> SPECIFICATIONS FOR THE LOW LEVEL OSCILLATOR, THE TL-61:
weight: 5 ounces
InPUT IMPEDANCE: 50,000 ohms minimum modulation sensitivitr: $\pm 10 \mathrm{MV}$ for
for standard RDB channels
DRIFT: less than $\pm 0.75 \%$ of design bandwidth for a period of 8 hours at normal room conditions following 30 minute warmup
linearity: less than $\pm 0.5 \%$ of design bandwidth
input: differential or single ended. Will operate from ungrounded (floating), grounded or partially grounded input sources
COMMON MODE REJECTION: 100 db or better for DC at levels from +5 Volts to -2 Volts.
80 db or better for AC up to 2 KC at 15 Volts peak to peak
operating range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Center frequency and sensitivity are stable within
$\pm 3 \%$ of design bandwidth
for a temperature
change from $-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.
COMPLETELY ENCAPSULATED

CIRCLE 247 ON READER SERVICE CARD

WEIGHT: 4 ounces
INPUT IMPEDANCE: 1 megohm -20% CURRENT ChARACTERISTICS: less than O.1
microamp reverse current when the input is grounded through a 10 K ohm resistor STABILITY: From $-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ a change in the supply voltage of $\cdot 10 \%$ will vary the center frequency less than 0.5% of design bandwidth

DRIFT: less than 0.25% of design bandwidth for a period of 8 hours at ambient temperatures after a 15 minute warm-up.

SENSITIVITY TO SO:IRCE IMPEDANCE: a change from zero to infinity varies the frequency less than 0.5% of design bandwidth

> INTROOUCIMG THE FIITPPCK TELEMETRY OSClLLATOR: THE TS-4I

SPECIFICATIONS FOR THE TS-41. SUBCARRIER OSCILLATOR

WEIGHT: 4 ounces
INPUT IMPEDANCE: 1 megohm =20\%
current characteristics: less than 0.1 microamp reverse current when the input is grounded through a 10 K ohm resistor stability: From $-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ a change in the supply voltage of $=10 \%$ will vary the center frequency less than $\pm 0.5 \%$ of design bandwidth

DRIFT: less than $\pm 0.25 \%$ of design bandwidth for a period of 8 hours at ambient temperature âfter a 15 minute warm-up

SENSitivity to source impedance: a change from zero to infinity varies the frequency less than 0.5% of design bandwidth

TEMPERATURE: Operating range from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. At any information input,
the output frequency is stable within $\pm 1 \%$ of design bandwidth for a temperature change from $0^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.
The output frequency is stable within $\pm 2 \%$ of dbw for a temperature change of $-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$. COMPLETELY ENCAPSULATED

CIRCLE 249 ON READER SERVICE CARD

Tape-Controlled Layout Machine To Drill 48,000 Holes an Hour

An automatic layout machine, designed to drill printed-circuit boards under punched-tape numerical control at rates up to 48,000 holes an hour, will be available within a few months.

The machine, developed by Leland-Gifford Co. of Worcester, Mass., will employ a modified General Electric Mark II numerical positioning control to direct as many as four ganged drilling heads simultaneously.

The Mark II controls positioning of the work table at speeds in excess of 200 in . per min and simultaneous drilling at better than 50 hits per min per spindle. The control, coupled to electrohydraulic machine drives, gives the printed-circuit board al fast positioning response. Positioning accuracy of $\pm 0.001 \mathrm{in}$. and repeatable accuracies of $\pm 0.0005 \mathrm{in}$. are produced by a closed-loop servo geared to the machine motions.

The machine features a built-in auto-programer under command of the Mark II. When combined with the Leland-Gifford hole locator, the programer enables the operator to make a punched tape directly from undimensioned drawings.

Leland-Gifford has awarded contracts for the control equipment to General Electric's Specialty Control Dept. of Waynesboro, Va.

Speech Recognizer Under Study

Automatic speech recognizer unit at Air Force Cambridge Research Laboratories, Bedford, Mass., types words spoken into microphone by researcher, Miss H. M . Willet. Behind the typing unit is the computer, which has a drum memory, and Flexowriter. Vocoder for digitizing speech is in another building; it helps the computer form "masks" representing instantaneous power in frequency bands of speech. Masks of spoken words are stored for comparison with words to be recognized The system has several modes of operation: it can identify speakers or words, or it can be programed to translate from language to language.

Affords continuous high-temperature operation up to 250 C - resists heat shock up to 425 C

The exceptional heat stability of Anaconda ML Magnet Wire makes it ideal for electrical equipment operating at continuous high temperatures up to 250 C -such as hightemperature motors, selays and dry-type transformers. This same heat-resistant characteristic also makes ML Magnet Wire a valuable tool in miniaturization and in reducing the size of larger equipment.
Tremendous overload resistance (as demonstrated by ther-mo-plastic flow above 500 C and heat shock resistance over 400 C) makes ML Magnet Wire particularly suitable for portable tool armatures and other applications where "stall" conditions or unusual overloads may be experienced.
Essentially zero weight toss to 200 C makes it possible to use ML Magnet Wire for relays that will operate at fempera tures up to 250 C with low space factor and comparatively low cost. Using ML Magnet Wire in sealed relays practically eliminates contact contamination due to "outgassing" of wire insulation.
Other ML Magnet Wire advantages: high burn-out resistance and cut-through level; dry dielectric strength over $3,000 \mathrm{~V} / \mathrm{Mil}$; excellent flexibility; good windability and scrape resistance.
ML Magnet Wire is coated with a solution of ML Polymer, a new chemical development by duPont that represents a
tremendous improvement in heat resistance over organic coatings. ML Magnet Wire can be used as a replacement for most film-coated magnet wires, except solderable types, and many glass and glass Dacron wires. Where the positive inorganic spacing of glass is required, the combination of ML film and glass serving offers outstanding properties. ML Magnet Wire's combination of high temperature rating, excellent winding characteristics and space factor permits its use in many applications which formerly required the use of much more expensive combinations of ceramics and fluorocarbons.
ML Magnet Wire is available in all sizes of round, square and rectangular. Film additions are single, heavy, triple or quadruple thicknesses, all conforming with NEMA specifications. ML also meets all requirements of Spec. MIL-W. 583B for Class 180 Types H, H2, H3, and H4, and Class 200 Types K, K2, K3, and K4. For prices, technical data and applications engineering information, contact Department EFL-1-ED, Anaconda Wire and Cable Company, 25 Broadway. New York 4, New York.

ANACONOM

CIRCIE 23 ON READER-SERVICE CARD

A BASIC CONTROL IDEA

as simple as

ESIGN YOUR NEXT MACHINE OR PROCESS CONTROL CIRCUIT THIS EASY WAY
Start with

THE BULLETIN 780 STEP SWITCH FOR STEP-BY-STEP sequence G(O)NTM

IMPUT

1. SIGNALS

Closure of a control device, actuated upon completion of an operation, advances
control to next position step according to prese-

Write fer Bulletin 780 or call your local Representative. He's listed in sweet's Product Design File, section 7d/EA, or in Thomas Register.

PROGRAMMED 3. SEQUENCE CONTROL Loads are interlocked thru step switch cams without complicated relay circuitry.

EAGLE SIGNAL COMPANY - Moline, Illinois imoustaial division

NEWS

AF Orders Telegraph Distortion Monitor

Three-Unit Equipment Will Permit Checking of Signals And Locating of Circuit Troubles Without Halting Traffic

Three-unit telegraph distortion measurement system, mounted above teletype, is designed for teleprinter terminal maintenance and monitoring. Special oscilloscope, at left, analyzes signal reaching receiver, at right, which measures distortion. Unit in center is a transmitter, generating signals of various modulation rates.

Transmitter, set up as signal generator or code transmitter, provides test signals al speeds to 160 bauds. High-stability oscillator controls speed approximating one part in 10^{3} for tong periods and 5 parts in 10^{4} for short periods.

own test signal and the distortion of signals received from local or distant external sources.
A cathode-ray-tube display on the transmitter pernits selective investigation of outgoing or incoming signals. Each changeover appears as a bright dot. Because the display is on a time base, the speed of an incoming signal may be measured by adjusting the speed of a built-in, high-stability oscillator until the dots become stationary.
In the absence of distortion, all dots will be superimposed. Distortion will displace the dots to form an arc, whose length is a measurement of the distortion present.
The unit can also be used to test and adjust relays while they are operating. One position of the control switch provides for the measurement of transmit time and observation of contact bounce. Another position permits observation of neutrality.

Receiver Monitors Signals

And Analyzes for Distortion
The receiving unit is the main analyzer of distortion. It monitors either in series by lowimpedance current analysis or in parallel by high-impedance voltage analysis. A time-base crt display is also included in the receiver. With the spiral used, each turn is the exact length of one element of a printed signal. Bright dots show on the spiral to indicate transition of the signal from the marking to the spacing condition, or from spacing to marking. With no distortion, the dots form a straight vertical line.

The receiver reportedly analyzes for four main types of distortion: bias distortion, end distortion, characteristic distortion and fortuitous distortion.

It has limited facilities for measuring transit time and contact bounce of polar relays and similar devices.

Oscilloscope Evaluates Amplitude And Helps Check Waveform

A Tel-A-Scan oscilloscope is the third unit of the system. It is said to have high-gain synchronization and an accurate calibration system. It allows on-line evaluation of the amplitude of the incoming signal and is intended to work with the receiver to provide real-time analysis of the waveform actuating the receiver.

This unit is reported able to measure the voltage of an incoming signal with 5 per cent accuracy without interfering with the waveform presentation. Its vertical amplifier is said to be flat from dc through 7 mc , permitting a rise time display of better than $0.2 \mu \mathrm{sec}$. A modified phantastron circuit gives triggered sweeps linear to 1 per cent in 10 ranges from $30 \mu \mathrm{sec}$ to 3 sec , according to Radiation. Inc. - -

AMP PINBOARDS can do a host of dry circuit switching or commoning functions . . . permit numerous matrixes in one assembly. Complicated switching functions can be accomplished by simply inserting or removing a pin.

You can use these PINBOARDS as modular building blocks for instrumentation applications, automated tooling, test equipment, data processing ... any variety of size and grid arrangements in multiples of a basic 15×5 hole pattern. Contact springs can be bussed in any combination desired. And for safety, there are no exposed conducting surfaces on the rear side of the board. The conducting area of the pin is safely inside board before contact is made with mating springs.

AMP PINBOARDS are factory pre-wired to your specifications . . . with standard or special silk screen legends. Designed for simplicity . . . flexibility . . . reliability . . . with three
amperes continuous current rating.

PROGRAMMING

Write for complete specifications.

AMP INCORPORATED

GENERAL OFFICES: HARRISBURG, PENNSYLVANIA
AMP products and engineoring assistance are evailable through subsidiery companies in: Austrolia - Canade. England - france - Molland - Italy - Japan - Wost Cermany

NEWS

Sunlight-Modulated Communication in Space Is Found Feasible

Experimental Socom transmitter is lested in desert atop 30 -ft tower. Transmitter is at left, receiving unit at corner of tower. The transmitter includes a universal op rical joint, between the collecting mirror and modulator, which makes direction of transmission independent of the sun's position.

Light collector for Socom is inspected by scientist of Electro Optical Systems, Inc. The company is develop. ing space optics said to weigh less than 0.4 lb per sq ff . Mirrors can be either rigid or foldable

	Max. Transmission (without auxiliary polarizing)	Transmission Bands (microns)	Linear Aperture (max, practically feasible)	Information Bandwidth (eps)	Power requirements (w/ cm^{2} per cycle of bandwidth)	Weight (including auxiliaries)
Kerr cell	80\%	$\begin{aligned} & 0.4 \text { to } 1.0 \\ & 1.1 \text { to } 1.7 \end{aligned}$	$4^{\prime \prime} \times 4^{\prime \prime}$ limited by energy requirements	$10^{\prime \prime}$	~ 0.02	$<20 \mathrm{lb}$
Pockels cell	70\%	0.35 to 1.1	$4^{\prime \prime} 0.0$ limited by crystal optics	10^{5}	~ 0.004	$<20 \mathrm{lb}$
Faraday cell	80\%	0.3 to 1.2	$2-4^{\prime \prime} 0.0$ limited by energy required	10^{6}	~ 10	$<20 \mathrm{lb}$
Stress Optic	25\%	0.3 to 1.2	$>12^{\prime \prime} \times 12^{\prime \prime}$ no serious limitations	$\begin{gathered} 10^{1} \\ 10 \\ 10^{3} \end{gathered}$	~ 0.02	$<10 \mathrm{lb}$
Lenticulated Lens plus Grid Shutter	85\%	full range	No serious limit	$\begin{aligned} & 10^{3} \\ & \text { or } \\ & \text { better } \end{aligned}$	-0.003	$<10 \mathrm{lb}$

Characteristics of modulators being considered for use in Socom. No one type has yet shown outstanding advanlages in comparison with all the others. Research breakthroughs leading to new classes of optical modulators are needed, Electro Optical Systems says.

But Need for Better Wide-Band, Low-Loss Modulator Is Obstacle

Thomas E. Mount

West Coost Editor

MODULATION of sunlight presents a feasible means for optical communications in space, according to recently completed field tests of a scheme called Socom (Solar Communication). But lack of a really wide-band low-loss optical modulator may restrict this fundamentally promising method.

The Socom approach, developed by Electrical Optical Systems, Inc., of Pasadena, Calif., under a Wright Air Development Div. contract, functioned successfully at simulaterl distances of up to 10 million miles during tests in the Mojave Desert. With Socom, sunlight collected by a large Cassegrain reffector is beamerl through a modulator and on to a distant receiver.

Electro-Optical is recommending to the Air Force that Socom warrants strong consideration wherever tight-beam, secure commmencation is required. In space vehicles Socom has an edge over rf systems when antenna size and available power are restricted and when the receiving detector is background noise-limited, according to Duane Erway, project supervisor for Soxom.
Stressed plate, mechanical and Kerr-cell modulators were alternately employed in the desert tests.

Stressed Glass-Shutter Plate

Used to Shift Polarization

The stressed plate modulator, newest of the three types, employs a glass shutter plate, which is deformed by tension applied by a stack of piezoelectric wafers. The resultant stress shifts the polarization of light transmitted by the plate. By interposing the shutter between two crossed polarizers, the transmitted light is thus intensitymodulated, as by a Kcrr cell.
The stressed plate shutters tested had a modulation rate of up to 40 bits per sec. At this rate, the message "What hath God wrought" was transmitted in about 5 sec-longer than it would take to say it.
Simulated ranges of several million miles were achieved by interposing dark filters in the beam. Night tests were also conducted, using the full moon and a $100-\mathrm{w}$ bulb as alternate light sources
In these tests receiver and transmitter were separated by eight miles. At night the beam was

now... a METAL FILM resesistor for commercial as well as military applications

You and others in the industry have made increasing performance demands on deposited carbon and other film resistors because metal film has been too costly for many applications.
To continue our leadership as suppliers of precision film resistors, we set an objective-to produce a metal film resistor at a price comparable to deposited carbon resistor. We have met our objective!

IRC has invested nearly $\$ 2,000,000$ in plant, automated equipment and engineering to achieve this new dimension in Metal Film Resistors.
A new technical production breakthrough makes it economically feasible to specify premium performance Metal Film Resistors for commercial as well as military applications.
T-O Metal Film Resistors are available . . . now! Write for Bulletin B-3. International Resistance Company, 401 North Broad Street, Philadelphia 8, Pennsylvania.

Leading supplier to manufacturers of electronic equipmens
CIRCLE 26 ON READER-SERVICE CARD

ENGINEERED COMPONENTS

for the Electronics Industry

As close at hand as your nearest authorized Garlock distributorCHEMELEC* Insulators, Subminiafure Tube and Transistor Sockets, Connectors.

Availability as well as reliability are two reasons why it is smart io specify Garlock when buying components.
Through a new organization of authorized distributors, Garlock now offers immediate delivery of CHEMELEC Stand-off and Feed-Thru Insulators, Subminiature Tube and Transistor Sockets, Connectors, and other standard components.
As near as the telephone, your authorized Garlock Electronic Products Distributor offers prompt, courteous service. Call him at the nearest of these locations:
calif.
MEWaRk ELECTROMICS CO.
1742 W. Century Blva.
inglewood. Calit
SCMOD ELECTRONICS
S49 S Markel St.
san jose Calit
wesco
EIECTROMICS
Wesco Eterionics
asadena, Calit.
COLORADO

SUPPLY CORP.
1200 Stout Street
Denver, Colorado
ILINOIS
MEmank ELECTROMICS co.
223 West Madison St
Chicago 6 , Illinois
maryland
ELECTRONIC EMTEAPRISES.
IMC. 4902 Snader Avenue 4902 Snader Avenue
Baltimore 15 , Md.

Take advantage of on-the-spot avail-ability-specify these skillfully engineered Garlock electronic components. Reliable under the most severe conditions, they are ideal for high temperature, high voltage, high frequency service on missile guidance, fire control, tracking, and radar systems. Garlock has the technical personnel and modern facilities to produce components of all materials - Teflon \dagger TFE and FEP, Nylon, Delrin \dagger, C.T.F.E. \ddagger -and a range of sizes, designs, and tolerances to fit your exact needs. At your disposal, too, for development of new electronic products, Garlock maintains complete electrical, chemical and physical laboratories staffed by topflight engineers.

Remember, too, the newest of the Garlock electronic products-Flexible Printed Circuitry of Teflon FEP. For complete details on what Garlock has to offer, write for Catalogs AD-169, 171, and 188. Garlock Electronic Products, Garlock Inc., Camden 1, New Jersey.

ELECTRONIC PRODUCTS

Canodian Div.: Garlock of Canada Ltd. Plaslics Div.: United States Gasket Company
Order from the Garlock 2,000 . . . two thousand different styles of Packings, Gaskets, Seals, Molded and Extruded Rubber, Plastic Products.

NEWS

successfully received even though attenuated by filters to the point where it was invisible to nightaccustomed eyes.
Some difficulty was encountered at night with scintillation and shifting of the beam by variations in atmospheric density. Mr. Erway points out that this might also interfere with space-toearth communications over extremely narrow beams.
The receiver employed an RCA 7285 photomultiplier with an S-20 cathode. Tests indicated a receiver sensitivity of $10^{-15} \mathrm{w}$.
Still the problem of developing an optimal modulator remains unsolved. Mr. Erway hopes to boost bandwidths and data rates by refinement of existing modulation techniques, but he concedes that a research breakthrough is necessary for maximum exploitation of Socom's capabilities.

Several Modulation-Schemes

Are Now Under Study
A variety of modulation schemes are under consideration. Among these are means of varying the imaging properties of the system (such as focal length) through the use of flexible lenses or plastic reflectors, pivoting mirror systems sweeping past a stop (heliographs), and diverse shutter systems.
Mechanical modulators so far are the lightest and smallest available. However, the necessity for high-information transmission rates will result in the ultimate obsolescenc of mechanical modulators.
Interlens shutters, for example, have relatively long open-and-close time with a subsequent large pulse rise-and-decay time. With louvre shutters, exposure is not simultaneous. Hence from a satellite some parts of the earth would receive a differently shaped pulse than others. In addition, with louvre shutters, any light that is not axially collimated will be intercepted by the fat of the blade.
It is expected that mechanical shutters will suffer in the extreme environment of space, with crystallization and metal fatigue the principal hazards. Enclosing the shutter in an environmental chamber would eliminate the system's inherent advantages of light weight, small volume and low power.
Other advantages of mechanical systems are band pass over the entire spectrum, lack of highvoltage or high-current circuits, and the utilization of highly developed techniques for design and construction of shutter mechanisms.
Of the new techniques of modulation being investigated, one under study is the diffraction of light at ultrasonic-wave fronts in a medium

Stressed-plate modulator used in desert tests of Socom. Action is similar to Kerr cell, but polarization is shifted by stressing the glass-shutter plate by means of the piezoelectric stacks. The advantages of this shutter are said to be high reliability, low power require ments and low thermal absorption. The modulation rate however, is limited to the low ke range
like water. A signal carrier is applied to a piezoelectric transducer, and a train of ultrasonic pres. sure waves travels down the medium.

Thus the medium is broken up into minute, alternate bands of high and low optical densitythe equivalent of a defraction grating. The light is defracted around a stop placed on the optical axis.

The maximum bandwidth of this device is about 20 mc . For small bandwidths, a maximum transmission efficiency of ahout 70 per cent is possible.

Present Polarization Devices Fail

To Approach Optimum Requirements
As mechanical modulation becomes obsolete, it will probably not be superseded by presently known polarization devices. None of these approaches optimum requirements.

A disadvantage of all ordinary polarizers is inefficiency. The first polarizer reduces the peak intensity of the light by at least 50 per cent.
One type of polarizer essentially is mechanical. It intercepts a light beam by a wave plate, which is rotated in accordance with a signal. The light transmitted through the plate is polarized in accordance with the degree of rotation.
The large rotation angle needed for adequate changes in the degrec of polarization, as well as the use of mechanical equipment, give this scheme no advantage over mechanical shutters.
The Kerr cell is an electro-optical device. Light transmitted through a liquid has its polarization changed in accordance with an electrical signal impressed on the liquid.

The Kerr cell, however, requires auxiliary equipment-a high-power source, low-voltage driving inodulator and a power modulator. This

ESIGNED FOR LOW LEVEL COMMUTATION
Announcing the
TDAETSSOLID STATE Differential and Single-Ended AMPLIFIER*

- Recovery from 500\% overload in 300 microseconds.
- Output voltage clamped at ± 13 volts can't burn out delicate recording equipment.
- Completely isolated, 3000 megohm leakage path to ground.

Built to meet the needs of the engineer designing low-level multiplexing systems, Epsco-West's new TDA 875 Differential Amplifier features high reliability, high gain, wide band-width, negligible drift, high ac/dc common mode rejection, low noise, fast rise time, fast recovery time, integral power supply, and high input impedance. No other amplifier combines all these design parameters to such a useful degree.

DESCRIPTION

The Model TDA 875 contains an integra power supply which operates from a 117 volt, 60-400 cps line, requiring only 15 watts of power. Chopper drive circuits are included with each amplifier.
Two modes of operation are available differential and single-ended (potentiometric); selection is made by means of a front panel control. Five fixed gains are also chosen by a front panel switch
In its differential mode, the amplifier provides ± 10 volis at 10 milinamperes as its full scale output is ± 10 volts at 50 milli
amperes. High input impedance ensures hat all transducer voltage will appear at he amplifier input terminals. Changes in ransducer or line resistance will have ittle consequence
The Model TDA 875 Amplifier may be mounted in the Model TDA 870A Carry ing Case for easy portability, or in the Mods s amplifers in a standard 19 -inch holds 5 ampliners in a standard 19 -inch elay rack.
One of six new E-W amplifiers now available to meet your low-level instrumentation needs.

Ask your nearby Epsco-West engineering representative 10 demon strate these new amplifiers. For complete technical information wrife for Brochure No. 875

8
240 E. PALAIS RD., ANAHEIM, CALIF. - PROSPECT 2.1000

CRITICAL SPECIFICATIONS (Differe voltace caim
Folxace steps of $1000,500,200$
100,50 . Lower gains optional LIMEARITY
$\pm 0.05 \%$ of
$\pm 0.05 \%$ of full scale (20 volts at dc)
imput mpedance
Greater than 100 meg
by 0.002 microlarad.
COMMOM MODE LEVEL
± 300 volts dc, 117 wolts rms ac
TRAMSIEMT COMMOM
300 voif step ol common mode
voltage does not cause overioad. voltage does not caus
DRIFP - 40 Movas - $\quad 2$ microvolts referred to the input. DRIFT - 8 MOMTMS ± 4 microvolits referred to the input.
plus $\pm 0.02 \%$ of full scale al $25^{\circ} \mathrm{C}$. moise aeferaed to tme mput Less than 2 microvolits peak-to-peak Less than 2 microverist peak- 0 -peakk
$(99 \%$ contidence) from dc to 20 cps. de to 5 Ac for source resistances
of 1000 ohms or less.
SETTLIME TIME
300 microseconds to within 1%
or inal value all ranges.
300 microseconds or less to with in
1% of final value from
1% of final value
500% overload.
smort cincuit protectiom Sustained output short crircuit

NEW MINIATURIZED FLOATING CLINCH NUT

Standard ESNA Non-Hoating

 Clinch Nut TypesHere at last is a reduced-dimension clinch nut and basket assembly that provides (0.20" minimum radial float. Because the nut is able to compensate for minor bolt hole misalignment in the component to be attached, production iine techniques catn be simpler and faster

This very lightweight type NC 4284 nut offers the electromechanical engineer new design opportunities in the assembly of electronic chassis, panels, cover plates and many other "packaging" applications. Due to its very narrow basket this fastener requires less flange width for installation than any other similar-purpose press or stake-in type part.
The retaining basket has a precisely knurled shank which standard ESNA punch and dolly tools firmly embed into aluminum or mild steel sheets, for maximum security against twist-out or push-out forces. The new fastener is easily installed in a drilled or punched hole using a regular drill or arbor press.

ESNA's exclusive red nylon locking insert gives this nut a consistent locking torque through more than $50 \mathrm{on} /$ off cycles. It guarantees reliable fastener performance for assemblies that demand frequent disassembly for maintenance or inspection needs. Yet the smooth grip of the nylon collar will not flake cadmium plating from the bolts. The special formulai nylon accepts temperature environments from $-6.5^{\circ} \mathrm{F}$. to $350^{\circ} \mathrm{F}$.
This new floating clinch nut is designed in both carbon steel and 303 FM stainless -in sizes No. 4, 6, 8, and 10. Each thread size is available in 2 shank lengths of .040* and $.060^{\prime \prime}$ for flush installation in sheets of equivalent or greater thicknesses.

For complete specifications and installation instructions on new part NC4284 and many other lightweight avionic fasteners, write Dept. S58-457 for al copy of the new Aerospace Cittalog No. 960).

ELASTIC STOP MUT CORPORATION OF AMERICA
2330 Vauxhall Road, Union, Now Jersey
CIRCLE 29 ON READER-SERVICE CARD

Experimental Socom receiver. The photomultiplier tube detected signals at simulated distances of several million miles. A complete Socom system for satellite use would weigh about 40 lb .
auxiliary equipment weighs several times morc than the cell itself. (A $2-\mathrm{in}$. long Kerr cell weigh about 0.2 lb per s / in. of aperture.)

Kerr Cell's Bandwidth Large,

But So Is lis Power Requirement
The Kerr cell has a large bandwidth but also at large power requirement. The average power is 0.02 w per sq in. of aperture per cps. Present cells have apertures of several sfluare inches and require $10-\mathrm{to}-50-\mathrm{kv}$ pulses.
Pockels cells also are electro-optical devices. A voltage is applied to a basal section of uniaxial crystal. Presently used crystals are ammonium or potassium dihydrogen phosphate. The cells have about 70 per cent transmission efficiency between 0.35 to 1.1 microns.

Pockels cells are low-power devices and would seem to be useful as light modulators. However, the cells are as fragile as ice. They are readily heated by sunlight and expand and crack.
Faraday cells, which are magneto-optical devices, are unsuitable as light modulators because of their high power requirements-about 10 w per $s q$ in. of aperture per cycle bandwidth.
Electro Optical is now developing a Kerr cell modulator with a modulation bandwidth of 5 to 10 kc . Such bandwidth, which would permit transmission of speech, is not difficult to obtain in ordinary Kerr cells, but the device under development has a maximum modulation power requirement of only 20 w .

Mr. Erway sums up the application potentials of the various modulators as follows:

- Mechanical methods, where low bandwidths are adequate and reliability is not critical
- Stressed-plate optics, where somewhat higher rates and extremely good reliability are required
- Kerr cells, ultrasonics, where maximum bandwidth (to the megacycle range) is called for. - -

New Interconnection Techniques Used in Micromin Circuit Blocks

New interconnection techniques have been developed for microminiature encapsulated circuit blocks.
In soldering and unsoldering the leads connecting the modules to the circuit-board harnesses, Convair-Pomona, a division of General Dynamics Corp., has developed a reverse-eyelet design. It allows modules to be inserted or removed in seconds.
The leads from the plastic module are cut to protrude about $1 / 8$ of an inch above the front of the board. The hot solder flows between the eyelet and the lead and between the eyelet flange and the printed-circuit pattern on the board. In effect, the eyelet flange serves both as an electrical link and as a fastener.

In the removal of a module from its harness board, a soldering iron is touched to the eyelets. The solder melts, allowing the eyelets to be slipped off the leads and the leads to be slipped out of their holes.

The technique minimizes the possibility of damage to the module from soldering heat and also facilitates visual inspection of the assembled hoards. The assembly method uses an expandable jig holding two sheets of film, each printed with a standard grid. These grids form a threedimensional envelope within which the components and connecting wires are assembled.

Solid block amplifier circuit, developed by ConvairPomona, is being used in the infrared guidance system of a missile to boost power to the servo amplifiers

INLANO

first with solid state 100-watt d-c amplifier

Inland's new Model $579.35 \mathrm{~d}-\mathrm{c}$ amplifier has a high power output of 100 watts when used with low impedance loads requiring direct current. And this completely transistorized amplifier is packaged in a hermetically sealed can only $21 / 2^{\prime \prime} \times 3^{3} / 6^{\circ} \times 21 / 2^{\prime \prime}$.
Designed for use with $d-c$ torquers, in one typical application Model 579.35 provides 65 db power gain between the output of a d-c driver stage and the input terminals of a permanent magnet torque motor. This amplifier has these outstanding performance characteristics:

- The d-c output has magnitude and po-
larity proportional to the input signal.
- All amplifier circuits use a combination of silicon and germanium transistors (allsilicon models also available).
- Amplifier null and gain are stable and independent of temperature.
Inland also makes a complete line of rotary amplifiers for matched use with Inland's distinctive pancake shape d-c torquers.
A brochure on this new high-power amplifier is available. For your copy and complete data on Inland torquers and amplifiers, write Dept. 3-4.

TYPICAL SPECIFICATIONS	
Maximum Power Output, watts (6 ohm load)	100
Power Gain	$4.000,000$
Current Gain	200,000
Voltage Gain	15
Frequency Response	DC to 1000 cps
Input Impedance, ohms	50,000
Dimensions, inches	$21 / 3 /$ wide
	$33 / 10$
	$21 / 2$ high
Operating Temperature Range in ${ }^{\circ} \mathrm{C}$ minus 50° to plus 50°	

INLAND MOTOR

INLAND MOTOR CORPORATION OF VIRGINIA A SUBSIDIARY OF KOLLMORGEN CORP., NORTHAMPTON, MASS. CIRCLE 30 ON READ:R-SERVICE CARD

Impact Studies of Telemetry Units Yielding New Design Clues

Findings Are Spurring Improved Transistor Potting Techniques And High-Acceleration Performance Ratings for Many Components

W
IEN AN IMPACT vehicle strikes the moon, a sharp shift in telemetry frequency can be expected because of stresses on transistors.
Information on this and many other important factors in impact-equipment design is being gathered through studies of potted telemetry units for high-acceleration projectiles. Already some of the knowledge that has been acquired is being applied in design of the Ranger lunar-impact vehicle. Meanwhile major high-G; telemetry programs in this country and Canada have been extended to encompass impact as well as acceleration effects on electronic equipment.

In the U.S. programs are being considered by Diamond Ordnance Fuze Laboratories in coroperation with the Aberdeen, Md., Proving Crounds; by the Naval Ordnance Laboratory, and by Arnold Engineering Development Center (AEDC) of Tullahoma, Tenn. In Canada similar work is pursued by the Canadian Arma-
ment Research and Development Establishment. In addition to gathering valuable design data for impact equipment, these programs have resulted in improved transistor potting techniques and in acceleration performance ratings for many components.

Tantalum capacitors, for example, have proved unsuitable for ligh-acceleration or impact missions. Solid tantalums are too brittle and break under stress. The interior portions of wet tantalums shift with high acceleration.

Potting Helps Combat Failure
 \section*{Of Transistors Under Siress}

Transistor failure is still one of the biggest problems in these studies, despite the surprise finding that great strength can be expected from them even without potting. Ordinary unpotted transistors can withstand accelerations of 20,000 to $30,(100) \mathrm{g}$, according to Dan Finger, DOFL physicist. One Western Electric transistor, the
2. 667 , was found capable of withstanding up to $100,000 \mathrm{~g}$ without potting.
Since accelerations reached by ordinary impact vehicles, such as bombs, are only about $20,000 \mathrm{~g}$, according to Mr. Finger, the problem with transistors may not be quite as severe as it first appeared.
Potting of transistors has proved quite effective in increasing acceleration tolerance. At first it was found that severe changes in critical parameters resulted from potting of many transistors. and in some cases just exposing the active material to the air was enough to degrade performance significantly. However, transistors have improved, and all of the projectile telemetry groups use greatly improved potting techniques.

The Canadian group uses Araldite $50: 2$ mixed with a hardener, type HN951, for potting transistors. DOFL, on the other hand, uses a composition of Shell Chemical's Epon $8: 8$ resin and DIMAPA (dimethylaminopropylamine) curing

Plastic sabot fits over projectile inside the gun and breaks away upon firing.

Plastic sabot breaks away from projectile containing telemetry circuits in test at Aberdeen Proving Grounds. Smear camera caught this scene as projectile hurtled from gun muzzle at about $7,000 \mathrm{ft}$ per sec. Some of the plastic pieces are so hot they are self-luminous.

These Passed a G Test

Components for impact vehicles must withstand high. acceleration stresses or their performance deteriorates or fails. The following table shows some of the components tested by the Canadian Armament Research and Development Establishment and the acceleration force that each withstood:

Transistors (Potted)

Philco 2N128
Philco 2N345
Philco 2N502
Philco 2N2078
Motoola 2N700
Moforola 2N695
Foirchild 2N697
Fairchild 2N706
GE 2N489

Capacitors

Centralab Hikap
Aerovox DM 15
Micamold Missilemite
Vitramon
Aerovox Cerafil

Resistors

Allen-Bradiey TR-10
Acceleration (G)
I. R. C.

00,000

Batteries

Mallory RM-400R
192,000
agent. DOFI, coats the transistor junction with Eastman photo lacquer before applying potting compound.

Internal Construction A Factor
In Transistor Performance
In DOFL's tests, transistors were classified according to internal construction. Some construction approaches gave very poor results at high accelerations, while others gave very promising performance.
Transistors using what DOFL terms framed wafer, or billboard, construction, for instance, gave encouraging performance. In this approach, used by three different manufacturers, a semiconductor wafer is supported over most of one surface by a nickel mask, or frame. The mask acts as a base connection, and fine wires are used for emitter and collector connections.

An RCA 2N.384, using this construction, survived 78.5 per cent of tests under accelerations of 100,000 to $189,000 \mathrm{~g}$. A similar Motorola 2 N 65.5 survived 60 per cent of shots, with accelerations from 100,000 to $218,000 \mathrm{~g}$. A Sylvania 2N94 survived 56.2 per cent of tests, with accelerations ranging from 100,000 to $214,000 \mathrm{~g}$.
An example of the impact resistance of potted telemetry circuits was obtained when one of the Canadian projectiles struck a 2 -in, aluminum pipe and split in half. One piece contained the

TUNG-SOL ANNOUNCES:

NEW MEDIUM-MU

SERIES REGULATOR TUBE 7802WB

Brings together an optimum combination of characteristics that makes it ideal for applications in tough environmental extremes.

The 7802 W B twin-triode, medium MU companion to the popular 6080 WB , is the newest in the broad Tung-Sol line of rugged, high temperature, long-life series regulators. It combines many outstanding operational and design features in an optimum package of peak efficiency and dependability.

CONSIDER JUST THESE FEATURES:

- High perveance . . . Makes the 7802 WB an excellent choice for applications requiring high plate current at low plate voltage.
- Medium-mu ... Makes only very small signal voltages necessary for precise 7802 W B control.
- Extra-tight tolerances . . . Plate current and transconductance are held 10 rigid limits to provide greater balance between tube are held 10 rigid limits to provide greater balance between tube are operated in paratlel.
- High temperature operation.
. Extensive use of ceramics for heater-cathode insulators, anode standoff insulators and elemen spacers. The graphite anodes used are warp-free and dimension ally stable regardless of operating temperatures. Non-char glass-bonded mica material is employed in the tube base.
- Top-performance in environmental extremes . . . Where elec tronically regulated power supplies must perform under severe
conditions of shock vibration and high altitude, the 7802 WB conditions of shock rouble.free life, assured by both tube de sign and specifications.

Complete technical details on the 7802 WB will be furnished immediately on request. A description of the full-line of Tung-Sol series regulator tubes is also readily available. Tung-Sol also invites you to outline your design needs to us. Our application engineers will gladly evaluate your circuit and outline the component which will best meet your requirements. Tung-Sol Electric Inc., Newark 4 N. J. TWX:NK193

(5) TUNG-SOL

Technical assistance is available through: Atlanta, Ga.; Columbus, Ohio; Culver City, Calif.; Dallas, Texas; Denver, Colo.; Detroit, Mich.; Irvington, N. J.: Melrose Park, Ill.; Newark, N. J.; Philadelphia, Pa.; Seattle, Wash. In Canada: Abbey Electronics, Toronto, Ont.
CIRCLE 31 ON READER-SERVICE CARD

ELECTRONIC DESIGN

Just as you take measures to achieve precision in your work. ELECTRONIC DESIGN also works to bring you accuracy. The magazine maintains a policy which demands truth in every word printed in its pages. The result is editorial data that you can rely on, and factual advertising to help you select products. ELECTRONIC DESIGN's Accuracy Policy is contained in every issue.

Strongly supporting its policy. ELECTRONIC DESIGN takes exacting care to verify all editorial material. Articles are checked repeatedly before they go to press. If an error does appear. steps are taken to correct it in the very next issue. Concerning advertising, the manufacturer must prove any product claim questioned by a reader. If the claim is not proved. the magazine reserves the right to reject the advertising from future issues.

ELECTRONIC DESIGN assumes full responsibility for accuracy. But you can help. too, by reporting any misstatement you find. You're encouraged to do so. It is through such a dual guardianship-readers and editors -that ELECTRONIC DESIGN can guarantee you highest reliability . . . from cover to cover.

NEWS

Colpitts-type oscillator with minimum number of components tested successfully in highacceleration projectiles by Canadian Armament group. The tank coil serves as an if radiator as well as the inductive element in the tuned circuit. Transmitted power, only a few more watts in this case, can be stepped up by coupling the tank coil to the metallic portion of the carrier, which then would act as the if radiator. Actual multichannel telemetry system is an fm-fm type in which transducers modulate subcarrier oscillators, which in furn modulate the transmitter
complete oscillator. When a battery was added to the circuit back in the laboratory, the oscillator was still in good working order.

Tests at the Arnold center indicated the frequency shift that must be expected from transistors on impact. The tests showed that some residual shift can be expected, in addition to the sharp variation at the instant of impact. Further studies of these effects are now in progress. : *

Broadband Analog Divider Designed For Radars and Analog Computers

A relatively simple divider circuit. reportedly with unlimited bandwidth potential, has been designed by engineers at Sperry Gyroscope Co., Great Neck, N.Y. They say it can extend the capabilities of radar systems, analog computers and other systems requiring division of analog signals.
The company declines to describe the circuit in detail, because several proposals for its application are being reviewed by military agencies. Also, "the circuit is so simple we would give everything away if we even hinted at its nature," says one Sperry engineer.

According to the company, closed-loop monopulse radars are generally able to track only one target at a time because of the narrow bandwidth of their gain-control circuitry. If additional if amplifiers for open-loop tracking are added to increase the number of signals that can be processed, the problem of making the amplifiers track while under age is multiplied.

The proposed divider, according to Sperry,
would permit a single amplifier to process all arriving signals. It would allow the system to open-loop track many aircraft or missiles simultaneously within its bandwidth, while it closeloop tracked one of the targets or the center of gravity of all of them.
The divider would be put in the if circuit of the receiver, where it would divide the azimuth and error signals by the summing signal in real time much more efficiently than does age circuitry of present monopulse radar systems, according to Sperry.

New Circuit Would End
 Lag in Feedback Time

Normally in monopulse radar there is a tenths-of-a-second time lag that results from running correction signals through feedback circuits; the new circuit would eliminate this delay. Data on range and on the azimuth and elevation angles would be presented instantaneously

The circuit would be useful also, the company says, in radars more elaborate than monopulse systems, if they required dividing circuitry. A natural application here is said to be heightfinding radars. Because better information on height is afforded by comparing two beams than by using data from one, an efficient height-finding radar could be developed around the idea of monopulsing between two adjacent beams of a series of beams, Sperry believes.

For analog computers, the circuit would be installed wherever two signals had to be divided. With slight modifications, it could be used as a multiplier. According to Sperry, it would reduce the need for servo-mechanistic techniques, which have extremely narrow bandwidths and which complicate division circuitry.

Problems would not have to be translated to the slow time reguired by the servo circuitry, and time-scaling adjustments needed to compute at frequencies higher than 3 cps would be eliminated. Sperry says handwidths of 5 mc could be achieved easily.

Engineering models have been built to prove that the broadband analog circuit works, the company reports, but the circuits have not yet been incorporated into any equipment.

Telefile System Permits Long-Range Banking

A new Telefile system allows savings account transactions to be made at a distant bank

Small banks not related to one another reportedly can use a joint Telefile center and benefit from all its services at nominal cost to each.

The system was developed by Teleregister Corp. of Stamford, Conn.

NEW (

the first economical, space saving, vertically mounted resistor for printed circuit applications

two item high on the list of vital importance in solving today's toagh design problems. MEPCD's new miniature $1 / 4$ W C rbon Film resistors were specifically designed to break the cost and space barrier in printed circuit applications.
Having both leads extending from one end and available in three different lead spacing arrangements, these Carbon Film Resistors for vertical mounting offer advantages never before available.

Write or call today for samples and literature.
SPECIFICATIONS

MEDIUM POWER

 Upgrade Industrial Circuit Designs With These RGA 200'C Stlicon Power Transistors

New high-temperature ratings on 16 popular RCA silicon transistors for improved performance in military and industrial applications at no increase in price

mxivum matucs, monvte maximum valeos:						
	$\begin{aligned} & 2 \mathrm{~N} 147 \mathrm{l} \\ & 2 \mathrm{~N} 14 \mathrm{Al} 1 \end{aligned}$	$2 m 1400$ 2N14a2	2Ni4E3 2W14			
cautioes	sov	1onv	sor	1000	cov	1001
	sev	3v	sov	$30 v$	400	3sv
	sov	1000	tov	1000	tov	1000
temis toess nats	iv	${ }^{12}$	18	120	100	ror
coutcroon cuman ame	15	15	3	$\stackrel{ }{ }$	\pm	4
Twires ciment aner:		1238	-250	-3so	-	
ask cumens pama	${ }^{*}$	**	is	120	4	.
	\cdots	2	23	\%	m	13
	20*	280	4,	14.		\%
Cas rumamye matio						

-Similer to TO-3

Here are 16 RCA N.P-N diffused-junction silicon power transistors immediately available in quantity, to meet the more exacting performance requirements of today's industrial and military equipment.
Check out the remarkable improvements these RCA high-performance industrial transistors now offer
14 percent increase in maximum operating temperatures - up $10200^{\circ} \mathrm{C}$.

- Up to 66^{2}, percent increase in dissipation capability - up to 75 watts.
- Up to 30 percent decreare in thermal resistance $-102.33^{\circ} \mathrm{C}$ /watt.
- Up io 50 percent increase in minimum beta
- Up to 30 percent reduction in beta spread.

All of these features provide greater flexibility in the design of power switching devices such as dc-to-dc converiers, inverters, choppers, A alenoid drelay contict ascillators, regulators, and pulse amplifiers; and class \mathbf{A} and class \mathbf{B} amplifiers for servo and other audio frequency applications.
Call your RCA Semiconductor Field Representative today for full particulars on these silicon power Iypes. For your copy of the new RCA 25 -page Application and Materials Div., Commercial Engineering, section D.18-NN-2, Somerville, N. I available through your rca distributor

[^0]

RCA $200^{\circ} \mathrm{C}$ SILICON
POWER TRANSISTORS
are as close as your telephone CALL YOUR
RCA SEMICONDUCTOR DISTRIBUTOR

Just pick up the 'phone and tell him how many and what type you need for your special project or pre-production requirements. He will deliver from local stock-and he also offers these extra advantages:
1 - Prompt delivery of the latest RCA types for your evaluation

- Orders filled from factory-fresh stock
- Up-to-date, practical product information
- Valuable RCA technical assistance when you need it
" "One-stop" service on your orders
- Specialists who understand your problems and electronic needs
Remember when you want fast delivery reliable service, always check first with your local RCA Semiconductor Distrib utor. For the name and address of your nearest RCA Semiconductor Distributor write RCA, Distributor Products Sales Harrison, N. J.

EDITORIAL

The Specialist. Can He Be Interdisciplinary?

As you attend an annual IRE Show and Convention, you cannot help but be conscious of two opposites: on the one hand, you are overwhelmed by the advanced knowledge possessed by many experts. A moment later, however, you are struck by the limited specialization of other so-called experts. It is rare indeed to find one key man in an exhibit booth who can explain thoroughly what he is demonstrating. Even when he is a design engineer on the project. he becomes tongue tied when the black box under discussion isn't of his design.

The keynote address of the 1961 Convention Banquet was entitled, "Where Are the Uncommon Men?" An equally provocative title might have been, "Where Are the Broad Men?" We are daily reminded that we need interdisciplinary specialists to cope with the ever complex world. Biomedical electronics, for example, involves an understanding of biology, medicine, paychology, computers, communications.

Is the interdisciplinary specialist possible? The need for him is there. We frankly doubt, however, whether many of us are capable of mastering more than just a few specialties-at least not at the same time. Rather than feed our frustrations with feelings of remorse and make furtive attempts to do more than seems possible for us, we counsel instead: concentrate first on being a competent specialist; then, and only then, tackle one more field. If you are the uncommon man who can take on more, if you are a brilliant generalist as well as a multi-specialist, we salute you.

But for those of us a bit more common, we can take succor in the knowledge that frequently Nobel Prize winners are good at only one discipline. Indeed, had they spread their energies more, they might have accomplished nothing. The first U. S. Nobel Prize winner, physicist Albert Michelson, was a man who curbed his interest. There is a story that E. O. Lawrence of Cyclotron fame, and a more recent Nobel Prize winner, took renewed heart while he was a young man after visiting Michelson. At that time Michelson was the Dean of Science in this country; yet he confessed readily to Lawrence that he knew little or nothing of atomic physics. It was after this visit that Lawrence felt confident to proceed in his ignorance.

At last, all the inherent advantages of oscilloscopic long-term display at a price within reach of even the most modest instrumentation budgets... the new Du Mont 430 represents a significant breakthrough in initial cost, operating costs, performance, and reliability.
The 430 provides a wide selection of sweep speeds, with a choice of automatic, driven or single sweep. Single sweep is armed manually, enabling transients to trigger the sweep, and capturing them for long-term observation. A special, extra-brightness circuit provides short-term extra trace brilliance.
The 430 is a single, compact unit, yet offers a usable screen area of $80 \times$ $100 \mathrm{~mm} . \$ 1350$

AVAILABLE RIGHT NOW...WRITE FOR COMPLETE DETAIL E

Storage time from seconds to days. Erase time 15 seconds. New storage time every 45 seconds.
Low cost storage CRT (\$175) provides minimum of 10,000 erases. Special cir cult prevents tube burns.

Frequency range to 10 Kc .
Identical X - and Y-amplifiers. Sensitivity $10 \mathrm{mv} / \mathrm{cm}$.

15 sweep speeds, $2 \mathrm{sec} / \mathrm{cm}$ to 50 usec cm.

Extra-high resolution through smaller spot size.

High-Density Electronic Packaging $\underset{\text { Design Principles }}{\text { ル }}$
 Part 1

Although semiconductor blocks and mo. lecular devices offer considerable gains in packaging density compared to the highdensity packaging technique, the more exotic schemes are still in the developmental stage. High-Density Electronic Packaging (HDEP) is a concept which permits the use of presently available components for miniaturized equipment needed now. Part 1 of this series discusses the concept of HDEP, its applications and the principles involved in the design of a typical systems package. The series will be continued to include lay. out and design of subassemblies, thermal and structural considerations, the resistance weld process plus tool and iig details.

Paul N. James
 The Sippican Corp

Marion, Mass.

ELECTRONIC equipment for space flight, missiles and satellites must be lightweight, highly reliable, capable of withstanding rigorous environmental shocks and able to operate for ia long period without maintenance. Printed-circuit modules do not fully exploit space and weight savings because of connection spacing and supporting structure limitations. More exotic microminiaturization schemes, such as semiconductor circuits or molecular devices, are promising but are not yet available to permit construction of a complete system. To meet the present needs, High-Density Electronic Packaging (HDEP) has been developed and applied in the construction of guidance systems for military applications.
Two major features highlight the HIDEP concept. invented in 1957 by Francis Associates, Marion. Mass. First, components are in close physical proximity to take advantage of their compressive strength, thereby eliminating the need for a supporting structure. Second, allwelded construction is used, reducing connection spacing. minimizing thermal-shock damage, up-
grading connection reliability and improving circuit producibility. With further development effort the Instrumentation Laboratory of Massachusetts Institute of Technology, Francis Associates and The Sippican Corp. of Marion, Mass., have refined the HDEP concept with matrix subassembles, special connector designs, heat-transfer and encapsulation techniques and improved resistance welding methods.

A typical example of size and weight reduction achieved for an electronic systems package is the IX Series Prototype FBM digital guidance computers designed for the Polaris program. Each computer contains about 6,500 components and occupies a volume of 0.12 ft ; totail weight, including structural and thermal elements, is approximately 15 lb .

The design and development of a High-Density Electronic Package is based on an analysis of the required system in terms of system logic, circuit capabilities, required reliability, expected maintenance procedures, size and weight requirements and production costs. Once these basic ground rules have been established, the system

Fig. 1. Various stoges oi assembly for a logic stick designed or the Polaris computer.
is designed, using the following principles: 1. Component layout via the "cordwood" scheme.
2. Fabrication of welded wire matrices.
3. Design of specialized connectors.
4. Encapsulation of all components and back-of-panel wiring.
5. Mathematically predictable heat removal techniques.
6. Compressive structural methods.

The package design that evolves from the application of these principles normally consists of two electronic subassemblies (circuit modules and wiring modules), an integrated structuralthermal assembly and the necessary connectors and cabling.
Component Stacking: The method employed in the construction of circuit modules is termed the "cordwood" technique, in that components are stacked with their bodies in close physical proximity and their leads parallel. Components that vary in size or shape are arranged to accommodate the least possible space, taking into account thermal and electrical characteristics. Highpower dissipating components receive special consideration in the component layout.
Matrix Wiring: The matrix wiring technique, developed by The Sippican Corp. for the Polaris computer logic sticks, is used in the majority of HDEP designs. It is employed with both of the modular subassemblies of a package, circuit modules and wiring modules. Circuit module matrices consist of two layers of wires at right angles to each other, separated by a thin plastic film, such as Mylar or Cronaflex. Welds are made through pre-punched holes in the films to make connections between the perpendicular matrix wires or from a matrix wire to a component lead. The films, as displayed in Figs. 2 and 3, are completcly coded to show the weld points, component leads and matrix wire materials. The materials in most common use today are 0.015-

PROGRAMER

Fig. 2. Several circuir module matrix films.
or 0.020 -in. diam nickel or copper-nickel alloy wire and 0.016-x $0.016-\mathrm{in}$. scuuare nickel-clad copper wire.

Matrix wiring is used rather than the more common point-to-point nickel ribbon connections for several reasons. First, the matrix is a testable subassembly, somewhat similar to an etched circuit board, since the circuit is welded together on the film and only needs correct placement of components to complete the assembly.

Second, the large number of crossovers provides ease of engineering layout and often allows complicated wiring patterns to be laid out in one matrix rather than in two or three point-to-point layers. This feature is desirable not only to reduce electrical testing but also because all the matrix and component welds are available during final test and are not covered by a layer of insulating film.

A third advantage of the matrix technique is the ease with which design constraints may be established to speed the layout process. A fourth advantage is the ease with which different conductor materials may be used within one assembly to insure the compatibility of materials to be welded.

The matrix scheme used in the circuit modules
is also the basis of the wiring molule matrix, Fig. 3. In this case all the electrical connections are made between pins in the wiring module rather than between components or components and output pins. Because of the large number of pins involved-it may be as high as $3,600-$ multiple layers of matrices must be used. As many as 25 layers have been used to interconnect all the pins in the Polaris wiring module.
Connectors: Since the presently available multipin connectors are an order of magnitude less reliable than the standard permanent connection techniques, such as soldering, welding or crimping, other approaches have been selected to solve the separable connector problem. Two techniques are available today.

The first technique to be developed was the weldable tube and wire scheme used in the Polaris project. This design allows between five and 10 disconnects for each circuit module in the life of the machine. Like the split wire-wrap terminal, to be described. each connection is made individually and therefore may possess the reliability normally associated with permanent crimping and welding techniques.

The second technique, the split wire-wrap terminal design, was developed by Sippican in re-

Advantages of the High-Density Electronic Packaging Technique

Welded vs soldered connections-bending tests have shown that an average of $\mathbf{7 0}$ motions was required to fracture a soldered joint compared to $\mathbf{1 , 1 5 2}$ motions for a welded joint. Welding is less likely to induce thermal stresses in components since heat is more localized than in the soldering process. Finally, welding is a metallurgically sound process that is repeatable and controllable in production.

Use of matrix films-production errors are minimized and component lead and conductor positioning for welding is simplified by means of transparent film sheets bearing the wiring path layout. There is also less restriction of component place. ment since crossovers and connections can be arranged as desired.

Components-presently available parts can be used now and thin-film or solid-state devices can be included when they become available.

Thermal and structural factors-the HDEP concept contributes to the design of a package rather than making demands upon it. Advantage is taken of the compressive strength of encapsulating compounds subjected to preloading and postloading techniques. Thermal control is achieved by the use of mathematically predictable design configurations

Encironmental resistance-totally encapsulated modular subassemblies with compressive structure members offer high resistance to shock and vibration. A 120 module structure was successfully tested through a range of 0.5 to $3,000 \mathrm{cps}$ at an input force level of 30 g on each of three axes. Shock tests were made in each of the three axes up to 50 g with a time duration of 11 msec half-sine und in one axis up to 100 g for $9-\mathrm{msec}$ duration.
sponse to the need for a connection method possessing the reliability of the tube and wire design but allowing 25 to 50 disconnections within the life of the unit. This terminal is a variation of the original Bell Telephone Laboratories' wire-wrap terminal, developed to replace soldered terminals in Bell's central-office equipment. Because the split terminal uses the wrapping wire only as a means of binding the two half terminals-that is, the solid copper wire is cut off and does not lead to another terminal-the main objection to the original technique in military equipment is eliminated. In this design, fatigue and breakage of the solid wire is not a problem.
These terminals have recently passed tests of $30-\mathrm{g}$ vibration with no detectable difficulties. The units were also subjected to 100 g shock in three axes without any physical damage. They have also been subjected to a full range of standard military environmental tests, including humidity and high and low temperature, after one wrap and after 20 rewraps on each terminal.
Encapsulation: In the HDEP technique, all circuit and wiring modules are encapsulated after welding, regardless of whether they contain components or merely interconnection wiring. This approach offers a considerable increase in environmental resistance that offsets the "throw-away" cost of a defective module. It should be emphasized that environmental resistance includes the ability to withstand a considerable amount of human attack as well as the ability to meet the more standard military specifications. However, circuit module design does not prohibit the fabrication of small, highly reliable modules that have their expensive components, such as transistors and diodes, outside of the potting compound if the environment will allow it. An assembly of a typical circuit module is shown in Fig. 4.
The ideal size and cost of encapsulated circuit modules is a subject of considerable debate at present. Experience has shown that a range of between $\$ 100$ and $\$ 1,000$ is not unreasonable for military equipment. Factors to be considered in determining the cost per module include:

1. Type of system logic.
2. Required system reliability.
3. Feasible component and circuit reliability.
4. Number of different modules in a system.
5. Total number of modules in a system.
6. Amount of system or circuit logic in a module.
7. Environmental extremes the system must withstand.
8. Individual component costs within the module
9. Cost of system down-time.
10. Quality of field repair facilities and personnel.
11. System size and weight requirements.
12. Number of terminals in the system.

Although the technique of encapsulating the intermodule cabling is relatively new, it is valid and necessary, since miniature wire used to cable most airborne and satellite equipment is as vulnerable to damage or failure as most electronic components. Therefore the wire-wrap terminal design and structural designs have assumed the use of completely encapsulated intermodule wiring as well as encapsulated modules. Connections to external assemblies are made through removable cables connected to the wiring modules with wire-wrap terminals or by use of the most reliable military connectors available today. Whenever possible the use of redundant contacts is recommended when connectors are used to help overcome the lack of reliability of these devices.
The types of encapsulating compounds currently in use range in specific gravity from 0.2 to 0.33 for foaming epoxys through 0.7 to 1.0 for microballoon-filled compounds, and up to 1.5 to 2.5 for oxide-filled compounds designed for high thermal conductivity. The choice of a specific compound is determined by the required viscosity, weight and thermal conductivity, as well as such physical factors as compressive modulus and creep. With the exception of the foaming types, all the compounds are vacuum-encapsulated in sealed molds to prevent voids.
Structural Design: The High Density Electronic Packaging approach to the structural design of system assemblies makes use of the compressive strength of encapsulated electronic components. In many current designs individual circuit modules are locked up into centrally supported, postloaded beams held in compression by means of tension bolts through the center of the modules. This technique provides a considerable saving in the volume and weight assigned to primary fasteners in an assembly, while providing the necessary pressures to allow efficient heat transfer to conductive foils inserted between the modules.

It should be noted that the structural and thermal transfer surfaces of a circuit module are perpendicular to the connector and test-point planes. The use of this rather simple principle increases the flexibility of the heat-removal design, since the module interconnections and the heat-transfer structure do not compete for the same space.

The basic box structure that ties together the cold plates, circuit module beam supports and
the wiring module also makes use of the poststressed concept in its assembly. All the structural pieces of the assembly are fastened to the side frames and mounting feet by means of long bolts that hold the sides of the assembly in compression. The theory underlying this method of assembly has been published in recent literature. ${ }^{1}$

Basically the idea is to balance the compressive and tensile stresses in a structure, so that external loads change the relative proportions of compressive and tensile stress but cause very little deflection until one of these is canceled. The fatigue strength is also increased by this technique. A structure designed according to this principle will have a minimum of elements that require stiffness, the most difficult quality to achieve within a limited space and weight requirement.
The use of this concept in electronic package structures requires a close control of tolerances and careful design of the encapsulated wiring module to allow for the inevitable tolerance buildup and the effects of thermal expansion and contraction. Direct casting of the circuit modules to tolerances of $\pm 0.002 \mathrm{in}$. has been proved feasible in production lots.
Thermal Design: A major premise in thermal design concerns the use of conductive heat-transfer techniques to carry the heat generated by the electronic components to a heat sink or to a compact heat exchanger. A primary advantage of this approach is the reliability of both conductive heat transfer and compact heat-exchanger calculations and the ability inherent in the design approach to avoid dangerous hot spots in the equipment.

Two methods of conductive heat transfer within the circuit module are used: highly filled epoxy potting compounds and aluminum conductive plates. The choice between these methods is dependent upon a number of factors. If one class of components has a decidedly lower maximum temperature than the others (often true when germanium transistors are used), an aluminum conductive path from the transistors to the final heat sink is desirable. This method may also be indicated if one component dissipates considerably more power than its neighbors. On the other hand, a conductive potting compound will tend to remove heat from all the components more uniformly than a metal conductor tied to a few selected components.

Conduction of heat from the surface of the circuit modules to the final heat sink or heat exchanger is usually obtained by means of aluminum foils clamped between each module of the post-loaded assemblies. These foils carry the heat to cold plates between the rows of circuit modules if a forced air or liquid-cooling technique is

1. Machine Design, Sept. 16, 1980, pp 173-174.

Fig. 3. (left) A wiring module
matrix film.

Fig. 4. (below) Circuir module matrices and assembled module; individual components are shown at the left and the assembly jig is in the background.
to be used. Cold plates are highly efficient heat exchangers that can be designed to meet the specific temperatures, pressure drops and mass flow requirements of the system. In addition they provide excellent structural members, having a high stiffness-to-weight ratio.
When a heat sink is used, the foils may be attached to conductive plates that are in turn clamped to the heat sink. Transient cooling techniques may also be incorporated in these systems by making use of the heat of fusion. This can be done by building low-melting-temperature alloys or waxes into the conductive transfer structure. - -

Recommended Transistors for Use in Signal Corps Developmental Equipment

To promote the use of newly developed, newly specified and USASRDL evaluated fransistor types, the following list has been prepared.

lrving J. Ross
U.S. Army Signal Research and Development Lab Fort Monmouth, N. J.

A
LIST OF transistors recommended for use by contractors of Signal Corps electronic equipment has been prepared to supplement the existing standard MIL-STD-701A. The following criteria were used in determining which types were to be included.

- The existence of military specifcations and qualified sources for transistors.
- The inclusion of newly developed types for which an Army need has been established and which have been thoroughly tested and evaluated by the Signal Corps.
- The inclusion of the entire distribution of transistor generic types where firm military equipment requirements exist.
n The omission of certain types which were included in MIL-STD-701A because newer and better types are available.
The list is published as a Technical Specifica-

Table 1. Numerical listing of recommended transistor types with applicable military specification reference.

| | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Type | | | | | | | | | | |

tion Sheet SCL $6200 / 9$ dated Nov. 1, 1960, which forms part of specification SCL 6200 "Parts, Materials, Processes Used in Ground Signal Equipment." It is the purpose of this specification to provide guide lines and procedures for the selection and application of the most suitable parts and materials in the development of military electronic equipments.
The list, divided into two sections, is subject
to periodic revision as types listed become obsolete or newly developed types are added. The list shown, Table 2, uses the format of MIL-STD. 701A by categorizing transistors as to application, frequency, and power ranges. There is no division between preferred and guidance types as in MIL-STD-701A. The first part, Table 1. lists the types in numerical order by 2 N -number and cites the applicable military specification which
the contractor should use in his purchase orders for transistors.

The notation SCL 7002 indicates that a laboratory specification has been prepared for a given type. In most cases, these SCL 7002 specifications will ultimately be superseded by Signal Corps MIL specifications. However, the SCL specification can be used as a valid procurement document in the interim period. -

Table 2. Listing of Signal Corps recommended transistor types by application, frequency and power ratings.

		Germanium		Silicon	
		PNP	NPN	PNP	NPN
Low Power <300 mw	Audio Freq $<3 \mathrm{mc}$	$\begin{aligned} & \text { 2N220* } \\ & \text { 2N331 } \\ & \text { 2N465 } \\ & \text { 2N466 } \\ & \text { 2N467 } \\ & \text { 2N526 } \end{aligned}$		$\begin{aligned} & \text { 2N1026 } \\ & \text { 2N1034 } \\ & \text { 2N1035 } \\ & \text { 2N1036 } \\ & \text { 2N1037 } \end{aligned}$	$\begin{aligned} & \text { 2N332 } \\ & \text { 2N333* } \\ & \text { 2N334 } \\ & \text { 2N335* } \\ & \text { 2N336 } \end{aligned}$
	Med. Freq. 3.30 mc	$\begin{aligned} & \text { 2N274 } \\ & \text { 2N416 } \\ & \text { 2N417 } \\ & \text { 2N624 } \\ & \text { 2N1224 } \end{aligned}$		$\begin{aligned} & \text { 2N495• } \\ & \text { 2N1118 } \\ & \text { 2N1196 } \\ & \text { 2N1197 } \end{aligned}$	$\begin{aligned} & \text { 2N338* } \\ & \text { 2N1082 } \\ & \text { 2N1200 } \\ & \text { 2N1201 } \\ & \text { 2N1528 } \end{aligned}$
	High Freq. $>30 \mathrm{mc}$	$\begin{aligned} & \text { 2N384* } \\ & \text { 2N499 } \\ & \text { 2N502A } \\ & \text { 2N537* } \\ & \text { 2N700A* } \\ & \text { 2N1142 } \\ & \text { 2N158A } \\ & \text { 2N1225 } \end{aligned}$			3N35*
Switching	low Speed $>5 \mu$ sec TOTAL TIME			$\begin{aligned} & \text { 2N327A } \\ & \text { 2N328A } \\ & \text { 2N329A* } \end{aligned}$	
	Med. Speed $1-5 \mu \mathrm{sec}$	$\begin{aligned} & \text { 2N396A* } \\ & \text { 2N404** } \\ & \text { 2N425 } \\ & \text { 2N426 } \\ & \text { 2N427 } \\ & \text { 2N428 } \end{aligned}$	$\begin{aligned} & \text { 2N167A } \\ & \text { 2N358A* } \\ & \text { 2N388* } \\ & \text { 2N1000 } \end{aligned}$	$\begin{aligned} & \text { 2N496* } \\ & 2 \text { N } 1119 \end{aligned}$	2N337*
	High Speed < $1 \mu \mathrm{sec}$	$\begin{aligned} & \text { 2N393* } \\ & \text { 2N501A } \\ & \text { 2N705 } \\ & \text { 2N1195* } \\ & \text { 2N1411 } \\ & \text { 2N1500 } \end{aligned}$		$\begin{aligned} & \text { 2N1131 } \\ & \text { 2N1132* } \end{aligned}$	$\begin{aligned} & \text { 2N560* } \\ & \text { 2N702 } \\ & \text { 2N706 } \\ & \text { 2N1199A } \end{aligned}$

- Listed in MIL-STD-701A, dated 31 MaI 1960

All-Pass Networks - Part 5 When to Stop Designing

The all-pass network is so useful in improving the performance of other networks that the designer is easily tempted to continue improving without limit. The first four articles in this series (ED, Oct. 12, Oct. 26, 1960, Feb. 15, March 1, 1961), showed how all-pass networks could be used to design superior networks. Here, in the concluding part of the series, Mr. Lubkin shows when to stop improving network design and, indeed, when not to use the all-pass network at all.

Reprints of this five-part series of articles are available to readers who write to Public Relations Dept., Loral Electronics Corp., 825 Bronx River Ave., New York 72, N. Y.

Yale Jay Lubkin

Loral Electronics Corp.
The Bronx, N. Y.

WHEN TO STOP designing is a key problem for electronic design engineers. The first four articles in this series showed the value of all-pass networks in designing superior networks. But it is still necessary for the designer 10) know when to stop designing and how close he is to the theoretical optimum.

The Laurent formula for rise time (Eq. 1), can serve as a valuable guide.

$$
\begin{equation*}
t_{r}=\frac{\pi}{\int_{0} A(\omega) \cos \left(\omega t_{d}-\phi\right) d \omega} \tag{1}
\end{equation*}
$$

The earlier articles in this series gave examples of improvements possible by judicious choice of all-pass compensating nets. We can now consider an example to illustrate some pitfalls.

Rise Time of Real Amplifer

Differs from that of Ideal
We can use the Laurent equation to calculate the envelope rise time of a real and of an idealized if amplifier.

Suppose, for ease in calculation, that both amplifiers have a bandwidth of 2 mc (12.6 megaradians $/ \mathrm{sec}$). In calculation of the envelope response, frequency deviations from the if center frequency are important. The envelope response of the if amplifier is the same as the step response of a low-pass filter with a phase and amplitude characteristic at ω which is equal to that of the if amplifier at $\omega_{0}+\omega$, where ω_{0} is the if center frequency.

In considering the real amplifier, we will take the active elements (tubes or transistors) to be perfectly linear and distortionless. This is a generally satisfactory approximation.

The idealized if amplifier will have an amplitude characteristic that is constant throughout the passband and zero outside the passband. It will have zero phase distortion throughout the passband. This is illustrated in Fig. 1. In Eq. 1 we take $\phi=\omega t_{d}$ and $A=1$ for $0<\omega<2 \pi$ times $(10)^{8}$, and $A=0$ for $\omega>2 \pi(10)^{6}$. The rise time is then calculated to be exactly $0.5 \mu \mathrm{sec}$.

This is a useful relationship to remember: "Ar idealized if amplifier of bandwidth f cps has an envelope rise time of $1 / \ddagger \mathrm{sec}$."
The particular if amplifier characteristic chosen for analysis is the triple stagger-tuned circuit described in Seely's "Vacuum Tube Circuits," Second Edition, p 356. The circuit is found in many television sets. The phase error and the amplitude response of the network are readily calculated. One can use Seely's data and calculate phase and amplitude response separately for each of the tuned circuits, then combine the responses to get the over-all characteristic.

The results, shown in Fig. 2, consider the if bandwidth to be the bandwidth between points at which the amplitude response is down 3 db from its peak. By integrating the product $A \cos \Delta \phi,\left(\Delta \phi=\omega t_{d}-\phi\right)$, we find that the rise time of the if amplifier is $0.35 \mu \mathrm{sec},-$ only $2 / 3$ of the rise time of the idealized amplifier. Thus the real amplifier appears to have a much better transient response than the idealized amplifier.

A Paradox: Real Amplifier

Has Befter Response than Ideal
At first thought, these results appear wrong. How can the transient response of the real amplifier possibly be better than that of the idealized amplifier?

Consider the curves of Fig. 2. The first thing to note is that the amplitude response falls off rather slowly and the area under the amplitude
curve is much greater than the area under the amplitude curve of the idealized amplifier. It actually is about 60 per cent greater.
Thus, as far as transient response is concerned, the effective bandwidth of the real amplifier is not 2 mc , but about 3.2 mc . The statement that the real amplifier has a bandwidth of $\Sigma \mathrm{mc}$ should be examined more closely. If bandwidth were to be measured at values of attenuation other than at the conventional $3-\mathrm{db}$ points, the results would be quite different. Bandwidth beyond these points contributes substantially to rise time. If the real amplifier has a $6-\mathrm{db}$ bandwidth of 2 mc , the rise time is $0.48 \mu \mathrm{sec}$; for 10 db , it is 0.63 $\mu \mathrm{sec}$, and for 20 db , it is $1.0 \mu \mathrm{sec}$.

For the area under the amplitude curve to equal the area under that of the idealized amplifier, the bandwidth would have to be measured at the 8 -db-down points. Ir this case the rise time is $0.57 \mu \mathrm{sec}$, somewhat worse than the idealized amplifier.

Triple-Tuned Circuir

Shows Low Phase Distortion

The second thing to note is that the phase distortion is extremely low. Though the $3-\mathrm{db}$ bandwidth is 2 mc , the cosine of the phase error, Δ_{p}, is greater than 0.9 over a $4-\mathrm{mc}$ bandwidth and the phase error is less than 90 deg over a $6-\mathrm{mc}$ bandwidth.

For comparison, look at the phase error curve, Fig. 3, for the critically damped transformer analyzed in the second part of the series (ED, Oct. 26, 1960, p 70). Normally it would not pay to provide phase compensation for the tripletuned amplifier because the Laurent formula shows that the maximum possible gain in rise time is only 14 per cent.

The third thing to notice is that the phase response is overcompensated, i.e., a small excess of

Fig. 1. Gain and phase shift of idealized intermediate frequency amplifier.

Fig. 2. Gain and phase shift of triple stagger-funed amplifier.

ON THE SHELFARNOLD CORES IN WAREHOUSE STOCK FOR IMMEDIATE DELIVERY

Let us handle your inventory problems and save you time and money on your magnetic core requirements. Extensive stocks of four types of Arnold cores in the most popular sizes have been set up in our Marengo, Illinois and Fullerton, Calif. plants. Subject of course to temporary exhaustion of stock by prior sales, these cores will be shipped the same day on orders received at the warehouse by 12:00 noon. When cores are out of stock at the nearest plant, we may be able to ship within 24 hours from
the other.
Arnold core products covered by this warehouse stock program include: 1) Silectron C, E and 0 cores in 2, 4 and 12 -mil tape. 2) Type 6T aluminum-cased cores of Deltamax, Square Permalloy and Supermalloy, in 1, 2 and 4 -mil tape. 3) Mo-Permalloy powder cores, both temperature-stabilized and unstabilized types, ranging down to "cheerio" sizes. 4) Iron powder toroids, threaded cores and insert cores.
All four products are available
in a wide range of selection, for your convenience and economy in ordering either prototype design lots or regular production quantities. - Stock lists, bulletins, etc. are available-write for information. The Arnold Engineering Company, Marengo, Ill.

ADDRESS DEPF. ED-4
ARINOLD CIIES - Find hoom fast in the reLHOW PAGES

if it's a NEW product . . .

you'll find it in Electronic Design

There is no need to skip from publication to publication for new product coverage. Electronic Design prints $A L L$ the new products pertinent to the work of electronic design engineers.

Last year, for example, ED ran over 4,500 new product announcements-more than twice as many as any other electronic publication.

And when you need more information about these products-only Electronic Design can offer ONE DAY Inquiry Processing Service to speed the information you need.

Fig. 3. Comparison of gain (a) and phase error (b) of intermediate-frequency amplifier and critically damped transformer.
phase shift (here about 1.5 deg) is taken in order that the phase error remain low at higher frequencies. This is a generally useful technique to extend the phase bandwidth. Its use has been illustrated in connection with delay-line design and compensation of the critically damped transformer. An excess phase shift of 30 deg is not too much for pulse work.

Finally, note that the cosine of the phase error falls off much more rapidly than does the amplitude response. This is a condition which leads to a small amount of ripple and overshoot.
It is evident that the triple-tuned circuit has rather good transient response. The designer is generally advised to leave it alone-provided he is happy with the amplitude characteristic. This situation will frequently occur. In each case the designer must determine the point at which it no longer is economical to improve his basic circuit.

Some results discussed in this series of articles are here summarized to help the designer concerned with transient response.

