout and 2% to 3% accuracy. Readout is fast- 60 seconds or less.
3. For expanded scale readings of highest resolution, the above two modes may be combined in a third mode to obtain the order of accuracy of the null-balance mode, together with the time-saving convenience of the direct readout mode.
Model 290B, $\$ 4,500.00$. (Water loads, extra.)
Data and prices subject to change without notice. Prices f.o.b. factory.
SIERRA ELECTRONIC CORPORATION

Sierra 200B Test Set

Laboratory setup above shows Sierra Model 215 Power Source being used in conjunction with Model 290B Calorimeter to calibrate Sierra BiDirectional Power Monitor. Designed specifo cally for calibration purposes, 215 series Sources include four 50 watt models covering, collec. tively, 25 to 1,000 MC. Model 215A, 25 to 50 MC; Model 215B, 50 to 150 MC ; Model 215 C . 150 to 470 MC; Model 215D, 470 to 1,000 MC. Price (any model) $\$ 3,300.00$.

For complate details, see your sierre representative or write direct

For complote details, see your sierra

Reliable stability for regulated power supplies

TINESOM vilatage Referilice TUBES
 A regulated power supply is only as stable

 as its reference element.Designing for Maintainability

CHECK LIST
can be read in very low illumination?
10. If maintenance procedures require a test probe to remain connected to a test point without being held by the technician, does the test point have a quick-disconnect fastener?
11. Is there an exposed test point at the input and output of each group of major units?
12. Is there an accessible test point at the input and output for each major unit or assembly?
13. Are there test points for the direct check of all replaceable parts?
14. Is there an accessible test point at the input and output of each circuit or stage?
15. Are cables "fanned out" in junction boxes for checking if standard test points are not provided? 16. For non-permanent connections, do test leads require only a fraction of a turn for attachment to prime equipment receptacles?
17. Are test points located close to the controls and displays used with these test points?
18. Is each test point used in an adjustment procedure associated with only one adjustment control?
19. Does the signal available at each test point indicate clearly when the associated control is in the required position?
20. Is the test point located so the technician at the control can read the signal available at the test point?
21. Are all signal inputs for alignment procedures available in one standard signal generator?
22. Are units activated by a triggering pulse that has a self-triggering capability?

By using rugged, reliable Tung-Sol miniature and sub-miniature reference tubes in regilated power supply designs, you're guaranteed long-life stability in spite of temperature changes, repetitive on-off cycles and current shifts. Long-term drift and noise are minimized by superior tube design, extensive factory stabilizing schedules and severe test criteria. These inert-gas-filled, cold cathode glow discharge diodes feature high shock and vibration ratings. They are particularly suited for applications where size and weight must be held to a minimum. Write for complete technical details. Tung-Sol Electric Inc., Newark 4, N. J. TWX: NK193.

(5) TUNG-SOL

Tochnical Assistance is avallable from the following sales offices: Atlanta, Ga.; Columbus, Ohlo; Culver City, Callf; Dallas, Texas; Denver Colo.; Detrolt, Mlch.; Invington, N. J.; Melrose Park, Ill; Newark, N. J.; Philadelphla, Pe.; Seattle, Wash. Canada: Toronto, Ont.

CIRCLE 41 ON READER-SERVICE CARD

Cables and Connectors

1. Can units that are difficult to connect when mounted be moved to a more convenient position for connecting and disconnecting their cables?
2. Are cables long enough so each functioning unit can be checked in a convenient place?
3. Are cable harnesses designed so they can be fabricated in a shop or factory and installed as a unit?
4. Are cables routed so they cannot be pinched by doors, lids, etc.?
5. Are cables routed so they will not be walked on or used for hand holds?
6. Are cables routed so they are accessible to the technician and are not under floor boards or behind panels that are difficult to remove?
7. Are cables routed so they need not be bent sharply when connected or disconnected?
8. Can cables with attached connectors pass easily through walls, bulkheads, etc.?
9. Do plugs and receptacles have painted arrows or other indications to show proper position of keys for aligning pins?
10. Are plugs and their corresponding receptacles coded alike?
11. Can plugs be quickly disconnected?
12. Are the pins in each plug clearly identified?
13. Are plugs designed so it is impossible to insert atiy plug in the wrong receptacle?
14. Do aligning pins or keys extend beyond electrical pins?
15. Are unkeyed, symmetrical arrangements of aligning pins avoided?
16. Are plugs having a self-locking safety catch used instead of plugs that must be safety-wired?
17. When a portion of the equipment is removable, does the cable connecting the removable portion to the rest of the equipment have a plug and receptacle that will disconnect before the cable breaks?
18. Is the equipment designed so receptacles are "hot" and the plugs are "cold" when disconnected? 19. Are cables connected to equipment by plugs and receptacles rather than by pigtailing?
19. Are field-replaceable assemblies and subassemblies plug-in rather than solder connected?
20. Can connectors be reached easily for replacement or repair?
21. Does the design of connectors prevent electrical contacts from being short-circuited by external objects?
22. Are connectors located far enough apart so they can be grasped firmly?
23. Are terminals for soldering far enough apart so work on one terminal does not damage neighboring terminals or other parts?
24. Are terminals and other connections for soldering long enough so insulation and other surrounding materials are not burned by the soldering iron?
25. Are U-lugs used rather than O-lugs?
26. Are connectors designed to prevent excessive tightening?
27. Are connectors for auxiliary equipment designed so no tools are required for their operation? 29. If tools must be used to operate connectors, are standard hand tools sufficient?
28. Do connectors for auxiliary equipment operate in a fraction of a turn or with quick snap action?
29. Is no more than one full turn of a connector required to connect test equipment to a test point? 32. Can wires be unsoldered and removed from lugs without damaging the lugs?

Internal Accessibility

1. Is accessibility to parts impeded by large parts that are difficult to remove?
2. Are components placed so there is sufficient space to use a test probe, soldering iron, and other tools without difficulty?
3. Are units placed so structural members do not prevent access to them?
4. Are components placed so all throw-away assemblies or parts are accessible without removing other components?
5. Is equipment designed so it is not necessary to remove any assembly from a major unit for troubleshooting?
6. Can screwdriver-operated controls be adjusted with the handle clear of obstructions?
7. Are units laid out so maintenance technicians nee.l not retrace their movements during checking? If field-maintenance procedures require tube replicement, is it possible to do this without removing units?
© Are units placed so tubes can be replaced without emoving assemblies and subassemblies?
1). Are units placed so resistors, capacitors, wiring,

NEW NPN-PNP suank ramanusisons

COMPARE ACTUAL SIZES

> Squeeze Fifteen Cubic Inches of Transistors into One at no loss in reliability!

Where every inch and ounce count, Raytheon's new germanium submins save valuable space and weight. Only $1 / 21$ the volume of a TO-5, each one packs into $1 / 1 / 5$ the space, weighs only $1 / 8$ as much. The figures tell the story:

	Raytheon	Standard
	Submin	T0-5
	0.00109	0.0231
Volume, cu. in.	$1,000,000+$	70,000
Packing Density, no./cu. ft.	$600+$	41
Packing Density, no./cu. in.	0.005	0.040
Weight, oz.		

Where reliability is a must, these submins are tops. Welded package provides truly hermetic seal. Meets MIL-S-19500B: 96-hr. salt spray, 20,000 G centrifuge, $100 / 2000 \mathrm{cps}$ variable frequency vibration at 20 G , $1 / 2 \mathrm{~ms}$ mechanical shock at $1500 \mathrm{G}, 0^{\circ}$ to $100^{\circ} \mathrm{C}$ thermal shock in water, 10 -day moisture resistance cycle, tem-
perature cycling. Storage and operating life match AQL's of military specifications at $100^{\circ} \mathrm{C}$ effective junction temperature.

These new germanium submins are equivalents of standard Raytheon transistors in electrical performance and reliability. Write for data sheets today.

GERMANIUM SUBMIN TYPE	$\begin{gathered} \text { TO-5 } \\ \text { EQUIVALENT } \end{gathered}$	VCE Max. volts	fab typical mC	hfe typical	Cob typical pf	Icbo typical μA	Rsat typical ohms
PNP 2N799	2N404	-24	12	45	12	2	1.3
PNP 2N805	2N428	-15	17	80	12	2	1.1
PNP 2 N811	2N416	-12	10	80	12	2	65*
PNP 2 N813	2N417	-10	20	140	12	2	100*
NPN 2N815	2N388	20	8	110	9	3	3.5
$\text { NPN } 2 N 821$	2N440	15	10	70	9	3	3

RAYTHEON COMPANY SEMICONDUCTOR DIVISION

SILICON AND. GERMANIUM DIODES AND TRANSISTORS • SILICON RECTIFIERS - CIRCUIT-PAKS

 CIRCLE 42 ON READER-SERVICE CARD
ElI GTRONIC DESIGN • October 26, 1960

For Designers with a Time Problem . . .

KLIXON ${ }^{\text {® }}$ PRECISION SWITCH AND THERMOSTAT PACKAGES DESIGNED AND DELIVERED - FASTI

Parts Numbers Assigned at Once for Use in Parts Lists. More and more designers "put the bee" on us by ordering a complete thermostat or switch package. These specials include unique mounting configurations, connectors, leads, actuators, ganging of basic units, potting, etc., to customer's design needs.

Many times this component is last on the check out list and has to be rushed in order to "button up" the design.

That's where our special "hurry up" facility answers the prayer of the designer who wants to cut red tape fast and have deliveries made yesterday.

Tell us your mounting or actuation problem. Give us your temperature, electrical rating, life cycles and vibration per mil "call outs". Our standby team of designers will assign a part number at once - and then meet unbelievably fast delivery requirements with precision made and tested products.
The basic thermostat used is the KLIXON hermetically sealed, M1 Thermostat, a highly vibration resistant, snap-acting, fixed-temperature type. The basic switches used are KLIXON KX and AT series hermetically sealed switches.

[^1]Designing for Maintainability

CHECK LIST
etc., do not interfere with tube replacement?
11. Are all miniature tube sockets oriented with the gap facing one way?
12. Where tubes must be inserted through small accesses, is there an external indication of the proper position insertion (such as, matching stripes or dot on the tube or plug top and on the cabinet)?
13. Are all fuses located so they can be seen and replaced without the necessity of removing other parts or subassemblies?
14. Are fuse assemblies designed and placed so n_{0} tools are required for replacing a fuse?
15. Do edges of accesses have internal fillets rubber, fiber, or plastic to protect the technician hands or arms?
16. Are there safety interlocks on accesses tha lead to high-voltage equipment?
17. Do access openings permit the most direc possible access?
18. Is sufficient room provided for the various tasks performed on the equipment with one hand? 19. Is enough room provided for tasks requiring insertion of two hands and two arms through the access?
20. If the technician must see what he is doing inside the equipment, does the access provide enough room for hands or arms and for an adequate view?
21. Are irregular extensions such as bolts, tables. waveguides, and hoses easily removed before the unit is handled?
22. Do access doors have whatever shape is neces sary to permit passage of necessary components and implements?
23. Are units removable from the installation along a straight or moderately curved line?
24. Are heavy units (more than 25 lb) within normal reach of a technician?
25. Are provisions made for supporting units while they are being removed or installed?
26. Are there rests or stands on which units cat be set to prevent damage to delicate parts?
27. Is a special guide tool attached to the access when an adjustment control under the access would otherwise be difficult or dangerous to locate?
28. If the technician must work on the equipmen with the power on, is a cheater switch provided that automatically resets when the access is closed?

Cases

1. Do fasteners for assemblies and subassemblies fasten or unfasten in a maximum of one completo turn?
2. If bolts are used, is the number of turns re quired to tighten or loosen them minimized (les than about 10 turns)?
3. When tool-operated fasteners are necessary, do these fasteners require only standard hand tools?
4. Are combination head mounting bolts that hav a deep internal slot and hexagonal head used?
5. Do all bolts requiring high torques have an external hexagonal head?
6. Are mounting bolts made semi-permanently captive (for example by providing snap-on collars)? 7. Are mounting bolts and fasteners clearly labeled as such?
7. Are screws with different threads made in different sizes to prevent their being forced into the wrong holes and consequently stripped?
8. Are the heads of mounting bolts and fasteners unobstructed by nearby components or structural members?
9. Are only standard hand tools used in replacing assemblies and units?
10. Are guide pins always provided on units and assemblies for alignment during mounting?
11. Are the holes in covers and shields through which mounting screws must pass to the basic chassis large enough so a screw can pass even without perfect alignment?
12. Are cases designed so they can be lifted off units rather than units lifted out of cases?
13. Are cases made enough larger than the units they cover so that wires and other components will not be damaged when the cases are put on and removed?
14. Are guides and tracks provided to help prevent cases from tilting?
15. When the edge of a case must be slid over rubber stripping or other sealing material, does the sealing material adhere tightly enough so it does not buckle or tear, damaging the seal or jamming the case?
16. Is the method of opening a cover obvious? If not, is an instruction plate attached to the outside of the cover?
17. Do covers and cases have rounded corners and edges for safety?
18. Is it obvious when a cover is not in place and not secure?
19. Are no more than six fasteners used to secure a case?
20. Are the same size fasteners used for all covers and cases on a given piece of equipment?
21. Do covers and cases have their own stock reference in the event they must be replaced?
22. Are ventilation holes in covers made small enough so test probes or other conductors cannot be inserted inadvertently and touch high-voltage sources?
23. Do units weighing more than 10 lb have convenient handles to facilitate removing, replacing. or carrying?
24. Are handles provided on small, light units that otherwise would be difficult to grasp, remove, or hold without gripping delicate components? 26. Are handles provided on covers to facilitate holding the cover and carrying the unit?
25. Are handles placed over the center of gravity of units so they do not tip when being lifted or carried?
26. Are handles the technician must grip firmly at least 4-1/2 in. high and 2 in . deep?
${ }^{24}$. Are handles and grips comfortable?
27. Are handles and grips placed where they are not ikely to catch on other units, wiring or structura members?
3) Do heavy units have recessed grips near the bac) to facilitate handling? (continued on p 56)

Get immediate delivery from stock

 from MALLORY INDUSTRIAL DISTRIBUTORS

When your research, short runs or maintenance calls for short orders of electronic components in a hurry. . . call your Mallory industrial distributor. He makes a specialty of supplying electronic parts to industrial users. He carries selected lines of Mallory components-identical to those which you would receive on direct factory order. He'll keep your schedules safe with fast delivery from stock . . . at factory prices.
Check these Mallory lines for the electronic components to meet your tight schedules:

TANTALUM CAPACITORS

broadest line in the industry. 0.33 to 1300 mfd . Sintered, solid and foil types; temperatures $-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$.

SELECTOR SWITCHES

Push-button, lever action, rotary, wafer, multi-section; phenolic or ceramic insulation.

ELE :TRONIC DESIGN • October 26, 1960

Maliory Industrial Distributors
Tucsonderd Ard

Designing for Maintainability Unilib
 CHECK LIST

Lubricants and Tools

1. Has a lubrication schedule been made for all lubrication requirements?
2. Can lubrication requirements be satisfied by standard lubricants listed in SB-38-5-3?
3. Are lubrication points provided if lubrication is required?
4. Are lubrication points plainly identified?
5. Are lubrication points accessible?
6. Can lubrication be applied with standard tools and devices?
7. Can mechanical components such as gear trains be lubricated without disassembly, or are they designed so that they do not require lubrications?
8. Is the equipment accompanied by a comprehensive list of tools needed for all maintenance tasks?
9. Have tools been specified to cover all maintenance procedures?
10. If special tools are required have they been provided with the equipment?
11. Is each of the tools provided adequate?
12. Are tools that must be used near high voltages adequately insulated where the technician is likely to touch them?
13. When screws must be rotated through many revolutions are speed tools provided if downward force on the equipment will not be harmful?
14. Do screwdrivers have clips to hold free screws that cannot be held easily with the fingers?
15. Do screwdrivers for small-sized adjustment screws have funnel-like shields that aid placement on the adjustment point and prevent slipping of?

Manuals

1. Are check lists provided for routine procedures?
2. If it is necessary to adjust controls with inter acting effects, is a step-by-step procedure provided for alternate adjustments?
3. Is step-by-step instruction rather than a narra tive paragraph format used to detail maintenance procedures?
4. Are tables and charts used whenever data can be organized in tabular form?
5. Are measurement data referenced to the meas. urement procedures to be used?
6. Can relationships and interconnections between circuits and between units be determined easily on the schematic diagram?
7. Are waveforms and voltages indicated on the diagram?
8. Do drawings and photographs in the manual adequately identify the physical features of the equipment to facilitate location?
9. Is nomenclature used consistently in the manuals and does it correspond with markings on the equipment?
10. Is information provided in the manual about the required signal characteristics and tolerances at each test point?

Test Equipment

1. Are instructions for using test equipment writ ten in step-by-step format?
2. Is a signal provided that shows when test equipment is warmed up?
3. If it is not feasible to use such a signal, is the warm-up time required clearly indicated near the warm-up switch?
4. Is there a simple check to indicate when test equipment is out of calibration or is otherwise malfunctioning?
5. Are useful data presented directly on test equip ment displays, rather than data which require multiplication or other manipulation?
6. If manipulation of display values is required, are conversion tables provided for the user on the test equipment?

7 If it is not feasible to provide a conversion table, is the transformation factor indicated beside each switch position or display scale that uses the factor?
8. When more than one scale must be viewed, are they and their associated control knobs clearly differentiated by labeling and color coding?
9. Are selector switches provided on test equipment instead of plug-in connections?
10. Are there devices such as circuit breakers and fuses that will prevent damage if the wrong switch or jack position is used?
11. Are there devices such as warning lights, power switches that open automatically when the test-equipment lid is closed, and written warnings that insure the test equipment's being turned off after use?
12. Are the purposes of the tester and cautions in its use indicated on its outer surface?
13. Is there a label on every item the technician must recognize, read or manipulate?
14. Are the outer case and removable parts of items of test equipment clearly labeled using official nomenclature?
15. When adaptors must be used, are they a part of the test-equipment removable items?
16. Are storage compartments for accessories fastened?
17. Is portable test equipment rectangular for convenient storage?
18. Are handles on the outside case of portable test equipment recessed or hinged so they do not take up excessive storage space?
19. Is adequate storage space provided in the lid or cover of test equipment for storing removable items such as leads and adaptors?
20. Are proper locations for the items that go into the storage space indicated?
21. Is there provision in the lid or a special compartment for storing instructions for using the test eqtiipment?
22. Are normal plugs used to connect test equipment and/or bench mock-ups to the outputs and inputs of field replaceable units?
3. Have intercomponent cables been provided to elininate a mock-up?

1. Is a newly designed mock-up specified only wh n there is no currently produced mock-up that cals be adapted for use?
2. Can test equipment be connected to the prime eq ipment within about 2 min ?

NOW! WESTINGHOUSE IN FULL PRODUCTION ON FAMILY OF TUNABLE X-BAND MAGNETRONS

Westinghouse announces a family of. Frequency rance: 8500 to 9600 me Westinghouse and poak power output: 220 Kllowatte tunable X-Band Magnetrons available now for airborne radar service-and new production facilities to meet your requirements at all times. These highperformance magnetrons feature improved stability, minimum frequency proved stability, mectrums high effidrift, excellent spectras, high eff ciency and low voltage operation. The new family not only features Type WL7008, but also includes Types 7110, 7111, 7112 and 6865A. Some of their typical performance characteristics are as follows:

- Peak powor output: 220 kicosoconds - Pulse witer voltage: 13.75 volte - Hoator voltage: 13.75 volts Frequency rance excursion: 7 ecconds Ft 1500 rpm shaft speod

For full information, contact your near est Westinghouse industrial tube repre entative or write: Westinghouse Elec tric Corporation, Electronic Tube Division, Elmira, N.Y.

Ell CTRONIC DESIGN • October 26, 1960

No Time-Base Needed In Signal Corps Maintainability Specifications

Robert Redfern, who was an engineer with the Signal Corps for 16 years, has spent most of the past three years developing maintainability criteria for Signal Corps communications-electronic equipment.

An associate member of the EIA Sub-Committee on Maintainability and of the Task Group on Measurement, Reporting, and Evaluation Techniques, he has played a very important role in developing a detailed, objective procedure for evaluating equipment maintainability during the development cycle. He gives credit for this procedure to American Institute for Research, which developed it under a Signal Corps study contract and which holds a copyright on other than U.S. Government use.

Robert E. Redfern

Chief of Technical Operations
Maintenance Methods Div.
U.S. Army Signal Materiel Support Agency Fort Monmouth, N.J.*

T- HE SIGNAL CORPS has an answer to the challenge of specifying and measuring maintainability. A three-fold approach, it establishes a quantitative maintainability requirement for equipment types, specifies the quantitative value of design features, and provides the method for measuring degree of attainment.
Without relying on hard-to-measure time, the approach deals exclusively with the equipment design or configuration on the premise that, in terms of a development program or contract, hardware is the only facet the designer can control. A corollary Signal Corps program is aimed at improving the military maintenance system to support the maintainable equipment.
Any quantitative measure of maintainability should consider all facets affecting equipment maintenance; it should be readily understood by all levels of technical and semi-technical personnel; and it should be quickly computable without recourse to lengthy computation.
A measure should provide a clear-cut yardstick by which the worth of an item of equipment, from the standpoint of maintainability,

[^2]can be evaluated objectively.
Such a measure should provide the basis for maintainability specifications of a precise, definitive nature which permits a more exacting control over the kind of equipment procured for military use. In addition, a maintainability index should provide equipment designers and developers with a means of checking on the quality, as far as maintenance goes, of their design plans. For these measures or scores to be meaningful, it is necessary to establish minimum acceptable scores for each factor.

Bibliography Shows Wide,

Confusing Variety of Definition

A survey of existing maintainability bibliography reveals a confusing variety of definitions of maintainability indicative of the variety of concepts engendered by the peculiarities of the missions of each sponsoring service or agency. Indicative of the variety are the following:

1. Department of Defense defined maintainability as "a quality of the combined features and characteristics of equipment design which permits or enhances the accomplishment of maintenance by personnel of average skills, under natural and environmental conditions in which it will operate."
2. AGREE (Advisory Group on Reliability of Electronic Equipment) coined the following: "Maintainability is defined as the reciprocal of
mean net time to repair failures, where both failures and repairs take place under specified simulated field conditions."
3. RCA, under contract AF 30(602)1623, sponsored by Rome Air Development Center (RADC) said: "Maintainability is the average man-hour requirement rate for all maintenance performed per unit of equipment complexity, with existing personnel under the specified environmental and usage conditions."
4. American Institute for Research, under RADC Project No. 7502, Wright Air Development Center (WADC) Task No. 71502 stated: "Maintainability is a function of the rapidity and ease with which maintenance operations can be performed to help prevent malfunctions or correct them if they occur."
5. The Navy developed a maintainability formula based on down-time for corrective and preventive maintenance related to an average at-sea period.
6. Enticingly concise is the definition proposed by Capt. J. L. P. McCallum of the Navy's Bureau of Weapons: "Maintainability is the ease with which the device can be kept operating."
Each of these definitions provides a concep of maintainability directly related to the approach or field of interest of the sponsoring organization. None, however, provides the basis for evolving a quantitative measure of the maintainability of the hardware product at the point
of emergence from development. Indeed, somt eren contain terms which, in themselves, raise pioblems of definition.

To establish a basis for expressing the Signal Corps concept of maintainability a new definition was evolved, expressed as "the degree of facility with which an equipment can be retained in, or restored to, serviceable operation. It is a function of parts accessibility, internal configuration, use and repair environment, and the resultant time, tools, and training required to effect maintenance."

Mainfenance Tasks

Broken Down to Job Segments
The basic step in developing an index is to identify the elements of the general term "maintenance." The job segments, or elements, are broken down as follows:

1. Checking (preventive and corrective). (a) Inspections, (b) Control checks, (c) Test equipment checks.
2. Adjusting (preventive and corrective). (a) Mechanical adjustments, (b) Electrical adjustments.
3. Servicing. (a) Lubricating, (b) P.eplenishing, (c) Changing.
4. Troubleshooting. (a) To major unit, (b) To sub-unit, (c) To part.
5. Replacing (preventive and corrective). (a) Major units, (b) Sub-units, (c) Parts.
6. Repairing.

Each of these maintenance elements is affected, to varying degrees, by the factors of equipment design and the conditions of use. The illustration portrays the interaction of the factors of design and conditions of use upon the elements of maintenance.

'Maintenance Consequence Areas'
 Reveal Poor Maintainability

To establish the relationship between design features and conditions of use, the concept of "maintenance consequence areas" was developed. A maintenance consequence is defined as the way in which inadequate design for maintainability affects maintenance load and operations, or mission accomplishment. Analysis of all identified consequences results in consolidation into five primary consequence areas, namely:

1. Equipment down-time -the time required 10 perform preventive and corrective maintenance which prevents operation of the equipment during a period of scheduled operation. This total time does not include maintenance ag time, which is the time lost due to unavailbility of parts, personnel, etc. Down-time is sene ally expressed in terms of equipment hours. 2. Maintenance time-the total time required 0 carry out all preventive and corrective main-

Microwave Component News from SYLVANIA (wh)

Octave Bandwidth Coaxial Isolators from 1-11 kmc

Broadband coaxial ferrite load isolators from $1-11 \mathrm{kmc}$ (with octave steps from 1 to 8) are now available from Sylvania for almost every microwave application. They are especially well suited to test equipment and other wide band applications.
Operating curves for an FD-151P, shown at left, illustrate the outstanding performance of these units. In each case, operation exceeds the rated limits by a substantial margin throughout the entire band-not just at mid-band.
With normal handling, Sylvania ferrite isolators give this same electrical performance for years without deterioration or failure. They can be used to reduce the VSWR presented by a load or antenna, and to protect oscillator output from long line effects.
For more information on these units or other standard or custom built devices in Sylvania's extensive ferrite device line write, wire or phone your nearest Sylvania tube sales office, or contact Sylvania Special Tube Operations, 500 Evelyn Avenue, Mountain View, California.

Designing for Maintainability Thinilit

TIME-BASE
tenance actions. This total time is expressed in terms of man-hours.
3. Logistics requirements-the demands made on the logistics system in terms of tools, parts, personnel, facilities, etc., to support maintenance.
4. Equipment damage-the probability that damage to the equipment will result during the act of performing normal maintenance actions.
5. Personnel injury-the probability of injury to maintenance personnel during performance of normal maintenance actions.
These maintenance consequence areas are not completely independent variables. There is considerable interaction among the five areas. The exact nature of this interaction, however, depends on the specific equipment and its maintenance support.

Five Consequence Areas

Show Equipment Maintainability

It is necessary to use all five consequence areas adequately to describe the effects of de-
signed maintainability on a particular maintenance situation. The five consequence areas provide, in effect, a profile of maintainability.

By using this consequence-area approach, the relationship of design features to the field requirement for maintainability can be developed. This is done by comparing the degree of consequence, or score, resulting from the absence of specific design features, with the tolerance the field has for meeting the resultant consequences, expressed as a design standard.

Time-Based Index

Has Many Drawbacks

At this point we note the significant departure in the Signal Corps method of measuring maintainability from other proposed methods, and from the reliability approach.

Time is the prime element in determining reliability and this same element is the basic factor in practically all other approaches to the measurement of maintainability. The measurement of time in relation to maintenance, however, has many limitations or drawbacks, namely:

1. Time to effect a sample repair in the laboratory environment cannot reflect the multiplicity of field conditions that combine to degrade that measurement.
2. There is no determinable "average" condition or environment under which one can time maintenance actions.

Strong inferrelationship exists between design factors, maintenance job elements, and maintenance conditions for any equipment.
3. There is no "average skilled" personnel representative of the wide range of "butchers and bakers turned technicians" who must perform field maintenance under a wide variety of constraints.
4. There is no known "average" time for simu lating time required to assemble the tools, test equipment, parts, etc., required to effect any sample failure repair under the wide variety of field maintenance and logistics conditions.
5. The sample of repairs used to demonstrate the time element is normally based on the most common and repetitive types of failures revealed by experience. A determination of high main. tainability based on this sample does not reveal the possibility of very low grade maintainability resulting from random failures of unsampled items which may be induced by new design con cepts, new circuit applications, unfamiliar skill requirements, side effects of other repairs, and other stresses too numerous to mention.
6. Time, as an element to be measured, re quires the expenditure of time in effecting the trial or test, thus contributing considerable delay time at the end of the development cyct if maintainability acceptance is to be deter mined before going into production. The alter native is to barge into production and mak an after-the-fact determination of maintainabil ity by the compilation of data logs. This is ob viously unacceptable since it does not preclude introducing a maintenance problem in the field

241 Design Features Affect

Equipment Maintainability

The first task is to identify those design fea tures which affect or influence the maintainabil ity of equipment. This resulted in a listing of 24 features, applicable to communications-elec tronic equipment, which were general enough to be pertinent to the variety of equipment typed involved and yet specific enough to allow posi tive determination as to whether the feature had been incorporated in a specific equipment. ${ }^{\circ}$
These design features were submitted to many experienced field-maintenance personnel whid rated each feature on a five point scale indicat ing its relative importance in each of the conse quence areas. These relative values, from 0 to provide the "weighting factor" for each desige feature by which the equipment can be rav scored. Estimates of reliability of the relatin importance of the different features were com puted and results showed a high degree of con fidence in the reliability of the assigned weight
The design features were arranged in nit design-factor groupings for sequencing equir,

[^3] of 241 Design Features for Maintainable Equipment."
$m \cdot n t$ evaluation and providing rapid readout of the areas in which an equipment was weak or strong from a maintainability viewpoint.
The nine design-factor areas are (1) displays and controls, (2) external accessibility, (3) test points, (4) cables and connectors, (5) internal accessibility, (6) cases, (7) lubricants and tools, (8) manuals, and (9) test equipment.
Design feature scores are computed for each design-factor area as well as for each of the five consequence areas. To standardize the scoring in each of these areas the scores are converted to a base of 100 . To convert the total raw scores, the total "yes" (indicating presence of the design feature in the equipment) scores are divided by the total "yes" scores plus the total "no" scores. The result is multiplied by 100 to eliminate the decimal. All design features not applicable to the specific equipment being evaluated are eliminated from consideration in the scoring.

Maintainability Scores

Can Relate to User's Requirements
For the scores obtained under this or any other procedure to be significant, they must relate to a requirement, or standard, representing the user's minimum acceptable maintainability requirements.
To obtain these standards a questionnaire was administered to a comprehensive crosssection of command personnel who expressed their requirements on a hundred-point scale for each consequence area under six different equipment family-type groupings.

Weighting Factors

Help Engineer Evaluate Trade-Of
Having acquired a means for measuring maintainability, it became possible to establish a technical requirement, or specification, of maintainability in precise, definitive, and quantitative terms. Even more important it became possible to delineate specific design features which would enhance the maintainability of the product.
The weighting factors for each feature give the design engineer valuable guidance when it becomes necessary to trade-off between maintainability features or between a maintainability feature and another feature, such as packaging, form factor, producibility, and reliability.
The Signal Corps approach to the specification of maintainability requirements is contained in a correlated set of documents which are designed to eliminate duplication, repetition, and reiteration of philosophy, policy, guidelines, and criteria.
The first in the series, "Maintenance Engineering for Signal Corps Equipment," is a general specification of maintenance-engineering requireme its which will be incorporated in the design

The Avnet System

creates a new Concept of Scheduling

Abstract

30 days hath September, April, June and November. All the rest have 31 except The Avnet System, whose calendar is the delight of engineers and electronic purchasing men all over America. Yes, there are 30 days in Avnet's November, but your order knows no weak-ends. Within the same 30 days, The Avnet System ships more orders than any other major source of supply. Your specific order therefore, can be scheduled for quicker delivery, faster use.

This new Concept of Scheduling according to customer convenience rather than calendar convenience is one of the many advantages in The Avnet System. Avnet maintuins a network of Sales Engineers Iraveling the U.S. Each engineer has his counterpart in a Service Center Expediter. Tremendous stocking facilities are maintained strategically throughour the country. Avnet maintains and operates complete assembly facilities for Connector Protolype requirements. For the most expeditious Scheduling contact your nearest Service Center in The Avnet System.

AVNET

THEAVNET SYSTEM Mon / Mothode / Materlals / Managemont AVNETELECTRONICS CORP.

[^4] TIC PRECISION TRIMMERS. VIDREX FASTEMERS BY GENERAL TIRE \& RUBOER CO., U. S. SEMCOR SEMICONDUCTONB, SAMAMMO CAPACITORS, SPRAGUE CAPACITORS CIRCLE 48 ON READER-SERVICE CARD

Made for the most exacting applicatlons of all...

The family of the world's most nearly perfect electronic and electrical insulation materials

Whatever Your High-Temperature Needs-to 1550° F.-one of the Mycalex family of quality insulating materials is sure to meet your most critical requirements. Each of these dependable insulating materials offers a unique combination of special advantages for electronic and electrical design: the plus factors of the inorganics and the design latitudes of the organics.

MYCALEX ${ }^{\text {® }}$ glass-bonded mica-formulations of high-quality natural mica and electrical grade glasses, with high-dielectric strength, total dimensional stability, high-arc resistance, high-temperature resistance. Depending on their formulation, they can be machined or molded to exacting tolerances, inserts can be permanently molded in or cemented in-the thermal expansion of MYCALEX being close to that of stainless steel.
SUPRAMICA ${ }^{\oplus}$ ceramoplastics-advanced formulations of synthetic mica and high-temperature glasses, created for insulation applications at maximum temperature endurances up to $1550^{\circ} \mathrm{F}$. They have a thermal expansion coefficient close to that of stainless steel. They are available in moldable or machinable types
. both offering rotal dimensional stability.
Engineering and Design Assistance Program-Our diversified experience includes commercial and military projects . . . applied research and product development. No matter what your electronic or electrical insulating problem, we can assist you in the evaluation and design of materials or components. Your inquiries will be answered promptly and in confidence.

MYCALEX 400 glase-bonded mica Machinable insulation that withstands a maximum tomperatiure endurance of $700^{\circ} \mathrm{F}$.
Portion temperature of $850^{\circ} \mathrm{F}$.
MYCALEX 410 glase-bonded mica Procision-molded insulation that wilhstands maximum temperature ondurance of $650^{\circ} \mathrm{F}$. (unstressed) and a heat distortion temperature of $690^{\circ} \mathrm{F}$.
MYCALEX 410 X glass-bonded mica Lightwight procision-molded insulation that withstands a maximum temperature endurance of $575^{\circ} \mathrm{F}$. (unstressed) and a heat distortion temperaturo of $690^{\circ} \mathrm{F}$.
MYCALEX 388 glase-bonded mioa Machinable insulation that withstands a maximum tem. perature endurance of $700^{\circ} \mathrm{F}$. (unstressed) and a heat distortion temperature of $850^{\circ} \mathrm{F}$.

SUPRAMICA 820 ceramoplastic Machinable insulation that withstands a maximum temperature endurance of $1550^{\circ} \mathrm{F}$. (u
distortion temperature

SUPRAMICA 800 ceramoplastic Machinable insulation that withstands a maximum tem perature endurance of $700^{\circ} \mathrm{F}$. (U
distortion temperatura of istrion temperatura of $900^{\circ} \mathrm{F}$.
sUPRAMICA 860 ceramoplactic Precision-molded insulation that withstands a maximu temperaturo endurance of $932^{\circ} \mathrm{F}$. (unstressed) and a heat distortion temperature of 870° F.
SUPRAMICA 668 coramoplastlc Precision-molded insulation that withstands a maximum temperature endurance of $650^{\circ} \mathrm{F}$. (unstressed) and a heat
distortion temperature of 700°. distortion temperature" of $700^{\circ} \mathrm{F}$.
rress of 264 psi.

New Mycalex ENGINEERING COMPARA CHART New MYCALEX ENGINEERING COMPARA CHART well-known insulating materials. Send for your personal copy!

General Offices and Plant: 121 Clifton Blvd., Clifton, N. J. Executive Offices: 30 Rockefeller Plaza, New York 20, N. Y.

CIRCLE 49 ON READER-SERVICE CARD

Designing for Mantainability

 UhivicTIME-BASE
and development of all Signal Corps systems and equipment.
It includes an explanation of the maintainabil. ity concept and approach, definitions of terms, an outline of the guidance factors to be found in associated specifications, and the program for coordination and guidance between the design engineer and the maintenance engineer during each phase of the development. Also included are general design requirements applicable to the whole field of Signal Corps equipment.
Next is a set of documents covering a category or family of equipments. Titled "Maintain. ability Design Requirements for Signal Corps Equipment," the set currently includes the following category types: permanent installation, fixed field installation, mobile and/or operat n carried, airborne, test equipment, and electro. mechanical.

Specification Gives Scores
 For Five Consequence Areas

Only the appropriate category specification is included in the documentation on any specific contract. This specification gives the first quantitative maintainability requirement in terms of the minimum acceptable score to be achieved in each of the five consequence areas. It also includes a delineation of the maintenance concept for the specific type of equipment and the support facilities, personnel, and skills available.
The third in the series is a check list format under the title "Maintainability Design Factors for
" The blank is filled in with the specific nomenclature of the particular equipment under development and the check list is marked to provide specific details such as: design for throw-away, modular design requirement, number of modules recommended, cost limit for encapsulated throw-away modules, permissible down-time out of each operating period
This three-part break-down of the documentation has one major important feature. Designers frequently employed on Signal Corps projects quickly become familiar with the general requirements and program in "Maintenance Engi. neering For Signal Corps Equipment." Detailed study is not required for each and every project By the same token, if his field of activity is limited or generally associated with one of the cate-
go types he is soon familiar with the guidance and requirements found in the Maintainability Requirements for that category type. This means that to get quickly to the core of the specific maintainability factors applicable to a specific project he has only to refer to the specified equipment requirements detailed in the third document, the check list.
The fourth and final document is a "Handbook of Maintainability Design Features for Signal Corps Electronic Equipment." This has five tables of design features covering the five consequence areas. Each design feature related to a consequence area is listed with its associated weighting factor for that consequence area. By setting the 241 design features in a handbook the designer is provided with a handy reference work.

Pass-Fail Evaluation

Depends on Weighing Scores

Evaluation of an equipment becomes a process of weighing the variations of the obtained scores over and under the specified minimum acceptable score. The weighing must take into account the relative importance of the consequence area in relation to the maintenance plan for the equipment, the magnitude of the variation from the standard, and the effect on the accomplishment of the specific mission of the equipment and its using organization.
In some cases it may be possible to accept a low score in one area because it is more than compensated by a predominance of high scores in other areas. Changes to maintenance-support planning may be possible to reduce the effect of low scores in the logistic support area. On the other hand a low score in the down-time area for an equipment having high operating time requirements signals an imperative need for improvement in this area regardless of how well it might score in other areas.
The capability of identifying problem areas, or maintenance "soft-spots," by studying lowscoring design-factor areas, will permit adjustment of maintenance planning to provide increased maintenance support capability to compensate for low-maintainability design. Equally mportant will be the identification of specific areas to receive increased attention in future redesign or development of similar equipment.

Roferonces

D()D Directive No. 3232.1, 3 Nov. 1955, "Department ff Defense Maintenance Engineering Directive."
. DoD Directive No. 3222.1, 5 July 1956, "Approval of New Electronic Equipment and Systems for Service Ise."

- Airerican Institute for Research-Signal Corps Contact DA $039 \mathrm{SC}-68488$, "Development of an Index of Elect mic Maintainability." Research Report ASTIA No. A.) 219988.

ELEC TRONIC DESIGN • October 26, 1960

Universal in Application...

Glass-to-Metal SEALS

Universal in Reliability...

SEMI-CONDUCTOR SEALS INDIVIDUAL TERMINALS MULTIPLE-LEAD HEADERS CONDENSER END SEALS COLOR CODED TERMINALS THREADED END SEALS CUSTOM SEALING SERVICE

Standardized Production

E-I offers designers and engineers the complete flexibility and economy of standardized production on all types of seals from individual terminals to sub-miniature closures. For proven reliability, specify the seals employed by leading manufacturers in both commercial equipment and space age projects.

Nation-wide Field Service

Write today for complete information on standard E-I seals or custom sealing of terminal assemblies of your own manufacture. E-I field engineers will gladly make recommendations on your specific requirements on receipt of your application data.

Products for Maintainable Designs

Fig. 1. Grant slides provide access to equipment which must be mounted in "impossible to reach" places on Douglas Interceptor.

Fig. 3. Neg'ator assembly counterbalances $36-\mathrm{lb}$ assembly in Republic's F-84G Thunderjet.

HOW COMFORTING it would be if a manufacturer would offer a product to solve all maintainability problems. A vast array of prob. lems could be wiped out in one fell swoop.

Unfortunately, just as there is no single concept to lick the maintainability problem, there is no one product that will by itself make an equip. ment maintainable.
But there are many products and product types that can enhance the maintainability of a given equipment and, in some cases, can make the big difference between a product that's easy to maintain and one that's not.
Two paramount features of maintainable equipment are ease in fault location and accessibility Of these two, the latter might well be voted more important, since accessibility so often serves to simplify fault location as well as to facilitate testing and servicing parts.

Prime Need, Accessibility,

Served at Many Levels
Accessibility, in its turn, is served by many products, at many levels. At the broadest level it is served by doors which swing out of the way to expose entire racks of equipment. At a lower level it is served by slides which allow chassis to be withdrawn from cabinets to any extent and allow them to be tilted through a wide arc for easy inspection and servicing. Slides such as those manufactured by Grant Pulley \& Hardware Corp. of West Nyack, N.Y. (Fig. 1), and by ChassisTrak. Inc. of Indianapolis (Fig. 2), are available for a wide range of loads and a wide range of environmental conditions.
Another approach, shown in Fig. 3, improves equipment accessibility by allowing even heaw equipment to be suspended by cables. Weight of the equipment is counterbalanced by a Negatel

Fig. 2. Chassis-Trak slides give access to the electronic equipment from virtually any angle.

