DC Power Supplies...p 58 * SOLID.STATE FRE
Tester with Scope Readout...p 64 *

Convertron-a New Concept in QUENCY COMPARATOR...P 65 Switching Time

音
 SIZE 8 \& 10 INTEGRAL GEARHEAD MOTORS

3 Times Torque Load Capacify*

of comparable size 8 gearheads
Will sustain 20 in-0z arquas has for LDOp hasra speraitisn and 100 in-az momentiy merlead at ine neximum ratios.

CPPC one-piece gearhead housing eliminates sep.

MOTORS
The following CPPC standard motors, electrical character. istics of which can be lountd in the current CPPC Rotary Components catalog. are offered with our gearheads: SIZE 8

Gearhead and motor are select able, individual parts enclosed in the same common motor housing.

above units inquire if special tolerance is required.

ACH .8. \square. 1 AMH.8. $\square \cdot 3$ ACH.10. $\square 1$ ALH-10. \square $\mathrm{ACH} \cdot 8 . \square \mathrm{ALC}-8-1 \quad \mathrm{ACH} \cdot 10-\square \mathrm{ALH} \cdot 10-\square$ AMH $8-1$ ALC $8-4$

CURRENT LEAKAGE Superiority of insula. tion in CPPC motors is illustrated by actualcomparative curves shown at the right.

CLIFTON PRECISION PRODUCTS CO.,INC.

FTON HEIGHTS, PENNSVLVANI

ELECTRONIC

COVER: As the Golden Gate bridge dominates the scene in the Bay area of San Francisco, WESCON will dominate the attention of the electronics world. Items listed include product features and the leading new products to be found in this issue

WESCON

Are you on your way to San Francisco and four hectic days of WES. CON? If you are, be sure to consult the New Products section of this is sue of Electronic Desig. There you will find listed over 235 of the new products to be shown at the Cow Palace. Select those you are most interested in and, with the aid of the booth number listed at the end of each product description, make sure you see them first.
In the WESCON Round Up, p 62 we have summarized what manufac furers told us they thought were outstanding recent developments in their particular fields. They also predicted for us the developments which they thought were most likely in the near future. Along with these answers to our questionnaire we have listed some of the products to be seen in each of the categories discussed
Product features in this issue include descriptions of the Convertron power supply and the Jaguar series of inexpensive paper capacitors which are moisture resistant. We believe these products will be of more than ordinary interest to our readers Both will be on exhibit at the show

And, whether you are, or are not going to WESCON, remember to make use of our Reader-Service Card to obtain more information on any or all of the items contained in the New Products section.

Transistor Data Chart

For your copy of Electronic Design's Ninth Annual Transistor Data Chart, which appeared in the July 5th issue, furn to the ReaderService card and circle 300
ELECTRONIC DESIGN•ONE DAY SERVICE USE BEFORE SEPTEMEER 13th, 1961
Name
Company
Compony Addrees

	10	20	30	40
,	11	21	31	
2	12	${ }_{23}^{22}$	${ }_{33}$	42
	14	24	34	4
5	15	25	35	cs
	16	26	36	46
	17	27	37	4
1	18	28	38	48
	19	29	39	49

$\begin{aligned} & 30 \\ & 30 \end{aligned}$									

 $\begin{array}{lllll}306 & 316 & 326 & 336 & 346 \\ 307 & 317 & 327 & 337 & 347\end{array}$ 308318328338348 309319329339349 $600 \quad 610620 \quad 630 \quad 640$ $\begin{array}{lllll}601 & 611 & 621 & 631 & 641 \\ 602 & 612 & 622 & 632 & 642\end{array}$ $\begin{array}{lllll}602 & 613 & 623 & 633 & 643\end{array}$ $\begin{array}{lllll}604 & 814 & 624 & 634 & 644 \\ 605 & 615 & 825 & 635 & 645\end{array}$ 606816026836646 $\begin{array}{llll}607 & 617 & 627 & 637 \\ 6047\end{array}$ $608618 \quad 628838648$ 609819829639649

					Ciry										
so	∞	70	80	90	100	110	1201	130	140	150	1001	170	180	190	200
51	61	71	01	91	101	111	1211	131	141	151	161	171	181	191	201
52	62	72	42	92	102	1121	122	132	142	152	162	172	182		202
53	${ }^{6}$	73	83	93	103	113	1231	133	143	153	103	173	183		203
54	64	74	84	94	104	114	124	134	144	154	164	174	184	194	204
55	65	75	85	95	105	115	125	1351	145	155	165	175	185	195	205
56	60	76	96	96	106	1161	1261	1361	146	156	166	176	186	196	206
57	67	77	07	97	107	117	1271	137	147	157	167	177	187	197	207
58	68	78	88	98	108	118	128	138	148	158	168	178	188	198	208
59	69	79	89	99	109	119	1291	139	149	159	169	179	18	99	209
350	360	70	380	390	400	410	-20	430	440	450	400	470	480	490	0
351	361	371	301	391	401	411	421	431	$4{ }^{1} 1$	451	1461	471	481	491	O1
352	362	372	362	392	402	412	422	432	442	452	462	472	482	492	20
353	363	373	383	393	403	413	423	433	443	453	463	473	483	493	503
354	364	374	384	394	404	414	424	434	444	454	464	474	484		50
355	365	375	385	395	cos	415	425	435	445	455	5463	475	485	495	505
356	366	376	386	396	406	416	420	436	446	456	466	476	486	496	
357	367	377	387	397	407	417	427	437	447	457	7467	477	417	497	907
358	368	378	188	398	408	418	428	438	448	458	468	478	418		
359	369	379	389	399	409	419	429	439	449	459	9469	479	489		
650	600	570	880	090	700	710	7507	730	740	750	700	770	750	780	
651	861	671	681	091	701	711	7217	731	741	751	1701	771	781	791	01
652	602	672	682	692	702	712	2722	732	2742		2782	772	782	792	302
053	863	673	683	693	703	3	723	733	3743		3763		703		303
654	604	674	As 4	694	704	714	724	${ }^{734}$	474		404		784	494	0
65S	605	075	Ass	805	705	715	525 72	735			5705		785		05
656	666	676	686	696	706	716	726 72	336	6746	756	6 708	776	786	796	00
057	667	677	-87	897	707	717	7277	737	7747	757	7767	777	787	797	02
658	668	678	688	698	708	718	728	738	740	750	38700	770	780	798	e08
059	669	679	689	699	709	719					989 76	779	789	799	

Mome Aldres

For Change of Addresa

Old Compony Neme
Old Company Addren
ELECTRONIC DESIGN•ONE DAY SERVICE USE BEfore seprember 13lt, 1961
Nome

Compeny

and control

 precisely
with new

decade counters

from Raytheon

RAYTHEON DECADE COUNTER TUBES

TVPES	CK6999	$\begin{aligned} & \text { CK6476" } \\ & \text { CK6802 } \end{aligned}$	CKEA76A Cк7978
OC Supply	450 volts	425 volls	425 volts
Anode Resistor	0.27 mez ohms	0.82 meg ohms	0.82 mes ohms
Mominal Pube Drop	235 volls	187 volts	187 volts
Cathode Resistor	24 K ohms	100 K ohms	100 K ohms
Output (Across Cathode Resistor)	15 volts	30 volts	30 volts
Speed	10100 kc	105 kc	105 kc
Maximum voltage between cluding Anode)	140 volts	140 volts	200 volts

More efficient equipment for precision counting and control of high-speed production machines can now be designed with Raytheon decade counter tubes. Because these tubes provide both visual and electrical readout, the functions of counting and stopping machinery at preprogrammed intervals can be combined with less circuitry and components.
The new Raytheon 13 -pin CK7978 offers the advantages of small size, economical socket requirements, rugged construction. long life-and outstanding cost reductions both in lower initial purchase price and simpler circuitry requirements.
Frequency dividing, matrixing, telemetering, sampling, timing, and coding are other applications for Raytheon decade counter tubes. For full information please write: Raytheon, Industrial Components Division, 55 Chapel Street, Newton 58. Massachusetts.

For Small Order or Protorype Requirements See Your Local Franchised Raytheon Distrihutor
RAYTHEON COMPANY
RAYTHEON

See Mallory for

wire-wound controls

We've got 'em at

2 watts

4 watts

and 7 watts
in hundreds of resistance values, tapers, shafts and multi-ganged arrangements. And we're famous for engineering special models and delivering them at economical prices. Mallory Controls Company, Frankfort, Ind.

MAllodY

plugs s jacks

vitreous enamel resistors

rotary switches
ELECTRONIC DESIGN News
Human Body Furnishing Clues to Circuit Design
Thin-Film Hall Device Is Nearing Production 4
WESCON Field Trips To Feature Research, Automation 8
Two New Sessions Added by WESCON 10
Speech Recognized by Waveform-Matching System 16
Washington Report 20
Adapted Typewriter Digitizes Negatives 22
Selective Data Retrieval System Uses Keywords, Prints Abstract; 25
26
Stereo Adapters Based on 2 Designs 30
Atomic Weather Station to Aid U. S 344
Space Successes Mounting; WESCON 39
Editorial comment
Tunnel Diode Sine-Wave Oscillators
The design equations for sine-wave oscillators are presented with several typical examples worked out. Device limitations and oscillator stability results40are discussed-E. Gottlieb
Backlighting: Best for Electronic Control Panels 46
The ways a designer can light an instrument panel from the back- A. M. Blumenfeld
How to Evaluate DC Differential Amplifiers
A comparative evaluation of de differential amplifiers, stressing the often over- looked-W. G. Royce50
How to Choose Modifiers for Epoxy 54
Flexibility, lower pouring viscosity, and lower cost can be achieved through the right additives-C. Harper
Product Features 58
Newly available products of exceptional interest to design engineers
A New Concept in DC Power Supplies 59
The Convertron is a 2-kw regulated dc power supply, housed in a 7 -in. highrack and using a "lossless" regulation technique
Inexpensive Paper Capacitor Is Moisture-Resistant 60Waxless, oil-free cardboard tubular operates to 125 C
Wescon Round-Up62The response to an Electronic Design questionnaire reveals what manufac-turers, exhibiting at the show, believe to be the outstanding recent develop-ments in the industry and their predictions for the future
More than 230 of the new products described in this issue will be exhibited at WESCON. Leading the parade are an electro-optical pot, a switching-time tester, a convenient rack scope, and a solid-state frequency comparator

[^0]Practical Design of Magnetic Radar Modulators 160
A step-by-step procedure for designing these increasingly used modulatorsR. M. Philip

Doppler Modulation Systems-The Pros and Cons $\ldots \ldots . \ldots \ldots . . .{ }_{\text {This }} 166$
This article describes the factors involved in deciding which of the four major Doppler modulation systems is best suited for application in a particular vehicle-D. Whitney, N. Laschever
Microwave Power Meter Accurate Within ± 0.5 Per Cent $\left.\ldots \ldots . . \begin{array}{l}170 \\ \text { Direct-reading instrument measures power precisely from } 0.5 \mu \mathrm{w} \\ 10 \mathrm{mw}\end{array}\right)$
Ideas for Design196
Tuning-Fork Oscillator Produces Square Waves Directly 196 196
Voltage Comparator Uses Tunnel Diode Flip-Flop
Sine-Cosine Pots Form White-Noise Signal Generator 198
AF-Tuned Amplifier Has Adjustable Bandwidth 200
"See-Saw" Multivibrator Uses a Single Capacitor 201
RC Pair Safely Sets Initial State of Relay Driver 202
AC Amplifier Is Wide Band, Less Bulky202
203
204
205
Trigger Pulse Generates Two Separate Outputs
Regenerative Switch Demodulates Sinusoid 205
Pulse Circuit Provides Sharp, Variable Pulse Delays 206
Ideas for Design Entry Blank 197
"Mechanize" Your Circuit Searches 214
How one engineer evolved a "sorting-needle-and-punch-card" system to locatethe circuits in his collection-D. Schuster
New Literature 188
Report Briefs 208
Careers 214
Advertisers' Index 221

Coming August 30

One of the fastest moving and most challenging areas of electronic design, the design of digital data-processing equipment, will be featured in a special report in the August 30th issue of Electronic Desig. Within this broad field. the report will focus attention on three areas that have moved most rapidly and have received most concentrated attention in the past year: Logic and Timing, Matrix Memories, and Cyclic Memories.

181'3

[^1]ELECTRONIC DESIGN • August 2, 1961

UTICA UNWRAPS A NEW BENT CHAIN NOSE PLIER

"Electronic Plier-of-the-Month" • July and August

Never before available on an industry-wide basis! This month's Utica special is the \#25-5 ... a new bent chain nose plier designed to grip, twist and loop very fine wire in closely confined areas. It's ideal for work on chassis as well as other subminiature electronic assemblies. Special features include 60° angle bent chain nose Beveled edges full length of jaw - Fine serrations in jaws to prevent nicking or marking - Primer coated dipped cushion grip handles and Bauer spring to reduce operator fatigue - Induction hardened edges - Gleaming finish - Backed by Utica's famous full guarantee. Write for complete information on the \#25-5 or the Utica Electronic Plier of the Month program. Or ask to have your U'tica distributor call!

UTICA DROP FORGE \& TOOL DIVISION - KELSEY-HAYES COMPANY, UTICA 4, MEW YORK

$M \equiv M \mathrm{M} 5$

Human Body Furnishing Clues to Circuit Design

Biological-electronic analogies presented; blood flowmeters discussed; and variety of medical-electronics equipment shown during Fourth International Conference on Medical Electronics.

On Electronic-Medical Agenda

Imaginative design approaches to the meas urement of blood flow and physical models for human organs and cells, particularly the neuron, were among the chief topics of discussion at the Fourth International Conference on Medical Electronics in New York City.

The week-long conference and exhibit, ending July 21, was held at the Waldorf-Astoria.

Technical sessions delved into a wide variety of electronic-medical combinations in nearly 300 papers. Equipment shown was largely aimed at heart measurements. Several manufacturers showed portable electrocardiographs or miniature fm telemetry units for transmitting cardiac signals to remote receivers.

ANALOGIES between the operation of electrical circuits and parts of the body were presented in many of the technical sessions and exhibits at the recent medical electronics conference in New York.

The extent of work going on in this field was illustrated by the following presentations at the meeting:

- Lumped-circuit constants were used to represent the functioning of the heart and the circulatory system.
- A hydraulic-type reflex klystron was used to closely approximate heart action.
- Theoretical cell models, particularly for neurons, were presented by several speakers.

An electronic circuit exhibited by Dr. M. P. Spencer of the Roman Gray School of Medicine, Winston-Salem, N. C., performed like the human circulatory system and produced a waveform on a cathode-ray oscilloscope that almost duplicated that of an electrocardio-
gram. In his design, Dr. Spencer considers the left heart as a constant-voltage source discharging into a tuned circuit resonating at $3-6$ cps. The tuned circuit represents the lumped-circuit compliance of the aortic arch, its branches, and the abdominal aorta and its branches. Inertiance of blood in the descending aorta is represented as an inductance. When an electrical impulse is fed into the circuit, voltages and currents to match pressure and flow in the arteries are derived.
A hydraulic counterpart of a reflex klystron that functioned like a human heart was demonstrated by its inventor, Group Capt. John E. Malcolm of the Royal Air Force.

The model consisted of a system of plastic tubing, fed from a reservoir of fluid about one meter high. Pulsing was accomplished by passing a section of the tube through a larger tube. The air between the two tubes
was alternately compressed and rarified imparting a wave to the fluid. The purpose of the model was to show that abnormalities of cardiac rhythm were related to modes of oscillation in fluid-filled elastic systems.
Many presentations at the conference were concerned with the construction of cell models based on electronic theories.

Dr. J. Polonsky, of the French Society of Electronics and Radio Technicians, pointed out that owing to the periodic and quasicrystalline structure of many sub-cellular components, cells might exhibit some of the properties of solid-state electronic devices, such as transistors, piezoelectric crystals, and others. He also compared neurons with coaxial-cable waveguide systems. The synapse was described as an electromagnetic radiation transfer.
W. B. Bishop of the Air Force Cambridge Research Laboratories discussed the relation-

Electronic circuit representing the action of the arterial pulse and the circulatory system was exhibited at the conference. "Aorta" (A) discharges into an LC circuit, representing lumped compliance of the arterial system. R_{1} and R_{z} represent peripheral resistance when a current corresponding to the cardiac-ejection oulse $|H|$ is fed into the circuit, voltages A and F and current L, which match current and pressure in the arteries, may be derived.

Portable electrocardiographs produced by Tokyo Shibura Electric Co., LId labove) and MinneapolisHoneywell Regulator Co. (right) represent the Japanese and American versions of this most widely shown instrument at the conference.
ship of the neuron loop to an informationprocessing electronic system. He explained that synchronizing pulses were probably radiated from neurons and that they helped the brain process information from the various sensory organs of the body.

An electric analogy for nerve impulse transmission was also proposed, using successively activated filaments of a distributed fuel cell. The filaments were compared to an electronic circuit consisting of a succession of blocks, each containing a switch, battery, and relay. The relay would have two sets of contacts. One set would be the switch of the next circuit, and the other would control the contacts of the previous block.
These circuits could be built up into complex networks and used to simulate the ordinary nervous activity in man according to J. Rothstein of Edgerton, Germeshausen, \& Grier, Inc., Boston.
A number of approaches to measuring the flow of blood in the human body were discussed at the conference. They included the ultrasonic flowmeter, ac and dc types, and the square-wave system.

The newest blood-flowmeter design, described by scientists from the University of Chicago, uses the oldest principle of operation: a conducting fluid moving through a magnetic field generates an emf in a probe coil. The university's flowmeter incorporates a dc amplifier between the pickup electrodes and the meter. The electrodes are made of a silver-silver chloride compound that is electrochemically stable. Therefore no emf is induced in the probes by the electrolytic effect.
Several Japanese portable electrocardiographs as well as a number of American models were shown at the exhibits. Representatives of C . S. concerns said the Japanese equipment was well designed and reportedly gave good performance but had not yet sold well here because of the unavailability of spare parts and service representatives.

Birtcher Corp.'s model 300R, for example, sells for $\$ 850$ with a two-year service guarantee. If a unit fails, a serviceman will replace it with a new electrocardiograph the same day.

Among other U. S. models at the exhibit were Sanborn Co.'s Visette, priced at $\$ 625$, and Minneapolis-Honeywell's Cardioview.

Portable fm transmitters for telemetering cardiographic signals from a person to a remote fm receiver were also shown by several manufacturers. -

High-quality closed circuit television is now more practical than ever. KIN TEL's new $20 / 20$ camera is the reason. It contains its own control circuits. This eliminates the separate unit so long traditional with high-quality TV systems...lets you connect the camera directly to a monitor-or home TV receiver.
The $20 / 20$ is easier and less expensive to install, operate, service. Yet it gives the sharpest, clearest pictures in the industry - 650 lines of horizontal resolution. It is so sensitive that you can get usable pictures with as little as one foot candle of illumi-nation-less than the light now falling on this page.
Trouble-free operation is designed into the 20/20. Transistor circuits are used wherever possible. Power consumption is only 25 watts. Protective circuits prevent vidicon damage in case of sweep failure. And the swing-out circuit boards make servicing easy.
Many standard accessories custom-fit the 20/20 to your exact needs. A light compensation circuit automatically adjusts the camera for light variations as great as $4000: 1$. Motors provide remote control of the lens turret, lens focus, and a lens-speed filter. Sync generators assure 2:1 interlace either in the standard industry-wide sweep/scan pattern, or in the fineline pattern that gives you greatly increased vertical resolution. RF modulators make the pictures available on standard TV channels 2 through 6.
Cut costs, reduce errors with one of KIN TEL's complete lines of high-quality, closed circuit TV. Other companies do. U.S. Steel uses KIN TEL TV to see inside open-hearth furnaces. E. F. Hutton uses one to transmit stock quotations. Los Angeles Department of Water and Power uses Kin tel TV to check steam plant burners and to view remote water-level meters. The San Francisco Naval Shipyard uses one to guard against pilferage. American Potash \& Chemical conveyor lines and warehousing operations are monitored by KIN TEL TV as are radiation studies at General Atomic. KIN TEL TV provides detailed surveillance of every type of ICBM outside the Iron Curtain. All told, hundreds of KIN TEL TV systems are performing critical and routine jobs safely, inexpensively, tirelessly.
Application help is free for the asking. At no obligation, KIN TEL field engineers will determine whether a TV system can be put to profitable use in your application. Just write direct for catalog 6-203 and the name of your closest KIN TEL representative. There is one in every major city.

5725 Kearny Villa Road
San Diego 11, California BRowning 7-6700

Visit Perkin at WESCON Boorbs 516-S18.

TRANSISTOR-KILLER: THE VOLTAGE SPIKE TAMED BY PERKIN MTR DC POWER SUPPLIES

The "turn-on" transient above could destroy the transistors in your circuit in microseconds. Protect transistorized equipment against treacherous line and load transients with Perkin MTR rubeless power supplies. Combining the best of two solid-state regulation principles, they use magnetic amplifiers for high efficiency and transistors for instantaneous suppression of transients and ripple. No tubes, no mov ing parts, no trouble! Units sustain shorts and overloads indefinitely, resuming normal operation automatically. Ideal for continuous-duty and unat tended operation. Prompt delivery an!where. HERE ARE JUST A FEW OF OUR MANY OFF-THE-SHELF UNITS

WRITE FOR COMPLETE CATALOG

$\begin{gathered} \text { Model } \\ \text { No. } \end{gathered}$	D.C. Output		Static Rezulation		Dynamic Resulation		A.C. Input 60 cps, 1 Phas	$\begin{aligned} & \text { R1pple } \\ & \text { RMS } \end{aligned}$
	Volts	Amp	Line	Load	Line	Load		
MTRO36.5	0.36	5	$\pm 10 \mathrm{MV}$	$\pm 10 \mathrm{MV}$	$\pm 10 \mathrm{mV}$	$\pm .2 \mathrm{~V}$	105-125V	1 MV
MTR036-15	0.36	15	$\pm 10 \mathrm{mv}$	$\pm 10 \mathrm{MV}$	$\pm 10 \mathrm{MV}$	$\pm .2 \mathrm{~V}$	${ }^{103-125 V}$	1mv
MTR636-15	${ }_{6} 6.36$	15	$\pm 25 \mathrm{MV}$	$\pm 50 \mathrm{MV}$	$\pm 25 \mathrm{MV}$	$\pm .75 \mathrm{~V}$	105-225V	smv
MTR636-30	6.36	30	$\pm 25 \mathrm{mV}$	$\pm 75 \mathrm{mv}$	$\pm 25 \mathrm{mV}$	$\pm .85 \mathrm{~V}$	105-125V	5 mv
MTR28.5	24.32	5	$\pm 0.1 \%$	± 0.18	± 0.18	$\pm .3 \mathrm{~V}$	105-125V	SMV
MTR28-10	24.32	10	$\pm 0.1 \%$	± 0.16	$\pm 0.1 \%$	$\pm .4 \mathrm{~V}$	105-125V	2mv
MTR28.30	24.32	30	$\pm 0.1 \%$	$\pm 0.1 \%$	$\pm 0.1 \%$	$\pm .5 \mathrm{~V}$	105-125V	smv
ELECTRONICS CORPORATION 345 Kansas Street, El Segundo, California \square SPring 2-2171								

345 Kansas Srreet, El Segundo, Califormia \square SPring 2-2171

PERKIN SALES REPRESENTATIVES
alauauercue, m. m. Brooks-Feeger Assoc.
5510
Domingo Ro. SM 8 . 1724
angola, mo. Law Instrument C $21788101 \cdot R$ arlanta 5, ea
 ${ }_{-1}^{4969} 5.6650$

baltimore, mo.

 Gawle-Knoon co | Toms. |
| :--- |
| EN $9.315 i$ | cmicaso 25, II Saltio 8 A Assoc.

5209 N. Kimbail Ave. iu 8.0905 clevelano, omio Gaine Engine ering
29603 Bruce Drive
 WHitney
Dallas 20 , TEXAS dallas 20, texas
Wallace Assoc.
 denven, colo.

Engle evoro.
sut 1.3375

2702 4ist PI.
 OETROIT 3 , micin

 Dettoit 34, M, Michigan
Forest 6.5353 EREENSBono, N. c.

Sulte B. 1.
BR 2.0855

mamsas city a, mo ${ }^{\text {Desising }}$ \& Salese Eng. Co 2650
GR 1.1640 GR 1-1640
Lawnemce, mass.
 ${ }^{46}$ A Amesbury

los aneeles, chalf.

 Instruments forMeasurements Meassurements
Sass
Sult
\lessgtr Sulit
Hollywoor, Calif.
HO 9.7294 minmeapolis, mimn. Northoort Eng:
1729 Seloy Ave.
ind
 MEW YORK CIIY MMD

 Roseland Tele. E. Holmes $\begin{aligned} & \text { Ass } \\ & \text { or } \\ & \text { and }\end{aligned}$
 phlaoelpmia, pa Gawlet.Knoop co.
B35 Clenside Ave. 835 Glenside Ave.
Wyncote. Pa.

CIRCLE 7 ON READER-SERVICE CARD

NEWS

Thin-Film Hall Device Is Nearing Production

Beckman Instruments Generator Said To Give Higher Voltage Outputs

Thomas E. Mount

West Coast Editor

P
ILOT production of thin-film, indiumantimonide Hall-voltage generators, with outputs reported significantly greater than previously available, is being established at Beckman Instruments, Fullerton, Calif.

Kermit Heid, research engineer of the company's Helipot Div. and developer of the new Hall elements, says they will generate 1 v where conventional elements would only show 100 mv under the same circuit conditions. He attributed the greater output to the thinness of the elements.

Hall voltage is an inverse function of the thickness of the material used. With the exception of bismuth, materials showing a pronounced Hall effect (the appearance of a transverse electric potential gradient in a current-carrying conductor upon the application of a magnetic field) are quite brittle Extremely thin elements have been impossible to use without costly hand-polishing. Mr. Heid said.

By evaporating thin (7 -micron) films on substrates, Mr. Heid obtained elements with Hall constants of $120 \mathrm{~cm}^{3}$ per coulomb and mobilities in the neighborhood of $10,000 \mathrm{~cm}^{2}$ per v-sec. Input impedance of the new Hall elements is 150 ohms typical, and output impedance 200 ohms typical. Conventional units have about 1 -ohm output impedance, Mr. Heid says, and as a consequence require more input power- 400 mw nominal.

There are, however, advantages to the higher impedances, Mr. Heid continued.
"For a given configuration," he said, "the power available from an InSb Hall generator is 280 times as great as that from a germanium element if you can match the load to the Hall impedance. This is extremely difficult to do with input and output impedances on the order of 0.5 to 1 ohm , but somewhat easier with the same impedances in the range of 100 to 20 ohms.'

In addition to the higher output voltage for the same input conditions, reports Mr. Heid, the advantages of the new elements include higher frequency operation, better

Output of this watt transducer is proportional to $V_{\text {in }} l_{\text {inad }}(\cos \varphi-\cos [2 \omega+\phi])$, where ω is $2 \pi f_{;} f$ is 60 cps and $\cos \phi$ is the power factor of the load.
heat dissipation and the feasibility of unusual configurations in production devices.

Output frequencies on the order of 100 kc are possible now, the only limitation being in the magnetic circuitry associated with the device. According to Mr. Heid, watt transducers are being designed with responses far faster than those of conventional bolometers (see schematic). If the magnetic field in a waveguide is used, instantaneous-response watt transducers could be designed for microwave systems; response of the Hall element itself is in the nsec range.

Open-circuit output sensitivity-Hall co-efficient-of the new elements is put at 0.7 \checkmark per amp-kilogauss, with $\overline{5} .6$ kilogauss magnetic induction and a control current of 50 ma. This is said to compare with 0.12 v per amp-kilogauss for conventional devices. Misalignment voltage is $\overline{\mathrm{mv}}$ maximum, Mr. Heid asserted, but 1 mv can be specified. Input power is 750 mw maximum, 400 mw nominal.

