

MOUNTING AND HOUSING DIMENSIONS TO ORDER. Hore aro a low typloal conligurations obtainable in aluminum, stalnioes arocl, boryillum or siconium alloye.

812323 Lerds and triminals.

$812=23$
Tandem unit. Tranemitter and Resolver.

A WIDE VARIETY OF BORES AND STACK HEIGHTS, widths and diameters avallable from existing laminations. Below are some examples. Let us know your needs.

ENGINEERS-Pioneer with a leader in the field. Write David D. Brown, Director of Personnel. Dept. A3

CDOC Clifton precision products co., inc. Clifton Heights, Pa.

COVER: The two prominent circles on the cover suggest crt views of the waveforms into and out of the ac-line regulator. Gray and black vertical bars represent uniformly spaced timing marks. Frequency of the waveforms has been exaggerated to show fast response of the regulator to line voltage changes despite changes in frequency

Selected Topics In This Issue

Circuits, Techniques
Temperature measurements in
crystal oven design
Design of phaotastrons
No tubes, no Transistors in
amplifier-iust diodes 21
Low-pass filter converts square
wave to sine
VR tubes replace
Matrix table for transisto
two-port networks

Components

Potentiometer uses light beam
ac regulator independent of load. line, or frequency

Computers

How to evaluate A / D converters 36
MicroWaves
Millimeter-wave generator
progress
How to simulate antennas
Tunable coaxial cavity
nomograph
Packaging
What the electronic engineer should know about epoxies ..
High-density electronic packaging

Systems

Air-fraffic control

\qquad Tinle
Nome

Mome Addrew

For Change of Addrans:
Old Compeny Name

Highlights of This Issue The Jet-Age Challenge

Designers of air-rraffic-control equipment, who have had their nands full trying to solve the many problems put to them by Federal Aviation Agency and military controllers, will soon be faced with new challenges.

Government planners are considering integration of the civil air-trafic control system with the SAGE network. The objec: is to improve control by taking advantage of SAGE's data-processing equipment and surveillance radars.
With missiles replacing aircraft as the main threat from the air, some of the capacity of SAGE is becoming available for other uses. FAA engineers inform us that the more integration is studied, the more feasible it appears. Project Trailsmoke, conducted last year in the Chicago and Detroit area, showed that air-traffic-controllers operating Air Force equipment could provide radar advisory service for aircraft of the Strategic Air Command

Another limited trial of air-trafficcontrol integration is getting underway in the Washington, D.C., area, where, as part of project Shape, military surveillance radars are being used by con trollers to keep high-altitude jet traffic under positive control-the type of control used by the military but only planned for the civil system.

The most elaborate attempt at integration will start next year, when a complete en-route high-altitude environment will be controlled by SAGE equipment modified for the task.
The modifications-bright displays, input-output buffers and electrographic printers-rypify the rype of system redesign that may be necessary on a large scale if integration takes place.

The article on p 4 of this issue explores some of the implications in the present air-traffic-control turmoil. The story originated at a recent FAA R\&D Symposium in Atlantic City and was developed on a long round of visits to FAA headquarters in Washington.

Diode Hi-Fi Amplifier
Don't miss the article on the hi-fi amplifier that uses no tubes, no transis-tors-iust diodes. It's the lead story in the Design Decisions section, p 216.

New Raytheon Frame Grid Subminiatures

CHARACTERISTICS AND TYPICAL OPERATION		
	crreen	ck7998
heater voltage	63 Volts	6.3 voits
heater current	0.3 Amps	0.3 Amps
PLate voltage	100 Volts	150 Volts
GRID \# 2 VOLTAGE	-	150 Volts
CATHODE BIAS RESISTANCE	820 nms	160 Onms
GRID $=1$ VOLTAGE	0 Volts	0 Volts
Plate Current	15 mA	80 mA
GRID $=2$ CURRENT	-	20 mA
plate resistance	25 KOnms	0.1 Meg Ohms
transconductance	18,000 m mh	13.000μ mhos
AMPLIFICATION factor	43	-
Ecl for $\mathrm{lb}=10 \mu \mathrm{~A}$	-6 Volts	-6 Volts

fill the gap with outstanding Gm/lp/size

There's no longer any need to sacrifice performance and reliability for small size. Raytheon frame grid subminiatures now fill your design needs with ext-emely compact tubes of higher gain bandwidth product. lower noise figure, and greatly in creased reliability. Two submin. iatures with exceptionally high transconductance to plate current ratios are immediately available.

The CK7994 is a triode with a transconductance of $18,000 \mu \mathrm{mhos}$ at a plate current of 15 mA . The CK7995, a sharp cutoff pentode, features $13,000 \mu \mathrm{mhos}$ at 8.0 mA . Both types are precisely fabricated with perfect pitch frame grids of
high uniformity of spacing and characteristics. Maximum reliability is assured through the excellent mechanical rigidity of the grid structure.
Raytheon frame grid subminiature tubes remove the limitations imposed upon your designs by tubes with conventional grid construction. For optimum performance consider the many advantages offered by the growing line of frame grid tubes from Raytheon, leading manufacturer of subminiature tubes.
Full technical data may be obtained by writing to: Raytheon, Industrial Components Division, 55 Chapel Street, Newton 58, Massachusetts.

For Small Order or Prototype Requirements See Your Local Franchised Distribulor

ceay VIDEO FREQUENCY SWEEPING OSCILLATOR AND FREQUENCY MARKERS

All olactronic Soble Solansod eutput No phealias padiuotm
${ }^{2}$ Zoro roleronce line

50 ke to 50 me

Marka-Sweep

 MODEL VIDEO 50 Catalog Ne. 153-BVideo \& IF Coverage High Output, Wide Sweep Automatic Gain Control

50 ke to 20 me

env Marka-Sweep ${ }^{\circ}$ Model Video Calalog Ne. 150.

- 3 awliched bands
- 6 Dired aysial mathers
- Rorme wariable mulea-tyme mation from SPECIFICATIONS
Frame: so be to 30 me
smom fate: Vartable aroued so cpa; loetar to Jin

reen aneop jidib.

-me teter: Borcouts
Hrem: 9575.00 , Pob. P2actory 8633.00 TAS.

The Marke-Scoep Model Video 50 it a wide ran video oweeping acrilator when in frequency ithan in put voluage and awaepa lower in frequency thas the

 pulee.typo efyolal martert. Io oddition. e ealibrated

SPECIFICATIONS The Marka-Sweep Model hideos arc bear trequeney oocillators. carefully shielded and fitered to preven
spurious output signale. They provide crystal-con apolled, fred frequency markers. bulle in atlenuators and corefully balanced, low.harmenic output.

 firequentit: Conlouously pariable. sero to do V, peak-

 martern: woble singly, or colle eelvisy Protuced eith

Mritr Aaplitac:: Ae podilum pulse at mparate output. tive kejing pulse, winc amplitude
 Yox. subitul

So he to a me

nar Marka-Surep̊ Model Videe TTV
Catalog No. 151.A

- High, molored ewipur
- Eolh errutai-sentrolled and
mentore and/ar CW
aignals

 SPECIFICATIONS

 conluolled curd amolo. $1.8 V$ min into now io fit eithle ± 0.5 ohe mon muza). Anept
 marter Amallisco: 5.0 V peak.
 Yeve Mork. Sunitute mar
inme
833.00 .

ELECTRONIC DESIGN

Mayden Publishing Co Inco
Bjo Third Avenue. New Yoik 22, N. Y.
ELECTRONIC DESIGN Engineering Data 207
 207
Design Decisions 216No Tubes, No Transistors in $\mathrm{Hi}-\mathrm{Fi}$ Amplifier-Just DiodesPainted Checks and Stripes Help Cool Explorer VIII
Half-Disk Mounted Circuits Save Space, Provide AccesHigh-Speed Rotary Switch Uses Rotating Magnet to Close Reed"Oceanated" Roof Simulates Sea for Ship Antenna SystemBuoy, Oh Buoy, Buttered Popcorn216
218218
219eas for Design222High-Gain Pulse Amplifier Uses Complementary TransistorsPulsing Capacitor Eliminates False Triggers Due to Switch BounceBypassed Bias Resistor Increases Emitter-Follower InpuIdeas-for-Design Entry BlankHeat-Conducting Wafers Dissipate Heat in MicromodulesHeat-Conducting Waters Dissipate Heat in MicroVow-Pass Fiter Converts Square Waves to SineRC Discharge Dispay Rapidly Measures Tantalum
228
Russian Translations
228
228
Matrix Table for Transistor Two-Port Network
Matrix Table for Transistor Two-Port Network 240
Incremental Network Properties-A Generalized Compensation Theorem 240
ELECTRONIC DESIGN Digest 242
Development Trends in Telephone Systems 242
New Products 48
New Literature 209
Letters 246
Careers 252
Your Career 252
Advertisers' Index 261

Canoga helical arrays now girdling the earth will be receiving data as well as commanding the Mercury capsule on its first flight through outer space. This is representative of Canoga's long experience in the design, development WYLL and manufacture of antennas... and is only the per厂/E beginning. Increased necessity for deep space REETMEDeainvestigation has created new demands for telemetry techniques at high frequencies and, resultantly, new demands for Canoga's abilities to fill existing needs, and to anticipate those of the future. Canoga has over 14 years of experience in meeting telemetry needs - from helical arrays to blade antennas, from pedestals to dishes, all with the advanced back-up electronics necessary for reliable operation. For telemetry antenna needs the world over, the answer is the same. Ask Canoga! CDCO

Canoge Electronice Cordoration - Van Nuye, California - Fort Walton Boach, florida

NEWS

ELECTRONIC DESIGN

U. S. Faces Difficult Decision on Air-Traffic Control

Plans for New Computer Centers Competing With Scheme For Integrating Military's SAGE into Civil Flight System

Alan Corneretto

News Editor

THE UNITED STATES will have to decide soon on the type of air-traffic control it wants in a maturing jet age.
Under consideration are three possible approaches:

- The much publicized Data Processing Central (DPC) system, in which computers would handle much of the information flow now processed manually.
- Integration of the civil system with the military's SAGE aircraft-surveillance network.
- An integrated system for areas now covered by SAGE and a compatible data-processing central system in areas beyond the range of the military network.
A decision is important, because the Federal

Aviation Agency, investigating both the DPC and SAGE systems, is spending money on expensive projects that are competitive. The longer the decision is delayed, the more money will be spent.
A clouded future looms for the Data Processing Central system. This results from the increasing obsolescence of the SAGE network as a military defense and its availability for other duties, the most obvious being civil air-traffic control. SAGE was designed originally for early detection of enemy aircraft but is considered unreliable for tracking the supersonic missiles that are now commonplace in the world's military arsenals.
Before the availability of the SAGE system, DPC was considered the logical successor to the present manual system of civil air-traffic control.

Control team station and equipment for Satin experiment, in which high-altitude air traffic over the New York-Boston area will be controlled by integrating facilities of the present FAA air-traffic network and the SAGE air-defense system.

Now Government planners are frankly undecided about the scope DPC will have.

SAGE-Civil Air System

Due for Experimental Test

To get the maximum value from SAGE, a special FAA division is supervising a Mitre Corp. test of a sample SAGE-civil integrated system. The form of the experimental system-in particular, the degree of integration-will be known by July 1, when an FAA committee is scheduled to make recommendations on the subject.
To aid in the decision, the agency is making is study of 10 -year costs of an integrated SAGE system and of the most likely alternative system that would be developed during the 10 years. This alternative, FAA spokesmen indicate, appears to be the Data Processing Central system-com-puter-dominated centers where much of the manwal work of processing flight data strips and other air-traffic-control functions would be done semiautomatically

Preliminary results of the cost study suggest that close integration of the civil system with SAGE would be less costly initially but would entail higher recurring costs than the Data Processing Central system. Included in the final evaluation, however, must be such factors as the more severe dislocation anticipated with SACE integration and the greater Hexibility expected with a newly designed DPC system. In addition the effects of varying degrees of integration have to be evaluated. FAA spokesmen irdicate that the most likely arrangement will be to use the SAGE radars, some of which are now used jointly by the FAA and the Air Force, and much of the data-processing equipment at major SAGE sites. However, the standard SACE computer, IBM's AN/FSQ-7, would probably not be used, nor would the Air Force's direction-center buildings.
But two important factors would have to be resolved before SAGE could be integrated. In SAGE, video information is digitized at radar sites and sent to processing centers over telephone links. In the present FAA system, raw video is sent over broadband microwave channels. If integration is chosen, this discrepancy
will probably be resolved on economic grounds.
Another point of difference is SAGE's use of a Cartesian-coordinate system of area division. The FAA uses uneven geographical sectors. The agency has indicated that it will probably shift to a grid system, although one different from the present SAGE grid.
To test the feasibility of integration, the Air Force has turned over to the FAA the evaluation sector of the SAGE system for use in a sample integrated system, Project Satin. In this test, highaltitude, en-route aircraft in the New York-Boston area will be controlled with the aid of a new program written for a SAGE computer. Most of the Satin system equipment is already available in SAGE; the rest-including brighter displays. and electrographic printers-is available off-the-shelf. The system is expected to be functioning by December.

Preliminary tests of some of the Satin concepts are under way in the Washington, ID.C. area in a separate exercise. This is project Slape, in which surveillance radlars are being used for positive control of high-altitude aircraft.

The Satin system differs from the present airtraffic control system in that it makes fuller use of cromputers to process fight plans, transfer control of aircraft and detect potential collision courses aloft. It also uses more radar and beacon data to acquire position data, and it correlates these data automatically with the flight plans In Satin, information is presented to controllers as situation displays rather than as tabular data in Hlight-strip form. Satin uses keyboard entry devices to insert Hight plans, progress reports and weather data.

Data Processing Centrals Probable

If Systems Are Not Integrated
If Satin proves unfeasible, or if integration is not decided on for other reasons, the FAA will probably go ahead with its long-range plan of installing data-processing centrals throughout the air-traffic control system. The first of these is scheduled to be commissioned in the Boston area next year. A complete DPC, Data Processing Central system, as planned by the FAA, consists of about 50 different subsystems. These serve nine hasic functions, which may be in cluded in the over-all system piecemeal as individual equipments are developed.
Essentially the IJPC and Satin concepts are in competition as means of controlling en-route air traffic. If integration is decided on, the longplanned and elaborate DPC-based system may not be implemented on a large scale. The main design effort then will be in modifying the SACE system and in extending similar coverage to the areas of the country not now served by SAGE. $=$:

BRIEF SPECIFICATIONS

outpur voltage 1.000 to 502110 volts, variable in $100 \cdot 10 \cdot 1 \cdot 0.1 \cdot 001$ - and 0001 -volt steps
Cutput current Up to 20 ma
stability - 0.0025\%
Cutput voltage 0.01% of setting $=0.0002 \mathrm{~V}$
CALIBRATION 0.01% of setting - 0.0002 V
LOAD REGULATION 0002% or $=100 \mu \mathrm{~V}$, no load to full load
Line regulation $0.002 \%, 10 \%$ change in line vollage meter accuract 4% of full scale

OUTPUT $2<0.01$ ohni, DC
Floating output >1000 megohms resislance belween chassis and either output terminal; current between either output terminal and chassis $<0.5 \mu$ ampere $D C$, $<4 \mu$ ampere at 60 cps
RESPONSE TIME 0.2 millisecond PRICE $\$ 1280.00$

now! supply and measure 1 to 502 volts with 0.01\% accuracy!

KIN TEL's Model 302 DC Voltage Standard and Null Voltmeter is an extremely stable, accurate, and compact source of variable voltage low-impedance DC.
Standard cell stability is obtained by using KIN TEL's chopper circuit which constantly compares the Model 302 out put against an internal unsaturated mercury-cadmium cell. Short-term stability is better than 25 parts per million, and stability over a 30 -day period is better than 50 parts per million. Both load and line regulation are maintained better than $\mathbf{0 . 0 0 2 \%}$, and ripple is less than 0.0001 volt.
Precision voltage adjustment is easy with six detented dials. Up to 20 milliamperes of current are available at any dialed output from 1.000 to 502.110 volts. Output voltage accuracy is within 0.01% of setting ± 0.0002 volt.

Laboratory-accurate measurements are made by the selfcontained null voltmeter which shows the difference between the 302 output and an unknown input voltage. The meter has four decaded ranges from 50 volts to 0.05 volt, full scale, and permits rapid measurement of DC voltage - with up to 6 digit resolution-to an absolute accuracy within 0.01% of the reading ± 0.001 volt. The meter can also be used to indicate either the 302 voltage or an unknown input to a standard accuracy of 4% of full scale.
The floating output is isolated from chassis ground; resistance between chassis and either output lead is greater than 1000 megohms. The effective output impedance is less than 0.01 ohm for DC, less than 0.2 ohm at 1000 cps .

Write today for detailed technical literature or demonstration.

KIN TEL
Representatives in all major cities.
5725 Kearny Villa Road, San Diego 11, California - Phone: BRowning 7-6700

CHOOSE FROM THE INDUSTRY'S WIDEST SELECTION OF HIGH.CURRENT (TO 600 AMP) TRANSENT-SUPPRESSED DC POWER SUPPLIES

Response time adjustable to 20 milliseconds . . .
Excellent dynamic load regulation . . . Iow ripple

Proven in production use in the..

THOR . . . SOMARC. . . ATLAS . .
JUPITER . . . POLARIS. .
vanguard and la crosse missile programs

SPECIFICATIONS
A.C. INPUT: $208 / 230 / 460$ volt $\pm 10 \%$. 3 phare, 60 cycle.
RIPPLE: Lose then 1% RMS.
GESPONSE TIME: A speciel control in. tornoly mounted int of roweonsupplime.
 sble trom 20 to 200 milliseconds, mind socondy. An Important adventegu of With inductive loods. such as invertor! interrection botwoon inductivo losd and power supply.
ratines availanle:

Medel Number	D.C. Output		Regulation		$\begin{aligned} & \text { Dimensions } \\ & W^{\prime \prime}=H^{\prime \prime} \equiv \mathbf{D}^{\prime \prime} \end{aligned}$	Weight tbs.
	Volts	Amps	Static- line er Leod	Dynemic. Lood		
MRST28.100	24.32	100	$\pm 0.1 \%$	$\pm 0 \mathrm{~V}$	$27^{\prime \prime} \times 17^{\prime \prime} \times 17^{\prime \prime}$	230
MRST28.200	24.32	200	$\pm 0.1 \%$	$\pm 6 \mathrm{~V}$	22" $\times 36^{\prime \prime \prime} \times 22^{\prime \prime}$	550
MRST28.300	24.32	300	$\pm 0.1 \%$	$\pm 6 \mathrm{~V}$	$22^{\prime \prime} \times 36^{\prime \prime} \times 24^{\prime \prime}$	700
MRST20.400	24.32	400	$\pm 0.1 \%$	$\pm 6 \mathrm{~V}$	$20^{\prime \prime} \times 66^{\prime \prime} \times 30$ "	1250
MRST28.500	24.32	500	$\pm 0.1 \%$	$\pm 6 \mathrm{~V}$	$22^{\prime \prime} \times 681 / 2^{\prime \prime} \times 32^{\prime \prime}$	1650
Mast28.600	24.32	600	$\pm 0.1 \%$	$\pm 0 \mathrm{~V}$	$22^{\prime \prime} \times 68 \%^{\prime \prime} \times 32^{\prime \prime}$	1650
MRST2440-250	24.404	250	$\pm 0.1 \%$	$\pm 2 \mathrm{~V}$	$261 / 4^{\prime \prime} \times 69^{\prime \prime} \times 38^{\circ}$	1650

-har
Write for literature or recommendations based

PERKIN SALES

REPRESENTATIVES

albuauerque, m. m. Brooks-Feeger Assoc.
550 Domingo Rd.
ameola mo
AMCOLA, ImD
Box 95
$2178101 \cdot R$
atlanta s, ga. E. G. Holmes \& Assoc.
4969 Roswell Rd. N.E. 815.6650
baltimone, mo Gawlet-Knoop Co.
807 E. Seminary Ave. Towson 4 Md .
EN 9.315 an 2
cuicaco 25
CMICAGO 25, il Saftro 8 Assoc.
$5209 N$ Kimball Ave.
118.0905 JU 8.0905
clevelana, omio Electro Sales Asso
Euclid 23. Ohio
Euclid 23.
dallas 20 , texas Wallace Assoc.
p. Box 13203 Po 0 Bor 13203
Fi 7.7080 dartom 20, omio Electio Sales AssoC
Dabel Station Box 143 CH 4.5551
DENVER, COLO. Brooks.Feeger Assoc
3041 S Broadway 3041 s. Broadway
Englewood. Colo Englewoad.
SU 1.7375
des moines, lowa Design a Sales Eng 270241 st PI.
815.4584
DETROIT 24, MICM. Electro Sales Asso
15324 Mack Ave. 15324 mack
TU 6.2280 eneemseono, m. c. E. G. Holmes 8 Assoc ${ }_{4} 40 \mathrm{~W}$. Market St. Suite 8 -1
BR 20855
imdiamapolis, imo. Law Instrument Co. aw
0 f 7.0009 Kansas CITY E, mo. Design \& Sales Eng. Co 600 Grand Ave
1-1640
Lawremce, mass LawRemCE, MASS.
Richard D. Frink ASsoc 6 Amesbury St.
U 3.3252
os ameeles. calif.
nstruments for
Measurements
3455 Cahuenga Blva.,
Hollywood. Ca
HO 9.7294
MIMNEAPOLIS, MIMN.
Morthport Eng., Inc.
1729 Selby Ave

1. Paul 4, Min

MEW YOAK CITY AND 78 Er-Knoop Co. 18 Eagle Rock Av oseland. N. J. ${ }^{\text {. }}$. Tele. Di ${ }^{4} \mathbf{2 9 9}$ Roseland Tele. CA 6.4545 ORLAMDO, FLA E. G. Holmes 8 Assoc
1220 Edgewater Dr 1220 Edgewat
C 41.2128
1.2128

PMILLADELPMIA, P Gawler-Knoop Co.
835 Glenside Ave
835 Glenside
Wyncote ${ }^{\text {Pa }}$
Phila. Tele W
Phila. Teile WA 7.1820
Wyncote Tele TU 4.880 .
circle 7 ON reader-service card

PMOEMIX, AAIZ Brooks. Feeger Asso
$34 . A$ E First St 34.Atsorirst St. salt lake city, utan Brooks.Feeger Assoc
253 R10 Grande. 253 R.O Gra
Rm. No. 57
EL 9.2427 SAM diego 4, calif Instruments for
Measurements 2420 University Ave. JU 3.1972 SAN FRANCISCO, CALIF Cerruti Assoc.
PO Box 509 116 Cypress St.
Redwood C Cty, Calit.
EM 9.3354 . seattie, wash Testco
Boeng field-Rm. 108
PA 3.9000 ST. LOUIS 5, Mo. Sesign \& Sales Enge Co
D603 Forsyth Bivv. 7603 Forsyth Biva
Rm. 304.06
PA 1.6403 RA. ${ }_{1.6403}^{304.06}$ SYRACUSE, M. \boldsymbol{r}
$\mathrm{D} \boldsymbol{B}$ Assoc.
 Dewit (Syracuse), N. Y
G1 6.0220 WASHINGTOM. D.C. 1 MARYLANO Gawler-Knoop Co
8132 Flower Ave Silver Spring. Mo
ju 5.7550
Nind JU 5.7550
WICWITA, KAM WICMITA, KAN.
Design \& Sales Eng co
400 Wichita. Kan Camada Electromechanical
Products Markham Ro. AEMncourt. Ont, Canada
AX 3.7011 australia Geo. H. Sample \& Son
(Electronics) piy. Lyd Sample House
17.19 Anthony 1. 19 Anthony si
Me elbourne C.I. Australia felcium Betcium
Belram Ele Belram Electronics
43 Ch . De Charlerol Brussels. Belgium
38.12 .40 ispael
Eastronics tid.
$48 w .48 t h s t$.
in
.
 isfaEl ISRAEL
Eastronics Lid.
PO Box 2544
Tel Aviv. Israel Tel Aviv. Israel
66890 Geo. H. Sample \& Son
(Electionics) (N. Z.) Lto.
Box 3250
(1) $80 x 3250$
431 Mount 431 Mount Albert Rd.
Mount Roshill, S, 1. Auckland. New Zealand
89.439 prance Megen
Meger Qua, Branly
Paris 15. France Paris 15. France
Seg. 36.93 spaim ATAIO ingenieros A. Aguilera No. ${ }^{2}$ Madrid. Syain
23
27 SWEDEM Erink Ferner $A B$
Bor 55 Box 55
Bromma Swede Bromma Swede
R 101

Industry Preparing for Push in FM Stereo

Choice of GE-Zenith System by FCC Starts Drive by Manufacturers

TRIGGERED) by the Federal Communication Commission's approval of suppressed-carrieram as the multiplex standard for fom sterem broadeasts, manufacturers are preparing to produce the special equipment needed for steree) transmitting and receiving.

In the system to be used, the main carrier is frepurney moxluated by the sum of the left and right microphone signals and by the sidebands of a suppressed subcarrier. The sulkarrier is amplitude modulated and suppressed by a left-minus-right difference signal. This suppressed subcarrier is restored at the receiver by a pilot signal transmitted between the sulkearrior and the main carrier.
Transmission equipment required for the system includes ant exciter, a sulbearrier inserter capable of accepting a composite signal, a signal generator to sellerate the composite signal, and a monitor receriver adapted for stereo. Stations already equipped for storecasting or other multiplev transmissions would only have to morlif! their present equipment.
To receive the broadcasts requires that an adapter be added to a standard fin tuner and

Transmitting system adopted as standard for stereo broadcasts is based on sum and difference matrixing, with the sum transmitted as the main carrier frequency modulation and the difference signal transmitted as suppressed carrier amplitude modulation of a subcarrier. Holf-frequency pilot signal is transmitted to help restore suppressed signal.

Receiving equipment for stereo broadcasts could be a standard hi-fi set plus a relatively simple adapter. Left-plus-right signal transmitted as fm modulation of main carrier for stereo would be signal used by monophonic sets. The left-right sidebands and pilot signal would not be heard in a monophonic receiver. In stereo sets they must be decoded to produce left-right signal. This happens when pilot signal is filtered and doubled to recover carrier, which is mixed with filtered sidebands to form normal am signal for detection.
dual-channel amplifier. General Electric Co., Ctica, N.l., believes that a one-tube-double triokle-adapter would give satisfactory results, although it says addition of a preamplifier as well would make possible goxd reception by a wider variety of amplifiers. Cost of the adapter would the minor compared to that of the complete stereo system.
The system is compatible with existing fm broadcasting standards. Monophonic receivers tuned to stereo transmissions would receive the left-plus-right signal and would produce sound omly slightly reduced in quality:

Adapters, Some FM Stations

To Be Ready by June lst

Cieneral Electric says it has adapters in production and that they will be on the market by June 1, at which time stations in Syracuse, Schenectady, Boston, Chicago and on the West Coast expect to be broadeasting stereo fmprograms

The adopted system is said to be the same as the one GE proposed to the FCC and very similar to one proposed by Zenith Radio Corp., Chicago. The Zenith system has been modified to include the subharmonic carrier. Its phasing and frequency parameters have also been changey. Both GE, and Zenith plan to produce complete high-fidelity systems capable of receiving stereo broadcasts. E*

3ULOVA PRECISION
CRYSTAL FILTERS

Whatever the frequency you wish to "isolate", Rulova experience with prototype and production quantities of precision filters assures maximum sensitivity and stability. The following examples show Bulova's mastery of the most difficult problems in high-perfurmance filter engineering.
BAND PASS FILTERS - In a band of 30 filters, insertion loss variation between filters. and over the temperature range $25^{\circ} \mathrm{C}$ t1 $75^{\circ} \mathrm{C}$, held to .3 db between highest and lowest. Part \#69-A-RP-13highest and
2 N i1 thru 30,
SINGLE SIDE BAND FILTERS - Band ripple held to $\pm 1 / 2 \mathrm{db}$, both 1 and 3 db points defined, over th temperature range $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and 300 to 2000 cps

vibration at 30 G level. Part \#117B-FC-$22-4 \mathrm{~W} V$
DISCRIMINATOR - Center frequency held to within $10 \mathrm{c} p \mathrm{p}$, frequencies equally spaced from center, held to 5.4 v peak $\pm 5 \%$. Part \#186C-TN-22A-WD
BAND SUPPRESSION FILTERS - 2 kc wide band attenuated 60 db , right next to it a pass band held flat to $\pm 1 / \mathrm{db}$ for 150 kc . Part \# 158-TF15-6R
If you're faced with tough filtering problems, need additional information or practical application assistance, contact Bulova for engineering specialists to assist in selection of filters best suited to your needs. Write Department 1820, Bulova Electronics, Woudside 77, N. Y.

Pyrolytic Graphite Investigated as Organic Semiconductor

Researchers Are Hoping to Make Use of Highly Anisotropic Properties In Easily Made Material, If Appropriate Applications Can Be Found

PyHOLYTIC graphite, an organic semiconductor now used nonelectronically in industrial controls and missile nose cones, may become an important electronic material if suitable applications for its unusual properties can be found.

New research has established that the anisotropic conductivity of the relatively easy-to-make material is on the order of 1,000 to 2,000 . Because of this and its good carrier mobilities, pyrolytic graphite (PG) appears to be one of the most promising organic semiconductors so far investigated, according to Dr. C. A. Klein of Raytheon Co., Waltham, Mass.

However, says Dr. Klein, much more research is needed before the material can be considered a semiconductor suitable for electronic devices. Carrier lifetime has yet to be established; lifetimes are short for most known organic semiconductors. Two applications understood to be under consideration for PG are in energy-conversion devices and in nonreciprocal networks. Another form of the material, pyrolized carbon, is reportedly being investigated as a resistor sub-
stance. Resistance values would be controlled by heat treatment, which is said to be a simpler method than the present technique of adjusting chemical content.

At the Inter-Industry Conference on Organic Semiconductors, held in Chicago, Dr. Klein reported that two of the three directional resistivities of PG were strongly dependent on the temperature at which the graphite was deposited during manufacture. He said the room-temperature resistivity of speciments deposited at $2,500 \mathrm{C}$ had been measured at about 2×10^{-4} ohm- cm in the basal plane and about 0.5 ohm- cm in the perpendicular plane.

In both the basal plane and the perpendicular plane, resistance increases with decreasing temperature. But in the basal plane, Dr. Klein reported, resistivity first decreases as the temperature drops from $1,500 \mathrm{~K}$ to 600 K , then rises as temperature nears cryogenic levels. In the perpendicular direction, resistance rises evenly from high to room temperature, which is characteristic of semiconductors, then levels off at low temper-

Photo-induced Hall effect in an organic semiconductor is studied with flash fube apparatus at Armour Research Foundation. So for, 10μ sec-single pulses focused on anthracene crystals to generate carriers have not resulted in measurable effects. Researchers are trying to detect these by noting the effects of magnetic fields on Hall currents. Armour's W. D. Brennan, shown here, reports apparatus is being modified.
ature. As a function of temperature, electrical anisotropy was said to go through a maximum of about 1,000 at slightly above room temperature and to decrease sharply at high temperatures.

Carrier concentration in n-type pyrolytic graphite has been measured at about 1×10^{14} cm^{-3} at 300 K . This increases linearly with temperature and is said to be equivalent to that of germanium.
The material is reportedly easily produced by pyrolyzing carbonaceous gases in either an induction furnace or a resistance-heated furnace at temperatures of about 1,000 to $2,000 \mathrm{C}$. The breakdown of hydrocarbons results in a polycrystalline polymer that can be deposited on a substrate in considerable thickness.

Many Groups Are Sfudying
 Semiconduction in Organic Polymers

Other organic polymers exhibiting semiconduction are under study in many organizations, including most of the major chemical companies, several electronic firms, and schools and research organizations. At Princeton University, Dr. H. A. Pohl reported, nearly 150 polymers have been created by pyrolysis and by direct synthesis. Carrier concentration in the created materials ranges from 10^{13} to 10^{19} per cm^{-3} for pyrolytically produced polymers and from 10^{13} to 10^{17} per cm^{-3} for directly synthesized polymers. Ciermanium, by comparison, las concentrations that may be varied from 10^{13} to 10^{14}, it was said.

The conductivities of the material produced at Princeton range from 10^{33} to 10^{12} reciprocal ohm-cm for pyrolized polymers or pyropolymers, and 10^{-2} to $10^{-2 \prime \prime}$ for synthesized organics. The corresponding figure for germanium is said to be about 10$)^{-3}$

Ranges of other characteristics of the variety of polymers produced at Princeton were:

- Temperature coefficient of resistance-from positive to zero to negative for pyropolymers, and negative for synthetics.
- Form-from thermosetting to thermoplastic.
- Mobilities-from about 10^{-8} to more than $100 \mathrm{~cm}^{2}$ per v-sec for pyropolymers, and from 10^{-5} to $300 \mathrm{~cm}^{2}$ per v-sec for synthetics.
- Thermoelectric powers-from 3 to more than
'Hopping' Model Is Now Favored For Studying Organic Conductance

MOOEL FOR MOMPINS TMEORY

A mepping" model for investigating conductron in organic materials is now considered better than a "drift" model based on band theary.

In the hopping model, excited electrons or holes, leaving the parent orom or molecule, tend to be drawn back by o mountain-like configuration of potential energy unless they can be excited over the potential mountain and be drawn to a neighboring unit. Electrons or hoies may also "hop" to a noighbor by fun. nelıng it the mountains of binding potential areo high. Transfer is limited to one neighler of a time.
In the band fieory modil, the bosic ossumption is that electrons and holes are free to wander anywhere among basic units of matter. If afoms or molecules are packed closely rogether, energy variations are smoother and the excited unit may trovel easily through material until scattered by impurities. The general ecceptance of the hopping model may speed understanding of conduction in orgaaics and so remove one of the main bottlenecks to development of useful organic semiconductor materials for electronics.
$300 \mu \mathrm{v}$ per deg C for pyropolymers and from 3 to $900 \mu \mathrm{v}$ per deg C for synthetics.

- Magnetic characteristics-diamagnetic to ferromagnetic for pyropolymers, and diamagnetic to paramagnetic for synthetics.

According to IDr. Pohl, the resistance temperature coefficients of the pyropolymers may be regarded as energy gaps, ranging in the materials CIRCLE 9 ON READER-SERVICE CARD -

IN THE MOST EXACTING APPLICATIONS

PHILLCO MADT
 SWITCHING TRANSISTORS

The Industry's Strongest Record of PERFORMANCE and RELIABILITY

It

In TO. 1 CASE:
2N501-Ultra high speed switch 2N501A-Military version of 2N501 In TO-9 CASE:
2N1204-Ultra high speed, high current switch
$2 N 1495$ - ligh voltage, high speed. high current switch 2N1499A - High speed, low cost switch (MIL version available) 2N1500-Ultra high speed switch 2 N1754-Very low cost, high speed switch
In TO. 31 CASE:
2N1494-High power version of the 2N12O4
In TO-18 CASE:
2N768-Ultra high speed switch for very low power circuits
2N769-World's fastest switc 2N779A-Ultra high speed switch very high beta
2N846A-Ultra high speed switch
2N846A-Ultra high speed switch

Immediately available in quantities
1-999 from your Philco Industrial Semiconductor Distributor

In high-speed computers, control systems, guidance systems and many other critical military and industrial switching applications, Philco's patented high-frequency Micro Alloy Diffused-base Transistors are used more widely than any other type. There are many reasons for this broad acceptance. Philco MADTs are available in a full range of types, each designed and produced to tight specifications for specific applications. They are manufactured by Philco's patented Precision-Etch* process on the world's first fully-automatic transistor production lines
under rigid quality control. Philco MADTs have proved their outstanding performance capabilities and reliability in billions of transistor hours of actual field operation...far more than any other type of transistor.
There is a Philco MADT to meet your requirements . . . offering the advantages of cadmium junctions for cooler operation . . . low collector capacitance . . . low saturation voltage . . . high beta with good linearity . . . excellent frequency response . . . low hole storage time . . and excellent temperature stabilits:

Specify Philco MADTs with complete confidence. For full information on any specific type write Dept. ED51081. •Trademark Philco Corp. LANSDALE DIVISION, LANSDALE, PENNSYLVANIA

why take a chance?

Key Resistor eliminates any "chance" factor with their complete line of precision rexistors designed to exceed the operational demands of today's complex circuitry - completely reliable and capable of performing under extreme environmental conditions.
The Key Resistor line includes hermetically sealed oil filled carbon and metal film resistors the only Silicone Oil filled precision film resistors available today - epoxy and resin coated resistors in the carbon film series, and epoxy coated in the metal film line, plus encapsulated precision wire wound resistors In addition, a complete line of micro-miniature encapsulated wire wound resistors is available
Quality is the keynote with Key. For example, Key has developed a new, automatic flux-free sealing technique for their Silicone Oil filled series - no flux is used in soldering operations. All resistors in this series are also 100% X-ray inspected to assure absolute freedom from solder penetration.
Make Key your one source for the finest in precision resistors. Write today for technical data.

321 West Redondo Beach Boulevard, Gardena, California - TWX CPT 6007

NEWS

studied from about -0.0005 to +1.0 electron volts. This gap permits such high densities of carriers that the materials can be classified as degenerate semiconductors. Synthetics, however, show a considerably lower level of carrier concentration, no degeneracy, and lower mobilities.
In general, it was stated, the carrier mobilities of most organic semiconductors are so low that none so far examined can be considered suitable for such devices as transistors, which require mobilities of about $1.100 \mathrm{~cm}^{2}$ per $v-\mathrm{sec}^{2}$. However. some resistors, said Dr. Pohl, require only medium mobilities-of from about 5 to $1,000 \mathrm{~cm}^{2}$ per - sec. Some organics show such mohilities.

For useful thermoelectric e.ffects. materials capable of higher powers than those so far studied are needed. At Princeton thermoelectric powers of up to $300 \mu \mathrm{v}$ per deg C have been measured by pressing a polymer crystal between two platinum foil electrodes. One electrode was heated, and a measurement was taken of the voltage across the two electrodes and each thermocouple.

Organic semiconductors, according to J. F. Bourland, general manager, Central Research Div.. American Cyanamid Co., New York City, have the following advantages:

- They offer an unlimited varicty of characteristics. Synthetic chemists are able to tailor organic molecules to whatever atomic interrelationship is needed.
- They are plentiful and relatively cheap, in contrast with many inorganic semiconductors.
- They have low thermal conductivity, characteristic of most large organic molecules, and might make better thermoelectric materials than do the inorganies-though not thermoelectric power generators.
- They can be made to have plastic properties, promising films, filaments and molded shapes, all produced without expensive machin. ing and metal-forming techniques.

Electrically Reversible Units
 To Desalis Sea Water Seen

Dr. Pohl foresaw the possibility of materials in which the semicondluctor properties of organies would be combined with the absorptive ion-exchange properties of polymers to create alectrically reversible units that could desalt soa water. He envisioned organic semiconductors in use in Hexible and transparent plates for panel lighting and heating, in ferroclectric devices, in hydromagnetic equipment, in cold-emission cathodes, and in light amplifiers.
Organic semiconductors under study in the United States include, among the polymers, pyro-

Elegant method for measuring drift mobilities in anthracene, an organic semiconductor, opens the way for study of carrier drift and lifetimes and of how a charge is transferred in organics. When light, in 1 to $2 \mu \mathrm{sec}$ pulses, is applied to a transparent charged glass electrode acting as a capacitor plate, charge carriers move through the crystal of ultra pure ontracene. Current through the resistor is proportional to carriers The method indicates anthracene charge carriers have mobilities of about $1 \mathrm{~cm}^{2}$ per v -sec.

Intic graphite. pyrolyzed polyacrylonitrile. and phenolphthalein; among simple molecules, phenazine, imizole, benzimidazole, trans-butadience, naphthalene. (quinoline, and isoopuinoline: among the charge-transfer complexes, which show high conductivities and paramagnetism, tetracyanoquinodimethan (TC.
(), pyrene-iodine, and phithalocyanine.

The most studied organic semiconductor is antliracene crystal. a simple molecule. Which shows no promise of being a useful electronic material because of its low carrier mobilities. high activation energy and short charge-carrier lifetime. Anthracene is. however, relatively well understood and is proving a useful model for studying more complex organics.
Liquid. as well as solid-state organic semiconductors, are under examination. Several materials show befter properties in their liguid form than they do as solids. It was predicted at the meeting that if organic semiconductor devices were developed, some might well be liguid-state.
Several specialists in organic semiconductors see possibilities for their technology that range far beyond electronic devices. IV. O. Baker. vice president of research at Bell Telephone I aboratories, Murray Ilill. N.J., said that polarization and conduction appeared basic to organic living systems and that once their mechanisms were understond, scientists might be able to solve some of the most difficult and important prob)lems in medicine and biology. - -
> new additions to the

- Micro-energy switch-designed for low current, low voltage, high speed applications
- 10 mc pulse rates, collector currents as low as 1 ma , collector supply voltages as low as 1 volt
- No reduction in switching speed, as with ordinary low current, low voltage devices. Permits higher density packaging
- Typical DC beta of 40 @ $V_{c E}=-0.20 \mathrm{v}, \mathrm{I}_{\mathrm{c}}=-2 \mathrm{ma}$

TYPE 2N769

- World's fastest switch-will operate reliably at speeds in excess of 100 mc
- Gain bandwidth product (\mathbf{f}_{-}) typically 900 mc
- Low capacitance, low saturation voltage, high beta-ideal for low-level, high-frequency logic circuits
- Extremely low hole storage factor (K_{s}) typically 18 nsec

TYPE 2N779 A

- Manufactured with tighter parameter control than any other transistor in the industry
- Designed to meet rigid specifications of 16 electrical characteristics-ideal for NOR logic and other supercritical applications
- Low saturation voltage-typically 0.09 volts
- Higher in performance, lower in price than mesa transistors with lesser specifications

SPRAGUE MADT* transistor line!

High-speed switching transistors in TO-18 cases are now being mass-produced by Sprague. These hermetically-sealed germanium MicroAlloy Diffused-base Transistors are made by a controlled-etch process to insure extreme uniformity. Maximum frequency capabilities have been improved by graded-base construction. Automated manufacturing techniques have brought about increased production efficiency, permitting favorable reductions in prices. This is why Sprague MADT Transistors can offer you greater performance per dollar than other highspeed devices in low-current switching circuits.
*Trademart of Pbilco Corporation

SPRAGUE COMPONENTS

transistors
 capacitors

resistors
magnetic
magnetic componemt
interference filters PULSE TRANSFORMERS PIEZOELECTRIC CERAMICS PULSE-FORMING NETWORKS
high temperature magnet wire CERAMIC BASE PRINTED NETWORKS PACKAGED COMPONENT ASSEMBLIES FUNCTIONAL DIGITAL CIRCUITS
CIRCLE II ON READER-SERVICE CARD

Other Sprague Micro-Alloy Diffused-Base Transistors

TYPE	APPLICATION
2N499	Amplifier, to 100 mc
2N501	Ultra High Speed Switch (Storage Temperature, 85 C)
2N501A	Ulitra High Speed Switch (Storage Temperature, 100 C
2N504	High Gain IF Amplifier
2N588	Oscillator, Amplifier, to 50 mc

For complete engineering information on the types in uhich you are interested, urite Technical Literature Section, Sprague Electric Company, $3 \not 17$ Marshall Street, North Adams, Massachusetts.

SPRAGUE

the mark of reliability

This circuit is presented primarily to show how feedback can be used in counting circuits to effect anv non binary count using binary circuits.

An N/7 divider is a circuit that generates one output pulse for each seven input puises. If, for example. input pulses are applied at a 70 k -pps rate, the circuit provides outputs at a 10 k -pps rate. The EECO N/7 divider circuit described here can operate at input pulse rates up to 150 k -pps.

EECO T-SERIES MODULES

The circuit employs the following three T-Series ger manium plug-in circuits:

1 only T-101B Flip-Flop (FF1)
2 each T-102A Flip-Flops (FF2 and FF3)
In addition, a $470 \mu \mu$ external capacitor $\left(C_{1}\right)$ is used between the input source and pin 4 of FF1.
This is typical of the many practical applications of EECO T-Series Germanium plug-in circult modules. We stand ready to furnish circult modules and application data to meet the needs of your specific problems. Write or wire today.
ENGINEERED ELECTRONICS COMPANY
1441 EAST CHESTNUT AVENUE • SANTA ANA. CALIFORNIA

ENGINEERED
ELECTRONICS

CIRCuIr OESCRIPFION - No reset inputs are required for this circuit
because all flip-flops are reset when an output level shift is generated and the circuit is ready for another cycle of operation. The first input pulse trigeers flip. flop FF1 to a set state and the voltage at $F F 1-8$ drops
to -11 volts. The second input pulse trizeers $F \mathrm{FF}_{1}$ back to a reset state and the voltage at FF1-8 rises toward -3 volts. This rising voltage triggers FF2 to a set state and the voltage at FF2.8 drops to -11 volts.
When the third input pulse is applied, $F F 1$ is again set. The fourth input pulse trigers FF1 back to a reset state. At this time, the following events occur: (1) the rising voltage at FF1-8 trizgers FF2 back to a reset state; (2) as FF2 resets, the rising vollage at FF2-8 triggers FF3 to a set state; and (3) as FF3 sets, the rising voltage at FF3-7 is fed back to FF1-5
and sets that flip.-llop. Each of the three events just described occurs and sets that flip.llop. Each of the three events just described occurs
after approrimately 0.3 -microsecond switening time at each flip-flop and. thus, the complete sequence of events followine the fourth input pulse requires approximately 1.2 microseconds.
The fifth input pulse trizgers FF1 back to a reset state and the rising voltage at FF1-8 triggers FF2 to a set state. The sixth input pulso trigsers FFi back to a set state. When the seventh input pulse is applied, the
following events occur: (1) FF1 is reset, (2) the rising voltage at FF1-8 Fingers FF2 to a reset state, and (3) the rising voltage at fF2.s triggers
trige FF3 back to a reset state. Again, approximately 1.2 microseconds of time are required to complete this sequence of events.
As FFJ is reset, the voltage at FF3-8 rises to provide an output d-c

Axial orrangement of contactless rotary transformers along a shaft. Lower transformer, with larger diameter wind ings, is of the power type, and the three units above are signal types. Bearings units above are signal types. Bearings
separate rotating and stationary ports.

Secondary windings for axial arrangement of power transformers along a shaft are shown. Epoxy resin holds ferrite rings to windings.

Axial orrangement of contactless rory transformers along a shafr. Lower

Frictionless Rotary Transformer Designed

Ferrite Rings Linked Magnetically Across Air Gap In Device That Eliminates Slip-Rings and Brushes

ROTARY transformers using frictionless mag. netic coupling rather than conventional slip-rings and brushes have been developed for use in inertial guidance systems.
The technique, however, is expected to find many applications in electrical and electronic equipment. It was developed by Randall L. Gib son. research engineer with the Massachusetts Institute of Technology's Instrumentation Laloor attory for inertial systems.
The concept was used previously in a signal transformer to couple an antenna to a receiver in a vilf direction finder developed by Stanford Research Institute, Menlo Park. Calif. The direction finder used a loop antenna to pick up signals in the 15 - to $300-\mathrm{kc}$ range.
Ferrite rings or cup cores are used in the primary and secondary portions of the rotary transformers. The ferrite pieces are coupled magnetically across a narrow air gap. One portion can then be rotated with respect to the other without causing fluctuations in the magnetic circuit, because the total dimensions of the air gap do not change with rotation. Slight fluctuations are caused at high speeds because of the inhomogeneity of the ferrite material. according to Mr. Gibson, but this is not a serious problem. The high Q and low losses of ferrites at lower frequencies made them ideal for this application, according to SRI designer Leonard Orsak.

Use in Electromechanical Systems

And Electric Motors Envisioned

A major application of the technique will probably be in taking signals from gimbals in electromechanical reference systems, such as autopilots. Rotary transformers could also be used to eliminate slip-rings in synchronous electric motors.

Chief advantages of the technique are long operating life, lower noise in low-level circuits, and a reduction in torque required to turn the rotating portion. The almost perfect power-trans-
fer efficiency of coupling with slip-rings and brushes cannot be achieved, but a device that was more than 98 per cent efficient was built without difficulty by MIT researchers.
Rotary transformers have proved rugged in laboratory tests, according to MIT, even though the ferrites are somewhat brittle. It was found that cracking of the ferrites in a radial direction did not impair performance.
Epoxy resin is used to hold the ferrite rings or cup cores to primary and secondary windings. Precision finish grinding is done only on completely assembled transformers to avoid eccentricities. Tests have shown less than 0.1 per cent amplitude variation with rotation due to eccentricities in the rings. Conventional surface and cylindrical grinders were used, with tolerances held at $0.0001-\mathrm{in}$. throughout.

Rotary Transformers Built by MIT

Use Both Axial and Radial Design

Rotary transformers arranged in both axial and radial configurations, as shown in the diagrams, have been built by MIT researchers. Where supficient shaft length is available, different rotary transformers can be arranged one after the other along the shaft. If shaft length is limited, a radial design can be used with complete transformers arranged one outside of the other at one point on the shaft.
The development of the rotary transformer was undertaken by the Instrumentation Laboratory for use with pendulous integrating gyroscope accelerometers in inertial systems. It eliminates friction problems associated with the use of sliprings and brushes to provide the accelerometers with wheel power, microsyn excitation current, torquing correct, and output signals proportional (t) angle and temperature. - -

Radial arrangement of power transformers, with three units, one outside of the other, around one point on the shaft. This configuration can be used where shaft length is limited.

HIGH PERFORMANCE MICROMINIATURIZED

HIGH CONDUCTANCE MICRO-DIODE

$\mathrm{I}_{\mathrm{F}} 150 \mathrm{~mA}(\mathrm{~min}) @ 1 \mathrm{VDC} \cdot \mathrm{t}_{\mathrm{rr}} 6$ nanosec (max) @ 10 mA to -6 V - Stored charge 20 piso coulombs per mA .

LAMINAR TRANSISTOR

$V_{C E}$ (sat) 0.3 volts @ $50 \mathrm{~mA} \cdot \mathrm{~h}_{\mathrm{FE}} 30 \mathrm{~min} / 90 \mathrm{max}$ © 150 mA and 10 V - Linear Beta - Pica configuration

These outstanding silicon devices...companions in size, performance, reliability and ease of assembly...open the way to a whole new concept of computer design. All PSI Micro Components are available now and in production quantities!
For detailed specifications, prices and delivery schedules call a PSI field office near you. Prototype quantities available at authorized PSI distributors everywhere.
Pacific Semiconductors: Inc:
12955 CHADRON AVENUE • HAWTHORNE, CALIFORNIA a subsidiary of thompson ram wooldridge inc. CIRCLE IS ON READER-SERVICE CARD

Now available on a tool-of-the-month basis is a new series of Utica pliers. These pliers, never before offered on an industry-wide basis, were developed especially for difficult and all-purpose jobs in elec tronic wiring, assembly and sub-assembly.

Tools are finely finished, produced to the highes standards of Utica quality, thoroughly market tested and backed by Utica's famous full guarantee. Your Utica Distributor will be calling on you soon to discuss the new program.

UTICA $265-5$ TOOL FOR MONTHS mAY AND JUNE
Electronic Wiring Plier with cutter designed to snap-cut, loop or twist solid or stranded wire. Ideal for printed circuit or subassembly work. Like all Utica electronic pliers, edges will not cut or mark wire and are electronically induction hardened for greater wear. Handles are prime coated and dipped in heavy plastisol for contour fit-maximum comfort-minimum fatigue.

UTICA DROP FORGE \& TOOL DIVISION - KELSEY-HAYES COMPANY, UTICA 4, NEW YORK

NEWS

Bell Building Antenna in Maine For Satellite Communication Test

A quict, wooded site in Maine is being prepared for the harnessing of satellites for com mercial uses

On a mountain-encircled, 1,000-acre area near Rumford, Bell Telephone Laboratories is building a high-directivity, low-noise horn antenna for communication to Europe via an experimental active repeater satellite. The isolated Maine valley was chosen to minimize the possibilities of interference from American Telephone \& Telegraph's national microwave network. The frequencies approved by the Federal Communications Commission for the experiments-6.32.5 to 6.42 .5 mc for ground-to-air and 4.10() to $4.20(1)$ mc for air-to-ground-are in common carrier bands used for microwave links.

AT\&T Wants Experimental Satellite

In Operation by Next Spring

Bell Laboratories spokesmen say they lope to have an experimental satellite operating by the time the National Acronautics and Space Administration: Relay satellite is in the air-probably about May. 196?
Construction of the experimental ground station is expected to cont about $\$ 7$ million. Satellite and launching costs are expected to add $\$ 1.5$ million more. If the experiment is successful. AT\&T plans to build the ground eduipment for a commercial satellite system between here and Europe. Four other antennas and a string of some 25 satellites in 5.000 -to- $6.00(0)$-mile orbits

Commercial satellite communications station en visioned by Bell Telephone Laboratories would use five horn antennas in secluded area near Rumford, Me Plastic domes, inflated with warm air, would protect the sensitive sending and receiving antennas from snow and ice. The antennas would work in tandem, with one following a setting satellite and the other picking up a rising one. One of the antennas is being built by Bell for an experimental lest of the system.

ELECTRONIC DESIGN • May 10, 1961
would be sufficient to start commercial operations, according to James E. Dingman, vice president and chief engineer of AT\&T. The forecast is based on the assumption that similar ground equipment would be installed at the European end.
The first experimental satellite will be launched into an eccentric orbit, probably with an apogec of about $5,(100$ or 6,000 miles and a perigee of $3(K)$ miles, Mr. Dingman said.

Wide-Deviation FM Planned

With Bandwidth Held to 40 Mc
Only 40 mc of the $1(0)-\mathrm{mc}$ bands will be utilized in the first tests, A. C. Dickieson, Bell Laboratories director of transmission development, reports. A wide-deviation. fm modulation method will be used with a baseloand of about $5-\mathrm{mc}$ and $15-\mathrm{mc}$ deviation. A 2 -w traveling-wave tube will be used for signal amplification in the satellite after a frequency shift has been applied.

The antennas in the Maine valley will be protected from snow and ice by an inflated plastic bubble containing warm air. The domes will be about 161 ft high and 210 ft in diameter.

Checkout Study Aims to Improve Complex AF Weapon Systems

A 14 -month study of checkout equipment being conducted by Battelle Memorial Institute, Columbus, Ohin, is expected to improve the efficiency of complex weapon systems.

The study is being made under a contract from the Wiright Air Development Div., Air Force dir Research and Development Command.

Battelle specialists are considering the following questions:

- What is the weapon system supposed to do?
- When may is be considered ready for use?
- Ilow can you identify parts of the weapon that are not functioning properly?
- To what extent will these malfunctioning parts interfere with the weapon's basic performance?
- What techniques are needed to communicate information about these malfunctions?
- Are there situations where the disadvantages of a checkout system outweigh its advantages?
- Can checkont techniques be systematized and made automatic?
Since homans will always be the most important factor in determining the success or failure of these techniques, the research team includes psychologists coneerned with the reliability of men working with complex weapons.

Where space is critical, you won't find a smaller 100VA sinewave inverter than MRC's new Model 90-156-0. It occupies only 63 cubic inches - considerably less space than other units in the same power range. Compact as it is, its performance not only equals, but surpasses many larger counterparts.
To achieve this, Magnetic Research Corporation had to develop a new set of techniques for extending the practical limits of size reduction as set by thermal considerations. Here are several of these techniques...

MAGNETIC AMPLIFIER CIRCUITRY. To assure peak performance at all operating temperatures, MRC uses an advanced magnetic amplifier to control the pulse width of the transistor drive circuit. Better output voltage regulation and inherent drift stability are characteristics of this method of control.

REUSE OF REJECTED HARMONICS. An appreciable increase in efficiency is achieved by rectifying and returning rejected harmonic power to the input. In terms of smaller heat power loss, higher efficiency permits significant savings in size and weight.

THERMAL DESIGN. To maintain operating temperatures of thermalsensitive elements within tolerance, all components producing excessive heat are isolated. A thermal barrier consisting of two parallel plates, separated by dead air space, further retards heat transfer. All mechanical parts are designed for effective heat dissipation.

FROM DC TO SINEWAVE.

MRC's new 63 cu . in. 100 VA inverter is industry's smallest

M / R

MAGNETIC RESEARCH CORPORATION
3160 West el segundo boulevard - hawthorne, california circle is on reader-service card

U. S. Space Man Relies on Advanced Systems Design

Complex Electronics Guide Project Mercury Capsule

Transistorized amplifiers help keep track of astronaut's physiological reactions during space flight. Ground sto lons receive data on body lemperature, oxygen consumption and heart rate from signals amplified by these units. The circuits, designed to operate up to 200 F , were developed by Thompson Ramo Wooldridge, Inc.

Infrared horizon-scanning sensors in nose of capsule furnish voltages for stabilization controls. Barnes Engineering Co.'s sensor package has three main parts. From left: front cover with germanium window; rotating prism assembly on metal base plate with synchronous choppers, drive motor, detector, power supply and signal-processing electronics; and rear electronics cover. The package is completely sealed and pressurized.

Logic panel containing over 3,000 connections gets extra careful check before installation in the Mercury capsule. This panel is used in the altitude stabilization and control system, along with gyroscopes and reaction jets, to prevent tumbling and to position copsule during flight and re-entry. Minneapolis-Honeywell built the system.

Witraman

VITRAMON, INC. Develops Dramatically Improved Dielectric Material
per type

ELECTRONICS

SALES OFFICES:
Washington D.C. Area: Guardian Federal Bldg. 8605 Cameron St. Silver Spring, Md UUniper 5.7023
Now England Area: 1191 Washington Street West Newton, Mass. DEcatur 2-8500 Florida Area: 333 New Haven Ave Melbourne, Fla. PArkway 3-4461

ASSURE 10 TIMES BETTER PERFORMANCE AFTER A LIFE TEST 10 TIMES MORE DEMANDING!

Three years of intensive product research, and the desire to impose a more exacting quality control during production, have resulted in the development of o new porcelain "frit." Completely formulated and produced within our own plant, this high quality dielectric material, utilized for the improved "VY" Porcelain Capacitors, has produced dramatic results.

NOTE: Ofered Exclusivelv for MIL-C-11272B Requirements.

End Rodial Series

When lested at $125^{\circ} \mathrm{C}$ with more than twice previous test voltages applied 1750 VDC vs 350 VDC and 450 VDC vs 200 VDC) and with the time extended to 2000 hours Imore than 10 times as stringent a test) post-rest
dissipation factor is 002 max. and insulation resistance is greatet than 100,000 megohms (10 fimes bether)!

Vituramon'

Box 544, Bridgeport 1, Conn.

HIGHEST PERFORMING

SILICON TRANSISTOR TYPE

PLANAR CONSTRUCTION features an integra
passivated surface of silicon oxide over the junctions.
protecting them against contamination during
manufacture and against change with time.
Leakage current is extremely low

EPITAXIAL

- lowest guaranteed $\mathrm{V}_{\text {Ceisat }}$
- higher maximum ic
- faster switching speeds - 1 mA to 200 mA

PLANAR
For superior stability and reliability, PLANAR has proven the most successful of all transistor structures. An integral oxide surface on the silicon wafer protects the junctions throughout all fabrication steps. Surface dependent characteristics do not deteriorate with time. Leakage is extremely low, and gain is usable down to very low current levels

EPITAXIAL

High speed, low saturation resistance and high breakdown voltage rating are features of EPITAXIAL construction. The thin epitaxial layer contains the junctions. Of high purity, it provides low capacitance and high breakdown voltage. The thicker, low resistivity supporting wafer provides a low resistance path to the header and collector lead.

THE TWO COMBINED

PLANAR and EPITAXIAL advantages are additive, satisfying the circuit designer who seeks the ultimate in device performance. The combination makes possible the design of improved circuits: faster computer logic circuits, faster high current drivers and more efficient high frequency oscillators and amplifiers. Planar and Epitaxıal together also achieve usable current gain over a broader current range than either can achieve alone.

ELECTRICAL CHARACTERISTICS AT 25 C - 2 N 914

545 WHISMAN ROAD, MOUNTAIN VIEW, CALIF.YORKSHIRE 8.8161.TWX MN VW CAL 853
A wholly owned subsidiary of Fairchild Camera and Instrument Corporation

MAGNETIC SHIFT REGISTERS NOW AVAILABLE AT SENSIBLE PRICES!

Sprague Electric Company's SPECIAL PRODUCTS DIVISION has scored another first by breaking the " $\$ 5.00$-per-bit" barrier. Magnetic Shift Registers for industrial control applications may now be obtained for less than the proverbial $\$ 5.00$ figure!
Inherently more reliable, more stable than costlier semi-conductor alternates, these new encapsulated shift registers permit substantial savings in the design and production of your equipment without sacrificing quality, reliability, performance.
Available in single-bit and multi-bit assemblies with or without bit drivers to meet your individual packaging requirements, Sprague Magnetic Shift Registers may well be the answer to some of your design problems.

Sprague SPECIAL PRODUCTS DIVISION application engineers will belp you uithout obligation. Call MOhawk 3-5311, Extension 977 or 954 , for speedy information.

Sprague Electric Company Special Products Division North Adams, Mass.

SPRAGUE
the mark of rellability

WASHINGTON

 \& REPORT5ind

ANOTHER ROUND ON PATENT POLICY

The longer the controversy rages over whether the Government should take title to its R\&D contractors' inventions or simply require royaltyfree licenses, the more it becomes apparent that no unified patent policy for all Government agencies is necessary or even practical.

Testimony at another series of hearings by the Senate Judiciary subcommittee on patents appears to have substantially lessened justification for legislation that would reverse the Defense Dept.'s policy of permitting the contractors to take title to their inventions.
The department's position has been fortified by efforts of the National Aeronautics and Space Administration to get Congress to permit it to follow a similar policy. Indeed, legislation granting the NASA request got as far as House passage at the last session of Congress. Moreover other Government agencies, while not seeking a change in their practice of taking title, at least are recognizing special circumstances where a waiver of title is desirable.
The Federal Aviation Agency, on the other hand, can casily justify its policy under which rights to inventions are slared in proportion to the extent that development costs are shared by the agency and its contractors. This is because patentable developments arising out of FAA-sponsored research very often have al ready-made commercial aviation market: the agency can make adoption of the new equipment mandatory in the interest of air safety.
Although a strong case for a flexible patent policy has evolved, Congressional hearings also have underscored the desirability of a set of legislative criteria defining conditions under which the public interest requires vesting of the patent title in the Government. The need for administrative machinery for making these determinations also has been brought out.

Tightening of Defense Dept. Policy by a recent armed services procurement regulation revision has gone part way in answering Congressional charges that the Pentagon is engaged in a colossal "give-away." The revision notes certain conditions under which taking full title would be clearly in the public interest. One of these is when $\mathrm{R} \& \mathrm{D}$) is in a trailblazing field, in which a patentable discovery of commercial value could give the contractor a monopolistic position.
The weakness in the procurement regulation revision, from a Congressional standpoint, is that determination of exceptions to basic policy are left to contracting officers. There should be some high-level review procedure, some Congressional critics contend.
The Defense Dept. also has shown a willingness to negotiate contracts with clauses vesting title in the Government when undertaking joint research projects with such agencies as the Atomic Energy Commission and FAA. The Senate subcommittee, however, wants a standard policy applicable to all agencies "in dealing with the same contractors in any given field of research.'

A Federal Inventions Administration is called for in a bill introduced by Sen Russell B. Long (D., La.). The bill would give the government title to all inventions arising out of any Government-financed $R \& 1)$ program, with provision for a waiver of title when it could be shown that the equity of the contractor predominates. A highly involved adminstrative procedure would be required to get a waiver.

The Defense Dept., in its testimony opposing this legislation. held that the prescribed administrative procedure was so cumbersome as to virtually nullify the concession of permitting pre-contract waivers. Noting that in fiscal 1960 the department let approximately 20,000) separate RIDT\&E contracts, officials warned that the procedures would preclude getting pre-contract waivers except in very rare instances.

Another aspect of the Long bill that has aroused the opposition of both the Defense Dept. and the Electronic Industries Association is a provision relating to Government ownership of technical information. As the department interprets it: "In the absence of clearance by the Federal Inventions Administration, we could not use the material for competitive procurement; scientists could not give papers at technical seminars or publish in scientific journals; and manufacturers could not use the information for follow-on procurement.'

The chances for passage of legislation as drastic as the Long bill are extremely remote.

AUTOMATION IN THE SPOTLIGHT

The Administration's economic policymakers are engaged in an all-out effort to get management, labor and appropriate Government agencies to focus on automation-both its positive and negative aspects.

The President's recent tax message, proposing tax credits for increased capital outlays, represents one side of the coin-an encouragement to step up automation. On the other side is action by the Secretary of Labor in setting up an Office of Automation and Manpower-a move to deal with the negative side of automation.
Charged with considering both sides of the coin is the President's I abor-Management Advisory Committer, which significantly had "automation and unemployment" as the sole item on the agenda for its first working session May 1.

Manasements Planning Automation Moces will be under increasing pressure to make provisions for job retraining, personnel transfers and special financial benefits for unassignable and untrainable workers. Thus the electronics industry, faced with the necessity of substantially increasing automation in response to new techniques, particularly in componentry, will have a considerable stake in Government efforts to induce labor and managgement to work out joint programs.
I abbor Secretary Arthur Coldberg stated the Administration's philosoplay and objectives in these words: "If management must automate, and I believe it must, then it must also assume a larger role than it has in the past to ease transition ... Retraining programs, allowance payments, westing of pensions, care in location and relocation of plants, and a host of other scheme's should receive management's most serious attention
"Labor, for its part, must meet management half way. It must abandon restrictive practices. Both sides must think out the operations of seniority systems. Both sides must concentrate on devices to increase labor mobility.

The Labor Dept.'s new (Office of Automation and Manpower will be charged with assisting management and labor toward these goals by developing guidance programs, serving as a clearinghouse of information and by initiating Covernment-sponsored retraining programs.

Through the decades, historical documents have proved the durability of vellum as indicated by the facsimiles of Civil War engineering drawings above, reproduced on Post Blutex Tracing Vellum.

We'll accept your test on which vellum is best

To judge a tracing medium thoroughly, you must combine functional tests and personal reactions to three characteristics.

Erasing and re-erasing

Post Blutex erases easily during initial drafting. More important, it erases readily even after repeated exposure to ultra-violet sources. Test this by taping a small sample to a sunlit window for several days.

Reproducing, again and again

Blutex is a blue-white sheet with excellent visual contrast. It maintains close to its original degree of light transmission after many trips through the copy machine. There is no appreciable yellowing or ageing after months or years of alternating storage and reprint use. Blutex has faster, more consistent print-back appear more transparent originally.

Drafting and re-drafting

With whatever pencils you normally use, test the Blutex sample. Its dry, semi-smooth surface encourages graphite adhesion, outstanding line density. Post transparentizing resins
prevent excessive smearing. Trans ucency is achieved without loss of drafting quality

Supplemental features

Blutex base stock is milled for Post by one of the world's best-known makers of prestige papers; is processed to rigidly controlled quality standards. Blutex Vellum is highly resistant to fracturing; its surface minimizes dirt pick-up and smudging from in-file, out-file handling.

Free sample

For your personal, impartial analy sis, we ll be glad to mail, withou obligation, a $17^{\prime \prime} \times 22^{\prime \prime}$ sample of Post Blutex Vellum, 175H, when requested on a business letterhead.

Bonus offer

First, fill in and return the appraisal form furnished with the Post Blutex sample. In appreciation, a handsome portfolio of four Civil War Centennial ordnance prints, on Post Blutex Vellum, suitable for framing, will be sent to you. Write Frederick Post Company, 3644 North Avondale Avenue, Chicago 18, Illinois.

SENSITIZED PAPERS \& CLOTHS - TRACING \& DRAWING MEDIUMS - DRAWING INSTRUMENTS \& SLIDE RULES ENGINEERING €QUIPMENT \& DRAFTING SUPPLIES - FIELD EQUIPMENT \& DRAFTING FURNITURE CIRCLE 20 ON READER-SERVICE CARD

Electronics Branching Out as New Clerk in Nation's Offices

Computers and Peripheral Devices Stir Interest at Business Show

Patch panel programing is accomplished with plug-in jumper wires in this digital-to-digital code converter offered by Friden, Inc., at the Office Equipment Manufacfurers Institute Exhibition at New York's Coliseum. The code converter is set up here to convert eight-channel Flexowriter code into five-channel teletype code.

Airline ticket agent's set used in Remington Rand Univac system is operated by Eastern Airlines salesgirl. Communications control unit, tying many agents' sets into a central computer, is shown in the back. ground. Remingion Rand will deliver a new Univac 490 Real-Time Computer to Eastern's facilities at New York International Airport before the end of this year for handling ficket data, sources at the exhibition disclosed. A Univac File Computer is being used with the present Eastern system.

Punched-card reading at 2,250 cards per minute, said to be the fastest rate in the industry, is claimed by Philco Corp. for this card reader now standard with the 2000 series of computers. Bright violet lights are used for photoelectric reading in the machine, produced under license from Uptime Corp.

Desk-sized National Cash Register 390 Computer features fold-out magnetic-core memory unit (lower left) and all-solid-state circuitry. Input and output are by the company's photoelectric paper-tape reader, magnetic-tape ledger cards, punched cards or typewriter.

Teaching machine for language train ing is lested by visitor to Dictaphone Corp.'s exhibit. Plug-in earphones are provided for listening and a microphone for recording.

Last-minute adjustments are made on A. B. Dick Co. s Videograph electrostatic address-label printer, which uses digital-pulse code input.

Line drawings or diagrams can be sent over private telephone lines (schedule 2) using this Dictaphone Datafax system. Light from fluorescent lamps is reflected from the drawing through a $0.01-\mathrm{in}$. sq. aperture, which is mechanically scanned. The light strikes a photomultiplier tube, and the tube's output modulates a carrier. A helix printer at the receiving end marks electrostatic paper in synchronism with the scanning aperture. A seven-tone gray scale is provided. George Theofanis, service representative, adjusts receiver-printer.

TO 1.5 AMPERES
This series of "Trim Line" diffused junction silicon rectifiers replace many stud types in high current applications. Their unique design permits direct wiring into the circuit without employing a heat sink.

Potentiometer That Uses Light Beam For Pick-Off Is Headed for Production

Photoelectric potentiometer in the initial stages of assembly is held by C. A. Mounteer, project manager

Thomas E. Mount

West Coast Editor

APOTENTIOMETER using a light beam rather than a conventional wiper arm as a pick-off element is moving from the research stage into production.

The light beam causes semiconductor material, bridging the gap between a conductor and a resistance element, to become conductive. As the light travels along the semiconductor element, the potentiometer's output changes. Because of the lack of friction, long life is expected for the device.

First application of the photoelectric potentiometer, developed at Giannini Controls Corp., Pasadena, Calif, is as a gyroscopic pick-off. The big advantage of the new device, called Photopot, is that it will have no loading effect on the gyroscope, because the light beam is the only connection between the gyrn and the potentiometer. A mirror attached to the gyro directs the light heam onto the potentiometer.
Space vehicle gyroscopes and inertial platforms are required to have drift rates on the order of 0.1 degree per day or better; it is important that no torque be exerted on them. Current conventional pick-offs may contribute to gyro drifts of 0.5 deg per min, according to Carlyle A. Mounteer, prototype development manager of GCC's laboratories.

Mr. Mounteer says the Photopot besides having no effect on drift can also be used to provide output and sensing to orient a space vehicle with respect to the sun or a star. It can be used as a long-lived analog computer element, as a sensi-
tive pressure transducer in conjunction with a Buirdon tube, and-if the light intensity as well as position is varied-as a multiplier. Typical outputs of a few volts, with high resolution over the entire range, are provided.

Other advantages of the Photopot are reported to include a wide range of resistance values and inherent infinite resolution in operation. Output resistance could run from 1 K to thousands of megohms since the potentiometer design is not limited to the composite materials that can withstand a wiper's abrasion. Production units to be marketed in September, however, will have

Electron bombardment of a Photopot's crystal surface is performed in tests at Giannini's laboratories. Modifications of the properties of the photoelectric potentiometer under bombardment are studied.
values of total resistance from 50 to 100 K . Specifications call for tolerance of any potentiometer resistance to be plus or minus 15 per cent of the specified total resistance.

Development of the Photopot results from basic research undertaken by Ciannini Controls director of research Alex Moncrieff-Yeates. The potentiometer has as its basic element a composite crystal mounted on a substrate with cement. The substrate is placed on a transistor header, making the device familiar to handle. A resistive material is deposited on crystal and substrate. Terminals come up through the substrate to contact the resistance material.

A conductor is then deposited on the crystal just 0.012 in . away from the resistance element. Then, when light is directed at a point on the gap, current Hows between the conductor and the resistance element at that point.
"The life of the Photopot," Mr. Mounteer asserts, "is unaffected by the wear normally associated with contact-type, brush-wiper potentiometers. It must therefore be described as an overload property."
Not enough time has elapsed under test to predict with any exactitude the lifetime of the Plostopot, but Mr. Mounteer believes it to be in the neighborhood of a million million cycles.

Purity of the semiconductor crystals is critical to the operation of the Photopot. At present laboratory models of the device have exhibited a light resistance of 10,000 ohms. This is mainly the resistance of the bridge across the semiconductor gap. Depending on the type of semiconductor material used, production models may have 30 K light-path resistance instead of 10 K .

Circle 98 on reader-service card \rightarrow

in DALE चロロー
 Advanced Design plus Stringent Production Controls equal Unprecedented Reliability

THE ROOM WITHIN A ROOM．．．

scene of the modern production techniques by which Dale Elec－ tronics absolutely controls temperature，humidity，dust．corrosive gases and all other environmental factors to assure the highest quality and reliability in Dale Trimmer Potentiometers．
Within this surgically clean room，temperature and humidity are maintained at a constant level．The air is electrostatically filtered and pressurized to maintain purity．The skilled workers who oper－ ate the precision tools，fixtures and optical equipment necessary for sub－miniature and micro－miniature assembly，wear special smocks and head coverings as a further safeguard against dust， cial smock and lint and other foreign materials．

PART NUMBER	TOLERANCE	RESISTANCE RANGE	HUMIDITY PROOF	POWER RATING	RESOLU DEPEND ON VA
199 and A1OW 198 and A10WPC 195 and A1OWML 194 and A1OWML-1 193 and A1OWL	$\begin{aligned} & \pm 5 \% \\ & \pm 5 \% \end{aligned}$	10 Ohms to 50 K Ohms 10 Ohms to 50K Ohms 10 Ohms to 50K Ohms 10 Ohms to 50 K Ohms 10 Ohms to 50K Ohms	NO	.8 Watt .8 Watt .8 Watt .8 Watt .8 Watt	12% to $.12 \%$ to
299 and B11W 298 and BllWPC 295 and B1IWML 294 and B1IWML-1 293 and B11WL	$\begin{aligned} & \pm 10 \% \\ & \pm 10 \% \end{aligned}$	10 Ohms to 50 K Ohms 10 Ohms to 50K Ohms 10 Ohms to 50K Ohms 10 Ohms to 50 K Ohms 10 Ohms to 50 K Ohms	NO	.5 Watt 5 Watt 5 Watt . 5 Watt . 5 Watt	$.12 \%$ to $.12 \%$ to -12% to .12\% to
$\begin{aligned} & 399 \text { and C12W } \\ & 398 \text { and C12WPC } \end{aligned}$	$\begin{aligned} & \pm 15 \% \\ & \pm 15 \% \end{aligned}$	100 Ohms to 20 K Ohms 100 Ohms to 20K Ohms	NO	$\begin{aligned} & .25 \text { Watt } \\ & .25 \text { Watt } \end{aligned}$	$\begin{aligned} & .6 \% \text { to } \\ & .6 \% \text { to } \end{aligned}$
$\begin{aligned} & 697 \text { and } 750 \mathrm{WL}-1 \\ & 692 \text { and } 750 \mathrm{~W} \\ & 691 \text { and } 750 \mathrm{WP} \\ & 690 \text { and } 750 \mathrm{WT} \\ & 686 \text { and } 751 \mathrm{WL} \\ & 685 \text { and } 751 \mathrm{~W} \\ & 684 \text { and } 751 \mathrm{WT} \\ & 683 \end{aligned}$	$\begin{aligned} & \pm 5 \% \\ & \pm 5 \% \end{aligned}$	10 Ohms to 30 KOms 10 Ohms to 30 K Ohms 10 Ohms to 30 KOhms 10 Ohms to 30 K Ohms 10 Ohms to $30 \mathrm{~K} \mathbf{\mathrm { hms }}$	YES	1 Watt 1 Watt	$\begin{aligned} & .23 \% \text { to } \\ & .23 \% \% \text { to } \\ & .23 \% \text { to } \\ & .23 \% \% \text { to } \\ & .23 \% \text { to } \\ & .23 \% \% \text { to } \\ & .23 \% \text { to } \\ & \hline \end{aligned}$
$\begin{aligned} & 997 \\ & 996 \\ & 983 \end{aligned}$	$\begin{aligned} & \pm 5 \% \\ & \pm 5 \% \\ & \pm 5 \% \end{aligned}$	10 Ohms to 30 K Ohms 10 Ohms to 30 K Ohms 10 Ohms to $30 \mathrm{~K} \mathbf{O h m s}$	YES	1 Watt 1 Watt	$\begin{aligned} & .23 \% \text { to } \\ & .23 \% \text { to } \\ & .23 \% \text { to } \end{aligned}$
$\begin{aligned} & 1289 \\ & 1288 \\ & 1287 \end{aligned}$	$\begin{aligned} & \pm 5 \% \\ & \pm 5 \% \\ & \pm 5 \% \end{aligned}$	10 Ohms to $50 \mathrm{~K} \mathbf{~ h m s}$ 10 Ohms to 50 K Ohms 10 Ohms to 50 K Ohms	YES	1 Watt 1 Watt	$\begin{aligned} & .12 \% \text { to } \\ & .12 \% \text { to } \\ & .12 \% \text { to } \end{aligned}$
$\begin{aligned} & 1597 \text { and } 1000-\text { WL-1 } \\ & 1592 \text { and } 1000 \mathrm{~W} \\ & 1591 \text { and } 1000 \mathrm{WP} \\ & 1590 \text { and } 1000 \mathrm{Wr} \\ & 1586 \text { and } 1001 \mathrm{WL} \\ & 1585 \text { and } 1001 \mathrm{~W} \\ & 1584 \text { and } 1001 \mathrm{WT} \\ & 1583 \\ & 1580 \end{aligned}$	$\pm 5 \%$	10 Ohms to 50 K Ohms 10 Ohms to 50 K Ohms 10 Ohms to 50K Ohms 10 Ohms to 50 K Ohms 10 Ohms to 50 K Ohms 10 Ohms to 50 K 0 hms 10 Ohms to 50 K Ohms 10 Ohms to 50 K Ohms 10 Ohms to 50K Ohms	YES	1 Watt 1 Watt 1 Watt 1 Watt 1 Watt 1 1 1 1 1 1 1 Watt	
5050	$\pm 5 \%$	100 Ohms to 50K Ohms	YES	1 Watt	. 10% to

NUMBER
99 Solder Lug

98
Printed Circuit
Solder Lug

97

28 Awg Stranded
Teflon Leads

Vinyl Leads Emerging
Separately

PECIFICATION SUMMARY

NUMBER

9226 Awg Solid Wire Leads

91 Printed Circuit Pins 22 Awg

90 Hook Type Wire Solder Terminal

89 Solder Lug

8830 Awg Stranded Teflon Leads

NUMBER

86 Panel Mounted Style with 28 Awg Stranded Teflon Leads

85 Panel Mounted Style with 26 Awg Solid Wire Leads

84 Panel Mounted Style with Hook Type Wire Solder Terminal

83 Printed Circuit Pins 22 Awg

80 Printed Circuit Pins 22 Awg

5030 Awg Stranded Teflon Leads

ADVANCED DESIGN IIlustrated by HIGH PERFORMANCE

emlarged cutaway illustration four Times Actual Size
3. Lightweight prectous metal wiper with low weight-pressure ratio provid 4. "()" ring seal provides protection against humidity dust and

Thrust spring maintains constant position of lead screw elim inating lead screw backlash
6. Polished stainless steel lead screw is ultrasonically polisher Collector provides dual current path for improved reliability and low rotational noise level
8. Wide selection of terminal ronfigurations is available to

1. Welded termination
2. Longer winding mandrel (ceramic) giving better resolution. hetter heat dissipat
larger wire diameter

DALE SERIES 1200 WIRE WOUND

A miniature $\left(.280^{\prime \prime} \times .310^{\prime \prime} \times 1.250\right)$, humidity proof, precision T-Pot with welded construc tion throughout: three different terminal configurations for standard and printed circuit mountıng: 10 to 50 K ohms: 5% tolerance: 1 walt up to 85 C . derating to 0 at 150 C . BAL EERIES 960 WIRE WOUND
A sub miniature $\left(.300^{\prime \prime} \times .180^{\prime \prime} \times 1^{\prime \prime}\right)$, humidity proof, precision T-Pot with welded construc tion throughout: three different terminal configurations for standard and printed circuit mounting: 10 to 30 K ohms, 5% tolerance; 1 watt up to $70^{\circ} \mathrm{C}$, derating to 0 at $175^{\circ} \mathrm{C}$
DALE SERIES 600 WIRE WOUND
A sub miniature ($300^{\prime \prime} \times 180^{\prime \prime} \times 1$), humidity proof, precision T-Pot with welded construc tion throughout: eight different terminal configurations for standard, panel and printed cir cuit mounting: 10 to 30 K ohms: 5% tolerance: 1 watt up to 70 C . derating to 0 at 175 C . DALE SERIES 1500 WIRE WOUND
A miniature (. $300^{\circ} \times .180^{\prime \prime} \times 1.250^{\prime \prime}$), humidity proot. precision T-Pot with welded construc tion throughout; nine different terminal configurations for standard, panel and printed cir cuit mounting: 10 to 50 K ohms: 5% tolerance: 1 watt up to 70 C . derating to 0 at 175 C
DALE SERIES 5000 WIRE WOUND
A new, humidity proof. precision T Pot with new space saving square configuration (. 500 " \times $.190^{\prime \prime} \times .500^{\prime \prime}$) and welded construction throughout: 100 to 50 K ohins; 5% tolerance: 1 watt up to 70 C, derating to 0 at 150 C .

DALE SERIES 100 WIRE WOUND

A miniature, precision T-Pot. ideal for computers and laboratory type applications: five different terminal configurations for standard nounting 10 to 50 K chins: 08 watt up to 70 C . derating to 0 at $1.35^{\circ} \mathrm{C}$.

DALE SERIES 200 WIRE WOUND

A miniature T - Pot offering dependable performance in normal circuits where economy is important; five different terminal configurations for standard mounting: 10 to 50 K ohms 10% tolerance; 0.5 watt up to 70 C . derating to 0 at 105 C . कALL \Rightarrow EFIfR 3oo wirte wouras
A miniature T Pot for commercial applications, two different terminal configurations for standard mounting: 100 to 20 K ohms; 15% tolerance: 0.25 watt up to 70 C . derating to 0 at $85^{\circ} \mathrm{C}$.

Composite semiconductor crystal is cemented to transistor header in Gionnini's Photopot. Light spot makes the semiconductor material conduetive and connects the conductor and resistive material. As the light beam travels along the semiconductor material, it acts as a wiper arm, varying resistance of the pot.

Dark resistance-when no light beam bridges the gap-is said to be 10^{12} ohms.

Other specifications for the production units call for a high-resolution threshold sensitivity. The Photopots will be required to sense a light spot motion of 1 micron. This is about 0.01 per cent of the entire (0.3-in. swept length.

Linearity-defined at Giannini as the deviation of the output voltage ratio from the best straight line through the calibration points-will not exceed 1.5 per ceent of full scale from 1.5 to 8.5 per cent of full scale, Mr. Mounteer predicts. Beyond these limits, he says, deviation will not exceed plus or minus 5 per cent of full scale.
"Linearity," Mr. Mounteer admits, "is not as good as that specificd for many other potentiometers. But our repeatability is so good that it cloesnit matter.

Production units will have a repeatability of the output voltage ratio within 0.05 per cent full scale, he says, with nothing changed except the location of the light spot on the Photopot's surface. This tolerance would include any transient change in voltage ratio resulting from local heating (from the light beam) of the semiconductor element.

With the use of one kind of semiconductor material, the time required for the light spot to cause the crystal to become conductive is said to be no greater than 0.001 sec . Specifications require the crystal to become insulating within 0.01 sec after the illumination ceases.
Another semiconductor crystal type should feature a $200-\mu \mathrm{sec}$ rise time and a $1-\mu \mathrm{sec}$ fall time.

By depositing a resistance layer on a glass < CIRCLE 98 ON READER-SERVICE CARO
ELECTRONIC DESIGN • May 10, 1961

When you've got to attach a connector contact to the end of a coaxial wire, a single precise stroke of a crimping tool (one that crimps braid and inner conductor to the contact simultaneously) is the fastest way. the lowest installed.cost way, the way that cuts human error in half . . . THE AMP WAY.
Our COAXICON * contact is designed on this principle: two strokes here is one too many!

COAXICON is a one-piece contact. It can be attached. simultaneously, with a single crimping tool stroke, to the braid and inner conductor of 37 sizes of RG/U coaxial
cable up to $1 / 4^{\prime \prime}$ O.D. (see size numbers above). And AMP makes the tools - hand and automatic - that coritrol the crimp.

COAXICON consists of polarized, concentric male and female shells, made from drawn parts. The inner contacts, assembled in the shells, will attach equally to solid or stranded conductors. Where contact density is important, a miniature COAXICON fulfills the requirement.

COAXICON connectors will match cable impedances in the $50-100$ ohm range, at frequencies as high as 150 megacycles. Impedance mis-match, incidentally, is only 1.06 to 1.09, even at 500 megacycles.

Write today for complete product information.

AMP INCORPORATED

GENERAL OFFICES: HARRISBURG, PENNSYLVANIA
 CIRCLE 22 ON READER-SERVICE CARD

OGO-new advance in $\mathbf{S p a c e}^{\text {Technology }}$ Leadership

The National Aeronautics and Space Administration selected Space Technology Laboratories, Inc. to design and construct three Orbiting Geophysical Observatories for scientific experiments to be conducted under direction of the Goddard Space Flight Center. These, the free world's first production-line, multi-purpose satellites will bring new scope and economy to America's investigations of the near earth and cislunar space environment. Each spacecraft in the OGO series will be capable of carrying up to 50 selected scientific experiments in a single flight. This versatility will permit newly-conceived experiments to be flown earlier than had been previously possible. Savings will result from NASA's application of standardized model structure, basic power supply, attitude control, telemetry, and command systems to all OGO series spacecraft. Selection of STL to carry out the OGO program is new evidence of Space Technology Leadership, and exemplifies the continuing growth and diversification of STL. Planned STL expansion creates exceptional opportunity for the outstanding engineer and scientist, both in Southern California and in Central Florida. Resumes and inquiries directed to Dr. R. C. Potter, Manager of Professional Placement and Development, at either location, will receive careful attention.

SPACE TECHNOLOGY LABORATORIES, INC. p.o. box 95005k. los angeles 45. california

- subsidiary of Thompson Ramo Wooldridge Inc.

Los Angeles • Santa Maria • Cape Canaveral - Washington, O. C.
 P.O. BOX $4277 K$. PATRICK AFB, FLORIDA

Boston•Dayton • Huntsville - Edwards AFB • Canoga Park • Hawail

NEWS

substrate, a semiconductor layer on to the top of it and a rather transparent (4-micron-thick) layer of gold conductor on top of that, a thin-film photopotentiometer could be built, Mr. Mounteer says. The light beam would shine through the gold layer and make the semiconductor layer conductive. The length of the current path across the semiconductor material would be only 0.00002 in., and light-path resistance "could be 50 ohms," according to Mr. Mounteer.

The Photopot is meant to be marketed exclusive of the light source and optics, Giannini reports. Spectral response could be specified, within limits, by the customer. But preliminary tests for gyroscopic pick-off and inertial-platform applications show there may be problems in providing an artificial light source.
"We started out with the idea that there would be no light problem," says Mr. Mounteer. "The customer would supply the light and optics and would encounter no real problems. But in missile and space applications the military speecs call for vibration testing at $2,(\mathrm{OW})$ cycles while the bulb is hot. Tungsten filament lamps are delicate and burn out under these conditions."
The problem can be, and has been. solved for short fights, Mr. Mounteer reports. Difficulties remain for long-term applications.
As part of the research on Plootopot, therefore, Giannini scientists are investigating the use of tritium-filled bulbs coated with a phosphor that will glow in the presence of a radioactive material. Such a lamp-if the intensity could be raised to the proper level-would be useful for very long periods without requiring power. Another possibility, which would increase the versatility of the device, would be the use of a plosphor swept by an electron beam.

At least one other company in the Los Angeles area is known to be working on a similar development. Duncan Electronics, Santa Ana, Calif., still has a photoelectric potentiometer in the research stages. The company declines to disclose design details at present. - -

Research version of Giannini's Photopot, leff, and planned compact commercial version.

Airborne Video Instruction Tested in Midwest Schools

Airborne television for classroom instruction is being demonstrated in rural elementary and secondary schools in six Midwest states.

The demonstration, designed to reach areas beyond the transmitting limits of ground-based educational TV stations, is giving teachers, school administrators, students and parents a chance to see how effective such instruction would be in the classroom. The tests of the system are in preparation for its use for a full academic year beginning in September. (ED, May 11, 1960, p4).
In the present experiment a DC-6, equipped by Westinghouse Electric Corp., cruises at 23,000 ft , producing signals on classroom sets at least 200 miles in every direction from Montpelier, Ind. This takes the programs into Indiana, Illinois, Wisconsin, Michigan, Ohin and Kentucky.

Four hours of instruction are being televised on two uhf channels four days a week. In the fall the schedule will be stepped up to six hours daily.

The planning body for the operation is the Midwest Program on Airborne TV Instruction, consisting of a 15 -man council of industry representatives and educators, based at Purdue University. The $\$ 7,775,(1) 0$ program is being financed by the Ford Foundation and private industry.

Most of the schools have been equipped for the experiment without cost by nine manufacturers of television eguipment: The equipment includes antennas, distribution systems and up to 12 receiving sets to each school.

The sponsoring manufacturers are Admiral Corp.; General Electric Co.; Motorola, Inc.; Philco Corp.; Radio Corp. of America, Westinghouse; Zenith Radio Corp.; Jerrold Electronics Corp., and Blonder-Tongue Systems, Inc.

Closed-Circuit TV System Used To Verify Check Signatures

A closed-circuit TV system used for verification of check signatures has been installed in the First Pennsylvania Banking and Trust Co. of Philadelphia.

The system. developed by John F. McCarthy, Inc., Philadelphia, uses cameras and components furnished by Philco Corp.

The teller, using a onc-picce telephone, dials the bank's Signature Dept., identifies his numbered station, and requests the specific account. The clerk at the other end pulls the card from its alphabetical file, places it face down on one of two cameras, and the reproduction appears on the monitor.

A well-known manufacturer of appliances had excessive trouble with the magnet wire he was using to wind his motor armatures. In an effort to cut down on rejections, he switched to Belden Nylclad Magnet Wire. Result: Not a single rejection out of a 30-day run of over 40,000 armatures. Such a record would not have been possible
without a shop using the most modern winding techniques and without operators who take a real pride in their work! Belden Nylclad Magnet Wire is ideal for motor stators and rotors, encapsulated control coils, relays, toroids, and random and deep windings. Nylclad gives the best windability . has the toughest film coating.

Other Belden Magnet Wire: Beldenamel*, oleoresinous • Beldsol*, polyurethane-nylon • Beldure*, polyurethane - Beldbond* polyurethane-bonding agent - Beldtherm*, polyester - Celenamel*, cellulose acetate - Formvar, vinyl acetal - Epoxy
-Belden Trademark Reg. U.S. Pat. Off.
one wire source for everything
electrical and electronic
lead wire - power supply cords - cord sets - portable cordage * electronic wire - control cables - automotive replacement wire and cable - aircraft wire

ANOTHER FIRST FROM Transitron

WITH A TRUE HERMETIC SEAL

NO COMPROMISE!

Development by Transitron acientists and engineers of a new concept in glass packaging has now made it ponible to introduce the industry's first micro-diode with true hermetic sealing. This is the new micro voltage regulator ("zener") series... a series in which the glass is melted around the silicon body that forms the working part of the device. Achieve ment of a direct high-temperature glass-to-metal seal mean that there are no plastica . . . no multi-part packaging . . . no "gunk" . . no degrading of characteristics with humidity Absolute hermetic sealing makes this the most reliable and efficient micro-regulator ever developed, ideal for voltage regulating and reference service wherever space and weight economies are sequired.
Micro Zener Diodes are produced exclusively by Transitron. The first series is available immediately: other diodes are under development and will be marketed shortly.

For more information write for Bulletin PB-71E.

specifications ext c			Cumaent matimes	
NM			mouminativace (3) Owatiad (mit) Cuma	
			¢6\%	61000 C
TMO.010	11	15	178	4
Tmand	56	15	155	4
Tumen	4	15	10.5	11
rmom	18	13	120	13
TM0-6	is	13	120	11
Tman	28	13	11.	4
rmoro	21	15	80	25
rmose	120	13	90	23

DIODES

Transitron

OR TECHNICAL ASSISTANCE AND SERVICE CONTACT THE TRANSITRON FIELI OFFICE NEAREST YOU AS LISTED BELOW.

BALTIMORE, Maryland

2319 Maryland Ave............ CHesapeake 3-3220
BOSTON, Massachusetts
168-182 Albion St.
Wakefield, Mass...
................. 245-5640
CAMDEN, New Jersey
227 S. Sixth St. . .
........ WOodlawn 6-2877
chicago. Illinois
6641 W. North Ave.
Oak Park, III. . .
..............VIIlage 8-5556
CLEYELAND, Ohio
14625 Detroit Ave.
Lakewood, Ohio.
dallas. Texas
511 Eiraniff Airways Bidg
Dallas 35, Texas............... FLeetwood 7.9448
DAYTON, Ohio
379 W. First St. BAldwin 4.9651
DENVER, Colorado
First National Bank Bldg.
621 Seventeenth St.. AComa 2-1686
DETROIT, Michigan
2842 West Grand Blvd.............. TRinity $5 \cdot 2440$
Kansas city, Missouri
Wirtham Bldg.
31st and Troost Sts............. VAlentine 1-1819
LOS ANGELES, California
6362 Hollywood Blvd.
Hollywood 28, Calif. HOllywood 2.2381
newark, New Jersey
1060 Broad St...
MArket 3.3151
ORLANDO, Florida
10 Jacklind Bidg.
205 E. Jackson St. CHerry 1-4526
PhoEnix, Arizona
2727 North Central Ave......... CRestwood 7-3366
ST. PAUL, Minnesota
Griggs-Midway Bldg.
1821 University Ave.. MIdway 6-1891
SAN DIEGO, California
3620 30th St.
........CYpress 7.3708
SAN FRANCISCO, California
535 Middlefield Rd.
Palo Alto, Calif...
..... DAvenport 1-2064
SEATTLE, Washington
3466 East Marginal Way
srracuse, New York
2360 James St. .
......... HOward 3.4502
WINSTON-SALEM, North Carolina
Nissen Building
310 W. Fourth S
.PArk 3-0363

Transitron
 electronic eorporation wahofleld, mececochucetit

CIRCIE 25 ON READER-SERVICE CARD
CIRCLE 26 ON READER-SERVICE CARD

EDITORIAL

Systems Engineers or Slick Salesmen?

There are a few signs being left here and there to shake our confidence in some of the nation's top systems scientists and engineers. One disturbing sign is the very image that the systems men are projecting of themselves. A bit too frequently we get the impression they are overselling themselves.

This "sell" is apparent in the system organization's company brochure. One expects to see impressive, smartly designed publications particularly from successful industrial firms but when our nonprofit organizations formed (and paid) to serve the nation's best interests issue lavish editions with engraved covers, tip-ins, fold-outs and cover overlays our suspicions are aroused. Why all the sizzle? Isn't the steak sufficient?

One such brochure uses a fold-out to portray an organization chart that could have appeared in one column. Another giant fold-out was used to portray a life-sized face of a scientist. To be sure the blow-up got across the point that here was a serious thinker-one able to cope with the world's greatest problems. But is such costly visual imagery superior to a paragraph describing accomplishments?

We are also concerned about the elaborate format of the reports turned in by some of these systems organizations. As publishers we turn green with envy when we see huge 4 -color charts used to demonstrate fairly simple points. We can only conclude that either the Generals and Admirals reading these reports are tinsel-minded or that the systems people are subtly disguising a rather skimpy fare with garnishments of green ink (in six shades). If either of these conclusions are unwarranted we must be living in a more affluent society than many of us suspect.

We are also a bit skeptical of some of the lofty reasons glibly stated for the need for nonprofit brain trusts-to get true objectivity because of the removal of opportunity for private profit or gain. From where we sit, our vision is restricted, but we suspect some of our sacrosanct nonprofit organizations are nice sinecures and that objectivity can still readily be confused if interests of self-perpetuation arise.

We honor the fine brains that have given us the tremendous achievements in the scientific and technical realm. We applaud every manifestation of forthright self confidence. We are a bit shaken, however, by shades of self-serving salesmanship.

FAST RESPONSE?
If fast response is among the characteris tics you want in servos and rotating components, here is the quality answer.

Wright of Sperry Rand offers design engi-
THEY'VE GOT IT! neers faced with new challenges an excepcional source for meeting the most exacting demands.

What the Electronic Engineer Should Know About Epoxies

For what Applications are Epoxies Best?

If your application demands any of the following, epoxy resins may prove your best embedment selection:

1. Encironmental resistance. In military systems, epoxy resin has become a standard and has replaced lower cost resins (such as polyesters) for many uses.
2. Good packaging. Even in nonmilitary applications where the cost of the rest of the package is significantly greater than the embedment material, epoxies should be considered.
3. Close dimensional control. The low shrinkage of epoxy resins makes them an excellent choice. Diallyl phthalates are also good dimensionally but require much more elaborate tooling.
4. Adhesion. Its adhesive properties makes an epoxy resin good for mechanically joining and sealing applications. For example, in imbedding, the epoxy will adhere to the terminals and effectively seal out moisture.
However, once it is decided to use epoxy, the designer's iob has not ended. As author Harper explains, there are many, many combinations possible in the epory family, and each of these has its own particular combination of properties. Without at least the basic understanding of the chemistry of epoxies presented in his article, Mr. Harper believes an engineer would be unable to take adrantage of this veratile, important plastic.

Charles A. Harper

Air Arm Div.
Westinghouse Electric Corp.
Baltimore, Md.

THE ENGINEER who wishes to seriously apply epoxy resins must sooner or later learn something of the "chemical" aspects of this material. Until he does, his ability to use epoxies in a design will be at the mercy of the seemingly endless "trade-name" jargon of this primarily chemically oriented field.

Therefore, this article will not skirt the basic problem; basic chemical terms and thinking will be used forthrightly. There is no other way.

The Nafure of
 Epoxy Resins

Chemically, most commercial epoxy resins are defined as special condensation products of epichlorohydrin and a polyhydric phenol. The latter is usually diphenylol propane. A bisphenol A type epoxy is the short way of saying this.

Practically, this means that an epoxy resin, or epoxide as it is sometimes called, is the product of a reaction between two not-so-common chemicals known as epichlorohydrin and diphenylol propane. The product is called epoxy resin due to the existence of a carbon-oxygen chemical arrangement in the polymer known as an epoxide
group or an oxirane ring. This is shown in Fig. 1.
The nature and advantages of the epoxy resin can be best explained by comparing it to the polyester polymer, which is shown in Fig. 2.
The epoxy resin polymer unit, like the polyester unit, is, in its uncured state, a thermoplastic material and is of limited usefulness until it is further reacted to form a hard thermosetting material. In the case of polyester, the reaction required to produce a thermosetting cured material end product takes the form of a peroxide, or heat catalyzed reaction between a monomer such as styrene and the polyester resin polymer unit. The addition of the styrene to the polyester polymer unit is through an unsaturated double car-bon-to-carbon bond. See Fig. 2.

Epoxy's Bonds are Reason
 Why it is Superior to Polyester

In the case of the epoxy resin, there are no unsaturated (double) bonds. Therefore, the epoxy resin curing reaction must proceed through some different type reactive point, and utilize a different curing agent system than is employed with a polyester. The epoxide group is suitable as a reactive point.

The absence of chemical unsaturation as a reaction mechanism provides one of the key advantages of epoxy resins. Shrinkage is due to a rearrangement of the unsaturated double bonds and

a corresponding readjustment of the bond forces. Since there are no double bonds in epoxy resins, there is less shrinkage.
In addition to cross-linking through the epoxide group, the hydroxyl (-OH) group shown in the epoxy resin molecule is also a reactive point through which cross-linking can occur to form a solid thermosetting material (a material in which the molecules are both long and interlocked for resistance to change). Although reaction with an amine curing agent is shown in Fig. 1, other curing agents are also used. De-
pending on the curing agent, the cross-linking reaction may be through either the epoxide or hydroxyl group, or through both.

Curing Temperature

Depends on Resin, Catalyst, Fillers

The curing reaction of epoxy resins, like that of polyesters and other thermosetting resins, is exothermic. That is, it gives off heat, causing the temperature to rise during the cure.

The actual exothermic temperature curve is controlled by the resin-catalyst s;stem, the ini-
tial curing temperature, the mass of the curing resins, and (to a lesser degree) by the fillers and other modifiers used in the compound. Very high or very low thermal conductivity fillers will cause considerable variations in the temperaturetime exotherm curve. An example of exotherm variation with mass of resin being cured is shown in Fig. 3. The curing temperature is important in electronics because of the effect it can have on temperature sensitive semiconductor components.

In the curing reaction, the resin gradually changes from a liquid gel to a final cured end
(a) Epoxy building block: the epoxide group
-
(b) Bisphenol A type epoxy (typical)

(c) Partially reacted amine-epoxy resin system.
points capable of reaction

Fig. 1. Cross linking during cure is what fies an epoxy into a strong, solid end product. Chemical diagram for epoxy shows: (a) the epoxide group; (b) the resin before cure, and (c) partially reacted resin.
(a) Polyester's unsaturated double carbon-to-carbon.

$$
\begin{aligned}
& \text { styrene (monomer) }
\end{aligned}
$$

(b) Typical polyester polymer unit.

(c) Partially reacted, crosslinked styrene-polyeste copolymer unit.

- points capable of reaction

Fig. 2. Polyester's unsaturaled bonds are what make it inferior to epoxies. Parts a, b, c of chemiical diagram correspond to those of Fig. 1.

Fig. 3. Temperature rise of an epoxy during cure "exotherm" indicates that the larger the casting, the sooner and higher the peak cure temperature will be reached. Since cure temperatures can exceed the limits of some electronic components, they are of practical interest in potting applications.

Fig. 4. Equipment cover cast from a nearly perfectly clear epoxy resin illustrates one extreme of the many forms which a cured epoxy can take This clear epoxy can also be had in varying degrees of flexibility depending on how much curing agent was used. It was formulated by Marblette Corp., N.Y.
product. The useful working life of the liquid resin and catalyst mixture is referred to variously as "pot life," "tank life" or "gel time,"

The bisplienol type epoxy resin described above is the more widely used epoxy. Some other types will be discussed briefly in later parts of this series. Some of the widely used bisphenol epoxy resins and their room-temperature viscosities are listed in Table I. The viscosities are of course important in a potting operation as they would affect the flow of resin into and amongst the circuit components.

