

O-T and DI-T ANSFORMERS Sealed to MIL-T-27A Specs.

COVER: Free-form concentric shopes stress the compressibility and minia furization aspects of the cooling de vice represented on the cover. A styl. ized drawing shows the inner des gn^{7} of the three-stage assembly while progressively darker arrows symbolize heal being carried off. Art critics who may notice similarities between this cover and the paintings on the ceiling of the Sistine Chapel in Rome will be interested to learn that both Michelangelo and ED Art Director Ray Schulze execuled their work while lying on their backs. The dif. ference is that Schulze is recovering from a bout of virus hepatitis.

[^0]
Maintainability

Measurement Snarls Plague Main-
toinability Drive

Soviet Engineering

The Soviet Engineer: How He Learns; How He Trains; How He Works

Temperature Controls

Small, Multistage Blowers Cool
Densely Packed Minialure Equipment
Compact, Adjustable Tempero
fure Control Provides Perform.
ance of Much Larger Units 56

Testing

High-Voltage Testing Can Be Nondestructive
ELECTRONIC DESIGN-ONE DAY SERVICE USE BEFORE March 15th, 1961
Nang
Conprany

Mome Addrem
For Change of Address:
Old Company Nom

"

4202A FUNCTION GENERATOR-Down to 0.008 cps ; transient-free!

Uses: Electrical simulation of mechanical phenomena, vibration studies, servo research and testing, medical research, geophysical problems, subsonic and audio testing.
Advantages: No switching transients, continuously variable 0.008 to $1,200 \mathrm{cps}$ range, 30 v output peak-to-peak constant, hum less than 0.05%, square, triangular or elect ronically synthesized sine waves, 1% stability, 0.2 db response, less than 1% distortion (sine waves) on all but x 100 range.
Price: $\$ 550.00$ (cabinet model,$\$ 535.00$ (rack mount

\$650A TEST OSCILLATOR-Flat within $1 \mathrm{db}, 10 \mathrm{cps}$

 to 10 MC !Uses: Testing TV amplifiers or wide-band systems measuring filter transmission characteristics and tuned circuit response. determining receiver alignment, making telephone carrier and bridge measurements.
Advantages: No zero set, no adjustments during operation, output voltage range $30 \mu \mathrm{v}$ to 3 v , less than 1% distortion, 20 cps to 100 KC ; less than $2 \%, 100 \mathrm{KC}$ to 1 MC ; approx. 5% at 10 MC . Hum less than 0.5%, output voltage attenuator, self-contained voltmeter, 2% to 3% stability.
Price: $\$ 550.00$ (cabinet model), $\$ 535.00$ (rack mount)

Easy to operate,

 highly stable,
wide range

PRECISION

OSCILLATORS

4. precision oscillators perform a wide variety of audio, video, and low frequency tests. They offer the outstanding advantages of flexibility and broad usefulness at moderate cost. Employing the pioneered RC resistance capacity circuit, the units combine accuracy and reliability with ease of operation and minimum adjustment.

¢205AG AUDIO SIGNAL GENERATOR-Six instruments in one; 20 cps to $\mathbf{2 0 ~ K C ! ~}$
Uses: Measure amplifier gain and network frequency ;esponse, measure broadcast transmitter audio and loudspeaker response. drive bridges, use in production testing or as precision source for voltages. Monitors oscillator output, measures output of device under test.
Advantages: Self-contained instrument, no auxiliary equipment needed. 5 watts output, $\pm 1 \mathrm{db}$ response, less than 1% distortion, hum more than 60 db down. no zero setting, output and input meters read v and dbm ; four output impedances
Price: $\$ 600.00$ (cabinet model), $\$$ D̃ 8.00 (rack mount)

sp 206A AUDIO SIGNAL GENERATOR-Less than 0.1% distortion; 20 cps to 20 KC !

Uses: Convenient, precision audio voltage source; checks FM transmitter response, makes high quality, high fidelity amplifier tests, transmission measurements.
Advantages: Continuously variable audio frequency voltage, (output 15 dbm) 0.2 db response, hum 75 db down, 2% frequency accuracy, less than 0.1% distortion. 111 db attenuator with 0.1 db steps.
Price: $\$ \times 00.00$ (cabinet model). $\$ 785.00$ (rack mount).
Data subject to change without notice. Prices f.o.b. factory.
pioneered the world-famous resistance-capacity oscillator circuit

HEWLETT-PACKARD COMPANY
1031K Page Mill Road
Palo Alto, California, U.S.A.
Cable "HEWPACK"
DÁvenport 6-7000
HEWLETT-PACKARD S.A.
Rue du Vieux Billard No. 1, Geneva, Switzerland Cable "HEWPACKSA" Tel. No. (022) 26.43. 36

Field representatives in all principal areas
Circle 2 on reader-service card

Call your (ep) engineering representative today for data demonstration of these time-saving, precision, advanced oscillators

Your representative is your headquarters for sales, service and parts on the industry's most complete-coverage oscillator array. (\%) indicates factory-fevel field repair stations.

Eastern Seaboard
Asbury Part, New Jersey The I. E. Robinson Co. Baltimare 15, Maryland $\underset{3006 \text { West Cold Spring Lane }}{\text { Horman Associates, Inc. }}$ MO 4-8345

- Beston Area Burlington, Mass
Middleses Inpike, BR 2-9000
- Briagepert E. Cann.

Yewell Associates, Inc.
Camp Hill, Penasyly
Camp Hill, Pennsylvania
The 1. E. Robinson Co. Box 187, RE 7-6791
Englewaed, New Jersey R M C Associates 391 Grand Ave., 107.3933

- Mow Yerk 21, Nam Yerk ${ }^{\text {R }}$ M. C. Associates - Philadelphia Area Wast Censhohocken, Penn. The I. E. Robinson Co The 1. E. Robinson C CH 8-1600 and TA 8-6200
Pittsburgh 27. Pennsyivania S. Sterling Company
4232 Brwnsvie. Rd. TU 4.5515 Peughteepsie, M. \boldsymbol{V} Yewell Associates, Inc
806 Main St GR i. 3456
- Dechestor 25, Mew Yopk
Edward A Ossmann B Assoc. 830 Linden Ave., LU 6-4940

Syracuse, Mew Yorh
Edward A. Ossmann \& Assoc 101 Picard Dr. P. O. Bos 128 Vestal, New Vort
Edward A. Ossmann 8 Assoc
149 Front St ST $5-0296$
washinaten B C. Area Washingtea, o. C. Are aoctuville, Marylant Horman Associates, Inc.
941 Rollins Ave., HA 7.7560

Southeastern States atianta 5. Coersia Sivins 1 Caldmell Bivins \& Caldwell, Inc.
3133 Maple, N.E., CE $3-7522$ - High Peint, Merth Caroline Bivins \& Caldwell. Inc.
1923 N. Main St., $882-6873$ Muntsville, Alabams Bivins \& Caldwell. Inc.
534.5733 (Dir. line to Atlanta) -Orlanto, fierida Stiles Associates. Inc.
1226 E. Colonial, GA 5-554 Rithment 30, Virginia Rivins a Cald vell inc. 1219 Migh Point Ave. EL 5-7931
st. Patersharg B, Fia. Stilis Associates, Inc. $410-150$ th Ave. Madelia
Beach. WA -0211

Central, South Central States - Chicage 45, Illinois Crossiey Associates, Inc.
2501 W. Peterson, BR's.1600 - Cleveland 24, Ohie S. Sterling Company 5827 Mayfield Rd. H1 2-8080 - Dayten 19. Onie Crossley Associates. Inc.
2801 Far Hills Ave.,AX 9-3594 - Detrait 35, Michigan S. Sterling Company
15310 w McNichols kd BR 3-2900

- Indianapalis 20, Indiana Crossley Associates. Inc. 420 N. College Av., CL 1-925 Kansas City 30, Missouri Harris-Hanson Company st St. Lewis 17, Misseuri Marris-Hanson Company
2814 S. Brentwood Blve MI 74350
- St. Paul 14, Minnesata Crossley Associates, Inc.
842 Raymond Ave, M1 6.788 ! - Dallas 9, Texas Earl Lipscomb Associates FL 7.1881 and ED 2.6667 - Meusten 5, Tezas Earl Lipscomb Associates
P. O. Bor $6646, ~ M 07.2407$ Western States
- Albuquarqua, New Merice Neely Enterprises 6501 Lomas ilvo. - denver 10, Celorado 1886 I 5 Broadway, PE 3.3791 Las Cruces, Mew Merice Neely Enterprises - Les Angeles, Califernia Neely Enterprises 3939 Lankershim Bivo N Hollywood, TR 7-0721 - Pmeonir, Arizena 641 E. Missouri, CR 4-5431 Pertiand s. Oregen 1238 n w Glisan, CA 2-7337 Co Secramente 14, Caliternio Meely Enterprises 1317-15th St., G1 2-8901 salt Lake City 15, Utah 1482 Major St., HU 6.8166 - San Diego 6, California O 53 Neely Enterprises 1055 Shafter St., AC 3-8106 - San Francisce Area San Carios, Califernia 501 Neely Enterprises - Seattie 9. Washington

1320 Prospect St., Ma 2.017 Tecson, Arizena
232 Neely Enterprises

Speed, simplify measurements 1.0 to 18.0 KMC with

Sweep full band, or any pi
Sawtooth output drives sc or recorder

All electronic; no mechan Output level over entire frequency range

Direct reading

Independently adjustablc sweep range, sweep rate

Equipment arrangement for auto matically displaying magnitude o refiection from device under tes

FOR MORE OSCILLATORS,
 LIft PAGE

6956 1
ELECTRONIC DESIGN - February 1, 1961

.

LE

Hewlett-Packard Electronic Sweep Oscillators are precision measuring rools deliberately designed to give you simpler, faster microwave measurements. Five models are provided, covering frequencies 1.0 to 18.0 KMC as follows: Model 682C, 1.0 to 2.0 KMC ; Model 683C, 2.0 to 4.0 KMC ; Model 684 C , 4.0 to 8.1 KMC; Model 686A, 8.2 to 12.4 KMC , and Model 687A, 12.4 to 18.0 KMC.

These instruments make possible microwave investigations and evaluations with a convenience previously associated only with lower frequency measurements. Each oscillator provides a wide range of sweep speeds so that measurements of reflection, attenuation, gain etc., can be displayed on an oscilloscope or recorded in permanent form on \mathbf{X} - \mathbf{Y} or serip-chart recorders.

Electronic Sweeping

Specifically, the 4 sweep oscillators provide either a CW or swept of output throughout their individual bands. The instruments employ new backward wave oscillator tubes whose frequency is shifted by varying an applied potential. Thus, troublesome mechanical stops and tuning plungers are eliminated. Sweep range is continuously adjustable and independently variable; sweep rate is selected separately, and either can be changed without interrupting operation. The full band width can be covered in time segments ranging from 140 seconds (very slow for mechanical recorder operation) to 0.014 seconds (high speed for clear, non-flickering oscilloscope presenmation).

Linear Frequency Change

The swept rf output from the sweep oscillator is linear with time, and a linear sawtooth voleage is provided concurrent with each rf sweep to supply a linear time base for an oscilloscope or recorder. In addition, for convenience in recording and other operations, if sweeps can be triggered electrically externally and single sweeps can be triggered by a front panel push button. The rf output can also be internally AM'd from 400 to $1,200 \mathrm{cps}$ and externally AM'd or FM'd over a wide range of frequencies.

Leveled Output

Models 682C, 683C, 684C provide leveled power output over their entire swept frequency ranges. An open-loop leveler is built into each instrument and provides leveled output without external equipment and at no extra cost. The leveler, which controls voltage on the grid of the backward wave oscillator rube, can be switched out of the circuit by means of a frone panel control. Power variation over entire range: $682 \mathrm{C}, 683 \mathrm{C}< \pm 1.5 \mathrm{db} ; 684 \mathrm{C}< \pm 2 \mathrm{db}$; 686 A (leveler not required) $\pm 1.5 \mathrm{db} ; 687 \mathrm{~A} \pm 4.5 \mathrm{db}$.

Rapid Visual Presentation

The variety of sweep rates and band widths available from the sweep oscillators insures convenience and accuracy for reflection and transmission coefficient measurements and many other production line and laboratory tests. For maximum speed, an oscilloscope such as 4130 B may be used as indicared in the diagram on opposite page. For maximum information and a permanent record, an X-Y or strip-chart recorder may be used.

Complete details of a rapid visual method using an oscilloscope or a maximum-daca, permanent record method using a secorder may be obrained from your field engineer. Detailed discussions of these methods are also contained in the Journal, Vol. 8, No. 6, and Vol. 9, No. 1-2, available on request.

TYPICAL SPECIFICATIONS
solow are epecincontome for cesh Sweep Ondilioner, 8.2 cs7a (P bead) eve dimilur oxcept for frepeony rance and alhor miner vacianiom.
Pypes of Oufputs: Swept Frequency. CW, FM, AM.

Single Frequency Operetion

Frequency: Continuously edjustable 8.2 to 12.4 RMC.
Power Outputz At loast 10 milliwatis into
matchod weveguide loed. Continuously adjustable to zero.
Swapt Frequency Operetion
Smeop: Recurront, externally iriggored; also manually triggered single sweop. Rf swoop linear with sime.
Pewar Outpet: At laast 10 MW into matched weveguide lood. Outpul variation less than 3 db over entire 8.2-12.4 KMC range.
sweep Range: Adjustable in 7 slopi 4.4 MC to 4.4 KMC.

Sweep Reto-af-Change: Decade iteps from 32 $\mathrm{MC} / \mathrm{sec}$. to 320 KMC/soc.
Swaep Time: Delermined by aweop range and rate; from 0.0139 to 139 seconds over full-band.
Swoep Outpul: Appron. +25 -volp-peak sow looth provided at a front-panol cannector concurrent with eoch if swoep.

Modelemea

Infarmal Amplifude: Square wave modulation continuously adjustable from 400 to 1200 cpes peak if oufput power aquals cw lovel $\pm 1 \mathrm{db}$.
Externel Amplitudar Direct coupled to 300 KC;
20 volf swing reduces if output lovel from rated ew eutput to zere.
External Pulear +10 volts or more, 5 millisecand moximum duration.
Externel FM: Approx. 350 v peak to modulato full frequency range.
Gonoral
Inpel Connectors. Impedaneses: ENC; above 100,000 ohmer.
Oupper Cemnecter: Waveguide cover flange (686A 687A): Type N, fomale (632C, 693C. 684C).
Swoep Width: Accurac. $\pm 10 \%$ for full band sweop. $+25 \%-15 \%$ or $\pm 3 \mathrm{MC}$, whichower is greater, for other colibrated swoaps.
Limeerity: Hath-voltoge point of sweep output cecurs within 5% of mid frequency.
Power Requirements: $115 / 230$ volts $\pm 10 \%$, $50 / 60$ cpsi appraximetoly 540 watti.
Price: $692 \mathrm{C}(1.0 \mathrm{~m} 2.0 \mathrm{rMC}) \quad \$ 3,090.00$
$603 C(2.0$ ஈ 4.0 KMC$) \quad 3,000.00$

- $\operatorname{CANC}(4.0$ to 8.1 KMC$) \quad 2,900.00$
$\begin{array}{ll}6864 \text { (} 8.2 \text { to } 12.4 \mathrm{KMC}) & 2,900.00 \\ -6.00 \mathrm{~A}(12.4 \text { to } 18.0 \mathrm{KMC}) & 3,400.00\end{array}$
$6680 \mathrm{~A}(12.4$ to 18.0 KMC$) \quad 3,400.00$
(Prices abowe are f.o.b. Foctory for cabinel modda. Rack mount instruments $\$ 15.00$ less.)

Deta subject to change without notice.

HEWLETT-PACKARD COMPANY

1056K Page Mill Rood • Palo Alo, Celifornie, U.S A. Field Roprosenforives in All Principol Arees Cable "HEWPACK" DAvenpert 6,7000

ments

that speed and simplify your work

ELECTRONIC DESIGN News 4Steered Arrays Sought for CommunicationsDesign Details Outlined for Thermoelectric Unit4
Slow but Steady Growth Seen for Marine Electronics 8Digital-TV Applications Pushed By IndustryDesign Flaws Called Top Unreliability Cause10
Maintainable Modular Packages Are Designed Maintainable Modular Packages Are Designed12
18
New LFE Display System Passes Initial Tests
Washington Report 20
Microsecond Card Reader at IBM Employs Capacitive-Coupling System 24
NBS Device Helps Scientists Study Electromagnctic Waves 26
Measurement Snarls Plague Maintainahility Drive 28
Some Electronic Chewing Gum Would Come in Handy 33
An Editorial
Calculating the Performance of RF Amplifiers, Doublers and Triplers 34
A handy guide for use in determining the harmonic content of complex wave-
forms-A. H. Katz
The "Tri-Stable" Flip-Flop Circuit: How It Works, How To Design It 38
This flip-flop circuit can be used in many cases greatly to simplify "logical design and provide considerable savings in components-C. K. Beagle
High-Voltage Testing: It Can Be Nondestructive 40
Causes of insulation breakdown, effects of corona. and methods of testing are covered-H. N. Miller
The Soviet Engineer: How He Learns; How He Trains; How He Works 44
A view of the Soviet engineer by a U. S. engineer who recently lectured in the USSR-K. V. Amatneek
Small, Multistage Blowers Cool Densely Packed Miniature Equipment 48A new line of small, multistage blowers cools high-heat black boxes
High-Speed, Adjustable Circuit Breaker Protects Wide Range of Transistor Circuits 50New circuit breaker is adjustable over wide current, voltage, and delay range
Compact, Adjustable Temperature Control Provides Performance of Much Larger Units 56
Temperature control occupies one-fifth the volume of conventional units

ELECTRONIC DESIGN

Cutting Your Reading Time in Half-Part 3 108Some proven methods for improving reading comprehension at the same timeyou increase your speed.-M. Q. Herrick
New Products 52
Careers 108
Advertisers' Index 112

Coming Next Issue

In the Sept. 28. 1960, issue of Electronic Desig.s. the editors explored the subject of "Converting Heat to Electricity." In that Staff Report, we examined the fields of thermoelectricity, thermionics, and magneto-hydrodynamics (MHI)).
In the Feb. 15 issue, in another Staff Report. Electronic Design will analyze in depth three techniques of energy conversion-batteries, fuel cells, and solar cells. This analysis will consist of three articles by engineers well versed in the application of these techniques.

For space and for many ground-based applications, power sources for electronic equipment must possess such characteristics as light weight, compact size, reliable and unattended operation, high energy per unit weight and volume, and long life. Many of these goals can be reached only through efficient use of the techniques which we will describe in the next issue.
[131

[^1] fight Hayden Publishing Company. Inc., 1961, 37,705 copien this issue

PRESS

into position . . . will not wrinkle or come off.

TTMMTH . 。

with STANPAT pre-prinfed blueprint items

Incredible but true! If you STANPAT repetitive drawing details, you cut the time involved from 3 hours to 15 seconds. This means you can do 3600 STANPAT jobs in the time it takes to re-draw and re-lefter one! That's why leading firms throughout the nation are furning to STANPAT, the remarkable tri-acetate that's pre-printed with designated blueprint items. Easily transferred to your tracings by an adhesive back or front, STANPAT relieves your engineer of time-consuming and tedious defails, freeing him for more creative work.

STANPAT is available in two types of adhesive backs:
A) Rubber base for standard drafting and tracing paper
B) Resin base to prevent leaching for papers that contain oils.

But whatever the application may be, there's a STANPAT product for your specific needs. For further information and technical assistance, complete the coupon below and mail.

Steered Arrays Sought for Communications

Electronically Steered Arrays Held Useful for Communications; Beam-Switching and Phase-Shifting Systems Now in Design.

Alan Corneretfo
 News Editor

S UCCESSFUL first test of a five-story electronically steerable array radar (ESAR), designed by Bendix Radio Div., Baltimore, for the Air Force and the Advanced Research Projects Agency, has raised hopes that electronic-beam steering techniques may be applicable to communications systems.
Bendix engineers are planning a series of communications tests for ESAR, which was designed as part of a developmental scanning and tracking system for aircraft, missile and space-vehicle surveillance. They believe that the existing system could be used for communications with only slight changes.

At General Electric's Defense Systems Div., Syracuse, N.Y., researchers are planning to add electronic phase shifters to a recently built, 24 -

Communications use is planned for ESAR electronically steered L-band array designed for radar surveillance. Array is part of frequency-conversion phaseshifting system controlled by Bendix-designed digital programer. Sloping, $50-\mathrm{by}-50-\mathrm{ft}$ face is fitted with radiating elements arranged in circular aperture of about $50-\mathrm{ft}$ in diameter.
by-24 element, electromechanically steered communications array from which they are getting their first experimental results.
Other companies, notably IV. L. Maxson Corp. Avco Electronics and Ordnance Div., Sanders Associates, and Sylvania Electronic Systems Div., are also exploring the use of electronically steered communications arrays.

Two Types of Systems

Are Under Consideration

Two of the three general types of electronically scanned antennas are being considered for communications. Bendix, GE, and Sanders are studying phase-shifting systems, in which there is one feed line and each radiating element requires a program-driven phase shifter. Maxson is concentrating on a beam-switching system that is essentially a fixed-phase shifting system. It would cover a sector with a large number of beams that would remain on and be available for communications at all times. In this system, a feed line mated to a directiona! coup!er is provided for each beam.

The general goal of both methods is to achieve the coverage of an omnidirectional dipo'e with the directivity and gain of array antennas. Maxson studies indicate that a compact, multiplebeam communications array could have at least $10-\mathrm{db}$ gain to as muc', as 40 db , depending on required beamwidth and range. Such an array, equivalent to a $10-\mathrm{ft}$ dish, would only be about 8 by 6 by 1 ft . It could support a six-way communications net, Maxson engineers suggest.

Electronic Scanning Has Four Main Advantages for Communications

Four important advantages are cited for electronically steered arrays-Hexibility, high-power transmission, adaptability to site hardening, and reliability.

Flexibility is largely a result of high scanning speed, possible because of the lack of inertia common in mechanically moving systems. The 50 -by- $50-\mathrm{ft}$ face of ESAR, which uses a fre-quency-conversion phasing scheme, can be scanned along its greatest dimension in less than $20 \mu \mathrm{sec}$. In some phased-array systems, inde-
pendent beams can be used to receive signals transmitted from several sources simultaneously
Maxson is studying many versions of its multibeam system for potential short-range communications use by a military agency. These systems are adaptations of the 3-1) radar system the company has designed for the Federal Aviation Agency. Use of two arrays in a multibeam system would make it possible to receive and transmit simultaneously, the company reports.
Some types of electronically steered communications systems are expected to be versatile enough to track a transmitting source automatically while maintaining communications.
In phased-array systems, like ESAR. that use multiple transmitters independently connected to individual antenna elements, high-voltage breakdown is said to be avoided at extremely high power. Also, the high available power can be used to achieve wide bandwidths, a benefit

L-band log periodic antenna element of ESAR array is one of 8,768 foam-potted units instolled in system. Element was chosen for its low mutual couplingabout - 25 db -and for its broad bandwidth.
that appears to be growing in importance.
Suitability for hardened sites is another advantage cited for electronically steered arrays. Hardening a conventional commurications site is difficult if a moving or a mast antenna is involved. Additional problems can result if a feed horn is included. GE has an Air Force contract to investigate hardened communications antennas of both the electronically and the electromechanically steered type. Bendix reports that its studies indicate phased arrays can be hardened economically
Phased-array systems using independently connected, redundant transmitters are inherently reliable from the system point of view, Bendix reports. Faulty components are not likely to interrupt performance of such a system.

Most Promising Application-

Space Communications
The companies investigating electronically steered arrays for communications expect that satellite and other space-probe projects will prove the most advantageous application of such systems. Command and control over space vehicles could be maintained by the tracking system, or conversely, the received message signal could be used for tracking. Maxson, however, is concentrating on short-hand microwave systems, including some suitable for truck mounting. One would be a scatter system.

Wide bandwidth resulting from available high power would make possible easy handling of video and other widehand data. Another application would be in angle-diversity communica tions systems. Formation of multiple beams with fixed displacement from each other permits introduction of very-high-order angle-diversity systems. Bendix engincers expect orders of angle diversity that cannot be approached reasonably with multiple feeds placed near the focal point of a paraboloid. A cluster of pencil beams having five elevation rows and five azimuth columns can provide 25 -order angle diversity, they state.

Problems-Signal Intermodulation,

Mw Waves, Simplified Design
Bendix is testing the effects of mutual coupling of antenna elements and the effects of system nonlinearities, which result in signal intermodulation in the ESAR-type system. The company does not expect signal intermodulation to prove a serious disadvantage, however. Bendix says.
The developmental ESAR built near Baltimore is an L-band system. For much higher fre-quencies-approaching millimeter waves-the logperiodic antenna elements used would become impractically small and numerous. The company is investigating ways of using a printed antenna pattern and an improved feed system. - -

RAYTHEON

this . 01% dvm is different!

Because... it has a unique self-adjusting stepping-switch drive which eliminates thyratrons, provides smooth, quiet, troublefree operation for longer life... it introduces Range Hold operation that restricts "stepping" when repeated readings on only one decade range are to be made... it comes as a space-saving half-rack module $8^{\prime \prime}$ square for portable use and side-by-side rack installation with a Beckman/Berkeley Printer, converters, etc., or as a full rack width model $5^{1} 4^{\prime \prime}$ high... it combines a fistful of other important features with recognized Beckman Berkeley experience. Write for Technical Bulletin 4011.

```
automatic polarity
automatic ranging
prine out
$995
```


NEWS

Design Details Outlined

Thermoelectricity Symposium Hears

D
ESIG.N details of a $5-\mathrm{kw}$ thermoelectric generator were revealed by Westinghouse Electric Corp. at the Symposium on Thermoelectric Energy Conversion in Dallas, Tex.

Device design, methods of measuring key parameters, and special problems such as hightemperature operation also drew much attention at the meeting.
The Westinghouse generator, built for the Navy's Bureau of Ships, uses thermocouples made of an improved p-type material, GeBiTe which was developed for use in the 400)- to $5.50-\mathrm{C}$ range.

Unit Could Be Even Smaller,

According to Project Engineers
Project engineers T. M. Corry, J. C. Kastovich, M. D. Fisher, and IV. C. Moreland reported that if a similar generator were built toxlay it could be half the size of the first unit, because of the knowledge gained in the development.

The generator directly converts heat, provided by the burning of kerosene or other fuel, into electric power. Because of heat-flux limitations, two units are required to provide 5 kw . Each of the two subgenerators contains 14 thermo-electric-generator modules placed circumferentially around the central heat source. Each generator morlule consists of 85 thermocouples.

Thermocouples Joined in Series

Provide 8.5 v, 200 w From Eoch Module
Thermocouples are connected in series so that each module provides output of about 8.5 v at 200 w into a matched resistance load of about 0.3 ohm . The generator module's can then be comnected in series, parallel, or any combination arrangement necessary. Cold water is used to carry heat away from the cold sides of the junctions, according to the description.
Original life tests on the thermocouples are still being monitored, however the tests have indicated a useful life in excess of $3,000 \mathrm{hr}$ under simulated generator conditions.
The focus on devices at the conference was in sharp contrast to the situation at the first indus-try-wide thermoelectric symposium two years ago. Engineers at the meeting reminisced about the last conference when the state-of-the-art was such that a device paper could not be found on the program. Material characteristics and con-

For Thermoelectric Unit

Device Uses Thermocouples to 550 C

tact-resistance problems were the major topics discussed at that time.

Irradiation Effects, Encapsulation

Among Subjects Discussed
Among the key problem areas brought up at this year's meeting were irradiation effects on materials, encapsulation techniques, and hightemperature operation. Rare-earth elements, a a ailable only in limited quantities until recently, are now being investigated for possible thermoelectric applications.

Sophisticated approaches, involving the use of computers, are being applied in describing the operation of thermoelectric elements, papers indicated. These techniques are also being evolved to achieve optimum design of segmented power generators. Analytical methods are complex, and gencrally result in inexact approximations. Further refinements in design approaches, such as those discussed, should lead to improved performance of operating equipment

The commercial availability of thermoelectric gencrators. in ratings of $5,10,50$ and 100 w , were announced at the conference by Westinghouse.
Prototype units are now available, with prices ranging from $\$ 1,7(0)$ to $\$ 6,000$. Life of the devices is estimated at from one to five years. - -

Westinghouse engineer checks over 5 -, 10 -, 50 -, and 100 -w thermoelectric generators now commercially available, on a prototype basis, from the company. Price ranges from $\$ 1,700$ to $\$ 6,000$.

Know ye that we, the corporation of Burnell \mathcal{E} Co., upon the recommendation of our customers in the electronics industry do hereby in augurate the esteemed order of Shrinker Cum Laude.

Be it further known that, (without undue modesty), the Shrinker Cum Liaude award has been made to Burnell for displaying the highest degree of shrinkmanship in the design and utilization of microminiature, subminiature and miniature toroids. filters and related networks.

The Shrinker Cum Laude award has also been tendered for signal
achievement in reducing developmental costs while increasing performance range-a feat accomplished by the designers of the new Burnell high selectivity, high attenuation, 1 kc crystal filter which possesses the following unique characteristics:
Attenuation -3 db bandwidth 3.8 cps

Shape Factor of on - 4t:1
Input - 500 ohms
Quepur Impedance-500,000 ohms Onets DIL-C 3908 B vibration standards

Other Burnell crystal filters available in frequencies up to 30 mcs with
considerable latitude in impedance range. Write for Bulletin $2 \boldsymbol{T} \mathbf{4} 5$.

See the complete line of Burnell components at Booths 2019-2021 IRE Exhibit, Warch 20-23.

NEWS

Slow but Steady Growth Seen for Marine Electronics

Japanese Entry Into Market Will Mean Stiff Competition, Electronic Exhibitors at New York Boat Show Predict

STEADY GROWTH in marine electronics sales, rather than a bcom, was foreseen by manufacturers exhibiting their wares at the Na tional Motor Boat Show in New York. Thanks to the recession, the much-touted boom in seagoing electronics never made it away from the dock in 1960 according to the final tally.
With alkfigures now in, the $\$ 20$ million market predicted for 1960 shrank to about $\$ 11$ million. This market was shared by more than 30 manufacturers, with major slices going to Ray-
theon, Sperry, and Radio Corp. of America
Mounting Japanese competition will also affect the sales picture. Novel designs and obviously high quality characterized Japanese loran receivers, radio direction finders, and depth sounders on exhibit at the show.

Nevertheless, a number of new sales areas were seen as contributing to future growth. The introduction of alternators in larger outhoard motors will mean power aplenty for boats so equipped and a new market for larger items such
as radar and high-powered radiophones
Another big market may shape up if air and marine navigation systems ever meet on common ground. "Right now there are about a dozen different methods of electronic navigation, including direction finders, loran, Consolan, and the several aviation systems," Raytheon staff planner Columbus Iselin noted. "I believe a common system, probably a form of loran, is certain to be instituted. The resultant combined market will mean lower prices and increased sales." - -

Electronic skipper keeps in touch with Raytheon's 100 -w marine radiophone. Watt-power race is shaping up in radiophones as more stations go afloat. Units up to 250 w are now available and salesmen warn that only the bigger sets have a decent chance of being heard. With power going up, the all-transistorized transmitter is further deferred. Designers are continuing their preference for tubes, which have proved to be more reliable, stable, and easier to service in marine gear. Approximately 15,000 radiophones were sold last year for a total market of about $\$ 6$ million. The second largest market in marine electronics was in depth sounders- $\mathbf{2 0 , 0 0 0}$ units for about $\$ 3.5$ million.

Hottest items in marine electronics are citizens-band radios such as this miniature unit by Ray Jefferson, Inc. More than 90 manufacturers are now competing for a share of this market, nonexistent two years ago. Citizens-band radios are meant to supplement ratizer than replace conventional radiophones, but customers have not been fully edu cated on this point, according to so ne of the more conservative exhibitors queried at the Boat Show. Units have limited power and range, but are proving popular for outboards. FCC licensing is not required, and many transceivers sell for less than $\$ 100$
Exhibitors at show predict shakeout in this field as novelty of handie-talkies wears off. Crowding of the few ovailable channels should also level off sales of citizens-band units.

Radar afloaf, such as this Sperry Radar "Five," is proving to be a slow-moving item. Only about 300 sets were sold last year by all manufacturers at about \$2, 000 apiece. Some manufacturers predict. that unsophis. ticated, stripped units for less than $\$ 1,000$ are on the way.

Japanese radio direction finders are imported by Bendix. Upper unit is a conventional, transistorized receiver with rotating loop and null meter. Lower instrument is an automatic direction finder with nonrotating loop and crt display selling in the $\$ 1,500$ class. Neat, terminal-board-type wiring is used. Both finders are made by Kodin Electronics Co. Bendix spokesmen indicate that the company plans to import other types of gear in the near future.

Loran from Japan features automatic readout on Nixie-type tubes. The receiver is transistorized and uses modular, plug-in units to speed maintenance. Manufacturer is Faruno Electronics Co.; importer is Triton Marine Products. The two companies also market a recording depth finder here. Prices of both units are equal to or higher than U. S. equipment and the distributor is emphasizing quality and design rather than price.

CIRCLE 9 ON READER-SERVICE CARD -

COMMUNICATIONS TRANSISTORS

PHILCO COMMUNICATIONS TRANSISTORS

for your requirements

- Whatever your specific requirements gain, noise figure, AGC and other electrical characteristics . . you'll find a Philco communications transistor that meets your needs precisely.
Unlike other manufacturers, who offer only limited lines of "general-purpose" transistors, Philco designs and produces transistors to meet specific requirements. Philco can do this only because the exclusive Philco Precision-Etch* process of manufacture permits precise control of all parameters and absolute uniformity.

To increase circuit efficiency and reliability, to reduce cost and to make your design easier . . . look first to the Philco line, which offers you the industry's widest range of communications transistors. You'll find one exactly right for your requirements.
for Communications Circuit Designers
To make it faster and easier for you to find the Philco communications transistor that best meets your needs, put this new guide to work for you. 12 pages of application information, descriptions of major types and a complete selector chart will speed your work. For your copy, write Dept. ED2161.

LANSDALE DIVISION - LANSDALE, PENNSYLVANIA

looking for a special potentiometer?
 different types of potenti-
ometers in its PRODUCT ometers in its PRODUCT
LOCATOR. 27 categories LOCATOR. . ${ }^{27}$ categories
from "AC" to "Wirewound" are included. Each ub-listing such as "Clutch," "Linear Motion," "Microminiature,"," Precision." or "Self-trimming" gives manufacturers name and thumbnail specs to aid in rapid selection. i2 items are further described by special literature bound in sections 2 or 3 of EDC
This is only one example of the more than 7,000 products from 2,212 companies which are displayed.
Handy Inquiry Cards or Applicaion Data Forms are bound. in to make it easier for you to obtain additional data - and manufacturers reps are also listed if you wish to phone for quick price and delivers: information.
Electronic Designers' Cataloy is ne more service provided by the publishers of Electronic Design.

NEWS

Digital-TVApplications

Slow-Scan, Contour-Free Digital TV May Be Used in Space Applications

A
SLOW-SCAN, contour-free digital TV system in development by Ball Bros. Research Corp. may be tabbed for eventual use aboard Mariner and other interplanetary probes.

The Boulder, Colo., firm, a relative newcomer to the digital TV game, has been conducting a six-month feasibility study under contract to Jet Propulsion Laboratory and plans to demonstrate an operating breadboard at JPL later this month.
The encoding system designed by Ball Brothers is based essentially on delta-modulation principles, but includes several proprietary innovations. The usual bandwidth-conservation advantages of delta modulation are claimed, but the problems inherent in this design approach. particularly contouring, are said to be minimized.
Contouring, the presence of sharp demarciations between adjacent areas of different tone values, is generally present to some extent in all pulse-cole modulation and digital TV systems. In pem TV', contouring is reduced by employing a large number of quantizing levels. Some pem systems employ as many as 128 levels; yet, psychological studies have indicated that the human eye can distinguish no more than 8 to 10 different shades of gray on a TV' screen.
Delta-modulation TV' likewise revpuires a larger number of quantizing levels than are psychologically necessary to minimize contouring.
The equipment to be demonstrated at JPL. will have independently variable scan, clock. and quantizing rates. Scan will be varied from one line to 20 lines per sec and quantizing from 3 to 16 levels. Only motionless, monoscope pictures, as would be transmitted from a space vehicle, will be demonstrated. - -

Ten quantizing levels were used to reproduce this lunar photograph by delta-modulated TV, according to Ball Bros. Research Corp. The presentation (with 525 line scan) appears quite free of contouring and has a fairly good gray scale.

Pushed By Industry

Live Demonstration in Washington

 Seen Sparking Government TestsTHE NEXT round in a persistent "underground" campaign aimed at obtaining a gov-ernment-sponsored test of digital TV will begin later this month in Washington, D.C. The occasion will be a live demonstration of digital TV at a meeting of the Washington section of IRE on Fel). 13.

Supporters of the test-primarily the Colorado Research Corp., CRC alumni now at neighboring Ball Bros. Researching Corp., and the National Bureau of Standards-are hoping for a test sponsored by the Federal Communications Cominission.

All three organizations will be represented at the Washington session. Ball Brothers will demonstrate live equipment, while Dr. Richard Webb, president of CRC, and William Coombs of NBS will discuss new modulation principles and handwidth-conservation aspects of digital TV.
Advocates of digital TV point out that elimination of redundant-information transmission. possible through digital coding methods, could result in a significant reduction of bandwidth per TV channel. The uhf TV' tests set for New York City would provide a cronvenient opportunity for definitive tests of digital TV's propagation characteristics and quality, it is said

At a closed meering at Massachusetts Institute of Technology last spring, the FCC, NBS, Bell Telephone Laboratories, and other interested organizations discussed the pros and cons of digital telecasting in considerable detail. The outcome was a recommendation to the Commission that the subject deserved further investigation and testing.

The FCC's research branch, however, is still "preparing these findings for submission to the commissioners," according to a spokesman.
Modulation techniques to be discussed at the Washington mereting will emphasize "differential yllantzaing." This techniques. ciolved from the lwetter-known delta-modulation seheme. requires d video encoder with nonlineas response characteristics. Amplitude of the encoder pulse varies exponentially with the brightness of the area being scanned.

The differential quantizing technique results in an coffectively great number of quantizing steps in the low-frequency (lightly shaded) areas of the picture. Since the eye is most sensitive to contouring in those areas, additional gray levels to minimize contouring are provided coly where they are actitally needed. a

ELECTRONIC DESIGN • February 1, 1961

HYPERCON ${ }^{\circ}$ CAPACITORS
 if Ultra-high capacitance
 \| Low voltage
 f Miniature size
 1 Low Cost

Designed for use in semi-conductor and other low-voltage circuits, these new Hypercon Disc Ceramic Capacitors offer capacitance values formerly associated only with electrolytic capacitors. Yet they are only a fraction of the size of comparable electrolytics . . . and sold at only a fraction of the cost!
Hypercons have excellent stability, exhibiting no loss in capacitance when operating above room temperature. Their triple-purpose resin coating serves as insulation as well as protection against moisture and

3 Volts d.c		12 VOLTS D-C	
$\mu \mathrm{F}$	Dizmeter in Inches	$\mu \mathrm{F}$	Dizmerar in Inches
. 1	. 225	. 047	. 275
. 22	. 275	. 1	. 400
. 47	. 400	. 22	. 595
1.0	. 595	. 47	. 840
2.2	. 840		

Hypercons are in mass production now, available for prompt delivery. For detailed specifications, write for Engineering Data Sheet 6141A to Technical Literature Section, Sprague Electric Company, 347 Marshall Street, Norsh Adams, Massachusetts.

BPRAQUE COMPOMENTS
CAPACITORS - RESISTORS - MAGNETIC COMPONENTS - TRANSISTORS - IMTERFERENCE FILTERS - PULSE-FORMING NETWORKS - PIEZOELECTRIC CERAMICS U!GM TEMPERATURE MAGNET W!RE - CEPAツ!C-BASE PR!MTED NETWORKS - PACKAGEC CCMPCNENT AESEMBLIES - FUNCY!CMAL E!G!?AL C:RCU!TS M!GH TEMPERATURE MAGYET W!RE - CERAYIC-BASE PRIMTED NETWORKS • PACKAGEE CCMPD
CIRC!E II ON READER-SERVICE CARD

KEEP WIRED IN...
with Electron Products' new encapsulated epoxy-tube capacitors. They help solve capacitor problems because they're smaller, lighter and cost less than hermetically sealed units ... yet match them in performance and environmental capability.

Applicable sections of MIL-STD-202(106A) and MIL-C-25 are met or exceeded ... humidity, temperature, immersion cycling, shock, vibration.

Certified test data are available on request.

Available for immediate delivery with metallized Mylar ${ }^{*}$, Mylar foil or metallized paper dielectrics; up to 600 VDCW rating in a host of values from 0.001 mfd . Standard tolerance $\pm \mathbf{2 0 \%}$...tighter
tolerances available from stock. Special capacitors built to meet your specifications.

Wire yourself into the latest capacitor engineering news ... write, telephone or telegraph for Data File ED-2

ELECTRON PRODUCTS division of Marshall Industries 430 North Halstead Street

Pasadena, California

NEWS

Design Flaws Called Top Unreliability Cause

AGREE Testing Procedures Detect Many Nonrandom Equipment Failures

Nicked wire caused by stripping tool, upper right, was a problem uncovered during one AGREE lest, engineer Griffith W. Lindsay told Electhonic Design. The manufacfurer overcame the trouble by designing a thermal stripping tool, lower left, which allows removal of insulation without damaging wire, as shown upper left.

Robert Haavind
 News Editor

DESIGN FLAUS have been the most commonly detected reason for unreliability in airborne equipment checked by the Air Force under rigid Advisory Group on Reliability of Electronic Equipment (AGREE) reliability requirements, according to an Air Force spokesman.

This, and other conclusions reached through the applications of AGREE procedures, were presented by Griffith W'. Lindsay, staff engineer, Communications and Reconnaissance Div. of the Air Materiel Command's Aeronautical Systems Center, Wright-Patterson AFB. Dayton, Ohio, during the Seventh National Symposium on Reliability and Quality Control in Philadelphia.

The majority of field failures classed as random in operational studies are not actually random. but can be traced to specific correctable causes, it was determined. AC.REE testing prowed an effective tool for detecting weaknessess in design in time to correct them early in a program, Mr. Lindsay said. Methodical development is necessary to achieve reliable equipment, he commented, but it does not assure reliability.

Failure modes uncovered by the AGREE program, Mr. Lindsay commented, could not have been found by using any other commonly known test method. These failures would have eventually occurred in operating equipment, so that

Equipment	Initial MTBF	MTBF After AGREE	Number of Electronic Parts
Time Division Data Link (ARR-60)	50	200	5,890
Time Division Data Link (ARR-61)*	-	250	3,382
Short Range Novigation Equipment (TACAN)	17.5	150	1,010
Airborne Radar	under 13.9	over 55	1,349
Airborne Radar	3.5	over 20	9,000

- Corrective oction taken on the basis of the ARR-60 tests was incorporated in the design of the ARR.61, resulting in acceptance on initial tests.

Under ordinary tests the failure rate of debugged equipment tends to be fairly constant, with seemingly random" failures. With the high-stress tests prescribed by AGREE however failures tend to occur in groups, indicating specific failure modes. Corrective act:on results in a significant decrease in the slope of the failure rate curve.
the cost of AGREE testing is more than covered by future savings in maintenance and supply costs, according to the A.MC engineer.

Stresses Exceeding Any Expected in Operation; Special Statistical Methods Necessary

The following recommendations for specifying reliability recquirements were cleveloped.

- Statistical acceptance procedures must be made specially for each te'st.
- Test stresses must exceed any stress that may be encountered by the equipment under operational conditions.
- A few units must be tested for a relatively long time (at least three times the mean time between failures in the case of A(:REE). Only after this procedure do statistical samplings of larger numbers of equipment for short periods become valid.
- Contracts containing reliability reequirements should be awarded only to contractors having demonstrable reliability competence.

In making this last point. Mr. Lindsay explained that management is a vital factor in achieving reliability. If management does not maintain tight control over every detail of design and production, corrective action becomes difficult, he said.

It was evident at the reliability conference that the Air Force's Aeronautical Systems Center has taken the lead in applying ACBEE procedures. The stringent testing requirements involved were recommended by a group composed of representatives from the Department of Defense and industry-the Advisory (iroup) on Reliability of Electronic Equipment-to achieve desired reliability levels. Indications at the conference were that despite the proved effectiveness of the recommended procedures, the Navy, Army, and parts of the Air Force have been lagging in applying the requirements.