According to industry sources, among the applications for such Hall generators are function multipliers (varying both input current and magnetic field), magnetic field probes, current-measuring probes, frequency doublers, magnetometers, choppers, frequency spectrum analyzers and displacement gages. Since the output can be made to depend only on how the Hall element is oriented in a magnetic field-being a function of the cross product of I and B-an efficient ac or de resolver could be constructed.

With the introduction of the thin-film Hall generator to the production line, Beckman Helipot Dis. will join Westinghouse, Ohio Semiconductors and Siemens and Halske (Germany) as makers of Hall elements.

In addition to the elements themselves, Westinghouse and Ohio are marketing watt transducers using Hall generators, while Dyna-Empire and Radio Frequency Laboratories are selling Hall gaussmeters. Assembly Products, Inc., sells a wattmeter relay. - -

With the ever increasing demand for Single Side Band Communication Systems for High Frequency Voice communications, facsimile and multi-channel frequency shift keying teletype operation, Bulova Electronics added Model 283 Single Side Band Filter to their standard line of crystal filters.
Designed tosurpass theSignal Corps SM-D-180214 and SM-D-180215 Single Side Band Filter Specifications, the new Bulova Model 283 features an unusually flat passband, low insertion loss and operation over a large temperature range.
General Specifications include: Carrier Frequency-100kc; Carrier Attenuation- 13 db ; Maximum Rip-ple- $\pm 0.5 \mathrm{db}$; Insertion Loss-less than 5.0 db ; Input Output Impedance-1.5 k Ω balanced or un-

balanced; Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Type 10WL Lower Side BandModel 283 features Passband $- \pm 0.5$ db from 94 kc to 99.875 kc and Minimum 60 db Attenuation at 100.2 kc and above.
Type 10WU Upper Side BandModel 283 features Passband ± 0.5 db from 100.125 kc to 106 kc . Minimum 60 db Attenuation at 99.8 kc and below.
The new Bulova Model 283 can be driven from a balanced or unbalanced source and its low input and output impedance make it readily adaptable to transistor circuitivity.
For additional information or Bulova Electronics, Woodside 77, N. Y.

WESCON Field Trips To Feature Research, Automation

Latest research projects and modern production methods will be featured during numerous field trips in the San Francisco Bay area during the Western Electronics Show and Convention, Aug. 22-25. Here are some representative samples of what the field-fripper will see during plant and laboratory visits.

Numerically controlled milling equipment at Hewlett-Packard Co.'s Palo Alto plant represents some of the modern production techniques to be seen during the trips. H-P is scheduled for Field Trip 7 on Thursday afternoon, Aug. 24. The milling is being done by a Milwoukee-matic tapeprogramed machine.

Cavity-type maser operating at 35 Gc using iron-doped rutile as the paramagnetic crystal, is under development ot Melabs, Palo Alto. WESCON dele. gates will visit this microwave firm on Thursday morning, Aug. 24, Field Trip 6 on the planned schedule.

Cesium plasma fube operation is monitored on an oscilloscope, being adjusted by Dr. Matthew A. Allen, research associate in the microwave laboratory of Stanford University. This laboratory will be visited during Field Trip 4 on Wednesday afternoon, Aug 23.

Micro-mochining with an electron beam accomplished this neat slicing of silicon thin-film spots only about 1 micron thick. This work will be on view at Stanford Research Institute's Applied Physics Laboratory, Menlo Park, on Thursday afternoon, Aug. 24, during Field Trip 8. Photo is an electron mierograph.

FIRST TO COMBINE

120 V (BV $\mathrm{BBO}^{\text {o }}$) 0.5 V (SAT) 150 mc . f_{T}

2N2087 NPN

 CORE DRIVER LINE DRIVER

You would expect Philco, as inventor of industry's most capable germanium logic transistor-the MADT, to design Silicon memory components with extra capability, too. And Philco has done it. The 2N2087, forerunner of a broad line of Philco epitaxial silicon mesa transistors, offers an incomparable combination of parameters that may well be the special design solution you require: maximum $\mathrm{BV}_{\text {CBO }}$ of 120 V ., minimum h_{FE} of 40 at $1 \mathrm{~V}_{\mathrm{CE}}$, maximum V_{CE} (SAT) of 0.5 V ., minimum f_{T} of 150 mc ., maximum C_{ob} of 12 pf., and maximum t_{4} of 100 nanoseconds.

The new Philco 2N2087 epitaxial silicon mesa delivers optimum drive for computer memory planes. serves as a medium power switch in airborne controls systems, and is ideally suited to a wide variety of other applications such as small power supplies, servo amplifiers, and automation controls. For complete information, write Dept. ED8261.

570 WEST NORTH AVENUE
CHICAGO 39, ILLINOIS for information call
NAtional 2-8860

Immediately available in
quantities 1.999 from
quantities 1.999 from
your Philco Industrial
Semiconductor Distributor.

EP Famous for Qualliy the World Over
LANSDALE DIVISION, LANSDALE, PENNSYLVANIA

NEWS

Two New Sessions Added by WESCON

Panel Discussion of Arms Control, Meeting on Quantum Devices Slated

APANEL session on arms control and a

Atechnical session on quantum devices have been added this year to the Western Electronics Show and Convention, to be held in San Francisco Aug. 22-25.

Dr. John Grainger, technical chairman of WESCON, said the session on arms would be led by Dr. L. C. Van Atta, formerly Special Assistant for Arms Control in the Dept. of Defense and now director of Hughes Aircraft Co. Research Laboratories, Malibu, Calif. The quantum meeting will feature devices and technical papers.

Outlining the program on arms analysis, Dr. Van Atta said that experts would take up the nuclear, military, technical (other than nuclear), politico-economic and psychological aspects of control efforts

Politico-economics and pyschology will be discussed last, he observed.
"We consider these the most important aspects of the problem," he explained, "so we placed them last to stick in people's minds. We want to make members of the IRE aware that arms control is much more than how far you can throw a radar beam."

Dr. William H. K. Penofsky, a Stanford University Professor of Physics, will discuss the pros and cons of efforts to agree on limiting nuclear armament. He will outline the difficulty of monitoring nuclear stockpiles and testing, as well as techniques by which the Russians could cheat during a moratorium.

Military aspects of arms control will be presented by Rear Admiral Paul L. Dudley (Ret.), formerly Special Assistant to the Joint Chiefs of Staff.

Dr. Donald G. Brennan of the Massachusetts Institute of Technology, Lincoln Laboratories, will consider technical aspects of arms control other than nuclear. He will cover such fields as delivery and electronic detection systems.

Dr. Harold Rowen, formerly of Rand Corp. and now Deputy Assistant Secretary in the Office of the Assistant Secretary of Defense International Security Affairs will take up
the political-economic aspect of arms control. Psychological problems will be presented by Charles E. Osgood, director of the Institute of Communications Research, University of Illinois. He is expected to urge a reciprocal program of tension reduction.
At the session on quantum devices Hughes Aircraft Co. will display its experimental Colidar-coherent Light Detecting and Ar-ranging-system (see ED, March 29, p 18). The device uses an optical maser to transmit energy to targets as far away as seven miles. The design and operation of Colidar will be presented by Malcolm L. Stitch of Hughes.

Another aspect of bulk-effect devices to be discussed is "A Solid-State Spin-Echo Memory System for a Microwave Digital Computer," a paper by L. Kent Wanlass and J. R. Singer of the University of California at Berkeley. Electron spin echo was studied both experimentally and theoretically as a digital computer memory system at microwave frequencies. The authors have investigated in considerable detail a new method for storing the phase of microwave pulses as used in phase-script information systems of the V'on Neumann type. Their work demonstrates that the storage of a single cubic centimeter crystal should exceed 10,000 bits. According to the authors, the spin-echo method is a feasible serial storage system for microwave computers. - "

Sylvania to Close Tube Plant; Expand Solid-State Production

Planned shutdown of the receiving-tube plant of Sylvania Electric Products, Inc., in Shawnee, Okla., marks the third big cutback in tube manufacturing operations in recent weeks.

Philco Corp.'s Lansdale Div. and the Electronic Div. of CBS, Inc., previously announced plans to drop out of the receivingtube business to concentrate on solid-state device production. Raytheon Corp. has taken over the CBS line of tubes.

The Shawnee plant closing will take place over the next six months to ease the impact on the 500 workers there, according to a Sylvania spokesman. Other Sylvania plants

Safely... Accurately... Simply!

- The Sprague Model IWI Capacitance Bridge introduces a new concept in bridge design. Built by capacitor engineers for capacitor users, it incorporates the best features of bridges used for many years in Sprague laboratories and production facilities.
- Using a line-driven oscillator with but two active elements (diodes), the bridge has a transistorized detector whose sensitivity increases as the balance point is approached. It has provision for 2-terminal, 3 terminal, and 4 -terminal measurements, which are essential for accu rate measurement of capacitors with low, medium, and high capacitance values, respectively.
- The Model IWI Capacitance Bridge will not cause degradation or failure in capacitors during test, as is the case in many conventional bridges and test circuits. The 120 cycle a-c voltage, applied to capacitors under test from a built-in source, never exceeds 0.5 volt! It is usually unnecessary to apply d-c polarizing voltage to electrolytic capacitors because of this safe, low voltage.

For complete technical data on this precision instrument, write for Engineering Bulletin 90,010 to Technical Literature Section, Sprague Electric Company, 347 Marshall Streel, North Adams, Massachusetts.
in Emporium, Brookville and Altoona, Pa., and in Burlington. Iowa, will continue receiv-ing-tube production.

At the same time Sylvania has announced plans to expand semiconductor production facilities by 42 per cent between now and next spring.

ELECTRONIC PRODUCTS by SPRAGUE

```
CAPACITORS
RESISTORS
magnetic components tramsistors
```

interference filters pulse transformers piezoelectric ceramic PULSE-FORMING METWORKS
high temperature magnet wir CERAMIC-BASE PRINTED METWORKS packaged component assemblies FUNCTIONAL DIGITAL CIRCUITS

THE MARK OF RELIABILITY

RUGGED

 is the WORD!

SWAY - PROOF CORNER CONSTRUCTION

Double ledge. double plane corner construction ${ }^{\text {* }}$ provides greater structural stability with increased static load carrying capacity and the reduction of torsion to a minimum. Note the unique reinforced corner construction and points of weld - an exclusive Equipto feature.
*U.S. PATENT APPLIED FOR

Get the Facts! W'rise soday for descriptive Brochure No. 100.

319 NORTH WEBSTER STREET - MAPERVILLE 6, ILLIMOIS circle 13 on reader-service card

Tiros III Carries New Solid-State Timer

All Silicon Devices in Non-Pressurized Package Replace
Mechanical Components in System for Weather Satellite

Checking over instruments for the Tiros III payload is RCA engineer Glenn Corrington. The newest weather satellite carries a new solid-state timer and additional infrared instruments for solar radiation measurements. A second wideangle lens vidicon camera replaces the narrow-angle one used in Tiros II.

AN all-solid-state timer on the newly orA bited Tiros III weather satellite represents a significant electronic advance, Electronic Design has learned. Radio Corp. of America engineers who designed the timer believe it and others like it will become widely used in space programs.

Tiros III is making possible studies of the formation of tropical storms over the Caribbean, Atlantic and Far East waters. Its completely solid-state timing system, using all silicon components, is probably the most significant design advance in the satellite's payload.

The timing system on earlier Tiros vehicles included mechanical sequencing and stepping switches, and germanium components.

Mechanical Components Face

Severe Restrictions in Space
Serious problems are encountered with mechanical components in space environments, according to Walter Morgan, engineer in charge of the Tiros reliability program for RCA, Astro-Electronics Div., Princeton, N. J.

Mechanical switches must operate dry in the vacuum environment of space, since any oil on them is sucked away. Also, dust that might settle on contacts cannot be removed. These problems can lead to sticky contacts or cam wheels.

All-solid-state circuitry not only eliminates these difficulties but also gives significant savings in power dissipation.
The new system is built around an Incremag clock made by General Time Corp., Stamford, Conn., as was the previous mechanical version. The clock uses a high-precision quartz crystal oscillator (drift within 0.005 per cent over -25 to +85 C temperature range) operating at about 18 kc to provide signals for synchronism and timing of events in the satellite.
As an example of power savings achieved, the mechanical system required 2 -amp pulses of about $100-\mathrm{msec}$ duration to steppingswitch solenoids every 2 sec . The new sys-
tem substitutes $100-\mathrm{ma}$ pulses of $10-\mu \mathrm{sec}$ duration every 2 sec to provide a similar function.

Further power savings were accomplished, according to Mr. Morgan, by using pnp-npn complementary flip-flops rather than conventional types. A saving of about 40 to 1 was realized through this choice. Use of transistors rather than diodes in 2 - and 3 -input AND gates also cuts down significantly on power dissipation.
The mechanical system was hermetically sealed in a pressure vessel for previous shots. This vessel was not sealed in the Tiros III package because of the elimination of the mechanical components.

The Tiros program is switching over to the new timer design, according to Mr. Morgan, and this approach is under consideration for future programs. General Time will produce solid-state versions of the Incremag timer for the program.

IR Sensors Carried on "Outriggers"

Measure Radiation to and From Earth
New infrared equipment carried on the Tiros III includes an omnidirectional sensor system carried on outriggers extending from opposite sides of the satellite's circular base. These will be used for measurements of the radiation directed from the sun toward the earth, and the amount re-radiated from the earth's surface and atmosphere. Tiros 111 also has a second wide-angle camera in place of the narrow-angle type used in previous weather satellites.
The new Tiros is similar in size and shape to the first two-drum-like. Most instrumentation carried differs in very few details from the first two successful satellites.
Meanwhile Midas III, a missile-detecting satellite also hurled into orbit recently, is reported to have a more sophisticated infrared sensing system than those used in previous tests. Midas III is an experimental vehicle designed to provide recognition of hostile missiles rising above the earth's atmosphere through detection of their hot exhausts ($E D$. March 16, 1960, p 4). Technical details of the new satellite's sensing package, designed by Baird-Atomic, Inc., of Cambridge, Mass., are under tight security. "

TUNG-SOL HIGH

PERFORMANCE

GENERAL PURPOSE

 MINIATURE COMPUTER TRIODE
7719

Directly replaces parallel-connected 5965 and 7062 twin-triodes while providing these added advantages for designers of com puter circuits:
- Higher Iransconductance
- Much higher plate
dissipation
- Very sharp cul-off
- Very high perveance
- Linear transfer characteristics

The Tung-Sol 9-pin miniature 7719 seneral purpose triode the latest addition to the Tung.Sol tamily of tup-rated, highreliability tubes for computer service. Rated at 6 watts plate
dissipation, the 7719 incorporates many design and construction features which assure computer users the maximum number of hours of trouble-free peak performance.

CHECK THESE ADDITIONAL BENEFITS:

- Freedom from cathode interface and reduced electrical leak. age... Achieved through use of a passive cathode alloy and lower heater power per unit area
Minimization of grid emission . . The 7719 is designed with heavy grid support wire and a double connection to the grid for cooler operation allowing use of 1 megohm grid circuit resistance.
High stability ... Use of heavier stock plate material assures more even distribution of heat and lower plate temperature. Cool operation further guaranteed by cool cathode and low watt dissipation)
Very little "island" formation . . Optimized geometry minimizes island formation thereby providing sharp cut-off, linearity and high perveance.
Typical applications of the 7719 are found in totem pole amplifiers to drive function-generating potentiometers, cathode foliowers, and multivibrators. Full technical details on the 7719 are available immediately on request.

RATIMES		
Maetor Votrage (8erias)	12.0 ± 0.6	Volts
Meater Voltrge (Paraliol)	0.3 ± 0.3	Voits
manimum Prato Vortege	930	voits
maximum Piate Dissipation uaximum OC Cathode Current	${ }_{40} 8$	Watts
Marimum OC Oathode Ourrent Marimum Heater-Cathode Voltage:	40	uns.
Moator mogotive with rospest to Cathode rotel DC and Paer	200	voits
Hentar frositive with renoeet to cathode		Voits
OC	100	Yoita
	170	$\begin{aligned} & \text { yeits } \\ & c_{c} \end{aligned}$

(5) TUNG-SOL

Technical assistance is available through: Atlanta, Ga.; Columbus, Ohio; Culver City, Calif.; Dallas, Texas; Denver, Colo.; Detroit, Mich.: Irvington, N. J.; Melroze Park, IU.: Newark,
N. J.; Philadelphia, Pa.; Seattle, Wash. In CANADA: Abbey Electronics, Torono, Ont.

equals the ever growing family of CAPITRON ${ }^{\text {® }}$ Capacitors
And plenty doesn't say enough! Now Capitron adds this silicone rubber encapsulated Wafer Capacitor to its more than 2,500 special capacitor designs. available as standard in our line. When your requirements go beyond this we will create a capacitor to fit your requirements. If you're working in advanced areas of design-atomic energy, radar, communications and control-there's no need to let ordinary "off-the-shelf" capacitors freeze your design creativity
you may find exactly what you want in the big Capitron line. From single wafers to encapsulated multiple capacitors . . . whatever your choice or requirement . . . you can depend on Capitron products for:

- high resistance to thermal extremes (-65 C to $+125^{\circ} \mathrm{C}$)
- maximum stability, reliability and longevity with AMPli-films dielectric
- choice of waxdipped, encapsulated or armored types

Visill us at

Complete information on Capitron Capacitors available upon request.
©Rog U.S. Pat. Or.

CAPITRON DIVISION AMP INCORPORATED

Elizabethiown, Pennsylvania

Capitron producta end engineering assistance are aveilable in Cansda through Aireram-Marine Products of Canada, tid., Tpronto. Canada circle is on reader-service card

NEWS

Ranger I Space Vehicle Designed For Data Rather Than Moon Impact

Design of the first Ranger spacecraft is directed at providing data useful in future lunar and planetary impacts rather than actual moon landing.

This vehicle, which contains some 19.520 electronic parts, is the most complicated yet attempted by the National Aeronautics and Space Administration. Some of the systems vital to moon and planetary landings include: - an attitude stabilization system based on celestial references-the earth and sun.

- a high gain directional antenna which can be automatically directed in the right direction for transmission.
- 8 scientific experiments.
- two solar cell arrays (8,680 cells) which will provide from 155 - to 210 -w power.
- a solid-state timing system which takes 400 -cycle power from the spacecraft power source and converts it to pulses at a rate of one per second for timing vehicle functions.

Calibration of the solar cell system is one of the primary objectives of the Ranger shot. Four specially calibrated cells on Ranger 1 will provide needed data on attenuation of solar energy by the earth's atmosphere.
Experiments carried by the first vehicle in the Ranger series will provide measurements of interplanetary plasma clouds, cosmic rays and charged particles of slightly lower energy, magnetic fields, solar X-rays, cosmic dust, and hydrogen glow outside of the atmosphere.

The large number of experiments and systems require a vehicle weighing 67\%) lbswith electronics accounting for 243 lbs .

10-60\% Savings Reported With Wire Board Holders

Printed-circuit board holders made from wire weldments have proved 10 to 60 per cent less expensive for ground-based military and commercial equipment, according to a wire goods manufacturer who has been developing this new type of holder jointly with a number of electronics firms.

The resistance-welded wire holders are also said to be lighter in weight than conven-
tional holding assemblies made from castings of sheet metal. And because of their open, skeleton-like construction, they permit easier circulation of convection cooling currents, the manufacturer reports.

The welded-wire holders were developed and evaluated by E. H. Titchener \& Co. of Binghamton, N.Y., in conjunction with the General Electric Co.'s Heavy Military Electronics Dept., Syracuse, N.Y., for missile ground-support equipment. More recently other companies, such as Radio Corp. of America, Westinghouse, Sylvania, Martin, Philco and Bendix are reported to have either started to use or evaluate the welded-wire holders for racks and module nests.

The rack mounting assemblies consist of mounting frames, guide wires to receive tops and bottoms of circuit boards and provisions for mounting connectors. In applications where severe shock loads are expected, steel springs would be used between the guide wires. The edges of the boards would force these springs back as the boards were pushed into place and the resulting bearing friction would hold the boards securely.

Telemetry Saves Valuable Data

 Despite Sinking of Space CapsuleTelemetry prevented the loss of vital data on both capsule performance and physical reactions of Astronaut Virgil Grissom despite the sinking of the Liberty Bell 7 vehicle July 21.

National Aeronautics and Space Administration spokesmen told Electronic Design that the only important loss of data was the film of space pilot Grissom taken during the 16 minute flight. The loss of the $\$ 2$ million capsule was regrettable, they commented, because there were plans to reuse it for later tests.

The data provided by telemetry and Capt. Grissom's descriptions may permit fairly sound evaluations of possible malfunction of the capsule manual control system during the flight. Capt. Grissom said that the response of the vehicle to his control maneuvers was not good-particularly in the roll rate system. He told newsmen at Cape Canaveral that he felt that some control valve might have been sticking open and causing difficulty

SERIES

D) (-6) V
 HALF-INCH HIGH RELIABILITY POTENTIOMETERS

WRITE
FOR
COMPLETE
INFORMATION

NEWS

Speech Recognized by Waveform-Matching System

Completely Analog Circuitry and Stored Memory Is Used In 10-Word, Developmental Signal-Comparison Equipment

Analog speech-recognition system, said to be suitable for recognition of sonar, radar and other types of signals, has been tested successfully at Bulova Research and Development Laboratories. One of ten words spoken into microphone is taped, normalized with aid of scope, and its envelope compared with that of reference words stored on tape. When correlation is sufficient, a match is signalled.

Proposed design of speech recognizer for an industrial control application, like post-office mail sorting, includes optical storage system. Newly developed fasi-erase circuitry may permit the use of two rather than

Alan Cornereffo
News Editor

Adevelopmental signal recognizer that uses only analog techniques has automatically matched words spoken into it with the same words stored in its memory. Though equipment to recognize only 10 words has been built so far, the system is said to be readily expandable for use with hundreds of words and to be suitable for signals of any type.
The system is called Auditran, for Audio Information Transducer, and is under development at Bulova Research and Development Laboratories, Queens, N. Y. A Model I has been breadboarded with a tape memory, and detailed design is proceeding on a larger version that will have an optical memory, according to R. J. Bibbero, chief electronics engineer of Bulova. The company has applied for a patent on the Auditran concept, which is said to be based on an invention of Mr. Bibbero.

In operation, the equipment compares the waveform of an input word with a series of stored reference waveforms and selects the best match between input and storage. Best match is determined by the least value of a particular correlation function. In Auditran, this function is implemented with only analog circuitry, which is said to permit faster and less expensive processing than digital techniques. The system does not process raw waveforms; it uses internally generated envelopes based on amplitude or other characteristics to reduce bandwidth.

Input words are stored on a variable-speed tape assembly in the breadboard version of the system. By varying the tape speed, a operator is able to normalize the duration of each input word. The waveform is also normalized for amplitude with the aid of an oscilloscope. Although normalizing is now done manually, later systems will do it automatically, Bulova says. The normalized waveform is recorded on a continuous loop for further processing. The same technique is used to store reference waveforms.

Model I Auditran has tape memory and Iransistorized light-array output display. Equipment is being used to lest envelope detectors and other circuitry and to compile statistical data on performance of the system.

The present 10 -word memory is contained in a system of long loops of up to 300 in . moving at 15 in . per sec.

The input waveform, after being normalized, is rectified and traced in outline as preparation for envelope detection. Both the input and the reference waveforms pass through matched envelope detectors into a difference amplifier, so that the unknown waveform can be subtracted from each of the reference signals in turn. This is done in a continuous-loop operation.

Relative Phase of Waveforms Varied

As Signal Is Matched to Each Reference
At each repetition, the relative phase of the two compared waveforms is varied to achieve a match similar to cross-correlation. At present this is done by adjusting the relative lengths of two tapes. In carlier versions of the equipment, phase was varied by rotating a three-phase synchro, which advanced or retarded the phase of the drivemotor power supply of the tape lonp equipment and in turn advanced or retarded the tape containing the unknown waveform.

A differential amplifier subtracts the values of the unknown and reference envelopes. An integrator combines signals after they are separated into positive- and negativegoing signals. Two integrator channels are used because of the difficulty of balancing out dc to the integrator from a single-ended rectifier, Bulova says.

This differential integration of the rectified value of the difference between waveforms provides a least-error integral that

VITRAMON, INC. Develops Dramatically Improved Dielectric Material

$7=$

ASSURE 10 TIMES BETTER PERFORMANCE AFTER A LIFE TEST 10 TIMES MORE DEMANDING!

Three years of intensive product research, and the desire to impose a more exacting quality control during production, have resulted in the development of a new porcelain "frit." Completely formulated and produced within our own plant, this high quality dielectric material, utilized for the improved "VY" Porcelain Capacitors, has produced dramatic results.

NOTE: Ofered Exclusively For MIL-C-11272B Requirements.

When lested of $125^{\circ} \mathrm{C}$ with more than twice previous test voltages applied 1750 VDC vs 350 VDC and 450 VDC 200 VDC) and with the lime extended 102000 hours more than 10 times as stringent a testl post-test dissipation factor is 002 man and insulation resistance is greater than 100,000 megohmo (10 times better)

Titramom
 INCORPORATED

Box 544, Bridgeport 1, Conn.

For the first time. Motorola Mesa transistors tested to the rugged requirements of the Minuteman high-reliability pro gram (conducted by Autonetics Division, North American Aviation, Inc.) are available for all military applications. Every process and quality control procedure that made these units the most reliable transistors in this high-priority pro gram can now help you achieve greater reliability in your military circuitry

The Minuteman units immediately available from Motorola include

101A. 101 B and 101 M - PNP germanium high frequency switching transistors for high-speed computer and data processing applications.
201A. 201B and 201M - PNP germanium amplifier transistors for use in communications equipment. radar IF strips. fixed IF strips, wide-band ampli fiers and precision oscillators
These Mutorola units have successfully demonstrated a failure rate of less than $.003_{\%}^{\sigma} / 1000$ hours under accelerated stress conditions to the three-year end points of the program. They are now in the final test phase to assure a $0007 \% / 1000$ failure rate level . . . the most stringent requirement of any transistor in the missile's guidance system. The same life-test data required with Minuteman devices is also available to you.
FOR COMPLETE TECHNICAL INFORMATIOM ON MOTOROLA MINUTEMAM MESAS OR INDUSTRIAL-TYPE MESAS call your Motorola Semiconductor district office or write Motorola Semiconductor Products Inc., Dept. 101.5005 East McDowell. Phoenix 8, Arizona. -At a 60% confidence level with an assumed acceleration factor of 32 .

MOTOROLA MINUTEMAN MESA TRANSISTORS				
Characteristic	Symbol	$\left.\begin{gathered} \text { Type No } \\ 101 \mathrm{~A}, \mathrm{~B} \mathrm{\& M} \end{gathered} \right\rvert\,$	$\begin{array}{\|c\|} \hline \text { Type No. } \\ 201 A, ~ B \& M \end{array}$	Unit
Collector-Base Voltage	8VCoo	15	15	Volts
Emitter-Base Voltage	8VEso	5	2	Volls
Collector Current	Ic	100	100	mA
DC Base Current (Max. @ Ic $=50 \mathrm{~mA}$)	-	1.25	-	mA
Current Transter Ratio (Min.@ $1=1 \mathrm{kc} \& \mathrm{Ic}=1.5 \mathrm{~mA}$)	H.0.	-	45	-
$\mathrm{T}_{i}=-65$ to $+100^{\circ} \mathrm{C} \quad \mathrm{PO}_{0}\left(25^{\circ} \mathrm{C}\right.$ Case Temp.) $=300 \mathrm{~mW}$				

NOTE: "A". Units supplied to Measurement Acceptance Tests group A \& B " B ". units supplied and cerrified to complete Minuteman specifications.
" M "
units sertified to board mounted and serialized with computer card data

INDUSTRIAL MESAS ALSO PRODUCED WITH MINUTEMAN PRODUCTION CONTROL TECHNIQUES
The same processes and quality control procedures used for Minuteman units are also applied to other Motorola Mesas. These germanium units incorporate the inherent reliability of the Minuteman process and are available in production quantities to industrial equipment manufacturers.