Guidelines in Designing

For Optimum Transient Response

1. In any situation, improvement of phase linearity is beneficial.

CIRCLE 39 ON READER-SERVICE CARD \rightarrow

RATINGS

TYPICAL SPECIFICATIONS

Current				ALPHA FREQ. fors (me)	$\begin{gathered} \text { POWER } \\ \text { GATH } \\ \text { (db) } \\ \text { Go } \\ (1000 \mathrm{Cyc}) \\ (5 \mathrm{mc})^{*} \end{gathered}$	3ATURATION VOLTACE (VOLTS) V_{cz} (SAT)R_{se} (ohms)	COLLECTOR CAPACITY (asf)	collector to BAEE CURRENT		
	max.	mis.	max.					maxico		Va
		$\begin{aligned} & 9 \\ & 18 \\ & 18 \\ & 77 \\ & 76 \end{aligned}$	$\begin{aligned} & 32 \\ & 40 \\ & 49 \\ & 921 \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 14^{4} \\ & 14^{*} \\ & 133^{*} \\ & 13^{*} \\ & 12^{*} \end{aligned}$	$\begin{aligned} & 90^{\circ}{ }^{800} \\ & 75^{\circ} \\ & 700^{7} \\ & 70^{2} \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \\ & 7 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \end{aligned}$	30 30 30 30 30
		$\begin{aligned} & 18 \\ & 10 \\ & 10 \\ & 37 \\ & \hline 10 \end{aligned}$	$\begin{aligned} & 22 \\ & 40 \\ & 40 \\ & 40 \\ & 303 \\ & 303 \end{aligned}$	$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 14* } \\ & 11^{2} \\ & 12^{\circ} \\ & 12^{*} \end{aligned}$	$\begin{aligned} & 1.5 \\ & \begin{array}{l} 0.5 \\ 0.45 \\ 0.42 \\ 0.4 \\ 0.4 \\ \hline \end{array} \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \\ & 7 \\ & 7 \end{aligned}$	20 20 20 20 20	$\begin{aligned} & 150^{\circ} \mathrm{C} \\ & 150^{\mathrm{C}} \\ & 150^{\mathrm{C}} \\ & 150^{\circ} \mathrm{C} \\ & 150^{\circ} \mathrm{C} \end{aligned}$	30 30 30 30 30
$\begin{aligned} & 28 \\ & 20 \\ & 45 \end{aligned}$	$\begin{gathered} 10 \\ 15 \\ 150 \end{gathered}$	$\begin{aligned} & 37 \\ & 10 \\ & 38 \\ & 18 \\ & 37 \\ & 76 \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 13 \\ & 30 \\ & 45 \\ & 30 \\ & 30 \\ & 34 \end{aligned}$	$\begin{aligned} & 12^{*} \\ & 39 \\ & 39 \\ & 45 \\ & 45 \end{aligned}$	4. $75 *$ 75^{*} 0.53 0.56 0.47	$\begin{array}{r} 1 \\ 14 \\ 14 \\ 2 \\ 2 \\ 2 \\ 2 \end{array}$	$\begin{array}{r} 500 \\ 500 \\ 1 \\ 1 \\ 50 \\ 50 \\ 50 \end{array}$	$25^{\circ} \mathrm{C}$ $25^{\circ} \mathrm{C}$ $25^{\circ} \mathrm{C}$ $150^{\circ} \mathrm{C}$ $150^{\circ} \mathrm{C}$ $150^{\circ} \mathrm{C}$	30 20 20 30 30 30
MIN. .51 .51 .56 .56 .62				$\mathbf{f l a x}^{(\mathrm{mc})}$ 0.9 0.7 0.8 0.7 0.7 0.7	Ramo (K ohms) 3.0 7.5 5.5 7.5 5.6	$\begin{gathered} v_{E}(\mathrm{SAT}) \\ 3.1 \\ 3.3 \\ 3.4 \\ 3.6 \\ 3.8 \\ \hline \end{gathered}$	$\begin{gathered} \operatorname{lsa}(\mathrm{ma}) \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ \hline \end{gathered}$	$\begin{aligned} & 180 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 150^{\circ} \mathrm{C} \\ & 150{ }^{\circ} \mathrm{C} \\ & 150^{\circ} \mathrm{C} \\ & 150^{\circ} \mathrm{C} \\ & 150^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{\|c\|} \hline V_{\mathrm{naz}} \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ \hline 10 \\ \hline \end{array}$
$\begin{aligned} & .0 .87 \\ & 0.027 \\ & 0.017 \\ & 0.47 \end{aligned}$	$\begin{aligned} & .13 \\ & 0.02 \\ & 0.02 \\ & 0.02 \end{aligned}$			0.65	$\begin{aligned} & 7.5 \text { (} \\ & 9.1 \text { max, } \\ & 9.1 \text { Max } \end{aligned}$	$\begin{aligned} & 3.9 \\ & 5 \mathrm{Max} \\ & 5 \mathrm{Max} . \\ & 5 \mathrm{Max} . \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 0.2 \text { max. } \end{aligned}$	$\begin{aligned} & 20 \\ & 12 \\ & 12 \\ & 12 \\ & 0.2 \end{aligned}$	$\begin{array}{\|l\|} \hline 15^{\circ} \mathrm{C} \\ \hline 5^{25} \mathrm{C} \\ 255^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \end{array}$	10 30 30 30
$\begin{gathered} \text { MIN. }{ }^{n} 12 \\ 12 \\ 12 \\ 30 \\ 12 \\ 12 \end{gathered}$	$\begin{aligned} & { }^{2} \max . \\ & 38 \\ & 38 \\ & 30 \\ & 90 \\ & 30 \\ & \hline \end{aligned}$			$\begin{aligned} & \text { fret (me) } \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$	Ge		c-	\max. Ico 10 10 10 10 10 10		$\begin{array}{\|} v_{\mathrm{cm}} \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ \hline \end{array}$
$\begin{aligned} & 12 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 96 \\ & 00 \\ & 00 \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & 100^{\circ} \\ & 100^{\circ} \\ & 100^{\circ} \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & 5^{\circ} \mathrm{C} \end{aligned}$	30 30 30
3	5	30		1.3		0.090	40	16	$25^{\circ} \mathrm{C}$	45
${ }^{6}$	43			1		0.090	40	16	$25^{\circ} \mathrm{C}$	45
23	42	18	41	2		0.070	2	10	250	∞
$\begin{aligned} & 31 \\ & 59 \\ & 12 \\ & 10 \\ & 70 \\ & \hline 10 \end{aligned}$	$\begin{aligned} & 68 \\ & 911 \\ & 140 \\ & 148 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 46 \\ & \mathbf{4 0} \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 94 \\ & 190 \\ & 190 \\ & 120 \\ & 120 \end{aligned}$	$\begin{aligned} & 23 \\ & 3.3 \\ & 3.3 \\ & 4.2 \end{aligned}$		$\begin{aligned} & 0.075 \\ & 0.050 \\ & 0.050 \\ & 0.096 \\ & 0.090 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 26 \\ & 26 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 25^{\circ \circ} \mathrm{c} \\ & 5^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	30 30 30 30 30
$\begin{aligned} & 38 \\ & 30 \\ & 58 \end{aligned}$	$\begin{aligned} & 42 \\ & \hline 80 \\ & 40 \end{aligned}$	$\begin{aligned} & 38 \\ & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 41 \\ & \text { in } \\ & \text { an } \end{aligned}$	$\begin{aligned} & 3.2 \\ & 31 . \\ & 4.0 \end{aligned}$		$\begin{aligned} & 0.070 \\ & 0.075 \\ & 0.080 \end{aligned}$	$\begin{aligned} & 26 \\ & 26 \\ & 26 \\ & 26 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & 230^{\circ} \mathrm{C} \end{aligned}$	30 30 30
$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 150 \\ & 118 \\ & 110 \\ & 150 \\ & \hline \end{aligned}$			\qquad			20 Max, 20 Mas 20 Manz, 20 Max 20 Max ,	6 6 6 6 6		20 13 15 15 20 20
40	\$0					0.07 0.14 .15 Max .	20 Max. 20 Max 20 Max. 12 12	$\begin{aligned} & 5 \\ & 5 \\ & 90 \\ & 5 \\ & 5 \end{aligned}$	$25^{25} \mathrm{C}$ $25^{\circ} \mathrm{C}$ $20^{\circ} \mathrm{C}$ $22^{\circ} \mathrm{C}$ $25^{\circ} \mathrm{C}$	20 12 12 12 12 12 12
$\begin{aligned} & 30 \\ & 31 \\ & 10 \end{aligned}$	$\begin{aligned} & 50 \\ & 42 \end{aligned}$			$\begin{aligned} & \text { 5min. } \\ & 1.3 \end{aligned}$		$\begin{aligned} & 0.2 \text { Mox } \\ & 0.08 \\ & .090 \end{aligned}$	$\begin{aligned} & 20 \text { Max. } \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 16 \\ & \frac{16}{65} \end{aligned}$	$\begin{aligned} & 22^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 12 \\ & \hline 45 \\ & \hline 45 \end{aligned}$
$\begin{aligned} & \frac{48}{45} \\ & 24 \end{aligned}$	$\begin{aligned} & 138 \\ & 133 \\ & 230 \end{aligned}$		${ }^{200}$?	$\begin{aligned} & 13(455 \mathrm{Kc}) \\ & 31(55 \mathrm{Kc}) \\ & 3(1455 \mathrm{Ke}) \end{aligned}$	0.23	$\begin{array}{r} 3 \\ 2.4 \\ 2.4 \end{array}$	$\begin{aligned} & 3 \\ & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & z^{\circ} \mathrm{c} \\ & \mathbf{s}^{\circ} \mathrm{C} \\ & \mathrm{~s}^{\circ} \mathrm{c} \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$
$\begin{aligned} & 19 \\ & 10 \\ & 20 \\ & 30 \\ & 00 \end{aligned}$			200	9 9 6.0 5 Min.		$\begin{aligned} & 0.35 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 8 \\ & 20 \\ & 35 \\ & 10 \end{aligned}$	$25^{\circ} \mathrm{C}$ $7^{\circ} \mathrm{C}$ $25^{\circ} \mathrm{C}$ $25^{\circ} \mathrm{C}$ $25^{\circ} \mathrm{C}$ $27^{\circ} \mathrm{C}$	15 15 28 25 25 8
$\begin{aligned} & 10 \\ & 10 \\ & 100 \\ & 10 \\ & 10 \\ & \hline 10 \end{aligned}$	1200 200 100	20	208	$\begin{array}{r} 12.5 \\ 17 \\ 3 . \\ 9.0 \end{array}$		$\begin{array}{r} 0.10 \\ 0.015 \\ 0.015 \\ 0.85 \\ 0.15 \\ \hline 0.1 \\ \hline \end{array}$	$\begin{aligned} & \hline 12 \\ & 12 \\ & 12 \\ & 12 \\ & 25 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & \hline \$ 0 \\ & 1.5 \\ & \hline 1.5 \end{aligned}$	$7^{\circ} \mathrm{C}$ $7^{\circ} \mathrm{C}$ $7_{1}^{\circ} \mathrm{C}$ $21^{\circ} \mathrm{C}$ $25^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$	25 25 28 15 15
$\begin{aligned} & 10 \\ & 80 \\ & 40 \\ & 40 \\ & 00 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 200 \end{aligned}$			$\begin{aligned} & 60 \\ & 60 \\ & 12 \\ & 12 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.20 \\ & 0.10 \\ & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & \mathbf{6} \\ & 12 \\ & 12 \\ & \hline \end{aligned}$	5 5 6 6 6		10 15 15 25 25 8
17	5			9.0		0.1	2.5	1.5	25°	${ }_{15}^{73}$

General Electric's work in subduing Thermal Fatigue. a major Semiconductor killer, has helped earn it the reputation of being the quality Semiconductor Rectifier producer of the industry. In addition, the Rectifier Components Department has recognized the problems associated with Transient Voltages and has rated its devices accordingly

In the medium and high-current rectifiers, Gieneral Electric has completely eliminated soft solder joints. thus greatly reducing the problem of thermal fatigue. This means that Ci-E Rectifiers and Controlled Rectifiers can be worked right up to maximum current and temperature ratings, even on highly cyclical loads

In addition, all General Electric rectifiers and Controlled Rectifiers carry transient PRV ratings which give the user additional protection against voltage transients.

The rectifier cells shown are listed in ascending order based on forward current ratings in each section. Maximum full load voltage drop is taken at full cycle average.

Complete specifications are available through your Semi conductor Products District Sales office or through your author ized G-E Semiconductor Distributor

RECTIFIER CELLS

germanium Low current rectifier cells UP TO 1200 MA

	(19\%	$\operatorname{bin}+5$				Firs
UN93 ${ }_{\text {USN }}$	300 300	$\begin{gathered} 55^{\circ} \mathrm{C} \\ \text { Amb.. } \\ 75 \mathrm{ma} \\ 75 \mathrm{ma} \end{gathered}$	25 25			$95^{\circ}{ }^{\circ}$
1N315	300	75 ma	25 A			85°
USAF IN315	300	75 ma	25 A			85°
1N368	200	100 ma	25 A			55°
$\begin{aligned} & \text { 1N92 } \\ & 1 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	100 ma 150 ma	25 25		19 V .22 V	$99^{\circ}{ }^{\circ}$
iN91	100 300	liso ma	${ }_{25}^{25} \mathrm{~A}$	$1.35 \mathrm{ma} \mathrm{.22V}$		95°
1 N 158	400	1000 ma	25 A			95°
1 N 152	200	1000 ma	25 A			95°
1 N 151	100	1200 ma	25 A			95°

COMMENTS

Industry standard for high reliability units. Feature extremely low forward resistance, high back resistance.

SILICON SUBMINIATURE GLASS RECTIFIER CELLS (Lead Mounted) UP TO 400 MA UP TO 600 PRV

$\begin{array}{\|l\|} \hline \text { JEEEC OR } \\ \text { GE Typo } \\ \text { Number } \end{array}$	$\begin{aligned} & \text { Repeti- } \\ & \text { tivy } \\ & \text { PRy } \end{aligned}$	$\begin{aligned} & \text { Tran- } \\ & \text { sient } \\ & \text { PRV } \end{aligned}$	$\begin{aligned} & \text { Max, loc } \\ & \text { at } T^{\prime} \mathrm{c} \end{aligned}$	Max. Rev. Cycio Av.)	$\begin{aligned} & \text { Max. Full } \\ & \text { Load volf } \\ & \text { ase Drep } \end{aligned}$	Max.
			${ }^{25} 5^{\circ} \mathrm{C}$	(2) $10^{\circ} \mathrm{C}$	(94) ${ }^{25}{ }^{\circ} \mathrm{C}$	
1NGAS incti	2300	275	cot me	15 ${ }^{\text {ma }}$	1 iv	175°
1 Mch	408	430	400 mb	20 a	IV	175°
1 NCH	500 600	600 120	400 ma	20 20	iv	175° 175
1 1N677	600 100	120	400 mla		iv	175^{*}
1N676-1N679, 1N661-1NS87 and 1W689 are aiso available in this package.						

COMMENTS

Designed for maximum thermal conductance.
thermal conductance. military requirements.

SILICON LOW CURRENT RECTIFIER CELLS (Lead Mounted) UP TO 750 MA

PEType	sen	mer	1 cycle	Exa. Ioo.	Hencren	$\begin{aligned} & \text { mon } \\ & \text { oger. } \\ & \hline 0 \end{aligned}$	COMMENTS
		$\mathrm{C}^{50} 0^{\circ} \mathrm{C}$		© $25^{\circ} \mathrm{C}$	@ $25^{\circ} \mathrm{C}$		Refer also to 1 N440-B-5B Specification Sheet.
	100 200	300 ma 300 ma	15 A	, ${ }^{\mu \mathrm{ma}}$	1.5V		
1 N 442	300	300 ma	15 A	+15 ${ }^{\mu \mathrm{am}}$	$1.5 V$ $1.5 v$	${ }^{150}{ }^{15}$	
(1N443	400 500	300 ma 300 ma	15 15	1.5	$1.5 V$	${ }^{150}{ }^{\circ}$	
1N445	600	300 ma	${ }_{15} 15$	$1.75 \mu \mathrm{ab}$ 2.0	1.5V		
		$\begin{aligned} & 89^{29} \mathrm{c} \\ & 600 \mathrm{ma} \end{aligned}$	10 A	1.0 ua	-200 ma		Refer also to 1 N440-B-5B Specification Sheet.
1NSEPA	50				$\begin{aligned} & \text { 1.5V } \\ & \text { i.sv } \end{aligned}$	$150{ }^{\circ}$	
1 NGOO	100	600 ma600 ma600	10 A	1.0	1.5V	150°150	
1N800A	100 150		10 A	$\begin{aligned} & 100 \\ & 1.0 \\ & 1.0 \end{aligned}$			
INCOIA	150 150	$\begin{aligned} & 600 \mathrm{ma} \\ & 600 \mathrm{ma} \end{aligned}$			$\begin{aligned} & 1.5 \mathrm{~V} \\ & 1.5 \mathrm{~V} \\ & 1.5 \mathrm{l} \end{aligned}$	150°	
1 NGO2	200	600 ma	10 A		$\begin{aligned} & \text { 1.5V } \\ & \text { 1.5V } \\ & 1.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 150^{\circ} \\ & 150^{\circ} \end{aligned}$	
${ }_{1}{ }^{\text {Necosena }}$	200 300				1.5V	150° 150	
INEO2A	300	${ }_{600}^{600} \mathrm{ma}$	$\begin{aligned} & 10 A \\ & 10 A \end{aligned}$		$1.5 V$$1.5 V$	$\begin{aligned} & 150^{\circ} \\ & 150^{\circ} \end{aligned}$	
incou	400 400	600 ma	10 A	1.51.51.5			
incora incos	400				$1.5 V$ $1.5 V$	150°150	
1Necosa	500		10 A	$\begin{aligned} & 2.0 \mu a \\ & 2.0 \end{aligned}$	1.5V		
(NCOS	600 600		${ }_{10} 10$ A			${ }^{150} 0^{\circ}$	
1N560	800	$\begin{aligned} & @ 30 \mathrm{c} \\ & 600 \mathrm{ma} \\ & 50 \mathrm{ma} \end{aligned}$	$\begin{array}{r} 15 \mathrm{~A} \\ 15 \end{array}$	$\begin{gathered} @ 150 \cdot \mathrm{c} \\ 3 \mathrm{ma} \\ 3 \mathrm{ma} \end{gathered}$	$\begin{aligned} & \text { © } 150 \mathrm{C} \\ & 0.5 \mathrm{c} \\ & 0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 150^{\circ} \\ & 150^{\circ} \end{aligned}$	Now with transient PRV ratings up to 1200 V .
1N561	1000						
$1 \mathrm{N1692}$	100		$\begin{aligned} & 20 A \\ & 20 A \\ & 20 A \\ & 20 \hat{A} \\ & 20 \hat{A} \end{aligned}$.5 ma c.5 ma.5 ma.5 ma.5 ma.5 ma	- $10.60^{\circ} \mathrm{C}$	$115{ }^{\circ}$	Similar to 1 N536-47 series except for lower temp. and current operation. Lowest priced series.
1 N 1683	200				0.6 V		
1N1694	300 300				0.6 V	115°	
1N1608	500				0.6V	${ }^{115}{ }^{115}$	
1N1097	600				0.6 V	115°	
1 N4448	500	650 ma650 ma750 ma750 ma750 ma750 ma	$\begin{aligned} & 15 \mathrm{~A} \\ & 15 \mathrm{~A} \end{aligned}$	$\begin{gathered} @ 25 \mathrm{c} \\ 175 \mathrm{ma} \\ 2.0 \mathrm{ma} \\ 0.3 \mathrm{ma} \\ 0.75 \mathrm{ma} \\ 1.0 \mathrm{ma} \\ 1.5 \mathrm{ma} \end{gathered}$	@ ${ }_{15} 55^{\circ} \mathrm{C}$	$150{ }^{\circ}$	Very low leakage. Ideal for magnetic-amplifier applications. Premium price.
iN44s8	600				$1.5 V$ 15 V		
(1N4408	100 200				1.5V	165°	
iN4428	300				li.5V	165* ${ }^{165}$	
IN443B	400				1.5 V	165°	
1N1100	100		15 A1515	- $315{ }^{\text {che }}$			Refer also to 1 N536-540 Specification Sheet.
(1N1101	200 300			. 3 ma	1.5V	165°	
1 W1103	300 400			. 3 mm	$1.5 V$ $1.5 V$	165° 165	
		© 25 c 750 ma 750 ma 750 ma 750 ma	$\begin{aligned} & 15 \mathrm{~A} \\ & 15 \mathrm{~A} \end{aligned}$	$\begin{gathered} @_{125}{ }^{\circ} \mathrm{C} \\ 3 \mathrm{ma} \end{gathered}$		$\begin{aligned} & 140^{\circ} \\ & 140^{\circ} \\ & 110^{\circ} \\ & 140^{\circ} \\ & 125^{\circ} \\ & 120^{\circ} \end{aligned}$	Similar to 1 N 536.47 series Intermediate temp. operation. Lower priced.
IN1488	200						
1N1489	300 400						
IN1491	500						
1 N1492	600						
1N55			$\begin{aligned} & 15 \hat{A} \\ & 15 \end{aligned}$	$\begin{gathered} 150^{\circ} \mathrm{C} \\ .4 \mathrm{ma} \\ .3 \mathrm{ma} \end{gathered}$	- 159.C	$165{ }^{\circ}$	The popular line. Provides maximum forward conductance at high operating temperatures $\left(165^{\circ} \mathrm{C}\right)$. Now with transient PRV ratings up to 800 V .
$1 \mathrm{NS37}$	100				.5v		
1NS32	200				.5V	165°	
$1 \mathrm{NS40}$	400				.5V	${ }_{165} 165^{\circ}$	
1 1095	500				SV	150°	
-	600 600				. 5 SV	150° 165	

SILICON LOW CURRENT RECTIFIER CELLS (Insulated Stud) UP TO 1.5 AMPS

COMMENTS

Identical to the
IN1115-1N1120 series
except the stud is electrically

SILICON LOW CURRENT RECTIFIER CELLS (Stud Mounted) UP TO 1.5 AMPS UP TO 1000 PRV

			vale		Sa		comments
1 1236	570	coin	A. 3 ms	${ }^{\text {e }}$ 235mb	2 V ¢ 50 ma	150	Refer also to 1 N1115.1120
							For applications requiring moderate cur
${ }^{12} 5858$	${ }_{\text {8200 }}^{1000}$	comas	${ }_{15}{ }^{15}{ }^{\text {a }}$	${ }^{3} \mathbf{3 m}$, 1550\%	${ }_{\text {1 }}^{1 \times 560.61 ~ m o u n t e d ~ o n ~ s t u s . ~}$
							Very Iow leakage for mapnetic ampoifier applications. The in40--5B series mounted on studs.
insss	${ }_{3}^{130}$				1.5ve © Somm	150\%	Reter ats to 1 N1115:1200
							Refer also to 1 in $1115-1120$ Specification Sheet. and the Specification Sheet, and the IN550-5 Specification Sheet.
边							on studs.
.147\%	$\mathrm{comb}^{\text {95 }}$	${ }_{11}$	40.3ms		1.5v © 14	150.	(eate also tiol 1115 -1120

SILICON HIGH CURRENT RECTIFIER CELLS
 UP TO 70A

JEDEC er GE Type	$\begin{aligned} & \text { Repsi- } \\ & \substack{\text { IIVA } \\ \text { PAV }} \end{aligned}$	$\begin{aligned} & \text { Tran. } \\ & \text { sian } \\ & \text { Pin } \end{aligned}$		$\begin{gathered} \text { Max } \\ \substack{\text { cyycie } \\ \text { surge }} \end{gathered}$			$\begin{aligned} & \text { mon. } \\ & \text { mopr. } \\ & \text { Tomper } \end{aligned}$
	$\begin{aligned} & 200 \\ & 300 \\ & 300 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 525 \\ & 550 \\ & 650 \end{aligned}$		$\begin{aligned} & 1600 \\ & \begin{array}{l} 1600 \\ 1 \\ 1060 \\ 1000 \end{array} \\ & 1000 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \\ & 20 \\ & 16 \\ & 13 \end{aligned}$	$\begin{aligned} & .45 V \\ & .5 V \\ & .4 V \\ & .45 V \end{aligned}$	$\begin{aligned} & 200^{\circ} \mathrm{C} \\ & 200{ }^{200} \\ & 2000^{2} \mathrm{C} \end{aligned}$

Large area junction rectifiers for applications requiring doutput as high as 70 amps per rectifying element at rms input voltages up to 420 Volts. The 4JA70 is a "double diffused, all hard solder rectifier, which has high and is highly resistant to thermal fatigue.

SILICON MEDIUM CURRENT RECTIFIER CELLS UP TO 25 AMPS

					$\mathrm{C}_{8}^{150^{\circ} \mathrm{C}}$	$8_{\text {Stud }}{ }^{100}$	
1M1321a	50	100				Stiv	
1N122a	100	200	64	15004	2.5 ma	. 6 civ	$200{ }^{\circ}$
${ }^{\text {in }}$ N13a3A	150	300 350	6A	150 A 150 A	2.25 ma	. 6 GV	$200{ }^{20}$
1N134A	200 300	350 450	6A	${ }^{2504}$	1.75 ma	.64V	$200{ }^{200}$
1N1344A	400	600	6 A	150A	1.5 ma	.av	$200{ }^{\circ}$
IN13A7A	\$00	700	64	150A	1.25 ma	.64V	$200{ }^{\circ}$
1 Nl 3 ma	600	800	6A	1500	1.0 ma	. 6 SV	$200{ }^{\circ}$
$1 \mathrm{M11ge}$ a	50	100	124	2400	3 ma	.5sV	2000°
iN1200A	1100	200	12A	2404	2.5 ma	.5SV	$200{ }^{\circ}$
1 N 2201 A	150	300 350	122	2404	2.25 ma	. 55	$200{ }^{\circ}$
inigieza	3200	350 50	${ }_{12 A}^{12 A}$	240 a	1.75 ma	.5sV	200°
1 N1209A	400	600	$12 A$	240 A	1.5 mb	.55V	200°
1 N 1215 Sa	500 600	700 800	${ }_{12} 12$	240 A	1.25 ma	${ }^{\text {. } 550}$	200°
1 W1206A	600	800	12A	240A	1.0 ma		200
1 N 248	50		104	2000	5 ma		175
1/2249	100 200		${ }_{10}^{104}$	$2000{ }^{20}$	5 ma 5 ma	1.5V*	
1N230	200		${ }_{20}{ }^{10}$	${ }^{200} 10$ A	5 ma	1.55	${ }^{175}$
1 N208A	100		208	350A	5 ma	1.5V**	175
1 1 2SEA	200		204	350A	5 ma	1.5 V -	$175{ }^{\circ}$
1N213sA	400		204	250 A	40 ma	1.5V	$150{ }^{\circ}$
					- $145^{\circ} \mathrm{C}$	$e_{\text {stud }}^{145^{\circ} \mathrm{C}}$	
1N2154	50	100	$25 A$	300A	5 ma	0.6 V	$200{ }^{\circ}$
102155	100	200	254	3004	4.5 ma	0.6 V	200
1 N2156	200	350 450	25A	300A	4.0 ma	0.6V	200
102157 in2150	300	${ }_{600}$	25A	300A	3.5 ma 3.0 ma	0.60	200 200
1N2150	500	700	25 A	3009	2.5 ma	0.6 V	$200{ }^{\circ}$
- ${ }^{\text {er 23A - }}$ - 600		800	23 A	3004	2.0 ma	0.6 V	200

COMMENTS

Designed for use in the 2 to 30 ampere range. High junction extremely low forward voltage drop and thermal impedance permit high current
operation with minimum space requirements. May be mounted directly to a chassis or fin or may be insulated provided. All units are als available with negative polarity (stud is anode).

THESE GENERAL ELECTRIC SILICON AND GERMANIUM RECTIFIERS MEET MILITARY SPECIFICATIONS

Type	Ailizary Specification	Single Phase Max. Ratings	
		PRV	Iece Tomp.
cermanium USN IN:3 USAF INJIS silicen USA IN249日I JAM IN2S3 JAN 1 mas JAM INZSS JAN INESS JAN IMES USAF IN530 JAN IMSHO USAF INS40 IAN INSAT USAF INSAT		300 Volts 100 Volts 125 Volts 100 Volls 400 Volts 240 volts 450 Volts T20 Voits	75 ma @ $55^{\circ} \mathrm{Camb}$. 100 ma @ $71^{\circ} \mathrm{C} \mathrm{mb}$.
USA IM813SA	MIL S-195000/134	500 Volts	2na elsecease

SILICON CONTROLLED RECTIFIERS

These revolutionary devices, introduced by (ieneral Electric. can do the work of thyratrons, ignitrons, magnetic amplifiers, power transistors, relays, switches and circuit breakers in many power control and switching applications.
Presenting:
A FULL LINE OF SILICON CONTROLLED RECTIFIERS
SILICON LOW CURRENT CONTROLLED RECTIFIERS UP TO 7.0 AMPS

UP TO 400 PRV

SILICON MEDIUM CURRENT CONTROLLED RECTIFIERS UP TO 25 AMPS UP TO 500 PRV

2NGEA 2NGO5 2 NEGE 2NG 2NG 2NG8 2NESS 2N1842 2N1843 ${ }_{2}^{2 N 1844}$ 2 N1845 2 N 1845 2N1847 $2 N 1849$ ${ }^{2 N 4 O U}$ C40F C40A C40G C 40 B C 40 H

 \qquad
Other ratings and characteristics are the same as for 2N661. 689 . except that turn-OHt time is guaranteed at
less than 12 microseconds. These units less than 12 microseconds. These units are designed spe-
cifically for fast turn-off time for inverter applications.

SILICON HIGH CURRENT CONTROLLED RECTIFIERS UP TO 110 AMPS

UP TO 400 PRV

SELENIUM RECTIFIERS

General Electric's unique ACE* vacuum process provides highly reliable selenium cells, known ior long life and high emperature operation. This Vac U-Selo process assures you of uniformity from cell to cell and excellen: margins of safery.

Capitalize on the low cost versatility of design inherent in quality selenium products. Typical G-E types are shown in a variery of veltages and cell sizes finishes and mountings. Many other types to suit individual needs are avalable on request.

GENERAL ELECTRIC INTRODUCES THE FIRST SILICON CONTROLLED RECTIFIERS TO MEET MILITARY SPECIFICATIONS

Type	unitury Specintalien	Winglo Pmase Max. Ratings	
		PRV	tise e Trap.
	MIL-S-19500/108 MIL.S-19500/108 MIL-S-19500/108 MIL-S. $19500 / 108$ MIL-s.s. $1250001 / 1008$		

NEW SELENIUM PRODUCTS

Soon to be in production is a complete line of cartridge (tubular) miniature rectifiers. These will incorpurate a new "thin cell" which will greatly reduce the size of the units. The illustration demonirateo this by comp ring one of the new types (A) to our present type (and typical competitive units) (B)
The substantial improvement is made at no reduction in performance but at a reduction in price Available now in limited quantity.

The standard stud intermediate line includes some of the most reliable products in its power range $\quad . \quad 1(1)$ ma to 1 amp . 15 to over 4,000 volts. The cost per watt is particularly attractive.

The riveted (and tube mounted) assembly is limited to a dozen or more cells per unit. It is very compact and can even be provided with no spacing on very tight jobs. No derating is required on Vac-U-Sel rectifiers.

Imhedded cell configurations demonstrate the high temperature ratings of Vac U-Sel rectifiers. Even though imbedded, no current or voltage derating is necessary. Availatle in all cell sizes up to $2^{\prime \prime}$ square.

Large plate stacks use cells up to $5 \times 6^{\prime \prime}$ in size, and are rated to 36 Vrms per cell. The high density capathilities of V ac-U-Sel rectifiers very often enable them to be substituted for cells of much more active area with no sacrifice of life expectancy.

Oil immersed units are used to satisfy very unusual operating conditions such is highly corrosive almospheres, heavy surge currenis, etc., where size is no objection.

GENERAL ELECTRIC DISTRICT SALES MANAGERS

NORTHEASTERN REGION

J. W. Bentloy W. J. Halley W. D. Robusto J. M. Shea W. J. Wroblicke General Eiectric Co. Kelley Bldg. Liverpool, N. Y. GRanite 6-4411

R. R. Jay
T. P. McGough General Electric Co.
600 Old Country Roon Garden City, N. Y Garden City, N.

Liverpool, N. Y.

SOUTHEASTERN REGION

P. V. Hahn
General Electric Co.
$777-14 \mathrm{th}$ St., N. washington, D. C. Executive 3.3600
A, M. Barko
General Electric Co
Orlando. Florid

Orlando. Florida
CHerry i-2991
J. P. Bredy D. W. Hickie
General Electric Co 200 Main Ave. Clifton, N. J.
GRe ony 3.6387
J. J. Skelly
General Electric Co.
alo asylum St
Hartiord, Conn
Hackson 7-6A19
2. E. Teanan
General Electric Co. 701 Washingtion SL DEcatur 2-7i20

CENTRAL REGION

C. K. Huyette
I. Munson
A. C. Rogers
General Electric Co 300 N. Milwaukee Ave. Spricago, 11160
E. W. Hookway General Electric Co. Cloveland, Ohio EVergreen 2-5650

J. C. Dempsoy

General Electric Co. $32: 0$ Gorhact Ave. Minneapolis, Minn.
R. R. Faullin

General Electric Co. Dallas, foras
A. C. Oliver

General Electric Co Imperial OMice Plaz 17220 W. Eithe Mile Rd. ELEin 6-1075
R. M. Baumann

General Enectric Co. Talbott eldg.
118 w .1 st St: Batcon. Onio

WESTERN REGION
W. Harrison
R. F. deLuca
R. T. Hawkins
D. M. Morse
D. EMorse

General Electric Co
11840 W . Olympic Biva.
11840 W. Olympic Biva.
Los Angeles. Cal Los Angeles, Ca
GRanite 9.7163
H. M. VanBemmelen General Electric Co 45 w Jelferson S
R. W. Olsen

General Electric Co.
$4 \& 2$ Peninsular Ave. San Mateo. Cal Diamond 2.7201
A. J. Spaflord

General Electric Co
220 Dawson St 220 Dawson S ,
Seattle. Wash
PArkway 5.6800
G. C. Galliher

General Electric Co. 121 Broadway 5
San Diego, Cal. San Diego. Cal
BE 3-1329

For fast delivery of
 General Electric Semiconductors at factory-low prices, contact
 your authorized G-E Semiconductor Distributor

GENERAL (9) ELECTRIC

Semiconductor Products Dept, - Syracuse, N. Y. Rectifier Components Dept. Auburn, N. Y In Conado, Conadien Oenoral Eliectric Company. Lud, Taronto, Ont

2. Rise time depends, among other things, on a per cent tolerance of phase deviation from linearity. Phase deviation should not be frequency weighted.
3. Ripple in the response to a step depends, among other things, on a phase deviation weighted inversely with frequency so as to make the low frequencies important.
4. Minimal rise time requires unity gain till the over-all phase deviation is 90 deg . Then the gain should fall away rapidly.
5. Minimal ripple requires a slowly falling gain which is low when the phase deviation is large. 6. Phase linearity should be better than amplitude linearity so cascading will decrease ripple. 7. Complete ripple control requires a lot of bandwidth.
8. The maximum delay-to-rise-time ratio obtainable by cascading sections equals the number of sections for a low-pass section, and double the number of sections for an all-pass or bandpass section.
9. If it is necessary to make a high quality network by cascading sections, it is better to use fewer high quality sections than more low quality sections.
10. Sometimes it is best to leave well enough alone. - -
< Circie 39 on reader-service card

WHO SAID IT COULDN'T BE DONE?

Lots of people thought this tiny "1-watter" was impossible. But here it is. And for the first time in this power rating, circuit designers can it is. And for the first time in this power rating, circuit designers can
get all the advantages of a wire-wound, vitreous-enameled resistor get all the advantages of a wire-wound, vitreous-enameled resistor
with axial leads-high temperature operation, up to $350^{\circ} \mathrm{C} ; \pm 5 \%$
 tolerance; low temperature coeffic
and strong, welded construction.
and strong, welded construction.
Construction is the same as Ohmite's 3.5, and 10 -watt sizes-including ceramic core, uniform winding, tough Ohmite vitreous enamel coating, and traditional Ohmite reliability.

Resistance values range from 1 to 6000 ohms. But you can find out all about this exclusive Ohmite development by writing for Bulletin 147F. Do it now!

OHMITE MANUFACTURING

COMPANY

3643 Howard Stree

Skokie, Illinois
Rheostats Power Resistors Precision f.esistors Variable Transformers Tantalum Capacitors Tap Switches Relays R.F. Chokes
Germanium Diodes Micromodules

CIRCLE 40 ON READER-SERVICE CARD

Transistor Switching Speed

from Base Storage Charges and their Lifetimes
 Part 2

Sample predictions are illustrated for determining rise, fall, storage and delay time using the stored charge and lifetime concept outlined in Part 1 (Electronic Design, March 15, 1961, p 52). The precision of the predictions is within 10 to 15 per cent in most cases. Methods for measurement of carrier lifetime are outlined.
Y. C. Hwang, D. S. Cleverley, D. J. Monsour General Electric Co.
Syracuse, N. Y.

BASE STORAGE charges and their lifetimes have been shown to be basic quantities which can be used to characterize a switching transistor (Part 1, ED, March 15, 1961, p 52). Predictions of rise, fall, delay and storage time can be made with accuracies in the order of u few nanoseconds in many cases. Sample predictions for alloy and mesa devices show agreement between experimental and predicted rise and delay times in the order of 10 per cent; storage and fall time agreement is within 15 per cent.

Measurement

of the Lifetime

Two quantities which have been previously defined are

$$
\begin{aligned}
& \tau_{a}=\frac{Q_{B}}{I_{B}} \text { in the active state or below saturation } \\
& \tau_{b}=\frac{Q_{B X}}{I_{B X}} \text { in the static state or in saturation }
\end{aligned}
$$

τ_{a} applies to the lifetime of the carriers in the active state, during turn-on and turn-off, and τ_{b} applies to the lifetime when recombination and replenishing charges are in equilibrium and when the transistor has been saturated for a sufficiently long time. Sufficiently, as used here, means that an equilibrium of charge gradient is
assumed for times greater than at least three times the lifetime, $\boldsymbol{\tau}_{a}$ (see Eq. 4).
τ_{b} is then related to the storage time by

$$
\begin{equation*}
\text { t. }(\text { flat portion })=\tau_{b} \ln \frac{I_{B 1}-I_{n 2}}{I_{B S}-I_{B 2}} \tag{18}
\end{equation*}
$$

and τ_{a} to the rise time by
when R_{L} in the collector circuit is negligible, and the forced beta is not small enough to allow the use of Eq. 5. For the measurement of τ_{b}, the circuit shown in Fig. 7 is used.

By changing $V_{J \mathrm{v}}$ through it known ratio, and keeping $I_{B 2}$ small, τ_{b} is obtained by

$$
\begin{equation*}
r_{b}=\frac{\Delta t_{s}}{\ln (\text { current ratio })} \tag{20}
\end{equation*}
$$

For both alloy and mesa transistors τ_{b} is fairly constant throughout the range tested. An alternative circuit, as shown in Fig. 8, is used for measuring τ_{b}. By adjusting V_{S}, a plot of Δt_{s} vs voltage, on semi log paper, is obtained. Notice that the slope of $\Delta t_{s} \ln$ (voltage ratio) is constant and equal to τ_{b}.

Next, r_{a} is of interest, not because Eq. 19 is directly to be used for calculating switching time, but because τ_{a} is fundamentally related to the h_{p} of the transistor; also, knowing the range of τ_{a}, predictions of t_{r} and $t_{\text {, }}$ with constant current drive can be made with assurance by using Eqs. 6 to 9.

From Eq. 19, if $I_{B 1}=I_{R s}$ and $R_{L} \cong 0$, then

$$
\begin{equation*}
t_{r}(0-90 \% \%)=\tau_{a} \ln \frac{I_{B s}}{0.1 I_{B S}}=2.31 \tau_{a} \tag{21}
\end{equation*}
$$

the circuit, shown in Fig. 9 is used for measuring τ_{a}. A Tektronix current probe, model P6016, and amplifier, type 131, is used in the collector circuit.
Since the probe impedance is very low (about 0.005 ohms, and 1.5 pf in shunt), the transistor remains below saturation when a constant current drive, $I_{B 1}$, is applied. A plot of τ_{a} vs current I_{C} is illustrated by Fig. 10, where it is observed that the variation is similar to $h_{f e}$ vs I_{c}. The same circuit is used for mesa-type transistors. Since the τ_{a} for mesa transistors is in the range of 20 to 100 nsec , reasonable readings can still be obtained. A plot of τ_{a} vs I_{c} for the $\mathrm{ZJ}-42$ is shown in Fig. 11.

[^1]

Fig. 7. Circuit used for the measurement of $\tau_{\boldsymbol{z}}$, carrier lifetime when the transistor has been saturated for a sufficiently long time.

Fig. 8. An alternative circuit for measurement of carrier lifetime τ_{b}.

Flg. 9. Circuit for measurement of τ_{a} the lifetime of carriers in the active state or below soturation.

Fig. 10. Carrier lifetime τ_{a} vs collector current I_{0} for an alloy transistor.
(1) Find Q_{c} at $10-v$ supply voltage.

$$
\left.Q_{C}(10 v)\right|_{0} ^{20 \%}=200-\frac{(446-200)}{9 \mathrm{ma}}=200
$$

$$
\begin{aligned}
& -27.3=172.5 \mu \mu \mathrm{C} \\
& \text { this to } O_{c} \text { at desired } V
\end{aligned}
$$

(2) Convert this to Q_{c} at desired $V_{c c}$.
$\left.Q_{C(b v)}\right|_{0} ^{00 \%}=\left[\left.Q_{C(10 v)}\right|_{0} ^{00 \%}\right] \times\left[\frac{\sqrt{5}}{\sqrt{10}}\right]$

$$
=\frac{\left.Q_{c(10)}\right|_{0} ^{90 \%}}{\sqrt{2}}=\frac{172.7}{\sqrt{2}}=122 \mu \mu \mathrm{C}
$$

(3) Find Q_{B} per unit and desired Q_{B} at current of interest.

$$
\frac{Q_{B}}{\Delta I_{C}}=\left(\frac{446-200}{9 \mathrm{ma}}\right)=27.3 \mu \mu \mathrm{C} / \mathrm{ma}
$$

Q_{B} at $100 \mathrm{ma}=27.3 \times 100=2,730 \mu \mu \mathrm{C}$.
(4) Combine Q_{B} and Q_{C} for $Q_{B}{ }^{\bullet}$.
at $5 \mathrm{v}, 100 \mathrm{ma}$.
$\left.Q_{B^{\bullet}}\right|_{0} ^{90 \%}=Q_{B}+\left.Q_{C}\right|_{0} ^{90 \%}=2,730=$

$$
\begin{aligned}
& +122=2,852 \mu \mu \mathrm{C} . \\
& \text { (continued on } p \text { 52) }
\end{aligned}
$$

Fig. 11. Corrier lifetime τ_{a} vs collector current I_{0} for a mesa transistor.

(5) Find rise cime and check with circuit value.
$t_{r(10-90 \%)}=\frac{8}{9} \frac{\left.Q_{B^{*}}\right|_{0} ^{\mathrm{ro} \mathrm{\%}}}{I_{B 1}}=\frac{(0.89)(2,852)}{10}=254 \mathrm{nsec}$
circuit value $=250 \mathrm{nsec}$.
deviation predicated $t_{r}=4 \mathrm{nsec}=1.6 \%$.
from measured t_{r}.
(b). Rise time at $\mathrm{V}_{C C}=15 \mathrm{v} ; I_{C s}=1 \mathrm{ma} ; I_{n 1}=$ 0.1 ma.
(1) Find Q_{c} at $15-\mathrm{v}$ supply voltage using previously obtained Q_{c} at 10 v .
$\left.Q_{C(15 v)}\right|_{0} ^{20 \%}=\left.Q_{C(10 v)}\right|_{a} ^{20 \%} \times \frac{\sqrt{15}}{\sqrt{10}}$

$$
\begin{aligned}
& =1.228 \times Q_{C(10)}=172.7 \\
& \times 1.228=212 \mu \mu \mathrm{C} .
\end{aligned}
$$

$1.228 \times Q_{C(10)}=172.7 \times 1.228=212 \mu \mu \mathrm{C}$
(2) From (a) (3), Q_{B} per unit $=27.3 \mu \mu \mathrm{C} / \mathrm{ma}$
(3) Combine Q_{B} and Q_{C} for $Q_{B}{ }^{\circ}$ at $15 \mathrm{v}, 1 \mathrm{ma}$
$\begin{aligned}\left.Q_{B^{*}}\right|_{0} ^{00 \%}=Q_{B}^{*}+\left.Q_{C}\right|^{000 \%} & =27.3 \\ & +212=239.3 \mu \mu\left({ }^{0} \text {. }\right.\end{aligned}$
(4) Find rise time and check with circuit value.

circuit value $=2.20 \mu \mathrm{sec}$.
deviation predicated t_{r} from measured $t_{v}=$ $0.07 \mu \mathrm{sec}$.
$=-3.3 \%$.

Example of

Delay Prediction

Conditions: ZJ-42 Unit \#2 $C_{B}=6.15 \mathrm{pf}$ from test results.
$V_{B E 2}=V_{B E}($ after turn on $) \approx 0.4 \vee$ from test results.
In circuit of Fig. 1, when $\boldsymbol{R}_{1}=\boldsymbol{R}_{2}=2 \mathbf{K}, \boldsymbol{R}_{L}=$ 400 ohms, $V_{c c}=-5 \mathrm{v}$.
$V_{I N}=-7 v$ pulse, 60 nsec width
Find T_{D} for $V_{B B}=0,+1.32 v,+2.68 v$.
$T_{D}=\frac{V_{B E_{1}} \text { (before turn on) }}{I_{B 1}} C_{E}=\left(\frac{V_{B B}}{2}\right)\left(\frac{C_{E}}{I_{B 1}}\right)$

At $V_{B B}=0: T_{D}$ predicted $=0$
Actual observed $T_{D}=2 \mathrm{nsec}$
. Propagation constant $=+2$ nsec.
At $V_{B M}=+1.32 \mathrm{v}:$ First find $I_{B 1}$,

$$
\begin{aligned}
& I_{1}=\frac{V_{B E 2}-V_{I N}}{2 K} ; I_{2}=\frac{V_{B B}-V_{R E 2}}{2 K} \\
& I_{B}=I_{1}-I_{2}=\frac{2 V_{B E 2}-V_{T N}-V_{B B}}{2 K}
\end{aligned}
$$

$I_{B L}=\frac{-0.8 \mathrm{v}+7 \mathrm{v}-1.32 \mathrm{v}}{2 \mathrm{~K}}=2.44 \mathrm{ma}$.
$T_{D}=\frac{1.32 \mathrm{v}}{2} \frac{6.15 \mathrm{pf}}{2.44 \mathrm{ma}}=1.7 \mathrm{nsec}$
Adding propagation constant $=2$ usec
Total T_{D} predicted $=3.7$ nsec.
Actual observed $T_{D}=3.8 \mathrm{nsec}$.
At $V_{B B}=+2.68 \mathrm{v}$:
$T_{D}=\frac{2.68 \mathrm{v}}{2} \frac{6.15 \mathrm{pf}}{1.76 \mathrm{ma}}=4.7 \mathrm{nsec}$
Adding propagation constant $=2$ usec
Total T_{D} predicted $=6.7$ nsec.
Actual observed $T_{D}=7.2 \mathrm{nsec}$
From Eq. 15, $\frac{1 / 9 Q_{B^{*}}}{I_{B 1}} \begin{aligned} & 90 \% \\ & 0\end{aligned}$ must be added in obtain T_{D} (to 10%)

Storage Prediction

For Long Pulse

Conditions: ZJ-42 Unit \# 2
From test results, $V_{B E} \approx 0.4 \mathrm{v}, \tau_{b}=113 \mathrm{nsec}$ $I_{\text {RA }}=0.24 \mathrm{ma}$
$Q_{B}{ }^{\circ}(100 \%)-Q_{B}{ }^{\circ}(90 \%)$ at $V_{C C}=5 \mathrm{v}$, is essentially $Q_{c}(100 \%)-Q_{c}(90 \%)$ at $V_{c c}=-5 \mathrm{v},=6$ $\mu \mu \mathrm{C}$. Circuit is the same as used in delay time prediction. $V_{l \mathrm{v}}=-7 \mathrm{v}$ pulse, 520 nsec width.
For $V_{R B}=+1.32 \mathrm{v}$: As shown before, $I_{B 1}=$ $2.44 \mathrm{ma}, I_{B 2}=-1.06 \mathrm{ma}$
$\imath_{\text {I }}(\operatorname{to} 90 \%)=r_{b} \ln \left(1+\frac{I_{B 1}-I_{B S}}{I_{B S}-I_{B 2}}\right)$

$$
+\frac{\Delta Q_{B^{*}}(100 \% \text { to } 90 \%)}{-I_{B I}}
$$

$t_{0}($ to $90 \%)=113 \mathrm{nsec} \ln \left(1+\frac{2.44 \mathrm{ma}-0.24 \mathrm{ma}}{0.24 \mathrm{ma}+1.06 \mathrm{ma}}\right)$

$$
+\frac{6 \mu \mu \mathrm{C}}{1.06 \mathrm{ma}}
$$

$t_{0}(1090 \%)=113$ nsec $\ln (2.69)+5.7$ nsec
$t_{s}($ to $90 \%)=111.8 \mathrm{nsec}+5.7 \mathrm{nsec}=117.5 \mathrm{nsec}$
Predicted t_{0} (to 90%) $=117.5$ nsec.
Actual observed $t_{0}($ to $90 \%)=130$ nsec.

Prediction

Of Fall Time

Conditions $=\mathrm{ZJ}$ - 42 Unit \# 2
The same circuit is used as for delay and storage time predictions.

Given from test results $\tau_{4}=50 \mathrm{nsec}$. Also,
$Q_{R^{*}}(90 \%) \cong Q_{B^{*}}(90 \%)$ at $\frac{4-5 v}{400 \Omega}$
$\cong Q_{B^{*}}(90 \%)$ at $11.25 \mathrm{ma} \cong 42.6 \mu \mu \mathrm{C}$.
$Q_{C}(90 \%)$ at $-5 \mathrm{v}=33.8 \mu \mu \mathrm{C}$.
$Q_{B}=Q_{R^{*}}(90 \%)-Q_{C}=8.8 \mu \mu \mathrm{C}$
At $V_{B \cap}=+1.32 \mathrm{v}$ bias: $I_{B 2}$ as shown before $=$ $-1.06 \mathrm{ma}$

$$
\begin{aligned}
I_{f}(10 \% \text { to } 90 \%) & =\frac{\left.\frac{8}{9} Q_{B^{*}}\right|^{20 \%}}{-I_{B 2}+\frac{Q_{B}}{2 \tau_{a}}} \\
& =\frac{\frac{8}{9}(42.6) \mu \mu \mathrm{C}}{1.06 \mathrm{ma}+\frac{8.8 \mu \mu \mathrm{C}}{2(50 \mathrm{nsec} .)}}
\end{aligned}
$$

Predicted $t,(10 \%$ to $90 \%)=32.9$ nsec. Actual observed $\ell_{f}(10 \%$ to $90 \%)=27 \mathrm{nsec}$

Experiments Verify Validity

Of Switching Speed Predictions
Rise Time (t_{r}): Using the simplified relation for rise time prediction, Eqs. 5, 6 and 7, comparison of measured with predicted rise times for typical samples of the alloy 2 N 396 and the mesa ZJ-42 transistors shows good correlation. For the 2N396 units, the comparison of predicted vs measured rise time was within Give per cent. For the ZJ-42 units, using the circuit of Fig. 1 with $\boldsymbol{R}_{1}=\boldsymbol{R}_{2}=$ $2 \mathrm{~K}, R_{L}=1 \mathrm{~K}$, and $V_{C C}=-10 \mathrm{v}$, and $V_{B B}=$ +1.32 v as a typical example, data was taken for square-wave input pulse amplitudes of -10 v , $-7 \mathrm{v},-5 \mathrm{v}$, and -3.5 v . For rise times of about 14 nsec and 20 nsec observed, the error of prediction was within 1.3 nsec . For rise times of about 40 nsec observed, the error of prediction was within 1.5 nsec . For rise times of about 85 nsec , most errors of prediction were within 4 nsec . For the $\mathrm{ZJ}-42, V_{B E}$ was measured at $V_{I \mathrm{v}}=-5 \mathrm{v}$, and this average was used to obtain $I_{B 1}$ at all input voltages. Greater accuracy of $V_{B E}$ at the input voltages would increase the accuracies of prediction.
Delay plus Rise Time $\left(\boldsymbol{t}_{d}+\boldsymbol{t}_{r}\right)$: For the $\mathrm{ZJ}-42$, using Fig. 1. where $R_{1}=2 \mathrm{~K}, R_{2}=22 \mathrm{~K}, R_{L}=$ $1 \mathrm{~K}, C_{1}\left(\right.$ across $\left.R_{1}\right)=2 \mathrm{pf}, \mathrm{V}_{C c}=-10 \mathrm{v}$ and $V_{B A}$ $=0 \mathrm{v}$, as a typical example, the input pulse
amplitude was changed to the values $V_{1 y}=$ $-10 \mathrm{v},-7 \mathrm{v},-5 \mathrm{v},-3.5 \mathrm{v}$. The values of charge transferred through $C_{1},\left[V_{I N}-V_{B B}\right] C_{1}$, must be subtracted from $Q_{B}{ }^{\circ}$ for this case so that $\left(t_{d}+t_{r}\right)=\frac{Q_{B^{*}}-{ }^{*}\left(V_{I N}-V_{B E}\right) C_{2}}{I_{B 1}}$. With $\left(t_{d}+t_{r}\right)$ observed values of about $8 \mathrm{nsec}, 13 \mathrm{nsec}$, and 19 nsec, the errors of prediction were within 1 nsec , while for observed values of about 30 nsec , the errors were within 2 nsec.
Delay Time $\left(t_{d}\right):$ For the ZJ-42, calculating t_{d} as shown in the sample prediction section for $V_{B B}=+1.32 \mathrm{v},+2.68 \mathrm{v}$ with observed delay times of 4 nsec and 8 nsec , the errors of prediction are within 1 nsec.
Fall Time (t_{f}): For the ZJ-42, fall time, t_{t}, was calculated as shown in the sample prediction section for $V_{R A}=0,+1.32 \mathrm{v},+2.68 \mathrm{v}$. For observed fall times of 20 nsec , errors of prediction are less than 3 nsec . For observed fall times of about 30 nsec , errors of prediction are less than 6 nsec for most cases. Where there is no applied off-bias, so that the actual $I_{R 2}$ is difficult to determine, the observed fall times were about 90 nsec. Nevertheless, errors of prediction were within 17 nsec for most cases.
Storage Time after Long Pulse (t_{s}): Storage time, t_{θ}, calculated as shown in the sample prediction section, was within plus or minus 15 per cent for the 2 N 396 . For the ZJ-42, t, was calculated as shown in the sample prediction section for $V_{B A}=+1.32 \mathrm{v},+2.68 \mathrm{v}$. For observed storage times of about 65 nsec , the errors of prediction were less than 10 nsec for most cases. For observed storage times of about 110 nsec , the errors of prediction were less than 13 nsec for most cases. At zero bias, where $I_{R 2}$ is difficult to predict accurately, the observed storage times were about 220 nsec . Even so, the errors were still within 34 nsec for most cases.

Thus, it may be concluded that $Q_{B}{ }^{\circ}, \tau_{a}$ and are the most fundamental quantities that define a transistor regarding its ability as a switching device; many other derived parameters can be obtained from them. Most obviously, the ratio Q_{B} to I_{c} is one possible parameter, which Sparkes has called $\tau_{c} . \dagger$ Or, the ratio $Q_{B}{ }^{0}$ to I_{C} can be another, which Simmons has called $\tau_{R E} \cdot \ddagger$ -

Acknowlodgments

The authors wish to acknowledge the help given by many of our colleagues, in particular to U. S. Davidsohn and G. B. Oher for their many suggestions and critical review. R Sobus has been of great help in obtaining the data and calculations. This work would never have been compiled without the encouragement of R. P. Frenzel and C. A. Shaw.
\$See Reference 8, part 1, ED, March 15, 1961, p 55. tSee Reference 7, part I, ED, March 15, 1981, p 55.

HOWEYWEII
 Piehsodr METERS

ASSISTINGOur first Astronaut will be aided by an instrument designed to provide visual monitoring of his automatic re-entry equipment. The device is a product of the creative design and engineering skills of Honeywell. Components for it are

OUR",
FIRSTMANbeing supplied by the Honeywell Precision Meter Division.
Maybe you have a mechanism problem that's looking for a solution. A quality product from Honeywell may be the answer. Just get in touch with our representative in your area - he's listed in the classified pages of your telephone directory. Or contact us: Honeywell Precision Meter Division, Minneapolis-Honeywell Regulator Company, Manchester, N.H., U.S.A. In
$97 \square \square$ Canada, Honeywell Controls Ltd., Toronto 17, Ont. HONEYWELL INTERNATIONAL Sales and service offices in ail principal cities of the world.
$1-$ Pracition Meterst

Instead of gaining increased high-voltage protection, added insulation can sometimes increase the frequency of equipment breakdowns. Author Rocco tells why.
airborne radar beacon. Its reliability was seriously hampered by occasional high voltage breakdown in the power supply, particularly in the region of the magnetron anode. The designers, recognizing a potential trouble spot, had designed a thin-walled teflon sleeve to fit over the magnetron anode. The sleeve covered the anode but did not completely fill the air gap with dielectric. This resulted in a change of the electric field configuration in the air region. Rather than help the situation, the insulation had only aggravated the arcing condition further.

The reason for the increased arcing may be understood by referring to a simplified mode' of an arc-gap, Fig. 1. Here, the gap is treated as a parallel-plate capacitor partially filled with dielectric. Working with the basic definitions for a capacitor, that is, $Q=C E, C=K \varepsilon / d$, and realizing that the areas of dielectric constant ε_{1} and ε_{2} may be considered as capacitors in series, the

Fig. 1. Breakdown region from equipment to ground is represented by a parallel plate capacifor of gap $d=d_{1}+d_{2}$, partially filled with dielectric of width d_{1}, dielectric constant ε_{1}.

Vincent Rocco

ITT Laboratories
Nutley, N.J.

THE MINIATURIZATION of electrical equipment has caused the high-voltage-circuit designer to rely more and more on dielectric barriers. In cases where dielectric is used judiciously, good results are obtained. However, in many instances, indiscriminate use of insulating material can actually increase the tendency of the circuit to arc and break down.

Added Dielectric Imposes

 New Field ConditionsThe typical approach to the solution of an arcing problem is simply to cover the danger areas with sheets or cylinders of dielectric, without analyzing the new set of conditions set up in the region. For instance, recently the author was involved in a program for the development of an

(a)

Fig. 2. (a) No protective insulation is added. Voltage e_{2} from circuit to ground varies linearly. (b) With added insulation, voltage e_{2} depends on thickness, d_{1}.

Fig. 3. Partial filling of air gap with insulation causes air gap voltage, e_{2}, to be greater than if no insulation had been added, or if insulation completely filled gap (straight line).

Fig. 4. Example shows that with Teflon partially filling gap, voltage varies discontinuously; voltage across air gap is everywhere increased. Chance of voltage breakdown is, therefore, greater.
following equation for the voltage drop across the insulating material can be derived:

$$
\begin{equation*}
e_{2}=\frac{\epsilon_{1} d_{2} E}{\epsilon_{2} d_{1}+\epsilon_{1} d_{2}} \tag{1}
\end{equation*}
$$

There are two conditions which must be compared. In condition $1, \varepsilon_{1}=\varepsilon_{2}$, or the gap is completely homogenous, Fig. 2a. If the gap dielectric is air $(\varepsilon=1)$, the voltage at any point in the gap is (from Eq. 1, with $d_{2}=d-d_{1}$):

$$
\begin{equation*}
e_{2}=\frac{d-d_{1}}{d} E \tag{2}
\end{equation*}
$$

This is a linear relationship.
In condition $2, \varepsilon_{1} \neq \varepsilon_{2}$, or a sheet of dielectric of thickness d_{1} has been inserted to partially fill the gap, Fig. 2b. Now the voltage across the air gap is:

$$
\begin{equation*}
e_{2}=\frac{\epsilon_{1}\left(d-d_{1}\right) E}{\epsilon_{2} d_{1}+\epsilon_{1}\left(d-d_{1}\right)} \tag{3}
\end{equation*}
$$

and depends upon the dielectric thickness.
Eqs. 2 and 3 are plotted in Fig. 3 for a gap 1 -in. wide, with $\varepsilon_{1}=2.1$ (Teflon) and $\varepsilon_{2}=1$ (air).

It is clear from Fig. 3 that the voltage across the air portion of the gap, for all thickness of dielectric, is greater than if the dielectric had been completely omitted.
Greater insight into conditions existing in the are gap may be had by examining Fig. 4. A dielectric of fixed thickness (arbitrarily chosen at 0.3 in .) was inserted in a $1-\mathrm{in}$. gap. From the previous equations defining e_{2}, a plot of e_{2} was made. For a gap completely filled with either air or solid dielectric, the voltage gradient follows a conventional path. However, with the insertion of the slab of solid dielectric, the gradient becomes a discontinuous function. Since the slope of the graph, that is, v / d, represents the electric field intensity, it follows that a redistribution of the electric field occurs in the gap. Thus, the presence of the solid dielectric has caused a build-up of electric field intensity in the adjacent air region.

Dielectric Should Fill Completely Rather Than Partially

It can be concluded from the graphs that two principles should be followed for reducing the danger of voltage breakdown.

1. Whenever possible, the breakdown region should be entirely filled with homogenous dielectric material.
2. A dielectric with low dielectric constant in addition to high dielectric strength should be used.

When point 1 cannot be met, it may be useful to know for what dielectric thickness the greatest increase in potential will occur in the air region. This can be calculated from Eq. 3, which expresses the potential, e_{2}, at the dielectric-air gap interface, and from Eq. 2, which expressed the potential, e_{2}^{\prime}, at any point in a homogenous air gap. Denoting the difference between e_{2} and ε_{2} by λ :

$$
\begin{align*}
& \lambda=e_{2}-\epsilon_{2}^{\prime} \tag{4}\\
& \lambda=\frac{\left(\epsilon_{1} d-\epsilon_{1} d_{1}\right) E}{\epsilon_{2} 1+\epsilon_{1} d-\epsilon_{1} d_{1}}+\frac{E d_{1}}{d}-C \tag{5}
\end{align*}
$$

Differentiating Eq. 5 and setting it equal to zero shows that the maximum increase in potential occurs for a dielectric thickness $d_{1 \text { mas }}$ of:

$$
\begin{equation*}
d_{1 \text { mat }}=\frac{d\left(\sqrt{\epsilon_{1} \epsilon_{2}}-\epsilon_{1}\right)}{\epsilon_{2}-\epsilon_{1}} \tag{6}
\end{equation*}
$$

 demands.

Double-Frame-Grid Pentode

WITH BOTH control and screen grids using frame-grid construc-
Wide variety of standard models plus superior engineering and production capabilities. Write today for technical data and name of your Wright Motors representative.

HIGH WIDEFREQUENC
ACCELERATION RESPONSE

tion. a new pentode boasts performance features that far surpass those available in conventional pentodes.
Compared with some of the better pentodes using conventional construction, the new tube, type 7788, is said to offer a gain-bandwidth figure-of-merit of 400 mc (vs 130 mc), a transconductance of $50,000 \mu$ mhos (vs 10,000), an equivalent noise resistance of 100 ohms (vs 200 to 300), and a much higher plate-to-screencurrent ratio.
Available from Amperex Electronic Corp., 230 Duffy Ave., Hicksville, L.I., N.Y., the new tube minimizes the shift in characteristics when one switches from low to high anode currents. The rigidly constructed, precisely positioned control and screen grids yield a very low
spread in characteristics from tube to tube as well as very low levels of microphonics. The frame-constructed screen grid gives better than usual screening of the control grid, resulting in the high plate-to-screen-current ratio.
The sturdy construction provided by the grid frames allows the control-grid to be made of wire only 5 microns in diameter-about half the thickness of the finest grid wire normally used. This allows more turns to be wound per inch while it minimizes grid current.
Though the closely spaced grid wires provide rather high input and ouput capacitances (16 pf at the input and 3.5 at the output), this is more than made up for by the high $\boldsymbol{G}_{\mathrm{m}}$. Thus, though the capacitances may be twice as large as the capacitances in good pentodes, the G_{m} is at least five times as large. Hence,
the \mathbf{G}_{m}-to-C ratio is unusually high, resulting in the very high gain-bandwidth product

The 7788 , with $6.3-\mathrm{v}, 340$-ma filamentl requirements is rated, typically, to draw 35 ma of plate current with a $1.35-\mathrm{v}$ plate supply. Yet the tube can conduct 65 ma for $1,000 \mathrm{hr}$ and 50 ma for $10,000 \mathrm{hr}$.
The nine-pin miniature tube sells for $\$ 7.95$ in quantities greater than 50. In smaller quantities, the unit price is $\$ 10.50$. Delivery is from stock.
For more information on this tube turn to the Reader-Service Card and circle 251.

Frame-grid construction (left) compared with conventional grid construction. Mica spacers, difficult to manufacture to tight tolerances, are used in conjunction with the grid wire to maintain proper spacing of the support rods in conventional grids. In the frame grid, spot welded cross bars keep the grid supports accurately positioned. The grid wire has only an electrical function.

SUPERIOR IN EVERY DETAIL

THIS IS

COM X HEX

Type 3000/3001 Cable Plug and Jack

Different? Yes. And better, too. "Conhex" sub-miniature r.f. connectors are now in use in the most critical electronic assemblies, and specified by the most discriminating manufacturers of equipment. The many obvious advantages of the "Conhex" design result in easier assembly, greater dependability, and better electrical characteristics. Now "Conhex" is available in two basic styles - Clamp-On for limited runs and easy field replacement, and Crimp-On, designed to save time and money in large production runs. Write fer Complete eatalog..

Damped Printed-Circuit Boards Reduce Vibration Effects

A RADICALLY NEW, highly damped material for printed-circuit boards will give design engineers another tool for use in raising reliability standards. The material converts vibratory energy into shear strains which are dissipated in an elastomeric layer bonded between elements of epoxy-fiberglass laminate. The elastomer, which adapts to normal processing methods, exhibits unchanging characteristics under all environmental conditions.

Dyna-damp Printed Circuit Boards produced by the Lord Manufacturing Co., Erie, Pa., represent the first successful use of integrally damped material developed for printed circuitry. The new material will greatly extend design freedom and aid miniaturization in highdensity electronic packaging. The designer need not worry about structural response characteristics or local circuit board resonances. More sensitive components, smaller and lighter than previ-

Typical curve shows drastic reduction in resonant transmissibility made possible by use of Dyna-damp printed-circuir board material. Degree of reduction depends on specific design and density characteris lics of any given board.

CIRCLE 44 ON READER-SERVICE CARD
ous designs can be used and located to best advantage.

Two Basic Problems Are Caused
 By Structural Response

The complex dynamic disturbances associated with the operation of high-performance jet aircraft and missiles produce two effects which cause unreliability of printed boards: excessive amplitude and high g-loads. Both are functions of structural response. Current highperformance aerospace craft components are subjected to disturbances of higher frequencies than those which were encountered just a few years ago. The top disturbing frequency in jet specifications used to be 55 cps ; today 500 cps is considered nominal and excitations may range as high as $5,000 \mathrm{cps}$ in missiles. The nature of these excitations can be exceedingly complex and, in addition, sustained accelerations up to 25 g can be present.

Resonant Frequency Response

Can Cause Failures

Printed-circuit boards are lightly damped, rigid structures incorporating fragile components which are susceptible to destruction under these dynamic conditions. When resonant response occurs either of two things can happen. The board may respond at its resonant frequency, producing oscillation beyond its alloted space envelope and strike adjacent structures; or the energy transmitted through the board may exceed the g levels which the components can withstand.
The damped laminate approach minimizes resonant structural response, thereby controlling amplitude and g load. Tests already completed on the Dynadamp material show that transmissibility under resonant conditions is reduced from 50 to $66-2 / 3$ per cent over that exhibited by undamped material.

Fabrication techniques used with standard boards can be employed with Dyna-damp boards. Where double-sided boards are concerned, ferrules can be used in the lead holes. Samples of this new material can be had immediately. The Lord Manufacturing Co. plans to produce the printed circuit boards in specified sizes and configurations.

For further information on these circuit boards turn to the Reader-Service Card and circle 253.

PUTIING MAGNETICS TO WORK

Sign up for the Magnetics self-improvement course:

Here's free help to enable you to improve yourself-and your position as a magnetic circuit designer. You need it if: You don't know how to work with $\mathrm{E}=\mathrm{n} \frac{\mathrm{d} \phi}{\mathrm{dt}}$ to reduce the size of magnetic amplifier circuits. Most men who design amplifiers for cramped operation in missiles have found it invaluable.
What's more, you may only vaguely remember $\mathrm{H}=.4 \pi \frac{\mathrm{NI}}{l_{\mathrm{m}}}$, so how can you use it to cut circuit size by two to ten times, and shorten response time proportionately?
It's quite possible that you, like many engineers, may have bypassed or been bypassed by magnetic circuit theory as a working tool while you were in school. Yet this science has opened frontiers of static control which makes an understanding imperative if you are to do your job-and further your career. For your sake (and for ours, 100 , because we manufacture and sell high perme-
ability tape wound cores and bobbin cores which are used in amplifier circuits), we have started this course. Lesson 1, "How to Reduce Magnetic Circuit Size and Response Time," will be on its way to you immediately if you use the coupon below.

MAEIETICSINC.

MAGNEIICS INC., DEPT. ED-86, BUTLER, PA.

Ploose enroll me in your froe self-improvement courso, and send me
"How To Reduce Magnelic Circuî Size and Rouponso Time.
name
neme
nle

CIRCLE 45 ON READER-SERVICE CARD

Tolerance Buildup No Bugaboo with Punched Laminated Plastics Parts

The compounding of individual tolerances on several punched holes or cutouts over the length of the piece is not the bugaboo that many designers believe. Careful die work and good working knowledge of the laminate used minimizes tolerance buildup. A good example of what can be done is the insulated pusher fabricated by Taylor for a high-performance crossbar switch manufactured by James Cunningham, Son \& Co., Inc., Rochester, N.Y.
These switches are 3 -dimensional conductor matrices, with from 30 to 1200 switching contacts, which bring intelligence from as many as 600 sources to one or more readout or signal points. They are basic components in computers, machine tool programming systems, high frequency scanning systems, thermocouple and strain gage monitoring, and similar equipment.
The insulated pusher, only 2.955 in. long and .031 in. thick, and fabricated from Taylor Grade GEC-500 glass epoxy laminate, is a critical part of the crossbar. It must be held flat within $\pm .005$ in., with total over-length buildup not exceeding $\pm .002$ in.
The materials used before to fabricate the pusher proved difficult to hold to the tolerances required. The success of the GEC-500 laminate fabricated by Taylor is evidenced by marked reduction in rejects and a 20% gain in production.
Taylor Fibre's Fabricating Division has the manpower, experience and equipment to produce parts to close tolerances from any of the company's raw materials. Send us your problem-we will recommend the best material for the job and quote on production runs. Write Taylor Fibre Co., Norristown 48. Pa.

> High-Resolution Spectrum Analyzer Offers Wide Dynamic Range

EVALUATION of a frequency spec-- trum containing many signals of widely differing characteristics is made possible by the LA-2l spectrum analyzer. Designed for communications work, the instrument covers the most widely used commercial and military frequencies.
An outstanding feature of the LA-21 is its ability to discriminate between signals differing in amplitude by as much as 80 db and separated by only 50 kc . Resolution is extended to 90 db when the signals are 150 kc apart. Narrow resolution of 5 kc can be expected when signal levels are equal in amplitude.

A signal sensitivity of better than 90 dbm is provided over the fundamental frequency range of 10 mc to 680 mc , with slightly reduced sensitivity to 1,180
mc using harmonic operation of the triode local oscillator. Sensitivity can be improved to 110 dbm on special order. Applications of the instrument, made by Lavoie Laboratories, Morganville, N. J., include the evaluation of spurious response, signal stability testing, filter network evaluation, and frequency spectrum monitoring.
The visual display, on a type 5ADP7 cathode-ray tube, is supplemented by an aural monitoring system. A built-in speaker calls attention to changes in the signal and aids in signal identification. A jack for headphones is also provided. An internal crystal calibrator is used for convenient and extremely accurate calibration of the spectrum being viewed; markers at 100 kc and 1 mc are selected from the front panel. Tuning dial is of the slide-rule type, with one frequency range visible at a time. Maximum stability is provided by electronically regulated plate and filament power supplies. Power requirements are $115 \mathrm{v} \pm 10 \%, 50$ to $400 \mathrm{cps}, 250 \mathrm{w}$.

Dual attenuators provide 100 db of continuously variable attenuation of the input signal over the entire frequency range. The if attenuation range is 0 to 60 db , step-variable in $6-\mathrm{db}$ steps. Detection mode is selected from squarelaw, linear, and logarithmic types. Frequency dispersion is continuously adjustable from 100 kc to 2 mc . Centering controls allow an additional 1 mc on each side of the spectrum center.
Synchronization sensitivity is adjustable at the front panel. A signal of 3.0 v peak is required for external synchronization. Sweep rate is 0.5 to 20 cps , continuously adjustable. Video signal and horizontal drive are brought to frontpanel connectors for X-Y and roll-chart recording. Photographic recording is facilitated by intensification of trace on fast rise and decay, with automatic baseline extinction.
The instrument measures 21-3/4 in high, 19-1/2 in. wide, and 18-7/16 in. deep. It operates in ambient temperatures ranging from 0 to 55 C .

Price of the I.A-21 is $\$ 5,450$. Delivery time is 60 days.
For more information on this highresolution spectrum analyzer, turn to the Reader-Service Card and circle 252.

ELECTRONIC DESIGN • April 12, 1961

General Instrument Semiconductor... Design Breakthrough NEW G 2N1678 "DYNAMIC High Voltage High Speed Saturated Circuitry At Low Cost

$\xrightarrow{\square}$	Priametry	Sconatiman	min	Im.	Men.
${ }^{+}$	T,		$-65^{\circ} \mathrm{C}$		$+85^{\circ} \mathrm{C}$
$x=1$	p P	$\mathrm{T}_{2}=25^{\circ} \mathrm{C}$			120 mm
	$\mathrm{V}_{\text {an }}$	$\mathrm{I}_{4}=100 \mathrm{AD}$	60.		
	$v_{\text {ceo }}$	$\mathrm{I}_{600}=25 \mathrm{mo}$	60 V		
	Veos	$\mathrm{t}_{100}=100 \mathrm{~m}$	$4{ }^{45}$		
	n_{n}	$\mathrm{I}_{\mathrm{c}}=20 \mathrm{mz} ; \mathrm{v}_{\text {c }}=0.25 \mathrm{v}$	25	40	
	lam	$\mathrm{V}_{\text {ct }}=10 \mathrm{v}$			500
	$\mathrm{V}_{\text {m }}$	$\mathrm{I}_{\mathrm{a}}=20 \mathrm{~ms} \mathrm{~V}_{\mathrm{ad}}=025 \mathrm{v}$			0.67
	b	$\mathrm{l}_{1}=1 \mathrm{ma}: \mathrm{vag}_{\text {a }}=5 \mathrm{v}$	25 mc	35 Mc	
	Pos	$\mathrm{L}_{\mathrm{L}}=1 \mathrm{~ms} \cdot \mathrm{va}_{\mathrm{a}}=10 \mathrm{v}$		50 Mc	
	m,	$\mathrm{h}_{\mathrm{h}}=1 \mathrm{~ms} \mathrm{v}_{\mathrm{ct}}=5 \mathrm{va} 1=1 \mathrm{mc}$		308	
	no	$v_{c o}=5 \mathrm{v}_{0} l_{\text {c }}=1 \mathrm{ma} 1=1 \mathrm{mc}$		0.50 min	20mm
	C_{0}	$\mathrm{v}_{\mathrm{r}_{0}}=5 \mathrm{r}, 1_{0}=1 \mathrm{~mm}, 1=5 \mathrm{mc}$		3.5 m	5 M
	1. + t	$\mathrm{I}_{6}=20 \mathrm{ma} \mathrm{l}_{00}=\mathrm{Im}_{\mathrm{mm}}$		0.4. 200	
	i + +	$=1 \mathrm{~ms} \mathrm{~m}_{1}=1 \mathrm{~m}$		0.4. mac	

General Instrument proudly presents the 2N1678 "Dynamic Drift". . . ideally suited for high speed. high voltage saturated circuit applications. The 1 Mc bistable multivibrator, above, is only one example of the multitude of applications for this attractively-priced transistor family.
Life test data proves reliability of the new General Instrument 2N1678 "Dynamic Drift". Close quality control guarantees extremely high electrical uniformity, shipment to shipment.

COMPUTER SEMICONDUCTORS

General Instrument is your major source for high quality computer semiconductors . . . transistors, as well as companion diodes, rectifiers and logic encapsulations for every type of circuit application. The transistor families shown below indicate the broad range of superior quality units offered by General Instrument.

All speeds shown have been attained with conventional saturated circuitry. Total bar length represents rate (period) using speed-up capacitors; broken bar indicates maximum speed with. out capacitor.

Representative transistors shown are alloyed-junction devices. Types 2 N501A, 2N604, and 2N1678 are MADT, Drift, and High-Voltage Drift, respectively.

Write General Instrument for complete engineering and life test data, design curves, and typical circuitry which takes advantage of the unique combination of characteristics offered by the new $\mathbf{C}_{\text {s }}$ 2N1678. Data is available, of course, on our full line of computer semiconductors. Our engineers will gladly discuss your specific circuit requirements gank

IN CAMADA: General Instrument-F. W. Sickles of Canada Lted, P.O. Box 408, 151 S. Weter Stroet, Waterloo, Ontario, Canada. Sherwood 4-8101. CIRCLE 47 ON READER-SERVICE CARD

NEW PRODUCTS

Covering all new products generally specified by engineers designing electronic original equipment Use the Reader's Service Card for more information on any product. Merely circle number correspond ing to that appearing at the top of each description

Glass-To-Metal Seal
Made with ferrous alloys or tungsten and molybdenum, these glass-to-metal seals can withstand sustained temperatures of 500 to 600 C , and are not damaged by temperatures of nearly 800 C for short periods. The low-cost seal is said to be more easily made and formed than ceramic-to-metal seals.
Hermetite Corp., Dept. ED, 100 Ladge Drive, Avon, Mass.
Acailability: Immediate.

Zener Diode 256 Rated of 250 W

Type 250 Z is a Zener power regulator rated at 250 w at case temperature of 100 C . Voltage range is 6.8 to 30 v . Typical dynamic impedance is 0.06 ohm max for $30-\mathrm{v}$ type, 0.006 ohm for $6.8-\mathrm{v}$ type. Flange-mounted and studmounted packages are made.

Standard Rectifier Corp., Dept. ED, 620 E. Dyer Road, Santa Ana. Calif. P\&A: $\$ 60$ to $\$ 75$ ea, sample quantities; 2 to 3 weeks.

Digital Counter

Has Continuous Display

Type 1130-A digital time and frequency meter uses four decades for storage and continuous display, while the remaining four decades count continuously. At the end of counting interval, total is transferred in $100 \mu \mathrm{sec}$ to the storage and display decades. Ranges are: frequency, de to 10 mc ; period, $10 \mu \mathrm{sec}$ to $10^{\circ} \mathrm{sec}$; interval, $1 \mu \mathrm{sec}$ to 10^{7} sec . Circuits are designed for maximum reliability. Plug-in time-base oscillators are available with stabilities up to 5 parts in 10^{10} per min.

General Radio Co., Dept. ED, West Concord, Mass.
Price: from $\$ 2,585$ to $\$ 2,950$.

HOW TO GET 380 mw at 250 mc

Miniafure Phofocell

 Delivers Up to 300 MaA light-actuated pnpn silicon switch, the Photran has over 10 meg impedance when off, 10 ohms when triggered on by light. Measuring 0.200 in . long by 0.185 in . OD, the device can deliver up to 300 -ma load current at up to 200 v with an efficiency excceding 98%. Output is determined by load and is independent of light input at all intensities above the triggering level, typically $200 \mathrm{ft}-\mathrm{c}$. High output often allows direct actuation of load without intermediate relays or amplifiers. Anode voltages range from 15 to 200 v in 6 ratings. Surge current is $5 \mathrm{amp}, 8 \mathrm{msec}$.

Solid State Products, Inc., Dept. ED, 1 Pingree St., Salem, Mass. Price d. Availability: $\$ 10$ to $\$ 3.5$; 1 week.

Plug-In IF Amplifier 259 With Gain to 80 Db

The Amplitran is a transistor if amplifier with single-stage gain from 15 to 20 db , with up to 80 db in cascaded units. Center frequencies are $455 \mathrm{kc}, 1.0,4.3,10.7$, and 30.0 mc . Bandwidth of the $30.0-\mathrm{mc}$ cascaded unit is 1.8 mc , power gain 68 db . A 4 -stage unit measures $4-1 / 2 \times 1-1 / 4 \times 2-1 / 4 \mathrm{in}$. Dual and triple sizes are also made.

Ferrotran Electronics Co., Inc., Dept. ED, 693 Broadway, New York 12, N.Y.
Price: $\$ 50$ to $\$ 60,1$-stage; $\$ 300$ to $\$ 340,4$-stage.