Design engineers came under fire during an-

Low leakage and useful hfe at very low collector currents permit low power operation - as low as 30 microwatts per stage. High performance PLANAR transistors and diodes use simplified circuitry (see illustration), keep costs down, reduce power requirements, and permit high-density packaging. Prime applications: missile and space vehicle guidance and instrumentation.
For your down-to-earth needs, where weight, space and power are less critical, similar logic circuits will operate with switching rates greater than 5 mc .
$m \mu$ A leakage in FairchildPLAMAR transistors and diodes permits

FOR SPACE VEHICLES

maximum ratings and electrical characteristics ($25^{\circ} \mathrm{C}$ except where noted)

	$\begin{aligned} & \text { total } \\ & \text { diss } \end{aligned}$	$\mathrm{v}_{\text {CBO }}$	$\mathrm{v}_{\text {EBO }}$	$\begin{gathered} n_{F E} \\ (1 C=150 \mathrm{~mA}) \\ \left(\mathrm{N}_{C E}=10 \mathrm{~V}\right) \end{gathered}$	$\begin{gathered} \mathrm{h}_{\mathrm{FE}} \\ (\mathrm{IC}=0.1 \mathrm{~mA}) \\ \left(\mathrm{V}_{C E}=10 \mathrm{~V}\right) \end{gathered}$	$\begin{gathered} C_{O D} \\ \left(I_{E}=0\right) \\ \left(V_{C B}=10 V\right) \end{gathered}$	I'Bo	$\begin{gathered} I^{\prime} \mathrm{CBO} \\ \left.\mathrm{NCB}_{\mathrm{CB}}=60 \mathrm{~V}\right) \\ \left(\mathrm{T}=150^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \text { ICBO } \\ \left(\mathrm{N}_{\mathrm{CB}}=50 \mathrm{~V}\right) \\)\left(\mathrm{T}=125^{\circ} \mathrm{C}\right) \end{gathered}$
2N1613	3 0w	75V	7.0V	40-120	20 min .	18pf typ. 25pf max	$0.8 \mathrm{~m} \mu \mathrm{~A}$ typ. $10 \mathrm{~m} \mu \mathrm{~A}$ max. $\left(v_{C B}=60 V\right)$	$\begin{aligned} & 1.0 \mu \mathrm{~A} \text { typ. } \\ & 10 \mu \mathrm{~A} \text { max. } \end{aligned}$	-
2N1711	3.0 w	60v	7.0 V	100.300	35 min .	25pf max.	$\begin{aligned} & 10 m_{\mu} A \max . \\ & \left.N_{C B}=50 V\right) \end{aligned}$		$10 \mu \mathrm{~A}$ max.
FD100	WIV	P diss.		$\mathrm{T}_{\text {A }}$	$\mathrm{T}_{\text {stg }}$	$\begin{gathered} \ln \\ (V=-50 \mathrm{~V}) \end{gathered}$		$\begin{gathered} \mathrm{RE}_{\mathrm{E}} \\ (100 \mathrm{mc}) \end{gathered}$	
	50v	250 mw		-65° to $+175^{\circ} \mathrm{C}$	-65° to $+200^{\circ} \mathrm{C}$	$0.1 \mu \mathrm{~A}$		45\%	

Mountain View, California

NEWS

other session because of their frequent hesitation to change designs hased on field data. Fail ures in operating equipment are too frequently blamed on poor field servicing, according to II Bayer. Douglas Aircraft Co., Inc., El Segundo. Calif., when design problems are the actual cause of the difficulty.

Mr. Bayer recommended that before design engineers start on an important job, they be given an opportunity to observe operating conditions under which the planned equipment will be used. This would give the designer a better "feel" for the equipment, and would make him more understanding of feedback information when it is received from the field after the equipment goes into operation.

Despite detailed equipment specifications, Mr Bayer commented, some important design features might be overlooked. On the other hand some required tests may be too severe for the actual operating conditions to be encountered.

New Statistical Approach Suggested

For Accelerated Semiconductor Testing
A new experimental and statistical approach to accelerated aging of semiconductors under high-stress conditions was described by C. A. Dodson and B. T. Howard, Bell Telephone Laboratories. This work is currently being applied to transistors being used in the Nike-Zeus anti-missile missile program. according to sources at the conference.

Temperature was the stress used in accelerated life testing of a pnp diffused-base germanium mesa transistor, type 2 N 559 , used for high-speed switching at low power-about 150 mw . A set of temperature levels was selected for the tests, and a group of transistors was baked at each temperature level for a prescribed time interval. After each interval, the transistors were measured for failures, the temperature in the testing oven was raised to the next level, and the units were replaced for the next test interval. This procedure was repeated until all transistors failed. Then a new time interval wiss selected, and the procedure was repeated using the same temperature: levels.
These tests gave lailure distributions of stress with respect to time, and also time with respect to stress. Then an expression was sought for the median failure as a function of stress level, where median failure is defined as the time to fail half of the devices at a specified stress level.

Since this relationship is generally nonlinear, a suitable transformation of the axes was sought to obtain a linear plot. If the actual relationship could be determined in this manner, predictions of life distribution under normal operating
stresses could therefore be made conveniently. Preliminary experiments indicated that the reciprocal of the absolute temperature was the proper stress transformation, according to Mr. Dodson. and temperature intervals were selected on this basis. The proper time transformation, according to preliminary results, is the logarithm of time. Log-normal plots of test data produced encouraging results.
Although the log-normal distribution has not been statistically proved, results so far indicate that it should prove a valuable tool in accelerated life tests

Sequential Redundancy Appears Likely
 For Many Future Satellite Designs

Advantages cited for sequential rather than parallel redundancy may lead to this approach in many future satellite designs.
If it can be assumed that a particular device does not deteriorate appreciably with age, according to Dr. A. I.. Aroian. Space Technology Laboratories, maximum reliability can be achieved through sequential redundancy, rather than with the usual parallel approach.

In a sequential system, redundant devices remain off until they are needed to replace devices that fail. In the usual parallel system, redundant units are turned on. and in stand-by condition, until they are needed. With the sequential approach, Dr. Aroian pointed out, each device is used for its full life, while in the parallel approach all clevices wear out simultaneously

Mathematical methods for dealing with prohlems such as gradual deterioration were devel oped hy Dr. Aroian. R. II. Myers, Hughes Aircraft Co., presented advantages and disadvantages of each of the approaches from the standpoint of particular design requirements.

Neither approach is always hest, they concluded, but the many advantages of sequential design should lead to greater use of it in future satellite and space-vehicle systems. - -

Powder Metallurgists Organize New Section in New York Area

I new mational urganization for ponder metallurgists. the American Powder Metallurgy Institute, has established a section of the Institute in the New York metropolitan area for engineers, metallurgists, and others interested in powder metallurgy.
Meetings will be held periodically during the fall, winter, and spring to exchange technical information and ideas, to discuss advances in powder metallurgy applications, and to hear speakers describe various aspects of the powder metallurgy industry.

There are 3 ways to design a klystron. Which is best?
 t?

The answer there is no one best way. The design of a klystron must vary to meet specific performance requirements. For instance:
For the $4 \mathrm{~K} 50,000 \mathrm{LQ}$, left, external-cavtty design is best for producing 10 kw power output at $755-985 \mathrm{Mc}$. (Proof: more than 25,000 hours of near unattended service in troposcatter systems!)
For the $4 \mathrm{KP} 40,000 \mathrm{SQ}$, center, internal-cavity design is best for developing 10 Mw pulse output power at 2845-2865 Mc. (Froof: better than 2, sco hcurs in centinucus rf service!) Fcr the sKilocccclQ, right. a ccmbiruxion of internal and
external design is best for achieving 75 kw minimum average power output at $i 55.98 \mathrm{smc}$. (Prcof: tested to 10 cc kw :)
Where will you find klystrons designed all three ways? Where will you find every klystron always shaped the best way to meet specific needs? Only at Eimac... where unmatched tube-making skills permit complete design flexibility. For more facts, more figures, get your free copy of "Advancing Klystron Performance Through Design Freedom." Write: Eitel-McCullough, Inc., San Carlos, California.
Fower Tubes - Microwave Tubes - Amplifier Klystrons

CIRC:E 15 ON REACER-SERVICE CARD
ELECTRONIC DESIGN • February 1, 1961

[^2]

[^3]
Maintainable Modular Packages Are Designed

Unicell Packaging Allows Replacement Of Small Cells
Containing Few Components, Within Larger Modules

Components in gated counter are contained in small circular cells, shown as dark areas in the module at left. Connections between cells are made on printed board on one side of the module, and connections to pin-type connectors are made on a similar board on the other side, as shown above. This 195-component gated counter measures 4×4-in., and is $5 / 8$-in. thick. Heat dissipating components are arranged toward outer portions of the module to aid in heat transfer to the anodized aluminum frame Precision Circuits, Inc. New Rochelle, N. Y., developed the technique, and is applying it to equipment design.

MAINTAINABLE, high reliability modules are the object of the Unicell packaging concept developed by Precision Circuits, Inc., New Rochelle, N.Y
Many circular cells, each containing only a few components, are inserted into machined holes in a module's foam plastic structure. Epoxy is used as a filler within cells, and also is used to bind circuit boards to the foam structure. A metal frame, with pin-type connectors on one side, surrounds the module.
When a part in a module fails, that module is removed and the bad cell located. This cell is taken out of the module by breaking solder joints, and u new cell is soldered in place. Thus, only a small cell containing few components. rather than the full module, is thrown away. lowering maintenance costs.
Low weight, and resistance to shock and vibration are further advantages of the approach.
Precision Circuits adapts equipment to Unicell packaging using schematics prepared by the equipment manufacturer. - -

Unicell is inserted into machined hole in a foam plastic module. When all cells are in place, printed-circuit boards are attached to each side of module and solder points are made between component leads and printed wiring. A conformal coating of easily cut epoxy is then used over the surface of the boards to protect the solder points. Techniques for anchoring modules within an equipment package include use of a metal strip, screwed across the top of several plugged-in modules, or use of metal channels around modules to hold them firmly in place.

Cutaway cell shows how epoxy holds components rigidly in place /some epoxy has idy in place some epoxy has been removed so that com-
ponents are easily seen). Com ponent cavities mochined in each Unicell are purposefully left somewhat larger than com ponent dimensions, occording to Stephan Gulyas, vice-president in charge of research and engineering for Precision Cir cuits, so that the remaining space can be filled with epoxy. This approach holds components tightly in place, while retaining resiliency because of the surrounding foam plastic. Since only a cell, rather tiran a full module, is thrown away when a failure occurs, low maintenance costs are ex pected with Unicell packag ing. Replacement cells can be stocked at repair points for use when a cell fails

CIRCLE 17 ON READER-SERVICE CARD

good reasons why you can standardize with

REGatRAN

 SEMICONDUCTOR POWER SUPPLIES
SPECIFICATIONS

*REGULATION: 0.03% or 0.01 V from no load to full load and 105 to 125 V line. (0.1 C or 0.01 V for 3 -amp models.) RIPPLE: Less than 1 millivolt rms.

INPUT: 105 V to $125 \mathrm{~V}, 50$ to 60 cps .
CIRCUIT PROTECTION: Four-year field-tested electronic and electrical circuit protection.
MOUNTING: Rack and table.

* 0.01% or 0.003 V regulation available on special order. REQUEST BULLETIN 721A.

NEWS

Com System Would Use

Efficient Use of Channels Foreseen
When Received Power Varies Widely

ACOMMUNICATIONS system has been proposed in which the data rate would be varied by varying the bandwidth used in accordance with changes in interference, changing conditions of multipath reception, weather conditions and other factors. The chief advantage would be efficient use of communications channels. The technique would permit a system to be designed for conditions better than the worst expected.
The variable-data-rate or variable-handwidth technique has been proposed by J. E. Palmer, Radio Corp. of America, Camden. N.J., who suggests that it would be especially useful in systems where the received signal power varies over a wide range. A variable-bandwidth system, he reports, could be used to maintain a constant signal-to-noise ratio at the input of a detector.
In system operation, down-fades in received signal level would be compensated for by transmission with reduced bandwidth (lower data

 RECEIVE TERMINAL
Transmit and receive terminals of proposed vari-ble-data-rate communications system show how tape loop is used to store traffic. Speed of tape past record and playback heads is proportional to signal-to-noise conditions in. which the system is momentarily operating

Variable Data Rate

rate), and up-fades would allow transmissions with expanded handwidth.

Fixed Bandwidth Detectors

Employed in RCA System

Mr. Palmer has developed on paper a system that makes use of variable-bandwidth transmission and that employs fixed-bandwidth detectors.
In this system, the transmit terminal is designed around a tape loop that moves at a speed (at the recording head) determined by the bandwidth of the output of an associated multiplexer. The circuit also contains a modulator and feedback receiver.
Fixed-bandwidth multiplexed data are recorded on the loop when they appear at the output of the multiplexer. The recorded data are played back after a delay at a rate determined by a signal from the feedback receiver. The output of the receiver is the signal-to-noise ratio at the main receive terminal relative to its longterm average.
The signal out of the playback head goes to the modulator where it serves as the modulating signal. Because data are put on the tape at a fixed rate and taken off at a variable rate, there will be a variable delay between recording and playback. When the playback speed is less than the record speed, tape will pile up until playback speed excereds the record speed.

The transmit terminal also contains facilities for truncating the amount of variation in data rate, which will decidedly increase the usefulness of the system.

Demodulated Received Signal

Is Transmitter's Modulated Signal
The receive terminal contains a demodulator a tape loop, a feedback transmitter, and a demultiplexer. The demodulated received signal is the modulating signal generated by the transmitter. Its bandwidth varies in direct proportion to the received signal-to-noise ratio, if transit time is neglected.
Output of the demodulator is recorded on tape, whose rate past the record head varies in direct proportion to the signal-to-noise ratio. After a short delay, the recorded signal is played back at a fixed speed. Therefore, bandwidth of the signal coming off the loop at the receiver terminal is always equal to the original fixedbandwidth of the transmitter multiplexer and can be fed directly into the fixed-bandwidth receiver demultiplexer. - -

Announcing Eldorado's Model 1050 Solid State Gated Counter-a triple purpose instrument

- $100 \mathrm{Mc} / \mathrm{s}$ Direct or Gated Counting of random or continuous events
Time Interval Measurements with 10 nanosecond resolution
Frequency Measurements to $100 \mathrm{Mc} / \mathrm{s}$ without heterodyne conversion

BASIC DATA
Counting and Frequency Measurement STORAGE 10° counts (9 digits) MAX COUNTING RATE $100 \mathrm{Mc} / \mathrm{s}$ DOUBLE PULSE RESOLUTION
Botter than 10 nanoseconds TYPICAL INPUT PULSE REQUIREMENT TYPICAL START/STOP PULSE REQUIREMENT

For Time Interval Measurement EXTERNAL TIME REFERENCE Trizger require monts same as for input pulse above or will

APPLICATIONS - The multipurpose Model 1050 is particularly suited for use in weapon or satellite systems, advanced electronic measurements, and nuclear research. Among specific areas of application are studies of missile velocity, acceleration and trajectory; space vehicle tracking; shock wave investigations; radar, telemetering, and communications; frequency stability, phase, and phase shift measurements; pulse width, rise, fall and duty cycle measurements; semiconductor studies; astronomical measurements; nuclear flight time, coincidence, and particle burst studies.
NEW LOGIC - KEY TO $100 \mathrm{Mc} / \mathrm{s}$ - The high counting rate of Eldorado's $100 \mathrm{Mc} / \mathrm{s}$ instrumentation is made possible by new decimal counting logic developed by Eldorado engineers - specialists in nanosecond pulse techniques.
For details on the new logic, contact your Eldorado engineering representative for Bulletin D-1050, or write us directly. Demonstrations at your convenience.

- When used as a time interval meter, Model 1050 requires an external oscillator for time reference: when
used as a traquency meter, It requires en external
time base. Eliorado can suiply both. The Eidorato time base. Eldorado can supply Soth. The Eldorado Mose built in oscillator for time roference.

Flidorado Hlectronics

Dept. 362821 Tenth Street - Berkeley 10, California - THornwall 1.4613 CIRCLE 19 ON READER-SERVICE CARD

FOR A NON-LINEAR SIGNAL OUTPUT-THE VERNISTAT ADJUSTABLE FUNCTION GENERATOR

See that curve on the panel? You adiust it by hand any shape, real quick! You draw your own $Y=f(X)$ curve and pull out a repeating, non. linear voltage to control the process you require. Almost any process that can be concontrolled by the signal from a Vernistat Adjustable Function Generator.

Here's the story:
In the Vernistat. the autotransformer uses equally spaced taps, giving a highly linear output. These taps can be crowded or spread apart, in which case you get permanent, nonlinear output related their spacing. In the Function Gener. equally spaced taps which you can select o form the nonlinear function you de. sire. Using 34 sliders, you set your vol. lage up and down the Y-axis, graphing the Y-values against X. The X-axis represents angular position of the shaft over a range of 10 shaft turns.
Actually, the entire Function Adjustable Assembly is nothing more than a switch for pulling the proper curve out of the Vernistat. Once the curve is set an Interpolating Vernistat provides for
a smooth voltage output between taps. The steel case of the Assembly is $3 x$ 7×8 inches, which shows you how compact the mechanism is you

APPLICATIONS

You can use the Function Generator both as a lab instrument and a system component. Some important uses are. 1. Rapid Empirical Determination of Func. tions: Eliminates time consuming mathematical calculations and the production and wiring of a large number of special padding resis.
tors. Once a curve is determined, a nonlinear Vernistat can easily be constructed to pro. vide a simplified, permanent. function-generating unit.
2. Linearization: The Function Generator can be used to compensate for nonlinearities in with the signal to be corrected or used as a nonlinear feedback element in a servo loop. 3. Input to Analog Computer: it converts nonlinear data to an electrical input. 4. Control and Programming: Used in chemi. cal, petrochemical and other continuous processes to control a variety of functions. control will be a function of time.

Several series of Vernistats are available for use with the Function Generator. For a complete description drop us a line.

DOES THE BURDEN PHANGE THE NATURE OF THE BEAST?

The subject is LOADING ERROR. Con sider, for example, the Vernistat a.c. potentiometer -a highly linear device, which... be the load heavy or light. retains high efficiency. This is a direct result of its low output impedance which brings unique benefits to forward-look ing designers

1. Loading error is extremely low. For in stance, the loading error on a Model $2 \mathrm{B3}$ Vernistat operating into a 500K load is
$.026 \%$ or less. A de pontior the same input impedance (65 K) and the same load has a maximum loading error of about 2%. Our Model 3B with a $Z_{\text {In }}$ of 50 K and $\mathrm{Z} . . .$, of 40 ohms takes the load ing error down to .008\%.
2. Several loads can be driven from a ing error. (And Vernistats can drive other Vernistats in cascade.)
3. Stray pickup from electrostatic fields is cut to practically nil.
4. Phase shift due to stray capacitance is greatly reduced.
Where the specs call for high resolution plus high accuracy, the high resolution pots are thoroughly baffled. To attain high resolution, the wirewound pot requires many turns of fine wire with dance, loading error and puadrature Thus, accuracy goes to pot. With Vernistat both specs are attainable.
When specifying accuracies many designers tend to separate linearity and loading error requirements. Why no think in terms of loaded linearity; that is, inearity plus loading error? That's the way to tie down total error at once If you can afford to be a happy-go-lucky on this point, you may end up with isola tion amplifiers supporting very accurate pots in your electronic system - where a single Vernistat could do the job batter and perhaps more cheaply.
The finer details have been written up on 6 coarse sheets of paper headed "Loading Error-A Review." If you dea with data transmission in analog equip tems, fire control computers, etc.) -you'l be more than diverted. Write for your copy today.

vernistat division

PERKIN-ELMER CORPORATION
768 Main Avenue, Norwalk, Connecticut
"CARPE DIEM" - "Solze the Day" - ought to be the motto of ovory original equipmant
designer who runs in analos computer or serve circles. One of the opportunities you can sood grasp of the subjoct.

New LFE Display System

High-Density Storage Drums Can Hold up to 52.8 Million Bits

I NITIAL acceptance tests by the Army Corps of Engincers on its first RI)-9() Random Access Storage and Display System have been completed satisfactorily.

The RD-900, developed by Laboratory For Electronics, Inc. of Boston, is able to select at random any desired information from its memory and immediately display it on a view screem Since this can include page, tabular. graph, chart, map or any other form of display, all elements required for a complete and accurate interpretation of a given situation are immediately available for decision making.

Data On Drums Retrieved

Upon Request In 1 Ser
In operation, the system performs three functions: (1) writing data on high-density stor age drums, each of which will hold 1.6 million characters; (2) reading data back when requested; (3) displaying data at the requesting viewing station at a rate of up to 12,800 characters a page. Any data on the drums are retrieved upon request in approximately 1 sec
The system can be used with any computer, or operate independently. If used with a computer

RD-900 monitor displays a map of the U. S. Additional information can be overlaid on the map. The system will also display charts, graphs, and pictures, as well as aphanumeric characters. As many monitors as desired can be used with the central RD-900 system.

Passes Initial Tests

processed information is automatically stored and updated in the RD-900 files.

Supplementary Equipment

Includes High-Speed Buffer

Displays planned for the system include a $21-\mathrm{in}$ square crt, a large wall display which can present images from the display console when desired, and a random-access slide-projector system. A high-speed buffer is now under development under an add-on contract. This buffer will be used between the RD-900 and a computer to speed up data transfer.

An RD-900 system can consist of from one to 3:3 high-density magnetic file drums, plus electronic controls and a master viewing console. As many additional viewers as are required can be added for a particular installation. Only one console with supervisor's controls is necessary for any RI)-9(0) system, no matter how many viewers or file drums are used.

Additionally, no matter how many file drums or viewers are used in any particular application, only one each of the file control, information control, and power is necessary.

The RI)-(MO) is expected to be used in highlevel command and control situations where vital decisions would have to be made quickly on the basis of information retrieved from the system's massive storage files, It can free computers for the vital computation tasks that would be necessary in fast-changing tactical situations. - -

Up 1033 file drums, each hoving a storage capacity of 1.6 million alphanumeric characters, can be used in RD-900. This model shows three file drums (small units on left); the master console with status indicator panel (front center); and, to the rear, a file control, viewer control, information control, and power supply.

. . . and Minuteman and Talos and Atlas and Jupiter and Thor and Titan and Bomarc and Zeus and Pershing and hundreds of other military and industrial applications.

For Delco Radio's highly versatile family of 2 N 174 power transistors meet or exceed the most rigid electrical and extreme environmental requirements.
Over the past five years since Delco first designed its 2 Ni 174 , no transistor has undergone a more intensive testing program both in the laboratory and in use. in applications from mockups for commercial use to missiles for the miltary. And today as always, no Delco 2 N 174 leaves our laboratories without passing at least a dozen electrical tests and as many environmental tests before and alter agng.
This 200 per cent testing, combined with five years of refinements in the manufacturing process, enables us to mass produce these highly reliable PNP germanium transistors with consistent uniformity. And we can supply them to you quickly in any quantity at a low price. For complete information or applications assistance on the Military and Industrial 2N174's or other application-proved Delco transistors, just write or call our nearest sales office.

Newark, New Jersey 1180 Raymond Blyd 1180 Raymond Blvd.

 Mitchell 2-8165Santa Monica, Calltornia 728 Santa Monica Blud. UPIon 0-8807

Chicago, Illinois 750 Weat 51 st Stree POrtamouth 7.2550

Detroit, Michigan 57 Harper Avenue TRinity 3.6560

PELCO Division of General Motors . Kokomo, Indiana

FIRST SSB Receiver completely designed to Navy specifications for shipboard installations uses HERMES CRYSTAL FILTERS

Altenuation Choracteristics, Hermes SS8 Crystal Filiers, Models 869 U and 869 L.

Single-Sidebond Receiver, Model AN/WRR-2. developed by National Company, Inc. For U. S. Novy installations, used Hermes SSB Crystal Fillers. Models 869U and 869t.

Hermes SSB Crystal Filters, Models 869 U and 8691. Shown approx. $1 / 4$ size.

The AN/WRR-2 Single-Sideband Receiver, developed by National Company, Inc., has been adopted by the Navy as standard communications receiving equipment for installation aboard Submarines, Cruisers, and Aircraft Carriers.
The National Company selected Hermes SSB Crystal Filters, Models 869 U and 869 L for the AN/WRR-2 for their ability to reproduce a high quality SSB signal under adverse environmental conditions encountered in submarine and aircraft carrier operations. Months of service testing verified the quality and performance built into these filters by Hermes engineers. Specifications for these SSB Crystal Filters are:

	Model $\mathbf{8 6 9 U}$	Model $\mathbf{8 6 9 L}$
Carrier Frequency	80 kc	80 kc
Frequencies at 3 db	80.3 kc max.	76.0 kc max.
	84.0 kc min.	79.7 kc min.
	$\pm 1.5 \mathrm{db}$ max.	$\pm 1.5 \mathrm{db}$ max.
Passband Response Variation Environmental Requirements (MIL-F-18327A)	Operating Temperature Range	$-28^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Non-operating Temperature Range	$-62^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	

National Company's AN/WRR. 2 Single-Sideband Receiver is a companion unit to Westinghouse Electric's AN/WRT-2 Single-Sideband Transmitter, now standard Navy equipment, which also uses Hermes SSB Crystal Filters. Hermes has supplied SSB Filters from 100 kc to 16 mc .
If you have a filtering problem, call on Hermes engineering specialists to assist you in the design of your circuitry and in the selection of filter characteristics best suited to your needs. Write for Crystal Filter Bulletin.

Itek Electro-Products Co.

75 CAMBRIDGE PARKWAY, CAMBRIDGE 42, MASSACHUSETTS

WASHINGTON爯思

John J. Christie

EXPENDITURES FOR MILITARY ELECTRONICS will continue upward under provisions of the Eisenhower budget. Spending in Piscal 1962 would appear to be on the order of $\$ 500$ million over the current fiscal year. On the basis of new obligational authority, however, the new budget definitely implies a leveling-off of the military market, unless the Kennedy Administration makes sharp upward revisions for major weapons and space systems.

Missile spending in the next fiscal year will amount to just over $\$ 4$ billion, as compared to an estimated $\$ 3.8$ billion in the current fiscal year. Expenditures in electronics and communications will remain at just over $\$ 1$ billion.

Although the level of procurement expenditures will not be much higher than current spending, increased funds will be available for a number of systems emerging from the development stage. This is because funding for SAGE, DEW, and BMEWS was substantially completed out of 1961 and prior funds. Also, the funding of several large weapons systems is nearly completed.

Under the Eisenhower budget, fiscal 1962 expenditures for missile research, development, test, and evaluation will run at about the same $\$ 1.6$ billion level estimated for the current fiscal year. The emphasis, however, will shift to tactical missiles, both offensive and defensive, as R\&D, test, and evaluation associated with strategic missile systems begin to wane.

The Army's Nike-Zeus anti-missile-missile system is allocated a whopping $\$ 225$ million for R\&D and test and evaluation, but procurement funds were withheld pending full-scale tests in the summer of 1962.
$R \& D$, test, and evaluation expenditures for the Defense Dept. 's space program will be up nearly $\$ 100$ million in Piscal 1962. This will mean stepped-up development work on the Midas, Samos, Advent, and Transit satellites.

All phases of the Navy's anti-marine-warfare program are stepped up under the Eisenhower budget, and a variety of R\&D programs involving the electronics industry got higher allocations, including reliability, materials research, and oceanography.

NASA DEVELOPMENT OF AN ACTIVE SATELLITE for commercial use will begin this year out of a supplemental appropriation of $\$ 50 \mathrm{mil}$ lion. The budget provides substantial funding for the program in fiscal 1962, but also assumes that part of the cost will be met by contributions from commercial communications Pirms. Eisenhower mentioned $\$ 10$ million as the expected contribution in 1962. NASA's increased budget also provides additional funds to permit Purther experiments with the advanced Redbound passive communications satellite and the Nimbus meteorological satellites. In the field of scientific space exploration, NASA will be able to
proceed with development of a large orbiting astronomical observatory and orbiting geophysical observatories.

THE 1960 FOREIGN TRADE LEDGER of the electronics industry will show an alarming increase in imports but also a substantial gain in exports. Imports in the traditional Department of Commerce classifications, relating mainly to entertainment goods, are estimated to have reached $\$ 103$ million for a 25 per cent increase over 1959. Moreover, there were an estimated $\$ 33$ million in additional electronic imports not previously classified in Department of Commerce reports. The new classification embraces testing and recording instruments, radar equipment, and several miscellaneous product lines.

On the bright side, the electronics industry's 1960 exports are estimated to have hit $\$ 450$ million for a 10 per cent gain. Increases were pretty much across the board.

Sustaining the momentum in exports will require an intensive search for new markets. The Commerce Department is off to a good start with a quick 70-country survey of marketing possibilities for radar and for microwave and other communications equipment. officials feel that the improved fiscal position of foreign governments and industry, and urgent needs for modernizing communications and transport, make these fields particularly promising at this time.

Hopes are also expressed that Western Europe's stepped-up interest in automation, a result of highly favorable business conditions and severe labor shortages, will open a market for U.S. manufacturers of system components.

Afurther increase in imports this year is inevitable. But, the increase is likely to be sideways rather than vertical. It may be a case of whistling in the dark but some government officials are predicting that imports of Japanese consumer goods reached their peak last year. Imports of British consumer items began a decline in 1960.

Imports of components, however, increased sharply last year and are expected to continue upward. Manufacturers of test instruments, radar, and communications equipment can expect more foreign competition on the basis of trends that became evident in 1960.

THE FUTURE OF ENGINEER UNIONIZATION now depends entirely upon what organized labor can accomplish in this Pield. Engineers and Scientists of America has closed up shop, turning its affiliates loose as independent unions. With ESA throwing in the sponge, a never really successful attempt to blend professionalism and unionism has finally Pizzled out.

Up to now the AFL-CIO unions also have made a poor showing in their efforts to organize engineers and technicians. However, the AFL-CIO has made a searching analysis of its failures and is ready to offer new appeals and to try new organizing methods.

Several new approaches were recommended in a recent study by Everett M. Kassalow, research director of the AFL-CIO's Industrial Union Dept. The demise of ESA serves to underscore the main premise of this report, which is that attempts to play up professionalism and play down unionism have made engineer unions ineffective hybrids. ESA, of course, accentuated professionalism even more by refusing to admit technicians as dues-paying members (although it was willing to bargain for them during the last couple of years).

semicónductor products news

| Silicon Performance at Germanium Prices

General Electric unijunction transistors have been simplifying circuits and providing significant savings in overall circuit costs for a couple of years now. Because of their unique characteristics (stable negative resistance, extremely low trigger current, stable trigger voltage, high pulse current capability), one unijunction transistor can often replace two conventional transistors in a circuit. Again keeping your pocketbook in mind, and the reliability of your circuits, G-E has added the 2 N1671 Series to the line, giving you silicon performance at germanium prices. And just take a look at the saving possible in a couple of typical circuits.
Typisal Circuir Comparizons

Transisfor Time Delay Circuif	Unijunction Cirevil Equivalent
3 tronsistors*	1 unijunction transstor
	\| Zener diode
1 Zener diode	1 reloy
1 relay	1 copacitor
2 copacitors	4 resistors
8 resistors	
SAVINGS:	$\$ 3.30$ (germanium transistors) $\$ 16.50$ (־silicon transistors)
Transistor Voltage Defector	Unijunction Cirevis Equivalent
2 transistors*	1 unijunction tronsistor
1 potentiometer	! potentiometer
2 copaciors	1 copacitor
5 resistors	3 resistors
SAvings:	S0. 10 ("germanium Iransistors)

Incidentally, price reductions have also been made on the standard unijunction types 2N489 through 2N494. Your Semiconductor District Sales Manager has comolete information, or write to Section 23B88.

Are you one of the thousands who read the print off the page any time you get hold of information on the Tunnel Diode? Well, with just a little patience you can feast on the most comprehensive reference work available on Tunnel Diodel theory and applications. The G-E Tunnel Diode Manual is coming soon. Watch for it?

1 How Stable Can a PNP Low Be?

Series 2N1414 and 2N525 low-frequency germanium alloy transistors are an interesting example of the value of the extensive life testing that General Electric has conducted for years (we have test data on every transistor we've made since 1954, and some even earlier). You know they are the industry's most stable because parameters are completely spelled

out, including "minimum", "typical", and "maximum" values. And we can spell out these parameters because they are backed up by 10,000 hour life tests (to date) on 138 units.

We continue the testing, too. In fact, 300 new units start life test each week. On an average, more than 30,000 General Electric transistors are on cycled life-test racks day in and day out. And it sure pays off in reliability!

> It you can't wait for the new Tunnel Diode Manual (and we can't blame you for that), how about the new Fifth edition of the General Electric Transistor Manual? It includes Tunnel Diode switching circuits and amplifiers, and much, much more in 320 fact-filled pages. Ask your G-E Semiconductor Distributor.

> Guaranteed High and Low
Temp. for JAN 2N526

Speaking of the value of 10,000 hour tests (the only thing more valuable is 30,000 or 40,000 hour tests, and we do that too), our JAN 2N526 transistor features guaranteed maximum high temperature $I_{\text {co }}$ and minimum low temperature $h_{\text {fe . backed up by the stability proved by }}$ the $\mathbf{1 0 , 0 0 0}$ hour life test charts shown.

Somicenductor Products Dept, Electronics Park, Syracuse, Now York. In Canada: Canadian General Electric Co., 189 Dufferin St., Toronto, Ont. Export: International General Electric Co., 150 East 42nd Street. Now Yoik, Now York.

WRITE SPECS

 YOU'VE NEVER WRITTEN BEFORE!

Wide Operating
Temperature Range

High Spring Retention

Excellent Wear Resistance and Hardness

BERYLCO Beryllium Copper alloys combine

 all these properties By extending the performance possibilities of metal parts, Berylco beryllium copper alloys are opening new areas of design thinking. And you can specify Berylco alloys without fear of complication because they fabricate easily by standard production methods. Some designers are finding that one beryllium copper part will do where two parts were formerly required. Factual data on Berylco alloys will show you why the use of strip, rod and casting ingot is increasing so rapidly. Write now for our latest BERYLCO BERYLLIUM COPPER BULLETIN. A knowledgable, experienced technical staff of field men and mill men stand ready to help you develop design possibilities into performance realities.

High Strength

Resistance to Anelastic Behavior

High Fatigue Strength

THE BERYLLIUM CORPORATION

Reading, Pennsylvania
CIRCLE 24 ON READER-SERVICE CARD

NEWS

Microsecond Card Reader at IBM Employs Capacitive-Coupling System

Punched-card hole sensing at microsecond

 speeds is believed attainable by a capacitancetype system in development at the IBM Research Laboratories, Yorktown Heights, N.Y. Known as the card capacitor, the device employ; two printed-circuit boards with parallel conductors arranged on each board and a metalized card.The conductors are so arranged that when the boards are placed with the conductor sides facing each other, orthogonal crossings are located at each of the 960 possible hole positions in an IBM card. The card itself consists of a metal layer sandwiched between two sheets of ordinary card stock. When the card is inserted into the reader, the foil is grounded and there is a capacitance between the boards at the punched holes.

The card is read by applying voltage pulses to conductors on one of the printed-circuit boards. At a hole, this pulse is capacitively coupled to the orthogonal conductor on the second board.

Many such units could be paralleled by connecting the sense lines. Thus, 500 cards would require only 80 sensing amplifiers for 80 -bit words as in a standard IRM format.

With this arrangement, $100-v$ input pulses to a 500 -card memory would generate $1-\mathrm{mv}$ output pulses at each hole. IBM researchers believe a memory block of this size is about the maximum possible without utilizing special compensation techniques to reduce output capacity. Modules of up to 5,000 -card size could be feasible with compe'nsating circuits. but drive considerations may become limiting beyond that.

Card capacitor employs orthogonally oriented printedcircuit arrays and metalized cards to sense holes by capacitive coupling. Device is said to be capable of microsecond reading times and should be quite rugged. Memory modules of up to 5,000 cards could be built, according to IBM.

Cw Infrared Maser Developed;

Gas Unit Uses Helium and Neon

Development of a continuously operating infrared maser has been announced by the Bell Telephone Laboratories. The device is a gas maser of the helium-neon type, with a continuous output of several hundredths of a watt at one micron.
The cw operation of the maser was demonstrated this week by voice transmission for a distance of several feet over the IR beam. Modulation was accomplished by a Kerr cell. Information bandwidths of up to 300 mc can be impressed on the beam, according to BTI scientists.
Pumping is by gas discharge through the helium-neon mixture, with neon as the active clement. Helium atoms accelerated by the discharge excite the neon atoms by collision. It was found that several modes of maser action occur in the neon, and that the device emits several different IR frequencies simultaneously. The two principal IR frequencies differ by about 30 mc and have been experimentally heterodyned to produce an rf signal of that frequency. This provides additional confirmation of the maser's coherence and cw operation.

The device was developed under the direction of Ali Javan, BTL scientist. Additional details will appear in the Feb. 15 issue of Elecrronic Desige.

B-52H Equipped To Carry Douglas Skybolt Missiles

The new "H" version of the B-52 Stratofortress will be modified to carry four Skybolt missiles. When it reaches operational status, the solidfuel Douglas Skybolt will be launched from the " HI " as far as $1,(0) \mathrm{O})$ miles from multiple targets. Once launched from the aircraft, the Skybolt will be ab!e to follow a ballistic path to its target, traveling at hypersonic speeds.

Deliveries of the eight-jet 13-52II to the Strategic Air Command are scheduled to begin later this year. Present orders for the bomber will extend production to mid-1962

Accuracy Is Our Policy . . .

In the article, "Designing Low-Pass Filters from Lossy Helical Coaxial Line," in the Dec. 7, 1960, issue, omissions were made in the graphs on p 30. In Fig. 3a, indicating loss vs. length of filter helix, the middle curve was the basic 3 -in. helix. The curve on the left was 6 in . and the one on the right, 1.5 in . In Fig. 3c, the curves were placed too far to the right on the graph.

TRANSISTOR - REGULATED

- Five-Year Warranty
- Transient-Free Output
- Exclusive Regulator Circuit

Two new lines of power supplies - one high and one low voltage line - are available now from POWER SOURCES, INC. Both lines feature the exclusive POWER SOURCES regulator circuit that provides full protection for the transistors without DC fuses. Both lines are warranted for five full years. Warranty includes all semi-conductor components. Cooling systems of advanced design insure long life and trouble-free operation.

For prices and complete specifications on POWER SOURCES high and low voltage solid state power supplies, write, wire or phone today.

Spactiy nowe socucs or
POWER SOURCES, I NC. Burlington, Massachusetts

With RADAC I, Radiation's portable, low cost data acquisition system

Selecting data from low-level analog pick-offs and putting them into the right format for entry into a digital computer is frequently the most costly step in a performance evaluation program. RADAC I (Radiation's Data Acquisition Cart) permits you to take this step directly and rapidly-eliminating much expensive data processing equipment and appreciably reducing computer time.

RADAC I combines Radiation's Radicon analog/digital converter, Radiplex low-level electronic commutator, and an Ampex tape recorder (with the necessary logic circuitry and power supplies) into a single mobile unit. The system handles up to 48 analog inputs from resistive or thermocouple sources (as low as $\pm 5 \mathrm{mv}$ full scale) with a resolution of $\pm 10 \mu \mathrm{v}$. After digital conversion, the information is recorded in computer format on magnetic tape. Data formats are available which are directly compatible with most large and medium scale digital computers.
For more complete data on RADACI, write to Dept. ED-2R, Radiation Incorporated, Products Division, Melbourne, Florida.

THE ELECTRONICS IMDUSTRY ALSO RELIES ON RADIATIOM FOR
RADIPLEX 89 - a 48 -chonnel low-level multiplaxer with broad data processing applications. Features rugged solid-state circuitry, almost unlimited programming llexiexceptional ease of operation and maintenance. RADICORDER - Multistylus recorder provides highspeed instantanecus readout for wide range of data acquisition or processing systoms. Eliminales necessiy duces computer work loads.

TOMS - Telegraph Distortion Monitoring System pinpoints type and source of rrouble on teletype, data processing and similar communications links without interrupting trafic. Ulira-compact TDMS can replace most lest equipment now
tenance and monitoring.

NEWS

NBS Device Helps Scientists Study Electromagnetic Waves

A
VERSATILE tool for the investigation of clectromagnetic waves which originate from sferics or electrical discharges in the atmosphere has been developed by the National Bureau of Standards at Boulder, Colo.
"Ephi," the name for this new system which locates and analyzes sferics, is reported capable of appreciably greater accuracy than directionfinding systems which have been used in the past.
The experimental equipment for the Ephi system has been installed near Brighton, Colo (about 20 miles northeast of Denver's Stapleton Airfield) by a group of NBS scientists. Three 125 ft vertical antenna towers are spaced about 4 miles apart, forming the vertices of an equilateral triangle. Except for the rare case when a storm is occurring the exact center of this triangle, a sferic radio signal will reach each antenna at a slightly different time

Signals Received by Antennas
 Go to Central Control Station

The signals received at each antenna are fed over coaxial cables to the central control station of the system. Here electronic equipment determines the relative difference in time of arrival of the sferic signal from each antenna, and, from this, the direction from the station to the lightning source is automatically determined.
Since sferics travel with the speed of light and the antennas are so closely spaced, the differences in time of arrival at the three antennas are so small that they are measured in microseconds. The maximum difference in arrival time between the antennas at Brighton is only about $21 \mu \mathrm{sec}$. The Ephi equipment is able to make such measurements of time difference with an accuracy of small fraction of a microsecond.

In addition to determining the direction of arrival of sferic signals, the equipment at the central station at Brighton counts the total number of sferics occurring in any desired time interval, and can count the number of sferics arriving from several different directions at the same time. The sferic waveform can also be photographed, either with still or motion-picture cameras, and retained for further detailed studies aimed at a better understanding of radio-wave propagation as well as the nature of the lightning itself.
In addition to its value as a research tool, Ephi is reported potentially of value in tracking such severe weather phenomena as tornados and hurricanes. - -

CIRCLE 27 ON READER-SERVICE CARD * ELECTRONIC DESIGN • February 1, 1961

How to establish rating values for power transistors

by RICHARD F. MOREY, JR.

Manager, Applicalions Engineering, Cle vite Pransistor
Division of Clevite Corporation

Every manufacturer of power transistors provides information on the various circuit valves within which it given transistor will satisfactorily periorm. These valves or "ratings" are established on the absolute maximum system and are defined so that "the rating values, if exceeded, will cause permanent impairment of the device." Since permanent damage can occur as a result of exceeding rating limits or as a result of an unqualified rating, Clevite Transistor exercises great care in the development of ratings and the proof of their validity.

Clevite places particular emphasis on ratings for junction temperature, power dissipation, collector current, and collector voltage. Each of these ratings is independent and it is not generally possible to approach more than one rating simultaneously. Therefore, specific tests are performed such as "thermal resistance" to establish maximum power dissipation and collector diode leakage current $1_{\text {cm, }}$, at both room temperature and high operating temperature to establish maximum rated collector to base voltage. Figure 1 is a diagram of the Thermal resistance test, while Figure 2 indicates the testing configuration for establishing essential collector to emitter voltage ratings.

Other tests are performed to determine collector cur rent and junction temperature. High-temperature storage life tests to establish maximum junction temperacure are further supplemented by Clevite's process of aging transistors at temperatures in excess of the eventual maximum rating.

Fig. 1. Thermal resistance test
Perhaps the most important tests are the collector to emitter breakdown tests ($\mathbf{V}_{\text {crs }}$.w. and $\mathbf{V}_{\text {ckn }} \ldots$) which are used to determine the maximum collector to emitter voltage. Figure 3 indicates a typical germanium power transistor operating in breakdown region. (bserve that the bias applied between emitter and base differs for each of the seven curves. This bias differential causes the

Fig. 2. Coliector to emither voltage test
curves to differ significantly. Curve 1 breaks down sharply at 45 volts, while curve 6 breaks down initially at 118 volts, but upon transversing the curve, the voltage drops and another breakdown occurs at a point slightly greater than 60 volts. Curves 2, 3, 4, and 5 are somewhere between.

Curve 7 is simply the curve of the collector to base diode and is show'n here for reference purposes.

It may be noted in a particular instance, such as curve 1 , that at some voltage (in this case 45 volts) collector current increases without limit. This is the voltage at which collector multiplication causes the overall current gain (alpha) to equal unity.

The remaining curves serve to indicate the effect of a change in bias at different voltage and current conditions.

The tests and data shown here are only a segment of the total program undertaken by Clevite Transistor to assure a continuous high standard of product quality .. "reliability in volume.'

Detailed Technical Data Bulletins are available on all Clevite's Power Transistors and Diodes. To obtain tech nical information, please request Application Bulletins $1 \& 2$.

RCA Scrambling Device for Banks Foils Savings Passbook Forgeries

A scrambling device which makes it virtually impossible to forge passbook signatures in the withdrawal of savings-bank deposits and, at the same time. substantially reduces customer waiting time at tellers' windows has been developed by the Radio Corp. of America.
Known as Signagnard, the device reproduces a passbook signature as an unrecognizable mass of broken lines. When the passbook is presented at the teller's window, the device returns the signature to its original appearance for comparison with the customer's signature.
Ther new protection system makes use of fiber optic:s-glass tubes that carry light and images aromed beods and eorners. Signagnard may be likened to cable or telephome wires. with each individual with being a glass tube.
Each tube picks up a small segment of the signature and transmits it to the othere end of the tuhe viat a devions ronte. This scatters signature wegments thronghont the unintelligible mass that is imprinted on sensitized paper.

In the bank the fiber opties tube is re-reversed (o) bring the serambled signature batch to its original form for comparison with the signature.

Banks are expected to nse the device in conjunction with electronic data-processing systems sithated in their matn offieses. This would elimi mate the need for doplicate records of signature and acconnt stathos in cach branch office and also would do alway with time-consuming withedratwal checking proceclures.

From Maine, Not Fort Sumter

Indiscriminate knob fwiddlers are foiled by giant variometer rotor for Navy's wlf transmitter being constructed near Cutler, Maine, for underwater communications. Variometers are made by Permali, Inc., Mount Pleasant, Pa., of plastic laminated wood veneer. Each of two tuners will carry $4,000 \mathrm{lb}$ of $3 / 4$-in. cable. Stators, even larger, will be wound with $5,000 \mathrm{lb}$ of wire. < Circle 27 on reader-service card
ELECTRONIC DESIGN • February 1, 1961

TYPICAL BENDIX SPECIAL-PURPOSE CABLES THAT SOLVE CRITICAL ENVIRONMENTAL PROBLEMS

1 Heavy Duty-Ground Support Cable 2 Benseal x Missile Control Cable
3 Fabric Braided-Aircraft and Missile
4 Metal Braid-Aircraft Nacelle Cable
5 High Temperature-Radiation Resistani Cable
6 High Temperature-Lightweight-
7 "Wet Wing" Aircraft fuel Cell Cable
8 Rewirable-Jet Engine Control Cable
, High Temperature -1500° F.-Ther mocouple Cable

Bendix cables-products of over a quartercentury of design and manufacturing experience -are proving their complete reliability in a countless variety of applications involving critical environmental conditions.

BENDIX CABLES - BENDIX CONNECTORS

Designed together to work best together

Scintilla Division
 SIDNEY, NEW YORK

CIRCLE 28 ON READER-SERVICE CARD

MO8T COMPLETE LINE!

Gremar makes more series of RF connectors and components than are available from any other source $\cdot \mathcal{R}^{\text {and }}$ and then some! Gremar exclusives use with MIL-type sub-miniature coaxial cables; power dividers; impedance transformers . . and others.