\triangle
MOTOROLA
Bemicondwctor Producte inc.
a suesionart of mororoca. nc
5005 EAST MCDOWELL ROAD - PHOENIX B. ARIZONA

NEWS

determines which reference waveform is the best match for the input waveform. This is done in a black box in which tones associated with each memory signal are gated through until best match is indicated. Then, a tone-sensitive reed relay activates an indicator light.

The Model I Auditran is being used to test various types of envelope detection. Bulova engineers have designed several different methods, including one based on generation of a frequency-formed envelope.

According to Bulova, initial tests indicate the system will have at least 99.96 -percent reliability in identifying the right word when such place names as New York, Newark, Poughkeepsie and others are used. This reliability is not critically dependent on whether a male or female speaker is used, the company says.

The prototype Auditran under design is expected to be able to recognize one word a second from a memory of at least 300 words at less than 2 -mc system bandwidth. This would almost be real-time recognition, with one word being spoken as the previous word is being recognized.

Analog Method Faster, Requires Less Equipment Than Digital

Advantages cited for analog waveform recognition over digital methods include higher speed, compatibility with much existing equipment, less data to process, relatively small memory requirements, and lower equipment costs. The disadvantages are said to be the greater difficulty of coding speech by analog means and the greater bandwidth required. However, Bulova engineers say, although internal process is broadband, system output may be made as narrow as desired.

The existing Auditran engineering model is based on recognition of whole words. Bulova says this method appears best for memories of up to about 1,000 words. For larger memories the company expects that phonetic elements might prove a better key to recognition and that digital logic would have to be used. The system is said to be suitable for formant-tracking-type recognition, in which the characteristic waveforms of resonance points in speech are used as a basis for recognition. For very large capacities, the company reports, more than one Auditran can be paralleled. - -

MADT Transistor Encapsulation Increases Dissipation of Heat

A new encapsulating technique for potting the elements of Micro Alloy Diffused Technique (MADT) transistors is said to increase their heat-dissipating capabilities to double the normal rate while still maintaining normal electrical stability.
The encapsulating compound used is an alumina-loaded polysiloxane fluid. This medium increases thermal conductivity between the transistor's junction and case while maintaining electrical isolation.

The technique was developed by Dr. H. Thornton for Philco, Inc., Philadelphia. The use of alumina particles of varying sizes is said to have improved heat transfer.

Dr. Thornton said that encapsulated transistors would have a service range of $\mathbf{- 1 0 0}$ to $+400 \mathrm{~F} . \mathrm{He}$ also reported that the exact heat-dissipation and electrical stability characteristics had not yet been fixed.

The encapsulating technique is being used in a new line of MADT transistors for military applications by Philco, a company representative said.

Tiny Detector Records Neutrons

Miniaturized fast-neutron dosimeter, held by researcher, consists of a 0.1 by 0.03 -in. silicon disk mounted between two electrical contact pins. Called Radiac Detector by its developers, Battelle Memorial Institute of Columbus, Ohio, the device records fast-neutron dosage cumulatively. The fast neutrons passing through the dosimeter knock silicon atoms from their normal posifions, permanently changing the electrical properties of the silicon. The detector is reported insensitive to all other forms of radiation. Damage to human tissue can be measured quickly and easily, Battelle reports.

Linde ${ }^{2}$ News
LINDE COMPANY, DIVISION OF UNION CARBIDE CORPORATION

Crystal tungsten opens up a new era for the metal in electronics

Typical electronic shapes fabricated from crystal tungsten (1. to r.): target emitter: zero-porosity tunguen anode for high-powered electron tubes with fluid cooling:
high.power vacuum switch contaci of rero-porosity tunguten mounted to copper

A new method of consolidating tungsten pouder into tunguten ingot has been created by LINDE's Crystal Products Department. This new material-in crystal form-changes the whole approach to use of tungsten in electronic applications.
Compared to metallurgically prepared (PM) tungsten, crystal tungsten offers 5 to 15 per cent higher elecirical conductivity. Thermal conductivity is about 20 per cent higher at 500°.. resulting in improved heat dissipation. There properties can be advantageous in electronic design.

Useful in vacuum devices

The high purity and zero porosity of the crystal tungsten also suggest its ure not only in electrical contact points, but also in vacuum switches. electrical leadins in vacuum tubes. and applications where outgassing or leakage is a prohlem. Their purity and lack of grain boundaries provide more even electron emission. making them valuable in several high pressure vacuum or open air switches. Other uses include: flexible sheet in electronic tubes; x -ray and anticathode targets.

Linde crystal tungsten is considerably more ductile than undoped PM
tungsten. It can be drawn into wire as fine as 1 mil , giving greater yield of finished product from the starting ingot. Although undoped crystal tungsten has a lower recrystallization temperature. it does have a vield point at about 150 F

Material easily worked

Significant is the fact that it can be easily worked and at temperatures $800^{\circ} \mathrm{F}$. lower than working temperature for powder metallurgy or vacuum-arc cast tungsten-making it useful for a wide range of non-electronic applications. Present shapes include swaged rods from $1 / 0$ to $3 / 8$-inch diameter. as grown ingots up to $\frac{1 / 2}{}$-inch diameter in production. and even larger diameters in development.
For more details on this new material, check the coupon below.

Super-hot process metal-coats and fabricates intricate parts
Dense, high-purity metal coatings for certain base materials, and the fabrication of odd shapes, are accomplished with "Plasmaplate." a super-hot plasma stream process developed by LIINDE's Flame-Plating Department.
In operation, a high-current torch uses temperatures up to 30.000° F. to produce a supersonic stream of ionized gas-melt and accelerate to high velocity particles of any inorganic material that melts without decomposition.
High-purity coating materials-such as tungsten or other refractory metals - are thus permanently fused to the surfaces of materials such as graphite. brass. copper. steel. molybdenum. titanium. aluminum and others.
Parts of intricate configuration can be fabricated by depositing the coating material on a mandrel machined to the desired internal shape of the finished part. After the desired thickness is obtained. the mandrel is dissolved out by chemical means.

lungsien grid cage - one of many complex shapes made by LiNDE's"Plasmaplate"Process.

Thin coatings of tungsten carbide and other hard materials can also be applied to base metals by the LINDE oxyacetylene Flame-Plating "gun" process, to increase surface wear as many as 40 times.
For details on either of these LINDE processes, check the coupon below.

High-Capacitance,

Small-Size 'Lytics

Now Available for
Computer Power Supplies

The Sprague Electric Company offers two series of "block-buster" electrolytic capacitors for use in digital power supplies and allied applications requiring extremely large values of capacitance in relatively small physical size.

With metal cases ranging from $13 /$ / $^{\prime \prime}$ dia. x $21 / 3^{\prime \prime}$ long to $3^{\prime \prime}$ dia. x $4^{\text {s/b }}$ " long, Type 36D Powerlytic Capacitors pack the highest capacitance values available in these case sizes. Intended for operation at temperatures to 65 C , their maximum capacitance values range from $150,000 \mathrm{~F}$ at 3 volts to $1000 \mu \mathrm{~F}$ at 450 volts.

Where 85 C operation is a factor, Sprague offers the Type 32D Compulytic ${ }^{8}$ Series, the ultimate in reliable long-life electrolytic capacitors for digital service. These remarkably trouble-free units have maximum capacitance values ranging from $130,000 \mu \mathrm{~F}$ at 2.5 volts to $630 \mu \mathrm{~F}$ at 450 volts.

Both 32D and 36D Capacitors have low equivalent series resistance and low leakage currents, as well as excellent shelf life and high ripple current capability.

Tapped terminal inserts, often preferred for strap or bus bar connections, are available as well as solder lug terminals for use with permanently wired connections.

In addition to the standard bare case, either series may also be obtained with a new clear rigid plastic tube which adds very little to the bare case dimensions. They are also available with a Kraftboard tube.

For complete technical data on Type 36D Powerlytics, write for Engineering Bulletin 3431. For the full story on the "blue ribbon" Type 32D Series, write for Engineering Bulletin 3441B to the Technical Literature Section, Sprague Electric Company, 347 Marshall Street, North Adams, Massachusetts.
circie 224 on reader-service caro

PULSE-FORMING NETWORKS FROM WATTS [. to MEEAWATTS

. . . and everything in between!

When it comes to pulse capacitors and pulse-forming networks, many complexities in parameters and design factors must be considered. These specialized units must be designed and manufactured by a specialized organization. And because Sprague maintains a highly-technical special engineering section devoted exclusively to pulse capacitors and networks, it has been, from the very beginning, a major supplier of these complex units for radar equipment (ground, marine, aircraft, missile), tube testing, and similar pulse circuit applications.

This special engineering section performs four important functions: One group designs custom units in accordance with required parameters. Another group builds pulse capacitors and networks to precise specifications. In another area, a group of specially-trained field engineers provides application assistance wherever needed. And yet another independent group works toward the future developing new materials, new design concepts, and new techniques for manufacture, enabling Sprague to introduce product improvements such as heliarc sealing of cases, rugged alumina bushing assemblies, Fabmika dielectric, and improved hermetic sealing of closures.

Write for Engineering Bulletin No. 10,001 to Technical Literature Section, Sprague Electric Company, 347 Marshall Street, North Adams, Massachusetts.

WASHINGTON / REPORT

John J. Christie
Washington Editor

The Air Force is in the final stage of a major reorganization program that has a two-fold objective of streamlining management of systems projects and of upgrading the status of basic research. A reshuffling of field commands that began in April has been followed by a realignment of staff functions at the Pentagon.

Reorganization on the systems level is in recognition of the ever closer link between development and production. It began with the recent establishment of the Air Forces Systems Command, which combined the R\&D responsibilities of the former Air Research Development Command and the production and procurement functions of the Air Materiel Command. The Pentagon has now combined the staff responsibilities for development, procurement, and logistic support of aircraft, missile, space and electronic systems under a newly designated Deputy Chief of Staff for Systems and Logistics.

The new set-up should enable defense contractors to get faster decisions on design and production problems that cannot be solved at the project level. It should also speed the Pentagon's review and approval of high priority programs.

By merging of development and production responsibilities in the supervision of individual projects, the Air Force hopes for more decisive action on such matters as weighing the feasibility of production changes against operational requirements, determining tradeoffs as between reliability and costs, etc.
Basic Research Functions at Air Force field installations were placed under the new Office of Aerospace Research at the time the new Systems Command absorbed the R\&D activities of the former Air Research Development Command. New Pentagon staff functions relating to basic research, study projects and applied research in new areas of technology have been combined under a Deputy Chief of Staff for Research and Technology.

This move should allay criticism that basic and applied research has been too much oriented to the requirements of specific weapons systems development programs. It is believed that under separate planning and direction the investigation of advanced technology will get higher priority and thus greater financial support.

SPACE COMMUNICATIONS BELT NEARS TEST
The military has high hopes for the distributed reflectur version of a passive satellite communications system, which is scheduled to be tested this fall. Known as Project Westford, the test will involve orbiting a belt of tiny dipole reflectors, which will form a constant ring around the earth at an altitude of 2,000 miles.

Forming the reflector belt will be 500 million dipoles of 3 - 4 -in. length and about $1 / 3$ the thickness of a human hair. The 70 lb of dipoles will be ejected from a container, which is expected to be put in orbit by a Midas shot. Studies forecast the width of the belt at
20) to 40 miles, with spacing between the dipoles at from 500 to $1,000 \mathrm{ft}$.

Lifetime of the initial belt will be purposely limited to avoid space pollution, if the experiment does not pan out. At the projected $2,000-$ mile altitude, it is calculated that the combination of radiation pressure and gravitational effects will limit the life of the belt to from one to two years. At an altitude of only 200 miles less, the ring of reflectors would last an estimated two to three decades.

It is envisioned that this type of system would play a secondary role in military satellite communications because of economic limitations. Ground stations will require very large antennas and large amounts of power to pull signals from the extremely small reflecting surfaces. Moreover, unless developments prove otherwise, bandwidth capacity is unlikely to approach that of active systems.

The distributed reflector system, however, could give the military a foolproof backstop or auxiliary for the synchronous equatorial system being developed under the Army's Advent program. For obviously the dipole belt poses no reliability problems. And even more important from a military standpoint, it cannot be destroyed by enemy action.

STORM MONITORING STATIONS IN PRODUCTION

Seven unmanned, floating weather stations of the NOMAD type, which last year provided a 48 -hr alert on Hurricane Ethel from a mosoring in the Gulf of Mexico, will go into production for Navy use in storm areas of the Atlantic and Pacific. The Air Force and Weather Bureau also plan storm-monitoring station networks.

Meanwhile NOMAD I, which has been conducting experiments for the last seven years, has been placed 300 miles out in the Gulf for another hurricane season. Each year some refinements have been made in sensing devcies and data-transmission equipment developed by the Bureau of Standards. But it is acknowledged that considerably more development work is required to guarantee reliability for the desired two years or more of unattended operation. Also, certain mechanical devices now used are not suited for operations in Arctic waters.

An experimental compass-bearing transducer will be the principal new device to be tested during NOMAD l's current tour of duty. Since last year circuitry has also been transistorized to a greater extent.

Solar batteries, which last year were deck-mounted in plastic boxes, suffered heary power loss through overheating. This year they are being floated in plastic tubing in an effort to cut down heat. Further efforts to improve power supply include development by General Instrument Corp. of a thermoelectric generator that will be fired by liquid butane ($E D$, Dec. 21, p 16) and work on a nuclear battery at the Martin Co.

ANOTHER ADVANCE IN PARTS RELIABILITY'

An industry-Government advisory committee will be named shortly to help implement DOD's parts reliability program, already beginning to have sharp impact on the component industry's design, production and testing functions.

The committee will provide continuing technical advice on the development of new quantitative reliability specifications and technical documentation. It will also advise on the establishment of priorities in the issuance of parts specs.

At Magnetic Controls Company...

At Magnetic Controls Company, where power supply reliability is sacred, design engineers selected G-V Red/Line Thermal Relays over all others. According to Magnetic Controls, "The timing cycle does not change with ambient temperature change . . . a characteristic which is essential for maximum performance . . ." They
 have used the recognized quality of Red/Line in 13 different models of their power supplies without a single relay failure. That's reliability! So, at Magnetic Controls, the high quality of G-V Timing Relays is "paying off".

More and more companies are finding the reliable performance of G-V Red/Line Timing Relays makes them best for their products. G-V Red/Line Relays will pay off in your product, too. Your customers appreciate the importance of high quality, reliable components. G-V Red/Line Timing Relays are specially designed for industrial applications. They have the precision, reliability and long life needed to "pay off" in industrial use.

Your G-V distributor has them in stock now. Call him or write for Bulletin 131 today.

Adapted Typewriter Digitizes Negatives

Pattern Converter Provides Maps Of Isodose Areas From X-Ray Photos

WITH suitable electronics, biomedical researchers have been able to convert specialized X-ray negatives to maps that show areas of equal dosage. The analog-to-digital conversion is done automatically by an ordinary electric typewriter modified for the work at a rate of 10 readings or nearly $1 / 4$-sq. in. per sec.

The automatic conversion system was developed at the Rosewell Park Memorial Institute, Buffalo, N. Y., to aid studies of optimum procedures in using super-high-voltage medical X-ray equipment. Exposed negatives showing gradations in transparency caused by different degrees of exposure are converted to typed maps. The areas and contours of the maps are formed by numbers corresponding to discrete levels of dosage at corresponding points on the original negative being processed.

System Described at Rochester Meeting

On Uses of Data in Medicine, Biology
The system was described at the Rochester Conference on Data Acquisition and Processing in Biology and Medicine, held at the University of Rochester, N. Y., on July 18 and 19.

Dr. Edwin Gordy of the Rosewell Park Memorial Institute reported that the mapping system provides a 1 -to- 1 scale, 10 -level representation of a 14 -by- 17 in . exposed negative in about an hour. This was said to be a much faster performance than that of other types of converter-plotters. A total of 168 readings per sq in., in per cent of maximum dose, are printed by the equipment, he said.

The system consists of an electric typewriter adapted to hold a sheet of paper over an X-ray negative so that a light behind the paper is focused through the film and paper to a photocell pickup that feeds a discriminator. This stage is connected to suitable amplifier, analog-to-digital, and print-rate-generation circuitry that operates

Typewriter and associated electronics are able to provide typed-map versions of X-ray photos to show areas of equal dose or exposure. The system, essentially an analog-to-digital pattern converter, aids studies of optimum X-ray procedures in medical research. Print-rate generation is initiated by carriage return and is inhibited by completion of each scan. Discriminator is linear over four decades. The equipment was developed at Rosewell Park Memorial Institute, Buffalo, N. Y.
the basic print solenoids of the electric typewriter.

As the carriage moves and the film is scanned, appropriate numbers are typed at points on the paper corresponding to variations in the transparency of the film under each number.

Distributed-State-Response

Paftern Recognizers Described
Several other developments in pattern recognition and processing were discussed at the meeting. This speciality was said to be growing increasingly important to medicine as researchers seek to automate the processing of medical data.

A sophisticated pattern recognizer said to be theoretically capable of learning was described by D. F. Parkhill, General Dynamics Electronics, Rochester. Called a distrib-uted-state response (DSR) system, and actually a special-purpose digital computer, the pattern recognizer has operated successfully in computer simulations and is now being built.

System Uses Neural Nets

Like Parceptron Machine

Like the perceptron developed at Cornell Aeronautical Laboratories, Buffalo, N. Y., the DSR design is a neural-net system. It has 1,024 sensory elements, 256 association elements and 32 response elements.
A related type of pattern recognizer is being built at Brooks Research, Inc., East Rochester, N. Y., according to Kurt Enslein, who described its development. This also will be a system in which memory will be distributed throughout the internal components. In most data-processing systems bits of memory data are stored in discrete locations in memory subsystems. - -

Best balance of overall properties without sacrifice of any one property!

High dielectric for thermal protec tion at operating temperatures (Class F 155C)!

Cost reduction benefits through standardizing inventory to one wire for most applications!

Any time your problem is magnet wire, consult Phelps Dodge for the quickest, surest answer!

PHELPS DODGE COPPER PRODUCTS

cormoration INCA MANUFACTURING DIVISION
\qquad FORT WAYNE, INDIANA

HOLD
 IT
 there's no substitute for an electronic measurements CONSTANT-CURRENT POWER SUPPLY

what every engineer knows about constant-current

 power supplies . . . How do youcheck the peak inverse voltage rating of a solid state junction? the breakdown voltage of a reference diode at a specified current? the dynamic impedance of a reference diode? and the many other parameters that are so easily checked with constant-current power supplies?

It's an easy matter to convert some voltage-regulated power supplies to current-regulated operation. At least it's easy with an E/M ${ }^{8}$ Regatron Programmable Power Supply. But for true constant-current performance, there's no substitute for a power supply specifically designed for constant-current operation.

Take Electronic Measurements' Model C638.A shown here. It's an easy matter to set the current control to any value desired-from a few microamperes up to 100 ma-manually or programmably. And there's no juggling with makeshift, extra circuity. Then you can adjust the voltage compliance to any value from 0 to 1500 V . There's no fear that the voltage may be

SEE THEM AT WESCON
© Registered U. S. Patent Offic
ELECTRONIC
MEASUREMENTS
COMPA NY. I N CORRORATED

NEWS

4,000-W Solar Power System Planned for Orbiting Satellites

A 4,000-w solar power system is being designed for earth-orbiting satellites.

The system is intended to operate for a minimum of one year and a maximum of five. It would differ from previous systems in its extremely high-power capacity.

The design work is under way at Westinghouse Aerospace Electrical Laboratories, Lima, Ohio, for the Aeronautical Systems Div., Air Force Systems Command.

Navy Orders Research Ship For Antisubmarine Warfare

The Navy is spending more than $\$ 10$ million to find new, better approaches to building and equipping antisubmarine escort ships.

An experimental vessel, to be used as a floating research center, is under development. It will be fitted with the latest longrange sonar, and its armament will include Tartar and ASROC antisubmarine missiles, antisubmarine torpedoes and helicopters. The ship is to have an over-all length of about 415 ft and a beam of about 43 ft .
The ship will be built by the Bath Iron Works Corp., Bath, Me., under a $\$ 10,227,300$ contract.

Solid-Stately

Engineer Crowned
A triumph of design is Marlene Schmidt, electronic engineer (no kidding) from Stultgart, Germany, crowned Miss Universe for 1961. Fraulein Schmidi's design dimensions are 36.5 -$24.0-36.0$ in. ± 1 per cent. Resistance is not specified. The 24 -year-old beauty, who fled from East to West Germany only a year ago, told reporters: "Engineering is my career, and I will return to my job lin West Germany at an equivalen of $\$ 53$ a week] after my year as Miss Universe.

Factors to consider in silicon diode selection

by DAVID E. HUMEZ

Technical Advisor to the Manager of Operations Clevite Transistor, Waltham, Mass.

If your circuit does not require the superior forward conductivity characteristics of germanium diodes or if you require extremely low reverse currents or must operate at temperatures above $50^{\circ} \mathrm{C}$, you will probably select a silicon diode.

Of the bewildering array of silicon diode types available some will almost certainly suit your circuit better than others. Current silicon diode types fall into four main categories with many sub-categories. The first category historically was the general purpose alloy junction silicon diode. These diodes are principally useful in those applications in which good high voltage characteristics, very low leakage currents, even at high temperatures, are necessary. They are available with comparatively high forward conduction and over a wide range of voltages up to several hundred volts.

The next category is that of computing application silicon diodes. These differ from the general purpose diodes in that the material from which they are made is doped or otherwise treated in such a way as to reduce its bulk lifetime. Reduction of the lifetime of the material makes possible much faster operation, that is, faster recovery when switched from the forward to the reverse condition. Such diodes have found wide application in military and commercial computing circuitry which is expected to operate at high temperatures. A price is paid, however, for higher speed since reducing the lifetime of the material results also in an increase of the reverse current and a decrease in the forward conduction.

The third and fourth groups are the most recent and employ a different method, namely, solid state diffusion for producing the PN junction. The third group, sometimes called rectifiers, are devices fabricated in either the same subminiature glass package familiar in other diode types or this glass package modified by the inclusion of a larger diameter stud at one electrode for improved heat conduction. They are large area devices compared to the diodes in categories one and two and are designed for conduction of as much as 400 milliamperes at a volt. Since their area is substantially larger, their capacitance is also larger though not as large as would be expected by the ratio of areas, since the method of producing the junction results in less capacitance per unit area than is characteristic of alloyed junctions.

SWITCHING SPEED —— REVERSE RECOVERY

Units switched by mercury wetted chopper from 15 ma forward current to 1.2 volts reverse in series with a 100 ohm load resistor. Recovery to 1 ma .

Unit	Time $m \mu$ sec.	Types
1N914	2.5	silicon mesa diode.
1N625	60.	high speed silicon alloy diode.
1N459	1500.	general purpose silicon diode.
1N647	8000.	silicon diffused rectifier.

The fourth and newest category is that of extremely small area devices made by the newer techniques of the mesa or planar constructions. These types are also manufactured by it diffusion process. They are designed primarily for applications in which the very fastest switching speeds are required. For this additional speed, compared to conventional computing alloyed junction types, a further price must also be paid. Because they are tiny, they are also less rugged. Because their area is smaller, both the resistance of the connecting wires and the spreading resistance are larger. Consequently, these devices as a group are characterized by somewhat poorer forward conduction than is true of the larger area computing diodes.

Ask for Silicon Diode Bulletins

Selective Data Retrieval System Uses Keywords, Prints Abstracts

An information directing system that uses keywords to file and locate specific topics has been developed for use by the Central Intelligence Agency.
Coordinated indexing, the method used in the information handling system, catalogs the keywords that identify each document on file in the memory. The keywords, along with the location of the documents, are inserted into a punched card program. When a request is put in to the computer, it will print out an index of all documents in its memory concerning that topic, along with an abstract of each reference.

The actual information is stored as photographic images in a plastic file. Once located, the information can be viewed or reproduced without having to remove it from the file Each file is made up of several modules, each containing 990,000 images.

Called Walnut, the system was built by International Business Machines Corp. White Plains, N. Y. A company representative reported that although the system is strictly for governmental use, it may become the forerunner of a commercially marketable unit.

Image file of Walnut Information Directing System, de veloped for the Central Intelligence Agency by IBM, is made up of 200 plastic cells loaded with film strips. Bin shown contains information equivalent to 3000 books.

EXPOSED... a reliable square trimmer design set it...forget it

δ
Superior shock and wibration characteristics . made possible by an exclusive selflocking, anti-backlash gear. Once you locking, anti-backlash gear. Once you
set IRC's new $12^{\prime \prime}$ square Circuitrim, set IRC's new $1 / 2^{\prime \prime}$ square Circuitrim, forget it. The square trimmer remains at its set position even under conditions as severe as MIL-E-5272A. Procedure 1 vibration and MIL Standard 202 Method 202 shock test.
Superior humidity characteristics . . . pressure seals around leads and the drive screw make a lasting moisture barrier. Potting compound won't get in, silicone lubricant can't ooze out, even at the temperature extremes of dip soldering.
Superior mechanical design... fewer parts and inherently less noise. Rotation stops and slip clutch keep wiper from
traveling off end of winding and prevent mechanical abuse 10 ohms to 50 K ohms, 1 watt. Teflon leads standard: printed circuit terminals available.

A MEW TRIMMER WITH IMCREASED RELIABILITY ACHIEVED TMROUGH SIMPLIFIED DESIOM.
Possesses the same quality electrical assembly as the $1 / 2$ "square Circuitrim. This unique design has eliminated the complex mechanical linkage used for adjustment, thereby giving a quality reliable trimmer for your highly competitive applications 10 ohms to 50 K ohms, 1 watt. 1.2" diameter.
Write for technical bulletins. International Resistance Company, 401 North Broad Street, Philadelphia 8, Pa.

COMPLETE LINE OF PRECISION POTENTIOMETERS - STOCKED BY IRC MAJOR INDUSTRIAL DISTRIBUTORS Standard Single and Multi-Turn - Moisture-Senled and High Temperature • Hermetically Sealed. Servo.Potentiometer • REVODEX 10 -turn Dials

Leading supplier to manufacturers of electronic equipmen

Thin-Film Cylinder Memory Gives Fast, High Output

New Device, Combining Features of Dot, Core and Rod, Provides 15-Nsec Cycle, 250-Mv Readout and High Temperature Stability

A single thin-wall cylinder memory with wiring. The film is 2 to 3 mm long, 0.5 to 0.7 mm diam and about 30,000 Angstroms thick. Conventional, thin-film dots are normally no more than 4,000 Angstroms thick and 3 mm diam. Photo, through the eye of a microscope, shows tiny bubbles in encapsulent.

George Rostky
 Technical Editor

A MAGNETIC thin-film cylinder that contains features of the thin-film dot, the ferrite core and the magnetic rod is bidding for an important role in future computer memories. Under development by CBS Laboratories of Stamford. Conn., the device, called the Toristor, is composed of a plating of nickel-iron-cobalt composition on a substrate of glass or stainless steel.

Like the conventional, toroidal, ferrite core, the Toristor has wires passing through its center. Its output voltage range, 50 to 250 mv , includes the $40-\mathrm{to}-120-\mathrm{mv}$ range of cores. But its write-read cycle time, as short as 15 nsec , is substantially faster than the 3 to $5 \mu \mathrm{sec}$ of cores.