A Few Basic Suppliers,
 Buł Many "Formulators"

The resins listed in Table I are marketed by a few basic resin processors and suppliers. They are usually light straw brown in color, but puri fied grades are available as water-clear liquids. (See Fig. 4).
The "formulators," however, are the ones the

Table 1.-Basic Epoxy Resins and Their Suppliers

Resin	$\begin{aligned} & \text { Viscosity } \\ & \text { 25C } \\ & \hline \end{aligned}$	Supplier
Epon 828 Epi-Rez 510 Araldite 6010 DER 331 ERL 2774	$\begin{aligned} & 5,000-15,000 \\ & 9,000 \cdot 18,000 \\ & \text { Approx. 16,000 } \\ & 11,000-16,000 \\ & 10,500-19,500 \end{aligned}$	Shell Chemical Co. Jones-Dabney Co Ciba Producis Corp. Dow Chemical Co. Union Carbide Plastics Co.

Table 2.—Properties of Epoxy Resins

Arc resistance, sec
Machining qualities

Value	Cadco
0.001.0.004	Cardolite
1.11-1.23	
4,000-13.000	Cellobond
4.5×10^{5}	
14,000-21,000	
	Cordopre9
4.5×10^{4}	
$4.5-6.5 \times 10^{-5}$	Corrocate
250-600	
115-550	
$10^{12} \cdot 10^{17}$	Devcon
	Ecco
380	Epiphen
3.5-5.0	
3.5-4.5	
3.3-4.0	Epi-Rez
0.002-0.010	
0.002-0.02	
0.030-0.050	Epocast

Table 3.-Trade Names and Suppliers of Epoxy Formulations		Trade names	Suppliers
Trade names	Suppliers	Epolac	Lawrence Adhesive and Chemical Co., Inc., Lowrence, Mass.
Airtemp	Aries Laboratories, Inc., 45-33 Dovis St.,	Epon	Shell Chemical Corp., 380 Madison Ave., New York 17, N.Y.
Alfane	Long Island City I, N.Y. Atlas Mineral Products Co., Wilmingron 99, Del.	Epoxylite	Epoxylite Corp., 10829 E. Central Ave., El Monte, Calif.
Araldite	Ciba Products Corp., Foir Lawn, N.J.	Helix	Carl H. Biggs Co., 2255 Barry Ave., Los Angeles 64, Calif.
Bokelite	Bakelite Co., Div. of Union Carbide \& Carbon Corp., 30 E. 42nd St., New York	Hysol	Hysol Corp., 322 Bush St., Olean, N.Y.
Cadco	17, N.Y. Cadillac Plastic and Chemical Co.,	Marblette	Marblette Corp., 37-21 30th St., Long Island City I, N.Y.
Cardolite	15111 Second Ave., Detroit 3, Mich. Irvington Chemical Div., Minnesota Mi	Nureco	Nureco Inc., 1100 Pontiac Ave., Cran. ston 10, R.I.
	ing \& Mfg. Co., 500 Doremus Ave., Newark, N.J.	Oxiron	Food Machinery and Chemical Corp., 161 E. 42nd St., New York 17, N.Y.
Cellobond	British Resin Products, Lid., London S W.	Polykast	Poly Resins, Sun Valley, Calif.
Cordopreg	1, England. Cordo Molding Products, Inc., 230 Park	Polytool	Reichhold Chemicals, Inc., 525 N Broadway, White Plains, N.Y.
Corrocate	Ave., New York 17, N.Y. Chemical Coatings and Eng Inc. Brooke St, P.O. Box	Ren	Ren Plastics, Inc., 3179 S. Cedar Rd. Lansing 4, Mich.
	Pa.	Rezolin	Rezolin, Inc., Santa Monica, Calif.
D.E.R.	The Dow Chemical Co., Midland, Mich.	Scotchcast	Minnesota Mining \& Mfg. Co., 900 Bush Ave., St. Paul 6, Minn.
Devcon	Chemical Development Corp., Endicott St., Danvers, Mass.	Stycast	Ave., St. Paul 6, Minn. Emerson and Cuming, Inc., Canton,
Ecco	Emerson and Cuming, Inc., Canton, Mass. The Borden Chemical Co., Div. of the	Tygofil	Mass. United States Stoneware Co., Tallmadge Ave., Akron 9, Ohio.
	Borden Co., 350 Madison Ave., New York 17, N.Y.	Tygoweld	United States Stoneware Co., Tallmadge Ave., Akron 9, Ohio.
Epi-Rez	Jones-Dabney Co., 1481 S. 1lth St., Louisville 8, Ky.	Tylene	Tylene Plastics, Inc., Freyer Rd., Michigan City, Ind.
Epocast	Furane Plastics, Inc., 4516 Brazil St., Los Angeles 39, Colif.		c

(Courtesy Modern Plastics Encyclopedia)
engineer usually comes into contact with. They take the basic resin and add fillers and other modifiers to the basic resin and market their mixed compounds along with curing agents under their own trade names as two- or threepackage systems. A large portion of the compounds marketed by the "formulators" are based on the resins listed in Table 1, or similar resins produced by the basic resin suppliers.

A comprehensive list of properties of epoxy resins is given in Table 2 and a list of resin and formulated-compound suppliers is given in Table 3. The number of formulators is so large that this list is necessarily not complete.

Curing Agenis Very Importanl

In Determining Final Epoxy Properties

The actual curing agent controls the end properties of the final cured epoxy. This is in contrast to polyester resins. Referring to the chemical structure comparisons of Fig. 1, the reason for this can be seen. With polyester resins, the peroxide merely catalyzes the reaction between the polyester polymer and styrene. No matter what peroxide is used, the end-product is still the same styrene-cured polymer. The peroxide catalyst controls the rate and degree of reaction. It is not a part of the end product molecule.
In epoxies, however, the curing agent actually reacts with the polymer unit and both become part of the cured end proluct. Hence it is obvious that a different curing agent will yield a different end product.

This dependence of epoxies upon their curing agents is the main reason why there is a seemingly endless number of epoxy compounds. The many fillers, diluents and colorant modifications increase the possibilities for different epoxies still further.

The different curing agents for epoxies can be broadly divided into three classes:

- Organic nitrogen compounds, usually amines or polyamines.
- Organic acidls or acid anhydrides.
- Resins such as polysulfules and polyamides.

Thus, it has been shown in this article that though most epoxy formulations are based on the same basic resin, bisphenol, the varied selection available comes from different curing agents. The next article will indicate the relationship between some of these curing agents and the properties they produce in cured epoxies. This will help the electronic engineer as he searches for "his epoxy answer" amongst the myriad sales bulletins of the "formulators." - -

Acknowledgments

This series is based upon a forthcoming book by Mr. Harper, "Electronic Packaging with Resins," scheduled by McGraw-Hill Book Co. for publication in May. Tables II and III are from the Modern Plastics Encyclopedia.

C TYPE MAGNETS in a wide range of sizes to meet your design needs in *Transverse Field Isolators $*$ Differential Phase Shifters *Duplexers

Arnold C-type Alnico Magnets are avaulable in a wide selection of gap densitues ranging from 1,000 to over 7,500 gausses. There are six different basic configurations with a wide range of stock sizes in each group.

The over-all size and gap density requirements of many prototype designs can be met with stock sizes of Arnold C Magnets, or readily supplied in production quantities.
When used in transverse field isolators, Arnold C Magnets supply the magnetizing field to bias the ferrite into the region of resonance, thus preventing interaction between microwave networks and isolating the receiver from the transmitter. These magnets are also used in differential phase shifters and duplexers, and Arnold is prepared to design and supply tubular magnets to provide axial fields in circular wave guides.

A feature of all Arnold C Magnets is the excellent field uniformity along the length of the magnet. Versatility in design may be realized by using multiple lengths of the same size magnet stacked to accomplish the needs of your magneric structure.
Let us work with you on any requirement for permanent magnets, tape cores or powder co:es. - For information on Arnold C Magnets, write for Bulletin PM-115. Address The Arnold Engineering Company, Marengo, Illinois.

ADDRESS DEPT. ED-5

BRANCH OFPCES ond REPRESENTATIVES in PQNCIPAL CITIES
find them FAST in the YELIOW PAGES

Temperature Measurements in Crystal-Oven Design

Hal Ryner

Lenkurt Electric Co., Inc.
San Carlos, Calif.

T
HE design of an oven to control the temperature of quartz oscillator-crystals requires three significant measurements:

1. The mean control temperature of the quartz crystal.
2. The maximum temperature excursion due to the on-off heat cycle of the oven.

3 . The time required for the oven cavity tem-
perature to stabilize at the lowest ambient temperature requirement, following the initial power application.

Such measurements require a "thermometer" that is very small, one with negligible thermal inertia, and one which can be tucked conveniently into any corner of the crystal oven.

A uniquely satisfactory element, the bead thermistor, will satisfy all of these conditions. It has the added advantage of permitting extremely precise temperature readings. However, if the thermistor is used improperly, the resulting measurements will be valueless and misleading.

Bead-Type Thermistor

Satisfies All Requirements
The bead thermistor is a tiny metallic-oxide resistor which, unlike metals, has a high negative temperature coefficient of resistance. As temperature rises, resistance of the bead decreases. Resistance plotted against temperature on a graph may be used to convert bead resistance measurements to temperatures.

Fig. 1. This circuit is used for calibrating a thermistor as well as for measuring temperature.

Because of the relatively small mass of the bead, it responds quickly and contributes little thermal inertia to the object being measured. This characteristic is important if small and frequent temperature changes are to be recorded. Also, because of the small-diameter connecting leads, very little heat is drawn from the object or area being measured. This is an especially desirable feature if the actual temperature must be known.

Care must be taken not to heat the bead internally with the current flow in the measurement circuit. Most thermistor specs specify the power required to raise the bead 1 C above its surroundings (dissipation constant). The power dissipation must be kept well below this point over the complete range of temperatures to be measured.

Same Circuit Serves

For Measurement and Calibration

The circuit used in calibrating the thermistor and that used for actual measurements of temperature are the same (Fig. 1), except that, in calibration, the thermistor is in a constant temperature oil bath.
A 1.5-kc generator is set for an amplitude of 0.1 vac which is applied across opposite corners of a wheatstone bridge. A low-frequency ac source is used in this circuit for four reasons:

1. The ac signal can pass through a step-up transformer to increase sensitivity of the bridge output.
2. At 1.5 kc , small distributed capacities have negligible detrimental effect.
3. A simple LC filter network can be used to eliminate unwanted harmonics and noise introduced in the bridge circuit.
4. Small ac voltages are easier to amplify and measure than equal dc voltages.
When R_{v} (a resistance decade box with 1-ohm steps) equals the resistance of R_{t} (the thermistor bead), the bridge is balanced. The thermistor

Fig. 3. This packaging configuration can help one evaluate and calibrate a thermistor under conditions most closely approximating those the thermistor will face in an evacuated crystal oven. Here, the gold is removed from one surface of a crystal and the thermistor bead is cemented 10 that surface. The standard crysialmounting assembly is mounted in a T-5-1/2 envelope.
used in this circuit, similar to Fenwal GB34J2, has approximately 1,000 -ohm resistance at the temperature to be measured. The ratio of this bridge allows the bead to draw only $2.5 \mu \mathrm{w}$ under balance condition which is well below its dissipation constant.
After passing through the transformer, bandpass filter, and amplifier, the resultant output is fed directly to an ac vtum that will measure at least 0.1 -v full scale. It should be possible to see the result of 1 -ohm changes of the thermistor at the meter as the bridge approaches balance.

Controllable Oil Bath Needed

For Fire Temperature Calibration
In the design or evaluation of a device such as a crystal oven, it is often necessary to sense temperature variations of 0.01 C or less. It is possible to calibrate a thermistor to this degree of accuracy with the aid of the "temperature-controllable oil bath" shown in Fig. 2.
Four items are suspended in the oil bath:

1. Cal-Rod heating element. The power of this heat source is controlled by a variable transformer across the $117-\mathrm{v}$ line. The oil can be held at a particular temperature within 0.01 C for lengths of time exceeding one-half hour with little difficulty. This is done by balancing the power input of the heat source, a variable,
against the heat loss of the insulation which is a constant.
2. Mercury thermometer. This thermometer should cover the temperature range to be sensed by the thermistor and be calibrated in 0.1 C increments. (Calibration of the thermistor produces a curve which can easily be interpolated to 0.01 C).
3. Circulator. Any motor-driven impeller that keeps the oil circulating will do.
4. The "thermistor device" (Fig. 3). In the example given, the thermistor, in an evacuated crystal enclosure, is suspended at the end of a fiber tube and completely immersed in the oil. The leads run up the tube and over to the measuring circuit.

Plolting the Curve

Requires Care and Time

The power input of the oil bath is set at a particular point and the temperature allowed to stabilize for a few hours. When the thermometer indicates no change for a period of not less than 15 min , the resistance of the bead is measured and plotted against temperature on a graph. ${ }^{\circ}$ One should raise or lower the power input to the

[^0]oil bath slightly, allow time to stabilize (about 15 min), and locate another resistance-temperature point on the graph. One should repeat this operation as many times as necessary to draw an accurate curve between the points. The completed curve is valid for only this one thermistor.

Careful Thermistor Placement

Needed for Reliable Measurements

The thermistor bead must be located properly if dependable results are to be obtained. Throughout the development of a new "long life" crystal oven, the following observations were made concerning thermistor location:

A thermistor merely suspended in the oven cavity recorded greater variations due to thermostat cycling than the actual vacuum enclosed crystals would experience. The special assembly shown in Fig. 3 better simulated actual operating conditions and gave results which accounted for heat losses through the crystal's tube pins and leads, and for the insulating effect of the evacuated glass envelope.

The evaluation of measurement data plays such an important part in any design that if careless measurement techniques are employed, a de- . sign that appears to be optimum may actually . fall short of requirements, or conversely, may be expensively over-designed.

ANALOG-to-digital voltage converters have important characteristics that should be carefully investigated by electronic design engineers before they select one for a new system design. Some of these features are well known and well understood. Some are less well known and only poorly defined in the minds of many engineers.
For any given data-reduction application, a designer's choice of an analog-digital converter will probably depend on a compromise between some of the properties defined here and a careful consideration of cost.

Conversion Speed

Conversion speed must be sufficient to take the required number of samples per second. It must also be high enough to allow for switching and transients which must take place to read in and out of the converter.

Frequently, even a medium-speed system making a total of only 1,000 measurements per sec requires an analog-to-digital converter capable of operating at several times that speed to allow for multiplexer switching, amplifier settling, and digital-code readout times.

Absolute Accuracy

Absolute accuracy relates to the accuracy of measurement which would be obtained with the primary voltage standards maintained by the National Bureau of Standards, with no restraints on the time allowed for each measurement. Unfortunately, many applications of this term can be seriously misleading.

In defining the absolute accuracy of an analog-to-digital converter, one must consider the entire measurement scale or range of the unit. Further, one must distinguish between short-term absolute accuracies and long-term absolute accuracies. It is obviously possible to adjust the "accuracy"
this accuracy level requires extreme quality control, experience, and patience in manufacture.
It must be recognized that perfect absolute accuracy is impossible in an analog-to-digital converter. The reference-voltage source and the absolute transfer accuracies of the input-buffer unit, comparators, and digital-to-analog converters all contribute to total inaccuracy.
Also, in a high-speed converter, the dynamic characteristics of the various components must be considered as well as their static measurement characteristics. The first two major contributions to inaccuracy are the primary refer-ence-voltage source and the precision wirebound resistors which are used in the input devices and the digital-analog networks.

In practice, great design care can produce reference voltages with long-term stabilities of 0.003 per cent and high-speed wirewound resis tors which can maintain their absolute stability to about 0.003 per cent with temperature coefficients of one to three parts per million degrees Secondary contributing factors of importance are comparator offset and digital-analog network switching elements. However, the experienced designer can design around these variations.

Relative Accuracy

Relative accuracy, resolution, precision, monotonicity, and linearity are characteristics that are best considered as a group. Before defining these terms, one can consider the conversion of a continuously variable voltage into numbers:

Any voltage-to-digital converter can yield, at its output, only a finite set of numbers. For example, a 10 -bit binary number can yield 1,024 different output numbers; a three-decimal digit plus sign converter can yield 2,000 different numbers; and a four-decimal digit unit with sign, can yield 20,000 different numbers, etc.

The accuracy of each and every one of these
of any single point on a converter range to any desired degree of accuracy over a short-term operating period.

However, in practice, the unavoidable molecular action of resistors, aging of other electronic components, temperature variations, etc., make it impossible to obtain absolute accuracies in the over-all measuring device better than 0.01 per cent with today's state of the art. Achieving
numbers relative to the corresponding voltage input must be considered. It is possible to build voltage-to-digital converters in such a way that not all of the numbers of the complete set are available. In considering the accuracy of a unit, it is first necessary to state that all integral numbers of the complete set must be produced during a full-scale, input-voltage excursion

For any condition, and for any degree of design quality, there must always be some "dead band" at each quantization level. However small this "dead band" may be, there must be some voltage increment over which either one of two adjacent numbers can be obtained at the output. This necessarily presents an ambiguity of quantization decision. By quality and design, however, it is possible to make this "dead band" smaller and smaller, until it approaches zero. It can never be completely climinated with the present state of the art.
Relative accuracy relates to nominal full-scale level, without reference to the absolute accuracy of that full-scale level. Thus, for example, if a 50 per cent measurement code is produced in a converter at a voltage exactly equal to 50 per cent of the voltage which provides the full-scale quantization code, the unit has complete relative accuracy at that point.
llowever, relative accuracy must relate to all points over the complete range, and is usually defined as the maximum percentage of deviation from a perfect straight line passing through zero and the nominal full-scale measurement value It should be clear, then, that an analog-to-digital converter always has a better relative accuracy than absolute accuracy, since the absolute-accuracy contribution of the voltage-reference source is not considered in the definition of relative accuracy.
Resolution relates to the ability of the converter to distinguish between adjacent values. Normally, in a properly designed converter, the resolution is considered limited only by the number of bits carried. In practice, however, the ultimate resolution of a given design is limited by the noise in the various analog and switching circuits and also by the linearity and monotonicity of the unit.

There is generally no point in carrying bits of less significance than the bit level corresponding to the total uncertainty caused by noise and component inaccuracies. Some designers, however, have chosen to carry more bits in the equipment than the noise level would seem to justify and have rationalized these extra bits on the assumption that the noise is averaged out by repetitive measurements.

However, in most system applications, particularly higher-speed systems, measurements are made on a one-shot basis, and averaging is not
always possible. It is the author's opinion that the specification for resolution of a converter should be compatible with the number of bits and vice-versa. Otherwise, it is possible to imply falsely that the readings convey a higher degree of accuracy than actually exists.
Precision relates to the repeatability of successive measurements. Precision is limited in practice by noise and also by the inescapable finite quantization error that always exists in some "dead band" at each successive numerical value.

When the unknown voltage lies within any of the dead bands around the possible values, the repeatability can never be greater than plus or minus one bit. One measure of the quality of design of a high-speed analog-to-digital converter is the ratio of the dead band to the full quantization level for each value across the entire range.
Monotonicity relates to an increasing output code for every increasing value. It is the lack of monotonicity that often shows up as codes missing from the set. A properly designed converter must be able to produce each integral value within the range defined by the number of bits carried.

A subtle point that has escaped many designers is that it is possible to force either nonuniform spacing of quantization carry points or totally missing codes. These can come about if the sum of the errors for any given number of successive lesser significant bits is more than the error in the next most significant bit. The errors can be kept down by constraining the accuracies of the various resistors in the digital-to-analog converter network and the offset voltages in the switching electronics.

Another factor contributing to missing codes in the higher-speed converters is inadequate compensation for transient signals during major carries. Absolute requirements for monotonicity are that all codes be obtainable and that the quantization level of each code be within onehalf a least significant bit of the ideal, linearly related, quantization level.
Linearity in a high-speed converter is governed primarily by the design of the digital-to-analog conversion network, the type of comparator employed and the linearity of the input transfer devices. Linearity relates to the conformance of transfer accuracy; that is, the relationship of input voltage to linearly related, continuous, integral codes in a perfect straight line between zero and full-scale levels. Quite clearly, equipment cannot have linearity without having relative accuracy and vice-versa.

Stability

Stability simply relates to the ability of a converter to maintain the aforementioned character-

Bernard M. Gordon, President
Bruce K. Smith, Vice-President
Epsco, Inc.
Combridge, Mass.
Everybody seems to talk of analog-to-digital converters. But, too few engineers know all the characteristics that should be understood before making an intelligent purchase. Bernard Cordon (foreground) and Bruce Smith wrote this article to help eliminate some of the confusion. Their qualifications for writing a definite article on A/D converters are hard to match.

Mr. Cordon, with almost 100 patents related to data reduction, control, computation, and communications, invented the first highopeed, analog. to-digital converter. Mr. Smith, with extensive background in designing highspeed digital computers (Flac and Larc), was actice in conceiving and designing Epsco's high-speed Videoverter and Transicon converters.
In a subsequent article, the authors Iaill show the bases for some of the comoerter limitations which are discussed in this article.

istics over a defined operating interval. Lack of stability is brought about primarily by two major factors-drift in the voltage reference and resistors and poorly designed conversion networks.

One should distinguish between short-term and long-term stability. In many control systems, particularly in controls involving rates of change, short-term instability can produce violent excursions in the control function, whereas longerterm instahility will require recalibration in the equipment.

The instrumentation-system engineer should rightfully inquire into both the gross specifications of the "black box" which he contemplates using and the specific stability specifications of the voltage-reference source and precision re sistors. He should make sure that there is appropriate derating to assure adequate safety within his system requirements

He should make sure that the definition of accuracy involving stability covers the temperature range that he anticipates encountering and, of particular importance, that it is valid over the range of primary powerline voltage to be supplied. In addition, he should check to see if the definitions of stability include the environmental conditions of shock, vibration, humidity, etc., which will be encountered.

Calibration Requirements

Consideration of stability naturally leads to an examination of calibration requirements. The properly designed analog-to-digital converter should have a minimum of calibration adjustments and, for most applications, it should require no field calibration adjustments whatsoever

In units containing a specification for absolute accuracy, it is always necessary to provide some sort of initial factory adjustment to relate the unit to the specific, absolute, reference-source value used. In the authors' opinion, the number of potentiometers employed in an equipment of given functional capability is inversely proportional to the experience and capability of the designer.

It should be borne in mind that, very often, instrumentation engineers require and specify a converter with accuracy greater than that ob-
tainable in rugged-environment voltage-reference sources. Further, experience has shown that most test-instrumentation departments do not maintain equipments capable of making measurements much greater than perhaps 0.02 per cent.

Regardless of skill in design, manufacture, and component selection, the ultimate accuracy of a converter can always be "touched up" by some form of fine calibration. However, the designer must insure that these "touch-up" calibrations do not build in a source of instability.

Synchronous or Asynchronous

The programer of an analog-to-digital converter may be synchronous or asynchronous. If the timing that controls the successive approximations is controlled by delay lines, or strings of cascaded, self-delay-determining blocking oscillators, the equipment may be considered asynchronous, making it impossible for an external clock to control the serial-output bit rate.

If the successive approximations are controlled by magnetic shift registers, digital logic networks, or similar devices, then the bit rate may be controlled by a clock external to the converter.

Input Impedance

The inputs available with a converter and their loading characteristics are often governing factors in determining whether it can be mated with other equipment with the desired over-all accuracy. First, input impedance must be sufficiently high to mask all variations in source impedance which will be encountered.
Second, the input impedance should be stable on both a long-term basis and, preferably, during the encoding cycle so as not to reflect variations and perturbations back into the source. Analog-to-digital converters that provide direct entry into the comparator at low impedance usually force the user to provide a buffering unit whose transfer accuracy may or may not be compatible with the over-all accuracy desired. This places the responsibility for system measurement accuracy on the user rather than on the manufacturer.
In many applications, the signal to be measured is floating with respect to system ground, or contains common-mode voltages which must be ignored. For these applications it is essential that a floating or differential front end, preferably with high common-mode rejection, be an integral part of the analog-to-digital converter.

Absolute Value or Complementary Codes

Since, in most applications, both positive and negative voltages are encountered, it is necessary to be able to encode over the full range of
bipolar values. One way of doing this is to consider the most significant digit to be a sign digit and to bias off the internal measuring range by an amount equal to one-half of full scale. This approach has the advantage of simplicity but the disadvantage of yielding complementary output codes for negative values and requiring special output-code usage.
Of still greater significance, it places the zero point of conversion at the most critical internal carry point. That is, the measurement of zero voltage, often a critical value point, is no longer referred to the ideal, equipment-zero-point ground. Instead, it relates the definition of zero point to the stability of the wirewound resistors and voltage-switching circuitry.
Another way to obtain absolute value is to use an absolute-value amplifier at the input to the converter. This technique has the disadvantage of additional cost, but in a properly designed unit it does not introduce additional error and it provides a true, zero-reference-based definition of zero volts.

When the accuracy of a given analog-to-digital converter design is obtained, a unit using an absolute-value amplifier should be able to produce twice the ultimate range of one using the complementary code technique. This is because the total number of switching bits can be used over the positive range, and again, over the negative range. In contrast, in the complemen tary-code technique, one of the bits-the most significant one-must be used to indicate sign.

A third method used is to switch reference voltage from positive to negative, or to switch from one complete set of networks to another. This approach usually has an economic disadvantage and introduces discrepancies between positive and negative range control elements. However, it does yield absolute-value output coding.

Serial or Parallel Outputs

A converter that provides both serial and parallel code output offers the user a higher degree of flexibility than one with one or the other. Frequently a serial-code output, particularly when subject to synchronous clocking, can yield significant system design economies by eliminating buffers which might otherwise be required for communication with serial computers or magnetic-tape recorders.

Available Output Power

If available output power is not adequate, one may have to use buffer units with a cost and space penalty. It is necessary to study the effect of the load impedance on the converter circuitry to insure that the static and dynamic accuracies are not affected. The analog-to-digital converter
should provide heavy code-power output, both to effect over-all system design economies, and to insure proper operation within specifications, regardless of loading.

Coding Flexibility

By proper design, a converter can be built in modular form to provide a high degree of coding flexibility, either in terms of the number of bits carried or in bit definition; i.e., binary, 8-4-2-1 decimal, two-star decimal, etc. To a large extent, this flexibility is governed by the manner in which the modules are organized, and the exact nature of the converter networks.

Provision for Sample and Hold

When sample and hold is required, the unit should preferably be an integral part of the ana-log-digital converter. A unique approach places the plug-in sample-and-hold module within the feedback loop of the input buffering system, so the sample-and-hold unit, for all practical purposes, does not introduce errors within the system.

Settling Time of Input Buffer

The system designer should assure himself that his design takes into account the settling time of the input network when successive measurements are to be made of independent voltage sources. A high-speed converter, while capable of a given number of conversions per second, will usually be limited in the number of independent measurements which can be made per second with full-scale to full-scalc deviations because of the time required for the input buffer to settle. And. if a sample-and-hold unit is used, time must be allotted for the sampling unit to be activated.

Wide-Range Ratio Measurement

It is frequently desirable to make measurements relative to an cxternal reference, i.c., to measure a voltage as a ratio. The nature of the digital-to-analog converter network which refers to the reference voltage may or may not make this possible. The voltage drops in the switching elements. relative to the magnitude of the reference voltage, must be carefully considered.
The range of reference voltage over which an accurate ratio measurement is obtainable will be governed by the switching means employed. For example, if the network is switched through silicon diodes having 0.7 v drop, the range of voltages over which the reference voltage may be changed is clearly much less than if the switching were accomplished by a saturated transistor having a drop of about 1 mv .

Normalization

In many systems, high-speed analog-to-digital converters are used to carry out functions that might otherwise be required of any accompanying computer. The ability to perform these functions is largely determined by the logical organization and modular construction.

Reversibility

In many systems that require both analogdigital and digital-analog conversion, it is possible to time share a single unit for both functions inasmuch as nearly all analog-digital converters use an internal digital-analog converter. Equipment specifications should be reviewed to determine the ease and manner of reversibility, as well as the provision for low-impedance analog output in the digital-to-analog mode.

Mean Time to Failure

It should be obvious that in a measurement device where precision and accuracy are prime operating specifications, the mean time to failure should be defined as the mean time to failure within prescribed accuracy specifications and not just the time to fail to function.

Construction Technique

The construction technique used in a converter must he compatible with the system in which it is to be incorporated. In ground-system installations, the construction should be compatible with whatever cooling system is available. For example, in a cabinet using vertical cooling, the converter should not present a major obstruction to the air path.

Size, Weight, Power

These factors must be considered in the light of the system application and in some cases it may be necessary to realize that compromises are desirable to effect the best engineered system design. This may seem obvious but, frequently, the analog-to-digital-converter designer is faced with impossible demands for extreme accuracy and stability in equipments of minimal volume under extremes of shock, vibration, temperature, and humidity.

Visual Display

Since the human cannot assimilate information at rates much in excess of two numerical code sets per second, in actual system applications the numerical display of the high-speed converter is usually used for test or monitoring purposes only. The type of visual display is usually more a question of individual taste and judgment. - ©
,

when reliability is designed into a component, it costs no more!

 Aladdin' dura.clad TRANSFORMERS

- Pulse and Wide-Band coupling transformer types
- Designed for $\mathbf{2 0}$-year applications
- Completely enclosed in DURA-CLAD® cases
- 2000 different standard catalog listings
- Miniature and Micro-Minialure sizes

Aladdin DURA-CLADS are designed for reliability and made on automatic machinery.
For non-standard applications, special features are available-such as precise center-tap balance, frequency response $\pm 0.1 \mathrm{db}$.

For a free sample to try on for size, (infinite impedance-ie., no windings), check No. 249 on the Reader-Service card in this issue.

NOW AVAILABLE: New edition of the Aladdin Transformer Encyclopedia, with added applications notes. Write for your copy on company letterhead to:
 CIRCLE 249 ON READER-SERVICE CARD
 WITH ONE SH゙TrIN N .

OHMITE

CAPACITOR Calculator

One setting of the slide solves problems in capacitance, frequency, capacitative reactance, power factor, dissipation factor, impedance and phase angle. Use it for all types of capacitors from 1 mmfd to 1000 mfd . Also includes slide rule scales A, B, C, D capacitance formulas; comparison table on different types of capacitors. Constructed of heavy, varnished cardboard

OTHER OHMITE ENGINEERING AIDS

COLOR CODER FOR

Solves Ohm's Law and paralilel resistance problems. Includes A, B, C, D slide rule scales. . 284 Vinylite model. \$1.60 COMPOSITION RESISTORS

Set color wheels EIA color bands on resistors . . . read ohms directly. Also lists std. "Little Devil" and MIL
values............ 10 10
OHMITE MANUFACTURING COMPANY 3643 Howard Street, Skokie, Illinois
1 am enclosing $s, ~ f o r ~$
ongineoring aids as follows

- Capacitor Calculator o Ohm's Law Caleulator - Color Coder

Name
 me

Titte
Company
Streot
city

ty

> Step-by-Step Design of

Phantastrons

Dr. Morris Levin feels that careful analysis of how circuits work can provide logical design rules for selecting indioidual components to improve circuit performance and innprove reliability. In this article, he shows how to design phantastron circuits from inst such a basic analysis.

Dr. Morris J. Levin

Radio Corp. of America
Missile Electronics and Controls Div.
Burlington, Mass.

P
ROPER design of a phantastron is far from obvious. As a result, designers often resort to cut-and-try procedures with erratic results. The straightforward design procedure in this article should be very helpful to engineers who want to take advantage of this most useful circuit.
Simple and reliable, the phantastron produces an exceptionally linear sawtooth and a pulse time delay closely proportional to the applied control voltage. ${ }^{1,2}$ It can be used as a linear sweep generator, a delayed pulse generator, a pulse-width or pulse-time modulator, or a stable frequency divider
Two phantastrons triggering each other can form an oscillator whose frequency is a linear function of an applied control voltage.

Sereen-Coupled Phantastron

Operation:

The basic screen-coupled phantastron (Fig. 1), uses a pentode with a suppressor grid having good control over plate current. The control grid of this tube returns to E_{0} through a high re-
sistance. Therefore in the stable quiescent state the grid voltage, e_{1}, remains at zero and a constant cathode current. i_{k}, flows. Since the suppressor voltage, $e_{r 3}$, is sufficiently negative to cut off plate current, the cathode current flows to the screen.
A positive pulse triggers the suppressor at time t_{1}. Plate current begins to flow and the plate voltage goes down. This voltage drop is coupled through capacitor C to the control grid, thus reducing cathode current. Since most of the cathode current flows to the screen, the screen voltage rises. This rise is coupled back to the suppressor by voltage divider $R_{1}-R_{2}$. It further increases suppressor voltage and starts a regenerative feedback-switching action.
This requires only a fraction of a microsecond and ends with the suppressor at a positive voltage so now the plate takes most of the cathode current. The plate potential drops by several volts and this drop, coupled to the control grid, drives it negative enough so that only a small cathode current flows. The screen current drops sharply so the screen voltage jumps to nearly the supply voltage, \boldsymbol{E}_{0}.
After the switching is completed the circuit undergoes the well known Miller sweep genera-
 the design procedure in the text.
tion. Among several ways of considering this, a simple one is as follows: The grid is several volts negative but since it returns to E_{b} through R_{0} its voltage must rise at a rate depending on how fast the voltage across C can change

As the grid voltage goes more positive the plate potential drops. There is a large amount of negative feedback from plate to grid through C so the drop at the plate is very nearly linear. In practice the departure of the sawtooth from linearity is only about 0.1 per cent.

The linear decrease of plate voltage continues until the plate is only a few volts above ground. At this point the knee of the plate current curve is reached; the plate voltage is so low it can no longer conduct the additional cathode current resulting from the steadily rising grid voltage.

Therefore the screen starts to take the additional current, causing a drop in screen voltage. This drop couples through divider $R_{1}-R_{2}$ to the suppressor, making it more negative and reducing plate current still further. This initiates a second regenerative switching action after which the tube elements return to their original quiescent state.

Various refinernents that improve performance are incorporated in the circuit of Fig. 2.

- The length of the sawtooth can be adjusted by varying the voltage to which the plate of the pentode can rise. This is accomplished by $V_{3 a}$ and potentiometer P_{1}. As soon as the plate reaches the voltage set by P_{1} the diode conducts and prevents it from going higher.
- The chief factor limiting the recovery of the phantastron after the second switching action is the time required to recharge C to its initial voltage through \boldsymbol{R}_{p}. This time is greatly shortened by the cathode follower, V_{2}. A plate supply higher than E_{b} is needed for the cathode-follower because the grid of the cathode-follower reaches E_{b} when the circuit is quiescent.
- A small capacitor from screen to suppressor couples the voltage transitions rapidly.
- Diode $V_{3 b}$ and voltage divider $R_{3}-R_{6}$ stabilize the positive voltage to which the suppressor rises during sawtooth generation.
- A desirable trigger uses $V_{3 c}$ to prevent the changes in suppressor voltage from coupling back to the trigger source.

Screen-Coupled Phantastron
 Design:

The basic steps in designing a screen-coupled phantastron follow, together with an example
for a circuit using a maximum delay of 1,000 $\mu \mathrm{sec}$.
Step 1. First select V_{1}. The 6.4S6 is often used but for very fast waveforms or low-impedance circuits a heavier current-carrying tube like the 7 AK 7 is necessary.
Step 2. Choose E_{b}. A larger voltage increases the size of the waveforms. Since the screen voltage nearly reaches E_{b} during sawtooth generation, E_{b} should be limited to the maximum screenvoltage rating of the tube. $\boldsymbol{E}_{\mathrm{c}}$ should be chosen as large as convenient.

The maximum screen voltage rating of the 6 AS 6 is 140 v , so for conservative design E_{b} is set at $120 \mathrm{v} . E_{c}$ is set at -100 v .
Step 3. Set an operating point for the screen when the circuit is quiescent. At this time the plate current is cut off and the grid voltage is zero. A large screen current is desirable for fast switching.

For $e_{c 2}=60 \mathrm{v}, i_{r 2}=7 \mathrm{ma}$ (from tube curves). Screen dissipation is $60 \times 0.007=0.42 \mathrm{w}$. This is safely within the rating of 0.75 w .
Step 4. Choose a value for $e_{c 3}$ during quiescence that is safely below cut-off. Then determine $\boldsymbol{R}_{\mathrm{c} 2}$, R_{1} and R_{2}.
(Confinucd on p 42)
 determined before completing the design shown in Fig. 2.

Set $e_{c 3}=-1.5 \mathrm{v}$. The $R_{1}-R_{2}$ divider should draw enough current so small changes in $i_{c 3}$ will not affect c_{a}. Choose this value as 2 ma and solve for the parameters of the voltage divider shown in Fig. 3. The results are indicated in Fig. 2 after they are rounded off to standard values. Step 5. Check the resulting value of $e_{c 3}$ during the Miller-sweep period when $e_{i}:$ rises to E_{b}. It should be well into the region where the plate takes most of the cathode current.

Thus, $\varepsilon_{c 3}=+21 \mathrm{v}$ which is well above the minimum necessary value.
Step 6. The divider $R_{5}-R_{65}$ should return the suppressor to a voltage well below its cut-off value so only an external trigger will allow the suppressor to begin plate conduction.

A value of -20 v is used.
Step 7. Choose the components which determine the maximum cluration of the sawtooth. The slope of the plate sawtooth is about $E_{c} /\left(\boldsymbol{R}_{v} C\right) \mathrm{v} / \mathrm{sec}$ and the maximum delay is slightly less than $R C$ sec. C should be considerably larger than the stray capacities but an excessively large value will increase the recovery time. \boldsymbol{R}_{y} should be large enough to prevent excessive grid current flow but not so large as to produce too much impedance in the grid circuit.
For a maximum delay of $1,000 \mu \mathrm{sec}$ choose $R_{u}=1 \mathrm{meg}$ and $C=1,000 \mathrm{pf}$. A potentiometer in series with R_{g} can be used to adjust the maximum delay exactly.
Step 8. Choose the plate load resistor. A high resistance improves sweep linearity but a lower value shortens the recovery time and the minimum delay time.

This design has a recovery time of about 50 usec. It could easily be shortened by reducing R_{p} or C or by using a different tube, carrying a larger current for V_{2}.
Step 9. R_{3} and R_{4} fix the maximum value of $e_{c 3}$. This voltage should be sufficiently positive so the plate conducts most of the cathode current. For stable operation the suppressor should always reach this voltage. Hence, it is wise to set it 5 or 10 v below the value found in Step 5 .
A value of +10 v is used.
Step 10. For fast waveforms make R_{7} as small as possible. Its minimum size is determined by the condition that when the phantastron is quiescent the grid of V_{2} is at E_{b} and the triode should be within its ratings.

If $R_{\bar{i}}=20 \mathrm{~K}$ then when $e_{p}=120 \mathrm{v}$ the current through R_{7} is approximately 6 ma and the plate dissipation for V_{2} is 0.48 w . This is within the ratings for the 12AT7.
Step 11. Choose P_{1} and P_{2} so P_{1} covers the desired range of delays. For linearity of control the resistance of P_{1} should be less than about $1 / 10$ R_{p}.
Step 12. R_{8} drops the $200-\mathrm{v}$ supply to $120 v$ for V_{1}. To determine the proper resistance one must know the average current taken by the circuit. The pentode draws appreciable current during the quiescent period but practically none during sawtooth generation. Changes in duty cycle will affect E_{b} and this may have a secondary effect on circuit operation. This effect can be reduced by drawing a relatively large fixed current through the resistive dividers. For very precise time delays with a widely varying duty cycle a

VR tube or a separate power supply is desirable.
The fixed current is 12 ma and the variable current 8 ma . For a 50 per cent duty cycle the average current is 16 ma so $R_{n}=5.1 \mathrm{~K}$. Experimentally it is found that changes in duty cycle have very little effect.

Cathode-Coupled Phantastron Operation:

This variation of the phantastron circuit has the advantages that it requires somewhat fewer components; it does not need a negative voltage supply; and it produces a negative as well as a positive rectangular output pulse. But it is not so linear as the screen-coupled circuit because the cathode resistor decreases the pentode gain.

The circuit, shown in Fig. 4, functions as follows: In the quiescent state the grid is at the potential $\left(E_{1}+E_{2}\right)$ which is set by the divider $R_{1}-R_{2}-R_{3}$. The cathode voltage is slightly higher. The suppressor is at E_{1}, which is sufficiently negative with respect to the cathode to cut off the plate current. Therefore the screen takes all the cathode current.

At time t_{1} a positive trigger to the suppressor allows the plate to conduct. This results in a drop in plate voltage which is coupled through C to the control grid. This reduces the total cathode current so the cathode voltage drops and the suppressor-to-cathode voltage e_{13-k} goes more positive, allowing still more plate current.

The regenerative switching action proceeds swiftly and ends when the drop in plate voltage coupled to the grid has driven the grid negative enough to nearly cut off the cathode current. The suppressor-to-cathode voltage is then sufficiently positive so the plate takes practically all the remaining cathode current. The screen current is very small so the screen voltage rises practically to \boldsymbol{E}_{b}.

A negative sawtooth is produced at the plate by Miller action as in the screen-coupled phantastron. When the plate voltage falls to the knee of the plate-voltage vs plate-current curve the plate can no longer take additional current. The grid voltage rises very rapidly, initiating a second switching action that returns the circuit to its quiescent state. As in the screen-coupled phantastron, the variation of the voltage to which the plate is allowed to rise controls the duration of the sawtooth.

Cathode-Coupled Phantastron
 Design:

This example will be worked out for a maximum delay of $1,000 \mu \mathrm{sec}$. The fast cathode-follower recharging is omitted so the recovery time is several times the maximum delay.
Step 1. Choose the supply voltage, E_{b}. Since $c_{r 2}$ approximately equals E_{b} during generation of
the sawtooth, E_{b} is limited by the maximum rated screen voltage.

The maximum rated screen voltage of the 6AS6 is 140 v so for conservatism 120 v is used.
Step 2. Set a value E_{1} for the positive suppres-sor-to-cathode voltage $e_{c 3-k}$ so the plate will take the major share of the cathode current. However, this must be compromised with the consideration that for best linearity the cathode resistor R_{k}, must be small. Consequently E_{1} and E_{2} (mentioned below) should be as small as possible. During the Miller action i_{k} is very small so $c_{k} \cong 0$ and $e_{c 3-k} \cong+E_{1}$.

For the 6AS6 choose $E_{1}=+10 \mathrm{v}$.
Step 3. Choose a value $-E_{2}$ for the negative sup-pressor-to-cathode voltage during quiescence that reliably cuts off plate current. At this time $e_{c 1}=E_{1}+E_{2}$ so $e_{k} \cong E_{1}+E_{2}$ and $e_{c 3-k} \cong$ $E_{2}-\left(E_{1}+E_{2}\right) \equiv-E_{2}$.
From tube curves -12 v appears adequate so choose -20 v for reliability.
Step 4. Fix the grid-cathode voltage and the operating point for the screen when the phantastron is quiescent. To compensate for tube aging it is desirable that $\varepsilon_{c 1-k}$ be slightly negative. This value should reduce the cathode current to roughly three-quarters of its zero-bias value. For fast waveforms $i_{c^{2}}$ should be as large as possible but within tube ratings. Then $R_{c 2}$ can be found.

Choose $\epsilon_{c 1-k}=-0.5 \mathrm{v}$ and $i_{c 2}=6 \mathrm{ma}$. Then $e_{c 2-k}=60 \mathrm{v}$ (from tube curves) and $P_{c 2}=60 \mathrm{x}$ $0.006=0.36 \mathrm{w}$ which is satisfactory. Since $E_{1}+$ $E_{2}=10+20=30 \mathrm{v}, e_{k} \cong 30 \mathrm{v}$ and $e_{c 2}=$ $e_{c 2-k}+c_{k} \cong 60+30 \equiv 90 \mathrm{v}$. Therefore the screen resistor $R_{r^{2} 2}$ must produce a drop of 30 v $R_{c 2}=30.0 .006 \cong 5.1 \mathrm{~K}$.
Step 5. In the quiescent state $R_{k}=c_{k} / i_{k} \equiv\left(E_{1}\right.$ $\left.+E_{2}\right) / i_{k}$.
$R_{k}=30 / 0.006 \cong 5.1 \mathrm{~K}$.
Step 6. Choose R, and C. For the cathodecoupled phantastron the slope of the sawtooth is also very close to $E_{b} / \boldsymbol{R}_{0} C \mathrm{v} / \mathbf{s e c}$. Because of the initial drop in the plate voltage before the sawtooth begins, the maximum duration of the sawtooth is reduced to about $0.6 \times R_{y} C \mathrm{sec}$. The amplitude of the initial drop is approximately $E_{1}+E_{2}$.

If $\boldsymbol{R}_{0}=1 \mathrm{meg}$ and $C=1,600 \mathrm{pf}$ then $0.6 \times$ $R_{o} C=960 \mu \mathrm{sec} \cong 1,000 \mu \mathrm{sec}$.
Step 7. Choose R_{p} from the same considerations. Step 8. Determine R_{1}, R_{2}, and R_{3} so as to provide the proper values of E_{1} and E_{2} These resistances should be small compared with \boldsymbol{R}_{ρ} and R_{p} so the currents taken by the tube elements will not appreciably affect E_{1} and E_{2}.

References

1. B. Chance, et al. Waveforms, Vol. 19, MIT Rad. Lab. Series, McGraw-Hill, 1949, pp 195-204. 2. J. Millman and H. Taub. Pulse and Digital Circuits, McGraw-Hill, 1956, pp 221-228.

This 17-inch printed circuit connector of

DAPON ${ }^{\circ}$ M OPERATES AT 450° F... STOPS WARPAGE AND MISALIGNMENT

Dimensional stability of compounds based on DAPON M keeps this connector straight and true: contacts are always accurately positioned.

This long connector is home base for hundreds of terminals. By molding it of thermosetting compound based on Dapon m, Viking Industries Inc. solved a number of design problems
DAPON M gives the connector outstanding electrical and mechanical qualities. The resin permits $450^{\circ} \mathrm{F}$ continuous operating temperatures, has excellent dimensional stability and resistance to moisture. Its electrical resistance (measured in millions of megohms) remains unaffected by weeks of exposure to 100% relative humidity.

The material is easily molded. It has good hot strength, the piece is strong when cured. Neither cooling jigs nor multiple ejector pins are needed in removing the connector from the mold. Fast cycles are possible. The resin's high flex, tensile, and compressive strengths result in rugged moldings with high insert holding power and dependable performance.

DAPON M is recommended for use wherever:

- high operating temperatures are encountered
- top electrical qualities are a must
- better strengths are desired
- molding conditions pose a problem.

FREE LITERATURE
SENO COUPON FOR NEW 32 PAGE BROCHURE AND THE NAMES OF COMPOUNDERS OF DAPON RESINS

Putting loeas to Work
FOOD MACHINERY AND CHEMICAL CORPORATION
Dapon Department
Room 1458, 161 East 42nd St., N. Y. 17, N. Y.

Please send new brochuro: "DAPON MOLDING MATERIALS"

[^1] Title

Company
Address

- - - - -

High Density Electronic PackagingModule Layout and Design

The concept and basic description of High-Density Electronic Packaging were covered in the first article of this series (ED, April 12, 1961, p 40). In this article, the design of circuit modules and wiring modules is outlined in terms of module size, cost and efficient layout. Ground rules are presented for various design approaches.

Alfred J. Coutu
 Paul N. James
 The Sippican Corp Marion, Mass.

HOW expensive should a "throw-away" module be? How large should a module be? How can interconnections between modules be reduced? These are but a few of the challenging questions which face the design engineer confronted with a project involving microminiaturization. The compromises and factors affecting the decision, as applied to High Density Packaging, are revealed as the layout and design procedures are outlined.
The High Density Electronic Packaging (HDEP) technique employs two basic modular electronic subassemblies: circuit modules and wiring modules. These modules, both encapsulated, are electrically united within a given system package by means of specially designed separable connectors, having the reliability of permanent connection techniques.
Connections between circuit module and wiring module terminal pins are made by the wirewrap technique. Figs. 1 and 2 illustrate the circuit module-wiring module relationship and show the wire-wrap connector method.

How Large Should

A "Throw-Away" Module Be?

The "throw-away" concept applies to circuit modules alone, in that replacement of a module can be expediently made on a "plug-in" basis should component failure occur. Component costs may indeed be higher, but system downtime and maintenance are reduced. These factors must be equated in the preparation of requirements for a particular system. Oftentimes, expensive components can be located outside of the encapsulated circuit modules so as to be salvageable should the module require replacement.

Reliability is the most important consideration in subassembly size determination for packaging
designs. It is generally assumed that the greater the number of connections that are permanently made, i.e. welded and encapsulated, the greater will be the over-all reliability of the system. This philosophy tends to keep the number of separable or nonencapsulated connections to a minimum. In order to achieve this end, more and more components are added to a circuit module and more of the logical wiring is done within the circuit module. The ideal functional unit would have only those logical input and output lines and power connections necessary to operate the unit at the external terminations. There are, of course, physical as well as economical limits to which this philosophy can be carried.

The second desirable feature gained in using a large circuit module is the high component density which can be achieved.
An opposing factor is generally economic, i.e. the smaller the circuit module, the cheaper the throw-away package becomes.
Another desirable feature of small circuit mod ules is the added flexibility of system design. Heat-producing components may make small module sizes a decided advantage, because these components may be placed near the surface of the module and closer to the conductive foils that are attached to the heat sinks.
Thus, the main factors to be considered in the determination of circuit module size and, ultimately, wiring module size are a compromise between the reliability and component density of the system vs the economic considerations or the dollar value of the throw-away package and the flexibility desired for the system.

Circuit Module Assemblies

Size of Circuit Modules: Construction of circuit modules for a given system package is based essentially on a determination of module size. This determination is made by means of mechanical, electrical and thermal evaluations of the system schematics and block diagrams.

It is helpful, but not necessary, to have all circuit modules in an electronic system package identical with respect to physical size. The minimum requirement is to hold two dimensions of all encapsulated circuit modules in the system constant. The approximate size of the over-all system and of the individual circuit modules is obtained by a mathematical analysis of all the components of the system circuits. From a pre liminary breakdown of the system block diagram into individual circuits to be packaged, compo nent size evaluations are made which include dimension and "squared area" determinations and calculation of volume. "Squared area" refers to the square of the diameter of the component.

By this mathematical analysis, and by adding certain constant dimensions to each circuit module for matrix wiring, encapsulation, terminal pin connections, wiring module volume and structure, it is possible to accurately predict the vol ume of a complete system.
The number of modules in a system helps to determine the size of each circuit module. For most digital computers, a greater number of modules of a few types are required if logic is not incorporated. Fewer modules are required if logic is involved, but each module becomes a specific type, increasing the number of spares required for most systems. An analog system will generally require a group of completely different circuit modules, except for multichannel equipment where advantage can be taken of identical circuits to reduce the number of module types in the system.
The number of interconnections required for each circuit module must also be determined, because as modules are grouped together or functionally split. the pin count of the new circuit module will be different from that derived from the logical breakdown. The pin recquirements of the system per circuit module are dictated by the circuit module with the greatest terminal pin requirement. Therefore, it is desirable to keep

the pin count equal for all circuit modules. If, for example, the wire-trap technique is used (1) interconnect circuit modules with a wiring module, the minimum spacing between the terminals is 0.150 in. on centers. From the height of the tallest component placed upright in the circuit module, it can be ascertained whether two, three or four rows of terminals are feasible. The number of terminals also determines the width of the circuit module for maximum pin density. With two dimensions of the circuit module fixed, a circuit module layout can be started. The sum of the component areas divided by the width results in the approximate length of the circuit module without encapsulation or circuit module connector provisions. A typical circuit module is shown in Fig. 3.
Layout Design Procedures: Once these mechanical factors have been fixed, layout design of a circuit module can proceed. Components are located so that output lines are as short as possible and conductor paths are minimized Density is increased by associating components of similar dimensions along the same centerlines and obtaining a repetitive grid pattern for a matrix that will allow components to be located in a regimented fashion (quite difficult with analog circuits).

Heat-producing components are located in proximity to the heat exchanger, if one is used. Heat-sensitive components must be kept away from heat-producing components. Power terminal locations for all modules must be standardized, and input circuits must be kept separate from output circuits.

Another important step in layout design of a circuit module is refinement of wiring to obtain maximum functional simplicity, producibility and weld reliability. Components and wiring are "juggled" within the limits of the layout dimensions and within the limitations of the design mechanics until the wiring is made as simple as possible. The extra time spent in optimizing the design results in a circuit module which is simpler to assemble and fabricate.

Component Assembly: High density construction is three-dimensional as opposed to a twodimensional or standard printed-circuit approach. The three-dimensional approach allows the layout designer the freedom of aligning or stacking components of different dimensions. The twodimensional approach has also been incorporated with the welded technique by using one matrix in place of a printed circuit board and welding to various component leads at the extremities of the matrix.

Components are laid out with their maximum dimensions tangent to insure that there will be no interference at assembly. This method provides the best compromise between high density, i.e. a large number of components per unit area, and the ability of the component leads to move toward the rigidly supported matrix wires during the welding operation.

Thin (0.004 in .) Mylar or Cronaflex films, with the cross-sectional dimension of each component shown to scale, are used to arrange the components in proper order during assembly. Dots on these "positioning films" indicate where holes must be punched for passage of the component leads.

Matrix Design: The current approach to design of circuit modules uses the matrix wiring technique developed by Francis Associates for the Polaris FBM Computer logic sticks. A matrix consists of two layers of conductors at right angles to each other, separated by a Mylar insulating film. The films, photographically reproduced and reduced to scale from an original drawing, depict the wiring paths and are coded to indicate where holes are to be made to accept component leads and weld intersections

To fabricate a circuit matrix, a welding jig can be used to position the conductors and the film,

Fig. 4. A circuir module header housed in an assembly jig.
or the matrix film itself can be used as a jig by providing loading holes to locate the position and the conductors for welding. Once the conductors are properly positioned on the matrix film, the intersections of the conductors to be electrically united are welded through prepunched holes in the matrix film. Intersections of conductors where no connection is required are insulated by the film between the conductor layers.

In this manner, a matrix can be programed for automatic welding: a weld is attempted at every matrix intersection, but will only be made where holes occurred in the film. After all the matrix intersections are welded, excess conductor material is clipped away, leaving a conductor pattern identical to the image on the matrix film.
An advantage of matrix use is the versatility that can be added to a matrix by fabricating it of different conductor materials or sizes to increase the welding compatibility of the component lead and conductor. Until more manufacturers of basic electronic components provide their components with terminal leads that are more compatible to welding, matrix conductors must be chosen from different materials which are compatible to the various lead materials.
Experience in layout design of a circuit module teaches the designer the number and type
of matrices that are required by a circuit module. In general, more than one matrix is required on each side of a module if the ratio of the number of components to the number of terminal pins is less than four to one. Another factor that contributes to additional matrices in a circuit module is a high percentage of components with a diameter of about 0.100 in ., or transistors which are of the small hearing aid type.

Three general ground rules are followed in the layout design of matrices to assure maximum producibility and ease of fabrication:

1. Electrode Clearance: For pincer-type electrodes used to weld a matrix conductor to a component lead, a minimum of 0.040 in . clearance to another conductor on either side of the conductor or lead must be provided. This allows the electrodes to be positioned without interference from other conductors, and to be properly seated to avoid the loss of weld pressure.
2. Matrix Conductor Spacing: Part of this problem is recognized in electrode clearance, but the conductors on the first level of the matrix should allow a minimum of 0.050 in . edge-toedge clearance from any component lead that is being bypassed. In the layout of the matrix, the designer must avoid parallel conductors having less than 0.025 in . clearance between them. This allows room for diagonal cutters to be used in clipping out the extra conductor material from the matrix.
3. Component Hole Sizes: If the component lead is rigidly fixed, the electrodes must force the lead and the matrix together for welding and some welding pressure is lost; therefore, the hole in the matrix film is made 0.010 to 0.015 in . oversize to allow the component lead to move freely. This procedure is based on the theory that it is easier to move the lead of a component (and possibly the component) than it is to move a short length of conductor rigidly welded to the matrix.

A sound ground rule to follow in the layout of matrices is to place the conductors that go to the terminal pins on the first level beneath the matrix film, leaving the perpendicular conductors that are welded to the component leads on top. If more than one matrix is stacked on a circuit module, conductors going to terminal pins should be on the under-side of the outermost matrix. The lower-level matrix should make all the basic component connections, so that the module is a testable subassembly before the outer matrices are assembled and welded. The outer matrices should only connect with input-output and power connections. A component lead should never be welded to both matrices; however, the use of cross-through wires does allow welding to both matrices. Also, it is simpler to design the circuit module header, described next, if it is known
that all conductors going to terminals are so located that connections to the header can easily be made.

Header Design: The circuit module header serves as a transition between the matrix wiring of the circuit module and the "outside world" back-panel wiring module.

A header is composed of terminal pins for connections to the wiring module, and "flags" which are transition connections between the terminal pins and the circuit module matrix conductors (Fig. 4). Because the terminals must be properly oriented and located within the header, the header is usually a fabricated part that will accept and position all the "flagged" terminals.

An alternate method is to individually position the "flagged" terminals in one side of the module encapsulating mold and weld the "flags" to the matrix conductors just prior to encapsulation. This method eliminates the need for a separate header.

Circuit headers are a necessary part of a circuit module, since it is impractical to allow the matrix wires to come directly out of the encapsulation due to their close spacing. The use of headers makes it possible to design a wiring module that has terminal symmetry. The type of terminal pin required in the header is a function of the system back-panel wiring scheme of interconnections. At the present time, most designs use a split wire-wrap terminal that mates with a similar terminal in the wiring module to achieve a reliable connection.

Very close tolerances are required in the positioning and aligning of the header in relation to the matrices. At assembly, the flags must be located directly adjacent to the matrix wire, in order that welding pressure is not lost in bringing the flag and conductor together for welding. In extreme cases, it may be necessary to prebend the matrix wires in order to meet the flags. The majority of alignment problems are taken care of by the adequate design of positioning and holding jigs.

Wiring Module Assemblies

Design Concept: A wiring module is composed of several layers of ribbon matrices welded to wire-wrap terminals and encapsulated with an epoxy compound. At the present time a wiring module fabricated in this manner is the only electronic cabling system on the market that will interconnect High-Density encapsulated electronic circuitry and also offer the connector reliability, extreme compactness of back-panel wiring, and the ability to accept a tolerance
build-up in the physical size of the circuit modules without the requirement of floating pins.
High on the list of causes of failure of electronic equipment is the use of a conventional connector, due to the number of pins required in the complex systems being built today. These connectors, of necessity, have floating pins with some sort of spring to add pressure for contact connections. The floating pins continually subject the attached wires to high stresses and ultimate breaks or open connections. These reasons for failure are virtually eliminated by using a wiring module and the wire-wrap technique for interconnections.
Wire-Wrap Connector Design: The wire-wrap technique was originally developed by the Bell Telephone Laboratories. It has been modified to join two connector pins by wire-wrapping them together. One of the two pins originates from the circuit module, and the other from the wiring module. Internally, the wiring module pin is welded to a matrix signal path that interconnects with other wiring module terminal pins, and is connected via wire-wrap terminals to other circuit modules. This system permits 50 or more connects and disconnects with little or no decrease in reliability

The wrapping or unwrapping of a connection is very easily performed by the use of inexpensive standard manual or power-driven wire-wrap toeds. The wire-wrap technique demands that each connection be made individually, assuring positive vistal evidence that each and every interconnection has been made
The wire-wrap terminals are composed of hard, gold-plated beryllium copper, and the actwal wire-wrap is composed of soft copper. When the copper is wrapped around the sharp, hard corners of the terminals, the copper is physically deformed, creating a gas-tight connection with its inherent high reliability. With four to seven turns around the two wrapped terminals, multiple conductive paths are created between the two terminals.
The use of wire-wrap terminals has two other unique features of interest to the designer. An outstanding feature is that every terminal of the system is accessible for probing and testing. The other equally important feature is that, by unwrapping one or two connections and inserting an insulating material between the terminals, a circuit can be isolated from the system for testing or probing without physical removal of the circuit module. Fig. 5 shows an array of wirewrap terminals.
Matrix Design: All wiring module matrices are custom-built for a particular system. The obvious reason for this is that all systems will have different locations for the various types of circuit modules and not all systems are composed of the
same number and types of modules. From out side physical appearances, all wiring modules are the same, differing only in the number of circuit modules that they will interconnect. The difference between them is in their internal matrix design.
The ribbon matrix method of back-panel wiring is the core of the wiring module. The matrices enable the designer to perform many interconnections between circuit modules and to complete this in a thickness of only about 0.025 in . per matrix. Several of these matrix layers stacked one above the other will contain all the intermodule signal and power connections required by the system.

More specifically, a wiring module matrix is composed of a photosensitive film (usually 0.004 in. Mylar) imprinted with lines that the signal conductors will overlay, plus other information necessary for fabrication. The conductors on either side of the film are welded to each other where indicated by the coding via holes prepunched in the film.

The films are exactly reproduced from original drawings on which the logic interconnections are laid out. Practically all of the information necessary for the fabrication of the matrix is shown on the film. Mylar is used because it possesses excellent insulating qualities, high tensile strength, extreme resistance to tearing and, above all. dimensional stability even at extreme temperatures. The conductors are usually nickel ribbon, nickel wire, nickel-clad copper, or combinations of these materials. A blank film sheet is inserted between each matrix layer to insulate one matrix wiring layer from another.
Layout Design Procedures: A wiring list is generated prior to design and layout of the master matrix film. It is easier to work with a wiring list than a multipage diagram.
This list is prepared from the master block diagram of the system, which indicates the logical connections from one circuit module to any other module or modules. The block diagram. previously prepared from the system logical schmatic, identifies each circuit module and indicates module header pin numbers for each circuit entering or leaving the module. The main function of the list is to indicate a point in a circuit and list all other points in the system which are directly connected to that circuit. When this procedure has been completed for cach circuit in the system, the list thus generated becomes a description of the complete system with respect to logical interconnections.
Other information pertinent to design and layout must be received either prior to or at the same time as receipt of the list. Some circuits, because of the type of signal involved, require shielding to prevent pickup due to capacitance

Fig. 5. A series of wire-wrap terminals illustrating the technique.
effects from other nearby circuits. Generally, circuits known to require shielding are so indicated on the wiring list and are placed on spectial shielded layers. Circuits which may or may not require shielding, depending on their length, are listed as such; during layout, if their length exceeds a certain limit, these circuits are set aside to be included on shielded layers. Matrix layers requiring shielding are sandwiched between planes of copper which are ultimately connected to ground.
Cabling Technique: A unique method has been devised to provide for the few input-output and power cabling requirements required by an electronic system composed of circuit modules interconnected by a wiring module. The cabling is accomplished by means of connecting as many as sixteen wires of the cable directly to the header of a circuit module. This is then encapsulated in a manner identical to a circuit module. As many of these "cable modules" as required by the system are connected into the wiring module. The cable modules are wire-wrapped into the wiring module in the same manner as other circuit modules. The wiring module matrices then perform the function of bringing the cable connections to the correct circuit module. - -

NEW PRODUCTS

Covering all new products generally specified by engineers designing electronic original equipment. on the Reader's Service Card for more information ing to that appearing at the top of each description.

Silicon Solar Cells
Have Efficiency Of 13%
A new collector strip process enables conversion efficiencies as high as 13% for these silicon solar cells. A number of secondary collector strips protruding from the main or primary strip affords a better collection of current from the active cell area. The new cells are named gridded cells because the collectors form a grid network over the active area of the cell. An increase in cell output power of up to 20% over nongridded cells under given light and load conditions is claimed.

International Rectifier Corp., Dept. ED, 1521 E. Girand Ave., El Segundo, Calif.
P心A: $\$ 2$ to $\$ 6$, depending on efficiency in 1 to 99 lots; from stock.

Wide-Band DC Amplifier Is Single Ended

Adjustable gains from 10 to 1.000 and an adjustable bandwidth from 10 cps to 100 kc . are features of model 500 single-ended, wide-band, de amplifier. Input impedance is more than 1.000 megohms and output capability is $\pm 10 \mathrm{v}$ at 100 ma. The unit contains two single ended amplifiers in one package using a common power supply. Choice of gain and bandwidth characteristics is by plug-in input modules. The unit is completely solid-state design.

Packard Bell Computer Corp., Dept. ED, 1905 Armaconst Ave., Los Angeles, Calif.
P\&A: From \$76.5 per channel; 60 days.

Wirewound Resistor For Microminiature Circuits
Wirewound resistor model TC-1 measures $1 / 16 \times 1 / 16 \mathrm{in}$. and is available in power ratings of 0.02 w . The units have tolerances of from 1 to 0.1% for resistive values from 1 ohm to 50 K . Resistance wire as small as $0.00045-\mathrm{in}$. diam is wound on a spindle and an epoxy bonding agent is applied for structural strength. The resistor can be secured directly to a printed wiring board with a bonding agent to become an integral part of the board.
Reon Resistor Corp. Dept. ED, 155 Saw Mill River Road, Yonkers, N.Y.
P\&A: From $\$ 1$ to $\$ 3$ ea; 4 weeks.

Digital Logic Element

Operates To 250 Kc

A single one of the CTL-250 series of coretransistor logic clements can perform the following functions: OR, Inhibit, Branch, AND, Transfer. Drive, Count, or Complement, Combinations can perform any logical function in the digital equipment field. It is available with positive or negative input/output pulse polarity. Minimum ONE to ZERO ratio is 1.5 to 1. Standard units operate to +6.5 C at 100% duty cycle. Military versions are whtainable for operating temperatures to +125 C .
Di/An Controls, Inc., Dept. EI), 944 IDarchester Ave., Boston 25, Mass
PdA: S24ca; 2 to 4 wecks.

Narrow Pulse Generator For High Repetition Rates

Model PG-10 pulse generator is for use where high repetition rates and narrow pulses are reguired. Three overlapping ranges cover a frequency range of 1 to 20 mc . External sine wave trigger can be used to provide repetition rates down to zero. Specifications are: freguency accuracy, 3\% of clial setting output, positive or negative; rise and fall time, less than 6 nsec; pulse width, less than 20 nsec at 50 z amplitude min, 0.3 usec max; output impedance. 93 ohms; max duty factor, 0.35 . Weight is 60 lb and size is $17 \times 17 \times 7$ in.
General Applied Science Laboratories, Inc., Dept. ED, Merrick and Stewart Aves., Westbury, N.Y. P'́A: $\$ 1,250$ fob Westbury; 90 to 120 days.

Whether you need immediate delivery from stock o custom-built designs, JFD has the delay line that pays off in premium performance. Increasing industry-wide acceptance is the proof!
To start with, JFD designs, develops and delivers the delay line gou need, when you need it. Highest reliability is assured, under your most critical conditions, because of JFD's advanced technological knowhow. This capability results in high delay to rise time
. wide variety of shapes, sizes and mountings. superior temperature stability ... virtually linear phase shift over wide band width ... minimunl attenuation. maximum resistance to shock, vibration and humidity
and the conformity with military specifications you expect.
Perhaps this specialized skill and imagination can help solve your delay line problems? Call any one of the five JFD sales offices or one of the twenty-five sales representatives nearest you for complete technical data. Write today for bulletins 212 or 213A covering our standard models of Lumped and Distributed Constant Delay Lines.

Tapped, Stepped Variable, Lumped Constant and Continuously Variable Lumped Constant Delay Lines can be custom designed to fit your needs, as well as filters and pulse forming networks of all types.

JFD ELECTRONICS CORPORATION

Components Division - 6101 16th Avenue, Brooklyn, New York • Phone DEwey 1-1000 - IWX-NY25040
JFO WESTERN

HIXEO LLE YAMMER PIETON CAPACITONE FIXED METALIZEO INOUCTORE LC TUNENG DIPLEXERE FIXEO NE VARIABLE, DIETRIBUTED AND LUMMED CONETANT DELAY LINES P PULSE TORMING NETWORKO

nothing goes with high vacuum like OFHC* copper forgings-from P B \& B

NEW PRODUCTS

Two-Coil DC Solenoid

Rated for $1,000,000$ cycles of operation, model 12SD535 can in some uses perform $2,000,000$ cycles. Response time is 12 msec with a $1-\mathrm{lb}$ force at 0.125 in . of stroke and at 60 vdc . Able to operate over a temperature range of -6.5 to $\pm 160 \mathrm{~F}$, it meets MIL-S-4040C
IMC Magnetics Corp., Western Div., Dept. ED, 60.58 Walker Ave., Maywood, Calif.

Paper-Tape Reader

With rates to 20 characters per sec, this photo. electric device reads any 5 -, 7 - or 8 -hole perforated paper tape. Uses include process control, automatic checkout and telemeter data reduction. Dimensions are $6 \times 4-5 / 8 \times 4$ in.

Invac Corp., Dept. ED, 14 Huron Drive, Natick, Mass.

Slide-Wire Potentiometer

Linearity is to 0.25%, temperature constant is 20 ppm and noise is less than 25 ohms per NAS 710 in model 85176 . For low-impedance use, the unit comes in complete or partial turns from 1 to 10 with resistances from 1 to 10 ohms per turn.
Ciannini Controls Corp., Dept. ED, 1600 S.
Mountain Ave., Duarte, Calif.

Only certified Oxygen Free High Conductivity copper gives you the critical properties you need for key parts in magnetrons, klystrons, power tubes and scores of other electronic and nucleonic devices. It's free from hydrogen embrittlement and resulting sponginess. It's readily brazed, welded and plated. It makes copper-to-glass seals that are permanently vacuum-tight. It has negligible volatile content at out-gassing temperatures.
From Philadelphia Bronze \& Brass, you're sure of getting OFHC copper forged accurately to your specifications, from certified grade material guaranteed at least 98% IACS conductivity. Recommended as a source of OFHC copper and related alloys by American Metal Climax, Inc., PB\&B can give you expert service on forgings, both open and closed die. Our large stocks assure prompt delivery
We can also supply forgings of AMZIRC*, a zirconiumOFHC copper alloy with excellent high temperature properties, and AMSULF* a free-machining sulfur-OFHC alloy . . as well as copper castings of 90% conductivity electrolytic copper.
In over 30 years of specialized non-ferrous experience, we have served leading electronic manufacturers and laboratories. Write or call us for a consultation.

Non-ferreus forginge, eanfings and fabricetions - Registered Trade Mark-American Metal Climax, Inc.

Regulated Power Supply

Output is 117 v ac at 60 cps from an input of 12 v dc. Type IFA-1260-25 has a continuous power rating of 250 w and a maximum rating of 375 w . Output is regulated to $\pm 1 \mathrm{cps}$ over a load range of 20% to 100% and an input range of 11 to 16 v .
Kupfrian Mfg. Corp., Dept. ED, 167 Prospect St., Binghamton, N. Y.
Price: $\$ 175$.

Trimmer Polenfiometers

Resistance is 100 ohms to $100 \mathbf{K} \pm 20 \%$ in model $50-\mathrm{T}-10.5-\mathrm{in}$. pots. Resolution is the same in low and high-resistance units. Starting torque is 7.5 oz in . Linearity is 3%; power rating is 0.25 w .
Computer Instruments Corp., Dept. ED, 92 Madison Ave., Hempstead, L. I., N. Y.

AC-DC Digital System

Ac power converter, model AC-45 is for use with the V-45 dc digital voltmeter. The converter has a floating input which may be utilized at 500 v dc above ground. It permits measurement of 1 mv to $1,099.9 \mathrm{v} \mathrm{ac}$ in three ranges at 0.25% accuracy.
Cubic Corp., Dept. ED, San Diego 11, Calif.
Price: $\$ 1,500$ (for system).

Saturable Core Reactors

In 9 sizes. Ratings of $0.25,0.5,0.75,1,1.5,2,3$, $5,7.5$ and 10 kva are available in saturable core reactors for use at $60 \mathrm{cps}, 600 \mathrm{v}$ and below. Reactor is used in series with a load of constant resistance to vary current, or in series with a load of variable impedance to maintain a constant current. Class B insulation is used throughout.
Westinghouse Electric Corp., Dept. ED, P. O. Box 2099, Pittsburgh 30, Pa.

Silicon-Confrolled Rectifiers

At 10 and 16 amp . silicon-controlled rectifiers 2 N681 through 2 N 689 are rated at 16 amp , types 2 N 1842 through 2 N 1850 at 10 amp . Both have piv ratings to 500 v , low forward voltage drops and uniform gating characteristics. Package is doubleended stud configuration. Devices meet military requirements.
Tyco Semiconductor Corp,, Dept. ED, Hickory Lane, Bear Hill, Waltham, Mass.

Pressure Transducer

For low-pressure applications. Made for use where small size and accuracy are required, model 2 -5l transducer has operating ranges of 0 to 5 to 0 to 3.50 psia, psig, or psid. Linearity is $\pm 0.5 \%$. Operating temperature is -6.5 to +16.5 F , with up to +300 F obtainable.

Edcliff Instruments, Dept. ED, 1711 S. Mountain Ave., Monrovia, Calif.
PdA: $\$ 400$ ca, 1 to $10 ; 45$ days.

Solid-Tanfalum Capacifors

Capacitance is up to 330 uf and voltage ratings are to 3.5 v . Type CT units have working-voltage ratings of 6,10 and 20 v dc and surge-voltage ratings are 8,12 and 23 v . Dimensions are $0.27 \times 0.28 .5$ $\times 0.06 \mathrm{in}$. Temperature range is -80 to +125 C .

Radio Corp. of America, Semiconductor and Materials Div., Dept. EI), Somerville, N. J.

Time Delay Relay

583
Is inexpensive. Thermal time delay relay is available with spst normally closed or open contacts, spdt, or 2 independent circuits. Rating is 100 ma to 10 amp , up to 115 v ac. The relay has enclosed bakelite housing, 2 mounting styles, and quickconnect or solder terminals.
E-T-A Products Co., Dept. ED, 6285 N. Cicero Ave., Chicago 46, Ill.
Price: $\$ 0.90 \mathrm{ca}$, lots of 100 .

Color-Striped Markers

Of transparent polyester film, no. 964 markers are for coding resistors and other components. They stand temperatures to 150 C . Stripe and spacing are 0.03 or 0.015 in . wide. EIA and MIL STD 681 are met.
W. H Brady Co., Dept. ED, 727 W. Glendale Ave., Milwaukee 9, Wis.

Now, with just one output from the data source, you can record information in reusable form two differerent ways - on printed tape, and on punched tape.
The secret of this simpler, faster, more economical recording method is Clary's special printer-perforator combination. This versatile unit prints out information from a wide range of data sources and records it on a "common language" punched tape.
The taped data can be kept for permanent records... mailed or directly teletyped to distant points... used as language for computers, process control units, and in other industrial applications.
For further information on this unit, or for help with any data-handling problem, just phone or write Clary.

Specification notes:
The printer used may be serial or parallel entry. The tape perforator will punch any number up to 8 transversely-spaced code hole channels, and the format is programmable.

it's the CONTACT that counts!

3

 Alden top-connected contact give you:

- More reliable electrical contact
 - More secure mechanical grip

- Minimum electrical resistance

Each lead has individual strain relief because wire is doubled back through contact tab. Punch press contact design permits rapid heat transfer - eliminates unreliable cold solder joints as in screw machine contacts. Danger of insulation pull back is eliminated by bringing wire insulation right into molded clip pocket.

These unique Alden molding techniques in connector design drastically reduce the number of parts required and make possible multi-contact con. nectors of amazing basic simplicity and reliability

Resilient Alden contacts can be included in any type of molded insulation for any combination of contacts. Hundreds of standard off-the-shelf designs are quickly available - with or without leads - or as part of unit-molded cables. Our Customer Department will work closely with you on any connecting or cabling problems. A letter with description or sketch will enable us to provide recommendations or samples at once.

 without distortion.
material lorming the connectors and
covering the wiros forms o single cona
tinu ous, bonded insulation.
ALDEN
PRODUCTS COMPANY
5139 North Main St., Brockion, A^ass. CIRCLE 35 ON READER-SERVICE CARD

AC Regulator Holds Voltage Despite Changes in Load, Line, or Frequency

ANEW ac-voltage regulator combines fast, 2-cycle response, high reliability, and tight, 1 per cent regulation with insensitivity to variations in frequency, power factor, or temperature The regulator thus combines the most desirable features of saturable-transform-er-type resonant stabilizers, electronic stabilizers, servo regulators, and mag. netic-amplifier regulators.

In the past, it was necessary to make one type of compromise or another in selecting a regulator. According to the manufacturer of this one. Twinco Inc of 10 Cheney St., Roxbury, Mass., each regulator had important drawbacks.
For example, the fastest type, the resonant stabilizer, can provide 2 -cycle response and its output can be shorted
without damage. But it cannot maintain 1 per cent regulation if the $60-\mathrm{cps}$ line frequency should change by more than $1 / 2 \mathrm{cps}$. or if the load power factor should fall below about 0.98 . And it cannot provide remote sensing or adjustable output.

The three other popular types, electronic stabilizers, servo regulators, and magnetic-amplifier regulators can all hold good regulation over the 55^{-}to $60-\mathrm{cp}$ s range, they can all regulate against power-factor changes, and they can all provide adjustable output with remote sensing; but none provides - -cycle response, and none can be shorted safely.
The Twinco regulator provides an output that is adjustable from 110 to 120) with local or remote voltage sensing. It

Output of the line-voltage regulator shows fast response to load transients from half load to full load to half load.

Regulator's outpui responds quickly to 10 per cent changes in line voltage.
holds the output voltage to the adjusted value despite changes in the load from no load to full load, changes in power factor (leading or lagging) from 1.0 to 0.7 , changes in the line from 95 to 135 vac, changes in line frequency from 57 to 6.3 cps , and changes in temperature from 0 to 50 C
For line-voltage or resistive-load changes, the regulator responds, typically, in two cycles. For frequency changes or reactive-load transients its response is slowed to no more than 12 cycles.

Output distortion is never more than 5 per cent. Typically it is 2 per cent; for most extremes it may reach 3 per cent. In fact, the regulator can often reduce the harmonic distortion found in the input waveform.

The regulator uses only low-Q magnetic elements and diodes, so it is highly reliable. It uses a doubler-type magnetic amplifier with feedback to serve as a controllable saturable transformer.

Models are available to deliver 250 , $500,1,000$, or 2,000 va, and they can be obtained with cabinet or rack mounting, with open or cased transformers, and with or without a panel meter.

Prices vary with model chosen. A $500-$ va unit with rack mounting, with the meter, and with open transformers costs $\$ 675$ in small quantities and is available in 4 to 12 weeks

For more information on this ac regulator, turn to the Reader-Service Card and circle 251

IN PRECISION CALIBRATION

 EPSCO DELIVERS ITS SPECIFICATION
FEATURES:

- Selectable Voltages, in 1 millivolt steps, from $010 \pm 11.112 \mathrm{~V}$
- High Resolution and Selection Capability: 1 part in 10,000; with vernier adjustment, 1 in 100,000
- Close Reference Control of Zener current and load maximizing stability
- Low Output Impedance: 0.05 ohms (50 milliohms) DC
- Overload Proof
- Vernier Control. Permits operator to vary output continu ously over a ± 2 millivolt range for any setting
- Chopper-Stabilized, High Gain Amplifier
- Predicted Mean Time to Falure: 15,000 hours

VRS-611 BLOCK DIAGRAM

APPLICATIONS:

- Insert precisely known voltages of small magnitude for cali bration of low level data gathering systems
- Calibrate precision amplifiers
- Calibrate voltmeters
- Working secondary standard for laboratories and quality control departments
- Make precision voltage measurements

Absolute accuracy of $\pm 0.025 \%$. . . selectable voltages from 0 to ± 11.112 V . . . make Epsco's new VRS 611 the most accurate and flexible voltage reference source for the money!

Designed as a "Workhorse Cousin" to Epsco's higher-range VR607, the portable " 611 " voltage reference source meets the needs of quality control departments, electric equipment manufacturers, research laboratories, armed forces repair facilities and component manufacturers.

Available as a portable unit (shown above), in sturdy rack mount for fixed installation... or with battery power for in-field calibrations. All models ready for immediate delivery. Call or write for details. Price $\$ 625.00$

INETRUMENTS

Barber-Colman unidirectional

 shaded pole motors with choice of $3^{\prime \prime}$ through $8^{\prime \prime}$ dia circulating fans . . . ratingsfrom 75 to 1,080 cfm

BARBER
COLMAN COLMAN
trpical Applications air purifiens DEODORIZERS HUMIDIFIERS REFRIGERATOR BLOWERS ELECTRIC HEATERS B00STER FAMS VEMTILATORS PROJECTORS DESK FANS

a-c small motors

As manufacturer of unidirectional small motors up to $1 / 20 \mathrm{hp}$, Barber Colman of fers various combinations of these motors and fans for applications such as listed at left. These high-quality motors feature low noise level . . . high dielectric strength coils . . . stainless steel shafts . . . long-life lubrication. For complete information on Barber-Colman Motors with fans, write for bulletin F-1.
THE WIDE LIME OF BARBER-COLMAN A.C MOTORS includes unidirectional. sy nchronous, and reversible types . . . with or without reduction gearing . . . open or enclosed. Stator and rotor sets also available. Write for quick reference file.

BAREER-COLMANCOMPANY Dept. Q. 1283 Rock Street, Rockford, Ilinois
meg and 150 pf to $16 \mu \mathrm{f}$, depending on the amount of pulse stretching that is desired. The flip-flop circuit shown in Fig. (c) combines features of circuits shown in Figs. (a) and (b). It should be noted that the tube uses the "keep alive" anode for pre-ionization.

Another design feature that distinguishes the above circuitry from those using thyratrons is the use of a capacitor in the trigger circuit. By plotting the breakdown voltage (anode + cathode) against the control current (starter to cathode) the current control characteristic is obtained. A relatively high value of starter current is needed if the tube is to break down at lower anode voltages. If a $100-\mu \mathrm{f}$ capacitor is placed between the starter and the cathode the tube will fire as soon as the control current has charged this capacitor to the starter breakdown voltage of 125 v . The capacitor then discharges from starter to cathode. For that instant the peak starter current is quite high and depends only on the value of the capacitor.

Miniature cold cathode tube, GR-21, type is so designed that the glow is visible when the tube is observed headon. Two starters permit new uses as forward and backward counters for logic circuits. Fig (d) illustrates a counter circuit which can either add or subtract. Pulses coming in at the top line will add; pulses appearing on the next lower line will subtract. By picking off the cathode voltages of the individual tubes, predetermined counters can be designed. A counting speed up to 2,000 impulses per second is possible.

One of the tubes being offered, the Arcatron, is to be pegged at between $\$ 18$ and $\$ 20$ each for the 3 -amp series.

For more information on this line of cold cathode tubes, turn to the ReaderService Card and circle 252.

Multivibrator circuit (a) using a GR-15 rube has upper limit of 450 cps . (b) Univibrator circuit shown requires a triggering pulse of $90-v$ amplitude with a rise time of $10^{6} v$ per sec. (c) This Alp-flop circut combines the features of circuits shown in Figs. (a) and (b). (d) A counting speed up to 2,000 impulses per second is possible with this add-subtract counter circuit.

Type HYLM (1" diameter)

Barber-Colman quality
permanent magnet motor for precision applications ... meets military specifications

Type HYLM $1^{\prime \prime}$ diameter precision. made Barber-Colman motor is available in three lengths and can be supplied for use on any voltage from 6 to 115 volts d-c. Square brushes, retained by a constant-pressure spring, ensure long brush life. Dynamic braking can be employed if desired. This motor is equipped with R2 ball bearings, has an explosion-proof housing, and meets environmental requirements of MIL-M8609 (ASG). A quality motor throughout. . . lightweight, compact, efficient. Ask for Bulletin F-10421.

WRITE FOR MEW QUICK REFEREMCE FILE on the complete line of Barber-Colman electrical components, a-c and d-c small motors, tach generators, blowers, gearheads, relays.

BARBER-COLMAN COMPANY Dept. Q, 1883 Rock St., Rockford, Illinois CIRCLE 38 ON READER-SERVICE CARD

Trigger Tube Has Two Starters

A subminiature, gas-filled, cold-cathode trigger tube, type $7709 / \mathrm{Z} 70 \mathrm{~W}$ is designed for counting, timing, selecting, automation and read-out applications. The tube is equipped with two starters which makes possible its use in forward-backward counters, gates and reset applications. When used for reset, no additional tube is required. A starter current of 30 namp is sufficient to insure discharge. The cathode is of molybdenum and the tube is designed for over $30,000 \mathrm{hr}$ of operation.

Amperex Electronic Corp., Dept. ED, 230 Duffy Ave., Hicksville, Long Island, N.Y.
P\&A: $\$ 2.10$ ca in production quantities; immediate.

Universal Counter-Timer For Dc to 100 Mc
319
General purpose counter-timer 728B measures and displays frequencies directly without heterodyning techniques from de to 100 mc , measures time intervals and periods, and counts at rates to 100 mc with self-contained time base. The solid-state unit uses derated components for reliability. Paired pulse resolution is 10 nsec ; oscillator stability is ± 2 parts in 10 for short terms. Output information from each of the decade counting units is available in binary-coded decimal form to operate accessory equipment. Sensitivity is 1.0 v rms, input impedance 50 ohms from 10 to 100 mc and about 50 K from dc to 10 mc .
Computer Measurements Co., Dept ED, 12970 Bradley Ave., Sylmar, Calif.

Silicon Microdiode Modules

Silicon micrologic circuits are made with 4,6, or 8 diodes in a package measuring $0.030 \times 0.125 \times$ 0.250 in . Circuits can be designed per specification of lead arrangement, internal contacts and diode characteristics. Leads are gold-plated, suitable for welding and soldering. Individual diode parameters are available in excess of 2 nsec recovery and 2 pf capacitance. The entire logic block can be subjected to all military environmental testing including thermal shock and temperature-humidity cycling without degrading diode characteristics. Individual diodes are surface passivated so that in their uncased form they meet MIL-S-19500B and MIL-STD202 requirements. Microminiaturization techniques used increase reliability as size is reduced.

MicroSemiconductor Corp., Dept. ED, 11250 Playa Court, Culver City, Calif.

Standby Power System

Has zero switchover time. Made for use with computer, telemeter, and control systems, the ElectroPac A standby power system cuts in with zero switchover time when ac line drops below a preset level. System provides ac from a battery source, with voltage regulated to $\pm 7 \%$, harmonic distortion 3%. In standby state, system regulates line voltage and harmonic distortion to $\pm 3 \%$

Electro-Seal Corp., Dept. ED, 9.38 North Ave., Des Plaines, 111 .

Electrometer

Has fast response. Electrometer model E-302 has full-scale ranges covering 10^{-13} to $10^{-3} \mathrm{amp}$. Switching between ranges does not cause transients. Accuracy is $\pm 2 \%$, drift 0.1% per day. Response is 0.3 to 30 msec; output is 1 to 50 mv . Panel height is $3-1 / 2 \mathrm{in}$.
(iyra Electronics Corp., Dept. ED, Washington \& Elm Sts., La Grange, Ill. PむA: §4.9.5 stock.

Power Supply

Delivers 20 amp . Convection-cooled power supply in the LA series provides 0 to 34 v dc at 20 amp Line regulation is $0.0 .5 \%$ or 8 mv for input change from 100 to 1.30 v ; load regulation is better than 0.10% or 15 mv , zero to full load. Panel height is 10-1/2 in

Lambda Electronics Corp., Dept. ED, 515 Broad Hollow Road, Huntington, L.I., N.Y. Price: $\$ 7.95$ less meters.

SELECTIVITY WITH A COLLINS MECHANICAL FILTER

The new Motorola 2 N 700 A (SIG. C.) is the highestfrequency amplifier transistor yet available to mil-specs. Supplied to meet MIL-S-19500/123 requirements, this device is ideal for use in communications equipment, radar IF strips in the 60 mc range, fixed IF strips, wideband amplifiers, precision oscillators and telemetering applications in the 200 mc band.
The 2N700A (SIG. C.) offers excellent high-frequency performance (f, to above $1000 \mathrm{mc}, 25 \mathrm{db}$ power gain at 70 mc) and the mechanical ruggedness and extreme parameter uniformity of the Motorola Mesa structure. Units are rated for operation to $100^{\circ} \mathrm{C}$.

MOTOROLA AMPLFIER MESAS are available for a wide variety of UHF-VHF amplifier and oscillator applications.

2N700
2N700nisic.
For 40 to 1000 mc communications applications, TO-17 package with fourth lead providing high-frequency shielding.

2N741.
2N741A

For communications applications up to 100 mc 300 mW device dissipation. Power gain of 22 db at 30 mc . Excellent for video amplifiers, RF and IF amplifiers, oscillator and multiplier applications. TO-18 case.

241892
2N1561
For medium power transmitter applications. Provides $1 / 2$ watt RF power output at 160 mc with 8 db gain. Useful from below 70 mc to 350 mc .

MOTOROLA MESA TRANSISTORS

are available from these DISTRIBUTORS

TYPICAL PERFORMANCE - MOTOROLA AMPLIFIER MESAS
cain-bandwibit paoduct

AC CURAENT GAIN VS FREQUENE

for complate technical information - The above charts show typical perJormance of the Motorola Mesa amplifier transistors Detailed specifications on specific devices may be oblained by calling your Motorole District Office, Motorola Distributor or by writing: Motorola Semiconductor Products, Inc., Technical Information Department, 5005 East McDowell Road. Phoenix 10. Arizona.

MOTOROLA
Semiconductor Products Ine. f^{100}

a subsionary of motorola inc

And. FournAv
1hirtan $2-0588$
Cramer Eiectronics. inc

surfalo
Summil Distributors.

Souplon Si, the

CEDAR Raplos

cmicaso
Alled Nato Corp
100 M Matiotr
Taylor 9.9100

clevilume

2llspplome
Superior 1.9411
salus.

othventers

detreor

moustow

jamaica. m r 165508 . .benty ave
axiel 1.7000 Les hasetes 11 Memiton Electro Sales Brioinhen 29.91 sa

miteoume, Ela.

mam Gull S. Smiconductore inc
Th10
Hontan
newank mis
 new ronk Latorite Radio
iontio
woris 6300 M. 136 y, Eliectronica, iee aman
 photenix

san gicte
 sumit Amac fiectionics Coro
6301 Maynara Avo. Parlway 3.7310 masmuestom. iec.

5005 EAST MCDOWELL ROAD - PHOENIX 10, ARIZONA

NEW PRODUCTS

Plug-In Regulator

With 5\% regulation. Designed for applications where close regulation is not required, the E-1014 provides economical regulation for transistor circuits. A typical model provides 6 or 12 v at 1 amp.

Baker Manufacturing Co., Dept. EI), 5660 N. River Road, Marine City, Mich.

Axial Accelerometer

With gas damping. Model 24163 accelerometer is available in standard ranges of ± 1 to ± 1.5 g and standard resistances of 2 to 10 K . Crosstalk is 0.01 g per g plus resolution; gas damping minimizes variation over temperature extremes. Linearity, hysteresis and repeatability are 1% max each. Undamped natural frequency is 16 cps to 54 cps ; damping is 0.6 ± 0.1 of critical at room temperature wtih 0.15 maximum variation from -54 to +100 C .

Giannini Controls Corp., Dept. ED, 1600 S. Mountain Ave., Duarte, Calif.

Electric Furnace
Heats to $2,300 \mathrm{~F}$. The compact Dyna-Trol electric furnace heats to $2,000 \mathrm{~F}$ in 1 hr , to $2,300 \mathrm{~F}$ in $1-1 / 2 \mathrm{hr}$. Constant temperature can be maintained from 300 to 2,300 deg. Gradients are indicated by thermocouples and a pyrometer. Model P76 measures $\mathbf{6 \times 6 \times 6}$ in.

L \& L Manufacturing Co., Dept. ED, 804 Mulberry St., Upland, Chester. Pa

End Caps

308
Made of Teflon. End caps are made for use in capacitors and other electronic components. The Teflon parts are made in a wide range of sizes and shapes. The caps are useful in electronic applications due to their outstanding electrical, thermal, chemical and sealing characteristics.

Tri-Point Industries, Inc., Dept. ED, Albertson, L.I., N.Y.

NEW PRODUCTS AC Regulator

Response is $\mathbf{0 . 0 5} \mathbf{s e c}$. Model MTLR1000 provides a regulated ac output that is adjustable from 110 to 120 v with an accuracy of $\pm 0.1 \%$. The unit uses a silicon Zener diode reference circuit and has harmonic distortion of 3% max. The static device will handle 1 kva.
Perkin Electronics Corp., Dept. ED, El Segundo, Calif.

UHF Tubes

For missile applications as well as use in mobile and fixed communications equipment, types 7801 and 7870 Cermolox tubes have an over-all length of $1-1 / 4 \mathrm{in}$. At $3,000 \mathrm{mc}$, they provide 3.2 w of cw output with 1-w driver power. They can provide $9-\mathrm{db}$ gain with $50-\mathrm{mw}$ driver power.

Radio Corp. of America, Dept. ED, 30 Rockefeller Plaza, New York 20, N. Y.

Elecironic Volimeter

Calibrated in rms voltage of a pure sine wave. Model V-100 has the voltage scale calibrated in rms voltage of a pure sine wave. It is designed for measurements of ac voltages from audio frequency level to rf level as well as hum and noise measurement. Measurements include direct reading of -72 to +52 db in 12 ranges and from 0.001 to 300) ac over a frequency range of 10 cps to $\mathbf{4} \mathrm{mc}$. Internal impedance is 50 ohms.
Orion Electronic Corp., Dept. ED, 108 Columbus Ave., Tuckahoc, N. Y. P\&A: $\$ 198$ ea; three to four wecks.

WHO CAN SHOW YOU A 220 MC FREQUENCY METER WITH THESE FEATURES?

* All Solid State 10 MC Counter Section
* All Solid State Time Interval Plug-in
* Power Consumption 125 Watts
* Decade Count-down Time Base
* Two Year Warranty Except for Converter Tubes

* Rugged Unitized

 ConstructionMove it anywhere you want with ease. Rack Mounting simpler, too.

Only CMC's Frequency-Period Meter offers solid state reliability and 48 pound compactness.

DO ALL THESE JOBS:
Measure frequency dc to $\mathbf{2 2 0} \mathbf{~ m c}$
Measure period to 0.1 microsecond

- Measure time Interval 0.1 microsecond to 10^{7} seconds
Count dc to 10 mc

Now • See how the CMC 737A compares with its two closest competitors

	$\begin{gathered} \text { CMC } \\ \text { Model } 737 \text { a } \end{gathered}$	Company A 220 mc unit	Company 8 220 mes anit
CIRCUITRY	All solid state counter section	100\% vacuum tube	100\% vacuum tube
TOTAL NUMBER Of Vacuum tubes	13	91	75
WEIGHT	Net 48 lbs .	Net 118 lbs .	Net 115 lbs .
SI2E	$\begin{aligned} & 14^{\circ} \mathrm{H} \times 17^{*} \mathrm{~W} \\ & \left(1.13^{3} \mathrm{O}\right. \\ & \left(1 . \mathrm{cu}^{\mathrm{ft} .)}\right. \end{aligned}$	$\begin{gathered} 211 \mathrm{~m}^{\prime \prime} H \times 20^{\prime \prime} W \\ \times 231 /{ }^{2 \prime \prime} 0 \\ \text { (5.8cu.ft.) } \end{gathered}$	$\begin{gathered} 20^{\circ H} \mathrm{H} \times 20^{\mathrm{W} W} \\ \times 19^{9} \mathrm{D} \\ (4.4 \mathrm{cu} . \mathrm{ft} .) \\ \hline \end{gathered}$
POWER	125 watts	600 watts	380 watts
TIME BASE	Decade count-down type; no divider adjustment	Multi-vibrator type; requires frequent adjustment	
WARRANTY PERIOD	2 years	1 year	1 year
PRICE Cosic unit with vertical decade display)	\$2150	\$2150	\$2275
(converter plug-ins)	\$250 each	\$250 each	\$250 each
(TIM plug.in)	\$300 each	\$175 each	Included

WHAT IT IS

CMC's Model 737A Frequency Meter combines an all solid state 10 mc digital counter and a vacuum tube heterodyne converter. Three converter plug-ins are currently available with more on the way. Model 731A plug-in extends the 10 mc range 10100 mc and Model 732A covers 100 mc to 220 mc . The third available plug-in, Model $751 A$, is an all solid state 0.1 microsection.

LOW POWER - A KEY ADVANTAGE

The complete instrument uses only 125 watts of power which reduces operating temperatures, prolongs component ation. Even at 10 mc , transistors are well derated. Because, of this inherent reliability. CMC offers a two year free service warranty except for converter tubes - the first manufacturer to offer this extended guarantee.

THESE FEATURES, TOO

Automatic decimal point * Inline readout available as standard option ${ }_{5}$ Stability, 2 parts in 10^{1} standard. 5 parts in 10° special. $*$ Accuracy,
± 1 count \pm oscillator stability ${ }^{2}$. \pm count \pm oscillator stability * Sensitivity, 0.25 v rms * Standardize against WWV * Remote programming without special regard to cable length, type of cable, or impedance maital recording equipment punches. ingline readout and other data handling gear, $\$ 80.00$ extra.

ANO HERE'S

100\% SOLID STATE RELIABILITY CMC offers a complete line of transistorized digital instrumentation including universal counter-timers, time interval meters, frequency-period
counters, printers and preset countercounters, printers and preset countercially suited for applications where high reliability and flexibility of function are key factors. These units can also be remotely programmed by simply closing contacts.

Model 727A Univarsal Counter-Timer

Using only 50 watts. Model 727 A measures de inté mezayy ines and o.1 asec to 10 seconde. base. Price \$2450.

Model 726A Universal Counter-Timer

 Douns. Mocel 260 mesurrs ic to ${ }^{2}$ mc Deccade count-ouw ntle bass. Power consuma
tion 40 watts; price 81550 .

FOR MORE INFORMATION - contact your CMC representative for a demonstration, or write Please address Dept. 36

Computer

Measurements
Company
A DIYIsiom of pheivic inmetries, inc.
12970 Bradley Avenue - SyImar, California
Phona: EMpire 7-2161

With axial leads. Series A rectifiers have current ratings up to 0.5 amp at 100 C. Maximum allowable peak reverse voltage is 50 to 600 v . Length is 0.375 in . max diameter 0.220 max . Rectifiers are encapsulated for humidity protection. Ambient operating temperature is -55 to +125 C , with storage to 150 C .
Mallory Semiconductor Co., Dept. ED, Du Quoin, Ill.
Price: $\$ 0.39$ to $\$ 0.69$ ea, 1,000 to 4.99.9.

Low-Radiation Glass

For photomultiplier tubes. Lorad glass 7285 , developed for use in radiation measuring equipment, has radioactivity of less than 10 counts per min per kg . The material also has good $\mu \mathrm{v}$ transmittance. It may be formed into bulbs up to 16 in . diameter and sealed to metals such as Dumet alloys and Sylvania \#4.
Corning Class Works, Industrial Bulb Sales Dept., Dept. ED, Corning. N. Y.

Electrostatic Charge

Amplifier

Linearity and gain stability are 0.5% or better. The unit is designed for use with the firm's natural-quartz acclerometer for oscilloscopes, recorders and telemetry devices. Called model 560 , it is line powered and occupies $5-1 / 4 \mathrm{in}$. of panel space.
Kistler Instrument Corp., Dept. ED, 15 Webster St., North Tonawanda, N. Y.

Phase Shifter

Accuracy is $=1$ deg: readability is 0.5 deg. Designed for applications requiring a known phase angle or the measurement of in unknown phase angle, it provide's a constant output voltage continnously variable in phase from () to 360 deg. Designation is C0.3 221018.
Kearfott Dix., Gemeral Precision, Inc., Dept. ED, Little Falls, N. J. \& Circle al on reader-service caro

Pressure Transducer

Measures to 200 psi. Built to withstand high acceleration and vibration, model 183 transducer measures fluid and gas pressures up, to 200 psia or psig with accurac' of 0.25%. The device will handle corrosive substances, and withstands 3 times full-scale pressure without damage.
Taber Instrument Corp., Dept. ED, 107 Goundry St., North Tonawanda, N. Y

Recording Amplifier
311
For low-level transducers. Model 114 is a chopper-stabilized amplifier used with recorders. Input impedance is 100 K . Sensitivity is 9 mv full scale, with variable gain. Output impedance is 0 to 5 K . Drift and linearity are better than $1 / 2 \%$.
Rustrak Instrument Co., Dept. ED, 130 Silver St., Manchester, N. H. Price: $\$ 110$.

Synchro Tester

314
Accurate to 3 min . Portable synchro tester model TE-2B is made for laboratory and shop testing of synchro transmitter and indicator systems. Accuracy is 3 min of angle, or 1 min after correction. A self-checking electrical zero transformer is used to adjust for temperature changes. Weight of the tester is 12 lb

United States Gauge Div., American Machine \& Metals, Inc., Dept. ED, Sellersville, Pa.

Angle Counter

In small package. Counter model 11646 provides readings from 000.0 to 359.9 deg with characters $1 / 8$ in. high. Package size is $1-1 / 3$ in. long, $3 / 4 \mathrm{in}$. high, and 1 in . deep. One revolution of input shaft gives 1 revolution of tenths wheel and 1 deg of angular change. Counter is for $200-\mathrm{rpm}$ continuous operation. Bowmar Instrument Corp., Dept. ED, 8000 Bluffton Road, Fort Wayne, Ind.

Zener Diodes

313
In wide voltage range. Subminiature Zener glass diodes have a voltage range of 3.3 to 30 v and are rated at 2.50 mw dissipation. Types QZ3.3T10 through QZ30T5 are made in 5% and 10% voltage tolerances. Zener impedance is 5 to 70 ohms. Size is $0.265 \times 0.110 \mathrm{in}$. in diameter.

International Rectifier Corp. Dept. ED, 1521 E. Grand Ave., El Segundo, Calif.
P\&A: $\$ 2.60$ to $\$ 4.00$ in 1 to 99 guantilies; from stock.
 NEED EM YESTERDAY?

14	13	1	18	17	16	15
21	20	19	15	24	23	22
28	27	26	25	31	30	29

Quick delivery ...a specialty at Deutsch! Naturally, we can't make delivery on the 1st if you order on the 7th ... unless you let us use the calendar shown above. But we can promise delivery of catalog items in a week or less from either our eastern or western stock locations. As a matter of fact, we usually ship on receipt of your advance order, without waiting for confirmation. And this goes for our entire line of standard environmental miniature electrical connectors: solder or snap-in types, self-aligning cylindrical and rectangular rack-and-panel models, and hermetics that never leak. If you have a tight production schedule staring you in the face, contact your local Deutschman today. He'll do his best to make delivery yesterday. For location of your nearest Deutschman write for Data FilelC-5.

Electronic Components Division - Municipal Airport - Banning, California
ADVANCED SPECIFICATION MINIATURE ELECTRICAL CONNECTORS CIRCLE 42 ON READER-SERVICE CARD

Strip Iransmission line may now be a practical solution to your equipment weight and size reduction progroms with added reliability . . .
Miniaturization of microwave circuitry is now advancing rapidly with the successful mating of strip transmission line components to coaxial cable.
A wide variety of configuration in all connector A wide variety of configuration in all connector series including in-line and right angle mountings are available for such components as crystal holders,
disc resistors, and other strip transmission line components. Over 50 types are normally carried in stock for off the shelf delivery.
Add Gremar comnectronics (8) fo your R \& feam! By concentrating engineering, production and quality control on RF connectors and components only, Gremar is first in new developments. That's why, if you're working with strip transmission line, you should be working with Gremar.
Write for bulletin \$13
(3) Gremar Mfg. Co., Inc. Sanders Associates, Inc.