MOST COMPLETE STOCKS!

Gremar always has more than 750,000 assembled RF connectors of more than 2000 types on the shelf ... plus over $8,000,000$ assembly of standard connectors or quick adaptation to your special requirements.

MOST COMPLETE SERVICE!
Because Gremar connectronics ${ }^{2}$ concentrates engineering, production and quality control on RF connecto and components only, you can depend on Gremar to solve you design, delivery and reliability see. Address your inquiry to:

descriptive literature
available on requeat
 RELIABILITY THROUGH QUALITY CONTROL Dept. B Wakefield, Mass., CRystal 9-4580 CIRCLE 29 ON READER-SERVICE CARD

Measurement Snarls Maintainability Drive

Analysis and Definition Difficulties, Lack of Techniques Dominate Third Maintainability Conference in Texas

D
ESPITE increasing military pressure on industry to improve maintainability of electronic equipment, industry still lacks clearly adequate standards of measurement and is plagued by problems of definition and analysis. Until these difficulties are overcome, a system of describing equipment maintainability in numbers will probably not be evolved for general use.

This was emphasized time and again at the Third Conference on Maintainability of Electronic Equipment sponsored by the EIA and held at San Antonio, Tex.

Typical of the problems still requiring solutions were those posed by Col. W. B. Latta of the Army's logistics office, who said the Army was faced with:

- "The need to know how much it costs to have a repair part in the system.
- "The need to know how much it costs to provide a maintenance technician to accomplish the repair.
- "The need to know when it is more economical to "throw away" modules rather than repair them.
- "The necessity to provide the contracting officer with a meaningful basis on which to accept or reject contractural proposals that would improve maintainability. In this area, a need is felt for providing contractural incentive which will impel the contractor to simplify the maintenance of Army equipment.'
Solution of these problems is expected to lead to new design procedures and new electronic developments. The Navy is actively pursuing maintenance innovations. As reported by Capt. T. W. Murphy of the BuShips shipbuilding office, one of the Navy's serious problems is to keep sulficient numbers of experienced electronic technicians. The Navy, therefore, is searching for techniques, built-in test equipment. and fault locators that will make servicing of the basic equipment easier, he said. Another problem. that of the

Central Structure for Maintainability

Maintainability factors described in six levels of abstraction are arranged to interrelate the factors that remain invariant from one hardware system to another. This arrangement was designed at IBM to "put the maintainability problem in perspective," and was part of a paper delivered at the EIA's third maintainability conference.
growing stze and complexity of electronic gear, is being experimentally approached by a concept of integrated electronics compartments in which the equipment is not housed in the traditional individual cabinets. In answer to a question on this concept, Captain Murphy said that a production line is currently being adapted to this approach and that installation of an integrated compartment is expected in six months. These compartments will be completely air-conditioned and may ultimately be completely built and assembled at a contractor's plant and "dropped" into the ship during construction.

Eliminating the 'Monsters'

From Automatic Test Equipmen

The Navy is looking for answers to the problem of creating "monsters" out of automatic test equipment. They are very aware of the drop-off in mean time between failures that occur with the addition of component test capability, selfindicating circuitry, and the like.
No answer was available to the problem of how to deal with changes in philosophy between original and final designs of equipment produced by different contractors, or subcontractors, for a basic equipment, or when personnel changes during production. This is another area in which the Nawy would like some answers, Captain Murphy said.

A Dept of Defense maintainability specialist, Sidney Hirshon, presented the Air Force's hopes for design innovations.
"We visualize," he said, "completely automatic sensing devices which, when coupled with builtin reclundant circuits, will rapidly detect the faulty unit and revert to the additional operating mode for safe operation.
"We visualize automatic self-calibrating and self-regulating equipment to insure constant intolerance operation coupled with warning devices to indicate when out-of-tolerances cannot be selfcorrected. We visualize built-in marginal stressing circuits which will predict incipient failures alld indicate the need for preventive maintenance. We visualize all low- and medium-power and most high-power electronic circuitry handled by solid-state modules $1 / 20$ th or $1 / 50$ th the size of present-day conventional units performing the same functions.
"We therefore visualize extensive use of dis-posal-at-failure maintenance rather than repairtype maintenance," he said.

In reply to a question concerning the current status of MIL-M-26512, Mr. Hirshon said that it is undergoing revision to put more "teeth" in it and that the revised issue will be available shortly.
A panel of military maintainability specialists made these points in speaking for the services:

(Created Specifically for Printed Circuit Applications)

Volume - $1 / 8$ cubic inch max Package Density - 8 per cubic inch, 13,824 per cubic foot.

Type: Model C Relay.

Contacts: SPDT, dry circuit to 1 amp resistive.
Temperature: $-65^{\circ} \mathrm{C} 10+125^{\circ} \mathrm{C}$.
Insulation
Resistance: 1000 megohms (a $125^{\circ} \mathrm{C}$.
Dielectric
Strength: 1000 VRMS @ Sea Level.
Convenient Size: $1 / 2^{\prime \prime}$ Cube, allowing best compatibility in size to other printed circuit components.
Optional Terminals: Long or short leads for printed circuit applications, or hook type for standard wiring.
Construction: Balanced armature construction, proven the best approach available for resistance to extremes of vibration and shock, exceeding all present military specifications.
Environmental Characteristics: To meet all military relay specifications for components of this size.

-Trade Mark of Hi-G, Inc.

bradley field, windsor locks, CONn

keep your signals clean with engineered magnetic shielding

Keep wlray magnetic fields out of your high gain input transformers and cathode ray tubes. Keep your signals free of noise, hum, cross-talk and distortion. You can do it only with engineered magnetic shielding.
These high-permeability shields are made from ex isting tools in a broad variety of single and multiple structures-cylinders, spheres, truncated conesfor applications ranging from dc into the audio range and higher. They can be used with almost all conventional transformer core and coil assemblies to provide any degree of magnetic, electro static or RF shielding against undesired signals of
all classes. Reduction of field strengths to 100 db and beyond is common.
With Magnetic Metals shielding, both the electrical and mechanical engineering is already done for you. Simply let us know your requirements . . . We'll engineer the exact type of shielding you need. In selection of raw material, design, fabrication, annealing, testing and gaging, Magnetic Metals has amassed a great backlog of shielding experience. For a better understanding of shielding and help in specifying it, write for our informative booklet, "Magnetic Shielding of Transformers and Tubes."

Magnetic Metals Company

Hayes Avenue at 218t Street, Camden 1, N.J.
853 Production Place. Newport Beach, California transformer laminations • motor laminations•tape-wound cores powdered molybdenum permalloy cores • Blectromagnetic shields

NEWS

- The U. S. can alfford to pay any price that will give it positive, effective maintainability,
- The U. S. can build a vast numbers theory, hut it will do no good if it loses sight of the grails. Dollars spent on maintainatility are a means to an end in effective performance. They are the means to an end to develop, produce. and put in use items that can be maintained. The hasic "number" is performance. Reliahility and maintainahility "numbers" must be oriented to this number. If the U.S. waits for all the "numbers" to be developed, it will never reach any goal.
"Integration of Maintainahility Requirements into the Research and Development Phase of Weapon Systems" was the subject of a paper by J. W. Lewis, Aerospace Medical Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio. He noted that what is needed from an Air Force point of view is an adequate and integrated program to implement the requirement that weapon system components be serviccable and repairable. The cffort must begin at the time equipment design begins, in fact, even at the time of the development of system requirements.
A controversial subject was raised by a duestion asked after Mr. Lewis made his presentation. The questioner said: "The estahlistment of a separate group controlling maintainability is generally advised and will be required by revised MIL-M-26isl2. What sort of group in terns of education, background. etc., should be estab. lished?"
Mr. Lewis replied: "There is no known way by which you can specify this data until you study the functions to be assigned a specific group. This will determine the type's and quantities of people a specific organization will need.'

Another question-"Can a separate group be financed from contract funds, how stable would it be, what is its relationship with design engineer-ing?"-was answered:
"Design review is a finite aspect of the contract and since it is a contract requirement, it is justified contractual cost item. Rescarch and development aspects of maintainability can be financed partly by study contract effort and partly by companysponsored programs, including support engincering for commercial proxluct lines. The militiary is calling more and more for contractor-support systems which again makes financing a proper contractual cost."

Solutions to Problem Suffer

From 'Undistributed Middles'

A comment very pertinent to designers was made later in the discussion: "Three things have
come out of this discussion that we should get on the record. First, there is insufficient emphasis applied to defining in a systems requirement specification what the maintainability requirements should be.

Second, we give and get the impression that maintainability is synonymous with accessibility and repairability-analogous to human engineering design.
"Third, we tend to view design for maintainability as a 'review' feature after the fact of design engineering. Maintainability is a subsystem design problem. How do we get functional performance? How do we get trade-offs? The solution suffers from undistributed middles. W'e must stop looking at just components, accesses, automatic vs. technician testing, and take a look at the 'middles' in the training aids, manuals, etc."
In Session III of the conference, three papers were presented on the subject of "Design for Improved Maintainability:
Asked at this session was the question: "Do any studies provide data relative to maintenance prohlems of automatic ground support equipment?" The answer was that there is "no knowledge of any. It should bee recognized that autsmatic equipment is. in effect, a tender trap). The same technicians that are mable to maintain regular equipment are required to maintain "votic allomatice equipment.

Dr. M. J. Marcus. IBM Ferleral Systems Dis: proposed a method for putting "The Maintainability Problem in Systematic Perspective." Dr. Marcus recommends structuring maintainability by identifying and interrelating the factors in the problem that remain in ariant from one hard"are system to the wext. If the concept of invariance is applied to maintainability. then the problem cam be gradnally ordered and brought under control. As the field of invariance in maintainability is expanded. control of the problem will increase.
Close to the end of the conference general comment was made relative to the "neglected man"-the prime maintenance tool-the twolegged tool. Engineers were enjoined to take better care of him. In reference to the comment carlier on deemphasis of fundamentals in training. it was suggested that perhaps it should be the other way around with emphasis on standardization of fundamentals. A final challenge was made that design be oriented around one known design parameter, that of the techacian classification, such as Airman-s level. or any other appropriate level.

The papers delivered at this conference have been published by Engincering Publishers. Elizabeth, New Jersey, under the title "Electronic Maintainability, Vol. 3." - -

Magnetic tapes of "Mylar"
 insure reliability of recording and playback

The difficulty of duplicating test conditions means that much of the information on your magnetic tapes could not be replaced at any price. Tapes of "Mylar"* polyester film protect your investment in valuable recorded data. Their small additional cost is negligible compared with the cost of the data they contain. Here's why they provide higher reliability than any other tapes.

Less track

displacement.

Because "Mylar" is virtually unaffected by changes in temperature or humidity, tapes do not shrink or
swell to cause shifting of tracks. Chart 1 compares lateral shifting of track due to dimensional change of "Mylar" and cellulose acetate. Tapes of "Mylar" minimize possibility of garbled or weak signals caused by track displacement.

Fewer signal dropouts. Chart 2 compares "Mylar" with cellulose acetate in cupping due to temperature and humidity change. Insignificant change in "Mylar" minimizes possibility of signal dropout caused by loss of total contact with the recording or playback head.

Less tape breakage.

Since most breaks start as edge nicks, the high initial tear strength of "Mylar" reduces chance of breakage
and subsequent failure to record critical information. Chart 3 compares initial tear strength of "Mylar" and acetate. In addition, "Mylar" polyester film has the highest tensile strength of any instrumentation-tape base. And "Mylar" does not lose its toughness with age, repeated playbacks or storage because it has no plasticizer to dry out.
chart no. 3

The superiority of "Mylar" can make an important contribution to the reliability of your magnetic-tape system. Ask your magnetic-tape supplier to recommend the specific tape of "Mylar" for your needs.

DU PONT

MYLAR POLYESTER FILM
E. I. du Pont de Nemours \& Co. (Inc.)
E. I. du Pont de Nemours \& Co. (Inc.)
Film Department. Houm \#ED-11, Wilmington 98, Delaware
Film Department. Houm \#ED-11, Wilmington 98, Delaware
Please send free. 12'-page booklet of comparative test data to help me evaluate mag-
net ic tape reliability.
Name
Company
City
CIRCLE 32 ON READER-SERVICE CARD

Specify TI 2N1141 series or TI 2N1405 series P-N-P Germanium Mesa High-Frequency Transistors

performance chart
L1, L8 TURNS 24 ERAMEL WIRE CLOSEWOUND ON CTC LSS 12. L4, L6 10 TUANS «32 EMAMEL WIRE CLOSEWOUMD ON CTC LS9
 $\begin{array}{llll}2 N 1405 & 2 N 1405 & 2 N 1405 & 30 \\ 2 N 1405 & 2 N 1406 & 2 N 1405 & 27\end{array}$ $\begin{array}{llll}\text { 2N1405 } & 2 N 1406 & 2 N 1406 & 27 \\ \text { 2N1405 } & 2 \text { W1406 } & 2 \text { N1407 } & 23\end{array}$ $\begin{array}{llll}\text { 2N1405 } & 2 \text { N1406 } & 2 \text { 2N1407 } & 23 \\ \text { 2N1 } 105 & 2 \text { W1407 } & 2 \text { N1407 } & 20\end{array}$

Design-in Texas Instruments $2 N 1141$ series transistors to obtain 380 mw output at 250 mc from your power amplifiers in telemetering applications in missiles and military communication systems.
Texas Instruments 2N1141, 2N1142, 2N1143 germanium mesa transistors providing maximum dissipation of 750 mw at $25^{\circ} \mathrm{C}$ case temperature, 35 volts at $100 \mu \mathrm{a} \mathrm{I}_{\mathrm{c}}$, and $\mathrm{f}_{\text {max }}$ to 750 mc , are ideal for your VHF power amplifier and oscillator circuits.

析This 40-me bandwidth amplifier is an outstanding example of using Texas Instruments 2N1405 series transistors to obtain $30-\mathrm{db}$ gain and compensate for cable losses in transmission line systems. These devices which have noise figures as low as 5 db at 200 mc will also provide similar functions in your line and video amplifiers, r-f and i-f amplifiers and mixer-oscillators.
The 2N1405, 2N 1406 and 2N1407 give you the best high frequency low noise/high power gain combination in the industry and are now available from TI in production quantities.

Check these specifications and select the particular germanium mesa transistor that meets your specific requiraments. All 2N1141 series and 2N1405 series devices are stocked in depth by your authorized TI distributor. Call him or your II sales engineer today for price and delivery information plus detailed reports on 2N1141 and 2N1405 applications.

TYPICAL ©MARACTERISTIES AT 25'c	201141	2 21142	20114	2N103	201483	2×1607
TYPICAL COMMON-EMITTER SHORT CIRCUIT FORWARD CURRENT TRANSFER RATIO AT 100 mc	13.5 db	11.5 db	9.5 db	10.0 db	10.0 db	7.5 db
TYPICAL NOISE FIGURE AT 200 mc m.f.				5.0 db	6.0 db	7.0 db
TYPICAL MAXIMUM FREQUENCY OF OSCILLATION imax	750 mc	600 mc	500 mc	1100 mc	750 mc	650 mc
TYPICAL COLLECTOR-BASE TIME CONSTANT Tb $^{\circ}{ }^{\text {C }}$ c	$30 \mathrm{ohm}-\mu-\mathrm{l}$	40 onm. $\mu \mu \mathrm{l}$	$50 \mathrm{ohm} \cdot \mu \mathrm{ml}$	$12 \mathrm{ohm} \cdot \mu \mathrm{ml}$	25 ohmemm	25 ohm- $\mu \mu \mathrm{ll}$

SEMICONDUCTOR-COMPONENTS DIVISION TEXAS $\int_{\text {dib }}$ InsTRUMENTS

EDITORIAL

Some Electronic Chewing Gum Would Come in Handy

Imagineering is generally directed toward solutions of complex problems. Having somewhat of an inverted mind, this engineer has let his fancy focus on a more prosaic problem-finding a replacement for the alligator clip. A basic invention that would facilitate the temporary interconnection of a jumble of hookup wires and component leads without soldering would be welcomed by every circuit designer.

A quick rundown of interconnecting schemes shows the real pancity of ideas: Fahnestock clips, alligator clips, and binding posts are about all. There have been several modifications of clips, particularly those used on test probes, which are improvements. A small tip, easy to attach and detach, grips the lead firmly. This same idea has been used to produce handy jumpers but additional jumpers are needed for every additional lead introduced. Component holders with clips similarly accommodate one component at a time.
Some breadboard connecting schemes, such as coil springs, permit multiple connections to be made by slipping leads between helices but the experimenter has to bring all of his leads to the breadboard. Furthermore, the coils take up a lot of space.

Soldering has to be eliminated, as it is not at all satisfactory. Who among us can solder three leads together without first twisting them all together? And welders aren't flexible enough.

What might the solution be? The ideal interconnecting device ought to be small and light and conform to any contour made with any number of crossed wires that are full of kinks. It ought to be applied without heat or a special tool. The connection should stay firm under the strain of the weight of a component but it should otherwise be broken easily. Of course the resistivity should be extremely low. I believe that the nearest thing would be chewing gum with a conductive filler. Ideas on the flavor, anyone?

0.1\% Accuracy_ thousands of units now in use!

Model 250-DA

UNIVERSAL IMPEDANCE BRIDGE

First choice of leading companies and laboratories -thousands of units now in use. A self-contained, line-operated portable that measures impedance elements at dc and audio frequencies with laboratory accuracy. Resistance to 0.1%, seven ranges; Capacitance to 0.2%, seven ranges; Inductance to 0.3%, seven ranges. Simple in-line readout and 12,005 divisions of dial resolution at your fingertips with the exclusive ESI DEKADIAL ${ }^{\text {. This is the bridge that has been the industry pacesetter since }}$ introduction - probably the most imitated portable on the market today. Write for Catalog C-16.
Model 250 -DA, $\$ 565$. Model $\mathbf{2 5 0}$-Cl, balfery-operaled, $\$ 375$ fac-operated detector $\$ 200$ addilional). Immediate delivery. Prices f.o.b. Iaclory.

Calculating the Performance of RF Amplifiers, Doublers and Triplers

Rather lengthy numerical effort is necessary to complete the Fourier analysis associated with class B and C rf amplifiers and frequency multipliers. A handy "Computa-Guide" has been prepared to simplify calculations and shorten design time.

A. Katz

Section Head
Transmitting and Comm Tube Applications Amperex Electronic Corp.
Hicksville, L. I., N. Y

TO SIMPLIFY the tedions mathematics involved in evaluating the performance of rf amplifiers and frequency multipliers. a "shorthand" sine-wave guide can be used for graphical calculations
One of the most accurate numerical techniques for the calculation of harmonic components in a complex waveform is the 13 -point analysis. ${ }^{1}$ The analysis can be applied first, when a variable y is a single valued function of X, and second. when variable \boldsymbol{X} changes sinusoidally with time
In an rf amplifier, a sinusoidal voltage is applied to the control grid of the tube, a sinusoidal plate voltage would be expected at the output. The plate current pulse is the complex wave form, or variable Y, which must be analyzed in order to compute the over-all performance of the amplifier.
A non-sinusoidal periodic symmetrical wave form, similar to the plate-current pulse of an rf amplifier, is shown in Fig. 1. One-half of the cycle has been divided into $15-\mathrm{deg}$ increments resulting in 13 points of various amplitudes, A, B, C, D, E, F, C, etc. These amplitudes. useed in the first four equations on Table I. can be
used to determine the de and any of the harmonic components contained in the pulse.
Fig. 2 illustrates the constant current curve of a typical triode working as a tripler. Both the grid-input voltage and the plate output voltage have been drawn and the points A, B, C, D, E, F and (; projected from both sinusoids to the con stant current curves. The points of mutual intersection when joined, make up the line called the operating line. In this particular case the operat ing line is known as the tripler " S " curve. At this time, a very good replica of the plate-current pulse could be drawn. However, it is unnecessary to do this since the amplitudes A, B, C, D, E, F and G c can be substituted in the equations to find the components needed for further calculations.

Fig. 1. A periodic symmetrical waveform, typical of on if amplifier plate current pulse, is divided into thirteen 15 -deg segments for harmonic analysis.

It is also unnecessary to draw the grid sine wave and the plate sine wave each time compmtations lave to be made because the Computat Guide is in a reality a "shorthand" sine wav: This becomes obvious upon examination of Fig 3. showing the construction of the ComputaGuide and its sarions scales.

The use of the Computa-Ginide in determining the points A, B, C, D, E, F, and C on the constant current curve for the straight-through am plifier and multipliers is shown in Figs. 4, 5, 6

Fig. 5 details the step-by-step procedure for establishing the doubler operating line.
In Fig. 5a, points 1 and 2 have been arbitrarily established on the constant current curves. Point 2 is the intersection of the grid bias. I:, and the plate battery voltage. $E_{\text {th }}$. The location of point I is based upon experience and trial and error. I grood choice is the intersection of peak current line of six times the average ammeter current for a multiplier and a plate voltage line of 30 to 30 per ceent of $E_{\text {,one }}$ Using the fundamental sineguide scale, horizontal lines parallel to each other are drawn from point 1 on the Computa-Cinicle to point 1 on the constant current curves. and from point 2 on the sine guide to point 2 on the constant current curses. Lincs B, C, D, \boldsymbol{E} and f are then drawn
Using the second harmonic sine guicle, parrallel sertical lines are then drawn between point 1 on

Fig. 2. The operating line, or S curve, of a frequency tripler, developed on the constant current surve of a triode tube.

Hur sine guide top point I on the constant current corses, athd from point ? on the sine suide to proint 2 on the constant current curves (Sor Fig. Sh) Dines 18 and (are then completed.
In order to dran limes \mathcal{E}, \mathcal{F}, and 6 . point 3 moust be established. This is lexated wo that the horizontal distance hefweon points 2 and 3 on the comstant current curves equals the horizontal distance betweropobints 1 and 2. .aw, wine the Computa-(;ude, wertical and paralled limes arre dratn from point? (D) on the Computa-Conide (1) point 2 ont the comstant corrent curses and fromproint 3 (C) on the Comprutia- Cuide to point 3 on the constant-current curses. The limes $\begin{aligned} & \text { and }\end{aligned}$ f maty now be drann ise fige Jo
Fige sel shows the intersection of the revpere tive leftered horizomtal and wertical lines jumed (o) wathish the doubler operationg line:

The same tectmique abowe may be used in drawing the operating line for the triple. SSe Fig. 6.)

Example Cired

For Tetrode Performance
The following design example - will demomstrate how the Computa-Cinide is wed to compule the pertomance of the 6i33(6) dual tetrode. Assume that the thbe will he used in catseate and that it

Fig. 3. The construction process for the ComputaGuide illustrates why the device is considered a shori hand sine wave aid for simplifying calculations.

Fig. 4. Typical tricde consiant current curve with graphical procedure for if amplifier design.

(c)

Fig. 5. Procedure for determining fundamental and second harmonic components of a 'requency doubler.

Fig. 6. The fundamental and third harmonic components of a frequency tripler are graphically determined
is necessary to know the performance of one section used as a doubler. (See Fig. 7.)

The following assumptions are made:
(a) The available dc supply voltage is 200 v . Therefore let $E_{1, n}=\boldsymbol{O}(\mathrm{O}) \mathrm{v}$. and let $E_{, 2}=\underline{O}(\mathbb{K}) \mathrm{v}$.
(b) The de plate current is 35 ma. Therefore $I_{b}=35 \mathrm{ma} \mathrm{dc}$
(c) The peak plate current will be about six times this amount or approximately 210 ma.
Therefore $i_{n}=210 \mathrm{ma}$.
(d) The proper bias for a multipler should be approximately three times the cut-off, There $\boldsymbol{E}_{c(1)}=9 \mathbf{9} \mathbf{v}$.
(e) That the peak-plate swing will be about $1: 20 \mathrm{v}$.
Therefore $E_{p}=1: 20 \mathrm{v}$ and $e_{b} \min =80 \mathrm{v}$.
The previous assumptions have established two points on the constant current curves of Fig. 7, point 1 in the low plate voltage area and point 2 of the intersection of bias and dc plate voltage. Using the fundamental sine guide scale, draw horizontal and parallel lines from point 1 on the Computa-Guide to point l on the constant current curves, and from point 2 on the Com-puta-Guide to point 2 on the constant current curves. Now draw horizontal lines $A, B, C \cdot D, E, F$ and C. Note that if this were a straight-through amplifier, the intersection of these lettered lines with a straight operating line drawn between point 1 and point 2 on the constant current curve, would be sufficient to determine the respective amplitudes needed for further computation.

For the doubler operating line, repeat the pre-

Fig. 7. The constant current characteristics of a 6360 dual tetrode, used in the design example.
vious procedure only this time drawing vertical parallel lines from points 1 and points 2 , and of course this time using the second harmonic sineguide. Again, complete the vertical lines A,B,C,D.E,F and C. To determine points $D, E, F_{\text {. }}$, and G, it is necessary to use the folded scale ol the second harmonic sine guide aligning points 2 and 3 on the Computa-Guide respectively with points 2 and 3 on the constant current curves. Point 3 is established on the constant current curves as $E_{b n}+E_{D}$ (horizontal distance between point 1 and 2). In this case, $200+120=320 \mathrm{v}$. (See Figs. 5 and 6.)

By designating the intersection of the A vertical with A horizontal lines as point A, and B vertical with B horizontal lines as point B, etc., and joining these intersections the selected doubler operating line can be observed. The amplitude: of the intersections are tabulated in Table II.

The de currents for meter readings may now be determined using de current $=1 / 12(A / 2+$ $B+C+D+E+F)$. Therefore: dc plate current $=1 / 12(105+180+100)+30)=34.6$ ma; de control grid current $=1 / 12(5+7+2.5)=$ 1.21 ma; de screen grid current $=1 / 12(9.5+16$ $+9)=2.88 \mathrm{ma}$.
The rf power output may now be determined. First, calculate the second harmonic plate peak current ($I_{p z}$).
$I_{p: 2}=1 / 12\left(A+1.73 B+C-E-1.73 F^{\circ}\right)$
$I_{p_{2}^{2}}=1 / 12(210+1.73 \times 180+100)=52$ mat. Therefore:
Power output $=\frac{E_{p 2} \times I_{p z}}{2}=1.20 \times 0.052 / 2$ $=3.12 \mathrm{w}$

Table I. Equations relating the values obtained from graphical analysis to the harmonic current components of a complex waveform.

DC Current (Meter Reading) $\mathbf{I}_{1}=1 / 12$ (0.5A $B+$ $C+D+E+F)$
Peak Fundamental RF Current $I_{\mathrm{IV}}=1 / 12(\mathrm{~A}+1.93 \mathrm{~B}$ $+1.73 C+1.41 D+E+0.52 F)$
Peak Second Harmonic RF Current $I_{\mathrm{R}}=1 / 12(\mathrm{~A}$ $1.73 \mathrm{~B}+\mathrm{C}-\mathrm{E}-1.73 \mathrm{~F})$
Peak Third Harmonic RF Current $1_{1: 3}=1 / 121 \mathrm{~A}-1.41 \mathrm{~B}$ $-1.41 \mathrm{D}-2 \mathrm{E}-1.41 \mathrm{~F}$

Table II. Instantaneous values of current obtained by graphical procedures for solution of the design example.

Letler	Plate (ma)	Control Grid (ma)	Screen Grid (ma)
A	210	10	19
B	180	7	16
C	100	2.5	9
D	30	0	0
E	0	0	0
F	0	0	0
G	0	0	0

Input powrer $=I_{\text {In, }} \times 1=200 \times 0.0346=$ 6.92 w

Plate dissipation $=$ de inpul power mitput $=6.92-3.12=3.80 \mathrm{n}$
Efficiency $=\frac{\text { input power }}{\text { ontput power }}=3.12 .6 .92=$ $+4.5$
Driving power $=1.31 .1=103.5,1.21 \geq$ $10^{-3}=0.125 \mathrm{w}$
 $1.21 \times 10^{-3}=0.0164 \cdots$
(irid leak resistancer $\boldsymbol{R}_{n}=\boldsymbol{E}, 1$, = (M) 1.21 $<10^{-3}=74 \mathrm{~K}$
Screen grid dissipation $=I_{2} \times I_{\text {I2 }}=2(1)>$. $2.85 \times 10^{-3}=0.576 \mathrm{w}$
Plate effective if imperdance $=F_{0.1} I_{1,2}=$ $1: 200.052=2,300 \mathrm{ohms}$

Special Aids and Short Cuts

In Using the Compula-Guide
It is not unusual to find a good deal of size variation in the comstant current curves from lube to tube. Also the nature of the particular , haracteristics make it sometimes impossible for the manufacturer to include any room on the graph for very high bias. Examination of the operating lines already discussed above, and the equations used for determining the de and peak of currents can provide a better understanding of how to overcome the limitations of various sizes of graph paper. Also, the number of trial computations can be reduced by establishing a lew general rules.

The object in most case's of computation will be to achieve the highest possible efficiency, such
as $\frac{\text { power output }}{\text { de input }}$, Examining the equations in Table I helps to determine what the best efficiency will be for a straight-through amplificr. The object in the first two equations is to get the highest ratio of the individual letter in the rf equation to that which it has in the dc current equation. Notice then, that a high value of A and B and C and D would tend to yield high efficiency. Any values of E and F, however, tend to lower efficiency. Consequently, the designer should establish \boldsymbol{E} on the constant current curves so that it coincides approximately with the zero current plate line. Taking this one step further, E bisects the straight-through operating line. Therefore the operating line can be plotted from A to E instead of from A to C and still vield sufficient information. The letter E may be used as point 2 and the following procedure and equations used to determine $\boldsymbol{E}_{b b}$ and $\boldsymbol{E}_{c c a}$
(a) Locate E horizontally so that it equals $\boldsymbol{e}_{b} \min +1 / 2\left(E_{b b}-\boldsymbol{c}_{b} \min \right)$
c'o min is the horizontal distance on the abcissa measured from ধero plate voltage to point A.
(b) In the same manner, the vertical location of \boldsymbol{E} may be determined by locating point \boldsymbol{E} so that it equals $e^{*} g-1 / 2\left[e^{*} g-\left(-E_{c r 1}\right)\right] ; e^{*} g$ represents the vertical distance from zero bias to point A. This method allows the designer to use constant current curses plotted on graph paper where the normal point 2 (C') would have to be located off the bottom of the paper.
(c) For the doubler. locate \boldsymbol{E} so that it equals $E_{b \iota}+12\left(E_{\iota}\right.$ - r_{ι} min
And for the vertical position locate E so that it is equal to $e^{\circ g}-1$ ' $\left.2 e^{\prime \prime g} g-\left(-E_{\ldots t}\right)\right]$. For the doubler, point E. should be located approximately on the rero plate current line for the best efficienc!

The same sistem may be used for the tripher computations, but this time the letter C should be located at or about the zero plate current line. Its location can be determined as follows
(a) Locate C: horizontally so that it is equal to E_{n}
(b) Locate (: vertically so that it is ecpual to $e^{\prime} g-0.134 e^{\prime} g-\left(-E_{c+1}\right)$
With a little practice, the designer, with the aid of the locating devices given above and the Computa-Cuide may shorters the computation time considerably. - -

Reference

1. Chatfere E. L.., "A Simplified Warmonic Analysis Revie.w of Scientific Institute (Oct. 19:36), p :384. 2. Brown, Robert H., "Harmonic Amplifier Design" Procecedings of the IRE, Volume 3.5 (Ang. 1947), pi 771-777.
2. Heyboer, J. P'., Tramsmitting Valves, Philips' Technical Library.
3. Amperex Application Bulletin "(6i360)

Electronic Products NEWS by carborundum ${ }^{\circ}$

Arc suppression in CLARE Stepping Switches Improved with GLOBAR ${ }^{\circ}$ Varistors

Laboratory report shows up to 4 to 1 reduction in peak voltage compared with standard condenser-resistor networks
C. P. Clare \& Co., Chicago. Ill.. manufacture a line of precision stepping switches, offering as many as 480 contact points in a single unit. Arc suppression at the relay contact in these switches is vital to long life and dependable operation.

An extensive series of laboratory tests by Clare has established the

5MS/CM (39 S.P.S.)

5MS/CM (39 S.P.S.)
Reduction of peak voltage is shown in tnese comparative oscinoscope traces. Upper trace. tor across coil. Lower trace shows 125 v . peak with .5 mid. capacitor and 10 ohm resistor across contacts.
superior arc suppression capabilities of Globar varistors. Tests were made in comparison with standard resis-tor-capacitor networks, using various stepping switches having coil ratings of 6 volts up to 110 volts. Results were based on visual observation of arc suppression, peak voltage and speed as shown on 'scope. and heating of the body of the varistor, as recorded by a prrometer. In some cases, tests with the varistor showed : 4 to 1 reduction in peak

Disc and rod type GLOBAR varistors are shown above. Wide variation in voltage coe ficients may be oblained through changes in
length diameter ratios
voltage. Temperature readings re vealed more than adequate safety vealed more than adequate safety ages and duty cycles.
globar Type BNR varistors are non-linear, voltage-sensitive resistors made from electrical grade silicon carbide. Their negative voltage coefficient of resistance (resistance decreasing with an increase of voltage) offers wide possibilities for

Typical CLARE stepping switch. Type 20, is shown above. This switch offers up to 480
contact points in twelve 40 -point levels, or 320 in sixteen 20 -point levels.
application in contact arc suppression, protection against voltage surges and similar problems. Response to short duration impulses is instantaneous.

All Globar varistors are made to individual customer specifications. Inquiries concerning specific applications are welcomed. If vour interest is in experimenting with possible uses, it is suggested that you invesigate the globar Varistor Test Kit. Write to Globar Plant, Refractories Division, Dept. EDV-21. The Carhorundum Cumpans Niagara Falls. lew lork.

BCOKLET AVAILABLE ON GLOBAR Type BNR VARISTORS

ullinformation on the physical characteristics of globar Type is contained in Technical Bullet tin GR-2, which will be mailed
on request. For on request. For
your copy, write Globar Plant, Refractories Div., Dept.解

CIRCLE 202 ON READER-SERVICE CARD

[^4][^5]
The "Tri-Stable" Flip-Flop Circuit:

How It Works, How To Design It

In eight steps, the author shous how to rapidly and accurately arrice at a preliminary design of the "Tri-Stable" flip-flop-a circuit especially useful where a three-state logic condition exists, such as "on," "off" and "neutral.

C. K. Beagle
 Systems Engineer

Fenske, Frederick \& Miller, Inc.
Los Angeles, Calif.

THE "TRI-STABLE" flip-flop circuit can be used in many cases to greatly simplify "logical" design and provide considerable savings in components. The circuit is especially useful where a three-state "logic" condition exists, such as "on." "off," and "neutral." The flip-flop considered here is a spectial-purpose design; but the techniques are readily expandable to many other general design configurations

The function of the "Tri-Stable" flip-flop is analogous to the conventional "Bi-Stable" HlipHop. with the addition of one more stable state. Circuit analysis is also based on this operational philosophy
The schematic diagram describes a "TriStable" switch of a saturation design, using solidstate devices. Type 2 N 388 germanium transistors are used. The design is also valid for other germanium and silicon, npn and pmp units. Considerations for using pnp transistors are given in the design steps.

Each transistor has a Zener diode in its collece tor circuit to set the de logic levels; these Zener diodes act (1) as a clamp diode when the transistor is conducting, and (2) as a reference voltage when the transistor is cut off. Assuming transistor 1 is conducting, collector voltage will equal E_{1}, clue to the clamp action of the forwardbiased Zener diode. The collector voltages of cut-off transistors 2 and 3 will equal E_{1} plus the voltage drop across the back-biased Zener diode. This gives a two-level de logic derived from one reference voltage E_{1}

The emitter voltage of transistor 1 will equal E_{1} less the collector-to-emitter voltage drop. As
all three emitters have a common resistor, the emitter voltage will remain at the approximate value of E_{1} at all times. The emitter-bypass capacitor will hold this voltage at the proper value during transition from one state to another.

The base voltages are determined by the collector voltages and the cross-coupling resistors R_{H} and $R_{H f_{i}}$. Each base is fed by the collectors of the other two stages; the voltages are summed at this point.

With the collector of transistor 1 at a potential E_{1} and the emitter at a slightly lower potential, the cross-coupling effects of this collector may be discounted. The voltages of collectors 2 and 3 will effectively cout off stages 2 and 3 and
keep transistor 1 turned on , thus allowing only one stable state to exist. The clamp diodes will prevent this cut-off bias from exceeding $1 v$, allowing an input pulse with an amplitude in excess of $1 v$ to turn the associated transistor on. The clamp diodes also permit the use of many silicon devices with a maximum $V_{E A \prime}$ of 1 v .
To switch the "Tri-Stable" circuit to another stable state, a trigger pulse is applied to the base circuit of the stage to be turned "on." Due to cross-coupling action. the transistor being turned "on" will. at the same time, bias "off" the other two stages. As the other two stages turn "off," the effect is regenerative, causing the "on" transistor to be driven into saturation. Thus the "Tri-

Stable" circuit can be switched to any of three stable states and acts as a true Hlip-flop, as opposed to a ring counter

The design problems involved in determining the proper base drive currents and output loads can involve lengthy network analysis. The following techniques were derived from network solutions, in terms of voltage ratios, and yield a very rapid and accurate preliminary design.

Assuming transistor 1 "on" and transistors 2 and 3 "off," follow these design st'ps:

1. The choice of the Zener diodes and or de logic levels to be used in the collector circuits is determined by the logic input and output requirements. In the example used, the output logic levels will be between 8 and 16 v An 8 -s Zener diode is used. and a reference voltage of $8 v$ is required.
2. The transistor to be used should be chosen with reference to minimum beta and maximum I, encountered to allow the circonit maximum current ontput capacity. The choice of a 2 N 38 ss was made becalase of its high beta and large cur-rent-carrying capacity. Transistors with a beta of less than 10 are generally not suitable for this circuit. The supply voltage, E... may be determined at this point and is ustatly limited by the transistor used. All resistance values shall be chosen within ± 5 per cent of derived values. (Nearest ELA value within $=5$ per cent.)
3. A preliminary check of load requirements (an now tre made. The following equations give the required transistor characteristics for a given load. The maximum load reguied for the example used will be 1.5 K. (The load referred to is a resistive loadel from the transistor collector to E...)

$$
\begin{aligned}
& Z_{L}=\frac{\left(I_{c r}-I_{1}\right)\left(E_{c r}-I_{2}\right)}{I_{H} \beta\left(E_{c e}-E_{2}\right)-\left(E_{c r}-E_{1}\right)\left(I_{n}+\overline{\left.I_{B G}\right)}\right.} \\
& \text { where: } I_{H}=\frac{I_{c}}{\beta} \text { and }: \overline{I_{B i}}=2 . .5 I_{n}
\end{aligned}
$$

Assigning the following values:
I. $=1\left(i \mathrm{ma}, \beta=30, E_{\text {cr }}=2.2, E_{1}=8\right.$ anll $E_{2}=11 \mathrm{j}$ solving: $I_{s}=\frac{0.011 \mathrm{i}}{3(0)}=0.7 .3 \mathrm{ma}$

Then: $\overline{I_{B G}}=(2.5)(0 . O M O \cdot \mathrm{Fi}) \cong 1.32 .5 \mathrm{ma}$
Z $=\frac{(22-8)(2!2-16)}{(202}$
(0.OKNO:3) (30) (22-16i)
$=12 \mathfrak{K}$
By solving these equations, it is apparent the "Tri-Stable" circuit will drive a $1.5-\mathrm{K}$ load with the previously assigned values.
4. With transistor parameters and $Z_{I /}$ (max) established, other circuit component values may now be defined. The value of R_{F} is determined
from the values of E_{1} and $I_{1}+I_{1 n}$ (from step 3)

$$
R_{B}=\frac{E_{1}}{I_{\mathrm{C}}+I_{1 B}}=\frac{8}{0.01(0.0 .3}=484 \text { ohms }
$$

The nearest EIA value of 470 ohms is chosen as the emitter resistor value to be used
5. An optimum value of $R_{\text {/t }}$ in series with $R_{n G}$ is determined by the value of R_{R};

$$
R_{B}+R_{M_{i}}=R_{E} ; \beta=(470)(30)=14.1 \mathrm{~K}
$$

6. The ratio of $R_{1 B} / R_{H \prime}$ is the same as the ratio of the logic levels involved. To allow a l-v cutoff bias, the ratio) of $R_{n} R_{B \prime \prime}$ is:

$$
\tilde{n}_{n}=\frac{\left(E_{2}-E_{1}\right)+1}{E_{1}-1}=\frac{9}{7}
$$

The optimum series resistance derived from step 5 is now split into this ratio:

$$
\frac{14,100}{16}=881 \mathrm{ohms}
$$

万(xxl) ij,liia ,hms Rmi
(Choosing the mearest EIA value, $\boldsymbol{R}_{n}=8.2 \mathrm{~K}$ ohms and $R_{b t i}=6.2 \mathrm{~K}$
7. The value of R, is found by the equation:
$R_{c}=\frac{E_{c c}-E_{2}}{I_{11}+I_{l m i}+2 \overline{\left(I_{c} /(w)\right)}}$

$\equiv 3: 210$ ohms:
Choosing the nearest EIA valuc, $\boldsymbol{R}_{\mathrm{f}}=3.3 \mathrm{~K}$.
8. The maximum load impedance the circuit will drive may be checked against the value delermined from step 3 by the expression:

$$
\begin{aligned}
& 1 .-\frac{E_{c r}-E_{1}}{R_{c}} \geqq \frac{E_{\alpha}-E_{1}}{R_{L}} \\
& 0.016-\frac{(22-8)}{3,3(3)} \geqq \frac{22-8}{1 . .3())} \\
& 0.1112 \geqq 0 .(1) 93: 3: 3
\end{aligned}
$$

This completes the design steps for the circuit under consideration.
If pnp transistors are used, the following revisions must be made to the design steps:
(ia) The supply vollage Eser and the referemere woltage E, have must reverse polarity
(b) All dioders. including the Keners, must the reversed.
(e) sitep of ceplation must be changed from

$$
\begin{aligned}
\frac{\left(E_{2}-E_{1}\right)}{E_{1}-1}+1= & \frac{R_{B}}{R_{M,}} \\
& \text { (1) } \frac{\left(E_{2}-E_{1}\right)+1}{E_{1}-1}=\frac{R_{B G}}{R_{B}}
\end{aligned}
$$

These steps provide a very rapid design of a usable circuit. If a more precise analysis is required (due to extremes of ambient temperature, for example) this very accurate "ball-park" configuration will serve as a starting point. -

HOW TO PUT
RELIABILITY INTO

"INDEX OF RELIABILITY" ... Mean Operating Time Between Failures.

Reliability and Maintainability are al ways important - and most often very critical factors. Their definitions invarlably involve "time". Some military specifications use "mean operating time between independent failures" as the index of reliability and call for the incorporation of elapsed time indicators into the operating equipment. Replacing critical components before they reach the limit of rated life contributes greatly: to peak operating efficiency and reliability.
Waltham's subminiature elapsed time indicators are being used and designed into both military and commercial equipment for ground support and airborne applications. They are small and light enough to go anywhere. Jewel bearings, precision gear trains - some with a reduction of 1.8 billion to 1 , a new low inertia synchronous motor are teamed with over 110 years of experience to provide instruments reliable and accurate enough to provide precise "measures of reliability".

Waltham can provide subminiature elapsed time indicators in both digital and dial readouts - and in production quantities. Write for bulletins \#5001 and \$5002 or telephone TW 3-4000

HYEETEEEATM

Phiglolon mation.MT company
WALTHAM 54, MASSACHUSETTS

High-Voltage Testing: It Can Be Nondestructive

> In his article, "High.Potential Testing . . . A Semidestructive Procespp (ED, April 27, 1960), author Ben Sachs reoiewed the two opposing points of vievo on high-potential testing, as applied to rotating components. One point of view is that each successive hi-potting weakens all units; Sachs introduced data to prove the claim. Rebutting that oiew, the author of this article provides tess data shoving that, "property conducted, heghooltage tests can be nondestructioc." The discusoion in this article is generah, hooroever, and rotating components are not specifically covered.

Harold N. Miller

Vice President ond Chief Engineer
Associated Research, Inc.
Chicago, III.

1 sS HIGH-VOLTAGE testing destructive or nondestructive? Buth sides of that question are amply covered in published articles; the answer would seem to lie, in any individual case, in the material being tested and the method of testing.

Intelligent appraisal of the subject first requires understanding breakdown mechanism, or at least the main causes of insulation failures. Insulation breakdown is usually described as: a destructive discharge through the insulation, characterized by a disproportionately large change in test current as test voltage is increased. This surge is often referred to as an avalanche current. After a breakdown failure, it is usually impossible to

TIME TO Reakoomn.
Fig. 1. Applied test voltage versus length of time to breakdown.
restore voltage to the previous point. Breakdown may also be defined as: a rupture of the insulation that results in increased leakage current at a specified test voltage.

Causes of Insulation Breakdown:
 Three Are Cited

Three main causes of failure are usually identified as:

1. Mechanical breakdoun, caused by stresses set up by the applied voltage. This type of failure is much more likely to be prevalent with ac testing than with dc ; it is often associated with impulse testing.
2. Thermal failure, due to insulation deterioration caused by internal generation of heat. This heat may be due to high leakage current, but more often is caused by conductors or other current-carrying parts operating hot. Thermal damage is cumulative with time.
3. Ionization failure, due to chemical deterioration of the insulation. This is usually caused by oxygen released during ionization of air in insulation voids or around the insulation. Deterioration caused by this chemical action is cumulative with time.
Since two of the three main causes of insulation damage show a cumulative effect, indiscriminative testing can eventually cause failure. Testing, properly done, however, would not be carried to levels that would result in any significant damage to sound insulation.