Very Rapid Cycle Times Combine

 With a High Output VoltageThe Toristor's cycle time compares favorably with the very rapid 200 to 500 nsec of thin-film dots. And the rapidity of switching its magnetic domains, 10 to 15 nsec , compares well with the 5 to 40 nsec of dots. But its $50-$ to $-250-\mathrm{mv}$ output voltage range is a lot huskier than the 2 to 20 mv common with dots.

Comparison Of Memory Properties

Line-Up	Toristor	Thin-Film Dot	Core	Rod
Output Voltage Range	$50-250 \mathrm{mv}$	2.20 mv	40.120 mv	30.50 mv
Digit-Write Current	700 ma	$0.5-2.5 \mathrm{amp}$	$150-500 \mathrm{ma}$	0.5 amp
Digit-Read Current	300 ma	300 ma	300 ma	300 ma
Magnetization SwitchinR Speed	10.15 nsec	5.40 nsec	700 nsec	15.20 nsec
Write-Read Cycle Time	15 nsec	$200-500 \mathrm{nsec}$	$3.5 \mu \mathrm{sec}$	500 nsec

Like the magnetic rod, the Toristor takes a circumferential winding to provide a transverse interrogation field. But the Toristor also takes axial wires through its center for sense and digit write. The $300-\mathrm{ma}$ digitread current is the same as that required for other computer memories.
The principal advantage of the new development lies in its true nondestructive readout. Other nondestructive elements, like the multiaperture devices, require priming before each read operation. The Toristor requires only the interrogation pulse, which can be unipolar. To save time, information in the Toristor can be changed during the interrogation interval.
Output from the Toristor is bipolar; a "one" is in the opposite direction from a "zero." With cores, the output for a "one" is represented by magnetization in the same direction as a "zero"-but of significantly different amplitude.

High output voltage of this 64 -bit, thin-wall cylinder memory-the Toristor-reduces the complexity of the sense amplifiers, which are similar to those found in conventional, word-organized core memories. CBS Laboratories is working on even simpler circuitry using tunnel diodes as sense amplifiers.

The Toristor with its normal wiring. The plastic tube here serves as encapsulation for the device.

The principal difference between the Toristor and other devices is that its magnetic domains are rotated through angles less than 90 deg-that is, through their hard directions. This makes for far less sensitivity to variations in temperature and in the composition of the magnetic material. The designer of the Toristor, George Henderson, manager of the CBS Memories and Subsystems Dept., says that it has much better temperature stability than other memory devices and substantially less internal heating. It can be operated at up to 150 C .

In a developmental model of a 64-bit Toristor memory, eight hollow-glass cylinders each support eight individual Toristors. The transverse-field interrogation coils-eight sets of themare prepared by a weaving technique. The coils are woven so they look like a Lissajous pattern of a frequency comparison of 8 to 1 .

Eight of these sets of windings are lined up and eight glass cylinders inserted through the individual loops. The sense and digit-write windings are easily inserted through the hollow cylinders.

To minimize noise, connections to all the wires are made through simple, flat, 50 -ohm transmission lines. -

A revolutionary new concept in data presentation... a new technique for solving EDP printout and display problems in display sub-systems; digital to alphanumeric conversion; information retrieval systems; electrographic recording; high-speed facsimile systems; instantaneous, continuous tone recording.
Videograph is able to convert electrical signals into hard copy or display, at speeds that match the output capabilities of modern computers. It shatters the existing limits of mechanical, elec-tro-mechanical or photo conductive type data presentation systems, as evidenced by:
A. B. Dick Videograph address-label printing equipment in use today by a leading publisher which permits the conversion of massive subscriber data files to digital magnetic tape and printout at over 200.000 characters per minute.
A. B. Dick Videograph digital-to-alphanumeric

RSTUK
FGM1]
FWWYY
IKLMN
ZABCD
horent

NOW...FROM A.B. DICK ELECTRONIC. CHEMICAL AND MECHANICAL RESEARCH LaBoratories VIDEDGRAPH data presentation SYSTEMS

8
 A•B•DICK
 ELECTRONIC DATA PRESEMTATION

A. B DICK ELECTRONIC RESEARCN LABORATORIES CHICAGO ILLINOIS. PALO ALTO, CALIFORNIA Videograph is a trodemork of A. B. Dick Company
character generator in use today by U.S. defense agencies.
A. B. Dick Videograph printer-scanner equipment selected by a leading railway for the first high-speed facsimile transmission of documents via microwave.

The results of Videograph Data Presentation Systems have been achieved through the combined electronic, chemical and mechanical R \& D capabilities of A. B. Dick Company . . . a combination of talents now available to help solve high-speed printing and display problems.
A. B. Dick Company offers its technical services and facilities for study, design and manufacture of systems and components. For further information, please contact: G. T. Gerlach, Marketing Manager, Videograph Data Presentation Systems, A. B. Dick Company, 5700 West Touhy Avenue, Chicago 48, Illinois.

NEW

FLEXIBLE PRINTED CIRCUITRY

from Garlock

Garlock flexible printed circuitry can be economically induction soldered due to high temperature resistance of Teflon FEP.

ELECTRONIC PRODUCTS

Teflon FEP*-and its outstanding oloctrical, physical and thermal proportieshas been incorporated by Garlock into an advanced circuit design that offers many distinct advantages over conventional wiring or rigid printed wiring boards.

Greater design froedom. Garlock Flexible Printed Circuitry can be bent or twisted into any desired shape to allow design freedom without compromise to overall reliability. It can be designed to conform exactly to package contours and component parts. Garlock offers terminations adaptable to common industry standards.

Maximum reliability. Garlock Flexible Printed Circuitry is made of etched copper completely encapsulated between two layers of Teflon FEP. Permanently bonded under pressure, this encapsulation affords both line-to-line and line-to-ground protection, and will resist penetration of harmful moisture and gases. No adhesive is used to effect the bond, eliminating any possibility of breakdown through aging.

Reduced size and weight. Garlock Flexible Printed Circuitry can often cut overall package dimensions by as much as 50%. Being extremely flexible, it will hug curves, go around corners, conform to the most eccentric layout. And, because of excellent electrical properties a thinner gauge of Teflon FEP can handle the same job that requires thick gauges of other insulating materials. This, combined with the use of less copper, greatly reduces package weight.
For more information, call your nearest Garlock Electronic Products representative for more data, or write Garlock Electronic Products, Garlock Inc., Camden 1, New Jersey.

Canadian Div.: Garlock of Canada Ltd. Plastics Div.: United States Gasket Company.
Order from the Garlock 2,000 . . .two thousand different styles of Packings, Gaskets, Seals, Molded and Extruded Rubber, Plastic Products.
(1)uPunt Trademark

NEWS

Balloon Will Hoist Copper Wire In LF Propagation Experiments

A balloon will hoist a copper-clad wire $20,000 \mathrm{ft}$ into the atmosphere as part of an experiment in low-frequency propagation studies.

The experiment will be conducted for the Air Force by Pickard \& Burns Inc., Needham, Mass., from an ocean-going schooner off the coast of Fort Pierce, Fla. A 1-million-v generator in the ship will be used to charge the wire with low-frequency pulses similar to lightning.

The wire, which acts as an efficient lowfrequency antenna, has recently been carried aloft with a helicopter to an altitude of 12,000 ft , with a $200-\mathrm{ft}$ polyethylene leader insulating the top of the antenna.

The 90 -ft long balloon, called Aerocap, built and flown by General Mills, Inc., Minneapolis, Minn., will be sent up to supplement the helicopter operation. The balloon can lift the wire through cloud banks that have proven hazardous to helicopters.

Superconductive Transformer Operates at 15-Kw Power

An experimental superconductive power transformer using windings made of lead has been successfully operated at 15 kw .

The transformer is much lighter than comparable conventional types and would probably be much less costly according to its developer, Dr. Richard McFee, associate professor in electrical engineering at Syracuse University and consultant to Arthur D. Little, Inc., Cambridge, Mass.

Before the superconductive power transformer could become feasible for widespread use, however, cryogenic refrigerating devices of sufficient reliability must be developed, Dr. McFee reported. He indicated that work on the Gifford-McMahon helium refrigerator showed promise of solving this problem. One of these units was operated at Arthur D. Little for $\mathbf{1 , 0 0 0}$ hours before failure.

The idea of a superconductive transformer is not new. It was not thought to be feasible, however, because of the superconductivity quenching effect of magnetic fields generated by alternating current in a transformer's windings.

Dr. McFee overcame this difficulty by in-
terleaving primary and secondary windings, so that the magnetic fields that were generated canceled each other.
The experimental transformer carried an alternating current of somewhat under 10 amps with a voltage near 2,000. Varnish paper was used for insulation between the primary and secondary layers.
The transformer consisted of about 2 miles of lead wire wound on a core of 2-by-2-in. cross-section. With about 0.5 amps dc and 10 amps ac through the experimental device, a dc galvanometer measured less than $0.5 \mu \mathrm{v}$ across it when it was operated in a superconductive state.

A special magnetizing winding was used for the outer layer of the transformer to balance voltages in all coils, so that they could be paralleled without generating circulating currents.

Newer superconductive materials, developed by Bell Telephone Laboratories, that maintain superconductivity with much higher magnetic fields than previously attainable also show promise for use in superconductive transformers. Studies of possible hysteresis losses in these materials with alternating currents are necessary to confirm the feasibility of their use, according to Dr. McFee.

Argo D-4 Carried 48-Lb Payload

A $48-\mathrm{lb}, 15$-in.-diam payload (above) rode in the recently launched and recovered Argo D. 4 sounding rocket. Included was a $28-\mathrm{v}$ nickel cadmium ballery, a two-frequency transmitter-receiver, a two-channel $\mathrm{fm} / \mathrm{fm}$ telemetering subsystem, programing, and control equipment. Airborne Instruments Laboratory of Deer Park, L. I., N. Y., developed the equipment. Launching of the rocket was a major step forward in the international project to measure electron density above the F2 layer. (ED, Mar. 16, 1960).

CUT CONTROL PANEL COSTS
AND SAVE SPACE WITH

COMBINED SIGNAL \& SWITCH

The most modern control panel designs combine indicator lights and pushbutton switches wherever possible. This cuts costs by reducing the number of components, and speeds assembly. Overall panel size can often be reduced as much as 75%. And these "human-engineered" controls sell better because operation is obviously simplified. Here are just three of the many lighted pushbuttons available from Control Switch Division.

Write for FREE CATALOG on LIGHTED EWITCHES.

CONTROL SWITCH DIVISION 4216 w. Late st. - Chicage 24, III. - Telephone: VAn Buren 6.3100 - twx cc- 1400
applications. All etandard units sloched for immediate delivery by leading perte Dlasitituors. CIRCLE 28 ON READER-SERVICE CARD

HOPKINS epoxy encased capacitors

-high capacity in small size - plus rectangular shape -saves space

A typical .01 mfd unit occupies only $1 / 40$ th cubic inch of space. Type GAA units fit flat against printed circuit boards . . are easily stacked, hence minimize waste space.

Won't crack or break under environment changes. Capacitors are encapsulated with epoxy in pre-molded epoxy cases - both seal and case have the same coefficient of expansion.
Excellent moisture resistance - unique epory-to-epoxy seal provides heat and moisture resistance closely matching that of hermetic sealing. High capacity - up to 1.5 mfd at 200 VDC. Similar high capacities in 300 to 600 volt units.
Wide temperature range: from $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$.
Long life - units withstand 125% of rated voltage for 1000 hours at $100^{\circ} \mathrm{C}$.
Choice of terminals - one lead out each end, or both leads out one end.
Write for GAA data sheet.

Stereo Adapters Based on 2 Designs

Sum and Difference, Time-Multiplex Approaches
 Both Pursued in Receiving Systems

THE stereo-multiplex fm broadcasting system recently approved by the Federal Communications Commission makes possible two design approaches for receiving equipment. Both approaches have been used in equipment now, or soon to be, on the market.

One approach, the sum-and-difference method, treats the signal as a mixed waveform with the sum (left plus right.) of both channels received as conventional fm . The difference (left minus right) is detected as two am sidebands of a $38-\mathrm{kc}$ subcarrier.

The second approach, time-multiplex, uses a switching device in the receiver to sample the carrier at a 38 kc rate, corresponding to the subcarrier frequency. Alternate samples are
fed to the left and right portions of the receiving system, thereby reconstructing the original left and right channels.

Most stereo adapters on the market at present use the sum-and-difference method of decoding the signal. This is done by a number of low-pass filters in a separating network. A few use the time-multiplex method, where decoding is accomplished by the use of a switching system controlled by an oscillator.

Stereo systems designer, D. R. Von Recklinghausen of the H. H. Scott Corp., Maynard, Mass., says there is no difference in bandwidth, linearity or gain in the two systems; they are merely a matter of the designer's prerogative. - ■

The type 335 multiplex adapter of H. H. Scolt is more inclusive than most other makes. If incorporates a number of switching circuits in its design, permitting it to act as a control center for the multiplex system. The five-tube unit, which uses the time-multiplex method of decoding, also incorporates a stereo noise filter, soid to remove noise from both channels while maintaining full separation. The 335 can be used only with existing Scott tuners. It measures 7 by $5-1 / 4$ by 13 in . Priced at about $\$ 100$, it is now available.

Bogen's model PX-60, also self-powered, uses the same circuitry as the company's commercial multiplex receivers. Said to have a bandwidth of $23-53 \mathrm{kc}$ and using the sum-and-difference decoding system, it is designed to operate with Bogen funers. However, the company reports that after slight modifications the receiver can be used with many existing funers. Measuring 4-1/16 by $3-1 / 4$ by $8-1 / 16 \mathrm{in}$. and weighing less than 3 lb , the PX- 60 is the smallest of the adapters reviewed. A company spokesman says the unit will sell for $\$ 69.50$.

Adapter MX-101 built by Crosby Electronics, also uses the sum-and-difference method of detection. Its four-tube circuit includes separate noise filters for each channel, a diode-controlled automatic dimension circuit, and cathode follower output. Frequency response is said to be at least $15,000 \mathrm{cps}$ while maintaining $20-\mathrm{db}$ separation between channels. The adapter measures 5-1/4 by $4.1 / 2$ by 9 in . The adapter is now on the market, selling for about $\$ 80$.

The Fisher MPX-100 is a sum-and-difference type self-powered stereo multiplex adapter that can be used with all fm receivers and tuners having ratio detector design and MP output. Incorporated in the five-fube adapter is a Stereo Beacon, which indicates whether the program being transmitted is monaural or stereo. Included is a stereo balance control and cathode follower output. The MPX100 measures $4-7 / 8$ by $4-7 / 8$ by $12-\mathrm{in}$. On the market now, it is priced at $\$ 89.50$.

ELECTRONIG HIGH-VACUUM EQUIPMENT

SYSTEMS

Ulitak contaminant-free electronic vacuum systems are completely self-contained and movable; usually need only an electrical outlet for operation. Stand ard and custom-engineered models are available for general industrial evaporation, environmental testing, thin film deposition, vacuum tube processing. and space simulation. Operating pressures from 10^{-4} to $10^{-9} \mathrm{~mm} \mathrm{He}$ and below. Write for details.

FIELD SERVICE

Experienced Ulitek sales engineers, devoted exclusively to the high.vacuum field, are available in major cities to evaluate your vacuum needs and demonstrate Ulitek's leadership in electronic highvacuum technology. For immediate information phone your nearest Ultek application engineer, or write direct

DELCO POWER TRANSISTORS PROVED IN COMPUTERS by IBM, UNIVAC, BURROUGHS, NATIONAL CASH REGISTER

Since Delco Radio produced its first power transistors over five years ago, no transistors have undergone a more intensive testing program to assure reliability - which accounts for their popular acceptance in hundreds of industrial and military uses. Before leaving our laboratories, Delco transistors must pass numerous electrical and environmental tests both before and after aging. This double testing, combined with five years of manufacturing refinements, enables us to mass produce any type of power transistors with consistent uniformity. And we can supply them to you quickly in any quantity at a low price. For complete information or technical assistance on our versatile application-proved family of transistors. just write or call our nearest sales office or distributor.

[^2]Santa Monica. Calilornia
726 Santa Monica Blvd.
UPton 0.8807 UPton 0.8807

Chicago, Illinois
5750 West 51st Street
POrtsmouth $7-3500$ POrtsmouth 7.3500

Detroit, Michigan 57 Harper Avenue
TRinity 3.6560

> ELCO RADIO

Division of General Motors Kokomo, Indiana

NEWS

New Cathode Reported

To Heat in 100 Msec

A recently developed fast-heating cathode, called the Harp, is now being incorporated in a new line of rf power-output tubes.

The cathode, which consists of a rectangular frame, with fine wires strung across the length like the strings of a harp, is said to be capable of delivering full power in 100 msec . The use of extremely fine wires in the emitting element is said to make possible a very high surface-to-volume ratio, resulting in fast warm-up and thermal equilibrium. The cathode is applicable in transistor and mobile equipment.
Because of the many fine wires, which are electrically in parallel, the cathode has low inductance and therefore less hum. A low voltage, on the order of 1.6 v , is said to be sufficient for operation because of the multiple current paths. This makes it possible for tubes employing the new cathode to be powered by the same power supply that serves transistor stages.

The cathode, developed by the Amperex Corp. of Hicksville, N.Y., has been incorporated into the Type 8042 tube, a fast-warmup version of the company's 6146 with the same electrical characteristics and price. In the near future a line of Harp cathode twin tetrodes will be produced and marketed, the company reports.

Epitaxial Growth Research

For Circuit Functions Slated
Investigation of epitaxial growth techniques as a means of obtaining single-crystal circuit functions will be carried out by Motorola Semiconductor Products Div., Phoenix. Ariz., under a new program.

Thin-film functions will also be studied as part of the search which is being conducterd for compatible circuit techniques for integrated circuit functions.

Also to be investigated are various modes of junction formation, construction of multiple p and n layers with controllable lifetime and impurity concentrations, and compatible masking techniques.

The studies will be conducted under an Air Force systems contract, which was recently awarded.
CIRCLE 31 ON READER-SERVICE CARD

Listed below are silicon rectifiers representative of the Tarzian line. They are available in production quantities, at realistic prices, for both commercial and military applications.

Of particular importance in simplifying your power conversion circuitry assemblies are small size, high efficiency, mounting versatility and wide range of ratings offered by the Tarzian line.

In addition, the entire line features extremely low junction current density for maximum reliability and operating life. This is due to the special Tarzian alloy process with supported junction that produces the largest junctions available.
Altogether, the qualities and availability of the units cataloged here are invitations to invention in circuit design. Application engineering service is also available without obligation. Call the Sarkes Tarzian representative near you, or write Sarkes Tarzian, lnc., for complete catalog information.

SILICON RECTIFIERS

HIGH VOLTAGE SILICON CARTRIDGE RECTIFIERS

Each of the two series of Tarzian Silicon Cartridge Rectifiers shown below includes 18 different types with operating temperatures ranging from $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ ambient. Both the ferrule mounted series and the axial lead series feature low voltage drop and low reverse current. Tarzian High Voltage Cartridges are manufactured to meet standard Jedec classifications.

FERRULE MOUNTED SERIES - This high voltage series is equipped with a ferrule type mounting of silver plated brass and is available in both hermetically sealed glass or phenolic tubing in voltages ranging from 1000 to 10,000 peak inverse volts.

FERRULE MOUNTED SERIES			
Operaling Temperature Range $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Ambient		Max. Ratings Halt Wave Res. Load at $75^{\circ} \mathrm{C}$ Ambient	
$\begin{aligned} & \text { Jedec } \\ & \text { Type } \end{aligned}$	Sarkes Tarzian Type	Peak Inverse Volts	Max. Rectified DC Output MA
IN1133	S.5490	1500	75
1N1140	S. 5497	3600	65
1N1143A	S-5501	6000	65
IN1146	S. 5504	8000	45
IN1148	S.5506	14000	50
IN1149	S-5507	16000	45

When ordering phenolic tubing as a substitute for glas
When ordering phenolic tubing as a substitue

AXIAL LEAD SERIES - This high voltage series is available in units ranging in size from $1 / 2^{\prime \prime}$ to $21 / 2^{\prime \prime}$ and lead lengths varying from 1^{*} to $21 / 2^{\prime \prime}$. Peak inverse voltage ratings are available from 1500 to 16,000 volts.

MODULAR SILICON RECTIFIERS

Modular Silicon Rectifiers can be used indi vidually-as open bridges-or in a variety of circuit combinations, and are designed for printed circuits on terminal strips. Each of the units illustrated and tabulated below is only one of a series of six in the 18 -unit Tarzian line.

Tarrian Code Number	Individual Diode Current Rating	Circuin Connections	Piv
S-5541	500 MA	Center tap,Doubler	600
S-5549	500 MA	3 phase Half Wave	600
S-5467	500 MA	Bridge	600

tube replacement silicon rectifiers

Tarzian tube replacement rectifiers, in addition to being directly interchangeable with over 95% of all popular vacuum tube rectifiers, are smaller, more compact, and carry de current ratings as much as three times as great as the tubes they replace. They have proved highly satisfactory in applications requiring high efficiency,
long life, rugged construction and wide temperature ranges. Tarzian solid state rectifiers are available in ten standard models, with special designs and modifications on request. Special tube replacement units designed by Tarzian engineers include special designs with peak inverse voltages to 19,000 volts.

SARKES TARZIAN SILICON VOLTAGE REGULATORS

\% WATT REGULATORS Specifications $25^{\circ} \mathrm{C}$.					1 WATT REGULATORS Specifications $25^{\circ} \mathrm{C}$.									The full line of constant voltage devices tabulated here are used to control output voltage of power sources and as voltage reference elements capable of operating over a wide temperature range. Hermetic sealing and mechanical ruggedness provide long term reliability even under the most adverse
Tarzian Type	Zener Volt. (V)	$\begin{array}{\|l\|} \hline \text { Test } \\ \text { CCr. } \\ \text { (Ma) } \\ \hline \end{array}$		$\begin{aligned} & \text { Jedec } \\ & \text { Type } \end{aligned}$	$\begin{gathered} \text { Tarzian } \\ \text { Type } \end{gathered}$	Zener Volt. (V)	Test Cur. (Ma)	$\begin{array}{\|c} \text { Dyn. } \\ \text { Imp. } \\ \text { (Ohms) } \end{array}$	$\begin{gathered} \text { Tarzian } \\ \text { Type } \end{gathered}$	$\begin{gathered} 2 \text { enew } \\ \text { Vof. } \\ (V) \end{gathered}$	Test Cur. (Ma)	\square	$\begin{aligned} & \text { Jedec } \\ & \text { Type } \end{aligned}$	
. 25 T5.6	5.6	25	3.6	1~708	175.6	5.6	100	1.2	10 T5.6	5.6	1000	1	101803	
. 2556.2	6.2	25	4.1	1N709	176.2	6.2	100	1.5	1076.2	6.2	1000	1	1,1804	conditions. These three power
. 25 T6.8	6.8	25	4.7	1N710	176.8	6.8	100	1.7	1076.8	6.8	1000	1	1M1805	classifications cover a wide range
. 25 T7.5	7.5	25	5.3	1N711	177.5	7.5	100	2.1	1077.5	7.5	1000	1	101806	of applications. The regulators also
25 T8. 2	8.2	25	6.0	1N712	178.2	8.2	100	2.4	1078.2	8.2	1000	1	1N1807	tities. Call your nearest Tarzian
. 2579.1	9.1	12	7.0	14713	159.1	9.1	50	3.0	1079.1	9.1	500	1	1118180	representative for application
. 25 T10	10	12	8.0	1N714	1710	10	50	3.5	10 T 10	10	500	2	1N1351	assistance.
.25711	11	12	9.0	1N715	1711	11	50	4.2	10 T 11	11	500	2	1N1352	
. 25712	12	12	10	12716	1712	12	50	5.0	$10 ¢ 12$	12	500	2	1M1333	
.25T13	13	12	11	1 14717	1713	13	50	5.8	10713	13	500	2	IN1354	W WATT
. 25 T15	15	12	13	14718	1715	15	50	7.6	10 T 15	15	500	2	111355	
. 25 T16	16	12	15	1M719	1716	16	50	8.6	10 T 16	16	500	3	IN1356	5
. 25118	18	12	17	1~720	1718	18	50	11	10 T18	18	150	3	1N1357	
. 25 T20	20	4	20	14721	1720	20	15	13	10 T 20	20	150	3	1N1358	-
25722	22	4	24	1N722	1722	22	15	16	10 T 22	22	150	3	101359	
. 25 T24	24	1	28	1~723	1724	24	15	18	10 T 24	24	150	3	1 W1360	
. 25 T 27	27	4	35	1M724	1727	27	15	23	10 T 27	21	150	3	1N1361	I WATT
. 25730	30	4	42	14725	1730	30	15	28	10 10	30	150	4	1M1362	
. 25733	33	4	50	1N726	1733	33	15	33	10T33	33	150	4	1N1363	sata
. 25736	36	4	60	1M727	1736	36	15	39	10736	36	150	5	1N1364	-
. 25739	39	4	70	1N728	1739	39	15	45	10 T 39	39	150	5	1N1365	
.25743	43	4	84	1N729	1743	43	15	54	10 T 43	43	150	6	1N1366	
.25747	47	4	88	1N730	1747	47	15	64	10 T 47	47	150	7	1N1367	
.25751	51	4	115	1N731	1751	51	15	74	10T51	51	150	8	1N1368	
. 25756	56	4	140	14732	1756	56	15	8	10 T 56	56	150	9	1N1369	10 WATT
. 25 T62	62	2	170	1N733	1762	62	5	105	10 T 62	62	S0	12	IW1370	
. 25 T68	68	2	200	1N734	1768	68	5	125	10 T 68	68	50	14	1N1371	
.25T75	75	2	240	1M735	1575	75	5	150	10 T 75	75	50	20	IN1372	
. 25 T82	82	2	280	1M736	1782	82	5	175	10 T 82	82	50	22	1N1373	
.25791	91	1	340	1N737	1791	91	5	220	10 T 1	91	50	35	IN1374	H1] Lasion
.25T100	100	1	400	1N730	17100	100	5	260	10 T 100	100	50	40	IN1375	

SARKES TARZIAN	ALABAMA, Birmingham Paul Mayden Assoc P. 0 Boz 1931. AL pine 1-8271	HAWAII Dougherty Enterprises 334 limalia O. Box 188. Kalua, Hawalı	MASSACMUSETTS, East Longmeadow Gerber Sales Co 6 N. Man, LAurel 53059	OMIO. Clevaland 14 Industrial Sales Chas M. Dolfuss. Jr 8 Co 2108 Payne Ave. Room 707
tarzlan SALES REPRESENT ATIVES	W. Bort Knight Co.	Phone 253.666 IMDIAMA Indianapolis	MICMIGAM. Detrot 27 Grant Shaffer Co	Rospeet 1 1278
	-	Leslio in Deroe Co. 4010 Washington Blvd. ATwater 3 I 1395	14241 Fenkell Ave. BRosdway 3-5390 mIMNESOTA. Minneapolis 23	PENNSYLVANIA. Philadolphia Soe Comden, in J
		ILIINOIS. Chicago 45 Industrial Sales Madell Salas Associates	Scoft Electronic Sales 5209 W 601 h St , WEsi 9.2985	PENNSYLVAMIA. Pitisburgh 14 Industrial Sales
	CALIFORMIA. Son Francisco 3 Moulthrop \& Hunter 165 Eleventh St., UWderhill 3-7880	6140 W. Lincoln Ave. living 87920 ILLIMOIS. Skotio	MISSOURI, Kanses City 14	cone Sovot 8 Co,
	COLORADO, Colorado Springs Poyser \& Co.	Mike Bermann 6631 E. Prairie Rd, ORehard 5 -3740	$\begin{aligned} & 407 \text { w } 74 \text { sth St Terrace } \\ & \text { EMerson I } 565 \text {. } \end{aligned}$	Central Enpressway
	CONMECTICUT. Mew Haven 15 Gerber Soles Co P. O. Bon 2917. SPruce 7-6279	IOWA. Codar Rapids George E Marris Co., Ine 526 merchants Mational Benk Blde EMpire 2-6302	MEW JERSEY. Camden I Industrial Sales ${ }^{1} \mathrm{H}$ Elestronic Sales P O. Box 797. WOodiawn 6-0303	WASHINGTOM. Seattle 9 M. K. Widdelind 222 First Avenue \boldsymbol{N}, Alwater 4.4859
	FLORIDA. N Miami Beach Paul Mayden Assoc. 1060 N E. 180 Terrace. Wilson 5-5793	KAMSAS. Wichtr 8 Industrial Soles George E Hartis \& Co., Inc. 2520 Dourlas sil MUray $2.2731 / 3.9226$	NEW JERSEY, Nobohen Simberthoff Sales Co 75 Oa hwood Ave. Orange, M.J Phone ORenges 4.4100	CAMADA A I. R Armstrone Co.
Write for complete catalog	GEORGIA. Aftanta Paul Hayden Assoc. 682 B Lindberg Dr. M. C., CEder 3-4743	MARYLAND. Baltimore Industrial Sales IO M Electronic Soles Bor 6844. Towson. Ma Valley 5-4441	NORTM CAROLIMA, Burlington Paul Mayden Assoc 423 w firth. CAnal 73479	Export Only
	georgia. East Point Paul Mayden Assoc. PO. Boan 331. East Point POplar 6-0261-2	MASSACNUSETTS, Boston Gerber Sales Co 48 Puarl St., Brookline 46. Mass Escon 2-2425	OMIO. Clevaland 14 Distributor Sales F. A Daugherty \& Co 6025 Mayrield he., Milleress 2-331	NEW YORK. Now Yorti 4 Ad Aurieme. Inc is Broed St., BOwing Grean 9-7150

Digital timer for arming missile fuses, built with the Micram microminiature packaging technique, has no moving parts. (ED, July 5, p 7). The technique, developed by the Cleveland Metal Specialties Co. in Ohio and other electronic companies, provides packing density of 300,000 parts per cu ft. The modularized unit, developed by the Diamond Ordnance Fuze Laboratory of Washington, D. C., times up to 200 sec in increments of $1 / 10$ of a sec.