Specify TI 2N1141 P-N-P Germanium Mesa Transistor Series

\rceil Design-in Texas Instruments 2N1141 series transistors to obtain 380 mw output at 250 mc from your power amplifiers in telemetering applications in missiles and military communication systems.
TI 2N1141, 2N1142, 2N1143 germanium mesa transistors providing maximum dissipation of 750 mw at
$25^{\circ} \mathrm{C}$ case temperature, 35 volts at $100 \mu \mathrm{a} \mathrm{I}_{\mathrm{c}}$, and $\mathrm{f}_{\text {max }}$ to 750 mc are ideal for your VHF power amplifier and oscillator circuits.
Order these TI "Tailored-to-the-Task" 2N1141 series devices today from your nearby authorized Texas Instruments distributor. Call him or your local TI sales engineer for price and delivery information including a detailed report on 2N1141 applications.

TYPICAL CHARACTERISTICS AT 25 C	2 21141	$2 \mathrm{N142}$	$2 \mathrm{N1143}$
TYPICAL COMMON-EMITIER SHORT CIRCUIT FORWARD CURRENT TRANSFER RATIO AT 100 mc hife	13.5 db	11.5 db	9.5 db
TYPICAL MAXIMUM FREQUENCY of oscillation $f_{\text {max }}$	750 mc	600 mc	500 mc
TYPICAL COLLECTOR-BASE TIME CONSTANT ${ }^{\prime} \mathbf{b}^{\prime} C_{c}$	30 ohm $\cdot \mu \mu^{\prime}$	40 ohm- ${ }^{\text {u }}$ f	50 ohm- μ_{μ}

Specily II Germanium Trmesistors For Your: Computer / Power Supply / Communioation / Industriad Control / Entertainment - Applications
SEMICONDUCTOR-COMPONENTS DIVISION TEXAS

plck the accuracy you need from these Kelthley high voltage supplies

MODEL 241 - 0.05\% accuracy

Here is the successor to dc secondary standards that employ mechanical choppers and standard cells. The new 241, featuring a Keith-ley-designed long-life photo-chopper, offers five-dial resolution from 0 to 1000 volts at up to 20 milliamperes. Stability is within 0.005%. Output - plus, minus or floating - can be dialed from 0 to 1000 volts in 0.01 volt steps, with noise and hum below 1 mv RMS. The 241 is unaffected by shock or vibration and cannot be damaged in ordinary use. It is most useful in calibration of meters and transducers. 'testing insulation and leakage resistances, and as a voltage reference for analog computers.

MODEL 240-1\% accuracy

This voltage supply is a general-purpose version of the 241, with similar features and somewhat reduced accuracy and regulation. Three calibrated dials permit dialing any output to 1000 volts in one-volt steps. The switch includes an "off" position, facilitating timed measurements. Stability is within 0.02 volts $\pm 0.02 \%$ the first hour, or in subsequent 24 hour periods. The Model 240 can be used to furnish stable dc potentials in checking dc amplifier gains, and for production tests of transistors. Used with a Keithley electrometer, resistances over the range of 0.1 ohm to 10^{16} ohms can be measured.

brief specifications

Model	Output				Regulation			Price
	Voltage	Current ma	Accuracy	$\underset{\text { ohms }}{\mathrm{Z}}$	Ripple	Line	Load	
241	0-1000	0-20	.05\%	. 05	1 mv	.005\%	.005\%	\$800.00
240	0-1000	0-10	1\%	15	3 mv	.02\%	.02\%	\$325.00

 12415 EUCLID AVENUE OLEVELAND E.OHIO CIRCLE 49 ON aEADER-SERVICE CARD

NEW PRODUCTS

Pressure Gauge

A small, rugged pressure transducer is used with this pressure gauge for measurements from 0 to 2,500 psig. Intended for use in air and gaseous systems, device operates on thermopile principle. Multi-position gages using up to 5 transducers with a single instrument are also made. Transducers are interchangeable without recalibration or adjustment.

Hastings-Raydist, Inc., Dept. ED, Hampton, Va.
Price b Availability: $\$ 257.50$; immediate.

Servo Amplifiers

A size $18,60-\mathrm{cps}$ servo motor, rated at 9 w per phase, may be driven with these servo amplifiers. Outputs are identical; inputs differ to accept one-speed ac data (model 748-A), two-speed synchro data (747-A) and dc input signals (747A and 797-A). Amplifiers include damping networks for proper loop stabilization, and generate the carrier shift necessary for quadrature across the motor. Size is $4 \times 8 \times 3$ in., weight under 36 oz .

Industrial Control Co., Dept. ED, Central Ave. at Pinelawn, Farmingdale, L. I., N. Y.

Linear Amplifier

With integral pulse-height analyzer, the N-328 amplifier has high-speed, nonoverload character-

ELECTRONIC DESIGN • April 12, 1961
istics plus optional pick-off for $40-\mathrm{nsec}$ range coincidence. Gain is 7,000 ; amplifier has double delay-line pulse shaping and a choice of integral or differential discriminators. It is suitable for use where large overload signals are present, and in counting at rates to 250 kc .

Hamner Electronics Co., Inc., Dept. ED, P. O Box 531. Princeton, N. J.

Numerical Comparator

Developed for automatic control, digital comparator uses numerical commands to control machinery to 110,000 th of an inch at rates up to 30 in . per min. Information is obtained from punched tape program. Unit is composed of command and feedback displacement counters, a differential analog converter and associated circuitry. It is suitable for short-run production and rapid-readout inspection testing.
Hycon Manufacturing Co., Dept. ED, 1030 S. Arroyo Parkway, Pasadena, Calif.
Availability: stock.

Decade Scaler

Operating at 10 mc , this decade scaler uses 8-4-2-1 binary code to count random series pulses. Any number of units can be cascaded by front panel connectors. Total count is displayed in lighted decimal digits. Binary and analog outputs are available on front panel. The solid-state unit is compatible with other Data-Bloc modules.
Harvey-Wells Electronics, Inc., Dept. ED, 14 Huron Drive, Natick, Mass.
P\&A: \$239.50; 30 days in quantities to 100.

This is the time of our annual subscription renewal; Return your card to us.

when Time means Money ...

you can depend on

For small runs, military prototypes, production emergencies or for hurry-up design and engineering projects . . . you can get Coldite $70+$ Resistors in short order.

Coldite 70+ are today's best-looking resistors-and every bit as good as they look. Exclusive solder-coated leads stay tarnish free for fastest soldering. Performance exceeds latest MIL-R-11 requirements . . . gives extra dividends in load life and moisture resistance characteristics. They're available in 2 -watt (RC-42), 1-watt (RC-32), and $1 / 2$-watt (RC-20) sizes . . . in all standard values and tolerances . . . direct from distributors' stocks.

STACKPOLE

XED COMPOSITION RESISTORS

Get them In 24 hours or less ... from these Leading Distributors!
... from these Leading Distributors!

merland

```
marrlang
```



```
massacmusems
    COSTON-Cramem Elostrala| Ine.
```



```
MICNICNO
```



```
    MIssOURI
    85. LOUIS-Immontato supaly Co.
```



```
mum mox
    ChOOKLYM-Elocivonic Emulpmen! Co., Ime.
```



```
    NEW YORK-sloctronts: Comion Inc.
            Mamison Radiacor
            MM
    srencuse-memb/ Eleatrenice ol Srrecue
    \mathrm{ wrucuse-aIMe.mertmim slemeale}
    WHIPE PIAIMS-Warchate Electroalc
                suosly Co., loc.
```

womp camorima
WINSTOM-SALEM-Dallan.Mege Ine.
CIMCIMMATI-Merrliager Diserlhumes C_{0}
 columsurnugimernen, lec.
On: 0 OMM
monervamia Jebaree Co., lace
MMESLVANIA

vigania wasmimorom

. . and G.C/STACKPOLE, TOO Altractivaly packagad by O-C ElecColdile 70^{+}Resision are die avell

Now You Can Nuvistorize Your Equipment Designs with RCA's New GeneralPurpose Sharp-Cutoff Nuvistor Tetrode-RCA-7587-Now Commercially Available.

FOR HIGH-GAIN, RF, IF, VIDEO AMPLIFIER, \& MIXER SERVICE. This new member of the nuvistor family in combination with its companion medium-mu and high-mu industrial triodes (7586-7895) gives you vastly expanded flexibility in design of equipment for critical industrial and military applications where extreme compactness or very high packaging densities are essential requirements.
One third the size of conventional miniature pentodes, and consuming approximately one-half the heater power, this new sharp-cutoff tetrode embodies all the advantages of the nuvistor design: - low power drain - low-voltage operation - high transconductance at low plate voltage - extremely low interelectrode leakage - exceptional uniformity of characteristics from tube to tube - all ceramic-and-metal construction for extreme resistance to shock and vibration. operation at full ratings at any altitude.
Get the full story from your RCA Field Representative or write to RCA Electron Tube Division, Commercial Engineering, Section D-18-DE, Harrison, N. J. electron tues division, Marrison, n. J.

NUVISTOR TETRODE GENERAL DATA Electracal:

Meater, for Unipatential Cothode Voltage (oc orde)	$0.3 \pm 10 \% \%$	
dimeti interelecteode capacitances,		
Grid-No. 1 loplote		nut
	6.5	muf
Plore 10 coithode, gridu- N_{0}. 2.		
Heoter to cathode		
characteristics, class a, amplifien:		
	125	
Grio-No. 2 Supoly Voltage		
	${ }^{6}$	
Prote Rosisonce		
Yrenisonducto		
Grid-No. 2 Current 2.7		
Grid-No. I Voltege (Appres plafe current of 10 нe	-6. 5	
NDUSTRIAL SERVICE maximum ratincs. ansolute-maximum vaiues: For Operotion of Any Altitude		
plate supir voltage	330 man	volth
Noolivo bied volue		
ReEn		
Mo No. 1 Curten		
AR MEATER.CATHO		
muximum circuir values:		
- No . 1 Clrcuit Rosiltome		
for hrod-bien .osere		

NEW PRODUCTS

Firewall Conneciors

The $\mathbf{6 3 4 2}$ series HN firewall connectors are capable of withstanding $2,000 \mathrm{~F}$. Units have a nominal 50 ohm characteristic impedance.
Gremar Manufacturing Co., Inc., Dept. ED, Wakefield, Mass.

Press Conirol

ntanusu

Slide transfer presses are protected from overload due to faulty part transfer by the Autotransfer control device. Provision is also made for sensing end-of-material, buckling, and misfeed.
Wintriss Controls Div., Industrionics Controls, Inc., Dept. ED, 20-24 Vandam St. New York 13, N.Y.

Vaneaxial Blower

Operating on 115 v , ac or dc, VAX-3-GN vaneaxial blower delivers 68 cfm at 1.5 in . static pressure. Used in ground-support equipment, unit weighs 1 lb . Diameter is 3 in ., length $3-1 / 4 \mathrm{in}$. Mounting is made by clamping to servo rim. Blower meets pertinent military specifications.

Globe Industries, Inc., Dept. ED, 1784 Stanley Ave., Dayton 4, Ohio.

Phase-Sensitive Voltmeter 480

For use in test panels, this phasesensitive voltmeter is 3 in . in diameter and 5 in . long. Input signal attenuator is integral with the cylindrical assembly, while meter movement may be remotely located. Quadrature rejection is $50: 1$, 3 rd harmonic rejection -40 db . A $3-\mathrm{mv}$ input gives full-scale deflection. Attenuator range is 3 mv to 300 v in 9 steps. Frequency range is 60 cps to 20 kc , linearity is 2%.

Theta Instrument Corp., Dept. ED, 520 Victor St., Saddle Brook, N.J.

Price \& Availability: $\$ 1.5()$ ea; 30 day delivery.

Piston Capacitors
477

Variable trimmer piston capacitors Tr901 through TTY04, for panels or circuit boards, meet requirements of MIL-C-14409A. Minimum capacitance is 0.5 pf ; maximum is $2.0,3.0,5.0$ or 7.0 pf . Overall diameter is $1 / 8 \mathrm{in}$., length above panel $35 / 64$ to $1-164 \mathrm{in}$. Units are rated at 5010 wvdc. Adjust mechanism has 102 turns per in. Temperature coefficient is low; operating range is -55 to +125 C . The Q factor is 500 .

JFD Electronics Corp., Dept. ED, 6101 16th Ave., Brooklyn 4, N.Y.

13 MOVES

TO RELIABLE

TRIMMING

SPECTROL'S FULL LINE of trimming potentiometers features 10 of the smallest square trimmers ever made, plus the only transistor-size units for solid state circuitry. This selection covers almost every conceivable application - a sure way to avoid checkmate when you need reliable trimmers.

SQUARE TRIMMER DATA. Models 50 and 60 measure $3 / 8^{\prime \prime}$ and $1 / 2^{\prime \prime}$ square respectively bumidity proofing a standard feature - available in resistances to 100 K - greater surface contact between mandrel and aluminum case for better heat dissipation, no external heat sinks needed - dual wiper for positive contact under all conditions of shock and vibration.

SINGLE TURN TRIMMER DATA. Model 80 built into TO-9 transistor type case - measures less than $1 / 3^{\prime \prime}$ in diameter, weighs $1 \mathrm{gram}-$ smallest trimmer on the market - completely sealed against moisture and humidity - resistance element twice as long as ordinary trimmers - designed for complete package encapsulation with other printed circuit components - available in 3 case styles with resistance range to 20 K .

IMMEDIATE DELIVERY. Your nearby Spectrol distributor stocks standard models of trimmers and miniature potentiometers as well as other standard Spectrol precision potentiometers and turns indicating dials. Prices are $\$ 6$ to $\$ 8$ in quantities of $1-9$ for most styles and resistances.

MORE DATA AVAILABLE. Contact your Spectrol engineering representative or drop us a line at the factory. Please address Dept. 36.

ALL TRIMMERS SHOWN ACTUAL SIZE

SPECTROL

ELECTRONICS CORPORATION
1704 South Del Mar Avenue - San Gabriel, California Phone: ATlantic 7.9761

Adams Court - Plainview, L. I., New York Phone: WElls $8-4000$

Transistor size case bushing mount

Printed circuit pins. side adjust

Printed circuit pins. tod adjust
Transistor size threaded case

RELIABILITY

Sub-MInlature MISSILE RELAYS

The history of Dunco FC Relays is one of never ending development to keep these durable, subminiature units fully abreast of the steadily advancing missile and aircraft requirements. As a result, they are prominently identified with many of today's most successful missile programs. Continued engineering of every detail aims to keep them there tomorrow!
Write for Dunco Data Bulletin FC

NEW!

10-AMPERE TYPE whth all-welded construction
Constructod for fully dependable 10 ampere DC ervice, thase sturdy limle DP-DT Dunce FC-215 relays withstane 30 G vibration to 2,000 cycles and 50 G shock. Throughout, they are uniqualy dosigned to meol or zurpass MIL-R-5757 and MIL-R-25018 requiroments.
Writo for Dusco Data Bulbetio FC-215

NEW PRODUCTS

Printed Cable

Multi-conductor Teflon cable can be imprinted with code numbers or letters, eliminating necessity of color-coding. Fluorocarbon resin inks are sintered so that the numbers or letters become a permanent part of the insulation.

American Super-Temperature Wires, Inc., Dept. ED, Winooski, V't.

Capacitor Shielding

Environmental electrical shielding is available for variable capacitors. Full shielding permits capacitor use in any circuit or location under any radiation conditions. Capacitance curve is protected against outside electrical effects.
Hammarlund Manufacturing Co., Inc., Dept. ED, 460 W. 34th St., New York 1, N. Y.

Lamp Adapier

T-1 ultraminiature incandescent lamps can be used in any standard bayonet-base socket with this adapter. Lamp, measuring $1 / 8 \mathrm{in}$. OD by $3 / 8 \mathrm{in}$. long, can be supplied.

Industrial Electronic Engineers, Inc., Dept. ED, 5528 Vineland Ave., North Hollywood, Calif.
PUA: \$0.40 ea, \$3.75 with lamp; stock.
Have you sent us your subscription renewal form?

464

449

looking for these silicon transistor types?

available in quantity from

PNP

- 2N1131
- 2 N1132
(multi-purpose medium power) Write for Bulletin TE-1354-113

NPN

- 2N696
-2N697
(multi purpose medium power)
Write for Bulletin TE-1354-696
-2N698
2N699
(high voltage medium power) Write for Bulletin TE-1354-698

-2N1252
 -2N1253
 (low storage time, medium power)
 Write for Bulletin TE-1354-1252

- 2 N 706
(high speed logic transistor, small signal)
Write for Bulletin TE-1353-706

NOWI Order these popular types of silicon transistors from Transitron, pioneering devoloper of silicon transistors and producer of the industry's broadest line of highquality semiconductors.

- Higher Frequency Requirements
- More Mechanical Ruggedness
- Higher Rellability
- Produced by Gaseous Diffusion Techniques
For full data . . . including the latest relinements achieved by Transitron's advanced production tech. niques... write for Bulletins above.

wakofola, molrose, boston, mase. vus omcas is mancipherves nesovevir

Used with electrical connectors having molded backshells, strain relief assembly G77 effectively reduces strain on wires at the solder pots. Assembly consists of body, three straps, and clamp.
Glenair, Inc., Depe. ED, Glendale 1, Calif.

Power Supply

481
Outputs of 225 to 325 v at 0 to 50 ma are provided by model RS305A power supply. A filament output of 6.3 v ac at 3 amp is also furnished. Versions include modular, rack-mounting, and rack-mounting with 3-1/4 in. meters. V'oltage regulation is 0.05% load, 0.05% line; ripple and noise are 5 mv max peak to peak. Transient recovery time is less than $25 \mu \mathrm{sec}$. Input is 105 to 125 vac .55 to 400 cps. Rack units have 3-1/2 in. panel.
Trans Electronics, Inc., Dept. E1), 7349 Canoga Ave., Canoga Park, Calif.
PdA: \$5.5.50 up; immediate.

Resistance Standard

Five primary resistance standards in the MRS-105 package range from 100 ohms to 1 meg . Accuracy is 0.0015% at values of 1 K to 1 meg and 0.003% at 100 ohms. Stability is better than 0.0015% per year. Case is $9-3 / 8 \times 31 / 32 \times 3 \mathrm{in}$. Elements are oil immersed and hermetically sealed.
Julie Research Laboratories, Inc., Dept. EI), 603 W. 130 th St., New York 27, N.Y.

Transitron

SILICON Gontrolilip RECTITHERS

augmenting the industry's broadest line

With the addition of the 50 Amp Silicon Controlled Rectifer, Transitron now offers the industry the broadest line of Controlled Rectifiers avallatle on the market today.
Research and development efforts during the past year have already produced an impressive array of types which include the following series:

TSW31S SERIES (TO. 18 package).......operating current range to 200 mA TCR251 SERIES (TO.5 package)........ operating current range to 1 amp 2N1595 SERIES (TO. 5 package)..........operating current range to 1 mmp 2 Ni600 SERIES (716^{*} hex package) . . operating orrient range to 3 amps TCR505 SERIES ($7 / 16^{\prime \prime}$ hex package). . . operating current range to b amps ICR510 SERIES ($11,16^{* \prime}$ hex package) operating current range to 10 amps TCR520 SERIES ($11 / 16^{\prime \prime}$ hex package) operating current range to 20 amps

NOW AVAILABLE - NEW 50-AMP CONTROLLED RECTIFIER

The latest addition to the Transitron line - is a three-terminal, four-layer device designed to control very large load currents with small gate current signals. A mechan cally rugged and electrically stable device the new controlled Rectifier is provided in the $11 / 0^{\circ}$ hex base atud-mounted package and is hermetically sealed. Wherever high power handling ability in required, the $50-\mathrm{Amp}$ Silicon Controlled Rectifer will quency changing to welding control.

For information on any or all of Transitron's line of Controlled Rectifers,
call or write today for Bulletin TE-1356.

WHY BIAS
 CONTROLLED RECTIFIERS?

Pioneering in new application techniques, Transitron application engineers have assembled information which demonstrates how "gate biasing" will improve the circuit reliability of the SCR. This informative booklet, entitled "The Biasing vidually with each of Transitron's Controlled Rectifiers and Switches. It is an indispensable ald to the design engineer seeking longer life and greater stability in higher temperature applications . . . It's yours for the aaking.

Transitron

NEW PRODUCTS

Magnetic Amplifiers

Operating with null stability in the 10^{-16} region, these amplifiers withstand severe environmental conditions. Output may be $\pm \mathrm{dc}$, phasereversing ac, or variable pulse duration. Current gain is stable over temperature range of -55 C to 135 C within about $\pm 5 \%$ without optional feedback. Power may be $115 \mathrm{v}, 400 \mathrm{cps}$, or dc from 3 to 28 v .
Incra-Magnetics, Co., Dept. ED, P. O. Box 137, River Forest, III.

Transistorized Inverter

438

Peak loads up to $1,300 \mathrm{w}$ and continuous loads to 500 w are handled by transistorized dc/ac inverter model PI 1341. This unit converts 12 v dc to 115 v 60 cps . It is designed to power ac motors with high peak starting current surges and low starting power factors, efficiency is 80% at full load.

Power Instruments Corp., Dept. ED, 235 Oregon St., El Segundo, Calif.
PGA: $\$ 300$ ea: from stock.

Power Triode

Providing 5 megawatts peak output at 250 mc on long pulses and up to 10 megawatts on short pulses, the ceramic-metal RCA-7835 is useful in radar and particle accelerator service. Full ratings may be applied up to 300 mc . Variants of the water-cooled tube can be supplied for cw operation with output levels to $1 / 2$ megawatt.

Radio Corp. of America, Electron Tube Div., Industrial Tube Products Dept., Dept. ED, Harrison, N.J.

Don't miss an issue of ELECTRONIC DESIGN; Return your renewal card.

in the UHF range. The instrument consists of a specially designed oscillator, Q measuring circuit, and resonance indicator and, in application, is similar to its counterparts in the lower frequency ranges. In addition to performing conventional Q Meter measurements, in which the unknown component is resonated with the internal calibrated capacitor, the output of the oscillator and the input of the resonance indicator are available externally for directly measuring the \mathbf{Q} of self-resonant devices.
The UHF Q Meter differs from conventional \mathbf{Q} Meters in that it measures the actual percentage bandwidth of the resonance curve and, from this data, computes and reads out circuit \mathbf{Q}. The test circuit is first tuned to resonance by adjusting oscillator frequency and/or resonating capacitance. The circuit is then detuned from the half-power point on one side of the resonance curve to the opposite half-power point by adjusting a calibrated dial, coupled to the oscillator frequency control, which directly reads out circuit Q.

-3OONTON FADIO

Available from $1 / 20$ through $1 / 4 \mathrm{hp}$, type AR is a six-pole motor. Designed for heavy-duty applications, it has higher starting and running torques than conventional shaded-pole motors. It is $4-7 / 8 \mathrm{in}$. in diameter
Redmond Co., Inc., Dept. ED, Owosso, Mich.

Tape Terminator

453

Flexible copper conductive tape is easily connected with the Flex-Term terminator. Crimping action locks tape in terminator. Sleeve is soft annealed copper, tab is beryllium copper; insulation is natural Teflon tubing. Metal surfaces are gold-plated. Contact resistance is less than 1 milliohm. Solder tab type is model FT100, screw lug FT:225.

Hi-Shear Corp., Dept. ED, 2600 W. 247th St., Torrance, Calif.

Power Amplifier

441

Distortion is less than 0.25% with full output power of 50 w , mid-band, for model 250B power amplifier. Specifications are: frequency response, $\pm 0.5 \mathrm{db}$ from 12 cps to 45 kc ; output impedance, 0.7 to 600 ohms; hum and noise, 95 db down; sensitivity, 0.5 v rms for full output; input impedance, 100 K .
H. H. Scott Inc., Dept. ED, 111 Powdermill Road, Maynard, Mass.
Price: $\$ 175$ fob Maynard.

TWX: BOONTON. NEW JERSEY 866 - CABLE ADDRESS: BOONRACO circle so on reader-service card
ELECTRONIC DESIGN • April 12,1961

A Subsidiary of Hewlett-Packard Company

...and now for

a spot of welding!

Still at it? Trying to improve potentiometer reliability by building 'em yourself? Well. you're on the right track about one thing welding's a sure way to eliminate a lot of operational headaches - like gassing contamination of contact metals at high temperature. from organic solder flux. No chance of "cold joints", either. to increase circuit resistance. No soldered connections to come loose under vibration and shock. Welding is the way to reliability!
But why set the wife's drapes afire to get a reliable. all-welded pol? Utilizing welding techniques. Ace produces reliable potentiometers operable at temperatures exceeding $150^{\circ} \mathrm{C}$, and able to withstand 50 G 's at 2000 cycles. All this, plus extremely low contact resistance and long. er rated life. All taps, end connections, resistance elements. contact assemblies and terminal leads are specially prepared befurehand - then welded with pure nickel or palladium silver. So. for built-in reliability through sounder construction
 techniques, see your ACErepl
This 2" AIA Acepol (shown $1 / 2$-scale) incorporates all these exclusive welding construction features, for superior reliability.
electromics associates, inc.

- Dover Sireel. Somerville 44, Mase.

NEW PRODUCTS

Polystyrene Capacitor

Hermetically sealed in metal cases with glass-to-metal end seals, polystyrene capacitors have high insulation resistance and low dissipation factor. Negative temperature coefficient is 120 $\pm 30 \mathrm{ppm}$ per deg C; temperature range is -55 C to +85 C . Capacitors meet or exceed requirements of MLL-C-19978, characteristic \mathbf{P}
General Products Corp., Dept. ED. Union Springs, N. Y.

Silicon Diodes

MIL-S-19500/18 qualified silicon diodes types 1N483B, 1N485B. and 1N486 B have leakage that is typically $1 \mu \mathrm{a}$ at 150 C . Forward conductance is 100 ma min at 1 v ; reverse voltages range up to 250 v . They are in standard glass, hermetically sealed, DO-7 packages.

Rheem Semiconductor Corp., Dept. ED, 350 Ellis St., Mountain View, Calif.
P\&A: From $\$ 1.91$ to $\$ 3.75,100$ to 99.9. from stock.

Centrifuge

445
With electronic speed control, model B931 centifuge holds drift from angular velocity of main rotating arm or outboard table to below 0.001%. A crystal-controlled oscillator is used to determine over-all setting accuracy. The system can be set to maintain a spatially stable platform for the test object or to create several discrete sinusoidal or constant g accelerations. Nominal radius of rotating arm is 24 in . between its center of rotation and that of the outboard table, which is 8 in . in diameter.
Genisco, Inc., Dept. ED, 2233 Federal Ave., Los Angeles 64, Calif.
Don't forget to mail your renewal form to continue receiving ELECTRONIC DESIGN.

Amazing, New, High Inductance

WEE-DUCTOR

with Inductance Range from $0.10-180,000 \mu \mathrm{H}$
The R.F. Choke that's so small you can pack 200,000
to a cubic foot

Tiny, new, WEE-DUCTOR covers a full range of inductances from $0.10 \mu \mathrm{H}$ to $180,000 \mu \mathrm{H}$ yet it measures only $0.157^{\prime \prime} \times 0.375^{\prime \prime}$.
Unique ferrite sleeve and core construction provides $1,800,000$ to 1 inductance range in a tiny package...and yet when assembled Essex WEE-DUCTORS are available immediately from stock. WEE-DUCTORS are the latest adfrom stock. WEE-DUCTORS are the latest ad-
dition to Essex's broad line of Standard R.F. Choke Coils.
Essex Electrenics Standard Line of R.F. Chokes

$\begin{aligned} & \text { Essex } \\ & \text { pART MO. } \end{aligned}$	$\begin{aligned} & \text { WEE- } \\ & \text { DUCTOR } \end{aligned}$	arc-	arc-	nre -
$1 \mu \mathrm{H}$	0.1-180K	.1-100	1.0-1.000	1.0-10.000
Mar, Ros. n	.035-880	.02-6.0	.04-21	.03-80
1 max , ma	3000-18	$4000 \cdot 220$	2700-125	4000.80
Dia.	. 157	.188	. 250	. 310
tength	. 375	. 440	. 600	. 900

WRITE TODAY
Free Descriptive Literature
Available

NYIRONECS,PNE.

550 Springlield Ave., Berkeloy Heizhts, N. J.
Phone $484-9300$ - TWX NJ 533
ESSEX ELECTRONICS DIVISION, BERKELEY HEIGHTS, M /. AUTOMATION PRODUCTS DIVISION, LEXINGTON, KY. ESSEX ELECTAONICS OF CAMAOA LTO., TRENTON, ONT. CIRCLE SE ON READER-SERVICE CARD

A momentary-action push-button switch is combined with transistor circuitry and neon indicator in a unit mounting on $5 / 8 \mathrm{in}$. centers. Lamp is transistor-controlled from small signals; integral switch is offered in A or B forms.
Transistor Electronics Corp., Dept. ED, 3357 Republic Ave., Minneapolis 26, Minn.

Rectifier Stack Assembly 473

Made for high-voltage transmitter use, these rectifier stack assemblies are capable of handling 44 kv at 7.2 amp . Assembly consists of double-diffused silicon junction rectifier stacks in a three-phase bridge assembly, arranged for maximum heat dissipation.
Trans-Sil Corp)., Dept. EI), 5.5 Honeck St., Englewood, N.J. Availability: 30-day delivery.

Printed Circuits

Multi-layered printed circuitry is made with cross-over connections internally bonded. Each layer is 0.006 in . thick; four layers of circuitry make a plane 0.025 in . thick. Connections are brought out to numbered points on the board.

Scientific Components Div., Intellux, Inc., Dept. ED, 30 S. Salsipuedes St., Santa Barbara, Calif.

CIRCIE 59 ON READER-SERVICE CARD \rightarrow

New CBS Advanced Instrument Tubes SOLVE TWO MAJOR CIRCUIT PROBLEMS

- Ulirafast Pulse Amplification

CBS 7548 in triggered pulso ampllifer

The CBS 7548, a mass-produced long-life secondary-emission pentode, makes possible state-of-the-art advances in generating and amplifying extremely fast rise-time pulses delivering high currents to low impedances. Because the tube can amplify with or without phase inversion, it can be used where conventional circuits would be impractical. For example, in triggered or dis-
 tributed amplifiers and in impedance-transforming cathode followers. The long life has been achieved through development of a new refractory dynode surface.

Ces 7548 supplies high out. put over wide voltage range. amplifier the 7548 has a 3 ns rise time with a 1 ampere pulse output. The tube offers a gainbandwidth product of 350 , transconductance of $26,000 \mu$ mhos, and $3.4 \mu \mu$ foutput capacitance.

- HIgh-galn

Wideband Amplification

New CBS 7721 frame-grid pentode offers the highest figure of merit for gain-bandwidth product ever achieved . . . 465! With such unequalled performance, you can now design wideband i-f and video amplifiers using fewer stages, tubes, passive components and interconnections to achieve greater reliability and reduced cost.

The 7721 has a transconductance of 36,000 μ mhos; a lower-cost companion type tube, the $7722 / \mathrm{E}-280 \mathrm{~F}$, has $26,000 \mu$ mhos. These extremely high transconductances result from true frame-grid construction. Mechan-

Comparison of galn-band width products ical strength is provided by the welded molybdenum frame, and superior electrical characteristics by the tightly wound, precisely positioned fine tungsten wire.

CBS 7721, 7722, 7548 all have coil heaters, high-conductivity gold-plated base pins, standard 9-pin miniature bases. Call your nearest sales office for complete data.

CBS ELECTRONICS

Danvers, Massachusetts
A Division of Columbia Broadcasting System, Inc.
Tubes - Semiconductors • Audio Components - Microelectronics
Sales Offices: Danvers, Mass., 100 Endicott Street, SPring 4-2360• Newark, N. J., 230 Johnson Avenue, TAlbert 4-2450•Melrose Part, Illinois. 1990 N. Mannheim Road, Estebrook 9-2100 - Los Angeles, California, 2120 S, Garfield Avenue, RAymond 3-9081 Minneapolis, Minnesota, The Heimann Co., 1711 Hawthorne Avenue, FEderal 2-5457.

From miniature to sub-miniature to micro. the electronics industry is constantly striving to reduce the size of electronic components. As a result, there is an increasing demand for ceramic in smaller and smaller sizes. Coors is meeting this demand by making small-scale ceramic parts in mass production quantities at precision tolerances. Write for Design Data Sheet 7002, describing Coors manuprecision tolerances. Write for Design Data Sheet 7002, describing Coors manu-
facturing methods and facilities for small ceramic parts, and latest examples. Or call your nearest Coors Regional Sales Manager: West Const, willom s. Smuth, sr. EM 6-8129. Redwood City'. Califf: Miowest. John E. Marozeck, FR 2-71300, Chicago. Ill.; CENTML, Donald Dobbins. GL 4.9638. Canton. Ohio: East Const. John J. McManus, MA 7-3996, Manhassel. N. Y.; New England. Warren G. McDonald. FR A-0663. Schenectady, N. Y: Southwest, Kenneth R. Lundy, DA 7.5716.
Dallas. Texas; Southwest, William H. Ramses. UN \&-6369, Houston, Texas.
 Coors Porcelain Company GOO NINTH BTREET • GOLDEN, COLORADO

NEW PRODUCTS

A spring-mass, fluid-damped device, acceleration switch model 18001 may be used to open or close a circuit in the presence of acceleration. It is immune to large accelerations caused by vibration and shock. Standard ranges extend from 0.02 to 200 g ; accuracy is 0.01 g to 1\%. Current rating of spdt contacts is 250 ma resistive, with up to 40 amp on special order. Optional configurations include packaging with latching or unlatching release, time delay devices, solenoids, etc.
U. S. Science Corp., Dept. ED, 5221 W. 102nd St., Los Angeles 45, Calif.

Germanium Mesa

Transistors

For use in high-speed logic circuits, the pnp diffused-base germanium mesa transistors 2×705, 2 N 710 and 2 N 711 are enclosed in completely welded, hermetically sealed TO-18 cases. Switching times are: for the 2N70.5 and $2 \times 710,60 \mathrm{nsec} ; 2 \times 711,70 \mathrm{nsec}$.

Raytheon Co., Semiconductor Div., 215 First Ave., Needham, Mass.
P\&A: From $\$ 1.9 .5$ to $\$ 10$ ea, 100 to 999; immediate.

Hmmand

Constant voltage and constant current outputs are available in the Mercury series of transistorized power supplies. There are five output combinations: $15 \mathrm{v}, 10 \mathrm{amp}$; $36 \mathrm{v}, 2.5 \mathrm{amp} ; 36 \mathrm{v}, 5 \mathrm{mp} ; 60 \mathrm{v}$, 2.5 amp ; and $160 \mathrm{v}, 1 \mathrm{amp}$. Current and voltage are continuously variable, zero to maximum. Dynamic regulation is better than 0.05%, with a response time of $50 \mu \mathrm{sec}$. Ripple

- CIRCLIE 60 ON reader-service card
is less than 1 mv rms. Adjustable current limiting is provided. Panel height is $3-1 / 2 \mathrm{in}$.

Trygon Electronics Inc., Dept. ED, 111 Pleasant Ave., Roosevelt, L.I., N.Y.

P\&A: $\$ 365$ to $\$ 485$; 4-week delivery.

Zener Diodes

476

Rated at 1 and 10 w , silicon Zener diodes conform to military requirements. Approved $10-\mathrm{w}$ types are the $6.2-\mathrm{v}$ USA 1 N 1804 , the $8.2-\mathrm{v}$ USA 1 N1807, the 12 -v USA 1 N1353, the $22-\mathrm{v} 1$ N1358 and the $27-\mathrm{v}$ USA 1N1361. Approved 1-w types are the 18 -v USA 1 N1777 and $27-\mathrm{v}$ USA 1N1781.

International Rectifier Corp., Dept. ED, 1521 E. Grand Ave., El Segundo, Calif.
PもA: \$7 to \$12 ea, 1 to 99; stock.

Servo Accelerometers

466

For guidance, navigation and other systems requiring secondary acceleration sensing in two or more planes, servo accelerometers are made in triaxial, biaxial and unidirectional types. Internal axes are oriented orthogonally to within 1 \min of arc. Required voltage is $\pm 15 \mathrm{v}$ dc or 28 v dc.
Gulton Instrumentation Div., Dept. ED, 212 Durham Ave., Metuchen, N.J.
Price \& Availability: Unidirectional, $\$ 445 ; 90$ days.

CIRCLE 61 ON READER-SERVICE CARD >

new from

a revolutionary air power cutter

U. Ti CA UA-100 Power Cutser-an air-operated diagonal head wire cutter with tapered heads .. . designed specifically for high-volume tip cutting and assembly where thousands of cuts per day mean increased production, reduced operator fatigue! Can be used in either handl And it operates on existing air supplies with 90 psi line pressure. Engineered by the Utica Drop Forge \& Tool Division of Kelsey-Hayes Company, the UA-10O has electronically induction hardened jaws and an insulated air cylinder formed of durable plastic. Weight only $61 / 4$ oz. Each unit is supplied with an 8 ft . air hose. The UA-10O

UTICA DROP FORGE \& TOOL DIVISION • KELSEY-HAYES COMPANY, UTICA 4, N.Y.

More than 107 types standard colder terminals

WEBSTER KNOWS

In fact, his definition certainly applies to CAMBION8 Standard Solder Terminals. As parts which terminate plenty of trouble in electronic circuitry construction, they've gained universal approval from manufacturers, professional technicians and hams.
Starting with top quality brass, each CAMBION solder terminal is precision machined, quality inspected, electroplated with silver, electro-tin or gold - or to your own plating specifications. Close quality control is maintained, and inspec tions made at each successive manufacturing step to assure that each terminal meets or exceeds applicable MIL specifications, such as MIL-Q-5923C.
That's why, at with all components in the broad CAMBION line, top quality is guaranteed for the more than $30,000,000$ CAMBION Solder Terminals in stock... in more than 107 different types: single, double and triple turret; feed-through difierent types: singled, hollow and split.

The broad CAMBION line includes pluge and jacke, colder terminals, insulated terminals, terminal boarde, capacitors, chiolded coils, coil forms panel hardware, digital computer components. For patalog, for decign assistance or for both, write to Cambridge Thermionic Corporation, 457 Concord Ave., Cambridge 38, Mass.

NEW PRODUCTS

Digital Decoder

Interrupted tone signals from any voice channel are received and decoded by model RPD-620 digital decoder. Designed primarily for wire-line applications, it works equally well over carrier, microwave and radio circuits in any combination. Decoders provide dry output circuits and can be equipped with selectors which provide up to five separate coded outputs.
Secode Corp., Dept. ED, 555 Minnesota St., San Francisco 7, Calif
PdA: \$165 to \$190; from stock

Current-Limiting Relay

448

Protection from excessive current is provided by the CL series current-limiting relay. Contacts lock on a sustained overload and cannot be reclosed, even momentarily, until overload has been corrected. Models are available for a wide range of applications. Electrically insulated dust cover protects against shocks and ambient conditions.
Line Electric Co., Dept. ED, 231 River St. Orange, N. J.

Static Machine Controls

447
With transistor logic, static system controls hydraulic, magnetic, and pneumatic devices. Applications range from one-station assembly to large, integrated systems. Operating speed is about 10μ sec. Fail-safe action is provided. System design results in longer life for input switches and output devices.

General Motors Corp., Delco Radio Div., Dept. ED, Kokomo, Ind.

Have you sent us your subscription renewal form?

LATEST DATA ON

ULTRASONIC
DELAY
LINES!

THIS
NEW
CATALOG
gives you up-to-date specs on the industry most complete line of ultrasonic delay lines for missiles, MTI, radar countermeasures and computer applications. Send for it today.

LABORATORY FOR ELECTRONICS,INC.
Compular Producis Division
1079 Commonwealth Avonvo
CIRCIE 64 ON READER-SERVICE CARD

ELECTRON TUBE NEWS ...from SYLVANIA

- IMPROVED Gm/Ib RATIO!
...outstanding advantages of new

$$
\begin{aligned}
& \text { BIKINI CATHODES } \\
& \text { plus STRAP FRAME GRIDS }
\end{aligned}
$$

in 4 new Gold Brand Subminiature Tubes

From Sylvania comes an important new cathode design-Bikini Curhode-destined to upgrade industry standards for high performance tubes. Sylvania complements this remarkable cathode design with the advantages of Strap Frame Grid in exceptionally rugged, premium-quality Gold Brand Subminiature Tubes. The end effect: high reliability tubes for superlative VHF and UHF performance in compact, environmentalized equipment.

Exceptionally smooth. ultra-uniform in density . . . Bikini Cathode is a precast film of emissive material, of precise dimensions, bonded to the two major sides of a flat cathode sleeve. Bikini Cathode minimizes stray emission. Further, consistent density of cathode material eliminates "hot spots," assures uniform temperature and emission over the entire cathode surface. Smooth cathode surface minimizes possibility of grid-to-cathode arcing.

Bikini Cathode is ideally mated with Sylvania Strap Frame

Grid. Both possess exceedingly flat surfaces. providing outstanding uniformity in grid-cathode spacing with resultant narrow dispersion of electrical characteristics. improved cutoff control, high stahility and improved speed and uniformity of electron transit time. Add to this the singular advantages of rugged Stran Frame Giridvery fine grid wire, high T.P.I.. extreme accuracy of grid pitch-and the result is a near ideal combination for high db gain, unusually low noise and exceptional ratio of Gm per mA of plate current.

New Sylvania Gold Brand Subminiature Tubes

featuring Bikini Cathodes and Strap Frame Grids

for cascode RF amplifier-mixer. high-speed mulsivibrator service.
SYLVANIA SR-2662B is a medium-mu double triode (similar to 6111) featuring very low heater power of 0.7 W per section and low Eh of 30 V per section. Gm per mA of th for a single section is 1120 . Gm per section is $9(000) \mu$ mhos. 80% higher than Gm of conventional prototypes. It is subjected to the intensive testing characteristic of all Sylvania Gold Brand Subminiature Tubes. Examples: shock tests of 500 g : vibrational acceleration of 2.5 g ; heater life tests of 2000 cycles. one minute "on", four "off." It's capable of withstanding ambient hulb temperatures of $220^{\circ} \mathrm{C}$ and intense radiation dosage. SYLVANIA SR-2662C, medium-mu double triode. is a high-performance version of the popular. general purpose 6021 with a Cim of $13 .($ KM () μ mhos. Ratio of Gm Ib provides a figure of merit of 1730 per section.
. for grounded-cathode RF amplifier applications
SYLVANIA SR-2941A is a high-mu triode with Gim of $12,(\mathrm{ONO}) \mu$ mhos. It only draws 125 $\mathrm{mA}{ }^{\prime} 16.3 \mathrm{~V}$ heater power. Gim per mA th is $13(x)$. SR-2941A provides 2.5 dh hetter gain than usually encountered in present highperformance types.
. for grounded-grid RF amplifier applications
SYLVANIA SR-2942B, high-mu triode, featuring low heater power of 125 mA (in 6.3 V and high Gm of 13.500 umhos. It offers a 2.5 to 7 dh gain improvement, 1.5 to 4 dh noise improvement at $48(1) \mathrm{MC}$ than usually encountered with popular grounded-grid RF amplifier types.
These are the first types to utilize Bikini Cathodes and Strap trame Grids. Ask your Sylvania Sales Engineer to keep you up to date on further developments. For technical data on specific types, write Electronic Tuhes Division. Sylvania Electric Products Inc., Dept. DI, IIOO Main St.. Buffalo 9. N. Y.

SYLVANIA SPIRAL ACCEIERATORS-5BGP-,-5BHP-

- High deflection sensitivity
-High resolution • High reliability
-High writing speed

scaeten curaent (ha)
Graph illustrates the improved brightness of new phosphor, medium-short decay phosphor having green fiuorescence ond phosphorescence. Sylvania-58GP., 58 BHP . are available also in a
wide range of other phosphors.

Every Soiral Accelerator gun is inspected on a high-magnification
now available with new, brighter phosphor and "Bonded Shield" safety cap

Sylvania Spiral Accelerator cathode ray tubes provide superior-quality displays with minimal pattern distortion. Consider the reasonsguns. for example, are assembled on Sylvaniadeveloped mounting jigs accurate to $0.001^{\prime \prime}$ High-magnification optical comparators critically inspect spacings and dimensions. The internal helical resistance coating, too, undergoes extremely tight controls for linear resistance, and uniformity of application. Further, completed tubes receive extensive tests for electrical characteristics, distortion, brightness. Spot size is microscopically measured at extreme corners of required minimum scan. Perpendicularity of horizontal and vertical scan lines is physically measured to meet 1.0° acceptance standards. In addition. Sylvania-5BGP-, -5BHP- must meet severe cycled life tests.

Sylvania Spiral Accelerators are also available with "Bonded Shield" safety cap for increased image readability. "Bonded Shield" improves mounting and styling, strengthens tube face, simplifies cleaning of tube face.
Development is now under way at Sylvania on square-faced Spiral Accelerators. Ask your Sylvania Sales Engineer for price and delivery information. For technical data, write Electronic Tubes Division, Sylvania Electric Products Inc., Dept. D2, 1100 Main St., Buffalo 9, N. Y.

MICROWAVE DEVICE NEWS from SYLVANIA

Sylvania Ka Band Magnetrons offer a remarkaille range of powers, fill virtually all your Ka band requirements. They include extremely compact types with exceptional power-to-weight ratios. All are fixed-frequency types for pulsed operation, utilize stabilized magnets, and exhibit outstanding reliability and longevity.
SYLVANIA-5789, first commercially available U. S. type for Ka band, uses 22 -vane "rising sun" anode, and improved dispenser-type cathode. With hermetically sealed input and pressurized output, it is highly adaptable to high altitude operation.
SYLVANIA-6799 features 120KW peak power output and is a proven high-power millimeter wave source. It is available for use with longer pulses and higher duty cycles at slightly reduced power.
SYLVANIA M-4155A, ruggedized version of the 5789, features compact size and weight of only 9 lbs ., improved heat dissipation and excellent stability. It utilizes a spe cial cone-shaped cathode support and "building block" mounting arrangement for added mechanical strength. M-4155A possesses both long- and short-pulse capabilities. SYLVANIA XM-4064, ruggedized magnetron. offers exceptional stability under severe environmental conditions. Only 9 lbs. in weight, it provides peak power output of 70KW for a remarkably good power-to-weight ratio.
SYLVANIA XM-4158, ruggedized magnetron, provides 120 KW peak power output. Weight is only 27 lbs . It uses E type magnets for a uniform, flat surface configuration that can be used as a structural part of the chassis. XM-4158 is compatible with either long- or shor-pulse operation.

SYLVANIA XM-4218, ruggedized tuhe, provides a power-tc-weight ratio of $8: 1$ making it especially suited for portable, field-type radar. It uses metal-to-ceramic seals. ceran:ic cathode capsule, cantilever cathode support. The tube withstands 50 g shock. 10 g vibration tests. XM-4218 provides a lower pushing factor than tuhes of comparable perfo mance.
SYLVANIA XM-4206 is a ruggedized, compact tube with encapsuiated cathode. Only 10.5 lbs., it provides 40 KW peak power output.

\begin{tabular}{|c|c|c|c|c|}
\hline \& \begin{tabular}{l}
sYLVANIA \\
Frequency (KMC)
\end{tabular} \& BAND Peak (KW) \& \begin{tabular}{l}
trons \\
Mas. \\
Outy Cycle
\end{tabular} \& Mas Pulse Width (usec) \\
\hline 5789 \& \(\left\{\begin{array}{l}34.512 \\ 35.208 \\ 3.512\end{array}\right.\) \& 40 \& . 0006 \& 1.0 \\
\hline 6799 \& \(\left\{\begin{array}{l}34.512 \\ 35.208\end{array}\right.\) \& 120 \& . 0005 \& 1.0 \\
\hline M.4155A \& \(\left\{\begin{array}{l}34.512 \\ 35.208\end{array}\right.\) \& 40 \& . 0006 \& 1.0 \\
\hline XM-4064 \& \[
\begin{array}{r}
34.512 \\
35.208
\end{array}
\] \& 70 \& . 0008 \& 1.0 \\
\hline XM-4158 \& 34.512

135.208

3 \& 120 \& . 0006 \& 1.0

\hline XM-4218 \& $\left\{\begin{array}{l}34.512 \\ \\ 35.207\end{array}\right.$ \& 32 \& . 0006 \& 0.4

\hline XM-4206 \& $$
\begin{array}{r}
34.7 \\
135.0
\end{array}
$$ \& 40 \& . 0006 \& 1.1

\hline
\end{tabular}

Investigate the design advantages of Sylvania Ka band magnetrons and associated Ka band TR tubes. Contact your Sylvania Sales Engineer for complete information. For technical data on specific types, write Electronic Tubes Division, Sylvania Electric Products Inc., Dept. MDO-D. 1100 Main St., Buffalo 9, N. Y.

SUBSIDIARV OF
GENERAL TELEPHONE \& ELECTRONICS

NEW PRODUCTS

Precision Resistors

Ceramic bobbin wirewound resistors of series CB feature allwelded construction. Designed for applications iequiring long-term accuracy and stability, standard tolerances are $1,0.5,0.25$, and 0.1%. Temperature coefficient is ± 20 ppm per deg C from -50 to +85 C for values above 500 ohms.
Kelvin Electric Co., Dept. ED, 5907 Noble Ave., Van Nuys, Calif.

Control Relay

For automation control panel applications, the type BF relay measures $3-1 / 8 \mathrm{in}$. high and $1-11 / 16 \mathrm{in}$. wide. Current rating is 6 amp at 300 v ac . The relay is available in any combination of normally open or normally closed contacts, two to eight poles, with a maximum of four normally closed. Operating time on pickup is 12.5 to 18.0 msec , dropout 6.25 to 12.5 msec .

Westinghouse Electric Corp., Dept. EI), P, O. Box 2099, Pittsburgh 30, Pa.

Twin Planar Transistor

575
Capable of boosting 10 -fold the voltage of a standard hattery, the "twin-planar" transistor will be offered initially as a dc chopperamplifier. The two silicon transistors incorporated in the device share a common collector. Close matching characteristics eliminate the necessity of transistor selection.

Radio Corp. of America, Semiconductor and Materials Div., Dept. ED, 30 Rockefeller Plaza, New York 20, N.Y.
Price: Under $\$ 2.5$ per unit in thossand lots.

CIRCIE 63 ON READER-SERVICE CARO \rightarrow

How to make a shrewd increase in recorder efficiency

With twice the performance, the Ampex FR-600 is still compatible with earlier equipment.

Doubles tape utilization and obviates standby equipment
Your FR- 600 records 125 kc data at 30 ips instead of 60 gives twice the recording time per recl. For example, you get 48 minutes recording time on $101 / 2$-inch reels, 96 minutes on 14 -inch at 30 ips. Not only are tape expenditures cut in half, but standby recorders on long sessions may no longer be needed. And for a broader data spectrum in the future, your FR-600 can accommodate 250 kc at 60 ips or 500 kc at 120 ips .
Multiplies available recording time and eliminates error
Two-hour warmup and adjust sessions are reduced to ten minutes by the FR-600's transistorized circuitry. Final calibration is a one-time-per-use operation. Post-warmup stability - less than 1% drift per 24 hours - precludes timewasting adjustments and minimizes creeping inaccuracies. Because your FR-600 is ready when needed, it works more hours per day, saving both your time and its own.

Updates performance of older equipment
The FR-600 plays back tapes from most existing data recorders. And because playback heads generally determine overall frequency response, use of an FR-600 for playback can permit earlier equipment (with simple adjustment) to record the same high information density as your FR-600.

The essential data

The Model: FR-600 Laboratory Recorder Reproduces. Numher of tracks: up to 14 -ineel sizes and lape widshs: $101 / 2$ or
14 -inch NAB, with $1 / 2$ inch or 1 -inch tape, inierchangeably. Frequency response: 300 to $250,000 \mathrm{cps} \pm 3 \mathrm{db}$ at 60 ips with direct recordings; 0 to $20,000 \mathrm{cps} \pm 0.25 \mathrm{db}$ at 60 ips in FM carrier recording _ proportionate response at other speeds.
Tape speeds: $60,30,15,71 / 2$ ips: $120,3^{\frac{3}{4}}, 1^{1 / 3} \mathrm{ips}$ optional. Tppes of recordine: direct, PDM and FM carrier, by plug-in modules. Comparibilisy: yes, with Ampex 300 and 8000 series. FR-100 and FR-1800 series, and AR-200 and CP- 100 series.

For detailed information on the complete Ampex line of data recorders, write:
AMPEX INSTRUMENTATION PRODUCTS COMPANY
Box 5000, Redwood City, California

Experienced engineers eager to contribute to Ampex's pioneering reputation are invited to write the Manager, Technical Recruiting-

Roy Caprarola cooks up a new tube...

This engineer, so absorbed in "cooking" a glass tube base in a concentrated gas jet, has two important responsibilities that directly benefit you.
He's Roy Caprarola. Manager of our Receiving Tube Methods and Processes Lab. One of his jobs is to refine manufacturing processes to improve tube performance. Closer interelement tolerances, sturdier cage structures, tighter seals, higher vacuums are his objectives. Above, for example, he's working on an improved pin-sealing technique for the bases of our new developmental NOVAR tubes.

He has another responsibility. When our Advanced Development engineers come up with an idea for a new tube structure, it's Roy's job to develop a practical way to produce it. Case in point: the frame grid shown at right, the key element in the new RCA-6939 industrial twin pentode. The Methods and Processes Lab developed the manufacturing technique-and even took over initial production-for this vital element.
Roy's job has many facets, all of which present challenges. But the solving of these challenges means new advances: improved performance from your RCA Industrial Receiving Tubes. The work of the M \& P Lab is typical of our determination to achieve top quality through constant research.

The Most Trusted Name in Electronics radio corporation of america

Brome gid ef ICA. 6039 Molct goid wires under Onsion. This stid detion pormits clower spacing cesurate control of oloctron ñom.
CAELECTRON TUEE DIVISION-FIELD OFFICES
 MU S.390. NEWICAGO S4, iil, Suito 1154 Morchondise Mort Ploze. Wh 4-2900 - 10
 Comine Reol, OX 7-1620.

NEW PRODUCTS

Pressure Transducer

Medium-to-high range pressure transducer type 4-329 utilizes the unbonded strain gage principle. Specifications are: electrical excitation, $\underline{0} \mathrm{v}$ de or ac rms with a carrier frequency of 0 to 20 kc; sensitivity, $50 \mathrm{mv} \pm 0.25 \mathrm{mv}$ measured through a $50-\mathrm{K}$ load; input impedance, $7(0)$ olims min; output impedance, 350 ohms; temperature range, -100 to +300 F ; pressure ranges, 0 to 100 through 0 to 5.000 psi.

Consolidated Electrodynamics Corp., Dept. ED, 360 Sierra Madre Villa, Pasadena. Calif.

Pulse Generator

Rugged and reliable, the TriPulse generator is designed to supply 10,100 or 1,000 pulses per sec to as many as 10 telemetering de vices. Power for the 1-1/2 lb unit is supplied by a miniature $30-\mathrm{v}$ battery. Size is $1-1 / 2 \mathrm{in}$. high, 4 in wide, and 5 in . long. The generator has performed within 1% of selected frequency in rocket sled tests to 40 g acceleration
The Harwond Co., Dept. ED 1141 W. Valley Blvd., Alhambra Calif.

Data Converter

The CV-772 radiosonde data converter is designed to operate with the AN/GMD-1 semiautomatic sounding system. The converter senses and records contact closures representing baroswitch reference contact numbers. It measures elapsed time in increments of 0.01 min . Remote control operation is possible from 210 ft .
Datex Corp., Dept. ED, 1307 S Myrtle Ave., Monrovia, Calif.

Silicon Rectifiers

582
Rated at 20 amp , these studmounted, diffused-junction silicon rectifiers are designed for military and industrial power supplies. Types 1N248-C, 1N249-C, 1N250-C, and $1 \mathrm{~N} 1195-\mathrm{A}$ through $1 \mathrm{~N} 1198-\mathrm{A}$ are also available in reverse-polarity versions. Peak surge-current rating is 350 amp ; peak inverse voltage ratings range from 55 to 600 v . In a D0-5 package, temperature range is -65 to +175 C.
Radio Corp. of America, Semiconductor and Materials Div., Dept. EI), Somerville, N.J

Power Supply

Capacitor-discharge power supply model 1046 MA is designed for welding extremely fine wires. Low range is 0.004 to 1.3 w -sec, high range 0.04 to 13 sec . Discharge time is about 1 msec . Watt-sec meter and stepless heat control are provided. Rate is 50 to 150) welds per minute. Unit measures 6-1/8 in. high, $8-1 / 4$ in. wide and $13-5 / 8$ in. deep.

Weldmatic Div., Unitek Corp., Dept. ED. 950 Royal Oaks Drive, Monrovia, Calif.

Impulse Magnefizer

Automatic or semi-automatic operation is possible with this halfcycle impulse magnetizer. Consisting of an ignitron tube and control circuitry, the device may be trig. gered as often as desired; no charging interval is necessary. Magnetizer uses $220 / 600 \mathrm{v}$ ac, single phase; control circuit operates on 110 v ac.

Indiana Steel Products Div., Indiana General Corp., Dept. ED, Valparaiso, Ind.

CIRCLE 05 ON READER-SERVICE CARD \geqslant ELECTRONIC DESIGN • April 12, 1961

sust Ploug if in

 any computer and... - multiply- divide
- square
- extract square root

Donner's new all solid state electronic multiplier plugs into any analog computer problem board with $3 / 4$ " terminal spacing - all Donner models, all Heathkit models, Boeing (BEAC), Goodyear L3-N3 series, and so forth. Designed on the quarter-square principle, this compact, single channel multiplier offers four modes of operation selected by a switch

- Four-quadrant multiplication (output $=-0.01 \mathrm{XY}$), with static accuracy of 0.3% of full scale voitage (200 volts).
- Two-quadrant division (output $=-100 \mathrm{X} / \mathrm{Y}$).
- Two-channel squaring (outputs of $-0.01 X^{2}$ and $+0.01 Y^{2}$).
- Two-channel square root operation.

As inputs, the Model 3732 accepts $+\mathbf{X}, \mathbf{X},+Y,-Y$, and generates an output current to the summing junction of an external amplifier.
To satisfy your particular needs, Donner furnishes the multiplier in a variety of packages besides the plug-in version shown.

Price of the Model 3732P is $\$ 350$; delivery 30 days. Other prices, detailed specifications and demonstrations available from all Donner representatives or just drop us a line at the factory. Please address Dept. 36.

DONNER
SCIENTIFIC COMPANY
A Subsidiary of, SYETKIDN-IUNNER
CONCORD, CALIFORNIA

NEW PRODUCTS
Power Supply

Delivering 0 to 36 v dc and 0 to 10 amp , model 809A power supply may be operated as a constant current or constant voltage source. Changeover from either mode is made by plugging in the appropriate circuit card. Line and card regulation is less than 15 mv for con-stant-voltage operation; ripple and noise are less than 1 mv . Supplies may be paralleled. Panel is 5-1/4 in. high. 3

Harrison Laboratories, Inc., Dept ED, 45 Industrial Road, Berkeley Heights, N. J.
Price: $\$ 625$

Rectifier Test Set

An oscilloscope display of the reverse characteristics of high-voltage diodes and rectifiers is provided by rectifier test set model 1826. It provides a wide range of reverse voltages up to 5 kv and reverse currents from less than 1μ a to 1 amp .

Dynatron Electronics Corp. Dept. ED, 178 Herricks Road, Min eola, N.Y.

Secior Potentiomefer

Small angular movements are measured with an accuracy within 7.2 min by the CP13-0301-1 circular sector potentiometer. Electrical travel is ± 3 deg; resolution is 0.5%. The $11-\mathrm{oz}$ unit withstands 500 F for 3 min , humidity of 95 to 100% at 160 F , linear acceleration of 50 g and shock of 100 g along 3 axes. Zero adjustment is external.

Humphrey, Inc., Dept. ED, 2805 Canon St., San Diego 6. Calif.

4

CONVECTION COOLED
No Blowers or Filters Maintenance Free
Highly efficient, radiator type heat sinks eliminate internal blowers, maintenance problems, risk of failure, moving parts, noise and magnetic fields. Units are rated for continuous duty at $50^{\circ} \mathrm{C}$ ambient.

EASY

 SERVICE ACCESSDual-deck, swing-out back construction provides simple and fast service access without the need to remove unit from rack. All major component terminals are accessible from rear.

NO
VOLTAGE SPIKES
OR
OVERSHOOT
Lambda's design
prevents output voltage overshoot on "furn on, furn off," or power failure.

MIL QUALITY
Hermetically-sealed magnetic shielded transformer designed to MIL-T-27A quality and performance. Special, high-purity foil,
hermetically-sealed
long life electrolytic
capacitors.

1A200.03A O. 34 VDC
1a 20.05 a 20. 105 VDC
IA 20 -05A 20.105 VDC
AA $\mathbf{4 0 . 0 5 A} 20.105$ VDC 0.4 A 350
IA 80.05 A 20.105 VOC 0.8 A 780
LA 8.08A $75.330 \mathrm{VDC} \quad 0-0.8 \mathrm{~A} 395$
LA 15.08A 75-330 VDC 0-1.5A 560
IA 30.08 A 75.330 VDC 0.3 A 800
For metered modeld add the ouffiz "M" to the

SHORT CIRCUIT PROOF
All models are completely protected with magnetic circuit breakers, fuses, and thermal overload.

REMOTE SENSING
Minimizes effect of power output leads on DC regulation, output impedance and transient response.

New LAMBDA

Transistorized REGULATED POWER SUPPIIES

$$
\begin{aligned}
& 0.34 \text { VDC } 5,10 \text { and } 20 \mathrm{Amp} \\
& 20-105 \text { VDC } 2,4 \text { and } 8 \mathrm{Amp} \\
& 75-330 \text { VDC } 0.8,1.5 \text { and } 3 \mathrm{Amp}
\end{aligned}
$$

COMPLETE SPECIFICATIONS OF LAMBDA LA SERIES
DC OUTPUT (Regulated for line and load)

Model	Voltage Range	Carreat Range	Minimum Voltage (1)	Voltage Stepa (1)	Price ${ }^{(2)}$
LA 50.03 A	0. 34 VDC	0. 5 AMP	0	2, 4, 8, 16, and 0. 4 volt vernier	8 395
LA100.03A	0. 34 VDC	$0-10$ AMP	0	$2,4,8,16$, and 0.4 volt vernier	510
LA200-03A	0-34 VDC	0-20 AMP	0	$2,4,8,16$, and 0.4 volt vernier	795
LA 20.05A	20.105 VDC	0. 2 AMP	20	$5,10,20,40$, and $0-10$ volt vernier	350
LA 40.05A	20-105 VDC	0. 4 AMP	20	$5,10,20,40$, and 0.10 volt vernier	495
LA 80.05A	20.105 VDC	0.8 AMP	20	$5,10,20,40$, and 0.10 volt vernier	780
LA 8.08A	75-330 VDC	0. 0.8 A MP	75	15, $30,60,120$, and 0.30 volt vernier	395
LA 15-08A	75-330 VDC	0. 1.5 AMP	75	15, $30,60,120$, and 0.30 volt vernier	560
LA 30.08 A	75-330 VDC	0-3 AMP	75	15, $30,60,120$, and 0.30 volt vernier	860

(1) The DC output voltage lor eash moilel io completely covered by four selec. the minimum volage plus the vollage stepa and the continuousty variable
OC vernier.

Regulation (line)

Regulation (load)

Transient Response
(line)
(load)

Internal Impedance

Ripple and Noise
Polarity
Temperature Coefficient
AC INPUT

Beller than 0.05 per cent or 8 milli voles (whichever is preater) For input variations from $100-130 \mathrm{VAC}$ Better than 010 per cent or 15 milli volts (whichever is greater) For load variations from 0 to full load. Output voltage is con-tant within regulation specifications for step function:
line voltage change from $100-130$ VAC or $130-100$ VAC load change from 0 to full load or Gull load to 0 within 50 microsec. onds after application.

1. A 50.03 A less than .008 ohms L 1100003 A less than .004 ohms L. 12000.03 A less than .002 ohms LA 20-0. A less than . 066 ohms LA 40.05 A less than .03 ohms LA $80-0.5 \mathrm{~A}$ less than .015 ohms A 8008 A less than .5 ohms LA $15-08 \mathrm{~A}$ less than .25 ohms LA 30.081 less than 15 ohms Less than 1 millivolt rms with either erminal grounded.
Either positive or negative terminal may be grounded.

Better than $0.025 \% /{ }^{\circ} \mathrm{C}$
$100.130 \mathrm{VAC}, 60 \pm 0.3$ cycle 3 LA $50.03 \mathrm{~A} \quad 360$ watts 4 LA $100-03 \mathrm{~A} \quad . \quad 680$ watts 4 LA 20.05A $\quad 390$ watts LA 40.05A 710 watts ${ }^{4}$ LA 80-05A 1350 watts ${ }^{4}$ LA 8-08A. $\quad 415$ watts LA 15-08A $\quad 760$ watts ${ }^{4}$ LA $30-08$ A. 1450 watts ${ }^{4}$ ${ }^{-}$This frequency band amply covers standard commercial power lines in the United States and Canado. and Canado.
an ith outpui loaded to full rating and inpus
at 130 VAC.
(2) Prices are for unmetered modela. For metered modelo add the suffx "M"

AMBIENT TEMPERATURE
AND DUTY CYCLE Continuous duty at full load up to OVERLOAD PROTECTION. $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ ambient.

Elo

Magnetic circuit breaker fron panel mounted. Special transistor circuitry provides independent protection against transistor cominternal failure protection. Uni cannot be injured by short circui cannot be inju
Thermostat,
Thermostat, manual reset, rear of chassis. Thermal overload indica tor liglat front panel.

METERS

CONTROLS:
DC Output Controls

Power
Remote DC Vernier
Remote Sensing

PHYSICAL DATA
Mounting models.

Voltage selector switches and ad justable vernier-control rear of chassis. Magnetic circuit breaker, front panel.
Provision for remote operation of DC vernier.
Provision is made for remote sensing to minimize effect of powe output leads on DC regulation output impedance and transient response.
Standard 19" Rack Mounting
Size
L: $50-03 \mathrm{~A}$, LA $20-05 \mathrm{~A}$, LA $8.08 \mathrm{~A} \quad 31 / 2^{\prime \prime} \mathrm{H} \times 19^{\prime \prime} \mathrm{W} \times 14 \times 4 \mathrm{~N}$ LA100.03A, LA40.05A, LA15.08A $7^{\prime \prime} \mathrm{H} \times 19^{\prime \prime} \mathrm{W} \times 14^{\prime \prime} \mathrm{g}^{\prime \prime} \mathrm{D}$ LA200-03A, LA80-05A, LA30-08A $101 / 2{ }^{\prime \prime} \mathrm{H} \times 19^{\prime \prime} \mathrm{W} \times 161 / 2^{\prime \prime} \mathrm{D}$ Weight
L. $50-03 \mathrm{~A}$, LA $20-05 \mathrm{~A}, \mathrm{LA} 8.08 \mathrm{~A} 55 \mathrm{lb}$ Net 85 lb Ship. We. LA $100-03 \mathrm{~A}$, LA $40-05 \mathrm{~A}$, LA $15-08 \mathrm{~A} 100 \mathrm{lb}$ Net 130 lb Ship. We. LA200.03A, LA80-05A, LA30-08A 140 lb Net 170 lb Ship. Wt. Panel Finish Black ripple enamel (standard). Special finishes available to cus. surcharge. Quotation upon request.

LAMBDA

Send for complefe Lambda Catalog.

Impulse Counter

Readings in five-unit increments from a maximum reading of 995 to 000 are provided by model 11576 miniature impulse counter. Over-all size is less than $1-\mathrm{in}$. square by $3-\mathrm{in}$. long and weight is slightly more than 4 oz . Maximum speed of response is 1320 impulses per minute. The unit is designed for 80%-on- 20%-off operation.

Bowmar Instrument Corp., Dept. ED, 8000 Bluffton Road, Fort Wayne, Ind.

High-Purity Silver

376
Silver $99.999+\%$ pure is available in fine crystalline powder, vacuumcast ingots, or rolled into strip or foil to user specifications. The only spectrographically detectable elements, $\mathrm{Fe}, \mathrm{Cu}, \mathrm{Si}$, and Mn , amount to less than 1 ppm each

High Purity Metals, Inc., Dept. ED. 340 IIudson St., Hackensack N. J.

Coaxial Switches
628

High-power, coaxial switches, series 8000 , are spdt units available in 1-5/8- and 3-1/8-in. coaxial sizes. Isolation is in excess of 75 db . High reliability is achieved by use of a direct-bearing flush-type mechanism. Standard models are manually operated with motor drives optional.

Bogart Manufacturing Corp., Dept. ED, 315 Siegel St., Brooklyn 6, N.Y.

Motorola Power Transistor Applications Assistance

If you are working with high-voltage cir cuits you'll find a new report, prepared by Motorola applications engineers, of special interest.
It reviews the use of power transistors in high-voltage circuits and suggests application methods that could result in substantial cost reductions. In addition, the techniques outlined in this report can greatly improve circuit reliability and help simplify procurement problems. Titled "How to Design Economical High-Voltage Circuits," this applications brochure is yours for the asking.

For your copy simply contact your Motorola district office, Motorola distributor, or write: Motorola Semiconductor Products Inc., Tech nical Information Department. 5005 East McDowell Road, Phoenix 10, Arizona.
motonola district offices:
selmont, Mass / Burlingame, Calif / Chicaso Clifton. N. I. Dallas Dayton / Detroit / Glenside. Pa / Hollywood Mineapolis / Oriando, Fla
Silver Spring. Md / Syracuse / Toronto. Canada

MOTOROLA IS YOUR MOST COMPLETE POWER TRANSISTOR SOURCE
You can achieve marked improvement in all your circuits by utilizing the wide selection of field-proven power transistors available from Motorola. Whatever your specific requirements, you'll find a standard Motorola unit that meets your needs.

* Both TO-3 and TO-36 packages = 90 and 150 watts power dissipation $0.8^{\circ} \mathrm{C} / \mathrm{W}$ and $0.5^{\circ} \mathrm{C} / \mathrm{W}$ maximum thermal resistance $\quad 100^{\circ} \mathrm{C}$ continuous junction tem perature - current ratings of 3,5,10, 15 and 25 amps - collector voltages to 120 volts variety of gain voltage combinations 6 mil-types "Meg-A-Life" mil-quality industrial units
For fast delivery in any quantity, call your nearby Motorola distributor or your Motorola nearby Motor
district office.

M
MOTOROLA
Somiconductor Producte Inc.
A subsionart or woromola, INC
5005 EAST MCDOWELL ROAD - PHOENIX 10, ARIZONA

MOTOROLA DISTRICT OFFICES BELMONT, MASS. I IVanhoe 4-5070 CHIGACO IIL
BAILAS TER DALLAS, VEx.
DATVON, OHIO...................eside $6-8931$
$3-164$ Darroi, owio...... AXminster $3-41 \mathrm{Cl}$ mothnvio calif. HOLlywood 2-0821 MIMNEPP OLIS, MIMW. ... LIberty 5.2198
 WIWTER PARK, FLA. MIdway $7-2507$ from HuLAgEiPiil Waverly $7-6144$ BurLIMEAME, EALIF. \quad Dlamond $2-3228$
SYRACUSE, WiY.

NEW PRODUCTS

Power Supplies

Voltage-regulated power supplies of SM 160 series deliver 0 to 160 v at 4,2 or 1 amp . Line and load regulation is 0.1%. Stability is 0.1% or 6 mv , ripple less than 1 mv rms. Recovery time is $50 \mu \mathrm{sec}$, temperature coefficient less than 0.05% per deg C.

Kepco, Inc., Dept. ED, 131-38 Sanford Ave., Flushing 55, N.Y.
P\&A: $\$ 52.5$ to $\$ 92.5 ; 30$ to 60 days.

Crystal Oscillator

 738

Solid-state, voltage-controlled crystal oscillator 10M-WA can be directly frequency-modulated over a range of $\pm 0.2 \%$ of F_{0}. Center frequency is 10.7 mc , deviation $\pm 20 \mathrm{kc}$. Temperature drift is less than 1 kc from -40 to +65 C; linearity is $\pm \mathbf{2 0 0} \mathrm{cps}$. Output power is 5 mw , sensitivity 3 kc per v. Size is $34 \times 2 \times 2-1 / 2 \mathrm{in}$. Itek Corp., Itek Electro-Products Co. Div., Dept. ED, Cambridge 42, Mass.

Electrical Tape

661

Acetate film insulation. glass filler and a sol-vent-resistant, thermosetting adhesive are combined in tape No. X-1131. The 7-mil tape has an electric strength of 5 kv , tensile strength of 130 $\mathrm{lb} / \mathrm{in}$. and an electrolytic corrosion factor of 1.00 . It will not cause corrosion under prolonged exposure to humidity and stress.
Minnesota Mining and Manufacturing Co., Dept. W1-29, Dept. ED, 900 Bush Ave., St. Paul 6, Minn.

ELECTRONIC DESIGN • April 12, 1961

900 Series Micropots

have a special kind of economy

CHARACTERISTICS		
	10-4urn	3.tura
Resistance (ohms)	25 to 100.000	15 to 60,000
Linearity (best)	0.025\%	0.05\%
Torque	$1 \mathrm{oz} / \mathrm{in}$.	$102 / \mathrm{in}$.
Mechenical Rotation	$3600^{\circ}+10^{\circ}-0^{\circ}$	$1080^{\circ}+10^{\circ}-0^{\circ}$
Electrical Rotation	$3600^{\circ}+5^{\circ}-0^{\circ}$	$1080^{\circ}+5^{\circ}-0^{\circ}$
Shaft Extension	servo mount 5/9"	bushing mount $7 /{ }^{\text {" }}$

WRITE FOR COMPLETE
SPECIFICATIONS AND INFORMATION

These are Borg 900 Series Micropots. They cost a little more than most potentiometers because they have a special kind of economy - their precision, accuracy and reliability often permits their use in place of special-design pots. Anyone who has ever purchased a special will appreciate this kind of economy. Characteristics such as higher concentricities, greater heat dissipation and patented drive assembly provide this inherent quality. The patented drive assembly enables the contact carrier to follow the resistance helix without reference to or contact with it. This feature reduces wear and lengthens life. In addition, the 900 Series is multiturn and completely gangable. Get complete information on Borg 900 Series Micropots. See your nearest Borg technical representative.

NEW PRODUCTS

Video Amplifier

Broad-band, solid-state decade video amplifier VF1399 is designed for rack-panel mounting. For laboratory or system use, it covers frequency band of 50 kc to $50 \mathrm{mc} \pm 2 \mathrm{db}$. Voltage gain is 80 db in $20-\mathrm{db}$ steps, input impedance 50 ohms. Maximum output voltage is 3-v peak.
LEL, Inc., Dept. ED, 75 Akron St., Copiague, N.Y.

Power Supply
 delivers 0 to 36 v dc at 30 amp . Line regulation is held to 10 mv max, load regulation 5 mv max, ripple 1.0 mv . Rack-mounting chassis has a panel height of 7 in .

Invar Electronics Corp., Sales Dept., Dept. ED, 323 W. Washington Blvd., Pasadena, Calif.

Audio Cable

Double-channel audio cable No. 17555 is suitable for use with stereo and binaural systems, and any multiplex system. It is constructed of two tinned copper stranded conductors with color-coded insulation. Spirally wound shield serves as second conductor.
Lenz Electric Manufacturing Co., Dept. EI-2, Dept. ED, 1751 N. Western Ave., Chicago 47, Ill.

Don't forget to mail your renewal form to continue receiving ELECTRONIC DESIGN.

SILICONE NEWS from Dow Corning

How To Combat Heat

Good heat dissipation with dielectric strength are unique silicone properties
An example: Dow Corning silicone fluids are used as dielectric coolants for rapid dissipation of heat because of their thermal stability and relatively flat viscosity-temperature curves. ISee chart below. 1 They can be pumped at high speeds without breakdown due to shear: maintain consistency from -65 to 250 C : and they will not oxidize or act as corrosives to metals even at high temperatures.
Low vapor pressure is an additional reason why Sierra Electronic Corporation, Menlo Park, California. specifies Dow Corning 200 Fluid as the heat transfer medium in their 100 and 500 watt. 50 ohm coaxial RF loads. Heat losses are dissipated through the dielectric coolant to fins on the cast housing, providing integral liquid cooling without loss of dielectric strength
These terminations have excellent stability. Prolonged operation within their rating produces no measurable change of characteristics, even with : From direct current to 3 kmc these coaxial line loads have a low VSWR ratio of less than $1.2 \ldots$ are compact and light in weight. And Dow Corning 201) Fluid helped Sierra engineers lick the heat problem by providing a dielectric with good heat conduction.

For "Silicones for the Electronic Engineer", Write Dept. 3316

Specify Silicones

Silastic Jacket for Heat or Cold

Exposed to environmental extremes of blistering heat and bitter cold, the molded jacket of this flexible wave guide is made from Silastic ${ }^{\text {s }}$. the Dow Corning silicone rubber. According (1) Co-Operative Industries engineers. the Silas. tic jacket provides a smooth exterior over the corrugated brass of the wave guide, gives added resistance to dents, corrosion and alrasion. It also helps control flexing characteristics. Rublbery parts made of Silastic retain their physical and dielectric properties over the wide temperature span of -90 to 250 C . . . resist ozone, corona and voltage stress. Initial properties remain unchanged despite rapid thermal cycling or long term storage.

Silicone Team "Beats" Heat

This solemoid. manufactured by Cannon Electric Company, Los Angeles, California, is subjected to high temperatures and wher envirummental extremes. One typical use: in pneumatic starters for aircraft turline engines. To, beat the heat. Cannun engineers specify a silicone insulation system consisting of: Dow Corning impregnating varnish; silicone elass tape: silicone rubher impregnated glass sleeving; silicune fiber glass insulators; silicone compound for sealing terminals: and. Silastic caulking paste. Completed solenoids must withstand environmental tests including salt spray. humidity. high and low temperatures and vibration. Cannon Electric :hose the silicone feam "for its superior characteristics in resisting heat, moisture and abrasion; and, its outstandin! dielectric properties."

