			\mathbf{D}	\mathbf{E}	\mathbf{S}	\mathbf{I}	\mathbf{G}	\mathbf{N}

irends in Microwaves-A Staff Report...p 161

500 HOUR LIFE GUARANTEE*

Due largely in mproved brush desig.n. C.PPC size
8 DC motors qualify to catalogue specification after 500 + hours of continuous duty or 200.000 cycles of intermittent duty in controlled environments.

PRECISION CONSTRUCTION

Featuring a 12 -bar commutator ($5 / 10^{\prime \prime}$ dia.), stain
less steel ball bearings, and corrosion resistant materials. the DC. 8 family of motors is designed for miniature instrument systems. Weight $\mathbf{4 0}$ gms. Length 1.380" max., dia.. .750"

OUTSTANDING EFFICIENCY

The typical performance curves (below) exhibit a linear torque speed characteristic. The efficiencyup to 60% at .25 in . oz. torque-considerably surnasses that of other types of Servomotors
${ }^{\circ}$ without uvernaul

For full information, write or call: Sales Dept., 5050 State Road, Drexel Hill, Pa., MAdison 2-1000, TWX Lnsdwn, Pa., 1122(U), or our Representatives.

CLIFTON PRECISION PRODUCTS CO., INC.

ENGINEERS - Join a pioneer in the rotary components field. Write David D. Brown, Director of Personnel CIRCLE 1 ON READER-SERVICE CARD

COVER: The white dots on the face of the dominoes on the cover, paired with the graphic representation of the sine curves, show the ability of the new microwave signal source to double, triple, quadruple, and quintuple the device's basic microwave signal. The solid-state source replaces the klystron for any fixed-frequency application requiring up to 4 -w output.

Selected Topics In This Issue

Data-Processing and Computers
Five-In. Spaceborne Computer Under Development
IDEP Data-Exchange Plan Mini-
mizes Lab Duplication
Design Tape Recorders for Mini-
mum Size, Weight and Power
Initial Condition Circuit Allows
Analog Computer to 'Remem-
ber'

Mierowaves

Solid-State Microwave Signal Source
Trends in Microwaves-A Staff
Report161

Microwaves Invade New
Commercial Fields
Breakout in Microwave Antenna Designs166

New Tube for Agile, Reliable,
Powerful Microwave Sys-
tems
Advanced Components Spotlighted by Microwave Spectrum Squeeze
Test Equipment Developments Speed Microwave Programs

Semiconducłors

Epitaxial Process to Take Leading Role
Cascaded Transistors with Negative Feedback Make Ideal Amplifier Building Blocks ..

Sidelights of This Issue

Down the Microwave Trail

When ELECTRONIC DESIGN's editors, many months ago, began the microwove report which starts on p 161 of this issue, they found themselves with an embarrassment of riches. Holding down the length of the report, with its attendant frustrations, led them to several conclusions.
The major conclusion they reached was that a special and regular section was necessary to give the field the coverage it requires. That special section starts in this issue and will be a regular feature of ELECTRONIC DESIGN, appearing in every second issue.
Microwaves have long been of in tense interest to ED editors; indeed nearly two years ago a series on micro wave test equipment ran in the maga zine. But some aspects of the technology which would have been considered fantastic in those days are state-of-the-art today.
The microwave engineer, as Associate Editor Robert DeFloria points out in his editorial, must wear many hats. He must have a working knowledge of the widely diverse fields which he servesfields as far apart as meteorology, plasma technology, and plain old home cooking.
We believe this subject is vastly im. portant to the future of all areas of the world's economy and technology. To this end, we are inaugurating the special section called MicroWaves.

Send Us Your Design Decisions

On p 185 of this issue appears a fairly brief rundown on a new look in panel meters. As a development, it is no earth-shaker, but it is interesting and helpful.
Over the years, ED's editors have formed the opinion that the interesting ways that small problems are solved add up to a lot of big problems being solved. Hence, our regular Design Decisions department.
If you have put into use a clever and unusual idea of your own, send it along. If we use it, you'll have a double satis-fostion-the knowledge that you have helped someone else and the knowledge that you have made some money on the side.

will help guide POLARIS

to its target

Investigate the many advantages of custom or standard Weld-Pak high density circuit modules for your equipment design. Based on an MIT Instrumentation Laboratory packaging concept, Raytheon Weld-Pak modules provide exceptionally high reliability. For information please write Raytheon Company, Industrial Components Division, 55 Chapel St., Newton 58, Mass.

ERATE ELEGTBRE COMPAMY Bledranic. Tnstruments

- SWEEPING OSCILLATORS FREQUENCY MARKERS
- AUDIO SPECTRUM ANALYZERS
- PULSED CARRIER GENERATORS
- RANDOM NOISE GENERATORS

designed for the pulsed rf application
- True Turn-Off-($\mathbf{6 5}$ to $\mathbf{8 0 ~ d b}$ down)
- Sharp, Stable Pulses-(. 03 microseconds rise and decay)
- Video Pulses
- Trigger Circuits
- CW Generator

```
Frequency Range: \(10-80 \mathrm{mc}\), direct reading \(0.5 \%\) frequency dial. Pulso Width: Variable 0.2 to 20 microseconds.
Pulse Repefition: Variable 400 to 4,000 pps.
Price: \$795.00*
```


BAY Microlter
 (Cat. \#951-A)

- A 50-Megacycle

Vacuum-Tube Voltmeter

- Improved Stability

- High Impedance RF Probe
- 50 mc Amplifier

Frequency Range: $\mathbf{5 0} \mathbf{c p s}$ to $\mathbf{5 0} \mathbf{m c}$. Direct reading in volts and decibels.
Accuracy: $\pm 5 \%$ of full scale. Froquency responso, $\pm 1 \mathrm{db}$.
Voltage Range: 1 mv to $1-\mathrm{V}$ full scale in 7 ranges.
Input Impedance: Capacitance 5 mmf ; resistance loading dependent on
frequency (1 megohm af 1 mc , to 30 K ohms at 50 mc . No funing.
Price: \$645.00*
WRITE FOR CATALOG INFORMATION *All prices f.o. id. foctory.
KAYELECTRIC COMPANY
Dopf. ED-11
Maplo Avenue Pino Brook, N. J. Precision Electronic Instruments
for Laboratory and Production Line

CONTENTS FOR NOVEMBER 23, 1960 VOL. 8

ELECTRONIC DESIGN News

Hunter-Killer Submarine Joins Fleet
High Aerospace Growth Rate Seen for Decade
High-Sensitivity Resolution Seen for Image Amplifier
Conference Hears Proposal to Map Brain Waves
Spaceborne Computer to Fit 5-In. Cube
Washington Report
Factorial Test Design May Be Used By Army
Homemade" Electronic Tester May Save Hundreds Of Man-Hours
IDEP Data Exchange Plan Minimizes Lab Duplication
Heat Near That Of Sun With RF Plasma Torch
Transistorized DC Motors Moving Into Production
Epitaxial Process To Take Leading Role
Shipments Of U. S. Components Reach Another All-Time Hi....................
Japanese Electronic Exports To U. S. Continue To Rise High

The Many Faces of Microwaves . 51
An Editorial

Cascaded Transistors With Negative Feedback Make Ideal Amplifier
Building-Blocks
Transistor pairs with negative feedback are reduced to four basic forms

Test Equipment: Types and Characteristics-Part 3: Frequency Meters.
A survey and tabulation of the various frequency-measuring devices-
A. J. Reynolds

Encapsulating With Plastic Shells Simplifies Potting Process
Shells offer savings in time and money when components are encap-
sulated-M. Ross

Design Tape Recorders For Minimum Size, Weight and Power62

Many approaches can help cut power and size of magnetic tape re-
Many approaches can help cut p
Trends In Microwaves161Electronic Design mirrors the many faces of microwaves and samplesthe versatile products that are making possible the explosion in micro-wave applications.
Microwaves Invade New Commercial Fields161
Broadening applications make new demands on the designer'singenuity and adaptability
Breakoul in Microwave Antenna Designs
The press of advanced system requirements and availability of components and methods are causing breaks in traditional antenna optics.
New Tube For Agile, Reliable, Powerful Microwave Systems
Tube designers serve up the combinations of parameters needed for a variety of sophisticated systems-T. Bibbins
Advanced Components Spotlighted By Microwave Spectrum Squeeze Switches, filters and limiters can spell system operation and even system survival in crowded microwave environment-R. Terry, \mathbf{K}. Allen
Test Equipment Developments Speed Microwave Progress
Millimetric, standards, power and swept-frequency instruments open new areas, cut testing time-H. Poulter, J. Minck
Solid-State Microwave Signal Source 66
Replaces klystron for any fixed-frequency application requiring up to 4-w output.
Voltage-To-Frequency Converter 68
Device integrates input to measure average value over a selected time interval.
Design Decisions 185Super-Thin Panel Meter Uses PC Rotor, Nylon Pointer
Initial Condition Circuit Allows An Analog Computer To "Remember"
186
deas For Design 196Reactor Improves DC Motor Drive Regulation196196Simplified VTVM Range Divider
197
Two Relay Contacts Clear Integrator For Rapid Operation
199
Sensitive Pulsing Circuit Measures 10^{-15} Amp
206
Russian Translations 206
German Abstracts 208
Impedance Of Carbon-Film Resistors 208
210
New Products 70
New Literature 188
Patents 200
Books 204
Report Briefs 212
Standards and Specs 214
Careers 218
Your Career 218
Career Brochures 225
Advertisers' Index 228
NB BPA
J. Y. Copyright © Hoyden Publishing Compony, Inc.. 1960, 37,100 copies this issue.ELECTRONIC DESIGN • November 23, 1960

GETTING ENERGY "AROUND THE CORNER" HAS BEEN AN ENDURING PROBLEM FOR THE MICROWAVE ENGINEER DEALING WITH WAVEGUIDE. THE ROTARY JOINT. STANDARD EQUIPMENT ON HOMO-SAPIENS SINCE THE FIRST MODEL WAS TURNED OUT AT THE EDEN PLANT, IS THE OBVIOUS - IF DIFFICULT TO ATTAIN-ANSWER. CANOGA ROTARY JOINTS-IN-LINE AND RIGHT-ANGLE-PROVIDE, THROUGH THEIR UNIQUE DESIGN. AMAZING FLEXIBILITY FOR
 RADAR SYS TEMS AND ANTENNA MECHANISMS. IN BETWEEN ELBOW BEND. ING. WRITE CANOGA FOR COMPLETE SPECIFICATIONS. PRESSURIZED MODELS AVAILABLE THROUGHKu HIGHPOWER

ALL BANDS HIGH SPEED

뜯ー

canoga corporation/a subsidiary of underwood, van nuys, calif. and ft. walton beach, pla CIRCLE 4 ON READER-SERVICE CARD

Microwave Modulator Under Development

Work on Light Detector Disclosed at NEREM Meeting; Device Seen as Missing Link in Optical Communications

DEVELOPMENT work on a microwave modulator and light detector-the missing ingredient of a true optical communications sys-tem-was disclosed by Dr. Nicolaas Bloembergen of Harvard at last week's Northeast Electronics Research and Engineering Meeting in Boston. Dr. Bloembergen outlined the theoretical basis for such a device and described experimental work now under way to establish its feasibility.

Dr. Bloembergen's project bears a close family resemblance to his earlier work in develop-
ing the ruby maser and may, in fact, be employed together with an optical maser to form a complete optical communications system. Other maser experts, including Dr. Arthur L. Schawlow of the Bell Telephone Laboratories, are also experimenting with microwave light modulators, it was learned by Electronic Design.

Dr. Bloembergen emphasized that an operating device has not yet been built and expressed caution as to the early application of the modulator in a communications system. "Microwave
modulation of light will be achieved in the lab. oratory and will have laboratory applications, but it is a matter of speculation as to how useful it will be in engineering applications," he said. Lest this be unduly discouraging to systems designers, he quickly added that "We are at the point with this where masers were four years ago; engineers would do well to keep an eye on this work."

Three possible techniques for microwave modulation of light were described. They are:

First Super-Power Sonar Goes to Sea

Long-Range Submarine Sonar Joins Fleet for Trials, Adding to Navy's Antisubmarine-Warfare Confidence

WHAT is believed to be the nation's longestrange sonar, Raytheon's $\mathrm{BQQ}-1$ phasedarray, combination system, has gone to sea aboard the SSN Tullibee. Because the Tullibee has actually joined the fleet, the sonar, in effect, may be bypassing some normal evaluation stages. Rear Adm. L. M. Mustin, antisubmarine-warfare readiness executive of the Navy, in describing

"This country has a magnificent capability in ASW, with no close seconds. .." reports Admiral Mustin, the Novy's ASW executive.
the growing effectiveness of this country's anti-submarine-warfare efforts, reports that sonar ranges of 30 to 70 miles are looked for in current sea trials.
The 50 -ton BQQ-1 is an integral part of the Tullibee's hull, filling most of the bow and displacing the craft's forward torpedo tubes to midship. It is believed to comprise an electronically scanned linear array of lead-zirconate titanate transducers. The array is electronically phased, which provides sharp directivity. This directivity is important in achieving high sensitivity and great range.
The system, which is being developed by Raytheon under a $\$ 30$-million contract, is now being fitted into another nuclear submarine.
Admiral Mustin credits advances in magneticanomaly detection equipment along with longrange sonars in reporting on the high level of the Navy's ASW capability. He singles out development of total-field magnetometers for MAD systems and the use of data-correlation techniques during MAD operations as important advances. The admiral says data-correlation techniques are making it possible for single Navy planes to tow simultaneously several MAD-containing glider-like birds. In effect, each plane is provided with multiple sensors.

Because of new developments in ships, planes,
and techniques, as well as in electronic equipment, the Navy has a much greater capability in ASW than has any other naval force, the admiral says.
He calls detection the most critical phase of ASW operations, and reports that the Navy's advances in submarines have been much greater than its advances in ASW. This, he says, was partly a result of the Navy's emphasis on submarine offensive capability, however.
The admiral, who, as special assistant for ASW to the Chief of Naval Operations, directs the Navy's developmental activities in ASW, made the following points in an interview with Electronic Design:

- Further increases in normal and ASW capabilities of submarines can be expected now that previous standards of assigning space and weight allowances for various functions have been modified.
- The best way for designers in industry to learn what the Navy needs in ASW is through the National Security Industrial Association and its ASW committee. The Navy plans to continue working as closely as possible with the NSIA.
- Spending for antisubmarine warfare, which has climbed steadily in recent years, should continue to grow, particularly expenditures for electronics equipment. - -

(b)

(c)

Microwave light modulator could employ any of these geometries: (a) microwave modulation of magnetic circular dichroism; (b) modulation by optical Faraday rotation of the plane of polarization; (c) Heterodyne detection of microwave modulation of light. The photocurrent is modulated at an intermediate beat frequency.

- Modulation of circular dichroism in a paramagnetic crystal (such as ruby) by a microwave signal.
- Faraday rotation of the plane of polarization in a paramagnetic crystal by the magnetic field of a microwave signal.
- Faraday rotation of the plane of polarization by the electric field of a microwave signal. This effect is analogous to that in a Kerr cell, but is obtained in a solid (such as di-hydrogen phosphate) rather than in a liquid.
Each of the first two approaches requires liquid helium temperatures. The third method can be operated at room temperature.

Polarization Shift

limited for First Two Methods

In materials examined to date, the polarization shift obtainable by the first two methods is limited. Ruby, for example, permits a maximum shift of perhaps one deg with continuous modulation and a shift of 10 deg with intermittent modulation at durations ranging from 1 msec to $1 \mu \mathrm{sec}$. The effect per watt of power is quite small and increases only as the square root of the applied power. A major limiting condition here is the need for large cryostats to remove the energy due to the large microwave power levels required for polarization shifts.
lccordingly, rare earths in cubic-ion crystals and other materials are being tested in a search for substances having larger inherent polari-
(Continued on p 20)

INSTANTLY...
measure and supply DC voltages to 0.02%
with the KIN TEL DC voltage standard and null voltmeter
laboratory accuracy. The Model 301 is an extremely compact and accurate variable DC power supply and calibrated null voltmeter. It uses KIN TEL's proved chopper circuit to constantly compare the output voltage against an internal standard cell. As a DC voltage standard, it combines the stability and accuracy of the standard cell with the current capabilities and excellent dynamic characteristics of the finest electronically regulated power supplies. The self-contained null voltmeter indicates the voltage difference between the supply in the 301 and the DC source being measured, affording simple and rapid measurement of DC voltages to an accuracy of 0.02%.

PRODUCTION LINE SPEED. DC voltages can be measured as fast as changing ranges on a VTVM. Merely set the direct reading calibrated dials on the 301 to null out the unknown DC input voltage. The dial reading then indicates the unknown input voltage to within 0.02%. As a variable DC standard or power supply, the calibrated dials provide instant voltage selection to an accuracy normally attained only with standard cells. versatiluty. The KINTEL Model 301 is ideal for rapid and accurate production calibration of precision measuring instruments and DC power supplies...for design of DC amplifiers and complex electronic circuitry... as a computer reference or a versatile precision reference for calibration and measurement laboratories.

KIN TEL manufactures electronic instruments for measurement and control, and closed circult TV. Representatives in all major cities. Write for detalled Ilterature or demonstratlon.

5725 Kearny Villa Road, San Diego 11, Calif., Phone: BRowning 7.6700 Clrcle 5 ON reader-service card

important specifications

Output Voltage \& Current 1 to 501 volts at up to 20 ma Full Scale Meter Ranges (Zero Center)

DC Output Range $\pm 500,50$ volts
DC Input Range.............. $\pm 500,50$ volts
DC Null Meter Range . . $\pm 50,5,0.5,0.05$ volts Long Time Stability ± 100 parts per million Output Voltage Calibration $\pm 0.02 \%$ or 2 mv Output Hum and Noise Less than $100 \mu \nu$ RMS Line and Load Regulation 0.002% DC Output Impedance Less than 0.01 ohm Response Time.................... 0.2 millisecond Model 301 or Model 301 R (Rack Mount) Price $\$ 795$.

KINTEL
A DIVISION OF - 0) 1

MORE MEGAWATT CYCLES PER DOLLAR *

The Shockley 4 -layer diode offers you a fast, simple method for generating voltages up to 200 volts and pulse currents from 2 amps to 100 amps. Turn on time-just $0.1 \mu \mathrm{~s}$.

This reliable, solid state device gives you simplicity along with small size, light weight, drastically reduced power consumption and high speed.

These unique advantages make the Shockley 4-layer diode an ideal device for pulse generators, pulse amplifiers, pulse modulators, squib firing
detonator circuits, for triggering thyratrons, magnetrons, traveling wave tubes...

Shockley 4 -layer diodes have been proved in many, many industrial and critical military applications. If you have a circuit problem involving the fast switching of high power, the advantages and capabilities of the Shockley 4-layer diode could help you solve it. Call your Shockley representative or write for application information.
*Even the smallest Shockley 4 -layer diode will handle 2 ampere pulses. (The unit price for 500 Type D diodes is $\$ 4$.)

Martin's Optically Pumped Maser Employs Argon-Buffered Cesium

AN OPTICALLY pumped microwave naser employing argon-buffered cesium has been successfully operated at the Martin Co., Orlando, Fla. The experimental unit develops about $3 x$ $10^{-16} \mathrm{w}$ at $9,192 \mathrm{mc}$ and reportedly has a line width of less than 1 cps .

According to Martin scientists, the new maser is a likely candidate for use in frequency stand ards and could be an order of magnitude more stable than ammonia masers. Experiments to de termine the time coherence of the new unit ar now under way. "There is no question that we have achieved maser emission," a Martin scientist told Electronic Design, "but line width is only an indirect measure of coherence, and it is most important that we measure coherence directly by interferometry methods."

Spokesmen for the company were confident that output of a more refined device could be as high as $10^{-7} \mathrm{w}$. "Our experimental cell was very small and the interior walls were uncoated; larger device with paraffin-coated walls would give an appreciable increase in output," a Martin scientist said.

Optically Pumped Thallium Maser Also Reported in Development

An optically pumped thallium maser is also reported in development by the company. This device would operate at 22 kmc and may yield higher power outputs than the cesium maser.
In the experimental cesium maser, a quartz cell containing the cesium vapor is mounted in a cylindrical $T E_{011}$ cavity ($Q=4,000$). Pumping light (8521 A) from an Osram cesium-arc lamp is admitted through slots parallel to the current lines. The output is due to population inversion of the cesium atoms between the $F=4$ and $F=3$ energy levels, with radiation occurring as the atoms return to the $F=3$ level.
The inversion process is apparently not well understood, Martin scientists admitted, since maser action was not affected by polarized light. weak magnetic fields, or the presence of light other than 8521 A . It is believed that self-absorption in the lamp of two hyperfine components of the 8521A line in different proportions results in a differential of pumping energies that causes population inversion.
Martin scientists responsible for the cesium maser development include V. E. Derr, J. J. Gal lagher, R. E. Johnson and A. P. Sheppard. $=$

piffer in Technique

'Storage Box' Lined with Paraffin Characterizes Harvard's Device

HROUGII the use of a paraffin-lined "storage box," experimenters at Harvard University have achieved maser action in a stream of atomic hydrogen. The new hydrogen maser will be used in a $1,420-\mathrm{mc}$ time standard which will reportedly be more than 100,0000 times more accurate than the best existing atomic clocks. A line width of less than 1 cps is claimed.
Hydrogen atoms from a Wood's discharge source pass through a six-pole state selector magnet which focuses the high energy atoms into a paraffin-coated quartz bulb. The bulb, which forms the maser chamber, is located in a cylindrical $T E_{011}$ rf cavity $(Q=60,000)$ to which is coupled rf energy at the transition frequency of the atoms.

Paraffin Coating Has Low Interaction

With High-Energy Hydrogen Atoms
The virtue of the paraffin coating is in its low interaction with the high-energy hydrogen atoms. A sufficient number of high-energy atoms to give a usable output are thus accumulated within the chamber. Interaction times of 0.3 sec with the rf field have been observed. Output power is less than $10^{-12} \mathrm{w}$. Each hydrogen atom can undergo at least 10,000 collisions with the paraffin without significant loss of energy.
Oscillation and stimulated emission have both been observed. The latter is obtained by suppressing oscillation through such means as shortening the interaction time or loading the cavity. Emission is then triggered by the presence of an rf signal at the transition frequency.
The hydrogen maser was developed by H. M. Goldenberg, D. Kleppner and N. F. Ramsey, all of Harvard, under sponsorship of the National Science Foundation and the Office of Naval Research. ■ -

Hydrogen maser uses paraffin-lined quartz bulb to ac umulate high-energy hydrogen atoms from discharge source and magnetic-state selector. Rf signal in cavity stimulates emission at the $1,420-\mathrm{mc}$ transition fre quency of hydrogen.

In addition to their "greater-than" conversions at high temperatures, the new Bulova Servo Amplifiers promise maximum flexibility in systems design with a minimum of ounces and inches.

The all-silicon transistors potted in these amplifiers assure continuous operation from $-50^{\circ} \mathrm{C}$. to $+125^{\circ} \mathrm{C}$. and provide maxi-

Servo Amplifiers exhibit outstanding performance, portray the following characteristics: shock and vibration resistance, thermal and electrical stability.

If your requirement for a 3.5, 6 or 12 w servo amplifier is a little more sophisticated, a bit more demanding than the average, take it to Bulova. There's a stock mum wattage output per unit volume and weight. Under varied unit suited to your needs and budget. For additional data write and severe environmental and operating conditions, Bulova Department 1671, Bulova Electronics, Woodside 77, New York. CIRCLE 7 ON READER-SERVICE CARD

One of the pulse generators acts as a trigger source for the second, third and fourth units. Except for the repetition rate (to 2 mc) the delays, widths, output, pulse position, polarity and the rise and fall time are completely independent of each other. The stacked units may be placed in a $19^{\prime \prime}$ rack type cabinet. Each of the four B7-B models can be disassembled and refurned to laboratories for use as individual pulse generators, thus eliminating the necessity for the expensive multi-pulse instruments working from a common power supply.

Rutherford introduces a complete line of accessories such as: mixer assemblies, adaptors, extension cables, terminations, attenuators, air filter assemblies, adaptors, extension cables, terminations, attenuators, air filter
end covers, designed to greatly enhance efficiency and performance, ease of operation for use in pulse instrumentation. Write for complete catalog and price list.

剈畆

Rutherford

Dept. ED 1123 - 8944 Lindblade Street - Culver City, California - TWK.CVR-CY-4133 pulse generators / pulse systems / accurate time delay generators CIRCLE 8 ON READER-SERVICE CARD

NEWS

High Aerospace Growth Rate Seen

Microminiaturization Gain Stressed in AIA Report; Use of Molecular Concepts to Start in Five Years

PROJECTED requirements for major classes of electronic equipment in space, missile, and aircraft systems through 1970 are estimated in a report prepared by the Aerospace Industries Association, 7660 Beverly Blvd., Los Angeles, Calif.
The increasing trend to automated systems and electronic techniques presented by the survey, titled "1960 Aerospace Forecast of Technical Requirements," gives an over-all view of a high growth rate for the industry.
In communications, the report stresses the shift from conventional equipment to microwave systems and also predicts an increase in the use of very low and extremely low frequencies. This prediction is tempered with the comment that despite less relative use of the mid-frequencies, sales should not taper off here because of the over-all increase in communications equipment

Use of microminiature electronics will begin in a small way in 1961, rising to nearly 20 per cent of airborne electronics by 1970, the report estimates. The use of molecular concepts is expected to start in 1965. A need for parts to operate at temperatures above 125 C
is seen, but even by 1970 this require ment is expected to apply only to about 5 per cent of total airborne electronics, according to the AIA

Increasing complexity and speed of airborne vehicles will necessitate data equipment capable of handling much more information at faster decision rates. Simultaneously payload restrictions will lead to smaller, more compact computers. Possible approaches that may lead to machines that meet these needs are deposited film circuits, molecular electronics, thin magnetic film memories and bio-electronics the report predicts.

Storage requirements are particularly stressed, and a need for large capacity inexpensive, random access devices of compact size is cited.
Stepped-up needs for sensors and re mote monitors for physiological and environmental factors, along with the necessary telemetry instrumentation to return data to control centers, is seen over the next decade. A steady rise in the use of such equipment until 1966, when requirements are expected to be accelerated.

A decline in the use of conventional dial-pointer type indicators is expected,

Increased bandwidths, higher data rates in telemetry and data links, and ability to pierce the ionosphere are some of the reasons given in the AIA report for the projected increase in relative develop. mental activity in the higher frequencies.

Gradual shifts toward microminiaturization concepts, starting next year, are predicted in this use-trend comparison for airborne electronics. Planetary exploration in the 1970-80 period will necessitate even further size reductions, the AIA says.
and in general the amount of cockpit panel space devoted to displays should taper off the AIA believes. There will be a shift to panoramic situation displays and other integrated type indicators as airborne systems tend toward automated control by a centralized digital computer system. The use of electroluminescent lighting is expected to take over from conventional lighting, with tri-color E-L displays indicating warning modes.

Surveillance to Improve Radar, IR, TV, Pholo Methods
Startling improvements in tracking sensitivity can be expected for surveillance systems over the next decade. Many of the important adrances already conceived for radar, infrared, TV and photographic systems have not yet been reduced to practice, the AIA points out, therefore the extent of these advances are somewhat predictable. Major improvements in resolution of both ground and airborne radar systems are expected. Resolution of several microradians is necessary to observe significant details with airborne surveillance systems, the report says.
As resolution improves, the handling of large amounts of high-resolution data will become a vital problem, according to the report.
Present data-storage equipment, such as film or magnetic tape systems, are called cumbersome. Phosphor and electrostatio techniques show promise for needed improvements, the AIA feels.
New wide bandwidth encoding methods, and techniques for transmission of signals with bandwidth over 1 kmc are required. Displays presenting a composite picture synthesized from many measurements is another need cited.
Automated manufacturing test equipment, and in supporting test equipment, is also expected to grow significantly over the next decade. Training equipment needed to prepare men for space missions will also be increasingly required, with a sharp increase beginning in the 196.5-66 period, the AIA predicts.

PHILCO ANNOUNCES

NEW HIGH-SPEED SWITCHING TRANSISTOR IN TO-18 CASE...
MASS PRODUCED with ABSOLUTE UNIFORMITY to the TICHTEST SPECS IN THE INDUSTRY

This new Philco Germanium MADT is specifically designed for high-speed switching applications and is the ideal NOR logic transistor. The MADT Precision-Etch* process makes it possible to manufacture the 2N779 with the tightest control of parameters of any transistor in the entire industry. This extreme uniformity greatly simplifies the design of high performance, low cost switching circuits. For complete data and information, write Dept. ED112360.

[^0]| MADT•2N779 abSOLUTE MAXIMUM RATINGS | | | | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| ELECTRICAL CHARACTERISTICS ($\mathbf{~}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$) | | | | |
| Static Characteristics | min. | Typ. | x. | |
| | | | | μ |
| Base Voltage, VEE ($\left.\mathrm{lc}_{\mathrm{c}}=-10 \mathrm{ma}, \mathrm{Iz}=-0.5 \mathrm{ma}\right)$ | 0.29 | 0.33 | 0.36 | |
| Collector Saturation Voltage, $V_{C E}(S S T)$) ($\left.\mathrm{lc}=-10 \mathrm{ma}, \mathrm{I}_{\mathrm{s}}=-0.5 \mathrm{ma}\right)$ | . 09 | 0.12 | 0.16 | voll |
| High Frequency Characteristics | | | | |
| | | 1.9 | 2.5 | $\mu \mu \mathrm{f}$ |
| | | 6.0 | 10 | $\mu \mu \mathrm{l}$ |
| Gain Bandwidth Product, if (V $\left._{\text {cE }}=-5 y_{1} \mathrm{I}_{\varepsilon}=7 \mathrm{ma}\right)$ | 320 | 450 | | me |
| Switching Characteristics | | | | |
| Riss Yime, $\mathrm{Tr}_{\mathrm{r}}\left(\beta_{c}=10\right)$ | | 13 | 18 | $\square_{\text {mace }}$ |
| Holo Storago factor, K^{\prime} 。 | | 39 | 50 | $\square \mu s \mathrm{c}$ |
| Fall flime, if (3 co = 10) | | 10 | 18 | \#useo |

NEWS

Infrared Horizon Sensol Me

System Called Accurate to 0.1 Deg; Device Similar to Those in Wild Cat

AN INFRA RED horizon sensor said to lave an optical field of more than 90 deg and a system accuracy of 0.1 deg is reported in procluc. tion in model-shop quantities at General Elec. tric's Advanced Electronic Center, Ithaca, N. Y. The device is similar to those in the Wild Cat series of IR horizon sensors under developnient at GE, the company reports. In this series, gear drives have been eliminated to increase accuracy.
Two other sensors in the Wild Cat series are also designed for wide-field-of-view operations. Wild Cat I is said to be able to scan a $360-\mathrm{deg}$ horizon. It has one sensor head, which is used in averaging the effects of horizon discontinuity. To reduce weight, parts, and power consumed by the system, only one channel of electronics is used. However, according to the company, to function properly the sensor must have an unobstructed view of about 260 deg .

Two Sensor Heads

Mounted 180 Deg Apart
Wild Cat II is said to be designed with two sensor heads mounted 180 deg apart. A rotating prism in each sensor head produces a conical scan of 90 deg or more. The company reports that although the system requires twice the components than Wild Cat I, it may be incorporated in nearly all vehicles.
In addition to the Wild Cat series GE is reportedly producing several versions of Tom Cat infrared horizon sensors. Tom Cat III,

Tom Cat III infrared horizon sensor being aligned at General Electric is part of the company's Tom Cat series of sensors. Computer box is mounted to left and below the three sensor heads, which are in aluminum housings.

Measures Wide Angle

shown in the photograph and believed being developed under a Lockheed subcontract for the Midas surveillance satellite, consists of three sensor heads and a computer box. Over-all weight is said to be less than 15 lb , and accuracy, greater than 0.5 deg.
Tom Cat I, which contained three sensor heads and which weighed 17 lb exclusive of containers, consumed 10 w, GE states. Accuracy was 1 deg. In Tom Cat II, accuracy is said to have been increased to 0.75 deg .
The company reports that it has under development a Bob Cat series of IR horizon sensors, which will be similar to Wild Cat sensors. The Bob Cat units will have three sensor heads combined into one package. With only one motor the Bob Cat sensor is expected to weigh about 8 lb and require about 8 w of power. ■ ■

Japanese Electronic Parts Show Draws 125 Participating Firms

Some 125 companies in 248 booths took part in the 1961 Japanese Electronic Parts Show held in Tokyo last month. There were 50 more booths at the show this year than in 1960 .
The show, as in past years, was dominated by parts and products for consumer electronics.
One highlight was the "mirror phone" speaker shown by Nippon Onkyo Denki Co. This hi-fi speaker is reportedly made with specially designed and produced cone paper.
Another attention getter was a highly reliable, stable-deposited film resistor made by Riken Dengu Seizo Co. The resistor, said to be superior to composition types, is available in $0.5-, 1-$, and 2-w sizes. Resistance values are 10 ohms to 1 meg , 10 ohms to 2 meg , and 10 ohms to 3 meg .
A high flux-density material for use in horizontal output transformers was shown by TDK Electronics Co. The material is reportedly able to produce flux densities of 4,300 to 4.800 gauss. According to the company use of the material in TV set transformers results in minimum fluctuation in high-voltage circuits, horizontal amplitude, B voltage, damper current, booster voltage, and in the operational condition of the horizontal output tube. In addition, the horizontal output transformer itself can be made smaller than prevously possible because of the material.
An automatic tuner shown by Matsushita Electric Manufacturing Co. uses a variable diode tu fine-tune TV set picture and sound.

Sprague, the pioneer in the production of solid-electrolyte tantalum electrolytic capacitors, now offers prompt delivery on production quantities of all standard ratings. New expanded facilities end production delays in your assembly of minified transistor circuits.

Typical of these Tantalex Capacitors is the Type 150D shown above. Its tiny sintered anode is impregnated with a solid, noncorrosive, semi-conductor material which cannot leak under any circumstance. It combines true miniaturization with electrical stability previously unobtainable in an electrolytic capacitor of any type.

Thermal coefficient of these capacitors is sufficiently low and linear so that for the first time a circuit designer can think of an electrolytic in terms of parts per million capacitance change. Nominal value is $+500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The capacitor may be used without derating over a range from $-80^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, or to $125^{\circ} \mathrm{C}$
with appropriate derating, a temperature at which no other electrolytic has proved useful.

Solid construction permits the Type 150D to withstand the severe shock and vibration encountered in missile and ballistic applications. Hermetic sealing makes it completely immune to humid atmospheric conditions.

Complete performance data covering the wide range of sizes and ratings are in Engineering Bulletin 3520D, available on letterhead request to the Technical Literature Section, Sprague Electric Company, 347 Marshall Street, North Adams, Massachusetts.

* \star *
A. You can get off-the-shelf delivery up to 499 pieces from your local Sprague Industrial Distributor.

BPRAGUE COMPONENTS:
CAPACITORS - RESISTORS - MAGNETIC COMPONENTS • TRANSISTORS INTERFERENCE FILTERS • PULSE NETWORKS • HIGH TEMPERATURE MAGNET WIRE CERAMIC-BASE PRINTED NETWORKS - PACKAGED COMPONENT ASSEMBLIES
the mark of reliability

NEWS

Infrared Horizon Senso

System Called Accurate to 0.1 Deg; Device Similar to Those in Wild Cat

AN INFRA RED horizon sensor said to lav an optical field of more than 90 deg and system accuracy of 0.1 deg is reported in protuc tion in model-shop quantities at General Elec tric's Advanced Electronic Center, Ithaca, N. Y The device is similar to those in the Wild Cat series of IR horizon sensors under developmient at GE, the company reports. In this series, gear drives have been eliminated to increase accuracy Two other sensors in the Wild Cat series are also designed for wide-field-of-view operations Wild Cat I is said to be able to scan a $360-\mathrm{deg}$ horizon. It has one sensor head, which is used in averaging the effects of horizon discontinuity. To reduce weight, parts, and power consumed by the system, only one channel of electronic is used. However, according to the company, to function properly the sensor must have an unobstructed view of about 260 deg.

Two Sensor Heads

Mounted 180 Deg Apart
Wild Cat II is said to be designed with two sensor heads mounted 180 deg apart. A rotating prism in each sensor head produces a conical scan of 90 deg or more. The company reports that although the system requires twice the components than Wild Cat I, it may be incorporated in nearly all vehicles.
In addition to the Wild Cat series GE is reportedly producing several versions of Tom Cat infrared horizon sensors. Tom Cat III,

Tom Cat III infrared horizon sensor being aligned at General Electric is part of the company's Tom Cat series of sensors. Computer box is mounted to left and below the three sensor heads, which are in aluminum housings.

Measures Wide Angle

 eved being developed under a Lockheed subcontract for the Midas surveillance satellite, consists of three sensor heads and a computer box. Over-all weight is said to be less than 15 lb , and accuracy, greater than 0.5 deg .Tom Cat I, which contained three sensor heads and which weighed 17 lb exclusive of containers, consumed 10 w, GE states. Accuracy was 1 deg . In Tom Cat II, accuracy is said to have been increased to 0.75 deg .
The company reports that it has under development a Bob Cat series of IR horizon sensors, which will be similar to Wild Cat sensors. The Bob Cat units will have three sensor heads combined into one package. With only one motor the Bob Cat sensor is expected to weigh about 8 lb and require about 8 w of power. - .

Japanese Electronic Parts Show Draws 125 Participating Firms

Some 125 companies in 248 booths took part in the 1961 Japanese Electronic Parts Show held in Tokyo last month. There were 50 more booths at the show this year than in 1960 .
The show, as in past years, was dominated by parts and products for consumer electronics.
One highlight was the "mirror phone" speaker shown by Nippon Onkyo Denki Co. This hi-fi speaker is reportedly made with specially designed and produced cone paper.
Another attention getter was a highly reliable, stable-deposited film resistor made by Riken Dengu Seizo Co. The resistor, said to be superior to composition types, is available in $0.5-1$-, and 2-w sizes. Resistance values are 10 ohms to 1 meg , 10 ohms to 2 meg , and 10 ohms to 3 meg .
A high flux-density material for use in horizontal output transformers was shown by TDK Electronics Co. The material is reportedly able to produce flux densities of 4,300 to 4.800 gauss. According to the company use of the material in TV set transformers results in minimum fluctuation in high-voltage circuits, horizontal amplitude, B voltage, damper current, booster voltage, and in the operational condition of the horizontal output tube. In addition, the horizontal output transformer itself can be made smaller than previously possible because of the material.
An automatic tuner shown by Matsushita Electric Manufacturing Co. uses a variable diode tu fine-tune TV set picture and sound.

Sprague, the pioneer in the production of solid-electrolyte tantalum electrolytic capacitors, now offers prompt delivery on production quantities of all standard ratings. New expanded facilities end production delays in your assembly of minified transistor circuits.
Typical of these Tantalex Capacitors is the Type 150D shown above. Its tiny sintered anode is impregnated with a solid, noncorrosive, semi-conductor material which cannot leak under any circumstance. It combines true miniaturization with electrical stability previously unobtainable in an electrolytic capacitor of any type.

Thermal coefficient of these capacitors is sufficiently low and linear so that for the first time a circuit designer can think of an electrolytic in terms of parts per million capacitance change. Nominal value is $+500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The capacitor may be used without derating over a range from $-80^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, or to $125^{\circ} \mathrm{C}$
with appropriate derating, a temperature at which no other electrolytic has proved useful.

Solid construction permits the Type 150D to withstand the severe shock and vibration encountered in missile and ballistic applications. Hermetic sealing makes it completely immune to humid atmospheric conditions.
Complete performance data covering the wide range of sizes and ratings are in Engineering Bulletin 3520D, available on letterhead request to the Technical Literature Section, Sprague Electric Company, 347 Marshall Street, North Adams, Massachusetts.

You can get off-the-shelf delivery at factory prices on pilot quantities
up to 499 pieces from your local Sprague Industrial Distributor.

BPRAGUE COMPONENTB:
CAPACITORS • RESISTORS - MAGNETIC COMPONENTS • TRANSISTORS INTERFERENCE FILTERS • PULSE NETWORKS • HIGH TEMPERATURE MAGNET WIRE CERAMIC-BASE PRINTED NETWORKS - PACKAGED COMPONENT ASSEMBLIES

SPRAGUE
the mark of reliability

how do you play

the numbers game?

The current numbers game consists of seeing how many components you can wedge into a small space. But there's a catch to it.
Some circuit modules may seem small until you string them together and find that interconnections and supporting structure take more space than the modules themselves. That's why it's important, in evaluating miniaturization, not to consider the module size alone, but to be concerned with the over-all size, including module, interconnections, and supporting structure.

New EECO MINIWELD circuit modules are designed with over-all system size in mind. They offer optimum miniaturization not only of modules, but also of interconnections and supporting structure. Add to this the reliability of proven circuits incorporating readily available standard catalog components rather than hard-to-get specials, the superior strength of welded rather than soldered connections, and you have an unbeatable combination of advantages

Write, wire, or 'phone today for detailed information on the revolutionary new MINIWELD space-saving package.

ENGINEERED ELECTRONICS COMPANY
1441 EAST CHESTNUT AVENUE - SANTA ANA, CALIFORNIA
KImberly 7.5651

NEWS

Panel of specialists in nuclear and magnetic resonance techniques at the 13th Annual Con. ference on Electrical Techniques in Medicine and Biology discuss latest developments in reso nance spectroscopy. Right to left: R. S. Codrington, Schlumberger Corp. and chairman of the session; William Hodgson, American Cyanamid; standing is J. L. Ternberg, Washington University; A. A. Bothner-By, Mellon Institute; Walter Gordy, Duke University; Martin Carstens, Naval Research Laboratories, and R. L. Bowman, National Institutes of Health. Dr. Ternberg is explain ing that electron-spin resonance has enabled researchers to detect jaundiced liver condition through analysis of liver at atomic level.

Hear Proposal To Map Brain Waves

Correlation Processing Would Be Used In System Outlined at Washington Meeting

APROPOSED method of mapping neuron activity in the human brain would use signal-processing techniques to locate specific neurons anywhere in the brain. Once located, statistical methods would be used to construct a map of brain activity.
The design of this system was one of many developments described at the 13th Annual Conference on Electrical Techniques in Medicine and Biology, held last month in Washington, D.C.
The brain-mapping system, proposed by W. O. Brooks and H. D. Ervin, RamoWooldridge Div., Thompson RamoWooldridge, Inc., Canoga Park, Calif., would use frequency and phase correlation in conjunction with a precision magnetic delay generator to locate source of neuron signals. The technique has been submitted to the company's patent department for evaluation and may be proposed to outside organizations for support. Mr. Brooks said.

Reference Points on Scalp

 Would Help Locate Damaged NeuronsOne function of the system would be to detect and locate damaged brain neurons with respect to reference points on the scalp surface. Mr. Brooks calls this part of the system NULOR, for Neuron Locating and Ranging. The
other function would be to map out location of damaged neurons and all other points that can be correlated according to frequency and phase. This is called BRAMATEC, for Brain Mapping Tech. niques.
Basis of the locating system is the neuron-conduction system of the brain. Waveform of the measurable ac voltages generated by the billions of brain neurons constantly discharging is determined by the number of simultaneously discharging neurons and the rate at which they are triggered. Specific and known waveforms may represent normal brain activity or may be typical of certain disorders. Abnormal activity originates from a single or small group of irritated neurons, which can create a miniature explosion in the brain. Signals from this explosion, or other signals, can travel to the scalp by neuron conduction.
Signals that find their way to the scalp by passing from one triggered neuron to another can then be detected. However, phase characteristic changes with each new neuron triggered, so the signal arriving at the scalp does not retain its original phase characteristic. It has been shown, though, that in some seizures negligible phase shift occurs over equal distances. This indicates that some signals travel directly from the
(continued on p 14)

ELECTRONIC DESIGN

CIRCLE 12 ON READER-SERVICE CARD $>$
ell counfer, actually an indicotor of particulate concentration, uses on averaging process to measure automatically the fraction of time that paricles are present in a volume.

Optical system for blood cell counter inspects sample in chamber, which is dark-field illuminated. Light eaches objective only if scattered by part cle in chamber.

This is the "New Reliability." It is the goal of the Fairchild Semiconductor Corporation contract from Autonetics, a division of North American Aviation, Inc. Its purpose: to insure infallible guidance in the event that it becomes necessary to use America's most powerful deterrent weapon, the MINUTEMAN ICBM. Autonetics is an associate prime contractor to the Air Force on MINUTEMAN. It has assigned Fairchild the task of achieving unprecedented reliability in silicon transistors.

A wholly owned subsidiary of Fairchild Camera and instrument Corporation

545 WHISMAN ROAD • MOUNTAIN VIEW, CALIFORNIA

ONLY ONCE
 IN 10,000 TRANSISTOR-YEARS MAY ONE OF THESE TRANSISTORS FAIL

Proposed system for locating specific neurons in brain receives signals at variable-delay generator. With generotor set at zero relative delay, a fre-quency- and phase-correlatable signal on the two inputs will arrive at the corelator and give an output. The correlator and threshold circuit reject other signals and remove noise. Fine correlaion may be made by adjusting the generator to observe the peak of correlation as displayed by the paper recorder. Once signal source is located in erms of points on the scalp, mapping of brain waves is possible.

1

[^1]

New mass－produced version offers many improvements

－New long－life dynode surface
－Exceptional stability under dynode overload
－Relaxed restrictions on dynode voltage
－Lowered threshold voltage require－ ments
－Output normalized，in or out of phase
－Relaxed regulation requirements fo heater voltage
－Tested for shock and vibration
－Coil heater and high－conductivity gold－plated base pins
－Dual cathode leads for h－f operation
－Standard 9－pin miniature base

NO OTHER TUBE
CAN

7548

SOLVES

CIRCUIT PROBLEMS

Enthusiastic response to the CBS 7548 established two major facts：
1．Keen interest in a practical，versatile secondary－emission tube．
2．Its limitless capabilities for simplifying and solving a wide range of circuit problems ．． from fast－rise－time pulse amplifiers and generators to wideband distributed amplifiers．
This new mass－produced version of the CBS 7548 easily outperforms conventional tubes and transistors，incorporates many new features and improvements based on cus－ tomer requirements．Check the facts．Better still，order the CBS 7548 and Technical Bulletin E－393A．Put this problem solver to work in your problem circuits．

CBS

industrial tubes

CBS ELECTRONICS，Danvers，Mass． A Division of Columbia Broadcasting System，Inc．

Sales Offlces：Danders，Mass．， 100 Endicott St．，SPring 4－2360 Newark，N．J．， 231 Johnson Ave．，TAlbot 4－2450 • Melrose Park， Ill．， 1990 N．Mannheim Rd．，EStebrook 9－2100－Los Angeles， Calif．， 2120 S．Garfield Ave．，RAymond 3－9981－Allanta，Ga．， Cary Chapman \＆Co．， 600 Truseo Way，S．W．，PLaza 8－4506 Minneapolis，Minn．，The Heimann Co．， 1711 Hawthorne Ave．，
FEderal 2－5457．

NEWS

source to the scalp，making it possible to mea ure phase differences of a signal by taking meas ure ments from different positions on the scalp．

Surface Points Receive Signals
 From a Single Source

In practice，two electrodes placed，for in stance，in the center of the forehead and at the peak of the crown，would receive signals from a single source．Through standard correlation tech． niques and methods of adjusting path－delay dif ferences by variable magnetic－delay generators， all out－of－phase unrelated signals would be ignored．

At the same time it would be possible to cor－ relate identical frequencies with related phase characteristics generated by an irritated neuron． The neuron would generate a repetitive signal This would make it possible to obtain data well below noise level by long－time－constant filtering and the use of many samples．
Signals measured with electroencephalographs have typical repetition rates of 3 to more than 30 cps ．A 3 －cps wave would exhibit a correlation function of about $300-\mathrm{msec}$ width．This would represent the widest correlation function，since it corresponds to the lowest frequency．

Mr．Brooks reports that at the present time， only about 10 per cent of data appearing in EEC charts are interpretable．He says that use of the system he and Mr．Ervin propose would clean up EEG charts by eliminating records of useless signals like those resulting from muscle artifacts， hum．spurious signals，and brain waves which cannot be correlated．
Though no great problems are anticipated in designing and producing the equipment for the system，Mr．Brooks reports，an extremely accu－ rate and stable magnetic relay generator would be required．

Short－Range FM Device Developed
 To Telemeter Physiological Data

Another device described at the meeting was developed to telemeter data from an animal to a recording station．Developed by R．H．Mattson and M．S．Ulstad，Iowa State University，Ames， Iowa，the system has three channels and a range of about 1 mile．The transmitter is worn ex－ ternally by an animal．It weighs about 1 lb and measures $6 \times 4 \times 3$ in．
The system has three voltage－controlled oscil－ lators，which operate on different frequency ranges so that all three signals can be added to form a single signal for modulating a $105-\mathrm{mc}$ car－

JetStar Has Rollaway Nose Cone

Nose cone of the Lockheed JetStar is built on tracks so it can be rolled forward and backward, making electronics equipment accessible for maintenance.

Noise Generators

For Precise Measurement of Noise Figure at all frequencies from 12 mc to 40 kmc .

The AIL Type 70 Series of Noise Generators provide:

- Most complete frequency coverage available
- Secondary standard of relative excess noise temperature
- Useful for both automatic and manual measurements

Broad Selection

- Eight waveguide units covering 2.6 to 40 kmc
- One coaxial unit covering 0.2 to 2.6 kmc
- Two Diode Units each covering 12 to 250 mc
- Relative excess noise temperature: 15.3 db
- Accuracy: $\pm 0.25 \mathrm{db}$: 50 ohm output
- Hot-Cold Body Standard available

All gas discharge types utilize an argon tube and have an output of $15.28 \pm 0.25 \mathrm{db}$.

Maximum Usability . . . As your frequency requirements vary, your high standard of quality control may be maintained by merely adding to your selection of AIL Type 70 Noise Generators to cover the additional ranges. This is possible because of the common power and connector requirements on all models.

With the exception of the Type 70 Hot-Cold Body Standard Noise Generator, all models may be powered by the Type 74 Automatic Noise Figure Indicator for continuous automatic measurements or by the Type 71 Power Supply for manual measurements.

Write for complete descriptive literature.

NEWS

Only Kuthe makes a complete line of high power, small-size Hydrogen Thyratrons 4 types covering power requirements from 1 megawatt to 33 megawalts . . . and more under development!
Long life ... dependability under rugged conditions . . . ceramic-metal construction maximum power to size and weight ratio . . designed and manufactured by the most experienced maker of hydrogen filled tubes.

For full technical information,
circle Reader Card.

	kU 71	$\begin{array}{r} \mathrm{KU} 72 \\ 7665 \end{array}$	$\begin{gathered} \mathrm{KU} 71 \\ 7666 \end{gathered}$	$\begin{gathered} \hline \mathrm{KU} 74 \\ 7667 \end{gathered}$
Performance factor $\times 10^{\circ}$)	40	70	200	300
Peak Power Output megawatts	1.0	3.50	12.50	33.0
Forward Anode Voltage kilovolts	100	200	25.0	33.0
Peak Anode Current Amperes	200	350	1000	2000
Average Anode Current Amperes	200	300	1.5	40
Height Inches	2.25	3.00	5.75	110
Oiameter Inches	1.37	1 1.75	3.00	450

ITIT electroon tuee ofpartment Components Division
INTERNATIONAL TELEPHONE \& TELEGRAPH CORPORATION

Space Digital Computer

Kearfott Engineers' Design Goals

 Also Include Six-Month ReliabilityAMINIATURIZED digital computer ain:ed at space flight needs two years from now is under early phases of development at Kearfott Div., General Precision, Inc., Clifton, N.J.

Design goals include small size (a 5 -in. cube) 6,000 -word memory, $50-\mathrm{mc}$ clock rate, $20-\mathrm{w}$ power requirement, and six-month reliability.

Project head Irving J. Lieberman said a variable word length made up of 10 -bit blocks will cut the memory waste space down to between 5 and 10 per cent. Full 40 -bit words will be programed for space navigation-accuracy while only a single 10 -bit block word (slide-rule accuracy) might be used for lesser vehicle housekeeping tasks. The 3 lb . memory drum will be gas-suspended to withstand acceleration and a smaller "scratch pad" core buffer with 0.1-0.5 $\mu \mathrm{sec}$ access time will link it to the rest of the computer.
The computer will be designed for real-time control of vehicle functions and will be compatible with Kearfott's inertial systems. Digital transducers and on-off actuators would probably be used in the control loops, Mr. Lieberman said.

Six-Month Reliability Goal

Is 99 Per Cent Confidence
The reliability goal is 99 per cent confidence that the computer still be providing adequate vehicle control after a six-month interplanetary journey, Mr. Lieberman said.

The quest for reliability will permeate every step of the design effort, according to Mr. Lieberman. On the logical level, the computer will have a minimum number of commands, fewer than

Irving J. Lieberman, manager of digital-computer laboratory at Kearfott, explains design goals for spaceborne computer.

uter

Goals

ability
imed
ou is

Nill Fit into 5 -in. Cube

50. to decrease the compound failures.

At the component level, component derating will be balanced against total number of components. If it can be shown, for example, that it would be better to drive flip-flop transistors harder and do away with output amplifiers, then the transistor will be made on the basis of extensive testing and statistical analysis.
On the system level, self-healing will be achieved by internal failure detection routines and implementation of alternate operation modes. For example, about half the 20 w power will be consumed in driving the "scratch pad" cores (they must be driven hard to achieve speed). But if the power supply falls off, the computer will operate directly from the drum, at a reduced clock rate.

Microwave Problems

Will Dictate Interconnection Design
Because the circuits will be running at the sine wave equivalent of 500 mc , noise problems will dictate the desigr of circuit interconnections. External noise will be shielded by a ferrite envelope but internal cross talk will be a problem, Mr. Lieberman admitted. Wiring will have to be approached as a transmission line problem which will have special attention paid to terminal reflections.
Welded-wire packaging will be used for the power circuits but those developments in microand molecular circuits which look as if they might be available within the computer's time schedule will be considered for the logic. - -

Design Specifications

$W_{\text {eight: }} 10-13 \mathrm{lb}$
Volume: 5 in. x 5 in. x 5 in.
Main memory: $6-8,000$ words on high-density 3-lb drum.
Scratch-pad memory: Approximately 200 words in magnetic cores.
Access time, scratch-pad memory: 0.1-0.5 $\mu s e c$.
Word length: Variable, made up of 10 -bit blocks with up to four blocks per word possible.
Clock: 50 mc
Power requirements: 20 w .
Reliability: 99 per cent confidence that there will be no failures within six months.
Commands: Fewer than 50 (for reliability).

Reliable stability for regulated power supplies

TUNG-SOL VOLTAGE REFERENCE TUBES
 A regulated power supply is only as stable

as its reference element.
By using rugged, reliable Tung-Sol miniature and sub-miniature reference tubes in regulated power supply designs, you're guaranteed long-life stability in spite of temperature changes, repetitive on-off cycles and current shifts. Long-term drift and noise are minimized by superior tube design, extensive factory stabilizing
schedules and severe test criteria. These inert-gas-filled, cold cathode glow discharge diodes feature high shock and vibration ratings. They are particularly suited for applications where size and weight must be held to a minimum. Write for complete technical details. Tung-Sol Electric Inc., Newark 4, N. J. TWX: NK193.

(5) TUNG-SOL

Technical Assistance is avallable from the following sales offices: Atlanta, Ga.; Columbus, Ohio; Culver City. Callf.; Dallas, Toxas; Donver Colo.; Detrolt, Mich.; Irvington, N. J.; Molrose Park, III.; Nowark, N. J.; Philadelphla, Pa.; Seattle, Wash. Canada: Toronto, Ont.

NEWS

Wavelength of Light Replaces Meter As New Standard of Measurement

The world has adopted a new international standard of length-a wavelength of light-replacing the meter bar which has served as the standard for over 70 years.

The new definition of the meter as $1,650,763.73$ wavelengths of the orange-red line of krypton 86 will replace the platinum-iridium meter bar which has been kept at Paris as an international standard for length since 1889 under the Treaty of the Meter.
The announcement was made from Paris by Dr. A. V. Astin, Director of the National Bureau of Standards, U.S. Dept. of Commerce. The action was taken by the 11th General Conference on Weights and Measures, which met recently in Paris.

The new definition of the meter relates it to a constant of nature, the wavelength of a specified kind of light, which is believed to be immutable and can be reproduced with great accuracy in any well-equipped laboratory. Thus it is no longer necessary to return the national standards of length at Paris at periodic intervals in order to keep length measurements on a uniform basis throughout the world. Also it is possible to measure some dimensions more accurately in terms of the new definition than was possible before.

World's Largest

 5 sownats-moasa R300 Watts-Model N

Selection $=$
 -SPECIAL FEATURES

OHMITE offers the largest and most varied assortment of power rheostats ever developed.

You can choose from 413 stock commercial sizes and types ranging from $121 / 2$ to 1000 watts . . . or from over 400 stock MIL-R-22A sizes and values, with "special fast delivery" on all other MIL units. You can find, for example, scores of different shaft styles, sizes, configurations-already engineered and waiting. Literally, hundreds of other special features take care of any rheostat application envisioned today.

But Ohmite rheostats give you more than just "largest selection." Ohmite wire-wound units of all ceramic and metal construction represent the highest degree of operational reliability ever attained in rheostats. They bring you the backup of industry's greatest reservoir of engineering talent in rheostat design and application.

Because of this, you find more Ohmite units in use than all other makes combined. On your next project calling for rheostats, make your selection from the smooth, close control units preferred throughout industry.

OHMITE MANUFACTURING COMPANY
3643 Howard Street, Skokie, Illinois

Stocked by the Factory

 and Electronic Distributors EverywhereWrite on Company lefterhead ior
Catalog \& Engineeting Manual 58

OHMITE RHEOSTATS

Rheostats Power Resistors Precision Resistors Variable Iransformers
Tantalum Capacitors

Tap Switches
Relays
R.F. Chokes

Germanium Diodes
Micromodules

Japanese Raise Electronic Goals In Five-Year Production Plan

The Japanese electronics industry is expected to produce 82 per cent more by value in 1960 than it produced in 1959, according to the Dept. of Commerce.

The BDSA reports that the Japanese Ministry of Trade and Industry has estimated over-all production of the electronic industry in Japan to be worth about $\$ 1.8$ billion by 1964. An earlier five-year estimate, made by the ministry in May of this year, indicated a growth of only 32 per cent from the level of 1959.

In the ministry's estimate, significant increases were made in the projected production of industrial electronics, tubes, semiconductors, and tape recorders and c her audio equipment.

The production of color television sets is expected to rise sharply while that of black and white TV sets is expected to drop.
The ministry anticipates that exports of transistor radios will grow steadily. More than 27 per cent more such sets are expected to be exported next year than were sent abroad this year. The increase of 1962 over 1961 is expected to be 10 per cent. An annual rise of 5 per cent a year is looked for in 1963 and 1964.

Production of color TV sets is expected to rise to 12,000 units in 1961 from 4,000 in 1960. In 1962 production is expected to rise to 30,000 sets; this will double in 1963 and reach 100,000 sets in 1964.
Computer production is expected to rise sharply in the next five years in Japan. From 50 digital computers produced in 1960, production of 120 is looked for in 1961, 200 in 1962, 300 in 1963, and 430 in 1964. The five-year figures for analog computers are: 77,96, 106, 117 and 129.

Emphasis on Data-Processing

Japan currently is importing about $\$ 13$ million worth of data-processing and automaticcontrol equipment, according to the Japanese Ministry of Trade and Industry. This is about 60 to 80 per cent more annually than the $\$ 13.0$ and $\$ 7.1$-worth imported in the 1957-58 and 1958-59 periods.

In the latest revision of Japan's five-year program for electronics development, the ministry is emphasizing development and production of computing and control equipment. Money spent on research in data processing and automatic control is already about three times that spent on imports of such equipment and is expected to grow. From the $\$ 12.3$ miland is expected to grow. From the $\$ 12.3$ mil-
lion spent on such R\&D in 1957-58 and $\$ 18.1$ million spent in 1958-59, about $\$ 29$ million was spent in the 1959-60 period.

NEWS

(Continued from p 5)
zation shifts. Cerium-doped barium flouride is among the materials under study. Di-hydrogen phosphate, operating at room temperature, presents a less difficult cooling problem and may prove to be the most suitable material for the modulator.
A proposed design for a laboratory-type modulator would have the following configuration. A pink ruby crystal at 1.6 K is placed in a dc magnetic field of about 10,500 oersteds perpendicular to the c -axis in the x -direction. The ruby is in a $T E_{011}$ cylindrical cavity, again with the c-axis parallel to the cavity axis. Cavity volume is about 1 cc and has an unloaded Q_{0} of 30,000 . Measurable effects would be obtained at 50 kmc with a $10-\mathrm{mw}$ input. Dissipation of this heat would require a pump speed of 0.35 liter per sec at the cryostat.
Another possibility suggested by Dr. Bloembergen is the use of microwave ultrasonic signals to vary index of refraction by accoustical strain. Here again, low temperatures would be required because of ultrasonic attenuation. However, emphasis at Harvard is on cubic ion rare earth crystals for dichrotic and magnetic Faraday rotation, and on di-hydrogen phosphate for electrical Faraday rotation.

Two Crystals in Series

Proposed by Developer

Detection of modulated light is possible by inverting each of the proposed schemes. Dr. Bloembergen proposes the use of two crystals in series, the first energized by a $50-\mathrm{kmc}$ signal and the second by a $50.03-\mathrm{kmc}$ signal. The light passing through these crystals is detected by a conventional photocell. Output of the photocell would be 30 mc modulated in accordance with the incoming light intensity.
This roundabout detection scheme is due to the inability of conventional photocells to follow light fluctuations at rates greater than 10 kmc . Dr. Bloembergen suggests, however, that faster photocells could be developed.

The modulation schemes proposed by Dr. Bloembergen are generally not dependent upon either the frequency of the light used or of the modulating signal. Devices along these lines could thus be useful over a wide range of radio and optical frequencies. One application proposed is as a phase reference for microwave communications.
It may also be possible to combine an optical maser and Dr. Bloembergen's modulator into the same crystal, or alternatively, employ an optical maser as the source of modulating rf, thereby modulating one light frequency at a second light frequency. - :

EPRTIASKIALL GERMANIUM

MESA TRANSISTORE SYL-2300, SYL-2301...now available!

featuring REDUCED STORAGE TIME REDUCED SATURATION VOLTAGE DECREASED COLLECTOR CAPACITANCE EXCEPTIONAL UNIFORMITY

SYLVANIA EPITAXIAL GERMANIUM DIFFUSED-BASE MESA TRANSISTORS offer all the advantages of conventional diffused-base mesa transistors plus significant reductions in switching time and high-current saturation voltage.
FIRST NEW TYPES to utilize epitaxial techniques are two PNP units - SYL-2300 and SYL-2301 in the TO-18 package with the collector internally tied to the case. The Sylvania epitaxial structure uses a main body collector region of very low resistivity material with a thin, high resistivity epitaxially grown region. This allows a reduction of collector series resistance (saturation voltage) and an increase in switching speed (less excess stored
charge) through the use of the low resistivity main body region. Also, collector capacitance is reduced through the use of the high resistivity epitaxially grown region. The Sylvania epitaxial technique simplifies manufacturing processes, enables extraordinarily tight design control to provide significantly improved uniformity of characteristics.
LEARN MORE about the important performance advantages of Sylvania Epitaxial Diffused-Base Germanium Mesa Transistors from your Sylvania Representative. Contact him, too, for price and delivery information. For technical data, write Semiconductor Division, Sylvania Electric Products Inc., Dept. 1811, Woburn, Mass.

EPITAXIAL DIFFUSED TRANSISTOR CONSTRUCTION
Sylvania epitaxial transistor is fabricated by diffusing a base region into a thin, high resistivity layer. This thin layer is vapor grown in epitaxial fashion onto a low resistivity collector substrate. The single crystal structure of the substrate is continued into the thin film.

PNP EPITAXIAL DIFFUSED-BASE GERMANIUM MESA TRANSISTORS

absolute maximum ratincs: (at $25^{\circ} \mathrm{C}$)	SYL-2300	SYL-2301
Collector to Base Voltage.	-15	-12
Collector to Emitter Voltage.	-15	-12
Emitter to Base Voltage.....	-2.5	-1.0
Collector Current.	-50	-50
Power Dissipation (free air)	150	150
Power Dissipation (case at $25^{\circ} \mathrm{C}$)...	300	300
Storage Temperature.	-65 to +100	-65 to +100
Junction Temperature	+100	+100

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& \& \& \& \& \& UNIT \\
\hline Symbol \& Conditions \& Min. \& Mat. \& Min. \& Max. \& \\
\hline \begin{tabular}{l}
\(\mathrm{BV}_{\text {сво }}\) \\
\(\mathrm{BV}_{\text {e日о }}\) \\
\(\mathrm{BV}_{\text {CES }}\) \\
\(h_{\text {fe }}\) \\
\(V_{\text {BE }}\) \\
\({ }^{\text {cвo }}\) \\
\(V_{\text {CE }}\) (Sat.) \\
\(\left.\begin{array}{c}t_{0}+t_{1} \\ t_{s} \\ t_{1}\end{array}\right\}\)
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0 \\
\& \mathrm{I}_{\mathrm{E}}=-100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0 \\
\& \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{BE}}=0 \\
\& \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-0.22 \mathrm{~V} \\
\& \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-0.25 \mathrm{~V} \\
\& \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-0.4 \mathrm{~mA} \\
\& \mathrm{~V}_{\mathrm{CB}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0 \\
\& \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-0.4 \mathrm{~mA} \\
\& \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-0.5 \mathrm{~mA} \\
\& \mathrm{I}_{\mathrm{C}}=-50 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-2.5 \mathrm{~mA} \\
\& \mathrm{~V}_{\mathrm{BE}(0)}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}(1)}=-1 \mathrm{~mA} \\
\& \mathrm{~V}_{\mathrm{CC}}=-3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{C}}=300 \mathrm{hms} \\
\& \mathrm{I}_{\mathrm{B}(2)}=0.25 \mathrm{~mA}
\end{aligned}
\] \& -15
-2.5
-15
25

-0.34 \& $$
\begin{aligned}
& -0.44 \\
& -3.0 \\
& -0.22 \\
& \\
& -0.25 \\
& 70 \\
& 45 \\
& 70
\end{aligned}
$$ \& -12

-1.0
-12

20
-0.34 \& -0.50
-3.0
-0.25
-0.35
90
60
95 \& v
v
v
-
-
V
$\mu \mathrm{~A}$
V
v
V
$m_{\mu} \sec$
$m_{\mu} \sec$
$m_{\mu} \sec$

\hline
\end{tabular}

One－knob Master Control－Automatic Current Equalizing Automatic Voltage Equalizing • Full Range Control From Any Selected Module

For the ultimate in Regulated Power Supplies，look to H－Lab Model 865，a standout in every detail．The compact 865 is suitable for either bench or relay rack operation． This trouble－free unit features automatic transition to a current－limiting mode of operation．The current－limit is adjustable by means of a front－panel knob．This power supply is short－circuit proof，as are all H－Lab transistor supplies．In addition，the current－limit circuit of the 865 supplies．in addition，the current－limit circuit of the 865 can be set for exactly the value of current whic
provide maximum protection to the load device．

H－Lab Regulated Power Supplies are preferred
H－Lab Regulated Power Supplies are preferred $\$ 185$
by major laboratory and O．E．M．consumers．$\$ \$ 7$ by major laboratory and O．E．M．consumers．（with case）
H－Lab Model 865 is priced at

SPECIFICATIONS

Output： $0-40$ volts， $0-0.5 \mathrm{amps}$ ． Input：105－125 VAC

50－440 cps Load and Line Regulation： 5 millivolts． Size： $8^{\prime \prime} W \times 5 / \operatorname{sem}^{\prime \prime} H \times 8^{\prime \prime} D$ （with case）
Weight： 11 Ibs．（with case） Remote Programming

OTHER PRECISE，VERSATILE AND COMPACT POWER SUPPLIES INCLUDE：

Mosol	E Out	1 Out	Bench Model	Rack Model	Continuously Varlable	Special Comments	Price
400D	150．315	0．1．5		x	No	Vecuum Tube Type	\＄595．00
5204	0.36	0．20		x	Yos	High Efficiency	575.00
800A－2	0－36	0－1．5	x	x	Yes	Dual Output	580.00
8001－2	0－36	0－2．5	x	x	Yes	Low Cost Medium Current Supply	339.00
8028	0－36	0－1．5		x	Yes	Dual Output Remote Sensing	580.00
808AM	0.20	0．2．0		＊	Yes	Remote Sensing Remote Prosramming	350.00
B00A	0.36	0.5		X	Yes	Constant E／Constant 1	425.00
8104	0.50	0.7 .5		x	Yes	Remote Sensing	895.00
812 C	0．32	0.10		\times	No	Remote Sensing	550.00
855	0－18	0－1．5	\times	x	Yes	Can be connected in series or parallel	175.00
000	0.100	0．1．0	x	\times	Yes	Wide Voltage Span	375.00

Write on your letterhead for new，illustrated catalog describing the complete H－Lab line．
HARRISON
LABORATORIES．INC． 45 Industrial Road－Berkeley Heights，New Jersey CIRCLE 20 ON READER－SERVICE CARD

WASHINGTON

MORE MONEY FOR DEFENSE will be urged by the new Administra tion．President Eisenhower＇s last budget－to be sub mitted to Congress before Inauguration Day－will ask for funds hike of $\$ 1$ to $\$ 2$ billion．This is now little mon than a pro forma figure；it is clear that additional mone will be sought－perhaps as much as $\$ 2$ billion．Bigges gainers from the additional funds will be sophisticate weapons systems，Army modernization，and space－relate projects．

PRIME CONTRACT CANCELLATION during fiscal 1960 shove little change in pattern from the preceding year．At th end of the period，some 1,500 cases were in process of ter mination，about 5,000 had been dropped for the conveniend of the government，and approximately 5,550 terminatia claims had been settled．Value of items covered by con tracts was nearly $\$ 1.1$ billion，and $\$ 755$ million was pai out in settled termination cases．Pending cases wer worth another $\$ 1.1$ billion．Of the settlements in fisca 1960，more than 80 percent were made without cost to th government．The government paid out almost $\$ 46.5$ millid in settlement costs－about 13 per cent of the contrac value of fixed－price contract terminations complete during the period．

ARMY R\＆D CONTRACT CRITERIA have been summed up in a＂simpl rule＂offered by its R\＆D chief，Lt．Gen．Arthur G．Trudeau In selecting the type of arrangements to be made with con tractors－and the extent to which they will have desis as well as managerial responsibility－the following si factors are considered：the need for speed，comparativ costs，full utilization of the talents of private in dustry，the location and caliber of technical know－hor and＂the need for sustaining reasonable government com petence to supervise all research and development．＂

EARLY COMMAND AND CONTROL SYSTEMS PLANNING must be im proved，with greater stress placed on the technical nee and economic feasibility of new systems before they eve get to the design stage．Maj．Gen．Kenneth P．Bergquist boss of the Air Force＇s Command and Control Developmen Division，thinks that industry should get more guidand from the Air Force when it is about to be given a desig job．Though industry＂most likely will continue to serv as the actual developer of the implementation phases，＂ should be told beforehand of what is desired in terms o both inter－system compatibility and design emphasis
Gen．Bergquist＇s comments echoed the feelings of the＂Win

눈 잉

ouppc

onts lres

范品 \begin{tabular}{c}\square

\hline

\hline
\end{tabular} royal mender repar

mict evel長 LAS ben ropr
imel imel amin ume Pfi営菅 xpen evie that 0 th ail ore
\qquad ERRO $\frac{\mathrm{ZRFO}}{2 \mathrm{R} P \mathrm{P}}$
ter Study Group" that was formed to evaluate planned and existing command and control systems.

PATENT-POLICY ADOPTION by the Federal Aviation Agency sheds some light on the possibilities for liberalizing overly restrictive patent rules of some government pencies during the next Congress. FAA has formally gdopted and will use, in all contracts for R\&D which are hought to have commercial potential, a system of keeping "fair share" of rights to data and patents. The system -which has provoked no Congressional criticism and a few favorable murmurs-is designed to return the agency's development costs. Rights retained by the government are supposed to be "in reasonable proportion to the respective sontributions of the agency and the contractor." FAA lleady has $\$ 12$ million worth of contracts which call for payments of royalties of up to 7.5 per cent on commercial sales and sales to other governments, and one-third of royalties derived from licensing. FAA formerly operated nder a patent policy closely akin to that of the Defense jepartment. Being developed under the new patent policy, mich, it is understood, calls for royalty payments by the leveloper as well as other firms, are a general aviation ransponder and an electronic ground-speed indicator.

LAST-DITCH PITCH for stability in military spending has been made by Defense Secretary Gates. He calls for appropriation of military money "on a balanced, sensible and imely basis for the long pull." The U.S. must be kept in first place "regardless of cost," and the "feast-andfamine policies of the past" should not be allowed to resume. In what seems like a mild departure from customary Pficial statements, Gates asserts that defense "must ome first in dollars, regardless of the level of our gross pational product or the status of our annual income and expenditures." Professional military men, aware that a review of the "long pull" funding philosophy is the least hat can be expected of the incoming Administration, tend lo think of stable funding as a minimum. They see money vailability trending upward, perhaps to $\$ 50$ billion or Hore a year by 1970.

ERFORMANCE AND PROMISE of defense contractors will be arefully scrutinized by the Air Force as part of its coninuing cost-cutting effort. Though the Air Force Peputy Chief of Staff, Lt. Gen. Mark E. Bradley Jr., has ndulged in some scary talk about "score sheets" for comanies, this is not to be taken literally. But when it is found that a contractor "consistently overruns on costlus and underruns on incentive"-this will be given due right in the evaluation of future proposals. The Air orce plans to "insist even more vigorously that incenives are earned on the basis of improved management and ngineering, not the result of overstated prices." Speial attention will be paid to: (l) overstatement of costs nder incentive contracts; (2) understatement of target igares under cost-plus-fixed contracts; (3) poor judglent in subcontracting and make-or-buy decisions; and 4) excessive subcontracting with sole sources.

reducing assembly time -0 /0

NEW CONHEX CATALOG
You need this catalog for your design or purchasing files. New crimp-on styles avail-
able in all standard ConheX configurations

Now, the inherently superior design and crafts. manship of the Conhe X connector in a crimp-on design, saving at least 60% assembly labor time over conventional types. These new ConheX connectors are assembled with standard crimping tools-just dress the cable. slip the sleeve into position, insert cable into connector, crimp! and it's done! And the connection is stronger than the cable itself!

IECTRONIC DESIGN • November 23, 1960

Another TInnerman Original...

Nut-in-a-cage eliminates welding or staking... SPEED GRIPS® hold themselves on panels!

Wherever you require a heavy-duty, multithread, self-retaining fastener, a Tinnerman Speed Grip Nut Retainer answers the need, holds down assembly costs.

Speed Grips snap into place . . . some into panel holes. . . others over panel edges. No special tools or skills required. Spring-steel fingers grip the panel, yet let the nut float to compensate for normal panel-hole misalignment. Welding, staking and clinching are eliminated. Speed Grips can even be applied after panels have been finished, avoiding paintclogged threads.

Speed Grips are available in a wide range of sizes and types, including front-mounting nut and bolt retainers for hard-to-reach or blind locations.
See your Sweet's Product Design File, section 8-T for data on these and other Speed Nut

Brand Fasteners. Your Tinnerman representative has complete information and samples. If he isn't listed under "Fasteners" in your Yellow Pages, write to:
TINNERMANPRODUCTS, INC. Dopt. 12 - P. O. Box 6688 - Cleveland 1, Ohlo

Electronic Audio-Monitor Device Aids Brain Surgeons in Operations

An electronic device, the audio-monitor, de veloped at a London hospital, enables surgeons to hear changes taking place in a patient's hrain while he is on the operating table.

Invented by Dr. S. Pampiglione and his technical assistant, N. Picton-Robinson of the Institute of Child Health, the device allows the surgeon and anaesthetist to give their undivided attention to the patient by eliminating the need to watch the encephalograph for signs of sudden circulatory disturbances.

Instead, signals are transmitted to them by means of a loudspeaker or small earphone giving warnings before any clinical change takes place and thus allowing a better opportunity for remedial action.

Accuracy is Our Policy . . .

Metal film resistors being developed by Inter national Resistance Co. for the Minuteman reliability program will meet a reliability specifica. tion of 0.0004 per cent per 1,000 hours. Due to a typographical error an incorrect figure of 0.004 per cent appeared in the Aug. 3 issue, p 50, and also appeared in the Sept. 14 issue, p 4.

- The New Literature item appearing on page 135 of the Oct. 26 issue referred to a "Guide Book to Thermal Strips." The correct title of the brochure is "Guide Book to Terminal Strips." It is issued by the Mandex Manufacturing Co., Inc., 2614 W. 48th St., Chicago, 32, Ill.

CHANGES IN

PRICE AND AVAILABILITY

SCOTCH BRAND VIDEO TAPE has been re
duced 10 per cent in price by Minnesota Mining and Manufacturing Co. of St. Paul. The 10 per cent reduction includes all sizes and price brackets. The price of a roll of standard hourlong tape has dropped $\$ 22.84$, from $\$ 228.41$ to $\$ 205.57$, when bought in lots of 48 or more. The latest price, along with three earlier cuts, represents a total price reduction of nearly 33 per cent since the first video tape was marketed by 3 M in 1956.

Accuracy is Our Policy . . .

Some errors appeared in Part 2 of "All-Pass Networks" in the October 26th issue of Electrinic Design. On p 71, pulse droop is the parameter that is little affected by the other transformer parameters, not pulse fall. In the third column on p 72 , the peak ripple with the overcompensating network is 10 per cent of the Ginal amplitude. On p 73, the duopole parameters were given for the undercompensated case only. For the overcompensated case, $a=1, r^{2}=2.5$. In the subsequent paragraph, the response intended is the time-domain response.

- Captions for two photographs were switched in the picture spread "Complexity a Feature of Courier Satellite" (ED, Oct. 26, p 9). The photograph at the top of the page shows the acquisition transmitter; the bottom photograph is the tape recorder.
- The microwave modulator made by Narda Microwave Corp. (ED, Aug. 3, 1960, p 144) has a pulse generator output variable from 180 to $3,000 \mathrm{pps}$. This was stated as 180 to 300 pps .
- In the Aug. 31 issue, p 54, the flow h_{4} in Fig. 2 is incorrectly shown from i_{i} to V_{i}. Further, the sixth paragraph of the article incorrectly reads, "Because some generators in an equivalent circuit represent dependent variables . . ." It should, of course, read, ". . . represent independent variables . . ."
- Two errors appeared in C. Walter Johnson's article "How to Account for Voltage Drops in Conducting Logic Diodes" (ED, Sept. 28, p 56). Near the top of the third column of $\mathrm{p} 58, a_{m}$ should equal 0 , not -1 . Also, labels for the subfigures of Fig. 5 were inadvertently omitted. These should appear as follows. Figs $5 a$ and b are above and below the caption, respectively; c is above d which is above e in the second column of subfigures; and f is above g in the third column.
- Several pieces of erroneous information managed to appear in our Product Feature "UltraHigh Regulation Featured in All-Transistor Supply" (ED, Aug. 3, 1960, pp 102-103). The supply, manufactured by the Krohn-Hite Corp., Cambridge, Mass., can operate from standard 1.). $)$ tage sources of $115 \pm 10 \mathrm{v}$ and $230 \pm 20 \mathrm{v}$. Its t mperature coefficient is 0.01 per cent per deg C, or 1 mv (instead of the 7 mv given) per deg C - hichever is greater.

> Motors insulated with "Mylar"® run trouble-free 50 to 100% longer

Humidity, physical stress and heat are three major causes of motor failure. Insulation of "Mylar"* polyester film helps overcome them . . . gives motors 50 to 100% longer trouble-free service.
Here's why: Plain, unlaminated "Mylar" has 35 times the moisture resistance and 8 times the physical strength of rag paper. And the excellent electrical properties of "Mylar" are virtually unchanged by temperature in the Class \mathbf{B} range.
"Mylar" also cuts current leakage and shock hazard to a minimum because its insulation resistance is unaffected by moisture.
All these benefits can be packed into motors that are smaller . . . lighter. Reason: "Mylar" can be used in thinner gauges, and its thermal stability allows motors to run hotter and develop more horsepower from a given frame size. And yet, motors insulated with "Mylar" polyester film frequent-
ly cost no more than those using other common types of insulation.
Whether you manufacture or buy electrical products, you can get improved performance with Du Pont "Mylar". Figured on a square-foot basis, "Mylar" will often cost you less than your present material. For full facts on "Mylar", write for free booklet. E. I. du Pont de Nemours \& Co. (Inc.), Room \#14, Film Department, Wilmington 98, Delaware.

This unique combination of properties gives "Mylar" superior insulating performance.

- Average 4,000 volts per mil dielectric strength (ASTM D-149). Average power factor of 0.002 at 60 cycles.
- Thermal stability from $-60^{\circ} \mathrm{C}$. to Class B range.
- Chemical and moisture resistance.
- Resistance to aging, abrasion, tearing and rotting.

""Mylar" io Da Poni's regivered trademark for ita brand of polyester film.

Betler Things for Better living ...through Chemistry

DU PONT
 MYLAR
 POLYESTER FILM

Tenney push-button environments

...any size, any shape, anytime!

No matter what environmental test chamber you need, this much is certain: Tenney either has it in stock or can adapt one of its proven prototypes. From chambers that could house a family of four, down to refrigerator size (and everything in between), you're sure to find the modern, pushbutton unit you need.
Altitude, temperature, humidity, explosion, sand, dust, fog-just about every punch nature can
throw - can be simulated, either alone or in combination. And you get accurate simulation, complete control and precise measurements every time.
For a complete catalog, describing the entire line, write today to Tenney-the world's largest, most experienced creator of environmental test equipment.

Ask about Tenney's research and development, engineering consultation and design services.

1090 SPRINGFIELD ROAD, UNION, N. J. - PLANTS: UNION, N. J. \& WILMINGTON, N. C.

May Be Used by Army

isolate sources of interference. A three-factor, two-level factorial experiment has already been run in a simulation at Fort Huachuca.
The electromagnetic environmental test facility (EETF) near Gila Bend, Ariz., in the Fort Huachuca area, is being built for the Signal Corps by Pan American, in conjunction with Bell terosystems, under an $\$ 18.8$ million contract. By the time the range is instrumented for automatic control, recording and analysis of tests in 1965, a total of $\$ 90$ million will have been spent.
Three separate installations constitute the EETF:

- A 150 -mile long main facility called the electromagnetic environment is designed for radio interference investigations.
- A Common Test Facility at Fort Huachuca will provide and correlate common communication and test facilities to support tests conducted by the various departments of the proving ground.
- A Drone Test Fr.cility for flight-testing and evaluation of advanced airborne combat surveillance systems is the third installation. This range stretches 250 miles adjacent to the Electromagnetic Environment.
The environment facility has five goals according to spokesmen at the Ft . Huachuca proving ground:
- To reveal the incompatibilities of existing Army equipment and systems.
- To suggest modifications to existing Army equipment to reduce interference.
(continued on p 28)

Five models covering five bands Three models useful in pressurized systems VSWR less than 1.10

Can handle 2-20 kw average power Low rf radiation
Calibration heaters in all models
These Sierra high-power waveguide terminations are extremely useful as dummy loads in calorimetric power-measuring systems. They feature rugged construction, with rigid plastic water tube mounted in waveguide section, diagonally oriented for impedance matching. Chokes and shielding minimize of leakage, and a heater element built into each model permits rapid, accurate calibration of a calorimetric power-measurement system against a low-frequency standard.

HECM	THE	$3 P=$	-1ED	DVA	$C=8$
Model Number:	1878-SL	1878.5	1878-C	1878-x ${ }^{\text {e }}$	1878-X
Frequency Range:	1.7 to 2.6 kmc	2.6 to 4.0 kmc	5.8 to 8.2 kmc	7.0 to 10.0 kmc	8.2 to 12.4 kmc
VSWR:	< 1.10 to 2.4 kmc	less than 1.10	less than 1.10	less than 1.10	less than 1.10
	< 1.15 to 2.6 kme				
Power Average: (Unpressurized)	20 kw	10 kw	5 kw	3 kw	2 kw
Peak Power:	2 megawatts	1 megawatt	500 kw	250 kw	150 kw
Max. Air Pressure:	*	-	45 psig	45 psig	45 psig
Waveguide:	RG-105/U	RG-75/U	RG-50/U	RG-51/U	RG-52/U
Connector:	UG-437A/U	UG-584/U	UG-344iU	UG-51/U	UG-39/U
Recommended Water Flow:	2 gpm for 10 kw	2 gpm for 10 kw	1 gpm for 5 kw	0.6 gpm for 3 kw	0.4 gpm for 2 kw
Pressure Drop at Rated Flow:	10 psi				
Max. Water Pressure:	80 psis	B0 psig	80 psig	80 psig	80 psig
Water Temperature:	0 to $70^{\circ} \mathrm{C}$	0 to $70^{\circ} \mathrm{C}$	0 to $70{ }^{\circ} \mathrm{C}$	0 to $70^{\circ} \mathrm{C}$	0 to $70^{\circ} \mathrm{C}$
Water Capacity:	$18.5 \mathrm{cu} . \mathrm{in}$.	3.5 cu . in.	$0.85 \mathrm{cu} . \mathrm{in}$.	0.42 cu . in.	0.20 cu . in.
Water Renewal at Rated Flow:	Once per 2.5 sec .	2 times per sec.	4.3 times per sec. 14 ohms	5.3 times per sec. 20 ohms	7.4 times per sec. 20 ohms
Heater Resistance: Heater Rating:	10 kw at 2 gpm	5 kw at 1 gpm	3 kw at 1 gpm	1 kw at 0.6 gpm	1 kw at 0.4 gpm
Length:	50 in .	$32 \mathrm{in}$.	20 in.	17.25 in .	13.5 in .
Price:	\$600.00	\$500.00	\$425.00	\$400.00	\$375.00

*Not pressurized Data and prices subject to change whthout notice. Prices f.o.b. factory
For complete details, see your Sierra Representative or write direct.
Blancoser
NEW! Sierra also offers its Model 186 Series Coaxial Water Loads, covering dc to 4 kmc .
SIERRA ELECTRONIC CORPORATION

EIECTRONIC DESIGN • November 23, 1960

SERIES F TARZIAN Silicon Rectifiers

Tarzlan Type	Amps. DC ($85^{\circ} \mathrm{C}$)	PIV	Max. RMS Volts	Max. Amps.		Jedec Equiv.
				Recurrent Peak	$\begin{aligned} & \text { Surge } \\ & \text { (4MS) } \end{aligned}$	
$2 F 4$. 20	400	260	2.0	20	--
F-2	. 75	200	140	7.5	75	1N2482 1N2069
F-4	. 75	400	280	7.5	75	1N2483! 1N2070!
F-6	. 75	600	420	7.5	75	$\left.\begin{array}{l} \text { 1N2484 } \\ \text { 1N20771 } \end{array}\right\}$

NEWS

(continued from p 27)

- To provide a firm basis for the establishme nt of realistic standards for new Army equipment.
- To test Army frequency assignment plans.
- To test all newly developed electronic and other communication equipment prior to its ac. ceptance by the Army
Work in instrumenting the range is proceding in three phases: providing for testing of company communications equipment in a battle group environment; providing for corps equipment, and providing for division equipment.
Testing began in July under phase-one conditions. Manual tests were made on fm walkie talkie and jeep-mounted communications gear planned for company use. About 100 tests have reportedly been made so far.
The range is expected to be used by the three military services eventually. Simultaneously with its construction, scientists at the proving ground are attempting to develop a mathematical model of the electromagnetic environment of an army battle group. Test results from the field facility will be used to create and validate the mathe matical model. This model will include data on equipment and propagation characteristics and the equations that relate them. The model is expected to permit specialists to extend the interference information gathered in the test facility to types of terrain, climate and deployment that cannot be duplicated in the proving ground area.

British Radio Propagation Study Features 1959 Data from IGY

Studies of propagation properties for the purpose of aiding space and long-range communications programs, have been published by the British Department of Scientific and Industrial Research.
These studies, covering 1959, are based on analysis of data collected during world-wide cooperative programs of the International Geophysical Year. Still in progress, these studies promise to unravel such propagation mysteries as transmission blackouts in the polar regions and structure and movements in the ionospheric layers. Such knowledge is vital to the accurate tracking of missiles and space vehicles and to reliable long-range communications.
The results of the IGY findings are applied to: space research, radio measurements and stand ards, ionosphere and radio-transmission conditions, radio-wave propagation through the troposphere, and semiconductors and ferrites.

SARKES TARZIAN, INC.

World's Leading Manufacturers of TV and FM Tuners • Closed Circuit TV Systems a Broadceast

BEMICONDUCTOR DIVIBION • BLOOMINOTON, INDIANA In Canada: 700 Weston Rd., Toronto 9 - Export: Ad Auriema, Inc., New York
If Series F units meet your design requirements, then you can specify with full assurance of availability in any quantity.
These Series F units are widely useful. They combine small size, low cost, high performance and Tarzian reliability. They are interchangeable with many other rectifiers. Junctions are oversize-handle inrush currents far beyond normal circuit requirements. Temperature rise is low and reliability is increased.
The insulated body of the Series F units presents no mounting problems. And low cost with high quality results from Tarzian production methods.
For additional information about Series F rectifiers, call your Sarkes 'Tarzian sales representative, or write Section 5760. Sarkes Tarzian is a leading supplier of silicon, tube replacement, and selenium rectifiers. Practical application assistance is always available.