GREMAR

MANUFACTURING COMPANY, INC. RELIABILITY THROUGH QUALITY CONTROL Wakofold, Mass, Tol. 245-4580 CIRCLE 43 ON READER-SERVICE CARD

NEW PRODUCTS

Silicon Rectifiers

Rated at 1 ma . Double-diffused silicon rectifiers are rated for 1 ma continuous duty from 400 to 1,000 piv. They can be supplied with single-ended leads or axial leads. Case measures $1 / 4 \times 5 / 16 \mathrm{in}$. Package is metal and epoxy, or hermetically sealed glass and metal.
Electronic Devices, Inc., Dept. ED, New Rochelle, N. Y.

Infrared Radiometer

578
Accuracy is $\mathbf{0 . 0 5 \%}$ in this miniature unit designed for rocket use. Ratings are: spectral band with response of 4 to 40 microns and a linearity of 5%; radiation input range of 1.75×10^{-5} to $3.5 \times 10^{-2} \mathrm{w}$ per cm^{2}; signal input of 2.5×10^{-3} to 5 v dc. Output impedance is 100 ohms max

Radio Corp. of America, Missile Electronics and Controls Div., Dept. ED, 30 Rockefeller Plaza, New York 20, N. Y.

Semiconductor Load Cells

Output is 1 v min at capacity load. Standard cells come in ranges from ± 0.5 to $\pm 100 \mathrm{lb}$. Repeatability is better than 0.1%. Temperature compensation is about 0.01% per deg F for thermal coefficient of sensitivity.

Kulite-Bytrex Corp., Dept. ED, 50 Hunt St., Newton 58, Mass.
PGA: $\$ 275$; 30 days.

Telemetry Receiver

586
For satellite tracking. Type 1440 fm telemetry receiver has a noise figure of 6 db . Tuning range is 130 to 140 mc . Panel meters show tuning, output level, deviation, and signal strength. Outputs are provided for spectrum display unit, frequency monitor, and signal-strength recorder.
Vitro Electronics Div., Vitro Corp. of America Dept. ED, 919 Jesup-Blair Drive, Silver Spring, Md

Canine cleaning, to be candid, is one of the fow jobs that stump Cliscosonias - the amazing equipment that bombords dirt with sound yet never harms your product. Circo ultrasonic units, howaver, slean almost everything elso and clean them absolutoly in mere minuten or less!
Yes, the list of proven Circosonic applications is vast and variod and grows longer each day. They ster in iwift, sure removeble solder fluz, ingerprints, polishing compounds, rust or oxides, lubricants, salts and mony other contaminants from lenses, reloys, caramics, printed circuits, glass, gears and gyro components - to name but a fow.
n a nut sholl, wheraver abwolute cleanliness is a must, or where the problem of cleanliness creates a production bottloneck - thero's a h
amomber, you'll clean-up with Circo in every way - in precision eleaning, quality and economyl

Roomer "Whizordl Specifically designed for industrial "white roonn," hospital. dontal, or oftor critical wark areas, Circosonic Madel US. WR-20 is ostar pertormer where bsolufa cleanliness is a prime onsidoration. This compact。 seffegentained unit has oulo matio wash and rinse an well ar dfyer.
 CIRCO CORPORATION

ULTRASJNICS \vee WASHERS DEEREASERS Solvents

Puts more
"gopo" in o iotl
This Agitating Washer - enother Circo indol-removes cen bon, grease and ail from Pen Americon Airways iof engines in their overtoul, cloaning and insperetion systom. Firas of its thind, it supor-doons while is alashes fime end lober cione.

51 termanal avenue

CLARR, MEW JERSEY
circle af on reader-service card
ELECTRONIC DESIGN • May 10, 1961

 INCH $2 \mid$
For T(). 18 transistors, model 3AL-724 increases transistor efficiency 2.5% to 27% and prevents thermal runaway. The material is aluminum per $\mathrm{QQ}-\mathrm{A}-268$ and anodize per MIL-A-8625. The 8 -fin base can be tapped for vertical or horizontal mounting.
The Birtcher Corp., Industrial Div., Dept. ED, 745 S Monterey Pass Road, Monterey Park, Calif.

Synchronous Motor

Torque is 0.70 oz-in. Precision synchronous motor is $1-3 / 8 \mathrm{in}$. in diameter by $2-1 / 8 \mathrm{in}$. long. Made for uperation at $24 \mathrm{v}, \mathrm{fi}_{0} \mathrm{cps}$, motor can be supplied for other voltages to $300 \mathrm{v}, 60 \mathrm{cps}$. At synchronous speed of $1,800 \mathrm{rpm}$, motor has starting and synchronous torque of $0.70 \mathrm{oz}-\mathrm{in}$. Weight is 7 oz , ambient temperature range 0 to 140 F
Thomas A. Edison fudustries, Mc-Graw-Edison Co Instrument Dis., Dept. ED, 61 Alden St., West Orange, N. J

Sequency Timing Switches

569

Periods are 0 to 30 sec . Series 7000 switches have all accuracy of 0.3%. Power requirement is 1.5 w from 28 v de. Reset is automatic. Complete circuitry for up to three times sequences is available in a single unit occupying 10.6 cu in.
Donner Scientific Co.. Systron-Donner Corp. Dept. ED, Concord, Calif.
(ower
...with new Sylvania...SILICON

epítaxíalmesas
 - 2N1958 - 2N1959 (compared with conventional mesa types 2N696, 2N697)

Sylvania 2N1958 and 2N1959 . . . first 2-watt transistors to handle 500 mA of collector current in a total switching time of $\mathbf{1 1 0} \mathbf{n s e c}$.
Exclusively epitaxia!! Now ALL Sylvania Silicon Mesa transistors are produced by the epitaxial process. Exceptional Sylvania knowledge of solid state physics combined with extraordinarily automated processing and testing techniques continue to advance the state of the art. The new Sylvania 2N1958 and 2N1959-improved 2N696 and 2N697 conventional Silicon Mesa types-are dynamic evidence of the benefits ofiered design engineers by (1) epitaxial techniques and (2) transistors quantity-produced by Sylvania for switching and amplifier circuitry operating in the nsec range.
Sylvania 2N1958 and 2N1959 Epitaxial Silicon Mesa transistors are now available from your Sylvania Franchised Semiconductor Distributor and your Sylvania Sales Engineer. For tech data write to Semiconductor Division, Sylvania Electric Products Inc., Dept. 185, 1100 Main Street, Buffalo 9, New York.

Curves compare storage time (t_{3}) and seturation voltage VCE (sat) of 2N696, 2 N697 and Sylvanie-orisinated 2N1958 and 2N1959. Note signiffeant improvements offered by Sylvania epitaxial meses 2N1958, 2N1959.

Electrical Charactoriatics at $25^{\circ} \mathrm{C}$:

SUBSIDIARY OF GENERAL TELEPHONE \& ELECTRONICS

NEW PRODUCTS

Cadmium Sulphide Cell

Dark current is 2.5 ua and average cell current is 10 ma with $5 \mathrm{ft}-\mathrm{c}$ illumination. Type ORP90 miniature photoconductive cell actuates relays without an amplifier and has a 7 -pin base. Dissipation is 1 w . Type ORP for large relays has a cell current of 6 ma avg and a dissipation of 0.2 w .

Amperex Electronic Corp., Semiconductor and Special Purpose Tube Div., Dept. ED. 230 Duffy Ave., Hicksville, L. I., N. Y.

Servo Motor

With integral brake. Size 11 servo motor has integral friction brake controlled by an electromagnet. The brake stops and holds the rotor at a desired position. Braking time is 8 revolutions max measured from a no-load speed of $6,200 \mathrm{rpm}$. Motor operates on $115 \mathrm{v}, 400 \mathrm{cps}$.

Thomas A. Edison Industries, McGraw Edison Co., Instrument Div., Dept. ED, 61 Alden St., West Orange, N. J.

Crystal Discriminator

Center frequency is $\mathbf{1 0 . 7} \mathrm{mc}$ and peak-to-peak bandwidth is 15 kc in model D-1020. Linearity is $\pm 5 \mathrm{kc}$ within 5% of a straight line, stability is $\pm 0.005 \%$ of center frequency from -20 to +80 C , input impedance is 10 K and output impedance is 500 K . The unit occupies less than 1 cu in.

The Keystone Electronics Co., Dept. ED, 6.5 Seventh Ave., Newark 4, N. J.

Breakthrough! PHELPS DODGE Thėrı̌̌̌̌āleze has replaced six or more film wires!

Industry's only multipurpose magnet wire!
poly-thermaleze, a Phelps Dodge Applied Research development, is answering a long-awaited need of the electrical equip. ment industry for a universal magnet wire.

Computer Relay

For $\mathbf{1 0 0}, \mathbf{0 0 0}, 000$ operations, these transistor circuit relays operate in less than 750 usec and have polarized driving systems with center-tapped driving coils. Driving voltage is 20 v . Models include dpdt and spdt.

James Electronics Inc., Dept. ED, 4050 N. Rockwell St., Chicago 18, Ill.
P\&A: $\$ 25$ up; from stock

Transistor Test Equipment

For 8-parameter tests, the Virtue-201 records findings on punch cards in 12.5 sec . About 275 transistors can be processed and recorded per hour. The unit is designed in accordance with advanced computer techniques. A 20 -socket magazine and life-test racks are also available.

Philco Co., Lansdale Div., Dept. ED, Lansdale, Pa .

Bonding Machine

Is fully automatic. Model SP-2 thermalcompression, nail-head bonding machine is complete with microscope, illuminator and temperature control unit. An automatic cutting torch assures gold ball uniformity. Wire sizes down to 0.0005 in. have been bonded to silicon and metallized surfaces.
Electroglas Inc., Dept. ED, 841 Warrington Ave., Redwood City, Calif.

Motor Generator

Range is $\mathbf{4 0 0}$ to $\mathbf{5 0 0} \mathbf{~ c p s .}$. This revolving-field unit has $\pm 1 \%$ regulation. It is rated at 2.5 kva with an 80% pf, has 14 poles and develops a top frequency of $3,428 \mathrm{rpm}$. The motor is 5 hp , three phase, 220 v The unit measures $56 \times 26 \times 22$ in
Kato Engineering Co., Dept. ED, Mankato, Minn

liquid nitrogen temperature, and within the two to five micron range. Both detectors feature low noise/high responsivity and utilize painted lead and kovar pin construction to assure high electrical circuit reliability. Compactly packaged, the M-3000 series weighs only five grams and is especially designed to withstand strong vibrational stresses. The laboratory-sized M-2000 weighs 38 grams. Specify these cooled indium antimonide IR detectors today for your volume production, high reliability infrared systems.

Take advantage of Texas Instruments volume production experience and achieve the high performance standards your IR systems demand with TI highsensitivity indium antimonide infrared detectors! The high reliability of these photovoltaic detectors has been proved by many months of actual service in our nation's most advanced weapon systems . . . you can be confident of electrical, mechanical and performance uniformity. Ideal for use with transistorized circuits, both the M-2000 and M-3000 series are designed to operate at gh reliability of these photovoltaic detectors has been

- Tent data on larke quantity produrtion lota do aretion

Parameter	
Detectivity (D_{\star})	
Small Signal AC Impedance (ohms)	
Time Constant $\quad \cdots \quad \underset{D \star}{ }$	
SEMICONDUCTOR COMPONENTS Hants invision ano nict rnance	

electrical characteristics at minus 196° C

NEW PRODUCTS

Operational Amplifier

Less than 2 mv drift. Model 17 () 4 transistorized de operational amplifier has a range of de to 2.50 kc . Drift is less than 2 mv from 0 to 50 C . The unit delivers 10 v into a $1-\mathrm{K}$ load with gains of -1 to -100 . Plug-in construction provides simple installation.

Mel(r)r Electronics Corp., Dept. ED, 48 Toledo St., South Farmingdale, L. I., N. Y
P\&A: $\$ 37.5$ to $\$ 4.50$; 30 days.

Edgewise Mefers

Dc and ac types. Long-scale, 3-in. exlgewise de and ac meters, mexlel MIDE-3, are for use in control console and erpuipment applications under sesere environmental conditions. The unit, hermetically scaled, is available in a broad selection of dc current and voltage ranges and rectifier-type ac styles. Case size of $3.7 \times 6.1 \times 1.3 \mathrm{irn}$. allows in-line read-out mounting.
Minneapolis-Honeywell Regulator Co., Dept. ED, Grenier Field, Manchester, N. H.
Availability: 60 days.

Multiturn Potentiometer

840
With infinite resolution. Precision multiturn potentiometer has linearity of $=\mathbf{0 . 0 0 5 \%}$ and infinite resolution. Model MJ 20-10 is 2 in . in diameter, model MJ 30-10 is 3 in . Buth accommodate taps in any location.
Litton Industries Potentiometer Div., Dept. ED, 200 E. Third St., Mt. Vernon, N. Y.
< CIRCLE 47 ON READER-SERVICE CARD

Range is $\mathbf{1} \mathbf{k c}$ to $\mathbf{1 0 0} \mathbf{m c}$. Model K3 crystal oscillator is designed for frequency requirements from 1 kc to 100 mc . Temperature range is $-55 \mathrm{to}+95$ C. The case measures $1-1 / 2 \times 1-3 / 4 \mathrm{x}$ 1 in . Specifications are: input, 28 v dc; output, 1 v peak-to-peak into 100 ohms to $1 \mathrm{mc}, 1$ v peak-to-peak into 50 ohms to 100 mc .
Monitor Prolucts Co., Dept. ED, 81.5 Fremont Ave., South Pasadena, Calif.
Availability: 3 to + weeks.

Limit Stops

Adjustable from 0 to $14,400 \mathrm{deg}$, these mechanical devices are BUORD sizes 5 and 8 . Repeatability is within 3 min of arc. Torguce rating is 80 oz -in. on the size 5 and 160 or-in. on the size 8 . They meet MIL-E-5272C.

Northfield Precision Instrument Corp., Dept. ED, $4(40)$ Austin Blod. Island Park, L. I., N. Y.

Power Supply

Transistorized. Dc power supply, model TR-18-3 has a power output of 0 to $18 \mathrm{v}, 0$ to 3 amp . Specifications include: load regulation, $\pm 0.03 \%$; ripple, $2-\mathrm{mv}$ peak-to-peak; response time for full load step, 50 usec; automatic load removal for sustained overloads. Either positive or negative output terminal may be grounded, or the entire output may be floated 500 v above or below ground.

NJE Corp., Dept. ED, 20 Boright Ave., Kenilworth, N. J.

Price: $\$ 249$ ea.

CIRCLE 48 ON READER-SERVICE CARD

exact duplication PRODUCES TOTAL RELIABILITY

Infinitesimal Mechanical Variation due to Exclusive Automation Processes phes Exclusive Glass Alkyd Molded Permanence phless Exclusive Full Silver Coverage on Contact Surface equals NEW CTS NON-DRIFT COMPACT SELECTOR SWITCHES

Formerly manufactured by Trolex Corporation, now a part of CTS. 1% diameter 12 -position indexed rotary switches are designed primarily for low power exacting mithary and commercial RF, VHF and UHF circuit applications. Series 212 surpasses MIL standards.

UNFRECEDENTED
SWITCH UNIFORMITY FROM ENTIRELY NEW AUTOMATED Manluacturing concept

- Drift virually eliminated by molding tetminals into eract, immovable, perma: nent posstion in stator, enturely by machine ... matino all switches identical in each production run Machine eraciltude replaces numan error and varia. tions, eliminatino the wider tolerances characteristic ol hand assembly
- Delicate swich parts are not erposed to breatrace: many darts are not even handled.
- Superior insulation due to repetitive en.
aciness in terminal spacing and molded glass alkyd material.
- Heat from soldering cannot loosen terminals.
- Natural design barrier prevents solder from flowing into circuit elements during soldering.

SAFER. QUICKER
EASIER HANDLING
IN YOUR PRODUCTION LINE
Molded glass alkyd stalor won't break or crush during ordinary handing or if accidentally dropped. Terminals cannot be dislodged or moved. Both stationary and movable contacts are enclosed for additional salety and handling convenience.

LONGER LIFE CONTACTS

NOW! NEWLY TOOLED CLUSTER AND 3-FINGER CONTACTS

OTHER FEATURES

- Series 212 is available in numerous combinations with CTS variable resistors and power snap switches.
- Condensed assembly. Waters can be stached adiacent to each other. No spacers reavired.
- Non-toric combustion fumes-an important advantage in submatine or similar closed space apolications.
- Exclusive balanced detent mechanism has 2 dissimilar detent forms for definite feel
and long pull in.
- New balanced lever arm and star wheel detent assembly free from end and side thrust for extremely long life and accurately controlled torque. Optional at extra cost.

CTS Govhination elemari - inglama

BFACTORIE TO EERVE YOU, CTE Coppontlow, Elihet, indiana; Chigapo Tulaphen of

ELECTROLYTIC CAPACITORS—Reliability is our first ingredient

Actual sixe sov (1 ul)

The "space saver" of Tantalytic* Capacitors

Because it packs the most uf into the smallest package, the General Electric 62F510 Porous Anode Tantalytic Capacitor frees up valuable circuit space. It's the smallest ($.075^{\prime \prime} \times .250^{\prime \prime}$), lightest (15 grams) 85C tantalum capacitor.

Though small, it provides more V-uf than larger units. In fact, it has almost four times greater volumetric efficiency four times greater volumetric
than the smallest solid type.

- Aea. Trade-mark of Ganoral Electric Co.

But it offers superior reliability because of these special features:

1. Non-acid electrolyte. No free liquids are used. "Gel" electrolyte eliminates acid-attack problems.
2. Paper spacer between case and anode prevents impurity migration and scintillation at the anode.
3. Re-healing capability contributes to long life in rugged applications includ-
ing high ripple and low impedance. And it's used at full-rated voltage at 85 C ! Yet, this G-E unit is lower in price than other tantalum types, and the low price includes insulated sleeving
Ask your G-E Sales Engineer about
Ask your G-E Sales Engineer about
the five case sizes rated from 60 V (2.5uf) to 6 V (325uf). Or write for bulletin GEA-7008 to General Electric Co., Schenectady, N. Y. Capacitor Dept., Irmo, S. C.

Progress Is Our Most Impontant Product

General Electric also offers these reliable Tanfalytic capacifors

"A CISE" tantalyile CAPACITORS Bulletin Bulletin
GEA-7220

 TANTALYTIC CAPACITORS Bulletín Bulletin
GEA-6258

MIIB-Voltage tantaryile CAPACITORS Bulletin Bulletin
GEA-7065

125C crumprical tantalytic CAPACITORS Bulletin GEA. 7085

NEW PRODUCTS

Magnetic Regulator

Control power in kw. The "OrthoTrig" magnetic regulator series is for the control of silicon controlled rectifiers. They are capable of firing and controlling pomer in kw. The circuit controls the leading edge of the silicon controlled rectifier gate voltage wave over a range of 0 to 180 deg . Control is accomplished by varying an imped ance or voltage in the control circuit.
Ortho Filter Corp., Dept. ED, 7 Paterson St., Paterson, N. J.

Miniafure Push-Switch

Over-all length is $1-3 / 4 \mathrm{in}$. This push-switch can be used individually or in interlocked, ganged groups. The individual unit measures $1-3 / 4 \mathrm{in}$. in length and occupies less than 1 in . behind the panel. Silver alloy contacts provide operation of over 100,000 cycles at rated load. Rated at $\mathbf{5}$-amp resistive or 3 -amp inductive, the switch is a snap-action type. Versions available are: spdt; dpdt and 6pdt.
Pepco, Inc., Dept. ED, 2080 Placentia Ave., Costa Mesa, Calif.

Impedance Plotter

Range is $\mathbf{1 0}$ to $\mathbf{3 , 0 0 0} \mathrm{mc}$. The Smith chart plotter displays impedance as a continuous function of frequency with a high degree of accuracy. The vswr uncertainty is as low as 1.01. The oscilloscope trace may be directly photographed or an X-Y recorder may be used.
Dielectric Products Engineering Co., Dept. ED, Raymond, Me.

For ac and dc. Latch-in relay class 88 L has 2 complete class 88 relays, with interlocking latch-in levers, mounted on a common base. When the armature on one relay is pulled in it is latched by the interlocking levers while the other armature drops out. The independent relays may be equipped with contact combinations to 3 pdt and contacts rated to 10 amp . Magnecraft Electric Co., Dept. EI), 3350 D W. Grand Ave., Chicago 51, III.

Price: $\$ 9.50$ to $\$ 1.3 .50$ ea, 1 to 9 .

Tachometer
860

Measures to 2,500 rpm. Electronic tachometers model 101, for speeds 0 to 60 rpm , and model 102, for speeds to $2,500 \mathrm{rpm}$, provide fast response for read-out of shaft speeds. Standard panel measures $4-3 / 4 \times 6-1 / 2$ and has a 3 -in. meter.
Rampe Manufacturing Co., Dept. ED, 14915 Woodworth Ave., Cleveland 10, Ohio.

Bead-Chain Timer

For complex sequencing problems, this electromechanical device uses a bead chain, not unlike a simple key chain. To establish the cam action which actuates the switch at a certain time, large beads are applied to the chain. It accurately handles microsecond timing.
Eagle Signal Co., Div. of the Camewell Co., Dept. ED, 202-20th St., Moline, III.
Availability: Available on a custom basis.

New techniques reduce size of 2.5 megawatt AIRBORNE PULSE TRANSFORMER

to only . $45 \mathrm{cu} . \mathrm{ft}$.

A high-voltage pulse transformer tested at 180 kv and rated for pulsed operation at 90 kv that measures just $91 / 2 \times 91 / 2 \times 8 \%$ inches!
This ruggedized unit-typical of Raytheon's new compact pulse transformers - is designed to operate under the extreme environmental conditions encountered by high-speed aircraft. It contains an insulated DC filament supply and internal provision for -50° to $+100^{\circ}$ centigrade operation. For flexibility in mounting, it features a space-saving, bifilar-type, epoxy ter minal that is eight inches shorter than previous models. Overall, the new .45 cubic-foot unit is 60% smaller than its predecessors.
Raytheon pulse transformers are designed to work with specific microwave tubes. Standard designs include open, resin encapsulated, enclosed, and oilfilled types.

WRITE FOR 16.PAGE OOOKLET On Raytheon transtormers or for specific help on your partic-
ular requirements to MagUlar requirements to Mag-
netics Operations, Microwave and Power Tube Division, Raytheon Company. Foundry Avenue,
Waltham 54, Mass.

RAYTHEON COMPANY

ORIGINAL QUALITY

NEW PRODUCTS

Output is 12 v . Model PS-30) power supply provides 12 v at 30 amp with less than 12 ripple. Input is $115 \mathrm{v}, 50$ to 60 cps . Up to 50 amp may be supplied intermittently. Otuput impedance is low.

Electro Products Laboratories, Dept. ED, 4500 N. Ravenswood Ave., Chicago 40. III

Crystal Discriminator

Has high linearity. Crystal discriminator CD-10613 has a center frequency of 10.7 mc and excellent linearity over a range of $\pm 5.0 \mathrm{kc}$. Distortion is less than 1.5%. Output is 2 v peak-to-peak over $\pm 5.0 \mathrm{kc}$; ambient temperature range is -55 to +85 C .

Electronic Laboratories Corp., Dept. ED, 4221 Spencer St., Torrance, Calif

Corner Reflecior

Is balun-fed. Wide-band $80-\mathrm{deg}$ corner reflector, model XCR $108 / 216$ is balun-fed for maximum dipole efficiency and balance pattern. Electrical charac teristics are: frequency range, 108 to 216 mc ; gain. 9 to 11 db over a tuned half wave dipole; power rating, 500 w , vswr less than 2 to 1 ; polarization horizontal or vertical

Telrex Laboratories, Dept. ED, Asbury Park, N.J
Circle 916 on career inouiry form, page 253 * ELECTRONIC DESIGN • May 10, 1961

ENGINEERS AND SCIENTISTS

Convair Astronautics is located in San Diego. California, the third fastest growing community in the United States. It is situated 10 miles north of the Mexican border and a little over 100 miles south of Los Angeles
Immediate openings exist in the following areas
SCIENTISTS \& ANALYTICAL ENGINEERS with Ph D or Sc.D for electronics and physical research: computer analysis and application: and instrumentation development.
ELECTRONIC DESIGN \& TEST: communication systems and ditta transmission design, logical circuitry; automatic control systems: and electronic packaging. BSEE plus appropriate experience required
MECHANICAL DESIGN: BSME or AE for pncumatics, hydraulics. and fluid systems design and test. Also missile GSE and missile structures designers.
RELIABILITY: BSEE. ME, or AE to perform reliability analyses and test both in San Diego and offsite bases.
ENGINEERING PSYCHOLOGISTS \& INDUSTRIAL ENGINEERS with a hardware background to develop manning documents, perform task analysis, and develop tables of organization and equipment for the Atlas Weapons system

ENGINEERING WRITERS with 2 years college and 3 years experience in preparation of TCTO's; Operations. Maintenance. and Overhaul manuals.
BASE ACTIVATION: Design or liaison engineers with BS in ME or EE and experience in electrical or mechanical systems are required for liaison work at missile launching complexes. or design support work on launch control equipment. propulsion systems. automatic programming and missile checkout equipment operations. Assignments are att Salina. Kansas; Lincoln, Nebraska; Altus. Oklahoma: and Abilene, Texas. Also some openings in San Diego.
FLIGHT TEST: BS in AE, ME or EE for analysis of flight test data. and systems performance analysis leading to flight test reports. Background in instrumentation and testing desired.
If you desire to become part of this great team. we urge your prompt inquiry on the attached Engincering Placement Inquiry.
Technical openings also exist in other specialties. Write Mr. R.M. Smith, Industrial Relutions Adminis-trator-Engineering, Dept. 130-90, Convair Astronautics, 5659 Kearny Villa Road. San Diego 12, California. (If you live in the New' York area, please contact Mr. J. J. Tannone, Jr., manager of our NenYork placement office, CIrcle 5-5034.)

For semiconductors. The Crystal Resistivity Meter, an ac instrument, measures bulk and slice resistivity of semiconductors. Bulk or slice modes can be selected by a switch. An adapter is available for measuring 0.007 to 0.37 in . slice resistivities. Ten full-scale ranges from 0.01 to 300 ohm per cm are covered with one switch.

Texas Instruments, Incorporated. Dept. ED, Houston 6, Tex.

Waveform Monitor

407

For TV broadcast. The model $5275-\mathrm{in}$. waveform monitor is available in rack-mount and portable types. It provides three calibrated time-base rates. 0.125 h per $\mathrm{cm}, 0.025 \mathrm{~h}$ per cm with 5 X magnifier, and 0.005 h per cm with 2.5 X magnifier. A $4-\mathrm{kv}$ accelerating potential over a full $6-\mathrm{cm}$ by $10-\mathrm{cm}$ view. ing area assures bright displays.

Tektronix, Inc., Dept. ED, Box 500, Beaverton, Ore.
Price: $\$ 1,000$, portable; $\$ 1,07.5$, rack mount.

Punched Card Switch

408

Provides 1.000 automatic switches. The model K-1000 punched card switch has a separate switch for each of 1,000 hole positions. A card is inserted, operating lever pushed, and punched holes close switches. Volume of unit is less than 0.5 cu ft . Highly applicable to automatic machine control.
The Taurus Corp., Dept. ED, Academy Hill, Lam bertville, N.J.

- Circle 916 on Carer inquiry form, page 253

ELECTRONIC DESIGN • May 10, 1961

One of the most complete lines of Exponded Scale Meters.
(m Ff PRECISION METERS WITH O.1\% ACCURACY
rugged! permanent calibration! temperature compensated! high readability - expanded scale - accurate - fail safe - linear scale
Wherever reliability is a requirement in portable equipment or design meter movement and sensor element are housed in a fixed power installations - AMF Precision Meters are the compact cylindrical unit. Or, if preferred, AMF can provida a answer - for commercial or military applications. In the Monopak* separate sensor element independent of the meter indicator.

PRECISION FREQUENCY METERS

modit no.	modit no.	SCale dange	afsolution	Center scale accuracy		input rance	indicator	SCale	MEEER	ust
Monopal	Seporate Samior	cpi	SPs			Volmams	Style		Sizo	Prico
PFM 5060 M	PFM 5060 S	$\begin{aligned} & \text { 48. } 53 \\ & 57.62 \end{aligned}$. 1	0.2\% of $25^{\circ} \mathrm{C}$	0.5\% from $-55^{\circ} \mathrm{C}$ mo $+55^{\circ} \mathrm{C}$	105.135	Panal	250°	$31 /{ }^{\circ}$	\$220.00
PFM 6008 M	PFM 6008	58-62	1	0.1% a $25^{\circ} \mathrm{C}$	0.25% from $-55^{\circ} \mathrm{C} \mathrm{Cu}+55^{\circ} \mathrm{C}$	105.135	Ponel	90°	$31 / 2^{\circ}$	180.00
PFM 600 M	PPM 600 S	57. 63	2	0.1% of $25^{\circ} \mathrm{C}$	0.25% from $0^{\circ} \mathrm{C} 10+65^{\circ} \mathrm{C}$	105.135	Ponel	90°	3\% ${ }^{\circ}$	180.00
PFM 605 M	PMM BOES	55.85	2	0.2% of $25^{\circ} \mathrm{C}$	0.5% from $-55^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C}$	105.135	Ponel	90°	$31 / 2^{\circ}$	180.00
	PFM 400ak s!	$\begin{aligned} & 390.410 \\ & 300.500 \end{aligned}$	$\begin{array}{r} 5 \\ 5.0 \\ \hline \end{array}$	$\begin{aligned} & 0.1 \% \text { of } 25^{\circ} \mathrm{C} \\ & 1.0 \% \text { of } 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.25 \% \text { from }-55^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C} \\ & 2.50 \% \text { from }-55^{\circ} \mathrm{C} \text { to }+55^{\circ} \mathrm{C} \end{aligned}$	105.135	Ponol	duol 90°	3\%"	20500
PFM 4008 M	PFPM $4008{ }^{\text {a }}$	388.412	. 5	0.1% ol $25^{\circ} \mathrm{C}$	0.25% from $-55^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C}$	105.135	Ponel	90°	$3 k^{\circ}$	170.00
	PFM 4000825	388.412	5	(1) 1% of $225^{\circ} \mathrm{C}$	0. 50% from $-55^{\circ} \mathrm{C}$ 10 $+55^{\circ} \mathrm{C}$	105.135	Panel	80°	2150	18500
PFM 4000 M	PFM 40000 S	360.420	1.0	0.19 or $25^{\circ} \mathrm{C}$	025% from $-55^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C}$	105.135	Ponel	90°	$31 / 2{ }^{\circ}$	170.00
PFM 4000 M M N		395.405	2	0.05% of $45^{\circ} \mathrm{C}$	0.1% from $0^{\circ} \mathrm{C} 10+65^{\circ} \mathrm{C}$	105.135	Ponel	90°	$31 /{ }^{\circ}$	235.00
PFM 400EI M	PFM 400 EIS	395.405	. 2	0.1% of $25^{\circ} \mathrm{C}$	0.25\% from $-55^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C}$	105.135	Ponel	90°	$31 /{ }^{\circ}$	21500
	PFM 400 E 45	395.405	.	0.05% of $25^{\circ} \mathrm{C}$	0.1% from $0^{\circ} \mathrm{C} 10+65^{\circ} \mathrm{C}$	105-135	Swilehboard	250°	$43^{\circ}{ }^{\circ}$	320.000
	PFM 400 HS	380.420	1.0	0.2% ol $25^{\circ} \mathrm{C}$		105.135	Comm. rectang	Or 100°	$41 / 2^{\circ}$	10500
	PFM 400 HRS	380.420	1.0	0.2\% ef $25^{\circ} \mathrm{C}$		105.135	Comm. round	90°	$31 /{ }^{\circ}$	115.00

PRECISION VOLTMETERS

MODEI NO.	$\begin{aligned} & \text { MODEL NO. } \\ & \hline \text { Separate Sensor } \end{aligned}$	SCale mange	misolution	cinter scale accuracy			infut range	indicator	SCALE	METER	ust
Monopat		Vomirms	Volm				cps	Syyle		Siro	Wrom
PVM IISAM N		110.120	0.1	0.1% or $45^{\circ} \mathrm{C}$	0.2\% Iro	Irom $0^{\circ} \mathrm{C}$ 10 $+65^{\circ} \mathrm{C}$	395.405	Panel	250°	$31 / 2$	\$250.00
PVM IISAIM	PVM lisal	110.120	0.1	0.1% or $25^{\circ} \mathrm{C}$	$0.2 \% \mathrm{lr}$	Irom $-55^{\circ} \mathrm{C}$ 10 $+55^{\circ} \mathrm{C}$	395.405	Ponel	250°	312°	250.00
	PVM IISAAS	110.120	0.1	0.1\% al $45^{\circ} \mathrm{C}$	0.2% from	from $0^{\circ} \mathrm{C} 10+65^{\circ} \mathrm{C}$	395.405	Switchboard	250°	$41 /{ }^{\circ}$	335.00
PVM I20AM N		115.125	0.1	0.1\% ot $45^{\circ} \mathrm{C}$	0.2\% from	from $0^{\circ} \mathrm{C} 10+65^{\circ} \mathrm{C}$	395.405	Ponal	$250{ }^{\circ}$	$31 /{ }^{\circ}$	250.00
PVM I20al M	PVM I20al ${ }^{\text {S }}$	115.125	0.1	0.1% af $25^{\circ} \mathrm{C}$	0.2\%	lrom $-55^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C}$	395.405	Ponel	250°	$31 / 2^{\circ}$	230.00
	PVM I20A4S	115.125	0.1	0.1\% of $45^{\circ} \mathrm{C}$	0.2\%	lrom $0^{\circ} \mathrm{C}$ 10 $+65^{\circ} \mathrm{C}$	395.405	Switehboard	250°	$41 / 2{ }^{\circ}$	335.00

AMERICAN MACHIME FOUNDRY COMPANY
1101-D North Royal Streat - Alexandria, Virginia corporate headouarters 201 modion Amonue. - Now Yath 10, N.Y

- An AMF Irodemort

Write roday for further information and specificetions on the completo AMF line of Procision Mefors.

CIRCLE 53 ON READER-SERVICE CARD

... at pulse rates as low as 5 pps . . .voltages of 1 mV to 1000 V
Also measures COMPLEX WAVEFORMS having fundamental of 5 cps to 500 kc with harmonics to 2 Mc .
ACCURACY is 2% to 5% OF INDICATED VOLTAGE, depending upon waveform and frequency.
SCALE is the usual Ballantine log-voltage and linear db, individually hand-calibrated for optimum precision.
INPUT IMPEDANCE is 2 meg, shunted by 10 pF to 25 pF .
Write for brochure giving many more details

BALLANTINE LABORATORIES inc.

Boonton, Now Jersey

 ASK ABOUT OUR LAEORATORY VOTIAGE STANDAADS 701.000 mc .

NEW PRODUCTS

Time Switch
425

Can provide bell signal. Series 45,000 and 46,000 "Mark-Time" switches have a maximum circuit capacity of dpdt. They use a $15-\mathrm{amp} 125 \mathrm{v}$ ac switch. If the knob is turned left, the switch is off-on. If turned right, a timing function is supplied. The bell is optional. Timing ranges from 60 sec to 12 hr .
M. H. Rhodes, Inc., Dept. ED, Hartford, Conn.

Nonpolarized Capacitors

Offered in complete line. The type 151D Tantalex capacitors are solid-electrolyte tantalum units of nonpolar design. They can be used full rated up to 85 C . Many ratings are available in voltages from 6 to 35 v dc. Small unit in illustration is 0.11 - $\mathrm{ff} 35-\mathrm{v}$ de type, measuring 9/64-in. in diameter by 9/16 in. Sprague Electric Co., Dept. ED, North Adams, Mass.

Single Sideband Receivers

469
Airborne hf units. Model HC-130 is for air-toground transmissions on LSB, USB and compatible AM; model HC-150 is for fixed point-to-point communications. The first unit receives six frequencies in 1 -kc steps simultaneously in the range of 2 to 30 mc . The other offers selection of 10 channels in the same range.
Hughes Aircraft Co., Dept. ED, P. O. Box 90-902, Los Angeles 45, Calif.
P\&A: $\$ 80,000$ and $\$ 40,000 ; 90$ days.

Etched Circuits

454
Replace wire harnesses. Flexible etched circuits are useful in replacing wire hamesses in curved or bent areas. Circuits are backed by Teflon, Kel-F, or polyester materials. The smaller, lighter circuits reduce assembly time and chance of error. Materials used resist chemical action.
U. S. Engineering Co., Dept. ED, 13536 Saticoy St., Van Nuys, Calif.

Get the Facts About These Cost-Saving Terminals and Components

STANDOFF AND

FEED THROUGH TERMINALS
Low cost and high electrical specs. have made these the most popular in the industry. Choice of fork, single and double turret, post standard, minia. ture, sub-miniature ture, sub-miniature molded or metal base wide variety of body materials, including diallyl phthalate and melamine, and plating combinations.
Request Catalog SFT-I
PUSHLOCK NYLON TIP JACKS

Save time and money regardless of installation method. Just push into cabinet or chassis hole and self-anchece Pushlocks align and nuts, lockwashers and vibration problems. problems.

Request literature
MELAMINE
JACKS
Very economical, yet designed electrically and mechanically for long, reliable service. Supplied in n wide range of code colurs.

Request defails

POINTER KNOBS
A military and industrial favorite by reason of price and practicability. Supplied in attractive black, satin-finished phenolic.

Request defails

WHITSO, NC
9326 Byron Streat, Sehiller Park, Illinols
CIRCLE SS ON READER-SERVICE CARD

Size 8, 6 -pole, 400 -cps units have a moment of inertia of $0.147 \mathrm{~g}-\mathrm{cm}^{2}$ Time constant is 0.00613 sec , tem perature range is -55 to +125 C and stall torque is $0.22 \mathrm{oz}-\mathrm{in}$. Weigh is 1.25 oz and diameter is 0.75 in Units meet MIL-E-5272.

Wright Machinery Co., Div. of Sperry Rand Corp., Dept. ED, Durham, N. C.
P\&A: $\$ 40$ up; 30 to 60 days.

Solid-State Converter

Analog-digital-analog converter model 430 A-D-A makes 14 -bit conversions at rates to 35 kc . Digital outputs are available in parallel form at the end of the cycle. Basic speed is 1.5 usec per bit plus 4.5 usec per conversion. Accuracy is $\pm 1 \%$ of input voltage. Dynamic range is above 80 db .

Texas Instruments, Incorporated, Dept. ED, P. O. Box 6027, Houston 6, Tex

Phenolic Laminate

Has high punching stability. Insurok T-755 is a paper base, phenolic laminate which has stable punching properties over a wide range of low temperatures. Other features: long shelf life; high solvent resistance; good reproducibility. It has many applications for printed circuits, components parts, terminal boards. Standard sheet sizes $36 \times 42 \mathrm{in}$. unclad. Also 37×37 and 37×42 in. copper clad.

The Richardson Co., Dept. ED 2724 Lake St., Melrose Park, Ill.

CIRCLE SG ON READER-SERVICE CARD \geqslant

DRIREED ELECTRONIC COMMUTATORS

 the Newest and Best!The NEW Hathaway DRIREED Electronic Commutator, designed to utilize Hathaway's DRIREED contact, is illustrated above in a typical rack mounted unit. Applications include telemetry, thermocouple scanning, computer inputs, strain gage scanning, transducer scanning, and PDM coding. The unit can be packaged and tailored to fit your particular requirements.

FEATURES:

- Eliminates the transfer gain problem-closed circuit resistance less than 100 milliohms.
- No back current or channel to channel crosstalk-open circuit resistance greater than 3×10^{12} ohms.
- Output isolated from power ground and needs no "com mon"- isolated dual ended contacts.
- Solid state drive circuit-transistor logic control of mechanical contact operation
- Up to $\mathbf{1 , 0 0 0}$ sequential data points per second-DRIREED has resonant frequency of above 2700 cps .
- Long life, highest reliability-contact rating 10 million operations at 100 milliampere, 115 volts 60 cps , resistive load; 1 billion operations at low signal levels.

PRICE AND PERFORMANCE of this commutator make it worth considering in your application. Please address your inquiries to the address bolow.

HATHAWAY DENVER
5804 EAST JEWELI AVE.
DENVER 22, COLORADO
A division of Hathaway instruments, Ine.

IN SMALL DIAMETER, flexible hich voltage cables

"PQ WER LINE PERFORMANCE IN HOOK-UP WIRE SIZE"

Now a patented process of laminating Tefion tape with a high dielectric oil reduces the incidence of corona by excluding air from corona occur. The graph below illustrates the long life of Teflon film in oil vs. that in air.
Corona is the result when a void (between the conductor and the insulating material or within the insulation) is subject to an onizing potential. Extruded Teflon is susceptible to separation from the conductor when fiexed because of its rigidity and solid mass. Solid Teflon by the very nature of its fabrication contains minute voids within its cross-section. These voids and separations are corona forming points, and without protection the Teflon is subject to deterioration, which degrades the cable.
BIW uses thin Teflon tapes, so that any void within the tape is extremely limited in size. In addition, the tape is surrounded with viscous high temperature - high gielecuic oil which fills these oids. Through these techniques, BIW offers a flexible cable with he highest corona threshold in the smallest size. reflon jackets are resistant to acids, alkalies 100X extruded ozone, ultra-violet, water absorption, oils, fluids, temperatures to $200^{\circ} \mathrm{C}$ and will not flow at temperatures up to $250^{\circ} \mathrm{C}$. With this type jacket, the cable strips easily. It has no braids to leak at high voltage or fray when cut and prevents unravelling of taped dielectric.
BIW laminated Teflon tape and oil constructions demonstrate great reliability over a wide temperature range and are light in weight Solid colors are available for color coding. These cables are par corons is more prevalent. They are ideal for use in shielded cables where small diameter, high voltage leads must run next to ground Other uses include power plant ignition, high temperature trans formers, ignition wires for continuously operating internal combustion engines and chemical processing apparatus. They find wide application in missiles and rockets, electronic equipment, as wel as for high temperature, high voltage generator leads and tube cap leads.
Send for the complete brochure - BIW Type HP (High Performance Cable). Your BIW representative will be happy to discuss this and any other wire and cable constructions with you.
Teflon is ymssa product of DuFont yeura Ene mur

THIS GRAPH shows voltage-life rests of Tefion film $0.005^{\text {s }}$ in thickness. Note the comparative long life of Tefion prosecied with oll. BIW process for manufacturing Tefion insulated cables pro. sects with dielectric oil.

NEW PRODUCTS

Pulse Height Analyzer
415

Provides 400 channels. The model 404 analyzer uses a magnetic-core-memory system and stores data in parallel binary-coded-decimal form. Data can be read out directly into a printer. It accommodates four detectors at the same time. A companion unit, model 500, permits high-speed paper tape printing. The units operate from 110 v ac .
Technical Measurement Corp., Dept. ED, 441 Washington Ave., North Haven, Conn.

Switch Tube
405

Efficiency is 95%. The L-3408 is made for highvoltage, high-switch-rate floating deck modulator applications. With current characteristics similar to a pentode, the switch tube has collector voltage of 150 kv max, collector current 20 amp peak, collector dissipation 10 kw max. Length is 20 in ., OD 8 in ., weight about 45 lb .
Litton Industries, Electron Tube Div., Dept. ED, 960 Industrial Road, San Carlos, Calif.

Limit Switch
406

Has neon indicator lamp. A built-in indicating lamp in model 1LS501 flashes when switch is operated. Lamp can be installed to make contact with either the normally open or normally closed contacts. Switch is rated at $10 \mathrm{amp}, 1 / 2 \mathrm{hp}$, at 120 v ac. Replaceable element has 2 -circuit, double-break contact arrangement.

Minneapolis-Honeywell Regulator Co., Micro Switch Div., Dept. ED, Freeport, Ill.
P\&A: \$20; stock.

Amazing, New, High Inductance

with Inductance Range from $0.10-180,000 \mu \mathrm{H}$
The R.F. Choke that's so small you can pack 200,000 to a cubic foot Tiny, new, WEE-DUCTOR covers a full range of inductances from $0.10 \mu \mathrm{H}$ to $180,000 \mu \mathrm{H}$ yet it measures only $0.157^{\prime \prime} \times 0.375^{\prime \prime}$
Unique ferrite sleeve and core construction provides $1,800,000$ to 1 inductance range in a tiny package . . . and yet when assembled side-by-side, exhibit less than 2% coupling. Essex WEE-DUCTORS are available immediately from stock. WEE-DUCTORS are the latest ad dition to Essex's broad line of Standard R.F. Choke Coils.
Essex Electronies Standard Line of R.F. Chokes

Pantex	DUCETOM	${ }_{8}^{\text {arc- }}$	Ract-	arc-
L~M	0.1-180K	.1-100	1.0.1,000	1.010 .000
Mar. Rel n	.035.880	.02-6.0	. 04.21	.03-80
1 man. ma	3000.18	4000-220	2700.125	4000-80
dia.	157	188	. 250	. 310
toagth	375	40	. 600	

WRITE TODAY
Free Descriptive Literature Avaitable

 ESO springfield Avo., Borkaloy Hoights, M. J. Phone 464-9300 - TWX MJ 533ESSEX ELECTRONICS DIVISION, DERKELEY HEIGMTS, MS. AUTOMATION PRODUCTS DIVISION, LEXINGTON, KY,
ESSEX ELECTRONICS OF CAMADA LTD, TREMTOM, ONT. CIRCLE 58 ON READER-SERVICE CARD

BOSTON INSULATED WIRE CABLE CO.
 CIRCLE 57 ON READER-SERVICE CARD

Ratings are 0.28 to 4.8 kva . Series IV units are built for a $120-\mathrm{v}, 50-\mathrm{cps}$ input and provide an isolated output of 0 to 140 v ac . For electrical underand over-voltage testing, units come in 3 sizes, all portable, cased and metered.

Standard Electrical Products Co., Dept. ED, 2240 E. Third St., Dayton, Ohio.

Magnetic Tape Heads 485

Offered in R\&D kit. The DD-6-1 kit contains sixteen 1/4 and 1/2 track heads, both in stereo and mono types Electronics and mountings are varied These M/M tape recording heads are enclosed in a 20 -drawer cabinct, $9 \times$ 10×6 in.

Robins Industries Corp., Dept. ED Flushing, N.Y
PdA: \$309; from distributors.

Electrolytic Capacitors

505
Cases are very small, ranging from $3 / 16$ to $1 / 2 \mathrm{in}$. in diameter and from $1 / 2$ to $1-1 / 2 \mathrm{in}$. in length. Range is 1 to 4.50 uf. Uses are in electronic timing and tracking devices, missiles and computers telemetry and radio receivers. Units are type NLW and NLP.

Cornell-Dubilier Electronics Div Federal Pacific Electric Co., Dept ED, 50 Paris St., Newark 1, N. J

Proximity Limił Switch

500
Operating remotely, the CR115 D switch senses nonferrous materials up to $1 / 2 \mathrm{in}$. and ferrous material up to 1 in. away. All transistorized circuitry is self-contained in the operating head. Rating is 30 v dc, input; 30 v de at 250 ma, output. Repetitive accuracy is 0.005 in .
General Electric Co., Dept. ED, Schenectady 5, N. Y.

CIRCIE S9 ON READER-SERVICE CARD -

RCA uses 252 CLARE Printed Circuit Relays in the 501 electronic data processing system
RCA's 501 incorporates many advanced features which significantly increase reliability as well as economy. It takes up less space, weighs less and operates on less electrical power than previous models.

252 relays (each consisting of 12 Clareed sealed contact reed switches-3,024 switches in all) make up this "matrix relay." used in the model 547-6 switching unit of the RCA 501.

CLAREED Sealed Contact Relays provide fast, sure switching

Contributing to the efficiency, speed and compact structure of the RCA 501 are 252 CLAREED sealed contact reed relays. Mounted on printed circuit boards, these relays, their contacts hermetically sealed in contaminant-free inert gas, assure millions of perfect operations...hundreds of mil lions when operated at up to $1 / 2$ rated load.
CLAREED relays are ideal components for transistor-drive applications such as the RCA 501. Their low inductance, and the low

CLAREED switch capsule consists of a pair of magnetically operated contacts, hermetically sealed in an atmosphere of inert gas.
inductance change in the operating coil at each operation, limit the transients produced.
These relays may be mounted to meet the requirements of almost any application or environment. Consult your nearby CLARE sales engineer... or write: C. P. Clare \& Co. 3101 Pratt Blvd., Chicago 45, Illinois. In Canada: C. P. Clare Canada Ltd., 840 Caledonia Road, Toronto 19, Ontario. Cable Address: CLARELAY.Ask for Bulletin CPC-10.
C.P.CLARE \& CO

Rolays and Related Control Compononts

TRE TRIMMERS

You get all the important
features in stock TIC Trimmers - you don't pay more for a lot of extras.

Every TIC trimmer is bubble tested at $90^{\circ} \mathrm{C}$ to be certain it is scaled, meeting or exceeding MIL STD-202 for moisture resistance.
The inherent quality construction withstands temperatures to $225^{\circ} \mathrm{C}$ and shock at 150 G 's for 11 milliseconds - vibration $5-3000 \mathrm{cps}$ at 50 G 's. Resistances to 100 K ohms are provided without sacrificing reliability as the unique design of the resistance element eliminates the need for using extremely fine resistance wire. Dual wipers on winding and take-off bar provide positive electrical contact and maximum reliability.
A choice of four types of leads are available on all stock trimmers - flexible insulated wire, printed circuit pins or solder lugs on end or bottom of housing. These twenty-five turn precise trimmers offer all the plus features-not just a few. Compare - features - price - reliability. Specify TIC Trimmers.
Available from stock for immediate delivery.

TVE

TECHNOLOGY INSTRUMENT CORPORATION
555 Main Street, Acton, Maseathusetts • COlonial 3.7711

DISTRIBUTED MATIOMALLY BY AVNET CORPORATION CIRCLE 60 ON READER-SERVICE CARD

NEW PRODUCTS

Pressure Transducer

Ranges are 0 to 5 through 0 to $\mathbf{5 , 0 0 0}$ psi, for measuring absolute and gage pressures. Type P707TC is for aircraft, space probes and ballistic missiles. The gage model requires $5-\mathrm{v}$ excitation and the absolute model, 7 v . They have outputs of 25 and 35 mv . Combined error is less than $\pm 0.75 \%$ full scale.
Stathan Instruments, Inc., Dept. ED, 12401 W. Olympic Blvd., Los Angeles 64, Calif.

Mylar Capacitors

Are thoroughly tested. All units in this line of Mylar capacitors are checked during manufacture for dielectric strength, insulation resistance, capacitance, and dissipation factor. Tape-wrap units from 0.001 to 1μ f are made in ratings of $100,200,400$ and 600 wvdc, tolerances from 1% to 20%; epoxy-dipped, flattened units range from 0.01 to $0.33 \mu \mathrm{f}, 50 \mathrm{wvdc}$. Midwec Corp., Dept. ED, 601 S. Jason St., Denver 23, Colo.
Acailability: 3 weeks.

Delay Line

Has high resolution. Magnetostrictive delay line model 165 has fixed delay time of 5 to 6 msec . Input pulse width is $0.5 \mu \mathrm{sec}$, prf 1 mc . Signal-to-noise ratio is $10: 1 \mathrm{~min}$, insertion loss about 60 db . Input impedance can vary from 50 to 1,500 ohms while output impedance is fixed at 1 K .
Deltime, Inc., Dept. ED, 139 Hoyt St., Mamaroneck, N.Y.

Magnetic Head

Is completely encapsulated. Type 1580 magnetic recording and reproducing head is a compact, encapsulated unit with smooth response and low hum pickup. Inductance is 3 mh , impedance 20 ohms at 1 kc . Head is available with $1 / 2$-mil or $1 / 4$-mil gap. Westrex Corp., Recording Equipment Dept., Dept. ED, 6601 Romaine Ave., Hollywood 38, Calif.

460

456

WHY

MAJOR C. R. TUBE MFGRS. RECOMMEND Y U'S
SYNTRONIC
Syntronic yoke procedure originated the industry standard for specification correlation between yoke, c. r. tube and circuitry. For a helpful, time-saving checklist covering all physical and electrical yoke parameters and their determining conditions, reques ELECTRONICS reprint 12-59. Thor ough correlation enables Syntronic to guarantee accepted specifications.
Call your nearest SYNTRONIC REP today Boston-Mow Eng: NOrwood 7.316n Now York Area: Oxiord 5-025s Phile. Area: MOhawk 4.4200 Wash.-Eall. Aron: APpleton 7.1023 Indianapollis: Victor $0-0359$ CUmberiand $\$ 120$

syntronic

NふTRIVFNTS, IN. dust ial Road. Addison. III
Phone KIngswood 3.6444

The Induntrye brosdent yolio lino ... alroesty rooid tor suusntily puoduction. Op, yotien cean be custom do-
signed to your pecise ?

WHEN YOU CAN get wire in sizes from No. 24 to No. 6 from Rome Cable WHEN YOU CAN specify either rubber or thermoplastic insulation from Rome Cable
WHEN YOU CAN order wire to meet either commercial or military specs from Rome Cable
WHEN YOU CAN select outer covers of nylon, cotton, rayon or glass from Rome Cable
WHEN YOU CAN be sure of fast delivery from Rome Cable, why look elsewhere for hook-up wire?
Whatever your requirements, Rome Cable can fill them. For the full story on types, sizes and specs, write for Bulletin TR-3. Direct inquiries to Rome Cable Division of Alcoa, Department 11-51, Rome, New York.

- ALOMECABLE
circle 62 on reader-service card
ELECTRONIC DESIGN • May 10, 1961 troit 7, Mich

RF Chokes

For data processing, missile range applications and other sequential series of events, the EMC-1 indi cates from $-999 \mathrm{~min}, 60 \mathrm{sec}$ through $000: 00$ to -999 min and 60 sec . It can be expanded to hours, days, etc. Outputs are available for remote recorders.
Telemetrics, Inc., Dept. ED, 12927 S. Budlong Ave., Gardena, Calif
Acailability: $\mathbf{6 0}$ days.

Dip-Solder Machine

One printed circuit every 17 sec . This automated straight-line machine dip-solders printed circuit boards at a cycle rate of one each 17 sec . It avoids hand or semimanual fluxing operations as well as bridging and dross problems.

Snyder Corp., Dept. ED, 3400 E. Lafayette, De

In 26 types. Vider peaking coils of the 1300 series range in inductance from $20 \mu \mathrm{~h}$ to $9.50 \mu \mathrm{~h}$. All but 3 are wound on phenolic forms; Nos. 1307 and 1313 are on $22 \cdot \mathrm{~K}$ resistors, No. 1310 on a $30-\mathrm{K}$ resistor. Solid wire leads are 1-1/2 in. long.
Delta Coils, Inc., Dept. ED, 1128 Madison Ave. Paterson 3, N.J.
Availability: From sfock.

If you want ELECTRONIC DESIGN to reach you without interruption mail your renewal form now!

NEW PRODUCTS

Digital Conversion Switch

Offers additional codes. New models in the series 7300 and 7500 line of Digiswitches expand conversion capabilities. Digital input fingerwheels with $8,10,12$, or 16 positions can now convert to one of 18 different coded electrical outputs.
The Digitran Co., Dept. ED, 660 S. Arroyo Parkway, Pasadena, Calif.

Turret Terminal Riveter

Speed is 2,000 per $\mathbf{h r}$ for inserting and setting all makes of terminals and base pins. Called model 900, the unit is suitable for setting terminals in printedcircuit boards. It has a $1 / 3-\mathrm{hp}, 110-\mathrm{v}$ ac motor and is operated by an electric footswitch.
Eyelet Tool Co., Dept. ED, 31 Carleton St., Cam bridge 42, Mass.

Digital Modules
516

Operate at 300 kc . Solid-state digital modules capable of operating at 300 kc include flip-flops, inverters, clock pulse shapers and clock amplifiers. Modules are $2.75 \times 2.175 \mathrm{in}$. and can be spaced on 0.375 in. centers.

Dynamic System Electronics Corp., Dept. ED, 2001 N. Scottsdale Road, Scottsdale, Ariz.

Dynamic Servo Analyzers

For missile and aircraft systems, the DSA series combines functions of signal generation, dynamic servo-response analysis and data presentation. Fre-quency-response test time is the time required for one cycle plus $1 / 2 \mathrm{sec}$.
Giannini Controls Corp., Dept. ED, 1600 S. Mountain Ave., Duarte, Calif.

When Going Is Rough

For Environmental Engineering... Select Silicone-Glass Laminates

LOX cold . . . high Mach heat . . . corona . . . ozone . . . launching and sonic shock - more and more environmental challenges are being met by Duw Corning Silicones.

Take glass laminates bonded with Dow Corning silicone resins, as examples. Silicone glass laminates have good mechanical strength, low loss factor, luw moisture absorption, excellent resistance to arcing, corona, corrosive atmospheres, fungus and contaminants. What's even more important, they retain these properties despite elevated temperatures, storage, environmental aging, rapidly changing ambients, vibration and shock. Heat resistance of silicone-glass laminates is exceptional . . . up to 250 C continuous for years . . . much higher for short time periods. Lastly, silicone-glass laminates, even in thin sections, have fine machinability and resist creep under pressure of terminal fasteners.

Lear, Inc., Grand Rapids. Michigan mounts the mica capacitors of their Model 2013J Stable Platform on this formed siliconeglass laminate terminal board. Lear engineers chose glass laminates after an intermediate material had been tried. Tolerance requirements, plus assembler variations, dictated a material that could be formed . . . would withstand soldering temperatures . . . would hold its form despite environmental extremes. Environmental conditions are: -10 to 160 F ; shocks of 30 G 's for about 11 milliseconds each: complex wave vibration for 20 min utes in each plane as follows $-30-100 \mathrm{cps}$: $0.46 \mathrm{~g}^{2} / \mathrm{cps}$ and $100.2000 \mathrm{cps}: 0.015 \mathrm{~g}^{2} / \mathrm{cps}$. Silicone-glass laminates made with Dow Corning resins are available from leading laminators. Write for a list.
"Silicones for the Electronic Engineer" Write Dept. 3317

first in silicones

Flexible from - $\mathbf{1 0 0}$ to 300F

Silastic ${ }^{\oplus}$, the Dow Corning silicone rubber, is specified by Airtron, a division of Litton Industries, for the jacket of their silver-plated brass, and all-aluminum flexible waveguide designed to resist operating temperatures from -100 to 300 F. With its Silastic jacket, Airtron's Flexaguide is particularly suited for applications in the missile field where environmental operating conditions are severe. In addition, the jacket supports the waveguide during flexure, insures airtightness for pressurized applications. Silastic resists a long list of environments including: cold, heat, ozone, oxygen, voltage stress, thermal cycling, corona, corrosive atmospheres, and weathering.

CIRCIE BOI ON READER SERVICE CARD

Rigid, Void-Free Protection

This induction heating coil is used to keep metal molten. Metal splatter caused frequent insulation and coil failure until the decision was made to encapsulate the unit in Dow Corning solventless silicune resin. The resin - with zirconium orthosilicate filler - forms a tough, rigid armor that withstands temperatures as high as 300 C indefinitely . . much higher for short time periods. With no solvents to evaporate, the resin cures without voids. Note the excellent fill between plates of an encapsulated test capacitor.

CIRCLE 802 ON READER SERVICE CARD

For Rapid Heat Dissipation

Dow Corning silicone fluids are used as dielectric coolants for rapid heat dissipation because of their thermal stability and relatively flat viscosity-temperature curves. They can be pumped at high speeds without breakdown due to shear; maintain consistency from - 65 to 250 C ; and they will not oxidize or act as currosives to metals even at high temperature. For these reasons and because of low vapor pressure, Sierra Electronics, Menlo Park. California specifies Dow Corning 200 Fluid as the heat transfer medium in their 100 and 500 watt, 60 ohm coaxial RF loads.

CIRCLE 803 ON READER SERVICE CARD

CORPORATION

MIDLAND, MICHIGAN

CIRCLE 800, 801, 802, 803 ON READER-SERVICE CARD

For analog computers. Miniature, solid-state electronic multiplier is packaged in a plug-in unit for $3 / 4$-in. terminal spacing. Unit offers 4 -quadrant multiplication, 2 -quadrant division, or 2 -channel squaring. Case size is $3 \times 2-1 / 2 \times 2 \mathrm{in}$. Designation is model 3732P.
Donner Scientific Co., Dept. ED, Concord, Calif. PもA: \$350; 30-day delivery.

Frequency-Standard Amplifier

Rf outputs are 3.25 to 283.5 mc . Model 500 has a nominal rf output level of 1 w into 50 ohms. Continuous coverage of useful harmonics is 42 to 10 ,000 mc . Frequency stability is 0.0001% for 1 min and 0.002% for 2 hr or per deg C.
PRD Electronics, Inc., Dept. ED, 202 Tillary St.. Brooklyn 1, N. Y.

Silicon-Oxide Capacitors

Operating temperature to $\mathbf{3 0 0}$ F. The OXSIL units are for use in digital computers and other applications requiring stable capacitance. Features include high insulation resistance, low dissipation factor and low self-inductance.
Sprague Electric Co., Dept. ED, North Adams. Mass.

Time-Standard System

474
With vlf receiver, model 399 permits calibration and measurement of local frequency sources to an accuracy of a few parts in $10,000,000$. The equipment is for phase-locked detection of WWVL, NBA and GBR signals. Any station in the range of 14 to 2.5 kc can be selected.

Textran Corp., Dept. ED, P. O. Box 9207, Austin 17, Tex.
PUA: $\$ 4,750 ; 60$ to 90 days.

NEW PRODUCTS

Behind the radio antenna tuning on the 707 and $3-58 \ldots$

Filters

For data-processing uses, these filters eliminate electrical feedback or back circuits and prevent interference with adjacent circuits. The Delta type has a load rating of 2. The Gamma has a load rating of 12 .

Kaytheon Co., Panel Wires Inc., Dept. ED, 213 E. Grand Ave., South San Francisco, Calif.

Machine Monitors

Range is 2 cps to 10 kc in series 18 monitors. They can be used with any machine or process in which offnormal conditions can be detected in frequency changes or changes in amplitude of signals. The unit is powered by 12 v de.
RayData Corp., Dept. ED, Columbus, Ohio.

Keep it small. Keep it light. Make it rugged. Make it reliable . . . These were the tough specs for the Vickers Iwo-stage, dual channel servo magnetic amplifier ordered for the airborne radio antenna tuning system of the 707 and B-58. Vickers engineers developed a unit that was compact, lightweight, yet rugged enough to stay on the job with no maintenance under extreme service conditions. It's typical of the reliability and engineering competence behind all Vickers control products and systems.

A few typical aero-space Vickers control units: voltage and frequency comparators, missile autopilot amplifier assemblies, closely regulated transistorized power supplies.

Put Vickers design-development-engineering capabilities behind your control needs . . a a letter or phone call, CEntral 1-5830, is all we need.

VICKERS INCORPORATED
 Division of Sperry Rand Corporation

ELECTRIC PRODUCTS DIVISION
1841 LOCUST STREET • SAINT LOUIS 3, MISSOURI

Leakage path is 0.187 in . The SKT 27 is rated at $2,000 \mathrm{v} \mathrm{rms}$ at sea level; it accepts test probes 0.45 in . long and 0.093 in . in diameter. Temperature range is -55 to +200 C .

Sealectro Corp., Dept. ED, 610 Fayette Ave., Mamaroneck, N. Y < circie of on reader-service card

For use with radar and other ground-support equipment, this $120-\mathrm{v}$, $400-\mathrm{cps}$ unit meets applicable military specifications. It is claimed to provide high accuracy and long life.

Stewart-Warner Corp., Dept. ED, 1826 Diversity Parkway, Chicago 14. III.

DC Microammeter

Rating is $\mathbf{5 0} \boldsymbol{\mu}$. The unit can be supplied to operate from 120 vac at 50 to $\mathbf{4 0 0} \mathbf{~ c p s}$ or from a 12 -v battery. It can be used with photoelectric cells, vibration pick-ups, thermocouples, phototronic devices and audiometers. It stands temperatures of $\mathbf{- 2 0}$ to +120 F.

Esterline Angus Instrument Co., Inc., Dept. ED. 1201 Main St., Speedway, Ind

Inertial Switch

Subminiature self-locking, resettable device performs from 5 to 25 g 's, from 25 to 200 msec. Factory preset, model 1056 is designed for missiles, space vehicles, etc. It is impervious to salt, spray, sand, dust and humidity, and has a minimum life of 25,000 cycles.

Sanders Assoc., Inc., Instrument and Controls Div., Dept. ED, 9.5 Canal St., Nashua, N. H.

CIRCIE OS ON READER-SERVICE CARD $>$

13 MOVES

TO RELIABLE

TRIMMING

SPECTROL'S FULL LINE of trimming potentiometers features 10 of the smallest square trimmers ever made, plus the only transistor-size units for solid state circuitry. This selection covers almost every conceivable application-a sure way to avoid checkmate when you need reliable trimmers.

SQUARE TRIMMER DATA. Models 50 and 60 measure $3 / /^{\prime \prime}$ and $1 / 2^{\prime \prime}$ square respectively ${ }^{\text {a }}$ humidity proofing a standard feature - available in resistances to 100 K - greater surface contact between mandrel and aluminum case for better heat dissipation, no external heat sinks needed - dual wiper for positive contact under all conditions of shock and vibration.

SINGLE TURN TRIMMER DATA. Model 80 built into TO-9 transistor type case - measures less than $1 / 3^{\prime \prime}$ in diameter, weighs 1 gram -smallest trimmer on the market - completely sealed against moisture and humidity - resistance element twice as long as ordinary trimmers - designed for complete package encapsulation with other printed circuit components available in 3 case styles with resistance range to 20 K .

IMMEDIATE DELIVERY. Your nearby Spectrol distributor stocks standard models of trimmers and miniature potentiometers as well as other standard Spectrol precision potentiometers and turns indicating dials. Prices are $\$ 6$ to $\$ 8$ in quantities of 1.9 for most styles and resistances.

MORE DATA AVAILABLE. Contact your Spectrol engineering representative or drop us a line at the factory. Please address Dept. 36.

ALL TRIMMERS SHOWN ACTUAL SIZE
SPECTROL

ELECTRONICS CORPORATION

1704 South Del Mar Avenue - San Gabriel, California
Phone: ATlantic 7.9761
Adams Court • Plainview, L. I., New York
Phone: WElls 8.4000

NEW PRODUCTS

Decade Amplifier

Consisting of four amplifiers, this unit occupies no more space than one. Two-stage feedback circuits with $20-\mathrm{db}$ gain are used, allowing the units to be used separately or in cascaded combinations with gains of 40,60 or 80 db . Push-pull operation may be used. A regulated power supply is included.
Prenco, Inc., Dept. ED, 246 Park Ave., Garden City, L. I., N.Y.

Switching Transistor

Total switching time 46 nsec. Type 2 N 783 is claimed to be the world's fastest silicon switching transistor. Turn-on and turn-off times are 16 and 30 nsec , for a total of 46 nsec . The unit combines the advantages of mesa construction with epitaxial manufacturing. A similar unit, 2 N 784 , has extremely low saturation voltage.

Sylvania Electric Products, Inc., Dept. ED, 730 3rd Ave., New York 17, N.Y.
PGA: 1 to 99 at $\$ 22.50$; from distributors.

DC-DC Miniature Translator

For measuring pressure or acceleration in airborne or laboratory telemetry systems, the A-801 is for use with variable permeance or variable reluctance transducers. Power required is 6 to 12 v dc . At an input of $9 \mathrm{v} \pm 33 \%$, the output changes 0.2% or less.

Physical Sciences Corp., Dept. ED, 389 N. Fair Oaks Ave., Pasadena, Calif.

Frequency Meters

RF peak pulses are 0.5 mw to 50 w . The cw input range is 5 mw to 1 w and the pulse input is 250 to $10,000 \mathrm{pps}$. Models 560 and $560-\mathrm{S} 1$ have ranges of 2.4 to 3.4 and 2.7 to 3.7 kmc . They are calibrated precision units.

PRD Electronics, Inc., Dept. ED, 202 Tillary St., Brooklyn 1, N. Y.

Mallory miniature tantalum capacitors

from the industry's widest selection ...

- miniature high-temperature types (to $150^{\circ} \mathrm{C}$)
- smallest metal-case type made
- encapsulated type for printed circuits
- liquid and solid electrolytes
...seven miniature types in all-with the sintered pellet anode pioneered by Mallory.

And six other types-including foil, high temperature, high capacitance.
Write today for our complete catalog on all 13 types... and for a consultation with a Mallory capacitor specialist. Mallory Capacitor Company,
 Indianapolis 6, Indiana.

for the squeeze on space

Mallory Tantalum Capacitors Slocked by these disfributors

Arlington, Va.
Rucker Electronic Products
Baltimore, Md.
Radio Electric Servic
Binghamton, N.Y.
Bozton, Mass.
Cramer Electronics, Inc.
DeMainbro Radio
Demainoro Radio Supply C
Lafayette Radio
Bridgoport, Conn.
Westconn Electronics
Buffalo, N.Y.
Wumbe N.Y.
Chicago, III.
Allied Radio Corp.
Newark Electronics Corp.
Cincinnati, Ohio
United Radio
Cleveland, Onio
Dallas, Texas
Engineering Supply Co.
Dayton Ohio
Dayton. Ohio
Allied Supply Co
Denver, Collo.
Denver Electronics
Mouston, Teras
Mouston, Toxas
Harrison
Equip
Lenert Companment Co., Inc.
Indianapolis, Ind
Graham Electronic
Los Angeles, Calif. Kierulff Electronics, Inc. Electronic Supply Corp
Radio Product Sales
Minneapolis, Minn.
Northwest Radio
Montraal, Que.
Canadian Eiectric
Mountainside, N.J.
Federated Purchaser, Inc.
Nastuille, Tonn.
Nawark, N.S.
Lafayette Radio
New York, N.Y.
Harvey Radio Co., Inc. Lafayette Radio
Terminal Hudson Electronics
Oakland, Calif.
Ortando Fiectronics, Inc.
Ortando, Fla.
East Coast Radio
Wackid Radio TV Lab
alo Alto, Calis.
Perth Amboy, N.J.
Allas Electronics
hilladelphia, Pa.
Herbach \& Rademan
Philadelphia Electro
pittsburgh, Pa.
Radio Parts
St. Louis, Electronics
Soattie, Wash.
F. B. Connelly

Thurow Distributors, Inc. Toronto, Ont.
Alpha Aracon Radio Co. Electro Sonic Supply
Wholesale Radio \&iectronics Tucson, Ariz
Tulsa, Okla.
Engineering Supply Co
Washington, D.C.
Electronic Industrial Sales
White Plains, M.Y.
Westchester Electronic Supply
WinstonSalem, N.C. Dalton-Hege Radio

CIRCLE 66 ON READER-SERVICE CARD

Ratings are 12 va max, up to $1 / 2 \mathrm{amp}$ resistive, up to 250 v ac. Contact resistance is 40 to 60 milliohms; lead resistance is 40 milliohms. Body diameter is $1 / 8$ in., body length is $3 / 4 \mathrm{in}$. and over-all length is $1.1 / 2$ in. Rated for $5,000,000$ operations, the unit is designated type MRG-1.

Hamlin, Inc., Dept. ED, Lake Mills, Wis.

Modular Switch

Permits 96-button array. The modular construction of the General-Purpose Pushbutton Switch permits the use of two or mure pushbuttons in any array. The switch is momentary or interlocked and can be remotely cleared. Each button represents an 8pdt or a 4dpdt switch; other combinations are available. Rating is 0.5 amp at 24 v dc or 1 amp at 120 v ac.
Special Products Div., Telex. Inc., Dept. ED, 163.3 Eustis St., St. Paul 1, Minn.

Device to Secure Wires

Fer use on harness boards of all types, Wiretainers can be made to hold each wire with a single motion until the wires are ready for lacing. A narrow gage type is offered for wires of 0.01 to 0.04 in . and a broad gage for wires of 0.045 to 0.08 in .
Holtronics, Div. of Holister Spring Coil Co., Inc., Dept. ED, 7100 Avalon Blvd., Los Angeles 3, Calif.

Vertical Sensing Element

Sensitivity is $20 \pm 3 \mathrm{mv}$ at 1 arc min. Linearity is within $\pm 10 \mathrm{mv}$ up to 3 arc min . Excitation is 3 v at 400 cps , single phase. Voltage output is 150 mv at 30 arc. The unit can be used to initiate selfalignment of a gyro platform. Type is C70 1806002.

Kearfott Div. of General Precision, Inc., Dept. ED, 1150 McBride Ave., Little Falls, N. J.

An extensive, comprehensive line of Direct-View Storage Tubes in sizes ranging from $23^{\prime \prime}$ to 21^{-}diameters. Du Mont makes the right size D.V.S.T. for every purpose from large ground control and radar types to miniature ainome-redar sizes Among the most popular Du Mont D.V.S.T.'s are 5^{5} electrostatic and electromagnetic types for ground and marine applications, particularly for airborne applications such as aibtorne weather navigation radars and airborme weapons systems. Also, 10° electrostatic types for missileuracking radars, air traffic control radars, anti-submarine warfare displays and many other special and zeneral displays. Whatever your D.V.S.T. application needs are, first consult the Laboratory most experienced in tube engimering, devel opment and manufacturing ... look to Du Mont

abvantaces of oirect view storage tuae concept

- Bright, continuous, stored dispiay
- Flicker-free display through retention
- Ability to plot phenomenon-such as continuous trecking of a moving body to indicate direction attitude indications with controllable retention

DUMONT DIRECTVVIEW STORAGE TUBES

allen b. Du mont laboratories, Clifton, N. J.

NEW PRODUCTS

Sensitivity is $\mathbf{5 0} \mathbf{~ m v}$ per \mathbf{g}. Compression accelerometer model 304 is made for general shock and vibration work under severe environments. Frequency response is flat within $\pm 5 \%$ from 0.09 cps to 10 kc ; resonant frequency is 55 kc . Range is 0.02 g to 40.000 g . Amplitude linearity is $\pm 1 \%$, operating temperature ranges are from -6.5 F to +350 F and +500 F .

Columbia Research Laboratories, Dept. ED. MacDade Blvd. \& Bullens Lane. Woodlyn, Pa P\&A: $\$ 150.00$ to $\$ 127.50$; 2-week delivery.

Planar-Epifaxial Transistor

Collector saturation voltage is 0.18 v max at $10-\mathrm{ma}$ collector and 1 -ma base current. At 200 -ma collector and $20-\mathrm{ma}$ base, it has a saturation voltage of 0.7 v . Designated type 2N914, it is a logic transistor and is somewhat similar to type 2 N 708 .

Fairchild Semiconductor Corp., Dept ED, 545 Whisman Road, Mountain View, Calif. P\&A: \$15.3.5 to \$2.3; from slock.

VHF Receiver

Range is $\mathbf{3 0}$ to 300 mc . Type 901 receiver provides am, fm and cw reception from 30 to 300 mc . Ceramic and nuvistor tubes are used along with transistors. Noise figure is 3 to 6.5 db ; agc is applied to rf and if amplifiers. Audio output is available. Panel height is $3-1 / 2 \mathrm{in}$. Receiver weighs 20 lb .

Communication Electronics, Inc., Dept. ED, 4900 Hampden Lane, Bethesda 14, Md.

Switchboard Instruments

502
Accuracy is 1%. Type AB-30 and DB-30 instruments have a face scale spanning a $5.1-\mathrm{in}$. arc over 180 deg. Readability is possible at a $120-\mathrm{deg}$ angle. Voltmeters, ammeters, frequency meters, power factor meters and other instruments are offered.

General Electric Co., Instrument Dept., Dept. ED, West Lynn, Mass.

NEW PRODUCTS

Random-Noise Generafor 596

Range is 2 cps to 1.5 mc on 811 B generator. A source of white noise for laboratory applications, unit has pink noise filter for equal noise power per octave from 20 cps to 100 kc . Amplitude distribution is gaussian.
H. H. Scott, Inc., Instruments Div. Dept. ED, 111 Powdermill Road, Maynard, Mass.
Price: $\$ 240$.

Casting Resin

For components and circuits. Stycast 3180 M is particularly suitable for embedment of coils and transformers. It bonds well to most materials and can cure at room temperature. It is two-part, with a mixing ratio of $1: 1$ by weight or volume.

Emerson \& Cuming, Inc., Dept. ED, Canton, Mass.
P\&A: $\mathbf{0 . 5 5}$ to $\$ 0.66$ per $l \mathrm{lb}$.

Temperature Probe

Range is -100 to +400 F with a calibration accuracy of ± 5 F. Model R146 is for industrial control and military use. A continuous-resistance output unit, it has a nominal resistance of 5,000 ohms, ± 200 ohms at 77 F . Time constant is less than 4 sec from 100 to 0 C to reach 63.2% of total change.
Quantatron, Inc., Instrumentation Div., Dept. ED, 4201 Redwood Ave., Los Angeles, Calif.

4

CONVECTION
COOLED
No Blowers or Filters
Maintenance Free
Highly efficient,
radiator type heat sinks eliminate internal blowers, maintenance problems, risk of failure, moving parts, noise and magnetic fields. Unils are rated for continuous duty at $50^{\circ} \mathrm{C}$ ambient.

EASY SERVICE ACCESS
Dual-deck, swing-out back construction provides simple and fast service access without the need to remove unit from rack. All major component terminals are accessible from rear.

NO

VOLTAGE SPIKES OR
OVERSHOOT
Lambda's design prevents output voltage overshoot on "turn on,
turn off," or power failure.

MIL QUALITY
Hermetically-sealed magnetic shielded transformer designed to MIL-T-27A quality and performance. Special, high-purity foil, hermetically-sealed
long life electrolytic capacitors.

LA $50.03 \mathrm{~A} \quad 0.34 \mathrm{VDC}$
LA100.03A 0. 34 VDC 0.10 A 310
LA200.03A 0. 34 VDC 0.20 A 795
LA 20.05A 20.105 VDC 0.2 A 350
LA 40.05A 20.105 VDC 0.4 A 495
LA 80.05A $20-105$ VDC 0.8 A 780
IA 8-08A 75.330 VDC 0.0.8 A 395
LA 15.08 F 75.330 VDC 0.1 .5 A 560
IA 30.08A 75.330 VDC 0. 3 A 860
For metered modele add the ouffiz "M" io the
model sumber and add $\$ 30.00$ to the price.

New LAMBDA

Transistorized REGULATED POWER SUPPILES

$$
\begin{aligned}
& 0.34 \text { VOC } 5,10 \text { and } 20 \mathrm{Amp} \\
& 20-105 \text { VDC } 2,4 \text { and } 8 \mathrm{Amp} \\
& 75-330 \text { VDC } 0.8,1.5 \mathrm{and} ~ \\
& 3 \mathrm{Amp}
\end{aligned}
$$

SHORT CIRCUIT PROOF
All models are completely protected with magnetic circuit breakers, fuses, and thermal overload.

REMOTE SENSING
Minimizes effect of power output leads on DC regulation, output impedance and transient response.

MODEL \dagger			
	lA $50.03 A$ LA $20.05 A$ IA $8.08 A$	$\begin{array}{\|lll} \text { LA } & 100.03 A \\ \text { LA } & 10.03 \mathrm{~A} \\ \text { LA } & 15.08 A \end{array}$	$\begin{array}{lr} \hline \text { IA } 200.03 A \\ \text { IA } 80.05 A \\ \text { IA } 30.08 A \\ \hline \end{array}$
A	31/2"	$7{ }^{7}$	101/2"
8	$3^{\prime \prime}$	-4"	*71/r"
c	18\%"	181/4"	181/2"
D	14\%"	14\%"	$161 / 2^{\prime \prime}$
- Phese medols notched per RETMA Standords - Includer motorod modole with ouffix " m "			

COMPLETE SPECIFICATIONS OF LAMBDA LA SERIES

DC OUTPUT (Regulated for line and load)

Model	Voltage Range ${ }^{\text {a }}$)	Current Range	Mieimum Voltage ${ }^{(1)}$	Voltage Stepo (3)	Price(t)
LA 50.03 A	0. 34 VDC	0. 5 AMP	0	2, 4, 8, 16, and 0. 4 volt vernier	- 395
LA100.03A	0. 34 VDC	0.10 AMP	0	$2,4,8,16$, and 0.4 volt vernier	510
LA200-03A	0-34 VDC	0.20 AMP	0	$2,4,8,16$, and 0.4 volt vernier	795
LA 20.05A	20.105 VDC	0. 2 AMP	20	$5,10,20,40$, and 0.10 volt vernier	350
LA 40-05A	20-105 VDC	0. 4 AMP	20	$5,10,20,40$, and $0-10$ volt vernier	495
LA 80-05A	20-105 VDC	0.8 AMP	20	$5,10,20,40$, and 0.10 volt vernier	780
LA 8-08A	75.330 VDC	0. 0.8 AMP	75	15, $30,60,120$, and 0.30 volt vernier	395
LA 15-08A	75.330 VDC	0. 1.5 AMP	75	15, $30,60,120$, and 0.30 volt vernier	560
LA 30.08A	75-330 VDC	0. 3 AMP	75	15, $30,60,120$, and $0-30$ volt vernier	860

(1) The DC output voltage lor each model is completely covered by four selec. tor amithee plua vernier control. The DC output voltage to the summation of
the minimura voliage plus the voltage stepo and the contlinuoutly variable the minimu

Regulation (line)

Regulation (load)

Transient Response
(line)
(logd)

Internal Impedance
ipple and Noise
Polarity
Temperature
Coefficient
AC INPUT

Less than 0.05 per cent or 8 millivolts (whichever is greater). For input variations from $100-130$ VAC Less than 0.10 per cent or 15 millivolts (whichever is greater). For load variations from 0 to full load Output voltage is constant within regulation specifications for step function: line voltage change from $100-130$
V.AC or $130-100$ VAC. load change from 0 to full load or full load to 0 within 50 microsec onds after application
1.A $50-03 \mathrm{~A}$ less than .008 ohms LA 100-03A less than 004 ohms LA200-03A less than .002 ohms LA 20-05A less than 06 ohms LA 80.05 A less than 03 ohms LA 80.05A less than .015 ohms LA 15.08 A less than .25 ohms LA $30-08 A$ less than 15 ohms Less than 1 millivolt rms with either terminal grounded.
Either positive or negative terminal may be grounded.

Less than $0.025 \% /{ }^{\circ} \mathrm{C}$
$100 \cdot 130$ VAC, 60 ± 0.3 cycle 3 LA $50.03 \mathrm{~A} \quad 360$ walts LA100-03A 680 watts LA200-03A 1225 watts ${ }^{4}$ LA 20-05A 390 watts ${ }^{4}$ LA 40-05A 710 watts ${ }^{4}$ LA 80-05A 1350 watts 4 LA 8-08A $\quad 415$ watts ${ }^{4}$ $\begin{array}{ll}\text { LA } & 15-08 A \\ 30.08 A & 760 \\ \text { watts } \\ 4\end{array}$ LA 30-08A 1450 watts ${ }^{4}$ This requency band amply covern seandard
commercial power lines in the Uniced Slocea and Conode: ither ined to full reating and input

and did sooco io toc price.

AMBIENT TEMPERATURE

AND DUTY CYCLE Continuous duty at full load up to
OVERLOAD PROTECTION:
Electrical Magnetic circuit breaker front panel mounted. Special transisto circuitry provides independent protection against transistor com plement overload. Fuses provide internal failure protection. Unit cannot be injured by short circuit or overload.
Thermal Thermostat, manual reset, rear of chassis. Thermal overload indicator light front panel.

METERS
CONTROLS:
DC Output Controls . Voltage selector switches and ad. justable vernier-control rear of chassis.
Power
Remote DC Vernier Provision for remote operation of DC vernier.
Provisio is min ing to minimize effect of power output leads on DC regulation output impedance and transient
PHYSICAL DATA: response.

Mounting
Size
LA 50.03 A , LA20.05A, LA $8.08 \mathrm{~A} \quad 31 / 2^{\prime \prime} \mathrm{H} \times 19^{n} \mathrm{~W} \times 14 \% \%^{\circ} \mathrm{D}$

 Weight
LA $50-03 \mathrm{~A}$, LA20-05A, LA $8-08 \mathrm{~A} 55 \mathrm{lb}$ Net 85 lb Ship. Wh. LA 100.03 A, LA $40-05 \mathrm{~A}$, LA $15-08 \mathrm{~A} ~ 100 \mathrm{lb}$ Net 130 lb Ship. Wi LA200-03A, LA80-05A, LA30-08A 140 lb Net 170 lb Ship. Wt. Panel Finish Black ripple enamel (standard). Special finishes available to cus tomers' specifications at moderate surcharge. Quotation upon request.

Range is -50 to +250 F with calibrations of 5 points and standard accuracies of $\pm 0.5 \mathrm{~F}$. For solid and liquid temperature measurement in telemetering and computer uses, the R157 units weigh 2.5 g . Time constant is 2 sec nominal. Excitation is 5 ma .
Quantatron, Inc., Instrumentation Div., Dept. ED, Los Angeles, Calif.

HF Resistor

599

Offered in values to 1 meg , these wirewound units have an accuracy of 0.005%. Rise time is less than 0.2 usec and capacitance is less than 0.1 pf . Applications include use in digital computers.
Reon Resistor Corp., Dept. ED, 155 Saw Mill River Road, Yonkers, N. Y.

Straight Cable Plug 597

For $\mathbf{5 0 - o h m}$ cables, type 6000 provides screw-on connection with cable and bulkhead jacks, bulkhead receptacles, cable feedthroughs and printed wiring receptacles. Crimping of connection is done with standard crimping tool.
Sealectro Corp., Dept. ED, 610 Fayette Ave., Mamaroneck, N. Y.
\& CIRCLE 70 on reader-service card

! In PRECISION POTENTIOMETERS:
if it's news, expect it first from IRC

EXPOSED...a reliable square trimmer design set it...forget it

Supertor shock and vibration characteristice made possible by an exclusive selflocking, anti-backlash gear. Once you set IRC's new $1 / 2$ " square Circuitrim, forget it. The square trimmer remains at its set position even under conditions as severe as MIL-E-5272A, Procedure 1 vibration and MIL Standard 202 Method 202 shock test. supertor mumidity characterlatice . . . pressure seals around leads and the drive screw make a lasting moisture barrier. Potting compound won't get in, silicone lubricant can't ooze out, even at the temperature extremes of dip soldering.
superior meehanical design... fewer parts and inherently less noise. Rotation stops and slip clutch keep wiper from

COMPLETE LINE OF PRECISION POTENTIOMETERS Standard Single and Multi-Turn. Moisture-Sealed and High Temperature - Hermetically Sealed • Servo-Potentiometer• REVODEX 10 -turn Dials
traveling off end of winding and prevent mechanical abuse 10 ohms to 50 K ohms, 1 watt. Teflon leads standard; printed circuit terminals available.

A HEW TRIMMER WITH INCREASED RELIACILITY ACHIEVED THROVQN SIMPLIFIED DESIGM.
Possesses the same quality electrical assembly as the ${ }^{1}{ }_{2}$ " square Circuitrim. This unique design has eliminated the complex mechanical linkage used for adjustment, thereby giving a quality reliable trimmer for your highly competitive applications. 10 ohms to 50 K ohms, 1 watt. $1 / 2^{\prime \prime}$ diameter.
Write for technical bulletins. International Resistance Company, 401 North Broad Street, Philadelphia 8, Pa.

Probing new dimensions in Electronics through Stackpole Research . . .

A MAJOR NEW FERRITE

 FOR TELE-COMMUNICATIONSPermeability: 1800

Temperature Constant: 1.8×10^{-6} per ${ }^{\circ} \mathrm{C}\left(-20^{\circ}\right.$ 10 $\left.120^{\circ} \mathrm{C}\right)$ Avg. Temperalure Coclikilen) (un-gapped cores):
0.29% per ${ }^{\circ}$ ($\left(-20^{\circ} 1085^{\circ} \mathrm{C}\right)$
$\mu \mathrm{O}$ (meril hador): Greater than 200,000 at 100 kc
\ldots. these in brief are the salient electrical characteristics of Stackpole Ceramag 501 -a remarkable new lowloss ferrite grade for the $\mathbf{1 0} \mathbf{k c}$ to $\mathbf{2 5 0} \mathbf{~ k c}$ range. Already revolutionizing the design of carrier-current communications filters, the material shows considerable promise for electronic switching cirmuits and others as well.

Cup cores of Ceramag 501 no larger than a quarter enable the design of filters with such narrow pass bands that message-handling capacities of communications systems can be increased from 2 to over 90 messages per channel. The extraordinary high gain of filters using Ceramag 501 combine with other inherent advan-tages-smaller size, no aging or life problems-for a significant contribution to system reliability.
But equally significant is the extremely close tolerances to which these cores are made. To achieve the exact air gap required, Ceramag 501 cups are supplied in matched pairs. Special Stackpole-designed mounting hardware and tuning slugs can also be supplied to sssure easy assembly and maximum electrical performance with your own coil designs.
Almost four years in development, Ceramag 501 represents another basic contribution based on magnetic ceramic research and engineering by the oldest commercial ferrite producer in the United Statea

Complete details on Ceramas 501 and the remarkable research facilities that made it poasible are available upon request to the Electronic Components Division, Stackpole Carton Company, St. Marys, Pa.

CRAMAGO FERRITE CORES - VARIABLE COMPOSITION RESISTORS - SLIDE \& SNAP SWITCHES FERRERAMAEMETO CERAMIC MAGNEIS FIO FIXED COMPOSITION CAPACITORS BRUSHES FOR ALL ROTATING ELECTRICAL EQUIPMENT
GRAPHITE DEARINGS SEAL RINGS ANODES ELECTRICAL CONTACTS

For airborne use. Model DA-20 differential dc amplifier has linearity better than $\pm 0.3 \%$ for 5 v maximum output. Input impedance is 100 K , common-mode rejection 160 db ; unit operates from unregulated 28 v dc. Gain is varied between 100 and 500 . Volume is 10 cu in., weight 8 oz .

United ElectroDynamics, Inc., Customer Requirements Dept., Dept. ED, 210 Allendale Road, Pasadena, Calif.

Silicon Rubber

Tensile strength is 1.500 psi. Designated SE5504 U , this self-bonding silicone rubber is for use in shock mounts and oil seals. It can be bonded to stecl, chrome steel and stainless steel.
General Electric, Silicone Products Dept., Dept. ED, Waterford, N.Y.
PUA: $\$ 5.20$ per lb; from stock.

Surge Tester

For silicon rectifiers. Model 220 permits surge testing with currents continually adjustable from 25 to 6.30 amp peak. It has single half-wave sinusodial pulse output, sync and calibrated output monitor for oscilloscope display, and provision for sequential testing. Monitoring sensitivity is 1 mv per amp, accuracy within 1\%. Tester weighs 140 lb .
Wallson Associates, Inc., Dept. ED, 912.914
Westfield Ave., Elizabeth, N. J.
P\&A: $\$ 1,200$; delivery from stock.

Mail your subscription renewal today. Get every issue of ELECTRONIC DESIGN.

NEW from NSC

'CHECK THE SPEC.' 2 2N759A ${ }^{2 N 160 A}$

min. ${ }^{\text {VV Ceo }}$	60v	60v
min. BV Ebo	8 V	8 v
$\min . h_{f 0}\left(-55^{\circ} \mathrm{C}\right)$	25	50
min. $h_{10}(0.1 \mathrm{~mA})$	15	40
min. $h_{18}(1 \mathrm{ml})$	36	78
$\min . h_{10}(10 \mathrm{~mA})$	50	100
max. C_{06}	8	8
max. I ceo $\left(25^{\circ} \mathrm{C}\right)$	0.1as	0.140
max. $\left.\mathrm{ICBO}^{(150}{ }^{\circ} \mathrm{C}\right)$	10^a	10ma

2N756A SERIES ${ }_{\text {simgan }}^{\text {smea }}$ TRANSISTORS

Specifically designed for all small signal applications, NSC's 2N756A
series in the compact TO-18 package offers Higher Breakdown Voltages:
60 v collector-to-emitter for simplified circuit design; 8 v emitter-to-base eliminates diode protection requirements. Also features guaranteed Beta at three collector currents In the small signal range and also at $-55^{\circ} \mathrm{C}$. Write for detailed data.
 P. O. Box 443, Danbury, Conn. - Ploneer 3.7624 - TWX DANB $452 . U$

NEW PRODUCTS

Multi-Pole Relays

Rated at 10 amp . Available in 2, 3, or 4-pole double throw forms, Nyline relays may be equipped with coils for ac operation to 230 v max and dc to 115 v max. Contacts, rated at 10 amp , are selfaligning and self-cleaning.

Ward Leonard Electric Co., Dept. ED, Mount Vernon, N. Y

Silicon-Transistor Oscillator

Range is 15 to $\mathbf{1 2 5} \mathbf{k c}$. Crystal- and heater...Makes time with Atomic Accuracy

Solid State EW Timing Code

 Generator Uses Atomchron InputEpsco-West's new Model 6190 Time Code Generator is accurate, flexible, and reliable. In conformance with recommendations of the Interrange Instrument Group (IRIG), the Model 6190 generates a 36 bit 100 pps code, a 28 bit 2 pps code and a 20 bit 1 ppm code. Other outputs are available to drive digital printers, digital tape recorders, strip-chart recorders, oscillograph galvanometers, synchronizing signals and mixed tones of precision frequencies.
The EW Model 6190 is one of a complete line of solid state, modular time code equipment which includes time code generators, time code Iranslators, timing terminals, and universal tape search equipment.

Complese sechnical information on the Model 6190 Time Code Generasor is ready now. Call your nearby knowledgeable EpscoWest engineering represensative or address Depr. 36.

Advanced Circuitry Stems From Transistor Know-How

In the Model 6190, all pulse widths and timing are directly derived from the digital dividers and time accumulator by diode matrices. No one-shot circuits are used. Information is not transferred from one register to another. No "stub" counter chains are used. These design features provide absolute synchronism and minimum distortion. Modulation occurs precisely at the true positive going zero-axis point on the carrier.

Epsco-West It

240 E. PALAIS ROAD • ANAHEIM, CALIFORNIA

KEY SPECIFICATIONS

$100 \mathrm{kc}, \mathrm{l}$ rolt RMS, to impedance of 10,000 ohms. An internal
frequency standard may be supplied as optional equipment.
Outputs

1. Logic Output, 36 -bit paralied BCD (-12 v for binary "zero". Quolts for binary "one").
2. $20-\mathrm{bit}, 1 \mathrm{ppm}$ on 100 cps carrier, 1 hour time frame.
3. 28 -bit, 2 pps on 100 cps carrior, 1 minute fime frame,
4. 36 -bit, 100 pps on 1000 cps carrier, 1 socond time frame.
5. Three outputs of the $100 \mathrm{pps}, 2 \mathrm{pps}$ and 1 ppm modulation
pulses at 2 millismpero max. for driving galvanometera
6. Reay ciosure at $1 \mathrm{ppm}, 28-\mathrm{bit}, 2 \mathrm{pps}$ code, closure for pulse ourations
7. 1 pps at 1 wolt, synch puise, accessible front and rear,
8. 1 pps relay closure of 200 ms .
9. Mixed lones output: $100 \mathrm{kc}, 50 \mathrm{kc}, 25 \mathrm{kc}, 12.5 \mathrm{kc}, 625 \mathrm{kc}$, 3.125tc sine waves.

Elapsen-Time Rembe
399 days 23 hr . 59 min .59 sec.

Acewray

Dependent only on reference oscillator.
Size
19° wide by $101 / z^{\prime \prime}$ high $\times 18^{\circ}$ deep.

7

Adjustable Blower

Has 400 cfm output. Twin scrolls of this panelmounting blower can be rotated and set at any angle through 230 deg. Motor-rotor assembly may be reversed. Panel height is $8-3 / 4 \mathrm{in}$. for standard rack mounting. Construction is military quality. Designation is model D-1000.

Western Devices, Inc., Dept. ED, 600 W. Florence Ave., Inglewood 1, Calif.
PしA: $\$ 89.50$ ea, 14 days.

Miniature Computer Unit

The size of a cigarette pack, the TIMM is a threebit parallel adder containing 16 NOR modules. In typical use the unit needs 240 mw of power. It operates at 580 C . Input information consists of positive signals from a 15,000 -ohm source. Output is binary.

General Electric Co., Receiving Tube Dept., Dept ED. Owensboro, Ky

cincle io un meader-service card
ELECTRONIC DESIGN • May 10, 1961

These unique features show why Daystrom 341 Series Potentiometers have zero backlash and maximum resistance to shock and vibration.

Three things make these rotaries unique. (1) : our patented V-guide design which eliminates backlash. (2) : the use of our patented double wipers effectively doubles resolution. And (3): impossible to see with the naked eye, is the winding; the resistive element is wound tightly in a precision groove cut into the mandrel by a tiny diamond tool. As a result, each turn always stays securely in position, despite severe shock and vibration.--Only Daystrom 341 Series rotaries offer these features. Available in values from 1 K to 600 K , rated at 2.5 watts in still air, they are only $1 / 2 \prime$ in diameter and $l^{\prime \prime}$ iong, with or without our patented clutch for servo use. They meet or exceed all applicable MIL specs.--Start solving your potentiometer problems now : contact your Daystrom Representative (or the factory) for more information on specifications, prices, fast delivery.

DAYSTROM, INCORPORATED
POTENTIOMETER DIVISION
archeald, pennsylvania. los angeles, california

When TIROS, the first Weather acy and reliability of the LaborSatellite, was launched, it shed atory's Control Panel.
new light on the world's weather McLean cooling equipment was conditions by transmitting TV selected for this critical project pictures to ground stations because McLean is the leader in around the globe. And back at the field of cooling sensitive the U.S. Army's ground readout electronic systems. The company station in Fort Monmouth, New is the largest supplier of packJersey, McLean cooling equip- aged cooling equipment. Choose ment was very much in the pic- from over 100 models in various ture, contributing to the accur- panel heights and CFM's.

Also a complete line of fractional horsepower motors

Mciean enginering LABORATORIES
World Leoder in Peckaged Cooling

NEW PRODUCTS

Load Sensor

Monitors motor duty. Used with a clip-on probe or current transformer connected to 1 lead of a motor, the Load Sensor will distinguish between no load and partial or full load. Output spdt relay can operate a counter, pen recorder, or running time meter. Sensitivity is 60 ma , maximum signal 100 amp . Relay circuit is monitored by panel lamps.
Trott Electronics, Inc., Dept. ED, 412 Smith St., Rochester 8, N. Y.

Servo Amplifier

In small package. Model 500 miniature, solid-state servo amplifier provides 3.5 w to drive a centertapped size 11 servo motor. Package is $1 \times 1 \times 1-3 / 16$ in. max. Gain is 2,500 , stability $\pm 3 \mathrm{db}$ from -65 C to $+125 \mathrm{C}, \pm 2 \mathrm{db}$ from -35 C to +125 C . Input impedances of 10,000 ohms to $1 / 2 \mathrm{meg}$ are available; life exceeds 1,000 hours.
White Avionics Corp., Dept. ED, Terminal Road, Plainview, L. I., N.Y.
Availability: 1 to 2 weeks.

Shielded Tubing

For rf cables. Type SH shielded zipper tubing has 1 -mil aluminum foil laminated to vinyl-impregnated glass cloth. Braid is provided for grounding the shield. The flexible tubing is easily opened and closed, or may be permanently sealed if desired.

The Zippertubing Co., Dept. ED, 13000 S. Broadway, Los Angeles 61, Calif.

ELECTRON TUBE NEWS ...from SYLVANIA

Design

BIG TUBE performance into your printed circuit boards...

NEM SYLYANIA 9-TG TYPES:

Improve tube performance! Increase chassis efficiency! Extend tube life! Reduce equipment coses! Sylvania-originated 9-T9 type tubes can help you achieve all four vital design requirements. Here's how: 9-T9 enables the use of large lube structures capable of high plate dissipation in printed circuit designs. Sylvania 9-T9 eliminates the octal base, uses conventional T-6 $1 / 2$ sockets - improves volumetric efficiency and reduces socket costs.

9-T9 Types for Vertical Deflection Oscillator-Amplifier Service 6/10EW7, dissimilar double-triode . . . triode \# 1: mu of 17.5; triode \#2: 10 watts plate dissipation. 6/17HC8, triode-pentodes . . . triode section: mu of 68; high perveance beam power pentode: 11 watts plate dissipation.
6/10/13F07,dissimilar double-triodes...triode \# 1 : mu of 68 ; triode \#2: 10 watts plate dissipation.

9-T9 Beam Power Pentodes for Audio Amplifier Applications $66 C 5$. . . for quantity-produced hi-fi equipment: features high power sensitivity. In Class A1 it delivers 2.1W output with a B+ voltage of 110 V . Electrically similar to octal-based 6 DG6GT. 66 M5 ... delivers 43 W output in Class AB_{1} pushpull service, with total distortion of only 1.5%. In ultra-linear circuits it delivers 32W with a B+ supply of 400 V . Similar to octal-based 7591 . 7695 ... features exceptionally high power sensitivity. Offers 4.5 W output with a $\mathrm{B}+$ supply of only 140 V . Utilizes 50 V heater. Plate dissipation is 16 W .7754 is 6.3 V version of 7695 .
Examine the design advantages of 9-T9 types with your Sylvania Sales Engineer. Or, for data on specific types, write Electronic Tubes Division, Sylvania Electric Products Inc., Dept. E, 1100 Main Street, Buffialo 9, New York.

MICROWAVE DEVICE NEWS from SYIVANIA

NEW! GRIDDED TWT’s for PULSED or CW operation in S band frequencies

Designed for Airborne ECM

Sylvania TW-956L, TW-4002M are PPM-focused, magnetically shielded, weigh only 4 lbs., are just $15^{\prime \prime}$ long, $1.4^{\prime \prime}$ in diameter, temperature compensated for -65° to $+72^{\circ} \mathrm{C}$.
Utilizing a unique TWT design incorporating grids, both types exhibit sharp c!ttoff characteristics. They feature relatively flat frequency response over the full $2.0-4.0 \mathrm{kMc}$ frequency range.
TW-956L is capable of 2 W CW saturated power output. TW-4002M features CW saturated power output of 10 mW . Both types can be provided with virtually any mounting.
For full data on these types contact your Sylvania Sales Engineer, or write Electronic Tubes Division, Sylvania Electric Products Inc., Dept. MDO-E, 1100 Main St., Buffalo 9, New York.

FIRST DC BLOCK COVERING 2.5 TO 10.000 MC
Sylvania SB-100, widehand coaxial device providing dc and low frequency isolation, features low VSWR of 1.3: I or less over its rated frequency range and maximum insertion loss of 0.2 db . CW power rating is 100 W . peak power is 2 KW . voltage isolation of 2 KV V
dc. SB-100 offers excellent stability dc. SB- 100 offers excellent stability over ia
temperature range of -50° to $+100^{\circ} \mathrm{C}$. It is temperature range of -50° to $+100^{\circ} \mathrm{C}$. It is available with type N connectors. Soon to be available are the SB-101 having BNC con-
nectors and the SB-102 featuring TNC nectors and
connectors.

AiResearch integrated environmental conditioning of aircraft fire control systems achieves high effectiveness while reducing space and weight requirements.