Heat-Stable Vacuum Pump Fluid

Dow Corning silicone diffusion pump fluids offer a combination of properties that add up to high production rates and long runs without maintenance. These properties provide heat stability, luw vapur pressure, high vacua, rapid recovery. quick pump doun, inertness to air and metals and resistance to gamma radiation. Silicone diffusion pump fluid is non-toxic and chemically inert ... pump vacuum can be released without first cooling the boiler . . . decomposition does not occur when hot fluids are exposed to air. To improve the performance of your diffusion pump, specify a Dow Corning diffusion pump fluid . . . They prospecity a Dow corming diffusion pump illuid... The
duce vacua in the range of 10^{-5} to $10^{-7} \mathrm{~mm}$ of Hg .

CIRCIE 8OI ON READER SERVICE CARD

CIRCLE 802 ON READER SERVICE CARD

CIRCIE 803 ON READER SERVICE CARD

CORPORATION

MIDLAND, MICHIGAN

branches: ATLANTA Boston Cmicaco clevelano oan

ELECTRONIC DESIGN • April 12,1961

Alnico magnets may be soldered to bare steel pole pieces with Orango Flux No. T-64-C. The nonresinous, water-based flux leaves no active residue after water rinsing. Adhesion is good whether metal is bare or plated.
London Chemical Co., Inc., Dept. EI-2, Dept. ED, 1535 N. 31st Ave., Melrose Park, Ill.

Sequence Relay

723

A bi-directional, 12-position sequence relay for remote control, No. 4175 operates in 40 msec min . Coil is rated at $5-\mathrm{K}$ impedance, 0.003 -amp drop-out current, and de input current of 0.020 amp min . Contact rating is $1 \mathrm{amp}, 24 \mathrm{v}$ ac. A $117-\mathrm{v}, 5-\mathrm{amp}$ switch is provided at zero position. Size is 2.07 in . high $\times 2.69 \mathrm{in}$. wide $\times 2.00 \mathrm{in}$. deep.

The Lionel Corp., Electronics Div., Dept. ED, Hoffman Place, Hillside, N.J.

Laminated Circuits

Reduction of size and weight of electronic packages is possible with etched laminated circuits. Copper-backed glass epoxy is used in up to eight layers. Thickness varies with signal level to be carried. Inductance is lower than with wire harnesses. Capacitance is uniform $\pm 10 \%$ throughout a circuit; typical rating is 7 pf per in. on a 30 -mil line.

Litton Industries, Inc., U. S. Engineering Co. Div., Dept. ED, 336 N. Foothill Road, Beverly Hills, Calif.

Four overlapping Beta Ranges - High meter resolution Direct reading with test circuit power off

New Sierra 219B 4-range Transistor Tester reads Beta directly in the circuit; also measures Ico, Beta out of circuit.
Less downtime and less danger of damage to transistors under test with this new Sierra instrument-battery-operated, light weight, portable, easy to use.
Maintenance, quality control, incoming inspection and production testing are just a few of the applications where you save time and money by testing transistors, even complete assemblies, without unsoldering leads. Model 219B reads Beta in the circuit, 1 to 120. Ico is measured on a straightforward basis; collector potentials of 3,6 or 12 vdc may be selected. All controls are on the front panel . . . an instrument of convenience, speed, accuracy.
Write or phone today for information and demonstration.

NEW PRODUCTS

Fuse Posts

All 3AG miniature fuse applications are covered by a line of four fuse posts with two knobs and connecting terminal arrangements. Current rating is 15 amp max, voltage rating 250 v max. Models 342004 and 342022 require $1-164 \mathrm{in}$. behind panel, models 342014 and 342012 use 1-11/32 in. Posts meet military reguirements and are UL-approved.

Littelfuse, Inc., Dept. ED, Des Plaines, Ill.
DC Motor

A 9-v, battery-powered motor, model 36-B has less than 2% variation in speed. Capable of 4,000 rpm , it has a $1,500-\mathrm{rpm}$ governor that allows adjustments of 600 rpm . Power consumption is 2.5 ma in a neutral position.
Jonard International, Inc., Dept. EI), 624 Madison Ave., New York, N.Y.

Ulitrasonic Cleaner

With tank capacity of $1-1 / 4$ qt, the Maxson ultrasonic cleaner occupies a space $8 \times 6 \mathrm{in}$. Power output is 45 w , operating frequency 70 to 80 kc . Power consumption is 140 w . The cleaner is guaranteed for one year.

L \& R Manufacturing Co., Dept. ED, 577 Elm St.. Kearny, N.J.

Sweeping Oscillator

Frequency range of $\mathbf{2}$ to $\mathbf{2 1 5} \mathbf{~ m c}$ is covered in 12 bands by the $86(1)-B$ sweeping oscillator. Sweep rate is continuously variable, 10 to 40 cps , or locked to line frequency: sweep width is up to 30) mc. Sweep output is regular sawtooth; rf output is 1.0 v rms

Kay Electric Co., Dept. ED, Maple Ave., Pine Brook, N.J.

Heat Exchanger

All-aluminum, dip-brazed heat exchanger model 1NFSK 6.3.10-4-1/2 measures $6 \times 4.3 / 4 \times$ $3-1 / 2 \mathrm{in}$. Designed for oil-cooled electronic gear the unit will dissipate about $1,000 \mathrm{w}$ of heat with fluid temperatures around 80 C

Lytron, Inc., Dept. ED, 42 Brookford St. Cambridge 40, Mass.

Control Meter

Operating without electrical contacts, model 2547 electronic control meter provides continuous output signal past control setting, with accurate, uninterrupted full-scale indication and automatic reset. A power input of $22-1 / 2 \mathrm{v}$ dc at 10 ma is required for the switching circuit.

International Instruments, Inc., Dept. ED, P. O. Box 2954, New Haven 15, Conn.

Don't miss an issue of ELECTRONIC DESIGN; Return your renewal card.

QUALITY CABLES AND CONNECTORS NOW PRODUCED AT NEW BENDIX SANTA ANA PLANT

For users of electronic cables and connectors, Scintilla Division's new plant in Santa Ana, Calif., is an important addition to West Coast industry.

Here are the finest, most complete, environmentally-controlled, air-conditioned facilities in the area devoted exclusively to cable development and manufacture. For West Coast electrical connector users the Santa Ana plant with its complete facilities also offers "short-order" assembly service on the extensive line of Bendix connectors.

The plant is designed to meet the standard and special-purpose requirements of aircraft, missiles and ground-based electronic equipment.

Sales and service for cables and connectors and all other Scintilla Division products will still be handled out of 117 E. Providencia Ave., Burbank, Calif. Bendix Connectors - Bendix Cables: Designed Iogether to work best together

Scintilla Division

SIONEY, NEW YORK

COMINCO FOR ELECTRONIC MATERIALS

ULTRA-PURE
METALS AND
ALLOYS
ANTMONY
ARSENIC
BISMUTH
CADMIUM
INDIUM
LEAD
SILVER
TIN
ZINC
a/so
ALUMINUM
GOLD
*
COMPOUND
SEMICONDUCTORS
INDIUM
ANTMONIDE
*
STANDARD
FORMS
INGOTS
BARS
RODS
RIBBON
SHEET
SHOT
POWDER
WIRE
*
PREFORMS
PRSS
DISCS
DOTS
SQUARES
SPHERES
WAFERS
WASHERS
*
CHEMICALS
SALTS
SOLUTIONS

Arsenic - 63 Grade

... 99.9999\% PURE

Can purity of this order be controlled?

Yes, COMINCO 69 Grade High Purity Metals have specific impurifies controlled to less than 0.1 parts per million. We offer a range of metals of the above order of purity on a production basis.

Our ultra-pure metal products are widely accepted by leading firms throughout the electronics industry who benefit from:

- Metals and alloys with specific impurities controlled to the lowest levels possible in the industry today.
- Alloys with accurately controlled constituent content
- Fabrications, shapes and preforms of precisely controlled physical dimensions - metallurgically uncontaminated.
- Compound semiconductors with controlled net carrier concentrations to $10^{14} / \mathrm{cm}^{3}$.
This means more uniform performance characteristics in your finished devices with fewer rejects.

There is a great deal of background experience behind Cominco metals and in particular, the precision refining processes required to reach the exact specifications demanded in the production of transistors, tunnel diodes, thermoelectric devices, etc. We are also prepared to assist with research and development work on advanced specifications.

Send for information today

COMINCO PRODUCTS, INC.

SPOKANE, WASHINGTON
933 W. Third Ave. Phone: RIverside 7-7103
TWX: SP311 CIRCLE 71 ON READER-SERVICE CARD

NEW PRODUCTS

Precision Potentiometer

Multigang, multitap precision potentiometers may be obtained in linear and nonlinear functions with up to six gangs. Power rating is 6 w for single, 5 w per gang in multigang units. Resistance values range from 1 K to 400 K . Body is stainless stecl or blue anodized aluminum. OD .3 in . Conforming to military specifications, unit withstands acceleration to 30 g , with temperature range of -55 to +295 C . Life expectancy is 5 million revolutions. Resistance tolerance is $\pm 5 \%$ standard, linearity $\pm 0.1 \%$.

Chicago Aerial Industries, Inc., Kintronic Div Dept ED, 10134 Pacific Ave., Franklin Park, Ill

Decade Counter
725

Directly coupled in-line readout in the LA-80 counter is provided by a true decade system with no binary conversion. Time base stability is one part in 10^{*} per day; frequency range is 10 cps to 10 mc . With the LA-901B plug-in unit, time interval range is $1 \mu \mathrm{sec}$ to 10 million sec. Other features are $0.1-\mu \mathrm{sec}$ resolution, in-line eight-place readout, automatic reset, and automatic decimal point.
Lavoie Laboratories, Inc., Dept. ED, Morganville, N.J.

Accuracy Is Our Policy

The New Product description of a transistor socket made by Augat Bros., Inc., Attleboro, Mass, did not mention the maker of the mating transistor. The socket accepts units of the Clevite Corp. Spacesaver series. The item appeared in ED, March 1. p 123.

CIRCLE 72 ON READER-SERVICE CARD ELECTRONIC DESIGN • April 12,1961

This Design Feature Holds he Secret of the Greater Reliability in All 1544 Daystem Squaretrim ${ }^{\text {Tw }}$ Models

All Daystrom Squaretrim potentiometers have this in common: our unique wire-in-the-groove resistive element. We start with an insulated mandrel. We then wrap the mandrel with resistive wire. But...and this is our exclusive process...just ahead of the wire is a tiny diamond tool which cuts a carefully controlled groove in the mandrel's insulation. The wire is then wound tightly into this groove throughout the entire helix. As a result, each turn remains securely separate from the adjacent turns, thus anchoring the wire so that it will withstand severe shock and vibration without piling un and shorting out.

Daystrom Squaretrims, with this unique winding lechnique, offer you only the most reliable performance. Daystrom's wide line of 1544 Standard Models offers you almost unlimited design latitude.
Send for the catalog of trimming potentiometers that meet your specs and hold your specs under environmental stress... Daystrom Squaretrims.

DAYSTROM, INCORPORATED
1 POTENTIOMETER DIVISION
archbald, pennsylvania. los angeles, california

improved ceramics

 result from a new method of fabrication.Favorable characteristics include

1. Fabrication of thin sections especially suited for substrates. Marked improvement has been made in flatness or camber control.
2. Flatness and dimensional accuracy within normally accepted ranges without grinding expense, contaminants or scratches. However where especially strict requirements must be met, AlSiBase can be furnished both ground and polished at commensurate cost.
3. Ability to fabricate holes, slots, serrations to tighter than usual tolerances without machining after firing.
4. A superior and uniform surface especially adapted to economical coating or metalizing. Surface finish in $10-25$ microinch range is available without grinding or polishing.
5. Alsibase has exceptional dielectric strength in thin sections. Measurements made to date on AlSiBase in the new thin sections indicate better dielectric strengths than those of similar ceramic formulations processed by conventional methods and tested on $1 / 4^{\prime \prime}$ thick discs in accordance with A.S.T.M. D 667-44. A typical AlSiBase design in alumina had a dielectric strength up to 2000 $\mathrm{ACV} / \mathrm{mil}$ at 10 mil thickness.

May we see your prints on parts where this might apply?

CHATTANOOGA 5. TENN.
COTM YEAR OF CERAMIC LEADERSHIP

 divesiophi Bostony Nowson Center, Mast. Chicogo: Bedfont Fark, III. "O Clovelond, Ohio © Dallas, Toxas - Los Angelos, Cal Now York: Ridgefield, N. J. Philadelphia, Pa, St, Louls, Ma, St. Poul, Minn © So Sen Frexcisco, Coil. © Suattle, Wesh.

NEW PRODUCTS

Servo Tachometer

A size 11 servo motor tachometer, model BTIOOHMA is 1.250 in . long. Designed for transistor circuitry, the unit can be supplied with any gear train. Input to the motor is $115 \mathrm{v}, 400$ eps fixed phase, 20 v control phase. Tachometer input is 26 v ; output is 0.24 v per 1,000 rpm . The $3.2-\mathrm{o} \%$ unit meets military requirements; standard operating temperature range is -55 to +125 C .

IMC Magnetics Corp., Dept. ED, Eastern Div., 570 Main St., Westbury, L. I., N. Y.

Resistance Wire

Iron-chromium-aluminum alloy 750 wire is intended for small appliances and other uses requiring low-cost elements for service to $2,050 \mathrm{~F}$. Resistivity is 750 ohms per circular mil-ft; increase in resistance at operating temperature is said to be much greater than in similar alloys.

Hoskins Manufacturing Co.. Dept ED, 4445 Lawton Ave., Detroit 8, Mich.

Impedance Measuring

353
System

Universal impedance measuring system model 291-A has a resistance accuracy of 0.05%. Inductance and
capacitance accuracies are 0.1% at 1 kc. Measurement resolution is 120,005 dial divisions. The system includes ac and dc generators and detectors specifically designed for use with the bridge.
Electro Scientific Industries, Inc., Dept. ED, 7524 S.W. Macadam Ave., Portland 19, Ore.
PしA: $\$ 1$, (99.5; 30) days.

Digital Readout

Characters $1-5$ in. high are displayed by the series 160000 in-line digital readout. Multiple word messages may be displayed in black and white or color; color hackgrounds may be used with any words or digits. The readout operates on a rear-projection principle, and measures 1-9 16 in. wide, 2 58 in . ligh, and $6-1 / 2 \mathrm{in}$. long.
Industrial Electronic Engineers, Inc., Dept. ED, 5528 V'ineland Ave, North Hollywood, Calif.
Price \& Availability: $\$ 18$ ea; 30 days.

Translation System 351

Shaft encoder translation system accepts the output of standard shaft encoders and automatically converts these data into 12 -hit 8-4-2-1 binary-coded decimal form. These data are then prepared on punched paper tape, complete with parity checks.
Electronic Development Corp., Dept. EID, 423 W. Broadway, Boston 27, Mass.
P\&A: $\$ 4,5(0) ; 4.5$ days.

ENGINEERING NEWS-\#14

FULL LINE OF MINIATURE SNAP.ACTION SWITCHES

NOTE: All models above (except T-3) are available with maintained or momentary action. Self sealing boot available for any bushing mounted model, as shown on T2150. All models available with flange or bushing type mounting. Basic switch Model $\mathrm{T} \cdot 3$ is available with a wide variety of standard and special actuators.

These miniature pushbutton and toggle switches are typical examples of our complete line of miniaturized switches. Whatever your requirements for miniature hand-operated or mechanically-operated switches, we can meet your needs from our hundreds of standard and custom units. We offer an almost unlimited range of variations in con. figuration, actuation, ratings, operating characteristics, etc.

For more technical information on switches and indicator lights, write for FREE CATALOG No. 100.

CONTROLS COMPANY OF AMEPRICA
CONTROL SWITCH DIVISION 1406 Delmar Drive - Folcroft, Pennsylvania TELEPHONE LUAIOW 3-2100 - TWX SHRN-H-502

SUBMINIATURE INDICATOR LIGHTS

L10.000

L10,100
Moisture-proof. Only 3564

- 1 life with 5 V lamp. Translu cent lens colors. Available with cent lens colors. Available with
MS or commercial type lamp. Three lens styles

Can a silicon rectifier solve your problem?

It might, if you have a problem in DC power sources. For example, some time ago C \& D needed a high efficiency, constant potential, current limiting DC power supply. Output had to be held within $\pm 1 \%$ over an AC input variation of \pm
15%. In addition, maintenance would have to be virtually nil.
The answer was found by using a silicon rectifier in combination with simplified components that became the heart of C \& D's AutoRegik charger. AutoReg chargers provide continuous, automatic, unattended charging of industrial storage batteries. With the exception of a timing circuit there are no moving parts. There are no relays to adjust and practically no maintenance is required.
Now, C \& 1) has expanded facilities of the AutoReg plant to provide inuustry with similar DC sources, which incor porate silicon rectise:3 and automatic regulation, Final form of these units can supply power in a range from milliwatts to megawatts, depending upon your requirements.
Companies with a problem in DC power sources should write, giving a general outline of their requirements, to: Vice Papident in Charge of Engineering

AufoReg Power Sources

 CIRCLE 76 ON READER-SERVICE CARD

NEW PRODUCTS

Marking Machine

Teflon wire and tubing can be marked with the air-operated KW-7 marking machine. Wires are marked to an even depth regardless of variations in diameter, without damage to the dielectric. Dwell timer is adjustable in $1 / 10 \mathrm{sec}$ increments. A dial-type indicating pyrometer shows type head temperature to 500 F and 260 C .

Kingsley Machine Co., Dept. ED, $850 \mathrm{Ca}-$ heunga Blvd., Hollywood 38, Calif.

Impulse Counter

726

Counting speeds to 250 impulses per sec are attained by type 4TiF6EM counter. It consists of three stages: glow transfer tube, transistorized pulse shaper-amplifier, and totalizing counter. Suitable for flush mounting, unit measures $5-11 / 16 \times 2-3 / 16 \times 8-1 / 32 \mathrm{in}$. Power is 110 v , single phase, 16.5 w .
Landis \& Gyr, Inc., Dept. ED, 45 W. 45th St. New York 36, N.Y.

Push-Button Switches
718

Compact, lighted push-button switches and pilot lights are available in modular design. With sub-panel, surface and matrix mounting,

ABOUT SELF-TUNING ULTRASONIC CLEANING

to know that the only way to make it foolprool is by feedback control. And I've seen enough to know that the Autosonic cleaner by Powertron is the only one that uses feedback control to keep itself electronically tuned to peak cleaning efficiency. Feedback makes the Autosonic genuinely self-tuning, so anyone who can flip a switch can use it. What's more - it's guaranteed to clean synchros, gear heads, slip rings, or almost anything else, better, cheaper, and faster. That's why we bought self.tuning Autosonics for all cleaning applications

A complete line of Powerton Autosonic cleaners is available from 2 gals. to 75 gals.-from 100 watts to 3,000 watts-from $\$ 395$. to $\$ 6,000$.

POVNIRTRON ULTRASONICSCORP. PATTERSON PLACE ROOSEVELTFIELD GARDEN CITY, L.I., NEW YORK - PIONEER 1-3220 CIRCLE 77 ON READER-SERVICE CARD
contacts may be arranged up to 8pst. Actions include solenoid, momentary, alternate action, lockout and interlocking.
Luminator, Inc., Display-Control Div., Dept. ED, Costa Mesa, Calif.

Volt-Ohm-Milliammeter

Only one scale is visible at any one time, and all scales are direct-reading, on the V O Matic 360) automatic volt-ohm-milliameter. The meter is protected against extreme overload and burnout. Sensitivity is $2(0,0) 0$ ohms per volt dc, 5,000 ohms per volt ac; frequency response is 5 to $500,($ OK $)$ eps; accuracy is $\pm 3 \%$ de, $\pm 5 \%$ ac.

B \& K Manufacturing Co., Dept. ED, 1801 W. Belle Plaine Ave., Chicago 13, Ill.

Price: $\$ 59.95$.

Tape Recorder

Voice and frequency program material is recorded simultancously in up to 20 channels by the T-1OKK magnetic tape recording and reproducing system. Speed is $1-7 / 8$ or $15-16 \mathrm{in}$. per sec; frequency response is $\pm 2 \mathrm{db}, 300$ to 4,000 eps at $1-7 / 8 \mathrm{in}$. per sec. Flutter is less than 0.5% rms at $1-7 / 8 \mathrm{in}$. per sec, harmonic distortion less than 3% at 500 cps .

Magnasync Corp., Dept. ED, 5546 Satsuma Ave, North Hollywood, Calif.

Have you sent us your subscription renewal form?

Practical Products for Creative Engineering

HOW TO HANDLE YOUR "HOT" SWITCHING PROBLEMS

OAK HIGH TEMPER ATURE SWITGH SECTIONS have the stamina to stand up under a constant ambient temperature of $160^{\circ} \mathrm{C}$. In fact, their clips have been life-tested for more than 800 hours at this temperature and still maintained their tension. There are several reasons why Oak high temperature switch sections perform with such exceptional reliability. First, positive contact is maintained by Oak's special double-wiping, spring clip contact design. Next, Oak has developed a
special alloy that's downright reluctant to lose its spring tension at these high temperatures. Last, Oak rolls a $.0006^{\prime \prime}$ layer of gold on this clip to doubly-assure exceptional stability and contact performance. You can order these sections in ceramic or Mycalex insulation for Types FIX, HC, DHX, DHC, NC, JC, DLX, FC, and FX switches. For more information, contact your local Oak sales representative or send details of your application to our Applications Engineering department.

OAK MANUFACTURING CO.
CRYSTAL LAKE, ILIINOIS - Telephone: Crystal Lake 459.5000 OAK ELECTRONICS CORPORATION (Subsidiary) - Culver City, California

Phelps Dodge Applied Research has developed many outstanding magnet wires that anticipate the requirements for advanced insulation system designs.
This widely diversified group of Phelps Dodge "firsts" includes:

POLY-THERMALEZE* (multi-purpose film)
SODEREZE (solderable); FORMVAR* (square and rectangular);
BONDEZE ${ }^{*}$ (self-bonding); GRIP-EZE (solderable self-gripping);
S-Y BONDEZE ${ }^{*}$ (solderable self-bonding);
HERMETEZE * (for hermetic motors):
SODEREZE-BONDEZE* (solderable self-bonding).
NYLEZE® (solderable)

DAGLAS* (flexible glass)

DAGLAS H* (flexible glass)
The complete line of Phelps Dodge magnet wires also includes: ML (Class H plus film); Enamel; Formvar* (round); Epoxy; Nyform; Paper; Cotton; Multiple Combinations.
oponmunt-bmawinigan neaine
Any time magnel wire is your problem, consult Phelps Dodge for the quickest, surest answer!
PHELPS DODAE COPPRR PRODUCTH
CORPORATION
INCA MANUFACTURING DIVISION, FORT WAYNE, INDIANA
FIRST FOR LASTING QUALITY-FROM MINE TO MARKET

Specifications are: temperature range, -54 to +100 C ; altitude, $100,000 \mathrm{ft}$; coil impedance, input, 100 ohms, output, 1 K ; rise time, input, $0.2 \mu \mathrm{sec}$, output, $0.4 \mu \mathrm{sec}$; noise and spurious signals. less than 2 mv .

Curtiss-Wright Corp., Electronics Div., Dept. ED, Wood-Ridge, N.J.

Electro-Magnet 716

Field intensity of $\mathbf{2 0 , 0 0 0}$ gauss over an area of 64 sqin . is provided by the 4×16 magnet assembly at $1-1 / 2 \mathrm{in}$. gap width. Pole face geometry is a $4 \times 16 \mathrm{in}$. rectangle; faces are soft steel or Inconel. Magnet coils are wound from copper ribbon and insulated with Class B materials. A continuously variable power supply is used
(IHI) Research, Inc., Dept. ED, P. O. Box 1815, Newport Beach, Calif.

AGC Amplifier

Wide age range of $250: 1$ is a feature of transistorized age amplifier model 1020 . When used with a variable gain servo, the 400 -cps amplifier maintains constant loop gain. The $6.5-\mathrm{oz}$ unit has an ambient temperature range of -55 to +125 C. Control voltage range is 0.1 to 26 v rms; maximum output voltage is 3 v rms . Input impedance is 10 K on error channel, 180 K on control channel.

Melcor Electronics Corp., Dept. ED, 48 Toledo St., South Farmingdale, L. I., N. Y.
Price d Availability: $\$ 270$ to $\$ 310$; 30 days.

This is the time of our annual subscription renewal; Return your card to us.

This Baby is Bayonet-Locking

Meet DTK...the best little bayonet-locking electrical connector available today. DTK is short for Deutsch Tri-Kam and refers to the triple cam coupling design that assures fast, positive engagement and lock. As a direct descendant of MIL-C-26482, this baby is interchangeable with existing MS 3110 and 3116 series connectors. The DTK also inherits many desirable features from its Deutsch ancestors including superior silicone inserts and MIL-C-28636 crimp-type contacts that are insertable and removable with military standard tools. Color-keyed mating indexes and 7-point inspection for lock, make this latest generation connector a cinch to couple, even in remote locations. For more vital statistics on the latest addition to the Deutsch family, contact your local Deutschman today or write for Data File C. 4.

Electronic Components Division • Municipal Airport • Banning, California

ADVANCED SPECIFICATION MINIATURE ELECTRICAL CONNECTORS CIRCIE 80 ON READER-SERVICE CARD

General Electric's Large

 Electrostatic Deflection
Tubes Are Now Available

In Production Designs

Here are eight of the many large General Electric electrostatic deflection tubes which are available now to meet your display system requirements. YOU GET PROVED RELIABILITY and known performance and at less cost-when you specify G-E production-type cathode ray tubes in your design. AND, EACH TUBE can be supplied to meet MIL-E-1 shock and vibration tests to assure reliable operation under severe operating conditions.
PRICE AND DELIVERY OF SAMPLES ON REQUEST. For complete specifications on these G-E production-type tubes--or any cathode ray tube-send requirements and application description to R. E. McBride, Sales Manager, General Electric Co., Cathode Ray Tube Dept., Electronics Park, Syracuse, N. Y.

Progress is Our Most Important Product
GENERAL ELECTRIC

1. 12AKP7, radar tube. 2. Z-4760, 2-gun, 120. 2. Z-4718, low drive, 12°. 4. 2 -4778, 2-gun with integral magnetic shield, 12°. s. 2-4701, minimum deflection defocusing. 12°. ©. 12 ANP. 14, high performance radar. 7. GL. 623. 16° electroatatic deflection 3. $2-4652$, tetrode tube design, 12°.

NEW PRODUCTS

Weatherproof Rectifier

Rated 2,500 amp at 225 v dc. the Unitron semiconductor rectifier is designed for outdoor installation. Disconnect switch, oil-cooled transformer, voltage regulator and rectifier section are integrated in a single unit. Area required is less than 80 sq ft .

I-T-E Circuit Breaker Co., Dept. ED, 1900 Hamilton St., Philadel phia 30, Pa.

Stabilized Power Supply
352

Stabilized output voltage within $\pm 1 \%$ is delivered by model 200 TV The unit has an output capacity of 200 w at 118 v . Input power factor averages over 90% at related load
Electromatic Industries, Dept EI), Hollywood, Fla

Noise Generator
739

Random voltage source, model 301 noise generator, has an ultra< CIRCLE AI ON READER-SERVICE CARD
stable spectral density of approximately $4.0 \mathrm{v}^{2} / \mathrm{cps}$ controlled to $\pm 0.1 \mathrm{db}$ from 0 to 40 cps . Gaussian amplitude distribution accuracy is better than 1%.
Elgenco, Inc., Dept. ED, 1555 14th St., Santa Monica. Calif.

Voliage Reference Source 740

Precision voltage reference source model VS-111 has a voltage range of -111.11 v de to +111.11 v dc, selectable in $10-\mathrm{mv}$ increments. Absolute accuracy is 0.025% and resolution is one part in 10,000 . It is a four-decade, direct-reading instrument.

Electronic Development Corp. Dept. ED, 423 W'. Broadway, Boston 27, Mass.
P\&A: 57.9 .5 fob Boston; from stock

Digital Instruments

Three models of digital instruinents include an ac-de voltmeter, de ammeter, and is multimeter Typical accuracy is 1.0% of full scale for ac voltage measurement and 1.0% for current measurement.

Electro-Logic Corp., Dept. ED 515 Buccaccio Ave., Venice, Calif. P\&A: From $\$ 36$ () to $\$ 44($); 60) days.

Don't forget to mail your renewal form to continue receiving ELECTRONIC DESIGN.

CIRCLE 82 ON READER-SERVICE CARD -

Introducing \mathbb{T} NTDPE

Think of every feature, every benefit, you would design into a soldering iron if you could... and you have IMPERIAL! Only UNGAR experience and research could have developed this cool, lightweight, easy-handling iron. From tip to cord... the ultimate in interchangeability. There are so many revolutionary new ideas in IMPERIAL we had to put them all in an 8-page brochure. Send for your free copy now!

UNGAR ELECTRIC TOOLS ED-U61-2A-4 Electronic Division of Eldon Industries, Inc. 1475 E. El Segundo Blvd., Hawthorne, Calif. Please send me free full-color imperal brochurel name
tite
COMPANY
ADDRESS
city \qquad

RELAY NEWS from Union Switch \& Signal

Contact Redundancy in New UNION Crystal Case Relays

The UNION 2-pole double throw General Purpose Crystal Case Relay is designed to consistently meet the requirements of Mil-R-5757D and Mil-R$5757 / 10$. Its essential features . . . from minimum size to optimum reliability . permit it to be used in aircraft, guided missiles, shipboard and ground control electronic equipment.
A unique torsion-wire armature suspension system and a rugged all-welded frame construction provide a high level of vibration and shock immunity. Contact redundancy, which assures reliability in dry circuit and higher level contact loads, is provided through the use of bifurcated contacts.
Available with $0.2^{\prime \prime}$ grid-spaced header or "S" type header, with various mountings, terminals, and operating voltages. Write for Bulletin 1064.

Why UNION Relays Are So Dependable

There's a good reason why our relays are the standard for reliability. For years, we've been building tough, reliable relays for use in airborne and guided missile electronic equipment and similar vital applications where perfect operation under severe environmental conditions is mandatory.

Our engineers created a compact 6-PDT miniature relay with just three major assemblies . . . instead of a fistful of small parts. This was accomplished by using a balanced rotary-type armature that provided a maximum resistance to the severe shock and vibration environment of aircraft and guided missiles. The rotary principle of operation is utilized in all our relays.
We have a reputation for building reliable electronic components and we intend to maintain our tradition for building reliable relays. And we supply these quality relays in quantity. Stocks are now available for prototype requirements in New York, Pittsburgh, Dallas and Los Angeles.

For additional information, write for Bullesin 1017 or call Churchill 2-5000 in Pittsburgh.
member of the mational association of relay manufacturers
UNION SWITCH \& SIGNAL DIVISION OF WESTINGHOUSE AIR BRAKE COMPANY PITTSBURGH 18, PENNSYLVANIA

NEW PRODUCTS

Precision Parts

Tolerances of 0.0002 in . are possible on custom precision parts produced by chemical etching. No deburring is necessary. Metals include Hy-Mu 80 and 800 , stainless steel, beryllium copper, phosphor bronze, silicon, nickel silver, and others.
Komak, Inc., Dept. ED, 2632 W. Cumberland St., Philadelphia 32, Pa.
Acailability: 2 to 4 weeks.

Power Supply
402

From one to four type 122 preamplifiers may be powered from the type 125 power supply. It provides three different regulated supplies to these preamplifiers through octal interconnecting cables. Output voltages include: +135 v de at 0 to $20 \mathrm{ma} \pm 3 \% ;-90 \mathrm{v}$ dc at 0 to $20 \mathrm{ma} \pm 3 \%$; -6 v dc at 0.7 to $4 \mathrm{amp} \pm 5 \%$.

Tektronix, Inc., Dept. ED, P.O. Box 500, Beaverton, Ore.
PdA: \$28.5; immediate

Vibration Table

407
Ultrasonic shake table model 160 provides vibrations of variable frequency and power from 20 to 100 kc with uniform amplitude of motion. Accelerations of $4,000 \mathrm{~g}$ can be obtained.

Ultrasonic Industries Inc., Dept. ED. Plainview, L.I., N.Y.
Price d Availability: $\$ 750$; stock.
This is the time of our annual subscrip. tion renewal; Return your card to us.

ELECTRONIC DESIGN • April 12,1961

Superior performance...greater reliability . extreme uniformity. . . . mil-quality! These are the dramatic design advantages you gain from Motorola Silicon Epitaxial Mesa transistors. Performance characteristics include: faster switching speeds, higher voltage breakdowns, reduced capacitance, increased power handling capabilities with reduced saturation resistance, and vastly improved VHF power gain performance. The result - outstanding switching and amplifying devices with a wide range of application potential.

For complete technical information on specific Motorola Silicon Epitaxial Mesa transistors, contact your Motorola district office, distributor, or write: Motorola Semiconductor Products Inc., Technical Information Department. 5005 East McDowell Road. Phoenix 10 Arizona.
motonoln oistact offices:
Beimont Mass y Buringame, Callif / Chicaso / Cilition. M. J. I Dallas

MOTOROLA SILICON EPITAXIAL MESA TRANSISTORS

$\underset{\mathrm{NO}}{\mathrm{TYP}}$	$\begin{aligned} & \boldsymbol{p}_{11} \\ & \hline \boldsymbol{p} \end{aligned}$	$\begin{array}{\|l\|} \hline y_{\text {cin }} \\ \text { voits } \end{array}$	$\begin{array}{\|l\|l\|} \hline \\ \text { volts } \end{array}$	$\underset{m}{\mathrm{lc}}$	$\text { @lc }{ }^{\text {hrve (tyo) }}=10 \mathrm{~mA}$	fr mi
2N706	300	25	3	200	40	450
2N706A	300	25	5	200	40	450
2N7068	300	25	5	200	40	450
2 N 707	300	56	4	200	12	450
2N707A	300	70	5	200	30	500
2 21753	300	25	5	200	75	450
2N834	300	40	5	200	40	500
2 2035	300	25	3	200	40	500

Immediate availability - All Motorola Silicon Epitaxial Mesa transistors are available "off the shelf" from your Motorola Semiconductor distributor.
looking for a special potentiometer?

NEW PRODUCTS

Three-Pen Recorder

Solid-state three-pen recorder has encapsulated circuits to form rugged, replaceable modules. The pens travel the full width of the $4-\mathrm{in}$. chart. Input span of the potentiometer is continuously adjustable from 0 to 5 mv to 0 to 50 mv ,
De Var Systems, Inc., Dept. ED, Glenbrook, Conn.

Terminal Strip

Produced in polyethylene and polypropylene plastic, these mounting strips are available in standard sizes. They adapt to automated production methods and contribute to the use of preassembled circuit modules or sub-chassis assemblies.

Electro-Glass Laboratory, Dept. ED, 4000 S.W. 114th St., Beaverton, Ore.

Multiturn Potentiometers

Unitized rotor design incorporated in the 3700 series multiturn potentiometer gives smoother operation while reducing the moment of inertia. Standard linearity tolerance is 0.1% in the 10 -turn, and 0.2% in the three-turn unit. Glass-filled diallyl phthalate compounds are used in all molded parts for high insulation resistance.

Duncan Electronics, Inc., Dept. ED, 1305 Wakeham Ave., Santa Ana, Calif.

CIRCIE BG ON READER-SERVICE CARD $>$
ELECTRONIC DESIGN • April 12, 1961

Accutron*.

new electronic timepiece uses ALLEN-ERADLEV
Type TR Miniature Composition Resistors

With its miniature tuning fork and electronic circuit, Accutron introduces an entirely new principle to timekeeping-one which promises unprecedented wrist timepiece accuracy. Strapped to your wrist, it is guaranteed not to gain or lose more than one minute a month

Allen-Bradley Type TR tiny resistors enabled Accutron designers to achieve the required circuit miniaturization for a wrist timepiece-without sacrificing reliability. This circuit controls the 360 pulses of power each second-31 million per day-that drive the tuning fork. Although incredibly small, these Type TR miniature composition resistors are made by Allen-Bradley's exclusive hot molding process that guarantees complete freedom from catastrophic failures! A-B Type TR resistors are conservatively rated $1 / 10$ watt at $70^{\circ} \mathrm{C}$.
There are also other Allen-Bradley space-saving potentiometers, capacitors, and h-f filters that can help solve your miniaturization problem. And you obtain the same reliability for which the larger Allen-Bradley components have earned a world-wide reputation. For full details, send for Publication 6024. - thademark mulova watch co inc.

A-B HOT MOLDED COMPOSITION RESISTORS

Type TR1/10 Watt	MIL TYPE RC 06
Type CB 1/4 Watt	MIL TYPE RC 07
Type EB 1/2 Watt	MIL TYPE RC 20
Type GB 1 Watt	
Type HB 2 Watts	

DRAWING OF ACCUTRON
SHOWS BASIC MECHANISM

DRIVE COIL AND PHASE SENSING

 SENSINCOIL

UNING
FORK

ALLEN - BRADLEY

Quality
Electronic Components
Allen-Bradley Co., 222 West Greenfield Avenue, Milwaukee 4, Wisconsin - In Canada: Allen-Bradley Canada Ltd., Galt, Ontario

Reliable
Performance and
Stable
Settings

In critical applications, Allen-Bradley Type R adjustable fixed resistors are without equal. For example, in recent tests ${ }^{*}$ Type R resistors surccessfully withstood acceleration, shork, and vibration five times better than the latest MIL Sjer requirements. Such wide margin of safety is your assurance of complete reliability. Virtual indestructibility is obtained through an exclusive Allen-Bradley process in which the solid resistance elements and the insulating mounting are hot molded into one integral unit. The moving element is selflocking for absolutely stable settings. Also, the Type K control allows "stepless" adjustment of its resistance.
The molded case of the Type R control is watertight and dust-tight. Rated $\frac{1}{4}$ watt at $70^{\circ} \mathrm{C}$, these Type R contruls are avallable in values from 100 ohms to 2.5 megohms.
*Test Repure 171801 . Sent. 1960. United Stutes Testinè Co., Inc.

UNDER EXTREME ENVIRONMENTAL CONDITIONS

NEW CUP GUARD
permits adjustment
after encapsulation

ALLEN-BRADLEY

Average reading power meter, model PM-5K, 5 kw full scale, 100 kc to 30 mc is completely self-contained. These absorption type meters are completely shielded and nonradiating. The coaxial load resistor consists of several fused pyrex resistors. The meters are available in 50 - and 70 ohm types.

Electro Impulse Laboratory, Inc.. Dept. ED) 208 River St., Red Bank. N.J.

Pulse Generator

Rise time is 10 nsec for the model 1.31 pulse generator. It delivers a 50.1 pulse into 50 ohms. The unit is designed for laboratory and research applications as well as production line testing of components and solid-state devices.

E-II Research Laboratories, Inc, Dept. EI), Oakland, Calif.
P\&A: $\$ 5.57 .5$ fob Oakland: 31) days.

DC Amplifier

Signal-conditioning de amplifier, model 2-181, is designed to amplify the output from strain gages, thermocouples or similar low-impedance transducers. All signals and power are mutually dc isolated. Specifications are: long term stability, $\pm 0.25 \%$ of full scale; nonlinearity, less than 1\%; common mode rejection, greater than 100,000 to 1 ; input impedance, 100 K .

Electro Development Corp., Dept. EI), 3939 University Way, Seattle 5, Wash.

CHANCE VOUGHT C

NEW PRODUCTS

Time Delay Relay

Reversible time delay relay meets all environmental tests for military use. A clutch mechanism allows instantaneous reset. An adjustable load pointer can be set between time limits for outside circuit control. Timer automatically shuts off on reaching zero or maximum time. It operates on 115 v ac and contains its own de power supply.

McElroy Electronic Corp., Dept. ED, Littleton, Mass.

Mefer Indicator

Model 470 meter-indicator is packaged complete with transistor amplifier, power supply, and widescale meter. It will provide continuous indication of pressure, torque, force, weight or flow when used with strain-gage transducers of the bonded or unbonded type. Standard scale is 0 to 100; proportional secondary output voltage is 0 to 1 v .
Bytrex Corp., Dept. ED, 50 Hunt St., Newton 58, Mass.
PbA: \$490; from stock to 45 days.

Speed Confrol

692
Speed-sensing control switches of the KC-860 series are 1-3/4 in. high and $2-1 / 2 \mathrm{in}$. square. Weight is 15 oz . Flyweight-centrifugal force principle is used to control 1,2 or 3 snap-action switches. Repeatability and differential can be held to 1\%. All models have an AND 10265 pad on one end, a through shaft, and an AND 20005 pad on the other end. Military specifications are met.
Kahn and Co., Inc., Dept. ED, P. O. Box 516, Hartford 1, Conn.

Overnight delivery on many items at factory prices

When standard CLARE relays or switches meet your needs, distributor service saves you time, costs you no more.

Top quality
-the same fine design and long life you get in CLARE custom-built relays and switches.

Easy purchasing

-you can order CLARE relays at the same time you purchase other components... have them delivered together.

Engincoring assistance

-always available from CLARE field engineers who work in close cooperation with CLARE distributors.

NOW AVAILABLE
mercury-wottod contact rolay modules for mounting on your own printod dreult board
Type HGM relay module (left) with cut-away (right) showing mercury-wetted switch capsule and coil potted in steel enclosure.
Your nearby CLARE distributor can now supply you with the now CLARE mercury. wetted relays, steel enclosed and ready for mounting. They combine the famous CLARE billion-operation reliability with unusual ease of handling and application. You can choose either the standard CLARE HG relay module or the HGS, super-fast and super-sensitive. Each module contains the CLARE mercurywetted contact switch capsule with contacts continually wetted by capillary action. They never bounco, never get dirty, never weld and never wear out.

A highly reliable switching device for single or multiple circuit control... wide mounting versatility.

Single or multiple switch capsules potted in steel container. Gives billions of operations with no maintenance.

A erystal can relay with unusual flexibility and a variety of mounting styles.

of top-quality Clare relays

PACIFIC COAST

1. Purer Elioctro Prodect gon firat Avenuo.
2. Eell Eiectuante Gorperation 203 E. Alondra,
Gardona, Caviornto
3. Boll Electronic Corperalion 1070 O'Brien Drive. Monlo Perk, CaMornit SOUTHWEST
4. Radio spocination Co.0 toe. asess Acoma Rond, s.E., Albuquorgue, Maw Mozico
 ma Penn Avenue. Alamogordo, Now merreo
5. Emolinoertion Eupely Company Dellas 28, Teres
B. Manteon Egulement Coes 10s.
san decinto 35
Houston 1, Torao
6. Busecker Fiectromio and wout Co. inco
Mouston

For more complote Information on the full line of CLARE components, address:
C. P. Clere \& Co., 3101 Pratt Blvd. Chicago 45, lllinola.
In Canada: C. P. Claro Canada Limited 810 Coledonia Road, Toronto 10, Ontarlo. Cable Address: CLARELAY

From these distributors

EAST
7. RA © Eupaly, Ime. 1 tae Hophiem Ave. Moodtam Re, Mocoschuantos
a. Avnot Elloctrontes corporetion Wormbur, L.L. Now Yort D. Abectronte whideniose, ive. 1201 Hiblicene Boulvera P. 0. Dremer 1ess.
a. Exationte Wholoexilen, les. On. N.E Nimh Stroed mamil x, Flopita central
10. Rolay Seloa, Ims.
P. O. Bor im, Weat Chicago, amnole
11. Srepeo, Inc. 314 Loo Stredt, Dayton 4, Ohle
i2. Ploneer Electronis Susply Company 2115 Prospect A venue Clevoland 15, Ohlo
13. © Eloctronice a Caulpment Co. Stolnghan 1 Strowingham 2 Alabame

Lightweight, airborne digital computer system is used as an active, real-time element for navigation, guidance and control of drone aircraft. A general-purpose, two-address, serial binary data system, it uses a $12,000-\mathrm{rpm}$ memory drum with a 2,048 -word capacity. Clock speed of 260 kc permits 78 usec multiplication.
Motorola, Inc., Military Electronics Div., Dept. ED, 8201 E. Mc Dowell Road, Scottsdale, Ariz.

Wirewound Resistors

Precision wirewound power resistors, series SR, are sealed in silicone and are impervious to moisture and salt-spray. Ratings from 0.5 to 10 w are available in 15 types. Diameters are $3 / 32$ to $3 / 8$ in.; lengths are from $11 / 32$ to 1-15/16 in. Resistance range is from 0.05 to 210,000 ohms. Insulation strength is $1-\mathrm{kv}$ ac.
California Resistor Corp., Dept. ED, 1631 Colorado Ave., Santa Monica, Calif.

Tone System

Remote control of on-off functions is provided by transistorized audio tone channel systems. Both am and frequency shift are available; am channels are used for slow telemetry and simple functions, while frequency-shift channels are used for high-speed telemetry and control functions. Receivers and transmitters are housed in identical modules, which provide 10 channels in $5-1 / 4 \mathrm{in}$. of rack panel height. Power required is 110 v ac or 12 v dc.

Quindar Electronics, Ine., Dept. ED. 5 Lawrence St., Bldg. 9, Bloomfield. N.J.

NEW PRODUCTS

Transisfor Transformers

Encased in drawn steel cans, these two miniaturized transistor transformers have nickel alloy leads on standard $0.1-\mathrm{in}$. spacings. The BUD configuration is $5 / 16-\mathrm{in}$. high and the MITE unit has a diameter of $3 / 8 \mathrm{in}$. A total of 42 designs can be supplied in either style.
Decco, Inc., Dept. ED, 2025 Farrington, Dallas. Tex.

Trimmer Potentiometer

Series $\mathbf{5 0 0 0}$ trimmer potentiometer is a 25 -turn unit with welded construction of all fixed connections. Rated at 1 w up to 70 C , it has an operating temperature of -65 to +150 C . Nine standard resistance values from 100 ohms to 50 K are available with a standard tolerance of 5%.

Dale Electronics, Inc., Dept. ED, Columbus, Neb.

Cable Connectors

Coaxial cable connectors, with "crimp-on" construction, have a $50-\mathrm{lb}$ cable pull min . They are provided with only three handling parts to afford convenience in assembly, post-assembly inspection and replacement of damaged connector bodies.

Dage Electric Co., Inc., Dept. ED, 67 N. Second St., Beech Grove, Ind.

ANOTHER LING FIRST! NEW 5000 LB. SHAKER -PROVIDES BUILT-IN PIGGY-BACK CHAMBER
CAPABILITY Ling offers you another design first with its new Model 300 Shaker. This new 5,000$)$ -pound-force shaker features Ling's unique closed-loop water-cooling system, a hermetically sealed system which is specifically designed to eliminate coolant contamination of an environmental chamber. Without any special shaker accessories, it operates with a piggy-back chamber, permitting testing to unlimited altitudes and humidity, and at temperatures from -100° to $+300^{\circ} \mathrm{F}$. The specially designed lightweight armature weighs only 41.5 lbs . Ling's unique low-voltage armature and field design eliminates corona problems when operating at altitudes, and the temperature range can be readily expanded above $300^{\circ} \mathrm{F}$ with the addition of an external thermal barrier. For details on Model 300, write Department ED-461, at the address below.

LING-TEMCO ELECTRONICE,INC.

ling electronics oivision
1515 SOUTH MANCHESTER, ANAHEIM, CALIFORNIA - PROSPECI 4.2900

LING ELECTRONICS

Th he design of the Model 300 Shaker is an extension of an environmental shaker concept pionecred by Ling. This revolutionary concept, using a closed-loop cooling system for direct cooling of the armature, ficld coils and for compensation conductors, has greatly improved the efficiency of shaker performance.
In Model 300, Ling hermetically seals the system-so the standard shaker can be used freely in an evacuated chamber without special shaker accessories. Model 300 is particularly suited for mounting with the piggy-back chamber - the technique in which the shaker body acts as one wall of the chamber, and only the table rides into the chamber.
In addition, Model 300 offers Ling's new velocity signal generator for displacement monitoring. Loop-type flexures offer maximum lateral restraint and linear spring constant.

SPECIFICATIONS FOR LING'S MODEL 300 SHAKER INCLUDE: Force Rating; vector $5,000 \mathrm{lbs}$. Frequency range 5-3,000 cps. Stroke, continuous duty.

1 inch, peak to peak
Flexurc Stiffneas 1,000 lbs. per inch
Table Diameter 13\% inches Max. Acceleration. . .100 G
Stray Ficld. less than is 1
gauss, 3 inches above the table

LING.TEMCO ELECTMONICB,ING.

LNO ELECTHONIC: DIVIBION
high power electronics for
vibration testing. acoustics - sonar CIRCLE 90 ON READER-SERVICE CARD cIRcIE 90 ON reader-service cand

Instrumented Power Supply

Rated 30 kv at 3 ma , model PSC 30-3-4 instrumented power supply has a ripple of 0.5% per ma. Regulation is 10% no-load to full-load. The unit has reversible polarity and a shielded, coaxial cable is provided for the output.
Del Electronics Corp., Dept. ED, 521 Homestead Ave., Mount Vernon, N.Y.

Ulirasonic Tester

681

For ultrasonic, nondestructive testing, model 424-D testing instrument has a variable pulse repetition rate. Metals and reasonably elastic materials such as glass, hard rubber and ceramics may be inspected with this unit. It has al built-in video delay circuit and recorder output circuits.
Curtiss-Wright Corp., Princeton Div., Dept. ED, P.O. Box 110, Princeton, N.J.

General Purpose Relays
676

Available with either 0.110 or 0.187 -in. wide "push-on" terminals, type DM general purpose relays eliminate soldering from installation operations. Operating coils are 250 v ac or 130 v dc and the unit can also be supplied as a currentsensitive device with standard plate circuit value coils. Contacts are in any combination to 3pdt with 5 - or $10-\mathrm{amp}$ ratings.

Davis Electric Co., Dept. ED, Cape Girardeau, Mo.

start clean!

with this new ultra-low distortion,

stable-amplitude oscillator

When the specs get critical, you need an oscillator that won't add distortion and instability of its own. Here's a stable-amplitudc. low-distortion oscillator - Krohn-Hite's new Model 446 - that gives you a cleaner sine wave than any other oscillator you've ever worked with!

Amplitude stability is ultra-high: $0.001 \mathrm{db}(0.01 \%)$, due to a unique infinite-gain AVC circuit (patent pending). Amplitude bounce near line frequency is no longer a problem - less than 0.05%. Distortion - phenomenally low: less than 0.01%.

But that's not all. The 446 push-button oscillator offers continuous frequency coverage from one cycle to 100 kc . Voltage output is continuously adjustable from 0 to 10 volts, with infinite resolution all the way.

And when you need power along with stable amplitude and low distortion, team up the Model 446 oscillator with Krohn-Hite's Model UF-101A ultra-low distortion 50 -watt amplifier. Here's an amplifier which preserves the stability and distortion-free characteristics, even at a full 50 watts. Frequency response of the amplifier - from 20 cps to 20 kc at full power. A convenient load impedance switch offers a choice of 1,2,4, 8 and 225 ohms.

Together, this oscillator and amplifier provide a highly-stable, lowdistortion. variable-frequency Power Source (Model LDS-115) - for the most critical meter calibration or measurement needs. Send for technical literature on these new Krohn-Hite instruments.

KROHN-HITE CORPORATION
580 Massachusetts Avenue - Cambridge 39. Mass. Pioneering in Quality Electronic instruments

NEW PRODUCTS

Carrier Amplifier

A 5-v, 3-ke excitation for bridge and differential transformer transducers is provided by the model 'SCAS-1008 carrier-amplifier system. The solid-state system has one crystal-controlled oscillator, one dc power supply, and four amplifier plug-in modules. Modulating frequency response is flat from de to 500 cps within $\pm 1.5 \%$.

Plug-In Instruments, Inc., Dept. ED, 1416 Lebanon Road, Nashville 10, Tenn.
PむA: \$1,750; 6-week delivery.
Square-Frame Mofor

Ratings from 125 to $\mathbf{3 0 0} \mathrm{hp}$ are available in the D-5000 series of square-frame ac motors. The design has large air intakes at each end of the motor and exhaust outlets at the sides. Class B insulation is standard; frames and louvers are cast iron. The motor is supplied with sleeve or ball bearings. Line voltage may be 220,440 , or 550 for $3,600,1,800,1,200$, and 900 rpm operation.
Reliance Electric and Engineering Co., Dept. ED, 24701 Euclid Ave., Cleveland 17, Ohio.

Feed-Through Headers

That's how the ball bounces with Waters new PT $\mathbf{3} / 4$

Dust! Corrosion! Moisture! Vapors! All are foes of potentiometer reliability, yet ordinarily costly to keep out. Now, however, Waters introduces a new $3 / 4$ " plastic case pot, the PT $3 / 4$, meeting military sealed pot specs (MIL-R-19/1A), yet priced no higher than many commercial grade pots! " 0 " ring shaft seal and complete internal sealing virtually eliminate environmental problems. Resistance element is a copper mandrel wound with wire alloy which has a temperature coefficient of 20 PPM/ ${ }^{\circ} \mathrm{C}$. Resistance range 10 to $20,000 \mathrm{ohms} \pm 5 \%$. Dissipates 1.5 watts at $40^{\circ} \mathrm{C}$. Available with split or plain bushings. Write for Bulletin PT 760.
WATERS MANUFACTURING, INC. • WAYLAND • MASS.
MEEMTIOMETERS - COIL FORMS - POT MOORO PAMEL MOUNTS - TORQUE WATCMO CLUEES - TORQUE CMLDRATORS - OSCILOSCORES CIRCLE 92 ON READER-SERVICE CARD

BOURISS NuTNE NO. pplequit Hxikien Alcopry Prices

Yes: Schweber can sell any model of BOURNS TRIMPOT at factory prices. Sizeable quantities are available for immediate shipment from stock from Schweber's warehouse.

Now-an Even Smaller

 High-Temperature Trimpot ${ }^{\oplus}$ PotentiometerHere, just $3 / 4^{\prime \prime}$ in length, is a wirewound potentiometer that rate. For maximum stability, the unit incorporates a ceramic is completely humidity-proof and operates at $175^{\circ} \mathrm{C}$! Ideal mandrel. Reliability is outstanding. The exclusive Silverweld ${ }^{(1)}$ for your printed circuit applications, it withstands 30 G vibra- bond between terminal and resistance wire is virtually inde tion and 100 G shock, dissipates 0.5 watt at $70^{\circ} \mathrm{C}$ (0.2 watt at $125^{\circ} \mathrm{C}$), and has tapered pins for quick. easy mounting. Sealed against humidity in a high-temperature plastic case. the Model 3000 exceeds the requirements of MIL-STD 202A. Method 106. The 15 -turn screwdriver adjustment permits structible under thermal or mechanical stress.
Available within 24 hours from factory and distributor stocks the Model 3000 is stocked in resistances of 50 ohms to 20 K pinpoint settings and the self-locking shaft keeps them accu. of stocking distributors.
 CIRCLE 94 ON READER-SERVICE CARD

NEW PRODUCTS

Cast Epoxy Rod

Formulated to meet MIL-R-93B specifications, the BMCO 2000 series of cast epoxy rod is available in standard colors and diameters. Volume resistivity is 0.19×10^{18} at 180 C. Resistor bobbins and thinwall shells machined from this material have good dimensional stability.

Boonton Molding Co., Dept. ED, Boonton, N.J.

Vacuum System

Designed for high-vacuum depositions of lightweight metals, this light-weight, compact vacuum system is for laboratory use. The 18 -in. diam, aluminum bell jar can be evacuated in 5 -min to 1 micron of mercury with an ultimate vacuum of $2 \times 10^{-6} \mathrm{~mm}$. A water-cooled baffle minimizes back-streaming from the diffusion pump.
Cenco Instruments Corp., Central Scientific Div., Dept. ED, 1700 Irving Park Road, Chicago 13, Ill.
Price: $\$ 3,950$.

Tape Device

Accessory to pulse-height analyzers, model 52-26 magnetic tape input-output device provides for external storage or re-entry of digital data into the analyzer memory. Data may be transferred from the analyzer to the tape units at 1,000 decimal digits per sec. Multipliers of $10 \%, 1 \%$, or 0.1% may be selected to operate on data being transferred.

Radiation Instrument Development Laboratory, Inc., Dept. ED 61 E. North Ave., Northlake, III.

How the Visicorder helps keep "spring" in a free gyro

by simultaneously recording several

 performance characteristicsHow do you production-test a spring-wound miniature "free" gyro which has been designed for a limited number of firings without changing its characteristics due to excessive testing? Whether a gyro under actual conditions will reproduce test results depends to a large extent upon how many times it is "fired" before its short but important life begins. The multi-channel high-frequency Visicorder makes it possible for Whitaker Gyro Division of Telecomputing Corp. to test simultaneously all operating characteristics with only one firing of the gyro.

Five channels of a Honeywell 906 Series Visicorder are used in the test for uncaging time and gimbal drift.

For the uncaging time study, a squib is fired to release the gyro's spring motor. One trace indicates squib firing (A). When the gyro attains correct speed and uncaged condition) a switch closes to record another trace (B). Between these traces, a 400 cps trace is a convenient time reference (C).

The gyro is mounted on a Scorsby table set to deflect the unit $7 \frac{1}{2}$ degrees from the perpendicular about two axes. Potentiometers sensing the gyro's deflection are directly connected to galvos which measure the position of the gyro gimbals as the unit is rotated on the fixture. The potentiometer outputs trace individual sine waves on the record (D) which are easily compared to a zero trace (\mathbf{E}) to indicate gimbal drift
The records shown here in two parts are actually one continuous record. Immediately after the uncaging time test, the record drive was switched to

In this simple bench set-up, the 906 Visicorder is at right. Betupen it and the control panel is the Scorsby table on which the gyro is mounted, ready for test.
lower speed without stopping the record. The resulting traces are easy to compare and gimbal drift is measured immediately.
Four different models of the Honeywell Visicorder oscillograph provide immediate readout of analog data from DC to $5,000 \mathrm{cps}$, with $8,14,24$ and 36 channel capacity. Prices are as low as $\$ 1845$ for a 6 -channel system with grid lines and built-in timer (Model 1406). Call your Industrial Sales Office soon for a demonstration of how the world's most versatile oscillograph can save you time and money in data acquisition

Ask, also, for your free copy of the 36 -page Visicorder Applications Manual, an engineering guide packed with problem-solving suggestions.

The record at left was made at a speed of 25° per second. The record above is a continuation, after record speed was changed to 1° per second u'thout interrupting the test sequence.
honerwell international
Sales and Sertice nflices in all principal cities of the warld. Manulactur. ing in U'nited States, United Kingdom. Calnada, Netherlands, Germany, France, Japan.

Heiland Division, Minneapolis-Honeywel 5200 East Evans Avenue Denver 22, Colorado

Honeywell

Rate Gyro

Self-testing features of the GR-H4-T rate gyro provide indication that the spin motor is operating at synchronous speed and that the gimbal is free to rotaie. Permanent magncts and pickup coils provide a readout signal in excess of 2.5 v peak-to-peak. The rugged gyro withstands extremes of environment, including shocks of 500 to 900 g .
Northrop Corp., Nortronics Div., Dept. ED Northrop Bldg., Beverly Hills, Calif.

Tantalum Capacitors
593

Single-ended lead terminations can be supplied on TW (wire) and TS (slug) wet-electrolyte tantalum capacitors. Leads are properly coded for easy identification. Design enables fast assembly on modules and circuit boards.
Ohmite Manufacturing Co., Dept. ED, 3650 Howard St., Skokie, III.

Constant-Voltage Transformers

Static-magnetic voltage-regulating transformers maintain output voltages within 1% at inputs from 95 to 130 v . Operating on ferroresonance principle, the units are made in capacities of 15 , 30 and 50 va. Any step-up or step-down ratio is available. Single or multiple secondary windings with or without centertaps can be furnished as required.

Neshaminy Transformer Co., Dept. ED, Neshaminy, Pa.
PしA: $\$ 17.50$ to $\$ 8.50 ; 2$ weeks.

FOR MULTIPLE CIRCUIT SWITCHING

NORTH 700 SERIES "GANG" RELAYS

Where reliability is a must-North 700 Series "gang" relays combine fast action multiple circuit switching capabilities with the proven dependability of a telephone type open relay for use in computers, sorting and punching machines and similar applications. North 700 Series relays provide up to 16 pile-ups and are available to 32 form A or to 16 form B or form C contact arrangements.

These relays are also available with double coils for heavy spring loads or extra fast action. Double coil relays are identified as 7200 series and can be supplied with 50 form A or 32 form B or form C contact arrangements.

For applications where the small number of relays in a switching system make a common DC power supply uneconomical, the North 7300 Series is available with AC rectifiers.

North "gang" relays can be supplied with Double Gold Alloy or Solid Silver contacts, with solder type or AMP \#78 type contact terminals, and with $12,24,48,75$ and 110 volt coils (110 V.A.C. for 7300 Series). Operating speeds range from 30 MS to 70 MS at approximately 2.2 watts. Faster speeds can be obtained with increased power.
For detailed specifications on North "Gang" 700, 7200 and 7300 Series relays, write ...

ELECTRONETICS DIVISION
NORTH ELECTRIC COMPANY
I54 SOUTH MARKET ST.. GALION. OHIO cIRCLE 9G ON READER-SERVICE CARD

NEW PRODUCTS

Module Cases

Molded component cases are made in a wide range of shapes and sizes. Epoxy, phenolic or other materials may be used. Pin or terminal styles and layouts are made to customer order. The module cases allow the components to be assembled directly into the case.

Plastronic Engineering Co., Dept. ED, 721 Boston Post Road, Marlborough, Mass.

Coaxial Ignitron

587

Rated at 900 amp dc , the NL- 1064 coaxial ignitron is a water-cooled mercury pool tube designed for resistance welder and similar ac control applications. Anode voltage is 250 to 600 v rms; maximum averaging time is 17.8 sec at 250 v and 8.9 sec at 500 v .
National Electronics, Inc., Dept. ED, Geneva, III.

Cable Clamps
594

Used with cables and hydraulic lines, nylon clamps are available in sizes ranging from 1/8 to $1-1 / 4 \mathrm{in}$. diameter. Design provides a true circle, and prevents wire pinching. The lightweight clamps are impervious to nearly all corrosive liquids and fuels.

Olympic Plastics Co., Inc., Dept. ED, 3471 S. La Cienega Blvd., Los Angeles 16, Calif.

CLEAN•CLASSIC

UNCLUTTERED
Here are meters, free of frills and tinsel, executed in handsome good-taste with sensible proportions to fit and enhance any panel board.
Besides their aesthetic qualities, beckman Panel Meters do an unbeatable metering job. They are of all-metal construction with steel movement enclosure, and are unaffected by magnetic panel materials or stray RF. They are dust-free and sealed to $25^{\circ} \mathrm{Hg}$. The $4^{\prime \prime} \times 6^{\circ}$ model shown has a 4.7^{7} long scale arc for clear, shadowless readability. beckman Panel Meters have a standard mounting configuration, and are interchangeable with other meters of like dimensions. Special scale plates and bezel colors are available.

Best news of all .. 30 day delivery! Drop us a line or contact your nearest Helipot representsive for details on the arciman line, AC and DC Voltmeters, Ammeters, Milliammeters, Microammeters or Expanded Scale Meters.

Beckman"/Hellpot

POTS : MOTORS : METERS
Helipot Division of
Beckman Instruments, Inc.
Fullerton. California

CIRCLE 751 ON MEADER-SERVICE CARD ELECTRONIC DESIGN • April 12, 1961

Servomotor

smaliest size 8 is 0.84 in. lone
Said to be the smallest size $8,11 \dot{u}$ v strviunotor suld, the Model 8 SM 481 is 0.840 -in. long, weighs 1.1 oz. A pre-cision-control component, it has a rotor inertia of 0.18 $\mathrm{gm}-\mathrm{cm}^{2}$ coupled with a stall torque of 0.22 oz -in., providing acceleration at stall of 88,500 rad per sec^{3}-three times greater than any equivalent unit, asserts the company. Using stainless-steel and Teflon as insulation throughout permits an ambient temperature rating of -55° to $+130^{\circ} \mathrm{C}$. Maximum unit operating temperature is $200^{\circ} \mathrm{C}$
Helipot Div. of Beckman Instruments, Dept. ED, Fullerton, Calif.
Precision Potentiometer
Hos matching $7 / 8$-in. furns-counting dial

Model 7216, $7 / 8$-in. diam. precision pot has standard resistance of 10 to 125.000 ohms and ± 0.5 per cent standard linearity. A $7 / 8-\mathrm{in}$. diam. 2600 series turns-counting dial is also offered for users desiring a precision pot-anddial package, counts full turns and hundredths. The model 7216 is a ten-turn potentiometer with $1 / 4-\mathrm{in}$. diam shaft and $3 / 8-32$ bushing mount. It is rated at two w at $25^{\circ} \mathrm{C}$ with a minimum operating temperature of $-55^{\circ} \mathrm{C}$ The pot has a molded diallylpthalate housing, bronze front lid and stainless-steel shaft.
Helipot Div. of Beckman Instruments, Dept. ED, Fullerton, Calif.

Ponel Meters
754

Built to exact conformity with MIL-M-10304A, 4-1/2. in. round, sealed panel meters have plug-in terninal construction, easy disassembly and good linearity. Allmetal construction and modern appearance make the 92 standard models suitable for a variety of applications. Available as volt-meters, amineters, milliammeters and microammeters.
Helipot Div. of Beckman Instruments, Dept. ED, Fullerton, Calif.
Availability: 30 dilys

Circle 755 on reader-service card

NEW PRODUCTS

DC Power Supplies

Derated components are used in the Brute Force line of silicon dc power supplies. The current-regulated supplies have less than $1 \% \mathrm{rms}$ ripple at any output voltage or current within rating. Ammeter and voltmeter with $\pm 2 \%$ accuracy are standard. All units may be floated up to 500 v peak above ground: either terminal may be grounded
NJE Corp., Dept. ED, 20 Boright Ave., Kenilworth, N.J.

Cartridge Rectifiers

Rated at $1.5,3$, and 5 kv piv, military type silicon cartridge rectifiers $1 \mathrm{~N} 1731,1 \mathrm{~N} 1733$ and 1N1734 meet MIL-S/19500/142 (Sig C). They have higher current ratings, lower voltage drop and better reverse leakage characteristics than previously available types. Case is nonmetallic.
Pacific Semiconductors, Inc., Dept. ED, 12955 Chadron Ave., Hawthorne, Calif.

Temperafure-Humidity Chamber

Available in 2-4- and 8 -cu ft sizes, chamber SUB-Z-H has temperature ranges of -100 to +400 F and humidity of 20 to 95%. Climatic conditions are controlled by wet and dry bulb indicating controllers. Even temperature is maintained by means of an 8 -in. circulator with fincoil evaporator.

Cincinnati Sub-Zero Products, Dept. ED. 3932 Reading Road, Cincinnati 29, Ohio.

Packaging problems?

Hughes

Semiconductors offers a complete packaged assembly service to save you time, money, headaches

Here are the features of this service:

1. SEPARATE PACKAGING DEPARTMENT - This
department specializes in the design and production of special assemblies. It is headed by an engineering group that provides personalized service with emphasis on solving your packaging problems quickly and economically.
2. LONG EXPERIENCE - Hughes has already delivered over a million packaged assemblies. We've produced over 600 standard and special designs for firms all over the country.
3. QUALITY COMPONENTS - Our assemblies consist of only the highest quality active and passive components manufactured by Hughes Semiconductors and other reliable sources.
4. RELIABILITY - Hughes packaged assemblies use self-extinguishing epoxy throughout. They are corrosion proof, hermetically sealed, and their marking ink is immune to normal solvents. Hughes assemblies meet the requirements of all applicable MIL specifications.
If you are looking for a special assembly to fill your specific needs, or if you are looking for a standard assembly, specify Hughes. These assemblies are always rugged, reliable, economical, and you'll like the complete service you get.
Call or write your nearest Hughes Semiconductor Sales Office. Or write: Hughes Semiconductor Division, Marketing Department, 500 Superior Avenue, Newport Beach, California.
```
Creating a new world with Electronics
```


HUGHES

CIRCLE 97 ON READER-SERVICE CARD

Rectifier power transformers, models P-8193 and P-8194, are designed for use in either fullwave bridge or half-wave rectifier circuits. They can be used with either selenium or silicon rectifiers. P-8193 has outputs from 7 v dc at 2.5 amp to 17 v de at 4 amp . P-8194 has circuit outputs from 14 v dc at 2.5 amp to 28 v dc at 5.2 amp .

Chicago Standard Transformer Corp., Dept. ED, 3501 W. Addison St., Chicago 18, Ill.

Digital Resolver

Model DR-14 digital resolver provides highspeed conversion from Cartesian to polar coordinates or the reverse. Conversion is accomplished in $200 \mu \mathrm{sec}$ or less. Completely transistorized and operating at a $1-\mathrm{mc}$ clock rate, the unit accepts two 10 -bit inputs representing Cartesian coordinates and converts them to two $10-$ bit numbers representing polar coordinates. It can provide conversion of 5 channels in less than 1 msec .
Computer Control Co., Inc., Dept. ED, 2.251 Barry Ave.. Los Angeles 64. Calif.

Digital Converter

Designed for on-line digital telemetering and control applications, the Digi-Tel analog to digital converter operates directly from process transducers. Output is coded for direct digital transmission, display, control and data logging. Input transducers are available for operation from standard variables. Output may be decimal, binary-coded decimal, or special code. Up to three simultaneous output circuits are provided. Electronics Div., North Electric Co., Dept. ED, Calion, Ohio.

operator convenience makes the hecti/niteh* recorder preferred for laboratory use

The recti/riter recorder has become the accepted laboratory recorder-is preferred for the exacting tasks of laboratory applications. The portable recti/riter is the only galvanometric rectilinear recorder designed specifically as a bench-top instrument with all routine controls and adjustments located up front for extra convenience. The "writing desk" chart carriage permits operators to make the extensive notations usually associated with laboratory use while the instrument is recording.

Ruggedized die-cast construction results in an instrument that can "take it"-yet removal of the onepiece dust cover makes every working part completely accessible and removable without further disassembly. Every recti/riter carries a one-year full service warranty.

There is a recti/riter to fit your particular require-ments-single and dual channel, portable and flush-
mounting models . . . each available in the widest selection of standard ranges in the industry.

Two-Cycle Pen Response

d-c Milliampere Ranges
a-c Ampere Ranges \qquad d-c Ampere Range

1/2 ma to 100 ma 0.25 amp to 25 amp 100 mv for use with standard shunts
Expanded Scale a-c Voltage Ranges
60 V, 320-520 V a-c and d-c Voltage Ranges............ $.10 \dot{\mathrm{~V}}$ to 1000 V Frequency Ranges Five-Cycle Pen Response
d-c Milliampere Ranges
2.5 ma to 125 ma

Special options and accessories further expand the versatility of recti/riter recorders. Write now for complete information on this accepted laboratory recorder line.

NEW PRODUCTS

Thyratron Tubes

With milled-grid construction, thyratron tubes C1K, C3J and C6J are always constant in performance characteristics. Checks to select balanced sets are not necessary with these units. They meet all JAN MIL specifications.
Cetron Electronic Corp., Dept. ED, 717 Hamilton St., Geneva, Ill.

Amplitude-Distribution 578 Analyzer

The amplitude-probability distribution of random signals is established by the model 317 analyzer. Voltage threshold is preset at front panel; noise levels exceeding that level are read in terms of percentage and time. The solid-state device operates from 5 cps to 500 kc . Amplitude ranges are $100 \%, 10 \%$, and 1% full scale. Accuracy is $\pm 3 \%$ of full scale. Size is $8-1 / 4 \times 5 \times$ $6-3 / 4 \mathrm{in}$.; weight is 5 lb .

Quan-Tech Laboratories, Inc., Dept. ED, 60 Parsippany Blvd., Boonton, N. J.

Infrared Defectors

627

Room temperature, indium antimonide, infrared detectors have a time constant of less than $1 \mu \mathrm{sec}$ and peak at 6.8 microns. Specifications for a typical cell $1.5 \times 6 \mathrm{~mm}$ are: black body response, 3×10^{7} cm-cps ${ }^{1 / 2}$ per w; resistance, 20 ohms; time constant, less than $1 \mu \mathrm{sec}$; peak response, 6.8 microns.

Block Associates, Inc., Dept. ED, 385 Putnam Ave., Cambridge 39, Mass.

Instrument Pivots

Precision instrument pivots are made for electrical indicating instruments, velocity and pressure gages, and similar applications. They are manufactured to tolerances of 0.0001 in . and have a hardness of 65 on Rockwell C scale. Various point curvatures and nonmagnetic pivots are made

Welton V. Johnson Engineering Co., Inc., Dept. EI), 95 Summit Ave., Summit, N.J.

Precision Relay

Only $0.2 \times 0.4 \times 0.6 \mathrm{n}$. in size, the "Dyna-Mite" precision relay weighs $0.1 \mathrm{o} \%$ Sensitivity is 100 mw and current rating is 0.25 amp with a contact life of 100,000 cycles min at the rated resistive load of 28 v dc. The unit will operate without variation over the temperature range of -6.5 to +125 C at the max guarantced pull-in current of 7 ma max for the $2-\mathrm{K}$ coil, 18 - to 30 v rating. Available in spdt, with resistances of $500,1,000$ and 2,000 ohms, and a voltage range of 12 v , 16 v , and 18 to 30 v .
Control Dynamics Corp., Dept ED, North IIollywood. Calif

Nuvistor Triode

High-mu nuvistor triode 7895 is useful in cascode circuits, rf and if stages, on-off controls, and resist-ance-coupled amplifier circuits. Transconductance is $9,400 \mu \mathrm{mhos}$ at plate current of 7.0 ma , plate voltage of 110 v . Heater drain is 135 ma. at 6.3 v . Amplification factor is 64. The triode is 0.8 in . long and weighs $1 / 15 \mathrm{oz}$.
Radio Corp. of America, Electron Tube Div., Dept. ED, 415 S. 5th St., Harrison, N.J.

READOUT of this world

DOWN.TO•EARTH FACTS

The excellent acceptance given the NIXIE Indicator Tube-the first mass-produced Il electronic readout mass-produced all electronic readout tube-extends te when you compare this understand ble with any other readout Check or feature, wher these facts, then specify:

- Lowest Cost
- Smallest Size
- Lightest Weight
- No darkening display
- Most easily read . . under all conditions
- No shifting focus or misalignment
- All electronic
- No costly replacement or servicing
- Lowest power requirements
- No bulb or filament failure
- Meets maximum temperature, shock and vibration specifications
- No segmented failure
- Longest life . . 200,000 hours
- No matrix driver required

Write today for your
READOUT FACT FINDER,
AN ENGINEERING
COMPARISON OF
ALL READOUTS

Burroughs Corporation \oplus

NEW PRODUCTS

Frame-Grid Tubes

A pair of frame grid tubes are in production. with other types scheduled. The 61)J8, a twin triode is designed for industrial use; the 6GK5 triode is used as an rf am plifier in TV tuners. The design gives uniform tube characteristics Westinghouse Electric Corp., Dept. ED. Box $\mathbf{2} 278$, Pittsburgh 30 Pa.

Precision Delay Lines

For use in IFF equipment, these high-performance delay lines have a total delay of $20.3 \mu \mathrm{sec} \pm 0.05$ μ sec. Taps are available at every 1.45 usec. Minimum delay-to-rise time is 100 to 1 and characteristic impedance is 470 ohms. Attenuation is less than 2 db and spurions signals are maintained below -20 db .

Richard D. Brew and Co., Inc. Dept. EI), 90 Airport Road, Concord, N.II.
Availability: 4 to 6 weeks.

Miniature Demodulator

NLS Reports on Low-Cost, Standard Data Logger

A low-cost automatic data logger built as an integrated scanning, measuring and printing system - the RS2 Recording Digital Voltmeter - is now in volume production at Non-Linear Systems, Inc.
This economy-priced NLS logger is designed for applications requiring high accuracy and low cost without need for the higher speed and greater input capacity of higher cost NLS systems. Simplified controls offer several automatic and manual modes of operation.
While utilizing many circuits field-tested for six years in thousands of NLS digital voltmeters, the RS2 has unllergone extensive testing as a standard, complete system. It is delivered ready to use, without need for additional engineering or complex interconnections.
Call your NLS regional office or representa. tive for a demonstration, or write NIS.
mS 2 BRIEF SPECIFICATIONS

automotic Functions: acanning up to 20 -double-mole channels;
 point placement.
Accuracy: $\pm 0.01 \%$ of full acale on each range.

Scannen Operation Modes: AUTO CYCLE - Myrem

 AC Volton,
AC Vollage: Use NLS AC/DC Concerter.
Low-Level DC: Une NLS Model 180 Preamplifer. Inpul Impedonse: 10 meko on all ranges.
Size: 14° high, $15 \%^{\circ}$ deep 100 19" rack.
Delicery: From atock Jo days, maximum, thould

Orizinator of the Digital Voltmeter
non-linear systems, inc. del mar clalionan
CIRCLE 101 ON READER-SERVICE CARD
ELECTRONIC DESIGN • April 12,1961

TIME TO TRAVEL... in a bird, or elsewhere, this A. W. Haydon timing motor is unique. We married our successful Vanguard II sub-miniature DC motor, for power, to a tiny new version of our well known (and patented) chronometric governor, for precision. Result: it will drive miniature tape recorders, printed circuit commutators, potentiometers, and such things....and hold its speed to within $\pm 0.1 \%$ of the speed you want, even if the shaft load, line voltage and ambient temperature vary widely. It weighs a mere two ounces and measures less than $13 / 4^{\prime \prime} \times 15 / 16^{\prime \prime}$, yet delivers at least 30 ounce-inches of torque at 1 rpm . For full information on this \#14600 motor, or any other sort of timing device, electronic or motor driven, just write.