Voltage Endurance Can Serve
 As A Function Of Test Time

The voltage a piece of equipment can stand depends, to a great extent, on the length of time
that voltage is applied. This relationship is not linear, but has the general characteristics shown in Fig. 1. The exact shape of the curve (applied voltage vs length of time to breakdown) depends on the specific material under test, if the applied voltage is ac or dc, the shape of the test electrodes, etc. In all cases, however, the curve shows thai, if the voltage is lowered slightly, the withstand time is increased greatly

If the equipment is originally designed so the insulation can stand 120-130 per cent of the final test voltage for a reasonable length of time (several minutes to an hour), almost indefinite testing at the lower voltages can be done without damage. Recognizing this characteristic of insulation leads many specifying agencies and manufacturers to call for in-service test voltages of 60 per cent to 80 per cent of the factory test values. This voltage-vs-time condition is also specified or implied in many specifications that permit tests at a given voltage for 1 min or, alternatively, a 25 per cent higher voltage test for 5 sec . In the case of equipment already designed or in production, the test voltage the insulation can stand for the long time period can be experimentally determined. Then, running production or maintenance tests at 60 per cent to 80 per cent of this voltage would be safe.

With the present state of the art (where even thin films of insulation may stand many hundreds of volts per mil), it is almost mechanically impossible to have a sound insulation structure with a breakdown strength of less than a few thousand volts. Consequently, most test codes call for highpotential testing values of twice-rated voltage plus a $1,000-\mathrm{v}$ for a period of 1 min . If the equipment is originally designed to stand a slightly
higher voltage than this for a longer length of time, the damage that might be done at the test yoltage is minute, and sound insulation would not be harmed even after houndreds of tests. It the test value is chosen too low, the test may as well not be made, for it will give a false sense of security.

Minimizing Destructiveness

By Current Limiting

When the voltage-withstand strength of equipment under test is not known or inconvenient to determine, current-limited high-voltage test equipment can be used to insure nondestructiveness of the dielectric strength test. The current limiting may either be in the form of (1) a fast-acting circuit breaker in the output of the test set (set to trip at a few milliamperes or less), or (2) a collapsing-field type high-voltage transformer that automatically lowers outmot voltage as load current increases.

With equipment of this types the test voltage is lowered or remowed before the insulation can rupture. Thousands of test sets of this type are in continuous use today. testing all types of consumer items without any eviclence of cansing "quipment damage.

Internal Corona Develops

Due to Voids in Insulation

Often, in running a high-potential test, internal corona develops due to voids in the insulation, at voltages far below the Ireakdown voltage of the insilation itself. Unfortunately, the presence of this corona won't show up with most test sets in common use.
Corona produced daring testing may rapidly cleteriorate the insulation; since the effect of this deterioration is cumulative, subsequent high-voltage tests are usually blamed for failure. Note: however, the production of corona actually indicates a defect (usually a void) in the insulation; thoss, the insulation could not be considered sound. When corona damage is significant in the equipment being tested, a high-potential test should be made, using modern corona detection equipment that displays the presence of even minute amounts of corona. Using this type of equipment, the high-voltage test could be stopped at the point of inception of corona, thus preventing harm to the insulation.

DC High-Potential Testing

Is an Important Consideration

Another very important consideration in the destructive or nondestructive aspect of high-potential tests is the relative results obtained with ac or dc. Ac testing is usually considered a go/ no-go type of proposition. In other words, voltage is run up to a specified value; if the sample
 broad line of heat-resistant plugs provides the optimum protection to vital electrical circuits. Continuous or specified operation from $200^{\circ} \mathrm{F}$ to $2000^{\circ} \mathrm{F}$-at aircraft you should consult the world's most experienced plug manufacturer... why you should consult Cannon for all your plug requirements!

HIGH TEMPERATURE CANNON
 Writ

 PLUGSfirewalls or industrial facilities...for missiles or the most advanced spacecraft -we have a plug to solve your temperature problem. Another reason why

CANNON ELECTRIC COMPANY, 3208 Humboldt St., Los Angeles 31, Calif. circle as on reader-service card other Cannon products to:
CANNON ©.PLUGS
\square

THE VOICE OF EXPERIENCE SAYS -

The most valuable lesson an upcoming engineer, architect or draftsman learns is "Use the best tools!" This means Castell \#9030 Black Gold graphite-saturated lead that stays black without flaking, feathering or "burning out." Gives you crisp, opaque lines on all surfaces, including Cronar and Mylar base films. Castell \# 9030 never hesitates because of gritty spots. Remarkably uniform in all degrees, 7B to 10 H , each as precise as a machine tool. Erases without leaving ghosts. Plastic tube with gold cap.

FITS AlL STANDARD HOLDERS. Pick up a tube from your supplier today.
A.W.FABER-CASTELL Pencil Co., Inc., Newark 3, N. J.

High-Voltage Testing (continucd)

breaks down, it is no good; if it does not break down, it is assumed good.
Unless proper precautions are taken, there is no way of knowing how close the sample approaches the breakdown point. On the other hand, with de testing, the procedure is somewhat different: leakage current is measured as voltage is raised. As long as current varies approximately linearily with test voltage, the equipment is in good condition. In most cases (this depends on the particular insulation materials involved) there will be a knee in the curve of voltage-vscurrent, prior to breakdown. In other words, as the breakdown point is approached, the leakage current starts increasing at a higher rate; soon the avalanche current referred to above appears. On certain newer materials, this knee is almost a right-angle bend; breakdown is reached at about the same time the first sign of the knee appears. In many cases, however, the knee is gradual enough so that the change-of-slope of the current vs voltage current is apparent; if the test is stopped at that point. no harm is done and the test may be repeated almost indefinitely. Here we have a truly nondestructive test, becanse, regardless at what voltage deterioration starts to take place. the careful operator (in many (ases) can end a test prior to any damage. Careful observation of the slope of the curve of leakage current-vs-applied voltage will yield valwable information about the adequacy, condition. and even expected life of the insulation.

Rale of Application of Voltage
 Will Affect Breakdown Point

The method of voltage application will have some effect on the breakdown point. Most pub-
lished data indicates that the slower the application of voltage, the more apt the failure to occur at a lower valuce. Note that in impulse testing of high-voltage insulators and transmission line equipment, voltages mamy times the normal highpotential test values are used. ASTM Specification 1)-149, Parag. 3, satys. "In general, the clielecetric strength decreases with time of exposure to the electrical stress." Appendix I to that samme specefication salys, "The more rapid the increase in voltage, the hisher will be the breaketewn voltage.'

Typical Results

Are Described
Despite the massive amement of data supporting the above explanation, additional tests were run at our firm imeler semicontrolled comditions (to) simulate production testing rather than latooratory testing). Ac tests were run, using our model 4.5013 .35 k oil tester and a model 4.51 .5 35-ki materials tester. De tests were ron using our Model 5 ? 265153040 kv de Mypot. Various samples were tested. including transformer insulating oils. collulose acetate film, polyethylene sheets. insulated wire and simple subassemblies. Results of these test (three are summarized below) amply bear out this fact: properly comducted, high voltabe test caln be nondestructive. Tess I: Tests were made on identical samples of transformer grade insulating sil, following the procedure in ASTM IDS66-49. "Test for Diellece tric Strength of Insulating Oil." Fifteen samples of oil, used as a control group, were tested to determine the breakdown voltage. All fifteen broke down between 25 and 28 kv ; average for the group was 26 kv Sample No. 16 was tested

by raising the voltage at 3 kv per sec up to 20 kv and rapidly dropping the voltage to zero for 100 times, at 2 -min intervals. That sample was then tested to breakdown, which occurred at 28 kv ; the sample finally broke down on the 88th test (at 25 kv). Sample No. 17 was tested at 22.5 kv for 150 times without failure. The test voltage was raised to 25 kv ; the sample finally broke down on the 88 th test (at 25 kv). Sample No. 18 was raised to 25 kv and held at that voltage for 1 min before returning to zero. This was repeated until breakdown occurred on the 21st test. Ten more samples were tested to determine the breakdown point. Breakdown in each case fell between 25 and 29 kv .
Test 2: Samples of $0.008-\mathrm{in}$. cellulose acetate tape were tested in accordance with ASTM Speccification D1202-5:T. "Cellulose Acetate Sheet and Film." Several control samples were tested to determine the average breakdown value (15 kv). Additional samples of the same material (taken from the same piece) were then given repertitive high-voltage tests. running up to 10,000 \checkmark at the rate of 500 v per sec, with rapid return to zero. These tests were repeated 50 times for each sample without failure. The test voltage was then raised until the samples actually broke down, which occurred hetween 16 and 17.5 kv for this group. Another sample of the same material was raised to 10 kv and the voltage left for 1 lir. The voltage was raised to 12.5 kv ; breakdown occurred after 35 min .
Test 3: Samples of insulated cable were tested with de. In each case, the voltage was raised to 20 kv ; the leakage current was recorded. The control samples showed leakage currents between 1.5 and $2 \mu \mathrm{a}$ at 20 kv . The voltage of sample No. 11 was increased until breakdown occurred at 32.5 kv . The voltage on sample No. 11 was increased until breakdown occurred at 3.2.5 kv. The voltage on sample No. 12 was raised to 25 kv and maintained for 2 hr before lowering. The cable showed no sign of damage, nor was there any measurable increase of leakage current during that period. The same sample was then tested 25 times at 20 kr , allowing suitable intervals between tests to permit complete discharge. On the 25 th time, leakage current at 20 kv was still identical with the value recorded the first time. The voltage on the same sample was then raised to breakdown, which occurred at 32.5 kv As shown in Fig. 2, the curve of leakage current-vs-voltage for sample No. 12 (which reccived a 2 -hr test and 25 short tests) is almost identical to the curve of the control sample No. 11, which was raised to breakdown voltage on its first test trial. - -

ELECTRONIC DESIGN • February 1, 1961

You are looking at the semiconductor industry's first certified rectifiers क्ष
 Here is the most sweeping assurance ever offered on the reliability of complete standard lines of silicon and selenium rectifiers.
 Every Syntron Semiconductor is certified to have passed n specific program of tests and inspections spelled out in the Certification, below,-and is guaranteed to perform to these certified levels for 18 months after shipment!
 The savings to manufacturers in minimizing their own incoming tests and inspections are obvious. Designers now can specify rectifiers tested to standards which match those of virtually any mass manu-
 factured product in the electronics industry. Exclusive manufacturing techniques, plus rigid quality control levels, enable us to introduce Certified Semiconductors. Every month we produce millions of square inches of selenium rectifiers by our unique vapor deposition method. Our exclusive gaseous double diffusion method produces identical silicon diodes in which the depth of the P and N layers is controlled to a very few microns.
 Syntron Certified Semiconductors are described in Catalog 100, and Bulletin 200 details the Certification tests. Use the coupon below for your immediate copies

 STMNTRTON

CLRCL 47 ON READER-SERVICE CARD

Soviet engineers designing loop receivers. Square transmitting loop and signal generator are at right. Large, table-model radio on shelf is manufactured al Riga plant. All laboratory equipment is Soviet made

The Soviet Engineer:

HOW HE LEARNS • HOW HE TRAINS • HOW HE WORKS •

Here is a personal, worm's-eye view of the Soviet enincer. It difters from the usual bird s-eye portrayal by he material for this article in direct conversations with the material for this artice in direct conv
Soviet engineers in their native language. biet engincers in their natise language
Kirl D'. Amatneek is a design cromsultant and lecturer on transistor circuitry who recently spent three weeks in higa, at Union. He lectured on transistor circuits in factories-the Riga Radio Factory (RRR), where many wo the Sosiet Unions radios and phonographs are produced. and the State Electrical Factory, the telephone manufacturer of the Soviet Union.
During his stay, Mr. Amatncek made friends with a number of Soviet electronics engineers and visited the RRK laboratories and production floors.

Karl V. Amaineek

Design Consultan
8603 Hull Drive.
Philadelphia, Pa.

THE SOVIET ENGINEER starts his education at the age of 7 or 8 . He attends a public school for 10 or 11 years depending on the requirements in his particular republic. He must attend for the first eight sears. Then. if he is to become an engineer. he must attend a high school ${ }^{\circ}$ for three cars.
When hee is graduated from ligh school, a student recerives the traditional "Certificate of Maturity:" This entitles him to participate in competitive examinations for admission to a university or a polytechnic institute. However, in engineering and several other disciplines, only 20 per cent of the capacity of the freshman class is allotted to new high-school graduates. The other 80 per cent is reserved for those who have spent two years in industry since their graduation
This is a rather new procedure, first propounded by Sikita S. Khrushchev in 1958. In a conversation with the author, the rector of the Latvian University expressed satisfaction with the enhanced maturity of students admitted on the two-year-deferred basis. "At the same time,"

[^6]hee commented with entlasiasm, "the brilliant students who come directly from high school are not delayed in developing their natural interests.

Five-Year University Training

Includes Summers in Indusfry
The normal engineering comerse is five years long. The polytechnic institute or university signs a contract with a factory for furnishing a certain number of students for summer employment. In the course of summer work. the student passes in rotation through production and other departments. During his last summer he works in engineering. Occasionally, some for 'men are reluctant to putting up with green stidents, but on the whole, the system works we!!.

After studies at the institute (no degree is received at this time), graduates used to be assigned to a factory or other place of employment. l'arious places had priorities. A federal government organization, for example, had a higher priority than a state organization. Since the de centralization of industry, however, (about two years ago), all factories were given equal priority.

Some Choice of Jobs

Now Open to Graduates
Since January, 1980, there has been a new labor law, and now a graduate gets some meas ure of choice as to where he will work. Still, he hasn't the complete freedom that engineers enjoy
in the United States. On the other hand, the other side of the coin may be even more important to the young Soviet engineer-he knows the government is eager to use his talents fully.

The pay scale for engineers is the same in all factories except in supervisory jobs. There the pay is higher in the larger factories, supposedly on the theory that they involve higher responsibility. Thus, since salary scale and hours are 'quite fixed. factories may wie with one another for good engineers. As incentives, they offer the engineer the chance of working with school friends and "being closer to home."

Once a graduate has accepted a job, he is expected to work at it for three years. If he changes his joh during this interval, it causes bitterness, especially at the institute. But he is really called to task only if he changes to a job for which he was not trained. The theory involved is that the government has made an investonent in him and it is entitled to collect for a reasonable length of time. There is some pirating of engineers and this contributes to some early jol) changes. (In the U'. S.. engineers tend, on the average, to change jobs every three years.)

When a newly graduated engineer is assigned to a factory: it may not be the factory where he has spent his summers. Thus, the management may not know him. and breaking him in may be difficult. But with some of the rough edges chipped of by apprepriate summer work, this should certainly be an easier process than it is in the U. S.

Graduates Start Careers

In Production Testing or Drafting
(iraduates are started in production testing and similar johs. They stay at such jobs for varying lengths of time depending on their abilities. They may also start work at drafting jehs.

As the new engineer make's his mistakes and learns in the process, management evaluates him and permits him to take on more and more responsibility: According to one senior engincer, his own break-in process was aided by the universal cooperation of older engineers.

One reason for this cooperation may be the job security that Soviet engineers enjoy. Despite much eriticisin of Soviet labor unions, the one thing that the unions do provide is job security. During the short stay in the Soviet Union, the writer had to listen to two administrators weeping to the effect that there was practically no way to get rid of an undesirable employe

Young Engineers Gef Their Learning

From Magazines, Technical Journals, Colleagues
In addition to advice from older men, the engineer has available to him magazines, both foreign and domestic, and teclinical meetings of

New, tri-dimensional packaging and interconnecting of modern electronic functions.

Here is simplicity from start to finish . . . the most complicated designs worked out on AMP.MECA's graph layout sheets in hours rather than days or weeks ... finished modular construction that's "building-block" easy . . . extreme reliability and complete resistance to shock and vibration.

YOU GOT

Electronic functions are encapsulated for complete throw away or functions are assembled in open base cells for individual component re-
placement. Easily replaced, pluggable AMP.Cells work independently of or in harness with each other when programmed into AMP's 3-D circuit boards.

Available in $0.1^{\prime \prime}$ or $0.2^{\prime \prime}$ grid systems, AMP-MECA offers tri-dimensional flexibility-cells can be made larger or smaller-stacked, spread or lined-up in unlimited scope to accommodate your design needs. And production can be set up to fit your goals . . . by hand, or by programmed automation.
Learn how AMP.MECA can make it simple for you. Send for the full story on simplified interconnection of circuit functions and information on prototype assembly kits.

AMP INCORPORATED

GENERAL OFFICES: HARRISBURG, PENNSYLVANIA
AMP products and engineering assistance are available through subsiciary companies in Australia. Canada - England - France - Molland - ltaly - Japan - West Garman CIRCLE 48 ON READER-SERVICE CARD

RAYTHEON DISTRIBUTORS in 56 cities offer immediate delivery of RAYTHEON MILTYPES

. . . at no penalty in price

Birming
Burpes
for 1.410
al Airfax 2.0449 -urpment Company Mobile
Forbes Electronic Distributors. Inc
HE 2.7661 arizoma
Readio Specialties \& Appl Corp.
AL 8.6121
ucson MA 3.4326
CALIFORMI
Victoria 9.3944 Supply Co.
Glendale V . Weatherford C
VItitoria 9.2471
Hollywood Radio e Electronics, Inc
inglewood
Newatr Electronics Company
Los Angeles
Bradshaw 2.8771

Gayelus 3 ectric Company
ANger
Kierulfi

Kierult Electronic
RIC hmond $8-2444$
0 akland
Brill Ele
年2
TEmplar 4.3311
Palo Alto
Zack Electronics
-5 ${ }_{\text {RE }}^{\text {Radio Paris }} 9$
San Francisco
UN 1.2434
Arronic Sales.
R1mberly
$5-9441$
Santa Mon
EXbrook 3 -8231


```
Kansas City
    Burste in-Apoletee Compan
    BAltimore 1-1155
    Graybar Electric Company
        MEW MAMPSHIRE
        MEW MAMPSMIRE
        MEM,
    HEW IERSEY
    mew jerser
        General Radio Supply Co. 
        MEW MEXICO
        MEW MEXICO
        Madio Specialties Company. Inc
        HEmlock 7.0307
        RMacerseecialties Company, In 
        AM 8.390
        MEW YORK
        Minghamton
        RA.6326
            Genesee Radio & Parts Co. Inc
            OElaware 9661 
            W}\begin{array}{l}{\mathrm{ Wenle Electronics Inc}}\\{\mathrm{ TL 4.3270 }}
Elmira
Stack Industrial Elecironics,InC
RE M.6513
Stack Industrial Electronics. Inc
Mineola, Long Islan
    Arrow Electronics, In
    Mew York City 
        HML. Dalis.Inc
        M
    BEekman 3.2980
    Sun Radio & Electronics Co., I
    T
OM10
OMncinnati
    \
    #Merry 1.65
    M
    M
    l
```

Bolumbus
Buckere Electronic Distributors. Inc CA 8 -3265
Dayton
STepco. Inc.
BAldwin 4.3871
orlanoma

Tulsa
58 S Radio Supply
IU 2.7173
1020

LU 2.717
OREGOM
OREGOM
Lou Iohnson Company. Inc.
CApital 2.9551
PEmmsrivania
Philadel phia
Almo Radio Company
WAInut 2.5918
Radio E Electric Service Co
WAlnut 5-5840
Marks Parts Company
FAirfaxa 1.3700
FAirfax
Reading
Re
Reading $\begin{gathered}\text { The George } \\ \text { FR } 6.7451\end{gathered}$ Barbey Co. Inc
tenmessee
Knoxville
$\underset{\substack{\text { Bonderant Brothers Company } \\ 3.9144}}{\substack{\text { and }}}$
texas
TEXAs
Graybar Electric Company
Riverside 2.6451
RIVerside 2.6451
Houston

Jachson 6-4661
Harrison Equipment Company
CApitol 4.9131
utan
Salt Lake City
Stand ard Supply Company
EL
ELSEIMIa
vind
Nor folk
Norrolk
Priess Electronics
MA 7.4534
washimeton
washing
We stern Electronic Company
AT 4.0200 .
WEST VIRGIMIA
West vircimi
Bluefield
Bluef ield
Meyers
Merers Electronics, Inc
DAvenport 5.9151

Soviet Engineer
(consinued)
various sizes and scopes. Several engineers opined that, among the foreign electronics magazines available to them, they learn most from Electronics (U. S.) and Radio Mentor (West Germany). A number of foreign magazines, including Proceedings of the IRE and Electronics are reprinted cover-to-cover (untranslated) and distributed directly to institutions in the Soviet Union. ${ }^{-}$
As to domestic magazines, they have the ama-teur-level Radio, and the high-level Radiotekhnika and Radiotekhnika i Elektronika, but nothing between. They have no magazines to give them circuit-design information. Several magazines cover production problems. They are distributed to factories and are not for sale. They do not include electronics sections. The publications in the series carry the common title of "Voprosi Radiotekhniki" (Radio Engincering Topics). They are published by the Government Radio Engincering Committce, Soviet of Ministers, U'SSR.

Engineers Enjoy Seven-Hour Day, Don't Like Six-Day Week

In discussions of engineers' status in the USSR and in the U'S., invariably Sovict engineers boast of their seven-hour day and their onemonth vacation. While there did not seem to be much argument about the vacation, the seven-hour-day claim invariably led to the admission of a six-day week and the agreement that the five-day week is certainly preferable, both from the employe's and management's viewpoint.
Their attitude can be summarized as one that holds the five-day week to be one of their next improvement objectives. Since Saturday is now a short day without a lunch hour, it is inefficient. "The first hour the engineer warms up, and the last hour he prepares for his week-end; thus, much of the day is shot," is the way one management engineer summarized the situation.

In the course of several discussions at the Riga Radio Factory engineers asked about procedures in the U.S.-obviously because they had problems with theirs. Gradually, the following picture of their procedures emerged. It is a fluid picture not a static one.

Electronics Engineers Design Model,

Mechanical Engineers Build Sample
Design of a product at RRR starts when an electronics engineer is assigned to develop a circuit. He works on the schematic and builds a
"Electhonic. Desigis is not available in the Sovict Union.
model. A mechanical engineer then builds a production sample-in cooperation with an artist in the case of a mass-production article. ${ }^{\bullet}$

The two engineers are then jointly responsible for the design. Usually no separate production redesign takes place. Another department breaks down the design for production. 'The writer saw a design department of about 30 six-foot drafting desks with a drafting machine on each Draftsmen used chairs, not stools; tacks, not tape; pencil, not ink; tracing paper, not cloth.

Laboratory Test Equipment Can Be

Sovief-Made or Foreign
The electronics laboratory at RRR consisted of two large rooms with a total area of about 1,000 sq ft . These had shelves for instrument storage and desks and benches for development work. Most of the laboratory equipment was Sovietmade; however, there was a number of Bruel and Kjacr (Danish) and Rohde and Schwartz. (West German) test instruments. Engineers readily expressed interest in U'. S. equipment, but regretted that such equipment was on the U. S. prohibited list. The author was permitted to photograph anything he wished.
Two production floors were shown, but due to pressure of time the visit there had to be rather hurried. Two lines were running-one for a large, table-model radio in a wooden cabinet and another for a table-phonograph combination. The turn-table as well as the loudspeaker, including cone and magnet are manufactured in the RRR factory. The all-wave-radio front end used printed circuitry; the rest of the single chassis was conventionally wired. No transistors were used in these models, but an advanced laboratory sample of a book-sized transistor radio, was shown to the author. An adequate transistor supply for it was assured for 1961.
Soviet production scems to be working within a strict formal paperwork system. They insist on written change notices with no verbal orders. All processes must be described in detail. However, they do manage to find short-cuts. Their foremen. like ours, do not always read specifications, instructions, and prints.

In sum, it was the view of the author that the Soviet engineer is competent. Although his test instruments may not be as sophisticated as some of those recently announced in the U. S., and although they are certainly not as handsome, they are good instruments and the Soviet engineer knows how to use them. - -
${ }^{\circ}$ Laboratory instmments are not styled. The writer's remark that a switcl knob on one of the Soviet multi-meters felt too heary drew the rejoinder that "In America your problem is to sell morc. Our problem is to buy "uwre."

COMPARE ACTUAL SIZES

Squeeze Fifteen Cubic Inches of Transistors into One at no loss in reliability!

Where every inch and ounce count, Raytheons new germanium submins save valuable space and weight. Only ${ }^{1}=1$ the volume of a TO-5, each one packs into ${ }^{1} 1:$ the space. weighs only ${ }^{1}$ as much. The ligures tell the story

	Raytheon Submin	Standard TO-5
Volume, cu. in.	0.00109	0.0231
Packing Density, no. cu. ft.	$1,000.000-$	70.000
Packing Density, no. cu. in.	$600+$	41
Weight. oz.	0.005	0.040

Where reliability is a must, these submins are tops. Welded package provides truly hermetic seal. Meets MIL-S-19500B: 96-hr. salt spray. 20.00) G centrifuge. 100) $2(0)(\mathrm{K})$ eps variable frequency vibration at 20 G . 12 ms mechanical shock at $1500 \mathrm{G} .0^{-}$to 100 (C^{-}thermal shock in water, 10-day moisture resistance cycle, tem-
perature cycling. Storage and operating life match AQL's of military specifications at $100^{\circ} \mathrm{C}$ effective junction temperature

These new germanium submins are equivalents of standard Raytheon transistors in electrical performane and reliability. Write for data sheets today

$\begin{gathered} \text { GERMANIUM } \\ \text { SUBMIN } \\ \text { TYPE } \end{gathered}$	$\begin{gathered} \text { TO-5 } \\ \text { EQUIVALENT } \end{gathered}$	Vce Max. volts	fab typical mc	hfe typical	$\begin{gathered} \text { Cob } \\ \text { typical } \\ \text { pf } \end{gathered}$	Ісво typical 4 A	Rsat typical ohms
PNP 2N799	2N404	-24	12	45	12	2	1.3
PNP 2N805	2N428	-15	17	80	12	2	1.1
PNP 2 N811	2N416	-12	10	80	12	2	65^{*}
PNP 2 N813	2N417	-10	20	140	12	2	100*
NPN 2N815	2N388	20	8	110	9	3	3.5
$\underset{\mathrm{rb}^{-}}{\text {NPN } 2 N 821}$	2N440	15	10	70	9	3	3

RAYTHEON COMPANY

SEMICONDUCTOR DIVISION

RAYTHEON

SILICON AND GERMANIUM DIODES AND TRANSISTORS SILICON RECTIFIERS
BALTIMORE, MD., SOulhfield 1-0050 - BOSTON, MASS., HIllcrest 4-6700 - CHICAGO, ILL., NAilonal 5-4000 - DALLAS, TEXAS, LAkeside G-TE2 DAYTON, OHIO, BAIdwIn 3-8128 - DETROIT, MICH., TRinity 3-5330 - ENGLEWOOD CLIFFS, N. J., LOwell 7-4911 (Manhattan, WIsconsin 7-6400) LOS , NGELES, CAL., PL 7-3151 - ORLANDO, FLA., GA 3-0518 - PHILADELPHIA, PA., (Haddonfield, N. J.), HA \&-1272 • SYRACUSE, N. Y., HOward 3-914 SAN FRANCISCO, CAL., (Redwood City), EM 0-s56- CANADA: Walorloo, Ont., SHerwood 5-6831 - GOVERNMENT RELATIONS: Washington, D. C., ME \&-5203 CIRCLE 50 ON READER-SERVICE CARD

Can a silicon rectifier solve your problem?

It might, if you have я problem in DC power sources. For example, some time ago $\mathbf{C} \& \mathbf{D}$ needed a high efficiency, constant potential, current limiting DC power supply. Output had to be held within $\pm 1 \%$ over an AC input variation of \pm 15%. In addition, maintenance would have to be virtually nil

The answer was found by using a silicon rectifier in combination with simplified components that became the heart of C \& D's AutoReg* charger. AutoReg chargers provide continuous, automatic, unattended charging of industrial storage batteries. With the exception of a timing circuit there are no moving parts. There are no relays to adjust and practically no maintenance is required.

Now, C \& D has expanded facilities of the AutoReg plant to provide industry with similar DC sources, which incorporate silicon rectifiers and automatic regulation. Final form of these units can supply power in a range from milliwatts to megawatts, depending upon your requirements.

Companies with a problem in DC power sources should write, giving a general outline of their requirements, to: Vice President in Charge of Engineering

AutoReg Power Sources

masatacturars ol Syyer-Clad ${ }^{8}$ Industrial Batteries - Plasticall' med Pastican* Batteries far Comsmaicatiens. Control, and

CIRCLE 51 ON READER-SERVICE CARD

Small, Multistage Blowers Cool Densely Packed Miniature Equipment

EVEN DENSELY packed, miniaturized equipment can now be cooled effectively by small, multistage blowers. Using aircraft-compressor principles, the new blowers can deliver cooling air against extremely high system pressuresmore than 0.5 psi.

Manufactured by Cilobe Industries, Inc., 178-4 Stanley Ave., Dayton, Ohio, the 3-in. diam blowers are available with up to threc impeller stages. With their high static pressures, they can be used, for example, to deliver cooling air to a central plenum chamber and from there, through tiny ducts, to many individual circuit components. They can also be used to force air through miniature heat exchangers.

The effectiveness of these vaneaxial, multi.

Performance curves of multistage blowers compared with conventional ones show high static pressures developed by the multistoge units.
stage blowers against high back pressures be comes apparent when one compares their performance curves (shown in the dratwing), with at corse for a conventional. . 3-in.. vancasial blower.
It the peak-efficiency regiom, slightly to the right of the knees of the curses. the three-stage blower delivers air against a static pressure of almost 14 in . of water. For the same air delisery, 3(30 cm , the conventional, 3 -in. vancatial hlower has a static pressure rating of about 5 in . At peak efficiency: the three-stage unit consumes 145 w of input power compared with 140 w for conventional units
Each stage of the new blowers consists of at rotating propeller and a stationary guide-vane section. The vanes direct air How in ath a ial direction when the blower is operating at close to peak output. The guide vanes on the stator are built up in "clamshell" segments, keyed together, and machined.
The 3 -in. long bowers are driven by 200-v three-phase motors and mounted by servo clamps. All the blower parts are precise. aluminum, die castings held to extremely close rumning clearances.
Limited quantities of the blowers are available for two-week delivery. Production quantities now require from 12 to 14 weeks from date of order. For production quantities of the threestage blower, the unit price is about \$100. The two-stage units cost slightly less

For more information on these small, multistage bowers, turn to the Reader-Service Card and circle 251

Stellantar

 anothor "demand"member has joined U.S.C.family of Printed Card Connectors bringing the total of different available types to over 400.

- Conforms to MIL.C. 8384 and NAS specs
- Molding materials-melamine and diallyl phthalates
- Die cast aluminum shells-aluminum hoods
- Ideal for critical environmental conditions
- Silver plated-gold flash contacts
- Screw lock elements-stainless steel-double lead for double speed

UPCC M \& F units available with wire solder, turret type. solderless
boards).
UPCC FDTP units take AMP 53 taper pins.

Max. Wire Size	18 AWG
Voltage Breakdown (Min.)	2500v. AC, RMS
Insulation Resistance	over 5000 megohms
No. of contacts	7.11, 15, 19, 23, 32
Current Ratings	7.5 amps
Also custom configurations requirements.	specific application
	- Pat. Pend

U.S. COMPONENTS, INC. 1320 Zerega Ave. New York 62, N.Y. • TAlmadge 4-1600

...IT'S HIDING BEHIND THE ASPIRIN. Actually, we set out to build an easy-to-read tiny timer...but we first had to build an aspirin-sized motor to drive it. This assignmentmight have been a headache for a sorcerer, but A. W. Haydon did it. And there is something magical about these microminiature elapsed time indicators and companion events counters. This digital elapsed time indicator has many outstanding features: size is only $1 / 2^{\prime \prime}$ square $\times 11 / 6^{\prime \prime}$ long.... weight . 75 ounce...
meets all mil specs ... temp. range -54 to $+125^{\circ} \mathrm{C}$...vibration to 2000 cps at 20 G ...
choice of two ranges (hours to 9999, tenths to 999.9)... power input .5 watt, max. In fact, the complete data outweighs the equipment. Send for our heavyweight literature on the 19200 ETI right now. - Electrical or electronic, the A. W. Haydon Company works wonders in time. For electronic requirements call Culver City. For electromechanical devices call on our wizards in Waterbury.

High-Speed, Adjustable Circuit Breaker Protects Wide Range of Transistor Circuits

EAST EXOUCOH to protect event transistor circuits, a new circuit breaker is useful wer a wide range of currents, voltages. and break delays. Its cost is not much more than the price of just a few high-quality transistors it might sase from premature death.

The circuit breaker, manufactured by the Electronics Div. of P. R. Mallory \& Co., Inc., P.O. Box 37.3. Indianapolis, comes as an answer to a harsh fact of life confronting many circuit designers: Overloaded transistors usually burn out before the fuses that are intended to protect them.

Available in three models that can be inserted between a transistorized load and a power supply, these circuit breakers offer four important features:

- Adjustable load-limit control of $0.0+$ to 4 amp for the model CB4, 2 to 20 amp for the model CB20, and 5 to 50 amp for the CB50.
- Adjustable break relay (response time) from $100 \mu \mathrm{sec}$ to 100 msec .
- Adjustable overvoltage cut-off from 6 to 61 v de.

Selection of either automatic or manual reset All these controls, with the exception of the overvoltage cut-off, are accessible on an casy-toread, calibrated, front panel. The overvoltage cut-off is adjustable through the rear panel
In addition to its obvious advantage of highspeed overload protection, this breaker serves the engineer in less apparent ways too. Its red "overload" light helps the designer discover ciranit fanlts quickly without having to wait for results of a "smoke" test. It also helps isolate different projects using the same power supply and it permits mattended testing.
The completely transistorized circuit breaker can be represented as a normally closed. spst switch, shunted by large open-circuit resistance, and in series with a small impedance. Transition time between its "on" and "off" positions is less than $1 \mu \mathrm{sec}$ per amp of load current.

A stable, current-sensing trigger circuit allows the load-limit control to be adjusted to within a few milliamperes of the load's normal operating current. It does not have the power dissipation. instability, and drift normally encountered with devices which may be half "on" and half "off." Hence, it offers optimum protection for hads operating near maximum ratings where thermal runaway can occur

The response time between sensing an overload and opening the switch is adjustable so that temporary surges of current will not trip the breaker if the operator does not want them to. The break delay also includes a safety feature which limits the delay period if the load exeeeds an unsafe current level.
When the circuit breaker has been set for antomatic reset, it will interrupt the excessive load current for - sec. then re-apply power to the load for the selected break-delay time. It will continue to "test" the load until the overload is cleared. This function allows the breaker to serve as a high-power pulse modulator or ats a pulse-width detector.

Available from distributor stock the circuit breakers are priced at about $\$ 350$) for the model CB-4, $\$ 390$ for the CB-20, and somewhat higher for the CB-50.
For more information on these breakers, turn to the Reader-Service Card and circle 252.

JOY FAN COOLS AMPEX WIDEBAND TAPE RECORDER

 ... new unit records 4 channels-occupies just 3.5 cu. ft.The Ampex Wideband Tape Recorder, with frequency range of 10 cps to 4 mc , displaces only 3.5 cubic feet. With this size limit and rigid internal temperature specs of 104° to $140^{\circ} \mathrm{F}$, Ampex designers specified Joy Axivane fans for cooling.

Operating at $23,000 \mathrm{rpm}$ on 400 cycle AC, the Joy blower circulates 60 cfm at $10^{\prime \prime}$ static pressure through a built-in heat exchanger system. The straight-through vaneaxial design permits integral mounting directly on
the heat exchanger. The system maintains the internal temperature specified regardless of wide variations in ambient temperature.

With long experience in design problems of this kind. Joy can design small blowers of high pressures or high volumes to suit your exact electronic cooling need. And literally thousands of designs are available off-the-shelf. Let our cooling experts work with you. For more information write for Bulletin 2565-57.

AIR MOVING EQUIPMENT FOR ALL INDUSTRY

JOY
Joy Manufacfuring Company Oliver Building, Pittsburgh 22, Pa,

In Canada: Joy Manufacturing Company (Canada) Limited, Galt, Ontario

NEM PODDOCOB

Covering all new products generally specified by engineers designing electronic original equipment Use the Reader's Service Card for more information on any product. Merely circle number corresponding to that appearing at the top of each description.

Phofocell Reader

Is Completely Transistorized
Model R1R-1(O)-I) photocell reader is designed to mect requirements of general-purpose punched-tape reading including data processing and process control. It is completely transistorized. The sensing element is one piece of silicon containing eight information- and one timing-track channels. This eliminates focusing problems encrountered when each channel has a separate photocell as a sensing element. Specifications include: reading speed, $1(0)$ characters per sec, stop on character; tape, 5-, 7 -, and 8 -channel tapes, paper or aluminum types. All output signals appear simultanerously.
Rheem Manufacturing Co., Electronics Div., Dept. FID, 52(10 W. 104 St., Los Angeles, Calif

Price: \$69.5.
Availability: 30 clays.

Magnetic Drum
 Has Capacity to 150,000 Bits

The MII-5ESC-101 is a complete magnetic drum subsystem, including drum, heads, and associated read-write circuitry: Bit capacity may be as high as 150,000 . The basic 5 in. drum weighs less than 22 lb and rotates at $8,\left(\mathrm{OH}_{\mathrm{M}} \mathrm{rpm}\right.$. Maximum drom capacity is 50 tracks with recirculating registers operating as close as 10 hits. A saffety system holds head-to-drom spacing constant and accurate.

General Instrument Corp., Magne-Head Dis.. Dept. EID. 3216 W. El Segundo Blad. Hawthorne, Callif.
Price: \$7.50 (o) $\$ 1,2(x)$.
Acailability: (5^{\prime})-duly delicery.

Mica Capacitor Network

 Is $0.190 \mathbf{I n}$. ThickA 5-capacitor bank with 17 tolerance is contained in this disk. 1-3/4 in. in diameter by 0.190 in. thick. The mica network provides 0.125 uf, in addlition to any capacity from 0.125 uf upward, in 16 steps of 0.0005 uf, to a total capacity of $0.1: 325$ uf. Designed for compensation uses, it performs reliably over a temperature range of -5.5 C to 8.5 C .

Federal Pacific Electric Co., Cornell-Dubilier Electronics Div., Dept. ED, 55 Cromwell St., Providence, R.I.

Price: $\$ 20$ to $\$ 30$.
Availability: Immediate delivery.

DC Vernier Potentiometer

 Has Accuracy of 0.001%Type 9144 de vernier potentiometer is a 4 -dial, 6-figure, dual-range instrument with a total measuring caphability of 2.101010 I . It has an accuracy of ± 0 (O) (O) $1^{\%}$ warranted for a peried of 5 yr . Stabilits is guaranteed to be within $\pm 0.00015{ }^{\circ}$ per bear or better. Resolution is 0.1 !n and thermal cectromotive force is less than 0.1 !19. Primary functions include usage as: a resistance comparator accurate to 2 ppm; a saturated standard cell comparator that will detect differences of 1 UN: a comstant temperature enclosure.
Sensitive Rescarch Instrument Corp.. Dept. Fi), 310 Main St., New Rochelle, N.Y.
Price: Approximatcly $\$(6,() K)$.
Acailability: From stock to six months

Micro Transistors
In All-Glass Packages
Hermetically sealed in all-glass packages, these 4.j-v silicon mesa micro-transistors have an npcrating current range of 50) pat to $2(0)$ mat. Saturation resistance is $10(0)$ to $2(0)$ ohms: cut-off frequency is ower 50 mc , and minimum betas are 20 to 80 . The package has a thickness of 0.0 . W6 ($)$ in.. and a diameter of $\left(0.160^{\prime}\right) \mathrm{in}$. max. Power dissipation is $2(1) \mathrm{mw}$ max at 25 C ambient for amplifier types TMT 8:39 through 841, and for switching types TMT 842 and TMT 843.

Transitron Electronic Corp., Dept. ED. 168 Albion St., Wakefield, Mass.
Availability: Sample grantifies.
 TRANSISTORIZED DESIGN GROUP

ELECTRONIC DESIGN • February 1, 1961

VOLTAGE REGULATED DC POWER SUPPLIES KEPCO

 COMPACTNESS

WIDE VARIETY

VERSATILITY

FOR DETAILED SPECIFICATIONS ON MORE THAN 150 STANDARD MODEL POWER SUPPLIES SEND FOR KEPCO CATALOG

Kepco

131-36 SANFORD AVENUE FLUSHING 52, N. Y. IN 1-7000 - TWX \# NY4.5196
(VACUUM TUBE

MODEL	$\begin{aligned} & \text { DC } \\ & \text { OUTPUT } \\ & \text { VOLTS } \end{aligned}$	$\begin{aligned} & \text { OC } \\ & \text { OUTPUT } \\ & \text { AMPS. } \end{aligned}$	REGU- LATION
8008	$\begin{array}{ll} z 1 & 0.600 \\ z 2 & 0.600 \\ \text { Parallel } \\ 1 \& 2 \\ 1 \& 0.600 \\ \text { Series } 1 \& 2 \\ 0-1200 \end{array}$	$0-200 \mathrm{ma}$. 0.200 ma . 0.400 ma . $0-200 \mathrm{ma}$.	
4300	$z 1$ $0-450$ $z 2$ $0-450$ Parallel $1 \& 2$ 0 $0-450$ Series $1 \& 2$ $0-900$	$0-300 \mathrm{ma}$. $0-300 \mathrm{ma}$. $0-600 \mathrm{ma}$. $0-300 \mathrm{ma}$.	$\begin{gathered} 70 \\ 0.01 \% \end{gathered}$
24008	$z 1$ $0-400$ $z 2$ $0-400$ z_{3} $0-150$ Bias Paralle! $1 \& 2$ $0-400$ Series $1 \& 2$ $0-800$	$0-150 \mathrm{ma}$. 0-150 ma. 0-5 ma. $0-300 \mathrm{ma}$. 0.150 ma .	
103		0.75 ma . $0-75 \mathrm{ma}$. 0-5 ma. 0.150 ma	

4008	$\begin{aligned} & 0-400 \\ & 0-150 \text { Bias } \end{aligned}$	$\begin{gathered} 0-150 \mathrm{ma} . \\ 0-5 \mathrm{ma} . \end{gathered}$	T0
7308	0-350	0-3 Amp.	
7208	0-350	0-2.25 Amp	0.02\%
7108	0-350	0-1.5 Amp.	
7008	0-350	0.750 ma .	
7808	0-600	0-3 Amp.	$\begin{gathered} 10 \\ 0.01 \% \end{gathered}$
7708	0-600	0.2 .25 Amp .	
760B	0.600	0-1.5 Amp.	
7508	0-600	0.750 ma .	
605	$\begin{aligned} & 0.600 \\ & 0-150 \text { Bias } \end{aligned}$	$0-500 \mathrm{ma} \text {. }$ $0.5 \mathrm{ma} \text {. }$	
6158	$\begin{aligned} & 0-600 \\ & 0.150 \text { Bias } \end{aligned}$	$\begin{aligned} & 0-300 \mathrm{ma} \\ & 0-5 \mathrm{ma} . \end{aligned}$	
2500	0-2500	0-50 ma.	
1520B	0-1500	$0-200 \mathrm{ma}$.	
1220 C	0-1200	0.50 ma .	0.004\%
12508	0.1000	0.500 ma .	
KR16	0-150	1.5 Amp .	- 0.1 \%
KR17	100-200	1.5 Amp .	
KR18	19.5-325	1.5 Amp .	
KR19	295-450	1.5 Amp .	
KR8	0-150	600 ma .	
KR5	100-200	600 ma .	
KR6	195-325	(600 mal.	
KR7	295-450	600 mal .	
KR12	0.150	300 mH .	
KR3	100-200	300 ms .	
KR4	195-325	300 mala,	
KR10	295-450	:300 ma.	
KR11	0-150	12.5 ma .	
KR1	100-200	125 ma .	
KR2	195-325	125 ma .	
KR9	205-450	125 ma .	

How to make a shrewd increase in recorder efficiency

With twice the performance, the Ampex FR-600 is still compatible with earlier equipment.

Abstract

Doubles tape utilization and obviates standby equipment Your FR-600 records 125 kc data at 30 ips instead of $60-$ gives twice the recording time per reel. For example, you get 48 minutes recording time on $101 / 2$-inch reels, 96 minutes on 14 -inch at 30 ips . Not only are tape expenditures cut in half, but standby recorders on long sessions may no longer be needed. And for a broader data spectrum in the future, your FR-600 can accommodate 250 kc at 60 ips or 500 kc at 120 ips . Multiplies available recording time and eliminates error Two-hour warmup and adjust sessions are reduced to ten minutes by the FR-600's transistorized circuitry. Final calibration is a one-time-per-use operation. Post-warmup stability - less than 1% drift per 24 hours - precludes timewasting adjustments and minimizes creeping inaccuracies. Because your FR-600 is ready when needed, it works more hours per day, saving both your time and its own.

Updates performance of older equipment
The FR-600 plays back tapes from most existing data recorders. And because playback heads generally determine overall frequency response, use of an FR-600 for playback can permit earlier equipment (with simple adjustment) to record the same high information density as your FR-600.

The essential dath

The Model: FR-600 Laboratory Recorder; Reproducer. Number of tracks: up to 14. Reel sizes and rape widihs: $101 / 2$ - or 14 -inch NAB, with $1 / 2$-inch or 1 -inch tape, interchangeably.
Frequency response: 300 to $250,000 \mathrm{cps} \pm 3 \mathrm{db}$ at 60 ips with requency response: 300 to $250,000 \mathrm{cps} \pm 3$ db at 60 ips with
direct recordings; 0 to $20,000 \mathrm{cps} \pm 0.25 \mathrm{db}$ at 60 ips in FM carrier recording proportionate response at other speeds. Tape speeds: $60,30,15,71 / 2 \mathrm{ips} ; 120,331,11 / 2 \mathrm{ips}$ optional Types of recording: direct, PDM and FM-carrier, by plug-in
modules. Compatibility: yes, with Ampex 300 and 800 series; FR-100 and FR-1100 series, and AR-200 and CP-100 series.

NEW PRODUCTS

Hermetically sealed
Increased reliability is claimed for these micro-diodes, hermetically sealed in glass. Their operating and storage temperature range is -55 to $\mathbf{1 5 0} \mathrm{C}$. Maximum power dissipation is 100 mw at 25 C ; Zener voltage is between 5.1 v and 10 v at 5 ma .
Transitron Electronic Corp., Dept. ED, 168 Albion St., Wakefield Mass.