Additions to the Transistor Data Chart

Specifications for several groups of npn silicon pouer transistors, manufactured by Fanon Transistor Corp., Vewark, N. J., were receiced too late for mublication in our July 5 transistor Data issue. Please add FN (Fanon) to the "Remarks" column as alternate source for the following types listed on page 52 of the Transistor Data Chart:

2N:389	2N1210	2N1490
2N 124	2N1211	2N1616
2N1069	2N148	2N1617
2N1070	2N1488	2N1618
	2N1489	

Also add $F N$ to the $2 N 424 \mathrm{~A}$ and 2N1620 listed on page 58.
A series of 75 and 85 w npn silicon devices are also available bearing house - numbers F101 to F116.
 equipment, consult CML - specialists in the development and production of tube type or transistorized units for systems or laboratory use.
Another CML first ... a new 3 kilowatt wide band sonar amplifier versatile enough to match any transducer load.

Model S-3000 operates at full power from 50 to $20,000 \mathrm{cps}$ into load impedances of $15,30,60$, $120,250,500$ and 1,000 ohms. Half power is delivered at $30,000 \mathrm{cps}$. Harmonic distortion is less than 2% over entire frequency range. Available in dual cabinet (each $47^{\prime \prime} \times 25^{\prime \prime} \times 27^{\prime \prime}$).

For consultation on any HIGH POWER
COMMUNICATIONS MEASUREMENTS TWX= LABORATORY, INC. PLFD 1772

SPECIFICATIONS
CONTACTS - 4 PDT (4 form C) 5A © 30 VDC
SIZE - $1^{3 / 32^{\prime \prime}}$ D. $\times 1^{1 / 2^{\prime \prime}} \mathrm{H}$.
WEIGHT - 3.202.
PULL-IN.POWER - $1 / 2$ watt
VIBRATION - 50 G, 10 to 3,000 CPS
SHOCK, Electrical - 100 G minimum
TYPE - CVE with patented rotary armature

WRITE FOR DATA SHEET 7

COUCH ORDNANCE, INC.

NEWS

Atomic Weather Station to Aid U.S.

Automatic Unit That Uses 60 Linked Thermocouples To Convert Energy to Be Set Up in Isolated Far North

Power supply of automatic weather station consists of 60 lead-telluride thermocouples arranged like spokes around cylindrical strontium titanate heat source. Radiation is blocked by 4.4-in.-thick lead shield.

ANUCLEAR-POWERED automatic weather station, using thermocouples for power conversion, will be set up soon in a remote area of northern Canada.
The station was designed and built for the Office of Isotopes Development of the Atomic Energy Commission by the Martin Co., Baltimore. Recent tests of the equipment by the Weather Bureau included transmissions from Baltimore to Washington.
The unmanned weather station derives its power from about 1 lb of strontium titanate pellets, which generate heat spontaneously by radioactive decay. The heat is transformed directly into a continuous flow of electricity by a series of thermocouples. The electrical energy is stored in rechargeable batteries, which operate two transmitters.

The nuclear power source will be used to drive the transmitters with an output of 250 w on each of two frequencies. The effective range will be 250 to 1,500 miles. (One transmitter will operate at about 3.4 mc and the other at about 5 mc . Both are crystal-

Thermocouples in the station transform heat directly into a continuous flow of electricity

A core of strontium titanate pellets generates heat for thermoelectric conversion to $5 w$ at $4 v$ in the unattended weather station. The power charges batteries that drive 250 -w transmitters.
controlled and completely transistorized, except for dual-output tubes. The two antennas used are $1: 00$ and 90 ft tall.

The transmitters will send data on four parameters: temperature, atmospheric pressure, wind speed and wind direction, to be measured by instruments in the station.

Because the radio-isotope-fueled power system uses no moving parts, long-term, maintenance-free reliability is possible, says Martin. The dumping of excess heat from the generator is regulated to keep electronic components within a constant narrow temperature range.

The thermoelectric assembly consists of 60 lead-telluride thermocouples arranged like spoke's around the cylindrical heat source. They are connected in series to a single outlet. Output is $\mathrm{j}^{\mathrm{J}} \mathrm{w}$ at 4 v de. This is converter to $2 x v$ de to trickle-charge the nickelcadmium batteries.

Strontium titanate was selected because of its low solubility, which is said to minimize biological hazards.

In the operating generator, the fuel pellets are encased in several layers of an alloy called Hastelloy-C. It would take centuries to corrode, even if immersed in the ocean, studies indicate.

Radiation from strontium-90 in the working generator could be blocked by a variety of materials. Lead, 1.1 in . thick, has been used in the first unit. Final protection for the whole generator is an outer cladding of stainless steel. The generator weighs 55 lb and the shielding $1,6:-5 \mathrm{lb}$.
With hundreds of serious gaps in the pres ent world network of weather-reporting stations, particularly in polar regions accessible only during a brief time each year, the unmanned device fills a long-standing need. - -

But Are They Work-Alikes?

The Recognized Standard

Experience earns leadership.

There are fifteen years of design and application experience behind Bendix.Pacific telemetry compo nents - a depth of experience unmatched by any other manufacturer.

This is why the 300 Series equipment is the recog. nized standard - complimented by look-alike copies, but standing alone in accuracy, performance and extended reliability.

Bendix-Pacific Division

CIRCLE 35 ON READER-SERVICE CARD

Important addition to the most complete submin line in the industry
More than 21 times smaller than the standard TO-5 case, these new Raytheon germanium NPN and PNP and silicon NPN types provide both the small size and mounting flexibility required for advanced techniques in miniature packaging. This doubleended feature lends itself to new design freedom in single and multi-
ple-board configurations. New solutions are possible for feed-through construction applications, welded assembly needs, and other assembly problems, such as jump wiring, and input-output isolation.
You can now choose from 52 ultrareliable submin transistors. NPN and PNP, germanium and silicon, singleend and double-end - immediately available for large quantity orders at low cost. Complete technical and sales information can be obtained from the Raytheon office nearest you.

GERMANIUM					
TO-5	Double-Ended	TO-5	Double-Ended		
2N404 PNP	2N800	2N422 PNP	CK22C		
2N426 PNP	2N802	2N464 PNP	CK64C		
2N427 PNP	2N804	2N465 PNP	CK65C		
2N428 PNP	2N806	2N466 PNP	CK66C		
2N582 PNP	2N808	2N467 PNP	CK67C		
2N414 PNP	2N810	2N438 NPN	2N818		
2N416 PNP	2N812	2N439 NPN	2N820		
2N417 PNP	2N814	2N440 NPN	2N822		
2N396 PNP	2N826	2N1605 NPN	2N824		
SILICON					
T0-5	Double-Ended	TO-5	Double-Ended		
2N337 NPN	2N907	2N334	NPN		
2N338 NPN	2N908	2N335 NPN	2N904		
2N332 NPN	2N902	2N336	NPN		
2N333 NPN	2N903		2N906		

For applicatione assistance, call offices usted below. For Im.
mediale availability and condensed data, call Disiribuiors IIsied mediate availabillity
on opposise page.

RAYTHEON

RAYTHEON COMPANY

SEMICONDUCTOR DIVISION

SILICON AND GERMANIUM DIODES AND TRANSISTORS. BILICON RECTIFIERS. CIRCUIT-PAKS

CIRCLE 36 ON READER-SERVICE CARD

NEWS

19-Barreled U.S. Camera Shoots Planets by Day

A camera system that resembles an antiaircraft gun recently captured continuous bright views of Venus and Jupiter in daylight.

The giant Facet-Eye Camera System, developed by W. E. Woehl of the Air Force Missile Development Center, Holloman Air Force Base, N. M., was basically conceived for tracking missiles and satellites at extreme distances and in any kind of light.

The planetary images were transmitted to indoor viewing screens, where they were photographed with a plate camera. By using this method, distortion-free pictures were reported produced with a clarity and intensity ordinarily obtained only during night hours. The total field covered was reported to be many times the size obtainable by standard tracking telescopes.

The camera system, consisting of 19 longbarreled, $\overline{5}$-in. refracting telescopes linked to as many image-orthicon tubes, moves on a delicately balanced tracking mount. It is planned to increase the number of telescopes and oscilloscope screens to 25 to provide a viewing field of $2-1,2$ by 7 deg .

The system has been installed at the Air Force Missile Development Center.

A battery of 19 optical telescopes linked to imageorthicon tubes forms the Air Force's new Facet-Eye Camera System. Bright views of Venus and Jupiter were shot in daylight with the system.

U. S. to Orbit Satellite to Test New World Tracking Network

The National Aeronautics and Space Administration is planning a satellite launching to test the recently completed worldwide Mercury tracking network.

A Mercury-Scout I will be orbited to provide real-time calibration, training and operational experience for the new 16 -station Mercury network. It will also provide a flight test of Mercury communications gear.

The satellite will be launched into an approximate 300-mile-high orbit by a Scout vehicle.

Command Receiver Designed For Use in Skybolt Missiles

A new command destruct receiver for use in the Skybolt Missile Program is slated for production by the Ramo-Wooldridge Div. of Thompson Ramo Wooldridge, Inc., Canoga Park, Calif. The units will be delivered to Drouglas Aircraft Corp., where the first engineering model is presently undergoing environmental testing.
The receiver, called the CR-10, weighs $\because-1 \geq \mathrm{lb}$. Reduction of the new receiver to one-third the size and one-half the weight of an earlier model was accomplished by using helically loaded cavities, magnetostrictive audio filters, and potted modular construction of basic circuitry.

Electrically Suspended Gyros Due in Polaris Missile Program

An electrically suspended giroscope with only one moving part is to be used in the inertial guidance system of the Navy's Polaris missile.

The gyroscope is composed of a beryllium rotor suspended in a vacuum by an electrical field. It is set in motion by an induced magnetic field, which is then turned off. Once started, the rotor will coast for about a year because of a lack of friction in the vacuum container

According to C. L. Davis of the Minneap-olis-Honeywell Regulator Corp., under contract to the Navy Bureau of Ordnance to produce the giroscope, a test model has been operated successfully for more than $6,300 \mathrm{hr}$ without being restarted.

Contact your Raytheon Distributor for off-the-shelf delivery at no penalty in price on Raytheon DoubleEnded Submin Transistors and all Raytheon Semiconductors. Raytheon, Distributor Products Division, 411 Providence Turnpike, Westwood, Massachusetts.
alabama
Birmingham
Forbes Distributing Company
AL 1.4104

anizoma

Phoenix
Midand Specialty
ALpo.
califormia
Burbank
Valley Electronic Supoly
Co.
VIctoria 9-3994
Hollywood
Hollywood Radio \& Electronics, Inc. Ho
HO 4.8321
Los Angiles
Kierulif Electronics. Inc.
RIChmond 8.2444
Oakland
Oanand
Elmar Electronics
TEmplar 4.3311
Palo Alto
Zack Electronics
DA
$6-5432$
Sacramento

Sacramento Electronic Supply
G1
1.4821

San Diego
Sadio Parts Company
BE 9.9361
San Franciseo
San rranciseo
Forlune Electionics
UN

San Jose
Peninsu
Penirsula Electronic Supply
CYOrus
4- -781
Santa Ana
$\underset{\substack{\text { Richery Electronics Inc. } \\ \text { TRiangle } \\ 2-2651}}{ }$
colorado
Denver Terry Company
Wald
AMherst $6-3181$
DISTRET OF COLUMBIA
Electronic Wholessilers Inc
HUason 3.5200
Empite Electronic Supply Co

FLORIDA

Miami $\begin{gathered}\text { East Coast Radio \& Television Co. }\end{gathered}$
CRanklin $1-4636$
Orlando
East Coast Radio
CHerry 1.9655
E Televison Co.
West Palm Beach West aid
Cooddard Distributors, Inc.
TEmple
3. 5701 Itumols
Chicaso
Alling Radio Corporation
HAymatet
HAymarket 1.680
Iowa
Codar Rapids
Mid.

Mid. State
337.3726
Distributors

Dos Moines Mid-State Distributors
ATIantic 8 - 7231
marylamo
Baltimore
Wholesale Radio Parts Co., Inc.
mulbery 5 . Mulberry 5.2134 massachusetis
Boston
Cramer Electronics, Inc.
ar Coploy 7 -47700
DoMamber
Radio Supply Co., Inc. AL 4.9000
Gratbar Eloctric Co. Gaybar Eloctric Co.
Hubbard 2.9320 Husbard 2.9320
Latay otte Radio Corp. of Mass.
Hubbard 2.7850

Cambridge
Cambridgeal
Electract
UNiversity
Suply
4.600
michigam
Detroit
Radio Electronic Supply Co
TE 4.8420
Grand Rapids
Radio Electronic Supply Co.
GLendalo 9.4611 ummesora

mimuesora

Minneapolis
Northwest Electronic Corp.
FE 8.7551
missoura
Kansas Cit
Burstein-Applebee Company
BAltimore $1-1115$
University City Olive Industrial Electronics
VOlunteer 3 -4051 MEw Jensey
Camden Genal Radio Supply Co. Inc.
Mountainside
Federated
Pu
Federated Purchaser Inc.
AD 2.8200
wEw mexico
Albuquergue
Midand Specialty Company
CHapel $7-0236$ Midand Specialty
CHapel 7.0236
MEW YORK
Binghamton
Stack Industrial Electronics, Inc. Siack
RA 3.6326
Buffalo
Wethle
Wenhe Electionics Inc.
TL 4.3270
.

- Ploneer 6-8686'

New Yolk City
Milo Electronics Corporation
OE Kekman 3 -2980 Sun Radio 8 Electronics Co., Inc.
3 ORegon 5.8600
Terminal.-Hudson Electronics, Inc CHelsea 3.5200
Troy Tojan Electronic Supply
AS $4-4481$
Ulica
Valley
RA $4-5168$
Industrial Electronics, Inc.
OHIO
Cincinnati
United Radio In
CHerry 1-6530
Dayton
Stopco, Ine.
BAIdwin $4-38$
oregom
Portland
Lou Johnson Company, Inc.
pemusyivamia
pemmsylvamia
Philadelohia
Radio Eleetric Service Co.
WAlnut 5.5840
temmessee
Knoxville

Industrial Electronics Inc.
$524-7368$

rexas
Midiand Specialty Company
KEyston
E.
KEystone 3.955
Fort Worth
SWIECO, Ine
SWIECO, ine
ED 2-7157 (in Dallas: AN 2-5026)

RAYTHEON COMPANY
DISTRIBUTOR PRODUCTS DIVISION
RAYTHEON

WESCON Booth 1224

SILICON TRANSISTOR CORP. ADDS 2 NEW SERIES. THE COMPLETE LINE OF HIGH POWER SLLICON TRANSISTORS

2N1015A 2N1015B
are 150 watt single.end stud types. With collector-emitter voltages of 100 volts. Saturation resistance of 0.5 ohms. Minimum beta of 10 at 5 amps .
The series

2N1212
2N1208
2N1616
2N1617
2N1618
are double•ended $11 / 16^{\prime \prime} 85$ wat hex stud types.

And... 2N1616A
2N1724 2N1617A 2N1618A
are the most popular series in this package, with dramatic improve

SILICON TRANSISTOR CORP.
CARLE PLACE, LONG ISLAND, NEW YORK Ploneer 2-4100 circie 3s on reader-senvice card

BVCEO of 80 volts. Saturation resistance of 0.5 ohms. Minimum beta of 10 at 5 amps.
Both STC series have the lowest leakage currents in the industry... high temperature stability ...low thermal resistance and reliability at full power ratings. Write for Catalog listing complete line of STC's high and intermediate power silicon transistors and silicon diodes.

EDITORIAL

Space Successes Mounting

Despite the mild public hullabaloo over recent space successes compared to the massive publicity effort accorded the Project Mercury suborbital flight, we would like to express high enthusiasm for the following notable U. S. achievements:

- Automated ship navigation is very close with the successful orbiting of Transit IV-A.
- Long-lasting power sources, formerly a bugaboo in our space program, may have arrived with the SNAP isotope generator used in Transit.
- Great worldwide benefit can be provided as Tiros III spots cloud formations that may permit early detection of vicious hurricanes and typhoons.
- The infrared eye of Midas should permit early warning of missile launchings. Although intensified effort is needed so that we can do something when we do spot a hostile shot, Midas must be considered an engineering achievement of high rank. Implementation of such a new concept is not often achieved on such a short time-scale.
A quick glance at the record shows 28 U . S. vehicles in orbit around the earth with 13 of them still transmitting. We have launched a total of 45 space vehicles compared with 12 launched by the Soviets. Currently only one of these Soviet satellites is still in earth-orbit, and it has ceased transmitting. (The recent rapid succession of space triumphs could conceivably alter these figures by our issue date).

The Russians certainly have shown perceptive foresight in planning space spectaculars, but our own program reflects \boldsymbol{x} sounder approach to the imaginative utilization of this new dimension.

We remain strongly in favor of continued criticism of our space program where it is obviously weak. But it seems that the major advances of recent weeks should bring due credit to the men of good sense who have made them possible.-R. H.

WESCON

As you browse through this WESCON preview issue you'll find some features of special interest. Product highlights are summarized on $p 62$, and descriptions of new products to be introduced at the show begin on p 6.4. Photographs of some of the research work to be viewed on WESCON field trips are presented on p 8.

If you make it to the show stop in and chat for awhile at our booth-P-1 \& 2 in the Cow Palace Annex. We welcome your suggestions and any article ideas you may have. A crew of DESIGN editors will be on hand to talk over article possibilities and give you some help on getting them written.

Look for the new enlarged Electronic Daily while you're at the show. For some time we've published an $8-1 / 2 \times 11 \mathrm{in}$. magazine for visitors to the IRE Show and WESCON. With this year's West Coast show we are shifting to a tabloid sized magazine-10-3/4 x 16-1/2 in.-on quality paper. As in the past, coverage will be restricted to show and convention activities.-E. E. G.

new applications

for Sigma's Wonderful Electric

Stepping Machine
1Or, "Discrete ratchelless angular rotations from current reversals "।

In the broad field of endeavor loosely called "instrumentation," one recurring
problem is how to do a good job of converting pulses - or current reversals - into shaft positions. A dandy solution for present or future reference follows forthwith.

The Cycloneme ${ }^{\text {© }}$ is a high speed maynclic stepping motor, whose shaft stays in one of 20 stable positions until a current reversal comes along; then it turns 18°
$\left(\pm 1^{\circ}\right)$. Because the precise incremental rotation is due solely to magnetic forces, the wear, noise, slowness, short life and high input power of ratchet-and-pawl
devices are completely avoided. The Cyclonome will step up to 400 times per second (20 rps), using $\frac{1}{3}$ to 40 watts depending on the speed and what's hitched
to the shaft as well. Here are some current (reversing) examples of jobs being done by Cyclonomes.

In response to voltage variation, a Cyclonome precisely moves the electrode in an automatic welder to maintain a constant arc length. "Positioning" Cyclonomes
also drive magnetic tape, strip charts and movie film in very discrete amounts to a particular section of interest, on pulsed commands. The motors are also expert knob twiddlers, turning gain controls on amplifiers and scopes and tuning receivers
for automatic band sweeps. An electric utility uses a Cyclonome motor
driving a wiper arm around a printed circuit switch deck (see Cycloswitch ${ }^{(8)}$ illustration) to indicate tap positions on remotely located tap changing transformers; in a medical research application, a Cycloswitch monitors blood temperatures
at several points in the patient's circulatory system.
As "pulse translators," Cyclonomes are: measuring fuel consumption or liquid flow
from a pulse-generating rotor inside a pipe; remotely controlling mix in a
petroleum blending machine; counting traffic by converting input pulses into successive positions of memory code discs; counting the numerical difference between
pulses from two sources, in an "impulse difference relay;" indicating time as a
"clock mechanism" in a precise time comparator.
In some cases we've done the "packaging," with due regard for Cyclonome input,
output, coupling, and compatibility of components with our motor.
We'd be glad to tackle your problem this way, or just sell you the motor with almost no questions asked. Give it some thought, particularly for unattended
field equipment and where its ability to eliminate other bugs and headaches zan mean a simpler, less costly overall answer.

If that's too much to ask, just give Sigma some thought.

In tbe palace with the con's at TIESCON, .Aug. 22.25-Bootb 520.522 .
H)

SIGMA
 91 PEARL ST., SO. BRAINTREE 8 5, MASS.

CIRCLE 40 ON READER-SERVICE CARD

Tunnel Diode Sine-Wave Oscillators-

Part I

Abstract

Series-parallel tunnel diode sine-wave oscillators offer excellent frequency stability characteristics-4 parts/10,000 drift for a 1-mc oscillator operating from -50 to +100 C . The design procedure is presented with examples of 1 -kc, 100 -kc and 1-mc circuits. Device and circuit limitations are included in Part I. Part II, to appear in the August 16 issue, contains a complete circuit analysis of the starting and steady-state conditions as well as the derivation of the design equations. A wireless fm microphone and crystal controlled oscillator will also be described in Part II.

Erich Gottlieb
Applications Engineering Semiconductor Products Dept. General Electric Co.
Syracuse, N. Y

BECAUSE OF its inherent negative conductance characteristic, the tunnel diode is ideally suited for oscillator operation. The temperature stability of its characteristics is excellent and the frequency stability of the resulting oscillator circuit primarily depends on the associated circuit components.

Oscillator Configuration-
"Series" vs "Series-Parallel"
The simplest tunnel diode oscillator circuit is the "series" type, see Fig. 1. In this circuit the diode, appropriately biased in the negative conductance region, is connected in series with an external inductor.

In such an arrangement, the analysis ${ }^{\text {L }}$ shows that the circuit will oscillate freely in a sinusoidal manner when

$$
\begin{equation*}
\frac{R_{T}}{\left|g_{d}\right|}=\frac{L}{C} \tag{1}
\end{equation*}
$$

at a frequency

$$
\begin{equation*}
f_{0}=\frac{1}{2 \pi} \sqrt{\frac{1-R_{T} \cdot\left|g_{d}\right|}{L C}} \tag{2}
\end{equation*}
$$

Both the frequency and the stability of this circuit depend largely on $\left|g_{d}\right|$; since this conductance is a time-average value which
varies with voltage and temperature, such a circuit is rather unstable

Another circuit approach, much less subject to the various causes of instability, is shown in Fig. 2. The operating frequency of this "series-parallel" circuit can be made primarily dependent on the L and C of the tank circuit and can therefore be quite stable. A detailed analysis for this circuit (see Equation Derivation section) shows that the operating frequency is determined by
$f_{0}=\frac{1}{2 \pi} \sqrt{\frac{1}{L\left(C+C_{1}\right)}-\frac{g_{d^{2}}}{C_{1}\left(C+C_{1}\right)}}(3)$ and that for stable sinusoidal oscillations

$$
\begin{equation*}
R_{T}=\frac{g_{d}}{\omega^{2} C_{1}{ }^{2}+g_{d^{-}}} \tag{4}
\end{equation*}
$$

It should be pointed out that several approximations have been made in the analysis. First, the diode series resistance and series inductance have been neglected as they will generally be small compared to the external

(a)

(b)

Fig. 1. Simple series-type oscillator and its equivalent circuit.
lumped constants. Secondly, the term g_{t}, in reality should be a time-average value where y_{d} be expressed in function of time as:
$g_{1}(t)=y_{0}+g_{1} \cos \omega t+y_{2} \cos 2{ }_{2}, t+$
is only approximated. Presently, only an average value of r_{1} is being specified by the manufacturer. This parameter is measured in the following manner. While observing the V-I characteristic, the tunnel diode is shunted by a variable resistance. When $R=1 / g_{d}$, the slope of the negative conductance becomes zero over the active range and since R is known, g_{d} is thus established.

Limitations Include Low Output

 and Poor EfficiencyThe use of the tunnel diode as an active device in oscillator circuits has certain limitations. Obviously the first of these is the small amount of power output obtainable from such a circuit. It is apparent from a rough approximation of the V-I characteristics that the maximum power output available from the tunnel diode is

$$
\begin{align*}
P_{0 \text { mar }} & =\frac{\left(V_{r}-V_{p}\right)\left(I_{p}-I_{r}\right)}{8} \tag{5}\\
& \approx \frac{I_{p}}{35}(\text { for } \text { germanium })
\end{align*}
$$

[For germanium, $V_{r}-V_{p}=350-65=285 \mathrm{mv}$ $\boldsymbol{I}_{p} / \boldsymbol{I}_{r}=5$ (typ) $\left.\therefore \boldsymbol{I}_{p}-\boldsymbol{I}_{v}=0.8 I_{\| \prime}(\mathrm{typ})\right]$

Hence it would take at least a $35-\mathrm{amp}$ peak

Fig. 2. Simplified equivalent circuit of series. parallel sine-wave oscillator.
current unit to obtain 1 W of power output or a 3.5 -amp unit to obtain 100 mw of output power. A 3.5-amp germanium unit has a negative resistance of 0.1 ohm or less. Driving such a resistance from a stiff voltage source is difficult and inefficient.

Another problem is that such a high power unit has a rather large junction area, hence a relatively large junction capacitance. The magnitude of this capacitance seriously limits the frequency at which this power is available

Further limitations can be found in coupling this oscillator to a load. The tunnel diode oscillator circuit only delivers a fraction of $1 \times(\mathrm{rms})$ to the tank circuit. Generally, as this circuit is coupled into other low impedance semiconductor circuits, a stepdown transformer only serves to lower this output voltage swing.