Representative of AiResearch progress is this air-to-air environmental conditioning package which uses the integral heat exchanger and cold plate cooling unit as the base and mounting frame of the pressurized enclosure for the fire control system transmitter. Net weight of this unit is 9.5 lb . with a heat rejection of 425 watts.

This example illustrates the important economies which can be achieved when AiResearch is contacted early in the design stage of electronic systems.

Environmental conditioning equipment has been produced for the following electronic systems: Detection . Communication - Control •Ground Support Guidance
Write for literature today.

CIRCLE 83 ON READER-SERVICE CARD < CIRCLE A2 ON READER-SERVICE CARD

Spade and Ring Terminals

Available in chain form. Spade and ring terminals designed to accommodate a wide range of wire and insulation sizes are available in chain form. Brass or tinned-brass terminals are in three crimp styles: with insulation support; without insulation support; with an insulation pierce crimp. Insulation ranges are from 0.035 to 0.110 in . and wire ranges are from 20 to 27. A machine for rapid, semiautomatic crimping of all terminals is adaptable to production line setups. Skilled operators are not needed.
Malco Manufacturing Co., Dept. ED, 4025 W. Lake St., Chicago 24, Ill.

Telemetry Filiers

666
Measure $1 \times 2 \times 4 \mathrm{in}$. A series of passive telemetry filters designed for application with fm discriminators. Networks are constructed to minimize time delay variations and maximize rejection of adjacent channels. All standard IRIG telemetry channels are packaged in cases approximately $1 \times 2 \times$ 4 in.

PCA Electronics, Inc., Dept. ED, 16799 Schoenborn St., Sepulveda, Calif.

Temperafure Confroller
646

With digital set and display. Platinum resistance temperature transducer is used in the model 4050 Digitrol, a digital, set-point, on-off temperature controller. Range is 0 to $2,000 \mathrm{~F}$; output is a set of relay contacts rated at 2 to $15 \mathrm{amp}, 115 \mathrm{v} \mathrm{ac}$. . Temperature differential is less than $2.5 \mathbf{F}$ over the entire range, repeatability $\pm 2.5 \mathrm{~F}$ under greatest line voltage and temperature variation. Resolution is $\pm 0.5 \mathrm{~F}$. Case size is $7 \times 5 \times 4 \mathrm{in}$.
Winsco Instruments ब Controls Co., Dept. ED 11789 W. Pico Blvd., Los Angeles 64, Calif.

If you want ELECTRONIC DESIGN to reach you without interruption mail your renewal form now!
the pressure's on for '61

MULTIStage BLOWER

60 cps or 400 cps 1ϕ or ${ }^{\phi} \phi$
To 440 Volts
$10^{\circ 0} 0.0$. by lengths up to $14^{\prime \prime}$
Ambient Range: $\mathbf{- 5 5 ^ { \circ }}+85^{\circ} \mathrm{C}$
Commercial or Military
MULTISTAGE BLOWER 60 cps - 6 Stages

When engineering specifications require continuous duty and quiet long life, Air Marine offers multistage blowers for low volume, higher pressure applications to 1 psi with air delivery to 100 CFM. Featured is long life with low noise. Where high pressure is required or on such vacuum applications as tape retention, the Air-Marine multistage blowers are the efficient answer.

Our field engineers will gladly assist you in the selection
and application of motors, blowers or fans.
Air Marine motors, blowers and fans have been designed and tested to meet the specifications of both the military and industry.

CIRCLE BA ON READER-SERVICE CARD

GENERAL ELECTRIC INDUCTROL* REGULATORS PROVIDE . .

Precise, automatic voltage control for Free World's largest radar installation

Automatic $\pm 1 \%$ accuracy ... stepless control... maximum reliability. These are just some of the voltagecontrol requirements for the U.S. Air Force's giant Ballistic Missile Early Warning System (BMEWS). General Electric Inductrol regulators meet them all in providing precise voltage control for both the BMEWS high-voltage transmitter and receiver power supplies.
INDUCTROL REGULATORS offer you these advantages, too, for a wide variety of applications-including radar, communications equipment, rectifiers, computers, laboratory equipment and many others. You also benefit from these other important Inductrol regulator features: drift-free percent efficiency; load, power-factor and frequency compensation; no harmful waveform distortion; and rugged compact design.

RELIABILITY is inherent in the simple induction principle of General Electric's Inductrol regulator design. There are General Electric's Inductrol regulator design. There are no tubes to replace, no sliding brushes or contacts to wear is essentially maintenance-free.
FOR MORE INFORMATION, contact your nearby G-E Sales Office, or write General Electric Company, Section 457-04, Schenectady 5, N. Y. Voltage Regulator Products Section Pittsfield, Mass.

* Registered trade-mark of General Electric Co.

Progress /s Our Most Impontant Product GENERAL ELECTRIC

NEW PRODUCTS

Volimeter

Transistorized and portable. Model TR voltmeter has 11 ranges from 0.003 to 300 v full scale. Decibel range is -50 to +50 , in $10-\mathrm{db}$ steps. Accuracy is $\pm 3 \%$ of full scale, 50 cps to 800 kc , and $\pm 5 \%, 30 \mathrm{cps}$ to 1 mc . Weight is 2 lb . The unit is battery powered.
Stewart Brothers, Div. of Instrument Laboratories, Dept. ED, 315 W Walton Place, Chicago 10, III. Price: $\$ 245$ fob Chicago

Logic Modules

For computer applications. Three series of digital logic modules include: collector gated series 1200; general purpose series 2100; and the NOR NAND 3000 series. Series $12(\mathcal{K})$ is for airborne and ground equipment use with frequency range to 200 kc and temperature range of -62 to 100 C Series 2100 is for large load-handling use and has an operating temperature range of 0 to +65 C and frequency response of 200 kc . The 3000) series is a compatible clocked flip-flop with temperature range of 0 to 5.5 C and frequency response of 100 kc .

Computer Techniques, Inc., Dept. ED, 3300 Northern Blid., Long Island City, N.Y.
Pde A: $\$ 5$ to $\$ 20$ in production yuantities; two weeks.

HF Transceiver

470
For airborne uses rexpuiring highpower and long-range communications, type HC-101 consists of a receiver-transmitter group and a single sideband converter. In transmitting, it changes an audio signal to a single sideband, suppressed carrier or compatible am signal with an if of 1.75 mc.

Hughes Aircraft Co., Dept. ED, P. O. Box 90-902, Los Angeles 45, Calif.
PUA: 60 days.

Specify the new Amperex. P•A•D•T 40 the 2 timesfaster PNP Germanium Switching Transistor

* $\mathrm{U}=\frac{1}{\text { nanoseconds } \times \text { pennies }}$ Right from the sketch-pad stage, plan your computer switching circuits with the new PADT. 40 . \% The extreme speed and efficient design of the PADT- 40 gives more U (usefulness factor) and lower cost x switching time. This results in fewer transistors to buy, less complicated circuits to design, and the elimination of many cosily components because of multifunction circuit usage. But speed, of course,
is only one of the cost-and-production advantages inherent in the PADT-AO; RELIABILITY. as only the revolutionary Post Alloy Diffusion Technique can provide, is another; AVAllABiluty, as only the mass-production tech--niques employed at the new Amperex plant in Slatersville, R. I., can provide, is still another; LOW PRICES (no higher than for low-speed transistors)... plus INTERCHANGEABILITY with many conventional mesa Iransistors, round out our 'package'. Yes, the new Amperex PADT-40 is truly worth specifying . . . now 1

High Speed. plus...
MECHANCAL RUGGEDNESS - guaranteed by MECHANICAL RUGGEDNESS - Ruaranteed by The onlv process that combines the best quall
ties of both the allov and the difusion methods.
As As a resulf. the
tion and shock.
PADT RELIABILITY - Hermetically sealed in a standard TO-18 case. the PADT-40 has a deen diffused and extremely thin active base region. As aresult. the here and swiching time are virtually independent of surface effects and temperature changes.
A Rugked. mechanically reliable eutectic

- solaer bed ant
dissipetion
dissipetion altachment for rood heat
c LonR palh
- Giold doped for high speed
- Extremely high cuf-off frequency
- Extremely high cut-off frequency
High Beta
Low resistivity germaniur

SWITCHING TIME
unduding Rise.
Fall, Delay and Storage ... 130 MANOSECONDS!

PNP Germanium Switching Transistor

NOW AVAILABLE FROM THESE

AMD OTMER LEADING
INDUSTRIAL ELECTRONICS
SAVE TIME AND MONEY right from the start

NEW PRODUCTS

Decade Inductors

For experimental work. The type 850 W inductor boxes are available in four standard models with 10 steps of $0.001,0.01,0.1$, and 1 h , respectively. They can be connected in series for a total of 11,110 steps up to 11.11 h . The inductors are used for work in the 150 to $20,000 \mathrm{cps}$ range. Tolerances of $\pm 1 \%$ and $\pm 2 \%$ are offered.
Special Products Div., Sprague Electric Co., Dept. ED. North Adams, Mass.

Test Chamber

High and low temperatures. Bench model 1507 "Hi-Lo" chamber tests or conditions components between -100 and +400 F , within 1 deg . It also offers rapid drop to -100 F . The unit can be provided with a program recorder-controller. It can be equipped with dual timers for automatic cycling. Chamber is $22 \times 18 \times 20 \mathrm{in}$. high.
The Electric Hotpack Co., Inc., Dept. ED, Cottman Ave. at Melrose, Philadelphia, Pa.

Thermionic Converter

476
Output is 10 w . This sealed-off cesium vapor device has an integral radiator and reservoir. It offers 168 hr of steady state operation. Power output of 2.4 w per sq cm and efficiency of 11% are possible at a cathode temperature of $1,300 \mathrm{C}$.
General Electric Co., Dept ED. Schenectady 5, N. Y.

New MADT \& Epitaxial Planar

CBS Electronics 0pens $\$ 5$ Million Engineering and Production Facility

In modern architecture, form fol lows function.

This concept is dramatically

Diffusion Furnaces shown here process thin epitaxial layers of high-resistivity material for CBS planar transistors.

Close cooperation between CBS Electronics and CBS Laboratories is helping to shape the future of solidstate technology through the CBS microelectronics program. Under way for the past two years, this program concentrates on basic approaches to thin-film deposition on inert substrates. It stresses also the development of microminiature devices featuring increased packing densities and reduced power levels for use in compact computers.

Learn about present and future semiconductor advances coming from the Lowell Progress Center. Investigate how the broad capabilities of CBS Electronics can help you achieve your solid-state objectives. Write today to CBS Electronics, Semiconductor Operations, Lowell, Massachusetts.

Semiconductor Progress Center

FM Transmitters

In highly compact designs. New developments in these transmitters provide space savings up to 45%. The "Add-A-Unit" design permits the station operator to expand equipment from 250 w to 20 hw , as required. The units also provide for multiplexing with $30-$ to $15,000-\mathrm{cps}$ bandpass on both main and subchannel for $\mathrm{fm} / \mathrm{fm}$ stereo broadcast. Another feature makes it possible to bypass any amplifier at any time.
Standard Electronics, Dept. ED, Rt.
524, Lakewood Road, Farmingdale.
N.J.

Lineal Switches

Life is $\mathbf{5 0 , 0 0 0 , 0 0 0}$ cycles. Units have no measurable contact resistance. Operating temperature range is -60 to +250 F . Each of 16 contact arrangements is offered in four different coil voltages. Coils are 6, 12, and 24 32 v ac, and 115 v dc .
Elotec Corp., Dept. ED, 1425 N. Lidcombe, El Monte, Calif. Availability: From stock.

Cable Tester

Is tape-programed. Automatic cable tester model LA-350 is designed to test complex assemblies in or out of circuit. The unit tests continuity and hi-pot, and measures resistance, voltage, and impedance. Parameters are programed by binary-coded punched tape. A single tester provides from 256 to 65,536 test points.
Lavoie Laboratories, Inc., Dept.
ED, Morganville, N. J.

- circle ba on reader-service caro

TASK FORCES

FAST RESPONSE!

Three regional amphenol Connector Divisions offer industry a new kind of service. Each Division is a fast-response facility, staffed by creative engineering and production specialists. equipped to meet any requirement in interconnecting devices and assemblies. Your needs give these technical task forces their directives on design, prototypes and delivery. And delivery is the fastest ever available!

If you are in a hurry, call AMPHENOL!

AMPHENOL-WESTERN CONNECTOR DIVISION 9201 Independence Ave. Chatsworth. California Telephone: Diamond 1-0710 TWX: CNPK-5406

AMPHENOL-MIDWESTERN CONNECTOR DIVISION 2837 South 25th Avenue Broadview, lllinois Telephone: COlumbus 1.200 TWX: MAY-1192

AMPHENOL-EASTERN CONNECTOR DIVISION Fair Lawn Industrial Park Fair Lawn, New Jersey Telephone: SWarthmore 1.0303

AMPHENOL CONNECTOR DIVISION-CENTRAL OPER.
ATIONS supports its three regional Divisions with natiunwide engineering and manufacturing service.

NEW PRODUCTS

Battery-powered Iransistor unit. Model TO oscillator has a 6:1 knob ratio, for accurate setting. Frequency span is 5.5 cps to 600 kc in five bands. Dial span is $10: 1$. Maximum output voltage is 5 v into 600 ohms. Voltage stability is less than 1%; frequency sta bility is instantaneous and longtime less than 2%. Weight with batteries is 4 lb .

Stewart Brothers, Div. of Instrument Laboratories, Dept. ED, 315 W Walton Place, Chicago 10, III.
Price: $\$ 2.50$ fob Chicago.

Ceramic Capacitor

With axial leads. Ceramic capacitor model VK is made in 3 sizes, the smallest measuring $0.12 \times 0.12 \times 0.060$ in. Axial lead design makes units adaptable to modular packaging. Cold-coated Dumet leads are weldable or solderable to within 0.030 in . of body. Made in values from 10 to $10,000 \mathrm{pf}$, the capacitors are coated for environmental protection.
Vitramon, Inc., Dept. ED, Box 544, Bridgeport 1, Conn.

Explosive Tester

For missile-launch checkout and other uses, the IRB-111 impulse resistance bridge measures circuit resistance to determine if the explosive system will work. A single sensing pulse is applied for 1 msec . No more than four pulses can be rcleased per second. Resistance is read at a $\pm 2 \%$ or ± 0.02-ohm accuracy.

Fleming Iudustries, Inc., Dept. EI), 243:3 Moreton St., Torrance, Calif. < circle so on reader-service caro

For precision applications, these devices have outside diameters of $1 / 4$ to $5 / 8 \mathrm{in}$. and face widths of 0.1496 to 0.196 in . A shielded ABEC 7 tolerance ball bearing is fitted on a concentric ground shaft.

PIC Design Corp., Dept. ED. 477 Atlantic Ave., E. Hockaway, L.I.. N. Y.

Acailability: From stock

High-Power Resistors 457
Handle up to 6 kw . Low-reactance film resistors type HL are made in 5 models, 12 to 72 in . long, with ac power ratings at 2.5 C to $2.50,500$, $1,0003,000$ and $6,000 \mathrm{w}$. Forcedair coorling will triple ratings. Values range from 20 to 100 ohms for continuous film. 70 ohms to 2.4 meg for spiraled types.
Corning Class Works, Public Relations Dept.. Dept. ED, Corning, N. Y.

Regulated Power Supply 664
Supply is $\mathbf{0}$ to $\mathbf{6 0 0} \mathbf{v}$ dc. Morlel RTS601 regulated power supply is rated at 0 to 600 v de at 1 -amp max. Regulation for input line voltage variations of $\pm 10 \%$ is $\pm 0.0 .5 \%$ or $\pm 20 \mathrm{mv}$, whichever is greater. Ripple is less than $1-\mathrm{mv}$ rms. The unit has remote programing (850 ohms perv) and remote sensing.

PRL Electronics, Inc., Dept. ED, 232 Westcott Drive: Rahway, N.J. P\&A: \$854 for rack mounting unit; 21 to 28 days.

Silicone Rubber Tape

Has high tensile strength. Silicone rubber tape ES 5215 is made of 2 -mil glass cloth with 3 mils of unvulcanized silicon rubber on 1 side. Tensile strength is 70 lb per in. width. When vulcanized, tape bonds to homogeneous mass with excellent electrical properties and moisture resistance.
Permacel, Dept. ED, New Brunswick, N. J.

CIRCLE 90 ON READER-SERVICE CARD

FAGTOR

Highest Registered Rating

Now Available from G.E.

In an Air-cooled Tube

The latest addition to General Electric's expanding line of hydrogen thyratrons is now available for pulse applications such as radar modulators and linear accelerators. Developed under U. S. Army Signal Corps contract, the GL-7890 achieves an anode dissipation factor of 55×10^{9} and has a peak anode voltage rating of 40 kv . The tube can now be operated water-cooled or air-cooled at full ratinge. COMING: INCREASED CURRENT AND VOLTAGE CAPACITY

Now in the late stages of development, the Z-5212 will further increase voltage and current-carrying capacity in hydrogen thyratrons. Peak anode voltage rating for this tube will be 50 kv with an average current rating of 8 amp . General Electric's Power Tube Department will welcome your requests for technical data on the Z-5212.

temperature indicatimg device on cl-7390a

The first high-power ceramic-metal hydrogen thyratron, General Electric's GL7390, is now being built to MIL specifications. A modified version of this tube, the GL7390 A , is equipped with an integral anode temperature indicator for convenient readings. Both the GL-7390 and the GL-7390A have ratings of $33-\mathrm{kv}$ peak anode voltage and 4 -amp average current.

CL-7390A

MYDROGEN THYRATRON BULLETIN AVAILABLE

 For a comprehensive analysis of the theory and application of hydrogen thyratrons, write to the Power Tube Department, General Electric Company, Schenectady, N. Y. Ask for Bulletin PT-49. To order, or obtain more information on hydrogen thyratrons, contact your nearest Power Tube sales office. Phone num- bers are listed below.

265-09-9545-8481-36
POWER TUBE DEPARTMENT

GENERAL (GIGCTRIC

TELEPHONE TODAY-Syracuso, OL 2-5102 . . . CIIfton, M. I., GR 3-6387
. . Now York City, WI 7-4065 . . Washington, D. C., EX 3.3600 . . Chicago, i. . Now York City, WI 7-4065 ... Washington, D. C., EX 3.3600 ... Chicago, SP 7-1600 ... Dayton, BA 3.7151 Ordando, Fla., GA 4-6280

We asked engineers, archifects, designers and drafismen this question: "What irritates you most in a drawing pencil?"

A.W.FABER-CASTELL

Pencll Co., Inc., Newark 3, N. J.
Our Bicomennial reen-i701-1901 200 yoare of unimertuplod manulociuring arporionco

Many of them soid, " A degree that suddenly changes its character. You start your draw ing with a $2 H$. When is wears out, you reach for another $2 H$ - but this one draws like a 3 H."

This can never happen with Castell. Its grading is so rigidly controlled, you can go back to your unfinished drawing months or even years - later, without any percep
tible change in line or color. It produces the same image density and sharpness of detail. No peas in a pod can match the consistent uniformity of Castell's superb 20 degrees, 8 B to 10 H . Draws perfectly 20 degrees, 8 B to 10 H . Draws perfectly On all surfaces, including Cronar and
Mybar base films. Join the masters of Mour profession. Buy Castell, call your your profession. Buy Castell, call you
dealer today.
\# 930056 Leckllie Pel-A-Grade Load Holder with no-slip, functional grip that's kind to tired fingers Bull dog elutch E Unique degree indicater Corries 2 -yoor guarontee - Castell Drawing leads $\# 9030$, identical in grade ond quality with world-lomous Castell drawing pencil Usoble in all hondord holders, bul perfocl for locthite a 781010 H , ond a holeidoscope of colors

CIRCLE 91 ON READER-SERVICE CARD

NEW PRODUCTS

Snap-Action Relay

At low cost. Plug-in, enclosed 2pdt snap-action relay model SS120 is simple and inexpensive. Contacts are each rated at $10 \mathrm{amp}, 120 \mathrm{v} \mathrm{ac}, 5 \mathrm{amp}$, 240 vac , and $1 / 3 \mathrm{hp}$ at 120 or 240 vac . Size, including nylon enclosure, is $2-3 / 16 \times 1-1 / 2 \times 1-13 / 16$ in . Octal plug is standard.

Warco Industries, Inc., Dept. ED, 569 Melville, St. Louis 30. Mo.

Power Control

For electric furnace. Saturable reactor and power transformer is packaged with meters and manual control; automatic control is optional. Typical unit has input $220 \mathrm{v}, 60 \mathrm{cps}$, 1 phase; output, $40 \mathrm{v}, 500$ amp, 1 to 20 kva control range. Models are available to 100 kva . Size is $35 \times 24 \times 32$ in.

Light Electric Corp., Dept. ED, 212 Lackawanna Ave., Newark 4, N.J.

Low-Speed Generator

Unit delivers 0.5 kva , three phase, 60 cps at 1,200 rpm . Designated the Nobrush, the unit has high overload capacity and short-circuit protection. It measures $6.5 \times 10.5 \times 9 \mathrm{in}$. and weighs 50 lb .

Georator Corp., Dept. ED, Manassas, Va.

Tantalum Capacitors

Units resist shock and vibration. They are sintered anode liquid-electrolyte type. Uses are in missiles and aircraft. Type TZ operates from -55 to +85 C at full rated voltage; type TZH, from -5.5 to +125 C. Capacitance is 1.7 to 330 uf at 6 to 126 v dc in type TZ or 4 to $85 v$ in type TZH.
Cornell-Dubilier Electronics Div., Federal Pacific Electric Co., Dept. ED, Providence Highway, Norwood, Mass.

Precision Resistors

668
With tolerance to $\pm \mathbf{0 . 0 5 \%}$. Made in $1 / 8$-, 1/4-, and $1 / 2-\mathrm{w}$ sizes, Metohm resistor tolerance is $\pm 1 \%$ standard, with $\pm 0.05 \%$ available. Standard temperature coefficients range from $\pm 150 \mathrm{ppm}$ down to ppm over a range of -55 to +165 C . The metal-film resistors meet requirements of MIL-R-10509C
Ward Leonard Electric Co., Dept. EI), Mount Vernon, N. Y.

Magnetic Clutches and Brakes

Output torque is $80 \mathrm{oz}-\mathrm{in} . \mathrm{min}$. Series 11 , size 11 units consume 3 w at 24 v dc. They arc suitable for computer, control and servo positioning systems. Backlash and endplay are nonexistent. Slip rings are eliminated.
Guidance Controls Corp., Dept. ED, 110 Duffy Ave., Hicksville, L. I., N. Y.

Temperature Probe

670
For measurement in gases. Type TD temperature probes are made for accurate measurement in gases at velocities of 100 to $2,000 \mathrm{ft}$ per sec , temperatures to 500 F . Thermocouple elements can be furnished in iron-constantan, copper-constantan, and chromelalumel wires. Element is coiled to expose maximum surface to the gas. Bled slot area is varied to give best accuracy at mean flow velocity.

United Sensor \& Control Corp., Dept. ED, P.O. Box 149, Glastonbury, Conn.

Specify Crucible Charges of Deposited Hyper-Pure Silicon

Free brochure - "Hyper-Pure Devices." W'rite Dept. 3317a.

Pre-packaged single piece crucible charges in sizes and weights to meet the exact requirements of your Czochralski crystal growing equipment . . . are now available from Dow Corning.

Accurately Pre-ucighed, these single piece crucible charges assure easy handling . . . smallest surface area . . . highest purity . . . an exceptionally clean melt and a savings in crucible costs.

High Quality is inherent in Dow Corning crucible charges. The deposited polycrystalline silicon in these charges has never touched a mold. Result - highest purity.
This High Purity means consistently higher quality crystals - simplifies doping procedures - increases device yield. Typical resistivity of N-type crystals grown from Dow Corning prepackaged crucible charges is greater than 100 ohms centimeter for 80% of the crystal; maximum boron content, 0.3 parts per billion atoms; maximum donor impurity, 2.0 parts per billion.
Now You Specify the W'eight and Diameter, up to 38 mm (about $11 / 2^{\prime \prime}$), best suited for each crucible of your Czochralski crystal growing machines. Your crucible charges will be supplied in the appropriate length to provide the exact weight you require in just one piece.
Protective Packaging guards initial deposited purity right through crucible charging. Charges are individually wrapped in special cellophane, and sealed in airtight polyethylene envelopes - to assure untouchable purity.

Whatever your need - deposited silicon crucible charges; polycrystalline rod or chunk; high resistivity P.type single crystal rod; single crystal rod doped to your specifications - Dow Corning should lead your list of sources.

HYPER-PURE SILICON DIVISIȮN
Addrese: HEMLOCK, MICHIGAN

DOw Corning corporation
MIDLAND. MICHIGAN
atlanta moston chicaso cleveland dallas los aneeles new vomk washinoton, d.e CIRCLE 92 ON READER-SERVICE CARD

For electronic uses such as potting and encapsulating, 6-ce, $1: 2-\mathrm{cc}$ and $30-\mathrm{cc}$ size syringes are made of polyethylene. They emit the correct amount of material without starving, dripping or flooding and are especially useful in difficult to reach areas.
Philip Fishman Co., Dept. ED, 7 Cameron St. Wellesley 81, Mass.

Vinyl Sleeving

For electric-motor insulation and over transformer leads, Resinite Hi-Heat 105C, resists heat. fungus and oil. It is self-extinguishing in 5 sec. Tensile strength is 2.900 psi min; burst strength is 7.5 psi . Dielectric strength is 1,000 v per mil. Temperature range is +221 to -10 F .

The Borden Chemical Co., Dept. ED, 1 Clark St., North Andover, Mass.

Dynamic Force Gage

Sensitivity is $\mathbf{7}$ peak-mv per peak-lb. The stiffness is at least $2 \times 10^{7} \mathrm{lb}$-in. Frequency response is $\pm 5 \%$, 2 cps to $1 / 5$ resonance frequency with a $1 .(000)-\mathrm{meg}$ load and 5 cps to $1 / 5$ resonance frequency with a 100 -meg load. Designation is model 2016.
Endevco Corp., Dept. ED, 161 E. California Blud., Pasadena, Calit
P\&A: $\$ 425$; from stock after May 30.

Psychrometer

625
Using small thermistor beads as resistance eltments and living a built-in fan system, this device has a very rapid response time. It gives wet and dry bull) readings for relative humidity, absolute humidity, dew point and enthalpy in air and other gases. Atkins Technical, Inc., Dept. ED, 1276 W. Third St., Cleveland 13, Ohio.

Another
 Another example of Bendix capabilities in electronics:
 NEW "SUITCASE CONSOLE" BUILT BY BENDIX PROVIDES PORTABLE CONTROL CENTER FOR SUBMARINE COMMAND

This new console lets the submarine commander easily carry his command center to the bridge when the ship surfaces. All instruments needed for conning information and communications are in an 18-1b. package.
On the bridge, the console has a simple, plug-in connection with a single hull penetration replacing the several required by permanently installed controls. Since the "suitcase" is stowed below when the ship is submerged, the individual units cannot fail through flooding or
pressure. And, because the units don't need pressure-proofing. each is smaller, lighter and less expensive than conventional equipment.

Portsmouth Naval Shipyard developed and tested the system, and Scintilla Division of Bendix has manufactured and delivered several ship systems. Bendix has produced many types of cables and connectors for underwater applications, airborne and ground-based installations. If you have needs in these areas-write today for complete information.

Scintilla Division
SIDNEY, NEW YORK

 CIRCLE 94 ON READER-SERVICE CARD

NEW PRODUCTS

Single Sideband System 427

Rating is $\mathbf{1 0 0} \mathbf{w}$. Type SC-910 locks into any of 28,000 frequencies from 2 to 30 mc . It has digital tuning. It consists of a separate receiver, excite and power amplifier. Continuous wave, frequency-shift keying and in dependent sideband capability are offered.
Stromberg-Carlson, Div. of General Dynamics, Dept. ED, Rochester 3

Silicon-Junction Diodes 464

Quick-recovery types include 1 N 625 to 1N629, 1N645 to 1 N649 1N658 to 1N663, 1N676 to 1N679, 1N681 to 1N689, and 1N789 to 1N804. They are high-speed, high voltage units and are applicable for flip-flop, modulator, demodulator. de tector circuits, discriminator. clamping and gating.
Princeton Electronics Corp., Dept ED, P O. Box 127, Princeton, N. J

Multifunction Devices
For radio and TV receivers, the Compactron units include the 6FJ7 dissimilar double triode, the 6B10 duplex-diode twin triode, the 6K11 three-section triode and the 6AX3 damper diode. Two units can do the work of seven transistors and take up less space.
General Electric Co., Receiving Tube Dept., Dept. ED, Owensboro Ky.

Counting Shield

466
For radiation-counting use, mode A-500 is lined with $1 / 8-\mathrm{in}$. aluminum The shield screens the enclosure with 2-1/2 in. of iron on all sides. The iron used is free of cobalt 60 activity and is said to afford attenuation equal to 1.85 in . of lead.

Hamner Electronics Co., Inc., Dept ED, P. O. Box 531, Princeton, N. J.

Nanocircuits bring several important advantages to computer logic design, not the least of which is size reduction. This one packs six diodes (it could have been a diode-transistor combination) into a standard TO-5 case. Equally important in the General Instrument concept: only the active components (surface-passivated for stability) are fused to the common substrate. The diodes are not exposed to the heat of such loss-generating components as resistors and capacitors whose demands differ from those of the active elements. Not only is component reliability increased but, since the semiconductors are pre-selected from a 100%-tested standard product line, the designer can evaluate circuit reliability rather than that of individual components. This technique reduces the number of assembly and testing operations, so cost is lower, too. General Instrument also allows the logic designer the flexibility of transferring new or existing circuits, breadboarded with conventional components, directly into nanocircuits. Let us show you how.

NEW PRODUCTS

Telemetry Filter

Unit weighs 25 g and occupies 0.6 cu in . for $400-\mathrm{cps}$ application. It has a $3: 1$ shape factor for $15-\mathrm{db}$ attenuation. Standard impedance level is 10,070 ohms. Units are offered for all IRIG channels; they are suitable for airborne systems
Cienistron, Inc., Dept. ED. 6320 Arizona Circle, Los Angeles 45, Calif. Availability: Immediate.

Heterodyne Frequency

477

Meter

Range is 100 to $\mathbf{1 0 , 0 0 0} \mathrm{mc}$ for measurement; the unit generates 500 to 900 me and harmonics. Calibrator accuracy is 0.002% at 5 me and interpolation accuracy is 0.0 .3 . Input sellsitivity is 30 dbm at 500 mc and over, 5 dbm at 100 mc . Type is $5(44$. PRD Electronics, Inc., Dept. ED 202 Tillary St., Brooklyn 1,

Manual-Reset Thermostat 475
Rating is to 350 F at 2.5 amp resis. tive, 120 to 240 v ac. When an ursafe temperature is reached, a snap-acting disk opens the contacts. Current carrying parts are independent of the reset button, permitting the limiting of temperature if the button is acci dentally depressed. Type is WA-14.
Therm-O-Disc, Inc., Dept. ED Mansfield, Ohis,

Silicon Computer Diodes 461

Fast-recovery types 1N789 through 1N804 have low leakage. Enclosed in subminiature, hermetically sealed glas packages, the units stand severe en vironments. Also offered is type 1N643A 175-v diode for high-voltage high-speed computer applications.
Princeton Electronics Corp., Dept ED, P. O. Box 127, Princeton, N. J \& CIRCLE 97 ON READER-SERVICE CARD

A MAJOR ADVANCEMENT IN THE STATE-OF-THE-ART

* Ultra-fast dry developing pro. cess begins at the moment of record exposure.
\star Uniform frequency response from 0 to 8000 cps
- Sensitivities from $5.1 \mu \mathrm{a} /$ inch
- Records trace velocities 10 50,000"/ second
* Push button speed controls from 0.1 to $160^{\prime \prime} /$ second
* Recording paper $12^{\prime \prime} \times 400^{\prime}$
* Interchangeable direct writing and wet-process record magazines
* All indicators and controls located on front panel console

PLUS MANY OTHER NEW FEATURES

Request Bulletin CEI-321

(-

From The Home of Planned Pioneering
century
ELECTRONICS \& INSTRUMENTS, INC
 Serviced by Systems Engineering Offices of
Airsupply - Aero Engineering Company
in U S. A
vibro Meter Corporation, Fribourg, Swilzerlond Fice Eurode
circie 99 on reader-senvice caro ELECTRONIC DESIGN • May 10, 1961

DC Relay

For checking single sideband receivers, TT(--5) provides five pairs of almost distortion-free signals, crystal-controlled, in the 3 to 30 me range. Frequency differences between tone pairs is adjustable from 0 to 0.1% of mean frequency.
Panoramic Radio Products, Inc., Dept. ED. 520 S. Fulton Ave., Mount Vernon, N. Y.

Mylar Capacitors

624
Flat and round designs are offered. Type 32 M (round) replaces conventional tubular units, but takes less space. Type 3.3M (flat) is for terminalboard and printed-circuit use where thickness is important. Epoxy end scals are used.
Atlee Corp., Wesco Div., Dept. ED, 27 Olive St. Cirecnfield, Mass.

Occupies less than $1 / 2-\mathrm{cu}-\mathrm{in}$. of space. The MK suries miniature relay measures $51 / 64 \times 31 / 32 \times 5: 8$ in. and weighs 11 g . unenclosed. Three types of enclosures are available. Specifications are: contact arrangement, spdt and dpdt; duty cycle, continuous; contact rating. $1-\mathrm{amp}$ resistive, $0.6-\mathrm{amp}$ inductive, at 11.5 v ac; pull-in power, spelt, 0.75 w , dpdt, 1 w

Elgin National Watch Co., Electronic: Div D(pt. ED, 2435 N . Naomi St., Burbank, Calif

Cable Retractor

672
Is inexpensive. Designed to military specifications, low-cost cable retractor withstands environmental extremes and temperatures from -100 to +3.30 F . Solid-film lubricant is useel; expansion cord is stainless stecl. Retractor is made from cold-rolled steel. cadmium-plated and dipped in iridite. The versatile unit fits standard mounting systems.
Vent-Rak, Dept. 106, Dupt. EI). 52.5 S. Webster Indianapolis 19, Ind.

Tubes, properly shielded with IERC Heatdissipating Electron Tube Shields, instead of with harmful, obsolete JAN types, can extend tube life up to 12 times in new or retrofitted equipments.

For reliability and extended MTBF in your equipment, write for IERC's report, "Heatdissipating Electron Tube Shields and Their dissipating Electron Tube Shieds and Their Relation From it, you'll find the most efrective, practic way to reduce bulb temperatures, neulralize critical environmental conditions, minimize

IERCEN

International Electronic Research Corporation 135 West Magnolia Boulevard, Burbank, California
Foreign Manufacturers: Europelec, Paris, France. Garrard Mig. \& Eng. Co., Ltd., Swindon, England CIRCLE IOO ON READER-SERVICE CARD

2NEW sour stane

Model TR-20-225-260 me.

 Model TR-21-136-137 me.SILICON SEMI-CONDUCTORS are used throughout the circuits to provide high reliability performance over a wide range of environmental conditions.

A FULL 2 WATTS OF RF OUTPUT is achieved through use of a unique circuit design.

CRYSTAL CONTROLLED FREQUENCY STA. BILITY is $.01 \%$ or better over a wide temperafure range.

MODULAR PACKAGE DESIGN affords versatility for customer-designed systems . . . and conformity with the complete Dorsett-built line of "Twenty" series lelemetering components and systems.

For your telemetry requirements, conlact Dorsett. Your inquiries or specifications will receive a prompt reply.

Power Consumption is less than 17 Watts for 2 Watts Output.

SPECIFICATIONS

	TR. 20	TR.21
Frequency Outpur	225.260 me. 2.0 Watts minimum	136.137 me. 2.0 Walls minimum
modulation Renge	100 cycles to 100 KC	DC 1050 kC
Deviation Frequency Stobility	$\begin{aligned} & \pm 125 \mathrm{KC} \\ & .01 \%\left(20^{\circ} \mathrm{C}\right. \\ & 10+90^{\circ} \mathrm{C} .1 \end{aligned}$	$\begin{aligned} & \pm 75 \mathrm{KC} \\ & .01 \%\left(20^{\circ} \mathrm{C}\right. \\ & \left.10+90^{\circ} \mathrm{C} .\right) \end{aligned}$
Spurious Radiation \& RF Interference	Per MIL-I-26500	Pormill-1-26600
Distortion	less than 1\%	Less than 1\%
Oulpul Impedance	${ }^{50} 0 \mathrm{hrms}^{\text {a }}$	S0 ohms
Inpul Impedance	2800,000 ot losms	500.000 ohms $28 \mathrm{v.al}$ less
Requirements:	than 800 ma .	thon 450 ma .
Connector	Connon: DA. 11 CIP	Connon: DA.11CIP
Mounting	Two 6.32 caplive	Two 6.32 coptive
Size	$\begin{aligned} & 1.875^{\prime \prime} \text { wide; } \\ & 2.25^{\prime \prime} \text { high; } \\ & 3.50^{\prime \prime \prime} \text { long } \end{aligned}$	$\begin{aligned} & \text { 1.875""wide; } \\ & 2.25^{w "} \text { high; } \\ & 3.50^{w} \text { long } \end{aligned}$
Environmental: IIdentical on both TR. 20 \& TR-211	Altifude: Acceleration: Temperalure.	$\begin{aligned} & \text { Unlimitod } \\ & 50-6 \text { in ony plane } \\ & -40^{\circ} \mathrm{C} 10^{\circ} \mathrm{C} \\ & +90^{\circ} \mathrm{C} \end{aligned}$
	Vibration.	$\begin{gathered} 15 \mathrm{G}, 5510 \\ 2000 \text { cios. } \end{gathered}$
	Shock.	100 G for 11 milliseconds in any plane.

DORSETT ELECTRONICS, INC.
P. O. BOX 862 * NORMAN, OKLAHOMA * PHONE JE 4. 3750 CIRCLE 101 ON READER-SERVICE CARD

NEW PRODUCTS

Weight is 1.9 g . Height is $1-1 / 8 \mathrm{in}$. and diameter is $11 / 32 \mathrm{in}$. The unit is hermetically sealed, lowpower, and has low contact resistance. It performs well after long periods of inactivity.
General Electric Co., Wiring Device Dept., Dept. ED, Providence 7, R. I.

Transistor Probe

Range is $\mathbf{0}$ to $\mathbf{2 0} \mathbf{~ k c}$ for frequency of vibration and relative amplitudes. The device measures mechanical shaft rotation to $120,000 \mathrm{rpm}$. Operation is by remote sensing. Called model 219. A, it is suited for complexwave environmental tests.
OPTOmechanisms Inc.. Dept. ED. 216 E. Second St., Mineola, L.I., N. Y.
P心A: $\$ 112$ to $\$ 102$; from stock.

Impedance Testing Device

For measuring mechanical impedance, model 2110 incorporates three force transducers and three accelerometers. Nominal force sensitivity is 7 peak-mv per peak-lb and high nominal acceleration sensitivity is 80 peak-mv per peak.g. Frequency response is $\pm 5 \%, 2$ to $4,000 \mathrm{cps}$ with a $1,000-\mathrm{meg}$ load and 5 to $4,000 \mathrm{cps}$ with a $100-\mathrm{meg}$ load.

Endevco Corp., Dept. ED, 161 E. California Blvd., Pasadena, Calif.
PUA: $\$ 7.50$.

This is the time of our annual subscription renewal; Return your card to us.

ELECTRONIC DESIGN • May 10, 1961

Rated at 4 kva . Designed to simultaneously test 10 reels of wire, model K $3-4 \mathrm{Y}$ dielectric test set automatically disconnects faulty specimens. Rated at 0 to 3 kv rms and 4 kva , the set has continuously adjustable output voltage. Weight is 220 lb . Input is $115 \mathrm{v}, 6 \mathrm{cps}, 35 \mathrm{amp}$.

Peschel Electronics, Inc., Dept. ED. Patterson, N.Y.

P心A: $\$ 1,500$; 3 to 4 weeks.

Snap-Action Thermostal

Weighs 0.3 oz . A nonoverheating thermostat, the snap-action Dualstat has a temperature differential of 3 F or better. Current rating is 2 amp at 28 v , 150 w at 120 v ac or dc. The hermetically sealed device is preset up to 300 F
Valverde Laboratories, Dept. ED, 2.52 Lafayette St., New York 12, N. Y.
Price \& Availability: $\$ 1.5$ ca, 1 week.

Binary-fo-Decimal Converter

With in-line Nixie readout and internal storage, model 100 TBD is used with shaft-position digitizers. It displays up to 13 bits of information from voltage sources or contact closures. Display time is 0.2 to 6 sec .

Erie Pacific, Dept. ED, 12932 S. Weber Way, Hawthorne, Calif.

Power Relay

468
Life is $10,000,000$ operations at two operations per second with 50% dwell time. Rated load life is 100,000 operations at 14 operations per minute. Designated the PM series, these are 4 pdt units, rated at $115 \mathrm{v}, 50$ to 60 cps . Dimensions are $3-11 / 32 \times$ $2-41 / 64 \times 2-1 / 2 \mathrm{in}$.
Potter \& Brumfield, Div. of American Machine \& Foundry Co., Dept. ED, Princeton, Ind.

OAK ROTARY SOLENOIDS-Designing remote automatic positioning devices? Need a rugged, reliable remote actuator for master-slave incremental positioning, for cam lifts, clutches, brakes, or presettable counting devices? Then you should investigate Oak Rotary Solenoids. Despite their small size, they'll meet shock and vibration requirements of MIL-S-4040A. Stepping torque values range from 6.4 to 64 inchpounds depending upon angular stroke, temperature,
duty cycle, and amount of power used. Designed for intermittent DC operation, these custom-built units can be adapted to provide stepping angles of $25^{\circ}, 35^{\circ}$, 45° and 67.5° in right- or left-hand rotation.

Contact your local Oak sales representative to find out how Oak Rotary Solenoids can help you solve your remote actuation problems. Write for our free descrip. tive brochure or send a description and sketch of your circuit to our Applications Engineering department.

OAK MANUFACTURING CO.
CRYSTAL LAKE, IILINOIS • felephone Crystal Lake, 459-5000 OAK EIECTRONICS CORPORATION, ISubsidiary) Culver Cily, Colifornia
rotary and pushbutton switches - television and fm tuners - subassembues APPIIANCE CONTROIS CIRCIE CHOP ON READER-SERVICES CARD ROTARY SOLENOIDS - VIBRATORS

PRECISION SIZE 5 MOTORS NOW AVAILABLE FROM STOCK

Available for immediate delivery, these miniaturized Bendix ${ }^{\circledR}$ motors (type number CK 1066-40-A1) are designed for applications where space and weight requirements are at a minimum. So small that four can be packaged in a square inch, these motors are ideally suited for missile instrumentation and similar miniaturized applications. The motor has a tapered shaft; however, units may be obtained with other type shafts and with center tapped control windings.
TTRCAL MOTOR
CMAACCrauske

For information on inere motors.
or similar motors in slzes $8,10,11,15$,
20, and 28-write-

Eclipse-Pioneer Division Therboro, N..
 Eindif

NEW PRODUCTS

Torque Transducer

Uses strain gages. Torque transducer for sensing torque of any rotating device is available in ranges from 50%-in. to thousands of $\mathrm{lb}-\mathrm{in}$. Use of bonded strain gages eliminates all friction error sources. Ni slip rings are employed in the device.
Lebow Associates, Dept. ED, 14857 W. 11 Mile Road, Oak Park 37, Mich.

Insulating Tape

667
With high dielectric strength. Insulating fabric and tape 5 J 30 is a black, flexible, varnish-treated material composed of Dacron and glass fibers. Dielectric strength is $2,000 \mathrm{v}$ per mil. It conforms to irregular surfaces without need for bias weave, has improved heat and aging characteristics, good slip for tight wrap, and high tensile strength. Tape is made in 36 and i2 yd rolls, fabric in rolls 50 yd long and 36 in . wide.
Micarta Div., Westinghouse Corp., Dept. ED, Trafford, Pa.

Wirewound Potentiometer

400

For space applications. Linear translatory portenti ometer provides output voltage proportional to shaft displacement. All components are enclosed within a sealed housing; unit meets environmental requirements. Resolution is 0.1% full scale, linearity 0.2%. Lido Transducers, Dept. ED, 1970 Placentiai Costa Mesa, Calif.
$P \& A:$ On request; 30 to 4.5 days.

Tantalum Capacitor

669
Rated at 75 wvdc. Solid tantalum capacitors are available with rating of 75 wvdc. Unit is made in standard EIA capacitance values to $15 \mu \mathrm{f}$, at tolerances of $\pm 20 \%, \pm 10 \%$, and ± 5. The capacitors are hermetically sealed in the four case sizes specified in MIL-C-286.55A, and operate at temperatures ranging from -55 to +125 C
Kemet Co., Dept. ED, 11901 Madison Ave., Cleveland 1, Ohio

REPORT

.untin

AUTOSYN' SYNCHROS

Dependable In minierurizin
contrel elreulery

These Bendix ${ }^{(8)}$ size 5 Autosyn synchros are well suited to the and similar applications nequiring and similar applications requiring tion. Typical characteristics are listed below. For additional information, including comprehensive data on transmitter, control transformer, and differential character istics, write today.

Operentrg lemperature range. $-55^{\circ} \mathrm{C}$. $1005^{\circ} \mathrm{C}$. holor moment of inonia. 0.25 om cm Wedom...

Available as rommimer, connrol
tranaformar ond difforemial.
Manufocturers of
GYROS - ROTATING COMPONENTS radar devices - mstrumentation PACKAGED COMPONENTS
Eclipse-Pioneer Division

CIRCLE 104 ON READER-SERVICE CARD

Toggle Switches

Life is $\mathbf{1 0 , 0 0 0}, 000$ cycles. Units are available in spst, spdt, dpst and dpdt designs. Rating is 10 amp at 250 v ac . Screw-type or solder-type terminals can be furnished. Temperature range is -60 to +250 F . Elotec Corp., Dept. ED, 1425 N. Lidcombe, El Monte, Calif.
Availability: From stock.

Telemetry PDM Multicoder

673
A completely transistorized, 43-channel PDM multicoder with 3 pole, 16 channel subcommutator for satellite probes. Characteristics of the digital multicoder are: small size, low power consumption, silicon semiconductors used throughout, and availability in either unipolar or bipolar form with either common or isolated ground.
Applied Electronics Corp. of New Jersey, Dept ED, 22 Center Street, P.O. Box 43, Metuchen, N.J

Cushion Clamps

409

Withstand $1,500 \mathrm{~F}$. The 1500 series cushion clamps are made of tupe 321 stainless steel. Corrugations provide spring action for high frequency, low amplitude vibrations. Size range is $1 / 4$-to 4 -in. ID. The clamps are interchangeable with any standard $1 / 2$-in. AN. MS or commercial cushioned loop clamps.
TA Manufacturing Corp., Dept. ED, 4607 Alger St., Ios Angeles 39, Calif.

Semiconductor Test Sel

665
For general purpose use. Type 310 semiconductor test set is for testing all types of small and mediumpower transistors, rectifiers and Zener diodes. It will measure transistor h-parameters at 1 kc . Zener voltages and dynamic impedances. Internal de supplies furnish up to 30 v and 100 ma .
Owen Laboratories, Inc., Dept. ED, 55 Beacon Place, Pasadena, Calif.
Price: $\$ 7.8 .5$ fob Pasudena.

breaks through with new 75v. Solid Tantalum Capacitor...

representatives for "Kemet SOLID TANTALUM CAPACITORS east coast, williston Part, m. y.Electrical Manulacturers Service
P. O. Box 128 . 105 Hilliside Avenue FLIORIDA, Malbourno- - oseph A. Adams Associates, P. O. Box 1322
MIDOLE ATLMMTIC, Cleveland 1MIDOLE ATLAMFIC, clevelimnd 1 South whitley. Ind.-Wanner, Kesler \&
Associates. P O. Bor
O. MIOWESTr. Chicago 45-D. Oolin Sales, 3533 Wesi Peterson Avenue Minmesorn, Minneapolis 19-
Stan Clothier Co., Inc., 12 West 58th St Sourhmest Dallas, Truas-
Ammon E Champion comany,
 2714 Bomar Street Sartume si, Sentlie e-
Samue N. STroum Co 621 Michigan Street Rocrr mountain AnEA, Denver 26 Barnhill A ssociates, 1170 Souver Sheridan C. S. Marshai Company,
highest rated working voltage unit of its kind available today! capacitance values: 1 to 15 . microfarads - temperature range: -85 to $+125^{\circ} \mathrm{C}$.
A new frontier in capacitor technology has been opened by "Kemet's" successful achievement of a new 75 -volt solid tantalum capacitor!
"Kemet's" breakthrough comprises 14 catalog types, hermetically sealed in the four case sizes specified in MIL-C26655A for CS12 and CS13 styles . . . providing Standard E.I.A. capacitance values in tolerances of $\pm 20 \%, \pm 10 \%$, and $\pm 5 \%$.
"Kemet's" latest addition to its complete line of solid tantalum capacitors supplements its popular J -Series available in capacitance values ranging from . 33 to 330 microfarads and working voltages of $6,10,15,20,35$, and 50 .
Solid construction and utmost operating dependability have made "Kemet" tantalum capacitors the leader in their field. They can be specified and installed with confidence, because they have been subjected to the most exacting tests for life, temperature, humidity. vibration, and acceleration.

For data on "Kemet's" new 75 volt J-Series tantalum capacitors, write for Bulletin \#3B to Kemet Company, Division of Union Carbide Corporation, 11901 Madison Ave., Cleveland 1.
\qquad

P\&B compact 4PDT power relay switches one H.P. per moveable arm

Save panel spacel This new 4-pole relay is only $3 / /_{0}$ " wider than our PR Series, America's most popular 2-pole power relay! Yet, it is engineered for reliable heavy-duty switching . . . and you can confidently expect 10 million mechanical operations.
PM Series relays are rated at 16 amperes (or 1 H.P.) at 115 volts, $50 / 60$ cycles resistive . . . and special relays can be supplied for loads up to 25 amperes, at 220 volts, $50 / 60$ cycles resistive. Heavy screw terminals are arranged for fast, easy hook up. An adapter plate is available for mounting PM relays in the same location used for 2 -pole relays.
For full information, write today or call your nearest P\&B representative.

MR Series
AB Series

A whole family of power relays for a wide range of applications carry the P\&B symbol of quality. Call P\&B first for all your power relay requirements.

PM ENGINEERING DATA

 general:Description: Heovy-duly AC power relay Insulating Materiel. Molded phenolic. Insuletion Resistonce: 100 megohms minimum. Mechanical Life: 10 million operations minimum Contact Life: 100,000 operations minimum of rated bad. Breakdown Voltage: $\mathbf{2 , 0 0 0}$ volss miss minimum between all elements and ground.
Ambient Temperature: $-55^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C}$
Weight: Approximately 14 ozs.
Pull-In: 78% of nominal voltage.
Terminale: Meovy-duty scrow type will No. 8.32 BH screw.

contacts:

Anengamonls: APDT or APSI-normally open. Melerial: $14^{\text {a }}$ dia. river-codmium-oride.
Menling: 16 amps (a) 115 vols, $50 / 60 \mathrm{cps}$ resistive.
8 amps 6.220 vols, $50 / 60$ eps resistive.
1 H.P. per moveable, 115 or 220 volts $A C$ single phase.
25 amps (3) 220 volts, $50 / 60 \mathrm{eps}$ resisive available on upecial order
COILS:
Vollege: 6 to 230 volts AC $50 / 60$ cycles.
Pewar: 14 volf-amps average al nominal vollage
Duty: Continuous.

NEW PRODUCTS

High-Voltage Capacitors 509

Have 10,000 -hour life. Compact. lightweight plastic film capacitors are made in 11 voltage ranges from 2 to 30 kv dc. They are suitable for continuous use as temperatures between -60 and +60 C . Footed brackets are supplied wtih the hermetically sealed units.

Corson Electric Manufacturing Co., Dept. ED, 540-39th St., Union City, N. J.

Electronic Rack Cabinets
506
A ventilating system is provided. Duct outlets can be positioned anywhere. Construction is heavy duty, dimensions are $77 \times 24 \times 24 \mathrm{in}$., finish is cold-rolled steel or aluminum and type designation is FT-192-A. Mil specs are met.

Falstrom Co., Dept. ED, 185 Fal strom Court, Passaic, N. J

Differential Voltmeter

487
Has 0.05% absolute accuracy. Features of the model 851 differential voltmeter include: solid-state design: range, 1 mv to 1 kv ; in-line five-dial read-out; standard cell plus Zener reference; polarity reversal; 0 to 10 v dc precision source; and recorder output. Offered in cabinet and rack types with weights of 15 and $17-1 / 2 \mathrm{lb}$.
Smith-Florence, Inc., Dept. ED 4228 23rd Ave. IV., Seattle 99, Wash.

Frequency Mefers

479
Accuracy is $\pm 0.08 \%$, absolute, at room temperature in the 585,586 , 588 and 590 direct-reading units. Reading precision is 1 mc . Ranges are from 5.1 to 5.9 through 8.2 to 10 kmc . Insertion length is 3.75 to 7 in .
PRD Electronics, Inc., Dept. ED, 202 Tillary St., Brooklyn 1, N. Y.

For up to $\mathbf{1 , 0 0 0} \mathbf{v}$, model KS1-50 has 4 -in. voltmeters for ac rms and dc, plus a common ac-dc current meter. Current capacity is 50 ma on ac and 25 ma on dc. Output is continuously adjustable from zero to maximum. The unit is for testing in accordance with ASTM standards or for use as a power supply.

Peschel Electronics, Inc., Dept. ED, Towners, Patterson, N. Y. PdA: \$395; one week.

Audio Programer

Actuates relays automatically. The REL-A-TRON has separate sound and inaudible signal channels. It is basically a tape recorder with an electronic timing unit which enables it to operate cycled motion type equipment. Cycling signals can be changed by pushbutton. Specifications include: $115 / 120 \mathrm{vac}$; dimensions $6 \times 8 \times 8 \mathrm{in}$.
Tecni-Art Engineering, Dept. ED, Box 96, Glendale, Calif.

Tubular Capacitor

Rated at 50 wvdc. Temperature range is -55 to +150 C . Called the CT 10 series, the units are ceramic and measure 0.1 in . in diameter and 0.26 in . in length. Values are 10 to $1,000 \mu \mathrm{f}$ in tolerances of $\pm 5 \%, \pm 10 \%$ and $\pm 20 \%$. Uses are in computers, airborne equipment and guidance systems.

Gulton Industries, Inc., Materials and Ceramics Div., Dept. ED, 212 Durham Ave., Metuchen, N. J.

CIRCLE 107 ON READER-SERVICE CARD $>$

Think of every feature, every benefit, you would design into a soldering iron if you could... and you have Imperial! Only UNGAR experience and research could have developed this cool, lightweight, easy-handling iron. From tip to cord ... the ultimate in interchangeability. There are so many revolutionary new ideas in IMPERIAL we had to put them all in an 8-page brochure. Send for your free copy now!

UNGAR ELECTRIC TOOLS ED-U61-2D-5 Electronic Division of Eldon Industries, Inc. 1475 E. El Segundo Blvd., Hawthorne, Calif. Please send me free full-color IMPERAL brochurel
mame
fitie
COMPANY
ADDRESS

From the smelting furnace at Fusite has come a glass so ideal for use with 52% nickel alloy pins and mild steel body it obsoletes all previous compression type seals.
Designated TR-Glass it grips the pins so tightly no amount of bending or twisting will cause the terminal to leak. Heat shock of $1000^{\circ} \mathrm{F}$ in 20 seconds is child's play for the compatible combination of materials in this new relay header.
The favorable balance of expansion between TR-Glass and the two dissimilar metals of pins and body assure performance well in excess of Mil specs.
Available in electrode styles of hook, plug-in and extended lead.
Samples on request. Write Fusite Corporation, Department C.3.

Fusite Corporation, Cincinnati, $\mathbf{0}$.
Woodford Mfg. Co., Versailles, Ky.
Fusite N. V., Königweg 16, Almelo, Holland
Fusite Gmb H, Dieselstrasse 5 Karlsruhe, W. Germany
THE FUSITE CORPORATION 6000 FERNVIEW AVENUE, CINCINNATI 13, OHIO CIRCLE 108 ON READER-SERVICE CARD

NEW PRODUCTS

Axial Seal

With jewel bearing. Compact, hermetically sealed axial seal provides a jewel-end bearing at each end of a gimbal within a fluid-filled gyro. It permits an axial adjustment of the gimbal for proper orientation with respect to gyro case. Size is 0.140 in . in diameter, 0.070 in . long, depth 0.025 in .
Mechtronics Corp., Dept. ED, 11431 Joanne Place, Culver City, Calif.

RF Inductors

For military and commercial use. Slug-tuned. shielded rf inductors of the series 1.500 cover a range of $100 \mu \mathrm{~h}$ to 7.5 mh in 9 sizes. Average Q in 0.1 to 1.0 range is 60 . Winding is sealed with epoxy, housing $O D$ is $5 / 8 \mathrm{in}$.

North Hills Electronics, Inc., Dept. ED, Glen Cove, L. I., N.Y.

Combination VTVM-VOM

Has automatic scale indication. The model SMI12 "Service Master" can be used as a vacuum-tube voltmeter from 11.5 v ac, with six ac and dc voltage ranges, six resistance ranges and a zero center scale. It also can serve as a portable voltohmmeter with six ac-dc voltage ranges, two resistance ranges, and one de current range. Arrows light up to show which scale should be read.
Sencore, Dept. ED, Addison, Ill.
P\&A: $\$ 69.50$; from distributors.
ELECTRONIC DESIGN • May 10, 1961

Power Supply

404

Has $\pm \mathbf{0 . 0 1 \%}$ load regulation. Controlled-rectifier de power supply model CR-18-30 provides up to 18 v at 30 amp in 7 -in. panel height. Ripple is 0.003 v peak-to-peak, recovery time $40 \mu \mathrm{sec}$. Features include remote sensing, remote programing, and electronic current-limiting. Units may be connected in parallel. Weight is 70 lb .

NJE Corp., Dept. ED, 20 Boright Ave., Kenilworth, N.J.
Price: $\$ 845$.

Counter-Timers

Four types are offered. Model 722 combines frequency measurement and both one-period and tenperiod measurement. Model 723 measures elapsed time between two events. Model 724 preset ratio counter displays 1 to 10,000 times the ratio of two signals. Model 740 frequency counter allows a direct conversion to physical units.
Erie Pacific, Dept. ED, 12932 S. Weber Way, Hawthorne, Calif.

Wirewound Resistors

426

Can be adjusted by user. Unusual feature of this line of two-terminal precision wirewound resistors is that the user makes the final adjustment and then seals the unit. One end of the winding may be unravelled as required, stripped of enamel and then soldered to a terminal. Adjustment range is 0.001 ohm to 5 meg , with power ratings through 5 w .
Rotohmeters, Inc., Dept. ED, 46 Prospect Ave. Yonkers, NY.

Have you sent us your subscription renewal form?

LATEST WORD FROM MARS
is the superb new Technico lead holder-with clear-view degree indicator placed right at your fingertips. Contoured for perfect
balance, with new positive finger grip, it's the newest of many fine MARS drafting aids-all designed to make your work easier, and to make it look better and reproduce better.

 ©T.M. tor supowrs Polyester time. -Shomn.

the pencil that's as good as it looks
 MARS
 J.S. STAEDTLER.INC.

HACKENSACK, NEW JERSEY

NEW PRODUCTS

Capacitance Bridge

Test voltages to $1,000 \mathrm{v}$ ac. This high-voltage bridge is for studies of dielectric losses as a function of test voltage and for capacitance measurements from 1 pf to 100μ. Accuracy is $0.1 \% \pm 1 \mathrm{pf}$. Frequency range is 50 cps to 10 kc . Maximum test voltage is 1.000 v ac.
Rohde \& Schwarz Sales Co., Inc., Dept. ED, 111 Lexington Ave., Passaic, N.J.

Heat Sink

459
For TO-36 power transistor. Designed for use with industrial power transistors in the TO-36 (doorknob) package, heat sink MS-15 enables operation at higher power levels. The natural-convection dissipator is made of aluminum alloy with a black finish.
Motorola Semiconductor Products Inc., Technical Information Center, Dept. ED, 5005 E. McDowell Road, Phoenix 10, Ariz.

Oscilloscope

Double-beam instrument. The CD 1016 is a compact rack-mounted double-beam oscilloscope. Features include: two identical Y amplifiers; dc to 5 -mc bandwidth; rise time, 70 nsec; nine sensitivity ranges from 100 mv per cm to 50 v per cm , with fine control giving coverage to 100 v per cm . Six additional ranges have maximum sensitivity of 1 mv per cm .
Solartron Laboratory Instruments Ltd., Dept. ED, Cox Lane, Chessington, Surrey, England.

Silicon-Glass Diodes

463
High-conductance types 1N482 through 1N488, 1N482A through 1 N488A and 1N482B through iN486B are for use in small areas. Reserve current is low. Suited for use in severe environmental conditions, the units have rugged internal structure and hermetically sealed glass packages.

Princeton Electronics Corp. Dept ED, P. O. Box 127, Princeton, N. J.
 ake and grove streets - Lake mills,
CIRCIE IGB ON READER-SERVICE CARD

CIRCLE 169 ON READER-SERVICE CARO
CIRCIE 112 ON READER-SERVICE CARD $>$

Ampex's Advanced Recorder/Reproducer, the FR. 600 used for testing the Minuteman Missile.

A Quality Product requires ALLEN-BRADLEY
 Electronic Components

This shows a few of the $A-B$ components in one of the Ampex recorder's modules

In the design of the highly sophisticated circuitry for this advanced recorder, engineers at Ampex selected AllenBradley quality electronic components to meet the critical requirements for reliability, long life, and quiet operation. For example, the use of Allen-Bradley potentiometers - with their exclusive solid, hot molded resistance element-assures smooth control at all times. There are never any abrupt changes in resistance during adjustment as in wire-wound resistors. Also the "noise" factor is extremely low initially. and it decreases with use.
Allen-Bradley composition fixed resistors - also made by an exclusive hot molding process-are fantastically uniform. Their electrical characteristics are so consistent from resistor to resistor that performance over long periods of time can be accurately predicted. And catastrophic failure is unheard of-when you use Allen-Bradley composition resistors.

For the ultimate in reliability and performance, insist on Allen-Bradley quality electronic components. Send for Publication 6024 today.
Allen-Bradley Co., 222 W. Greenfield Ave., Milwaukee 4, Wis. In Canada: Allen-Bradley Canada Ltd., Galt, Ont.

Portion of one
of 14 CRT
monitors, each
containing B
A-B Type G
Potentiometers.

A-B QUALITY ELECTRONIC COMPONENTS
USED IN AMPEX WIDE-RANGE RECORDER

Flxeo Composition Resisfore

Adjustable Fixed
justable Fix
Resistore

Type G Potentiometers

Type J J
Potentiometers
QUALITY ELECTRONIC COMPONENTS

ALLEN-BRADLEY
QUALITY
ELECTRONIC
COMPONENTS

Pushbutton is illuminated. This switch takes indicator lamps from 4 to 48 v ; a change in circuits merely recuires a change in lamps. The pushbutton is also a removable plastic cap available in five colors. Four contacts provide for separate indicating and load circuits. Rated 5 amp at 2.50 v , the switch is spdt.
Sylvania Lighting Proclucts, Dept. ED, 60 Boston St., Sallem, Mass.

Digital Computer

Capacity is 2.56 to $\mathbf{5 1 2}$ words. Type 44 K has a basic instruction rate of 125,000 per sec. Subtractions and various manipulations take 8 usec; multiplications take 32 usec. It uses scparate program and data memories in conjunction with fully-paralled processing and $\overline{5}-\mathrm{mc}$ todnsistor circuits.

Harcey-We.lls Electronics, Inc., Dept. ED, 14 Huron Drive, Natick, Mass.
PEA: $\$ 4.40() ; 90$ days.

Silicon Matrices

In substrate diode arrays. Fully passivated, com mon silicon-diode arrays are designed to customerspecified geometry, size, and electrical requirements. Matrices will withstand long-term storage at 300 C .
MicroSemiconductor Corp., Dept. ED, 11250 Playa Court, Culver City, Calif.

Preamplifier Package

For millivolt signals. For use with thermocouples, strain gages and resistance bulb elements, packaged preamplifier provides stable potentiometric amplification of low-level de signals. Output is dc current or voltage, up to 20 ma or 14 v . A 3 -kc square-wave carrier signal with 2-v output is also available in the solid-state device.

De Var Systems, Inc., Dept. ED, 494 Glenbrook Ruad, Glenbrook, Conn.
\& CIRCLE 112 ON reader-service card
ELECTRONIC DESIGN • May 10, 1961

HOW TO GET THE POWER TRANSISTORS YOU NEED?

JUST ASK DELCO. For even though our catalog lists only a handful of germanium power transistors, there is only a handful out of all those ever catalogued that we don't make. And those only because nobody ever asked for them.
We've made, by the millions, both large and small power transistors. Both diamond and round base. Both industrial and military types. And each in a wide variety of parameters that have proved themselves reliable in nearly every conceivable application.
You get Delco transistors fast. You get Delco transistors in any quantity. And for all their high reliability, you get them reasonably priced. All you have to do is contact our nearest sales office - and ask for them.

Union, New Jersey 324 Chestnut Stree MUrdock 7-3770

Santa Monica, California
726 Santa Monica BIvd. UPton 0.8807

Chicago, Illinois 5750 West 51st Street POrtsmouth 7.3500

Detroit, Michigan 57 Harper Avenue TRinity 3-6560

Division of Division of
General Motors Kokomo, Indiana

NEW PRODUCTS

Trimming Pofentiometer

Resistance is 10 ohms to $\mathbf{5 0 ~ K}$ and temperature range is -55 to +200 C in model 358. Off-board dimension is 0.195 in . Applications include matching. balancing and adjusting in control, computing and telemetering circuits.
Daystrom, Inc., Potentiometer Div., Dept. ED, Archbald. Pa .
Availability: From stock.

Pulse-Distributed Amplifiers

491
For high-power transmitting systems, these units have outputs of 10 w to 100 kw and power gains to 24 db over a $16: 1 \mathrm{hf}$ band range. Model 116, for example, has an output of 100 kw a gain of 22 db from 4 to 32 mc ; morlel 126 produces 30 kw and has a gain of 17 db from 4 to 64 mc . No tuning is needed

Granger Associates, Dept. ED, 974 Commercial St., Palo Alto, Calif.

DC Volimeter

Range is 1 mv to 999.9 v . Model V-70 has an accuracy of 0.01% (plus or minus 1 digit) and provides over-voltage protection. Output can be made to drive data printer. Input impedance is 10 meg at balance. Input power is 105 to 125 v at 50 to 60 cps . Cubic Corp., Dept. E1), San Diego 11, Calif.

Microminiafure Lamps

609
Two types are offered. The 13-7 consumes 0.009 w at 1.35 v . Response to pulsing at half-brightness is 4 usec or better. The $30-30$ provides 2.50 millilumens at 3 v . Diameter is 0.03 in . and lead length is 0.1 in . Type $13-7$ has a $1 / 64-\mathrm{in}$. diameter and a $1 / 16-\mathrm{in}$. lead length.
Kay Electric Co., Dept. ED, 14 Maple Ave., Pine Brook, N. J.

The industry's most thoroughly characterized and medium power silicon Mesa transistors...2N497A,

THOUSAND HOURS OF TEST

thousand hours of rest

Absolute Moximum Ratings ($23^{\circ} \mathrm{C}$)

Voltages Collector to 8ase Collector to Emittor Emitter to Bose		$\begin{gathered} \text { 2Nay7a } \\ 60 \\ 60 \\ 8 \end{gathered}$	$\begin{gathered} 2 \mathrm{M} 498 \mathrm{~A} \\ 100 \\ 10 \overline{1} \\ 8 \end{gathered}$	$\begin{gathered} 2 N 6560 \\ 60 \\ 80 \\ 8 \end{gathered}$	$\begin{gathered} \text { 2N657A } \\ 100 \\ 100 \\ 8 \end{gathered}$
Temperatures Storage Operating Junction		$\begin{aligned} & -6510200^{\circ} \mathrm{C} \\ & -65 \text { to } 200^{\circ} \mathrm{C} \end{aligned}$			

volts
volts
voltit

\therefore.Derate $5.72 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature obove $25^{\circ} \mathrm{C}$

Eleetrical Charectariaties $\left(25^{\circ} \mathrm{C}\right.$

unloss othorwice specified

	2N497A Min. Mar.		2N498A Min. Max.		2N656A Min. Max.		$\begin{aligned} & \text { 2N6S7A } \\ & \text { Min. Max. } \end{aligned}$		
Vcso	∞		100		∞		100		volts
Vсю	∞		100		∞		100		volts
Vсю	∞				60				volts
$V_{\text {cı }}$			100				100		volts
Vioo	8		8		8		8		volts
hois	12	36	12	36	30	90	30	90	
has		200		200		200		200	ohma
res (sot)		10		10		10		10	ohms
Ico		10		10		10		10	$\mu \mathrm{a}$
Ico		250		250		250		250	μ

tested

98A, 2N656A, 57A...come from General Electric

Positive internal atmospheric control achieved through the use of General Electric's buffered-sieve encapsulation technique. higher power dissipation with lower saturation resistance and lower input impedance are important features of this line of top quality one to five watt audio switches. Especially well suited for either high level linear amplifier or switching applications, these are the industry's most thoroughly characterized and tested medium power silicon double diffused NPN transistors available today. Just take a louk at the extended life test charts illustrated for convincing evidence of long term stability and reliability.

Semiconductor Products Department, Section 23E96, Electronics Park, Syracuse, New York.
For fast delivery of medium power Mesa transistors at factory-low prices in quantities up to 999 call your G-E semiconductor distributor.

Progress is Our Most Important Product

GENERAL ELECTRIC

circle 114 on reader-service caro

Two sizes are offered. Size 100 has a braking torque of $10 \mathrm{oz}-\mathrm{in}$. min and is rated at $2-\mathrm{w}$ power input. Body diameter is $1.7 / 64 \mathrm{in}$. and mounting flange diameter is 1-9/16. Slightly larger, size 130 has a braking torque of $30 \mathrm{oz}-\mathrm{in}$. and an input rating of $3-1 / 2 \mathrm{w}$.
Dial Products Co., Dept. ED, 19 Cottage St. Bayonne, N. J
Price: size 100). s49; size 130, \$52.

Status Control Switch
611
A module of communications consoles, this switch is for use in command radio equipment. Signals appear on remote boards or maps. The unit can be furnished with a six-position control knob.
Westrex Recording Equipment Dept., Litton Industries, Dept. ED. 6601 Romaine St., Hollywood 38, Calif.

Thermal Wire Stripper

Dual-position type WS17B handles AWG 6 to 36 and coaxial cable. It strips Teflon, nylon and other plastics. The alloy tip is designed for long life. No additional instruments are needed.

American Missile Products Co., Inc., Dept. ED, 15233 Grevillea Ave., Lawndale, Calif.

Epoxy Systems

613
Highly flexible, types 41,42 and 44 can be adjusted to various concentrations. Type 44 has these typical properties: dielectric, 460 v per mil; tensile strength, 33,000 psi; flex strength, $50,000 \mathrm{psi}$; specific gravity 1.3.

Isochem Resins Co., Dept. ED, 221 Oak St., Providence 9, R. I.

More than 107 types standard -alder terminale

ter'mai-nal. n. 1. The part or forms ter-

which terminates, or of, something; termination; extremity; end

WEBSTER KNOWS

In fact, his definition certainly applies to CAMBION 3 Standard Solder Terminals. As parts which terminate plenty of trouble in electronic circuitry construction, they ve gained universal approval from manufacturers, professional technicians and hams.
Starting with top quality brass, each CAMBION solder terminal is precision machined, quality inspected, electroplated with silver, electro-tin or gold - or to your own plating specifications. Close quality control is maintained, and inspections made at each successive manufacturing step to assure that each terminal meets or exceeds applicable MIL specifications, such as MIL-Q-5923C.

That's why, as with all components in the broad CAMBION line, top quality is guaranteed for the more than $30,000,000$ CAMBION Solder Terminals in stock . . . in more than 107 different types: single, double and triple turret; feed-through, double-ended, hollow and split.
The broad CAMBION line includes plugs and jacks, solder terminals, insulated terminals, terminal boards, capacitors, shielded coils, coil forms, panel hardware, digital computer components. For a catalog, for design assistance or for both, write to Cambridge Thermionic Corporation, 457 Concord Ave., Cambridge 38, Mass.

[^2]
NEW PRODUCTS

Commutating Switch

For $20-\mathrm{cps}$ operation, model 210 is offered in onepole and multipole designs for 64 and 100 channels. It is available with a $1,200-\mathrm{rpm}, 115-\mathrm{v}, 60-\mathrm{cps}$ hysteresis drive motor. A jet of mercury replaces the wiper arm, making the unit suitable for continuous use without repairs.
Advanced Technology Laboratories Div., American-Standard Corp., Dept. ED, 369 Whisman Road, Mountain View, Calif.
Availability: From stock.

Power Supplies

Inverters and converters are included. The threephase sinusoidal inverters are suitable for missile and aircraft use with outputs from 15 to 300 va. Distortion is held to below 5% and regulation for line and load is 1% to 5%.

Bergen Laboratories Inc., Dept. ED, 60 Spruce St., Paterson 1, N. J.

Computer Simulator

A solid-state system, this unit enables users of the 650 computer to run 6.50 routines on the new 1410 system. It must be equipped with 40,000 corestorage positions, the 1402 card-read punch and input-output devices comparable to the 650 .
International Business Machines Corp., Data Processing Div., Dept. ED, 112 E. Post Road, White Plains, N. Y.

Don't miss a single issue of

ELECTRONIC DESIGN. Send renewal now!

616

 PURE FUSED QUARTZ
IDEAL FOR ALL SEMICONDUCTOR METALS Our unique process enables us to supply semi-conductor quality VITREOSIL to close tolerances in crucibles and special fabricated shapes. Now available Quartz to Metal Seals. Write us about your requirements. See our ad in Chemical Engineering, Electronic Engineers Master and Electronic Designers' Catalogues.

SPECTROSIL

FOR HYPER-PURITY IN SEMI-CONDUCTOR WORK
PURITY - purest form of fused silica
TRANSPARENCY - unique optical properties HOMOGEMEITY - completely homogeneous and free from granularity
availablity - bleck material for lenses, prisms, etc; red, fiber, weel; hollow ware as tubing, crucibles. and special apparatus.
Write for complete, illustrated catalog.

[^3]ELECTRONIC DESIGN • May 10, 1961

Airborne Data System

For recording up to 31 analog inputs in digital magnetic-tape form, this unit is of plug-in, printedcircuit card construction. It includes a multiplexer, a digital converter and a tape-recording mit. The output is suitable for computer processing.
Monitor Systems, Inc., Epsco, Inc., Dept. ED, Ft. Washington Industrial Park, Ft. Washington, Pa

Transisfor Tesfers
618

Two units are offered. Morlel T-4 is for lesting germanium units including low-level, rf, if, mixer. low- and medium-power types. Model T-5 is for silicon and special-purpose units. Its leakage current ranges are 0 to 50 на and 5 to 50 ma .
J. H. Mims Electronics, Dept. ED, 307 Sudbury Road, Linthicum, Md.
P\&A: \$19.50, \$24.50; from stock.

Synchro Switch

Mounted on size 8 synchro. Sector switch provides a closed circuit whenever the position of the synchro exceeds ± 70 deg. Switch angle may be selected for the application. Package is 1.700 in . long and weighs about 2 oz.
Clifton Precision Products Co., Inc., Dept. ED, 5050 State Road, Drexel Hill, Pa.
Acailability: 4 to 6 weeks.

Has every form of silver for your electronics applications

Silver, in many forms and alloys, is a necessity in the electronics and electrical industries. To meet this need on a high quality level, Handy \& Harman manufactures powder, flake, paint, paste, sheet, strip, wire, etc., for printed circuits, wiring, resistors, condensers, thermistors, contacts, printed terminal strips on glass, ceramics, plastic laminates, etc.
Another "At Your Service" Division of the Handy \& Harman Silver Supermarket is our Research and Engineering Department. Always ready to help you with any problem or project you may have involving silver for any application.

VISIT OUR BOOK DEPARTMENT

We have five Technical Bulletins giving engineering data on the properties and forms of Handy \& Harman Silver Alloys. We would like you to have any or all of those that
particularly interest you. Your request, by number, will receive prompt attention.

Fine Silver	Bulletin A-1
Silver-Copper Alloys	Bulletin A-2
Silver-Magnesium-Nicke!	Bulletin A-3
Silver Conductive Coating	Bull
ilver Powder and Flake	

Your No. 1 Source of Supply and Authority on Preclous Motal Alloye

HANDY \& HARMAN

General Offices: 850 Third Ave., New York 22, N.Y CIRCLE 117 ON READER-SERVICE CARD

NEW PRODUCTS

Power Supplies

Regulation is $\mathbf{0 . 1 \%}$. Models $325-2 \mathrm{M}, 325-1 \mathrm{M}$ and $325-0.5 \mathrm{M}$ provide 325 v at 2,1 and 0.5 amp . Load regulation is 0.1% or 3 mv for no-load to full-load changes. Features include circuit protection, reduced number of elements in power stage, simplified circuitry and output adjustability. Design is compact
Kepco Inc., Dept. ED, 131-38 Sanfurd Ave.
Flushing 55, N. Y.
PdA: $\$ 50.5, \$ 670, \$ 905 ; 30$ to 60 days.

Standard Resistor

621
Accuracy is $\pm \mathbf{0 . 0 0 2 \%}$ for initial calibration reading. Adjustment tolerance is better than $\pm 0.005 \%$ of nominal value; long term stability is better than $\pm 0.005 \%$. Two, three, and four-terminal measurements are possible.
Electro Scientific Industries, Inc., Dept. ED, 7524 S.W. Macadam Ave., Portland 19, Ore.

Digital Voltmeter

Accurate to $\mathbf{0 . 0 1 \%}$. Digital voltmeter 501 B measures positive or negative unknowns between $100 \mu \mathrm{v}$ and 1 kv . Single-plane readout has 4 digits plus an over-ranging digit. Range is selected automatically. Input filter provides 60 db attenuation at 60 cps ; input impedance is 10 meg .
Kin Tel Div. of Cohu Electronics, Inc., Dept. ED, 5725 Kearny Villa Road, San Diego 12, Calif. PdA: \$2,995; 1 week.

Tape-Preparation Equipment

623
For industrial and military use, the TAPE system automatically programs punched tape. Logic circuitry converts word-group and keyboard commands into complete coded programs.

McDonnell Aircraft Corp., Dept. ED, St. Louis 68, Mo.

For the most advanced

 ferrite devices-try Hughes!Now available at firm prices and in production quantities. Hughes ferrite devices are among the most advanced components of their type on the market today. Their reliability and advanced design are the result of Hughes pioneering efforts in ferrite device research, development and production.
Whatever your particular systems design problem, it is likely Hughes engineers can help you solve it. For engineering assistance or to order Hughes ferrite devices, write, wire or call: Hughes Components Division.
Marketing Operation, Culver City, California. Twx hac smon: Phone UPton 0-7111, Ext. 4190.
Typical ferrite devices offered by Hughes (In addition to these standard models.
modified or custom designed units to meet youl specific requirements can be provided.)

HUGHES

COMPONENTS DIVISION

SPECIFICATIONS	(a) x band Switch. Hispeed	(b) x-band Circulator High Ava. Power. 4 Pon	(c) S-band Isolator. Low Power Coan	(d) C. oand Culcualor.	(e) x-band Aodulator	(i) x dand Circulator Low Power. Yee
Frequency Range	8400.9600 mc	$8400 \cdot 9600 \mathrm{mc}$	$2190-2310 \mathrm{mc}$ (tunable) (20 mc bandwidth)	4900.6200 mc	8500.9500 mc	$8000 \cdot 9800 \mathrm{mc}$
Isolation	30 db min.	25 db min.	50 db min .	20 db min.	-	20 db min.
Insertion Loss	$\begin{aligned} & 0.75 \mathrm{db} \text { max. } \\ & \text { iswitching time .24. sec.) } 0.5 \mathrm{db} \text { max. } \end{aligned}$		1.0 db max.	0.5 db max.	0.5 db max. (Allen range-25 do min.)	0.5 db max.
VSWR	(on) 1.5 max.	1.2 max.	1.1 max.	1.2 max.	(input) 1.5 max.	1.2 max.
Power Capacity Peak Average	$\begin{aligned} & 10 \mathrm{kw} \\ & 50 \text { watts } \end{aligned}$	$\begin{aligned} & 300 \mathrm{kw} \\ & 5 \mathrm{kw} \end{aligned}$	$\begin{aligned} & 5 \mathrm{kw} \\ & 10 \text { watts } \end{aligned}$	$\begin{aligned} & 3 \mathrm{kw} \\ & 15 \text { walts } \end{aligned}$	$\begin{aligned} & 2 \mathrm{kw} \\ & \text { 1 watt } \end{aligned}$	$\begin{aligned} & 2 \mathrm{kw} \\ & 10 \text { watts } \end{aligned}$
Modal Number	1011.A	1015.A	1007.A	1003.A	1014.A	10 m 2

For liquid or gas. A complete line of temperature transducers is available for measurement from $\mathbf{- 4 5 0}$ to $+1,500 \mathrm{~F}$. Sensing elements are tungsten, platinum, balco, or nickel. There is a selection of probe lengths, resistance ranges of $20,200,500$, and 20,000 ohms, and calibration points at 32 and 212 F .
Astra Technical Instrument Corp., Dept. ED, 12930 Panama St., Los Angeles 68, Calif.

Have you sent us your subscription renewal form?

NEW PRODUCTS

Delay Line

With variable delay. Model V172 is a lumped constant delay line variable from 0 to 0.55 usec . Rise time is $0.08 \mu \mathrm{sec}$, impedance 1 K , resolution $1 / 1000$. Temperature coefficient is less than 50 ppm . Sealed package measures $1 / 2 \times 1-1 / 2 \times 4-1 / 2 \mathrm{in}$. Other lumped and distributed types are available with delays up to 2.5 usec.

Computer Devices Corp., Dept. ED, 6 W. 18th St., Huntington Station, N. Y.
PdA: $\$ 75$ ea; 2 to 3 weeks.

Relay Test Set

For dry circuits. Model 927 relay test set measures performance of relay contacts at currents of 1 to 20 ma . The $1-\mathrm{kc}$ test voltage may be varied between 0.5 and 10 mv ; cycle rate of 4 to 20 cps is controlled by electronic switching. Set contains dc power supply for relay coils. It will accommodate up to 10 relays.
Couch Ordnance, Inc., Dept. ED, 3 Arlington St. North Quincy 71, Mass.

Tube Ager
632

For photomultipliers. Model 350 photomultiplier tube aging test set is capable of checking 2 groups of 24 tubes sequentially. All tubes are operated continuously; single tube anode and cathode currents are checked. Illumination adjustment is provided for each group.

Automation Laboratories, Inc., Dept. ED, 179 Liberty Ave., Mineola, L. I., N. Y.

The Porter Alloyist delivers the right alloy IN THE SPOTS THAT COUNT

There can be no compromise for instant, reliable communication when disaster strikes. That's why the Porter Alloyist recommends phosphor bronze and other special alloys for telephone and switchboard components. Contact springs and other vital parts made from these alloys deliver high electrical conductivity and resist deformation after repeated use.

THE PORTER ALLOYIST IS

A SPECIALIST IN A WIDE

 RANGE OF SPECIAL METALSPorter's Riverside-Alloy Metal Division is your single reliable source for specialty alloys in 8 basic groups of wire, red and strip . . . phosphor bronze, nickel silver, cupro nickel, brass, stainless steel, nickel, Monel and Inconel.

Ask for a free copy of "Alloys for Industry" describing our wide range of specialty alloys. Write H. K. Porter Company, Inc., RiversideAlloy Metal Division, Riverside, N. J. Or contact our sales offices in Hartford, Chicago, East Orange, Atlanta, Cleveland, Detroit, Cincinnati, Los Angeles, and Rochester.

PORTER supplies stainless steel, "K" Monel and inconel " X " wire for many types of springs.
PORTER carbon steel wire reinforces and lengthens the life of a wide range of industrial hose.

Point

RIVERSIDE-ALLOY METAL DIVISION H. K. PORTER COMPANY, INC.

Circle 119 on reader-senvice card ELECTRONIC DESIGN • May

Panel Mefers

Are all-metal. Rectangular panel meters have a scale length of 4.7 in . for best visibility. Case size is 4×6 in. Movement is fully shielded against magnetic and rf fields. Stanclard meter finish is flat black; bezel can be provided in any color.
Beckman Instruments, Inc., Helipot Div., Technical Information Service, Dept. ED, 2.500 Harbor Blvcl., Fullerton, Calif.

400-Cps Filter

With low transient response. Filter LTR-1 has a center freguency of 400 cps . Attenuation is 30 db at 200 and 800 cps ; passband width is down 20% at 16.5% of center frequency. The hermetically sealed filter meets and exceeds standard MIL-F 18827A.
Burnell \& Co., Inc., Dept. ED, 10 Pelham Parkway, Petham. N. Y

Solid-State Scaler

Resolving time is $\mathbf{5 0}$ „sec. Models E-110 and E-115 are for use with Geiger-Mueller detectors. Cold-cathode counting tubes display pulses. Model E-115 has preset counts of $500,1,000,5,000$ and 9,000 . Input is $115 \mathrm{v}, 60 \mathrm{cps}, 1 / 4 \mathrm{amp}$.

Radiation Equipment \& Accessories Corp., Dept. ED, 665 Merrick Rd., Lynbrook, N. Y. PUA: \$1.99.50 and \$249.50.

Have you sent us your subscription renewal form?

Suppress lead wire error in resistance temperature measurement

The new Rosemount Triple-Bridge Unit suppresses the effects of variable unknown lead resistance better than any previous method used in variable resistance temperature measurement. Lead variation can introduce substantial errors, particularly where leads are unequal or lead resistance is unknown. The Rosemount TBU shows vastly better suppression of these errors than conventional 3 -wire and 4 -wire bridge circuits.

Check these advantages of this newly developed variation of the basic Wheatstone bridge:

- Suppresses large lead resistance changes (up to 5 ohms)
- Suppresses variable lead resistances both at null and when unbalanced
- Suppresses unequal lead resistances
- Can trim out calibration differences
- Multiple temperature ranges available at standardized output
- Standardized 10 mv . D.C. output to match existing equipment
- Complete selection of auxiliary equipment

The TBU is a precision-made, plug-in unit permitting convenient change of full-scale temperature and capable of correcting known calibration errors of the temperature probe used. A basic 10 -channel Triple-Bridge Unit is offered, with sockets and inter-connecting wiring for 10 sensors and 10 plug-in TBU's, thus providing 10 temperature ranges for each sensor.
WRITE FOR BULLETIN 86012. It gives specification detail and a mathematical analysis of the increased accuracy possible with the TripleBridge Unit as compared with conventional 3 -wire and 4 -wire bridges.

ROSEMOUNT
ENGINEERING
COMPANY
4900 West 78th Street, Minneapolis 24, Minnesota

10, 1961

NEW PRODUCTS

Humidity Chamber

For MIL-202B. Vapor-temp controlled relative humidity chamber VP-206A is designed to perfurm the humidity cycle of MIL-202B and method 103A, procedure 2. Chamber cycles automatically between 25 and $65 \mathrm{C} \pm 1$ deg. Humidity is constant to $\pm 1 \%$ throughout the cycle.
Blue M Electric Co., Dept. ED, 138th \& Chatham St., Blue Island, Ill.

TR Tube Tester

For production test. Test set BLP-043K makes low-level production tests of single and dual tr tubes at 5 preselected frequencies. Set measures isolation or insertion loss and vswr; two test results are displayed simultaneously. Klystron oscillators are used. Virtually any range can be accommodated.
Bomac Laboratories, Inc., Dept. ED, Salem Road, Beverly, Mass.

Tapped Delay Lines

Size is $4.5 \times 1.04 \times 0.5 \mathrm{in}$. Input impedance is 500 ohms, dielectric is 250 vdc , attenuation is 1 db and terminals are AWG 20 tinned copper. Model TDL-2194 has a 1 - -sec delay time, 0.08 -usec input rise time and $0.2-\mu \mathrm{sec}$ output rise time. Model TDL 2195 has a $0.5-\mu \mathrm{sec}$ delay, $0.05-\mu \mathrm{sec}$ input rise time and $0.1-\mu \mathrm{sec}$ output rise time.

Dresser Electronics, HST Div., Dept. ED, 555 N. Fifth St., Garland, Tex.

FOR DETECTION AND MEASUREMENT OF OXYGEN IMPURITIES IN OTHER GASES

In metallurgical and chemical processes requiring an oxygen-free atmosphere, the Minoxo Indicator provides a means of insuring that failure of purification or ingress of atmospheric oxygen through an unsuspected leak does not cause costly spoilage. The Minoxo Indicator . . . measures traces of molecular oxygen in other gases-from 0 to 10 parts per million, and from 0 to 100 PPM. High sensitivity and rapid speed of response enable it to be used for laboratory investigation and production quality control.

INDUSTRIAL EOUIPMENT DIVISION 113 ASTOR STREET GENENARK, N. J.
CIRCLE 811 ON READER-SERVICE CARD

LOOK TO AMERSIL FOR ALL HIGH PURITY FUSED QUARTZ REQUIREMENTS
Amersil manufactures and fabricates high purity fused quartz for ultraviolet transmission application, laboratory ware and production equipment. These products include standard apparatus, plain tubing in many intricate fabrications, crucibles, trays, cylindrical contain. ers and piping in a full range of sizes up to $\mathbf{2 5}$ " in diameter. Ingots and plates are available in general commercial quality as well as in special optical grades. Amersil engineers are also prepared 10 assist in developing fused quartz and silica equipment for special requirements.

> AMERSIL QUARTZ DIVISION
> O85 RAMSEY AVENUE - MIILSIDE, N. J.
> CIRCLE BI3 ON READER-SERVICE CARD

A GAS
GENERATOR FOR THE MOST EFFICIENT AND ECONOMICAL PRODUCTION
OF $\mathrm{N}_{\mathbf{2}} \mathrm{H}_{2}$ FORMING GAS MIXTURES
. provides the most economical and efficient method for the production of pure nitrogen-completely free of oxygen-with a hydrogen content precisely controlled at any desired percentage between 0.5% and 25%. Gas mixtures are supplied at a fraction of cylinder supply cost. - The Nitroneal Generator is automatic except for startup, with no need for operating personnel. The unit performs instantly, efficiently anywhere in the range of from 25% to 100% of rated capacity. Installation requires only a 110 volt line, water, air, ammonia lines and drain facilities. . . . The catalyst lasts indefinitely-minimum maintenance costs.

INDUSTRIAL EOUIPMENT DIVISION 113 ASTORAK STRET. NEWARK, N. J.
CIRCLE 812 ON READER-SERVICE CARD

PLATINUM SPIRALS MEASURE TEMPERATURE bY ElECTRICAL RESISTANCE CHANGE

Precise electrical thermometer using platinum spirals provides temperature measurements within $\pm 1 / 10 \mathrm{hh}$ of $1^{\circ} \mathrm{C}$. Voltage signal varies with temperature for covering a range from $-220^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$. The temperature transistor elements, sealed in hard glass thin wall tubes, provide fast time response. 25, 50 or 100 ohm units available as well as a selection of tube geometries. A similar group of platinum spirals are ceramic encased for measuring temperatures as high as $750^{\circ} \mathrm{C}$ with slightly less accuracy. Special laboratory standard precision electrical thermometers also availgble.

INDUSTRIAL EOUIPMENI DIVISION 850 PASSAIC AVENUE E E. NEWARK, N. J. circle si4 on reader-service card ELECTRONIC DESIGN • May 10, 1961

FOR LOW COST PURIFICATION AND
DRYING OF HYDROGEN AND OTHER GASES DRYNG OF HYOROGEN AND OIHER GASES
The Deoxo Catalytic Purifier removes oxygen to less than one part per million from hydrogen gas. It can also be used with other gases such as Nitrogen, Nitro-gen-Hydrogen Mixłure, Argon, Melium, and Carbon Dioxide. - A combination unit, the Deoxo Dual Puridryer, contains the Deoxo Catalytic Purifier plus an ex tremely efficient automatically operated drying unit Removes oxygen to less than 1 PPM from hydrogen and dries the purified gas to a low point of minus $100^{\circ} \mathrm{F}$. It will also purify and dry other gases in a similar manner.

INDUSTRIAL EOUIPMENT DIVISION 113 ASTORA STRET. NEWARK, N. J.
CIRCLE SIS ON READER.SERVICE CARD

ECONOTAPE CONTACTS ARE MOST EFFICIENT FOR ELECTRICAL RELAYS

High reliability welded contacts and contact assemblies available for your relays. Weld strength guaranteed. Overall contact height held within $\pm .00025$. Assemblies are available in gold, platinum, palladium, silver and their various alloys-both solid and laminated. Single contact usable for various contact ratings, for wet and dry circuitry-assemblies protected for shelf life and handling. Designs for attachment to header by welding or brazing. Complete electrical and mechanical design services available.

D. E. MAKEPIACE DIVISION

Pine a dunham street - attleboro, mass
CIRCLE 817 ON READER-SERVICE CARD
ELECTRONIC DESIGN • May 10, 1961

CONTROL TEMPERATURE, CURRENT AND VOLTAGE WITH THERMOMETAL ${ }^{\text {® }}$

Leading manufacturers rely on the dependable performance of Wilco Thermometal in electrical appliances, thermal cutouts, heating controls and many other applications involving the indication and accurate control of temperatures, electrical currents, voltages, etc. Thermometal is supplied in strip form, rolled and slit to close tolerances and tempered to specification. Thermometal elements and sub-assemblies are also supplied to specifications, with or without contacts attached. Send for literature.
H. A. WILSON DIVISION U.S. HIGHWAY 22 - UNION, N. CIRCLE 816 ON READER-SERVICE CARD

 EXECUTIVEOFFICES
 113 ASTOR STREET . NEWARK 2 NEW JERSEY

 SALES OFFICES: CHICAGO D DALLAS : DETROIT :MOUSTON. LOS ANGELES. NEW YORK. ORLANDO: PROVIDENCE . SAN FRANCISCO . WASHINGTON, D. C.

Please send literature as indicated below, addressed to my attention:Minoxo Indicator
\square Thermometal
\square Econotape
\square Deoxo Purifier-Puridryer
Fused Quartz
\square Platinum Spirals
\square Nitroneal Generator
name
title
FIRM
STREET
city

For printed circuits. Series C140PC trimmer potentiometer is rated at $0.2 \mathrm{w}, 70 \mathrm{C}$, with operation to 125 C max. The device has a 25 -tum lead screw with clutch stops. Resistance range is 500 ohms through 1 mcg , linear taper. Case size is $1-1 / 4 \times$ $19 / 64 \times 21 / 64 \mathrm{in}$.
CTS Corp., Dept. ED, Elkhart, Ind. P\&A: $\$ 1.63$ to $\$ 1.85$ ea, 500 up; 2 to 5 weeks.

Bobbin Cores

For computer applications, series 300 cores use $1 / 8-\mathrm{in}$. mil molybdenum permalloy tape wound on stainless-steel bobbins and enclosed in an Armag outer jacket. They have EIA flux values with a tolerance of $\pm 10 \%$. A wide range of core sizes is offered.
Dynacor, Inc., Dept. ED, 10431 Metropolitan Ave., Kensington, Md.

Synchronous Motors

649

Vane-cooled hysteresis motors are available in sevell speeds, 360 to 3.600 rpm . Single phase is available for 110 to 120 and 220 to 240 v ac , three phase tor 220 to 240 v . Ambient temperature is from - 32 to +135 C .

Rotax, Inc., Dept. ED, 2209 Federal Ave., Los Angeles 64, Calif.

Data Plotter

650
Systern accuracy is to $\mathbf{0 . 1 7 5 \%}$ of full scale. Input can be keyboard, punched card or tape. Plotting speeds are up to 80 points per min. The unit accepts analog and digital inputs and is adaptable to any computer system. Designation is 3100 .
Electronic Associates Inc., Dept. ED, Long Branch, N.J.

Bandwidth is de to $\mathbf{7 . 5 \mathrm { mc } \text { . Units }}$ in the Graph series weigh 20 lb . The plug-in amplifier provides a sensitivity of 1 mv per cm with reduced banclwidth. Calibration on both axes can be checkerl against a self-contained 18 calibration circuit. Sweep is variable from 1 to 1.5 sec per cm .
Interlab Inc., Dept. ED, 116 Kraft Avc., Bronxville, N. Y.
Price: \$395.

Thermocouple

Having nine channels, the Em-T101 system is accurate to ± 6 deg from 32 to 185 F . Channels are interchanged by using a resistance thermometer as one leg of a bridge circuit. Bridge excitations are supplied by individual power supplies.

Engineered Magnetics, Dept. EI), 13041 Cerise Ave., Hawthome, Calif. Price: $\$ 2,000$ up).

Krypion-85 Battery

544
Rating is $3 \mathbf{k v}$ per cell, opell circuit. Current is 600 uиa at no voltage and capacity is 50 uf. Temperature range is -75 to +75 C . External radiation is less than $\mathbf{5 0}$ milliroentgens per hr at 4 in. from surface, unshielded. The unit is available to those licensed by the Atomic Energy Commission.

Radiation Research Corp., Dept. ED, 1150 Shames Drive, Westbury, L. I., N. Y.

P\&A: \$9.5; 30 days.

Bus Duct

591
With low-voltage drop. Ilighfrexuency bus duct is designed to transmit power in frequencies from 180 to $20,000 \mathrm{cps}$. Voltage drop is less than 1 v per 100 ft at 400 cps . Duct measures $9-5 / 8 \mathrm{in}$. wide by $3-7 / 8 \mathrm{in}$. high and weighs 13 lb per ft . Ten-foot lengths are standard.
Westinghouse Electrical Corp. Dept. ED, Standard Control Div., Beaver, Pa.

CIRCIE 123 ON READER-SERVICE CARD \geqslant

RAYTHEON'S NEW A-D CONVERTER: UP TO 5.0×10^{6} INDEPENDENT 8 BIT WORDS PER SECOND!

Faster than any other available, Raytheon Analog.Digital Converter's 25 -nanosecond aperture time allows digitizing of pulses less than $1 / 2$-microsecond in width. With multiplexed input, its applications encompass any product or process requiring digitized analog voltages in continuous or intermittent form.
About the size of an office typewriter, Model AD.50A is readily integrated with established systems: its flexible design allows acceptance of variable input as well as wide variations in output format and logic. Its almost unlimited systems applications offer industry, government and the

RAYTHEON

RAYTHEON COMPANY
EQUIPMENT DIVISION
military a basic, solid state tool that revolutionizes the present state of the art.
All of its outputs are usable, every readout is valid, and it can be operating in your system in less than 90 days.

MAIL COUPON TODAY FOR BROCHURE

Raythen Company, Dept. 31A, Lexington 73, Massachusetts
Attention: M. B. Curran
Please mail me Specifications on:
\square Model AD.50A B Bit Converter
\square New 10 Bit, 1 megasample Converter
I'm interested in possible applications to the following type system (s):

Name \& Title

Company
Address
City \& Stase.

NEW PRODUCTS

Freezers

With temperatures to -200 F . the Cryostor units are suitable for laboratory use. Temperature-range control is automatic. Vapor-proof, units have a $1-1 / 2 \mathrm{cu} \mathrm{ft}$ standard capacity. The first-stage compressor is a $1 / 2-\mathrm{hp}$ motor, the second, a $1 / 4$-hp motor Instrumentation Associates, Dept ED, 17 W. 60th St., New York 23 N. Y.

Pressure Gage

Accuracy is $\pm 1 \%$ at room tempera ture and $\pm 2.5 \%$ at temperature ex tremes. Mordel 451218 is miniature and is suited for missile, aircraft and telemetering use. Kanges are from 0 to 10 and up to 150 psia, psig or psid. Acceleration is 20 g . operating, 40 g max.
Ciannini Controls Corp., Dept. ED. 1600 S. Mountain Ave., Duarte, Calif

the most powerful

501
Ratings are 12 to 1.4 uf at 6 to 50 v . These A-Case units are doubleended for nonpolar applications and single-ended, if necessary, for polar use. Single-ended units are 0.47 in . long and 0.131 in . in diameter. Life is $2,000 \mathrm{hr}$

General Electric Co., Special Capacitor Product Section, Dept. ED, Irmo, S. C.

Induction Mofor

For airborne-compressor use as well as pump and switching applications, BF-15-8 has an operating speed of $10,000 \mathrm{rpm}$. Other ratings are: 0.03 hp ; torque, $3 \mathrm{oz}-\mathrm{in}$. full load and 400\% starting; current 0.26 amp full load and 0.8 amp starting

Kearfott Div. of General Precision, Inc., Dept. ED, 1150 McBride Ave., Little Falls, N.J.

Westinghouse 30-amp silicon "rock-top" power transistors

New 30-amp ratings, the industry's highest! These latest Westinghouse Silicon Power Transistors are especially designed for those applications where you need more transistor power, extra long-life and extra stability un der all operating conditions. Your choice of nine devices in this new family-each rated at 30 amps . - for greater flexibility of circuit design in high-power applications. Other Westinghouse high-performance features include: - Exclusive "rocktop ceramic construction for greater reliability - Voltage ratings to 200 volts • Double-ended case design - Low saturation resistance 250 watts power dissipation.

transistors you can buy...

Production quantities of the type 115 fam. ily are now available. Westinghouse also offers the 2N1015 and 2N1016 series of Silicon Transistors, ideal as companion drivers. Military and industrial applications include: power supplies/regulators/ampli-fiers/high-power switching/inverters.
For more information call your nearest Westinghouse representative or semiconductor distributor. Or write: Westinghouse Electric Corp., Semiconductor Dept., Young. wood, Pa. Sc- 1012
You can be sure . . . if it's
Westinghouse

For Immediate "off-the-shelf" delivery order from thase Wostinghouse Distributors:
EASTERM
ACK SEMICONDUCTOR. INC.
 CRAMER ELECTRONICS INC ELECTRonic whotesiters. INC.
 General radio Supply co. $\begin{aligned} & \text { Camden, N. J./wo } 4-8560\end{aligned}$ genesee radio paris co. N. ./wo 4-8S60
 MILGRAY ELECTRONICS Battimo Md /IU 9-42t2 milgray electronics new Yoth, n. y /re $2-400$ RADIO \& ELECTRONIC PARTS Y CORP PR scuweber electronics onio/UT 1-6060
SChweber Electronics n. M PI 6.6520
Long Island. M. Y/PI 6.6520
Silver Spline. Md./fU 5 5-7023

mIDWESTERM

ELECTROMIC COMPONEMTS FOR
INDUSTAT CO MALLMARK INSTRUMENTS CORP 2 -9917 InTEP-STATE Papio Dallas, Teras/R1 7-9385 inter-state radio \& Supply Co Denver 4. Colo./TA 5-825] LENERT CO Mouston, Texas/CA 4.2663 radio distributing co. SEmiconoucior SpECIALISTS. IME 7.5571 SEMICONOUCTOR SPECIALISTS. INC $\begin{gathered}\text { Chicago III./NA 2-8860 }\end{gathered}$ 5. STERLING CO Detrott. Mich/BR 3-2900 UNITED RADIO. INC.

westerm

Etmar Electronics
Oaklend. Colir TTE 4-3311 MAMILION ELECTRO SALES $\begin{aligned} & \text { LOS Angeles. Calif./BR 2-9154 }\end{aligned}$ newark electromics co

Westinghouse

SILICON POWER
RECTIFIERS
AND TRANSISTORS
NOW サ STOCK
YOU LAN OBTAIN
UP TO 1000 PIECES
OF MOST TYPES
AT
fACTORY PRICES
FROM

ELECTRON/CS
© ho herricks road.
MINEOLA. L. I., N. Y.
PIONEER 6-6520.
TWX G-CY-NY-5sou

CIRCLE 124 ON READER-SERVICE CARD < CIRCLE 125 ON READER-SERVICE CARD

a little thermistor

makes a big difference in a liquid level measurement circuit

Place a thermistor in series with a light bulb and a battery. The thermistor will heat up, the resistance will drop (a fascinating characteristic of thermistors) and permit enough current to flow to light the bulb. Submerge the thermistor, and it will cool - up goes the resistance and out goes the light. Merely substitute a relay for the bulb and you have yourself a neat, precise liquid level control.