CHANGES IN PRICES \& AVAILABILITY

PRICES OF fusion-sealed, fixechglass capacitors have been reduced 10% by the Corning Electronic Components Div. of the Corning Glass Works. New prices cited were CYF 10, 91 pf, 10% tolerance, $\$ 0.67$ ca; CYF 15, $270 \mathrm{pf}, 10$ tolerance $\$ 0.43$ eal. The prices are for quantities of 1,100 or more
SPRAGUE ELECTRIC CO. has announced that their 8.5-C tubular, wet electrolyte, slug-anode tantalum capacitors, in all ratings at -155 , $+20 \%$ tolerance, are now priced at the same levels as units rated at $-15 \%,+50 \%$. The wide tolerance line is being dropped Large case size type 1090) units were dropped from $\$ 4.70$ ca to $\$ 3.95$ ea in quantities of 1.000 or more. Intermediate case size units were reduced from \$3.75 ea to $\$ 3.2 .5$ ea, while the smallest case size type l(M9D capacitors are now $\$ 1.50$ ea instead of the former price of $\$ 1.75$ ca.

INTERNATIONAL RESISTANCE CO. has lowered prices on three types of fixed-carbon composition resistors. The fixed-carbon composition resistors in 5% tolerance units rated at $1 / 2,1$. and $2 w$ have been reduced in price for volume users. $1 / 2-\mathrm{w}$ units will cost $\$ 36.70$ per 1,000 in quantities of 5.000 . In lots of 25,000 there will be a further reduction to $\$ 36.40$ per 1,000.

- CIRCLE SG ON READER-SERVICE CARD

FOR TECHNICAL ASSISTANCE AND SERVICE CONTACT THE TRANSITRON FIELD OFFICE NEAREST YOU AS LISTED BELOW.
Baltimere, Maryland
2319 Maryland Ave............CHesapeake 3-3220 BOSTON, Massachusetts
168-182 Albion St
Wakefield, Mass..
CAMDEN, New Jersey
227 S. Sixth St. .
chicago, Illinois
6641 W. North Ave.
Oak Park, III. .
.............VIIlaoo 8.5556
Cleveland, Ohio
14625 Detroit Ave.
Lakewood, Ohio. ACademy 1-9191
DALLAS, Texas
511 Braniff Airways Bldg
Dallas 35, Texas.
darton. Ohio
379 W. First St.
denver, Colorado
First National Bank Bldg.
621 Seventeenth St...
DETROIT, Michigan

KANSAS CITY. Missouri
Wirtham Bldg.
31st and Troost Sts...............VAlentine 1-1819
los angeles, California
6362 Hollywood Blvd.
Hollywood 28, Calif..
mewark, New Jersey
1060 Broad St...
. HOllywood 2-2381

ORLANDO, Florida

- 10 Jacklind BIdg.

205 E. Jackson St...
phoemix, Arizona
2727 North Cental Ave Crestwood 7.3360
ST. PAUL, Minnesota
Griggs-Midway Bldg.
1821 University Ave.
....MIdway 6-1891
SAN DIEGO, California
3620 30th St...
CYpress 7.3708
SAN FRANCISCO. California
535 Middlefield Rd.
Palo Alto, Calif....
.. DAvenport 1-2064
SEATTLE, Washington
3466 East Marginal Way.
............. MAin 4-0783
syracuse, New York
2360 James St..
.. HOward 3.4502
winston-salem, North Carolina
Nissen Building
310 W. Fourth St
.PArk 3-0363

Transitron

electronic corporation wakeflelt, mesesechueette
 CIRCLE 57 ON READER-SERVICE CARD

NEW FROM Transitron

meros
(A MESA MICRO.TRANSISTOR)

- SILICON DIFFUSED

- HERMETICALLY-SEALED
- ALL-GLASS PACKAGE

INTRODUCING THE FIRST SERIES IN A

 COMPLETE LINE OF MICRO-TRANSISTORSDevelopment of the mICROT - first silicon diffused mess micro-transistor in an hermetically sealed all-glass package - represents a major step forward in microminiaturization. As compared with conventional "metal can" configurations, the micro-t's hard glass packaging embodies a significant improvement in the hermetic seal between leads and package. Reliability is substantially increased: possibility of leakage is sharply reduced.
This new series of 45 -volt micro-transistors is the first designed for small-signal low-level applications. with current operating range from 50 microamps to 20 milliamps. Other electrical characteristics include an Res of 100 to 200 ohms; minimum Betas from 20 to 80; cut-off frequencies of over 50 megacycles. Perfectly compatible with present circuitry, MICRO-T's will facilitate microminiaturizing in such critical areas as airborne, space vehicle and missile application. They are $1 / 20$ th the size of the TO-5, and $1 / 5$ th that of the TO- 18 .

The first five types of micRo-T's are available now. For full information, write for Bulletins No. PB-78, (Amplifier types) and PB-79, (Switching types).

MEET USATIRE-

BOOTH NOS. 1220-1224

Transitron
 electronic corporation

wakefield, melrose, boston, mass. SALES OFFICES IN PRINCIPAL CIties throughout the u.S.A. and europe - cable address trelco

Miniature Motors

With ball bearings

The DS-105 group of miniature motors, with ball bearings, can be built for de operation as shuntseries or split field motors or as ac series-type universal motors. At $8,(00) \mathrm{rpm}$, the de version develops $1 / 100$ hp; ac versions develop $1 / 200 \mathrm{~h}$ h. The $11-0 \%$ motors are 2.562 in . long; housing OD is 1.687 in . Shaft diameter is 0.250 in . max. For continuous or intermittent duty, they meet J.AN specifications.

Heinz: Mueller Engineering Co., Inc., Dept. E1), 4725 W. Iowa St., Chicago 51, III.

Batch Counters

Rate is 6,000 per min

These electronic batch counters have a maximum speed of $6,(1)(1)$ counts per min. The model 1)(-.-30 divides the counts by 10 for reduced register wear. The model BC- 40 counts a preset number from 2 to 16, tripping a relay switch which actuates any electrically controlled function, then automatically resets to 0 for the next count. Model BC-50, basically the same. counts any number from 2 to 256 . Model BC-60 counts any number from 2 to $1,024$.

Gyra Electronics Corp., Dept. ED, Washington \& Elm Sts., P.O. Box 184 , La Grange, III.
Price: \$99.5() to \$249.50.

501 Magnetic Amplifier

Inpur 5 mv to 5 vdc

A bi-stable magnetic amplifier, the morlel 1684 is available for signal inputs of less than 5 mv , with up to 5 v overvoltage, and in a high-input version, for signals of less than 5 v de, with up to 500 v overioltage. Excitation is 115 v $\pm 5 \%, 40 \mathrm{O}$ (ps $\pm 1 \%$. Input impedance is 1 K or 14 K . Relay coil load is 1 K . Output current is 14 ma do max in both versions. W'eight is about 180%

Lumen, Inc., Dept. E1), P.O. Box 905 , Joliet, 111.
Price: $\$ 201$) singly, $\$ 13.5$ ca in (fuctntities of 10).
Acailability: 30 days.

606 Differential Amplifier 628
100 -meg input impedonce

1 transistorized differential atmplifier, the model TIIA-ST.5 has 12()$-\mathrm{dh}$ common mode rejection and $100-\mathrm{meg}$ input impedance. In its differential mode, the amplifier provides 10 v at 10 ma , full-scale output: in single-ended mode, fullscale output is 10 v at 50 ma . User may select among 5 fixed gains. Bandwidth is 5 kc differential, 150 kc single-ended; drift is less than $2 \mu \mathrm{v}$ per week and noise is less than 2μ peak-to-peak.
Epsco-West, Dept. ED, 240 E. Palais Road. Anaheim, Calif.

Compact, Adjustable Temperature Control Provides Performance of Larger Units

0NE-FIFTII the size of conventional units that do the same work, a new line of automatic temperature controls can monitor and maintain extemal temperatures to within 1 F or $1-2$ per cent of full temperature range. Designated the "Temp-Tendor, Moxdel 450)" the units are designed for panel mounting with visual sig. nal indication.

Designed around locking-contact meter relays, the new controls are provided in eight standard ranges from 300) \mathbf{F} to $2.5(10 \mathrm{~F}$. Special ranges may be ordered from the mannfacturer, Assembly

Compact temperature control occupies one-fifth the volume of predecessor. Case of small unit can be removed for easy panel mounting.

Products Inc. of Chesterland, Ohio. at higher cost.
As with other meter-relay devices. the set point can be adjusted instantly to any position on the dial. The device itself periodically samples signals from an external thermecouple, "sually at is rate of about six times a minute.

When the meter's indicating pointer reaches the set point, the heater power of the controlled device is automatically disconnected.

The unit's rate of interruption can be fieldadjusted by simply changing a connection on its rear terminal strip. Faster sampling rates result in more precise control and somewhat shorter contact life.

Because pyrometers are inluerently low-turque movements, the model 450 superimposes a small. ace "dither" signal on the thermoconple signal. This vibrates the moving wistern of the meter imperceptibly; it osercomes bearing friction; and. as a result. it improses the inetaris repeatability substantiall!

In adjustable potentionoter and bridge cirenit in the 450 allows the nser to compensate the pyrometer movement for different thermocouple lengths. Thermecouphes with up to 10 -olim resistance can be used withent the usual errors ancountered in therinocomple braak protection. Small size of the new controls. 4.5 -in. wide, f-in. high, and $5.5-\mathrm{in}$. deap. resules from redesigned circuitry and improsed packaging. The device includes, for example a smaller load relay with the same s-amp rating of relays used in langer instruments. The Ioad relay turns heat on and off, time-proportioning the "on" period (1) maintain virtual straightline control.

Delivery of the model t50 takes about 4 wechs. With a single. high. wet point. the enit costs S1Si5. Quantity discomsts and OFM prices are arailable.
For more information on these compact temperature controls. turn \&1 He Bader-Sarvice Card and circle 253.

... It's the new Spectrol ultraminlature frlmmer... the smallest trimming potentiometer on the marketl Measuring $1 / 3^{\prime \prime}$ in diameter, weighing only 1 gram, and designed specifically for transistor circuits, the Spectrol Model 80 is a remarkable breakthrough in component technology.
Design engineers can now shrink printed circuit packages in all three dimensions. The single turn adjustment is from the top, rather than the side. It is ideal for printed circuit applications. Sealed construction allows complete package encapsulation.

THE MODEL 80 is approximately one-quarter the size of ordinary trimmers, yet it offers greater resolution and resettability because the resistance element is nearly twice as long. These trimmers meet all applicable military and commercial specifications in
cluding the most severe humidity cycling and immersion tests.

MODEL 80

Available now for immediate delivery. Standard models of Spectro rimmers and miniature potentiometers, as well as other standard pre
cision potentiometers, are available from your nearby Spectrol distributor cision potentiometers. are available from your nearby Spectrol distributor
For complete technical information, contact your Spectrol engineerine representative or write directly to the factory. Please address Dept. 36.

The Spectrol name

your assurance of quality.
Spectrol trimmers are produced to the same exacting standards of quality and reliability engineered into the entire Spectrol potentiometer line ... the largest selection in the industry.

SPECIFICATIONS

DIAMETER 0.345"
STAMDAAD AESISTAMCES (Onmes) 50,100
aESISTANCE TOLERANCE $\pm 5 \%$
WO. PURMS ONE
POWER RATIME 1 watt at $70^{\circ} \mathrm{C}$
LIMEARITY $\pm 1.0 \%$
MOISE $100 \pm$ ENR per MAS. 710
SHOCK 50 G
Mumidity Mil.
Humsoiry MIL-E-5272C, Proced, I (10
days, cycling) and MIL-STO-202A, Methor 104, Condition A (immersion in not water) SALT SPRAY MIL-STD.202A, Method 101A
Condition A (96 hours) LOAD LIFE 1000 hours WEICMT 1 Gram
PRICE (1.9 units) $\$ 6.00$ each

ELECTRONICS
CORPORATION
1704 South Dal Mar Avenue - San Gabriel, California Phone: ATlantic 7.9761 Westbury, L. I., Now York Phone: EDgewood 3.5850

all you have

for a relay

is a sudden

impulse...

An impulse relay-one that when pulsed will turn something on and leave it on and when identically pulsed again will turn the load off and leave it off-is nothing new. For years you've been able to buy them, complete withratchets, pawls, escapements, walking beams, lock-in mechanisms, etc., in a regular commercial quality grade. Sequencing and stepping relays are the more educated relatives in the family.

But in the recent trend of getting more things up in the air, and generally getting more and more out of smaller and smaller relays for practically no power and under unpleasant conditions, the standard commercial impulse relay has often gotten dirty looks. Generally, it wouldn't hold together under the vibration or shock levels, and its size and relatively short life further complicated things.

Naturally,Sigma now has an impulse relay with none of the above drawbacks (mostly because it has none of the above mechanical mechanisms). SPDT contacts will switch 2 amp. resistive loads
(28 VDC/ 120 VAC) 200,000 times; mechanical life with no contact load is 4 million operations. It works on positive DC pulses as short as 1 millisecond, at speeds up to 10 pps. For the space, weight and power pinchers, this new hermetically sealed relay takes up $1^{10} \times 1^{1 \prime} \times 13^{\prime \prime \prime}$, weighs about $21 / 6$ ounces and transfers its contacts on as little as 250 microjoules (e.g., 250 mw . for 1 ms .). Vibration immunity is in the order of 30 g 's to 2000 cycles, operating temperature -65° to $+125^{\circ} \mathrm{C}$. About the only caution is that you've got to feed it pulses of the same polarity.

We're building this little marvel and even have a few anxious customers. People who build telemetering equipment, satellites, and perhaps computers as well, are the Sales Dept's. great white hope. If you like binary counting schemes and
 such, think of the possibilities if you hooked up several in sequence. And with a small roulette wheel and an acquisitive impulse, one might do handsomely, mightn't one?

SJGMA INSTRUMENTS, INC.
91 Pearl Street, So. Braintree 85, Mass.

NEW PRODUCTS

Power-Supply Kit

For plate, bias, and filament

The model B-12 power-supply kit provides dc plate voltages from 0 to 400 v , at 150 ma max; bias voltages from 0 to 150 v at 2 ma ; and three 3 -amp ac filament outputs: two at 6.3 v and one at 12 v . Output variation is less than 0.33% or 0.3 v , from no load to full load. Variation from $117-\mathrm{v}$ ac line voltage input of $\pm 10 \mathrm{v}$ causes less than 0.4% or $0.5-v$ output change. Ripple is less than 0.003 v rms. The $2(0)$ lh unit is 1.3 in . wide. $8-1 / 2 \mathrm{in}$. high and 7 in . deep.

Precision Apparatus Co., Inc., Paco Electronics Co. Div., Dept. EI). $70-31$ Stlı St.. Clendale 27 , L. I., N. Y.

Price: $\$ 6.9 .9 .7$ in kil form, \$9.9.9.5 uired.

Thermocouple Reference Junction

For in-flight applications

The thermocouple reference junction series FRJ, for in-flight applications, provides temperature reference for multi-channel thermocouple systems. Junction accuracy matches NBS curves within $\pm 1 / 5 \mathrm{~F}$. Units are available with up to 24 channels, and any junction temperature from 25 F above ambient to 250 F . Ambient operating temperature range is -6.5 F to 165 F with less than $1 / 2 \mathrm{~F}$ reference variation. The $2-\mathrm{lb}$ unit requires 105 to $125 \mathrm{v}, 380$ to 420 cps , and meets environmental requirements.

Pace Engineering Co., Dept. ED. 13035 Saticoy St., North Hollywond, Calif.

The R.F. Choke that's so small you can pack 200,000 to a cubic foot

Tiny, new, WEE-DUCTOR covers a full range of inductances from $0.10 \mu \mathrm{H}$ to $56,000 \mu \mathrm{H}$ yet it measures only $0.157^{\circ} \times 0.375^{\prime \prime}$
Unique ferrite sleeve and core construction provides 560,000 to 1 inductance range in a tiny package and yet when assembled side-by-side, exhibit less than 2% coupling.
Essex WEE-DUCTORS are avalable immediately from stock. WEE-DUCTORS are the latest addition to Essex's broad line of Standard R.F. Choke Coils.

Essex Electronics Standard Line of R.F. Chokes

$\begin{aligned} & \text { ESSEM } \\ & \text { PART NO. } \end{aligned}$	$\begin{aligned} & \text { WEE. } \\ & \text { DUCTOA } \end{aligned}$	AFC-	nfic-	nfe-
1 HW	1.56.000	1.100	10.1 .000	10.10.000
man. Res. n	035.499	02-6.0	04-21	03-80
1 max. ma	3000.26	4000-220	2700.125	4000.80
Dia.	157	. 188	. 250	310
Lenstily	375	440	. 600	900

WRITE TODAY
Free Descriptive Literature Available

ESSBERT EREGMIR - NHES

550 Springfiald Ave., Berkeley Hoights, N. J. CResfuiew 3.9300
CIRCLE 63 ON READER-SERVICE CARD

Fixed Coaxial Pad

This fixed coaxial attenuator provides attenuation of $1.5 \mathrm{db}-0.1 \mathrm{db}$ in the uhf range. It will accept up to 200 w of cw power. Size is 10 $1-1 / 2 \times 1-1 / 2$ in
Merrimac Research d Development, Inc., Dept. ED 51\% Lyons Are., Irvington, N.J

Magnetic Core Tester 491

With 40 -nsec rise time

I high-speed. multiple output pulse generator. the model 1.300 magnetic core tester provides programed, high-amplitude current or voltage pulses. It has a rise time of $10 \mathrm{nsec}, 200-\mathrm{kc}$ stepping rates and $2-1 / 2$-amp current pulses. Primary and secondary pulse widths range from 0.5 to $50 \mu \mathrm{sec}$, and secondary pulse delay from 0 to $5 \mu \mathrm{sec}$. The pri range is from 500 to 200,000 pulses per sec, with maximum averalge current pulses to 300 ma . l'ower requirement is 105 to 125 v , (i) (eps. The unit is contained in a standard rack cabinet 62 in . high.

Kese Engineering, Inc., Dept. ED. A and Courtland Sts., Philadelphia 20, Pa
Price: \$4,200.
Arailability: 3()-da!) delir E'T!!

ENGINEERING NEWS-\#4

BASIC PRECISION SWITCHES

CHECKED
ENGR. Fwoth
CONTROL SWITCH DIVISION

Meet Thousands of Application Needs with these Five Basic Switch Types

STANDARD MODELS in a wide range of dimensional and characteristic designs-from the tiny, powerful sub-subminiature type to the large. general purpose type where size is not important. See each switch series for application suggestions and brief specifications.

VARIATIONS-hundreds available -designed and engineered to meet such specific requirements as:
U.L. listings high temperatures dry circuitry high electrical ratings
reset for 2-way limit
high in-rush
AN and MS
AN and MS
special terminals

ACTUATORS-toggle, pushbutton, leaf, roller leaf, lever, roller lever, etc., available. Choose the Switch Series that meets your basic application needs. Then tell us the specific characteristics you want. Chances are, we have a standard ready for your use. We are fully equipped to make the switch you need in any quantity.

ideal

 for compact, precision control uses... E4 series

SUBMINIATURE, SPDT, $25 / 32^{\prime \prime} \times 1 / 4^{\prime \prime} \times 2 / 4$ low movement differential and operating force permit precision control in critical applications.
solder: single, double and long double turret terminals.
for rugged, low-cost, easy wiring uses. F series

MINIATURE, SPDT,

 rugged. low-cost desig convenient terminals simplify wiring solder, screw and spade terminals 150.000 ops. 10 amps @ 125.250 VAC 28 VOC Res.for general purpose,

precision control
uses...
S series

2CIRCUIT, SPOT double break, $11_{4}{ }^{\prime \prime} \times 1 / 2^{\prime \prime} \times 1 /{ }^{\prime \prime}$
ombines high capacity, moderate size,
long life and precision contro
end and side solder, screw and spade terminals.
50.000 ops. © 125 VAC . 10 amps., U.L. rated
high in-rush
and
repeatability uses...
S23 series

For more details on these basic precision
switch types write for catalog No. 110

SPDT, $1251010 \times 11 / 60^{\prime \prime} \times 57 / 4$
tough, durable, compact.
handes high in-rush loads easily.
repeats to $10,000,000$ cycles min
20 amps, 125 : 250 / 480 VAC U. . pated
amp, 125 VOC. $1 /$ amp, 250 VDC

FIRST MIL TYPE germanium MESA SWITCHING TRANSISTOR

MOTOROLA USN 2NTOE			
ELECTRICAL CHARACTERISTICS at $25^{\circ} \mathrm{C}$			
Panameter	SYMBOL	anting	UMIT
Collector-Base Vollage	V_{c}	15	Vde
Collector Emitter Voliage	V_{0}	15	Voc
Emitter-Base Voltage	V_{6}	35	Vde
Collector Dissipation @ $25^{\circ} \mathrm{C}$ Case Temp	p.	300	mW
Collector Dissupation @ $25^{\circ} \mathrm{C}$ Ambient Temp	P.	150	mW
Formerd Current Trenster Ratio	hra	25 min	-
Base-Emitter Voltage	V 0	$035 \mathrm{~min}-0.44 \mathrm{max}$	Vde
Collector Saturation Voltage $\left(U_{\mathrm{a}}=-4\right.$ madc. $\left.\mathrm{I},=10 \mathrm{mAdc}\right)$	$\mathrm{V}_{\text {cken* }}$	0.3 max	Vde
Storage Time	t.	100 max	nsec
fall Time	t_{1}	100 max	nsec
Delay + Rise lime	$\mathrm{t}_{\mathrm{t}}+\mathrm{t}$.	75 mar	nsec
Junction Temperature	T,	100	'c.

FOR COMPLETE

TECHNICAL IMFORMATION
on the Motorola USN 2N705, write for Data Sheet.
Please address inquiries to MOTOROLA SEMICONDUCTOR PRODUCTS INC., Technical Information Department, 5005 E. McDowell Road, Phoenix, Arizona.

The USN 2N705 is a PNP germanium high frequency mesa switching transistor. It is ideal for use wherever high-speed switching is necessary, such as flip-flop, gate and trigger circuits. Reliable operation in switching circuits has been achieved at frequencies in excess of 40 megacycles.

Units are immediately available. Order from your authorized Motorola Semiconductor distributor or your Motorola district office

MOTOROLA SEMICONDUCTOR DISTRICT OFFICES:

MOTOROLA
semiconductor Producte Ine.

MOTOROLA SUPPLIES THE WIDEST RANGE OF MESA TRANSISTORS
for computer, amplifier and VHF power applications.

FOR COMPUTER APPLICATIONS

2N695 Ultra-high-speed PNP ger. manium switching transistor manium switching transistor. TO-17 package with 4th lead High-sper performance sucl High-speed performance such
as 50 mc flip-flops.
2N705 Germanium PNP. Combine
2N705 (USN) the same high speed switching
2N710 as 2N695 with 300 mW devier dissipation. TO- 18 package.
2N111 Germanium PNP Lower cos Mntorola Mesa switch for less critical switching applications.
2N7068 Silicon NPN switching Mesat with lower hase resistance lower saturation voltage and improved high-frequency per. formance. TO. 18 package.

2N706A ...Silicon NPN switching Mesas
2N706 TO. 18 package.
2N828 (iermanium PNP Epitaxial Mesa. Ultra-high-speed switching. low saturation ro sistance. High reliability. TO 18 package.
2N834
Silicon NPN Epitaxial Mesia for universal computer and communications applications TO- 18 package.

FOR UHF-VHF AMPLIFIER APPLICATIONS - GERMANIUM PNP

2N700 For 40 to 1000 mc communica tions applications. TO-17 pack age with fourth lead providing high-frequency shielding.
2N141 For communications applica tions up to 100 mc .300 mW device dissipation. Power gain of 22 dh at 30 mc . Excellen viden amplifier. TO- 18 case.

FOR MEDIUM-POWER VHF TRANSMITTER APPLICATIONS - GERMANIUM PNP
2N1561 ... Provides $1 / 2$ watt RF power output at 160 mc with 7 dh gain. Useful from below 70 mc to $\mathbf{3 5 0} \mathrm{mc}$.
2N1562 Companion driver for 2N156।

NEW PRODUCTS

DC Power Supply 488
Current regulated to 0.1%

One of a series of solid-state cur-rent-regulated power supplies, the model TC?2().-5 has regulation held (1) ().1名. The series converts $110-\mathrm{v}$, single-phase, 60 (0-ps power to 200 v de, with maximum current of 5,10 , or 15 amp . Regulation to 0.01% or 0.001% may be ohtained. Coarse and fine continuous adjustment of current is provided. The ?(O)-lh unit is 30 in . high, 19-1/2 in. deep, and 2.4 in . wide.

Spectromagnetic Industries, Dept. ED, P.O. Box 3.3(6). Hatward, Calit.

LC Meter

 470For in situ measurements

The model MM 906 is designed for component checks and in situ measurements of inductance and capacitance, including strays. Minimum ranges, for full-scale deflection on the 4 -in. meter, are 0 to $3 \mu \mathrm{~h}$ and 0 to 3 pf . It provides continuous monitoring from 0 to $300 \mu \mathrm{~h}$ and 0 to 300 pf, in 5 ranges with $\pm 3 \%$ accuracy. Weight is 10 lb .
Solartron Laboratory Instruments Ltd., Dept. EI), Cox Lane, Chessington, Surrey, England.

How long will you keep buying obsolete counters

when CMC counters with solid state reliability cost so little more?

Announcing the CMC 728A

A SOLID STATE 20 MC UNIVERSAL COUNTER-TIMER

Introduction of the CMC 728A marks another frequency step-up from the company that brought you the first transistorized universal counter-timers. CMC, the leader in truly advanced counting, timing, and frequency measuring equipment offers $100 \mathrm{kc}, 250 \mathrm{kc} .1 \mathrm{mc}$ 10 mc and now 20 mc all solid state instrumentation.

Can You Afford To S:rrle For Less? If you are considering any counter, will your engineering judgement and sense of real economy dictate purchase of old fashioned equipment? Stop and look at the merits of solid state counters. Did you know that the reliability of all CMC solid state counters is backed with a 2 year warranty double the guarantee of tube counters? Did you know CMC's solid state 10 mc universal counter timer only cosis $\$ 200$ more than comparable vacuum tube counters? That's the beginning. Compare the rest of these specifications.

Compare the 20 mc Solid State Universal Counter Timer - We'd like to, but frankly, there aren't any comparable vacuum tube counters. This might lead the discerning engineer to think that at 10 mc vacuum tubes are driven "hard", right to their capacity. And he'd be right.

More Informafion - For complete technical information on high reliability solid state counting instrumentation, call your nearby CMC engineering representative. offices in 33 cities throughout the U.S. and Canada, or write directly to Dept. 36.

㩆

Computer
Measurements Co.
A Division of Pactice Industries
12970 Bradiey Avenue, SyImar, California Phone: EMpire 7.2161

CIRCLE 66 ON READER-SERVICE CARD ELECTRONIC DESIGN • February I, 1961

NEW PRODUCTS

Telemetry Amplifier
For use with transducers

This solid-state, modular carrier-amplifier system is designed for use with low-level output transducers. The model MCS-101 provides excitation to the transducer and amplifies the output to 5 v dc. Frequency response is dc to $2,000 \mathrm{cps}$; combined nonlinearity and hysteresis error is less than 0.2% full scale. The system is powered from unregulated 28 v dc. External dimensions, less connectors, are $1.0 \times 1.8 \times 2.0 \mathrm{in}$. Weight is about 4 oz .

Pacific Telemetry Systems, Dept. ED, 10810 W. Washington Blvd., Culver City, Calif. Price: $\$ 495$ ea.
Availability: 4-week delivery.

Waveform Comparator
Compares ac or de to de

With this oscilloscope accessory, model 212, peak ac may be compared to dc with 0.005% comparison accuracy, or dc to dc at 0.001%. In addition to calibrating ac and dc standards, the device makes possible precise observation of small portions of large waveforms. Frequency range is 0 to 5 kc ; inputs are 0 to 20 v peak and dc. Outputs to oscilloscope give presentation of ac peaks versus de reference, with chopper zero interference, and dc input versus dc reference shown as ac-coupled square wave at chopper frequency.

Rotek Instrument Corp., Dept. ED, 733 Concord Ave., Cambridge, Mass.
Price: \$1,250.
Availability: Delivery from stock to 10 weeks.

TANTALUM CAPACITORS

. . . "wet slug,'" high temperature (to $200^{\circ} \mathrm{C}$)
. . . "wet slug." microminiature to miniature
. . . solid electrolyte, metal case or encapsulated
. . . foil type, polarized and non-polarized
. . Mallory has what you want. Industry's
broadest line. 13 types, hundreds of ratings.
Write for complete catalog.
Mallory Capacitor Company,
Indianapolis 6, Indiana.

Complete line of aluminum and tantalum electrolytics, motor start and run capacitors

Mationy Tentalum Capacilors Slocked by these distributors

Baltimore, Md
Radio Electric Samice
Binghamton, N.Y.
Stack Electronics
Boston, Mase.
Cramer Electronics, Inc. DeMambro Radio Supply Co. Lafayetto Radio
Bridgeport, Conn.
Westconn Electronics
Unifolo, M.T.
Whil Electronice
Chisege, IM.
Alied Radio Corp.
Newark Electronics Corp.
Cincinnat Ohve
raveland Ohi
Pioneer Electronics
-olleze Part, Ma.
Rucker Electronic Products
Rucker Elect
Engineorling Supply Co.
ayton. Ohto
Allied Supply Co.
Denver. Colo.
Denver Electronies
Moustion. Toras
Harrison Equipment Co., Inc.
Lenert Company
noianapolls. Ina. Graham Eiectronte
Les Angeles, Calif. California Electronica Kierulfi Electronics, Ine Radio Product Sales
Minneapolls, Minn.
Northwest Ra
Montreal, Oue.
Canadian Electrical Supply Co.
Mountainside, M.J.
Faderated Purchaser, Inc
Mastrulle, Tenn.
Electra Dist. Co.
Newark, N.J.
New Yorth N.Y.
Now Yort, N.Y. Harrison Radio Corp.
Harvoy Radio Co Hadson Radio \& iv Corp. Lafayette Radio Terminal Electronies
Oakland, Calh. Elmar Electronics, Inc. Zack Electronics
Ortando Fla.
East Coast Redio
Ottawe, One
Wackid Radio.TV Lab.
Palo ANO, CalK. Zack Electronic Pasadena, Calh. Electronic Supply Corp.
Perth Amboy. NJ. Atlas Electronics Priladelphia, Pa. Harbach \& Rademan Philadelphia Electronics
Puttebureh, Pa Redio Parts C.
S. Louls, Mo.

Olive Electronles
Seatto. Wash
F. B. Connolly Co.

Tamea. Fiorida
Thurow Distributors, Inc.
Teronte. One
Alpha Aracon Radio Co. Elactro Sonic Supply
Tueson, Arts. Standard Radio Parts Tulen, Onle. Engineering Supply Co.
Washinston, D.C. Electronic Industriel Sale:
Whte Malns, N.Y. Westchestor Electric
Winston-Salom, N.C. Dalton-Hege Radio

Push-Button Panel Switch
Is illuminated

This illuminated, push-button panel switch has momentary or alternate action. It is available with double throw switching from two to four poles, and in single or four-color variations. It has independent or switch wiring for lamp circuits.
O \& S Research, Inc., Dept. ED, Riverton, N.J.

Precision Potentiometers

Resolution is better than 0.01%

These deposited-film, precision potentiometers provide resolution of better than 0.01 . They are designed for use where small increments of shaft rotation must produce proportionally small changes in resistance. They are available in single or ganged types.

Servomechanisms Inc., Mechatrol Div., Dept. ED, 1:200 Prospect Ave., Westbury, L.I., N.Y.

Amplifier Rack Module
458
For horizontal mounting

Amplifier rack module model 191A is designed to hold a single amplifier in a horizontal position for mounting in a standard 19 -in. rack. It contains an on-off switch. ventilating fan and a fused, 3-wire ac line plug. All ac wiring is complete.

Colur Electronics, Inc.. Kin-Tel Div., Dept. EI), 5:25 Kearney Villa Road, San Diego 12, Calif.
Price: $\$ 15()$ fob San Diego.
Availability: One ueck.

This is the new Union Crystal Case Relay

The UNION 2-PDT General Purpose Crystal Case Relay is designed tc consistently meet the requirements of MS 24250, Mil-R-25018, Mil-R5757C. Use it where minimum size and optimum reliability are esssential-in control systems, computers, airborne and guided missile electronic equipment.

To provide vibration immunity, we have incorporated a unique feature in this relay's armature suspension system. A torsion wire is anchored to the armature and backstrap. It acts as a biasing spring; supports the armature and climinates end play. The relay uses the rotary principle of operation, found in the entire line of extremely reliable Union Switch \& Signal miniature relays.

The 2-pole, double throw, bifurcated contact structure increases reliability and efficiency in dry circuit applications. UNION Crystal Case Relays are designed for continuous operations in the $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range.

Union Switch \& Signal's manufacturing capabilities and experience make it possible to provide these quality relays in quantity. Manufacturing techniques make it possible to provide the ultimate in reliability.

The new UNION Crystal Case Relay is available with the $0.2^{\prime \prime}$ grid-spaced header or "S" type header, with solder lugs, plug-in terminals, or 3-inch leads, and for various operating voltages.

Contact Union Switch \& Signal for additional information about this new Crystal Case Relay. Write for bulletin 1064.

Vibration: $20 \mathrm{G}-2,000 \mathrm{cps}$
Shock: 50 G
Temperature Rating: $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Contact Rating: Dry circuit to 2 amp ., 28-volt DC resistive load.
"Proneers in Qush-Button Science"
BS UNION SWITCH \& SIGNAL DIVISION OF WESTINGHOUSE AIR BRAKE COMPANY PITTSBURGH 18. PENNSYIVANIA

NEW PRODUCTS

DC Amplifier
480
Occupies less than 4 cu in.

Designed to amplify low-level signals from pressure transducers, thermocouples, etc.. to a high-level de voltage, the model 98 dc amplifier occupies less than 4 cu in. Its output is 0 to ± 5 v dc; bandwidth is 2 kc .

Video Instruments Co., Inc., Dept. ED), 3002 Pennsylvania Ave.. Santal Monica, Calif.

Silicon Diode

With 0.15 -!isec switching

This silicon diode, type JAN 1×251, provides $0.15-\mu \mathrm{sec}$ reverse switching time. It has $0.1-1 \mathrm{a}$ a dc reverse current at $-10 \mathrm{v}, 1.0-\mathrm{v}$ dc forward voltage at 5 ma , and $150-\mathrm{mw}$ power dissipation. Reverse voltage is 30 v .

Rheem Semiconductor Corp., Dept. EI), 350 Ellis St.. Mountain V'iew, Calif.
Price: $\$ 3.5$ () ca, 1 to 99.
Availability: From stock.

Rectifier Tube

Rating is 6.4 amp dc

Model NL-660L/7786 is a $6.4-\mathrm{amp}$ dc rectifier tube designed for industrial power applications where a high commutation factor tube is required. It is available with lug-, 4 -pin- and bracket-type bases. Specifications are: filament, 2.5 v ; filament current, 21 amp ; peak anode current, 80 amp .

National Electronics, Inc., Dept. EI), Geneva, III.

AO TRACEMASTER'S CARBON TRANSFER METHOD PRODUCES BETTER RESULTS!

The AO Tracemaster 8 channel recorder uses a direct-carbon-reansfer writing method...clearly the best of all methods. The trace above, reproduced from a Tracemaster secord, shows why!
Chart speed was $500 \mathrm{~mm} / \mathrm{sec}$. (Twice as fast as any other recorder). The trace is a gate pulse out of an Analab oscilloscope. Gate rise time is approximately 2.0 micro seconds. An amazing performance! Note the fine quality of the trace... the consistency of line through the entire band pass.
The direct carbon transfer techaique makes this possible . . . mylar-backed carbon positioned between the stylus and the chart paper acts as an excellent lubricant. Stylus tip radius is smaller to produce a finer trace... yet there's no danger of "plowing". And it permits use of stylus pressure 5 so 7 times bigber than uitb any ofber recorder (velocity feedback signal out of the pen-motor applied to the linear driver amplifier makes the system much less susceptible to the effects of stylus pressure). This readers the system immune to ordinary shock and vibration stress... there's oo ink splatter . . . litele or no skip... no paper-tear.
Learn, in dotail, all the advanlages of the AO Tracomastor and its direct carbon transfor recording method. Send for complete fiterature. A requast on your company lottorhead will bring you an actual sample of an AO Tracemaster recerd.

American Optical Company

 Instrument Division - Buffalo 15, Now YoikFor thickness control
The Micro-Meter is a radiation gaging device for non-contacting measurement and control of thickness and density. It operates with a variety of isotopes for industrial applications. Response times can be obtained as low as 10 msec for 0.1% reliability or information. It may also be used for flaw detection and dimension gaging.
Radionics Inc., Dept. E1), Lafavette do Water Strects. Norristown Pa.

Multiple Relays
473
With 1 to 8 poles

A 2-pole snap switch has beed used to extend the number of poles On class 8 sin) type P relays. Eight normally open and eight normally closed contacts require less than it in. of pancl. Each pole consists of a snap switch with dowble-break. double-throw contacts. Contact mechanism is enclosed. Non-inductive rating is 10 amp .

Square 1) Co.. Dept. ED, 4041 N. Richards St., Milwankee 12, Wis.

Silicon Micro-Diode
 505

Used as computer core driver
Designed for use as a computer core driver, the type PID 400 mi crominiature silicon diode is characterized by a stored charge of 25 x 10^{-12} coulomb per ma at 25 deg C , forward voltage drop of 1.5 v at 0.5 amp, and $6-\mu$ sec recovery time.
Pacific Semiconductors, Inc. 1)ept. ED, 129.55 Chadron Ave., Hawthorne, Calif.
Price: $\$ 4.50$ ea, 100 to 999.
Acailability: Immediatc.
CIRCLE 70 ON READER-SERVICE CARD \Rightarrow
ELECTRONIC DESIGN • February 1, 1961

शూ

at R Rowes

resolver

FUNCTIONAL ACCURACY
AND 2-SECOND REPEATABILITY

integral bearing permits direct gimbal mounting
The new Reeves 10 -second Resolver is the ideal instrument for precision stable platform applications. The units are available with either beryllum or aluminum housings for a wide range of operating temperature applications.
Reeves is especially proud of this latest addition to the comprehensive family of high precision resolvers currently in production and ready for inclusion in your systems packages. Whatever your resolver requirements Reeves has the size and design to meet your specifications. Reeves Resolvers are supplied in the 23,15 , and 11 case sizes. For complete specifications, write for data file 202.

REEVES INSTRUMENTCORPORATION
A Subsidiary of Dynamics Corporation of America - Roosevelt Field, Garden City, New York

Qualified engineers seeking rewarding opporfunities in these advanced fields are in vited to get in touch with us.

Reowes

The Leaders Specify ALPHLEX ${ }^{\oplus}$ TUBING \& SLEEVING

ITPE	OESCRIPTION	CRADE	$\begin{aligned} & \text { gincesvic } \\ & \text { STRENOTH V/MIL } \end{aligned}$	$\begin{aligned} & \text { TEMPP: } \\ & \text { RATING } \end{aligned}$	LOW YEMP\|	RESISTANCE	
$\begin{aligned} & \text { prying } \\ & \text { princ } \\ & \text { TuBING } \end{aligned}$	High resistance to heat. oil, chemicals, corrosion fungi; no loss in tensile strength or fiexibility. Protects irregular objects and snakes well.		800	$105^{\circ} \mathrm{C}$	$-30^{\circ} \mathrm{C}$	remains fiexible indefinitely	$\begin{aligned} & 2412,1 \\ & 11, N_{2}^{1,-}, C, D, G, H \\ & 21 / 2+1 A, B \end{aligned}$
FICTMA PLAST. TUBING	Specifically designed for sub-zero temperatures.		550	$70^{\circ} \mathrm{C}$	$-67^{\circ} \mathrm{C}$	Good	- 24.0 A
$\begin{aligned} & \text { PIP-ISO PLASTIC } \\ & \text { IIPREMIED } \\ & \text { FIDERCLASB SLEEVING } \end{aligned}$	Class B insulation for continuous operation to $130^{\circ} \mathrm{C}$. Excellent cotor retention even on prolonged baking at high altitudes	$\begin{array}{\|l\|l} A-1 \\ Q-1 \\ C-1 \end{array}$	$\begin{aligned} & 8000 \\ & 4500 \\ & 2500 \end{aligned}$	$\begin{aligned} & 130^{\circ} \mathrm{C} \\ & 130^{\circ} \mathrm{C} \\ & 130^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & =30{ }^{\circ} \mathrm{C} \\ & =-30^{\circ} \mathrm{C} \\ & =30^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Good } \\ & \text { Good } \\ & \text { Good } \end{aligned}$	
	Class B insulation for general use; high tensile strength, good flexibility, non-peeling cracking low moisture absorption. acid oil resistant.	$\begin{array}{\|l\|l} A-1 \\ B-1 \\ C-1 \end{array}$	$\begin{aligned} & 7000 \\ & 4000 \\ & 2500 \end{aligned}$	$\begin{aligned} & 135{ }^{\circ} \mathrm{C} \\ & 13{ }^{\circ} \mathrm{C} \\ & 135^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & \text { Good } \\ & \text { Good } \\ & \text { Good } \\ & \hline \end{aligned}$	$2422^{2} B_{1} B_{1} C_{C} C_{0} G$
$\begin{aligned} & \frac{71-200}{15100} \\ & \text { DCRUDED TUAING } \end{aligned}$	Unmatched for electrical application at high temperature ${ }^{\prime}$ requencies. Thin, flexible, permits miniaturization and compactness.		500-1000	$250^{\circ} \mathrm{C}$	$-90^{\circ} \mathrm{C}$	Excellent	
T-250 RUBERER CUIUDED TUBINC	Excellent tensile strength, elongation. and tear strength, low water absorption and sood oil resistance.		400	$200^{\circ} \mathrm{C}$	$-85^{\circ} \mathrm{C}$	Good	- $28-10 \mathrm{H}$
PVC-80 EXTRUDED plastic tuame	Excellent snaking. expands to irregular shapes. Dilates under certain conditions and resumes its size if it is the polyvinylchsoride type.		800	$80^{\circ} \mathrm{C}$	$-30^{\circ} \mathrm{C}$	stifiens sigighly	
PLS-70	(Same as PVC-80)		1200	$80^{\circ} \mathrm{C}$	$-70^{\circ} \mathrm{C}$	swells slightly	24-71)
SILICONE RUBBER FIEIDCIASS TUBING	Class H insulation, excellent for shock resistance, extreme fiexibility and freedom from cracking and crazing at extreme temperatures.	$\begin{array}{\|l\|l} A-1 \\ B-1 \\ C-1 \end{array}$	$\begin{aligned} & 7000 \\ & 4000 \\ & 2500 \\ & \hline \end{aligned}$	$\begin{aligned} & 2000^{\circ} \mathrm{C} \\ & 200^{\circ} \mathrm{C} \\ & 200^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & -67^{\circ}{ }^{\circ} \\ & -67{ }^{\circ} \mathrm{C} \\ & -67{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Good } \\ & \text { Good } \\ & \text { Good } \end{aligned}$	
HITR12.DO PERATURE Fibicucs ILIVING	Class H insulation. Tightly braided sleeving for use up to $650^{\circ} \mathrm{C}$. Can be colored for coding. Special constructions up to $1 / 16^{\prime \prime}$ wall thickness and double wall thickness available.		$\begin{aligned} & \text { Deteralned } \\ & \text { by space } \\ & \text { factor } \end{aligned}$	$650^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$	Good	24-1/28,
	Class H insulation for high temperature use Remains fexible and retains its electrical properties to $205^{\circ} \mathrm{C}$.	$\begin{aligned} & c-1 \\ & c-2 \\ & c-3 \end{aligned}$	$\begin{aligned} & 2500 \\ & 1500 \\ & \text { space factor } \end{aligned}$	$\begin{aligned} & 205^{\circ} \mathrm{C} \\ & 205^{\circ} \mathrm{C} \\ & 2055^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & =39^{\circ} \mathrm{C} \\ & \text { 二 }^{390^{\circ} \mathrm{C}} \end{aligned}$	$\begin{aligned} & \text { Good } \\ & \text { Good } \\ & \text { Good } \end{aligned}$	(24.41/2
A. CLEAR B. BLACK	C. YELLOW D. RED E. BLUE	F. BRO	G. GREEN		ITE	I. ORANGE	J. NATURAL K. VIOLET
ALPHA WIRE CORPORATION subsidiary of LORAL Electrontes corporation 200 Varick Street, New York 14, N. Y. Pocific Division: 1871 So. Orange Dr., Los Angeles 19, Calif.							

CIRCLE 71 ON READER-SERVICE CARD

Now customed preforms consist of an accurately
predeterminest amount of a specific alloy. The propa predeterminest amount of a specific alloy. The propst essurea. Ladop costs are lowered, Production in. creases. Scrad is eliminated. Get the facts todey! Write for 8 page Guide to Preform Soldering.
21-01 4Srd Ave., Long Island City 1, N. Y.
CIRCLE 72 ON READER-SERVICE CARD

CIRCLE 73 ON READER-SERVICE CARD

NEW PRODUCTS
Subminiature Capacitors
From 0.001 if to 1.0 !if

These subminiature, hermetically sealed ceramic capacitors, for general printed-board use, range in value from $0.001 \mu \mathrm{f}$ to $1.0 \mathrm{\mu f}$. Rated at $1(\mathbb{K})$ wade, operating range is -5.5 to 125 C . Sizes range from 0.3 in . length at 0.001 uf to 0.68 in . length at 1.0 uf

Statnetics Corp.. Dept. ED, 5121 Weeks Ave., San 1)iego 10, Calif. Price: I'p in \$1.40 ca.

Isolation Mounting Plug

For component insertion

The two solder turret terminals of this isolation mounting plug will accommodate small components for insertion or substitution in a circuit. The top terminal is isolated from the banana plug. which fits standard 0.166-in. diameter jacks. The model 1.390 has molded plastic insulation.
Pomona Electronics Co., Inc., Dept. EI), 1500 E. 9th St., Pomona, Calif.