Fig. 4. Taylor Wiring duct allows for neat, easy-to-get-ar inter-chassis cabling. Here the duct is used in a large bank of relays.
assembly, manufactured by Hunter Spring Co. of Lansdale, Pa.
At another level, wiring ducts, such as those made by Taylor Electric, Inc. of Detroit (Fig. 4), simplify tracing faults related to inter-chassis cabling.
For use between modules or other types of packages, there is an array of quick-disconnect connectors to speed access. An unusual product in this array is the recently announced, quickdisconnect terminal strip (Fig. 5), manufactured by Infrared Industries, Inc. of Waltham, Mass. This device combines the accessibility of the conventional barrier strip with the fast-replacement feature of the quick-disconnect connector.
On the module level, there is now available a very wide variety of plug-in circuits and components. Particularly for computer, industrial control, and military applications where down-time must be minimized, the increasing cost and complexity of plug-in devices can be seen. One such

Fig. 5. Infrared Industries' quick-disconnect terminal strip sombines barrier-strip test points with quick-disconn at connector.

SPECIFICATIONS

*REGULATION: 0.03% or 0.01 V from no load to full load and 105 to 125 V line. (0.1% or 0.01 V for 3 -amp models.) RIPPLE: Less than 1 millivolt rms.
INPUT: 105 V to $125 \mathrm{~V}, 50$ to 60 cps .
CIRCUIT PROTECTION: Four-year field-tested electronic and electrical circuit protection.
MOUNTING: Rack and table.

* 0.01% or 0.003 V regulation available on special order.

REQUEST BULLETIN 721A.

- Reg. U.S. Pot. Off. Patents lssuad and Ponding.

11 1) cioc co

Goneral Electric Silicone Fluids offer reliability from $-65^{\circ} \mathrm{F}$ to $400^{\circ} \mathrm{F}$ as liquid dielectrics and heat transfer media in aircraft, missiles and ground installations. Excellent dielectric properties are virtually unchanged over wide ranges of temperature and frequency.

ormissileheat...

G-E Silicone Rubber Insulation is used in missiles and space vehicles because of its excellent insulating properties, resistance to temperature extremes, moisture and ozone and its long-time stability in storage.

G-E silicone insulations do the job!

RTV* Liquid Silicone Rubber comes in a wide range of viscosities for potting, en-
capsulating, impregnating and sealing. capsulating, impregnating and sealing.
RTV resists heat, cold, ozone, moisture; protects against high-altitude arc-over. *Room Temperature Vulcanizing
4G-E Silicone Varnishes provide excellent 4 G-E Siltione Varnishes provide excellent protection against moisture and high op-
erating temperatures. Applications inerating temperatures. Applications in-
clude conformal protective coatings for printed circuits, resistor coatings, transfrinted circuits, resistor coatings, trinscure at low temperatures.
New Silicone Dielectric Greases maintain physical and electrical properties from $-65^{\circ} \mathrm{F}$ to $400^{\circ} \mathrm{F}$, offer protection against moisture and oxidation. Used as corrosion inhibitors, lubricants, heat transfer media and release agents.
4 Silicone Rubber Wire Insulation withstands soldering heat without damage; matches or exceeds vital properties of insulation costing three times as much. Provides long service life at $500^{\circ} \mathrm{F}$; momentarily withstands temperatures up to $5500^{\circ} \mathrm{F}$. Flexible as low as $-150^{\circ} \mathrm{F}$, it resists moisture, ozone, nuclear radiation.
Sond for rechnical data, "Silicones-forInsulation." Section 1 1031, Silicone Products Dopartment, Waterford, Now York.

GENERAL (76) ELECTRIC

Designing for Maintainability

PRODUCTS
device is a plug-in dial timer (Fig. 6), manufactured by Automatic Timing and Controls, Inc. of King of Prussia, Pa.

The plug-in concept has been applied on the component level as well as on the level of com. plex units and subassemblies. Even at this level, ease of replacement can often justify the added cost of the plug-in feature. A wide variety of components-resistors, capacitors, rectifiers-has been made available in plug-in form. One of these is a plug-in silicon rectifier (Fig. 7), which is manufactured by International Rectifier Corp. of El Segundo, Calif.

New Encapsulents and Strippers Yield Access to Potted Parts

One of the greatest objections to encapsulation, the problem of testing and replacing small parts,

Fig. 6. Plug-in timer, by Automatic Timing and Controls, provides long, keyed, guide pin to insure accurate alignment and to protect electrical contacts.

Fig. 7. International Rectifier Corp.'s plug-in rectifien extend plug-in concept to component level.

fig. 8. Dow Corning Corp.'s transparent Dielectric Gel heals itself after being pierced by test probes.
has been largely overcome by some new products. These include strippers that flake away epoxy and polyester encapsulents without harming most circuit components, transparent potting compounds which heal themselves after being pierced by test probes, and encapsulents which can easily be cut or torn away from faulty components and can just as easily be mended.
Two types of strippers are available from the Electronic Components Div. of Telecomputing Corp. in Van Nuys, Calif.-a liquid type, TeleSolv, and a gelatinous Tele-Solv G that can be applied to surfaces which can't be immersed in a liquid.
A transparent, pierceable encapsulent, Di-electric Gel, (Fig. 8), is offered by Dow Corning Corp. of Midland, Mich.

Expendable Modules

Simplify Fault Location
The concept of designing modules for throwaway, which has received so much attention re-

Fig. 9. Centralab's packaged electronic circuits provide will-in failure indication. If a resistor or capacitor should short, the heat generated will discolor the PEC ond dark brown spot on the coating will show the location of the burned out component.

Inland

d-c torque motors

provide direct drive servo positioning . . .

NO GEARS, NO BACKLASH

Complete range . . . 0.1 to 3,000 pound-feet
Inland offers a complete line of compact d-c torquers for airborne, shipboard or ground service stabilization and tracking systems. Increased system accuracy has been achieved by mounting the torquers directly on the driven member. This completely eliminates gear backlash and other problems normally associated with gear trains, reduces substantially over-all friction error, and improves the over-all constant of the system. In addition, Inland's d-c torquers combine the compact pancake shape with very high peak torque, low input power, and high angular resolution.

Exclusive commutator and brush rigging design
Inland has achieved this compact pancake shape while maintaining the low-power input to hightorque output ratio of a d-c torquer.

INLAND AMPLIFIERS-Inland makes a wide line of control amplifiers for systems duty with Inland torquers. Write for technical details.

COMPARE THESE RATINGS WITH A TYPICAL SERVO MOTOR-GEAR TRAIN COMBINATION

Peak torque, oz. in.
Volts at peak torque, stalled at $25^{\circ} \mathrm{C}$
Amps at peak torque
Total friction, oz. in.
Rotor Inertia, oz. in. sec ${ }^{2}$
Weight, oz.
Dimensions (inches):
O.D.

ID.
Thickness

T-2136-A	T-2136-B	T-2136-D
35	35	35
26.0	20.6	33.5
1.6	2.0	1.3
0.8	0.8	0.8
.007	.007	.007
9	9	9
2.81	2.81	2.81
1.00	1.00	1.00
.63	.63	.63

For complete data on these or other Inland d-c pancake torquers, address Dept. ED, Inland Motor Corporation of Virginia, Northampton, Massachusetts.

INTLAND MOTOR corporation MOTOR

OF VIRGINIA NORTHAMPTON, MASS.
CIRCLE 53 ON READER-SERVICE CARD

Testing insertlon charactoristics of X-band filtor with Alfred Swept Generator. It consists of Alfred Microwave Oscillator and Alfred Mierowave Levelor. This combination olectronically sweops fre-

with ALFRED'S new SWEPT Microwave

 GeneratorThe scope patterns tell the story. Top pattern shows constant power input from Alfred Swept Generator to component (filter) under test. With known input, variation in output is due to filter characteristics. Lower pattern is especially significant, showing continuous, flicker-free display, 8 to 10 kmc . Any changes in stubs or irises are immediately reflected. Measurement accuracy is assured at every frequency, not just at selected points.

THIS TECHNIQUE CAN BE USED FOR MOST PRESENTLY KNOWN MICROWAVE TESTING

 APPLICATIONS. HERE'S WHY IT'S FASTER THAN CONVENTIONAL SIGNAL GENERATORS:* Continuous Display allows immediate measurements-no plotting needed. Trace can be recorded if desired.
* Sweep Technique eliminates time-consuming "point-to-point" frequency and power setting methods of conventiona signal generators. Sweep range is contin uously adjustable with 1% accurate Direct Reading Slide Rule Dial.
* "Quick Look Readout" eliminates calculations in setting sweep range.
* Adjustable Frequency Markers allow rapid, broadband calibration of scope or recorder trace.

SOME MORE FACTS YOU SHOULD KNOW

* Frequency Ranges. The Swept Generator is available in five ranges to 12.4 $\mathrm{kmc}-1$ to 2. 2 to 4.4 to 8, 7 to 11. 8.2 to 12.4 .
* Stability. At any single frequency, stability of the Swept Generator equals that of a conventional signal generator. Spurious modulation is low.
* Power Output. Greater than a signal generator: 10 milliwatts as compared to 1 milliwatt.
function of the leveler it holds power output constant to $\pm 1 \mathrm{db}$ over standard frequency ranges, and better than $\pm 1 \mathrm{db}$ over narrower ranges. The Leveler serves as a broadband attenuator with up to 20 db dynamic range control, providing constant output over a wide range. It can be used as a general purpose instrument for a wide variety of oscillators and amplifiers.

For more details on the Alfred Swept Generator - please contact your Alfred sales engineering representative, or write direct.

Key specifications for Signal Generators available for coverage from 1 to 12.4 kmc Please address: Dept. 36. Frequoncy - Controls: Continuously adjustable with direct calibrated dial. Calibra rion accuracy: 1%. Stability: $\pm 0.02 \% / \mathrm{hr}$. Residual FM: $\pm 0.0025 \%$. Power Outpu (minimum): $10 \mathrm{mw} \pm 1 \mathrm{db}$. Continuously adjustable fronl zero to maximum. afrenuation Range: Up to 20 db . Sweep - Selector: Recurrent Sweop, Single Sweep, Single Frequency, and External on panel switch. Time: 100 to . 01 seconds, con sinuously adjustable. Monitor Outpuf - Sweop Out: Positive lineor sawrooth, volts peak. Panal BNC connector. Amplitude Modulation - Internal Square Wave,
RF output is alternately 0 and unmodulated CW value. Frequency 800 to 1200 cps , adjustable by panel control.

ALFRED ELECTROMICS

897 COMMERCIAL STREET PALO ALTO. CALIFORNIA

Designing for Maintainability

cently, is by no means a new one. Examples of throw-away circuits which have been available for years are the packaged electronic circuits (Fig. 9), sold by the Centralab Div. of GlobeUnion, Inc. in Milwaukee. These PEC's can house as many as 20 resistors, capacitors, transistors, and other small components. Cost of one of these packaged circuits can be significantly lower than the cost of tracing a fault to an individual component, and the time saved can be substantial.

Fasteners, Clamps, and Seals,

Can Speed Access
One of the more troublesome but less recognized areas of designing for maintainability lies in the means of fastening and sealing. An inordinate amount of time can be wasted in searching for lost nuts or in testing around a sealed enclosure with the hope that the trouble isn't really in the enclosure.

Fortunately, many recent developments in both fasteners and seals have minimized these problems. Captive fasteners have been one approach to avoiding lost nuts and bolts. Another approach has been the use of inserts like the Banc-Lok insert manufactured by the Boots Corp. of Norwalk, Conn. (Fig. 10). This one-piece fastener is pressed into a prepared hole where it provide

Fig. 10. Boots Corp.'s Banc-Lok inserts eliminate nee for tapping and eliminate problems of lost nuts.

Fig. 11. Timber-Top's Synclamps require only screwdriver space between components being mounted.
vibrationproof screw threads with self-locking action in sheet metal, plastic, metal castings, wood, and composition materials.
From a maintainability viewpoint, any fastener should hold something securely; it should allow the component to be removed easily and quickly; and it shouldn't have loose parts which may get lost. One particularly simple device that satisfies these requirements is the Synclamp (Fig. 11), made by Timber-Top, Inc. of Freeport, Long Island, N.Y. A quick-release synchro clamp, it locks and unlocks simply with the turn of a screw.
Many of the problems usually posed by seals are averted with one-piece, molded-in-place seals. One such product, the Gask-O-Seal, manufacthred by Parke Seal Co. of Culver City, Calif. can provide hermetic sealing with an easily removable and even re-usable seal. It can be used for waveguide seals (Fig. 12), and for sealing vacuum or pressurized enclosures.
Of course, there are hundreds of products Which, used properly, can enhance the maintainabilitv of an equipment. Used improperly, even the bist of them will not improve a basically bad desig i. - =

Another SPEED NUT Savings Story...

62\% cost reduction made with SPEED CLIPS ${ }^{*}$ on Cramer Posture Chairs

A dozen Speed Clips now do the job of fastening upholstery to the steel seat of Cramer Posture Chairs. Before the switch to Tinnerman Speed Clips, an expensive formed-steel rim was spot-welded to the seat to do this job.
Speed Clips save Cramer at least 46 cents-or 62% of fastening cost-on each chair .they eliminate the rim-forming and spot-welding operations... permit faster, easier assembly... simplify disassembly if the chair ever needs re-upholstering. Working jointly with Cramer's engineering staff, Tinnerman fastening specialists were able to provide all these advantages without sacrificing product quality.

Assembly costs on your product are likely to
benefit greatly, too, if you'll enlist the aid of this Tinnerman team. You can arrange for a free Fastening Analysis of your product simply by calling in your nearby Tinnerman representative. You'll find him listed in the "Yellow Pages" and in Sweet's PD File under "Fasteners." Or write direct to:

TINNERMAN PRODUCTS, INC. Dopt. 12 . P. O. Box 6888 - Cloveland 1, Ohlo

All-Pass Networks

Part 2

Using Networks to Shape Transient Response
An all-pass network, which shifts phase but does not introduce attenuation, is readily applicable to improving another network's transient response. In this second of a series of articles on all-pass networks, Yale Jay Lubkin illustrates
this application with a detailed example. A pulse transformer is chosen as the network whose transient response is to be improved.

The succeeding article will describe how all-pass networks can vastly improve delay lines.

Y. J. Lubkin

Loral Electronics Corp.
The Bronx, N.Y.

T

- HE PHASE-SHIFT, or all-pass, network is an excellent tool for shaping another network's transient response. By minimizing phase distortion, for example, it improves rise time.
This method of improving rise time will be used to demonstrate the application of phase-
shift networks to transient response. A phase correction network for a pulse transformer will be designed using results obtained in Part 1 of this series (See ED, Oct. 12, 1960, p 36).

After choosing the all-pass network, the transformer's transient response will be computed to demonstrate that minimizing phase distortion improves rise time. This will be done with the differential equations of the phase shift network.

Finally, the network will be designed again,
this time using only the transient response; in frequency calculations will be required.

The significant parameters of a pulse trans former are primary inductance, turns ratio, leak age inductance, and distributed capacitance The significant parameters of the associated cir cuitry are source and load impedance.
In most transformers, the primary inductan has little effect on the rise time and the othe transformer parameters have little effect on th

Fig. 1. Equivalent circuir for the leading-edge response of a pulse transformer.

Fig. 2. Leading-edge response of pulse transformer to unit step.

Table I: Model Computations for Solving Difference Equation

1	0^{-8}	9	g°	$x^{\prime \prime}$	x^{\prime}	x	g-h	h
0.0	1	0	0	0	0	0	0	0
0.1	0.905	0.0045	0.0905	0.362	0	0	0	0.0045
0.2	0.809	0.027	0.164	0.583	0.0362	0	0	0.027
0.3	0.741	0.037	0.222	0.728	0.0945	0.0036	0.0018	0.035
0.4	0.670	0.062	0.268	0.707	0.1673	0.0101	0.0068	0.055
0.5	0.606	0.091	0.303	0.656	0.2380	0.0268	0.0185	0.072
0.6	0.548	0.123	0.329	0.556	0.3036	0.0506	0.0386	0.084
0.7	0.496	0.157	0.347	0.417	0.3593	0.0810	0.0658	0.091
0.8	0.449	0.192	0.359	0.284	0.4010	0.1169	0.0990	0.093
0.9	0.406	0.239	0.365	0.112	0.4294	0.1570	0.1370	0.102
1.0	0.368	0.264	0.368	-0.009	0.4406	0.1999	0.1785	0.088
1.1	0.333	0.301	0.366	-0.146	0.4397	0.2440	0.2220	0.079
1.2	0.301	0.338	0.361	-0.249	0.4251	0.2880	0.2660	0.072
1.3	0.273	0.372	0.355	-0.372	0.4002	0.3305	0.3093	0.063
1.4	0.247	0.407	0.346	-0.455	0.3631	0.3705	0.3505	0.056
1.5	0.223	0.443	0.335	-0.518	0.3176	0.4068	0.3887	0.054

Input: $\quad g=1-(1+t) e^{-t}$

pulse fall. Hence it is customary to consider three different equivalent circuits for the transformer: one for the pulse rise, one for the body of the pulse, and one for the pulse fall.
It also is customary to refer all parameters o the primary so calculations can be made vithout considering turns ratio.
The analysis to follow is based on a pulse ransformer with the following characteristics: primary inductance, $L_{s}=1 \mathrm{mh}$; Leakage inducance, $L=10 \mu \mathrm{~h}$; distributed capacitance, $C=$ 00 pf ; turns ratio, $1: 1$; source impedance, $R_{0}=$ 100 ohms; load impedance, $R_{1}=1,000$ ohms. wich a transformer might be used as interstage oupling for 100 to 300 nsec pulses.

eek Leading-Edge Response

We are interested in the leading-edge transient esponse. The conventional equivalent circuit or this condition is shown in Fig. 1.
The transient response of this transformer is ery casily calculated (see Millman and Taub, ulse and Digital Circuits, pp 263-265).
The response to a unit step is:

$$
h(t)=1-(1+t) e^{-t}
$$

here t is measured in units of $10^{-8} \mathrm{sec}$, and is hown in Fig. 2. (Note: In all figures, the amplide has been normalized so that $h(\infty)=1$.)
The transformer is critically damped, because $C=L /^{R_{L}}$, and, hence, the response to a unit ep has no overshoot and no ripple. The rise
me i. about 33.5 nsec , and the delay to the half-
maximum-amplitude point of the output is about 17 nsec.

Frequency-Response Solution
If we define

$$
\begin{equation*}
\alpha=R /\left(R+R_{s}\right), \quad \tau=R_{s} C=L / R \tag{1}
\end{equation*}
$$

then, from Millman and Taub, the gain, A, and phase shift, ϕ, are

$$
\begin{equation*}
A=\sqrt{4 \omega^{2} \tau^{2}+\left(\frac{1}{\alpha}-\omega^{2} \tau^{2}\right)^{2}} \tag{2}
\end{equation*}
$$

where $\quad \tau=10$ nsec, and $\alpha=0.9$.
Fig. 3 shows the gain, phase shift, phase error, and cosine of the phase error for the transformer as a function of w. The phase error, $\Delta \phi$, is defined by

$$
\begin{equation*}
\Delta \phi(\omega)=\left.\omega \frac{d \phi(\omega)}{d \omega}\right|_{-0}-\phi(\omega) \tag{3}
\end{equation*}
$$

The phase error is the difference between the actual phase shift and the value that would result if phase shift were exactly proportional to frequency.
Were the phase error identically zero, all frequencies would be delayed by the same time and no dispersion would occur. In this event,

Fig. 3. The gain, phase-shift, phase error and cosine of phase error of the pulse transformer as a function of ω.

Fig. 4. Cascading a duopole funderor over-compensated) with the pulse transformer makes phase error more linear and also increases frequency at which given phase error exists.

Fig. 5. Cascading a duopole (under- or overcompensated) with pulse transformer improves rise time of unit-slep responsa but introduces a delay.

Fig. 6. Physically realizable duopoles, (a) undercompensating, (b) overcompensating, (c) compromise between (a) and (b) that eliminates mutual eoupling.
the rise time would be determined only by the amplitude response of the network, and would be the minimum possible for the given amplitude response.

Zero Phase Error Impossible

Identically zero phase error is not possible for lumped parameter systems, although it may be closely approximated for practical purposes.
To simplify the equations, all times (t, τ) will be in units of 10 nsec , and all frequencies (ω, a, r) in units of 100 mega radians per sec.
Fig. 3 shows the phase error becomes quite large for frequencies at which the gain, A, is still appreciable. At 90 deg phase error the gain is 0.2 . This situation results in poor rise time. The actual rise time, 33.5 nsec, is appreciably longer than the rise time determined only by the amplitude response, 20 nsec .
A single duopole section will be used as a phase-correction network. Reference to Fig. 3 shows the phase error of the pulse transformer is about 90 deg at $\omega=2$ and is about 20 deg at $\omega=1$. Hence the duopole must have about 70 deg excess phase shift between these points.

Most Errors Not Serious

As a first approximation to the desired network, consider a duopole having 90 deg phase shift at $\omega=1$, and 270 deg at $\omega=3$. The range of nearly optimum networks is quite wide, so errors due to non-optimum choices or to component drift are not serious.

Because a equals one-half the bandwidth between points of 90 deg and 270 deg phase shift, $a=1$ in this case. The frequency of 180 deg phase shift is
$\omega=\sqrt{a^{2}+r^{2}}$, so that $r=\sqrt{3}$.

Fig. 4 shows the net phase error of the pulse transformer and duopole. The duopole phase shift and phase errors are readily determined from the transfer function (substitute $s=j \omega$) and are

$$
\begin{align*}
\phi & =2 \arctan 2 a \omega / r^{2}-\omega^{2} \tag{4}\\
\Delta \phi & =\frac{4 a \omega}{r^{2}}-\phi \text { radians }
\end{align*}
$$

The resultant phase characteristic is much more linear than that of the pulse transformer alone; the frequency for a given phase error is increased by almost $\omega=0.9$. Thus, the frequency for 90 deg error has been increased from $\omega=2.1$ to $\omega=2.75$.

Compensation Has lis Price

The phase error with the calculated duopole network is monotonic, i.e., phase error increases with frequency for all frequencies.

By overcompensating and accepting some extra phase shift at low frequencies, it is possible to reduce the phase error at higher frequencies. This usually results in inproved rise time at the expense of ripple.

We may obtain overcompensation by increasing the duopole phase shift in the critical frequency range. With 90 deg phase shift at $\omega=1$, as before, and 270 deg phase shift at $\omega=2.5$, instead of at $\omega=3$, the new duopole has $a=$ $0.75, r=\sqrt{2.5}$.
The phase error of the transformer and the second duopole is shown in Fig. 4. Note that the frequency for 90 deg error has been increased to $\omega=2.85$, and that an error of 20 deg has been introduced at $\omega=1.5$.

The transient response of the transformer alone and with each of the corrective networks is shown in Fig. 5. The rise time is materially improved with either network, but an additional delay has been introduced.

The response with the overcompensating network has a faster rise time and slightly less delay, but also has much more ripple. The peak ripple with the overcompensating network is about 10 of the final amplitude, and this may prove objectionable for some applications.

Mufual Coupling Used

Circuit values for the corrective duopoles are shown in Fig. 6. These values are obtained by substitution in Fig. 1 of the previous article The undercompensating duopole has positive mutual coupling between the inductors and the overcompensating duopole has negative mutual coupling.

By choosing a duopole representing the aver age between the two already considered, and having $r=2 a$, the coupling may be eliminated.

The response with such a network would be an average of the responses of the other two networks. It is apparent that the network d signer has a great deal of freedom.

The network responses are calculated by ob taining the differential equation for the duopol and solving it by means of difference equations The technique is particularly easy for all-pas networks, and the following can serve as a model

Solution Uses Difference Equation

For a duopole, the transform of the outpu is related to that of the input by:

$$
H=\left(\frac{s^{2}-2 a s+r^{2}}{s^{2}+2 a s+r^{2}}\right) G
$$

By cross-multiplying and combining terms,

$$
\begin{equation*}
\left(s^{2}+2 a s+r^{2}\right)(G-H)=4 a s G \tag{6}
\end{equation*}
$$

The transfer function is obtained directly from the differential equation of the network by substituting s for $d / d t$ and s^{2} for $d^{2} / d t^{2}$. Therefore by substituting back we obtain the differential equation:
$(g-h)^{\prime \prime}+2 a(g-h)^{\prime}+r^{2}(g-h)=4 a g^{\prime}$ where ' means $d / d t$.

This is an equation for the difference between the input and the output of any duopole in terms of the input waveform.
The difference solution is obtained by starting with the initial conditions at $t=0$ (which here are $\left.(g-h)=(g-h)^{\prime}=(g-h)^{\prime \prime}=g^{\prime}=0,\right)$. Then select a suitable calculation interval, Δt, the size of the interval depends on the accuracy desired) and systematically generate answers for

$$
\begin{equation*}
x(t+\Delta t)=x(t)+x^{\prime}(t) \Delta t \tag{8}
\end{equation*}
$$

rhere x stands for $(g-h)$ or $(g-h)^{\prime}$.
From the differential equation, calculate $g-h)^{\prime \prime}$ at any value of t, after $g^{\prime},(g-h)$ and $g-h)^{\prime}$ have been calculated for that particular ralue of t.
The first steps of the calculation for the underrompensating duopole are shown in Table 1. The ime interval chosen is $t=0.1$.

nput Minus Output Obtained

This procedure gives $(g-h)$ as a function of ime, and h may be calculated by subtracting $g-h)$ from g. The difference-equation proredure gives a solution delayed by half the sampling interval, Δt. Hence the obtained solution s not $(g-h)(t)$, but is $(g-h)(t-h \Delta t)$.
The response shown for the undercompensat\lg duopole was calculated using $\Delta t=0.1$ and hat for the overcompensating duopole was calwulated using $\Delta t=0.2$. The duopole parameters vere $a=1, r^{2}=3$.

lime-Response Solution

From the previous discussion, it is evident hat, while networks can be obtained without much difficulty using the frequency response pproach, the calculations involved may become omewhat tedious, particularly if the designer s interested in calculating the time domain freruency response.
By using results established in the previous rticle ($E D$, Oct. 12, 1960), it is possible to avoid most of the calculations if the designer is intersted only in approximate solutions in the time lomail. The duopole's response to low freIuenc: signals (frequency less than some w_{0}) is:

$$
\begin{gather*}
h_{2}(t)=g\left(t-4 a / r^{2}\right)+\frac{4 a}{r^{4}}\left(1-4 a^{2} / 3 r^{2}\right) \tag{9}\\
g^{(3)}\left(t-4 a / r^{2}\right)-\ldots .
\end{gather*}
$$

where $g^{(n)}=d^{n} g / d t^{n}$
This equation gives the waveform at the output of the duopole in terms of the derivative of the input. As a first approximation, neglect all derivatives of the input waveform beyond the third.
In general, for band-limited inputs, this will lead to results that are quite erroneous near the beginning of the input waveform, but fairly accurate after $4 a / r^{2}$ sec. This is indicated in the equation because it shows no output before $4 a / r^{2}$ sec.

Optimum Parameters Obtained

Fig. 7 shows the input waveform, $g(t)=1-$ $(1+t) e^{-t}$-the pulse transformer output-and its third derivative, $(t-2) e^{-t}$. By rewriting the duopole's response equation as

$$
\begin{equation*}
h_{2}(t)=g(t-d)+k g^{(3)}(t-d) \tag{10}
\end{equation*}
$$

where $d=4 a / r^{2}$ and $k=\frac{4 a}{r^{4}}\left(1-4 a^{2} / 3 r^{2}\right)$
we see we can alter h by changing the value of k. Thus, an optimum k, and hence an optimum network can be obtained with little computation. By choosing d, we can then find a and r.
Fig. 7 also shows that $g^{(8)}$ is very nearly zero for $t>1.5 \times 10^{-8}$, so we expect the phase shift network to have little effect on the input waveshape, aside from the delay, beyond that point. It appears from experience that optimum networks have delays ranging from the time at which g equals $g^{(3)}$ to the time at which $g^{(8)}$ goes to zero. Here the delays range from about 1.1 to about 1.6.

We would expect the maximum effect of the corrective network to occur at about half this time. Therefore, select k so the output of the corrective network is zero at a time between 0.55 and 0.80 .

The greater this time, the less the rise time of the corrected signal. The values of k that give zero network output between 0.55 and 0.80 lie between 0.15 and 0.36 .
If the values $d=1.33, k=0.247$ are chosen, the resulting corrective network is the undercompensating network previously discussed. The values for the overcompensating network are $d=1.2, k=0.336$, and those for the network without mutual inductance are $d=1.18$ and $k=0.273$.
Fig. 8 shows the output of the undercompensating network calculated by solving the difference equation and also calculated from the timeresponse equation (Eq. 9). For $t>4 a / r^{2}$, the difference is fairly small. - -

Fig. 7. Input to duopole is step response of pulse tronsformer becoute duopole is cascoded with frans. former toput and its third derivalive figure in compuling reaponse of duopole.

Fig. B. Output of undercompensating duopole solved by derivative series and by difference equation. The difference batwean two aolufions is small after lime equal to delay ossociated with each term of derivative series.

Infrared-Transmission Materials Would be Unaffected by Radiation in Space

The safest assumption about infrared transmission materials in space would be that transmission efficiency is affected adversely by normal levels of radiation. However, tests, supervised by Dr. W. R. Langdon, and described here by Thomas E. Lusk, showed it would require more than a century of exposure for maximum, known radiation in space to affect the materials adversely.

Thomas E. Lusk

General Electric Co.
Ithaca, N.Y.

THE TRANSMISSION efficiency of 15 common infrared optical materials would not be affected adversely by exposure to the highest known levels of gamma radiation in space.
To affect the materials 'transmission properties adversely would require their being exposed perpetually to the heaviest known gamma-radiation level in space for more than a century.

The infrared transmission properties of the 15 materials were tested after exposure to three levels of gamma radiation $-0.975 \times 10^{4}, 1.58 \times 10^{9}$, and 1×10^{8} roentgens. The results are indicated in the accompanying table.

However, only four of the materials-germanium, silicon, Irtran $A B-1$ (similar to $M_{9} F_{2}$) and arsenic trisulfide-presently are used in spacevehicle infrared optics. In space, they are subject to irradiation by electrons, protons, and electrons-produced Xrays as the satellite passes through the Van Allen belts and solar flares.

The negligible effect of gamma radiation on these four materials is shown in detail in Fig. 1, a through d.

Different Radiations Have 'Same Effect'

Of course, the effects of gamma radiation are considerably different from those produced by electrons and protons. However, if the assumption is made that damage depends only on roentgen level, then the change produced by equal roentgen levels of gamma, electron, and proton radiation would be the same.
Approximately, a maximum of 100 roentgens per hour is encountered in the inner Van Allen Belt and the solar bursts, and 10 roentgens per hour in the outer belt. The solar bursts can be neglected in computing an approximate life time
of materials in space, because the bursts usually exist only a few days a month.

Hence, a dose of 10^{8} roentgens will be accumulated in about 1.1 years in the inner Van Allen belt. The damage produced in the laboratory by 10^{8} roentgens will take about 110 years to develop in the inner belt. This also assumes the vehicle remains in the radiation belt all the time and that the infrared optics are exposed to the direction of radiation.

Radiation Source in Lab was Cobalt-60

The radiation-source for the laboratory tests was cobalt-60. The dose rate was 1.95×10^{5} roentgens per hour. This rate did not produce appreciable heating in the samples, although the ambient temperature may have reached a maximum of 30 to 35 C because of absorption of radiation by the lead pig.
At least two samples of each material were tested (with the exception of silver chloride, a
spinel and silicon-monoxide-coated single crys tal silicon, where only one sample of each wa available). Before the initial irradiation, th samples were optically polished so all samplet of a particular material were of almost equal thickness.
Hence, when the infrared transmission be tween 1 and 14 microns was measured on Perkin-Elmer Model 112 spectrometer, samples of a particular material had the same transmission within the ± 2 per cent reproduci bility of the spectrometer.

The infrared transmission of all samples wa determined before the initial irradiation and after each dose.
The measurements usually were made withir five days after irradiation. (No attempt was made to determine the transmission within any spe cific time interval after irradiation.)

No transmission measurements were made wavelengths shorter than one micron. - -

(a)

Fig. 1. Effect of high-level radiatiof on transmission efficiency of four molx rials presently used in infrared systerna for space vehicles-(a) arsenic trisulfioi (b) magnesium fluoride (similar to the material known commercialy as Intro AB-1), (c) germanium and (d) singly crystal silicon. For highest known lev, of space radiation to produce eve these negligible effects would requi materials to be exposed to radiation th more than a century.

(b)

(c)

(d)

Per Cent Change in Infrared Transmission Efficiency Due to Radiation

Matorial	Thicknoss	Radiation Lovel (Roontgens)	Infrared Wavalongth in Mlerons													
			1	2	3	4	5	6	7	8	9	10	11	12	13	14
Germanium Single Crystal (34.0 ohm-cm)	6.3 mm	10^{8}			0	0	0	0	0	0	0	0	0	-2	-2	-2
Silicon Single Crystal	6.3 mm	10^{8}		0	0	0	0	0	0	0	0	0	0	0	0	0
Silicon Boron doped	6.3 mm	10^{8}	-6	-4	-4	-4	-4	-4	-6	-5	-14	-14	-8	-8		
Silicon coated SiO for \mathcal{A}_{μ}	2.5 mm	10°		$+14$	+2	$+1$	-2	-5	0	0	0	0	0	0		
		10^{8}		+10	+1	+2	-8	-9	0	0	0	0	0	0		
Kodak 80-20 Arsenic modified Solenium	4.0 mm	10^{8}	0	-2	0	-1	-2	0	-2	-2	-2	-2	-2	-4		
Kodak $\mathrm{Mg} \mathrm{F}_{2}$	2.0 mm	10°	-32	-32	0	-6	-8	-4	-10	0	0					
		10^{8}	-32	-34	-6	-18	-14	-9	-13	-3	0					
Spine!	2.3 mm	10^{8}	-5	-4	-6	-4	-2	-20								
Corning $\mathrm{CaAl}_{2} \mathrm{O}_{3}$ 4X-745 pm	2.0 mm	10^{8}		-5	0	-2	0	0								
Corning \#0160 Glass	2.0 mm	10^{8}	-15	0	-2	+6										
Corning Pyrex $\$ 7740$	2.1 mm	10^{8}	- 10	-6	-8	-2										
$\mathrm{As}_{2} \mathrm{~S}_{3}$	3.3 mm	10^{6}	-9	-10	-8	-15	-14	-12	-9	-8	-1	-14	-8	-2		
		10^{8}	-26	-14	-11	-16	-14	-15	-13	-11	-5	-16	-10	-4		
MgO	5.0 mm	10^{8}	-10	-8	-4	-4	-4	-6	-2	0	0					
Lox-Grade Kol-F	2.3 mm	10^{8}	-6	-5	-14	0										
AgCl	6.3 mm	10°	0	-4	-4	-2	-6	-14	+6	+21	$+10$	+6				*
		108	0	-4	-4	0	-4	-10	-6	-2	-3	-3				
Sapphire	2.0 mm	10^{8}	-12\|	-2	0	-4	-4	-12								

El CTRONIC DESIGN - October 26, 1960

In a typical application of the POST Diazo Materials Selector Chart, a draftsman, supervisor and reproduction specialist solve a special print-making problem in short order.

Solve unusual reproduction problems
 with new Diazo Selector Chart

Keeping up with rapid developments in graphic reproduction and communication techniques is a difficult job these days, even for the experts.

From the engineer's and drafts man's point of view, it's largely a matter of sorting out the specific information which helps him do a better job.

The new Post Diazo Materials Selector Chart does just that-provides a condensed, tabular reference piece that helps you anticipate the ideal diazotype prints for various needs before they occur. This convenient chart gives brief information on sensitized papers, intermediates and specialties in terse "what, when, why and where" style.

If you're concerned, for instance, with print distribution to different departments, units or groups, then prints on a variety of colored stocks might be the answer.

SENSITIZED PAPERS \& CLOTHS - tracing \& drawing mediums - DRawing ingtruments \& slide rules engine ering equipment \& drafting supplies - field equipment \& drafting furniture

Increasing print production from diazo equipment with a lower-power light source . . . making legible prints from worn old tracings even making copies from an opaque print . . . all can be handled by use of new Post 206M-14, a fast, extrasensitive whiteprint paper.
Suppose a design conference calls for a poster, actual size, made from a large engineering drawing, rigid enough for display, tough enough for extreme handling and on-thespot sketches? Post diazo-sensitized cardstock in 32 or 50 lb . weight can turn the trick on standard reproduction equipment, ammonia process or semi-moist. For many more helpful solutions to similar situations, ask for your personal file-size copy, of the Post Selector Chart, available from your Post dealer or Frederick Post Company, 3644 North Avondale Avenue, Chicago 18, Illinois.

ANEW high-dielectric end-fire rod antenna duplicates the gain, directivity and other characteristics of a standard microwave horn while drastically reducing cross section to as little as $1 / 50$ that of a horn.

The antenna's in-line coaxial connector allows missile and space-vehicle designers to fully exploit this aerodynamic advantage. The unit, developed and manufactured by Don-Lan Electronics Co., 1131 Olympic Blvd., Santa Monica, Calif., is said to be the first commercially available broadband rod antenna of this type and characteristics.

Much of the success of this novel de-
sign lies in the choice of advanced sintered materials. Beryllium oxide and aluminum oxide are used when higher temperatures are involved. Range B units are available for ranges up to 2000 F , while antennas can be supplied to operate at as high as $3,100 \mathrm{~F}$. Lower cost materials are used in range A units, available for environments up to 300 F .
The extremely high and uniform density of these materials permits production machining tolerances to be held to 0.0001 in . These tight tolerances lead to beam-pattern repeatability as close as $\pm 1 \mathrm{deg}$ in a $50-\mathrm{deg}$ pattern. The high dielectric constant of the material (in the

Antennas are available for $1,500-\mathrm{mc}$ to $10,500-\mathrm{mc}$ applications. Over-all length for $10-\mathrm{db}$ gain varies from about 4 in . to about a foot.

> CIRCLE 57 ON READER-SERVICE CARD
range of $K=15$) makes the small size and light weight possible (weight is $1 / 5$ to $1 / 10$ that of an equivalent standard horn).
Further bonuses arising from the choice of materials are the excellent dimensional stability over wide temperature and shock conditions, and negative moisture absorption. These characteristics lead to stable rf performance.
Available units cover the frequency range of $1,500 \mathrm{mc}$ to $10,500 \mathrm{mc}$. As indicated in the graph, over-all dimensional scale is a function of frequency and gain desired. The vswr for any 5 -per-cent bandwidth within this range is 1.30 to 1.0. Insertion loss is negligible, while efficiency is at least comparable to a standard horn.
The compact antenna lends itself to broad design flexibility. One unclassified application is in the Talos missile. Antennas are available with linear or circular polarization for multiple-element installations in small diameter missiles. The antenna has been adapted for multielement phase or amplitude-monopulse systems. Additional size and weight saving is accomplished by eliminating the need for balanced mechanical mounting in compact search systems.
The unit can be attenuated electrically and can be cycled from linear to elliptical polarization at high speeds.
For a single-element antenna, price varies from $\$ 175$ to $\$ 475$, depending on quantity. Multiple arrays are priced by quotation. Most of these units are available from the manufacturer within 30 to 60 days, while some units can be delivered sooner.
For further information on this lens intenna, turn to Reader-Service Card and circle 251.

All connectors may look alike but when faced with the test of performance . . . contact crimp reliability makes them all different. The big difference between other connectors and the AMPin-cert connector is the snap-in design contact attached to the wire by AMP's precisioncontrolled, compression-crimp technique. Twenty years of intensified research, development and production stand behind the industry-accepted compression technique which produced Solistrand ${ }^{\circledR}$, Diamond Grip ${ }^{\otimes}$, Pre-Insulated Diamond Grip®, Plasti-Grip®, Certi-Crimp ${ }^{\circledR}$ and the
more than 15,000 different AMP circuit termination. products. This is the common denominator which spells out unquestioned reliability in all our products including the AMPin-cert connector line. ANOTHER AMP FIRST! Now AMP offers tape-fed, automated application of AMPin-cert contacts. Production levels of up to 1,500 terminations per hour can be achieved with standard A-MP.O-LECTRIC® machines. Also, the AMPORTAMATIC crimping tool is available for tape-fed terminations in hard-to-reach locations.

Visit us at the A.E.S. Show, Los Angeles; Oct. 26, 27 and 28, 1960, Booths 313 to 315.

AMP INCORPORATED

GENERAL OFFICES: HARRISBURG, PENNSYLVANIA AMP products and engineering assistance are available through subsidiary companies in: Australie. Canada. England. France. Holland - Italy - Japan - Mexico - West Germany CIRCLE 58 ON READER-SERVICE CARD

The Axımax 2 vant axıal fan is designed for tightiv packed "black boxes" aboard aircraft or missiles where maximum cooling is mandatory with a minimum of space and weight loss due to the fan, Alr delivery of 60 cfm free air is attained from a fan only $2^{\prime \prime}$ in diameter by $1.5^{\prime \prime}$ in axial length. Weight is 4.5 ounces. Variation in driving motors include constant speed $20,000 \mathrm{rpm}, 10,000 \mathrm{rpm}$ as well as variable speed Altivar versions. The latter vary their speed inversely with density thereby approaching constant cooling with a minimum of power drain and noise Power requirements vary from 400 cps for the standard unit to 1600 cps for special designs, 1 or 3 phase, sinusoidal or square wave. The Aximax 2 meets MIL-E-5400B and other individual missile specifications. Write today for complete technical information to
| OW-FREQUENCY data, even down L to dc, can now be recorded accurately on conventional home tape recorders, thanks to a new device with the mnemonic name, Mnemotron.
Manufactured by a company of the same name, Mnemotron Corp., 1 N . Main St., Spring Valley, N.Y., the M102 Analog Tape Recorder System is sensitive enough to resolve voltages as low as 6 mv . It can accept voltages as high as 3 v on one range and 10 v on the less sensitive range.