A small but mighty device, the thermistor. Highly precise, highly versatile. Its applications ceiling is virtually unlimited - temperature control or liquid level measurement, time delay, remote control, switching. or you name it.

There are just two kinds of thermistors, really: ordinary, which are good; and FENWAL ELECTRONICS'。 which are a little bit better. One reason is that FENWAL ELECTRONICS pioneered in this business. Another is that we can suilt your application exactly - for the simple reason that FENWAL ELECTRONICS has the most complete line of thermistors available anywhere.

For details, application assistance, and new Thermistor Catalog EMC 4, write:

51 Mellen Street, Framingham, Massachusetts
CIRCLE 126 ON READER-SERVICE CARD

NEW PRODUCTS

Flaw Detector

Operates without liquid. Metalloradar mordel 6 Haw detector uses a synthetic membrane to couple the transducer to object under test. Six frequency steps from 0.5 to 10 mc are available. A barium titanate transducer is used. The set will detect flaws and discontinuities within the object as well as the opposite side. A $7-\mathrm{in}$. crt displays the reflected vibrations
Circo Corp., Dept. ED. Terminal Ave., Clark. N.J. Price: $\$ 2,7.50$.

Electronic Commutator

Operates at $+\mathbf{1 2 5}$ C. Low-level electronic commutator model CE-12 provides reliable, high-speed switching at temperatures to +125 C . Contact resistance averages 12 ohms. Reverse current is less than 1 na per channel, common-mode rejection better than 1 million to 1 .

United ElectroDynamics, Inc., Customer Requirements Dept, Dept. ED, 200 Allendale Road, Pasadena, Calif.
Acailability: In production.

Trimmer Controls

653
End resistance less than 1\%. Models PC-1 and PC-2 potentiometers are wirewound units available in values from 100 ohms to 10 K . The stud-mounted PC -1 and the lead-mounted PC-2 have a diameter of $1 / 4 \mathrm{in}$. and a length of $1 / 4 \mathrm{in}$. Designed for potting, these units have open construction. Specifications include: end resistance, less than 1%; resolution, 0.25% to 1%; power rating, 0.25 w . weight, 0.02 oz
Miniature Electronic Components Corp., Dept ED, Holbrook, Mass.
shortest distance between you and RELIABILITY!

ELECTRIC CO.
division of
industrial timer corporation

RELAYS
 FOR EVERY APPLICATION

Factory Tested for Rellability :
GENERAL PURPOSE Open Type Relay. Up to 3PDT. 5 or 10 amp con tact rating. Voltages uD Details in Bulletin 10

GENERAL PURPOSE Plug.In Type Relay. Con. tact arrangements up to 3PDT. 5 or 10 amp con. tact rating. Voltages UD to 230 volts, $A C$ or DC. Details in Bulletin 10

PRINTED CIRCUIT Open Type Relay. Up to 3PDT 5 or 10 amp contact rating. Voltages up to 230 volts, AC or DC. Details in Bulletin 11.

213 River Street, Orange, N. J. Industrial Relays, Foot Switches, Buzzers, Coils Phone: ORange 2-8200

CIRCLE 127 ON READER-SERVICE CARO

For continuous operation at $3 \mathbf{k w}$, this 40 -mc unit can be used to heat high-resistance materials such as semi conductors. Class and ceramic can also be heated. Depth of penetration at 40 mc is 0.000 .5 in . The unit has a threephase power supply.

Induction Heating Corp. Dept. EI), Brooklyn, New York. N. Y

Computer Diodes

588
Recovery time of 5 musec is featured in these silicon units, types 1.1925 through 1.:928. They are said to have the fastest recovery time and lowest capacitance available at this power rating
Princeton Electronics Corp., Dept. ED. PO. Box 127, Princetom, N. J.

Cable Tracing Device

590
For locating up to 10 cables simultaneronsly, mexlel CT-10 operates from a $1.5-\mathrm{v}$ battery. When an indicator button is depressed, a circuit is identified. Each test made identifies a conductor. Standard receptacle handles wire sizes to no. 10 .
Pyramid linstrument Corp., Dept ED, Lynbrook, N.Y.

Switching Transistor
For medium-speed computer use, the 2×40-A germanium unit is de signed for military and industrial use Ratings are: collector-to-base, -40 v collector-to-emitter, -35 v ; emitter-tobase, -25 v ; collector-current, -150 ma; emitter-current, 150 ma .

Radio Corp. of America, Semiconductor and Materials Div., Dept. ED, Somerville, N. J.

This is the time of our annual subscription renewal; Return your card to us.

CIRCLE 12: ON READER-SERVICE CARD

HOW TO HANDLE A BOTTLE NECK

0

SPERRY SEMICONDUCTOR DIVIIION

OF

SPERRY RAND CORPORATION NORWALK, CONNECTICUT

These special clean room "nurses" baby our product for your protection
neck
breaking
63
chocks arte neck breaking QC chocks are performad bofore and during mechanized manufacture.

Even the youngest engineer has to rest up sometime. It can be quite a strain when you must decide among vendors whose products appear to be about equal, and the choice you must make is your responsibility.

That's why it's so important to consider the overall capabilifies of your suppliers. Do they have the skills, the talent and the resources to support the wisdom of your selection? We think we can help you . . . we would like to try.

[^4]
...sign here!
If you want top-quality pots when you need them. you could make your own! Of course, you ll need Swiss screw machinery to produce the cases necessary to complete the job. So plunge right in - sign up for those highly precision screw machines . . . and hang the cost!
But before you deplete the family exchequer with a grand flourish of the pen, come to Ace! We've already taken the plunge, and it's paid off. These machines automatically deliver, at high speed, cases with mechanical tolerances closer than .0002. This also means the most flexible production operation in the industry. No subcontracted parts to wail for - we design our own cams to any special size and shape, and we run the cases ourselves. on a 24 -hour day basis! So for dependable delivery, see your ACErep!

Ilere's one of our automatic-production cases, on a servo mount A.I.A. size $1-1 / 16^{\prime \prime}$ ACEPOT ${ }^{3}$. In-plant production on cases up to $6^{\prime \prime}$.

NEW PRODUCTS

Subcarrier Oscillator

For low-level signals. Model VC-32 subcarrier oscillator will operate from signal sources as low as $=10 \mathrm{mv}$ full scale with accuracy of 1% or better under all environmental conditions. Output of 4.1 v rms into 2 K eliminates the need for multiplexer amplifiers. Volume is 2.1 cu in., weight 2.5 oz .
U'nited ElectroDynamics, Inc., Customer Requirements Dept., Dept. ED, 200) Allendale Road, Pasadena, Calif.
Availability: In production.

Power Supply

For transmitter. MIL-E-5400, Class II transmitter power supply provides 4 kw in multiple outputs. Five high-voltage outputs range from 150 to 650 vdc at currents from 0.12 to 3.5 amp . Other outputs are 28 v dc at $25 \mathrm{amp}, 6.3 \mathrm{v}$ ac at $5 \mathrm{and} 8 \mathrm{amp}, 6$ bias outputs from -3 to -60 v dc , and short-circuit proof bias outputs of -18 v dc and 4 v dc at 0.2 amp . Power input is MIL-STD-704,115v.

Transistor Devices, Inc., Dept. ED, 40 Factory St., Cedar Grove, N.J.

Audio Multicoupler

With throwaway modules. Model 5102 audio multicoupler provides 10 outputs from single input. Output circuits, low-noise amplifier, and rectifier are housed in modules $1-1 / 4 \mathrm{in}$. high by $5 / 8 \mathrm{in}$. in diameter. Range is 25 cps to 25 kc , harmonic distortion less than 2% at 1 v output.

Ortronix, Inc., Dept. ED, P. O. Drawer 8217, Orlando, Fla.
P心. A: $\$ 200$ ea; 30 days.

657
Best solution
to
custom
design potentiometer problems...

Merely write to The Gamewell Company, stating your requirements. Gamewell engineers will take it from there. They've been designing high precision potentiometers and rotary switches for a good many years. And a great many of them have been customdeaigned.
Naturally, this experience pays off. Take selection of the best resistance material for a given application as just one example. Here, Gamewell makes full use of all available alloys. And, backed by extensive files of in-service data, assures the best design of the resistance element in conjunction with the most compatible wiper-contact material.
When necessary, of course, Gamewell's complete development and test facilities are put to use. Salt spray, humidity, extreme temperature, altitude, acceleration, vibration and many more test facilities are available to insure exact facilities are available to insure
In production, Gamewell facilities givecustom-designed "pots" and rotary switches the benefits of today's most advanced methods and machines. Extensive metal working machinery. and refined dimensional checking devices assure production of every component to high precision tolerances. All "pots" are wound on precision machines, designed and built by Gamewell. And both winding and assembly are carried out in surroundings automatically kept spotlessly clean.

Thus it is that "pots" with even the most unusual electrical characteristica or mechanical features can be precisely produced in a minimum of time at Gamewell. Simplify your custom-deaigned potentiometer problems.
Write TheGamewell Company, 1420 Cheatnut St., Newton Upper Falls 64, Massachusetts. A Subsidiary of E.W. Bliss Company.

tur

PRECISION POTENTIOMETERS
"Integrals of
CIRCLE I30 ON READER-SERVICE CARD
ELECTRONIC DESIGN • May 10, 1961

How to grow your own money

You buy more than a sood return with Bavinge Bonde. You help keep our country strong for today's generation
and the onces to come. That's one of the reasons so many Americans buy and bold U. S. Savinge Bonds.

A U.S. Savings Bond is better than money. It grows. Plant $\$ 18.75$ in a Savings Bond and in $73 / 4$ years it'll be $\$ 25-$ a full one-third big. ger. The U.S. Government guarantees this growth. And if you can't afford to lay out the full purchase price, you can buy Savings Bonds a bit at a time through your Payroll Department where you work. It's an automatic installment plan that costs you no interest or carrying charges.

Advantages to think about
You can save automatically on the Payroll Savings Plan - You now earn 3 ta \% to maturity - You invest without risk - Your Bonds are re placed free if lost or stolen - You can get your money with interest anytime you want it - You buy shares in a stronger America.

You save more than money with U. S. Savings Bonds | 20 |
| :---: |
| 48 |

Thin advertasing is donated by The Adiertising Council and this magazine

Analog-Digital Converter

With up to $\mathbf{4 0}$ channels, this system translates varying voltage data into 13 -bit, 8-4-2-1 binary-coded decimal form. It handles $\pm 20 \mathrm{mv}$ to -700 v . Sampling speed is 80 samples per sec; any segnence is possible. Designation is model $8(040$.
Electronic Development Corp., Dept. ED, 423 W . Broadnay, Buston 27, Mass.

Digital Comparator

660

Having a high accuracy, this mit cyntrols speed, How rate, pressure or other functions able to produce a proportional pulse rate or frequency. It delivers a serics of beat pulses to correct errors. Solid-state components are used.
Jordan Controls, Inc., Dept. ED, 323.3 W. Hamp(tin Ave. Milwankee 9. Wis.

Electronic Timers

Transistorized devices have timing evcles from 0.005 to 900 sec $\pm 1 \%$ during input voltage change of 上25\%. Units feature variable or fixed timing co cles, ac or dc input, and recycle time down to $\overline{5}$ msec.
Slip Ring Co. of America, Dept. ED, 3612 W Jefferson Blvd., Los Angeles 16, Calif.

This is the time of our annual subscription renewal; Return your card to us.

YOUR COPY IS READY

Send for it now if you use:

- Regulated d-c power supplies Line-voltageregulators Voltageregulating transformers - Frequency changers (varlable-frequency power sources) High-voltage d-c supplies High-voltage a-c and d-c testers (to 300,000 volts) Miniature transistorized inverters, and converters.
. Plus valuable technical information. Get your copy from your nearest Sorensen representative or write: Sorensen \& Company, Richards Avenue, South Norwalk, Conn

a sushiount or matritow compent
CIRCLE 132 ON READER-SERVICE CARD

NEW PRODUCTS

Indicating Controllers

663

For process control. Indicators and indicating controllers are made in more than 50 range scales and calibrations for use with all standard sensing elements. Controllers provide off-on or 3-position control for processes. Instruments require 56 sq in . of panel space. Accuracy is 0.25% of full scale, sensitivity 0.125%.
Thermo Electric Co., Inc., Dept. ED, Saddle Brook, N. J.

Instrumentation System
674

Used with transducers. Small, rugged model 96 RC contains a signal amplifier, transducer power supply, bridge balance circuits, and calibration circuits. System can be used with any bridge transducer having 1 to 4 active arms. Output signal is $\pm 5 \mathrm{v}$ dc at 350 ohms impedance.
Video Instruments Co., Inc., Dept. ED, 3002 Pemnsylvania Ave., Santa Monica, Calif.

Stepping Relay

675
For machine control. Complete industrial control stepping relay assemblies are supplied ready for installation. Count-up, count-down and combination systems are available with or without instantaneous reset. Standard units provide 4,5 and 10 points. Life expectancy is 200 million steps.

Programation Div., Guardian Electric Manufacturing Co., Dept. ED, 1621 W. Walnut St., Chicago 12, Ill.

If you want ELECTRONIC DESIGN to reach you without interruption mail your renewal form now!

Here's the Inside Story of the industrys first

Double- diffused

Hermatic seal . . . Kovar metal to matched oxide-honded metal to matched oxide-bonded ceramic seal protects against thermal cal stability, low leakage current.
pro

Silicon pollof... highly efficient ward voltage drop.

	sistive or Ind	ings and Sp_{p} ve Load Sing	fations hase 60 cps ,	soidal)		
Max Allowable Poak Roverse" Volfago (Ropotitivo)	200	300	400	500	600	volis
Maz Alloweble Pronsiont Poak Roverge Velrege (5 millisec Max) Duration ($\mathrm{T}_{1}=0^{\circ} \mathrm{C}$ io $200^{\circ} \mathrm{C}$	300	400	525	eso	100	volis
Max Allowable Voltage (ams)	140	210	210	350	420	volis
May Avorage Single Phose Forward Current (Ts $=150^{\circ} \mathrm{C}$)	70	70	70	70	70	ADC
Mar One Cyele Non-Recurrent Peak Surgo Current	1600	1600	1600	1600	1600	Amps
Avg. Borward Velrege Drep At 70 Amps DC Single Phase ($\mathrm{T}_{\mathrm{s}}=150^{\circ} \mathrm{C}$) Full Cycle Average	0.45	0.45	0.45	0.45	0.45	volts
Maz Instantaneous Leakege Curremt AI Rated PRV (In Milliamperes)	24	24	28	21	16	ma
Maz dunction to Siud Thermal Resistence	0.5	0.5	0.5	0.5	05	${ }^{\circ} \mathrm{C} / \mathrm{Wall}$
Operating and Srorage Temp, Iange (dunction)	-40 P0 +200	$-4010+200$	$-4010+200$	-40 10 + 200	-40 to +200	${ }^{\circ} \mathrm{C}$
Strud Perque	100	100	100	100	100	in-lbs.
	-Rating ass	rectifior coll h	ink of less than	C/Worr.		

all hard solder 70 amp

silicon rectifier

With these important features

for power supply applications requiring d-c outputs as high as 70 amperes per rectifying element at rms input voltages up to 420 volts:

- Freedom from thermal fatigue
- Higher PRV capabilities
- Higher surge current capabilities
- Very low leakage
- Greater uniformity from cell to cell
- Extremely low forward voltage drop

For applications information and complete technical data, call your G-E Semiconductor District Sales Manager, or write Rectifier Components Department Section 23E15, General Electric Company, Auburn, New York. In Canada: Canadian General Electric, 189 Dufferin St., Toronto, Ont. Export: International General Electric, 150 E. 42nd St., N.Y., N.Y.

For fast delivery of selenium, germanium and silicon rectifiers, at factory low-prices, see your authorized G-E distributor

GENERAL ELECTRIC
 CIRCLE 133 ON READER-SERVICE CARD

Can be rotated. A convenient means of holding printed-circuit boards during assembly operations is provided by the Quick-Clip vise. Board can be rotated in an arc of more than 180 deg , and is accessible on both sides. Vise is 6 in . long with jaws 13/32 in. deep.
Western Electronic Products Co., Dept. ED, 2420 N. Lake Ave., Altadena, Calif.

PdA: $\$ 9.65$ ea; stock.

Oscilloscope Probes

General-purpose type. The 24 low-capacitance probes in series P6000-P6005 offer choice of attenuation ratios of $1: 1,10: 1$, and $100: 1$ in four cable lengths. Made for use with dc to $30-\mathrm{mc}$ oscilloscopes, termination is BNC or uhf connector. Types P6017 and P6022, made for use with de to lj-me instruments, have attenuation ratios of $10: 1$

Tektronix, Inc., Dept. ED, P. O. Box 500, Beaverton, Ore.
Price: $\$ 12.50$ to $\$ 21.50$ ea.

Noise Suppressors

For inductive switching. No shielding is required for this line of devices used in suppressing of noise generated by switching inductive loads. Units also provide contact arc suppression.

Relcoil Products Corp., Dept. ED, Spring St. \& Route 75, Windsor Locks, Conn.

Starters and Combinations

Redesigned, the M60 EPC starters and combinations are offered in 7,9,11 and 13 in . to take sizes 0 to 5 starters and combinations. Features include: one or two pilot lights, pushbutton stations, selector switches and covers with plugged openings.

Crouse-Hinds Co., Dept. ED, Syracuse 1, N.Y.

$8 \mathrm{cu} . \mathrm{ft}$. "PORTABLE"

temperature test chamber

The MC-2 22 is the largest precision portable temperature test chamber available...an economical, accurate, flexible facility for dynamically "proof-testing" electronic components.

Only the portable MC-222 offers:

- Temprerature range from $-100^{\circ} \mathrm{F}$. to $+750^{\circ} \mathrm{F}$.
- Accuracy to $\pm 2^{\circ} \mathrm{F}$. of selected temperature
- Heating and cooling rates, variable from $5^{\circ} \mathrm{F}$. to - Temperature ran
- Temperrature range interchangrability
- Tests up to 1500 Iliodes or 1000 Transistors
- Sulid state proportional electronic control or contact f'yrometer control
Fior a s-mige operution manual, wirite:

CIRCLE 134 ON READER-SEQVICE CARD

NEW PRODUCTS

Insulation Tester

Measures high resistances. The Teraohmmeter makes resistance measurements over a range of 2 meg to 5×10^{15} ohms at potentials up to 1 kr . A pair of 7 -in. meters accurate to 0.5% are used for voltage and resistance indications.
Rohde \& Schwarz Sales Co., Inc., Dept. ED. 111 Lexington Ave.. Passaic, N. J.

RF Connectors

In crimp-on design. ConheX crimp-type connectors are available in screw-on and snap-on styles. Assembly time is reduced by 66%. The process does not affect impedance value as there is no dielectric collapse.
Sealectro Corp., Dept. EIJ, 610 Fayette Ave.. Mamaroneck, N. Y.

Power Supply

Provides 15 kv . A dc power supply, model LAB-10 is continuously variable from 0 to 15 kv . Regulation is better than 1%; current is 2 ma . Supply is available with positive or negative output. Panel height is 8-3/4 in. Automatic overload and sensitivity control are optional.
Spellman High Voltage Co., Inc., Dept. E1), 19:30 Adee Ave., Bronx 69. N. Y.
Price: $\$ 27.5$.

680

681
quality... selection

Standard Model G-M Servos immediately available

The broad selection of G.M Servo Motors and Generators assures quick and complete adaptation to your servo development and production programs. Sizes range from 5 to l 6. More importantly, every G.M Servo is built with a full margin of reliability. G-M's extra design experience is proven in production by test, after test, after qualification test.
Qualify. C-M Serios for all of your proj. ects nome, in aderance of uclual nerel. Send procurement specs und prints todis).

Phone: PEnsacola 0-1800 (TWX CG-3266)
 4284 N. Knox Avenue : Chicago 41
Other offices in principal cities CIRCLE 135 ON READER-SERVICE CARD Electronic design - May 10, 1961

Wirewound Resisfor

Rated at $2 \mathbf{w}$. Miniature 2-w insulated-shell wirewound resistor type 248E has a top resistance value of 3 K in size $15 / 64 \mathrm{in}$. OD, $7 / 16 \mathrm{in}$. long. Ceramicinsulated wire is used in multi-layer winding. Outer shell is monporous, tubular ceramic.
Techuical Literature Section. Sprague Electric Co., Dept. E.I), 347 Marshall St., North Adams, Mass.

Power Transducer

Acrurate to 0.5%. Hall effect power transducer PC.-.jol produces a dc voltage ontput proportional to true power. Frequency range is 50 to $1,(0)$ c.ps, linearity 0.5% or better. Output is 0.4 mv per $\mathrm{w}+20 \%$. -10%. Output is constant within 0.5% from -5 to +7.5 C. Case size is $4-1 / 4 \times 3-7 / 8 \times 3-5 / 16 \mathrm{in}$. Ohio Semiconducturs, Dept. ED, 1205 Che sapeake Ave., Columbus 12, Ohio. P'sA: \$143.59 ca. 1 to 24: 2 ureks.

Oscilloscope Bay

685

Provides 7 monitors. Model 260 oscilloscope baiy has 7 solid-state monitor oscilloscopes in a 3-1/2 \times $19-\mathrm{in}$. rack mount. Scope modules have frequency response of de to 1 mc within 3 db ; vertical sensitivity is 0.5 to 5 v rms per in . Sweep rate is 10 cps to 100 kc . A 2 -in. flat face cathode-ray tube is usced Electro Instruments, Inc., Dept. ED, 8611 Balboa Ave., San Diego 11, Calif

Mail your subscription renewal today.
Get every issue of ELECTRONIC DESIGN.

amco1000 (G"s CERTIFIED SHOCK TESTS

Amco Aluminum and Semi-Custom Modular Frames qualify for Airborne, Shipboard and Ground Support Applications

Aluminum

Semi-Custom
Amco manufactures all necessary blowers, chassis slides, doors and drawers, writing surfaces, cowling ings you get thru Amco's combined-discount system of racks and accessories. PLU'S FREE ASSEMBLY. Amco is your one complete source of Modular Instrument Enclosure Systems and Accessories. Write today
 and Semi-Custom Frames withstand shock \& vibra tion under Mil E-5272C; Procedure XI (5-500cps) Procedure III (approx. 1000g's shock Mil-S901), Procedure II (15 gs and drop Mil-S4456). Write for Test Report Supplement E.
ALUMINUM ...Unique! Meets any size. . . Flush or recessed mounting of panels. Almost any shape from 13 basic parts ... 3 castings \& 10 extrusions. Units
from $6^{\prime \prime}$ to 20 fi.; slopes from 0° to 90° standard. from $6^{\prime \prime}$ to 20 ft .; slopes from 0° to 90° standard
MilSpecs $606^{\circ} 2-\mathrm{T} 6$ extrusions and $356-\mathrm{T} 6$ castings.

SEMI-CUSTOM . . . Heavy-duty, more internal clearance.. .14 ga . box-channel steel frames, 12 ga gusseting provides exceptional rigidity both front-to-back and side-to-side. Frames based on $22^{\prime} 16^{\circ}$ increments provides clearance for recessing 19° wide panels. Meets EIA Standards.
CUSTOM . . . When space and appearance are critical .16 ga . double-channel steel frames, based on lbs. Multi-width panels and cowlings give single-unit appearance with series mounted racks Mices EIA appearance with series mounted racks, Meets EIA Standards. lights and other accessories. Check the extra sav-

See us at the Design Engineoring Show, Detrolt, Michigan, Booth No. 449 CIRCIE 137 ON READER-SERVICE CARD

For overcurrent protection that fits hand-in-glove with tight operating specs, try the Heinemann Type C Overload Relay. You can practically design it yourself, to your particular requirements. And at reasonable cost. You not only can specify the exact integral or fractional continuous-duty current rating you need (between 0.02 and 60 amps), you can spec response characteristics, too. Within broad overall limits, you can have the precise time-delay.vs-overload action you want. All you have to tell us is the time within which actuation must occur at any specified overload value. In most cases, this value can be as low as 115% rated load, (Because the Type \mathbf{C} is magnetically actuated, the calibrated trip points you select will remain constant for the life of the relay-no ambient-temperature compensation is necessary.) Optionally available with trip indication and lock-out features, the Type C Relay is fully described in our Bulletin 5103. Write for a copy.
hememann electric company, 156 BRUNSWICK PIKE, TRENTON 2, M. J.

CIRCLE 138 ON READER-SERVICE CARD

NEW PRODUCTS

Frequency Standards

Are transistorized. Portable frequency standard, weighing less than 7 lb , maintains frequency stability of 1 part in 1 billion per day. A laboratory model uses a vlf syncro phase receiver to provide automatically corrected output signals stable to ± 2 parts in 1 billion. The portable unit provides 1 -mc and $100-\mathrm{kc}$ outputs; the laboratory model has an additional 10 -ke signal.
Motorola, Inc., Dept. P-126, Dept. ED, 4.501 W, Augusta Blıd., Chicago 51, Ill.

Resolver Tester

687

Checks sine or cosine function. Resolver function bridge model RF-3M shows as a percentage the difference of a computing resolver's output from ideal sine or cosine function. The device will not introduce more than 0.002% error into the test. Range is 360 deg, quadrature rejection $50: 1$. Bridge will test all resolvers with phase shifts between -5 and +20 deg and outputs between 5 and 50
Theta Instrument Corp., Dept. ED, 520 Victor St., Saddle Brook, N. J.
PがA: $\$ 2,000$, stock.

Television Camera

688
Image orthicon type. Designed for use in closedcircuit television situations where a minimum amount of light is available, the transistor camera combines the advantages of low weight, small size, and high light sensitivity, with a reduced cost. Preamplifiers are integrated into the camera socket to decrease lead length and stray pick-up from the otherwise normal impedance of the camera tube.

Thompson Ramo Wooldridge, Inc., Dage Div. Dept. ED, Michigan City, Ind.

Don't miss a single issue of

ELECTRONIC DESIGN. Send renewal now!

NEWEST ULTRA HIGH SPEED

saturated logic switching TRANSISTORS FROM PSI 2N919 $=$
$2 N 920=$

- Low VCE (sat) - Low Ts - High Power - High Current

Meet or exceed all epitaxial characteristics . . . and delivery now !

TECHNICAL DATA								
TYPE	Van	$V_{\text {cer }}$	\mathbf{V} сю	$\mathrm{V}_{\text {to }}$	$\mathrm{nct}_{6}{ }^{\text {a }}$	$V_{\text {cef }}$ (sat) ${ }^{\text {c }}$	T. max.*	Pkg.
2 N 919	25	20	15	5	20.60	2	25 ns	TO-18
2N920	25	20	15	5	$40 \cdot 120$	2	25 ns	T0.18

NOTE: GUARANTEED 15 ns Max. Te avallable in both types. Specify " A " versions See data sheet for exact test conditions.

Phone, wire or write a nearby PSI field office for full details, delivery schedules and quantity prices. Off-the-shelf delivery from PSI distributors everywher..

Pacific Semiconductors. Inc.

A A SUBSIDIARY OF THOMPSON RAMO WOOLDRIDEE INC. 12935 CHADRON AVENUE, HAWTHORNE, CALIFORNIA

2 NEW TRANSISTORS

for 3 SPECIAL APPLICATIONS

- Newest Core Driver
- Medium Power Switch
- Clock Pulse Generator

PT600
 Medium h_{FE} PT601
 High $h_{\text {FE }}$

- Low VCE (sat) - High Current - Fast Switching - Controlled hfe

TRIPLE DIFFUSED MESA CONSTRUCTION

TYPE	Vaso	Vere	Veso	M E°	VCE(sat)* max	Con typ.	Pc $25{ }^{\circ} \mathrm{C}$	Plis.
PTE00	60	45	4	15-45	1.0	40 ms	13w	T0.8
PT801	60	45	4	30-80	1.0	30 ns	13w	T0.8

"Measured al 1 Amp collector current. See data sheet for exact conditions.

12955 CHADRON AVENUE, HAWTHORNE, CALIFORNIA SALES Offices 08 8-4711, OS 9-2281 - TWX. HAW CN 4270 C Cebt Adtoes PSIS

NEW YORK- 870 Rroadway: Nowark 4, Now Jersey
Boston-471 Wasshington Stroet, Wollesloy 81, Mass. -

san Diego - 2223

Palo Arto - 701 Welch RRoad - Suite 205, Palo Alto, Calif. ols
oistrieutors

LLINOIS - 6957 Wast North Avenu., Oak Park, Illinois Village egsso Dallas - P.O. Box 6067, Dallas, Texas - Rivarside 7.1258 Detrolt- 1204 No Woodward Ave. Royal Oak. Michigan
3t. Paul-1602 Selby Ave., St. Paul 4, Minn. - MIdway
ENNSYLVANIA - No. 4 Township Line Road, Philadel phis 17, Pa. - Pligelm 2-80e9
Baltimore-1811 North Rolling Road, Baltimore 7. Md. nic centers coast-to-coast

Cathode-Ray Tube

For direct optical printing at high speeds on film, type E1E11 has fiber optic-light pipes. The pipes conduct the light from the phoshor on the vacuum side to the atmospheric side of the face plate without dispersion. Complete digital descriptions can be recorded in 50 msec . The corle matrix provides up to 1,024 bits.

Litton Industries, Display Devices Dept., Dept. ED. 960 Industrial Road, San Carlos. Calif.

Pressure Switch

For automatic control, this pressure switch has applications in air compressors and antomatic industrial controls. The contact block assembly is designed to be replaced in a minimum of time.

Lanes Industries Corp., Dept. EID, 612 Colorado Ave., Santa Monica, Calif.

Line Equalizer

For telephone data transmission. The TEM series of line equalizers is used to offset the amplitude and delay distortion inherent in telephone lines. The compact unit is adjustable for line lengths to 25 miles.
SEG Electronics Co., Inc., Dept. ED, 12 Hinsdale St., Brooklyn 7, N. Y.

From General Ceramics Division of
INDIANA GENERAL CORPORATION

Ferramico Cup Core Assemblies with Unmatched Stability $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$

(International Series)

FEATURES THAT PAY OFF IN PERFORMANCE AND COST

- Seven sizes from stock .599" to 1.425 " O.D
- Frequencies - IKC to IMC
- " Q " values to 750
- Standard Gapped Inductance Values 40 to $1000 \mathrm{MH} / 1000$ turns
- Extreme temperature stability
- Trimmer for minimum of $\mathbf{8 2 \%}$ adjustment
- Complete assembly available

INDIANOA

GENERAL CERAMICS

Phone Valley 6.5100 - Direct Distance Dialing Code 201 KEASBEY, NEW JERSEY, U.S. A:

TECHNICAL CERAMICS, FER RITES AND MEMORY PRODUCTS CIRCLE 141 ON READER-SERVICE CARD

NEW PRODUCTS

Differential Indicafor

For pressure systems. Differential pressure indicator is used as an automatic control instrument for balancing two interconnected pressure systems. Pressure rating is $12,000 \mathrm{psi}$, with resolution of 0.05 psi full scale. Indicator may also be used to seal pressure fluid in a gaging system against liquids and gases in a system under test.
Ruska Instrument Corp., Dept. ED, 6121 Hill. croft Ave., Houston 36, Tex.

Switching Transistors

Are epitaxial mesa types. Silicon 2-w transistors handle 500 ma of collector current in as total switching time of 105 nsec . The npn devices have storage time of 25 nsec max, and saturation voltage of 0.45 v max. Storage temperature is -65 to +300 C . Type designations are 2N1958 and 2N1959.

Sylvania Electric Products Inc., Dept. ED, 730
Third Ave., New York 17, N.Y.
Price: $\$ 13$ and $\$ 14$ ea, 100 to 999.

DC Amplifier

Accuracy is 0.1%. The 121 A de amplifier is a solid-state, wide-band unit with 11 gain steps from 0 to 1,000 , each step adjustable. Gain accuracy is $\pm 0.1 \%$ at dc, $\pm 0.25 \%$ to 2 kc . Output is $\pm 15 \mathrm{v}$ dc or peak ac into 200 ohms or more, ± 100 ma dc or peak ac into 10 to 100 ohms. Combined ripple, intermodulation and distortion is less than 0.1% of output to $2 \mathrm{kc}, 0.25 \%$ to 10 kc at any gain.
Kin Tel Div. of Cohu Electronics, Inc., 5725 Kearny Villa Road, San Diego 12, Calif. P\&A: $\$ 1,000 ; 30$ days.

9/0 carat Jewel for computers

Hughes* silicon alloy computer diodes weigh about the same as a 9/10. carat diamond (180 mg .) and they are just about as valuable to computer designers and manufacturers.

These diodes combine several important advantages High forward conductance, medium breakdown voltage, extremely low leakages at room and high temperatures, "zener type" stable hard back characteristics - plus fast recovery under high level switching conditions.
Now add dependability. The silicon alloy process plus extreme cleanliness in manufacture gives these Hughes diodes the ruggedness and reliability of a workhorse. This is proved by their ability to meet MIL-S.19500B or MIL-E-1D.

SILICON FAST SWITCHING COMPUTER DIODE

Jedec Type	Min. Breakdown Voltage (む) $100 \mu \mathrm{~A}$ (V)	Min. forward Current (a+IV unless noted (mA)	Max. Reverse Current (a. Specified Test Voltage ($\mu \mathrm{A}$)			Power Dissipation	Reverse Recovery	
			(a25 ${ }^{\circ} \mathrm{C}$	(a, $100^{\circ} \mathrm{C}$	Volts		($\mu \mathrm{sec}$)	(K Ohms)
1N625	30	4 (\%). 1.5	1	30	-20	200	100	400
1 N626	50	4 (ax 1.5	1	30	-35	200	100	400
1 N627	100	4@1.5	1	30	-75	200	10	400
1 N628	150	4 (E) 1.5	,	30	-125	200	$1{ }^{\circ 0}$	400
1 N629	200	4 (6) 5	1	30	-175	200	100	400
+1N643	200	10	1	15	-100	200	0.34	200
1N643A	200	100	1	15	-100	200	0.34	200
+1N658	120	100	. 050	$25.4150^{\circ} \mathrm{C}$	-50	200	0.34	400
1 N659	60	6	5	25	-50	200	0.34	200
IN660	120	6	5	50	-100	200	$0.3{ }^{\circ}$	400
1 N661	240	6	10	100	-200	200	$0.3{ }^{\circ}$	400
11 ${ }^{\text {6 } 622}$	100	10	20	100	-50	200	0.54	100
1 N662A	100	100	20	100	-50	200	0.54	100
+1 N663	100	100	5	50 15	-75	200	0.5*	200
1 N663A	100	100	. 1	15	-75	200	$0.3{ }^{\circ}$	200
1N837	100	150	1	15 15	-75		$0.5{ }^{\circ}$	400
1 N837A	100	150	. 1	15 15	-80 -125		0.3 ${ }^{\circ}$	400
in838	150	150	. 1	15 15	-125 -175		$0.5{ }^{\circ}$	400
1N839	200	150	.1	15 15	-175 -40		$0.5{ }^{\circ}$	400
1 1880	50	150	. 1	15 15	-40 -120		$0.3{ }^{\circ}$	400 400
1 N 841 in844	150 100	150 200	. 1	15 15	-120 -80		$0.3{ }^{\bullet}$ 0.5	400 400
1 N844 1 885	100 200	200 200	. 1	15 15	-80 -160		$0.5{ }^{\circ}$ 0.5	400 400
iN845								

*e Measured in modified IBM " Y " test circuit when switched from 30 mA forward current to - 35 V . Measured in JAN 256 test circuit and switched from 5 mA forward current to - 40 V - Measured in JAN 256 test circuit and swir

Help yourself to a generous portion of "peace of mind." Specify Hughes silicon alloy com. outer diodes or other silicon alloy devices... general purpose diodes, rectifiers, ultra-fast computer diodes, capacitor and zener diodes. For further information contact your nearest Hughes Semiconductor sales office or Hughes authorized distributor. Or write Hughes Semiconductor Division, Marketing Department, Newport Beach. California

Simulates computer environment. Model 2032 memory system exercizer is an automatic, high speed digital computer simulator that tests and evaluates for a wide range of operating parameters, complete memory systems. Of modular construction, it simulates exact computer environment for testing during development various types of memories.

Rese Engineering, Inc., Dept. ED, A and Court land Sts., Philadelphia 20, Pa
P $\downarrow \mathbf{A}: \$ 25,800$ ea; from stock.

Disk Thermostats

Are snap-acting. Bimetal disk thermostats type A and AY are made in many ranges, tolerances and differentials for operation from -20 to +300 F . Typical rating is 4 amp resistive at 120 v ac for $100,000 \mathrm{cy}$. Disk may be enclosed or exposed; a variety of terminals and mounting provisions can be supplied.

Stevens Manufacturing Co., Inc., Dept. ED, P. O. Box 1007, Mansfield, Ohio.

Zener Diodes

703
Rated at 10 w . Military $10-\mathrm{w}$ Zener diodes are made in 36 voltages, ranging from 6.8 through 200 , and in 2 polarities. Junction and storage temperature range is -65 to 175 C ; tolerance is $\pm 5 \%$. Types are $1 \mathrm{~N} 2970-3011 \mathrm{~B}(\mathrm{RB})($ Sig. C) and 1N30123015B(RB) (Sig. C.)

Motorola Semiconductor Products Inc., Technical Information Center, Dept. ED, 5005 E . McDowell Road, Phoenix, Ariz.
Price: $\$ 9.45$ to $\$ 14.90 \mathrm{ea}, 100 \mathrm{up}$.

CIRCLE 142 ON READER-SERVICE CARD

"cu-c" platad thra-hat is actually an electro tormed copper eyelet - absolute rellability in atom-
ically bonded copper to copper thru nole connection. NOTE aosence of undercut, hence ellmination Ically bonded copper to copper thru nole connection. NOTE aosence of undercut, hence ellmination
of entrapped etchants and other ionic contaminants.

"Cu-C" platod itru-hole offers nigh atrength and continuity at foil to deposit interface. NOTE
continuation of foil crystal structure into deposit.

Here's Proof of Graphik Circuits Built-in Quality Control

In your etched circuitry applications, this kind of craftsmanship spells out complete reliability plus jewel-like perfection in your system's printed circuit components. The price is right, too, and delivery dates are firm. Call us to bid on your current project.

Graphik Cincuits

 Oifices in it Principal Cities infoughout united States histed under Cinch mig. Co. or United Cart Fastener Corpo CIRCLE 143 ON READER-SERVICE CARD
NEW PRODUCTS

Split Capacitor Motor

Diam is $4.7 / 8 \mathrm{in}$. Type CR fractional horsepower electric motor is for a wide range of applications. It is available in 4 - and 6 -pole design, from $1 / 20$ through $1,4 \mathrm{hp}$. It is claimed the motor combines higher starting torques with increased efficiency.
Redmond Co., Inc., Dept. ED, Owosso, Mich.

Heat Dissipators

For power transistors. Heat dissipators are designed to use a minimum of space while maintaining low thermal resistance with natural or forced draft cooling. Devices are made to accommodate TO-3 transistors and diodes, TO- 36 transistors, and Westinghouse 2 N 1015 transistors.
Augat Bros. Inc., Dept. ED, 33 Perry Ave., Attleboro, Mass.

Power Relay

Has inverted coil. Series 2300 power relay is compact with an inverted coil. Contacts are rated for 15 amp at 115 v ac noninductive, or 1 hp at 115 / 230 v ac 60 cps .
Guardian Electric Manufacturing Co., Dept. ED, 1550 W. Carroll Ave., Chicago 7, Ill.

SPECIAL OFFER FOR ELECTRONIC DESIGN SUBSCRIBERS
These sturdy attractive box files are ideal for keeping copies of Electronic Design within easy reach for reference, and will keep them looking as good as new. Two box files will hold 26 issues - a year's worth of practical design information. Order two now while this special low rate of ONLY $\$ 2.00$ EACH* still applies.

*Regular price $\$ 2.50$, save 50 if cash enclosed with order.

Legend Light Capsules

In three colors. Indicator light capsules have legend areas illuminated in any one of three colors. Designated R2401 and R2402, they use white lamps with colored filters. They can le mounted in com pact modular arrangements flush with the panel, side by side, or stacked vertically.

Radar Relay, Inc., Dept. ED, 2322 Michigan Ave. Santa Monica, Calif.

Induction Heat Generator

717
Continuous output is 15 kw . The unit can be switched from 300 kc to 7 mc almost instantly. A saturable reactor is used for output control; manual control is possible. The unit is suited for virtually any induction heating process.
Induction Heating Corp., Dept. ED, 181 Wythe Ase., Brookly.n 11, N.Y.

Display Scope

Transistor-driven, this unit has a variety of applications in data systems. The MS-2 occupies 17.5 in of rack space and consumes $2: 30 \mathrm{w}$. All circuitry but the picture tube is solid state. Power supply is self-contained.

Kauke \& Co., Inc., Dept. ED, 16.32 Euclid St Santa Monica, Calif.
 ...there are X more!

 Write todor fort research nel "INDALLOY" SOLDERS ADHERE TO - 26 METALS, ALLOYS fREE SOLDER THIN METAL FILMS © 18 NON.METALS

ELECTRONIC DESIGN • May 10, 1961

Miniature Reed Relays

1, 2, 4 and 12-POLE ENCAPSULATED TYPES

12 poles in a sturdy unit only $2-1 / 8^{\prime \prime}$ long
(including leads) $\times 19 / 32^{\prime \prime}$ deep $\times 1-25 / 32^{\prime \prime}$ wide! . .
1,2 and 4 -pole types similarly miniaturized
designed for reliable light load switching . . .
In-line terminals for $\mathbf{0 . 1 ^ { \prime \prime }}$ grid center mounting .
Normal operate times less than 1 msec for 1 -pole units...
2.5 msec for $\mathbf{1 2 - p o l e}$. .

Release less than $0.3 \mathbf{m s e c}$ for all . . .
Write for Bulletin MRR-1 to:
Struthers-Dunn, Inc., Pitman, New Jersey

NHEUHERGDUN

 CIRCIE 146 ON READER-SERVICE CARD

Extra quality at no extra cost with Bendix Semiconductors

Bendix Bulletin

ANOTHER BENDIX FIRST! $120-V O L T, 110^{\circ} \mathrm{C}$. DAP TRANSISTORS

Exclusive! Available with Cerameterm* terminals that set new reliability standards

Here's important news for you if you're a design engineer. New Bendix 10- and 25-amp DAP ${ }^{\text {® }}$ diffused alloy power transistors switch high currents in microseconds. They also offer low input resistance for increased circuit stability over a temperature range from $-60^{\circ} \mathrm{C}$. to $+110^{\circ} \mathrm{C}$.
That's not all you get with these new DAP transistors. They're also available with new Cerameterm (ceramic-metal terminal) bases specially developed by Bendix for extra reliability in severe applications demanding high performance.
Only Bendix brings you all these advantages plus many more . . . that open the door wide to new design ideas and applications. Write for full details.

NEW AENDIX SEMICONDUCTOR PLANT situated on 118 acroen of Molmdal. N.J., is devored orelunivaly 10 resoorch, engi-
semiconductor products
Red Bank Division hoimple new jerser

 CIRCIE 147 ON READER-SERVICE CARD

NEW PRODUCTS

For unattended data acquisition over long periods, type 6150 accepts asynchronous data by a tapestepping method. It handles 38 hr of continuous recording on one tape reel. Nominal speed is 30 steps per sec. It operates from two 12 -v batteries or 125 vac .
Minneapolis Honeywell Regulator Co., Industrial Systems Div., Dept. ED, 10721 Hanna St., Beltsville, Md.

Solid-State Converter

Produces 10-bit binary output. A solid-state converter for high speed voltage-to-digital and digital-to-voltage conversion, the Digilog-1011 is designed as a reliable input source for computers, control systems and storage systems. Output is serial or parallel 10-bit binary plus polarity indication. Voltage-todigital conversion rate is 5,000 per sec; digital-tovoltage conversion rate is 100,000 per sec.
General Precision, Inc., Librascope Div., Dept. EI), Cileudale, Calif.

Pulse Rate Defector

721
Delivers up to 15 w . This pulse rate detector is designed to serve as a supervisory control where time rate function of pulsing contacts or special signal pulsing systems require alarm when contacts fail or vary from set parameters. Units are either fixed or adjustable types and are capable of delivering up to 1.5 w for actuation of an alarm relay or other type of control devices.
Guardian Electric Manufacturing Co., Dept. ED 1621 W. Walnut St., Chicago 12, III.

If you want ELECTRONIC DESIGN
to reach you without interruption
mail your renewal form now!
ELECTRONIC DESIGN • May 10, 1961

Have high repetition rates. Solid-state pulse generating equipment has high repetition rates and fast rise and fall times. Line includes two clock pulse generators and a programed pulse gencrator. The clock pulse units have repetition rates of 3 to 2.5 mc and 2.5 to 100 me ; rise and fall times of less than 4 nsec, and pulse width less than 8 nsec. Amplitude is continuously variable from 0 to 4 v .
Texas Instruments, Incorporated, Dept. ED. P. O. Bux 6027. Houston 6, Tex.

Rotary Accelerator

With low-moise design. Solid gold slip rings are used for power and signal connections in a rotary accelerator. Designed for testing at controlled variable accelerations to 150 g , the device accommodates test specimens up to 100) 1 lb . Drift is 0.1% max per minute, g variation within 0.1 在 at all speeds. Maximum test specimen size is 18 -ill. cube.

Schaevit\% Engineering, Dept. ED. Rente- 130 at Scharvit\% Blvel., Pemnsamken, N.J.

Centrifugal Switch

Used with tachometers. Designed for automatic range changing on 2 -scale tachometers, the SyncroSnap switch is suitable for automatic detection and control of a high and a low speed on one or many circuits at speeds from 0 to more than $15,000 \mathrm{rpm}$.
Tord Engineered Products, Inc., Dept. ED, 32 W. Monroe St., Bedford, Ohio.

Electonic Poducts NEWS by earborundum.

Photo-electric street light controls protected against transient voltages by Carborundum's Varistors

Millions of street lights are now Lumatrol unit made by Micro Balswitched on and off automatically by ancing Inc., Garden City Park, Long photo-electric controls such as the Island. N. Y.

Basic components are a cadmium

sulphide cell in series with the heater winding of a thermally actuated snap switch. Resistance of the cell, which changes with light, controls current in changes with light, controls current in strip and thus operates the switch.

While cells are quite rugged, they are extremely sensitive to over-voltage caused by switching transients or static discharges. To guard against damage, Lumatrol controls make use of the voltage-sensitive resistance characteristic of Carborundum's globar varistors. These are silicon carbide resistors which exhibit an instantaneous decrease in resistance with an increase in applied voltage.

Precision funers use CARBORUNDUM CERAMIC SHAFTS
Shown above is a rotor of a precision- between the rotor sleeves be held to RF tuning device used in a military transmitter-receiver unit. It is manufactured by the Radio Condenser Company, Camden, N. J.

The ceramic shaft with attached brass bands, nose piece and bearing sleeve is supplied by Carborundum's Latrobe Plant.

Proper meshing of the gears requires that concentricity between the nose piece and the bearing surfaces be held to .0015 T.I.R. and concentricity

002 T.I.R. The ball race must have an eight micro inch finish to meet Government requirements. Extreme preernment requirements. Extreme precision must be maintained to avoid changes in capac,
tion of the unit.
Precision ceramic or ceramic-tometal assemblies like this are a specialty of our Latrobe Plant. If you have any problems of this kind, write to Dept. EDC-51, Latrobe Plant, Refractories Division, The Carborundum Co., Latrobe, Pa.

Connected across the cadmium sulphide cell and from line to neutral, they effectively bypass harmful transient voltages.
If you have any application requiring surge voltage or similar protection, maybe Carborundum varistors can help. For information on types and sizes, write Dept. EDV-51, Globar Plant, Refractories Division, The Carborundum Co., Niagara Falls, N. Y.

Circle 246 on Reader-Service Cord

NEW BOOKLET AVAILABLE ON
GLOBAR Type BRN VARISTORS

Non-linear, voltage sensitive resistors are finding many applications
for stabilization or voltage control for stabilization or voltage control gives full information. For your copy, write Globar Plant, Refractories Division, Dept. EDV-51, CarboCircle 248 on Reador-Sorvice Card

$$
\text { Circle } 247 \text { on Reader-Service Card }
$$

CIRSLE $246,247,248$ ON READER.SERVICE CARD CIRCLE 246, 247, 248 ON READER-SERVICE CARD

More than 40,000 parts, each of which must meet the most stringent reliability standards, make up the U.S. Atlar intercontinental ballistic missile, built by prime contractor Convair (Astronautics) Division, General Dynamics Corporation.

Among these parts is the Bristol Syncroverter* chopper adding to its record of service in U. S. guided missile systems of almost every type since their very beginnings.
Billions of operations. To insure the reliability so necessary in aircraft and missile operations, Bristol Syncroverter choppers are constantly under test at Bristol, with and without contact load. One example: We've had five 400 -cycle choppers operating with $12 \mathrm{v}, 1 \mathrm{ma}$. resistive contact load, for more than 26,000 hours (2.96 years) continuously without failure - over 37-billion operations!

Many variations of Bristol Syncroverter choppers and high speed relays are available-including external-coil, low-noise choppers. Write for full data. The Bristol Company, Aircraf
 Equipment Division, 151 Bristol Road, Waterbury 20, Conn.
T. M. Reg. U. S. Pah Of.

NEW PRODUCTS

Time Code Generator

Stability is 1 in 10^{x} per day. Model 6190 time code generator is designed to generate up to three time code formats of any family of time codes. All formats are presented as amplitude-width-moxdulated outputs on sine-wave carriers and also as width modulated dc level shifts. Pulse rates from 100,000 pps to 1 pulse per hr and parallel logic levels are supplied simultaneously. The unit has stability of one part in 10^{8} per day.
Epsco West, Dept. ED, 240 E. Palais Road, Anaheim, Calif.

Circuit Card Module

Dual flip-flop card. The CD-200 dual flip-flop digital circuit card module can be used as shift register stages, binary computer stages, static storage and the implementation of other logic and control functions. Each flip-fop is transient gated through a five diode AND gate for both set and reset. The circuit will drive five loads and operate over a temperature range of -40 to +71 C at a toggle speed of 200 kc .

General Motors Corp., Delco Radio Div., Dept. ED, 700 E. Firmin, Kokomo, Ind.
Price: 1 to 99, \$40.60 ea.

Power Amplifier

727
Output is $25 \mathbf{w}$. Model 2A, for uses such as temperature control, is completely potted for airborne and missile environments. Power required is 115 v at 400 cps . Control signal input is 0 to 5 mv dc to provide 0 to 35 v de into a 50 -ohm load.

Bergen Laboratories Inc., Dept. ED, 60 Spruce St., Paterson 1, N.J.

This is the time of our annual subscription renewal; Return your card to us.

for positive retention in all mobile applications There's no jump, no sway-when a telephone handset is in the firm grip of this new Stromberg-Carlson " handset cradle.

Retaining clip spring assembly
 assures positive retention in any mobile application on land or sea, or in the air. Evenextremely severe jars, jolts and vibrations fail to dislodge the handset.

The cradle is strong and resilient, fits any Stromberg-Carlson handset. Different models provide varying switch combinations with 2 or 4 Form C contacts. All models available with or without the clip assembly.

Details on request from these Stromberg-Carlson offices: Atlanta - 750 Ponce de Leon Place N.E.; Chicago- 564 W. Adams Street; Kansas City (Mo.) - 2017 Grand Avenue; Rochester-1040 University Avenue; San Francisco-1805 Rollins Road.

STROMEERG-CARLSON
amnenal drnamice|eLECTmonics

Augat Crystal Socket Assemblies are especially designed to reduce overall package size and weight. They combine modern packaging techniques with top quality mate-
rials to assure dependable mechan-
ical and electrical life.
Once the crystal is installed, it will never shake looseeven under the most severe conditions. Available for horizontal or vertical mounting, for use with hook up wire or printed circuits.

SOCKET SPECIFICATIONS

CRYSTAL CASE SIZES:
HC-6:U \& HC-13/U.
HC-18/U with .040 diameter pins or .018 wire leads.
McCoy M-25 or equivalent.

CONTACT MATERIALS:

Phosphor bronze and beryllium copper. FINISHES: silver plate with gold flash:
cadmium or tin plated.

INSULATION:

Dupont's Teflon or Blue Nylon

holdime Clip:

Beryllium copper or stesl, cadmium plated

For detailed specifications, write for Data Sheets.
AUGAT BROS., INC:
31 Perry Avenue, Attleboro, Mass.
circle isi on reader-service card

Are beryllium oxide. Used to insulate semiconductor devices from the chassis, beryllium oxide dielectric heat sinks have thermal conductivity equalling that of aluminum. Resistivity exceeds 10^{15} ohms per cm . Dielectric loss is less than 0.0008 . The devices are made to match common transistor packages.

National Beryllia Corp., Dept. ED. First \& Haskell Ave., Haskell, N.J.

Telemetry System
729

For airborne use. Consisting of model 20.3 mul tiplexer, model 20.5 programer, and model 127 digitizer, airlorne pem telemetry system multiplexes, and digitizes with 8 -bit accuracy, low-level trans ducer signals in the range of 0 to 20 mv . Output amplitude is $=2.5 \mathrm{v}$ into 75 ohms . A complete 48 channel system occupies 2.50 cu in , and weighs less than 14 lb

Electro-Mechanical Research, Inc., Dept. ED, Sarasota, Fla.

Film Resistor

730

Rated at 1/8 w. The Vamistor (model 9848-2) uses a low-temperature coefficient alloy, fused to the inner glazed surface of a ceramic tube, and helically grooved for resistance value. It is 0.430 in . long by 0.162 in. in diameter, conforming to MIL-R-10509D characteristics \mathbf{C} and E . The resistor is suited for use in high gain servo amplifers, preamplifiers for nuclear detectors, and analog computers.
Daystrom, Inc., Weston Instruments Div., Dept ED, Newark, N.J.

INTRODUCING THE

VIDEOGRAPH MODEL 980 CHARACTER GENERATOR

A low-cost, off-the-shelf "machine language" decoder compatible with any digital system

New from A. B. Dick electronic laboratories . . . a compact decoder ($51 /{ }^{\prime \prime}$ high $\times 17^{\prime \prime}$ deep $\times 19^{\prime \prime}$ wide) that nests in one cubic foot of space. Realistically priced at $\$ 6675$. The Model 980 receives digitally coded signals and converts them to readable alphanumerics at speeds up to 20,000 characters per second-in any size, style or type font. Output can be displayed on any conventional CRT; standard rack mounting construction keeps intercabling to a minimum.
The Model 980 decoder also incorporates highly advanced electronic circuitry and component design. Use of transistors assures lasting reliability; printed circuit boards are highly accessible, readily removable.
For further information and specifications, contact: Mr. G. T. Gerlach, Marketing Manager, Videograph Data Presentation Systems, A. B. Dick Company, 5700 West Touhy Avenue, Chicago 48, III.
A. b. DICK ELECTRONIC RESEARCH LABORATORIES: CHICAGO, ilLINOIS - PALO ALTO, CALIFORNIA

B. A•B•DICK

CIRCLE 152 ON READER-SERVICE CARD

TIMING NETWORKS
 highly reliable readily available

TIME DELAY RELAYS (Stock and Custom Designed) Literature Available
Time delay circuitry used in conjunction with the wide selection of rotary balanced armature relays insures you of an infinite variety of time delay relays with basic specifications as follows:

Time Delay: $\quad 50 \mathrm{MS}$ to 3 minutes or more
Accuracles: 10% and 5% or better
Contacts: \quad Single io 4 pole Form C; more poles where required.
Temperatures: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ or $-65^{\circ} \mathrm{C}$ $10+125^{\circ} \mathrm{C}$
Vibration: $\quad 10 \mathrm{G}$ or 20 G to 2000 CPS
Shock: $\quad 30 \mathrm{G}$ or 50G
-SOLID STATE TIMING MODULES (Custom Designed)
Designed with no moving parts and to withstand excellent environmental conditions, these modules offer:

1. Wide timing ranges from milliseconds to several minutes.
2. Wide output current handling ranges from milliamps to 50 amperes
3. The ability to switch inductive, motor and other stringent loads.

- SPECIAL ELECTRONIC PACKAGES AND ASSEMBLIES (Custom Designed)
Combinations of one or more of our various relay series, time-delay relays or solid state switching mechanisms can be used to provide you with Pulse Integrators Over \& Under Voltage Relays Sequence Timers Intervalometers
Stepping Switches Phase Detectors Close Differential Relays
-Due to the diversity of possible requirements and applications for the last iwo product categories, we have not been able to prepare general iltera ture. Please send us your individual specifications. FOR ENGINEERING KNOW-HOW IN RELAY AND SOLID STATE DESIGNS, CONTACT HI-G NOW!

THE ONLY COMPLETE LINE OF BALANCED ROTARY RELAYS

NEW PRODUCTS

Indicator Tube

731

Diameter is 0.210 in . The E1-23 Subminiature Indicator Thyratron is designed for use as a readout device in miniaturized computer panels or wher space is at a premium. Measuring a maximum of $0.210-\mathrm{in}$. in diam, the tube provides a high-intensit! glow with a grid swing of 4.5 v and negligible grid current. Specifications are: filament, 1.25 v ac; anole supply voltage, 6.5 or 85 v ac; anode series resistance, 56 K .
Electronic Industries, Inc., Dept. ED, 18 Marshal St., South Norwalk, Conn.
Delivery: 5 days.

Transistorized Recorder

Built on single chassis. This compact recorder has fully transistorized circuitry, positive drive action, a built-in voltmeter, and a direct-reading range dial. It provides a stable, noise-free, magnetic flow-meter ac potentiometer mounted on a single removable chassis. Circuit networks are mounted on plug-in cards that can be replaced in seconds.

Fischer and Porter Co., Dept. ED, 862 Jacksonville Road, Warminster, Pa.

Rate Gyro

733
Diameter is $15 / 16 \mathrm{in}$. Fluid-damped miniature gyro has resolution below 0.03% of maximum rate. Linearity is 0.5%, zero calibration 0.01 to 0.02% of maximum rate. The gyro is insensitive to 100 g shock along any axis, and withstands 20 g vibration up to 2 kc . Length overall is 2-1/2 in.
R. C. Allen, Aircraft Instrument Div., Dept. ED, Grand Rapids, Mich.

Have you sent us your subscription renewal form?

Differential Thermometer

Measures to 0.001 C . Designed for use in meas uring temperature fluctuations to 0.001 C , this differential thermometer reads directly in degrees \mathbf{C}. It can be used as a single point of difference-between-two-points measuring device in a range from - 60 (1) +300 C .

Fiske Associates, lnc., Dept. ED, Bethel, Conn.

Mixing Valve

735
Is motor-operated. Mixing valves in the 21300 series have a traverse time of 0.230 sec and a service life of 500 hours minimum continuous operation. Operating pressure is $3,000 \mathrm{psi}$, temperature - 85 to $\mathbf{4 0 0} \mathrm{F}$ continuous, to $1,000 \mathrm{~F}$ intermittent. Motor input is $28 \mathrm{v}, 400 \mathrm{cps}, 0.180 \mathrm{amp}$.

Aerodyne Controls Corp., Dept. ED, 90 Cazza Blvd., Farmingdale, N.Y.

Record Play Head
736

In any inductance to 1 h . All all-metal face, 1/4track record play head for audio applications is available in any inductance to 1 h . It has a mumetal case for full shielding and a $40-\mu \mathrm{in}$. gap gives wide frequency response.

Gencral Instruments Corp., Magna-Head Div. Dept. ED, 3216 W. El Segundo Blvd., Hawthorne, Calif.

Component Coating

In 1-part system. HumiSeal type 1F19 dries at room temperature within 30 minutes, and is then oven-cured. The transparent material is suitable for temperatures up to 350 F and down to -90 F . Coating is said to provide excellent resistance to moisture, chemicals, corrosive gases, fungus, weathering and salt spray.
Columbia Technical Corp., Dept. ED, 24-30 Brooklyn-Qucens Expressway, West Woodside 77, N.Y.

4 new static inverters specifically designed for aircraft and missiles

Hamilton Standard has developed a new line of $100-$ VA and $500-\mathrm{VA}$ inverters that establishes an important increase in inverter reliability and performance. The units are specifically designed for airborne use. They possess extremely high overload and short circuit capacity and offer wide operating ambient temperature ranges. The basic design is modular and utilizes silicon transistors throughout. The packages are small, compact and deliver high over-all power-toweight ratios.
AS MAINOR STANDBY AC POWER SOURCE, these new inverters can now replace much of the rotary equipment presently in use on aircraft and missiles for supplying power to:

- Gyros - De-icing and other heating equipment
- Radar - Warning and emergency devices
- Telemetry - Communication equipment
- Instrumentation - Guidance systoms

ChARACTERISTICS OF 100-VA and 500-VA STATIC INVERTERS

Rating PART NO.	$\begin{aligned} & 100 \mathrm{ve} \\ & 555546 \end{aligned}$	$\begin{aligned} & 200 \mathrm{va} \\ & 586480 \end{aligned}$	$\begin{aligned} & 100 \text { vo } \\ & 566470 \end{aligned}$	$\begin{aligned} & 500 \mathrm{va} \\ & 570250 \end{aligned}$
Output Voltage (Nom.) Frequency	$\begin{gathered} 115 \% \\ 000 \pm 0.25 \% \end{gathered}$	$\begin{aligned} & 115 \text { or } 200 \mathrm{v} \\ & \substack{000 \\ \hline 10 \%} \end{aligned}$	$\begin{gathered} 115 \% \\ 100 \pm 1 \% \end{gathered}$	$\begin{aligned} & 115 \text { or } 200 \mathrm{y} \\ & 400 \pm 0.25 \% \end{aligned}$
Phases	Three	Single or threo	Single	Single or three
Transient Protection	Yes	Yes	Yes	Yes
Temp. Ranges	$-55^{\circ} \mathrm{C}$ to $1255^{\circ} \mathrm{C}$	$-555^{\circ} 1085{ }^{\circ} \mathrm{C}$	$-550^{\circ} \mathrm{C} 10719 \mathrm{C}$	$-550 \mathrm{cos} 125{ }^{\circ} \mathrm{C}$
Input Wohage (Rango)	18.29 v dc	20.22 V dc	$20-29 \mathrm{vac}$	18.29 oc

SEND FOR YOUR COPY of this illustrated Stotic Power Conversion Guide. Clip coupon and mail to:
HAMILTON STANDARD; Electronics Deportment Section 70, Broad Brook, Connecticut.
Name
Position
Company

UNITED AIRCRAFT CORPORATION

LERMER PLASTIC CONTAINERS

Exceptional printing makes the difference....

Helps make the sale!
Package semiconductors, re--
sistors, switches, relays, efc.

- Printed or docoreted up to 4 colore on erystal elear, trensporent ar opaque colorn
- Alse evaileble unprintod
- Largest line of [RIGID plastic eonteiners
- 1/5 the weighe of glesp-greath reducing ever-incroatiang ahipping and hendling costs
- Lightwaight and shatterproof with rigid wall protoction
- Economieab-with eustomer re-use value

Write for full-color catalog, samples and prices.
LERMER PLASTICS, INC.

572 South Avenue

 Garwood, New Jerseymometrs and specialists im PLASTIC CONTAMERS SIMCE 1918

NEW PRODUCTS

Instrumentation System

Has modular design. This analog-to-pulse duration instrumentation system is for use with thermocouples, resistance thermometers or other dc, low-impedance sensing sources. It directly converts a low-level electrical input signal to a pulse linearly related in duration to the input signal amplitude. The pulse duration is then digitally measured and displayed. recorded, or processed further for input to digital computing equipment. Modular design permits building systems of several hundred channels.
Genisco, Inc., Dept ED, 2233 Federal Ave., Los Angeles 64, Calif.

Resistor Combinations

From 1 to 1,222,221 ohms in 1 -ohm steps. Waferthin, miniature package Resist-O-Stat combinations provide any resistance value between 1 ohm and $1,222,221$ ohms in 1 -ohm steps. Each unit measures $23 / 32 \times 7 / 32 \times 9 / 16$ and contains four selected precision resistors with relative values of $1,2,4$ and 4. Accuracies range from $\pm 0.1 \%$ for values from 1 K to 1.1 megohm to $\pm 1 \%$ for resistors from 1 to 11 ohms.
General Resistance, Inc., Dept. ED, 430 Southern Blvd., New York 55, N.Y.
Price: \$8 to \$14 ea.

Thermal Analyzer

For semiconductor materials. Vacuum-pressure inert furnace is used in thermodynamic and thermochemical studies of composition and behavior of materials by a variety of analytic methods. One or more samples may be heated; transducers measure temperature of sample, reaction products or holders.
Testing Equipment Sales Co., Dept. ED, Murray Hill, N. J.
a complete selection of low cost standard models

Howard motor parts sets

Ratiags from $1 / 200$ ta 1 M.F.

 Howard standard motor parts include armatures and fields, brushes and brushholders, rotors, stators and fans. If you use motor parts, write Howard for complete information.

HOWARD INDUSTRIES, INC. 1725 State Street, Racine. Wisconsin Divisions. Electric Motor Corp., Cyclohm Motor Corp., Loyd Seruges Co. CIRCLE 156 ON READER-SERVICE CARD

YOUR JOB LACK CHALLENGE?

It's probably not as bad as cutting paper figures. But if your present position does not offer the challenge of salary that your ability dictates, then it's time to con tact Cadillac. Cadillac is retained by over 520 kp electronic firms both larke and small-from coast-tocoast. As an applicant with Cadinac, you will be repre sented bis firm and can hand pick from thousands of positions now open. Cadillac's service is COMPLETELY CONFIDENTJAL and availa

FREE-Monthly Opportunities Bulletin If you wish to receive a monthly bulletin of the finest ovailable electronics opporlunities, simply send us your nome and home address (and, if you wish, a review of your qualiChicago office and our Los Angeles subsidiary Lon Barton Chicago office and our Las Angeciotes.

JACK L. HIGGINS Vice Prasident
Cadillac
ASSOCIATES, INC.
29 Eost Madison Bladg., Chicago 2. III.
"Where More Electronic Expecutives Find Thoir Pesition Then

CIRCLE 872 ON READER-SERVICE CARD ELECTRONIC DESIGN • May 10, 1961

Sweep Generators

Provide 4 w . The rf range from 5 to $1,000 \mathrm{mc}$ is covered by 6 models of sweep and signal generators. Designated PD-1 through PD-6, their output is 14 v rms into 50 ohms. Swept ff or cw modes may be modulated by 1 -kc square wave. Turret attenuator has a range of 0 to 59 db in $1-\mathrm{db}$ increments.
Telonic Industries, Inc., Dept. ED, Beech Grove, Ind.

Epoxy Adhesive

379
For 1 -min curing at room temperature, Mini-Cure cures in 45 sec with infrared heat. Applications include bonding metal to metal, plastic to metal and plastic to plastic. It is a resin-hardener system.

Allaco Products, Dept. ED, 238 Main St., Cambridge 42, Mass.
PUA: \$6; trial kits.

Snap-Action Thermostat
369

Operates to 350 F. Type 24T, a low-cost, suapaction disk thermostat, is UL-listed for accurate re peatability over 100,000 cycles at temperatures up to 350 F . Rating is 10 amp resistive, $1 / 8 \mathrm{hp}$ inductive, at $120 / 240 \mathrm{v}$ ac. Unit is made with bimetal disk enclosed or exposed, in various mounting flange and terminal arrangements.

Therm-O-Disc, Inc., Dept. ED, Mansfield, Ohio

Miniature Condensers

378
For printed circuit use. Poly carbonate condensers are available in a complete line for printed circuit applications. Units operate at 75 v , and are made in flat and round types.
Components Specialties, Inc., Dept. ED, 3 Foxhurst Road, Baldwin, L.I., N. Y.

Mail your subscription renewal today.
Get every issue of ELECTRONIC DESIGN.
 solid state source for systems

Temperature controlled packaged oscillators, either sealed units or plug-in printed circuit modules, offer the reliability and stability of quartz crystal control over a frequency spectrum of $60 \cos$ to 20 MC . Stabilities from 0.1% to 0.001% are standard, custom designed units stable to 5 parts in 10^{8} are available as complete packages. Features include: small size, temperature range from $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, ruggedized units to meet severe environmental conditions. Outputs available include: standardized pulse, square wave or stable sine-wave - working into load impedances from 50 ohms and up depending on frequency range. The Valpey engineering staff will be pleased to submit quotations according to your specifications for packaged oscillator applications including pulsed or gated circuits. frequency sources and standards, time bases or üther advanced circuitry needs. Specification sheets on request

VALPEYY auartz crystals

Crystals in all frequency ranges can be manufactured or developed to meet long term stabiity and other special requirements. Miniature and sub miniature frequency control crystals for commercial or military applications are available to 125 MC . High frequency crystals for lattice type and single signal filters are available in frequency range from 1500 KC to $23,000 \mathrm{MC}$

Ruggedized Low Frequency Oscillator and Filter Crystals compactly designed for applications where space is important and environmental conditions severe. Frequency range 5 KC to 350 KC .

For complete information on Valpey Crystals request cetalog
taftsmanship in crystals since 1931
Ouartz Cryatals - Ovens - Presision Opties Crystals for
Ulirasonics and Dolay tines. Pockegod Oscillaters
Fobrication of ROde foc LASER
ALPEY CRYSTAL CORP.
HIGHLAND ST., HOLLISTON, MASS.
Tol. GArden 9-4851, 9-4854
CIRCLE is9 ON READER-SERVICE CARD

MISSILES AND AIR-BORNE EQUIPMENT

call for resistors that never fail catastrophically. A 30,000 hour load life test* of 150 Corning tin oxide resistors has proved 1% drift capability, and not one failed catastrophically.

Tin oxide and glass are among the most stable materials known, both electrically and environmentally. Fuse the two together and you have the basis for an outstanding resistor.
This holds true whether you buy ten or ten million, because we have developed the manufacture of this type
of resistor to a science. Assembly is completely automatic and exact. And, if you think you have to pay a lot extra for this reliability, our price sheets hold some pleasant surprises for you.

The proof of what we say is spoken eloquently by typical specs like these:

Results of 30,000 hour load life test on Corning Resistors representing $5,000,000$ resistor hours, Resistors were run at 140% of rated load. There were no catastroohic failures.

For data sheets on Corning Type names of the distributors nearest you, write Corning Glass Works, 540 High Street, Bradord. Pa. If you also would like a booklet giving 30,000 hour test results, write on company letterhead.
-Test conducted by Remington Rand Univac

NEW PRODUCTS

Code Converter

Card to tape. Model K-177 card-to-tape converter perforates 5-, 6-, 7- or 8-channel tape of any code structure and of any width from $11 / 16$ to 1 in . It consists of a tape punch and a control module Parity checking of both odd-bit and even-bit tape code systems, controlled by plug-board wiring, is a standard feature. Multiple card layouts including complex header card and detail card programs can be processed.
General Instrument Corp, Systematics Div., Dept ED, Hawthorne, Calif.

Transistor Tester

Checks h paramters. The Parameter Tester will check the four h parameters of signal transistors to an accuracy of 2π, over wide operating ranges, in either grounded base or grounded emitter configurations. All de circuitry is isolated from testing circuits. Unit can be mounted in rack or cabinet.
Tenco Electronics, Inc., Dept. ED, 108 Cumington St., Boston 15, Mass.
P心A: \$150; 30-day delivery.

Strain Gage

360
For welding to aluminum alloys, 20-and 120 ohm gages are offered. Applications include welding to missile skins. Each gage will operate at 750 F for short periods. The nominal gage factor is 1.75. An $80-\mathrm{w}$, capacitor-discharge welder is to be used.

Microdot Inc., Dept. ED, 220 Pasadena Ave., South Pasadena, Calif.

Don't miss a single issue of

ELECTRONIC DESIGN. Send renewal now!
ELECTRONIC DESIGN • May 10, 1961

Has output of $\mathbf{3 0} \mathbf{k v}$ dc. Measuring $5.9 \times 4.6 \times 8$ in. high, exclusive of terminals, this miniaturizerl power supply has an output of 30 kv de at 1 ma . The output voltage is continuously variable by adjusting the ac input. Ripple is less than 18 at rated output.
Film Capacitors. Ince, Dept. E.D, 3400 Park Ave. New York, N.Y.
Acailahilit!: Firom stock.

NOR Logic

U'ses no diodes. NOR logic circuit cards operating at 50 kc and 250 kc use resistors instead of diodes for the basic logic element. Combinations of elements can be used to solve all logical erpuations with the exception of time delays. There are 15 types of NOR elements available, all constructed on $4-1 / 2 \times 5 \mathrm{in}$. epoxy-glass cards.

Ransom Research, Inc., Dtpt. ED, 3 it W. 8 th St. Sand Pedro, Calif.
PúA: $\$ 20$ to $\$ 3.5$ ca; immediute.

Temperature Monitor

350

With alarm system. Solid-state temperature monitoring and alarm system, designed for reactor control, may be applied to industrial process controls for temperatures to $1,500 \mathrm{~F}$. It has remotely adjustable, sensitive over- and under-temperature alann with manual or automatic reset. System accuracy over-all is 0.5%.

Astra Technical Instrument Corp., Deppt. ED, 129:30 Panama St., Los Angeles 66, Calif.

CIRCLE 161 ON READER-SERVICE CARD

EXPERIENCE IN DEPTH...COMPUTING, PLOTTING, INSTRUMENTS, SYSTEMS, PROCESS CONTROL

HIGH

ACCELERATION PLOTTER

The EAI Model 1100E VARIPLOT. TER ${ }^{\oplus}$ combines high acceleration, velocity and long term repeatability to assure outstanding dynamic performance in $x-y$ analog plotting. In addition to this excellent accuracy and proven reliability the 1100 E provides high input impedance to assure unmatched performance in laboratory and plant use.

Features of special interest include:

- Static accuracy-0.075\%
- Arm acceleration of 250 inches/sec. ${ }^{2}$
- Pen acceleration of 750 inches $/ \mathrm{sec} .^{2}$
- Slewing speed -20 inches/sec.
- High input impedance up to 1 megohm/volt
- 11×17 inch plotting area
- Compact, rugged construction
- Accepts differential inputs
- Available with continuously variable scale factor

In addition, a full line of accessories makes the EAI Model 1100E VARIPLOTTER a fully flexible engineering tool ... timebase generators . . function generators symbol printers . . . digital input keyboards.
Write to Department 33 for complete details on how the Model 1100E VARIPLOTTER can save you costly engineering time.

HOW TO GET MORE OUT OF YOUR VARIPLOTTER EAI Series 1100E VARIPLOTTER is an effective and accurate $11-x-17$ X-Y Plotter. However, with the addition of one or more of the available accessories, its usefulness and performance are greatly increased.
For example, Keyboard Accessory Series 1150 is a manual input device that enables the 1100 E VARIPLOTTER to be used for accurate and rapid graphical plotting of digital information. The three digit keyboard has been designed to speed and simplify manual data input. As a result, you can get faster, more accurate, and more reliable recording of digital data.

Other accessories available include a Time Base Generator to convert the 1100E VARIPLOTTER into a time base recorder; a semi-automatic Symbol Printer Accessory which permits graphical plotting with up to six different identifying symbols; a Function Generator to convert the 1100 E into a high accuracy curve following device; and BIVAR-2 bi-variant function generator.

Whether you now have the use of the versatile EAI Series 1100 E VARIPLOTTER, or plan to obtain the unit, you should consider the exceptional versatility offered by these accessories. For descriptive literature, write Department 34.

Careor Opportunity for EngineersGraduate or advanced degrece in EE, Phyaies, Mathall or write Gordon Strout, Dircetor-Poroonnol

ELECTRONIC ASSOCIATES, INC. - Long Branch. New Jersey CIRCLE 162 ON READER-SERVICE CARD

NEW PRODUCTS

Altitude Chamber

With up to $200,000 \mathrm{ft}$ simulated altitude and a temperature range of -100 to +240 F . the Inreco chamber is for testing electronic components. Pull-down time to -90 F is 4.5 min and heat-up time to +240 F is 15 min . Dimensions are $20 \times 20 \times 20 \mathrm{in}$.

Industrial Refrigeration Co., Inc. Dept. ED, 8940 Ellis Ave., Culver City, Calif.

Fans and Blowers

Ranges are $\mathbf{1 5 0}$ to $\mathbf{6 0 0} \mathbf{~ c f m}$ at modrate pressures. Model 15-20, a typical unit, consists of two axial flow fans driven by $1 / 80$-hp motors and delivers

413 cfm . It draws 100 w and occupies 1.23 cu ft . All units are for minimumspace use.
Propellair Div., Robbins \& Myers, Inc., Dept. ED. Springfield, Ohio.

Delay Filfers

539
Low, high, and bandpass units are offered with wide bandwidths and sharp roll-offs. The PPC units are for data transmission and processing and other applications where a complex signal or group of signals must be passed without distortion.

SEG Electronics Co., Inc., Dept ED. 12 Hinsdale St., Brooklyn 7, N.Y.

Germanium Transistor
 540

For logic circuits, type 2 N 9.34 high-speed, epitaxial unit has a collec-tor-current rating of 200 ma max. Collector-to-emitter saturation voltage is 0.3 v at an Ic_{c} of 40 ma . At an Ic of -100 ma and a Vcs of 0.5 v .
Radio Corp of America, Semiconductor and Materials Div., Dept. ED, Somerville, N. J.

Autronex Gold Plated transisto headers were suspended in C.P.solution (nitric, acetic and hydrofluoric header's slase seals dissolved the Gold Plate remained intact
This dramatic experiment, carried out by one of the country's prominent manufacturers of semiconductor pro ducte, demonstrates some of the uperior metallurgical properties o electroplate produced with the AUTRONEX ACID GOLD PLAT ING PROCESS-for all industrial pplications.
The simple to prepare bath is mildly
acidic ($\mathrm{pH} 3.5-4.5$), operates at room
temperature, and produces deposits which are mirror-bright in any thickofer approrimately 75% sreater resiat. ofer appren war ercater Gold plate. Gold plate.
For complete details on uses, bath preparation, equipment required, etc., ask for \#EG-1. PERFORMANCE-ACCEPTANCE TESTS

- SALT-SpRAY TEST
- mandrellemend test
- bolling water test

sadrem sel-rex corporation

NUTLEY 1O. NEW JEREEY
The wordd's largest selling precious metal plating processen CIRCLE 163 ON READER-SERVICE CARD

ELECTRONIC DESIGN • May 10, 1961

Punched Card Receptacles 349

For up to 25 cards, these units are for use in the control of emergency vehicles by command consoles and dispatching centers. The card actuates a switch that indicates the status of the vehicle on a central control pancl.
Westrex Recording Equipment Dept., Litton Industries, Dept ED. 6601 Romaine St., Hollywood 38. Calif,

Programed Data

Quantizer

Handles 400 test points. The PDQ programed data quantizer is a univer-
sal test stand combining the speed and reliability of automatic equipment with the versatility of manual operation. It handles up to 400 test points and scans them at a rate of 4 points per sec. The readout may be in any numerical order form 1 to 400), or in any other sequence selected by the program tape.

Ceneral Dynamics Corp., Convair Pomona Div., Dept. ED, Pomona, Calif.

Ceramic Magnet

347
Withstands low temperatures. Oriented barrium ferrite ceramic magnet F-620 has a coercive force of 3,000 sersteds; maximum energy product is 2.5×10^{6} gauss-oersteds. Irreversible lows of field strength in cycling from +150 to -75 deg C is very low. Size is 0.30 in . inside diameter by 0.15 in . thick, with OD of 1.20 in . and 0.85 in .
D. M. Steward Manufacturing Co. Dept ED, East 36th St., Chattanooga, Tenn.
PsA: $\$ 1.50$ to $\$ 4.50$ c's, 10,$000 ; 30$ (1) fin days.

ANTENNA SYSTEMS

Immediate Delivery -

From Coast to Coast

The most versatile line of standard, serviceproved antennas and transmission lines, complete with system components and mounting sure prompt delivery...... backed up by full time technical service personnel located nearby, ready to assist you in your program.
send for fully illustrated catalogs

 CIRCLE 165 ON READER-SERVICE CARD

how to build a house in a day...

1 Floor panels are locked to joists laid on permafrost ground.
2 Doorway is first wall panel to go up. It locks to floor.
3 Walls and partitions lock to floor and to each other.
4 Roof panels go on last. This takes about three hours.
5 Complete in 7 hours! Floor, walls, roof panels-lt's all done with Simmons Dual-Lock fasteners.
Standard Dual-Lock withstands 2500.16. tension; may be modified for high-load applications to 4500 lbs .

- This house is put up in a day - and can tre taken down in half a day
- Kry to quick assemblrodisaswembly is the Simemons Dual-Inck.

Dual-Lock is a high-load, positive-locking structural fastener perfectly adapted to panel fastening of demountable shelters, shipping containers, covers, cowlings. and to all butt-joint fastening jobs. It can be recess-mounted as in the application pictured, or surface-mounted on sheets or panels. Lucks with heavy closing pressure, with very light pressure required on the key
Arctic Units, Lid., Turonto, Canada, is putting up 90 "Eskimo Houses" on the DEW Line. Panels. including roof, are plywood-covered plastic foam designed for insulation against Arctic cold.
WRITE FOR CATALOG 760. Complete details of Dual-Lock and other dependable quick-operating Simmons Fasteners with unlimited money-saving applications. - Samples and engineering service available upon request.

Now Idoasl Now Productsl Booth 957 DESIGN
ENGINEERING
SMO FASTENER CORPORATION

1763 North Broadway, Albany 1, New York

INK-LOCK • HINGE-LOCK • HOOK-LOCK • SPRING-LOCK • CAM-BOLT• DUAL-LOCK • QUICK-LOCK •ROTO-LOCK

Used with transducers. Solid-state digital converter model 4310 changes the output of potentiometric transducers into a variable frequency for display or recording. Input impedance is 500 to 3,000 ohms; output frequency deviation is 7.5% at 5 v ac, frequcney range 400 cps to $\mathbf{7 0} \mathrm{kc}$. The $\mathbf{4}-\mathrm{oz}$ comerter measures 1.5×2 in
Winsco Instruments \& Controls Co., Dept. ED 11789 W. Pico Blvd. Los Angeles 64, Calif.
Price: $\$ 1.59$ ca.

Precision Plating Machine

Dimensions are $\mathbf{3 0 \times 2 6} \mathbf{x} \mathbf{1 8} \mathrm{in}$. All operations are controlled from a panel board incorporating a dualscale ammeter, a powerstat control for rectifier, circuit breakers and an automatic timer which provides an alarm
The Meaker Co., Sel-Rex Corp., Drpt. ED, Nitles $10, \mathrm{~N} . \mathrm{J}$.

Temperature Sensor

For nuclear applications. Model 177A temperature sensor is designed to measure absolute or differential temperatures from -70 to +300 C . It will withstand a radiation level of 500 radians per hour. Time constant is less than 5 sec for 63.2% change.
Rosemount Engineering Co., Dept. ED, 4900 W . 87th St., Minneapolis 24, Minn.

Multidirectional, this unit steers information under control of a single flipflop. It is a 10 -bit unit for use as a preset decade counter with outputs available for each unit of the count. Frequency of operation is 100 kc max.

Magnetics Research Co., Inc., Dept. ED, 179 Westmoreland Ave., White Plains, N. Y. PUA: $\$ 175$; stock to 4.5 days.

Power Supply

For teletype systems. The (i1.5A power supply provides output of 120 v at 1.5 amp . Ripple and regulation are within 10\%. Military construction is used; panel height is 5-1/4 in. Power requirement is 105 to 125 v . Supply is also available in 2 - and 3 -amp models.

Spellman High Voltage Co., Inc., Dept. ED, 1930 Adee Ave., Bronx 69, N. Y.
Price: $\$ 19.5$ to $\$ 230$.

Magnetic Pick-up

For measuring speed, counting revolutions, reversing the direction of motion, speed control and proximity detection, the Kineflux pick-up generates a voltage-freguency from mechanical motion without contact. The output can be regulated by controlling the de excitation.
Kinelogic Corp., Dept. EI), 1256 N. Fair Oaks Ave., Pasadena, Calif.
P\&A: \$30; from stock.

Laboratory demonstration shows Du Pont Resistor Composition being applied to a ceramic base by stencil screen and squeegee (left). When stencil is removed from ceramic base, resistor is ready for firing (right).

New Du Pont Resistor Compositions are easy to apply... permit you to vary resistance values by blending the compositions

One major advantage of Du Pont Resistor Composition is its ease of application on ceramic or glass substrates. Just a simple screen-print, dip, brush or spray application, and the resistor is ready for firing under normal atmospheric conditions in the range of $1100-1400^{\circ} \mathrm{F}$.

Du Punt resistor compositions allow you to vary resistance values by changing the composition of the resistor without altering its geometric form. You are no longer limited by the physical shape of conventional resistor materials. These compositions give you greater design flexibility, essential for miniaturized circuits. They are available at three approximate resistance values: $500,3.500$ and $10.000 \mathrm{ohms} / \mathrm{sq}$. per mil thickness, and they can be blended to give a range of intermediate values.

Electrical properties are reproducible. Laboratory tests show that fired printed patterns and coated rods have abrasion and impact resistance similar to fired silver coatings.

Fired samples are available for your own evaluation. Request them on your letterhead. For more technical information, write: Du Pont, Electrochemicals Department, Ceramic Products Div.. Wilmington 98, Del. Please indicate the application you are considering. Du Pont does not manufacture resistors . . . only resistor compositions.
better things for better living
. THROUGH CHEmIStry

Perhaps you can also profit from these Du Pont Products for the Electronics Industry

Conductive Coatings-Specially compounded silver, gold, palladium and platinum compositions that are used to produce capacitor electrodes, ceramic-to-metal hermetic seals, electrical shields and surfaces of high conductivity on non-conductive materials.

Conductive Cements-Silver and gold compositions consisting of finely divided metallic particles dispersed in a resin system; Du Pont conductive cements may be used to replace solder as lead attachments for transistors, diodes, resistors and as a base for electroplating.

ALLIED COMTROL'S NEW Polarized Magnetic LATCHING Relay

Allied Type JP Relay Weight: 0.6 ounces Actual Size

The inherent vibration and shock resistance and high sensitivity of Allied's Type JP Permanent Magnet Polarized Latching Relay, combined with its ability to operate from a short pulse and remain operated without holding power. make it suitable for all phases of Aerospace applications.
Because of its latching feature and availability with single or double coils, it is also suitable as a logic or memory switching element in computers and data processing applications.

OPRRATING CONDITIONS:

Vibrafien 85 to 55 cps at 0.195 inch double amplitude - 55 to 2000 cps at a constant 30 g
Sheck : 100g operational
Somsifivify 8 JP (single coil) 115 milliwatt maximum transfer power - JPA-JPB (double coil) 230 milliwatt maximum transfer power
Cenfact Rafing: Non-inductive-2 amperes af 29 volts d-c or 1 ampere at 115 volts a-c Low level contacts are available on request

NEW PRODUCTS

Linear-Motion Potentiometers

For missile and aircraft use, type 2986 units have independent linearities of $\pm 0.5 \%$ or better. Resistances are 250 ohms to 50 K . Dielectric strength is $1,500 \mathrm{v} \mathrm{rms}$. Shaft stroke is 1.3 in . The units are best suited for use in servo-control systems and instrumentation transducers.
Markite Corp., Dept. ED, 155 Waverly Place, New York 14, N. Y.

Switching Transistor

Operates to $\mathbf{1 7 5}$ C. Silicon epitaxial mesa switching tiansistor 2 N 753 has a de forward current gain range of 40 to 120 at 10 ma . The npn device has a typical storage time of 18 nsec . Housed in the TO-18 package, the unit is rated for $300-\mathrm{mw}$ dissipation in free air.
Motorola Semiconductor Products Inc., Technical Information Center, Dept. ED, 5005 E. McDowell Road, Phoenix 10, Ariz.
P\&A: $\$ 12.35$ ea, 100 up; immediate.

Trimmer Potentiometer

338
Dimensions are $1 / 2 \times 1 / 2 \times 0.2 \mathrm{in}$. Model 357 provides resistance values of 10 ohms to 50 K over a range of -55 to +200 C . It can be used in matching, balancing and adjusting in all types of precision control, computing and telemetering circuits
Daystrom, Inc., Potentiometer Div., Dept. ED, Archbald, Pa
Availability: From stock.

Ulitra-Sensitive Relay

337
Available in two sizes. Ultra-sensitive sealed relay type 1520 has a $5-\mathrm{mw}$ sensitivity and occupies a $0.970 \times 0.970 \times 1.750 \mathrm{in}$. space. Type 1540 M has a sensitivity of 10 mw and occupies a space of $0.970 \times$ $0.970 \times 1.250 \mathrm{in}$. Mechanical design affords freedom of adjustment and permits a "make before break" contact.

North Electric Co., Dept. ED, Galion, Ohio PdA: $\$ 17$ ea for 1 to 9 quantities; 5 weeks.

Don't miss a single issue of
ELECTRONIC DESIGN. Send renewal now!

Naivar lsoglas and Isolaslane afford heary duly equipment extre protection ogainst frequent overloods beyond Class Breling Tsoglas consists of a glass fabris coated with an isocyanate reacted These products are oulstanding in their

- thermal stability
- resispance te crasing and cracking
- resistance to solvents, Askarel, and other non-Nammable synthetic insulating liquids
- toughness and scufl resisfance
- wet dielectric strength
- Mexibility of low temparatures
- fungistatic qualitios

Also available laminated with other insulating meterials for slet lining, coil supports, and phase insulation. Ask for Data Sheel and Somples.

 CIRCLE 170 ON READER-SERVICE CARD

CIRCLE 171 ON READER-SERVICE CARD ELECTRONIC DESIGN • May 10, 1961

A HIDDEN HELPER

Profects your fubes and components from damage by sagging cable.

- eliminates the old bugaboo of cable entanglement which damages pubes and components in lower chassis rubes and components in lower chassis for service and refurned to position. Our new Cable Retractor's double oction maintains constant tension and correct suspension of cable at all times-permits ample cable length for full extension and tilting of chassis without hazard of snagging.
For use with all types of chassis or drawer slides, adustable to fir varying chassis thoroughly roliable in operation.
Mounts on rear support rails on standard 136" hole increments. Cadmium plated CRS. Write for Bullotin CR-100A
ORegon 8.7827 Western Devices, IMc. 600 W. FLORENCE AVE., INGLEWOOD.CAL CIRCLE 172 ON READER-SERVICE CARD

TIMING CONTROLS

CIACLE 173 ON READER-SERVICE CARD

Liquid-Level Gage

With visual readout, the Gage-O-Matic provides constant information as to the status and behavior of hot or cold liquids. Single or multiple control switches provide for operation of valves, pumps, signal circuits or whatever the application requires.
H. H. McKinnies Co., Dept. ED, 3131 W. Mill Road, Milwaukee, Wis.
Availability: Made to order

Power Transistors

From 10 to 100 w . Silicon power transistors include the $2 \mathrm{~N} 1936-2 \mathrm{~N} 1937$ rated at 100 w , the $2 \mathrm{~N} 1722-2 \mathrm{~N} 1724$ at 50 w , and the $2 \mathrm{~N} 1714-2 \mathrm{~N} 1718$ series rated at $10 w$ in TO- 5 case. All the units were designed for application in a wide range of power uses in airborne, missile, communications, and industrial equipments.

Texas Instruments, Incorporated, Dept. ED, P. O. Box 5012, Dallas 22, Tex.

Industrial Load Controls

334
Power or frequency is recorded on a strip-chart recorder which incorporates control switches. A govemor motor contactor is energized by the switches to operate the turbine governor motor.
General Electric Co., Instrument Dept., Dept. ED West Lynn, Mass.

Recording Heads

333
Have high density. Digital read-write heads of series RW11700 provide 8 in-line tracks for each 1/8 in . of tape. Track width of each channel is 0.008 in . with nominal inductance of 1.5 mh . Crosstalk between channels is -20 db at 10 kc .

Applied Magnetics Corp., Dept. ED, Bux 368, Coleta, Calif.

Progressive Shorting Switches

332
With 20,24 or 32 positions, these switches can be used as control decks for rotary solenoid operation, capacitor decade switching, sequential power distribution and network applications.

The Daven Co., Dept. ED, Livingston, N.J.

electromechanical COMPONENTS " maximum reliability

SNAP SWITCHES per MS-25089

Sinusoidal, toggle spring design ensures positive, tease-proof snap action... minimum arcing and contact wear. Heavy coin silver contacts for long life and low resistance. Color coded buttons. Wide choice of housinge, mountings and contact arrangements.

FOR FULL ENGIMEERIMG DETALLS, CIRCLE IMQUIRY CARD MO. 243

LOW-COST PK ROTARY SWITCHES

Cycle Life: 100,000 cycles minimum. Light, strong, molded nylon with silver. plated brass or solid silver alloy contacts and rotor blades. Available in black or special colors.

FOR FULL ENGIMEERING DETAILS, CIRCLE IMQUIRY CARD NO. 244

Outperform rubber (absorb shock from all directions) outlast rubber (unaffected by dirt, grit, oils, corrosive atmospheres). Available in plate and cup types for loads up to 35 lbs. per mount.

FOR FULL ENGIMEERIMG DETAILS, CIRCLE INQUIRY CARD MO. 245

The UCINITE COMPANY

Division of United-Carr Fastener Corp.
Nowtonvilte 60. Mase.

BIG NEWS in high-temperature precision-molded Insulation

SUPRAMICA゚ 620 "BB" ceramoplastic

See this newest advance in the
Sclonce of High-Tomporature Insulation
Visit BOOTH 1063 at the DESIGN ENGINEERING SHOW
General Offices and Plant: 121 Clifton Boulevard, Clifton, N. J.
Executive Offices: 30 Rockefeller Plaza, New York 20, N. Y.

Need a precision-molded insulation material with total dimensional stability under the most adverse thermal cycling, operating to $1200^{\circ} \mathrm{F}$. . . . or a material with previously unattainable combination of properties? Check these facts about new SUPRAMICA 620 "BB" ceramoplastic:
nas been waiting sor... SEAS AURE HERMI teccisec.lestal tests.

- Maximum temperature endurance of material 1200°. (unstressed). Heat distortion temperature of material $1100^{\circ} \mathrm{F}$. (ASTM D648-264 PSI)
- SUPRAMICA 620 "BB" ceramoplastic can be precision molded to most intricate geometries with gauge-like tolerances.
- SUPRAMICA 620° BB" ceramoplastic will not carbonize.
- Absolute hermetic seals achieved directly during the molding cycle. Components meet a helium leakage rate of less than $2 \times 10^{-10} \mathrm{cc} / \mathrm{sec}$, after the following environmental tests:
 - wator for 30 mimitos wrectry to les wator for 10 minarios. 2. Semples hear shocked a total of 5 cralos, from $350^{\circ} \mathrm{C}$. for hour dirsectly to reem componsture for 10 almies, to $70^{\circ} \mathrm{C}$. for 1 hour, to reom tomperature for 10 minutes. 3. stomporasture.
- Thermal expansion factor matches many metals and alloys.
- New SUPRAMICA 620° BB" ceramoplastic features a dielectric strength of 270 volts/mil, $1 / \mathbf{s}^{\prime \prime}$ thickness per ASTM D-149.

NEW PRODUCTS

DC Tachometers

Two models. Model R9608-001 is an uncompensated unit designed to function as a stabilizing element in a standard de servo mechanism. Model R9608-002 is temperature-compensated to maintain high accuracy from -15 to +71 C .
General Precision Inc., Kearfott Div., Dept. ED, 1150 McBride Ave., Little Falls, N.J.

VSWR Probe
330

For open-wire lines. Model 2988 is a noninsertion device for measuring incident power and vswr on open wire transmission lines. Probe is clamped on transmission line as desired; monitor-alarm unit has front-panel display of incident rf power and vswr. Range is 2 to 50 mc at 50 kw max. Directivity is in excess of 30 db .
Trak Electronics Co., Inc., Dept. ED, Wilton, Conn.

Acoustic Calibrator

Needing no power source, type 1417 is for periodic calibration of sound-level meters. It covers a wide frequency range centered at $1,500 \mathrm{cps}$. Noise is repeatable within $\pm 1 \mathrm{db}$. A noise level as high as 90 db at 4 in . is produced.
The Korfund Co., Inc., Dept. ED, 22F Cantiague Road, Westbury, N. Y.

Code in AMR 17-bit format. The 802 M2 time code generator is for generating precision instrumentation signals identical with those produced at the Atlantic Missile Range. Code in the AMR 17-bit, 24-hr binary format can be used to check out ballistic missiles and space vehicles at plant development facilities. Time drift on the unit is less than 1 sec per month, with a frequency stability of $3 \times 10^{*}$ per day. Electronic Engineering Co. of Califoniia, Dept. ED, 1601 E. Chestmut Avc., Santa Ana. Calif.

Leak Defector

327
Designed for vacuum technology, model 600 features: an air sensitivity of 10 to $12 \mathrm{~cm}^{3}$ per sec; sensitivity ranges of 5×10 to 11 , to 5×10 to $8 \mathrm{~cm}^{8}$ per sec for full-scale deflection; $2 / 3$ of maximum response in 2 sec or less; sensitivity to helium only. Crosby-Teletronics Corp., Dept. ED, Westhury, N. Y.

Dual Counters

326
For sequential control. Dual predetermined counters are made with 3 to 6 Nixie readout tubes. Designed for control of 2 separate functions in sequence, the series 61 counters operate at 100 kc . Output is $5-\mathrm{amp}$ contact closure, momentary and latching. Remote readout to $1,000 \mathrm{ft}$ may be used.
The Redford Corp., Instrument Div., Dept. ED, 262 Saratoga Road, Scotia 2, N. Y.

Fluctuation Adapter

325
Reading an input of 0 to 0.5 v ac, continuously, from any of the firm's primary transmitters, the A41A/l computes magnitude of fluctuation and transmits a proportional signal to a controller. It is suitable for any application where magnitude of fluctuation is more important than the value of highs and lows reached by the variable.
Swartwout Div., Crane Co., Dept. ED, Hooksett Industrial Park, Manchester, N. H.

If you want ELECTRONIC DESIGN to reach you without interruption mail your renewal form now!

now

 certified rectifiers guaranteed for 18 monthsYou can now get rectifiers that are guaranteed for 18 months to operate at a certified level of performance. If any Syntron rectifier does not perform as certified you will get an immediate replacement without cost.*
Advantages: you know the rectifier you choose is exactly right for the application. The variables of quality, service life, and reliability are eliminated from design considerations. And you minimize or eliminate time-consuming inspections on production quantity shipments.

Some of the precise tests that make certification and guarantee possible: physical inspection to JEDEC drawing specifications, electrical tests of specific current ratings, tests for forward drop at rated current with cell temperature at $25^{\circ} \mathrm{C}$, extensive testing of all assemblies at rated load conditions. Of course, there are a host of others.
Want more information on the industry's only certified and guaranteed rectifiers? Complete the coupon today. Find out why it pays to specify Syntron.

SYNTRON certified SEMICONDUCTORS

Available from leading Electronic Distributors

NO STEPPING SWITCHES IN THIS

ULTRA-RELIABLE DVM: Cubic announces a new

 digital voltmeter design that eliminates stepping switches and, with them, the need for periodic maintenance. The new Cubic V-70 uses the same ultra-reliable reed relays developed for submarine cables. These reed relays are sealed in glass and have practically unlimited life. They are noiseless and completely unaffected by operating position.Accurate: The V-70 reads any d-c voltage from 0.001 to 999.9 volts with an absolute accuracy of 0.01% plus or minus 1 digit. The Cubic V-70 Digital Voltmeter provides these and other premium features at a cost of only $\$ 1,580$. For details, write to Dept. ED-104, Industrial Division, Cubic Corporation, San Diego 11, Calif. (in Europe: Cubic Europa S. p. A., Via Archimede 185, Rome).

Cubic manufactures a complete line of quality digital instruments, including $a-c$ and $d-c$ voltmeters, ohmmeters, ratiometers, scanners and printer controls.
circie it7 on reader-service card

NEW PRODUCTS

Diode Tester

Checks to 3 kv . The DT 924 is a back-current and saturation voltage tester with meter ranges of 0 to $3 \mathrm{kv}, 0$ to 3,000 ua, and 0 to $3,000 \mathrm{na}$. Regulation is better than 0.1%, ripple and noise 0.05%. Output current is 0 to 1 ma , output voltage 0 to 3 kv . Features include recorder output and $4-1 / 2$-in. mirrorbacked 1% meter in fully protected metering circuit.
Trans Electronics, Inc., Dept. ED, 7349 Canoga Ave., Canoga Park, Calif.

Precision Transducers

For measurement and control of rotary motions to 1 sec of are and linear motions to 0.0001 in ., the Inductosyn units can be used in missile control and gyro pick-offs as well as other military and industrial applications. Rotary units have 0.1 -sec resolution.
Del Electronics Corp., Dept. ED, 521 Homestead
Ave., Mt. Vernon, N. Y

Helium Magnefometer

Sensitivity is $\mathbf{0 . 0 1}$ gamma. Helium magnetometer operates from -40 to +125 F and offers precise measurement of both magnetic field variations and total magnetic field. No change occurs in the meas ured value of the field as a function of optical axis orientation with respect to the magnetic field axis The device weighs 6 lb and measures $13 \times 7 \times 7$ in Texas Instruments Incorporated, Dept. ED, 6000 Lemmon Ave., Dallas 22, Tex.

Audio Transistors

Provide 200 mw . High-voltage units 2N1188, 2N1187, and 2 N1188 offer a collector-to-base voltage of 60 v at 50 ua. High-gain types 2N1185 and 2N1194 have betas of 190 to 400 and 500. The units are housed in TO-5 package. Typical tum-on and turn-off time is $2 \mu \mathrm{sec}$.

Motorola Semiconductor Products, Inc., Technical Information Center, Dept. ED, 5005 E. McDowell Road, Phoenix 10, Ariz.

Mail your subscription renewal today. Get every issue of ELECTRONIC DESIGN.

cubic
 CORPORATION

INDUSTRIAL DIVISION SAN DIEGO, CALIF.. U.E.A. DOME, ITALY

Beating the Spectrum Squeeze

Tired of mucking around in X-band? Iffi got you down? Try the wide open spaces above 100 Gc . Of course the reason they're wide open is that we haven't got much in the way of rf sources, components and systems that will work in the rarefied atmosphere of millimeter waves.

But as the report on the opposite page shows, a large number of scientists are doing their best to fill that gap; who knows but that they may succeed all too well and that by 1970 we'll be aiming at a new and higher frequency frontier. So best stake your claim in that region before it too becomes obsolete.
Good, useful design ideas, however, are always in style. This issue of MicroWaves includes two articles that should be likely candidates for the microwave designer's reference file-shortcuts in antenna simulation and coaxial cavity design.