Price: From 50.95 to $\$ 0.75$ ea.
Acailability: From distributors,

Radiation Survey Meter

For beta and gamma energy

Model 440 low-energy survey meter is designed for detecting and measuring beta and gamma radiation over a broad energy range. It has an accuracy of 10 with gamma dependence of $\pm 15 \%$ from 6.5×10^{3} to 1.2×10^{6} electron volts. No zero adjust or other external adjustments are necessary. Full scale sensitivity ranges are from $0-3$ to $0-300$ milliroentgens per hr .

The Victoreen Instrument Co., Dept. ED, 5806 Hough Ave., Cleveland 3, Ohin.

Circuit Breaker
Switches $1,000 \mathrm{amp}$

Originally developed for plasma research work, these units are capable of switching from 10 to 150 kv at currents up to $1,000 \mathrm{amp}$. Switching time is less than 6 msec. Reproducibility of the system for current fault detection is better than $1 / 2$ of 1% on all ranges.
Resitron Laboratories. Inc., 1)ept. El). 3908 Nebraska Ave., Santa Monica. Calif.
Price: From \$1(N) to \$r.j).
Atailability: 1 week.

Transmitter-Receiver

Uses telephone lines
The Teledata 8 -channel code transmitterreceiver uses the toll message network of longdistance telephone lines in conjunction with the Bell Data-Phone: 1(K). Speeds of 425 codes per min are ohtained, and a parity checking feature insures accuracy: The Telledata reads tapes punched on standard data processing machines.

Friden, Inc., Promotion Planning Dept. Dept. E1), 1 Leighton Ave.. Rochester 2. X. Y.

Silicon Rectifiers

In compact stacks

This series of single phase, bridge silicon rectifier stacks is mounted on compact, dual-fin heat sinks measuring $3 \times 3-3 / 4 \mathrm{in}$. overall. They are available with current ratings from 5 to 50 amp . and with peak reverse voltage ratings from 50 to 500 v . Components in the series include 6- and 12 -amp rated diffused junction cells and $25-\mathrm{amp}$ rated rectifier cells with low forward voltage drop and low reverse leakage characteristics.
International Rectifier Corp., Dept. ED, 1521 E. Grand Ave., El Segundo, Calif.

Price: From $\$ 12$ to $\$ 80$ ea.

Linear Motion Variable Resistors

different types
contact bounce

No contact bounce when vibration tested, 20-20,000 cps at $\mathbf{3 0} \mathrm{g}$'s, loaded at $\mathbf{8 0} \%$ rated load, at $\mathbf{8 0} \%$ wiper travel, 3 planes, 10 minutes each. Induced noise less than 10 millivolts.

DESCRIPTION	MODEL	TERMINAL	RESISTANCE RANGE	POWER RATING (Watts)	maximum OPERATING TEMP.	$\begin{aligned} & \text { ENCAP- } \\ & \text { SULATED } \end{aligned}$
Gen. Purpose (Composilion)	BA. 701	Nylon or Teflon	10K to 2.5 Meg	$0.25<150{ }^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	No
Gen. Purpose (Wirewound)	BA. 702	Nylon or Tellon	10:! 10 20k	${ }^{0.25}$ (1150 $50^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	No
Gen. Purpose (Composition)	BA-703	Printed Circuis	10 K to 2.5 Meg	0.251450 C	$+125^{\circ} \mathrm{C}$	Yes
Gen. Purpose (Wirewound)	BA-7C4	Printed Circuit	10: to 20k	$0.25\left(1500^{\circ} \mathrm{C}\right.$	$+125^{\circ} \mathrm{C}$	Yes
Gen Purpose (Composition)	BA. 705	Nylon or Teflon	10 K to 2.5 Meg	$0.251250{ }^{\circ} \mathrm{C}$	+125 C	Yes
Gen. Purpose (Wirewound)	BA. 706	Nylon or Tellon	10:1 to 20K	0.25 (130 $0^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	Yes
Gen. Purpose (Composition)	BA. 707	Printed Circuit	10K 102.5 Meg	$0.2511500^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	No
Gen. Purpose (Wirewound)	BA.706	Printed Circuit	10:! to 20k	$0.25\left(1500^{\circ} \mathrm{C}\right.$	$+125^{\circ} \mathrm{C}$	No
High Temp. (Wirewound)	BA. 712	Tellon	10:! 1020 K	$1.0 \leftrightarrow 70 \mathrm{C}$	$+175^{\circ} \mathrm{C}$	No
High Temp. (Wirewound)	BA-714	Teflon	10: 10 20K	1.0*70 ${ }^{\circ} \mathrm{C}$	$+175^{\circ} \mathrm{C}$	Yes
High Temp. (Wirewound)	BA-716	Printed Circuit	10:1 1020 K	1.0 (11 $70^{\circ} \mathrm{C}$	$+175^{\circ} \mathrm{C}$	Yes

Maximum end resistance: $<1 \%$ of total. Size:
encapsulated $23 / 64^{\circ} \times 19 / 64^{\prime \prime} \times 1-11 / 32^{\prime \prime}$ without encapsulation $5 / 16^{\circ} \times 1 / 4^{\prime \prime} \times 1-1 / 4^{\prime \prime}$.

Resistances: Wirewound: 10-20-50-100 200-500-1K-2K-5K-10K-20K ohms. Composition: 10K-20K-50K-100K-500K, 1 Meg. 2.5 Meg.

Standard Tolerances: $\pm 5 \%$ Wirewound $\pm 20 \%$ Composition. Closer tolerances available upon request.

Shock: Less than 1% change in resistance with JAN-S-44 apparatus at $100 \mathrm{~g}, 5$ shocks in each of 3 planes, Method 202A.

Meet or exceed all specifications of applicable MIL-STD 202-A, MIL-R-19A and MIL-R-94B tests.

Industrial quantities of the Model 7 are available for immediate delivery at factory prices from your CENTRALAB industrial distributor.

Centualab
The Electronics Division of Globe-Union Inc. 960日 East Keefe Avenue - Milwaukee 1, Wisconsin Centralab Canada Limited - Ajax, Ontario

ELECTRONIC SWITCHES - VARIABLE RESISTORS - CERAMIC CAPACITORS • PACRAGED ELECTRONIC CIRCUITS • ENGINEERED CERAMICS CIRCLE 74 ON READER-SERVICE CARD

ELECTRONIC DESIGN • February 1, 1961

If your printed circuit board designs involve switching, you can count on getting the best results by using AE Class E relays with direct-connect terminals.

Series EQPC relays, with end-mounted printed circuit lugs, occupy a minimum of board space, and furnish dramatic savings in assembly and wiring time.

The AE Series EQPC printed circuit relay is a miniaturized version of the premium-quality Class B telephone-type relay, with many of its
best features. Contact reliability exceeding 200 million operations can be expected.
Automatic Electric also supplies Class E relays with Taper-Tab terminals, and prewired for plug-in, with 8 - to 20 -prong octal plugs, with or without hermetically sealed containers or dust-tight housings.

Want details? Just write the Director, Control Equipment Sales, Automatic Electric, Northlake, Illinois. Also ask for Circular 1702-E on Relays for Industry, and the new Conversion Factors booklet.

AUTOMATIC ELECTRIC

NEW PRODUCTS

Transistor Oscillator
Crystal-controlled

The LTO-M3-1 crystal-controlled transistor oscillator has a frequency range of 3 kc to 100 kc with a tolerance of $=0.02$ to 0.03% or, with oven, 0.001 . The unit is available in silicon or germanium. Input voltage is 20 to 28 v dc ; output is 2 v into 600 ohms. Total harmonic distortion is less than 5%. It measures $2 \times 2-1 / 2 \times 1 / 2 \mathrm{in}$.

Monitor Products Co., Dept. EID, 81.5 Fremont, South Pasadena, Calif

20-w Resistors

Wirewound, ceramic case
These $20-w$, wirewound resistors, in ceramic cases, come in 40 stock value's ranging from 5 ohms to 30 K . They are rectangular in shape and have axial leads 2 in . long. The manufacturer claims nondrifting during shelf life and very high resistance to humidity for this series 800 .

Hamilton-Hall, Inc., Dept. EI), $297 \times$ Nater St., Milwankee 2 , Wis.
Availability: Delivery from stock.

Data-Input Unit

Direct entry type

This direct-entry data-input unit is adaptable to any computer or digital instrument. It can be used with tapes both punched and magnetic, or cards. The 10 -key keyboard can accommodate from five to 30 control keys. Indicator lights are available for special applications.

Clary Corp., Electronic Div., Dept. ED), 408 Junipero St., San Gabriel, Calif.
Price: $\$ 245$.
Availability: 90 dlays.
ELECTRONIC DESIGN • February 1, 1961

A 32-page digest of the industry's most compléte lines of single-turn and multi-turn precision pots!

With new sections on A-C
Non-linear . . . Liquidfilled... and Helitrim ${ }^{8}$ trimming potentiometers. As well as turns-counting dials and delay lines!

Complete technical data. including environmental specs and outline drawings, is at your fingertips. And it's all arranged in a fastreading format that makes pot picking easier.
Just ask for it.
Beckmani/Helipot*
POTS : MOTORS : METERS
Hellipot Division of
Beckman Instruments, Inc. Fullerton, California

Servomotor
152
Smallest size 8 is 0.84 -in. long
Said to be the smallest size $8,115 \mathrm{v}$ servomotor sold, the Model 8 SM 461 is $0.840-\mathrm{in}$. long, weighs 1.1 oz . A pre-cision-control component, it has a rotor inertia of 0.18 $\mathrm{gm}-\mathrm{cm}^{2}$ coupled with a stall torque of 0.22 oz -in., providing acceleration at stall of 86,500 rad per sec ${ }^{3}$-three times greater than any equivalent unit, asserts the company. Using stainless-steel and Tefion as insulation throughout permits an ambient temperature rating of -55° to $+1.30^{\circ} \mathrm{C}$. Maximum unit operating temperature is $200^{\circ} \mathrm{C}$.

Helipot Div. of Beckman Instruments, Dept. ED, Fullerton, Calif.

Precision Potentiometer

Hos matching $7 / 8$-in. turns-counting dial

Model $7216,7 / 8$-in. diann. precision pot has standard resistance of 10 to 125,000 ohms and ± 0.5 per cent standard linearity. A $7 / 8$-in. diam. 260kl series turns-counting dial is also offered for users desiring a precision pot-anddial package, counts full turns and hundredths. The model 7216 is a ten-turn potentiometer with $1 / 4$-in. diall. shaft and $3 / 8-32$ bushing mount. It is rated at two \mathbf{w} at $25^{\circ} \mathrm{C}$. with a minimuin operating temperature of $-55^{\circ} \mathrm{C}$. The pot has a molded diallylpthalate housing, bronze front lid and stainless-steel shaft.

Helipot Div. of Beckman Instruments, Dept. ED, Fullerton, Calif
Panel Meters

Built to exact conformity with MIL-M-10304A, 4-1/2. in. round, sealed panel meters have plug-in terminal construction, easy disassembly and good linearity. Allmetal construction and modern appearance make the 92 standard models suitable for a variety of applications. Available as volt-meters, ammeters, milliammeters and microammeters.
Helipot Div. of Beckman Instruments, Dept. ED, Fullerton, Calif.
Availability: 30 days.

NEW SIZE 8 SERVOMOTOR RESPONDS 3-TIMES FASTER
These fast response Size 8 's have a whopping acceleration of $86,500 \mathrm{rad} /$ sece... and feature torque at stall of 0.22 oz in., rotor inertia, $0.18 \mathrm{gm} . \mathrm{cm}$.2. That's at least three times faster than any other Size 8's available.
The entire stcimand Size 8 line is available in standard models for 26 volt or 115 -volt sources - Servomotors, Inertia-Damps, Velocity Damps, or Servomotor Rate-Generators (special models available for other voltages). For the servosystems man working with 115 -volt reference supplies, this can mean un end to accessory gear that so often compounds reliability and cost problems.
At the Breadboard stage? Several aгcicmanß Size 8 and Size 11 Servomotors are available from stock for immediate delivery in prototype quantities. Check with your Helipot rep. write us for the list of stock Servomotors and for the Size 8 and 11 Catalog.

Beckmani/Hellpot ${ }^{\circ}$
POTS : MOTORS : METERS
Helipot Division of
Beckman Instruments, Inc.
Fullerton. California

The Untouchables

Single Crystal Silicon... the "Pinnacle of Purity"

Dow Corning single arystal silicon is produced by vacuum zone refining hyper-pure polycrystalline rod. Result: The purest silicon produced! Typically. impurity content is only 0.15 part per billion of horon for crystals that are consistently abuve 1000 -ohms centimeter resist ivity. Boron content is even lower for crystals of 2000 -ohms centimeter and above . . . available on selective basis.

This highest purity P-type silicon is the result of a completely integrated processing facility that starts with the production of trichlorosilane and ends with the crystals heat-sealed in airtight polyethylene envelopes. Purity and quality control dominate every step - in producing the basic chemicals . . . in growing polycrystal. line rod . . . in vacuum zone refining . . . in product evaluation and in packaging.
Purily pays off . . . in rectifiers and diodes having higher peak inverse voltage ratings - in maximum utilization because of uniform lateral and radial profiles over the entire length of the rod. With Dow Corning single crystal rod. you're assured of maximum yield and minimum waste per rod. Rod diameter variation is controlled to less than 1.4 mm 10.05 .5 inches)simplifying mechanical preparation for either the diffusion or alloying process.

Hyper-pure silicon for piery need is now available from Dow Corning. If you grow your own crystals from polycristalline chunk using the Czochralski method ... if you zone refine polycrystalline rod . . . if you need 1000 -ohm rentimeter or hetter resistivity in single crystal P.type - Dow Corning should be on your preferred source list.
Each Duw Corning single crystal rod is checked for resistivity over its entire length. Resistivity and lifetime profiles, like those shown below, are supplied with each crystal.

Write for "Hyper-Pure Silicon fur Semiconductor Devices. Address Dept. 3314a.

HYPER-PURE SILICON DIVISION Address:

HEMLOCK, MICHIGAN

Dow Corning corporation

MIDLAND. M!CHIGAN
atlanta boeton emicaco cleveland dallas CIRCLE 76 ON READER-SERVICE CARD

NEW PRODUCTS

Shifts phase ot power level

Signals may be phase-shifted through 360 deg without amplitude variations and converted to power levels of 7 w with the model PGA phase generator. Designed for servo development, it will drive most synchros, choppers, and related equipment. The solid state unit has a guarantecd life of $\mathbf{1 0 , 0 0 0} \mathbf{h r}$. Input is 115 v , output 0 to 180 v adjustable; phase error is 30 min , range is 360 deg continuous.

Theta Instrument Corp., Dept. ED, 520 Victor St., Saddle Brook, N.J.
Price: $\$ 42.5$
Acuilability: Delivery from stock
Mercury Relay
Plunger type

The plunger-type mercury relay series W -20-3 is silent and chatterless in operation. The normally open contact is hermetically sealed; ratings are: 30 amp at 120 v ac; 20 amp at 240 v ac; 8 amp at $440 \mathrm{v} \mathrm{ac} ; 15 \mathrm{amp}$ at $120 \mathrm{v} \mathrm{dc} ; 10 \mathrm{amp}$ at 240 vdc ; and 2 hp on 1 phase 120 to 240 vac . Noninductive heater load rating is 35 amp at 120 v ac and 25 amp at 240 vac . Interchangeable coils are available for $24,120,240$, and 440 v ac.
The Mercoid Corp., Dept. ED, 4201 Belmont Ave., Chicago 41, Ill.

Automatic Analyzer

Checks up to 120 circuits

Model 8524 analyzer is for high-voltage, automatic circuit and cable analyses. It will check cables with up to 120 conductors. The following tests can be made with a programed sequence: continuity, 0.5 to 200 ohms, test speed is from

ELECTRONIC DESIGN • February 1, 196

3 sec to 4 min per conductor; ac or de Hypot, from 0 to $5,000 \mathrm{v}$, test time is from 1 sec to 15 min per group; insulation resistance, standard $500 v$ test potential, test time is from 1 sec to 15 min per group. Self-checking circuitry indicates any point of malfunction of the equipment.
Associated Research, Inc., Dept. EI), 3777 W. Belmont Ave., Chicago 18, Ill.
Price: $\$ 10,000$ and up.
Acailability: 3 to 6 months.
Amplifiers and Attenuators
390
Low cost, light weight

These audio and video amplifiers and logarithmic voltage attemuators are transistorized, powered by hatteries with life up to $1,500 \mathrm{hr}$. Highand low-impedance amplifier morlels have 30 and 40 db gain respectively; voltage attenuators are in 2 models: dc to 1 kc , and de to 100 kc , with peak inputs to $\pm 100 \mathrm{v}$. Amplifiers are $4-7 / 8 \mathrm{in}$. long and weigh 6 oz ; attenuators are 3 in . long and weigh 40% Both units are $1-3 / 4 \mathrm{in}$. in diameter.
Kane Engineering Laboratories, Dept. ED, $\$ 4.5$ Commercial St., Palo Alto, Calif.
Price: $\$ \mathbf{F i l}^{(1)}$ to $\$(5)$.
Acailability: l(1)-day deliver!!
Radar Tube, 12 - in.
Has low-drive gun

A low-drive electron gun, which permits the use of transistorized video circuitry, is a feature of the 12AMP single-beam, fast-writing cathoderay tube. Deflection plate connections are made through the tube neck for hf operation. The screen is aluminized.

Fairchild Camera and Instrument Corp., Electronic Tube Div., Allen B. DuMfont Laboratories, Dept. ED, Clifton, N.J.
Price: $\$ 375$.
Acailability: 4 to 6 weeks.

LOW POWER LEVEL VOLTAGE VARIABLE ATTENUATORS	
Frequency (Me)	Attenuation Range
$\begin{gathered} 260.340 \\ 500.450 \\ 570.630 \\ 1250.1350 \end{gathered}$	0.2 db .18 db 0.3 db .20 db $0.3 \mathrm{db}-20 \mathrm{db}$

Narrow-band higher freguon,
loss and increased isolation.

Units for handling higher powers are now in development. Microwave Associates
has capabilities for meeting your requirements for single-pole multiple-throw and waveguide switching devices. Our switches invite comparison. We invite your inquiries.

A quotation/data sheet will be sent on request.
MICROWAVEASSOCIATES, INC. AA
ELECTRON TUBE AND DEVICE DIVISION, Burlington, Mass.
Western Union FAX • TWX: Burlington, Mass., 942 • BRowning 2.3000
circie 77 on reader-senvice card

NEW PRODUCTS

Dual Blower
354
Delivers 150 cfm

The model 8481 dual-outlet blower delivers 150 cfm in free air or 90 cfm at 0.4 static pressure, over an ambient temperature range of -34 C to 93 C . The unit is $6-3 / 8 \mathrm{in}$. high by $7-3 / 4 \mathrm{in}$. wide. Motors are wound for 11.5 v or 220 v at 60 cps.

Ripley Co.. Inc., Dept. ED, Middletown, Conn.

Test Centrifuges

Capacity is $15,000 \mathrm{~g}-\mathrm{lb}$

Two centrifuges in the $\mathbf{1 2 0} 00$ series have a maximum capacity of $15,000 \mathrm{~g}$ - lh . The $12.2(0)$ will sul)ject a 15()$-\mathrm{lh}, 18-\mathrm{in}$. cube test specimen to g force's from 0 to 250 g at 24 in . nominal radius. The 1230 will test a $150-\mathrm{th}, 2-2$-in. cube specimen at forces from 0 to $2(0) \mathrm{g}$ at 42 in . nominal radius. Repeatability and constancy of rotation are within 0.5\% for both machines. Boom speeds are infinitely variable.

Genisco. Inc., Dept. EI). 2233 Federal Ave., Los Angeles 64, Calif.
Price: Morlel 1220, $5.9 .5(\mathrm{~K})$; model 12.3(), $\$ 1(1.5(\mathrm{~K})$. Availability: 45-rla! delivery.

Flexible Coupling

Bore tolerance is 0.0003

A precision flexible instrument coupling, the model 587 BC has bore diameters true to $0.000 \cdot 3$, and concentricity to 0.001 . Torque rating of the beryllium copper coupling is 10 oz in .; weight is 0.6 oz . Shaft diameters range from 0.1250 in . to $0.25(0) \mathrm{in}$. It is 1.044 in . long by 0.625 in . diameter.
Santa Fe Instruments, Inc., Dept. ED, 2:343 Jerome Ave., New York 68, N.Y.

LATEST

 DATA ON
ULTRASONIC

 DELAY LINES!

THIS

NEW

CATALOG
gives you up-to-date specs on the industry's most complete line of ultrasonic delay lines for missiles, MTI, radar countermeasures and computer applications. Send for it today.

LABORATORY FOR ELECTROMICS, IMC. Compular Products Division 1079 Commonwealhh Avenve Boston 15, Mass., Dept. E-114 CIRCLE 79 ON READER.SERVICE CARD

Card Reader

For 7080 system

The 7502 card reader provides direct card input to the 7080 data processing system. It is designed to handle small-volume card input at moderate cost. Cards are read photoelectrically at speeds up to 60 per min . Each card column is translated antomatically into 1 corresponding binary-coded character.

International Business Machines Corp., Data Processing Div., Dept. EID, 112 E. Post Road, White Plains, N.Y
Price: $\$ 18,7.50$ ('a, or $\$ 37.5$ monehly rental.
Acailability: IB.M a (1)S(delivery beLin.s Fall 196il.

Capacitor Calculator
Slide-rule type

With one setting. this calculator solves problems of frequency, reactance. power factor, dissipation factor. erguivalent series resistance. impedance and phase angle. Capacitance formulate and a comparison chart are provided The A. B (\therefore, and I) slide rule scales are incorporaterl. Scoul 2je to Ohmite Manufacturing Co.. 3fiey Hotard St., Skokir, III.

Protected Relay

With transparent cover

The 200 -PC unit is wired and momented on a standard oxtal plag and protected with a transparent high-impact plastic cower. Coil may be 6 to 110 vale or 6 to 220 or ac. with resistance 吅 to 16 ,(O)() ohms. Contact ratings are 8 amp at 110 v ate, non-inductive, or 10 amp at 28 v de, non-inductive Some forms available with 1,2 or 3 poles.
F\& B Manufacturing Co., Omega Electric Div., Dept. ED), t248 11 . Chicago Ave., Chicago 51, III.

General Electric's Large Electrostatic Deflection Tubes Are Now Available In Production Designs

Here are eight of the many large General Electric electrostatic deflection tubes which are available now to meet your display system requirements. YOU GET PROVED RELIABILITY and known performanceand at less cost-when you specify G-E production-type cathode ray tubes in your design. AND, EACH TUBE can be supplied to meet MIL-E-1 shock and vibration tests to assure reliable operation under severe operating conditions.
price and delivery of samples on request. For complete specifications on these G-E production-type tubes - or any cathode ray tube-send requirements and application description to R. E. McBride, Sales Manager, General Electric Co., Cathode Ray Tube Dept., Electronics Park, Syracuse, N. Y.

Progress /s Our Most /mpontant Product
GENERAL GO ELECTRIC

1. 12AKP7, radar tube. 2. Z-4760, 2-gun. 12". 2. Z-4718, low drive. 120 netic shield, 12°. S. $2-4701$, minimum deflection defocusing, 12°. ©. 12 ANP 14, high performance radar. 7. GL 4623. 16° electrostatic deflection e. $z-4652$, tetrode tube design. 12°.

CIRCLE 80 ON READER-SERVICE CARD \rightarrow

LOOK FOR THIS CARD IN THE MAIL

Principal Electron Mañulac ategory Service
this facility miase chrex one ontr Audio. Communicationtre Radar. Ralio er Tinels. T] Instruments. Mits. Equipment Mompute
Analyzer. Computers. Machine Mtrs Business Machine Mosess.] Aircratt. Aircratissle Mtr Ries. Gument Parts. [] Componsembly Mir Suh-Kstial Mifs Material Aling
Independent Labs, Cun-
Inuepend Research Ork sultants, Resernmen - U.S Governmen above
\qquad

YOUR SUBSCRIPTION

HAS EXPIRED

It's Time To Renew Your Free

Subscription To

 ELECTRONIC DESIGNRegardless of when your subscription started, you must fill out and refurn a re-

27ISSUES II '61
-27th issue: ELECTRONIC DESIGNERS CATAIOG newal card.

When you receive your I B M renewal card, please fill it out complefely . . . and mail it immediafely to insure uninferrupted receipt of ELECTRONIC DESIGN.
Our circulation policy requires that all subscribers requalify each year to continue receiving their free subscription to ELECTRONIC DESIGN.

Please help us serve you better by requalifying as soon as you receive the card.

NEW PRODUCTS

Cartridge Rectifiers

This series of cartridge rectifiers is rated at pic from 1 kv to 6 kv , and de current from 100 ma to 200 ma at 25 C ambient; reverse current is 10 ma , at full rated pir, at 25 C ambient. The units meet military specifications. The series includes JEDEC types 1N1730 through 1N1734. 1N2382, 1N238:3 and CEC1734.
Columbus Electronics Corp., Dept. EID. $10(1)$ Saw Mill River Road, Yonkers, N.l':
Price: On request.
Atailability: S-dru! delivery.

Servo-Repeater

Provides coded outpur
The SR-115 servo repeater system, when used with appropriate synchro-transmitters, provides digital cooled contact closures corresponding th the angular prosition of a remote shaft. It is an integral package containing two control transformers, a servo-motor, synchro switch, servoamplifier, two shaft position encoders and interconnecting gear trains. The coded output is suitable for entry through storage and translation (ircuitry to recording devices.
Datex Corp. Dept EIS, I307 S. Myrtle We. Monrovia. Calif.

Solid-State Time Generator
Has 0.005\% accuracy

The model 390 digital time generator uses at 1-ke tuning-fork oscillator to attain time-base alccuracy of 50 ppm . Timing markers att $0 .(\mathrm{K}) 1$. (0.01, 0.1 , and 1 sec intervals are provided. The Nixie display supplements 24 -hr real-time outputs. A binary coderl output is optional. The rackmounting unit is 7 -in. high and $15-\mathrm{in}$. deep.

Lockheed Electronics Co., Information Terchmology Div., Dept. EID, P.O. Box 446 , Methchen, N.J.
Price: $\$ 2,9,50$.

TEXAS INSTRUMENTS HARD GLASS HERMETIC RESISTORS

Texas Instruments Type CG1/3 Hard Glass Encapsulated Resistors are new units which represent a notable advance in resistor technology. Hermetically-sealed, these precision carbon film resistors have a guaranteed wattage ratıng double the standard MIL rating for a package this size.

They are immediately available from Milgray/New York in quantities of 1 to 999.
The results of over twelve million unit hours of test data on TI type CG1/4 resistors show conclusively that the hard-glass construction method provides important increases in stability and reliability.

-q~ILCRAY/NEW YORK

136 Liberty Street/New York 6. New York/REctor 2.4400 Enterprise and Zenith numbers in leading industrial areas TWX-NY1-4013/FAX.FQF

WHEGHM of your system can be cut if you specify components capable of outstanding performance. Example: high output lets one Sperry traveling wave tube replace two ordinary tubes in Nike-Zeus. If weight reduction is a knotty problem for you, call Gainesville, Florida, FRanklin 2-0411 collect, for full information about Sperry capabilities.

ELECTRONIC

 TUEE
DIVISION

Gainesville, Florida - A Division of Sperry Rand Corporation

SPERRY'S FAMILY OF TRAVELING WAVE TUBES covers P through X Bands with unusually high output and light weight. These characally high output and light weight. These charac-
teristics, combined with the inherent ruggedness teristics, combined with the inherent ruggedness
of metal-ceramic construction, conduction cooling of metal-ceramic construction, conduction cooling
and wide-range thermal compensation, make and wide-range thermal compensation, make Sperry traveling wave tub
for airborne applications.

NEW PRODUCTS

Bead Thermistors

General purposa type

These general-purpose bead thermistors are available in threc glass-probe types and a variety of sizes from $1 / 4$ to 2 in . in length. Therinal time constants are 25,2 and 1 sec , when supported by leads in still air, still oil or still water. Dissipation constants are approximately $1,3.5$ and 5 mw per deg C
Victory Engineering Corp., Dept ED. 519 Springfield Road. U'nion N.J.

Acailability: From stock

Timing Unit

395
Rates from 0.1 to 100 pps

The BF.C model 101 timing unit senerates crystal-referenced timing pulses for test instrumentation recorders. Pulse rates range from 0.1 (t) 100 pulses per second, in decade steps. Each rate is pulse-width modulated to allow identification on the recorded output. Reset maty be mannal or antomatic. Packaged. solid state circuitry is used
Binary Electronic: Co., Dept. EI). Bldg. "E," 8 O + E. Walhut Are. Fullerton, Catlif.

Linear Velocity Meter 440
Accuracy is 0.1%
This linear velocity incter measures the velocity of film, tape and strip or the surface speed of disks. drums and shafts. Accuracies of 0.1% are obtained from 0.15 to 20 ill . per sece. Measurements may be taken continuously or intermittently. The output is available in digital or analog form. Measurements are $2-12 \times 1-18 \times 1-1 / 6$ in.

Aeroflex Corp. Acroftex Laboraturies Div., Dept. E1), $48-25 \quad 36 \mathrm{l}$, St., Long Island City 1, N.Y.
\& CIRCLE 82 ON READER-SERVICE CARD

Induction Heater

Generators

15 kw to 50 kw

Six models in this line of induction heater generators provide rf outputs from 15 kw to 50 kw . The 45() -kc units are thoroughly tested for noise and radiation. The rf power output is controlled by powerstat or by saturable core reactor. A full complement of safety and protective devices is provided Line requirements are 2.20 vac 3-phase, 25 to 85 kra .

MeDowell Electronics, Inc., Dept EI), 10.5 Forrest St., Metuchen, N.J

Tape Handlers

Compatible with 8 computers

The model got II digital magnetic tape handler is compatible with any of 8 different computers. Changing the capstan motor and drive. and the ternsion arm. adjusts the handler to variations in tape speed, width, and prolse density
Potter Instrument Co.. Inc. Dept. EI). Sumyside Bl|cd.. Plainview, N.Y.

DC Power Supply

Transient-free
Elimination of tramsistor-roining transients is claimed for the mocle MTRO36-5A regulated de power supply. Rated 0 to 36 v at 5 amp the unit has $1.5-\mathrm{mv}$ dynamic line regulation, 2 -mv masimum rms ripple, and 0.0 .5 -olom mavimum dynamic impedance. The dynamic regulation circuit uses transistors, while magnetic amplifiers proside static regulation.

Perkin Electronics Corp., Dept. E1), 345 Kansals St.. El Segundo. Calif.

Convert

 Invert - m Change mmm
Daven solves your solid-state power supply problems!

Take advantage of Daven's experience in designing extremely compact, light-weight, high temperature units, which can withstand the most severe altitude, shock, and vibration environments. Let us engineer solid-state supplies for your missile-borne, airborne, shipborne, underwater or ground support equipment.

Converters

- DC input voltage from 6 volts to 230 volts
- DC output voltage from 1 volt to 15 kilovolts
- DC output current from microamperes to 100 amps
- Dynamic regulation, ripple, stability as required

Inverters

- DC input voltage from 6 volts to 230 volts
- AC output from 20 VA to 2500 VA
- 60-400-800-1600-2000 cycles per second
- One, two or three phase, any voltage level
- Voltage and frequency regulation 0.1% to 10% as required
- Output waveform - sine or square wave
ruEDAVEN

TODAY, MORE TMAN EVER, TME DAVEM (C) STAMOS FOR DEPENDABILITY

NEW PRODUCTS

Electronic Generator
Output is 2,000 vo

Model M 1435D, an electronic generator, is designed for use where precisely regulated voltage and a broad frequency range are required. It has an output of 2,000 va and can be integrated into two- and three-phase systems. Specifications are: frequency range, 50 to $20,000 \mathrm{cps}$; frequency stability, $\pm 0.001 \%$; voltage regulation, $\pm 1 \%$; voltage stability, $\pm 0.25 \%$.
Communications Measurements Laboratory, Inc., Dept. ED, 350 Leland Ave., Plainfield, N.J.

Drop Timer

With aneroid blocking

The Series 5379 timer is applicable to pilot escape systems, air cargo drop, and certain arming or recovery systems. A clockwork mechanism provides a fixed time delay between the time an arming pin is pulled and a pressure cartridge is fired. An internal aneroid block senses altitude and prevents other than pre-set operation. The device weighs about 8 oz .
Leesona Corp., Patterson Moos Research Div., Dept. ED, 90-28 Van W'yck Expressway, Jamaica 18, N.Y.
Price: $\$ 525$ ca, 100 units; $\$ 330$ ca, 300 units; $\$ 2.50$ to $\$ 300,510$ or more units.
Availability: 6 to 8 weeks.

Accuracy Is Our Policy . . .

A photograph depicting an octal socket saver made by Pomona Electronics Co., Inc., was mistakenly printed above a description of the General Radio Co. Type 1557 -A vibration calibrator on p 158 of the Dec. 7 issue.

Design Problems Are Simplified With Silicone-Glass Laminates

Miniaturization means heat. Heat that has to be dissipated from smaller surface areas. Temperatures go up - and materials like Dow Corning Silicones come into their onn!
Take silicone-glass laminates. for example. At high temperatures they have dielectric properties that are superior to those of other laminated materials. In addition. silicone-glass laminates have excellent resistance to ozone, arcing. corona. and fungus allack . . . even the formidable combination of high humidit! and high voltage.
Mechanical strength is good - permitting thin, rigid coil bobbin walls, more winding space and better resistance to winding pressure. One-piece laminated coil bobbins. like those shown. are used in continuous operation at 250 C , have been tested at 400 C for $1,(1)()$ hours. This high temperature resistance means soldering heat doesn't loosen terminals.

These are reasons why the Fowiter Transformer Compant. Cincinnati. Ohio, specifies coil bublins of silicone.glass laminates for transformers they manufarture. Multiflange coil bothins simplify manufarture of computer power transformers. I sed in airborne zuidance control systems itop of insert). They neigh only $i=3$ pounds each. This transformer. the filter chokes icenter) and nutput transformer (bottom) all have coil buhbins marle from silicone-glass laminates ... are impreanated with Dow Corning silicone varnish to assure reliability of lightweight miniaturized designs.
Glass laminates made with Dow Corning Silicones are available from leading lam. inators. W'rite for a list!
CIRCLE 800 ON READER-SERVICE CARD

For "Silicones for the
Electronic Engineer".
Write Dept. 3314.

Dow Corning

- •NHOCHEN
 Silicones

For Constant Capacitance

Dow Corning silicone fluids are, in themselves, excellent dielectrics. In capacitors and RF filters, silicone fluids boost the performance of the paper dielectric . . . substantially increase permissible operating temperatures. decrease electrical losses. Highly stable to changing environments, silicones show little drift in electrical or physical properties over a broad range of temperature and frequency con ditions . . . often eliminate costly compensating circuit To assure an almost constant capacitance vs. temperature relationship for their specialty capacitors... and the lowest possible power factor for their RF interference filters The Filtron Co., Inc., of Flushing, N. Y., impregnates their RF interference filters and capacitors with Dow Corning silicone fluid.

Silastic RTV Packages . . . Protects

Built by Vitro Laboratories. Silver Spring. Md.. this preamplifier consists of a vacuum tube and three transistor stages containing a total of twenty-five parts. Design specifications called for a package no larger than 1.7 $16^{\circ \prime}$ diameter by $5^{\prime \prime} \ldots$ plus operating requirements of high insulation strength. heat stability. resistance t", shock. sibration and moisture. These were met comeniently and easily by :nounting the components on a printed circuit board. encapsulating the unit with Silastic" RTV, the Dow Corning room-temperature vulcanizing silicune rubber.
Silastic RTV is poured over the unit until the mold is completely filled. It exerts a firm grip on components. eliminating clamps and brackets . . soaks up shock and vibration, dissipates heat. locks out moisture.

CIRCLE BOI ON READER-SERVICE CARD

Circle 802 on reader-seavice card

To Save Space . . . Cut Weight

Airborne Accessories Corporation, Hillside. N. J., uses a variety of miniaturization techniques in designing power drives for actuators and other devices. One of their most important tools in making smaller, more reliable drive motors is silicone insulation. including Dow Corning Silicone Varnish impregnation. Its use on these high performance motors assures utmost reliability under almost continuous on-off-reverse operation . . . helped designers provide up to 50% more power per pound.
This 100 cycle silicone insulated actuator motor has a 4.25 inch frame, weighs only 13.2 pounds with brake, is rated $2.5 \mathrm{hp}, 11.0100 \mathrm{rpm}$ continuous duty: to $6 \mathrm{hp}, 9,000$ rpm intermittent duty.

CIRCLE 803 ON READER-SERVICE CARD

CORPORATION MIDLAND. MICHIGAN

\qquad

NO SPLICE RING8

are better because the principle hazard found in ordinary seal rings and belts has been removed by Western's Mono Cord onepiece construction. In addition, dimensional requirements are maintained, quality controlled, and service vastly improved-all at no extra cost.
Don't use a spliced ring for technical seal applications, but profit from nearly 60 yeare experience-specify Mono Cord rings by Western

Wrise or phone for information, literature or a visit by our sales engineer in your area.

 GOSHEN 9, INDIANA

CIRCIE 84 ON READER-SERVICE CARD

Davey-Paxman Vertical Boiler • Davey-Paxman E Co. Circa 1876

NEW PRODUCTS

Patching Equipment

These 52 and 72 ohm coaxial jack strips and patch cords are made for low-power rf routing, and the distribution of audio and video signals. Standard and miniature cable systems may be patched. Jacks have BNC fittings, and are protected against climatic extromes. Panels are available with 12.20 , or 48 jacks.

Trompeter Electronic Associates. Dept. ED, 771:3 Oakdale Ave., Canoga Park, Calif.
Price: $\$ 12.3$ to $3(\mathrm{~K})$.
Availability: 30 to 4.5 days.

Audio Transformers

Primary impedance is 600 500 ohms

These three andio input transformers all have a primary impedance of $6(0) 5(0)$ olims centertapped. Model A-477s is a line-to-grid unit with a turns ration of 1 to 20 and a secondary impedance of $240-\mathrm{K}$, center-tapped. Model A-4779 is for line-to-single or push-pull grid applications with a turns ratio of 1 to 10 and a secondary impedance of $60-\mathrm{K}$ center-tapped. Model $\mathrm{A}-4780$ is for line to push-pull applications with a turns ratio of 1 to 20 and a secondary impedance of 2-1()-K. center-tapped.

Chicago Standard Transformer Corp.. 1)ept. ED, 3501 II. Addison St., Chicaggo 18, 111 .
Price: From $\$ 3.84$ for the $A-4759$ to $\$ 6.80$ for the A-478().

Accuracy Is Our Policy . . .

In the New Product description of the Dunco 23.5 time-delay relay on p 142 of the Jan. 4 issue, the manufacturer was incorrectly identified as The Harry P. Bridge Co. The Dunco 2.35 is made by Struthers-Dınn, Inc., Pitman, N.J.

Give your Products

MORE RELIABILITY ond BETTER PERFORMANCE with

In sfock for immediate delivery

MAGNETIC AMPLIFIERS

- Mermelicelly Sealed To MIL Specifications
- No Tuber
- Direct Operation frem Line Velrage
- Fast Response
- Long Life Trouble Free Operation
- Phase Reversible Output
\downarrow Power Gain $2 \times 10^{0} \square$

PARTIAL LISTING ONLY
WAITE FOR FUGTME IMFORGATIOM OM THESE
 Send for MEW 48 Dape iransformor eatales Also ask for fbeed transfobmea co., mic.
1727 Weirfield St., Brooklyn (Ricpeweod) 27, N.Y. CIRCLE 86 ON READER-SERVICE CARD

- Automatic Testing by Tape Control
- Search and Faulf Prinl-Oup
- Capacity up to 9600 wires

Introducing the most flexible testing unit devised for the analysis of wiring harnesses the CTI Tape-Programmed Cable Harness Analyzer, Model 230. Any number of complex test procedures are programmed with ease. Operation is entirely automatic and unattended. The unique "Search-Out" feature provides a printed record of test failures and the actual location of all circuits assoriated with each failure. Simultaneously programmable go/no-go continuity and leakage tests. Any combination of branch or standard circuits can be selcted. Test capacity of up to 9600 wires in 600 wire increments. Engineering changes in the cable harness tests are quickly handled by paper tape programming. The CTI Tape-Programmed Cable Harness Analyzer is another outstanding breakthrough by CTI.

Wrife for lull information

CALIFORNIA TECHNICAL INDUSTRIES oivsion or remanioc

Foremost in Automatic Testing CIRCIE 87 On reader-service card ELECTRONIC DESIGN • February 1, 1961

- Top accuracy of 1% over entire meter scale from 1 mv to 250 v and over the band of 20 cps to 20 kc Better than 2% to 1,000 volts and for the wider band of 10 cps to 250 kc .
- High input impedance: 2 megohms shunted by 15 pf, except 25 pf on lowest voltage range.
- Long life: Several thousands of hours of operation without servicing or recalibration.
- Does not require stabilized input volt. age. Less than $1 / 2 \%$ change in indica tion with power supply change from 105 v to 125 v .
- Five inch, mirror-backed, easy-to-read meter. Only two scales with mirror between. One is 1 to 10 for volts, and the second is 0 to 20 for decibels.
Also available in 19 inch relay rack Model 300 G -S2 at $\$ 325$.

Write for brochure giving many more defails

POINT OF NO RETURNS

Desk-aye view of a computer logic circuit utilizing Sperry 2N706 Silicon Mesa Transistors. division

OF
SPERRY RAND CORPORATION NORWALK, CONNECTICUT

Here's where you put your experience on the line. Will the vendor you select confirm the confidence of your decision . . . or will the transistors he delivers return to haunt him - and you?
63 QC checks before and during mechanized manufacture. Our way of trying to make your confidence our only return!

NEW PRODUCTS

Decade Counters

Up to 8 decades per unit

As many as 8 of these miniature Series F decades may be combined into a single panel-mounting unit. Display is 1 in . high, in-plane, on $1-3 / 8 \mathrm{in}$. centers. Operating frequency exceeds 200 kc at less than $2 w$ per transistorized decade, with electrical reset, and optional 10 -line coincidencer or 1-2-4-8 binary output.
Robotomic:s Corp., Dept. EI) 2422 E. Indian School Road, Phoeniv. Ariz
Price: slots per decade in quansitios of 10 .
Acailability: 3 10.5 weeks.

Trimming

Potentiometers
For high-stability uses

The subminiature precision trimming potentiometer type CT-10), shown above, has a tap adjust and a rotation of 320 (leg $\pm 5 \mathrm{deg}$. The functionally similar type CT- 200 is $12 \times 12 \mathrm{in}$. sq, and is available with printed-circuit terminals or Teflon-coated leads. Stability of the units equals or exceeds military standards. Standard resistance range is 10 ohms to 50 K , tolerance -5%; power rating is 1.0 w at 60 C . Operating temperature ranges are -5.5 C. to 150 C or 225 C .

International Resistance Co., Dept. EI), 401 N. Broad St., Pliladelphia 8, Pa.
Price: CT-1(N), \$3; CT-200, \$1
Availability: 4 to 6 wecks.

Test Console

For electromagnetic interference
The model 101 test console provides rapid interference testing of Hectronic and electro-mechanical systems. There are 100 channels with corresponding galvanometers matching networks, and signal detectors. Two oscillograph recorders with f(O)-ft magazines provide immediate permanent records. Chanmel isolation is 50 db average. Frefuency range is de to $f(0) \mathrm{mc}$; loading is $0.5-\mathrm{meg}$ per v .

Northrop Corp., Norair Dis., Dept. ED, 1(K)1 E. Broadway, Hawthorne, Calif.

Cathode-Ray Tube

With 2-hr memory span

The CK1362 cathode-ray tube call remember and visually indicate signals up to $2 \boldsymbol{l}$ hr after they are received. It can present the signals for a total read-out time of up to 1 min, or erase at any time with ligh infrared energy. Designed for true motion indlication in radar, the tube is capable of oscilloscope sigmal comparison. It has magnetic deHection and low-voltage electrostatic focensing.

Ravtheon Co.. Industrial Compoments Dix:, Dept. EI). 55 Chapel St. Newtori 58, Mass.
Price: $\$ 110$ ca.
Acailability: Immediate

Vibration Analyzer

For on-line analysis
This fully automatic vibration analyzer performs on-line, spectral density analysis of dynamic data. Random or periodic signals are presented for analysis. Spectral energy is distributed over a bandwidth of 5.(O)() eps with a resolution of 50 eps. It is then encoded at a rate of 5.(100) readings per sec, with an accuracy of better than 1\%. The entire spectrum is swept and encoded -ver" 20 msec or on command.
Communications Control Corp., 1)ept. EI), 14707 Keswick St., Van Nuys, Calif. Acailability: 120) days.

This is the new microwave triode developed As a broalym ampliter...gain is 12 db , with a specifically for exacting common carrier power ght put of 0.5 watt at 1000 de . requirements...providing far greater reliability, hatwminu per ontput...as high as 2.5 watts. gain and power, than any other disc-seal, gejured opreating voltage...a low 180 volts, wide-band miforowave triode avallable today? problens, And it can alsu be used for and safety

Expected lit problems. And it can alsu be used for
When used as a narrow-band CW amplifler...gain ists to 19 dh , applications... as an ampliffer, oscillator, donbler with a power output of 0.5 matt at 4000 Mc . or tripler to over 6000 Mc .

NEW PRODUCTS

Variable Load Conductance Box 385
Dissipates 250 w

This flexible, medium-power load box provides an accurate, variable load conductance capable of dissipating about 250 w . The 6 -dial conductance decade is designed for the testing of power supplies and power amplifiers. When connected to a source of constant voltage, each step on a given dial yields equal increments of current, making possible accurate linear adjustment of load current. The box can be switched to zero conductance for no-load measurements.
The Daven Co., Dept. ED. Livingston, N.J. Availability: 6 weeks.