Finally, the efficiency of such a circuit, driven from present conventional power supplies (relatively high de voltages) is low. An efficient tunnel diode supply would provide a fraction of $1 v$ with a large current ca-pacity-just the opposite of conventionally used supplies. On the other hand, solar cells and thermoelectric generators could probably be used to advantage in tunnel diode circuits.

Design Procedure for a
1-Kc Sine-wave Oscillator
Given the frequency and required output power, the choice of diode can be made. For 1 mw of rms power, a greater than 35-ma diode is required. Another consideration in the choice of diode is its capacitance and inductance for high-f requency applications, as these parasitic parameters can severely limit the freguency range. A further consideration is of a purely practical nature; at low frequencies. the size of the inductor becomes electrically and physically large. To mini-

DESIGN WITH ARNOLD 6T CORES... SAME-DAY SHIPMENT OF STANDARD DELTAMAX CORE SIZES

Arnold 6T tape cores (aluminumcased and hermetically-sealed) offer you three very important design advantages. One: Maximum compactness, comparable to or exceeding that previously offered only by plastic-cased cores. Tu'o: Maximum built-in protection against environmental hazards Three: Require no supplementary insulation prior to winding and can be vacuum impregnated after winding.
Now we've added a fourth vital advantage: Maximum availability An initial stock of approximately

20,000 Deltamax 1, 2 and 4-mil tape cores in the proposed EIA standard sizes (See AIEE Publication No. 430) is ready on warehouse shelves for your convenience. From this revolving stock, you can get immediate shipment (the same day order is received) on cores in quantities from prototype lots to regular production requirements.

Use Arnold 6T cores in your designs for improved performance and reduced cost. They're guaranreed against 1000 -volt breakdown
. guaranteed to meet military
test specifications for resistance to vibration and shock . . . guaranteed also to meet military specifications for operating temperatures. The 6T hermetic casing method is extra rigid to protect against strains.
Let us supply your requirements. Full data (Bulletin TC-101A and Supplements) on request. - Write The Arnold Engineering Company, Main Office and Plant, Marengo, Ill. adoress dept. ED-8
ARNOLD
-.. sptelalists in magnetic martrials

ELECTRONIC DESIGN • August 2, 1961

(c)

Fig. 3. (a) Schematic of a $1-\mathrm{kc}$ oscillator with calculations shown in (b). Frequency and amplifude stability are shown as lemperature (c) and bias voltage (d).
mize physical dimensions, smaller wire is used resulting in larger values of dc resistance. The tunnel diode must remain stably biased in the negative conductance region. Therefore, \boldsymbol{R}_{1} must be smaller than $1 / g_{d}$, and if the dc resistance of the coil were very large, g_{d} would have to be very small. This dictates the use of a very low-current tunnel diode since $g_{d}=\Delta i / \Delta v$ and Δv is fixed.

For the first design example, consider a 1 -ke sinusoidal oscillator having a limited
power output of about $1 \mu \mathrm{w}$. A rough approximation indicates that a unit with I_{p} over 35μ a will do the job. As tunnel diodes with $I_{p}<1 \mathrm{ma}$ are not generally available, a backward diode (generally this device can be used'as a low-current tunnel diode) is utilized. If a unit such as GE's gallium arsenide, 4FJ1-STD002, having a typical negative conductance of approximately $3 \times$ 10^{-4} mhos, is used R_{T} can now be 1 to 2 K without seriously impairing the dc stability of the circuit (see Fig. 3a).

Once g_{d} is determined, the choice of R_{T} can be made. The limits are that $R_{T}<1 / g_{t}$, but if \boldsymbol{R}_{T} is made very small, the dc power consumption of the circuit becomes too large. Hence \boldsymbol{R}_{T} is chosen somewhere between 0.3 and 0.7 of $1 / g_{d}$ as this will yield adequate stability with reasonable power consumption.

If $R_{T}=0.3 / g_{d}, R_{T}$ will be about 1,000 ohms for the particular example. At this point. C_{1} can be calculated, where (from Eq. 4)

$$
\begin{aligned}
C_{1}= & \sqrt{\frac{g_{d}\left(1-R_{T} g_{d}\right)}{R_{T(0)^{2}}}} \\
& =\sqrt{\frac{3 \times 10^{-4}(1-0.3)}{10^{3} \times 4 \times 10^{2}}}=0.071 \mu \mathrm{f}
\end{aligned}
$$

Since :

$$
C+\frac{C_{1}}{1-R_{T} \cdot g_{d}}=\frac{1}{L \omega^{2}}
$$

If L is chosen somewhat arbitrarily at 100 mh with a $R_{D C} \cong 100$ ohms

$$
C=0.25-\frac{0.071}{1-0.3} \mu \mathrm{f}=0.15 \mu \mathrm{f}
$$

The de bias circuit can now be calculated. Assume the circuit supply voltage $\boldsymbol{E}_{b 0}=3.0 \mathrm{v}$. If R_{t} (see Fig. 3b) is 1,000 ohms, then

$$
I_{\text {total }}=I_{\text {diode }}+E_{\text {diode }} / \boldsymbol{R}_{1}=310 \mu \mathrm{a}
$$

and

$$
\begin{aligned}
R_{2}= & \frac{E_{\Delta D}-\left(E_{\text {diode }}+E_{R D C}\right)}{I_{\text {total }}} \\
& =\frac{3-(0.25+0.03)}{310 \times 10^{-6}}=8,800 \mathrm{ohms} \\
R_{T}= & \frac{R_{1} \times R_{2}}{R_{1}+R_{2}}+R_{D C}+R_{t} \\
= & \frac{8,800 \times 1,000}{9,800}+100+2 \cong 1,000 \mathrm{ohms}
\end{aligned}
$$

The performance characteristics of such an oscillator meet the requirements used for tone generators of electronic organs as the stability data of Fig. 3c illustrate. In this figure, the frequency variation vs tempera-
ture is shown to be only in the order of 0.1 per cent from -50 C to +100 C , while over the more limited range of environmental conditions to which an electronic organ is normally subjected, the stability is considerably better. The amplitude variation is also minor while both the frequency and amplitude variation versus bias is quite acceptable over a wide range, Fig. 3d.

Performance of a
 $100 \cdot \mathrm{Kc}$ Oscillator

Another example at 100 kc , would simply involve dividing L, C and C_{1} by 100). Thus

$$
\begin{aligned}
& C_{1}=710 \mathrm{pf} \\
& C=1,500 \mathrm{pt} \\
& L=1 \mathrm{mh}
\end{aligned}
$$

If the same tunnel diode is used, the bias circuit remains the same as shown in Fig. sa. At 100 kc however, the size of the inductance will easily permit the use of larger peak current tunnel diodes and hence the circuit can be designed to accommodate a 1 -ma peak current unit with greater power output. The performance characteristics of a 100 kc oscillator is illustrated in Figs. 4 through 6. Fig. 4 shows the circuit diagram and the oscilloscope presentation of the output waveform across the tunnel diode (upper) and across the tank circuit (lower).

Fig. $\overline{3}$ indicates the frequency variation vs bias voltage and Fig. 6 shows the frequency variation vs temperature characteristic of the diode. In these tests only the tunnel diode was exnosed to temperature change in order to establish its contribution to circuit instability. The external circuit can be designed to provide temperature compensation for even greater frequency stability.

As can be seen from the data, the frequency stability of this circuit is quite good over a wide range of temperature and bias voltage.

Fraction of Per Cent Frequency Drift In 1-Mc Oscillator

The next circuit, a 1 -mc oscillator, was tested and showed considerable improvement, as illustrated in Figs. 7 through 9.

Fig. 7 illustrates the fact that by changing the bias voltage, the variation of frequency is only in the order of a few hundred cycles out of 1.14 mc , a change in the order of 0.0) per cent. Over the range of 155 to 200 mv . the amplitude of the output voltage varies only from $63 \mathrm{mv}-\mathrm{rms}$ down to $5 \overline{5} \mathrm{mv}-\mathrm{rms}$.

Fig. 8 shows the temperature stability of this ossillator circuit over a range of -50 C to +100 C . It can be seen that the frequency

Fig．4．100－ke sine－wave oscillator circuit and output woveform across diode（upper）and tank circuit（lower）．
varies only +18 to -16 millipercent over this wide temperature range．

Amplitude and Distortion U＇naffected by Variable Capacitor Tuning
The main variable creating the frequency shift versus bias and temperature is the neg－ ative conductance（ $-g_{t}$ ）．As the operating frequency is increased，the variation of fre－ quency（ Δf ）caused by Δg_{11} remains the same；however，since f changes，$\Delta f / f \times 100$ decreases，thus causing a lower percentage of frequency shift．

Finally，Fig． 9 shows that varying the ca－ pacitor $C \perp$ in the parallel tank circuit over an appreciable range accomplishes smooth tuning without change in amplitude or dis－ tortion．This latter point is especially impor－ tant since in the＂series＂type oscillator cir－ cuit a change in either L ，or C affects stability and distortion greatly．

Limitations Imposed by High Power， High Frequency Demands

At higher power output requirements（in the milliwatt region）or at higher frequen－ cies，further limitations cause the aforemen－ tioned sequence of design procedure to be－ come somewhat impractical．After having chosen a tunnel diode with a sufficient peak current to furnish the required power output， g_{d} is essentially established．For example，it will take a 100 －ma unit to furnish about 3 mw of available output power．A $100-\mathrm{ma}$ unit has a negative conductance $g_{\|}$in the order of $1 \mathrm{mho}(-r \boldsymbol{r}=1 \mathrm{ohm})$ ．If one keeps the product of $R_{T} \times g_{d}$ at 0.5 then C_{1} is es－ tablished by Eq． 4.

The problem arises in the heretofore some－ what arbitrary choice of L ．This inductance becomes much more restricted as $\pi_{\|}$and the onerating frequency increase．The inductance is determined by

$$
\begin{equation*}
L=\frac{1}{\omega^{2}\left[C+\frac{C_{1}}{1-R_{r} \cdot g_{d}}\right]} \tag{6}
\end{equation*}
$$

（continued on｜1 亿！）

Eye－opening facts about miniature electrolytic capacitors

Many electronic designers and buyers already depend on iei for higher reliability（apacitors and dependable service．If iei is a new name to you． here are the facts．
iei offers full polar，partial polar and non－polar construction in aluminum foil， 85° and 125° tan－ talum foil，tantalum wet slug and solid tantalum types．For many years iei has been the only company specializing in low－voltage，miniature electrolytic capacitors for transistor applications．
Iel units cover the range from is to 150 WVDC． from 2 to 5000 mfd ，and offer the greatest range of standard types and ratings．The 85° Tantalum Foil and Tantalum Solid capacitors are Q．P．L． （Qualified Product List）approved．

昷e年 85° Tantalum Foil units are the only capac－ itors available in 5 MIL case sizes－and， 5 smaller case sizes with equal capacity－for optimum space utilization．
iei and local distributors stock standard values of these miniature electrolytic capacitors．
Bei has prepared a new technical bulletin for specifying and buying personnel．Write for Form 2773.
International Electronic Industries，Inc． BOX 9036－12 NASHVILLE．TENNESSEE

company
where reliability repluces probability

Fig. 5. Frequency variation of the 100 -kc ascillator vs bias voltage at 25 C .

Fig. 7. Frequency stability vs bas voltage of 1 -mc ascillator,

Fig. 9. Frequency tuning by means of variable capacitor $C \perp$ provides a smooth variation without change in amplitude (60 mv) or distortion.

Fig. 8. Frequency stability vs temperature of $1-\mathrm{mc}$ oscillator.

The maximum value of L is realized when C becomes zero, at which time

$$
\begin{equation*}
L_{m a r}=\frac{1}{\omega^{2} \frac{C_{1}}{\left\lfloor 1-\kappa_{T} \cdot \theta_{V}\right\rfloor}} \tag{7}
\end{equation*}
$$

If this value is now found by using a higher. power example at, for example, 1 mc , then :

$$
\dot{\boldsymbol{L}}_{\operatorname{maz}}=\frac{1}{39.6 \times 10^{12} \times 0.32 \times 10^{-6}} \cong 78 \mathrm{nh}
$$

If a small capacitance is now added and/or if the operating frequency is further increased, L will quickly reach the package limitations of the tunnel diode.

For example, if $f=10 \mathrm{mc}$ and C is 10 pf , then:

$$
C_{3}=\sqrt{\frac{1(1-0.5)}{0.5 \times 39.6 \times 10^{24}}}=0.016 \mu f
$$

and
$L=\frac{1}{39.6 \times 10^{14} \times 10 \times 10^{-12}+\left(\frac{16 \times 10^{-9}}{0.5}\right)}$

$=7.88 \mathrm{nh}$

For the TO-18 packaged devices, this is the magnitude of the case and lead inductance and a further reduction would be difficult to achieve. Naturally lower inductance tunnel diode constructions as well as techniques for tuning out some of the inductance (in coaxial or triplate arrangement for microwave applications) might extend these limits somewhat.

The inductance L can be further increased, however, if C_{1} is reduced. The limit of C_{1} is the tunnel diode capacitance C_{n}, at which time the circuit simplifies down to the simple

ELECTRONIC DESIGN • August 2, 1961
"series" type:

$$
L_{m a r}=\frac{1}{\omega^{2}\left(\frac{C_{D}}{1-R_{T} g_{d}}\right)}
$$

Rewriting this equation for frequency gives us, once again, Eq. 2 of the "series" circuit.

$$
n=\sqrt{\frac{\left(1-R_{T} g_{d}\right)}{L_{T} C_{D}}}
$$

Since $C_{B}=C_{i}=\sqrt{\frac{g_{d}\left(1-R_{T} \cdot g_{d}\right)}{R_{T}}}(9)$ the ratio of $\ell_{d} \boldsymbol{R}_{T}$ will have to be reduced if C_{1} is reduced considerably. As R_{T} is dependent on $!_{d}$, this essentially means that a lower (/, should be used; hence, a lower current tunnel diorle. The use of C and C_{1} as stabilizing (or swamping) components being so desirable, one might not want to carry C_{1} to the limit and hence another design example might prove interesting.

$$
\text { Let } C=C_{1}=10 C_{n}
$$

In this new circuit, Frf. q

$$
\begin{aligned}
\frac{g_{d}}{R_{T}} & =\frac{C_{1}^{2} \omega^{2}}{\left(1-R_{T} g_{d}\right)} \\
\text { if } \quad R_{T} & =\frac{R_{t}}{2}, \frac{2}{R_{d}^{2}}=2 C_{1}^{2} \omega^{2}
\end{aligned}
$$

and hence $R_{u}=\sqrt{\frac{1}{\mathrm{~m}^{2} C_{1}^{2}}}$
R_{0} (for the previous 10 -mc example) now becomes: (assume $C_{11}=\overline{\mathrm{p}}$, thus $C_{1}=$:() pf)
$R_{u} \cong \frac{1}{10 \times 10^{11} \times 2,500 \times 10^{-4}} \simeq 320 \Omega$ $R_{T}=\frac{R_{B}}{2}=160!$
and $\quad L_{r}=\frac{1}{40 \times 10^{14}\left(50 \times 10^{-12}\right.}$

$$
\overline{+\frac{\left.50 \times 10^{12}\right)}{0.5}}=1.67 \mu \mathrm{~h}
$$

The result is a circuit, with reasonable L / C and the tunnel diode capacitance and its variation vs temperature and bias is swamped out. - -

References

1. Davidsohn, U. S., Hwang, YC., Ober, G. B., "Designing With Tunnel Diodes", Electronic Design, Feb. 3\& 17, 1960
2. Chow, W. F., Davidsohn, U. S., Hwang, Y. C., Kim, C. S., Ober, G. B. "Tunnel Diode Circuit Aspects and Applications", A.I.E.E. Conference Paper CP 60-297, Jan. 1960

0.2 INCH GRID SPACED TERMINALS

Backlighting:

Best for Electronic Control Panels

 -

Abstract

Backlighting is about the best way for an electronic designer to add another "information channel" to an already crowded, conf using, instrument panel, says Rohm \& Haas's A. M. Blumenfeld. Here, he starts the designer off with the basics of panel selection and marking, and light placement.

A. M. Blumenfeld

Rohm \& Haas Co.
Philadelphia, Pa

BACKLIGHTING is often the most efficient method for illuminating a control console panel. For the job it can do, it is often the optimum solution, eliminating the shortcomings of front floodlighting, and the technical complexity and low brightness limitations of edge lighting, in man-machine communications.

This article will cover the basics of backlighting. Knowing the basics, the engineer will be able to estimate how he can tackle the more sophisticated man-machine communication and appearance problems.

For backlighting, you need only three things: a transparent or translucent panel on the instrument face, a graphic display on the panel, and sources of light behind the panel. From this basic start, you can gain other degrees of freedom by adding more than one pattern, colored lights, and logical

switching for the lights. According to the number of different patterns and the amount of interrelated switching you add to the lighting circuits, you can end up with a panel, see photos, which is capable of trans mitting a large amount of "human-engineered" information about the machine's status to the operator and do this within the confines of a fairly small panel.

Designing the

Panel for Backlighting
The first choice of material for a backlighted "image panel" is usually it translucent (opalescent) acrylic plastic sheet, Fig 1a. Suitable acrylic sheets are available in a broad range of transmission densities and colors. On the other hand, for certain effects, a clear acrylic sheet with translucent or opaque coatings on either or both surfaces may prove better, Fig. 1b.

If crisp outlines are essential, and translucent acrylic panels are used, the coating which forms the image must be applied to

This traffic control center for directing train move ments is a good example of the use of backlighting for sophisticated communication with the operator. Here (left) the miniafure track diagram contains small backlights that indicate the operational condition of the switches and signals as well as indicator numbers. Backview (right) gives idea of the wiring arrangement used. Union Switch \& Signal division of Westinghouse Air Brake was the builder.
the front surface of the panel. Front coatings present durability problems, however. when the panel is handled or cleaned frequently. But when transparent plastic panels are used, patterns in coatings are sharp and clear on either side, and the coating can be put on the back for better protection.

Components and surfaces inside the lightbox plenum behind the panel should be either of silver-colored metal (but not highly polished) or be coated with a white matte finish of "high-reflectance" properties.
Placement of
Back Lights
Light may be flooded from the top or sides onto a reflecting panel, Fig. 2, and thence through the transmitting image panel. Reflectors may be parabolic or simply flat (the angles are best established by experiment). Reflected backlighting produces less brightness than direct backlighting, but is useful where lamp access is a problem, or limited depth is available behind the image panel, or

ElECTRONIC DESIGN • August 2, 1961
some indicator mechanism is in the way.
The dual-panel system shown in Fig. 3a is a combination of edge lighting and backlighting and is useful where:

- Space behind image panel is severely limited.
- Image panel is predominantly dark but markings are illuminated.
- Extreme brightness is not required.

These conditions are common in military electronics and in the general run of communications equipment.

As Fig. 3a shows, the transparent image panel is coated on the back (or front) surface with an opaque material which carries the markings in negative (dropped-out) form. This coating is then backed with a high light-transmitting and uniform layer of white translucent paint. An edge-lighted panel is located immediately behind the image panel, but not adhered to it. This edge-lit panel has small areas of white paint on its back surface behind each marking or pattern to catch and diffuse the light rebrounding inside the edge-lit panel. These white-painted areas should not exceed $20-$ 30 per cent of the edge-lit panel's total surface. Long strips of markings parallel to the illuminated edge are acceptable, but $3 / 8$-in. to $1 / 2$-in. should be the maximum width of such strips.

Avoid Totally

Transparent Areas

When designing back-lit image panels, totally transparent areas are generally to be avoided-to prevent glare and exposure of lamps and structures behind the panel. Accordingly, translucent paints on the backs of transparent panels are employed in combination with the opaque paints which form the images. Three variations are illustrated in Fig. 3, one in Fig. 3a and two in the upper part of Fig. 3b.

"Hidden Message"

Technique with Backlighting

Specific segments of backlighted panels are often selectively illuminated by locating lamps within their own light-proof dividers, which may be labyrinths, egg crates, etc., Fig. 3b bottom.

Annunciator panels for control systems and count-down status boards in missile

Fig. 1. Both translucent and clear panels can be used for backlighting.

Fig. 2. Light sources for backlighting do not have to take up space directly behind the panel. They can be used in conjunction with parabolic or flat reflectors.

Fig. 3. Where behind-panel space is really limited, a "dual panel" combination of edge-lighting and backlighting can be used (a). Design variations with backlighting (b) include the useful "hidden message" technique.

Three Methods for Lighting Panels; Why Backlighting is Best

1. Floodlighting: This is the "brute force" approach. But while the designer needs no special knowledge and regular opaque panels can be used, a high contrast between the image and background is mandatory and excessive stray light and glare which may bother the operator or others in the area is difficult to eliminate.
2. Edge-lighting: Transparent plastic, usually acrylics, must be employed. This is excellent for low ambient light conditions, but poor for high-light conditions. A moderate amount of specialized knowledge is needed by the designer. This type of lighting is more widely used in consumer products such as home appliances than in electronic products. It does have limited application for illuminated sector dials, scales and digital readouts. (It is somewhat related to the bundles of optical fibers being developed for image transmission and light amplification.)
3. Backlighting: Transillumination, as it is sometimes called, is the best method for most electronic equipment because the same visual effectiveness is achieved whether the equipment is unlighted during the day or lighted by night. In addition. backlighting is best for illuminating elements such as control and warning devices which must appear luminous when observed under high ambient light conditions. Finally. backlighting is not too difficult for the designer to tackle. Such simple rules as the one for lamp spacing, "provide equal distances between adjacent lamps, and between lamps and control panel." can be used.

Fig. 4. On-off indicators and warning lights are familiar forms of backlighting.

Fig. 5. The optical "tricks" possible with prisms may be important where panel frontal area is limited.
blockhouses are excellent examples of use of "hidden messages." When the copy is negative in an opaque coating which is applied behind a continuous translucent coating, a very effective "hidden message" becomes possible, since the existence of the message is not apparent until the lamp is lit. These coatings should be applied in the prescribed sequence to the front of translucent plastics or to the rear of transparent plastic panels.

Jewel Lights and Pushbuttons

Widely Available with Built-In Backlighting
Electronic designers are commonly familiar with jewel lights as on-off indicators and as warning lights. Such lights are available in many forms, but the four shown in Fig. 4 $\mathrm{a} \& \mathrm{~b}$ are typical of those used with transparent materials. They are easily produced in acrylic plastics, in almost any hue and in almost any desired intensity.

Transparent jewels should be designed for the emerging ray pattern which will best correspond to the viewing position of the operator. If the viewer's eye will customarily be within a narrow cone straight ahead of the jewel, a protruding spherical design will work well. If the viewer moves about more, but is commonly located between 30-60 deg off the center line of the jewel, a protruding
parabolic shape is better. If the viewer must sight along the face of the panel, a cylinder with a conical depression in the front face works best.
Finally, if the design requires equal illumination at all angles in front of the panel, the lamp should be mounted forward, projecting through the front panel surface, and should be covered with a transparent or translucent plastic dome. Dark adjacent areas, hoods and shallow wells aid in discrimination of the light when low brightness lamps must be used.

Reflector jewels or reflex lens designs are generally poor for backlighting. Fresnel patterns, radial grooves, faceting and combinations of polishing with frosting are all helpful, but require experiment with prototypes to assure that the desired optical effect is actually obtained.

Translucent plastics of high transmission value and brilliant color give excellent results as jewels, but lack the sparkle of colored fully transparent materials. Maximum brightness, of course, comes from a direct view of the lamp filament itself, and the intention of the designer should be to preserve as much of this brightness as possible.

Colors at the warm end of the spectrum (reds) are more readily discriminated under poor contrast conditions than colors at the cool end of the spectrum (blues).

What Type of Lighted

Pushbutton to Use
If pushbuttons are to be individually lighted, they are generally designed so that the lamp is located directly behind the transparent button. Such buttons are in a sense jewels and give the brightest results when they are in the form of hollow cups over the lamps.

The selection of the physical type of pushbutton has a number of ramifications:

- Cup-shaped transparent buttons (top sketch, Fig. 4b), permit images and markings to be located on the rear surface of the frontal plane and permit changeable back-lighting inserts.
- Solid buttons which are backlighted (middle sketch, Fig. 4b) require longer mechanical connections to clear the lamp during action. When of transparent materials, with copy markings located on the back face, they suffer from the "deep-well" look.
- Long translucent buttons transmit light poorly unless very thinly dispersed colorants are specified and even then the markings must be on the front to be
legible. Hence wear or damage may be a problem. Some designers have used thin diffuser disks cemented to the front of a clear button, but this is not a recommended technique.
- For long service life, the lamp should be stationary to prevent jarring of the filament every time the button is operated. Ventilation to increase lamp life as well as to prevent heat distortion of the thermoplastic acrylics can be an important design consideration.
When multibutton switch assemblies are used, the button shape and lamp position must often be planned around the switch configuration. One approach is to sidelight the buttons by means of a $4 \overline{5}$-deg facet for total internal reflection as shown in the bottom of Fig. 4b. However, the markings must be located on the front face of the button, and the long light travel restricts the merging ray pattern so that effective viewing is limited to the nearly dead-ahead position.

Another solution is to sidelight a button of slightly translucent plastic, without providing optical control facets. The effect will be that of a smoke-filled room. Light is scattered by the translucent pigment and enough of it glows out the front of the button to do the job. This eliminates the "deep well" effect.

When space behind the panel is very tight, buttons may be lighted from the light "flux" emerging from a secondary brightly lighted panel. The light-receiving surfaces of the buttons must fall in the plane of the edgelighted panel when they are actuated. This is useful only for buttons which remain depressed during the selected function. Where there are rows of such buttons, the accommodating holes in the edge-lighted panel must be in a line parallel to the light-entering edge of that panel, or radially around a central lamp to prevent shadowing of the button that is furthest from the light source.

Optical Control
 of Visual Images

Acrylics (as well as some other plastics to varying degrees) present challenging opportunities to the electronic designer. It is practical to incorporate, without great additional cost, many optical refinements such as magnifiers, reducers, collimators, and prisms as integral elements of molded panels and panel components. Pointer scale magnifiers and reflex prisms are probably the most useful, yet they are relatively simple to design and can be worked into backlit panel designs to advantage.

Designer Should Keep Eye Out For New Backlighting Materials, Devices

Besides the acrylics mentioned by author Blumenfeld (his company, Rohm \& Haas, produces the well-known Plexiglas brand), a designer should keep his eye out for other transparent and translucent panel materials. Some which come to mind are: clear epoxies and polyesters (Mylar film) and clear silicones. There is no reason. for example, that a throw-away subsystem couldn't have its own indicating lights potted along with the rest of the electronics in one of the new clear silicones.
Lamp and indicator device manufacturers are continually developing new units which may be attractive for backlighting applications. Pushbuttons with integral indicating lamps are mentioned in the text. Others would be translucent indicator tapes and miniature readout wheels.

For example, the prism of Fig. in, designed as an isoceles right triangle, permits two different images to appear alternately in the same frontal area of the instrument panel, either because the viewer has changed his viewing angle, or because the prism has been pivoted (as by a linkage connected to a scale-changing knob).

Viewing perpendicularly to the plane of one of the short sides (see arrows coming in horizontally from right) will cause the sight line to reflect totally at the long side, to reveal an image or scale beyond the other short side. Viewing at a slightly different angle to the short side (downward-slanted arrows from right), however, will permit copy behind the long surface (and separated from it by an air interface) to be viewed. Prisms such as these are useful for reducing clutter in panels where only small frontal areas are available for multiple scale or message observations. Common applications are for switching to different frequency bands on communications equipment and from regular to vernier scales on instruments.

In the case of molded lenses, it is generally better to design double convex, rather than plano-convex types, since molding sinks in the flat surface might cause objectionable image aberrations with plano-convex lenses.

A little attention to more attractive, more useful panels can add a lot of sales appeal. Backlighting is one of the most practical approaches for the designer in making panels more attractive and more useful. - -

How G.E. Alnico 8 permanent magnets can help you DESEOCN MORE COMPAGT TWT PAKKKGES!