Millimeter-uate sources for systems application are rapidlly nearing realizultion. Plasma devices fast-wave structures and the Tornadlotron are described in

Millimeter-Wave Generators
Approaching Pay-off Stage p 171
Why build an antenna when you
can simulate it with "s resistance
carl Find card? Find out how it's done in

How to Simulate Antennas
In Systems with Waveguides
Design of lunabla conxial cavitios is often determincel by volumer restrictions. The correct siza and the effect of compromiss's can lor quickly found wilh this

Tunable Coaxial Cavity
Nomograph

Tunnel diodes for frequencies up to 4.6 Cic, a clirect reading phase meter and a broadband duplexar tube cocering 27.5 to firk me are amons the new prodiucts ilescribed in

Microwave Products p 182

ELECTRONIC DESIGN • May 10, 1961

Millimeter-Wave Generators Approaching Pay-off Stage

RESEARCH into millimeter and submillimeter wave generators may soon pay off in devices delivering substantial power at the upper end of the microwave spectrum. More than 60 research teams in industry, Government and universities are reported to be active in this area, and designers are beginning to consider seriously the possibility of radar, Doppler, and communications systems above 100 Gc .

The designer shopping for power at 100 Gc or above now has three choices:

- Raytheon's new QKK 971 klystron (100 to 120 Gc).
- A COE-20 Carcinotron (130 to 145 Gc), made by Compagnie Generale de Telegraphie Sans Fil (CSF).
- Harmonic generators (several hundred Gc).

The two tubes deliver about 10 mw eactr at the top of their ranges, while the output of crystal and diode harmonic generators is more commonly measured in microwatts at low millimeter wavelengths.

While such power levels may be adequate in the laboratory, generators of far higher power are well along in development. Tubes delivering up to several hundred watts at 1 mm or beyond are thought to be entirely feasible.

First Tomadotron Tests
 To Be Performed of 4 Mm

Later this month, for example, the first trial operation of the Tornadotron is planned at the Bayside, N.Y., laboratories of General Telephone and Electronics. The device will be operated at 4 mm . Emphasis will not be on power output but to prove out the design concept. The Tornadotron is inherently a pulsed device that should be capable of high instantaneous power at repetition rates on the order of 100 per sec.

Wright Air Development Div. is supporting development of a $1-\mathrm{mm}$ Tornadotron. Gerhard

Weibel. developer of the tube, expects it to generate 1 w at 1 mm in a $10 \mu \mathrm{sec}$ pulse. By reducing the pulse length to $1 \mu \mathrm{sec}$, however, power might be raised to perhaps 1 kw . Dr. Weibel envisions Tornadotrons operating far into the submillimeter region. A tube operating at 0.1 mm might generate more than 10 kw in microsecand pulses, he believes.

Tube Refinements Showing Promise of Achieving I Mm

Despite the apparent limitations of conventional tubes, however, many organizations are continuing to scale down klystrons and crossedfield tubes and are gradually edging their way to 1 mm . The backward-wave O-type Carcinotron is the most successful example of a continuously refined conventional tube. The prototype COE-15 tube is said to deliver l-mw minimum between 180 and 205 Gc , while the prototype COE-10 generates 1 mw minimum between 250 and 294 Gc. A still more advanced laboratory model has shown some power at 355 Gc .

Raytheon is also concentrating on refinement of existing types, particularly klystrons. The company is also considering scaling down its high-power Amplitron tube to millimeter-wave dimension. Since power generally decreases as the square of the frequency, the company reasons that an extremely powerful low-frequency tube would also be ahead of the game at 1 mm .
Nevertheless, scaling down of conventional tubes has obvious limitations in power and frequency. Interaction structures become impossibly small at high frequencies. CSF retained its interdigital slowing structure down to its $4-\mathrm{mm}$ tube but has since gone to a slotted-vane structure whose fabrication might prove a challenge to the watchmaker's art.
Traveling-wave tubes might also be adapted for miniaturization. Hughes is designing a $50-$ w-cw twt at 6 mm . CSF is working on a $1-\mathrm{w}$

$R_{\text {how to cure }}$ traveling wave tube headaches

If you have TWT headaches-finding a microwave amplifier now - which produces high gain and wide bandwidth with high average and peak powers-Hughes may have juat the prescription for you. Hughes TWT's provide all these desirable features with bulit-in long Ifte, ruggedness and dependability. Thay fully exploit the advantages of permanent magnet periodic focusing in both glass and metal-

typical twt's available now:

SIIM 20-4.e KMC Gridied 1 KW minimum peak power out. put, 1% duty, 360 bb small signal gain 50 mw input. Woight 13 CBE. Length 17.7/16

コ12H 2.04.0 KMC Gridded 1 KW minimum peak power out. put, $1 / 2 \%$ duty, 36 db small signal gain 050 mw input. Weight: 11 16e. Length. 15-3/8.

2NH 2.e4.0 KMC Ungridded. I KW minimum peak power out. put, 1% duty, 37 db small signal put, 1% duly, 37do smail signal
gain 11 mw input. Weight: 12 . $1 / 2$ lbs. Length: $17 \cdot 31 / 32$.

207H 8.s-9.S KMC 50 KW minimum poak power output (500 wat: average), metal. ceramic construction. 54db saturation gain. 1% maximum duty cycle. beam voltage $=38 \mathrm{kv}$. Wt. 21 lbs . Length: 24°.

Hughes also has a complete line of K_{u}-band backward-wave oscillators for commercial and military applications. Write or tolephone localy for full information or a catalogue concerning the broad line of Hughos TWr's availabie in L. S. C \& X bands.

Nughee microwave Tube Division, P. O. Bex seher, Los Angoles As, Calliomia.

0
average twt at 2 mm , and Bell Telephone Laboratories is reportedly planning a $1-\mathrm{w}-\mathrm{cw}$ twt at 1 mm .
Several high-frequency magnetrons are also reported in development. These include a 107-Gc unit with 2.5 - kw peak output, built by the Columbia University Radiation Laboratory; a 79-Gc unit of 5 -kw peak output, built by SERL in England, and a $300-G c$ magnetron, planned by the General Electric Co. of England. Here again, fabrication of small dimensions is a limiting factor. Anode vanes in the 79-Gc magnetron are only $0.003-\mathrm{in}$. thick, while the $300-\mathrm{Gc}$ magnetron will use a photoetched anode.
Limitations of conventional devices have thus prompted research into a wide variety of exotic approaches. Plasmas, because of their unusual but little understood properties, have attracted considerable interest.

A simple resonator utilizing a plasma column within a Fabry-Perot interferometer is being developed by J. Stafford at the University of Illinois. A strong axial magnetic field is applied to the plasma, which then radiates at a characteristic resonant frequency. In this, as in all plasma devices, there arise difficulties in creating and containing the plasma, as well as in coupling energy into and out of the medium.
Plasmas may also make possible application of the Doppler effect to generate millimeter waves, since a wave reflected by a moving mirror is increased in frequency. Here, a "plasma piston" would be magnetically accelerated toward the wave to provide a "mirror" of suffi-

Miniaturization problems in conventional millimeterwave lubes are illustrated by this slotted-vane slowwave structure employed in the COE-20 135-Gc Carcinotron. Actual length of the structure is about 1 in.

Michomaves

ciently high velocity. Similarly moving striations for the same purpose might be established in a plasma column by ultrasonic waves or cyclic magnetic fields. The Doppler approach is particularly interesting, as the power of the reflected wave is increased as the square of the frequency increase.

The plasma piston has been used by O . G . Zagorodnov in the Soviet Union to obtain frequency increases of several megacycles at about 27 mc . Moving striations are being studied at the University of Illinois, Polytechnic Institute of Brooklyn and CSF.

Plasmas may also find eventual use in the Rebatron-a Cerenkov radiation device under development by Dr. Paul Coleman at the University of Illinois. In this device a frequencybunched electron beam grazes the surface of a dielectric. If the velocity of the beam exceeds that of the speed of light within the dielectric, radiation is generated at harmonics of the bunching frequency. To date Dr. Coleman has reported outputs of 1 w at 40 Gc , using a $1-\mathrm{Mev}$ beam bunched at S band. He believes that the use of tensor media, such as plasmas or ferrites in place of the dielectric, could yield perhaps 1 kw at 1 mm .

Fast-Wave Tubes in Development

At GE and Stanford University
Fast-wave structures offer another possible means of overcoming the limitations in conventional tuhes. A fast-wave structure can be considered the dual of a slow-wave structure, such as the traveling-wave tube. In the twt the electron beam supplying the energy to the rf wave is maintained at a constant velocity, while the wave is retarded by passing along a helix, comb or vanes.

The opposite effect occurs in the fast-wave tube. The rf wave is not retarded; rather the electron beam is forced into a spiral, sinusoidal or other cyclic path by external magnetic fields. By synchronism of electron and wave motions, the electron surrenders energy to the rf wave. Since the tube is essentially a straight piece of waveguide, there are no dimensional limitations on frequency.
One fast-wave tube now in development is the Ubitron (Undulating Beam Interaction), suggested by R. Phillips of General Electric's Power Tube Dept, Palo Alto, Calif. In the original Ubitron concept the electron beam traveled in a plane, a sinusoidal path down a length of rectangular waveguide. Lately Mr. Phillips has

s.fily hiocaline

KLYSTRON POWER PACKAGES

SMALLEST; LIGHTEST FOR THEIR POWER

SPERRY MICROWAVE ELECTRONICS COMPANY, CLEARWATER FLORIDA • DIVISION OF SPERRY RAND CORPORATION Mlcrolline Instrumonfs - Radar Test Suls - Systems Instrumentation - Solid State Devices and Materia/s • Microwave Components and Antennas

Cast Waveguide COMPONENTS

A complete line of high quality cast waveguide components is now available from Microwave Associates, Inc Units for use at frequencies from 1.2 to 40 kMc are electrically and mechanically interchangeable with similar units you may now be using. - Delivered from stock, they may be specified in either Beryllium Copper or Aluminum.

MICROWAVE ASSOCIATES, INC. 冏 Component Division
 BURLINGTON, MASSACHUSETTS • BROWNING 2.3000 • WESTERN UNION FAX • TWX: BURLINGTON, MASS. 942

mponts. These include pressure windows, test equip. ment, specialized waveguide components such as balanced mixers, harmonic multipliers, and complete microwave sub-system packages.
\qquad

COMPENSATED CAST BENDS - WAVEGUIDE-TO-WAVEGUIDE COUPLINGS • "PANTY" ADAPTERS E/H AND STRAIGHT ADAPTERS - FOLDED HYBRID TEES • SIDEWALL HYBRID COUPLERS CIRCLE 101 ON READER-SERVICE CARD

substituted a circular waveguide with the beam following a corkscrew, undulating path. The circular waveguide permits larger diameter electron beams for the same frequency, or con versely, reduces the problem of small waveguides at high frequencies. A power improve ment factor of about 50 is reported for the circular guide.
The Ubitron has recently won a Wright Air Development Div. contract and has since been classified secret. However, Mr. Phillips reports that in recent experiments "We have generated about four times the peak power ever obtained by other methods in the Ku band."

At Stanford University, R. H. Pantell is developing a fast-wave device in which a hollow, cylindrical electron beam undergoes helical rather than undulating motion. Magnetic fields in excess of 100,000 gauss would be required to spiral the electron beam at a rate necessary to generate 300 Gc. Strong fields are in fact required for a number of proposed millimeter wave devices, but recent progress in superconducting magnets may solve this problem

Tomadotron Generates Radiation

By Accelerating Electrons
Acceleration of electrons to produce radiation, a fundamental deduction from Maxwell's equations, is the principle applied in the Tor nadotron. A pencil of electrons is formed at the center of a cylindrical chamber. The chamber is formed in two halves and is located along the axis of a magnetic field to form what is, in effect a cyclotron. An rf signal applied to the two halves of the chamber causes the electron pencil to spiral outward. The signal is then removed and the electron pencil continues in a circular path some distance out from the center of the chamber.
A strong axial magnetic field is then briefly

"Plasma piston" generator built by Russian scientists to test Doppler method of microwave generation. Device shown achieved frequency increase of 4 mc . Helix slows phase velocity of incident wave to increase the Doppler shift caused by reflection of wave from moving plasma.
applied to the chamber. The pencil spirals sharply inward, and the electrons thus acceler ated generate the radiation in the Tornadotron. The pencil is then reformed at the center of the chamber, and the process is repeated.
Since a strong, sharply pulsed magnetic field results in rapid acceleration of the electrons, extremely high frequencies can be generated in this manner. Power is a function of the number of electrons involved in the process and can be increased by lengthening the chamber or by tighter packing of the pencil. One-mm radiation would require a field of about 100,000 gauss, while $0.1-\mathrm{mm}$ waves could be generated by a field of 1 million gauss.

Solid-state devices are also being considered as millimeter-wave sources. Perhaps furthest along in this area is a pulsed-ferrite generator being developed by H. J. Shaw at Stanford University. This device is essentially a solid-state Tornadotron in which radiation is developed by electron spins in a small sphere of yttrium iron garnet.

New Applicotions Are Foreseen

With Millimeter-Wave Advances

With this variety of research and development, much of it well-supported by the Air Force, it should be only a matter of time before a number of millimeter and submillimeter wave generators suitable for application in systems become available.
Studies are now under way to locate spectrum windows, especially in the little-known region above 300 Gc .

Apart from their obvious advantages of highchannel capacities, high resolution, precise aiming and reduced equipment size, millimeter waves may open entirely new application areas for electronics. Weather forecasting, for example, could be greatly improved by detection of clear air turbulence, believed possible with $60-\mathrm{Gc}$ and $120-\mathrm{Gc}$ waves. Air navigation and study of aerodynamic phenomena would also benefit greatly.

Radio astronomers would like to tune in on an ever-wider spectrum of interstellar signals. Millimeter waves could make practical the radar mapping of planets and the sun, to say nothing of high-resolution terrestrial mapping and reconnaissance. The accuracy and velocity range of Doppler navigation systems would increase directly as the frequency of the transmitted signal. In fact, Air Force support of a 140-Gc Carcinotron development giving $50-\mathrm{w}$ peak output and 1-w cw is related to such Doppler applications. -

 ,

cunurit wily OF VERSATLIE, EFFICIENT

Model 187B-S

Waveculoe water loads

for SL, S, C, XB and X Frequency Bands

Five models covering five bands
Three models useful in pressurized systems
VSWR less than 1.10
Can handle $\mathbf{2 - 2 0} \mathrm{km}$ average powe
Low rf radiation
Calibration heaters in all models

These Sierra high-power waveguide terminations are extremely useful as dummy loads in calorimetric power-measuring systems. They feature rugged construction, with rigid plastic water tube mounted in waveguide section, diagonally oriented for impedance matching. Chokes and shielding minimize of leakage, and a heater element built into each model permits rapid, accurate calibration of a calorimetric power-measurement system against a low-frequency standard.

For complete details, see your Sierra Representative or write direct.
NEW! Sierra also offers its Model 186 Series Coaxial Water Loads, covering dc to 4 kmc .
SIERRA ELECTRONIC CORPORATION
caotr demammon orive - A Division of Philco Corporation memlo park, califormia, u.s.a. Sales representatives in all principal areas
Canada: Atlas Instrument Corporation, Lid., Montreal, Oriawa, Toronto, Vancouver Export: Frazar \& Hansen. Lid., San Francisco CIRCLE 182 ON READER-SERVICE CARD

How to Simulate Antennas In Systems With Waveguides

Rotating the edge of a variable-resistance disk in a slot cut into a waveguide is a simple, inexpensive and very flexible way of simulating an antenna. It can be used in any system that has a waveguide.

Fig. 1. Sketch of test set up indicates how the resistance cards were mounted so that their edges could be rotated in slots in the waveguide.

William Krushinski, Thomas E. Watson
Sr. Engineer, Group Engineer
Electronics Div,, The Martin Co.
Baltimore, Md.

ANTENNA radiation patterns can be simulated by the controlled insertion of a shaped resistance card into a slot cut along the centerline of the broad face of a waveguide.
The reception of a pattern from a rotating antenna can be simulated by rotating the rim of a disk-shaped card. The pattern beamwidth can be varied by varying the card resistance distribution.

Beamwidths from 3.5 to over 143 deg were simulated with $6-\mathrm{in}$. diam disks in a RG51/U waveguide (Fig. 1). The design steps were:

- Determining the resistance patterns of the disks.
- Developing a method of fabricating the disks.
- Solving mounting problems.

How the Card Resistance Characteristics

 Were DeforminedResults of tests performed at X band to determine maximum attenuation of various values of resistance cards (ohms/sq) when inserted into RG51/U waveguide are shown in Fig. 2. All the cards were of the configuration shown on the graph. They were 0.027 in . thick and consisted of a carbon base film (a few thousandths of an inch thick) bonded to a sheet of paper-phenolic laminate. The tolerance in their rated resistance per square was ± 10 per cent. Fig. 3 gives maximum attenuation as a function of resistance card values from 30 to $1,000 \mathrm{ohms} / \mathrm{sq}$ at a frequency of 10 kmc .

The graphs show that the most appropriate value for maximum attenuation with insertion is $100 \mathrm{ohms} / \mathrm{sq}$. The tolerance on resistivity probably accounts for the irregular shape of the curve in the 50 -to- 100 -ohm/sq region. For a given value of resistance card of fixed shape, maximum attenuation occurs when the card comes in contact with the bottom of the waveguide. Greater values of attenuation may be produced by placing a longer piece of resistance card inside the waveguide. A comparison of the attenuation characteristics of two differently shaped cards of 100 ohms/sq is shown in Fig. 4.
Care should be taken to shape the leading edge of the resistance card depending upon the maximum vswr that can be tolerated in the system. Slight irregularities and raggedness of resistance card edges can cause proportionately larger mismatches. Because of the dissipative nature of the resistance card, it is only necessary to ensure that the rf looking into the card will not see a serious discontinuity in order to achieve vswr values of less than 1.1:1 over the waveguide frequency band.

By using the 100 -ohm $/ \mathrm{sq}$ material in the form of 6 -in.-diam disks, it was possible to simulate $3-\mathrm{db}$ antenna beamwidths from 3.5 to 143 deg. The disks were inserted in a slot on the centerline of the broad face of RG51/U waveguide. Slots cut into waveguide in this manner interceptlittle or no lines of current and thus radiation from the slots is virtually non-existent.

The minimum beamwidth attained with singleslot penetration (Fig. 5) is 17 deg . If the disk is allowed to penetrate both sides of the waveguide through two slots (Fig. 6), beamwidths as narrow as 3.5 deg are attainable. These beamwidths

Fig. 2. Tests of cards with various resistences can be used ic deiermine how the attenuation varies with frequency.

Fig. 3. The best resistance value for maximum attenuation was 100 ohms/sq.

Fig. 4. A comparison of the attenvation characteristics of two differently. shaped cards.
are a function of frequency, as is the case with actual antennas. The beamwidths become larger as the frequency is reduced. Typically, a 3.5 deg beamwidth at 11 kmc will become 4.5 deg at 8 kmc .

Minimum Beamwidths When
 Rote of Attonuation Is Maximum

Minimum beamwidths are produced when the rate of attenuation is maximum as the disk is rotated from the minimum attenuation position. At the position of minimum attenuation, there is no resistance material in the waveguide. From these initial conditions, larger beamwidths are shaped by appropriate removal of the resistance material from the cards, as shown in Figs. 5 and

6. Beamwidths narrower than 3.5 deg can be attained with larger diameter disks.
However, in the case where the disk penetrates both sides of the waveguide, problems of disk warpage become apparent as the disk is made larger. There will be some warpage with a 6 -in.-diam disk. Accompanying this warpage will be a tendency for the disk to brush the side of the waveguide slot as it rotates within the slot, thus causing irregular rotation because of the variation of loading on the disk drive motor. Also, the resistance material may scrape the sides of the slot changing the resistance value of the card.

Fabrication Method

Eliminates Warpage

The warpage problem is alleviated in the fol lowing manner. First, to protect the resistive surface from damage, the resistance surface is bonded face-down to a plexiglass disk. The bonding material should be of low dielectric constant to prevent a serious mismatch in the waveguide A dielectric constant about the same as plexiglass or lower (i.e., approximately 2.5) is satisfactory. Fig. 7 compares attenuation characteristics of an attenuator before and after bonding.
To remedy the warpage resulting from the bonding and/or the inherent warpage in the plexiglass, the entire disk is faced on a lathe. In the case where the disk penetrates only one side of the waveguide, facing is not necessary since only the rim of the disk is plexiglass, the remainder being fabricated from metallic plate for good support. (There will be some additional warpage due to the differences of thermal expan sion between the plexiglass and resistance card.)

Lobe Simulation
 By Shaping Resistance Card

In some cases, it may be desirable to simulate side or back lobe structures on the pattern. Any practical configuration of side and back lobe structure may be incorporated on the attenuator disk by properly shaping the resistance card. In fact, if the disks are not perfectly aligned along the axis of the guide through 360 -deg rotation of the disk, side and back lobes are inherent in the pattern produced by the disk. The magnitude and position of these lobes will be a function of the location and degree of off-the-axis travel. During rotation, if the disk moves to either side

Fig. 6. Simulator for narrow beams.
of the centerline, a condition of slight excitation (due to shunt coupling) of the slot occurs. This causes the energy to bypass the dissipation action of the card. Typical lobe structure is shown in Fig. 8. The lobe maximums are normally down 30 to 40 db from the main lobe maximum.

Mounting Problems:

Alignment and Slot Width
When designing the disk-type attenuator, consideration should be given to the waveguide slot width and to the location and positioning of the resistance card within the slot. If the slot is located off the centerline of the broad face of the waveguide, shunt coupling of energy from the guide will exist in increasing amounts as a function of off-axis displacement. This coupling causes a radiating mode to exist. In addition to the requirement that the slot be centered along the axis of the guide, the slot should be less than $1 / 8$ in. wide to prevent the interception of excessive series currents on the waveguide walls, a condition which will produce a condition of radiation. The accuracy of locating a $1 / 8-\mathrm{in}$. slo on the centerline of the broad face of the guide
depends upon the amount of radiation which can be tolerated from the slot. With normal tolerance of a few thousandths of an inch on the location and width of the slot, radiation from the slot (with the resistance card inserted) is on the order of 70 to 80 db down from the reference level.

The antenna radiation pattern beamwidths simulated were from 3.5 to 143 deg , using a 6 -in. diam disk (Figs. 9 and 10). Beamwidths wider than 143 deg could have been produced using the 6 -in.-diam disk. On the other hand, the 3.5 deg beamwidth can be considered as the lower limit for the 6 -in. diameter. A slightly narrower beamwidth may be produced with a given diameter disk by having the disk shaft pass through the narrow walls of the waveguide. However, the mechanical mounting problems involved in producing extremely narrow beamwidths by this technique probably rules it out in favor of using larger disks mounted as described. Therefore, using RG51/U waveguide (7.05 to 10 kmc), the design parameters given may be considered as near optimum. - -

Nole
Resistance cards were from International Resistance Co., Philadelphia, Pa .

Fig. 7. If the backing and bonding materials have low dielectric constants, the reinforcement and protection of the resistance card can be accomplished with litfle change in characteristics.

Fig. 8. Any practical side and back lobe configuration may be achieved by shaping the resistance cards. The beamwidth was 4 deg and the frequency 10 kmc . The pattern was blown up and the " 10 " circle represented -27.5 db .

Figs. 9, 10. Beam widths from 3.5 to over 143 deg can be simulated with 6 -in. disks. fig. 9 is a 3.5 -deg pattern and Fig. 10 is a 143 -deg pattern. Both were at 10.75 kmc .

Micromaves

Nomograph Speeds Design Of Tunable Coaxial Cavities

Author Jenkins formulated this nomograph to help him design a small, lightweight cavity for use as an rfi-limiting bandpass filter in an S-band transmitter. The design could have been time-consuming because a compromise between size and selectivity was necessary. The nomograph was used to obtain rapidly a promising combination of design parameters, after which the more detailed calculations were confidently performed.
H. H. Jenkins
Radiation, Inc.

Melbourne, Fla.

THE PRINCIPAL specifications in design of tunable coaxial cavities are: tuning range centered about a frequency f_{0}; band width at f_{0}; and maximum allowable power insertion loss at f_{0}. From these parameters one obtains the loaded Q of the cavity (Q_{t}), cavity inner radius (b), and nominal inner length $\left(2 b+\lambda_{4}\right)$.

However, available volume may limit the size of the cavity, and the designer should first determine the power insertion loss of the cavity for a given volume. Another important size limitation is that $2 b<\lambda_{4}$. Therefore, $2 b$ should be approximated before other design procedures are begun.

The nomograph (Fig. 1) determines if initial design specifications for the cavity are feasible. It can be used in the following cases:

- Knowing f_{0}, Q_{t}, and power insertion loss in db , find b, and $2 b+\lambda_{\text {s }}$.
- Knowing f_{o}, Q_{t}, and b, find the power insertion loss in db.
- Knowing f_{o} and Q_{L}, find the best compromise between cavity volume and power insertion loss.
To use the nomograph, read across columns 1, 3 and 4, or across columns 2, 3 and 5. For example, a cavity with $Q_{L}=1,690$ and a poiver insertion loss of 3 db yields $Q_{v}=3.5 \times 10^{-3}$ (columns 1, 3 and 4). At $2,250 \mathrm{mc}, b$ for this cavity (in aluminum) is approximately 1.06 (columns 2, 3 and 5).
If a metal other than copper or aluminum is

Fig. 2. Tunable coaxial cavity. Pertinent dimensions are the inner radius (b), $\lambda / 4$, and the outer radius of the inner conductor (a).
specified, multiply the b scale for copper by the square root of the relative resistivity of the desired metal.
The nomograph was constructed from equations and curves by Terman ${ }^{1}$ and assumes an optimum Q corresponding to b / a ratio (see Fig. 2) of 3.6. If other b / a ratios are desired the constant H in the nomograph equations is modified. ${ }^{1}$ Then multiply the b scale in the nomograph by the reciprocal of the new H value to obtain the new b value. The copper and aluminum b scales can both be modified this way.
Characteristics of concentric and two-wire transmission lines used as resonant circuits may also be determined from the nomograph. Again, a suitable multiplier is applied to the b scale, as determined by the equations. ${ }^{1}$ For copper two-wire lines of optimum Q with air dielectric, the b scale for copper is multiplied by 0.903 . Design of concentric lines requires no change in the b scale.

Note that the tuning range of the cavity does not enter into use of the nomograph. The tuning range only affects coupling loop area and position. However, the upper frequency of the tuning range does determine the maximum allowable b value, as $2 b<\lambda_{4}$ must be satisfied at all frequencies in the tuning range. Design methods for the loop area and position are given. ${ }^{2}$ Additional information on design of tunable coax cavities may be found. ${ }^{3}$ - ■

Roforences

1. "Electronic and Radio Engineering" by F. E. Terman, Fourth edition, McGraw-Hill Book Co., Inc., N. Y., 1955, Chapter 4, pp 106-107
2. "Design of Coaxial Cavities-Tunable Transmission Type." Design Method Series, Radar Design Corp., Syracuse, N. Y., Chapter 5.1
3. "Very High Frequency Techniques," McGraw-Hill Book Co., Inc., N. Y., 1947.

covers from 1.0 to 10.0 Gc VSWR's up to 10:1 matched to 1.00

- First coazial tunar covering frequancy range frem
- 1.01010 .0 E

Q Matches VSWR's of $10: 1$ to 1.00

- Insention loss less than 1 db when correcting mismorch of 3:1
Corrects mismatch of any phase
Standard Type N Connectors (jack to plug) for universal utilization
probe permit quick, accurate resets.
The N311A coaxial tuner, paralleling similar achievements in waveguide slide screw tuner development, is another illustration of FXR's widely acknowledged capabilities in the field of precision microwave test instrumentation.
Write or call now for data sheefs on Model N3IIA and other units in the extensive FXR line of precision slide screw funers.

FXR's COMPREHENSIVE LINE OF PRECISION WAVEGUIDE TUNERS

All pricen and cherecteristics subioct to change without notice.
DELIVERY FROM STOCK

EXR OFFICES IN NEW YORK BOSTON BO LOS ANGELES
REPRESENTATIVES IN AH MAJOR CITIES THROUGHOUT THE WORLD

PRECISIOM MICROWAVE EQUIPMEHT - MIEH-POWER PULSE MODULATORS - HIGH-VOLTAGE POWER SUPPLIES - ELECTROMIC TEST EQUIPMEWT CIRCIE 183 ON READER-SERVICE CARD

FUNDAMENTALLY SPEAKING

The low-noise parametric amplifier has emerged as a practical and important building block of modern microwave systems. It allows, for the first time, low-noise, wide-band preamplification of all microwave frequencies with a vast improvement in noise figure over conventional microwave receivers. It provides system perform. ance that otherwise can be achieved only by increasing the transmitter power by a actor of 2 or 3. Such system parameters as range, fade margin, reliability, etc. are application in Tropospheric Scatter, Microwave Radio Relay, Radar, and Telemetry Systems.
Systems designers should be aware, however, that a parametric amplifier does not consist merely of a parametric diode mount, but includes various other com ponents such as a pump, pump power supryy, and possibly automatic frequency and level cone if can, with care be completely packeges in . minimum volume. minimum volume.
The Pump: Parametric amplifiers require an A.C. power supply rather than a D.C. power supply as in conventional amplifiers. This power supply has been called the mergy into the parametric amplifier system. The pump frequently is a reflex klystron or erystal multiplier chain, but may be any form of microwave oscillator, including some of the newer solid state oscillators.
Automatic Frequency Control: Different system types have different A.F.C. requirements. In radar systems, it is necessary for the pump to follow frequency drifts of the magnetron so as to maintain a constant idle frequency. In communication systems, the signal is usually crystal controlled so that it is important to maintain the pump at a constant frequency. Here the goal is primarily to provent instability of the center frequency of the parametric amplifier since this will give rise to spurious phase and amplitude modulations of the signal. This A.F.C. problem may be reduced in large measure by the selection of pump sources with inherent frequency stability and by the design of broadband idle tank circuits for the amplifier.
Automatic Level Control: Additional spurious amplitude modulation may arise due to gain instabilities of the parametric amplifier. These gain instabilities arise due to the dependence of gain upon pump power. In those systems where this spurious A.M. is of importance, it is desirable to provide some sort of pump automatic level control. This may be provided in the form of voltage variable ferrite attenuators.
C.E.C. offors olline of Brosband Paramotric Am-
plifiers completo with pump A.F.C. and A.L.C. for UPplication to your syatem at frequencies from Your particular. requiramonts can be satisftod meroly by minor modifications of our oxiseting do. will be glad to talk to you on your specific require-

CONTROL Electramice CO., INC.
Ten Stepar Place, Huntington Station, N. Y.
MICROWAVE PRODUCTS

Crystal Switch Driver Adapter
Constant impedance match is provided beween the nonlinear forward to reverse impedance of a crystal switch and the modulation input. Forward and reverse modulation is clamped to the optimum level for operation of the crystal switch. Specifications are: voltage to turn switch on, +20 v ; voltage to turn switch off, -20 v ; switching rate, min, 0 cps ; modulation input impedance, 620 ohms. Connectors are type BNC

AEL, Inc., Dept. ED, 121 North 1lth St., Philadelphia, Pa.
PUA: $\$ 75$ ea; from stock.

Germanium Tunnel Diodes 396
Inductance is $\mathbf{4 0 0}$ ph for the 1N3218, 1N3218A, $1 N 3219$ and 1N3219A germanium tunnel diodes. Housed in a hermetically sealed "stripline" package, they have total capacities of $7,4,14$ and 7 pf respectively. Typical peak point current ratings of the 1 N 3218 and 1 N 3218 A are 1.0 ma while the others have a rating of 2.2 ma. This parameter is controlled to within $\pm 10 \%$. Operating frequencies are up to 4.6 Gc .

General Electric Co., Dept. ED,
Kelley Building, Liverpool, N.Y.
P\&A: $\$ 20$ to $\$ 30$ ea; immediate.

Direct reading microwave phase meter model 300 is for checking the relative phase between two signals in the $0.3-$ to $4-\mathrm{Gc}$ range. Phase is measured on a meter with $0.1-\mathrm{deg}$ resolution at the microwave frequency. A "servo output" is for automatic feedback phase control. The unit can be adapted for automatic swept frequency phase measurement with recorder output.
Wiltron Co., Dept. ED, 717 Loma Verde Ave., Palo Alto, Calif.
PGA: \$2,500; six weeks.

Broadband Duplexer

394
Frequency range is 275 to $\mathbf{6 0 0} \mathrm{mc}$ and average power input of the T4248V5D duplexer tube is 1 kw with a transmit and receive vswr of 1.5 to 1 . Insertion loss is 0.6 db and noise level on the receive cycle is less than 6 db over absolute temperature in Kelvin degrees. Isolation at full power is 30 db and a minimum firing level without keep-alive is 50 w .
Tucor, Inc., Dept. ED, 18 Marshall St., South Norwalk, Conn.
PdA: Approximately $\$ 1,000 ; 14$ days.
ELECTRONIC DESIGN • May 10, 1961
new from NARDA!

high-directivity coax couplers

Specifically designed for REFLECTOMETER applications !

- Here are two brand new coax couplers, specifically designed by Narda to provide the extremely high directivity needed in Reflectometer setups. And when we say "extremely high directivity". we mean it! For example: Model 3020 (250 to 1000 mc) has a directivity of 35 db minimum, which means a maximum error in VSWR of only 1.035 can occur as a result of the finite directivity. Main line VSWR is held to 1.05 maximum; secondary line VSWR is $\mathbf{1 . 1 0}$ maximum !
- What's more, each model covers two full octaves; each features extremely accurate tracking (0.3 db maximum change in difference between forward and reverse coupling over the band); each has a power rating of 100 watts $\mathrm{CW}, 10 \mathrm{kw}$ peak. Check the table for full specifica-tions-and compare with any other units available.
- These are just two examples of the complete line of unusually fine microwave and UHF instrumentation available from Narda. Write today for your free copy of our newest catalog. Address: Dept. ED-61-4.

SPECIFICATIONS	MODEL 3020	MODEL 3022
Frequency	250 to 1000 mc	1000 to 4000 mc
Directivity	35 db min	30 db min
Coupling - both arms	20ab nominal	20db nominal
- Frequency sensitivity	$\pm 0.6 \mathrm{db}$ approx.	$\pm 0.6 \mathrm{db}$ approx.
Max VSWR - main line	1.05	1.10
Max VSWR - secondary		
lines	1.10	1.15
Power Rating	100 wcm	100 Wcw
	10kw peak	10kw peak
Tracking	0.3 db total	0.3 db total
Price	\$200.	\$185.

Mran
 the narda
 microwave corporation

118.160 HERRICKS ROAD, MINEOLA, L. I., N Y. • PIONEER 64650

AFC Unit

For klystron frequency control. Designed to control the frequency of a klystron local oscillator in pulse radar systems, the IF42 afc unit is available at 30 to $\mathbf{6 0 ~ m c ~} f_{0}$. It utilizes a diode-phantastron control circuit and has a sensitivity of 40 v per mc. LEL, Inc., Dept. ED, 75 Akron St., Copiague, N.Y.

Waveguide Transitions

Frequency range is 1 to 12.4 Gc . Coaxial-to-waveguide transitions model 18 T 10 have a frequency range of 1 to 12.4 Gc . Specifications are: coaxial connector, type N; vswr 1.10 to 1 max; waveguide flange, UG $435 \mathrm{~A} / \mathrm{U}$.

Applied Microwave Electronics. Inc., Dept. ED, 114 W. 25th St., Baltimore 18, Md.
Price: $\$ 150$ ea.

Rotary Joints

Rated at 3 megawatts. Model S 60-1 rotary joint covers the frequency range from 5.25 to 5.75 Gc and is rated for a peak power of 3 megawatts when pressurized to 30 psig with air. Other models operate between 1 and 9.5 Gc . The vswr is less than 1.15:1. Unit operates at 10 megawatts when pressurized to 20 psig of sulfur hexafluoride.
FXR, Inc., Microwave Div., Dept. ED, 25-26 50th St., Woodside 77, N.Y.

BRAND-REX CABLEMANSHIP BoEING'S Communications Link

America's first "push-button" missile system, the Minuteman is predicated upon high reliability, maximum simplicity and greatly improved cost effectiveness. Supporting the effective missilemanship of Boeing, the Minuteman systems integrator, is the Cablemanship of Brand-Rex.
Linking the vast complex of Minuteman Communications systems are a broad range of Brand-Rex multi-conductor cables. By combining the most suited plastics for the specific purpose, they insure functional and environmental integrity. Polyethylene, with its excellent electrical characteristics, is used as primary insulation; nylon jackets impart dimensional stability to single conductors as temperature increases; and over-all neoprene jackets provide low tem-
perature flexibility, abrasion resistance and resiliency. The processing problems inherent in such material combinations have been successfully solved by Brand-Rex technicians.
If your requirements for wire, cable and insulating materials demand the reliability, uniformity, and adherence to specifications of the Communications system of the Minuteman project, call on the Cablemanship of Brand-Rex!
-Brand-Rex Cablemanship - a combination of technology, skill, design engineering, 3-plant production capability and technical service provided by a tightly knit organization of. cable specialists . . . all backed by the vast resources of American Enka Corporation.

division of 4 American $E M_{X}$ Corporation
DEPT. NC, 3 S SUDBURY ROAD, CONCORD, MASSACHUSETTS
TELEPHONE. EMERSON $2 \$ 30$

You save time, eliminate doubt, when you turn to Brand-Rex for Teflon insulated wire. Combine recent U/L approval of Brand-Rex Teflon TFE and FEP wire with a long list of military approvals and you've got a source that can deliver fast . . . to your exact specifications।
Why is Brand-Rex such a distinctive and unique source? We call it advanced cablemanship . . . a combination of technology, skill. progressive engineering, the production capacity of three modern plants and technical field service . all delivered through a tightlyknit organization, backed by American Enka Corporation's vast resources.

If you want Tefion insulated wire or cable, nenc's your source. The same is true if you want to be brought up to date on the many advantages of Teflon or any other insulation material. Contac Brand-Rex . . . people who know!

4 American ENKA Corporation suDDunt moad. concomo, masecruvartis SUDDUAT MOAD. concomo, Mos mens circie 187 on reader-service card ELECTRONIC DESIGN • May 10, 1961
 CIRCLE IEB ON READER-SERVICE CARO

Is tunable. The Ferimat, a tunable ferrite isolator, is designed for the A, V and E bands. Typical performance ratings are: vswr, 1.25 max; isolation, 20 db min ; loss, 1.5 db max. The Ferimat is one of a line of millimeter components covering the 26.5-(:c region.

Technical Research Group, Inc., Dept. FD, 9 Union Square, Somerville, Mass.

Max. MegW/cu. in.

ITT CERAMIC HYDROGEN THYRATRONS AND DIODES FOR MAXIMUM POWER/SIZE RATIO

No other hydrogen thyratron and diode line offers this wide choice of high-power types in the smallest possible tube envelopes. Made by ITT Kuthe Laboratories, most experienced maker of hydrogen-filled tubes, these ceramic thyratrons and diodes are the most complete line on the market today, with each type immediately available from production. The high-power thyratrons are designed to operate at high repetition rates and high temperatures; the high-power diodes may be used as hold-off diodes, inverse clippers and backswing clippers. Also available is an equally comprehensive line of glass thyratrons. The entire ITT hydrogen thyratron and diode program is aimed at the most demanding applications, particularly where long life and ruggedness are mandatory.

ELECTRON TUBE DEPARTMENT © COMPONENTS DIVISION international telephone and telegraph corporation, clipton, new jersey ITT COMPONENTS DIVISION PRODUCTS: POWER TUBES D IATRON STORAGE TUBES - HYOROGEN THYRATRONS TRAVELING WAVETUBES • SELENIUM RECTIFIERS• SILICON DIODES AND RECTIFIERS • TANTALUM CAPACITORS

twnamoes	Kv 0	kt 7	kE 12	wn	K0 74	Ku 214
Pattormence fretoen is ion	10	40	10	200	400	450
Pras Pomer Outout Mecomotis	0.2	10	3.30	12.50	330	300
	60	100	20.0	250	330	500
Pasi anoot Curionl. amperics	80	200	330	1000	2000	2000
Avorise andode Current. ampores	. 100	200	300	is	4.0	40
Moigni. Incres	1.70	223	300	\$. 75	110	12.0
O.ameter, inmes	115	131	1.15	300	450	450

Write for information on the complete line of ITT hydrogen thyratrons and diodes. Application asaietance is available for your specific requirements.

Radio Relay System

Has 600 voice channels. Covering common carrier, industrial and government frequencies between 5,925 and $8,400 \mathrm{mc}$, model RF- 7 provides 600 voice channels. Transmitter power is 1 w . Transistor circuits and plug-in construction are used. Power supply is a charger and battery system.

Ceneral Electric Co., Communication Products Dept., Dept. ED, Lynchlurg, Va.

Crystal Diode Mixers

Adjustable local oscillator coupling. Double or single ended mixers, model CM 6, are available with fixed or variable local oscillator coupling. Specifications are: input, type \mathbf{N}; frequency. 570 to 630 mc ; vswr, 1.5 to 1 max; frequency bandwidth, 10%; if, 30 mc .

Applied Microwave Electronics, Inc., Dept. ED, 114 W. 25th St., Baltimore 18, Md.
Price: $\$ 390$ ea.

TR Tube

392
A quartz folded-cylinder tr tube for high-power applications, model T48U15 operates at uhf and L-band frequencies with multi-megawatt input. Gap spacing accuracy is better than ± 0.006 in.
Tucor, Inc., Dept. ED, 18 Marshall St., South Norwalk, Conn.
Availability: 30 days.

New klystrons hold characteristics in grueling aerospace environments

K.- and K-band tubes are tunable from 34.0-35.6 and $23.5-24.5 \mathrm{kMc}$
Now, Raytheon combines the advantages of small size, extreme ruggedness, thermal stability, and smooth wide-range tunability in a 20 mD reflex klystron.
The new QKK 834 for K. band and QKK 923 for K band are all ceramic and metal tubes with typical electronic tuning range of 110 Mc . The tuner, utilizing a sapphire rod, can be specified for positioning anywhere on the circumference of the resonator at least 90 degrees from output flange (see illustrations above). Write today for detailed technical data or application service to Microwave \& Power Tube Division, Raytheon Company, Waltham 54, Massachusetts. In Canada: Waterloo, Ontario.

OKK 834, OKK 923GENERAL CHARACTERISTICS

Power Output 20 mW (nominal) Frequency . . . 34-35.6*; 23.5-24.5 $\dagger \mathrm{kMa}$ Resonator Voltage 400 V Reflector Voltage Range. . -65 to -175 V Temperature Coefficient. . . $\pm 0.6 \mathrm{Mc} /{ }^{\circ} \mathrm{C}$ Cooling . . convection (no blower needed) Overall Dimensions . . $15 / 8 \times 1$ 1/16 $\times 2$ in.* *OKK 834 TAKK 923

PORTABLE KLYSTRON POWER SUPPLY 809-A

featuring: - New compact size: $8^{\prime \prime} \times 12^{\prime \prime} \times 15^{\prime \prime}$ - New low in reflector voltage ripple: less than 1 mv rms - New planetary gears to give finer adjustment of reflector voltage - New design including internal blower, built-in cabinet tilt stand, PRD expansion coil cord with polarized ac plug - Direct reading of beam voltage or current on front panel meter.
Regulated beam voltage 250 to 600 volts; regulated reflector voltage 0 to -900 volts; 6.3 volt ac filament supply. Reflector voltage available either unmodulated or internally modulated by square wave or sawtooth. Send mannis
 1608 Centinela Ave., Inglewood, California, ORegon 8-9048. A Subsidiary of Harris-Intertype Corporation.

For circular waveguides. Moxlel 55R5C circular waveguide rotating probe sections provide continuous 360 -deg probe rotation for measuring electrical field mode orientation in circular waveguide. Specifications are: operating bandwidth, 5.0 to 5.9 (ci; residual vswr, 1.02 to 1; frequency range, 3.95 to 18.0 Gc .
Applied Microwave Electronics, Inc., Dept. ED, 114 W. 25th St., Baltimore 18, Md.
Price: $\$ 8.50$ ca

Varactor Diodes

Operate to 150 Gc. Gallium arsenide diffused-junction, mesa varactor diodes MS 282 through MS 266 are designed for use in parametric amplifiers, microwave switches and harmonic generators. In a packago measuring 0.120 in . OD by 0.0 .50 in . high, the diodes have typical parasitic inductance of 300 ph and total capacitance of 1.5 pf max. All units are rated at $6-\mathrm{v} \mathrm{min}$ breakdown at 10 ma .

Micro State Electronics Corp., Dept ED, 152 Floral Ave., Murray Hill, N. J.

Tunnel Diodes

383
Cut-off frequency is $3.5 \mathbf{G c}$. (icrmanium tunnel diodes, designed for uhf and microwave amplifier and oscillator applications in communication systems, exhibit superior noise characteristics. The diodes are packaged in a pillbox configuration, 0.120 in. in diameter and 0.050 in . high. The service includes types MS 222, 22.3, 224, and MS 242.
Micro State Electronics Corp. Dept. ED, 152 Floral Ave., Murray Hill, N. J.
< CIRCLE 191 ON READER-SERVICE CARD

For all-weather use. Resonant foam microwave absorber of the Salisbury Screen type has a value of 25 db min at resonance. Thickness of type RF absorber is $1 / 8$ wavelength; bandwidth is sufficient to cover a complete band.
B. F. Goodrich Sponge Products. Dept. ED, Shelton, Conr.

Flexible Waveguide

Pressurized to $\mathbf{4 5} \mathrm{psi}$. High-pressure flexible waveguide, for frequencies from 1.2 to 1.70 Gc , operates at $50-\mathrm{kw}$ cw and 25 -megawatt peak power. Waveguides are available in a wide variety of flange combinations.

Technicraft Div., Electronic Specialty Co., Dept. ED, 116 Waterbury Ruad. Thomaston, Conn.

Ferrite Modulator

For \mathbf{X} band. Ferrite modulator X158A provides 25 to 60 db of dy namic attenuation at coil currents of $1(10 \mathrm{ma}$. Insertion loss is 0.9 db max. input and output vswr 1.20:1 max. Used with WR-90 waveguide, modulator insertion length is 5.30 in .

FXR, Inc., Dept. ED, 25-26 50th St., Woodside 77, N. Y.

Waveguide Twists

385
In I.-band tubing. Large waveguide twists are available in standard L-band tubing with lengths of 18 in . and up. Both coaxial and offset twists are made in bronze tubing (type RG. (39/U) and aluminum tubing (type RC.-103/U).
F. C. Kent Corp., Dept. ED, 13.5 Manchester Place. Newark, N. J.

Rotary Joints

In variety of styles. A complete line of rotary waveguide joints is available in uhf, L, C, S, X and Ku bands. Configurations include I-shaped. L-shaped, U-shaped and dual-channel types.
Canoga Electronics Corp., Dept. ED, 15330 Oxnard St., Van Nuys, Calif.
Acailability: From stock

WATCH THIS SPACE

In a moment a new satellite will streak into view. Bell Laboratories may help guide it into orbit, for few are so eminently qualified in the science of missile guidance. Bell Laboratories' Command Guidance System has guided such trailblazers as Tiros and Echo into precise orbits. The same system will guide more new satellites into predetermined orbits as Bell Laboratories continues pioneering in outer space to improve communications on earth.

BELL TELEPHONE LABORATORIES World center of communicalions research and development

For noise at microwave frequencies, too, there's an ideal device in a small package. It's the Litton L-2000 series of miniature gas discharge noise sources. Use them for automatic monitoring of the performance and sensitivity of modern radar systems. They're available to cover the most-used frequency bands and come in a variety of mount configurations.
The series features a shielded cathode, low modulator drain, and field-replaceable tube insert. Rugged. Insensitive to a wide range of ambient temperatures. Compactly engineered for demanding air and ground environments. Economical because of replaceability, plus added advantages of logistic simplicity and ease of maintenance.

The tube pictured here is the single-ended L-2000 with the LR-2000 insert, specified for a recent generation of FAA airport surveillance radars and for a variety of well-known "S-band" military systems.

For more data on these or other precision gas tube products, write Litton Industries, Electron Tube Division, 960 Industrial Road, San Carlos, California. Or telephone LYtell 1-8411

GAS NOISE TUBES					
Trpo	Frequeng (megracycles)	$\begin{aligned} & \text { Exeass } \\ & \text { Molsi } \\ & \text { (D) } \end{aligned}$	Monianal Current (mis)		${ }_{\text {af }}^{\text {copolum }}$
${ }_{\text {l }}$	(200.250	12.5 $=0.5$	25 25		54" coax:
(1-2013	570.630 1200.1400		25 50	200 175	
L-2000(R)	${ }_{2700-2900}$	10.5 ± 0.2	75	175	
(-2018(R)	2700.2900	15.5 ± 0.2	75	35	RG.48/U WG*
(-2011(R)	3300-3700	18.4 ± 0.2	150	30	mG:88/U WG:
${ }^{1}$	3300-3700	15.5 ± 05	125	20	RG-48/U WG.
${ }_{\substack{\text { l } \\ 1.20010}}^{\text {L-200 }}$	2000-40000		85 40	135 80	$3 / 4^{\prime \prime}$ coax ${ }^{* \prime \prime}$
${ }^{(2.2001(R)}$		13.0 ± 0.5	100	55 50 40	RGG99/U WG:*
${ }_{\text {l }}^{\text {L-2003(R) }}$	7500.12000 8509600	14.5 ± 0.5 14.5 ± 0.5	100	45	
${ }^{1}$ 1.2004(R)	E500-9600	$18.5=0.5$	100	45	RG-52/ wG:
${ }_{\text {L-2003 }}$	(16000-17000	12.5 18 ± 0.5	${ }_{55}^{100}$	45	nGG-91/U WG**
(h) denot - single					

[^5]

Vertically polarized. Model 3001 vertically polarized antenna is designed for use as a ground beacon when used over a ground screen, or in transmitting from an aircraft. Electrical characteristics are: cw power rating, 500 w ; vswr, 1.5 max from 2.4 to 3.6 Gc. The unit is completely sealed.

Adams-Russell Co., Inc., Dept. ED, 200 Sixth St., Cambridge 42, Mass. PUA: \$410 per unit; 45 days.

Shorting Plugs

Are weatherproof. Used to cap and short a circuit simultaneously, weatherproof shorting plugs operate from -65 to +260 deg F . The TNC type operates at $1,500 \mathrm{v} \mathrm{rms}$. TM at 500 v rms . Metal parts are silver-plated brass; contacts have gold plate over silver. Dielectric is Teflon, shield contact fingers are heat-treated beryllium copper.

General RF Fittings, Inc., Dept. ED, 702 Beacon St., Boston 15, Mass.

Microwave Receivers

Designed as complementary units. The series 40 amplifiers provide matched sets of equipment for microwave receiver prototype or production runs. Specifications are: if frequency, 60 mc ; input, from balanced mixer; output, video cathode follower; bandwidth, 4 mc ; main amplifier gain, 130 db .
LEL, Inc., Dept. ED, 75 Akron St., Copiague,

RF PRODUCTS BUILDS ANVIL RUGGEDNESS INTO PRECISION © COAXIAL SWITCHES-RELAYS...

Spring-leaf switching blades, gold-plated silver contacts and impedance matched connectors keep insertion loss and VSWR (1.3 @ 4,000 MCs) low, Crosstalk high (in decibels down). Electro-mechanically actuated models operate and release in 8 to 20 milliseconds, depending on type and function, with a proven mechanical life of $1,000,000$ cycles minimum when operated under 10 cps . / Available for fast delivery from factory stock in a large variety of configurations and functions, including SPDT, DPDT. 1P4T, 1P6T, 1P12T and Transfer types. - E DMPHENOL

A division of amphenol-borg electronics ri ruld
(ipc D_{k}

AND DELIVERS IN 7 DAYS 100\% tested from factory stock

Get full details! Send for catalog DK61

- simuleaneausly tesfe for continuity lookage and hi-pot
- chocke complea branch cirevify
- rapid, low coss progromming
- ease of eperation

Ease of programming, fail safe circuits, wide range of programming, latest state of art design, reliability, rapid automatic go/no-go tests and low cost are features of the CTI Model 165 Cable Harness Analyzer. A wide combination of test parameters, continuity current, hi-pot voltage, continuity resistance, leakage resistance and time on conductor, may be independently programmed. The Cable Tester automatically checks up to 10,000 simple circuits in increments of 200 , or an equivalent combination of main and branch circuits. Connectoons provide control of external relays in the circuit under test. CTI has pioneered the field of automatic testing, and has applied its experience to developing the CTI Cable Tester, Model 165, into the most versatile and economic wire harness analyzer available.

Wrife for fulfi information

CALIFORNIA TECHNICAL industries Divimion or textmon ime melmont a, caliponmia

Foromost in Automatic Testing CIRCLE 194 ON READER-SERVICE CARD 192

Waveguide Switches

Switch under power. Remotely controlled spdt waveguide switches of the Delta series switch under rf power with 7 msec operating time. The $7-0 \mathrm{z}$ units cover the frequency range from 7.05 to 40.0 Gc in 5 waveguide sizes. Designed to meet all requirements of MIL-E-5272, the switches are suited for space and shipboard use.

Don-Lan Electronics, Inc., Dept. ED, 1131 Olympic Blvd., Santa Monica, Calif.

Polarized Connectors

Reversed internal components of these polârized TNC and TM connectors eliminate the possibility of mismatching cables. Insertion loss and vswr are low; requirements of MIL-E-5272 are met. All metal parts are brass, except female contacts and shield fingers, which are heat-treated beryllium copper. All connectors have threaded couplings.

General RF Fittings, Inc., Dept. ED, 702 Beacon St., Boston 15, Mass.

Waveguide Transitions

For connection of different size waveguides. Transitions, also known as tapers, provide a means of connecting one waveguide size to another. Sections that connect standard military RG waveguide to commercial WR are also available. Standard units are silver-plated brass assemblies.

Waveline, Inc., Dept. ED, Caldwell, N.J.

. . . with
 components
 by Rantec

Over the past years, Rantec has concentrated a major part of iss research and development efforts in the design and development of components and subsystems for telemetry. Rantec is now able to offer the design engineer near complete systems in today's $225-300 \mathrm{Mc}$ and tomorrow's 1700-2300 Mc bands. Here are components of amazing adaptability for the design of Rantec-reliable telemetry systems.
FOR THE 225-300 mC EYSTEM Antennas and arrays, for manual tracking and simultaneous lobing... Helical arrays...dipole diversity reception arrays or feeds for large reflectors...these antennas have been used successfully in DISCOV ERER, EXPLORER, PIONEER and ECHO projects... Antenna pedestals and servo mounts Telemetry multiplexers... units which combine two to six transmitters into one antenna... long term, hermetically sealed for outer space environmens. Units are used in TITAN, POLARIS, MERCURY, DISCOVERER, SUBROC, X- 15 and other projects FOR TNE 1700-2300 MC SYSTEM Simultaneous lobing and electronic conical scanning antennas... Horn arrays and slot arrays Feeds for 6^{\prime} to 85° diameter reflectors... used around the world Filters....coaxial and stripline...designed for rugged ground and space environments .. . Multiplexers ... two to ton channel applications Hybrid assemblies... to be used with simultaneous lobing systems to permit tracking by providing sum and difference channel outputs Dual channel rotary joints... Control and display panels Y-circulators .. . broad-band. compact ... for use with parametric amplifiers... Coaxial isolators... ferrite switches

Complate apecification for each component and aubsyotem are available.
Rantec engineers will be happy to work with your telemetry team in the application of chese components to the sotal oysem. Rantec Corporation, Calabanas, California

Microwaves

Slotted-line Sections 354

For circular waveguides. Model 55SC circular waveguide slotted line sections maintain rotation of the electric field orientation to a minimum to ensure true readings. Slot length is a minimum of 8 in . Specifications are: bandwidth, 5.0 to 5.9 Gc ; residual vswr, 1.02 to 1 ; frequency range, 3.95 to 18.0 Gc .
Applied Microwave Electronics, Inc., Dept. ED, 114 W. 25th St., Baltimore 18, Md.
Price: $\$ 725$ ea.

Tube Cavity

351

For C-band. A new metal-ceramic triode design configuration is used in a tube-cavity combination operating over the 5,250 - to $6,050-\mathrm{mc}$ frequency range. Output power is 4 to 10 mw . The design functions as a stable local oscillator or parametric ampli fier pump.
General Electric Co., Receiving Tube Dept., Dept ED, Owensboro, Ky.

Parametric Amplifier
377

For AN radar systems. L-band diode parametric amplifier, model X-217, is for installation in AN/TPS1D, AN/TPS-1G and AN/FPS-36 radar systems. It sets the system noise figure at 2 db or better. The unit has an instantaneous bandwidth of 10 mc or more, which is tunable from 1.2 to 1.4 Gc .

Melabs, Inc., Dept. ED, 3300 Hillview Ave. Palo Alto, Calif.
< CIRCLE 195 ON READER-SERVICE CARD

Oscillating at 18 kmc and de livering 15 milliwatts of power, a Stewart OD 12-18 BWO can be expected-and is suaranteod -to offer a minimum of 500 hours of high-derformance serv. ice. In actual use, Stewart backward wave oscillators normally outlive their guarantees many times over.
Stewart BWOs offer particularly attractive possibilities as a source of microwave signals for microwave swept signal generators, and for receivers and transmitters requiring rapid programmed swept signal excursions, because of their ox. cellent wide-band, electronic tunability characteristics. Performance curves for the 00 $12-18$ are shown here.

Whether or not you're interes ed in 3.24×10^{16} osciliations. wo think youll want to see copy of the specirication sheets for the complete line of Stewart BWOs. Drop us a note today.

STEWART ENGINEERING CORPORATION

SANTA CRUZ•CALIP
CIRCLE 196 ON READER-SERVICE CARD

LOOK FOR THIS CARD IN THEMAD MIL

 ELECTRONIC DESIGN RENEWAL. FORM free of charge, including the 27 th5. Principal Electronic Manufacturing or Service category this facility
PIEASE CHECK ONE ONL. PLEASE CHECK ONE COMmunication.
Audio, Communica MirsRadar, Radio Controls. Test 1. $\square_{\text {VES }} \square_{\text {NO }}$ Please continue to send ELECTRONIC DESIGN,
6. $\square \square \square$ Please send me also free of charge, any special Mick \quad I do no design work 1 Instrument Mirs Analyzer. Compule Mirs Analyzer, Machioe Mirs. Aircraft, Airctalissile Mfrs.
ries, Guided Parts. Component Pars. Sub-Assembly. Material Mirs. - Aromic Energy Labs, Con\square Independent Research Orgns. suluants, Researme U.S. Government bove. Mfrs. other than above.
\qquad [c) Estimared number of Engineers ano
do design work $\quad 1$ supervise desighe indicated corrections.

YOUR SUBSCRIPTION

HAS EXPIRED
It's Time To Renew Your Free
Subscription To ELECTRONIC DESIGN

Regardless of when your subscription started, you must fill out and return a renewal card.

When you receive your I B M renewal card, please fill it out completely . . . and mail it immediately to insure uninterrupted receipt of ELECTRONIC DESIGN.

Our circulation policy requires that all subscribers requalify each year to continue receiving their free subscription to ELECTRONIC DESIGN.

Please help us serve you better by requalifying as soon as you receive the card.

27 ${ }^{\text {susess . }}$ '61
*27th lissue: electaonic designers' catalog

POLARAD
 MICROWAVE GENERATORS

500 mc to $50,000 \mathrm{mc}$

POLARAD ELECTRONICS CORP.
43-20 34th 5t., Long isiand City $1, \mathrm{~N} . \mathrm{Y}$.
Piease send me information and specifications on

\square Model PMR	\square Model PMX
\square Model MSG-1	\square Model CSG
\square Model MSG-2A	\square Model PMK
\square Model MSG-34	\square Model EHF (generator)
\square Model KSS	\square Model EHF (source)

A copy of "Notes on Microwave Measurements."
My application is
Name
Titie
Dept
Company
Address
City
city
Zone
State

polarad
 MICROWAVE GENERATORS

500 mc to $50,000 \mathrm{mc}$
MOST FEATURES
MODEL MSG-I

Planar Triode Cavities

For commercial and military use, the Universal 10 series of planar triode cavities meet specification of MIL-E-5272C. They are made for frequencies between 220 and $4,300 \mathrm{mc}$, in pulse and cw units. Pulse oscillators deliver up to 2 kw at 1 Gc ; cw amplifiers deliver 12 to 13 db gain at 1 Gc . Over-all width is $2-1 / 2 \mathrm{in}$.

J-V-M Microwave Co., Dept. ED, 9300 W. 47th St., Brookfield, Ill.
Price: From \$15 ca.

Ka-Band Magnetrons

 698With 40 -kw peak power output, type M-4155. A magnetron is smaller, lighter and stronger than the type 5789 it replaces. Type XM-4218, designed for missile and airborne use, weighs 4 lb and produces 32 kw . It operates unpressurized at $33,000 \mathrm{ft}$ and withstands $10-\mathrm{g}$ vibration. At 27 lb , type X:M-4158 is 6 lb lighter than type 6799 . The airborne unit delivers 120 kw peak. Type XM4064 withstands $20-\mathrm{g}$ vibration, 54 to $2,000 \mathrm{cps}$. Power output is 70 kw . The $9-1 \mathrm{l}$ magnetron is made for airborne applications. All four units operate in the Ka band.
Sylvania Electric Products Inc., Dept. ED, 730 Third Ave., New York 17, N.Y.

Stability Tester

714
Model 5024 stability tester measures frequency variations as small as 1.5 parts per 10 billion. There are eight full-scale ranges for fm deviation from 10 cps to 30 kc . Plug-in heads are available for bands between 1 Gc and 11 Gc . Minimum peak fm deviation measurable is 0.3 cps in L band to 2 cps at Ku band. Oscilloscope output is provided; metered displays include 2nd if signal, fm peak deviation, drift, signal level and current level. Rack-mounting unit is $12-1 / 4 \mathrm{in}$. high, weighs 65 lb . Cabinet model is also made.
Laboratory For Electronics, Inc., Dept. ED. 1079 Commonwealth Ave., Boston 15, Mass. P\&A: $\$ 5,400$ basic, heads $\$ 750$ to $\$ 1,050 ; 90$ to 120 days.
< Circle 198 on reader-service card
ELECTRONIC DESIGN • May 10, 1961

HYDROGEN RECTIFIERS RATE HIGH

- IN ABILITY TO WITHSTAND VOLTAGE AND CURRENT SURGES OVER WIDE TEMPERATURE RANGES EIN VOLTAGERATINGS IN PERVEANCE AND ARE LOWIN COST Compare Tung-Sol hydrogen-filled, high-voltage rectifier tubes with other rectifiers when considering your specifications in the design of high-power equipment-for example, radar and radio transmitting equipment. Wide operating temperature range allows operation in environmental extremes, usually without blowers or heaters. Their high voltage ratings and ability to withstand over-voltage and current surges provide rectifiers that require no "babying".

Tung-Sol's long experience in design and rigid quality control in manufacture are your assurance of rugged long life and utmost reliability. Tung-Sol Electric Inc., Newark 4, N. J. TwX: NK193

COMPARISON OF CHARACTERISTICS

	nYdnoasm	xMmom	$\begin{aligned} & \text { mencuar } \\ & \text { vapor } \end{aligned}$	$\begin{aligned} & \text { Vacuum } \\ & \text { tuer } \end{aligned}$	$\begin{aligned} & \text { BOLID } \\ & \hline \text { THAT } \end{aligned}$
ablify to -nherand vortage -nd enerant anryea	Excollont	Excollont	Excollont	Excollont	Poor
Pemgaratura rance	Wide	Wide	Limited	wide	Lumited
Vallese rallmas	High	Limited to 10 KV	Limited to 16 KV	High	High by seriesing many unite
-arseanee	High	High	Migh	Low	High
cost	Low	Low	Lowest	Modium	High
	MEAK invera voltis		c. ouppur URETETMT	maximum meiont	
7788	15,000		00 ampores	$7{ }^{8}$	
7792	25,0061		0 ampores	93/4 ${ }^{\text {a }}$	
In many casea 7789 and 7792 are direct plugin replacements for vacuum tube typea 576A and X80 reapectively.					

(Camplete technical data and besic rectibet desiga charte available upos regueat)

technical assistance is available through the following SALES OFFICES: ATLANTA, GA; COLUMBUS, OHIO; CULVER CITY, CALIF;; DALLAS, TEX:; OENVER, COLO: OETROIT, MICH.; IRVINGTON, N. J.; MELROSE
PARK, ILL: NEWARK, N. J.; PHILADELPHIA, PA.; SEATTLE, WASH. IN PARK, ILL; NEWARK, N. J.; PHILADELPHIA, PA.

(4) TUNG-SOL

CIRCLE 199 ON READER-SERVICE CARD

SCORES A MANOR-THROUGH New Clasis Mount Resistor Derign Now Pruvides: * higher watlage ratings with no increase in size. - improved hoal transfer to chassis. \star improved structural simplicity. \star a now high in reliability.

The new SAGE Type " M "design represents the first major advance in the history of chassis-mount resistors. With no dimensional changes, SAGE M10W, M25W and M50W Resistors now offer:
(1) HIGHER WATTAGE RATING

	SAGE	SNGE	Mil-R-10546C	
Mlow	10	14	10	Reos
M2SW	20	25	15	RE7O
msow	40	50	20	RE75

(2) GREATER RELIABILITY

Compared to competitive designs, SAGE parts function at significantly lower inside hot spot temperature.
(3) IMPROVED STABILITY

Typical 3 \% resistance change after 1000 hour rated load life.
(4) UNEQUALED IMPERVOHM ${ }^{\star}$ SEAL AGAINST MOISTURE AND THERMAL SHOCK.

Test samples available on request

SAGE

SAGEELECTRONICS CORP.
Country Club Road - East Rochestor, N. Y. CIRCIE 200 ON READER-SERVICE CARD

Fixed Attenuator 707

Rated at 50 w , model A-500 fixed attenuator can be supplied in values from 0 to 20 db . Over all accuracy is $1 / 2 \mathrm{db}$; vswr with type N connectors is $1.2: 1$ max from de to 1 Gc . Peak power rating is 50 kw ; impedance is 50 ohms. Units are calibrated at 0.95 Gc .
R L C Electronics, Inc., Dept. ED, 805 Mamaroneck Ave., Mamaroneck, N. Y.
P\&A: $\$ 250$ to $\$ 260$; stock to 2 weeks

Klystron Oscillator

455
Frequency is $\mathbf{1 3 . 3}$ Gc. Two-resonator klystron oscillator VA-504B is a rugged, liquid-cooled, medium power unit designed for fixed frequency Doppler radar navigation and similar applications. Electrical characteristics are: frequency, 13.3 Gc ; power output, 19.0 w avg; beam-modulation coefficient, 30 kc per v .

Varian Associates, Dept. ED, 611 Hansen Way, Palo Alto, Calif.

Klystron Tube

705

A single cavity oscillator model LKC-5 klystron requires no magnetic field. It is made for operation at frequencies from 0.8 to 13 Gc . Power output is 5 w cw ; efficiency is 7% to 12%. Height is 1.70 in ., weight 5 oz . Tube performs in any position.

Lewis and Kaufman Electronic Corp., Tube Div., Dept. ED, P. O. Box 337, Los Gatos, Calif. Availability: 5-week delivery.

-gas filled for sustained accuracy
Accuracy is so high these instruments may be used as secondary standards. Units are unaffected by changes in humidity, altitude or barometric pressure. Only 12 sizes serve from 2.6 KMC to 140 KMC . You save budget money on the number of sizes needed. Literature on request.

DEMORNAY BONARDI

DE MORNAY-BONARDI
780 south arroyo parkway - pasadena, callf.

CIRCLE 201 ON TEADER-SERVICE CARD

FIRST TIME OFF THE SHELFI

These reliability-proved Sanders TRI-PLATE striptransmission line microwave components are now available immediately from stock . . . at special quantityproduction prices.

SPECIFICATIONS

MODEL ASGI SPIMAL ANTEMNAS MODELIATTENUATORS
2-4 KIMC
1-5 KMC
$>15 \mathrm{db}$ Attonuation B 3 KMC 3 db Cireularly Polarlzed Caln
Type N Connectar
<1 Ab Insortion Lesse 3 KMC Type N Cennectors
Place your order . . . or write for complete specifications, Tradonark Sanders Aesoctictes, Ine.

SAIDERS ASSOCIATES, ITC.

Hodvat Manoger, Mlorewavo Product Dopl, NASHUA, NEW HAMPSMITE
CIRCLE 202 ON READER-SERVICE CARD
ELECTRONIC DESIGN • May 10, 1961

MicroWaves

Ferrite Isolators

For use in X-band communications systems, ferrite isolators FD-7511 through FD-7516 give 20,40 or 60 db isolation from 10.7 to 11.7 Gc , and 25,40 or 60 db isolation from 12.2 to 12.7 Gc . Mounting in WR-75 waveguide, the units range in length from 1-1/2 to $2-1 / 2 \mathrm{in}$. All types are rated for 2 kw peak or 10 w cw input. The minimum isolation-to-insertion loss ratio for the FD7511 is $50: 1$; the ratio is about $60: 1$ for the others.

Sylvania Electric Products Inc., Sales Dept., Dept. ED, Box 997, Mountain View, Calif.
P\&A: $\$ 115$ to $\$ 125 ; 4$ to 5 weeks.

Tunnel Diode Amplifier

Broadband, low-noise tunnel diode amplifier OTA 250 operates from 250 to 500 mc . The hybrid coupled unit has a noise figure of 3.5 db . The amplifiers can be used with conventional traveling-wave tube and vacuum-tube amplifiers in the uhf region.

Micro State Electronics Corp., Dept. ED, 152 Floral Ave., Murray Hill, N.J.

Varactor Diode

Gallium arsenide varactor diode provides lownoise amplification to a cut-off frequency of 150 Gc. The diode uses a reverse-biased pn junction with voltage-dependent capacitance. Length is 11/16 in., diameter $1 / 4 \mathrm{in}$.
Semiconductor Div., Raytheon Co., Dept. ED, 215 First Ave., Needham Mass.

Biaser

706
Useful from 0.5 to $11 \mathbf{G c}$, the X-193 biaser has an insertion loss of less than 1.5 db ; vswr is less than 1.5:1. Uses include de isolation of two components, dc biasing and de return. Minimum dc resistance between terminals is 1 meg ; bias current is 250 ma max. Maximum voltage across rf connectors is 1 kv . Size is $3 / 4 \times 1-3 / 4 \times 2 \mathrm{in}$.
Melabs. Dept. ED, 3300 Hillview Ave., Palo Alto, Calif.

RECENT RAYTHEON DEVELOPMENTS IN MICROWAVE FERRITE DEVICES

HIGH-POWER CW CIRCULATOR,
Model CXH2 covers 9.4 to 10.8 kMc .

Versatile X-band circulators handle cw power in excess of 10kW

New high-power ferrite device provides over 20 db isolation; can be used as isolator with suitalle auxiliary loads.
An adranced line of Raytheon high-power circulators keeps abreast of new X-band tube developments.
Typical of these compact units is the CXH2 covering 9.4 to 10.8 k .1 Ic with a continuous power rating of 10 kW . Isolation is 20 db minimum, insertion loss is 0.2 db maximum and VSWR is 1.15 maximum.
Used as an isolator-in conjunction with suitable auxiliary Ioads-the CXH2 will handle continuous power levels to 10 kilowatts with a back-tofront ratio greater than 100:1. Similar units are available for use at high peak power levels.
For complete details on this and other significant developments in high-power microwave ferrite devices, please write to Special Microwave Devices Operation, Raytheon Company, Waltham Industrial Park, Waltham 54, Massachusetts.

TYPICAL SPECIFICATIONS • MODEL CXH2

RAYTHEON COMPANY

TODAY IT'S A POLARIS WORLD...
"A revolutionary and practically invulnerable ballistic missile system."
President Eisenhower thus characterized the POLARIS Fleet Ballistic Missile - capable of being launched from hidden nuclear submarines anywhere in the oceans of the world.
As System Manager of this fantastic program, Lockheed Missiles and Space Division coordinated its overall design, research, development, testing, assembly, and evolved the missile frame and reentry body. Outstanding competence and teamwork brought the POLARIS to operational status years ahead of schedule. Such accomplishments exhibit a bold, imaginative approach to new and unusual concepts. Similar challenging opportunities are continually developing at Lockheed. Other programs reach far into the future . . . a rewarding future which engineers and scientists of creative talent and inquiring mind are invited to share. Write Research and Development Staff, Dept. M-16C,962 West El Camino Real, Sunnyvale, California. U. S. citizenship or existing Department of Defense industrial security clearance required. All qualified applicants will receive

Lockheed/missiles and space division

[^6]

COAXIAL SWITCHES Mowest option for the Transco " r " type cooxial switch is the availability of AC solenoids (rectifiers built in). The unit rotains the same broad band width, to 11 KMC , and meets military specifications. Two-actuator design permits choice of make-before-bresk or break-before-make-as well es simultaneous contact ol two RF positions. Switches may be ordered in choice of six connector types. Pleasa write for full information. Transco Products, Incorporated, 12210 Nebrasha Avenue, Los Angeles 25, Californis. Phone: BR 2-5687,

TRANSCO

Coaxial Termination

A sliding coaxial termination, model 906A provides a movable, low-reflection load for terminating 50 -ohm coaxial systems. The load moves at least 1,2 wavelength at 1 Gc . Power rating is 1 w ; over-all frequency range is 1 to 12.4 Gc . A movable center conductor insures a vswr of less than 1.05. Adapters for type N male or female connectors are included.
Hewlett-Packard Co., Dept. ED, 1501 Page Mill Road, Palo Alto, Calif.

Directional Couplers

713

Frequency range of $\mathbf{2 . 6 0}$ to $\mathbf{4 0 . 0} \mathbf{G c}$ is covered by eight models of waveguide directional couplers in five basic designs. Included are crossguide, narrow-wall, and precision broad-wall versions. All are available with standard values of coupling. Electrical characteristics are optimized over the complete frequency range.

Waveline, Inc., Dept. ED, Caldwell, N. J.

Coaxial Attenuators

Stable film resistors permit the use of these coaxial attenuators under severe environmental conditions. Frequency range is dc to 2 Gc . Typical vswr is $1.2: 1$, deviation 5 db . Values range from 3 to 40 db in eight sizes. Standard connectors are available.

Coax Devices, Dept. ED, Box V, Chelsea 50, Mass.
Price: $\$ 30$ to $\$ 40$.

Three mutually perpendicular surfaces define unit for mechanized insertion.

Tunnel prevents moisture entrapment between capacitor and board. tor interior.

Radial lead design occupies minimum PC board area.

Superior shock and vibration choracteristics.

GET MICRO-MOLDED MINIATURE MYLAR*CAPACITORS FROM...

*-DUPONT

PAKTRON

 PACKAGEDELECTRONICS if DIVISION OF ILLINOIS TOOL WORKS 1321 Lestie AVENUE alEXANDRIA, VA.MICRoWayES PRODUCTS

Telemetry Receiver

For 2.2 Gc use
Telemetry receiver model $9-100$ is designed primarily for use in the $2.2-$ to 2.3 -Gc telemetry band. Circuitry includes a phase-lock demodulator, phase-locked klystron first injection oscillator and low-noise crystal mixer. A buffered 50 -ohm output circuit is provided to permit magnetic recording of the undetected if signal. Specifications are: frequency stability, $\pm 0.005 \%$; input, 50 -ohm source; noise figure, 8.5 db max; image rejection, 65 db min .

Radiation, Inc., Dept. ED, Melbourne, Fla.

Coaxial Switch

For use to 1.5 Gc

The TS-1 coaxial switch is a dpdt unit covering frequencies from dc to $1 \mathbf{G c}$, and useful to 1.5 Gc . The vswr rating is less than $1.1: 1$ to 1 Gc ; insertion loss is less than 0.1 db . Cross talk is less than 70 db at 1 Gc , and less than 45 db at 1.5 Gc . It can be used wherever rf switching is required, in airborne or ground installations. Operating life is 10,000 cycles per min. All 6 connections are BNC type. The 8 -oz unit is 3-1/2 in. in diameter by 3 in . long.
Telonic Industries, Inc., Dept. ED, Beech Grove, Ind.
Price: $\$ 45$.

Reflex Klystron

Fixed-frequency type
Reflex klystron, VA-204 is a fixed-frequency type designed for the public service radiolocation band. Electrical characteristics are: frequency, $10.525 \pm 0.010 \mathrm{Gc}$; power output, 40 mw avg; beam voltage, 300 v dc ; beam current, 23 ma dc ; reflector voltage -40 to -50 v dc .
Varian Associates, Dept. ED, 611 Hansen Way, Palo Alto, Calif.

Your best buy in operational amplifiers ?

THE PHILBRICK USA-4J UNIVERSAL STABILIZED AMPLIFIER!

Choose this amplifier when the need for exceptional reliability justifies the price, and enjoy the bonus of remarkably high performance. Its reliabilty statistics prove it the best buy in the industrial and process control fields, although the USA-4J was originally designed for military use.

- LOW DRIIT AND MOISE:
well under 50 microvolts rms.
- GAIN: 100 MILLION minimum open loop at dc; greater than unity at one megracycle; output, over ± 100 volts.
- COOL RUMMIMG:
tubes and resistors operate at a fraction of wattage ratings; capacitors operate generally below $1 / 2$ their voltage ratings.
- MIL STD PARTS: used exclusively.
- Eminentir
sEMSIBLE COST: Just \$185
FOR COMAETE IMFOMMATION WAITE

GEORGE A.

PHILBRICK

 RESEARCHES, INC.127 CLAALDNDON ST. DOETON IC. MASS.
 nipmerantativis in prumcipal citiea
 CIRCLE 209 ON PEADER-SEQVICE CADO CIECLE 209 ON READER-SERVICE CARD

POLYSKOP
ONE INTEGRATED SWEPT-FREQUENCY SYSTEM REPLACES FIVE UNITS

Frequency range 0.5 to $\mathbf{4 0 0} \mathrm{MC}$

Two Channel Frequency Response
Display For Two And Four Terminal
Network Measurements
The Polyskop provides an automatic display of the response a given quantity exhibits with a given quantity exhibits with a change in frequency, replacing tedious point-by-point measure-
ments with curves which render ments with curves which render
answer instantly. It relieves skilled personnel from routine work.

- Saves time and money
- Universal usefulness
- Dual-trace display on large screen
- Completely self-contained
- Delivery from stock

WRITE FOR E-PAGE POLYSKOP BROCHURE
ROHDE \& SCHWARZ

111 Lexington Ave., Passaic, N. J. PRescot 3 -8010

$$
\text { Accuracy is } 0.025 \%
$$

VRS-611, a fully transistorized voltage reference source, will generate voltages in $1-\mathrm{mv}$ steps to $\pm 11.112 \mathrm{v}$ at an accuracy of 0.025%. It will deliver 10 ma of current. Vernier provides continuous variation over 2 mv . Battery and ac units are made. The short-proof source has a polarity switch. Portable and rack-mounting configurations are available.

Epsco, Inc., Instruments Div., Dept. ED, 275 Massachusetts Ave., Cambridge, Mass. P\&A: $\$ 625$ ea; stock after March 20.

Laboratory Receiver

For L through K a bands

Model LR1723 laboratory receiver combines a wide-band if amplifier, a switch-type attenuator, and a power supply. It is designed for use with microwave-mixer preamplifiers. Power for the mixer units is available from a front panel connector. Control circuitry is included for mixerpreamplifiers having provision for external gain control. In conjunction with a standard mixerpreamplifier and a suitable local oscillator, the unit covers L through Ka bands.
LEL, Inc., Dept. ED, 75 Akron St., Copiague, N.Y.

Waveguide Windows

515

Are silver-plated

Flange-type waveguide pressure windows provide an air-tight seal within waveguide systems. Designed for use with EIA waveguide sizes WR42, WR-90, and WR-112, these units mount between two choke flanges. They are silver-plated to reduce rf loss.

Microwave Development Laboratories, Inc., Dept. ED, 92 Broad St., Babson Park 57, Wellesley, Mass.

KEARFOTT

 SYNCHRONOUS MOTORSHigh performance components, these motors find application in timing devices, recorders, or wherever constant speed is required independently of load or line voltage variations. Designed for 400 cps duty they feature homogeneous rotors and closed stator slots to eliminate magnetic pulsations and noise.

Stainless steel is used extensively in the construction of these precision motors to provide environmental protection from corrosion shock and vibration. These components will operate over the temperature range of $-54^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

SPECIFICATIONS

Size
5
8
8
11
15
18
23

Part Number
CJO 0172-002 M172.02 CM4 $0172-001$
R172.001 R172.001
T170-001 170-001 MK $6 \operatorname{Mod} 1$
21360.002

Speed 8000 rpm 8000 rpm 8000 rpm 8000 rpm 8000 rpm
8000 rpm 8000 rpm 8000 rpm 8000 rpm

Ne. Phases	Pull-Out Torque
2	0.10 in . oz.
2	0.28 in. oz.
3	0.31 in .02.
2	0.42 in .02.
2	0.78 in. oz.
	2.2 in. 02.
3	16.0 in. oz.

KEARFOTT DIVISION GENERAL PRECISION. INC.

[^7]

Shell a basket of assorted Duncan potentiometers and you'll find a similarity that's more than skin deep. Designs have been standardized to yield higher reliability, lower production costs. It's a garden fresh approach that's paying off at the market place. Check over the Duncan crop yourself. They're all in season now! Send for our new Spring Catalog.

Vine ripening above top to bottom
1.3/4. Model 3704: $1.3 / 4^{\circ} 1602$ and $1.7 / 16^{\circ}$ 1502. All feature diallyl pthalate housing to withstand shock

DUNCANELECTRONICS.INC 2865 FAIRVIEW ROAD - COSTA MESA, CALIFORNIA CIRCLE 212 ON READER-SERVICE CARD

Broadband Amplifier

The model HFW-8(A)-49100 broadband amplifier covers an octave range of frequencies from 490 to $1,000 \mathrm{mc}$. Synchronously tuned stages are used, with planar low-noise triodes as amplifiers. Gain is greater than 20 db ; noise figure is 10 db max. Input and output vswr is 1.75 . The unit is contained in a $19-\mathrm{in}$. rack-mounted chassis $5-1 / 4 \mathrm{in}$. high by $15-\mathrm{in}$. deep. A regulated anode and heater power supply are provided.

Applied Research Inc., Dept. ED, 76 S. Bayles Ave., Port Washington, N.Y.

Pulse Amplifier

Is liquid-cooled

The VA-126 pulse amplifier is designed for use in advanced, frequency-agile coherent radar systems. It is self-centering in its electromagnet. Characteristics are: bandwidth, 500 mc ; frequency coverage, 5.4 to 5.9 Gc ; power output, 3.3 mw peak, 6 kw avg; gain, 30 db ; weight, 75 lb ; dimensions, $33 \times 16 \times 16 \mathrm{in}$.
Varian Associates, Dept. ED, 611 Hansen Way, Palo Alto, Calif.

Rotary Joints

561
U-style, 4.25 to 10 Gc

U-style waveguide rotary joints are available in WR90 EIA waveguide sizes for operating ranges from 8.5 to 9.6 Gc , in WR112 sizes for ranges between 7 and 10 Gc , in WR137 size for

LATEST DATA ON

ULTRASONIC DELAY LINES!

THIS
NEW
CATALOG
gives you up-to-date specs on the industry's most complete line of ultrasonic delay lines for uitrasonic delay lines missiles, MII, radar countermeasures and Send for it today.

EFE

laboratory for electromics, inc.
Compuiar Preducts Division
1079 Comenwealth Avenve
CIRCLE 213 ON AEADER-SERVICE CARD ELECTRONIC DESIGN • May 10, 1961

$\mathrm{V}=$

A COMPLETE OSCILLOGRAPH LINE IN PRODUCTION \& FIELD PROVEN

MIDWESTERN'S direct recording line offers you a choice of models to meet your specific data recording needs. 19 different models in the 600 Series allow a combination of size, data channels, and many other functional features in a wide price range. These precision recorders, in production and field proven, are ready to meet your immediate data logging requirements whether they be in a complex research and development system, or for medical or educational uses, quality control, production, or environmental tests. Write Dept. ED

MIDWESTERN INSTRUMENTS

Micnowayes
5.4 to 5.9 Gc , and in WR187 for ranges between 4.25 and 6.0 Gc . There are 14 models, of aluminum or copper alloy, in a variety of finishes. There are several 30 -psig pressurized models.

Microwave Development Laboratories, Inc., Dept. ED, 92 Broad St., Babson Park 57, Wellesley, Mass.

Coaxial Termination

A $10-\mathrm{w}$ coaxial termination, the $\mathrm{T}-130$ is designed for operation from dc to 10 Gc . The vswr, with type N connectors, is 1.1 max from dc to $1 \mathrm{Gc}, 1.2$ max from 1 to 4 Gc , and 1.3 from 4 to 10 Gc . Power rating is $10-\mathrm{w}$ average and $10-\mathrm{kw}$ peak. Impedance is 50 ohms. Diameter is 1-1/2 in . and length is 3 in .

RLC Electronics, Inc., Dept. ED, 805 Mamaroneck Ave., Mamaroneck, N.Y.
Price: $\$ 125$ to 132.50 . Availability: 1-week delivery.

Amplifier Klystron

A high-power. high-gain cw amplifier klystron, the VA-853 is designed for multichannel, highquality communication service. It operates from standard 5-w exciter units. Electrical characteristics are: frequency, tunable, 0.755 to 0.985 Gc ; power output, 10 to 75 kw ; gain, 50 db ; weight, 200 lb .

Varian Associates, Dept. ED, 611 Hansen Way, Palo Alto, Calif.

IIN SIZES FOR EVERY APPLICATION

Now-from Kearfott, a new and broader line of Ferrite Isolators to satisfy the most exacting requirements of band width and isolation. Combining low unit loss characteristics with compactness and light weight, this new series of Kearfott Coaxial Isolators is available from present stock. Immediate selection and faster delivery is assured . . precision performance proven.

\left.| A FEW OF THE TYPICAL SPECIFICATIONS | | | | |
| :---: | :---: | :---: | :---: | :---: |
| MODEL | FREQUENCY | ISOLATION | INSERTION | |
| LOSS | | | | |$\right)$ VSWR.

Complete information on these or all of the models is available by directing inquiries to: 14844 Oxnard Street. Van Nuys, California, or the sales office in your area.

KEARFOTT DIVISION GENERAL PRECISION. INC.

Litlle Falls, New Jersey
sMES OFFICES SEATTLE, WASH. VAN MUYS, CALIF. PMOENIX, ARIZ. DATTON, OHIO CLIFTOM, N.J. PALO ALTO, CMLIF. SAN DIEGO, CALIF. DALLAS, TEX. CHICAGO, ILL. WASHIMGTON, DC. CIRCLE 215 ON READER-SERVICE CARD

Ledex

Hermetically Sealed Rotary Switch

BASIC INFORMATION

Hermetically Sealed Circuit Selectors and Stepping Switches contain an atmosphere of dry nitrogen which provides - permanent environment for the operation of the awitch. They are designed to meet MIL.E-S272A, and will withstand extreme moisture and high altitude conditions in military and industrial instal lations. Sealed Switches are available in various wire sizes for operation from 6 to 350 VDC. Self-contained plug-in types allow rapid field installation. More than 3000 standard designs are shown in Bulletin D. 460

Other Ledex products include Rotary

CIRCLE 216 ON READER-SERVICE CARD

Traveling Wave Tubes

Ranges are from 0.5 to 14 Gc

Traveling wave tube HA- 86 has a range of 0.5 to 1 Gc , a $7-\mathrm{db}$ max noise figure and $25 \mathrm{db} \min$ small-signal gain. Model HA-61 has a range of 7 to 14 Gc with 15 db max noise figure and 25 db min small signal gain. Four other models are also available.
Huggins Laboratories, Inc., Dept. ED, 999 E. Arques Ave., Sunnyvale, Calif.

X-Band Filters

Range is 7 to 10 Gc

These low-loss, tunable X-band filters, in frequency ranges from 7 to 10 Gc , have a single tuning control and are available with a counterdial and calibration chart or screwdriver adjustment. Drift is less than 3 cps per me per deg C. Insertion loss is under 2 db ; vswr is less than 1.5 at f_{0}. Bandwidth is 8 to 12 mc at the $3-\mathrm{db}$ points. Filters provide a minimum rejection of 38 db at $f_{0} \pm 60 \mathrm{mc}$.

Frequency Standards, Dept. ED, P. O. Box 504, Asbury Park, N.J.
Price: $\$ 350$ to $\$ 400$ ea.
Acailability: 2-week delivery.

High-Gain Tube

Frequency is 1.25 to 1.4 Gc
A grid-pulsed, high-gain tube, the VA-133 can be used as an element driver in phased-array radars. Deviations from phase linearity are kept to a minimum. Gain over 10% bandwidth is ± 0.25 db. Electrical characteristics are: frequency, 1.25 to 1.4 Gc ; bandwidth, 150 mc ; power output, peak, 5 kw ; gain, 50 db .

Varian Associates, Dept. ED, 611 Hansen Way, Palo Alto, Calif.

ALL Your Needs in Laminated Plastic Tubes

An Example of

Synthane You－shaped Versatility
At Synthane we have the versatility to give you just about everything you want in lami－ nated plastic tubing or parts．Over 25 stand－ ard grades including those complying with governmental specifications．Sizes ${ }^{3 / 3} 2^{\prime \prime}$ ID up to $261 / 4^{\prime \prime}$ OI）．Lengths $18^{\prime \prime}$ to $96^{\prime \prime}$ ．Wide range of wall thicknesses．Selection of colors and finishes．Molded and rolled tubing．Variety of cross sections－round，oval，square，polyg－ onal，etc．Our excellent fabrication facilities provide you with finished parts to your specifications．
You－shaped Versatility makes Symthare a Betler Buy in Laminalea

ーーーーーーーーーーーーーーーー
Synthane Corporation， 42 River Road，Oaks，Pa． Gentlemen：
Plesse send me information about Synthane as a source for laminated plastic tubes and parts fabricated from tubes．

Name
Address．
Cry
 CIRCIE 217 ON ReADER－SERIICE CARO ELECTRONIC DESIGN • May 10， 1961

Sensitivity－Noise Figure Nomograms Aid Receiver Calculations

Nomogram for receiver with equivalent noise resistance of 50 ohms

Gilmer S．Pittard，Jr．
Professional Engineer
W．Hyattsville，Md．

R
ECEIVER designers often have to consider sensitivity requirements for a desired output signal plus noise to noise（ $[S+N] / N$ ）ratio． With the nomograms given here this caloulation can be made rapidly and easily．They are based on the equations relating noise figure，F ，and sen－ sitivity，E_{8} ．

Sensitivity in microvolts is given by

$$
\begin{equation*}
E_{*}=\sqrt{\left(\frac{S+N}{N}-1\right) R F K T B} \text { in volis } \tag{1}
\end{equation*}
$$

With T taken at $290 \mathrm{~K}(63 \mathrm{~F})$ and K a constant at 1.38×10^{-23} ：
$E_{s}=6.32 \times 10^{-5} \sqrt{\left(\frac{S+N}{N}-1\right) R F B} \mu_{\mathrm{v}}$（2）
（continued on p208

where B is the effective receiver bandwidth in cycles and
R is the equivalent receiver noise resistance If it is desired to convert from sensitivity to noise figure we can solve Eq. 2 for F:

$$
\begin{equation*}
F=\frac{E_{0}{ }^{2}}{6.32 \times 10^{-6} R B\left(\frac{S+N}{N}-1\right)} \tag{3}
\end{equation*}
$$

Two nomograms have been prepared to solve Eq. 3 for $R=50$ ohms and $R=75$ ohms, two very common values.
In preparing the nomograms Eq. 3 was rewritten as

$$
\begin{equation*}
F=C\left[\frac{S+N}{N}-1\right] \tag{3a}
\end{equation*}
$$

where

$$
\begin{equation*}
C=E_{s^{2}} / 6.32 \times 10^{-5} R B \tag{3b}
\end{equation*}
$$

The equation for C was plotted on the nomogram with C as the horizontal axis. The equation
for F was then plotted, using the same C scale. Since C is of no direct use, the horizontal axis was not calibrated.
To use the nomograms, start on the vertical axis for noise figure (or noise factor) and draw a horizontal line to the desired $(S+N) / N$ ratio. From that intersection draw a vertical line to the bandwidth and finish by drawing another horizontal line to the sensitivity axis.

If sensitivity is known and the equivalent noise figure is desired the above procedure can be repeated in reverse order.

It is necessary to use either the noise figure or noise factor with $(S+N) / N$ ratio and sensitivity with bandwidth.
Example. If you have a 50 -ohm receiver with a noise figure of 8 (or a noise factor of 9 db) and a 10-ke bandwidth, what sensitivity is required to give an $(S+N) / N$ ratio of 10 db ? This example is shown in dotted lines on the 50 -ohm nomogram and gives a sensitivity of $0.379 \mu \mathrm{v}$. * *

YOU'LL DO THIS...

with American Aluminum

 Quality ... Dependability ... Service!And when it comes to quality and dependable senvice . . everyone at American Aluminum gets in the act. The minute you call American Aluminum, all members of our family concentrate on giving you the aluminum products that serve your specific needs. From the design to the finished product, all under one roof, you can depend on American Aluminum for quality and service . . . when you need it!

SPECIULISTS IN CONTRACT MANUFACTURIME

 OF ALUMINUM FOR THE ELECTRONICS InDUSTRYComplete fabricating facilities for Deep Drawing, Heat Treating, Spinnings, Assembly, Brake Work, Stampings, Anodizing, Welding, Finishing. Complete die making facilitios
stock ©ros on hand for many shopes completo inspection facilitios

Send for brochure "ALUMINUM FABRICATING FOR INDUSTRY

AMERICAN ALUMIINUM COMPANY

Manufacturers of Aluminum products
shaffiold street, Mountainsice, New Jorsey CIRCLE 218 ON READER-SERVICE CARD ELECTRONIC DESIGN • May 10, 1961

NEW LITERATURE

Thermocouples and Pressure Probes 261

Complete specifications, details and prices on thermocouples, pressure probes and allied components are given in a 60 -page catalog. The stock line of industrial components is made to aircraft quality and sold at competitive prices. Advanced Dynamics Inc., 16331 Rockside Road, Cleveland 37, Ohio.

Black Glass

Information on a special black glass for encapsulating diodes is given in an eight-page brochure. Available as beads or cases, the glass is said to protect diodes sensitive to visible and IR wavelengths. Transmittance and other properties are detailed in a chart and a table. Sizes, sealing techniques, and recommended applications are included. Write on company letterhead to Corning Glass Works, Receiver Bulb Sales Dept., Dept. ED. Corning, N.Y.

Algebraic Language

Based on the Algol international algebraic language system, Algo is used in programing the G-15 general purpose digital computer. A 32 page manual gives procedures for the representation of numerical data and control statements. A complete typical program is included. Bendix Corp., Computer 1)iv., 56.30 Arbor Vitae St., Los Angeles 45. Calif.

Beam-X Switch

Illustrated brochure BX-535, 24 pages, covers theory of operation, circuit design information and characteristic curves of the Beam-X switch. Applications include counting, coding, distributing, converting, multiplexing, switching and sampling. A maintenance and trouble-shooting section and a glossary are included. Burroughs Corp., Electronic Tube Div., Plainfield, N.J.

Clamps and Couplings

Industrial band clamps, couplings, hose clamps, flanges and V-band joints for all applications are described in a 44 -page catalog, No. 803. Products include band clamps for automotive uses, identification tag clamps, pipe repair, joining. and sealing clamps, and V -band couplings and flanges. Design information and dimensional and operating diagrams are given. Aeroquip Corp., Marman Div., 11214 Exposition Blvd., Los Angeles 64, Calif.

Electronic Controls

265
The Electrionic Handbook, 24 pages, covers the application of electronic and electric controls in commercial and industrial air-conditioning installations. It explains the theory of electronic and electric control and makes comparisons between electronic and pneumatic controls. The information in this illustrated booklet is directed to heating, ventilating and air-conditioning applications. Barber-Colman Co., 1300 Rock St., Rockford, Ill.

Microwave Anechoic Chambers

266
Eccosorb microwave anechoic chambers are described in this 32 -page brochure. The box type. the transverse baffle type, the aperture type and the longitudinal baffle type are illustrated. Typical specifications, diagrams and performance curves are given. Emerson \& Cuming, Inc., Canton, Mass.

Electronic Components

267
More than 4,000 standard electronic component parts are listed, with buying and engineering information, in a 60 -page catalog. Detailed schematic illustrations and technical data are given. The electrical ratings of most plugs, jacks and other connectors are included. Herman H. Smith Inc., 23:26 Nostrand Ave., Brooklyn 10, N.Y.

Silicone Products

A complete discussion of silicone properties and applications for the aerospace industry is given in a 16-page reference guide, "Silicones for the Spage Age." Photos, charts and data on silicone rubber for insulation and potting, silicone varnishes and dielectric fluids are included in brochure CDS-276. General Electric Co., Silicone Products Dept., Waterford, N.Y.

Standards and Guides

269
Standards, reports, and guides of the EIA are listed with price and ordering information in bulletin No. 61-127(19). Included are engineering standards for mobile communications systems, phonograph stylus tips, and tube rating systems; two reports on maintainability of electronic equipment, and a guide to procurement of electron tubes. Electronic Industries Association, Engineering Dept., Room 2260, 11 W. 42nd St., New York 36, N.Y.

Radiation Effects

270
Bulletin ETD 2564, entitled "Minimizing the Effects of Nuclear Radiation on Electronic Equipment," reviews known effects of pulse and steady-state radiation on various types of circuits and components, and presents comparative data showing that thermionic integrated micromodule circuits are least susceptible to damage or temporary malfunction. General Electric Receiving Tube Dept., Owensboro, Ky.

Planar Semiconductors

271
Planar transistors and diodes are described in a 12-page brochure. Manufacturing processes and advantages over standard techniques are discussed. Performance and specifications of six transistors and three diodes are given. Fairchild Semiconductor Corp., 545 Whisman Road, Mountain View, Calif.

Antennas and Accessories

Specifications for antennas and accessories for frequency ranges between 25 and 470 mc are given in a 16 -page booklet. Vertical and horizontal ground plane antennas are described along with Yagi arrays of three to 14 elements. Also included are antennas for WWV reception at 5, 10,15 and 20 mc . Mosley Electronics, Inc., 4610 N. Lindbergh Blvd., Bridgeton, Mo.

Oscilloscope Accessories

273
Plug-in units for oscilloscopes are described in a 32-page booklet. Complete specifications and performance characteristics of the 16 units are given, with waveform patterns and other illustrative material for various measurement applications. Prices are included. Tektronix, Inc., Advertising Dept., P. O. Box 500, Beaverton, Ore.

Welding Mefallurgy

Ferrous and nonferrous welding metallurgy is described in this 129-page, pocket-size booklet. Illustrations, tables and diagrams are given. Reprinted from the Welding Handbook, the material covers temperature changes in welding, structure and mechanical properties of metals, and weldability of various steel, nickel, copper aluminum, magnesium, and titanium alloys. A bibliography is included. Send $\$ 2$ to American Welding Society, Dept. ED, 33 W. 39th St., New York 18, N.Y.

A rocket shot off into space
And soared with commendable grace its bird-like ascent
Could only have meant
An Electro-Mec Pot was in place!

Division of WALTHAM Precision Instrument Company, Ine.
47.51 33RD STREET, LONG ISLAND CITY I, N. Y

CIRCLE 219 ON READER-SERVICE CARD

NEW LITERATURE

Magnetic Latching Relays

276
Bulletin No. BR-594, two pages, describes series BR-9 magnetic latching relays for aerospace and undersea applications. Electrical and mechanical data and illustrations of standard mounting configurations are given. Babcock Relays, Inc., 1640 Babcock Ave., Costa Mesa, Calif.

Variable Resistor

277
Dimensional drawings and electrical and mechanical specifications on the firm's $3 / 4-w$, style RV 6 variable resistor are given in this one-page data sheet. It exceeds MIL-R-94B and has a unique carbon-ceramic resistance element. Chicago Telephone Supply Corp., Elkhart, Ind.

Mass Spectromefer

278
Illustrated bulletin 21110, eight pages, gives the specifications and applications
of type 21-110 mass spectrometer. It can be used as a standard analytical tool for laboratories conducting advanced-materials research. Consolidated Electrodynamics Corp., 360 Sierra Madre Villa, Pasadena, Calif.

Direct-Writing Recorders

This illustrated brochure, four pages, describes the Mark II portable directwriting recorders. It discusses the choice of ink or electric writing for specific applications. Operating data and a diagram of an adapter for rack mounting is given. Clevite Corp., Brush Instruments Div., 37th \& Perkins, Cleveland 14, Ohio.

Ignitron Excitation Circuits

Bulletin PT-50, 16 pages, details typical ignitron excitation circuits which assure accurate and reliable firing. Schematics, graphs and charts are included to illustrate the technical data. General Electric Co., Schenectady 5, X.Y

[^8]
Electronic Digital Volfmeter

Bulletin 44-1, sis pages, describes model 444 all-electronic digital voltmeter for high-speed measuring and data logging applications. Features, drawings and technical information on digital output data, specifications, applications and operating information are given. NonLinear Systems, Inc., Idel Mar, Calif.

Switching Diodes

Bulletin No. 210.5, 12 pages, gives the characteristics of series 1 N 690 and 1 N920 high-current switching diodes. The diodes are compared as to current characteristics, recovery time, diode capacitance and power rating. Typical performance curves are included. Sperry Rand Corp., Sperry Semiconductor Div., Norwalk, Conn.

Oscilloscope

Eight pages of application notes and four pages of accessory description for model 185. A oscilloscope are given. Ap-
plication notes Nos. 44A and 44B describe methods of synchronizing highfrequency oscilloscopes, and pulse and waveform analysis with the 185A. The unit is for circuit and component testing. Hewlett-Packard Co., 1501 Page Mill Road, Palo Alto, Calif.

Direct-Writing Recorders

284
The design, principles and applications of direct-writing recorders are discussed in this 12 -page bulletin, No. 5601 The firm's Dynograph recorder is considered in particular, and block diagrams accompany the description of its operation. Offner Electronics, Inc., 3900 River Road, Schiller Park, Ill.

Valve Data

285
A quick reference brochure, Abridged Valve Data, 38 pages, gives brief informations for all this company's electronic tubes up to the time of going to press English Electric Valve Co., Ltd. Chelmsford, England.

the lacing tape with a NON-SKID tread

You can't see it, but it's there! Gudelace is built to grip-Gudebrod fills flat braided nylon with just the right amount of wax to produce a non-skid surface. Gudelace construction means no slips-so no tight pulls to cause strangulation and cold flow.
But Gudelace is soft and flat-stress is distributed evenly over the full width of the tape. No worry about cut thru or harshness to injure insulation . . . or fingers.
Specify Gudelace for real economy-faster lacing with fewer rejects.

Write for free Data Book. It shows how Gudelace and other Gudebrod lacing materials fit your requirements.