With appropriate transducers and pre-
amplifiers, this recorder/reproducer system can record and play back variables such as pressure, temperature, strain, speed, and of course, any phenomena which can be measured with a dc meter.
Output from the instrument can be used as input to computer devices or as input to a scope. By viewing the output on a scope, an engineer can select those data he deems most useful for perma nent recording on paper.

Input information can be in any form It may, for example, be in the form of transients like those which might be de

Information on tape is demodulated and transcribed onto paper by analog converter unit.

Electrocardiogram recorded directly on paper (bottom) and simultaneously recorded on magnetic tape and transcribed back to paper through Mnemotron units shows high accuracy (0.2 per cent full scale) of the moduator/demodulator.
rived from an electrocardiogram. The information is used to frequency-modulate a pulse carrier with a center frequency of $7,200 \mathrm{pps}$. With full modulation, this carrier can be driven from 4,000 to $11,000 \mathrm{pps}$. The frequency-modulated pulse train is delivered to, and recorded by a conventional tape recorder.
To retrieve the recorder information, one feeds the frequency-modulated pulse train from tape back into the Mnemotron. The usually distorted pulses from the pulse train are used merely as triggers in reconstituting the original pulses. The M102 converts the time-voltage integral of the pulses into varying dc-voltage levels which can be recorded on an oscillographic recorder.
By suitable selection of the record and playback tape speeds, one can expand or contract the time scale on the final record. Thus, one can extend the effective frequency response of oscillographic recorders or X-Y plotters.
The M102, a 2-channel converter, is offered alone (for \$895), or with a companion tape recorder as a complete 2-channel analog tape recorder system (for $\$ 1,290$). Delivery time for the 2-channel system is 15 to 30 days. Delivery time is longer and prices are higher (by about $\$ 450$ per converter channel) for 4-, 6-, 7-, and 14-channel systems.
A Model M100A system is available for an additional $\$ 50$ per channel. It allows one to record and play back simultaneously on the same channel.
For more information on these analog lape recorder systems, turn to the Rea ler-Service Card and circle 252.

NEW WESTON PANEL METERS PROVIDE THREE IMPORTANT DESIGN ADVANTAGES...

- Exclusive magnetic shielding
- Sustained accuracy - up to $\pm 0.5 \%$
- Ranges tailored for special applications

Long-term accuracy and reliability are special features of Weston's new line of panel instruments. Accuracy -in Model 1761 - is up to $\pm 0.5 \%$ of full scale deflection when supplied with knife edge pointer and mirror scale. Exclusive CORMAG ${ }^{\circledR}$ self-shielded mechanisms are used in both Models 1751 and 1761. The meters may be mounted on magnetic or non-magnetic panels without special adjustments . . . are immune to the effects of stray fields and nearby instruments. Housed in dust and moistureresistant Bakelite cases with glass windows, they are supplied in a wide variety of standard ranges.
Special range meters with conventional magnetic construction are available where higher current sensitivity, lower resistance, special ballistic characteristics and controlled scale distribution are required.
Call your Weston representative for details, or write for Catalogs 01-109 and 01-110-which contain technical information on this new line of precision panel meters. Weston Instruments Division, Daystrom, Inc., Newark 12, New Jersey. International Sales Division, 100 Empire Street, Newark 12, New Jersey.
In Canada: Daystrom Ltd., 840 Caledonia Rd., Toronto 19, Ontario.

NEW PRODUCTS

Covering all new products generally specified by engineers designing elecspecified by engineers designing elecReader's Service Card for more information on any product. Merely circle number corresponding to that appearing at the top of each description.

Type 5880 incremental multimeter permits increments of any range to be expanded and displayed on an external servo recorder. The instrument consists of a Simpson 270 multimeter, a suppressor power supply and an attenuator. The range is the same as that of the Simpson multimeter; typical accuracies are 1.5% for dc and 2% for ac. The servo recorder permits expansions of $\pm 1 \%$; the attenuator enables the expansion to be adjusted to any value from 1% to 100%. Applications for the unit are wherever a strip-chart recorder is used to display voltage, current or resistance.

Tensor Electric Development Co., Inc., Dept. ED, 1873 Eastern Parkway, Brooklyn 33, N. Y.
Price: $\$ 250$.
Availability: 30 days.

Electrostatic Printer Tubes

 Translate Signals Into Printed WordsThese electrostatic printer tubes can translate electronic signals into printed words and pictures on paper at the rate of 20,000 characters per second or more than 10,000 lines of computer information per min. The QV130 and the QV131 tubes have 3 -in. matrices and were designed for short copy printing. The QV132 and the QV133 are 10-in. printer tubes and can print electronically stored or transmitted information on full page sheets. The tubes resemble flattened cathode-ray tubes with wire matrices across their faces. Tiny wires, 0.0001 -in. thick and spaced 250 to the inch extend through the face of the tube. The varying cathode-ray beam current inside the tube passes through the matrix, depositing electrostatic charges on the paper as it passes against the tube.
Raytheon Co., Industrial Components Div., Dept. ED, 55 Chapel St., Newton, Mass.

Eight-Inch Ignitron Handles 100,000-Amp, 20-Kv Pulses
A deceptively small ignitron, the GL-7703 is capable of passing and controlling a two-billion volt-ampere pulse. The tubes rating of a $100,000-$ amp, $20-\mathrm{kv}$ pulse represents four times the power handling capacity of the GL-7171, up to now the most powerful ignitron produced by the manufacturer.
The new ignitron is simple in construction, and weighs less than 2 lb . The tube is 8 -in. tall and has a $2-\mathrm{in}$. diam. A proprietary refractory metal is used for the anode in place of the usual graphite. This improved anode reduces fouling, while an oversize anode bushing gives the tube its large voltage-handling capacity. The usual pulse rate in capacitor discharge is 1 ppm. Halfcycle peak current is $60,000 \mathrm{amp}$ for a 120 -usec pulse and $100,000 \mathrm{amp}$ for a 20 -usec pulse. According to the manufacturer, the new tube will find use as a super crowbar for power supplies that require a means for rapid discharge of energy.

General Electric Co., Power Tube Dept., Dept. ED, Schenectady 5, N. Y.
Price: $\$ 145$ ea.
Availability: From stock.

Tunnel and Backward Diodes

 For Computer ApplicationsThese germanium units meet the requirements of logic circuits and other computer applications. The backward diodes can also be used in lowlevel rectifier and detector circuits. Characteristics of the tunnel diodes are: peak current, 5 or 1 ma ; peak-current tolerances, $2 \%, 5 \%$ or 10\%; peak-to-valley ratio, $8: 1$; capacitance, 6 pf per ma; temperature range, -55 to +100 C . The backward diodes have these specs: shunt capacitance, 3 pf ; forward voltage drop, 30 mv ; leakage current, 400 mv . Forward voltage in the backward diode is 15% of the peak current of the companion tunnel diode.

Transitron Electronic Corp., Dept. ED, 168 Al ion St., Wakefield, Mass.

Performing all functions of lumped constant delay lines (except reproduction of input amplitude characteristics in the output), new Maglag Lines offer a versatile combination of capabilities. Utilizing a timing element made of a magnetic core and a switching transistor network, they deliver a wide range of delay time values from $2 \mu \mathrm{sec}$. to 1 sec. or more. Input and output are completely isolated, making output pulse rise time independent of input pulse characteristics. JFD Maglag

Lines permit the use of different input and output impedances and impedances can assume values within wide ranges.

JFD Maglag Lines can be furnished with taps to select a variety of delays, or the delay can be made to vary with infinite resolution by manual means or by voltage variations.
Investigate the unique qualities of this new JFD component by writing today for Bulletin 83.

Here is an example of the many possible combinations of Maglag characteristics
MODEL II MAGLAG LINE SPECIFICATIONS:

INPUT PULSE WIDTH. 3 to $30 ~ \& ~ S e c s$. INPUT PULSE AMPLITUDE7-100 V. INPUT IMPEDANCE 50Ω App. OUTPUT RISE TIME 0.16μ Secs. OUTPUT PULSE WIDTH. Same as Input OUTPUT IMPEDANCE. OUTPUT MMPEDANCE. App. 5,000s2 POWER INPUT. APP. 125 MW af DC Volfages of 2.5 V . and 20 V .
SIZE $21 / 4 \times 21 / 8 \times 11 / 4=6 \mathrm{cu}$. in.

WEIGHT. Approx. 6 oz.

JFD

JFD ELECTRONICS CORPORATION

JFD WESTERN REGIONAL DIVISION
51 McCormat Stanada LTO.
O INTERNATIONAL VAMIABLE TRIMMEN FIETON CAPACITONB F FIXED METALIZED INOUCTONE P LE TUNEFE. FIXED AND VAWIAGLE. DIETRIMMER PIETON CAPACITONB NANIXED METALIZED INOUCTONE LUC TUNERE. FIXIED AND VAN

IN PRECISION INSTRUMENTATION EPSCO DELIVERS ITS SPECIFICATION

IF YOU NEED .01\% ACCURACY iN VOLTAGE REFERENCES

Epsco Secondary Standard Voltage References outperform all others on the market - as proven by 5 years of outstanding service in the most
 critical and demanding applications. These precision instruments per. form a wide range of functions in research and production calibration and testing. Available from stock in 4 standard models. For full details, call or write for Bulletin \#26001.

 INSTRUMENTS

A division of Epsco, Incorporated, 275 Massachusetts Ave., Cambridge 39, Mass. Telephone UNiversity 4.4950 CIRCLE 62 ON READER-SERVICE CARD

Three Companies Off

The two major advantages of the epitaxial transistor are the virtual elimination of the collector series resistance and a large decrease in the storage and turn-off times. The basic process in making epitaxial transistors consists of depositing a very thin layer, about $1 / 2$-mil thickness, of high resistivity semiconductor material on a thicker substrate of very low resistivity material. Since the active part of the transistor is all within the high resistivity material, this process, in essence, provides a method for handling $1 / 2$-mil thick semiconductor slices.

Rheem's RT409 Silicon Unit Is Similar To 2N697

The silicon epitaxial transistor, type RT409, a $60-\mathrm{v}$ collector breakdown unit and otherwis meets the general specifications of the $2 \mathrm{~N} 6 \mathrm{~S}^{2}$ series. The typical collector-to-emitter saturation voltage at 150 ma has been reduced by a facta of two. The $V_{C B}$ for the RT409 is 0.35 as com pared to 0.7 for the 2 N 697 . Compared unde similar test conditions, the typical storage tim for the epitaxial unit is less than 100 nsec , fo the 2 N697 it is 400 nsec. Because the power dis sipation is low, the RT409 may be operated 2 higher current levels. Other epitaxial transisto in the firm's line, to be announced soon, such 2 the 2N699, 2N699A, 2N657 and RT5004, will b made available at first in the TO-18, TO-5 and the firm's Microbloc packages.
Rheem Semiconductor Corp., Dept. ED, 35 Ellis St., Mountain View, Calif.
Price: $\$ 170$ ea for developmental units.
Availability: Six weeks after receipt of order.

Offititaxial Transistors

of the elimistance ye and a makof de-/2-mil micon. ostrate

oforola Offers w-Cost Type 2N834

This epitaxially grown silicon-mesa transistor, pe 2N834, gives increased performance on I device parameters. A comparison with standd silicon-mesa transistors indicates the epitaxial vices have higher breakdown voltage, higher equency response, lower storage time, and at e same time, lower saturation voltage and lower Ilector capacitance. Breakdown voltages are in e order of 90 v and storage time as low as 12 ec. Collector saturation voltage is reduced m 0.4 to 0.14 v , typical. At 50 ma saturation itage is typically 0.28 v . They are capable of livering 0.5 -w power output with $10-\mathrm{db}$ gain at mc . Current gain-bandwidth product is 500 c, collector capacitance is 2.0 pf . Motorola Semiconductor Products, Inc., Dept. , 5005 E. McDowell Road, Phoenix, Ariz. ice: $\$ 18$ ea in quantities of 100 .
railability: From stock.

Ivania's Germanium

Resemble 2N702 and 2N711

Designated types SYL2300 and SYL2301 se epitaxial transistors are of the german-diffused-base mesa type. They are electrily similar to conventional mesa transistor types 702 and 2N711, with improved performance saturation voltage and switching time. For uivalent transistor dimensions, the saturation a collector current of 50 ma is reduced by a tor of 3.5 , typically 0.15 v at 50 ma for the taxial units. Typical switching storage times reduced by a factor of 4 .
Sylvania Electric Products, Inc., Dept. ED, ${ }^{0}$ Third Ave., New York 17, N.Y.
ailcbility: Sample quantities immediately pilaille, production quantities in November.

NEW FROM ESC

...designed for printed board mounting

Module No.	Delay	Size
15.89	100 musec.	$3 / 3^{\prime \prime} \times 1 / 2^{\prime \prime} \times 35 / 8^{\prime \prime}$
15.90	75 musec.	$3 / 8^{\prime \prime} \times 1 / 2^{\prime \prime} \times 35 / 8^{\prime \prime}$
15.91	$20,10,10,5$ musec.	$3 / 8^{\prime \prime} \times 1 / 2^{\prime \prime} \times 35 / 8^{\prime \prime}$
15.92	50 musec.	$3 / 8^{\prime \prime} \times 1 / 2^{\prime \prime} \times 2410^{\prime \prime}$
15.93	20,20 musec.	$3 / 8^{\prime \prime} \times 1 / 2^{\prime \prime} \times 2416^{\prime \prime}$
15.94	10,5 musec.	$3 / 8^{\prime \prime} \times 1 / 2^{\prime \prime} \times 2410^{\prime \prime}$

As a group these miniature, modular, lumped constant delay lines constitute an adjustable delay line. They offer great flexibility in design by providing adjustable delays ranging from 5 musec. to 335 musec. or greater, if additional units are employed.
Impedance - $9 s$ ohms with a maximum pulse attenuation of .5 db and pulse rise time of 30 musec. (max.) for any module.
Modules with variations of rise time, delay or impedance can be supplied upon request.

WRITE TODAY FOR COMPLETE TECHMICAL DATA.
exceptional employment opportunities for engineers experienced in computer components... excellent profit-sharing plan.

ELECTRONICS CORP. 534 Borgon Boultevard, Palisados Park, Now Jersey Distributed cinstant diflav lines - Lumped constant delay lines - Variable delay networks - Continuously variable delay lines. Slep variable delay lines- Shill reaters - Video transformers. Filters of all types. Pulise forming networks. Miniature plug-tn encapsulated circuit assemblies

CIRCLE 69 ON READER-SERVICE CARD

- Feather touch operating torque (4 inchgrams max.)
- Friction-free blade pivot
- Lateral rock-wipe contact action
- Positive stops molded in case
- Rafed: UL 5 amps/250 V a-c

Extremely low operating force and precise tolerances provide positive electrical control for pressure indicators, sensing timers or relays, office machines and vending machines. Operating force can be varied by length of actuator wire.

Your switching problems may find solution from over 8,000 Cherry swith variafions. Write for complete ifterature foday!

HERRY Eeectrical

PRODUCTS CORPORATION 1646 DEERFIELD RD. HIGHLAND PARK, ILL. CIRCLE 67 ON READER-SERVICE CARD

NEW PRODUCTS

Laboratory Oscilloscope

Vertical amplifier flat from 20 cps to 4.9 mc

Model 600 oscilloscope, for industrial and scientific applications, has a regulated power supply. A sweep frequency pulse on the panel terminal is for transformer ringing testing. Wideband vertical amplifier is flat within 1 db from less than 20 cps to 4.9 mc . Two-range vertical sensitivity is from 20 mv per in.; horizontal amplifier response is uniform within 2 db from less than 20 cps to 200 kc . Linear sawtooth sweep is 10 cps to 100 kc . Input calibration voltage is 10 v , peak-to-peak. Power requirements are 105 to $125 \mathrm{v}, 50$ to $60 \mathrm{cps}, 75 \mathrm{w}$.

Jackson Electrical Instruments Co., Dept. ED, 124 McDonough St., Dayton, Ohio.
Price: $\$ 335$.
Availability: Stock to 2 weeks.
Tape Verifier and Duplicator 565
For punched tape

Model 1429, used in conjunction with tape readers and perforators, automatically verifies and duplicates error-free tapes in one operation. It can be used on up to eight channels in any code structure. Characters in disagreement are displayed for possible correction. The unit operates on 115 v at 60 cps , weighs 30 lb and is made for rack mounting.

Tally Register Corp., Dept. ED, 1310 Mercer St., Seattle 9, Wash.
Price: \$850; fob Seattle.
Availability: 45 days.

THE SIZE OF EXISTING EQUPPMEN
AEC of N. J. MCH series multicoders are solid state digital commutator coders capable of accepting data in three forms; time multiplexed analogs and digital data, both serial and parallel. The equipment is designed for the utmost compactness ($240 \mathrm{cu} . \mathrm{ins}$.) minimum weight (11 lbs .), low power consumption (600 ma normal at 28 UCC) and reliability compatible with a wide range of environmental conditions encountered in missile applications.
Specification sheets are available on Model-MCH-3 (31 channels at 1400 samples / sec max.) MCH-6-(63 channels at 710 samples / sec max.)
MCH-12-(127 channels at 355 samples / sec max.)
Systems accuracy: An honest tenth of 1% from input to coded output.
Modified units for special application and environments are available upon request.

METUCHEN, n. I.
TWX METU. 17
WASHINGTON
santa mond
CIRCLE 68 ON READER-SERVICE CARD

HIGH SPEED SOLID STATE DGITAL TELEMETER

ELECTRONIC DESIGN • October 26, 190

Ficture Tubes

Square corners expand viewing area
Nearly square corners on these 19 - and 23 -in. picture tubes have expanded their useful viewing areas to more than 95% of the area needed to display all the picture information transmitted. The $19-\mathrm{in}$. tube deviates no more than $15 / 16$ in. from true flat. Both tubes use magnetic deflection with a diagonal deflection angle of 114 deg , are electrostatically focused, and require no ion trap.

Westinghouse Electric Corp., Electronic Tube Div., Dept. ED, PO Box 284, Elmira, N.Y.

Silicon Transistor

Has a minimum beta of 30
Type Cl06 symmetrical silicon transistor features a minimum beta of 30 in both directions and a maximum saturation resistance of 5 ohms at 10 ma collector current. The unit is designed for low-level applications, choppers, multiplexers, bi-directional switches and high-precision analog circuits requiring low saturation resistance with high "off" to "on" switching ratio.
Crystalonics Inc., Dept. ED, 249 Fifth St., Cambridge 42, Mass.

Oscillographic

514
Recording Systems
Are direct-writing and photographic
These multi-channel recording systems combine the immediate readout of "direct-writing" and the high-frequency response of photographic recording. The direct-writing portion provides clear, inkless traces and is used to monitor events in the dc to 100 cps frequency range. The phographic recorder provides a frequency response to 500 cps. Trace overlap makes possible the recording of two events on a common base line.
Sanborn Co., Medical Division, Dent. ED, 175 Wyman St., Walthar. 54, Mass.

thomas A

The FBU-IP Crusedor racontly sot now cosus to eoast Epood rocord. CAI camora control systom automatically provide sharp, clear aerial photographs of the entire flight

EDISON

 Time Delay Relay assures sharp, clear aerial photos... automatically
HERE'S WHAT A CUSTOMER SAYS ABOUT EDISON TIME DELAY RELAY...

"The CAX-12 servo power unit is a very vital part of the intricate 'brain' of the automatic camera control system, and naturally, wo must have absolute reliability in all components.Therofore, as you know, we have relied on Edison Thermal Time Delay Relays since the original design of this CAX-12 and similar units. Since space for this type of equipment is at a promium, the compact size was a most important factor in original solection, but our anits must also withetond severe onviunits must also withstand sevore onvironmontal tosting, involving vibration, moisture, shock, pressure fluctuation and extromes of temporature. Noediess o say, the Edison Relay met all of hese exacting requirements in our aboratories, and wo've beon specifying Edison over since!"
(The above letter was received from Chicago Aerial Industries)

Chicago Aerial Industries has developed a camera control system that allows one jet pilot to do the job of ten expert aerial photographers .. . automatically.

Heart of this new unit is the CAX-12 servo power unit. It accurately synchronizes film speed with speed of the jet changes lens openings in response to electronic signals regulates shutter speed and controls driving motor on cameras.
Because this power unit is vital to the camera control system component reliability is a must. That's why CAI relies on

Edison Thermal Time Relays exclusively for CAX-12.
Edison's line of miniature time delay relays are available for a wide range of electronic applications. They are light, small, rugged and offer these advantages:

- Designed to withstand vibration frequencies to 1500 CPS
- Exceptionally high rate of contact closure
- Permanent calibration and hermetic seal
- Extremely rigid mechanical structure using high-strength. high-expansion alloys.

Thomas A. Edison Industries
INBTRUMENT DIVIBION
36 LAKESIDE AVENUE, WEST ORANGE, N. J.

YOU CAN SPECIFY savings in weight, improvements in performance, increases in reliability for your electronic systems from this box. This is Sperry's Speci-File-a complete electronic and physical biography of the traveling wave and klystron tubes offered by Sperry Gainesville. To speed your specifying, to make it more accurate, and to secure the benefits of outstanding microwave tube performance for your systems, order your free Sperry SpeciFile today. Just fill in and mail the attached coupon.

Gainesville, Florida A Division of Sperry Rand Corporation

NEW PRODUCTS

Variable Speed Drive 512
 Fractional hp

This fractional hp variable speed drive features compactness and lightness. Speed ranges are from 1.2 to 4660 rpm with up to 10 to 1 variation and are available in $1 / 4,1 / 2$ and $3 / 4$ hp ratings. Large diameter pullies are provided for cooler running, longer lasting belts. Electrical characteristics include: single phase; three phase; drip-proof; totally enclosed and explosion-proof. It is available with right-angle and helical gears.

Sterling Electric Motors, Inc., Dept. ED, 5401 Telegraph Road, Los Angeles 22, Calif.

Servo-Amplifier

For amplifying microvolts
Servo-amplifier, model SA-60C-4, is a compact, high-gain unit designed to amplify microvolts with stability. The unit will accept a low-level, balanced ac signal directly from a transducer. Specifications include: line voltage, 105 to 130 v ; maximum voltage output, 140 v across 5 K at saturation with $90 \mu \mathrm{v}$ input; power, $115 \mathrm{v} \pm 10 \%$, $60 \mathrm{cps}, 1$ phase, 50 w .

Schaevitz Engineering, Dept.
ED, P.O. Box 505, Camden, N.J.

Pushbutton Switches 518

Have modular construction
These are general purpose switches of modular construction that permit the use of two to 48 or more push-buttons in any array. Of light-weight construction, the switch has a life of 500,000 operations according to the manufacturer's claim. Any number of buttons in the general purpose switch can be interlocked. Each push-button can represent an 8 pst switch or a 4 pdt switch. Other combinations are available on request.

Telex Inc., Special Products Div., Dept. ED, 1633 Eustis St., St. Paul, Minn.
< CIRCLE 65 ON READER-SERVICE CARD

CBS ELECTRONICS, Semiconductor Operations, Lowell, Mass. - A Division of Columbia Broadcasting System, Inc, ales Offices: Lowell, Mass., 900 Chelmsford St., GLenview 2-8961 - Newark, N. J., 231 Johnson Ave., TAlbot 4-2450 • Melrose Park, Ill., 1990 N. Mannheim d., EStebrook 9-2100. Loa A Angelea, Calif., 2120 S. Garfield Ave., RAymond, S-9081 : Allanta, Ga., Cary Chapman \& Co., 600 Trusco Way, S. W., PLaza 8-4506
Minneapolis, Minn., The Heimann Co., 1711 Hawthorne Ave., FEderal 2-5457 - Toronto, Onf., Canadian General Electric Co., Led., LEnnox 1-6311

save costs • space • weight

You can now replace two 40 -watt or four 20 -watt paralleled power transistors with one CBS PNP highpower transistor. This one design change brings you important transistor . . . component . . . assembly . . . space . . . and weight savings. New economies become possible in power supplies and amplifiers and in highpower switching circuits.

Note the wide line of these CBS PNP high-power transistors, their pertinent characteristics and many advantages. Ask for complete technical data. Order these money-saving units today . . . at factory prices for quantities up to 1000 ... from your Manufacturers
semiconductors

CIRCLE 63 ON READER-SERVICE CARD Warehousing Distributor.

CBS

Reliable products through Advanced Engineering

All these CBS high-power transistors have: Max. dissipation, 150 watts ${ }^{\circ}$ for a typical thermal resistance of 0.5 C/W; max. collector current, 15 amperes; junction tem peratures, 65 to Max.

Type	Max. W. Diss."	Max. Thermal Res ${ }^{\circ} \mathrm{C} / \mathrm{W}$	Max. $V_{\text {cioo }}$	Max.	$\begin{aligned} & \operatorname{hrg}\left(I_{C}=5 A\right) \\ & \text { Min. } \quad \text { Max. } \end{aligned}$	
$2 \mathrm{N173}$	70	1.0	60	50	35	70
2N174	85	0.8	80	70	25	50
2N277	70	1.0	40	40	35	70
2N278	70	1.0	50	45	35	70
2N441	70	1.0	40	40	20	40
2 N 442	70	1.0	50	45	20	40
2 N 43	70	1.0	60	50	20	40
2N1100	85	0.8	100	80	25	50

Pochestor 5, N. Y. Ocust: 2.3010	
Dayte 0 BAldw	Jamaica AXtel: 1 .
	New y 13,
Los Angeles, Calif. PLeasant: 2-7191	Bronx 58, N. Y. FOraham: 7-8813
	Boston 10, Mass.
C	
usto	Arket. 2
JAckson: 9-4626	Plainfield, N. J. PLainfield: 6-4718
c	
	wyn W. Ley Co.
Seattle, Wash. MA: 4.4355	Paramount, Callf. NEvada: 6-8339
Cramer Electronics, Inc.	Milo Electro
Boston 16, Mass. COpley: 7.4700	New York 13, N. BEekman: 3-2980
D A Distributing Co.	Nowark Electr Corp.
Baltimore 30, Md. SAratoga: 7.5100	Chicago 6, 111. STate: 2-2944

Durrall Electronics Waltham, Mass.

Eloctronic Contor Minneapolis, Minn

Electronic
Expeditors, Inc.
Milwaukee 12, Wisc.
Electronic Parts
Co.

Eloctronic Supply
Melbourne,
PArkway: 3 .1441
Electronic
Eiectronic
Wholesalers, Inc.
Washington 1, D. C
Fortune Electronics
Corp.
San Francisco, Calif.
UNderhill: $1-2434$
Gonoral Radio
Supply Co., Inc.
Camden, N. J
Graham Electronics Supply Inc.
Indianapolis 4, Ind.

Harvey Radio

C. Y. C. $36, ~ N . ~ Y ~$
JUdson: 2.1500

Hudson Radio \& TV Now York, N. Y.

Industrial Eloctronic
Supply
R. V. Weatherford Grand Rapids, Mich. Glendale, Calif.
CHerry: 1.5695
VIctoria: 9.2471

CIRCLE 64 ON READER-SERVICE CARD

Specialists in precision displays

 Celco OKS

Deffection yokes for aifficult character displays and high resolution problems
are another achievement in advanced design and engineering at Celco.. Celco Deflection Yokes permit rapid presentation of random character and with emphasis on spot approach to absolute zero, assures highest performance of magnetic deflection character displays.
Celco High Sensitivity Yokes minimize the deflecting currents required from ,
For Dest utilization of the New High Resolution CRT's CELCO YOKES assure minimum defocusing at large defiections.

The construction of our yokes makes it possible to achieve sensitivities, linearities, responses
usual types of yoke.

CeIco FOR STANDARD, GOMWERGLL \& MILITARY APPIICATIONS

Single units or production quantities immediately available in wide range of inductance - resistance Recovery time - pin cushion corrected or optimum focus as required. Alse available 2-1/3" and 2-1/2" neck CRT yokes.

TYPE BY
Transistorized encapsulated yokes for 70°
neck CRT and
$1^{\prime \prime}$
neck neck image storage tubes.

TYPE AY
Push-pull or single ended yokes for $52^{\circ} \quad 70^{\circ}$ and neck CRT.

TYPE RY
Rotating deflection yokes for PPI displays. Gears bearings, slip rings and cluded.

TYPE CF
Electromagnetic focusing coil for $7 / 8^{n}, 1^{\prime \prime}$ and 1-7/16" neck CRT.

TYPE MY Miniature light weight deflection yoke coils or tion into customer hous. tings.

Celco ENGINEERED YOKES FOR PREHISON DISPLAYS

Dual purpose yoke custon designed. Deflection system plus axial offecentering coils.

TYPE HS
Special bigh sensitivity deflection yoke with critical damping provisions.

TYPE PI
Plus in type encapsulated effection yoke for rapid insertion.

TYPE ER
Encapsulated rotating, axis slip ring precision deflection yoke.

TYPE MS Miniature deflection yoke for rotating or fixed coil radar system.

Write for CELCO DEFLECTION YOKE Catalogue \& Design Sheets or for assistance Call your nearest CELCO. Plant listed below.

Constantine Engineering Laboratories Company
Main Plant: Marwah, N. J. Davis 7-1123

- Pacific Division - Cucamonga, Calif. - YUkon 2-2688

NEW PRODUCTS

AC Signal Amplifier 52

Has an operation life of $2,000 \mathrm{lr}$
All transistor ac signal amplife model 853-001 has an operation lif of $2,000 \mathrm{hr}$. It weighs 4.5 oz and was designed to amplify the outpu of a piezzo-electric, crystal typ linear accelerometer to the level re quired by telemetry systems. Spec fications are: gain, .5 to 50; inpu impedance, 300 megohms min bandwidth, 2 cps to 100 kc ; outpu impedance, 500 ohms max; outpu level, 2.5 v dc for biasing subca rier oscillators and held to ± 0.1 over 0 to 100 C ; limiting voltage 6 v peak-to-peak.

Western Design Div. of U.S. In dustries, Inc., Dept. ED, Goleta Calif.

DC Power Supply

Uses transformer for current balana
Model P529A power supply us a trimmer transformer to give current balance of almost 100% fro no-load to full-load conditions. is an unregulated transformer-recti fier type and is completely statii Output is 26 to 31 vdc with a rippl voltage of 1 v peak, obtained fron an input of 196 to $210 \mathrm{v}, 300$ 420 cps . The power supply is rate at 100 amp , measures 10.5×5.5
15 in . and has an efficiency of S8
International Telephone and Tella
graph Corp., Dept. ED, 67 Broa
St., New York 4, N.Y.

Logic Inverter Circuits

Provide logic inversion with level restoration
These three transistorized log inverter circuits are designed provide logic inversion with lerr restoration. The T-136 is a dual is verter containing two identical verter circuits; the T-137 is a bul fered inverter circuit and the T is a combination of $1 / 2$ of the $T-10^{8}$ and the T-137. Each unit will ope ate at frequencies up to 250 kc .
< CIRCLE 70 ON READER-SERVICE CARD
the units have power requirements of $\pm 12 \mathrm{vdc}$.
They are packaged in containers $7 / 8 \mathrm{in}$. diam $\times 2-3 / 16 \mathrm{in}$. seated height and plug into standard 9 -pin miniature tube sockets.
Engineered Electronics Co., Dept. ED, 1441 E. Chestnut Ave., Santa Ana, Calif.

Adjustable Meter

 RelaysHave external magnet meter movement
Model 29XA front adjustable meter relay has a dual adjust contact arrangement and an external magnet meter movement. Voltage and current rating for adjustable contacts is $500 \mathrm{mw}, 5$ to 15 v dc on resistive or diode protected inductive loads. Mechanical adjustment is within two angular degrees. Nonocking contacts may be positioned along the instrument scale arc by means of an external front adjusted gear drive.
Simpson Electric Co., Dept. ED, 5200 W. Kinzie St., Chicago 44, Ill.

Transistorized-Relay
536 Drivers

Will operate most general purpose relays
These two transistorized-relay drivers will operate most of the general purpose relays now availble. They will switch a resistive load at frequencies up to 1 kc at currents up to 400 ma and at voltges up to +30 v for the T-139 and $4-45 \mathrm{v}$ for the T-141. These drivers nust be provided with diode lamping to protect against back urges when used to operate relays. The turn-on signal is -3 v nominal, furn-off is -11 v. nominal. Both nits have the same power requirenents, $\pm 12 \mathrm{v}$ dc. They are packged in containers measuring 7/8 n. diam $\times 2-3 / 16 \mathrm{in}$. seated height and plug into standard 9-pin minature tube sockets.
Engineered Electronics Co., Dept ED, 1441 E. Chestnut Ave., fant: Ana, Calif.

IRCLE 71 ON READER-SERVICE CARD

At Bogue Electric Mig. Co.....

In the high cycle motor generators produced by the Bogue Electric Mfg. Co., the stability of the thermal relay is a vital operating factor. That is why Bogue design engineers selected G-V Red/ Line Thermal Timing Relays over all others to delay the operation of the water pressure protective circuit while water pressure is built up in the cooling coils during starting of the motor generator. The Timing Relay then inserts the protective circuit and thus dangerous extremes of heat are avoided, insuring the efficient performance of the generators. So, at Bogue the high quality of G-V Timing Relays is "paying off"。

More and more companies are finding the reliable performance of G-V Red/Line Timing Relays makes them best for their products. G-V Red/Line Relays will "pay off" in your product, too. Your customers appreciate the importance of high quality, reliable components. G-V Red/Line Timing Relays are specially designed for industrial applications. They have the precision, reliability and long life needed to "pay off" in industrial use.
Your G-V distributor has them in stock now. Call him or write for Bulletin 131 today.

G-V CONTROLS INC.
Livingsion, New Jorsey

NEW PRODUCTS

EIR Meter

Current range is 10^{-9} to 10 amp

Model 810 EIR meter has a current range of 10^{-9} to $10 \mathrm{amp} \pm 2 \% \mathrm{dc}$ and $\pm 3 \% \mathrm{ac}$. Resistance range is 10 ohms to 10 meg , center scale, with 5% accuracy. Voltages can be measured from 1 mv to 1 kv ac $\pm 3 \%$ over the range of 20 cps to 1 mc and from 1 mv to 1 kv dc $\pm 2 \%$. Input impedance is 10 meg . The instrument requires 117 $\mathrm{v} \mathrm{ac} \pm 10 \%$ at 50 to 60 cps , weighs 18 lb and can be supplied in rack and cabinet models.

Smith-Florence, Inc., Dept. ED, 4228 23rd Ave. W., Seattle 99, Wash.
Price: \$445.
Availability: 60 days.

Sine-Wave Power Supply

Provides regulated 117 vac at 1 kva

This transistor-regulated sine-wave power supply, designated model PS3210 Sineverter, provides a 117 v nominal regulated output at 1 kva . The unit is not damaged by overload, short-circuit or open-circuit operation. Line regulation is better than 6%; load regulation, better than 5%. Frequency is $60 \mathrm{cps} \pm 1 \%$. Efficiency is $70 \% \mathrm{~min}$. Power input is 105 to 125 v dc. Unit is designed for rack mounting, measures 15 in . high and 17-1/2 in. deep. Weight is 180 lb .
Power Sources, Inc., Dept. ED, Burlington, Mass.
Price: $\$ 1995$ ea.
Availability: 30 days.

Instruments that Stay Accurate

Pressure Switch

Activated by 5 to 300 psig

The model 6266 pressure switch can be preset to actuate in the 5 to 100 psig range with a tolerance of ± 1 psig. Operating temperature is -65 to +180 F . The switch can endure a 300% overpressure and can mount directly on pressure fittings or built into pressure-fitting hardware. Housing is stainless steel. Diaphragm is non-corrosive, and is secured by a welded seam around its circumference. Current rating is 2 amp at 28 v dc or 110 vac . Device measures 1.5 -in long and $0.75-\mathrm{in}$. wide, and weighs 2 oz .
Aero Mechanism, Inc., Dept. ED, 13918 Saticoy St., Van Nuys, Calif.
Price: $\$ 40$ to $\$ 60,10$ to 1,000 components.
Availability: 45 days.

Grid Circuit Tester

For all TV tubes

The GCT-9 tester offers complete coverage of all TV tubes, including voltage amplifiers, power output and heater-type diodes. All tubes are checked with the dc testing process. The unit also provides for the cathode continuity check and complete inter-element short test. It makes up to 11 simultaneous tests.
Seco Electronics Inc., Dept. ED, 5015 Penn Ave. S., Minneapolis, Minn.
Price: $\$ 32.95$ to $\$ 34.95$, depending on case.

Auto-Series* and Auto-Parallel* Operation

*One-knob Master Control - Automatic Current Equalizing Automatic Voltage Equalizing • Full Range Control From Any Selected Module

For the ultimate in Regulated Power Supplies, look to H-Lab Model 865, a standout in every detail. The compact 865 is suitable for either bench or relay rack operation. This trouble-free unit features automatic transition to a current-limiting mode of operation. The current-limit is adjustable by means of a front-panel knob. This power supply is short-circuit proof, as are all H-Lab transistor supplies. In addition, the current-limit circuit of the 865 can be set for exactly the value of current which will provide maximum protection to the load device.

H-Lab Regulated Power Supplies are preferred $\$ 185$ H-Lab Model 865 is priced at

SPECIFICATIONS

Output: $0-40$ volts, $0-0.5$ amps. Input: 105-125 VAC

50-440 cps
Lead and Line Regulation: 5 millivolts. Size: $8^{\prime \prime} W \times 51 / w^{\prime \prime} H \times 8^{n} D$ (with case) Weight: 11 Ibs. (with case) Remote Programming

OTHER PRECISE, VERSATILE AND COMPACT POWER SUPPLIES INCLUDE;

Modal	E Out	1 Out	Bench Model	Reck Model	Continuously Variable	Special Comments	Price
4000	150.315	0.1.5		x	No	Vacuum Tube Type	\$595.00
520A	0-36	0.20		x	Yes	High Efficlency	575.00
2000-2	0.36	0-1.5	x	x	Yes	Dual Output	580.00
C003-2	0-36	0-2.5	x	x	Yes	Low Cost Medum Current Supply	339.00
602B	0-36	0-1.5		\times	Yes	Dual Output Remote Sensing	580.00
008AM	0-20	0-2.0		*	Yes	Remoto Sensing Remote Programming	350.00
coen	0-36	0.5		x	Yes	Constant E/Constant 1	425.00
210a	0.50	0.7 .5		x	Yes	Remote Sensing	895.00
0126	0.32	0.10		x	No	Remote Sensing	550.00
035	0.18	0-1.5	\times	x	Yes	Can be connected in series or parallel	175.00
000	0.100	0-1.0	x	x	Yes	Wide Voltaze Span	375.00

Write on your letterhead for new, illustrated catalog describing the complete H-Lab line.

HARRISON
 LABORATORIES. INC.

 45 Industrial Road - Berkeley Heights, New Jorsoy
NEW PRODUCTS

L-Band Transmitter

575
For airborne and ground use

Model 2701 transmitter has a frequency range of 1,650 to $1,680 \mathrm{mc}, \mathrm{fm}$ modulated with a minimum power output of 800 mw . It contains an integral power supply and operates from an input of 0.7 amp at 29 v from -55 to +72 C . Size is $5-1 / 2 \mathrm{in}$. long and 3-5/16 in. in diameter.
R S Electronics Corp., Dept. ED, 435 Portage Ave., Palo Alto, Calif.
Availability: Made on order for 30-day delivery.
Variable Delay Lines
572
Delay is 2 to $10,000 \mu \mathrm{sec}$

These continuously variable delay lines have bandwidths of up to 500 kc . Reproducibility and linearity of setting is 0.1%. Jitter is less than 1 nsec. Both military and commercial units can be furnished.

Ferranti Electric Inc., Dept. ED, 95 Madison Ave., Hempstead, L. I., N. Y.
Availability: 90- to 120-day delivery.
Trimmer Potentiometers
Measure $\mathbf{1 / 2} \mathbf{i n}$. in diameter

Models 140 and 150 are designed for trimming, control and servo applications. Model 140 is $0.3-\mathrm{in}$. long, weighs $0.1-\mathrm{oz}$ and has a standard resistance range from 50 to 10 K . Model 150 is $0.6-\mathrm{in}$. long, weighs $0.15-\mathrm{oz}$ and has a resistance range of 20 to 70 K . These bushing mount units have a standard linearity tolerance of $\pm 1 \%$ or $\pm 0.5 \%$ on special order. Servo mount, ball-bear-

DELIVERED.. Right Now!
Gouthle CAPACITORS

AUTHORIZED INDUSTRIAL DISTRIBUTORS ALBANY Nry
Baltimore mid mandiear tectanics inc

Bethispa mo

CLIEEANEO OHOO
dAllas tixas icpiro
darton omio
dinver colo

indianapous ind sup

KANSAS CITY MO
LOSANCELSS CALIF
MAMI FLA

NEW YORK. Niw Jerser

Philadiphia. pa camdin.na

onski ixtors

SAN Ditco calli
SAN RANCIISCO CALIF

SEATLLE WASH

SPRINCFIELD MASS
${ }^{\text {st }}$ Louls Mo
TULSA orla
WASMNCTON DC
ARLINCTON V

GOOD-ALL ELECTRIC MFS. C

Distributora' Division
450 Narberth Ave. Narberth, Pa.
ig units, having a linearity of 0.5%, can also be furnished.
Spectrol Electronics Corp., Dept. ED, San ('abriel, Calif.
Price: Model 140, \$10; model 150, $\$ 12$ (in bushing mount design).
Availability: From stock.
Power Relay
577

This $115-\mathrm{v}, 400$-cps relay with self-wiping contacts continuously handles 10 amp loads at 28 v dc and 115 v ac. It is available with up to 3 pdt contacts, an octal plug and a clear polystyrene cover. Dimensions are 1-3/8 x 2-1/16 in. The dpdt type is for 8 -pin mounting and the 3 pdt type, 11-pin.