CIRCLE 102 ON READER-SERVICE CARD

In addition to their regular stock and custom transformers for the electronic industry, ADC has long been a dependable source of transformers and filters to the telephone and telegraph industry. When Western Electric announced they would no longer supply these components to manufacturers, ADC put their 24 years of experience to use designing and tooling a series of "coils" which are electrically and physically interchangeable with similar components made by The Western Electric Company. Many of these are in stock. If you use such components, we suggest that you write for more information. We believe you'll be pleased with both the price and delivery.

WRITE TODAY FOR TELEPHONE COIL literature

NEW PRODUCTS

Limit Stop Assembly

Adjustable rotational limit control within an operational range of 30 to $4,530 \mathrm{deg}$ is provided by this precision limit stop assembly. Contained in a size 18 case, the assembly has a $3 / 16$-in shaft with ball or bronze bearings.
PIC Design Corp., Dept. ED. 477 Atlantic Ave., East Rockaway, L.I., N.Y.
P\&A: \$45 to \$75; 10 days.
Photoelectric Confrol

Infrared light-actuated photoelectric control is designed for operation at distances up to 100 ft between the light source and the control. The lens of the control is shielded from normal light so that operation continues day or night, whether lights are on or off. Operation is from $115 / 230 v$, 50 to 60 cps .

Autotron, Inc., Dept. ED, Box 792 IIA, Danville, Ill.
Temperature Transducer

For temperature ranges from -320 to +280 F , model Y-0218 temperature transducer will measure skin temperatures, the level of liquid nitrogen, as well as acting as the temperature compensation element for constant signal readout. Excitation is in the order of 2 ma . The unit is approximately 1 -in. square, less than 0.040 in . thick and weighs less than 1 g . It will stand 100 g at 100 to 700 cps .

Crescent Engineering and Research Co., Dept. ED, 5440 N. Peck Road, El Monte, Calif.

Bring your problem to us.
You'll find we're experienced in handling the very special cable problems encountered in telemetering, data recording, circuit control testing, and electronic computers.

When a major aircraft manufacturer needed a specialized cable with lowloss characteristics, trouble-free operation and long service life they brought their design to us. We produced a cable with 111 conductors, grouped into 37 individually jacketed triplets-complete with insulation jacketing, shielding braid, laminated tape and heavy-duty outside jacket.

Others with similarly knotty cable problems have discovered that Rome's know-how and facilities are just what the situation calls for.

We'd be happy to send you a brief descriptive brochure. Ask for Bulletin RCD-400, "Instrumentation Cables." Or spell out your problem. Either way you'll hear from us promptly. Address inquiries to Rome Cable Division of Alcoa. Dept. 11-41, Rome, N. Y.

CIRCLE 104 ON READER-SERVICE CARD
ELECTRONIC DESIGN • April 12,1961

Solid-state, high-gain, direct-coupled amplifier module model A-201 is for general purpose closed-loop use. Amplifier frequency response is flat from dc to 1 kc ; open loop dc gain is over $1,000,000$. Output is 14 v peak at 3 ma .
Dynamic System Electronics Corp., Dept. ED 2001 N. Scottsdale Road, Scottsdale, Ariz.

Stacking Patch-Cord

Endless extension couplings are possible with the model HB extension-stacking patch-cord. The part is available in 10 colors and standard cord lengths. Banana plugs are beryllium copper spring, fitting standard $0.166-\mathrm{in}$. jacks.
Pomona Electronics Co., Inc., Dept. ED, 1500 E. 9th St., Pomona, Calif.

Price: $\$ 1.75$ to $\$ 1.23$ ea.

Tuning Fork Oscillator

Transistorized tuning fork oscillator, series DFO-80, is available in any frequency from 400 to $4,000 \mathrm{cps}$. Frequency tolerance is $\pm 0.15 \%$ over the temperature range of 0 to 60 C . It will provide 3 v rms into a $10-\mathrm{K}$ load nominal and a sine wave with less than 10% distortion or $12-\mathrm{v}$ peak-to-peak square wave with a rise time of less than $10 \mu \mathrm{sec}$.
Delta-F, Inc., Dept. ED, 113 E. State St., Geneva, Ill.
P\&A: $\$ 66.25$ to $\$ 45$ depending on quantity; from stock.

Because photomechanical reproduction has been developed to micron accuracy, masks in subminiature sizes are standard production at Buckbee Mears Company. Evaporation masks for mesa transistors, germanium and silicon are no longer a challenge. Anything that can be drawn can be reproduced. Drawings up to 1,000 limes size are reduced exactly by special cameras to produce a perfect matrix for exact reproduction of the component demanded.

For straight line rulings, cross line rulings, calibrated dials, and concentric circles an especially designed ruling engine produces master rulings up to 2,000 lines per inch with linear accuracies up to 14 inches of $\pm .000039$. Also concentric circles of 10 inch diameter to the same tolerances.

Anything that can be drawn can be reproduced-exactly. Before you decide it can't be done, send us your problem.

Our answer could surprise and please you, as it did the designers of a space antenna when a conductor 20 feet long was etched to an accuracy of .015 inches over an area of 17.45 feet; or as it did the Bell Laboratories when they asked for thousands of apertures spaced to .00005 in I square inch of nickel.

245 EAST SIXTH STREET • ST. PAUL 1. MINNESOTA

ELEVEN DOZEN ZENERS

132 BASIC ITT TYPES COVER 33 VOLTAGES IN 4 POWER RATINGS

The complete ITT "Gold Crown" line of zener voltage regulator diodes offers all the most widely used power ratings in a very extensive range of zener voltages. Backed by the world-wide research, development and production facilities of the great ITT System, these outstandingly reliable diodes

feature sharp zener characteristics, low dynamic impedance and conservative power ratings. Welded cases with hermetic glass-to-metal sealing assure total environmental protection for the most critical commercial and military applications. Write for Bulletin No. 230, containing complete data.

- 4 power ratings: $3 / 4,1,31 / 2$ and 10 watts
- 33 zener voltages (nominal): 3.9 to 100 volts
- standard tolerances: $\pm 20 \%, \pm 10 \%, \pm 5 \%$
- temperature range: -65° to $175^{\circ} \mathrm{C}$.

SEMICONDUCTOR DEPARTMENT COMPONENTS DIVISION
international telephone and telegraph corporation. clifton, new jersey
ITT COMPONENTS DIVISION PRODUCTS: SELENIUM RECTIFIERS - SILICON DIODES AND RECTIFIERS - TANTALUM capacitors • power tubes - iatron storage tubes - hydrogen thyratrons • traveling wave tubes

NEW PRODUCTS

Inertia Switch

Single pole, double throw model $6 \mathrm{BC}-189$ is a unidirectional switch with a range of 2 to $30 \mathrm{~g} \pm 5 \%$. Response time of the undamped switch is 0.015 sec ; reset is automatic. Power rating is 2 amp at 28 v dc, temperature range -65 to +250 F . Two insulated terminals and case ground are provided. Switch meets requirements of MIL. E-5272.

Inertia Switch, Inc., Dept. ED, 311 W. 43rd St., New York 36, N. Y.

Vacuum Chambers

577
Diameters from 18 in . to 12 ft with standard lengths to 20 ft are included in the Spacemaster series of vacuum chambers. The standard unit is for vacuum levels to 10 microns while the high-vacuum type, with stainless steel vessel, is for vacuum levels to 0.1 microns.

Bethlehem Foundry and Machine
Co., Environmental Engineering Div., Dept. ED. 225 W. Sccond St., Bethlehem, Pa.

Tantalum Capacitors 626

Microminiature in size, these nonpolar solid tantalum capacitors measure $0.1 \times 0.090 \times 0.065 \mathrm{in}$. max. Models are available in a range of values from 0.001 to $0.0047 \mu \mathrm{f}$ which operate at 50 v nonpolar and from 0.0068 to $0.047 \mu \mathrm{f}$ at lower voltages. Temperature range at fullrated voltage is -5.5 to +85 C .

Components, Inc., Dept. ED, Biddeford, Me.
\& circle 106 on reader-service card

Voltages to $\pm 1,010 \mathrm{v}$ dc are measured with accuracy of $\pm 0.1 \%$ $\pm 0.1 \mathrm{v}$. Circuit is floating; input impedance is greater than 100 meg . Standard cell referenced voltage is adjustable between 0 and $1,010 \mathrm{v}$. Deviation from reference is indicated on 10 v or 100 v scale. Size is $9-1 / 2 \times 8 \times 12 \mathrm{in}$.
Industrial Measurements Corp., Dept. ED, 250 N. Thomas, Pomona, Calif.
Price: $\$ 460$

Indicator and Controller 576

Designed for use in any bonded strain gage transducer system, type 110 Pointer Indicator and Indicating Controller is an automatic nullbalance type instrument. It uses a servo-driven slide wire to balance an internal bridge circuit. Standard models are capable of over-all systems accuracies of $\pm 0.5 \%$.
Baldwin-Lima-Hamilton Corp., Dept. EID, 42 Fourth Ave., Waltham 54, Mass

Mounfing Hardware

Continuous mounting hardware permits the user to mount as many of the firm's standard lighted assemblies as necessary in a compact and orderly matrix fashion. The use of this device prevents accidental dual actuation of two switches.

Controls Co. of America, Control Switch Div., Dept. ED, Folcroft, Pa .

CIRCLE 107 ON READER-SERVICE CARD $>$

Avco and... better communication in combat areas

The newest combat area FM communications equipment standardized by the U. S. Army Signal Corps is Avco's AN/VRC-12.
Designed, developed and produced by Avco's Electronics and Ordnance Division, the AN/VRC-12 series utilizes narrowband frequency modulation, covers $30-70$ megacycles, has 920 channels and offers completely automatic tuning.
Rugged and compact-one-seventh the size and two-thirds the weight of the equipment it replaces-the AN/VRC-12 is compatible in every way with manpack, portable and airborne FM radio sets being developed by the Army for use in forward combat areas.
Reducing the problems and enhancing the effectiveness of communicationswhether for the Army, Navy, Air Force or NASA-are among Avco's proven and most highly developed capabilities.
If you have a communications problem, why not consult Avco's Electronics and Ordnance Division. Write: Director of Marketing, Communications Section, Electronics and Ordnance Division, Avco Corporation, Cincinnati 15, Ohio.
 Avco/

BIRD "Termaline" Load Resistors are designed to provide a constant impedence of 50 ohm from DC through the useful coaxial frequency range. Each Resistor is intended to simulate an infinite length of 50 -ohm line, thus providing an almost reflec. tionless rermination. Low VSWR and freedom from radiation makes the Bird Loads extremely useful during adjustment and testing. Measurements of power are also possible when these Resistors are used as termina. tions for the appropriate Bird "Thruline" Directional Wattmeters. Accuracy in RF resist. ance, rugged ability to absorb power and absence of any need for adjustments has long characterized the Bird "Termaline" Load Re. sistors. For specificacions on standard models see char below. For other requirements please phonerience in this feld may assist you in the soo
lution of your problem.

Modal	Mar. Power	Froq. Ronge	Mar. VSWR*	Inpuf Connatior
30-M	5 W	0.4 KMC	1.2	Typo "N" malo
ce-8	5 W	0.4 KMC	1.2	Type "N" fomole
20-CM	5 W	0.4 KMC	1.2	Pypo "C" mole
so-cF	5 w	$0-4$ KMC	1.2	Type "C" fomole
80-8NCM	5 W	0.4 KMC	1.2	Prpe BNC mole
S0-ENCF	5 W	0.4 KMC	1.2	Type ENC fomalo
10-A	20 W	0.1000 MC	1.1	Type "N" fomolo
81	sow	$0-4$ KMC	1.2	Type " N " fomale
81.8	20 w	0.4 KMC	1.2	Pype " W " 'tomelo
82-A	500 w	0-3.3 KMC	1.2	Coplaner. Adapter ro UG-218/U supplind
22-AU	500 W	0.3 .3 KMC	1.2	"LC" Ject mater with UG-15A/U slug on RG-17/U cable
82-C	$2500{ }^{\text {W/0 }}$	0.3 .3 KMC	1.2	Coplanar. Fillings and coblo escomblies for nomible ond rigid coes lines evailoble

*WSWR on oll models is 1.1 max. from DC to 1000 MC .
Other Bird Insfruments

NEW PRODUCTS
Variable Delay Lines

Series 8710 all-metal delay lines are continuously variable, distributed constant units that afford precise selection of extremely short time intervals. Delay times of $1 \mu \mathrm{sec}$ to $0.1 \mu \mathrm{sec}$ are provided, with rise times less than 10% of total delay time. Life expectancy is one million or more shaft revolutions.
Beckman Instruments, Inc., Helipot Div., Dept. ED, 2500 Fullerton Road. Fullerton, Calif.

Bar Switch-Light

A multipole, momentary-contact bar switchlight, series 34 is available in a variety of normally open or normally closed contact arrangements as 1,2 , or 3 pdt and $2,3,4$, or 6 pst. Rated at 28 v dc, 2 amp resistive, mechanism has double-break silent action. Lens is available plain or engraved in four standard colors.

Pendar, Inc., Dept. ED, 14744 Arminta St., Van Nuys, Calif.

Telemetering Calibrator

All $\mathrm{fm}-\mathrm{fm}$ subcarrier channels are automatically calibrated with the model C-005, a threepoint telemetering calibrator. All signals derive from transistorized, plug-in crystal oscillators operating at the fundamental frequency. There are two automatic and one manual operating modes. Probescope Co., Inc., Dept. ED, 8 Sagamore Hill Drive, Port Washington, N. Y.

"Tormalino"
Wh Absorption

ELECTRONIC CORP.

CHurchill 8-1200
30303 Aurera Read, Cleveland 39, Ohio VAN GROOS COMPANY, Woedlond Mille, Collf. CIECLI IOS ON READER-SERVICE CARD

 1 to 6 Channels

MORE DATA PER DOLLAR

* Inexpensive Tungsten Light Source
* Electrically Selectable Speeds
$1^{\prime \prime}, 5^{\prime \prime}, 10^{\prime \prime}$
and $50^{\prime \prime}$ per second
* Sensitivities from $.4 \mathrm{Mv} /$ inch
- 2000 Cycles per Second Frequency
Response ($\pm 5 \%$)
* Amplitude Grid Lines
* Woight 15 lbs .
* 110 Volts - 60 Cycles

TESTING
ANALYSIS CORRELATION
Request Bulletin CEI-322
(
From The Home of Planned Pioneering
century
electronics \& instruments, inc.
 Serviced by Syste .. Engineering Ottices of Airsupply-Ae: Jeering Company Vibro Meter Corporaman, fribourg Sw-izeniand
CIRCLE 109 ON READER-SERVICE CARD ELECTRONIC DESIGN • April 12,1961

PERMANENT MAGNETS ARE PERMANENT!

Study of Remanence by Indiana Steel indicates $\mathbf{1 0 0 \%}$ stability can be achieved

4PDT Relay

565

Rated to 3 amp at 30 v dc or 115 v ac resistive, the KHP series of relays provides 4 pdt in a package slightly larger than 1 cu in . Contact arrangements of four Form C and two Form Z are available. Coil operating voltages range from 6 to 110 v dc. Pull-in time is 15 msec , drop-out 5 msec max. Dust cover is translucent nylon.

Potter \& Brumfield Div., American Machine \& Foundry Co., Dept. ED, Princeton, Ind.

Compression Accelerometer

687 ple of non-oriented barium ferrite
(INDOX I) with an $\mathbf{H}_{\text {cl }}$ of $\mathbf{4 , 0 0 0}$ oersteds was measured for natural stability over a period of more
than 5,000 hours. Relative remastability over a period of more
than 5,000 hours. Relative remanence was $100 \% \pm 0.1 \%$. An oriented sample of the same material (INDOX V) with an $H_{c l}$ of 2,030 oersteds measured 99.5% $\pm 0.1 \%$. The material having the lowest coercive force-Alnico III - also exhibited the least natural stability, $97.04 \% \pm 0.05 \%$.

- A second important factor affecting natural stability was length-to-diameter ratio (L/D). It was found that rods of Alnico V, having a greater L/D ratio, proved more stable. For example,
-Contract AF33 (656) - 3385 monitored by the

WHY

Truly permanent permanent magnets are now possible, according to scientists of Indiana Steel Products Division, Indiana General Corporation. Proof of 100% stability of remanence was gained during a special research project conducted by Indiana and supported by funds of the United States Air Force.*

Nafural Stability

Materials having a high coercive force displayed the greatest natural stability. For example, a samral stabinty A true compression sensing device, model 706 accelerometer is designed for shock and vibration measurement. Sensitivity is 35 mv per g and frequency response is flat within $\pm 5 \%$ from 0.2 cps to 10 kc . Resonant frequency is 60 kc . Acceleration range is from 0.2 to $40,000 \mathrm{~g}$ with an amplitude linearity of $\pm 1 \%$.
Columbia Research Laboratories, Dept. ED, McDade Blvd. and Bullens Lane, Woodlyn, Pa P\&A: $\$ 160$ ea in quantities of 1 to 5; two weeks.

Signal Generafor
556

With a 405- to 549.5-mc range, model BSG-9 signal generator displays generated frequencies in 5-digit direct readout form. It has continuous tuning across the frequency band. Accurate to $\pm 0.005 \%$ the rf output signal can be modulated to $\pm 300 \mathrm{kc}$. Output power is variable over the range of 1.0 to $100,000 \mu \mathrm{v}$.
Babcock Electronics Corp., Dept. ED, 1640 Monrovia Ave., Costa Mesa, Calif.

ONDIANA
QE-
OENERAL
OnOONTOL
rods with a ratio of $8.7: 1$ showed no detectable loss in remanence during a year. Rods with an L/D of $2.1: 1$ logged only 97.6% for the same period.
Where change in remanence was perceptible, it was found that it decreases linearly with the logarithm of time (see figure 2). This relation is expected to hold for all permanent magnets when they are undisturbed at room temperature and made of a material which does not change with time.

Test Condifions

During the study, sample magnets were kept in a special room where they were relatively free from such external demagnetizing influence as temperature variations, stray magnetic fields, short circuiting by iron contact and excessive movement or handling. Temperature was held virtually constant at $24^{\circ} \pm 2.5^{\circ} \mathrm{C}$.

The sensitive measuring apparatus was also located in the test room. Developed in 1948 by Dr. Rudolph Tenzer of Indiana Steel, this equipment permits measurements to an over-all tolerance of better than 1 in $10,000$.

FIGURE 1. Summary of Experimental Resuls

Material	$1 / 0$	$\begin{aligned} & \text { Remaneace } \\ & \text { difuss } \\ & \text { hilogauss } \end{aligned}$	Statility Melative semanence at $24^{\circ} \mathrm{C}$ 5 log cycles ($10,000 \mathrm{mp}$) after magnetization	$\underset{\substack{\text { Mecuracy }}}{\substack{\text { Wesurine }}}$
INDOX 1	0.9	1.4	100.0\%	$\pm .1 \%$
Indox V	0.8	2.5	99.6	$\pm .1$
AlNICO III	3.5	45	98.10	+. 04
ALNICO VII	$\begin{aligned} & 3.5 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 4.9 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 99.32 \\ & 98.96 \end{aligned}$	$\begin{aligned} & \pm .04 \\ & \pm .06 \end{aligned}$
AlNICO V (long)	$\begin{aligned} & 8.0+ \\ & 5.8 \end{aligned}$	$\begin{aligned} & 12.3 \\ & 11.9 \end{aligned}$	$\begin{aligned} & 99.95 \\ & 99.81 \end{aligned}$	$\begin{aligned} & \pm .01 \\ & \pm .02 \end{aligned}$
(medium)	4.3	10.4	99.23	$\pm .02$
(short)	$\begin{aligned} & 3.5 \\ & 2.9 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 8.2 \\ & 6.7 \\ & 4.1 \end{aligned}$	$\begin{aligned} & 98.84 \\ & 98.50 \\ & 97.60 \end{aligned}$	$\begin{aligned} & \pm .04 \\ & \pm .05 \\ & \pm .07 \end{aligned}$

-Extropolated 1 to 2 log creles beyond last measuroment.

FIGURE 2. Remanence decreases with time

TMME - HOVUS (log revent

Artificial Stabilization
Critical space-age applications often require that a magnet be completely stabilized. Many methods for achieving this were surveyed. For critical applications, methods based on repetitive processes were found superior to those based on any sudden, one-time action. Two of these proved successful, both involving artificial reduction of remanence.

1. Temperature Knockdown. Alnico V magnets were repeotedly exposed to temperatures above and below the temperature of magnetization. Several cycles improved magnetic stability, while remanence was reduced somewhat as a $65^{\circ} \mathrm{C}$ produced -65 C, produced he grearest improvement in stobility, as well as the greatest
2. Knockdown by Applit
3. Knockdown by Applied AC Field. AlNICO V magnets were subjected to a cycling diminishing field, which olso penseding a reduction in remonence. Domagnels were knated down a pro: determined amount between 5 and 15% to achieve complete slability. Variations in remanence were less thon $\pm 0.03 \%$, which is the limit of measuring accuracy for this size sample.

Conclusions

This study indicates that permanent magnets can be completely stabilized. A magnet, however, that is perfectly stable under these conditions can still be affected by larger temperature variations, stray magnetic fields, vibrations or many other factors. In the case of selected magnets, stability can be guaranteed for a flux change no greater than 0.01% per year.

For complete information on the practical aspects of "Stability," ask for a copy of Applied Magnetics, First Quarter, 1959. Write
Dept. M-4.

INDIANA STEEL PRODUCTS
VALPARAISO, INDIANA
In Caneda: The Indiena steel Products Co. of Caneda LImited, Kitchener, Onterle
INDIANA PERMANENTMAGNETS

ELECTRONIC DEMGN • April 12, 1961

How can a plant get along with just one SERVOSCOPEs? Especially when everybody wants it at the same time?

Problems. SERvoscope ${ }^{*}$ servo system analyzer users have one major problem...trying to satisfy SERVOSCOPE "in plant" demand. On performance...no problem.
Engineering is complaining that the Design Lab has been hoarding the servoscope all week... Production has had to throw together a couple of makeshift servo analysis rigs ... and Assembly is counting more bottlenecks, all because ... not enough SERvoscopes.
It's hard to understand. Wherever you look, you see SERVOSCOPE. It's the standard. Day after day, this rapid all-in-one servo system analyzer proves how it conserves expensive design and engineering talent . . . not to mention savings in production time. How, then, can a plant get along with too few SERVOSCOPES?
SERVOSCOPE's fast, direct setting and readout give high-accuracy results when you're measuring changes in phase, gain, and frequency response that occur when signals of various frequencies are fed to any servo. The SERVOSCOPE can be applied to new problems immediately without repeated calibration. For example, you can do:

- complete 5 -minute analyses of any servo systemelectronic, electrohydraulic, electromechanical, electropneumatic
- go - no-go production testing of control systems and components
- ready analyses of radar and other tracking systems -in the field, as easily as at the breadboard stage.
It's so easy, as a matter of fact, that even a new man can plot Nyquist, Bode, and Nichols diagrams after only a few minutes familiarization.
You know your own time and cost picture best. A small investment stands to save you many times the purchase cost. Can you really afford not to be equipped with these remarkable servo stand-
 ards?

If you're one of the minority who has never seen SERvOSCOPE work (or who may still have doubts), prove it to yourself. Ask for a demonstration. No obligation.
And if you're all out of servosCOPE Worksheets, send for another set. They're free.
Technical literature will also be sent you on request.

NEW PRODUCTS

Accelerometer

An ultraminiature sensing device, model 606TX is designed for tri-axial use in shock and vibration testing of printed-circuit boards, electronic tubes and similar applications. Sensitivity is 2.0 mv per g: frequency response is flat from 0.5 cps to 8 kc within $\pm 5 \%$. Resonant frequency is 50 kc .
Columbia Research Laboratories, Dept. ED McDade Blvd. and Bullens Lane, Woodlyn, Pa. P心A: $\$ 67.5$ ea in quantities of 1 to 5; two weeks.

Light Flasher

Capable of switching 150 w through as long service life, the A-300-P static position light Hasher is fully transistorized and potted. The device has automatic fail-safe, is explosion-proof, and resistant to contact with fuels. It fully meets specification MIL-F-26301.
Joseph Pollak Corp., Dept. EI), 81 Freeport St., Boston 22, Mass.

Rofary Indicators

Microminiature rotary indicators, designed to use 100 mw or less, are available for any standard voltage to 30 v dc or ac at 400 cps . The smallest model measures 0.375 in . in diameter x 0.562 in . long, and weighs 3.7 g . Temperature range is -65 to +165 F .
Daco Instrument Co., Dept. ED. Tillary and Prince Sts., Brooklyn 1, N.Y.
circle 112 on reader-service card $>$
ELECTRONIC DESIGN • April 12,1961

in direct writing recording systems

only Brush designs specifically for mil specs

From every nut and bolt to the shipping crate. fully militarized Brush Direct Writing Recording Systoms are originally built to meret military sperifications.
That's why they are porforming every imaginable task of data acquisition and recording at U.S. and NATO installations throughout the world. These electric writing systems have proved their unexcelled reliability . . from the Operations Monitor that will record 120 separate operations at the instant they occur . . to the Analog and Sequence Recorder that simultanceusly rerords both analog data and sequential events. And, they are built for maximum performance in the hands of non-technical personnel.
Brush equipment is already at work putting evaluation data in writing for a whole new generation of weapons. When the weapons become operational, Brush MIL Recorders are a vital part of the system. This experience is unique in the industry. Before prototype design becomes a problem - call, write or wire Brush for complete details.

Convert Your Counter to a 0.1% Digital Voltmeter...

with thenem
 VOLTAGE TO FREQUENCY CONVERTER

Vidar transistorized voltage-to-frequency converters de velop output pulses at a rate precisely proportional to dc input voltages. Because these instruments combine do input volages. Because these instruments combine olid-state relabity with good hinearity and high stabil tronic frequency counter into an 0.1% digital voltmeter. Convert Your Counter to a Precise Integrator
Output pulses generated over any given period of time are directly proportional to the time integral of the in put signal. By combining a Vidar 240 with a counter nalog input signals can be accurately integrated. This anog input signals can be accurately integrated. Thi capability is particulariy valuable where a steady or The average value can be accurately recovered from the hoise with ease

Convert Your Preset Counter to a Go No-Go Test System A Vidar 240 plus a preset counter provides a conven ent, reliable, and economical method of accomplishing production checkout and quality control testing of elec trical or electronic equipment and systems.
Use Vidar Converters in Telemetry Systems
FM telemetry systems of 0.1% accuracy can be assembled using Vidar voltage-to-frequency and frequency-to
voltage converters. For operation at center frequencies from 100 cps to several hundred kc . modified converters re available. Banduidths to 25 kc can be provided with typical signal-to-noise ratios of 60 db .
In Fact Vidar solid state converters provide "state of the art excellence wherever you want to interchange ana\log and digital signals
KEY TECHNICAL FACTS ABOUT THE VIDAR 240
Choice of 0.10 kc or $0-100 \mathrm{kc}$ frequency outputs

- Automatic polarity indication
- Long term drift less than $\pm \mathbf{0 . 1 \%}$ per week
- Priced at $\$ 700$; no extra charge for rack, cabinet or modular version.
Also Available - Vidar offers the Series 2500 analog to frequency converters for conversion of ac-dc voltages and stance to írequency.
More Information - For complete technical information, a demonstration. or other data on the Vidar 240 or 2500 , call your nearest Vidar engineering representative whose name and phone are listed below, or write directly to the factory.

2296 Mora Drive
Mt. View, Californio
Phone: YOrkshire 8-6561

IIDAR ENGINEERING REPRESENTATIVES
LLBama, Mentsville, S. S. Lee Associates, Inc., JEfferson 6.0631 - CALIFOAMIA, Les Angeles (Beverly Mills), Moxon Electronics Corp., BRadshaw 2.9311 - CALIFORMIA San Frameisee (Sen Mateo), Moxon Electronics Corp., FIreside 5-7961. CALIFORMIA, San Diozo, Mozon Electronics Corp., WUdson 8-2901 - COMNECTICUT, stratfort. instrument Dynamics. Inc., Drexel 8.0435 - FLORIOA, Oriande, S. S. Lee Associates, Inc., CHerry 1.4445. ILliwols, Cmicagg, Pivan Engineering Company, KE $9-4838$

 PEMMSYLVAMIA, PMIIadelphla, G. Curtis Engel I Assoc., WAInut 2-3270 - TEXAS, Meusten, Datronics - WASMIWGTOM, Seatte, Comptronics, MAin 4-5135 - WASMIMETOW, .C. (Tewien, Me.), S. S. Lee Associates, Inc., LOckwood 5-3066

CIRCLE 113 ON READER-SERVICE CARD

Servomofor

558

Size 5 servomotor, model 9005-1502-0, is 0.865 in. in length and weighs 0.6 oz . Torque-at-stall registers $0.1 \quad 0$-in and rotor inertia is 0.18 $\mathrm{gm}-\mathrm{cm}^{2}$, providing an acceleration-at-stall of $39,(0)$ rad per seci. No load speed is $10,000 \mathrm{rpm}$. It is powered by $26-\mathrm{v}, 40(0)$-cps reference voltage. Beckman Instruments, Inc., Helipot Div., Dept. ED, 2500 Fullerton Road, Fullerton, Calif.

Transistor Enclosure

An all-glass enclosure for microtransistors, this unit consists of two parts, a case and a Hat cover. Diameter is 150 mils and height, after sealing, is 60 mils; three coplanar, ribbon leads are an integral part of the case. A glaze, with low melting point, applied to the top rim of the case, allows a hermetic seal between case and cover This eliminates the need for welding or soldering the final closure.
Corning Class Works, 1)(pt. ED), Corning, N.Y Acailability: From slock in small guantities.

Circuif Boards

A molded, recessed circuit board, this unit has electro-plated conductors in recessed grooves and contoured holes to insure fool-proof, two-sided circuitry. They can be molded of any number of plastic materials, depending on required specifications.
Combined Electronics, Inc., 1)ept. E1). Cicero, III.

HANDY \& HARMAN SILIER FLAKE

Coats Lighter, More Effective Plastic Lens

For Long Range Missile Control System

An exciting new application in the missile control field is the development by the Surface Armament Division at Sperry Gyroscope Company of a silver-coated plastic lens for use with the Navy's Talos missile. As compared to earlier metal versions, the new lens weighs substantially less and provides twice the signal gain at the same production cost! The Talos delivers, with extreme accuracy, a high explosive or nuclear warhead to any altitude at which airplanes now fly, as well as far beyond the range of human visibility.
The silver coat imparts RF reflectivity and electrical conductivity to the lens and is applied in paint form. As the silver base for this paint, Sperry uses Handy \& Harman's Silver Flake. An important quality of this flake is that its waferlike particles are asymmetrical and overlap on the surface of the lens, affording up to 35% of the conductivity of an equivalent weight and shape of fine silver.
Handy \& Harman Silver Flake finds use throughout the electronic and electrical industries...it is ideal for pig-
ments to make conductive coatings on such non-con ductors as ceramics, glass, mica, plastic and paper, as in the manufacture of capacitors, thermistors, carbon resistors, printed circuity and electrostatic shields.
Handy \& Harman has available every form of silver useful to manufacturers and fabricators - flake, powder, paint. paste, sheet, strip, wire bimetals, silver oxide, divalent oxide, etc. Our Research and Enginecring Department is always available to assist you in the selection or use of any silver form for any application from brazing to conduction coating. Below are listed six of our rechnical Bulletins. Please indicate their numbers for prompl attention.

Fines Silver	llotin A-1
Silver-Copper Alloys	Bulbotin A-2
Silver-Magnesium-Nickel	Bullotin A-3
Silver Conductive Coatings	Eullatin A-4
Silver Powder and Flake.	Eullotin A. 5
Vacuum Tube Grade Brazing Alloys.	Bullotin 25

Your No. 1 Source of Supply and Authority on Precious Mefals

NEW PRODUCTS

Low-Shrinkage Tape 373

A regular skived, Teflon tape with controlled low-shrinkage, this' tape will change no more than 2% in any dimension when heated at 730 F for 15 min . Tensile strength at 0.003 in . is $4,000 \mathrm{psi}$ min and elongation $300 \% \mathrm{~min}$. Dielectric strength is $2,700 \mathrm{v}$ per mil min.
Dixon Corp., Dept. ED, Bristol, R.I.

Pulse Group Generator 355

A variety of pulse trains useful in testing computers and data-handling equipment is provided by type 5101 pulse group generator. Groups are generated at a repetition frequency variable from 1 to 10,000 groups per sec. Group length is adjustable between $20 \mu \mathrm{sec}$ and 0.2 sec; within each group, pulse rate is variable from 10 cps to 100 kc. Accuracy is $\pm 5 \%$. A positive gate output is provided; provision is made for single-group operation.
Instrument Corp. of America, Dept. ED, 516 Glenwood Ave., Baltimore 12, Md.
Price \& Availability: \$795; 1 month.

Tapped Delay Lines 370

Completely encapsulated in epoxy resin, model TDL-2197 tapped delay line is $4.5 \times 1.04 \times$ 0.50 in . in size. Specifications are: delay time, $3.4 \mu \mathrm{sec} \pm 5 \%$; characteristic impedance, 500 ohms $\pm 10 \%$; input rise time, $0.1 \mu \mathrm{sec}$; output rise time, $0.25 \mu \mathrm{sec}$ max; dielectric, 250 v dc; distortion, 10% max; attenuation, 1.0 db max.
Dresser Electronics, HST Div., Dept. ED, Northridge, Calif. Price: $\$ 55$.
circle ins on readra-senvice caro

RAYTHEON RAYSISTORS*

offer outstanding advantages in 5 important applications
 circuit designs for switching, controlling, chopping and commutating. This electro-optical device can turn signals on and off with virtual isolation from switching transients and carriers to provide high signal-to-noise ratio, wide dynamic range, and long life. Here are 5 applications in which Raysistors can be used for improved operation:

1. RELAY: In place of a relay or switch it can provide long life with no contact wear or pitting.
2. POTENTIOMETER: As a potentiometer it can control an AC circuit with : noise.
3. CMOPPER: Isolation of Raysistor elements assures low noise operation.
4. commurator: Freedom from switching transients makes it ideal for low-level signal commutation.
5. migh voltage comtrol: Signal to control insulation of up to 25,000 volts assures Raysistor's efficiency in controlling high voltage circuits.
For complete technical data and design assistance please write: Raytheon, Industrial Components Division, 55 Chapel Strect, Newton 58, Mass.

- trademark
for Small Order or Prototype Requirements See Your Local Franchised Raytheon Distributor

TYPICAL RAYSISTOR OPERATING CHARACTERISTICS

RAYTHEON COMPANY

INDUSTRIAL COMPONENTS DIVISION

RAYTHEON DISTRIBUTORS

in 60 cities offer immediate availability of RAYTHEON RaYSISTORS

. . . at no penalty in price

If no Raytheon Distributor is listed for your area, we will be pleased to send you the name of the Distributor nearest you. Please write; Raytheon, Distributor Products Division. 411 Providence Turnpike. Westwood, Massachusetts.

HIGH VOLTAGE TYPE

STANOARD TYPE

Raytheon Distributors in your area include:

Binary Counter
364

Counts of any length can be made by cascaded binary counter modules. Model 1231 counters have outputs available at each of four stages through front-panel jack connections. An equivalent printedcircuit board module is made.

Harvey-Wells Electronics, Inc., Dept. ED, 14 Huron Drive, Natick, Mass.
Price \& Acailability: \$197.50; delivery from stock.

Thin Film Tester

Programable pulse generator, type 2104 , is for rapid analysis, testing and programing of thin-film and cryogenic devices. Capable of running at a clock frequency higher than 4 mc , at levels having 25 nsec rise times and 50 nsec widths, it will deliver four separate trains of both logical levels and pulses. Each of the eight output trains is separately programable into eight time zones.
Digital Equipment Corp., Dept. ED, Maynard, Mass.

DC Amplifier
356

A solid-state dc amplifier for use with de torquers, model 579.35 has $100-\mathrm{w}$ output. In a hermetically sealed can measuring 2-1/2 $\times 3-3 / 16$ $\times 2-1 / 2$, the unit can provide 65 db power gain between a dc driver stage and a torque motor. Output current waveform has magnitude and polarity proportional to input signal; amplifier null and gain are stable and independent of temperature.

Inland Motor Corp., Dept. ED, Northampton, Mass.

RAYTHEON COMPANY

DISTRIBUTOR PRODUCTS DIVISION

RAYTHEON

NEW PRODUCTS

Triaxial Accelerometer

Model 620 triaxial accelerometer is designed to provide high-level signals proportional to component accelerations along the mutually perpendicular axes. Specifications are: dynamic error bands, to $\pm 0.6 \%$; resistance, from 1 to 10,000 ohms; cross axis acceleration error, 0.01 g per g max; size, $2 \times 3 \times 2-3 / 4 \mathrm{in}$.
Bournes, Inc., Dept. ED, 6135 Magnolia Ave., Riverside, Calif.

Flexible Curing Agents 371
Used to control flexibility, viscosity, and exotherm in epoxy resins, these curing agents are low-viscosity, almost colorless liquids. They are described as amine-terminated aliphatics with controlled and lim ited functionality.

Dow Chemical Co., Dept. ED Midland, Mich.
Price: X-3483.1, $\$ 0.605$ in drum quantities; X-3483.2 and X-3843.3, $\$ 0.755$ in drum quantitics.

Elapsed-Time Indicator 366

Commercial elapsed-time indicator registers hours and tenths and minutes and tenths to 99999.9. Resettable and nonresettable models can be supplied with $3-1 / 2$ in. diam round bezel or 3×3 in. square bezel. Terminals are screw type. Power is 120 or $240 \mathrm{v} \mathrm{ac}, 50$ or 60 cps .

Haydon Div., General Time Corp., Dept. EI), Torrington, Conn.

DELCO POWER TRANSISTORS PROVED IN COMPUTERS by IBM, UNIVAC, BURROUGHS, NATIONAL CASH REGISTER

Since Delco Radio produced its first power transistors over five years ago, no transistors have undergone a more intensive testing program to assure reliability - which accounts for their popular acceptance in hundreds of industrial and military uses. Before leaving our laboratories, Delco transistors must pass numerous electrical and environmental tests both before and after aging. This double testing, combined with five years of manufacturing refinements, enables us to mass produce any type of power transistors with consistent uniformity. And we can supply them to you quickly in any quantity at a low price. For complete information or technical assistance on our versatile application-proved family of transistors. just write or call our nearest sales office or distributor.

```
Union, New Jersey
324 Chestnut Street
```

324 Chestnut Stree
MUrdock $7-3770$

```
Santa Monica. California
726 Santa Monica Blvd UPton 0.8807
```

```
Chicago, Illinois
5750 West 51st Stre POrtsmouth 7.3500
```

Detroit, Michigan 57 Harper Avenue TRinity 3.6560

DELCO RADIO

Division of
General Motors Kokomo. Indiana

CIRCLE 117 ON READER-SERVICE CARD
ELECTRONIC DESIGN • April 12,1961

DELCO

 SEMICONDUCTORS NOW AVAILABLE AT THESE DISTRIBUTORS:New York
HARVEY RADIO CO., INC. 103 West 43rd St., New York 36. N. Y.

JU 2-1500
Chicago:
MERQUIP COMPANY 5904 West Roosevelt. Chicago, Illinois AU $7-6274$
Detroit:
GLENDALE ELECTRONIC SUPPLY COMPANY 12530 Hamilton Ave.. Detroit 3, Michigan TU 3-1500
Philadelphia:
ALMO RADIO COMPANY
913 Arch St., Philadelphia, Pennsylvania
WA 2-5918
Baltimore:
RADIO ELECTRIC SERVICE
5 North Howard ST.. Baltimore, Maryland LE 9-3835

Los Angeles
RADIO PRODUCTS SALES, INC.
1501 South Hill St.i Los Angeles is, Calis Ri' 8-1271

San francisco:
SCHAD ELECTRONIC SUPPLY, INC. 499 Snuth Market St., San Jose 13, Calif. CY 7-5858

Seattle:
C\&G ELECTRONICS COMPANY 2221 Third Avenue, Seatile 1, Washington MA. 4-4354

Ask for a complete catalog

circie 118 on reader-service caro ELECTRONIC DESIGN • April 12,1961 ton, N.J. 1961.

A range of $300 \mu \mathrm{v}$ to 300 v at frequencies from 10 cps to 11 mc can be measured with model 317 voltmeter. It is useful as a null detector from 5 cps to 30 mc . As a calibrated amplifier it provides a stable gain up to 60 db with a frequency response $\pm 1 \mathrm{db}$ from 6 cps to 11 mc . Input impedance, with probe, is 10 meg shunted by 5 pf .

Ballantine Lahoratories, Inc., Dept. ED. Boon-
P\&A: $\$ 44.5$ for model 317, $\$ 50$ for probe; March

Epoxy Laminate

616
Glass-fabric epoxy laminate is offered coppersurfaced as Di-Clad 614 or plain as Dilecto 614. Haloing and edge-lifting are virtually eliminated in fabrication. Extinguishing time after removal from flame is zero and NEMA specifications for G. 10 are met.

Continental-Diamond Fibre Corp., Dept. ED, Newark, Del.

Primary Baftery

666

A silver-zine primary battery, model 70, will activate itself within a maximum of 15 sec . Designed to provide power for long-distance transmission, the $28-v$ battery will discharge for 12 min with a load of 5 amp . Voltage is regulated to limit fluctuation to $\pm 5.4 \%$ of the $5-\mathrm{amp}$ load. Weight is 4.2 lb .

Electric Storage Battery Co., Dept. ED, P.O. Box 11301, Raleigh, N.C.

Through the decades, historical documents have proved the durability of vellum as indicated by the facsimiles of Civil War engineering drawings above, reproduced on Post Blutex Tracing Vellum.

We'll accept your test on which vellum is best

To judge a tracing medium thoroughly, you must combine functional tests and personal reactions to three characteristics.
Erasing and re-erasing
Post Blutex erases easily during initial drafting. More important, it erases readily even after repeated exposure to ultra-violet sources. Test this by taping a small sample to a sunlit window for several days.

Reproducing, again and again

Blutex is a blue-white sheet with excellent visual contrast. It maintains close to its original degree of light transmission after many trips through the copy machine. There is no appreciable yellowing or ageing after months or years of alternating storage and reprint use. Blutex has faster, more consistent print-back qualities than many sheets which appear more transparent originally.

Drafting and re-drafting

With whatever pencils you normally use, test the Blutex sample. Its dry, semi-smooth surface encourages graphite adhesion, outstanding line density. Post transparentizing resins
prevent excessive smearing. Translucency is achieved without loss of drafting quality.

Supplemental features

Blutex base stock is milled for Post by one of the world's best-known makers of prestige papers; is processed to rigidly controlled quality standards. Blutex Vellum is highly resistant to fracturing; its surface minimizes dirt pick-up and smudging from in-file, out-file handling.

Free sample

For your personal, impartial analysis, well be glad to mail, without obligation, a $17^{\prime \prime} \times 22^{\circ}$ sample of Post Blutex Vellum, 175 H , when requested on a business letterhead.

Bonus offer

First, fill in and return the appraisal form furnished with the Post Blutex sample. In appreciation, a handsome portfolio of four Civil War Centennial ordnance prints, on Post Blutex Vellum, suitable for framing, will be sent to you. Write Frederick Post Company, 3644 North Avondale Avenue, Chicago 18, Illinois.

SENSITIZED PAPERS \& CLOThS - TRACING \& CRAWING MEDIUMS - DRAWING instruments a sLIDE RULES ENGINEERING EQUIPMENT \& DRAFTING SUPPLIES - FIELD EOUIPMENT \& DRAFTING FURNITURE CIRCLE 119 ON READER-SERVICE CARD

"Cu-c" plated thru-hole is actually an electro formed copper eyelet - absolute, reliability in atom-
ically bonded copper to copper thru hole connection. NOTE absence of undercut, hence elimination ically bonped copper to copper thry hole connection.
of entrapped etchants and other ionic contaminants.

Here's Proof of Graphik Circuits Built-in Quality Control

In your etched circuitry applications, this kind of craftsmanship spells out complete reliability plus jewel-like perfection in your system's printed circuit components. The price is right, too, and delivery dates are firm. Call us to bid on your current project.

Oivision al Cinch Manulacturing Company. 200 So Turnbull Canyon Road. City of Inoustry (Los Angeles) Calit.
Ofices in 19 Principal Cities throughout United Siates histed under Cinch Mig. Co. or United Carr Fastener Corp. Olfices in 19 Principal Crites throughour United States listed under Cinch Mis. Co. or United Carr Fastener Corp. CIRCLE 120 ON READER-SERVICE CARD

NEW PRODUCTS

Power Supply

A multiple-output dc power supply, this unit is typical of militarized power supplies built to custom. The supply has outputs from +2.65 to -22 v at up to 20 amp .
Perkin Electronics Corp., Dept. ED, El Segundo, Calif.

Retaining Spring Clips

For socket-mounted transistors, these retaining spring clips comply with military requirements for retention of plug-in devices. Designated 3B-714-1 and 3B-714-2 they are designed for use with TO-5 and TO-9 cases. Material is beryllium copper with a silver plate finish.
The Birtcher Corp., Industrial Div., Dept. EI), 74.5 S. Monterey Pass Road, Monterey Park, Calif.

Decade Counter

Transistorized decade counting unit, model BEC-10 will count pulse rates up to 20,000 pulses per sec. It has been designed for use in inclustrial counting applications where in-line visual readout is required. The unit will drive a number 47 incandenscent bulb in the readout unit directly.

Binary Electronics Co., Dept. ED, Bldg. E, 824 E. Walnut Ave., Fullerton, Calif.

MINIATURE

 SNAP ACTION LOW COST
Time Delay Relays

For commercial use, economical Curtiss-Wright thermal time delay relays, hermetically sealed in glass, are a compact and reliable design for many control, switching and timing applications. Precision built for high performance and long life. Ambient temperature compensated. Conservatively rated, these new rugged, small sized units are preset for time delays from 3 to 60 seconds.

Write for latest complete components catalog \#503
time oelay relays - ielay limes - rotary

Electronics Division so ne wes

CURTISS-WRIGHT CORPORATION

East Paterson, New Jersey
circle 121 on reader-service card ELECTRONIC DESIGN - April 12,1961

Thermal Time Delay Relays

Instant Reset

Voltage Compensated

 Vibration ResistantPrecision-built Curtiss-Wright thermal time delay relays reset instantly when de-energized - provide the same delay period for each succeeding cycle. Compensated for wide voltage variations. Available in either 28 V DC or $115 V$ AC, 60 or 400 cps . Chatterfree operation, under severe shock and vibration conditions. Small sized, hermetically sealed, temperature compensated for precise, reliable operation and long life. Preset time delays from 10 to 180 seconds with SPST, SPDT or DPDT snap action contacts.

Write for latest complete
components catalog \# 505
tme delay relays odear limes. rotary
 Electronics Division
CURTISS-WRIGHT CORPORATION East Paterson, New Jersey CIRCLE 122 ON READER-SERVICE CARD ELECTRONIC DESIGN • April

Model 41 vibration signal analyzer and portable balancer uses modular construction and transistor circnitry. The unit is adaptable to any type of transducer, and measures amplitude from 5 !in. to 0.1 in ., peak to peak; frequency from 3 cps to 10 kc ; and velocity from $50 \mu \mathrm{in}$. per sec to 100 in . per sec. Accuracy is $\pm 2 \%$. A continuously variable frequency filter system is provided. The set operates on 110 v ac or an internal battery pack.

RayData Corp., Dept. R2, Dept. ED, 1078 E. Granville Road, Columbus 24, Ohio.
P心A: $\$ 2,000 ; 30-$ day delivery.

Solid-State Multiplexer

619
For data acquisition and computing systems, the model E.M-3 multiplexer can switch from 4 to 64 channels. Settling time is $20 \mu \mathrm{sec} ; 64$ channels are scanned in $50 \mu \mathrm{sec}$. Input and output limits are $\pm 10 \mathrm{v}$ with no inversion; the unit will drive a stable load impedance of 25 K or greater. Internal noise is less than 1 mv . Supply is $115 \mathrm{v} \pm 10 \mathrm{~m}, 60 \mathrm{cps}$.

Packard Bell Computer Corp., Dept. ED, 1905 Armacost Ave., Los Angeles 25, Calif.

DC Power Supplies

Outputs from 0.2 to 0.5 amp at up to 32 v are provided by the 170 series of dc power supplies. Three configurations are available: bench model with calibrated voltage control, plug-in version with octal plug and screw-driver adjustments, and a terminal-strip version with screw-driver voltage adjustment. Regulation of all models is better than 3 mv , line or load; ripple is less than $2.50 \mu \mathrm{rms}$. Case size of models 170 and 172 is $3 \times 4 \times 5 \mathrm{in}$., of models 171 and 173 is $3-1 / 2 \times$ $5 \times 5-1 / 2 \mathrm{in}$.
Quan-Tech Laboratories, Inc., Dept. ED, 60 Parsippany Blvd., Boonton, N.J.
Price: $\$ 98$ to $\$ 129$.
... Every component in the U. S. Navy's TARTAR, newest supersonic surface-toair guided missile must meet the highest standards for statistical reliability.
No exception is the Bristol Syncroverter* chopper used in the TARTAR's guidance system. The TARTAR, produced for the Bureau of Naval Weapons by Convair (Pomona) Division of General Dynamics Corporation, is slated to form the primary antiaircraft weapon aboard destroyers and secondary antiaircraft batteries aboard cruisers.
The Bristol Syncroverter chopper has a long history as a component in U.S. guided missiles. It's the ideal miniature electromechanical chopper for use in $d-c$ analog computers or wherever utmost reliability is required.
BILLIONS OF OPERATIONS have been completed without a failure on Bristol's continuing life tests-aimed at improving the Syncroverter's already superlative characteristics. Just one sample: A group of five choppers, with 400 cps drive and $12 \mathrm{v}, 1 \mathrm{ma}$ resistive contact load have been going for more than 26,000 hours without failure. That's more than 2.96 years continuous operation or more than 37 billion complete cycles!
No matter what your chopper requirements, we're sure you can find the model you need among the wide selection of Syncroverter choppers and high-speed relays available . .. including low-noise, external coil types. For complete data, write: The Bristol Company, Aircraft Equipment Division, 150 Bristol Road, Waterbury 20, Conn.
T.M. Res. U.S. Pat. Oft

BRISTOL mine pracision INSTRUMENTS FOR OVER SEVENTY YEARS

$$
\begin{aligned}
& \text { Navy } \\
& \text { TARTAR on } \\
& \text { target }
\end{aligned}
$$

No job is too tough for Mallory

wire-wound controls

Take the 4-watt Type M control, for instance. Can't be beat for long life and dependability. It's constructed ration and still maintake severe shock and viposition for rheostat type eliminates need for position for rhe
separate switch.
Whatever you need in wire-wound controls, Mallory has it . . . 2 watts, 4 watts, 7 watts . . . in a big assortment of resistance values, tapers, shafts, mounting arrangements and tandem constructions. We build specials, too, to your specifications. Mallory Controls Company, Frankfort, Indiana.

Mallory

CIRCLE 124 ON READER-SERVICE CARD

NEW PRODUCTS

Component Connectors

Insulated feed-through and stand-off component connectors offer high tie-point density. Height above board is 0.25 in .; OD is 0.190 in . Sockets accepting wires of 0.010 to 0.022 in . are spaced equally on a $0.120-\mathrm{in}$. circle. The devices allow simple insertion and changing of circuits and components.
Omega Precision, Inc., Dept. ED. 757 N. Coney Ave., Azusa, Calif.

Carrier Demodulator

Used with variable reluctance transducers, the model CD10 provides a dc output signal for recording and control in dc systems. Operating on 95 to $125 \mathrm{v}, 60 \mathrm{cps}$, output is 1 ma into a $1-\mathrm{K}$ load. Ambient temperature range is -6.5 to +165 F.
Pace Engineering Co., Dept. ED, 13035 Saticoy St., North Hollywood, Calif.

Cam Assemblies

For precision timing applications, these adjustable cam assemblies feature positive locking at any predetermined operational setting, within a range of 0 to 180 deg . Machined from No. 303 stainless steel, with clear passivated finish, they are stocked in $0.1248,0.1873$ and 0.2498 in . bore sizes, in pin or clamp hub styles.

PIC Design Corp., Dept. ED, 477 Atlantic Ave., East Rockaway, L.I., N.Y. Price \& Availability: $\$ 45$ to $\$ 75$; 10 days.

BARCLAY

for immediate delivery of MICRODOT
ultraminiature MICROMINIATURE

COAX CABLES AND CONNECTORS

Microdot "MINI-NOISE" cable can reduce self. generated noise in cables by more than 99% in comparison to untreated cable of the same type in many applications. More than 1500 individual connectors are available, representing more than one million possible combinations. For Microdo and other leading lines-dial BArclay 7.7777

225 greenwich street
NEW YORK 2. NEW YORK

LONE ISLAND: IVAMHOE 8-7650
CAL COUSCT MEW ORDER DEPT, 212, BA 7.7922 TWX-WYI-177 / CARE:" MARQISDAAD" Emienprise mumaens m maior aneas -that land of satistied engineers and buyers where the Marrison industrial distribution tacilities concentrate on providing the finest, most dependabie seevice
Located only 27 inches away from you - as near as Located only 27
your telephone.

CIRCLE 125 ON READER-SERVICE CAED ELECTRONIC DESIGN • April 12,1961

Power Transisfors

Rated at 40 w , npn silicon mesa transistors 2N1768 and 2N1769 have an offset pedestal-and-stud mounting arrangement for positive heatsink contact. The units are designed for use in dc-to-dc converters, inverters, choppers, voltage and current regulation, dc and servo amplifiers, and relay-actuation circuits. Saturation resistance is 1 ohm; thermal resistance is low. Temperature range is -6.5 to 200 C .

Radio Corp. of America, Semiconductor and Materials Div., Dept. ED, Somerville, N.J.

10-Turn Potentiometer 625

With an infinite-resolution film element, model 5010 potentiometer is available in resistances from 5 K to $5(\mathrm{~K}) \mathrm{K}$. Specifications are: mechanical rotation, $3,600 \mathrm{deg}$; temperature range, -55 to +150 C ; prower rating, 2 w to 75 C derated to 0 at 150 C : linearity, 0.05%. Life rating is $\mathbf{1 0}$ million revolutions per minute.
Computer Instruments Corp. Dept. EI), 92 Madison Ave., Hempstead, L.1., N.Y.

Germanium Transistor
 574

With a maximum switching time of 110 nsec , type 2×781, an epitaxial mesa transistor, has a turn-on time of 60 nsec max and a turn-off time of 50 nsec max. Storage time has been reduced to 20 nsec max; saturation voltage is -0.16 v max Absolute maximum ratings at 25 C are: collector-to-base voltage, -15 v ; collector-to-emitter voltage, -15 v ; collector current, 100 ma ; power dissipation, free air, 150 mw

Sylvania Electric Products Inc., Dept. ED, 730 Third Ave., New York 17, N.Y
P\&A: \$11.72 ca, 1 to 99; through distributors.

TEMPERATURE

Small probe-type device for high and low temperature applications where high pressures and severe low conditions are imposed. Precise liquid or gaseous measurements to $800^{\circ} \mathrm{F}$. Tiny sensing element of deposited platinum film allows high base resistance, extreme linearity, wide range capability, and fast response. Approved for ICBM environments.

Microdot Inc., 220 Pasadena Avenue. South Pasadena, California.

WELDABLE STRAIN

761

GAGE

Weldable-to-aluminum strain gage, less than $1-3 / 16^{\prime \prime}$ long by $1 / 4^{\prime \prime}$ wide, is capable of continuous operation at $700^{\circ} \mathrm{F}$. Precise, rugged device consists of etched wire filament in swaged stainless steel tube, mounted on a special alloy welding flange. Installation is fast and permanent with stored energy welding equipmentno complicated bonding or curing processes necessary.

Microdot Inc., 220 Pasadena Avenue, South Pasadena, California.

AIRBORN DC

AMPLIFIER

Solid state, direct-coupled, hermetically sealed instrument is less than 5 cu . in. in volume; weighs only 6 oz . DC gain is 200 to $1000 \pm 5 \mathrm{~V}$ into not less than 20 K (single ended).

Microdot Inc., 220 Pasadena Avenue, South Pasadena, California.

CIRCLE 763 ON READER-SERVICE CARD $>$

Proved in history's most demanding environmental laboratory - outer space - the custom designed unit shown above is typical of the development skill and production capability available from Microdot. The unit shown in miniaturized. pressurized, and features a solid state power supply that cannot be damaged by input/output overloads. Units are available in a complete range of modulation - CW, FM, Phase, and Pulse, with frequency coverage 100 to $5000 \mathrm{mc} / \mathrm{s}$ and output from 100 mw to 10 watts.

Telemetry Capabilities at Microdot have been dramatically expanded with the recent acquisition of Spectralab Instrument Company. The highly regarded development skill, production capability, and working experience of Spectralab in the field of VHF and UHF cavities and related instrumentation is available from Microdot's instrumentation Division. This equipment, outstanding in its attention to miniaturization and ruggedness, is a vital part of such important projects as Pioneer V, Jupiter, Atlas, Pershing, Redstone and Echo I.
UHF Telemetry Transmitters, Models 2406 and 2409, use a unique, automatically stabilized circuit, with the output frequency referenced directly to a quartz crystal. This approach allows a greatly reduced size compared to the multiplier chain conventionally required to achieve crystal stability, as well as increased reliability due to a fewer number of parts
The transmitters have their own solid state power supply designed to provide a high ratio of if output power to total power input. The frequency modulation circuitry is sufficiently linear to introduce completely negligible distortion to the modulation signal. For further information, Call Microdot or write for catalog sheet TT.1.

TOROIDS AND FILTERS . . .

 TAILOR MADE . . DELIVERED IN DAYSNeed quick delivery on special toroidal components?

We can usually design and deliver samples of toroidal coils and filters to your exact specifications on short notice.

We are equipped to produce toroids and toroidal filters with outstanding temperature stability to either commercial or military requirements.

Whether your application is communications, missiles or data reduction systems, our facilities backed by a quarter of a century of service to industry assure you of a solution . . . fast. Many engineers find our folder "Toroids and Filters" helpful in developing specifications. A copy is yours for the asking.

Barter \& Nolliamuon, Inc.

Canal St., Bristol, Pa.

Specialiste in designing and bullding equipment to operating epecifications

A fow othor BEW product: I P. TRANSFORMERS. COMMUNICATIONS EQUIPMENT - AUDIO PHASE SHITT NETWORKS - TEST EQUIPMENT - Ond many types of standord and spacial electronis componentis and equipment.

NEW PRODUCTS

Display Storage Tube

Capable of high-speed, selective erasure, the Multi-Mode Tonotron storage tube has a simultaneous display of stored and nonstored information. Information may be written stored or nonstored or rapidly and selectively erased. The tube display has high-resolution light and dark trace displays. Displays are maintained at full brightness until erasure. Erasing takes place while the new trace is being written.
Hughes Aircraft Co., Dept. ED. Florence Ave. and Teale St., Culver City, Calif.

Tantalum Powder

621
Fabrication and performance of electrolytic capacitors is improved with SGP tantalum powder. The material is said to enable pellets to be pressed to lower green densities, lowering dissipation and increasing capacitance per gram. A low-capacitance powder, type SGL, is also in production.

National Research Corp., Dept. ED, 70 Memorial Drive, Cambridge 42, Mass.

Transisfor Cards

An all-purpose card for transistors, E-Z Circuit cards are designed for the breadboarding of semiconductor circuits. A wide variety of analog and digital circuits may be developed by inserting active and passive components. The card will hold eight transistor circuits. It measures 4-1/2 x $6-1 / 2 \mathrm{in}$. with a standard 28 -contact connector along one side.
Circuit Structures Laboratory, Dept. ED, P.O. Box 1194, Santa Ana, Calif.

This is the time of our annual subscription renewal; Return your card to us.

WHERE'S THE RECESSION? 508 COMPANIES dEMANDING MEN

Its a fact that we can prove, since Cadillac is retained by all of the nation's best electronic firms from coast to coast. Our clients aren't worricd about a fecession. They need hundreds of men in the electronic field-and im. mediately! These persitions offer salaries ranging from $\$ 0,200$ to over $\$ 50,000$. If your present pusition dorsnit offer the long range opportunities that you expected, contact Cadillac today.
Remember, Cadillac's service is COMPLETEL.Y CON FII)ENTIAL and available to you ABSOLUTELY FREE OF CHARGE.

FREE-Monthly Opportunities Bulletin

If you wish to receive a monthly bulletin of the finest ovailable electronics opportunities, simply send us your name and home oddress (and, if you wish, a review of your qualifica fions). Our services are without cost to you through our Chicogo office and our Los Angeles subsidiary, Lon Barton Associotes.

Jack L. Higgins Vice President Associates, Inc.

29 East Madison Bldg.,
Chicogo 2, III.
CIRCLE 872 ON READER-SERVICE CARD

Just publishedi Now brochure...
 BODINE INSTRUMENT MOTORS
 This 28-page brochure includes dimensional drawings, rating charts, wiring diagrams, and photos of different types and models of Bodine Instrument Motors. Special sections

discuss (1) the availability of engineering service, (2) development and testing procedures, (3) typical applications, (4) application guidance, and (5) motors for special instrument applications.
Write on your company letterhead for a copy of Bulletin IM-1.

BODINE

fractional

Bodine Electric Co., 2528 West Bradley Place, Chicago 18, III.

Now, cut costs of long eyelets drawn from strip metal! Speed assembly operations with screws and extra. length eyelets. H \& H long eyelets can be volume-produced from precision tubing in any metal in any length. Rolled, flared or beaded ends. Precise tolerances on O.D. and wall thickness guaranteed. Ideal for thousands of manufactured parts and mechanical as. semblies. In electrical, electronic components, appliances, metal furniture, automobiles, toys, office equipment wherever you must clamp or mount. We handle everything from tooling to rigid inspection. Send us your problem, with sketch and specifications. We'll advise and quote . . . promptly!
Write, too, for information on any small metal tubular part from . 01 in , to in., of any commercial alloy fur any application.

90
 H A H MACHINE COMPANY, INC
 Noble \& Jackson Streets - Norristown, Pemnsylvania BRoodway 2-6453 - BRoodwoy 9-2327

Specialists in the design, tooling and tabrication of small tubular metal parts. CIRCLE 129 ON READER-SERVICE CARD

Mii ATHRIZ with LAS
 thin wall
 Silicone Rubber Sleeving

Space-saving thin wall construction and precision ID dimensions make Varglas Silicone Rubber Sleevings the best answer for miniaturization. Highly flexible with dielectric strength up and "cut through"" in temperature from minus 70° to plus $400^{\circ} \mathrm{F}$. Meets government specification MIL-I-18057A.

A complete range of sizes from $.010^{\prime \prime}$ to $3^{\prime \prime} 1 \mathrm{D}$, in brilliant, non-fading colors for instant coding identification. Comes in coils, spools or $36^{\prime \prime}$ lengths for off-the-shelf delivery. Of course. Varflex engineers are always ready to work with you at any time to develop the special sleevings and tubings you need for your applications. No obligation or charge for this cooperation.

- Write for free folder containing test samples

VARFLEX SALES CO. INC - 303 N. CIRCLE 130 ON READER-SERVICE CARD ELECTRONIC DESIGN • April 12,1961

Power Supply

Outputs of plus and minus 15 v dc are provided at 200 ma by the 6033 power supply. The solid-state unit operates from 115 v ac; regulation against line and load variation is under 0.01%; ripple is less than $1 / 2 \mathrm{mv}$. Short-circuit overload protection is built in. The supply is available in bench and plug-in configurations.

George A. Philbrick Researches, Inc., Dept. ED, 127 Clarendon St., Boston 16, Mass.
Price \& Availability: About $\$ 285$; delivery from stock.

Pin Terminals

613
Designed for printed circuit use, pin terminals Nos. 2970 and 2971 have lengths of 0.3 and 0.15 in. respectively. The pins are machined of brass and finished in with hard gold over silver plate. They are for any 0.040 socket.

Cambridge Thermionic Corp., Dept ED, 45 Concord Ave., Cambridge 38, Mass.
P心A: $\$ 19.53$ per thousand in quantities of 5 thousand; from stock.

Induction Heafer
572

Constricted areas are easily reached by the model L6H-P induction heating machine. Suit able for brazing, soldering and heat-treating jobs, coil is mounted on a pistol-grip handle. The 2-1/2-kw generator has ac and dc overload circuit breakers and a timer. The Hexible rf power cable is 10 ft long, with water-cooled conductors.

Reeve Electronics, Inc., Dept. ED, 609 W. Lake St., Chicago 6, Ill.
Price: $\$ 2,200$.

Memcor Synchros and Synchro Indicator Packages

If your project calls for economical and accurate indication of position, pressure, flow or other synchrotransmitted information, MEMCOR has or can design a synchro or synchro-operated indicator package for the job. MEMCOR synchros are available in various mounting configurations for incorporation into packages or systems to be servo driven or for use as indicating devices. The same basic component
may be supplied for use as either
a transmitter, a receiver, or both.

ASK FOR DESCRIPTIVE FOLDER

MEMCOR

model engineering and manufacturing corp. courter products division boyne city, michigan CIRCLE 131 ON READER-SERVICE CARD

- A production reality based on 20 years of crystal engineering experience...

Miniature Wide Band-Pass Crystal Filters Delivered In Quantity...To Specification

Filters just recently considered as "state of the art" are now a production reality. In addition to its many stock narrow band filters, Midland offers prototype and production quantities of practical Miniature Wide Band Filters in the .5 to 30 mc range. These filters are of exceptional quality.

They are essentially free from unwanted spurious modes which have previously limited the realization of many types of wide band filters. Small quantities for engineering evaluation are available immediately from stock. Consultation is available at any time to potential filter users.

Shown below are specifications for ten of our stock wide band filters, as well as actual characteristic response curves. These filters are actually being delivered to major weapons system manufacturers in quantities - to specification.
THESE ARE NOT LABORATORY CURIOSITIES OR IN PROTOTYPE DEVELOPMENT STAGE

Type	Center Freq.	$\begin{gathered} \text { 3db } \\ \text { Bandwiden } \\ \text { mindmum } \end{gathered}$		$\begin{gathered} \text { Bandwioth } \\ \text { Mari. } \end{gathered}$	$\begin{aligned} & 75 \mathrm{db} \\ & \text { Bandwidth } \\ & \text { Max. } \end{aligned}$	Unimate Discrim. Minimum	Insertion Less Max	Impedance ohms	Inband Ripple Max.	$\begin{aligned} & \text { Packree } \\ & \text { Typo } \end{aligned}$
NJ-1	7.2MC	160KC	300KC			60db	6db	13K	1 db	A
NJ-18	7.2MC	160KC	300KC			60db	6 db	13K	.5db	B
NJ-2	7.4MC	160KC	300KC			60db	6 db	13K	1 db	A
NJ-2B	7.4MC	160KC	300KC			60 db	6db	13K	. 5 db	B
NG-1	5.09MC	160KC	350KC			60db	6 db	20K	1 db	A
NG-18	5.09MC	160KC	350KC			60db	6db	20K	1db	B
NB-1	10.7MC	200KC		450KC		75db	12 db	50	1 db	A
NB-1B	10.7MC	200KC		450KC		85db	8 db	50	. 5 db	B
RL-1	11.5MC	-80KC		160KC	200KC	85db	6 db	50	.5db	C
RL-1B	11.5MC	80KC		160KC	200KC	90 db	5 db	50	.5db	8

A limited number of opportunities for filter and communications engineers and technicians are available. Write Mr. Robert A. Crawford, Chief Engineer, Filter Division.

NEW PRODUCTS

Up to 12 variable inductance transducers may be operated with the model CT10 telemetering subcarrier oscillator system. Any of the IRIC; bands 4 through 18 or A through E may be used. Operating voltages range from 6 to 50 v dc at 48 ma . The $2-\mathrm{lb}$ unit is $3 \times 3 \times 3-3.4 \mathrm{in}$. It will withstand shock and acceleration of 200 g . any axis, and vibration of $3.5 \mathrm{~g}, 50$ to $2,0000 \mathrm{cps}$.
Pace Engineering Co., Dept. ED, 130.35 Satticoy St. Nurth Hollywood, Calif.

Transistor Amplifier

612
Four-stage transistor amplifier, model T.A-12-B, has a gain of 73 db at 1 kc . Nominal input impedance is $2.5(0)$ ohms; frequency response is $=5 \mathrm{dh}$ from 30 x$)$ to $20,000 \mathrm{cps}$. Power is supplied by a $1.34-\mathrm{v}$ mercury cell. Size is 0.531 in . in diam $x 0.228 \mathrm{in}$. high.

Globe-Union Inc., Centralab Div., Dept. ED, 900 E. Keefe Ave., Milwaukee 1, Wis.

Power Tetrode

A 65-w power tetrode, PL-4-65A is suitable for use as an rf power amplifier and oscillator and as an af power amplifier and modulator. Small size and quick-heating filament make it useful in mobile equipment. It can be operated up to 150 mc .

Penta Laboratories, Inc., Dept. ED, Santa Barbara, Calif.
Don't forget to mail your renewal form to continue receiving ELECTRONIC
DESIGN.

DC Motor

A single package houses motor, gear train, governor and noise filter in this $1-1 / 4 \mathrm{in}$. permanent magnet or reversible motor. Built to meet MIL-M-8609) (ASG) requirements, the unit oper ates over an ambient temperature range from -65 to +200 F , producing $1 / 75 \mathrm{hp}$ from 22 to 31 v dc . Current is 0.85 amp max, speed 18,500 rpm at 26 v .
Omega Precision, Inc., Electro-Actuaturs Div. Dept. ED, 757 N. Concy Ave., Azusa, Calif. Availability: 4 to 6 weeks.

Transistor Tester

In-circuit measurement of ac beta parameter is provided by the 219B transistor tester. Scales for beta are 1 to 4,3 to 12,10 to 40 , and 30 to 120). There are also two collector current scales of () to 50 and $500 \mu \mathrm{a}$.

Sierra Electronic Corp. Div. of Philco Corp., Dept. ED, 3885 Bohannon Drive, Menlo Park, Calif.
P心A: U'nler $\$ 300$ ca; Fcb. 1961
Tape Reader

Chopped reflected light and ac-coupled amplifiers are used for stability in the model PTR-7 photoclectric tape reader. Speeds of 10, 30, 75 and 100 in . per sec may be selected, with up to 1,000 characters per sec reading rate. Stop to full speed requires 3 msec ; tape stops in less than 1 msec . Output voltage level is 12 v negative. Complete controls are provided. The rackmounted reader has a panel 5-1/4 in. high.

Omnitronics, Inc., Dept. ED, 511 N. Broad St., Philadelphia 23, Pa.

ELECTRONIC DESIGN • April 12,1961

Radome designed and built by Long Sault Woodcraft Limited. St. Andrews East, Quebec, for the United States Air Force RADC.

Radar antennae along the upper perimeter of North America's defense system are enclosed by protective domes which stop ice, snow, and gales up to 150 mph .

This precisely engineered pattern of fiberglass panels is erected quickly and surely, under the most adverse field conditions, using recessed Simmons DUAL-LOCK fasteners.
DUAL-LOCK is ideally adapted to panel fastening for military shelters, demountable shipping containers, aircraft cowlings and guided missiles.

Features:

- High load characteristics. The standard No. 1 DUAL-LOCK withstands $2500-\mathrm{lb}$. tension, and with modifications, tension loads of 7000 lbs . and over.
- Double-acting take-up provides great closing pressure, with minimum pressure on operating tool.
- Positive-locking. Trigger action insures fully open and fully closed positions.
- Vibration-proof and impact-proof. Will not accidentally unlock or loosen.
Write for catalog \#1257. Complete specifications, drawings, details of DUAL-LOCK and other Simmons Fasteners with unlimited money-saving applications.

BE SURE TO VISIT SOOTM 24341960 Design Engineering Show

SIMMONS FASTENER CORPORATION

 1763 North Broadway, Albany 1, New YorkQUICK-LOCK • SPRING-LOCK • DUAL-LOCK • ROTO-LOCK • LINK-LOCK • HINGE-LOCK CIRCLE 133 ON READER-SERVICE CARD

NEW PRODUCTS

Module Tester

Dynamic and de test of digital modules is done with model MTl module tester. The maker's $200 \mathrm{kc}, 3 \mathrm{mc}$, and PB 250 modules are tested for parameters including input amplitude, duration, rise time, and repetition rate plus output resistive and capacitive load. The unit is self-testing.

Packard Bell Computer Corp., Dept. EI, 1905 Armacost Ave., Los Angeles 25, Calif.
Price \& Availability: $\$ 1,950 ; 6(0)-$ day delivery.
Coaxial Attenuators

For use from dc to I Gc, series AF type 2 fixed coaxial attenuators have a vswr of 1.10 max over their frequency range. They are bidirec tional and unaffected by temperature or humidity changes. Specifications are: frequency range dc to 1 Cc ; attenuation, 1 to 40 db ; power handling, l-w, cw, l-kw, peak; impedance, 50 ohms nominal; vswr, 1.10 max

Maury and Associates, Dept. ED, 10373 Mills Ave., Montclair, Calif.
P\&A: $\$ 55$ to $\$ 75 ; 2$ to 4 weeks.

Cabling Tape

Laminated aluminum foil and glass cloth are combined with a pressure-sensitive silicone adhesive in 6100 heat-reflective tape. Type 6101 is similar but nonadhesive. Type 4716 is a Mylar tape 1.2 mils thick, used to protect underwater cable. It has high dielectric strength, heat resistance, low moisture-vapor permeability and good elongation.

Permacel, Dept. ED, New Brunswick. N. J.

Don't miss an issue of ELECTRONIC

 DESIGN; Return your renewal card.602

618

44
 photo resist encyclopedia

This 24-page book on the Kodak Photo Resist way to etch dependable circuits tells the whole story about using a simple 6-step KPR routine. Each step is ex plained so even beginnerv will catch on fast. The book costs you nothing-only the te postage on your letter-a tiny in vestment that could pay the handsome return of more circuits that pass inspection. The 6 KPR steps:

1. Clean the metal. Power brush dors it fast.
2. Rinse in acid. A quick way to assure total KPR adhesion.
3. Coat the plate. Dip, whirl, or spray. Stable KP'R won't change exposure time even after months of storage, so coating can be done ahrad of time.
4. Expose to high-intensity ares. AIways short expoures with KPR, no matter what the temperature, humidity, or storage.
5. Desclop. Do it fastest in vaporspray degreasers. Or in tank or tray.
6. Etch with standard techniques. KPR guards the cirsuit image in component assembly, strips off clean when pancl is shated on tin-lead solder.
No statement or suggestion in this advertisement is to be considered a recommendation or induce-

Graphic Repraduction EASTMAN KODAK COMPANY Rochester 4. N. Y.
| Pleose send me your free bookles "Indus| trial Uses of Kodak Photo Resist" (0-24).

Name
Company
Stroot
City
Zone
ne
circie 135 on teader-service caro
ELECTRONIC DESIGN - April 12,1961

ONLY AO TRACEMASTER OFFERS CONVENIENCE OF TILT-OUT WRITING TABLE!

Only the AO Tracemaster offers this con. venient, tilt-out writing table. Smooth, positive linkage lets you tilt the exposed section of the chart out to a just-right 50° angle. An automatic braking device on the paper take-up mechanism maintains taut, wrinkle-free chart surface across the table.
You can tilt the table and measure the record or write on the chart while the Tracemaster is recording ... you don't interrupt the trace or interfere with the amplitude of the record in any way. When you're finished, simply snap the table back flush with the front of the cabinet.... paper take-up mechanism automatically rolls up loose chart paper. This extra convenience is another of the plus benefics offered by the AO Tracemaster ... the World's newest and finest 8 -channel direce writing recorder. Get the complete Tracemaster story in detail. Colorful, 32 page Brochure is yours for the asking. Write for your copy today!

American Optical Company Instrument Oivision - Buffalo 15, New York

CIRCLE 136 ON READER-SERVICE CARD
ELECTRONIC DESIGN • April 12, 1961

NEW G-E GLOW LAMP (NE-83) EFFECTIVELY HANDLES CURRENTS UP TO $\mathbf{1 0} \mathrm{m}$.a.

ME.83
actual
S.
actoal
SI2E

Here's a General Electric Glow Lamp that operates at currents many times higher than most glow lamps. At 10 milliamps, the NE- 83 will hold its breakdown and maintaining voltage within five volts of initial for an average life of 500 hours. At lower currents life increases exponentially.

Although this product is too new for us to establish voltage regulation specifications, it shows considerable promise for this application in the 1 to 10 milliampere range.

Leads of the NE-83 are plated for easier soldering. It contains a mild radioactive additive to reduce breakdown voltage in darkness.

DIRECT CURRENT SPECIFICATIONS

Breakdown Voltage $60-100$ volts d-c
Maintaining Voltage at 10.0 m.a. avg. 65 volts d-c*
Design Current $10.0 \mathrm{~m} . \mathrm{a}$. d-c
Life (at $10 \mathrm{~m} . \mathrm{a}$ d.c for an average change
of 5 volts in breakdown and
maintaining voltage). 500 hours
Average after 100 hours burnirg at rated current. Individual
lots may vary from average.

There's a General Electric Glow Lamp to suit every circuitry need. For the latest information on Glow Lamps as Circuit Components and Indicators, write for 4-page Bulletin \#3-0193. General Electric Co., Miniature Lamp Dept. NE-83, Nela Park, Cleveland 12, Ohio.