U.S. Invites Foreign Countries Tc Take Part In Tiros Experiments

The U.S. has invited foreign governments to participate in meteorological research connected with the next Tiros satellite. The National Aeronautics and Space Administration and the Weather Bureau, which are conducting the Tiros experiment jointly, extended the invitation in letters sent to scientists of 21 nations. It was suggested that if the Tiros experiment is a success, weather agencies abroad might obtain "useful synoptic results by intensifying standard meteorological observations, or by arranging for special observations, coordinated in time with passes of the satellite."
Such world-wide cooperative efforts are part of NASA and the Weather Bureau's program of encouraging international cooperation in space research and in meteorology. Meteorologists will have an opportunity to correlate cloud-cover data as observed from both below and from high above the clouds. In addition, it will give NASA and the U.S. Weather Bureau a wide collection of meteorological research data.
NASA will provide orbital information to participants in the project to assist cooperating groups in timing local weather observations. After processing, Tirys cloud-cover photos will be forwarded to participants for comparison with their supplementary observations.

Rockets With 35-Ton Payload Predicted in Orbit by 1967

"Given the developmental program, there is no reason why a nuclear rocket could not put payloads as great as 35 tons in orbit within seven years. Within the 35 -ton payload eletcrical power systems of over $1,000 \mathrm{kw}$ could be carried." So said J. W. Simpson, vice president, atomic power division of Westinghouse Electric Corp., in a speech before a recent meeting of the Pittsburgh chapter of the American Society of Military Engineers.
Military efforts in space to date are aimed at improving techniques in navigation, communications and reconnaissance and are being achieved through the use of chemical rocket propellents, Mr. Simpson said.
The next generation of military applications, however, will probably come with the advent of more powerful rocket boosters and space auxilia y power systems. Mr. Simpson said. Atomic power will play a vital role in supplying these, Mr. Simpson added, while pointing out that atomic powered rockets offer twice the efficiency n chemical rocket systems.

Power low noise figure TW tubes

This compact Alfred electronics microwave power supply provides electrode voltages for nearly all medium and low noise figure TW tubes. Companion solenoid supplies for electromagnet focused TW tubes are available. Here are the major advantages of this precision ALFRED supply:

~ FLEXIBILITY

One electrode supply operates most presently known tubes. It will operate new tubes as they become avail able. Cover present and future needs with same supply.
\& INTERCHANGEABILITY
Build all your low noise amplifiers around standard unit Simplify servicing. Stock parts for only one type of supply.

is LOCAL OR REMOTE OPERATION

Model 252 design permits remote operation of TW tube as may be required with broad-band preamplifiers. Heater supply has extra wide voltage range to compensate for cable IR drop.
\leadsto SIMPLE OPERATION
Only two controls on front panel for day-to-day operation. Set-up controls are on recessed subpanel. All voltages and currents are internally measured using front panel meter and recessed selector switch.
\& STABILITY
Electrode supplies are well-regulated and designed for minimum drift. Use of dc heater power reduces spurious amplitude modulation.

\& 50 TO 450 CPS INPUT

Wide band power input permits use with almost any available power source.

\& ECONOMY

Separate solenoid supplies are available. Purchase only the supply you need when you need it.
KEV SPEEIFICATIONS FOR MODEL 252
Molilis Voltage, 7 to 1400 Vi RRple, less than 20 mv pk-to-pk; Resulation, $+.03 \%$ inno. Coniccior: 0 to +300 v rolative to hellix. four Anodes, ransinge
 1 amp with 2% regulation. All olectrode supplies intermally metered. Two low ripple Solenold Suopiles are avallable. Both are adjustable over a wide range providing adequiute power for most TW tube focusing magnets. KEY SPECIFICATIONS FOR MODEL 253
0 to 105 v DC at 0 to 7.5 amp or 0 to 110 vat 6 amp . Ripple, 5% ph.to-pk. KEY SPECIFICATIONS FOR MODEL 254
KEY SPECIFICATIONS FOR MODEL 254 , 105 at 6 amps. Ripole, 5% Resula tion, $\pm 1 \%$ for $\pm 10 \%$ line change or 30% loas change. PRICES: Model 252, $\$ 890$; Model 253, $\$ 200$; Model 254, $\$ 330$.
white for more data-Confact your alpred engineering rep resentative for more details, or write us directly at Dept. 36 .
hlffed electronics
897 Commercial Street • Palo Alto, California DAvenport 6-6496

NEWS

'Clipped-Wing' Evaluator Missile Stays Behind to Record Falcon Fligi

There is a Falcon air-to-air guided missile tha fires, but never launches-a weapon-system e'al uator missile with "clipped wings." This devic always stays behind to record the performaina of its more destructive mates.
The evaluator missile, or WSEM, is the only system that checks compatibility between the Hughes Aircraft Co.'s Falcon missiles and inter ceptor armament control during a simulated air attack.

Essentially, the WSEM is a standard configuration Falcon with a signal recorder set pack aged in a cylinder in the aft section in place of the rocket engine and control surface servo po. sitioners. Each version has a complete combat ready Falcon Guidance system.
WSEM's are installed in an interceptor arma ment bay in the same manner as standard Fal. cons. They can be used exclusively on simulated missions or included with a load of live Falcons to record actual firings.

New Rheem Positioning Controls
 Said to Give Automation Advance

Reported advances in automation are being demonstrated in a new system employing specially designed positioning controls and a precision boring machine.
Using Rheem Numerical Positioning Controls and an Ex-Cell-O Numera Trol precision boring machine, the system is believed to be the first in the automation field to achieve automatic control of tool position while the spindle is in motion. According to W. C. Leone, vice president and general manager of the Rheem Electronics Div. of Los Angeles, Calif., the position of the boring tool has a resolution of 0.0001 in ., under tape control.

In using the system an operator loads parts into a fixture on the table. The "tape reader" in the control console reads the tape, sends signals to the distributor, which in turn transmits the information to the controls. The electronic control positions the table accurately into place, controls the rate of "feed," precisely positions the table horiontally in respect to the boring spindles during the cutting operation and automatically controls the radius of the cut. Thus the system provides an accurate automatic positioning of four axes simultaneously.

'Homemade' Electronic Tester May Save Hundreds of Man-Hours

An electronics tester, built of spare parts in technician's spare time, will save hundreds of man-hours in building the $2,000-\mathrm{mph}$ B-70 bomber, according to the plane's builders. The machine, called the "Universal Test Panel," was designed and built by Ernest Sweeney, a quality-control specialist at the Los Angeles Div. of North American Aviation, Inc. Mr. Sweeney was aided in the design and construction of his panel by several associates at North American.
Preliminary tests showed Mr. Sweeney's machine can do the same jobs previously done by individual test panels, which took up to eight hours to build. The panel tests electronic parts such as regulators, sensors, controllers, amplifiers and other systems bought from outside vendors for the B-70.
The finished product is a $3-\mathrm{ft}$ high cabinet with more than 1,500 wires and about 3,000 soldered points. It cost only \$165-a figure which does not take into account Mr. Sweeney's labor. The machine is expected to be particularly useful in eliminating "one-shot" test panels which had to be built to inspect uncommon parts. Those panels often required up to 40 man-hours to build.

Plugging into a "homemade" electronics tester that he built on spare time out of spare parts, Ernest Sweeney of North American Aviation's Los Angeles Div. tests products to be used in triplesonic B-70 bomber progam . The multi-purpose tester will save hundreds of π an hours in development of $2,000-\mathrm{mph}$ B-70, North A merican reports.

THESE ‘LITTLE GIANTS’ WITHSTAND SHOCK AND VIBRATION

Micro-Miniature Ruggedized Continental Connectors

- Smallest size without sacrificing performance
- Available with $5,7,9,11,20,26,29,34$ and 44 contacts
- Reversed guide pin and socket for positive polarization
- Supplied in various molding compounds
- Available with hoods, screwlocks and shells

Continental Connector`s Series MM22 precision microminiature connectors simplify interconnection of compact sub-assemblies where space limitations demand the smallest components and highest reliability.

ELECTRICAL AND MECHANICAL RATINGS

$\begin{array}{ccc}\text { Voltage Ratings: } & \text { Breakdown } & \text { Recommended Test } \\ \text { At Sea Level } & 2400 \mathrm{~V} . \text { RMS } & 1600 \mathrm{~V} . \mathrm{RMS} \\ \text { At } 70,000 \mathrm{Ft} . & 650 \mathrm{~V} . \text { RMS } & 425 \mathrm{~V} . \mathrm{RMS}\end{array}$
Current Rating.................................. 3 Amps
Minimum Creepage Between Contacts.......... 1/16"
Minimum Air Space Between Contacts.......... . . $040^{\prime \prime}$
Contacts, Center-to-Center 3/32 ${ }^{\prime \prime}$
Pin Diameter.. $030^{\prime \prime}$
Solder Cup.......................... . 22 AWG Wire

Technical data sheets on micro-miniature and other Continental Connectors are available on request. Specify your requirements to Electronic Division, DeJURA MSCO Corporation, 45-01 Northern Boulevard, Long Island City 1, N. Y. (Exclusive Sales Agent.)

manufactured by CONTINENTAL CONNECTOR CORPORATION america's fastest growing line of precision connectors

Hyper-Pure Silicon... Silicon So Pure Just a Touch Contaminates Its Quality

The highest purity attained in any ele ment refined by man . . . purer than any element found in nature! That's Hyper Pure Silicon.
With less than one part per billion of boron, Dow Corning Silicon is so pure that just the touch of a finger tip causes contamination - destroys its high quality. To assure this untouchable purity when you receive them, Dow Corning polycrys. talline rods are wrapped in special unbleached cellophane and sealed in airtight polyethylene envelopes.
Purity pays off in quality - in uni. formity of properties . . . in relatively flat resistivity and lifetime profiles for the entire length of single crystal silicon grown from Dow Corning polycrystalline rod and chunk . . . in maximum yield.
Specify polycrystalline rod if you use the zone refining process for conversion to single crystal - polycrystalline chunk if the Czochralski method is used. Both are of the same high quality.
Why is Dow Corning able to supply this untouchable quality?
Dow Corning has nearly twenty years experience in the production and purification of trichlorosilane, a chemical basic to both Silicones and Hyper-Pure Silicon. This ex perience, plus a fully integrated production facility, assures uniformly high quality minimizes batch to batch variations.
For more information contact our nearest regional office, or write direct.
Typical properties of Dow Corning polycrystalline silicon, together with resistivity and life-time curves for an evaluation crystal, are shown below.

Free brochure - "Hyper-Pure
Silicon for Semiconductor
Devices." Write Dept. 3311a

HYPER-PURE SILICON DIVISION Addrese: HEMLOCK, MICHIGAN

DON COrning CORPORATION

MIDLAND. MICHIGAN
atlanta goeton chicaio cleveland dallag losangeles new vonm wabhinoton, d.c.

Three Services Exchange Informetion To Improve Missiles, Space Vehicles

THE Interservice Data Exchange Program ior ballistic missiles and space systems, that ee gan approximately a year ago, is reported functioning smoothly. The purpose of IDEP is to slop duplicate controlled laboratory testing of picce parts and to improve the quality and reliability of missiles and space vehicles.
Data exchange among the services is not a new idea. There has been continuous exchange on an "as requested" basis. This however, is a long, slow process. IDEP is unique in that the exchange of test reports on piece parts is automatic.

Distribution Centers Set Up

By Each of Three Services
The Army, Navy, and Air Force each have established a Data Distribution Center
The Army DDC is at the Army Ballistic Mis sile Agency, Huntsville, Ala. The Navy DCC is at the Naval Ordnance Laboratory, Corona, Calif., and the Air Forte DDC is located at the Air Force Ballistic Missile Div., Los Angeles.

Each service selects ballistic-missile and space-vehicle contractors who will participate in the data-exchange program. They are chosen on the basis of the importance of the laboratory test work they have under contract. The service is offered to the contractors at no cost. Individual contractors send test reports to the appropriate

Microfilmed report enlarged by a reader-printer is reviewed by J. H. Draughon, Army promoter of the Interservice Data Exchange Program idea. The machine is printing laboratory work copies for Army missile contractors at the same time.

How's that for speed! And the post-insulation of the Termashield Shielded Wire Ferrule is easily and quickly accomplished . . . you eliminate close tolerance cable stripping required by other techniques . . . you eliminate blind probing of taps into other type ferrules . . . you eliminate solder and burnt cable . . . you eliminate lost time . . . you eliminate doubt.

For positive attachment, top reliability, unbeatable speed and tangible economy, get A-MP Post-Insulated Termashield Shielded Wire Ferrules.

Wrise for more Information.

AMP INCORPORATED

GENERAL OFFICES: HARRISBURG, PENNSYLVANIA A-MP products and engineering assistance are available through subsidiary companies in: Australia • Canada • England • France • Holland • Japan CIRCLE 30 ON READER-SERVICE CARD

predict system performance

With Link Digital Function Generator
The Link DIGITAL FUNCTION GENERATOR - another new DIALOG* sub-system, is ideal for research. simulation and control of cemplex systems where an extreme number of functions of one, tivo or more variables are defined by discrete values.

Standard signal levels for input and output circuits assure compatibility with standard analog equipment. Utilizing the greatest possible accuracy and stability combined with high speed computation, the DIGITAL FUNCTION GENERATOR delivers fast readouts of generated function in digital or analog form. This unique systems tool guarantees flexibility, ease of maintenance and remarkably low cost.

GENERAL SPECIFICATIONS

Computer type
Number base:
Mode of operation: Memory type:
Drum speed: Memory capacity Interpolation Interpolation rate: Function generation:

Accuracy:

Special purpose serial digital Binary
Parallel
Magnetic Dru
Magnetic Dru
3,000 RPM
3,000 RPM
330,000 bits on 80 tracks
32 bits
or tation of division and muitiplication Thre variable: $0.02 \mathrm{sec} /$ point
Three variables: $0.1 \mathrm{sec} / \mathrm{point}$ accuracy

INPUT / OUTPUT CHARACTERISTICS

Input: (Continuous electrical analog signal) Number of inputs: Sequence:
Level:
Conversion time:

64 (expandable)
By computer command
0 to +100 volt
936 microseconds

Dutput:

 Number of outputs: Selections: Level:Drift:

ANALOG

80 (expandable) Fixed or by mode switch 0 to +100 volt
24 millivolts in 24 millivolts in 16 hours
Output:
Number of outputs:
Signal:
Pulse level:

DIGITAL

128 12 binary bits at a frequency of 204.8 kilocycles per second
0 to -10 volt

Write to Dept. XX, Industrial Sales Department, for specific details on the many advantages and applications of the Digital Function Generator and information on Dialog Systems Building Blocks.
*DIALOG (Link Digital-Analog Systems, Components and Building Blocks)

LINK DIVISION
Binghamton, New York
 GENERAL PRECISION. INC.
Other Divisions: GPL, Kearfott, Librascope,

NEWS

Heat Near That of Sunfir

Molecules Ionized, Dissociated By HF Electromagnetic Fields

A "Plasma Torch" using an RF field to g.nerate temperatures approaching those of the sun's surface has been built by the Amperex Electronic Corp., Hicksville, N.Y. High-fre. quency electromagnetic fields ionize and dissociate gas molecules passing through the torch. Recombination of this plasma as it exits from the torch liberates heat without combustion.
The principle is similar to that of the atomic hydrogen torch except that here the energy is supplied to the gas by an RF field rather than by an arc. Any gas, combustible or not, may be used.
The electromagnetic field is created by a coil or by a coaxial cable. The gas passes through the coil or within the cable, which must be specially constructed with perforated insulating discs. Torches of both types have been successfully tested by Amperex. The coil-type unit was powered by a standard transmitting triode, while the coax-type torch used a magnetron.

Frequency of Field

Is Not Critical

Frequency of the field is not critical; the triode was operated at 27 mc and the magnetron at $2,450 \mathrm{mc}$. Both types operated cw with the triode delivering 250 w and the magnetron 1

"Plasma Torch" melts steel rod held by John Martin as Amperex President Frank Randall observes demonstration of the device. Heat is derived from high-irequency electromagnetic fields generated by triodes or magnetrons. Despite high heat, the torch itsel، remains cold. The process does not involve com bustion and almost any gas can be used, according to Amperex engineers.

S

Unlith RF ‘Plasma Torch’
v. In heavy-duty applications, however, it is tely that triodes would be preferable.
Test units have achieved temperatures of more

ockheed TV Camera System - Present 'Space-tacular'

A device known as a Video Telemetering mera System will enable missile designers on e ground to view what is happening inside a wsile during flight. The system, developed by ockheed Electronics Co. of Plainfield, N.J., nctions like a TV set, but is reported many nes more refined.
Both the Tiros and Midas satellites used camIs to photograph weather phenomena and the ound. The Lockheed camera, however, is degned to televise actual functioning of missiles ring flight.
The strategically placed cameras will view ppenings both inside and outside the missile it soars through space. Once launched the nctioning of the missile is viewed on a monitor engineers and is photographed on motioncture film.
These visual records will be a valuable aid to sign res when making repairs or redesigning uipment, according to the company, and, in diti in to speeding up missile development, the ner system could save millions of dollars.

- SIZE

THE MODEL 50 $3 / 8^{\prime \prime}$ square, $3 / 16^{\prime \prime}$ high, and weighing 1 gram, the Model 50 s available in standard resis ances of 50 ohms to 20 K ohms.

PPERFORMANCE

Stack 'em... up to 35 Model 50 trimmers in one cubic inch. Adjust 'em, 25 turns for full electrical travel... take your choice of side or top adjustment, slotted fillister head screw, Allen hex socket, or slotted headless screw flush mounted. Dissipates 1 watt-Model 50 and 2 watts - Model 60. Dual wiper provides double assurance of positive contact under all conditions. High resolution, typically 0.061% for the 50 K ohms model. Resistance tolerance, $\pm 5 \%$, temperature range, -55 to $+150^{\circ} \mathrm{C}$.

RELIABILITY

At no extra cost, Spectrol trimmer potentiometers meet or exceed all applicable military specifications for altitude, fungus resistance, salt spray, sand and dust, humidity, temperature cycling, shock and vibration. Guaranteed load life, 1000 hours minimum.

ECONOMY

Prices in 1-9 quantities: Model 50-\$7.50 each, Model $60-\$ 6.50$ each. Spectrol trimmers are ready now for immediate delivery from your local distributor. For complete technical information, call your Spectrol representative or write Dept. 36 .

SPECTROL
 ELECTRONICS
 CORPORATION

1704 South Del Mar Ave. • San Gabriel, California
ATIantic 7.9761 - CUmberland 3 -5141
1250 Shames Drive - Westbury, Long Island, N. Y. EDgowood 3.5850

Precision
 FREQUENCY STANDARDS AND FORK OSCILLATOR UNITS

PRECISION FORK OSCILLATOR UNITS

TYPE 2003
 Frequencies: 200 to 4000 cycles Accuracies:-
Type 2003 ($\pm .02 \%$ at -65° to $85^{\circ} \mathrm{C}$) Type R2003 ($\pm .002 \%$ at 15° to $35^{\circ} \mathrm{C}$) Type W2003 ($\pm .005 \%$ at -65° to $85^{\circ} \mathrm{C}$) Double triode and 5 pigtail parts required. Input, Tube heater voltage and B voltage Output, approx. 5 V into 200,000 ohms

TYPE 2007-6

18
10TRANSISTORIZED, Silicon Type Si:e $1^{1 / 2 "}$ dia. x 3 ${ }^{1 / 2 "}$ H. Wght. 7 ozs. Frequencies: 360 to 1000 cycles Accuracies:
${ }_{2007-6}\left(\pm .02 \%\right.$ at -50° to $+85^{\circ} \mathrm{C}$ R2007-6 $\left(\pm .002 \%\right.$ at $+15^{\circ}$ to $+35^{\circ} \mathrm{C}$ W2007-6 ($\pm .005 \%$ at -65° to $+85^{\circ} \mathrm{C}$ Input: 10 to 30 Volts, D. C., at 6 ma . Output: Multitap, 75 to 100,000 ohms

TYPE 2001-2

Size $33 /{ }^{\prime \prime}{ }^{\prime \prime} x 4^{1 / 2 m} \times 6^{\prime \prime}$ H., Wght. 26 oz.
Frequencies: 200 to 3000 cycles
Accuracy: $\pm .001 \%$ at 20° to $30^{\circ} \mathrm{C}$ Output: 5 V . at 250,000 ohms Input: Heater voltage, 6.3-12-28
B voltage, 100 to 300 V ., at 5 to 10 ma .

ACCESSORY UNITS FOR 2001-2

11 -For low frequencies multi-vibrator type, 40-200 cy.
D-For low frequencies counter type, $40-200 \mathrm{cy}$.
H -For high freqs, up to 30 KC . M-Power Amplifier, 2 W output. P-Power supply.

Watch Master

ELECTRONICS

54 res

Our instruments, 40 to 30,000 cycles, are used extensively by industry and on government projects where enduring accuracy and maximum durability are required. Your inquiries on related products are invited.

PRECISION FREQUENCY STANDARDS

TYPE 2005A
Size $8^{\prime \prime} x 8^{\prime \prime} x 7^{114 \prime}$ High Weight, 14 lbs.
Frequencies:
50 to 400 cycles (Specify)
Accuracy:
$\pm .001 \%$ from 20° to $30^{\circ} \mathrm{C}$
Output, 10 Watts at 115 V
Input, 115V. (50 to 400 cy .)

TYPE 2IIIC

Size, with cover
$10^{\prime \prime} x 1^{\prime \prime} x 9^{\prime \prime} H$.
$1{ }^{x} 1{ }^{x} 9^{\prime \prime} H$.
$10^{\prime \prime} \times 19^{\prime \prime} x x^{3 / 3 \prime}{ }^{\prime \prime} \mathrm{H}$.
Weight, 25 lbs.
Frequencies: 50 to 1000 cy Accuracy:
($\pm .002 \%$ at 15° to $35^{\circ} \mathrm{C}$)

Output: $115 \mathrm{~V}, 75 \mathrm{~W}$.
Input: $115 \mathrm{~V}, 50$ to 75 cy .
When requesting information, please specify type number

NEWS

Transistorized Dc Motur

May Be Generally Available in ' 1 ; Have No Brushes, No Commutaturs

T

- RANSISTORIZED dc motors designed to operate without commutators and brushes, reported to be in closely guarded developnient by a number of manufacturers, may be generally available early next year. "I expect to see perhaps 10 companies in the market by the middle of next year," a designer active in this field told Electronic Design.

One manufacturer, Eastern Air Devices, Inc Dover, N.H., has already announced its entry and reports having landed a $\$ 250,000$ initial contract with a "major eastern electronics company" to supply transistorized motors for use in military devices. Eastern claims that its motors offer a 20 - to 100 -fold increase in reliability compared to carbon-brush-equipped motors operating un. der severe conditions. Specific design information is being withheld, however, until patent applications are further along.

Meanwhile, the SER Co., Waltham, Mass., is marketing do-it-yourself kits of a transistorized dc motor for educational use and expects to patent and license the design for commercial use.

One of Two General Approaches

May Involve Patent Difficulties
This unusual state of affairs in what promises to be a significant design innovation is due to the fact that there are at least two separate design concepts involved-one of which may not be eligible for a patent.

In one approach, a transistorized dc-to-ac converter drives a conventional ac motor. Successful operation of this scheme generally requires a control feedback from the motor to synchronize the converter. This relatively straightforward method is said to be an old one whose practical implementation requires the high-power transis tors only now available. Informed sources believe that many of the designs planned for introduction next year are variations of this scheme-including, perhaps, the Eastern Air Devices motor. It is also believed that obtaining a patent for a transistorized motor designed along these lines may prove difficult.
A second approach employs transistors to commutate the current to a specially designed dc motor. This is the principle of the SER kit motor. Its inventor, Dr. Harry Stockman, is a professor of electrical engineering at the Lowell Technological Institute, Lowell, Mass.

otor Moving into Production

' 1 ;
tat is re enerative mode provides high efficiency with the ro or providing self-quenching action.
The SER motor consists of a permanent mag net rotor, two coils, and a 2 N 53 npn transistor. One coil is a sensing coil and the second a driving coil. As the magnetic rotor approaches the sensing coil, an emf is induced in the coil. This emf is applied to the transistor base in a common emitter circuit. The transistor fires, and current from the collector passes through the driving coil. This process occurs once during every rotation of the motor and provides a series of properly timed impulses to sustain rotation.

Self-Starting Is Difficult;

Auxiliary Devices Are Needed

Both types of motors are inherently not selfstarting and must include some provision to get them under way. This may consist of a starting winding, an electromagnet, a mechanical drive or other such means.
Dr. Stockman's claim of invention dates back to about 1950, at which time he reports having operated an analogous device using four 6L6's in parallel to commutate the motor. He obtained efficiencies on the order of 5 per cent and shelved the project. "With 1,500-w power transistors now available," Dr. Stockman said, "the idea now appears feasible.
Inherent advantages of a brushless dc motor include: absence of brush wear, which is particularly severe at high altitudes; greater safety in explosive environments; improved efficiency due to reduced friction; and generally improved reliability. Printed circuit motors could also employ the brushless principle to advantage. Still another application of these motors could be as integrating devices in electronic analog computers, where amplifier output is generally dc. - -

Type			Avervege Forward Curront	Maximum Current		$\begin{gathered} \text { surges } \\ \substack{\text { currmp } \\ (m m p e)} \end{gathered}$
	$\begin{aligned} & \text { IN538 } \\ & \text { INStO } \end{aligned}$ 1N547			$250 \mu \mathrm{Adc}$ $250 \mu \mathrm{Adc}$ 250 M Adc	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	
$\begin{aligned} & 1 \text { Amp } \\ & \text { cisoc } \\ & \text { Comporature } \\ & \text { Tomperatur } \end{aligned}$	(1023	$\begin{aligned} & 100 \\ & 200 \\ & 200 \\ & 600 \end{aligned}$	$\begin{aligned} & 1.0 \mathrm{Adc} \\ & 0.4 \mathrm{Acc} \\ & 0.4 \mathrm{Acc} \\ & 0.2 \mathrm{Adc} \end{aligned}$		$\overline{\overline{1.0}}$	
20 Amp $140^{\circ} \mathrm{CP}$ Case Temperature		$\mathbf{5 0}$ 100 150 200 300 300 500 600	${ }_{20} 20$ Adc 20 Adc 20 Adc 20 Adc 20 Ade 20 Adc			250 250 250 250 250 250 250 250
${ }^{25} \mathrm{Amp}$ Case Temperature		50 120 120 300 300 500 600	25 Adc 25 Adc 25 Ade 25 Adc 25 25 Adc	$\begin{aligned} & 5 \text { made } \\ & 5 \text { malc } \\ & 5 \text { malc } \\ & 5 \text { madc } \\ & 5 \text { malc } \\ & 5 \text { madc } \end{aligned}$		350 $\begin{array}{l}350 \\ 350 \\ 330 \\ 330 \\ 330 \\ 350\end{array}$
${ }^{35} \mathrm{Amp}$ Case Temperature	2N1183 N1185 N1185 N1186 N1187 N1188 N1189 iN1190	50 1100 150 200 300 500 600		10 mAdc		500 550 550 550 550 500 500
	Type			maximum Rumorent		$\begin{gathered} \text { surrent } \\ \substack{\text { Surcmit } \\ \text { (Amps }} \end{gathered}$
50 Amp $150^{\circ} \mathrm{C}$ Cose Temperature		$\begin{aligned} & 50 \\ & \begin{array}{l} 50 \\ 200 \\ 200 \\ 400 \\ 600 \end{array} \end{aligned}$	$\begin{aligned} & 50 \text { Adc } \\ & 50 \mathrm{Adc} \\ & 50 \mathrm{Ac} \\ & 50 \mathrm{Adc} \\ & 50 \text { Adc } \end{aligned}$	$\begin{aligned} & 20 \text { madc } \\ & 20 \text { made } \\ & 20 \text { madc } \\ & 20 \text { mAdc } \\ & 20 \text { mAd } \end{aligned}$	1.1 1.1 1.1	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$
70 Amp $150^{\circ} \mathrm{CD}$ Case Tomperature		$\begin{aligned} & 50 \\ & 150 \\ & 150 \\ & 150 \\ & 000 \\ & 300 \\ & 000 \\ & 500 \end{aligned}$	$\begin{aligned} & 70 \text { Ade } \\ & 77 \mathrm{Adc} \\ & 70 \mathrm{Adc} \end{aligned}$	15 mAde 15 mAde 15 mAde 15 mAde 15 mAdc 15 mAde 15 mAdc	$\begin{aligned} & 1.3 \\ & 1: 3 \\ & 1.3 \\ & 1.3 \\ & 1.3 \\ & 1.3 \end{aligned}$	1500 1500 1500 1500 1500 1500 1500
70 Amp $150^{\circ} \mathrm{CP}$ Caso Temperature		50 100 200 300 505 500		$\begin{aligned} & 30 \mathrm{mAdc} \\ & 30 \mathrm{mAdc} \end{aligned}$	1.3 1.3 1.3 1.3 1.3 1.3	1500 1500 1500 1500 1500 1500
${ }^{80} \mathrm{Amp}$ $150^{\circ} \mathrm{C}$ Tasporature		$\begin{aligned} & 50 \\ & \begin{array}{l} 100 \\ 200 \\ 200 \end{array} \\ & \hline 00 \end{aligned}$		$\begin{aligned} & 30 \mathrm{mAdc} \\ & 30 \mathrm{mAdc} \\ & 30 \mathrm{mAdc} \\ & 30 \mathrm{mAdc} \end{aligned}$	1.3 1.3 1.3 1.3	1500 1500 1500 1500

\triangle Max. fwd. voltage drop @ 0.5 amp., $25^{\circ} \mathrm{C}$ caso temperature

- Full cycio average for rectifier operating into inductive or rosistive load at rated current and voltage -0 50 amp units @ 100 amps D.C. and $25^{\circ} \mathrm{C}$: $25^{\circ} \mathrm{C}$
70 and 80 amp units @ 150 amps D.C. and
70 and 80 amp units © 150 amps D.C. and $25^{\circ} \mathrm{C}$
\uparrow Max. half sine wave pakk curront for one cycle © 60 cps
storage tomperature range for all types .. . -65° to $200{ }^{\circ} \mathrm{C}$

This select line fits the broadest variety of applications. Each unit delivers across-the-board versatility and directly replaces many existing types.

Tung-Sol silicon rectifiers were designed to serve with unqualified dependability in the most exacting military and commercial applications. They're precision engineered to assure the utmost in topperformance uniformity and stability... and to function at maximum capacity even under the most severe environmental and electrical overload conditions. Write for the new Tung-Sol silicon rectifier interchangeability chart and complete technical information. Tung-Sol Electric Inc., Newark 4. New Jersey.

Standard JEDEC configurations and with Tung-Sol's unsurpassed Standard and reliability.

NEWS

Germanium-mesa epitaxial transistors are thermo-compression bonded along production line at Sylvania's Semiconductor Div., Woburn, Mass.

Epitaxial Process to Take Leading Role

Three Production Transistors On the Market
From New-Found Vapor-Deposition Process

E
E PITAXIAL transistors, and even more complex devices made by this vaporgrowth process, will take a prominent role in future designs, according to present indications.
Already three transistors have reached the production line, as shown in the table, and many more are expected to follow. Epitaxial devices are generally expected to make obsolete most amplifying and switching transistors now in use. Furthermore, control of the epitaxial process can result in more complex devices which should begin to reach the market within the coming year. Although component manufacturers are not discussing specific devices being planned, there is fairly general agreement that complex types should result in the near future from efforts now in progress.

Merck \& Co., Rahway, N.J., has produced a crude sawtooth generator from a succession of epitaxial layers, demonstrating the feasibility of the concept for this application. Four-layer pnpn material is also being supplied by Merck to manufacturers for use in silicon controlled rectifier production. Other complex configurations are being prcduced by the company to meet specific requirements. Merck is also supplying two-layer n^{+}on n material for use in making epitaxial transistors.
The potential of the process for producing the "universal transistor" is being exploited by Motorola with its 2 N 834 silicon-mesa. For switching applications lower storage time, lower saturation voltage and less collector capacitance have been achieved in comparison to present

Epitaxial Transistors in Production
tions, is evident throughout Columbus Semiconductors ${ }^{\circledR}$ extensive line of silicon rectifiers. Over 350 JEDEC types from 50 to $2,000 \mathrm{PIV}$ and from 200 mA to 25 Amps , as well as all seven JAN power types are available.

COLUMBUS ELECTRONICS CORP.
1000 Saw Mill River Road, Yonkers, New York
Tel: YOnkers 8-1221 - TWX: Yonkers, NY-1369

Company

Motorola Semiconductor Products, Inc.
Rheem Semiconductor Corp.

Sylvania Electric Products, Inc.

Device
Price

Type 2N834 silicon-mesa Type RT409, silicon

Type SYL2300, germanium-mesa

Type SYL2301, germanium-mesa
$\$ 18$ ea for 100 or over
$\$ 170$ ea for developmental units
$\$ 27$ ea to 100 , $\$ 18$ ea for 100 or over
$\$ 18$ ea to 100 , $\$ 12$ ea for 100 or over
diffused mesas. In amplifier applications, higher poner output with greater efficiency has been claimed because of the low series resistance to the devices.
Eventually, however, Motorola feels that optimization will again take over so that separate devices are made for switching and amplifying functions.
This can be done by varying junction area, junction configuration, and resistivity and thickness of the epitaxial layer, according to Motorola. For switching devices low saturation voltage, low storage time, low r^{\prime}, and careful control of current gain will be emphasized. In amplifier transistors moderately high breakdown voltage, low collector capacitance, low r^{\prime}, and high gainhandwidth product will be sought.
Manufacturing processes appear to be a key factor in the developing industry competition aver epitaxial devices. A session devoted to the process at the recent Electron Devices Meeting in Washington, D.C., emphasized detailed inanufacturing steps to be followed in producing devices. Questions from the floor concerned detailed portions of processes, such as per cents of impurities, cooling times, substrate preparation and similar points.
An exchange of ideas on epitaxial techniques was called for by Dr. N. T. Sandler of Pacific Semiconductors, Inc. Sharing of knowledge about the technique will benefit the entire industry, 1)r. Sandler said.

Many of those at the session felt that the disclosures made by Bell Telephone Laboratories of details of the process developed there already have helped to push device development along much faster than would have been possible if cach component manufacturer had to start from the beginning. The hesitation on the part of some speakers to answer specific pointed questions, (continued on p 40)

The Epitaxial-Growth Process

In the epitaxial-growth process, semiconducfor material in vaporized form is deposited on i) semiconductor seed crystal. The deposited layer continues the single crystal structure of the seed. Compounds of semiconductors and halogens-iodine or chlorine-have commonly locen used for the vapor process.
Control of this process adds several new lenefits to device production. Extremely thin layers can be produced, doping levels can be arefully graded throughout a device, and harp junctions can be made between layers of lifferent resistivities anywhere in a device.

New Random Access Memory Package... USes Only $18.75^{\prime \prime}$
IN STANDARD 19" RACK

GENERAL CERAMICS, continuing its leadership in the memory packaging field, has made available double and triple bay random access memories with up to 4096 characters $x 32$ bits per character at cycle times up to 6 micro-seconds. Now you can get design economy since the basic G-C package requires only $18.75^{\prime \prime}$ of standard rack space-a reduc-
tion of up to 80% over typical units requiring a full six feet.
General Ceramics offers space-saving random access memory designs with varying number of characters, word lengths and logic.
Optional design features include parity checking, test cycles, indicator lights and power supply locations.

Write on your company letterhead for additional information.
Please mention your requirements; address inquiries to Section ED.

TECHNICAL CERAMICS, FERRITEAND MEMORYPRODUCTS circle 36 on reader-service card

NEWS

(continued from p39)

NOTABLE ACHIEVEMENTS AT JPL...

pioneering work in worldwide communication via satellites

PROJECT ECHO

On August 12th, 1960, JPL scientists at
Goldstone, California, radioed the world's first transcontinental microwave message to be relayed by a passive, artificial earth satellite. This satellite was the 100 ft . plastic balloon Echo I orbiting around the Earth at an altitude of approximately 1,000 miles.

A pre-recorded statement by President Eisenhower was received
2,300 land miles away by scientists of the Bell Telephone Laboratories at Holmdel, New Jersey, as clearly as any conventional telephone call, in a fraction of a second.
Later in the course of the Echo experiment, the scientists
at Goldstone and Holmdel conducted 2-way voice communication via the balloon satellite, Goldstone transmitting at 2,390 megacycles and Holmdel at 960 megacycles.
This successful experiment has demonstrated the feasibility of worldwide communication
and is typical of many pioneering achievements of the Jet Propulsion Laboratory.

CALIFORNIA INSTITUTE OF TECHNOLOGY JET PROPULSION LABORATORY
A Reseorch Focility operated for the NAtional Aeronavict ond
Employment opportunities for Engineers and Scientists interested in basic and applied research in these fields: COMMUNICATIONS • INSTRUMENTATION • INFRARED•ASTROPHYSICS • GEOPHYSICS • GEOCHEMISTRY - ASTRONOMY • PROPULSION • MASER • STRUCTURES • PHYSICS .

Send professional resume, with full qualifications and experience, for our immediate consideration
however, indicated that complete sharing of latia can not be expected yet.

Prices of the epitaxials are expected to de line gradually as use rises. Motorola, for example estimates that epitaxial mesa transistors wil be priced lower than conventional mesas by nid1961. As this trend goes on, however, the conventional manufacturing techniques will be displaced by epitaxial lines.

Philco to Improve Present Techniques, Add Epitaxial Silicon-Mesa Types

Comments about the epitaxial transistor making obsolete most other types have led to speculation about the Micro-Alloy Diffused Transistors made by Philco Corp. and licensees of Philco. These devices have proved highly competitive with mesa types up to now.

Philco feels that its MADT devices are competitive with the epitaxial mesas coming onto the market, however the company plans to improve its processes to compete with further refinements in the epitaxial art according to Dr. Clarence G. Thornton, director of research and development. Dr. Thornton feels that the epitaxial process will replace conventional diffusion, and that therefore the diffusion portion of the MADT process will be converted to an epitaxial step. This should allow further improvements in frequency re sponse up to the $10-\mathrm{kmc}$ region, Philco expects.

The company also plans to start production of epitaxial silicon mesa transistors, Dr. Thornton said, however because of the price differentia between these and MADT types the epitaxial will probably be used only because of highe power recpuirements or high temperature needs.

More Devices Close to Marketing, Complex Epitaxials Next Big Step
Most other semiconductor manufacturers indi cate plans for epitaxial devices and the thret which are already in production have all announced plans for further devices. Motorola will follow up its silicon unit with a germanium-mesal designated type 2N828. Sylvania is working on silicon mesas to add to its present germaniums and Rheem is planning to introduce epitaxial versions of its $2 \mathrm{~N} 699,2 \mathrm{~N} 657$ and RT5004 transistors.

Perhaps a more significant step will come with the marketing of more complex epitaxial devices. The high interest in the technique throughout the semiconductor industry portends keen competition in this field-competition that may bridge the gap to the molecular era. - -

Trouble-Shooting by Telephone Curs Computer Field Servicing

A unique technique designed to eliminate expen ive field servicing of electronic computercontrol and data-logging equipment by company engineers has been developed by Daystrom Inc.'s Control Systems Div. of La Jolla, Calif.
Key to the new systems service is that users of I)aystrom equipment throughout the country, by means of a telephone call to a La Jollabased console, can put their installations under the hand of a Daystrom expert and have him aid in programing or in trouble-shooting faults in the system's operation.
The La Jolla-console is identical in function to that used in connection with Daystrom installation. Once it is connected by means of a telephone wire to a console in the customer's plant, it can supervise and control the functioning of the customer's system exactly as though Daystrom personnel were in the customer's plant. In essence, this means that all of the skills that are available in the La Jolla laboratory are at the service of customers on a 24 -hour-a-day basis. If the operator in any one of the customer's plants found, for example, that the system wasn't executing a "branch command" as he thought it should, he would call La Jolla and explain lis trouble. At the suggestion of La Jolla, the plant operator would cut his system into the telephonc line and run his program off on the console. A programing expert would study that copy. Once he had found the changes to be made, the programer would punch a paper tape to "ffect the change. He would then feed it into the tape recorder, which would automatically reprogram the customer's computer.
According to C. E. Jones, division general manager, the new service will be offered at a mominal fee.

Franklin Institute Gives Medal To Developer of X-Ray Image Amplifier

The development of an electronic device that hrightens X-ray pictures as much as 500 times has won for Dr. J. W. Coltman, Westinghouse research scientist, an Edward Longstreth Medal of the Franklin Institute.
In citing Dr. Coltman for the development of the X-ray image amplifier, the Institute gives recognition to an invention which marked a mile stone in the use of X-rays for the diagnosis of human disease. By means of an electronic tube, the image amplifier converts a low-intensity X-ray image into a pattern of electrons. These are accelerated and focused to form a brig itened visible image on a phosphor screen.

This plastic is ideal for applications where changes in humidity can affect electrical values. DAPON can prevent costly "in service" failures in electrical and electronic components.

A new molded plastic potentiometer produced by New England Instrument Company features exceptional resistance to humidity, high reliability and low noise. A raised conductive plastic ring is used in place of resistance wire in these miniature units. The new potentiometers are ideal for servo and instrumentation applications where long life and extreme accuracy are important factors.
The solid resistance element, insulating base and silver terminal leads are molded in one operation with DAPON (diallyl phthalate) Resin. Result: a single, almost indestructible precision unit.

New England Instrument chose DAPON because of its superior electrical and physical properties, and its low moisture absorption. DAPON also molds easily around metal inserts without cracking, and withstands extremes of temperature, vibration and shock.

Specify dAPON (diallyl phthalate) Resin when you need:

- Low dielectric loss
- High dielectric strength
- Superior dimensional stability
- Excellent arc resistance
- High volume and surface resistance after high
humidity-high temperature conditioning
Write for FMC's data sheet containing technical information about DAPON, suggested uses for this resin, and the names of DAPON compounders.

FOOD MACHINERY AND CHEMICAL CORPORATION

NEWS

Aerospace Recruiting Hot and Heavy, Most Prospects Come from STL

Intensive personnel recruiting is now being taken by the newly-formed Aerospace Corp. in Los Angeles. According to Ivan A. Getting, president, more than 100 engineers and scientists will be recruited during the next month.

Most of these will come from Space Technology Labs in Los Angeles, under the terms of an agreement established upon the formation of Aerospace Corp. "Our program is one of steady controlled transfer of personnel from STL to Aerospace," Dr. Getting said. "We must exercise the greatest care not to damage the Minuteman and other missile programs."

Aerospace Corp., whose formation was announced two months ago to serve as technical and systems consultants to the Air Force, now has about 100 scientists and a total of 600 to 700 personnel.

Closed-Circuit TV Used to Teach Polaris Submarine Crew Members

Polaris submarine crews are not going down to the sea until they take a course, via closedcircuit TV, on how to operate fire-control and guidance equipment.

The course is being given at the General Electric Ordnance Department's Pittsfield, Mass., plant. The company explained the need for televising the course. "Tight production schedules prevent taking components and subsystems from the production lines for classroom use. Conducting classes in the work areas is unsatisfactory because of the numerous surrounding distractions and the fact that all trainees cannot get an equally good view of what they must see.
"With closed-circuit television the trainees get close observation of hardware without distraction and without disrupting production."

Data Transmitted Three Ways With New Flexible Phone System

The flexibility of a new electronic system permits it to read or write data via punched-paper tape, punched cards or magnetic tape. The system, developed by the Digitronics Corp. of Albertson, N.Y., transmits data over the regular telephone network at a speed of $1,500 \mathrm{wpm}$.
The new development, called the Dial-o-verter

路

NEW SILICON EPITAXIAL MESA

mororoua 2 N834 ...OFFERING SUPERIOR SWITCHING AND AMPLIFIER CHARACTERISTICS

SILICON EPITAXIAL

 MOTOROLA 2N834CONDITIONS OF TEST:
300° Centigrade Storage INITIAL LIMITS:
$h_{r e} \geq 25 \mathrm{at} \mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{c}}=10 \mathrm{~mA}$
$\mathrm{l}_{\text {CRO }}<.5 \mu \mathrm{Adc}$ at $\mathrm{V}_{C H}=30 \mathrm{~V}$ NUMBER OF UNITS: 20

These new Motorola Epitaxial Mesa Transistors combine the high reliability, high power dissipation and switching speed of the Mesa structure with the low saturation of the high-frequency alloy types. This results in a superior switch and a superior amplifying device.
As a switching transistor. the 2 N 834 's lower storage time, lower saturation resistance, and lower collector capacitance helps reduce saturation resistance, and lower collector capacitance helps reduce
propagation delay in computer circuits. The high collector-base propagation delay in computer circuits. The high collector-base
voltage and the resultant high collector-emitter voltage assures voltage and the resultant
elimination of "latch-ups."

In amplifier circuitry, the 2 N834 is capable of delivering much higher power output at higher levels of efficiency. Since they represent practically no series resistance in the circuit, there is considerably less power loss in the collector.

- Lower storage time constant - 20 nsec $\left(\mathrm{l}_{\mathrm{c}}=\mathrm{I}_{\mathrm{m}_{1}}=\mathrm{I}_{\mathrm{n} 2}=10 \mathrm{mAdc}\right)$
- Lower saturation voltage
$\left(1 .=10 \mathrm{mAdc} ; \mathrm{I}_{\mathrm{n}}=1 \mathrm{mAdc}\right)-0.14$ volts dc. $\left(1 I_{c}=50 \mathrm{mAdc} ; I_{\mathrm{n}}=5 \mathrm{mAdc}\right)-0.28$ volts dc
- HIGHER POWER OUTPUT - $1 / 2$ watt ($\mathrm{P}_{1 \mathrm{~s}}=40 \mathrm{~mW} ; \mathrm{f}=70 \mathrm{mc}$; $\mathrm{G}_{\mathrm{r}}=10 \mathrm{db}$ gain)
- HIGHER BREAKDOWN VOLTAGE - BV $\mathrm{cmo}_{\mathrm{ch}}=90$ volts dc $\left(1{ }_{z}=0 ; I_{c}=100 \mu \mathrm{Adc}\right)$
- HIGHER CURRENT GAIN-BANDWIDTH PRODUCT - 500 mc $\left(V_{r e}=20 \mathrm{Vdc} ; \mathrm{l} .=10 \mathrm{~mA}\right)$
- LOWER COLLECTOR CAPACITANCE - 2.0 pf
$\left(1_{s}=0 ; V_{c \pi}=20 \mathrm{Vdc}\right)$

Why the motorola epitaxial process gives these outstanding design advantages

Motorola's highly refined epitaxial processing technique results in an extremely thin high resistivity layer (about 0.1 mil) between the collector and base regions. Increased performance is thus gained in all device parameters with large reductions in both switching time and collector resistance.
The new process is ideal for Motorola's highly automated Mesa production facility. Only one additional step was necessary to achieve volume production of these devices.
FOR TECHNICAL DATA, prices and delivery information on Motorola Epitaxial Mesa Transistors and the address of your district office, write to Dept. EMT, 5005 E. McDowell Road, Phoenir, Arizona.

MOTOROLA
somiconductor Product= Inc.

5005 EAST MCDOWELL ROAD, PHOENIX, ARIZONA
CIRCLE 40 ON READER-SERVICE CARD

System, was created to function with the Bell System Data-Phone 200. It can transmit data in one medium at one point, and have it received in another medium at the other point. A plant can send paper tape, and have it produced either as cards or magnetic tape at the magnetic center, or vice versa.
Currently, data may be transmitted over private telephone or telegraph lines at a speed of six to 10 characters per second. According to the company, the Dial-o-verter operates via DataPhone at a speed of 150 characters per sec.

OEMI-Sponsored Program Seeks Computer 'Common Language'

Two broad programs for the international standardization of data-processing machines and office machines are underway, reports the Office Equipment Manufacturers Institute.
The efforts of the data-processing program will result in logical systems standards, including a common language, which will enable users of electronic data-processing equipment to interchange information and programs among computers. At present, data-processing programs are designed for the equipment of individual manufacturers and must be converted for use in any other manufacturer's product.

Both programs will be sponsored by the Institute and organized under the procedures of the American Standards Association.

\$1 Million NSF Grant Purchases High-Voltage Tandem Accelerator

A 12-million electron-volt tandem accelerator for use in low-energy nuclear physics research will be installed at the University of Pennsylvania. The National Science Foundation has awarded a grant of $\$ 1$ million to the university for the purchase of the equipment. The ion accelerator, commonly known as an "atom smasher," will also be available to research workers from neighboring institutions.

According to Dr. W. E. Stephens, professor of physics at the university, who will be in charge of the new facility, ion accelerators have proved to be exceptionally useful in investigating the properties of the atom's nucleus. Research work in this area, he pointed out, is concerned primarily with the investigation of the arrangement of nuclear particles within the nucleus and with the nature of the forces giving rise to this nuclear structure.

Electronic Cooling Fans JOY Axivane Series 60

Developed by Joy specifically for 60 cycle commercial duty, the Series 60 vaneaxial fans operate at 3400 rpm, 115 volts, single phase, $50 / 60$ cycles and produce from 50 to 500 cfm at static pressures of $1 / 4^{\prime \prime}$ through $1^{\prime \prime}$ wg. They are extremely compact and ruggedly built
of anodized aluminum. There are only three major parts; rotor, housing and motor. Production quantities are available on order and small quantities are immediately available off-the-shelf. Get complete information by writing for bulletin 2518-57

Model No.	$\begin{array}{\|c\|c\|c\|c\|c\|} \hline \text { Design } \\ \text { CFM } \\ \hline \end{array}$	Max. CFM at Free Flow	$\begin{array}{\|l\|} \hline \text { Design } \\ \hline \text { PS } \pm 7 \% \\ \hline \end{array}$	$\underset{\text { Pressure }}{\text { Max. }}$	Motor Data		Mechanical Dimensions (Inches)						Holes Per Flange	Total Weight Pounds
					BHP	$\begin{aligned} & \text { CAP* } \\ & \text { MF } \end{aligned}$	A	B	C	D	E	F		
X702-401	50	70	0.35	0.45	. 005	NONE	4.37	4.62	5.25	5.87	4.50	1.00	4	5.25
X702-402	100	145	0.35	0.60	. 010	NONE	5.12	5.37	6.00	6.62	4.50	1.00	4	5.85
X702-403	150	205	0.35	0.80	. 015	NONE	5.62	5.87	6.50	7.12	4.50	1.00	4	6.1
X702-404	200	265	0.50	0.79	. 035	5	5.62	5.87	6.50	7.12	5.00	1.66	8	7.2
X702-405	250	330	0.50	0.82	. 043	5	5.87	6.12	6.75	7.37	5.00	1.66	8	7.4
X702-406	300	410	0.50	0.93	. 052	5	6.12	6.37	7.00	7.62	5.00	1.66	8	7.6
X702-407	350	490	0.50	0.95	. 060	5	6.37	6.62	7.25	7.87	5.00	2.16	8	8.4
X702-408	400	590	0.50	1.07	. 068	5	6.62	6.87	7.50	8.12	5.00	2.16	8	8.6
X702-409	450	650	0.50	1.05	. 075	5	6.87	7.12	7.75	8.37	5.00	2.16	8	8.8
X702-410	500	735	0.50	1.15	. 083	5	7.12	7.37	8.00	8.62	5.00	2.16	8	8.9

-Rated 236 WVAC-

AIR MOVING EQUIPMENT FOR ALL INDUSTRY

Joy Manufacturing Company Oliver Building, Pittsburgh 22, Pa.
In Canadar Joy Manufacturing Company (Canada) Limitod, Galt, Ontario

NEWS

Shipments of U.S. Components Reach Another All-Time High

Shipments of electronic components by U. S. manufacturers reached another all-time ligh during the first quarter of 1960, according to the Electronics Div., Business and Defense Services Administration, U. S. Dept. of Commerce.

Output of electron tubes, semiconductor devices, and other major electronic components during the first three months of 1960 increased 8 per cent over the preceding six-month rate and more than 20 per cent over the first-half 1959 rate. The increase was not general. Shipments of quartz crystals, transformers, and transistors were up sharply, whereas output of TV picture tubes, which is generally subject to seasonal declines during the first quarter, and power and special purpose tubes declined slightly during the first quarter 1960.

The following table, which gives details by component category, was derived from the quarterly Survey of Production Capabilities for Electronic Parts. The data presented, however, rep. resent estimated total industry shipments rather than total shipments reported in the survey since adjustments were necessary where the coverage was not complete.

Estimated U.S. Shipments of Tubes And Semiconducfors
January-March 1960

Category	Value in million of dollars (1)		
	Total	Military	Nonmilitan
Power and special purpose tubes .	62.5	40.2	22.3
Receiving tubes	95.2	14.6	80.6
TV picture fubes	61.9	(2)	61.9
Semiconductor devices . . .	136.6	66.4	70.2
Capacitors	65.5	20.3	45.2
Complex Components	5.2	2.7	2.5
Connectors	43.1	28.4	14.7
Quartz Crystals	4.8	1.4	3.4
Relays	48.8	22.5	26.3
Resistors	61.2	27.6	33.6

(1) Estimated total industry shipments including intro plant and inter-plant transfers.
(2) An insignificant quantity and value of shipments 0 TV picture tubes for military applications are com bined with non-military shipments to avoid di closure of proprietary information.
Source: The quarterly Joint Survey of Production Co pabilities for Electronic Parts conducted by the Elec tronics Production Resources Agency of the Dept. o Defense, and the Electronics Div., BDSA.

RCA Data-Processing Center Operates Round-the-Clock

The Radio Corp. of America formally opened is Electronic Data-Processing Center in the Moron Salt Building, Chicago, Ill. Its facilities will be made available on a round-the-clock basis.
The Chicago center is built around the RCA 501 electronic data-processing system. A feature of the opening ceremony was a demonstration of what the RCA 501 can do in a typical problem acing a business firm or government agency.
Some 400 transactions were run through the system against an inventory of some 5,000 items. In five and one-half minutes, the electronic brain" had printed out:

- A list of the day's transactions.
- Purchase requisitions for items needing relenishment.
- A list of stocks inactive for three months.
- The number of units and dollar value of the previous day's inventory and the same data on following day's transactions.
This procedure, completely updating the company's inventory, probably would have taken three employes a full eight-hour day to duplicate, according to RCA.
Eventually, RCA plans to link its network of data-processing centers by a new communications system known as DaSpan (for data-spanning) so that companies with offices in various cities could channel their data back and forth with ease and speed. Such an arrangement could permit a number of Midwest cities to be linked with the Chicago center.
Other RCA Data-Processing Centers are in operation in Washington, New York's financial district, and at Cherry Hill, N.J., in the Philadel-phia-Camden area.

High-Speed British Serial Printer Operates at 1,000 Words per Minute

A high-speed serial printer, designed to operate at 1,000 words per minute- 10 times the speed of the fastest teleprinter-has been developed in Britain for use with electronic computers. It will be shown for the first time at the Business Efficiency Exhibition at London's Olympia by its designers, Creed \& Co., Ltd.
The company will also exhibit what it claims is the world's fastest tape punch. The machine records 5 -, 6 -, or 8 -track punched paper tape at a speed of 3,000 words per min. This is reportedly 10 times faster than output punches generally in service and 45 times faster than the stan lard teleprinter tape punches.

PRD previews/reviews/design notes

Design Considerations of Attenuators

The end use of an attenuator-whether as a standard in power or attenuation measurements, a power or signal level adjuster, an isolator or buffer pad will, of course, bear on its design. But certain design and construction needs also remain constant. Here are some of the considerations that go into a PRD attenuator.

Attenuating Elements

We have found that metallized glass or ceramic generally make the best resistive elements. They are smooth, chemically inert, non-hygroscopic, and will not warp or change shape. We apply an extremely thin metal film to the element in two ways: by "paint" coating and baking, and by high vacuum deposition. The baked-on film method proves best for coaxial attenuators, and the vacuum deposition preferable for waveguide.

Fixed Coaxial Attenuators

PRD 130
The two basic types of coaxial attenuators produced by PRD are shown above, in schematic drawing and photo-
graphs. The first, represented by the PRD 1100, uses one or more T sections with lumped resistive elements. The distributed type, illustrated by the PRD 130, uses an inner conductor of an electrically long resistive film. The T section PRD 1100 operates best at low frequencies, from dc to 4 KMC ; the PRD 130 ranges from 2 to 10 KMC Both dissipate one watt and are calibrated to $\pm 0.2 \mathrm{db}$ accuracy. The PRD 130 can attenuate up to 20 db ; PRD 1100 up to 10 db .

Waveguide Attenuators

The drawing above gives a schematic presentation, with equivalent circuit, of a resistive film parallel to the electric lines in a waveguide. Attenuation is varied by moving the metal-coated glass panel in two usual ways: (1) by lower-

ing it into the waveguide through a slot, as in the PRD 153-B, known as a "flap" type (Freq. range 18.0 to 26.5 KMC ; Attenuation to 35 db ; Max. VSWR 1.10; Max. insertion loss 0.5 db ; Calibration accuracy ± 0.2); or (2) by moving the lossy element from the side wall toward the center of the waveguide CIRCLE 42 ON READER-SERVICE CARD
e have many interesting openings for engineers...contact Mr. John R. Zabka
.known as the "vane" technique, and illustrated by PRD 178-B (Freq. range 5.4 to 7.2 KMC ; Attenuation to 45 db ; Max. VSWR 1.15; Max. insertion loss 0.5 db ; Accuracy to ± 0.2).

Another version of the vane method of attenuation is exemplified by our level set attenuators, such as the PRD 171-B (Freq. range 2.6 to 3.95 KMC ; Max. attenuation to 40 db ; Max. VSWR 1.15).

These are only a few of more than one hundred attenuators produced by PRD and a brief review of the broad design principles involved. For more specifications on these and other units, write for the PRD Attenuator brochure. For design information, write our Applications Engineering Department.

PRD

ELECTRONICS, INC.
1 Subididary of Harrio-Inumspe Corporation
Formety Polyrechnic Research A Doelopacer Ca, Inc

Permit Critical Finishing of ALL Modern Metals with ONE BASIC MATERIAL

No longer need the minuteness of a metal part, or its shape, or its type of metal interfere with the quality of its finish.
All-new LINDE abrasive powders-of 99.9% pure alumina-now permit precision finishing and polishing, as well as sharpening and honing of many metal parts-with one basic material.
Depending upon usage, Linde alumina powders can be used dry, mixed with water or other vehicles to make a thin slurry or heavy paste, or compounded with waxes in convenient stick form. They are uniform in size, thus eliminating levigation in finishing operations. And they are resistant to common acids.

Only two grades of these low-cost, fast-cutting, high-purity white powders are required: LINDE A (alpha alumina) for quicker cutting and an unsmeared finish; Linde B (gamma alumina) for somewhat slower cutting but an extremely fine finish.

For details on alumina abrasives as applied to your production problems, write Dept. ED-113, Linde Company, Division of Union Carbide Corporation, 270 Park Avenue, New York 17. New York. In Canada: Union Carbide Canada Limited, Linde Gases Division, Toronto 12.

LINDE COMPANY
 dIVISION OF UNION CARBIDE CORPORATION

LINDE and UNION CARBIDE are registered trade-marks of Union Carbide Corporation

PHYSICAL PROPERTIES

Type A-5175	Type
Chemical FormulaAl $\mathrm{Al}_{2} \mathrm{O}_{3}($ Alpha)	$\mathrm{Al}_{2} \mathrm{O}_{3}$ (Gamma)
Crystal System Hexagonal	Cubic
Hardness, Mohs' 9	
Particle Size approximate (microns). . 0.3*	<0.1
Apparent Density (g/c.c.)0.3-0.6	0.2-0.5
Melting Point ${ }^{\text {a }} 2050^{\circ} \mathrm{C}$.	Transforms to Alpha form at hig temperatures

*Type C. 5250 also ayailable in 10 microns (approximate) particle size.

SUGGESTED USES

CHEMICAL: Catalyst Carrier • ELECTRONICS: Semiconductor Polishing - JEWELRY: Gem Stone and Crystal Polishing; Silver Polishing - LIGHTING: Phosphor Preparation. CERAMICS: Pure Oxide Ceramics - MEEAL FABRICATION: Finishing of Metal ing; Razor Blade Sharpening - METALLURGY: Metallographic Polishing - Optical: Glass Polishing

UNION

 CARBIDE
NEWS

"Project Dew Drop" Provides Troposcatter Communications Lirk

"Project Dew Drop," a communications system, will provide a new link between Thule Air Force Base in Greenland and the Distant Early Warning (DEW) Line rearward communications system at Cape Dyer on Baffin Island.
Signals originating either at Thule or Cape Dyer will leap the intervening 700 miles by means of tropospheric forward scatter. In this system, radio waves are beamed from an antenna to the troposphere, where they are reflected back to earth and picked up by a second precisely positioned antenna.

The Thule-Dyer link is believed to be the long. est tropospheric scatter hop in the world. The Dew Drop antennas measure $150-\mathrm{ft}$ high and 120-ft wide.

The Air Force contract for operation and maintenance of the Thule installation has been awarded to Federal Electric Corp., service or. ganization of International Telephone and Telegraph Corp. of Clifton, N. J., by Rome Air Material Area, Griffis Air Force Base, Rome, N.Y.

NASA-DOD Coordinating Board Is Established for Space Programs

The National Aeronautics and Space Administration and Department of Defense have established a joint board for continuing coordination of the nation's aeronautics and space programs. Members of the board are top management personnel.

The agreement establishing the Aeronautics and Astronautics Coordinating Board provides that it will review planning to avoid duplication; coordinate activities of common interest; identify problems requiring solution by either NASA or DOD and insure a steady exchange of information.

The Director of Defense Research and Engineering and the Deputy Administrator of NASA will serve as co-chairmen. These positions are now held by Dr. H. F. York and Dr. H. L. Dry den, respectively.
Organization of the board includes a number of panels. These panels will identify and study problems related to space and aeronautics programs and make recommendations to the board for their solution. Panel chairmen are members of the board.

Accurate Data on Echo Satellite Provided by New Digital System

A highly accurate angle-measuring system is reported aiding scientists in pinpointing the position of Echo I, the nation's first communications satellite.
The system, developed by Datex Corp. of Monrovia, Calif., for NASA's Jet Propulsion Laboratory, is installed at the NASA-JPL facility in the Mojave Desert. The system automatically records and displays the satellite's coordinates in space as the $100-\mathrm{ft}$ sphere speeds around the earth. The system also provides data for direct input into a high-speed digital computer.
According to the company, the high accuracy of the Datex data system is achieved by using a multipole computing resolver on each axis of the tracking antenna. A servo follow-up unit at the base of the antenna, utilizing a single-pole computing resolver, multiplies the antenna rotation by 90 to provide decimal data for recording and display. Multiplication by 128 is also performed to provide straight binary input to the digital computer.
The heart of the system consists of a pair of encoders for each axis of the tracking antenna. One of these is a decimal encoder that digitizes the antenna's angular position to one part in 180,000 , or every 0.002 deg . The other is a binary encoder that digitizes the antenna position to one part in 262,144 , or every 0.0014 deg. A time signal from a 100 -kc digital clock is recorded together with the data.

Anechoic Chamber for Space Tests

1 Engi.
NASA ons are
L. Dry'

number

d study
ics pro-
b board
embers
Ell CTRONIC DESIGN • November 23, 1960

5. Textolite COPPER CLAD LAMINATES Engineered cleanliness insures surface reliability for use in computer and military printed circuitry

G-E Textolite Copper-Clad Laminates are designed to meet or surpass stringent computer and military requirements. To do this, and assure superior performance with maximum circuit reliability and minimum rejects, engineered cleanliness is maintained in the entire production process. All G-E Textolite Copper-Clad Laminates are produced in the sterile atmosphere of the room pictured at left. Washed, filtered, conditioned air eliminates dust and dirt. Special cleaning techniques for copper and press pans assure a smooth continuous surface. Pits, dents, pinholes and scratches are virtually eliminated. And the G-E engineered cleaning process just before inspection completes the job.
Try these outstanding General Electric Textolite grades:
\#11574-NEMA FR3-Self extinguishing epoxy paper \#11571-NEMA XXXPC-Highest IR phenolic paper \#11559-NEMA G-11-Self extinguishing epoxy glass "11558-NEMA G-10-Best machining epoxy glass
Write for samples to: Laminated Products Department, Section 60-4 General Electric Company, Coshocton, Ohio. Dept. ED-110.

CIRCLE 44 ON READER-SERVICE CARD

Makes even the best draftsmen betfer

PARAGON

DRAFTING MACHINE

3 Ways Better

Horizontal positioning lock now centrally located to permit locking or releasing while seated.
Improved cable attachment and increased cable strength provide maximum protection against breakdown, cable-snapping, and the wear and tear of constant use.

Larger diameter vertical rail and attendant structural improvements afford increased rigidity for sharper, surer work.

5 Ways the Best

More Versatile - perfect balance at any board angle.
More Compact - advanced travel-rod construction completely eliminates outdated cumbersome counterbalances projecting over top of board.
More Adaptable - gives maximum sweep of any size board - even the largest wall models.

Better Made - as with every K\&E product, precision engineering throughout...rigid construction means truer lines, more accurate work .. .glides smoothly on fine-ground stainless rails... all glide controls are readily adjustable for any touch, any board.
For Easier Use-scales move instantly at the lightest touch from one position to another...long lines can be drawn in a single motion, up, down or across... scales lock in place to eliminate drift...less tiring...smooth feather-light action actually reduces number of arm and hand motions necessary to produce a finished drawing.

KEUFFEL \& ESSER CO., Dept. ED 11 ,Hoboken, N. J

\square Please send information on the new K\&E Paragon Auto-Flow (1) Drafting Machine. Please send information on the new $\mathbf{K} \&$
Please arrange a demonstration for me.

Name \& Title

\qquad
Company \& Address

NEWS

Real-Time Tracking System To Be Studied by Radiation, Inc.

A new real-time missile tracking systen to be known as SORTI (Star-Oriented Real-Time Tracking Instrument), will combine the high accuracy of the Ballistic Camera System wilh a Position Tracking System.
Subject of a Radiation, Inc. study contract for the Air Force Missile Test Center, this combination will provide immediate accurate informa. tion, during flight, about a missile's path. Instantaneous data on missille trajectories could enable immediate analysis and possible in-flight corrections.
The real-time position tracking system will use star positions for orientation reference. In. corporating electronic circuitry, SORTI will provide a method to overcome present handicaps in missile-trajectory tracking. Present real-time systems do not have the high accuracy of the Ballistic Camera System, whereas the camera system, which supplies information in photographic form, cannot present trajectory data as the flight is occurring.

Protective Relay by Coaxial Cable Said to Provide Many Advantages

Using coaxial cable for protective relaying "fills a gap in previous methods," according to paper presented to the AIEE at its Fall Genera Meeting.

Coaxial cable can be used for other power systems communications needs as well, includin "interstation controlling, signalling, and dispatch ing functions," reported J. R. Linders, Cleveland Electric Illuminating Co., in a paper entitled "Coaxial Cable For Protective Relaying Com munications."
"With coaxial cable," he said, "the simple and straight-forward installation details eliminate the problem of elevated station ground potentials as sociated with conventional wire pilot circuits. Coaxial cable can be used "to piece out a micro wave link, thus reducing limitations frequently associated with microwave terminal locations
Mr. Linders warned, however, that "further experience is necessary to demonstrate that ther are no unforeseen hazards when the coaxial cable is routed overhead, particularly when closel coupled to magnetic fields of the transmissio circuit which it is protecting."

CIRCLE 46 ON READER-SERVICE CARO ELECTRONIC DESIGN • November 23, 196

Japanese Electronic Exports To U. S. Continue To Rise

Japanese exports of electronic products to the United States in the first six months of 1960 totaled $\$ 38.7$ million compared with $\$ 22.1$ million during the same period last year, reports the Electronics Div. of the Business and Defense Services Administration, Dept. of Commerce.
In the April-June quarter this year, the export total-\$22.8 million-was $\$ 1$ million in excess of

10
6 1
shipments to the U. S. for the entire year 1958. The 1959 exports were $\$ 75.6$ million.

During January-June, 1960, exports of radio receivers accounted for 77 per cent of all Japanese exports of electronic products to the U.S. and registered a gain over the corresponding period of 1959 of 69 per cent.

The following table shows Japanese exports of electronic products to the United States during the years 1958 and 1959 and during JanuaryJune 1960:

Japanese Exports of Electronic Products to the U. S.

Proceedings of the IRE

Electronic computers are the "time machines" of today - they bring to man the precious gift of time. They think, relate, evaluate and solve fantastic problems in millionths of a second. Each operation they perform releases you, the radio-electronics engineer, the mathematician, the physicist, the chemist - for work that calls for the human mind and heart.
Obviously, you should know about computers. Computers, today, are more compact, more complex, and about 50,000 times faster than those made just a few years ago. Progress such as this means constant and dramatic changes. It would take precious hours each day to keep abreast of all developments.

You can, however, learn about computers far more easily - by reserving your copy now, of this special January issue of Proceedings. In it you will find the sum of all that's new in computers. You get 360 pages of brilliant research and authoritative writing (of course at engineering levels), made up of some 40 separate papers; 12 of these specially-invited.

Like other special issues of Proceedings, the computer issue promises to remain definitive for years to come. Hy youre not already an IRE member, make sure you get a copy of the Proceedings Special Computer Issue by sending in the coupon below.

INVITED PAPERS FOR COMPUTER ISSUE INCLUDE:

Adaptive Control - Present and Future

J. G. Truxall (Poly. Inst. of Brooklyn)

State of the Art of Perceptron Machines
J. R. Hawkins (Aeronutronic Systems) Marion Minsky (MIT Lincoln Lab.) Organization of Arithmetic and Control Sections of Computers

Survey of Storage Devices
W. L. Lawless, Jr. (IBM)

Automatic Programming

W. Orchard-Hays (Corp. for Economic Industrial Research) State of the Art of Digital Communication
Computer Developments in Europe J. M. Wier (Bell Telephone Labs.)
Isaac Auerbach (Auerbach Electronics) New Applications of Computers W. F. Bauer (Ramo-Wooldridge) State of the Art of Display Equipment

Roger Sisson (Aeronutronic Systems)

Proceedings of the IRE

1 East 79th St., New York 21

[1] Enclosed is $\$ 3 . \mathrm{CO}$
\square Enclosed is company purchase order tor the lanuary 1961 , issue on
Computers 196i.
\qquad
Compony
Address - .-
city a Stoto
THE INSTITUTE OF RADIO ENGINEERS
1 East 79th Street, New York 21, New York CIRCLE 47 ON READER-SERVICE CARD

All IRE members will recsive this January issue as usual. Extra copies to members, $\$ 1.25$ each only one to a member!

CIRCLE 46 ON READER-SERVICE CARD
LECTRONIC DESIGN • November 23, 1960

General Electric sealed relays for the '60's

MICRO-MINIATURE

Small and light for military use, the General Electric Micro-miniature's dualcoil construction provides a highly efficient magnetic circuit, requiring minimum operating power. A balanced armature combined with extremely high tip forces gives the relay exceptional resistance to shock and vibration. It is available in current-calibrated and voltage-calibrated forms, SPDT or DPDT. Other specifications:
Operating Sensifivity: 200 milliwatts; 300 milliwatts.
Vibration: 20 G's, 55-2000 cps (except for certain mounting forms).
Shock: 50 G's per MIL-R-5757C.
Ambient Temperature: -65 C to +125 C .
Operating Time: (25C) 6 milliseconds maximum.
Release Time: 5 milliseconds maximum.
Confact Rating: 2 amps resistive at 28 VDC or 115 VAC.
Life: 100,000 operations minimum at rated load.
Dielectric Strength: 1000 V rms except 700 V across terminals.
Insulation Resistance: 1000 megohms minimum.
Contact Resistance: .05 ohms maximum at rated load.

MINIATURE: Long-life tyre: rated 5 amps at 28 VLC; in 2- or 4-pole double-throw and 6PNO forms. Ideal for ground applications.
4-POLE MICRO-MINIATURE: Welded construction, exceptionally long life. Rated 2 amps at 28 VDC, or 115 VAC resistive; requires only 10 milliwatts per pole.
GRID-SPACED MICRO-MINIATURE: Long-life crystal-can type, rated 3 amps at 28 VDC, operating sensitivity 300 mw ; 16 mounting for ms ; 30 G's vibration to 2000 cps .
Not simply individual tests for shock, vibration, etc., but complete quality control is what gives General Electric relays exceptional reliability.

Quality control begins with stringent material tolerances General Electric demands of its vendors, monitored by frequent appraisals on everything from tool calibration to their reporting procedures, and checked by G.E.'s careful processing of incoming materials. Result: less than 1% of incoming material must be rejected.

Quality control continues with equally exacting measures in our own plant:

- Of average relay manufacturing time, General Electric spends 30% in planned quality checks-much more for specials.
- More than 25% of total factory floor space is used to test relays.
- Advanced equipment and techniques are used, including the unitized testing console. This automatic, on-line testing center eliminates human error from production acceptance tests, eliminating another variable of relay reliability.

But, quality control doesn't end here. General Electric quality control even follows relays into the field to analyze
malfunctions and, if necessary, re-assess testing procedures, or design.

It all adds up to complete quality control-a highly developed monitor and feedback network that guides General Electric's manufacturing process through the consistent production of industry's most reliable sealed relays.

For information on our special cus-tomer-requested testing program, or more on quality control, see your G-E Sales Engineer. General Electric Co., Specialty Control Dept., Waynesboro, Va.

Progress is Our Most Important Product GENERAL ELECTRIC

GENERAL ELECTRIC SEALED RELAYS-UNMATCHED FOR RELIABILITY

EDITORIAL

The Many Faces of Microwaves

No one can deny that microwaves have been enormously useful to the system and equipment designer in the fields of detection, reconnaissance, fire control, and communications. We suspect, however, that many designers working in other problem areas are handicapped by a failure to recognize the versatility of the microwave approach to problems.
Electronic Design feels that the microwave technique is, in fact, a tool to be used in electronic devices that can solve problems for all areas of the economy.
For the meteorologist, the barometer and thermometer were obviously the closest things to a crystal ball. For the astronomer, what could surpass the telescope in studying the planets and the stars? The time has come when microwaves not only allow them to "see" farther in time and space, but is playing an important role in raising these sciences out of the "spectator-sport" class.

Similarly, it is understandably difficult for the microwave engineer, steeped in radar lore, to feel comfortable with the task of squeezing 100,000 telephone messages through a $5 / 8-\mathrm{in}$. pipe, or with the task of delivering a megawatt of sheer power with no conductor at all. And it taxes the vision of the communica-tion-link veteran to see that microwaves not only can measure plasma at sun-temperature for the atomic scientist, but can actually generate these temperatures for the missile designer and the metallurgist.

It can be profitable for engineers on both sides of this systemtechnology interface to consider two questions:

- Is my current application really outside the area of competence for microwaves?
- Can I design a different microwave device to adapt this useful form of energy to the radically different problem?

To answer such questions, a MicroWaves section instituted with the Staff Report beginning on p 161 in this issue, henceforth will be a feature of every second issue of Electronic Design.

To a large extent, the future for microwaves depends on the design engineer's ability to think of microwave energy and its properties independent of traditional applications. To meet radically new requirements, moreover, the microwave device designer must learn to shift emphasis to new parameters as needed.

As microwaves put on many faces, the microwave engineer must learn to wear many hats.

CIRCLE 94 ON READER-SERVICE CARD
TABLE I-SUMMARY OF FEEDBACK-PAIR FORMS

DESIGNATION	DESCRIPTION	TRANSFER FUNCTION	TYPICAL CIRCUIT	FUNCTION
LIL	LOW IMPEDANCE INPUT LOW IMPEDANCE OUTPUT SIGNAL INVERSION	$\frac{E_{0}}{I_{i n}}=-Z_{m}$		TRANSFER IMPEDANCE
LNH	LOW IMPEDANCE INPUT HIGH IMPEDANCE OUTPUT NO SIGNAL INVERSION	$\frac{I_{0}}{I_{\text {in }}}=\frac{Z_{1}}{z_{2}}$		CURRENT AMPLIFIER
HNL	HIGH IMPEDANCE INPUT LOW IMPEDANCE OUTPUT NO SIGNAL INVERSION	$\frac{E_{0}}{E_{i n}}=\frac{Z_{1}}{Z_{2}}$		VOLTAGE AMPLIFIER
HIH	HIGH IMPEDANCE INPUT HIGH IMPEDANCE OUTPUT SIGNAL INVERSION	$\frac{I_{0}}{E_{\text {in }}}=-Y_{m}$		TRANSFER ADMIT TANCE

There's nothing new about cascaded transistors, or about negative feedback. Using both, however, gives a configuration that is independent of both transistor parameters and load impedance. Delbert Johnson describes here how such configurations are reduced to four basic forms, and how to apply the forms.

Fig. 1. Possible feedback-pair configurations. Configurations in each row are of the form designated at beginning of each row.
transistor pair so the signal output is independ ent of the load. This also applies to the input impedance, considered the load on a driver stage whose output impedance is known.
If only two impedance conditions (high and low) are allowed, only four amplifier configurations are possible: H to H, L to L, H to L , and L to H . That is, H to H denotes an amplifier having high input and output impedances and working between a low impedance source and a low impedance load. H to L works from a low impedance source into a high impedance load. If one permits signals to enter only bases and emitters, and to leave only at emitters and collectors, specifying the input-output impedance lever also specifies whether the output is inverted with respect to the input.

Signal Inversion Determines Feedback Terminal
This knowledge is important if one is to use the building-block as a stage in a larger system. It also is important because it determines to what terminal of the first transistor the feedback voltage is to be brought.
To achieve negative feedback with a pair of cascaded transistors, the following design rules apply (keeping in mind conventions as to input and output terminals):

- If the feedback voltage is brought to the same terminal as the input signal, the feedback voltage must be inverted with respect to the input.
- If the feedback voltage is brought to a different terminal than the signal input, the feedback voltage must be in phase with the input.
However, returning the feedback signal to the sa ne terminal as the input signal lowers the ef ective input impedance of the amplifier; retu ning the feedback signal to a different term nal than the input signal, raises the effective in uut impedance.
(continued on p. 54)

available now for any moisture environment Wherever water threatens an electrical connection, you can be sure of positive dry contact by choosing from Cannen's many types of weatherproof plugs. For recket engine test stands... ground support equipment . . . buried or expesed cables . . . underwater research equipment... or any wet weather condition... Cannon has the right plug for you. - Moistureproof types maintain sealed characteris. tics at high altitudes and over a wide temperature range. Weatherproof types repel water under severe mud, ice, and water conditions. Watertight types may be used underground and in swamps, lakes, and rivers . . . may be submerged in water up to 550 feet without leaking. Cannon's weatherproof plugs are another of many reasons why you should always cen. sult the first name in plugs . . . why you should always consult Cannen for all your plug requirements. For Information on Cannon weatherprosf plugs, or any Cannen product, write to: Dept. 120.

Feedback also alters the output impedance of the amplifier. Taking feedback from the same terminal as the output, lowers the output im. pedance. Taking feedback from a different terminal than output, raises output impedance

Feedback, Signal Inversion Related

Thus, the level of input and output impedax ces determines whether the two-transistor amplifier with feedback inverts the input signal.
It has been found that amplifiers having high input and output impedances or low input and output impedances are inverting. Amplifiers having high input impedance and low output im. pedance (and vice versa) are noninverting.
The four amplifier designations (with respect to input and output impedances) are described in the accompanying table.
The possible configurations of cascaded transistors that meet these designations, are shown in Fig. 1.
For maximum gain stability, the amplifiers with low output impedance would work into high loads, and those with high output impedance into low loads. Also, the output impedance of the driver stage must be "opposite" that of the amplifier's input impedance.

Not All Realizable Circuits Useful

The circuits of Fig. 1 are all realizable, but not all equally useful. LHN-5 and LHN-6, for example, attempt to present a high output impedance at an emitter, and one would expect that reasonable feedback factors will not produce very high output impedance. Similarly, HNL-9 and HNL-10 attempt high input impedances at emitters.
The diagrams in Fig. 1 ignore all bias considerations. In general, bias resistors are chosen large enough so that virtually no signal current is shunted by them.

Bias resistors that incidentally provide dc feedback can be chosen to help stabilize operating points. The ac design of the feedback network often provides a dc path from output to input, and this can be used to advantage in stabilizing bias. The design provides a basis for selecting the impedance level for signal frequencies.
The circuits that exhibit a high input impedance often require a low-resistance bias path from the input terminal to ground. To realize the high input impedance, the bias path must be provided by the preceding stage, which should have a low-impedance output.

Cascading NPN to PNP Acceptable

In some instances, combining an npn and a pnp transistor results in a simplification of the bias design. The circuits of Fig. 1 are valid for any combination of npn and pnp transistors.

Fig. 2 is an example of circuit LNH-7. From the table,

$$
\frac{I_{o}}{I_{i n}}=\frac{\frac{R_{1} \frac{1}{s C_{1}}}{R_{1}+\frac{1}{s C_{1}}}}{R_{2}+\frac{1}{s C_{2}}}=\frac{s R_{1} C_{2}}{\left(1+s R_{2} C_{2}\right)\left(1+s R_{1} C_{1}\right)}
$$

If $R_{2} C_{2} \geqslant 10 R_{1} C_{1}$, the midband gain would be.

$$
\frac{I_{o}}{I_{\text {in }}}=\frac{s R_{1} C_{2}}{s R_{2} C_{2}}=\frac{R_{1}}{R_{2}}
$$

In the case shown in Fig. 2, however, $R_{1} C_{1}=$ $R_{2} C_{2}$, so the maximum gain is down 6 db from the asymptote intersection at

$$
f_{1}=\frac{1}{2 \pi R_{1} C_{1}}
$$

The output impedance of the amplifier is paralleled by 8.2 K and is high enough so that the result is determined by the $8.2-\mathrm{K}$ resistor alone. The input impedance is less than 300 ohms.
Fig. 3 shows a power amplifier using the LIL-1 configuration. From the table

$$
\frac{E_{e}}{I_{i n}}=-\frac{R_{1} \frac{1}{s C_{1}}}{R_{1}+\frac{1}{s C_{1}}}=-\frac{R_{1}}{1+s R_{1} C_{1}}
$$

Feedback increases and gain decreases with frequency, and where the gain is flat, $s R_{1} C_{1} * 1$, so

$$
\frac{E_{o}}{I_{\text {in }}}=-R_{1}
$$

(This circuit oscillates at high frequency if the i80-pf capacitor is removed. The capacity value vas selected experimentally.) -

A NEW HYDRAULIC-MAGNETIC BREAKER NO BIGGER THAN A POCKET LIGHTER

Light . . . small . . . a snap to install! This $11 / 2$-ounce circuit breaker can help you out of a tight spot, if you're cramped for component space. Only $21 / 2^{\prime \prime} \times 5 / 8^{\prime \prime} \times 21 / 4^{"}$ overall, it can take the place of both a fuse and a switch-and save you installation time and trouble, in the bargain. A single halfinch hole is all you need for mounting, and there are only two connections to make, instead of four or more. (The breaker's "universal" terminals let you use the kind of connection best suited to the job, too-soldered, solderless, or screwed.) You can have this breaker in any integral or fractional current rating from 0.050 to 15 amps , at $110 \mathrm{~V}, 60$ or 400 cycles AC, or 50 V DC. Whatever rating you spec will be decimal-point precise-and permanent (you don't have to de-rate the hydraulic-magnetic breaker for high ambient temperatures). Bulletin VP will give you more information. A word from you will put a copy in the mail.

HEINEMANN ELECTRIC COMPANY - 156 BRUNSWICK PIKE, TRENTON 2,N.J.:

Electronic Building Blocks
Sories 1-TRAMP

Tramp will solve your servo amplifier problems just as easily

A transistorized building block that gives the design engineer -- more than 1 watt controlled power per ounce

- voltoge gains up to 30,000
- 10,000 hours of operation

Can be used in -

- differential DC applications
- magnetic amplifier applications
- relay applications

Hermatically sealed, meets government environment specs.

For detailed TRAMP specs or RZD assistance, write to: Dept. TR-I, M. Ten Bosch, Inc., Pleasantville, New York CIRCLE 53 ON READER-SERVICE CARD

Test Equipment: Types and Characteristics

Part 3-Frequency Meters

Abstract

In this third article of an Electronic Design series, A. J. Reynolds, general manager of Technical Information Corp., describes frequency meters. His next article will deal with wattmeters.

A. J. Reynolds

Technical information Corp
New York, N. Y.

F

- REQUENCY shares with mass the distinction F of being the quantity we are able to measure most accurately. Commercial equipment is available with claimed accuracy ranging from 5 per cent to 1 part in 10^{9}.
More than for any other common measurement, it is necessary to select the right degree of accuracy for the job at hand. Generally, the greater the accuracy required in the answer, the greater the accuracy with which the "unknown" frequency must be known beforehand.
With many high-accuracy instruments it is possible, by reading them casually, to use them for work where full accuracy is not required. This certainly does not apply to frequency-measuring equipment.
A 1 per cent frequency meter is not necessarily a worse instrument than a 0.1 per cent frequency meter. One class of instrument, the absorption and grid dip meter, having accuracy in the 1 to 5 per cent range, is among the most useful instruments made. Long used by "hams" and engineers in the transmitter field, its great usefulness is achieving wider recognition.
The conventional high-accuracy frequencymeasuring device-a master oscillator with multi-vibrators-has been replaced by the frequency counter for almost all but its primary function as a standard. This is due partly to the ease with which the counter type can be used by the non-technical person. Equally important is the ability of the counter, when associated with a
stable transfer oscillator, to function at frequencies up to the highest microwave region.
Some measurements, such as that of the carrier frequency of a pulsed transmission in the microwave region, can only be accomplished easily using the counter-transfer oscillator technique.
The frequency meters we have called Crossover Counters, for want of a better name, are an interesting class of device. In their simplest form they consist of a transformer with a core having a so-called "square" hysteresis loop.
The input level is arranged so that the core is driven into saturation in both half cycles. The output is then a series of alternate-polarity, equal-amplitude, half-sine waves occurring at each polarity cross-over of the input sine wave.
Because the amplitude and shape of the output pulses depend on the transformer, while the number of pulses depend on the input frequency, rectifying the transformer output gives a current proportional to the number of either plus or minus pulses. The output meter is then simply calibrated in frequency.
Another technique is to amplify and clip the input sine wave, obtaining a rough square wave. This is then differentiated and the pulses so formed trigger a monostable multivibrator. The multivibrator ignores the negative going pulses, and provides one pulse of fixed amplitude and length for each positive going cross-over of the input wave (or per cycle).
The average dc current so produced may then be metered and calibrated in terms of frequency. This method, while essentially the same as the former, can be used at higher frequencies and is not limited by transformer characteristics. ■ -

THE CHARACTERISTICS OF FREQUENCY METERS*

Bars indicating frequency range are divided into three sections. Solid lines indicate commercially available frequency range; broken lines indicate frequency coverage available on special order; dotted lines indicate that covering these frequencies would be too expensive and difficult for a practical instrument of the designated type.

"Tect ical Information Corp.

Encapsulating With Plastic Shells Simplifies Potting Process

> Using plastic shells, instead of metal molds, for encapoulating electronic components can save time as well as money, according to author Milton Ross. Here, he points out where and how these savings can be realized.

Milton Ross
 President,
 The Milton Ross Co.
 Harboro, Pa.

ENCAPSULATING electronic components in plastic shells is easier, faster and less expensive than encapsulating in metal molds. Each time a new mold is needed it must be carefully designed and machined-an expensive investment. Plastic shells, however, can be purchased from a number of suppliers, ready for use, and in any quantity required. Further, their availability in a variety of shapes and sizes (Fig. 1), allows them to be used for a great many types of components requiring encapsulation.

Mold Encapsulation
 May Limit Production

The major disadvantage of encapsulating in a mold is the limitation it places on production. The number of molds available determines the number of units which can be encapsulated at any particular time. When a unit is encapsulated in a mold, it must be cured before it can be removed. Thus, to encapsulate 300 units in a fourhour period, it is necessary to have 300 molds. Before the molds are used again, they must be carefully cleaned and treated with a parting agent to assure removal of the casting from the cavity. The parting agents are applied to the mold by brushing, wiping, slushing, or spraying.
Molds also have a tendency to produce poor surface areas. Air trapped in the encapsulating material produces surface bubbles which deface the component. To correct this condition, molded components are often made oversize and machined or ground down after they are removed from the molds. Even when machining is not required, it is generally necessary to clean molded components before they can be used.
Storage of molds is also a problem. Because of the expense involved in machining, molds must be carefully stored and maintained for fu-
ture use. When a company encapsulates a variety of components, mold-storage considerations become major factors.

Plastic Shells Are Suited

For High-Volume Production

For high-volume production, a faster, simpler technique is to encapsulate the components in plastic shells. With shells, no mold is required and as many components can be encapsulated at one time as desired. Since a mold is not used, the capital investment is less because the machining and maintenance costs are eliminated.
Plastic shells do not require any cleaning before or after encapsulation. As soon as the encapsulent cures, the components are ready to be used. The smooth outside plastic shell makes a neat, attractive package. Even if some small air bubbles do appear on the surface of the encapsulent, the shell covers them and the component is completely protected. In addition to having high moisture and chemical resistance, the plastic shells can withstand continuous operating temperatures as high as 450 F .
Encapsulated in plastic shells, components or circuit modules are mounted on plastic-to-metal seal (PMS) headers before they are encapsulated. A header is simply a plastic seal with metal pins permanently molded to it. Many of the different types of standard and special PMS headers are shown in Fig. 2. They are designed for printed-circuit sockets and direct mounting on printed-circuit boards. Mounted on PMS headers, components can be easily inserted into test sockets for a final check before the encapsulating material is added.

Shells are available in almost any color-a desirable feature for color-coding components. They can be molded with code numbers and trade names and made with riser feet to keep the shell off the printed-circuit board during soldering. The riser feet also permit air to circulate around the components and provide a longer
lead length for the soldering heat to travel before reaching them.
There are many techniques for filling the shell with encapsulent. The most convenient, espe. cially for small manufacturers, is to use a precision pellet. Encapsulating material, which has been very carefully compounded, is purchased in the form of these small pellets.
The component to be encapsulated is placed inside a properly sized shell and a pellet is placed on top of the component. A matched quad diode package encapsulated with a pellet is shown in Fig. 3.