Kurman Electric Co., Dept. ED, 191 Newel St., Brooklyn 22, N. Y.
Price: $\$ 8.95$ for spdt type; $\$ 11.45$ for 3 pdt type. Availability: Six-week delivery.

Voltage Comparator
Has dynamic range of 0.1 mv to $1,000 \mathrm{v}$

Model 465 voltage comparator operates as a high-low limit alarm over a wide input range. It indicates whether an applied voltage is over, between or below preset tolerance limits. Its range of from ± 0.0001 to $\pm 1,000 \mathrm{v}$ makes it applicable to go/no-go type problems encountered in military and industrial systems. The unit can be us d to operate lights, alarms, or relay closures for missile check-out systems, production line tes'ing of resistors, transistors or other electronic col ponents.
Cohu Electronics, Inc., Kin Tel Div., Dept. EI, 5725 Kearny Villa Road, San Diego 2, Calif

El:CTRONIC DESIGN • October 26, 1960

Congratulations!
 to WESTINGHOUSE for an exciting breakthrough.

A RADAR RECEIVER NOISE FIGURE of 2.8 db at an X-band operating frequency has been achieved by engineers of the Westinghouse Air Arm Division. Dr. Robert Rampolla (left), and Mr. Thomas Hollis (right), using a true nondegenerate X-band parametric amplifier and a Microwave Associates "pill" varactor (MA-4253), achieved a 20 db gain with excellent stability and ample bandwidth.

This remarkable accomplishment in lownoise amplification at X-band resulted from research on a program sponsored jointly by Westinghouse and the U. S. Navy.

Sophisticated Varactor technology at Microwave Associates which made these results possible has produced the most complete line available of advanced varactors in standard, miniature "pill", and glass packages.

Write for detailed information and performance data on varactor techniques.

a^{A}
 MICROWAVE ASSOCIATES, INC.

BURLINGTON, MASSACHUSETTS Western Union FAX
TWX - Burlington, Mass. 942
Phone BRowning 2-3000

NEW PRODUCTS

Modular Silicon Rectifier Columns

Deliver up to $1,000 \mathrm{w}$ of power per cu . in.

These silicon rectifier columns deliver up to $1,000 \mathrm{w}$ of power per cu in . of volume. They are available for voltages from 10,000 to $120,000 \mathrm{v}$, with current capacity ranges from 1 to 50 amp . Complete columns can be operated in air, or in gaseous or liquid coolants. Applications include long-range radar transmitters, high-voltage dc resistance welders, induction heaters and pulse modulators.
International Rectifier Corp., Dept. ED, 1521 E. Grand Ave., El Segundo, Calif.

Price: Dependent on requirements.
Availability: On request
X-Y Recorder
High-speed type

Model 560-RX-Y digital plotter accepts data from all digital computers and can be driven by punched-paper tape and punched-card data processors. Applications include monitoring industrial processes, evaluation of processed flight test data, statistical surveys and analysis of time varying systems by digital differential analyzers. It provides up to 200 incremental steps per sec on each axis; Z-axis modulation can be maintained at up to 10 operations per sec. Input power is 125 w .

California Computer Products, Inc., Dept. ED, 8714 Cleta St., Downey, Calif.
Price: $\$ 3,300$.

Transitron introduces

an exciting new device for simpler, more reliable, more economical switching circuitry

(BY'-NIS-TOR)

The Silicon NPN Tetrode binistor is a new component and a new concept for the circuit designer! The key parameters of this bi-stable, negative resistance device are determined by external circuitry in contrast to existing devices. The significant reduction of peripheral circuitry results in outstanding savings in cost, space, weight and solder connections. For example, a typical flip-flop requires at least 13 components versus only 4 in an equivalent binistor stage. Very large current and voltage gains are realized in both on and off directions. Inputs and output are compatible in level with typical transistor and diode circuits. The tetrode binistor can operate from $-80^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$.
To learn more of this important new development - THE BINISTOR - and how it works write for Bulletin No. TE-1360.

CONDENSED SPECIFICATIONS TRANSITRON BINISTOR

Typical Turn-off Current Gain	$50 @ 15 \mathrm{ma}$ Collector Current
Operating Collector Current Range	50μ a to 15 ma
I_{j} critical	0.5 ma @ 5 ma Collector Current
Operating Temperature Range with- out Temperature Compensation	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Transitron

T.

electronic corporation wakefield, melrose, boston, mass. SALES OFFICES IN PRINCIPAL CITIES THROUGHOUT THE U.S.A. AND EUROPE • CABLE ADDRESS TRELCO

FOR TECHNICAL ASSISTANCE AND SERVICE CONTACT THE TRANSITRON FIELD OFFICE NEAREST YOU AS LSTED BELOW.
baltimore, Maryland
2319 Maryland Ave............CHesapeake 3-3220
BOSTON, Massachusetts
168-182 Albion St.
Wakefield, Mass..................... . CRystal 6-5640
Camden, New Jersey
227 S. Sixth St. WOodlawn 6-2877
chicago, Illinois
6641 W. North Ave.
Oak Park, III. . . \qquad
cleveland, Ohio
14625 Detroit Ave.
Lakewood, Ohio ACademy 1.9191
DALLAS, Texas
511 Braniff Airways Bldg.
Dallas 35, Texas FLeetwood 7-9448
Dayton, Ohio
DAYTON, Ohio
379 W. First St.
DENVER, Colorado
First National Bank Bldg.
621 Seventeenth St. \qquad
DETROIT, Michigan
2842 West Grand Blvd.TRinity 5-2440
KANSAS CITY, Missouri
Wirtham Bldg.
31st and Troost Sts.VAlentine 1-1819
LOS ANGELES, California
6362 Hollywood Blvd.
Hollywood 28, Calif.HOllywood 2-2381
newark, New Jersey
1060 Broad St. MArket 3-3151
ORLANDO, Florida
\# 10 Jacklind Bldg.
205 E. Jackson St. CHerry 1. 4526
phoenix, Arizona
2727 North Central Ave. CRestwood 7-3366
ST. PAUL, Minnesota
Griggs-Midway Bldg.
1821 University Ave.................MIdway 6-1891
SAN FRANCISCO, California
535 Middlefield Rd.
Palo Alto, Calif................... DAvenport 1-2064
sEATTLE, Washington
3466 East Marginal Way MAin 4-0783
syracuse, New York
SYRACUSE, New York
2360 James St......................HOward 3-4502
winston-salem, North Carolina
Nissen Building
310 W. Fourth St. PArk 3-0363
Trangitron
olectronie comporation
whectronic corporation II

CIRCLE 77 ON READER-SERVICE CARD
< CIRCLE 78 ON READER-SERVICE CARD

There's News in an Editor's Work-Week

HAYDEN INTEROFFICE MEMO
 Date 5 Whalyal 51,1960

 foint Plothe, superased folonmeters.

For Manfred Meisels, the above is a typical work-week as a News Editor on ELECTRONIC DESIGN.
In covering places where industry news occurs, Manfred concentrates on subjects of direct importance to electronic designers. He and his fellow News Editors know that engineers want news that applies to their work ... news of research, development, technical trends.
That's why you get practical news . . . exclusive design coverageexclusively, in ELECTRONIC DESIGN.

NEW PRODUCTS

DC Amplifier
Common mode rejection is 180 db at dc

Type 1-104 floating differential dc amplifier offers common mode rejection of 180 db at dc and 130 db at 60 cps , with up to 1,000 ohms line unbalance. It is designed to amplify dc signals from strain gages, thermocouples, and bridge-type transducers. It provides complete isolation of input signal from amplifier output and chassis ground. Stability is 5 mv over a sixmonth period.

Neff Instrument Corp., Dept. ED, 2211 E. Foothill Blvd., Pasadena, Calif.
Price \& Availability: \$800; 30-day delivery.
Linear Potentiometer
Life is better than $\mathbf{2 5 , 0 0 0}, 000$ cycles

Model 34LP linear-motion potentiometer is made of conductive plastic material that provides the unit with a life in excess of $25,000,000$ cycles. The unit has Teflon insulated leads. Terminals can be mounted on the case by special order. Resistance values of 50 ohms to 1 meg can be supplied. Case length is $1-3 / 4$ in.
New England Instrument Co., Inc., Dept. ED, 1334 Main St., Waltham, Mass.
Availability: 60 days.

Liquid Cooling Unit

For radar transmitting tubes

Model D/SCU-1000 liquid cooling unit provides cooled, purified water to high-powered radar transmitting tubes. It has other applications in which the coolant is purified water. Packaged in a fully enclosed, drip-proof cabinet, the unit has a built-in meter for instantaneous
eaa ing of resistivity of input and output water. The filter cartridge can be replaced without top ping the operation of the equipment.
Budd Lewyt Electronics, Inc., Environmental Systems Section, Dept. ED, 43-22 Queens St., Long Island City 1, N.Y.
Price \& Availability: Prices from $\$ 4,000$ to $\$ 6,000$; Helivery 90 days after order received.

Coaxial Switches
353
For radio frequencies to $\mathbf{3 0} \mathbf{m c}$

These multi-position coaxial switches are designed for radio frequencies to 30 mc . Model 550 A handles up to 1 kw of modulated power with a maximum of $45-\mathrm{db}$ crosstalk. It selects any one of five transmitters, antennas, exciters or other devices. Model 551A two-pole, two position unit is for switching equipment in or out of series connections. Both switches can be used with 52 - or 70 -ohm coaxial lines.
Barker \& Williamson, Inc., Dept. ED, Bristol,

Shown in the background above is the Bendix TA-3 Power Supply

NEW BENDIX 6-OUNCE NOISE GENERATOR meets need for fast,

 accurate noise measurement in miniaturized package. It has special value on noise monitoring applications-such as microwave and radar receivers -where size, weight, and power drain rank equally important with band width. This Bendix model TN-1 is only $2.00^{\prime \prime} \times 4.25^{\prime \prime}$ over-all, weighs a mere six ounces, features low power drain, and is ruggedly built for long, troublefree service. Designed for transmission-type use over frequency range of 8500 to 9600 mc . For further information, write . . .

Open your eyes to new amplifier designs!

See how to combine tape wound cores and transistors for more versatile, lower-cost, smaller amplifiers

Tie tape wound cores and transistors into a magnetictransistor amplifier, and open your eyes to new design opportunities.
To start with, these are static control elements-no mov ing parts, nothing to wear or burn out. Next thing you find is that you reduce components' size-your amplifier is smaller and costs less. That's because between them the core and the transistor perform just about every circuit function . . . and then some.
For instance? The core has multiple isolated windings. Thus you can feed many inputs to control the amplifier The core also has a square hysteresis loop, and thus acts as a low loss transformer. That means you save power In addition, the core can store and remember signalsso time delay becomes simple.

There's no need for temperature stabilization, either. The transistor acts only as a low loss, fast, static switchand in this function it has no peer.
How do you want to use this superb combination? As a switching amplifier-or a linear one? In an oscillator? A power converter (d-c to d-c or d-c to a-c)? You'll have ideas of your own-and if they involve tape wound cores, why not write us? Ours are Performance-Guaranteed. Magnetics Inc., Dept. ED-81, Butler, Pennsylvania.

MAGMETIES inc.

NEW PRODUCTS
Miniature Chopper
Drive is 6.3 at 60 cps

Weighing 9 g , model 30 chopper is for printed circuit use. Characteristics are: drive, 6.3 v at 60 cps; dwell, 175 deg avg; phase, $25 \pm 10 \mathrm{deg}$; and balance, within 15 deg. Jewel bearings are used Airpax Electronics, Inc., Cambridge Div Dept. ED, Cambridge, Md.
Availability: 2 to 6 weeks.

Miniature Brakes, Clutches
 Rated at $1.5 \mathrm{lb}-\mathrm{in}$.

These miniature brakes and clutches, de signed for power drives rated up to $1.5 \mathrm{lb}-\mathrm{in}$., are less than 1 in . in diameter and $7 / 8 \mathrm{in}$. long They are designed for aircraft components, data processing equipment, and similar equipment requiring rotary drives which cycle automati. cally or remotely. These units have stepless torque modulation and operate from a variety of actuating devices. They operate directly fron 28 to 90 v dc.
Warner Electric Brake and Clutch Co., Dept. ED, Beloit, Wis.

Marker Generator

Provides pulses of $10 \mu \mathrm{sec}$ and 1 msec

Model LOO MG 1 marker generator uses crystal control to provide a $10-\mu \mathrm{sec}$ and a $1-\mathrm{msec}$ pulse to accurately calibrate the sweep of an oscilloscope. Weighing 8 oz , the unit operates on its own 9-v battery. No warm up time is neces sary.
Johnson Electronics, Inc., Electronics Divn P. O. Box 1675, Casselberry, Fla.

General Electric announces a new highvoltage foil Tantalytic capacitor-rated to 300 volts at 85 C and to 250 volts at 125 C -in both polar and non-polar designs.

SMALLER IN SIZE than any previously available capacitor with similar voltage ratings, these new General Electric capacitors also provide size advantages over series arrangements of lower voltage units.
GREATER CAPACITANCE STABILITY, achieved over the entire temperature range, is provided by these new highvoltage Tantalytic capacitors. An 8 percent maximum capacitance increase at high temperatures and a 20 percent maximum capacitance loss at -55 C are specified.

CLOSER CAPACITANCE TOLERANCE of ± 15 percent is standard. This represents a significant improvement over the ± 20 percent or $-15+75$ percent initial tolerances characteristic of lower voltage capacitors.
SUPERIOR LIFE PERFORMANCE during 2000 hours under maximum rated conditions is realized, with a maximum capacitance change not exceeding 10 percent.

FOR COMPLETE INFORMATION on this significant breakthrough in Tantalytic capacitor design, contact your General Eloctric Sales Representative, or write Section 449-15, General Electric Co., Schenectady 5, N. Y.
*Registered trademark of General Electric Co.

Cat. No.	Volts	Temp.	Capacitance (uf)	Polarity	Max. Leakage at Rated Temp. (va)	$\begin{aligned} & \text { Max. Imp. } \\ & -55 \mathrm{C} 120 \mathrm{CPS} \\ & \text { (Ohms) } \end{aligned}$	Diam. ${ }^{\text {a }}$	Length
$29 F 2200$	200	85 C	0.35	P	32	5715	${ }^{\frac{18}{10}}$	${ }^{\prime \prime}$
29F2105	300	85 C	25.0	P	500	82	$\mathrm{H}^{\prime \prime}$	2\%/
$29 F 2108$	300	85 C	2.0	NP	150	1010	2/80	21/8'
$29 F 2207$	200	85 C	0.15	NP	32	13330	${ }^{180}$	H°
29F2161	250	125 C	2.5	P	100	830	3/8*	$1{ }^{180}$
$29 F 2164$	250	125 C	13.0	P	325	160	诗"	23/4

These units are supplied in tubulor form, in lightweight aluminum coses,
with axial leads, and are available with insulating sleeve in 7 case sizes.

circle 84 on reader-service card
ELE STRONIC DESIGN•October 26, 1960

LAB ACCURACY IN A PANEL. MOUNTED METERR? . . it's yours with BECKMAN Expanded Scale Meters. Your knowledge of power supplies . . whether in the lab or on the launching pad...is only as accurate as the instruments you read.
Precision built by Helipot Division, ascrocar Expanded Scale Voltmeters always tell the truth. The critical voltage range - the one you want to know the most about-is expanded across the entire arc of a fully linear scale, thus eliminating unnecessary and unusable calibrations.
Resolution of a typical 110-1200 AC meter is one-tenth volt; combine that resolution with $\pm 0.3 \%$ accuracy, and you have an instrument that will perform like a highly specialized bench model... yet is fully ruggedized and sealed, ready for the gedized and sealed, ready for the
most demanding application. And most demanding application. And the waveform is in. Be it square, zig-zag, or what-have-you ... this meter always reads direct r ms. Nothing average here-not even the sensing device!
acciman Expanded Scale Meters come in a variety of shapes, sizes, and ranges...including AC and DC voltmeters, frequency meters and linear scale ammeters. Each is available in both commercial and military models... and delivery is superb: 30 days on standard models, 60 days on specials.
For the whole truth about your power supply, use gecrinax Expanded Scale Meters. For the whole truth about beckman Expanded Scale Meters ... send for Data File.

Beckman $/$ Hollpot
POTS : MOTORS: METERS
Helipot Division of
Beckman Instruments, Inc.
Fullerton, California

NEW PRODUCTS

Step-Function Speed Reducer
Torque capacity is to 50 oz-in.

This step-function speed reducer is available with either a single-geared reduction ratio or a continuously variable, friction-type speed change of limited ratio. Torque capacity is up to 50 ozin.; speeds are to $1,500 \mathrm{rpm}$, continuous, and $3,000 \mathrm{rpm}$, intermittent; and size is 4.5 in . in diameter and 3 in . deep. Designated models 00140 through 00144, the units provide ratios of up to $1,000: 1$. They can be used in oscillators, tuning condensers and other devices.

Barry Controls Inc., Insco Co., Dept. ED, Hollis St., Groton, Mass.

Microwave Radio Equipment

Range is 11,000 to $15,000 \mathrm{mc}$

Model MW-601 microwave radio system provides terminal circuits for lower frequency systems entering congested areas. A temperature control chamber is provided for the klystron. Both the transmitter and receiver have ferrite devices to protect the transmitter klystron from effects of mismatch. Model 52A-1MW transmitter, shown, has an output of 100 mw , a frequency stability of $\pm 0.05 \%$, and a nominal deviation of $\pm 3 \mathrm{mc}$. Model $54 \mathrm{~A}-1 \mathrm{MW}$ receiver has a tangential threshold sensitivity of -117 dbw , a noise figure of 15 db max, an if of 70 mc , and an if bandwith of 15 mc at 3 db points.
Collins Radio Co., Dept. ED, P.O. Box 1891, Dallas 21, Tex.

> An important
> NEW GUIDE to ELECTRONIC CHEMICALS
> of high, defined purity

More than 40 electronic chemicals of exceptional purity appear in this handy new reference guide. You will find, for example, high purity 'Baker Analyzed' Reagents for semi-conductors...vacuum tubes...ferrites...thermistors.
Do you know that every 'Baker Analyzed' Reagent electronic chemical is labeled with an Actual Lot Analysis that defines the degree of purity to the decimal? And that many are labeled with an Actual Lot Assay as still a further proof of purity? Do you know that in many of these chemicals copper, nickel and other critical impurities are defined at levels of .1 and .2 parts per million? And that several important solvents are now controlled to meet stringent resistivity specifications?

SEND FOR YOUR FREE GUIDE TODAY.
It lists J. T. Baker electronic chemicalh controlled to extremely low limits of critical impurities, and includes specificatio sheets that prove the superiReagents for electronic ypeci fications. Fill in coupon now.
J. T. Baker Chemical Co. Phillipsbarg. New Jersey Dopt. ED
Gentlemen: Please send me my copy of "J. T. Baker Electronic Chemicals."
Name
Title
Company
Streel Address
cir
CIRCLE 86 ON READER-SERVICE CARD

Rechargeable Battery 377
Capacity is $1,000 \mathrm{ma}$
The D style 2-v battery can be reciarged 1,000 times. Although wet-cell construction is used, the unit is guaranteed not to leak if left in a radio or similar equipment for a year or longer. The two-cell charger, also offered, is equipped with indicator lights.
Beamco Associates Inc., Dept. ED, 8 E. Spring St., Ardmore, Pa. Price \& Availability: $\$ 1.97$ for battery in quantities of 48 and up; $\$ 2.98$ for charger. Delivery is from stock.

Ceramic Capacitors 378

Come in values of 47 pf to $0.01 \mu \mathrm{f}$
These axial lead units are usable at a full rated voltage of 200 v to 150 C . Uses are in airborne and ground system equipment. The units are available in tolerances of $5 \%, 10 \%, 20 \%$ and GMV tolerances. Sizes are from $0.1 \times 0.125 \times 0.075$ in.
King Electronics Inc., Dept. ED, 915 Meridian Ave., South Pasadena, Calif.
Availability: Immediate.

Tantalum Capacitors 381

For missile applications
These P-type tantalum capacitors are intended for missile, airborne, and similar applications up to 125 C. At maximum temperature and rated working voltage the units provide $2,000 \mathrm{hr}$ of service. They are guaranteed to altitudes of 80 ,000 ft and will withstand $20-\mathrm{g}$ acceleration from 50 to $2,000 \mathrm{cps}$. Capacitance values range from 1.75 to $330 \mu \mathrm{f}$ at de working voltages of 85 v for operation to 125 C and 125 v at 85 C working temperature.
International Telephone and Tele, sraph Corp., Components Div., Dept ED, 815 San Antonio Road, Palo Alto, Calif.
Price \& Availability: From \$2 to \$7 in quantities of 1,000; available from stock.

CIRCLE 97 ON READER-SERVICE CARD \rightarrow

exact duplication PRODUCES TOTAL RELIABILITY

Infinitesimal Mechanical Variation due to Exclusive Automation Processes
fulus Exclusive Glass Alkyd Molded Permanence plues Exclusive Full Silver Coverage on Contact Surface equals NEW CTS NON-DRIFT COMPACT SELECTOR SWITCHES

Formerly manufactured by Trolex Corporation, now a part of CTS. 1% diameter 12 -position indexed rotary switches are designed primarily for low power exacting military and commercial RF, VHF and UHF circuit applications. Series 212 surpasses MIL standards.教 MHPREQEDENTED sWITRE IMIEのRMI I Y Fig90
 MANUFAGTURING CONCEPT

- Drift virtually eliminated by molding terminals into exact, immovable, permaminals into exact, immovable,
nent position in stator, entirely by manent position ine.. making all switches identical in each production run. Machine exact-. tude replaces human error and variations, eliminating the wider tolerances characteristic of hand assembly.
- Delicate switch parts are not exposed to
- Delicate switch parts are not exposed to
breakage; many parts are not even hanbreakage
dled.
- Superior insulation due to repetitive ex.
actness in terminal spacing and molded glass alkyd material.
- Heat from soldering cannot loosen terminals.
- Natural design barrier prevents solder from flowing into circuit elements during soldering.
 closed for additional safety and handing convenience

LONGER LIFE CONTACTS

NOW! NEWLY TOOLED CLUSTER AND 3-FINGER CONTACTS

OTHER FEATURES

- Series 212 is available in numerous combinations with CTS variable resistors and power snap switches.
- Condensed assembly. Wafers can be stacked adjacent to each other. No spacers required.
- Non-toxic combustion fumes-an important advantage in submarine or similar closed space applications.
- Exclusive balanced detent mechanism has 2 dissimilar detent forms for definite feol
and long pull in.
- New balanced lever arm and star wheel detent assembly free from end and side thrust for extremely long life and accurately controlled torque. Optional at extra cost.

the voltage of this ultra-high

regulation power supply never varies regardless of load or line fluctuations!

Now you can be assured of a constant voltage source over the entire operating range of 0 to $500 \mathrm{v}, 0$ to 200 ma , dc. Even if the load is varied - even if the line voltage fluctuates - you're still sure of load regulation to less than 0.001%, and line stabilization to less than

With this unusually high regulation over the entire range, the Model UHR-220 power supply lends itself to the most exacting applications, such as powering many high-gain stages in parallel. Ripple is less than 0.1 millivolts. Both the dic and ac impedances are unusually low - dc less than 0.01 ohms; ac less than 0.1 ohm up to 100 kc . Drift in 10 hours - 300 ppm

So when you need a power supply you must depend on for constant So when you need a power wet voltage - a supply you can set and forget - investigate the UHRline voltage free you to concentrate on the rest of your design work.

Krohn-Hite ultra-high regulation power supplies offer a total range coverage of 0 to $1200 \mathrm{v}, 0$ to 1000 ma , dc. Other fine Krohn-Hite instruments include Amplifiers, Filters and Oscillators. Write for full information.

KROHN-HITE CORPORATION
580 Massachusetts Avenue • Cambridge 39, Mass. Pioneering in Quality Electronic Instruments

NEW PRODUCTS

Trimming Potentiometer

Measures $\mathbf{1} / \mathbf{3} \mathbf{i n}$. in diameter

Measuring $1 / 3 \mathrm{in}$. in diameter and weighing 1 g , model 80 trimming potentiometer is a singleturn unit designed for printed circuits. It is sealed to meet requirements of MIL-STD-202A and MIL-E-5272C. Some specifications of the unit are: diameter, 0.345 in .; height, 0.28 in. ; resistance range, 50 ohms to 10 K ; tolerance $\pm 5 \%$; noise, 100 ohms ENR per NAS-710; power rating, 1 w ; shock, 50 g ; vibration, 30 g to $2,000 \mathrm{cps}$; load life, $1,000 \mathrm{hr}$.

Spectrol Electronics Corp., Dept. ED, San Gabriel, Calif.
Price \& Availability: $\$ 6$ ea for 1 to 9 units; from stock.

Variable Bandpass Filters

741
For of use

Designed for audio frequency use, type A103 continuously variable bandpass filters have no vacuum tubes, transistors or power supplies. Four major types are offered. Group 1 is step variable with a center frequency from 50 cps to $1,000 \mathrm{cps}$. Group 2 has a continuously variable center frequency from 50 to $2,000 \mathrm{cps}$. Group 3 has a center frequency continuously variable from 280 to 5.200 cps and group 4, center frequency centinuously variable from 40 cps to 10 kc .
Ad-Yu Electronics Laboratory, Inc., Dept. ED, 249-259 Terhune Ave., Passaic, N.J.

to get very precise data... anywhere

Ampex's new CP-100 ideally balances size and performance in a magnetic tape recorder. It meets laboratory standards in all the critical parameters - cumulative peak-to-peak flutter is well below 0.2% ($60 \mathrm{ips}, 300 \mathrm{cps}$ cutoff); $\pm 0.25 \%$ maximum tapeoff); $\mathbf{s p e e d}$ variation: frequency response from DC to over 200 kc . Yet it's compact enough (4.7 cu . Yet it s compact enough (4.7 cu .
ft .) to go virtually anywhere on land, sea or air where you need to recover critical data.
Like the rest of the facts? A full page in ELECTRONIC DESIGN for October 12 tells more, or write us and descriptive literature (plus a copy of the ad) is yours for the asking.

AMPEX

AMPEX DATA PRODUCTS COMPANY Box 5000 Redwood City, California

CIRCLE 89 ON READER-SERVICE CARD
ELECTRONIC DESIGN • October 26, 1960

Tarth Atlantic Series RB500 Ratio Boxes

> Neasure A.C. Ratios From -0.11111 To $+1.11111 .$. with accuracy to 1 ppm

With any of North Atlantic's RB500 Ratio Boxes you can now measure voltage ratios about zero and unity-without disrupting test set-ups.
And-a complete range of models from low cost high-precision types to ultra-accurate ratio standards - in portable, bench, rack mount binary and automatic stepping designs-lets you match the

For example, characteristics cov ered by the RB500 Series include:

Frequency: 25 cps to 10 kc .

Accuracy: 10 ppm to 1.0 ppm
Input voltage: $0.35 f$ to 2.5 f
Input impedance: 60 k to 1 megohm
Effective series impedance:
7.5 ohms to 0.50 hms

Long life, heavy duty switches
Name your ratio measurement and its probable there's a North Atlantic Ratio Box to meet them - precisely. Write for complete data in Bulletin 11R.

Also from North Atlantic a complete line of complex voltage ratiometers...ratio test sets... phase angle voltmeters

Adhesive Tape

Specially etched Permacel 423 Teflon-film adhesive tape accepts printing. It is compatible with epoxy resins and electrical varnishes, and adheres to itself. The material is suitable for continuous operation at temperatures from -150 to +500 F. Electrical strength is $8,500 \mathrm{v}$ and insulation resistance is 2,000,000 meg.
R. S. Hughes Co., Inc., Dept. ED, 4515 Alger St., Los Angeles 39, Calif.
Price \& Availability: $\$ 21.97$ for 36 yd of 1-in. tape; from stock.

IF Transformer

461
This miniature, bobbin-constructed unit has a can dimension of 0.25 in . and a height of 29/64 in.

Radio Industries, Inc., Dept. ED, 666 Garland Pl., Des Plaines, III.

Crimping Tool

466
The CT-3050 is for insulated and non-insulated terminals and connectors. It cuts and strips wire, shears bolts and screws, and crimps all terminals in wire ranges 22 through 10
Waldom Electronics, Inc., Dept. ED, 4625 W. 53rd St., Chicago 32, Ill.

Indium-Clad Aluminum

463
These preforms are for use in forming alloy junctions in germanium semiconductor devices. The indium cladding melts first at 400 C .
Accurate Specialties Co., Inc., Dept. ED, 340 Hudson St., Hackensack, N. J.

Harness Assemblies

464
These harness assemblies, for applications to $1,600 \mathrm{~F}$, are available in a wide range of sizes and materials.
Harco Laboratories, Inc., Dept. ED, 77 Olive St., New Haven, Conn.

Indicator Lamps

491
The Tec-Lites, miniature neon transistor-driven indicator lamps, operate on low voltages and provide a minimum life of $25,000 \mathrm{hr}$. The units are shock-resistant.
Transistor Electronics Corp., Dept. ED, 3357 Republic Ave., Minneapolis 28, Minn.

Voltmeters and Ammeters

498
Type KX-251 100-deg indicating instruments have ranges of 20 ua to 50 amp and 35 mv to 800 v . They can be used in magnetic fields of up to 500 gausses.
Westinghouse Electric Corp., Dept. ED, P. O. 2099, Pittsburgh 30, Pa.
CIRGLE 90 ON READER-SERVICE CARD
ELEC TRONIC DESIGN • October 26, 1960

. . . and 10 watts of power

with this direct-coupled amplifier!
New from Krohn-Hite: this unique combination of power and bandwidth! The Model DCA-10 direct-coupled amplifier allows you to increase power of all sources from dc to one megacycle, without the bother of changing amplifiers or bandswitching!

The DCA-10's low distortion (0.1%) makes it the perfect complement for low-distortion, quality oscillators - for unexcelled performance over the entire frequency range.

Output - to 300 volts peak to peak, to $\mathbf{6 0 0}$ milliamperes peak to peak. Frequency response is flat, within one db , from dc to 1 mc . Stability is excellent for both output DC level and gain.

The Model DCA-10 direct-coupled amplifier provides high, distor-tion-free power over the entire range, from sub-sonic into radiofrequencies. 20 watts of push-pull power can be obtained from two DCA-10's cascaded. If this high-quality, flexible amplifier can fill a need for you, write for full information.

Other Krohn-Hite amplifiers include the direct-coupled 50 watt DCA-50, and the ultra-low distortion (0.005%) 50 watt UF-101A. Also, Krohn-Hite Oscillators, Filters and Power Supplies.

KROHN-HITE CORPORATION
580 Massachusetts Avenue - Cambridge 39. Mass.
Pioneering in Quality Electronic Instruments

CIRCLE 91 ON READER-SERVICE CARD

New United Funnel Flange design improves reliability of soldered connections
Greater mechanical strength due to greater soldered area of funnel eyelet

WHY UNITED FUNNEL FLANGE EYELETS ARE SUPERIOR The funnel design permits easy insertion of leads. When soldering, the solder fills the funnels and fows around the outside of the eyelet on both sides of the etched circuit. This increases the soldered areas and seals the funnel eyelet permits entrapped to the circuit. The unique design of the achieve an unusually solid, dependable connection.
More uniform circuitry is also realized with United Funnel Flange Eyelets which are made from electrolytic copper. This material has a coefficient of

 expansion in the same order as that of the copper in the etched circuit.
United Funnel Flange Eyelets meet MIL Standard No. 202 for vibration, shock, thermal cycling, and humidity. Wide choice of sizes and lengths meet needs of hole sizes and board thicknesses. Also available in brass. Special plating, and packing to order.

Free: Send us a sample of your board for free insertion of funnel flange eyelets for your testing and evaluation or write for

umitio smor michiniry conporation 140 Foderol Stroot, LDition, Mas.

NEW PRODUCTS

Linear-Motion Pot
Fits in hydraulic actuators

Model 159 tubular pot was designed for internal installation in hydraulic actuators and other telescoping assemblies. The $1 / 2-\mathrm{in}$. diameter case with concentric actuating shaft is O-ring sealed against contamination from hydraulic fluids and high-humidity conditions. Standard travel ranges are 1 to 5 in . Resolution is 0.001 in .

Bourns, Inc., Dept. ED, 6135 Magnolia Ave., Riverside, Calif.
Availability: Made to customer specs.

Miniature Toroidal Inductors

For printed-circuits

The firm has expanded its line of miniature toroidal inductors to include the following types: MM-5, $20 \mathrm{mh}, 20 \mathrm{ma}$ dc max; MM-6, 30 mh , 16 ma ; MM-7, $60 \mathrm{mh}, 11 \mathrm{ma} ;$ MM-8, 120 mh , 8 ma ; MH-5, $10 \mathrm{mh}, 22 \mathrm{ma}$; MH-6, $15 \mathrm{mh}, 18 \mathrm{ma} ;$ MH-7, $25 \mathrm{mh}, 14 \mathrm{ma}$; MH-8, $40 \mathrm{mh}, 11 \mathrm{ma}$. Units are $7 / 16 \mathrm{in}$. OD and $1 / 4 \mathrm{in}$. high and weigh 0.07 oz. Hermetically sealed, they have a temperature range of -55 to +100 C . Terminal spacing is 21/64 in. MIL specs are met.

United Transformer Corp., Detp. ED, 150 Varick St., New York 13, N. Y.
Availability: From stock

Half-Wave Rectifier

This $10-\mathrm{amp}, 1,000-\mathrm{piv}$ rectifier is designed for control applications requiring a half-wave rectifier. Type 664L has a lug base; type 664P has bracket base and flying leads for panel mounting. Specifications are: filament voltage, 2.5 v ; filament current, 25 amp ; peak anode current, 120 amp; and condensed mercury temperature limits, -40 to +100 C .
National Electronics, Inc., Dept. ED, Geneva, Ill.
Price: $\$ 26$.
Availability: From stock.

from 0.1000 volts

with 1% accuracy

Keithley Regulated High-voltage Supply gives you new speed and accuracy for a wid range of tests. Its many uses include calibration of meters and dc amplifiers, supplying voltages for photo-multiplier tubes and ion chambers, as well as furnishing potentials for high resistance measurements.
Three calibrated dials permit easy selection of the desired output in one volt steps, at up to 10 milliamperes. Polarity is selectable Other features include

- 1\% accuracy above 10 volts.
- LIne regulation 0.02%
- Load regulation 0.02%
- Ripple less than 3 mv RMS.
- Stability: within $\pm 0.02 \%$ per day.
- Protective relays disconnect output at 12 milliamperes
- Price: $\$ 325.00$.

Send for details about the Model 240 Supplly.

TRUMENT, INC. 12475 Euclid Ave., Cleveland 6 , Ohit

CIRCLE 93 ON READER-SERVICE CARD

In tegrating Motor Tachometer

Hos high output-to-null voltage ratio This size 15 integrating motor tachometer has high output-to-null voltage ratios and remains accurate from -55 to +80 C . No warm-up time is required at any temperature within the operating range. No heaters, mechanical thermostats, amplifiers or external heat sources are used, resulting in less weight and power drain on the over-all system.
United Aircraft Corp., Norden Div., Dept. ED, Jericho Turnpike, Commack, L.I., N.Y.

Silicon Varactor
Diodes
Cut-off frequency is 120 kmc Type MA-4297 silicon mesa varactor diodes have a cut-off frequency of 120 kmc . Shunt capacitance is about 0.4 pf and series lead inductance is about $2 \times 10^{-9} \mathrm{~h}$. Low-capacitance units used in $5,500-\mathrm{mc}$ receivers that are equipped with parametric amplifiers achieve stable over-all receiver noise figures of 2.2 db for $\pm 10 \mathrm{mc}$ bandwidth. Stable overall receiver noise figure is under 1.8 db for $3,000-\mathrm{mc}$ radar receivers using parametric amplifiers.
Microwave Associates, Inc., Dept. ED, Burlington, Mass.
Availability: Experimental quantities, immediate.

X-Band Isolator

388
Measures $\mathbf{1 / 2} \mathbf{i n}$. long
This X-band isolation model XM2, is $1 / 2 \mathrm{in}$. long. It has a minimum isolation of 20 db and a maximum insertion loss of 0.3 db at $9375 \pm 25 \mathrm{mc}$. VSWR is 1.2 max. The center frequency can be modified within the X-band.
E \& M Laboratories, Dept. ED, P. 0 Box 2427, Van Nuys Station, Van Nuys, Calif.
Pric, \& Availability: $\$ 65$ to $\$ 175$ dep rding on quantity; units are mad to order.

CIRCLE 94 ON READER-SERVICE CARD -

appearances are not deceiving

THIS P\&B 10-AMP RELAY IS AS RELIABLE AS IT LOOKS
Our AB relay looks rugged . . . and it is. You can specify it for 10 amp switching and confidently expect 100,000 cycles. Yet it is compact, easily mounted, and does not require special handling. Installation is simple, using your preference of screw

ABC Scries-A日 seties can be sup.

AB AND ABC RELAYB ENGINEERINO DATA

gemeral:

insulabin fuistame: 100 meeohms minimum Lire: 3 mill ion cycies mechanicall: betwn iliel elements sind ground. 5 Tompraturc Rance: AC C: -55 to $+55^{\circ} \mathrm{C}$.

Turminals: Fit Mo quick-connect terminals.
or may be aplied 1 o printed circuits or may be applied to printed circuits using dip soid rering. Sc.
 dimenticts:
Amancoments: DPDT

Late 5 amps at 230 volts $A C$ or 10 amps at 115 volls $A C$ noninductivo.
10 amps at 28 volts D
colt:
Valage: DC: 6 to 110 volts.

Prutr: DC: 2 watts nominal.
AC: 6 watts nominal. Rosintama: 35.000 ohms max. 6 watts at $+25^{\circ} \mathrm{C}$. mountimes:
AB: Two 8.32 tapped holes on 13/"centers. $A B C$: One $8-32$ stud $1 / \%^{\prime \prime}$ long and locating tob.

P\& STANDARD RELAYS
are available at your local ELECTRONIC PARTS DISTRIBUTOR terminals (adapters), quick connects,

Designers specify the AB for air conditioners and other products where dependable, continual service is paramount.

These standard AB and ABC relays are listed by Underwriters' Laboratories and Canadian Standards Association:

Tro	Arrangemonts	Tym	Arembements
abiay	DPST-NO	abctar	DPST-NO
absar	DPST-NC	abcsay	DPST-NC
abilay	DPDT	abcilar	DPDT
Ceil niteges: 6	6. 12. 24,115	230 volts	AC, 50/60 e
Contact ratime	10 amps. 1	its AC or ductive.	5 amps,
L File E-2924			CSA No.
Write f	for com	data	or cont

(iiif POTTER E BRUMFIELD

NEW PRODUCTS

NPN Power Transistors
Rated at 60 w

These four diffused-silicon, npn power transistors, types 2 N 1487 through 2N1490, dissipate 60 w at a mounting-flange temperature of 25 C . Temperature range is -65 to +175 C . Types 2N1489 and 2N1490 transistors have beta ratings from 25 to 75 with saturation resistance of 0.67 ohms max measured at 1.5 amp . Units are hermetically sealed in welded cases conforming to the JEDEC TO-3 outline. The collector is in electrical contact with the case. Applications are in power coverters, power-supply regulators, relay replacements and controls, and dc and servo amplifiers.
Silicon Transistor Corp., Dept. ED, 150 Glen Cove Road, Carle Place, L.I., N.Y.
Price \& Availability: $\$ 50$ to $\$ 75$; three week de livery.

Plug-In Sweep Generator

This plug-in sweep generator is designed for alignment of if stages and wide-band amplifiers. No power cables or batteries are required. The device has separate center-frequency and sweepwidth controls. Marker input, synchronization and blanking, variable sweep rate and 10^{4} shortterm stability in center frequency are provided. Teltronics, Inc., Dept. ED, 277 Main St., Nashua, N.H.
Price \& Availability: \$98.90; delivery from stock in small quantities.

CIEAN

Electronic, Electrical, Mechanical Components and Contacts with NO Film or Residue

Cobehn

HIGH-VELOCITY
SPRAY-CLEAN TECHNIQUE

APPLICATIONS
Electronic Components \& Assemblies: D odes, Transistors, Slip-Ring Commutator Crystals, Vacuum Tube Components, Sub Miniature Assemblies.

Meter a Instrument Components: Instru ment Bearings, Jewel Bearings \& Pivots, Gear Trains, Lapped Surfaces.
Electrical Contacts: Relays, Vibrators Voltage Regulators, Sensitive Switches.

FEATURES

No film, residue, or corrosive effect th damage surface, fire and explosion hazan nil, non-polar, non-ionic, an all around safe operation.

For specific information about you tritical cleaning problems, send prod critical clooning probloms, send prod quiroments.