Photo Resist

431
Called Resist-Etch, this photo resist is said to positively block off unwanted electroplate and to permit accurately defined patterns in printed circuits calling for lines $0.005-\mathrm{in}$. wide, spaced $0.005-\mathrm{in}$. apart. It is free of pinholes, compatible with all plating solutions, unaffected by plating cycles, easily removable, and non-toxic.

The Meaker Co., Dept. ED, Nutley 10, N J

Spring-Driven Gyro

This spring-energized gyro, designed to give inertial reference for short durations, has a rundown time of 7 to 9 min . The model 1091 attains its full speed of $3,330 \mathrm{rpm}$ in 100 msec after uncaging. Drift measured after 30) sec is less than 1 deg for the outer gimbal and less than 6 deg for the inner gimbal. There are segmented pickoff commutators on the outer gimbal for roll reference information. The package weighs about $3-3.4 \mathrm{lb}$ and measures 5 in . long by 4.2 in . in diameter.

MEMCOR, Courter Products Div., Dept. ED, Boyne City, Mich.

Free from Thermal Fatigue-the

Thermal fatigue of internal soft solder joints has ong been a major pitfall in rectifier design. Now, beat the heat and medium current silicon rectifiers melting point. hard solder joints that make ther. mal fatigue failures a thing of the past.
The test units shown (minus housing and top lead) were set up to reach $180^{\circ} \mathrm{C}$ and drop to $40^{\circ} \mathrm{C}$ during 3 -minute "on" and 1 -minute "off" cycles. After 900 thermal cycles the soft solder junction temperature rose to $191^{\circ} \mathrm{C}$ while the hard solder junction temperature peak remained at $180^{\circ} \mathrm{C}$. At 1150 cycles the soft solder junction

The two test units are shown here. Before the test they were identical in every respect, except that the unit on the loft uses conventional tin-lead soft solder, while the unit on the right uses exclusive G-E hard solder joints.

Inside Story of General Electric Medium Current Silicon Rectifiers

Frequency Source
Variable 380 to 420 cps

The series 32 variable frequency source unit is designed for the testing of $400-\mathrm{cps}$ components. Frequency range is 380 to 420 cps . Voltage is variable from 105 to $125 \mathrm{v}, 3$-phase, line-to-neutral (182 to 217 v , line-to-line). Input is 3 -phase, $60-\mathrm{cps}$; output is 3 -phase, 4 -wire, 5 -kva; ratings between 0.60 kva and 25 kva ; frequency to 1 kc , and single-phase or $50-\mathrm{cps}$ input, are also available.
Georator Corp., Dept. ED, Fairview Road and Tudor Lane, Manassas, Va.
Price: $\$ 1,090$ to $\$ 5,50()$.
Acailability: 6i) to 7.5 days.
Terminal Block Connectors
These terminal block connectors require only 1/4 turn and are positively self-locking. They are available in $15-$, 20 - or $30-\mathrm{amp}$ ratings and in units of 2 to 20 stations. They meet MIL-T-16784A specifications and have a dielectric strength of 400 vbe tween terminals, 5.0% v terminal to base.

Camblock Corp., Dept. ED, Natick Industrial Center. Natick, Mass.

DC Power Supplies

Regulation is 0.1%

Series TR dc power supplies have a regulation of 0.1% or 10 mv with negligible ripple. Three models are available: 0 to 100 v at $100 \mathrm{ma} ; \mathbf{0}$ to 36 v at 200 ma and 0 to 18 v at 1 amp . All models are remotely programmable and have continuously variable current limiting. Specifications are: output impedance, less than 0.03 ohm to 1 kc , less than 0.1 ohm to 50 kc ; ambient operating temperature range, from 0 to +45 C ; controls. main and vernier voltage controls are wire-wound type.

Electronic Measurements Co., Inc., Dept. ED. Eatontown. N.J.
Price: From \$1.59 to \$179.

MIL TYPES

. . . mobilized for reliability!

Two new silicon device groups now stand ready to Whether your MIL circuit design calls for silicon or serve you, as part of Raytheon's military semicon- germanium, NPN or PNP, diode, rectifier, or tran-
ductor selection. Mobilized for reliability, these new sistor, check Raytheon for an increasingly broad ductor selection. Mobilized for reliability, these new sistor, check Raytheon for an increasingly broad devices offer the planar uniformity of Raytheon's diffused junction construction. The new groups are Raytheon's JAN 1N457, 1N458 and 1N459 diffused junction silicon diodes, and NAVY 1N1124A, 1N1126A and 1 N1128A diffused junction silicon rectifiers.
selection. Construction techniques and quality con trols are continually refined to give you more quality assurance in every MIL type, as well as more MIL types - from Raytheon. To bring your files up-todate on the growing Raytheon MIL selection, write on your letterhead for Data-Pak ${ }^{\boldsymbol{\#}} 11$.

RAYTHEON COMPANY

RAYTHEON
 RAYTHEON

SEMICONDUCTORDIVISION

BILICON AND GERMANIUM DIODES AND TRANSISTORS • BILICON RECTIFIERS • CIRCUIT-PAKS

 COVERMMENT MELATIONS woaningion. D. C. metiresotion es 500

CIRCIE 92 ON READER-SERVICE CARD

NEW PRODUCTS
Transistorized Inverters
Interchangeable regulator

Any unit in this line of $25-50$-, or 100 -va inl. verters can be controlled by the same regulator. The transistorized units produce $115-\mathrm{v}, 400$-çs current from a $115-\mathrm{v}, 60-\mathrm{c} \mathrm{ps}$ or $28-\mathrm{v}$ de source. They feature encapsulated transformers, isolated input and output, aluminum construction, and regulation within ± 1 苋 into resistive or inductiv: loads.
Victory Electronics, Inc., Dept. ED, 50 Bond St., Westbury, N.Y
Price: Regulator $\$ 272.8 .5$ to $\$ 28.3 .40$, louer unit $\$ 1.52 .40$.
Acailability: 5 -day delieery from stock.

Miniature Markers

433
Self-sticking, miniature markers for electronic components are available in sizes of 0.060×0.200 in. and $0.120 \times 0.200 \mathrm{in}$. Characters are printed accurately and legibly. They adhere at temperatures to 300 C . Markers are available in varions materials in thicknesses of 0.001 to 0.004 in
W. H. Brady Co., Dept. ED, 727 W. Clendale Ave., Milwankee, Wis.

Analog-Digital Converter

Has plug-in components

This optical, shaft-position analog-to-digital encoder features modular plug-in components and self-contained spares. Provision is made for remote testing and monitoring of the type RD13G. The unit provides 8,192 codes per revolution. It is available in separated units, 2 mounting styles and shaft types, both senses of rotation, and positive or negative output pulses from a choice of output circuits.
Wayne/George Corp., Dept. ED, 588 Commonwealth Ave., Boston, Mass.

Yes! Schweber can sell any model of BOURNS TRIMPOT* at factory prices. Sizeable quantities are available for immediate shipment from stock from Schweber's warehouse.
 ELECTRONICS
-O MERHICKB ROAD. MINEOLA. LI.,N. Y.
PIONEER --8520. TWX G CY-NY-seou

Bourns Trimpot ${ }^{\circ}$

Puts the Proof in Humidity-Proof

Plunging a potentiometer into near-boiling water is just one of the ways Bourns puts the proof in humidity-proof. Every Trim pot unit made takes of pressure inside the potentiometer-enough to cause bubbles - if it leaks. Only if the unit is completely leak-free does it pass the test.
Bourns humidity proofing starts at the beginning - with origina design and selection of materials. The plastic chosen for Trim pot cases, for example, displays the unusual properties of high insulation resistance and extremely low moisture absorption

Further protection against humidity results from manufacturing procedures, such as internal potting of the resistance element and sub-components. Finally, Bourns samples all production of a Reliability to MIL-STD-202A, Method 106 as a routine part more than "resist" moisture; it keeps moisture out. For more information about the industry's largest selection of humidity-proof adjustment potentiometers - wirewound and carbon in a variety of sizes, power ratings, operating temperaof stocking distributors
 Exclusive manufacturers of Trimpot®, Trimit*, and E-Z-Trim®. Pioneers in transducers for position, pressure and acceleration. CIRCLE O4 ON READER-SERVICE CARD

NEW PRODUCTS

Digital Tape

Transport

Will read from 0.1 to 15 in . per sec
Model IDT-10 will read, write, or read after write from 0.1 to 15 in per sec in selectable speeds or continuously variable speeds, controlled manually or remotely, for any type of computer format. Tapespeed settings are held to within $\pm 1 / 4 \%$ independent of line voltage or frequency. Separate reel serios permit constant tape tension and uni- or bi-directional fast start-stop modes are possible for all types of programs.
Shepherd Industries, Inc., Dept. EI). 10.3 Park Ave., Nutley 10, N.J

Metallized Mylar
 Capacitors

 447Usable range to 125 C
These metallized Mylar capacitors have a usable temperature range up to 125 C without derating Capacity tolerances of 1% and bet ter are available. These units have low dielectric absorption and high insulation resistance, and may be used in potting applications.

Film Capacitors, Inc., Dept. Eb) 34(0) Park Ave., New York 56, N.Y Price: $\$ 0.3 .5$ to $\$ 2$.
Acailability: Tuo weeks.

Contact Element

Knitted wire

This dry circuit contact element. called a Furz Button, is made of fine-gauge knitted wire mesh. Individual wires in the resilient button exert a high pressure with relatively small total force, breaking through non-conducting films. Contact is unaffected by dust particles. as the button contains only 15% of wire by volume. Normally made with a gold-plated, silver-copper alloy wire, the contact has antibounce characteristics.

Tecknit Design Service, Technical Wire Products, Inc., Dept. ED, 48 Brown Ave., Springfield, N.J.
\& CIRCLE 95 ON READER-SERVICE CARD

Transmitting Tube
 403

Has low battery drain

The filament in this beam power tube, the RCA-4604, reaches operating temperature in less than 1 sec. Developed for push-to-talk radio transmitters, this feature conserves battery power during standlhy. The tube will deliver 30 w in cw or fm service at 175 mc . The 6.3 v filament draws (0. 65 amp during transmission periods, no current in standhy

Radio Corp. of America, Electron Tube Dis., Dept. El), Harrison, N.J.

Pentode Tube

Medium voltage type

The beam-type NUll6 pentode. operating in the $3(\mathrm{~K})$ to $1,5(0) \mathrm{v}$ range, is suitable for amplification and voltage regulation. Plate dissi pation is 15 w ; screen voltage is $2(0) \mathrm{v}$, and heater voltage is 6.3 v . Cutoff bias is less than 10 v with currents up to 15 ma . Transconductance is $\mathbf{f , 6 0} \mathbf{0})$. Its diameter is 0.875 in . max; length is $2-58 \mathrm{in}$ max.

National Union Electric Corp. Electronic's Div., Dept. ED, Bloomington, III.
Availability: Immediate in small gyantities.

Digit Verifier

Eliminates human error
The A570 check digit verifier eliminates human error in encoding account and other reference numbers into punched paper tape. The verifier is actually a solid-state computer. It is designed to operate with the firms accounting machines that produce tape's for data processing

Burroughs Corp., Equipment and Systems Div., Dept. ED, Detroit 32 Mich.

CIRCLE 96 ON READER-SERVICE CARD *
ELECTRONIC DESIGN • February 1, 1961

HERE'S WHY P\&B TELEPHONE TYPE RELAYS GIVE YOU reliable performance over long life

Measure the thickness of the BS series armature arm. You will find the cross section area is greater than ordinary relays of this type. Here is the kind of quality that spells dependability.

Observe that the stainless steel hinge pin runs the full width (not just half) of the armature, providing optimum bearing surface. This pin, operating in a stainless steel sleeve, shows only minimal wear during nearly a third of a billion operations.
Best of all, P\&B quality costs no more. A whole new plant is being devoted to the production of high performance telephone type relays. Your nearest PaB sales engineer will be happy to discuss your relay problems. Call him today.

GEMERAL:
Breaticoun Vavere: 1000 volts rms 60 cy . min. Ambiven Tween all elements.
 Weime : 9 to 16 azs. Coil: One 16 AWG wire
Contacts T wo 18 AWG
 Cominctrs:

mand: AND 1022 springs
Up to $1 /$ dian single silver.
Other materials on special order.

6S SERIES-Ereellent sensitivity 50 mw per movable atm
minimum (DC). For applica. minimum (DC). For applica.
tions requiring many switch. tions requiring many switch-
ing evements in small space.

Is SEMES- Medium coil relay
wth short springs and light
weight armature for fast weight al mature tor rast
aetion, reliability and long lite.

Loat: 4 amps al 115 volls, 60 cycle resistive Prassum: 15 crams minlimum colls:

Reastace: Current: 100 amps maximum
Powe: $D C-50$ Milliwatts per movable arm. Greater sensitivity on special order. AC-17.9 volt-amps.
Continuous
Dut): Continuous Tratmet: Centrifugal impregnatio Vallager: $\mathrm{DC}-\mathrm{HD}$ 10 10300 volts with series
resistor. $\mathrm{AC}-\mathrm{up} 10250$ volts, 60 cy. mOUNTIMG: Two s. 32 tapped holes $3 / /^{\circ}$ o.e.
Other mountings on special order.

Throughout the industry, the trouble-free Tarzian TUNERS are winning praise for meritorious achievement.

No other commercial unit possesses so many of the desirable features found in the Tarzian Tuner which is recognized as "the world's finest tuner for the world's finest sets."

Today, Tarzian is the only commercial manufacturer offering the Hot Rod (turret-type) and Silver Sealed (switch-type) . . . as well as the Hi Fi FM Tuner. All with built-in High Quality . . . Dependability . . . and Excellent Performance at Low Cost.

NEW PRODUCTS

Power Transformer
For control use

This line of automation control power transformers is designed for use with relays, control valves, small motors and other control devices. They are for $115 / 230-v 60-\mathrm{cps}$ operation and are available with outputs from 6 v at 2 amp to 24 v at 8 amp .

Chicago Standard Transformer Corp., Dept. ED, 3501 W. Addison St., Chicago, Ill.
Price: From \$5.56 to $\$ 22.21$.
Availability: Immediate.

Crystal Can Relay

434
This fpelt crystal can relan is equipped with stud chassis mounts. This permits the relay to be placed in a $0.32-\mathrm{sq} \mathrm{in}$. of chassis space.

Branson Corp., Dept. ED, 41 S. Jefferson Road, Whippany, N. J.
Acailability: From stock.

Solid-State Amplifier

677
Operates from 0 to +55 C

In standard form the model 3801 solid-state amplifier will operate over a temperature range from 0 to +55 C . It will stand shock of 30 g and meet specifications to an altitude of $50,000 \mathrm{ft}$. Specifications are: input drift, 1 mv per 30 C change; output, $\pm 10 \mathrm{v}$ at 4 ma load, $\pm 20 \mathrm{v}$ at 2 ma load; total dc gain, in excess of 250,000 ; frequency response, dc to 200 kc ; dimensions, $3-34 \times 2-14 \times 1=\mathrm{in}$.

Donner Scientific Co., Dept. EI), 888 Galindo St., Concord, Calif.

Price: $\$ 401$.

Availability: 4.5 days.

BLOWERS

FOR ALL

ELECTRONICS

FAST DELIVERY FROM STOCK HUNDREDS OF MODELS CUSTOM DESIGNING

Also a complate line
of fractional horsopower motors

ENGINEERING LABORATORIES

World Leader in Packaged Cooling
Princeton, N. J. - WAlnul $4-4440$
TwX Princoton, Now Jersey 636
CIRCIE 98 ON READER-SERVICE CARD
ELECTRONIC DESIGN • February 1, 1961

Temperature Sensors

Positive-slope

This semiconductor positive-slope temperature sensor has a coefficient of 0.8% per deg C. Called the Semitemp). it has an (efective range of -60 F (0) 150 C . The sensing element is a silicon crystal; the entire unit is encapsulated in epoxy. There are 9 standard resistances in the 100- to $2,00(0)$-ohm range, with tolerances of $\pm 10 \%$.

Kulite Semiconductor Products, Inc., Dept. ED, 10.3) Hloyt Ave., Ridgefickd. N.J.

Delay Line
For computer use

Developed for corling applications in a commercial computer, this humper constant delay line hats a total delay of 2.4 usece, with maximum output moise of 0.2 s , or \boldsymbol{l}^{2}. Output rise time is $\mathbf{0} .16 .5$ usece, max; attenuation is 1.5% max, and impedance is $3(k)$ ohms - 5%. Two intermediate taps are provided.
Nytronics, Inc., Essex Electronics Div., Dept. E1), 550 Springfield Ave., Berkeley Heights, N.J.

Motor-Generators

Brushless inductor type
These brushless inductor motorgenerators are rated at 2 to 15 kia, 3 phase, or 1 to $7-1$ kva, 1 phase, 0.8 pf . Output voltage is $120 / 208 \mathrm{v}$, f(O) (p.ps, 3 -phases, or $12(0) \mathrm{s}, \mathrm{f}(\mathrm{K}) \mathrm{cps}$. single-phase. Input voltage may be 440 (. $60 \mathrm{cps}, 3$-phase or $220 / 380 \mathrm{v}$, 60 cps . Voltage regulation is $\pm 1 / 2 \%$ from mo load to full load. U'nits are available in 3 classes of frequency regulation, no load to full load.
Leach Corp., Dept. ED, 184.3.3 Susana Roadl, Compton, Calif.

ELEVEN DOZEN ZENERS

132 BASIC ITT TYPES COVER 33 VOLTAGES IN 4 POWER RATINGS

The complete ITT "Gold Crown" line of zener voltage regulator diodes offers all the most widely used power ratings in a very extensive range of zener voltages. Backed by the world-wide research, development and production facilities of the great ITT System, these outstandingly reliable diodes

feature sharp zener characteristics, low dynamic impedance and conservative power ratings. Welded cases with hermetic glass-to-metal sealing assure total environmental protection for the most critical commercial and military applications. Write for Bulletin No. 230, containing complete data.

- 4 power ratings: $3 / 4,1,31 / 2$ and 10 watts - 33 zener voltages (nominal): 3.9 to 100 volts - standard tolerances: $\pm 20 \%, \pm 10 \%, \pm 5 \%$ - temperature range: -65° to $175^{\circ} \mathrm{C}$.

SEMICONDUCTOR DEPARTMENT © COMPONENTS DIVISION international telephone and telegraph corporation, clifton, new jersey ITT COMPONENTS DIVISION PRODUCTS: SELENIUM RECTIFIERS - SILICON DIODES AND RECTIFIERS - TANTALUM CAPACITORS - POWER TUBES • IATRON STORAGE TUBES • HYDROGEN THYRATRONS • TRAVELING WAVE TUBES

CIRCLE 99 ON reader-seavice card *

NEW PRODUCTS

Trace Plotter
Detects 1-micron deflections

The model 860 trace plotter detects, amplifies and plots trace deflections as small as 1 micron. It is capable of using time resolutions in the subnanosecond region. The tube trace is reproduced on a pre-scaled sheet of graph paper in 1.5 to 3 min . Sensibility is increased about 15 times. X and Y settings are inclependent; magnification of the axes is arbitrarily adjustable. Although designed specifically for the traveling wave deflection tube, the unit may be used with any oscilloscope.
Edgerton, Germeshausen \& Grier, Inc., Dept. ED, 170 Brookline Ave., Boston, Mass.

Doped Silicon

430
Single crystal silicon is available doped to the specific requirements of device manufacturers. Impurities are held to a very low level. It is produced in diameters up to 26 mm and in lengths to 360 mm . Dow-Corning Corp., Dept. CS-143. Dept. ED, Midland, Mich.

Synchro Transmitters

For pressure sensing

The TL Series of synchro transmitters, in ranges from $0-10$ and $0-350 \mathrm{psi}$, are available in $115-\mathrm{v}$ and $26-\mathrm{v}$ designs for use at $4(0) \mathrm{cps}$ and 60 cps . The pressure medium is contained within the encapsulated dual aneroid element. The similar TR series, available in ranges from 0 to 600 through 0 to $20,000 \mathrm{psi}$, uses a helical Bourdon tube element. Both series are oil-damped to withstand $25-\mathrm{g}$ vibration. Linearity is said to be $\pm 0.5 \%$.
Servonic Instruments, Dept. ED, 640 Terminal Way, Costa Mesa, Calif.

ANOTHER LING FIRST: NEW 5000 LB. SHAKER

 -PROVIDES BUILT-IN PIGGY-BACK CHAMBERCAPABILITY Ling offers you another design first with its new Model 300 Shaker. This new 5,000-pound-force shaker features Ling's unique closed-loop water-cooling system, a hermetically sealed system which is specifically designed to eliminate coolant contamination of an environmental chamber. Without any special shaker accessories, it operates with a piggy-back chamber, permitting testing to unlimited altitudes and humidity, and at temperatures from -100° to $+300^{\circ} \mathrm{F}$. The specially designed lightweight armature weighs only 41.5 lbs . Ling's unique low-voltage armature and field design eliminates corona problems when operating at altitudes, and the temperature range can be readily expanded above $300^{\circ} \mathrm{F}$ with the addition of an extemal thermal barrier. For details on Model 300, write Department EID-261 at the address below

LING-TEMCO ELECTRONICB,ING.

ling electronics division
1515 SOUTH MANCHESTER, ANAHEIM. CALIFORNIA - PROSPect 4.2900

The design of the Model $3(x)$ Slabker is an extension of an envirommental shaker concept pioneered by Ling. This revolutionary concept, using a closed-lorep cooling system for direct coseling of the armature, field coils and for compensation conductors, has greatly improved the efficiency of shaker performance.

In Model 300, Ling hermetically seals the system-so the standard shaker can be. used freely in anevacuated chamber without special shaker accersories. Model $3(x)$ is particularly suited for mounting with the pigsy-back chamber - the technigue in which the shaker loody acts as one wall of the chamber, and only the table. rides into the chamber
In addition, Model 300 ofters Ling's new velocity signal generator for displacement monitoring. Loop-type flexures offer maximum lateral revtraint and linear spring constant.

SPECIFICATIONS FOR LING'S MODEL 300 SHAKER INCI.UDE
Force Rating; vector 5,000 Ibs. Frequency range .5-3,000 cps. Stroke, continuous duty

1 inch, peak to peak
Flexure Stiffnew 1,0(k) llos. per inch Table Diameter 13:8 inches Max. Acceleration. 100) C
Stray ficld. les than 6 gauss, 3 inches alonse the table.

LINO-TEMOO ELEOTRONIOE,INC.
LINO ELECTRONICE DIVIEION
HIGH POWER ELECTRONICS FOR VIBRATION TESTING • ACOUSTICS • SONAR
CIRCIE IOI ON READER-SERVICE CARD
ELECTRONIC DESIGN • February 1, 1961

What is your need for exactitudeP．．．＂over there at 3 pm＂or＂ 5000 yards $/ 212^{\circ}$ azimuth $/ 70^{\circ}$ elevation／ 15 hours． 22 minutes， 12.033 seconds PST．． The Canoga Model 8476 Radar Telemetry Data Tie－In System provides digital radar determination of range，elevation and azimuth of an object in space with reference to time．A choice of signals generated internally are recorded at from one to 100 per second，stored in binary memory devices and are available as an input to computers，magnetic tape recorders．punched paper tape recorders． printers and other devices．Data printed out from computer processing give time of occurrence：polar and cartesian coordinafes of one or more targets dor－ rected for refraction，parallax and earth curvature：$d X, d Y$ and $d Z$ of the targets relative to each other： 23 words． 14 bits each．of telemetered data：and more． With the Canoga Model 8476 it is possible to reconstruct a complete trajectory of a given target providing digital evaluation at any time．

50ロロ／리ำ7ロロ／I522 F51

The Industry's Widest Variety

When weight and space are critical and it becomes essential to use the smallest and lightest production servos available, Sperry Rand's Wright Division offers you the industry's widest variety of advance components.

Typical of this variety are Wright Size 8 Servos, a few of which are shown above. Normal Torque or High Torque. High Acceleration or Exceptional Acceleration. Normal Torque to Power or High Torque to Power. You name it, Wright has it. And $200^{\circ} \mathrm{C}$ operation is standard!

Telephone Durham (919) 682-8161 or write for getacquainted literature and name of our nearest representative.

Servo Motors, Motor Tachometers, Geared Servos, Synchros, Servo Packages, and Spin Motors in frame sizes from Size 8 through 30.
WRIGTT//onwson os semer envo
CIRCLE 103 ON READER-SERVICE CARD

NEW PRODUCTS

VHF Antenna

For tracking and telemetry

The model 420 A , a dual-polarized whf tracking and telemetry antenna, operates in the 215 - to 260)mc range. Collapsible for air transport, it measures 8 -ft square by $6-\mathrm{ft}$ deep in operation and weighs 250 lb. Gain is 18 db min; wiwr is 1.4 max. Other feature's inclucle unambiguous acquisition mode, simultancous $2,0(0)$ ()-me tracking, 125-mph wind operation.

Avien, Inc., Antenna Dept., Dept. E1), 58-1.5 Northern Blid.. Woodside 77, N.Y.
Price: Less than $s: 3,(x)$).
Acailability: From stock.

Survey Meter 398

For radiation detection

The model 44() survey meter will detect and measure beta and gamma radiation of less than 1 milliroentgen per hour. An air ionization chamber with a mblar window is used to cover an energy range of 6.5()$)$ electron v to 1.2 million electron 1 : Its read-out dial can be set for 5 sensitivity ranges which encompass from 0 to $3(0)$ milliroentgens per hour. Battery power supply is 4 "I)" cells, with 100 hr life. The unit weighs 5-1 2 lb .

The Victoreen Instrument Co, 1)ept. EI). $58(06 \mathrm{Hongh}$ Ave., Cleve. land, Ohio.

For that RUE . NEW IDEA visit the IRE SHOW

March 20-23, 1961
New York
Coliseum and Waldorf-Astoria Hotel

Members $\$ 1.00$, Non-members $\$ 3.00$
Age limit-over 18

Transmissibility Plotter

Plots voltage ratios

The model 200A transmissibility plotting system automatically records the ratio of rms value of 2 varying ace voltages with respect to a third varying voltage. Ratios of non-sinusoidal voltages from 5 cps to 5 kc , or of sinusoidal voltages to 20 kc , appear on a built-in X-Y recorder. The system covers a 20 -dh dynamic range.
F. L. Moseley (o., I)ept. El), f(Y) N. Fair Oaks Ave., Pasadena, Calif.

Limit Switches
Heary-duty, metal-cased

Designed for use in metal-conduit wiring systems, the KL series of heavy-duty limit switches provide for right-hand or left-hand mounting, in a variety of actuation modes. The switch, removable for connection outside the case, is sealed against oil and moisture. It is rated for spelt operation at 2 hp , $250 \mathrm{vac} ; 1 \mathrm{hp}, 125 \mathrm{vac}$; and 20 amp at 125 J ac. Switch mounting is independent of case mounting.
W. I. Maxson Corp., Unimax Swit(h I)iv., Dept. EI), Ives Road, Wiallingford, Conn.

Nose Cones Plated with Sel-Rex Bright Gold ${ }^{*}$ Recovered From Space Orbits

President Einenhouer holds American flag which was in recovered eapaule during its Alight through apace. Capsule shou:n was electroplated with patented Sel-Rex Bright Gold Process.

finding the golden needle in the haystack...
Space capsule Discoverer XIV was plated with Sel-Rex Bright Gold. So was its predecessor, Discoverer XIII, which had been rescued earlier from the Pacific Ocean.
This patented plating process was applied by Philadelphia Rust-Proof Co.. Inc. to provide maximum heat reflectivity and emissivity, under sub-contract from General Electric Company Missile and Space Vehicle Department. Sel-Rex precious metal plating processes, in fact, are included in the original specifications of many advanced Space Age projects.

Sel-Rex sales and service technicians throughout the Free World are ready to serve you with unmatched professional precious metal plating services. Technical literature free on request.

- Patented
crition
SEL-REX CORPORATION
nuter 10. New heaser
World's largent selling Precious Metals Plating Procesmes

CHOPPERS

You relax when Airpax is your source for the very best
in "quality-proven" choppers.
"The Smallest Chopper in the World." The Model 30, a diminutive electro-mechanical chopper, is a natural for low noise requirements. Weight is 9 groms. Dimensions are $21 / 64^{\prime \prime} \times 21 / 32^{\prime \prime} \times \%^{\prime \prime}$.
RELIABILITY

UNIFORMITY

VERSATILITY

STABILITY

DURABILITY

The design of the Model 33 electromechanical chopper is such that the noise level has been brought to an irreducible minimum. Even at high impedances, the noise is down in the random noise level.

Type 6020-3, a molded transistor chopper for printed circuit use, operates over a DC to 100 KC chopping range. Drive voltage may be 2 to 20 volts peak square wave or 5 to 20 volts peak sine wave.

Series 175 choppers, industry standards for 60 CPS operation, provide highly reliable, troublefree performance. 5,000 hours of continuous rated operation will not alter characteristics.

These 400 CPS miniature choppers, Series 300 , are widely used as modulators and demodulators in stabilized DC amplifiers for analog computers and in servo-mechanisms for automatic controls.

DECISION MAKER

for simplified monitoring,

controlling, high-precision switching

Normal/abnormal ... high/low . . go/no-go: these are important decisions being made by A.P.I. Very High Sensitivity Measuring Relays.

Direct from sensory elements or circuits, the A.P.I. measuring relay makes a decisive "yes or no" decision on the basis of very close-tolerance voltage or current changes. In typical, critical applications, this measuring relay is saying "yes or no" on a change of ± 1 microamp; or in a 400 - to 500 -volt circuit, on a variation of only a few percent.

Moreover, the relay is capable of actuating on very tiny currents: for example, total inputs as small as 0.2 microampere or 0.1 DC millivolt. It does so without signal amplification, amplifier costs or the signal distortion problems that often go along.

Performance stability is inherent; reliability is exceptional due to the A.P.I. locking-coil design. On "make", contact is firm with substantial contact pressure; contact resistance is low. On "break", separation is clean and quick without contact teasing.
$10.000,000$ perfect operations is not an all-time record; it's a reasonable expectation of service life.

Widely used for precision switching in computer, control and alarm circuits, VHS measuring relays are practically unlimited in scope of application.

ASSEMBLY PRODUCTS, INC.

NEW PRODUCTS

Infrared Detector

For industrial use

Type FR-E47 is a general-purpose, lead-sulfide detector designed expressly for industrial applications. It may be used for counting, scanning, sorting and switching. Specifications are: mean time constant. 37.5 ! sec ; dark resistance range, 5 K to 1.5 meg sensitivity, 0.7 to 0.7 microns. The cell is housed in a dual-prong plastic housing.

Tupper Trent Co., Inc., Dept. ED, 2()7 Carter St., Chelsea 50, Mass.

Price: $\$ 6.15$ ea

Availability: Immediate.

Braided Shieldings

This braided shielding is available in three forms. Flat braid is woven of tinned-copper strands and flattened at the time of manufacture. Oval commercial braid is similar but not flattened. Tubular braid is constructed to MIL-QQ-B-575, with internal supports to maintain a circular cross-section.

Alpha Wire Corp., Dept. ED, 200 Varick St., Neww York, N. Y.

RF Power Meters

Measure from 0.2 to 700 mc

These rf power meters measure from 0.2 to 700 mc . They include model PM-4, 150 and 600 mw full scale; model PM-5, 500 and $1,500 \mathrm{mw}$ full scale; and model PM-6, 1.5 to 6 w full scale. Of the absorption type, they are completely shielded and non-radiating, permitting transmitter testing and adjustment without interference. No correction curve is necessary to cover the frequency range. Accuracy is $\pm 5 \%$.

Electro Impulse Laboratory, Inc., Dept. EI), 208 River St., Red Bank, N.J.
Price: $\$ 95$ ea.

> how to see high impedance ac signals

The Keithley Model 102 B Amplifier combines a 400 -megohm input with high gain and low noise. It sharply reduces circuit loading errors when measuring outputs from accelerometers and other piezo-electric devices. It also has many uses in studies on hearing aids, phonograph pick-ups, and microphones.
Features of the Model 102B are: decade gains from 0.1 to 1000 , selectable bandwidths of 2 cps to 150 kc and 2 cps to 1.7 mc , and a 5 -volt, 50 -ohm output for scopes and recorders. Other features include:

- input imopedance of 400 megohms, shunted by $3 \mu \mu$?
- low nolse level, below $10 \mu \mathrm{~V}$ from 10 cDs to 150 kc at maximum gain.
- gala accuracy of 1% at midband for all gain settings.
- riae time of $0.3 \mu \mathrm{sec}$ at highest gain.
- two aceaseery low capacitance probes available.
- Price - 8335.00

For full details write:

K EITHIEX INSTRUMENTS

12415 EUCLID AVENUE CLEVELAND B, OHIO circle 108 on reader-service card ELECTRONIC DESIGN • February 1, 1961

a spot is a spot is a high resolution Spot with
CELCO YOKES
Celco YOKES
keep spots Smallest

- Celco YOKES keep spots roundest
- Celco Yokes
keep spots sharpest

U'se a CELCO DEfLLETION YOKE for your high resolution applications. In a display Spor? call Celco! Constantine Engineering Labaratories Co.

Maln Planl: ManwaM, M. I. Darls 7.1121

- Pacific Division. Cucamonga, Calif. - Yuton 2-2688

Rectifier Analyzer

For ratings from 100 ma to 20 amp

This analyzer, model 170, is designed to test amy semicyonductor rectifier at any combination of ratings from 100 ma to 20 amp and from 0 (0) l(0KO) v. Flexibility is made possible by independently adjustable forward current and reverse voltage. Nirror-scaled 1% meters include: 1/5/2.5 amp de full scale to measure average forward current; 250) $1 .(0)$ (4 peak to measure reverse voltage; (0) to 1.5 v to measture forward voltage drop).

Wallson Associates. Inc., Dept. EI), 912-914 Westfield Ave.. Elizabeth, N.J.
Price: 88.5 .5.
Acailability: From stock in 210.3 uereks.

Servo Mount Clamps

The Rota-Way servo mount damps (aln be atfached to test or other tupes of fixtures to hold any standard servo mount component securely in place. Operating handles are in various lengths depending (on the device to be tested.

Angler Industrics. Dept. ED, Metuchen, N. J Price: $\$ 12.50$ ea.
Availahility: One weck.
VHF Microvoltmeter
Has outomatic tuning

This selective whi microvoltmeter, the model USWV, automatically tracks an unknown signal, measuring its amplitude and frequency. Waveform analysis is carricel out by manual tmong. The frequency range is from 30 me to 400 mc . Logarithmic voltage indication, over an $8(0)-(\mathrm{ll}$) range, and lincar indication are provided. Minimum input is 10 us rms, frequency response is 0.2% per me ± 1 (ll), and input attenuation is 0 to 60 db . Bandwidth is $125 \mathrm{kc}, 3 \mathrm{dl}$ down, to $1 \mathrm{mc}, 80 \mathrm{db}$ down.
Rohde \& Schwarz Sales Co., Inc., D(pt. EI). 111 Lexington Ave., Passaic, N.J.

CIRCLE 109 ON READER-SERVICE CARD ELECTRONIC DESIGN • February 1, 1961

COMPACT, 3-OUNCE TIME DELAY RELAY with silicone-controlled delay from $1 / 4$ to 120 seconds

Worth a closer look . . . the Heinemann Type A Silic-ONetic Relay. Despite its small overall size, the relay offers many big performance features.
For example, double-pole, double-throw switching . . . at fast snap-action contact speed.
The relay is a load carrier in itself: it may be energized continuously . . . does not require auxiliary lock-in circuits.
And it has a hermetically sealed time element that is forever free from the effects of aging or fatigue. The Type A Relay has proven itself in countless applications; it will give you reliable service over a long, long operational life.

For full details, refer to Bule lotin T-5002. A copy will be sent on request.

BRIEF SPECS
Time Delays: from 1/4 10120 seconds
Overall Dimensions: 2-1/16 $\times 2^{\prime \prime} \times 1.9 / 16^{\prime \prime}$
Contact Capacity: 3 amps at 120 V AC, 1.5 amps at 240 V AC (non-inductive load), 1 amp at 50 V DC, 0.5 amp at 125 V DC.

HISINEMRRNN

ELECTRIC COMPANY

156 Plum St., Trention 2, N. J.

NEW PRODUCTS

Indicator Light

The model 85.55-1)S pancel indicator light has a black shroud which excludes light emission from the sides. It is available in a bi-colored version which is colored when lit, and white when unlit. It moment in a 38 in. diameter hole. The Sloan Co.. Dept. ED Tald Sim Fernando Road, Sun Valley, Calif.

Audio Triode-Pentode

A hich-gain triode-pentocle, the ECL86/6GW'8 was designed for andio applications. Voltamperes are 2.50 , each section; g_{m} is 10.000 , pentode section; μ i 21. pentexde section, and 100 , triode section. The heater draws 7 amp at 6.3 v . International Electron ic:s Corp.. Dept. ED, 81 Spring St.. New York, N. Y

Insulating Adapter

This adapter. for use with TNC and TM connectors, provides insulation from the mounting panel. Body is milon. diclectric is Teflon; all metal parts are silver-plated. Voltage rating is $\bar{J}(x) \mathrm{v}$ rms. (Gi) (eps. Gemeral RF Fittings, Inc., Dept. EI), TOL Beacom St. Buston 15, Mass.

Operating on standard line voltage, the models 116 and 117 neon-glow indicator assemblies are simple and practical for mounting. Available with nut or swap-plug in a variety of lens styles and colors. Drake Manufacturing Co., Dept. EI), 4626 N. Olcott Ave., Chicago 31, III.
Price: Firmm 37 cents to 61 cemts cach.

High-Voltage Resistors
Designed for high-pulse currents at very high voltages, these resistors have corona-free operation up to several hundred kv. A typical 38 -ohm unit will handle $12.3 \mathrm{kw}, 18 \mathrm{amp}$, with 1.100 cfm of cooling air required. Inductance is less than 50 uh. Franklin Engineering Design Co., Dept. ED, 977 Commercial St., Palo Alto. Calif.

Wiring Terminals

Fend-through and stand-uff terminals Nos. 1041 through 104.3 have shank diameters of 0.090 in . and heights from 0.082 and 0.281 . They are designed to withstand heavier wiring. Material is lacgucred and silver-plated brass. Cambridge Thermionic Corp., Dept. ED. 44.5 Concord Ave., Cambridge 38, Mass.

Builders of TOMORROW'S Aircraft Equipment TODAY! offers
unique job opportunities for
CREATIVE ENGINEERS
experienced in radio transmitter and receiver design, distance measuring equipment, ILS, transponders, autopilots and related instrumentation.

The right man will be attracted to these most desirable conditions:

1. A starting salary in line with your personal qualifications.
2. A "ground floor" position in a soundly, rapidly growing organization with excellent advancement opportunities.
3. New plant facilities in one of the nation's most attractive metropolitansuburban areas, just 20 minutes from Kansas City.
4. The personal satisfaction of working creatively on the development of advanced aircraft communications and navigational equipment.

CIRCLE 911 ON CAREER INQUIRY FORM, PAGE 111

TAKE A CLOSE LOOK AT OUR PRINTED CIRCUITS!

We always do! In fact, each unit is carefully inspected many times during manufacture to insure printed boards of the highest quality and reliability.

Our services include design and application engineering, layout, artwork, manufacturing, plating (including plated-through holes), and complete assembly.

Let us prove we can provide you with the service you need on prototype work or full scale production. Contact:

Dayton Rogers
 okenefacticring Company

PHOTO-MECHANICAL
 DIVISION

282413 th Avenue South CIRCLE 59 ON READER-SERVICE CARD

CIRCLE 60 ON READER-SERVICE CARD

NEW PRODUCTS

Latching Relay
Lies flat on circuit board

The FL, a dual-coil latching relay, has at maximum height of 0.485 in . Base size is 1.100 in . s 0.925 in . Its dpdt contacts are rated 3 amp at 30 v de or 2 amp at $115-\mathrm{v}, 60-\mathrm{cps}$ resistive. Designed to operate in severe environments, the relay will remain firmly latched in either position without applied coil power.
Potter \& Brumfield, Dept. ED. Princeton, Ind.

Potentiometers

416

Single turn, wirewound

Series $1500,1600,1700$ and $180(0)$ potentiometers are single turn, wirewound precision units. They are all available in servo and panel models, Series 1.50$)$ is 1.716 in . in diameter, rated al 3 w : series 1600 is $1-3+\mathrm{in}$. in diameter, rated at $\& w$; series 1700 is 2 in . in diameter, rated at 5 w ; series 1800 is 3 in . in diameter rated at $7 w$. All have maximum equivalent noise factors of less than 100) ohms.

Duncan Electronics, Dept. EJ). 1:3015 Wakeham Ave., Santa Ana. Calif.
Price: From \$12 to $\$ 19$ cald, 1 to 9.
Acailability: Stundarel. from stock. custom, 30 days.
Miniature Potentiometer
365

Small, light, and rugged, the model D miniature potentiometer is rated at $1 / 2 \mathrm{w}$. It has a voltage rating of 350 v rms and an ambient temperature range from -55 C to 120 C . The unit is said to have a life of 100,000 cycles and an ability to sustain heat overloads of 500 F. Specification MIL-R-94B is met.
Keon Resistor Corp., Dept. ED, Yonkers, N.Y.

Rate Gyro

Features improved damping

1):amping in the series 7601 rate gyro is held at from 0.5 to 0.9 times critical ower a temperature range of -54 C to 84 C . Response time therefore remains uniform over the conviromental range. The spin motor of this $6.5-0 \%$ unit uses $1-1 / 2$ w of $26-\mathrm{r}, 400$-cps power in 1. 2 or 3 -phase versions. No external choke is required. All isolated motor rotation detector is available
Le:ar, Inc., Instrument Dis., Dept. EID. Box 688, Grand Rapids, Mich.
Price: $\$ \(k) perr unit in prodluction Immentitios. Availability: 180 days

Ceramic Magnet

Residual is 3,770 gauss
This oriented barrium ferrite permanent ceramic magnetic material, designated F-510, has a residual induction of $3,7 \mathrm{~T} 0$ ganss and a creercise force of 2,700 orersteds. Intrinsic crerevice force is $2.8(X)$ oersteds: maximun emergy product is 3.3 (10) gauss-oersteds.
D). M. Steward Manufacturing Co.. Dept. EI). 3660 Jerome Ave.. Chattanooga. Temn.
Price: On request.
Acailability: f 10.5 woeks.

Power Supplies

Response time is $10 \mu \mathrm{sec}$

The solid state TPS series of power supplies cover a range of 0 to 150 v at up to 30 amp . The units, said to be transient-free, have a response time of $10 \mu \mathrm{sec}$. They are designed to eliminate drift due to transistor aging and temperature, and to provide an amplifier current gain of 1 million and a voltage gain of 10,000 . Load and line regulation are held to 100 ppm . Life is warranted to be $5,000 \mathrm{hr}$.
Power Devices Inc., Dept. ED, 10709 V'enice Blvd., Los Angeles 34, Calif.

The Avnet System

is based on New Concepts, Major Improvements in Service
The Avnet System IS a system of improvement, newness, change for the better. That's
how progress is made. That's how-and why-Avnet is America's major source of supply
in electronic components. Of the many new practical concepts Avnet has introduced. four
are symbolized above. Which of them are important in your business?
1 A NEW CONCEPT OF PLACING the Right Line-in the Right Place at the Right Time. The Avnet System supplies not only the components themselves but a wealth of application information, saving the user hours of costly research time.
2 A NEW CONCEPT OF SUPPLY-an a vailable supply that is overwhelmink in its size. fully anticipated to meet your demands of tomorrow, next month, next season.
3 A NEW CONCEPT OF TIME Avnet ships your orders about is faster than any other. major source of supply, hence ${ }^{3}$ of the hours can be cut
Athough the y hour clock is symbolic, it is symbolic of a fact.
4 A NEW CONCEPT OF SCHEDULING. Once your order is given to Avnet, it knows no "weak-ends." Within a given period, Avnet ships more orders than any other source for no "weak-ends." Within a given period, Avnet ships miore orders than and other
electronic components, giving your specific order quicker delivery, faster use.

5 LENCONCEPT OF NEW CHAL 5 LENGE. Avnet doesn't know what the next decade will bring. But Avnet is very ready, willing and able to meet the challenge with more improvement in service, more newness, more chankes for
the beiter. For this is the very basis of The Avnet System.

AVNET

THE AVNET SYSTEM
men / Mothode/Materiats/Management
AVNETELECTRONICS CORP
 SWITCHES, GREMAR CONMECTORS. CLARE RELAYS. ROBERTSON SPLICE \& COMNECTO CASES. CABCOCK RELAYS, KIMG SUQMINIATURE HI.TEMP CERAMIC CAPACITORS TIC PRECISION TRIMMERS VIBREX FASTENERS DY GENERAL TIRE \& RUEEEN CO U. E SEMCON BEMICOMOUCTORS. SAMOAMO CAPACITORE SPRAQUE CAPACITORS CIRCLE 116 ON READER-SERVICE CARD

KEEP YOUR FINGER ON THE PULSE with CINTEL 3352

Pulse Generator 3352 has fast rise, no overshoot or tilt, unlim. ited duty cycle, double pulse and high reliability.
With external trigger 3352 exceeds 2Mc. Frequency, width, delay and amplitude are all variable and calibrated, 5%. Marconi is proud to offer this exceptional instrument.

Frequency 1cps to $1.1 \mathrm{Mc} \quad$ Rise time $10 \mathrm{~m} \mu \mathrm{sec}$
Width $90 \mathrm{~m} \mu \mathrm{sec}$ to 105 m sec Output $50 \mathrm{~V} 1000 \Omega, 5 \mathrm{~V} 75 \Omega$
Delay $\quad 90 \mathrm{~m} \mu \mathrm{sec}$ to 105 m sec Also pre-pulse and sawtooth sweep
Exelusive U.S. Sales \& Sorvice:

CIRCLE 117 ON READER-SERVICE CARD

NEW PRODUCTS

Phase-Angle Voltmeter

Laboratory features in portable unit

The model VM-233 phase-angle voltmeter functions as an ac voltmeter, phase meter, phasesensitive null indicator, power-factor meter, and provides separate measurement of the in-phase and quadrature components of a signal. Standard models have reference levels from 3 v to 300 v with $100-\mathrm{K}$ reference input impedance, and may be used at 400 or 800 cps . The 12 ranges cover 1 mv to $300 \therefore$ Accuracy as a phase-angle voltmeter is $\pm 3 \%$ of full scale, and $\pm 2 \%$ as an ac voltmeter. Null sensitivity is $2 \mu \mathrm{~m}$ and harnonic rejection is greater than 55 db . The unit measures 3-3 $4 \times 10-1 / 4 \times 8-18$ in.