GUDEBROD BROS. SILK CO., INC.

electronics division

225 Worl 344 h Stroel
Now York 1, Now York
executive offices
12 south 12 h Strout Philadolphim 7, Pa.

FREE! the Catalog that haw wougthing in

ELECTRONICS for
 INDUSTRY, DEFENSE, BROADCAST

Semi-Conductor Headquarters Quantity Prices Competitive with Manufacturers
Texas Instruments - Hughes Philco General Electric - International Bendix - Sylvania - Sarkes Jarzian - Hoffman - I.T.e.T. RCA Motorala - Raytheon Ohmite CBS Electranics - Westinghous

Newark stocks and distributes over 450 top lines covering every phase of electronics! Semi-Conducters - Connecters Relays * Switches * Industrial Tubes - Test Equipment Transformers - Controls Resistors - Meters - Capacitors - Pilat Light Assemblies

* COMPETITIVE FACTORY PRICES \star COMPLETE ON-HAND STOCK * IMMEDIATE DELIVERY

Your One.Point Source for All Your Electronic Needs

I
 ELECTRONICS CORPORATION
223 W. Madison St., Chicago 6, Illinois 4747 W. Cenfury Blvd., Inglewood, California CIRCLE 225 ON READER-SERVICE CARD
Dept. ED-5

NEW LITERATURE

High-Ratio Frequency

Bulletin A-2024, four pages, describes high-ratio frequency comparisons using roulette patterns on the crt of types 502, 503 and 536 oscilloscopes. Circuitry for displaying roulette patterns, schematic diagrams and waveforms for various frequency ratios are given. Tektronix, Inc., P.O. Box 500 , Beaverton, Ore.

Computing System

287
Bulletin QC-020-R110 describes the firm's model G-20 high-speed computing system. Basic, medium and large systems and recent improvements are included in the brochure. Bendix Corp., Bendix Computer Div., 5630 Arbor Vitae, Los Angeles 45, Calif.

Data Acquisition Components 288
Applications, features and specifications of four products essential to data acquisition systems are listed in this
eight-page bulletin. No. SCE-I. A differential widehand-de amplifier, a Aloating wideband amplifier, a widehand-impedance converter, and a differential isollator are described. Computer Engincering Associates, Inc., 350 N. Halstead, Pasadena, Calif.

Nuclear Instruments

289
Nuclear instruments and systems. designed to perform analyzing or counting functions, are described in this 40-page catalog. It includes specifications and applications of both instruments and systems. Hamner Electronics Co., Inc., Box 531. Princeton, N.J.

Measuring Techniques

290
Application Note No. 50, fonir pages, illustrates the equipment setup and describes measuring tecthniques for obtaining accuracies of 1 in $10^{\prime \prime}$, or higher, in one hour using vif standard broaklcasts. Hewlett-Packard Co., 1501 Page Mill Road, Palo Alto, Calif.

wide-range REGATRON ${ }^{\star}$ POWER SUPPLIES

...for

laborafories with varied requirements

Wide-range REGATRON Laboratorv Power Supplies: available in $0.300,600$, or 1000 volts dc continuously variable, $0.500,600$ 1000, or 1.500 ma . . . load regula tion to 0.01% or 0.05 V , negligi ble ripple . . . also 6.3 V ac and regulated de bias outputs. For all the reasons why leading laboratories prefer REGATRONS send for Bulletin 422.

Model 2198 (piclured above)
Main output: 0 to 600 V dc, 0 to 1000 ma .
Load regulation: 0.01% or 0.05 V Ripple: 0.0005 V
Also regulated $0-150 \mathrm{~V}$ de bias supply and 6.3 V ac CT output ten-turn control, calibrated dial with 3 volt vernier, modulation Eatontown, N. J

ELECTRONIC

MEASUREMENTS
COMPANV. INCORPORATED
Telephone: Llberty 2.0300
TWX: EAT 984

CIRCLE 226 ON READER-SERVICE CARD
Unique Printed Stripline Circuitry
Micromega Varactor Multiplier
Mrtromega's Model FM 6 high efficiency, high power
varactor multiplier is unique in its use of printed steip
tiansmission line resonators at the low frequency of 150 mc FM 6 is 10 be used for tracking deep space
prebes at the Goldstone Tracking Station of Jet Pro probes at the Goldstone Tracking Station of Jet Pro
pulsion Laboratory
ISitie for information on solid state microwave devices
 or Bulletion

- Registered

Magnetic Transducer Pickups

This booklet, No. CPM-50, describes the operation of magnetic transducer pickups for mechanical-electrical conversion without power supplies. A chart data on physical size, electrical output, temperature range and mating connectors of models available. Typical output curves and block diagrams are included. Electro Products Laboratories, 4501 N . Ravensword Ave., Chicago 40, Ill.

Variable Resistors

Specifications on six types of model 7 linear motion variable resistors are contained in bulletin 42-1051, four pages. It contains dimensional drawings of encapsulated and nonencapsulated types. Glohe-Union, Inc., Centralab Div., 900 E. Keefe Ave., Milwaukee 1, Wis.

Thermion

293
Brochure No. 7-8-9, four pages, describes the Thermion's use in determining thermal reliability for vacuum tubes.

Operational characteristics are given. The Thermion is a device that measures the thermal environments encountered by vacuum tubes. A tube equivalence chart is included. Rescon Electronics Corp., 151 Bear Hill Road, Waltham 54, Mass.

Wire Products

294
Catalog 109, 40 pages, contains industrial listings of wire and wire products for the electrical and electronics industries. Illustrations and technical information describe in detail the entire line. Columbia Wire and Supply Co., 2580 W. Irving Park Road, Chicago 18, 111 .

Socket Adapters

Catalog AS-1, 12 pages, contains descriptions of 42 different varieties of socket adapters for the testing of solder terminal components such as relays and transformers. Electronic Engineering Co of Calif. 1601 E. Chestnut Ave., Santa Ana, Calif

121 SOUTH COLUMBUS AVENUE, MOUNT VERNON, N.Y.
CIRCLE 229 ON READER-SERVICE CARD

for fast, expert electronic supply at factory prices

"ALLIED
Conductors

Always refer to your

Mo moze complote alestrenice
supply

TAylor 9-9100
 TWX: CG-2898

ALLIED RADIO

100 N. WESTERN AVE., CHICAOO 80, ILL

One Order to Allied Fills the Whole Bill

ALL Digits Can Be Read from Any Angle IN-LINE IBTILL READOUT
OREPLANE
PRESNTATION
 front, visible from any angle. Vision is unimpaired by stacked characters and sharp, clear-white digits
provide high-contrast, error-proof reading. Use of words, color, and multiple projections offer utmost versatility

WRITE TODAY
WRITE TODAY FOR COMPLETE SPECIFICATIONS

Binary-To-Decimal Representatives (FRF INDUSTRIAL ELECTRONIC ENOINERRS, INC. Principal citles

CIRCLE 231 ON READER-SERVICE CARD

> Rack mounted 32 VOLT DC POWER SUPPLY \$265

> 16\% regulation: no load to full load

WHY PAY \$250-\$650 MORE

for regulation you DON'T need!
The Electro Model NFBR with its 16% regulation is absolutely adequate in most applications. Where super regulation is not required, you're money ahead when you buy the Electro NFBR.

Accidental "Short" Protection . . . Heinemann circuit breaker
safeguards equipment and NFBR.
Continuously Variable Outpus . . . $0-32$ volts to 15 amperes,
$0-40$ volts to 3 amperes.
Low Ripple. . . less than $3 / 4 \%$ at top load.
High Performance . . . Silicon rectifiers increase efficiency.
Good Internal Impedance . . . 0.5 ohms at 32 volts.
NFBR operates electronic equipment, radios, missiles, aircraft, other low voltage devices. NFB without rack ... $\$ 235$ net.

Electo
LEGPRO PROOUCPS LABORATORIES QSOI-U Rovenswood, Chisage 40, III., LOngbeoch 1.1707

CIRCLE 232 ON READER-SERVICE CARD

NEW LITERATURE

Time Delays and Relays
296
Catalog No. 860 describes the firm's line of balanced rotary-armature relays, electronic time delays, constant pull-in relays, solid-state modules, voltage sensors and special products. Environmental characteristics, electrical specifications and diagrams, and drawings are given. Hi-G, Inc., Bradley Field, Windsor Locks, Conn.

Bistable Amplifier

297
Bulletin CS60-3, four pages, gives specifications and design data for the firm's ultra-sensitive bistable amplifier. Applications include detection of reverse current and over current in dc powersupply systems. Tables, charts and graphs are included. Norbatrol Electronics Corp., 356 Collins Ave., Pittsburgh 6, Pa .

Digital Instruments

298
Bulletin No. 481-1, 12 pages, gives 17 applications of the NLS-481 digital volt-
meter and the NLS-781 digital olmmeter. Features, wiring diagrams and conversion to ac and low-level de measurements for the 481 are given. Specifications and operation information on both instruments are included. NonLinear Systems, Inc., Del Mar, Calif.

Semiconductor Circuits

299
Selected semiconductor circuits, using precision-etch process transistors are shown in Application Notes No. 38004, 11 pages. The circuits described provide a reference of contemporary circuits suitable for military and industrial clectronic equipment. Sprague Electric Co., North Adams, Mass.

Angular Accelerometers
Features, applications and specifications for angular accelerometers are included in this six-page brochure. The units described are for control and measurement of missile and aircraft flight dynamics, structural analysis of in-

duced angular acceleration, monitor and control of servo systems and closing the loop in inertial guidance systems. Donner Scientific Co., Concord, Calif.

Ferrule-Terminal Resistors

Bulletin No. 7350, 12 pages, describes and illustrates the F, NIF- and SIFseries glass-jacketed power-wirewound resistors. Ratings on standard, non-inductive, and super non-inductive winding designs are given. Dimensional diagrams, characteristics and applications are included. Sprague Electric Co., North Adams, Mass.

Traveling-Wave Tubes

302
This catalog lists over 85 travelingwave tubes covering the vhf through Ku-bands. Included are low-noise amplifiers, solenoid, ppm and electrostatically focused forward-wave amplifiers, volt-age-tuned backward-wave amplifiers and oscillators and special-purpose tubes.

Characteristics and application data are given. Huggins Laboratories, Inc., 999 E. Arques Ave., Sunnyvale, Calif.

Transistorized Power Supply 303
This two-page bulletin gives performance characteristics for model HC40-50 transistorized power supply. The unit is for powering computing equipment where low ripple, close regulation, freedom from transients and fast response are important. Specifications, price and delivery information is included. MidEastern Electronics, Inc., 32 Commerce St., Springfield, N.J.

Magnetic Reed Switches

304
This six-page bulletin describes models DRG-1 and DRS-5 magnetic reed switches. It contains charts and diagrams on actuation methods and mechanism, test charts for life expectancy, the method of code identification, and a permanent magnet chart. Specifications are given. Hamlin, Inc., Lake and Grove Sts., Lake Mills, Wis.

... for Perfect
lead-to-pin joints on All sizes of A / N and similar connections
(6asisco) GLO-MELT . . . for Fast-Efficient Accurate-Permanent connections.

POWER UNITS - HANDPIECES - ACCESSORIES for all jobs from Micro-Miniafure to Heavy-Current connectors

CIRCLE 234 ON READER-SERVICE CARD
ELECTRONIC DESIGN • May 10, 1961

Kulka

STUD AND TURRET TERMINAL BLOCKS

FOR WIRING CONVENIENCE

For faster, better, and more appropriate terminations, Kulka offers all their popular terminal blocks with your choice of terminal. Now you can choose from regular screwtype, solder-turret, feed-through, threaded stud, or any combination of terminals to best suit your specific require-
WRITE FOR COMPLETE DETAILS electro-tinned, silver-plated or even gold-plated over silver. Kulka maintains complete design and consultation services to aid customers in the proper terminal selection. Send us our requirements, or your requirements, or..

KULKA ELECTRIC CORP.
 CIRCLE 235 ON READER-SERVICE CARD

FAST ECONOMICAL SERVICE ON

BERYLLIUM COPPER MOChIIIE prodJCS
sCTEW MIS shot rill

Our modern plant and facilities for turning, grinding, milling, drilling, threading, heat-treating and electroplating are available for small or large volume. Simple or intricate, flanged or tapered designs from .020 to 1.00° diameters. Send drawings Consult and specifications for quotations.
 and sample

INSTRUMENT SPECIALTIES
 CO • INC
270 Bergon Boulovard
Little Falls, Now Jersey Telephone: CLifford 6.3500

"No Tubes, No Transistors in Hi-Fi AmplifierJust Diodes"

A
TTENDEES at Dr. William Shockley's lecture on four-layer diodes, given recently at the Eighth Annual Cleveland Electronics Conference, were treated to a demonstration of music played through an amplifier devoid of tubes or transistors-diodes were the only active elements. Response of the amplifier extended from dc to over 15 kc , with average audio power about 2 w . The improved version of the amplifier, shown in Fig. 1. delivers about $10-\mathrm{w}$ average audio power into a speaker or resistive load.

Pulse-Width Modulator

Activates Flip-Flop Outpur

In basic principle the device consists of two sections-a pulse-width modulator operating from the input signal, and a bistable multivibrator or Hip-flop producing a square wave which will vary in symmetry in accordance with the applied signal. A transducer such as a loudspeaker can be used to sense changes in symmetry and thus reproduce the original signal.
Fig. 1 shows a modulator which operates at 37.5 kc . more than double the highest audio fre-
quency to be amplified. The modulator consists of a relaxation oscillator using a four-layer Shockley diode switch which fires at 40 v . When this device fires, it discharges capacitor C_{1} through resistor R_{2}, producing a $40-\mathrm{v}$ negative pulse; a sawtooth waveform is produced at B the top of $C_{1}-D_{1}$ (see Fig. 3).

The second section of the modulator is another Shockley four-layer semiconductor relavation oscillator operating at 37.5 kc with this oscillator operating from a negative supply voltage to produce a negative going sawtooth waveform at the top of $C_{3}-D_{2}$.

A voltage divider, consisting of R_{3} and R_{4}, allows a small portion of the positive going sawtooth which appears at the top of $C_{1}-D_{1}$ to be applied to the bottom of D_{2}; thus D_{2} fires when the combined negative and positive sawtooth signals reach a difference potential equal to the firing voltage of D_{2} (in this case 50 v). When D_{2} fires, it discharges C_{3} through \boldsymbol{R}_{7} producing a negative pulse of approximately 40 s .

The two relaxation oscillators operate in synchronism because of their interconnection and the
phase relation between these oscillators is affected by the sawtooth slope as well as the firing voltage of each diode. A small ac signal applied as shown changes the firing point of D_{1} and thus phase modulates the pulses from D_{1} and D_{2}. Symmetry is adjusted with \boldsymbol{R}_{3} or \boldsymbol{R}_{6}.

The output stage is a bistable multivibrator consisting of two Shockley switching devices and is switched from side to side with the pulses supplied by the two relaxation oscillators. When no modulation is present, the speaker sees a square wave of 37.5 kc and a net audio signal of zero. As the symmetry is varied from side to side with an audio input signal, the transducer sees one diode conducting for a longer time than the other one; thus the transducer sees an audio component in the form of a zero-line shift.

Up to Several Kw Possible

Af Efficiencies Up to 100%
Since Shockley switching diodes are available with switching voltages ranging from 20 to 200 v and currents from 50 ma to 5 amp , it is possible to match almost any load from 2 ohms to 30,000

Fig. 2. Breadboard model of the diode amplifier.

Fig. 1. The diode-equipped amplifier shown delivers approximately la-w average oudio power to o speaker load.

SYLVANIA LIGHTING-DESIGNED FOR DESIGN ENGINEERS

Fig. 3. Woveforms at various sections of the pulsewidth modulator and output flip-flop.
ohms without the use of an output transformer. Power input from one watt to several kilowatts is practical with various loads, and peak power efficiency approaching 100 per cent could result from careful design.
The modulator stage shown in Fig. 1 requires between 1- to $2-\mathrm{v}$ rms audio signal for full modulation and this input signal may be injected in either low or high impedance points in the circuit; very high impedance is seen, for instance, between the point of R_{3} and R_{4} and diode D_{2}. The sensitivity of the modulator may be changed by altering the ratio of R_{3} to R_{4}; a smaller sawtooth injected into D_{2} produces greater sensitivity, but problems of noise and instability will result from too much reduction in the sawtooth amplitude. Power gains in the order of $10^{\prime \prime}$ to 10^{*} are possible with modulator sensitivity unaltered by output power level.
Practical applications of the amplifier might include high-power public address systems, transmitter modulators, servo systems, instrumentation amplifiers, vibration table exciters, sonar, electric organ amplifiers, and high-fidelity and phonograph amplifiers.

Michael J. Cudahy, Cozzens and Cudahy, Skokie, IU.

New Panelescent
 lamp by Sylvania

puts a dramatic idea in appliance design

Now you can design exciting new sales appeal into almost any appliance with Panelescent ${ }^{3}$ (electroluminescent) lamps.
For example, in the control panel of a room air conditioner. This startling new form of light glows beautifully in the dark, makes a control panel clearly visible in dim rooms or during the night.
Not a bulb, not a tube, but a sheet of metal with an electrified coating, the Panelescent lamp is virtually indestructible, gives off no heat, either. Installation by mass assembly is simple. No sockets,
bulbs, fragile parts, or complicated assemblies. Panelescent lamps use a minute amount of current, glow for years without ever needing to be switched on or off.
See your Sylvania representative for more information about how Panelescent lamps can be used to improve a new product you're planning. Or write now to Special Products Division, Sylvania Electric Products Inc., 60 Boston St., Salem, Mass.
With 6000 different kinds of lamps
SVLVANIA LIGHTS THE WAY

SUBSIDIARY OF

GENERAL TELEPHONE \& ELECTRONICS
CIRCLE 237 ON READER-SERVICE CARD

Twelve Capacitor Indut Diode Clamps (Actual Size)

An example of Intermountain Solid State Circuit design capability.

HIGH RELIABILITY SOLID STATE PRINTED CIRCUIT CARDS

CURTISS-WRIGHT

 corporation Electronics Division Inter Mountain Branch5400 Acoma Rood, S. E. P.O. Box 8324
Albuquerque, New Mexico
Tolophone, Amherst B-2474

For circuits, instruments and systems . . . the Intermountain Branch of the Curtiss-Wright Electronics Division will utilize its highly developed solid state circuit design techniques to design and process Standard or High Density Miniaturized Solid State Printed Circuit Cards, comparable to the high quality units shown above. Proven reliable in operational Intermountain instruments and systems, these precision built Solid State printed circuit cards can be tailored to your specifications and requirements - meet exacting standards of quality, reliability and performance over a wide range of operating conditions. Write today for information or a quotation on your Solid State Printed Circuit requirements.
CIRCLE 230 ON READER-SERVICE CARD

DESIGN DECISIONS

Painted Checks and Stripes Help Cool Explorer VIII

A novel application of protective coloration helps keep the instrumentation in Explorer VIII within a temperature range of 0 to 50 C . Almost 1,400 squares of red, iron-oxide, silicone paint cover 347 sq in . of the satellite's skin while strips and patches of silver paint cover an additional 610 sq in. Together, these paints cover 38 per cent of the satellite's sandblasted aluminum surface.
The red, an insulating paint, is highly resistive to ultraviolet radiation. Though the silver, a conductive paint, is not as effective thermally as the red, it was used to keep the satellite's skin as conductive as possible to minimize its effect on the ionosphere.

The effects of the exterior paints, which were sprayed on through masks, were supplemented by the use of a white silicone paint on the interior of the satellite's skin.
This application of paint as a thermal-design element was developed at the Marchal Space Flight Center of NASA in Huntsville, Ala.

Squares of red and stripes and patches of silver paint help keep instruments in Explorer VIII comfortably cool.

Half-Disk Mounted Circuits Save Space, Provide Access

An unusual packaging configuration saves space and maximizes circuit access in a Ber-noulli-Disk recorder designed for satellite instrumentation. Manufactured by Laboratory for Electronics, Inc., the BD-48A includes 14 halfdisks on which almost all the circuitry is mounted.

Each half-disk can be swung through a wide
ELECTRONIC DESIGN • May 10, 1961

Swing-ouf half-disks provide occess to circuitry in compact, magnetic-disk recorder for satellite instrumentation.
arc to give access to any mounted component. In operation, the half-disks are anchored in place by rods which slide down through sleeves on the outer edges of the cards. The centers of the cards are supported on slits on the center column.
The rotating, flexible, magnetic disk on which information is recorded is in the lower part of the housing shown in the photo.

High Speed Rotary Switch Uses Rotating Magnet To Close Reeds

A new rotary switch uses a novel but simple technique to provide high-speed operation with very long life. Switch decks consist of rings of 24, gold-plated, reed contacts, hermetically sealed in nitrogen. These contacts, completely isolated from each other, are closed in sequence by the rotation of a permanent magnet.
The magnet can be driven by a rotary solenoid as in the accompanying photograph, or it can be driven by a small motor for commutator applications. When motor driven, the switch can be operated at $6,000 \mathrm{pm}$. The manufacturer, Hathaway Instruments, Inc. of Denver, rates the contacts to pass 100 ma for 10 million operations. The reeds can close in 0.1 msec .

Rings of reed confacts surround solenoid-driven permanent magnet in high-speed rotary switch. The cover has been removed from the deck at the right to expose the glass-enclosed reed contacts.

"NEW TWIST" ADDED TO SELF-CHECK RATE OF TURN GYRO

In the new Rate of Turn Gyroscope, Model JRS Series, self-check determinations go beyond the usual wheel speed performance test. Now a gimbal operation check has been added.
When a signal is initiated from the control panel, a torquer within the gyro twists the gimbal. The resulting pickoff signal, identical to that caused by an actual rate of turn, verifies the gyro's state of readiness. With this exclusive feature added to the self-check tests, the Model JRS provides a more complete performance report than conventional self-check gyros. Manual "press-to-test" can be eliminated by programming an automatic integrity check into the countdown sequence.

This new Honeywell Rate of Turn Gyro is a proven reliable instrument designed expressly for flight control and instrumentation in missiles and aircraft where severe ambient conditions prevail. Viscous damping is temperature compensated to maintain virtually constant damping ratio over the entire operating range of $-65^{\circ} \mathrm{F}$ to $+160^{\circ} \mathrm{F}$.
Honeywell inertial components and engineering experience are available to assist in the solution of your gyro problems. Write for Bulletin JRS to MinneapolisHoneywell, Boston Division, Dept. 10, 1400 Soldiers Field Road, Boston 35, Mass., or call your local Military Products Group Office. Sales and Service offices in all principal cities of the world.

PERFORMANCE DATA

- ExCellent linearity: As low as 0.25% of full scale
- LOW HYSTERESIS: Less than 0.1% of full scale
- LOW TMRESHOLD: Less than 0.01 deg/sec
- MICROSYM PICKOFF: Variable reluctance type providing infinite resolution and high signal-to-noise ratio
- FULL Scale rate: As low as $10 \mathrm{deg} / \mathrm{sec}$
- FULL SCALE OUTPUT: Up to 15 volts
- RUGGED: Withstands 100 G shock
- VIBRATION: Operates at 12 G to $2,000 \mathrm{cps}$
- SIZE: 2.11° diam. $\times 4.60^{\circ}$ long
- WEIGHT: 2.2 lbs .

Consult Moneywell for your specific yyo requirements
(a) Gimbal is free to rotate
(b) Restraining Spring is able to return gimbal to zero position
(c) Pickoff generates proper signal, proportionate to gimbal deflection
(d) Gimbal Deflection is proportionate to given torque exerted upon it
(e) Gyro Wheel rotates at proper speed
(f) Damping Ratio of gyro is within acceptable limits

Honeywell

Honermoll Rate Gyro,
Mocol IRS Saries. Mocol JRS Sories. Snown approx. 12/ size

Here you see. at about fourfifths actual size, A. P. I.'s new and handily compact temperature control, the Model 450 Temp-Tendor. It's a natural for "built-in" jobs. Measuring just $4^{\prime \prime} \times 414^{\prime \prime} \times 51 / 2^{\prime \prime}$ overall, it's as easy to mount as a panel meter, requires no more than a meter-sized panel space. And it goes for a remarkably low OEM price. - For your money you get: a timeproportioning control capable of maintaining temperature to within $\pm 1^{\circ}$ F. of set-point, with built-in t / c length compensation adjustment, t/c TEMP. CONTROL PRICED FOR THE OEM
break protection, fail-safe circuitry, instantly adjustable setpoint, and a number of other features usually found only in instruments many times Temp. Tendor's modest size and cost. Available in eight standard ranges, from $0.300^{\circ} \mathrm{F}$ to 0 2500° F. Our Data Sheet No. 24 will give you detailed specifications. Drop us a line, and we'll put a copy in the mail.

ASSEMBLY PRODUCTS INC. ChESTERLAND 17 OHIO

DESIGN DECISIONS

"Oceanated" Roof Simulates Sea For Ship Antenna System

A 6,000 sq-ft cement slab, covered with cop-per-sprayed zinc, serves as the sea for extensive tests of shipboard antennas. The slab, which has the conductivity of the sea, serves with a large area of wire mesh as an effective ground plane. On the roof of Developmental Engineering Corp.'s laboratories at Leesburg, Va., the sea-like antenna-test facility includes the largest turntable built by private industry, a circular, rotating base with a $15-\mathrm{ft}$ diameter.

In testing antenna structures, DECO engineers mount copper-sprayed, wooden, scaled ship models at the center of the turntable; they cover the superstructure with brass or copper; and they duplicate every exterior detail of the ship which can affect communications.
The ship, with its scaled-down antenna structure is rotated about 65 ft away from three, dif-ferent-sized, discone antennas, transmitting scaled-up frequencies (50 to $2,000 \mathrm{mc}$). By measuring the reception of the model antenna, at an instrumentation room under the turntable, the engineers can improve or relocate the antenna to conform with the ship's design.

Often, they can incorporate parts of the ship's superstructure, like the smoke stacks and masts, in the antenna design. Occasionally, they can recommend changes in the ship's superstructure.

The superstructure of a ship invariably causes problems for antenna designers because it radiates under antenna excitation. In one application, engineers encountered difficulty in designing a broadband wire antenna with good omnidirectional coverage and good impedance characteris-

Scaled-down model of Essex-class carrier helps engineer design shipboard antenna. Model is rotated on 15-ft-diam turntable, 65 ft away from the discone antennas in the background. A copper covering on a zinc-coated, cement slab serves as the ground plane between the turntable and the discones.

Q_{i}

How important is
PULSE WIDTH
in electronic welding?

A:

Very important!

Too-long pulses waste weld energy-cause discoloration and deformation. Too-short pulses can also give unsatisfactory welds. An exhaustive research study, just completed, shows the results of pulse width tests of Hughes welding power supplies. Tests were made during actual welding of high and low conductivity metals. Pulse widths varied from 0.0008 to 0.0025 sec . - 'Scope photos show how proper design of the weld transformer to match capacitor discharge characteristics produces the shortest practical welding pulse.

Coples of this valuable lllustrated study, the first of its kind roleased by any manufacturor, are available on request. Write of wire today for your FREE copy of the PULSE STUDY.

HUGHES

CIRCLE 752 ON READER-SERVICE CARD

READALL READOUT NEWS from Union Switch \& Signal

New 64-Character READALL*

 Readout Instrument designed for use in low-level and solid-state circuitryI he new sealed case 64 -character Readall Readout Instrument was designed especially to meet the severe environmental requirements of MIL-E-5422D and other military specifications. The sealed case provides reliable operation at 100% humidity and at altitudes up to 50.000 feet.

The great reduction in the amount of associated equipment required when Readall Readout Instruments are used simplifies circuitry. Outstanding features in this one small package are: readability of display, binary decoding. data storage and electrical readout.
This new Readall is back-lighted with two miniature aircraft-type lamps. Even if one lamp fails, readability is assured. Under normal conditions the black-and-white character belt is readable even without internal illumination.

The new Union sealed case 64 -character Readill is $817 / 22^{" 1}$ long and weighs just 14 ounces. It will inate with military standard connector MS-24013. and is a companion to the Union sealed case 12 -character Readall. Write for Bulletin 1066.

READALLS reduce

equipment requirements... simplify circuitry
Because Readalls are capable of so many functions, there is no need for the transistors, relays, magnetic cores and diodes and membrane translator units required to hack up less sophisticated readout devices. Write for Bulletin 1057.

ES

UNION SWITCH \& BIGNAL
division or westinghouse air brake company PITTSBURGH 18. PEMNSYLVANIA
tics over a three-to-one frequency range. This problem was magnified by parasitic radiation from the ship's superstructure and from other antennas.

In this case, incorporating two smoke stacks, the main mast, and two boat cranes as part of the antenna eliminated the problem.

Buoy, Oh Buoy Buttered Popcorn!

Buttered popcorn serves as the filler for rhw encapsulent in a rugged, light-lashing, marker buoy. A buoy which may be dropped into the sea from any altitude must be very rugged if it is not to shatter on impact. Its electronic components must be held rigidly in place. This rigidity requirement would normally call for a very tough and heavy encapsulent.
But a buoy has to float. Designing a floatable device to take as much as $10,000 \mathrm{~g}$ of impact shock can call for unusual measures The tasty solution by engineers at ACR Electronics Corp., 551 W. 22nd St., New York, was remarkably simple.
They filled the compartment containing the electronics with buttered popcorn. They then poured Araldite epoxy over the filler. It filled the interstices but didn't saturate the popcom because the butter prevented its penetration.
This unusual encapsulation technique saved 80 per cent of the weight of full encapsulation. According to ACR's David Rush, there was no loss in strength. Mr. Rush admits, however, to a mysterious loss of popcorn-on the production line.

Good-enough-fo-eaf filler for epoxy encapsulen keeps busy buoy buoyant. Buttered popcorn does it. CIRCIE 753 ON READER-SERVICE CARD

NEED AC-OPERATED MLITIARY RELAYS?

For reliable switching try "Diamond H" Series RA and SA relays with a-c coils

These relays are identical in size and weight to Hart's widely specified Series R and S d-c relays and meet the same specifications*. And, thanks to their unique design, they provide the same shock resistance (to 50 G), the same vibration resistance (to $20 \mathrm{G}-2000 \mathrm{cps}$), and the same performance under temperatures ranging from $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Contact ratings from dry circuit to $10 \mathrm{amps}, 115$ volts a-c resistive and 30 volts d-c resistive.
The complete line of "Diamond H" miniature hermeticallysealed relays includes hundreds of models. Contact ratings, pull-in and drop-out times, temperature, vibration and shock ratings, mounting arrangements and other specifications can be varied to meet your particular performance requirements. Ask for descriptive literature and specification list.
*Like the R and 5 series, they meet the requirements of MIL-R-5757C. Models are alse available to fill the requirements of MIL-1-6181.
${ }^{\mathrm{mm}}$ HART
MANUFACTURING COMPANY 210 Bartholomew Avenue Hartford 1, Conn
Phone JAckson 5-3491

Vote for the Most Valuable Idea in the Issue

Vote for the Ideas you feel merit the $\mathbf{\$ 5 0}$ Most Valuable of Issue award. You may vote for one or more by circling the corresponding numbers on the Reader-Service Card

Choose the Ideas which suggest a solution to a problem of your own or stimulate your thinking or which you think are just plain clever.

The Most Valuable of Issue Ideas will be eligible for the $\$ 1,000$ Idea of the Year award.

And after you've voted, why not send in an Idea of your own?

High-Gain Pulse Amplifier

Second stage in high-gain pulse amplifier is prevented from saturating by voltage drop across RI.
High-current gain without excessive storage time can be easily obtained from a two-stage transistor pulse amplifier by using complementary transistors connected so that the second stage is prevented from saturating.
By biasing Q1 (network not shown) so that the voltage drop across $R 1$ is one volt, the voltage from the collector to base of Q 2 can never go be low this value. Q2 cannot saturate and storage time is held to a minimum
The circuit is well suited for driving 50 - to y0-ohm transmission lines with 4- to $8-\mathrm{v}$ pulses For opposite polarity pulses substitute npn transistors and a positive battery voltage.
II. F. Stearns, Engineer, Technical Products Operation, General Electric Co., Syracuse, N.Y

Vote this Idea the Most Valuable of Issue by circling its Reader-Service number.

Pulsing Capacitor Eliminates 743 False Triggers Due To Switch Bounce

In circuits using inexpensive spring-loaded pushbutton or toggle switches for single pulse triggering, switch bounce can produce unwanted trigger pulses following the initial trigger. These false trigger pulses can cause erratic or unstable operation in many triggering circuits

The circuit shown produces a single trigger pulse with a sharp leading edge and suppresses all other unwanted triggers.
Before the switch is depressed, C_{1} is charged to $-E$. Thus, the voltage on C_{1} reverse biases $C R_{1}$ and isolates $-E$ from the circuit to be triggered. When S_{1} is depressed, C_{1} discharges rapidly through the low resistance of R_{1} producing a sharp positive-going pulse on the plate of $C R_{1}$. With $C R_{1}$ now forward biased. the pulse passes through to the circuit.
When the swith is released, the armature may bounce against the normally closed contact due to the spring tension. This bouncing action causes the generation of the undesired triggers
The suppressing action of the circuit takes place the instant the switch is released and returns to the NC contact. Capacitor C_{1} immediately tries to recharge to $-E$, but cannot do so because of the large value of \boldsymbol{R}_{2}. This long time constant ($\boldsymbol{R}_{2} C_{1}$) does not allow \mathbf{C}_{1} to charge to a sufficient level fast enough to produce another trigger pulse. As the armature bounces off the $N C$ contact, C_{1} merely retains its charge Each successive bounce allows C_{1} to charge slightly more to $-\boldsymbol{E}$. This continues until the switch is at rest on the NC contact at which time C_{1} completes its charge to $-E$ in an expos

False trigger pulses due to contact bounce are eliminated by push-button triggering the circuit from charged capacitor C_{1}, instead of directly from the power source. Diode $C R_{1}$ isolates the triggered circuit after the switch is spring-refurned from its NO position and bounces on the NC contact.
nential manner. Resistors R_{1} and R_{2} also act as are suppressors to protect the switch.

For negative going triggers, the voltage E is positive and the diode connections are reversed.

With this simple arrangement, any inexpensive switch can be used for stable triggering without any additional circuitry for suppression of unwanted pulses.

Richard C. Sylvesta, Senior Technician, Lumatron Electronics, Inc., New Hyde Park, I. I., N. Y.

Vote this Ided the Most Valuable of Issue by circling its Reader-Service number.

Bypassed Bias Resistor 741 Increases Emitter-Follower Input Z

Bypassing of base-bias resistance by capacitor $C_{\text {, }}$ reduces the resistor's effect on input impedance of emitter follower.
In conventional transistor emitter-follower circuits, the input impedance is limited by the values of the base bias resistors. This limitation can be removed by connecting the circuit as shown in the figure.

Forward bias resistor $R_{1}+R_{2}$ is divided into two equal parts and by-passed to the emitter by capacitor C_{1}. The emitter resistor is tapped as high as possible by resistor R_{3} while still maintaining proper temperature bias conditions.
The value of R_{3} does not affect the input im pedance because of regenerative action in the emitter load. Capacitor C_{1} puts \boldsymbol{R}_{2} and \boldsymbol{R}_{3} effectively in parallel for alternating currents. Resistor R_{1} has no effect on the input impedance because it is in parallel with the low output of the stage.
Donald W. Bramer, Engineer, General Railway Signal Co., Rochester, N. Y.

Vote this Idea the Most Valuable of Issue by circling its Reader-Service number.

How You Can Participate

Rules For Awards

Here's how you can participate in Ideas for Design's Seventh Anniversary Awards: All engineer readers of Electronic DeSIGN are eligible.
Entries must be accompanied by filled-our Official Entry Blank or facsimile. Ideas submitted must be original with the author, and must not have been previously published (publication in internal company magazines and literature excepted).
Ideas suitable for publication should deal with:

1. new circuits or circuit modifications 2. new design lechniques
2. designs for new production methods
3. clever use of new materials or new components in design
4. design or drafting aids
5. new methods of packaging
6. design short cuts
7. cost soving tips

Awards:

1. Each Idea published will receive on honorarium of $\$ 20$.
2. Ideas judged Most Valuable of Issue will receive $\$ 50$.
3. The Idea judged to be Idea of the Year will receive the Grand Prize of $\$ 1,000$ in cash.
The Idea of the Year will be selected from amongst those judged to be Most Valuable of lssue.
Most Valuable of lssue and Idea of the Year will be selected by the readers of Electronic Design. Votes will be cast by circling keyed numbers on Reader-Service Cards. Payment will be made eight weeks after Ideas are published.
Exclusive publishing rights for all Ideas will remain with the Hayden Publishing Co.

For Addifional Entry Blanks, circle 750 on Reader-Service Card.

SEVENTH ANNIVERSARY AWARDS

IDEAS-FOR-DESIGN

Entry Blank
Ideas-for-Design Editor
Electronic Design
830 Third Ave.
New York 22, N. Y.
Idea (State the problem and then give your solution. Include sketches or photos that will help get the idea across.)
(Use separate sheet if necessury)
Here is my Idea for Design for possible publication in Electronic Design. I understand that it will be eligible for the Seventh Anniversary Awards- $\$ 20$ if published, $\$ 50$ if chosen Most Valuable of Issue, $\$ 1,000$ if chosen Idea of the Year.

I have not submitted my Idea for Design for publication elsewhere. It is entirely original with me and does not violate or infringe any copyrightn.
patento fradematis or the property rights of any other parson, Brm of corporation.

 quent publication shall be solely in the dicration of Hayden Publisting Company. Inc.

Name

\qquad Title \qquad
Company Name
Address

Model PS4330M
0.36 volts DC out
at 30 amps maximum

Model PS4232M
115.325 volts DC out
at 1.5 amp maximum

NOW

priced up to
power supplies

CONSIDER . . . POWER SOURCES two new lines of power supplies . . . one high and one low voltage. Both lines feature the exclusive POWER SOURCES, INC., regulator circuit that fully protects transistors without DC fuses or circuit breakers. This means total protection for supply and load without limiting current.
WEIGH . . . the importance of a warranty that covers both lines for five full years. And this includes all semiconductor components.

ADD UP . . . other POWER SOURCES advantages such as Transient-Free Output . . . Cooling Systems designed for long life, trouble-free operation . . . Compactness . . . New low prices. And 10-day delivery!
ASK YOURSELF . . . "Aren't these the benefits I've been looking for in a transistor-regulated power supply?" Then
WRITE OR PHONE . . . today, for complete specifications on POWER SOURCES high and low voltage solid state power supplies.

SPECIFICATIONS	LOW VOLTAGE			HIGH VOLTAGE		
	$\begin{gathered} \text { MODEL } \\ \text { PS4305M } \end{gathered}$	$\begin{aligned} & \text { MODEL } \\ & \text { PS } 4315 \mathrm{M} \end{aligned}$	$\begin{gathered} \text { MODEL } \\ \text { PS4330M } \end{gathered}$	$\begin{gathered} \text { MODEL } \\ \text { PS4222M } \end{gathered}$	$\begin{aligned} & \text { MODEL } \\ & \text { PS } 4230 \mathrm{M} \\ & \hline \end{aligned}$	$\begin{gathered} \text { MODEL } \\ \text { PS4232M } \end{gathered}$
Voltage Range (VDC)	0.36	0.36	0.36	32.215	90.300	115.325
Current Range (amps)	0.5	0.15	0.30	$0 \cdot 1.5$	0.1 .5	0.1 .5
AC Input (Volts)	105.125	105.125	105.125	105.125	105.125	105.125
AC Input (CPS)	50.60*	50.60*	50.60*	50.60°	50.60°	50.60*
Regulation-Line (105.125V)	0.025\%	0.025\%	0.025\%	0.1\%	0.1\%	0.1\%
Regulation-Load (0 to full load)	0.05\%	0.05\%	0.05\%	0.1\%	0.1\%	0.1\%
Cooling	Free Air Convection	Forced Air				
Ripple (RMS) in Millivolts	1	1	1	3	3	3
Panel Height	$31 / 2^{\prime \prime}$	51/"	81/4"	51/4"	51/4"	51/4"
Price (Note: if meters not desired deduct	$\begin{gathered} \$ 525 \\ \text { and drop .. } \end{gathered}$	$\begin{gathered} \$ 825 \\ \text { rom model n } \end{gathered}$	$\$ 1375$	\$685	\$710	\$750

"400 cps available on order

IDEAS FOR DESIGN

Hear-Conducting Wafers

Dissipate Heat in Micromodules

The heat-dissipating ability of micromodule package designs can be considerably increased by building into the package wafers whose sole function is to transfer heat.
These wafers can be placed in the package in close proximity to the heat-producing components. They are made slightly over-size so that their edges protrude through the outer package shell.
The wafers absorb heat produced within the package and conduct it to their outer edges. There, the heat is either released into the air or conducted down through the supporting wires. Or. the wafer edges can be contacted by an over-all package heat sink.

Oversize heaf-conducting wafers, made of materials such as Berlox (BeO), can be added to micromodules to increase their ability to dissipate internal heat. Wafer conducts heat from interior of package to its outer edges.

The wafers can be made from materials such as Berlox (BeO). This material has good heat conductivity and high insulation qualities. It can also be readily formed or molded into thin (0.020 in .) wafers.

Donald J. Abel, Section Head, Du Mont Military Electronics Div., Fairchild Camera \& Instrument Corp., Clifton, N.J.
Vore this Idea the Most Valuable of Issue by circling its Reader-Service number.

Low-Pass Filter Converts Square Waves To Sine

A square-to-sine wave converter can be readily designed by passing the square wave into a low-pass filter whose cut-off frequency is the same as the square wave's fundamental.

A constant-k, low-pass filter has zero attenuation from zero to its cut-off frequency. Above this frequency its response falls off at the rate of approximately 12 db per octave. Therefore, if the cut-off frequency and the fundamental of the input square wave are the same, the output waveform will contain almost all of the fundamental. However, it will contain only about 25 per cent of the second harmonic and only about 12 per cent of the third harmonic. Since the relative harmonic contents of a square wave are 0 per cent second and 33 per cent third, the resulting sine wave will have less than 5 per cent distortion.
The transistor amplifier is used to isolate against load variations and to restore the amplitude losses. Thus, several filters may be cascaded to obtain lower distortion without having the losses accumulate. This also allows operation at slightly higher square-wave frequenciesabove the filter cut-off frequency.

With 5 per cent tolerance components a square-wave frequency range ratio of $1.35: 1$ is permissible for output distortion less than 5 per cent and amplitude stability of $\pm 3 \mathrm{db}$. Thirteen different circuits were developed to cover 4 continuous frequency range from 6.4 kc to 265 kc without the need for tuning.

In the circuit shown an output sine-wave am plitude of 6 v peak-to-peak is obtained from an input square-wave amplitude of 8 v peak-topeak with $\boldsymbol{R}=3.9 \mathbf{K}$. Lower values of \boldsymbol{R} require less input amplitude for $6-\mathrm{v}$ output.

$$
\text { FOR © Ske TO } 11.5 \mathrm{ke}: \begin{aligned}
& \mathrm{L}=8200 \mu \mathrm{n} \\
& \mathrm{C}=047 \mu \mathrm{l}
\end{aligned}
$$

Square wave input is converted to sine wave output after it is passed through the low-pass filter. Transistor stage amplifies signal to desired level.

William H. Ferwalt, Senior Engineer, Engineered Electronics Co., Santa Ana, Calif.

Vote this Idec the Most Voluable of Issue by circling its Reader-Service number.

Sign up for the Magnetics self-improvement course:

Here's free help to enable you to improve yourself-and your position as a magnetic circuit designer. You need it if:

You don't know how to work with $\mathrm{E}=\mathrm{n} \frac{\mathrm{d} \phi}{\mathrm{dt}}$ to reduce the size of magnetic amplifier circuits. Most men who design amplifiers for cramped operation in missiles have found it invaluable.
What's more, you may only vaguely remember $\mathrm{H}=.4 \pi \frac{\mathrm{NI}}{\ell_{\mathrm{m}}}$, so how can you use it to cut circuit size by two to ten times, and shorten response time proportionately?
It's quite possible that you, like many engineers, may have bypassed or been bypassed by magnetic circuit theory as a working tool while you were in school. Yet this science has opened frontiers of static control which makes an understanding imperative if you are to do your job-and further your career. For your sake (and for ours, too, because we manufacture and sell high perme-
ability tape wound cores and bobbin cores which are used in amplifier circuits), we have started this course. Lesson 1, "How to Reduce Magnetic Circuit Size and Response Time," will be on its way to you immediately if you use the coupon below.

MAEMETIES Inc.

MAGNETCS INC., DEPT. ED-86, BUTLER, PA.
Ploase anvoll me in your froe salf-improvement courrie, and ind me "How To Reduce Magnetic Circuil Size ond Response Time. -
no
adtoun

With Eastman 910 Adhesive... Ulitra-miniature components honded in seconds

There are over 150 components in Sonotone's new Model " 66 " hearing aid-yet the housing is no larger than a lump of sugar. In this example of miniaturization at its finest. Sonotone uses Eastman 910 Adhesive in more than a dozen fastening operations, joining parts made of plastic, rubber and metal. Many of the bonds are made by flowing the thin, clear adhesive into tiny spaces, and this is accom-
plished without stringing or balling. Eastman 910 Adhesive will form bonds with almost any kind of material. Skeptical? Then send $\$ 5$ for a trial kit and try it on your toughest job. Kits and further information are available from Armstrong Cork Company, Indus. trialAdhesives Divi. sion, 9103 Ithaca St., Lancaster, Pa., or from Eastman Chemical Products, Inc., Dept. ED-5, Kingsport, Tenn.

Here are the types of bonds that can be made with Eastman 910 Adhesive

Among the stronger: Natural rubber, SBR, Buna N. moss iypes of neoprene, steel, aluminum, brass, copper, most woods, vinyls, phenolics, cellulosics, polyesters, polyurethanes, and nylon.
Among the weaker: polystyrene, polyethylene and fluoro-hydrocarbon plastics (sheer strengths up $10150 \mathrm{lbs} . / \mathrm{in} .^{2}$).

CIRCLE 757 ON READ-R SEaVICE C•R

SETs FAST-Makes firm bonds in seconds to minutes.
vensarite-Joins virtually any combination of
MIEM STREMETM-Up to $5,000 \mathrm{ib} . / \mathrm{In} .1$ depend-
Ins on the materials beine bonded.
aEady to use-No catalyst or mixing noces. sury. quired to Initlate or accelorate selting. COMTAET PRESSURE SUFFICIEMT.
Low smamukces-Virtually no shrinkoge on set. coEs FAR-One-pound package contains sbout The use of Eastman 910 Adhesive is not sur. gested at temperatures above $175^{\circ \circ} \mathrm{F}$ or or in the presence of extreme moisture for proSee Sweet's 1961 Product Design File 10d/Ea.

STANDARD knobs 0 0 dials 848 assemblies

 kurz-kasch
1421 South Broadway. Dayton 1, Ohio circle 758 on reader-service card

CRUCIBLE'S HANDBOOK CAN MELP AVOID MISTAKES IN PERMANENT MAGNET DESIGN. NOW TAKES IN PERMANENT MAGNET DESIGN. N o w design errors can be eliminated from permanent magnet
gap dimensions, sizes, alloys, etc. Refer to this 346 -page gap dimensions, sizes, alloys, etc. Refer to this 346-page
Crucible Permanent Magnet Handbook. It's the most Crucible Permanent Magnet Handbook. It's the most
complete reference of its kind! It gives all the data you complete reference of its kind! It gives all the data you
need to design permanent magnets into generators, need to design permanent magnets into generators,
meters, compasses, hi-fi and TV systems, etc. It also discusses ferromagnetism, electromagnetic theory, and over 60 different magnet materials, For your copy of this Permanent Magnet Handbook, send check or money order for $\$ 10^{*}$ to Crucible Steel Company of America. Four Gateway Center, P.O. Box 88. Pittsburgh 30, Pa. *Add 40e for state sales tax if you are located in Pennsylvania.

CRUCIBLE STEEL COMPANY OF AMERICA CIRCLE 759 on reader-service card

IDEAS FOR DESIGN

VR Tube Replaces Screen

A voltage regulator tube can be used as a series regulator to maintain a constant difference voltage between two loads.
For example, in an audio output stage it is desirable to operate the screen grids of a pushpull output stage at 75 to 150 v below the plate supply voltage. Use of a dropping resistor poses a problem because of variation in screen current between signal and no signal conditions.

Use of VR iube eliminates screen dropping resistor, reduces screen voltage swing.

The use of a voltage regulator tube eliminates the need for high dissipation resistive networks. H. A. Wittlinger, Engineer, Radio Corp. of America, Harrison, N.J.
Vote this Idea the Most Valuable of Issue by circling its Reader-Service number.

RC-Discharge Display Rapidly 740 Measures Tantalum Capacitors
Often it is necessary to make fairly accurate measurements of the leakage resistance and capacity of tantalum capacitors. Commercial testers operating at comparatively high voltage and signal levels cannot do the job.
A simple method, based on the fundamental equation of the capacitor's discharge curve

$$
V_{1}=V_{e} e^{-1 / R R^{\prime}}
$$

leads to the use of a circuit that can check both capacity and leakage with one measurement in a minimum of time.
The circuit uses a battery whose value is approximately the rating of the capacitor, a switch and a scope with a calibrated time scale. The capacitor is charged in position 1 and discharged into the known input impedance of the scope, position 2. Usually this impedance is about 1 meg . The scope traces the discharge curve of the capacitor. The capacitance value can be found from the point at which $t=$ RC or the point where the voltage is 37 per cent

ELECTRONIC DESIGN • May 10, 1961

ASSUME $R_{\text {IM }}=1 \mathrm{meg}$ sec = mide for I TC
Thus: RLEAKAOE YIS meg
$\mathrm{C}=16 \mu \mathrm{fd}$
Tanfalum Capacitor, $C x$, is discharged into the vertical plates of an oscilloscope. Values of capacitance and leakage resistance are used from the discharge curve
of the initial value.
The point at which the voltage has discharged, close to zero, reveals the leakage resistance of the capacitor. The ratio between the voltage remaining across the scope probe and the discharge voltage is the ratio of the known scope impedance to the capacitor's leakage resistance.
Calibrating or marking the scope template can make all these readings instantaneous and lends itself to go-no-go testing operations.

For very low values of capacity on the order of $0.01 \mu \mathrm{f}$. the $10: 1$ attenuator probe of a typical manufacturer is 10 meg . This gives a time constant of 0.1 sec which provides a rapid and convenient value for display on the most inexpensive of scopes. It should be noted that only the value of the battery is necessary for vertical calibration of the scope since all measured quantities are ratios or functions of this voltage.

In the example shown, the low value of leakage, 15 meg , would result in a slight correction if the discharge value is figured on the basis of the entire vertical scale. Allowable tolerances on the value of C would indicate whether or not a smaller value of R should be used to eliminate this correction. In the circuit R, represents a smaller value of R used with high capacity values to reduce the time constant to less than 1 sec . When switching back to the higher impedance a determination of leakage could then be made.

Melvin Guberman, Test Engineering Manager, ASW Div., Loral Electronics Co., Bronx, N. Y.

Vote this Idea the Most Valuable of Issue by circling its Reader-Service number.
now available for Miniature Welding
The new Sippican Welder, designed by the inventors of High Density Electronic Packaging*, solves the problem of obtaining reliable production welds in precision fabrication of todays welded electronics.
©U. S. Patent No. 2.911,572
PLUG-IN HEADS alioch directly to the
closely regulated, solid stote. copocitance
discharge power supply, for completero.
duciblity between weld stotions, between weld laborotory and production ficor

REVOLUTIONARY PINCER HEAD (shown) unequalled electrode stiffness, lowest inertio, identical pressure settings from 10 5 los.; deepest throat 9 , horizovide operation and built-in work light provide best operotor visibility for construction of
highly dense circuit modules and small oshighly den
semblies. semblies.
NEW VERTICAL HEAD combines similor precision with lowest possible inertio and triction for delicate crosswire and motrix welding.
UNIQUE POWER SUPPLY features oll transistorized circuirry, highly efficient pulse tronsformer for millsec. - range weld pulse, complete voltoge regulation lless than \pm bration to insure identical production line bration to insure

> For complimentary information on this equipment and occessory supplies, write to:

THE SIPPICAN CORPORATION

 marion - massachusettsc.IRCLE 760 ON READER-SERVICE CARD

DRAKE
 Indicalor Light
 Assemblies for
 SLIDE BASE LAMPS
 Here are chree styles of Assemblies designed for data processing equipment and other electronic instrumen-

tation where higher voltages are involved. Relatively inexpensive, they house relephone slide base lamps which offer the best selection in the 24 to 55 volt range. varying from low drain lamps of 17 milliamperes to high brightness lamps of 5.2 watts.
Nos. 135 and 137 are available with a selection of glass lenses in all colors, with deluxe numerals or letrers filled with black, fired enamel. No. 136 is supplied with red, amber or white nylon cap which protrudes $13 / 16^{\circ}$ from the panel. All units mount in $15 / 32^{\circ}$ or $1 / 2^{\circ}$ dia. hole, on $23 / 32^{\circ}$ centers. Lamps are easily removed from front of panel.

Type 20581 Series: 15 mc to 1500 mc . Accuracy 0.05° or 1%. Measures d119300 and up 193.00 and up.

Type 208 Phase Shifter: 0 to 360°, continuously adjustable.
Price - \$445.00 and up
CIRCLE 761 ON READER-SERVICE CARD

J. George Adashko

Matrix Tables for Transistor Two-Port Networks

THE ANALYSIS of elaborate circuitry by twoport network theory is made easier by tables of matrices for the component two-port networks. Tables have been published for networks with passive elements and with vacuum tubes,' and also for transistors ${ }^{2,3}$ in terms of the $\mathbf{Z}(\mathbf{R})$ parameters.

The matrix tables presented here have been calculated for transistor circuits with passive elements. To illustrate the procedure used to determine each of the matrices, we will derive the matrices for circuit 2-a grounded-emitter configuration. The generalized method of node voltages is used in the derivation; ${ }^{\text {4.5.6 }}$ the nodes of the circuit are marked on the diagram.

Derivation of Matrices For
 Grounded Emitter Circuir 2

The derivation is based on the use of the generalized transistor matrix, ${ }^{5}$ and on the formula for converting the determinant of the node-voltage method to the z-matrix of the equivalent two-port network. ${ }^{6}$

The generalized matrix of circuit 1 is:

	1	2	0
1	$Y_{11}+Y$	Y_{22}	$-\left(Y_{12}+Y_{12}+Y\right)$
2	Y_{31}	Y_{32}	$-\left(Y_{21}+Y_{13}\right)$
0	$-\left(Y_{11}+Y_{21}+Y\right)$	$-\left(Y_{12}+Y_{23}\right)$	$Y_{23}+Y_{28}+Y_{12}$ $+Y_{38}+Y$

and the determinant of the equivalent matrix is:

$$
|\boldsymbol{Y}|=\left|\begin{array}{cc}
\boldsymbol{Y}_{12}+\boldsymbol{Y} & \boldsymbol{Y}_{12} \tag{1}\\
\boldsymbol{Y}_{21} & \boldsymbol{Y}_{22}
\end{array}\right|
$$

To derive the z-matrix, ${ }^{8}$ we determine the $c o-$ factors of determinant 1 :
$|Y|_{21}=|Y|_{11}=Y_{22 i} \quad|Y|_{m m}=|Y|_{22}=Y_{11}+Y$
$|\boldsymbol{Y}|_{m}=|\boldsymbol{Y}|_{12}=-Y_{21} ;|\boldsymbol{Y}|_{m t}=|\boldsymbol{Y}|_{21}=-\boldsymbol{Y}_{12} \quad$ (2) and then expand the determinant:

$$
\begin{equation*}
|Y|=\left(Y_{11}+Y\right) Y_{22}-Y_{11} Y_{21} \tag{3}
\end{equation*}
$$

With the notation of determinants 2 and 3, the (tert contimued on p 250)

$\begin{aligned} & \frac{5}{2} \\ & \frac{5}{2} \\ & \frac{6}{2} \end{aligned}$	Circuit 4
(2)	$\frac{1}{\|Y\|}\left[\begin{array}{cc}Y_{n 1}+Y & Y_{13} \\ -Y_{31} & -Y_{11}\end{array}\right]$
[y]	$\left[\begin{array}{cc}Y_{11} & Y_{21} \\ -Y_{n 1} & -\left(Y_{21}+Y\right)\end{array}\right]$
[d]	$\frac{1}{Y_{11}}\left[\begin{array}{ll}-Y_{12} & 1 \\ -\mid Y_{\mid} & \\ \hline\end{array}\right]$
[$]$]	$\frac{1}{Y_{\mathrm{ga}}+Y}\left[\begin{array}{cc}-Y_{\mathrm{n}} & -1 \\ \|Y\| & -Y_{\mathrm{n}}\end{array}\right]$
[a]	$\frac{1}{Y_{11}}\left[\begin{array}{cc}Y_{12}+Y & 1 \\ \|Y\| & Y_{11}\end{array}\right]$
$\|Y\|$	$Y_{11}\left(Y_{13}+Y\right)-Y_{13} Y_{u}$

	Circuit 5
[2]	$\frac{1}{\|Y\|}\left[\begin{array}{cc}Y_{\mathbf{n}}+Y_{2} & Y_{13}+Y_{2} \\ Y_{2}-Y_{31} & -\left(Y_{13}+Y_{1}+Y_{2}\right)\end{array}\right]$
[y)	$\left[\begin{array}{cr}Y_{31}+Y_{1}+Y_{3} & Y_{23}+Y_{2} \\ Y_{2}-Y_{31} & -\left(Y_{32}+Y_{2}\right)\end{array}\right]$
[d]	$\frac{1}{Y_{11}+Y_{1}+Y_{2}}\left[\begin{array}{cc}Y_{2}-Y_{12} & 1 \\ -\|Y\| & Y_{2}-Y_{21}\end{array}\right]$
[f]	$\frac{1}{Y_{32}+Y_{2}}\left[\begin{array}{cc}Y_{2}+Y_{21} & -1 \\ \|Y\| & Y_{2}-Y_{12}\end{array}\right]$
[a]	$\frac{1}{Y_{2}-Y_{21}}\left[\begin{array}{cc}Y_{22}+Y_{2} & 1 \\ \|Y\| & Y_{11}+Y_{1}+Y_{2}\end{array}\right]$
$\|Y\|$	$\begin{gathered} \left(Y_{11}+Y_{11}\right) Y_{2 n}-Y_{11} Y_{n 1}+ \\ +Y_{2}\left(Y_{s}+Y_{1}\right) \end{gathered}$
$\begin{aligned} & \frac{8}{2} \\ & \frac{5}{5} \\ & \frac{1}{3} t \end{aligned}$	
[21	$\frac{1}{\|Y\|}\left[\begin{array}{cc}Y_{n 1}+Y_{1}+Y_{2} & Y_{11}-Y_{1} \\ Y_{1}-Y_{31} & -\left(Y_{11}+Y_{4}\right)\end{array}\right]$
[v]	$\left[\begin{array}{cc}Y_{11}+Y_{2} & Y_{31}-Y_{1} \\ Y_{1}-Y_{31} & -\left(Y_{21}+Y_{2}+Y_{2}\right)\end{array}\right]$
[d]	$\frac{1}{Y_{11}+Y_{1}}\left[\begin{array}{cc}Y_{1}-Y_{13} & 1 \\ -\|Y\| & Y_{1}-Y_{n 1}\end{array}\right]$
[f]	$\frac{1}{Y_{21}+Y_{1}+Y_{2}}\left[\begin{array}{cc}Y_{1}-Y_{31} & -1 \\ \|Y\| & Y_{1}-Y_{12}\end{array}\right]$
[a]	$\frac{1}{Y_{1}-Y_{21}}\left[\begin{array}{cc}Y_{13}+Y_{1}+Y_{2} & 1 \\ \|Y\| & Y_{11}+Y_{1}\end{array}\right]$
${ }^{\mid} Y \mid$	$\begin{gathered} Y_{11}\left(Y_{\mathrm{n}}+Y_{2}\right)-Y_{13} Y_{\mathrm{n}}+ \\ +Y_{1}\left(Y_{s}+Y_{2}\right) \end{gathered}$

ELECTRONIC DESIGN • May 10, 1961

If hard work and technical skill were the only requirements, almost anyone could build superior meters. But in many meter applications, success depends on the disciplined imagination of gifted designers and engineers. This is where Honeywell is outstanding. We can design and assemble panel instruments to solve any specific problems you may have. In fact, there's an excellent chance that we've already done so. \square To find out more about quality instruments from Honeywell, get in touch with our representative in your area. He's listed in the classified pages of your telephone directory. Or contact us directly: Precision Meter Division, Minneapolis-Honeywell Regulator Company, Manchester, New Hampshire, U.S.A. In Canada, Honeywell Controls Limited, Toronto 17, Ontario. HONEYWELL INTERNATIONAL
Sales and service offices in all principal cities of the world.
CIRCLE 763 ON READER-SERVICE CARD

TEKTRONIX DDAL OTRACE OSCILLOSCOPE

Used in Development of High-Speed Welder

 TYPE 516 DC to 15 MC
CHARACTERISTICS

4 Operating Modes
Both channels electronically swltched-either on alternate sweeps or at a free-running rate of about 150 kc . Or each channel Vertical Amplifi
Vertical Amplifier
Frequency Respo
Frequency Response-dc
Sensitivity- $50 \mathrm{mv} / \mathrm{div}$ to $20 \mathrm{v} / \mathrm{div}$ in 9 calibrated steps. Continuously variable uncalibrated from $50 \mathrm{mv} / \mathrm{div}$ to $50 \mathrm{v} / \mathrm{div}$. stant input impedance-at all aftenuator settings.
Sweep Range and Magnification
Linear Sweep- $0.2 \mu \mathrm{sec} / \mathrm{div}$ to $2 \mathrm{sec} / \mathrm{div}$ in 22 calibrated rates. Variable uncalibrated from $0.2 \mu \mathrm{sec} / \mathrm{div}$ to $6 \mathrm{sec} / \mathrm{div}$.
Sweep Mägnification-5X-magnifier extends calibrated sweep rate to 40 nsec/div.
Triggering Faclities
Fully automatic or amplitude-level selection (preset or manual) on rising or falling slope of signal, with AC or DC coupling internal, external, or line-also, high-frequency sync to 20 mc
Toktronix Cathode-Ray Tube
5-inch crt at 4 KV eccelerating potential provides bright trace on δ div by 10 div viowing area-each div equals 1 cm .
Amplitude Calibrator
11 square-wave voltages, from 50 mv to 100 volts, peak-to-peak, available from front panel
Regulated Power Supplies
All critical dc voltages electronically regulated.
Size and Woight
$131_{2}{ }^{\text {" }}$ high $\times 9 \% /^{"}$ wide $\times 211 / 3^{\prime \prime}$ deep-approximately 39 pounds.
Type 516 Oscilloscope ($50-60$ cycles)

Tektronix, Inc. P. O. Boz 500 - Beoverlon, Oregon

 Phone Mitcholl 4-0161 - TWX-DEAV 311 - Coble: TEKTRONIX

New, high-speed, precision welder developed at MAXIM CONTROLS COMPANY utilizes a controlled gate pulse-rather than capacitance decay-for joining high-temperature alloy materials, such as those used in manufacturing structural "honeycomb" cores.

In development of this new welder the Tektronix Type 516 Oscilloscope was used for critical timing and amplitude measurements. It was used by the Project Engineer for monitoring the time length of individual welds-since as many as six welds can be set to occur simultaneously or any number, sequentially-and for observing the constant amplitude and width of gate signals-thus assuring uniform bonds at speeds up to 2000 welds per second.

For your own research and development projects, consider the Type 516 Oscilloscope. Its dual-trace facility -with independent controls for each amplifier channel-permits you to position, attenuate, or invert the input signals as necessary for detailed analysis of their relative amplitudes, phase differences, time-delay characteristics. Its extremely reliable performance ideally suits the Type 516 for laboratory applications within the dc to 15 mc range.

SPECIAL MODELS AVAILABLE
 Type sis mod 101 ($50-400$ cyclus)

Typa 318 MOD 1 Mes (sionificantly improved withing 510 $6-K V$ on 6 div by 10 div viewing aren-each div equals 0.85 cm)

> intin

For a demonstration of the Type 516 Oscilloscope in your own dual-trace (or single-trace) application, call your Tektronix Field Engineer.

z-matrix is:
$[z]=$
$\frac{Y_{22}}{\left(Y_{11}+Y\right) Y_{22}-Y_{12} Y_{21}} \frac{Y_{12}}{\left(Y_{11}+Y\right) Y_{21}-Y_{12} Y_{21}}$
$\left.\frac{-Y_{21}}{\left(Y_{11}+Y\right) Y_{22}-Y_{12} Y_{21}} \frac{-\left(Y_{11}+Y\right)}{\left(Y_{11}+Y\right) Y_{22}-Y_{12} Y_{21}}\right]$
Using 3 for the denominator of each element
(text continued on p 232)

$\frac{x}{2}$	Circuit 7
[z]	$\frac{1}{\|Y\|}\left[\begin{array}{cc}Y_{22}-Y_{3} & Y_{12} \\ -Y_{31} & -\left(Y_{11}+Y_{1}\right)\end{array}\right]$
\| y \|	$\left[\begin{array}{cc}Y_{11}+Y_{1} & Y_{12} \\ -Y_{31} & -\left(Y_{32}+Y_{2}\right)\end{array}\right]$
[d]	$\frac{1}{Y_{11}+Y_{1}}\left[\begin{array}{cc}-Y_{12} & 1 \\ -\|Y\| & -Y_{n}\end{array}\right]$
[f]	$\frac{1}{Y_{21}+Y_{2}}\left[\begin{array}{cc}-Y_{31} & -1 \\ Y \mid & -Y_{12}\end{array}\right]$
[a]	$-\frac{1}{Y_{21}}\left[\begin{array}{cc}Y_{12}+Y_{3} & 1 \\ Y \mid & Y_{12}+Y_{1}\end{array}\right]$
$Y \mid$	$\begin{gathered} \left(Y_{11}+Y_{1}\right)\left(Y_{12}+Y_{1}\right)- \\ -Y_{12} Y_{21} \end{gathered}$

[z]	$\frac{1}{\|Y\|}\left[\begin{array}{cc}Y_{n}+Y_{2}+Y_{3} & Y_{10}-Y_{2} \\ Y_{1}-Y_{31} & -\left(Y_{11}+Y_{1}+Y_{3}\right)\end{array}\right]$	
\|y		$\left[\begin{array}{cc}Y_{n}+Y_{1}+Y_{2} & \begin{array}{r}10\end{array} Y_{2} \\ Y_{2}-Y_{n} & -\left(Y_{n}+Y_{1}+Y_{2}\right)\end{array}\right]$
[d]	$\frac{1}{Y_{11}+Y_{1}+Y_{2}}\left[\begin{array}{cc}Y_{2}-Y_{13} & 1 \\ -\|Y\| & Y_{2}-Y_{21}\end{array}\right]$	
(f)	$\frac{1}{Y_{n 2}+Y_{2}+Y_{2}}\left[\begin{array}{ccc}Y_{2}-Y_{n} & -1 \\ Y & Y_{1}-Y_{12}\end{array}\right]$	
[a)	$\frac{1}{Y_{2}-Y_{n}}\left[\begin{array}{cc}Y_{n}+Y_{2}+Y_{2} & 1 \\ Y_{1} & 1 \\ Y_{n}+Y_{1}+Y_{2}\end{array}\right]$	
\|Y		$\begin{gathered} \left(Y_{\mathrm{H}}+Y_{1}\right)\left(Y_{21}+Y_{2}\right)-Y_{11} Y_{\mathrm{n}}+ \\ +Y_{2}\left(Y_{s}+Y_{1}+Y_{2}\right) \end{gathered}$

Fig. 1. lllustrative example derives the d matrix for this circuit.

Waters new se PT $3 / 4$ sealed potentiometer

Dust! Corrosion! Moisture! Vapors! All are foes of potentiometer reliability, yet ordinarily costly to keep out. Now, however, Waters introduces a new $3 / 4^{\prime \prime}$ plastic case pot, the PT3 3 , meeting military sealed pot specs (MIL-R-19A, MIL-R-19/1A), yet priced no higher than many commercial grade pots! " O " ring shaft seal and complete internal sealing virtually eliminate environmental problems. Provides the same protection as encapsulation in less space. Resistance element is a copper mandrel wound with wire alloy which has a temperature coefficient of 20 P.P.M. per degree C. Resistance range 1 to 20,000 ohms. Dissipates 1.5 watts at $40^{\circ} \mathrm{C}$. Available with split or plain bushings. Write for Bulletin PT 760.

WATERS MANUFACTURING, INC. - WAYLAND - MASS.

POTENTIOMETEAS - COIL FORME - POT MOOKO PAMEL MOUNTS - TORQUE WATCNO GAUEES - C'TROLE METEA/CONTROLLER - IMSTAUMEMTE CIRCLE 765 ON READER-SERVICE CARD

A Completely New, Advanced Design

Bruel \& K Kiaer

TRUE RMS LEVEL RECORDER

This is a basic instrument for measuring and recording the True RMS, average or peak level of AC signals ranging in frequency from $10 \mathrm{c} / \mathrm{s}$ to $200,000 \mathrm{c} / \mathrm{s}$ and $D C$ to $10 \mathrm{c} / \mathrm{s}$ signals through an internal chopper.
Typical fields in which the Level Recorder finds broad application are calibration or frequency response of transducers and electronic devices, spectrograms for noise or vibration, and reverberation decay curves.
The Level Recorder design concept serves as the heart of the Bruel \& Kjaer line of integrated instruments. Smooth running test procedures requiring a minimum of operator attention can be set up by utilizing the recorder's automatic or remote controls and the synchronized tuning drive for companion instruments.

Gontemeni
Presse send me
$\square \& K$ Arocture on Model 2305
\square E K Complete Line Catalog
Name
Compeny
Addrens
City

CIRCLE 766 ON READER-SERVICE CARD

RUSSIAN TRANSLATIONS

of this matrix, and bringing the denominator outside the matrix sign, we obtain:

$$
[Z]=\frac{1}{[Y]}\left[\begin{array}{cc}
Y_{22} & Y_{12} \tag{5}\\
-Y_{21} & -\left(Y_{11}+Y\right)
\end{array}\right]
$$

The z-matrix is given in the table in this form, with the determinant $|Y|$ also given for each circuit. To convert to the other matrices we use (tere continued on p 234)

筞	Circuit 11
$\left[{ }^{[2]}\right.$	$\frac{1}{\|Y\|}\left[\begin{array}{cc}Y_{22}+\boldsymbol{Y} & -\left(Y_{12}+Y_{n}+Y\right) \\ Y_{32}+Y_{22}+Y & -\left(Y_{s}+Y\right)\end{array}\right]$
[ข 1	$\left[\begin{array}{cc}Y_{s}+\boldsymbol{Y} & -\left(Y_{13}+Y_{n}+\boldsymbol{Y}\right) \\ Y_{n}+Y_{12}+Y & -\left(Y_{3 n}+\boldsymbol{Y}\right)\end{array}\right]$
[d]	$\frac{1}{Y_{s}+Y}\left[\begin{array}{cc}Y_{12}+Y_{32}+Y & 1 \\ -\|Y\| & Y_{21}+Y_{n}+Y\end{array}\right]$
[f]	$\frac{1}{Y_{28}+Y}\left[\begin{array}{cc}Y_{21}+Y_{22}+Y & -1 \\ \|Y\| & Y_{13}+Y_{n 2}+Y\end{array}\right]$
[a]	$\frac{1}{Y_{21}+Y_{21}+Y}\left[\begin{array}{cc}Y_{22}+Y & 1 \\ \|Y\| & Y_{s}+Y\end{array}\right]$
${ }^{\|Y\|}$	$Y_{\mathrm{HI}}\left(Y_{23}+\boldsymbol{Y}\right)-Y_{15} Y_{\mathrm{ni}}$
	Circuit 12
[21	$\frac{1}{\|Y\|}\left[\begin{array}{cc}Y_{2 s}+Y & -\left(Y_{1 s}+Y_{n}\right) \\ Y_{n}+Y_{n z} & -Y_{s}\end{array}\right]$
[y]	$\left[\begin{array}{cc}Y_{s} & -\left(Y_{1 n}+Y_{n n}\right) \\ Y_{\mathrm{mi}}+Y_{\mathrm{n}} & -\left(Y_{\mathrm{m}}+\boldsymbol{Y}\right)\end{array}\right]$
[d]	$\frac{1}{Y_{S}}\left[\begin{array}{cc}Y_{13}+Y_{n n} & 1 \\ -\|Y\| & Y_{n 1}+Y_{n 1}\end{array}\right]$
(f)	$\frac{1}{Y_{n}+Y}\left[\begin{array}{cc}Y_{n}+Y_{n n} & -1 \\ \|Y\| & Y_{13}+Y_{n n}\end{array}\right]$
[a]	$\frac{1}{Y_{n}+Y_{n n}}\left[\begin{array}{cc}Y_{n}+Y & 1 \\ \|Y\| & Y_{s}\end{array}\right]$
${ }_{\|r\|} \boldsymbol{Y}$	$Y_{11} Y_{12}-Y_{13} Y_{n 1}+Y Y_{s}$

ELECTRONIC DESIGN • May 10, 1961

Fig. 2. (a) Circuit of Fig. 1 is broken down into simpler two-port networks.

$\frac{8}{\frac{2}{5}}$	Circuit 13
[2]	$\frac{1}{\|Y\|}\left[\begin{array}{cc}Y_{n}+Y_{2} & -\left(Y_{1 s}+Y_{n}+Y_{s}\right) \\ Y_{n}+Y_{n}+Y_{1} & -\left(Y_{s}+Y_{1}+Y_{2}\right)\end{array}\right]$
[v]	$\left[\begin{array}{cc}Y_{s}+Y_{1}+Y_{3} & -\left(Y_{12}+Y_{n}+Y_{3}\right) \\ Y_{n}+Y_{n}+Y_{2} & \left.-\left(Y_{n}+Y_{3}\right)\right)\end{array}\right]$
[d]	$\frac{1}{Y_{s}+Y_{1}+Y_{2}}\left[\begin{array}{l}Y_{13}+Y_{32}+Y_{2} \\ -\|Y\| \\ -Y \mid \\ Y_{11}+Y_{31}+Y_{3}\end{array}\right]$
(f)	$\frac{1}{Y_{n}+Y_{3}}\left[\begin{array}{ccc}Y_{n}+Y_{n n}+Y_{3} & -1 \\ \|Y\| & Y_{n 3}+Y_{n}+Y_{3}\end{array}\right]$
[a]	$\frac{1}{Y_{n}+Y_{n}+Y_{3}}\left[\begin{array}{cc}Y_{n}+Y_{3} & 1 \\ \|Y\| & Y_{s}+Y_{1}+Y_{1}\end{array}\right]$
$\|Y\|$	$\left(Y_{11}+Y_{i}\right)\left(Y_{\mathbf{n}}+Y_{\mathbf{n}}\right)-Y_{13} Y_{\mathbf{3 1}}$

$\frac{8}{5}$	Circuit 14
[2]	$\frac{1}{\|Y\|}\left[\begin{array}{cc}Y_{\mathbf{n}}+Y_{1}+Y_{\mathbf{n}} & -\left(Y_{\mathbf{n}}+Y_{\mathrm{n}}+Y_{1}\right) \\ Y_{\mathbf{n}}+Y_{\mathbf{n}}+Y_{1} & -\left(Y_{s}+Y_{1}\right)\end{array}\right]$
[y]	$\left[\begin{array}{cc}Y_{s}+Y_{3} & -\left(Y_{13}+Y_{3}+Y_{1}\right) \\ Y_{\mathrm{n}}+Y_{\mathrm{n}}+Y_{1} & -\left(Y_{\mathrm{a}}+Y_{1}+Y_{3}\right)\end{array}\right]$
[d]	$\frac{1}{Y_{s}+Y_{1}}\left[\begin{array}{ccc}Y_{13}+Y_{n}+Y_{1} & 1 \\ -\|Y\| & Y_{n}+Y_{n}+Y_{1}\end{array}\right]$
[f]	$\frac{1}{Y_{n}+Y_{1}+Y_{2}}\left[\begin{array}{c}Y_{n}+Y_{n}+Y_{1} \\ \|Y\| \\ \|Y\| \\ Y_{n}+Y_{n}+Y_{1}\end{array}\right]$
(a)	$\frac{1}{Y_{11}+Y_{32}+Y_{2}}\left[\begin{array}{cc}Y_{13}+Y_{1}+Y_{2} & 1 \\ \|Y\| & Y_{s}+Y_{1}\end{array}\right]$
$Y \mid$	$\begin{gathered} Y_{\mathrm{n}}\left(Y_{12}+Y_{5}\right)-Y_{13} Y_{\mathrm{n}}+ \\ +Y_{\mathbf{2}}\left(Y_{s}+Y_{1}\right) \end{gathered}$

ELECTRONIC DESIGN • May 10, 1961

Shallcross
 precision circuit news

Standard 'Specials' in Shallcross Miniature Switches

MRE-WIRED a MARNESSED SWITCMES - Decki pro. wired before sangins to roduce your production cosit
end time.

GOLD PATED CONTACTS A TEMMNALS_for the ultimate in maintoining low
under cerrosive conditions.

PRINTED CIBCUIT TERMINALS-availeble on oin-
sle-deck or loat deck of mulfideck swithes.

CUUSTER ARM ROTORS-For pregrosivo-
 SRNING AEIVRN ROTORS-on oither.

MAXIMUM CIRCUIT SWITCHING IN MINIMUM SPACE

Here's a positive approach to minj-aturization-a way to handle more circuits per cubic inch! Conservatively estimated. over 650 circuits may be switched in only 38 cubic inches by a Shallcross Miniature Series switch . . . and with the quality and reliability only a buttoncontact, multi-leal wiper arm switch contact, multi-lear wiper arm switch tion, the single 24 -deck Shallcross tion, the single 24 -deck Shallcross
Miniature switch shown above reMiniature switch shown above re-
placed four "subminiature" units. placed four "subminiature" units.
Equally impressive space advanEqually impressive space advan-
tages are possible with dual concentages are possible with dual concen-
tric shaft versions of the Shallcross Miniature Series. Either shaft may

For indirect switching of complex circuits, or to avoid "over plex circuits, or to avoid cover stepping positions in critical
circuits most Shallcross Minia circuits, most Shallcross Minia ture Switches can be furnished
with solenoid operation. Outline your circuit requirements for a prompt recommendation by Shallcross engineers.
operate up to five of a total of ten decks. The inner shaft may also control a rheostat, variable capacitor, or other device.

If, in addition to size, switch quality is also your concern, the following highlights substantiate why Shallcross Miniature Switch users repeatedly specify these switches and no others, for critical airborne, missile control, and computer applications.
Low inithel contect resistenco-bess than 0.002 ohm .
stable contact resistanco- 0.5 milliohm for 10,000 operations.
Mighly lmmune to vibration demageexceeds MIL-S-3786 requirements. Uncompe omisod meroralal avally- silver button contacts; silver alloy, multi. leaf. self-cleaning wipers; diallyl phthalate rotors; epoxy-laminate decks (filament woven with glase fiber).
Dosignod it applieeble mil.s-37E6 Spocificationa.
minnmum thormosouplo efinoeto-similar materials for all current-carrying parts.
Excollont RF charactoristics.
Minimum dopth- $1^{\prime \prime}$ first deck, $8 /{ }^{\prime \prime}$ each additional deck.
Maximum Varsatillity-up to 32 positions, 1 to 4 poles, shorting or non. shorting in the same switch, 1 to 24 decks, ball detents, many special modifications.

For complofe delalls, wrife for Shallereses swifch Bullotion

[^9]
who can use a little honest trickery

There's more than one way of skinning a cat -or making ideas work automatically. And AE has a bag-full.

That's because AE has had years of experience in making relays and stepping switches work wonders in automatic telephone exchanges-and in automatic control devices.
If you can use some down-to-earth magic in your designs, AE engineers will be glad to help. And you may well find that their suggestions can simplify the control package.

Subaidiary of
tepping switches cost you less in the run.
For instance, the AE Type 45 Stepping Switch, illustrated, has a free-floating
pawl that never binds, never breaks, eliminates the necessity of ever readjusting armature stroke, does away with doublestepping or overthrow. And the switch usually outlasts the equipment it's built into!
You'll also be interested in knowing that AE is equipped to deliver completely wired and assembled control units designed to your specifications.
If you need timed impulses at equal or unequal time intervals, accurately spaced, send for more information on these highspeed, multi-contact rotary stepping switches. Just write the Director, Control Equipment Sales, Automatic Electric, Northlake, Illinois. Ask for Circular 1698-J.

AUTOMATIC ELECTRIC

GENERAL TELEPHONE ELECTRONICS

RUSSIAN TRANSLATIONS

the following conversion equations.
To convert from the z-matrix to the y-matrix:

$$
[y]=\left[\begin{array}{ll}
y_{11} & y_{12} \tag{6}\\
y_{21} & y_{22}
\end{array}\right]=\left[\begin{array}{rr}
\frac{z_{22}}{|z|} & -\frac{z_{12}}{|z|} \\
-\frac{z_{21}}{|z|} & \frac{z_{11}}{|z|}
\end{array}\right]
$$

Substituting in Eq. 6 the corresponding ele(text continued on p 236)

笙	Circuit 15
[2]	$\frac{1}{\|Y\|}\left[\begin{array}{ll}Y_{22}+Y_{2} & -\left(Y_{12}+Y_{28}\right) \\ Y_{21}+Y_{22} & \left.-Y_{s}+Y_{1}\right)\end{array}\right]$
[y]	$\left[\begin{array}{ll}Y_{S}+Y_{1} & -\left(Y_{12}+Y_{28}\right) \\ Y_{21}+Y_{22} & -\left(Y_{22}+Y_{22}\right)\end{array}\right]$
[d]	$\frac{1}{Y_{S}+Y_{i}}\left[\begin{array}{cc}Y_{12}+Y_{23} & 1 \\ -\|Y\| & Y_{21}+Y_{22}\end{array}\right]$
[5]	$\frac{1}{Y_{22}+Y_{2}}\left[\begin{array}{cc}Y_{21}+Y_{22} & -1 \\ \|Y\| & Y_{11}+Y_{22}\end{array}\right]$
[a]	$\frac{1}{Y_{21}+Y_{32}}\left[\begin{array}{cc}Y_{22}+Y_{2} & 1 \\ \|Y\| & Y_{S}+Y_{1}\end{array}\right]$
$\|\boldsymbol{Y}\|$	$\begin{gathered} \left(Y_{11}+Y_{1}\right) Y_{22}-Y_{12} Y_{21}+ \\ Y_{2}\left(Y_{3}+Y_{1}\right) \end{gathered}$

ELECTRONIC DESIGN • May 10, 1961

b
(b) General representation of the two port configuration.

$\frac{\frac{3}{2}}{\frac{2}{4}}$	
(a)	$\frac{1}{\|Y\|}\left[\begin{array}{cc}Y_{s} & -\left(Y_{11}+Y_{13}\right) \\ Y_{11}+Y_{31} & -Y_{11}\end{array}\right]$
[y]	$\left[\begin{array}{cc}Y_{13} & -\left(Y_{13}+Y_{12}\right) \\ Y_{11}+Y_{31} & -Y_{s}\end{array}\right]$
[d]	$\frac{1}{Y_{11}}\left[\begin{array}{cc}Y_{11}+Y_{31} & 1 \\ -\|Y\| & Y_{n 1}+Y_{31}\end{array}\right]$
[/]	$\frac{1}{Y_{s}}\left[\begin{array}{cc}Y_{31}+Y_{n} & -1 \\ \|Y\| & Y_{n 1}+Y_{i n}\end{array}\right]$
[a]	$\frac{1}{Y_{11}+Y_{31}}\left[\begin{array}{cc}Y_{s} & 1 \\ \|\gamma\| & Y_{11}\end{array}\right]$
${ }^{1}$	$Y_{11} Y_{21}-Y_{19} Y_{31}$

$\frac{\frac{k}{4}}{\frac{2}{y}} \downarrow$	Circuit 18
[2]	$\frac{1}{\|Y\|}\left[\begin{array}{cc}Y_{s} & -\left(Y_{11}+Y_{12}\right) \\ Y_{11}+Y_{21} & -\left(Y_{11}+Y\right)\end{array}\right]$
v)	$\left[\begin{array}{cc}Y_{11}+Y_{11} & -\left(Y_{11}+Y_{12}\right) \\ Y_{11}+Y_{31} & -Y_{s}\end{array}\right]$
d)	$\frac{1}{Y_{11}+Y}\left[\begin{array}{cc}Y_{11}+Y_{12} & 1 \\ -\|Y\| & Y_{11}+Y_{31}\end{array}\right]$
[f]	$\frac{1}{Y_{s}}\left[\begin{array}{cc}Y_{11}+Y_{31} \\ \|Y\| & \begin{array}{c}-1 \\ \|Y\|\end{array} \\ Y_{31}+Y_{12}\end{array}\right]$
(a)	$\frac{1}{Y_{11}+Y_{21}}\left[\begin{array}{cc}Y_{s} & 1 \\ \|Y\| & Y_{11}+Y\end{array}\right]$
Y	$Y_{11} Y_{13}-Y_{13} Y_{u 1}+Y Y_{s}$

EVEN AT HIGH TEMPERATURES, MYLAR ${ }^{\circ}$ HELPS MOTORS RUN TROUBLE-FREE LONGER!

Mylar* polyester film resists the three main causes of motor failure-heat, humidity and physical stress. Temperatures in the Class B range have relatively little effect on the electrical characteris. tics of "Mylar". It's also 35 times more moisture-repellent than rag paper. . . 8 times stronger . . . and can't dry out because it contains no plasticizer. "Mylar" also helps reduce size and weight of motors, and gives them an extra safety margin from shock because it repels moisture so well.

Capacitors benefit from "Mylar", too. Last longer, are more reliable . . . at no greater cost than paper units for similar service. In a wide variety of applications, "Mylar"' can improve performance, lower costs. Here are some more reasons: - dielectric strength of 4,000 v/mil.** • thermal stability from $-60^{\circ} \mathrm{C}$. to over $150^{\circ} \mathrm{C}$. - resistance to chemicals, aging, abrasion and tearing. Best of all, you can use less, often pay less . . . because you get all these advantages in thinnergauges. Evaluate "Mylar" for your product. Write for free booklet(SC) detailing properties and applications. Du Pont Co., Film Dept., Wilmington 98, Delaware.

Milestones in Engineering

As life became more complex, man found that his muscle alone could not accomplish all the tasks that evolved upon him.
Becoming a "builder" made it necessary to lift weights beyond human strength alone. Man found that a pole, supported at a point along its length, could be used to lift or move objects far heavier than he alone could lift or move. The principle of the lever was applied in many ways-versatility of application is a characteristic of all engineering principles.
Similarly, it is characteristic of soundly engineered equipment that its versatility is unlimited to the extent of man's imaginative application.

RUSSIAN TRANSLATIONS

ments of the matrix 5 , we obtain after transfor. mation:

$$
[y]=\left[\begin{array}{lr}
Y_{11}+Y & Y_{12} \tag{7}\\
-Y_{21} & -Y_{22}
\end{array}\right]
$$

The d, f, and a matrices are:

$$
[d]=\frac{1}{Y_{21}+Y}\left[\begin{array}{cc}
-Y_{21} & 1 \tag{8}\\
-|Y| & -Y_{\mathbf{2 1}}
\end{array}\right]
$$

$\begin{aligned} & \frac{8}{8} \\ & \frac{5}{5} \\ & \frac{\text { En }}{2} \downarrow \end{aligned}$	Circuit 19
[2]	$\frac{1}{\|Y\|}\left[\begin{array}{cc}Y_{s}+Y & -\left(Y_{11}+Y_{11}+Y\right) \\ Y_{11}+Y_{11}+Y & -\left(Y_{11}+Y\right)\end{array}\right]$
[y]	$\left[\begin{array}{cc}Y_{u}+Y & -\left(Y_{u}+Y_{n}+Y\right) \\ Y_{11}+Y_{\mathrm{n}}+Y & -\left(Y_{s}+Y\right)\end{array}\right]$
[d]	$\frac{1}{Y_{11}+Y}\left[\begin{array}{cc}Y_{11}+Y_{31}+Y & 1 \\ -\|Y\| & Y_{11}+Y_{31}+Y\end{array}\right]$
[f]	$\frac{1}{Y_{s}+Y}\left[\begin{array}{cc}Y_{11}+Y_{\mathrm{n}}+Y & -1 \\ \|Y\| & Y_{\mathrm{u}}+Y_{\mathrm{H}}+Y\end{array}\right]$
[a]	$\frac{1}{Y_{12}+Y_{21}+Y}\left[\begin{array}{cc}Y_{s}+Y & 1 \\ \|Y\| & Y_{11}+Y\end{array}\right]$
${ }^{\mid} \mathbf{Y} \mid$	$\left(Y_{11}+Y\right) Y_{n \mathbf{n}}-Y_{13} Y_{n t}$

	Circuit 20	
[2]	$\left.\frac{1}{\|Y\|}\right\|_{-} ^{-} \begin{gathered}Y_{s}+Y \\ Y_{11}+Y_{21}\end{gathered}$	$\left.\begin{array}{c}-\left(Y_{11}+Y_{11}\right) \\ -Y_{11}\end{array}\right]$
[y)	$\left[\begin{array}{c}Y_{11} \\ Y_{11}+Y_{21}\end{array}\right.$	$\left.\begin{array}{c}-\left(Y_{11}+Y_{13}\right) \\ -\left(Y_{s}+Y\right)\end{array}\right]$
[d]	$\frac{1}{Y_{31}}\left[\begin{array}{c}Y_{12}+Y_{12} \\ -\|Y\|\end{array}\right.$	$\left.\begin{array}{c}1 \\ Y_{11}+Y_{41}\end{array}\right]$
[f]	$\frac{1}{Y_{s}+Y}\left[\begin{array}{c}Y_{21}+Y_{21} \\ \|Y\|\end{array}\right.$	$\left.\begin{array}{c}-1 \\ Y_{11}+Y_{13}\end{array}\right]$
[a]	$\frac{1}{Y_{12}+Y_{21}}\left[\begin{array}{c}Y_{s}+Y \\ \|Y\|\end{array}\right.$	$\left.\begin{array}{c}1 \\ Y_{11}\end{array}\right]$
$\|\boldsymbol{Y}\|$	$Y_{13}\left(Y_{13}+Y\right.$	$-Y_{18} Y_{11}$

ELECTRONIC DESIGN - May 10, 1961

$$
\begin{align*}
& {[f]=\frac{1}{Y_{21}}\left[\begin{array}{cc}
-Y_{21} & -1 \\
|Y| & -Y_{21}
\end{array}\right]} \tag{9}\\
& {[a]=-\frac{1}{Y_{21}}\left[\begin{array}{lc}
Y_{22} & 1 \\
|Y| & Y_{11}+Y
\end{array}\right]}
\end{align*}
$$

Each of these matrices is listed in the table. (text continued on p 238)

婁	Circuit 21	
[2]	$\frac{1}{\|Y\|}\left[\begin{array}{cc}Y_{s}+Y_{2} & -\left(Y_{11}+Y_{12}+Y_{2}\right) \\ Y_{11}+Y_{\mathrm{n}}+Y_{2} & -\left(Y_{11}+Y_{1}+Y_{2}\right)\end{array}\right]$	
[y]	$\left[\begin{array}{cc}Y_{11}+Y_{1}+Y_{3} & -\left(Y_{11}+Y_{12}+Y_{2}\right) \\ Y_{11}+Y_{21}+Y_{3} & -\left(Y_{s}+Y_{2}\right)\end{array}\right]$	
[d]	$\frac{1}{Y_{11}+Y_{1}+Y_{3}}\left[\begin{array}{cc}Y_{11}+Y_{12}+Y_{3} & 1 \\ -\|Y\| & Y_{11}+Y_{21}+Y_{2}\end{array}\right]$	
(f)	$\frac{1}{Y_{s}+Y_{2}}\left[\begin{array}{cc}Y_{11}+Y_{31}+Y_{s}, & -1 \\ \|Y\| & Y_{14}+Y_{13}+Y_{2}\end{array}\right]$	
\|a		$\frac{1}{Y_{\mathrm{n}}+Y_{\mathrm{n}}+Y_{2}}\left[\begin{array}{cc}Y_{s}+Y_{3} & 1 \\ \|Y\| & Y_{u}+Y_{1}+Y_{2}\end{array}\right]$
$\|Y\|$	$\begin{gathered} \left(Y_{n}+Y_{n}\right) Y_{n 3}-Y_{11} Y_{n 1}+ \\ +Y_{1}\left(Y_{s}+Y_{3}\right) \end{gathered}$	

From miniature stacks to super-size stacks, RCA is ready to custom-build completaly wired, ready-to-wse memory stacks to meet your most complex system requirements.

Now, RCA memory stacks, in custom and standard designs, are available to help you solve computer assembly problems and meet today's exacting performance specifications. Incorporating RCA ferrite memory operation...up to 8 percent...RCA stacks can cope with broad variations in power levels.
RCA magnetic-memory specialists are ready to custom design and deliver virtually any stack you specify. Stacks ranging from 16 words by 5 bits to 16,304 words by 34 bits have been built and are now in operation for coincident-current, word-address. and im-pulse-switching applications.
Reliability: All RCA ferrite memory stacks are designed and built to meet stringent environmental specifications of shock and vibra-

The Most Trusted Name in Electronics radio corporation of america
ion. And all are 100 percent dynamically tested to assure the ut most dependability under actual computer operating conditions. Adaplability: All RCA memory stacks are compactly assembled 0 assure most efficient space utilization. In addition, they are designed to provide superior rigidity and accessibility. Stacking frames are available in a wide range of materials.
Service: Your local Semiconductor and Materials Division Field Representative is prepared to provide a completely coordinated semiconductor diodes, ferrites and memory systems. Call him today. For further technical information, write RCA Semiconductor and Materials Division, Commercial Engineering, Sec. E-18-NN-1, Somerville, N. J.

RCA SEMICONDUCTOR \& MATERIALS DIVISION FIELD OFFICES:

 EAST: Nowork. N. J., 744 Broed SI., MU $5-3900$ - Eorlion, N. J., 605 Morition Pite, EAST: Needham Meights 94, Moss.; 64 "A" Stroet. M1 4. 7200 . SOUTMEAST, Orlondo,
 Mort Poro, WH 4. 2000 . Minnoopolis. Minn,
WEST: Comino Reol, OX 7-1620. SOUUTHWEST, Dolla! 7, Tozas, 7905 Corpontor Frooway,
 D. C., 1725 " K " Si., N.W., PE 7-8500.

The significant difference

 is the name.... BORG。
MICROPOT

mous with potentiometer

The name Borg Micropot is synonomal applications alike. reliability in military and commercial Trimming Micropot And now, Borg offers fou reconmended wher factor. All models are Potentiometers. All are relages is a critical sosition at each end of trave adjustment of circuit with a safety idle pocked snugly one upon the lead-screw actuated with a singly or stacked to 1 megohm are available. All series can be moulues from 10 ohms antative, distributor, other. Resistance values technical representa listed below. see your nearest Borg technical sheets listed below.

More than 300 standard model variations are derived from the four basic series of Borg Trimming Micropot ${ }^{10}$ Potentiometers

2800 Serles

High temperature, wire wound. Highest quality series.. 100\% immersiontested for leakage. Request data sheet BED-A173.

High temperature, wirewound. High quality series ieak-rink sealed against leakage. Request datit
sheet BED-A133.

CHARACTERISTICS	2800 Serles*	990 Serles	992 Series	993 Serles
Length and Width	$11 / 6^{\prime \prime} \times .28^{\prime \prime}$	$11 / 4^{\prime \prime} \times .28^{\prime \prime}$	$11 / 4^{\prime \prime} \times .28^{\prime \prime}$	$11 / 4^{\prime \prime} \times .28^{\prime \prime}$
Depth	. $360{ }^{\prime \prime}$ max.**	. 360 " max. **	. $360{ }^{\prime \prime}$ max. **	$516^{\prime \prime}$
Puwer Dissipation	1 watt at $110^{\prime} \mathrm{C}$	1 watt at 110 C	1 watt at 40 C	0.5 watt at 40 C
Reaistance Range	10) to 50 K ohms	10) to 50K ohms	10 to 50K ohms	20K ohms to, 1 megohm
'Temperature Extremes	$-60^{\circ} \mathrm{C}$ to) $+175^{\circ} \mathrm{C}$	$-60^{\circ} \mathrm{C}$ to $\quad 175^{\circ} \mathrm{C}$	-55) (t () +105 ($-55^{\circ} \mathrm{C}$ to +105 C
Dielectric Strength	500 V AC. 60 cycle	500 V AC. 60 cycle	500 V Ac, 60 cycle	$500 \mathrm{~V} \mathrm{AC}$,60 cycle
Adjustment	full range 40 turns	full range 10 turns	full range 40 turns	full range 25 turns

Tcrminal types: wire leads (I): solder lugs (SJ.): printed circuit (PC). Color-coded wire louds are 12"; solder lugs and printed circuit terminuls are gold-plated for perfect solderability.

- Kach unit 100% tested against leakage.
*Drpendent upon torminal selection

BORG EQUIPMENT DIVISION

Amphenol-Borg Electronios Corporation
Janesville, Wisconsin - Phone Plessant 4-6616

[^10] CIACLE 772 ON READER-SERVICE CARD

RUSSIAN TRANSLATIONS

(continued from p 2.36)

To simplify the notation, we use the symbol

$$
\begin{equation*}
Y_{1}=Y_{11}+Y_{12}+Y_{21}+Y_{22} \tag{11}
\end{equation*}
$$

The determinants of these matrices are some

$\frac{\stackrel{y y}{8}}{\frac{2}{5}}$	Circuit 23
$\|z\|$	$\frac{1}{Y}\left[\begin{array}{ll}Y_{S}+Y_{2} & -\left(Y_{11}+Y_{15}\right) \\ Y_{14}+Y_{21} & -\left(Y_{11}+Y_{1}\right)\end{array}\right]$
$\|y\|$	$\left[\begin{array}{ll}Y_{11}+Y_{1} & -\left(Y_{11}+Y_{13}\right. \\ Y_{11}+Y_{31} & -\left(Y_{S}+Y_{21}\right.\end{array}\right]$
(d)	$\frac{1}{Y_{11}+Y_{1}}\left[\begin{array}{cc}Y_{\mathrm{u}}+Y_{12} & \mathrm{t} \\ -Y \mid & Y_{11}+Y_{\mathrm{n}}\end{array}\right]$
[f]	$\frac{1}{Y_{S}+Y_{2}}\left[\begin{array}{cc}Y_{11}+Y_{2 i} & -1 \\ Y & Y_{11}+Y_{i d}\end{array}\right]$
$1 a$	$\frac{1}{Y_{11}+Y_{34}}\left[\begin{array}{cc}Y_{S}+Y_{2} & 1 \\ \|Y\| & Y_{11}+Y_{1}\end{array}\right]$
Y	$\begin{gathered} Y_{11}\left(Y_{21}+Y_{3}\right)-Y_{11} Y_{n}+ \\ +Y_{1}\left(Y_{4}+Y_{2}\right) \end{gathered}$

$\begin{aligned} & \frac{\text { E }}{\frac{2}{3}} \\ & \frac{1}{3} \\ & \text { n } \end{aligned}$	Circuit 24
[z]	$\frac{1}{Y} \boldsymbol{Y}\left[\begin{array}{ll}Y_{S}+Y_{2}+Y_{2} & -\left(Y_{11}+Y_{12}+Y_{2}\right) \\ Y_{11}+Y_{21}+Y_{2} & -\left(Y_{11}+Y_{1}+Y_{2}\right)\end{array}\right]$
[4 I	$\left[\begin{array}{ll}Y_{11}+Y_{1}+Y_{3} & -\left(Y_{11}+Y_{11}+Y_{2}\right) \\ Y_{11}+Y_{21}+Y_{2} & -\left(Y_{3}+Y_{3}+Y_{3}\right)\end{array}\right]$
(d)	$\frac{1}{Y_{11}+Y_{1}+Y_{2}}\left[\begin{array}{cc}Y_{11}+Y_{12}+Y_{2} & 1 \\ -\|\boldsymbol{Y}\| & Y_{11}+Y_{21}+Y_{2}\end{array}\right]$
[f]	$\frac{1}{Y_{S}+Y_{2}+Y_{1}}\left[\begin{array}{cc}Y_{11}+Y_{21}+Y_{2} & -1 \\ \mid Y_{1} & Y_{11}+Y_{12}+Y_{2}\end{array}\right]$
[a]	$\frac{1}{Y_{11}+Y_{21}+Y_{2}}\left[\begin{array}{cc}Y_{S}+Y_{2}+Y_{3} & 1 \\ \|Y\| & Y_{11}+Y_{1}+Y_{2}\end{array}\right]$
$\|\boldsymbol{Y}\|$	$\begin{gathered} \left(Y_{11}+Y_{2}\right)\left(Y_{23}+Y_{3}\right)-Y_{13} Y_{21}+ \\ +Y_{1}\left(Y_{s}+Y_{2}+Y_{3}\right) \end{gathered}$

ELECTRONIC DESIGN • May 10, 1961
times used in design. These are:
$|y|=-\left|\dot{V}_{;} z_{z}=-1 / \boldsymbol{Y}\right| ; \quad|d|=-z_{11} / z_{22} \mid$ $f=-z_{22} / z_{11} ;$

We see from 12 that the determinants of all matrices can be expressed in terms of quantities listed in the matrix table.

Illustrative Example Derives

d-Matrix For Circuit of Fig. 1
Let us derive the d-matrix for the circuit of Fig. I. Fig. 2a shows the same circuit, broken up into simpler two-port networks (series-parallel connection). The matrix of the resultant two-port network is equal to the sum of the d-matrices of the simpler networks. Fig. 2b is the general representation of such a connection.
From the table (circuit 10) we determine the d-matrix of the upper network, that is, the dmatrix of the grounded-base transistor:

$$
\mid d]=\frac{1}{Y_{,}}\left[\begin{array}{ll}
Y_{12}+Y_{22} & 1 \\
-|Y| & Y_{21}+Y_{22}
\end{array}\right]
$$

The d-matrix of the lower L-network is:

$$
[d]=\frac{Z_{1}}{Z_{1}+Z_{2}}\left[\begin{array}{cc}
-1 & Z_{1} \tag{14}\\
-Y_{1} & -1
\end{array}\right]
$$

The sum of the two matrices can be readily shown to be:
$\left[d \left\lvert\,=\left[\begin{array}{cc}\frac{Y_{12}+Y_{22}}{Y_{2}}-\frac{Z_{1}}{Z_{1}+Z_{2}} & \frac{1}{Y_{1}}+\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}} \\ -\frac{Y}{Y_{2}}-\frac{1}{Z_{1}+Z_{2}} & \frac{Y_{21}+Y_{22}}{Y_{2}}-\frac{Z_{1}}{Z_{1}+Z_{2}}\end{array}\right]\right.\right.$
(15)

Thus, the general formulas of two-port theory yield all the design relations for the circuit of Fig. 1. This example is illustrative of the simplicity of the method.

Translated from "Matrix Tables For Transistor Tuo-Port Networks," E. N. Garmash, Radiotekhnika, No. 12, December, 1960, pp. 43-50.

References

1. E. V. Zelyakh, Fundumentals of Electric Network Theory Acad. Sci. Press, 1451.
2. R. Shea, Principles of Transistur Circuits, Wiley, 1953
3. R. Shea, Low-Frequency Transistor Amplifiers.
4. V. P. Sigorskiy, Radiotekhnika, Vol. 9, No. 4, 1954.
5. E. N. Garmash, ibid. vol. 13, No 7, 1958.
6. Ibid., Vol. 14, No 11, 1958.
7. Kh. I. Cherne, Radiotekhnika, vol. 12, No 7, 1957.