Cobehn
 226 Passaic Avenue

Caldwell, N \& CApital 6-667, CIRCLE 96 ON READER-SERVICE CARD ELECTRONIC DESIGN • October 26, 196

MODEL PLS-IA (Actual Size)
HLLUMINATED SIMGLE POSITIOM PUSH BUTTON SWITCHES

Latest Design of Illuminated Push To Lock Push To Release Switch

The Capitol Model PLS.IA switch ace
single contact midget commodates single contact midget hanged type lamp. A unique bayonet the lamp can be easily inserted or removed. Eliminates need of pressure
spring to hold lamp in place.
Lamp terminals are designed so that ource for continuous duty or wired to the switch contact springs for dured on on Accommodates either straight or right angle terminals on contact springs. Total depth behind
Amp rating 110 Volt
AC
nom-inductive.
Buttons can be supplied in various Buttons can be supplied and blasted
transparent colors and or sand
(frosted) for identification purposes. (frosted) for identification purposes.
Engravings on buttons are also avail.
angravings on butcons are

CAPITD swiches

Tie Capitol Machine Co. ${ }^{16}$ Iolmforth Avonua, Danbury, Conneeticut CIR LE 97 ON READER-SERVICE CARD

Insulated Jack

467
No. 4351 insulated jack is for use in quick and tight patchwork panels. It mates with the firm's plugs having pin diameters of 0.045 in .

Cambridge Thermionic Corp., Dept. ED, 445 Concord Ave., Cambridge 38, Mass.

Inertial Dampers

468
Model 1D-15-100, size 15, inertial damper can be used in high-performance instrument servo loops. The units, also available for sizes 11 and 18 , work equally well with 60 - or $400-\mathrm{cps}$ servo motors.

Industrial Control Co., Inc., Dept. ED, Central Ave. at Pinelawn, Farmingdale, N. Y.

Plastic Instrument Cases
469
The interior compartments of these ABS thermoplastic, custom-designed instrument cases are specially formed to hold various shapes and sizes of electronic instruments.
Hollywood Plastics, Inc., Dept. ED, 4560 Worth St., Los Angeles 63, Calif.

Decade Scaler

470
Model N-240 3.5 -in. scaler is for use in analytical scintillation and proportional counting systems. Pulse-pair resolution is $1 \mu s e s$, with a continuous repetition rate of up to $250,000 \mathrm{cps}$.
Hamner Electronics Co., Inc., Dept. ED, P.O. Box 531, Princeton, N. J.

Rosin Flux

471
The RU series activated rosin flux is for electronic use where non-conductive, non-corrosive flux residues are required.
Fusion Engineering, Dept. ED, 17921 Roseland Ave., Cleveland 12, Ohio.

Wire Stripper

473
The Glo-Melt stripper is for on-the-job or bench work; a foot control is optional. Stripping of all plastic wire including Teflon is accomplished. A Nichrome cutting element is used.
American Electrical Heater Co., Dept. ED, 6110 Cass Ave., Detroit 2, Mich.

Thyratron Trigger System

476
Type SP-504 is for triggering the 1237,1754 , and the SGR-2 thyratrons. It is small in size and is mechanically rugged.
Axel Electronics, Inc., Dept. ED, 134-20 Jamaica Ave., Jamaica 18, N. Y.

Series Motor

Type TW, for special purpose applications where fractional-horsepower motors are required, has removable brushes for quick, easy replacement.

Redmond Co., Inc., Dept. ED, Owosso, Mich.

sean pherin TEFLON* TERMINALS

improve dependability

ELECTRICAL

The Teflon dielectric used in Sealectro "Press-Fit" terminals provides a power factor less than .0005 from 60 cps to $30,000 \mathrm{mcs}$. Dielectric constant is 2.0 . Volume resistivity even after water immersion is better than $10^{15} \mathrm{ohm} / \mathrm{cm}$. 1000 to 2000 volts per mil dielectric strength.

MECHANICAL

Sealectro "Press-Fit" terminals are consistently manufactured to the closest tolerances in the industry assuring greater resistance to torque and pullout. Resilient over wide temperature range. No crack ing or breaking in transit or assembly. No water absorption. Unaffected by soft-soldering operations.

THE RIGHT TERMINAL FOR EVERY PURPOSE

Sealectro's unparalleled experience, know-how and complete customer services assure you the right terminal for every purpose. Sealectro offers you a choice of over 1000 standard "Press-Fir" ferminals, plus virtually unlimited talents in the design, development and manufacture of any terminal for any purpose. Write for Catalog.

- Reg. Trademark, E. I. Du Pont de Nemours \& Co., Inc.

CIRCLE 98 ON READER-SERVICE CARD

THEORY \& APPLICATION: Since certain control and instrumentation systems require amplification of DC signals, it is desirable to employ a static signal converter. Magnitude of these available DC signals is so small that instability of DC amplifying systems results when signal is brought to usable level. Therefore a stable AC amplifier is required to convert low level DC to AC. A magnetic modulator serves this function with the added advantage that a "polarity reversible" $\begin{array}{ll}+2 V_{\alpha} & \text { DC input is converted to a "phase reversible" output. The } \\ \text { output can be rectified to a "polarity reversible" pulsating } \\ \text { DC or can be applied to a phase sensitive indicating }\end{array}$

SpECIFICATIONS: Model MM-0027

ELECTRICAL CHARACTERISTICS:
Maximum Output $>.4 \mathrm{~V}_{\text {BM }}$ (a) 100 ,
 Voltage Unbalance

$\begin{array}{lll}3-4 & 500 \Omega & \pm 20 \% \\ 5 . & 200 \Omega & \pm 20 \%\end{array}$

$5.61200 \Omega \pm 20 \%$
7-8 $60 \Omega \pm 20 \%$
Frequency 400 cycles

MECHANICAL CHARACTERISTICS: $\begin{array}{ll}\text { Diameter } & 1.13^{\prime \prime} \text { maximum } \\ \text { Height } & 68^{\prime \prime} \text { maximum }\end{array}$ Height $\quad .60^{\prime \prime}$ maximum Mounting $\quad .125^{\prime \prime \prime}$ clearance hole ENVIRONMENT CONDITIONS: Storage Temperature -65° to $+100^{\circ} \mathrm{C}$ Operating Temperature -40° to $+70^{\circ} \mathrm{C}$ Vibration $.060^{\prime \prime}$ total excursion $10-5 \mathrm{cps}$ Shock 15 g's
Alumidity 05% feet
Prices on request. Quotations without obli. gation on your other special components.

TEXAS COMPONENTS DIVISION PACIFIC COMPONENTS DIVISION 535 N. Fifth St. P. O. Box 97818151 Napa St. P. O. Box 161 Garland, Poxes Northridge, Callfornia Dallas phone BRoadwoy 6-5141 Northridge, Californic
Phone Dlekens $5-2250$ Phone

NEW PRODUCTS

Mercury Plunger Relay
Will handle 100 amp at 115 r

The type 100 mercury plunger relay will handle 100 amp at 115 v ac. Mercury-to-mercury contacts are hermetically sealed; an inert-gas atmosphere quenches arcs to provide cool operation. The relay is suitable for motor and lighting control, heating power and other high-current applications.

Ebert Electronics Corp., Dept. ED, 212-26 Jamaica Ave., Queens Village, N.Y.
Price \& Availability: From $\$ 32.50$ to $\$ 21.20$, depending on quantity; delivery is 1 to 2 weeks.

Printing Scalar

For high-speed counting systems

The type N - 276 scalar is designed especially for use in systems where high speed and automatic operation are needed. It is intended for use in conjunction with the firm's type $\mathrm{N}-803$ printing timer. Preset counts from 10 to 500,000 are provided. At the end of the preset count or time, an optional printer prints the scalar display and the instrument automatically starts counting again. The device has a pulse-pair resolution of better than $1 \mu \mathrm{sec}$, a repetition rate of 1 mc , and a display of six electronic decades. Sensitivity is $\pm 4 \mathrm{v}$ min. Dimensions are 3-1/2 x $19 \times 13-1 / 2 \mathrm{in}$.

Hamner Electronics Co., Inc., Dept. ED, P. O. Box 531, Princeton, N.J.

711

NEWI

Engraved
Deep-Kut*
Perma-Grip Peg Stamps
give you
fully
aligned
printing
impressions
every time!
characters are

locked into

 wooden pegs
...can't come off!

Made only by Krengel Mis. Co., Inc., Perma-Grip Peg Stamps with Deep-Kut dies give you clear, clean, sharp markings every time. Each set of peg stamps contains all the letters in the alphabet plus all the numbers 0 to 9 .

$1 / 16$	ABC123
$3 / 32$	ABC123
$1 / 8$	ABC123
$5 / 32$	ABC123
$3 / 16$	ABC12
$1 / 4$	$A B C$

Complete set of alphabet and figures in any of the 6 sizes shown.

KRENGEL

MANUFACTURING CO., INC.
227 Fulton St - New York 7. N. Y COrtlandt 7.5712

CIRCLE 100 ON READER-SERVICE CAAD ELECTRONIC DESIGN • October 26, 196

High-Voltage Test Set 379
froduces 5 ma continuously at 50 kv
Designed for dielectric testing and leakage-current measurement at high voltage, the model S50-5DC test set provides 5 ma continuously at 50 kc . The high-voltage tank is oil-filled, weighs 90 lb and occupies less than 1 cu ft .

Peschel Electronics, Inc., Dept. ED, Towners, Patterson, N.Y. Price \& Availability: $\$ 1,200$; delivery is 10 days.

High-Gain Power

Transistors
For high-frequency applications
These npn diffused-silicon power transistors, types 2N1661 and 2N1662, have high gain and are designed for high-frequency power handling. Collector-to-emitter voltages are 80 and 100 v , respectively. Collector current is 2 amp max; beta frequency, 25 mc min ; power output, 85 w . The units have applications in regulated power supplies, power switching, amplifiers, oscillators, core drivers and servo amplifiers.
Raytheon Co., Semiconductor Div., Dept. ED, 215 First Ave., Needham, Mass.
Price \& Availability: 2N1661, \$67.50; 2N1662, \$90; delivery from stock.

Extension-Plunger

Slide Switches

For unconventional mountings
These extension-plunger slide switches are designed for applications where conventional panel mounting is inconvenient. Model SW-726X switch is a dpdt device with detent and a contact rating of 0.5 amp at 125 v , ac or dc. Also a ailable are spst, spdt and dpst switches with detent, and spst and sr It switches with spring return.
Continental - Wirt Electronics Cirp., 26 W. Queen Lane, Philade phia 44, Pa.
A ailability: Immediate.
CIRCLE 101 ON READER-SERVICE CARD

GEE DAD-IT'S A WHOPPER!

Whether it's fishing or designing equipment, you're proud when you've accomplished what you set out to do. You feel a sense of security.. Of satisfaction.. whether the job be big or small.
As engineers, we have more opportunities than the average man to concentrate, solve problems and experience satisfaction.
A constant source of pride is the product reliability accomplished through control of quality during mechanized manufacture. For example, the new low voliage series of PNP Silicon Alloy Transistors enables many engineers working on choppers, modulators demodulators, etc., to achieve performance of which they can be proud. Evidence: Sperry's new Technical Application Bulletin \#2107.
OF
SPERRY RAND CORPORATION NORWALK, CONNECTICUT

[^5]

QUALITY...END-PRODUCT OF EXPERIENCE

ITT WIRE AND CABLE PRODUCTS
 Around the

 world, ITT is known for wire and cable of the highest quality - this reputation is the direct result of years of rewarding experience. Through its global research, development and production facilities, ITT delivers a world of wire and cable products (for the twin fields of tele-communica tions and electronics) . . . quality products as advanced as modern skill and ingenuity can make them!
Power Supply Cords and Cord Sets:

Heavy duty extensions; air conditioner, range and dryer cords; cube

| ITr's thousands of | experience-tested and |
| :--- | :--- | :--- |
| quality-proven | |
| include: | |

For all your design needs, choose from ITT's world of wire and cable products. Prompt off-the-shelf deliveries, full factory warranty. Call your ITT distributor. CIRCLE 102 ON READER-SERVICE CARD
ap and extension, special purpose cord sets; power supply replacement cords; trouble lights.
Electrical Wire: Rubber and plastic parallel lamp cord; rubber portable cord.
TV Lead-in Wire: Heavy duty, 2 conductors - 7 strands $\# 28$ - 70 mil.
Wiring Devices: Modern in design and modern in construction . . . combine exceptional utility features with durability, strength, safety . . . and ease of installation and use.

DISTRIBUTOR PRODUCTS DIVISION IMTERHATIOMAL TELEPHONE AND TELEGRAPH CORPORATIOM P. O. BOX 99. LODI. NEW JERSEY

NEW PRODUCTS

Regulated Power Supplies
Rated 300 to 500 v, 0 to 500 ma , dc

The output for model RR 550 dc power sup ply is 300 to 500 v at 0 to 500 ma . Line and loa regulation is 0.1%. Filament output is $6.3 \mathrm{v}, 15$ amp. Input is 105 to $125 \mathrm{v}, 55$ to 400 cps . The device is rack mounted; panel height is $5-1 / 4$ in. and depth is $14-1 / 4 \mathrm{in}$
Trans Electronics, Inc., Dept. ED, 7349 Canoga Ave., Canoga Park, Calif.
Price \& Availability: $\$ 310$ without meters; $\$ 350$ with meters. Delivery is from stock.

Transistorized Power Supplies
710
Provide 12 v at 5 amp

Model PS111M transistorized power supply, one of a series, has the following specifications: output, 12 v dc at 0 to 5 amp ; transient response, 50 mv or less for $50 \mu \mathrm{sec}$ or less square-wave load; no line transients; line regulation, 0.1 $\%$; load regulation, 0.25%; stability, 0.5% or 50 mv for 24 hr ; ripple, 1 mv rms. Device measures $19 \times 5-1 / 4 \times 10 \mathrm{in}$., weighs 15 lb . Input is 105 to $125 \mathrm{v}, 60$ to 400 cps .
Valor Instruments, Inc., Dept. ED, 13214 Crenshaw Blvd., Gardena, Calif.
Price \& Availability: \$395; two weeks.

Film Resistors
Are rated at 1 and $1 / 2 \mathrm{w}$

Types C-20 and C-32 resistors have resistana ranges of 56 ohms to 150 K and 56 ohms to 47

1. respectively. Other specifications are: derating fall load at 70 C ambient to zero at 150 C ; load life, change in resistance of 1% and 1.5% after 1.000 hr operation at 70 C ; temperature coeffcient, $\pm 150 \mathrm{ppm}$ per deg C from -55 to +150 C ; and noise level, 0.1 mv per v of applied signal. Corning Glass Works, Dept. ED, Bradford, Pa Price: Type C-32 with 5% tolerance, 6.1 cents in quantities of 5,000; type C-20 with 5\% tolerunce, 5.9 cents.

High-Gain Amplifier
Bandwidth is 0.1 to $320,000 \mathrm{cps}$

362

Model 72 mplif wide-band unit useful in research and development work, both as an amplifier and a noise source. Nominal bandwidth is 0.1 cycle to 320 kc. Gain is adjustable in 3 db steps from 100 to 10,000 . Noise is less than $3 \mu \mathrm{v}$; distortion, less than 0.5%. With an auxiliary input, gain is 500 ,000.

Shapiro and Edwards, Dept. ED, 1130 Mission St., South Pasadena, Calif.
Price \& Availability: \$1950; stock to 45-day delivery.

Solid-State Switches
418
For airborne and missile uses

These solid-state switches are designed for airborne and ground-control missile applications and aircraft uses. Model EA 154, for example, operates from an input of 110 v ac at 400 cps and is rated at 2 amp at 28 v dc. It stands temperatures from -40 to $+160 \mathrm{~F}, 25 \mathrm{~g}$ shock for 10 $\mathrm{msec}, 10 \mathrm{~g}$ vibration from 5 to 500 cps , and humi lity, salt spray and fungus. It meets MIL-E47:().
hermador Electronics, Dept. ED, 715 S. Rayme id Ave., Alhambra, Calif.

(Created Specifically for Printed Circuit Applications)

Volume - $1 / 8$ cubic inch max.
Package Density - 8 per cubic inch,
13,824 per cubic foot.
Type: Model C Relay.
Contacts: SPDT, dry circuit to 1 amp resistive.
Temperature: $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Insulation
Resistance: 1000 megohms @ $125^{\circ} \mathrm{C}$.
Dielectric
Strength: 1000 VRMS @ Sea Level.
Convenient Slze: $1 / 2^{\prime \prime}$ Cube, allowing best compatibility in size to other printed circuit components.
Optional Terminals: Long or short leads for printed circuit applications, or hook type for standard wiring.
Construction: Balanced armature construction, proven the best approach available for resistance to extremes of vibration and shock, exceeding all present military specifications.
Environmental Characteristlcs: To meet all military relay specifications for components of this size.

-Trade Mark of Hi-G, Inc.

bradley field, windsor locks, CONn.

fooPRECISION MEASUREMENTS

RESISTANCE DECADES-MODEL DR

Available in a wide variety of standard models. Accuracy at
1.0 and 0.1 ohm steps is $\pm 0.25 \%$. Accuracy of all other 1.0 and 0.1 ohm steps is $\pm 0.25 \%$. Accuracy of all other resistors is $\pm 0.1 \%$ of indicated value. Self-cleaning, molded
nylon and silver plated brass switch mounted below panel.
Zero resistance is less than Zero resistance is less than . 003 ohms per dial, Hardwood
 DR-70D and DR-71D. $171 / 4^{\circ} \times 5^{\prime \prime} \times 41 / 2^{n} h$. Weight 6° lbs. net
8 lbs. shipping.

ELECTRICAL SPECIFICATIONS			
Model No.	Total Res. Ohms	Decade Steps	Accuracy
DR-10	$1,110,000$	$10 \times(1,000+10,000+100,000)$	$\pm 0.1 \%$
DR-2D	111,000	$10 \times(100+1,000 \div 10,000)$	$\pm 0.1 \%$
DR-3D	11,100	$10 \times(10+100+1,000)$	$+0.1 \%$
DR-4D	1,100	$10 \times(1 .+10+100)$	$\pm 0.25 \& \pm 0.1 \%$
DR-50D	11,111	$10 \times(.1+1+10+100+1,000)$	$\pm 0.25 \& \pm 0.1 \%$
DR-51D	111,110	$10 \times(1+10+100+1,000+10,000)$	$\pm 0.25 \& \pm 0.1 \%$
DR-52D	$1,111,100$	$10 \times(10+100+1,000+10,000+100,000)$	$\pm 0.1 \%$
DR-70D	$1,111,111$	$10 \times(.1+1+10+100+1,000+10,000+100,000)$	$\pm 0.25 \& \pm 0.1 \%$
DR-71D	$11,111,110$	$10 \times(1+10+100+1,000+10,000$ $+100,000+1,000,000)$	$\pm 0.25 \& \pm 0.1 \%$

WHEATSTONE BRIDGES - MODEL RN

Universally used for the measurement of all types of resistance devices and circuits where high accuracy is required. Models available for performing MurrayVarley Loop tests.

ELECTRICAL SPECIFICATIONS

Model	Total Res. of Decade	Ratio Dial Settings	Circuits	Dimensions
RN-1	$9 \times(1+10+100+1000)$	$.001, .01,1,1.0,10,100,1000$	\ldots.	$9 " \times 8^{\prime \prime} \times 61 / 2^{\prime \prime}$
RN-2	$9 \times(1+10+100+1000)$	$.001, .01,1,1.0,10,1000$, M10, M100, M1000	Murray \& Varley	$91 / 2^{\prime \prime} \times 8^{\prime \prime} \times 61 / 2^{\prime \prime}$
RN-3	$10 \times(1+10+100)+9(1000)$	$1 / 1000,1 / 100,1 / 10,1 / 9,1 / 4,1 / 1$, $10 / 1,100 / 1$, M10, M100, M1000	Murray \& Varley	$92 / 2^{\prime \prime} \times 8^{\prime \prime} \times 61 / 2^{\prime \prime}$

CAPACITANCE DECADES - MODEL DK
These are 3 -dial units with the sum of the dial setting indicating total capacity in microfarads. Mylar and silver mica capacitors are used for high stability low-loss characteristics. Polished hardwood case, engraved dia graduations.

NEW PRODUCTS

Have high transconductance with low heater power

Two subminiature rf-amplifier tubes, types CK6611 and CK6612, have mutual conductances of 1,000 and $3,000 \mu \mathrm{mhos}$ at filament powers of 25 and 100 mw , respectively. Plate voltage is 30 v max. Operating life-time is over $5,000 \mathrm{hr}$. Units are designed to stand shock, vibration and fatigue conditions.
Raytheon Co., Industrial Components Div., Dept. ED, 55 Chapel St., Newton, Mass.
Price \& Availability: CK6611, $\$ 9.95$; CK6612, \$12.45. Delivery from stock.

Parametric Amplifiers

For all microwave frequency applications

These reactance diode parametric amplifiers are designed for applications at all microwave frequencies. The heart of the line is the gallium arsenide, variable reactance diode which gives improved noise performance over a wide range of temperatures. Typical models include: model S-21, S-band tunable from 2.7 to 2.9 gigacycles, has ratings of 3 db over-all noise figure (double sideband) with 15 db gain over a 15 mc bandwidth; model C-11, C-band tunable from 4.4 to 5 gigacycles, has a 3 db over-all noise figure (double sideband) with 15 db gain over a 20 mc bandwidth; model L-11, tunable from 0.9 to 1.2 gigacycles, has a noise figure of 1 db (double sideband) with 16 db gain over a 50 mc bandwidth.

Texas Instruments Inc., Dept. ED, 6000 Lemmon Ave., Dallas 9, Tex.

AUGAT

COMPLETE LINE OF SOCKET ASSEMBLIES FOR MICRO-MINIATURE

RELAYS

Combining Holding Clip And Built-In Socket for Unmatched Reliability Under Severe Condifions Of Shock And Vibration.

These assemblies will accomodate Micro-Miniature relays as manufactured by G. E., Elgin, Sigma, Allied, Potter \& Brumfield, Clare, Iron Fireman, Babcock and many others.

For additional information
write for catalog RS-160
A円AT BADG ING
31 Perry Avenue
Attleboro, Massachusetts

Miniafure Lights

Series MCL indicators are for commercial data processing and industrial control system applications. Six different types offered are neon or incandescent lamps, pin or wire lead terminals, and square or round lenses.
Transistor Electronics Corp., Dept. ED, 3357 Republic Ave., Minneapolis 26, Minn.

Metal Film Resistors

484
This is a flat sided version of the firm's cylindrical, axial-lead resistor. Three of the units fit into an area that would ordinarily accommodate two cylindrical units. Temperature coefficient of resistance is 25 ppm per $\operatorname{deg} \mathrm{C}$.
Ohmite Manufacturing Co., Dept. ED, 3645 W. Howard St., Skokie, Ill.

Fasfener

Series 12 F $1 / 4$-turn fastener is for light covers, small sub-assemblies, and miniature black boxes. They use rivets 0.062 in . in diameter; rivet spacing is $1 / 2 \mathrm{in}$.
Camloc Fastener Corp., Dept. ED, 61 Spring Valley Road, Paramus, N. J.

Terminals

485
The Tabon terminals for quick connect-disconnect applications are available in chain form for rapid machine crimping. Offered in a wide range of wire and insulation sizes, the terminals are self-wiping and self-cleaning.
Malco Mfg. Co., Dept. ED, 4025 W. Lake St., Chicago 24, Ill.

Radio Filters

472
Designed for installation in aircraft these units are light and compact. They come in hermetically sealed drawn-steel containers, have high Q inductors, and use low power factor capacitors.
Aerovox Corp., Cinema Engineering Div., Dept. ED, 1100 Chestnut St., Burbank, Calif.

Instrument Ball Bearings

505
Made in R2, R3 and R4 sizes, the MPB R series uses a stainless steel retainer. They are suitable for use in servos, generators, small motors, synchros and gyros.

Precision Bearings, Inc., Dept. ED, Keene, N. H.

Capacitor Package

504
The Vu-Paks are clear plastic tubes packed with electrolytic twistmount capacitors. They are re-usable.
Pyramid Electric Co., Dept. ED, Darlington, S. C.

CII LE 106 ON READER-SERVICE CARD
HELIPOT SINGLE-TURN POTENTIOMETERS ...a line you can hang your toughest specs on! Don't worry, they can take it...environmentally, electrically, and mechanically! And you pay only for what you need, because Helipot offers $85^{\circ}, 125^{\circ}$, and $150^{\circ} \mathrm{C}$ models! Standard linearity: $\pm 0.5 \%$, with $\pm 0.10 \%$ available for most.
The Helipot line is simply stacked with stand-out singleturns, linear or non-linear, from \%/4" to $3^{\prime \prime}$ diameters. Numerous modifications are available for any of them-things like flatted or slotted shafts, rear shaft extension, shaft lock, anti-fungus treatment, color coding or center tap. And most models allow 8 cups to be ganged!
All these significant singleturns are precision built by Helipot...as are surprisingly large numbers of multi-turns, trimmers, A-C pots, dials, delay lines and in-line packages.
Want all the facts and figures?
Just ask for our new catalog.

WIDE-RANGE TRANSISTORIZED POWER SUPPLIES:

available for immediate off-the-shelf delivery

Here is a complete line of transistorized power supplies. Exacting performance of the unique differential DC amplifier assures extremely tight static and dynamic regulation; ultrafast response ... less than $20 \mu \mathrm{sec}$; very low output impedance and a high degree of drift stability with temperature - plus complete protection from short circuits and overload.

CHECK THE FOLLOWING CHART FOR YOUR REQUIREMENTS:

	Output Voltage	Output Amps	Static Regulation		Output Impedance	Ripple	Panel Height
	DC	DC	Load	Line	Ohms	Millivolts Peak-to-peak	
T-200-C	$0 \cdot 10$	0.3	.03\%	.03\%	. 040	2.0	$31 / 2$
T-205-C	$0 \cdot 10$	0.10	.03\%	.03\%	. 012	2.0	$31 / 2$
T-210-C	$0 \cdot 10$	0.30	.03\%	.03\%	. 004	2.0	51/4
T-215-C	0.32	0.1	.02\%	.02\%	. 240	2.0	$31 / 2$
T-220.C	0.32	0.3	.02\%	.02\%	. 080	2.0	$31 / 2$
T-225.C	0.32	0.10	.02\%	.02\%	. 024	2.0	51/4
T-221-C	0.50	0.2	.02\%	.03\%	. 200	4.5	$31 / 2$
T-230-C	$0 \cdot 150$	$0 \cdot 0.75$.02\%	.05\%	1.000	6.0	$31 / 2$
T-235-C	0.150	0.2	.02\%	.05\%	. 500	6.0	51/4

These transistorized supplies, contained in compact light-weight consoles, have front and rear terminals, permitting either rack or cabinet installation for such applications as laboratory, computer power Idigital or analogl, production testing, and ground support equipment.

Write for the Armour Stablvolt catalog describing the complete line of transistorized and magnetically regulated power supplies for your application.

division of Magnetic Research Corp. 3160 W. EL SEGUNDO BLVD., HAWTHORNE, CALIF.

NEW PRODUCTS

Refrigeration Unit

This Peltier cooling device dissipates 65.3 w of heat to the ambient air at 140 F at sea level. In so doing, temperatures are maintained below 110 F. The Peltier modules require 20 amp at 5.5 v dc for cooling. When used with the firm's temperature controller, this device can also be used to heat by reversing the current.

The Garret Corp., AiResearch Manufacturing Div. of Los Angeles, Dept. ED, 9851 Sepulveda Blvd., Los Angeles, Calif.

Environmental Test Fixture

407
Is resonant-free below 2,000 cycles

An environmental test fixture that is resonantfree below 2,000 cycles has been designed for testing specimens in three mutually perpendicular axes, simultaneously. It may be used for vibration, shock and acceleration testing. The transmissibility factor does not exceed 1.10 up to $2,000 \mathrm{cps}$, giving accurate transmission of input with no amplification. Available in two sizes, the smaller size has a capacity of $6 \times 6 \times$ $4-1 / 2 \mathrm{in}$. with a weight capacity of up to 6 lb ; the larger type has a capacity of $12 \times 12 \times 9-1 / 2 \mathrm{in}$. and a weight capacity up to 25 lb . The T-type fixture is made of cast magnesium.
Avco Research and Advanced Development Div., Dept. ED, 201 Lowell St., Wilmington, Mass.

SEMICOMOUCTOR

 TEST EQUIPMENTCOMPLETE LINE OF STANDARD INSTRUMENTS.

*MODEL 1803
TRANSISTOR PARAMETER TEST SET Measures the small signal "h" parameters and wide range of lco.

- MODEL 1811

MILLIMICROAMMETER
Measures low level dc currents from less than 1 mua to 3 ma. Chopper stabilized. No zero ad

MODEL 1802
RF TRANSISTOR TEST SET
Measures $\mathrm{Fa}_{\mathrm{a}} \mathrm{Ft}_{\mathrm{t}}$ to $50 \mathrm{mc}, \mathrm{rb}_{\mathrm{c}} \mathrm{C}_{\mathrm{c}}$, and C_{ob}-Direct reading.

> - All above instruments are complete and require no accessories - line aperated - no batteries.
> ALSO: MODEL 1816 -TUNNEL DIODE TEST SET - MODEL 1808 WIDE RANGE DIODE TEST SET
.. and CUSTOM DESIGNED MANUAL AND AUTOMATIC SEMI-CONDUCTOR TEST EQUIPMENT.

DYNATRAN
electronies corporation
178 herricks road
MINEOLA, NEW YORK
PIoneer l-4141

Push-Button Switches 387

Momentary-contact type
This line of 400-1 miniature, momentary-contact, push-button type switches are rated at $1 / 2 \mathrm{amp}$ and 115 v ac. It stands a dielectric test of $1,000 \mathrm{v}$. Nipple mounting is standard. Terminals are solder type. The switch is suitable for control of electronic equipment, television sets, audio equipment, computers and relays.

Alcor Manufacturing Co., Dept. ED, 4444 W. Roosevelt Road, Chicago 24, Ill.
Price \& Availability: $\$ 0.40$ in quantities of 5,000; delivery is 15 days.

Beam Pentode

383
For high-voltage applications
This beam pentode is designed for use in high-voltage pulse amplifiers and high-voltage shunt regulator applications. Designated type 7239 , the tube has a type 9 KH base. The nine-pin miniature device has a plate dissipation of 4 w and a peak cathode current of 85 ma. Maximum plate voltage is 2200 v and screen voltage is 200 v .
General Electric Co., Dept. ED, Schenectady 5, N.Y.
Price \& Availability: \$8.75; from stock.

Plug-In Relay

Has indicating lamp
The series $1210-\mathrm{N}$ plug-in relay has an indicating neon lamp that lights when the coil is energized. Failure to light is an indication of a fault. The unit is applicable in relay banks, mass relay installations and at intermediate switching points. The device has an eight-pin octal plug for dpdt and an 11-pin plug for 3 pdt. Contacts are rated at $8 \mathrm{amp}, 115 \mathrm{v}$ ac. The unit measures $2-22 / 32 \times 1-3 / 8 \times 1-3 / 8 \mathrm{in}$.
Guardian Electric Manufacturing Co., Dept. ED, 1550 W. Carrol Ave. Chicago 7, Ill.
Pric \& Availability: DPDT, \$6.30; 3PD ", \$7.70; available from stock.

Versatility Plus . . .
A partial list of small discs and rods, all with identical characreristics
Temperature Coefficient ($25^{\circ} \mathrm{C}$) $-3.8 \% /{ }^{\circ} \mathrm{C}$
Beta Value ($37.8^{\circ} \mathrm{C} / 104.4^{\circ} \mathrm{C}$) $3500^{\circ} \mathrm{K}$
Ratio ($37.8^{\circ} \mathrm{C} / 104.4^{\circ} \mathrm{C}$) 7.3

$\begin{gathered} \text { Resistance } \\ 25^{\circ} \mathrm{C} \\ \hline \end{gathered}$	Keystone Type Number	Diameter (Inches)	Thickness (Inches)
500	L0503.312.73	0.050	0.030
$\begin{array}{r} 160 \\ 500 \\ 1000 \end{array}$	L0903.100.73 L0903.312.73 L0909.623.73	$\begin{aligned} & 0.100 \\ & 0.100 \\ & 0.100 \end{aligned}$	$\begin{aligned} & 0.030 \\ & 0.030 \\ & 0.100 \end{aligned}$
$\begin{aligned} & 100 \\ & 180 \\ & 200 \\ & 230 \\ & 230 \\ & 270 \\ & 300 \end{aligned}$	L2003.62.73 L2006-112.73 L2006-125.73 L2008-168.73 L2008-187.73	0.200 0.200 0.200 0.200 0.200 0.200	$\begin{aligned} & 0.030 \\ & 0.060 \\ & 0.060 \\ & 0.060 \\ & 0.080 \\ & 0.080 \end{aligned}$
$\begin{aligned} & 100 \\ & 200 \\ & 250 \\ & 300 \end{aligned}$	$\begin{aligned} & L 3006-62.73 \\ & \mathrm{~L} 3008.125 .73 \\ & \mathrm{~L} 3008.156 .73 \\ & \mathrm{~L} 3018.187 .73 \end{aligned}$	$\begin{aligned} & 0.300 \\ & 0.300 \\ & 0.300 \\ & 0.300 \end{aligned}$	$\begin{aligned} & 0.060 \\ & 0.080 \\ & 0.080 \\ & 0.180 \end{aligned}$
$\begin{array}{r} 270 \\ 5000 \\ 10000 \\ \hline \end{array}$	L060637.168.7 L0606337.3120 L060437-6234	- Rod, 0.060" square. $3 / \mathrm{s}^{\prime}$ Length.	

Special Mounting Requirements
Thermistor applications often dictate special mounting requirements. As a result, Keystone units are supplied with many types of special lead assemblies, mounting tabs, heat dissipating fins. Units are mounted in probes and transistor type cans, attached o plates and metal parts_of_wide_varieiv.

Keystone has the experience (over almost a quarter of a century), the knowledge and production capability to handle your thermistor requirements in any quantity-of any type and size.
Because of unsurpassed quality control, your tolerance specifications are acceptable to $\pm 2 \%$ on resistance value and Beta value (in fact, we maintain a $\pm 2 \%$ production tolerance on the material constant of all Keystone thermistors regardless of resistance tolerance). All parts can be supplied in pairs or sets matched closely in resistancetemperature or voltage drop characteristics.

We can supply discs, washers, rods, beads and special shapes including washer segments, square rods, rectangular wafers, square wafers, etc. Our experienced sales staft and engineering and research and development organizations are available for consultation. Write us or call today.

- bystone

CARBON COMPANY
RESISTOR DIVISION • St. Marys, Pa.
Telephone: Terminal 4-1591

NEW PRODUCTS

Null Voltmeter

This transistorized, battery or line-operated null voltmeter has full-scale ranges of 300,30 , and 3 v , and 300 mv . The device measures the in-phase fundamental components of small ac signals, particularly the null or error signals common to suppressed-carrier control systems, with an accuracy of $1-1 / 2 \%$ of full scale. Reference, input, and power-input circuits are isolated from each other and chassis ground to eliminate ground-loop effects.

Hydel, Inc., Dept. ED, 223 Crescent St., Waltham, Mass.
Price: $\$ 1100$.
Availability: 8 to 10 wecks.

Beam Power Pentode

Rated at 400 w

The type PL-175A beam pentode, rated at 400 w , is directly interchangeable with the type 4-400A tetrode. A specially designed vane-type supressor grid is said to provide increased efficiency, lower distortion and greater output. In class $A B_{1}$ operation, the tube delivers 790-w usable power. In class-C service, the tube provides $960-\mathrm{w}$ power with 1.4 w driving power.

Penta Laboratories, Inc., Dept. ED, 312 Nopal St., Santa Barbara, Calif.
Price: $\$ 50$ ea for 1 to 25 units; $\$ 35$ ea for 25 or more.
Availability: From stock in small quantities.

Say, what's this
I hear about LFE making read/write heads for magnetic drums and tape?"
"They have been making them for years for their own " systems! Now they're available to the industry.
Why don't you
write for
further info?"

igh-Voltage Relays

Weigh 1 oz

Able to switch $3,000 \mathrm{v}$, the Minic R-5 relay weighs 1 oz and easures 2 in . long and $3 / 4 \mathrm{in}$. in meter. It handles up to 750 va th a maximum contact rating of amp. Contacts are sealed in a gh vacuum. The relay stands ock, vibration, and temperature tremes and meets Mil specs
Resistron Laboratories, Inc., Dept. D, 2908 Nebraska Ave., Santa onica, Calif.
vailability: From stock in sample production quantities.

Band Detector

For systems monitoring
This miniature X-Band detector ount, model 1046, is intended for stems monitoring and has a minilum dc output of 0.5 v across 10 K fr 1 mw rf, 7500 to 8500 mc , into he sub-miniature connector. The btal unit is enclosed by $1 \times 1 \times$ $\mathrm{l} / 2 \mathrm{in}$. Weight is 3.5 oz .
Radar Design Corp., Dept. ED, O. Box 38, Syracuse 11, N.Y.
rice d Availability: Prices are: 1 9, \$82 ea; 10 to $49, \$ 74$ ea; 50 to 9, $\$ 64$ ea; prices include the N23C crystal. Available 30 days fter receipt of order.

haft Encoders

Analog to digital

These analog-to-digital shaft enoders have passed life tests in exess of 10,000 hours at average slew peeds of 500 rpm and maximum lew speeds of $3,000 \mathrm{rpm}$. They are vailable in $6,7,8,9,10,13,15,17$ nd 19 bit models. This line of shaft encoders has a constant thickness Resign for the brushes, single wish contacts for each bit, and ow friction, low surface wear codng discs. Readout accuracies of $\pm 1 / 2$ a digit are maintained in exress of 10,000 hours.
G idance Controls Corp., Dept. ED, 110 Duffy Ave., Hicksville,

The extent of the science of communications is as vast as the universe itself will allow. Fresh areas in this science are being explored at Lockheed. Our pursuits cover the spectrum of communications prob-lems-on and under the water to tracking missiles and satellites from components to complete systems. One essential phase in the electronics communications $R \& D$ program is the development of antennas and supporting equipment to receive telemetered, tracking and relay data-each uniquely designed to answer a particular need. This program is vital to support our sophisticated spacecraft projects -now and in the future. Areas under investigation in electronics and other fields excite the creative mind: Design and development of data processing equipment; V/STOL design and development; electromagnetic research in corona and high-altitude breakdown studies, surface wave generation, antenna vehicle interaction, millimeter wave radiometry; electrical instrumentation; infrared and solid state physics; biophysics research (on radiation hazards coincident with space flight); solid state electronics; underwater sound propagation and oceanography studies; aerothermodynamics; dynamics; autocontrols; and servosystems are but a few of them. Scientists and Engineers: The challenges and rewards of our current and future programs are unlimited. If you are experienced in any of the areas mentioned above you are invited to investigate opportunities offered by a company that always looks far into the future. Write today to: Mr. E. W. Des Lauriers, Manager Professional Placement Staff, Dept. 1310, 2407 No. Hollywood Way, Burbank, California.

COUCH ROTARY RELAYS

Start with a unique and simple design -- manufacture within a narrow range of tolerances - specify performance on the conservative side - this is how Couch solves the problem of supplying relays that meet the present and future needs of our aircraft and missile programs.

The record shows that this technique is successful: many thousands of Couch CVE type rotary relays are providing consistent flight insurance in complex systems under the most severe environmental conditions.

IMPORTANT SPECIFICATIONS

Contacts: 4PDT (dry circuit to 10 amps)
Size: $13 / 32^{n} \mathrm{D} \times 11 / 2^{1 "} \mathrm{H}$
Weight: 3.2 oz. max.
Pull-in power: $1 / 2$ watt
Ambient temperature: -65° to $+125^{\circ} \mathrm{C}$
Vibration resistance: 20G's, 5 to 2000 cps
Shock resistance: 75G's operating, 200G's non-operating
Write for complete specifications.

COUCH ORDNANGE, INC.
A Subsidiary of S. H. Couch Company. Inc.
3 Arlington St., North Quincy 71, Mass. Tel.: (Boston) BLuehills 8.4147
CIRCIE 114 ON READER-SERVICE CARD CIRCLE 114 ON READER-SERVICE CARD

NEW PRODUCTS

Mica Capacitors

Measure $5 / 16 \times 1 / 4 \times 1 / 8 \mathrm{in}$.

The series DM-10 silvered mica capacitors measure $5 / 16 \times 1 / 4 \times 1 / 8 \mathrm{in}$. They are available in values from 1 to 360 pf , rated from 100 to 500 wvdc. Operating temperature is up to 150 C . Units are encased in phenolic and are suitable for printed-circuit applications.
Electro-Motive Manufacturing Co., Inc., Dept. ED, Willimantic, Conn.
Availability: Large quantities, made to order, are delivered in 30 days; limited quantities from stock.

Laboratory DC Power Supply
Provides 0 to 20 v ot 5 amp

This laboratory power supply, model PS-1235, provides 0 to 20 v , continuously adjustable, at a rated current of 5 amp . Load current can be limited to a maximum of either 1 or 5.5 amp to protect components in the load circuit. Ripple is less than 2 mv . Voltage regulation is better than $\pm 0.1 \%$ or $\pm 5 \mathrm{mv}$, whichever is greater, for full load or rated line change. Input is 105 to 125 v , 60 cps . The device has low internal impedance and fast recovery time. It measures $7 \times 9.5 \times$ 10.6 in ., and weighs 19 lb .

Power Instruments Corp., Dept. ED, 235 Oregon St., El Segundo, Calif.
Price: $\$ 280$.
Availability: 3 to 4 weeks.