LOW IRREVERSIBLE TEMPERATURE LOSS Only. 6 of 1% from $20^{\circ} \mathrm{C}$. to $-193^{\circ} \mathrm{C}$. Either of these factors alone will reduce the amount of "over-desion required in a permanent magnet for a given performance in a traveling wave package. Together, they can effect important economies without impairing performance.

3

EXTREMELY LOW REVERSIBLE TEMPERATURE COEFFICIENT Only $0.013 \%^{\circ} \mathrm{C}$. This represents a stability up to 15 times oreater than that of bariumferrite materials and means that te mperature compensating elements on magne stacks can be completely eliminated.

Approximate reduction in size with Alnico 8 magnet stack

In these three ways, then, G-E Alnico 8 eliminates expensive design time for compensators, saves costs of material, fabricating and assembly - and lets you design compact, high-performance TWT packages at lower cost.
There's more! To see how Alnico 8 by G-E, Edmore fits your specific requirements, send for full information today. Request Product

Engineering Data 1108 and 1109. A letter or phone call will do fine. Or we would be pleased to have you visit us here:
Magnetic Materials Section, General Electric Company, 7854 N. Neff Ave., Edmore, Michigan. In Canada, contact Canadian General Electric Company, 940 Lansdowne Avenue, Toronto 4, Ontario.

MAGNETIC MATERIALS SECTION

How to Evaluate DC Differential Amplifiers

The principal features of dc differential amplifiers are much talked of, according to author William Royce, but they are little understood. Precise terms are being bandied about more and more loosely. As a result, design engineers are hard pressed to interpret manufacturers' data intelligently. In addition to the evaluation criteria he presents here, Mr. Royce gives simple tests for checking important features.

William G. Royce

Kin Tel
Division of Cohu Electronics, Inc.
San Diego, Calif.

THE WORD "differential" is today being applied to more and more amplifiers. Most of the manufacturers' listed specifications differ so widely in terminology that a comparative evaluation of characteristics is impossible. Indeed, in some cases, the manufacturers' data sheets are so clouded with unclear terms and ambiguous qualifications and implications as to be misleading.

Consequently there is a need for a clear interpretation of all terms, a precise specification saying exactly how an amplifier is guaranteed to perform. Any implied, unstated, or nondefinitive specification can be ignored. It is better to have guaranteed exact limits on performance than implied or "typical" performance which may seem better. Typical performance information is very valuable, but thorough applications engineering must evaluate "worst-case" conditions.
One point in particular should be established about the specifications: do they apply simultaneously? One sometimes encounters examples of specifications which apply only for limited circumstances (not spelled out) which require modification to the standard amplifier normally supplied. For example, the bandwidth may be stated in one paragraph, and the common-mode rejection in another. Quite possibly this rejection represents a maximum, achieved only with filters that narrow the bandwidth considerably from the first value. Performance may also
vary with gain setting. If such variation is not stated, then it must be assumed there is none, and evaluation tests must therefore be considered accordingly.

Differential Amplifiers Available
In Three Basic Types
What is a "differential amplifier"? Actually , the term is now virtually meaningless. The three most commonly encountered data-amplifier types are the single-ended, the balanced, and the isolated input. Ignoring for the moment nonessential differences in detail performance, let us examine these for type distinction.

The single-ended has two input terminals, one of which is connected directly to one output terminal. The balanced-input amplifier has a three-terminal input, with one pair balanced (i.e., symmetrical) to the third or common terminal. The isolated-input amplifier has a pair of input terminals not connected, except for leakages, to the output terminals. In general, the input system of the isolated-input amplifier is shielded and the shield connection is brought out as a third terminal along with the signal pair.

Three Types Distinguished

By Common-Mode Rejection

Operationally, these three types are distinguished by their relative ability to disregard an unwanted, interfering signal, appearing between the input and output terminals. This unwanted signal is termed "com-mon-mode voltage" because it is common to all input leads and signal sources. Ideally, an
amplifier would respond only to the signal applied to the input terminals and would neither connect this signal source to any other terminals nor respond to an extraneous voltage appearing between the desired signal source and other terminals.
Obviously, the single-ended amplifier does not meet these requirements at all with its direct connection to an output terminal. The balanced input, though not nearly meeting the ideal, can be used in limited applications to achieve some rejection of the spurious voltages. The isolated-input amplifiers now available are approaching the ideal in their ability to reject the spurious signal under general conditions.

In systems having only one "ground" point, the single-ended amplifier may generally be used. Typical of this type of system is an isolated, straingage bridge, excited by an isolated supply as a source, permitting a single ground near the amplifier regardless of the load. Because it generally has greater simplicity, reliability, and better performance, the single-ended amplifier is the preferred type if the system permits its use

Systems having, of necessity, more than one ground connection seldom work satisfactorily with the single-ended amplifier. Such a system is typified by a bonded thermocouple source far from the amplifier, with the amplifier driving a grounded load. Multiple ground points never have the same potential; indeed, they may differ by volts. Sampling a portion of this difference will degrade the desired signal materially-even masking it completely in severe cases. For these sys-
tems, only the balanced or isolated-input amplifier is practical.

Balanced Input Amplifier

Cancels Common-Mode Voltage

The balanced-input amplifier represents a bridge technique for canceling out the com-mon-mode voltage (CMV). As with any practical ac bridge, there is a maximum dependable degree of balance. A data system deployed over hundreds of feet of distance, with varying temperature and other disturbances is a very difficult bridge to maintain balanced. Common-mode rejection (CMR) is the attenuation factor for the common-mode voltage, usually expressed in db . Under favorable conditions, the CMR may run 30 to 40 db .

The factors contributing to balance difficulties are resistive unbalance at the source, capacitive line and connector unbalance, and limitations inherent in the amplifier with gain switching, time, and temperature. There is also a limit on the maximum magnitude of CMV which may be applied. In some cases this may be well below the typical CMV present in a system.

For most systems, dependence on a questionable balance to reject typically large common-mode voltages is quite undesirable. This is not to say that the balanced-input amplified is not useful. There are systems having very low common-mode voltages and relatively invariant signal sources. Here the practical CMR is adequate without resorting to the more complex isolated-input amplifier.

Isolated-Input Amplifier

Offers Systems Flexibility
It is for the more general case involving varying source-impedance balance and rather large common-mode voltages that the iso-
lated-input amplifier is intended. Although more complex and costly, it offers very great flexibility in system usage. In effect, the isolation and shielding of the input allow one to do electrically what is not possible physi-cally-locate the amplifier input at the source and the output at the load.

It is for this type of amplifier that we shall outline a few simple tests which most quickly show its application possibilities. Certainly, before final acceptance of a chosen amplifier, its full compliance with specifications should be demonstrated. These full tests, however, can be lengthy. If an amplifier shows poor performance on the quick tests, then the full tests may be neglected.

No comparison of chopper-stabilized and straight-carrier or direct-coupled amplifiers is made here, principally because only chop-per-stabilized or straight-carrier types are capable of the low dc drift required of modern systems, and secondly, because the directcoupled amplifier (for example, an oscilloscope preamplifier) is not capable of isolatedinput operation.

Tests for Common-Mode Rejection

The single unique feature of a "differential" amplifier is its ability to reject ac com-mon-mode voltage. The most troublesome CMV is usually at 60 cps , the power line frequency. Typically, the rejection for dc is greater than for 60 cps , and lower for higher frequencies. The common-mode rejection is most often defined as the ratio of applied CMV to the equivalent normal-mode signal it produces; that is:

$$
C M R=\frac{C M V}{E q \cdot I n p u t}=\frac{C M V}{E_{o} / A}=\frac{A(C M V)}{E_{o}}
$$

where $\boldsymbol{A}=$ differential gain of the amplifier

Relative Merits of Differential-Amplifier Types						
Amplifier Classification	No. of Input Terminals	Relative Cost \& Complexity	Allowable System Ground Points	Practical CommonMode Rejection (CMR)	Relative Sensitivity of CMR to System Variations	CommonAllowable Mode Voltage (CMV)
Single-ended	2	Lowest	1	None	-	None
Balanced-differı	3	Medium	2	30.40 db from dc to 60 cps	High	Low
Isolated Input	2	High	2	$\begin{gathered} 100 \mathrm{db} \text { at dc } \\ 30 \cdot 60 \mathrm{at} 60 \mathrm{cps} \end{gathered}$	Low	High at dc Low at 60 cps
Shielded \& Isola	2 signal 1 shield	Highest	2	180 db at dc 130 db at 60 cps	Very low	High at dc and 60 cps

Fig. 2. Sel-up for measuring de linearity and gain.
and $E_{0}=$ amplifier output resulting from CMV.

In Fig. 1 we have a set-up simulating an unbalanced source. This test should be made first as shown, then again with the input leads reversed; i.e., the $680-\mathrm{ohm}$ and $220-\mathrm{ohm}$ resistors interchanged. A good value of CMR at 60 cps in this test is 130 db (3 million: 1) for either lead unbalanced. Although 130 db CMR at 60 cps is seldom needed, the corresponding rejection at higher frequencies (e.g., 120 cps or 400 cps) is very helpful. (Typically, CMR will drop at a 6 db per octave rate.)

As a second set of tests, repeat these tests using a $10-\mathrm{K}$ resistor instead of the $\mathbf{6 8 0}$ ohms, retaining the 220 ohms. Again, test first one way then with the input leads reversed. This test gives as great an unbalance as is generally encountered with normalizing potentiometers on the input lines. For this test, a CMR of 120 db at 60 cps is excellent.

Test for Linearity

With the set-up of Fig. 2, one can determine the dc linearity and gain. Actually, the de-gain accuracy is seldom very important since the amplifier may incorporate variablegain controls or system gain may be controlled at several points. The linearity, or constancy of gain vs signal level and polarity,

New Zener-like characteristic of the improved Vickers Captivolt lets you build maximum surge protection into your silicon rectifier circuits...eliminates costly de-rating

The improved Captivolt responds faster to destructive voltage surges (see graph), provides greater rectifier reliability, and lengthens rectifier life better than any other protective device. Better for one very good reason: the Captivolt is produced by a unique process developed specifically to give the device its Zener-like characteristic.

Now check this: because the protective capability of the Captivolt lets you end expensive de-rating, you can often save more than $\$ 50$ in initial rectifier cost by using a Captivolt that costs less than three dollars. And you can get immediate delivery of the improved Captivolt in production quantities. There are 10 standard Captivolts in a range from 25 through 600 rated peak volts.

Get the whole Captivolt story. Write for Bulletin 3506-1. Then the next time you need to control transient high voltages (even in other circuits such as transistors, controlled rectifiers, meters, solenoids, relays, etc.) specify Vickers Captivolts.

For those extremely rugged rectifier applications, top quality Vickers Selenium Rectifiers with built-in surge protection are available from stock.

IMPROVED PERFORMANCE CHARACTERISTICS OF THE NEW VICKERS CAPTIVOLT

VICKERS INCORPORATED Division of Sperry Rand Corporation
ELECTRIC PRODUCTS DIVISION
1841 LOCUST STREET. SAINTLOUIS 3. MISSOURI CIRCLE 45 ON READER-SERVICE CARD
is quite important since no adjustment for nonlinearity is practical. Good linearity, particularly for a change of polarity, is difficult to achieve in isolated-input amplifiers.

To make the test, choose a moderately low gain setting and with E, disconnected, adjust the amplifier zero control to give a zero reading on the null detector. Set the divider to a value equal to the reciprocal of the amplifier gain. Connect E_{A}, and set to a value approximately equal to the amplifier's rated output. Adjust the divider to give zero on the null meter. Now, without changing any adjustment, vary the supply voltage and polarity, observing the null meter reading. Dividing the error by the full-scale output will give the nonlinearity as a fraction of full scale (the commonly used rating). The effects of loading can also be readily observed on the null meter (which should have a minimum sensitivity of $\pm \mathbf{1 0} \mathbf{~ m v}$).

A particularly bad effect arising from poor plus-to-minus linearity is the addition of the dc component to the output. due to the even-ordered distortion. Thus, if the amplifier is required to handle large ac signalswhether or not the output load responds to them-the resulting zero shift may be large enough to cause a serious error in the lowfrequency data.

Test for DC Shift

A simple test for the dc shift is shown in Fig. 3. The sine-wave signal is applied through a capacitor to eliminate possible dc output from it. The output signal is averaged by a low-pass filter. After a few seconds of operation, the de level at the filter output is a measure of the distortion. Choose a low to medium gain setting, adjusting the amplifier to zero dc output before applying the sinewave input. The scope is used to monitor the ac output. Choose a frequency of, say, onehalf the bandwidth, and set the input to give an output equal to the maximum rating for the particular frequency:

Test for Noise

As with common-mode rejection and linearity, there is no practical adjustment to compensate for noise. In practice, the over-all noise also depends on the CMR, but a separate determination of amplifier noise sets a minimum level. The most significant way to measure noise is to simulate a typical source with a shielded resistor, set the amplifier at the maximum anticipated gain, and load the output with the output device normally used (e.g., oscillograph, meter, A/D converter). If

Fig. 3. Set-up for measuring de drift.
the output device is not available, insert a low-pass filter (simple one-section $R C$) between the output and a suitable scope or meter. The filter should have a bandwidth approximating that of the typical load device which is likely to be used.
No "Ideal" Amplifier
Serves All Applications
Consider the application carefully in choosing an amplifier, as there is no "ideal" type. The balanced or isolated-input types increase the connection possibilities greatly, but also increase cost and complexity. There are other factors to be considered, also. Among these are general flexibility, performance in up-graded systems at a later date, and completeness of a unit. This latter concerns such matters as self-contained vs group power supplies, and internal vs external means of achieving common-mode rejection

The use of a single power supply for several amplifiers has only two significant advantages: less crowding of the amplifier package, and fewer over-all components. There are several disadvantages:

The module wiring is considerably more complex, lowering the reliability. There is an increased need for the power supply to perform well, since its failure may cause all channels to be lost. Common power supply and wiring impedances can lead to crosstalk, ground loops, or even instability depending on the quantity of amplifiers and individual operating conditions. There is no chance to "float" individual channel outputs.

System performance or power-supply reliability may depend on the number of channels loading the supply. Maintenance and calibration is more difficult and questionable since the amplifiers are not tested with the supply normally used, nor the supply with the load normally used.
After choosing an amplifier type and possible suppliers, perform the suggested test which simulates system requirements. If these tests are insufficient to pick a single unit as preferred, then run full tests and compare performance and guaranteed specs. - -

CORROSION-FREE RUST-FREE DRYING

```
TEMPCOR
lil-mememy
THE FIRST AND ONLY ABSOLUTELY CLEAN
```

MODEL 9110 *

Manufacturers of Custom-designed and Production Equipment

T
TEMPERATURE ENGINEERING CORPORATION

How to Choose Modifiers for Epoxy

Abstract

Two previous articles by Mr. Harper (ED, May 10 and July 19) have outlined the basic epoxies and their many curing compounds. In this final article, author Harper tells of the modifiers, fillers and special formulations, such as flexible resins, which round out his presentation of the very large range of possibilities for this versatile electronic material.

Charles A. Harper

Air Arm Div.
Westinghouse Electric Corp.
Baltimore, Md.

THE DESIGNER who wishes to use the many remarkable qualities of epoxy resins has not only the handful of basic resins and the large number of curing agents listed in the first parts of this series to choose from, he has, in addition, many varieties of modifiers for epoxies.

These modifiers are classed as flexibilizers, diluents, fillers and colorants.

Epoxy-Polysulfide Blends For

High Impact Strength and Crack-Resistance
Polysulfide flexibilizers such as Thiokol LP-3 are capable of reacting with epoxy resins to produce resilient and flexible highimpact, crack-resistant, cured epoxy-polysulfide end products. Epoxies and polysulfides can be reacted in widely varying proportions to yield considerably varied end properties. An aliphatic amine catalyst is also used in the reaction. Several properties of various epoxy-polysulfide blends are given in Table 1. Note how the properties vary according to the percentage of polysulfide modifier. Polysulfides in an epoxy formulation can easily be detected by a sulfur-like odor. Compound formulators market these compounds as twoor three-package systems.

Epoxy-Polyamide Blends
 Provide Range of Flexibility

Polyamide resin flexibilizers of the type marketed by General Mills under the trade name of Versamid represent another type of flexible resin material which is reactive

Table 1. Properties of Epoxy-Polysulfide Blends

LP.3 Polysulfide	Epolysulfide/Epoxy Blends				Epoxy Resin
	$3 / 1$	$2 / 1$	$1 / 1$	$1 / 2$	
200	100	50	30	10	-
35	50	70	95	98	100
5	2.5	2.8	3.5	4.5	6
7.5	6.5	5.5	4.0	3.8	3.5
10	10	10	10	10	10

with epoxy resins and can be blended with rigid epoxy to provide varying degrees of flexibility, again depending upon the blending ratio. One practical difference between the use of polysulfide resins and polyamide resins for blending with epoxies is that the polyamide resins have amine groups in their chemical structure. As this amine group serves as a curing agent for the epoxy resin, chemical reaction starts as soon as the epoxy and the polyamide are blended together.

The commonly used polyamides are Versamid 115 and Versamid 125. Versamid 115
has a viscosity in the range of 80,000 to 120 .000 centipoises at 40 C . Versamid 125 has a viscosity of 40,000 to 60,000 centipoises at $2 \overline{5}$ C. These viscosities are quite a bit higher than the 5,000 to 19,000 values of conventional epoxies and could prove troublesome in potting operations where the epoxy should be able to flow around closely spaced parts. The gain in flexibility must be balanced against the loss of workability. Heating will reduce the viscosity of Versamid modified resin systems, however.
(continucd on p 56)

Delay line (above) in which both coil bobbin and final encapsulation were machine-molded from dry epoxy powders. Motor stator (below) illustrates a more complex part made by machine-molding.

Machine-Moulding With Epoxies

Abstract

Most electronic designers think of epoxies mainly for hand operations-hand pouring (potting), hand dipping, or hand lay-up (laminating). These hand operations require little, if any, tooling or capital equipment and thus fit in ideally with short production runs. However, at least one epoxy formulator claims that machine-molding with epoxy in dry powder form should also be considered by electronic designers, even for relatively short runs.

Paul S. Byrd of the American-Marietta Co., Newark, Ohio, explains that because his company's EMC molding powders become "watery-thin" in the molding operation, they are able to "soft flow" into the molding cavities at moderate temperatures and pressures. This means that inexpensive molds of aluminum, kirksite, copper, or even epoxy, can be used for short production runs, he said. In addition, for electronic applications, the "soft" transfer flow and moderate mold temperatures (300 F) do not disturb the placement or properties of delicate parts. (In this latter respect it may encourage new packaging schemes, he said.)

The main benefit of epoxy machine molding is the possibility of high production rates (each mold cycle takes only 15 sec to $1-1 / 2 \mathrm{~min}$), he said. The closer manufacturing tolerances usually associated with machine molding can also be an advantage in some applications.

Mr. Byrd believes that in some cases epoxy molding powders can compete with Diallyl Phthalates. He said that epoxies have shorter molding cycles than DAP and that they can he machined after molding without destroying their surface properties. Machining after molding might be important for finishing potentiometers, motor parts or slip ring assemblies where an embedded conductor must be exposed for a moving electrical contact.

Fig. 1. Effects of various reactive diluents on the viscosity of a basic epoxy resin (Epi-Rez 510).

Protect Proprietary Designs With Epoxy

An unpublicized use for epoxy is in potting proprietary circuit designs. Wouldbe imitators will have a hard time breaking apart the rugged epoxy encasement without pulverizing the circuit.
Sounds crude? One electronic engineer says this is the main reason he favors epoxy potting for commercial as well as military products. Of course the epoxy must be pigmented, not clear.

Table 2. Properties of Epoxy-Polyamide Blends

Composition	Ratio	Barcol Hardness	Heat Distortion Temp. F
Versamid 125: Bakelite ERL 2795	$40: 60$	$60-65$	122
Versamid 125: Araldite 502	$30: 70$	55.65	122
Versamid 125: Araldite 6010	$30: 70$	65.75	132
Versamid 125: Epon 815	$35: 65$	65.70	144

*ASTM D648 (264 psi)

Epoxy compound formulators market epoxy-polyamides as two-package systems. The polyamide can be identified by its distinctive amine (fishy) odor and its viscosity.

Flexible epoxy adhesives are also based on polyamide blends in many instances. Data on several epoxy-polysulfide blends is given in Table 2.

Several other flexibilizing materials which are reactive with epoxy systems are: trimer acids, Cardolite NC-513, and Lancast A. Trimer acids are flexibilizing curing agents, Cardolite is an epoxide type modifier (requiring one of the epoxy curing agents for its cure), and Lancast \mathbf{A} is a reactive modifying agent.

There are numerous other acid or modified acid flexibilizing curing agents. Also, there are numerous unmodified flexible epoxy resins, such as Jones-Daney Epi-Rez 507.

Diluents Iower

Viscosities and Cost

Diluents are used with higher viscosity resins primarily to reduce the viscosity for improved working and handling properties. Lower viscosities improve the ability of the resin to impregnate glass reinforcing cloth when the resin is being used for laminating and the ability of the resin to completely fill all voids when used for potting electronic components.

Another reason for adding diluents would be to permit a higher concentration of filler into the compound. The effects of diluents and the fillers can be combined to reduce the cost of embedment compounds.

Both reactive and nonreactive diluents have been proposed for use with epoxies. A reactive diluent is normally desired since it is considered less apt to degrade the cured resin properties. Nonreactive diluents, such as xylene, are used, however, in low concentrations (under 5 to 10 per cent) without degrading the resin so far as electronic packaging uses are concerned. Nevertheless, it is generally conceded that most diluents will to some degree affect the properties of the final cured resin.

A prime consideration for diluents is that they give the maximum viscosity reduction with minimum diluent addition. This will assure better retention of the original epoxy's properties. Fig. 1 shows the effect of several reactive diluents on viscosity. Compatibility of the diluent with the resin and ability of the resulting mixture to wet the fillers are also important considerations.

Thin Epoxies Their

Own Best Diluent
The most effective reactive diluents are the low viscosity epoxy compounds. Most basic epoxy suppliers also market low viscosity

Titles and Dates for Epoxy Series

1. What the Electronic Engineer Should Know About Epoxies

May 10, page 30
2. How to Choose a Curing Agent for Epoxy

July 19, page 52
3. How to Choose Modifiers for Epoxy This article
resins. They give maximum viscosity reduction, good filler wetting and penetration, and minimum degradation of the properties of the original high-viscosity epoxy. Consequently, formulations involving combinations of high and low viscosity epoxy resins are quite common.

Fillers and Colorants

Improve Properties and Appearances

Fillers and colorants are the nonreactive parts of an epoxy system. However this does not mean that they cannot have significant effects upon the final product. Fillers are added for improved crack resistance, improved mechanical properties, increased thermal conductivity, reduced exothermic temperatures, better flame retardancy, and reduced cost of the resin compound. Some general purpose fillers in use are silica, mica and calcium carbonate. Special hollow or spheroid fillers are also used to reduce compound density. Metallic fillers are often used for epoxy tooling compounds. Antimony trioxide is often used as a flame-retardant filler.

Colorants, as the name implies, are used to add colr to resin systems. Most formulated systems incorporate some colorant. The wide range of colors possible, from clear epoxies to bright hues, can be used to advantage by the designer in color-coding equipment.

Full Use of Epoxy

Qualities Has Not Been Achieved
In the three articles of this series, we have shown the whole picture of this ideal electronic material. It is now up to the designer, knowing something about the breadth of obtainable variations, to ask himself where and how he can put the material to work in his designs. The new formulations, the new design approaches which are constantly appearing should keep him busy. - -

Acknowledgment

Table 1: Thiokol Chemical Corp.
Table 2: General Mills, Inc
Fig. 1: Jones-Dabney Co.

Nowhere is this closeness more apparent than at Lockheed. Here, with each passing day, new technological advances help bring nearer the exploration of Mars, the Moon and Venus.

As the time grows shorter, the pace grows faster. New designs in Spacecraft and Aircraft are rapidly being developed -and the number continues to mount. Included are: Missiles; satellites; hypersonic and supersonic aircraft; V/STOL: and manned spacecraft.

For Lockheed, this accelerated program creates pressing need for additional Scientists and Engineers. For those who qualify, it spells unprecedented opportunity. Notable among current openings are: Aerodynamics engineers; thermody-
namics engineers; dynamics engineers; electronic research engineers; servosystem engineers; electronic systems engineers; theoretical physicists; infrared physicists; hydrodynamicists; ocean systems scientists; physio-psychological research specialists; electrical-electronic design engineers; stress engineers; and instrumentation engineers.
Scientists and Engineers are cordially invited to write: Mr. E. W. Des Lauriers, Manager Professional Placement Staff, Dept. 1304, 2407 N. Hollywood Way, Burbank, California. All qualified applicants will receive consideration for employment without regard to race, creed, color, or national origin. U.S. citizenship or existing Department of Defense industrial security clearance required.

LOCKHEED

Reading clockwise: Venus, Moon, Mars. Appluximate distance Irom Venus to Earth, 25,000,000 miles; from Moon, 240,000 miles; from Mars, $50,000,000$ miles Photos courtesy of Mount Wilson and Palomar Observataries.

AMco $1000 \mathbb{O}^{9} \mathbb{S}$ CERTIFIED SHOCK TESTS

Amco Aluminum and Semi-Custom Modular Frames qualify for Airborne, Shipboard and

Aluminum

Semi-Custom

Certified Independent Tests prove Amco Aluminum and Semi-Custom Frames withstand shock \& vibration under Mil E-5272C; Procedure XI ($5-500 \mathrm{cps}$), Procedure III (approx. 1000g's shock Mil-S901), Procedure II ($15 g^{\prime}$ s and drop Mil-S4456). Write for Test Report Supplement E.
ALUMINUM...Unique! Meets any size, . . Flush or recessed mounting of panels. Almost any shape from 13 basic parts .. . 3 castings \& 10 extrusions. Units from $6^{\prime \prime}$ to ${ }^{2} 0 \mathrm{ft}^{\prime}$; slopes from 0° to 90° standard. MilSpecs 606:-T6 extrusions and 356-T6 castings.
SEMI.CUSTOM... Heavy-duty, more internal clearance ... 14 ga . box-channel steel frames, 12 ga . gusseting provides exceptional rigidity both front-to-back and side-to-side. Frames based on $2 \cdot \frac{1}{6}$ increments provides clearance for recessing $19^{\prime \prime}$ wide panels. Meets EIA Standards.

CUSTOM . . When space and appearance are critical 16 ga . double-channel steel frames, based on increments of $191 / 16^{\circ}$ widths, supports in excess of 3000 lbs. Multi-width panels and cowlings give single-unit appearance with series mounted racks. Meets EIA Standards.
Amco manufactures all necessary blowers, chassis slides, doors and drawers, writing surfaces, cowling lights and other accessories. Check. the extra savings you get thru Amco's combined-discount system of rac's and accessories. PLUS FREE ASSEMBLY. Ame) is your one complete source of Modular Instrume1.. Enclosure Systems and Accessories. Write today for catalog of complete specifications.

REALISTIC 3 WEEK DELIVERY
Factory trained reoresentatives in principal cities of U.S. and in Canada.
AMCO ENGINEERING CO.
7333 West Ainslie Street, Chicago 31, Illinois

CIRCLE AE ON READER-SERVICE CARD

A New Concept In DC Power Supplies

A2-KW regulated power supply, utilizing a "lossless" regulation technique, can now be housed in a standard 7 -in. high panel. This development promises to revolutionize the design and manufacture of dc power supplies for a variety of electronic applications, from computers to navigational equipment.