TYPE K-5A FREQUENCY STANDARD

Size, $31 / 2^{\prime \prime} \times 3^{\prime \prime} \times 13 / 4^{\prime \prime}$
Weight, $11 / 2 \mathrm{lbs}$.
frequency: 400 cycles
Accuracy: $.03 \%,-55^{\circ}$ io $+71^{\circ} \mathrm{C}$
Input: 28V DC $\pm 10 \%$
Output: 400 cy. approx. sq. wave
at 115 V into 4000 ohm load (approx. 4W)
TYPE 2007-6 FREQUENCY STANDARD
Transistorized, Silicon type
Size, $11 / 2^{\prime \prime}$ dia., $\times 31 / 2^{n}{ }^{\text {H., Wh., }} 7$ oz.
frequencies: 360 to 1000 cy .
Accuracies:
$2007.6 \pm .02 \% \quad\left(-50^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
R2007-6 $\pm .002 \%\left(+15^{\circ} 10+35^{\circ} \mathrm{C}\right)$
W2007-6 $\pm .005 \%\left(-65^{\circ} 10+85^{\circ} \mathrm{C}\right)$
Input: 10 to 30 V DC at 6 ma
Output: Multitop, 75 to 100,000 ohms

TYPE 25 PRECISION FORR

Size, \%" dia. $\times 2$ \% $^{\prime \prime}$
Weight: 2 ounces
Frequencies: 200 to 1000 cy . (specify) Accuracies:

R-25T and R-25V $\pm .002 \%\left(15^{\circ}\right.$ to $35^{\circ} \mathrm{C}$)
25 T and $25 \mathrm{~V} \pm .02 \%$ (-65° to $85^{\circ} \mathrm{C}$)
for use with tubes or transistors.

TYPE 15 FREQUENCY STANDARD

Similar to Type 10 (illustrated) except with silicon transistor, hermetically sealed and vibration resistant.
Size, $1^{\prime \prime} \times 2^{\prime \prime} \times 2^{\prime \prime}$ high
Tolerance, $\pm .01 \%$ from $-40^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$
Output: .IV at 50,000 ohms source impedance.

American Time Products, Inc.
61.20 Woodside Ave., Woodside 77, L.I., N. Y.

Incremental Network PropertiesA Generalized Compensation Theorem

0CCASIONALLY it is of interest to consider how the performance of a network changes if the elements in the network change characteristics incrementally. In the case of linear networks one deals with small changes in element values, while in the case of nonlinear networks one may be concerned with a small change in the characteristic curves that describe the elements.

Nonlinear Networks Analyzed by Superimposing Increments

Consider a stable nonlinear resistance network with constant voltage sources (or an analogous system such as a magnetic circuit) consisting of B branches and J junctions. In general, each branch consists of a voltage source E_{a} and a series element with voltage-current characteristics $v_{n}\left(i_{n}\right)$ where i_{n} is the branch current. Reference polarities are as in Fig. la. If a small change
occurs in the voltage-current characteristic from $v_{n}\left(i_{n}\right)$ to $v_{n}{ }^{\bullet}\left(i_{n}\right)$, as indicated in Fig. 2, the new typical branch is as shown in Fig. lb. The direct application of Kirchoffs laws to both the original and the modified network, together with the assumption of small change, yields:

$$
\begin{equation*}
v^{*}\left(i_{n}+\Delta i_{n}\right) \approx v_{n}^{*}\left(i_{n}\right)+\left[\frac{d v_{n}^{*}}{d i}\right]_{i-i_{n}} \Delta i_{n} \tag{1}
\end{equation*}
$$

This shows that the increment $\Delta i_{\text {s }}$ can be calculated if each branch is replaced by the branch of Fig. lc. Each branch carries the increment of current Δi_{n}, has an incremental source Δe_{n} and incremental resistance τ_{n}, where:

$$
\begin{align*}
\Delta e_{n} & =v_{n}^{*}\left(i_{n}\right)-v_{n}\left(i_{n}\right) \tag{2}\\
r_{n} & =\left[\frac{d v_{n}^{*}}{d i}\right]_{i=i_{n}} \tag{3}
\end{align*}
$$

Note that the elements of the "incremental"
network depend only on the currents in the original network and on the incremental characteristics. Thus the increments can be calculated by superimposing the increments caused by one element change at any one time. (The stability of the network is assumed in the entire discussion.)

Linear Networks Yield
 \section*{Compensation Theorem}

Application of the above ideas to linear networks results in the familiar compensation theorem: An incremental resistance change in a branch of a linear network can be accounted for by an incremental source $i, \Delta R_{n}$, Fig. 3. The same procedure applies for linear networks with ac sources if phasors and complex impedances are used.

A further result is the generalization of Vratsanos' theorem (see ED "A Network

Fig. 4. Increment in Z_{n} can be represented by a compensating source.

Theorem," Sept. 15, 1957, p 174). To calculate the change in driving point impedance Z due to a small change in a branch impedance $\Delta Z_{n} \varangle Z_{n}$ one relates the change in input current caused by the change in Z_{8} to the change in driving point impedance:

$$
\begin{gather*}
Z+\Delta_{n} Z=\frac{E}{I+\Delta_{n} I} \approx Z\left(1-\frac{\Delta_{n} I}{I}\right) \tag{4}\\
\text { or } \frac{\Delta_{n} Z}{Z}=-\frac{\Delta_{n} I}{I} \tag{5}
\end{gather*}
$$

and, representing the increment in Z_{n} by a compensating source, Fig. 4, one obtains, from the reciprocity theorem:

$$
\begin{gather*}
\frac{E}{I_{n}}=\frac{-I_{n} \Delta Z_{n}}{\Delta_{n} I} \tag{6}\\
\text { or } \quad \Delta_{n} I=-\frac{I_{n}^{2} \Delta Z_{n}}{E} \tag{7}
\end{gather*}
$$

If N impedances experience small fractional changes, then the total change in input current is

$$
\Delta I=-\frac{1}{\mathrm{E}} \sum_{n=1}^{N} I_{n}^{2} \Delta Z_{n}
$$

and the change in input impedance is

$$
Z=\sum_{i}^{N}\left[\frac{I_{n}}{I}\right]^{2} \Delta Z_{n}
$$

From a dual proof, the input admittance increment Y is related to changes in branch admittance by

$$
\Delta Y=\sum_{i}^{N}\left[\frac{V_{n}}{E}\right]^{2} \Delta Y_{n}
$$

Abstracted from an article by E. Schwartz, Archiv der Elektrischen Uebertragung, Vol. 14, No. 9, September 1960, pp 405-410.

Sarkes Tarzian

 SERIES F

THERE'S EVEN MORE TO THIS...

This small " F " unit contains the oversize junction that is characteristic of all Tarzian silicon rectifiers. The result is big performance; specifically, lower temperature rise, longer life, increased reliability, and the capacity to handle inrush currents well above normal circuit requirements.

Furthermore, present production of Series \mathbf{F} units is at the rate of tens of thousands per day. Production of these units to date is in the millions. Performance testing and life testing go on continuously, of course. The experience of users is not only favorable, but extremely large. And prices are realistic, to say the least.

In short, we don't know of anybody who makes more of these, or who makes them better, or who makes them at less cost. Do they meet your requirements? Write for the facts you need for decision. Application engineering service is also available without cost or obligation.

Where highest quality is in volume production

SARKES TARZIAN, INC.
Wortors Leading Menufacturews of TV and FM Teners - Closed Circen TV Systoms o Broescast

EQMICONDUCTOR DIVISION - ELOOMINOTON, INDIANA In Canada: 700 Weston Rd., Torontog - Export: Ad Aurloma, inc., Now Yort CIRCLE 774 ON READER-SERVICE CARD

With no damage to components or materials, this self-activating liquid causes the coatings to flake from the part being stripped. In most cases, the resin can then be re-processed. and the components can be recoated after repairs or changes have been made.
TELESOLV is a controllable stripping agent. Its process can be halted at any step for the removal of parts, when complete stripping is not required. TELE-SOLV will not corrode, discolor, or otherwise affect copper, aluminum. ferrous metals or resin-based enamels.
TELE-SOLV is non-flammable, and requires no special equipment for application. TELE.SOLV is up to 10 times faster, yet costs less than comparable products.

Write for free literature on both TELE.SOLV G and TELE-SOLV

NARMCO - for high-performance materials. Formuletors of Structural and Industrial Adhesives. Reinforced Plastic Laminating Materiats Ablative and Molding Compounds - Insulating Compounds

TELE-SOLV G. This gelatinous, self-activating stripping agent is an advanced formulation which combines all of the outstanding properties of TELE-SOLV, but is specifically designed for the easy removal of Epoxy and Polyester Resins from contoured and vertical surfaces. This new stripping agent is also particularly useful for large-area surfaces when these parts can not be dipped in liquid TELE.SOLV. TELE.SOLV G is applied by brushing or spatula.

UNIVERSAL

introduces the MODEL LS-1

"COMPACT"- TOROIDAL WINDING MACHINE

This new high speed toroidal coil winding machine has the exclusive I'niverval feature, quick "iwistlocking" interchangeable winding heads. With different heads the machine does either random or $a c$ curate layer winding. Wire range - 20 to " 46 AWG; maximum winding speed 1200 RPM: coil si/es from subminiature (finished
1D $065^{\prime \prime}$) to $51 \mathrm{~m}^{\prime \prime}$ O.D, Mashine 1D. $063^{\prime \prime}$) to $51 / 2^{\prime \prime}$ O.D. Machine can re orient a coil during uind-

ing if $t 00$ much build-up of wire riccurs on one side of cuil.

Autumatic core rotation for Automatic core rotation for either 360° continuous winding or 1 k()$^{\circ}$ segmental winding attach. ments. This unit has high-speed, 1-digit predetermining transistorized electric counter with photo electric pick-up that actually ounts the wire as it interrupts the beam.

Price $\$ 2,750$ FOB Foctory, complete with choice of one winding head and core-holding fixture.

UNIVERSAL

Send for further information.

MANUFACTURING COMPANY, Inc
1168ED Grove Streat, Irvingion II, N. J. ESsex 4.9300
The most COMPLETE lime ef TOROIDAL equipment in the werid.

ELECTRONIC DESIGN DIGEST
of recent papers and literature

Development Trends in

Telephone Systems

TECIINICAL advances in telephony during the next ten years will revolve around the progressive introduction of new devices such as semiconductors and new techniques such as digital transmission schemes.
The advent of transistors has made it possible to introduce amplification into the telephone sets with the power coming from the exchanges. This would permit a better quality transmitter than the present carbon granule types. The attenuation in the local networks would be increased still further, though this would lower the cost of the line plant only slightly,

Although the familiar bell signal is adequate, there is the alternate possibility of using a transistor conversion of the ringing current to a voicefrequency current which operated a signal generator. possibly in the receiver itself. The sound would be much pleasanter but the price might be prohihitive and price rules at this level.
Keysets will definitely replace dials. The Bell Laboratory concept is a voice-frequency system, each digit consists of two frequencies, each from two groups of four frequencies. This appears to be the best system devised so far. It is insusceptible to speech interference and does not require polarity reversal in keying position.
These new features, speech amplification, callsignalling devices and keyset impulsing, are characteristic of the telephone sets for electronic systems which are now at advanced stages of study. Amplifying and active units must be provided for calling and impulsing, the former because an electronic exchange cannot send ordinary current. only voice frequency. It was there-
fore a natural step to introduce transmitter am－ plification as well．

Automatic Switching－

Humble Crossbar Has Its Day
The past decade has been characterized by the breakthrough of the crossbar systems on a broad front．The crossbar switch has remained essen－ tially unchanged for more than 40 years，the only modification being its adaption to other manu－ facturing methods．The crossbar systems have achieved a high degree of perfection．Their build－up has been governed by system engineer－ ing philosophy with a sound economic compro－ mise between functions and components．It may appear strange that nowhere in the world has a cheaper switch been developed with equal per－ formance．The reason，of course，is that the whole direction of developmental work has been to－ wards electronic systems．
The developmental work on electronic ex－ changes has now reached the point at which the first field trial at Morris，Ill．，is under way．But it is alrcady clear that，apart from military appli－ cations，the future of electronics in telephone ex changes is more a question of price than of new and improved functional facilities．Part of the economic problem is that entirely new telephone sets would be required with electronic systems．

The Ferreed，
 Interim Electromechanical Device

The very fact that new telephones will be re－ quired，and that no suitable semiconductor has been found for the switching networks，is the reason for Bell＇s production of the ferreed．This is a relay with a magnetic lock built around a square－loop ferrite core．The relay has two ＂make＂contacts in two separate glass tubes． They are used in hybrid systems in which they perform the switching functions while electronic devices perform the memory and logic functions． The ferrecd relay is extremely rapid for an elec－ tromechanical device，requiring only one $60-\mu \mathrm{sec}$ pulse to operate．（The speed of an electronic marker can be used．）However more relays must be introduced for transmitter feed，ringing，ring－ trip and clearing．Therefore，though the ferreed is compatible with electronic devices，the result－ ing hybrid system is far removed from an all－ electronic system．

Integrated Systems

Are Another Possibility

Which way telephone systems will go－to－ wards conventional systems with limited inter－ spersion of electronic elements，or all－electronic systems－is not easy to say．There is still another possibility，an integrated switching and transmis－ sion system．The Bell Laboratories ESSEX sys－

HEXCEL HONEYCOMB

The use of metallic honeycomb in attenuating RF noise is an example of honeycomb＇s unique properties combining to provide several re－ quired end results．Honeycomb is extremely offective in this application．not only frecuency noise，but because it provides an extremely noise，but because whether directionalizing low pressure drop whether directionaler
air flow or merely serving as a grille．In other instances．honeycomb＇s RF filter properties combine with its light－directional or light－ diffusing properties to place the sources of light in a well－lighted test room outside the electrically shielded area．Through correct choice of cell size and cell depth，all proper－ ties will operate near optimum levels．

Honeycomb at High and
 \section*{Low Frequencies}

Two conditions may be critical in the attenu－ ation of RF noise，although not usually in the same installation．The first concerns energy at the higher frequencies．Here，the cut－off frequency，or maximum frequency at which aluminum honeycomb will effectively block energy radiation，should be well above any frequency actually encountered．The cut－off frequency is a function of the cell size and cell depth of the honeycomb fill $\%$ inch in visual－grade honeycomb and down to $1 /$ inch in the less uniform struc！ura grades，with cell depth as great as $24^{\circ \prime}$ ．In grades，with the honeycomb most commonly used is a $1 / 4$－in．cell with a cell depth of $1 / 2{ }^{\prime \prime}$ to $1^{\prime \prime}$ ．
The second critical condition of attenuation is at the low frequency end of the radio noise spectrum．In this area，choice of ma－ terials is more limited，since the shielding may require material of higher permeability， such as iron．Correct selection of materia， cell size，cell depth and foil gauge，howeve．
will assure effective frequency attenuation．

RF Shielding and
 Light Transmission

Where light is to be transmitted through an RF shield，the honeycomb filter must first be able to perform its primary electrical function．For signaling devices，where a beam of parallel light is passed through the
honeycomb louver in a direction parallel to honeycomb louver in a direction parallel to the cell axes，the correct combination of cerl illumination，however，in a full－lighted ceil－ ing，the ratio of cell depth to cell size must be kept as low as possible，the honeycomb panel must be electrically grounded，and proper finish must be used on the cell walls． The light transmission properties of alumi－ num honeycomb are primarily a function of the cut－off angle（the angle whose tangent is the ratio of cell depth to cell size， relative position of the honeycomb at fight walls，and ceiling．

As an example of honeycomb＇s light trans－ mission properties，a typical Coefficient of Utilization（light transmission efficiency） for a large room would be about ． 40 ，assum－ ing the instalation of honeycomb with a cell depth of ． 43 in．，cut－ofitions．A light level optimum plenum conditions． 100 foot－candles with a Visual Comfort Index of 96 would be quite practicable in Index of 9 would be quite practicable installation．Incressing the cell depth would lower the Coefficient of Utilization， but would give an even higher Visual Com－ fort Inder．
If your design problems could benefit from additional information about the RF shield－ ing and light－directionalizing properties of ing and h ing Properties of Metallic Honeycomb＂； HLB－101．＂Lighting Properties of Erched HONEYLITE＂；and TSB－102，＂Air Direc－ tional Properties of Honeycomb＂．Write Dept．L－5．

Fie 1 Predicted and Actual Attenuation Test

シメモEL®PRODUCTS INC． World leader in honeycomb
Executive Offces： $\mathbf{2 3 3 2}$ Fourth Street，Borteley，California Plonts：Oaklond and Earkeley，Calif．，Havre de Graee，Md． Selos Omees：Long Islend Ciry，N．Y．，Chicago，III．，Fort Worth，Tones； Inglewood．Calif．
CARD
 bilities for Switching tubes. Difficult switch tube or device problems can be solved by experienced Westinghouse engineers who are system design oriented. For example: To protect a low noise S-Band traveling-wave tube from 250 KW peak power at 1 KW average without serious deg. radation of noise figure - Westinghouse developed the WX-4404 pre-TR tube with a maximum insertions loss of 0.2 db . Power incident on the TWT is reduced to less than 100 watts peak. Other example: To protect the receiver of a C -band pulse doppler radar employing a ferrite circulator from transmitter power up to 1 KW peak power and 100 W average power reflected from the antenna without degrading system performance-Westinghouse developed the WX-4405 crystal protector with a maximum recovery time of 0.2 microseconds. Crystal receiver is protected at power levels from zero to 1 KW peak. What about your problem? Write on your company letterhead to: Westinghouse Electric Corporation, Elmira, N. Y. You can be sure . . . if it's Westinghouse.

DIGEST

tem is an example of this. It has time division multiplex throughout with line concentrators based on pulse amplitude modulation (PAM). In the line concentrator, a change is made to pulsecode modulation (PCM) and all other communication in the system is on PCM basis.

First "Full-Integrated"

System Proposed In Sweden

A more radical system has been proposed in Sweden. This system also employs time division multiplex with PCM transmission between exchanges. In principle, the subscriber's line network also works on a four-wire basis. On the grounds of cost, however, four wires cannot be used physically. Instead, ordinary analog transmission is used in one direction and delta modulation in the other. The delta modulation takes place in a central data processor which stores the last amplitude value for each conversation. The difference between the present and stored amplitudes constitutes the value in the deltamodulation sequence which is forwarded to line concentrator and telephone set. The telephone set demodulates the signal for the receiver. The system may embody the TASI (Time Assignment Speech Interpolation) method entirely and achieve a radical savings in circuits.

The advantages of integrated systems unfortunately only become noticeable if fairly large portions of a telephone are converted. The advantages come from the same information carriers throughout the system.

Transistor Systems

Cheaper For Transmission
For carrier systems, the trend has been towards larger bandwidths in coaxial cables. Systems up to 12 mc exist. In a few years, 36 -mc systems should be both technically feasible and economically desirable.

Carrier systems are being progressively transistorized. Transistor amplifiers for $12-\mathrm{mc}$ coaxial systems are within reach. The only doubt concerns the shock resistance of high-frequency transistors. Otherwise transistor systems are proving cheaper than tube systems.

Even if bandwidth on the whole has become cheaper, there is a tendency to cut the bandwidth on expensive circuits. On the Atlantic cables, the compromise of 3 kc instead of 4 kc spacing on the telephone channels is logical. In the TASI system, which is on the verge of a switching technique, the number of channels has been doubled. In the TASI sytem, a channel is seized only if there is speech on the line. Vocoder systems that would permit large reductions in
bandwidth are under development but it appears doubtful if they will be low enough in cost for commercial telephony.

Short Haul Systems

Have Been Disappointing
There has been much talk during the fifties of short-haul carrier systems. The results have been disappointing. It seems impossible to cut the costs below a certain level, and there would be no economic gain at distances below about 40 kilometers. Among the cost items must be counted the line signal receiving equipment. The line signals must be sent at levels which can be transmitted over the system. These levels are an order of magnitude too low for operating the relays and other equipment in the exchanges. A radically new idea is needed.

Two other "short-haul" systems have been discussed: the TJ and the PCM systems.

The TJ system is a radio link system for the frequency range $10,700-11,700 \mathrm{mc}$. It can handle 240 telephone channels or one TV channel. It has a base band of $5 \mathrm{mc}, \mathrm{fm}$ modulation, and a 400 -mw output direct from a klystron. The maximum length of the entire link is 500 kilometers. Line of sight transmission is used between the relay stations which are $40-60$ kilometers apart. Otherwise the TJ system is based on the same principles as the TH system and may be said to be an intermediate step between the TD and TH systems.

Digital Systems
A Possibility
The PCM system, T-1, is a 24 -channel, timedivision multiplex system with a $1,5.36-\mathrm{mc}$ bit frequency. Total length for one system planned is 200 km . Transmission is in existing four-wire cables. Repeater spacing is about 2 km . As in all digital systems the terminal equipment is fairly complicated while the relay stations are very simple.
It is doubtful when a PCM system will become profitable. The present prices of semiconductors are much too high.

Cost Is Factor

In Waveguide Systems

In the fields of radio link and waveguide systems, the AT\&T group in the USA has been the leader. The critical question is whether the millimeter wave generators (klystrons or backwardwave oscillators) can be built cheaply enough. It is possible that tunnel diodes may be used instead of traveling-wave tubes for the regenerative amplifiers.
Abstracted from: Trends of Development in Telephony. C. Jacobaeus, Ericsson Review, Vol. XXXVII, No. 4, 1960, Stockholm, Sweden.

$10 \mu \mathrm{~s}$ pulse separated from 4 цs pulse by 1.2 ıs space. Trace A: 100 .ke syatem input. Trace B: $100-\mathrm{kc}$ output. Trace
Rate: $10 \mu \mathrm{~s} / \mathrm{cm}$. Vertical Deflection:. $5 \mathrm{v} / \mathrm{cm}$.

Pulses recorded on any standard $\mathbf{1 0 0}$-kc system reveal previously undisclosed data when played back on the Mincom Series CM-100 Video Instrumentation Recorder/Reproducer. At 60 ips , a prerecorded tape from a standard $100 \cdot \mathrm{kc}$ recorder will present on the CM-100 an improved frequency response of $200-220 \mathrm{kc} \pm 4 \mathrm{db}$ with a practical limit of 250 kc . CM-100's superior playback heads and phase-compensating electronics produce better rise time, correcting for phase shift and overshoot. This recovery of hidden data is only one of the advantages of the CM-100, a 7 or 14 -track 1 -megacycle system which is now performing predetection recording/reproducing on an operational basis - in FM, FM/FM modulation, PCM and PCM/FM. Write for specifications.

Where research is the key to tomorrow
division Minnesota Mining and Manufacturing company
MINCOM 2049 SO. barrington ave., los angeles 25, california - 529 Penn bldg., 425 13th Street n.w., washington a. d.C. CIRCLE 780 ON READER-SERVICE CARD

HIGHER OUTPUT, GREATER EFFICIENCY FROM PL-177A BEAM PENTODE

For use in low to medium-power singlesideband applications, the Penta PL-177A beam pentode provides higher output, greater efficiency and less distortion than comparably rated tubes and at frequencies up to 175 Mc . Of nearly equal importance is the smais size of the PL-1. And less than four inches from the base to the top of the plate cap.
The superiority of the. PL-177A results from the use of Penta's exclusive, patented vane-type suppressor grid, which channels the electron fow to provide true beam-tube performance.
Operating as a Class-AB, linear R-F amplifier, a single PL-177A will
deliver up to 210 watts of usetul
output. In Class-C service, one
PL-177A will provide 220 watts. output. In Class-C service, one
PL-177A will provide 220 watts. Plate voltages as high as 2000
will operate with nearly equal efficiency t only 600 volts.
The PL-177A, rated at 75 watts plate dissipation, is both mechanically and electrically rugged, and can withstand prolonged periods of overload operation. This Penta beam pentode is the answer to many application problems wherein a small, dependable tube, capable of operation at full ratings well into the VHF range, is required.
Write for the PL-177A data sheet, and for your free copy of "Transmitting Tubes for Linear Amplifier Service," which explains in detail why Penta beam pentodes are clearly superior.
volte call be used, yet the tube

LETTERS

Designers to Blame? Objections!

 Sir:Your editorial in the Jan. 18 edition of Electrosic Desicn stating "that the design engineer did not know what he was doing," is-to quote a well-worn but applicable phrase-"putting the shoe on the wrong foot."
Let's review the arguments from the design engineer's point of view. I contend that the main reason that equipment arrives at a site with system discrepancies is that the systems engineer did not do his job in the first place.
Ill be gracious enough to overlook the fact that the systems engineer was inadequately trained and far inexperienced and assume that the error was not premeditated. But unintentional or not, the fact remains: the design engineer is forced to make assumptions when the detailed information is not or cannot be had from a systems group used to dealing in generalities. When the assumptions later cause a discrepancy, the blame is laid on the design engineer, when, in reality, the original cause lies with insufficient information from a systems group.

And don't say it's the design engineer's fault if he did not get the information. Sincere efforts cannot avail against the paper-work ramparts of a solidly built systems group-especially one oriented on military paper work "procedures" and classified information "channels." Only headknocking, from the top down, can clear congested "channels," and the design engineer is in a poor position to slice through the red tape from the hottom up and procure the information.
In addition so many systems men consider themselves such hardware geniuses (some are, some are not) that they spend most of their time telling the design group how to build a piece of gear and not w hat to build in terms of functional requirements.
Your choice of examples to illustrate the in eptitude of the design group was ill-chosen. For example:
". . . the impedance match between units was way off."

You politely ignore the problem of whether the output or input impedances of a unit were within the specified tolerances. This is the logical checkout procedure-not the measurement of "impedance match."
Specifically impedances may be purposely mismatched. Maximum power gain is not always the prime consideration in some circuits. Very often maximum voltage transfer to a fixed load or opti-

TELEMETRY BY TELE-DYNAMICS

Universal Millivolt

 Subcarrier Oscillator

For your aerospace telemetry needs here is a new Subcarrier Oscillator with true differential input...direct actuation from outputs of grounded or ungrounded thermocouples, strain gage bridges and any transducer with millivolt level output. Other features include isolated input and output, high common mode rejection with no D.C. level restrictions and all silicon semiconductors.
Tele-Dynamics' Type 1254A directly replaces the combination of preamplifier and high-level subcarrier oscillator now used in FM telemetry and assures reliable operation in aerospace environments.
For detailed technical bulletins, call the American Bosch Arma marketing offices in Washington, Dayton or Los Angeles. Or write or call Tele-Dynamics Division, American Bosch Arma Corporation, 5000 Parkside Avenue, Philadelphia 31, Pa. Telephone: TRinity 8-3000.

See this and other new Tole-Dynamics; Telemetering Conterence may 22nd, 23/d,

TELE-DYNAMICS

 DivisionAmgrrean moser armay GORPORATHON

Model F-296 makes full-size photo
Moderd of single transients
record
or identical repetitive phenomena.

With these
Fairchild-Polaroid
Oscilloscope Cameras you can...

> PERMANENTLY RECORD OSCILLOSCOPE TRACES in 2 to 10 seconds!

No special photographic skills are needed with a FairchildPolaroid Oscilloscope Camera. Two models are available. One records single, direct-reading, full-size scope images; the other,
two half-size images on one two hali-size images on one and simple, hardly interrupts lab procedures. You can evaluate prints as fast as you can pull them from the camera, enter photo evidence into reports at once. For literature and prices,
write to Industrial Products Diwrite to Industrial Products Disision, Fairchild Camera Midand Ave., Yonkers, N.Y. Dept. ED-5.

FAIRCHILD
FAIRCHILD CAMERA AND
INSTRUMENT CORPORATION 580 midiand Avenue Yonkers, New York

CIE 783 ON READER-SERVICE CARD ELECTRONIC DESIGN • May
mum noise or distortion conditions will dictate a mismatch.
So I say stick to measuring the output and input impedances to see if they meet specs, and do systems engineering on matching source and load at the site.
Therefore I say to the systems engineer, if you had not waited until you got to the site to start engincering, you would not have had the problems in the first place. Correct information on what is required in early phases of the project will reduce these headaches much more than recriminations from the launching pad.

Arnold E. Larson Project Engineer Philco Corp. Los Gatos, California

Sir:

Your editorial "Don't Trust the Design Engineer" misrepresents a grievous problem. The systems engineer is in a hot seat, and only the most competent people should ever reach this position. However, using the design engineer as a scapegoat is like the captain of a ship blaming a lowly seaman for difficulties or shipwreck.
It has been a scandal in this industry that systems engineers often do not even attempt to specify the performance, inputs or outputs or other characteristics of the building blocks from which their systems are assembled. A typical specification is 99 per cent "boiler plate": legal forms, Buy American, wage-hour laws and trivia.

The only way to return engineering to the lab is to start at the source, at the captain of the ship. Components, subassemblies, pieces of equipment are not created in a vacuum. If the systems engineer does not or cannot define the functions to be performed, that systems engineer and that project will always be in trouble.

Noel B. Braymer
Project Engineer
Electro Instruments Inc.
San Diego, Calif.
Sir:
I am writing in reference to your editorial in the Jan. 18 issue. As a wave-filter engineer, I don't like the assumption that "the design engineer must be assumed to be wrong."

I am not familiar with the number of rejects received at Canaveral, but I do know that all fields of engineering are specialized, and I believe that changes made by people at the working end only prove that the requirements set forth to the design engineer were not correct in the beginning.

As an example, you stated that impedance measurements were made and presumed errors

SOLUTION

TO A

HUNTING

PROBLEM

DAMPED HYSTERESIS SYNCHRONOUS MOTOR — MODEL FBC3830H. 81
It is characteristic of hysteresis synchronous motors that any variation in the applied voltage, frequency, or load will cause an initial hunting or oscillation of the output shaft. However, this condition can be controlled firnc hysteresis synchronous motor, model FBC 3830 H .41 is designed to minimize hunting or oscillating characteristics.

The built-in damping capabilities of this 3 speed motor results in fast return to the original steady state condition. Single speed as well as multiple speed damped units are available

> SPECIFICATIONS
> QUENCY: 60 cps
> VOLTAGE: 115 voits, single phase
> SPEED: $3600 / 1800,900 \mathrm{rpm}$ RATED HORSEPOWER: $1 / 20 \cdot 1 / 40 \cdot 1 / 100$

> INPUT POWER: $2.2 / 1.4 / 0.9 \mathrm{amps}$ RATED TORQUE (in-oz): 14/14/11

APPLICATIONS - Ideally suited to data and video recorder applications. machine tool controls, computer applications, or any application where low noise, low initial hunting of output shaft, and quick speed recovery is required. May imc assist in solving your hysteresis synchronous motor hunting problems?

Write for additional information, or send for hysteresis synchronous and

torque motor catalog.
 $\square \cap \square$
 Magnetics Corp.
 EASTERN DIVISION

570 Main Street
Westbury, LI., N.Y.
EE 4.7070
TWX WESTBURY N.Y. 5250 U
OTHER PRODUCTS: propeller and vane
axial fans/centrifural blowers/heat
exchangern/dymamotor and unverters/seno
motors and monr tachometers/ forque
motors/induction motors/de motors
-Shown aboce are illustrations of initial hunting or oscillation and constant speed recovery patterns of damped (damping retio of 0.7 to 0.9), and undamped hyster esis synchronous motors.

CIRCLE 784 ON READER-SERVICE CARD
10,1961

COMPLETE PROTECTION FOR MAXIMUM RELIABILITY

PotPot super encapsulation seals in factory-fresh performance. seals out troubles...

New performance reliability under the most adverse moisture, sand, dust, corrosive and explosive atmospheres, temperature cycling, low temperature storage and operating conditions, is sealed in through the Clarostat PotPot encapsulation technique. This is the answer for maximum reliability of potentiometers, switches, and other components, or combination assemblies. Potpot encapsulation meets MIL-E-52 specification.

The exclusive Clarostat PotPot encapsulation technique is available for standard Clarostat potentiometers and switches. It consists of a pre-sealing operation with a moisture test before encapsulation in a high density compound of desirable electrical and mechanical properties. Shaft and bushing assemblies are completely sealed

Write for complete technical information ...see for yourself how performance reliability increases through the PotPot technique ...
\{CLAOSIT\} CLAROSTAT MFG. CO., INC.
DOVER, NEW HAMPSHIRE

LETTERS

were corrected. In the wave-filter field, it is sometimes desirable to purposely mismatch for better results. People changing termination can affect the original design performance that the design engineer desired. Instead of outward blaming of the design engineer, I think that the whole system should be reviewed from start to delivery.

Ed Dombrosky, Wave Filter Engineer
Interference Control Field Service Laboratory Sprague Electric Co.
Dayton, Ohio

'World's Fastest' Disputed

On p. 45, bottom col. 1, of your Nov. 23 issue, you mention exhibition of the Creed punch, which "it claims is the world's fastest." Since our 3,000-word-per minute Model GP-2 was released more than two years ago, it is a relief to see others beginning to enter the field of high-speed, punch-tape recording.

Charles F. West, President Soroban Engineering, Inc. Melbourne, Fla.

- Sce p 1.50, ED, September 16, 19.59, for a description of the GP-2.

Electronic Chewing Gum Editorial Draws Big Response

The closest thing-silver wax . . .
In regard to your editorial in the Feb. 1, 1961 issue of Electronc Design, about an electronic chewing gum, I would like to call your attention to a product which meets or could meet your requirements. Several years ago we developed a conductive wax for making intemal connections in our wafer cell batteries such as the 2 U 6 and the P6M. "Silver Wax" is a suspension of silver plated copper powder in a suitable binder. It is very conductive.
The "silver wax" is usually applied with a small amount of heat, less than 100 C in temperature, to one or both parts to be joined. The joint is later made by pressing the parts together. Temporary connections could be made without heat by simply pressing the leads and a wad of silver wax together. The leads will not be damaged so they can be soldered at a later time if desired. The silver wax can also be re-used.
The melting point, strength of the joint, and other physical properties of the silver wax can be altered by changing the binder. A gum, adhesive, epoxy, lacquer, or almost any other vehicle could be used to obtain the special properties to meet various requirements.
Silver wax is presently sold in bulk form to
other manufacturers at about $\$ 4.50$ per pound. We welcome further inquiries.
C. J. Vander Yacht Burgess Battery Co. Freeport, Ill.

- The sample tested by this editor did not test well in shear or tension. Other vehicles mentioned may be better.

Room curing epoxy silver solders . . .

After reading your editorial on electronic chewing gum in the Feb. 1 issue of Electronic Design, we thought you might be interested in hearing a little bit about our epoxy silver solder. We think it's the closest thing you'll find to electronic chewing gum on the market.

Epoxy silver solder has extremely low resistance $-0.0001 \mathrm{ohm}-\mathrm{cm}$ (approximately the resistance of mercury). It can be applied at room temperature and therefore can be conveniently carried for use any place it's needed. Unlike soldering, it doesn't require an electrical outlet. We think it's ideal for heat-sensitive components such as transistors and diodes, since even when a rapid cure is desired, heat curing temperature can be as low as 85 C .
Like all epoxy materials, it has excellent bonding characteristics and outstanding shear strength. The shear strength of a steel-to-steel bond is 320 psi. Since it will bond dissimilar materials, it finds useful applications in the cap on vacuum tubes and grounding aluminum components to steel chassis.
Actually, the electronics industry is just beginning to scrape the surface of potential uses for this product. We think the future will see its uses increase until it literally becomes an electronic chewing gum.

> Samuel Ringel Epoxy Products, Inc. Irvington, N.J.
The only drawback is that curing is in terms of hours and not seconds.

Encapsulate joint in acrylic resin . . .

Your editorial in the current issue of Electronic Design prompts us to advise you-and your readers-of a new acrylic resin, Quickmount, which may have specific application in the electronic field.

While it may never replace Wrigley's, it has its own compensating advantages such as solubility, self-curing, moldability and time saving factors perhaps even more beneficial-no sticky fingers!

Quickmount is a powder and liquid combination which mixed in a few minutes time, pours into a mold or mounting ring and solidifies into a relatively clear, hard substance in a short while. Its primary use, since its introduction a few

HIGH VOLTAGE POWER SUPPLIES

JOHN FLUKE precision High Voltage Pown FLUKE precision High Voleage to 10 KV . In addition to high calibration accuracy. tight line-load regulation, fine voltage resolution, and excellent long term stability; many other plus features are pro-
vided the design engineer. For example: vided the design engineer. For example:
difficulties resulting from corona, jitter. bounce or overshoot are non-existent in jf supplies. The capability of the John Fluke evidenced by the fact that most of these instruments have been introduced within the past year.

Designed to power photomultiplier tubes and ionization chambers... for research and development of traveling wave tubes and backward wave oscillators.

MODEL	voltage	CURRENT	regulation		STABILITY PER MOUR	MAX RIPPLE QMS	resolution	PRICE
			LINE	Load				
400n	170.1530V	0.3 ma	0.01\%	0.4\%	${ }_{(\mathrm{Per} \mathrm{Oyy}}^{0.02 \%}$	0.002\%	85 V steps	\$335.00
402M	500-1600V	0.1 ma	0.03\%	0.03\%	0.01\%	5 mv	100 mv	\$320.00
412A	500-2010V	0.15 ma	0.01\%	0.01\%	0.005\%	5 mv	10 mv	\$55.00
405	600.3100 V	0.15 ma	0.01\%	0.005\%	0.005\%	5 mv	10 mv	\$595.00
4004	500.6010V	0.20 ma	0.01\%	0.01\%	0.005\%	5 mv	10 mv	\$695.00
4104	1000-10.010	0.10 ma	0.01\%	0.01\%	0.005\%	5 mv	10 mv	\$1095.00

All prices quoted, F.O.B., Factory, Seattle. Prices and technical data subject to change without notice.

JOHN FLUKE

MANUFACTURING CO., INC.
P. O. BOX 7161, SEATTLE 33, WASMINGTON

Gertsch announces:

the CRB line of complex ratio bridges

Ideal for voltage and phase comparison.

Measures complex voltage ratios-both in-phase and quadrature-with high accuracy.

Available in small, transistorized units to completely automatic, selfnulling types.

These Gertsch CRB instruments are designed for testing 3- or 4-terminal networks, including transformers, synchros, resolvers, gyros, and transducers. The Gertsch line includes:
solid state bridge-Model CRB-4. Instrument is fully transistorized . . . highly accurate. A self-contained, phase-sensitive null indicator permits rapid measurements. $\mathrm{R}_{1}+\mathbf{R}_{1}$, voltage ratios are read from concentric switch dials. Battery or line operation . . . case or rack mounting. Operating frequency range: 380-420 cps. Weight 20 pounds.
complex ratio bridge--Models CRB-1B and CRB-2B. In these units, quadrature component reading is indicated either as rectangular coordinate, $\tan \theta$, or θ directly in degrees. Useful for measuring angles as small as $.001^{\circ}$. Six-place resolution, with high accuracy. Cabinet or rack mounting.

$$
\begin{array}{lll}
\text { CRB-1B } & 30-1,000 \mathrm{cps} & 2.5 \mathrm{f} \text { or } 200 \mathrm{~V} \text { max. } \\
\text { CRB-2B } & 50-3,000 \mathrm{cps} & .35 \text { f or } 200 \mathrm{~V} \text { max. } .
\end{array}
$$

automatic complex ratio bridge-Model CRB-3. A self-nulling AC bridge with digital readout of both in-phase and quadrature voltage ratios. Excellent for production testing.
Accuracy of bridge is $.002 \%$ max. Five-place resolution, with automatic quadrant indication. Unit is selfcontained, requiring no external calibration sources, and is equipped for external printer readout.

Complete literature on all units sent on request. Bulletin CRB.

3211 S. La Cienega Blvd., Los Angeles 16, Calif. - UPton 0-2761 - VErmont 9-2201 Circle 787 ON Reader-service card

LETTERS

months ago, has been rapid, multiple preparation of metallurgical specimen mounts without the application of heat or pressure.
Our literature has been directed to metallurgists, mostly to those connected with steel, where such tests are commonplace. However, inquiries indicate that the missile, aircraft, and electronic fields may also have use for such a product. It can be poured in a thin film over a circuit board for instance and bind all wires, components, etc. together quickly, efficiently and in no time at all. The wires would still have to be twisted together, however!
An important manufacturer of power tubes is buying a lot of the product, and we suspect its use is other than metallurgical.
We enclose for your information a little folder on the product and if you feel it would have application anywhere in your field, we would be delighted to send data along to any who request. Edward M. Power III
Fulton Metallurgical Products Corp. Pittsburgh, Pa.

Do away with connections . . .

I would like to comment on your recent editorial in Electronic Design discussing "electronic chewing-gum." Although the chewing-gum idea is attractive at first glance, a little reflection will show some of its inherent disadvantages. My conclusions are based on several years experience with various quick-assembly systems
The need for chewing-gum assembly methods arises from the "seat of the pants" method of circuit development. In these days when short lead time from block diagram to finished hardware is the rule, there is seldom sufficient time available to develop a circuit by starting with an approximate design and then "tweaking" the circuit parameters until proper output operation is obtained.

A more efficient way to develop circuits uses a directed testing approach which follows a thorough analytical design of the circuit. If layout is not a factor in the circuit performance a quick assembly using essentially self-supported components soldered with a blob technique is sufficient to check the design. This method of design-testing is especially useful for lumped circuits, particularly digital circuits, where worst case design tolerancing is being checked in the quick assembly.
With other classes of circuit, particularly lowlevel analog types, the assembly includes distributed parameters which cannot generally be predicted, nor reproduced by any "chewing-gum" assembly. In these cases it is necessary to start

Send a sample or blue print for estimates.

Art Wire specializes in wire forms designed for today's automatic production lines . . . manufactured with the precision and uniformity that assure the economy of an uninterrupted work flow. Reduced down-time, and the lower costs made possible by Art Wire's modern production methods mean greater savings to you, and greater profit in your operations.

ART WIRE AND STAMPING CO. 17 Eordon Ploce, Nework 2. N. J. circie tee on reader-service caro

CLEAN•CLASSIC

UNCLUTTERED

Here are meters, free of frills and tinsel. executed in handsome good-taste with sensible proportions to fit and enhance any panel board.

Besides their aesthetic qualities, reckman Panel Meters do an unbeatable metering job. They are of all-metal construction with steel movement enclosure, and are unaffected by magnetic panel materials or stray RF. They are dust-free and sealed to $2.5^{\circ} \mathrm{Hg}$. The $4^{\prime \prime} \times 6^{\prime \prime}$ model shown has a 4.7° long scale are for clear, shadowless readability arcamam Panel Meters have a standard mounting configuration, and are interchangeable with other meters of like dimensions. Special scale plates and bezel colors are available.

Best news of all ... 30 day delivery! Drop us a line or contact your nearest Helipot representative for details on the geckman line, AC and DC Voltmeters, Ammeters, Milliammeters, Microammeters or Expanded Scale Meters.

Beckmani/Helipot ${ }^{\circ}$
POT8: MOTORS : METERS
Helipot Divicion of
Beckman Instruments, Inc.
Fullerton, California
Oimetsin, simes
CIRCLE 789 ON READER-SERVICE CARD
ELECTRONIC DESIGN • May 10, 1961 final layouts. yourselves? base.

Dear Sir: Devices."
with a design which is as complete as a practical mathematical solution allows and then test the design in the final layout. In these cases a chew-ing-gum breadboard may confuse results by introducing parameters which are not adaptable to

In summary, I am suggesting that variations in circuits be handled mathematically rather than experimentally, and that the design be based on extreme value parameters so that a large number of intermediate-value cases do not need to be physically assembled and tested. If most of the development time is spent in analysis, the need for quick assembly methods is not apparent.

Howard J. Carter
EPSCO-West
Anaheim, Calif.
Do you "tweakers" have anything to say for

Suggests RF shielding knitted wire . . .

Your Electronic Chewing Gum editorial may have been tongue in cheek. However, on p 85 of the same issue is an advertisement of a metallic mesh, called knitted wire, that is designed for use as contacts. RF shielding such as metallic mesh "weatherstripping," or the type used by Robinson for bonding of their shock mounts, is a similar material, as is plain steel wool.
The material could be formed in a small cube, or it could be mounted on an insulated mounting

The application would, of course, be limited, however, you did say "electronic chewing gum." Marvin Tepper Raytheon Co. Burlington, Mass.

Nomograph in Error

Your March 15 issue contains a "Nomograph for Determining Surface Areas of Paraboloidal

This nomograph purports to solve the area as a function of the parameters a, the focal length, and L, the depth of the dish.

In terms of a and L it can be shown that the area of a paraboloid is

$$
A=\frac{8 \pi}{3 a}\left[\left(a^{2}+a L\right)^{3 / 2}-a^{3}\right]
$$

The nomograph in your magazine is a solution only for $a=1$ and $L=1$. For other values of the arguments it is in error by a large (but no constant) factor.

Fred W. Wills Bell Telephone Labs Whippany, N.J.

- The proper nomogram for the formula above will be published in a future issue.

Whould auld acauaintance be forgot?

Except for depressions, floods and famines, the sales of one of our real old-timers have been booming every year since its introduction in 1944. The whole thing got started when wc were requested to build a precision DC relay for floating mines that would surely work after it and the mine had been dropped out of an airplane. We tried, and the relay worked - until the mine went off. After the smoke cleared, and small, long-lived rectifiers and diodes came along, an AC version was hatched. Seventeen years later, it's no surprise (to us, at least) that 34 standard variations have successfully found their way into customers' circuits.

This acme of perfection, reliability and joy to the Management's heart is the Series 5 , which is used in either AC or DC circuits to provide: release and operate points very close together; break delay; constant operate voltage despite wide temperature variation; dual coils for differential operation; or meter protection from DC voltage
or current overloads. The " 5 " can operate on as little as 1 mw ., contacts will switch up to 3 amps (depending on sensitivity), and available enclosures range from none to hermetically sealed.

The Series 5 relay is now widely used in burglar alarms, coin-operated arcade games, temperature monitoring controls with Sigma Magnetic Amplifier Relays, boiler water salinity controls, battery chargers and R / C models, as well as in G.I. equipment. The reasons are probably (1) its combination of high sensitivity and stability in hard-knock applications, (2) the "special" characteristics you can get, usually at non-special prices, and (3) the fact that the relay works the way the specs say it does.

This has been No. 113 in an endless series of messages designed to focus public attention on Sigma's sincere desire to sell relays.

At to DESJGN ENGJNEERJNG SHOW
Sigma products on display at Bootb 211
Sigma products on display at Bootb 211
May 22.2s Cobo Hall, Detrons

SIGMA INSTRUMENTS, INC.
91 Pearl Street, So. Braintree 85, Mass. CIRCLE 790 ON READER-SERVICE CARD

THANKS FOR SHARING THE LOAD, DR. MAXWELL!

Your equations together with Newton's Laws serve as a basis for explaining classical electromagnetic phenomena. Most important among the outgrowths of your theory are radio and its allied invention, radar. At AC, we are using techniques for the generation and propagation of electromagnetic waves to increase the total capabilities of the B-52 weapons system.
If you are interested in applying yesterday's theories, like Maxwell's, to today's Mach 2 and 3 aircraft, and if you have a BS, MS or PhD in EE, ME, Physics or Math, please contact Mr. G. F. Raasch, Director of Scientific and Professional Employment, Dept. G, 7929 South Howell, Milwaukee 1, Wisconsin.

AC SPARK PLUG \% THE ELECTRONICS DIVISION OF GENERAL MOTORS CIRCLE 9OI ON CAREER INQUIRY FORM

YOUR CAREER NEWS AND NOTES

Turnover among engineering and scientific staffs costs U.S. industry more than $\$ 300$ million annually, says Dr. Frederick J. Gaudet, Stevens Institute of Technology, Hoboken, N.J.
A National Society of Professional Engineers newsletter quotes the director of Stevens' Laboratory for Psychological Studies as saying this figure includes recruiting and training but not the more elusive costs in project slowdowns and loss of contracts.

Three Recent Discoveries That Can

 Make You More EfficientWant to get things done faster? Research has discovered easily used ways and means:

- Experiments at the Max Planck Institute indicate that in an eight-hour day three spaced five-minute coffee breaks are more beneficial than one 15 -minute break. Reason: the first five minutes of a rest period give the most relaxation.
- Long Island University researcher have found that most people are more alert on their feet than when sitting down. Pacing back and forth can help you think bet ter (though it may not help your fellow engineers).
- Carefully controlled experiments show that in the execution of physical labor, grunting and groaning on the job can actually increase your strength by as much as 5 per cent!

Four Radio Corp. of America engineers are seeking advanced degrees under RCA's David Sarnoff Scholarship Awards. The grants, which range as high as $\$ 6,000$, include full tuition costs, allowances for books, and a stipend of $\$ 2,500$ to $\$ 4,000$, depending on marital status. The men are in the following RCA divisions:
Surface Comm. Div., Defense Electronics Prods., Camden, N.J.-Jack Y. Robertson, 20, University of Calif.
RCA Laboratories, Princeton, N.J.-Karl H. Zaininger, 31, Princeton University, and Steven R. Hofstein, 22, Princeton University.
RCA Victor Co., Ltd., Montreal-William R. Atkins,' 26, University of London.

Mail your subscription renewal today. Get every issue of ELECTRONIC DESIGN.

Advancement Your Goal?

Use CONFIDENTIAL

Action Form

ELECTRONIC DESIGNs Confidential Caree Inquiry Service helps engineers "sell" them. selves to employers-as confidentially and discreetly as they would do in person. The service is fast. It is the first of its kind in the electronics field and is receiving high praise from personnel managers.

To present your job qualifications immedi ately to companies, simply fill in the attached resume.
Study the employment opportunity ads in this section. Then circle the numbers at the bottom of the form that correspond to the numbers of the ads that interest you.
ELECTRONIC DESIGN will act as your sec retary, type neat duplicates of your applico tion and send them to all companies you select-the same day the resume is received
The standardized form permits personnel managers to inspect your qualifications rapidly. If they ore interested, they will get in touch with you.
Painstaking procedures have been set up to ensure that your application receives complete, confidential protection. We take the following precoutions:

- All forms are delivered unopened to one reliable specialist at ELECTRONIC DESIGN.
- Your form is kept confidential and is processed only by this specialist.
- The "circle number" portion of the form is detached before the application is sent to an employer, so that no company will know how many numbers you have circled.
- All original applications are placed in confidential files at ELECTRONIC DESIGN, and after a reasonable lapse of time, they are destroyed.

If you are seeking a new job, act now!

electromic oestan CAREER INQUIRY SERVICE

After completing. mail career form to ELECTRONIC DESIGN, 830 Third Avenue, New York, N. Y. Our Reader Service Department will forward copies to the companies you select below
(Please print with a soft pencil or type.)
Name Telephone
Home Address \qquad City \qquad Zone \qquad State \qquad
Date of Birth \qquad Place of Birth \qquad Citizenship

Position Desired \qquad

College	Dates	Degree	Major	Honors

Recent Special Training \qquad

Compony	city and Statr	Employment History Dates	Tille	Engineering Specialty

Outstanding Engineering and Administratice Experience

Professional Societies
Published Articles \qquad
Minimum Salary Requirements (Optional)
Use section belou instead of Reader Service Card. Do not urite personal
data below this line. This section will be detached before processing
data below this line. This section will be detached before processing.
Circle Career Inquiry numbers of companies that interest you
 $\begin{array}{llllllllllllllllllllllllllll}925 & 926 & 527 & 928 & 929 & 930 & 931 & 932 & 933 & 934 & 935 & 936 & 937 & 924 & 939 & 940 & 941 & 924 & 943 & 94 & 945 & 946 & 947 & 948 & 949\end{array}$

Of special importance to career-oriented scientists and engineers is the fact that Light Military's approach to thin film circuitry and microelectronic module development is both research and application oriented.
Simultaneous with basic and applied research studies are equally intense engineering efforts to practicalize new concepts and apply them
early in the cycle to advance development and design programs now underway in airborne, missile and satellite communications; guidance and digital data processing systems.
If your experience is in any of the above areas, and you want to move forward rapidly as a member of one of our growing research or development groups, we invite your early inquiry.

For immediate consideration, write in strictest confidence to Mr. R. Bach, Dept. 76-MES

LIGHT MILITARY ELECTRONICS DEPARTMENT

GENERAL (GLECTRIC

 All QualifedAppliconts Will Apolicon's Will
Recoive Consideration
For Emplormer For Employment Race, Croed, Color
or Notional Origin.

ENGINEER-IMPROVEMENT COURSES AND SEMINARS

National Courses
 Direct Energy-Conversion Systems
 University of Wisconsin, May 23-24

One of the University of Wisconsin's Engineering Institute courses. These courses are usually 2-5 days duration and are designed to keep engineers up on recent developments. For this and other courses throughout the year, write: Engineering Institutes, University Extension Div., 3030 Stadium, University of Wisconsin, Madison 6, Wisc.

Four Courses Subject of

Summer Sessions at University of Philadelphia
A coordinated presentation of engineering developments of the past Give years in each of the following four fields will be the subject of University of Pennsylvania summer sessions from June 4 to July 15: Modern Radar Techniques, New Devices for Amplification and Switching, Communication Theory and Information Handling, Logic, Switching Systems, and Automata, Four Summer Sessions at University of Pennsylvania. Participants will attend class six hours a day, five days a week, 60 hours in all. Teaching staff is being assembled "from the forward ranks of industry." Enrollment fee is $\$ 250$ per program. For further details, write to: Professor Morris Rubinoff, coordinator, 1961 special summer session, Moore School of Electrical Engineering, University of Pennsylvania, Philadelphia 4, Pa

Math for Operations Research
 at Purdue, June 5-15

Ten-day course at Purdue University will cover construction of mathematical models representing the operation of industrial management or a military organization, inventory control models, waiting line models, linear programing, simplex method, transportation methods, production scheduling models, search theory, cost-effectiveness studies, and system analysis. Write: Division of Adult Education, Purdue University, Lafayette, Ind.

Engineering Writing Courses
 MIT, June 19-23

The fifth special summer program in Scientific and Engineering Reports is designed to help technical persons who are involved in writing and editing scientific and engineering reports to improve their writing skills. Contact Robert R. Rathbone, director, Summer Sessions, Massachusetts Institute of Technology, Cambridge 39, Mass.

THINKING AHEAD

... to the Command and Control System Requirements of the ' 70 's

This is one of the responsibilities of The MITRE Corporation. MITRE, an independent system engineering organization, is engaged in the design, development and evaluation of the Command and Control Systems for the future. As Technical Advisor to the Air Force Electronics Systems Division, MITRE's tasks are:
. . . to provide technical advice and system engineering support for the development of command and control systems for the Aerospace Defense Environment of this decade.
to assist in the formulation of the new system requirements of the '70's and beyond. As part of its work activity, MITRE has a comprehensive program of analytical studies relating to anticipated threats and countermeasures to meet them in such critical areas as:

Advanced ICBM Defense

 Satellite InterceptorsAdvanced Strategic Delivery Systems Ferret and Intelligence Processing Systems Survivability Techniques

These broad technical objectives offer exceptional opportunities for well-trained engineers and scientists.

> Openings are also available at $\lambda 1 \mathcal{J R E}$'s facilities
> in Montgomery, Alabama and Fort W'alton Beach. Florida

Inquiries may be directed in confidence to Vice President - Technical Operations

MITRE
 CORPORATION

Post Office Box 208, 15-AG, Bedford, Massachusetts

CAN YOU QUALIFY FOR A CAREER WITH PAN AM?

Growth of
Pan American's Guided
Missiles Range Division has created
new and unustal career opportunities for qualified engineers and physicists. These posi tions are immediately available to Electronic Engineers. Systems Engineers. Physicists and Math ematicians with B S, M.S and Ph. D degrees and experience in the following fields. RADAR.CWD RADAR Pulse OPTICS ■ INFRA-RED - TELEMETRY - COMMUNICATIONS - TIMING COMPUTERS - DATA HAN DLING - GMRI - a technical organization with operations at Patrich Air Force Base. Cape Canaveral, and statıons along the path of the Allantic Missile Range-is now beginning its Bih year as prime contractor to the U. S. Air Force. In addition to excellent company benefits and the pleasuress of Florida ving. Pan Am offers you the unique advantage of 90% world-wide air travel discounts. Please address your resume in confidence to: Mr. David C. Trott, Jr., Emiployment Manager, Dept L-40 Guided Missiles Range Division PAN AMERICAN WORLD AIRWAYS, INC. . P O. Box 4187. M. U 113. . Patrick Air Force Base, Florida

GUIDED MISSILES RANGE DIVISION

These openings involve assignments at sur laboratories located in suburban Washington, D.C. and the New York metropolitan rea at Paramus, Now Jersey. Pleasant residential nelghbor hoods provide readlly available housing. Advanced study under qualified applicants will receive consideration for employment without regard to race, creed, color or national origin.

Send resume 10: Mr. Robert J. Reid
Professional Employment Supervisor
at our Rivordale facility, Dopt. 436

ACF HLECTRONICS DIVISION AOEV InTDUE3MIRIME

RIVERDALE, MARYLNND - HYATSSVILLE, MARYLAND - PRRAMUS, MEW IERSEY

CAREER COURSES

Design of Experiments

al Purdue, June 7-17

A course for those concerned with planning and interpreting industrial experiments will be given at Purdue University, June 7-17. It will be an advanced course intended for persons whose previous statistical training includes tests on hypotheses, linear correlations, and at least an introduction to the analysis of variance. Topics will include: a review of analysis of variance principles of experimental design, variance com ponent analysis, radomized blocks and latin squares, factorial experiments, split plot designs, confounding in factorial experiments, incomplete block designs, fractional replications, and introduction to evolutionary operations. Write: Division of Adult Education, Purdue University, Lafayette, Ind.

Two-Week Summer Courses

at MIT, Cambridge, Mass.
Beginning Tuesday, June 13: experimental techniques, materials science, and industrial dynamics.
Beginning Monday, June 19: industrial photoelasticity (one week only), engineering magnetohydrodynamics, elements of textile structural mechanics (one week), probabilistic methods in the control of operations, planning marketing strategy and tactics, technology of reinforced plastics (one week), and scientific and engineering reports (one week).
Beginning Monday, June 26: nondestructive testing (one week), advanced mechanics of textile structures (one week), dynamics and control of chemical engineering processes, fundamentals and applications of selected surface phenomena and science of adhesion (one week).
Beginning Monday, July 10: Fundamentals of strain gage techniques (one week).
Beginning Monday, July 17: applications of strain gage techniques (one week), the continuous glass making process, city and regional planning, and infrared spectroscopy-technique (one week).
Beginning Monday, July 24: infrared spec-troscopy-applications.
Beginning Monday, July 31: techniques of high-speed photography (one week), and problems of high-powered radar system design.

Beginning Monday, August 14: Advanced highway engineering (one week), and radar astronomy (one week).
Beginning Monday, August 28: shear strength behavior of cohesive soils.

For details on course subject matter and tuition fees, write: Special Summer Programs, Massachusetts Institute of Technology, Cambridge 39, Mass.

ENGINEERS
PHYSICISTS

R
 ELIABILITY
 . . . the effect

of space environment on electronic hardware

As part of its Transit Satellite Program, The Applied Physics Laboratory is establishing a group of scientists and engineers to study the effect of space environments on the electronic instrumentation used in satellites and to design and develop electronics possessing a long life in space. To qualify for assignment to this group, responding reliability engineers must be able to assume responsibilities such as the development of experiments, establishing techniques of quality control on a laboratory scale, and analysis of electronic instrumentation.

The Applied Physics Laboratory will provide you with a professional atmosphere conducive to creative effort as well as the tools and technical support required to tackle these and related problems. Our modern laboratory is located an equal distance between Washington, D. C. and Baltimore, offering you a choice of country, suburban or city living.

For additional detafls about this postition or other imteresting career opportunitiles. direct your toquiry to: Profesidonal Stal Appolntments

The Applied Physics Laboratory The Johns Hopkins University
eess Georgia Alenue, Silver Spring, Md

> BENDIX Kansas City needs EIECTRONAC TEST EQUPMENT DESIGNERS

It isn't unusual for our specialty packaged electronic test instrumentation to be more sophisticeted then the products it is designed to fest. The reason for this is that our AEC prime controct requires stendards of quality which ere for beyond the ordinery
Since we de unesuelly demendine work, we have an unusually inferesting doportment. Our engineers are constanfly wrestling with new end unexplored problems. They contribute to project teoms in the solution of unique testing essignments with responsibility from design to actual use. As a resalt these engineens have the almost unporolleloldren converted into precticol hardware.
This is no place for a beginner or a drone. What others treat os the "State of the Arf," we consider commonplece, and you'll need both rraining and experience to quality. Wo prefer on E.E. problems end inspection techniques. Past association with military elocfronics equipment or experience in precision measurement of mass produced itams would halp to equip you for this position, Mochine shop experience would also be useful.
If yow con qualify, we promiso you on erceptionally rewording spot with one of the netion's most vital industrice. We offer unusually generous company benefits in a Midwestern community which is famous for its beauty and low cost-of-living. All replies will be strietly confidentiol.

For mersonal inferview sand rosume fo: Mr. T. H. Tillman Boz 303-UD

Bon Bendir KANSAS CITY DIVISION 95th \& Troost, Kansas City 41, Missouri
cratonal otess new and expanding opportunities at Dayton, Ohio in MILITARY AND COMMERCIAL RESEARCH AND DEVELOPMENT

Electronic Engineers
Component Engineers
Semiconductor Research Physicists
Solid State Physicists

\author{

- Digital Circuit \& Logic Designers
 - Test Equipment Engineers
 Electronic Systems Engineers
 Technical Writers
}

SOME OF THE IMMEDIATE OPENINGS

sciemtific and tecumical mamager: PhD and 10 years' experience in Air to Ground Comm. and Digital Data Processing Systems.
PROJECT ENGINEER-SYSTEM FUNCTIOMAL: MSEE and 5-7 years' experience design of military electronic equipment with some experience in logic design, electronic packaging, and test equipment design.
PRoject engine -airborne equipment desigm: MSEE and 5-7 years' experience in design of airborne military equipment of comm. and digital type crystal oscillator and crystal filter experience desired.
project emaimen- reluability: BSEE and 5-7 years' experience with reliability techniques applied to military electronic equipment.
semion bngimeen - suacontanact liaison: BSEE and 3-5 years' experience procurement of electronic equipment, contracts, and specifications.
Logic engimeer: BSEE and $3-5$ years' experience in design of logic systems in digital data processing equipment.
commumications encineen: BSEE with $3-5$ years' communications experience specializing in long distance propagation techniques with particular emphasis on solutions to multipath effects in the high frequency range.
CIRCUIT dESIGN ENGIMEER: BSEE and 3-5 years' experience in design and development of solid state digital circuitry Must have experience in circuit design for reliable opera-
tion under worst case conditions. Background in airborne and ground support test equipment desired.
test encimeen - emvinommental: BSEE 2-3 years' experience planning and performing environmental tests on military electronic equipment.
emgineering specialist: BS and 3-5 years' experience in preparation of technical reports and documents. Must have good working knowledge of electronic equipment.
filter desigm engimeer: BSEE and 3-5 years' experience in design and development of bandpass filter networks.
component encimeens: BSEE and 3-5 years' experience in specifications and testing components for reliability determination in military environments.
fabrication mamager: BSEE plus 5-7 years' experience in fabrication of military electronic equipment including some subcontract liaison and supervisory experience.
mecmamical engimeer: BSME plus 3-5 years' experience in layout of electronic assemblies and shock mounting.

For these and other professional level opportunities in challenging areas of work, write to:
T. F. Wade, Technical Placement G3-3, The National Cash Register Company, Dayton 9, Ohio

THE NATIONAL CASH REGISTER COMPANY, DAYION 9 , OHIO ONE OF THE WORID'S MOST SUCCESSFUL CORPORATIONS

77 YEARS OF HELPING BUSINESS SAVE MONEY

mertromic oata processime onversified curnical prosucts ABDIME MACWIMES • CASW REOISTESS accoymine macmues - mer papte

CIRCLE 907 ON CAREE INOUIRY FORM

Consider, for example, basic diffusion sfudies of \mathbf{P} impurities in \mathbf{N} germanium, and associafed problems in thermal conversion and impurity density distribution./That's where Morris Chang (MIT '52) started as product engineer at Texas Instruments SemiconductorComponents division in 1958. His immediate objective was to develop NPN diffused base HF germanium transistors. But more than that, his overriding goal was to develop a producible product. With impressive speed, Chang moved his product from original idea into mass production and saw it successfully sold to military and commercial markefs./Chang, loo, moved forward. He was made supervisor of diffused device engineering and foday has advanced to manager of device development in Tl's germanium products group, working on very HF switchers and amplifiers, epitaxial techniques and surface and reliability studies./Unique success story? No - an example of the professional growth opportunity fostered by a fast-growing, aggressive company. /Unique opportunity? We think so. TI is engineer-managed, sales-minded. It all adds up to a rewarding environment for the engineer whe wants to see his ideas take form as new products.

CAREER COURSES

Two-Week Analog Computer Course

in Los Angeles, June 5-16
A two-week course designed to give the student a working knowledge of the analog computer, its programing, scaling, and application to problems in such fields as mechanical and electrical engineering, chemical and process industries, and aircraft and missile systems. Sponsored by Electronic Associates, Inc., Long Branch, N.J. For further information on this and other West Coast EIA courses during the year, contact, Director, Los Angeles Computation Center. 1500 East Imperial Highway, El Segundo, Calif.

Colorado Stato University, July 10-14

A one-week course and workshop for writers, engineers and administrators. The course will cover technical communication from basic report writing to public relations writing. Designated "Workshop JT-161," it carries two quarter credits. Tuition is $\$ 50.00$. Contact Director, Institute in Technical and Industrial Communications, Colorado State University, Fort Collins, Colo.

Radio Propagation Course

Boulder, Colo., July 31-Aug. 18
National Bureau of Standards' central radio propagation laboratory, Boulder, Colo., will conduct a three-week course on the fundamentals and design considerations of modern radio propagation communication systems.

The course will consider communication via the entire range of usable radio frequencies and will extend into the modes of propagation which are being explored for the future. System design and frequency allocation will be the two predominant emphasis of the course. It will be divided up into tropospheric propagation (to Aug. 4) and ionospheric propagation (starting Aug. 7). Tuition will be $\$ 100$ for the first part, $\$ 200$ for the second and $\$ 300$ for both parts.

Contact Edmund H. Brown, educational director, Boulder Laboratories, NBS, Boulder, Colo.

Quality Control Course

at Purdue, Sept. 5-15
Purdue University will hold a 10 -day course on quality control from Sept. 5 to Sept. 15. Topics will include significance tests and confidence intervals, significance of differences, linear correlation and regression, single sampling for measurements, sequential sampling for measurements, multiple correlation, and analysis of variance. Write: Division of Adult Education, Purdue University, Lafayette, Ind.
An invitation to device DEVELOPMENT ENGINEERS

texas instruments S-C DIVISION offers you

1. A key position with the leader in the field.
2. Real opportunity for personal, professional advancement.
3. Relaxed living in modern Dallas, Texas.

At Texas Instruments, solid-state device devolopment enginoors will find the opportunity to pioneer in the opplication of unique phenomeno in semiconductor moteriaks to create spodialized components. Studies involve high-spoed, high-frequency mese Irensistors; apitaxial devices; comperer dovicos, ond new devikes of your own croction.
REQUIREMENTS: dogree in Electrical Engineering, Physical Chemistry or Fhysios ond oxperience in semiconductor ar related development arcos.

TEXAS IMSTRUMENTS IMCORPORATED

 Semiconductor-Components Division Mr. C. A. Besio$$
\begin{aligned}
& \text { mox S012, Depl. I16, Dollas 22, Texas } \\
& \text { Box }
\end{aligned}
$$

For more information on opportunities for Device Development Engineers with II in Texas, pleose return coupon logether with bries statement of your qualifications.
mame.
adoress_
ciry-
stale
My foid is

PAPER DEADLINES

June 20: Deadline for 100 word-abstracts and two-page summaries for the 1961 Eastern Joint Computer Conference, to be held Dec. 12-14 at the Sheraton-Park Hotel. Washington. D.C. The conference theme will be "Computers-Key to Total Systems Control," and papers are being requested in such areas as business-management control, military and space command control systems, industrial-process control, real-time systems, network control, man-machine systems, self-organizing systems, high-speed digital data, and high-speed digital data communications. Send information to Bruce G. Oldfield, program chairman, IBM Federal Systems Div., 326 E. Montgomery Ave., Rockeille, Md.

July 1: Deadline for rough draft and 500 -word abstract of 25 -minute papers for the International Symposium on Aero-Space Nuclear Propulsion, to be held in Las Vegas, Nev., Oct. 23-26. It will be sponsored jointly by the IRE, Atomic Energy Commission and National Aeronautics and Space Administration. Subjects include instrumentation, control systems, engine simulation, and engine dynamics aspects of aero-space nuclear propulsion and nuclear auxiliary power, as well as radiation and temperature effects on instruments and controls. Send information to P. M. Uthe, University of California, Laurence Radiation Laboratory, Box 808, Livermore, Calif.

July 15: Deadline for 500 -word summaries of papers on theme "Communicating Ideas-The Modern Engineer's Function." These will be for the IRE's East Lansing Symposium on Engineering Writing and Speech, which will be held Oct. 16-17 at the Kellogg Center for Continuing Education, Michigan State University, East Lansing, Mich. Send papers to J. D. Chapline, program chairman, Philco Corp., 3900 Welsh Road, Willow Grove, Pa.

August 15: Deadline for abstracts of papers for the 13th annual fall convention and technical exhibit of the Audio Engineering Society, to be held Oct. 10, 11, 12 and 13 at the Hotel New Yorker, New York City. Suggested topics: disc recording and reproducing; magnetic tape recording; loudspeakers and systems; artificial reverberation; stereophony; architectural acoustics; amplifiers; standards of measurement and performance; electronic musical instruments; speech analysis and synthesis; compression and expansion: bioacoustics; psychoacoustical engineering; other audio applications (hearing aids, etc.), and tuners. Send abstracts and complete papers to Hermon H. Scott, chairman, convention committee, AES, 111 Pouder Mill Road, Maynard, Mass.

Perhaps you've been doing as well as you'd expected-up to now. But, if you're apprehensive about the future-lf you've wished your assignments were more atimulating-your work more rewarding-you owe it to yourself to investigate the opportunities at Motorola.
Here you will be encouraged to use all of your creative talents. You'll work on projects that spark vision, that inspire imagination. Because Motorola is an "engineer's company" you'll be working with respected men who can contribute to your growth-men who are quick to recognize and advance skill. You'll be working for a secure, diversified company not wholly dependent on one single market.
There are dozens of fine opportunities covering a wide range of fields of interest-just a few of which are listed below.

Write today. We'll send you a complete description of "Your Life at Motorola"-in Chicago; Phoenix; Riverside, California; Culver City, California; Minneapolis, Minnesota. Naturally your request will be kept in complete confidence.

- Transistor applications
- Crystal angineerring
- Design ol VHF $\frac{1}{\text { UHF FM communications }}$
- Mictrowave held engineers
- Transistor switchingincircuil design
- Logic circuir design
- Mome radio desien
- New product design
- Auto radio desizn
- Semi-conductor device development

MR. W. H. HAUSMANN
Engineering Personnel Mgr. Dept. B
4545 Augusta Blvd., Chicago 51, III.

FROM DARING AND
DOING - New space communications concepts

Consider a career at PHILCO Western Devel opment Laboratories, on the San Francisco Peninsula. New concepts of communications with lunar reaches and beyond can be your projects. Here you devise and "do", unencumbered by dogma or dialectics. Constantly expanding programs and new research assign ments assure you personal recognition and advancement.
PHILCO Western Development Laboratories pioneers in all phases of space communications, with important and growing projects that
include satellite instrumentation, range design and operation, missile tracking, data handling and control equipment.

Your family will enjoy Northern California. You ski, swim and sail in season, or just bask. with both the opportunity and wherewithal to enjoy your favorite diversions. PHILCO Western Development Laboratories is indeed a fortunate conjuncture of challenging work and affluent living. For information on opportunities in electronic engineering, for men with degrees from B.S. to $\mathrm{Ph} . \mathrm{D} .$, please write Mr. W. E. Daly, Dept. D.5.

PHILCO western development laboratories
3875 Fablan Way, Palo Alto, Callfornia
CIRCLE 910 ON CARER INQUIRY FORM

POSITIONS OPEN FOR INQUIRING MINDS IN MANIFACTURING RESEARCH ENGINEERING!

ENGINEERNG SPECIAL PROJECTS

Bendix of Kansos Ciry, Missouri neod three Manulacturing Reseorch Engineern to do original work with now moteriols, ond close, mote exocting work with ordiinto merols-Minds that withology and bring mony bronches of rechnoiog techniques copoter at poducing a unique product. As A Prime Controctor for the Alomic Energy Commission, our function is to give the Weapon Dasigner the greotest possible latitude in exploiting this by poralleling his dosign work with odvanced development of monulacturing processes during the design phase. The control of processes must requenily bo 30 preciso that outomation is required for that reason olono-production quan tiry notwithstanding.
Engineers who con fill these positions must combine original thought with solid
training in the basic physical sciences. They must be oble to combine the soning of several disciplines in the development of a solution. Minimum requirements include:

* Bochelor's Degree in Mechanicol. Chemical or Electrical Engineering. * Strength in one or more of the rollowing hislds: subminioture ront ficer and rubber pormulation and abrication, sheet metal fobricolion, heory ond small ports machining, ond fabricolion ond orsembly of precise and delicote electrical and olectronic assomblies requiring special environmental locilitios.
These ore remponsible positions for engineers who are qualified to do original ond crealive work, ond who con domonshare by arcora of past professional obility. Ours is one of the nation's mose vital industries. We offor unusually gen--rous company benefits in a Midwestern community which is fomous for iss beouty ond low cont-oftiviving. All roplien will be striclly confidentiol.
for personol intocriaw send resume 10
Mr. K. L. Beardsioy
Box 303 -UD

KANBAS CITY BMEIO
95th \& Troost, Kansas City 41, Missouri
CIRCLE 911 ON CAREER INOUIRY CARD

ADVERTISERS' INDEX

May 10, 1961

Adıeriser Page
ACF Industries
AMP, Incorporated
Ace Electronics Associates, In
Adel Precision Products
Ad-Yu Electronics Lab., In
Aerospace Corporation
Air-Marine Motors, Inc
Aladdin Electronics
- Adden Products Company
Allen Bradley Co.
- Allied Control Company, Inc.
Allied Radio
Ammeo Engineering Co.
American Alumidum Company
American Bosch Arma Corp.
American Electrical Heater Company
American Electronic Laboratories, Inc. .. 200
American Machine and Foundry Co.
American Time Products, Inc.
- Amperex Electronic Corporation
Amphenol-Borg Electronics Corporation
Applied Phyuica Laboratory, The
Arco Electronics Inc.
"Arnold Engineering Company. The
Art Wire and Stamping Co. 250
-Assemply Products. Inc. 220
Augat Bros., In
Automatic Electric 234
E A K Instruments, Inc.
-Ballantine Laboratories, Inc. 74
Barber-Colman Company 54, 55
Belden Mig. Co. 27
Bell Telephone Laboratorics 189
Bendix Corporation, The. Eclipse Pioneer Div.
Bendir Corporation. The Kansas City Div. 257, 260
Bendix Corporation, The, Red Bank Div.
Bendix Corporation, The. Scintilla Div. \qquad
Bodine Electric Co. 157
Borg Equipment Div. Amphenol-Borg Electronics Corp. . . . 238
Boston Insulated Wire \& Cable Co. 78
Brand Rex 184, 185
Bristol Co., The 152
Bulova Electronics Division
\bullet •CTS Corpontion 69
CBS Electronics 100, 101
Cadillac Associates, Inc., 156
Califomia Technical Industries 192
Cambridge Thermionic Corporation 124
- Cannon Electric Company
Canoga Electronia Corporation
Carborundum Co., The, 151
-Celco Constantue Engineering Labs. Inc. 144
Centralab. The Electronics Div. of Globe-Union, Inc.
Century Electronics \& Lnstruments, Inc. 11

- Manufacturers catalog, appears in 1960-1961

If computers process data in mathematical terms, how can they be instructed to handle information and applications that are not essentially arithmetic: IBM, in cooperation with the U.S. Air Force, is finding some answers through research in automatic language translation systems.
Machine translation of idioms, for example, is teaching us a great deal about information processing. An idiomatic phrase may have a meaning quite different from the sum of its individual words, and a system that merely matches these words won't come close to translating it. One solution is an "expanded electronic dictionary" that contains idioms and grammatical instructions as well as single words. Work is now under way to clarify meaning further by automatic syntactical analysis.
Systems research such as this requires its own kind of
translation - the translation of an idea into a working system. For people with this ability, who like to travel beyond the boundaries of their specialized areas, IBM offers unusual opportunity. If you're interested in any of the fields in which IB.M is making important advances -semiconductors, microwaves, magnetics, superconductivity - and have a degree and experience in engineering, mathematics or one of the sciences, we'd like to hear from you.

Applications will be considered without regard to race, creed, color or national origin. Please write to: . Manager of Technical Employment IBMI Corporation. Dept. 555E2.
590 Madison Avenue
New York 22, N. Y.
IBM

AUTOMATIC LANGUAGE TRANSLATION

ОДНОГО ПОЛЯ ЯГОДА

From the same
field
the berry
Six of one, half a dozen of the other

General Electric Invites Your Participation In Its Professional Placement Program

One letter assures your considera tion for the position that best fits you whenever it arises in G.E. Depart ments across the country, today, 3 months from now, or any time in the future.

Here's how this program works or you. General Electric's Professional Placement Center has up-to-date knowledge of technical penings and scientific activities within the company

One descriptive letter, outlining your background and interests, will
receive the personal attention of a member of this Center's staff. A search of current openings will be initiated and appropriate opportunities offered for your consideration.

The value of this program to you is not only in its immediate benefits, but also in future ones. I nothing now available meets your specifications - or if you prefer to review opportunities at some othe time - this same letter will remain in our "active file" and will prompt a renewed search at a later date.

Openings in technological fields nclude rocket, non-conventional proputsion techniques; air, sed and industrial nuclear power; navigaion, guidance, communication and control systems; computers; industrial and military electronic components; detection, surveillance display, and countermeasure equip. ment.

This programisopen only tomen with BS, MS or Doctoral Degrees. To be included write to Mr. n , Marmiroli today, Section 76-SME.

GENERAL ELEGTRIC'S PROFESSIONAL PLACEMENT CENTER
 570 Lexington Avenue, New York, N. Y. (G.E. Headquarters Bldg.)

most effective
on the job

CIRCLE 913 ON CAREER INQUIRY FORM

A recent circulation estimate revealed that 95% of ELECTRONIC DESIGN's readers receive the magazine at their plants-on the job where it is most effective as a design workbook.

By receiving ELECTRONIC DESIGN at work, you're getting extra values from it. These extra values-known to marketing people as time and place utilities-add to the usefulness of any item Only in-plant distribution gives you: Time Valuebecause ELECTRONIC DESIGN arrives precisely when you can use it best . . . while you're working: Place Value-because it arrives where it can really be put to work . . . on the job, at the point of design.

Arriving at the plant, ELECTRONIC DESIGN brings new ideas to be applied to your current projects. You and your fellow designers can discuss timely topics together-expressing your views and comments while the news is fresh in your minds. And, when searching for sources, for products, for new techniques, you need look no further than the copies of ELECTRONIC DESIGN right on your desk.

If you don't receive your copies where you work, write to our Circulation Department and request that your subscription be addressed to you at your plant. By putting ELECTRONIC DESIGN on the job you'll be getting the most value from it.

Advertiver
Circo Corporation

- Clairex Conporation

Clare \& Company, C. P.
${ }^{\circ}$ Clarostat Mfy. Co., Inc.
Clary Corporation
51
Clifton Precision Products Co., Inc. . Cover 11
${ }^{\circ}$ Cohn Mfg. Co., Inc., Sigmund 213
${ }^{\circ}$ Collins Radio Company 57
Computer Mcasurements Company .-60,61
Control Electronics Co.. Inc
Convair-Astronautics, Convair Div. of
General Dynamics
72A-B
Corning Glass Works 158
Concible Steel Co. of Amer. 226
Cuhic Cormation..........
Curtiss-Wright Corporation

Dale Electronics, Inc. 24 A-B-C-D
Daystrom, Inc., Potentiometer Div. 9.5
Delco Radio, Div. of
Ceneral Motors Corp. 121
De Momay-Bonardi
Deutsch Co., The .
Dick Company, A. B.
Dir 79
Dow Coming Corporation … 80, 81,105
Drake Manufacturing Co. 227
Dressen-Bames Electronic Corp. 210
-DuMont Laboratories, Allen H......... 80
Duncan Electronics Inc. 204
DuPont de Nemours \& Co., E. 1., 16:3
Electro Chemicals Dept.
DuPont de Nemours a Co.. E. I., 233
Film Dept. 23

Eastman Chemical Products Inc. 226 Electro Impulse I athoratories Inc Electro-Mec
Elem-Motise Mfy. Co., Inc. 91
Electro Product Laboratories 21 .
Elcetronic Associates 148 262
Electronic Designers. Catalon 48,
Electronic Designers' Catalok 264 Electronic Measurements Co., Inc. 212 Englehard Industries, Inc. 1:30, 13
Epsco, Incorporated 30. 131

Epsco-West

FXR. Inc. 181
Faber-Castell Pencil Co., Inc., A. W. ... 104 Fairchild Camera and Instruments Corp. 247 Fairchild Semiconductor Corporation 18, 19 Falstrom Ca,t. 21 -Fenwal Electronicsn 138
-Fluke Mifg. Co., Inc., John 249
Food Machinery and Chemical
Fusite Corp., The 118
G.M Laboratories, Inc. 142

Gamewell Co., The
138

- Manufacturers' catalog appears in 1960-1961
- Manufacturers catalog appears in

ELECTRONIC DESIGN • May 10, 1961

General Ceramics
General Dynamics 1.52
General Electric Company.
Capacitor Dept.
Seneral Electric Company,
Light Military Electronics D.p.
General Electric Company.
Power Tube Dept.
General Electric Company.
Heceiving Tube Dept. 132
General Electric Company.
Rectifier Components 141, $1+1$
General Electric's Professional
Placement Center 26..............20

General Electric Company, Voltake
Regulator Products Section
. 98

Gertsch Products, Inc. 2.50
Graphik Circuits $1 \$ 18$
Gremar Mfg. Co., Inc. ift
Gudebrod Bros. silk Co. Inc. 211

Hamlin. Inc.
Handly \& Harmon
Hart Mfr. Co., The
Hathaway Denver
Hway Denver …................... 221
Heinemann Electric Company …..... 1ts
Helipot Div. of Beckman Inveruments. ... 251
Hewlett-Packard C:ompany ... 266, Cover 111
Hescel Products. Inc. ..-1|| 243
Iti-G. Inc. 154
Hinward Industries, Inc156

-I F D Electronic Corporation ${ }^{49}$
Johns Hopkina University, The 256
-Kay Electric Company
Learfort Division, General Precision, Inc.
$201,20.3,20.5$ Kemet Company 115
Key Resistor Corporation
115
Kintel, Div. of Cohu Electronics, Inc.
Kulke Electric Corp.
Kurz-Kasch

electronic and electromechanical engineers in a unique role

The engineers and scientists of Aerospace Corporation are in the forefront of a rapidly advancing state-of-the-art in sensing and information systems. Their unique role: a critical civilian link uniting government and the scientific-industrial team responsible for development of space systems and advanced ballistic missiles. In providing scientific and technical leadership to every element of this team, they are engaged in a broad spectrum of activities, from formulation of new concepts to technical review and supervision of hardware development by industry. Specific areas of interest include inertial and radio guidance, automatic control, communications, instrumentation, space- and ground-based computing, telemetering, tracking, auxiliary power, infrared, television, optics, and photography. Now more men of superior ability are needed; highly motivated engineers and scientists with demonstrated achievement, maturity, and judgment, beyond the norm. Such men are urged to write Mr. George Herndon, Aerospace Corporation, Room 111, P. O. Box 95081, Los Angeles 45, California.

Organized in the public interest and dedicated to providing objective leadership
in the advancement and application of space science and rechnology for the United States Government.
AEROSPACE CORPORATION

looking for a special potentiometer?

7 Co different types of potentiometers in its PRODUCT from "AC", to "Wire wound" are included. Each sub-listing such as "Clutch,"."Linear Motion," "Microminiature," "Precision." or "Self-trimming" gives sion. or "Self-trimming gives mail specs to aid in rapid selection. 52 items are further described by special literature bound in sections 2 special literatu
This is only one example of the This is only one example of the
more than 7,000 products from 2,212 companies which are displayed.

Handy Inquiry Cards or Application Data Forms are bound in to make it easier for you to obtain additional data - and manufacturers' reps are also listed if you wish to phone for quick price and delivery information.
Electronic Designers' Catalog is one more service provided by the publishers of Electronic Design.
都
Laboratory for Electronics, Inc. 20Ledex, Inc. 20
Lermer Plastics, Inc. 200 156
Line Electric Company 138解 and Space Division 198-109
McLean Engineering Laboratories 96
Magnetic Research Corporatio 15
Magnetics. In 225
Mallory \& Co., Inc., P. R. 84. 85
Marconi Instrument 161
Micro-Mega Corp. 212
Microwave Associates, Inc. 7
Mid-Westera Instruments 205
Mincorm Div. Minnesota Mining \& Manu
facturing Co. 245
Minneapolis-Honeywell Regulator Co.
Boston Div. 218
Minneapolis-Honeywell Regulator Co. 229
Mitre Corp., The 255
Motorole, Inc. 259

- Motorola Semiconductor Products, Inc 58
Multicore Sales Corp. 213
- Mycalez Corp. of America 166
Narda Microwave Corporation, The 183
Aational Cash Register Co. 257
National Semiconductor Corporation 93
Natvar Corp 164
Newark Electronica Corp. 238
North Electric Company 236
Nistronics, Inc. 78
Oak Manufacturiag Company 113
Obmite Manuacturing Company 40
Ortho Industries, Inc. 98
PRD Electronica, Isc 188
Pacific Semiconductors, Inc. 13, 144 A-BPan-American World Alrways, Inc. 255
Penta Laboratories, Inc. 246
Perkin Electronics Corporation 6Phelps Dodge Copper Products Corp. . 66, 67Philbrick Researches, Inc., George A. ... 202
Pbilco, Lansdale Division202Philco Western Development Labs. 280
Polarad Electronica Compration60
Porter Co., H. X., Rivenide-Aloy Metal
Div,
$128-120$Post Co., Frederick 21Potter \& Brumfeld . 11
Power Designa, Inc. 242

Manufacturevi catalog, appeare in 1980-198

Adoertiost Page
Power Sources, İe 22
Procent Goar Ca, inc.
Prodolin, Imc. 101
R F Product, Div. of Amplenol-Barz .. 191
Radio Corporation of America, Electron Tube Div. Cover IV
Radio Corporation of America, Semicon. ductor of Materials Div. 237
Rantec Corporotion 192, 193
-Raytheon Co., Industrial Components Div.
Raytheon Co., Equipment Div. 133
Raytheon Co., Microwave and Power Tube Div., Magpetics Operations 7
Fiavtheon Co., Microwave and Power Tube
Raytheon Co., Special Microwave Devices Operations
Rbode \& Schwarz
Rome Cable, a Div. of Alcon
Rooemount Engineering Company 129
Sago Electronico Corporation 198
Sanborn Company
Sandery Asociates, Inc.
-Sarkes Tarcian, linc.
Schweber Electronics 17, 87, 95, 135
-Sealectro Corporation 72
Sel-Rex Corporation
Set Screw \& Mig. Co.
Shalleriess Mfg. Co.
- Sierra Electronic Corporation
-Sigma Instruments, Lde. 251
Simmons Fastener Corporation
Sippican Corporation. The
Slater Electric Inc.
Somerr Brass Co., Inc.
-Sorensen \& Co.
Space Technology Laboratories, Inc
Spectrol Electronicy Corporation
-Sperry Microwave Electronica Co. 173
-Sperry Semiconductor Div. of Sperry Rand Corp.
Sprague Electric Company 11, 20
Steckpole Carboo Company
Steedler, lic., J. S. 118
- Statham Instrumento Co.
Stewart Engineering Corp.
Stromberg Carison
Struthers-Dunn, Inc.
Switchcraft, loc. 210
-Sylvania Electric Products. Inc., Electronic
Sylvania Electric Products, lnc., Semiconductor Div.
Sylvanie Electric Products. Inc., Special Products Div.
Synthane Corporation 207
Sydron Company 168
tronic Instrumenta,

Menufacturent cotalog appoart on 1980-1981 CIRCLE 791 ON READER-SERVICE CARD -

NEW SANBORN "650" SYSTEM

OFFERS DIRECT READOUT, 8 TO 24 CHANNELS, ALL SOLID STATE CIRCUITS, FOR RACK

MOUNTING OR INDIVIDUAL CASES.

SENSITIVITY 20 mv input gives $8^{\prime \prime}$ deflection: 12 attenuator steps to $X 5000$, smooth gain control.

INPUT RESISTANCE 100,000 ohms all ranges, floating and guarded; DC source re. sistance must be kept below 1000 ohms on mv ranges only.
COMMON MODE PERFORMANCE Rojection at least 140 db at DC, rolerance to ± 500 volts, max.
GAIN STABIITY Betterthan 1% to $50^{\circ} \mathrm{C}$. and for line voltage variation from 103 to 127 volts.

LINEARITY $11 / 2 \%$ of full scale (8 in .)
NOISE 0.02^{*} peak-to-peak, max.
MONITOR OUTPUT On front panel: pron vides \pm Iv full scole across 100,000 ohm lood
POWER REQUIREMENTS $103-127$ vOlis, 60 cycle AC, 625 wath

Here's the one system that lets you record inputs from DC to 5 KC within 3 db at 4^{*} peak-to-peak amplitudes, without changing galvanometers. The " 650 " system consists of an 8 channel medium gain, general purpose amplifier unit driving a high speed, high resolution optical oscillographic recorder. It can be easily built into your system, packaged in a mobile cabinet or housed in individual cases. The single-chassis, 7° high amplifier module has 8 separate channels, complete from floating and guarded inputs to galvanometer outputs; each channel comprises a front end modulator and input transformer carrier amplifier, demodulator, filter and driver amplifier. Power Supply and Master Oscillator Power Amplifier are built-in. All amplifier elements are plug-in transistorized units for easy servicing.
Immediately readable recordings are made on 8° wide daylightloading ultra-violet-sensitive charts which require no chemical development. Features of the $121_{4}{ }^{\circ}$ high recorder unit include 9 electrically controlled chart speeds from $1 / 6^{\circ}$ to 100% sec ; calibrated monitoring screen; automatic trace identification and timing lines at 0.01 or 0.1 sec . intervals;
amplitude lines spaced 0.1° apart which can be blanked from $1 / 3,1 / 2,3 / 4$ or all of chart. Recorder is available with an 8-, 16- or 24 -channel galvanometer block which is then equipped with the number of galvanometer elements desired by the customer. Either the Recorder or Amplifier are also available as individual units for use with other equipment.
AderriserPake
Technology Instrument Corporation 78
Tektronix, Inc 230
Telecomputing Corp. 259
-Thermal American Fused Quartz Co. ... 12-Thermal American Fused Quartz124
-Transitron Electronic Corporation 200
${ }^{-}$Tung-Sol Electric. Inc. 195

- U'cinite Co., The 165
Ungar Electric Tools 117
Union
Air Brake
Switch221
United Aircraft Corp., Hamilton Standan 155
t'ica Drop Forge \& Tool Division 14
Valpey Crystal Corp. 157
Varian Associates 170
Vickers, Incorporated 17
Wakefield Engipeering, Inc 120
Waters Manuf 231
Western Devices, Inc 165
Westinghouse Electric Corporation 244
Whitso, Inc 74
Wright Division of Sperry Rand
Zierick Mfg. Corp. 157
- Manufacturery catalog appears in 1960-1961

Advertising Representatives

Adv. Sales Manager: Bryce Gray, Jr. Sales Service Supvr.: Alvin D. Ross Newo York: Robert W. Gascoigne, Richard Parker, Blair McClenachan James P. Quinn, Donald J. Liska. Charles J. Stillman, Jr. Kenneth M. George, John N. Weber, 830 Third Avenue, Plaza 1-5530

Chicapo: Thomas P. Kavooras Berry Conner, Jr, Fred T. Bruce, 664 N. Michigan Avenue, Superior 7-8054
Los Angeles: John V. Quillman, Wayne Stoops, 3275 Wilshire Blvd Dunkirk 2-7337
San Francisco: Stanley I. Ehrenclou, 292 Walter Hayes Drive, Palo Alo,
Davenport $1-7646$

Soustheastern: Pirnie \& Brown, Morgan Pirnie, Harold V.Brown, G. H. Krimsier, 1722 Rhodes-Haverty Bldg, Atlanta, Ga, Jackson 2-8113
London ECA: Brad Nichols, 151 Fleet Street
Tokyo: Karl H. Bachmeyer Associates, 7 Morimoto-cho, 1-chome Azabu, Minato-ku

WHICH OF THESE 7 DC POWER

You want flexibility and versatility in the power supply

line of highly regulated, ripple-free, temperature current supplies, to heavy current-low voltage instruments,

NEWI

(423A, 500 ma output, 0 to 40 v . Transistorized, programmable remotely

- 723 A can be programmed remotely and is especially useful in systems applications where a number of measurements are made automatically at different voltages. Output voltage may be changed merely by changing the value of an external resistance, as with stepping switches for programmed tests. Low noise and ripple make the 723A particularly applicable to low level measurement. New, modular package combines compactness with rack-mount and bench-top versatility.

(422AR, 2 amps, 60 v output. Transistorized, easy monitoring

High regulation over complete voltage range, highly stable output. Extremely low noise and ripple insure clean measurements. High impedance remote sensing input, which connects directly to the load through wires independent from supply leads regulates the voltage at the load itself despite an IR drop in long supply leads. Separate meters measure current and voltage continuously for easy monitoring. Continuously variable control limits output current.

Reguiated Output: Load Regulation: LIne Rezulation: Noise and Ripple: Output Impedance Slze:

SPECIFICATIONS

0 to $60 \mathrm{v} d \mathrm{c} ; 0 \mathrm{O} 2 \mathrm{amps}$ de
<5 mv change for 0 to 2 amps change
$<2.5 \mathrm{mv}$ change for $\pm 10 \%$ line voltage change $<250 \mu \mathrm{~V}$
$D C$ < 25 milliohms, ac <5 milliohms in series with 4 uh 19° \& 514° ॥ $12^{\circ \prime}$; 34 lbs.
$\$ 525.00$

721A, 0 to $30 \mathrm{v}, 150$ ma output, versatile, only $\$ 145.001$

This ultra compact 4 pounds of power supply gives you easiest possible output voltage monitoring, with a large, easy-to-read meter, plus a four-step current limiter for positive overload protection. Several 721's may be operated in parallel or cascaded for extra flexiblity.

```
SPECIFICATIONS
0 to 30 v ce, O to lso mi
< 0.3% er 30 movg(unvchover is greation mo loced to full lod
```



```
70. 43%" & 544"% 4 los.
824.c0
```


ELECTRONIC DESIGN - ONE DAY SERVICE Use bepors une 21s, 19si
 "me.

Company

,

 Name

Company
Company Addrea

Zone
State

SUPPLIES BEST FITS YOUR NEEDS?

on your bench, and offers the world's most varied
stable laboratory power supplies! From high voltage-low
0 is ready to meet your requirement:

NEWI

(40) 726AR, 2 amps, 45 v output. Transistorized, programmablel

This newest member of the transistorized power supply family provides remote programming plus the same high regulation, stable output over a wide range of line and load conditions as other instruments in the 720 Series. Model 726AR is especially useful for applications requiring accurate, repeatable voltages, such as component or production testing. A continuously variable current limiter protects circuits under test from accidental overload-damage. Remote sensing feature.

Regulated Output: Remote Programmine 0ad Requiation Line Regulation Noise and Ripple Output Impedance Size Price	SPECIFICATIONS 0 to $45 \times d c ; 0$ to 2 amps dc External resistance can control output voltage at rate of 100 ohms/volt $<5 \mathrm{mr}$ change for 0 to 2 amps change $<25 \mathrm{mv}$ change $\mathrm{top}=10 \%$ line voltage change $<250 \mu \mathrm{~V}$ $D C .<25$ milliohms: ac <5 milliohms in series with $4 \mu \mathrm{~h}$ $19^{\circ} \times 51 / 4^{\prime \prime} \times 12^{\prime \prime} ; 34 \mathrm{lbs}$ $\$ 50000$	
PLUS THESE LAB AND FIELD-PROVED VACUUM TUBE POWER SUPPLIES for high voltage-low current applications:		
- 711A Laboratory Power Supply	DC output 0 to $500 \mathrm{v}, 100$ ma max; ac output 6.3 v .6 amps, or $12.6 \mathrm{v}, 3 \mathrm{amps}$. DC regulation 0.5\%.	Inexpensive, versatile high voltage, low current power supply. Metered voltage and current. 711A, $\$ 250.00$ (cabinet); 711AR, $\$ 255.00$ (rack mount).
(712B Power Supply	DC output 0 to $500 \mathrm{v}, 200 \mathrm{ma}$ max; bias supply 0 to - $150 \mathrm{v}, 5$ ma max; ac output, 6.3 v , 10 amps max. Regulation 0.01% at 500 v .	High quality, high voltage supply; particularly good transient response, regulation and stability. 712B, $\$ 390.00$ (cabinet); 712BR, $\$ 375.00$ (rack mount).
6. 715A Klystron Power Supply	Beam supply -230 v to $-400 \mathrm{v}, 40$ ma max; reflector supply 0 to -900 v below beam supply, 10 ua max; ac output $6.3 \mathrm{v}, 1.3 \mathrm{amps}$. Modulation capabilities.	Klystron supply, inexpensive general purpose instrument. 715A, $\$ 325.00$ (cabinet).
HEWLETT-PACKARD COMPANY 1067K Page Mill Road Palo Alto, California, U.S.A. Cable "HEWPACK" DAvenport 6-7000 Sales representatives in all principal areas HEWLETT-PACKARD S.A. Rue du Vieux Billard No. 1 Geneva, Switzerland Cable "HEWPACKSA" Tel. No. (022) 26. 43. 36		

Publisher: Robert E Ahrensdorf Editor: Edward E. Grazda Managing Editor: James A. Lippke Technical Editors: G. H. Rostky, H. Bierman, R. H. Cushman, M. W. Meisels, A Rosenblatt, A. W. Solda

News Editors: R. Haavind,
A. Comeretto
Weshington Editor: J. J. Christie
West Coast Editor: T. E. Mount Contributing Editors: J G. Adashko, E. Brenner, B. Bernstein

Editorial Assistants: R. N. Ross.
C. H. Farley

Editorial Production: D. S. Viebig, A Abramoff
Art Director: R. A. Schulze
Art Assistants: O Mitch, J. Aruego
Technical Illustrator: P. Rios
Production Manager: T. V. Sedita Aest. Prod. Mgr.: H. De Polo
Production Assistants: P. Bergang, M. Spector

Circulation Manager: N. M. Elston
Asst. Circ. Mgr.: H. A. Hunter
Reader-Service: A. J. Helfeld

Hayden Publishing Company, Inc.
Chairman of the Board:
T. Richard Gascoigne

President: James S. Mulholland, Jr.

Accuracy Policy

Recognizing the power of the printed word to influence, it is Electronsic Design's policy

To make all reasonable efforts to insure accuracy of editorial matter. To publish promptly corrections brought to our attention.
To not knowingly publish mislead
ing advertisements.
To reserve the right to refuse any advertisement.
Readers noting errors or misstatements of facts are encouraged to write the editor.

Subscription Policy

CIRCLE 793 ON READER-SERVICE CARD

Now, RCA takes a major step ahead in microwave technology-to integrate packaged microwave circuits with RCA developed solid-state diodes and provide an important. new line of components for the needs of microwave designers. Low power requirements and compact packaging using RCA Semiconductor and Materials Division's latest tunnel and varactor diodes open new possibilities for miniaturization, improved systems reliability, and systems cost reduction. Here are the first members of a growing family of packaged microwave circuits.

In addition to the performance characteristics of the packaged circuits shown here. RCA Solid-State Microwave Oscillators and Amplifiers can be designed to meet your special requirements for gain, power, frequency, and noise characteristics. For delivery quotations and technical data on circuits to meet your needs, contact the RCA Field Office nearest you. Or write: Microwave Marketing. RCA Electron Tube Div.. Harrison. N.J.

The Most Trusted Name in Electronics radio corporation of america
. Fixed. Tuned Tunnal- Diode Oncillatar (Dev No SS- 107
 eperitiod frequency botwoen $300-2000 \mathrm{MC}$ DC input: 160
mi at 040 volt an
${ }^{2}$ Molin Pacematice Amplifier (Dov. No SS-10001 Stabio mina. noieo pactior Troical ooturated poworoutpur of 1 mill wall -in 300 milluwatits pump power at 3000 Mc

 Dut of 30 microwatto. OC ingut: 10 ma at 0.1 voll
 Hubbe minimum gain of 15 do Max no uratoc power output of 03 milliwatit with 60 millwatio pump powor at 10.800 Mc
5. Tunabie Tunnol-Diode Oseillator (Dev No SS. 1001 Dalivara

RCA Eloctron Tube Division Fiold Omices
industrial products sales
Dotroit 2. Michigan. 714 Now Contor Buitd ing TR 5-3800.

 OC. 1725 Nork

[^0]: ${ }^{\circ}$ In this example, the thermistor is in an evacuated glass tube. Sufficient time must be allowed to compensate for the thermal lag across the vacuum to the head.

[^1]: Name

[^2]: The guaranteod olectronic compononte

[^3]: (Siptig) thermal American
 fusto guartz co., inc. 18-20 Solem St, Dover, NJ 1

 CIRCLE 116 ON READER-SERVICE CARD

[^4]: SEMICONDUCTOR IS OUR-MIDOLE-NAME
 SEMICONDUCTOR INTEGRATED NETWORKS (SEMI-NETS*), TUNNEL DIODES. MESA AND ALLOY SILICON TRANSISTORS AND DIODES sales offices, chicago, hlinois: EL segundo, californial westwood. new jensevi tewks. GURY, MASSACHUEETTS: STAMFORD, CONNECTICUTI TOWSON, MARYLAND: MASSAPEQUA PARK, NEW VORK, SEMICONDUCTOR OPPOMTUNITIES
 AVAILABLE TO QUALIFIED ENGINEER

 Trade Mark, Sperry Rand Corporation

[^5]:

 LITTON INDUSTRIES Electron Tube Division

[^6]: Systems Manager for the Navy POLARIS FBM and the Air Force AGENA Satellite in the DISCOVERER and MIDAS Programs SUNNYVALE, PALO ALTO, VAN NUYS, SANTA CRUZ. SANTA MARIA, GALIFORNIA - CAPE CANAVERAL, FLORIDA - HAWAII

[^7]: Little Falls, New Jersey

[^8]: 1,000000
 DC OUTPUT COMBINATIONS

[^9]: Shallcross Manufacturing Co. seima, North Carolina Precision wirewound resistors. Switches. Instruments. Delay lines. Resistance networks. Audio attenuators.

[^10]: Micropote Potentiometers - Microdial Turns-Counting Dials - Sub-Fractional Horsenower Motors - Frequency and Time Standards