A Number of Reasons For Using Reader Servica

EVERY READER SERVICE CARD IN ELECTRONIC DESIGN PROVIDES 899 NUMBERS . . . ENOUGH TO GET YOU INFORMATION ON ANY ADVERTISEMENTS, NEW PRODUCT OR CAREEP BROCHURE ITEMS YOU'RE INTERESTED IN.

CIRCLE THE NUMBERS MAIL THE CARD. RELAX ELECTRONIC DESIGN'S READER SERVICE STAF TYPES YOUR NAME AND ADDRESS ON SPECIAL LABELS AND RUSHES THEN TO MANUFACTURERS THESE SAME LABELS SIGNAL YOUR MATERIAL WHEN IT ARRIVES.

FAST, CONVENIENT, NQ PAPERWORK. ANY NUMBE OF REASONS FOR USING ELECTRONIC DESIGN'S READER SERVICE CARD.

Test Point Jacks

The Kwik-Term line includes both lug and turret st les. Standard contact and terminal material is gold flash over silver-plated beryllium copper. Probe diameters range from 0.041 to 0.09 in.

Cannon Electric Co., Dept. ED, 3208 Humbolt St, Los Angeles 31, Calif.

Terminal and Pull Box Enclosures

486
JIC enclosures with factory installed terminal blocks are for use as full boxes and junction boxes on all types of OEM machinery and signal systems. They are suitable for use where wiring must be protected from dust, dirt, oil, water and coolants.
Keystone Manufacturing Co., Dept. ED, 23328 Sherwood Road, Warren, Mich

Transistor Holder

488
This three-pin holder is designed to eliminate holding failures of transistors undergoing shock, vibration and environmental tests. Made of heat resistant materials, it can be used to hold transistors undergoing tests at 260 C .
Jupiter Electronics, Inc., Dept. ED, 225 E. 144th t., New York 51, N. Y.

Hot-Junction Thermocouples

These single-wire thermocouples have unbroken mineral oxide insulation and sheath continuity for
se under extremes of pressure and temperature orrosive conditions and physical stresses.
Conax Corp., Dept. ED, 2300 Walden Ave., Bufalo $25, \mathrm{~N}$. Y.
esin Mixer

502

The Multi-Rez-Processor proportions, dispenses d mixes epoxy and polyurethane compounds. The eflon is the only part of the unit to enter the reacve resin mix.
CPM Special Machinery Corp., Dept. ED, 324 tiler St., Brooklyn 17, N. Y.

vertravel Switch

509
Type 14-324 heavy-duty, snap-action switch is ted at 20 mp and has a mechanical life of over ,00?, 000 cycles. Standard type is spdt with double D2-i․ contact gaps.
Illin ois Tool Works, Licon Div., Dept. ED, 6606 D kin St., Chicago 34, Ill.

NEW Corning wafer capacitors run from 1 to 10,000 uuf

Uuf for uuf the smallest, most stable capacitors you can get for printed circuits and high reliability components.

Never has so much capacitance been crammed into so little space with so much ruggedness and reliability
The smallest gives from 1 to 560 uuf while resting in a space only $\mathbf{0 . 0 0 2 0 4}$ cubic inch in volume.
The largest runs from 4301 to 10,000 uuf and takes up only 0.02106 cubic inch.

You sacrifice nothing for size. The flat shape gives you more options in mounting, e.g., slot or flat mounting in printed circuits. When you need leads we can provide those too, in $3 / 16$-inch lengths, in the WL series.

These capacitors are rugged and reliable. The dielectric and conductor layers are fused at high temperatures and need no encasement. You'd almost have to smash one completely to stop its operation. Meets or exceeds the performance requirements of MIL-C-11272A.

For complete specs write for a new 4-page bulletin to Corning Glass Works, Dept. 540, Bradford, Pa .

Capacitor | Capacitance (uuf) | Volume (approx.) | |
| :---: | :---: | :---: |
| W. WL-5 | | |

W, WL-5	1 to 560	0.00204 in. 3
W, WL-4	561 to 1000	0.00327
W, WL-3	1001 to 2700	0.00702
W, WL-2	2701 to 4300	0.01951
W, WL-1	4301 to 10,000	0.02106

a

CORNING ELECTRONIC COMPONENTS CORNING GLASS WORKS, BRADFORD, PA.

CIRCLE 116 ON READER-SERVICE CARD

Advanced component application of electroluminescent display instrument at Honeywell-Aero

OPPORTUNITY

creative challenges in component engineering await you at Honeywell-Aero

A limited number of engineers with unique capabilities are needed; men with imagination and flexibility to work with other engineering groups on high priority projects such as Project Mercury, Polaris, Titan, and the X-15.
There are a variety of professional positions that offer challenges and opportunities for selfstarters with imagination and drive to push the state of the art. Experience with military programs is valued. Specific openings include:

TRANSISTOR CIRCUIT APPLICATIONS ENGINEER
BSEE from an accredited university or college. MSEE desirable. BS and MS in engineering physics acceptable if followed by suitable experience; e.g., several years of experience in design of audio frequency or servo mechanism circuits; utilizing such components as transistors, semi-conductor diodes, transformers, and magnetic amplifiers.

ELECTRONIC PACKAGING ENGINEER

BSEE or MSEE. Degree in other field such as physics or chemistry if experience is applicable. It is desirable to have experience in basic development of micro-miniature devices.

RADIO FREQUENCY SUPPRESSION ENGINEER
BSEE or MSEE experienced in communications and radio frequency propagation. Ham radio experience desirable. Must have firm grasp of RF knowledge.

MECHANICAL DESIGN SPECIALIST IN

 VIBRATION AND STRESS ANALYSISBSME or MSME with several years' experience in design or equivalent capacity in field of mechanics and materials, particularly stress analysis and vibration. Able to apply mechanical analysis to mechanical and vibratory stress problems.

To discuss these or other openings, write Mr. James H. Burg, Technical Director, Dept. 825, Aeronautical Division, 2600 Ridgeway Road, Minneapolis 40, Minn.

Honeywell H Meltany Puductar graw

To explore professional opportunities in other Honeywell operations, coast to coast, eend y our appplication in confidence to H. T. Echetrom,
Honeywell, Minneapolis 8 , Minn.

NEW PRODUCTS

Transistor Tester

Beta calibration accuracy is $\pm 1 \%$

Model 200 transistor tester provides for mealsuring beta at different collector-current reference levels and incorporates an $I_{c o}$ test leakage reading on a $200-\mu$ meter. The instrument has separate sockets for npn and pnp transistors. Beta calibration accuracy is $\pm 1 \%$ and current meter accuracy is $\pm 2 \%$.

Westmore, Inc., Dept. ED, Fanwood, N. J. Price: $\$ 67.50$.
Availability: One week

Telemetering Pulse Separator

409
For PAM decommutation systems

The TPS-100-B telemetrics system, capable of decoding a 100% non-return to zero commutated wave train into a standard IRIG return to zero wave train, has a high degree of stability and synchronization. Frame rates are from 20 to 7200 pps. It is designed to operate where bit channels total $30,45,60$ or 90 per frame. Decommutation rate variations of $\pm 20 \%$ do not affect system synchronization. After 20 min warm-up, the system is stable within 0.20% over an 8 hr period.
Telemetrics, Inc., Dept. ED, 12927 Budlong Ave., Gardena, Calif.

Transistorized Crystal Oscillator 41

Output amplitude is 8 v peak-to-peak

The T-311 crystal oscillator has an output an plitude of 8 v peak-to-peak, from -11 v to v. Frequency stability is $\pm 0.001 \%$ max under th maximum combined variations of temperatur
sul ply voltage and load with crystal in oven. Th. unit contains four germanium pnp transistor, two as a Butler crystal oscillator circuit, one for squaring and one as an emitter follower. A type H-160 crystal acts as a coupling impedance between the two stages of the Butler circuit. The T-311 covers the frequency range of $25(1 \mathrm{kc}$ to 1 mc .
Engineered Electronics Co., Dept. EI), 1441 E. Chestnut Ave., Santa Ana, Calif.

Microwave Fault Alarm System 421
Reports 11 or 17 fault conditions

This transistorized fault alarm for microwave systems reports 11 or 17 different fault conditions from as many as 30 remote stations. Tones can be set within one of five ranges from 1 to 30 kc . Indication is by means of lights on the front panel. Each unit is housed in a plug-in module measuring $1.5 \times 7 \times 18 \mathrm{in}$. and requiring 20 w of power.
Collins Radio Co., Texas Division Sales, Dept. ED, 1930 Hi-Line Drive, Dallas 7, Tex.
Acailability: 90 days.

Three-turn Potentiometer

Over-all length is $1-31 / 64$ in.

The three-turn design of this potentiometer results in a housing length of $1-31 / 64 \mathrm{in}$. The basic design for the 205 series was developed originally for the military, but is now available commercially as well. Major specifications of the 205-3T potentiometer are: resistance range, 10 to 50,000 Ohnıs; linearity, zero biased or independent; line urity accuracy, $\pm 0.5 \%$ to 0.1%; weight, 3.2 oz ; mee hanical rotation, $1080 \mathrm{deg}+15-0$ deg; electric: I rotation, $1080 \mathrm{deg}+14.4-0 \mathrm{deg}$.
A nphenol-Borg Electronics Corp., Borg Equipmen t Div., Dept. ED, 120 S. Main St., Janesville, Wis

MINIATURE MOTOR PROTOTYPES 24 HOUR DELIVERY

We now stock small quantities of the most popular sizes and types of Globe precision miniature motors-both a.c. (60 and 400 cycle) and d.c., plain and gear reduced, for immediate shipment off the shelf. Get the motor you need tomorrow!

Understandably we can't guarantee to meet every requirement that fast: the Globe line is the broadest available today with literally millions of com-binations-stocks change day to day. But we are almost sure our inventory contains a motor that comes close to your prototype requirements-to tide you over until we can furnish the exact motor you need. (Most unstocked prototypes normally can be built and delivered in 4 weeks or less.)
Your Globe engineering representative has the latest stock lists. Contact us when you need a miniature motor immediately. For details about 24 -hour prototypes, write for Bulletin 24. Globe Industries, Inc., 1784 Stanley Avenue, Dayton 4, Ohio, 'or telephone direct: BAldwin 2-3741.

GLOBE INDUSTRIES, INC.

CIRCLE 119 ON READER-SERVICE CARD

CIRCLE 120 ON R-ADER-SERVICミ CARD

NEW 3"
"SPACE SAVER" DC OSCILLOSCOPE
The little 10-10 has big applications. Use it in industrial, medical and general service fields for computer "read out" and for voltage, frequency and phase shift measurement. It features identical vertical and horizontal AC or DC coupled amplifiers. external sync terminal, external capacity binding posts for swecp rates lower than 5 cps , transformer-operated power supply, voltage-regulated B+ and bias and excellent specifications. 3RP-1 CR tube included. Send for free Heathkit catalog or see your nearest Heathkit dealer.

HEATHKIT* ${ }^{2}$ [PASSTROM

HEATH COMPANY Benton Harbor 80 , Michigan Please send the Free Heathkit catalog.
NAME
ADDRESS
CITY
ZONE STATE
CIRCLE 121 ON READER-SERVICE CARD

PRECISE SHAFT POSITIONING EASY

WITH GURLEY RESOLVER TEST STAND

The new Gurley Resolver Test Stand solves the long-standing need for a reliable instrument in production tests of resolvers, synchros, potentiometers and other such equipment.
The Gurley Model 7530 test stand is a precision shaft-positioning device, consisting of an optical coincidence reading system with ± 2 second accuracy, a rack and gear for precise shaft positioning, and an adaptor plate and coupling.

For an illustrated bulletin, write on your letterhead to Industrial Division, W. \& L. E. Gurley, 525 Fulton Street, Troy, N. Y.

W. \& L. E. GURLEY TROY, N. Y.

NEW PRODUCTS

Recentering Magnetic Clutch

Over-all length is less than $5 / 8 \mathrm{in}$.

This re-centering magnetic clutch has an over. all length of less than $5 / 8 \mathrm{in}$. It has a cavity for potentiometer winding, synchro winding or switches to facilitate marriage of clutching with the function to be performed. Recentering spring torque is not applied until the clutch is disengaged, keeping operational torque to a minimum. Dual winding coil permits 12 or 24 v operation Magnetec Corp., Dept. ED, 7232 Eton Ave., Canoga Park, Calif.

Solid-State Counter-Timer
For dc to $\mathbf{2 0} \mathbf{~ m c}$ applications

This dc to 20 mc counter-timer is completely transistorized, direct reading and combines the functions of a counter, time interval meter and frequency period meter. Heterodyning tech niques are not used. It is available with either the standard vertical decade number panels or inline Nixie readout. Power consumption is 50 w and weight is 27 lb . Sensitivity is 0.25 v rms input impedance is 25 K per v . Output informa tion from each DCU will operate digital printers punches and other data processing equipment. Computer-Measurements Co., Dept. ED, 12970 Bradley Ave., Sylmar, Calif.

Photovoltaic IR Detectors

Have military and industrial applications

Minimum detectivity for types ISC-301, A, B C, and D IR detectors is $3,6,9,12$ and 15 bir
lion cm per w , respectively. Minimum impedance for the units is $500,1,000,2,000,3,000$ and $4,000 \mathrm{ohms}$. They operate in excess of 30 min with one filling of liquid nitrogen. Cryostats are available for operations with gaseous nitrogen. Applications include search, track, guidance, reconaissance and spectroscopy.
Philco Corp., Lansdale Div., Dept. ED, Lans-

$$
\mid
$$ dale, Pa.

Price \& Availability: Ranges from $\$ 500$ for ISC301 to $\$ 1,700$ for ISC-301D; 60 to 90 days.

Transistorized Relay
Input impedance is 250 K

This transistorized relay, model T-681, is said to have high input sensitivity through 250 K impedance. Device operates to 120 F . Device measures $3 \times 4 \times 5 \mathrm{in}$., and weighs 30 oz . Power requirements are 110 v ac; contact load is 1,500 w max.
Precision Thermometer and Instrument Co. Dept. ED, 1434 Brandywine St., Philadelphia 30 , Pa.
Price: $\$ 75$.
Availability: From stock.

Digital Comparator

Provides 100,000 operations per sec

This programable, solid-state, unit is capable of comparing measurement numbers at rates as high as 100,000 per sec. Intended for use as part of a checkout system, the device accepts digital information from an analog-to-digital converter, Is an example, and compares it with preset high and low tolerance limits. It then gives the corfect answers in terms of Go, No Go Hi, or No Go 2. Circuitry is laid out in the form of etchedfard modules that fit into a standard 19-in. rackmounted chassis with a $5.5-\mathrm{in}$. panel height.
Le ach Corp., Dept. ED, Compton, Calif.
Price \& Availability: About \$2,000; immediate.
Elec TRONIC DESIGN • October 26, 1960

The Leaders Specify ALPHLEX ${ }^{\text {® }}$ TUBING \& SLEEVING

: made to the highest standards - comprehensive variety of colors and put-ups - immediate delivery from your local Alpha Wire distributor

For these advantages Alphlex Tubing \& Sleeving is used by such leaders as Convair, General Electric, Gulton Industries, Polaroid Corporation \& Govt. agencies. Write for Alphlex catalog.

TPPE	OESCRIPTION	InADE	MIEPETIC	TEMP.	$\begin{gathered} \text { LOW TEMP. } \\ \text { FLEX. } \end{gathered}$	RESISTANCE	SIZES colons
$\begin{aligned} & \text { P-105 } \\ & \text { METIC } \\ & \text { TUBING } \end{aligned}$	High resistance to heat, oil, chemicals, corrosion, fungi; no loss in tensile strength or fexibility. Protects irregular objects and snakes well.	\square	800	$105^{\circ} \mathrm{C}$	$-30^{\circ} \mathrm{C}$	remains flexible indefinitely	$\begin{aligned} & 111-12 A_{1}-B, C, B, G, H \\ & 121 / 2 \geqslant 1 A, B B, B, \end{aligned}$
FIESAA FUTI. TUBINE	Specifically designed for sub-zero temperatures.		850	$70^{\circ} \mathrm{C}$	$-67^{\circ} \mathrm{C}$	Good	*24-*0 A
$\begin{aligned} & \text { PIF-130 PVATIC } \\ & \text { IMPREAKED } \\ & \text { FIBEROMSE SLEEVING } \end{aligned}$	Class B insulation for continuous operation to $130^{\circ} \mathrm{C}$. Excellent color retention even on prolonged baking at high altitudes.	$\begin{array}{\|l\|} \hline A-1 \\ B-1 \\ C-1 \end{array}$	$\begin{aligned} & 8000 \\ & 8500 \\ & 2500 \end{aligned}$	$\begin{aligned} & 130^{\circ} \mathrm{C} \\ & 130^{\circ} \mathrm{C} \\ & 130^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & =30^{\circ} \mathrm{C} \\ & =30^{\circ} \mathrm{C} \\ & =30^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Good } \\ & \text { Good } \\ & \text { Good } \end{aligned}$	$\begin{aligned} & 242 B, C, D, G \\ & \text { \#1 and larger C, } D \end{aligned}$
	Class B insulation for general use; high tensile strength, good flexibility, non-peeling cracking, low moisture absorption, acid oil resistant.	$\begin{aligned} & A-1 \\ & B-1 \\ & C-1 \end{aligned}$	$\begin{aligned} & 7000 \\ & 50010 \\ & 2500 \end{aligned}$	$\begin{aligned} & 1335^{\circ} \mathrm{C} \\ & 130^{\circ} \mathrm{C} \\ & 1355^{\circ} \mathrm{C} \end{aligned}$		Good Good Good	$\begin{aligned} & \$ 24=2 B_{1} C_{C} D_{0} G \\ & 21 / 2-\$ 1 C_{1} \end{aligned}$
$\begin{aligned} & \text { Tr-200 } \\ & \text { TEFLON } \\ & \text { EXTRUDED TUBIME } \end{aligned}$	Unmatched for electrical application at high temperature frequencies. Thin, flexible, permits miniaturization and compactness.		500-1000	$250^{\circ} \mathrm{C}$	$-90^{\circ} \mathrm{C}$	Excellont	$\begin{aligned} & 30+15 B-K \\ & 14=18, C, F, G, H, I, J \end{aligned}$
STHT-250 SILICONE RUBBER BTRUDED TUALWE	Excellent tenslle strength, elongation, and tear strength, low water absorption and good oil resistance.		400	$200^{\circ} \mathrm{C}$	$-85^{\circ} \mathrm{C}$	Good	$420-10 \mathrm{H}$
PVC-80 EMTVDED PIC TIC TUBING	Excellent snaking expands to irregular shapes. Dilates under certain conditions and resumes its size if it is the polyvinylchloride type.		800		$-30^{\circ} \mathrm{C}$	stiffens slightly	
PLE. 70	(Same as PVC-80)		1200	$80^{\circ} \mathrm{C}$	$-70^{\circ} \mathrm{C}$	swells slightly	*24-*7 1
SLEF-200 SILICONE RUBBER FIBERCLASS TUBING	Class H insulation, excellent for shock resistance, extreme flexibility and freedom from cracking and crazing at extreme temperatures.	$\begin{array}{\|l\|} A-1 \\ Q-1 \\ C-1 \end{array}$	$\begin{aligned} & \hline 7000 \\ & 4000 \\ & 2500 \\ & \hline \end{aligned}$	$\begin{aligned} & 200^{\circ} \mathrm{C} \\ & 200^{\circ} \mathrm{C} \\ & 200^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & =67^{\circ} \mathrm{C} \\ & =67{ }^{\circ} \mathrm{C} \\ & -67{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Good } \\ & \text { Good } \\ & \text { Good } \end{aligned}$	
HTF 1200 HITEMPERATURE FIREMGUSS FIBERGLASS SLEEVING	Class H insulation. Tightly braided sleeving for use up to $650^{\circ} \mathrm{C}$. Can be colored for coding. Special constructions up to $1 / 16^{\circ}$ wall thickness and double wall thickness available.		Detormined by space factor	$650^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$	Good	\#24-11/2日, J
SFS-400 SILICONE IMPREGNATED FIBERGLASS TUBING	Class H insulation for high temperature use. Remains flexible and retains its electrical properties to $205^{\circ} \mathrm{C}$.	$\begin{aligned} & c-1 \\ & c-2 \\ & c-3 \end{aligned}$	$\begin{aligned} & 2500 \\ & 1500 \\ & \text { Space factor } \end{aligned}$	$\begin{aligned} & 205{ }^{\circ} \mathrm{C} \\ & 205{ }^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & =39^{\circ} \mathrm{C} \\ & =39^{\circ} \mathrm{C} \\ & -3{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Good } \\ & \text { Good } \\ & \text { Good } \end{aligned}$	\# 24 \# $1 / 23$
A. CLEAR B. BLaCk	C. YELLOW D. RED E. BLUE	F. BRO	G. GREEN	H. W	ITE	I. ORANGE	J. NATURAL K. VIOLET

ALPHA WIRE CORPORATION subsidiney of LORAL Electroncs Corporation 200 Varick Street, New York 14 , N. Y.
Pacific Division: 1871 So. Orange Dr., Los Angeles 19, Calit CIRCLE 123 ON READER.SERVICE CARD

Despite terrific temperature changes, abrasions and repeated immersions in acids, oils and water-these stainproof electrical tapes have demonstrated their ability to seal . . . hold . .. and insulate without weakening. 7000 -G and 7100 -G will meet your Class H insulation requirements.

7000-G: sulucone zahemve

on one dide.-110 F. 80 | on one |
| :--- |
| +650 |

7100-0: Bulcone saheaive on both midees. $-110^{\circ} \mathrm{F}$.
io $+650^{\mathrm{F}} \mathrm{F}$.
7010: Sempl-cured silinetico compound on one alde and
allicone preasure senailive illicone prosure senaltil
adneal ve on the other.

> MYSTIK Write tor somples and Uurther inflormation
> MYSTK Mysik Adhosive Products, Ino. 4234 Drummond Place, Chicago 39 CIRCLE 124 ON READER-SERVICE CARD

NEW

DEEPPETCHI

MATERIAL FOR CHEMICAL MILIING

Kodak Metal-
Etch Resist . . .
speeds up,
simplifies,
opens now
chemical
milling
applications

This photo sensitive resist ends time-consuming handwork, allows close-limit accuracy in deep-etch weight reduction and parts manufacture. Also reproduces fine-line detail as in plating, dial and nameplate making. Withstands acids, alkalies, eloctrolytic fluids. . adheres well to aluminum, titanium, magnasium, stoinless and other alloy steols. Makes volume production possible because of its high stability, strict uniformity. Send for detailed Kodak Metal-Etch Resist

inducement of ony usis, monufacture or sole thot may infringe on on
hereotion in oxictionce.
Graphic Reproduction Sales Division EASTMAN KODAK COMPANY

Kodak Rochester 4, N. Y.

CIRCLE 125 ON READẼR-SERVICE CARD

NEW PRODUCTS

What's Behind This?

a major advance in the state of Infrared art by HRE-SINGER, INC.

At long last HRB is permitted to admit openly their relationship to the revolutionary "Manhattan Strip," taken with IR equipment developed at HRB-SINGER. The map-like image was photographed under conditions of complete darkness. Amazingly clear, accurate and continuous data of the Manhattan terrain resulted.
IR surveillance equipment which meets military requirements, is continually being developed and improved at HRB-SINGER Although RECONOFAX, the trade name applied to HRB IR equipment has been employed primarily in aircraft, it could be used in other vehicles such as satellites for scanning areas several hundred miles wide.
If you are interested in HRB's outstanding advances in the development of new concepts and systems for reconnaissance, surveillance, and infrared detection-military and industrial personnel with a need to know, contact HRB-SINGER, Dept. I.

ELECTRONIC RESEARCH AND DEVELOPMENT in the areas ofs
Communications - Countermeasures - Reconnaissance • Human Factors - Intelligence - Weapons Systems Studies and Analysis • Nuclear Physics • Operations Research

- Antenna Systems • Astrophysics

MRE-SINGER, INC.

HRB Sclence Park, State Colloge, Pa

Constant-Power Tubes

Plate dissipation rating is $20,000 \mathrm{w}$

The 7806 high-vacuum triode is for use as an oscillator at frequencies up to 30 mc in industrial, dielectric and induction heating applications. Type 7807 is a water-cooled version of the 7806 forced-air cooled tube. Some specifications are: dc plate voltage, $12,000 \mathrm{v}$; dc plate current (loaded), 4.5 amp ; dc grid current (loaded), 0.9 amp; power input, $54,000 \mathrm{w}$; and plate power output, 39,000 w.

Amperex Electronic Corp., Power Tube Div., Dept. ED, 230 Duffy Ave., Hicksville, L.I., N.Y. Price: Type 7806, \$795; Type 7807, \$584. Availability: From stock.

Has a response of 0 to

Combining model 650 recorder and model 6583400 amplifier, this recording system provides direct readout of events in the range of 0 to 5,000 cps within 3 db . Mirror galvanometer inserts may be added to the recorder to provide it with up to 24 channels. Chart width is 8 in . The amplifier, consisting of 8 channels of identical circuitry, has a maximum sensitivity of 7.2 ma per mv input, an input resistance of 100,000 ohms. Common mode performance tolerance is $\pm 500 \mathrm{v}$ max and rejection is at least 140 db for dc.
Sanborn Co., Industrial Div., Dept. ED, 175 Wyman St., Waltham 54, Mass.

$$
5,000 \mathrm{cps}
$$

Oscillographic Recording System

744

What!!

NOW
 rapid analysis of recorder frequency response

a universal $\begin{aligned} & \text { G. Yeral Products Corp., Dept. ED, Cnion Springs, } \\ & \text { Availability: Immediate. }\end{aligned}$
a universal $\begin{aligned} & \text { G. Yeral Products Corp., Dept. ED, Cnion Springs, } \\ & \text { Availability: Immediate. }\end{aligned}$
a universal $\begin{aligned} & \text { G. Yeral Products Corp., Dept. ED, Cnion Springs, } \\ & \text { Availability: Immediate. }\end{aligned}$
Ther

 20 cps200 kc

PANORAMIC SWEEP
 GENERATOR model SG-1R

Plots recorder's relative amplitude response vs. frequency on oscilloscope screen. Trace repeats each second.

An optional version of the versatile
An optional version of the versatile
Model SG-1, this new Panoramic Sweep Moder SG-1, this new Panoramic Swoep
Generator combines the swopt signal with o synchronizing pulse. Sweop frequency test rocords are made using SG-1R. Calibrated CRT sereen furnishod.

Block dilagram shows recorder test setup with oscilloscope and SG-1R WRITE TODAY FOR COMPLETE SPECIFICATIONS AND PRICES Ask issue of
rent
"The PPanoramic Analyzer."
complote See Panoramic's complote range of varsatile instrumonts

- Ideal for
recorders.
- Much fasior than point-by-
poini mothods.
Ono cps ropotition rate pormits easy synchronization with \# 150A, DuMont \#304 and \#401. We will supply oscillo. scope if desired.
- Infornal frequency markers speed sot-up and insure accuracy.
- Precise enough for lab use. Simplo enough for production test.
SG-1R features include 1. Separately adjustable swept signal pulse outputs. 1 volt rms signal with 75 db attenuation. 4 volf peak pulse reducible to zero.

2. Two log sweeps: 40 eps-20 ke and 400 cps-200 ke. Linear sweeps: Any linear segment adlustable within 20 cps to 200 ke range may be selocted.
3. SG-1R iog amplifior provides 40 db calibration in addition to linear amplifude calibration.
4. SG-IR may be used as normal SG-1 sweep generator for tests of hitors, amcilloscope H axis in such applications.

PANORAMIC RADIO PRODUCTS, INC. CIRCLE 129 ON READER-SERVICE CARD

YOUR MOST

ECONOMICAL
ASSURANCE
OF RELIABILITY
only onle ROTOCON reguired
10) monitor the performance of
componenents or assemblies
for final acceptance tests

Low cost.
PORTABLE
ROTOCON SPOTS ASSEMBLY DEFECTS in ELECTRICAL AND ELECTRONIC COMPONENTS OR SUB ASSEMBLIES, MOST PRACTICAL QUALITY CONTROL COMPLEX WAVE VIBRATION MACHINE AVAILABLE TODAY EASY TO OPERATE.

DESIGNED BY CONVAIR-manufactured and sold under exclusive license by Rototest. AUTO-MATIC-easily operated by any production personnel. Low maintenance cost. DUAL PURPOSE-prevents cumulative error at each assembly stage, plus final check on any item up to 120 lbs . RELIABLE-built-in capability to 20,000 cps. Damped to 50-2000 cps. No special power or cooling requirements. QUIET only 75 db six feet from machine. WRITE J. K. Davidson for complete data.

ROTOTEST

 LABORATORIES, INC. AVAILABLENow
price $\$ 3850$
. . . as near as your telephone
mice 8.3850
2803 lon flores Biva,., Lynwood. Cailitornia CIRCLE IJO ON READER-SERVICE CARD

NEW PRODUCTS

Excess Temperature Cut-Out

490
The Pyrotac, an instrument that automatically protects against excess temperature and provides continuous temperature indication, is offered in two types. Model N-30 does not shut off upon line voltage failure and model $\mathrm{N}-34$ does shut off in this condition.
Illinois Testing Laboratories, Inc., Alnor Instrument Co., Dept. ED, 420 N. LaSalle St., Chicago 10, Ill.

Component Holders

489
Series II holders use a stainless-steel, type 302 spring for jaw movement and tension. Only finger pressure is needed to open the jaws for insertion of leads as large as banana plugs. Applications include: prototype-circuit design. Wheatstone and other nullbalance bridge instruments; capacitance, resistance and other measuring equipment.
Jupiter Electronics, Dept. ED, 225 E. 144th St., New York 51, N. Y.

Stand-Off Terminals

510
A complete line of terminals set in molded phenolic, melamine, or ceramic is offered. Ceramic types are gold over silver plate; others are silver-plated with cadmium-plated bases. Miniature, insulated stand-offs can also be furnished.
Goe Engineering Co., Dept. ED, 219 S. Mednik Ave., Los Angeles 22, Calif.

Gold-Bonded Contacts

493
The use of gold in these contacts eliminates surface formation of various sulphides and oxides, which create circuit resistance. A break-through process, rather than plating, is employed.

Contacts Inc., Dept. 1100 Silas Deane Highway, Wethersfield, Conn.
Availability: Some types in stock; others can be made to customer specs.

Print-Punch Equipment

480
Designed for use with the firm's Recomp digital computer, this equipment consists of two table-top units, a $10-$ key input keyboard and the paper-tape punch.

North American Aviation, Inc., Autonetics, Dept. ED, 9150 E. Imperial Highway, Downey, Calif.

Kits of Silicon and Germanium Slices 499
This kit consists of five slices of material in each of the ten most commonly-used resistivity ranges. All slices are 0.02 in . thick and measure from $3 / 4$ to 1 in . in diameter.
Tang Industries, Inc., Dept. ED, 49 Jones Road, Waltham. Mass.

MINIATURE
 VOLTAGE REFERENCE STANDARDS

by C. L. Wallace, Electronics Division Mgr. Viking Industries, Inc.

There is a squeeze imposed today on electronic designers They are expected to deliver more and more precision with greater stability in smaller packages at higher and higher temperatures. Viking Industries, Inc., new Electronics Division functions to provide you with ultra stable subminiaturized voltage reference standards to solve such design problems.
Typical of the line is the unit pictured above, our Series 260 . This unit, which measures $7 / 8 \times 25 / 32 \times 3 / 8$ inches, is intended primarily for high temperature military applications. Viking Series 260 is regulated to $\pm .005 \%$ over a $\pm 10 \%$ line voltage variation. A temperature coefficient of $\pm .001 \% /{ }^{\circ} \mathrm{C}$ is guaranteed over a temperature range of $-55^{\circ} \mathrm{C}+150^{\circ} \mathrm{C}$. For additional information, please write Viking Industries, Inc, Dept. C, 21343 Roscoe Blvd., Canoga Park, California. CIRCLE 131 ON READER-SERVICE CARD

Lepel
 HIGH FREQUENCY INDUCTION
 HEATING EQUIPMENT

OZ Hardening - Annealing - Soldering
Brazing • Zone Refining • Crystal Growing

CIRCLE 132 ON READER-SERVICE CARD
ELECTRONIC DESIGN • October 26, 196

New Transducer Package

... with only one moving part

ULTRADYNE
 INCORPORATED

P1. SOX 3308 ALBUQUERQUE, MEW MEXICE
CIRCLE 133 ON READíR-SĖRVICE CARD
New ESNA miniatures flush mount in thin stock

Power Supply

Model P-1 is for high-intensity gas-discharge tubes such as are used in high-speed photography. The unit is housed in an encapsulated container and is suitable for use in aircraft, missiles and satellites. Dimensions are $2-3 / 8 \times 3 \times 5-3 / 4 \mathrm{in}$.

Cubic Corp., Dept. ED, 5575 Kearny Villa Road, San Diego 11, Calif.

Slip Ring Assembly

483
This assembly is of concentric-ring type construction and for switching from positive to negative for sine and cosine functions in radar antenna mounts. Switching is accomplished within 20 min . of arc. Phasing accuracy is 0.2 min , electrical, and 0.005 sec , mechanical.

Breeze Corp., Inc., Dept. ED, 700 Liberty Ave., Union, N. J.

Metal Cabinets

481
Single or sectionalized units can be furnished for communications equipment, computers, electronic testing units, production control units and other devices. Shelving, roll shelves, racks and other constructions can be furnished. Cabinets are made of cold rolled steel.
Anetsberger Brothers, Inc., Dept. ED, 110 N., Anets Drive, Northbrook, Ill.

Power Supply

507
Model F1002A contains four isolated supplies that may be connected in many combinations for computers or transistorized equipment. Voltages range from 1 to 15 v dc for each output with currents of 2,4 and 8 amp . Regulation is better than 0.1% for lone and load.
Anders Electric Products Inc., Dept. ED, Brook Road, Needham Heights 94, Mass.

Insulating Tape

477
Type CDF Level-Wrap tapes, made of silicone rubber, come in widths from 1 to $1.5-\mathrm{in}$. and in thickness from 0.02 to 0.08 in . at the apex and 0.007 to 0.008 in . at the edges. It offers: good thermal stability, Corona resistance, moisture resistance and high resiliency.
Continental-Diamond Fibre Corp., Dept. ED, Newark, Del.

Toggle Switches

487
Meeting MIL-S-3950A and MIL-S-6745, this line of toggle switches incorporates a barrier configuration between terminals. This design increases leakage paths and provides a safety factor in case of a loose connection. Models for all common circuit characteristics can be furnished.

Kulka Electric Corp., Dept. ED, 633-643 S. Fulton Ave., Mount Vernon, N. Y.

SPECIFY

RAYTHEON PANEL

the precision
look
B. contour-grip pull handles C. convenient captive hardware D. printed-circuit terminal board D. printed-circuit terminal board
brackets
E. one-piece nylon shaft locks

FREE FOLDER IS YOURS for the asking. Tells more about panel hardware and gives specifications on control knobs, test jacks, binding posts, fuse clips. Write Raytheon Company, 55 Chapel St., Newton, Mass.

RAYTHEON COMPANY Indurtrial Compononti divialon sE Chapel Street, Nowton, Mass.
CIRCLE 135 ON READER-SERVICE CARD

NEW SHIELDED BAR-RING METER MOVEMENT

"MIL-SPEC" RUGGED

Designed to meet applicable provisions of MIL-M-10304, API's new meter-relays are far more rugged than conventional core-magnet types. Reason: the greater magnetic efficiency of the bar-ring movement.* It puts more magnetic "horsepower" in the works . . . allows use of more substantial components at a better torque-to-weight ratio. Result: improved resistance to shock, vibration and ratio. Result: improved resist
other environmental factors.

Nicely enough, the bar-ring also provides shielding from external magnetic fields. This means that you can mount the new meter-relays in any kind of panelmount the new meter-relays in any kind of panel-
magnetic or non-magnetic-without worrying about effects magnetic or non
on calibration.

As simple to incorporate into a design as a D'Arsonval panel meter (which it is-with control contacts added), the new API meter-relay might well be your best answer to a knotty engineering problem. It can monitor and control almost any electrically measureable variable. It's small and compact. It's reasonably low in cost. And it's reliable--models without the benefit of the sturdier barring movement were tested to more than $10,000,000$ operations! Have a look at Bulletin 4 H , and see if the API meter-relay can't do a job for you.
*To be used in all models ordered after Nov. 1, 1960.

[^6]
DESIGN DECISIONS

Featuring the clever and unusual in packaging, appearance design, and

Pulser Uses 50-V Trigger To Short Four 200-V Diodes

SWITCHING diules in a pulser manufactured by Burmac Electronics Co., Inc. of Rockville Center, L.I., N.Y., posed an interesting problem. The solution, developed by Burmac's president Steve Delligatti, proved even more interesting.

The switch, shown in the schematic, consists of four $200-\mathrm{v}$, four-layer diodes, $D 1, D 2, D 3$, and $D 4$ in series. Due to resonant charging of the capacitors in the pulse-forming network Z1, the maximum voltage on the four-diode switch is

A 50-v pulse can short four-layer diode D5. This shorts the 680-K resistor across it. Voltage across this resistor drops suddenly to zero, resulting in a large negative pulse transmitted through C1. The negative-going pulse shorts D3, and the remaining four-layer diodes in the string quickly break down.

NEW FIFTH EDITION OF AN INDUSTRY CLASSIC:

GENERAL ELECTRIC TRANSISTORMANUAL

 reduced voltage. Thus, if a large trigger were applied-one large enough to short one of the diodes in the string-the sudden voltage increase across the others should cause an avalanche.To supply this large trigger, another four-layer diode, D5, is used. Tied by a voltage divider to the regulated $300-\mathrm{v}$ supply, this diode is easily shorted by a 50 v positive pulse. When it shorts, the voltage across it is suddenly pulled down to zero, causing a negative pulse of about 200 v to be coupled through C1 to the junction of D3 and D4. Hence, D3 (not D4), is the first diode shorted by the trigger pulse, followed, probably, by $D 1$ and $D 2$, then finally $D 4$.
Unfortunately, negative transients fed bark through C1, tended to cause failure of D5. To preclude this, silicon diode CKl was added. It removes any negative spi es which might appear. -

Featuring two new chapters on the tunnel diode. This is one book in the transistor field you can't afford to be without .. . because it's the one reference that is constantly being revised and brought up to date to serve your needs.
The greatly expanded new Fifth Edition has 93 more pages... new material on tunnel diode theory and switching circuits . . tunnel diode
amplifiers...feedback and servo amplifiers. Sections on the silicon controlled rectifier, power supplies, transistor and rectifier specifications have been expanded.
Here is a work you'll find yourself turning to time and again. Get your copy from your G-E Semiconductor Distributor or by mailing one dollar with the coupon below.

GENERAL

g\% ELECTRIC

M
(ACTUAL SIZE)

NEW "BOUNCE-FREE" SWITCH

Eliminates Contact
Bounce in High-Speed
Electronic
Applications

A new compact switch device has been developed by micro switch to eliminate the effects of contact bounce in applications which involve high speed electronic tubes that operate in less than a microsecond.
This new "Bounce-Free" Switch makes it possible for designers to save valuable engineering time ocherwise required to develop special circuits to eliminate spurious voltage pulses caused by contact bounce. And, its compactness makes it possible to save valuable cabinet space in control consoles.
The new circuit may be actuated by any switch that has a normally open and normally closed position. It is an electronic switch triggered by a mechanical switch.
Write for Data Sheet 177 which describes the new "1PB2000."

MICRO SWITCH . . . FREEPORT, ILLINOIS
A division of Honeywell
In Canada: Honeywall Consrols Limited, Toronso 17, Ontario

Honeywell
MICRO SWITCH Precision Switches

OPERATING CHARACTERISTICS

There are four circuit types available. One produces a positive output to accommodate resistive loads of 100 to 500 ohms, another produces a positive output for resistive loads of 500 ohms or greater, and two produce
a negative output voltage at these loads. All circuit a negative output voitage at these loads. Alt circuit The circuits are designed to produce an output voltThe circuits are designed to produce an output volt-

DESIGN DECISIONS

'Flat' and Eccentric-Magnet Speake rs Conserve Space in TV, Portable Radio

Minimizing the space requirements of lcud speakers was the problem solved by these two designs.
The 4 -in. speaker for portable radios, Fig. has an over-all thickness of $3 / 4 \mathrm{in}$. The eccentric permanent-magnet speaker, Fig. 2, conserves space at the front of a TV cabinet, as shown in Fig. 3. The magnet is mounted at the rim of the speaker. Both speakers are made by Audax.

Fig. 1. "Flat" speaker for portable radios has over-al thickness of $3 / 4$ in.

Fig. 2. Eccentric-permanent-magnet speaker has magnet mounted near rim.

Fig. 3. Eccentric-permanent magnet speaker conservel space at front of TV cabinet.

Computer Logic Cards Shaped To Fit Curved Missile-Contour

Logic cards for a missile-borne computer were shaped so the computer could fit into a 60 -deg sector of the missile's circumference. The plane of the cards was normal to missile's axis. Hence mounting-leads of components within the sandwich were parallel to direction of missile's thrust

Acceleration and high shock

testing before trigger time, are critical to the quality control of bomb rack components at SingerBridgeport. Today high capa bility in engineering, precision machining and electro-mechanical assembly make SingerBridgeport a prime supplier to the military and sub-contractors. Test facilities provide the range of equipment needed to check out components and systems to close specifications: acceleration, vibration and shock, temperature, altitude, humidity, salt spray conditions. Military and industrial procurement alike find both quality control and quality pro duction at Singer-Bridgeport.
A comprehensive brochure describing these engineering and production capabilities is available to you on request.

J. R. Baum

Senior Staff Member
Mechanical Engineering Laboratory Military Electronics Div.
Motorola, Inc.
Scottsdale, Ariz.