> Progress Is Our Most Important Product GENERAL ((\%) ELECTRIC
for clear display of:
Single-Shot Nuclear Events/Transistor Switching/Fast Diode Turn-on/Radio-Frequency Waveforms/Tunnel-Diode Switching

for recording high-speed one-shot occurrences

NOW, you can see and record non-repetitive, high-speed phenomena with a standard oscilloscope-one that does not depend upon sampling techniques. On its distributeddeflection CRT, you can observe bright displays with 100 -line-per-centimeter definition. You can photograph fractional-nanosecond signals with ease on its full 2×6 centimeter display area

You will find the Type 519 engineered for convenience
Internally-all circuit components of the complete unit fit compactly, yet are readily accessible for easy maintenance. A fixed signaldelay line plus variable sweep-delay control maintains the wide display passband and eliminates any need for adjusting delay-cable lengths.

Externally-the Type 519 features a minimum of controls and connectors for an instrument in this range. A carefully-coordinated frontpanel layout facilitates your test setups and procedures and aids greatly in saving engineering time and effort.

You need no auxiliary equipment for many high-speed applications. In fact, for normal operation, you make two connections only: (1) you plug-in the power cord, (2) you couple-in the signal source.

With such operational ease-combined with its inherent Tektronix reliability-the Type 519 is an ideal laboratory oscilloscope for your high-speed measurements up to the KMC resion and slightly beyondespecially those applications demanding a photographic record of oneshot occurrences.

CHARACTERISTICS
Passband-Irom dc, 3 db point typically above 1 KMC. Instrument Risetime-less than 0.35 nanosecond (including trigger takeoff, delay line, CRT, and termination), Synchronization-200 mv peak-to-peak, 1 MC to 1 KMC. Accelorating Potential- 24 kilovolts. Sensitivity-10 volts/centimeter, maximum, into 125 ohms. Time Base-linear 6 -centimeter sweeps from 2 nanoseconds/centimeter to 1 microsecond/centimeter in 9 steps. Sweep Delay-through 35 nanoseconds. Triggering-jitter-free: External-3-microwatt (20-millivolt) pulse of 1-nanosecond duration. Internal-2-tracewidth pulse of 1-nanusecond dupation. Signal waveform undisturbed by trigger takeoff. Power and High-Voltage Supplies-electronically regulated. Calibration-Step Generator. Avalanche-Transistor Rate Generator.

Tektronix, Inc.

P. O. Box 500 - Beaverlon, Oregon

Phone Mlichell 4-0161• IWX-BEAV 311 - Cable: TEKTRONIX

 - Europe blease whis Tritiontitien Victocio Ave CIRCLE 138 ON READER-SERVICE CARD

NEW PRODUCTS

DC-fo-DC Converter

Output of $1 \mathbf{k v}$ dc at 25μ a is furnished by this dc-to-dc converter. A transistor blocking oscillator type, primary input is 3 v dc at 20 ma . It is supplied in hermetically sealed MIL-T-27A can or in open frame configuration. An epoxy-molded construction with pins or lugs is made on order.
Microtran Co., Inc., Dept. EI, 145 E. Mineola Ave., Valley Stream, N. Y.
P\&A: $\$ 3.70$ to $\$ 7.9()$ ca, $1(0)$ units; stock.

Circuir Modules

Designed for reliable operation in missile uses, a line of 20 modules includes multivibrators, Schmitt triggers, inverters, emitter followers, reset amplifiers, amplifiers, logic gates, etc. Modules occupy less than 0.09 cu in., weigh less than $1 / 10$ $\mathrm{o} \%$ Operating temperature range is -5.5 to +125 C. The series F units withstand $20-\mathrm{g}$ vibration from 47 cps to 5 kc .
Marshall Laboratories, Dept. EI), 200s W. Carson St., Torrance, Calif.

Summing Amplifier

Fully transistorized model 1010 booster summing amplifier can drive a size 11,400 -cps resolver or several computing potentiometers. Up to five inputs may be summed; gain is unity $=0.005 \%$. Phase shift is less than 5 min . Input impedance is 1 meg , signal level 30 v . The amplifier is encapsulated and sealed.

Melcor Electronics Corp., Dept. ED, 48 Toledo
St., South Farmingdale, L. I., N. Y.

Solid-state airborne de amplifier, designed for severe environments, occupies 4.75 cm in. The direct-coupled, differential input amplifier has equivalent input drift of less than $1(x)$!iv for 8 hr. Input is 5 mv differential; gain is $\mathbf{2 ()}$) to 1 ((M) - 0.75%. Output is $\pm 5 \mathrm{v}$ into not less than 20 K . Linearity is $\pm 0.25 \%$; gain variation is ± 1 (0) 10 $\mathrm{kc}, 3 \mathrm{db}$ down at 50 kc . Temperature ratuge is -55 to $+1(0) \mathrm{C}$, vibration 20 g to -2 kc
Microdot Inc., Dept. EI). 2en Pasadena Ave. Soutlı Pasadena, Calif.

Silicon Diodes

No encapsulation is required for these silicon diodes, which measure 0.(0.5 max 0.030 max in. Rectifier types have ratings to 1 kv piv; computer diodes are rated to 2 nsece recovery time, 2 pf capacitance. A fast-recovery type and a general purpose diode are also made. Features inclucle storage at temperatures to 300 C. thermal shock resistance over operating range of -6.5 to +200 C with no delay in transfer, and 300 mw dissipation.
MicroSemiconductor Corp., 1)(pt. ELI). 11250 Playa Court. Culver City. Callif.

Silicon Rectifier

Rated at 600 v maximmon pic, type To rectifiers (an be used at up to 420 (rms in resistive and inductive circuits, and up to 215 v rms on capacitive loads. It is rated at 750 ma continuous at 50 C ambient temperature, $5(10 \mathrm{ma}$ at 85 C . Leakage current is 250 ma max.
P. R. Mallory \& Co. Inc., Mallory Semiconductor Co. Div., Dept. EI), Du Quoin, III.

Have you sent us your subscription renewal form?

temperature stability plus lightness

This Size 8 Daystrom Transicoil synchro provides temperature stability without increasing weight.

The encapsulated stator windings permit these units to be operated under severe environmental conditions. And, of greatest importance, in random sampling of Daystrom Transicoil Size 8 synchros, error shift from room temperature has not exceeded 2 minutes over the entire temperature range of -55 C to +125 C .

Daystrom Transicoil Size 8 "temperature stable" units are

available as transmitters, differentials, control transformers and resolvers. Standard accuracy is ± 7 minutes, but 5 -minute units are also available on special order.

Data sheets and prints on the "temperature stable" Size 8 synchro are available on request. And remember, too, Daystrom

Transicoil makes a complete line of precision rotating components.

Foreign: Daystrom International Division, 100 Empire St., Newark 12, New Jersey. In Canada: Daystrom Ltd., 840 Caledonia Road, Toronto 19, Ontario. Mid-West: Daystrom Incorporated, 905 W . Hillgrove Avenue, La Grange, Illinois.

EVERYTHING in
 Laminated Plastics From One Source

An Example of

Synthane You-shaped Versatility
From the day this plant started it has been shaped by the needs of customers like you. And so you find under one roof at Synthane your complete answer in laminated plastics-sheets, rods, tubes, molded-laminated, molded-macerated and fabricated parts. Synthane has all the facilities necessary for designing and producing tools, dies, jigs and fixtures for fabrication, a mine of information on the proper methods for machining laminated plastics. Versatility from one source. One high quality. One responsibility. You-shaped Versatility makes Synthane a Better Buy in Laminates.

Synthane Corporation, 42 River Rd., Oaks, Po.
Gentlemen:
Please send me information relating to Synthane as a source
for taminated plastic materials and parts.
Name-
Address

CIRCLE 140 ON READER-SERVICE CARD

NEW PRODUCTS

Crystal Filters
658

Wide band-pass crystal filters in the range of 0.5 to 30 mc have fractional bandwidths of 0.7 to 6.5%. Center frequencies of types NJ-1 and $\mathrm{NJ}-2$ are held within 3 kc of a design center of 7.2 and 7.4 mc respectively, and $3-\mathrm{db}$ bandwidths are held between 160 and 168 kc . The $40-\mathrm{db}$ bandwidths are less than 300 kc . Package size is less than 1 cu in .

Midland Manufacturing Co., Dept. ED. Kansas City, Kan.

Frame-Grid Tubes

High transconductance and low noise are features of five miniature frame-grid tubes. Applications include use in rf amplifiers, if amplifiers, driver stages, cathode followers and cathode amplifiers. The tubes and their transconductances are the 6939, a double tetrode with $10,500 \mu \mathrm{mhos}$ per section; 6688 , pentode, $16,500 \mu$ mhos; 6922 , twin diode, $12,500 \mu$ mhos per section, 5842 , triode, $25,000 \mu \mathrm{mhos}$; and 5847, pentode, $13,000 \mu \mathrm{mhos}$.
Raytheon Co., Industrial Components Div., Dept. ED, 55 Chapel St., Newton 58, Mass. Price: $\$ 2.95$ to $\$ 7.90$.

Cooling Fluid

Low viscosity allows pumping of Coolanol 35 at temperatures down to -85 F . The fluid is thermally stable at 400 F . Dielectric strength at 25 C is rated at 47 kv ; viscosity at -65 F is less than 950 centistokes.

Monsanto Chemical Co., Dept. ED, 800 N. Lindbergh Blvd., St. Louis 68, Mo.

Have you sent us your subscription renewal form?

So fine a molor, all mating surlaces are machined - not die-cut -for closest possible tolerance! Assures uniformity of air gap for minimum cogging, uniform output. Forcommunications, hospital, put.Forcommunications, hospital,
dental, metering and hydraulic dental, metering and hydraulic
pump equipment. computors and other applications.
Write today for complete details!

MACHINED MATING SURFACES!

The Ulitimate in Universal Motor Quality-at Lowest Cost Available!

UNIVERSAL \& DC $29-500$ MOTOR $1 / 2$ to $1 / 4$ M.P. Divisions: Elelectric Motor CorD. (S) Cyclohm Motor Coro. (is) Loyd Scruges Co. HOWARD IMOUSTRIES, INC. . 1725 State Street - Racine, Wisconsin

circle 141 on meader-service card
TO SATISFY ALL YOUR ELECTRONIC REQUIREMENTS
NYLON or DACRON FLAT BRAIDED LACING TAPES -LACING CORDS!

These specially processed. fungus prox, lacing cords and tapes satisfy ellery harness requirement-cuery lacing need. They're available in Nylon or Dacron and they come wax-coated, wax free or with (F . F. Finish. For special high temperature work. Teflon corated Jiberglas Tapes are also availahle.

All Heminuay \& Bartlelt specially-procensed
lacing cords and tapes mect Gruernment
specifications! Write Ionlay for free samplies!
THE HEMINWAY \& BARTLETT MFG.CO. Electronics Division: 500 Fifth Avenue, New York 36

Also distributed by Alpha Wire Co., New Yor
CIRCLE 142 ON READER-SERVICE CARD
ELECTRONIC DESIGN • April 12, 1961

Here Are the Facts
Di-Formed Tubes feature a special patented Precision Paper Tube construction which produces a completely ridgeless sur-
facc. thus eliminating wire pile up and reaultant coil shorts. Side walls arce straightened under presaure during the wind operation. The bow being thus controlled permita a perfect fit between mandril and tube as provided by Precision's low-cort Related Mandril Servic
Under the Related Mandril Service. Precision supplics the coil manufact urer with accurately ground ateel or aluminum mandrils at a price comparable to commonly used unsatisfactory wood or sole purpnec' is to give the coil manufacturer these advantages: 1.Provido proper tube support 2 Facilitate stacking operatime 3. Prevent coil collapse. 4. Save mach ine and operator fatigue. s. Permit a maller core, thus decreasing coil size and elt minating pressing. (iet full details on Precision Di-Formed Tubes and Related Mandril Service. Write. wire or phone today

PRECISION PAPER TUBE COMPANY
205s wast Charloston Stroot, Chlcago A7, Mlinois 2055 Wast Charloston Stroot, Chleage 47, Illinois
Plont No 2 I Flower Street, Mortiord, Conn

CIRCLE 143 ON READER-SERVICE CARD

SOLENOID VALVES OF - ELO V FOR ETCHING, CLEANING!

Power Supplies

Transistorized power supplies are designed for incorporation into customer equipment. Outputs range from $12 \mathrm{v} \mathrm{dc}, 4 \mathrm{amp}$, to $40 \mathrm{vdc}, 1.5 \mathrm{amp}$. Output is completely floating. Line and load regulation is 0.05%; ripple is less than 1 mv rms. Overshoot is less than 1%, recovery time less than $50 \mu \mathrm{sec}$. Gold anodized, extruded aluminum case measures $4-1 / 16 \times 6-9 / 16 \times 6-15 / 16 \mathrm{in}$. Octal plug and mounting studs facilitate installation.
Mid-Eastern Electronics, Inc., Dept. ED, 32 Commerce St., Springfield, N. J.
Price \& Availability: \$149 ea; delivery from stock.

Gallium Arsenide

639
Single-crystal GaAs, in doped and undoped form, is available with carrier concentrations ranging from 10^{18} carriers per cc to degenerate levels. Doping tolerance is $\pm 50 \%$; dopants are rinc, tin and tellurium. Ingots to 90 g and 1 in . diam have been made. Polycrystalline material is also available.

Merck \& Co., Inc., Dept. ED, Rahway, N. J. Price: $\$ 810 \$ 25$ per g.

Ceramic Capacitors
667

Ultraminiature ceramic capacitors offer lower dissipation factors and improved temperature coefficient curves. The EA 12C capacitor is available in values from 39 pf to 560 pf ; the E.A 16C is in values of 680 through $1,200 \mathrm{pf}$. Miniature size in the $12-\mathrm{C}$ line measures $0.098-\mathrm{in}$. in diameter $x 0.250$ length.
Electramics Corp., Dept. ED, Solana Beach, Calif.
Price: $\$ 0.55$ to $\$ 1.12$ ea depending on quantity

can you Read THIS at 6 fete?

 actual size

- DIGITAL READOUT to 9999 hours in one hour increments
SUBMINIATURE-Only . 670 OD; 1.670 L
FEATHERWEIGHT-Less than 2 ounces
- 115 V 400CPS OPERATION
- MINIMUM POWER DRAIN
- HERMETICALLY SEALED
- MOUNTS $T O$ ANY PANEL THICKNESS
- MEETS REQUIREMENTS OF Mil-M-26550 IMMEDIATE DELIVERY

SEND FOR ETI DATA PAGE 2000 CI
 8000 Bluffton Rd., Fort Woyne, Ind. FOR CONTROL OF THE FUTURE CIRCLE 145 ON READER-SERVICE CARD

THE ONLY COMPLETE LINE OF BALANCED ROTARY RELAYS

NEW Hi-G 4PDT microminiature relay

First 4-pole microminiature relay incorporating a balanced armature and featuring a pin arrangement readily adaptable to printed circuit applications. This new relay also features improved sensitivity per pole as compared with two 2-pole microminiature relays.
Type: Type 4B Microminiature
Size: $\quad .800^{\circ} \times .800^{\circ} \times .875^{\circ}$ max
Contacts: APDT dry cricuit to 2 amps resistive
Dietertric
Strength:
1000 VRMS at Sea Level
Insulation
Resistance: 1000 megohms min
Optional Terminals: Long or short leads for printed al:Cult application or hook type for standard wiring. Bracket, studs or straps also avalable for mounting.
Construction: Balanced armature construction, proven the best approach available for resistance o extremes of vibration and shock, exceeding all present military specifications.
Environmental Characteristics: To meet all military relay specifications for components of this size.

Printed Circuit
Features

BRADLEY FIELD, WINDSOR LOCKS, CONN.

NEW PRODUCTS

AC Panel Meters

Iron vane ac voltmeters, ammeters and milliammeters are available in Medalist and standard cases. Ranges are 1 to $800 \mathrm{v}, 1$ to 800 amp , and 10 to 800 ma . Moving iron vane mechanisms feature magnetic clamping, impregnated field coils, and selected fixed and moving iron material for reliable operation. Cases are phenolic.
Precision Meter Div., Minneapolis-Honeywell, Dept. ED, Grenier Field, Manchester, N, H.

Data Communications System

Simultaneous data processing and communication with other computers is enabled by the H880 and H-480 data communications control units. i)ata are transmitted over long-distance networks at the rate of 150 characters per sec. Provision for automatic verification and error correction is included.
Minneapolis-Honeywell Regulator Co., Dept. ED, 2747 Fourth Ave. S., Minneapolis 8, Minn. Availability: 12 to 18 months.

Lighted Push-Button

With single or two-color indication, the $302 \mathrm{PB1}-\mathrm{T}$ switch measures $0.812 \times 0.890 \times 1.303$ in . Switch is rated at 7 amp resistive and 25 amp inrush, 24 v dc; 7 amp resistive and 15 amp inrush at 11.5 or 2.30 v ac. There are five colors for display screen. Lamps are easily replaced.

Minneapolis-Honeywell, Micro Switch Div. Dept. ED, Freeport, III.
Price \& Atailability: \$16 to \$1.3.8.5; stock.
This is the time of our annual subscription renewal; Return your card to us.

Data Sysiem

Automatic digital data acquisition and recording system performs digital recording of analog values at rates up to 10 four-character points per sec. Digital output is five-level punched paper tape suitable for printout or punched card conversion. Rotary switches provide for initial entry of fixed data.
Monitor Systems, Inc., Dept. 6, Dept. ED, Fort Washington Industrial Park, Fort Washington, Pa .

Low-Frequency Adapter

Ultrasonic inspection down to $\mathbf{2 0 0} \mathbf{k c}$ is possihe when this low-frequency adapter is used with standard pulse-echo ultrasonic equipment. Materials previously opaque to ultrasound can be penetrated. Over 24 in . of cast Iconel \boldsymbol{X} has been successfully inspected with the use of this adapter.

Automation Industries, Inc., Dept. EI) 3613 Avation Blyd., Manbattan Beach, Calif.

Fork Contacts

Printed circuit fork contacts of the 400 series have radiused contacting surfaces for smooth mating. Made from spring-tempered phosphor bronze, the gold-plated contacts come in upright, parallel and 4.5 -deg styles.

Methods Manufacturing Corp., Dept. EI), 7447 II. Wilson Ave., Chicago 3, Ill.

neou
 CRYSTALS \& CRYSTAL FILTERS

Regardless of its size, type, or frequency any crystal bearing the name

M-1 (HC.6/U)

METAL ENCASED STANDARD SIZE AND MINIATURE CRYSTAL UNITS
shown actual size

The crystals that made the name of McCoy a synonym for quality. Metal encased, HC-6/ U size is 500.0 kc to 200.00 mc .

Fills the need for miniature crys tals in frequencies from 2.5 mc to 200.0 mc . Meets specs MILC. 3098 B and ARINC No. 401.

HECO4

can be relied upon to deliver the ultimate in frequency control despite wide temperature variations and extreme conditions of shock and vibration.

G-1 (Military HC-27/U
This vacuum sealed, hard glass crystal unit possesses all of the quality leatures for which the long term frequency stability five long term frequency stability five times better than the conven frequencies from 500 kc to 200 mc .

ALL GLASS STANDARD SIZE AND MINIATURE CRYSTAL UNITS
shown actual size

G. 20 (Military HC.26/U)
G-21 (Military HC-29/U)

This vacuum sealed, hard glass crystal unit meets the new CR. tions. It has long term frequency stability five times better than the conventional metal type. Available in frequencies from 5000 kc to 200 mc .

CRYSTAL FILTERS

Our many years experience in designing and producing top quality oscillator crystals have enabled us to develop and produce filters of equal desirability. Current production includes filters in the 1.0 mc to 30 mc range. with bandwidths of $.01 \%$ to 4.0% of center frequency. A number are available without costly design and prototype charges.

Actual Size for Series 3 Types

Write today for our free illustrated catalogs which include complete listing of military specifications. For specific needs, write, wire or phone us. Our research section is anxious to assist you.

ELECTRONICS CO. Dept. ED-4
MT. HOLLY SPRINGS, PA.

SPRAGUE ELECTRIC COMPANY

347 Marshall Street North Adams, Mass.
SPRAGUE COMPONENTS: Resisstors - capacitors - magnetic components - transistors imterfenence fitters - puise mitworks omign temperature magiet mire - primted circuits

NEW PRODUCTS

Gallium Arsenide

Single-crystal and polycrystalline GaAs is made in 3 ' 4 -in. diam semicircular ingot form. Mobility of N-type single-crystal material ranges from 3,500 to over $5,500 \mathrm{~cm}^{2}$ per v-sec. High-pur ity and doped materials are available. Mobility and resistivity data are supplied with all singlecrystal material

Micro State Electronics Corp., Dept. EID, 152 Floral Ave., Murray Hill, N. J.
P\&A: $\$ 7$ to $\$ 30$ per g; stock to 30 days.

Transistor Housing

Hermetically sealed transistor housings are made from 96% alumina ceramic, metalized with molybdenum manganese and braze-sealed to Kovar members. Seals withstand temperatures to $1,300 \mathrm{~F}$. Body OI) is 0.080 , base 0.125 in . Housings may be designed to customer specifications. Mitronics, Inc., Dept. ED, 1290 Central Ave. Hillside, N. J

Static Relay

Solid-state static relay model SRIA-1 is designed for airborne and missile applications. Relay controls up to 4 amp at $115 \mathrm{v}, 400 \mathrm{cps}$; turnon time is $100 \mu \mathrm{sec}$ max with a signal voltage of 5 to 28 v dc. The $0.4-\mathrm{lb}$ unit measures $2 \times 2 \times 1$ $1 / 2 \mathrm{in}$. and meets requirements of MIL-E-5272B.

Magnetic Controls Co., Dept. EI), 6405 Cambridge St., Minneapolis 26, Minn.

Don't miss an issue of ELECTRONIC

 DESIGN; Return your renewal card.641
Environmental conditioning for detection systems

AiResearch cooling of airborne detection systems is accomplished by an extremely reliable, compact unit which is both an air-cooled cold plate and mounting structure for the detec. tion system's transistorized power supply.
This lightweight package weighs 7.2 lb .. and has a heat rejection of 500 watts. It consists of four AiRe. search Minifans and an all-aluminum structure with 44 separate modules. Each module is electrically isolated and may be removed individually for quick, easy replacement.
AiResearch is the leading designer and manufacturer of such advanced electronic conditioning equipment and systems. This production unit is one example of the broad productionproven capability of AiResearch in providing extremely reliable, lightweight, compact cooling packages for aircraft, missile, space and ground support applications.
Environmental conditioning equipment has been produced for the following electronic systems: Detection - Communication - Control - Ground Support Guidance
Write for literature today.

AiResearch Manufacturing Division
Los Angeles 45, Callfornia
CIRCLE 149 ON READER-SERVICE CARD
ELECTRONIC DESIGN • April 12, 1961

G-M provides continuous quality control

Your need for a full margin of recliability in servo systems is matched by the continuous quality of C.M Scrvo Motors and Cenerators. The extra design experience that goes into every C.M unit is guided through production by test, after test, after qualification test. Sizes range from 5 to 18, with prompt availability that promises quick allaptation to your servo development and production programs.
Qualify G.M Sertos for all of wour projects, now, in adtance of actual necd. S'rnd procurement specs und prints, todne).
Phone: PEnsacola 6-1800 (TWX CG-3268)

G. m-taborataries inc.

1284 N. Knox Avenue • Chicogo 41
Other offices in principal cities Circle 150 on reader-service card ELECTRONIC DESIGN•April

Miniature Filter

Occupying 0.25 cu in. the 75 F series filter has the same electrical characteristics as larger units. Low-pass telemetering channels 1 through 18 and band-pass telemetering channels 8 through 18 are covered. Packaging is nonmagnetic metal, epoxy-potted.
Polyphase Instrument Co., Dept. ED, E. 4th St., Bridgeport, Pa.

Wirewound Trimmer

High-temperature trimmer $50-\mathrm{M} 48$ is designed to meet requirements of MIL-R-27208. Temperature range of the sealed, wirewound potentiometer is -55 to +200 C ; temperature coefficient is $\pm 0.005 \%$ per deg C. Standard resistance values of the $1-w$ unit range from 25 ohms to 10 K . Hermetically sealed, it withstands moisture and salt spray. Vibration range is 10 to $2,000 \mathrm{cps}$, shock 50 g .

Maurey Instrument Corp., Dept. ED, 7917 S. Exchange Ave., Chicago 17, III.

Coaxial Connectors

Screw-type coaxial connectors in more than 100 standard types are available in $50-, 70$ - and 9.3 -ohm impedances. Made in conformity to military specifications, they are universally interchangeable, shock and vibration resistant. Standard configurations are straight plugs, angle plugs, receptacles, bulkhead jacks and jacks. Minimum voltage breakdown test is 1.5 kv ac.

Electro-Physics Laboratories, Dept. ED, 1900 Walker Ave., Monrovia, Calif.

A simple precision adjustment is provided within the 6BR to permit setting the DPDT snap-action switch to engage and disengage both poles simultaneously. Adjustment is made from the front of the panel and may be changed by simply snapping off the lens and resetting with a screwdriver. OPERATING LIFE: The 6BR meets all pertinent mil specs - is guaranteed for 25,000 cycles at 28 VDC 7 amps resistive. COLOR CODE AND STYLE FLEXIBILITY: The 6BR switchlite is available with standard round or square lens shapes that provide front and side illumination, in all standard colors. Where product styling requires a uniform surface color, translucent or milk white lens accessories may be used in combination with colored lamp caps underneath to provide color coding only when circuits are energized. Legends and symbols can be provided on the switch lenses if desired. ILLUMination is provided through a separate circuit utilizing standard two-pin, plug-in incandescent lamp assemblies. Lamp range is from 5 to 28 VDC. OpTIONAL SERIES RESISTORS potted with the lamp assembly provide practically infinite service life by limiting both surge current and operating current drain. The 6BR switchlite has been designed to meet the critical phasing requirements of systems employing interrelated circuitry where power load and time factors bear a vital relationship to system performance.
sPECIFICATION SHEETS covering all electrical and mechanical characteristics, plus scale drawings, available on request.

- Aleman corporation

1805 BELCROFT AVENUE ML MONTE. CALIFORNIA CU 3-9555 OI 3-6127 CIRCLE 151 ON READER-SERVICE CARD

NEW PRODUCTS

Commutative Scanning System

Sequential monitoring of up to $\mathbf{4 0}$ channels is possible with model 540 commutative scanning system. Self-contained in a cabinet 48-5/8 in. high. the system consists of a scanner control unit, a \%ero and gain unit, a digital voltmeter and a printer.

Crescent Engineering and Research Co., Dept. ED, 5440 N. Peck Road, El Monte, Calif.

Controller Panels

590
Proportional power controller panels use magnetic amplifier and silicon-controlled rectifier circuitry to deliver $400,1,200$, and $4,000 \mathrm{w}$ ac or dc to basic loads. The six units have high gain, low time delay, adjustable bias and gain control, multiple control windings, linear amplification, and standard input-output voltages. Supply is 115 v ac; output is 85 v dc or 95 vac .

Norbatrol Electronics Corp., Dept. ED, 356 Collins Ave., Pittsburgh 6, Pa.

Delay Lines

Delays up to $5,000 \mu \mathrm{sec}$, with adjustment of $\pm 5 \mu \mathrm{sec}$, are provided by the model 2370 mag netostrictive delay line. Temperature corefficient is $\mathbf{2 0}^{(0)} \mathrm{ppm}$ per deg C standard. 4 ppm on request. Range is -5.5 to +70 C . Insertion loss is about 60 dh : signal-to-noise ratio is better than 10:1 Carrier frequency is 250 kc to 1 mc . Transistorized drive and output circuitry can be supplied as integral part of package.

Power-Tronic Systems, Inc., Dept. ED, Pine Court, New Rochelle, N.Y.

Don't forget to mail your renewal form to continue receiving ELECTRONIC DESIGN.

CIRCLE 153 ON READER-SERVICE CARD \rightarrow ELECTRONIC DESIGN - April 12,1961

.... all imported from West Germany, made to meet the highest standards of professionals. the pencil that's as good as il loots $\square \rightarrow B \rightarrow$ J.S. StaEDTIER.INC. Mars products are available at better engineering and dratting material suppliers everywhere. HACKENSACK, NEW JERSEY

FABRICATING MICROMODULES TO MDBILE ROOMS

Magnetic Shields Custom Fabricated to Any Size or Shape

The industry's widest range of production facilities ... in 3 factories: PRESS FORMING AND DRAWING - HYDROFORMING - SPINNING - HAND FABRICATION OF PROTOTYPES

Already Tooled for Samples or Production

- Simple designs to elaborate complexes.
- Single or multiple laminae constructions.

ALSO AVAILABLE
Micromodule size to a completely prefabricated mobile shiclded room weighing 5 tons which can be transported anywhere - an achievement unique with Magnctic Shicld Division.*

- Processed stock for fabrication in your own plant.
- Co-operative design facilities.

Use this SINGLE CONVENIENT SOURCE for all magnctic shielding requirements. Saves you countless design hours . . . helps speed your project . . . lowers your costs.

We recommend NETIC and CO-NETIC magnetic shielding matcrials because they are non-shock sensitive, non-retentive, do not require periodic annealing and provide completely effective shiclding for optimum results.

NETIC and CO-NETIC are widely specified for satellite, missile, protecting recording tapes, data processing and for innumerable other military, scientific and laboratory applications as well as for commercial applications.
phone your nearest sales office today

LOS ANGELES. CALIFORNIA palo alto california san diego california SAN DIEGO. CALIFORNIA
ACademy $4-1 / 17$ SEATTLE, WASHINGTON
EAS1 1 -8545 PhoEnix ARIZOMA
AMRIISt 4.4934 AMhurst 4.4934 MOUSTON. TEXAS

MAGNETIC SHIELD DIVISION

Perfection MIca Company

1322 N. ELSTON AVENUE, CHICAGO 22, ILLINOIS

Sequence of
shield cans,
punch press or
spinning.

CIRCLE 154 ON READER-SERVICE CARD

Digital Logic Packages

403

DigiBits, a series of digital logic packages, has a conservatively rated operating frequency of 10 kc (20 kc input frequency). They can be used over a 30 - to $120-\mathrm{F}$ temperature range. Packages available include flip-fops, diode "AND" and "OR" gates, re gates and emitter followers.
Tech Serv, Inc., Dept. ED, 4911 College Ave., College Park, Md.

Ulitrasonic Cleaner

Miniature parts and optics can be cleaned with lightweight, portable model US-100 ultrasonic cleaner. Useful in fast removal of solder flux, grinding and polishing compounds, oil, and other contaminants, unit accommodates parts up to 1-1/2 in. square. Transducer is magnetostrictive type.
Union Ultra-Sonics Corp., Dept. EIJ, Quincy, Mass.

Arbitrary Function Generator

Low frequency function generator, model 5846, can reproduce most arbitrary waveforms to requirements in addition to low frequency sine and triangle waveforms. Specifications are: frequency range, 0.001 to 10 cps in four ranges; accuracy, $\pm 3 \%$ of set frequency; output voltage, 20 v peak-to-peak; hum, 45 db down from signal level.
Tensor Electric Development Co., Inc., Dept. ED, 1873 Eastern Parkway, Brooklyn 33, N.Y.

in automatic logic circuit testing

Production of packaged module circuits gains new impetus with this major achievement! Now you can automatically test the operating characteristics of logic circuir modules, memory boards, component cards and similar units -with speed, precision and dependability.

The new Tape Programmed DIT-MCO Model 720 rapidly performs static and dynamic tests on active and passive modular circuits.

Tests that can be performed with the new Model 720 include:

- Logic circuit response to all logical com binations of DC input levels.
- Marginal tests to evaluate logic modules under conditions of lowered or raised supply levels in combination with lowered or raised signal input levels.
- Complete tests of conversion matrices for proper logic, levels.

The Tape Programmed DIT.MCO Model 720 will accurately test variables which are required to maintain $\pm 0.5 \%$ aecuracy, and 3 digit tolerance values can be programmed. Provision is made for programming AC or DC sources and external signals through the tester.

Performance of this entirely new circuit analyzer is backed by the experience and reliability af DIT-MCO. Inc.-the nation's leader in automatic circuit testing.

Rutromatically 40urs

DIT-MCO, INC. MCO ${ }^{\bullet}$ 911 BROADWAY Kansas City 5, Missouri

Los Angeles Area New York City Area

HArrison 1.0011

Oregan 8-6106 MUrray Hill 2-5844

For COMPUTERS, DATA PROCESSING AUTOMATION, INSTRUMENTATION

and miniaturization

for use as singie indicator lights, or grouped as a

 DATR STRIP ${ }^{*}$ OR DATR MATERIX ${ }^{\circ}$DATALITES by dialco are ultra-miniature Indicator Lights, made in 2 basic styles: Lampholders with dIALCO's own replaceable Lamps *.... Mount in $3 / \mathbf{s}^{"}$ clearance hole...LAMPS USED: T-1 $1 / 4$ Incandescent; also Neon NE-2E or NE-2H.

> DIAMTGFIT
PILOT LIGHTS
Your Equipment"

NEW PRODUCTS

Miniature Tap Switch

Molded, miniature tap switch, type 3A, is available with as many as eight decks; up to 12 positions per deck, single pole and six positions double pole; and adjustable stops if a lower number of steps is required. The basic unit is $1-1 / 4$ in . in diameter and weighs 30 g . It has a rating of $1,200 \mathrm{v} \mathrm{rms}, 2,000 \mathrm{v} \mathrm{dc}, 5 \mathrm{amp}$, carrying. Insulating resistance is 100 meg min at 500 v dc .
Tech Laboratories, Inc., Dept. ED, Bergen and Edsel Blvds., Palisades Park, N.J.

Environmental Chamber

Walk-in style environmental chamber model WF-2100-125 +300 H provides temperatures from -125 F to +300 F and relative humidity from 20 to 95%. Usable inside space is $15 \times 20 \times 7 \mathrm{ft}$ high. Thermal capacity is 56,000 BTU; air stratification is less than 1 deg. Interior is stainless steel, with frost-free viewing windows.
Webber Manufacturing Co., Inc., Dept. ED P. O. Box 217, Indianapolis, Ind.

Pickup Coil

Electromagnetic pickup coil MA-3G has an integral transistor amplifier. Designed for use with turbine flow sensors, it can also be used as a magnetic motion pickup in tachometer applications. It is useful for impedance matching, and in applications where long transmission distances exist between pickup and readout.

Waugh Engineering Co., Dept. ED, 7842 Burnet Ave., Van Nuys, Calif.

393

392

shortest

 distance between you and
division of
INDUSTRIAL TIMER CORPORATION

RELAYS

FOR EVERY APPLICATION Factory Tested for Reliability!

GENERAL PURPOSE Open Type Relay. Up to 3PDT. 5 or 10 amp conlact rating. Voltages un o 230 voits. AC or DC Details in Bulletin 10

GENERAL PURPOSE Plug-In Type Relay. Con tact arrangements up to 3PDT. 5 or 10 amp con. tact rating. Voltages vo to 230 volts. AC or DC Details in Butletin 10.

PRINTED CIRCUIT Open
Type Relay. Up to 3PDT. Type Relay. Up to 3PDT. rating. Voltages up to 230 volts, AC or DC. Details in Bulletin 11

213 River Street, Orange, N. J. Industrial Relays. Foot Switches, Buzzers, Coils Phone: ORange 2-8200

Cable Clamps

Nylon cable clamps accommodate cables from $1 / 16 \mathrm{in}$. to $1-3 / 4 \mathrm{in}$. in diameter. Flat clamps, molded half-clips and snap clips are made. Clamps are useful from - 6 () to +275 F under load, and are unaffected by oil to 300 F. Military recquirements are met.
Weckesser Co., Inc., Dept. EI-2, Dept. ED, 5701 Northwest Highway, Chicago 46, Ill.

Thermosfat
398

Model SA-5000 thermostat can be used as is or enclosed in various metal housings. It will handle currents to 20 amp , voltage to 240 ac . Bimetal snap-acting disk is open or closed type, $1 / 2-\mathrm{in}$. in size. Various types of terminals are available.

Thermostats, Inc., Dept. ED, P.O. Box 303, Chartley, Mass.

RF Tone Generator

396

Distortion testing and adjustment of single sideband receivers can be done with the TTG-5 dual rf tone generator. Used with any af spectrum analyzer, the set provides visual analysis of distortion and hum sidebands over a $60-\mathrm{db}$ dynamic range. Five pairs of crystal-controlled rf signals are furnished in the 3 - to $30-\mathrm{mc}$ range. Output level is 0.1 v rms for each tone at 50 ohms, with 0 to 100 db attenuation in $1-\mathrm{db}$ steps. Panel height is $5-1 / 4 \mathrm{in}$.

Panoramic Radio Products Inc., Dept. ED, 520 S. Fulton Ave., Mount Vernon, N.Y.

Don't miss an issue of ELECTRONIC

 DESIGN; Return your renewal card.

CLIP, BLOCK and HARNESS STRAP needs!
ADEL offers the widest variety of LINE SUPPORTS in the World ... 19,000 different types and sizes for safe, vibration-free. positive support in all types of aircraft. missiles, rockets, ordnance. automotive and original equipment of all kinds.
SAFETY . . . FLEXIBILITY . . . DURABILITY .
ECONOMY . . SERVICE FITTED . . SERVICE
TESTED . . . SERVICE APPROVED
Illustrated are but a few of the World's most complete line of Line Supports that meet or exceed all applicable specifications and/ or requirements. Whatever the application STANDARDIZE ON ADEL - the leader in completeness of line, service and reliability. Peliabilety
R BAPRECISION PRODUCTS
specifications are avallable to aircraft. MISSILE ANO ORIGINAL EQUIPMENT MANUFAC. Direct inquiries to Huntington Division
1444 Washington Ave., Huntington 4. W. 1444 Washington Ave., Huntington 4,W. Virginia DISTRICT OFFICES: Burbank - Mineola
Dayton - WiChita - Dallas - Toronto
CIRCLE 160 ON READER-SERVICE CARD

CIRCIE 159 ON READER-SERVICE CARD ELECTRONIC DESIGN• April 12,1961

CIRCLE 161 ON READER-SERVICE CARD

POSITIVE CONTROL NEGATRVE VARIATION in power line voltage

The TIC 600 Series of automatic voltage regulators absorb high overload surges while delivering undistorted $1 / 4 \%$ true RMS voltage regulation over a $50-70$ c.p.s. range ... are designed for unrestricted industrial and laboratory use.

- Continuously adjustable output voltage
- Rapid voltage correction
- Independent of power load factor
- Quickly replaceable plug-in control circuit
- Combined circuit breaker and line switch
- No relays to stick
- Suitable for three-phase operation, delta or wye connection

SPECIFICATIONS

MODEL	650	601	605	607
FREQ. RAMEL	50-70 c.p.s.			
KVA Ratime	1	3.6-1.8	126	$30 \quad 15$
OUTPUT AMPS	10	$30 \quad 15$	10050	250125
$\begin{aligned} & \text { OUTPUT VOLTS } \\ & \text { ADS. } 10 \% \end{aligned}$	105/125	115	115	
CORNECTADLE impur variation	$\pm 17 \%$	$\pm 10 \% \pm 20 \%$	$\pm 10 \% \pm 20 \%$	$\pm 10 \% \pm 20 \%$
RESPOMSE SPEED V/8EC	30	1020	510	2.55
WEISNT (LES.)	30	45	110	170

Send for complete information.

TIC Tel-Insirument CTRONICS C INDUSTRIAL DIVISION
 728 OARDEN STREET, CARLSTADT , N. J. - Tol: WEbstor 3.1600 CIRCLE 162 ON READER-SERVICE CARD

NEW PRODUCTS

Variable Inductors

For printed circuit or breadboard uses, series 387 variable inductors cover a range of $1.5 \mu \mathrm{~h}$ to 3 mh . Both electrostatically and magnetically shielded, the high-Q units have distributed capacitances ranging from 3 pf to 16 pf in the $3-\mathrm{mh}$ size. A kit of 10 inductors is offered. Militarygrade units are made, as well as custom designs to 72 mh . Size is $1 / 2 \mathrm{in}$. square and $5 / 8 \mathrm{in}$. high.
Wells Electronics Co., Dept. ED, 1701 Main St., South Bend 23, Ind.
Price \& Availability: $\$ 1.80$ to $\$ 1.90$; stock.

Load Cell

Made of $\mathbf{1 0 0 \%}$ stainless steel, load cell type PR-35 uses a calibration-quality proving ring coupled inductively to a differential transformer. Output is over 500 mv with $10 \mathrm{v}, 60 \mathrm{cps}$ input, more than 1 v with $10 \mathrm{v}, 400 \mathrm{cps}$ input. Unit measures static and dynamic forces, tension or compression, in ranges from 25 to $4,000 \mathrm{lb}$, at temperatures from -115 to +500 F .

United Aero Products Corp., Dept. ED, Columbus Road, Burlington, N.J.

Rectifier Tester

408
Forward and reverse testing of diodes at 100 amp and 2 kv is done with model E-1 dynamic rectifier tester. Used with an X-Y oscilloscope, the tester has independently adjustable forward and reverse voltages. Calibrated resistor is used in forward current test, 0.5% resistors in reverse leakage test. A polarity-reversing unit is also made.
Instrument Development Corp., Dept. ED, 139 Delaney Drive, Pittsburgh 35, Pa.
Price \& Availability: $\$ 495 ; 6$ to 8 weeks.

5 SECONDS HOURS

 MAINTENANCE TIME flushed wafers are available in a 10-position single pole configura. tion. Series RS-15 can be supplied to meet MIL- 3786 or for commercial applications. Operation is manual, motor or solenoid. Mifd. under Tabet U. S. Patent No. 2,841,660. Other U. S. and foreign patents pending. Request full details today. IMMEDIATE DELIVERY.

CHICAGO DYNAMIC INDUSTRIES, INC
-CD-D- PRECISION PRODUCTS DIVISION
1725 Diversey Bivd, Chicago 14 lilinois
CIRCLE 163 ON READER-SERVICE CARD

ELECTRIC OVEN. only

Specialists in Heat Process fquipment
GRIEVE-HENDRY CO.
1331 N. BLSON AVE, CHICAGO 22, ILL. circie 164 on aeader-service card ELECTRONIC DESIGN - April 12,1961

Glass Diodes

Microminiature glass diodes, types TI-2 and TI- 6 , are computer diodes for use in diode gates, transistor-diode logic circuits and high speed switching applications. A package diameter of 0.040 in ., a length of 0.060 in . and round leads provide a reduction in volume of 50 to 1 over conventional diodes with similar characteristics. They have reverse recovery times of 10 and 100 nsec respectively.

Texas Instruments Inc., Dept. ED, P.O. Box 5012, Dallas 22, Tex.

Ultrasonic Cleaner

397

Solid-state ultrasonic cleaning equipment is simpler, smaller and lighter, as shown by a 1-kw unit and the tube model it replaces. The new design uses less input power and recquires no tuning or warm-up. Ratings range from 125 to $1,000 \mathrm{w}$, with a $2.5-\mathrm{kw}$ unit scheduled. The $1-\mathrm{kw}$ generator is $8-1 / 2 \mathrm{in}$. high, 17 in . wide, and 14 in . deep.

Electronic Equipment Dept., Westinghouse Electric Corp., Dept. ED, 2519 Wilkens Ave., Baltimore 3, Md.
Availability: 3rd quarter 1961.

Piezoelectric Ceramics

Three ceramic bodies, models C $43 \mathrm{~B}, \mathrm{C} 43 \mathrm{C}$ and C45, have been added to the firm's line of piezoelectric ceramics. Characteristics of the C 43 B are: dielectric constant at $1 \mathrm{kc}, 1,100$; planar coupling coefficient, 45\%; max operating temperature, 250 C ; dissipation factor at $1 \mathrm{kc}, 1 \%$.

Sprague Electric Co., Dept. ED, 347 Marshall St., North Adams, Mass.

Have you sent us your subscription renewal form?

You are looking at the semiconductor industry's

 first certified rectifiers \&Here is the most sweeping assurance ever offered on the reliability of complete standard lines of silicon and selenium rectifiers.

Every Syntron Semiconductor is certified to have passed a specific program of tests and inspections (spelled out in the Certification, below) -and is guaranteed to perform to these certified levels for 18 months after shipment.
The savings to manufacturers in minimizing their own incoming tests and inspections are obvious. Designers now can specify rectifiers tested to standards which match those of virtually any mass manu-
factured product in the electronics industry. Exclusive manufacturing techniques, plus rigid quality control levels, enable us to introduce Certified Semiconductors. Every month we produce millions of square inches of selenium rectifiers by our unique vapor deposition method. Our exclusive gaseous double diffusion method produces identical silicon diodes in which the depth of the P and N layers is controlled to a very few microns.
Syntron Certified Semiconductors are described in Catalog 100, and Bulletin 200 details the Certification tests. Use the coupon below for your immediate copies.

SYNTRON certified SEMICONDUCTORS

CIRCLE 165 ON READER-SERVICE CARD


```
POWER • PROTECTION • REGULATION ALL THREE IN ONE TRANSFORMER!
```


Does your power transformer protect semiconductor rectifiers?

How do you protect the silicon and germanium rectifiers in that advanced design power supply? Do you use elaborate circuitry or -like many power supply designers-are you using a Raytheon 2020 Voltage Regulating Transformer?
These versatile units provide stabilized voltages within $\pm 1 \%$ and are available in any of 2,020 standard models for solid-state and vacuum-tube rectifiers. You match your exact requirement from a full range of standard designs and ratings from 20 to $20,000 \mathrm{VA}$.

Write today for Catalog 4-265 with convenient Selection Guide and Power Supply Design Data. Raytheon Company, Commercial Apparatus \& Systems Division, Keeler Avenue, South Norwalk, Connecticut.

RAYTHEON

RAYTHEON COMPANY

Raytheon voltage regulators are a/so avalleble from your local Raytheon distributor

NEW PRODUCTS

Clock Movement

Transistor electronic clock movement, for use in appliances. is accurate to within a few seconds per month. Input is 4.5, 6, 9 or 12 v ; power consumption is about 0.30 ma. Movement is selfstarting, insensitive to position, and shockproofed. Size is $2-1 / 8 \times 1-3 / 4 \times 1-1 / 16 \mathrm{in}$

Waller Corp., Dept. ED, Industrial Center, Crystal Lake, Ill

Logic Circuits

Encapsulated, transistorized logic circuits, in $9-\mathrm{pin}$ miniature plug-in form, are encapsulated in hard epoxy resin. Included are AND gates, OR gates, emitter followers and inverters, in single and dual units, with pnp, npn or complementary symmetry circuits. Rates are 250 kc to 1 mc .
Walkirt, Dept. ED, 141 W. Hazel St., Inglewood 3, Calif.

Glow Lamps

Starting time is less than 1 msec for these glow lamps, in darkness as well as in light. Breakdown and maintaining dc voltages for type LT2-27-IR are 104 to 112 and 64 to 74 respectively; for type T2-27-IR100, 66 to 74 and 52 to 59; for type T2-27-1WR760, 170 to 200 and 70 to 75.

Signalite, Inc., Dept. ED, Neptune, N.J.

390

380

accuracy on all ranges

For the first time, accuracy of ± 1 percent is now available in multi-range Panel-Mounting Electronic Voltmeters (PMEV's)

Metronix offers two such instruments: Model 300-1 for DC measurements and Model 311-1 for AC measurements.

Model 311-1
These instruments, like all Metronix PMEV's, also offer these familiar advantages:

- Continuous monitoring of critical parameters
- Minimum panel space-no larger than the meter itself
- Maximum reliability
- Easy adaptability to special needs
Call, wire or write for dota sheets. We welcome inquiries on special voltage monitoring problems.

की METRONIX, Inc.

a subsidiany of Assembly Products, lac. Cnestectant, Onie
Telephone: HAmilton 3-4440 CIRCLE 167 ON READER-SERVICE CARD ELECTRONIC DESIGN • April 12, 1961

NEW NEON INDICATOR LIGHT

FACTS!

- Reliable: 25,000 hrs. min. for NE-2H @ . 5 ma Iamp current
Neon: low power consump-tion- 120 mW nominal
- Low voltage operation: supply $24 V$ DC nominal signal-6V DC to trigger - Miniaturized: hole diameter $3 / a^{\prime \prime}$; behind panel required, $11 / 2^{\prime \prime}$
- Encapsulated: moisturefungus proof; withstands vibration, thermal and mechanical shockTerminals: signal, positive supply, common ground

Telex miniaturized neon lights indicate visually the logical condition of high speed computer "flip-flop" on portable battery operated or low voltage equipment.

> voltage equipment. Transistor driven

Tres of low curren, combines advanoltage operation. C drain with low from basic power supply or controlled by high impedance signal. Standard model 24 DC supply polarity with 6V DC switching polarity
Variations of the terminal configurations and voltages designed to specification
More detailed specifications and information are available on request. Write

TELEX

SPECIAL PROIJUC'IS IDIVISION Telex Park - St. Paul 1, Minnesota Dept. SP-403
Superior communication accessories for every need-TELEX Communicalions Accessories Division

CIRCLE 168 ON READER-SERVICE CARD ELECTRONIC DESIGN • April 12,196

Operating at 5 mc , the series 5000 line of digital modules is compatible with 200 -ke modules. Circuits include flip-flops, multivibrators, nors, and gates. Logical 1 voltage is -6 to -8 v dc; logical 0 voltage is $0 \pm 0.5 \mathrm{v} \mathrm{dc}$. Regulated power is not required. Card size is $2-11 / 16 \times 3-1 / 2 \mathrm{in}$. Wang Laboratories. Inc., Dept. ED, 12 Huron Drive, Natick, Mass.
Availability: delivery from stock
High-Voltage Power Supplies

General purpose high-voltage power supplies are available in three models. Model 125 has a voltage output of 2 to 3 kv de at up to 2 ma ; model 126 has an output of 1 to 3 kv at 2 ma ; model 127 has an output of 0.5 to 3 kv at 2 ma . Available in negative or positive polarity, all models have provision for internally reversing polarity:

Smith-Florence, Inc., Dept. ED, 42.2823 d W, Seattle, Wash.
PdA: From $\$ 3.30$ to $\$ 36.5$; 30 days.

Enclosed Rack

389

Steel or aluminum electronic enclosure is made for heavy military or commercial uses. Panels are removable from the outside; enclosure may be made dust-free. Available in standard or custom sizes.

V'ent-Rak, Dept, ED, 525 S. Webster, Indianapolis 19, Ind.

Don't miss an issue of ELECTRONIC
DESIGN; Return your renewal card.
what's so different about these time/delay/relays?

Ac.AsT:TI, are electrically actuated, but are pneumatically timed, so their accuracy and reliability are unaffected by voltage variations, and recycling is instantancous. Adjustment is simple and stepless over loon-g time ranges. With moving parts hecd to a minimum, the life span of a typical unit is measured in millions of cycles.

Industrial models (left) are dial-adjusted for delays of .05 sec , to 15 min . in five ranges. Necdle valle models are also available, covering the full range (. 15 sec .405 min .) in one unit. The Miniature Agastat on the right weighs as little as 15 oz . Hermetically sealed or unsealed types for MIL Spec or other demanding applications. Sates weight, saves space.

Timing accuracy and reliability are what you would expect from AG.DSTAT, pioneers in the development of time delay instrumentation. Single- or double-pole versions, in all standard AC and DC coil voltages. Types to provide delay on pull-in or drop-out. Want complete specs, or further information? Just write Dept. 11-4t.

ELASTIC STOP NUT CORPORATION OF AMERICA

ELIZÁ́ETH DIVISION - ELIZABETH, NEW JERSEY
IN CANADA: ESNA CANADA LTD., 12 GOWER ST., TORONTO 16 CIRCLE 169 ON READER-SERVICE CARD

miniature..

Welding Electrodes

sippican

Specifically for welded electronic packaging, Sippican welding electrodes provide the geometry, finish, materials, and tips required for stable produc. tion welds.

ECONOMY - Production tooling and off-shelf delivery make possible low prices which rule out inexact do-it-yourself electrode preparation.
FIVE STANDARD CONFIGURATIONS-Regular Taper, Cylindrical Necks, Spade, Beveled, and Blunt. $1 / /^{\prime \prime}$ dia. stock, $2^{\prime \prime}$ long. Specials' sup. plied on short notice.
FOUR STANDARD MATERIALS -
M3-Mallory 3-Copper Chromium Alloy
M1-Mallory 100 for low electrical con-
M1-Mactivity
EA-Elkaloy A. for high electrical con-
EM-Molybdenum Tips-for long life and no-stick action
COATING-Insulated coating available on all styles except spade. Mandatory when welds are made adjacent to active components.

Writt for Complimentary Electrode Selection Guide:
the sippican corporation

156

NEW PRODUCTS

Power Supply
388

Continuous overloads or shorts cause no additional internal heat dissipation in the model RB40V10SS power supply. Continuously variable current-limiting circuit holds maximum current to any selected level between 1.0 and 10.5 amp . Load regulation is 0.01%, transient recovery 50 mv max within $50 \mu \mathrm{sec}$. Provision is made for parallel and series operation, remote error sensing and programing. Panel height is $5-1 / 4 \mathrm{in}$., weight 35 lb .
Valor Instruments, Inc., Dept. ED, 13214 Crenshaw Blvd., Gardena, Calif.

Germanium Power Transistor

383

The "pancake" series of germanium power transistors have a dissipation of 150 w , and a guaranteed 0.5 C per w max thermal resistance. Designed for use in computers, converters and regulators, the series includes types 2N1099, 2N173, 2N278, 2N277, 2N441, 2N442 and 2N443. Junction temperature is 100 C and guaranteed $h_{P E}$ ranges are from 20 to 70.

Texas Instruments Inc., Dept. ED, P.O. Box 5012, Dallas 22, Tex.

Power Transisfors

Diffused-junction, npn silicon transistors types 2 N 389 A and 2 N 424 A have saturation resistance that is less than 0.75 ohm. Designed for highpower switching and amplifier applications their temperature range is -65 to +200 C . Maximum ratings are: collector current, 3 amp ; emitter to

TERAGLAS
 A NEW CLASS B INSULATION WITH RESILIENT WEAVE AND HIGH DIELECTRIC STRENGTH UNDER STRETCH

Natvar Teraglas is a new flexible insulating material comprising a base fabric. woven from polyester (polyethylene lerephthalate, of "Dacron") warp yarns and continuous filament glass filler yams, roated with an
improved varnish, possessing exceptional dielectric strength under elongation. It will withstand Class B ($130^{\circ} \mathrm{C}$) operating temperatures. In view of the higher dielertric strength of Naivar Teraglas compared to biaz vamished cambric, thinner sections or fewer layers may be used to provide the voltage breakdown protection desired Consequently. at comparable tape prices. a significant saving may be realized in produrtion costs, while peraitting up-grading to Class $\mathbf{B}\left(130^{\circ} \mathrm{C}\right)$ temperatures. Natvar Teraglas will prove advantageous in many applications-for insulating motors. generators. Iransformers, cables, switch gear, busbars. and other apparatus and equipment where resiliency and high diele itrir strength are desirable.
Natvar Teraplas is available in four thicknesses, 008, 010, . 012 and $015^{\prime \prime}$-in tapes, in full width rolls ($36^{\prime \prime}$), or in sheets. Ask for Dala Sheet and Samples.

NaTvar
 CORPORATION
 TwXi Relwoy. N. J., ean 1134
 241 RANDOLPH AVENUE - WOODBRIDGE, NEW JERSEY CIRCLE 171 ON READER-SERVICE CARD

\checkmark PRECISION \downarrow PRICE \downarrow PERFORMANCE

FOR SMALL PRODUCTION RUNS of all types of motors Heinz Mueller is your most dependable source

For limited quantites of apo cial motors, Heins Maeller offers unezcelled facilities. Whether you neod compre hemsive, original engineer ing or devoted attention to your own deaign, Hein lees you eraftemannhip and quality at modeot cost

Take advantage of the ensineering skill and experi. ence for which Heins Mueller has become famulus. It is at your eervice to help you solve your specifie probyoms. Write - today - for los describing the range of HM production.

OC Dynamotor Especially designed DC Dynamotor Especially designed
for high altituofe aircrat opera
tion where service is critical.

AC/OC Series Motors Esmecially low-priced power units for ap. pliances, office machines, etc.
lias wide range of practical apHas wide range of practical ap-
plications.
 circle 172 on reader-senvice card ELECTRONIC DESIGN - April 12, 1961

PRECISE SHAFT POSITIONING EASY

 WITH GURLEY RESOLVER TEST STAND

The new Gurley Resolver Test Stand solves the long-standing need for a reliable instrument in production tests of resolvers, synchros, potentiometers and other such equipment.
The Gurley Model 7530 test stand is a precision shaft-positioning device, consisting of an optical coincidence reading system with ± 2 second accuracy, a rack and gear for precise shaft positioning, and an adaptor plate and coupling.
For an illustrated bulletin, write on your letterhead to Industrial Division, W. \& L. E. Gurley, 525 Fulton Street, Troy, N. Y.

W. \& L. E. GURLEY TROY, N. Y.

Announcing . .

$1 / 10$ of 1%

GAUSSMETER

MEASURE DC MAGNETIC FIELDS TO NEW HIGH ACCLRACY
Voltage developed in rotating pickup coil is balanced against internal relerence senerator. Indicator used lor null balance. No longer included for preliminary measurements.

Tjpe Rzo-Range: onco,000 gaunnea Acrurars: $1 / 10$ of $\mathbf{1 \%}$ above 2000 knunnen Send lor new bulletim.

CIRCLE 174 ON READER-SERVICE CARD ELECTRONIC DESIGN • April 12,1961
base voltage, 10 v ; power dissipation, at case temperature of $25 \mathrm{C}, 85 \mathrm{w}$, at case temperature of $100 \mathrm{C}, 45 \mathrm{w}$.

Silicon Transistor Corp., Dept. ED, 150 Glen Cove Road, Carle Place, L.I., N.Y.

Clock Pulse Generator

Solid state clock pulse generators include a 3 to $25-\mathrm{mc}$ and a 25 - to $100-\mathrm{mc}$ unit with overlap to provide continuous pulse sources from 3 to 100 mc . Design permits external drive input to provide repetition rates below 3 mc and to permit the operation of several clock pulse generators controlled by a master source. Specifications include: rise fall times, less than 4 nsec; pulse width, less than 8 nsec at $1 / 2$ pulse height; amplitude, 0 to 4 v ; output impedance, 93 ohms.

Texas Instruments Inc., P.O. Box 6027, Houston 6, Tex.

Solenoid Valve
387

Radioactive, corrosive chemical solutions can be handled by this solenoid valve. The valve will operate in radiation fields to 25 million radians, and is usable with nitric and sulfuric acids, ammonium and sodium hydroxide, and hydrogen peroxide. It is supplied normally open or closed in standard ac and de voltages, in 1/4-in. or larger pipe sizes.

Valcor Engineering Corp., Dept. ED, 365 Carnegie Ave., Kenilworth, N.J.

This is the time of our annual subscription renewal; Return your card to us.

For Military and

 Commercial Applications
Grayhill Miniafure Rotary Tap Swilches

These switches are designed to meet military and commercial specifications and ruggedly built to precision standards.
Grayhill No. 5000, No. 12, and No24 Series. 1.01° dia. Break 1 amp., 115 VAC, resistive. Carry 5 amps . 1 to 10 decks, 2 to 10 positions per deck -1 or 2 poles per deck-shorting or nonshorting. Life 100,000 cycles. Also No. 24 Series, spring return switch
Concentric Shaft. No. 6 (1 to 3 decks per shaft-Total 6 decks) and No. 36 Series (1 or 2 decks per shaft. Total 4 decks). 1.01 dia. 2 to 10 positions per deck. Break 1 amp., 115 VAC, resistive. Carry 5 amps . Two switches in one. $1 / \mathrm{a}^{\prime \prime}$ shaft controls $1 / 2$ of the decks, $1 / 8^{\circ}$ shaft controls the other half.
No. 45 Series Midget. 640° dia Single deck only. 60° indexing. Break amp., 115 VAC, resistive. Carry 5 amps .
 Life 100,000 cycles.

'PIONEERS IN MINIATURIZATION'. CIRCLE 175 ON READER-SERVICE CARD

FROM CLUTTER... TO CLEAN DESIGN...

WITH INTEGRATED ELECTRONIC COMPONENTS FROM...

PAKTRON PACKAGEDELECTRONICS if DIVISION OF ILLINOIS TOOL WORKS 1321 Lestie AVENUE ALEXANDRIA, VA.

NEW PRODUCTS

Digital Volimeter

Voltages from $100 \mu \mathrm{v}$ to 1.5 kv dc are presented as a four-digit display in decimal form with polarity discrimination in model L.M 902.2 digital voltmeter. Voltage measurements are corered in 5 ranges; long term accuracy is $\pm 0.1 q$ of maximum reading on each scale. Readout time is 250 msec regardless of voltage input.
Solartron Laboratory Instruments Ltd.. Dept. ED. Cox Lane, Chessington. Surrey, England.

Memory Unit

A single magnetic disk memory unit, model 31 B has total memory canacity of nearly 10.000 ,000 bits with 400.000 bits available on a fast access basis comparable to magnetic drum performance. It provides over 9 million hits of random access storage capacity with an average access time of 147 msec . The $31-\mathrm{in}$. disk has two recording surfaces and incorporates eight movable data heads, 16 fixed data heads and eight fixed control heads

Telex, Inc., Dept. ED, St. Paul. Minn.

Servo System

Solid state servo amplifier model 6102 has a sensitivity of 1 mv . It is completely transistorized with two dc signal inputs and one ac input. No warm-up time is required. The system occupies $1 / 4$ the space of conventional systems and provides up to 400 in . lb response.

Solar Electronics Co., Dept. EI), 590) Melrose Ave., Hollywood 38, Calif. PdA: Amplifier \$124.50; motor, 550: 2 wecks

Don't forget to mail your renewal form to continue receiving ELECTRONIC DESIGN.

417
The Allison 650
Random Noise Source

HERE'S A NEW TRANSISTORIZED

NOISE SOURCE

The new Allison 650 Random Noise Source consists of a silicon diode as the noise source driving a transistorized amplifier. It is nonmicrophonic and can be used in areas of high ambient noise and vibration. It is suitable for shaker tables or hish level environmental acoustic lesting; and microphone and other transducer calibration signal.
allison 650 Specifications

- Output-0.1.5 VRMS
- Load impedance -600 ohms
- Size $-63 / 4^{\prime \prime} \times 63 / 4^{\prime \prime} \times 6$
- Weight-41/2 pounds
- Price - Battery powered
$\$ 265.00$ F.O. B.
AC powered
$\$ 280.00$ F.O.B.
- Rack mount model (650R) available

The Allison 655 Random Noise Source has a uniform output
over the frequency range of s cps to 30 kcps . Characleristics similar to $650 . \mathrm{I}^{\text {. }} \times 11 / 3 \times 15 / \mathrm{R}^{\prime \prime}$: Write for Technical Bulletin 655 .

Write for Technical
Bulletin 650

ATLSOM
 ABS.

"冉…

Allison

Laboratories, Inc.
11301 ocean avenue
I A HABRA CAIIFORNIA
CIRCLE 177 ON READER-SERVICE CARD ELECTRONIC DESIGN • April 12,1961

DIALIYL PHTHALATE AND MELAMINE BODY MATERIASS TO MEET MIIITARY STANDARDS
Get the exact standoff or feed through terminal you want from a full range of types, sizes, body materials and plating combinations. Specials can be supplied to specification. The Whitso line is complete to the fullest extent of every industrial, military and commercial requirement.

Standoff terminals include fork, single and double turret, post, standard, miniature and sub-miniature body types-male, female or rivet mountings -molded or metal base. Feed through terminals are furnished standard or to specification.
Plating Combinations: Many terminal and mounting combinations furnished as standard.
Specials: Body materials and plating combinations, also dimensions, can be supplied to specifications.
PROMPT DELIVERY IN ECONOMICAL QUANTITY RUNS

-326 Byran Smeal, Sehllier Perk, Illinois
CIRCLE 17E ON READER-SERVICE CARD

Constant Voltage Transformers

Standard sinusoidal constant voltage transformers are completely automatic with continuous regulation. Response time is 25 msec at 60 cps. Standard items are available in 29 different primary-secondary voltage combinations from 60 to $7,500 \mathrm{v}$ amp.
Sola Electric Co., Dept. ED, Elk Grove, Ill.

Power Amplifier

377
Fluoro-chemical cooling of the HC-105 highfrequency linear power amplifier allows delivery of 1 kw with case size of $7-1 / 2 \times 7-1 / 2 \times 6-1 / 2$ in. The amplifier accopts am and single-sideband voice, digital data link, or any modulated signal in the 2 - to $36-\mathrm{mc}$ freguency range.

Hughes Aircraft Co., Communications Div., Marketing Dept., Dept. ED, P. O. Box Y(0)-90? Los Angeles 4.5. Calif.

Core-Transistor Counters
422

Counting to speeds of $\mathbf{1 0} \mathbf{k c}$, series 7.3 Z coretransistor counters utilize rectangular hysteresis loop magnetic cores. Type $73 \mathrm{Z1}$ decade counter provides an output signal for every 10 input pulses, then resets in preparation for the next cycle. For higher counting two or more counters may be cascaded.
Sprague Electric Co., Dept. EI, , 347 Marshall St.. North Adams, Mass.

Counter Tubes

414
Decade counter tubes type CT 4251 are domeshaped, 13 -pin, T-9 units with 10 output cathodes. They are for use in compact counting equipment in the zero- to $50-\mathrm{kc}$ frequency range. SyWania Electric Inc., Dept. ED, 730 Third Ave., New York 17, N.Y.
PUA: \$11.10, 1 to 24; immediate.

súsं

 +250 K
SPECIAL PURPOSE PRECISION BEARINGS FROM KEARFOTT

Highest quality, special purpose precision bearings are now available from Kearfott Division, General Precision, Inc. for military and industrial applications requiring utmost reliability, accuracy and stable performance. Over 10 years of research, testing and development have gone into the production of these outstandingly reliable, precision bearings.
Designed to meet the most exacting systems standards, these special purpose precision bearings have more than passed the test of time, delivering long life performance for Kearfott gyros, instruments and other critical airborne equipment. Engineering and technical excellence derived from long experience enables Kearfott to ensure delivery of bearings that provide unsurpassed qualities of roundness, concentricity, curvatures, finish, dimensions and functional tolerance.

Special purpose, high precision bearings from 0.3125 to 4.5 inches O.D. are now ready for production delivery in a wide range of application types including -

- SEPARABLE TYPE BEARINGS for gyro spin axes
 - STABLE PLATFORM GIMBALS
 - GYRO PRECESSION AXES
 - OTHER SPECIALIZED, HIGH PRECISION bearing applications

Write for complete data

KEARFOTT DIVISION
 GENERAL PRECISION. INC.

Little Falls. New Jersey

standards are

We select military and commercial standards of interest to the electronic design engineer and brief them in the Standards \& Specs Section. Another service that saves you time and keeps you up to date on the latest design developments.

NEW PRODUCTS

Flow Transducers

Designed for missiles using thrust vector control, series SF2 flow transducers have ranges of 0 to 0.5 gal per sec through 0 to 200 gal per min . A signal-conditioning amplifier can be incorporated in the transducer which will provide a $5-v$ full scale output. Sensitivity is 4 mv per \mathbf{v}; linearity is 2% of full scale; repeatability is less than 0.25\%; flow is unidirectional. Infinite resolution permits sensing down to zero flow.

Standard Controls, Inc., Dept. ED, 1130 Poplar Place, Seattle 44, Wash.

Reed Relays

420

Encapsulated reed relays have electrostatic shields completely surrounding their glass switching elements. This isolates the reed contacts from stray electrical noise or random pickup of unwanted signals. They are available in 1, 2, 4,12 , and 20 pole types.

Struthers-Dunn, Inc., Dept. ED, Pitman, N.J.

Miniature Gyro

423

Floated, integrating, miniature gyro SYG-1000 weighs less than 1 lb and is less than $3-\mathrm{in}$. in length. Drift sensitivity is less than 0.005 deg per $\mathrm{hr} / \mathrm{g}^{2}$ under vibration tests of 20 g . Random drift cogging tests show standard deviations of 0.007 deg per hr in azimuth position and 0.005 deg per $h r$ in vertical position.

Sperry Gyroscope Co., Dept. ED, Great Neck, N.Y.

The light fouch
in automation and control"
the
CLAIREX
Photoconductor

A
Circuit Component Controlled by LIGHT

CLAIREX CORPORATION
19 W. 26 St. Now Yort 10, N. MU 4.0940

new...

Tllalco

 TABON TERMINALS and Insulating Sleeves

Exclusive MALCO Design eliminates faulty connections ...assures uniform crimping.

Specially contoured insulating sleeve accurately guides terminal into position on male tab. Entry of male tab (outside of terminal) within the insulating sleeve is positively prevented.

Malco Terminals are available in chain form for rapid machine crimping to wire. Insulating sleeves are also machine applied

request BULLETIN

 NO. 603
Tlla

ce manufacturing co.
4027 W. Loko S1., Chicego 24, III.
CIRCLE 102 ON READER-SERVICE CARD ELECTRONIC DESIGN • April 12, 1961 chloride.

Multicolored, multiconductor flat ribbon cable is designed for ease of handling, full visibility of color-coding, and control of inter-conductor capacitance. Insulation is P.V.C. plastic; gages are from 10 to 30 AWG. Shielded leads, coaxial or thermocouples can be included.

Spectra-Strip Wire and Cable Corp., Dept. ED, P.O. Box 415, Garden Grove, Calif.
Special Purpose Moior
419

Limited duty cycle, de motor is a special purpose unit designed specifically for missile environments. Weighing only 6.7 lb the motor produces 3.25 hp at $13,700 \mathrm{rpm}$ using 30 v dc. Over-all efficiency is 75\%. Use of lightweight radio-noise filters is permitted by improved commutation and attendant low noise level.
Task Corp., Dept. ED, 1009 E. Vermont Ave., Anaheim, Calif.

Germanium Alloy Transistors

413
General purpose npn and pnp germanium alloy transistors types 2N358A, 2N428, 2N526 and 2 N396A meet the mechanical and environmental requirements of MIL-S-19500. The hermetically sealed devices are designed for both amplifier and switching applications in the audio frequency range. They use a TO-5 package.

Sylvania Electric Products Inc., Dept. ED, 730 Third Ave., New York 17, N.Y.
Price: From $\$ 1.50$ to $\$ 6.51$.

Crimp Connector

463
Heavy-gauge wire is accepted by UL-approved crimp connector No. 412. It will handle combinations from one No. 14 with one No. 16 up to one No. 6 with two No. 8 wires. Sleeve is cad-mium-plated steel, crimped with a standard tool. Locking, wrap-around insulator is polyvinyl

Ideal Industries, Inc., Dept. ED, 5098 Park Ave., Sycamore, Ill.
Have you sent us your subscription renewal form?

MIINATURE, HIICH PERFORMAMCE MAGMETCC BRAKES AND CLUTCHES

Typical applications involving these Size 11 magnetic clutches, brake clutches, and brakes include service as output controls in mechanical differential computers, as motor brakes, and as speed changers and uncouplers. Kearfott can also provide magnetic clutches, brake clutches and brakes in various other sizes to suit desired applications. Components also available in sizes 8 and 6 diameters.

CHARACTERISTICS

CIRCLE 183 ON READER-SERVICE CARD

THE SPARE PARTS PROBLEM

The Electronics Business may not be the most tranquil enterprise for anyone to get into - either as a buyer or seller - as evidenced by one of the problems currently plaguing both component makers and their customers. In a nutshell, the trouble is "equivalent" parts, made by a low bidder, failing to behave as the originals did. The explanation, while not as simple as this, seems to boil down to the fact that specs and descriptive data alone aren't enough for anyone to duplicate the performance of somebody else's original part. It could be a matter of the inability of the blueprint and the mimeograph machine to be a satisfactory substitute for the original manufacturer's experience, engineering skill, assembly methods and quality control.

No one can argue the merits of saving money, and a good part at the lowest possible cost is a commendable achievement. But when "low quote" means failure of critical equipment and personal hazard,
there's not much to be said for economy. On the other hand, if the low man does get all the information he needs to build an exact replacement of the original part (assuming he can build it), he is automatically getting the benefit of a great deal of work done and paid for by the original manufacturer. The polite term is usually "proprietary data." Understandably, this arouses the "unfair competition" ogre.

We don't like to give away proprietary in formation any more than the next person. Neither do we like to see unreliable components endangering life and limb. We think part of the answer may beto give the second man the same problem you gave the original supplier-not the blueprinted solution to imitate. Then test his result as carefully as you did the original successful one. This way, the odds are strongly in favor of your getting something that will work - and perhaps work even better.

What do you think the answer is?

- E. W. Scbrader, Western Editor of DESJGN NEWS. made some good obseroations on tbis wobole subject, see Dp. 6-9, Jan. 10 issue.

SIGMA INSTRUMENTS, INC.
91 Pearl St., So. Braintree 85, Mass. CIRCLE I84 ON READER-SERVICE CARD

NEW PRODUCTS

Rear Projection Indicator

Model 12-R rear projection indicators contain 12 individual projectors, each centered on a single front screen. The unit measures $3 / 4 \mathrm{x}$ $1-1 / 8 \times 3-3 / 4 \mathrm{in}$. with a viewing screen 0.5 in . high $\times 0.4 \mathrm{in}$. wide.
Tasker Instruments Corp., Dept. ED, 7838 Orion Ave., Van Nuys, Calif.

Telemetry Receiver

For fm, am, and cw signals in the 30 to 260 mc model 1907 telemetry receiver is compact and lightweight. An am noise limiter is adjustable from the panel; a carrier-operated relay is provided. A bandswitch-controlled coaxial relay switches antenna inputs. Panel control selects if bandwidth and mode. Rack-mounting set is 3-1/2 in . high and weighs 25 lb .
Vitro Electronics Div., Vitro Corp. of America, Dept. ED, 919 Jesup-Blair Drive, Silver Spring, Md.

Analog Memory

Drift free analog memory model DAM 18-A makes and stores a digital conversion of an analog voltage. Incidental capabilities of each channel include digital to analog conversion rates up to 100 kc and analog to digital conversion at rates up to 6 kc . One standard rack mounts 18 channels with power supply

Stony Brook Laboratories, Inc., Dept. ED, 55 State Road, Princeton, N.J.
P\&A: \$17,900; 90 days.

Trimming Pofenfiometer

The high-temperature plastic case of this trimming potentiometer eliminates insulation problems. Specifications are: resistance range, $\mathbf{1 0} \mathbf{o h m s}$ to 35 K ; power rating, $3 / 4 \mathrm{w}$ at 50 C ; dielectric strength, 500 v ac, 1 min .
Techno Components Corp., Dept. ED, 18232 Parthenia St., Northridge, Calif.

405

412

415
Select the transistorized DYNA-EMPIRE GAUSSMETER best suited to your needs
Completely transistorized Dyna-Empire gaussmeters accurately measure flux
density and determine "flow" direction. Ideal for measuring and locating stray fields, plotting variations in strength and performing rapid comparisons of production lots against a standard. tic readings or circuit breaking required.

NEW TRANSISTORIZED GAUSSMETER MODEL D-874
This precision instrument reads from 3001 m 30,000 gaus full srale. with an accuracy of
$\pm 2.5 \%$. It fulfills all needs of a quality gass. meter at a modest price.

Special Features:
FIVE RANGES: 300 gauss full scale, 1,000 gauss full scale, 3,000 gauss full scale. 10,000 gauss full scale, 30,000 gauss full limear over emtiae operatime rame PORTAQLE, OPEAATES FIOM OWM SELFCOMTAIMED BATTENIES
aEQuIRES No EXIERMAL POWER SOUACE
IMTETMAL CALIXRATION STAMOAR
WEIGHT-A LBS. $0.200^{\prime \prime}$ WIDE, ACTIVE AREA IS OMLY 0.0079 SQUARE TMCMES LOCATED MEAR TME
TIP OF TME PROEE.
Complete with Universal probe $\$ 195$.

TRANSISTORIZED GAUSSMETER

 MODEL D-855This quality precision built Gaussmeter reads flux densities to 30,000 Gauss full scale $\pm 2.5 \%$. It is a highly sensitive instrument and provides tremendous flexibility. Complete with two linear probes-one high sensitivity probe and one probe for measurement of high density fields. Special probe a vailable for reading 3 gauss full scale.

Write to
Dyna-Empire, Inc.
1075 Stewart Avenue, Garden City, M. Y.

DYNA-EMPIRI M

CIRCLE 185 ON READER-SERVICE CARD
ELECTRONIC DESIGN • April 12,1961

a spot is a spot is a high resolution Spot with CELCO YOKES

- Celco Yokes keep spots smallest - Celco YOKES keep spots roundest - Celco YOKES keep spots sharpest

Use a CELCO Deflection yoke for your high resolution applications.
In a DISPLAY SPOT? call Celeo!

Celco Canstantine Engineering Labaratories Co.

Mala Plait: Manwan, R. I. BAvis 7.1123

Immersion Gold

Neutral immersion gold offers a fast means of depositing thin plates of 24 carat gold directly on copper, brass, nickel, iron, lead and solder plates without the use of anodes or currents. Direct deposits of 70 millionths of an inch in 30 min are possible over solder.
Technic, Inc., Dept. ED, P.O. Box 96.5, Providence, R.I.
Price: From $\$ 42$ to $\$ 48$ per Troy oz

Vacuum-Coated Metals

Refractory metals such as tungsten and molybdenum can be supplied with a vacuum coating diffused into the base metal. Coatings include noble metals, aluminum, nickel, alloys and dielectrics. Selective and patterned coatings are possible. Thickness ranges from a few molecules up to 0.005 in . or more.
Vacuum Technology, Inc., Dept. ED, 7933 Gloria Ave., Van Nuys, Calif.

Rack Devices

409
Rack-mounted chassis capability is improved with a series of packaging devices. Connector drive handles permit disengagement or reconnection of slide-mounted chassis with fixed rear connections. A cable carrier is made to eliminate sagging, binding and twisting. Thin-line chassis slides of $1 / 2-\mathrm{in}$. width max carry up to 200 lb .