A tray full of units is prepared in this manner and then placed in an oven. Under heat, the pellet melts and completely encapsuates the component. In a period of two or three hours, depending on the type of pellet, the epoxy has flowed, encapsulated, and cured. The pellets are exactly the right size to encapsulate the component and fill the shell.
Most companies are not expert in mixing encapsulents and pellets provide them with material characteristics they can depend on. However, pellets can be made with a variety of electrical and adhesion properties.
The same material is also available in powdered form. Using the powder, a component can be either partially or completely encapsulated, depending on the amount of powder used.
In one application of powder, a company wanted to prevent a small toroidal-wound ferrite core from vibrating within the shell, but did not want to encapsulate the entire core. With the right amount of powder, engineers were able to encapsulate the core partially, protect the leads. and keep the core from vibrating.
For those who prefer to mix their own en. capsulent, pressure guns can be used to fill the shells. The mixed epoxy is put into a polyethyl. ene container in the gun and shot into the ent capsulating shell.

For void-free encapsulation, the mixed epoxy

Fig. 1. A large variety of standard plastic shells are available for encapsulating electronic components.

Fig. 2. There is also a large variety of headers available for mounting electronic component before encapsulation in the shells.

Fig. 3. Four matched diodes placed in a plastic shell have on encapsulating pellet set on top of them. Photo at right shows the diode package after curing at 85 C .

Fig 4. Component leads can be left to extend straight out of the shell after encapsulation.

Fig. 6. Plastic shells give mechanical stability and environmenta immunity to "VK" micro - miniature ceramic capaci tors manufactured by Vitramon, Inc.

Fig. 7. Pulse transformer aftached to a PMS header ready for soldering and encapsulation.

Fig. 8. Hook-like arm holds tapewound core while leads are being soldered to PMS header.

Fig. 9. Shown here are two of the variety of plastic forms and shells available for coils and wire-wound resistors.

the industrys ONZY

 miniaturized CAPACHTOR - STANDARDSKIT \#SS-32
32 standards, including every integral value from. 0001 to 0.5 mfd.

$.2639 \mathrm{mfd} . \pm 0.1 \%$
By quich and easy insertion of ARCO standard capaci. of ARCO standard capaciters inte the adapter jig, a capacitance value of four significant figures with an tained.

- $\pm 0.1 \%$ TOLERANCE
- 50% reduction in size
- 5 to 10 times the accuracy of the best decade boxes
- Reduces reading errors to almost zero
- Lower in cost
- Every integral value available

Approved and now being used by the Air Force and Army in their calibration centers and laboratories. All units 100% calibrated directly against National Bureau of Standards certified primary standards.

Dimensions:
$123 / 4 \mathrm{w} \times 111 / 2 \mathrm{~h} \times 47 / 90$

SPECIFICATIONS

accuracy	$\pm 0.1 \%+0.5 \mathrm{mmf}$. of nominal printed on capacitor at 1000 cycles frequency and $23^{\circ} \mathrm{C}$.
LONG TERM STABILITY	$\pm 0.05 \%+0.1 \mathrm{mmf}$.
INSULATION RESISTANCE	5000 megohm-microfarads or 50,000 megohms. whichever is the lesser.
DISSIPATION FACTOR	.0001 to .0004 mfd - $0.15 \% \quad .0005$ to .001 mfd . 0.1% .002 to 0.5 mfd . 0.05%
TEMPERATURE COEFFICIENT	.0001 to $.1 \mathrm{mfd} .+40 \pm 15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$; 0.2 to 0.5 mfd . $-120 \pm 15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
maximum voltage	. 0001 to 0.04 mfd . 500 volts peak: 0.5 to 0.5 mfd .300 volts peak

Individual standards also available

Write for price. delivery or additional information.

MANUFACTURERS OF:

Polystyrene capacitors, both hermetically sealed and in plastic jackets multiple composition temperature controlled capacitors :... energy storage reference units . . . precision RC networks . . . and special capacitor products.

Manufactured by:

A1BI electronics inc.

64 White St., New York 13, N. Y. - Branches: Dallas 7, Los Angeles 35

precision
film capacitors
is put into a vacuum chamber to remove the air. Sometimes heat is used in the chamber ind other times only the exotherm of the epoxy is needed.

Encapsulating Materials

 Used in the ProcessThe particular application of the comporient to be encapsulated determines the encapsulating material. There are many materials available: diallyl phthalate, alkyd, phenolic materials, epoxies, and thermoplastics such as polyethylene, nylon, styrene, and polycarbonate.

Epoxies are generally made up of three com. ponents: the resin, a curing agent, and a filler. Pot life, jelling time, exotherm, curing time, and heat resistance are directly dependent on the curing agent. Important factors to consider when selecting an epoxy: electrical-dielectric strength, arc resistance, volume resistivity and surface resistivity, physical-impact strength, heat distortion, temperature susceptibility, water absorption, flammability and shrinkage. Physical and electrical properties of epoxies can be varied through the use of appropriate curing agents. fillers and thickening agents.

The bond between a thermosetting resin and the shell is generally superior to the bond of a thermoplastic. With a properly molded encapsulating shell, the bond of the epoxy to the shell is as strong as the bond of the epoxy to itself. Thermoplastics are less expensive and have a higher flexural and impact strength than thermosetting resins, but most engineers prefer thermosetting resins because of the strong bond they make with the shell.

Sealing and Header Combination Can Be Varied

When a component is encapsulated in a shell the leads can be handled in three different ways. They can be simply left extending out of the shell, Fig. 4; they can be inserted through a lid with drilled or molded holes placed over the protruding leads; or they can be soldered to metal pins permanently molded in a plastic seal. Fig. 5.
If the encapsulated component must also be hermetically sealed, a glass-to-metal seal should be used. For many applications, however, hermetic sealing is not necessary and a plastic-tometal seal will actually do a better job because the encapsulating material adheres better to plastic than it does to the smooth glass surface.
Plastic-to-metal seals are available in various shapes and pin sizes, from soft copper lead wires to rigid pins $0.080-\mathrm{in}$. in diameter. They are also made in 7 -pin, 9 -pin, 13 -pin and 15 -pin sizes to fit standard miniature sockets. It is always ad-

e com.

a filler.
ne, and on the r when
rength,

face re-

distor-
absorp.
cal and
varied
agents,
sin and
nd of a
encap. he shell o itself.
visaille to pick a standard-size header and shell witl: a standard pin spacing of $0.1,0.15$, or 0.2 in. liecause it eliminates tooling cost. Pin spacing tolerances of plus or minus 0.002 -in. non-accumulative can be held on PMS headers in sizes to fit all : ivailable printed-circuit connectors.
Header pins are available in various metals. Brass, copper, nickel, and cobar are common, and many varieties of plating. including gold and silver, can be done on request.
Because of the mass-production techniques used by manufacturers of plastic-to-metal seal headers, it is usually more expensive to push pins into a punched board or molded lid than it is to buy a PMS with the pins permanently molded in place. The quality and tolerances of a standard PMS will also be higher than a punched or molded board with pin inserts.

Examples of Plastic Shell Encapsulation Run a Wide Gamut

Practically any electronic component can be easily encapsulated in a plastic shell. Two Vitramon " VK " ceramic capacitors are shown in Fig. 6. The plastic shell offers several important advantages for capacitor manufacturers. Varying wall thickness and cracking of the meniscus at the junction of the leads and body-faults commonly associated with dipped capacitors-are totally eliminated. Plastic shells permit internal as well as external visual and mechanical inspection. Shells with thin spots, bubbles, or pin holes can be culled out before the capacitor is potted in its case. Uniform size of the shells permits them to be cartridge-fed for automatic insertion of the capacitors.
Standard plastic shells are also made for various transformer sizes. The leads are soldered to pins molded in the plastic shells. A pulse transformer is attached to a PMS header in Fig. 7. An unusual header used for mounting a tapewound core is shown in Fig. 8. The core is held in position for soldering the leads by a hook-like arm which fits in a slot in the PMS header.
A variety of shells are available for wirewound resistors and coils. Two different types are illustrated in Fig. 9. One type uses a slotted shell with the leads protruding through a hole in the end cup.

When you're faced with a rush job that requires high stability resistors, do this:

1. Specify the components from Corning's complete line of glass resistors;
2. Call your local Corning distributor and tell him what you need;
3. Send him a confirming order.

Almost before the order is typed-depending on the distance from the distributor and/or the speed of your typist-you'll have the components . . . in plenty of time to meet your deadline.
Your Corning distributor takes pride in this fast service. He's in business to help your production line or test lab. Give him a call. Watch him go to work.
For the name of your nearest Corning distributor write to: Electronics Distributor Division - ERIE RESISTOR CORPORATION - Erie, Pennsylvania

CORNING
 ELECTRONIC COMPONENTS

Distributed exclusively by
EBIE DISTRIBUTOR DIVISION

Plastic shells and headers offer a convenient, reliable and economical method for encapsulating electronic components. They eliminate many of the problems associated with encapsulating in metal molds and the extra facilities needed for machining, cleaning and storing molds. When properly used, they can provide engineers with a simple solution to many of their encapsulating pro lems. - -

ELI CTRONIC DESIGN • November 23, 1960

This Corning fusion-sealed glass resistor defies all environmental conditions . . . heat, moisture, vibration. See for yourself. Boil it in water as shown here. Bounce it. Drop it. It's practically indestructible.

CIRCLE 68 ON READER-SERVICE CARD

Design Tape Recorders For Minimum Size, Weight, and Power

Dr. John G. Frayne (holding the "Astronaut" recorder which he helped develop), has won repeated acclaim for his many achievements in engineering. For developing ceived the Samuel 1 Warner MemoreAward of the Society of Motion Picture and Television Engineers. For his standardiza tion of the stereo-disc system which has been adopted by the phonograph-recording industry throughout the world, he received the Emile Berliner Award of the Audio Engineering Soclety. For developing techniques of measuring intermodulation distortion he received an Academy Award from the Academy of Motion Picture Arts and Sciences.
He has been president of SMPTE and was awarded its Progress Medal and its Journal Award. Formerly engineering manager of Westrex Corp., where he spent 30 years, he is now manager of development engineering of CEC's Datalab Div.
Co-quthor, Dr. Robert L. Sink, with 21 years of experience in various phases of electronics engineering, is associate director of Datalab. He has 20 patents lssued or pending. Dr. Sink is a member of the Tech. nical Advisory Group for the Air Force Ar mament Center at Elgin Air Force Base, Fla.; he is a fellow and former natlonal di rector of the IRE, a past chairman of its Professional Group on Instrumentation, and

Dr. Robert L. Sink, Dr. John G. Frayne Datalab Div.
Consolidated Electrodynamics Corp.
Pasadena, Calif.

AN UNDERSTANDING of the power requirements of any tape recorder is essential to the design of recorders for minimum weight, size and power consumption.

Drive Motors

Consume Most Power

Exclusive of electronic circuitry, such as amplifiers and bias oscillators, a tape transport dissipates from 80 per cent to 95 per cent of the power supplied to it in the drive motors. The remainder of the power is used to overcome head and bearing friction.
The power required to operate a tape transport can readily be estimated if the tape width and tape speed are known. The estimate would be based on the following assumptions:

1. A $1-\mathrm{in}$. wide tape is conventionally wound with 16 oz tension. Other tape widths are wound at a tension proportional to the width. Either the reel-drive motor or the capstan motor must expend power to overcome tape tension.
2. The normal force of tape passing a head is roughly equal to the tape tension. The dynamic coefficient of friction for tape passing over a head is about 0.2 .
3. The coefficient of friction of ball bearings is about 0.001 , about two orders of magnitude less than head friction.

Therefore, it can be neglected in estimating power consumption.
4. The efficiency of gear and pulley drives is high-about 96 per cent per stage of reduction.
5. The most extravagant power dissipation is in electric motors. Small motors have efficiencies, practically speaking, of about 5 to 20 per cent. If voltage regulators or inverters are used to
power the motor or motors, it would be reasonable to assume an efficiency of 10 per cent for the regulator or inverter-motor.

Equation Gives Close Estimate

Of Transport Power Requirements

Based on these factors and the tape speed, the power consumption can be estimated from the following equation:

$$
P=\frac{0.118 S}{\eta} w(1+n \mu)
$$

where $\quad\left(w \times \frac{1 \mathrm{lb}}{\mathrm{in} .}=\right.$ tension $)$
$P=$ power consumption, w
$S=$ tape speed, in./sec
$w=$ tape width, in.
$\mu=$ coefficient of friction of oxide on head, dimensionless
$n=$ number of record or playback heads in contact with the tape, dimensionless
$\eta=$ efficiency of motor drive, per cent $\times 10^{-2}$
$0.118=$ conversion factor for normalizing the units

For example, the recorder illustrated in Fig. 1 consumes according to the equation, 3.10 w . The actual power consumption is between 3 and 4 w so the equation gave a reasonable answer. Note that a recorder with 100 per cent efficiency would require only 0.15 w .

Techniques Available
 For Cutting Power Needs

Power consumption can obviously be reduced by doing the following:
(a) Increasing efficiency of electrical-to-mechanical power conversion in the drive motors.
(b) Decreasing tape speed.

A not-so-obvious means of reducing power consumption is to practically eliminate the tension that normally must be overcome by the reel

engineered for ease of operation...new KBBASCOPE point plotting or continuous trace

Slimmer, flatter, push-button fast... Librascope's newest, most advanced plotter is the result of per-sonally-conducted field research by Librascope engineers. Compact design permits rack mounting in groups, saves desk space. Many new conveniences have been added to answer your needs.

POWER: 115 -volt, 60 cycle

- 180 watts

NPUT: X and Y inputs isolated from each other and
from ground.
INPUT RESISTANCE:
2 megohms nominal on
most scales. 1 megohm per
volt on 5 millivolts per inch
to 11 voits per inch scales.
INPUT SENSITIVITY: . 5 millivolts per inch 1050 volts per inch with calibrated push
button scales at .5,.1,5, 10 and 50 milli. button scales at $.5,1,5,10$ and 50 milli-
volts per inch and $1.5,1,5$ and 10 volts per volts per inch and. $1,5,1,5$ and 10 volts per
inch. Vernier controls permit continuous sen-
sitivity adiustment between fixed scales. persitivity adjustment between fixed scales, per-
mitting full scale plotting for any sensitivity.

ACCURACY: Static $.1 \%$, dynamic $.2 \%$ at 10°
PLOTTER CALIBRATION ACCURACY:
$.05 \%$ on all scales.
SLEWING SPEED: 20° per second.
For full details - dimensions, applications, list of accessory equipment, call our Sales Engineering Department or send for illustrated brochure on Model 210, XY Plotter. For information on career opportunities at Librascope, write Glen Seltzer, Employment Manager.

Fig. 2. In 5 min , this Project Courier recorder can record the speeded-up, 13-hr output of a teletype machine. On command, it plays back the signal in 5 min and telemeters it back to earth. The recorder weighs only 5 lb .

Fig. 3. Spring-driven reeling system in Courier recorder, (Fig. 2), cuts power requirements, eliminates take-up motors, brakes, clutches, and switches. Hunter Spring Co.'s "Neg'ator" springs apply reverse torque through a common shaft to the reels.
tion for power consumed by this type of recorder is:

$$
P=\frac{0.118 S}{\eta}=\left[w\left(\left(1-\eta^{\prime}\right)+n \mu\right)\right]
$$

η^{\prime} is the efficiency of the spring assembly.

Reduced Tape Tension Can Lower Power Required

There is a limit to how far tape tension can be reduced before the tape winding is unsatisfactory. Although it is conventional to use a tension of 16 oz per in. of tape width, the tension can be reduced to 3 oz before the tape becomes too loosely wound. Reduced tension frequently is accompanied by lower high-frequency response or increased drop-out rates.
The dual-capstan drive should allow a great reduction in supply and take-up tension because the relatively high tension required for good tape-to-head contact is developed by the slight difference in speeds of the two capstans.

Eliminating pinch rolls does not necessarily reduce power consumption since they can be spring-loaded or operated in toggle fashion so they require little power. But it is worth while to eliminate them as they are a potential source of flutter.

Most Tape Transports Use
 Huskier Motor Than Needed

Most tape transports use motors with a greater power-output capability than is theoretically necessary. This is so an increase in bearing friction will not impair transport operation.
Bearing friction normally is negligible compared to head friction. However, differential shrinkage of a bearing and its housing because of temperature changes will greatly increase friction.

Temperatures below about 0 F usually result in significant increases is bearing friction because of increased lubricant viscosity. When a recorder is intended to be operated at sub-zero temperatures, bearing friction should be carefully estimated-it has a great effect on motor requirements and power consumption.

Differential contraction or expansion of bearing housings because of dissimilar temperature coefficients can affect power consumption and recorder performance.
The power consumption of the tape transport may not be of paramount importance in airborne systems, where the transport may use only a fraction of the power supplied to the recorder package and its circuitry.
Non-mechanical energy may be absorbed or dissipated as follows:

1. Energy is absorbed in the recording m dia.
2. Energy is absorbed and lost in the he d.
3. Energy is required in electronic circuit

In the recording media, the hysteresis el ergy loss is expressed by Steinmetz's equation:

$$
W=\eta B^{1.6}
$$

where $B=$ maximum induction in maxwells, and $\eta=$ the coefficient of hysteresis for the nedia involved. Energy will be given in ergs per cycle per cc.

This hysteresis power loss may also be calculated with the formula:

$$
P=\frac{V f}{4 \pi} \times(\text { the area of the hysteresis loop })
$$

Any consistent system of units may be used in this equation where $V=$ volume of magnetic material, and $f=$ frequency.

Head Geometry and Bias Frequency
 Play Role in Power Determination

In calculating the energy absorbed in the recording medium one must also consider the geometry of the associated record head, espe cially gap lengths and track widths.

The energy absorbed in the recording me dium is directly proportional to the bias fre. quency. From Steinmetz's equation it is also ap parent that the energy absorbed in the medium is proportional, not to remanent induction, but to the 1.6 th power of B.
Consider the energy absorbed in a medium when the bias frequency is 100 kc , the recording head has a gap of 0.0005 in . and the recording track is 0.05 in . on a tape with a coating thick. ness of 0.00035 in . and a retentivity of approximately 700 gauss.

AC Bias Improves Recording
 But No Bias Cuts Powar

From Eq. 2, the energy absorbed in the medium will be about $25 \mu \mathrm{w}$. By halving the bias frequency, we halve the energy. If a medium with half the retentivity were used, the energ? would be reduced by a factor of about 3 , from Steinmetz's equation.
Consider recording without ac bias. The en ergy absorbed in the recording medium is reduced by nine-tenths. The energy is further re duced by the ratio of bias frequency to average signal frequency, which means a total reduction of 98 per cent in energy absorbed in the medium The energy lost in the medium due to the signal is a function of $B_{R g^{1,6}}$. The flux available for playback is a direct function of $\boldsymbol{B}_{R g}$. From this equar tion we may deduce relative efficiencies of medir
$\mathrm{g} \mathrm{m}: \mathrm{dia}$. e he d. rcuit, is el erg
is desirable but it is also possible to conserve these losses by reducing lamination thickness and bias frequency.
Transistor amplifiers in a recorder will dissipate perhaps 25 mw per channel. Vacuum tubes use more than 1 w per tube. It is apparent that solid-state devices should be more efficient.
sucl as metal tapes and oxide-coated plastic tapes.
A comparison of the $B_{R s^{1-6}} / B_{R S}$ ratio for different tapes indicates that oxide-coated, plasticbased tapes are four to five times more efficient than metal tapes.

Record Head Has Three

Major Sources of Loss
In a given record head, there are three major sources of energy loss: heat, eddy current losses, and hysteresis losses.
Heat losses are given by the equation:

$$
P=I^{2} R
$$

where $l l=$ dc resistance of the windings.
Eddy current losses are given by:

$$
P=V \frac{\pi^{2} f^{2} r^{2} B^{2}{ }_{p e a k}}{6 e}
$$

where $f=$ frequency, $r=$ lamination thickness, $B=$ flux density, $e=$ resistivity, $V=$ volume.
A practical value for heat loss in a recording head may be $500 \mu \mathrm{w}$; average eddy-current energy loss may be about 2.5 mw when the bias frequency is 100 kc .
In his book, "Ferromagnetism," Boxworth gives the bias-hysteresis loss for 65 Permalloy with $100-\mathrm{kc}$ bias as $250 \mu \mathrm{w}$. The signal-current hysteresis loss will be about $25 \mu \mathrm{w}$. In both cases, gap losses are ignored.
In examining the eddy-current loss formula, eddy-current losses are a function of the square of the frequency involved and the square of the lamination thickness as well as the square of the induction. Thus, a high value of head inductance The table shows typical power requirements per recording channel with and without the use of bias techniques. - =

Typical Recording Power Per Channel (Mw)

	With Bias	Without Bias
Signal Circuitry	25	25
Bias Circuitry	250	None
Eddy Current (Head)	2.5	0.025
Dc Losses (Head)	0.25	0.002
Tape	0.025	<0.001
(W th 100-kc bias)		-
Hysseresis Loss	0.25	-
Total	278.025 mw	$25.027+\mathrm{mw}$

under actual pulse conditions

Here's technical data on arnold silectron CORES

Burletin SC. 107 A
. this newly. reprinted 52-page bulletin contains
design information on Arnold Tape Cores wound from Silectron (grain-oriented silicon steel). It includes data on cut C and E cores, and uncut toroids and rectangular shapes. Sizes range from 2 fraction or an ounce to more than a hundred pounds, mils.
and 12 mils
Cores are listed in the order of their power handling capacity, to permit easier selection to hic your requirements, and curves showing the effect of impregnation on core material properties are included. A valuable addition to your engineering
files-write for your copy soday files-write for your copy soday.

ADDRESS DEPT. ED-11

The inset photograph above illusstrates a special Arnold advantage: a 10-megawatt pulse-testing installation which enables us to test-prove pulse cores to an extent unequalled elsewhere in the industry.

For example, Arnold 1 mil Silectron "C" cores-supplied with a guaranteed minimum pulse permeability of 300-are tested at 0.25 microseconds, 1000 pulses per second, at a peak flux density of 2500 gausses. The 2 mil cores, with a guaranteed minimum pulse permeability of 600 , receive standard tests at 2 microseconds, 400 pulses per second, at a peak flux
density of 10,000 gausses.
The test equipment has a variable range which may enable us to make special tests duplicating the actual operating conditions of the transformer. The pulser permits tests at $.05, .25,2.0$ and 10.0 microsecond pulse duration, at repetition rates varying anywhere from 50 to 1000 pulses per second.

This is just another of Arnold's facilities for better service on mag. netic materials of all description. - Let us supply your requirements. The Arnold Engineering Company, Main Office \& Plant, Marengo, Ill.

Branch Offices and representatives in PRINCIPAL CITIES
Find them FAST in the YELLOW PAGES

In modern digital computers

 PERFORMANCE IS THE PAY-OFFA big, modern digital computer may cost as much as $\$ 10$-million to buy outright. Even rental may run as high as $\$ 50,000$ a month.
With money like that involved, computer-makers can't take a chance on substandard components. They want, and get, the best components the best resistors. Where wire-wound power resistors are required, they frequently specify Ward Leonard vitrohms.
There's another reason, too, why compuier manufacturers want only the best: They're shooting for $99.99 \ldots \%$ statistical reliability of components, and the more " 9 's" the better. Computer components - say, resistors - are numbered in the tens of thousands, and they have to have this kind of performance to get 99.8% reliability in their final product. For this reason, computer makers insist on, and get, performance-as continuous and reliable as the state of the art permits. And again, where wire-wounds are required, they are likely to specify Ward Leonard VITROHMS.
If you want maximum quality and maximum reliability in your product, follow the lead of outstanding digital computer manufacturers-like IBM, Remington Rand, and Burroughs - and specify w/L vitrohms. You'll find full information in catalog D130. Write for your copy, and the name of your nearest vitrohm distributor, today. Ward Leonard Electric Co., 77 South Street, Mount Vernon, New York. (In Canada: Ward Leonard of Canada, Ltd., Toronto.)

RESULT-ENGINEERED CONTROLS SINCE 1892 WARD LEONARD ELECTRIC CO.":"
RESISTORS • RHEOSTATS • RELAYS • CONTROLS • DIMMERS CIRCLE SO ON READER-SERVICE CARD

Solid-State Microwave Signal Source

ARESPECTABLE level of microwave power can now be obtained from a commercially available, all-solid-state signal source. With outputs from 4.0 w at 75 mc to 30 mw at 6 Gc , these low-powerconsumption units will have many applications, primarily those now served by such devices as the reflex klystron. They can be applied as pump sources for parametric amplifiers or for any application requiring a fixed-tuned, microwave signal generator.

Beyond the theory stage, these new signal sources are now being offered by the Apparatus Division of Texas Instrument, Inc., Dallas, for custom-engineered applications.

Impedance-Matching Networks

Provide Maximum Energy Transfer

The harmonic generator circuit model shown in Fig. 1 is typical of the type that has been used in the theoretical study of reactance-diode frequency multipliers. Terms Z_{1} and Z_{2} represent im-pedance-matching networks which provide maximum transfer of energy from source to diode, and diode to load, respectively. They are adjusted for minimum insertion loss. The input and output filters are parallel resonant at the fundamental and output harmonic frequencies, respectively. Thus they present ideal zero impedance to all other frequencies.

If the impedances Z_{1} and Z_{2} present a perfect match between source and load, and if the input and output filters are ideal, the only loss in the circuit will be that produced by the diode. This theoretical perfection is not attained, hence the losses must be considered to
provide accurate circuit analysis results.
Expansion of this circuit model into an actual tripler harmonic generator is shown in Fig. 2. The abrupt junction diode used has a capacitance of 47 pf and a Q of 30 at 70 mc (the circuit multiplies from 70 to 210 mc). It exhibits a capacitance variation which is the inverse square root of the voltage variation.

Major Harmonics
 Are Tuned Ouf

With a power-source output imped. ance of 50 ohms, and the series-resonant traps tuned to the proper frequency, conversion efficiencies in excess of 50 per cent are possible with the circuit shown. Practical considerations make it impossible to provide resonant traps for all the unwanted harmonic frequencies, so only the major harmonics are tuned out. This circuit is capable of producing the specified efficiencies for all power levels from 400 mw to 3.5 w .
The high-pass filter at the output provides attenuation in excess of 20 db for all frequencies below the third harmonic. Only negligible amounts of higher harmonic power appear at the output, so the total power output is essentially equal to the power of the third harmonic
Fig. 3 gives the schematic of a quin tupler multiplier of very similar configuration. Frequencies are multiplied from 220 mc to $1,100 \mathrm{mc}$. Efficiencies as high as 28 per cent have been achieved in practice with this circuit.

Profotype Shows Modular Construction

Shown is an engineering prototype of a family of solid-state sources and har-

Fig. 1. Harmonic generator circuit model
results.
into an
ator is
tion di-
pf and
ultiplies
capaci-
inverse
imped.
esonant
quency,
50 per
shown.
mpossi-
all the
so only
ut. This
e speci-
out pro
db for
rmonic.
er har-
put, so
a quir
configu-
d from
as high
eved in
type of
nd har.
ElECTRONIC DESIGN • November 23, 1960

ULTRA-CLEAN INCUBATORS FOR M/I* BALL BEARINGS N/D'S NEW WHITE ROOM PROVIDES ULTRA-CLEAN ENVIRONMENT FOR M/I BALL BEARING ASSEMBLY

N/D announces a new White Room at Sandusky, Ohio incorporating the latest technological advances available today. This new room provides a virtually dust-free atmosphere so necessary for the production of Miniature and Instrument Ball Bearings of high reliability.
Environmental controls within the room hold temperature to plus or minus $1^{\circ} \ldots$ with maximum humidity only $\mathbf{4 0 \%}$. Final air filtration into room removes particles smaller than $3 / 10$ micron. A complete air change is made every three minutes. Engineers and technicians entering the room are thoroughly bathed by air showers in two successive deduster chambers.
You can benefit from New Departure's 25 years of experience in M / I ball bearYou can benefit from New Departure's 25 years of experience in M/I ball bear-
ing production by calling your nearby N/D Sales Engineer. Or write Department
L.S., New Departure, Division of General Motors Corporation, Bristol, Conn.

NEWDEロARTURE
MINIATURE AND INSTRUMENT BALL BEARINGS

-IN A NEW LOWfrequency oscilloscope

Abstract

A comprehensive performer - simplifying many procedures previously requiring specialized oscilloscopes. The 401-8 provides highfrequency type concepts with low-frequency operation. The 401-B features identical amplifiers - enabling equal-ordinate, calibrated plots for accurate measuring on both axes. Its wide range of sweep speeds, provisions for single sweeps with rearming facilities, selection of auto or driven sweep, an "electronic shutter" and other unique features - all helping to create versatile displays on a new hígh brilliance 5 kv cathode-ray tube establish the $401 \cdot \mathrm{~B}$ as a true general purpose, high performance oscilloscope. Write for complete details.

PRICE $\$ 430^{00}$
f.O.B. CLIFTON, N. J.

allen b. du mont laboratories, Cliftcn, N. J., U. S. a
international division - sis madison avenue, new york 22, n. y. - cables: albeedu. new york CIRCLE 55 ON READER-SERVICE CARD

By combining a standard electronic counter with this new voltage-to-frequency converter, the engineer has an average-reading voltmeter, fairly immune to noise and hum at the input,

Voltage to Frequency Converter

USING a voltage-to-frequency converter with a standard electronic counter provides the user with an aver-age-reading digital voltmeter, largely immune to noise or hum at the input. With the new v-to-f converter, a record of total input can also be obtained. In applications like the measurement of rocket thrust, where data is desired both on total thrust and the manner in which thrust varies, the system eliminates tedious manual integration from a series of digital readings or recorded curves.

H-P Dymec Units
 Integrate Inputs

Designed by engineers at Dymec Div. of Hewlett-Packard Co., 395 Page Mill Road, Palo Alto, Calif., the models 2210 and 2211 convert an input voltage to a proportional frequency, which is then applied to an electronic counter to complete the process of conversion from analog to digital form. Unlike most analog-to-digital converters, which use either ramp or comparison techniques to measure the instantaneous value of an applied voltage, the Dymec units integrate the input and measure the average value over a selected time interval.

The applied voltage is measured continuously rather than sampled as with other techniques. But, because it is integrated over a discrete time interval, an average reading is obtained instead of an instantaneous one. This reading is digitally indicated by counting the number
of output pulses generated during the time interval.

High-Gain Amplifier
 Achieves Integration

To achieve the integration a high gain operational amplifier is used, as in the block diagram. Chopper-stabilized, the amplifier is the same type as used in analog computers. Normally three inputs are applied to the amplifier-one, he unknown voltage; second and third, the two polarities of feedback pulses. In some cases, the company says, an additional input is used for application of a dc bias to provide an output frequency offset.

When an unknown voltage is applied to the converter, the output rises according to:

$$
e_{o}=-\frac{1}{R_{i n} C} \int e_{i n} d t
$$

When e_{o} reaches a predetermined trigger level, a single pulse is generated and fed back to the input of the amplifier Polarity of the pulse is opposite to that of the unknown; when the pulse is integrated, e_{o} immediately falls below the trigger level. As $e_{i n}$ continues, e_{o} rises again to the trigger level and another pulse is generated.

This mechanism of generating pulses prevents a net change in e_{o} beyond that corresponding to the integral of a single pulse. And since the pulses fed back to the amplifier input have a constant area

Another NARDA exclusive! DIGITAL $1-8-6-50$

Direct-

 Reading

Frequency Meters

No interpolations needed!

New - and only from Narda! Microwave frequency meters you can read at a glance! The digital counter permits even the least-experienced to get rapid, precise readings without interpolations, charts or curves. And, because the tuning rate is linear with frequency, the new meters are readily adaptable for remote indication. May be panelmounted, too, if you have a system application.

Best of all, you get these features with no sacrifice of quality or accuracy $(0.1 \%$ or better): The high-Q cavities are precision-bored; the cast housing is extremely rugged; the mechanism is carefully and accurately constructed. Electrically, the unit is equivalent to a straight section of waveguide when detuned. Dip at resonance is at least 10%, Complete specifications are shown at right.

This is just one of many precision Narda microwave products. For a free copy of our complete catalog, write to: Dept. ED-12. from an output winding on a magnetic tion limit to the other. Area of the output pulse is governed by the saturation flux of the core and by the number of turns on the output winding. Temperature and line voltage variation and pulse freline voltage variation and pulse fre
quency can affect the saturation flux.
Accuracy of the v-to-f converter is mainly determined by the ability of the pulse generator to deliver constant-area pulses to the input of the operational amplifier, by the stability of the amplifier, and by the linearity of conversion. In practice, the company asserts, stability is the controlling factor. Accuracy for the model 2210 is 0.1 per cent of full scale, for the 2211 A 0.03 per cent and for the 2211B 0.04 per cent.
Input ranges for the Model 2210 can be stepped from 0-1 to $0-1,000 \mathrm{vdc}$ in four clicks of the dial. Output is from zero to 10 kc . Both standard 2211 models have rated inputs of $0-1 \mathrm{vdc}$; output of the 2211 A ranges from zero to 10 kc , of the 2211 B zero to 100 kc .
For more information on this voltage-to-frequency converter turn to the Reader-Service Card and circle 252.
it follows that over any definite period of time the number of pulses generated is proportional (± 1 pulse) to the integral of the input voltage. Average, being the time integral divided by the period of integration, is read directly on standard counters with gate times such as 0.1 sec and 1 sec. Direct reading is a result of the integral power of 10 gate times and v -to-f conversion ratio of 10 kc per v and 100 kc per v .
These constant-area pulses are derived from an output winding on a magnetic mounted, too, if you have a system application.
a free copy of our complete catalog, write to: Dept. ED-12.

SPECIFICATIONS

Band	x	KU	K
Frequency (KMC)	$8.20-12.4$	$12.4-18.0$	$18.0-26.5$
Waveguide (in.)	$1 \times 1 / 2$	$.702 \times .391$	$1 / 2 \times 1 / 4$
Accuracy	0.08%	0.1%	0.1%
Loaded 0	7000	5000	4000
Length (i.).	4	4	4
MARDA Model Mumber	840	839	838
Price	$\$ 195$.	$\$ 250$.	$\$ 275$.

armans
microwave
corporation
118.160 HERRICKS ROAD. MINEOLA, L. I., N. Y. - PIONEER 6-4650

NEW PRODUCTS

Covering all new products generally specified by engineers designing electronic original equipment. Use the Reader-Service Card for more information on any product. Merely circle number corresponding to that appearing at the top of each description.

Microwave Receiver-Transmitfer Operates At 12,000 Mc

Model MR-40 receiver-transmitter, able to operate at $12,000 \mathrm{mc}$, provides broad-band communications particularly suited for high-speed data transfer as well as transmission of telephone and teletypewriter messages. The basic components are two reflex klystron tubes, one in the receiver and one in the transmitter. Each tube is rated for a life of $20,000 \mathrm{hr}$ of continuous operation. Besides data transmission, the system handles voice and control and monitor functions. It can carry data at 62,000 characters per sec when used with the firm's transmission multiplex system.

Motorola Inc., Communications Div., Dept. ED, 4501
W. Augusta Blvd., Chicago 51, Ill.

Strain Gage Sensitivity Is 50 To 60400 Times That of Its Metallic Counterparts

The Micro-Sensor MS 105-350 semiconductor strain gage is claimed to have a sensitivity of 50 to 60 times that of its metallic counterparts Nominal gage factor at 77 F is $130 \pm 10 \%$ and spread per package is within $\pm 2 \%$. Nominal resistance is 350 ohms $\pm 10 \%$ and spread per package is $\pm 1 \%$. Maximum operating strain is over 3,000 microstrain, recommended bridge current is 30 ma max and minimum usable radius of curvature in 1 in . Operating temperature range is -65 to +180 F ; dimensions are $0.625 \times 0.02 \times$ 0.0005 in . Four gages are housed in one package.

Micro Systems, Electro-Optical Systems, Inc., Dept. ED, 2925 E. Foothill Blvd., Pasadena, Calif. Price: $\$ 98$ per package.
Availability: From stock

Diode Tester Indexes 3,600 Units Per Hour

Type T-501A diode tester automatically indexes, tests and sorts diodes at the rate of 3,600 units per hour. Ten tests are performed in this sequence: orientation check, inverse tests and forward tests. Any one test can be programed for forward or reverse tests in any sequence. Shorted or open units can be rejected at the rate of 7,200 per hour. The unit idles with open contacts at 2,400 steps per hour. Applications are in production testing, engineering analysis, quality control and incoming inspection.

Atlantis Electronics Corp., Dept. ED, 322-26 Broadway St., Garland, Tex.

Traveling-Wave Tube 402 Has Less Than 4-Db Noise

Intended for operation in the front-end of communications receivers in the frequency range of 2,500 to $3,700 \mathrm{mc}$, this travelingwave tube has a broadband noise figure of less than 3.5 db . Minimum tube noise figures are as low as 2.5 db . The tube is operated in a twofield jump solenoid weighing less than 30 lb . The solenoid dissipates less than 200 w in providing a magnetic field of about 800 gausses for focusing the electron beam. Relatively flat small-signal gains of about 30 to 35 db and saturated power outputs of about 3 to 4 mw can be obtained with tube noise figures below 4 db .
Radio Corp. of America, Dept. ED, 30 Rockefeller Plaza, New York 20, N.Y.

CIRCIE 59 ON READER-SERVICE CARD $>$

MICROWAVE AND POWER TUEE DIVISION

250 kW QKH-1000-all ceramic and metal tube -improves performance of existing systems, provides increased capability for new systems.
This new X-band pulsed magnetron-specially designed for airborne applications-results from Raytheon's long experience in quantity production of magnetrons for use under severe environmental conditions.
The tube is rapidly tunable from 8,500 to $9,600 \mathrm{Mc}$, with a typical tuning rate of $100,000 \mathrm{Mc} / \mathrm{sec}$ in the hydraulically tuned version. Ceramic construction and newly-designed cooling fins provide high ambient temperature tolerance. Study programs are underway to permit operation to $350^{\circ} \mathrm{C}$.
The tube's heliarc welded output assembly and magnet shape enhance its physical rigidity. Unique anode construction achieves better voltage and frequency stability. Designed for economical volume production, the QKH-1000 directly replaces the RK-6249 magnetron in existing systems.

OKH-1000-GENERAL CHARACTERISTICS
Power Output . . . 250 kW (nominal)
Frequency Range . . $8500-9600 \mathrm{Mc}$
Anode Voltage 27.5 kV
Anode Current . . . 25 amps (peak)
Stability . . . 0.2% missing pulses

Bandwidth $\frac{1.65}{\mathrm{t}_{\mathrm{p}}}$ Mc; $\mathrm{I}_{\mathrm{b}}=25 \pm 15 \%$ amps | (peak) |
| ---: |

Pulse Widths Up to $3.3 \mu \mathrm{sec}$

Write for detailed application information to Raytheon Company, Microwave and Power Tube Division, Waltham 54, Massachusetts. In Canada: Waterloo, Ontario. In Europe: Zurich, Switzerland.

$$
\begin{aligned}
& \text { Power Output } 250 \mathrm{~kW} \text { (nominal) } \\
& \text { Frequency Range 8500-9600 Mc } \\
& \begin{array}{l}
\text { Anode Voltage } 27.5 \mathrm{kV} \\
\text { Anode Current } 25 \text { amps (peak) }
\end{array} \\
& \text { Stability } 0.2 \% \text { missing pulses } \\
& \text { Bandwidth } \frac{1.65}{t_{p}} \mathrm{Mc} ; \mathrm{i}_{\mathrm{b}}=\underset{\text { (peak) }}{25 \pm 15 \% \text { amps }} \\
& \text { Pulse Widths Up to } 3.3 \mu \mathrm{sec}
\end{aligned}
$$

RAYTHEON COMPANY

RAYTHEON

New Raytheon tunable magnetron improves airborne radar performance

RAYTHEON

Electonic Products NEWS by CARBORUNDUM ${ }^{\circ}$

Custom-built DUMMY MAGNETRON LOAD inserts in magnetron socket

(1) Heat exchanger (2) Pump - water and ethylene glycol (3) GLOBAR 500 watt resistor tics (4) Varistor load bank to simulate anode characteristics (5) Ceramic-to-metal assen bly duplicating magnetron termination (6) CIRCIE 004 ON READER-SERVICE CARD

The dummy magnetron load at left cut open to show construction, was designed by Hazeltine Corporation engineers and produced by Carbo rundum's Globar Plant. It is used as a stable termination of known characteristics for evaluating the pulse performance of the Hazeltine AN/ APS-95 transmitter modulator, newest Air Force early warning radar development.

The dummy load dissipates 10 kw average power. Peak pulse amplitude is $50 / 70 \mathrm{kv}$. Unique features include provision for direct insertion of the load in magnetron socket, use of liquid heat exchanger and inclusion of a proportional viewing resistor.

This load is typical of custom-built devices by Carborundum, utilizing the non-linear characteristics of GLOBAR ${ }^{(8)}$ resistors and varistors. Ceramic-to-metal assemblies and ceramic parts were produced at Carborundum's Latrobe Plant. For information on high power packaged loads to suit your requirements, writeGlobar Plant, Refractories Div., Dept. EDL-110, Carborundum Co. Niagara Falls, N. Y.
CIRCIE 805 ON READER-SERVICE CARD

Crushable Ceramic Preforms

-Swaging fubes for thermocouples
These preforms are used for stringing on thermocouple leads, insertion in seamless stainless steel sheaths and subsequent crushing during swaging to produce densely packed ceramic powde insulation. They are now available in a choice of materials:
Low Boron Content Magnesium Oxide High Purity Aluminum Oxide (Fused and Calcined)
Stabilized Zirconium Oxide
Low Hafnium Stabilized
Zirconium Oxide
Preforms are offered for one, two and four hole applications, with other multiple four up to six hole tubing available on request. sizes range from . 022^{0} O.D. with holes from. 00 diam. as standar. sizes. specrar miole frite Latrobe Plant Refractorie Dir, Dept EDP-110, Carborundum arborundum Com pany, Latrobe, Pa.
CIRCLE 806 ON READER-SERVICE CARD

CUSTOM-BUILT SEALS AND METAL-BONDED CERAMICS

offer advantages for your product
The samples shown at left are typical of the many types produced by Carborundum's the many type
Latrobe plant. $\# 1$ is a metal-bonded ceramic-to-metal assembly with an operating range up to 500 C in air and 1080 C in controlled atmos phere. It's highly resistant to thermal and
physical shock and can be readily brazed. Used for thermopile lead-throughs, pres-
anysical shor and sure vessels, space capsules, canned nuclear pumps and reactors, heating elements, rec tifier housings.
\#2 is another example of metal-bonded ceramic with similar properties. \#3 is a silver metallized ceramic part for
less severe requirements. Operating range up to 150 C . \#4 Vacuum-tight lightweight glass-tometal assembly produced with kovara matched expansion type glass seals. The glass and matal bond. For information, write
true chemical Latrobe Plant, Refractories Div., Dept. EDS-110, Latrobe, Pa .
CIRCLE 807 ON READER-SERVICE CARD

NEW PRODUCTS

Rotating Coil Fluxmeter

Has accuracy of 0.01%

Rotating coil fluxmeter, model 601, is capable of measuring or controlling non-uniform fields to an accuracy of 0.01%. Fields do not have to be homogeneous to be measured. Measurements are made by means of a null-indicating meter with readings taken from a high accuracy, calibrated attenuator. Dimensions are $30 \times 6 \times 6$ in., weight is 42 lb . Power required is 117 v ac, 60 cps 10,530 w.
J. C. Carter Co., Electronics Div., Dept. ED 671 W. 17th St., Costa Mesa, Calif.

General-Purpose AC-DC Relay

739
Hermetically-sealed unit

This general-purpose ac-dc relay is a hermeti-cally-sealed unit. Model 88 relay is available with spdt, dpdt and 3pdt contacts. It has 5 - and l0-amp ratings. The unit is for dc operation to 220 v , ac operation to 440 v . It measures 1-3/16 $\times 1-1 / 4 \times 1-13 / 16 \mathrm{in}$.

Magnecraft Electric Co., Dept. ED, 3350D W. Grand Ave., Chicago 51, Ill.
Price: $\$ 2.50$ to $\$ 4.50 \mathrm{ea}, 1$ to 1,000 .
Availability: 14 days.

Pulse Transformers

Have pre-molded epoxy-resin cases
Pre-molded epoxy-resin cases house type 322 miniature pulse transformers. Style 1 units are for pulse voltages up to 60 v at an average power rating of 0.3 w max; Style 3 units are for volt-
age; up to 200 v at an average power rating of 1 w max.
Sprague Electric Co., Special Products Div., Dept. ED, North Adams, Mass.

Miniature Low-Frequency Oscillator

732

Measures $1 \times 1 \times 2-1 / 2 \mathrm{in}$.

Model FS-1001 F miniature low-frequency oscillator measures $1 \times 1 \times 2-1 / 2 \mathrm{in}$. The unit meets requirements for missile-power-supply-frequency and computer-master-time reference. Specifications are: frequency, as low as 8 kc ; stability, $\pm 0.004 \%$ to $+60 \mathrm{C} ; \pm 0.019 \%$ from -55 to +70 $C ; \pm 0.025 \%$ from -55 to +100 C ; rise and fall time, $10 \mu \mathrm{sec}$ max; output voltage, $0 \pm 0.5 \mathrm{v}$ to $6 \pm 3,-0.5 \mathrm{v}$ swing; vibration, 30 g from 20 to $2,000 \mathrm{cps}$; shock, 70 g for 11 msec ; temperature range, -55 to +100 C .
Monitor Products Co., Dept. ED, 815 Fremont, South Pasadena, Calif.
Price: $\$ 200$ to $\$ 300$ ea, prototype units.
Availability: 30 days.
Rotary Switches
386
Packaged switching assemblies are furnished

The Dot Switch-Pak packaged switching assemblies were originally designed for use with an electronic attenuator. The design differs from that of conventional rotary switches in that an eccentric or cardiac cam actuates a movable printed circuit board that is in contact with a stationary circuit board. Variations in cam shape and circuit layout can be designed for extremely complex switching sequences.
The Ucinite Co., Dept. ED, 459 Watertown St., Neivtonville, Mass.
Av ailability: Made to suit customer specs.

GENERAL INSTRUMENT SEMICONDUCTOR REPORT

Design Notes.

DIODE CLAMPS PREVENT DRIFT IN HIGH SPEED ELECTRONIC SWITCHES The problem of drift in high speed elec. tronic switches has been solved through the use of clamp diodes. This application is especially useful for stabilizing the operation of go, no-go oscilloscopic testing of dynamic parameters in a variety of electronic components.
In the circuit, General Instrument MP. 300 silicon diode/rectifiers may be used because of their superior stability and low reverse leakage (only $05 \mu \mathrm{a} @ 25^{\circ} \mathrm{C}$).
Changing from vacuum tube to silicon clamp diodes minimizes problems associated with varying contact potentials. Equipment reliability is improved since total thermal dissipation is reduced. Further, equipment does not have to be reset in case of power line failure.
The small physical size of General Instrument diode/rectifiers is important where a large number of switches are to be used in a single piece of equipment.

NOVEL CIRCUIT USES DIODES FOR AUDIO COUPLING There are many benefits to be gained through diode coupling of audio amplifiers. The simplified threestage transistorized audio amplifier shown above uses General Instrument IN645 subminiature silicon diodes.
Since the diodes are forward biased, ac is virfually direct coupled-resulting in a flat frequency response limited only by transistor parameters. Need for large coupling capacitors is eliminated. Virfually lossless ac coupling is obtained. And, temperature stability is improved because of low external base resistance.

Complete schematics of above circuifs are available upon request.

Proved Reliability: ZERO FAILURES after $\mathbf{1 1 , 0 0 0}$ hours operation at $150^{\circ} \mathrm{Cl}$

Gr 1N645-1N649 DIODE/RECTIFIERS AVAILABLE IN PRODUCTION QUANTITIES.. EXCEED USAF STANDARDS

General Instrument 1N645 through 1N649 subminiature rectifiers are ideally suited for applications requiring small size and very high reliability. These hermetically sealed glass units are designed to operate over an ambient range from -65° to $150^{\circ} \mathrm{C} \ldots$ pass MIL-E-1/1143 specfications for breakdown voltage.. . offer superior life test performance. This series covers the range of 225 to 600 PIV, with maximum average rectified current of $400 \mathrm{ma} @ 25^{\circ} \mathrm{C}$. Maximum reverse current @ PIV is only $0.2 \mu \mathrm{a}$.
These diode/rectifiers are subjected to 100% environmental testing and dynamic oscilloscopic tests to assure high electrical and mechanical uniformity, surpassing the most stringent military specifications.

- LIFE TESTS indicate outstanding stability of the General Instrument 1 N645 series subminiature rectifiers under load. Graph shows results of a 1,000 -hour test of 231 units from a normal production run. (Conditions: Vrms 160 V ac; Io 400 ma dc .)

NEW MP SERIES DESIGNED FOR $200^{\circ} \mathrm{C}$ OPERATION!
General Instrument has achieved an outstanding power-to-size relationship in the high quality MP silicon diode/rectifier series. Parameters for these subminiature glass units are suitable for a wide range of applications under high-temperature conditions:

TYPE	PIV	DC OUTPUT CURRENT (Ma)		REVERSE LEAKAGE (μ a) @ PIV		FORWARD DROP @ 400 Ma ($25^{\circ} \mathrm{C}$
		$25^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$	
MP 100	100	400	50	. 05	75	1.0
MP 225	225	400	50	. 05	75	1.0
MP 300	300	400	40	. 05	75	1.0
MP 400	400	400	35	. 05	75	1.0
MP 500	500	400	25	. 05	75	1.0
MP 600	600	400	20	. 05	75	1.0

CALIL ON GENERAL INSTRU'MENT for technical data and applications assistance on the complete line of

G
 SEMICONDUCTOR DIVISION GENERAL INSTRUMENT CORPORATION
 65 Gouverneur Street, Nowark 4, Now Jersey

1448
IN CANADA: General Instrument-F. W. Sickles of Canada Lid., P.O. Box 408, 151 S. Weber Street, Waterloo, Ontario, Canada. Sherwood 4-8101.

CIRCLE 60 ON READER-SERVICE CARD

- "Contrglled Rectifiers
- Fully Transistorized
- Low Cośt
- Remote Sensing
- Remote Programming
- Parall Operation
- Parallel Operation
- Constant Current\#

NJE Offers Greatest Power Per Panel Inch!

0.36 V	0.6 A	$31 / 2{ }^{\prime \prime}$	High
0.36 V	0.20 A	$7^{\prime \prime}$	High
0.18 V	0.30 A	$7^{\prime \prime}$	High

Output		Model No.	Input Power		Max. Ripple mv	Static Regulation		Dimensions$H \times W \times D$	Approx. Weight Pounds	Price
Volts	Amps		Volts	Freq. $\dagger \dagger$		Load \dagger	Line \dagger			
0.36	0.6	CR-36-6	105.125	55-65	3 P.P	$\pm 0.005 \%$ or $\pm 0.5 \mathrm{mv}$	$\pm 0.02 \%$ or $\pm 0.5 \mathrm{mv}$	$31 / 2 \times 19 \times 165 / 8$	45	\$595
0-36	0-20	CR-36-20	105-125	55.65	3 P-P	$\pm 0.01 \%$ or $\pm 1 \mathrm{mv}$	$\pm 0.02 \%$ or $\pm 1 \mathrm{mv}$	$7 \times 19 \times 165 / 8$	70	845
0-18*	0.30	CR-18-30	105-125	55.65	3 P.P	$\pm 0.01 \%$ or $\pm 1 \mathrm{mv}$	$\pm 0.02 \%$ or $\pm 1 \mathrm{mv}$	$7 \times 19 \times 165 / 8$	70	845

+ Whichever is greater
\dagger tAvailable for 400 cycle operation
*Preload of 1 ampere required for operation of 0.6 VDC
* Preload of 1.5 ampere required for operation of 0.3 VDC \#Contact factory or local representative

WRITE TODAY FOR COMPLETE TECHNICAL DATA

NJE
CORPORATION
20 Boright Avenue - Kenilworth, New Jersey
BR. 2.6000 - TWX Cranford, NJ 51 - FAX-FFP

NEW PRODUCTS

Miniature Gear Heads

Occupy less than 1 cu in.

Developed for applications of airborne and missile equipment, these miniature gear heads, occupying less than 1 cu in., are available with reduction ratios as high as $2,000,000,000: 1$. Input starting torque can be as low as 0.002 oz-in. Miniature motors, including synchro and servo types, have been designed for use in conjunction with the gear heads.
Elgin National Watch Co., Elgin Micronics Div., Dept. ED, 366 Bluff City Blvd., Elgin, Ill.

Tachometers

Weigh less than 1.5 oz

Model SS-779E-1 de tachometers weigh less than 1.5 oz and have an armature inertia of 3.5 $\mathrm{g}-\mathrm{cm}^{2}$. Linearity is 0.1%. Output is 3 v per 1,000 rpm and ripple does not exceed 3% of the dc output. An aluminum housing is used.
Servo-Tek Products Co., Dept. ED, 1086 Goffle Road, Hawthorne, N.J.
Price \& Availability: \$32.50; from stock.

Silicon Transistors

582
For switching applications
Type 2 N 726 is the pnp complement to the 2N702 npn silicon mesa transistor. It has 1-w dissipation at 25 C . The $B V$ ceo is 20 v . The dcbeta is 15 to 45 at 25 C . At 100 mc , the unit has $1.4 \mathrm{~min} h_{f e}$. Temperature range is -65 to +175 C .
Texas Instruments Inc., Dept. ED, P. O. Bo\& 312, Dallas 21, Tex.
Availability: Immediate.

For aircraft and portable use

The Tuchel series of microminiature and miniature plugs are for use in aircraft, portable instrumentation, and other electronic applications. They can have $10,16,28,34$, and 50 contacts. Having a polyester insulation material, the plugs stand temperatures up to 356 F . Other specifications are: contact current rating, 3 amp ; contact voltage rating, 60 v ; and cable clamp opening, 0.197 in . in ID. Contacts are made of silver-copper alloy and accommodate 26 -gage wire.
Cannon Electric Co., Dept. ED, 3208 Humbolt St., Los Angeles 31, Calif.
Availability: From stock.
Coaxial Line Duplexer

For 406 to $\mathbf{4 5 0} \mathbf{~ m c}$

This 3-1/8-in. duplexer uses two cell-type tubes and a single cell-type receiver protector tube. For the transmitter, peak power is 3 megawatt and average power is 5 kw . Units for other frequencies can also be furnished.
Bomac Laboratories, Inc., Dept. ED, Salem Road, Beverly, Mass.

Silicon Diodes

These high-conductance diodes are for applications requiring a small, lightweight device capable of standing severe environmental conditions. Designated types 1N482 through 1N488, the units are encased in a $400-\mathrm{mw}$ package. Reverse working voltage is 36 to 380 v and reverse breakdown voltage is 40 to 420 v . Forward voltage, at 100 ma and 25 C , is 1.1 v for the 10% tolerance units and 1 v for the 5% types.
Hoffman Electronics Corp., Dept. ED, 3761 § Hill St., Los Angeles, Calif.
Price: Type 1N482, \$1.19; type 1N488, \$4.50. A vailability: Immediate.

Probing new dimensions in Electronics through Stackpole Research ...

A MAJOR NEW FERRITE

FOR TELE-COMMUNICATIONS

Permeability: 1800

Temperature Constant: 1.8×10^{-6} per ${ }^{\circ} \mathrm{C}\left(-20^{\circ}\right.$ to $\left.120^{\circ} \mathrm{C}\right)$

Avg. Temporature Coofikilon (un-gappod coress):

0.29% per ${ }^{\circ} \mathrm{C}\left(-20^{\circ} 1085^{\circ} \mathrm{C}\right)$
$\mu \mathrm{O}$ (merli factor): Greater than 200,000 at 100 kc
. . . these in brief are the salient electrical characteristics of Stackpole Ceramag 501 -a remarkable new lowloss ferrite grade for the 10 kc to 250 kc range. Already revolutionizing the design of carrier-current communications filters, the material shows considerable promise for electronic switching circuits and others as well.

Cup cores of Ceramag 501 no larger than a quarter enable the design of filters with such narrow pass bands that message-handling capacities of communications systems can be increased from 2 to over 90 messages per channel. The extraordinary high gain of filtere using Ceramag 501 combine with other inherent advan-tages-smaller size, no aging or life problems-for a significant contribution to system reliability.
But equally significant is the extremely close tolerances to which these cores are made. To achieve the exact air gap required, Ceramag 501 cups are supplied in matched pairs. Special Stackpoledesigned mounting hardware and tuning slugs can also be supplied to assure easy assembly and maximum electrical performance with your own coil designs.
Almost four years in development, Ceramag 501 represents another basic contribution based on magnetic ceramic research and engineering by the oldest commercial ferrite producer in the United States.
Complete details on Ceramag 501 and the remarkable research facilities that made it possible are available upon request to the Electronic Components Division, Stackpole Carbon Company, St. Marys, Pa.

NEW PRODUCTS

Ultrasonic Cleaner
 For heavy-duty use

These cleaners require no operator attention or tuning. The basic generator for model 10001 heavyduty system provides an output of 1 kw avg and 4 kw peak. Units can be combined in modular installations to give up to $10-\mathrm{kw}$ operation. Tanks have 8- and 32-gal capacities.
Powertron Ultrasonic Corp., Dept. ED, Patterson Place, Roosevelt Field, Garden City, N.Y.
Price: Starts at $\$ 2,790$.
Availability: From stock.

Teflon Stock

Comes in all basic shapes

This Teflon stock comes in tape, sheets, rods, and tubes. The sheets can be furnished in sizes up to 48 sq in . The tubes can be up to 36 in. in diameter and the rods, up to 20 in .

Fluoro-Plastics, Inc., Dept. ED, 2417-X62 Federal St., Philadelphia 46, Pa.
Price: $\$ 9$ to $\$ 12$ per lb.
Availability: Immediate.
Phase-Lock Telemetry 432 Receivers
Operates with dynamic range of 100 db
These phase-lock telemetry receivers operate with a range of 100 db at a sensitivity of -185 dbw . The units integrate phase-lock detection with a series of complementary modules. The five modules are the detector, converter, converter control, remote acquisition control and power supply. The detector unit has a $30-\mathrm{mc}$ input. Units are available in models to cover the $108,135,378$ and $960-\mathrm{mc}$ bands. They can be used for propagation studies, satellite tracking and spe-cial-purpose telemetry.
Siegler Corp., Hallamore Electronics Div., Dept. ED, 714 N. Brookhurst St., Anaheim, Calif.

NEWI CONTROLLEI 4 TRANSITRON TYPES AUGMENI

Silicon Controlled Rectifiers/Switches

NEW! CONTROLLED SWITCHES

TSW31S.TSW201S PNPN bistable switching devices in TO-18 packages, with maximum holding current of 1 ma .

- High gate sensitivity 20μ a to fire
- Covers current range from 1 ma to 200 ma @ $75^{\circ} \mathrm{C}$ ambient
- Voltage ratings up to 200 volts available
- Temperature range: $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

CIRCLE 831 ON READER-SERVICE CARD

NEW! TO-5 PACKAGE CONTROLLED RECTIFIERS
Two series of diffused silicon PNPN bistable switching devices with very low triggering requirements and micro-second switching.
TCR251-TCR4001 series featuring:

- Low leakage: $100 \mu \mathrm{~A} @ 125^{\circ} \mathrm{C}$ case
- High gate sensitivity: $200 \mu \mathrm{~A} @ 25^{\circ} \mathrm{C}$
- Low Holding Current: 5 mA maximum @ $25^{\circ} \mathrm{C}$
- Current rating: 1 amp at $80^{\circ} \mathrm{C}$ case or 600 ma at $25^{\circ} \mathrm{C}$ ambient
- Voltage ratings: Up to 400 volts

Plus 2N1595-2N1599 series with same current and voltage ratings
CIRCLE 832 ON READER-SERVICE CARD

The camplete Transitron line of Controlled Rectifiers and Controlled Switchas includes the following higher current types:

ENIINDUSTRY'S BROADESTLINE!

Binistors / Transwitches

Transitron

electronic corporation
wakefield, melrose, boston, mass.

"Leadership in Semiconductors" see your authorized distributor for ouantiries from 1.999

FOR TECHNICAL ASSISTANCE AND SERVICE CONTACT THE TRANSITRON FIELD OFFICE NEAREST YOU AS LISTED BELOW
BALTIMORE, Maryland
2319 Maryland Ave............CHesapeake 3-3220 BOSTON, Massachusetts
168-182 Albion St.
Wakefield Mass. \qquad CRystal $6-5640$

CAMDEN, New Jersey
227 S. Sixth St. . . .
chicago, Illinois
6641 W. North Ave.
Oak Park, III. VIIlage 8-5556
cleveland, Ohio
14625 Detroit Ave
Lakewood, Ohio ACademy 1-9191
DALLAS, Texas
511 Braniff Airways Bldg.
Dallas 35, Texas.
....FLeetwood 7.9448
DAYTON, Ohio
379 W. First St.
DENVER, Colorado
DENVER, Colorado
First National Bank Bldg
621 Seventeenth St. AComa 2-1686
DETROIT, Michigan
2842 West Grand Blvd,TRinity 5-2440
KANSAS CITY, Missouri
Wirtham Bldg.
31st and Troost Sts. VAlentine 1-1819

LOS ANGELES, California

6362 Hollywood Blvd.
Hollywood 28, Calif. HOllywood 2-2381
NEWARK, New Jersey
1060 Broad St. . .
ORLANDO, Florida
\# 10 Jacklind BIdg.
205 E. Jackson St. CHerry 1-4526
PHOENIX, Arizona
2727 North Central Ave.CRestwood 7-3366
ST. PAUL, Minnesota
Griggs-Midway Bldg.
1821 University Ave.
SAN FRANCISCO, California
535 Middlefield Rd.
Palo Alto, Calif.. .
seattle, Washington
3466 East Marginal Way \qquad .MAin 4-0783

SYRACUSE, New York
2360 James St...................... HOward 3-4502
winston-salem, North Carolina
Nissen Building
\qquad .PArk 3-0363

Trangitron

lectronle corporation 1 IT wakofiold, meseachucotto

CIRCLE B35 ON READER-SERVICE CARD
(CIRCLE 831-834 ON READER-SERVICE CARD

The new Princess telephone - a product of the Western Electric Company - is an achievement in communication design INSIDE as well as out, thanks in part to a United Eyeleting Machine that automatically feeds and sets six twin United Eyelets in a plastic insulating terminal board no bigger than a cigarette lighter.

United achieved automation of terminal board production. Accurate alignment of the setting bar and an especially rigid frame - unique with the Model F United Eyeleting Machine - brings uniform pressure to bear on all six twin United Eyelets scattered over a broad pattern range. Reliability for the lifetime of the Princess was thus assured.
If you want faster production using greatly simplified setups of multiple mechanisms plus absolute reliability in multiple eyelet patterns, call on United
where over sixty years' experience in the design, development and production of eyelets and eyeleting machines, is at your service.
Your nearest United sales office has full information on the complete line of United Eyelets and Eyeleting Machines. Call or write today.

NEW PRODUCTS

Circuit Breaker

For low current circuit protection

Circuit breaker model MP-1660 is designed to protect low current circuits and components of electronic equipment. It is trip-free, manually operated and is available in $1 / 4$ - to $10-\mathrm{amp}$ ratings. Minimum capacity is 2,000 per cent of rated load. The manufacturer claims ambient temperature has almost no effect on calibration. 'Terminals are quick disconnect type.

Mechanical Products, Inc., Dept. ED, Jackson. Mich.

Delay Lines

Delay time is accurate to ± 1 nsec
These delay lines consist of 285 ft of $1 / 2-\mathrm{in}$.. 50 -ohm cable. Terminating ends are bent on a 2 -in. radius. Each unit is 16 in . in diameter and 6-in. high. Applications include missile checkout equipment.
American Tube Bending Co., Electronics Div, Dept. ED, New Haven, Conn.

United

UNITED SHOE MACHINERY CORPORATION 14O FEDERAL STREET, BOSTON 7, MASSACHUSETTS
Branches: atlanta, ga. - chicago, ill. - cincimnati, cleveland and columbus, ohio - dallas, texas - harrisburg, pa. - johnson citt, n.t. - Los angeles,
 CIRCLE 65 ON READER-SERVICE CARD

Ultrashielded, hermetically-sealed units

Types IIIT-1, 2 and 3 isolation transformers simulate battery operation. These ultrashielded, hermetically-sealed units are for critical circuits requiring great isolation for power line equipment. The effective capacity coupling between primary and secondary windings is less than 0.1 pf. Input is $115 \mathrm{v}, 50$ to 60 cps ; output is 115 v . The units meet MIL-T-27A specs.
United Transformer Corp., Dept. ED, 150 Varick St., New York 13, N.Y.
Price: HIT-1, \$33 ea; HIT-2, \$48 ca; HIT-3, \$69 ea.
Acailability: From stock.

Push-Pull Switch

For variable resistors

Type G-16 switch is rated at 5 amp at 125 v ac and has spst contacts. It can be furnished on many of the firm's variable resistors to control volume, tone, contrast and other variable-resistor functions.
Stackpole Carbon Co., Electronic Components Div., Dept. ED, St. Marys, Pa.

RF Connectors
For use with small coaxial cables

Designed for use with coaxial cables such as the RG59 B/U, these connectors are offered in impedances of 50 and 75 ohms. Maximum voltage ratings is $2,500 \mathrm{v}$. All body parts are brass; irradiated polyolefin and polypropylene are used. National Connector Corp., Dept. ED, 311 Fifth Ave., N., Minneapolis 1, Minn.

NEW
 Sty NGAMO RESIN-COATED SILVERED-MICA CAPACITORS...

are significantly smaller... operate to $+150^{\circ} \mathrm{C} . .$. exceed
 proposed dipped-mica capacitor military specifications

experience with mica capacitors and years of engineering know-how and quality development underline two new Type D Resin-Coated Silvered-Mica Capacitors. Designed for operation at temperatures of $+125^{\circ} \mathrm{C}$ and $+150^{\circ} \mathrm{C}$, both offer the advantages of radial leads, small size, full rated working voltage without derating, and a clean, moisture-sealed protective resin coating. Physical and electrical features of the Type D capacitor are ideal for etched circuits, high component-density equipments, missiles, computers, and instrumentation devices. Type D capacitors are available with characteristics C, D, E, or F, in nearly all capacitance values.
Test these new Sangamo Type D Resin-Coated SilveredMica Capacitors - they more than meet proposed military specifications. Try them in your own circuits they will fulfill all expectations of today's most critical applications. Those who know capacitors choose Sangamo for outstanding performance and long life.

Type D Resin-Coated Silvered-Mica Capacitors are an important part of the transistorized circuitry of this Sangamo Type 460 Tape Transport System. Their small size, high-temperature performance, and reliability contribute materially to the transport's recording uniformity and play-back accuracy -
sc60.7
SANGAMO ELECTRIC COMPANY, Springfield, Illinois

- designing toward the promise of tomorrow

CERTIFIED PROOF in writtung

MAKES FURTHER TESTING

UNNECESSARY

FOR

FANSTEEL
 TANTALUM
 GAPACITORS

Hundreds of manufacturers are now saving time and money by specifying Gold-Caps exclusively because they no longer need to inspect or test on their own to verify reliability.

Each and every Fansteel Gold-Cap shipped conforms to the most complete and rigid specifications ever prescribed for any production component. Users get certified written proof that each has successfully passed a series of the most uncompromising tests ever devised for checking reliability in a tantalum capacitor.
Only Fansteel dares take the
responsibility of pre-testing for you -and certifying the results!

Gold-Cap Tantalum Copacitors in some ratings now available from slock. Complete Gold-Cop Specifications available on request. Fonstoel Metallurgical Corporation, North Chicago, Illinois, U.S.A.

NEW PRODUCTS

Space Acceleration Computer

Gives true rms indication
The absolute space acceleration computer computes and indicates the true rms value of the space acceleration vector. The Dial-A-Gain in each channel normalizes each sensitivity separately. The unit has a $10-\mathrm{db}$ range. Power requirement is 105 to $125 \mathrm{v}, 60 \mathrm{cps}, 100 \mathrm{w}$. Frequency response is $\pm 2 \%$ from 5 to $5,000 \mathrm{cps}$. Accelerometer sensitivity is 1 to 100 mv rms per g rms and measurement is 0.3 to 100 g rms in five ranges. Accuracy is $\pm 3 \%$ on logarithmic scale, 15 to $5,000 \mathrm{cps}$; $\pm 5 \%$ from 5 to 15 cps . Input impedance is at least 200 meg shunted by less than 100 pf.
Unholtz-Dickie Corp., Dept. ED, 2994 Whitney Ave., Hamden, Conn.

Relay Socket

 405Measures 1-11/32 in. Iong
Series 145-8 precision-molded, 8 -contact relay socket measures 1-11/32 in. long. It can be furnished with solder cup for direct wiring or dip-solder pin termination for printed-circuit assembly. Body material is glass-filled Diallyl Phthalate or asbestos-filled Melamine.
Continental Connector Corp., Dept. ED, Woodside 77, L.I., N.Y. Availability: Four to six weeks.

Servo Repeater

For shaft-position indication

Suitable for use with a synchro transmitter, this device indicates in digital form the angular position of a rernote shaft. The coded output, in various binary codes, is suitable for entry to printers, tape punches, card punches and light banks. Designated type SR-114, the unit is accurate to ± 1.5 counts, has a resolution of 0.36 deg of the input shaft, and measures $8 \times 6 \times 4 \mathrm{in}$.

Datex Corp., Dept. ED, 1307 S. Myrtle Ave., Monrovia, Calif.

Trigger Tubes

For high- and low-current applications
These trigger tubes are offered in four models. Types LTG-27-2 and LTG-27-2A are rated at 6 ma ; types 120TG-27-2 and 160TG-27-2 are rated at 0.5 ma . They are claimed to be the smallest tubes of this type.
Signalite, Inc., Dept. ED, 37-41 Neptune Highway, Neptune, N.J.

Miniature Connectors 486
Variety of types offered

Series 300 microminiature connectors are available with $5,7,9$, $11,14,20,26,34,44$, and 55 contacts. They can be supplied with guide pin and guide socket or jacking screwlock with or without hoods. Contacts are made of phosphor bronze or beryllium copper. Body material is glass reinforced with diallyl phthalate, glass-filled Plaskon Alkyd or other materials

Atlan Connectors Corp., Dept ED, 27 E. 21st St., New York 10, N.Y.

Price \& Availability: From stock to three weeks.

Hydraulic Motor

 529Controls missile antennas
Type CMF-02 controls missile antennas as they track moving targets. The unit develops $1 / 3 \mathrm{hp}$ at $6,000 \mathrm{rpm}$, continuous speed. Displacement is 0.02 cu in . per revolution. The motor maintains a smooth motion even at low speeds.

The Bendix Corp., Bendix Hamilton Div., Dept. ED, Hamilton, Ohio.

Digital Servo Indicator 487

Has synchronized chart drive
Having a 3 -in. synchronized chart drive, model 243 digital servo indicator provides permanent recording of transducer outputs. Digital readout accuracy is 0.1%; chart accuracy is $\pm 1 \%$. Dimensions are $6 \times 11-1 / 8 \times 12 \mathrm{in}$.

Gilmore Industries, Inc., Dept. ED, 13015 Woodland Ave., Cleveland 20 , Ohio.

Piezoelectric
488
Accelerometer
For in-flight transducer measurements

Model 606 piezoelectric accelerometer is for special shock and vibration test applications. It is $1 / 4$ in. long and weighs 1 g . Sensitivity is 2.5 mv per g . frequency response is 5 cps to 10 kc and resonant frequency is 135 kc . Maximum acceleration is $40,000 \mathrm{~g}$. Amplitude lincarity is $\pm 2 \%$.

Columbia Research Laboratories, Dept. ED, Macdade Blvd. and Bullens Lane, Woodlyne, Pa.
Price \& Availability: $\$ 225$ in quantities of 1 to 5, \$202.50 in quantities of 6 to 10 , and $\$ 191.25$ in quantities of 11 to 50. Delivery time is two weeks.

Terminal Strip

Quick-disconnect type

This terminal strip speeds up the maintenance of electronic systems by making it possible to rapidly disconnect a malfunctioning unit. It is a combination of a barrierterminal strip and a blade-type inter-connecting strip. Made of a special alloy of bronze, the device is corrosion resistant.
Infrared Industries, Inc., Dept. ED, P. O. Box 42, Waltham 54, Mass.

Transistorized Gaussmeter

Reads from 1- to 30,000-gauss full scale
Model 110 portable, direct-reading gaussmeter measures direction and magnitude of magnetic-flux density. It reads from 1- to $30,000-$ gauss, full scale, in these 10 ranges: $1,3,10,30,100,300,1,000,3,000$, 10,000 and 30,000 gauss. Applications include readout of magnetic ink and magnetic tape, meters, vibration pickups, dc motors and magnets.
F. W. Bell, Inc., Dept. ED, Columbus, Ohio.
Price: $\$ 350$ ea.
Availability: November 15, 1960.

Test Console

For inertial gyros
This console contains all necessary electronics for testing inertial gyros. Features include: a torque-to-balance feedback loop, magneticsuspension panel, compensation, dual-photocell amplifiers, gyrowheel supplies, frequency source, dual demodulator and servo amplifier.

Northeastern Engineering, Inc., Dept. ED, Manchester, N.H.
Availability: 120 days.

DC-DC Converters

490
For mobile transceiver equipment
Models 701 and 702 dc-dc converters for mobile transceiver equipment provide dual outputs in various combinations from 250 v de at 300 ma to 500 v dc at 150 ma , for a total of 100 w . Input is 12.8 v . The units, transistorized, have an efficiency better than 90% at 100 w . Ripple is less than $1 \% \mathrm{rms}$. The model 701 measures 5-11/16 x 2-13/16 x 3-1/2 in.; model 702 measures 4-9/16 x 2-13/16 x 4-1/16 in. Both units weigh about 2 lb .

Universal Transistor Products Corp., Dept. ED, 36 Sylvester St., Westbury, L.I., N.Y.
Price: Unit price for model 701 is $\$ 100$, for model 702 is $\$ 108$.

Newest addition to
Fansteel's expanding line
of $1 N$ Series
Silicon Power Rectifiers

P
Full 160 amp . load in half-wave circuits, up to 450 amps . in 3 -phase bridge circuits

Designed for rugged
duty on the toughest
applications
Assembled and sealed in
Fansteel's surgically-clean
"white room" for
maximum reliability

Write for Complete Technical Data
FANSTEEL METALLURGICAL CORPORATION - North Chicago, Illinois - U.S.A.
 CIRCLE 7 I ON READER-SERVICE CARD

spflly

SPERRY SEMICONDUCTOR

 DIVISIONOF
SPERRY RAND CORPORATION NORWALK, CONNECTICUT

Desk-eye view of a computer logic circuit utilizing Sperry 2N706 Silicon Mesa Transistors.

Here's where you put your experience on the line.
Will the vendor you select confirm the confidence of your decision . . . or will the transistors he delivers return to haunt him - and you?
63 QC checks before and during mechanized manufacture. Our way of trying to make your confidence our only return!

NEW PRODUCTS

Precision Ratio Transformers

Provide voltage division from 1 to 0.001
This set of three precision ratio transformers can provide any voltage division from 1 to 0.001 in steps of 0.001 with an accuracy of one part in $\mathbf{1 0 , 0 0 0}$. Input is $\mathbf{0}$ to 6.3 $\mathrm{v}, 60 \mathrm{cps}$, or 0 to $40 \mathrm{v}, 400 \mathrm{cps}$. Type A transformer has taps pro viding ratios from 0.1 to 1 ; type B transformer provides 0.01 to 0.1 ratios; type \mathbf{C} transformer provides 0.001 to 0.01 ratios. Devices measure 1-1/2 in. diameter and 1-3/8 in. high. Units are hermetically sealed.
Magnetico, Inc., Dept. ED, 6 Richter Court, East Northport, L.I., N.Y.

Price: Kit, s180; individual units, $\$ 75$.

Power Relay

Contact rating is 10 amp at 115 vac
Having coil voltages up to 230 v ac or 115 v dc, type-P2 relay has a contact rating of 10 amp at 115 v ac. It has $3 / 15-\mathrm{in}$. quick-connect or solder terminals on the front panel, and, if necessary, on the coil. Contact arrangements are up to 3pdt.
Warco Industries, Dept. ED, 6625 Delmar Blvd., St. Louis 30, Mo.

Ferrite Isolators

Are temperature compensated
These temperature-compensated ferrite isolators are offered in both waveguide and coaxial types. Designed for military applications they withstand environmental extremes. Typical specs are: operat ing frequency, several bands within the 1,120 to $12,400 \mathrm{mc}$ range; isola tion up to 40 db ; and insertion loss 0.5 to 1 db .

Caswell Electronics Corp., Dept ED, 414 Queens Lane, San Jose, Calif.
Availability: From stock

SEMICONDUCTOR IS OUR MIDDLE NAME . . . SEMICONDUCTOR INTEGRATED NETWORKE (EEMI-NET8*), TUNNEL DIODES, MESA AND ALLOY BILICON TRANBIBTORE AND DIODEE. gales orfices, chicago, ILLINOIE: EL sEGUNDO, CALIFORNIA: WEETWOOD. NEW JEREEY: TEWKE. eury, massachusette: stampord. connecticut: towson, maryland: massapequa park. new rork. *Trade Mark, Sperry Rand Corporation AVAILARLE TO QUALIFIEO ENGINEERE

Code Translator

Converts binary to binary-codeddecimal
Model 3-101 code transistor provides inline digital data translation of straight binary-coded data into a binary coded decimal form. It has applications in instrumentation, data processing and computing systems. The unit accepts straight binary inputs of pulse or level configuration. It is completely integrated with an associated power supply, an internal programming and control circuits. It operates at 5,000 conversions per second for maximum word length.

Applied Development Corp., Dept. ED, 12838 Weber Way, Hawthorne, Calif.
Price \& Availability: \$3,950 ea; delivery 30 days after order received.

Power-Supply

Controller

Maintains an accuracy of

 1 part in 10^{5}This nuclear magnetic resonance controller is for current-regulated dc power supplies. In operation, minute variations in the electrical current supplied to a load are detected, amplified and fed to the controller. The device can maintain control with accuracies to 1 part in 10^{5}.
Automation Industries, Inc., Dept. ED, 3613 Aviation Blvd., Manhattan Beach, Calif.

TV Deflection Yokes 494

For transistorized TV
These deflection yokes, used to control the beam of TV picture tubes, are designed for batterypowered, transistorized TV sets. The yokes have a form of toroidal vertical winding and a saddleshaped horizontal winding. Vertical selsitivity is claimed to be 30% better than that of current model yokes.

General Instrument Corp., F. W. Sickles Div., Dept. ED, 165 Front St., Chicopee, Mass.

CIRCLE 73 ON READER-SERVICE CARD \rightarrow

Link Division of General Precision, Inc. specified ITT capacitors for this vital portion of its Tracer Identification and Control System, which demands utmost reliability and long life expectancy from every component.

TOTAL PROCESS CONTROL AND DISCIPLINED PRODUCTION DELIVER

HIGH-RELIABILITY WET-ANODE TANTALUM CAPACITORS FROM ITT

ITT wet-anode tantalum capacitors meet MIL-C-3965B-a fact proved by independent laboratory qualifications tests on ITT capacitors. The reliability and long life expectancy of these competitively-priced capacitors are direct results of ITT's total process control and disciplined production procedures, above and beyond testing standards more stringent than normal industry practice-and backed by ITT's world-wide facilities and experience.

COMPOMEMTS DIVISIOM
intermarioma felephone ano telegapy corporarion

Albuquerque	.ax ${ }^{3}-8013$	Los Angeles	H/ 6.6325
Boston	CA 7.2980	Miami	M1 4.3311
Chicago	SP 7.2250	Minneapolis	WE 0-0457
Cleveland	CR 5-3080	New York	L0 5-1820
Dallas	EM 1.1765	Philadelphia	TR 8.3737
Dayton	BA E-5493	Phoenix	WH 5-2471
Denver	ME 4-5091	Rechester	F1 2-1413
Detroit	. 108.3322	San Francisco	LY 1.7321
Fort Wayne	MA 0641	Seattle	MA 2.5433
Kansas city	JE 1.5236	St. Louis	EV 2-3500

IM STOCK AT ITT DISTRIBUTORS:

- two types - M-Type and P-Type, for applications from -55 to 85 and 125 C. respectively
- 29 values - from 1.75 to 330 mfds over a working voltage range to 125 VDC and maximum surge voltages to 140 VDC
- соmpact and rugged - sintered tantalum slug in fine-silver cases for 2000 -hour life at maximum temperature and working voltage
- guaranteed - to $80,000 \mathrm{ft}$. and accelerations of 20 G's with a 0.1 in . excursion in $50-2000 \mathrm{cps}$ range
- long storage life-tantalum-oxide dielectric is completely stable; assures trouble-free operation

COMPLETE SPECIFICATIONS ON ITT wet- and solid-anode

 tantalum capacitors are available on request. Write on your letterhead, please, to the address below.ENGIMEERS: Your ITT representative has a complete set
of qualifications and quality control tests for your inspection.

NEW PRODUCTS

Rotary Selector Switch
For telemetry, sampling, scanning, and pulsing

A rotary selector switch is designed for telemetry, sampling, scanning, and pulsing, particularly in missiles and aircraft. It is available in 8,10 and 12 positions. It is enclosed in a size 10 synchro housing. Angular accuracy is within 15 min of arc. Gold-epoxy drum commutators and mating broom type precious metal brushes render low contact resistance and noise. Life expectancy is over 20 million cycles.

Airflyte Electronics Co., Dept. ED, 535 Avenue A, Bayonne, N.J.
Availability: From stock.
Magnetic-Amplifier Relay
Components are immersed in potting gel

In this 400 -cps magnetic-amplifier relay, all components are immersed in the potting gel within the hermetically sealed enclosure. The unit has a $100-\mathrm{g}$ shock rating and 10 g to 55 cps vibration immunity. Push-pull circuitry affords stable operation over $\pm 10 \%$ variations in line voltage and frequency. Sensitivity is $0.2 \mu \mathrm{w}$ dc. The unit can be used for comparison of circuits, voltages and resistances in order to monitor temperature, light intensity, radiation level and other variables.
Sigma Instruments, Inc., Dept. ED, 197 Pearl St., South Braintree 85, Mass.
Price: List, from $\$ 120$ to $\$ 140$.
Availability: Sample quantities, three to four weeks.

Think Clean

When you think of high vacuums, you have to think clean... and if you think of have to think clean... and if you think of
exceptionally clean vacuums, without exceptionally clean vacuums, without
fluids or other contaminants, you have to fluids or other contaminants, you have to
think of UlteVac electronic vacuum pumps think of UlteVac electronic vacuum pumps - made by Ultek, the only manufacturer
devoted exclusively to the technology devoted exclusively to the technology
of fluidless vacuum pumping. UlteVac of fluidless vacuum pumping. UlteVac
pumps, using no moving parts, hot filapumps, using no moving parts, hot fila.
ments, or refrigeration, produce vacuums ments, or refrigeration, produce vacuums
to $10^{-9} \mathrm{~mm} \mathrm{Hg}$ and below; operate unattended for months, invulnerable to power failure. System vacuum automatically measured.

Sanies 321 Puap
270 Lthers/ Socent
Also from Ultek, an exclusive line of high vacuum accessories, including:

> - SORPTION ROUGHING PUMPS
> - METAL SEAL FITTINGS
> - FULL CONDUCTANCE VALVES
> - AMBIENT FORELINE TRAPS

Literature available(state application) from Ultek or its exclusive sales representative Kinney Mfg. Div. of the New York Air Brake Co. Sales Offices in major U.S. cities.

920-D Commercial St. Palo Alto, Calif. DA 1.4117
CIRCLE 75 ON READER-SERVICE CARD

Germanium Transistors
For communications applications

The 2N1405 germanium mesa transistors are for use as rf amplifiers, oscillators or if amplifiers in transceivers and communications equipment. Noise figure is low at frequencies in excess of $1,000 \mathrm{mc}$. Conversion gain approximates the amplifier gain in the range of 200 to 500 mc . Typical bandwidth product is 300 mc .
Texas Instruments, Dept. ED, P. O. Box 312, Dallas 21, Tex.

Variable-Inductance Tuner
Covers from 20 to $\mathbf{3 0 0} \mathbf{~ m c}$
The 300 series, having one to seven ganged sections each about $1.5-\mathrm{in}$. sq and $1-\mathrm{in}$. long, are for use in military and commercial communications systems. They offer a frequency-rotation ratio of $4: 1$. A linearity of $\pm 150 \mathrm{kc}$ can be furnished.
P. R. Mallory \& Co., Inc., Dept. ED, Indianapolis 6, Ind.

Silicon Transistors

Small-signal type

This line of silicon mesa transistors is designed for applications such as audio and servo amplifiers, power supplies and medium-speed switches. They are designated the 2 N 734 , 2N738, 2N1564 and 2N1572. Both TO-18 and TO-5 cases are offered. Betas are 20 to 50, 40 to 10 and 80 to 100 .

Texas Instruments Inc., Dept. ED, P. O. Box 31. Dallas 21, Tex.

For modern airborne equipment, where space and weight are critical, ESC has created a new Miniature Transponder Delay Line - Model 52.44...which embodies the most advanced techniques of weight and space reduction. It measures just 6 cubic inches tota!!
Specifications-Model 52-44, Lumped Constant Delay Line: mpedance-470 ohms Till 470 ohms
Rise Time - 6 (max.)
Temperature CoefficientAttenuation - 4 db
Size
$\mathrm{db}^{\prime \prime} \times 2^{\prime \prime} \times 3^{\prime \prime}$ Size-1" x $2^{\prime \prime} \times 3^{\prime \prime}$ Weight-6 ounces Tapped as required 65 ppm or better over a temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Custom variations available to your exacting specifications.

WRITE TODAY FOR COMPLETE TECHMICAL DATA.
exceptional employment opportunities for engineers experienced
in computer components...excellent profit-sharing plan.
 Distributed constant delay lines - Lumped constant delay lines - Variable delay networks - Continuously variable delay lines - Step variable delay CIRCLE 76 ON READER-SERVICE CARD
EL CTRONIC DESIGN • November 23, 1960

EL84 бво5

high slope output pentode

Output pentode rated for 12W
anode dissipation, primarily intended
for use in a.c. mains
operated equipment.

charaotoriatica

$V_{\text {a }}$	250	v
$V_{\text {ge }}$	250	V
I_{8}	48	mA
i_{58}	5.5	mA
V_{81}	-7.3	V
g_{m}	11.3	mA / V
ra_{4}	38	k Ω
μ_{81-82}	19	

SUPPLIES AVAILABLE FROM :
IN THE U.S.A.
International Electronics Corporation
81 Spring Street, New York 12, N.Y.
Worth 6-0790
IN CANADA
Rogers Electronic Tubes \& Components 116 Vanderhoof A venue, Toronto 17, Ontario Hudson 5-8621

Mullard

ELECTRONIC TUBES

BRITAIN'S FIRST CHOICE
FOR FIRST EQUIPMENTS

MULLARD OVERSEAS LTD, MULLARD HOUSE TORRINGTON PLACE, LONDON, ENGLAND

acludes ng the 90 mc . testing latness h and , pushal that toggle tput is

Beech

Kinimum cutoff frequency of 144 kmc at -2 v
WNOW with the new TI XD-500 series diffused gallium arsenide mesa varactor 3 Jbtain guaranteed high Q/high frequency performance at extremely low noise in your parametric amplifiers, harmonic generators, microwave switches, and wmonic oscillators.
Winating whisker inductance, Texas Instruments can now provide you with lors having the lowest series inductance in the industry, typ 0.7 mmh . Packaged wble-ended beryllium oxide microwave cartridge, the XD-500 series microwave Wrs leature matched temperature coefficients for wide operating temperature - All TI microwave varactors are tested for diode action in liquid nitrogen before stipped to designers of missile/space vehicles, communications networks, sets, telemetry systems, and other microwave applications.

\#s smeol	Eter	TEST Conoitions	$\begin{array}{\|l\|} \hline x .500 \\ \text { min max } \end{array}$	$\begin{array}{\|l\|l\|} \hline x .501 \\ \text { min max } \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline x 0.503 \\ \text { min max } \\ \hline \end{array}$	UNIT
BV c 0 0 coo tco	Reverse Breakdown Voltage Total Capacitance Quasity Factor Cutoff Froquency Typ Cutof Froquency	$\begin{aligned} & I_{R}=10 \mathrm{~m} \\ & 1=1 \mathrm{mc}, V_{B}=0 v \\ & 1=3 \mathrm{kmc}, V_{B}=2 v \\ & V_{A}-2 v \\ & T_{y D} B V_{R}=10 \mathrm{v} \end{aligned}$	6 0.5 1.4 20 60 130 130	6 0.5 0.4 27 1.4 81 175	6 0.5 3 1.4 36 108 215	6 0.5 14 14	met
SEMICONDUCTOR-COMPONENTS DIVISION Texas LIMITED DALLAS ПOAD - EEDFORD. ENOLAND INCORPORATED ADER-SERVICE CARD							

NOW!
all texas instruments SEMICONDUCTORS ARE immediately available OFF-THE-SHELF FROM
HSCO IN
DALLAS
YOUR AUTHORIZED TI DISTRIBUTOR
A corporate division of Texas Instruments Incorporated

Engineering Supply Company - a corporate division of Texas Instruments Incorporated-offers you dependable delivery direct from Dallas on all TI semiconductors and components ${ }^{\circ}$ through carefully controlled inventories that assure local off-theshelf availability - always.

Design now with use-proved, guaranteed TI units and know that ESCO can deliver immediately from fully stocked shelves . . . at factory prices.
For complete specifications on any TI semiconductor or component, write ESCO today.
-TI silicon and germanium transistors, silicon diodes and rectifiers, precision carbon film resistors, sensistor $(\circledR$ silicon resistors, tan-TI-cap(B) tantalum capacitors.