1N MILITARY equipment packaging, it is often desirable to house electronic devices in closed cases for protection against dust, humidity and low pressure. Since the initial analysis of anticipated case heat dissipation, required during the initial packaging study, can be tedious and lengthy, a nomogram is presented to provide a preliminary estimation tool.

Only the ambient altitude and unit surface power dissipation density need be known to determine the anticipated surface temperature rise over ambient. The assumptions and approximations required to simplify the complex relationships include:

1. Case is closed and unlouvered.
2. Air is the surrounding medium
3. Average electronic "black box" configuration and dimension are known.
4. External surface of the package and surroundings are painted.
5. Free convection and radiation take place only from the case surface.
When preliminary estimates are completed, a more detailed study can then be undertaken to establish accurate thermal analysis information for final design considerations.
The procedure for use of the nomogram is as follows:
6. Determine amount of heat (in watts) to be dissipated by the case. For a closed unit with no special external cooling provisions, this would be the total unit power input.
7. Determine surface power density in watts per square inch by dividing the heat dissipated by the total exposed external surface dissipation area (including ribs, etc.).
8. Enter the nomogram with this value and the

ENGINEERING DATA
(Continued from p. 131)
appropriate altitude and read the resultant temperature rise of unit case surface over the ambient.
4. The reverse procedure can be used to determine the allowable power density for a given temperature rise.
A rough estimate of the unit internal ambient can be made by doubling the temperature rise obtained above and applying it to the external ambient. The result would be conservative where the components have a good conductive path to the case and would be realistic for the typical situation where they are thermally isolated from the case with no special internal cooling provisions. - -

In modern digital computers

PERFORMANCE IS THE PAY-OFF

A big, modern digital computer may cost as much as $\$ 10$-million to buy outright. Even rental may run as high as $\$ 50,000$ a month.
With money like that involved, computer-makers can't take a chance on substandard components. They want, and get, the best components.... the best resistors. Where wire-wound power resistors are required, they frequently specify Ward Leonard vitrohms.
There's another reason, too, why computer manufacturers want only the best: They're shooting for $99.99 \ldots \%$ statistical reliability of components, and the more " 9 's" the better. Computer components - say, resistors - are numbered in the tens of thousands, and they have to have this kind of performance to get 99.8% reliability in their final product. For this reason, computer makers insist on, and get, performance-as continuous and reliable as the state of the art permits. And again, where wire-wounds are required, they are likely to specify Ward Leonard vitrohms.
If you want maximum quality and maximum reliability in your product, follow the lead of outstanding digital computer manufacturers-like IBM, Remington Rand, and Burroughs - and specify w/L vitrohms. You'll find full information in catalog D130. Write for your copy, and the name of your nearest VITROHM distributor, today. Ward Leonard Electric Co., 77 South Street, Mount Vernon, New York. (In Canada: Ward Leonard of Canada, Ltd., Toronto.)

RESULT-ENGINEERED CONTROLS SINCE 1892
WARD LEONARD
ELECTRIC CO.".
RESISTORS • RHEOSTATS • RELAYS • CONTROLS • DIMMERS CIRCLE 140 ON READER-SERVICE CARD
ELECTRONIC DESIGN •October 26, 1960

NEW LITERATURE

Waveguide Stand

This two-page bulletin describes the 370 universal waveguide stand which accommodates all waveguide sizes in the frequency range of 2.6 to 40 kmc . All waveguide sizes are listed in their respective frequency ranges and the proper RG waveguide type numbers are given. PRD Electronics, Inc., 202 Tillary St., Brooklyn 1, N.Y.

Power Supplies

262
The company's ME series of transistorized power supplies are listed and briefly described in this two-page data sheet. Included are performance specifications, data on trouble-shooting instructions, and data on pre-tested plug-in modules for simplified maintenance and parts stocking. Mid-Eastern Electronics, Inc., 32 Commerce St., Springfield, N.J.

Diodes and Rectifiers

 263Listed in this 18-page booklet are diodes and rectifiers made by Texas Instruments, Inc. Available from off-the-shelf are: a photo device; silicon rectifiers; high conductance general purpose silicon diodes; silicon controlled rectifiers; silicon computer diodes; voltage regulator diodes; and power regulators and double anode clippers. Lafayette Radio, 165-08 Liberty Ave., Jamaica 33, N.Y.

IR Detector Measurement

Model ISL 302 infrared detector measurement console is described in this six-page booklet. The illustrated booklet covers uses of the equipment including: photoconductive, photovoltaic, photoelectromagnetic and pyroelectric detector measurements, in addition to measurement of thermistor bolometers and ac thermocouples. A block diagram of the equipment is included. Infrared Industries, Inc., Box 42, Waltham 54, Mass.

Photovoltaic Cells

Called "Photovoltaic Cells For the Precise Mcasurement of Light," bulletin No. GEZ-3005, eight pages, offers a complete description of these sensors for applications where light is used to peiform a control function. It includes graphic data on spectral sensitivity, exposure effect, temper ature characteristics, current output, internal res stance and other factors. Dimensions for all avalable calls, and typical circuits for single and mutiple cell applications are given. General Ele tric Co., Schenectady 5, N.Y.

Use the Gyro Tester approved for

 USAF Air Defense Squadrons-
HONEYWELL RATE GYRO TEST SET

Now you can eliminate rejection of inertial components and sub-systems by USAF Service Squadrons because of differences in test results. If you perform your quality control tests on the same type of gyro tester as that used by USAF, such discrepancies can be avoided.
The Honeywell Rate Gyro Test Set No. 32589 (FSN 4920-705-7536) has been accepted by the Air Force. Over eighty have been purchased for use at squadron level. This equipment combines the ruggedness to withstand the abuse of field service, the reliability associated with the environmental specifications of MIL-E4970, and the accuracy of a laboratory instrument. Highly trained technical personnel are not required to operate this equipment.

CUSTOM DESIGN

For ranges up to $1200 \mathrm{deg} / \mathrm{sec}$., and accuracies and tolerances other than described above, Honeywell can custom design and manufacture specialized Gyro Test Equipment to requirements.

This Gyro Test Set consists of a Rate Table, Calibrator, and precision Power Supply. Rate Table," with holding fixture for instrument under test, is turned at a variable angular rate up to 120 degrees per second. The Table is self-calibrating at $5 \mathrm{deg} / \mathrm{sec}$. increments by means of a built-in stroboscope. Input rates are continuously variable. Calibrator permits checking pick-off voltage outputs for many other devices such as accelerometers and rate-of-turn indicators. AC pickoff output voltages can also be measured. Power Supply is 400 cps but other frequencies for pick-off or motor may be used. Write for Technical Bulletin BM-SGT-1 to Minneapolis-Honeywell, Boston Division, 40 Life Street, Dept. 10, Boston 35, Massachusetts.
*Available separately

7 pioneen
 $x \mathbb{E}$

Honeywell

\square

New crisisial ol osciciliation

This 100 ke plug-in package, Model CCO-7G, combines a high precision sealed-in-glass quartz crystal with integral temperature control and transistorized circuitry.
Designed to deliver 100 kc output with stability of 2 parts in 10 million over ambient temperatures from $0^{1 /} \mathrm{C}$. to $50^{\circ} \mathrm{C}$. With fixed ambient conditions and voltage regulation, stability of one part in 10 million can be realized. The standard unit requires 27 volts dc, 12 ma for the oscillator and 27 volts, ac or dc, 10 watts for the crystal oven. Package size, excluding octal base, is $2^{\prime \prime} \times 2^{\prime \prime} \times 4 \% / 16^{\prime \prime}$.

BULLETIN NO. 520 AVAILABLE

HLILEE ELECTRIC COMPANY

UNION STATION BUILDING EERIE, PENNSYLVANIA CIRCLE 142 ON READER-SERVICE CARD

TELREX LABORATORIES

Designers and Manufacturers of

COMMERCIAL SERVICE "BEAMED-POWER" ARRAYS AND TWO-WAY SYSTEMS

Model illustrates a wide spaced, 12 element circula kewed dlpole "SPIRALRAY' hish gain, even response, In all polarization planes. vert cal horizontal or oblique
with unusually high signal to-nolse ratio.
NO OTHER CIRCULAR PO
LARIZED ARRAY KNOWn to the art today can provid to the art today can provide the
linear high gain and signal to noise ratio in all radiation planes.
The Ideal antenna for missile tracking, telematering and (or moving) statlons. Models available to extenc the practical range of 2 -Way
Communication Systems. Model sY-12-104-11 \$265.00 Model MSY-104-110 $\$ 390.00$ (7.o.b. Asbury
Pork, N. J.)

Electrical specifications-model No SY-12-104-110: Polarization circul. Sr-12-104.110: Polarization, circular,
ilinear withln $1 / 2 \mathrm{db}$. Galn 13 db . $/ \mathrm{B}$: Ratto 30 db . V/S/W/R (50 ohm
cable) $1.1 / 1$. Beamwidd at half cable) 1.111 . 日eamwidth at half power points 33 degraes. Max. power
input 300 w , with "Balun" supplled. Mechanleal specificatlonsz Boom diameter $2^{\prime \prime} 0.0 . \times 254 t$. All aluml num boom and elements. Weight ap
prox 25 lbs . Rateo wlnd-load 90 mph No ice load Available for 120 mph
wind load. (Model No. MSY-104-110).

- Telrex is equipped to design and supply to our specifications or yours, Broadband or single frequency, fixed or rotary arrays for communications, FM, TV, scatterpropagation, etc.
- Consultants and suppliers to communication firms, universities, propagation laboratories and the Armed Forces $\underset{\substack{\text { SINCE } \\ \text { IG21 }}}{\square}$

ASBURY PARK 41, NEW JERSEY, U.S.A.
CIRCLE 143 ON READER-SERVICE CARD

NEW LITERATURE

A series of technical data sheets contains dimensional specifications and load factors for the firm's type R2, R3, and R4 instrument bearings made to ABEC class 7 tolerances. Miniature Precision Bearings, Inc., Keene, N.H.

Timing and Data-Processing

 SystemsThese three data sheets describe: the firm's model 26211 airborne time code generator which is a compact, transistorized unit with an accuracy of one part in 105; the model ZA-23833 search and control system for Ampex FR-100 tape recorders for searching PAFB or EGTR time-code reference tapes; and the model ZA-25159 computer format converter for converting AN/FPS-16 radar data into IBM 704 magnetic tape or NRZ format. Electronic Engineering Co. of California, 1601 E. Chestnut Ave., Santa Ana, Calif.

Heat-Shrunk Tubing

Thermofit tubing, an irradiated mod fied-polyolefin insulation sleeving whic? shrinks to a preselected diameter when exposed to heat, is described in these two brochures. Brochure No. 203-4 lists properties, test data, weights, sizes, and various applications. Brochure No. RT2000 describes applications in harnessing and splicing, and outlines fabrication techniques. Raychem Corp., Oakside at Northside, Redwood City, Calif

Electronic Cables

269
Bulletin No. DM-S-6015, six pages, de scribes and illustrates a line of electronic cables suitable for high-temperature and radiation applications. Included are control cables, instrument probe cables, airframe, missile, and satellite cables, in strumentation cables, communication cables, TV camera cables, and computer cables. Anaconda Wire \& Cable Co 2201 Bay Road, Redwood City, Calif.

YOURS TODAY-

A frequency standard so accurate
that it measures time with a rate of change of less than one second in sixty years! $5 \times 10^{-10} /$ DAY

THE JK-SULZER FS-1100T FREQUENCY STANDARD is a sfandard of frequency and time . . . born of and for the age of space. It is fully transisporized. A double proportional control oven houses a 1 mc precision quartz crystal having a Q exceeding 2 million. Each unit is built, aged, and calibrated at Washington, D.C., against groundwave signals of WWV. Simultaneous outputs of 1.0 mc and 100 kc . A companion power supply permits operation from 115 volt AC plus automatic 12 hours minimum of emergency or portable operation from batteries. Today, you can order this $5 \times 10.10 / \mathrm{Day}$ spability, for early delivery, for a wide range of research and test ap. plicarions. Write for technical literature.

The James Knights Company, Sandwich, Illinois
SPECIALISTS IN FREQUENCY MANAGEMENT for space exploration programming, high speed navigation, and spectrum conservation in the growing communications field. CIRCLE 144 ON READER-SERVICE CARD

ELECTRONIC DESIGN • October 26, 1960

Thermocouples

270
This six-page bulletin, No. P1281A, describes Armorox thermocouples. The m :tal-sheathed, ceramic-insulated construction of the thermocouples is explained, and typical applications are cited. Physical specifications are tabulated. The Bristol Co., Waterbury 20, Conn.

Terminal Strips

This 12-page brochure, "Guide Book to Thermal Strips," contains drawings and tables on standard terminal strips made up from universal, external "T", Wire-Grip, tear-drop, Wrap-A-Wire, and subminiature lugs. Mandex Manufacturing Co., Inc., 2614 W. 48th St., Chicago 32, Ill.

Test and Sensing Components 272
This vest-pocket guide and wall chart is intended to help the design engineer choose test and sensing component. The chart contains complete specs on panel
lights, switches, fuseholders, test prods and jacks, and molding materials. Alden Products Co., 117 N. Main St., Brockton 64, Mass.

High-Current Power Supplies 273

High-current power supplies and vari-able-voltage transformers are described and illustrated in this four-page brochure. Electronic applications include capacitor forming, electrolytic refining, magnet powering, tube testing and aging, and supply for computers and checkout systems. Glenn Pacific Power Supply Corp., 703 37th Ave., Oakland 1, Calif.

Pulse Generators

274
A series of $9-\mathrm{kw}$ solid-state pulse generators is described in this two-page bulletin. Circuit-design information, tabulated specifications, and dimensional drawings are included. Magnetic Research Corp., 3160 W. El Segundo Blvd., Hawthorne, Calif.
 ambition plus capacity to expand your engineering knowledge.

LABORATORY FOR ELECTRONICS is $\frac{v}{\sqrt{m}}$. . a company with a multi-million dollar backlog velocity (v), and a number of significant new projects in the works. LFE's mass (m) is just about right - 2,000 people. Enough size and savvy for sustained momentum, yet small enough for you to loom large.

LFE's environment (e) is almost ideal : smack in the heart of New England's booming electronics metropolis . . . a region of traditional charm, of superior educational resources.

Finally, there's (X), the LFE constant we call Management Awareness - an enlightened emphasis we place on self-expression. (X) encourages individuality, encourages you to poke your nose around freely, to explore beyond the entire range of scientific and technical knowledge.

This intermeshing of brilliant, probing minds, working in an atmosphere of free inquiry has achieved for LFE a solid reputation in RESEARCH, DEVELOPMENT AND PRODUCTION OF GCA RADAR, AIRBORNE NAVIGATION SYSTEMS, DIGITAL COMPUTERS, ELECTRONIC TEST EQUIPMENT, MAG. NETIC MEMORY SYSTEMS, MICROWAVE COMPONENTS.

For a confidential discussion of a future for you with LFE write

Keith A. Krewson

LABORATORY FOR ELECTRONICS
1079 Commonwealth Avenue, Boston, Masoachucotto

CIRCLE 912 ON CAREE inquiry form, page 149

[^7]
NEW LITERATURE

Permanent Magnet Alloy

275
This four-page, illustrated brochure describes properties and applications of a copper-nickel-iron ductile permanentmagnet alloy of the generic Cunife type. Applications include timer motors for appliances, speedometers, aircraft instruments, and various electronic equipment and control systems. Watkins-Rogers, Inc., 685 Pallister, Detroit 2, Mich.

Plastic Materials

276
A line of plastic materials, including molding and extruding materials and resins applicable in the electronics field is described in this 12 -page booklet. Applications of the plastics are indicated, and properties are listed or tabulated. Monsanto Chemical Co., Springfield 2, Mass.

Servo Motor

277
The firm's type 5752-03 inertially damped servo motor for high-temperature applications is described and illus-
trated in this two-page data sheet. Ele : trical, mechanical, and physical chara teristics, outline drawings, and perform. ance curves are included. John Oster Mfg. Co., Avionic Div., Racine, Wis.

Resonant Modes

278
This two-page bulletin, No. 5A, describes a method of obtaining crisp photographs of vibrations. The method enables a still camera to photograph resonant modes detected in a frequency sweep. Full instructions and examples are provided. Chadwick-Helmuth Co., 427 E. Duarte Rd., Monrovia, Calif.

Special-Purpose Capacitors

279
Feed-thru, trimmer, transmitting, flatplate, discoidal, precision, high-voltage, disk, and tubular capacitors are de. scribed and illustrated in this 20 -page catalog, No. 42-407. Electrical specifications and dimensional drawings are given for each type. Centralab, 900 E. Keefe Ave., Milwaukee 1, Wis.

Splendid opportunities for maximum professional growth and recognition await you at the Instrumentation Center of Texas Instruments in Houston, the South's largest city.

- mechanical design engineers-BS or MS in ME to design small electro-mechanical mechanisms.
- electrical design engineers - BS in EE or Physics to design and construct: a. Supervisory Control Systems of electro-mechanical and electronic design; b. Transistor Test Equipment, heavy experience on circuit design preferably with transistors; c. Digital Computers with experience in detailed logic design.
- sales engineers-BS in EE, ME or Physics with sales experience in electro-mechanical instruments.
With TI . . receive liberal company-paid benefits,
including profit sharing . . work in a completely
modern suburban plant near Houston's most attractive
residential areas ...enjoy pleasant Gulf Coast living
and recreations the year-around.
Please direet your resumé to
D. G. Turner, Department ED
TEXAS INSTRUMENTS NCORPORATED

CIRCLE 913 ON CAREER INQUIRY FORM, PAGE 149
ELECTRONIC DESIGN • October 26, 1961

Tuising Connectors

Connectors for plastic tubing intended to conduct compressed air, fluids, and gaves are described and illustrated in this two-page bulletin, No. 125. Male and female end connectors and panelmount connectors are included. Devices quickly connect and disconnect manually. Breco Div., Perfecting Service Co., 332 Atando Ave., Charlotte 6, N.C.

RF Coaxial Plugs

281
The firm's series BNC rf coaxial plugs are described in this 16-page booklet. The plugs, designed for small coaxial cables, are lightweight and weather proof. The catalog includes nomenclature, a mating functional diagram, assembly instruction, and drawings and specifications. Cannon Electric Co., 3208 Humboldt St., Los Angeles 31, Calif.

Stepping Switches

282
Forty-page, two-color catalog, No. 202, contains data on construction features, circuitry, and performance characteris-
tics of spring-given, cam-operated, and direct-drive stepping switches. Mounting accessories, sealed and dust-cover enclosures are pictured and described. C. P. Clare, 3101 Pratt Blvd., Chicago 45, III.

Heavy Tungsten Alloys

283
This eight-page bulletin describes heavy tungsten alloys with densities of 17 to 18.5 g per cu cm . Properties, applications, fabrication methods, and available sizes and shapes of three grades are given. The firm's engineering services and facilities for applying the materials are also outlined. Kennametal Inc., Latrobe, Pa.

Snap Action Switches

284
A line of snap action switches is described in this 12 -page folder. Heavyduty limit switches, compact sealed switches, explosion-proof switches, precision snap-action basic switches, and manually operated, door interlock, mercury, and proximity switches are illustrated and briefly described. Micro Switch, Freeport, Ili.

SWITCHES

FOR AIRBORNE \& MISSILE GROUND SUPPORT EQUIPMENT

FAST, POSITIVE ACTION
LONG SERVICE LIFE • MOISTURE-PROOF
A broad line of sinusoidal toggle spring switches designed for
compactness, light weight and high reliability in airborne and ground support missile control systems. Extremely fast, audible, double break action reduces arcing and contact wear to negligible minimum. Positive snap action mechanism cannot be teased on or of contact. Alt contacts made of heavy coin
silver for long life and low contact resistance. Available with solor coded buttons. These switches exceed military requirements for vibration, shock, humidity and corrosion resistance. Western Distributor: Western-Electromotive, Inc., Los Angeles.

The UCINITECOMPANY

 Divislon of United-Carr Fastonor Corporation, Nowtonville 60, Mass. CIRCLE 151 ON READER-SERVICE CARD

Now ONE Machine does the WHOLE job

The new high TOROIDAL COIL WINDING MACHINE, with IC-601 INDUCTANCE COMPARATOR, has amazing production capacity. Highly versa-tile-suitable for both PRODUCTION and LABORATORY. Sturdy construction requires almost no maintenance. $2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime \prime}, 5^{\prime \prime}, 6^{\prime \prime}$, and $7^{\prime \prime}$ diameter shuttles available. New fully transistorized electronic counter eliminates untransistorized electronic counter elimin.
certainties of electromechanical types.

Write for complete cataleg.
$\left.\begin{array}{l}\text { UNIVERSAL } \\ \text { manuractuanc co inc }\end{array} \begin{array}{c}\text { Grove St., Irvingron } \\ \text { ESsex } 4.9800\end{array}\right]$ manuractuanc co, inc ESsox 4.9800
The most COMPLETE line of TOROIDAL equipment in the world.

$$
\text { CIRCLE } 150 \text { ON READER-SERVICE CARD }
$$

Gimentur

 POWER Silid

NOW, FROM DELCO RADIO, A COMPLETE LINE OF SMALL, HIGH-POWER TRANSISTORS!

	2N1172	2N1611	2N1612	2N1609	2N1610
V_{cI}	40	60	60	80	80
$\mathrm{~V}_{\text {EBO }}$	20	20	20	40	40
$\mathrm{~V}_{\mathrm{CEO}}$	30	40	40	60	60
I_{c}	1.5 A				
I_{CO}	$200 \mu \mathrm{a}$	$100 \mu \mathrm{a}$	$100 \mu \mathrm{a}$	$100 \mu \mathrm{a}$	$100 \mu \mathrm{a}$
H_{FE}	$30 / 90$	$30 / 75$	$50 / 125$	$30 / 75$	$50 / 125$
$\mathrm{~V} / \mathrm{set}$	1.0 V	1.0 V	0.6 V	1.0 V	0.6 V

These four new Delco transistors, plus the 2N1172 40-volt model, offer highly reliable operation in a new range of applications where space and weight are restricting factors.
Designed primarily for driver applications, Delco's versatile new transistors are also excellent for amplifiers, voltage regulators, servo amplifiers, miniature power supplies, ultra-low frequency communications, citizens' radio equipment and other uses where substantial power output in a small package (TO 37) is required.

Special Features of Delco's Four New Transistors: Two gain ranges. Can be used on systems up to 24 volts. Can be mounted with the leads up or down with the same low thermal resistance of $10^{\circ} \mathrm{C} / \mathrm{W}$. Dissipation up to 2 watts at a mounting base temperature of $75^{\circ} \mathrm{C}$.

Available in volume production. Write for full engineering data.

Nowark, Now Jersey 1180 Raymond 8
Mitcholl $2-165$

Santa Monica, California
726 Santa Monica Blvd. EXbrook 3-1465

Chicago, Illinols 5750 West 51 st Street POrtsmouth 7 -3500
 Detroit, Michigan
 57 Harper Avenue
 TRinity 3-6560

DELCO
RADIO
Division of General Motors Kokomo, Indiana
CIRCLE IS3 ON READER-SERVICE CARD

IDEAS FOR DESIGN

Get $\$ 10.00$ plus a by-line for the time it takes you to jot down your clever design idea. Payment is made when the idea is accepted for publication.

Four Extra Diodes Insure Load Sharing in High Voltage Bridge

Equal load sharing between series rectifiers in high voltage, full wave bridge circuits can be easily attained by using only four extra diodes. When connected as shown, the extra diodes eliminate the need for complex RLC matching circuits in any of the legs. Such matching is especially necessary when high frequencies, in the tens or hundreds of kilocycles are applied to the bridge. At these frequencies the junction switching and peak inverse loads depend on

Four diodes at B and C provide equal load sharing between series rectifiers in each leg of the bridge.
matched resistance, capacitance, and leakage characteristics of each diode.

Referring to the figure, if points B and C, and if necessary a third equipotential point D bisect ing the load are joined, each diode will switch at precisely the same moment. Also, the two diode in each leg will share inverse and forward peak voltages.

Considering one end A of the load as zero ref erence potential, and each diode as having a forward voltage drop ' V ', it can be shown that the potentials

$$
V_{A B}=V_{A C}=V_{A D}=1 / 2(E-4 \mathrm{v})
$$

As an economy measure, resistors can be substituted for the four extra diodes at B and C.
Patrick F. Howden, Systems Engineer, Con solidated Systems Corp., Monrovia, Calif.

Dual Frequency Oscillator Built With 6EZ8 Tube

A dual frequency, low impedance source was required for upper and lower sideband carrier re-insertion. The frequency selector switch had
to be remote，stray radiation and leakage were not permissible and the printed circuit usable space was $2-3 / 4 \mathrm{sq} \mathrm{in}$ ．Selection of a crystal within an oscillator circuit was not possible；the required long rf shielded leads interfered with the oscillator operation in different ways，de－ pending on the type of oscillator circuit．Since the usable space and economy rejected the use of several tubes，a rather new comer among the electron tubes，the 6EZ8 was selected．

The 6EZ8 is very similar in characteristics to the 12AT7 and is well suited to low power oscil－ lator circuitry．Since low impedance output was required，one section is used as a cathode fol－ lower stage and the two other sections as in－ dividual oscillators．Selection of the operating oscillator is determined by switching the dc plate supply．This eliminates all rf leads．The coupling between each oscillator and common cathode follower is assumed constant．The fact that the rf plate impedances are coupled through E3－ C4 required a circuit having a minimum of such impedance to avoid shunting effect or interac－ tion．A modified Pierce oscillator was selected． Grounded cathode operation was necessary be－ cause of the common cathode and filament con－ nections．

Dual frequency，low source impedance oscillator uses 6E 78 tube in modified Pierce circuit．

Georges M．Cnudde，Engineer，Sierra Elec－ trinic Corp．，Div．of Philco Corp．，Menlo Park， Colif．

Up－to－the－minute news about transistors

NEW DAP TRANSISTORS SWITCH 5 TIMES FASTER

COLLECTOR－EMITTER SATURATION VOLTAGE CHARACTERISTICS FOR 2N1073，A，B

ABSOLUTE MAXIMUM RATINGS							
TYPE	Vce Vdc	Vcb Vdc	Vob Vdc	lc Adc	${ }_{\text {Wc }}{ }^{\text {W }}$	TStorage	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { 2N1073 } \\ & \text { 2N1073A } \\ & \text { 2N1073B } \end{aligned}$	-40 $=80$ -120	$\begin{aligned} & -40 \\ & =80 \\ & =120 \end{aligned}$	10	10	35	-60 to +100	100
Ideal for such applications as：ULTRASONICS • HORIZONTAL OUTPUT AMPLIFIERS FOR TV OR CATHODE RAY TUBES－POWER CONVERTERS • HIGH CURRENT AC SWITCHING－CORE DRIVERS • HI－FI							

Higher breakdown than ordinary transistors also a DAP feature．
Now design engineers are freed from many of the limitations im－ posed by ordinary germanium alloy transistors．Bendix＊ger－ manium PNP Diffused－Alloy－ Power DAP＊transistors can switch up to 10 amperes with typical speeds of a microsecond．
While maintaining high collector－to－emitter breakdown voltage－up to 120 volts－the new transistors provide lower input resistance，controlled current gain， and higher cut－off frequency．Par－ ticularly suited to high current， high frequency switching，the high frequency，switching，the Dures will suggest to the design tures will suggest to the design
engineer many new applications which，until now，have not been feasible．

NEW BENDIX SEMICONDUCTOR CATALOG on our complete line of power transistors，power rectifiers and driver transistors available on request．
Bendix offers many challenging opportunities in semiconductor engineering and sales．Write Personnel Manager for full details．
semiconductor products
Red Bank Division lomo arancm，m．d．

位
Export Salen Offiken Bondix Intomational Dividion，
205 E． 42 nd Stroet，Now York 17，Now Yort Conadion Afiliole Compuling Dovikes of Conade，Lid，

CONRAD
MODEL FB-4-1-1 CC CAPACITOR COEFFICIENT TEST CHAMBER
Interior designed for Interior designed for semi-conductors during test.
TEMPERATURE RANGE:
$+300^{\circ} \mathrm{F}$. to $-100^{\circ} \mathrm{F}$ $\pm 1 / 10$ of $1 \circ \mathrm{~F}$.

INSIDE DIMENSIONS: $16^{\circ \circ} \times 16^{\circ \circ} \times 16^{\circ \prime}$

HYPER-ENVIRONMENT TEST CHAMBER Cosin

HOLLAND, MICHIGAN
Subsidiary, Crampton Mfg. Co: Grand Rapids, Michigan

CIRCLE 155 ON READER-SERVICE CARD

CIRCLE 156 ON READER-SERVICE CARD

PATENTS

Frequency Shiffing Apparatus

Patent No. 2,933,639. P. M. Lally. (Assigned to Sperry Rand.)

Frequency is changed in a cyclotron TWT by causing interaction of the electron beam and the wave at separate axial velocities of the beam.
The electron beam, originating at cathode 28, accelerates through the slow wave structure 14, and propagates a
transverse electric field at the first fr quency. Due to the axial-magnetic field generated by solenoid 43, the bean orbits in a helical path at cyclotron fre quency. Drift space 12 isolates slow wave structure 11. The beam is then accele rated at a second potential to induce wave at a second frequency in the slow wave structure. This signal is coupled out through waveguide 24

WHEN QUALITY IS YOUR TARGET...
the gripwell electronic chassis
Latch helps you hit the bullseye

GRIPWELL ${ }^{\circledR}$ ELECTRONIC CHASSIS LATCH
A handsome, strong and durable handle latch to fasten "plug-in" type electronic chassis, providing for positive "plug-in" type electronic chassis, providillg for positive
ejection and injection of the chassis and allowing an eight to one mechanical advantage, with a total one-half inch take up.

Write today for complete information
THE HARTWELL CORPORATION وo3s venice boulevard, los angeles b4, callfornia وO3S venice boulevard, IOS angeles 34, callfornia
Offices: Chicogo. Ft. Worth. Hockeniock. Seotito . Wichila

CIRCLE 157 ON READER-SERVICE CARD ELECTRONIC DESIGN • October 26, 1960 -

Tronsmitter-Receiver for Radio Location Palent No. 2,943,188. L. George, W. Knott and D. Kerr. (Assigned to Ultra El: ctric, Inc.)
i)esigned for use in a homing-type ralio locating system, the transmitterreceiver uses a one-tube squegging oscillator, that generates bursts of rf energy that can be pulse modulated.

Variable Artificial Transmission Lines

 Patent No. 2,943,276. E. Lovick. (Assigned to Lockheed Aircraft Corp.)The device consists of tubular dielectric members, a conductive core and a helical winding around the outer wall of the dielectric members. The inductance and capacitance of the circuit are varied by rotating the conductive cores.

Folded Dipole Having a Direct Current Output

Patent No. 2,943,189. L. R. Crump. (One hulf assigned to G. T. Morris.)
The two wires of the folded dipole
are connected at their ends to one another, so that the distance between wires is small compared to the shortest wavelength used. One wire is broken at its midpoint and diodes are inserted in the wire back to back. A capacitor is connected from a point between the diodes to the midpoint of the other wire. The signal is taken from across the capacitor.

Instrument Linearizer

Patent No. 2,943,207. N. W. Burlis and M. J. Reinert. (Assigned to Custom Engineering and Development Co.)

This system improves the linearity of voltages proportional to data derived from nonlinear measuring instruments. Input data are displayed on an oscilloscope. The display falls onto a photo tube. The photo tube voltage is fed back negatively to the input. A transparent calibration curve on an opaque background is mounted between the photo tube and the oscilloscope face. This curve is the reference that the input voltage is made to align itself with.

CIRCLE 158 ON READER-SERVICE CARD

Slides in only 2 minutes with this BEATTE OSCILLOTRON

using a Polaroid ${ }^{\circledR}$ Land back

Now you can project transparents slides of oscilloscope traces just minutes after recording with Polaroid - Land Projection Film, Type 46-L used in this new Beattie Direct View Oscillotron. Also produces 60 sec. paper prints with the new, very fast Polaroid - 3000 Speed Film. Records up to 10 traces on a single frame and
offers these many other advantages:

- Direct binecular view of CRT while recording.
- Non-reversed image.
- Camera swings back for easy access to lens and Camera swings back for easy access to lens and
shutter, or lifts off completely. Can be rotated.
- Electric shutter-actuator availabie.
- Attaches easily to bezel of $5^{\prime \prime}$ CRT. Adaptable to other sizes. No special tools.
"Polaroid" by Polaroid Corp.

CIRCLE 159 ON READER-SERVICE CARD

ELECTRONIC COMPONENTS

Miniature TIME DELAY RELAYS
 Low-cost for commercial applications

Curtiss-Wright offers a reliable and inexpensive thermal time delay relay in the " G " and " K " Series - miniature size hermetically sealed in glass.

SPECIFICATIONS
Time delay \qquad .Preset 3 to 60 seconds Contact arrangement.......... SPST or SPDT Weight................. . Less than one ounce Base. Miniature 9 pin New DIGITAL MOTORS

Stepping motors for high reliability applications. Meet the requirements of assured reliability and long life for aircraft, missile and automation systems.

Features	Bi-directional - Positive lock - Dynamically

New ULTRASONIC DELAY LINES

Enables development engineers to employ new concepts in existing and projected applications. Low in cost, small in size and simple to operate.

CIRCLE 161 ON READER-SERVICE CARD

RUSSIAN TRANSLATIONS
J. George Adashko

Limiting Values Of Active Resistances In RC Phase-Shift Generators
| N ANALYZING RC phase shift generators it is usually assumed that the input resistance of the phase shift network is considerably greater than the output resistance of the amplifying stage. Consequently, formulas for the frequency and for the self-excitation conditions usually disregard the effect of the internal resistance of the vacuum tube and the resistance of the plate load. Townsend (Electronic Engineering, Vol. 22. No. 265, pp 116-117, March, 1950) did derive formulas for the frequency and for the attenuation with allowance for the amplifier parameters. In the present article we will derive formulas for the limiting values of the active resistances of the phase-shifting network below which the RC generator cannot become excited.

Self-Excitation Conditions of

 RC Phase Sh:ff GeneratorsThe RC phase shift generator can be represented as a cascade connection, for which the a-matrix is known, of an amplifier and a phase shifting network, Fig. 1. With the feedback loop open, the self-excitation condition can be determined by assuming the attenuation of the overall network to be less than unity.
The amplifier matrix is

$$
\left[a^{\prime}\right]=\left[\begin{array}{cc}
-\frac{1}{S R_{a}} & -\frac{1}{S} \\
0 & 0
\end{array}\right] .
$$

where S is the transconductance, and

$$
R_{a}=\frac{R_{a}^{\prime} R_{i}}{R_{a}^{\prime}+R_{i}}
$$

By multiplying the matrix of the amplifier and the matrix of the phasing network, still specified in general form, we obtain

$$
[a]=\left[\begin{array}{cc}
-\frac{a_{11}}{S R_{a}}-\frac{a_{21}}{S} & -\frac{a_{12}}{S R_{a}}-\frac{a_{22}}{S} \\
0
\end{array}\right]
$$

Assuming that the element a_{11} of matrix (3) is less than unity, we obtain, after transformation. a general formula for self-excitation.

$$
-a_{11}-a_{21} R_{a}<S R_{a}
$$

Three-Element RC Phase Shift Generator
For a three-element phase-shifting network Fig. 2, the a-matrix can be determined by mul-

Fig. 1. RC phase-shift generator can be represented by an amplifier and a phase shifting network.

Fig. 2. Dotted lines separate individual units in this three-element phase shifting network.
tiplying the matrices of the separate four-terminal network. That is,
$\{a\}=\left[\begin{array}{cc}1+Z_{1} Y_{2} & 2 Z_{1}+Z_{1}{ }^{2} Y_{2} \\ Y_{2} & 1+Z_{1} Y_{2}\end{array}\right]$

$$
\left[\begin{array}{ll}
1+Z_{1} Y_{2} & Z_{1} \\
2 Y_{2}+Z_{1} Y_{2}{ }^{2} & 1+Z_{1} Y_{2}
\end{array}\right]
$$

After multiplication we get

$$
[a]=\left[\begin{array}{l}
1+6 Z_{1} Y_{2}+5 Z_{1}{ }^{2} Y_{2^{2}}{ }^{2}+Z_{1}{ }^{3} Y_{2}{ }^{3} \\
3 Y_{2}+4 Z_{1} Y_{2}{ }^{2}+Z_{1}{ }^{2} Y_{2}{ }^{3} \\
3 Z_{1}+4 Z_{1}{ }^{2} Y_{2}+Z_{1}{ }^{3}{ }^{3} Y_{2}{ }^{2} \tag{5}\\
1+3 Z_{1} Y_{2}+Z_{1}{ }^{2} Y_{2}{ }^{2}
\end{array}\right]
$$

Substituting the elements of the matrix (5) into the general formula (4) for the self-excitation condition, yields
$-\left(1+6 Z_{1} Y_{2}+5 Z_{1}{ }^{2} Y_{2}{ }^{2}+Z_{1}{ }^{3} Y_{2}{ }^{8}\right)$
$-\left(3 Y_{z}+4 Z_{1} Y_{2}{ }^{2}+Z_{1}{ }^{2} Y_{2}{ }^{3}\right) K_{a} \leqslant S R_{a}$. (6)
For a phase-shifting network with R in the parallel legs, the impedances of the network of Fig. 2 are

$$
\begin{equation*}
Z_{1}=\frac{1}{i \omega C} ; Z_{2}=R \tag{7}
\end{equation*}
$$

After substituting Eq. 7 in Eq. 6, separating real and imaginarv narts, and setting the latter equal to zero, we obtain

$$
\begin{equation*}
\omega_{0}=\frac{1}{R C \sqrt{6+4 \frac{R_{a}}{R}}} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\left(S R_{a}-29\right)\left(\frac{R}{R_{a}}\right)^{2}-23 \frac{R}{R_{a}}-4>0 \tag{9}
\end{equation*}
$$

Eq. 9 yields the condition for the gain

$$
S R_{a}>29
$$

since for positive values of R / R_{a}, inequality (9) can be satisfied only if Eq. 10 is satisfied.
The positive root $R_{m!n} / R_{a}$ of Eq. 9 determines the limiting value of the resistance of the phasing network, below which the generator will not be excited. In designing an RC generator, when the gain and the resistance R_{a} (Eq. 2) are specified, the resistances of the phase-shifting network must be chosen to satisfy the condition

$$
\begin{equation*}
\frac{R}{R_{a}}>\frac{R_{\min }}{R_{\mathrm{a}}}=\frac{23+\sqrt{65+165 S R_{\mathrm{a}}}}{2\left(S R_{a}-29\right)} \tag{11}
\end{equation*}
$$

Fig. 3 (curve 1) plots a curve of $R_{\text {min }} / R_{a}$ as a

ANOTHER G-C SPACE SAVER!

Threaded Cup Core and Bobbin for Miniaturized IF Transformer and Coil Applications

Now you can design miniaturized IF transformers and coils for AM-FM radio and television applications, and maintain high " Q " and effective permeability factors.
This new G-C threaded cup core and ferrite bobbin assembly has closely held mechanical tolerances for precision screw adjustment, and allows close cou-
pling factor between the coil and core For RF coil applications, G-C offers a complete line of threaded cores operating in frequency ranges up to 65 mcs . G-C threaded cores are available from stock in Q-1 and Q-2 material ; pitch sizes from $1 / 4-28,10-32$ and $8-32$; lengths from $1 / 4^{\prime \prime}$ to $1 \frac{1}{\beta^{\prime \prime}}$ with hex, square or screw-driver holes.

Write for additional information on the miniaturized threaded cup core F1266 and bobbin F1270 and data on G-C stock cores. Please address inquiries to Section ED.

GENERAL CERAMICS
KEASBEY, NEW JERSEY, U.S.A.
TECHNICAL CERAMICS, FERRITEAND MEMORYPRODUCTS CIRCLE 162 ON READER-SERVICE CARD

High selectivity,

 attenuation and precision matching of . . .
NEW HILL FILTERS ASSURE FAST, PRECISE MEASUREMENT OF INTER-MODULATION DISTORTION

Actual operational curves, obtained from poinf-to-point readings, from Hill 34900 and 34800 filters developed to fulfill customers' specific requirements.

These two highly stable, precision-matched Hill Electronic filters permit fast, exceptionally accurate measurement of inter-modulation distortion in communications systems. A band elimination filter places a narrow, deep notch in the white noise being passed through the equipment under test. Distortion generated in the notch is then isolated for measurement by the narrow band filter.
The high degree of selectivity and attenuation of these filters, and the excellent alignment of one within the other are demonstrated in the actual operational curves shown above. Used together, these filters provide 80 db attenuation from 6 to 252 kc .
This is a typical example of Hill's creative engineering that develops outstanding solutions to customers' specific problems involving LC and crystal control filters as well as precision frequency sources and other crystal devices.

WRITE FOR BULLETINS 34800/900

HILL ELECTRONICS, INC.

CIRCLE 163 ON READER-SERVICE CARD

RUSSIAN TRANSLATIONS

function of the gain product $\mathbf{S R}_{a}$.
For a phase-shifting network with the capacitance in the parallel leg, the impedances of the circuit of Fig. 2 are

$$
\begin{equation*}
Z_{1}=R ; Y_{2}=i \omega C . \tag{12}
\end{equation*}
$$

After suitable transformations we obtain

$$
\begin{equation*}
\omega_{0}=\frac{1}{R C} \sqrt{\frac{6 \frac{R}{R_{\mathrm{a}}}+3}{\frac{R}{R_{a}}+1}} \tag{13}
\end{equation*}
$$

$\left(S R_{a}-29\right)\left(\frac{R}{R_{a}}\right)^{2}+\left(S R_{a}-38\right) \frac{R}{R_{a}}-12 \geqslant 0 ;$
(14)
$\frac{R}{R_{a}}>\frac{R_{m i n}}{R_{a}}=\frac{38-S R_{a}+\sqrt{\left(S R_{a}\right)^{2}-28 S R_{a}+52}}{2\left(S R_{a}-29\right)}$

Fig. 3 (curve 2) plots $R_{\text {min }} / R_{a}$ versus the gain.