Jonathan Manufacturing Co., Dept. ED), 720 E. Walnut Ave., Fullerton, Calif.

Silicon Rectifiers

410
Miniature, hermetically sealed, silicon rectifiers, the Trimline series, are designed to replace the top hat type. Current ranges are up to 1,000 ma at piv ratings up to $2,200 \mathrm{v}$.

Slater Electric and Manufacturing Co., Dept. ED, 241 Sunrise Highway, Rockville Centre, N.Y.

Epoxy Laminate

459
Is flame-retardant. Epoxy resin laminate G-10839 is a glass-base, flame-retardant material designed for ease of fabrication. It is available in sheets of $40 \times 48 \mathrm{in}$. with thicknesses from 1/32 to 1 in . The $1 / 16-\mathrm{in}$. thickness can be sheared and punched with minimum heating. The laminate meets requirements of MIL-P-139-49, and can be furnished copper-clad.

Spaulding Fibre Co., Inc., Dept. ED, 310 Wheeler St., Tonawanda, N.Y.

Kearfott's MN-30 ferrite is a highly machinable, highpermeability ferrite for use in magnetic cores. Its low losses and high saturation magnetization permit efficient application at frequencies up to 500 kc , while eddy current losses are minimal due to the material's high resistivity. Custom shapes and sizes available with dimensional tolerances within $上 .001$, density ranges from 4.9 to $5.0 \mathrm{gm} / \mathrm{cm}^{3}$. High quality and uniformity are assured through special compounding techniques, automatic control of firing, and rigid quality control.

Initial Permeability at $21^{\circ} \mathrm{C}$ and 5 kc

3000 Min.
Maximum Permeability. measured at 2000 gauss
Flux density at 7 oersteds, using Rowland Ring Test Circuit and Fluxmeter

4600 gauss Flux Excursion for 1 oersted 3500 gauss Retentivity (B_{r}) 1300 gauss Coercivity $\left(\mathrm{H}_{\mathrm{c}}\right) \quad 0.13$ oersteds Loss Factor $1{ }_{\mu} \mathrm{Q}$ at $50 \mathrm{kc} \quad 7.5 \times 10^{-6}$ Loss Factor $1 \mu \mathrm{Q}$ at $500 \mathrm{kc} 30 \times 10^{-6}$ Temperature Coefficients of initial emperature Coefficients of From $-30^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad 0.28$ Curie Temperature over $180^{\circ} \mathrm{C}$ D. C. Restivity

250 ohm-cm
withiagnetic properties are held
within a tolerance of $\pm 15 \%$)
Write for complete data

KEARFOTT DIVISION
GENERAL PRECISION. INC.

Little Falls. New Jersey

General Electric «lear LTV silicom@ compommd for potfing and embedding

Transparent, resilient, self-supporting and easy to repair

LTV-602 is easity applied, flows freely in-andaround complicated parts. Having a low viscosity in the uncured state, $800 \cdot 1500$ centipoise, LTV is ideal for notting and embedding of electronic assemblies. Unlike "gel-like" potting materials, LTV-602 cures to a flex ithle solid. Oven cure is overnight, or from 6 to 8 hours at 75 to $80^{\circ} \mathrm{C}$

LTV-602 is easy to work with and easy to repair. To repair parts embedded in LTV, merely cut out and remove section of material. repair or replace defertive part, pour fresh I.TV
into opening and cure. Pot life, with catalust into opening and cure. Pot life, with catalyst added, is approximately 8 hours and may he extended with refrigeration. W'hen desirable, LTV may also be cured at room temperature.

Resiliency offors excellont shock resistance. I.TV. 60 ? easily mepts thermal shock tests de scrilied in MIII.STD.202A test condition B which sperifies five temperature cyrles from -65 to $125^{\circ} \mathrm{C}$. Tests indicate that I.TV retains protective properties even after 1800 hours aging at $175^{\circ} \mathrm{C}$. Other tests confirm LTV's resistance to moisture and water immersion

LTV-602 is the newest addition to the broad line of G.E silicone potting and encapsulating materials which also include the RTV silicone rubhers. For more information, write to General Electric which also include the RTV silicone rubhers. For more information, write
Company. Silicone Products Department, Section Li4, Waterford, New York.

GENERAL ELECTRIC
 CIRCLE 188 ON READER-SERVICE CARD

NEW PRODUCTS

Subcarrier Oscillators

Are highly stable. Operating on all standard IRIG subcarrier frequencies, these subcarrier oscillators show stable properties over a wide range of temperatures. The TEX- 3000 oscillator has a sensitivity of 5 v peak-to-peak for 100% deviation. Deviation is $\pm 7.5 \%$ in channels 1 through 18 and $\pm 15 \%$ on channels A to E. The TEX-3100 oscillator has a sensitivity of 0 to 20 mv or ± 10 mv for 100% deviation for channels 1 through 18 and $\pm 20 \mathrm{mv}$ for channels A through E .

Sonex, Inc., Dept. ED, 20 E. Herman St., Philadelphia 44, Pa.

Receiving Tubes

With 26.5-v heaters. Subminiature receiving tubes with 28.5-v heaters are available in three models. Type 7887, a medium-mu double triode for oscillator, amplifier and low-power servo circuits, replaces type 6111. Type 7888, a high $-g_{m}$, medium-mu triode for uhf oscillator and low-frequency oscillator and amplifier applications, corresponds to type 5718. Type 7889 is a high-mu double triode similar to type 6112, used in low-level audio circuits.
Sylvania Electric Products Inc., Dept. ED, 7.30 Third Ave., New York 17, N.Y.

Parametric Amplifiers

For 2,190 to $2,300 \mathrm{mc}$. Miniature microwave parametric amplifiers make use of a set of vari-able-capacitance diodes distributively coupled to a helix. Prototype SS-1000 delivers 1 mw with $15-\mathrm{db}$ minimum gain and noise factor of 7.5 db max from 2,200 to $2,300 \mathrm{mc}$. Variant SS-1000V1 delivers 1 mw with $17-\mathrm{db}$ minimum gain and 6-db noise max from 2,190 to $2,210 \mathrm{mc}$. Both have excellent stability, do not require a circulator. and are contained in miniature packages without tuning stubs. Pump source frequency is 30% above signal frequency; pump power is 300 to 400 mw . Variants of the amplifier range from 1,750 to $3,000 \mathrm{mc}$, with bandwidths to 100 mc .

Radio Corp. of America, Electron Tube Div., Dept. ED, Harrison, N.J.

Accuracy Is Our Policy . .

The New Product description of power supply model 890A, made by Harrison Laboratories Inc. 45 Industrial Road, Berkeley Heights, N.J., gave power rating as 0 to 6 amp . The correct rating is 0 to 320 v dc at 0 to 0.6 amp . The item ap. peared on p 179 of the March 1 issue.

Don't miss an issue of ELECTRONIC
 DESIGN; Return your renewal card.

ELECTRONIC DESIGN - April 12,1961

Shoring Up Microwave Gains

Microwate technology has moted so far so fast, that like a rapidly advancing army, it has outrun its supply lines. One vital area where some backing and filling must now occur is in microwave calibration standards. As the report on the facing page reveals, money spent on standard; now is mones saved both in the long and the short run.

Another example of how designers can fill in the chinks as the technology matures is the article in this issue describing an elegantly simple concept for electronically scanned antennas.

R $\& D$ continues to extend the state of the art, but we can expect considerable achievement in the more prosatic area of following up the breakthroughs with good, sound design.

The damasin! lack of microncae: standurds and joint industry-NBS "llempls to soler the problems "" alescribuel in

Closing the Cap in Microwave
Standards

H!̣lorial complerss form the Ionsis of " new scanning matrix that drastically reduces the mumber of compor nemis required in eorporate strme fure ante minas. For detrie's and ber formance, reall

Beam-Forming Matrix Simplifies
Design of Electronically Scanned
Antennas

E:liminating RFI and harmomics in microncute testing ofle"n calls for microtate testing "flen calls for
nonstandarel fiters. Whess call be readily designed and faloricated inplant from acailable materials as described in

Rapid Design of Coaxial Low.Pass
Filters

An 1s-G: Rackuard-utace oscillator

 Cic arre featureal in

Microwave Products

Closing the Gap in Microwave Standards

AGRADUAL attack on glaring deficiencies in microwave standards is under way, thanks to joint action by industry and the National Bureau of Standards. However, a lack of adequate standards will continue to plague inclustry and hamper the growth of microwave technology unless the pace of research and financing is greatly accelerated.
The vehicle for this industry-NBS teamwork is a continuing series of Measurement Research Conference meetings organized by the quality control committee of the Aerospace Industries Association. These meetings, and an industry survey of measurement needs, were undertaken at the request of the Air Force, with the Sperry Gyroscope Co. serving as project sponsor
At almost half of the meetings held or scheduled to date microwave standards have been either the sole or principal topic of discussion. The most recently concluded incetines, in late Jannary, dealt with pulse voltage, rf voltage, field strength, rf peak power and noise-all in the microwave spectrum. Earlier meetings in 196i) covered microwave power and attenuation. Forthcoming meetings will discuss imperlance (June), material measurements (November), and freguency calibration (early 1962).
At these meetings inclustry can explain its
particular measurement problems to NBS and recommend how the bureau may invest its limited R\&D budget most effectively. Bureau scientists, on the other hand, counter with suggestions of how industry might reduce the work load imposed on NBS.

Snarl in Standards Costs
 Industry Money and More

With frankness on both sides, some rather grim instances have been revealed of the price industry is paying for inadequate standards.

- A company scheduled to deliver an order of 400 parametric amplifiers last year delivered only 50 and is producing the balance at half the scheduled rate. Lack of proper noise measurement standards has delayed design, production and testing of these $\$ 10,000$ amplifiers.
- Test equipment worth $\$ 250,000$ is shuttling between vendor and client. They cannot agree on peak power performance of the units because of differently calibrated inspection equipment.
- A large organization has three engineers permanently assigned to resolving discrepancies between its own test instruments and those of the company's suppliers. They've been on the job three years now and look forward to continued employment.

Rotary-vane broadband attenuator on table stirs discussion among Sperry Gyroscope engineers (left to right) Allan James, Lloyd Wilson and John Korewick.

- Another company spent $\$ 25,000$ for radio-frequency-interference measuring equipment and then had no confidence in the indicated results.
- Radars have been closed down because of uncertainty as to their radiation hazard to personnel.
- Almost a million dollars was wasted in the design of a radome because of a lack of attenuation calibration services in Ku band accurate to a few tenths of a decibel in a $60-80 \mathrm{db}$ range.

Overdesigning Among Evils Spawned by Uncertainty

Repeated instances have been cited where equipment was overdesigned to compensate for the uncertainty of test measurements. Often microwave tubes contain built-in adjustors that would be unnecessary if performance could be measured accurately in the first place. Weight, size and cost increases for equipment, caused by uncertainty of calibration, were continuously reported by conference participants.

For its part, NBS complained about the type of equipment sometimes submitted for calibration, unusual calibration requests, and imperfect knowledge of the equipment on the part of those who submit it. For example:

- One of the better known makes of attenua-

Priorities of microwave calibration needs, according to a 40 -company survey by Aerospace Industries Association. Highest priority needs are for power, attenuation and noise standards.

NOW. . . S-BAND, NON-DEGENERATE AMPLIFIERS
 with bandwidth.s up to 75 me at 1.5 (d) gazn!

FOR MILITARY ENVIRONMENTS

Broadband parametric amplifiers for applications at L, S, C, and X band are available now from Texas Instruments. The S-band model, designed with a TI XD-500 gallium arsenide diode, gives bandwidths up to 75 mc at 15 db gain. Gain variation is no greater than 3 db over temperatures ranging from $-40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$, and the unit meets the vibration requirements of MIL-E-5400D. Noise figure, including circulator loss is 3 db . The associated circulator is a miniaturized, three-port ferrite unit with 0.5 db insertion loss and 20 db isolation.

TYRICAL MODEL S-22 SERIES SPECIFIGATIONS	
frequoney	2.8 to 2.96 Gc
bendwidth	40 mc
gain	15 db
neise figure	3 db
(includes circu-	
lator loss)	
pump frequaney	X band
dicio	Texas Instruments
	XD-500 $\mathrm{F}_{\mathrm{c}} \geqq 70 \mathrm{kmc}$ at
	$-2 v$ bias $-40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
tomperature	$-40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
ranyo	
vilbration.	per MIL-E-5400D
pump pewer	50 mw

For details on TI's S-band amplifiers, write for Bulletin No. DLA-1217. For information on specific applications at all frequencies, contact MARKETING DEPARTMENT

TEXAS
INSTRUMENTS - N. Componionateo DALAs a, reus

Microwaves News
tors was found to be position-sensitive. The device exhibited substantially different attenuations when oriented vertically and horizontally:

- Attenuators can be thrown out of adjustment by the torque exerted on the unit by poorly mated waveguides. The guides should be carefully fitted to the attenuator.
- Many of the standards submitted for calibration are not designed for interlaboratory transfer. They travel poorly and are difficult to adjust.
- Much of the equipment submitted is of testbench quality and does not have the inherent accuracy to warrant calibration against a primary standard.
- Requests are received for calibration at nonstandard frequencies and power levels. The bureau can process most efficiently calibrations that have been reduced to routine.
- Defective equipment is occasionally submitted. Often adjustment and scale dials have excessive backlash, which destroys whatever calibration accuracy the bureau would specify.

Power, Attenuation and Noise

Standards Needed Urgently
Industry spokesmen, on the other hand. complain that NBS is too conservative in specifying calibration accuracies, takes too long to perform calibrations, and offers only a limited range of microwave services.
The most urgent microwave standards requirements are for power, attenuation and noise, according to an AIA survey of 40 microwate companies. Generally these standards should extend beyond X-band and should cover extreme high and low limits of performance.
"The newness and rapid growth of microwave technology has resulted in a serious lack of standards that is costing industry millions of dollars each year," declares Lloyd Wilson, chief of Sperry's primary standards laboratory and a member of the AIA measurements project team. He adds that because of this gap, companies are establishing their own standards, whose compatibility with standards of other companies and the military is questionable.

The present jam-up at NBS is essentially one of too much work and too little money (see Editorial, "A Fair Week's Work for a Fair Day's Pay," Aug. 17, 1960, Electronic Desicn). Bureau funds were cut during the 1950's and personnel has only now returned to the level of ten years ago.

Microwave instruments are submitted for calibration in large quantities. During the latter half of 1960, the NBS radio standards division at Boulder, Colo., calibrated 1.56 microwave standards for industry. The time expended was approximately 1,500 man-hours.

Microwave calibration services now available include:

- Attenuation-300 mc to $18 \mathrm{Gc}, 0$ to 50 db , directional couplers.
- Frequency- 300 mc to 75 Gc , cavity meters.
- Power-8.2 to $12.4 \mathrm{Gc}, 0.1$ to 10 mw , bolometer mounts, and 10 to 100 mw , dry calorimeter.
- Impedance-8.2 to $1+G C$, vswr 1.01 to 1.5 . waveguide reflector.

Stringent Budget Slowing
 Microwave R\&D Progress

To expand this range of services, NBS has a budget of only $\$ 300,000$ for microwave $R \& D$ for

this fiscal year. In response to military and industrial requirements, the bureau is advancing development of several new microwave standards for future introduction. However, Robert Beatty, chief of the microwave circuits section at Boulder, notes that the shortage of funds and personnel restricts development and that some of these new standards may be a year or more removed from operation.

The most likely candidate for early application is a noise standard to operate at several frequencies in X band. The device will calibrate gasdischarge tuhes against a hot load. Calibration is expected to cover an excess noise ratio of about 15 db with an accuracy of $\pm 0.03 \mathrm{db}$. NBS hopes to make this service available before the end of 1961

Also on the way is a field-strength standard that will calibrate the gain of microwave horns at X band. Horns will be calibrated over a range of 10 to 20 db gain, accurate to 0.1 db . Introxluction of this standard is stalled for lack of a microwave dark room to perform tests.

A new type of microwave power standard employing electron beams is also being developed at NBS. The technique consists of accelerating an electron beam transversely through an esacuated section of waveguide. Intersection between the fields in the guide and the heam makes the transit time of the electrons vary according to the rf power in the guide.

An X-hand standard is being built along these lines to measure peak or average power from 100 w to 100 kw . The technique could be extended to cover a wide range of frequencies and powers. Accuracy should be about 1 per cent.

Another novel technique in development at NBS is a two-channel modulated sub-carrier means to measure phase shift but that can also be applied to a variety of other microwave measurements. The channel containing the device under test is audio-frequency modulated. This channel is mixed with an unmodulated channel and fed to a crystal detector. Thus the microwave measurement is essentially porformed at a lower frequency, where a variety of accurate standurds are already available. When completed, the two-channel phase-shift standard will operate in X band with an accuracy of 0.1 deg .

Also being readied by NBS is a high-power adiabadic calorimeter to measure average power from 1 w to 100 w at X band. The projected accuracy is 1 per cent. - ■

Meet the newest member of the FXR "family" of direct reading frequency meters. This coaxial type, Model No. N414A, has ing requency meters. This coaxial type, Model No. N414A, has 601 coax to waveguide adapters converts to waveguide setups. The unit covers "a full octave and beyond" with an absolute accuracy of 0.1% throughout its range. It is a perfect companion for the FXR Models No. C772 and X772 signal sources.

This newest direct reading frequency meter augments FXR's existing line, recognized as the largest in the industry. Direct KMc while micrometer types extend FXR's coverage up to 220 KMc.

Write or call now for data sheets on Model No. N414A and other units in the infegrated FXR family of precision frequency meters.

FXR "FAMILY" OF DIRECT READING REACTION TYPE FREQUENCY METERS

FXR M.M. TYPES (Micrometer Reading)

$\begin{aligned} & \text { Model } \\ & \text { Mo. } \end{aligned}$	$\begin{aligned} & \text { Frequiacy } \\ & \text { Range } \\ & \text { KMe } \end{aligned}$	$\begin{aligned} & \text { Prise } \\ & \text { (f.0. } \\ & \text { wedsine } \end{aligned}$
Q10x	33.50	\$325.00
Malox	50.75	300.00
ESIOX	00.90	500.00
F412A	90.140	750.00
CA12A	140.220	750.00

DELIVERY FROM STOCK

$\begin{aligned} & \text { Mintel } \\ & \text { He. } \end{aligned}$	$\begin{aligned} & \hline \text { Frequency } \\ & \text { Anget } \\ & \text { (KMc) } \end{aligned}$	$\begin{aligned} & \text { Absolute } \\ & \text { Acterimey } \end{aligned}$	Apprax			$\begin{array}{\|c\|} \hline \text { Fige } \\ \text { (F.0. } \\ \text { wiedside) } \end{array}$
COAXIAL TYPES						
N410A	1.00-4.00	0.10	3000	13/4"Coax	Type N)	\$495.00
N/14A	3.95-11.0	0.10	500 to 1500	$12 /{ }^{\circ} \mathrm{Coox}$	Trpo N)	495.00
WAVEGUIDE TYPES						
${ }^{9} \mathrm{H} 4108$	3.95. 5.05	0.08	8000	49	149A	250.00
${ }^{\circ} \mathrm{Cat} 108$	5.85-8.20	0.08	8000	50	344	180.00
${ }^{\circ} \mathrm{W} 410 \mathrm{l}$	7.05-10.00	0.08	8000	51	51	165.00
-x4108	8.20-12.40	0.08	8000	52	39	150.00
ralioa	12.40-18.00	0.10	4500	91	419	210.00
Kalioa	18.00-26.50	0.10	4000	53	425	230.00
U410a	26.50-39.50	0.10	3000	96	381	250.00
C402A	5.85-8.20	0.03	8000	50	344	1275.00
X402A	8.20.12.40	0.03	8000	52	39	1275.00

DELIVERY FROM STOCK

FXR, Inc.
Design - Developmene • Manufacture

PRECISIOM MICROWAVE EQUIPMENT - HIGH-POWER PULSE MODULATORS - hIGh-YOLtage POWER SUPPLIES - ELECTROMIC TESt EQUIPMENT CIRCLE 191 ON READER-SERVICE CARD

Beam-Forming Matrix Simplifies Design of Electronically Scanned Antennas

Abstract

A drastic reduction of components in electronically scanned arrays is achieved by using a matrix of hybrid dividers in place of the usual threeport dividers. A 64×64 array would require less than 25,000 hybrids as compared to almost one-half million three-port dividers needed in a conventional design. Authors Jesse Butler (left) and Ralph Lowe also describe an auxiliary combining network to form cosine order beams which require only a few additional hybrids.

Jesse Butler,* Ralph Lowe

Sanders Associates,
Nashua, N. H

E- LECTRONIC scanning of corporate structure antennas ordinarily requires a separate power dividing and phasing matrix for every beam formed. Thus, the number of components needed for large, fully steerable arrays can reach astronomical proportions.
To form a single beam in a conventionally designed 64 -element linear array requires 63 power dividers. In the Sanders beam-forming matrix, however, a network of 192 hybrids forms 64 independent beams from the same 64 -element array. Each beam has the full gain corresponding to the projected aperture of the array. Beams overlapping at the $2 / \pi$ voltage levels essentially cover a full hemisphere of space.

This performance is achieved by utilizing the phase shifts occurring in hybrid dividers.
The basic unit of the system is a $3-\mathrm{db}$ directional coupler combined with a fixed phase shifter or differential length of transmission line (see Fig. 1). A signal fed to one of the four ports is divided into two equal outputs. One output remains in relative phase with the input, while the other is shifted in relative phase by 90 deg. (In Fig. 1 and throughout this article, the $90-\mathrm{deg}$ phase shift occurs between diagonally opposite ports.)
Conversely, two signals $90-\mathrm{deg}$ out of phase applied to different ports are coupled into one of two mutually isolated ports. Isolation between

- Now with Advanced Development Laboratories Nashua, N.H.
ports exceeds 20 db . This signal-combining mode occurs when the array functions as a receiving antenna. In a transmitting array, the hybrids operate as signal dividers.
To form a multiple-beam array, the phase of each radiating element is assigned by the following rule:

In a linear array of 2^{m} equispaced elements, the phase difference between any two elements 2^{m-1} apart increases (or decreases) 90 deg when the antenna pattern axis is rotated by slightly more than $1 / 2$ of the $1 / 2$-power beamwidth.
Hybrid phase shifter "building blocks" are combined accordingly.

An eight-element, eight-beam array designed in this manner is shown in Fig. 2. Note the separate input terminals corresponding to each beam. All elements radiate regardless of the beam that is being formed, but their phase relationships are varied for each beam by the passage of the signal through the matrix.
To illustrate, signal flow tor the " 2 Right" beam is shown in color in Fig. 2. Phase shifts are expressed in units of $\pi / 16$. Signals traversing a hybrid diagonally are shifted 90 deg (eight units). Fixed phase shifters, represented by circles, impose additional phase shift denoted by the number within the circle. Phase shifts at various internal points in the matrix are indicated, as

Table 1. Radiating element phases for eight-beam array

Beam		Radiating Element							
	Phase Diff.	A	B	C	D	E	F	G	H
	$14 \pi / 16 \mathrm{rad}$	Relative Phase							
4L		16	30	12	26	8	22	4	18
3L	$10 \pi / 16$	12	22	0	10	20	30	8	18
2L	$6 \pi / 16 \quad$ '	10	16	22	28	2	8	14	20
11	$2 \pi / 16$ "	10	12	14	16	18	20	22	24
1 R	$-2 \pi / 16^{\text {' }}$	24	22	20	18	16	14	12	10
2R	$-6 \pi / 16{ }^{\text {" }}$	20	14	8	2	28	22	16	10
3R	$-10 \pi / 16$	18	8	30	20	10	0	22	12
4R	$-14 \pi / 16$	18	4	22	8	26	12	30	16

[^2]

Fig. 1. Hybrid divider printed on TriPlate. Relative phases and amplitudes of output signals are shown.

Fig. 3. Eight-beam radiation paltern formed by Sanders matrix. Beams over lap at the $-4-\mathrm{db}$ points. Radiating elements are spaced at half-wavelength intervals. Beams are amplitude-tapered.
are the final shifts at the radiating clements with respect to the input.

Output phases for each of the eight beams are listed in Table 1. The phase differences between adjacent radiators are uniform for any given beam, but vary from beam to beam as shown.

In this array, $2^{m-1}=4$. As required by the previously stated rule, the phase difference between radiators so spaced changes 90 deg when the beam is shifted. For example, the phase difference between elements A and E is -8 units for the " 4 Left" beam. This relationship also holds between elements B and G, elements C and H, etc.

The eight patterns formed by this array overlap at the -4 db points. Elements are spaced

note pmase shift express in units $\frac{\pi}{16}$
Fig. 2. Eight-element, eight-beam matrix. Signal path for the " 2 Right" beam is shown in color. Squares denote the hybrid couplers used in the matrix; circles denote fixed phase shifters. Numbers within the circles indicate the amount of phase shift applied. Relative phase shifts of signals are shown at various points in their passage from the input terminal to the radiating elements. Note that signals crossing a hybrid diagonally are shifted eight units (90 deg).

Fig. 4. Two-dimensional, 4×4 hybrid matrix. Signal flow for one beam is shown in color. The azimuth-directive pattern formed by one set of matrices is superimposed on elevationdirective pattern formed by directive patrern formed by second set of matrices. Result
is a choice of 16 pencil beams. ventional design would require Unit employs 32 hybrids; con. 96 three-port dividers.

Fig. 5. System diagram for high-power steerable array transmitter employing beam-forming matrix. Input terminals are scanned by programer controlling the drivers. Master oscillator can be modulated for communications purposes, and individual amplifers -f ndividual amplifiers for each radiator result in high-power system.

Fig. 7. Eight-element beam forming matrix buill for Jet Propulsion Laboratory. Op erating frequency is about 2.1 Gc, bandwidth about 50 mc Radiators are housed within the cylinder at bottom of unit. Entire assembly is about 40 in long.

Fig. 6. Four-element beam-forming matrix built on Sanders Tri-Plate. Coax-fed dipole radiators are cut for 3 Gc Operating bandwidth of unit is about 50 mc .
at half-wavelength intervals and the eight patterns cover almost 180 deg (see Fig. 3).

A 16 -element array can be designed by paralleling the matrix of Fig. 2 with an identical network and adding a set of cross-connections through hybrids at the radiating elements.
The extension of this technique to a two-dimensional array is shown in Fig. 4. This simple 4×4 array requires eight matrices and a total of 32 hybrids.

Azimuth scanning is controlled by the four horizontal matrices (Nos. 1-4); elevation is controlled by the four vertical matrices (Nos. 5-8). Note that all similar output elements of the horizontal matrices are tied into one vertical matrix. For example, the extreme left-hand outputs of the horizontal matrices are connected to vertical matrix No. 5, while the extreme right-hand outputs are connected to vertical matrix No. 8. Conversely, four identical inputs to the vertical matrices are driven by the same horizontal matrix.
This interconnection scheme permits the vertical matrices to superimpose an elevation-directive phase pattern onto the azimuth-directive phase pattern developed by one horizontal matrix. The result is a choice of 16 pencil beams in two-dimensional space.

The number of hybrid building blocks required to form n beams in either a linear or twodimensional array of n elements is $n / 2 \log _{2} n$. Thus, a 64×64 array capable of forming 4,096 pencil beams requires 24,576 hybrids. Conventional designs of this capability would require almost $1 / 2$ million power dividers.

The Sanders beam-forming matrix can be considered as a black box with n input terminals and n radiating element terminals. The array could be scanned by a system such as shown in Fig. 5. Medium-power drivers excited by a master oscillator are used as control switches to excite one or more input ports for beam steering. A separate, final amplifier at each element would result in an extremely high power system. In addition, the master oscillator could be modulated for communications purposes. The same black box could also be used in scanning a receiving array with equally flexible applications in radar, countermeasures and communications.
Both the hybrids and fixed phase-shifters can easily be designed for efficient operation over a 50 per cent bandwidth. As the frequency increases, element spacing becomes greater than 12 wavelength and the beams narrow and shift toward the broadside axis. However, the same
-4 -dh crossover level between adjacent beams is maintained.
Any two beams in the system couple at only one level in the matrix, so that isolation between any two input terminals or two output terminals is greater than the isolation of a single hybrid. Isolations of 25 to 40 db are easily attainable.

The hybrids can be waveguide top-wall or side-wall couplers, or branch-line and parallelline couplers in waveguide, coax cable or striptransmission line.

Several experimental arrays have been built to test this design concept. The unit shown in Fig. 6 is a four-element array for 3 -kmc operation using directional couplers printed on Sanders Tri-Plate ${ }^{\circledR}$ components. Coaxially fed dipoles serve as radiating elements. A larger, 2.1-kmc array with eight radiating elements was built for the Jet Propulsion Laboratory. (See Fig. 7.) Both of these models were designed for bandwidths of only 50 mc .
Typical beam patterns obtained with the eightelement array are shown in Fig 8.

The largest matrix built to date is a 16 -element unit delivered to Lincoln laboratory. This model operates at 900 mc over a 30 per cent bandwidth. © Registered Trademark Sanders Associates, Inc.

Fig. 8. Three typical beam patterns of unit delivered to JPL. ISee Fig. 7.) From left to right: the " 1 Right," " 2 Right" and " 3 Right" beams. Increase in number of sidelobes as beam moves off center is due to reduced projected aperture of the array. Measurements were made a about 2.1 Gc with amplitude tapered illumination. Cosine order beams with reduced sidelobes are discussed in latter half of this article

Again considering the matrix as a black box additional hybrid networks can combine adjacent or overlapping beams to form cosine order beams. As contrasted to the $-13-\mathrm{db}$ sidelobes for uniform illumination, cosine taper sidelobes are -23 db , while cosine squared taper sidelobes are -32 db .

Two adjacent beams can be combined with an appropriate phase shifter to form a cosine tapered beam as shown in Fig. 9. The phase shifter adjusts the phase center of one beam to coincide the phase center of the second beam. Isolation between beams is provided by the hybrid coupler, whose unused ports are terminated in a load that matches line impedance.

Several adjacent cosine beams can be formed as shown in Fig. 10. The combining network imposes a $3-\mathrm{db}$ insertion loss, as the power in the matrix beams must be divided between the adjacent beams formed by the network. This power loss is partially compensated by the tapered illumination of the cosine beam.

Individual and adjacent cosine squared beams, which combine three matrix beams, are formed in similar fashion, as illustrated in Figs. 11 and 12, respectively. Again, hybrids provide interbeam isolation.
In general, the number of adjacent higher order cosine beams that can be formed by an n-beam matrix is $n \cdot y$, where y is the order of the cosine function.
Preliminary study has shown that dissipation losses in the beam-combining network are less than would result from loss tapering the amplitude of each antenna element in the array.

As the order of the cosine function increases, network losses are proportionately reduced as compared to the losses suffered in tapering the individual antenna elements.

In cosine taper illumination, however, network and antenna amplitude tapering losses are approximately equal. - -

Fig. 9. Hybrid connected to form cosine taper illumination beam. Phase shifter adjusts the phase center of one matrix beam to coincide with the phase center of the second matrix beam.

1

Nig. 11. Thrce marrix beams are combened by this network to form a cosies squared topered beam. Unused porte ore ferminated in loads motching the transmission line

Fig. 10. Several adjacent cosine tapered beams are formed by this pairing of matrix beams. Anyone of five cosine beams can be generated by this network.

Rapid Design of Coaxial Low-Pass Filters

A concenient method of designing nonstandard, low-pass coaxial filters with pass bands in the 1-to 8-kmc range. Author Bostick has designed more than 25 such units to eliminate RF1 and harmonics in field and laboratory testing of radar gear. The filters are readily assembled from stock materials.

Glyn Bostick

Chief Engineer
Radar Design Corp.
Syracuse, N. Y.

THE "varying impedance" type filter can be readily tailored for u desired cut-off frequency in the 1 to 8 kmc frequency range and machined from stock tubing, rod and connectors

The filter (See Fig. 1) derives its periodic changed characteristic impedance from periodic changes in center conductor diameter. The unit is assembled within a tube chosen to match the diameter of connectors employed in the rest of

Fig. 1. "Varying imprdance" low-pass filter. Unit is assembled inside a length of rubing and terminated by appropriate size connectors. Design dimensions are arrived at by procedures described in this article.
the system. Impedance matching sections at each end provide sharp cut-off.
The following design procedure yields the number, thickness and spacing of the filter discs and of the end sections. Insulation is assumed to be Rexolite, styrene, or other suitable plastic with a dielectric constant of about 2.50 .
Equations are given for quick computation of average and peak power. Charts of insertion loss and vswr are included to indicate "safe" operating specifications.
The pertinent design specifications are:

- F,-Cut-off frequency (the frequency for 3 -db attenuation)
- $A_{1}-$ Attenuation (in db at a specificed frequency $F_{1}>F_{c}$)
- Power handling (average and peak)

Once the above are specified and a tube of diameter (D) compatible with the required line size and connectors is chosen, all filter dimensions can be computed from Table 1 .

Fig. 2. Performance curves of low pass filter. Unit was designed for cut-off frequency $\left(F_{c}\right)$ of 25 kmc , and for 30 db attenuation at 3 kmc . Design exceeds performance specifications.

Table 1. Design data for "varying impedance" lowpass filters

Dimension	Value
D d ${ }^{\prime}$	1.42
D d	8.5
θ_{2} (rodians)	$=2 \operatorname{Tan}^{-1}\left(\operatorname{Tan~} 15^{\circ}-4.2 D F_{c} \times 10^{-6}\right)$
A_{1} (radians)	$=2 \mathrm{Tan}^{-1}\left(\operatorname{Tan~} 15^{\circ}-3.2 \mathrm{DF} \times 10^{-5}\right)$
t_{7}	$\frac{\theta_{2} \lambda_{c}}{13.1}$
f_{1}	$\frac{\theta_{1} \lambda_{e}}{10}$
L_{12}	$\frac{\lambda_{c}}{9.09}$
\boldsymbol{L}_{5}	$\frac{\lambda_{e}}{21}$
L	$\frac{\lambda_{e}}{8}$

NOTE: physical dimensions in inches
angles in rodians

Note that the inside diameter of the tube determines the diameters of the center conductor and of the filter disks.

The designer next computes θ_{1} and θ_{2}-the effective electrical lengths between filter disks and between the filter and end disks. These dimensions, together with the cut-off wavelength, determine the thicknesses of the disks.

The spacing between each pair of filter disks is L_{1}; the spacing between end disks and filter disks is L_{12}; and spacing between end disks and the end of the filter is L_{2}. Each of these spacings is a fraction of the cut-off wavelength as indicated in the table.
The total number of filter disks (N) is given by:

$$
N=\frac{A_{1}}{35\left[\frac{F_{1}}{F_{0}}-1\right]} \text { (Rounded up to the }
$$

Where:
$\boldsymbol{F}_{1}=$ attenuation frequency
$A_{1}=$ attenuation in db at \boldsymbol{F}_{1}
$F_{c}=$ cut-off frequency
All frequencies are expressed in megacycles.
Average power rating is established as that power which can be handled without filter tem-

new!

NARDA
ferrite isolators
designed and manufactured by NARDA MICROWAVE:

- broadband coaxial

ferrite isolators

Excellent electrical characteristics with extreme versatility! $1 / 8^{\text {" }}$ coaxial line construction allows higher power operation with $7 / 3^{\prime \prime}$ connectors, up to 20 kw peak, 400 watts average. (Normally supplied with Type N, $3 / \mathrm{s}^{\prime \prime}$ connectors; 10 kw peak, 10 watts average.) Features 15 db isolation and 1 db max. insertion loss. VSWR is 1.25 max. based on 2:1 load mismatch; 1.15 max. into matched load. Model 1233: 2.0-4.0 kmc: model 1233-1: 3.0-5.5 kme; \$450. each.

- low power broadband waveguide ferrite isolators

Provide maximum load isolation and minimum insertion loss over full standard waveguide frequency ranges. Extremely useful for maintaining signal source stability and eliminating long line and frequency pulling effects. Front-to-back ratios are the highest available on the market today: C Band-26:1, \$250; XN Band-25:1, \$225; XB Band-30:1, \$235; X Band-30:1, \$220.

- high power broadband waveguide

ferrite isolators

The only line of high power isolators that covers all of X Band with just two models (8.2-10.0 kme and 10.0-12.4 kme), each with front/back ratio of $40: 1$. Input power rating: 250 kw peak, 300 watts average, achieved through use of special high Curie temperature ferrite materials. VSWR is 1.05 max, with matched load; 1.10 max, with 3:1 mismatch. Only $\$ 175$ each. Model with same VSWR, 28:1 front/back ratio, 300 kw peak, and 300 watts average, for 7.05-10.0 kmc, \$195

- Other ferrite devices-
consult NARDA for:
- Circulators • Phase shifters • Modulators - Attenuators - Special Isolators

For more information, write to Dept. ED-1.

arrau
 the narda $\begin{gathered}\text { mimopaseren } \\ \text { copration }\end{gathered}$

118-160 HERRICKS ROAD, MINEOLA, L. I., N. Y. - PIONEER 6.4650

Now! Get premium features in a DVM priced at only $\$ 940$

Cubic Corporation announces the $\mathbf{V}-45$ -the first low-cost digital voltmeter with premium features. Now industrial users can buy a top-quality, precision four-digit instrument at a price they can justify - only $\$ 940$. Here are the premium features you get in a V-45: Floating Input: Both sides of the input may be floated above or below ground. The floating input circuit provides more than 80 db rejection to 60 -cps common-mode signals. A grounded input is also supplied.
Extended Range: A 10% extension is incorporated in each of the V-45's three ranges. Voltages up to 10.999 may be read on the 10 -volt range; voltages up to 109.99 may be read on the 100 -volt
range; and voltages up to 1099.9 may be read on the 1000 -volt range. Therefore, the operator need not constantly shift back and forth between ranges when reading close to the normal upper limit of a range
Transistorized Logic and Drive Circuit: The V-45 DVM uses construction techniques representing the latest state-of-the-art, with all-transistorized circuitry driving reliable stepping switches.

Cubic manufactures a complete line of quality digital instruments, including a-c and d-c voltmeters, ohmmeters, ratiometers, scanners and printer controls. Write for literature to Dept. ED-103, Industrial Division, Cubic Corporation, San Diego 11, Califomia circle 193 on reader-service card

SPECIFICATIONS

 MODE V-45 DIGITML VOLTMETER Input lapedance: 10 megohmsat balance. Rongess. Manually selected,
10% xxtended range 10% Extended ranse
Low ± 0.000 to $\pm 10.999 \mathrm{vdc}$
Mid ± 0.00 to $\pm 109.99 \mathrm{vdc}$ High ± 000.0 to $\pm 1099.9 \mathrm{vdc}$ Semaidivty: 1 millivole Sonantrity Centrol: Continuously var-
iable from 1 digit to standby luckout Powe Input: $105-12.5 \mathrm{vac}, 50-60 \mathrm{cps}$, 25 watts standby, 30 watts operating deep, rack or bench mounting with deep, rack or bench mounting with
dust-proof switch and bridge section.
Aowrese Elomecing Time: Less than Aowage Eotoncing Time: Less than 2 sec
> cubic
> CORPORATION
perature exceeding 70 deg C at 25 deg C am bient. The appropriate equation is:

$$
\begin{equation*}
P_{n+*} \cong \frac{\pi \lambda_{c} D}{60}(65 N+100) \tag{2}
\end{equation*}
$$

The cut-off wavelength $\left(\lambda_{c}\right)$ and D are expressed in inches.
Peak power, at which arcing will probably occur, is:

$$
\begin{equation*}
P_{p} \cong \frac{d^{2}}{4} \times 10^{x} w \tag{3}
\end{equation*}
$$

Again, d is expressed in inches.

Procedure Demonstrafed

By Design of Typical Filter
As an illustration of this method, we can con sider the design of a filter to the following specifications:

$$
\begin{aligned}
& F_{c}=2,3(N) \mathrm{mc} \\
& F_{1}=3,(0) \mathrm{mc} \\
& A_{1}=30 \mathrm{dh} \text { minimum }
\end{aligned}
$$

Connectors $=$ Type $\mathrm{N}(3 / 8$-in. line $)$

$$
\begin{aligned}
I_{a s e} & =10 \mathrm{~W} \\
I_{n} & =15 \mathrm{~kW}
\end{aligned}
$$

A convenient size tube, requiring little alteration of the type N connectors is $7 / 16-\mathrm{in}$. OI) ($0.312-\mathrm{in}$. ID) brass tubing.
Next compute the number of filter sections (N) according to Eq. 1 .

Fig. 3. VSWR characteristic of "varying impedance" filters. Ratio increases sharply as operating frequency approaches cut-off frequency.

Fig. 4. Insertion loss characteristic of filter. As in Fig. 3, curve shows advantage of operating well below the cut-off frequency

$$
\begin{aligned}
N=\frac{A_{1}}{35\left[\frac{F_{1}}{F_{i}}-1\right]} & =\frac{30}{35\left[\frac{3 .(M N)}{2, F(N)}-1\right]} \\
& =4.3(5) \text { rounded upp }
\end{aligned}
$$

Next check the power rating of the filter by use of Eqs. 2 and 3.

$$
\begin{aligned}
P_{\mathrm{avo}}= & \frac{\pi \lambda_{c} D}{60}(65 \mathrm{~V}+100)=\frac{\pi \times 4.72 \times 0.312}{60} \\
& {[(65 \times 5)+100]=32.8 \mathrm{w} }
\end{aligned}
$$

For the peak power calculation, the design table shows $D / d=8.5$, and $d=0.0367$ in.

$$
P_{p}=\frac{d^{2}}{4} \times 10^{5}=\frac{(0.037)^{2}}{4} \times 10^{3}=34.2 \mathrm{kw}
$$

Ratings exceed requirements by a wide margin.
If ratings are too low a larger tube diameter is required. Physical dimensions specified in the table are:

$$
\begin{aligned}
& L_{2}=0.2 .2 \mathrm{in} \\
& L_{12}=0.520 \mathrm{in} . \\
& L_{1}=0.590 \mathrm{in} . \\
& t_{1}=0.2 .5 \mathrm{in} \\
& t_{2}=0.168 \mathrm{in} .
\end{aligned}
$$

Performance of this filter is illustrated in Fig. 2. Attenuation at $3 \mathrm{kmc}\left(F_{1}\right)$ is well above the required 30 db . The vswr is minimal over most of the passband.
The designer can minimize filter insertion loss and vswr for a given frequency range in the pass band by choosing a sufficiently high cut-off frequency as determined from Figs. 3 and 4. - .

LOW POWER LEVEL VOLTAGE
VARIABLE ATTENUATORS

Froq iency (Mc)	Attonuation Range
260.340	0.2 db .18 db
400.450	0.3 db .20 db
1270.630	0.3 db
1250.1350	0.5 db .20 db

Marrow-band higher frequency units are available with lower

 loss and increased isolation.Units for handling higher powers are now in development. Microwave Associates has capabilities for meeting your requirements for single-pole multiple-throw and waveguide switching devices. Our switches invite comparison. We invite your inquiries.

A quotation/data sheet will be sent on request.
MICROWAVE ASSOCIATES, INC. AN
2.3000

CIRCLE 194 ON READER-SERVICE CARD

...for the Ultimate in Waveform Observation

WIDE BANDWITH - DC to 15 mc .
PLUG-IN SWEEP DELAY-1) Delays main sweep, 2) Brightens segment to be delayed, 3) Substitutes for main sweep.

PLUG-IN PRE-AMPLIFIERS

Dual-Trace $50 \mathrm{mv} / \mathrm{cm}, \mathrm{DC}$ to 15 mc .
High-Frequency- $50 \mathrm{mv} / \mathrm{cm}, \mathrm{DC}$ to 15 mc .
High-Gain- $5 \mathrm{mv} / \mathrm{cm}$, DC to 12 mc
100x SWEEP MAGNIFIER - 5 ranges.
SENSITIVE SWEEP TRIGGER-Normal, Automatic (with preset stability), High-Frequency. Single sweep also.
PLUG-IN, CRYSTAL-CONTROLLED
TIME-MARK GENERATOR - 10,000 to 1 range.

BEAM POSITION INDICATORS

. and many other features for maximum performance \& long-life reliability.

$$
\text { PRICE } \$ 1050,00 \begin{gathered}
\text { less } \\
\text { plug-ins. }
\end{gathered}
$$

Send today for complete specifications

e/e ctiponic tube corporation

 CIRCLE 195 ON READER-SERVICE CARD

MICROWAVE PRODUCTS

Backward-Wave Oscillator
Range is 12.4 to 18 Gc
Model OD 12-18 backward-wave oscillator delivers 10 mw min power output from 12.4 to 18 Gc . With uniform power over the range, it is suitable for swept signal generators and similar uses. The helix-type tube is made of hard glass and metal. It is enclosed in a protective metal capsule, with an RG91/U output connector on RG55U coaxial cable.

Stewart Engineering Corp.. Dept. EI), Santa Cruz, Calif. Price: $\$ 1,000$.

Slide-Screw Tuner
695
Cancels small reflections

Precision slide-scruw tuner adjusts to very small values of return loss or vswr. Micrometer and dial gage indicators allow precision measurement of phase and amplitude positions. Models 732 through 739 cover frequency spans between 2.60 and 18.0 Gc . The device will tune a $25: 1$ vswr to near unity, and provides at least one guide wavelength lincar travel of probe at each frequency range.

Omega Laboratories, Inc., Dept. ED, Rowley, Mass. PdA: $\$ 250$ to $\$ 375$; 2 weeks.

ELECTRONIC DESIGN • April 12, 1961

Waveguide Switch

For RG-51/U systems

MA-1064 is a spdt waveguide switch for use in RG-51/U waveguide systems over 7.05 to 10.0 Gc range. Switch is rated at 300 kw peak power unpressurized, and 500 kw peak power when pressurized to 2 atmospheres. Insertion loss is 0.15 db , vswr 1.10 max; isolation exceeds 35 db . Holding current is 150 ma ; switch may be operated at ambient temperatures to 125 C . A $28-\mathrm{v}$ rotary solenoid provides high operating torque. Switch body is a cube of $1-7 / 8 \mathrm{in}$. Switching time is 55 msec max.

Waveguide Systems Div., Microwave Associates, Inc., Dept. ED, Burlington, Mass. P\&A: $\$ 39.5$; stock to 30 days.

Traveling-Wave Tube

Produces 28 wcw

Up to 28 w of continuous power has been produced over a range of 5 to 11 Gc by the STX-182 traveling-wave tube, with 40 w expected. Using a column of permanent magnet rings as the focusing structure, the tube is 9 in . long and weighs 1 lb . Gain is 32 db . Tube life of more than 2 years under continuous operation in space environment is expected.

Sperry Rand Corp., Sperry Gyroscope Co. Div., Electronic Tube Div., Dept. ED, Great Neck, N. Y.
P\&A: Depends on user specifications; 6 months.

Bnew Mriowase Amplifiess designed by request

A number of Alfred's customers asked for-and now have - amplifiers with 1 and 5-watt outputs covering the ranges listed above. The new units can be used as broadband power amplifiers; stable power oscillators using external resonant feedback networks; narrowband amplifiers providing more than rated gain and power and for frequency multiplication. Each amplifier consists of a TW tube, its focusing magnet, and a

$\mathbf{~ b a s i c ~ d a t a ~}$	$\mathbf{5 2 6}$	$\mathbf{5 2 7}$	$\mathbf{5 2 8}$
Frequency Range	12.4 to 18 Kmc	8 to 12.4 Kmc	7 to 11 Kmc
Power Output	1 watt	2 watts	5 watts
Gain (Small Signal)	30 db	30 db	30 db
Gain (Saturation)	25 db	30 db	30 db
VSWR (Input/Output)	$2: 1$	$2.5: 1$	$2.5: 1$
RF Connectors	P Band Flange VGA19/U	Type N female	Type Female
Price	$\$ 4,950$	$\$ 3,490$	$\$ 3,490$

For more information, call your Alfred engineering representative or drop a line to Palo Alto. Please address Dept. 36

AlfRED ELECTROIICS

897 Commercial Street
PALO ALTO, CALIFORNIA
Phone: DA 6-6496

CIRCLE 196 ON READER-SERVICE CARD

EL84 6 бо5

 high slope output pentode.

Output pentode rated for 12W anode dissipation, primarily intended
for use in a.c. mains
operated equipment.

V .	250	V
$V_{\text {e }}$	250	V
1.	48	mA
la	5.5	mA
V_{61}	-7.3	v
ge	11.3	mA/V
f.	38	k /
14erer	19	

BUPPLIES AVAILABLE FROM:
IN THE U.S.A.
International Electronics Corporation
81 Spring Street, New York 12, N.Y.
Worth 6-0790
Rogers Electronic Tubes \& Components 116 Vanderhool Avenue, Toronto 17. Ontario. Hudson 5-8021

B
 Mullard

ELECTRONIC TUBES

BRITAINS FIRST CHOICE
 FOR FIRST EQUIPMENTS

MULLARD OVERSEAS LTD, MULLARD HOUSE
TORRINGTON PLACE, LONDON ENGLAND

Ferrite Modulator

The X-band ferrite modulator model XL400 has a frequency range of 8.2 to 10 Gc and an attenuation range of 40 db min . The vswr is $1.25: 1$, max; insertion loss is 0.6 db , max. The modulation frequency is 100 kc : solenoid field is 0 to 50 gauss. Similar units are available in frequency: ranges from S-band to Ku-band.

Micromega Corp., Dept. EI), Venice, Calif. Acailability: 3010.90 dlays.

Nuvistor Preamplifier

The IFT1 preamplifier, using nuvistor tubes, is small, light, and requires minimal power. Handwidth is 8 mc , gain 30 db , noise figure 1.5 db . Intended for use with microwave mixers, input operates from a 300 -ohm, 22 -pf source.
LEL. Inc., Dept. ED. 75 Akron St., Copiague, N.Y.

C-Band Oscillator

Output is 1 kw

A C-band pulsed triode oscillator, the model 301 C has an output of 1 kw . Frequency is adjustable from $5,400 \mathrm{mc}$ to 5.900 mc . There is no mode skipping; pushing figure is less than 1 mc , and no special pulse shaping is required. Temperature drift is 20 kc per deg C. The unit will withstand $20-\mathrm{g}$ vibration, 20 to $2,000 \mathrm{cps}, \pm 1 \mathrm{mc}$ fm , and $100-\mathrm{g}$ shock for 6 msec in all planes.
John Gombos Co., Inc., Dept. EI), Webro Road, Clifton, N.J.

Decade Attenuator 500

Model TAD-50 attenuator is designed for rf signals in the range of dc to $1,250 \mathrm{mc}$. The unit contains three separate turret attenuators, two covering 0 to 50 db in $10-\mathrm{db}$ steps and one for 0 to 10 db in $1-\mathrm{db}$ increments. Internally connected in series, the three provide a total of $110-$ db attenuation, adjustable in $1-\mathrm{dh}$ steps. Power rating is 1 w . Input and output impedance is 50 ohms. The rabbet-box construction used provides for an insertion loss of 0.1 dh in the $0-0-0$ position at $3(1) \mathrm{mc}, 0.3-\mathrm{dh}$ at $5(1) \mathrm{mc}$ and 0.6 db at (9) mc.

Telonic Industrics, Ince., I)ept. ED), Beech Grove, Ind
Price: $\$ 325^{\circ}$
Availability: Immediate, in production guantities.

Power Supply

430

Designed to provide stable klystron pump oscillator voltages for parametric amplifier applications, the MA-2S power supply gives 0.1% regulation despite line voltage changes of $\pm 10 \mathrm{v}$ and frequency changes from 58 to 62 eps. Beam supply is -200 to -400 v at up to 50 ma , with ripple less than 2 mv . Load regulation is 1% max. Reflector supply is 0 to -400 v at $100 \mu \mathrm{mp}$ max; ripple is less than 1 mv . Heater supply of 6.3 v , up to 2 amp . is provided. The $30-\mathrm{lb}$ unit measures $10-3 / 16 \times 10-13 / 16 \times 14-3 / 4 \mathrm{in}$. deep.

Microwave Associates, Inc., Dept. ED, Burlington, Mass.

PEC miniaturized transistor amplifiers are production units

Centralab.

ELECTRONIC SWITCHES • VARIABLE RESISTORS • CERAMIC CAPACITORS • PACKAGED ELECTRONIC CIRCUITS • EMGIMEERED CERAMICS CIRCLE 198 ON READER-SERVICE CARD at Centralab

Laboratory curiosities? Absolutely not! These miniature amplifiers are available NOW as standard production units, at realistic prices.

Use them confidently in dozens of applications, in audio, instrumentation, and specialty products. They permit practical circuit miniaturization in your current projects. thanks to the Centralab <䦻〉 technique that achieves component densities as high as $2,500,000$ per cubic foot.

These units range in output from 0.5 mw . to 3 mw ., and can be supplied with frequency curves to meet your specific requirements. For detailed specifications and application information, write to Centralab and request Technical Bulletin 42-1018.

THE ELECTRONICS DIVISION OF GLOBE-UNION, INC.
960D E. KEEFE AVENUE - MILWAUKEE 1, WISCONSIN CENTRALAE CANADA LTD. - AJAX, ONTARIO

Wide-band antenna amplifier models 780 through 785 provide gain from 19 to 29 db with noise Gigures from 3.2 to 5.0 db . Five models have pass bands in ranges between 200 and 500 mc ; band widths are 40 to 140 mc . Designed for outdoor use, the unit is normally mounted 3 to 5 ft from the antenna. It can be operated continuously at temperatures between -30 and 180 F , with a service expectancy of 10,000 hr or more.
Resdel Enginecring Corp., Dept. ED, 330 S. Fair Oaks Ave., Pasadena. Calif.
Price \& Acailability: $\$ 1.250$ to \$1,48.5; 1.5 days.

Bandpass Filter

For 2.2 to $\mathbf{2 . 3} \mathbf{G c}$ frequency band. model FS-205 bandpass filter has insertion loss of 0.25 db in passband and 50 db in stopband. Designed for space environments, the filter withstands 20 g from 25 to 3,000 cps. The vswr is less than 1.2:1; filter can handle 15 w cw at any altitude. Size is about $6 \times 2 \times 2$, weight 14 oz.
Rantec Corp., Dept. ED, Cala basas, Calif.
PGA: \$250 to \$401) ea; 30-day de" livery.

Raytheon pulsed-type Amplitron* produces 3-megawatt S -band output at efficiencies of 75 to 80%

QKS 622 tubes are used as driver and final amplifier stages of broadband MOPA chain.
Raytheon Amplitrons are ideally suited for high power MOPA applications where extremely high efficiency is required. For example, a single QKS 622 Amplitron can produce up to 15 kw average and 3 megawatts peak power with 70 to 80% efficiency. Easily achieved parallel operation doubles these power outputs. Adequate drive power is supplicd by the QKS 622 operating at lower levels.
This unusually compact 2,900 to $3,100 \mathrm{mc}$ Amplitron has been operated at 30 -microsecond pulse widths, and can be expected to perform satisfactorily at far greater widths A companion tube, the QKS 783, covers 2.700 to 2.900 mc. Both tubes are specified for 1,000 hours.

Wirite for detailed information and application service to Microwave and Power Tube Division, Raytheon Company, Waltham 54 , wave and Power Il Casachuselts. In Canal Waterloo, Ontario. •Ray theon Trademark

RAYTHEON COMPANY
RAYTHEON

ALITE

Combince..

- VACUUM-TIGHTNESS
- SUPERIOR mechanical strength
- high temperature and heat-shock resistance
- reliable electrical CHARACTERISTICS
- high resistance to NUCLEAR RADIATION
- PRECISION TOLERANCES

Write for FREE Helpful Bulletins
 Bulletin A-7R provides de tailed description and speciff cations of Alite. Bulletin A-40 describes Alise facilities and bushings.

HERMETIC SEALS AND BUSHINGS

HIGH-ALUMINA

Looking for ways to improve reliability, reduce maintenance problems? The unique advantages of Alite high-alumina ceramic-to-metal seals may be just what you need!

With maximum working temperatures in the range $1300^{\circ}-1600^{\circ} \mathrm{C}$., Alite can be metallized and brazed to metal parts to form rugged, vacuum-tight seals which, in turn, can be welded into final assemblies.

From design to finished part, every manufacturing step - including formulating, firing, metallizing and testing - is handled within our own plant and carefully supervised to assure strict adherence to specifications, utmost uniformity and reliability.
Over 100 standard sizes of Alite bushings in a range of types are available to simplify design problems and speed delivery. However, when special units are called for to meet unusual requirements, a team of Alite engineers stands ready to help you take advantage of Alite's superior properties.

U. S. STO NE WARE
 ORRVILLE, OHIO

 Now York Office 60 East 42 nd 5 f.MICrowayes products

RF Wavemeter
Insertion length is 2-1/4 in.

Model 3170 T 1000 rf wavemeter, designed as a system component, has an insertion length of only $2-1 / 4 \mathrm{in}$. The device will tune to 0.25 cycle per me per deg F, for any frequency between 5,929 and $7,125 \mathrm{mc}$ over a temperature range of -5 to 140 F. Crystal detector delivers a minimum crystal current of 20μ a to a $3-\mathrm{K}$ load with 100 mw floating in the main line. The vswr is 1.08:1 max; unit weighs 4 lb . The main line is RG-50/U waveguide, terminated in UG-344/U cover flanges.

Telerad Div., The Lionel Corp., Dept. ED, Flemington, N.J.
Price \& Availability: $\$ 2.51$ cea; 6 to 8 weeks.
Waveguide Duplexers
Rated of 2 megawatts

Using two atr tubes and one it tube, these waveguide duplexers minimize incoming signal loss and eliminate the need for a critical transmitter line length. The L-band duplexer, for 1.25 to 1.35 Gc , is rated at 2 megawatts max, average power 4 kw max. The vswr is 1.6 max, and duplexer loss is 0.7 db . Weight is 4.9 lb . Similar units are available for $V, K a, K, C, S$, and P bands.

Bomac Laboratories, Inc., Dept. ED, Salem Road, Beverly, Mass.

Broadband Antennas

Provide bandwidth of 10 to 1

Vertical, horizontal, left-circular and rightcircular polarizations are provided in bandwidths of 10 to 1 or greater by this line of broadband antennas. Model 12E1-10 has a frequency range of 100 to $1,000 \mathrm{mc}$ with a gain of $8 \pm 1 \mathrm{db}$ and a vswr of 2.0 to 1 max. Model 13E1-5 has a range of 1 to 5 Gc with a gain of $7 \pm 1 \mathrm{db}$ and a max vswr of 2.2 to 1 .

Litton Systems, Inc., Maryland Div., Dept. ED, 4900 Calvert Road, College Park, Md.

Microwave Absorber

Is flexible

Flexible microwave absorber material, type RS, in the form of thin sheets of plastic can be supplied with resonance at any frequency between K- and S-bands. Performance is better than 25 db at resonance. Weight is 0.5 to 2 lb per sq ft depending on frequency. Positive adhesive mounting from -60 to 40 O F
B. F. Goodrich, Dept. ED, Shelton, Conn.

Parametric Amplifiers

Environmentally qualifed parametric amplifiers for L-, S-, C- and X-bands are designed to utilize a number of varactor diodes now commercially available. An S-band nondegenerate model has a noise figure of less than 3 db , including circulator loss, from -10 to +70 C . A transistorized pump power supply is available as optional equipment.

Hughes Aircraft Co., Dupt. ED), Culver City, Calif.

NOW ... the complefe standard line of
 T RAINSEORIMER

The precision quality of HST Transformers combined with Arco's censistent 24 hour coast-to-coast delivery service places the greatest variety of high reliability standard transformers, reactors and toroids at your immediate disposal. All HST Transformers are built and tested to meet MIL-T-27A specifications except for types SS, SMO, SSM and UCA. Complete stocks are available from all Arco branches or from any ARCO-HST Industrial Distributor for instant shipment. Required material is prepared minutes after your order is received. Arco's branches in Dallas and Los Angeles eliminates any costly delays and work stoppages.

Manufactured by
electronics inc. Transformer Division
Community Drive, Great Neck, New York - HUnter 7-0500
los angeles branches:

$$
\begin{aligned}
& \text { ARCO CAPACITORS INC. } \\
& 1548 \text { So. Robertson Blvd., Los Angeles 35, Calif. } \\
& \text { CRestview } 1-115 \text {. }
\end{aligned}
$$

ARCO ELECTRONICS INC.
1339 Crampton St., Dallas 7, Texas
Riverside 8-0648

* Dresser Electronics HST Division

Product design engineering at Sage is highly specialized. We concentrate solely in the area of bridging that gap between precision and stability on the one hand and power rating on the other.

Now, for flat card assembly as well as for other component cluster approaches to circuit squeezing, SAGE offers industry's smallest grouping of 1,2 , and 3 watt resistors.

Actual Size	Style	$\begin{aligned} & \text { Rated Watts } \\ & \text { at } 25 \mathrm{C} \end{aligned}$	Nominal, inches		Range. Ohms
			'ength	Diameter	
cencis	SIW	1	406	094	5-10,000
	SAIW	2	500	. 125	5-15.000
	SA2W	3	500	187	.5-18.000

Performance features of MIL-R-26C are easily met. SA2W is in fact RW59, presently the smallest unit detailed in MIL R-26C.
Sage Impervohm silicone resin provides moisture and voltage protection. and may
$\frac{1}{2} \quad$ be sa
$350^{\circ} \mathrm{C}$.
Above styles available in non-inductive windings, also with weldable leads on special order.
Test samples available on request

GAGE

SAGE ELECTRONICS CORP. Country Club Road. East Rochester, N. V. CIRCLE 203 ON READER-SERVICE CARD

Microwayes Products

Diplexer

For 755 to 985 mc

Model 77.001 diplexer is designed for use from 755 to 985 mc . The vswr is less than 1.03 ; pass band insertion loss is less than 0.1 db and reject attenuation is greater than 75 db .
Antenna Systems, Inc., Dept. ED. Hingham, Mass.

Microwave System

For duplex service
Duplex, multichannel service for point-to-point communications of voice, control and data transmission applications is provided by this 6-Gc microwave system. Systems can be installed initially with a few carrier channels and expanded as necessary by adding more channeling equipment.

Lynch Communication Systems Inc., Dept. ED, 695 Bryant St., San Francisco 7, Calif.

Delay Lines

509

Lightweight band-pass delay lines for systems requiring time delay in the vicinity of a fixed center frequency are available in various combinations of operating frequencies and time delays. Typical time delay values of $0.22 \mu \mathrm{sec}$ at an operating frequency of 60 mc and a bandwidth of 10 mc are available in a unit measuring $1 \times 2 \times 10 \mathrm{in}$. Standard 50 -ohm cables are terminated in BNC-type connectors.

PCA Electronics, Inc., Dept. ED, 16799 Schoenborn St., Sepulveda, Calif.
 NEW YOAK 13 SAMAICA 33 MEW YOAK 13 JAMAICA 33 BOSTOM 10 MEWARK 2

CIRCLE 204 ON READER-SERVICE CARD

UNIVERSAL Steals the Show!

New York I.R.E. Show Model s with New Counter and Digital "Kead Out" Counter and ll transistorized In-Line hears.

NEW MODEL TVW-for toroidally winding New Vertical Deflection Coil being adopted by Television Industry

NEW MODEL LS-I LABORATORY SLIDER-TYPE WINDERwith Model " S " interchangeable winding heads, \#20-46 AWG, Fin. I.D. . $065^{\prime \prime}$

NEW MODEL BW TRUE BANK WINDER-for winding variable auto-transformers. Wire range \#20-30 AWG.

UNIVERSAL Send for further information

The mest COMPLETE IIme of TOROIDAL equipment in the world.

CIRCLE 205 ON READER-SERVICE CARD

ELECTRONIC DESIGN • April 12, 1961

LOUD AND CLEAR!

FM TELEMETRY TRANSMITTER PROVIDES...

- Carrier frequency stability to within $\pm \mathbf{0 . 0 1 \%}$
- Frenquency response within 0.5 db
- 2 watts minimum output
- Virtual immunity to extreme environments
- Low microphonies
- Rellability proven in Tiros 1, Redstone, Jupiter.
- Snark and other missile programs
- OH-the-shelf availability

For complete information on the Model 3115 ask for: Tecrmical Bulletin RAD B.102. Write Dept. ED4.

RADIATION

Melbourne. Florida CIRCLE 206 ON READER-SERVICE CARD
get the

NSILICONE

Developing Silicone rubber compounds that embody properties to meet today's product requirements, is a Goshen specialty. GRC-engineered Silicone rubher parts, seals and components have no superior when it comes to resistance to chemicals, acids. extreme temperatures, moisture, weathering, oxidation, ozone and other factors that defeat organic rubbers. That's why they're in increasing demand in today's vital electronic, automotive, aero-space and other industries. Let us know your problem.

3941 8. TENTH ST. © GO8HEN, INDIANA Phone KEystone 3-1111 TWX: GO8H 8701 CIRCLE 207 ON READER-SERVICE CARD ELECTRONIC DESIGN • April 12,1961

X-band ew oscillator assembly has a minimum of 3 mw over a 1% tuning range from 8.5 to 9.6 Gc. Vernier tuning is the only adjustment. Requiring a plate voltage of 185 v and 6.3 v filament, the unit weighs 8 oz.
John Gosbos Co., Inc., Dept. ED, Clifton, N.J.

Waveguide Windows

Are solderable

Solderable waveguide pressure windows provide an air-tight seal within waveguide systems and are transparent to microwave energy. Designed for use with EIA sizes WR-90, WR-112, WR-187, and WR-284, all windows are silver plated to reduce of loss.
Microwave Development Laboratories, Inc., Dept. ED, 92 Broad St., Babson Park 57, Wellesley, Mass.

Directional Coupler

$$
\text { Peak power is } 5 \text { megowatts }
$$

S-band directional coupler, model 45,000 , will handle a peak power of 5.0 megawatts at a pressurization of 15 psig. The unit utilizes strip-line techniques and weighs approximately 4 lb . Coupling is $-54 \mathrm{db} \pm 1 \mathrm{db}$, flat to $\pm 1 \mathrm{db}$. Directivity is 20 db min; vswr is 1.10 to 1 on main waveguide over a 15% bandwidth and 1.35 on auxiliary line.
Transco Products, Inc., Dept. ED, Los Angeles, Calif.

In RF connectors

MOST COMPLETE LINE!

Gremar makes more series of RF connectors and components than are available from any other source . and then some! Gremar exclusives source. \boldsymbol{R}_{0} and then some. Gremar exclusives use with MIL-type sub-miniature coaxial cables; power dividers; impedance transformers . . and others.

MOST COMPLETE STOCKS!

Gremar always has more than 750,000 assembled RF connectors of more than 2000
types on the shelf. component parts always ready for speedy assembly of standard connectors or quick adaptation to your special requirements.

MOST COMPLETE SERVICEI

Because Gremar connectronics ${ }^{\oplus}$ concentrates engineering, production and quality control on RF connector and components only, you can depend on Gremar to solve your design, delivery and reliability problems quickest. Try us and
see. Address your inquiry to:
 RELIABILITY THROUGH QUALITY CONTROL Dept. \quad Wakefield, Mass., CRystal 9.4580 circie 208 On reader-service card

Accurate Pull TESTER

- Portable ... Air-Operated . . . Laboratory Accurate . . . Available in Ranges up to 500 Lbs. - Write for Bulletin 750 e.

HUNTER SPRING COMPANY A Division of American Machine and Metals, Inc.
27 Spring Avenue, Lansdale, Pennsylvania

OIVISIONS OF AMFERICAN MACHINE AND METALS, INC.: JIoy Laundry Machinary montio reill

Cavity Amplifiers
For L- and S-band use

Four miniature, continuous wave cavity amplifiers, series 30 , operate in the frequency range of 215 through $2,325 \mathrm{mc}$. The units are precision fabricated from light metal alloys and completely gold-plated. Specifications for model P-30 are: low power gain, 16 db ; low power output, 2.5 w ; high power gain, 10 db ; high power output, 25 w ; plate power requirements, 600 v at 0.090 amp .

Resdel Engineering Corp., Dept. ED, 330 S. Fair Oaks Ave., Pasadena, Calif.

CW Amplifier

For X-band use
Model 30TWAl cw X-band amplifier produces a nominal output power of 1 kw over a 5% band with a drive power of 50 to 100 w . A bandwidth of 2% is obtained at a fixed voltage and a 5% tuning range is available by varying the beam voltage.
Elliot Bros., Ltd., Dept. ED, 34 Portland Place, London, England.

Bi-Directional Coupler

Adjustable from 5 to 70 db

This broadband, precision calibrated variable directional coupler is adjustable from 5 to 70 db . The Delta Coupler may also be used as a variable attenuator. Accuracy is to within $\pm 1 \mathrm{db}$. A direct-reading dial is provided. Maximum power handling capability is 200 w . The coupler is
> backward wave oscillators${ }^{8} 1$ an hour

For an interesting look into the economics of BWOs - or any other specialized electronic tubes - may we suggest that you spread the cost of the last one that needed replacement over the number of hours it was operated? No matter what hourly rate you come up with. such an evaluation will point up the fact that service life is than purchase price.

Backward wave oscillators made by Stewart Engineering have : built-in life insurance policy in the form of a minimum 500 hour guarantee. Though it is seldom exercised IStewart backward wave tubes characterisby a wide margin) the guarantee byables you to put highoper. formance BWOs on your payroll at a known low maximum rate per hour.

Now available:
Type OD 12.18 BWOs
with power output
minımum of 10 MW
in range 12.4 .18 kmc .
30-day delivery
At left: Type

We've prepared an interesting new brochure and specifica tions on backward wave oscillators, and would like to send you a copy: Details also avail able on tubes custom-engineered to your specifications. Write today.

STEWART ENGINEERING CORPORATION

ANTA CRUZ•CALIF.
CIRCLE 210 ON READER-SERVICE CARD ELECTRONIC DESIGN • April 12, 1961
available in frequency ranges from 0.5 to 1 Gc through 4 to 8 Gc .
General Precision, Inc., Kearfott Div., Microwave Branch, Dept. ED, 14844 Oxnard St., Van Nuys, Calif.

Mixer Preamplifiers

433
Range is from 1 to 36 Gc

Two series of coaxial and waveguide mixerpreamplifiers, one fully solid-state, the other employing nuvistor tubes, cover the range from 1 to 36 Gc . Both series have an if output of 30,60 or 70 mc , a bandwidth of 8 mc and gain of 20 db . Typical noise figures for the transistor type are 10.5 db ; for the nuvistor types, 7.5 db .

LEL, Inc., Dept. EID. 75.4 kron St., Copiague N.Y.

Planar Triode
550
Range to 3 Gc

Designed for use as an oscillator, frequency multiplier or power amplifier, the ML-7698 is a high-mu, planar triode with a frequency range up to $3,000 \mathrm{mc}$. With low inter-electrode capacitance, high transconductance and high mechanical strength, the tube has a metal and ceramic coaxial construction suiting it for use in line-type circuits and cavity resonators. The cathode is an indirectly-heated, oxide-coated disk; the anode is cooled by conduction and convection.

Raytheon Co., The Machlett Laboratories, Inc., Dept. ED, Springdale, Conn.
Price: $\$ 100$.
Availability: 60 days.
ELECTRONIC DESIGN • April 12, 1961

model 8011A militarized differential dC voltmeter

Meets all environmental requirements of MIL-T-945A
$\begin{array}{ll}\text { Designed for continuous operation: } \quad-\text {-from }-54^{\circ} \mathrm{C} \text { to }+65^{\circ} \mathrm{C} \\ - \text { with } 95 \% \\ & \text { relative humidity }\end{array}$
--up to an altitude of 10,000 feet
-from $-65^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ -with 100% relative humidity -up to an altitude of 50,000 feet.

FEATURES

- Accuracy of 0.05% of input voltage from 0.1 to 500 volts. Eight search and VTVM ranges. - Infinite input resistance at null. No zero adjustments. Temperature controlied Zener refereace. Model 8011 A is a true potentiometer built to provide accurate voltage measurements under adverse environmental conditions. Housed in a light grey enameled combination case, it is portable, and virtually impossible to damage by overload - Chopper stabilized null detector, precision Kelvin-Varley resistors (hermetically sealed in oil), temperature controlled Zener reference, and drift free 500 volt reference supply, all contribute to the outstanding performance of this instrument For your applica-
tion requiring accuracy, reliability, plus ease of operation specify the John Fluke Model 8011 A .

ONE PIECE CASE
Combleation transit and instru mont esse of deep drawn alum munn construction pratects the slectronic circuitry frem dust, moisture and dratts. This unique Peature calalles the Model cor1/ to provile bboratory serforim ance under the most severe anvironmental cenditions.

PARTIAL SPECIFICATIONS

voltage ranges:
$\pm 0.5,5,50$ and 500 V Lic
$\pm 0.05 \%$ from 0.1 to 500 V
$\pm 0.1 \%$ of input voltage or 50 uV , whichever is
greater below 0.1V
$10 \mathrm{~V}, 1 \mathrm{~V}, 0.1 \mathrm{~V} \& 0.01 \mathrm{~V}$
50uV
Infinite at null from 0 to 500 V
Case covered, $11 \frac{1}{2} 2^{2}$ high, 19 " wide, $191 / 2^{"}$ long
57 pounds complete
Available on request

Prices and doto subject to change without notice

$\square \square \square$

JOHN FLUKE MFG. CO., INC. MOUNTLAKE TERRACE, WASHINGTON

HOW FAST CAN YOU TEST Circuit Design Reliability?

2 16 circuit parameters in less than 11 minutes
Write today for informative 8 -page Brochure.

AIRBORNE INSTRUMENTS LABORATORY
deer park. long istand. new yoak A division
OF CUTLER-HAMMER, INC.

65,536 TESTS

M I NUTES
Yes, you can test all combinatıons of high and low values of as many as

CIRCLE 212 ON READER-SERVICE CARD

TWT's OPTIMIZED for NARROW BAND USE

GREATER POWER OUTPUT
INCREASED SMALL SIGNAL GAIN

(D) $1.1-1.4$ kme The PPM focused iype HA-53, normally operated from $1-2 \mathrm{kmc}$, when optimized is capable of >35 DBM
(S) power output and 40 db small-signal gain
4.8 33 DBM minimum power output over the narrow band
(C) $\mathbf{3 . 3} \cdot \mathbf{6 . 0} \mathrm{kmc}$ The HA-35, a 4.8 kmc solenoid focused ampli fier, displays narrow band performance of 32 DBM mini-
8.5-9.5 kme Normally and $>45 \mathrm{db}$ small-signal gain
(8) 8.5-9.5 kme Normally operated from 8-11 kmc, the PPM focused type HA-21 is capable of $>45 \mathrm{db}$ small-signal gain, and 31 DBM minimum power outpul when optimized If your systom application requires a high-performance, narrowband travaling wave fube amplifier, contact Huggins Laboratories. We may have a TWT with the exact characteristics for your systom.

\intMicrowaves products

Parametric Preamplifier

Built as a weatherproofed, sealed unit for antenna mount use, the RA-l parametric preamplifier is suited for distant range tracking, troposcatter links, or radio astronomy applications. Passband is 225 to 260 mc ; gain is 25 db . Noise figure is less than 2 db . Input and output impedances are 50 ohms
LEL, Inc., Dept. ED, 75 Akron St., Copiague, N.Y.

Varactor Diodes
Gallium arsenide type
Six varactor diodes, series AP-1, range in cutoff frequencies from 60 to 150 Gc min at an operating bias of -2 v measured at 10 Gc . Power dissipation rating is 150 mw at 25 C measured at 10 Gc . Breakdown voltage rating is 6 v for a reverse current of $10 \mu \mathrm{a}$ at 25 C .
Tyco Semiconductor Corp., Dept. ED, Hickory Lane, Bear Hill, Waltham, Mass.

Reflex Klystron

Has single-screw tuning

Reflex klystron model VA- 250 is a compact unit designed for applications requiring good frequency stability in severe environments. It has single-screw tuning and waveguide output. Electrical characteristics are: frequency, 68 to 74 Gc ;

523
Lab batup shows s8-15a varsatility, (1) FM 131 aro AM and Sss signols, respec⿻i. wove modulation.

MORE ULTRASONIC ANALYSES $\underset{\substack{\text { fasserer } \\ \text { easier }}}{ }$ high accuracy

PANORAMIC'S NEW, IMPROVED SB-15a
spectrum analyzer 0.1 kc to 600 kc

Find, identify and analyze more types of ultrosonic signals with Ponoramic's advanced Model SB-15a . . economical, - Maire - Naite, vibrotion \& hormanic analysis o Fillanalysis - Communication Syatom Manitaring aly more-Power Spectral Donsiny Analysis ond Frequoncy lesponte Plotting I with

S8.15a specifications:

- Frequency Ronge 0.1 ke 10600 kc - Sweop

Write today for detailed technical dato on the $58-150$. . . NEW CATALOG DIGEST and regular mailing of THE PANORAMIC ANALYZER, focturing application data.

Panoramic
radio prooucts mic.

524 So. Fulton Ave., MI Yernee 2000 OWens 9-4600 - TWX: MT-Y-NY-5229 Coblest Ponoramic, Mi. Vernon, N. Y. Stato CIRCLE 214 ON READER-SERVICE CARD ELECTRONIC DESIGN - April 12,1961

DEPENDABLE SWITCHING

of contact loads to 25 amps . . .
"Diamond H" Series W Relays-The simple, functional construction of this high-quality general-purpose relay assures long-time dependable switching. sures long-time dependable switching. specifying "Diamond H "' Series W Relays makes good sense. Here are Relays makes
some reasons:
Reliable-Mechanical life in excess of $10,000,000$ cycles.
Versatile-a-c or d-c units available with choice of eight different combinations.
Compact-Measures $11 / 2 \times 13 / 2 \times 17 / 8$ inches-weighs less than 10 oz .
High Confact Rating-Conservatively rated up to 25 amps, 240 va acc or 28 v d-c.
Easy to mount-Plug-in design. Panel or side mounts also available.
Underwriters Laborafory ApprovalU/L File 31481.
Cosl-soving-Low in initial cost, the Series W is easy to install, saves space, and is easy to service.
Send for complete facts-in new 8page Series W Relay Guide.