TEXAS INSTRUMENTS incorporated DALLAS: 6000 DENTON DRIVE, FL 7.6121 TULSA: 1124 EAST FOURTH ST.. LU 3.8121 CIRCLE 79 ON READER-SERVICE CARD

SUPRAMICA 560 ceramoplastic

from the family of the world's most nearly perfect insulation

heips to maintain peak gyro efficiency

Leading gyro producers design parts made of precision-molded SUPRAMICA 560 ceramoplastic, an exclusive formulation of Mycalex Corporation of America capable of retaining absolute dimensional stability at a maximum temperature endurance up to $+932^{\circ} \mathrm{F}$ (unstressed) . . . in complex but lightweight designs. These small parts function as vital components of miniature gyros . . . critical applications where the highest standards for precision accuracy must be met. SUPRAMICA 560 ceramoplastic having the same thermal expansion coefficient of many insert metals, can tightly bond and permanently anchor gold leads, stainless steel contacts and stainless steel threaded inserts . . . in parts with wall thicknesses of only $.010^{\prime \prime}$.

SUPRAMICA 560 ceramoplastic offers premium insulating properties with excellent economy in production scale runs. SUPRAMICA 560 ceramoplastic is but one of a family of versatile electrical and electronic insulating materials produced by Mycalex Corporation of America

- MYCALEX ${ }^{\circledR}$ glass-bonded mica,
maximum temperature endurance (unstressed)-up to $+700^{\circ} \mathrm{F}$
heat distortion temperature *-up to $+850^{\circ} \mathrm{F}$
- SUPRAMICA ${ }^{\oplus}$ ceramoplastic,
maximum temperature endurance (unstressed)-up to $+1550^{\circ} \mathrm{F}$
heat distortion temperature *-up to $+1360^{\circ} \mathrm{F}$
- SYNTHAMICA ${ }^{\otimes}$ synthetic mica,
maximum temperature endurance (unstressed)-up to $+2000^{\circ} \mathrm{F}$
*ASTM test method D 648 (modified) at stress of 264 psi.
Write for technical information today.
General Offices and Plant: 121 Clifton Blvd., Clifton, N. J. Executive Offices: 30 Rocketeiler Plaza, New York 20, N. Y.
World's largest manufacturer ol glass-bonded mica, coramoplastic and synthetic mica procucts CIRCLE 83 ON READER-SERVICE CARD

NEW PRODUCTS

DC Power Supply

Has 0.01% regulation

Model SR-200EP power supply features 0.01% regulation for load changes from no-load to fullload, and 0.01% regulation for line voltage fluctuations from 95 to 135 v . DC output is variable from 0 to 15 v , maximum output current is 200 ma. Isolation from the power line results in noise, measured with a grounded 350 ohm bridge, of only $1 \mu \mathrm{v}$ peak-to-peak.

Video Instruments Co., Inc., Dept. ED, 3002 Pennsylvania Ave., Santa Monica, Calif. Price: $\$ 145$.

Vidicon Tube
Peak response is $0.4 \mu \mathrm{a}$ per mw

Model ML-S522B vidicon tube has a peak response of about 0.4μ a per mw of radiant energy at 4050 A. Designed primarily for industrial and scientific applications, the tube has a resolution capability of 600 lines. It measures 6.25 in.-long and 1.125 in . in diameter. It is interchangeable with standard vidicon tubes.
Raytheon Co., Machlett Laboratories, Inc., Dept. ED, 1063 Hope St., Springdale, Conn. Price: $\$ 415$.
Availability: 45 days.

Ultra-Miniature Indicator Lights 744
Lens cap has colored cylindrical lens

Series No. 250 indicator lights have a lens cap with a colored cylindrical lens and a clear lamp cartridge without a legend. The lens is 0.425 in.

CIRCLE 84 ON READER-SERVICE CARD \geqslant ELECTRONIC DESIGN • November 23, 1960
in diam and accommodates up to three hotstanped digits, symbols or letters. The lamp cartridges have voltages ranging from 1.35 to 28 v. The Data Cap lights measure approximately $1-5,8 \mathrm{in}$. in over-all length. They are for use in data-processing equipment, computers, instrumentation, control equipment and automation.
Dialight Corp., Dept. ED, 60 Stewart Ave., Brooklyn 37, N.Y.
Price: Quoted on application.
Acailability: 7 to 12 days.
Vulcanized Fibre

Pyronil E, flame-resistant vulcanized fibre is available in rolls, coils and sheets in thicknesses of 0.01 to $1 / 16 \mathrm{in}$. In $1 / 32-\mathrm{in}$. thickness it has a dielectric strength of 215 v per mil, and arc resistance of 50 sec under ASTM test method D-495.
National Vulcanized Fibre Co., Dept. ED, 1060 Beech St., Wilmington 99, Del.
Price: $\$ 3.30$ per 48×80 in. sheet, $1 / 32$ in. thick. Availability: Two weeks.

Inductance Decades
378
With high Q-factor

These inductance decades are specially aged and temperature cycled for long-term stability. Accuracy is better than 1.5\%. Types DI-1A, DI1B, DI-1C and DI-1D have inductance ranges extending to $10,1,0.1$ and 0.01 h . They can handle maximum currents of 50 to 200 ma .
Magnetico, Inc., Dept. ED, 6 Richter Court, E. Vorthport, L.I., N.Y.

Availability: From stock.

- Circle 84 on reader-service card

EL CTRONIC DESIGN • November 23, 1960

BERYLCO INSPIRES NEW DESIGN THINKING

$31 / 2$ times actual size

Electrical connector of beryllium copper rod: By selecting a Berylco alloy, the designer met requirements for high conductivity, corrosion resistance, high contact force, and excellent resistance to creep. The connector also has enough yield strength to permit mis-alignment of the mating connector without loss of electrical contact. It is usable up to $300^{\circ} \mathrm{F}$. Lead-in wires can be soft-soldered to the connector.

New advances in critical parts performance

 now possible The ever-widening and increasingly successful use of Berylco beryllium copper alloys is opening a whole new area of design thinking on parts. The list of attributes in this amazing alloy reads like a Who's Who of famous performance characteristics: good conductivity, high fatigue strength, non-magnetic, high strength, unusual wear resistance, resistance to anelastic behavior, good corrosion resistance, excellent hardness, wide operating temperature range. Find out what these characteristics can mean to the parts you are now working on. Write for our latest beryllium copper bulletin. To assist you further, an experienced, knowledgeable staff of field and mill technicians stand ready to translate design possibilities into performance realities.
起年

 lium copper ingot: The choice of Berylco alloy on this investment casting was easily made because its high fluidity provides good surface, close tolerances, excellent detail and the ability to cast thin sections. When added to the advantages of the alloy itself, like high strength and good wear resistance, it becomes easy to see why beryllium copper is being used more and more in several casting methods.

Bellows of beryllium copper strip: The design engineer on this part knows a Berylco alloy is a fine choice because its low modulus of elasticity (approx. 18.5×10^{6}) gives greater deflection for a given pressure change than other high strength alloys. And it has good fatigue strength with a yield strength that gives excellent usable movement range.
\qquad

THE BERYLLIUM CORPORATION
 Reading, Pennsylvania

circie as on reader-service card

> Bendix vertical and directional gyros contribute to accuracy and dependability of guidance systom on United States Air force (Green) Quail air-lounched decoy misesie manufactured by McDonnell Aireraft.

LICHTWEICHT, RELIABLE GYROS TO MEET TODAY'S RUGGED NEEDS
 the bendix line features six gyro types

- Boctra
- Eloctrolytic awitches for proche errection and long zervice lifo.
- Operoring the of 1000 hourr.
- The Twa-Gyro Throe Axis Control erection rate is $1.3^{\circ} / \mathrm{min}$. Other gyros shown how normal erection rate of $2^{\circ} / \mathrm{min}$. with fost erection up $10120^{\circ} / \mathrm{min}$.
- Etiter fioxible or hard mounling.

For full detaik on Bondix Gyros for spocific applications, write ...
Eclipse-Pioneer Division
Teforboro, N. J.

NEW PRODUCTS

VHF Receiving Multicoupler

Frequency range is 30 to 260 mc

Model VHM-2 wideband multicoupler has a frequency range of 30 to 260 mc . Noise figure is $8-\mathrm{db}$ max when operated in a 52 -ohm system. Nominal gain is 15 db between the unit's input and any output. Isolation between outputs is $40 \mathrm{db} \min$; between outputs and input, it is $70-$ $\mathrm{db} \min$. Power requirements are 200 va at 115 or $230 \mathrm{v}, 50$ to 60 cps . The unit is for wideband spectrum monitoring, telemetry and air-toground communications.

Applied Technology, Inc., Dept. ED, 930 Industrial Ave., Palo Alto, Calif.
Price: $\$ 2,500$ ea.
Availability: 60 days.

Differential Amplifier

Dissipation is less than 330 mw

Type P2 dc amplifier is designed for applications such as high-reliability process control, electrometer applications and instrumentation. Gain is 30,000 at design center and 20,000 at Q . C. pass limit. The unit operates for 90 hr using two pairs of mercury batteries. It measures $4 \times 1-1 / 4$ x 1-11/16 in.
George A. Philbrick Researches, Inc., Dept. ED, 285 Columbus Ave., Boston 16, Mass. Price: $\$ 210$ in quantities of one to nine units. Availability: Four to eight weeks delivery.

Metallized Capacitors

Offered in over 100 standard models, these capacitors come in two basic stylings: the rectangular tube DG and the round tube DL. The

REPORT

CAM COMPENSATOR
Eificionf componsering dovico for sorve aystom orror.

The type CP-20-A1 is a simple, entirely mechanical means of correcting an output data shaft in relation to either servo loop errors, sensing errors, or known environmental factors affecting the system. Eliminates need for adjust ing remotely placed or inaccessible
units. Ask for full details.

CONTROL TRANSFORMER

Changes mochanicel diferential inputs so eloctricel outputs.

Here is a corrosion-resistant unit that eatures a rotatable housing construction along with a standard synchro mounting. Because housing, as well as shaft, can be rotated, an additional output can be introduced into control system circuitry. Stator housing assembly is driven by a gear accessible translating mechanical housing, chus puts into electrical outputs.

Manufacturers of
OYROS - ROTATINO COMPONENTS radar pevices - instrumentanow PACKAGED COMPONENTS

Eclipse-Pioneer Division

CIRCLE 87 ON READER-SERVICE CARD
unis are hermetically sealed and operate from -55 . to +85 C. Insulation resistances are 10,000 meg times minimum capacitance at 25 C . Dissipation factor is less than 1% at 25 C ; test voltage is 1.5 times rated voltage.
Marshall Industries, Electron Products Div., Dept. ED, 430 N. Halstead St., Pasadena, Calif. Price: $\$ 0.69$ to $\$ 2.52$ in quantities of 1,000 . Availability: From stock to four weeks.

Cryogenic Cooler

For infrared detectors

Model FW-22 cryogenic cooler cools dewartype infrared detector cells with liquid nitrogen, liquid oxygen or liquid air. It operates continuously for 22 hr from filling, 16 hr after 24 -hr standby, up to 82 hr total. The unit is constructed of a storage container and a transfer line which permits custom designing for any application.
ITT Laboratories, Components \& Instrumentation Lab., Dept. ED, Fort Wayne, Ind.
Price: Storage unit: sample, $\$ 500 ; 10$ units, $\$ 400$ ea. Transfer line: sample, $\$ 400 ; 10$ units, $\$ 300$ ea.
Availability: 60 days.

Vibration Exciter

Frequency range from $\mathbf{2 0} \mathbf{c p s}$ to $\mathbf{2 7} \mathbf{k c p s}$
The frequency range of this vibration exciter is from 20 cps to 27 kcps . It is designed for 75 w continuous duty without air cooling. When using 200 w for intermittent duty an air supply of 10 psi is required. Excitation voltage can be random noise, white noise or complex wave. The maximum specimen weight is $1 / 4 \mathrm{lb}$. A high frequency accelerometer can be built into the vibration platform on special order. When used with a feedback controlling system, this will give a constant $\pm 1 \mathrm{db}$ frequency response from 20 cps to in excess of 20 kcps .
Vibrasonics, Inc., Dept. ED, 10 High St., Boston. Mass. Av dilability: 30 to 45 days.

POS-E-KON"

the only connectors designed expressly for
FLAT CONDUCTOR CABLE

THE THOMAS \& BETTS CO.
POS-E-KON DIVIIION
ELIZABETM, NEW JERSEY
IN CINADA, THOMAS \& BETIS LTD. MONTREAL
ALL TAB PRODUCTS ARE AVALLABLE THROUOH THI LOCAL TAB DISTMIAUTON

NEW PRODUCTS

Wide-Band Amplifier 389

Gain is up to 25

Model 8-12 amplifier has an adjustable gain of up to 25 and a loop gain of over 800 . Input voltages can be sinusoidal or complex. Frequency response is flat within 0.25 db from 200 cps to 200 kc . Input voltage amplitude is 5 mv to 0.15 v for a gain setting of 10 . Input impedance is 50 K and output impedance is 200 ohms.
Acton Laboratories, Inc., Space Instrumentation Div., Dept. ED, 533 Main St., Acton, Mass.

Carbon Film Resistors

564
Tolerances 0.5% are offered
The Gold Seal carbon film resistors have been tested at 25 times rated wattage for 1 sec . Calibrated at 25 C , the units are offered in tolerances of $0.5 \%, 1 \%, 2 \%$, and 5%. Maximum voltage coefficient is less than 0.002% per v ; average coefficient is 0.0002%.
Technology Instrument Corp., Dept. ED, 531 Main St., Acton, Mass.

Amplifier Tubes

Stand high shock and vibration
These tubes are for military and industrial applications where freedom from microphonics is essential. Type 7737 broadband amplifier pentode is similar to type 6688 and is for airborne applications, coaxialcable amplifiers, and video and broadband if amplifiers in communications links and TV equipment. Type 7308, high-gain twin triode, similar to the 6922, is for use in radar, oscilloscopes, computers, broadband amplifiers and critical airborne applications.

Amperex Electronic Corp., Semiconductor and Special Purpose Tube Dept., Dept. ED, 230 Duffy Ave., Hicksville, L.I., N.Y. Price: 7308, $\$ 5.20 ; 7737, \$ 7.80 \mathrm{in}$ lots of 1 to 49. Availability: Immediate.

（ill

E PSI POLICY OF 100% OSCILLOSCOPE TESTING OF ALL ZENER diodes dassemblies is your protection against circuit instability due to double mak，soft knee，hysteresis and the many other＂ailments＂commonly found less carefully screened zener diodes．Reliability and electrical performance Is substantially higher power dissipation of 500 mW make this broad line zener diodes well worth your early investigation．Tight leakage at 75% or \％of zener voltage may be specified when ordering．
w！low voltage regulating diodes．．． 1.5 to 3.0 volts．These w． types are characterized by extremely low dynamic impedance and ex－ ded operating temperature range．Available in $\pm 5 \%$ and $\pm 2 \%$ types． وoged and compact，the units measure $3,8^{\prime \prime}$ diameter by $.53^{\prime \prime}$ long and are nished with wire leads for easy mounting on printed circuit boards．
IW Voltage regulators－PSI offers the highest surge，power and rent rating of any subminiature regulator available．
Ditage reference diodes－These six types，with nominal voltage maing from 6.8 to 40.8 volts，provide a temperature coefficient of less than ${ }^{5} 5 \% /{ }^{\circ} \mathrm{C}$ and by specifying version＂ A ＂ c an be supplied at less than $.0025 \% /{ }^{\circ} \mathrm{C}$ ．

All types available now in production quantities

Pucific Semiconductors：Inc．
 12955 Chadron Avenue．Hawthorne，California

motices in：NEWARK－BOSTON • DE WITT．N．Y．－OTTAWA－BALTIMORE ．CHICAGO（OAK Park） MADE PHIA（ROckledge）－ST．PETERSBURG • DALLAS • DETROIT－LOS ANGELES • PALO ALTO Authorized distributors coast－to－coast

IER OIScipation							
$\begin{gathered} \text { psi } \\ \text { pypo } \\ \text { Number } \end{gathered}$	Elect． Equiv．	${ }^{\text {EnnA}} \text { Voltore }$		Mayimum Resistance （ohms）	MaximumInere Current		$\begin{gathered} \text { Af } \\ \text { In } \\ \text { Voltee } \\ (v) \end{gathered}$
			E_{2} Max．				
PSeres	incos	2.0	3.2	∞	78	100	1
PSeres	IN4S8	3.0	3.9	55	50	100	1
PSE461	1N687	3.7	4.8	45	5	10	1
Pseres	1n碞	4.3	B． 4	35	5	100	7.5
Pseres	INE	8.2	6.4	20	8	100	1.5
PSCAT	in40	6.2	8.0	10	5	B0	3.5
1．Mea Also av	$\begin{aligned} & \text { od at } 10 \\ & \text { ble PS } \end{aligned}$	$m A D C 2$ $6313-6318$	$\begin{aligned} & \text { or currer } \\ & \text { wering } 7 . \end{aligned}$	with ImA to 27v 2e	MS signal Voltages．	rposi	

Also avaliable PSE313－318 covering $7.5 v$ to $27 v$ Zener Voltage

$\begin{gathered} \text { PSI } \\ \text { Nyob } \\ \text { Number } \end{gathered}$	Eloct．	$20 n o r$ Voltage ${ }^{\circ}$		Maximum Inverse Current		$\underset{\substack{\text { Inverse } \\ \text { Voltege } \\(v)}}{\substack{\text { nen }}}$
		$E_{E_{2}} \text { 新. }$	$E_{2} \text { Max. }$		${ }^{10 \operatorname{lol}_{60} 100 \mathrm{C}}$	
PSE313	［N1313	7.5	10	． 5	5	8.8
PSC314	${ }^{1} 1314$	9	12	． 5	5	8.2
PSEIT	1 1／315	11	14.5	． 5	5	18.0
PSesic	1N1316	13.5	18	． 5	5	12.0
Pse317	${ }^{1+1317}$	17	21	． 5	5	15.0
PSE318	${ }^{101318}$	20	27	． 1	16	18.0

$\underset{\text { Tyoa }}{\text { EIA }}$	$\begin{gathered} \text { Zoner } \\ \text { vollage } \\ \mathbf{E}_{2} \text { (Volts) } \end{gathered}$	Man．Inverse Current m		
		$25^{\circ} \mathrm{C}$	TSOC	
1 1746	3.3	10	30	28
［1039	3.6	10	30	4
1048	3.5	10	30	5
in749	4.3	2	30	2
iN750	4.7	2	30	19
$10 \% 51$	8.1	1	20	17
1 1732	5.8	1	2	11
in733	6.2	0.1	20	9
1 1754	6.8	0.1	20	8
1 N735	7.5	0.1	20	6
$1 \mathrm{NTS8}$	8.2	0.1	20	8
1 N737	9.1	0.1	20	10
1 N758	10.0	0.1	20	17
1545	12.0	0.1	20	30
1．$\pm 10 \%$ Zener Voltage Tolerance．2．E_{2} measured at Test Current $I_{2}=20 \mathrm{~mA}$ ．All of the above types can be supolied in $\pm 5 \%$ Tolerance．Add＂A＂suffix to indicale units with $\pm 5 \%$ Toterance of center Zener Voltege value．				

LOW VOLTAEE REEULATORS				
$\begin{aligned} & \text { PSI } \\ & \text { Typo } \end{aligned}$	$E_{1}+\lim _{(\text {volta }} A$	$\min _{1}^{1+1}(\mathrm{~mA})$	Max．Dyn．Res． OimA（onm）	
1N012	$0.02 \pm 10 \%$	100	∞	1.0 （6）－8v
$1 \mathrm{~N} \mathrm{~S}_{13}$	0．62 $\pm 10 \%$	85	6	

CIRCLE 90 ON READER－SERVICE CARD

Sequence Timer

Has adjustable cams
Model 4－23 miniature sequence timer has adjustable cams that can be set within 0.1% of the total pe－ riod．Designed for rocket and mis－ sile applications，the unit surpasses requirements of MIL－E－5272C for vibration，shock and acceleration． Adjustable time span is 1 sec to 45 min ．Accuracy is better than 3% ． Current drain is less than 70 ma ．

Acton Laboratories Inc．，Dept． ED，Acton，Mass．

Single－Crystal Silicon

Comes in diameters to 26 mm
This single－crystal，high－purity silicon comes in diameters to 26 mm and lengths to 250 mm ．Un－ doped P type crystals have less than 0.15 parts per billion of boron， greater than 1,000 ohms resistivity per cm and a minority carrier life－ time exceeding $400 \mu \mathrm{sec}$ ．
Dow Corning Corp．，Dept．ED， Midiand，Mich．
Price：$\$ 2.96$ per gr．
Availability：In production quanti－ ties．

RTV and Epoxy－

 537
Silicone Rubbers

Operate from 450 to 600 F
The Eccosil series of RTV sili－ cone－rubbers and epoxy－rubber combinations are suitable for elec－ trical applications up to 450 F （for epoxy－silicones）and up to 600 F （for silicone rubbers）．Type 4850 RTV silicone rubber is intended for general－purpose potting，caulk－ ing and mold－making．Type 4640 RTV silicone rubber，for airborne applications，weighs less than 40 lb per cu ft．Type 4712 epoxy－sili－ cone，for potting applications，re－ tains its flexibility after heat ag－ ing．Type 4520 epoxy－silicone is a low－viscosity impregnant and pot－ ting compound suitable for trans－ formers and coils．

Emerson \＆Cuming，Inc．，Dept． ED，Canton，Mass．
＜CIRCLE 90 ON READER－SERVICE CARD

here's why

Amperex

 VHF P.A.D.T High-Gain Transistors ARE BETTER, ,forAM/FM, mobile communcations, car radio, and instumentantion!

.Maximum Uniformity and Interchangeability
By combining the bes? qualities of both the alloy and the diffusion approaches to transistor construction - and by means of special "self-jigging" techniques - the Amperex Pos Alloy Diffusion Process achieves maximum yield and uni formity, virtually eliminating the need for "selection". From drawing-board to final quality control checkpoint, the PADT process rigidly maintains the specifications of each transistor you require, not only to provide hitherto unattainable uniformity, but also maximum interchangeability with competitive types - plus

High Beta The revolutionary PADT process provides a guaranted minimum beta of $40 \ldots$ an average of 150 . with resultant high power gain! Therefore, PADT transistors can now guarantee
3 Maximum Design Freedom for Engineers The unprecedented characteristics of PADT transistors provide easier temperature stabilization, lower bias circuit loss higher dissipation reserve, superior K factor, high alpha cut-off frequencies and safe, extremely conservative collector voltage ratings.

7 NEW P.A.D.T PNP TYPES specifically designed for specific applications - and now
in mass production at the new Amperex semiconductor plant in Slatersville, Rhode Island

APPLICATION	TYPE NO.	FUNCTION	fintures				
CAR RADIO	PADT-23	RF amplifier in 6 or 12 volt car radio applications from .5 to 1.5 mc , or in portable broadcast receivers.	Low leakage and high current gain minimizes AGC current requirements. Improved noise figure. High base-to-emitter voltage rating minimizes danger of breakdown.				
	PADT-24	IF amplifier (455 or $\mathbf{2 6 2 . 5} \mathbf{~ k c}$), or in mobile communication receivers; at 6 or 12 volts.	Low collector-to-base capacitance; plus extremely small collector cut-off current. Minimum Beta of 40 to facilitate the design of AGC circuits.				
	PADT-27	Mixer, oscillator or converter, 455 or 262.5 kc; at 6 or 12 volts.	Low mixer noise averaging only 3 db at 1 mc . Low leakage, less than 50μ at $60^{\circ} \mathrm{C}$.				
MOBILE COMMUNICATIONS	PADT-25	High frequency IF amplifier in mobile communication and airborne receivers.	Unusually high output resistance for improved receiver selectivity. Less than 50μ a leakage at $60^{\circ} \mathrm{C}$ improves AGC operation.				
	PADT-26	RF or IF amplifier, or mixer, in receivers operating up to 100 mc .	Typical power gain greater than 14 db at 100 mc , with a noise figure less than 9 db . High base-to-emitter breakdown voltage for extreme safety.				
	PADT-28	RF amplifier for service in the 175 mc region.	Typical gain of 14 db at 200 mc . Noise figure, 5.8 db . Maximum frequency of oscillation, 700 mc . Extremely low base resistance.				
	PADT-31	Mixer, oscillator, or frequency multiplier at frequencies up to 60 mc .	High output resistance ($\mathbf{3 0 . 0 0 0}$ ohms typical at 10.7 mc). Power gain - more than 14 db at 60 mc . Conversion gain 20 db min. at 27 mc .				
In stock at the following Amperex distributors: adLETA COMPANY NEWARK ELECTRONICS CORP. DALLAS 1, TEXAS CHICAGO, ILL.	the following Amperex distributors: NEWARK ELECTRONICS CORP. CHICAGO, ILL.		P.A.D.T TRANSISTORS 'COMPARISON-TESTED' WITH COMPETITIVE CAR RADIO BRANDS				
ADLETA COMP FORT WORTH,		RADIO SHACK CORP. BOSTON, MASS.	Stage	Paramefer	Amporex PADT	Brand X	Brand Y
BRILL SEMICON OAKLAND 6, C	TOR CORP.	RADIO SHACK CORP. STAMFORD, CONN.	ALL			$\begin{aligned} & 42 \mathrm{tp} \\ & 60 \mathrm{typ} \end{aligned}$	Approx 12.5 minc(1)RF $20-80$CONy $20-200$IF $20-100$50 mal3010 max
ELMAR ELECTR OAKLAND 7, C	CS INC.	RADIO SHACK CORP. W. HARTFORD, CONN.				-003)	
INTERSTATE RADIO \& SUPPLY DENVER 4, COLORADO		RADIO SHACK CORP. OF CONN. NEW HAVEN 10, CONN.				7 typ	
MILO ELECTRO NEW YORK, N.		R. V. WEATHERFORD COMPANY GLENDALE 1, CALIF.	Wf	Maximura Avaifstle Power Gain 1.5 =	47.5 dibl	47.5	-
			If	$\begin{aligned} & \text { Maximum Avail- } \\ & \text { sble Power Cain } \\ & \text { P55 is } \end{aligned}$	60.6 db ${ }^{(4)}$	54.5 dm	55
for detailed application (including designed to PEREX	and tance e circu pecifica ECT		(1) Calculated on the basis of $1_{\text {max }}=50 \mathrm{mc}$ and $\mathrm{r}_{\mathrm{b}} \cdot \mathrm{C}_{\mathrm{C}}=200 \mu \mu \mathrm{~s}$ substifuted in the following equation: th $c o a^{12} \max ^{8} \pi^{r} b \cdot C_{c}$ (2) Calculated value based on a maximum available power gain of 28 db at 107 mc and a power fall of 6 db per octave. (3) Based on P_{C} at $25^{\circ} \mathrm{C}$ of $80 \mathrm{mw} . \mathrm{P}_{\mathrm{C}}$ at 55 C of 50 mw and a linear derating factor which is 1 mw C (4) Calculated by the following equation: $P G_{\text {max }}$ aval\| $=\frac{\left\|Y_{f e}\right\|^{2}}{4_{g} \mathbb{R}_{08}}$				
$230 \text { DUFF }$	ENUE, tic Tubs 8	VILLE, L. I., NEW YORK a. IIf Vanderhool Ave., Jesonito 11, Ont.	Coming soon! New P•A-D•T Switching, UHF and Power types!				

NEW PRODUCTS

Silicon Diode

Temperature range is -100 o $+250 \mathrm{C}$
This glass diode operates in am. bient temperatures of -10 o to +250 C and withstands power overloads of 10 times normal rat ing. It also stands piv up to 10,000 v. The silicon wafer is bonded directly to the terminal pins, elimi nating the whisker spring. The unit is compact in size.
Unitrode Transistor Products, Inc., Dept. ED, 214 Calvary St., Waltham 54, Mass.

Diffused-Base Transistors

Have cadmium junctions
These MADT transistors have cadmium junctions, permitting high-junction operating temperatures. Six types are offered: 2N501 2N501A (meeting Mil specs) 2N504, 2N588, 2N1411, and 2 N1427. The first two are fastswitching, multi-purpose types; the others are for oscillating, amplify ing, puise shaping and switching.
General Transistor Corp., Dept. ED, 91-27 138th Place, Jamaica 35 N. Y.

Availability: Units are in mass-production.

Solenoid

For missile applications
Designed for missile use, the solenoid meets MIL-E-5272 requirements. It has a built-in spst normally-open switch rated for ${ }^{-}$ amp at 115 v ac. The device operates on a cycle of one stroke of 1 -min duration at 5 -min intervals. Coil ratings are from 28 to 135 dc at 270 ma max. Temperature range is -65 to +160 F . Minimum stroke is 0.078 in . Unit measures 0.91 in . in diameter and 1.2 in long, and weighs about 2.5 oz .
Elgin National Watch Co., Micronics Div., Dept. ED, 21001 Nordhoff St., Chatsworth, Calif.

Duc I-Channel Samipling Oscilloscope

Rise time is 0.4 nsec
The model 112 dual-channel sampling oscilloscope displays two separate waveforms or a single waveform at two different sweep speeds. Rise time is 0.4 nsec ; sweep speeds to 0.05 sec per cm are available. Dual-channel controls permit horizontal and vertical adjustment of each channel, either separately or together.
Lumatron Electronics, Inc., Dept. ED, 116 County Courthouse Road, New Hyde Park, L.I., N.Y.

Extended-Scale
 Indicator

Has a moving-tape readout
The model S1-60T extended-scale indicator has a moving-tape readout. The instrument, a closed-loop servo device, drives a 50 -in. tape scale marked from 0 to 1,000 in graduations every 0.05 in . Five inches of scale are exposed. The indicator is suitable for applications such as stress and strain measurements, displacements and measuring systems, electronic balances, pressure readouts, automatic-process control, and missile and engine analysis test-stand indications.
Schaevitz Engineering, Dept. ED, P.O. Box 505, Camden, N. J.

Subminiature 540 Insulating Discs

Diameters are 0.02 to 0.5 in .
Subminiature insulating discs are available with diameters from 0.02 to 0.5 in . in any graduants, and with thicknesses from 0.008 to 0.05 in. The discs are 96% alumina oxide, metallized on either or both sides with molybdenum manganese and plated with nickel, copper or gold. The parts are applicable to diode assemblies, rectifier insulation, and similar high-temper ture applications.
A itronics, Inc., Dept. ED, 1290 Cer tral Ave., Hillside, N.J.

CIRCLE 92 ON READER-SERVICE CARD

Where can you use solid-state inverters with performance like this?

- Wide operating temperature ranges-Models now available and in development, designed for ambients ranging from a low of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
- Closer frequency regulation-As close as $\pm 0.02 \mathrm{cps}$ under full load at ambients from $+60^{\circ} \mathrm{F}$ to $175^{\circ} \mathrm{F}$ in some models.
- Voltage regulation to $\pm \mathbf{0 . 8 7 \%}$ under full load at ambients ranging from $-20^{\circ} \mathrm{F}$ to $+175^{\circ} \mathrm{F}$.

Features like these, in addition to small size and high power output-to-weight ratios, make Hamilton Standard static inverters ideal for such military and commercial applications as:

- aircraft emergency power supplies
- missiles, satellites
- gyro and instrument power supplies
- stand-by power for remote stations
- mobile equipment power supplies
- industrial computer power supplies

Hamilton Standard static inverters have already been chosen by the three principal military services. A variety of 100 and 500 va models, single- and three- phase, are now under development.

HAMILTON STANDARD

DIVISION OF UNITED AIRCRAFT CORPORATION ELECTRONICS DEPARTMENT
BROAD BROOK, CONNECTICUT

environmental conditioning srstems - encine a flight controls

- High-power-conversion efficiencies under full load 28 v dc input.
- Profection against output overloads -100 va models will withstand 100 va overloading, for 10 minute periods once an hour.
- Transient voltage suppression-Transient suppressor removes or attenuates voltage spikes-saieguards semi-conductor elements.

CHARACTERISTICS OF IOO-VA STATIC INVERTERS

CATALOG NO.	ECB-1.1-AA	ECB-1.1.7-AA	ECB-1.1.13-AA
Output			
Voltage	$115 v \pm 1 v$	$115 v \pm 5 \%$	$115 v \pm 5 v$
Frequency	$400 \pm 1 / \mathrm{cps}$	$400 \mathrm{cps} \pm 1 \%$	$400 \pm 1 \%$
Phases	Three	Three	Single
Transient protection	Yes	Yes	Yes
Input Voltage			
Nominal	28 vdc	28 vdc	28 vdc
Range	1829 ddc	$20-29 \mathrm{vdc}$	18-29v dc
Dimensions	5 "x6"x83/4"	$5^{\prime \prime} \times 6$ " 77 /8"	$51 / 8 " \times 31 / 8 " \times 83 / 8$ "

HAMILTON STANDARD - Electronics Department
II Main Street, Broad Brook, Conn.

Name

Position
Company
Address

NEW PRODUCTS

Miniature Relays

Measure $1-3 / 4 \times 15 / 32 \times 2 / 302$
The series 124 relay requires only $85-\mathrm{mw}$ coil power to activate the 2 -amp contacts. Switching can be done at 100 cps, drop-out can be as high as 75% of pull-in, and sensitivity is as low as 25 mw . It is available with one normally-open, or one normally-closed or one nor-mally-open and one normally-closed contact arrangement. A military version is also available.
Wheelock Signals Inc., Dept. ED, Long Branch, N. J.
Price: $\$ 21.50$.
Availability: Some units in stock.
Switching-Time
Meters
Read times to 0.5 nsec
The models 400 and 420 switch-ing-time meters provide direct meter readings, printed-readout or automated go, no-go testing of switching times to 0.5 nsec . Rise, fall, storage and delay times of transistors, tunnel diodes, computer elements and circuits can be measured with an accuracy of $\pm 3 \%$ or 0.2 nsec .
Lumatron Electronics, Dept. ED, 116 County Courthouse Road, New Hyde Park, L.I., N.Y.

Power Transistors

398
Diffused-alloy type
Types 2N1651, 2N1652 and 2N1653 transistors are designed for high-frequency switching at an I_{0} of up to 25 amp dc. A diffused-base region provides low input resistance and typical cut-off frequencies of 2 mc while maintaining breakdown voltage at 120 v dc. Having flat beta parameters, the units are suitable for use as amplifiers as well as switches.

The Bendix Corp., Semiconductor Products, Dept. ED, Holmdel, N.J.
Price: \$9 to \$29.50. Availability: Four weeks.

CIRCLE 219 ON READER-SERVICE CARD

If
 Dielectric or Corrosion Problems are Causing Coil Trouble...

PRECISION can help eliminate them
Precision specializes in square, rectangular, round or special shaped coil forms... kraft, fish paper, acetate, DuPont Mylar, Johns-Manville Quinterra, Resinite impregnated, other high dielectric materials or combinations . . . to help you solve any dielectric or corrosion problem. Forms can be made to your exact specifications in all sizes from $1 /$ rl $^{\prime \prime}$ square to $8^{\prime \prime}$ square with wall thicknesses of from . 010 to .125 .
Precision Paper Tubes are available in standard or exclusive patented DI-FORMED construction for greater crush resistance, high tensile strength and extreme dimensional stability.

Lockheed
Electronics offers:

Complete

 Civecuitry FucilitiesLet LOCKWELL ${ }^{\circledR}$ solve your quick release pin problem...the quality way.

tandard ruction

Write today for complete information
THE HARTWELL CORPORATION go3s venice boulevard, los angeles 34, california Offices: Chicago - Ff. Worth . Hackensack . Seattlo . Wichita

CIRCLE 22I ON READER-SERVICE CARD
funable RF AMPLIFIER

This versatile and dependable UHF RF amplifier permits the user to vary the frequency of the amplifier up to $\pm 10 \%$ of nominal center frequency (not to exceed 150 mcs range) in the frequency range of $300-1000 \mathrm{mcs}$
Tuning is done by means of a slotted shaft accessible through the front panel.
The amplifier is supplied complete with power supply, mounted on a $31 / 2^{\prime \prime}$ high panel to fit a standard rack.
GENERAL SPECIFICATIONS - MODEL UH-2 (AT)

Write for further information.

CIRCLE 222 ON READER-SERVICE CARD

COMPLETE CIRCUITRY FACILITIES from artwork to finished boards...
on both inexpensive commercial etched-copper circuitry through the most sophisticated "plated through hole" (mil. spec.) type boards.
ENGINEERING AND DESIGN assistance in the development of printed circuit artwork.
ASSEMBLY OF COMPONENTS of all types - commercial, miniature
and sub-miniature, using either hand soldering, automatic flow soldering, or welding techniques.
MAXIMUM QUALITY CONTROL is maintained in every phase of operation with individual inspectors specializing in artwork, photography, plating and etching, fabrication and assembly.
For further information regarding your printed circuitry requirements write Marketing Department, Lockheed Electronics Company, Avionics and Industrial Products Division, 6201 E. Randolph Street, Los Angeles, California.

Decade Counter

Counts 100,000 events per sec
Model PDC-1000 modular decade counter counts up to 100,000 events per sec. It provides digits 0 through 9 that are readable at 30 ft and at angles of 120 deg . Numerals are $1-1 / 2-\mathrm{in}$. high and $1-\mathrm{in}$. wide. Units weigh less than 1 lb and measure $2-3 / 8 \times 1-1 / 2 \times 8-1 / 2$ in.
Telemetrics, Inc., Dept. ED, 12927 S. Budlong Ave., Gardena, Calif.

Data Logging System
 561 With 80 points

This data logging system sequentially scans, measures and records 80 variables. Speed is 1 variable per sec. Data is printed on an adding-machine type printer with a tape punch. The tape-punch code is suitable for input to the firm's Dataron computer.

Datex Corp., Dept. ED, 1307 S. Myrtle Ave., Monrovia, Calif.

Photoelectric Relay

Operote under adverse conditions
These heavy-duty, highly sensitive relays are for use in atmospheres dense with foreign matter and where an extraneous light source could cause false operation. They can be used, for example, to detect the position of parts in ovens and furnaces. Type PL operates at distances to $2,000 \mathrm{ft}$ and type PLJ, at distances under 100 ft .
The Clark Controller Co., Dept. ED, 1146 E. 152nd St., Cleveland 10, Ohio.

Test Jack

Has stamped lug on reverse side
Type SKT-36 is designed to receive a probe measuring 0.05 in . in diameter and $0.025-\mathrm{in}$. long. Beryllium copper contacts are used. The lug on the reverse side of the chassis is $0.287-\mathrm{in}$. long and provides a soldering hole $0.052 \times 0.156 \mathrm{in}$.
Sealectro Corp., Dept. ED, 139 Hoyt St., Mamaroneck, N. Y.
< CIICLIE 223 on reader--ERVIIE CARD

NEW PRODUCTS

Magnetic-Reed Switch 533

Rated at 15 r-a max
The type DRG-1 magnetic-reed switch is rated at 15 v -a max resistive, up to 1 amp and 250 v . Contact reeds are gold-plated; nor-mally-open, normally-closed with bias magnet or latching arrangements are available. Tube $O D$ is 0.2 in ., and length is $3-1 / 4 \mathrm{in}$. Life is over $150,000,000$ cycles.
Hamlin, Inc., Dept. ED, Lake Mills, Wis.

Time-Delay Relay

Three types offered

The MTRH time-delay relay has operate or release times from 10 msec to 1 sec in the type MTRH-1, 1 to 90 sec in the type MTRH-4, and 15 sec to 5 min in the type MTRH-8. The units are miniature, hermetically sealed, and operate from -55 to +125 C. Contacts to 7 pdt can be furnished.
Bronson Corp., Dept. ED, 41 S Jefferson Road, Whippany, N.J.

Insulation Sleeving
 517

Shrinks to permanent fit
Thermofit is an irradiated-insulation sleeving that shrinks to a permanent specified size when exposed to heat. Supplied with an expanded diameter to slip over components, the material shrinks tightly over component contours when exposed to 235 F for 3 to 5 sec . The material, self-extinguishing and thermally stabilized, withstands -100 F without brittling, is inert to fungus, resists acids and fuels, and has high-abrasion resistance and dielectric strength. The sleeving is available in 4 -ft lengths in standard, after-shrinking ID's from 0.027 to 2.07 in.

Raychem Corp., Dept. ED, Oakside at Northside, Redwood City, Calif.
Price: Dependent upon size and quantity.
Availability: From stock.

Typical output is 75 mw as a CW oscillator at 3370 mc . Greater output obtainable at lower frequencies. features include low interelectrode capacitances, low lead inductance and low loss. Performance-proved and economy-priced. Height is 2 9/16".

Typical applications are as a Class A RF amplifier, a Class C CW oscillator and a plate-pulsed oscillator.

Typical output is 1.75 kw as a pulsed oscillator at 3370 mc . Greater output obtainable at lower frequencies. This single-ended tube features low impedance and is $211 / 16^{\prime \prime}$ high. Like the GL-2C40A, this tube is economy-priced.

Typical applications are as a Class C RF amplifier, a Class C CW oscillator, and a plato-pulsed oscillator.

A long-life version of type GL-2C43. The objective for this tube is 15,000 hours af 1000 mc . While designated developmental until this objective is proved, the tube is available from production. Like the GL-2C43, it is single-ended, features low impedance, and is $211 / 16^{\prime \prime}$ high.

It is designed to serve as a Class C CW ascillator.

LIGHTHOU

A general purpose, medium-mu triode, this fube is especially to pulsed operation up to op imately 5000 mc . It gives 2 km ful pulsed power output at mc , and approximately 500 at 5000 mc . Height is 239

Typical applications include

 C amplifier, oscillator, mixer amplifier in both CW and sorvice.
TO MEET ALL APPLICATION REQUIREMENTS

General Electric Now Offers You Industry'M

Ultra-raliable for high-gain, low noise applications to 3000 mc . Noise figure of 4.3 db and gain of 18.5 db at $\mathbf{4 5 0} \mathbf{~ m c}$. Operational warranty is 1000 hours. This UHF-SHF tube has high shock and vibration re sistance and is conduction-cooled This tube and its derivatives are only $I^{\prime \prime}$ high amplifier.

This is a Class C version of fube type GL-6299. It operates up to 6000 mc . Its power output is 65 mw at 5400 mc. Moreover, its power output is greater than 0.5 watts at 500 me. This new, metal-ceramic UHF.SHF low-power triode features conduction cooling and has a grounded grid.

Principal application is as a Class C CW oscillator.

This derivative of type GL. 6299 operates up to 3000 mc , and is notable for ifs high spike resistance capabilities. The tube is unilaterally interchangeable with type GL-6299. Only recently announced, this sturdy, UHF, low-noise and low.power triode features a grounded grid and conduction cooling.

It is especially suitable for application as a Class A_{1} RF amplifier.

The frequency range for this is up to approximataly 3000 If is a low-noise, high-gain triode, similar in all respects GL. 6299 except that it is des with an isolated heater. It fed a grounded grid and is condu cooled.

If is recommended for appli as a Class A_{1} RF amplifier.

ERAMIC
wigh-gain, high-mu, closed-spaced

Most Complete Line of Microwave Triodes

Calculated Noise Performance for Noise-matched, Gridreturn Circuit Operation, Input Circuit Losses Neglected.
GL-6299 • GL-7644 • Z-5435
Operating Conditions
$E_{\mathrm{f}}=6.3$ volts
$E_{c}=0$ volts

Illustrated on these two pages are just twelve of the more than twenty microwave triode types General Electric now offers . . . industry's most complete line. Rugged, versatile G-E "lighthouse" triodes are now available for all types of microwave communication, navigation, identification and radar equipment . . . for all ground, sea and airborne applications.

For more information on General Electric's complete line of microwave triodes, and for competent application engineering assistance, contact your General Electric Power Tube Sales Office.

NEW ENGLAND
701 Washington Street
Newtonville, Massachusetts
Telephone: WOodward 9-9422
SYRACUSE
1224 West Genesee Street
Syracuse, New York
Telephone: HArrison 2-1030
SCHENECTADY
Building 267

EASTERN
200 Main Avenue
Clifton, New Jersey
Telephone: GRegory 3-6387
Dial direct from New York City WIsconsin 7-4065-6-7-8
CENTRAL
3800 No. Milwaukee Avenue
Chicago 41, Illinois
Telephone: SPring 7-1600

DAYTON
118 West First Street
Dayton 2, Ohio
Telephone: BAldwin 3-7151
WESTERN
11840 West Olympic Boulevard Los Angeles 64, California
Telephone: GRanite 9-7765
WASHINGTON
Wyatt Building-Room 1313
777-14th Street, N. W.
Washington, D. C.
Telephone: EXecutive 3-3600

This version of the 2C39 family is
This tube is a finless version of type GL-6897 for applications where there are space limitations, and the full plate dissipation of the GL-6897 is not required. Height is $23 / 4^{\prime \prime}$.

Possible applications include pulsed airborne navigational equipment and airborne communications. The rube is operable as a Class C pulsed or CW amplifier, oscillator, and frequency multiplier.

A conduction-cooled version of type GL-6897. for grounded-grid Class C power amplifiers, oscillators, or frequency-multiplier circuits up to 2500 mc. 35 watts plate dissipation readily obiainable. Features same rugged disc-seal construction as type GL.6897. Gives consistent high performance. Height is $2 \%{ }^{\prime \prime}$.

Designed specifically for missile and other non-air-cooled applications. acteristic testing in accordance with

Solenoid-Released

For 40-frame motors
This spring-set, solenoid-released brake unit is for size- 40 frame motors. Torque rating is $3 \mathrm{ft}-\mathrm{lb}$. Called the style H 44, the brake is available for ac or dc and with drip-proof enclosure.
Stearns Electric Corp., Dept. ED, 120 N. Broadway, Milwaukee 2, Wis.

Metallized Paper Capacitors

Wax and epoxy impregnated
These metallized paper capacitors are available in $100,200,400$, and 600 -wvdc ratings, 20% tolerance. Series ME capacitors, designed for dc circuitry, are vacuum epoxy-impregnated and sealed in epoxy cases. Operating temperature range is -55 to +125 ; capacitance values are from 0.001 to $2 \mu \mathrm{f}$. Series WE capacitors, for use in ac or dc circuits, are vacuum waximpregnated. They have operating temperatures from -55 to +85 C and capacitance values from 0.001 to $1.5 \mu \mathrm{f}$. Most military environmental specifications are met.

Marshall Industries, Electron Products Div., Dept. ED, 430 N. Halstead St., Pasadena, Calif.

Digital Subtractors
541
Will drive lamp banks or mercury relays
The type SU-100 transistorizeddigital subtractor determines the arithmetical difference between two inputs and provides voltage-level outputs suitable for driving lamp banks or mercury relays. The subtraction process is parallel except for carries. Maximum propagation time is $50 \mu \mathrm{sec}$ per decimal digit. The unit consists of circuit modules mounted in a relay-rack chassis. It measures $7 \times 19 \times 11 \mathrm{in}$. and weighs about 20 lb .

Datex Corp., Dept. ED, 1307 S. Myrtle Ave., Monrovia, Calif.

Bryant Memory Drums For Every Storage Application

Whatever your immediate or long-range computer requirements, Bryant is equipped to provide "right now" response to your needs for prompt delivery of custom-designed memory drums, standard storage units, read/record heads, and other precision memory system components.
Remember-Bryant Magnetic Memory Drums offer these special features:

- Time-proven rellability
- Super-precise ball bearing
suspension
- Dynamic runout less than . $0001^{\prime \prime}$
- Dynamically balanced al

Presising speed

- Precision integral-drive
induction motors
- Exclusive tapered drum design

GENERAL MEMORY

Capacity-20,000 to 2,500,000 bits @ 130 bits per inch . Tracks-40 to 420 . . . Speed-600 to 24,000 rpm Size-5" dia. $\times 2^{\prime \prime}$ long to 10^{n} dia. $\times 19^{n}$ long ... Access time -As low as 2.5 ms (one head per track).

MASS MEMORY

Capacity-Up to 6,210,500 bits on a single drum . . . Tracks -Up to 825 . . . Speed-900, 1800 or 3600 rpm . . . Size $-18.5^{\prime \prime}$ dia. x up to $34^{\prime \prime}$ long . . . Access time-As low as 16.6 ms (one head per track).

BUFFER APPLICATIONS

Capacity-Up to 225,000 bits .. . Tracks-Up to 150 Speed-Up to 60,000 rpm . . . Size- $3^{\prime \prime}$ to 5^{n} dia. $\times 1^{n \prime}$ to 8^{n} long... Access time-As low as 0.25 ms (4 heads per track (a) $60,000 \mathrm{rpm}$).

NEW PRODUCTS

Slip Ring Assembly

Each of the 13 rings in this assembly is comprised of 32 segments with each segment carrying an individual circuit. The segmented ring assembly, which carries 25 amp and 440 v , is 25 in. in diameter and 26 -in. high.
Breeze Corp., Inc., Dept. ED, 700 Liberty Ave., Union, N.J.

Coaxial Connectors

Have Collett clamp construction
The TM and TNC series Coaxitube semi-rigid connectors have Collett clamp construction. Specifications include: matched impedance, 50 ohms; operating temperature, -65 to +260 F ; voltage, $1,500 \mathrm{v}$ rms, $60 \mathrm{cps}(\mathrm{TNC})$ and 500 v rms , 60 cps (TM).
General RF Fittings, Inc., Dept. ED, 702 Beacon St., Boston 15, Mass.
Price: On request.
Availability: From stock.
Rotary Switch

SPECIAL PURPOSE MEMORIES

Analog recording . . . Multispeed operation . . . Speed-As low as 2.5 rpm . . . Aerodynamic heads for high density, high frequency recording . . . Flux-sensitive heads for lowspeed playback . . . Air bearing drums . . . Magnetic Disc Files for mass storage up to $150,000,000$ bits.

For more detailed information, or if you'd like to discuss your particular storage drum application problems, contact your Bryant Representative, or write direct.

698

a spot is a spot
is a high
resolution Spot with

CELCO YOKES

- Celco YOKES keep spots smallest - Celco YOKES keep spots roundest
Celco YOKES
keep spots sharpest

Use a CELCO DEFLECTION Yoke for your high resolution applications.
In a DISPLAY SPOT? call Celco!

Canstantine Engineering Sabaratories Ca.

Main Plant: matwan, N. J. Davis 7.1123

- Pacific Division - Cucamonga, Calif. - YUkon 2-2688

CIRCLE 98 ON READER-SERVICE CARD ELECTRONIC DESIGN • November 23, 1960
mechanism can be furnished for $90,60,45,30$, 20 and 15 deg throw. All components, except the current-carrying parts, are made of insulating materials.
Imerican Solenoid Co., Inc., Dept. ED, U. S. highway 22, Union, N.J.
Acailability: Five to ten days.
Removable-Contact Connectors 351
Available in single- and double-insert types

These removable-contact connectors, called Repicon, are available in single- and doubleinsert types. The components have die-cast aluminum shells, removable crimp-style or soldertype contacts, interchangeable male and female inserts and backing plates to hold inserts in housing. The units are available in $34,42,50,81$ and 162 contact configurations.
General Products Corp., Dept. ED, Union Springs, N.Y.
Price: On request.
Availability: 1.5 days.

Semi-Automatic Telecode Transmitter

For use in the 433L system

The AN/TMT-1 telecode transmitter is for use in the 433L system which transmits weather and fight-plan information. It has 72 -movable character switches. Code speeds range from 75 to $2,400 \mathrm{cps}$. The unit's prime application is in airtraffic control, but it can be used in a nationwide weather net for rapid transmission of information to major weather centers. Output can be altered by a quick-change plug-in circuit card.
Wang Laboratories, Inc., Dept. ED, 12 Huron Drive, Natick, Mass.
Price: $\$ 7,000$ ea.
A ailability: 12 to 16 weeks; made on order.

Centralab CERAMIC CAPACITORS FOR SEMI-CONDUCTOR CIRCUITS

up to 40\% LESS
than PAPERS OR electrolytics

NEW PRODUCTS

Magnetic Record Analyzer

Has three drums with 28 -traces per drum

Model MRA-2 magnetic record analyzer has three drums with 28 traces per drum, 4 -kc carrier frequency, deviation of 1 to 7 kc , and a check trace of 100 cps from recorded tape. Record presentation is 6 -in. photographic film, 5.7 sec in length. Tape speed is 7.5 ips ; tape width is 4 in . Power requirement is $115 \mathrm{v}, 50$ to 60 cps , single-phase.
Mandrel Industries, Inc., Electro-Tech Labs Div., Dept. ED, P.O. Box 13243, Houston 19, Tex.
Price: $\$ 135,000$ ea.
Availability: 90 to 120 days.

Resistance Decades

Accuracy is $\pm \mathbf{0 . 1 \%}$

These eight models provide an accuracy of $\pm 0.1 \%$ and 2 w of power per step. They have from one to four decades. Model 340, shown, has a resistance range of up to 110 meg in steps of 1 meg . Model 341 has a resistance range of up to 111.1 meg in steps of 10,000 ohms. Average temperature coefficient is less than 8 ppm per $\operatorname{deg} \mathbf{C}$.
The Winslow Co., Dept. ED, 701 Lehigh Ave., Union, N.J.

2-4 KMC
.07\% ACCURACY
10\% ABSORPTION TYPE N CONNECTORS LOADED Q 1000

MODEL 24-1 DR

4-8 KMC
.07\% ACCURACY
10\% ABSORPTION TYPE N CONNECTORS LOADED Q 1000

MODEL 48-1 DR

- 2 KMC 07\% ACCURACY 0\% ABSORPTION TYPE N CONNECTORS LOADED Q 1000

MODEL 12-I DR

DIRECT READING BROAD BAND ABSORPTION TYPE WAVEMETERS

A NEW HIGH RELIABILITY DIRECT READOUT IN LOW COST STANDARD UNITS

IN ADDITION TO ITS LINE OF MICROMETER TUNED SEARCHTYPE WAVEMETERS, FREQUENCY STANDARDS PRESENTS THIS SERIES OF DIRECT READING ABSORPTION TYPE METERS AFFORDING FULL COVERAGE FROM I THROUGH 18 KMC. THESE UNITS FEATURE HIGH ACCURACY WITH THE ADDED CONVENIENCE OF DIRECT FREQUENCY CALIBRATION. THE READCUT DEVICE SONSISTS OF A HIGH PRECISION FILM DRIVING MECHANISM WITH VIRTUALLY NO BACKLASH. Units for right angle drive for ponol mounting avallable at $\$ 10.00$ addi-
PRICE: \$ 165.00 each the letters PM to the model number.

7-10 KMC
.07\% ACCURACY
10\% ABSORPTION
UG - 5IN FLANGES LOADED Q 50001

MODEL 710-1 DR

8.2-12.4 KMC .07\% ACCURACY 10\% ABSORPTION UG - 39 N FLANGES LOADED Q 5000

MODEL 812-1 DR
12-18 KMC 0.1% ACCURACY 10\% ABSORPTION UG - 419/U FLANGES LOADED Q 3000

MODEL 1218-1 DR

FREQUENCY STANDARDS
P.O. BOX 504 ASBURY PARK. N. J.
PRospect 4-0500

Type TR-10 telemetry transmitter, for use with the firm's $\mathrm{fm}-\mathrm{fm}$ and PCM systems, has been used in several missile projects. Specifications include: 2.5 w output with true fm modulation over the band of 2.5 to $265 \mathrm{mc} ; 99.9 \%$ reliability for 500 hr ; modulation frequency response of $\pm 2 \mathrm{db}$ from 3 cps to 300 kc ; vibration-induced noise of less than $1.5-\mathrm{kc}$ deviation at 20 g from 20 to $2,000 \mathrm{cps}$; modulation linearity of less than 1% from straight line at 125 kc .
United ElectroDynamics, Inc., Dept. ED, $20 C$ Allendale Road, Pasadena, Calif.
Price: $\$ 825$.
Availability: 60 to 90 days.

General-Purpose Oscilloscope

Has 5-mc bandwidth

Type 440 oscilloscope has 17 sweep speed calibrated from $1 \mu \mathrm{sec}$ per cm to 200 msec pe cm . A sweep expander extends the range to 0. . $\mu \mathrm{sec}$ per cm . Accelerating potential is 5 kv . sweep vernier permits continuous adjustment ans extends the sweep range to 10 sec full scale. 10-step attenuator permits observation of any sig nal between 50 mv per cm to 500 v full scale a rise times of $0.08 \mu \mathrm{sec}$ or less. The unit has bandwidth of dc to 5 mc in the vertical amplifie and dc to 500 kc in the horizontal amplifier.

Fairchild Camera \& Instrument Corp., Alle B. Du Mont Labs. Div., Dept. ED, 750 Bloon field Ave., Clifton, N.J.
Availability: Late fall, 1960.

CIRCLE 101 ON READER-SERVICE CARO

NEW LIGHT
 is shed daily on

microwave tube state-of-the-art by the engineers and scientists at Sperry's Gainesville, Florida plant. If existing hardware doesn't readily solve your tube application problem, call Gainesville, FRanklin 2-0411 collect, for full information about Sperry capabilities.

ELECTRONIC TUEE DIVISION

Gainesville, Florida - A Division of Sperry Rand Corporation A COMPLETE LINE
of klystron tubes is
manufactured and mar-
keted by Sperry Elec-
tronic Tube Division,
Gainesville, Fla. The
division also performs
extensive research and
development toward
advances in klystron
state-of-the-art.
state-of-the-art.

SPECIFY RAPIDLY AND ACCURATELY WITH SPERRY'S SPECI-FILE

Now you can have Sperry's complete family of klystron and traveling wave tubes right at your fingertips for faster, more accurate tube selection. Attractively packaged and comprehensively indexed, the Sperry Speci-File gives you complete electronic and physical characteristics of every tube in the Sperry line.

TO GET YOUR FREE

Speci-File, use this coupon:

CIRCLE 10\% ON READER SERVICE CARD

	ELECTRONIC TUEE DIMIsion

GAINESVILLE, FLORIDA
A Division of Sperry Rand Corporation CIRCLE 103 ON READER-SERVICE CARD

NEW PRODUCTS

The PI-400 converter is designed for use with flowmeters, tachometers and other frequencymeasuring applications. It can be used in groundsupport test equipment, engine test stands, control applications and other instrumentation where precise analog forms of frequencies and pulse rates are required. The unit furnishes a low-impedance dc output voltage and current proportional to the frequency or pulse rate of the input. It also provides visual indication of input frequency and a pulse output for operating counters and recorders. The output of up to 5 v is accurate to $\mathbf{0 . 1 \%}$.
Anadex Instruments, Inc., Dept. ED, 14734 rminta St., Van Nuys, Calif.
l'rice: $\$ 375$.
Availability: 30 days.

Crystal-Controlled Marker
Generators
Use harmonic and side-band techniques

Models CM-6 and CM-10 crystal-controlled marker generators use harmonic and side-band techniques to attain more marking indications. The CM-6 is a 6-crystal, portable unit; the CM10 is a 10 -crystal unit for rack mounting. Use of one center-frequency oscillator permits a choice of two side-band oscillator frequencies providing a total of five marks: one at the center frequency, two at the band edges and two at the $3-\mathrm{db}$ down points.

Jerrold Electronics Corp., Dept. ED, 15th and Lehigh Ave., Philadelphia 32, Pa.
Price: \$285, CM-6; \$425, CM-10.
Frequency-to-DC Converter
Plug-in type

Borg's new 1060 Series Low-Inertia, Sub-Fractional Horsepower Instrument Motors are specifically designed for applications where exceptionally rugged and reliable control motors are demanded! They can he operated two-phase, or split-capacitor connected for single-phase operation, from a 115 volt, 60 cycle source. Extended rotor-hearing preload-adjustments are provided for minimum starting voltages. Ample electrical and mechanical safety margins are included for critical instrument applications such as medical equipment. Gear train models are also available in twenty gear ratios from $6: 1$ to $1800: 1$. Upgrade your precision equipment now. . . investigate new Borg 1060 Series Low-Inertia Motors!

CONTACT YOUR BORG DISTRIBUTOR OR TECHNICAL REPRESENTATIVE FOR CATALOG SHEET BED.Al65
SPEED/TORQUE CHARACTERISTICS

MODEL 1065

BORG EQUIPMENT DIVISION
Amphenol-Borg Electronics Corporation
Janesville, Wisconsin • Phone Pleasant 4-6616

NEW PRODUCTS

Voltage-Controlled Subcarrier 38; Oscillator

For fm-telemetering applications

Model 0-20 subcarrier oscillator has good data stability telemetering applications ranging from -55 to +125 C . The unit measures 2.25×1.875 x 0.875 in . It meets a wide range of missile, satellite and aircraft applications. The unit is available in all standard IRIG channels with inputs of 0 to 5 v and -2.5 to +2.5 v .
Dorsett Electronics Labs., Inc., Dept. ED, 119 W. Boyd, Norman, Okla.

Price: $\$ 300$.
Availability: 30 to 60 days.

Chopper Differential
 Transformers

Inductance is $1,200 \mathrm{~h}$

Glass-enclosed, fusion-sealed Corning NF resistors have boiled merrily in salt water for days without showing a jot of change in their electrical characteristic
These are resistors that are rugged, completely moisture resistant, highly vibration resistant ... in short, resistors that exceed B, better than any we've seen or heard of The key to such fortitude is our NF structure. We start with glass rods with metal oxide applied under heat. This in it-
self makes a moisture-resistant, almost abnormally stable resistor, as you wel know if you have ever used our regular
We resistors
We encapsulate this basic unit in a glass envelope and apply glass-to-metal seals at the leads ...comparable to those in a vacuum tube.

MMEDIATE DELIVERY - There are two models of this gem in production, ready for quick shipment: the $1 / 8$-watt NF-60
and the $1 / 4$-watt NF-65. Resistance ranges from 100 ohms to 360 K ohms. Voltage ratings are 250 v and 300 v . Full rating at $0^{\circ} \mathrm{C}$. With derating to $150^{\circ} \mathrm{C}$. More data Load life Voltage coefficient $0.001 \% /$ Temp. coefficient $\quad \because, 0,0.03 \% /{ }^{\circ} \mathrm{C}$. Insulation resist. 100,000 megohms
To get this and other data for your file, just write and ask for Data Sheet CE-2.02. Address: Corning Glass Works, 540 High Street, Bradford, Pennsylvania.

CORNING ELECTRONIC COMPONENTS

CORNING GLASS WORKS, BRADFORD, PA.

for an immediate demonstration or delivery of Simpson Laboratory Test Equipment.
CALIFORNIA
R. V. WEATHERFORD COMPANY

6921 San Fernando Road
NEWARK ELECTRONICS COR
INGLEWOOD, ORegon 8.0441 ELECTRONIC SUPPLY CORPORATION 2085 East Foothill Blvd.
PASADENA, SYcamore 5.5901
pasaden
WARD TERPY \& COMPANY
70 Rio Grande Blud.
FLORIDA
THUROW DISTRIBUTORS
121 South Water Street
GEORGIA
ELECTRO TECH EQUIPMENT COMPANY
690 Murphy Avenue S.W.
LLINOIS

allied radio corporation | 100 N. Western Avenue $1 .{ }^{2}$ |
| :--- |
| CHICAGO 80 , HAymarket | NEWARK ELECTRONICS CORP.

223 W. Madison Street CHICAGO 6. STate 2.2944 INDIANA ARREN RADIO COMPANY FORT WAYNE, HArrison 1232
MASSACHUSETTS RADIO SHACK CORPORATION 730 Commonwealth Avenue
BOSTON, RE 4-1000
MICHIGAN
RAOIO DISTRIBUTING COMPANY
15600 WOodrow Wilson 15600 Woodrow Wilson
DETROIT, TO 9.7900
RADIO SPECIALTIES COMPANY
CETROIT 1, TEmple 3.9800
MINNESOTA
NORTHWEST RADIO
ELECTRONICS SUPPLY
co.
52 South Twelfth Street
MINNEAPOLIS 3 . FEderal 9.6346
GOPHER ELECTRONICS COMPANY 370 Minnesota Street
SAINT PAUL 1, CApitol 4.9666
MISSOURI
SCCHRRER INSTRUMENTS
5449 Deimar Blyd.
ST. LOUIS 12, FOrest 7.9800
NEW YORK
STACK INDUSTRIAL ELECTRONICS, INC.
OINGUSquehanna Street
BIGMTON. Phone: 3.6326
SUMMIT DISTRIBUTORS INC

916 Main Street
BUFFALO
2 Phe
100

NORTH CAROLINA
DALTON-HEGE RADIO SUPPLY CO., INC. DALTON-HEGE RADIO SUPPLY CO.
93a Burke Street
WINSTON SALEM, Phone: 5.8711
OHIO
PIONEER ELECTRONIC SUPPLY CO 2115 Prospect Ave.
CLEVELAND, SUperior 1.9411
OREGON
lou johnson
1506 N.W. Inving St.
PORTLAND, CApitol $2-9551$
PENNSYLVANIA
612 Arch Street RADIO COMPANY PHILADELPHIA 6, WAInut 5-7871 SUNSHINE SCIENTIFIC INSTRUMENTS PHILADELPHIA 15, Orchard $3-5600$ TEXAS

ENGINEERING SUPPLY COMPANY
6000 Denton Drive
DALLS 35, FLeetwood 7.6121 MIDLAND SPECIALTY COMPANY EL PASO, KEystone 3 -9555 BUSACKER ELECTRONIC EQUIIP. CO., INC. 1216 West Clay HARRISON EQUIPMENT COMPANY, INC. 1422 San Jacinto Stroot
HOUSTON 1, CApitol 4.9131
CIRCLE 106 ON READER-SERVICE CARD
E.ECTRONIC DESIGN • November 23, 1960

DON'T INVEST IN TEST EQUIPMENT 'TIL YOU COMPARE FEATURES WITH THE

NEW Simpson LABORATORY CINE

PULSE GENERATOR . . . model 2620
No Other Unit Offers Such Accuracy, Vorsatillty, and Sot-Up Speed Within this Price Range

Twin meters read pulse repetition frequency and pulse duration simultaneously. Rise time is $\mathbf{0 . 0 2}$ microseconds; decay time, 0.03 microseconds. Pulse duration, continuously variable from 0.1 to 1000 microseconds. Jitter, less than 0.005 microseconds. Pulse repetition rate, continuously variable from 10 to $100,000 \mathrm{pps}$ in $\$ \mathbf{6 2 5}$ four ranges. Price
WRITE FOR COMPLETE SPECIFICATIONS

WIDE-BAND OSCILLOSCOPE . . . model 2610
for the 1001 Jobs Where You Don'r Noed an Expensive Specialized Scope
Here's a high-gain scope that makes your test equipment appropriation go farther. Vertical sensitivity, 6 mv RMS. Vertical calibration accuracy, $\pm 3 \%$. Response (linear position): DC to $5.0 \mathrm{mc} / \mathrm{sec}, \pm 0.5 \mathrm{db} ;$ DC to $8.0 \mathrm{mc} / \mathrm{sec}, \pm 1.5 \mathrm{db}$. Response (transient position): DC to $3.5 \mathrm{mc} / \mathrm{sec},-3 \mathrm{db}$, and -6 db at $5.0 \mathrm{mc} / \mathrm{sec}$. Triggered and recurrent sweeps. Precalibrated sweep positions of $5,50,500,5000$ microsec- $\$ 575$
onds. Price WRITE FOR COMPLETE SPECIFICATIONS

LABORATORY STANDARD

 VOLT-OHM-MILLIAMMETER... model 2600A Solf-Powored Calibrator for Eloctrical Instrument Maintenance and High Accuracy Testing
Two terminal connections cover all 49 ranges for unusually fast operation. DC accuracy is $\pm 0.5 \%$ F.S.; AC, $\pm 0.75 \%$ F.S. (at $77^{\circ} \mathrm{F}, 25^{\circ} \mathrm{C}$). Separate meters (self shielded movements) for $\$ 1620$
DC and AC readings. Price
WRITE FOR COMPLETE SPECIFICATIONS

AVAILABLE FROM MANY INDUSTRIAL ELECTRONIC DISTRIBUTORS, COAST-TO-COAST Write to Factory for Dotalls

MANUPACTURERS OF ELECTRONIC TEST CQUIPMENT FOR OVER 50 YEARS

Simpson electric company
5202 West Kinzie St., Chicago 44, Illinois • Telephone: EStebrook 9-1121 In Canada: Bach-Simpson Lid., London, Onfario circle 107 on reader-service card

Westinghouse

SILICON POWER RECTIFIERS

AND
TRANSISTORS

NOW IN STOCK

YOU CAN OBTAIN
UP TO 1000 PIECES
OF MOST TYPES
AT
FACTORY PRICES FROM
 ELECTRONICS
-o herricks road.
MINEOLA. L. I., N. Y.

PIONEER 6.6520
TWX G-cY-NY-880u

the most powerful ra

Westinghouse

30-amp silicon "rock-top"

power transistors

New 30 -amp ratings, the industry's highest These latest Westinghouse Silicon Power Transistors are especially designed for those applications where you need more transistor power, extra long-life and extra stability un der all operating conditions. Your choice of nine devices in this new family-each rated at 30 amps. - for greater flexibility of circuit design in high-power applications. Other Westinghouse high-performance features include: - Exclusive "rocktop" ceramic construction for greater reliability - Voltage ratings to 200 volts • Double-ended case design • Low saturation resistance 250 watts power dissipation.
 lare now available. Westinghouse also fiers the 2N1015 and 2N1016 series of *licon Transistors, ideal as companion rivers. Military and industrial applications aclude: power supplies/regulators/ampli-ers/high-power switching/inverters.
or more information call your nearest lestinghouse representative or semiconuctor distributor. Or write: Westinghouse lectric Corp., Semiconductor Dept., Young. lood Pa. Sc-1012
Mestinghouse (W)

For immediate "off-the-shelf" dellvery, order from these Westinghouse order from
EASTERM
Pittsburgh, Pa./EX 1-4000 CRAMER ELECTRONICS. INC. ELECTRONIC WHOLESALERS, INCC general radio melburfe, Florida/PA 3-141 Camden, N.J./WO 4-8560 genesee radio parts co. Buffalo, M.Y./DE 966 KANN-ELLERT ELECTRONICS. M.NC. KANN-ELLERT ELECTRONICS. INC. $\begin{gathered}\text { Baltimore, Md./TV } 9-4242\end{gathered}$ milgray electronics $\begin{aligned} & \text { Mow York. M. Y./RE } 2-400\end{aligned}$ RADIO \& ELECTRONIC YART, M.Y./RE $2-4400$ RADIO \& ELECTRONIC PARTS CORP $\begin{gathered}\text { Cloveland, Ohio/UT i-6060 }\end{gathered}$ SCHWEBER ELECTRONICS,
LOng Island, M.Y./PI 6-6520

MOWESTERM

ELECTRONIC COMPONENTS FO
ELECTRONIC COMPONENTS FOR
INOUSTRY CO. ST. LOUIS. Mo./WO 2 -9917 INTER-STATE RADIO \& SUPPLY CO. LEMERT CO Denver 4. Colo. TTA 5-8257 RADIO DISTRIBUTING CO. Toxas/CA 4-2663 Memicompurindianapolis, Ind./ME 7-5571 SEmICONDUCTOR SPECIALISTS, INC. S. STERLING CO. Detroit, Mich./BR 3-2990 UNITED RADIO, INC. Cinnati, OHioma 15530 wholesale electronics suppiy WHOLESALE ELECTRONICS SUPPLY Dallas, Texas/TA 4-3001 WESTERM
ELMAR ELECTRONICS
MAMIITOM Oakland. Calif./TE 4-3311 HAMILTON ELECTRO SALES LOS Angeles, Calit./BR 2-9:54 MEWARK ELECTRONIIS CO.

Westinghouse

SILICON POWER RECTIFIERS

AND
TRANSISTORS
NOW IN STOCK
YOU CAN OBTAIN UP TO 1000 PIECES

OF MOST TYPES
AT
FACTORY PRICES
FROM

ELECTRON/CS
GO HERRICKE ROAD
MINEOLA. L. I., N. Y.

TWX G-CY-NY-B8OU

CIRCIE 109 ON READER-SERVICE CARD

Now...

A telephone type relay

 you can plug in and depend on:Style 5400A

Style 5400A relays are designed for reliable switching in commercial and military printed circuit applications. They are available with contact combinations up to 4 form C and with a wide variety of contact materials for dependable switching of contact loads up to 5 amps .

An insulating board is provided to maintain printed circuit terminal alignment and to protect the relay from mechanical damage. Four tapped holes can be provided in the relay frame for additional mounting support if desired. All relays meet applicable portions of specification MIL-R-5757C.

General Characteristics:
Maximum Coil Resistance: 11,000 ohms
Sensitivity:
Style 5409A (DPDT) 0.5 watts at pull-in.
Style 5424A (4PDT) 0.8 watts at pull-in.
Contact Combinations: To 4PDT
Military Specifications: MIL-R-5757C Dielectric Strength:

1000 VRMS coil and contacts
Operate Time: 15 Milliseconds Maximum
Release Time: 10 Milliseconds Maximum
Temperature Range: Standard construction to $85^{\circ} \mathrm{C}$.;
special to $125^{\circ} \mathrm{C}$.
Weight: Approximately 1.7 oz .
PRICE ELECTRIC RELAYS ARE QUALITY-CONTROLLED

For Additional Information, contact:
PRICE ELECTRIC

CORPORATION

302 E. Church Street • Frederick, Maryland MOnument 3-5141 . TWX: Fred 565-U CIRCLE 111 ON READER-SERVICE CARD

NEW PRODUCTS

Commutator Simulator
Provides flexible pulse train

A combination of magnetic logic elements and thyristors enables this unit to generate repetitive frames of pulses accurately simulating the output of a commutator. It provides pulse trains for PAM or PDM. Any pulse or group of pulses can be varied in width or amplitude or both; any number of pulses can be set up in a frame to operate at any repetition rate.

Portronics, Inc., Dept. ED, Box 697, Tarzana, Calif.
Price: $\$ 645$ for 28-channel unit.
Availability: Made on order for 30-day delivery.

DC-DC Converter

Weighs 1.5 lb

Model 100PS dc-dc converter converts battery power to primary power for aircraft, missile and industrial applications. Completely transistorized, the unit weighs about 1.5 lb and measures $4-1 / 4$ x $3-3 / 4 \times 2-3 / 4 \mathrm{in}$. The output is $250 \mathrm{vdc}, 75 \mathrm{w}$, and the input is 12 vdc .
Johnson Electronics, Inc., Dept. ED, P.O. Box 1675, Casselberry, Fla.
Price: $\$ 100$.
Availability: 30 days.

PHOSPHOR BRONZE

From $.000125^{\prime \prime}$ thin to $.010^{\prime \prime}$. Somers Thinstrip phosphor bronze is produced by a unique high-speed annealing process which provides a uniform fine grain structure. Thus, spring temper metal is produced with elongation up to five times that of coarse grain methods, making possible the forming of much more intricate parts for many instrument and electro-mechanical applications. And Somers' close control of grain size guarantees prolonged fatigue resistance unattainable through ordinary methods.
Whatever your Thinstrip problems, in copper, copper alloys and stain. less steel from .010" down and nickel and nickel alloys from .020" down, write for the Somers confiden. tial data blank. No obligation, of course.

FOR EXACTING STANDARDS ONIY

Somers Brass Company, Inc. 116 Baldwin ave., waterbury, conn. CIRCLE 112 ON READER-SERVICE CARD ELECTRONIC DESIGN • November 23, 1960

*Constant Voltage Output for low voltage applications

SPECIFICATIONS

Input Voltage $90-130$ Volts
Output Voltage 12 Volts Output Capacity 50 Watts

This unique, compact unit has a short-circuit overload protection and an output voltage variation, with rated input voltage of $90-130 \mathrm{~V}$, which is less than $\pm 1.5 \%$. The output voltage variation, with change of load current from $1 / 4 \mathrm{~L}$ to full L , is equal to $\pm 3.0 \%$. Hermetically sealed for high reliability and long life.

\mathbf{c}	Output \mathbf{V}	Full Load I	Input \mathbf{v}
cvo-10	10 V	5 amp.	$90-130$
Cvo-12	12 V	4 amp.	$90-130$
Cvo-14	14 V	3.5 amp.	$90-130$
Cvo-18	16 V	3 amp.	$90-130$
cvo-18	18 V	2.75 amp.	$90-130$

WRITE TODAY

Free Descriptive
Literature Available

St 5! 3 Springfield Ave.t. Berkeley Meights, N. J.
ES EX ELECTRONICS DIVISION, BERRELEY HEIGGTS, N. J UTOMATION PRODUCTS DIVISION, LEXINGTON, KY.
E jEX ELECTRONICS OF CANADA LTD., TRENTON, ONT. :IRCLE 113 ON READER-SERVICE CARD

Servomotor Tachometer

For navigation and control systems

For use in navigation and control systems, where fast response is needed, this unit has a torque of $0.25 \mathrm{oz}-\mathrm{in}$. with a rotor moment of inertia of $0.18 \mathrm{gm}-\mathrm{cm}^{2}$. Mechanical time constant is 0.01305 sec ; no-load speed is $10,250 \mathrm{rpm}$. A 400 -cps, two-phase unit, the tachometer is available with control phase windings of $26 \mathrm{v}, 36 \mathrm{v}$ (center-tapped) or 115 v . It weighs 2.72 oz and has a diameter of 0.75 in .
Sperry Rand Corp., Wright Machinery Co., Dept. ED, Calvin \& Holloway Sts., Durham, N.C.

Program Cam Timers

External clutch permits automatic reset

Series 650 multi-switch program cam timers have external clutches which permit instant automatic reset. Any time cycle from 1 sec to 60 hr and from 2 to 5 load switches can be specified. The units are available in 115 or $220 \mathrm{v}, 60$ cps models.

Industrial Timer Corp., Dept. ED, 1407 McCarter Highway, Newark 4, N.J.
Price: $\$ 25.50$ to $\$ 43.50,115-v$ units; $\$ 27.50$ to $\$ 45.50,220-v$ units.
Availability: 6 to 8 weeks.

- Adjustable
-Subminiature
- Weighs only 1.3 oz .
- Ni-Span C pressure capsule

NEW BRISTOL PRESSURE SWITCH

Here's a subminiature pressure switch that incorporates the superb reliability characteristics of larger Bristol pressure switches. Yet, it's both miniature in size and it's adjustable.
It's the Bristol Type C2060 . . . with six models covering ranges from 2-15 psi, absolute, to $20-200$ psi gauge.
Easy pressure adjustment. You can change pressure settings easily and simply, without tools. Just turn the top portion of the switch. A strong ball detent holds settings positively even under severe vibration and shock.
Withstands shock, vibration, and acceleration in excess of MIL-E-005272B requirements. SPDT snap-action contacts are rated at 5 amps , 125vac, 60
$\mathrm{cps} ; 2.5 \mathrm{amps}$ d-c resistive load.
Get complete specifications on the new Bristol adjustable pressure switch today. Simply write for Bulletin AV 2015. The Bristol Company, Aircraft Equipment Division, 151 Bristol Road, Waterbury 20, Conn.

Dimensions

- - FINE PRECISION INSTRUMENTS FOR OVER SEVENTY YEARS CIRCLE 114 ON READER-SERVICE CARD

E ECTRONIC DESIGN • November 23, 1960

If your printed circuit bcard designs involve switching, you can count on getting the best results by using AE Class E relays with direct-connect terminals.

Series EQPC relays, with end-mounted printed circuit lugs, occupy a minimum of board space, and furnish dramatic savings in assembly and wiring time.

The AE Series EQPC printed circuit relay is a miniaturized version of the premium-quality Class B telephone-type relay, with many of its

Subsidiary of
best features. Contact reliability exceeding 200 million operations can be expected.
Automatic Electric also supplies Class E relays with Taper-Tab terminals, and prewired for plug-in, with 8 - to 20 -prong octal plugs, with or without hermetically sealed containers or dust-tight housings.
Want details? Just write the Director, Control Equipment Sales, Automatic Electric Northlake, Illinois. Also ask for Circular 1702-E on Relays for Industry, and the new Conversion Factors booklet.

AUTOMATIC ELECTRIC

 GENERAL TELEPHONE \& ELECTRONICS
NEW PRODUCTS

DC Power Supply
Has $\mathbf{0 . 1 \%}$ regulation

Model 101-D solid-state de power supply has 0.1% regulation. This modular unit measures $2-1 / 4 \times 2-3 / 4 \times 6-7 / 8 \mathrm{in}$. Ripple is less than 1 mv rms. Input is 100 to $130 \mathrm{v}, 50$ to $2,000 \mathrm{cps}$. Tem. perature stabilization insures a drift of $\pm 0.01 \%$ per deg C max. An output of 12 vdc at 1 amp over a -25 to +45 C range can operate up to +71 C at reduced output current.
Viking Industries, Inc., Dept. ED, 21343 Roscoe Blvd., Canoga Park, Calif.
Price: $\$ 255$ ea.
Availability: 21 days.

Chart Recorder

Portable clamp-on, permanent pick-up types

The Rustrak chart recorder has been adapted for use with transducers in ac current ranges from 5 to 600 amp . Portable clamp-on and permanent pick-up type transducers are available. The ammeter reads and records the current directly onto a moving chart for a permanent record. The current recorder has variable chart speeds from 1 to 240 in . per hr. The unit indicates specific power loads at various times of the day, the location of a troubled area, and precise on-and-off time for power equipment. It can be located up to $2,000 \mathrm{ft}$ away from the current pick-up transducer. Accuracy is 5%.
Rust Industrial Co., Dept. ED, 130 Silver St., Manchester, N.H.
Price: $\$ 124.50$ with permanent transducer; $\$ 132.50$ with clamp-on transducer.

CIRCLE 116 ON READER-SERVICE CARD $>$
ELECTRONIC DESIGN • November 23, 1960

Mercury Battery

Is multi-voltage reference source

This low impedance, multi-voltage, mercury battery provides a laboratory reference source for instrument calibration, bias circuits and supplying stable dc output for measuring and control systems. Eight outputs from 0 to $10: 8 \mathrm{v}$ in 1.35 v increments are provided with an accuracy of $\pm 1 / 2 \%$ of stated open circuit voltage. The unit shock. It is temperature stable within 1% from -20 to +160 F at drains up to $100 \mu \mathrm{mp}$. The is not damaged by brief short circuits, sustained drain within rated capacity, severe vibration or manufacturer claims an accuracy of one part per million for short periods and less than $\pm 1 / 2 \%$ for 3 yr or more at normal temperature.
P. R. Mallory and Co. Inc., The Mallory Battery Co. Div., Dept. ED, Indianapolis 6, Ind. Price: $\$ 39.50$.

Tunnel Diodes

For computer applications
These tunnel diodes can be furnished with switching speeds up to 0.1 nsec and peak-tovalley ratios of up to $15: 1$. Other specs include: operation at clock frequencies up to $1,000 \mathrm{mc}$; peak currents of 5,20 and 50 mc controlled to $\pm 5 \%$; and low inductance of $0.4 \mathrm{~m} \mu \mathrm{~h}$. Temperature range is -65 to +150 C . The units can be dip soldered. They are designated types 1N3128, 1N3129, 1N3130 (germanium types) and 1N3138 (gallium-arsenide).
Radio Corp. of America, Semiconductor \& Materials Div., Dept. ED, Somerville, N.J.

Germanium Alloy-Junction
 Transistors

For use in computers

These germanium alloy-junction transistors are for use in computers. Types 2 N 1302 , 2N1304, 2N1306 and 2N1308 are npn units; types 2N1303 , 2N1305, 2N1307 and 2N1309 are pnp units. All units use the standard JEDEC TO-5 package. Maximum ratings for all units are: collector-to-base voltage, 25 v ; emitter-to-base voltage, 25 v ; collector current, 300 ma ; power dissipation in free air, 150 mw ; temperature range, -65 to +100 C .
Sylvania Electric Products Inc., Semiconductor Div., Dept. ED, 730 Third Ave., New York 17, N.Y.
Price: $\$ 1.60$ to $\$ 4.80,1$ to 99 units; $\$ 1.10$ to $\$ 3.30$, 100 to 999 units. Aı ailability: From stock.
\& EIRCLE 116 ON reader-service card EIECTRONIC DESIGN • November 23, 1960

The Martin Company, Orlando-8.229 people working in 21 new (1958) buildings on a 6,777-acre site. Here over 2,400 of the nation's best engineers pursue vital and stimulating projects like Lacrosse, Bullpup, GAM83 and Pershing missiles, Missile Master and other electronic systems.

CAREER Opportunities in Florida for engineers in these areas: design, development, fundamental and applied research, reliability, quality, systems test, manufacturing and associated engineering areas. . . Write C. H. Lang, Director of Employment. The Martin Company, Orlando 3. Florida. See facing page.

WORK IN THE Climate of achievement

NEW PRODUCTS

Type A-6 pressure transducer, designed for systems applications, is suitable for use in severe environments. The only moving part is the magnetic diaphragm. It measures slightly over 1.5 in. in diameter and less than 4 -in. long. The input and output circuitry are integrally contained within the unit.

Mitchell Camera Corp., Astromics Div., Dept. ED, 611 W. Harvard St., Glendale, Calif. Price: $\$ 245$.
Availability: 45 clays.

Adjustable Speed Drive

Standard speed range is $8: 1$
This device, called Statotrol drive, is available in standard ratings from $1 / 20$ to $3 / 4 \mathrm{hp}$. It operates at $115 \mathrm{v}, 50$ to 60 cps . The solid-state silicon-controlled rectifier converts ac to controlled dc.
General Electric Co., Specialty Control Dept.,

> Dept. ED, Schenectady, N.Y.

Axial-Lead Resistor

Has three w rating

The PW-3 axial-lead, power, wire-wound resistor has fire-proof inorganic construction. Resistance elements are wound on glass-fibre cores, tinned-copper leads are secured to the element and the assembly is sealed in a rectangular ceramic case. Resistance range is from 0.24 to 6,200 ohms with standard tolerances of $\pm 5 \%$ and $\pm 10 \%$. The unit has heavy-duty crimp termination and can stand a $5-\mathrm{lb}$ pull.
International Resistance Co., Dept. ED, 401 N. Broad St., Philadelphia 8, Pa.

Price: Less than $\$ 50$ per thousand.
Availability: Three week delivery.
first choice FOR critical applications ADJUSTABLE PRECISION POLYSTYRENE CAPACITORS

.01\% accuracy
hermetically sealed
SOUTHERN ELECTRONICS hermetically sealed precision adjustable capacitors are finding many applications in analog computers, network tuning circuits.
differential analyzers and similar electronic circuitry that requires the utmost in accuracy and reliability.
SEC has pioneered in the design and manufacture of hermetically sealed adjustable capacitors, and this experience has resulted in a $.01 \%$ accuracy standard, and a degree of in-circuit-reliability not previously available at any price. SEC adjustable capacitors incorporate features proven to be years ahead of any comparable product now available.
GENERAL SPECIFICATIONS
Available from .01 mfd . to 10 mfd . Accuracy: . 01%
Long Term Stability: 0.03%
Temperature Coefficient: - 100 PPM per ${ }^{\circ} \mathrm{C}$ Temperature Range: $-40^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}$ Write today for complete specifications and general catalog.
Fentcen Pioneers in eustom proesision capacifor engineering

SOUTHERN' ELECTRONICS! Corporation
150 WEST CYPRESS AVENUE BURBANK, CALIFORNIA

- $-=-=-=-=-=-=\square$

CIRCLE 118 ON READER-SERVICE CARD
- November 23, 1960

Why did I move to Martin-Orlando? Freedom. Freedom todo theworkIlike and the time and equipment to do it. I'm a physicist ...working in solid state physics. That's what I know-what I want to do. Nobody asked me to work in, say, spectrometrywhich is not my field. I was given a lab and facilities to work with, and, above all, a lot of freedom to carry out my work. Right now, we're applying modern theories to semi-conductors which haven't been investigated before . . . I also like the chance to talk with other scientists who understand my field and to work with some of the younger fellows who are coming along. \ddagger © Martin is one big company where you don't get lost in the crowd. 10 My wife, the kids, love Florida .. the climate, the ocean, country living. We have everything we need.
Write C.H.Lang, Director of Employment, The Martin Company, Orlando 4, Fla. (For Career Opportunities, see facing page.)

Panel-Mounted Dial Assemblies 458

Mount on any test panel

Models DA and DR dial assemblies mount on any test panel and accept the synchro without further fixturing. The synchro or potentiometer is inserted into a spring-loaded collet. The dial is graduated in 1 deg intervals, a scale vernier allows readings to 0.1 deg . Model DR is recommended where a high degree of set-ability is required, one rotation of the vernier knob rotates the synchro or resolver only 16 min -of-arc.

Theta Instrument Corp., Dept. ED, 520 Victor St., Saddle Brook, N.J.
Price: Model DA, \$85; model DR, \$170; fob Saddle Brook.
Availability: From stock.

Binary-Decade Counter

459
For general purpose applications

Model 11G, transistorized binary-decade counter, is designed for general purpose applications in data acquisition, data processing and digital control. The counter supply voltage may be varied by over a two to one margin from 0 to 100 kc . This permits application to existing power sources in the range from $\pm 7.5 \mathrm{v}$ to ± 17 v . The unit is converted to a four-bit register by deletion of the flip-flop coupling component.
Electronic Counters, Inc., Dept. ED, 155 Eileen Way, Syosset, L.I., N.Y.
Price: $\$ 82$.
Availability: From stock.

Draft-Field Transistor

584

With two emitters

Type 3746 drift-field transistor with two emitters is a germanium pnp alloy-type unit. It can be used in mixer-oscillator circuits in superheterodyne receivers, two-signal mixer circuits and switching circuits. Specs include: $V_{c b},-34 \mathrm{v}$ max; $I_{\text {cbo }}-16 \mu \mathrm{a}$ max; and $I_{\text {ebo }}-16 \mu \mathrm{a}$.
Radio Corp. of America, Semiconductor \& Materials Div., Dept. ED, Somerville, N.J.

For completeness of line, for quality and dependability, for availability from stock you'll like . . . ADC JACKS-First choice of the country's foremost manufacturers of communication equipment, unique one piece frame provides maximum strength ... ADC JACK PANELS-One of the most complete assortments of jack panels available for use wherever audio signals are switched and distributed... ADC PLUGS AND PATCH CORDS - Standard in the communication industry! . . ADC TERMINAL BLOCKS molded to your specific tions; six popular sizes in stock.