Four-Element RC Phase Shift Generator

The matrix of the four-element phase-shifting network, using the same notation as in Fig. 2, has the following form

$$
,]=\left[\begin{array}{c}
1+10 Z_{1} Y_{2}+15 Z_{1}{ }^{2} Y_{2}{ }^{2}+7 Z_{1}{ }^{3} Y_{2}{ }^{3}+Z_{1}{ }^{4} Y_{2}{ }^{4} \\
4 Y_{2}+10 Z_{1} Y_{2}{ }^{2}+6 Z_{1}{ }^{2} Y_{2}{ }^{3}+Z_{1}{ }^{3} Y_{2}{ }^{4} \\
4 Z_{1}+10 Z_{1}{ }^{2} Y_{2}+6 Z_{1}{ }^{3} Y_{2}{ }^{2}+Z_{1}{ }^{4} Y_{2}{ }^{3} \\
1+6 Z_{1} Y_{2}+5 Z_{1}{ }^{2} Y_{2}{ }^{2}+Z_{1}{ }^{3} Y_{2}{ }^{3}{ }^{3}
\end{array}\right],(16)
$$

The self-excitation condition becomes
$-\left(1+10 Z_{1} Y_{2}+15 Z_{1}{ }^{2} Y_{2}{ }^{2}+7 Z_{1}{ }^{3} Y_{2}{ }^{3}+Z_{1}{ }^{4} Y_{2}{ }^{4}\right)-$ $-\left(4 Y_{2}+10 Z_{1} Y_{2}{ }^{2}+6 Z_{1}{ }^{2} Y_{2}{ }^{3}+Z_{1}{ }^{3} Y_{2}{ }^{4}\right) R_{a} \leqslant S R_{a}$

For a phase-shifting network with the resistance in the parallel leg, Eq. 7, we obtain

$$
\begin{equation*}
\omega_{0}=\frac{1}{R C} \sqrt{\frac{7 \frac{R}{R_{a}}+1}{10\left(\frac{R}{R_{a}}+1\right)}} \tag{18}
\end{equation*}
$$

$$
\left(49 S R_{a}-901\right)\left(\frac{R}{R_{a}}\right)^{3}+\left(14 S R_{a}-1210\right)
$$

$$
\times\left(\frac{R}{R_{o}}\right)^{2}+\left(S R_{a}-470\right) \frac{R}{R_{a}}-56>0
$$

For a capacitance in the parallel leg, Eq. 12, we obtain

$$
\begin{equation*}
\omega_{0}=\frac{1}{R C} \sqrt{\frac{10 \frac{R}{R_{a}}+4}{7 \frac{R}{R_{a}}+6}} \tag{20}
\end{equation*}
$$

$=$
 Vacuums approaching those of Outer Space electronically!

From Ulith, only manufacturer devoted exclusively to the technology of fluidless vacuum pumping, the UliteVac electronic vacuum pump. UlteVac pumps produce exceptionally clean vacuums, to $10^{-9} \mathrm{~mm}$ Hg and below, with no moving parts, no contaminants, no hot filaments, no refrig. eration; operate unattended for months.

Sorles 110 Pump
1 lue/ Secem
UlteVac pumps are rugged, easy-connect ing, operable in any position. Hundreds in use in vacuum-tube processing, on super-power microwave tubes, mass spectrometers, electron microscopes, experimental applications. Immediate ship. ment of all sizes from stock. Ultex also offers exclusive line of high vacuum ac cessories including:

- SORPTION ROUGHING PUMPS
- METAL SEAL FITTINGS
- FULL CONDUCTANCE VALVES
- AMBIENT FORELINE TRAPS

Literature avąilable(state application) from Ulitek or its exclusive sales representative, Kinney Mig. Div. of the New York Air Brake C.O. Sales Offices in major U. S. cities.

Fig. 3. The ratio $R_{\min } / R_{\mathrm{a}}$ as a function of gain, $S R_{\text {a }}$.
$\left(49 S R_{a}-901\right)\left(\frac{R}{R_{a}}\right)^{3}+\left(84 S R_{a}-1.756\right)\left(\frac{R}{R_{a}}\right)^{2}$

$$
+\left(36 S R_{a}-1.108\right) \frac{R}{R_{a}}-224 \geqslant 0
$$

From Eqs. 19 and 21 we obtain the well known condition for the selection of the gain

$$
\begin{equation*}
S R_{\alpha}>18.4 \tag{22}
\end{equation*}
$$

Here the polynomials (Eqs. 19 or 21) have one positive root, which determines the minimum value of the ratio R / R_{a}. Fig. 3 shows a plot of $R_{\text {min }} / \boldsymbol{R}_{a}$ (parallel R-curve 3, parallel C-curve 4) versus the gain, obtained by solving cubic Eqs. 19 and 21 by one of the standard methods.

Conclusions

1. From a comparison of the curves of Fig. 3 for parallel R and parallel C networks one can see that, other conditions being equal, the parallel RC generator is excited at lower values of R / R_{a}.
2. Starting with a gain of 38 and greater, the RC generator with a four-element parallel R phase-shifting network is excited at larger values of R / R_{a} than the RC generator with a three-element parallel C network.
3. When the gain exceeds a definite value (differing with the type of network), the resistance of the phase-shifting network can be smaller than R_{q}.
4. In the design of RC generators one must choose such a value of R, that the ratio R / R_{a}, for a chosen gain, be greater than the minimum $\boldsymbol{R}_{m i n} / \boldsymbol{R}_{a}$, as given in Fig. 3.
5. The formulas for frequency agree with those given by Townsend.
Translated from "Limiting Values of Active Resistances of Phase Shift Generators," Garmash, Elektrosvyaz', No. 6, June, 1960, pp 24-27.

DYKOR ${ }^{*}$ HIGH SPEED PERFORATED TAPE READER

This completely transistorized photo-electric unit is the utmost in reading reliability. At 1000 characters per second it stops before the next character...reads any standard tape including 40\% transmissive paper, and handles 5 to 8-level tapes interchangeably. Outputs are compatible with either PNP or NPN transistor circuits. The user may select single or dual speeds, 101/2" reel models or 8" spooler accessories.

ALBERTSON, NEW YORK • PIONEER 7-5090
INQUIRIES FOR DIGITAL SYSTEMS ARE INVITED CIRCLE 166 ON READER-SERVICE CARD

sets the pace in special RF connectors!
Connecting an Eimac Klystron to RG-126/U cable calls for a special, low VSWR adapter. Gremar designed and delivered it in days... not weeks. Other examples of Gremar's fast delivery of specials include strip transmission line to co-ax adapters, crystal adapters and many other special RF connectors.

Gremar's special delivery capabilities are based on a constant inventory of 500,000 assembled units of more than 2000 types of RF connectors and adapters. . plus more than $4,000,000$ component parts ready for adapting to most problem specifications. And when components do not exist, Gremar makes them fast.
What is your problem? Because Gremar connectronics ${ }^{\text {© }}$ concentrates engineering, production and quality control on RF connectors and components only, your requirements receive the specialized attention that slashes design-todelivery time . . . as our customers testify. For all the facts fast... on standards or specials
contact:
 ELIABILITY THROUGH QUALITY CONTROL Dopt. B

Wakefield, Mass., CRystal 9.4580
CIRCLE 167 ON READER-SERVICE CARD

STANDARDS AND SPECS

Sherman H. Hubelbank

Adjustable Wirewound Resistors: Styles
Madified In MIL-R-19365
Resistor styles have been modified by the C amendment of MIL-R-19365 to correspond to the fixed resistor styles in spec MIL-R-26C. The resistance tolerance has been reduced from $+10 \%$ to $+5 \%$. The 24 -number decade for standard resistance values has been adopted. The quality assurance provisions have been revised to incorporate standard paragraphs on responsibility for inspection. Latest packaging information has been incorporated. Adjustable wirewound power resistors, MIL-R-19365C, 18 March 1960.

Electrolytic Capacitors: New

Voltage Rating Substituted In MIL-C-3965B
Amendment 1 to spec MIL-C-3965B has deleted the $18-\mathrm{v}$ rating and substituted a $20-\mathrm{v}$ rating. A requirement for visual examination has been added after life test. The insulating sleeve requirements for testing have been revised. Requirements for brackets have been added for the bathtub styles. The appendix has been changed to match the addition of new styles and the changed number of specimens necessary. MIL-C-3965B, Amendment 1, Fixed Electrolytic (Tantalum) Capacitors, 16 April 1960.

Mil Spec Covers Five New

Plastic Sheets for Printed Wiring
Five new types of plastic sheets have been added to MIL-P-1394 by the "B" revision. Rigid tolerance classes have also been established for thickness, and warp or twist, in addition to normal tolerances. The quality assurance sections have been modified to incorporate the latest paragraphs on responsibility for inspection. MIL-P1394B, Plastic Sheet, Laminated, Copper Clad (For printed wiring)

Feed-Through Capacitor Spec
Is Completely Revised
MIL-C-11693 has been completely recast. The " B " issue also supersedes MIL-C-19080 (SHIPS). The military standard format has been changed to the detail format. The type designation has been changed to delete the identification of terminals. Current rating is now identified by a letter

IMMEDIATE DELIVERY OFF.THE.SHELF!
ALL 28 CONTAINER SIZES PER BUWEPS DWG. LIST 2210448

All 28 sizes of standardized containers per Navy BUWEPS Drawing List 2201448 as required for Polaris sub-system and other programs
are now available for off-the-shelf delivery from both Zero facilities. These rugged, lightweight containers are equipped with latches, pressure equalizers and humidity indicators . . . meet requirements of MIL-T-945A and

MIL-21200. Sizes range from
$51 / 4^{\prime \prime} \times 63 / 8^{\prime \prime}$ to $19^{\prime \prime} \times 22^{\prime \prime}$. Easy to
accessorize, they are readily adaptable for use as portable instrument
cases, transit cases, etc.
ZERO MANUFACTURING CO.
1121 Chestnut Street, Burbank, California

CIRCLE 170 ON READER-SERVICE CARD

JACKSON
 England's Finest
 LTD.
 Gomponents.

Specified for use in Amateur equipment for 6 \& 2 meters Transceivers
Pracislon Built Variable Condonsers and Drives

atho:-

 4.63 urF $015^{\prime \prime}$ Air Gop 7.1.8.m. Vanes (The least lline is $.36^{n}$ longer than the

SPECIFICATION: S.L.C. Law.Siliconed Low Loss ceramic Insulation. Bross Rotor and Stators, soldered and silver plated. Delivery six weaks after order received (prototype quantities usually in New York stock). Retail Price $\$ 3.95$.

Wirle Fer Comploto Sole U. s. Agonte M. SWEDGA
Catalog and 258 Sroathay Now YWEDGAL U.K. Addrose: Kinguway-Waddon, Surroy

CIRCLE 171 ON READER-SERVICE CARD
El:CTRONIC DESIGN • October 26, 1960
symbol instead of a number symbol. The scope of the spec has been broadened to cover additional dielectric materials, such as paper-plastic, metalized paper, and metalized plastic. Fifteen new-style capacitors have been added. MIL-C11693B, Capacitors, Feed Through, Radio-Interference Reduction, AC and DC (Hermetically sealed in metallic cases).

Air Force Issues

Materials and Processes Specs

Issued monthly by the Air Force, USAF Speciication Bulletin 23, provides a list of material and process specs, and other closely related specs. These specs are approved for use in the construction and maintenance of Air Force equipment and accessories. The primary purpose of the bulletin is to provide a check-list to insure that correct issues of applicable publications and specs are being used in manufacture. Copies can be obtained from: Commander, Wright-Patterson Air Force Base, USAF Engineering Specifications and Drawings Branch, Administrative Services Office, Attn: EWBFE, Wright-Patterson Air Force Base, Ohio. Be sure to reference the contract number or bid.

RF Filiers: Eight New

Types Added To MIL-F-15733
The most significant change to MIL-F-15733 has been the deletion of all six types of filters listed in MIL-F-15733C and the addition of eight new styles. Two of the new styles are tubular; the other six are bathtub type. The tubular types have current ranges from 1 to 30 amp at 100 v dc , and 1 to 50 amp at 400 v dc $(125 \mathrm{v}$ ac). The bathtub types have ranges from 1 to 50 amp at 100 v $\mathrm{dc}, 400 \mathrm{v}$ dc (125 v ac), and 600 v dc (250 vac). The type designation has been expanded to include symbols for current rating, insertion loss characteristic, terminal identification, operating temperature range, and vibration grade. This spec also supersedes MIL-F-18344A (SHIPS). Radio Interference Filters, MIL-F-15733D.

Coax Connector Adapters: General
Requirements Listed In MIL-A-27434
MIL-A-27434 is a new spec covering the general requirements for weatherproof, between series, rf, coaxial connector adapters having a nominal impedance of 50 ohms. These connectors are intended for use in rf applications up to $10,000 \mathrm{mc}$. Adapter connector types established by this spec are: UG-564/U, UG-565/U, UG635/U, UG-636A/U, and UG-637/U. MIL-A27434, Adapters, Connector, Coaxial, Radio Frequency, Between Series, General Specifications For, May 10, 1960.

Electronic Building Blocks Series I-TRAMP

Tramp ${ }^{\text {® }}$
 will solve your servo amplifier problems just as easily

A transistorized building block that gives the design engineormore than 1 watt controlled power per ounce
voltage gains up to 30,000

- 10,000 hours of operation

Can be used in-

- differential DC applications
- magnetic amplifier applications - relay applications

Hermetically sealed, meets government environment specs.

For cofallod TRAMP specs or RED assistance, writo fo: Dopt. TR-I, M. Ton Eosch, Inc., Pleasantvillo, Now York

CIRCIE 172 ON READER-SGEVICE CARD

YOUR CAREER
 NEWS AND NOTES

Electrical engineers received the highest starting salaries of 1960 graduates from Lehigh University.
The electrical engineers averaged $\$ 540$ per month, a 7-per-cent increase over the 1959 average starting salary. However, according to the University's placement office, the greatest demand by employers was for mechanical engineers.

The 48 electrical engineers who were graduated had a total of 717 interviews with prospective employers, the placement office said.

The National Science Foundation has awarded 500 summer fellowships to secondary-school teachers of science and mathematics.

The recipients will work on individually planned summer programs of graduate study and research for six to 12 weeks. The Foundation will pay tuition, fees, travel expenses, and dependency allowances.

The recipients come from 45 states and the District of Columbia. A total of 228 awards went to mathematics instructors, 173 to teachers of the biological sciences, 55 to physical-science instructors and 46 to general-science instructors.

The Datex Corp., Monrovia, Calif., has found that engineers' writing problems were in organization and planning. The company's engineers, however, disagree.
The engineers, according to Datex, listed their major writing problems as deficiencies in vocabulary, grammar, composition, spelling, and sentence structure.
The engineers surveyed spent an average of 7 per cent of their time writing, according to the company. The company said studies have shown that "most engineers write grammatically. Despite their feeling to the contrary, their college training and experience (plus the usual reading) have given them vocabularies more than adequate to handle any engineering writing job."

The Engineering Manpower Commission is trying to find out again what engineers are earning.

The commission's fourth survey of earnings is expected to cover more than 200,000 engineers employed in private industry, the government and education.

The last survey, conducted in 1958, indicated that engineers' salaries jumped an average of 6.5 per cent annually between 1953 and 1958.

Electronics men in the Chicago area often seek career advice from a woman.

She is Barbara Ann Seibert, an employment counselor with Drake Personnel, Inc., who specializes in helping electronics engineers and executives find better jobs in the industry.
"Those first months weren't easy," Miss Seibert said. "Many employers at first refused to deal with me when they found that B. A. didn't stand for Bart or Bert."

Although she now is well established in the personnel guidance field, she still uses only her initials in correspondence with men she hasn't met.

Her advice to job seekers: first pick the geographic area in which you are interested. Then decide on the size and type of company you want to work for. In addition, she said, consider whether you prefer to work with components or systems.

By 1970, technical and professional employment will rise by 40 per cent, the largest change of any working group, according to a pamphlet compiled by the Labor Department.
The pamphlet, "Manpower-Challenge of the 60 's." deals with expected changes in the nation's population and labor force in the next decade. It may be obtained from the U.S. Government Printing Office, Washington, D.C.

ENGINEER-IMPROVEMENT COURSES AND SEMINARS

Below are courses and seminars intended to provide the engineer with a better knowledge of various specialties. Our grouping includes several different types of meetings: National Courses-those held on conescutive days and intended to draw attendees from all geographical areas; One-Day Seminars-one-day intensive seminars which move from city to city; and Regional Lectures -regional symposia or lecture series which generally run one night a week for several weeks.

Linear Metrology Course

An intensive 70-hour, four-week course in Linear Metrology is being offered to qualified personnel by MetroLonics, Inc. The course, beginning Oct. 3 will utilize the complete facilities of MetroLonics. Subjects to be covered include Necessity for Standards, Derivation of Standards, Human Factors in Precision Measurement, Type of Instruments, such as Comparative and Absolute Instruments and Sources of Error. Instructors will be MetroLonics' experts headed by John A. Harrington, vice president for technical operations and an internationally recognized
metrologist. For further information write: MetroLonics, Inc., 2201 N. Hollywood Wa: Burbank, Calif.

Cyrogenic Engineering Course

An intensive two-week short course on Cyrogenic Engineering will be held Oct. 31-Nov. 1, 1960 sponsored by Engineering Extension and Physical Science Extension, University of California, Los Angeles. This course is an introdu:tion to cyrogenic engineering. It is intended $f(, r$ the engineer unfamiliar with low-temperature techniques, who finds that he must employ sone of these techniques in his design and research work. A prerequisite for the course is a bachlor's degree in engineering or physical science, including a course in elementary thermodynamics. For further information write: Engineering Extension, Room 6266, Engineering Building Unit II. University of California. Los Angeles, Calif.

PAPER DEADLINES

Convention Program Chairmen have issued the following deadlines to authors wishing to have their
Oct. 1: Deadline for complete manuscripts for the Fifth Midwest Symposium on Circuit Theory to be held May 7 and 8,1961 , at Allerton Park and the Urbana campus of the University of Illinois. Send manuscripts to: Prof. M. E. Van Valkenburg, Guest Editor, Dept. of Electrical Engineering, University of Illinois, Urbana, Ill. Oct. 10: Deadline for titles and abstracts (100 to 200 words) of papers, in duplicate, for the URSI-IRE fall meeting to be held Dec. 12-14 at the Boulder Laboratories of the National Bureau of Standards, Boulder, Colo. The following commissions are planning to hold one or more technical sessions in addition to their business meetings. Commission 2-Tropospheric Radio Propagation, Irwin H. Gerks, Chairman; Commission 3-Ionospheric Radio Propagation. L. A. Manning, Chairman; Commission 4-Radio Noise of Terrestial Origin, William Q. Crichlow, Chairman; Commission 6-Radio Waves and Circuits, John I. Bohnert, Chairman. At the top of each abstract, give your name in the form you prefer, your affiliation, and your complete address. Send abstracts to: Chairman, Commission ----(Appropriate one from above), c/o A. H. Shapley, CRPL, National Bureau of Standards, Boulder, Colo.
Nov. 15: Deadline for 100 -word abstracts and 500-word summaries for the Winter Convention on Military Electronics, sponsored by the Institute of Radio Engineers on Military Electronics Feb. 1, 2 and 3, 1961 in Los Angeles. Send abstracts and summaries to: Dr. John J. Myers, Hoffman Electronics Corp., Military Products Div., 3717 S. Grand Ave., Los Angeles 7, Calif.

Advancement Your Goal?

Use COMFIDENTIAL

 Action Form

All original applications are placed in con idential files at ELECTRONIC DESIGN, and offer a reosonable lapse of time, they are

des royed.

If you ore seeking a now job, act nowl

ELECTRONIC DESIGN's Confidential Caree Inquiry Service helps engineers "sell" them relves to employers-as confidentially and discreetly as they would do in person. The service is fast. It is the first of its kind in the electronics field and is receiving high praise from personnel managers.
To present your job qualifications immediately to companies, simply fill in the attached esume.
Study the employment opportunity ads in this section. Then circle the numbers at the bottom of the form that correspond to the numbers of the ads that interest you.
ELECTRONIC DESIGN will act as your secretary, type neat duplicates of your applica tion and send them to all companies you select-the same day the resume is received The standardized form permits personnel monagers to inspect your qualifications rapid. Iy. If they are interested, they will get in touch with you.
Painstaking procedures have been set up to ensure that your application receives com. plete, confidential protection. We take the ollowing precautions:
All forms are delivered unopened to one eliable specialist at ELECTRONIC DESIGN.

Your form is kept confidential and is procassed only by this specialist.
The "circle number" portion of the form is defached before the application is sent to an enployer, so that no company will know how ny numbers you have circled.

After completing, mail career form to ELECTRONIC DESIGN, 830 Third Avenue, New York, N. Y. Our Reader Service Department will forward copies to the companies you select below.

(Please print with a soft pencil or type.)						
Name		-	Telephone			
Home Address		City	Zone	-		
Date of Birth	Place of Birth			Citizenship		
Position Desired						
College	Educational History			Major	Honors	
	Dates					

Recent Special Training

Employment History Company				
	City and State	Title	Engineering Speciulty	

Outstanding Engineering and Administrative Experience

[^8]

A PLACE FOR YOU awaits at rapidly expanding Philco Western Development Laboratories on the San Francisco Peninsula, where new concepts of space communication offer exceptional opportunities to the exceptional engineer . . . with proportionate rewards. Your experience and your interests determine your assignment at PHILCO in the development of the complete system - from the space communication network of space vehicles to the complex data processing equipment of the ground station complex.
For you . . . the opportunity of graduate study on a Tuition Refund basis at any of the excellent surrounding educational institutions, liberal employee benefits, and the facilities of Philco's new, modern R \& D laboratories.
For you and your family . . . the perfect climate, whether seasonal or cultural, in which to pursue all-year recreational activities, only 45 minutes from cosmopolitan, dynamic San Francisco.
Immediate openings now exist for graduate engineers with experience in equipment design, systems engineering, analysis and integration. As a first step toward expanding your skills at Philco, send your resumé in strict confidence to Mr. W. E. Daly, Engineering Placement.

PHILCO CORPORATION

 Western Development Laboratories3875 FABIAN WAY, DEPT. DIO
PALO ALTO. CALIFORNIA CIRCLE 901 ON CAREER INQUIRY FORM

CIRCLE 878 ON READER-SERVICE CARD

Motorola engineers are the most stimulated and enthusiastic individuals you'll find anywhere. And, for sound reasons.
First, the work. Electronics-challenging fields that plead for vision, creativeness and imagination.
Secondly, the company, An "engineers' company"-developed by technical minds dedicated to engineering excellence. A rewarding company-quick to recognize and advance skill. A secure, diversified company-not wholly dependent on one single market.
Thirdly, the place, Chicago-exciting and quiet. Cosmopolitan and suburban. Mid-America's nucleus of culture, education and entertainment-where everyone can find the perfect environment.

- Radar transmitters and roccivers

- Radar circuit design
- Electronic countermeasure systoms
- Military communications equipment dosign
- Pulse circuit design
- If strip design
- Device yuing kyistrom, traveling wave tubo
- Display end strace cluicea
- Display and storage dovices

2-way radio communications

- VHF $\&$ UHF receiver
- Transmitter design and dovelopment
- Power supply
- Anstenna angesineor
- Antonna design
- Soloctive signaling
- Transistor applications
- Salos engineoring
- Design of VHF \& UHF FM communicationa
- in posign oble or subminixtura devolopment
- Microwave field angineors
- Transistor swich ohing circulit design
- Lozic circuit desizn
- T.V. dircuil desiesign onginooring
- Home radio dosisn
- Auto radio design
- Auto ratio design
- Somi-conductor deviec development
- Semi-conductor application work

Also Splendid Opportunities in:

 Phoenix, Arizona and Riverside, California
Send Complete Resumé to:

MR. L. B. WRENN
Engineering Personnel Mgr. Dept. 8
4501 Augusta Blvd.
Chicago 51, Illinois

THERE IS NO CELING

 ON IDEAS- Advanced hydrogen systems being developed by The Garrett Corporation solve the problem of keeping men alive and equipment operating for long periods of time in future satellites and space capsules.

Engineers at The Garrett Corporation's AiResearch Manufacturing Divisions are dealing with challenging problems in fast-moving fields.
Diversification of effort and vigorous leadership have made Garrett the world's largest manufacturer of aircraft components and systems and a leader in specialized missile and spacecraft systems.

Major fields of interest are:

- Environmental Control Systems-Pioneer, leading developer and supplier of air conditioning and pressurization systems for commercial and military aircraft, and life support systems for satellites and space vehicles.
- Aircraft Flight and Electronic Systems-Largest supplier of airborne centralized flight data systems; also working with other electronic controls and instruments including missile and submarine applications.
- Missile Systems-Largest supplier of accessory power units, AiResearch is also working with hydraulic, hot gas and hydrogen systems for missiles, liquid and gas cryogenic valves and controls for ground support.
- Gas Turbine Engines-World's largest producer of small gas turbine engines, with more than 9000 delivered in the $30-850 \mathrm{hp}$ class. Studies include industrial and nuclear applications.

Excellent positions are available for qualified men with M.S., Ph. D. and Sc. D. degrees for work in these areas.

Send resume to: Mr. R. K. Richardson
 THE GARRETT CORPORATION
 AiResearch Manufacturing Divisions

Los Angles 45, California • Phoenix, Arizona

ADVERTISERS' INDEX

Advertiser Page
A C Spark Plug, The Electronics A D C, Inc
AMP, Inc
Airpar Electronic
Allen-Bradley Co.
Allen-Bradey Co,
Alpha Wire Corp.
Amperex Electronic Corp
Amper Data Products Co.
Anaconda Wire \& Cable C
Applied Electronics Corp.
Arnold Engineering Co., Th
Assombly Products, Inc
Augat Brothers, Inc
Avnet, System, The
Babcock Relays, Inc.
Baker, J. T. Chemical Co
Beattie-Coleman, Inc.
Beckman/Helipot .
Bell Aerosystems C
Bendix Corro., The Red Bank Div.
Bendix Corp., The Red Bunk Div. Tuhes Bliley Electric Company Bryant Computer Produc Bulova Electronics Div.

CBS Electronics
 CBS Electron

Cadillao Associntes
Cannon Electric Co.
Canoga Corp.
Co.
Celco Constantine Engineering Labs., Co
Centralab. The Electronica Div. of
Globe-Union, Inc.
Chance Vought Electronics Div.
Chance Vought Ele
Chasis-Trak Corp.
Cherry Electrical Products Corp.

Clifton Procision
Products Co Cobehn, Inc.
Cobehn, Inc.
Convair/Pomo
Corning Glase Works
Couch Ordnanco, In
Curtiss-Wright Corp.
Daystrom, Inc., Weston Instruments Div.
Daystrom Dialight Corp.
hht Corp
DuMont, Allen B. Labs., Inc
Dynatran Electronics Corp

ESC Electronics Cumoration Eastman Kodak Co.
Eastman Kodak Co.
Elastic Stop Nut Corp. of Amer
Elactrical Industries
Electronic Design
Electronic Measurements Co. of Red Bank. Electronic Research Associates, Inc. Engineered Electronics Company
Epsco, Inc.
Erio Resistor Corp.
Essez Electronics Div

Fairchild Semiconductor Corp. Faster Div., Illinois Tool Works Fluke, John Mfg., Co., Inc

G-V Controls, Inc.
Garrett Corp. Inc
General Cable
General Ceramics Corp. General Eectric Co., Ordnance Dept

The growing systems engineering activity at the Ordnance Department requires technical generalists in the true sense of the word...men who can begin with an unstructured idea and by applying sound and perceptive understanding of many tech nical areas, develop the concept of a feasible new system. They must have the ability to understand the operational capabilities and limitations of the entire complex of equipments and subsystems from which they will evolve a particular system. State-of-the-art advances must be monitored continually and examined with a view to deciding how their inclusion within a system matrix will affect its final operational parameters, as well as its cost and time. To verify their decisions, these systems engineers often construct and operate various mathematical models and simulation vehicles. The final recommendation of what system to build and how best to build it is the principal product of systems engineers at Ordnance. However, their responsibilities end only with final test, evaluation and acceptance of the on-line system

Expanding its work in such vital systems areas as missile guid ance and fire control, antennas, directors and underseas weapons the Ordnance Department in Pittsfield, Massachusetts, has a number of openings for technically versatile engineers

Please forward your inquiries, including salary requirements to: Mr. W. B. Walker, Rm. 76 SMO
-RDNANEEDRPARTMENT
OF TME DEFENSE ELECTRONICS DIVISION

GENERAL (86) ELECTRIC

OO PIASTICS AVENUE, PITYSPEID, MABSACNUSETTS

at UNIVAC... Career

Opportunities

Opportunity for personal progress has never been greater than it is today at Remington Rand Univac. A new and exciting environment has been developed in which professional people have unlimited opportunity for advancement. We refer to it as Univac's Atmosphere of Achievement.
In addition to an attractive salary, you will work with engineers and scientists who have made significant advances in solid-state development and computer reliability. Immediate openings include:

- TRANSISTOR CIRCUIT DESIGNERS - electronic packaging engineers

- SERVO-ENGINEERS

- ELECTRO-MECHANICAL ENGINEERS
- Quality control engineers
- PRODUCTION ENGINEERS
- RELIABILITY ENGINEERS
- Standards \& SPECIFICATIONS ENGINEERS

Send resume of education and experience to:
R. K. PATTERSON, Dept. C-10

Zitemenngtione Thand

Thivan

DIVISION OF SPERRY RAND CORPORATION
2750 West Seventh St., St. Paul 16, Minn.
There are also immediate openings in all areas of digital computer development at our other laboratories. Inquiries should be addressed to:
E. E. MAGLE, DÉp, C-10 D, CLAVELOUX, Dept, C-10
 CIRCLE 906 ON CAREER INQUIRY FORM

Advertiser

KEL-F ${ }^{\circledR}$ Brand Plastic wire coatingtough skin for problem environments

Rattling vibration . . . shattering cold . . . water immersion -even problem environments like these are overcome by electrical wiring and cable utilizing KEL-F Brand Plastic as the coating.
The Surprenant Mfg. Co., Clinton, Massachusetts, has been using KEL-F Plastic as a wire coating for the past 10 years. The reason? It meets their own high quality standards and rigid requirements, as well as military specifications.
They have developed cable jacketing and wire coating of KEL.F Plastic with resistance to extreme vibration, acceleration, shock and cut-through, even at temperatures as low as $-69.5^{\circ} \mathrm{F}$. This non-flammable insulation exhibits good dielectric qualities and has a low dissipa
tion factor, with zero moisture absorption and excellent compressive strength with resultant resistance to cold flow.
In areas where space is at a premium, Surprenant Mfg Co. has found that it is easy to achieve excellent con centricity, even at very thin extrusions, using KEL-F Plastic. It extrudes at $475.625^{\circ} \mathrm{F}$., and is melt-process. ible. The plastic may be custom-colored too, and Surprenant coatings and jackets are available in 9 stock coiors (including white), and transparent.
If environment is a problem for your electrical wiring, a skin of KEL-F Plastic may well be the answer. For com plete performance data, write today to: 3M Chemical Division, Dept. KAP-100 St. Paul 6, Minnesota.
"KEL-F" is a Rer. T.M. of 3M Co

CHEMICAL DIVISION

Advertiser

Raytheon Co., Industrial Components .. 1, 127 Reever-Hoffman

140
Remington Rand Univac
Rototest Laboratorios Inc. 152
保 126
Rutherford Electronics $\mathbf{C o}$. 88

Schweber Electronics 99
Sealectro Corp. . . .
hockley Transistor
Sierra Electronics Corp.
Simpson Electric Co.
inger-Bridgeport
Spencer Products Electronic Tube Div.
Sperry Semiconductor Div. of Sperry
Sperry Semiconductor Div. of Sperry
Sprague Electric Co.
Stanpat Co
ylvania Electric Products, Inc
Electronic Tube Div.

72 A-B

Taber Instrument Corp. 122
Technology Instrument Corp. 26
elrex Laboratories ...
Tinnerman Products. Inc.
Transitron Electronic Corp
Tung-Sol Electric, Inc.
Electronic Corp. 95

Ultek Corp. 14
Ultradyne Inc. 137

Universal Mfg Co.

Varian Associates
Vector Electronics Co.
Viking Industries, Inc 128

Ward Loonard Electric Co. 132
Westinghouse Electric Corp. 8
White Industrial Div., S. S. 14

Xytan 153

Zero Mis Co 147

Advertising Representatives

Adv. Sales Manager: Bryce Gray, Jr.
New York: Robert W. Gascoigne Richard Parker, Blair McClenachan, James P. Quinn, Ralph Richardson, ${ }_{830}$ Third Avenue Plaza $1-5530$,

Chicago: Thomas P. Kavooras, Berry Conner, Jr., Fred 1. Bruce, 664 N. Michigan Avenue, Superior 7-8064
Los Angeles: John V. Quillman, Wayne Stoops, 3275 Wilshire Blvd. Dunkirk 2-7337
San Francisco: Stanley I. Ehrenclou, 292 Walter Hays Drive, Palo Alto, 292 Walter Hays
Southeastern: Pirnie \& Brown, Morgan Pirnie, Harold V. Brown, G. H. Krimsier 1722 Rhodes-Haverty Bldg., Atlanta, Ga., Jackson 2-8113
London EC4: Brad Nichols, 151 Fleet Street

Puinlisher: Robert E. Ahrensdorf Editor: Edward E. Grazda Managing Editor: James A. Lippke Technical Editors: G. H. Rostky, Technical Editors: G. H. Ros
H. Bierman, R. N. DeFloria,
L. N. Tolopko, T. E. Mount, A. Rosenblatt, A. W. Solda A. Roseritors: A Corneretto News Editors: A. Corneretto, R. Haavind, M. W. Meis Copy Editor: D. Murray Contributing Editors: J. G. Adashko, E. Brenner, S. H. Hubelbank, B. Bernstein, E. Kahn

Editorial Assistants: R. N. Ross R. M. Moore, J. Rosenfield, A. Dzamba, P. A. DeLain, J. Katz, J. Resnick

Editorial Production: D. S. Viebig, A. Abramoff

Art Director: R. A. Schulze Art Assistant: O. Mitch
J. Aruego

Technical Illustrator: P. Rios
Production Manager: T. V. Sedita Asst. Prod. Mgr.: H. De Polo Production Assistant: P. Bergang Circulation Manager: N. M. Elston Asst. Circ. Mgr.: A. C. Lovet
Reader-Scrvice: A. J. Helfeld

Hayden Publishing Company, Inc Chairman of the Board: T. Richard Gascoigne President: James S. Mulholland, Jr.

Accuracy Policy

Recognizing the power of the printed word to influence, it is ELECTRONIC DESIGN's policy:

To make all reasonable efforts to insure accuracy of editorial matter.

To publish promptly corrections brought to our attention.
To not knowingly publish mis. leading advertisements.
To reserve the right to refuse any advertisement.
Peaders noting errors or misstatements of facts are encouraged to write the ditor.

Subscription Policy

LECTRONIC DESIGN is circulated only oqualified design engineers of U. S. manind government agencies. If design for ranufacturing is your responsibility, you yalify for subscription withoux charge pro-
ided you send us the following information no your company's letterhead: Your name Ind engineering title, your company's main roducts and description of your design ARY Nally. ADDRESS CHANGES FOR OLD OB YCRIBERSNECESSITATEAARESTATE-
TENT OF THESE QUALIFICATIONS. SUbcripion rate for non-qualifed subscribers 125.00 per year U. S. A., $\$ 30.00$ per year

HIPERNAS:

It can pinpoint a long-range missile on target. Guide a satellite or space ship to any point in the universe. Regulate the predetermined course of a surface vessel or submarine to any spot on the seven seas - by any route, however circuitous.
In manned vehicles, it will give exact position - even without an atmosphere - independent of gravity, sea, wind, and weather conditions - without fixes on horizon or stars - after days and weeks of travel.
This is Hipernas, a self-compensating, pure inertial guidance system developed by Bell's Avionics Division. Designed for the U.S. Air Force, Hipernas is so versa-
tile that a whole family of related systems has been engineered for application in any environment - sea, sky, or space.
The system introduces new Bell BRIG gyros. Its accelerometers and digital velocity meters are already operational in missile and space guidance systems.
Hipernas - and many other systems such as the Air Force GSN-5 and the Navy's SPN-10 All-Weather Automatic Landing Systems - typify Bell's capabilities in the broad field of electronics. This diversity of activities offers an interesting personal future to qualified engineers and scientists.

BELL AEROSYSTEMS COMPANY

 BUFFALO S, N. Y.DIVISION OF BELL AEROSPACE CORPORATION

NOW! GENERATE

with these new inexpensive (4) FREQUENCY DOUBLER SETS

For convenient, economical, reliable signal generation to 40 KMC , use these new Frequency Doubler Sets and either your own existing signal sources or one of the dependable, bench-proven signal generators or oscillators below. Model 938A supplies power from 18 to 26.5 KMC when driven by a 9 to 13.25 KMC source; Model 940A supplies power from 26.5 to 40 KMC when driven by a 13.25 to 20 KMC source.
The 938A and 940A have the same output versatility as the driving source. These broadband instruments accept cw , pulsed or swept input signals from signal generators, swept signal sources or klystrons.
Each contains a broadband crystal-harmonic generator, plus a dual rotary vane attenuator, for generating and accurately setting the ouput level 0 to - 100 dbm . Output power depends on input power and is typically 0.5 to 1.0 mw when the driving source is an 626A or 628A Signal Generator or an 686A Sweep Oscillator. Output power is known, even though an uncalibrated signal source is used, since the output monitor is accurate to ± 1 to $\pm 2 \mathrm{db}$, depending on model and frequency.
938A/940A conversion loss is approximately 17 db at 10 mw input. Maximum input power 200 mw , saturation output 2 mw . Attenuator accuracy $\pm 2 \%$ of reading or 0.2 db (whichever is greater). Attenuator range 100 db ; output SWR less than 1.2 at 10 db or more attenuation. Sturdy construction permits signal source to be mounted on top of Doubler Set, presents output at convenient bench level. 938A, $\$ 1,500.00$; 940A, $\$ 1,500.00$.

Versatile signal generators also drive hpp frequency doubler sets

(40) 626A/628A shf Signal Generators

Instruments bringing high power, wide range, convenience and accuracy to the 10 to 21 KMC range. Frequencies, output voltage directly set and read. Output 10 to 20 db better than previous spot-frequency sets: SWR better than 1.2 at 0 dbm and lower. High power output provides excellent drive for the (4) 938A/940A Frequency Doubler Sets. Internal pulse, FM or square wave modulation; also external pulsing or FM'ing. 626A, 10 to 15.5 KMC , $\$ 3,250.00$; $628 \mathrm{~A}, 15$ to $21 \mathrm{KMC}, \$ 3,250.00$.

(42) 680 Series Sweep Oscillators

Five models offering electronic sweeping for greater flexibility, simplified operation; range from 1 to 18.0 KMC . 686A, 8.2 to 12.4 KMC , and 687A, 12.4 to 18.0 KMC , useful for driving Frequency Doubler Sets. 682A, 1 to 2 KMC, $\$ 3,090.00$; 683A, 2 to 4 KMC , $\$ 3,000.00$; $684 \mathrm{~B}, 4.0$ to 8.1 KMC, $\$ 2,900.00$; (686A, $\$ 2,900.00$; $687 \mathrm{~A}, \$ 3,400.00$.

Complete Coverage with (4p) Signal Generators.

PAGES
MISSING ARE NOT AVAILABLE

[^0]: - Mr. Corso is also Professor of Psychology at The Pennsylvania State University, University Park, Pa.

[^1]: spencer phoducts: Klixon(8) Precision Switches - Precision Thermostats - Precision Thermal Protectors - Circuit Breakers . Thermal Valves CIRCLE 43 ON READER-SERVICE CARD

[^2]: ${ }^{-}$Now with IBM Corp., Federal Systems Div., Owego, N. Y.

[^3]: ${ }^{\circ}$ These features are included in this issue as "Check 1

[^4]:

[^5]: SEMICONDUCTOR IB OUR MIDDLE NAME SEMICONOUCTOR INTEGRATED NETWORKE (BEMINETE'). TUNNEL DIODES. MESA AND ALLOY SILICON TRANSISTORS AND DIODES REGIONAL OPFICES: CHICAGO, ILLINOIS: EL EEGUNDO. CALIFONNIA: WESTWOOD. NEW JERSEV: TEWKS REGIONAL OPFICES: CHICAGO, ILLINOIS: EL EEGUNOO. CALIFONNIA: WESTWOOD. NEW JEREEV: TEWKS. bury, massachueetts: stamfono, comnecticut: towson. mantland: massapequa pank. new yonk

[^6]: CIRCLE 136 ON READER-SERVICE CARD

[^7]: CIRCLE 149 ON READER-SERVICE CARD

[^8]: Professional Societies
 Published Articles
 Minimum Salary Requirements (Optional)
 Use section below instead of Reader Service Card. Do not write personal data below this line. This section will be detached before processing.

 Circle Career Inquiry numbers of companies that interest you

 ELECTRONIC DESIGN • October 26, 1960