North Atlantic Industries, Inc., Dept. EI), Terminal Drive, Plainview, I.I., N.Y.

DC Power Supplies

358
Up to 85% efficiency

Four de power supplies, designed for ground support, aircraft, or missile applications, are available in compact form. The model AU-0192, operating at an efficiency of 80 to 85%, produces 550 w with 6 voltage outputs from a $22-\mathrm{v}$ to $32-\mathrm{v}$ input. This silicon device holds 0.5% regulation from -55 C to 100 C . The model AU-0291 gives ac to dc isolated outputs at 60 cps . Large amounts of power are handled by the model AU-0109, a dc to dc converter. The model AU0241. a regulated silicon unit, weighs $30 z$ and provides 28 v at 50 ma .

Victoreen Instrument Co., Jordan Electronics Div., Dept. ED, 3025 W. Mission Road, Alhambra, Calif.
Price: On request.
Availability: 2 weeks to 3 months.

JUST 10 SECONDS
for Polarold ${ }^{18}$ Prints with this BEATTIE

FIRST
with the Best in oscilloscope cameras

FIRST with direct binocular view ing of CRT while recording with direct photography. No mirrors. Non-reversed image and nonreversed viewing.
FIRST split-image range finder
FIRST positive detent multiple. exposure spacing bar. Records 10 traces on a single frame.
FIRST snap-on ground glass focusing panel. Locks in place.
FIRST swing-out, lift-off mounting.
FIRST lensette attachment. Adapts camera to table top photography.
FIRST 115 V AC shutter actuator.
FIRST super-size viewing hood. Permits use with glasses.
FIRST modular, building-block design. Adaptable to any requirement.
Beattie Oscillotrons are industry's first choice because they've always led in advanced design and reliability. There's a model for every need. Write today for brochure.
"Polaroid " by Polaroid Corp

1006 N. OLIVE ST., ANAHEIM. CALIFORNIA BRANCH: 437 FIFTH AVE., NEW YORK, N.Y. CIRCLE 119 ON READER-SERVICE CARD
temperature \& millivolt ranges

with 1 Speedomax H Recorder
Yes, a single Speedomax H Recorder enables you to measure mactically any temperature or millivoltage encountered in research activities. Simply pick the stocked range card and scale you need from 5) thermocouple or 5 millivolt ranges . . . substitute them in your Speedomax H Recorder . . . insert matching chart paper . . . and you're ready to record.

The specifications listed below are for the Speedomax H Strip Chart Recorder with a widely used range of 0 to 10 millivolts. For information on other ranges, contact your nearest $L \mathbb{B} N$ Office, or write to address below:
List No.-3-32-000-044-6-120-5 Speedoman H Model S Recorder, available for delivery in less than four weeks.
Record-Sinsle-point continuous line.
Measuring Circuit-l)-c potenfiometer.
Electrical Range - 1 I) to 111 millivolts.
Accuracy Rating—士 11.3^{\prime}; of sponn.
Dead Band- 0.2% of spuer.
Chart Number--(ionnonnif: 5(1) uniform divisions in $\mathrm{\sigma}^{1}{ }_{2}{ }^{\prime \prime}$. Chart tear-off included. Chart Speed-I 20 inches per hour.
Span Step Response Time Rating-1 second mominal.
Extermal Circuit Resistance Rating-l'p to $2.5(0)$ ohme for normul performance. Current Standardization - I/utumatic, every is minutes.
Power Supply-Operates of 1202,$1 ; 10 \sim$. Optional Feature - Currying hisurle and feet arailuble. Add (-9) to List No. Price-\$.jx.5.(on) f.o.lo. Philudelphim or North Wiales, P'a. (subject to change withonet motice). Alld $\$ 12.011$ to price for (-y) auffix if deaired. Use Liat No. s-.32-000-044-6;-120-5 when urdering from L\&N, 4908 Stenton il'e., Dhilu. if. P'a.

3-Phase Transformer
Uses Y cores

Each core in this circular transformer is a 120 deg sector, wound and lap jointed. Coils are placed over a pair of adjacent cores. "Ahermic interchange is minimized. Magnetic paths in any core are always symmetrical with respect to the other two, giving magnetic, electrical, and physical balance on all phases from no load to full load.

Gulow Transformer Co., Inc., Dept. ED, Carlstadt, N.J.

Digital Modules

Are plug-in type
The 3C-PAC series II plug-in digital modules measure $5 \times 3-5 / 16 \times 7 / 16 \mathrm{in}$. Operating ambient temperature range is 0 to 50 C . Standard models are available at either 1 ()- or 16 -me clock freguencies. Typical rise and fall times are 8 to 10 nsec . Features include glass-impregnated epoxy cards, etched circuits and dip-soldered connections.

Computer Control Co., Inc., Dept. EI), 983 Concord St., Framingham. Mass.

Time Delay Relay

For extreme environments

The model 700 thermal time delay relay switch, a linear expansion type, will operate in ambient temperatures of -65 C to 125 C . It withstands shocks of 50 g and vibration levels of 55 to 500 eps. Contact arrangement is spst normally open or normally closed, rated at $3 \mathrm{amp}, 115 \mathrm{v}$ ac resistive.

Thermal Controls, Inc., Dept. ED, 41 River Road, N. Arlington, N.J.

ELECTRONIC DESIGN • February 1, 1961

ELECTRON TUBE PARTS

Only precision offers you highest quality...

Lower cost-closer tolerances through Anton's unique facilities in manufacturing of metal parts for transmitting radar and geiger counter tubes.

All magnetron anode cavities are hobbed (not machined) resulting in perfect uniformity.
Send drawings of your designs for quotation and take advantage of our production experience in this field.

Anton Machine Works

1226 Flushing Avenue, Arenklya 37, Mew Yorh

Standard \& Magnetic Parallels - Standard 8 Adjustable V-Blecks - Diamend Molders - Milled Blanks CIRCLE 121 ON READER-SERVICE CARD

the answer to

that tough Switch Problem! .VERSATILE .DEPENDABLE \quad.ECONOMICAL

A "pile-up" of various contoct springs, Insulofors, contacts, etc., that can be custom-designea Inte your equipmentifican also be monufoctured to youp particulor

Now being used in Tape Recorders, Remote TV Contral Units, Juke Boxes, Electronic Organs, and Ianumerobla other products requipime dependeble switching.
Write for Catalog S-304. Contains a list of parts that can be made from standard fools, to enable you to can be made from standard roois, to enabie

5529 N. Elston Ave., Chicago 30, III.
 50 wingold Avo., Teronto, Canaas

is kept on the alert with the help of an Eastern pressurizer dehydrator system. This compact unit feeds a flow of controlled. dry air to the wave guide of the powerful acquisition radar - at pres. sures higher than the atmosphere. so that the ambient can't sift in through leaks. As a result. moisture can't condense on high-voltage elements: dangerous arc-overs are eliminated. The dehydrating pressurization pack is completely self-contained, circulates air through alternate. self regenerating capsules of silica gel which need never be replaced For additional in formation, write for Bulletin 370.
EASTERN INDUSTRIES, INC. 100 Skiff Street, Hamden 14. Conn. West Coast Office: 4203 Spencer St., Torrance. Calif.

CIRCLE 123 ON READER-SERVICE CARD

COMPUTER COMPONENTS from CAMBION*

Here's the answer to the increasing need for performance tested, higher speed components. These color coded "building blocks, " shown actual size, are conveniently packaged for ease of installation. All have superior frequency response - DC to 10 MC. Modules weigh only 9 grams, are .35 cubic inches in size. Write CAMBION Computer Components, 457 Concord Avenue, Cambridge 38, Massachusetts.

CIRCLE 124 ON READER-SERVICE CARD

NEW PRODUCTS

Trace Camera

With interchangeable backs, the C-12 oscilloscope trace camera accepts Polaroid or any conventional film. There are 8 interchangeable lenses, down to $f 1.5$, housed in keyed, cali brated mounts. The camera may be used hori zontally or vertically. The unit mounts simply and can be swung away when not in use.

Tektronix, Inc., Dept. ED, P. (). Box 500 Beaverton, Ore.
Price: $\$ 500$ with $f / 1.9$ lens and accessories.
Acailability: From stock b! 1st quarter of 1961

Molding Compound

428
This fiber glass reinforced polyester molding compound, Grade 1506, is said to have high impact strength and good moldability in deep-draw parts. The UL-recognized material has ann ignition time and extinguishing time of 8.5 sec . It is rated for sole support of current-carrying members up to 150 (: The Glastic Corp., Molding Materials Div.. Dept. EI). H2I Clenridge Road. Cleveland 21. Ohio.

Pressure Transducers
367
Withstand 600 F

Operation from -100 F to 600 F during 11 msec shocks in excess of 100 g is claimed for these pressure transducers. Model 538B has a flush-mounting diaphragm; model 53.3.B, a 1/4-in. threaded fitting. The bonded strain-gage type units measure absolute or gage full-scale pressures in ranges from 200 to 2,000 psi. Excitation voltage is 10 v , ac or dc. Repeatability is 0.1%; combined error is 0.5% of full scale. The 3.5 oz units measure $2-5 / 8 \mathrm{in}$. by $1-1 / 8 \mathrm{in}$. diameter.
Electro-Mechanical Research, Inc., Dept. ED, Sarasota, Fla.

Let LOCKWELL ${ }^{\text {w }}$ solve your quick release pin problem...the quality way.

LOCKWELL QUICK RELEASE PINS

LOCKWELL PINS are the quality answer for a quick release fitting where safety, speed of removal and dependability are of paramount importance.

돈
Write today for complete information
THE HARTWELL CORPORATION oojs venice boulevaro tos angeles 3s. california Officen Chicaso . Ft. Worth. Hockonioct . Soortle We Whito CIRCLE 125 ON reader-SERVICE Caro

Non-corrosive hYDRAZINE FLUX,* used industry-wide in liquid form, has now been incorporated into core solder. This fast, efficient flux vaporizes completely at soldering temperatures. It leaves no residue which would support fungus growth. Will not corrode.
In H-32 core solder for the Arst time, HYDRAZINE FLUX offers more
advantages than ever. When flux is normally applied far advantages than ever. When flux is normally applied, far more than is actually needed is used. Now. the exact ratio of fux to solder provides for proper wetting. Thereafter the fux decomposes and
TEST HYDRAZINE FLUX AND CORE SOLDER in your own plant. Write for samples of either H-Series Fluxes or H-32 coresolder form and technical literature.
-u.s. Poiour No. 2.612,459
CHEMICAL CO., INC.
I36 Liborty So., M. r.G. N. Y.
CIRCLE 126 ON READER-SERVICE CARO
ELECTRONIC DESIGN • February 1, 1961

CINCIN NATI SUB-ZERO PRODUCTS

General Offices \& Plont
3930-D1 Reading Road - Cincinnati 29, Ohio
CIRCLE 127 ON READER-SERVICE CARD
The extraordinary Model S
TOROIDAL WINDING MACHINE
is the
FIRST
to have a
fully
transistorized
inline digital
"read-out"
counter!

IC-601 Inductance Comparator.

The Mortel \mathbf{S} is the linst of its "1re. (1) have this new counter
which operates onl a simple which "pperates oll' a simple maincuance, since the pick-up consists of a simple photo-diorle and photoxell. The number of urns applied (1) the coil Rast
onta) the screct shown above.

ONIVERSAL
Send for further information. 1108 Grove St., Irvington II, N. J. ESser 4.9800

The most COMPLETE line of TOROIDAL equipment in the world. CIRCLE 128 ON READER-SERVICE CARD ELECTRONIC DESIGN•February I, 1961

Snap-Action Switch

Provides positive feel

This smap-action switch provides a positive feel of switch operation with almost simultaneous switching action. The miniature, push-button switch, for panel mounting, conforms to MIL-S67 43, Military Part 25085-1. Its electrical rating is 5.0 amp at $12(0)$ or $240 \mathrm{v} \mathrm{ac}, 3 \mathrm{amp}$ at 30 v dc inductive at sea level, and 4 amp at 30 v de resistive at sea level. Higher ratings are available. The switch weighs 6 m and requires an operating force of 21 oz .
P. R. Mallory \& Co., Inc., Milli-Switch Corp., Dept. ED, Cladwyne, Pa

Transistor Heat Sinks

421
Model 2502 natural convection heat sink offers a thermal resistance of 1.3 C per w. The unit has a weight of 0.4 lb and measures $4 \times 3 \times 1.28 \mathrm{in}$, Wordel 2501 nocasures $4 \times 3,0.68$ in. and provides thermal resistance of 2 C per w.
Astro Dynamics, Inc.. Dept. ED). 98 Osbome Path. Newtun Centre, Mass.
Arailability: From stoch

Telemetry Unit

389
For temperature measurement

The model $1751 /$ (D) amplifier unit is designed for measuring temperature and amplifying thermocouple signals to telemetering levels. Output is unidirectional, 0 to 5 v across 500,000 ohms. from a 0 - to 20 - mv input at 8 -ohms impedance. Linearity is $=1 \%$, ripple 0.3%; operating tempera ture range is -45 F to 160 F . The companion model $1751 /(\mathbf{E})$ reference unit, with a chromelalumel thermocouple. completes the system.

Lumen, Inc., Dept. EID, P.O. Box 905, Joliet, III.

Price: $\$ 8.50$, complete system
Availability: 5-ucek deliver!.

new, proven advance in high-capacirance sub-miniature
 CERAMIC CAPACITORS by STATNETICS

replaces plastic and paper with all the known advantages of ceramic capacitors

BRIEF SPECIFICATIONS

CAP. MFD. LENGTH in. WIDTH in. THICKNESS in.

.001 thru 01	.3	.15
.025	.3	.18
.05	.52	.25
.10	.52	.3

Cop. Tol. = GMV, $\pm 20 \%, \pm 10 \%$ P.F. $=2 \%$ Max.

For full specifica. Working Voltage $=100$ VDC 10125 Series Resistance $<.25$ ohms al 81010 mc . fllyery prices, or dellvery dates. please write to Statnetles CorD

STATNETICS Conporation
S121 WEEKS AVENUE, SAN DIEGO 10, CALIFORNIA
CIRCLE 129 ON READER-SERVICE CARD

Precision specializes in square, rectangular, round or special shaped coil forms ... kraft, fish paper, acetate, DuPont Mylar, Johns-Manville Quinterra, Resinite impregnated, other high dielectric materials or combinations . . . to help you solve any dielectric or corrosion problem. Forms can be made to your exact specifications in all sizes from 1 佔" square to $8^{\prime \prime}$ square with wall thicknesses of from . 010 to .125 .
Precision Paper Tubes are available in standard or exclusive patented DI-FORMED construction for greater crush resistance, high tensile strength and extreme dimensional stability.
1
PRECISION PAPER TUBE CO.
$\underbrace{\text { Preasine }} 2055 \mathrm{~W}$ Wlanterston st.
CHICAGO 47, HL.
CIRCLE 130 ON I Flower Stroet, Harfford, Con

Here's
 TO GET GAINS UP TO $1,000,000 \quad Z_{m}$, and defect I MICRO-MICROWATT DC . . . acrosetat LOW-LEVEL MAGNETIC AMPLIFIERS

This brand-new series of ACROSTAT second harmonic magnetic null pro-amplifiers give gains up to $1,000,000 \mathbf{Z m}_{\mathrm{m}}$. with null balances to one micro-microwaft, DC. One microampere of DC confol gives one volt of DC output. Operoates from 115 volts $\pm 10 \%$. Ideal for thermocouples, strain gauges, null derectors, meter pre-amplifiers.
For full details, send for Technical
Bulletin No. 10

CIRCLE III ON READER-SERVICE CARD

NEW PRODUCTS

Cryogenic System

This closed-cycle system uses nitrogen to provide 1 w of refrigeration at -316 F . It consists of a compressor with an absorber filter, and a remote refrigerating unit that is connected by flexible lines. No external gas or liquid supply is needed. The $16-\mathrm{lb}$ system is available in $400-\mathrm{cps}$, $208-\mathrm{v}, 3$-phase for airborne use or in $60-\mathrm{cps}$, 115-v, single phase.

Air Products, Dept. ED, P.O. Box 538, Allentown, Pa .

Heat Sinks

These felt disks are pierced with holes for transistor leads. The felt is injected with a volatile fluid which evaporates during hand solder operations, absorbing heat from the leads so that transistor temperature never rises to dangerous levels.

Navigation Computer Corp., Dept. ED, 1621 Snyder Ave., Philadelphia 4.5, Pa.

Transformer-Rectifiers

668
For missile, aircraft, and ground support

Designed for missile, aircraft, and ground-support systems, the 4 models in the 49-100-0 line accept a $115 / 200-v$ rms, $400-\mathrm{cps}$, 3 -phase input and produce a $28-\mathrm{v}$ dc output. Rated loads are $8,25,50$, or 100 amp . Ambient temperature range is -60 C to 100 C . Transformers and chokes are Class II. Regulation from no load to full load is 1.6 v ; ripple ranges from 0.1 v to 1 v peak-to-peak at full load; weight ranges from 3.5 lb to 14.8 lb .

Magnetic Research Corp., Dept. ED, 3160 W. El Segundo Blvd., Hawthorne, Calif.
Price: From $\$ 250$ to $\$ 550$.
Availability: 45-day delivery.

Sला.

BY BRANSON

THE FIRST
4 POLE CRYSTAL CAN RELAY

PROVEN IN CRITICAL MILITARY SYSTEMS

The Branson
Type AR APDT relay. 2 amp. contacts. Withstands 2000 cps at 20G. $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Hermetically sealed and dry nitrogen filled for high altitudes. Wt. $15-20$ gms. Dim. $.384 \times .784 \times .882$. Hook, plug-in or wire leads available. Std. 0.1 in . grid spacing. Suitable for dry circuit conditions. Meets specs: MIL-R-25018, MIL-R-5757C, MIL-E-5272C.
Delivery from stock, special orders in 4 weeks.
Write for technical bulletin
 Whippany, Now Jersey TU 7.1100
CIRCLE 133 ON READER-SERVICE CARD

Environmental conditionning

for
missile guidance systems

AiResearch Gyro Conditioners for the U.S. Army Sergeant missile are the most complete and efficient systems of their type.
The 8 lb . package, consisting of heat exchanger, heater, thermal switches and three fans, maintains a hermetic atmosphere of $85^{\circ} \mathrm{F}$. to $160^{\circ} \mathrm{F}$. in an outside ambient tem. perature of $-20^{\circ} \mathrm{F}$. to $140^{\circ} \mathrm{F}$. Even temperature levels throughout the electronic compartment are main. tained by an internal fan and low relocity air movement.
AiResearch is the leading designer of such advanced electronic conditioning equipment and systems, and this production unit is hut one example of many produced for missile and ground support applications.

When fast attention to your problem, high reliability and small unit size and weight are important. contact AiResearch first.

Environmental conditioning equipment has been produced for the following electronic systems: Detection - Communication - Control - Ground Support • Guidance

Write for literature today.

AiResearch Manufacturing Division Los Angeles 45, California

Meets MIL-E-5272A
Vane-Axial Blower

Designed for aviation electronic expuipment cooling, the SP-162 vane-axial blower delivers from 2.5 to 5.50 cfm at static pressures of 7.5 to 1.5 in , of water. The blower, which meets MIL-E-5272A environmental conditions, is supplied with a de or $4(0)-\mathrm{cps}$ ac motor. The $\mathbf{T}-1 / 2-\mathrm{lh}$ unit is 5.5 in . Iong; diameter is 7.54 in .
Torrington Manufacturing Co., Spectialty Blower Div., Dept. ED. Torrington, Coun.

Drafting Templates

The Speedraft electronic symbol template No. $13.30-2.5$ simplifies the drawing of various types of electronic tubes and semiconductors. The electrical template, No. 13.3()-20. contains symbols for power, communications and electronic wiring diagrams. All symbols conform to ASA and military specifications. Keuffel \& Esser Co.. Dept. ED, Adams and Third Sts., Hoboken, N. J.

Corona Pick-Up Network

Model 8562 Ml corona pick-up network consists of a corona-free, high-voltage, capacitordivider network, associated filters and circuitry. It is designed to extract the corona signal from high-potential circuits up to 100 kv . The highvoltage connection is located at the top of an insulating cylinder, measuring approximately 18 in. in height. It is mounted on a base which contains the terminals for test equipment connections.

Associated Research, Inc., Dept. EI). 3757 W Belmont Ave., Chicago 18, Ill.

MODEL S. 145
Prices subject to change without notice. S. $131 \cdots \cdots$.

A small lightweight sweep generator that aftaches directly to oscilloscope panels.

Increases the useful operating time of your scope.

Will sweep IF stages and wide band amplifiers for alignment.

Can be used as a fixed frequency generator, stable to one part in 10°

Will measure transient response of filters and other circuifs.

Cables and balleries not requirad. Ready for instant operation affer plug in. Sweeps speeds up to 1 microsecond/ centimeter can be used from those on your scope.

FOR COMPLETE INFORMATION WRITE TO
TELTRONICS
INC.
277 MAIN STREET - NASHUA, N.H.

Part 3

How many times have you read pages of material only to realize you have merely been reading words while your mind wandered elsewhere? Here are some proven methods to make your reading material more meaningful through improved comprehension.

Myron Q. Herrick

Developmental Research Institute
New York, N.Y

YOUR reading concentration can be improved if you will learn to apply several important techniques. One of the techniques is phrase reading. Earlier in this reading-improvement series, we saw that phrase reading could develop better reading concentration. This is because the word-by-word reader, the person who stops his eyes on each word of print, can think more rapidly than he can read. Therefore, it is easy for his mind to wander.

Pre-reading is another important technique It improves your concentration and comprehension because your mind picks up information so quickly you don't think of other things. Prereading helps you decide whether what you're reading is necessary and important-whether you should give a thorough reading to all of it, or just certain parts.
If you have no particularly pressing outside worry, but still find it difficult to concentrateas you probably do when the material doesn't vitally interest you-it is a sign that you are allowing yourself to be a passive reader. You are

Cutting Your Reading

During a thorough reading, turn the first sentence of every paragraph into a question. In factual writing, this is usually the topic sentence -that is, one which expresses the main idea of the paragraph. The rest of the paragraph usually supports this main idea with evidence or clatorates it in more detail.

Anticipate. Your eyes may not be able to pick up ideas as fast as your mind can assimitate the m . Your mind will race ahead, and if you're 110: careful, you soon find yourself thinking of ot!eer things. Nip this situation in the bud by thrning the left-over mind power into the read-ing-anticipate what points the author is going to make: weigh his cffectiveness in leading up to t'sem; try to stay one step ahead of the writer. fo: will find that this keeps you busy, with little mental room for distraction.
In any kind of reading you must involve yoursilf completely, just as you would if you were in carnest conversation. Always keep your purpose in mind as a goal, Like someone learning to swim. you must not be afraid to plunge in completely, keeping only your head above the water to maintain a purposeful direction.

Because you are questioning and anticipating the author's thoughts, you will be able to grasp the organization of the facts and ideas. You must think while you read, cooperate with the author by thinking with him, as you would if you were talking with him. Remember, the marks on the printed page are merely symbols for the author's thoughts. Get the meaning behind the words. Is he making his points effectively? You'll find that this will keep you busy, active in the matterial, less prone to distraction. You'll also find it casier to be completely interested.

By now your speed will be increasing rapidly if you have followed the directions in phrase reading. Push yourself at maximum speeds and don't be afraid that comprehension is going to drop. Quite to the contrary, you will find reading far more pleasurable and your mind will be actively involved in absorbing the material. The next article will show you ways to evaluate what you read, thous sharpening your skill as a critical reader. - -

Parts 1 and 2 of this series dealt with phrase reading and pre-reading. The next, and last. article of the series will discuss methods of being a critic while being a reader and will also summarize the earlier articles.
A 84 -page book, giving the how, what, and why of reading improvement, is available to individuals. Send $\$ 2$ to Developmental Research Institute, Dept. E.61, 500 Fifth Ale., New York, 36, N.Y.

To meet the recent increase to $\$ 53$ million in contract commitments,
Sanders Associates of Nashua, New Hampshire is rapidly expanding its engineering staff in 3 locations: Nashua Headquarters:
Burlington, Massachusetts and Plainview, L.I.. New York
This new expansion follows a 9 -year growth from 11 engineers to over 1600 employees - a growth soundly based on technical excellence inventing new concepts instead of using traditional approaches.
Pioneering programs are being continued in phased arrays, radar, pulse doppler radar systems, space radar and communication systems. Advanced concepts and techniques in a variety of areas provide stimulating assignments involving space lechnology, missiles and radar systems.

Positions available at all locations for:
senior systems engineers
To contribute to advanced techniques in the general field of military electronic systems. Applicable experience includes systems analysis. background in circuit design augmented by hardware implementation
CIRCUIT DESIGN ENGINEERS
EE or Physics graduates with 2 to 8 years experience and familiarity with tubes and
transistors and their utilization in all types of transistors and their utilzation in all types of ircuik.

TRANSMITTER DESIGN ENGINEERS 2 to 3 years experience. For work up to and including microwaves.

PRODUCT DESIGN ENGINEERS
ME with heauy experience in feasibility studies coupled with experience in taking developed
systems into production. monitoring mechanic design and overall packaging concepts of ECM or other airborne systems.

Positions in Plainview, L. I.

GROUND SUPPORT EOUIPMENT

ENGINEERS
To design and develop system, assembly and sub-assembly electronic test equipment for the military. Should have appreciation for test equipment philosophy, with extensive follow through.

To arrange for a convenient interview at any of the three locations, send resumes to Mr. Richard McCarthy, Employment Manager, in Nashua.

5月NDERS A550LIATES, INC.
NASHUA. NEW HAMPSHIRE

Electronic Engineers

You will find association with APL particularly rewarding if you appreciate an atmosphere conducive to original thinking. and if you are capable of making contributions to advance the state-of-the-art.

Satellite Development Group

The group is responsible for the development of satellites whose function is a major contribution to the national effort. Satellite-borne instruments must continue in operation for at least five years without malfunction in a space environment.

Emphasis is on all phases of effort from conceptual design through hardware fabrication. Within broad limits set by an established program, engineers will enjoy freedom to make creative contributions. Areas open to exploitation are in the field of magnetic memory systems (along with associated transistor switching circuits), other logic devices, and radio frequency transistor circuits to be used in a closed loop, phase and frequency locked, system. An electronic engineering degree is required; two years of experience in the above fields is desired but demonstrated capacity for growth will be given due consideration.

Satellite Ground System Group

This group is responsible for the design of data handling systems for use in shipboard and air-borne navigational equipment, and for ground tracking equipment. Assignments involve development of novel and highly sophisticated data processing systems, systems coordination, and technical supervision of contractors.

BS or more in physics or electronic engineering plus four to five years of experience in data processing systems required.

For details about these career opportunities, address your inquiry to: Professional Staff Appointments

> The Applied Physics Laboratory The Johns Hopkins University

8635 Georgia Avenue, Sliver Spring. Md.
(Suburb of Washington, D.C.)

SPECIFIC OPPORTUNITIES FOR:

ELECTRONIC ENGINEERS
System Test Equipment Circuit Design
Radio Frequency Interference
Reliability and Components
Microwave
Systems Design a Development
Solid Sites
MECHANICAL ENGINEERS
Praneducer Design \& Development
Applied Mechanics
Thermodynamics
Work sisal Design \& Packaging
Solid State Device Production

Write Bob Worcester, Dept. 202

MOTOROLA

ELECTRONIC DESIGN
 CAREER INQUIRY SERVICE

Advancement Your Goal?
 Use CONFIDENTIAL Action Form

ELECTRONIC DESIGN's Confidential Career Inquiry Service helps engineers "sell" themselves to employers-as confidentially and discreetly as they wou!d do in person. The service is fast. It is the first of its kind in the electronics field and is receiving high praise from personnel managers.
To jresent your job qualifications immedi ately to companies, simply fill in the attached resume.
Study the employment opportunity ads in this section. Then circle the numbers at the bottom of the form that correspond to the numbers of the ads that interest you.
ELECTRONIC DESIGN will act as your szc retary, type neat duplicates of your applica fion and send them to all companies you select-tine same day the resume is received.
The standardized form permits personnel monagers to inspect your qualifications rapidly. If they are interested, they will get in touch with you.
Painstaking procedures have been set up to ensure that your application receives complete, confidential protection. We take the following precautions:

- All forms are delivered uncpened to one reliable specialist at ELECTRONIC DESIGN.
- Your torm is kept confidential and is proc essed only by this specialist.
- The "circle number" portion of the form is detached before the application is sent to an employer. so that no company will know how many numbers you have circled.
- All original applications are placed in confidential files at ELECTRONIC DESIGN, and after a reasonable lapse of time, they are destroyed.

If you are seeking a new job, act now!

After completing. mail career form to ELECTRCNIC DESIGN, 830 Third Avenue. New York. N. Y. Our Reader Service Department will forward copies to the companies you select below.
(Please print with a solt pencil or type.)

Na			Telephone		
Home Address		City	Zone	- Sta	
Date of Birth	Place of Birth				
Position Desired					
Educational History					
College					

Recent Special Training

Employment History				
Company	Cut and Stal.	Dates	Tule	Engineering Specially

Outstanding Engineering and Administratice Experience

Prolessional Societies
Published Articles
Minimum Salary Requirements (Optional) \qquad
Use section belou instead of Reader Service Card. Do not urite personal
data below this line. This section will be detached before processing.
Circle Career Inquiry numbers of companies that interest you

New Edition!

FREF $\because \circ$ "Geographic" Opportunities Survey

Now by popular request-Cadillac. the nation's largest Executive and Professional Placement Servire, issues the Monthly Electronics Opportunities Survey on a regional basis.
Cadillac represents 467 "Blue-Chip" electronics firms who have openings ranging in salary from $\$ 6,000$ to $\$ 75,000$. Because so many excellent positions are available each month, the survey now lists positions by all major areas: East-Midwest-West-South.
Both the Survey and our COMPLETELY CONFIDENTIAL Placement Service are available to you absolutely FREE OF CHARGE
-••••••
For your free Survey, each month lidting America's Best Electronic fobs, send your name and home address to:

JACK 1. HIGGINS
Vice Phesident
cadllac ASSOCIATES, INC.

29 Easp Madisen Building Chicoge 2, Illinois

CIRCLE 884 ON READER-SERVICE CARD

CALCULATE YOUR FUTURE

Your earnings at any given time are directly proportional to your "use-value." To increase your earnings you must increase that use-value. These increases pay compound interest.
Therefore, to calculate your earnings, the formula is:
$E=S(1+i)^{x}$
W here $E=$ Annual Earnings
$S=$ Starting salary out of college
= Percentage improvement in use-value per year $x=$ Number of years of experience
Obviously then, the formula for total earnings over a period of n years would be

$$
\int_{0}^{n} S(1+i)^{=}=S\left(\frac{(1+i)^{n}}{\log (1+i)}-\frac{(1+i)^{0}}{\log (1+i)}\right)
$$

Most men reach their peak earnings at about age 50 after 25 years of experience. Let's take the case of an Electronics Engineer who started out of college at $\$ 6,000$ at the age of 2.5 and has maintained an improvement factor of 5% per year. At age fifty his annual income will be $\$ 20,300$ and gross earnings will have been $\$ 676,000$. With an " i " factor of 5% more, his annual income at fifty will be $\$ 64,998$. He will have earned a total of $\$ 1,425,000$! Quite a difference, isn't there?
Helping electronics men keep their " i " factor at a maximum is the full-time, lifetime job of the senior staff at DAVIES. SHEA, Inc. In the last 10 years we have helped more electronics men get better jobs than anyone else in the country. You also may be helped toward your greatest growth potential through our scientific methods.

To keep your " i " factor climbing, send us your resume now. Or Circle Reader Service Card No. 869 or Career Inquiry Form 901.
D AVIES - SHEA, Inc. wEboer 9.3833
332 South Michigan

ADVERTISERS' INDEX

February 1, 1961

Acluertiser Page
AMP, Incorporated 4.5
Acroming, Incorporated 108
Airpax Electronics, Inc. 9.5
Alloys Unlimited, Inc 66
Alloys Unlimited Chemicals, Inc. 100

- Alpha Wire Corporation 66
American Optical Company 64
Ampex Data Products Co 54
-Amperex Electronic Corporation 8:3
Anton Machine Works 10:3
Applied Physies Laboratory, Ther 1111
Assembly Products, Inc. 96
Automatic Electric 64
Ainet 112
Avnet Syivem, The 101
${ }^{\circ}$ Ballantine Laboratories, Ince 81
Beattie-Culeman, Inc. 102
Beckman/Berkele'y (i
Bendix Corporation, The, Pacific Div. | 1×1
Bendix Compration, The, Scintilla Div. 27
Beryllium Corporation, The 24
Birtcher Corporation, The 10%
Bourns, Inc 8.
${ }^{\circ}$ Branson Corp. 106
Bulowa Electronics Coser III
Burndy Corporation 17
Burnell \& Co., Inc.
48
(D) Battcries 11
Cadillac Associates, Inc 12
California Technical Industrics 81
Cambridge Thermionic Corp. $1(1)$
Cannon Electric Co 41
Canoga Electronics Corp). 9:3
Carborundum Co., The 37
Celer Constantine Engineering Labs. Inc 97
Centralah, The Electronics Div. of Globe-U'nion, Inc (ii)
Cincinnati Sub-Zero Products 10.5
${ }^{\circ}$ Clevite Transistor, A Div, of Clewite Corp.26.A. 13
Computcr-Mcasurements Co. 61
Controls Company of Americat 5.9
${ }^{\circ}$ Daven Co., The 7
Davis-Shea, Inc. 112
Dayton Rogers Mfg. Co (10)
Deley Radio, Dis. of General Motors Corp. 21
Dow Corning Corporation .. $70,78,7$DuPont, de Nemours \& Co., F. I.,
Film Dipt. 31
ESI/Electro Scientific Industrie's 3.3
Eastern Industries, Inc. 104
Eitel-McCullough, Inc. 1.5
Eldurado Electronic: 19
Electric Hotpack Co., Inc., The 72
Electronic Design 74, 98
Electronic Designers' Catalug 10
Flectronic Measurements Co.Red Bank18Essex Electronic's Div., Nytronics,
Inc.58

SPERRY Tunnel Diodes
 for engineering test or application

Any quantities available for immediate delivery from any Avnet office.

Call your Avnet Applications Engineer

For dependable service

and immediate delivery"

AVNET

- aVmer- 70 State St., Wortbory. M. V. ED 3.5800

AVMET. 45 WIan st. . Borliagton. Mass.-8R2-3c60
AVMET 4180 Keftering Divi.. Dayten 39 . Onio AX 8-1458

CIRCLE 36 ON READ-R service CARD
ELECTRONIC DESIGN • February 1, 1961

A RELIABLE PLUG-IN 25 AMP RELAY

More compact than most 10 amp relays

With "Diamond H" Series W dpdt relays you can fit as many as fourteen 25 -amp circuits into a space measuring only $11 / 2^{\prime \prime} \times 17 / 6^{\prime} \times 111 / 2^{\prime \prime}$!
Easy to install or remove-Spade terminals for socket or quick-disconnect installation. Solder terminals available.
Long, trouble-free service-Simple. functional construction with oversized solid silver contacts and contact bar assure long-time, dependable switching. Series W relays have given well over m million cycles at $\pi 15-\mathrm{amp}$ load.

SPECIFICATIONS

CONTACTS:

Arrangement - dpdt, double break, double make. Other arrangements and sequences.
Load - 25 amp resistive, 120 or 240 V a-c 25 amp ind., 120 V a-c (75% p.f.) $121 / 2 \mathrm{amp}$ ind., 240 V a.c (75% p.f.)
$1 \mathrm{hp} 120 \mathrm{~V} \mathrm{a}-\mathrm{c}, 2 \mathrm{hp} 240 \mathrm{~V} \mathrm{a}-\mathrm{c}$
25 amp resistive 28 V d-c
MOUNTING: Panel, side or socket
DIMENSIONS: $11 / 2 \times 11 / 2 \times 19 / 2$ inches.
U/L APPROVAL: U/L File 31481
COMPLETE DATA and specifications are available - new 8 -page Relay Guide.

"'HART

MANUFACTURINO COMPANY
210 Benthelemow Avenue, Morfford I, Conn. Phone JAckeon 5-3491
Aderrisiser Puge
Faber-Castell Pencil Co., A. W 42
Fairchild Semiconductor Corp. 1.3
Fairmount Chemical Co., Inc. 104
Freed Transformer Co., Inc. 80
Carrett Corporation, The 107
(ieneral Electric Co., Cathode Ray Tule Du.pt. 73
Coneral Electric Company, Recti- fier Components Dept. 84,85
(ieneral Electric Company, Semi- condenctor I'roducts Dept. 23
(ieniseo, Inc. 98
(iremar Mifg. Cob, Ince 28

- Hare Mfg. Co., The 113
Hartwell Corp., The, 104
Haydon Company, The A. W \%
II-ine-mann Electric Company 97
Ililipet Dis. of Berkman Instro- inents Inc. 64
Hewlett-Pachard Company . . I, 1A, II3
Hi-(; Inc 2!)
Hitemp Wires, Co 114
ITY S miconductor I) (pt., Come ponents Dis 91
OIndustrial Electronic Engincers. lıc. 48
Institute of Radio Engineres. The 94
Iti.h Flectro-Prolucts Co. 29
Johns Hepkins Eniversity, The 110
Juy Manufacturing Company: 51
Kirithley Instruments (1) 6
Kepers) Inc 5:3
King Radon Corp (9)
hintel. Dis, uf (oom, Electronics. luc. 11
I.almaratory for Electronics. Inc. -9
leveds \& Northnup 10. 3
I inge-Temen Electronics, Inc. 4.2, 9:3
WI.aan Engeinerering Laloratories
90
30
Wagnetic Metals Company
Talco Manufacturing Co 113
Mallory \& Co. Inc., P. R. 6:2, 6
Tarconi Instrume:nts 1112
larshatl Industries 12
Cicrowave Asserciates, Inc 71
Mileraty/Niew lork 75
Motorola Military Electronics Dis Wrentern Center 110
Votorola Semioondactor Prodects. lise. 60
Cational Somiconductors Led. 66
Civronics. Inc 38
Philer, Lanadale Division !)
I'ic Design Corp). 99
Putter \& Brumfield 89
Power Sources. Inc 2.5
Precision Paper Tulve (io. 10.5
Radiation, Inc 26
Radio Corporation of AmericiaElectron Tube Div. Cover IS
Ravtheon Co., Industrial Compments Dis:5
Raytheron Co., Semiconductor Dis 46, 47, 86
Reewes Instrmment Corp. 6.5
- Vanufacturms catalog apperars in 1960.1!3fil Fi\&cthovir bpacivers appera

At Hitemp-Quality is not an illusion

We think you'll agree that the art form above gives a deceptive illusion. Wire and cable, too, can create an illusion in that several different brands can look and feel identical-can seem to have comparable quality.

Most brands of wire and cable may even be made with similar materials and equipment. One brand, however, will outlast, outperform the others every time-Hitemp.

Is there a good reason? You bet! Hitemp has the greatest store of experience in the industry-two modern produc tion facilities that are second to none-and more than one
 fourth of its entire
and quality control
Hitemp products are for you, the wire and cable user who requires quality and reliability that is fact, not illusion. Hitemp is a Division of Simplex Wire \& Cable Co.

HITEMP WIRES CO.

1200 SHAMES DRIVE, WESTBURY, NEW YORK 1532 S. CALIFORNIA AVE., MONROVIA, CALIF
Werriser PaseSanders Associat
Surkes Tarrzian
ElectromicSit-liex CorporationSigma Introments InSpectrol Electronica Curporationpectrol Electromic: CurporationSperry Electronic Tulse Div.,sperry Rami Corp
Serry Cumienductor Dic ufSperry Hand Corp:rationSpragne Electric Co.Spragne Electric CStewens Mfy. Co.. Inc.Straza InduntricsSwitcheraff. Inc
Syntron Company
Teltronics. Inc.
Tevar Inseruments Incorporated
Tramitron Electronic CorporationUnger Electric Tools, ElectronicDis. of Eldom Industrics. Inc. 80-1/16Union Switch Δ Signal, Dis. Went-S.C S. Cimponent, Tranformer Corphoration
Uniursal Mfe. Co., Inc. IO
Sornitat Dia Perkin-Elmer Cor porationII athan Precision Insermanent Co.Weldmatic Division/'rnitekWientern Rubler CompanyWractit, Dive of Sporry Rand

Advertising Representatives
Adv. Sales Manaper: Bryce Gray, JrSalea Serrice Suprr.: Alvin D. RossNew York: Robert W. Gascoigne,Richard Parker. Blair McClenachan,James P. Quinn, Ralph RichardsonDonald J. Liska, Charles J. Stillman, JrKenneth M. George, John M Weber
830 Third Avenue, Plaza 1-5530
Chicago: Thomas P. Kavooras, BerryConner, Jr., Fred T. Bruce, 664 N.Michigan Avenue, Superior 7-8054Los Angeles: John V. Quillman,Wayne Stoops, 3275 Wilshire Blvd.Dunkirk 2-7337
San Francisco: Stanley I. Ehrenclou292 Walter Hays
Southeastern: Pirnie \& Bro
Pirnie, Harold V
G. W. Krimsier
Nhodes- HavertLondon EC4: Brad Nichols, 151: Fleet

Publisher: Robert E. Ahrensdorf Editor: Edward E. Grazda
Managing Editor: James A. Lippke
Technical Editors: G. H. Rostky H. Bierman. R. H Cushman A. Rosenblatt. A. W. Solda

Netis Editors: R Haavind. A. Corneretto, M. W. Meisels Washington Editor: J. J. Christie Wert Coast Editor: T. E. Mount Contributing Editors: J. G. Adashko E. Brenner, B. Bernstein

Ellitorial Arsistants: R. N. Ross, H. Farley

Editorial Production: D. S. Viebig. A. Abramoff

Arl Director: R. A. Schulze
Art Asmistants: O Mitch. J. Aruego Technical Illustrator: P. Rios
Production Manager: T. V. Sedita
Asst. Prod. Mgr.: H. De Polo
Production Askistantr: P. Bergang. M. Spector

Circulation Managpr: N. M. Elston Assf. Circ. Mgr.: H. A Hunter Rearter-Serrice: A. J. Helfeld

Hayder Publishing Company. Inc Chairman of the Board: T. Richard Gascoigne

Prexident: James S. Mulholland. Jr

Accuracy Policy

Recognizing the power of the printed ord to influence. it is Etectronic Design's policy:

To make all reanonable eflorts to innure accuracy of editorial matter. To publish promptly corrections brought to our attention
To not knowingly publish misleading advertisements.
To reserve the right to refuse any advertisement.
Readers noting errors or misstatements of facts are encouraged to write the editor.

Subscription Policy
Electronte Design is circulated only in
qualifed design engineers oo f . s manu-
facturing companies, industrial consultants facturing companies, industrial consultants
and government agencies. If design for manulacturing is your responsibibility fy you
qualify for subscription without charge proqualify for subscription without charge proon your company's letterhead Your name and engineering title, your company's main
products and description of your design duties. The letter must be signed by you ersonally
ANY ADDRESS CHANGES FOR OLD
 cription rate for non-qualiffed subscribers all other countries. Single copy $\$ 1.50$.

CIRCLE 41 ON READER-SERVICE CARD

Precision engineering and reliability reaily begin at the source...they're not tacked on later. At Bulova both start in design... are maintained in manufacture . and cost no more. In fact, many find they cost less. Bulova's precision engineering and proven reliability are vital benefits to the user - industrial or military. Com plete information on all Bulova frequency control com ponents and systems is available by writing-Electronics Div., Bulova, 61-10 Woodside Ave., Woodside 77, N. Y.

DIVISION

NEW RCA. 4604 QUICK.HEATING BEAM POWER TUBE FOR MOBILE COMMUNICA. TIONS SERVICE ELIMINATES POWER DRAIN DURING STANDBY PERIODS.

Cuntaining a unique oxide-coated filament that heats up faster than an operator can raise a microphone to talk, RCA-4604 makes it practical to reduce the stand-by load on the battery-generator system -right down to zero! Filament voltage is 6.3 volts; current is 0.65 ampere. Heating time is less than a second. RCA-4604 can deliver 30 watts of power in CW or FM service at 175 Mc and will give proportionally greater power output at lower frequencies. It incorporates the same basic construction of the RCA-6146-popular favorite for mobile communications equipment. And the RCA-4604 is popularly priced for wide application. For sales information contact your nearest RCA Field Office. For free technical bulletin on the RCA-4604, write Section B-18.Q.I, Commercial Engineering, RCA Electron Tube Division, Harrison, N. J.

The Most Irusted Name in Elcctronics radio corporation of ambrica

BCG

[^0]: Selected Topics In This Issue

 ## Circuits

 Calculating the Performance of
 RF Amplifiers, Doublers, and Triplers
 The Tri-Stable Flip-Flop Circuit 38 High-Speed, Adjustable Circuit

 Breaker Protect's Wide Range of
 Transistor Circuits

[^1]: Electaonic Design is published b, weakly by Moyden Publishing Company. Inc., 830 Third Avenue. New York 22. N. Y T. Richard Goscoigne, Chairman of the Board, James S. Mulhalland, Jr., President; Edmund C. Grainger. Jr.. Secretary
 Printed af Hildrath Press, Bristol, Conn. Accapted as controlled cireulation at Bristol, Conn and at New York, N Y. Copy

[^2]: ,

[^3]:

[^4]: For ceramic parts and metallized assemblies

[^5]: CIRCLE 201, 202 ON READER-SERVICE CARD

[^6]: ${ }^{0}$ An indication of the growth of education in the USSK -in 1928, there were four city high schools in Riga; now there are more than 40 .