Write for
4 20th Shonivensury $\mathscr{Y}_{\text {ear }} \begin{gathered}\text { communications } \\ \text { component brochure }\end{gathered}$
ADC INCORPORATED
2035-13TH AVENUE SOUTH - MINNEAPOLIS 7. MINNESOTA PACIFIC BRANCH North Hollywood, California
TRANSFORMERS - REACTORS • FILTERS - JACKS AND PLUGS • JACK PANELE CIRCLE 120 ON READER-SERVICE CARD
flectronic Design • November 23, 1960

NEW PRODUCTS

Ignitron Tube

Is rated at 600 v rms
Type 7681 ignitron is claimed to permit a 50% boost in the power output of size C welders without increasing equipment dimensions. In ac control service, two of these tubes, in inverse parallel, control $1,800 \mathrm{kva}$ with an anode current of 113.5 amp . With a maximum anode current of 210 amp , the corresponding maximum demand is 600 kva . It can also be used in frequencychanger welding.

General Electric Co., Power Tube Dept., Dept. ED, Schenectady 5, N.Y.
Price: (OEM) \$125.16.
Availability: From inventory.
Transponder Function 565 Tester

Performs go/no-go testing

Model 860A is for use in ground checkout of installed transponders. It provides a check for receiver sensitivity and transmitter output in addition to a partial check of decoder-encoder performance. The unit is portable, weighs less than 4 lb , and operates from four $1.5-\mathrm{v}$ D batteries.

The Wilcox Electric Co., Inc., Dept. ED, Kansas City, Mo.

Digital Module

Operates from 0 to 200 kc

Type 201 Logibloc flip-flop operates from 0 to 200 kc . It can be converted to set-reset type bistable flip-flops, triggering-type binary counters, or shift registers. The output from each flip-flop can drive a maximum load of four flip-flops, four Nor circuits, eight gate resistors, or four gate capacitors. Rise time is $0.5 \mu \mathrm{sec}$ at 6 v .
Wang Laboratories, Inc., Dept. ED, 12 Huron Dr., Natick, Mass. Price: $\$ 31$ ea, 1 to 100; $\$ 29.45$ ea, 100 to 300; $\$ 28.67$ ea, over 300. Availability: From stock.

In RELIABILITY, testi

the equipment tested. ${ }^{\text {F }}$

G-E Five-Star Tubes
 application needs best

TUBE LIFE REQUIREMENTS: LOW GRID CURRENT, HIGH G $\mathbf{m}^{\mathbf{m}}$

in (14) Model 185A 800-mc Oscilloscope

Advanced pulsesampling circuitry of the 185 A calls for an amplifier tube with (1) grid current so low that current is not withdrawn from a grid-to-ground storage capacitor, and (2) high G_{m} for maximum amplification. These characteristics must be maintained. General Electric's 5-Star 5654 was chosen by HewlettPackard after extensive tests; helps in producing a dependable high-speed instrument to measure transistor response time and diode switching speeds, and test fast computer circuits and surveillance radars.

TUBE NOISE MUST REMAIN

 AT MINIMUM LEVEL
-..in (h) Model 425A Micro Volt-Ammeter

So sensitive it will measure down to 10 microvolts and 10 micro-microam-peres-stable, with extremely low drift - Hew-lett-Packard's 425A calls for sustained tube performance at minimum noise level. In the key amplifier socket for modulator output, General Electric 5-Star 5751-WA's have cut line rejects from noise sharply, and help preserve usefulness of the equipment after it is placed in service. Before, another tube in the same socket caused a 30% reject rate!

d. Hewlett-Packard (\$) uses

because they satisfy
 here is your proof!

tubes Must stay free of Interface effects

...in (4) Model 460B

In order that high pulse power or voltage may be applied to a load, Hewlett-Packard's 460B uses 13 5-Star 5654 tubes in a distributed-amplifier circuit. Tube requirements are severe. The high-voltage, low-duty cycle pulses entail operation at max ratings for brief intervals, between long periods of tube cut-off. Interface effects would handicap reliability. General Electric's 5654 's score both in minimum interface and high over-all performance...help Model 460B meet consistently, of ten exceed, its operating specifications.

TELEPHONE TODAYI Now York, WI 7-4065...Boston, DE 2-7122...Washington, EX 3-3600 Chicago, SP 7-1600...Dallas, RI 7-4296...Los Angeles, GR 9-7765, BR 2-8566...San Francisco, DI 2-7201

Progress Is Our Most Important Product

Model IO-10 oscilloscope can be used as a readout for computers, for wave-form observation, and for voltage, frequency and phase-shift measurement. Specifications include: vertical and horizontal channels, bandwidth, dc to 200 kc ; sensitivity, 0.1 v peak-to-peak per $1 / 4$ in . Input impedance is 3.6 meg shunted by 35 pf . Dimensions are $7-5 / 8 \times 4-5 / 8 \times 11 \mathrm{in}$.

Daystrom, Inc., Heath Co., Dept. ED. Benton Harbor, Mich.
Price: $\$ 79.95$

Semiconductor Tester 394

Output can be recorded
Called Smart, this automatic test system measures up to 16 different dc parameters of a transistor or other component. The data can be recorded within 12 sec on an IBM 526 summary punch or other recording device. Using all $16 \mathrm{pa}-$ rameters, 300 transistors may be tested per hour. Using fewer parameters, up to 500 semiconductors per hour can be handled.

Texas Instruments, Inc., Dept. ED, 3609 Buffalo Speedway, Houston 6, Tex.
Price: $\$ 70,000$ to $\$ 78,500$ without card punch.
Availability: Made to order; 90- to 120-day delivery.

Binary Encoding

 396 SwitchPermits stacking up to 16 switches
This switch links push-buttons mechanically to a common contact array, one for each bit of information at one end of the switch assembly. It requires only five connections. Over-all dimensions are $10-1 / 16 \times 1-11 / 16 \times 15 / 16 \mathrm{in}$. Depth behind the panel is $1-3 / 32 \mathrm{in}$. Contact rating is 3 amp at 120 v ac or 1 amp at 120 vdc .
Telex, Inc., Special Products Div., Dept. ED, 1633 Eustis St., St. Paul, Minn.
Availability: 30-day delivery.
< CIRCLE 123 ON READER-SERVICE CARD

MOMS A WHOLE FAMILY

Single Phase
iwith oftuut
Pouters from Powers from
3VA. 750 Va

Iwo.Phase

With Output
6VA.1500VA

Three-Phase
Powers From Powers from 9VA.2250VA

TYPICAL SPECIFICATIONS
(Model 250 Illustrated Above)

Fixed Frequency	400 C.P.S.
Accuracy	.25\%
Distortion	Less than 1\%
Regulation	Less than 1\%
Output Power	250 VA
Variable Frequency	350-450 CPS
External Freq. Range	50-4000 CPS
Output Voltage	0.125V RMS
Mounting	Desk Top or
	83/4" $\times 1$ 191.

- HIGHER POWER UNITS TO ORDER
- FREQUENCY ACCURACIES .AVAILABLE TO .001\%
off the shelf delivery on many of the models listed delow:

Model 1040 ($10,3 \mathrm{Ja}$) Modal $1040 \mathrm{~A}(10$. AVA) Model 1500 ($10,20 \mathrm{VA}$) model 150 (10.160 VA Model 250 (1D, 250VA) Model 750 (10, 150VA)

Model $1040-2(20.6 \mathrm{VA})$ Model $1040 \mathrm{~A} .2(20$, BVA) Model $1500-2(2 \varnothing, 40 \mathrm{VA})$ Model 150.2 (20, 320 VA) Modol $250-2$ (20, 500 Va$)$ Model 750.2 (20, 1500 VA

Modal 1040-3 (30, 9VA) Model 1040A-3 (30, 24YA) Model 1500-3 (3D, 60 VA) model $150-3$ (3D, 450VA) Model $255-3\left(3 \varnothing^{\circ}, 750 \mathrm{VA}\right)$ Model 750-3 (30, 2250VA)
WRITE FOR DESCRIPTIVE BROCHURES AND PRICES
INDUSTRIAL TEST EQUIPMENT CO.
55 E. 11 th ST. • NEW YORK 3-GR. 3-4684

NEW PRODUCTS

Analog Computer Kit

For basic anolog principles

This unit demonstrates basic-analog computing principles and can be used for multiplications, divisions, powers and roots, log operations and trig problems. It is assembled with a screwdriver and pliers, and operates on two flashlight batteries. The computer is $20-\mathrm{in}$. long, $9-\mathrm{in}$. wide, and 2 -in. deep.

Edmund Scientific Co., Dept. ED, Barrington, N.J.

Price: $\$ 14.95$ postpaid.
Availability: From stock.

Transistorized DC Power

Supplies

Line regulation is 0.01%

Model SR-1000EP provides 0 to 30 v dc at 1 amp max. Line regulation from 95 to 135 v is better than 0.01%. Noise to ground is less than $10 \mu \mathrm{v}$ peak-to-peak; leakage resistance is greater than $10,000 \mathrm{meg}$; output impedance is less than 0.1 ohm ; line-voltage transients do not cause overshoot or ringing. Model SR-1000E is similar, except that line-and load-regulation are 0.1%.
Video Instruments Co., Inc., Dept. ED, 3002 Pennsylvania Ave., Santa Monica, Calif. Price: SR-1000EP, \$340; SR-1000E, $\$ 295$.

Single-Turn Potentiometers

583

Are rated at 1.2 w at 60 C

The 1200 series units measure $7 / 8 \mathrm{in}$. in diameter and are rated at 1.2 w at 60 C . Resistance values are from 1 to 100 K , values up to 500 K can be furnished on special order. Units have glass-filled diallyl phthalate body, gold-plated solid-brass terminals, electrically-welded taps and stainless-steel housing clamps. Units are available for flange or bushing mounting for servo or panel use.

Duncan Electronics, Dept. ED, 1305 Wakeham Ave., Santa Ana, Calif. Availability: Immediate

Specifying filters to mee the more sophisticated performance requirements has its frustrations. Greater sophisticatior breeds more complexity, especially when compounded by mini aturization within even more critical limits. Put these all together and you have filter design problems tailor-made for our engi neering department. Try us.
E. G.-We produce a Low Pass Filter with less than 2\% overshoot on square waves and more than 30 DB/Octave attenuation.

Write toduy for your portfolio Write hoday for your portfolin

COMPONENTS CORPORATION 2855-57 N. HALSTED ST CHICAGO 14. ILLINOIS EASTGATE 7.6566

CIRCLE 125 ON READER-SERVICE CARD

Transistorized Power Supply
Portable unit

Model MP 12-2.5 miniature de power supply can be used as a component of automatic systems for remote programing and bench use. It is rated at 0 to 12 v dc, 0 to 25 amp , continuously variable over the entire range. Output voltage is progranable over the full range at 500 ohm per v. The unit can be used as a constant current source over the entire current and voltage range. Some specifications are: line regulation, 0.05%; load regulation, will not exceed 0.05%; ripple, 250 uv max; continuous operation at full load, up to 50 C . The unit measures $6 \times 8 \times 10 \mathrm{in}$.
Mid-Eastern Electronics, Inc., Dept. ED, 32 Commerce St., Springfield, N.J.
Price: F.O.B. Springfield $\$ 29.5$.
Availability: 3 wecks.

Frequency-To-DC Converter
Converts frequency to dc voltage

This converter, known as the "Freqmeter" is a completely solid-state unit which will linearly convert frequency or repetition rate of signals to a proportional dc voltage. It will function properly when driven with sine, square and triangular waves, pulses, etc. The unit will also indicate the average frequency of random signuls. The output may be used to drive meters, gilvanometers, oscilloscopes or other indicating devices. No warmup time is required.
Solid State Electronics Co., Dept. ED, 15321
I ayen St., Sepulveda, Calif.

NEW "SCOTCHCAST" RESIN POWDER © T PROTECTS PARTS IN SECONDS!
 New, from 3M, a 100% epoxy resin powder you

 can spray on! Protects, insulates, and moistureproofs electrical-electronic parts and related hardware such as transformer cans, computer racks, etc., in just seconds. Overspray is recover-able-there's no waste."Scotchcast" Brand Resin No. XR-5026 is a one-part epoxy powder that applies quickly and easily by spray gun, dusting, or aerated-bed process. Applied to pre-heated parts, it liquefies on contact, flows into a smooth even coat, and in most cases cures by residual heat alone in a
Minmisota Minina ane Manumacturino conpant .. WMERE RESEARCM IS TME KEY TO TOMORROW

matter of seconds into a strong, impactresistant finish.
"Scotchcast" Resin No. XR-5026 provides excellent edge coverage, high cutthrough resistance, fine electrical properties, and continuous class F operation. Resists attack by fuel oil, gasoline, kerosene, and most chemicals.

Discover how "Scotchcast" Resin No. XR-5026 can do a better job of improving
 your components and cutting your insulating costs. Write for complete information: 3M Co., Dept. EBA-110 900 Bush Ave., St. Paul 6, Minnesota.
Electrical Products Division

ELECTRONIC DESIGN • November 23, 1960

NEW PRODUCTS

High Potential Circuit Tester
For multiple circuit testing

Model T-660 high-potential circuit tester is a semi-automatic device for detecting high-resistance leakage breakdown, arcing or shorting on electronic-control circuits of all types. It is capable of testing 167 related circuits simultaneously against all others, or one non-related circuit at a time, and can be expanded for programming to customer requirements in multiples of 56 . The unit has variable-peak time adjustment from one to 60 sec , and can automatically advance from one circuit to another.
Trans-America Dynamics Corp., Dept. ED, 149-A Babylon Turnpike, Roosevelt, L.I., N.Y

Temperature Switches
Meet MIL-S-5272-A

Light-duty temperature switch SX336 is de signed for use where a highly sensitive control is desired. It is engineered to meet MIL-S-5272-A and industrial specifications where small size and light weight are necessary. Model SX337 has a low-standard setting tolerance of ± 5, depending on the balance of the electrical circuit involved. Model SX336 possesses a contact rating of 1 amp , 115 v ac, and can be hermetically sealed.
Sciaco Controls Inc., Dept. EI), 210 Taylor St., Riverside, N.J.

Transistor Test Equipment

Comes in modular form

Designed for manual, semi-automatic and automatic component testing, this line of test equipment is furnished in modular form. Each module contains basic test circuits. Various readout panels, including those with special indications, can be supplied. The unit is claimed to be compatible with present testing needs and future expansion programs.
Herbert Industries, Dept. ED, Washington and Noble Street, Norristown, Pa.

THERE ARE MORE UAYSTROM SQUARETRIM's IN THE FIELD TODAY THAN ALL OTHER SQUARE TRIMMING POTS COMBINED

Here's why...

Because engineers want to he sure of the hasic design, more of them look to the originator of the square-shaped trimmers. They look to Daystrom when specifying this kind of potentiometer.
Because they want to be sure of performance and reliability, more designers look to Daystrom for their sQuaretrim's. They know they can trust Daystrom specs. They appreciate the conservative ratings, and they have full confidence in the greater safety margin that such ratings afford. And they can that such ratings afford. And they can will go on meeting application requiremill go on meeting with the same high reliability ments with the same high reliability
that has been proven by the $2,000,000$ that has been proven by the $2,000,000$
units that have seen field service over units that have see
the past five years.
Because engineers want to be sure of availability, they like the convenience of doing business with two complete factory sales and stocking offices-one on each coast. They know that from these two factory offices and Daythese two factory offices and Day-
strom's 23 representatives and many strom's 23 representatives and many
stocking distributors from coast to stocking distributors from coast to coast, they can expect to obtain the
exact squaretrim's to meet their needs. exact SQUARETRIM's to meet their needs.
They know they are selecting from the They know they are selecting from the ming potentiometers available today when they specify the Daystrom squaretrim line.
That is why more knowledgeable designers looking for trimming potentiometers specify Daystrom square-TRIM-they want the best....and the best is easiest to get.
For more information or a complete file listing the entire SQUARETRIM line, contact your nearest Daystrom Repre contact your nearest Daystrom Repre-
sentative or Distributor, or write the factory direct. Ask for Data File factory dir
$E D-1179-1$.

POTENTIOMETER DIVISION ARCHBALD. PENNSYLVANIA CIRCLE 128 ON READER-SERVICE CARD

FIVE YEARS OF PROVEN TRIMMER PERFORMANCE

THE ONLY SQUARE TRIMMING POTS WITH OVER 2,000,000 UNITS DELIVERED

Daystrom squaretrim potentiometers may look like the many square configuration copies which have been flooding the industry in recent weeks, but they are different. This difference is in their outstanding performance, reliability and broad-line avail ability. Daystrom has had five years to develop, produce and field-prove the features of the squaretrim potentiometers, so whatever features are important to your application, you can be sure that there is a Daystrom squaretrim to meet your most exacting requirements.
The proof that Daystrom delivers what it promises can be found in over $2,000,000$ Daystrom squaretrim's which have
been placed into customer operation since 1955. It costs no more to be sure, so when you are ready to order trimming potentiometers, contact your nearest Daystrom Representative or Distributor for immediate delivery. Or you may write the factory direct for Data File ED-1350-1.

DAYSTROM, mcorfoonateo

1
POTENTIOMETER DIVISION Arehtald, Ponasylvania - CAnal 8.3300 (Wow York, M.Y.)

specifies Hill signal generators for use in the AR- 200 magnetic tape recorder because of their high reliability under extreme environmental conditions. The compact Hill units generate a precision 60 -cycle frequency which is power amplified to operate the recorder's capstan drive motor. While paralleling the qualities of advanced laboratory recorders, the sturdy Ampex AR-200 will withstand shock up to 15 G 's, operate at altitudes of 100,000 feet, function under excessive temperature changes and in up to 100% humidity. It displaces only 1.6 cubic feet.
BULLETIN FS 17900
fully describes Hill's Signal Generator used in this application. Write for your copy.
Hill Electronics manufactures precision, crystal controlled frequency sources, filters and other crystal devices for operation un. der all types and combinations of conditions.

HILL ELECTRONICS, INC.

 mechanicsburg, pennsylvania
NEW PRODUCTS

Bistable Amplifier

For use as a static relay

Responding to input signals of $0.05 \mu \mathrm{w}$, this amplifier produces a $24-\mathrm{v}$ dc output at up to 1 amp. Response time is 22 msec . The unit is a combination magnetic amplifier-controlled rectifier using all silicon solid-state components. It operates over the temperature range of -55 to +85 C.
Norbatrol Electronics Corp., Dept. ED, 356 Collins Ave., Pittsburgh 6, Pa.
Price: $\$ 92.50$.
Availability: Two weeks.
Time Analyzer
Features $10 \mu \mathrm{sec}$ resolution

The system 1500 can be used with any pulsedneutron source for making decay studies. It will make a time analysis of events which occur during a total interval of $200 \mu \mathrm{sec}$ to 2 sec . Events occurring during the total interval will be counted in one of the 20 channels which are opened in sequence for equal periods of time. Each channel has $10-\mu \mathrm{sec}$ resolution, channel width is adjustable $10 \mu \mathrm{sec}$ to 0.1 sec . Simple ganged control resets 10 scalers with one operation.

Eldorado Electronics, Dept. ED, 2821 Tenth St., Berkeley, Calif.

Price: $\$ 7,850$.

Availability: Approximately 60 days.

COMPLETE LINE of deflection yokes for every COMPLETE LNei
military and special purposection in production quan. military and specia purpose-in production quan.
tities or custom designed to your exact requirotiies or custom designed to your exact requiro-
For
For engineering assistance with your display problems, call on your nearest
SYNTRONIC YOKE SPECIALIST today:
Now York Area: Jules J. Bressler Co.
Phone: N.Y., OXford 5-0255; N.J., UNion 4-9577
Philadelphia Aras: Massey Associates
Phone : MOhawk 4-4200
Washington-Baltimoro Area: Massey Associates Phone: GRanite 4-2071

Indiannpolis: Joe Murphy

Phone: Victor 6-0359
Los Angeses: Ash M. Wood Co.
Phone: CUmberlind $3-1201$

Phone: CUmberland 3 -1201
 syntronic
 INSTRUMENTS,INC.
 100 Industrial Road, Addison, Illinois

Flexible Printed-Circuit Materials

Copper-clad unsupported Teflon, known CLAD ST- 1 is available in sizes up to 18×42 in., with base thicknesses from 0.003 to 0.060 in . Cop-per-clad glass-fabric Teflon grades are available in sizes up to $36 \times 42 \mathrm{in}$., with a thickness of 0.005 in . for DI-CLAD 116 T and a thickness of 0.010 for DI-CLAD 128T. These materials have been developed for flexible printed-circuit applications.
Continental-Diamond Fibre Corp., Dept. ED, Newark, Delaware.

Two Component Adhesive

481
This two-component adhesive offers a peel strength of $63.3 \mathrm{in}-\mathrm{lb}$ on aluminum-to-aluminum. It has a tensile-shear strength of $3,300 \mathrm{psi}$, a pot life of 3 to 4 days and 45% elongation. It is recommended by the manufacturer for bonding honeycomb-aluminum panels, ferrous metals, ceramics and glass.
Hysol Corp., Adhesives and Sealants Dept., Dept ED, Olean, N.Y.
Price: $\$ 6.27$ for a 1 qt trial sample.

Electrical Contact Lubricant

482
This lubricant and conditioner is intended for use on all electrical contacts. It is a high-molecular weight, branch-chain, saturated ester which may be used on arcing as well as non-arcing contacts. It has a wide temperature range, it pours at -50 F and flashes at +457 F . It increases contact surface life by reducing layers of tarnish.

Electralab Printed Electronics Corp., Dept. ED, Needham Heights 94, Mass.

Sub-Miniafure Crystal Sockets

483
These sub-miniature, low-loss crystal sockets are designed to conserve space in wired- or printed-circuit applications. The Teflon body reduces the danger of breakage. They are intended for use wherever low loss, frequency stability and mechanical shock and vibration are a problem. The contacts are made of silver-plated beryllium copper.
Garlock Inc., Dept. ED, Camden 1, N.J.

Cathode-Ray Tubes

476
This line of cathode-ray monitor tubes meets the specifications of broadcast- and high-resolution closed circuit monitoring. Tubes have an integral-safety plate laminated directly to the tube face. They are available in all sizes and types from $8-\mathrm{in}$. to $27-\mathrm{in}$.
Continental Electronics Corp. of California, Dept. ED, Los Angeles, Calif.

Printed-Circuit Test Points

484
These printed-circuit test points have a flashover of $3,000 \mathrm{vrms}$ and a capacitance of $0.25 \mu \mathrm{fd}$. The brackets are made of silver-plated and gold-flashed brass; the contact material is beryllium-copper, silver-plated and gold-flashed. They are available in the 10 standard RMA colors.

Garlock Inc., Dept. ED, Camden 1, N.J.
"Termaline" 50 ohm Coaxial Line LOAD RESISTORS
BIRD "Termaline" Load Resistors are designed to provide a constant impedance of 50 ohm from DC through the Resistor is intended to simulate an infinite length of 50 -ohm line, thus providing an almost refieco tionless termination. Low VSWR and freedom from radiation makes the Bird Loads extremely useful dur. ing adjustment and testing. Measurements of power are also possible when these Resistors are used as termina"Tons for the appropriate Bird Thruline" Directional Wattmeters. Accuracy in RF resist. ance, rugged ability to absorb power and absence of any need for adjustments has
"Termaline" the Bird sistors. For specifications on stenderd models see chart below. For other requirements please phone or write. Our long experience in this field may assist you in the solution of your problem

Model	Max. Power	Froq. Ronge	Mar. VSWR*	Input Connector
B0-M	5 W	0.4 KMC	1.2	Type "N" male
80-F	5 W	0.4 KMC	1.2	Pype "N" fomole
80-CM	5 W	0.4 KMC	1.2	Type "C" male
30.CF	5 W	0.4 KMC	1.2	Type "C" Somalo
SO-BNCM	5 W	0.4 KMC	1.2	Trpe BNC malo
S0-8NCF	5 W	0.4 KMC	1.2	Type BNC fomele
80-A	20 W	0.1000 MC	1.1	Type "N" fomalo
81	50 W	0.4 KMC	1.2	Type "N" fomato
81.8	80 W	0.4 KMC	1.2	Type "N" fomalo
82-A	500 W	0-3.3 KMC	1.2	Coplaner. Adeproer to UG-218/U
82-AU	500 W	0.3.3 KMC	1.2	"LC" Jack mates winh UG-154/U plug on RO-17/U cable
82-C	2500 W -	0-3.3 KMC	1.2	Coplanar. Firlings and cable essomblies for hoxible and rigid soex lines availeble

.eVSWR on oll models is 1.1 max. from DC 101000 MC .
-WWater coolod
Other Bird Instruments

ELECTRONIC CORP.

CHurchill 8-1200

30303 Aurora Road, Cleveland 39, Ohio YAN GROOS COMPANY, Woodlend VAN GROOS COMPANY, Woodland Hills, Colif. READER-SERVICE CARD

CAStell

 natural graphite that tests out at more than 99% pure carbon. Exclusive microlefte mills process this superb graphite into a drawing foathering lines of intense opacity for deanering more durable originals and clearer sharper prints. Extra strong lead takes acedlepoint sharpness without breaking or splinforing. Smooth, 100% grit-free consisrently uniform pencil affor pencil, in full range, 8B 10 10H.\#9007 CASTELL Pencil with Eraser.

> CASTELL Poncils and Loads draw perfectly on all surfaces, including Cronar ond Mylar base flms. Give graphite-saturated lines, easy 10 erase, no ghosting - excellent reproduction.

LIGHTS UP THE PATHS OF PRECISION

Man's creative ability and the tools that help him express it! Fortunate are those who toil in the vineyard of architecture, engineering, designing and drafting. For a few cents they can buy Castell, the world's finest drawing pencil, partner in progress the world over. This needs restating only for the benefit of the young now coming up in the profession. Old seasoned hands have known it for generations. CASTELL is an unquestioned fact in a creative man's life.

CASTELL Rubberless MAGIC-RUB ERASER soaks up graphite withouf abrading drawing surfaces, and residue rolls off. Leaves no "oil" stain or "ghost." Tests highest in ease of use, line removal and non-smudging. Tests first on Cronar and Mylar base films. For all papars and vellums.
\#9800SG CASTELL LOCKTITE TEL-A. \#9030 CASTELL ReAll Lead, matching GRADE Holder, perfectly balanced. lightwaight, with new no-slip functional grip that lightens Anger prossure withou slipping, and relioves fingor fatigue. Unique degree lead indicating device.
exacily \#9000 pencil in quality and grading, degrees 78 to 10H, packed in rousable plastic tube with gold cap.
Pencile Holders and hanll lors of CASTELL Pencils. Holders and Refll Leads.
A.W.FABER-CASTELL 41-47 Dickorson Stroot, Nowark 3, N. J.

\square
Cumumumin \square
\square
\square

NEW PRODUCTS

Subminiature Relay Adjustment 449
For use in extreme environments

This $100-\mathrm{mw}$ adjustment of the manufacturer's Series 33 relay is designated "VG" and is for applications where relay compactness and reliability under extremes of vibration and temperature are required. It has the following specifications: vibration, 30 g to $5,000 \mathrm{cps}$; operating-temperature range, -65 to +125 C ; contact rating, 2 amp at 28 v dc or 120 v ac, resistive load. Shock of 70 g and constant acceleration will not open contacts with relay energized or de-energized.
Sigma Instruments, Inc., Dept. ED, 192 Pearl St., South Braintree 85, Mass.

Elastomeric Mounting System

Protects small equipment on jet aircraft
Type BL-1705 mounting system, weighing 0.38 lb , supports a $1.2-\mathrm{lb}$ pressure transducer. The system is for shock and vibration protection from -65 to +300 F . Natural frequency is 45 cps . It accommodates mar.y different shapes and all instruments meeting ARINC 408.
Lord Manufacturing Co., Dept. ED, Erie, Pa. Availability: Made on order.

Sinusoidal Oscillator

Frequency range is $\mathbf{2 5} \mathbf{c p s}$ to 100 kc

Model S-100 silicon-transistor sinusoidal oscillator is an epoxy-encapsulated unit designed to produce a sine-wave signal. Output characteristics are: waveform, sinusoidal; frequency, from 25 cps to 100 kc ; amplitude, greater than 2 v rms for load impedance greater than 680 K ; output impedance, 20 K ; distortion, less than 5% total. Operating characteristics: supply requirement, $+28 \mathrm{v}, 1 \mathrm{ma}$; temperature stability, less than 0.03% frequency drift per degree C from -25 to +85 C .
Solid State Electronics Co., Dept. ED, 15321 Rayen St., Sepulveda, Calif.

Data Equipment
Complete line offered

The Digipac line of equipment includes logic blocks, chassis, and power supplies. A complete control system can be assembled from these standard units. No soldering is required. Three sizes of standard chassis hold 50,100 and 200 blocks and mount on a panel measuring 3.5 x 19 in .
Dynamic Controls Co., Dept. ED, 2225 Massachusetts Ave., Cambridge 40, Mass.
Price: $\$ 20$ to $\$ 39$ per block; $\$ 280$ to $\$ 625$ per chassis.
Availability: Immediate.
Time-Code Generator
Supplies a BCD time code

The ZA-803 time-code generator supplies a BCD time code which is read out once per second at a rate of 25 pps . It has a frequency stability of three parts in 10^{8} which is equivalent to one second per month. Provisions are made for even greater accuracy when required. A one-pps positive-pulse synchronizing signal is available on the unit for comparison with WWV time signals.
Electronic Engineering Co. of California, Dept. ED, 1601 E. Chestnut Ave., Santa Ana, Calif.
Price: $\$ 7,925$.
Acailability: From stock.

Varactor Diodes

In frequencies to 310 kmc
Types XD-501, 502 and 503 are diffused-gallium, arsenide mesa units. Type XD-503 is rated for a minimum cut-off frequency at breakdown of 31() kmc . Capacitance range is 0.5 to 1.4 pf . Series inductance is $0.7 \mathrm{~m} \mu \mathrm{~h}$ at 9.4 kmc . Units can be used in parametric amplifiers, communicatiol:s networks, missile-space vehicles, telemetry sys ems and other microwave equipment.
T exas Instruments Inc., Dept. ED, P. O. Box 31: Dallas 21, Tex.

ELICTRONIC DESIGN • November 23, 1960

Large • small - any size betweenALITE is geared to meet your requirements for CERAMIC-TO-METAL SEALS

FREE Technical Data

For complete technical data on Alite and Alite Ceramic-to-Metal Seals, write for Bulletins A-7R and A. 40 .

Alite offers completely integrated facilities and expert engineering assistance for producing high quality, vacuum-tight, ceramic-metal components for all your mechanical and electrical requirements.
Hermetic seals and bushings embodying Alite -the high-alumina ceramic developed by U. S. Stoneware-have the ability to withstand severe physical and thermal shock without leaks or cracking. Produced to precision tolerances, Alite units have high impact and tensile strengths for gruelling environmental conditions. They maintain excellent electrical and mechanical characteristics over a wide range of frequency and temperature. The extra-smooth, hard, high-fired glaze gives superior surface resistivity.
Every manufacturing step is closely supervised in our own plant. Positive quality control assures strict adherance to specifications, absolute uniformity and reliability of completed components.

Af no obligation to you, send us your drawings for recommendafions or quolation.

ALITE DIVISION

COUCH ROTARY RELAYS

Start with a unique and simple design - manufacture within a narrow range of tolerances - specify performance on the conservative side - this is how Couch solves the problem of supplying relays that meet the present and future needs of our aircraft and missile programs.

The record shows that this technique is successful: many thousands of Couch CVE type rotary relays are providing consistent flight insurance in complex systems under the most severe environmental conditions.

IMPORTANT SPECIFICATIONS

Contacts: 4PDT (dry circuit to 10 amps)
Size: $1^{3} / 32^{\prime \prime} \mathrm{D} \times 1^{11} 2^{\prime \prime} \mathrm{H}$
Weight: 3.2 oz . max.
Pull-in power: $1 / 2$ watt
Ambient temperature: -65° to $+125^{\circ} \mathrm{C}$
Vibration resistance: 20 G 's, 5 to 2000 cps
Shock resistance: 75G's operating, 200G's non-operating
Write for complete specifications.

COUCH ORDNANCE, INC. A Subsidiary of S. H. Couch Company, Inc.
3 Arlington St., North Quincy 71, Mass. Tel.: (Boston) BLuehills 8.4147 CIRCLE 136 ON READER-SERVICE CARD

NEW PRODUCTS

Instrument Choppers

For 60 and $400-\mathrm{cps}$ operation

These low-thermal-noise instrument choppers are for 60 - and 400 -cps operations. Thermal electromotive force is less than $0.5 \mu \mathrm{v}$ to +55 C . Models for dpdt and spdt circuitry are available. James Electronics Inc., Dept. ED, 4050 N. Rockwell St., Chicago 18, Ill.
Price: $\$ 25$ to $\$ 40$ ea.
Availability: From stock.

Accelerometer

Tri-axial type

Model 510-TX accelerometer makes simultaneous measurements of acceleration due to shock and vibration in three mutually perpendicular planes. An aluminum block, steel unit, it weighs 37 g and measures $1-1 / 8 \times 1 \times 5 / 8 \mathrm{in}$. Sensitivity is 20 mv per g along each axis; frequency response is 2 cps to 5 kc . Resonant frequency is 100 kc , maximum acceleration is 1,000 g and amplitude linearity is $\pm 1 \%$.
Columbia Research Laboratories, Dept. ED, MacDade Blvd. and Bullens Lane, Woodlyne, Pa .
Price: $\$ 465$ ea for up to five units.
Availability: Two weeks.

DC Amplifier

Has built-in power supply

This amplifier, model 1100, combines in one package a differential-input, wideband dc amplifier, a bridge balance circuit and a regulated strain-gage power supply. A second dc amplifier can replace the power supply. Eight units can be mounted on a single $19-\mathrm{in}$. rack.

Cubic Corp., Dept. ED, San Diego, Calif.

Resistance

 up to 100 Million MEGOHMS !From a miniature $1 / 4$ watt resifor, rated at 250 volts, to the 100 watt resistor, rated up to 125 KV . Tapped resistors and matched pairs also available. Low femperature and voltage coefficients
Few can match-and none can exceed-the stability and performance of rpc HIGH VOLTAGE RESISTORS! Ask anybody who uses them.
Tolerance-15\% standard. 10\%, 5\% and 3\% available. $\mathbf{2 \%}$ in matched pairs.
Further information or engineering assistance gladly supplied

RESISTANCE PRODUCTS COMPANY

9145 13th St., Harrisburg, Pa.
CIRCLE 137 ON READER-SERVICE CARD
ELECTRONIC DESIGN • November 23, 1960

Solid-State Telemetry Switch
Switching time is less than $20 \mu \mathrm{sec}$

This solid-state telemetry switch has been designed for use with crystal vibration transducers and in high impedance telemetry circuits. Switching time is less than $20 \mu \mathrm{sec}$. It is available in switching circuit arrangements ranging from one to six poles, single or double throw. There are four methods of actuating the switch: closing contacts; applying a de supply voltage shift; applying voltage to control leads; applying pulses to control leads. The size varies with the complexity of the switching circuit, approximately 0.7 cu in . per pole in single throk and 1.0 cu in. in double throw models.
Amelco, Inc., Dept. EI), 12964 Panama St., Los Angeles 66, Calif.

Printed-Circuit Plug

376
Measures 0.045 in. in diameter
 Designed for multiple installations. Made of No. 14 gauge steel and welded throughout.
Sloped front is 19° from vertical. - Panel mounting angles made of No. 12 gauge steel and tapped 10/32 on E.1.A. spacings; front and rear vertical angles adjustable to any position. Ball cornered end panels.

Frame finished in gray hammertone. End panels
(cat. No. Fs-1001

Contact your local

 distributor or SEND FOR complete catalogPREMIER METAL PRODUCTS CO.

337 MANIDA ST.
NEW YORK 59, N. Y.

MESTR

1667 I aurel Street, San Carlos, California EXPORT DEPARTMENT: EMEC, 127 Grace St., rainvew, New Yor
Wica AaAA: PREMIER METAL HOUSINGS, Lto.,
Wio CIR CLE 138 ON READER-SERVICE CARD

WIDE-RANGE TRANSISTORIZED POWER SUPPLIES:

available for immediate off-the-shelf delivery

Here is a complete line of transistorized power supplies. Exacting performance of the unique differential DC amplifier assures extremely tight static and dynamic regulation; ultrafast response . . . less than $20 \mu s e c$; very low output impedance and a high degree of drift stability with temperature - plus complete protection from short circuits and overload.

CHECK THE FOLLOWING CHART FOR YOUR REQUIREMENTS:							
	Output Voltage DC	Output Amps DC	Static Regulation		Output Impedance	Ripple	Panel Height
			Load	Line	Ohms	Millivolts Peak-to-peak	
T-200.C	0.10	0.3	.03\%	. 03%	. 040	2.0	$31 / 2$
T-205-C	0-10	$0 \cdot 10$.03\%	.03\%	. 012	2.0	$31 / 2$
T-210-C	$0 \cdot 10$	0.30	.03\%	.03\%	. 004	2.0	51/4
T-215-C	0.32	0.1	.02\%	.02\%	. 240	2.0	$31 / 2$
T-220-C	0.32	0.3	.02\%	.02\%	. 080	2.0	$31 / 2$
T-225-C	0.32	0.10	.02\%	.02\%	. 024	2.0	51/4
T-221-C	0.50	0.2	.02\%	.03\%	. 200	4.5	$31 / 2$
T-230-C	0.150	0.0.75	.02\%	. 05%	1.000	6.0	$31 / 2$
T-235-C	0.150	0.2	.02\%	.05\%	. 500	6.0	51/4

These transistorized supplies, contained in campact light-weight consoles, have front and rear terminals, permitting either rack or cabinet installation for such applications as laboratory, computer power (digital or analog), production testing, and ground support equipment.

Write for the Armour Stablvolt catalog describing the complete line of transistorized and magnetically regulated power supplies for your application.

BOOKS

LATEST BOOKS FROM WILEY IN AREAS OF ELECTRONIC DESIGN
 COUPLED MODE

and Parametric electronics

By William H. Louisell, Bell Telephone Laboratories. 1960. 268 pages. $\$ 11.50$

DIGITAL APPLICATIONS

OF MAGNETIC DEVICES
Edited by Albert J. Meyerhoff, Burroughs Corporation Research Center. 1960. Approx. 656 pages. Prob. $\$ 14.00$

INTRODUCTION TO
 MODERN NETWORK SYNTHESIS

By M. E. Van Valkenburg, University of Illinois. 1960. 498 pages. $\$ 11.75$

PHOTOCONDUCTIVITY OF SOLIDS

By Richard H. Bube, RCA Laboratories. 1960. 461 pages. $\$ 14.75$

DIRECT CONVERSION

OF HEAT TO ELECTRICITY

Edited by Joseph Kaye and John A. Welsh, both of M.I.T. 1960. 388 pages. $\$ 8.75$

FOUNDATIONS FOR A CONTROL THEORY

 OF MULTIVARIABLE SYSTEMSBy Mihajlo D. Mesarovic, Case Institute of Technology. A Technology Press Research Monograph. M.I.T. 1960. Approx. 128 pages. $\$ 3.50$

FREQUENCY-POWER FORMULAS

By Paul Penfield, Jr., M.I.T. A Technology Press Research Monograph, M.I.T. 1960. Approx. 256 pages. $\$ 4.00$

THE THEORY AND DESIGN

OF INDUCTANCE COILS, 2nd Edn.
By V. G. Welsby, University of Birmingham, England. 1960. In Press.

ELECTRONIC EQUIPMENT RELIABILITY

By G. W. A. Dummer and Norman B. Griffin, Royal Radar Establishment, England. 1960. In Press

SELECTED SEMICONDUCTOR

CIRCUITS HANDBOOK
Edited by Seymour Schwartz, Transistor Applications, Inc. 1960. 506 pages. $\$ 12.00$

THE ANTENNA

By L. Thourel, French School of Civil Aviation. 1960. In Press

Send now for on-approval copies
JOHN WILEY \& SONS, Inc.
440 Park Avenue South, New York 16, N.Y.

NEW PRODUCTS

Alpha-Numeric Readout Modules 361

For data display systems

Two basic types of alpha-numeric readout modules are offered as standard models. Momentary operation is provided by type 203, while type 204 has been designed for pulsecontrolled latching or memory operation. Measuring $3-9 / 16-\mathrm{in}$. high $\times 2-11 / 16-\mathrm{in}$. wide $\times 2-13 / 32-$ in. deep, the modules can be energized as required to display any letter in the English alphabet and any numeral from 0 through 9. Operation can be from any dc voltage from 1 to 30 v , with response time less than 0.1 sec .
Allard Instrument Corp., Dept. EID, 146 E. Ind St., Mineola, L.I., N.Y.

High Resistance Potentiometers 374

 Resistance range is 1 to 10 meg

This series of small, megohm potentiometers is designed for use where high resistance is required to match tube characteristics. Specifications are: resistance range, 1 to $10 \mathrm{meg} \pm 5 \%$; mechanical angle, continuous; electrical angle, $3: 2 \pm$ deg; linearity, 1% standard, 0.5% special; taps can be provided on the resistance elements. The manufacturer claims the potentiometers will meet or exceed all existing military specifications.

Accuracy, Inc., Dept. ED, 4 Gordon St., Waltham 54, Mass.

Impulse Relay
 580

Is rated at $1,500 \mathrm{w}$, non-inductive
Series 670 impulse relay has contact arrangements up to dpdt with ratings of $1,500 \mathrm{w}$, noninductive, or up to 20 amp , locked motor current. Applications include control of motors and speakers.
Guardian Electric Manufacturing Co., Dept. ED, 1550 W. Carroll Ave., Chicago 7, Ill.

CIRCLE 140 ON READER-SERVICE CARD

EXCLUSIVE EXPERIENCE and unique combination 0 Facilities offer big savings in time and money. For ex ample, Rototest offers 6000 amp. of regulated 28 Volt D.C. . . . poly-environmental facilities . . . equipment to perform valid random vibration tests. Fast service on any combination of over 160 Mil Spec qualifications 32 with ASESA recognition for QPL testing.

PROVEN ROTOTEST CAPABILITIES - More than 150 industrial and military repeat customers including Aerojet-General Corp., Autronics Corp., Beckman Instruments, Inc., Consolidated Electrodynamics Corp., Haydon at Torrington, Hughes Aircraft Co., Lockheed Aircraft Corp., North American Aviation, Inc., The Martin Co., Olin Mathieson Chemical Corp., RCA, Wright-Patterson Air Force Base.

GET YOUR ROTOTEST FACILITIES BROCHURE NOW Write or phone J. K. Davidson. Please indicate areas of interest or specific problem.

$\begin{aligned} & \text { DER } \\ & \text { IN } \end{aligned}$	
solving	
	as near as your telephone.
test	${ }^{2030}$ los ferese
Roblems	

Oscillographs
With chart speeds to 100 mm per sec

These direct-writing oscillographs provide chart speeds of $1,5,25$ and 100 mm per sec or $1,2,5,10,25,50$ and 100 mm per sec. They provide up to eight channels of curvilinear or rectilinear recording. A choice of galvanometers provides ranges of coil resistances up to 3,000 ohms. Chart-speed accuracy is maintained by means of a synchronous motor.
Photron Instrument Co., Dept. EI), 6516 Detroit Ave., Cleveland 2, Ohio.
Acailability: Stock to 30 days.

Mini-Module Crystal Oscillator 700

Temperature is -55 to +90 C
The M-3 Mini-Module crystal oscillator has a temperature range of -55 to +90 C . The oscillator module measures $1 \times 1 / 2 \times 3 / 8 \mathrm{in}$.; the nutput module measures $7 / 8 \times 1 / 2 \times 3 / 8 \mathrm{in}$. Each module weighs less than 1 oz . Vibration is 20 g , 50 msec . The oscillator module provides 1 v rms into 2 -k load; the output module provides desired sine-wave, square-wave or pulse
Monitor Products Co., Dept. EI), 815 Fremont Ave., South Pasadena, Calif. Price: $\$ 60$ to $\$ 80$, to 100 items. Availability: 60) days.

Miniature Feed-Through Capacitor

Has $\mathbf{5 0 , 0 0 0}$ meg $I R$ at room temperature

This miniature, feed-through capacitor has $50,0(0) \mathrm{meg}$ IR at room temperature. The unit is hiipotted at 800 wvdc and can be used at full, 200 wvdc from -55 to +150 C . Available in plain- or screw-thread types, it is standard in $-8: 0,1,000$ and $1,200-\mathrm{pf}$ values.
King Electronics, Inc., Dept. ED, 915 S. Meridiın Ave., South Pasadena, Calif. Price: 81¢ to $\$ 1.17,10$ to $1,0(1)$. Ace ilability: From stock.

IDEAL FOR MINIATURIZATION... WESTON $1 / 2$-WATT VAMISTOR ${ }^{\circ}$ IN $1 / 4$-WATT SIZE

Metal film resistor is supplied in tolerances of $\pm 1 \%, \pm 0.5 \%, \pm 0.25 \%, \pm 0.1 \%$

Exclusive Weston VAMISTORS are especially suited to applications requiring resistors of small size, close tolerances and high reliability. The $1 / 2$-watt "Missile Line" VAMISTOR is no larger than a conventional $\%$.watt, yet has a half-watt rating at $125^{\circ} \mathrm{C}$. "Missile Line" VAMISTORS, employing internal inert gas, therefore offer double ratings with the same physical size.
Unique Weston design utilizes a special alloy metal film, thermally fused inside a steatite tube. The epoxy-encapsulated unit has higher abrasion resistance, and greater resistance to thermal shock and voltage surges than ordinary film-type resistors.
Many other advantages are provided by the VAMISTOR: Selected units are available with a maximum temperature coefficient of 25 parts per million $/{ }^{\circ} \mathrm{C}$. Maximum voltage coefficient is only -1 part per million/volt. These resistors offer unusually long shelf life, produce no corona, and are practically non-inductive. Weston VAMISTORS are produced under the most rigid control standards, and meet or surpass all applicable MIL specifications.
Call your Weston representative for more information on the VAMISTOR line, or write for Catalog 04-101.
Daystrom, Incorporated, Weston Instruments Division, Newark 12, New Jersey. International Sales Division, 100 Empire St., Newark 12, N. J.
In Canada: Daystrom Ltd., 840 Caledonia Rd., Toronto 19, Ontario.

NOVAR

NEW PRODUCTS

Subcarrier Discriminator
Dynamic input range is 60 db

Model TDA-300 uses the phase-lock concep of coherent detection and has solid-state circuitry throughout. The dynamic input range provides for effective use of signals under severe conditions. Operating frequency is up to 300 kc and frequency deviation is $\pm 40 \%$. Input impedance is greater than 500 K and less than 30 pf . The unit is suited for rack mounting.

The Bendix Corp., Bendix-Pacific Div., Dept ED, 11600 Sherman Way, North Hollywood, Calif.

Chart Drive

Can be field mounted
This chart drive is for use with the firm's Speedomax G strip-chart recorder. Easily field mounted in place of standard change gears, the unit provides dial selection of eight chart speeds while the chart is running.

Barry Controls Inc., Insco Co., Dept. ED, Hollis St., Groton, Mass.

Germanium Power Transistors

In recent months, several leading tube manufacturers hav issued statements and product notices regarding new large receiving-type tubes having an all-glass base instead of the conventional plastic base.
With great pride, RCA announces its new line of NOVAR receiving tubes. These types, which are now being sampled developmentally to the industry, reflect the careful effort made by our engineers to design a product that has low initial cost and low replacement cost; top quality; and simplicity of installation and conversion.
The new NOVAR tube has a 9 -pin base with a pin-circle diameter of $.687^{\prime \prime}$ and a pin length of $.350^{\prime \prime}$. Most important, the inner leads used in NOVAR tubes have a diameter of 30 mils. Thus, the NOVAR tube types have a strong cage support and feature high heat-dissipation capability. Relatively cooler operation can therefore be expected from NOVAR types with consequent improvements in tube reliability and life.
Of equal importance is the wide distance between pins in the NOVAR tubes: $.212^{\prime \prime}$. As a result the new RCA types
can withstand high voltage gradients between pins. In other tubes using relatively close spacings, voltage breakdown between pins will occur at much lower values when all pins are used. It is evident, therefore, that certain families of tubes would be very difficult to design using a base with close pin spacings.
There is another factor. NOVAR tubes offer outstanding versatility. There is no function presently served by "octal" tubes that cannot be duplicated by the new RCA NOVAR line. In addition, these tubes will be priced lower than their present "octal" counterparts.
RCA believes that the introduction of NOVAR tubes represents a logical and realistic approach to the design of large glass-based receiving tubes. During 1961, as the new tubes are installed in a variety of home entertainment equipment, we are sure that our approach will be commended: that the development of the NOVAR line will have outstanding significance in the manufacture of finer, more reliable elecsignificance in the m.
tronics components.
RCA Electron Tube Division, Harrison, N.J.

Units rated for 100-C continuous-junction operation

These 15 -amp, germanium power transistors are rated for $100-\mathrm{C}$ continuous-junction operation. The units come in a T0-36 package and have a $150-\mathrm{w}$ rating. They dissipate 150 w at 25 C case temperature. Thermal resistance is 0.5 C per w max. The units are designated types 2N173, 2N174, 2N277, 2N278, 2N441 through 2N443, 2N1099, 2N1100 and 2N1358.

Motorola Semiconductor Products Inc., 1)ept. ED, 5005 E. McDowell Road, Phoenix, Ariz. Price: $\$ 2.25$ to $\$ 15$ ea.
Availability: From stock.

Tugboat for Space: Spaceborne scientific laboratories and platforms for further exploration into space are an accepted concept based on established engineering techniques. Components would be fired as individual units into space, on precalculated orbits, and there assembled. To solve the major problems of how men are to live and work in space during the assembly process, Lockheed has prepared a detailed engineering design of an astrotug - a manned vehicle housing a crew of two or three. Missile-launched, the astrotug will be capable of supporting its crew for a number of days in an environment of suitable atmosphere and with provisions for exercise, relaxation, bathing facilities, medical care, illumination and adequate food and water.

THE

 ASTROTUG

The Lockheed astrotug is a completely independent working vehicle. Personnel need not leave it in space suits in order to work on the project of assembling the space station components. As shown in the diagram, the tug consists of two double-walled pressure vessels approximately 20 feet long overall and 9 feet in inside diameter. Swivelling rocket nozzles are arranged for maneuvering. On the forward end. extending out are four mechanical manipulator arms with interchangeable "hands" for such specialized functions as gripping, welding, hammering, cutting, running screws, etc. "Hands" can be changed by remote control from inside. Viewing ports provide uninterrupted observation. Radar antennas, searchlights, and other equipment necessary to the tug's work are mounted externally. Main controls and instruments including radar, radio, infrared, computers and navigation consoles are duplicated in each of the two major compartments as a safety measure.
Men working in single units afloat in space suits would have little applicable force and could work for very limited periods of time. With the Lockheed astroiug, personnel could carry on the work in relative safety and comfort with maximum efficiency. ih special reentry vehicle, separate from the astrotug, has been conceived for ferrying to and from earth. Tugs themselves would remain floating in orbit indefinitely, being reprovisioned and refurbished as fresh crews arrive in relief.
Space vehicle development is typical of Lockheed Missiles and Space Division's broad diversification. The Division possesses complete capability in more than 40 areas of science and technology - from concept to operation. Its programs provide a fascinating challenge to creative engineers and scientists. They include celestial mechanics; computer research and development; electromagnetic wave propagation and radiation; electronics; the flight sciences; human engineering: magnetohydrodynamics; man in space; materials and processes, applied mathematics; oceanography; operations research and analysis; ionic, nuclear and plasma propulsion and exotic fuels; sonics ; space communications; space medicine; space navigation; and space physics.
Engineers and Scientists: Such programs reach far into :he future and deal with unknowa and stimulating environments. It it a rewarding folure with a company that has an oustanding record of progros and achievthent. If you are cyperienced in any of the above areas, or in related work, we invite your inquiry. Please write: Research and Development Staff, Dept. K-21,962 W. El Camino Real, Sunnyvale. California. U.S. citizenship or existing Department of Defense in ustrial security clearance required.

Locthood

MISSILES AND SPACE DIVISION
Systems Manager for the Navy POLARIS FBM; the Air Force AGENA Satellite in the DISCOVERER Program and the MIDAS and SAMOS Satellites

SUNNYVALE, PALO ALTO, VAN NUYS, SANTA CRUZ, SANTA MARIA, CALIFORNIA CAPE CANAVERAL, FLORIDA - HAWAII

PAGES
MISSING
ARE NOT
AVAILABLE

NOW . . . REGULATE IKV WITH THIS HERMETIC SEAL Miniaturized AC REGULATOR
NOW . . . nearly a kilowatt of $A C$ power can be regulated by this special Hermetic Seal Unit weighing less than 10 pounds. Built to Mil-E-5400 and Mil-E-5272 specifications, it is primarily magnetic assuring high reliability for critical aircraft and missile power regulation requirements. For regulating three-phase power, a package of three units performs efficiently. Write for literature describing electrical and mechanical characteristics of this entire family of AC Regulators.

SPECIFICATIONS: MODEL NO. VRAC-104
ELECTRICAL CHARACTERISTICS: ENVIRONMENT CONDITIONS:

INPUT: 108 to 122 volts
FREQUENCY: 380 to 420 cycles
OUTPUT, $115 \mathrm{~V} \pm \mathrm{IV}$ from 2108 amperes
RESPONSE: $<100 \mathrm{~ms}$ / $9 \mathrm{~V}_{\text {IN }}$ increments
DISTORTION: 5% max over input voltage
and frequency range (exclusive of source)
operating temperature ranges $-55^{\circ} \mathrm{C} 10+71^{\circ} \mathrm{C}$
DUTY CYCLE, Conlinuous

Allitude: to $50,000 \mathrm{ff}$.
Humidity: $95 \% 50^{\circ} \mathrm{C} 360$ hours Shock: 15 g 's
Vibration: 10 g's 5 to 500 cyeles

MECHANICAL

 C.HARACTERISTICS:Size: $5^{\prime \prime} \times 5^{\prime \prime} \times 12^{\prime \prime}$
Weights Less than 10 lbs .

WRITE FOR BULLETIN NPB-106

HST Special Products Division designs and produces customized regulators, power supplies, servo amplifiers, and other special packaged electronic components for industrial and military uses. Write us your requirements; we will gladly submit recommendations and quotations without obligation.

SPECIAL PRODUCTS DIVISION

2925 Merrell Rood Dallas 29, Toxas Phone Fleetwood 7-9481 CIRCLE 145 ON READER-SERVICE CARD

NEW PRODUCTS

DC Amplifier

Has 10-v output

This chopper-stabilized de amplifier is said to step up low-level signals from a variety of transducers to 10 v with a high degree of accuracy. The device, designated AccuData III, has both single-ended and differential input connections. Maximum gain is 34,000 ; input impedance is 20 meg single-ended or 2 meg differential; output current is 65 ma at 5 v or 25 ma at 10 v . Output impedance is less than 0.1 ohm . The instrument is described as useful in high-frequency data handling systems.
Minneapolis-Honeywell, Boston Div., Dept. ED, 40 Life St., Boston 35, Mass.

DC Power Supply
729
For tunnel-diode powering applications

Model TD1 transistorized, regulated dc power supply is for tunnel-diode powering applications. Specifications include: output voltage, 0-1.5 v at $0-250$ ma currents; regulation, 1 mv per 10% line change at any rated load; load regulation, 1 mv from no-load to full-load; ripple, less than $600 \mu \mathrm{v}$ rms; transient response, less than $50 \mu \mathrm{sec}$; line input, from 105 to 125 v ac, single phase, 60 cps . The unit has multiple zener diode reference. Remote error sensing terminals are provided to obtain low output impedance at the load.

Universal Electronics Co., Dept. ED, 1720 22nd St., Santa Monica, Calif.
Price: $\$ 495$ ea, F.O.B. Factory.
Availability: From stock.

Power Supply

Provides 30 amp at 0 to 36 v

Model P-30-36 power supply, using silicon rectifiers and an all-transistorized regulator, has a regulation of 0.5% and less than 25 mv ripple. It is equipped with a four-range output voltage switch; operation can be at 50 to 400 cps. Rack height is 12.25 in .

Foto-Video Electronics, Inc., Dept. ED, 36 Commerce Road, Cedar Grove, N.J.
Price: \$995.
Availability: From stock.

Environmental conditioning tof
detection systems

AiResearch cooling of airborne detection systems is accomplished by an extremely reliable, compact unit which is both an air-cooled cold plate and mounting structure for the detection system's transistorized power supply.

This lightweight package weighs 7.2 lb ., and has a heat rejection of 500 watts. It consists of four AiResearch Minifans and an all-aluminum tructure with 44 separate modules. Each module is electrically isolated and may be removed individually for quick, easy replacement.

AiResearch is the leading designer and manufacturer of such advanced electronic conditioning equipment and systems. This production unit is one example of the broad productionproven capability of AiResearch in providing extremely reliable, lightweight, compact cooling packages for aircraft, missile, space and ground support applications.

Environmental conditioning equipment has been produced for the following electronic systems: Detection Communication - Control • Ground Support Guidance
Write for literature today.

AiResearch Manuructuring Divison
Los Angeles 45, California
CIRCLE 146 ON READER-SERVICE CARD ELECTRONIC DESIGN - November 23, 1960

How to double performance of your magnetic tape recorders

Now you can record $125-\mathrm{kc}$ data at 30 ips instead of 60 on most existing data recorders. How? By using the new Ampex FR-600 for playback. New record/playback capability in the FR-600 saves previous equipment from obsolescence with some added benefits of its own-for example, recording 500 kc at 120 ips .
Your curiosity whetted? See our full page on the FR-600 in November 9 ELECTRONIC DE SIGN, or Write for descriptive iterature,
along too

MPEX DATA PRODUCTS COMPAN Box 5000 Redwood City, California

Interval Timer

Time delay is from 2 to 300 sec

Model 50-203 flip-flop device has a time delay of 2 to 300 sec . It operates from a -20 v power input, two signal inputs (start and stop), and two outputs. One output must be connected to an external emitter-follower to drive the timing circuit. The signal inputs consist of a positive pulse approximately $20 \mu \mathrm{sec}$ wide, 10 v in amplitude, and having a maximum source impedance of 5,000 ohms. Retriggering time is 50 msec , temperature range is $-6 i$ to +160 F , and vibration is up to 15 g . Timing is accurate to within $\pm 10 \%$.

Hydro-Aire Co., Dept. ED, 3000 Winona Ave., Burbank, Calif.

Transistorized Telemetering Unit 730

For telemetering stress, strain, torque and temp

Model WT-75-1 transistorized telemetering unit is for telemetering stress, strain, torque and temperature from a moving object to a remote indicator. Specifications include: linearity, $\pm 1 \%$ full scale; range, 50 ft unobstructed. Shock is 30 g ; vibration is $30 \mathrm{~g}, 10$ to $2,000 \mathrm{cps}$; rotation is $22,000 \mathrm{rpm}$. Operating temperature is 0 to 100 C .

Wiley Electronics Co., Dept. ED, 2045 W. Cheryl Drive, Phoenix, Ariz.
Availability: 30 to 60 days.

Three-Pole Switch

Slide-switch type
Type SW-369 3pdt slide switch can be used in audio systems, electronic measuring devices and industrial controls. It is rated at $3 \mathrm{amp}, 125 \mathrm{v}$ ac-dc; models with other ratings can also be furnished. All terminals and contacts are silver plated. Distance from mounting surface to tip of terminal is 0.575 in .

Continental-Wirt Electronics Corp., Dept. ED, 26 W . Queen Lane, Philadelphia 44, Pa.

High Efficiency Stub Antenna... another design problem solved by HRB-SINGER

Among HRB's most recent developments in the area of antenna design is the unusual and outstanding tunable stub antenna. This extrasturdy antenna is truly omni-directional in the horizontal plane. Used in conjunction with UHF transmitter receivers, its prime application is in aircraft and missile telemetry. Its capacity to remain unaffected by extremely high altitudes and its wide range tunability make it ideal for application in missile tracking.

The tunable stub antenna represents only one of the many major developments brought about through the designing of antennas to meet specific customer requirements and applications. Years of experience in the development of these highly complex and versatile antenna designs provide a diversified capability to solve your specific antenna problem. Investigate by writing Dept. E-10. Informative literature describing the HRB-Singer antenna capability is yours for the asking.

ELECTRONIC RESEARCH AND DEVELOPMENT in the areas of:
Communications - Countermeasures - Reconnaissance - Operations Research Human Factors - Intelligence - Weapons Systems Studies and Analysis • Nuclear Physics - Astrophysics - Antenna Systems

HRE-SINGER, INC. Sclence Park, Stato College, Pa.

NEW PRODUCTS

High-Precision Bridge Console 724
For comprehensive audio-frequency measureme its

The BC-101 bridge console measures impedance from $20 \mu \mathrm{hm}$ s to thousands of megohms; accuracy is 0.01%. Comparisons of impedances can be made to an accuracy of 0.001%. The console incorporates these six units: Type S-121 audio-signal generator; B-821 high-precision, low-impedance comparator; B-921 high-precision. high-impedance comparator; B-221 universal bridge; B-321 low-inductance bridge; and A-321 waveform analyzer.
Wayne Kerr Corp., Dept. ED, 1633 Race St., Philadelphia 3, Pa.
Price: $\$ 10,800$.
Availability: Custom-made

Direct-Reading Oscillograph

The 1406 Visicorder produces instantly readable records of up to six channels. It can be furnished with a choice of galvanometers and rec-ord-drive speeds and is available with grid line and timing systems. It records variables from 0 to 200 cps , has paper speeds up to 25 in . per sec and uses an internal three-speed timer.
Minneapolis-Honeywell, Heiland Div., Dept ED, 5200 E. Evans Ave., Denver 22, Colo. Price: $\$ 1,845$ with galvanometers, grid line and timer.

Miniature Fixed-Delay Timer

Range is $\mathbf{2 5} \mathbf{~ m s e c}$ to $\mathbf{1} \mathbf{~ m i n}$

This fixed-delay timer is a solid-state device with a range of 25 msec to 1 min . It weighs 1.4 oz and occupies less than 1 cu in . The timer is temperature-compensated :vithin 5% from -55 to +80 C . Input voltage is 18 to 30 v dc . The device withstands $20-\mathrm{g}$ acceleration for 1 min and has a 100,000 -cycle life. Adjustable units are available on request.
Elgin National Watch Co., Micronics Div Dept. ED, 21001 Nordoff St., Chatsworth. Calif

Variable Resistors

Slide-switch type
These slide-switch control units are based on the firm's model 2 composition variable resistor. It is a $1 / 2-\mathrm{w}$ unit, measuring $15 / 16 \mathrm{in}$. in diameter, with resistances from 200 ohms to 10 meg . Switches are available in positive or spring-return types, spst to 4 pdt . Ratings of up to 6 amp can be furnished.
Centralab, Div. of Globe-Union Inc., Dept. ED, 900 E. Keefe Ave., Milwaukee 1, Wis. Price: $\$ 0.60$ to $\$ 0.70$ ea.

Portable Volt-Ohmmeter

Has an accuracy of $\pm 0.1 \%$

Model 61 battery-powered volt-ohmmeter is for precision measurement of dc voltage and resistance. A pot circuit is used for voltage measurements. The unknown voltage is compared to an accurate 0 to 1.000 v (or 0 to 0.1000 v) reference voltage. Voltages above 1 v are divided with a precision $10-\mathrm{K}$ ohm per volt divider to 0 to 1 v .
F. W. Bell, Inc., Dept. ED, Columbus, Ohio. Price: $\$ 425$ ea.
Acailability: November 15, 1960.
Push-Pull Servo

Model 1057 push-pull servo supplies 113 v $=10 \%$. It operates on $400 \mathrm{cps} \pm 4 \mathrm{cps}$. Input impedance is 500 ohms; output is 26 v at 400 cps . Temperature range is -65 to +165 F . The unit tands 0.4 v per cps from 0 to 300 cps . It meets MIL-E-5272A specifications.
Li men, Inc., Dept. ED, Moen Ave., P.O. Box P05, Joliet, Ill.
Pric: Sample, $\$ 275$; 2 to 4 units, $\$ 220$ ea. Aca lability: Made on order.

ELEC.TRONIC DESIGN • November 23, 1960

for Communications - Navigation - Telemetering Radar \& Missile Application

General purpose glass or ceramic planar triodes to $5000 \mathrm{mc} / \mathrm{sec}$

Special purpose glass or ceramic planar triodes - examples of special characteristics now available:

- Quick warm-up (12 sec. cathode heating)
- High current cathode (150 ma plate current)
- Plate pulsed power
(2 - 3 kw to $3000 \mathrm{mc} / \mathrm{sec}$) (2 kw to $5000 \mathrm{mc} / \mathrm{sec}$)
- Grid pulsed power
($11 / 2$ to 2 kw to $3000 \mathrm{mc} / \mathrm{sec}$)

Machlett design capability in UHF planar tubes includes-

Mesh grid since 1945 (gold-plated tungsten mesh grid retains tight tolerance stability over broad thermal range. Detuning effects of sagging grid largely eliminated.)

NEW thermally stable anode (eliminates detuning effects of varying plate dissipation.)

Write now for the Machlett UHF Planar Tube Brochure - describing the industry's strongest line of planar tubes.

IACHIEDD
the machlett laboratories incorporated
Springdale connectiout
Subsidiary of Raythoon Compony CIRCLE ISI ON READER-SERVICE CARD
measures peak, or peak to peak PULSES AT PULSE RATES AS LOW AS 5 pps
... VOLTAGES OF 1 mv TO 1000 v

Also measures

Complex Waveforms

having fundamental of 5 cps to 500 kc with harmonics to 2 mc .

Accuracy

is 2% to 5% OF INDICATED VOLTAGE, depending upon waveform and frequency.

Scale

is the usual Ballantine log-voltage and linear db, individually handcalibrated for optimum precision.

Input Impedance

is 2 meg, shunted by 10 pf to 25 pf .

NEW PRODUCTS

Digit-Matic Data Punch

For remote-control adding machine operation

The Digit-Matic data punch is for remotecontrol adding machine operation through the use of solenoids. The results are a printed-detail tape and a punched-data processing tape. The unit can be activated through digital converters, control instruments, digital counters, digital test equipment, flowmeters, pulse-height analyzers and time-interval meters. The punched tape contains coded information in $5,6,7$ or 8 channels. The output can be used to plot curves. The complete line includes the 10 -key serial entry model and the parallel entry full keyboard machine.
Victor Adding Machine Co., Dept. ED, 3900 N. Rockwell St., Chicago 18, Ill.

Price: Approx. $\$ 2,000$.
Availability: 90 to 120 days.

Thermocouple Wire

Measures $\mathbf{- 2 0 0}$ to $+\mathbf{1 , 3 0 0} \mathbf{C}$

Thermocoax thermocouple wire, for measuring temperatures from -200 to $+1,300 \mathrm{C}$, is available in lengths to 650 ft . It consists of two conductors, a chrome-nickel alloy and an aluminumnickel alloy, within a stainless steel or Iconel sheath. Diameters are as small as 0.013 in . Average sensitivity is $41 \mu \mathrm{v}$ per $\operatorname{deg} \mathrm{C}$; accuracy is $\pm 2.8 \mathrm{C}$ from 0 to 350 C and $\pm 0.75 \%$ from 350 to $1,300 \mathrm{C}$.
Amperex Electronic Corp., Nuclear Products Div., Dept. ED, 230 Duffy Ave., Hicksville, L.I., N.Y.

Trimmer Capacitor

THIS "A" MODEL is the result of improvements and new features AFTER 11 YEARS OF MANU-

Write for brochure glving many more detalls

BALLANTINE LABORATORIES Inc.

Boonton, New Jersey

 CIRCLE 155 ON READER-SERVICE CARD

SOLID STATE FRONTIERS

TRACKING DOWN A WHISPER AT 20,000,000 MILES

Keeping in touch with satellites in their solar orbits calls for detection of the last faint whisper of available sig. nal strength. At ranges approaching 20.000 .000 miles, the conservation of only 0.1 db in signal may add another 200,000 miles of closed contact.
At these extraterrestrial boundaries, optimum stabilization of parametric amplifier gain with antenna mismatches takes on critical importance, and utilization of the non-reciprocal properties of ferrite isolators to achieve this stability - without introducing excessive loss - appears indispensable.

For the Pioneer V. currently breaking all long-distance communications records, compact UHF isolators, developed by Motorola, provide this important assistance. At primary receiving stations in the satellite tracking network. these tiny ferrite devices help to improve receiver performance by stabil izing the gain of parametric amplifiers fro.n changes in antenna impedance.
Motorola Type LI01 UHF Isolator illustrated, provides more than 10 db isolation with less than 1 db insertion loss over a 30 mc bandwidth.
Originally designed for this satellite tracking application, Type LIO1 is now
 a standard item ideally suited for all wide band, low power applications where minimum size and weight are essential without sacrifice to performance.
REPRESENTATIVE MOTOROLA SOLID STATE DEVICES
ISOLATORS • CIRCULATORS • PARAMETRIC AMPLIFIERS - SWITCHING CIRCULATORS - HIGH-SPEED, BROAD-BAND SWITCHES - PHASE SHIFTERS.

For detailed information write:
MOTOROLA INC. solid state Electronics

M Department

8201 East McDowell Rd, Scottsdale, Arizona WHitney 5-6311

CIRCLE I56 ON READER-SERVICE CARD
ELECTRONIC DESIGN • November 23, 1960 CluFORMA: Brill E

 COLORADO: Denver Electronics supply Co., 1254
Arapahoe St. Denver 4. Arapanoe St., Denver 4.

 MIINOIS: Memark Eloctronics Corp., 223 W Madison St., Chicago 6 .

 Redwoor St., Baitimore 1 .
 ${ }_{31} 70$ commonweatth Ave., Boston 17 . MEW JERSEY: Foderatiod Purchaser Inci, ${ }^{1021}$
 sorvice ce., inc., s13 cooper St., Camden 2.
 Co, 1712 Lomas Bl. N.E.E. Albuquerque; Radio
Spocialitios Co., inc., 209 Penn Ave., Alamasordo.

 13: Stack industrial Eiectronice, Inc." 45 wash: ington Street, Binghamtonn Terminal Elect. Inc.,
236 W .17 St ., W. Y . 17. Month CAROLINA: Dalton-Meze Radia
Co., Inc., 938 Burke st., Winston-Salem.
PEMNSYLLVANIA: Almo Radio co., 913 Arch st

 borre \& Co., 2520 N. Broad St., Phila. iwn stosal Rasii Prarsis co., Inc., 1650 whiteford Rd., York.
 TEXAS. All-state Dies Co 1: Busacker Elect. Equip., Co. Inc.. 1216 Ave. W allas Houston 19: Ensineoring Supply cic., 6000 Denton
 S. Flores st., San Antonio. UTRM: Carter Supply co., 3214 Washington mashimeron: ce 6 Radie supply co., 2221 CAMADA: Electro.
Connod. Eloctro Sonic Suply Co., Lto., 543
Yonge Street, Toronto 5 , Ont.
ARCO ELECTRONICS, INC.

CIRCLE IS3 ON READER-SERVICE CARD

Another New Achievement from EI-Mlenco

A New Smaller Size

Sets New Standard in Miniature Reliabilityl

This sub-miniature DM-10 Mica Capacitor retains the same superior electrical characteristics of silvered mica capacitors as found in much larger sizes. It assures a high order of performance in extreme miniaturization applications - missiles, printed circuits and all compact electronic equipment. Parallel leads provide greater versatility. Tough phenolic casings protect against physical damage and penetration of moisture.

Capacity and Voltage Ranges

Working Voltage	Capacity Range
100 WVDC	1 MMF thru 360 MMF
300 WVDC	1 MMF thru 300 MMF
500 WVDC	1 MMF thru 250 MMF

Operating remperature: up to $150^{\circ} \mathrm{C}$
Characteristics: C, D, E and F, depending on
capacitance value

"26 AWG (.0159") Copperweld wire
EL.MENCO'S SUB.MIDGET DM. 10
THE NEW SMALLER MINIATURE MICA CAPACITOR

$$
\begin{aligned}
& \text { 5. THE ELETRO MOTVE MFG. CO., INC. } \\
& \text { Manufocturors of Elomoneo Capacilors } \\
& \text { - molded mica• dipped mice - mico rrimmer • dipped papar } \\
& \text { - rubular poper - ceramic - silvered mico films - ceramic dises } \\
& \text { Arco Electronics, Inc., } 64 \text { While St., New York 13, N. Y. } \\
& \text { Exclusive Supolier To Jobbers ond Distributors in the U.S. and Conada }
\end{aligned}
$$

range: $\mathbf{4 0} \mathbf{H}$ at $\mathbf{1 2} \mathbf{A m p}$. rms

NWL's latest unit is especially designed and engineered for air-blast operation at a temperature rise not exceeding $10^{\circ} \mathrm{C}$. Radial ducts permit free flow of air along both sides of the pie-wound coils. Rigid mechanical support assures permanent alignment of coils.

The reactor illustrated, is only one of many special units manufactured by NWL, such as: Iron core reactors, large power, electronic and pulse transformers, chokes, etc.

Each NWL unit is thoroughly tested and must meet all customer requirements before shipment. We shall be pleased to quote you up to 300 KV and up to 500 KVA . depending on your individual requirements.

NOTHELFER WINDING LABORATORIES, INC., P.O. Box 455, Dept. EDII, Trenton, N.J (Spocialists in eustom-building)

NEW PRODUCTS

Thyratron

For control applications

Type NL-6989/C6J/KL 6.4-amp thyratron is a $1,000-v$ peak-forward and $1,250-\mathrm{v}$ peak-inverse tube. The tube is for control applications involving inductive loads. Commutation factor is 130 v per $\mu \mathrm{sec} \mathrm{x} \mathrm{amp}$ per $\mu \mathrm{sec}$. Specifications include: filament volts, 2.5 v ; filament current, 21 amp ; peak-anode current, 80 amp ; ambient temperature, -55 to +75 C . The NL-C6J $/ \mathrm{K}$ is a pinbase model and the NL-C6J/KP is a bracketbase model.

National Electronics, Inc., Dept. ED, Geneva, Ill.
Price: NL-6989/C6J/KL, \$29.45; NL-C6J/KL, \$28.30; NL-C6J/KP, \$29.45.
Availability: From stock.

Electrolytic Capacitors

605

In four different styles

Type MLE subminiature electrolytic capacitors are designed for operation in critical circuits. They are said to give ten years of service; temperature range is -40 to +85 C . Type CQM capacitors, suited for computers, have long life, low leakage current, are designed to operate from -20 to +65 C , and are hermetically sealed in aluminum containers. Type TAK-H capacitor is a wet electrolyte tantalum type, seep- and vibration-proof, meeting MIL-C-3965 specs. The type TAD capacitor is a solid tantalum device of high reliability. It is hermetically sealed, has a long shelf and operating life, has a temperature rating of -40 to +85 C , to +125 C with derating, and is available in a wide variety of sizes and shapes.

Pyramid Electric Co., Dept. ED, Darlington, S.C.

SOLID STATE FRONTIEFS

Motorola Solid State Devices Laboratory Manager Cacheris and Developer Sakiotis with XSO1 Switch,

NEW FERRITE SWITCH OFFERS FIRST BROADBAND MICROSECOND SWITCHING

Microwave systems engineers looking for a fast-acting, highly reliable duplexing device will do well to investigate the advantages of the Model XS01 Ferrite Switch.
Operating at X-band, the 3 -port device provides an 18% bandwidth and can be switched in less than one millionth of a second. Moreover, it has high average power handling capability and, to our knowledge, is the only one of its kind.
Supplementing a circulator with switch of this kind eliminates the need for T-R tubes in the majority of applications and, thus, shortens switching time, prolongs operating life and im proves reliability. The XSOI has a wider bandwidth than differential phase shift circulators and has the added advantage of much smaller magnetic field re quirements, and, consequently, smaller driver units.
The switch is also available in a 4 -port version for receiver-transmitter switching between two antennas

TYPICAL SPECIFICATIONS
Frequency range 8.7510 .5 mm
Insertion loss 1.25 max.
Isolation 23 db min.
Isolation 23 db min.

Input VSWR 1.4 max.
Power handling capability . . 80 watts avg.
Minimum switching time 0.75 usec.

REPRESENTATIVE MOTOROLA SOLID STATE DEVICES

ISOLATORS - CIRCULATORS - PARAMETRIC AMPLIFIERS - SWITCHING CIRCULATOR - HIGH-SPEED, BROAD-BAND SWITCHES - PHASE SHIFTERS .

For detailed information, write:
MOTOROLA INC. Bolid state Electronic Department

CIRCLE 159 ON READER-SERVICE CARD ELECTRONIC DESIGN • November 23, 1960

Component Sockets

Miniature and microminiature

These sockets accommodate diodes, transistors, miniature-vacuum tubes, capacitors and resistors. Standard types accept 0.01 to 0.06 in. diameters; types made on special order accept a $0.004-\mathrm{in}$. diam. Called Tran-Grip, the sockets use a closed-entry, multiple-spring, con-tact-gripping device.
Omega Precision, Inc., Dept. ED, 757 N. Coney Ave., Azusa, Calif.
Price: $\$ 0.06$ ea in lots of 100,000 . Availability: From stock.

Electronic Pre-

For high-output machines and processes
No. 1601 counters have speeds up to 1,000 counts per min. Control contacts operate and hold from a minimum of 0.3 sec . The unit can be modified for automatic sequential predetermining, using two or more preset numbers. No. 1604 has up to six decade-counters, with one, two, or more sets of preset numbers. The unit has momentary or indefinite holding time and instantaneous recycling. It operates up to 5.000 counts per sec and recycles at $1,000 \mathrm{cps}$.
Veeder-Root Inc., Electronic Control Div., Dept. ED, 83 Elm St., Danvers, Mass.

Silicon Varactor Diodes

Have pigtail leads
These nine high-voltage silicon varactor diodes, MA-4380X through MA-4388X, are housed in standard subminiature glass cases with pigtail leads. The series cover a capacitance range of 0.2 pf min to 15 pf max at -6 v ; piv rating is $30-\mathrm{v}$ min . Typical Q is 200 to 300 at 100 me.
Microwave Associates, Inc., I ept. ED, Burlington, Mass.
CIRCLE 157 ON READER-SERVICE CARD $>$

RAYTHEON
"PROGRAM 2020"
MEETS YOUR
VOLTAGE REGULATOR SPECIFICATIONS FAST AND AT LOW COST FROM STANDARD DESIGNS

N LOW-COST RAYTHEON REGULATED DC POWER PACKAGES

SPECIFY A RAYTHEON "RD" POWER SUPPLY AND ELIMINATE POWER SUPPLY DESICN HEADACHES

132 different ready-to-operate models for standard 19 -inch rack installation, 3 to 1,000 volts, 50 io 3,000 watts
These compact Raytheon "RD" units are the complete low-cost solution to your power supply problems without any sacrifice of the heavyduty industrial performance your specifications demand.

The new power packages utilize ferroresonant (magnetic) voltage regulation coupled with full-wave silicon diode rectification and

aAYTHEON

RAYTHEON COMPAMY

Power Supply and Voltage Regulator Operations Keeler Avenue, South Norwalk, Connecticut
capacitive input filtering. Ripple is reduced to within 0.5 to 1.0% depending on model.

Raytheon assures prompt delivery of your selection from 132 different models in 20 voltage steps and 7 power ratings, 3 to 1,000 volts, 50 to 3,000 watts, all for 19inch rack mounting.

CHECK THESE BENEFITS OF"RD"POWER SUPPLIES

- Lowest cost consistent with heavy-duty industrial ratings
- 132 models: 3 to 1,000 volts, 50 to
- 3,000 watts
- Self-protecting; extremely dependable
- DC output filtered and isolated
- Improved load regulation
- 19" rack mounting; 6 sizes, panel
- Regulation $\pm 1 \%$ for line variation of Regulation
$\pm 15 \%$

Send coupon for free Selection Guide and Catalog of 2,020 Stamlard Designs

RAYTHEON COMPANY
Power Supply and Voltage Regulator Operations Keeler Avenue, South Norwalk, Connecticut
Please send me
\square Raytheon "RD" Product Selection Data "4-290
\square Raytheon 2020 Regulator Selection Guide and Catalog $=4-265$
Name
Title
Company
City

SINGLE TRANSIENT PEAK READING VOLTMETERS

Model PRV-2 Single Transient Peak Reading Voltmeter. Approximate size, $10 \frac{1}{2} \times 20^{\prime \prime} \times 15 \% /^{\prime \prime}$. Weight, 55 pounds.

Read single transient pulses with 1\% accuracy

The Curtiss-Wright Model PRV-2 Single Transient Peak Reading Voltmeter reads out the peak amplitude of rectangular pulses of 25 microseconds or greater rise time to an accuracy of 1%. Rate of fall required to initiate cycle is 0.2 volts per microsecond on the 1200 -volt scale and 0.02 volts per microsecond on the 120 -volt scale. Read-out is provided, directly in volts, as a 4-digit decimal value. The first peak voltage detected blocks further input values until reset.
You can use Model PRV-2 for peak pulse measurement wherever an oscilloscope would be too inconvenient-or too inaccurate. It is perfect for blast studies, shock studies, spherics measurements, to measure any transient phenomena which can be characterized by a voltage pulse. Input range: $3-120$ volts @ $200 \mathrm{Kohm}, 20$ uff input impedance: $30-1200$ volts @ 2 megohm, 20 uuf input impedance. And, of course, the PRV-2 can be modified to accommodate a variety of input requirements.
Write us about your needs.

SOLID STATE RELAYS for micro-
second switching applications.
Extremely resistant to high shock
and vibration environmentes

Inter Mountain Instrument Branch-Electronics Division

CURTISS © WRIGHT

CORPORATION • P.O. Box 8324. Albuquerque, New Mexico
solid state relays - single transient peak reading voltmeters - transistor test INSTRUMENTS AND SYSTEMS - DIGITAL DATA ACOUISITION AND PROCESSING SYSTEMS

NEW PRODUCTS

Load Cells

High-temperature measurement devices

These load cells are high-temperature measurement devices that perform tension and compression measurements up to 750 F . The cells are available in $5.000,10.000,20,000$ and $50,000-\mathrm{lb}$ ranges having 0.25% of full scale accuracy. Outputs are 120 or 350 ohm.
Micro-Test, Inc., Dept. ED, 1718 21st St., Santa Monica, Calif.
Price: $\$ 500$ to $\$ 1,200$ ea, according to capacity. Availability: 30 days.

Magnetic-Tape Heads

593

For Hall-effect recording

These Hall-effect magnetic-tape heads, types SBV-535 and SBV-536, eliminate reading errors resulting from varying tape speed and unscheduled standstill. Signal pickup heads have a gap length of 0.5 mm and have gap parallel to tape motion. Sound reproduce heads have the gap perpendicular to tape motion and a gap length of 8 to 15 micron. Static magnetic signaling is possible.
GRH Halltest Co., Dept. ED, 155 S. Morgan Blvd., Valparaiso, Ind.

Temperature Sensor

$$
\text { For use up to } 750 \text { F }
$$

This temperature sensor is for use up to 750 F . The unit is insensitive to strain. It can be welded to any ferrous or non-ferrous metal in one min or less. Units are available in 60 - and 120 -ohm resistances.

Micro-Test, Inc., Dept. ED, 1718 21st St., Santa Monica, Calif.
Price: $\$ 30$ ea.
Availability: 15 days.

TO HIGH GAIN, LOW NOIE BENEFITS OF MOTOROIA PARAMETRIC AMPLIFIEIS NOW ADD SMALLEST SIZE. WEIGHT CHARACTERISTICS AND LOWEST PUMP POWER REQUIREMENTS AVAILABLE

Take for example Motorola's range of exploration: Working amplifiers have been developed or are under development for operation from 10 mc to more than 10.000 mc .
Or consider size and weight: Negative resistance amplifier Type LPA01, tunable from 180 mc to 270 mc , is the smallest and lightest VHF parametric amplifier commercially available. It achieves 16 db gain over a 1.5 mc bandwidth with noise figure of 1.5 db .

In the UHF range, Type LPA02 is tunable from 400 mc to 460 mc . This is a negative resistance type with a noise figure of approximately 2 db yielding 13 db gain and a 3 mc minimum bandwidth. Only 1.5 mw (maximum) of pump power is required.

Motorola designed laboratory units have been operated at S-band and X. band with high performance.

Motorola Type LPA01 parametric amplifier is a variable reactance amplifier of the negative resistance type. Two resonant coaxial lines are inter. connected at the high impedance end by a varactor diode. One cavity is
 resonant at both the sig nal and pump frequen. cies, while the second cavity is resonant at the difference of these two frequencies. This use of dual resonance, which permits impedance matching at the pump frequency, is a significant factor in keeping pump power require. ments to a minimum.
REPRESENTATIVE MOTOROLA SOLID STATE DEVICES
ISOLATORS - CIRCULATORS - PARAMETRIC AMPLIFIERS - SWITCHING CIRCULATORS - HIGH-SPEED, BROAD-BAND SWITCHES - PHASE SHIFTERS

For detailed information, write

MOTOROLA INC. solid state Electronics M Department 8201 East McDowell Rd.
 Scottsdale, Arizona WHitney 5-6311

CIRCLE 162 ON READER-SERVICE CARD

Transmission Test Equipment

 551Units are transistorized
Model TTS-11 level-measuring set measures levels from +8 dbm to -30 dbm on 600 or $900-\mathrm{ohm}$ circuits. Two 9-v batteries powering the unit last approximately 100 hr for intermittent operations and $0.1-\mathrm{db}$ change in calibration. Frequency response is within 0.1 db from 200 to $7,000 \mathrm{cps}$. Model TTS-14 level-meter measures levels from 0 to -20 dbm . It operates from a 9 -v battery that has a life of over 200 hr of intermittent operation and 140 hr continuous. Model TTS-15 transmission test set measures levels from +8 to -30 dbm and supplies output levels up to 0 dbm at six frequencies. Signals are supplied and measurements made on 600 or 900 ohm circuits. Frequency accuracy is 2% from 50 to 100 deg F. Batteries for all units are transistorized.
Northeast Electronics Corp., Dept. ED, Concord, N.H.
Price: TTS-11, \$140; TTS-14, \$72; TTS-15, \$225.
Availability: From stock.

Electrolytic Capacitors 552

Stand life test of $2,000 \mathrm{hr}$
Type STP tantalum units stand a life test of $2,000 \mathrm{hr}$ when tested per MIL-C-26655A. Temperature range is -55 to +125 C . The units have a positive hermetic seal and polar construction.
Efcon, Inc., Dept. ED, Patterson, Pl., Garden City, L.I., N.Y.

Digital Clock

In 12-hour and 24-hour styles
This digital clock has $5 / 8-\mathrm{in}$. digits on the 12 -hr model and $5 / 16$ in. digits on the $24-\mathrm{hr}$ clock. A calibrated seconds indicator is provided. Digits can be reset from front panel. Instrument resists shock of $1,000 \mathrm{lb}$ per in. Unit measures $4-1 / 2 \times 6 \times 3-1 / 4 \mathrm{in}$. and weighs 3.5 lb .
Pennwood Numechron Co., Dept. El), 7249 Frankstown Ave., Pittsburgh 8, Pa.
CIRCLE 160 ON READER-SERVICE CARD $>$

In Answer to the Ad that Started it all...

-

If safety factors are a

I

7
form-factor and operating versatility make these rugged magnetrons ideal for many smallpackage applications including CW or pulsed radar proximity detection, surveillance, and transponder type oporations.
Ujege, dapundmble, and with proven capabilities, these tubie operate at 500 to 600 peak volts and 150 ma pank gulnud current, permitting sow-cost modulator compoants for all application. Thiy give a nominal pewer output of 1 watt exw milt 15 watts peak. Engiaeeang programs in proress at 1 Hiowith In melrazd-lurnbled magnetron within thic same form fealor. Than lmaldis are walcomed on these mull magnetronl.
A capy of our new 72 page Magnetron Catalog is available uper mexitsen request on your comprang letterhead.

as

mierowave associates, INe. BURLINOTON, MASBACHUEETIE

NEW PRODUCTS

Solid-State Pulse Generator

Unit is 50% to 70% smaller than tube-types

This 9-kw solid-state pulse generator is 50% to 70\% smaller than tube-types. It is for use in lowpower radar altimeters, surveillance and targetscoring. Standard models operate from a $200-\mathrm{v}$ dc source and can be used with magnetrons or microwave triodes. Pulse width is $0.25 \mu \mathrm{sec}$; rise time is 30 to 40 nsec . Standard pulse frequencies are 10,5 or 2 prf kc.
Magnetic Research Corp., Dept. ED, 3160 W. El Segundo Blvd., Hawthorne, Calif.
Price: On request.
Acailability: 30 days.

Data Converter

Speed is 3,000 words per min

Type D300 data converter converts information between punched paper and magnetic tape in either direction. In addition to tape-to-tape conversion, the unit can have card input and output. The basic unit contains the circuitry for accepting data from the input, storing data, and feeding data to the output tapes. The user specifies whatever additional features may be required.

Digitronics Corp., Dykor Div., Dept. ED, Albertson Ave., Albertson, L.I., N.Y. Price: $\$ 42,000$ for the basic unit.

Motorola's new broadband Y-circulator Model CC04 fills a threefold purpose. As a stripline circulator it provides exceptional performance whereever small size and light weight are essential. It also serves as a high-speed electronic switch, acting as a shutter. for example, to protect against receiver burnout resulting from a mismatched antenna. Finally, because of its compact construction, it can be readily cascaded into an integral switching matrix capable of connecting one or more inputs to any one of a number of outputs.
The 3-port circulator, with coaxial connectors, offers 20 db isolation with less than 0.5 db insertion loss over an approximate 30% bandwidth at C. band, a 50% greater bandwidth than has been generally available heretofore.
The microwave characteristics of the switch are identical to those of the circulator. With a compact, transistorized driver, switching times of $10 \mu \mathrm{~s}$ have been achieved. Faster switching times are possible with vacuum tube drivers. Utilizing this design, a single-pole, 32 throw switching matrix, complete with drivers, occupies a volume of only $5 \times 13 \times 19$ inches.

REPRESENTATIVE MOTOROLA

 SOLID STATE DEVICES ISOLATORS - CIRCULATORS - PARAMETRIC AMPLIFIERS - SWITCHING CIRCULATORS - HIGH-SPEED, BROAD-BAND SWITCHES - PHASE SHIFTERS .For detailed information, write:
MOTOROLA INC. solid state Electronics
\square Department 8201 East McDowell Rd.,
Scottedale, Arizona Whitney 5-6311

Feedthrough Terminals

Shank diameter is 0.125 in .