ㅅ. "HART

MANUFACTURINO COMPANY
210 Barhelomaw Avenue, Manfoid I, Conn. Phone JAckson 5-3491

CIRCLE 21S ON READER-SERVICE CARD ELECTRONIC DESIGN • April 12, 1961

D-C AMPLIFIER EVALUATION number I in a series

AMPLIFIER NOISE

Accuracy is the basic objective in amplifier selection. When evaluating amplifiers for specific applications all errors must be considered. One such error, the noise level, determines the ultimate accuracy of the amplifier since the smallest observable signal cannot be less than the noise level. However, noise outside the frequency response range of the amplifier load can be filtered out or ignored with such read-out devices as galvanometer oscillographs.

Noise in an amplifier is any voltage component appearing at the output that has no counterpart in the input signal. Usually only the a-c component of the output is termed noise. The d-c component is called zero drift and its evaluation will be covered in another of this series.

Internally generated a-c components must be evaluated as to amplitude and frequency range. Noise may be divided into two general classes and measured as described below. (a) Random voltages of a broad band nature arising from thermal agitation in resistors and random tube or transistor noise . measurements on a peak-to-peak basis are often 10 times or more larger than the measured rms value over the same frequency band (b) Narrow band voltages induced within the amplifier by line voltage or chopper excitation . . these voltages are generally sinusoidal so that peak-to-peak values are only about 2.8 times larger than the measured rms values.

Testing amplifiers for noise

If the input signal is zero, any voltage components detected at the

amplifier output can be identified as noise. A standard technique for measuring noise is shown.

The oscilloscope measures the peak-to-peak values, the VTVM in rms values. Equivalent input noise (eq. in) is the measured noise divided by the amplifier gain. For details write for Bulletin BE AN121.

Noise less than 0.04%
With a full scale input signal of 10 mv . Honeywell's AccuData III Amplifier has a wide band (0-100 kc) noise specification of $4 \mu \mathrm{~V}$ (eq. in) and a peak-to-peak noise over a $0-10 \mathrm{cps}$ band of 4 v (eq. in)
. less than 0.04% of full scale!

The AccuData III. a wide band differential input d-c amplifier with all transistor design, is especially useful for driving analog-to-digital converters, f -m magnetic tape systems and high speed oscillographs where low level signals such as thermocouple, strain gage and similar transducer outputs are to be accurately measured. Write for Bulletin BS-DISA- 3 to Minneapolis-Honeywell, Boston Division, Dept. 5, 40 Life Street, Boston 35, Mass.

Honeywell
Fist in Control CIRCLE 216 ON READER-SERVICE CARO

CIRCLE 217 ON READER-SERVICE CARD
NEW TRANSISTORIZED POWER SUPPLIES
MOBA VERSATILITY PER DOLLAR

MERCURY SERIES

- Automatic Overvoltage Protection
- Automatic Adjustable Short Circuit Protection
- Complete Range Remote Programming
- Turn-on/Turn-off Transient Elimination
- Constant Voltage / Constant Current

OYMAMIC REEULATION: 0.05% or 15 mv RIPPLE: 1 mv RMS max
RESPONSE TIME: Better than $50 \mu \mathrm{Sec}$

TRYGON
 ELECTRONICS INC.

111 PLEASANT AVE., ROOSEVELT, L. l., N. Y. . FReeport 8-2800 CIRCLE 218 ON READER-SERVICE CARO

0Micnowares products

Amplitude Modulators
With low drive power

At a given frequency in the specified band, this series of Faraday rotation amplitude modulators will produce an attenuation range of 0.5 $\mathrm{db} \max$ to 25.0 db min . High modulation frequencies with low drive power are a feature of the units. Seven models ranging from the MS-100 for 2.6 to 3.5 Gc to the MKU-101 for 14.0 to 18.0 Gc are available.

Rantec Corp., Dept. ED, Calabasas, Calif.

Klystron Oscillators

Life is 500 hr
Four klystron oscillators in the 4 -, 6 -, and 12 . mm bands are designed to produce output sig. nals exceptionally free from thermal drift and hysteresis. The 4 FK1 is capable of a power output greater than 100 mw at a fixed frequency of 75 Gc . Average life expectancy is 500 hr min . Elliot Bros, Ltd., Dept. ED, 34 Portland Place, London, England.

UHF Antenna

Range is 375 to $1,000 \mathrm{mc}$

Broadband bow-tie antenna model 91597 is an aid in rapid frequency scanning over the range of 375 to $1,000 \mathrm{mc}$. It has a sensitivity similar to that of a tuned dipole and does not require tuning adjustments. Matching devices are not

SELECTIVE SIGNALING

Yes, YOU make the decisions, selectively to activate or alert over 11,000 indiThe 12 tone 4 pulse sequential tronsmission eliminates the need for conlinuous receiver monitoring.
Although designed primarily to operate in coniunction with decoders, the versatile encoder is ideally suited for use in almost ony encoding system.
The ET12.4 Encoder employs our highly slable "Resonator" Resonant Reed Oscillator controls as rrequency determining devices. The infinite life characteristic and low power consumption of Resonators provide vears of conomisal alemenis, provide
service.

Complete specificalions and application data on request.
 CIRCLE 219 ON READER-SERVICE CARD
NIC DESIGN - April 12, 1961

SWITCH TO
 TEEM LAM

 forPrecision Electrical Resistance Instruments

STEPPING SWITCHES
for automation. felemefering, remofe conirol

- Rugged
- Dependable
- Hermetically
sealed if desired

ROTARY SWITCHES
for all elecironic equipment

- Meets or exceeds government specs.
- Printed circuit and special designs
- Quick
deliveries
- Long life
- All sizes

CAM SWITCHES

for counting and control

- Decade switch
- Control
switch
- Decimal to binary converter

CIRCLE 222 ON READER-SERVICE CARD
monopulse antenna the 5.4 - to $5.9-\mathrm{Gc}$ range, performs checkouts and system analysis on monopulse circuitry. It simulates signals normally derived from sum and difference circuitry, and provides adjustable electrical line lengths in both signal and local oscillator branches.

Rantec Corp., Dept. ED. Calabasas, Calif.

IDEAS FOR DESIGN

The Most Valuable Ideas Need Your Votes

Be sure to vote for the Ideas which you think deserve the $\$ 50$ Most Valuable of Issue Award. You may vote for one or more by circling the corresponding number on the Reader-Service card. Choose the ldeas which suggest a solution to a problem of your own, or which stimulate your thinking. The Most Valuable of Issue Ideas will be eligible for the $\$ 1,000$ Idea of the Year Award, with each idea published receiving a $\$ 20$ honorarium.

Microphone Connector Is Potted 743 In Three Sections For Easy Disconnect

A conventional microphone connector, used on precision instrumentation buried in the snow of Northern Greenland, had to be potted so that changes in humidity and the presence of snow and ice would not change its insulation resistance. Further, the potting had to be such that the connector, an Amphenol Type 91-857, could be readily disconnected with a heavily gloved hand. This disconnecting feature ruled out conventional potting. Instead, a combination of three potting materials, molded into different sections on the connector, was used.
After the wire leads were securely soldered, a temporary, cone-shaped mold, tapering away from the connector, was formed by wrapping masking tape around the wire-to-connector junction area. Small quantities of Scotchcast Resin No. 4, made by Minnesota Mining and Manufacturing, were thoroughly mixed and poured into the cone with the connector mounted vertically in a clamp support. The poured "cone" of potting compound was cured for about one hour at room temperature. When the tape support was removed, the potted cone section was quite plastic and could be hand molded to any desired shape.

The connector body was then slipped over the cone in proper mounting position. With the insert section held at about $1 / 8 \mathrm{in}$. from "home," Dow Corning's No. 4 (high-dielectric grease) was injected into the central section of the connector as indicated in the drawing. Then, as the insert section was slipped into the shell, grease was forced into all voids of the moving parts of the connector yielding a potted, but flexible, central section. The set screw for locating and securing the insert was next placed in position.

This cable strain relief section was potted by injecting Dow Corning Silastic RTV-731 into the strain relief from the cord side of the connector.

- SILASTIC RTV 731 (DOW CORNING)POTTING COMPOUND
[UL DOW CORNING \# 4 COMPOUND
SCOTCHCAST POTTING COMPOUND (MINN. MIN. E MFG.)
Amphenol Type 91-857 microphone connector was potted by applying three insulating compounds at the darkened sections. Despite potting protection, connector could still be rapidly disconnected.

A room temperature curing rubber, this material forms very well and bonds readily to the connector rubber. However, contact must be avoided with the skin because it can be a severe irritant. Hands must be thoroughly washed immediately after it is used.
Edward J. Kolb, Physicist, U. S. Army Snow, Ice and Permafrost Research Establishment, Wilmette, Ill.

Separate Lamps Controlled Over Single Line

 749Four separate lamp circuits can be remotely activated over a single control wire by using the rectifier arrangement shown in the figure. The circuit uses the four possible combinations of phase and polarity that can be obtained by halfwave rectification of the ac line. Relative polarity of the $115-\mathrm{v}$ source and the "remote" $85-\mathrm{v}$ lines are indicated by the plus and minus signs.
The desired bulb can be lighted by connecting the control wire to the corresponding switch po-

Four (or more) remotely located lamps can be controlled over a single interconnecting line.
sition. Firing of more than one lamp is prevented by reducing the remote ac voltage to about 85 v rms. The $10-\mathrm{K}, 2-\mathrm{w}$ resistors connected from the control wire to the 85-v supply help to minimize the effect of stray control line capacity which cculd cause improper lamp firing.
It is possible to extend the circuit so that more than four lamps can be controlled. One control wire is required for every four lamps, with the same eight diodes sufficient for all lamps. Also, relays can be substituted for the neon lamps.
Note that, with appropriate switching, several lamps may be energized simultaneously. Thus, a binary coding may be employed, with decoding accomplished by using diode AND circuits, relays, etc. In this way, 15 functions may be switched over a single control line.
K. C. Herrick, System Engineer. Reflectone Electronics Corp., Stamford, Conn.

Reprinted from ED, Feb. 15, p. 218.

How You Can Participate

Rules For Awards

Here's how you can partiripate in Ideas for Design's Seventh Anniversary Awards: All engineer readers of Electronic DeSIGN are eligible.
Entries must be accompanied by filled-out Official Entry Blank or facsimile. Ideas submitted must be original with the author, and must not have been previously published (publication in internal company magazines and literature excepted).
Ideas suitable for publication should deal with:

1. new circuits or circuit modifications 2. new design techniques
2. designs for new production methods
3. clever use of new materials or new components in design
4. design or drafting aids
5. new methods of packaging
6. design short cuts
7. cost soving tips

Awards:

1. Each Idea published will receive an honorarium of $\$ 20$.
2. Ideas judged Most Valuable of Issue will receive $\$ 50$.
3. The Ideo judged to be Ideo of the Year will receive the Grand Prize of $\$ 1,000$ in cosh.
The Idea of the Year will be selected from amongst those judged to be Most Valuable of Issue.
Most Valuable of Issue and Idea of the Year will be selected by the readers of Electronic Design. Votes will be cast by circling keyed numbers on Reader-Service Cards. Payment will be made eight weeks after Ideas are published.
Exclusive publishing rights for all Ideas will remain with the Mayden Publishing Co.

Note to Provious Contributors
Ideas already submitted to the ideas for Design department, but not yot published, will be digible for the Seventh Anniversary Awards.

For Additional Entry Blanks, circle 750 on Reader-Service Card.

SEVENTH ANNIVERSARY AWARDS IDEAS-FOR-DESIGN

Yo: Ideas-for-Design Editor Electronic Design 830 Third Ave.
New York 22, N. Y.
Idea (State the problem and ther give your solution. Include sketches or photos that will help get the idea acmes.)

> (Use ceporcte cheat if necossary)

Here is my Idea for Design for possible publication in Euscthonic Design. I understand that it will be eligible for the Seventh Anniversary Awards $-\$ 20$ if published, $\$ 50$ if chosen Most Valuable of Issue, $\$ 1,000$ if choson Idea of the Year.

Name
Title
Company Name

Address

IDEAS FOR DESIGN

REEVES INSTRUMENT CORPORATION
A subidiary of Dynamics Corporation of America - Roosevert Field, Garden City, N. Y.
We needed a circuit, on a transistorized power supply, to detect and indicate rises of ripple voltage above the allowable 10 mv .

The circuit shown was chosen because we found it to be simple, reliable, and accurate.
The supply to be monitored is connected to the detector with the proper polarity. Capacitor C_{2} isolates the ripple signal from the direct current. The signal is then stepped up by transformer T1 which is tuned to the ripple frequency by capacitor C3.
When the peak ripple signal causes the current through the tunnel diode, D1, to exceed its full value, the diode will switch to a higher voltage. The autotransformer action of $T 2$ creates a larger voltage pulse on the gate of the silicon controlled rectifier, SCR1. This pulse turns both the controlled rectifier and the ripple light on. The value of ripple voltage at which this occurs is determined by the turns ratio of $T 1$ and the value of R1.

Amplified ripple voltage triggers silicon controlled rectifier which lights indicating light.

Capacitor C1 is included to provide a low source impedance for the firing pulse to the controlled rectifier. Tuning T1 with C3 and including the R1-C1 combination filters out and delays transient voltage pulses which could trip the SCR. If desired, a reset switch can be placed in series with the light.

Bruce Hicks, Development Engineer, Universal Match Corp., St. Louis, Mo.

Feedback Around Filter Provides 741 Sine and Square Wave Outputs

Sine and square wave outputs of equal frequency were produced by providing positive feedback around an active, twin-T filter.
The twin-T, RC network and amplifier 1 of the figure form a bandpass amplifier with gain

Sine waves at 1 and square waves at 2 are produced by feeding back around the active filter network.
and narrow bandwidth. Amplifier 2 is of three direct-coupled stages, with an over-all gain of 6.5 to $9(0) \mathrm{db}$. It can be overdriven with but a small input signal and produces a constant-amplitude square wave at its output. This signal feeds back positively to amplifier 1 and the circuit oscillates. Thus, both sine and square waves are produced at the points indicated. The oscillating frequency depends only on the parameters of the twin-T network and can be varied over a wide range.

Wilbur Du Vall, Chicf Engineer, Datrax Div., W: IV. Henry Co., Maywood, Calif.

A Random Pulse Generator

To check coupling and clamping circuits, a quick and inexpensive random pulse generator was needed which would vary its pulse width at u random rate.

The problem was simply solved with the cir.

cuit shown. It is an arrangement that has been accidentally connected many times before.

Any variation in the output can be obtain by varying the frequency of $f_{1}+\Delta f$.
Irving Bayer, Budd Electronics, Long Island City. N.Y.

Reprinted from ED, Feb. 15, p 218.
BE SURE TO VOTE for all of the Ideas you consider valuablel Simply circle on the Reader-Service Card ine numbers matching those next to the idee which appeare valuable to you.

Under any circumstance... placed under continuous load. or held "in reserve" for months... operating under severe envinonmental conditions of shock, vibration, or humidity
. Dale precision resistors retain their stability.
Stability is inherent in Dale resistors because it has been firmly infixed by design and methods of manufacture
methods which have reached new levels of achievement as the result of Dale's super-high reliability development program.
SPECIAL PROBLEMS? Let us help you with your requirements for special resistance products. We make modifications of standard products, resistor networks, matched pairs, etc. Send us your specs.
PROMPT DELIVERY: Whether your need is for a short "test run" or a large production release, Dale offers prompt service, direct from the factory and through a widespread network of distributors.

DALE ELECTRONICS, INC.
1328 28th Ave., Columbus, Nebr, U.S.A A subsidiary of HATHAWAY INSTRUMENTS, INC.
gact TYPE MF RESISTORS
METAL FILM - MOLDED - PRECISION These new resistors combine the advantages of Dale molding techniques with advanced high vacuum evaporated metal film procedures o provide the best characteristics of wire wound resistors, while retaining miniature size. Inherently good R.F. characteristics and low noise levels.

- RATED AT $1 / 2$ watt, $1 / 4$ watt, $1 / 2$ watt, 1 watt, 2 watts
- RESISTANCE RANGE from 100 ohms to 4 megohms, depending on type
- TOLERANCE $\pm 1 \%$
- TEMPERATURE COEFFICIENT ± 50 and ± 100 P.P.M.
- full power to $125^{\circ} \mathrm{C}$.
- COMPLETELY INSULATED; complete protection against moisture and salt spray Write for Bulletin R 43 and Write for Bulletin $R 43$ and
handy cross reference file card

1 IF YOUR CHILD HAS

A BAD BORE TEROAT.

call your doctor, especially if there is difficulty in swallowing, swollen neck glands, high fever, nausea or vomiting. Prompt treatment of "strep" throat can prevent rheumatic fever and rheumatic heart disease.

2 IF YOU THINE YOU RAVE HIGR BLOOD PRESSURE . .
see your doctor. Only he can tell. He can usually control it and decrease the chances of heart damage or "stroke".

3 BTROKES ARE NOT HOPELESS.

Many patients can be treated effectively. Invalidism can be prevented or reduced.

Your Heart Fund dollars helped to produce these advances. But heart disease is still the nation's \#1 health enemy. Further progress depends upon your support of medical research.

GIVE to the

 HEART FUND
IDEAS FOR DESIGN

Constant Output Signal Main- 748

 tained by Continuous Pulse TrainCertain logic circuits require that the presence of pulses at a given point be detected and indicated by a constant signal level. The multivibrator and delay line combination shown provides this constant (negative) level at point 1 as long as periodic input pulses are present at point A. If a pulse in the train is missing, the output at I will be triggered to zero.

The circuit is designe so that point A rests at ground potential. If a negative-going pulse train is present, the first pulse will both trigger the multi and start a negative pulse propagating down the delay line. The total delay time of the line is equal to the period of the train

If an adjacent pulse is present the transistor remains forward biased and point B remains at ground potential. Thus, the multi will not be triggered by the propagated pulse and the level at 1 remains constant. If an adjacent pulse is missing the delayed pulse will trigger the multi and the output level at 1 will change.

For a negative-going-to-ground pulse train the circuit merely requires an npn transistor for the gate. Also, the multi has to be designed to trigger on a positive pulse.

(a) Output at point 1 will be at constant level only if continuous train of input pulses is present at point A.

(b) Pulse train at point \mathbf{A} and corresponding output at point I show that output "flips" when input pulse is missing.

Joseph F. Martin, Design Engineer, StrombergCarlson Div., Rochester, N.Y.

ETI offers the benefits derived from many years of experience in the design and production of high quality precision glass stems and glass to metal assemblies for the power and special purpose tube industry.

CUSTOM ASSEMBLIES INCLUDEH,

- Flat Press Stems
- Cross Press Stems
- Button Stems
- Face Plate Bulb Assemblies
- Grated Seal Assemblies

Quick service and top engineering knaw-how, prompt many major firms to étilize ETI's serv. ices consistemtly.

Consult ETI on your current requirements We guarantee customer satisfaction.

$$
\begin{aligned}
& \text { BLM } \\
& \text { ELECTRON } \\
& \text { TECHNOLOGY } \\
& \text { INC. }
\end{aligned}
$$

626 Schuyler Ave, Kearny, N. J. WYman 8-8100

CIRCLE 226 ON READER-SERVICE CARD ELECTRONIC DESIGN - April 12, 1961

CIEAN

Electronic, Electrical, Mechanical Components and Contacts with NO Film or Residue

Cobehn

HIGH-VELOCITY SPRAY-CLEAN TECHNIQUE

APPLICATIONS

Electronic Components anssemblies: Di Odes. Trensistors, Slip-Ring Commutators, Crysials. Vacuum Tube components, Sub Miniature Assemblies.
Moter a Instrument Components: Instrument Bearings, Jewel Bearings \& Pivots. Lapped Surfaces.
Electrical Contacts: Relays, Vibrators,
Voltage Regulators, Sensitive 'Switches.

FEATURES

No film, residue, or corrosive effect to damage surface, fire and explosion hazard safe operation.

For specific information about you critical clooning problems, send prod uet information and production re

Caldwell, N. 1 CApital 6-6675 circie 227 on reader-service card ELECTRONIC DESIGN • April

Z-Axis Blanking

Helps Determine Lag or Lead

Oscilloscopes of even modest caliber provide reasonably accurate measurements of sinusoidal phase angles by means of Lissajous patterns. This technique falls short in determining whether the unknown voltage or current vector leads or lags the reference vector.
By simply applying a blanking pulse to the Z axis, one can easily determine leading or lagging conditions.

Assume an unknown voltage vector lags the reference voltage vector anywhere between 0 and 180 deg . Connect the reference vector to the \boldsymbol{Y} axis, the unknown to the \boldsymbol{X} axis. Though not apparent to the eye, except at very low frequencies, the resultant Lissajous pattern is formed by the electron beam moving in a clockwise path. This path remains clockwise for phase shifts anywhere between 0 and 180 deg.

If the unknown voltage vector leads the reference voltage vector anywhere between 0 and 180 deg. the electron beam will move in a counterclockwise path.
The time required for the beam to complete one revolution is the same as the period of the applied frequency.
It follows that a blanking pulse (practically any wave shape) applied to the Z axis, with a frequency equal to that present at the X and Y axis, will tend to blank out a portion of the Lissajous pattern. The blanked out portion will appear stationary: Decreasing the blanking frequency slightly forces the blanked portion to move in the direction of beam rotation; clockwise for lagging phase shifts, counter clockwise for leading phase shifts.

The foregoing applies to oscilloscopes that dis play a 0-deg phase shift in the first and third quadrants.

Slowly changing Lissajous pattern ilustrates direction of beam rotation for leading and lagging phase shitts from 0 to 180 deg .

Michael Rakochy, Bell Telephone Labs., Allentown, Pa.
aE SURE TO VOTE for all of the Ideas you consider valuablol Simply circle on the Reader-Sorvice Card the numbers matching those noxt to the Idea which appoers valuable to you. 12,1961

NEW MULTIPLE ARRAY SWITCH FACTS!

- Reliable: life expectancy 500,000 operations
- Versatile: 8 pole single or 4 pole double throw per button-eliminates need for relays in many applications
- Wiping: thorough action with noble metal alloy crossbar
- Pure contact resistance: . 006 ohms nominal
- Modular: ANY number of buttons

ANY number of arrays

- Miniaturized: behind panel dimensions: $119 / 32^{\prime \prime} \times 3 / 4^{\prime \prime}$

Design simplicity and special modular construction of these TELEX switches allow more circuits than other units approximately the same size and weight. Each button is 8-pole single throw-normally opened or closed-or 4-pole double throw or any combination. Magnetic detent assures longer life.

All or any buttons may be interlocked but the complicated multiplicity of parts required by conventional switches for latching and releasing and preventing multiple actuation has been eliminated. Also available in momentary make configurations.

Exceptionally versatile, this switch may be used with printed circuits or plugged into standard wire harness to perform for test equipment, binary coding plugged into standard wire harness to perform for test equipment, binary coding
problems, digital coding problems and standard keyboard or countless other problems, digital coding problems and standard keyboard or count ess other (a) 500 V DC between adjacent switch contacts and open is 40,000 megohms Choice of colored buttons and numerals and optional light indicators. Variations designed to meet individual specifications.

More detailed specifications and information are available on request. Write to Sales Manager,

TELEX

Special Products Division - Telex Park, St. Paul 1, Minn., Dept. SP-402 Superior communication accessories for every needTELEX Communications Accessories Division

AUGAT \%asw

Designed for the Complete Series of Clevite Spacesaver Power Transistors

The Spacesaver Socket fastens beneath the chassis, allowing direct mounting of the transistor, with a mica insulator, to the chassis. In this way, the transistor is provided with maximum heat dissipation by conduction.
The socket's narrow width per-

IDEAS FOR DESIGN

Low-Cost Scope Traces

Transistor Characteristic Curves

Transistor characteristic curves can be easily traced by using the low-cost oscilloscope attachment shown in Fig. 1. It can be connected to any oscilloscope having calibrated horizontal and vertical sweeps. A 400 -cps power supply is required However, the use of this frequency led to a reduction in circuit complexity and, hence, like reductions in size, weight and cost.

Transistors can be tested only in the common emitter configuration. Other user requirements could be met with additional switching. The 4-pole polarity switch reverses the collector sup ply, bias current, and meter connections as required for pnp or npn transistors. The collector has a half-wave sinusoidal voltage sweep, set with a variable transformer, which is supplied through an isolation transformer. The transformers are selected with combined ratios that yield a peak output of the maximum desired collector voltage, and with a power rating that will accommodate the largest transistors to be tested.

Base bias current is supplied from a $24-v$ transformer secondary with a filtered, full wave rectifier. This source is controlled by the dropping resistance of a 3-gang potentiometer. This limits the maximum base bias to 100 ma as read on the panel meter. Three current ranges (0-1, 1-10, 10 100 ma) are selected by a 2 -pole switch that also changes the meter shunts. The shunts must be experimentally wound to match the impedance

Fig. 1. Transistor curve tracing attachment can be used with almost any oscilloscope.

A major breakthrough in temperature measurements!

THE NEW

 thermo-ref solid-state thermocouple reference
Abstract

The new Genistron Thermo-Ref provides a constant reference temperature of $1000^{\circ} \mathrm{C}, \pm 0.1^{\circ} \mathrm{C}$. with a 10 -channel uniformity of ± 0.1 C. Maximum drift is less than $0.5^{\circ} \mathrm{C}$. over an ambient temperature range of $-55^{\circ} \mathrm{C}$. to $+85^{\circ} \mathrm{C}$. Power consumption is u nominal of 1.0 watts over a voltage variation of 9.5 to 125 volts AC. These specifications and its small size and light weight make the Thermo-Ref ideal for airborne applications. Standard models are available for reference temperatures of $100^{\circ} \mathrm{C}$., $121^{\circ} \mathrm{C}$. and $150^{\circ} \mathrm{C}$

The Thermo-Ref measures $3^{1 / 4} \times 3^{1 / 4} 4^{\prime} \times 2^{\prime \prime}$ and weighs approximately 12 ounces. Packaging and environmental conditions meet or exceed MIL-E-5272 and MIL-E-16400.

Write for complete technical

 information.
Genistron
 A subsidiary of Cenisco Inc.

 330 WEST ARIZONA CIRCLE LOS ANGELES 45. CALIFORNIA
Mclean FANS \&

 BLOWERS FOR ALL

FAST DELIVERY FROM STOCK HUNDREDS OF MODELS CUSTOM DESIGNING

$$
\begin{aligned}
& \text { Allo a complete line } \\
& \text { of troctional horsopower motors }
\end{aligned}
$$

WRITE TODAV 44 Poge Poctroged
Cooling Cotalog

McLEAN
ENGINEERING LABORATORIES
World Leoder in Pectaged Cooling Princeton, N, J. - WAlnut 4-4440 TwX Princoton, Now Jersoy 636 circle 232 on reader-senvice caro

E_{c} (2 volt/cm
Fig. 2. Characteristic curves for 2 N 188 pnp transistor are obtained by taking multiple exposure photos for different base current values.
of the 1-ma meter by using a series calibrating meter.
The characteristic curves are presented on an oscilloscope connected to the terminals marked $I I$ and V respectively, and to G. A sensitive scope with directly calibrated control knobs (such as a Hewlett-Packard 130A) is particularly convenient for changing scale-factors during the test procedure. The collector current is sampled across a ohm ± 1 per cent shunt, giving a one-to-one correspondence between current and vertical scope deflection. The sinusoidal collector-to-emitter voltage produces the horizontal sweep.

The power is turned on, and the "Collector Voltage" and "Bias Current" controls are turned to the full counterclockwise position. With the polarity switch and "Base Current" switch properly set, the transistor is inserted into the socket, or if more convenient, the C, B and $E 5$-way terminals are used. The characteristic curve will be presented on the scope as a second or fourth quadrant display for pnp or npn transistors respectively. This form of display gives the correct relative sense to the collector voltage deflection while connecting the common emitter to the common ground terminal found on most scope inputs.
Next, the collector voltage is brought up to the desired operating value The collector current is varied through desired values by adjusting the base bias current. While this is done it is necessary to avoid exceeding transistor ratings. Families of curves are conveniently obtained by resetting the bias control. Multiple exposure photographs can be taken for a permanent record. Shown in Fig. 2 is is family taken for a 2N188 pnp transistor with three different values of bias current.

Chester B. Shapero, Research Engineer, Cupertino, Calif.

Reprinted from ED, Jan. 18, p 160.
aE SURE TO VOTE for all of the Ideas you consider valuable Simply cirele on the Reader-Service Cord the numbers mateh ing those naxt to the Idea which appears valuable to you

MORE THAN

450 Styles of Quality RPC Resistors!

 many to critical military spec.*rpc-America's largest manufacturer of resistors-uses test equipment and standards for checking and calibrating that are matched only by a few outstanding laboratories.

Resistance values from 05 ohms to 100 teraohms-low coefficientsunsurpassed performance-small or large quantities-prompt deliverythese are some of the reasons why rpc maintains customer loyalty.
Our knowledgeable engineering department is available for consultation without obligation. Chances are we can recommend the "just right" resistor for your problem. Write for free catalog.

PRECISION WIRE WOUND
 CARBON FILM

METAL FILM

RESISTANCE NETWORKS
Conformance to MIL-R-93; MIL-R-9444: MIL-R-14293A; MIL-R-10683A; MIL-R-10509C

(PPs) Resistance Products CO_{2}
 014 S. 13 TH ST., HARRISBURG, PA.

Engineer's Salaries Still Start High,

 End Low But Some EE's Are Breaking Out of the Mold

Weekly salary ranges for various professional occupations indicate to what extent engineers start ahead but end behind. Bars indicate spread of middle range while mark in middle of bar indicates median.

AGOVERNMENT survey of salaries for engineering and similar occupations last year indicates that engineers still start with ligher salaries than most other college graduates-and end up mostly with lower salaries. However, a more recent sampling of EE salaries by Electronic Design shows that some electronic engineers are now doing as well as men in any profession.

The Government survey was made by the Dept. of Labor during January to June, 1960, and was published in October in the department's Bulletin No. 1286. A chart from the survey, Fig. 1, has been redrawn by $E D$ to include only information on occupations whose status is comparable to that of engineers. Included are weekly salary bars for attorneys, chemists, mathematicians, draftsmen and directors of R\&D. Also included are directors of personnel and employment managers, to provide some indication of what other white-collar persons in industry are receiving.

The engineers' median starting weekly wage was found by the survey to be $\$ 123$, compared with $\$ 110$ for mathematicians, $\$ 105$ for chemists, and $\$ 106$ for attorneys.
However, at the highest classification (VI), the median weekly salary for the engineers ($\$ 264$) was found to be only slightly better than that for the chemists ($\$ 249$) and actually less than that for the mathematicians (\$269).

But the real difference was between engineers and attorneys. For while the engineer starts out earning $\$ 17$ a week more than an attorney, the lawyer, in his profession's top classification, ends up earning $\$ 139$ per week more than an engineer in the top engineering classification.

However, there are definite signs that some electronic engineers are breaking out of this mold. For whereas the survey showed that the top-middle-range salary for an engineer in class VI did not exceed $\$ 17,000$ per year, $E D$ has confirmed that top EE's are now able to earn more than $\$ 20,000$ a year. These men would still be within the survey's VI classification; they would be working as engineers, not as managers. Thus competitive pressure for top EE's, particularly

Legend For Chart

As an aid to evaluating the chart on weekly salary distribution, the end values of the middle range are given for each engineering classification along with a brief job description of that classification:

1-\$115-\$130. Works under close super. vision of superior. Typically receives formal classroom or on-the-job instruction.
2-\$127-\$150. Supervisor screens assignments to eliminate difficulty problems and select procedure to be followed.
$3-\$ 146-\$ 176$. Works independently on conventional projects but jointly with supervisor on unusual problems.
4-\$170-\$206. Performs engineering work requiring originality and judgment, though in areas generally covered by precedent. Characteristically supervises small group of engineers and technicians.
5- $\$ 197 . \$ 245$. Both supervisory and nonsupervisory: Supervisory positions in clude coordination and review of small staff of engineers and tech nicians. Nonsupervisory positions in volve carrying out novel or complex research pertaining to new or im proved techniques.
6- $\$ 235-\$ 302$. Programs, plans and coor dinates a number of large and important projects in either supervisory or nonsupervisory capacity.
creative computer circuit designers, has finally brought about engineering salaries comparable to the $\$ 21,000$ median for top attorneys.

This happy state of affairs in the electronic engineering profession will probably not show up on across-the-board surveys of the whole engineering profession, such as this Government survey, for some time. As yet, these "over $\$ 20,000$ " EE's are only a fraction of the total picture. But for the man who loves engineering and does not want to be forced into management for moncy considerations, this "lifting" of the traditional ceiling on engineers' salaries should be a cheering phenomenon. - -
(fiol, AIR FORGE photo)

RESEARCH \& DEVELOPMENT

test equipment engineers: A B.S.E.E. degree plus at least 2 years experience in the design of airborne, ground, or special test equipment. Applicant must be familiar with analog or digital circuit design, as applied to worst case design conditions. Must be capable of assuming project responsibility and carrying project through to completion.
mecmamical emomerss: A B.S.M.E. degree plus at least 2 years' experience in the design and development of electro-mechanical or electronic assemblies and equipments. Applicant must be familiar with methods of shock mounting and packaging of airborne and ground support equipment.
circuit desion engimeers: A B.S.E.E. degree plus 2 to 5 years' experience in the design and development of solid state digital circuitry. Applicant should have experience in circuit design for reliable operation under worst case conditions. Background in airborne and ground support test equipment desired.
logic desion enainerss: A B.S.E.E. degree plus 2 to 5 years' experience in the field of logical design of airborne electronic equipment. Must have a good background in system logic design.
dioital communications engineers: At least a B.S.E.E. degree plus 4 to 6 years' experience airborne and ground base digital communications. Must be familiar with the many facets of digital communications including encoding and decoding techniques. Background in RF, IF, and digital circuits desirable.
THE NATIONAL CASH REGISTER COMPANY, DAYTON O, OHIO
ONE OF THE WORLD'S MOST SUCCESSFUL CORPORATIONS
77 YEARS OF HELPING BUSINESS SAVE MONEY
CIRCLE 9OI ON CAREER INQUIRY FORM

Direct all replies to:
ThomasF. Wade, Technical Placement G 3-2 The National Cash Register Company Main and K Streets
Dayton 9, Ohio

This four-cryotron flip-flop can be switched in two billionths of a second. It was developed by an IBM team investigating the possibilities of low-temperature devices for basic binary storage in digital computers.
IBM scientists and engineers designed the flip-flop around a primary law of low-temperature physics: A superconductive metal loses its superconductivity in the presence of a magnetic field. In the IBM device, a small control current is used to destroy the superconductivity of one of two parallel lines. This sets up a resistance in the first line and causes current to switch to the second.
The new flip-flop offers another advantage in addition to speed. Its eight layers of thin metallic and insulation films operate in a temperature range where chemical deterioration is nonexistent. As a result, the device should have an unusually high degree of reliability.

Creative careers start here. A good deal of this project's success came from the creative interplay of different technical areas. IBM physicists and mechanical and electrical engineers worked together to develop new films, improved vacuum equipment and more reliable test circuits.

Perhaps you'd like to work . . . and grow . . . in a professionally stimulating atmosphere like this. You may be interested in the progress IBM is making in such areas as solid state, magnetics or IBM Tele-Processing.* If you ha.: a degree in engineering, mathematics, or one of the physical sciences, plus experience in your field, write, briefly describing your background, to: Manager of Technical Employment IBM Corporation, Dept. 555D2 590 Madison Avenue
New York 22, New York

YOUR CAREER

NEWS AND NOTES

High salaries for nonsupervisors, the dream of the creative engineer, have become a reality. The concept of the individual contributor who can earn more than his boss is being achieved in practice, according to Harry L. Brisk of the Accredited Employment Agency, Philadelphia. Mr. Brisk says he knows of many engineers who earn from $\$ 12,000$ to $\$ 23,000$ a year, though they supervise no one. These enviable positions usually are in special departments of the larger companies, Mr. Brisk says, and result from realization that a "creative engineering type," unhampered hy supervisory chores, can be vital to the company's future earnings.

10 Ways to Create New Ideas

Looking for a fresh idea? Pinpoint a need. In terms of your own job or business, answer these questions:

- What made me mad today?
- What took too long?
- What was the cause of a complaint?
- What was misunderstood?
- What cost too much?
- What did we waste?
- What was too complicated?
- What is just plain silly?
- What job took too many people?
- What job involved too many motions?

The answers will almost certainly give you a long list of needs. Once you have them, look for ways to fill them. And there you are: ideas!

Higher earning power is always available to the engineer who keeps pace with technological advances.

In agreement with this statement, Ned Boggs of Boland \& Boyce, Inc.. N.Y., says he continually must turn down engineers he would only be too glad to hire at much higher salaries than they are now earning, because they have not kept up with changing trends in engineering. Along with many electronics employers, Mr. Boggs is looking hardest for and willing to pay most for solid-state digital circuit men. He says many of the men he has to turn down would be eligible if they had only started educating themselves in digital circuitry techniques a few years earlier. Then they would at least be able to get started in the digital field today. Once started, they can rapidly build up their abilities for the higher salaries available in this growing specialty area.

Advancement Your Goal?
 Use CONFIDENTIAL
 Action Form

ELECTRONIC DESIGN's Confidential Career Inquiry Service helps engineers "sell" them. selves to employers--as confidentially and discreetly as they would do in person. The service is fast. It is the first of its kind in the electronics field and is receiving high prase from personnel managers.
To present your job qualifications immediately to companies, simply fill in the attached resume
Study the employment opportunity ads in this section. Then carcle the numbers at the bottom of the form that correspond to the numbers of the ods that inierest you.
ELECTRONIC DESIGN will act as your sze retary, type neat duplicates of your applica tion and send them to all companies you select-the same day the resume is received.
The standardized form permits personnel managers to inspect your qualifications rapidly. If they ore interested, they will get in touch with you.
Painstaking procedures have been set up to ensure that your application receives complete, confidential protection. We take the following precautions:

- All forms are delivered unopened in one reliable specialist at ELECTRONIC DESIGN.
- Your form is kept confidential and is proc essed only by this specialist.
- The "circle number" portion of the form is detached before the application is sent to an employer, so that no company will know how many numbers you have circled,
- All original applications are placed in confidential files at ELECTRONIC DESIGN, and after o reasonable lapse of time, they are destroyed.

If you are seeking a new job, act now!

electronco oesson CAREER IMQUIRY SERVICE

 N. Y. Our Reader Service Department will forward copies to the companies you select below(Please print with a solt pencil or type.)
Name \qquad Telephone \qquad
\qquad
\qquad
Date of Birth \qquad Place of Birth \qquad Citizenship \qquad
Position Desired \qquad
Educational History

College	Educational History Degree				Major

Recent Special Training \qquad

	Employment History Dates					Tille	Engineering Specialty

Outstanding Engineering and Administrative Experience

Professional Societies \qquad
Published Articles \qquad
Minimum Salary Requirements (Optional)

> Use section belou instead of Reader Service Card Do not urite personal data below this line. This section will be detached before processing
> Circle Career Inquiry numbers of companies that interest you

THE

A то Ω

IN SYSTEM

 ENGINEERINGThe chalk moves across the blackboard, pausing, crossing out... yet giving mathematical form to a new idea. This may be the beginning of a command and control system that will no be on-line until the 1970's. It is also the first step toward solving the many complex problens inherent in large scale system engineering.

Today, MITRE is active in every system area - from advanced design through prototype development to operational evaluation. Here your individual contribution - whether in command and control system engineering, air traffic control, or experimental electronic development - will be in the forefront of a new technology.

Appointments to MITRE's Technical Staff are currently being made in the following areas: Operations Research - System and Sub-system Feasibility Stadies - Prototype System Development Advanced System Concepts and Design•System Cost Analysis . Operational Evaluation

Openings are also available at MITRE's facilities in Montgomery, Alabama and Fort Walton Beach, Florida Inquiries may be directed to
VICE PRESIDENT - TECHNICAL OPERATIONS
MITRE
Post Office Box 208. 15-AC - Bedford, Massachusetts
MJJRE, formed under the sponsorship of tie Massachusetts Institute of Jechnology, is a system engineering organization endaged in the design, development and evaluation of large scale command and control systems. Jts convenient location in suburban Boston offers excellent opportunities for advanced study under MJJRE's liberal educational assistance program.

CAREER NEWS

What are the "job shops" paying? Hourly rates for job-shopping electronic engineers range from $\$ 4.50$ to $\$ 9$. The men at the lowest level, $\$ 4.50$ to $\$ 5$ an hour, are recent EE graduates. They are not too much in demand, however. Men with a year to a year and a half experience command $\$ 6$ to $\$ 7.50$ an hour. Those in most demand-men with five years of experience and up, particularly men with backgrounds in solid-state digital logic circuitry-command $\$ 8$ to $\$ 8.50$ an hour. The very top rates of $\$ 9$ an hour are for men with 10 years' computer circuitry experience. In addition to the hourly rate, if the man is away from home, he receives the usual $\$ 8$ to $\$ 9$ per diem expense allowance. The spokesman for a New York "job shop" who gave Electronic Design these figures says that although the demand has softened somewhat in the last six months, he expects an upswing in the next few months.

Energy Boosters

The "gift" of abnormal energy that some people seem to have is regarded longingly by others. Actually, health factors being equal, it is not a gift but a conscious (or unconscious) knack these men possess for stimulating normal supplies of energy into a rushing geyser. They increase personal productivity by developing attitudes and creating situations that quicken their energy supply. You can too, if you:

Vary your tasks. Plugging at the same job interminably saps energy. Varying your chores stimulates you. provides the change that rests your mind. Been calculating circuit stabilities? Try listing possible solutions for your next project. Been at your desk all day? Get on your feet for a while. Visit the laboratory to see how your projects are coming along.

Motivate yourself. Before you achieve, stick your neck out by announcing your goals to people whose esteem you value. You'll surpass your own expectations, because you've made a definite commitment. (However don't at the same time dream of the honors you will receive, or you will spend your time dreaming instead of producing.)

Associate with enthusiastic people. Enthusiasm is contagious. By mixing with men who are excited about their work, you will "catch" their zestful spirit and be inspired to do your very best.

POSITIONS OPEN FOR INQUIRING MINDS IN MANUFACTURING RESEARCH ENGIIEERING!

ENGINEERING SPECIAL PROJECTS
Bendix of Konsos Cily, Missouri needs
Ihree Manufocluring Research Engineers to do originol work with new moteriols
ond close. more exacting work wilh ordi. and close. more exacting work with ordi-
nory moteriols-Minds that will inquire into the many bronches of technology ond bring logether that combination of
technolat rechniaves copable of producing o unique
product A a Product. As a Prime Coniractor for the
Alomic. Energy Commission, our function
is Alo to give the Weopon Designer the
is
greotest possible latitude greotest possible lootivude in exploliting
new moterials ond techniaues. We do
nes. this by paralleling his design. Work wiot
advanced development of manufoctwing odvanced development of manulacturing
Drocesses during the design phose. The control of processes must trequenlly be
so precise that outomotion is required for that reason alone-production quan.
liity nolwithstanding lity nolwithstanding.
Engineers who can fil there positions
must combine original thought with must combine originol thought with solid
troining in the bosic physicol sciences.
They must be oble to combine the reaThey must be oble to combine the rea-
soning of sevecal disctplines in the de.
velopment of o solution. Minimum requirements include:

RANSAS CITY DVISION
95th \& Troost, Kansas City 41, Missouri

CIRCLE 904 ON READER-SERVICE CARD ELECTRONIC DESIGN • April 12,1961

For the ambitious technician: International Correspondence school's new general catalogue 1125 N describing over 250 standard home-study courses. Included are 25 technician-level electronics courses, of which 11 are new in 1961 They range from a short course on electronic fundamentals to electrical engincering with special electronics optional section. New 1961 courses cover the fields of radio-electronic telem('try, electronic computers, ultrasonics, mono and hi-fi, special sound systems, communications technology, industrial electronics technology, 1st and 2nd class FCC radiotelephone licenses and semiconductor transistor circuits. Write to ICS, Scranton. Pa.

Emotional fireworks in electronic:s are covered in a new novel about the inner problems of humans in an electronics company. "The Annals of Logan," by Robert Graham, is a series of verse monologues describing individual reactions when members of the company's advertising department plot to have one man fired.

The engineers, for the most part, escape Mr. Ciraham's analysis. There is, however, a brief mention of a visit by one member of the advertising department to the plant laboratory. The visitor is "revolted" by the professional pride of the engineers in a "cute, lovely, little fuzing device for thermonuclear warheads."

Author Craham was formerly a member of the sales promotion staff of Ford Instrument Div. Sperry-Rand Corp., N.Y.

How do you develop underdeveloped countries? British author M. Zvegintzov, in the Unesco publication "Impact," says:
"The technical problem [in underdeveloped countries] is not so much to install complicated machinery, then find personnel to operate and maintain it, but to think out modern production problems in terms of breaking them down into the simplest and most foolproof component jobs, which could then safely be entrusted to unskilled personnel with no industrial tradition."

In explaining why Russia has been so successful in industrializing backward areas, Mr. Zvegintzov writes:
"In general the principle of make-do-and-mend is sound: to establish in which fields half a loaf is better than no bread and build accordingly on what human resources and materials can be made available. This principle has been consistently adopted by Russia-even before the 1917 revolution-and is one of the reasons for its great recent successes and the ease in its dealings with underdeveloped territories."

Notable Achievements at JPL

MOON BOUNCE... a collaborative project of the National Aeronautics and Space Administration, the Jet Propulsion Laboratory, and the Australian Ministry of Supply to link two continents by radio signals bounced off the Moon

TOTAL DISTANCE

 455,682 MILESCAREER OPPORTUNITIES AT JPL in these fields - NOW

Electronic Engineers

for component and system design of deep space communications, instrumentation, and auto matic control equipments.
for microwave and RF solid state circuit design and flight evaluation.
for project management assignment on advanced development and contracted effort in space communications

Physicists
for analysis in communications theory, orbital mechanics, guidance and control, and systems performance.
for analysis of digital communication and con trol systems: real-time digital computer and closed loop systems.
for research and development of servo and control mechanisms for large ground based and spacecraft antenna systems.

Other opportunities exisf for electronic engineers and physicists in many areas at JPL which has been assigned the responsibility for the nation's unar, Planefary and Interplanefary unmanned exploration programs

On February 10, 1961, California and Australia were linked in the first international space communication experiment that bounced voice messages between the iwo points via the Moon. The words were beamed at the Moon from the Jet Propulsion Laboratory transmitter at Goldstone, California to the receiver at Woomera, Australia.

Principals in the conversation were Dr. Hugh L. Dryden, NASA Deputy Director, whose voice was relayed from Washington by telephone; Dr. Lee DuBridge, President of California Institute of Technology, who spoke directly from Goldstone; and Alan Hulme, Australian Minister of Supply at Woomera.

The occasion tested the new Australian station, the second of three Deep Space Instrumentation stations developed and directed for the National Aeronautics and Space Administration by the Jet Propulsion Laboratory.

JET PROPULSION LABORATORY PASADENA. CALIFORNIA

at MOTOROLA in PHOENIX:

Beyond a shadow of a doubt

Are you beginning to have doubts about achieving the professional goals you set for yourself? Fretting over the lack of opportunity for growth in your present joh? If you are. this will interest you: Our philosophy at Motorola is to select engineers and scientists with extreme care. Then we assign them to a Project Group - composed of men whose combined experience and talents cover a broad spectrum. To the group we give challenging state of the art assignments - and the technological tools to solve the problems. By thus affording our professional personnel maximum opportunities for individual growth and achievement, we are convinced - beyond a shadow of a doubt - that we strengthen our own ability to maintain leadership in the field of military electronics.

IMMEDIATE OPPORTUNITIES FOR:

- Systems Test Equipment Design
- Communications and Navigation
- Systems Analysis and Preliminary Design
- Digital Circuitry Design
- Microwave and Radar
- Missile and Space Guidance and Control
- Reliability and Components
- Solid State Devices

MILITARV ELECTRONICS DIVISION, WESTERN CENTER
P. O. Box 1417, Scottsdale. Arizona

Motorola also offers opportunities at
Chicago, Illinois, and at Culver City and Riverside, California

CAREER NEWS

Engineering doctoral degrees in certain southern universities will be strengthened by a recent $\$ 3$ million Ford Foundation grant. Georgia Institute of Technology was given $\$ 680,000$; University of Florida, $\$ 695,000$; North Carolina State College, $\$ 760,000$, and the University of Texas $\$ 975,000$. The funds will be used to hire new faculty members with the academic stature to conduct graduate courses and supervise graduate theses as well as to strengthen the present graduate staffs by further education.

Paper Call: Awards for essays on that hard-to-get-rid-of phenomenon. gravity, have been announced by Roger Babson's Gravity Research Foundation, New Boston, N.II.
The five awards, from $\$ 100$ to $\$ 1,000)$, will be for the best 1,500 -word essays on the possibilities of discovering:

- Some partial insulator, reffector or absorber of gravity.
n Some alloy, or uther substance, the atoms of which can be agitated or rearranged by gravity to throw off heat.
- Some other reasonable method of harnessing, controlling or neutralizing gravity.
"Only one essay will be accepted from anyone who is seriously interested in the application of gravity . . . for the bencfit of humanity." (Kibitzers can send in as many as they like.)
The deadline is April 15.

PAPER DEADLINES

Convention Program Chairmen have issued the following deadlines papers considered for presentation.

April 15: Deadline for papers for 1961 annual NEREM (Northcast Electronics Research and Engineering Meeting) which will be held Nov. 1416 in the Commonwealth Armory and Somerset Hotel, Boston. Papers should describe R\&D aspects of original developments. New feature of this year's meeting will be the invited state-of-the-art tutorial sessions and discussion panels which will be held in addition to the contributed papers. Send either complete papers or 400-500 word abstracts in triplicate, plus 50 -word summaries for advance program mailings, to F. K. Willenbrock, Pierce Hall, Harvard University, Cambridge 38, Mass.

BENDIX Kansas City needs EIECTROMC TEST EQUPMEKT DESIGNERS

It isn't unusual for our specialty packoged electronic test instrumentation to be more sophisticoted than the produets it is designed to test. The reason for this is thar our AEC prime conirach rere for beyond the ordinary.

Since we do unusually demanding work, we hove an unusually interesting department. Our engineers are constantly wrestling with new and unexplored problems. They contribute to project teams in the solution of unique from design to octual use. As a result these engineers have the olmost unparalleled experience of seeing their brain children converted into practical hardwore.
This is no place for a beginner or a drone. What others treat as the "State of the Art," we consider commonplace, ond you'll need both rraining and exwhe is familiar with test equipment problems and inspection rechniques. Past association with military electronics equipment or experience in precision measurement of mass produced items would help to equip you for this position. Mochine shop experi-

If you can qualify, we promise you an exceptionally rewarding spot with one of the notion's most vital industries. We offer unusually generous company benefirs in a Midwestern community which is fomous for its beauty and ow cost-of-king. All replies will be strictly confidential.

For personal interview
send resume to:
Me. T. H. Tillmon
Bor 303-TP

RACHSAS CITY DYVISION
95th \& Troost, Kansas City 41. Missouri
 at All 3- plus... The Same Atmosphere of Growth and
Achievement that Caused This Dynamic Expansion

\mathbf{S}^{\top}TARTING only 9 years ago with 11 Engineers and an initial order of $\mathbf{\$ 1 1 7 . 0 0}$. Sanders Associates today has a personnel role of over 1600 - and a contract backlog of $\$ 53,000,000$.

This history of success was built through creation of original technical concepts resulting in unusual achievements - most of which are classified including FLEXPRINT* flexible printed circuits. PANAR ${ }^{\ominus}$ radar and TRI. PLATE microwave components and techniques - in high demand now and destined for a big future in next generation computers.

Pioncering programs are being continued in phased arrays, radar, pulse doppler radar systems, space radar and communication systems, providing stimulating assignments in space technology, missiles and radar systems.

To arrange a convenient interview appointment, send resume in confidence to R. W. McCarthy.

POSITION in NASHUA SEMIOR COMSULTANT TRAMSISTOR CIRCUITRY To provide technical guidance at the
Corporate level on Corporato loval on e wide variety of
tranaistor circuit design problems Re. transistor circuit design problems. Re.
quiras ability to design dotailed circuits quires ${ }^{\text {qupidy. }}$

POSITIONS AVAILABLE ar all locations For. SENIOR SYSTEMS ENGIMEERS To contribute to advanced techniques in the general field of military elec. includes systems analysis, synthesis
and integration, with extensive bact. ground int circuit design augmented by

CIRCUIT DESICN ENGIMEERS EE or Physics graduates with 2 to 8
years experience and familiarity with years exporience and familiarity with tubes and transistors and their utiliza.
tion in all types of circuits, as woll as the integration of circuits into subsystems.
TRANSMITTER DESICN ENGIMEERS 2 to 8 years oxperience. For work up

PRODUCT DESIGN ENEIMEERS ME with heavy experience in feasiblity studies couplod with experience in rak ing doveloped systoms into production morall packazing concepts of ECM or
other airborne systoms.

POSITIONS IN PLAINVIEW, LONG ISLAND
GROUND SUPPORT EQUIPMENT ENGINEERS
To dosign and dovelop system, assom-
bly and sub-assembly eloctronic test bly and sub-assembly electronic tess
equipment for the military. Should have appreciation for tost equipmen philosophy, with extonsive experience
in circuit design and hardware follow. through.

- registered trademark

5ANDER5 AS5DCIATES, INC.
NASHUA. NEW HAMPSHIRE

From
 Applied Research
 to Precision Manufacturing Kollsman

provides broad-based professional opportunities
Producer of more automatic star trackers and more air data computers than all other U.S. companies combined, Kollsman has now established a new Research Division - pointing the way to still more advanced engineering concepts.

Opportunities are available now for graduate EE's, ME's and Physicints in:
SOLID STATE PMYSICS
LOGICAL DESIGN
SYSTEMS AMALYSIS
E SYMTHESIS
ADVAMCED MECMAMISM

ADVANCED OPTICAL.
ELECTRONIC STSTEM pulse technigues electronic oisplays advanced control srstems MICROMINIATURIZATION
To arrange a confidential interview forulard a briel resume to Mr John whulen
Kollsman Instrument Corporation
A Subsidiary ol Standard Kollsman industries Inc. 8008 45th AVE., ELMHURST 73. QUEENS. NEW YORK

CIRCLE 910 ON CAREER INOUIRY FORM

most
effective
on
the
job

A recent circulation estimate revealed that 95% of ELECTRONIC DESIGN's readers receive the magazine at their plants-on the job where it is most effective as a design workbook.

By receiving ELECTRONIC DESIGN at work, you're getting extra values from it. These extra values-known to marketing people as time and place utilities-add to the usefulness of any item. Only in-plant distribution gives you: Time Valuebecause ELECTRONIC DESIGN arrives precisely when you can use it best . . . while you're working: Place Value-because it arrives where it can really be put to work . . . on the job, at the point of design.

Arriving at the plant, ELECTRONIC DESIGN brings new ideas to be applied to your current projects. You and your fellow designers can discuss timely topics together-expressing your views and comments while the news is fresh in your minds. And, when searching for sources, for products, for new techniques, you need look no further than the copies of ELECTRONIC DESIGN right on your desk.

If you don't receive your copies where you work, write to our Circulation Department and request that your subscription be addressed to you at your plant. By putting ELECTRONIC DESIGN on the job you'll be getting the most value from it.

SPECIAL PURPOSE DIGITAL SYSTEMS EIONICS \& MEDICAL ELECTROMICS SEMICONDUCTOR matealals aesearen LIGMT GENERATION MODULATION \& DETECTIOM ?

- Manufacturers' catalog appeare in 1960-1961 Electronic Designera' Catalog

Consider a career at PHILCO Western Devel opment Laboratories, on the San Francisco Peninsula. New concepts of communications with lunar reaches and beyond can be your projects. Here you devise and "do", unencumbered by dogma or dialectics. Constantly expanding programs and new research assignments assure you personal recognition and advancement
PHILCO Western Development Laboratories pioneers in all phases of space communications, with important and growing projects that
include satellite instrumentation, range desion and operation, missile tracking, data handling and control equipment.
Your family will enioy Northern California. You ski, swim and sail in season, or just bask, with both the opportunity and wherewithal to enjoy your favorite diversions. PHILCO Western Development Laboratories is indeed a fortunate conjuncture of challenging work and affluent living. For information on opportunities in electronic engineering, for men with degrees from B.S. to Ph.D., please write Mr. W.E. Daly, Dept. D.4.

PHILCO western development laboratories
3875 Fabian Way, Palo Alto, Californla

while building a career with

$$
A C F
$$

파I 타CTIRONICS

where your educational inclination is given tangible

 encouragement through a liberal Tuition Refund PlanBecause ACF realizes that the engineer with a thirst for knowledge can make significant contributions to state-of-the art developments of vital importance . . . and because your chances for full realization of your career potential increase as you increase your edu. cational background... you would do well to investigate current opportunities at ACF Electronics. Engineers at all levels are cordially invited to inquire about challenging positions in the following fields:

COMMUNICATIONS

MICROWAVE COMPONENTS \& SYSTEMS
ANALOG \& DIETTAL TECHNIQUES
SOLID STATE CIRCUITRY OPTICS \& INFRARED FIELD EMGINEERING
These openings involve assignments at our laboratories located in suburban Washington, D.C. and the New York metropolitan area at Paramus, New Jersey. Pleasant residential neighborhoods provide readlly available housing. Your advanced studies may be conducted at many, high-ranking nearby universities.

Send resume to:

Mr. Robert J. Roid

Professional Employment Supervisor
at our Rivordalo facility, Dept. 429

ACF ELECTRONICS DIVISION AIE IITIDTESNIRIEE

RIVERDALE, MARYLAYD - HYATTSYHLE, MARYLAND - PARAMUS, NEW JERSEY CIRCLE 912 ON CAREER INQUIRY FORM

On a regular basis, General Electric's Defense Systems Department publishes opportunities of special importance to experienced Systems Engineers and/or degree Engineers
interested in developing their nkills to the point of Systems Engineer ing in its broadest sense.

SONAR ENGINEER

 or PHYSICISTTo analyse acoustic wave propanation. particularly an applied to problems of detecting submarinen. latingetence with methods of calcu-
latrengtha as functiona of water composition. diatance and Prequency is required, together with knowledge of anumalous con ditions which may enhance or de$\begin{aligned} & \text { grade sunic reception. Familiarity } \\ & \text { with electroscoustic' eranaducers }\end{aligned}$
wid with electroscrustic' eranaducert and the equipment is desirable.

RADIO WAVE PROPAGATION

ENGINEER or PHYSICIST
To analyse electromagnetic wave propagation problems. Refraction errory in the troposphere and ionosphere. the slatistics of signal mates of acintillation effects, Woppler errors-all these and kindred phenomena for radar and communications systems, both terrestrial and in interplanetary space, fall within the scope of this challenging poaj-

Your response to this Bulletin will be expedited to the appropriate
technical managers at DSD for technical managers at DSD for confidential reply, generally with--...in in one week. Address: Mr. E. A. Smith Box 4-C
DSD GENERAL ELECTRIC
Worthom Lights Office Bide., Syracuse, Mew Yort

- Manufacturers' catalog appcars in 1960-196

CIRCLE 213 ON CAREER INOUIRY FORM ELECTRONIC DESIGN • April 12,1961

MIDWESTERN
offers the world's most complete line of optical recording oscillographs, so that you may choose a model to meet your specific data recording needs. 32 different models of directwriting and standard photo process recorders, in full production and field proven, allow a combination of functional features and performance to meet the most critical requirements.

MI oscillographs are now being used in some of the most complex R\&D data recording systems. Other uses include environmental testing, production, medical and educational applications. Several thousand of the rugged 560 are being used for "onboard" recording in rockets, missiles, torpedoes and test sleds.

CIRCLE 235 ON READER-SERVICE CARD ELECTRONIC DESIGN • April 12,1961
AdvertiserPage

Oak Manufacturing C Ohmite Manufacturing Company93
49 Owen Laboratories, Inc49
151

Paktron Packaged Electronics

Pan American World Airways, Inc Panoramic Radio Products, Inc. Perkin Electronics Corporation - Pesco Products Div.

Philco Western Development

 LaboratoriesPost Co., Frederick

- Powertron Ultrasonics Curp. Precision Paper Tube Co.

Radiation, Inc.
Radio Corporation of America
Electmn Tube Div. Radio Corporation of America,
Semiconductor \& Materials Div. adio Corporation of America Div Rawson Electrical Instruments Co Raytheon Co., Distributor Prolucts - Haytheon Co., Industrial Components
Div. 1 Raytheon Co., Commercial Apparatus \&
Systems Div. Systems Div.
Raytheon Co., Microwave and Power Tube Div. \qquad Power Tube Div.
Reeves Hoffman Div. Dynamics Reeves Hoffman Div. Dynamics Corp. of America
Reeves Instrum
Reeves instrument Corp.
Resistance Products Co. ...
Rome Cable, Div. of Alma

Sage Electronics Corporation
Sanders Associates, Inc. Schweber Electronics Sealectro Corporation Security Devices Laboratories - Servo Corporation of America Shockley Transistor,
Unit of Clevite Transistor

- Sierra Electronic Corporation
- Sisma Instruments, Inc.

Simmons Fastener Corporation
Sippicon Corporation. The
Spectrol Electronics Corp.
Sprague Electric Co. .
Stackpole Carbon Co.
Staedtler, Inc., J. S.
Stevens Amold, Inc.
Stewart Engineering Corp. Stromberg-Carlson, Div. of
General Dynamics Struthers-Dunn
Sylvania Electric Products, Inc. 15, 78A-B-C-D
Synthane Corp. 142 Syntron Company

Taurus Corporation Taylor Fibre Co.
to meet your specific operating and package requirements

- MINIMUM ENVELOPE SIZE

Extremely tight windings, low air-gaps, compact brush rig. gings, recessed armature end turns . . . keep Pesco motor sizes to a minimum.

- dYnamically balanced COMPONENTS

All rotating components . . fans, rotors, shafts . . . are dynamically balanced-individually, and as complete assemblies.

- EXCLUSIVE COOLING ACTION

Pesco axial flow fan rotors provide exceptional aerodynamic cooling . . . assure extended motor life and efficient operation at elevated temperatures.

- COORDINATED FRAME DESIGN

Standard coordinated frame sizes . . . custom-adapted to specific power requirements
give high horsepower-toweight ratios. Basic motor diameters range upward from 1.25 inches.

- LIGHTWEIGHT PACKAGE

Cast aluminum end bells and bases, hollow shafts on specified models, high operating speeds . . . these features contribute to more horsepower per pound in Pesco motors.

MIL SPEC DESIGN
Pesco electric motors . . . AC, DC, or miniaturized series . . are built to the exacting standards of Mil-M-7969 and Mil-M-8609. When ordered, any Pesco motor will be qualified to these specifications.

CIRCLE 236 ON READER-SERVICE CARD

Adurriser	Page
Tech Laboratories, Inc.	193
Tektronix, Inc.	140
Tel Instrument Electronics Corp.	152
Telex, Special Products Div. 199
Texas Instruments Incorporated 63,	
-Transitron Electronic Corporation	8, 69
${ }^{\bullet}$ Tung-Sol Electric, Inc.	35
- Turbo Machine Company	193
Tur-Bo Jet Products Co., Inc.	14
Trygon Electronics Inc.	192
Ungar Electric Tools	97
Union Switch \& Signal. Div. Westinghouse Air Brake	98
U. S. Stoneware	184
United ElectroDynamics, Inc.	58
U'niversal Mfg. Co., Inc.	186
U'tica Drop Forge and Tool Div.	75
Valcor Engineering Corp.	143
Varian Associates, Inc.	168
Varficx Sales Co. Inc.	135
Vector Manufacturing Co., Inc. Southampton, Pe.	-B-C-D
Vidar Corporation	124-B
Vitramon, Incorporated	17
Waters Manufacturing, Inc.	106
Whitso, Inc.	159
Wright Div. of Sperry Rand	56

WHAT IT SAYS... ...IS!

Advertising Representatives
Adv. Sales Manager: Bryce Gray, Jr. Sales Service Suppr: Alvin D. Ross
New York: Robert W. Gascoigne, Neso York: Robert W. Gascoigne,
Richard Parker, Blair McClenachan, Richard Parker, Blair McClenachan James P. Quinn, Donald J. Liska. Kenneth M. George, John N. Weber 830 Third Avenue, Plaza 1-5530
Chicago: Thomas P. Kavooras, Berry Conner, Jr, Fred T. Bruce, 664 N Michigan Avenue, Superior 7-8054

Los Angeles: John V. Quillman, Wayne Stoops, 3275 Wilshire Blvd. Dunkirk 2-7337 San Prencisco: Stanley I. Whrenclou,
292 Walter Hayes Drive, Palo Nlto, Davenport 1-7646
Southeestern: Pirnie \& Brown, Morgan Pirnie, Harold V. Brown, G. W. Krimsier 1722 Rhodes-Haverty Blidg., Allanta, Ga, Jackson 2-8113

London ECE: Brad Nichols, 151 Fleet Street
Tolkyo: Karl H. Bachmeyer Associates, 27 Morimoto-cho, 1-chome, Arabu. Minato-Ku

New individual calibration of meter scales used in standard instruments gives you commercial instrument accuracy approaching that of lab standards! Through a servo system, each calibration line on each instrument's meter face is located precisely and then printed. What the voltage actually is-you read! No preprinted approximate scales are used.
This new standard of accuracy assures you that each voltmeter scale is calibrated to the exact characteristics of its individual meter movement. Scale tracking error is eliminated, and you get improved performance at the same moderate price.
Further, this calibration and inspection procedure at automatically rejects faulty meter movements. Tracking characteristics of each meter movement are determined over its entire range, and rigid tolerance control assures optimum performance.
These are the first commercial voltmeters wherein the meter tracking error is eliminated. Check the specifications below for the meter which meets your requirement. You are assured of improved performance, with this source of error eliminated-plus all the other advantages you expect in instruments: dependability, ruggedness, convenience. They're yours at no increase in cost.
This new standard of calibration is another part of continuing effort to produce more accurate, more dependable, more useful instruments for measurement . . . and to produce them at moderate cost for highest value to the user.

Brief Specifications of the top individually calibrated voltmeters

4 400H Vacuum Tube Voltmeter Voltage Range: $0.1 \mathrm{mv} 10300 \mathrm{v}, 12$ ronges Frequency Ronge: 10 cps to 4 MC Accuracy: With nominal line voltoges from 103 10 127 v . overall accuracy is with
$\mathbf{1} \%$ of full scole. 50 cps to 500 KC
$\mathbf{~} 2 \%, 20$ cos 101 MC
$=2 \%, 20 \cos 101 \mathrm{MC}$
$=3 \%, 20 \cos 102 \mathrm{MC}$
$=3 \%, 20 \mathrm{cDs}$ to 2 MC
$=5 \%, 10 \mathrm{cps} 104 \mathrm{MC}$
Price: Cobinet $\$ 325.00$ rock mount, $\$ 33000$

(4) 400L Logarithmic Voltmeter

Voltago Range: 0.3 mv ro 300 v .12 ranges Docibel Ronge: -70 10 $+52 \mathrm{db}, 12$ ranges Frequency Range: 10 cps 10 4 MC
Accuracy: At nominal line voltage $\pm 10 \%$ overall accu. Accuracy: At nom
racy is within
$\pm 2 \%$ of reading or $\pm 1 \%$ of full secel
13 more accurate. 50 cos to 500 KC
$\pm 3 \%$ of reoding or $\pm 2 \%$ of full scole, 20 cps 1o
$\pm 4 \%$ of reoding or $\pm 3 \%$ of full scole, 20 cps to
2 MC
$=5 \%$ of
Price: Cabinet, $\$ 325.00$; rack mount, $\$ 330.00$

ty 425A DC Microvolt-Ammeter

Voltage Range: Pos, and neg valiages 10
ario 1 v full scale. 11 ranges
Accuracy: ± 3 of full scale
Ammeter: Curient range, pas and neg. 10
$\mu \mu \mathrm{o} 103 \mathrm{ma}$. full scale, 18 ranges, accuracy
$\pm 3 \%$ of full scole
Price: Cobiner $\$ 50000$ rack mount, $\$ 50500$

(4) 412A DC Voltmeter-Ohmmeter-Ammeter

Vollage Range: Pos. and neg. voltages 1 mv 101.000 v full scale, 13 ranges
Accuracy: $\pm 1 \%$ full scale on any range
Ammoter: Current range, pos. and neg. currents from 1
 scale on any range
Ohmmeter: Resistance range, 1 ohm to 100 megohms center scale, 9 ranges; accurocy $\pm 5 \%$ of reading. 0.2 ohm to 500 megohms $\pm 10 \%$ of reading, 0.1 to 0.2 ohm and 500 megohms 105,000 megohms.
Price: Cobinet, $\$ 400$ 00; rack mount, $\$ 40500$

First to bring you individually calibrated VTVM's at no increase in cost!
HEWLETT-PACKARD COMPANY
1100k Page Mill Road Palo Alto, California, U.S.A Cable "HEWPACK" DAvenport 6.7000
Sales representatives in all principal areas

HEWLETT-PACKARD S. A.

Rue du Vieux Billard No. 1 Geneva, Switzerland
Rue du Vieux Billard No. $1 \begin{gathered}\text { Geneva. Switzerland } \\ \text { Cable "HEWPACKSA". }\end{gathered}$ Tel. No. (022) 26. 43.36
CIRCLE 237 ON READER-SERVICE CARD

Publisher: Robert E. Ahrensdorf Editor: Edward E. Grazda Managing Editor: James A. Lippke Technical Editors: G. H. Rostky, H. Bierman, R. H. Cushman, M. W. Meisels, A. Rosenblatt A. W. Solda

Neus Editors: R. Haavind, A. Corneretto Washington Editor: J. J. Christie Weat Coast Editor: T. E. Mount Contributing Editors: J. G. Adashko, E. Brenner, B. Bernstein

Editorial Assistants: R. N. Ross, C. H. Farley

Editorial Production: D. S. Viebig, A. Abramoff

Art Director: R. A. Schulze
Art Assistants: O. Mitch, J. Aruego Technical Illustrator: P. Rios Production Manager: T. V. Sedita
Asst. Prod. Mgr.: H. De Polo
Production Assistants: P. Bergang, M. Spector

Circulation Manager: N. M. Elston Asat. Circ. Mgr.: H. A. Hunter
Reader-Service: A. J. Helfeld

Hayden Publishing Company, Inc.
Chairman of the Roard:
T. Richard Gascoigne

President: James S. Mulholland. Jr.

Accuracy Policy

Recognizing the power of the printed word to influence, it is Electronic Design's policy:

To make all reasonable efforts to insure accuracy of editorial matler. To publish promplly corrections To publish promplty
To not knowingly publish mislead.
ing adrertisements.
To reserve the right to refuse any advertisement.
Readers noting errors or misstatements of facts are encouraged to write the editor.

Subscription Policy

Electronic Desicn is circulated only to qual-
ified design engineers of U . S manulaturified design engineers of U . S. manulactur-
ing companies. industrial consultants and Roverninent agencies. If design for manu-
facluring is your responsibility you qualify facturing is your responsibility you qualify
for subscription without charge provided you send us the following informatlon on your company's letterhead: Your name and
engineering illie. your company's main products and description of your design duties. The letter must be signed by you
ANY ADDRESS CHANGES FOR OLD SUESCRIBERSNECESSITATE ARRSTATE
MENT OF THESE QUALTFICATIONS SUbMENT OF THESE QUALAFICATIONS Sub $\$ 2500$ per year $\$$ S. S S . $\$ 3500$ per year all

a new concept in Beam Power Tube technology
To meet the increasing demand for dependable UHF power, RCA has developed Cermolox Tubes, a wide line of coaxial, ceramic-metal heam power tubes with precision-aligned grids. These Cermolox tubes are especially well suited to the requirements of aircraft, missile and guidance applications in CW, Pulse, and Hard-Tube-Modulator service.

Already they have set an enviable record of performance in such exacting applications. In Pioneer V, for instance, Cermolox tubes were used in the guidance systems, and in the satellite's high-power transmitter.

Some outstanding features of RCA Cermolox tubes which con tribute to long life and reliability are:

- Precise alignment of grids for outstanding efficiency.
- Coaxial-electrode structure adaptable for use either in
coaxial-cylinder or parallel-line circuits.
- Exceptionally sturdy structure.
- Low rf-loss ceramic insulation.
- High temperature operation.
- Brazed construction involves no spot welding and assures
low rf losses and low internal stresses.
- Compact, ceramic-metal construction
- Flexibility of cooling techniques: conduction, liquid, and forced air (with RCA's high-efficiency radiator)
The family of RCA Cermolox tubes is shown in the adjacent table For more information, contact the RCA Field Office nearest you.

The Most Trusted Name in Electronics radto corporation of america

RCA CERMOLOX BEAM POWER TUBES				
Type	$\begin{aligned} & \text { Max. } \\ & \text { Plate Input } \\ & \text { Watts } \end{aligned}$	Max Freq. at Max. Ratings	$\begin{aligned} & \text { Max. } \\ & \text { Plate } \\ & \text { Diss. } \\ & \text { Watts } \end{aligned}$	Heater Volts. Amperts
CW APPLICAPION				
7870 Conduction Cooled	52.5	3,000	25	6.3/1
7801 Conduction Cooled	525	3,000	25	12.6/. 5
6816 Forced-Air Cooled	180	1.215	115	6.3/2.1
7844 Conduction Cooled	180	1.215	115	6.3/2.1
$\begin{aligned} & 7842 \\ & \text { Ruggedized } \\ & \text { Conduction Cooled } \end{aligned}$	180	1,215	115	6.3/3.0
$\begin{aligned} & 7457 \\ & \text { Ruggedized } \\ & \text { Forced-Air Cooled } \end{aligned}$	180	1.215	115	6.3/3.0
7843 Conduction Cooled	180	1,215	115	265/52
6884 Forced-Air Cooled	180	1,215	115	26.5/.52
7650 Ruggedized forced-Air Cooled	1.250	1,215	600	6.3/7.5
A-2663* Conduction Cooled	1.250	1.215	600	63/7.5
7213 Forced-Air Cooled	2,500	1,215	1,500	5.5/17.5
A.2545-A. Forced-Air Cooled	28,000	400	10.000	8/88
putsed mr applicayion				
A.2587.A Conduction Cooled	3.750	3.000	25	12.6/.41
7649 Rugredized Forced-Air Cooled	9.000	1.215	115	6.3/30
7651 Ruggedized Forced-Air Cooled	12,000	1.215	600	6.3/7.5
7214 Forced-Air Cooled	180.000	1.215	1.500	5.5/17.5
A-2581-A. Forced-Air Cooled	2.000,000	600	10,000	18/12
hard-fune-madulator application				
A.2638. Rugsedized Forced-Aip Cooled	8.000	-	115	6.3/3.0
A-2624 Ruscedized Forced.Air Cooled	60.000	-	600	6.3/7.5
A-2627.A Rugsedized Conduction Cooled	300.000	-	1,500	5.5/17.5
A. 2625° Conduction Cooled	1,500,000	-	10,000	18/12

The chart snown above includes all RCA Cermoloz Tube types
avallable as of february 4 . 1961 avalable as of February 4. 1961.
-Development Type-Available on Sampling Basis

RCA ELECTRON TUBE DIVISION FIELD OFFICES
industalat tuak phooucts sales: newark 2. n. J., 744 brood St., HUmbold 5-3900 - DETROIT 2, MICHIGAN, 714 Nom Conter Building. Ploze, Whitohall 42900 - BURLINGAME, CALIF., 1838 EI Comino Real OXford 7.1020 - LOS ANGELES 22, CALIF., b35S E. Warhingion Blud. RAYMONA 3 8361. GOVERNMENT SALES: NEWARK, N. 1, 744 Brood Si. numboldr 53900 - DAYTON 2. OHIO, 224 N. Wilkinton Sl., BAldwi 0.2366-WASMINGTON 7. D.C., $172 \mathrm{~K}^{\mathrm{K}}$ St.. N.W., PEdorol 78500

[^0]: RคA The Most Trusted Name in Electronic radio corporation of america

[^1]: Example of
 Rise-Time Prediction
 Conditions: 2 N 3.96 Unit $\# 2-12 ; Q_{B}{ }^{\circ} /{ }^{90 \%}$ at $V_{c c}=10 \mathrm{v}$.
 $Q_{B}{ }^{\circ}$ testresults: $V_{C C}=\mathbf{1 0} \mathbf{v} ; \boldsymbol{I}_{C S}=1 \mathrm{ma} ;$ $\varphi_{B} \cdot / n^{n 0 \%}=200 \mu \mu \mathrm{C}$. $V_{C \cdot}=10 \mathrm{v} ; I_{C s}=10 \mathrm{ma} ;$ $Q_{R} \cdot /_{l}^{9,1} \%=446 \mu \mu \mathrm{C}$.
 Desired results (1) Rise time at $V_{c c}=5 \mathrm{v}$; $I_{C B}=100 \mathrm{ma} ; I_{B 1}=10 \mathrm{ma}$.
 (2) Rise time at $V_{C C}=15 \mathrm{v}$; $I_{C B}=1 \mathrm{ma} ; I_{B 1}=0.1 \mathrm{ma}$.
 (a). Rise time at $V_{c c}=5 \mathrm{v} ; I_{C B}=100 \mathrm{ma} ; I_{B 1}=$ 10 ma .

[^2]: Note: Phose is expressed in units of $\pi / 16$ radians