These terminals are offered in two types, both lave shank diameters of 0.125 in . Type 1035 has double turrets at each end. Height, when mounted, is 0.241 in . at one end and 0.134 in . at the other. Type 1036 has double turrets at one end and a single-turret at the other. Height of the double turret mounted is 0.241 in ., and of the single turret, 0.082 in .
Cambridge Thermionic Corp., Dept. ED, 445 Concord Ave., Cambridge 38, Mass.

Voltage-Current Calibrator

575

Sensitivity is 1 mv

Model 1082 calibrator samples and measures ac, pulse and de signals from 1 mv to 10 v ; this range extends to 200 v with the firm's signal attenuator. Other specs include: input signal bandwidth, over 100 mc ; output accuracy, 0.1% of full scale. Operating as a signal comparator, the unit provides a positive or negative reference voltage signal. It is particularly suited for use in digital computer laboratories.
Rese Engineering, Inc., Dept. ED, 731 Arch St., Philadelphia 6, Pa.

Power Supply

Delivers $10,000 \mathrm{v} d c$
This high-voltage supply weighs 5.75 lb and provides a fixed output of $10,000 \mathrm{v}$ dc at 2 ma . It is an unregulated transformer-rectifier unit operating from an input of 115 v at 400 cps . Ripple is less than 20 v peak-to-peak. Operating life is $2,000 \mathrm{hr} \min$; temperature range is -54 to +71 C. Designated model P755A, the unit provides the gun potential to a high-persistance displav tube and may be used in other applications where space and weight must be considered.
$1 \Gamma T$, Industrial Products Div., Dept. ED, [15] 11 Bledsoe St., San Fernando, Calif.

WHO MAKES FINE MOTORS THIS SMALL?

Globe Industries makes motors this small to make your design more compact, reliable and salable. If you make miniature instrument packages for space exploration - if you build airborne and ground support equipment - if you want to design smaller typewriters, computers, recorders or other products, look at these 3 motors:

TYPE VS-The smallest, most powerful precision miniature d.c. motor for its size. Only //b $_{6}^{\prime \prime}$ flat, four VS motors fit in a regular cigarette pack with room to spare. It has the power to lift its own weight to the top of the Empire State Building in 1 minute! Typical continuous torque-. 25 oz . in.; typical intermittent torque-. 5 oz . ins. We can design gear units, governors and brakes to meet MIL specs also.

TYPE SS - Only $1 /{ }^{\prime \prime}$ in diameter, Type SS d.c. motors typically produce continuous duty torques of .3 oz . in.; intermittent torques to .6 oz . ins. With the basic Type SS motor you can specify any of 21 planetary gear speed reducers or 28 spur gear speed reducers. Governors and brakes are available also. Designed to meet MIL specs.
TYPE MM - The most widely used precision $11 / 4^{" 1}$ d.c. motor in the world, MM motors typically produce .5 oz . in. in continuous duty applications - 1.0 oz . in. intermittent duty. Choose from 101 ratios of planetary gear speed reductions. Brakes, governors and clutches can be included. MIL specs are invited.

For details about these motors request Bulletin VSM. Globe Industries, Inc., 1784 Stanley Ave., Dayton 4, Ohio.

GLOBE INDUSTRIES, INC.
GLOEE
precision mimiature a.c. - d.c. motors. actuators. timers. grmos. steppens. blowens. motorized devices

THIS SLIM-LINE, TRIM-LINE STYLIST

Have a look at the most distinctively different meter design in years. Start with styling (as your customers do): note the thoroughbred leanness, the crisply drawn detail, the overall look of precision. Consider function: see how the picture-window dial is recessed and angled back for easier reading. Ponder practicality: observe that the self-trimming case is installed with just a single panel cutout. Sample the specifications: choose from two sizes—Model 561, $5^{\prime \prime} \times 27 / 8^{\prime \prime}$, and Model 361, $3^{1 / 2 "} \times 2^{\prime \prime}$; both in satin-finish Bakelite; both available in standard microampere, ampere, millivolt and volt ranges, AC or DC. Prices and other data? Ask for Bulletin 107.

CIICLE 167 ON READER-SERVICE CARD

NEW PRODUCTS

Pressure-Transducer Calibration 750 System

Range of 0-3500 psi in 1-psi increments

This pressure-transducer calibration system has a $0-3500$ psi range covered by 1-psi increments. The automatic unit does eight hr of manual work in 20 min . A ratio of weight-to-psi output from 8 to 80 is obtainable. The system consists of a Frieden tape reader, relay and control console, pneumatic switching cabinet, and the weight handler and balance. The instrument zeros, calibrates, and standardizes pressure recorders associated with the pre-programed range.

Gilmore Industries, Inc., Dept. ED, 13015 Woodland Ave., Cleveland 20, Ohio.

Television Relay Equipment

589
Has 1-w klystron carrier generator
The type MV-30 television relay microwave equipment utilizes a 1-w klystron tube to generate the microwave carrier. The receiver is said to have a long-life if strip with built-in phase equalization. The equipment can transmit monochrome or color video signals. It provides a $15-\mathrm{kc}$ audio channel. The equipment operates in the $5,925-$ to $7,125-\mathrm{mc}$ bands. The separate transmitter and receiver units mount in $19-\mathrm{in}$., 7 -ft racks.
Motorola, Inc., Communications and Industrial Electronics Div., Dept. ED, 4501 W. Augusta Blvd., Chicago 51, Ill.

Reset Timer

597
Combines delay and interval timers
The Acrotime external-clutch reset timer combines the functions of delay and interval timers. Series BR is for mounting in the rear of control panels, in control cabinets and in other applications where timing interval is changed infrequently. Series BP is for panel-mounting and has a bezel and dome assembly, a dial assembly and a pre-wired 12 -position terminal board. The unit can be supplied with a single $15-\mathrm{amp}$ spdt load switch or two $10-\mathrm{amp}$ spdt load switches. Design is modular.

General Time Corp., Haydon Div., Dept. ED, 245 E. Elm St., Torrington, Conn.

Lightweight. compact and with high performance over a broad range of temperature, Motorola C-Band Circu. lators were designed for - and are providing - high levels of efficiency and reliability in today's most ad. vanced military electronic equipmeri
Equally applicable to nonmilitar systems, these Motorola ferrite circu. lators operate from 5400 to 5900 mc with insertion loss of less than 1.2 db . Isolation, in both the transmit and receive modes, is more than 12 db over the entire frequency band and over a temperature range of 0° to $85^{\circ} \mathrm{C}$, or 0° to $105^{\circ} \mathrm{C}$. depending on model.

Experience-proven in critical appli cations - in missile-borne radar trans. ponders, for example - these highly efficient ferrite devices when used in conjunction with a preselector provide isolation from antenna mismatches eliminate need for switching gas tubes and perform duplexing functions, even for CW systems.
Whether your specifications demand smaller size and lighter weight, better solation, or elimination of separate ransmitting and receiving antennas we suggest that you investigate all the advantages that this Motorola solid state device offers to modern micro wave systems planning. Full specifi cations and details upon request

REPRESENTATIVE MOTOROLA

 SOLID STATE DEVICESISOLATORS • CIRCULATORS • PARAMETRIC AMPLIFIERS - SWITCHING CIRCULATORS - HIGH-SPEED, BROAD-BAND SWITCHE - PHASE SHIFTERS

For detailed information, write:
MOTOROLA INC. Solid state Electronics

Interval Timer

Repeat accuracy is $\mathbf{0 . 0 0 2 5}$ Available for ac or dc operation, model 309 push-button timer has a repeat accuracy of 0.0025 . It provides automatic shut-off and reset. It has one spdt snap-action load contact; an additional spdt snapaction independent load contact is optional. The unit can be furnished in 16 dial ranges from 6 sec to 60 hr.
Automatic Timing \& Controls, Inc., Dept. ED, King of Prussia, Pa.

Pushbutton Control

566 Units
Have single-circuit contact blocks
The type R-series control units and selector switches, have convertible terminals that can be changed from normally open to normally closed, and vice versa, without use of additional parts or special tools. They are keyed to insure staggering of terminals when mounted in more than one tier; up to eight units may be combined for use on a single operator. They are built to JIC and NEMA standards.
Mackworth Rees, Inc., Dept. ED, 1573 E. Forest Ave., Detroit 7, Mich.
Price: $\$ 7$ to $\$ 35$ ea.
Availability: From stock.

Time Delay Relay 434

For automatic and semi-automatic applications
Model 591 time-delay relay is suitable for many automatic and semi-automatic applications. It is available in single-pole and dpdt models. Some specifications are: operating voltage, 105 to $125 \mathrm{v}, 60$ to $1,200 \mathrm{cps}$; power required, 2 w ; time intervals, 0.003 to 300 sec ; out-put-relay rating, 3 pdt relay with 5 -amp contacts. The unit measures $2 \times 2-1 / 4 \times 3-1 / 8 \mathrm{in}$. and weighs approximately 9 oz .
G. C. Wilson \& Co., Dept. ED, P.(). Box 5525, Huntington, W.Va. Price: $\$ 19.75$
Availability: 2 to 3 weeks.
GIRCLE 166 ON READER-SERVICE CARD $\boldsymbol{*}$ OUTPERFORMS ALL OTHER ELECTRONIC SWITCHES

MICROWAVE PRODUCTS

Four-Channel Microwave Filter

Has built-in video detectors
Model 1201 etched-circuit fourchannel microwave filter has builtin video detectors designed to cover a very wide input dynamic range. Each channel has a bandpass of 2,600 to $3,200 \mathrm{mc}$ at a maximum input vswr of $2: 1$. The video detectors have tangential sensitivities of -40 dbm min. Filter dimensions are $6.15-\mathrm{in}$. in diameter and 0.7 -in. thick, excluding connectors.
R S Electronic Corp., Dept. ED, 435 Portage Ave., Palo Alto, Calif. Availability: 30 days.

All-Electronic Pulse Generator

Has rise time of 0.5 nsec
Model 750 pulse generator can deliver positive and negative nanosecond pulses simultaneously. Specifications are: rise time, 0.5 nsec ; repetition rate range, 10 to 100,000 pulses per sec; dimensions, 10×10 x 13 in.; weight, 15 lb . It has singleshot capability. Pulse amplitudes are fixed at approximately 8 v into 50 ohms. Pulse outputs are preceded by a trigger pulse available on the front panel. Time difference between trigger pulse and main pulses is selectable over a 100 -nsec range. Pulses may be varied from 2 to 100 nsec by means of an external charge cable.

Edgerton, Germeshausen And Grier, Inc., Dept. ED, 160 Brookline Ave., Boston, Mass.

Coaxial Monoplexers

For systems using two antennas
Those coaxial-line monoplexers are for use in radar systems using separate transmitting and receiving antennas. The unit shown protects the receiver from the transmitted signal and from other signals that may be accidentally directed at the receiving antenna. Terminated directional couplers are provided for power-monitoring pirposes. The unit shown is for the frequency range of 406 to 450 mc . Transmitter power peak is 30 kw and transmitter power average, 50 w .

Bomac Laboratories, Inc., Dept. ED, Salem Road, Beverly, Mass.

Traveling Wave Tube

Designed for X -band radar

The Z-3090 traveling wave tube is designed for use in X-band radar applications. It can be used as a driver tube in a pulsed high-power chain or as a final amplifier in a medium power application. Focusing of the beam is accomplished with a periodic permanent magnet. Specifications are: frequency, 8,500 to $9,700 \mathrm{mc}$; peak power output, nominal, 10 kw ; pulse-beam voltage, 16 kv approximate; pulse-beam current, 4.0 amp approximate; efficiency, 15%; power gain, nominal, 35 db ; duty cycle, max, 0.005 .

General Electric Co., Power Tube Dept., Dept. ED, Schenectady, N.Y. Availability: 90 days.

MICROWAVE PRODUCTS

Waveguide Rotary Joints
Range is 8.5 to 9.6 kmc

Two I-style waveguide rotary joints, having an 8.5 - to $9.6-\mathrm{kmc}$ range, are available in WR90 and WR112 waveguide sizes. The units can be non-pressurized or 30 -psig pressurized and can be aluminum or copper alloy types.

Microwave Development Laboratories, Inc., Dept. ED, 92 Broad St., Babson Park 57, Wellesley, Mass.
Price: $\$ 400$ to $\$ 500$.
Availability: Some units, from stock.
High Power Microwave Triode
468
Gain is 18 db at 4 Gc

Used as a narrow band cw amplifier at 4 Gc , microwave triode type DX145A/EC157 has a gain of 18 to 19 db with a power output of 0.5 w . As a broadband amplifier at 4 Gc , it has a gain of 12 db with a power output of 0.5 w . Saturation cw power output can be as high as 2.5 w . The tube is guaranteed for $6,000 \mathrm{hr}$ and has an expected life of $10,000 \mathrm{hr}$. It can be used as an oscillator, a doubler or tripler. As an oscillator it will operate in the $5-\mathrm{Gc}$ range, as a
doubler it provides useful output at 6 Gc . Operating voltage is 180 v .
Amperex Electronic Corp., Microwave Dept, Dept. ED, 230 Duffy Ave., Hicksville, Loig Island, N.Y.
Price: $\$ 135$ ea.
Availability: From stock.

Voltage Tunable Magnetron

Has range of 400 to $1,200 \mathrm{mc}$
The X-747 voltage-tunable magnetron can be tuned over the range of 400 to $1,200 \mathrm{mc}$ with a nominal output power of 100 mw . No complicated regulation of heater voltage is needed. Back heating is eliminated through an indirectly heated matrix cathode and through advanced electron injection design. Heater power supply can be ac or dc. The linear tuning characteristics simplify circuit design.

Eitel-McCullough, Inc., Microwave Tube Div., Dept ED, San Carlos, Calif. Availability: Immediate.

X-Band Delay Line

Reduced 50\% in size

This X-band delay line, reduced 50% in physical size over conventional lines, meets the demand for compact and lightweight test equipment packaging. The delay line can be supplied as an individual unit or as a packaged assembly in fixed or variable lengths. Bends, interconnections and adapters are available as separate items.
Turbo Machine Co., Dept. ED, Lansdale, Pa. Price: From $\$ 125$ ea.
Availability: 45 to 60 days.

Amplifier Klystron Delivers 20 Kw

Of X-band cw power

Series VA849 amplifier klystrons are rated at 20 kw cw . They cover a frequency range of 7.125 to 8.5 Gc and are tunable over a $60-\mathrm{mc}$ range. Powergain is 37 db ; bandwidth is 30 mc min .

The synchronously-tuned power gain and band width are 53 db and 15 mc , respectively. The electromagnetically focused tubes were designed for applications requiring low am and fm residual noise. Applications include repeater satellites, moon-bounce signalling, radio astronomy and reflections from clouds of tiny orbiting needles, plus cw radar and illuminator service
Carian Associates, Tube Div., Dept ED, 611 Hansen Way, Palo Alto, Calif.
Price: On request
Arailability: 120 days.

Mixer-Preamplifier

For microwave and guidance systems

Designed for use at 9.6 to 10.7 kmc , model 90MB-361F1 mixer-preamplifier serves as a lownoise, wide-band down-converter for maser and parametric rf amplifiers. Noise figure is less than 9.5 db and minimum gain is 25 db . The unit is fixed-tuned with a stabilizing circuit that eliminates the need for realignment after replacement of tubes or crystals. The preamp output is matched to 50 ohms.
Microwave Development Laboratories, Inc., Dept. ED, 92 Broad St., Babson Park 57, Wellesley, Mass.

Coaxial Transmission Sections

473
Peak pulse is 3 megawatt

These 3-1/8-in. coaxial sections are capable of 3 megwatt peak pulse power. They are flexible sections able to meet the vibration requirements of MIL-E-5422. Special flanges to reduce rf leakage are used.
Telerad Manufacturing Corp., Dept. ED, 1440 Froadway, New York 18, N.Y.

Transistor circuits and low power applications need this safety feature!

IRC PW Resistors are available with special resistance windings, designed to act as a standard resistor at normal operating wattages and fuse at some specific overload condition. Thus they provide an ideal solution-resistor and fuse in one unit-a great advantage in circuits which tend to short or where overloading of a component creates a fire hazard. These double-duty resistors come in six sizes-3,5, $7,10,15$ and 20 watts. And, no derating is required even at high ranges.
Foradditional information on IRC Power Wire Wound Resistors, write for Bulletin P-2, International Resistance Co., 401 N. Broad St., Philadelphia 8, Pa.

EXTRACTING FUSE POST！Fuse is held in end of removable knob for quick，safe and easy replace－ ment of blown fuse．Safe＂dead front＂fuse mountings assured．U／L Approved．
A－3AG Fuse Post（finger operated knob）－ No． 342001
A－8AG Fuse Post（finger operated knob）－ No． 372001
B－3AG Fuse Post（Screwdriver Slot）－ No． 341001
B－8AG Fuse Post（Screwdriver Slot）－ No． 371001
C－4AG Fuse Post（Finger Operated Knob）－ No． 442001
D－3AG Miniature Fuse Post（Finger Operated） －No． 342012
E－NEW INDICATING 3AG FUSE POSTS！ （ 344,000 series）It Glows When The Fuse Blows． Long life incandescent bulb for low voltage rangee $-21 / 2-7 V ; 7-16 \mathrm{~V} ; 16-32 \mathrm{~V}$ ．New high degree vacuum neon lamp for high voltage ranges for greater brilliance and visibility $-90-125 \mathrm{~V} ; 200-250 \mathrm{~V}$
WATERTIGHT FUSE POSTS Specially designed for use where excessive moisture is a problem．
F－5AG Watertight Fuse Post．Has flange mount－ ing．－No． 571004.
G－3AG Watertight Fuse Post－No． 342006 G－4AG Watertight Fuse Post－No． 442006

For complete details on these items and quotations on special application requirements，write to：
－Precinion Engineering
Design Know－how
Quality Craftumamahip

LITTELFUSE

DES PLAINES，ILLINOIS CIRCLE 171 ON READER－SERVICE CARD

MICROWAVE PRODUCTS

Coaxial Switches

Designed for insertion into a miniature circuit， these switches measure $1.3 \times 0.6 \times 0.65 \mathrm{in}$ ．Weight is 1.25 oz ．At 2 kmc ，vswr is 1.25 ，insertion loss is 0.8 db ，and crosstalk is down to 60 db ． Contact rating is 1 amp at 150 v resistive．Char－ acteristic impedance is 50 ohms and minimum operating life is 50,000 operations．
Microdot，Inc．，Dept．ED， 220 Pasadena Ave．， South Pasadena，Calif．

Rotation Circulators

673
Have a vswr of 1.3 max

These four－port rotation circulators have a vswr of 1.3 max on all ports and produce $15-\mathrm{db}$ isolation．Insertion loss is 0.4 db max．These models are offered：CK 100 ，for 22.5 to 25 kmc ； CKU 100，for 13 to 14.5 kmc ；CX 100，for 8.5 to 9.8 kmc ；CXL 140，for 7.4 to 8.4 kmc ；and CXB 140 ，for 5.4 to 5.9 kmc ．

Rantec Corp．，Dept．ED，Calahasas，Calif．

Low－Pass Filters

Coaxial type

These filters are compact in design and stand shock and vibration．They are bi－directional and furnish broad stop－band response．Specifications are：insertion loss， 0.5 db max；vswr， 1.5 max；
rejection slope， 12 db min at $1-1 / 4$ times cem or frequency；spurious responses， 30 db min ：and power handling capaciiy， 15 to $50 \mathrm{w}, \mathrm{cw}$ ．Cut off frequencies are 125 to $4,000 \mathrm{mc}$ ．
Maury \＆Associates，Dept．ED， $10373 \mathrm{Ml} / \mathrm{l}$ s Ave．，Pomona，Calif．
Price：$\$ 35$ to $\$ 52.50$ in quantities of 10 ． Availability：Two 10 five weeks delivery．

K－Band Microwave－Mixer

Minimum frequency range is 34 to 36 kmc

Model MMK－2 microwave－mixer amplifier has a minimum frequency range of 34 to 36 kmc ． The unit combines a K－band waveguide mixer and a matched preamplifier．Specifications in－ clude：over－all gain， 25 db ；if bandwidth， 8 mc ； noise figure， 10 db max；power requirements， 150 v dc at 45 ma and 6.3 v at 0.6 amp ．

LEL，Inc．，Dept．ED，Akron St．，Copiague， N．Y．
Price：\＄1，695 ea．
Availability： 30 to 60 （lays．

Coaxial Isolators

For L－and S－bands

These coaxial isolators both have a maximum vswr of 1．25．Model IcLM3 operates from 1．250 to $1,600 \mathrm{mc}$ ．Designed to handle a peak power of 5 kw or 25 w avg，it has a minimum isolation of 20 db and an insertion loss of 1 db max．Model IcSM2，covering 2,000 to $4,000 \mathrm{mc}$ ，handles 5 kw peak and 5 w avg．Isolation is $30-\mathrm{db}$ max and $20-\mathrm{db} \mathrm{min}$ ．Insertion loss is 2 db with 1 db possible over a narrow band

Raytheon Co．，Special Microwave Devices Operations，Dept．ED， 130 Second Ave．，Wal－ tham 54，Mass．
Price：IcSM2，\＄350；IcLM3，\＄450．
Availability：Five weeks．
glve

Field Intensity Meter And 657 Receiver

Operates in 1,000 to $10,000 \mathrm{mc}$ range

Operating in the frequency range between 1.000 and $10,000 \mathrm{mc}$, model FIM microwave calibrated field intensity meter and receiver is a combination triple conversion microwave superheterodyne receiver and calibrated signal generator. It indicates the absolute power level of a radiated or conducted input signal by comparing it against a signal generated internally ly the signal calibrator. The signal indication is in microvolts, db above $1 \mu \mathrm{v}$ and db above $1 \mu \mathrm{v}$ per mc. All input signals can be attemuated up to so) dlb in 1 db steps.
Polarad Electronics Corp., Dept. ED, 43-20 3 Htl1 St., Long Island City 1. N.Y.

Coaxial Wavemeters

634
Frequency range is from 2,300 to $8,200 \mathrm{mc}$

These coaxial wavemeters cover the frequency range of 2,300 to $8,200 \mathrm{mc}$. The transmission-type imits come in eight models: model 951. 951CR, 452. 952CR, 953, 953CR, 954 and 954CR. They have 2 -in. micrometers, directly readable to 0.0001 in ., calibrated every 50 mc . The crystaloutput models, suffixed with CR, are adjusted to give a $20-\mu \mathrm{mp} \mathrm{min}$ dc output with 1 mw input power. Accuracy is 0.02%; loaded Q is 1,000 to 4.0 (io. Model 950 crystal current-indicator is a 5) -ilamp, 3-in.-sq meter for use with the wavemeters.
Waveline, Inc., Dept. EID, Caldwell, N.J. Price: On request.
tecilability: Made on order.

Whatever your requirements for military types of semiconductors, you'll find a big selection at Raytheon. Silicon transistors . . . germanium transistors . . . gold bonded or point contact diodes . . diffused junction silicon rectifiers - Raytheon gives you a choice of types to give you utmost latitude in circuit design and component procurement. To bring your files up to date on this growing Raytheon group, ask for Data-Pak \#11.

Consult your local authorized Ravtheon Distributors for up to date information on all Raytheon semiconductor products.

RAYTHEON COMPANY

SEMICONDUCTOR DIVISION

RAYTHEON

SILICON AND GERMANIUM DIODES AND TRANSISTORS • SILICON RECTIFIERS • CIRCUIT-PAKS

 CANADA: Watorloo. Ont. BHerwood 0 -e8si
CIRCLE 172 ON READER-SERVICE CARD

COMPLETE MICROWAVE TELEMETRY SYSTEMS

TRANSMITTERS, RECEIVERS, DISPLAYS, ANTENNAS

MICROWAVE TRANSMITTER GROUP, 2150-2350 mc
The GEL Telemetry Transmitter Group 19A1 features improved frequency stability ($\pm 0.005 \%$ under all environmental conditions); true frequency modulation which can operate with FM.FM or PCM data input in accordance with IRIG specifications in addition to voice modulation where required; and operation under severe environmental conditions.
The Transmitter Group consists of 3 components: Basic 4-Watt Transmitter, Power Supply, and 15-Watt Power Amplifier. Installation in airborne vehicles where space is limited mounts these conduction-cooled units on an aluminum plate which in turn is mounted with good thermal num plate which in turn is mounted with good
contact to the airframe which acts as a heat sink.

features

- Frequency Stability: $\pm 0.005 \%$ (all environmental
- Modulation: Operates with FM-FM, FM/PDM FM, PCM
- Max. Deviation: $\pm 0.5 \mathrm{mc}$
- Distortion: Total output distortion not to exceed 1.0%
- Primary Power: Either 28 VDC or 110 V, 400 cycles
- Environmental: Pressurized for operation up to $80,000 \mathrm{ft}$.

$$
\text { Operating temperature: }-54^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
$$

Operation through shock of 100 g for 11 milliseconds Vibration: $10-500 \mathrm{cps}, 10 \mathrm{~g}$
$500-2000 \mathrm{cps}, 15 \mathrm{~g}$

FREQUENCY DISPLAY UNIT, SERIES 24

Companion units to GEL
Receivers, Types 20A1,
22A1, and 25A1, Series 24
Frequency Display Units feature good resolution. equalization for IF non-
 linearity $\pm 3 \mathrm{db}$, low spu-
rious radiation, edge-lighted scale, and 60 db image rejection. A signal as low as 8 microvolts at the input of the receiver gives full-scale deflection.
Sweep width, center frequency, and gain controls are located below the $3^{\prime \prime}$ Cathode Ray Tube. All normally used CRT Controls are front-of-panel screwdriver adjustments protected by an easily removed cover.

features

- 20 kc Resolution
$\pm 3 \mathrm{db}$
- Edge-lighted Scale
- Equalization to $\pm \mathbf{3 d b}$
- High Sensitivity
- Low Spurious Radiation
- 60 db Image Rejection

GEL Also Designs and Manufactures a Complete Line of Telemetry Equipment in the VHF Band.

MICROWAVE RECEIVERS, 2150-2350 mc

GEL Telemetry Receiver Type 20A1 can be used for reception of FM-FM, PDM-FM, and PCM transmissions at ground installations or in airborne applications.
Operation has been simplified as far as possible; number of operating controls is minimum. compatible with optimum performance. The unit is of the double superheterodyne type with both local oscillators crystal-controlled. Design includes FM capture characteristics, high frequency stability, and variable IF bandwidths. Sub-assembly construction is used for simplicity of servicing in the field. AGC extends dynamic range to 100,000 microvolts or 0.1 v of $R F$ signal.
This Receiver provides simultaneous AM and FM video, pre-detection 10 mc IF frequency, signal level recorder, pre-detection 10 mc IF frequency, signal level recorder,
and 60 mc IF for operation of a GEL Type 24A1 Frequency Display Unit.

FEATURES

- Frequency Stability: $\pm 0.005 \%$ of received frequency using standard MIL CR-33/U crystal without oven
- Image Rejection: Greater than 65 db
- IF Bandwidth: Plug-in second IF strips with bandwidths of $0.75,1.5$, and 2.0 mc
- Selectivity: Response has 60 to 6 db bandwidth of approx. 2.5
- Interference Immunity: Highly selective pre-selector for attenuation of interfering signals

> ADDRESS ALL INQUIRIES TO: General Electronic Labs, Inc. 8521 Second Avenue Silver Spring. Maryland

MICROWAVE ANTENNAS

The unique GEL Antenna, Model $610-20$, is a dual-beamwidth, circularlypolarized receiving antenna with an operating frequency range of 1000 to 2600 mc . This manually operated Antenna consists of two center-fed parabolic reflectors tripod-mounted facing the same direction on a vertical line, with the wide beam reflector above. Both reflectors may be directed simultaneously to any azimuth angle. Tilt adjustment allows elevation angles up to 45 degrees above the horizon Each reflector is fed by broadband circularly-polarized crossed dipoles. Output of each feed is brought out sepa. rately to a 50 -ohm Type \mathbf{C} female conductor so that either can be connected to an appropriate receiver.

Write for Technical Data Sheets on Compatible GEL
Microwave Telemetry Equipment.

General Elegtronic LABOAATOAIES, INC. CAMERIDGE 42.MASS. SILVER IPRING, MD.

> CIRCLE 170 ON READER-SERVICE CARD

MICROWAVE PRODUCTS

Model 420A portable link and model 420 Ak rack-mounted version have a baseband width of 5 mc , a power output of 0.1 w and operate in the 10,500 to $13,200 \mathrm{mc}$ range. They can transmit computer data, remote control functions and telemetering information. The transmitter and receiver are self-contained in individual units weighing 31 and 32 lb , respectively. Power consumption of the transmitter is 70 w ; for the receiver it is 160 w . The $5-\mathrm{mc}$ bandwidth is flat within 0.5 db .
Mechanical Products, Inc., Electronic Systems Div., Dept. ED, 1438 River St., Jackson, Mich. Price: \$4,490.

Thin-Film Resistors

For microwave applications

These thin-film carbon resistors are desigucl for use in microwave attenuators, coaxial terminations and other special applications. Specifications are: frequency, dc to $10,000 \mathrm{mc}$; disctype resistance, 0.001 ohms to 1,500 ohms; temperature, -55 to +150 C ; tolerance, $+1 \%$ stand ard. The manufacturer claims these resistors give superior performance under pulse applications.

Film Resistors, Inc., Dept. ED, 242 Ridgedale Ave., Morristown, N.J.

Broadband Terminations

610

For the range of $\mathbf{8 . 2}$ to $\mathbf{1 2 . 4} \mathbf{~ k m c}$

Designed for a waveguide measuring 0.9×0.2 in., this absorbing load has a vswr of less than 1.03:1 from 8.2 to 12.4 kmc . Maximum power dis-
sipution is 1 w avg, making the unit suitable for mo it low-power design measurements and produ ution testing. It measures $6-\mathrm{in}$. long and is of alu ninum construction. Flanging consists of a centered UG-68/U configuration.
Turbo Machine Co., Dept. ED, Lansdale, Pa. Price: \$60.
Acailability: From stock.
UHF Noise Source
445
Has noise output of 18.0 db at 190 v

Coaxial-type uhf noise source, model T44U4C, covers a frequency range of 0.55 to 0.65 kmc and has a noise output of 18.0 db at an operating voltage of 190 v . It has a striking voltage of 1500 v . The circuit length of the tube is $10-5 / 16$ in. overall. It is capable of operation under typical military environment conditions.
Tucor, Inc., Dept. ED, 18 Marshall St., S. Norwalk, Conn.

Precision Wareguide Gages

694
For checking outer dimensions of waveguides
Series O.D. precision waveguide gages are for checking the outer dimensions of waveguides to MIL-W-85C and EIA standards. The range of waveguides covered is from WR-975 (0.75 to 1.12 kmc) to WR-15 (75 to 110 kmc). The gages are precision-ground to a tolerance of 0.0002 in . tll 22 units have go, no-go configuration.
Somerset Radiation Laboratory, Inc., Dept. ED, 192 Central Ave., Stirling, N.J.
Price: $\$ 95$ to $\$ 280$ ea.
Availability: From stock, F.O.B. Stirling.

S-Band Parametric Amplifier

Has 100 -mc tuning range

Model S1000 S-band parametric amplifier has a $100-\mathrm{mc}$ tuning range. Other specifications include: operating gain, 17 db ; bandwidth, 20 mc at $3-\mathrm{db}$ points; system noise figure, 2.5 to 3 db opsrating into a mixer with a $10-\mathrm{db}$ noise figure. The assembly consists of a three-port ferrite circulator, a reflection-type diode amplifier, a pump klystron, a variable attenuator and a directional(onipler monitor.
Micromega Corp., Dept. ED, Venice, Calif. Price: $\$ 4,950$ ea, engineering prototype. tecilability: 90 days.

MICROWAVE PRODUCTS

L-Band Antennas

Flush-mounted and blade-types

Two L-band antennas, the AT-740/A flushmounted and the AT-741/A blade, cover the 960 - to $1220-\mathrm{mc}$ frequency for IFF-TACAN. They have a vswr less than 1.5 to 1 from 1,000 to $1,100 \mathrm{mc}$. Each has a nominal impedance of 50 ohms and is vertically polarized. The BNC probe of each is approxımately 18 db down. The blade type weighs 6.4 oz while the flush-mounted type weighs 12 oz . Both have HN connectors.
Transco Products, Inc., Dept. ED, 11210 Nebraska Ave., Los Angeles, Calif.

Waveguide Terminations

For if power measurements

These waveguide terminations cover frequency ranges of 5.8 to 8.2 kmc (model 187B-C) and 7.0 to 10.0 kmc (model 1878-XB). Unpressurized, model 187B-C can be operated at average powers to 5 kw or peak powers to 500 kw . Model 187-XB is rated at 3 kw average power or 300 kw peak power. Both models can be pressurized to 45 psig to permit operation at higher power levels. The loads utilize a rigid, plastic-water tube mounted in a waveguide section and diagonally oriented for impedance matching.
Philco Corp., Sierra Electronic Corp. Div., Dept. ED, Menlo Park, Calif.

C-Band Triode Oscillator

Weighs $4-1 / 20 z$

Model 151C C-band triode oscillator weighs $4-1 / 2 \mathrm{oz}$. The miniature unit covers the fre-


```
FREQUENCY
```

 12.4 KMe
 attenuation values: 3, 6,10
 20 db
 CONNECTORS: TYPO N - male one
 CONNECTORS: Type N - male
 *

No. 3 of a series of FXR's now pre. cision microweve components designed to meot the ever-growing
FXR's Broadband Fixed Coaxial At. tenuatori are extremely useful an
completely dependable in applica completely dependable in applica
tions requiring iolation between RF tions requiring isolation berween
componencs and extending powe
meres ranget. They may elso be used metes ranges. They may also be use
for the calibration of directional for the calibration of directiona
couplers, in obtaining antenna char acterestics and for similar applica.
tions. These attenuators have excep. tions. These attenuators have excep
tional stability and are capable ol tional stability and are capable of
withstanding appreciable overload and peak power with no change in
characteristics. They have high shock characteristics. They have hish shock
and vibration resistance and exhibi and regligrible resistance and exhibit under humidity and temperature

$\begin{aligned} & \text { Melel } \\ & \text { Mo. } \end{aligned}$	$\begin{aligned} & \text { Freguancy } \\ & \text { KMic } \end{aligned}$	$\operatorname{Max}_{\text {viw }}$	Frapeney Semsidvity . 8	Prise
N180A	.6-11.0	1.3	(-.3)	\$42.00
N1808	1.0-11.0	1.3	$(-.6)$	42.
N180C	$\begin{aligned} & 1.0 .0 .2 .0 \\ & 2.0-11.0 \end{aligned}$	$\begin{aligned} & 1.35 \\ & 1.30 \\ & \hline \end{aligned}$	$\left(\begin{array}{l}(-1.2) \\ (+1.3)\end{array}\right.$	42.0
N1800	$\begin{aligned} & 2.0-3.0 \\ & 3.0-11.0 \\ & 11.0-12.4 \end{aligned}$	1.35 1.30 1.40	$\left(\begin{array}{l}\text { (1.9) }\end{array}\right.$	42.0

Wrise for Cacelog Sbeas No. 180

CIRCLE 177 ON READER-SERVICE CARD

quency range from 4,200 to $6,000 \mathrm{mc}$ in $50-\mathrm{mc}$ min . steps. Temperature stability is $\pm 10 \mathrm{kc}$ per $\operatorname{deg} \mathrm{C}$. The unit requires a plate voltage of $200-\mathrm{v}$ nominal and 6.3 v for filaments. It is for use as a local oscillator, cw signal source and driver for crystal harmonic generators.
John Gombos Co., Inc., Dept. ED, Webro Road, Clifton, N.J.
Price: On request.
Availability: 30 days.

Tee Circulator Switch

For the band of 10 to 10.5 kmc

These tee circulator switches are for use in the frequency range of 10 to 10.5 kmc . An isolation of 20 db between channels is obtained and insertion loss is less than 0.4 db . Special tuning can be used to peak the isolation at any frequency in the bank. Switching is accomplished in $300 \mu \mathrm{sec}$ when 2 v is applied to the actuating coil.

Rantec Corp., Dept. ED, Calabasas, Calif.
Microwave Reflex Oscillator

> Eliminates RF grids

The SRX-265 oscillator eliminates rf grids. Efficiencies of 3% to 4% have been obtained at the X-band. Electrons must pass through one ungridded aperture in this unit. Output at X-band is 1 w .
Sperry Rand Corp., Electronic Tube Div., Dept. ED, Gainesville, Fla.
Price: On request.
Availability: On request.

CIRCLE 178 ON READER-SERVICE CARD
ELECTRONIC DESIGN • November 23, 1960

- OPRRATION: Fell wavoguldo teied.
- mitquencr manela
7.08 KMe to 10 KME
.2 KM to 12.4 KM

STEP LOSS: 40 db
CALIBATION \& FRLOUENCY gENSitivitr: $\pm 0.4 \mathrm{db}$ mex

- Uswr: 1.1 mas
- insertion lossa 0.5 db max

No. S of esories of PXR's mow pro-
cision microw ove $c 0$ mpom pus

FXR's Standard Step Atrenuator differs uniquely from orter ernadard rep attenuators in that ethe artenuation in a waveguide line can be
changed without remoriag any com. ponear in the line. This conveniear fearure adds signigicantls co measuremear accuracy. The artenuation is determined by the size of coupling holes and aor by the sesiscivity of a ation value is, therefore, independent of time and ambient coaditions and is relacively conrtant with frequency.

mopel	Frequener nambe nime	WAVEQUIDE Mi-1 //E	AICE
W176A	7.05-10.0	51	\$185.00
X176A	8.2-12.4	52	165.00

Wrive for Cados Sbows No. 176
PXR, Inc.

25-26 50th Strect/ $/$ RA.
Woodside, N. $\mathrm{Y} . / \mathrm{TWX}$: NY 43745

CIRCLE 179 ON READER-SERVICE CARD

No. 6 of a serios of FXR's now procision microwave compowant FXR's Fixed Precision Artenuator find use in mand rdizis Arrenuator the sestias
of atrenuators directional coupler of atrenuators, directional coupleri ratreny or on the production line. Artenuation values are almoor com.
pletely deerermined by the angular pletely decermined by the angular
position of an arrenuation film in
cylindrical waveruide and are insensi. cylindricil wavesuide and ane insensi.
eive to frequency or the chamerer tive to frequency or the ch
tios of this aboorbing film.

$\begin{aligned} & \text { Moget } \\ & \text { MO. } \end{aligned}$	PREQUENCY ramge Nis	$\begin{aligned} & \text { Waveculoe } \\ & \text { MPE } \end{aligned}$	PRICE
\$175A	2.60-3.95	48	\$365.00
H2753	3.85-5.85	49	20.00
C175A	5.85-8.20	50	135.00
W133	7.05-20.00	51	115.00
X173A	8.20-12.00	52	85.00
Y173 ${ }^{\text {a }}$	12.00-12.00	91	115.00
K173A, AF	18.00-28.50	53	200.00
U173A, AF	2.50-0.00	8	250.00
01731	33.00-50.00	97	475.00
M173A	50.00-75.00	88	43.00
E173	60.00-90.00	9	675.00
Wrive for Curatos Sboos No. 175			
FXR, Inc. Design-Dovelepment-Manafas tart $25-25$ 50th Street/ RA. RA. 1-8000 Woodside, N. Y./TWX: NY 43745			

CIRCLE 180 ON READER-SERVICE CARD

MANUFACTURERS OF:
Microwave Products, Educational,
Medical, Laboratory Instruments

For precise quantitative analysis of:

- Dielectric properties of solids and liquids
- Superconductivity phenomena
- Microwave accelerated particles
- Radiometry
- Ferromagnetic effects
- Paramagnetic relaxation and resonance effects
- Absorption spectra of gases
- Molecular beam resonance
- Velocity and phase by interierometry - Iransmission and absorption spectrometry - Plasma diagnostics

NEW FERRITE-LOADED CRYSTAL MULTIPLIER

You have long wanted more power at Ultramicrowave frequencies. These ferrite-loaded harmonic generators deliver 10 db more power at the second harmonic. Units are available with outputs to $200 \mathrm{KMC} / \mathrm{sec}$.

UNIQUE FERRITE ISOLATORS

We use a special ferromagne tic compound in these units. Result: improved unidirectivity

Typical Specifications
Frequency range: full waveguide baidwi Insertion loss: 1.0 db max.
solation: 30 db min .
VSWR: 1.15 max.
Overall length: $57 / \mathrm{s}^{\prime \prime}$

CIRCLE 822 ON READER-SERVICE CARD

CLICHE' DEPT.

We not only claim "the most complete line"-we have it!

STUB TUNERS

-the finest money can buy, offering precise resettability . . . micrometer depth control . . . VSWR as high as $20 / 1$, as low as $1.02 \ldots$ micrometer readout to $.0001^{\prime \prime}$.

ULTRAMICROWAVE ${ }^{\circ}$ EQUIPMENT

This line-the most widely used in America today - has opened new horizons in microwave applications. If you are interested in higher and higher frequencies, get in touch with us-we're now working with frequencies up to $300 \mathrm{KMC} / \mathrm{sec}$.

CIRCLE B24 ON READER-SERVICE CARD

Cavity Wavemeters
Crystal Mounts

A CHALLENGE TO YOU!

OLD! OLD! OLD!

-ves, lue're proud to have the oldest name in the husiness.

AWARD of MERIT

STANDING WAVE DETECTORS

Exceptionally accurate . . . patented, gearless, infinitely variable speed drive . . . linear displacement readout to .01 mm . . . direct phase readout . . . only 30 seconds to change to any of 10 other waveguide sections, with perfect alignment.
Available from 5.8 KMC to 300 KMC .

X-BAND ISOLATORS FOR BROADBAND APPLICATIONS

HIGH-POWER X-BAND ISOLATOR IXH7 AVAILABLE FROM STOCK

PRICE: $\$ 175.00$

TYPICAL SPECIFICATIONS X-BAND ISOLATOR MODEL IXH7	
Frequency range (ma)	8,200-12.400
Isolation	
Minimum	23 db
Maximum	30 db
Inserrion loss	
Minimum	0.5 db
Maximum	0.8 dh
Power	
Peak	25 kw
Average	150 watts
VSWR	
Minimum	1.04
Maximum	1.17
Weight (max.)	2.5 lbs .
Max. dimension	3.75 in.
Flanges	UG 391U
Waveguide	RG 52IU

CIRCLE 183 ON READER-SERVICE CARD

MICROWAVE PRODUCTS

Coaxial Noise Source

Frequency range is $\mathbf{1}$ to $\mathbf{2 k m c}$

Model T44LID coaxial noise source covers a frequency range of 1 to 2 kmc and has an $18.5-\mathrm{db}$ noise output. This double-ended unit, $10-1 / 4 \mathrm{in}$. long, is for noise measurement and testing of microwave components. Nominal operating voltage is 180 v , operating current is 50 ma and striking voltage is $1,200 \mathrm{v}$.
Tucor, Inc., Dept. ED, 18 Marshall St., South Norwalk, Conn.
Price: $\$ 250$ to $\$ 450$ ea, 1 to 100 .
Availability: 30 days.

High-Voltage Triode

Can switch 150,000 v
Type ML-7668 triode can switch $150,000 \mathrm{v}$ in pulse modulators for radars and other electronic switching applications. This oil-cooled tube has dc plate and inverse voltages of $150,000 \mathrm{v}$ and a peak cathode current of 6.5 amp . Dissipation of grid and plate are 50 and 750 w , respectively. At $150,000 \mathrm{v}$, the cut-off grid voltage is approximately -900 v . The tube measures $11-5 / 8-\mathrm{in}$. high and has a $5-1 / 8-\mathrm{in}$. diameter. Filament voltage is 12.6 v ; filament current is about 29 amp .
The Machlett Labs., Inc., Dept. ED, 1063 Hope St., Springdale, Conn.
Price: $\$ 1,090$ OEM.
Availability: 90 to 120 days.

Bandpass Filters

Nominal insertion loss is 2 db
The Serco BPF filters have a nominal insertion loss of 2 db in passband with peaks of $3-\mathrm{db}$ max. Insertion loss is greater than 60 db from dc to center frequency. The units stand severe environmental conditions. Eight models, covering 200 to 4.000 mc , can be furnished. Type N, BNC or TNC female connectors are used.

Sigma Electronics Research Corp., Dept. ED, 15735 Ambaum Blvd., Seattle 66, Wash. Availability: 45 days.

Get the complete story on microwave tubes and components in these two new booklets from BOMAC

Microwaves

Trends In Microwaves

The potential for microwaves is rootid squarely in the basic function of technolo : -solving problems in the physical world ly applying physical science. Microwaves ha e been found eminently suited to this task, partly because of the versatility of the microwave form of energy, and partly because of the ingenuity and adaptability of the engineers working on it.
This increased utilization of microwaves is reflected in industry projections. The microwave segment of the industry is expected to expand at an annual growth rate of 20 to 25 per cent over the next five years.

In this report, Electronic Design shows how current developments are confirming the optimism of the microwave picture. To accomplish this end, the editors have chosen five articles:

A sampling of the new commercial jobs that can be accomplished b!! microuates is contained in:

Microwaves Invade New Commercial Fields

A survely of advanced microwave antenna designs is the subject of the second article, titled

Breakout in Microwave Antenna
Design
A selection of interesting and widely differing now tube designs is presented in

New Tubes for Agile, Reliable, Powerful Microwave Systems . . p 172
The variety of approaches taken by component designers in solving three pressing problems is treated in

Advanced Components Spotlighted By Microwave Spectrum Squeeze

[^2]
Microwaves Invade New Commercial Fields

A new generation of commercial microwave systems is taking on roles unthinkable just a few years ago. In totally new fields, microwaves play an important part in taming the atom, running our industries, mapping our world, cooking our food and making the sea and sky safe for private and commercial navigators. Electronic Design samples the evidence of expansion in commercial applications for this versatile form of energy.

Fig. 1. A plasma-microwave torch, capable of melting a steel rod without itself becoming warm, was recently announced by Amperex.

Robert N. Defloria
 Associate Editor

THERE is no question about it-the microwave systems picture is changing radically.
It is no longer merely a matter of upgrading radar systems that handle faster aircraft and new missiles. Nor is it just a process of extending mileage for microwave telephone and television links. These advances are important, to be sure, but something more is happening, especially in commercial microwaves.

What is taking place is an invasion of problem areas never before thought susceptible to microwave solutions. More than that, we are witnessing the creation of new industrial fields and product lines impossible without microwaves. The lesson to be gained from sampling these new developments is one of design and marketing orientation.
The designer of systems, who is alive to the broadening versatility of microwaves, may experience the pleasure of finding his product in a new commercial field, temporarily free of competition. In the same way, the device designer who keeps abreast of developing new applications at the systems level, will more often than not assure an expanding market for his devices. In this sense, important parts of successful microwave design on any level are keeping abreast of developing applications, and using the imagination to create new ones.
Just what can microwaves accomplish? Here are a few recently established end-uses of considerable variety, most of them independent of military appropriations.

Duplicate The Sun's Inferno
 With A Cold, Fuel-Less Torch

A plasma torch (Fig. 1), just announced by Amperex Electronics, has achieved temperatures of over $3,000 \mathrm{C}$, with the sun's surface temperature ($5,700 \mathrm{C}$) in prospect. One model of this new heat system uses 1 kw of S-band energy to disassociate the molecules of nitrogen and form the plasma. When the plasma recombines, the

Fig. 3. Hazard-free drying of inks and dyes is accomplished by this German continuousfeed microwave industrial unit. Any dielectric material can be handled.

Fig. 4. One of the smallest and most inexpensive microwave systems, this Sperry Radar 5 is a safety boon to small-boat operators.
absorbed energy is released producing the enormous temperatures.
Since this occurs beyond the torch's nozzle, the torch remains cold to the touch and exhibits no nozzle wear. Since the nitrogen is recycled, no fuel is consumed, no oxidation occurs.
The small size, long wear, and low price (well under $\$ 1,000$ in production) opens many new fields for this microwave heat system. These in-

Fig. 5. Microwaves has moved into the vendingmachine by way of this Rudd-Melikion Kwik Kooker.
clude spraying high melting-point metals and ceramics, missile reentry research, petroleum and chemical processing, welding, etching, machining and many others.

Transmir Power for Miles Without Wires

An ancient dream of wireless power transmission came a step closer to reality with the just-
announced construction of heat exchanger prolotype elements by Raytheon. These units are he airborne end of the amplitron power transmiss on system.

Representing a thoroughly new field of ap, ilication, the system is designed to power a 9 - on helicopter at 12 to 13 miles altitudes (present helicopter altitude record is about 8 miles). The system, result of studies partly WADD-funded and partly company-funded, will allow a $2,00(1)-\mathrm{lb}$ payload to remain at altitude for 3 to 6 werks.

The present system specifications are eriormous: $2506-\mathrm{Gc}$ amplitrons, rated at $300-500 \mathrm{hp}$, drive a 400 - ft linear array that illuminates an elliptical cylinder. This array beams the energy to the 40 or so airborne horns with a total aperture of 50 ft . The received energy drives the $2,100 \mathrm{hp}$ (approximately 1.5 megawatts) gas turbine.

The converter, shown in Fig. 2, admits microwave energy and closed-cycle air at the feet of the "A". Electromagnetic and aerothermodynamic circuits are mixed in the " A " legs. Air exits at the top of the "A" at 1620 F , to drive the gas turbine.

Efficiency is improved by heat exchange between turbine-exhaust gas (air) and unheated gas in the closed cycle, and by heating ambient opencycle air used in rotor-tip jets. All this occurs at an altitude where atmospheric pressure is down to about 1 lb .

Over-all efficiency, from basic fuel on the ground to mechanical output in the air is about 6 per cent. When the vehicle and personne! savings are included, this is a satisfactory system efficiency.
Applications? Here are just two possibilities. A string of these platforms, mounting I-R sensors, could detect the plume of Polaris-like missiles approaching our coasts. A chain of four fixed-wing (more efficient) platforms could provide a microwave link across the Atlantic. More broadly, almost any situation in which energy is needed and cables are impractical can constitute a proper application for this system.

Dry Newsprint Rapidly Without
 \section*{Fire Hazard}

From Germany comes a report of a microwave system that solves a stubborn problem. The problem is how to dry ink rapidly without the usual fire-hazard in case the continuous-flow feed stops. When heat is used, a fire in such a case has a high probability.
The system employs a meandering waveguide feed (Fig. 3) slotted to receive the paper (or fabric) to be dried. Microwave energy (at 2.4 Gc) couples efficiently to the dielectric ink when it is wet, but very poorly when it becomes dry. Since the wet material enters near the termination end of the run, and exits at the stronger-field source section, constant coupling is effected. Should the

microwayes

work stop, the coupling drops to near zero as the ink dries.

Applications include not only the great number of high-speed printing presses, but also the many printed fabric mills.

Give A Sunday Sailor
 An All-Weather Eye

To design a successful system for the smallboat field, three things are prime: ease of installation, simple operation, and low cost. This Sperry Radar 5 (Fig. 4) seems to have connected on all three.

A 40-lb antenna, an indicator no larger and no more complicated than a portable TV set and a $\$ 1,495$ price tag make it an attractive system. Two scales allow the skipper to scan the area for a radius of 0.5 or 5 miles, regardless of weather. Other small-boat radars, priced under $\$ 3,000$, are manufactured by RCA, Raytheon, and LaVoie.
Is the field worth entering? So far, 4,000 stations have been licensed. A station could be one boat or a fishing fleet. This represents just a surface scratch on the vast and growing fleet in the pleasure boat field.

Run A 50-Mile Surveyor's Line

In The Space of Five Min

Microwave is creating a sizable revolution in surveying. A system like Cubics Electrotype can measure a 50 -mile linear distance to an accuracy of $\pm 1 \mathrm{in} . \pm 3 \mathrm{ppm}$. The 1 in . represents instrument error, while the 3 ppm is a fairly irreducible propagation anomaly error. High accuracy is achieved by using multiple CW modulation and phase-comparison techniques.
The actual shot takes about 5 min , but to get the highest accuracy from the system, geological corrections must be made to the readings. This requires measurement of temperature, pressure, and humidity at each of the pair of units.
The units are in the $25-35 \mathrm{lb}$ range, mounted on tripods. The two are interchangeable, permitting double-running the measurements for error checks.
Applications are many and growing: Surveying county lines, building highways, laying pipe lines, establishing control points for photogrammetry are but a few of the fields of application. When used to install microwave link repeater stations, an assured clear microwave sight from station to station is an added bonus.

In the Future: Cook A Meal

In A Vending Machine

The microwave vending machine is now a real ity, with the recent introduction of the Kwik Kooker (Fig. 5) by Rudd-Melikian Inc. of Hat-

AVIEN-BOGNER ANTENNAS

A dramatic breakaway from the limitations of conventional antenna types, Avien-Bogner Antennas offer unparalleled capability for precise integration into advanced telemetry, tracking, surveillance, scatter communications and radar systems.
Designed around the patented Bogner bipolarized endfire element modules, they can be quickly supplied in configurations to meet a wide variety of complex requirements in the VHF, UHF and SHF. bands. Characteristics include high gain, multi-octave frequency coverage, excellent side lobe control, rapid variation of beamwidth, and accurate self tracking.

And - Avien-Bogner antennas afford real savings in cost, size and weight over large steerable or fixed paraboloids with comparable performance. For the complete story, call or write today.
AVIEN, INC., 58-15 NORTHERN BLVD., WOODSIDE 77, N. Y. - (212) YE $2-4600$ AERO-SPACE AND GROUND SUPPORT SYSTEMS ENGINEERING IN: ANTENNA SYSTEMS * FUEL AND PROPELLANT MANAGEMENT * TEMPERATURE MEASUREMENT AND CONTROL * LIQUID FLOW INSTRUMENTATION * CHECKOUT

	TENTATIVE RATING CHART							heater				CATHODE \& RESERVOIR WARM.UP time	DIMENSIONS		wr.
TYPE	$e_{k v}^{\text {epx }}$	Ib	$\begin{aligned} & \text { Ib } \\ & \text { Ade } \end{aligned}$	${ }_{A a c}^{10}$	${ }_{\text {epx }}^{\text {ep }}$	ib	$\begin{aligned} & \text { lb } \\ & \text { adc } \end{aligned}$	$\begin{aligned} & \mathrm{Eft} \\ & \mathrm{Vac} \end{aligned}$	$\begin{gathered} \mathrm{If} \\ \text { lac } \\ \text { max. } \end{gathered}$	$\begin{aligned} & \text { Eres } \\ & \text { Vac } \end{aligned}$	$\begin{aligned} & \text { Ires } \\ & \text { lac } \\ & \text { max. } \end{aligned}$	minutes	Max. Herghtinches	$\begin{gathered} \text { Max. } \\ \text { Dia. } \\ \text { inches } \end{gathered}$	lbs.
HR-2	8.0	9.0	. 100	2.0	8.0	1.5	0.25	6.3	3.2	*	-	0.5	2-1/2	1-1/5	0.13
HR-1	25.0	250	. 125	4.0	20.0	9.0	1.5	5.0	9.5	5.0	3.5	5	4.5/8	2-5/16	0.95
HR-3	25.0	500	. 500	16.0	25.0	30.0	5.0	6.3	13.0	6.3	4.0	10	5-3/4	3.3/8	2.07

THIS IS THE FIRST COMPLETE LINE OF CERAMIC-METAL, HYDROGENFILLED TUBES ever made available
to the industry ${ }_{\text {Now, for the frst t time, design }}$ engineers have at their disposal a complete line of miniaturized, hydrogen-filled tubes, which will meet most radar circuit requirements and permit the design of truly compact modulator packages.

THYRATRONS EGaG's rugged, lightweight, durable thyratrons have all passed vigorous vibration and shock tests. They are designed to operate at high power levels, high repetition rates and high temperatures and can be mounted in any position.

	$\begin{gathered} \text { Madel } \\ 7322 / 1802 \\ \hline \end{gathered}$	$\begin{gathered} \text { Model } \\ 7620 / \mathrm{HY}-1 \end{gathered}$	Model 7621/HY-2
- compact modular circuitry (length). (dia.)	$\begin{aligned} & 5-3 / 4^{\prime \prime \prime} \\ & 3-3 / 8^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 / 8^{\prime \prime} \\ & 2-5 / 16^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \cdot 1 / 2^{n \prime \prime} \\ & 1-1 / 5^{\prime \prime} \end{aligned}$
- light weight (lbs.)........................	2.07	0.82	0.13
- max. peak anode volitage..................	25,000	20,000	8,000
- max. peak anode current (amps)...........	1,500	500	90
- max. average current (amps)..............	1.5	0.5	0.1
- wide temperature capability..............	$-55^{\circ} \mathrm{C}$ to	$5^{\circ} \mathrm{C}$ ambient	C envelope
- long life................................. unique hydrogen reservoir in all models.			
- rugged dependability	all models pass vigorous shock and vibration tests.		
- cathode \& reservoir warm-up time........	10 min .	5 min .	30 sec .
- high plate dissipation factor.	20×10^{9}	10×10^{9}	1×10^{9}

EDGERTON, GERMESHAUSEN \& GRIER, INC. 161 Brookline Avenue, Bosion 15, Massachusetts - Las Vegas - Santa Barbara

boro, Pa. This forward-looking vending-machine company has made it possible to store food froz n in a vending machine, and, with the aid of a small microwave oven, sell heated pastries, sandwiches, vegetables, or complete dinners.
The microwave section is supplied by Raytheon, pioneer of microwave cooking. In the present model, cooking time from $15-60$ sec. makes it necessary to remove the food from a delivery chute and heat separately. In the planning stage is a vending machine that can deliver a cooked meal within the 10 -sec allowable vending cycle.
Another closely related device is the contin-uous-belt microwave oven recently demonstrated in Europe by Philips Lamp. Called the Philips Holland Magnetron, the unit can deliver 150 cooked meals per hour, with a 1,000 meal-perhour unit in the planning. Amperex, Philips' U. S.

Fig. 6. One of the largest non-military systems, this W. L. Maxson height-finder antenna array, developed for the FAA, when complete, will use 30 miles of wave आ Jide in developing 333 beams.
affiliate, is marketing the unit for institutional feeding and industrial heating applications. The sistem now uses five $2-\mathrm{kw}$ magnetrons feeding energy to the passing material through five parabolas. Plans call for the conversion to the 5 -kw tupe 55125 magnetron, with corresponding lift in the heating capacity of the oven.
The potential market for these devices and their logical design descendants is enormous. When the cost, reliability and safety factors can be substantially improved, 50 million homes will become end-users.

Separate The Aircraft 'Stacks'

In Airport-Traffic Jams

As if to indicate that non-military microwave systems need not be small, the W. L. Maxson height-surveillance radar (AHSR-1) involves a $160-\mathrm{ft}$ tower and there 100 -ton antenna arrays. One of these million-dollar arrays is shown going up (Fig. 6) at the National Aviation Facilities Experimental Center in Atlantic City recently.
The antenna is representative of a new class of phased arrays that will make a considerable difference to microwave components manufacturers in this system, and in other systems, tube manufacturers. This passive antenna receives return pulses from a separate ASR radar and determines elevation very rapidly. The "plumber's delight" has 3,168 antenna elements and 30 miles of waveguide in its three sides. Each of the three antennas generates 111 beams in which to receive energy. Electronic-signal processing replaces the mechanical scanning of a slower "conventional" parabola.
With the increasing traffic snarls at the nation's airports, equipment in this general class are designed into an expanding market.

New Applications,

New Design Criteria

The wide range of system requirements represented by this sampling of commercial microwave systems is translatable directly into widely differing component-design criteria. As microwaves expand into strange new fields of application, the parts designers must work to optimize new sets of parameters.

In many cases, cost, size and reliability of components have gained an importance quite beyond anything called for previously. Yet, these are valid and necessary conditions for successful penetration into these newer fields of microwave applications. The following four articles indicate some steps that have been taken by antenna, source, component and test equipment designers to meet the challenge of rapidly changing system riquirements. - -

now 100

 times greater average powerNow you can obtain traveling-wave tubes capable of 10 to 100 times the average power of conventional helix tubes. These X-band tubes are representative of a wide variety of the first commercially available all metal filter-type structures yielding both high gain and wide bandwidth. Their attractively small size and weight are made possible through application of the latest periodic focusing techniques.
Typical of these recent advances is the pictured 308 H . For the first time
 $8.6-9.9 \mathrm{kmc}$ frequency range, 53 db saturation gain, 1% maximum duty cycle, beam voltage $=24 \mathrm{kv}$, 14 lbs . total weight of tube and magnet.

20 kw peak power output (200 watt average), $8.4-9.6 \mathrm{kmc}$ frequency range, 54 db saturation gain, 1% maximum duty cycle, beam voltage $=24 \mathrm{kv}, 17 \mathrm{lbs}$. total weight of tube and magnet.

For full details on these and other equally outFor full details on these and other equally out-
standing tubes write or wire Hughes Microwave standing tubes write or wire Hughes Microwave
Tube Division, 11105 Anza Avenue, Los Angeles tube Division,
45, California.

CIRCLE 187 ON READER-SERVICE CARD

HUGHES

MICROWAVE TUBE DIVISION

MicroWaves

Breakout in Microwave Antenna Design

In a dramatic break with traditional optical design, antenna arrays have been risen from the realm of the theoretical, and are now a reality. The cause-pressing new operational requirements. The means-development of the necessary components. In a graphic, yet comprehensive overview, authors Gustafson, Shestag and Stark show how this coincidence of need and means has changed the current status of these exotic radiators.

L. A. Gustafson, L. N. Shestag, L. Stark

 Hughes Aircraft Co Culver City, Calif.SINCE the speed and number of planes and missiles is constantly increasing, there is an urgent need for search and tracking radars with greater range, resolution, and information rates. Such performance requires antennas that radiate more energy, and beams that scan more rapidly and carry more information than ever before.
Because the amount of power carried by a single radiator is limited by electrical breakdown, the trend toward antenna arrays is now well established. Lack of suitable components, however, hindered the growth of array application until recently. Fortunately, methods and hardware for array scanning are now rapidly becoming available to the antenna designer, and array research has advanced understanding of mutual coupling effects in electronically scanned arrays. Thus, both the need and the means have now developed for the high-speed scanning of large arrays from a fixed mechanical position-on the ground, on ship board, or in the air.

Electronic Scanning Theory
 Now Paying Off In Hardware

Much of the theoretical background for the design of electronically scanned antennas has

Fig. 1. Line source and parabolic cylinder allow electronic scanning to be effected by change in frequency.
been available for several years. Efficient aper ture distribution for arrays of discrete elements can be calculated by the methods of T. T. Taylor. ${ }^{1}$ The effects of errors due to the construction tolerances have been investigated by Bailin and Ehrlich ${ }^{2}$ and by Elliott. ${ }^{3}$ The errors in the antenna pattern caused by scanning the array can be predicted using results obtained by Elliott and Kurtz, ${ }^{4,5}$ Odlum ${ }^{6}$ and Spradley. ${ }^{7}$ Design information for various types of slot arrays has been published by Cullen, ${ }^{8}$ Ashmead, ${ }^{9}$ Kaminow and Stegen, ${ }^{10}$ Gruenberg, ${ }^{11}$ and many others.

Major advances in component technology have recently made possible the development of hardware from this wealth of theoretical antenna-design information. Compact ferrite phase-shifters, which have low losses and require only nominal control power, are now available for electronic scanning. Wide-bandwidth high-power transmitters extend the usefulness and versatility of frequency-scanning techniques. Low-loss, lightweight dielectrics offer the antenna designer the chance to reduce the size of complex feed systums. All these hardware advances bring nearer at: era of truly versatile, electronically scanned antennas: flush-mounted antennas for aerospace whicles and high-speed planes, high-resolution rconnaissance antennas, and powerful longr inge ship- or ground-based search and track an1 nnas. (A description of some of the newer com-

Fig. 2. Closer control aperture amplitude distribution is effected in this advanced design in which the parabolic cylinder is replaced by waveguide slot arrays.
ponent developments that are contributing to this breakthrough is presented in the advanced components article, p 176).

Linear Antenna Arrays Steered In
 One Plane by Phasing

Electronic-beam scanning of antenna-array systems is based on the phasing principle in antenna theory. The theory of optimum radiation patterns for line sources has been studied extensively, ${ }^{1,12,13}$ and the antenna designer can compute the optimum amplitude distribution (along the line source) that will produce the narrowest beam-width and lowest side-lobe intensities for a given array length.

As the beam is scanned from the broadside direction in a linear array, the beam broadens and the gain of the array decreases. If the amplitude distribution is maintained throughout scan, then the side-lobe levels remain the same. Except in the end-fire region, gain and beamwidth can be predicted quite accurately from the extent of the aperture projected in the direction of radiation. ${ }^{14}$ The projected aperture rule indicates a gain decrease of 0.707 for a scan angle of 45 deg . Thus a $90-\mathrm{deg}$ sector can be scanned with a gain-drop of 1.5 db at the sector edges.

Antenna applications requiring a pencil beam often employ a phased-line source feed and a
focusing element to collimate the beam along the coordinate perpendicular to the line source. This configuration offers a pencil beam which can be electrically scanned in the plane of the line source. A simple arrangement of this type consists of a line source and a parabolic cylinder reflector. Alternatively the phased line source can feed a set of linear arrays to achieve beam collimation.

Line Source and Parabolic Cylinder Offer Electronic Stabilization

Fig. 1 shows a line source and parabolic cylinder frequency-scanning antenna developed at Hughes Aircraft Co. The frequency-scanning feed, contained inside the metal fin is a serpentine waveguide. The radiators are slots milled in the narrow wall of the guide. Antenna performance is remarkably good throughout the electronic scan. The beam can be stabilized by electronic means, hence, heavy mechanical stabilizing motors are not required.
An advanced version of this antenna concept is shown in Fig. 2. The parabolic cylinder is replaced by a family of waveguide slot arrays. This antenna offers greater opportunity for improved performance because the aperture amplitude distribution can be controlled more closely, and the theoretical results of optimum aperture design can be exploited. The antenna is more

Fig. 3. Nose-cone antenna can be scanned over most of the forward hemisphere by combination of frequency change and mechanical motion of feed

Fig. 4. Two concepts of conformal array are illustrated, with the ground-mapping beam now attained by large podcarried sidelooking radar antenna.

Microwaves

Lactor, as opposed to electron-tube phase shifters. Ferrite phase shifters require temperature stabilization or closed-loop phase control. They are suitable as phase shifters in branch lines since in this case they do not create serious problems with regard to loss and power breakdown. The Reggia-Spencer phase shifter ${ }^{18}$ is well suited to electronic scanning systems because the magnetizing field is low. Step switching of the control field thus requires only a small amount of drive power.
Microwave amplifier tubes, having a large drift angle, can change phase by variation of the beam voltage. A large variation in phase is possible in klystrons and traveling-wave tubes. The advantage of this method is that the functions of amplification and phase shifting can be combined. Closed-loop phase control is usually required because the phase change is usually a sensitive function of voltage and beam current, and because aging affects emission.

Frequency Scanning, Suited For Linear Arrays, Is Also Adaptable for 2-D Scanning
Frequency scanning is achieved by variation of the signal frequency in an antenna feed, designed so that the beam position is sensitive to frequency. The feed is so designed that the delay between the tap points is much greater than the delay in free space. Feeds of this type have been most commonly designed as serpentine feeds of waveguide or coax, but helices have also been studied.
Near broad-side, the beam position is a linear function of frequency. A wide angle can be scanned by the use of a large frequency variation. Alternatively, the frequency variation may be kept small if the distance between tap-off points is made large relative to element spacing, or if there is a large ratio of guide wavelength to free-space wavelength. Use of the second alternative increases feed loss and thus a major design consideration is frequency bandwidth versus feed loss. Ten per cent bandwidth has been employed in designs to date and a feed loss of 1.0 db is common.
At higher or lower frequencies corresponding to addition or subtraction of an integral number of guide wavelengths between tap-off points in the feed, the beam is returned to broad-side. These frequencies correspond to the centers of additional bands throughout which the beam can be scanned.
Frequency-scanning systems are reciprocal, and scanning is achieved primarily by an inactive device. Frequency scanning has proved sry successful in linear-array applications, and umbined with other electronic scan methods

HIGH-VACUUM FIRSTS!

Associates advanced research in high-vacuum come two more important contributions: The High Thru-Put VacIon ${ }^{\circledR}$ Pump and the VacIon ${ }^{8}$ Micro-Pump!

You'll want to know more technical facts about these two unique new pumps. It's easy. Just address Vacuum Division.

THE Vacion MCRO - EDMP
Here's the baby of the Vaolon purip family. This tiny appendage pump has a pumping speed of 0.2 litres/second.
It waighs - less magnet - only 80 crams.
And brings about a happy solution to
situations requiring miniaturo, lightweigbt, yet rugged pumps. Works beautifully to maiatain a high vacuum in such devices as microwave fubes and the like.

VARIAN assoclates

PALO ALTO 21, CALIFORNIA
Representatives inroughout the world KLYSTROMS, WAVE TUBES, GAS SWITCMING TUBES, MAGMETRONS HIGH VACUUM EQUIPMENT, LIMEAR ACCELERATORS, MICROWAVE SYSTEM COMPOMENTS, MMR AND EPR SPECTROME TERS, MAGNETS,
MAGME TOME TERS, STALOS, POWER AMPL IFIE RS, GRAPHIC MAGMETOMETERE, STACH, AMD DEVELOPMENT SERVICES

wide range voltage-tunable magnetron from Eimac

Take a look at the world's most advanced voltage-tunable magnetron: Eimac's new X-747, shown here with its magnet and cavity. This new tube can be tuned over the exceptional range of 400-1200 megacycles - a range approached by no other electronically tunable device. And it's extremely linear! Nominal output power of the X-747 is 100 milliwatts.
And too, the X-747 is easier to use than any similar device. No complicated heater voltage regulation is needed. Back heating is eliminated through its exclusive indirectly-heated matrix cathode plus advanced electron injection design. And heater power supply can be either AC or DC.

These advances make possible the most reliable voltage-tunable magnetron available today. Eimac can readily develop and produce other VTM types to meet your specific needs. For full information, write: Microwave Product Manager, Eitel-McCullough, Inc., San Carlos, California.
micRow ave tubes - amplifier klistrons - negativegerid tubes

in a two-dimensional array can give electronic scanning in two coordinates. In the simplest type of two-dimensional electronic scanning system, the number of active phase shifters is equal to the number of columns in the array rather than the total number of radiating elements.

Phase Shift Can Be Derived

From Frequency Shift By Mixing
Phase shift can be obtained by a change of frequency through a delay-line followed by a mixing operation in which the frequency variation is removed and the phase change retained. An amplifier chain must follow the mixers in order to radiate high power. The amplifiers must be extremely stable or closed-loop phase control must be employed. Such systems are being employed for electronic-scanning radar applications. These systems are not reciprocal and must be switched into a receiving state.

This method may also be combined with frequency scanning in a two-dimensional array. The frequency variation in the mixing operation is partially retained for frequency scanning along the other array coordinate.

Flush Nose-Cone Antennas

A Reality Through Scanning
For airborne radar, the best combination of paraboloid reflector and radome still leaves much to be desired. The next step is an antenna that can be flush-mounted on the nose of an aircraft, thus eliminating the radome completely. Studies on such an antenna have been going forward at Hughes for several years. Fig. 3 illustrates the latest antenna developed in these studies.

Extension of Electronic Scanning Theory
 Provides Large-Area Conformal Arrays

Another application of the flush-antenna technique that promises early operational capability is the airborne high-resolution reconnaissance system. Current practice is to mount the antenna in an auxiliary pod. Fig. 4 is an artist's sketch of two types of conformal array on a high-speed air vehicle. Here the array is visualized as a small segment of the cylindrical fuselage, or as a flat rectangular slab lying on the underside of the wing.
High-resolution reconnaissance systems generally require a rather large rectangular aperture in order to form a narrow beam in azimuth, and
a shaped beam in elevation. Control of the elevation beam is desirable both to correct for vehicle roll and to permit operation at many altitudes. An experimental array which can accomplish these goals utilizes ferrite devices for control of the phase of each radiating array. Iris coupled slots ${ }^{17}$ are employed so that the amplitude of energy to each radiating array can be independently controlled. A variety of the problems associated with flush reconnaissance antennas can very easily be simulated with this array and the solutions experimentally verified. $\quad \pm$

References

1. T. T. Taylor, Design of Line Sources for Narrow Beamwidths and Low Side Lobes, PGAP, Vol. AP-3, No. 1, Jan. 1955, pp 16-28.
2. L. L. Bailin and M. J. Ehrlich, Factors Affecting the Performance of Linear Arrays, Proc. IRE, Vol. 41, Feb. 1953, pp 235-240.
1953, pp 235-240.
3. M. S. Elliott, Mechanical and Electrical Tolerances for Two-Dimensional Scanning Antenna Arrays, Technical Memorandum No. 454, Hughes Aircraft Co.
4. L. A. Kurtz and R. S. Elliott, Systematic Errors Caused by the Scanning of Antenna Arrays: Phase Shifters in the Branch Lines, PGAP, Vol. 4, Oct. 1956. pp 619-627. 5. L. A. Kurtz and J. S. Yee, Second-Order Beams of Two-Dimensional Slot Arrays, Paper presented at Spring Meeting of URSI, Washington, D. C., May 1956. 6. J. L. Spradley and W. J. Odlum, Systematic Errors Caused by the Scanning of Antenna Arrays: Phase Shifters in the Main Feed Line, Scientific Report No. 11, Hughes Aircraft Co.
5. J. L. Spradley, Systematic Errors Caused by the Scanning of Antenna Arrays: Traveling Wave Branch Line Arrays, Report No. RLM(SP)56-51, Hughes Aircraft Co. 8. A. L. Cullen, Laterally Displaced Slot in Rectangular Waveguide, Wireless Engineer, Jan. 1948.
6. D. Ashmead, Optimum Design of Linear Arrays in the Presence of Random Errors, PGAP, Dec. 1952, pp 81-92. 10. J. P. Kaminow and R. J. Stegen, Waveguide Slot Array Design. Technical Memorandum No. 348, Hughes Aircraft Co.
7. H. Gruenberg, Theory of Waveguide Fed Slots Radiating into Parallel Plate Region, J. Appl. Phys., Vol. 23, July 1952, pp 733-737.
8. T. T. Taylor, One Parameter Family of Line Sources Proxlucing Modified sin $\pi u / \pi u$ Patterns, Technical Memorandum No. 324, Hughes Aircraft Co.
9. C. L. Dolph, A Current Distribution for Broadside Arrays Which Optimizes the Relationship Between Beam Width and Side-Lobe Level, Proc. IRE, Vol. 34, June 1916, pp 335-348.
10. R. W. Bickmore, The Effective Aperture of Electrically Scanned Arrays, Technical Memorandum No. 4.55, Hushes Aircraft Co.
11. S. Silver, Microwave Antenna Theory and Design, MIT Rad. Lab. Series, Vol. 12, McGraw-Hill Book Co., Inc, New York, 1949, pp 182.
12. S. Reggia and E. G. Spencer, A New Technique in Fe:rite Phase Shifting For Beam Scanning of Microwave Antennas, Proc. IRE, Nov. 1957, pp 1510-1517.
${ }^{1-}$ R. Tang, A Slot with Variable Coupling and its Appliation to a Linear Array, PGAP, Vol. AP-i, No. 1, Jan. 1960, pp 97-102.

Microwave Component News

from SYLVANIA

Lower relay equipment operating costs with

 new Sylvania KlystronsMetallurgical and processing improvements mean superior life and performance

Sylvania's research and production capabilities have produced a series of klystrons that promise to surpass earlier types in performance.

Sylvania's klystrons have the following features:
Improved high-temperature glass seal this permits higher bake-out temperatures and gives a lower gas level. The resulting tubes have a life expectancy of 10,000 hours, 2,000 hours longer than competitive types, and better shelf life. This means lower operating costs for relay link equipment.
Purer metals and materials - the premium quality metals used in these tubes, combined with new, exacting processing techniques permit higher bake-out temperatures and result in longer trouble-free operation with low gas levels.
Superior performance - full coverage from 5925 to 8100 mc with 1 watt nominal output power. Most of these tubes have a minimum electronic bandwidth of 28 mc .

Sylvania klystrons will give you added cost savings because of their longer life and fewer early-life failures. Send for the data.

SYLVANIA

Sylvania Electric Products Inc. Special Tube Operations 500 Evelyn Ave., Mountain View, Calif.

K-4160, shown approx. $1 / 3$ actual size. Fins facilitate forced-air cooling.

K-4186, shown approx. $1 / 2$ actual size. Flange connects to heat sink.

Fig. 1. 100 mw of electronically swept output over $400-$ to $1,200-\mathrm{mc}$ range available from new EIMAC X-747 VTM. Tests so far indicate linearity better than 1 part in 1,000 .

New Tubes For Agile, Reliable, Powerful Microwave Systems

In low power applications, microwave system and test equipment designers have been looking for wider, more linear electronic tuning. They are also forever seeking a better solution to the problem of reducing down-time caused by tube failure. In high power X-band equipment, the search is for more power, lower weight and greater frequency agility. Author Terry Bibbins reports on successful approaches to these problems, backs up the descriptions by concrete examples in newly developed microwave tubes and indicates their areas of application.

Terry Bibbins

Applications Enginee
Microwave Marketing
Eitel-McCullough, Inc
San Carlos, Calif.

T- HE CURRENT pace of progress in micro-wave-tube design makes it a major problem simply to keep up with new product developments and, what is more, there are as many ways of measuring this progress as there are design objectives.
For the radar designer, power is most important. For most other applications some other parameter is prime: for the data-transmission system, linearity is overriding; for telemetry, weight is important; for communications, reliability; for the ECM designer, frequency agility and broad band. Here are examples of some of the significant advances in these parameters to come along recently.

Near-Perfect Linearity Achieved

Over 3-fo-1 Frequency Range in VTM
An example of a tube in the low-range category is the long-life, broadband, voltage-tunable magnetron recently announced by Eitel-McCullough, Inc. This tube, the X747, (Fig. 1) is the first of a series of VTM's to be produced by the company. It can be electronically swept over the frequency range of 400 to $1,200 \mathrm{mc}$ and will provide a nominal output power of 100 mw over this band.
In addition to its unique 3 -to- 1 bandwidth, this

Fig. 2. Complete interchange ability of active element in the Sperry STC-236 TWT enables unskilled maintenance man to put communication repeater back on the air if tube fails.
tube has two other characteristics differentiating it from other devices in this general frequency range. It is designed for long-life service, and it is an extremely linear swept-oscillator.
The most prevalent complaint concerning magnetron oscillators is the short life experienced as a result of back-bombardment of the cathode. This effect may be minimized by two methods: providing a more rugged cathode, and removing the active cathode material from the rf section of the tube. Eimac chose to employ both methods.
In the X-747, the electron-injection system is used, removing the indirectly heated cathode from the rf field. This design has the added advantage of minimizing output power variations over the frequency range as a result of the limiting effect of the control anode. This element, to a first approximation, controls the amount of cathode current, regardless of the vane (fre-quency-determining) voltage.
The cathode material used in the X-747 is the EM-A structure devøloped at Eimac. This material is a pressed matrix of pure metals and their oxides, resulting in an emitting surface possessing the best characteristics of both constituents. The oxides permit efficient operation. The pure metals present a rugged surface, unharmed by electron or ion bombardment. This cathode material has been field-proven in high-power klystrons, with life of more than $15,000 \mathrm{hr}$ experienced. This design and the improved cathode material, together with metal and ceramic construction, result in a tube capable of life on the order of 3,000 to $10,000 \mathrm{hr}$.
The extreme linearity of this tube is a typical claracteristic of magnetrons. In these devices, the relation between frequency, anode-voltage, and cross-magnetic field is theoretically linear. Thus, ideally, a linear change in voltage produces a linear-frequency deviation. In practice, this tube is at least 99.9 per cent linear over a $20-\mathrm{mc}$ bindwidth (the limit of the test equipment availal le at the time of testing). That is, the fre-
quency voltage curve deviates from a straight line by less than 1 part on 1,000 . Further tests are now being initiated to determine its linearity over the complete 3 -to- 1 bandwidth.

The wide bandwidth, extreme linearity, and rugged construction make this tube well suited for missile fuse systems and ECM drivers or transmitters. When used in such systems, it may be possible to trade bandwidth for power output and efficiency. In a narrow-band circuit this tube has produced output powers of over 10 w and efficiencies of 35 to 40 per cent.

Active Element Can Be Quick-Changed Without Returning in TWT

A somewhat different approach to the life and replacement problem is taken by Sperry Electronic Tube Division in the development of the STC-236 traveling-wave tube. Intended for use in microwave repeater stations, this tube covers the 5.9 to $8.2 \mathrm{Gc}(\mathrm{kmc})$ communication band with a nominal output power of 10 w and a small signal gain of 35 db . Because it is designed for commercial communication service, the design goal was the development of a reliable long-life tube, requiring a minimum of adjustments by the operator.

Realizing that replacements would be inevitable, an extremely simple replacement procedure was developed which can be performed by non-technical operators. The tube-and magnet/waveguide assembly are constructed as separate units, (Fig. 2), so that replacement would involve removal of the tube only, without dismantling the waveguide assembly.

The periodic-permanent-magnet stack is an integral part of the waveguide assembly, and adequate shielding is provided by this construction so that the tube is unaffected by stray magnetic fields. Therefore, placement of transformers and chokes is not critical, simplifying circuit layout. A single matching tuner is provided on the input and output waveguide sec-

MicroWaves

power levels presentir avallable
POWER LEVELS PRESENTLY GVA
IN THE MICROWAVE SPECTAUM
Fig. 3. Quantum jump in microwave power over the past decade point the way to further power increases in the near future.
tions to provide simplified matching of the tube to the circuit. By means of these tuners it is possible to maintain the input and output "hot" VSWR's below 1.1 to 1 over a $100-\mathrm{mc}$ bandwidth.

Once the system is properly matched, it is not necessary to repeat this procedure. By maintaining extremely close manufacturing tolerances, Sperry is able to obtain a sufficiently high degree of uniformity to permit complete interchangeability. In the event of tube failure, the operator merely loosens the simple tube-holding device, removes the tube, and inserts the replacement. Upon tightening the tube holder, the replacement procedure is complete.
By this design, system down-time in the event of tube failure has been greatly lessened. In addition, high reliability and long life are guaranteed as a result of the tube construction. The oxide cathode is conservatively designed for expectant life of 10,000 hours or more. The materials and techniques employed in the manufacture of this tube result in a simple, clean structure at a relatively low cost. The result is an inexpensive, reliable product well suited for commercial communication service.

High Power Cw Upped Tenfold
 At X-Band In Three Years

The oft-quoted available power level, while far from the only parameter, is nevertheless one good indicator of tube progress. The current level of power available across the microwave spectrum is graphically represented in Fig. 3. The advance over the tubes of a decade ago

Fig．4．In just three years，Varian＇s $20-\mathrm{kw}$ VA－ 849 klystron has increased available power an order of magnitude in the 7.125 to 8.5 Gc range．

can be gathered from a comparison with the dotted line on the chart．
This rapid advance in the high－power cw field is well illustrated in the development history of Varian Associates＇VA－849 klystron（Fig．4）．This tube will deliver a cw －output power of more than 20 kw over the frequency range of 7.125 to $8.5 \mathrm{Gc}(\mathrm{kmc})$ ．Until this tube was developed， the 2 －kw VA－ 806 series，announced in 1957，was the most powerful tube available in this fre－ quency range．Available X－band power，in other words，has jumped one order of magnitude in just three years time，and in a single new－tube announcement．But this impressive rate of devel－ opment cannot be tossed off simply as the result of a single＂major breakthrough．＂It is actually the culmination of industry－wide engineering effort across the board over the past years．
A considerable amount of design effort on the VA－849 was directed toward higher reliability． The klystron＇s metal and ceramic structure are rugged and capable of long serivce．The output window is ceramic to withstand the dielectric heating effect at this power level．The convergent beam type gun uses an impregnated－tungsten cathode，which assists materially in the achieve－ ment of very long life．
In spite of the extremely high output power， the operation is not at all critical．The tube＇s

Fig．5．From a $21-\mathrm{lb}$ package， Hughes＇307H TWT can de－ liver 100 －kw peak power at X band．This tube is one of a family using half a dozen re－ cent developments to minimize PPM size and weight．
position in the hardware requires no adjusting． Matching the input and output to the transmis－ sion line is factory－preset at the optimum condi－ tion for most applications．Adjustment of the magnetic field strength is not critical．Even the tuning adjustment is non－critical．Therefore it is relatively difficult for the operator to inadvert－ ently cause the catastrophic failure of this tube．

Lightweight（ 200 lb including magnet）and high efficiency（ 33 per cent）make the VA－ 849 an excellent choice for portable radar service． The klystron is a four－gap，internal－cavity design． In narrow－band service，a power gain of over 50 db may be obtained．When broadbanded by stagger－tuning the cavities，a bandwidth of more than 30 mc may be achieved．

100 Kw Pulsed X－Band Power Generated By 21－lb TWT

In the pulse field，the rate of development of new products has equaled and in some cases exceeded that in the cw field．It is now possible to obtain a pulsed output power of over 100 kw from a device with a total weight less than 21 lb ． This tube is the 307 H （Fig．5）produced by the Microwave Tube Div．of Hughes Aircraft Co． It is one of a series of pulse traveling－wave tubes produced by Hughes which cover the 8.5 to 9.5 Gc range at different output levels．

The 307 H will deliver 100 kw peak power at a duty cycle of 0.01 ，or an average output of 1000 w ．It has a saturation gain of over 54 db and an efficiency of at least 20 per cent．It is a ruggedized ceramic and metal TWT suitable for airborne applications．The tube uses a stand－ ard convergent gun，with a dispenser type cath－ ode．This results in an efficient rugged cathode capable of long life operation．
The design and construction techniques em－ ployed in this tube result in almost complete freedom from microphonics and undesirable phase－shift variations．Therefore it is suitable for the most stringent requirements of MTI radars and multi－element phased array systems．The slow－wave structure of this tube is composed of a series of separate cavities．This yields an ex－ tremely high degree of separation between input and output．In fact，the cold insertion loss of this tube is over 300 db ．
The Brillioun focusing technique is used in this periodic permanent magnet tube，permitting the use of the smallest possible magnets．In addition， the magnet material is a new class of Ferre－ ceramic，possessing an extremely high coercive force for a given size and weight．Finally，by using the cavity end－plates as magnetic pole pieces，the magnetic field requirements are re－ duced to a minimum．For these reasons，an over－

ANDREW RADOME EQUIPPED ANTENNAS DEFY ICE...SNOW...WIND Andrew radomes provide excellent 2-way year-round protection for Andrew microwave antenna systems. First, they protect feed and reflecting surface against the attenuating effects of snow, ice and debris accumulation. Secondly, for tower mounted antennas they reduce the effects of wind thrust by 35%.
All Andrew radomes are lightweight and easy to install-clip directly to the dish rim of existing antennas. Unheated radomes are suitable for all but exceptional cases. In areas where freezing rain occurs, heated radomes can be provided.

For further details on ANDREW Microwave Antennas, Radomes, Wave Guides write for new Andrew Catalog M.

ANTENNAS ANTENNA SYSTEMS TRANSMISSION LINES

P. O. Box B07, Chicago 42, Illinois

Boston•New York - Washington - Los Angeles - Toronto

"We have paid particular attention to antennas during high wind conditions of gusts up to 40-60 m.p.h. It is very obvious that these radomes quite materially reduce the wind loading on the parabolas-due to their shape factor." Washington State Patrol, Kennewick, Washington
"We have had up to four inches of ice on the radome with prac tically no reduction of antenna effectiveness." KLIX-AM-TV, The KLIX Corporation, Twin Falls, Idaho
"Our field forces report that the radomes pro duce a signal loss of less than 1 db per antenna. Several radomes were removed and antennas inspected following a heavy snow storm and no Gas Pipeline Company of America

Advanced Components Spotlighted By Microwave Spectrum Squeeze

With the arrival of the high-power, multi-beam arrays and the use of microwave energy to accomplish an increasing variety of functions, the microways are becoming as crowded as the highways. This drops a set of urgent problems into the lap of the component designer: high-speed rf switching, of filtering and power sensitive limiters. Authors Bob Terry (left) and Bob Allen describe the most recent approaches to these problems, and some devices that exemplify them.

Robert Terry, Robert Allen

Microwave Associates
Burlington, Mass.

TODAY'S radars are becoming more exotic and are required, in many instances, to perform multiple operations. The tracking of and recording of many targets simultaneously is one example. In other systems, multiple antennas are used with perhaps several power tubes per system. In radars to come we see the combination of multiple antenna feeds, transmission lines, and large numbers of power sources so arranged as to produce high-speed scanning at resultant high-power output.
In all these fast-acting, vast-quantity data-producing systems, high-speed switching ($10 \mu \mathrm{sec}$ or less) at both high and low power, are now very necessary devices. Similarly, if a system is to function in the presence of interference from many other radiating microwave systems, rf filters are a must. Finally, for sensitive receivers to survive in this environment, power-sensitive limiters are a matter of life or death.

High-Speed, High-Power Switches Favor Ferrite Devices

In the high-power area there have been two approaches to high-speed switching, namely, ferrite and gaseous devices, both requiring driving or switching power. The use of semiconductors, though at present limited to low power, holds
some promise for medium-power switching in the watt region.
The use of ferrites is most extensive and holds the best promise of success down to the S-band region. In these devices the design objectives are: low switching power, maximum peak power capacity, broader bandwidth, a high degree of isolation, and temperature stability.
To achieve low switch power, the effect of hysteresis losses and shorted turn effect of the rf transmission must be reduced to a minimum consistent with no addition to rf insertion loss or loss of peak power capacity. The most often used approach along these lines has been the Faradaytype rotator, a four-port circulator utilizing two right-angle polarization transducers and a section of orthogonal transmission line supporting a ferrite rod, tube, or multiple ferrite strips. To eliminate the shorted turns of the rotational section, various techniques are being used such as thin high-resistivity metal walls or orthogonal doublerigid circular or square waveguide (cruciform) wherein the outer walls are removed. Whatever techniques are used, the problem is one of preventing arcing in areas of field intensification along with preservation of constant field rotation with frequency, to produce broadband operatiou in either switch position.
Another problem is the selection of the means of holding the switch in its quiescent condition If a double coil is used, one for pulsing and one for switching, then additional power must be

Microwaves

Fig. 1. New order of high-power switching is represented by Ferrotec's R-107HS that can switch 100 kw of Ku-band power in $10 \mu \mathrm{sec}$.
supplied. If permanent magnets are used, then they cannot deteriorate in the presence of an opposing pulsed magnetic field. Sometimes this requires the use of ceramic magnets which unfortunately are particularly temperature-sensitive. The pulse fields generated in these devices are appreciable and leakage flux is large since the flux path reluctance is large. For this reason, consideration must be given to the switched field effect on other apparatus and vice versa. Magnetic shielding may be considered. However, such shielding must not appreciably shunt quiescent or driving flux.

Several Novel Switch Designs Improve Bandwidth, Speed, Isolation, Power

Notable among the many laboratories working on this type of non-reciprocal switch is Motorola, Inc., who announced their XS01 rotator circulator switch this past summer. The component boasts and 18 per cent bandwidth, 80 -w power capacity, $0.75-\mu \mathrm{sec}$ switch time and $23-\mathrm{db}$ isolation. It operates in X_{8} waveguide size systems.
Also responsible in advancing the rotator ferrite switch design is Ferrotec Corp. This company has announced a 22 per cent bandwidth four-port switched circulator model R-165LS in X_{9} which operates up to 100 kw peak power. Of note is the Ku Ferrotec rotator switch R-107HS (Fi; 1) which lacks bandwidth (any 2 per cent section of the 15.7 to 16.9 Gc range) but has a $12 . \mathrm{kw}$ peak power capacity. Switching time is
given as $10 \mu \mathrm{sec}$, which is claimed to be quite conservative. The switching time is measured to the 90 per cent switched condition since the 3 db condition used is not considered practical from a functional point of view. This device permits two microwave antennas to be time-shared by a common transmitter and receiver.
A novel ferrite switch has recently been demonstrated at Bell Laboratories employing a configuration called the "tetrahedral junction" which consists of two cross-polarized rectangular waveguides with a ferrite rod along their common axis. Principal advantage of this type of switch is a very low insertion loss of less than 0.1 db (lower in principle than is possible with any similar waveguide device). It also provides high switching speed of $1 \mu \mathrm{sec}$, large bandwidth-approximately 10 per cent and very high isolation of approximately 60 db in the reflecting state. Information is not yet available on power capacity of such devices.
There are other well-known laboratories, notably Bell Telephone Laboratories, the pioneer in the field, Hughes Aircraft Co., Rantex, Raytheon, and Kearfott, all endeavoring to improve today's performance.
Certainly risky, and one hopes a challenge to be proved wrong, is the following specification of a general nature which is probably the "edge-of-the-art" now and for at least next year in regards to rotator ferrite non-reciprocal switches. Power levels may be scaled to other bands:

Fig. 3. Representative of a line of spdt switches for frequencies up to 18 Gc , this American Electronic Labs SNB 203 A switches $25 \mathrm{mc} \pm 5 \mathrm{mc}$, with an insertion loss under 2 db and isolation over 50 db .

Frequency range. 15 per cent Isolation 25 db Insertion loss 0.5 db Peak power $200 \mathrm{kw}\left(\mathrm{X}_{\mathrm{n}}\right)$ Switch time $2 \mu \mathrm{sec}$ max (fall or rise) Temp. Environment 40 to 85 C Drive power 2 w max

Differential Phase-Shiff Switch

Boasts High Capacity Bur Needs Breakthrough

For high-power capacity and 12 to 14 per cent bandwidths the differential phase shift type has been unsurpassed. The most difficult problem with this switch is the waveguide shorted-turn effect of the rectangular $T E_{10}$ mode wave-guide combined with the substantially higher field required by this type of circulator. There has been no announced break-through for this problem. Plated plastic and thin-wall stainless-steel waveguides have been used, but the microsecond switch-time performance is still far away. Peakpower capacity of this type of switched circulator is well into the megawatt region in X_{L} waveguide.

Airtron is doing work in this type of switch, particularly on a reciprocal model in X_{L} using a switched phase shift section between two sidewall $3-\mathrm{db}$ hybrids. Though not competitive in speed with the low field strength rotator (milliseconds vs microseconds), this reciprocal switch demonstrates the high power capacity and broadband reciprocal switching performance made

microwneres

Fig. 4. Solid state "tinkertoy" duplexer includes balanced limiters, enabling it to handle 10 -kw peaks while recovering in 10 nsec.

Fig. 5. Diagram shows placement of limiters in the duplexing circuitry.
possible through the unique combination of fixed and switched ferrite phase shifters.
The switching time of this type of circulator may be decreased by substantially increasing the driving voltage. Switch speeds on the order of 750 to $800 \mu \mathrm{sec}$ have been obtained at Microwave Associates with a Ka-band phase shift circulator type MA-125E driving the unit with $500-\mathrm{v}$ peak.
We suggest the following specifications as the targets for the near future for the switched differential phase circulators considering all frequencies from K through S band:

Isolation Insertion loss Peak Power-Waveguide rating Switch time 20 usec to 90

Electronically Scanned Antennas

Spur Fast, Low-Power Switch Developments

Increasing use of multiple-channel systems which incorporate electronically scanned antenna systems (see "Breakout In Antenna Design," p 166), requires devices capable of switching at speeds in the lower nanosecond region. Since gas and ferrite switches operate at microsecond speeds, the semiconductor diode type of switches
provide the best solution to design problems in which speed is a dominant factor.
Also of prime consideration is the driving power requirement. While circulator-type switches for high power may require up to 10 w of driving power and rotational units for handling medium power may require 1 or 2 w broadband semiconductor switches which handle up to 10 w cw power use only 70 - to $100-\mathrm{mw}$ switching power. Narrowband devices (coaxial) for switching at frequencies between 200 mc and $2,800 \mathrm{mc}$ require only 10 mw of switching power.
The limitation of these switches is certainly not speed, since there is no known limit on the speed of switching by either nonlinear resistors or nonlinear capacitors. Though this may seem a strong statement (for example with present limitations of ferrite switches) its truth becomes clear when a switch using either a p-i-n or $\mathrm{p}-\mathrm{n}$ diode is considered as merely a kind of frequency converter.
In addition to high speed and low-driving power, other design considerations of particular importance to military systems are light weight, ruggedness, and high percentage reliability.
Within the past year, a substantial variety of coaxial and waveguide switches (single-pole-double-throw and single-pole-multiple-throw)
has been introduced by Microwave Associ tes, Inc., (Fig. 2), and by American Electronic L tboratories, Inc., (Fig. 3). Minimum isolation provided by available units is generally about $2^{\prime} \mathrm{db}$ with maximum insertion loss ranging fron 0.5 db to 2.0 db for units which handle up to 10 w cw power.
Discussion of the relative merits of circulator, rotational, and semiconductor switches is pointless since the initial decision as to what p, wer will be used for the system determines the type of switch needed. Development work by both firms mentioned above is being done to increase power-handling level and to reduce insertion losses. Devices operable up to 40 Gc are anticipated for incorporation into 1961 designs.

Limiters Can Mean System Survival In Strong Radiation Environment

Many radars operating at different frequen cies within a relatively limited area, in addition to creating the interference problem mentioned earlier, also create a problem in receiver protec tion. Aircraft on the ground, taxiing down the runway with radars off, are susceptible to receiver burnout from stray radar signals origi nating either from nearby aircraft or from ground-based radars (direct or reflected signals),
Semiconductor power-sensitive limiters which have been made commercially available during the past year provide good protection in such instances. They eliminate from design mechanical shutters or switches and insure extremely long life and high reliability.

Devices of this type are being used in retroft and new systems to replace present crystal protectors. They provide constant protection since they are completely passive and are not dependent upon any external bias.

Where continuous system operation is required, the diode limiters with present capacities up to 5 kw (uhf frequencies) provide signifcant increases in system reliability. At higher frequencies, units are available with capacities up to $500-$ w peak.

An all solid-state duplexer which incorporates a balanced limiter configuration was announced by Microwave Associates in October 1960. (Fig. 4). Using the limiters as shown in sketch (Fig. 5), these devices handle up to $10-\mathrm{kw}$ peak power The recovery time of these units is less than 10 nsec and the transmitter-receiver isolation at rated power and regardless of antenna mismatch is a minimum of 40 db .
Where solid-state duplexers can be incorpo rated into new designs they eliminate external power sources needed for "keep alive" and provide continuous receiver protection. Advances expected by the manufacturer during 1961 are

Microwaves

avallability of higher power handling units and ext nsion to frequencies through K -band.

High Power Filters Can Mean

System Operation in RFI Environment

System interference is an acute problem even where actual system burnout is not. Naval ships carry dozens of radar systems from millimeter to centimeter range. High-density coverage, ground-based systems operate in close proximity to each other, feeding common computer centers. Even at airports, one is aware of megawatt Sband surveillance radars, L-band long distance search systems, K-band short range taxi systems, X-band precision approach systems, and all within a few miles of each other. Adding to this radiation jumble are high-power military acquisition radars and airborne C - and X-band commercial radars. Near the airport one can expect an X_{b} band communication system to be unable to operate across its full allocated band because of pulse radar interference. Like the highways of today, the "microways" are jammed and will get even more packed in future years.
Several basic approaches have been taken to provide efficient filtering of high-power microwave systems. They depend largely on the degree of suppression required and the proximity of the undesired radiation band relative to the signal band.
One approach to the problem is to shunt the spurious radiation into a resistive termination (drop-band filtering). The second is to reflect the undesired signal back to the power source or into an external load by means of one or several hybrids. In all cases the filter must handle high power levels in the passband.

High-Q Filters Based On

Hybrids And Reactive Shunts

For large amounts of attenuation at frequencies very near the passband of the radar, high- Q components or circuits are required. Of the high-Q filters several types have been notable. The first of these uses a high- Q bandpass type of filter in conjunction with either top wall or sidewall three db hybrids. The unit in effect becomes a high-powered diplexer. The critical problem with this type of filter is the extremely high electric fields which occur in the resonant sections of the filters at the passband frequencies. Onc approach along these lines which has been noted in the past is the unique filter design of Wheeler Laboratories in S-band waveguide.
Of the two means of increasing this filterpower capacity (high-pressure or high-vacuum), the Wheeler filter is presently being used with hig vacuum. The San Carlos division of Litton

MINIATURIZED TURRET ATTENUATORS FROM O TO 10 KMC FOR IN-LINE AND PANEL MOUNTING

From MICROLAB, here is a complete line of miniaturized turret attenuators for use as laboratory instruments or components in military and field equipment.

AS Series-
Six fixed attenuators
mounted abouta central shaftand selectively engaged. axial switch. For uso mc region. they are the only turret at.
tenuators available tenuators available
that can be used in the x band range.
AT Series-
Similar in design to the AS Sories. they inc the BC to 5000 available in 2 , 5 and 15 watts.

TURRET ATTENUATORS							
MICROLAB SERIES	AS	AT (2 watt)	AT (5 watt)	$\begin{gathered} \text { AT } \\ \text { (15 watt) } \end{gathered}$	AV	AW	AX
FREQUENCY RANGE (kmc)	4-10	0.5	0.5	0.5	0.2	0-4.5	0.4 .5
ATTENUATION VALUES (db)	0.20	0.60	0.30	0-60	0-20(3)	0.30	0.30
MAXIMUM VSWR	1.40	1.30	1.40	1.40	1.25	1.30	1.30
ACCURACY (db) ${ }^{(1)}$	± 0.5	± 0.5	± 0.5	± 1.0	± 0.7	± 0.5	± 0.5
POWER, AVERAGE (watts)	2	2	5	15	2	2	2
POWER, PEAK (kw)	2	2	3	3	1	2	2
OVERALL LENGTH (in.) (2)	8.4	6.9	8.1	10.5	2.8	3.3	4.7
WEIGHT (oz.) ${ }^{(2)}$	33	27	31	40	6.1	9.7	13.3
METHOD OF ADJUSTMENT	knob	knob	knob	knob	(4)	(4)	knob
PUSH-PULL MOTION REQ'D	yes	yes	yes	yes	no	no	no
PANEL MOUNTING	yes	yes	yes	yes	no	no	yes
CHASSIS MOUNTING	yes	yes	yes	yes	no	no	no
WATERPROOF	no	no	no	no	no	yes	yes
PRICE ${ }^{(1)}{ }^{(2)}$	280.00	250.00	340.00	430.00	150.00	220.00	240.00

AW SeriesWaterproof, environ-mental-resistant variable step attonu Cors for use from Ow VSWR mc with insertion loss. Their ow cost and rugged design make their use practical where ther models are pro
hibitively expensive nd delicate. For in-line mounting

AX Series-
Waterproof, environ-mental-résistant variable step attenu: ators for 4 se from
DC to 4500 mc with low VSWR and with
lnsertion loss. Simiinsertion loss. Simi-
lar to AW Series at-
tenuators but do. signedors forfront
panel moup signel mounting.

570 W. Mt. Pleasant

Avenue

Livingston, N. J.
WYman 2.5700

> types

> EROM

> TRANSCO Transco manufactures the most complete line of microwave switches, coax and waveguide (19 different types), for all frequencies including $\mathrm{P}, \mathrm{L}, \mathrm{S}, \mathrm{C}, \mathrm{X}$ and K band and many variationssolenoid and motor actuators, SPST to SP6T, DPDT, transfer, 4 actuator voltages, 8 RF connector types, high and low power. All switches have excellent RF characteristics and are built to military specifications. For information on the 19 types, or "type number 20 " for your specific application, write or call Transco Products, Inc., 12210 Nebraska Avenue, Los Angeles 25, California, BRadshaw 2.5687. Application engineers and representatives throughout the United States and Canada.

IRANSCO

COAXial switches - waveguide switches • antennas - microwave components valves - actuators CIRCLE 193 ON READER-SERVICE CARD

MICROWAVE COMPONENTS

L-Band Blade and Flush Antennas

Identical In RF characteristics, the new Transco donfical in RF characrorisis, 10 . AT-721/A, blado and AT-740/A, Hush anBoth antonnas are builf to MIL specifications and can form a part of the complete TRANSCO multiplex systom. Transco Products, Inc., Los Angolos, Callf.

Hybrid

Light woight Hybrids with low VSWR's over a broad bandwidth are available from Iranseo, broad bandwidth are available from Iranseo, Band and has a small 50 ohm load also avallable from Transco Products, Inc., Los Angoles, Calif.

Precision Attenuafor

Motor actuator takes only $\mathbf{5 0}$ seconds to actuMotor actuator rakes only 50 seconds to actuate from 0 to 100 db , direct reading accuracy to . 1 db . Can be supplied with 6 presof stops is C-Dand. Transco Products, Inc., Los Angeles, Calif.

Delay Line

K-Band non-loaded waveguide delay line for ground checkout of a missile radar system. Two delays may be remotely selected and a variable attonuation bleed line (from inpur to outpul) is provided with a directional couplor and monitor crystal. Transco Products, Inc., Los Angeles, Calif.

Power Divider

One shown is "3-way even" for operation from 2700 to 3500 MC, typical of complete line of 2 and 3 way dividers for L, S, C, and X-Bands available from Transeo. Write Transeo Producis for full information on all Microwave Components shown on this page.

Industries is presently developing techniques, designed to secure a vacuum sufficiently low to enable the transmission of better than a mega watt through the Wheeler filter. The difficult problems encountered in achieving reliable vacuums in the field for this or similar devices is apparent.
Another approach to high-Q filtering is the use of multiple reactive shunt elements. An example of this type of filter was developed by Sage Lab. oratories. The technique makes use of shunt waveguide stubs whose cut-off frequency ($T E_{10}$) is just above the system passband. In the stop band, the stubs propagate and thereby present a highly reactive mismatch for these frequencies Proper location of the stubs preserves match in the passband and optimizes stagger-tuned mis match in the reject band. It provides moderate attenuation of 30 to 45 db in the stopband and has sufficiently high Q to enable location of the stopband within 2 per cent of the upper limit of the passband. The filter is highly reactive and rejects all power back toward the power source. This particular type of filter could then be used with a resonant absorption isolator or used with three db hybrids to shunt the filtered power off into a resistive load. Band rejection filters of this type have been manufactured by Airtron in the C-band waveguide and exhibit A $0.2-\mathrm{db}$ inser tion loss as against a $30-\mathrm{db}$ reduction in the stopband. Power handling capacity is rated at 0.5 megawatt at atmospheric pressure.

Many Approaches Are Taken
 In Low-Q Filtering

Lower-Q filtering suffices in systems wherein either frequency or twice guide-wavelength harmonics are prevalent or deleterious to other systems. These lower low-Q shunt methods are being developed in a variety of forms. One type of high-power filter designed for attenuating harmonics or frequencies substantially removed from the radar passband incorporates high power sidewall hybrids terminated in resistive waveguides whose $T E_{10}$ mode cut-off is below that of the operating systems. The hybrid is therefore shorted in the system passband. It is, however, resistively terminated in higher unwanted frequencies. The resistive terminations must be effective for the higher order modes that may be encountered at the higher frequencies.
Other types of moderately low-Q shunt filtering take the form of section of waveguide with

Micrawaves

Significant advances in other areas of Microwave Components will be the subject of a future ELECTRONIC DESIGN article by authors Robert Terry and Robert Allen． mutiple branch arms coupling to the stopband fres uencies or higher order modes existing in the waveguide but not coupling to the system pass－ band $T E_{10}$ mode．Along these lines，Sierra Labo－ ratories announced this year their L－band high－ power harmonic filter which uses this coupling technique．Similar in approach is the absorbing filter designed by General Electric for use in high－ power S－band systems．This particular GE filter utilizes a large number of resistive－shunt wave－ guides coupling to higher order modes or fre－ quencies substantially out of the system pass－ band．This type of filter is of the low－Q type， but offers particularly good suppression at high powers．Another type of high－power filter which lacks bandwidth but which has interesting pos－ sibilities is the bridge－type or constant resistive filter．This filter consists of several hybrids con－ nected in the form of an rf bridge with sym－ metrical arm lengths．It is designed to pass power in the system passband，yet shunting power in a particularly unwanted band into a resistive load．This technique has been used in the past with very low powers for diplexing in communi－ cation systems（Bell systems）．This constant resis－ tance type of diplexing system is also applicable to extremely high powers with suitable design of the hybrids involved．

Magnetic Bias Sensitivity Used As Design Basis For Unique Ferrite Filters
A unique application of ferrites in high－power harmonic filtering makes use of the magnetic－bias sensitivity of the resonant－absorption region of ferrite material．With suitable magnetic bias （transverse direction），ferrite strips or sheets， located on the waveguide broad wall may be made absorptive at one or more harmonics．Since resonance in the passband，is well below the magnetic bias used，low loss is encountered in transmission of pass band power．First，appar－ ently，to produce operating units in this area is Sperry Gyroscope＇s Long Island Microwave Div． Work here was done in the L－band region．
The disadvantage of the technique is chiefly the high field and extended area of flux required which necessitates very large and therefore heavy magnetic structures．The suppressed fre－ quency region must also be appreciably removed from the pass band in order to avoid large pass－ band loss．－－

LITTON INDUSTRIES MICROWAVE TUBES P，L，S，C，X，K BANDS

KLYSTRONS					
number	Frequeney			$\begin{gathered} \text { RFty } \\ \text { Ratity } \end{gathered}$	nomanks
L－3270	1250 to 1350		－	0.0025	Broadband （ 100 megacycles between 2 megawatt points）
$\underset{(L T-3035)}{L T}$	1240 to 1360	2.2	8	0.0025	Long range search radar
L－3257	1280 to 1330	4	30	0.0003	For linear accelerator
L－3227	1280 to 1330	5	8	0.002	For linear accelerator
L－3250	1250 to 1350	10	7.2	0.0015	Long range search radar and linear accelerator
L－3387	1250 to 1350	30	7.2	0.0033	Long range search radar
L－3302	2855	10	7.2	0.0015	For linear accelerator and radar
L－3355	1250 to 1350	20	7.2	0.0015	Long range search radar

traveling wave tubes

$\begin{gathered} \text { Type } \\ \text { Mumber } \end{gathered}$	Frequency Range Mogaeyclos	Powor	Focusing	$\begin{aligned} & \text { Duty } \\ & \text { Factor } \end{aligned}$
L－3266	7000 to 11，000	20 mw	PPM	CW
L－3236	7000 to 11,000	2 W	PPM	CW
L－3470	4000 to 8000	20 mw	PPM	CW
L－3471	4000 to 8000	2 W	PPM	CW
L－3472＊	$\begin{aligned} & 8500 \text { to } 9600 \\ & 7000 \text { to } 11,000 \end{aligned}$	$\begin{array}{r} 10 \mathrm{~W} \\ 5 \mathrm{~W} \end{array}$	PPM	CW
L－3264＊	100 to 300	100 W	Solenoid	CW
－In development				

M－TYPE BACKWARD WAVE OSCILLATORS

A complete line of M－BWO＇s is available but classified

PULSE MAGNETRONS

number	Frogunency	$\begin{gathered} \text { pook } \\ \substack{\text { pown } \\ \text { (Mwwin }} \end{gathered}$	Ruty	Romakn
L－3204	8800 ± 25	0.04	0.25	Extremely high duty
L－3105	9300 ± 40	0.10	0.027	Highly ruggedized； frequency stable
L－3028	9280 to 9320	0.12	0.027	Frequency stable； pulse train capability
L－3379	8800 to $9500{ }^{*}$	1.0	0.003	Highly ruggedized； frequency stable
L－3058	9330 to 9350°	1.0	0.003	Frequency stable
L－3358	16,000 to $16,500^{\circ}$	1.0	0.001	Highly ruggedized； frequency stable
L－3380	8800 to $9500 *$	2.0	0.002	Highly ruggedized； frequency stable
L－3359	16，000 to 16，500＊	2.0	0.001	Highly ruggedized； frequency stable
L－3381	8800 to $9500{ }^{*}$	3.0	0.001	Highly ruggedized； frequency stable
L－3382	8800 to $9500 *$	4.0	0.001	Highly ruggedized； frequency stable
LT－6233	9280 to 9345	7.0	0.003	High duty beacon magnetron
L－3103	8500 to $9600{ }^{*}$	30.0	0.002	High duty version of LT－6543
L－3168	9375 ± 30	30.0	0.002	High duty version of LT－4J52A
L－3306	16，000 to 17，000＊	30.0	0.002	High duty version of L－3083A
L－3083A	16，000 to 17，000＊	60.0	0.001	Recommended for new systems
LT－6543A	8500 to $9600 *$	65.0	0.001	Recommended for MTI systems
L－3305	8600 to $9500{ }^{\circ}$	65.0	0.001	Recommended for frequency diversity
LT－6510	9375士30	65.0	0.001	Recommended for MTI systems
LT－4J52A	9375士 30	70.0	0.001	Recommended for new systems
L－3312	8500 to $9600{ }^{*}$	200.0	0.001	In development
L－3313	8600 to 9500＊	200.0	0.001	Hydraulically tunable for frequency diversity
LT－4J50A	9375 ± 30	225.0	0.001	Recommended for new systems
＊Fixed frequency verslons avallable general／y throughout tunable range．				

CW MAGNETRONS

Mumber	Frequaney Mogacyelos	Minnmum Powner Watic	Romarke
L－3456	350－590	500	These CW Magnetrons may be pulsed to approximately 2 kilowatts peak power and are recommended for component testing．
L－3459	590－975	500	
L－3465	975－1500	400	
L－3464	1500－2350	400	
L－3460	2350－3575	500	
L－3461	3575－4975	400	
L－3467	4975－6175	400	
L－3468	6175－7275	300	
L－3462	7275－8775	300	
L－3463	8775－10，475	250	

CROSSED－FIELD FORWARD WAVE AMPLIFIER TUBES－BARRATRONФ TRANSMITTING TUBES • MINIATURE NOISE SOURCES－DUPLEXERS \＆TR TUEES－DISPLAY TUBES

＂CAPABILITY THAT \square LITTON INDUSTRIES
 CAN CHANGE
 YOUR PLANNING＂
 Electron Tube Division
 San Carlos，California
 CIRCLE 194 ON READER－SERVICE CARD

ELECTRONIC DESIGN • November 23， 1960

Four problem areas impeding microwave developmeni were recently eased by advances in test equipment. The spectrum squeeze has made exploitation of the millimetric band a necessity. The international and, eventually, interplanetary scope of microwave experiments has made reliable standards a critical requirement. Power measurements have suffered from drift and from slow read-out. Finally point-by-point frequency tests have taken hours in production testing. Authors Poulter (left) and Minck describe the techniques used to break these bottlenecks and sample some of the instruments that embody the techniques.

Dr. Howard Poulter
 Development Manager

John Minck

Applications Engineer
Microwave Div., Hewlett-Packard Co.
Palo Alto, Calif.

MICROWAVE test equipment design is responding to the needs generated by an accelerated pace of microwave-system developments. It is, at the same time, taking advantage of the rapid developments in components, materials, and fabricating techniques to fill these needs. Typical of recent progress in microwave test instrumentation are new developments in (1) millimeter waveguide, (2) measurement standards, (3) power measuring instruments and (4) swept-frequency testing.

Millimeter Waveguide Expands Spectrum Many Times

Until the past few years millimeter-waveguide development was seriously hampered by a lack of adequate microwave-signal sources. Recently, however, some significant tube advances have been made in the millimeter regions. Using these tubes and other devices such as crystal harmonic generators, considerable effort is now being expended in the region up to and above 100 Gc $(\mathrm{kmc})^{1,2}$.

Making research in this region practical are the F and G band waveguide-equipment lines developed by FXR, Inc., Woodside, N.Y. Because
millimeter waveguide cannot be produced merely by scaling down from lower frequency waveguide, a high degree of design ingenuity was needed to arrive at a workable product line

For instance, the FXR slotted line shown in Fig. I departs from the conventional practice of using a moving probe. In this case the probe is stationary, and the standing-wave pattern is moved past it by means of an integral phase shifter. Normal SWR measurement techniques are further modified because of high losses in the guide between the line and the device under test. A nomogram is furnished to help determine the appropriate compensation for these line losses.
Much of the millimeter waveguide development has already been useful in spectroscopy and plasma studies of various types. The new techniques, however, are expected to have increasing value to other applications, both commercial and military. One area of special interest is the booming space-communications business where small components and antennas, and narrow beam-widths are particularly desirable.

Measurement Standards Tie Together World-Wide Experiments

An outstanding characteristic of our present "aerospace" era is that microwave experiments are no longer confined within a single laboratory, or even a given locality. Instead, many applications of microwaves are worldwide in scopeand they may easily be expected to become uni-

Fig. 1. Waveguide test bench for work in the 140 to 220 Gc range by FXR, Inc. The set-up includes (A) Raytheon's QK369 klystron, (B) Harmonic Generator, (C) E/H tuner, (D) Frequency meter, (E) Precision variable attenuator, (F) Detector mount and crystal cartridge, (G) Slotted section, and (H) Horn.

Fig. 2. Signal generator attenuators may be calibrated to high accuracy down to low level of - 107 dbm using this Weinschel VM-1B attenuator comparator set-up which compares the unknown attenuation against a precise cut-off attenuator.
verse wide in the future. This extension of the area covered by a single experiment, or by a single operating system, has created an urgent need for standardization of measurements and techniques. Problems of standardization encompass the entire microwave field including the common measurements of power, attenuation, frequency and impedance.
The Boulder Laboratories of the National Bureau of Standards have spearheaded the work in standardization. This surge of activity in the standards field has also extended into all areas of microwave test equipment, design, production, and application. One noticeable result has been that most companies supplying equipment to the government are being asked to furnish calibrations "traceable to the National Bureau of Standards" as assurance of reliability and proper specification control. This government requirement has led, in turn, to special attention in standards techniques, and to a renewed interest in processes and execution of these techniques.
One example of an instrument recently introduced to make standard power measurements mre conveniently is the Weinschel Model PB-1 Precision Dc Power Bridge. This instrument accurately sets and controls substituted power in
bolometer mounts to help make more accurate power measurements. Coupled with a precision potentiometer, standard cell, a well-regulated power supply, and a galvanometer, all commonly found in standards labs, this bridge determines substituted power to accuracies of better than 0.3 per cent.

Maximum convenience is obtained by placing the bolometer mount on the secondary arm of a 3 - db directional coupler. This permanent combination may then be certified for a calibration factor by the NBS Calibration Center at three frequencies in X-band. The "calibration factor" is defined as the ratio of dc substituted power to incident rf power leaving the main arm. This arrangement thus provides a very reliable transfer standard from the precise micro-calorimeter type of measurements made at NBS, and offers a reasonable means for achieving accurate power measurements in other standards laboratories.

Another commercial instrument that provides excellent measurement accuracy is the Weinschel Model VM-1B Standard Attenuator Calibrator. (Fig. 2.) It is used to make attenuation measurements of microwave attenuators, by comparison with an extremely precise $30-\mathrm{mc}$ piston attenuator ${ }^{3}$. A $30-\mathrm{mc}$ heterodyne signal is obtained
by mixing a local oscillator with the microwave output of the attenuator under test. This $30-\mathrm{mc}$ signal is compared at a 1,000 -cps rate with the $30-\mathrm{mc}$ precision signal from the standard attenuator, by use of an if amplifier and detector. Thus, the if amplifier and detector elements are balancing elements only, and for this reason their stability does not affect accuracy. This bridging scheme permits measurements of signal generator attenuators in the region of -97 dbm to accuracies of $0.1 \mathrm{db} / 10 \mathrm{db}$.

Power Measurments

Are Made Faster, More Stable

One of the major achievements in instruments for microwave-power measurements has been reduction of drift caused by ambient changes in the bolometer operating points. Several approaches have been used successfully. The new Narda Model 440A Microwave Power Meter (Fig. 3) minimizes a serious drift problem caused by sensitivity of the zero point to dc bias variations. This is done by designing a transistorized instrument in which an internal battery provides a stable de source.
Another new power meter, the FXR Model N831A uses a dual thermistor arrangement to

Fig. 5. (a) Block diagram for swept-frequency directivity test on broadband directional couplers from 26.5 to 36 Gc. X-Y calibration records are shown in (b). Calibration lines are plotted by replacing sliding load with a short and making three sweeps with 39,40 , and 41 db set on the Model 382A attenuator. Attenvator is then set to 0 db and sliding load replaced on main line. As sweeper slowly covers the band, the operator manually phases the sliding load in and out, producing fine structure on the final curve, and thus eliminates the effect of load reflection vector on the measurement.

Fig. 6. Hewlett-Packard Model 185A sampling oscil. loscope faithfully displays sub-nanosecond pulses with its DC-1C00 megacycle bandwidth. High sensitivity of 3 mv per cm permits even small reflections from vht elements to be analyzed with ease using pulse reflec tion techniques.
eliminate another basic cause of zero drift. One thermistor is exposed to the rf power, and the other is used as a temperature-balancing element. Through this method, the over-all drift has been reduced sufficiently to achieve an additional 10 db of sensitivity. This provides an overall power sensitivity of $10 \mu \mathrm{w}$.
Ultimate accuracy in microwave-power measurements continues to be achieved with calorimetric techniques. Thermal time constants, however, have generally limited usefulness by requiring long stabilizing and reading times.

Reduction in the reading time of calorimeters is provided by the Hewlett-Packard Model 434A (Fig. 4) Calorimetric Power Meter. In this instrument the full scale response time is less than 5 sec by transferring the heat from input microwave power to comparison gauges by means of a flowing oil. The oil stream moves past both a microwave and a dc load, in two thermally identical terminations. Feedback and comparison circuitry set the dc power equal to the microwave power, and the dc is metered for power indication. Even after allowing for substitution errors, the Model 434A has an over-all accuracy of 5 per cent. Considerably greater accuracy can be achieved by careful calibration for the power and frequency range being used since the 5 per
cent figure applied to power values from 10 mws to 10 w at frequencies from dc to 12.4 Gc .

Swept-Frequency Techniques

Cut Production Testing Time by 10
Production testing of microwave test equipment has often required a disproportionate amount of time as compared to other microwave components. Testing has been more time-consuming because most microwave test equipment is specifically designed to be broadband, and because tight specifications are normally established for the entire rated bandwidth. As waveguide coverage of the frequency spectrum has increased, point by point testing techniques have rapidly become not only laborious but extremely expensive.
For many years the measurement of swr on a swept frequency basis through reflectometer techniques has provided a reliable fast means of test for most microwave instruments ${ }^{4}$. Until recently, however, swept-frequency tests have generally been restricted to ranges at which active swept frequency microwave sources have been available. The practical limit has been about 18 Gc .
A recent Hewlett-Packard development, Models 938A and 940A Frequency Doubler Sets, extend the usable range of swept-frequency
measurement techniques up to 40 Gc . The doubler sets utilize broadband crystal harmonic generators with relatively low conversion loss to yield in the order of $1 / 2$ to 1 mw from 18 to 40 Gc in two bands when driven with typical commercially available backward wave oscillators.
Point-by-point production testing techniques used on a Hewlett-Packard Model R752C required measurement of directivity at 26 points across the 26.5 to 40 Gc band, and took several hours. Now, by using the Model 940A frequency doubler, as shown in Fig. 5, directivity tests are made on a swept-frequency basis, with total measurement time-out to the order of 20 min .

Future Trends-Drawing On

Component Advances

Looking ahead we can expect to see new tubes which will provide microwave power for signal generators in higher and higher frequency bands. Pulse powers are now being used in the millimeter region, and commercial spectrum analyzers will soon be available for more accurate and detailed pulse analysis up to 90 Gc .
More types of microwave test equipment will soon be transistorized, bringing both added reliability and more convenient size. New measuring conveniences, greater accuracy, and better

MicroWayes

st rility are among the features which will be ad ertised during the coming year by microwave test equipment manufacturers.

Testing techniques will also be reviewed to tahe advantage of new equipment developments such as sampling oscilloscopes. Notable are Lumatron's model 12 and Hewlett-Packard's morlel 185A (Fig. 6). Devices of this type can give $3-\mathrm{db}$ bandwidths of as much as $1,000 \mathrm{mc}$ with extremely high effective sweep speeds to yield a unique display of reflections out of vhf and uhf devices. Testing methods have already been devised ${ }^{5}$ which use the radar technique of inserting a nanosecond pulse into the piece of equipment under test. The reflected pulse is then viewed on the sampling oscilloscope, and all of the reflections are analyzed on a time-separation basis.

One example of this is a test used to compensate the four resistive "pi" network pads of a vhf attenuator. The four reflections were observed time-separated on the scope face and adjustments were made individually. The test permitted speedy adjustment and resulted in increased bandwidths as well.
As sampling oscillography moves up the frequency range, and sub-nanosecond pulses become available, additional techniques will be worked out to take advantage of the faster and more accurate measurements possible. Instruments designers are now working out design and fabrication techniques which will utilize the more recent advances in semiconductors, tubes and ferrites produced by the components industry. The never-ending process of design innovation shows no signs of slowing down. - -

Acknowledgement
The authors wish to thank W. Bruce Wholey, Microwave Division Manager, Hewlett-Packard for his comments and suggestions.

References

1. Coleman, P. D. and Becker, R. C., "Present State of the Millimeter Wave Generation and Technique Art," IRE Trimsaction on Microwave Theory and Techniques, Vol. MIT-T, No. 1. pp 42-61, Jan., 1959.
2. Bertion, L., "Considerations." in the Design of Two Millimeter Wave Components," Paper presented at Fourth Annual Joint Military Industrial Electronic Conference, Cl icago, Ill., Sept. 14, 1960.
3. Hedrick, A. L., Weinschel, B. O., Sorger, G. U. and R. f, S. J., "Calibration of Signal Generator Output Voltag in The Range of $100-1,000 \mathrm{mc}$," IRE Transactions on In trumentation, Vol. 1-7, Nos. 3 \& 4, Dec., 1958.
4. Iunton, J. K., and Pappas, N. L., "The HewlettP. kard Microwave Reflectometers," Hewlett-Packard Jc rnal, Vol. 6, No. 1-2, Sept.-Oct., 1954.
5. Beck. A. C., "Waveguide Investigations with Milliin ro-second Pulses," Bell System Technical Journal, Vol. 3. No. 1. pp 35-65.

MEASURE FREQUENCIES TO 18 KMC

with counter accuracy

New fixed tuned that harmonic mixers offer
"low frequency" measuring ease and accuracy, have high sensitivity, obviate tuning delays.
12.4 to 18 KMC P-Band New Pgs2A Harmonic Mixer mounts directly in your waveguide system and operates with an 540A or 540B Transfer Oscillator, as indicated in the block diagram. The 540 Oscillator output is applied directly to the mixer, which generates harmonics and mixes them with the unknown waveguide frequency. The mixer's beat frequency output is applied to the 540 's oscilloscope, the oscillator tuned for zero beat scope indication, and the oscillator frequency setting noted. Simple multiplication of the 540 dial frequency by the harmonic number yields the unknown to within 0.5%. Measuring the oscillator frequency on an 524 series counter increases accuracy of measurement on clean cw signals up to 1 part in 10^{7}.
(9932A maximum input power is 100 mw , minimum video output is 0.1 mv rms with 0 dbm input, output impedance 1000 ohms with $35 \mu \mu \mathrm{f}$ shunt, sensitivity approximately - 10 dbm. $\$ 250.00$.

5 to 12.4 KMC New © 934 Harmonic mixer operates from 2 to 12.4 KMC , extends the range of the $\oplus 540 \mathrm{~A}$ Transfer Oscillator from 5 KMC to 12.4 KMC and offers the same advantages as the P932A, 6 KMC to 12.4 KMC and offers the same advantages as the P932A,
including the fixed tuned feature eliminating tedious adjustraent including the fixed tuned feature eliminating tedious adjustment
Maximum input power is 100 mw , typical sensitivity is -45 dbm at Maximum input power is 100 mw , typical sensitivity is -45 dbm at
mid-range points, minimum video output is 0.5 mv rms (0 dbm input) mid-range points, minimum video output is 0.5 mv rms ($(0 \mathrm{dbm}$ input)
and output impedance is the same as $\oplus \mathrm{P} 932 \mathrm{~A}$. Model $934 \mathrm{~A} \$ 150.00$. 220 MC to 5 KMC or 12.4 KMC Hewlett-Packard 540 Transfer Oscillators (see diagram) extend the range of the 524 series counters to $5 \mathrm{KMC}(540 \mathrm{~A})$ and 12.4 KMC ($\dagger 540 \mathrm{~B}$), making possible frequency measurements with counter accuracy well into the microwave quency measurements with counter accuracy well into the microwave
region. These oscillators also measure carrier frequency of pulses, region. These oscillators also measure carrier frequency of pulses,
determine carrier frequency and deviation of $F M$ signals, and meadetermine carrier frequency and deviation of FM signals, and men-
sure frequency accurately despite high noise. $\Phi 540 \mathrm{~A}, \$ 615.00 . \oplus 540 \mathrm{~B}$, sure frequency accurately despite high nois,
$\$ 750,00$. (Rack mount models $\$ 15.00$ less.)
faequency measunement

precurmer mamen	equipment	Totale paice
0.10 Mc	Sax or melo Prowency Coumer	[2,150.00
10.200 mC	 MC) $(10.100 \mathrm{mC})$	12,006.00
100.220 Mc		12,00000
220 mc .5 KmC		82.15 .00
$220 \mathrm{Mc} \cdot 120 \mathrm{KMC}$	 	$\begin{aligned} & 83,185.00 \\ & 83,150.00 \end{aligned}$
12.4-18 кMC	 	88.283.0007 32,00000

HEWLETT-PACKARD COMPANY
1048K Page Mill Road Palo Alto, California, U.S.A. DA venport 6-7000
Cable "HEWPACK"
HEWLETT-PACKARD S. A. Rue du Vieux Billard No. 1 Geneva, Switzerland Cable "HEWPACKSA" ${ }^{\text {Tel. No. (022) 26. 43.36 }}$

CIRCLE 195 ON READER-SERVICE CARD

DESIGN DECISIONS

Featuring the clever and unusual in packaging appearance design and circuitry in electronic equipment.

Super-Thin Panel Meter

 Uses PC Rotor, Nylon PointerA printed circuit rotor, no more than 8 -mils thick, is at the heart of an unusually thin panel meter. Base material for the printed rotor, in a 5 -ma movement, is 4 -mil-thick, anodized aluminum. The anodizing serves as the insulation between the pure aluminum and the laminated copper which is bonded to both sides of the base and etched. The aluminum base provides much of the necessary meter damping.

$$
\text { (continued on } p \text { 186) }
$$

NEW BENDIX MICROWAVE FERRITE DEVICES* n The Electrically

 Variable Phase Shifter, TFP-1, can produce phase shifts in excess of 90° over a minimum bandwidth of 10%. Chief uses are as phase modulator, fast shift, and in a wide variety of r-f direction finding devices. $\boldsymbol{\square}$ The YCirculator, TFC-1, offers at least 20 db isolation with less than 0.4 db insertion over bandwidth exceeding 20%. Ideal for use with masers, and parametric amplifiers. 3 The Electrically Variable Attenuator, TFA-1, has a range exceeding 25 db over a minimum bandwidth of 15%. Useful in fast AGC circuits and remote level control applications. Write today.

PYROFILM CARBON FILM

microwave resistors

are 100\% greater in rated power

Now ... from Pyrofilm, a complete range of microwave resistors that supply twice as much power dissipation per unit area at higher voltages than other dissipative types.

Meeting your requirements for greater power, Pyrofilm's rod and disc microwave resistors are available in $1 / 2$ to 6 watt power ratings.

Configurations are matched to your specifications. Varnish that withstands $200^{\circ} \mathrm{C}$ for prolonged periods of time renders these resistors virtually insensitive to environmental and atmospheric conditions.

Whenever your designs include microwave resistors, Pyrofilm's technical staff will gladly assist you.

features

- Resistance range: I ohm to goo ohms - standaro tolerance: 1%
- standaro tolerance: 1%

Rated Power: Full power at $70^{\circ} \mathrm{C}$
derated to zero at $150^{\circ} \mathrm{C}$

- extremely low noise level
- inherentiv non-inductive
- TEMPERATURE COEFFICIENT: -. 020 to
$.023 \% /^{\circ} \mathrm{C}$
- temperature range: $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

For additional information write for catalog C - 60
PYROFILM RESISTOR COMPANY, INC. U. 5 Highway \#46 • Parsippany, New Jersey

CIRCIE 199 ON READER-SERVICE CARD

DESIGN DECISIONS

The rotor, with its nylon pointer, weighs less than half a gram. It is pivoted between a 0.1-in. ceramic ring magnet and a steel front plate which completes the magnetic circuit. (The magnet is twice as thick for 1-ma movements.)
The ring magnet provides immunity to the effects of stray magnetic fields so the meter can be mounted on any surface, even in the presence of a field.

Since the pointer is made of nylon, it can be pinned without damage. The printed wiring is also highly immune to overload damage. Since every turn of the printed coils is exposed to air, the movement can tolerate a long exposure to 1000 per cent overload (5000 per cent for the 1-ma movement).

The complete movement, weighing about an ounce, has about $1 / 9$ the weight of conventional meter movements. Not counting terminals, the $1 / 2$-in. thickness of the meter is about $1 / 5$ the thickness of conventional units.

Manufactured by Parker Electrical Instrument Corp. of 375 Fairfield Ave., Stamford, Conn., the meter provides another advantage which cannot be overlooked-convenience. In mounting it, there is no need to flycut a hole for the meter body. It's merely necessary to drill two $3 / 8-\mathrm{in}$. holes, $1-1 / 2$ in. apart.

From the front, if the case were on, this panel meter would look like many others.

Initial Condition Circuit Allows An Analog Computer to 'Remember'

A standard operational-amplifier integrator can be given a "memory" by feeding a signal to

the initial-condition input instead of the normal input.

The theory is to use the integrator's feedback capacitor to "track" the voltage at the initialcondition input, and, when desired, have the capacitor "sit" at one voltage by opening a relay in the initial condition circuit.

To set an initial condition in the typical integrator circuit shown, relay A must be open and relay B closed. The output voltage-the voltage across the capacitor- will be the negative of the initial-condition voltage.

Standard operational infegrato, can "store" valtages introduced at "initial-condition" terminal. For this application, device does not work as integrator and normal input is not used-relay A is opened.

If relay A then is closed and relay B is opened, the circuit will integrate the voltage at the normal input, E_{i}. The integrated voltage waveform, E_{o}, will begin with the previously-set initial condition. After a time duration, the output may be reset to the initial condition by opening A and closing B. Thus, the output can be made cyclic.

The "memory" function is achieved by coupling the output of a standard integrator to the initial-condition input of another integrator. In this second integrator, relay A always is open and relay B always closed.

Thus, the output of the first is reproduced across the capacitor of the second-or, the second integrator "tracks" the first. If relay B in the second integrator is opened, the integrator's output becomes a constant-the output value existing at the moment of opening.

Thus, the second integrator either "tracks" or "stores" a voltage, but does not integrate it.
This technique was incorporated in opera-tional-integrator modules produced by Computer Systems, Inc., New Brunswick, N. J. In practice, the switching is done electronically rather than with relays. The comparatively long switching time of relays would limit the system to handling waveforms with long time constants.

Depending on the polarity of the switching signal and its amplitude with respect to a reference, the memory can be made to hold during either the reset or operating part of the cycle.

Here's proof !

No increase in reverse leakage when you etch diodes in

BECCO Hydrogen Peroxide!

To test the effect of impurity-free Becco Hydrogen Peroxide across an unsealed diffused silicon junction diode, the following "torture test" was performed: 600 volts AC were applied across the diode, and the reverse leakage current depicted on an oscillograph. Then, the diode was immersed in Becco 30% Reagent Grade Hydrogen Peroxide. The diode, without being washed in any way, was placed on a hot plate and the $\mathrm{H}_{2} \mathrm{O}_{2}$ was evaporated.
The voltage was re-applied and the tracing produced was virtually identical (see above)-proof that no impurities that could affect the diode exist in Becco Hydrogen Peroxide.
Of course, you'll use Becco $\mathrm{H}_{2} \mathrm{O}_{2}$ at a different stage-when you etch the diode. And, of course, good practice still dictates that you wash the diode in pure water following the etch. Nevertheless, this test proves that you need not be too concerned with your wash when you etch in Becco $\mathrm{H}_{2} \mathrm{O}_{2}$, since the peroxide itself, made by an inorganic method, can not deposit any impurities of its own on the diode.
Becco packages its Reagent Grade $\mathrm{H}_{2} \mathrm{O}_{2}$ in returnable or non-returnable polyethylene containers to insure its purity when it arrives at your plant. Write us for further information or specifications, analysis, prices, etc. Address: Dept. ED-6.

BECCO ${ }^{\circ}$
BECCO CHEMICAL DIVISION Food Machinery and Chemical Corporation circle 203 on reader-service card

NOW...AN INDUSTRY FIRST FROM FAIRCHILD A REVOLUTIONARY PRESSURE TRANSOUCER WITH 5V. D-C OUTPUT

Solid-State Strain Gauge transoucer

others may have promised it... Still others might have hinted they're on the verge of getting it. . . but only FAIRCHILD HAS IT!...THE INDUSTRY'S FIRST 3 S-G

The Fairchild 3S-G combines the best overall characteristics of both strain gauge and pot-type transducers, has none of their inadequacies It has a semiconductor strain-gauge sensor. It possesses extraordinary accuracy and environmental capabilities. It produces a 5 -volt d-c output signal that eliminates the need for impedance-matching or signal amplification. In its utter simplicity (only two mechanically-functioning parts) it is extremely reliable. It also incorporates a resistive calibration device.
The Fairchild 35 -G is responsive to both static and high-frequency $d y$ namic pressures. It is fully compatible with existing military ground telemetry and industrial systems. It is competitively priced, measures all media and is insensitive to case distortions.
The Fairchild 3S-G is only $3^{\prime \prime}$ long, $11 / \mathrm{s}^{\prime \prime}$ diam., and weighs only 5 ounces. It meets and exceeds MIL-E-5272B. Pressure ranges from $0-100$ to $0-10,000$ psig full scale now available, below 100 psig will be available soon. Better than $\pm 0.1 \%$ linearity and 0.1% hysteresis over temperature range of -65 to $+250^{\circ} \mathrm{F}$, Both zero and full range sensitivity change less than 0.5% over any $100^{\circ} \mathrm{F}$ excursion within the rated temp. range. It has infinite resolution.

Fairchild components . . . built and tested beyond the specs for Reliability in Performance.

NEW LITERATURE

Batteries

261
This two-page data sheet, No. P102, describes the firm's Silvercel P-1517 (silver-zinc) battery having a typical discharge of 135 amp for 12 min . Electrical characteristics and typical applications, such as underwater propulsion and aircraft electronics, are described. Discharge curves, environmental and physical characteristics are included. Yardney Electric Corp., 40-50 Leonard St., New York 13, N. Y.

Magnet-Wire Varnish

262
Isonel 31 varnish designed for use with PolyThermalezed and similar magnet wires, is described in this four-page bulletin, No.S-123. Applications of the varnish are listed. Curves of thermal capabilities and bonding strength are given. Schenectady Varnish Co., Inc., Schenectady 1, N.Y.

Computer Logic Systems

263
A series of 17 modular, plug-in logic circuits for 500 kc operation in digital computers is described in this six-page bulletin. Designated the series 4000 system building blocks, the devices include flip-flops, inverters, pulse generators and amplifiers, delays, clocks, decoders and amplifiers. Diagrams and specifications accompany the descriptions of each module. Digital Equipment Corp., Maynard, Mass.

Fibre Control Tape

264
Bulletin No. 1313, two pages, describes Peerless fibre control tape for machine-tool control and data-processing applications. Durability of the fibre tape is compared with that of paper tape. Illustrations and tabulated physical properties and prices are given. National Vulcanized Fibre Co., 1060 Beech St., Wilmington 99, Del.

Random-Noise Generator

265
This four-page illustrated brochure describes the firm's type $1390-\mathrm{B}$ random-noise generator. A basic schematic of the instrument, curves comparing the amplitude distribution of random noise with that encountered in active communications systems and amplitude-frequency characteristics of the noise generator are included. Typical applications are given. General Radio Co., West Concord, Mass.

Self-locking, wear-resistant, machined, stainless steel threaded inserts for use in aluminum in the pass. Easily applied, their dependabie grip nelf packing melal as well as therr permanent diversity of critical wase. The complete uiversty of crincal uses. The complete ine the four sizes are avalatle tor inserton into the four sizes are avallable for imservon inio any of five metal thicknesses. All Nationa Radio Company self-locking captive nuts are made to conform with the following speci-

Material Stanless steel Class 303 per
FED DQ-S-763b.
Finish Passivated per MIL-P-12011.
Threads Size 4, 6 , and 8 NC-2B.
National Radio Company also manufactures other captive nuts and studs including the line of exclusive "Flush Mount" types. Available in five sizes for use in metal thickness from $116^{\prime \prime}$ up. this type of captive nut fits flush on both sides of aluminum or brass sheet to pro vide strong permanent tapped holes. Natıonal Radıo Company's engineerıng staft will be glad to discuss your applications and possible variations to best meet your require ens
NATIONAL RADIO COMPANY, INC. melrose ro. massachusetis $\langle\Delta$ Amin sin
 M. Us.

CIRCLE 206 ON READER-SERVICE CARD

in tight spots turn to EPL Snap-Locking, micro-miniature coaxial connectors for comfort. Push the plug straight into the receptacle and it locks into place . only a direct pull on the spring loaded plug collar will release the connection... no twist, no tools, no noise.

Specifications
vibration up to 10G's at $10-3000 \mathrm{cps}$
shock up to 100G's, any axis
temperature range -70° to $+550^{\circ} \mathrm{F}$
voltage breakdown 1500 v rms minimum at 1 atmosphere
frequency range 0 to 12 KMC
impedance $50,75,95 \mathrm{ohms}$ VSWR 1:1.2 maximum typical weight, plug 0.10 ounces receptacle 0.10 ounces

Immediate delivery of a host of standard plugs and receptacles.. fast factory modification to your specifications
Send for EPL Connector Catalog ...complete specs, outline drawings, construction details, prices... Snap-Lock and friction-held connectors.

Electro-Physics Laboratories

1900 Walker Avenue
Monrovia, Californi
$T i$
division of Marshall Industries
\qquad
CIRCLE 207 ON READER-SERVICE CARD

Crystal-Can Relays

266
This three-page bulletin describes the firm's series MV crystal can relays including those meeting Mil specifications. Dimensional drawings, specifications and ordering information are included. Elgin National Watch Co., Electronics Div., 2435 N. Naomi St., Burbank, Calif.

Format Control Buffer

267
This four-page data sheet describes the firm's type ZA-751 format control buffer for data processing systems. The instrument makes digital magnetic tapes in the IBM 727/729 format suitable for entry into IBM 650, 704, 705, and 709 electronic data processing machines. Input can be from analog-to-digital converters, time-code generators, punched-card readers, electric typewriters, punched paper tape and digital magnetic tape. Principles of operation of the instrument and technical specifications are given. Electronic Engineering Co. of California, 1601 E. Chestnut Ave., Santa Ana, Calif.

Blowers and Fans

268
Applications, specifications and descriptions of blowers and fans are given in this 16-page catalog. Housing, duct-panel, control and filter-grille assembly information is included. McLean Engineering Laboratories, Inc., Box 228, Princeton, N. J

Semiconductors

This 12-page catalog presents specifications and dimensional diagrams for vhif transistors manufactured under the post-alloy-diffusion process for convertor, mixer and oscillator applications. This process is described in the catalog. Also included are specifications and diagrams for germanium pnp and npn audio, computer and switching transistors, germanium and silicon reference and power rectifier types, and photodiodes. Write on company letterhead to Amperex Electronic Corp., Dept. ED, 230 Duffy Ave., Hicksville, N.Y.

Batteries

270
This two-page data sheet, No. P104, describes the firm's type P/N5522 Silvercel battery developed for guidance systems, telemetering, servo and hydranlic controls, and radio beacons and strobe lights in missile nose cones. Typical applications, discharge curves, electrical, environmental and physical characteristics are given. Yardney Electric Corp., 40-50 Leonard St., New York 13, N. Y.

The nervous System of this Ask-3

submarine detecting set gets surgical attention at Singer-
Bridgeport. Capability in electro-mechanical assembly and precision machining is now being demonstrated in a range of military and industrial projects at this fast growing facility.
To meet critical prime and subcontract production requirements, Singer-Bridgeport offers both engineering capability and unexcelled facilities. Test and quality control equipment encompass environmental,
acceleration, vibration, shock temperature, altitude, humidity and salt spray in simulation of extreme adverse operating conditions.
These extensive facilities for engineering, test and production are described in a comprehensive brochure. It is yours for the asking.

SINGER-BRIDGEPORT
a division of the singer manufacturing compant
915 Pembroke Street
Bridgeport B, Conn.

CIRCLE 208 ON READER-SERVICE CARD

MINIATURIZATION pus LOWER COST

Thin Versatlle
 Co-Netic and Netic Magnetic Shielding Folls

How thin Co-Netic and Netic foils lower your magnetic shielding costs:

1) Weight reduction. Less shielding material is used because foils (a) are only $.004^{\prime \prime}$ thick and (b) cut and contour easily.
2) Odd shaped and hard-to-get-at components are readily shielded, saving valuable time, minimizing tooling costs.
These foils are non-shock sensitive, non-retentive, require no periodic annealing. When grounded, they effectively shield electrostatic and magnetic fields over a wide range of intensities. Both foils available from stock in any desired length in various widths
Co-Netic and Netic foils are successfully solving many types of electronic circuitry magnetic shielding problems for commercial, military and laboratory applications. These foils can be your short cut in solving magnetic problems.

Wraps easily.

Inserts readily to convert existing non-shielding

Shielding cables reduces magnetic radiation
pickup.

Wrapping tubes preven oulside magnetic
interterence.

PROTECT VITAL MAGNETIC TAPES

When accidentally exposed to unpredictable magnetic fields, presto! - your valuable data is combined with confusing signals or even erased.

For complete, distortion-free protection of valuable magnetic tapes during transportation or storage. Single or multiple reel Rigio

Composite pho-
to demonstrat
To demonstral
ing thal
netic shal shal

Rigid Netic Allo
Material
Material are not
significantly at-
signiticanily ar-
lected by yi
tected by vibration, shock (including dropping of
bumping) elc Netic is non-retentive. requires no periodic bumping) elt
annealing.

Write for
further details
today.
magnetic shield division perfection mica co
1322 No. Elston Avenue, Chicago 22, Illinois originators of permanentiy effective netic co netic magnetic shielding

NEW LITERATURE

Toroidal Inductors

A 24×36 in., metal-edged wall chart describes toroidal and variable inductors. Twenty graphs provide Q-vs-frequency curves for several ranges of voltage and inductance. A table supplies electrical and physical data for 25 typical toroidal inductors, and provides diagrams and sizes of several commonly-used hermetic and epoxy-potted metal cases. Similar information is given for variable inductors. Write on company letterhead to Burnell \& Co., Inc., Dept. ED, 10 Pelham Parkway, Pelham Manor, N.Y.

Capacitors

272
Metallized, epoxy-cased capacitors are described in one-page data sheet No. DE. Specifications and temperature-characteristics curves covering insulation resistance, dissipation factor and voltage derating are shown. Physical dimensions and part numbers for 200,400 and 600 v dc models are tabulated. Marshall Industries, Electron Products Div., 430 N. Halstead St., Pasadena, Calif.

Radar Noise Measurement

This 11-page application note, No. 43 describes techniques for continuous mon itoring of radar noise figures. It review the theory of automatic noise figure meas urements and outlines radar system re quirements for integral noise-figure me ters. It also describes the firm's mode 344 A noise-figure meter and its appli cations in operating radar sets. Severa illustrations and a block diagram of typical radar system with an integra noise-figure meter are provided. Hew-lett-Packard Co., 1501 Page Mill Road, Palo Alto, Calif.

Timers

274
Illustrated Catalog No. D-31 covers timing components and linear measuring systems for industrial and military applications. Listed in its 30 pages are speciflcations and characteristics of the units. Special sections discuss electronic timers. special timers and their applications, package control systems, military components and systems, differential transformers, motion transmitters and related devices. Automatic Timing \& Controls, Inc., King of Prussia, Pa.

Vibration Isolators

275
The firm＇s series L21 and L22 minia－ ture isolators are described in two－page bulletin No．60－07．The devices are illus－ trated．Physical specifications are listed and performance curves included．Ap－ plication information is given．Barry Con－ trols，Inc．， 700 Pleasant St．，Watertown 72，Mass．

Copper－Oxide Rectifiers

276
Data on copper－oxide rectifiers is given in this four－page data sheet．Physical and electrical specifications are tabulated for six different series；illustrations and con－ struction and application information are included．Edal Industries，Inc．， 4 Short Beach Road，East Haven，Conn．

DC Power Supplies

277
Seven regulated，dc power supplies rated from 0 to 125 v at up to 20 amp are described in this two－page data sheet， No．204－A．Illustrations and electrical and physical specifications are given． Opad Electric Co．， 43 Walker St．，New York 13，N．Y．

Electronic Components

An electronics supply house has issued this 576 －page catalog covering the firm＇s stock of parts and components．Included are semiconductors and tubes，test instru－ ments，transformers，resistors，capac－ itors，printed－circuit components，relays， switches，connectors，communications equipment，power supplies，and a vari－ ety of other types of electronic equipment and components．Write on company let－ terhead to Allied Radio Corp．，Dept．ED， 100 N．Western Ave．，Chicago 80，Ill．

Timing Modules

279
Sixteen－page bulletin，No．5906，de－ scribes the circuit design，manufacturing and assembly process，and standard and special－type specifications for the firm＇s controlled solid－state timing modules． Data on sizes，available mounting ar－ rangements，weights and terminal styles are included．Block diagrams illustrate information on circuit and system appli－ cations of the modules．Tempo Instru－ ment Inc．，Commercial St．，P．O．Box 338， Hicksville，N．Y．

To Help Solve Your Design Problems

The circled numbers on a Reader Service card get special atten－ tion from ELECTRONIC DESIGN．We know that you＇re inter－ ested in certain products－that you want more information to help you evaluate them．And we know that you want this information in a hurry．

When your card comes in，ELECTRONIC DESIGN＇s trained Reader Service staff types your name and address on special labels and sends them to the manufacturers you＇ve designated．This is done within One Day of receipt．Inquiries going west are sent via air mail．The manufacturers affix the labels to envelopes．They enclose the information you need，and send it on its way to you．

So，when seeking more information about products you＇ve seen in advertisements or in our New Products Section，simply circle the Reader Service numbers．It＇s the fast way．The easy way．

The future ... from your point of view

A good day's growth for a hard day's work.
A position to suit your talents, experience and ambition.
Opportunity to exercise full initiative in Research, Radar, Doppler Navigational Systems, Magnetic Memory Systems, Microwave and Computers.

PLUS

Management awareness encouraging exploration beyond the range of present knowledge.

APPOINTMENTS NOW AVAILABLE:

DESIGN ENGINEER

Radar Circuitry
Experience and state-of-the-art knowledge in one or more of these: oscillators, cw or pulse modulators, video, IF or microwave amplifiers, differentiators, integrators, power supplies, pulse coders and decoders, phase detectors, MTI cancellers. Projects include: R\&D of advanced techniques; ground, airborne, space equipment.

PHYSICIST

Applied Research
Advanced degree in physics or engineering physics, plus an appreciation of theory. To design a series of experiments in plasma physics, taking responsibility for equipment specification and installation plus all other experimental considerations.

NEW LITERATURE

Tantalum Slug Capacitors

280
A line of military-type tantalum slug capacitors, insulated and uninsulated, is covered in this four-page bulletin, No. 159E. Construction and application information is given. Electrical and physical specifications are listed. A table gives characteristics for over 50 types. Testing information is included. Ohmite Manufacturing Co., 3601 Howard St., Skokie, III.

Closed-Circuit TV Camera

281
Information on the reliability and performance capabilities of the firm's type TE-9-A self-contained, transistorized, closed-circuit TV camera appears in Bulletin No. ECL 85. Electrical, mechanical and environmental specifications are listed for this cylindrical, 9-lb camera. General Electric Co., P.O. Box 4197, Lynchburg, Va.

Telephone-Type Relays

282
This four-page folder gives information on a line of telephone-type relays. Coil
data, operating and release times, con tact ratings and physical specification for seven models are tabulated. A relas selection nomograph and various opel ating curves are given. Potter \& Brum field, Princeton, Ind.

High Voltage Cable

Two four-page bulletins, "LSHV Hig. Voltage" and "High Performance Cables" describe high-voltage cable with lami-nated-tape, dielectric-oil and extruded Teflon constructions. These lightweight, miniature wires and cables are said to have high-corona thresholds. Engineering date given covers voltage and temperature ranges, performance, tabular specifications and applications. Boston Insulated Wire \& Cable Co., Bay St., Dorchester 25, Mass.

Permanent Magnets

This catalog on permanent magnets lists multiple casts, blocks, bars, cylinders, salient pole, curved path and Genox types. General Magnetic Corp., 10001 Erwin Ave., Detroit 34, Mich.

CIRCLE 213 ON READER-SERVICE CARD ELECTRONIC DESIGN • November 23, 1960

Silicone Rubber Insulation Tape 285
Two four-page bulletins, Nos. 205-A and 312 , describe a line of silicone rubber insulating tape for form-wound coils. Bulletin No. 205-A describes the tape, giving electrical insulation data and a physical specifications chart. Bulletin No. 312 tabulates physical specifications and information for winding the tape. Moxness Products, Inc., 1914 Indiana St., Racine, Wis.

Waveguide Pressure Windows 286

Waveguide pressure windows are described in this 12 -page brochure. Operation, application and installation data for the devices which operate from 2.4 to 40 kmc is given. Dimensional drawings data is given for flange and soldermounted mica and kovar-glass types. Microwave Associates, Inc., Burlington, Mass.

Toroidal Components
287
Toroids, toroidal coils, and special toroidal components are described and illustrated in this eight-page bulletin. Electrical specifications, outline drawings, and
characteristics curves are included. Also described are a $50-\mathrm{v}$ regulated dual power supply and a $10 \mu \mathrm{sec}, 1 \mathrm{msec}$ marker generator. Johnson Electronics, Inc., Electro-Magnetic Div., P.O. Box 1675, Casselberry, Fla.

Trimmer Capacitors

The firm's Mini-Trimmer line of miniature trimmer capacitors is described in this two-page data sheet. Physical and electrical specifications and dimensional drawings for panel-mount and printed-circuit-mount styles are given. Write on company letterhead to Corning Electronic Components, Corning Glass Works, Dept. ED, Bradford, Pa.

Fluorocarbon Resins

289
Polypenco and Fluorosint TFE fluorocarbon resins are described in this eightpage brochure, No. BR-4. Electrical, thermal, mechanical, and chemical properties are tabulated. Electronic and thermal applications are described and illustrated. Available sizes and shapes of the materials are listed. The Polymer Corp. of Pennsylvania, 2140 Fairmount Ave., Reading, Pa

This New Lightweight Miniature Power Tool

- installs Heli-Coil Screw Thread Inserts, both Standard and Screw-Lock, in sizes 4-40 through 8-32.
- permits quick and easy size changes.
- is easy to use in restricted areas and miniaturized products.
- operates from remote motor with flexible shaft.
- is provided with automatic clutch and precision depth adjustment.
- speeds production and cuts costs.

Heli-Coil Stainless Steel Wire Screw Thread Inserts protect threads permanently against wear, corrosion, stripping, galling, and seizing.

Write for Bulletin 770A with complete information
for Bulietin 770A with complete inform
about this new Heli-Coil Power Tool.
HELI-COIL CORPORATION
411 Shelter Rock Lane, Danbury, Connecticul
In Canada: ARMSTRONG BEVERLEY ENGINEERING LTD. 6975 Jeanne Mance St., Montreal 15, Que.

CIRCLE 216 ON READER-SERVICE CARD

HYPER ENVIRONMENT TEST CHAMBER
Production models now available for quality control in manufacturing temperaturesensitive components such as thermistors and resistors. Write for new 52 -page catalog.

NEW LITERATURE

Test Equipment

290
Catalog No. 60 covers a line of high-voltage test sets, Hipot testers, dc overpotential testers, corona test sets and continuous-production type insulation testers. Also described are wire sparkers, cable-fault locating sets, a pinhole detector/ counter, an abrasion-scrape tester for military wire, automatic test sets for cable testing and high-voltage rectifier units. Peschel Electronics, Inc., Patterson, N.Y.

Environmental Chambers

291
The subject of this 32 -page illustrated brochure, No. 600, is environmental testing and other applications for controlled atmospheric conditions. A line of environmental chambers is cataloged, with general descriptions, illustrations, and specifications. The brochure includes data on temperature performance and specific heat of various substances, on metal shrinkage, low temperature refrigerants, convection fluids, temperature conversion, and on temperature controls. Schematic diagrams and engineering data on cascade equipment are also given. Webber Manufacturing Co., Inc., P. O. Box 217, Indianapolis 6 , Ind.

Data Translator

292
This two-page data sheet describes the operation of the firm's type ZA-26965 paper-to-magnetic tape data translator. The instrument converts coded input data recorded on punched paper tape into an alpha-numeric code with a format directly acceptable to an IBM 704/705 electronic data processing machine. Electronic Engineering Co. of California, 1601 E. Chestnut Ave., Santa Ana, Calif.

UHF, VHF Equipment

293
A series of uhf-vhf equipment is described and illustrated in this six-page bulletin. Amplifiers, converters, signal generators, doppler equipment and transmitters are included. Electrical specifications are given. Resdel Engineering Corp., 3.30 S. Fair Oaks Ave., Pasadena, Calif.

Selenium Rectifiers

294
A world leader in research and production of TWT's, the Huggins line is applicable to all phases of military equip. ment . . . ground, shipboard, and airborne. Whatever your proiect, if it involves TWT's, call on Huggins for complete assistance.

HUGGINS

LABORATORIES INC. 999 East Arques Avenue Sunnyvale, California REgent 6.9330

HIGH VACUUM COMPONENTS \& ACCESSORIES
VEECO manufactures a complete line of high vacuum equipment . . . Leak Detectors, Components, Evaporators, Pumping Systems.
accepted as the quality line for over a decade. For individual Bulletin or Complete Catalog write Dept. 86-G.

VACUUM ELECTRONICS CORP.

Terminal Drive, Plainview, L. I., N.Y.
hiah vacuum \& leak detection equipment CIRCLE 751 ON READER-SERVICE CARD

Selenium Rectifiers

295
This eight-page catalog, No. EL-316, covers seleniun diodes and rectifiers. Technical data, circuit diagrams, rectifier stack designs, coding systems and photos are included. Also described are special mounting styles and rectifiers for printed circuits. Radio Receptor Co., Inc., 240 Wythe Ave., Brooklyn 11, N. Y.

Controlled Atmosphere Systems

296
This four-page brochure, No. $2-360-5 \mathrm{M}$, describes controlled-atmosphere systems for the manufacture of semiconductors. These special enclosures are available as plain glove boxes or as complete systems including vacuum ovens and pumps, bake-out ovens, gages and controls. The assembly is discussed and illustrated. Kewannee Scientific Equipment, 4009 Logan St., Adrian, Mich.

Washable Tracing Film

297
This four-page bulletin describes Herculene drafting film and Duralar pencils, a combination intended to produce washable tracings. Samples of each are included. The development of the film and pencil is covered, and instructions for washing with soap and water are given. Keuffel \& Esser Co., Third and Adams Sts., Hoboken, N.J.

Toggle-Switch Assemblies

298
Toggle-switch assemblies with paddle-shaped tab indicators are described in this two-page data sheet, No. 174. Information on operation and contact arrangements of the devices, and tabulated electrical ratings are given. Illustrations and dimensional drawings are included. Micro Switch, Freeport, Ill.

Bobbin and Coil Winder

299
This two-page, two-color data sheet illustrates and describes the firm's models 315 -AM and 39 AM miniature bobbin and coil winders. Photographs and mechanical specifications are included. Geo. Stevens Manufacturing Co., Inc., Pulaski Road at Peterson, Chicago 46, Ill.

Magnifying Comparator

300
This illustrated folder describes and gives application data for the firm's magnifying comparator. The tool checks gages, templates, layouts, forms, and sizes of punches and dies, and shows amount of wear to be corrected on edges of cutting tools. Finescale Co., 218 S. Western Ave., Los Angeles 4, Calif.

NEW KEARFOTT DIEISTROBE* DISPLAY

Kearfott's new, highly compact Digistrobe digital display utilizes the stroboscopic principle to produce an exceptionally high-definition readout in the actual size shown here. Through the use of a unique shutter arrangement, a single diode-encoding matrix is shared by all columns (5 in the standard model), resulting in substantial savings in electronic components and circuitry. The fast response time of the Digistrobe
(56 milliseconds transition from one five-digit quantity to a totally different one) permits a single unit to sample several different inputs on command through an input selector switch. Up to 15 individual displays of existing types can thus be replaced by a single Kearfott Digistrobe!

Incorporating only two moving parts and exclusively solid-state switching circuitry, the Digistrobe has extremely long life expectancy and requires minimum maintenance and service. Operation is directly from the output register of a computer, counter or allied equipment, eliminating the cost of intervening circuitry. Two years of extensive laboratory tests assure compliance with Kearfott's rigid standards of quality. For complete data and specifications, write for Digistrobe bulletin.
-Kearfott Trademark

KEARFOTT DIVISION GENERAL PRECISION. INC.

MORE CAPACITANCE, LESS WEIGHT - Combined volume of 40 TES Capacitors equals that of large papor capacitor which itors is 24,000 microfarads to only 4 for paper capacitor.

FOR FULL DETAILS on TES plug-in or other types of tantalum capacitors, write Tansitor Electronics, Inc., Dept. 12 West Road, Bennington, Vermont.

NEW TANSITOR TANTALUM CAPACITORS PROYIDE MORE CAPACITANCE, LESS WEIGHT

Both leads of these new TANSITOR TES-type capacitors emerge from one end. So, only one seal is required, with consequent savings in length.
Welded leads are completely encapsulated too. Hence, soldering can be done close to the end of the capacitor without damaging the welds. Space savings up to 50% are thus possible.
Applications? Printed and transistorized circuits for miniaturized military or commercial electronic equipment are typical.

CHARACTERISTICS

Operate at surge temperatures up to 125 C with some voltage derating

- Polar or non-polar - Neutral electrolyte
- Plain or etched foil - Low leakage current
- Long shelf life

ELECTRONICS
INCORPORATED
Whow Reladity Come funt
$-\square$ Thathlom Copesition -

Poorless
Electronics Contor, Inc.
211 West 19th St. New York 11, N. Y TANSITOR DISTRIBUTORS AL 5-4600

Radio Distributors Inc. 92-93 Merrick Road Jamaica 33, N. Y.
RE $9-6080$

CIRCLE 753 ON READER-SERVICE CARD

The little IO-10 has big applications. Use it in industrial. medical and general service fields for computer "read out" and for voltage, frequency and phase shift measurement. It features identical vertical and horizontal AC or DC coupled amplifiers. external sync terminal. external capacity binding posts for sweep rates lower than 5 cps , transformer-operated power supply, voltage-regulated $\mathbf{B}+$ and bias and excellent specifications. 3RP-1 CR tube included. Send for free Heathkit catalog or see your nearest Heathkit dealer.

HEATHKIT" \& DAYsTROM

HEATH COMPANY Bonton Harbor 60, Michigan Please send the Free Heathkit catalog.

NAME
ADDRESS
CITY

IDEAS FOR DESICN

Get $\$ 10.00$ plus a by-line for the time it takes you to jot down your clever design idea. Payment is made when the idea is accepted for publication.

Reactor Improves DC Motor Drive Regulation

Quite often it is desired to drive a dc motor from a rectified 60-cps supply.
By varying the voltage to the supply, the slieed may be selected at a desired level. The major drawback of this mode of operation is the poor regulation obtained. This is mainly due to the motor's behaving as a capacitor when it is not loaded, and as a resistor when it is loaded.

Choke in series with dc motor armature improve speed regulation.

Appreciable improvement may be had by inserting an inexpensive dc choke in series with the motor armature. The choke smoothes out the changes in the waveform and reduces the speed variation to within ± 5 per cent.

Baruch Berman, Chief Engineer, ACE Elec tronics Div., Paramus, N.J.

Simplified VTVM Range Divider

When designing the input voltage divider (range switching network) for a dc vacuum tube voltmeter, it is convenient to select 10 meg as the total resistance. But this causes each resistance (except the lowest) in the string to have an odd value, obtainable only by connecting several resistors in series.
The divider can be simplified by selecting $1,111,111$ ohms for the total resistance. (There is nothing sacred about the customary even 10 meg.) When this is done, all except the lower resistor (R_{4} in the accompanying illustration) can have even values obtained with single resistors. The 1,111-ohm unit (the only odd-valued one) may consist of one each $1000-100-, 10-$, and l-ohm resistors in series. Or, for further simplification, may be a miniature 1,350 - or 1,500 -ohm

Zener Diode Helps Shift Pulse Levels
We had to shift a train of random input, uniform amplitude pulses, of either plus or minus 10 v levels, to lie between zero and -20 v . Because of the random nature of the input, an RC type of de restorer could not be used. Our solution to the problem is shown in the figure.

Constant-voltage Zener diode shifts input pulses to new levels.

Emitter follower Q_{1} isolates the level shifting Zener diode from the input signal source. When the input is at +10 v , (assuming a negligible $V_{B E}$), the Zener diode looks into an open circuit voltage of 38 v . This voltage is great enough to break the Zener down. Thus, with +10 v input and 10 v dropped across the Zener, the output will sit at zero volt. Similarly with -10 v input, the output will be at -20 v . The slight shift in Zener voltage due to diode current variations "as not critical in this application.
P. Cutler, Universal Electronic Controls, Garden Grove, Calif.

A COMPLETE STOCK

 OF 3 DIFFERENT TYPES

FLAT:.. Woven, flexible, tinned copper braid, generally used as a high current conductor at low voltages, and as a bonding strap in vehicles and aircraft to eliminate ignition interference.

OVAL COMMERCIAL... Woven, tinned copper tubular braid used as an electrostatic shield to cover conductors, cables, or other components, since it slips over them easily, due to its oval shape and flexibility.

OF SHIELDING \& BRAIDING!

Woven, tinned copper round braid used in military applications requiring used in military applications requiring
maximum shielding against electrostatic interference, mechanical abrasion and stresses. Construction has self-supporting characteristics enabling it to maintain its round configuration. Percentage of shielding coverage is 95% or more. Special Constructions are avallable to order in the flat, oval, or tubular braid.

CIRCLE 756 ON READER-SERVICE CARO

can you save with low-cost eyelets over $1^{\prime \prime}$... in tubing?

Now, cut costs of long eyelets drawn from strip metal
radiation model 3115
FM TELEMETRY TRANSMITTER PROVIDES...

- Carrier frequency stability to within $\pm \mathbf{0 . 0 1 \%}$
- Frenquency response within 0.5 db
from 100 to $100,000 \mathrm{cps}$
- 2 watts minimum output
- Virtual immunity to extreme environments
- Low microphonics
- Reliability proven in Tiros I, Redstone, Jupiter,

Sina and other missile programs

- Off-the-shelf availability

For complete information on the Model 3115 ask for: Technical Bulletin RAD B-102, Write Dept. ED-11.

RADIATION
Melbourne, Florida
CIRCLE 757 ON READER-SERVICE CARD

Model PCS-1B

PULSE POWER CALIBRATOR

Model PCS -1B is a precision instrument for the direct measurement of radio frequency peak pulse power other than calorimetric means. The functions are inde pendent of duty ratio.
The display, essentially a notch-watt-meter, is free from parallax. This equipment provides laboratory performance with simplicity adaptable to the production line.
Similar equipment for other frequencies under development.
Frequency Range: 925 mcs to 1225 mcs
Power Level Range: -10 dbm to +63 dbm
Accuracy: 0.5 db

Coneral

© ommunication
Company

677 BEACON STREET, BOSTON 15, MASS. RESEARCH DEVELOPMENT ENGINEERING MANUFACTURING
.....---- creative electronics

Other Typical Products...

RADAR BEACONS

"S" Band Beacon - Model RCX
Radar Beacon RCX is a miniature S-band transponder equipment for use in tracking missiles, drones and other types of aircraft. It has excellent selectivity transmission medium for telemetering information from auxiliary systems. Many new and unique features make it a reliable and versatile equipment, keeping pace with the current progress in the guided missile field.

MICROWAVE COMPONENTS

The General Communication Company makes a very complete line of high quality coaxial switches (manual, motorized and relay operated) that meet a variety of applications, including transmit receive selection of antennas, and other features required in the field of guided missiles.

MICROWAVE TEST EQUIPMENT

Test Set BDS is a portable equipment combining the features of a signal generator, power meter and frequency meter. Its design assures ease and versatility in test ing radar and beacon equipments in the $8500 \cdot \mathrm{mc}$ to $9600-\mathrm{mc}$ frequency range.
G.C.C. Invites inquiries on its products and R \& D services. CIRCLE 759 ON READER-SERVICE CARD

IDEAS FOR DESIGN

Two Relay Contacts Clear Integrator For Rapid Operation

In repetitive tests conducted with an integrator of high linearity, it was necessary to clear the integrator for the next run as quickly as possible without interfering with its linearity. Relay contacts connected directly across the capacitor will rapidly discharge the integrator. However, the leakage across the opened contacts affects the linearity during integration.

A scheme commonly used in analog computers for discharging an integrator is shown in Fig. 1 During integration, the relay contacts are closed, effectively placing R^{\prime} and $R^{\prime \prime}$ across the amplifier input and output respectively. In this way, R^{\prime} and $R^{\prime \prime}$ do not interfere with the operation, if their values are appropriately chosen. Thus, the problem of relay leakage is avoided.
Using this circuit arrangement, the time taken to discharge the integrator was several seconds with the values of circuit components required in the application: time constant $=1 \mathrm{sec}, R=1$ meg, $C=1 \mu \mathrm{f}$.

Fig. 1. During integration relay is closed; R^{\prime} and $R^{\prime \prime}$ appear across input and output respectively. However, discharge time constant (with relay open) is long.

Fig. 2. Fast $(100 \mu \mathrm{sec})$ clearing can be obtained with two relays. Contacts are open during integration, with relay leakage appeared across input and output.
With a second relay as shown in Fig. 2, a discharge time of about $100 \mu \mathrm{sec}$ was obtained without degrading the integrator linearity. During integration, any leakage across the relays is placed across the input and output of the amplifier and not across the capacitor. To keep the discharge current within the relay contact rating, a small resistor r^{\prime} was included in the shorting link.

Bernard F. Wadsworth, Research Engineer, Australian National University, Canberra, Australia.

Vector Patch-Boards provide simple, economical units
for multiple-connection, single conductor patching Useful for low cost computers, test boards and a multitude of connecting applications. Receptacles are $0.265^{\prime \prime}$ on centers and take .087-. 091 diameter
plugs. Patch cords also available. Standard
boards available or readily made to size required.
Wries for information
VECTORELECTRONIC COMPANY 1100 FLOWER STREET - GLENDALE I, CALIFORNIA

CHAPMAN 5.1076
CIRCLE 760 ON READER-SERVICE CARD

Now... in seconds... you can SELECT TEST MATCH

 Transistors and Diodes Accurately! tenance. . . with the compact in rearch, design, production or main-- 10 constant current settings from 100 Tester. Provides:

- 10 constant current settings from 100 ua to 100 ma .
- 3 forward current ranges of 0-10, 0-100, 0-1000 ma
- 12 reverse voltage settings from 1.0 v . to 100
- Reverse current metering of 0-50 and 0-500 ua

AC powered. 17 pounds, Model TDT-200A Tester is only $\$ 325$. tom sock.
Write for bulletin and defails on trial offor.

3357 REPUBLIC AVENUE MINNEAPOLIS 26, MINNESOTA
CIRCLE 761 ON READER-SERVICE CARD
ELECTRONIC DESIGN • November 23, 1960

revolutionizes soldering!

Solder

No other solder provides the performance advantages of ALPHA Cen-Tri-Core Energized ${ }^{\text {² }}$ Rosin-filled Solder because no other solder is made this way.
ALPHA Cen-Tri-Core's center wire is rosin coated then in. spected visually before an extruded outer slecve is added. Result? Every inch of its "core within a core" construction is filled with fast-acting, non-conductive flux. Meets federal specifications QQS-57IC. Write for delails.
When dependability counts!
Io Loo Augeles, Calif::
2333 Suybrook Ave.
Ia Clicago, III:

Othor ALPHA products:
Fluxer • Soldet Preforma • High Punity Metab
CIRCLE 762 ON READER-SERVICE CARD

GURLEY products/services

Reticles for Optical, Photoelectric Instruments - Precise Photography - Precision Patterns on Glass \& Metal - Electroforming and Electroetching. Circular, Linear, Cylindrical, Spherical Dividing
PHOTOELECTRIC DEVICES Shaft Position Encoder - Pulse Generators • Readout Devices for Angular and Linear Position

- OPTICAL INSTRUMENTS

Optical Coincidence Reading Systems. Collimators • Special Optical Instruments

Transits - Theodolites • Levels - Alidades • Rods • Plane Tables - Field Equipment

HYDROLOGIGAL INSTRUMENTS
Current Meters - Water Level Recorders • Hook Gages
\square METEOROLOGIGAL INSTRUMENTS
Wind Direction and Velocity • Pilot Balloon Theodolites
Smoothness, Stiffness, Porosity, Sizing Testers for Paper and Textiles

SCIENTIFIC INSTRUMENTS
Standards of Mass, Length and Volume - Balances
Ch ck and mail for literature dosired $/ 525$ FULTON ST.
W/.\& L.E.GURLEY/TROY, NEW YORK

Sensitive Pulsing Circuit Measures 10^{-15} Amp

Extremely small direct currents can be easily measured by a circuit, shown in the figure, which senses pulses whose heights are proportional to the current. The pulse height analyzer can be calibrated to read out currents approaching $10-{ }^{15} \mathrm{amp}$.

Current I entering $R_{1} C_{1}$ is integrated until the equilibrium voltage $E=I R_{1}$ is reached. Periodically, a switch $S w$ shorts out C_{1}, discharging it to zero and transmitting a pulse of amplitude E through C_{2} to pulse amplifier A. The amplifier input time constant $R_{3} C_{3}$ divides down the sharp rise E at its input to $E C_{2} /\left(C_{3}+C_{2}\right)$. Measurement is only made of the rise voltage, requiring a high-speed, constant-gain, pulse amplifier. A fast scope and camera have been able to measure currents as low as the $10-{ }^{-15} \mathrm{amp}$ mentioned previously.

In selecting components, if R_{1} is typically a Victoreen High-Meg resistor of thousands or even millions of megohms, the open switch resistance should be 100 times greater. Such a switch requirement is easily met by using a reed switch, manufactured by such companies as Revere and Clare. The switching is accomplished by an electrostatically shielded coil wound on a Teflon bobbin surrounding the glass. Capacitors C_{1} and C_{2}, of approximately 10 pf can be either air or Teflon insulated.

Extremely small ($10^{-15} \mathrm{amp}$) direct currents are measured by sensing a pulse of proportional height.

If I represents the desired minimum detectable current, amplifier sensitivity must reach $I R_{1} C_{2} /\left(C_{3}+C_{2}\right)$. Hence, if C_{1} is 100 times greater than the switch capacity of about 0.1 pf , and is 10 times greater than C_{2} and C_{3}, R_{1} is determined. Actually deeper considerations of noise and bandwidth govern the parameters. However, the approximations given here are sufficient. It will be observed that several current inputs can be commutated sequentially, merely by switching the respective $R_{1} C_{1}$.
Patrick F. Howden, Systems Engineer, Consolidated Systems Corp., Monrovia, Calif.

DIAL ASSEMBLIES for computer display applications
Twin Dial Assombly - A high procision unit with vary low gear backlash. Idoal for two spoed indicator opplications. Available from stock in gear ratios of $10: 1$ and $36: 1$.
Concontric Dial Assombly - A miniaturizod assombly for twospood applications. Maximum procision with oxtromoly low backlash. Available from stock in gear ratios of $10: 1$ and $36: 1$, with or without hand-input knob.
Both models supplied with dial ongrovings shown. Available on special order: otchod dials and anti-bocklash gearing which provido readout accuracies to 1 minute of are.
Edpedite dEsIGn•prototypine•pROduction
BY USING REEVES SERVO-MECHANICAL PARTS
Dial assomblies are only one product in Dial assemblies are only one product in the COMPLETE Roeves Sories of high-preeision Servo-mechanical Parts, rocognized highosi accuracy and roliability.
If you do not have the catalog, write for Data File No. 211.

REEVES INSTRUMENT CORPORATION
REEVES INSTRUMENT CORPORATION
CIRCLE 764 ON READER-SERVICE CARD

IERC TRANSISTOR HEAT DISSIPATOR

囘actual size accepts .305 to .335 variations in T0-5 cases!

Simplified installation for effective heat dissipation with IERC Tran. sistor Heat Dissipators are illustrated: 1. Parts available in rivet or screw attaching types. 2. Single or multiple mounting on heat sink angle. 3. Back-to-back mounting.

Detailed information, performance graphs, etc. are available in latest IERC Technical Bulletin. Write for a copy today!

INTERNATIONAL ELECTRONIC RESEARCH CORPORATION 135 West Magnolia Boulevard, Burbank, California Foreign Manulacturers: Europelec. Paris, France. Garrard Mig. \& Eng. Co., Ltd., Swindon, England, CIRCLE 765 ON READER-SERVICE CARD

PATENTS

Benjamin Bernste

Noise Figure Measuring Instrument

Patent No. 2,935,684. H. E. Lanning. (Assigned to Bell Telephone Labs.)

The noise figure of either a transistor or a vacuum tube is made direct reading by means of a negative feedback amplifier having a predetermined noise resistance. A table of typical components used in the circuit is provided.

In schematic, a transistor under is connected to an amplifier wired for least $40-\mathrm{db}$ feedback. The meter is c pensated by measuring the thermal no power of the input resistance, resist 16 and 19. Noise figure of the transist is read directly on the meter, indepen ently of the gain of the transistor und test.

CIRCIE 766 ON READER-SERVICE CARD
ELECTRONIC DESIGN • November 23, 196 EC

Digital-fo-Analog Servo System
l'atent No. 2,943,248. O. W. Ritchey. (Assigned to Bocing Airplane Co.)
The angular position of a servomotor rotor is varied in accordance with digital information applied to a binary counter. The motor has two stator and two rotor windings. The motor responds to the difference in phase angle between a reference voltage and a voltage produced in the circuit by the digital information.

Television Receiver

Patent No. 2,925,466. G. E. Lowitz. (Assigned to Sylvania Electric Products.)
Video and synch pulses are separated, in a television receiver, by means of a beam deflection tube gated at the horizontal scanning rate.
The composite signal is coupled to control grid 31 of beam deflection tube 30. This tube is driven by a sweep voltage applied to deflection plates 38 and 39. During the trace interval, the electron beam is directed to collector 35 which connects the video information to the display tube.

Selective Detection of Radar Targets in The Presence of Noise Signals
Patent No. 2,943,316. F. D. Covely. (Assigned to Radio Corp. of America.)
Repetitive signal groups are separated from random signals, some of which may be larger in amplitude than the repetitive ones. A threshold circuit eliminates all signals of less than a predetermined amplitude. The signals passing the threshold circuit trigger gated pulses that drive a circuit whose output depends only on the coincidence of a gated pulse.

TELREX LABORATORIES

Designers and Manufacturers of
COMMERCIAL SERVICE "BEAMED-POWER" ARRAYS AND TWO-WAY SYSTEMS
 Model Mustrates aide. Wide.
spaced, 12 element circular polarized optimum-tunad
skewed dipole
.'SPIRALRAY Skewed dipoie "SPIRALRAY" high gain, even responsa. in cal. horizontal or oblique with unusually high signal-to-noise ratio. NO OTHER CIRCULAR POthe art today can provide the linear high gain and signaltonoise
planes.
The ideal antenna for missile tracking, tolemeterming and
no.fade
response to mobile (or moving) stations. Models available to extend the practical range of 2.Way
Communication Systems.

Model SY-12-104-11 $\$ 265.00$ Model MsY-104-110 \$0. $\$ 390.00$ (f.0.b. Asbury

Electrical Specifications--Model No. SY-12-104-110: Polarization, circula.
linear within $4 / 2 \mathrm{db}$. Gain 13 db F/B: linear within $1 / 2 \mathrm{db}$ Gain 13 db . F/8-
Ratio $30 \mathrm{db} . \mathrm{V} / \mathrm{S} / \mathrm{W} / \mathrm{R}(50 \mathrm{ohm}$ cable) $1: 1 / 1$. Beamwidth at half power points 33 degrees. Max. power
input 300 w , with "Balun" supplied. Mechanica! Specifications: Boom diameter $2^{\prime \prime} 0.0 \times 25 \mathrm{ft}$. Aii alumiuum boom and elements. Weight ap No ice load Availabe for 120 mph
wind load. (Model No. MSY-104-110).

- Telrex is equipped to design and supply to our specifications or yours, Broadband or single frequency, fixed or rotary arrays for communications, FM, TV, scatterpropagation, etc.
- Consultants and suppliers to communication firms, universities, propagation laboratories and the Armed Forces. $\underset{\substack{\text { SINCE } \\ \text { I921 }}}{\sim} \rightarrow-1$ LABORATORIES ASBURY PARK 41, NEW JERSEY, U.S.A.
"I one $m y$ success to my trusty Sigma Oype 22 RJC 200 G SIL relay"

1

With a sizable amount of our business due to saber-rattling on a national scale, it's heartening to discover some relay prospects among those who practice skew. ering each other just for fun. One of our reps recently wrote in, calling our attention to a device in which a buzzer sounds when a proper forward-moving fencing "hit" is scored. The buzzer circuit is closed by the contacts of a Sigma " 22 " relay, which in turn is wired to a battery and a plunger switcl at the tip of the foil or épee. The inventor's name is L.A. Wortman, and he holds no lesser rank than chairman of the Electrical Weapons Committee of the Amateur Fencers League of America, as well as American Delegate to the Electrical Signaling Comm., Federation International D'Escrime.

We sincerely hope, however, that Mr. Wortman shows more mercy in a salle d' armes than he does to the hermetically sealed enclosure of his Sigma sensitive relay. In describing his ingenious boon to practice fencers (fencing practicers?), he calmly states "The relay is a Sigma Type 22J200 or equivalent... (These dual series) coils must be separated and reconnected ... The case of the relay is easily removed with a pair of diagonal wire cutters.

Starting at the bottom edge and peeling, the cover comes off as though it were a sardine-can cover." Really, Mr. Wortman. If Series 22 relay enclosures were meant to be removable, we would have made them that way. (On second thought, maybe supplying a little key with each hermetically sealed Sigma relay might not be such a bad idea at that. Remember that Air Force captain and his little drill?)
At all events, this clearly points out one fact: clever people are still successfully applying Sigma relays in ways which turn our application engineers green (92 parts horror, 8 parts envy). We can only hope that future builders of electrical fencing instruments and kindred souls will first ask us if we have what they want, before picking up the side-cutting pliers. It might pleasantly surprise some to see the assortment of open and sealed, single- or dualcoil, magnetic latcling, big and little relays we can offer. We might even have one for Mr. Wortman's august body which would signal a hit not by a buzz on a buzzer, but simply by saying "ouch."
" 22 " Bulletin on request; application engineering by letter and over the phone.

SIGMA INSTRUMENTS, INC
91 Pearl Street, So. Braintree 85, Mass.
An Afiliate of The Fisher-Pierce Co. (since 1939) CIRCLE 768 ON READER-SERVICE CARD

TEN STEP

5 megacycle stepping rates

PROGRAMMED

20 millimicrosecond pulse widths CURRENT
2 ampere pulse amplitudes

PULSE

10 millimicrosecond rise time GENERATOR

Model 1200 Programmed Millimicrosecond Current Pulse Generator for research and development of very high speed magnetic materials, solid state devices and computer circuits. Write for Bulletin 60-B.

CIRCLE 769 ON READER-SERVICE CARD

Econ-O-Line, a temperature test chamber within your budget, the first of
its kind. It brings you a temperature range of $-100^{\circ} \mathrm{F}$. to $+350^{\circ} \mathrm{F}$., with
pulldown to $-100^{\circ} \mathrm{F}$. from ambient in less than five minutes if desired. Heat
up to $+350^{\circ} \mathrm{F}$. from ambient may be had in thirty minutes.
Liquefied COz refrigeration (dry ice cooling also available) provides an ac-
curacy of $\pm 2^{\circ}$. The circulation motor is externally mounted
The Econ. \mathbf{O}. Line has internal working dimensions of $14^{\prime \prime} \times 14^{\prime \prime} \times 14^{\prime \prime}$. In-
terior is of series 304 stainless steel, heliarc welded; the exterior is heavy
gauge steel, with a green speckled enamel finish.
The window illustrated is optional at extra cost.

ASSOCIATED TESTING LABORATORIES, Inc. 150 ROUTE 46 manufocturing divison wayne, New Jersey Ci.ford or 2800 TWX IT FS NJ 943 of Woyne, New Jersey ond Winter Pork (Orlandol Florida

PATENTS

Signal Amplifier Circuits

Patent No. 2,938,963. F. D. Waldhauer. (Assigned to RCA.)
A symmetrical transistor, conveniently biased to interchange the emitter and collector electrodes, provides stable and low noise amplification in a tape recording system.

With the switch in the indicated position, electrode 32 of transistor 28 is the emitter, and electrode 30 , the collector. The microphone signals pass through amplifier 20 to transistor 28 , which drives the recording head 10 .
With the switch in the second position, electrode 30 becomes the emitter and electrode 32 is the collector. The re-

corded information is picked up by head 10 and coupled through transistor 2 which is now the preamplifier.

FM-Discriminator

Patent No. 2,941,075. E. Christian. (As signed to U. S. Army.)
A narrow-band and a wide-band $f m$ discriminator, having high sensitivity are designed around a single pentode tube.

As shown in schematic, the plate con

Testing loborotories or Woyne, Ne,

by head
苟
0
0
$a n .(A$

ins a high sensitivity, narrow-band iscriminator network. In addition, a milar circuit is coupled to the screen rid. The two outputs can be combined produce the over-all wide-band high un response.

alanced Phase Sensing Circuitry

atent No. 2,945,950. R. L. Midkif. (Asigned to Avco Manufacturing Corp.) High impedance and passive amplifiation is obtained by using two Zener iodes in addition to the four diodes of he conventional diode-type phase sensiive detector.
In operation, a drive signal in the
forward direction produces the same current as in the known circuit. However, in the reverse direction the impedance of the Zener diode is high and a very small current flows. When the Zener breakdown voltage is exceeded, a very large current flows in the load to give increased gain.
The patent also discloses phase detector applications of the Zener diodes, 15 and 16, as well as several improved modulator circuits.

NOW... MORE USABLE SENSITIVIITY ina LOW COST microwave SPECTRUM ANALYZER from 10 mc to $44,000 \mathrm{mc}$ with ONE TUNING HEAD

PANORAMIC'S
SPA-4
SPEGTRUM
ANALYZER

BAND RF SENSITIVITY*	BAND RF SENSITIVITY*
$10-420 \mathrm{MC} \quad-95$ to- 105 dbm	$4.5-10.88 \mathrm{KMC} \quad-8010-95 \mathrm{db}$
$350-1000 \mathrm{MC} \quad-90 \mathrm{to}-100 \mathrm{dbm}$	10.88 - 18.0 KMC $\quad-7010-90 \mathrm{dbm}$
$910-2200 \mathrm{MC} \quad-9010-100 \mathrm{dbm}$	$18.0-26.4$ KMC $\quad-6010-85 \mathrm{dbm}$
$1980-4500 \mathrm{MC} \quad-80$ to - 90 db	26.4 - 44.0 KMC - $5510-85 \mathrm{dbm}$
	asured when signal and noise equal 2 X nolse
sing one tuning head which contain	The SPA- 4 features: - Three precisely calibrated amplitude scales $-40 \mathrm{db} \log , 20 \mathrm{db}$ linear, 10 db power. Two independent frequency dispersion ranges continuously adjustable 0.70 mc and $\mathbf{0 . 5} \mathrm{mc}$. Negligible internal frequency modulation permits narrow band analysis of FM problems. Pariable 1.F. bandwidth from I kc to 80 kc - Push-bution frequency sclector. - Synchroscope output with 40 db gain. - Accurate measurement of small frequency differences. A self-contained marker oscillator, modulated by a calibrated external generator, provides accurate differential marker pips as close as 10 kc .
triode and two Klystron oscillators, Model	
A-4 offers more cxclusive advantages for	
applications demanding extreme sensitivity.	
stability, versatility, accuracy.	
硣	
surpassed for visually analyzing FM. AM	
d pulsed signal systems; instabilities of	
cillators; noise spectra: detection of para-	
ches; studies of harmonic outpuls; radar sys as and other signal sources.	

Wrife, wire or phone today for detailed SPA-4 bullefin

PANORAMIC
Panoramic instruments ore Proved
Porformers
in laboratories

aADO PEODUCTS, INC.

524 South Fulton Avenue, Mount Vernon, N. Y. - Phone: OWens 9-4600 TWX: MT-V-NY-5229

Cobles: Ponoramic, Mount Vernon, N. Y. State CIRCLE 773 ON READER-SERVICE CARD

He was going 10 Texas and his guidance system went haywire!"
Gividance or communications system failures can cause problems! Guard against them with Reeves-Hoffman
 oscillator reliability. Get the whole story.

omsion of

DYNAMICS CORPORATION OF AMERICA FS/160
carlisle, pennstivania
CIRCLE 774 ON READER-SERVICE CARD

CIRCLE 775 ON READER-SERVICE CARD

Analog Computation

Albert S. Jackson, McGraw-Hill Book Co., Inc., 330 W. 42nd St., New York 36, N. Y., 652 pp, \$13.50.
This study of analog computers can be understood by those who do not have an electronics background. The book is written as a college text, but may be of value to the engineer who has specialized in other areas.

Topics covered include: basic concepts of analog computation, basic ana-log-computer elements, magnitude and time scaling, the solution of mathematical models, statistical problems, design concepts and operating characteristics of available analog-computer components, and analog-digital methods of computation.

Introduction to Modern Network

 SynthesisM. E. Van Valkenburg, John Wilcy Sons, Inc., 440 Fourth Ave., New Yor 16, N. Y., $498 p p, \$ 11.75$.

Basic methods of modern networ synthesis are presented, including appli cations in communications and auto matic control systems. Beginnin chapters cover Brune's positive real func tions and the procedures for synthesizin LC, RC, RL and RLC one terminal-pai networks. Two chapters on approxima tion and one on the relationship of partu of network functions are included. Th remainder of the book deals with meth ods for the synthesis of two terminal pair networks, including the Cauer lad der development, the Guillemin and

Try this simple test. Tie a piece of Gudelace around a pencil in a half hitch and pull one end. Gudelace's flat, nonskid surface grips the pencil-no need for an extra finger to hold Gudelace in place while the knot is tied!
Gudelace makes lacing easier and faster, with no cut insulation, or fingers-no slips or rejects-and that's real economy. Gudelace is the original flat lacing tape. It's engineered to stay flat, distributing stress evenly over a wide area. The unique nonskid surface eliminates the too-tight pull that causes strangulation and cold flow. Gudelace is made of sturdy nylon mesh, combined with special microcrystalline wax, for outstanding strength, toughness, and stability.
Write for a frec sample and test it yourself. See how Gudelace takes the slips-and the problems-out of lacing.
GUDEBROD BROS. SILK CO., INC.
Electronic Division
225 West 34th Street - Exocutive Offlees
12 South 12 th Stree

New York Streel

CIRCLE 776 ON READER-SERVICE CARD
ELECTRONIC DESIGN • November 23, 1960
1)arlington methods and the synthesis of retworks by the image-parameter nethod.

Self-Saturating Magnetic Amplifiers Lynn, Pula, Ringelman, and Timmel, McGraw-Hill Book Co., Inc., 330 W. 42nd St., New York 36, N. Y., 217 pp, $\$ 8$.
The purpose of this book is to show how to design complex magnetic-amplifier circuits. Among the topics discussed are: techniques for dealing with the transient behavior of self-saturating magnetic amplifiers, testing methods applicable to magnetic amplifier core material, and commonly encountered design problems. Graphs, charts and diagrams are used.

Nuclear Electronics, Vol. II
International Atomic Energy Agency, Karntner Ring II, Vienna I, Austria. International Publications, Inc., 801 Third Ave., New York 22, N. Y., 378 pp, $\$ 4$.
A reference for the specialist, this book is the second volume of the proceedings of the International Symposium on Nuclear Electronics organized by the

French Society of Radio-Electricians. Many of the articles are written in French. Some of the topics covered in English are: non-linear kinetics and stability studies on analog computers, a two-dimensional kicksorter with mag-netic-drum storage, and the use of transistors in nuclear instruments.

Traveling-Wave Engineering

Richard K. Moore, McGraw-Hill Book Co., Inc., 330 W. 42nd St., New York 36, N. Y., 360 pp, $\$ 11$.
Intended as a textbook, this book may also be used by the practicing engineer as a source of analogies between different kinds of waves. Most new ideas are presented in terms of transmission lines, but examples are given to show their application to other types of waves. Methods widely used for transmission lines are applied to electromagnetic waves, vibrating strings and membranes, acoustic waves, longitudinal and transverse waves in solids, the wave function of wave mechanics and the various types of diffusion. Only linear systems are discussed.

NEW
 MINIATURIZED DELAYLINES ARE ELECTRICALLY VARIABLE

Now you can achieve continuous delay variations electrically. Particularly suited to defense applications, these General Electric Delay Lines provide total delays up to 12 microseconds (depending on frequency) and a variability range up to 50%. With special delay lines for carrier or pulse type applications at frequencies to 30 megacycles, the electrical variation of delay provides a new method for solution of problems in:

Highly adaptable to transistorized circuitry . . . able to withstand extreme humidity, shock, vibration . . . tailored to customers' needs in radar, computers and communications.
For complete specifications write to: Defense Industries Programs Section 227-30.4

GENERAL (96) ELECTRIC

DEFENSEELECTRONICS DIVISION
heavy military electronics dept., syracuse, new york CIRCLE 777 ON READER-SERVICE CARD

- phose or frequeney modulation

```
```

- tronsmission lime control

```
- tronsmission lime control
- pulse control and shaping
- pulse control and shaping
- high frequency phase control
- high frequency phase control
- pulse position modulation
- pulse position modulation
- pulse position modulation
```

- pulse position modulation

```

\(\qquad\)

today's most advanced metal-fastening adhesive . .

\section*{CUTS FABRICATION COSTS MORE THAN 40 PER CENT!}

METLBOND 406 is a large-area, low-pressure dry adhesive material which completely eliminates screws, rivets, and spot-weld in the fabrication of electronic housings. With METLBOND 406, you can produce cabinets... racks .. consoles...chassis faster and more efficiently. Result: Greatly reduced labor and materials costs. FEATURES:
- METLBOND 406 is a one-component adhesive which
bonds similar and dissimilar metals.
Its extremely high adhesive strength virtually oliminates warping and panel torque.
It is easy to use-can be cut, placed in position,
cured with low pressure.
cured with low pressure.
- It produces clean, flush, completely sealed
external joints-truly unitized construction. Write for free literature


\section*{N}

NARMCO MATERIALS
Division of Narmeo Industries. Inc.
Subsidiary of Telecomputing Corporation
LIberty 8-1144 . MAdison 6-7923


OTMEN MEMAERS OF TWE TELECOMRUTIMG PAMILY AREV


 CIRCLE 780 ON READER-SERVICE CARD

RUSSIAN TRANSLATIONS
J. George Adashko

\section*{Surface-Wave Antenna Radiates From Waveguide Bends}

THIS IS a preliminary report on a type of sur-face-wave antenna, in which radiation is produced by transverse bends in waveguides carrying surface waves. It differs from currently used antennas, which produce radiation either at the edge of a slow-wave structure, by irregularities along the slow-wave structure, or by bends in the longitudinal direction of the waveguide. Unlike the surface-wave antenna of the third type, the new type of antenna can have a planar guiding surface.
Examples of the transverse cross sections of several of the simplest surface-waveguides using dielectric strips of various sections of indentations in the metal, are shown in Fig. 1. Analogous waveguides, made in the form of longi-tudinally-periodic structures (ribs, etc.) are also possible.

Let us consider several examples of antennas, made up of such waveguides, bent in a transverse direction.
Fig. 2 shows very simple antennas in the form of straight waveguides, carrying traveling surface waves in one direction, bent transversely in one or two regions. These regions radiate, and there are reasons to expect relatively broad directivity patterns. The pattern's maxima lie within the angles bounded by the direction of the traveling waves in two segments of the waveguides adjacent to the bend. To reduce reflection in the bend area, it is advisable to use a relatively small retardation of the phase velocity, and to use bend radii that are not too small.
Fig. 3 shows antenna modifications in which attempts are made to obtain uniform radiation in the antenna plane. The forms resemble a poly-


Fig. 1. Surface-waveguides can be made using dielectric strips of various cross-sections indented in the metal.

0

b

c

Fig. 3. These waveguide shapes may be used to ob. tain uniform radiation in the antenna plane.


b

Fig. 2. Straight waveguides, bent in one or two places, radiate in the sections near the bends.


Fig. 4. Slightly curved shapes produce a co-secant-shaped directivity pattern.



Fig. 5. The major part of the radiation is confined here to the points labeled.


Fig. 6. Antenna versions shown in Figs. 3 and 4 are combined to form an antenna shown here in cross-section.

gon, a circle, and a spiral. In the case of the spiral, an additional degree of uniformity of radiation is expected. This is because in each succeeding loop the transverse curvature is increased, while the surface-wave energy carried by the waveguide is reduced by the radiation in the preceding loop.
Interesting variants are shown, Fig. 4, where it is desired to have the directivity pattern approach a co-secant shape. Radiation from each succeeding section is reduced here by the decreased curvature.
Two other antenna versions, Fig. 5, confine the major part of the radiation to the regions of large (and increasing) curvature (points \(a, b, c\), \(d, e)\). In the remaining regions, the radiation is weaker because of the much smaller bending of the waveguide.
It is possible, in principle, to launch surface waves from combinations of the different classes of antennas illustrated above. A possible antenna structure, which combines the third and fourth versions listed, is shown in section in Fig. 6. The guide surface is in the form of a cylinder, gradually transformed into a flat cap. The waveguide carrying the surface wave is a cylindrical helix which becomes a flat converging spiral. Some parts of the helix radiate because of the longitudinal curvature of the guiding surface, while other parts radiate because of the transverse waveguide curvature.
(Quantitative values of parameters will be treated in a later, more extensive paper.

Translated from "New Type of Surface-Wave Aı tenna" by M. S. Neyman, News of the Col-les-Radio Engineering, No. 2, 1960, Mar-Apr, if 281-282.

\section*{ALGO}

FOR THE BENDIX G-15 COMPUTER


\section*{Speeds and Simplifies Problem Solving}

ALGO extends the problem-solving horizon of every engineer, focusing the speed and precision of the Bendix G-15 computer on any algebraically stated problem. A true mathematical equation solver, ALGO permits any engineer or scientist to program the computer in universal mathematical language. No previous knowledge of computers or programming is needed. Input/output, computation and data handling are all automatically controlled by the G-15 computer. Compare the number of steps in the ALGO program illustrated below with the number required to solve the same problem on a slide rule, desk calculator or any other computing system. You will see the time and cost-saving significance of this new Bendix G-15 automatic programming aid. Specifically designed to take advantage of the computing power and flexibility of the proven G-15, ALGO is the newest addition to an extensive library of Bendix automatic programming systems. See how the low-cost Bendix G-15 and ALGO combine to broaden application boundaries. Learn how this powerful team can save you valuable time... and greatly simplify problem solving.

> - AN ALGEBRAIC COMPILER BASED ON INTERNATIONAL ALGOL.


EIECTRONIC DESIGN • November 23, 1960

\title{
NOT A METER.. NOT A MULTIMETER... \\ BUT...a new type of INCREMENTAL MULTIMETER!
}

\section*{ICHISAT \\ - TAJB}
- An entirely new type of test equipment, the Tensor \(=5880\) Incremental Multimeter enables increments of any of the unit's ranges to be expanded about any point.
These ranges, including attachments, consist of over 50 different values of current, voltage, resistance, audio power, temperature and transistor characteristics with typical accuracies of \(1.5 \%\) D.C. or \(2 \%\) A.C. Increments as small as \(.01 \%\) can be measured and recorded! Application for the Tensor Incremental Multimeter are wherever a strip chart recorder is used to display variations in a parameter that may be represented as a voltage, current or resistance capable of being measured on a Simpson " \(270^{\prime \prime}\) multimeter. Typical examples are the study of line voltage variations or power supply regulation. Servo recorders of various sensitivities from I MV to 250 MV can be used. When used with a 5MV sensitivity external servo recorder expansions to \(\pm 1 \%\) of the full scale of the range are available. The attenuator enables the expansion to be adjusted to any value from \(1 \%\) to \(100 \%\). A D.C. millivoltmeter may also be used if no permanent record is needed.
The Tensor Incremental Multimeter consists of a Simpson "270" multimeter, suppressor power supply, and attenuator. Package dimensions are \(18^{\prime \prime}\) long, \(4 \frac{3}{\prime \prime}\) high and \(7 \frac{1}{2}\) " deep. It weighs 7 lbs.

PRICE \(\$ 250\)
DELIVERY FROM STOCK

> ICRIISCDI electrac devilopment company, inc.
> 1873 Eastern Parkway - Brooklyn 33, New York

GERMAN ABSTRACTS
E. Brenner

\section*{Impedance of Carbon Film Resistors}

EOR CARBON film resistors, the impedance variation with frequency depends not only on the intrinsic resistor but also on the mounting conditions. For resistance values above about 300 ohms, the carbon layer is deposited in helical form on a ceramic body so that an equivalent circuit, Fig. 1, includes the dc resistance \(\boldsymbol{R}_{0}\), the helix inductance \(L_{s}\), the end-to-end capacitance \(C_{k}\), the series \(R_{q} C_{q}\) branch representing axial resistances and capacitance between helix elements, the lead inductance \(L_{z}\) and the distributed capacitance to ground \(C_{E}\).
To measure a meaningful driving point impedance, an objective method for simulating mounting conditions must be used. One such method consists of placing the resistor in a cylindrical metal container whose dimensions bear a fixed relationship to the resistor length \(a\), as shown in Fig. 2. As voltage, \(V_{1}\), is applied to the resistor under test, \(x\), the resistor is above a metal plate \(M\) and in series with a standard resistor \(R_{N}\). The voltage across \(R_{s}\) is measured. If the impedance of the test sample, \(Z_{x}\), is much larger than \(\boldsymbol{R}_{N}\) then
\[
Z_{x}=R_{s} \frac{V_{1}}{V_{2}}
\]

For low-ohm resistors (below 100 ohms), the impedance is inductive, and the resistor is represented by the series combination of \(R_{o}\) and \(L\). For high-ohm resistors (above 1,000 ohms), a parallel combination of \(R_{o}\) and a capacitance \(C\) represents the element adequately. In the intermediate range, a series branch \(R_{c} L\) in parallel with \(C\) is used.

Once \(L\) (or \(C\) ) has been determined from the logarithmic impedance-frequency graph, a cut(continued on \(p\) 210)


For the first time, accuracy of \(\pm 1\) percent is now available in multi-range Panel-Mounting Electronic Voltmeters (PMEV's)

Metronix offers two such instruments: Model 300-1 for DC measurements and Model 311-1 for AC measurements.


Model 311-1
These instruments, like all Metronix PMEV's, also offer these familiar advantages:
- Continuous monitoring of critical parameters
- Minimum panel space - no larger than the meter itself
- Maximum reliability
- Easy adaptability to special needs

Call, wire or write for data sheets. We welcome inquiries on special volrage monisoring problems.

\section*{\#\# \\ METRONIX, Inc.}

Chesterland, Ohio
Telephone: HAmilton 3-4440 CIRCLE 783 ON READER-SERVICE CARD ELECTRONIC DESIGN • November 23, 1960

circie 784 on reader-service caro
E ECTRONIC DESIGN • November 23, 1960
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(\square\) & \(\mathbf{D} \mathbf{R} \mathbf{A}\) & \(\mathbf{F}\) & \(\mathbf{T}\) & \(\mathbf{I}\) & \(\mathbf{N} \mathbf{G}\) \\
\hline & \(\mathbf{T}\) & \(\mathbf{R}\) & \(\mathbf{E}\) & \(\mathbf{N}\) & \(\mathbf{D} \mathbf{S}\) \\
\hline & \\
\hline
\end{tabular}


In a typical application of the POST Diazo Materials Selector Chart, a draftsman, supervisor and reproduction specialist solve a special print-making problem in short order.

\section*{Solve unusual reproduction problems with new Diazo Selector Chart}

Keeping up with rapid developments in graphic reproduction and communication techniques is a difficult job these days, even for the experts.
From the engineer's and draftsman's point of view, it's largely a matter of sorting out the specific information which helps him do a better job.

The new Post Diazo Materials Selector Chart does just that-provides a condensed, tabular reference piece that helps you anticipate the ideal diazotype prints for various needs before they occur. This convenient chart gives brief information on sensitized papers, intermediates and specialties in terse "what, when, why and where" style.
If you're concerned, for instance, with print distribution to different departments, units or groups, then prints on a variety of colored stocks might be the answer.

sensitized papers a cloths - tracing a drawing mediums - drawing instruments a slide rules engine ering equipment \& drafting supplies - fieto equipment \& drafting furniture CIRCLE 785 ON READER-SERVICE CARD

Increasing print production from diazo equipment with a lower-power light source . . . making legible prints from worn old tracings . . . even making copies from an opaque print . . . all can be handled by use of new Post 206M-14, a fast, extrasensitive whiteprint paper.

Suppose a design conference calls for a poster, actual size, made from a large engineering drawing, rigid enough for display, tough enough for extreme handling and on-thespot sketches? Post diazo-sensitized cardstock in 32 or 50 lb . weight can turn the trick on standard reproduction equipment, ammonia process or semi-moist. For many more helpful solutions to similar situations, ask for your personal file-size copy, of the Post Selector Chart, available from your Post dealer or Frederick Post Company, 3644 North Avondale Avenue, Chicago 18, Illinois.


\section*{-000000000000000000 ONIY DURING NoVEmBER}


Now, for the first time, the high-power circulator millions have been waiting for ... at a price you can afford. Nowhere else will you find quality like this at a price so low, low, low! Ask the man who owns five!

antennas oforrite dovices • waveguide compononts


CIRCLE 786 ON READER-SERVICE CARD

\section*{GERMAN ABSTRACTS}
off frequency can be used to define the useful range of resistor application. Using the ratio \(r=Z_{x} / \boldsymbol{R}_{0}\), this cut-off frequency is related to \(r\) by
\(f_{0}=R_{0}\left(r^{2}-1\right)^{1 / 2} / 2 \pi L\) for low-ohm resistors and by
\(f_{c}=\left(1-r^{2}\right)^{1 / 2} /\left(2 \pi R_{o} C r\right)\) for high-ohm resistors.
For intermediate values, a typical impedance curve is shown in Fig. 3. Using the technique of wideband amplifiers, it is possible to extend the bandwidth considerabiy. Defining \(d^{2}=R_{0}{ }^{2} C / L\), a value \(d^{2}=1.66\) results in the widest band.
For example, a helical 500 -ohm resistor has \(C=1 \mathrm{pf}\) and \(L=0.025 \mathrm{mh}\) and a cut-off frequency of 170 mc with \(r=0.9\). If the helix is changed so that \(L=0.15 \mu \mathrm{~h}\), the band extends to 460 mc (Fig. 3).
Skin effect, for even the thickest carbon deposits, has no influence below 10 kmc .
Abstracted from an article by A. Debel and L. Hechler, Frequenz, Vol. 14, No. 6, June, 1960, pp 193-197.

\section*{Cascading Identical Two-Port Networks}

WHEN a chain of identical two-ports is cascaded, Fig. 1, it is frequently desirable to express the transfer properties of the cascade in terms of the properties of the individual twoports. Each two-port is most conveniently characterized by its cascade matrix, \(A, B, C, D\) where
\[
\begin{aligned}
& E_{n-1}=A E_{n}+B I_{n} \\
& I_{n-1}=C E_{n}+D I_{n}
\end{aligned}
\]

The coefficients \(A, B, C, D\) are complex numbers when \(E_{k}\) and \(I_{k}\) are phasors and functions of the complex (or imaginary) frequency variable \(s\)


Fig. 1. A cascade of \(n\) identical two-ports.

\section*{BROADBAND POWER DENSITY METER \\ Model NF-15]}

For fast, accurate determination of \(R F\) power density and location of areas presenting RF hazards to personnel


Description: A broadband device providing direct reading of RF power densities from 1 \(\mathrm{mw} / \mathrm{cm}^{2}\) to \(1000 \mathrm{mw} / \mathrm{cm}^{2}\) (mid-scale read ings), over the continuous frequency range from 200 to 10,000 MC.

\section*{Features:} Direct reading of power density insures immediate awareness of hazardous areas. Broad frequency range and high accuracy permit univers RF fields from VHF to X-Band. of high level RF fields from VHF to X-Band. Accurate built-in step attenuator provides a dynamic range of 10,000 to 1 . dynamic range of 10,000 to 1
Three constant-gain calibrated probes per.
mit direct reading in \(\mathrm{mw} / \mathrm{cm}^{2}\) over the mit direct reading in \(\mathrm{mw} / \mathrm{cm}^{2}\) over the
continuous frequency range from 200 to 10,000 MCPhysical separation of probes from main unit vastly increases flexibility of applications.Battery-powered, light-weight design per-
mits complete portability. mits complete portability.Convenient carrying case simplifies transportation of instrument.Efficient shielding prevents stray RF pickup.
Conservative design insures resistance to over-load.Main unit may be used independently as an accurate, rugged RF power meter over a wide power range

\section*{Send for our Catalog No. 604}

EMPIRE DEVICES PRODUCTS CORPORATION amsterdam, m. Y.

Victor 2-8400 manufacturens of field intensity meters distortion amalyzers - Impulse generatons coaxial attenuators - crystal mixers CIRCLE 787 ON READER-SERVICE CARD ELECTRONIC DESIGN • November 23, 1960

\section*{superb new NULL DETECTOR}


The new Keithley 151, incorporating a unique photo-conductive modulator of Keithley design, is useful wherever a suspension galvanometer can be used, and where a galvanometer is not sufficiently sensitive, fast or rugged. Carrents as low as \(2 \times 10^{-13}\) ampere can be detected.

Ranges: 11 linear ranges in \(1 x\) and 3x steps, from \(100 \mu \mathrm{~V}\) to 10 vf f.s.; 5 non-linear ranges, 0.001 to 10 v f.s., each covering three decades.

Accuracy: Linear ranges, \(\pm 3 \%\) of f.s.; non-linear, \(\pm 10 \%\) of input.

Input Resistance: 10 megohms on all ranges. Max. power sensitivity over \(10^{-17}\) watt.
Response Speed: On \(100 \mu \mathrm{v}\) range, 2.5 sec .; \(1-\mathrm{sec}\). on all others.

Noise: Below \(2 \%\) f.s. all ranges.
Zero Drift: Less than \(10 \mu \mathrm{v}\) per day.
Output: 10 kolts at 1 ma f.s.
Price: 151 Cabinet Model . \(\$ 395.00\) 151R Rack Model . \(\$ 385.00\)

For full details write:
-LEVELAND B, OHIO GIRCLE 78E ON READER-SERVICE CARD
(or \(j \omega\) ) when \(E_{k}\) and \(I_{k}\) are Laplace (or Fourier) transforms.
For the entire two-port chain one defines the cascade functions \(A_{n}, B_{n}, C_{n}, D_{n}\) where
\[
\begin{aligned}
& E_{o}=A_{n} E_{n}+B_{n} I_{n}{ }_{n} \\
& I_{o}=C_{n} E_{n}+D_{n} I_{n}
\end{aligned}
\]

While the coefficients \(A_{n}, B_{n}, C_{n}, D_{n}\) can be found by repeated matrix multiplication (raising the cascade matrix to the power \(n\) ), this procedure is tedious. It can be avoided by using the formulas deduced from appropriate difference equations. Various cases, depending on the value [AD-BC], that the determinant of the cascade matrix takes on, can be distinguished.

Case \(1[A D-B C]=1\). For this case one defines
\[
\begin{gathered}
\cosh \tau=(A+D) / 2 \neq \pm 1 \\
\mathrm{~S}_{n}=\frac{\sinh n \tau}{\sinh \tau}
\end{gathered}
\]
then
\[
\begin{aligned}
& A_{n}=\frac{1}{2}(A-D) S_{n}+\cosh n \tau \\
& B_{n}=B S_{n} ; C_{n}=C S_{n} \\
& D_{n}=\frac{1}{2}(D-A) S_{n}+\cosh n \tau
\end{aligned}
\]

The rational algebraic character of the coefficients can be made explicit by the use of Tschebyscheff polynomials. Letting
\[
x=(A+D) / 2
\]
since
\[
\begin{aligned}
& T_{n}(x)=\cos (n \operatorname{arc} \cos x) \\
& S_{n}=\frac{T_{n+1}(x)-T_{n-1}(x)}{2 x^{2}-1}
\end{aligned}
\]
and
\(\cosh n \pi=T_{n}(x)\)
If the two-parts are symmetrical, the coefficient \(A_{n}=D_{n}=\cosh n \pi\)
Case 2: \([A D-B C]=d\) where \(d\) is not 0 and not necessarily 1 . In this case define
\[
\cos h \tau^{\prime}=\frac{1}{2}(A+D) d^{-\frac{y}{4}}, S_{n}^{\prime}=d^{\frac{n-1}{2}} \frac{\sin h n \tau^{\prime}}{\sin h \tau^{\prime}}
\]
then
\(A_{n}=\frac{1}{2}(A-D) S_{n}^{\prime}+d^{n / 2} \cosh n \tau^{\prime}\)
\(B_{n}=S_{n}^{\prime} B ; \quad C_{n}=S^{\prime}{ }_{n} C\)
\(D_{n}=\frac{1}{2}(D-A) S_{n}^{\prime}+d^{n / 2} \cosh n \tau^{\prime}\)
Case \(3[A D-B C]=d=0\). For this condition
\[
A_{n}=D_{n}=(A+D)^{n}, B_{n}=C_{n}=0
\]

Abstracted from an article by G. Doetsch, Archiv red Elektrischen Ubertragung, Vol. 14, No. 8, August 1960, pp 335-340.


IMTERMATIONAL ELECTRONIC RESEARCH CORPORATION 135 West Magnolia Boulevard, Burbank, California - VIctoria 9.2481 CIRCLE 789 ON READER-SERVICE CARD

EIECTRONIC DESIGN - November 23, 1960

\section*{MINIATURE} "C"BAND TRIODE


\section*{JOHN \\ GOMBOS \\ CO., INC. \\ WEBRO ROAD, CLIFTON, N. J.}

We are a recognized, quality manufacturer of a complete line of Triode Oscillators, Amplifiers and Multipliers from "L"" Band through "C" Band. We also produce a complete line of through "Ku" Band.


CIRCLE 790 ON READER-SERVICE CARD

\section*{REPORT BRIEFS}

\section*{Telemetry System Study}

Discussed in this report are the results of a program designed: (1) to forecast the individual flight requirements for test-range telemetry in the next decade, and, the effect of heavy traffic on multiple-range operation; (2) to recommend suitable operating frequencies for further telemetry systems; (3) to examine various modulation or coding methods and recommend an optimum technique for future systems; (4) to investigate the performance of present systems and recommend improvements.

Experimental telemetry-system test setups for a number of modulation systems are presented. A summary of telemetry interference measurements made in the \(225-260 \mathrm{mc}, 1435-1535 \mathrm{mc}\) and the \(2200-2300 \mathrm{mc}\) frequency bands is given, and the results of a transmitter frequency stability study to determine feasibility of .001 percent operational stability in near-future applications for the \(2200-2300 \mathrm{mc}\) frequency band is reported. Telemetry System Study, Volume I (of I), C. Harrison Smith, J. W. Capps and others, Aeronutronic, Newport Beach, Calif., Dec. 1958, 112 \(p p\), Microfilm \$6.00, Photocopy \$18.30. Order PB 147629 from Library of Congress, Washing. ton 25, D.C.

\section*{Transistor-Diode Logic}

Design features of direct-coupled transistordiode logic are discussed. The discussion includes comments on the effect of diode reverse transients on circuit performance, the dependance of the number of gate drives on transistor and diode properties, and isolation obtained between input- and output-gate terminals for the circuit presented. The unique feature of the circuit is the use of the low collector-to-emitter transistor as a replacement for a diode clamp. Transistor-Diode Logic, R. A. Carlsen, Michigan University Research Institute, Ann Arbor, Mich., Oct. 1958, 22 pp, Microfilm \$2.70, Photocopy \$4.80. Order PB 146942 from Library of Congress, Washington 25, D.C.

\section*{Thermionic Energy Converters}

High-vacuum and gas-filled thermionic energy converters are reviewed. Emphasis is placed on the significant phenomena underlying the operation of these two classes of converters. A treatment of fundamental thermionic emitter characteristics is given. The complex variety of simultaneous processes occurring in the plasma of gas-filled converters is illustrated together with principal problem areas existing in the field

\section*{CRYSAL BANDPASS FIIERS 1MC тен 21 MC}


The Keystone KCF Series of crystal filters is available in 3 standard case styles covering the frequency range from 1 MC through 21 MC. Higher frequencies and special case sizes are also available to conform to individual custom requirements. Compact, ruggedized packaging meets all applicable Mil specs. The KCF series has particular applications in Doppler Radar, Receiver IF, Comb Filter sets or wherever filters of high stability factors and narrow bandwidths are required.

Write for complete technical data.


\section*{the KEYSTONE ELECTRONICS CO.}

65 SEVENTH AVE., NEWARK 4, N. J.
Subminiature component ovens crystal ovens - crystal filters and discriminators e quartz erystals100 KC thru 150 megacycles or higher upon request.
a measure of perfection... IDEAL PRECISION
Panel Meters
the complete line for every application


Here's the demand line that's setting sales records across the nation highest standards. engeduced to the highest standards .... assembled in controliod atmospheric and climatic every step of production to ensure highest quality and dependability.
- Accurate to within \(2 \%\) of full scale
- All sizes and types available
- Seales to customers specifications

For complete information, write to

\section*{IDEAL}

IDEAL PRECISION METER CO., INC.
214 Franklin Street, Brooklyn 22, N. Y.
Sold to Eloctronic Parts Distributors
exelusivaly through
WALDOM
WALDOM ELECTRONICS, INC. 4625 W. 53rd Street, Chicago 32, il CICLE 792 ON READER-SERVICE CARD
of both converter types. The present state of the art in this field is discussed in connection with the results obtained with small-sized device samples developed up to date. Future applications of thermionic converters are projected, and the report refers to the current need for continued applied research efforts aimed at advancing the state of the art from the presently available thermal conversion efficiency of about 10 per cent up to the theoretically feasible level of approximately 30 per cent. Thermionic Energy Converter, Walter L. Knecht, Electronic Tochnical Laboratory, Wright Air Development Div., Wright-Patterson AFB, Ohio, March 1960, 54 pp, \$1.50. Order PB 161713 from OTS, Washington \(25, D . C\).

\section*{Dynamic-Pressure Transducers}

A survey was made of commercially available dynamic-pressure transducers. The more important characteristics of these transducers taken from the manufacturers' literature are grouped according to principle of operation. For each group listed, the names and addresses of representative manufacturers of the transducers are included. Users of dynamic-pressure transducers will find the information useful for selecting one which will best serve for a particular measurement. A Guide To Selection And Use Of Dynamic Pressure Transducers, Arthur Hausner, Diamond Ordnance Fuze Laboratories, Washington, D. C., Sept. 1959, 17 pp, Microfilm \$2.40, Photocopy \$3.30. Order PB 146137 from Library of Congress, Washington 25, D.C.

\section*{Slow-Wave Measurements}

Recent developments in traveling-wave solidstate masers point up the utility of slow-wave circuits in comparison with cavities for magnetic resonance measurements. Among other advantages, slow-wave circuits are ideally suited for broadband or multifrequency measurements without loss of sensitivity. They readily produce circularly-polarized fields over large volumes. Measurements of \(\chi^{\prime}\) and \(\chi^{\prime \prime}\), which involve measurements of resonant frequency and \(Q\) in a cavity, reduce to generally simpler measurements of attenuation and phase shift. This paper also discusses slow wave-circuit characteristics which are especially relevant to magnetic resonance measurements. Traveling-Wave Techniques For Microwave Resonance Measurements, A. E. Siegman, Stanford Electronics Laboratories, Stanford University, Calif., Oct. 12, 1959, 11 pp, Microfilm \$2.40, Photocopy \$3.30. Order PB 146227 from Library of Congress, Washington 25, D.C.

\section*{CHANGE db VALUES OF ATTENUATION IN SECONDS!}


STODDART'S new turret attenuators* offer quick change of db combinations compatible
to your system requirements.
Simply remove three set screws and the pad retainer ring moves forward for easy replacement, removal or rearrangement of pads.

\section*{NET BENEFITS TO USER.}
- Easy pad replacement eliminates downtime otherwise required for unit or equipment dismantling.
- No increase in price!
-Patent applied for
16-page UHF Attenuator Catalog No. AT-3 gives complete details and specifications of new Stoddart attenuators, terminations and terminations and turret-type step attenuators.


\section*{STODDART}

AIRCRAFT RADIO CO.. INC.
6644 Santa Monica Blvo. Hollywood 38, Calif. HO 4.9292 serving 33 counfries in radio inferference confrol


\section*{近 \\ STANDARDS AND SPECS \\ Sherman S. Hubelbank}

\section*{RF Coils: Test Procedures}

Described In MIL-C-15305
Test procedures for measuring inductance, \(Q\), and self-resonant frequency are described in detail in this new issue of MIL-C-15305. Standard test fixtures and test frequencies are also specified. The color coding for rf choke coils has been changed. The standard quality assurance provisions have been incorporated. The high-frequency vibration test has been added on a "when specified" basis. MIL-C-15305B, Radio-Frequency Coils and Intermediate-Frequency and RadioFrequency Transformers, 15 April 1960

\section*{New Test Methods}

For Electronic Components
Revision B of MIL-STD-202B makes the following changes and additions:
- Method 105B. Adds test condition E for an altitude pressure of \(150,000 \mathrm{ft}\).
- Method 107A. Adds test conditions D and E for temperatures of -65 to +350 C and -65 to +500 C .
- Method 108. Standardizes temperatures, tolerances, and time durations specified in individual life tests.
- Method 109. Adds test method for determining whether a part will ignite in an explosive atmosphere.
- Method 110. Adds test method for determining electrical and mechanical effects from dust-laden atmospheres.
- Method 204A for high-frequency vibration. Changes \(1-1 / 2 \mathrm{hr}\) to \(1-1 / 3 \mathrm{hr}\), sweep time and duration, in each of three mutually perpendicular directions. The title of MIL-STD-202B is Test Methods for Electronic and Electrical Component Parts. When available, it will be distributed by Armed Services Electro-Standards Agency, Fort Monmouth, N.J.

\section*{Revision of Resistor Spec Changes}

Resistance Tolerance From \(\pm 10 \%\) to \(\pm 5 \%\)
This spec for adjustable wirewound power resistors changes the resistance tolerance from \(\pm 10 \%\) to \(\pm 5 \%\). In addition, the spec:

\section*{Mramat \\ H \({ }^{4}{ }^{5}\)}

Write today for your free
copy of the Douglas Cat copy of the Douglas Cat.
alog featuring more than 1000 standard
nents
In stock.

\section*{and now:}

\section*{DOUEAAS RESEARHI \\ }
provides
Research - Development - Engineerine which includes
- R.F. assemblies
- Waveguide components
- Antennas
- Coaxial components
and in addition, manufacturing of
Radar r.f. front ends and antennas
Microwave communications r.f
front ends and antennas. Write fo additional information

\section*{(1)Ooualas}

DOUGLAS MICROWAVE CO. INC
225 East Third St., Mt. Vernon, N.
CIRCLE 796 ON READER-SERVICE CARD

The Branson
Type AR 4PDT re-
lay. 2 amp. contacts.
Withstands 2000 cps at
20G. \(-65^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\).
Hermetically sealed and dry nitrogen filled for high altitudes. Wt. \(15-20 \mathrm{gms}\). Dim. \(.384 \times .784 \times .882\). Hook, plug-in or wire leads available. Std. 0.1 in . grid spacing. Suitable for dry circuit conditions. Meets specs: MIL-R-25018,
MIL-R-5757C, MIL-E-5272C.
Delivery from stock, special orders in 4 weeks.
Write for technical bulletin


41 South Jefferson Road Whippany, New Jersey TU 7-1100
CiRCLE 797 ON READER-SERVICE CARD
- Modifies dimensions to correspond to fixed-resistor styles in MIL-R-26C such as RW29, RW32, RW33, RW35, RW36, RW37, RW38, and RW47. - Adds moisture-resistance test.
- Deletes separate low-frequency vibration test that was part of the moisture-resistance test. - Adopts the 24-number decade for standard resistance values.
- Revises groups B and C inspection to agree with MIL-R-26C.
- Revises Quality Assurance Provisions, incorporating standard paragraphs on responsibility for inspection.

Designated MIL-R-19365C, the spec is titled Resistors, Adjustable, Wirewound, Power. When available, copies will be distributed by Armed Services Electro-Standards Agency, Fort Monmouth, N.J.

\section*{Standard for Industrial Control \\ Apparatus Is Revised}

A revision of C19.1-1943, the new standard reflects changes that have been made since 1943 in industrial-control apparatus. The standard covers electric, electronic, magnetic, and mechanical devices which govern the power delivered to industrial devices which operate on 750 v dc or less or 500 v ac or less. Some of the controls included are photoelectric relays, pushbutton switches, electromagnetic brakes, solenoids, and magnets. The standard sets down performance requirements and test methods. Sponsored by the American Institute of Electrical Engineers and the National Electrical Manufacturers Association, the standard is called American Standard for Industrial Control Apparatus, C19.1-1959. It is available from the American Standards Association, 10 E. 40th St., New York 16, N.Y. at \(\$ 2.50\) per copy.

\section*{MIL-C-11693A Is Revised,}

Adds 15 New Capacitors
A total of 15 new capacitor types, including three 150-C units, have been added in this revised spec, MIL-C-11693B. Dielectric materials such as paper-plastic, 'metallized-paper, and metallized-plastic have also been added to the spec. The Quality Assurance Provisions now assign the responsibility for inspection to the supplier; the inspections include additional requirements and test methods. The title of the spec is Capacitors, Feed Through, Radio-Interference Reduction, AD and DC (Hermetically Sealed in Metallic Cases), MIL-C-11693B. When available, copies will be distributed by Armed Services Electro-Standards Agency, Fort Monmouth, N.J.

\section*{NE TRANSPAC \({ }^{\circ}\) Miniaturized SOLID STATE POWER PACKS}

New Short-Circuit and Transient-Proof Circuitry....

\section*{FEATURES:}

Closoly Regulated
- Low Ripplo Contont

Advanced Thermal Design
Shon-Circuit Proof. automatic recovery Improved Circuirry and Transistor Types
Thermal Transistor Stud Tomperature Monitor and Automatic Cut-Off
No Incrocase In Size or Woight
No Increase In Price

ERA's transistorized Trunspurs feature advanced circuit designs and improved technical specifications. New features include the incorporation of a special current limiter and protective circuitry. The current flow is monitored and in the event the load current exceeds a designated value, the current limiter reverses the control biases and prevents additional current from flowing. Also included in these units is a thermostatic device which registers transistor stud temperatures. In the event these temperatures become excessive, the thermostatic unit opens the circuit and thus prevents thermal run-away or damage to the unit or external circuit.
Wired into circuits like other components, Trunspacs supply a rugged, reliable source of DC power for all types of miniature or standard size electronic devices.
(al) Reg. U.S. Pat. Off.

\section*{STANDARD MODELS}

Input 105-125 VAC, 60 or 400 cps . Inpill ragulation borfor than \(\pm 0.1 \%\). Output regulation better than \(\pm 0.1 \%\). Ripple less thon \(0.05 \%\). All semi-conductor designs.
CASE SIZES: ( \(W \times D \times H\) inch.)
D. \(25 / 6 \times 31 / 16 \times 41 / 2\)
- Pricas fos Codor Grovo. Subject to change withour notice
Modals listed are stock units. Special dosigns also available to customers specifico. tions. Write for literature and quotations. FIXED VOLTAGE TYPES

\section*{ELECTRONIC RESEARCH ASSOCIATES, INC}

67 Factory PI. Cedar Grove, \(N\) J. © CEnter \(9-3000\) - TWX NJIl44 SUBSIDIARIES CIRCLE 798 ON READER-SERVICE CARD


\section*{FEATURES}
- Rated residual SWR - under 1.010; rated error in detected signal under 1.005 .
- Several models covering various bands from 50 to 4000 mc .
- Engraved scales and verniers permit one to read the probe position to 0.01 centimeters.
- Opfional accessory: a rack and pinion carriage drive than can be engaged or disengaged at will.
- Precision tapered reducers are available for use in making accurate measurements in a wide range of rigid and flexible coaxial transmission lines.
Write for complete information on AMCl Slotted Lines.

CIRCLE 811 ON READER-SERVICE CARD


\section*{STANDARDS AND SPECS}

\section*{Eight New Filters Replace}

Those Listed in MIL-F-15733C
MIL-15733D replaces all six types of filters listed in MIL-F-15733C with eight new types. Two of the eight are tubular, having current ranges of 1 to 30 amp at 100 v dc and 1 to 50 amp at 400 v dc or 125 v ac; the other six are bath-tub types, having ranges of 1 to 50 amp at 100 v dc, 400 v de or 125 v ac, and 600 v dc or 250 v ac. The type designation now includes symbols for current rating, insertion-loss characteristic, terminal identification, operating-temperature range, and vibration grade. Also included are seven insertion-loss characteristics, varying from 40 to 70 db at 1.5 mc and 50 to 80 db at 1,000 mc . The spec is titled MIL-F-15733D, Filters, Radio Interference. When available, it will be furnished by Armed Services Electro-Standards Agency, Fort Monmouth, N.J.

\section*{First Amendment To Capacitor Spec}

Substitutes \(\mathbf{2 0 - V}\) Rating For \(\mathbf{1 8 - V}\)
The first amendment to MIL-C-3965B for fixed-tantalum capacitors substitutes a \(20-\mathrm{v}\) rating for the \(18-v\) rating. In addition, the following requirements in test specifications have been added.
- Examination of units visually after life test.
- Manufacturers' responsibility for inspection requirements.
- In group A, inspection AQL, allowance for only \(0.65 \%\) defectives for major classifications and 1.5\% for minor.
- In group C inspection, barometric-pressure testing to be conducted after life testing.
In the associated detail specifications, the following changes in types of capacitors have been made.
- 1C. Style CL14 with grounding tab and style CL16 with threaded neck and grounding tab replace style CL15.
- 4B. Styles CL64 and CL65, skirtless types, have been added. A high-capacitance series is also included.
- 9A through 12A. Polar and non-polar, plainand etched-foil types, in bath-tub construction for 125 C use have been included. Brackets are required for bath-tub units.
- 15 through 18. Polar and non-polar, plain- and etched-foil types, in tubular construction for 125 C use have been added.
- 19 and 20. Tubular units for 175 C use and with 85-C ratings of 30 to 90 v have been added.
The full title of the spec is MIL-C-3965B, Capacitors, Fixed Electrolytic (Tantalum). When
C.E.C. has
for years
been
engaged
in the
design and
production
of quality
components
and
systems for both military and
industry. A member of our
engineering group will be happy to
meet with you on any microwave
problems you now face.

\section*{MICROWAVE \\ C O M P O N E NTS} rotary vane FIXED aTEENUATORS
C.E.C. offers pads that cover an entire waveguide band. Thesactertistic over their ontire waveguide band. ATTENUATION: 3 db, 10 db or 20 db are
offered is Standard. Other attenuation values can be prosot to your specifications.
WaveGuIDE AND
COAXIAL LINE
BANDPASS
FILTERS
C.E.C. offers
a large selection
of standard waveguide of stas lom passuide and coaxial bandpass, low pass and
high pass filters. Frequencies range from 100 mc to \(60,000 \mathrm{mc}\). Higher trequencies on special order. Custom
designs can be made to your specidesigns
fications.
DUMMY LOADS
high-power waveguight.
high-power waveguide
and coaxial durrmy
loads. Complete line available covering
power meters
Temperature Stabilizea Power Meter 0.1 MW to 10 MW . Stabilizes any 200? thermister mount for use on low power scale.

\section*{THERMISTER MOUNTS}

Waveguide and Coaxial thermister
mounts 10 MC to 90 KMC
COAXIAL ATTENUATOR PADS DC to 10 KMC .
WICROWAVE MULTIPLEXERS
WIII multiply any number of microwave
trequencies without distortion.
CONTROL ELECTRONICS CO., INC. Ton Stepar Place, Huntington Station, M. Y.
available, it will be furnished by Armed Services Electro-Standards Agency, Fort Monmouth, N. J.

\section*{Standard Covers Method Of}

Interconnecting Data Terminal Equipment
This standard provides a method of interconnecting data-terminal equipment and a datacommunication channel when each is furnished by a different company. It defines a means of exchanging control signals and binary-serialized data signals between data-terminal equpiment and a data-communication channel. RS-232 Interconnection of Data Terminal Equipment with a Communications Channel is available from Electronic Industries Assoc., Engineering Dept., 11 W. 42nd St., New York 36, N.Y. Price is \(\$ 0.50\).

\section*{Coil and Transformer Spec}

Standardized Measuring Procedures
This spec standardizes test procedures for measuring inductance, \(Q\), and self-resonant frequency in rf-choke coils. Standard test fixtures and test frequencies are also specified. Other changes include the incorporation of a highfrequency vibration test, method 204 of MIL-SDT-202, and modification of color-code markings. The spec is called MIL-C-15305B, Coils, Radio Frequency: And Transformers, Intermediate Frequency And Radio Frequency. When available, copies will be furnished by Armed Services Electro-Standards Agency, Fort Monmouth, N. J.

\section*{Mil Spec Standardizes Switch Boots}

The newly issued MIL-B-5423B covers the requirements for molded silicone-rubber boots that can be used on toggle and push-button switches, rotary-actuated parts (such as rotary switches, variable resistors, capacitors, inductors) and transformers. Supplement 1 lists the applicable detail specs for the individual boot types and styles. This is a new spec that supersedes MIL-B-005423(ASG) and MIL-B-19257(SHIPS). Boots, Dust and Water Seal (For Toggle and Push-button Switches and Rotary-actuated Parts), MIL B-5423B, 5 August 1960.

\section*{Material Listings Standardized}

MIL-STD-30A establishes minimum requirements for the preparation of lists of material or parts lists, data lists, and index lists, separate from, or used in association with engineering drawings prepared by, or for, the Department of Defense. MIL-STD-30A, Associated Lists, Lists of Material, Data List, Index List.

\section*{differential}

\section*{isolator:}

\section*{ELIMINATE NOISE}

\section*{FROM YOUR}

\section*{PRESENT SYSTEMS}

Break ground loops in existing (or future) data acquisition sys. tems with CEA's DIFFERENTIAL ISOLATOR. Used with any floating wideband amplifier, the combination produces true differential


Used alone, the DIFFERENTIAL SOLATOR functions as a DC to 20 kc isolation transformer. Input circuitry isolated from output circuitry (horizontal); chassis and all circuitry isolated from ground common mode levels. CMR. 130 common mode levels. CMR: 130 db to 1 kc . High output: \(\pm 5 \mathrm{~V}\) at
\(\pm 30 \mathrm{ma}\) or \(=10 \mathrm{v}\) at \(\pm 20 \mathrm{ma}\). Unity gain. Frequency response: less than 3 db down at 20 kc .
"The Source for Noise-frce Instrumentation"


COMPUTER ENGINEERING ASSOCIATES, INCORPORATED
 CIRCLE 815 ON READER-SERVICE CARD

\section*{HIGH ACCURACY} CALORIMETER BRIDE

ACCURACY BETTER THAN I \%


Direct Reading with self contained calorimetric loads, cooling system and circulating system
In these Calorimeter Bridges the RF power to be measured is compared to a known AC power. This AC power is metered by a wattmeter with an accuracy of \(1 / 4 \%\) of full scale. The accuracy of these Calorimeters de. pends primarily on the accuracy with which the AC power introduced into the AC standard load is measured. Since RF power is compared to AC power, Doth of which whe depend urement is, therefore, cancelled out.
\begin{tabular}{|c|c|c|c|c|c|}
\hline TYPE & FULL SCALE
POWER RANGES
IN WATTS in waits & FREQ. RANGE KMC & VSWR MAX. & ME ASURING & accuract \\
\hline CE-33 & 15, 30, 60 & DC. 4 KMC & 1.25 & 1 min . or losi & 1\% \\
\hline CB. 34 & 25, 50, 100 & DC -4 KMC & 1.25 & 1 min . or loss & 1\% \\
\hline CB-35 & 50, 100, 200, 400 & DC. 4 KMC & 1.25 & 1 min . or less & 1\% \\
\hline C8-36 & 125, 250, 500, 1000 & DC. 4 KMC & 1.25 & 1 min . or less & 1\% \\
\hline
\end{tabular}

Other Calorimeters available with Wavegulde Loads for the fresuency range between 1 to 24 KMC . Write for literature and prices on these and all other Calorimeters.

Slectra IMPULSE LABORATORY INC. \begin{tabular}{l|l}
208 & Phengr St. - RED bank, N J J
\end{tabular} Slectra IMPULSE LABORATORY INC. \(\begin{aligned} & \text { Phone: SHadyside } 1.0404\end{aligned}\)

\section*{YOUR CAREER \\ NEWS AND NOTES}

A firm in the Minneapolis-St. Paul area is teaching its employees to read faster and allowing the public to sit in on the course.
The firm is the Minnesota Mining and Manufacturing Co., which sponsors a 12 -week televised education course in "Efficient Reading."

The "class" is held each Tuesday from 4:30 to 5 pm . A total of 166 employes enrolled in the course view the instruction at six company receiving locations.

In addition, an undetermined number of the general public watch from their homes. The company has received 401 requests for the \(\$ 3\) workbook used with the course, and has received ten inquiries about the course from other firms in the area.

The course is given by Dr. James I. Brown, professor of rhetoric at the University of Minnesota.

Many college students who want to be engineers don't understand the engineer's job, according to Dr. John R. Ragazzini, dean of New York University's College of Engineering.

Insufficient differentiation among the professional roles of chemists, mathematicians, physicists and the engineering profession in the minds of college students has often led to frustration in the early years of professional life, Dean Ragazzini said at a recent career conference.
"The loose use of the labels 'science' and 'scientist' in the public press in connection with space programs has done much to cloud the issue of who does what in some of today's more vital technical projects," he added.

A California personnel consulting firm is offering to companies a device that supposedly keeps engineers marching to the company tune. National Business Aids, Santa Monica, offers, at low cost to companies, a pamphlet for distribution to company technical personnel.
National Business Aids bills the booklet as "a unique human-relations publication-specifically designed for engineering and technical personnel . . . combines humo: with the teaching of good human relations. Chuckle-provoking cartoons and pithy observations that pack plenty of punch and get across one important message in each issue."
The problem this pamphlet will eliminate is described in National's advertising literature as follows:
"How to keep engineers-and other technical
personnel-happy is a major problem faced today by top management across the country. Anything you can do to keep morale high, tempers calmed down, and increase the cooperation among engineers-as well as cooperation with other departments-pays off in increased production, better original thinking, and a more satisfied engineering staff."
The first of these pamphlets, to be issued twice monthly, preaches the doctrine, "Join the Team." On the opening pages, a cartoon-character infielder is catching the ball from a smiling teammate. Separating them is the rejoinder, "Know anything nicer to watch than smooth, closely coordinated team play?" and the answer, "Whether it be baseball, basketball or footballno matter what the sport, team play makes a winner every time. And the same applies to in-dustry-especially to those of us in the engineering profession."

The need for more systems engineers led Washington University, St. Louis, to give a course in systems last month to chemicals engineering instructors.
The course, financed by the National Science Foundation, aims to alleviate a shortage of systems engineers by training college teachers who can, in turn, include the material in their curricula, according to Dean Earnest Brandenburg, of the university.
The course included time- and frequency-response methods, stability analysis, non-linear systems analysis, and computer applications.

Eighty-five engineers from New York University are convinced that behind every man is a woman. New York University, where engineers received their bachelor's degrees by attending evening session classes, recently cited each man's wife for "the assistance she has rendered her husband in the completion of his program of higher education."

The "Good Wife" certificates were awarded by the student council. They were signed by the student council president and the appreciative husband. One wife described the wives' role as follows: "A lot of fellows drop out, not because they couldn't do the scholastic work, but because their wives couldn't stand the grind."

The General Motors Institute, Flint, Mich., will award bachelor's degrees in electrical engineering for the first time in 1963. The curriculum, according to the institute, will be oriented
towards product design, plant engineering process engineering.

The institute is run by General Motors, attendance is open to any high-school gradua who can get sponsorship by a company suldi sion or automotive dealer. The school is a cre ited by the state of Michigan. Student ta courses on a cooperative basis-studyin p time and working for GM part time.

The better-known mathematical and scientif principles are found in all texts. Here are sever equally important, but less often publicize rules that are useful in practical engineering engineering administration:
LAW OF PERVERSITY-In any circuit whe a number of possibilities for error exist, t most damaging possibility will occur.
A LEMMA-If it is absolutely impossible for a error to exist in the circuit, the chances are 10 that one will exist anyway.
STANDARD PROCUREMENT PROPORTIO
-The longer the lead time, the greater the nur ber of design changes, the longer the delay, th higher the cost.
McINTOSH'S APPROXIMATION-Convert cost estimates obtained from engineers or eng neering data to Mexican pesos at the curre rate of exchange. Replace the peso sign with dollar sign. The result will approach the actus cost of the work to be done.
DESIGNER'S CONSTANT-The time for an given designer to complete one day's work is constant 8 hours. The time for the same design to do anything less than a day's work is al 8 hours.

The following appeared in the Letters to 1 Editor columns of the Charlotte Observe Charlotte, N.C.:

\section*{MISSILEMEN TAKE NOTE}

I heard a fellow say the other day that the had fired a thing up about a thousand miles. am writing to tell you all that I'm getting plumg worried about this thing.

Now you know that theres bound to be a wa out there somewhere, and one of these days the are going to shoot something too far and bust hole in it. Then just think of all the mess th might come pouring in! It's like playing arour with an air rifle in a balloon.
I want you to put it in your paper for peor to start minding themselves about this thing.

Will Whitala
electronco oesson CAREER INQUIRY SERVICE
After completing, mail career form to ELECTRONIC DESIGN, 830 Third Avenue, New York N. Y. Our Reader Service Department will forward copies to the companies you select below
(Please print with a soft pencil or type.)
Name \(\qquad\)
Home Address \(\qquad\) City \(\qquad\) Zone \(\qquad\) State \(\qquad\)
Date of Birth \(\qquad\) Place of Birth \(\qquad\) Citizenship

Position Desired \(\qquad\)

\section*{Action Form}

ELECTRONIC DESIGN's Confidential Career Inquiry Service helps engineers "sell" themselves to employers-as confidentially and discreetly as they would do in person. The service is fost. It is the first of its kind in the electronics field and is receiving high praise from personnel managers.
To present your iob qualifications immediately to companies, simply fill in the attached resume
Study the employment opportunity ads in this section. Then circle the numbers at the bottom of the form that correspond to the numbers of the ads that interest you.
ELECTRONIC DESIGN will act as your secretary, type neat duplicates of your application and send them to all companies you select-the same day the resume is received.
The standardized form permits personnel managers to inspect your qualifications rapidly. If they are interested, they will get in touch with you.
Painstaking procedures have been set up to ensure that your application receives complete, confidential protection. We take the following precoutions:
- All forms are delivered unopened to one reliable specialist at ELECTRONIC DESIGN.
- Your form is kept confidential and is processed only by this specialist.
- The "circle number" portion of the form is detached before the application is sent to an employer, so that no company will know how many numbers you have circled.
- All original applications are placed in confidential files at ELECTRONIC DESIGN, and after a reasonable lapse of time, they are destroyed.
If you ore seeking a new job, act nowl

\section*{Advancement Your Goal?} Use CONFIDENTIAL
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Educational History} \\
\hline College & Dates & Degree & Major & Honors \\
\hline & & & & \\
\hline & & & \(\checkmark\) & \\
\hline & & & & \\
\hline & & & & \\
\hline
\end{tabular}

Recent Special Training \(\qquad\) \(\longrightarrow\)
\begin{tabular}{l|l|l|l|l} 
Company & City and State & \multicolumn{4}{c}{ Employment History } \\
\hline & & & & Tille \\
\hline & & & & \\
\hline
\end{tabular}

Outstanding Engineering and Administrative Experience

\section*{Professional Societies}
\(\qquad\)
Published Articles
Minimum Salary Requirements (Optional) \(\qquad\)
Use section below instead of Reader Service Card. Do not write personal data below this line. This section will be detached before processing.

Circle Career Inquiry numbers of companies that interest you


\section*{ENGINEERS}

\section*{WHY SANDERS PROVIDES REAL OPPORTUNITY}

\section*{OROWTH}
- From 11 men to 1400 in only 9 years - and still growing
- Gross sales increasing steadily - \(\$ 17\) million in fiscal year 1960 with \(50 \%\) increase projected for 1961
This means new opportunities year by year for forward-looking, ambitious engineers

\section*{stability}
- Backlog of \(\$ 50\) million at time of writing
- Most of the company's developmental work and specific products are in areas of the electronics industry where overall growth outlook is good-military systems, automatic assembly and microwaves instrumentation and control
Long-term assignments assured on a diversity of contracts

\section*{REPUTATION}
\(\bullet\) PANAR \({ }^{\oplus}\) radar, FLEXPRINT® flexible printed circuits and TRIPLATE \({ }^{\circledR}\) microwave products paved the way for new prime contracts - \(\$ 30\) million worth, primarily for production of electronic systems that have emerged from the company's research and development programs.
Increase your own knowledge and professional stature by working with men who rely on new technical concepts rather than traditional approaches

\section*{INQUIRE NOW ABOUT POSITIONS IN:}

CIRCUIT DESION-BENIOR LEVEL
Particular emphasis on transistor application to analog and digital techniques; data handling equipment; audio, video, RF circuitry and switching.
8YETEM8
ECM, Radar and ASW. For theoretical studies and hardware implementation. Through Project Engineer level.
packacing
For both airborne and ground based equipment. Experience in vibration, heat transfer, printed circuit techniques.

TRANEMITTER MODULATOR DESION
To contribute to the design of the Eagle Missile transmitter modulator. Experience with modulator or transmitter circuits and system design of oil immersed and dry designs on light weight units of ultra reliability. General experience
with vacuum tubes and pulse circuits, high voltage design and magnetic circuits.

\section*{TEST EQUIPMENT}

To design and develop test equipment for both manufacturing and research and development activities. Good knowledge of pulse and low frequency circuits, awitch measurements, sweep circuits and the principles of pulse doppler radar. RECEIVER DESION
VHF electronically scanned airborne receivers, filters, problems in spurious response reduction and multiplexing.

Please address your inquiries so
Mr. Roland Hood, Employmens Managor
SANDERS A55ロCIATES, INC.
NASHUA. NEW HAMPSHIRE
(less than 1 hour from downtown Boston)

CIRCLE 901 ON CAREER INQUIRY FORM
if you're ready for a career-move in

\section*{PRECISION ENGINEERING}
you can contribute to the success of General Electric's Oidnance Department

You'll be working in an engineer's department, a new department whose product is manufactured in the mind. You'll be working within a managerial climate that is dedicated to making it easy for you to extend yourself. are a visible example of this advanced managerial awareness.

You'll be probing sensitive, intricate, and miniaturized inertial navigation systems. Your job will be to generate and apply pioneering technological conceptualization in one or several of the specific problem areas listed below. You will be asked regularly to solve proble You and your coniribution are important at Ordnance.

This -xcitin work, and
This is exciting work, and tough. It's for the man who has it and seeks only the opportunity to demonstrate and develop his talent. drive and conceptual capacity.
And your rewards will be commensurute with your contribution. Ample oppor tunity exists for advancement both within the Ordnance Dept. and throughout General Electric, a company now employing 22,000 engineers, anticipating a need for half again as many halfway through the ' 60 's. Even more important, there's ample room for rapid growth within the salary and responsibility structure of the job youll Full tuition refund is available to you if you work as hard at aradu. ate studies as you will on the job itself

Ordnance is located in the heart of the Berkshires. Halfway between New York and Boston, the Berkshires is one of the country's great cultural, sport, and recreation centers-a plus family life the physical and nonter nical mental activity you so seek.

Positions are available to take maximum advantage of abilities and interests at most levels of experience and development
If you are ready for this kind of move-not just vaguely discontent with what you're not oinger-Professional Relations. Dept. SMU.
ORDNANCE DEPARTMENT
of the Defense Electronics Division

\section*{ELECTRIC}

Pittsfield, Massachusetts
CIRELE 902 ON CARER INQUIRY FORM
ELECTRONIC DESIGN • November 23, 1960

\section*{ENGINEER-IMPROVEMENT COURSES AND SEMINARS}

Below are courses and seminars intended to provide the engineer with a better knowledge of various specialties. Our grouping includes several different types of meetings: National Courses-those held on conescutive days and intended to draw attendees from all geographical areas: One-Day Seminars-one-day intensive seminars which move from city to city; and Regional Lectures -regional symposia or lecture series which generally run one night a week for several weeks.

\section*{National Courses}

Symposium Sponsored By The Texas Division of Collins Radio Co.
A microwave and carrier communication system engineering symposium and exhibit, sponsored by the Texas Div. of Collins Radio Co., is currently being conducted on a nationwide tour which started on Sept. 12, 1960.
Purpose of the symposium is to acquaint management and communication personnel in governmental and industrial circles with the engineering parameter and application techniques of microwave and carrier equipment.
The exhibit to accompany the symposium will include two terminals of operating microwave and carrier equipment.
Cities and dates of remaining appearances include: Minneapolis, Minn., Nov. 21 to Nov. 25; Denver, Colo., Nov. 28 to Dec. 2; Seattle, Wash., Dec. 12 to Dec. 18; Helena, Mont., Jan. 9 to Jan. 13; Portland, Ore., Jan. 23 to Jan. 27; San Francisco, Calif., Feb. 6 to Feb. 10; Los Angeles, Calif., Feb. 20 to Feb. 24; Albuquerque, N.M. March 6 to March 10; New Orleans, La., March 20 to March 24; Jacksonville, Fla., April 3 to April 7 and Charlotte, N.C., April 17 to April 21.

Problems In Engineering And Management Discussed At U. C. L. A.
Universally applicable problems in engineering and management will be discussed by a universal audience of engineers and managers Jan. 23 to Feb. 2, 1961 at UCLA, Los Angeles, Calif.
The program is designed to help enrollers improve their present effectiveness and to prepare for higher responsibilities. Techniques, practices and principles discussed in the seminars are applicable to the problems of business, industrial


\section*{CAREER COURSES}
and governmental organizations.
Participants will have a choice of 23 subjects that will be taught by 30 professors, indu try specialists and managerial consultants. Some subjects offered are: Organization and Adminis ration of an Industrial Engineering Department, Mathematical Bases for Decision and Programing in Industry, Electronic Data-Processing for Business and Industry, Engineering and Research Administration and Accounting for Engineers and Managers.
No formal educational requirements are demanded, but enrollment is limited.
Instructional staff includes: Alexander W. Boldyreff, Professor of Engineering, University of California; George W. Brown, Professor of Engineering and Business Administration and Director, Western Data Processing Center, University of California; Richard G. Canning, Associate Research Engineer, Management Sciences Research Project, University of California; Harry W. Case, Professor of Engineering and Professor of Psychology, University of California; J. Morley English, Vice Chairman-Research, Dept. of Engineering and Professor of Engineering, University of California; Thomas E. Hicks, Associate Professor of Engineering, University of California and Robert N. Lehrer, Professor and Chairman, Dept. of Industrial Engineering, The Technological Institute, Northwestern University.
The \(\$ 450\) fee includes tuition, books and class materials.

For further information write to: Reno R. Cole, Coordinator, College of Engineering, University of California, Los Angeles 24, Calif.

\section*{Graduate Lecture Program Sponsored \\ \section*{By Case Institute of Technology}}

The third annual series of public lectures sponsored by Case Institute of Technology will pre sent four authorities in the arts and sciences.
Open to college students, faculty members and individuals who are interested in various aspects of technological progress, the program is de signed to allow for the exchange of ideas among students on the graduate level.
On Feb. 15, Dr. Wallace R. Brode, Science Advisor to the U. S. Dept. of State, will discus "The Role of Science in Modern Diplomacy. Sir Robert Watson-Watt will discuss "The Pulse of Radar," on March 15. Dr. Boris Goldovsk Artistic Director of the Goldovsky Grand Opera Theater, will discuss "Technological Flirtations With Music."
The lectures are held in CIT's Strosacker Auditorium at 8 pm . No admission is charged.

\section*{COMMUNICATION SYSTEMS . . . the ultimate integration of the electronic arts}

Among the great names in the telecommunications and electronics industry, Kellogg today is one of the country's strongest sources of advanced communica. tions equipments and systems. We have one major goal - to provide the finest communications that the electronic arts make possible . . . for industrial, commercial and military needs.
The Communication Systems Department of Kellogg, growing by leaps and bounds to keep pace with demands for wholly integrated communications means, provides large-scale communications systems from Alpha to Omega . . . from systems studies through engineering and production. Engineering is concerned with all phases of telephone, radio, data communications and automatic control circuit design. Principal areas of engineering organization include Project Engineering, Applications Engineer-
ing, Development and Systems Evaluation and Utilization and Reliability.
Typical of Kellogg's major systems engineering achievements is the provision of complete ground communications for the firing of Titan and Thor ballistic missiles and Discoverer and Samos space satellites at Vandenberg Air Force Base. Similarly, KeHogg has provided for the Atlas ICBM program nine separate systems for communication, control, maintenance and check-out, count-down, voice-recording and fire alarm - all functioning as an integrated system.

If you seek a dynamic organization in which to further your future, write Manager of Technical Staffing. Communication Systems Department, Dept. M-03(3).

ITT KELLOGG Communications Division, Intermational Telephone and Telegraph Corporation
500 North Pulaski Road, Chicago, Illinois

\section*{The national security need for Space Technology Leadership}

Space is a medium in which many military missions can be most effectively performed •The U. S. arsenal of ballistic missiles - in being and forthcoming - the Air Force Thor, Atlas, Titan, and Minuteman, the Navy Polaris, and the Army Jupiter, are all designed to deter the outbreak of a nuclear World War III or to retaliate overwhelmingly if it should occur - If our ballistic missiles are to realize their greatest potential in carrying out their dual task, they must be supported by a number of companion space systems for such missions as early warning, reconnaissance, communications, navigation, weather forecasting. Space Technology Laboratories is proud of its contributions to the national space effort as a principal contractor in carrying out major programs for the Air Force Ballistic Missile Division, National Aeronautics and Space Administration, and Advanced Research Projects Agency - The increasing scope of STL's activity is opening up exceptional opportunities for the exceptional scientist and engineer, who will find creativity given encouragement and recognition in an organization synonymous with Space Technology Leadership. Resumes and inquiries will receive meticulous attention.

SPACE TECHNOLOGY LABORATORIES, INC. P.o. box 95005k, LOSANGELES 45, CALIFORNIA a subsidiary of Thompson Ramo Wooldridge Inc. Los Angeles - Santa Maria - Enwards Rocket Base - Cheyenne 9

Cape Canaveral • Manchester, England • Singapore - Hawaii


\section*{PAPER DEADLINES}

Convention Program Chairmen have issued the following deadlines to authors wishing to have theil papers considered for presentation

Nov. 30: Deadline for 250 -word abstracts for the Fifth National Symposium on Global Communi cations, known as GLOBECOM V, to be held May 22 to May 24, 1961 at the Hotel Sherman. Chicago, Ill. Technical papers emphasizing the systems aspects of communications technology and related problems are solicited. Groups of authors are invited to submit related abstracts. Abstracts, with a brief professional record of the author, should be submitted in duplicate to: Donald C. Campbell, Technical Program Committee, I.T.T.-Kellogg, 5959 S. Harlem Ave., Chicago 38, Ill.

Dec. 12: Deadline for 500 word summaries for the 1961 National Symposium of the Professional Group on Microwave Theory and Techniques, to be held May 15-17, 1961 at the Sheraton Park Hotel, Washington, D.C. Papers are solicited in all fields of microwave research, development and application, principally in precision microwave measurements, solid-state microwave devices, and sources and components at millimeter waves. Send summaries to: Gustave Shapiro, Chairman, Technical Program Committee, Engineering Electronics Section, National Bureau of Standards, Washington 25, D. C.

Dec. 15: Deadline for detailed summaries of papers for the 1961 Western Joint Computer Conference to be held May 9-11, 1961 at the Ambassador Hotel in Los Angeles, Calif. Send summaries to: C. T. Leondes, Associate Professor of Engineering, Dept. of Engineering, University of California, Los Angeles 24, Calif.

Jan. 1: Deadline for abstracts (500 to 1,000 words) of papers for the International Symposium on the Transmission and Processing of Information to be held Sept. 6 to Sept. 8, 1961 at M. I. T., Cambridge, Mass. The purpose of the symposium will be to provide a special occasion for the presentation of significant new theoretical or experimental research contributions. No tutorial papers will appear. Authors will be notified of the preliminary acceptance of their abstracts by Jan. 20, 1961. The symposium will be sponsored by the PGIT and the Center of Communication Sciences, Research Laboratory of Electronics, Massachusetts Institute of Technology. Send abstracts to: Peter Elias, Program Committee Chairman, Research Laboratory of Electronics, Massachusetts Institutc of Technology, Cambridge 39, Mass.

\section*{CAREER OPPORTUNITIES BROCHURES}

This 12-page illustrated brochure, "Talent Grows At Emerson Electric of St. Louis," depicts the company's activities in the electrical-electronics-avionics industry. Emerson Electric is one of the four biggest producers of motors for appliances and industry and the largest independent supplier of these motors.
The heart of Emerson Electric is its engineering department in which creative engineering ideas are developed and brought to production.

For further information write to: The Emerson Electric Manufacturing Co., 8100 W. Florissant Ave., St. Louis 21, Mo.

CIRCLE 870 ON READER-SERVICE CARD
GE's Electronics Laboratory


In this 12-page brochure GE presents a picture of its Electronics Laboratory in Syracuse, N.Y. Scientists and engineers of the Electronics Laboratory are engaged in defense, industrial, and consumer electronics. The Laboratory staff is making significant contributions in such areas as cybernetics, missiles, energy sources and converters, satellites, transportation, entertainment and communications.
Electronics Laboratory, General Electric Co., Dept. ED, Syracuse, N.Y.

CIRCLE B7I ON READER-SERVICE CARD
ELECTRONIC DESIGN • November 23, 1960

\section*{How Do You} Measure Achievement?

TALENT-bold, imaginative talent stimulated by the constant challenge of new concepts-was responsible for this achievement.

However, past achievements are significant only insomuch as they indicate the path of the future. At DELCO, this path is clearly charted. We are committed-and dedicated-to uphold and maintain our position of leadership in the fields of electronics and Solid State Physics.

Fulfilling this challenge requires a constant infusion of new ideas and new talent-aggressive new talent. That's what we're looking for.

\section*{We are vitally interested in ambitious men with experience in the following areas:}

\section*{ELECTRONIC ENGINEERS}

Experienced in: transistor, communication and radio circuitry, servo systems and antennas; also, machine controls (relay and/or static) to assist in the development and application of static transistorized controls.

\section*{TRANSISTOR PROCESS ENGINEERS}

EEs, MEs, and IEs to develop and create new processes for manufacturing germanium and silicon semiconductor devices. Experience preferred.

\section*{COMPUTER ENGINEERS}

For development of control type, special, or general purpose units. Experience in digital to analog and analog to digital converter design. Or magnetic core or drum type memory. Mechanical engineers for package design. Electronic engineers for test design, servo-analysis, and circuit design.

\section*{PHYSICISTS, CHEMISTS AND METALLURGISTS}

For semiconductor device development. With experience in: semiconductor materials (to lead a program on metallurgical research of new semiconductor materials), semiconductor device encapsulation, alloying and diffusion, chemistry of semiconductor devices.
We're eager to find experienced personnel with a desire for a stimulating challenge and the abilities to fulfill this challenge. Responsible positions are available for those who qualify.

If you're interested in becoming a member of our Delco-GM team of outstanding scientists and engineers, send your resume today to the attention of Mr. Carl Longshore, Supervisor Salaried Employment.

These transistors-representing the proven capability of Delco Radio to develop and mass produce the highest power transistor in the industry-are a measure of achievement.

\author{
Division of General Motors • Kokomo, Indiana CIRCLE 907 ON CAREER INQUIRY FORM
}

\section*{Choose Your Pursuit From These FIVE FACETS OF PHILCO IN CALIFORNIA}


A PLACE FOR YOU awaits at rapidly expanding Philco Western Development Laboratories on the San Francisco Peninsula, where new concepts of space communication offer exceptional opportunities to the exceptional engineer . . . with proportionate rewards. Your experience and your interests determine your assignment at PHILCO in the development of the complete system - from the space communication network of space vehicles to the complex data processing equipment of the ground station complex.
For you . . . the opportunity of graduate study on a Tuition Refund basis at any of the excellent surrounding educational institutions, liberal employee benefits, and the facilities of Philco's new, modern R \& D laboratories.
For you and your family . . . the perfect climate, whether seasonal or cultural, in which to pursue all-year recreational activities, only 45 minutes from cosmopolitan, dynamic San Francisco.
Immediate openings now exist for graduate engineers with experience in equipment design, systems engineering, analysis and integration. As a first step toward expanding your skills at Philco, send your resumé in strict confidence to Mr. W. E. Daly, Engineering Placement.

\section*{PHILCO CORPORATION Western Development Laboratories}

3875 FABIAN WAY, DEPT. DII
PALO ALTO, CALIFORNIA CIRCLE 908 ON CAREER INQUIRY FORM

\section*{s \\ S \\ }

Ia Electronic EngineerIng?
Not likely. Only a fow have done if. However, mosi electronics engineers realize that above average arnings can be thoirs in the electronics market. for the man who wants challenging work \& earnings eflecting his capabilitios, we are refained by 479 top electronics firms (both "giants" and "comers")
FREE - MONTHLY OPPORTUMITIES BULLETIIS
f you wish to receive a monthly bullotin of the Anest available electronic opportunities, simply send us your name and home address land If you wish, review of your qualifications)-Our services are without cost to you through our Chicago office and our Los Angeles subsidiary, Lon Barton Associates.
 Jack L. Higgins Vice President Cadillac Associates, Inc. 29 E. Madison Aldg. Chieage 2, III.

Where More Electronice Executives Find Their

CIRCLE 880 ON READER-SERVICE CARD


\section*{CAREER BROCHURES}

\section*{Alpha Corp.}


This 32-page illustrated brochure describes the organization of the Alpha Corp., a subsidiary of Collins Radio Co., in Richardson, Tex. Alpha functions at the systems level, supplying the specialized talent and services needed to integrate the available components, equipment and techniques into operational systems. Systems management by Alpha is directed by outstanding men with both engineering and business experience.
Alpha Corp., Dept. ED, 820 E. Arapaho Road, Richardson, Tex.

CIRCLE 872 ON READER-SERVICE CARD

\section*{"Community Sketch Book"}

The Sprague Electric Co. presents, through an illustrated brochure, an outline of activities and opportunities offered in its North Adams, Mass. location. They are interested in attracting those who want to learn and grow. First, basic research is conducted on materials and processes; second, new and improved products are developed and the third assignment, engineering itself is primarily directed to the designing and controlling of the standard products made by the company.
Among the cultural attraction of North Adams' Berkshire setting are: a public library; The Berkshire Museum at Pittsfield; the popular Tanglewood, some 30 miles from North Adams; The Williams College theatrical group; harvest fairs, and two famous restorations, Old Deerfield and Old Sturbridge Village.
Opportunities for self improvement are numerous. The company is currently conducting, with the Franklin Institute of Boston, the SpragueFranklin Technical Institute a series of in-plant night school courses open to employes.
For complete details write directly to Employe and Community Relations in North Adams, Mass.

CIRCLE 873 ON READER-SERVICE FORM
ELECTRONIC DESIGN • November 23, 1960

\section*{Why don't you Talk with Westinghouse}


Westinghouse engineers are creating "fences in the sky" . . . electronic defense systems to shield U. S. strategic aircraft and missiles. These systems, incorporating advanced technical developments and design work, are among many challenging projects offering unique career development opportunities for engineers at Westinghouse-Baltimore.

Current Opportunities include: Semiconductor Circuitry Microwave Transmitters and Recelvers Digital Techniques
Technical Writers
Parametric Amplifiers
Ground Radar Field Engineers
High-powered Transmitters

Send resume to: Mr. J. F. Caldwell, Dept. 335
Westinghouse (0) baltimore
P.O. BOX 746


Representation of the frequency-energy pattern of the spoken word, "IBM." Horizontal axes: frequency and time. Vertical axis: energy. Sampling interval: 0.01 second.

Opportunities in
Systems Development


\section*{Looking at the sound of words}

The plastic model shown here is a 3-dimensional representation of the frequency-energy pattern of the spoken word, "IBM." It is one of several similar models constructed from a computer analysis of speech information. Now under study by IBM scientists and engineers, these representations are yielding clues to the most promising characteristics of spoken words for machine speech recognition. They are helping determine the characteristics that differ most consistently for different words, and are similar for repetitions of the same word.

\section*{Will Men Talk to Machines?}

Interesting in themselves, the models are emblematic of a broad program of systems development aimed at making it possible for people to talk to machines.
Studies include investigation of new speech measurements and of circuits to perform these measurements; input and feedback devices; statistical analysis of the complex speech wave forms; and methods for efficiently storing the selected characteristics of known words for comparison with spoken words to be identified.
Just One of Many Opportunities
Speech recognition is one of many advanced technology projects now under way at IBM. Electronic engineers are exploring new areas in systems planning, display, and data communications. Mechanical engineers are developing unique devices for high-speed access to memory and document stores. Physicists and chemists are making contributions in photo materials and in electroluminescent and photoconductor devices. At IBM the opportunity for achievement is as unlimited as the growth of the company itself. For detailed information, write briefly outlining your background, to:
Manager of Technical Employment
IBM Corporation, Dept. 555Y4
590 Madison Avenue, New York 22, New York
 -ADC Incorporated ...................... 115 Airborne Instrument Laboratory ...... 15
Airborne instrument Laboratory . . . . . . . . 15
Alford Mig. Co. . . . . . . . . . . . . . . . . . . . . 21
Alfred Electronics ....................... 30
Allen-Bradley Co. ................. 112 A-B
Alloys Unlimited Chemicals Inc. . . . . . . 194
Alpha Metals, Inc. ...................... . . . 199
*Alpha Wire Corp. . . . . . . . . . . . . . . . . . . . . 197
AMP, Inc. 197
33

American Electrical Heater Co. ......... 205
American Time Products, Inc. ......... . . 38
Ampex Data Products Co. ................ . . 135
Amperex Electronic Corp. . . . . . . . . . . . . . . . 9
Andrew Corp. ........................... . 175
Applied Research, Inc. .................. . 97
Arco Electronics, Inc. . . . . . . . . . . . 60, 139
*Arnold Engineering Co. . . . . . . . . . . . . . 65
Assembly Products, Inc. .................. . . 146
Associated Testing Laboratories, Inc. .... 202
Automatic Electric .................... . . . 112
Avien, Inc. .............................. 163
-Ballantine Laboratories Inc. ............ . 138
Becco Chemical Div. .................. . . 187
Behlman Engineering Company . . ........ 51
Bendix Comeering Company
Bendix Corp., Eclipse Pioneer Div. Bendix Corp., Red Bank Div.
Beryllium Corp., The
. 207
........ 185
Bird Electronic Corp . ..... 89
Bomac Laboratories, Inc. Microwave Cor 123
Borg, Equipment Division . . . . . . . . . . . 105
Bosch, Inc. M Ten ....................... 56
Branson Corporation .................... 215
Bristol Co. . . . . . . . . . . . . . . . . . . . . . . . . . 111
Bryant Computor Products ............. . 100
Bulova Electronics ...................... \({ }^{7}\)
Burroughs Corp.

CBS Electronics
Cadillac Associates, Inc. ...................... 14
.............. 226
Canoga Corp. . . ............................... . . 54
Carborundum Co., The ................ 72
*Celco Constantine Engineering Lalss, Co. 100 Centralab, Div. of Glove-Union, Inc. ... 101
*Chassis-Trak Inc. . . . . . . . . . . . . . . . . . . 229
Christie Electric Corp. ................. 216
Clairex Corp. ........................... . . 194
Clevite Transistor ..................... . . . 88 A-B
Clifton Precision Products Co., Inc. . . Cover II
Columbus Electronics Corp. 38
Communication Measurements Labora-
Components Corp.
Computer Engineering Associates, Inc. 118
Conrad Inc. ...................... 194
Continental Connector Corp. . .......... . .
-1/anufacturers' catalog, appears in 1960-1961

PAGES
MISSING
ARE NOT
AVAILABLE```


[^0]:    - Trademark Phiko Corp.

[^1]:    Carrier-matrix board designed by Autonetics tests groups of 100 Fairchild Transistors simultaneously

[^2]:    A roundup of new test equipment
    that speeds up the laboratory phase of microwave development is presented in
    Test Equipment Developments
    Speed Microwave Progress .... p 182