The new concept has been pioneered by the Electronic Energy Conversion Corp., located in Bethpage. L.I., N. Y. The key to the Convertron's drastic reduction in size and weight is a unique circuit developed by Dr. Victor Wouk, president of the firm.

Power supplies of 2 kw and over usually weigh 200 lb and more and are extremely bulky. This is due primarily to the size and weight of the input transformer. As the power level of the supply goes beyond the $2-\mathrm{kw}$ range, the transformer increases sharply in volume to accommodate the increase in power capacity. Additionally, heating effects pose many problems from the standpoint of materials of construction and installation geometry.

Another disadvantage of existing
power supplies is a necessary loss in efficiency to gain voltage regulation. The regulation is normally accomplished through the use of an impedance or power dissipating network. At high power levels, a small change in voltage can mean a considerable loss of power in the impedance network.

In the Convertron the $11 \overline{\mathrm{~N}}-\mathrm{v}$ ac input power is converted immediately to dc with a full-wave bridge rectifier. The dc is then fed to silicon-controlled-rectifier switches which chop the dc into a 1,200 -cps rectangular waveshape. The high-frequency wave is then fed to a transformer to increase or decrease the voltage to meet application requirements. By stepping up the frequency of the input power to $1,200 \mathrm{cps}$, the size and weight of the transformer is greatly reduced over comparable units of equal power-handling capacity.

The Convertron's circuitry allows voltage regulation without the penalty of power loss. The voltage range of the dc output is determined by the "on" time of the SCR switches; increasing it raises the voltage lev-

el of the pulse averaging circuit. The pulse averaging circuit consists basically of inductive and capacitive elements. This is a deviation from the conventional techniques which utilize dissipative elements to produce the desired output voltage. The pulse width is also used to control ripple. The dc output voltage is compared with a standard voltage reference and the error signal is used to control the pulse width of the SCR switching network. Using this technique, units now being tested are capable of regulation accuracy of one per cent. The company has plans to substantially increase the regulation of the output beyond this figure, according to Dr. Wouk.
The SCR switching technique results in improved efficiency because there is very little voltage drop when the SCR's are "on" and therefore low power loss. When the SCR's are "off" there is negligible current flow and therefore negligible power loss. If the line voltage to the unit is increased the amperage drawn from the line is actually decreased.

The unit has been designed for application as a supply for computers, industrial and electronic apparatus, navigational equipment test systems and other areas where a demand exists for a dc current of more than 2 kw .
In a prototype model to be shown at WESCON the nominal output can be specified from 10 to 500%, with adjustability above and below the rated output voltage. The 2 -kw unit weighs approximately 80 lb and measures $7 \times 19 \mathrm{in}$. on the panel face. It is priced from $\$ 1,500$ and is available with a four-month delivery.
For more information on this dc power supply turn to the Reader-Service Card and circle 251.
See at Show Booth 802-04.

Westinghouse announces

 surge suppressor

17

The Westinghouse VOLTRAP is a unique voltage limiting device which has been designed and constructed for the sole purpose of providing a shunt path for transient overvoltages. It provides positive protection, year after year for all static devices such as silicon and germanium cells and silicon controlled rectifier cells.
Westinghouse now offers a complete line of VOLTRAP surge suppressors. Most units are available for quick shipment.

Ratings:

A-c rms voltage ratings in 30 volt steps: 30 to 480 volts.
Clamping range: 75 to 1360 volts peak.
Max. discharge current range: 2 to 80 amps Polarized and non-polarized units available in all common rectifier circuit connections from 1 to 6 circuit elements. Suitable for operation in ambient to $50^{\circ} \mathrm{C}$ Special units can be constructed to meet specific requirements.

VOLTRAP has these exclusive advantages.

- Special open construction provides frec air circulation for most effective cooling and longer life.
- Use of spring washer against alloy creates wide air gap to practically eliminate possibility of shorts due to overloads.
- No aging problem when operated within its rated value.
VOLTRAP improves greatly the reliability of static device circuitry, and permits the use of lower PRV silicon cells. No other surge protection needed.
Protect your static circuits with exclusive Westinghouse VOLTRAP. Your local Westinghouse sales engineer has complete circuitry and pricing information. Or, write Westinghouse Electric Corporation, General Purpose Control Department, P.O Box 2025, Buffalo 5, New York
rou can be sure . . . if it's W'estinghouse.

HOW IT WORKs: Al normal RMS vole Ege Voltrap power loss is insignificient. As indicated in the graph, when a voltage surge occurs. VOLTRAP provides a shunt path which permits a current how of as much as 1000 times the stondy state curbetween 2.5 to 2.8 umes the RMS voltage. Once a surge is dischargod, the unit roOnce a surge is dischargoo, the unit ra. ing only a small current from the line. The practically ideal voltage clampins characteristic of Valtrap provides afioc. live, positive protection for static devices.

To: Westinghouse Electric Corporation
General Purpose Control Dept., P.O. Box 2025, Buffalo, N. Y

- Please send me your Technical Data 19-160 on Voltrap.
\square Please have a Westinghouse electronics engineer call for an appointment.

Name
Address
Company
City \qquad
 wide range of novel uses in extreme environments. The BR-12P is an especial boon to those designing for both sides of the component card duc to low profile and side header mounting arrangement. A second type, the BR-12K, provides sensitivity down to 20 mw . Both types have contacts rated at dry circuit through 3 amps resistive.
Performance characteristics are generally shared with other types in the BR-12 Series. All are available with activated getter material, providing lifetime prevention of contamination effects at dry circuit to rated current on contacts.

Inexpensive Paper Capacitor Is Moisture－Resistant

PAPER tubular capacitors， housed in a three－layer card－ board casing，offer characteris－ tics approaching those of molded capacitors．Use of a solid resin impregnant and a rugged，wax－ free case results in a moisture－ resistant，high－temperature component at very low cost．

Made by Cornell－Dubilier Electronics Div．，Federal Pacif－ ic Electric Co．，Sanford，N．C．， the Jaguar series type PTL ca－ pacitor is available in voltage
ratings up to 1.6 kv ，capaci－ tances from 0.001 to $1.0 \mu \mathrm{f}$ ．Case construction is glossy black kraft paper wound against poly－ ester film and aluminum foil． Accidental contact with a sold－ ering iron will not affect the case．The capacitors will with－ stand a moisture resistance test of more than 48 hours at 95 to 100 per cent relative humidity， temperature 75 C ．Original insu－ lation resistance is 10,000 meg－ $\mu \mathrm{f}$ at $25 \mathrm{C}, 100 \mathrm{meg}-\mu \mathrm{f}$ at 100

Capacitance change and power factor of the PTL Jaguar cardboard tubular capacitor are plotted in re－ lation to temperature．All measurements are made at 1 kc．

C: four hours after moisture testing, insulation resistance is not less than $1 / 3$ the initial value.

Dielectric combination of kraft paper and polyester film impregnated with Dykanol Y resin allows operation over a temperature range of -40 to +125 C with no derating in the wide-tolerance models. In applications requiring temperature stability to $\pm 4^{\circ} \%$ or less, type PTL-W is suitable. A mineral wax impregnant is used; temperature range is -40 to +100 C. with no derating. Both types avoid the leakage problems of oil-filled capacitors.

All ratings will withstana dc potential of 250 per cent of rated voltage applied for 5 sec. and 150 per cent of rated voltage applied at 85 C for $5(\mathrm{~m})$ hours. Units rated at 600 wvde and above are capable of withstanding a flash test of gool v ac. Dissipation factor is less than 1 per cent. Axial leads, 1-1/2 in. long, withstand pull and bending tests.

Standard capacitances range from 0.001 to 1.0 f in series rated at 200,400 , and 600 wvdc . to $0.22 \mu \mathrm{f}$ at 1 kv and $0.047 \mu \mathrm{f}$ at 1.6 kv . Size is $1 / 4 \times 1 \mathrm{in}$. at $0.001 \mu \mathrm{f}, 1 \mathrm{kv}$; the largest unit in the group is $1.0 \mu \mathrm{f}$ at 600 v , measuring $1 \times 2-5 / 8 \mathrm{in}$. With specified tolerance of ± 20 per cent, price per 1,000 units ranges from $\$ 41$ to $\$ 177$. Production quantities are available.

For more information on these paper tubular capacitors, turn to the Reader-Service Card and circle 252.

See at Show Booth 3405-09.
CIRCLE SI ON READER-SERVICE CARD

General Instrument Planar Transistors

At last! A truly passivated planar! New 2N706 sillane swith

For high speed logic switching with assured reliability, the General Instrument 2 N708 npn silicon planar switch features the unique Molecular Shield ${ }^{\text {M }}$ surface-passivation process. Here's a planar that is stable, reliable and uniform...lot by lot... with excellent gain characteristics as well as extremely low leakage current. Designed for switching applications, this type, as well as others in the popular 2 N706 class, utilizes the latest planar techniques. Extensive tests have proved that this type of transistor construction offers definite circuit advantages. Life tests, for example, indicate little degradation as a result of operation and storage at high temperatures. The immediate availability of the 2 N 706 series in production quantities should be of interest to designers now using our silicon mesa transistors. The 2N708 is also available in limited quantities. For microtransistors, pancake-package transistors... for all your silicon planar and mesa transistors, call the sales office or franchised distributor nearest you. Or write for complete details to General Instrument Semiconductor Division, 65 Gouverneur St., Newark 4 N J.
Abbreviated Specifications-General Instrument NPN Silicon Plener Teensistors

Type	$v_{c \infty 0}$	$v_{c m a}$	$\mathrm{h}_{\mathbf{H}}$	T_{3}
2N706	$25 v$	20 v	20	60 nsec
2N706A	$25 v$	20v	20	25 nsec
2N7068	$25 v$	20 v	20	25 nsec
2N708	40 v	20 v	30	25 nsec

GEEERALINSTRUMENT SEMICONOUCTOR DIIISION GENERALIISTRUMENT CORPORATION

WESCON Round Up

Abstract

Equipment manufacturers, in response to a questionnaire sent out by Electronic Design, volunteered information on what they thought were outstanding recent developments and what they believe will be the future developments in their fields of endeavor. We have summarized the responses received for several categories of products and, for comparison, listed several products in each category which will actually be shown at WESCON.

THE Cow Palace of San Francisco will soon be the center of attraction for engineers from every part of the U.S.A. Electronic equipment manufacturers will be placing on display there the products which they hope will excite the interest of the industry's leaders.

What will WESCON offer to justify the expenditure of time by many of the industry's leading design engineers and managers? Most of the products they will see will be short of revolutionary but many will feature clever and worthwhile innovations on existing equipment.

The companies' top salesmen and engineers will be there to explain and demonstrate, to all who will stop and listen, the merits of the products they are showing. Customer curiosity will be, to them, an indication of the appeal and marketability of their wares. Indeed, Sangamo Electric Co. changed its evaluation of trade shows quite radically because of the response to its 406 series magnetic tape reproducer-recorder at another show. They had so many engineers watching the demonstration that the aisle was blocked during most of the day. The same unit. with major improvements, will be shown at the current WESCON, Booth 2207-09.

Touring engineers will see what the competition has to offer, new approaches to the solution of problems common to the entire industry and new tools to use in the production of better, more reliable, more us-
able equipment in every field from computers to cable connectors.

In response to a questionnaire sent out by Electronic Design manufacturers outlined what they thought were the outstanding recent developments in their particular lines, and what they felt the future would bring in the way of improvements and pricing. The great majority felt that improved products would cost less in the future. Smaller size, greater reliability and more universal use combined with simpler-to-use, more accessible controls are the goals of the industry's planners. How well they are succeeding and how far they have to go will be evidenced in the wares that they will show.

Control Equipment

All responses in this category agreed that miniaturization, reliability and flexibility have been the outstanding recent developments in relays, switches, timers, counters and servos. Future development predictions were for increased reliability and further miniaturization. Price trends were indeterminate based on the complexity of the product, but the predominant feeling was that prices would be slightly higher at first cost but lower for the ultimate user due to longer life and reliability which would eliminate repairs and replacement. The Electro-Mechanical Specialties Co. is showing at Booth 1422, a 2 -amp relay that weighs less than 0.017 oz and is 0.275 in . in diam $\times 0.9 \mathrm{in}$.
long. Automatic Electric Co. will feature at Booth 2201-03 their MM-2:2 microminiature dpdt relay which has a life of 10 million operations in dry circuit applications and $\mathbf{1 0 0 , 0 0 0}$ cycles at 3 amp . The type A switching relay shown for the first time at Booth $2502-04$ by North Electric Co. has a life of 30 million cycles and an operate time as fast as 3 msec . Trans-Sonics, Inc., Booth 4414, has developed a pressure potentiometer which will deliver a 75-v output without amplification.

Semiconductors

The recent introduction of the epitaxial process is the choice of all as the outstanding recent development in the semiconductor field. Four-layer devices, particularly controlled rectifiers, were also mentioned as being in the fore of exciting developments. Faster devices with lower noise and more reliability are the goals of the semiconductor people. They would also like to see the early development of units capable of combining higher frequencies and power in one device.

Motorola, Booth 914-16, has developed pnp epitaxial transistors which handle $1 / 2 \mathrm{amp}$ at switching speeds of a few sec. A highspeed silicon planar switching transistor by Fairchild Semiconductor is rated at $300-\mathrm{mw}$ power and can be seen at Booth 814-16. A multiple diode for computer logic circuits by Delta Semiconductors, Inc., Booth 4512, consists of five separate diode junctions formed on a single silicon slice. The entire circuit is glass encapsulated.

Telemetry

Improved reliability, pem circuits and radically new space instruments have caught the eye of the telemetry manufacturers. The consensus of opinion indicates that new approaches to transducer design and data handling are the improvements they will try for in the near future.

On hand at Booth 312 will be a receiverdecoder by Babcock Electronics which has up to 20 IRIG channels for remotely controlling missiles and pilotless aircraft. Up to six channels can be used simultaneously. Telemetry modules by Lockheed Missile Space Co., Booth 2711-15, are welded into their circuits and will stand severe temperature, shock and vibration environments. An inflatable, helical telemetry antenna, shown at Booth 182, weighs less than 10 lb and can be put into use with a hand pump. Manufactured by the Andrew Corp., it has a vswr
of less than 1.5 to 1 over the range of 215 to 265 mc .

Test Equipment

Improvements in performance, particularly in accuracy and stability have been the outstanding contributions to the test equipment field according to the producers of these units. With the introduction of many semiconductor test instruments, manufacturers no longer have to improvise their own test equipment. The extension of electronic frequency modulation techniques to audio frequencies continues the trend established at hf and whf in eliminating the older mechanical modulating systems. Future developments are expected to include greater reliability and capabilities.

An increase is looked for in the amount of information which can be made available automatically by instrumentation.

Sierra Electronic Corp. is offering at Booth 2006 -08 a frequency selective voltmeter which covers a range of 2 to 350 kc . A digital multimeter shown at Booth 3610 by Adage measures dc and ac absolute voltages for missile checkout. Atlantis Electronics Corp.'s semiconductor tester, shown at Booth 4508 , will perform 12 tests in 0.6 sec on either diodes or transistors. All control functions can be remotely operated in the volt-ohmmeter which Non-Linear Systems, Inc., will show at Booth 1518-20. It is accurate to $=0.01 \%$ ± 1 digit.

Power Supplies

The continuing displacement of vacuumtube types by solid-state designs, including the increasing use of scr's and the packaging of more and more power into smaller and smaller size units seem to be outstanding developments in this category. Close regulation also demands the respect of a good segment of the manufacturers. For the future, the prediction is that the use of tunnel diodes will be explored in various types of microminiature power supplies.

The Thermador Electrical Manufacturing Co., Booth 1811, has a precision 800 -cps inverter which is regulated to $\pm 4 \mathrm{cps}$ for all changes of line, load or temperature.

WESCON is the showcase in which the electronics industry displays the harvest of its relentless self-improvement program. The engineer who wishes to freshen his point of view and increase his knowledge of recent developments will find no better investment of time than that which he will spend at the show. - -

easily interchangeable PLUG-IN UNITS which drive the crt deflection plates directly.
which house approximately $2 / 3$ of the circuitry.
which contain minimum components and controls

The Type RM561 bolls directly to a standard nineteen-inch rack, and requires only seven inches of rack height. separately-with or without tilt locks.

TYPERM 561 INDICATOR \$450
5 -inch rectangular cathode-ray tube 3.5 kilovolts accelerating potential $\bullet 8$ by 10 centimeter viewing area $\cdot z$-axis input 6 calibrated square wave volt. ages available-ranging from 1 millivolt age thru separate regulator circuitry

Regulated dc supply operates between 105 to 125 volts or 210 to 250 volts, 50 to 60 cycles . . . provides 85 watts for powering all present and future plug-in units

See this Tektronix Oscilloscope al WESCON-Booth 1726-1728, 1823 .

AVAILABLE NOW Plug-in units piesently available include

	Type 87 Tima-Base Unit Sweed rates- 21 calibrated steps from 1μ sec cm to 5 sec cm, accurate within 3%.
--Ease Unit 3135	Magnilier-5x.
Sweep rate -5 ms cm , calibrated. Magniliet-Variable. uncalibrated. Hom ix to 20X Triggeting-Automatic or Iree-fun.	Triggering-Amplitude-level selection, sutomatic. or tree-run, ac-coupled or dc-coupled, rising or falling slope, internal source. external source, or line liequency.
Type 59 Easic Amplitier 350	nal Inout is Sweep Amplilier-l v/cm sensiti
	Typen 7 Duab-rrace Unit
	Identical Channela- 5 operating modes: allernale oweeps.
Maximum Input Vollage-600 volts.	chopped, Channol A only (may be inverted). Channel a only, both channels combined at outpul ($B \pm A$).
Type 60 1-mc Amplifier 300.30	Passband-de to 650 kc .
Sensitivily -50 mv cm to 50 cm , calibrated decade-step attenuator (4 steps), with variable control.	Sensitivity- $\mathbf{1 0} \mathrm{mv}$ cm to $20 \mathrm{r} \mathrm{cm} \ln 11$ calibrated ateps. with variable control.
Type st Differentiat Unit sizs	Type 73 wide-Band Unit sits
Difterential input, 50-40-1 reiection ratio st matimum	Passband-dc le 4 mc .
Esband-dc 10.300 kc	Sensitivity-s0 mv'cm to 20
Sensitivity -1 mv cm to 20 rcm in 14 callibrated steps.	with veriable control.
with variable control.	Riselime-approtimatoly as nanoseconde.
10r, latch.	anet overiay . ., for constructing you

AVAILABLE SOON

Plug-in units under development include those for pulsesampling, four-trace work, high-gain measurements, strain gage and other transducer applications.

For a demonstration, please call your Tektronix Field Engineer.
Tektronix. Inc. p o. box 500-beaverton. oregon / mirchell \&-0161-TWX-bEAV 3II.CAble tektaonix

 TEKTMOMIX emeimectaime aEpars

NEW PRODUCTS

Featuring those to be displayed at WESCON

Covering all new products generally specified by engineers designing electronic origina equipment. Use the Reader-Service Card for more information on any product. Merely circle number corresponding to that appearing at the top of each description.

Electro-Optical Potentiometer Offers Frictionless Pick-Off

Virtually unlimited life is claimed for the Betapot electro-optical potentiometer. Frictionless, torqueless operation makes the device ideal for gyro systems requiring negligible drift. Resolution is infinite, contact noise absent. Photoconductive material used for the resistance element is CdS or CdSe, with light-to-dark conductivity ratios ranging from 10^{n} to $10^{n}: 1$.

Duncan Electronics, Inc., Dept. ED, 2865 Fairview Road, Costa Mesa, Calif
P\&A: Less than 100: samples, Sept. 1961
See at Show Booth 808.

Switching Time Tester
 Provides Scope Readout

Automatic switching time test set model 205 covers times of 1 nsec to $1 \mu \mathrm{sec}$. An oscilloscope is provided for ease in setup and for observing switching waveform. Bandwidth is 800 mc. Go, no-go lights are incorporated for rapid checking. Test circuit uses rf connectors for best transmission of fast pulses.

Wiltron Co., Dept. ED, 717 Loma Verde Ave. Palo Alto, Calif.
P\&A: $\$ 3,800$: 7 ureeks
See at Show Booth 1212

Frequency Comparator 258 For Process Control

Solid-state frequency comparator type $35-2001$ is used in process systems where the parameter to be controlled can be expressed as a frequency. Input frequency range is 1 to $50,000 \mathrm{cps}$. Parameters such as rpm, flow rate. temperature, pressure, force, and acceleration can be accommodated. Output signal can be used to drive a control device.
Daystrom-Wiancko Engineering Co., Dept. ED, 255 N. Halstead, Pasadena, Calif.
P\&A: \$755: 8 weeks.
See at Show Booth 2911.

The "space saver" of Tantalytic* Capacitors

Because it packs the most uf into the smallest package, the General Electric 62F510 Porous Anode Tantalytic Capacitor frees up valuable circuit space. It's the smallest ($.075^{\prime \prime} \times .250^{\prime \prime}$), lightest (15 grams) 85C tantalum capacitor.

Though small, it provides more V-uf than larger units. In fact, it has almost four times greater volumetric efficiency than the smallest solid type.

- Reg. Trade-mark ol General Electric Co.

But it offers superior reliability because of these special features:

1. Non-acid electrolyte. No free liquids are used. "Gel" electrolyte eliminates acid-attack problems.
2. Poper spacer between case and anode prevents impurity migration and scintillation at the anode.
3. Re-healing capability contributes to long life in rugged applications includ-
ing high ripple and low impedance. And it's used at full-rated voltage at 85 C ! Yet, this G-E unit is lower in price than other tantalum types, and the low price includes insulated sleeving.
Ask your G-E Sales Engineer about the five case sizes rated from 60 V (2.5uf) to 6 V (325uf). Or write for bulletin GEA-7008 to General Electric Co., Schenectady, N. Y. Capacitor Dept., Irmo, S. C.

Progress Is Our Most Important Product

General Electric also offers these reliable Tanfalytic capacitors

NEW PRODUCTS

AT WESCON

Automatic Welding System
Is Tape-Programed
Made for work-station use, automatic welding system PAWS-1 provides tape-programed or manual sequencing of up to 10 weld conditions, with pre-determined force and energy value. Electrode force is adjustable from 4 oz to 15 lb , energy up to 80 w -sec. Housed in a movable console, the system operates from 115 v ac

Weldmatic Div./Unitek Corp., Dept. ED, 950 Royal Oaks Drive, Monrovia, Calif.
P\&A: $\$ 4,750 ; 90$ days.
See at Show Booth 1808-10.

NPN Epitaxial Transistor

348 Operates Beyond 600 MC

Silicon npn epitaxial mesa transistor 2N707A is said to offer a 60% improvement in gain-bandwidth product over existing types. Collector-base voltage rating is 70 v , power dissipation 1 w . Capable of oscillating at frequencies in excess of 600 mc the device is intended for whf oscillator and Class C amplifier applications. Collector saturation voltage is $0.18 \mathrm{\vartheta}$, collector capacitance 4 pf.
Motorola Semiconductor Products Inc., Technical Information Center, Dept. ED, 5005 E. McDowell Road, Phoenix 8, Ariz.
P\&A: $\$ 15$ ea, 100 to 999; stock.
See at Show Booth 914-16.

DC Power Supply
 Has Dual Outputs

Transistor de power supply model TQ35-2 has dual output voltages continuously variable from 0 to 35 v dc, 0 to 2 amp , each side. Each is independent: outputs may be added to give a range of 0 to 75 v at 2 amp . Regulation is held to 7 mv per 10% line change, and 7 mv no-load to full-load. Ripple is less than $500 \mu \mathrm{v}$ rms. Two ammeter and one voltmeter which may be switched to either output are mounted on the 5-1/4 in. panel.
U'niversal Electronics Co., Dept. ED, 1720 22nd St., Santa Monica, Calif.
Price: $\$ 575$.
See at Show Booth 807.

PUTTING MAGNETICS TO WORK

How to shrink a filter!

Magnetics Inc. "120" solves the problem of core size vs. inductance in miniaturized circuits

Trying to squeeze high core inductance into a small space for use in miniaturized resonance, filter, audio, or carrier frequency circuits usually ends in a compromise. You either force more out of al smaller core, or you use a larger one. Not so, however, if you're familiar with the Magnetics Inc. " 120 ."
This molybdenum permalloy core has a . 655 inch outer diameter-is just between the .500 and the .800 inch core you may be using. What makes this little fellow unique is its inductance per 1,000 turns . . . higher than either of its neighbors, whether 60,125 or 160 permeabilities.
Note, too, that like all Magnetics Inc. powder cores, the " 120 " is performance-proved and rated within realistic
inductance limits. All permeabilities are available from stock now. What's more, the 125 permeability core is incluctance stabilized within $\pm 0.1 \%$ from 0° to $55^{\circ} \mathrm{C}$.
More information on this and other cores in the Magnetics Inc. line is contained in design bulletin PC-203 R. It's yours by writing Magnetics Inc., Department ED-9I, Butler, Pertusylvania.

See Ma-notles Inc., Dooth 1915 at WESCON CIMCLE 54 ON READER-SERVICE CARD

Tape Recorder

Concentric reel instrumentation tape recorder model M-101 has a dual-differential capstan drive system. Transport handles standard $10-$ $1 / 2 \mathrm{in}$. NAB and precision reels with the option of $1 / 4-1 / 2$-, or $1-\mathrm{in}$. tape. Tape speeds up to 60 ips are available. Typical wow and flutter is 0.1% rms at 15 ips . Made for rack mounting. unit measures $19 \times 12-1 / 4 \times 14-1 / 2$ in

American Concertone, Inc., Dept. ED, 9449 W. Jefferson Blvd., Culver City, Calif.

See at Show Booth 121.

Commutation Switch

Handling 180 channels of information with a plate $1-3 / 4 \mathrm{in}$. in diameter, this switch can be operated up to 1.800 rpm . Unit is designed for telemetry applications in adverse environments. Contacts are gold plated. Noise level is less than 1 mv when $5-\mathrm{v}$ signals are switched into a 150 -ohm load.

Mycalex Corp., Dept. ED, 125 Clifton Blvd. Clifton, N. J.

See at Show Booth 902-04.

Four-Element Meter

Four independent inputs are measured by this meter for readout or comparison. Called the Quad-Indicator, the instrument can be supplied with or without lighting. Self-shielded, coaxial movements are as sensitive as 100μ a. Rectangular, panel-mounted unit measures $3 \times$ $2.75 \times 3.25 \mathrm{in}$.

Minneapolis-Honeywell Regulator Co., Precision Meter Div., Dept. ED, Grenier Field, Manchester, N. H.
Availability: made to order only.
See at Show Booth 3501-07.

Electro-Optical Components

Printed-circuit mounting electro-optical components, known as Raysistors, measure 1.94 x 0.37×0.40 in. types CK1101P and CK1111P switch 300 and 60 v with closed-circuit resistances of 13 and 0.6 K respectively. Types CK11.02P through CK1112P serve as variable resistances, and have control voltages up to 10 v .
Raytheon Co., Industrial Components Div., Dept. ED, 55 Chapel St., Newton 58, Mass. PRA: $\$ 7.35$ for 25 to 100; from stock.
See at Show Booth 3404-22.

Conductive Molding Compound

601
Thermosetting plastic material called Diall 1610 is a conductive molding compound with electrical resistance less than $1 / 2$ ohm per cm . The material can be electroplated. The compound is available in granular form for compression or transfer molding at 500 to 2,000 psi. Cure time is 2 min .
Mesa Plastics Co., Dept. ED, 12270 Nebraska Ave., Los Angeles 25, Calif.
See at Show Booth 5021 .

Oscilloscope Camera

Interchangeable camera backs and lenses permit recording of oscilloscope traces on Polaroid or standard films, in sizes from $4 \times 5 \mathrm{in}$. to 35 mm , with object-to-image ratio ranges from $1: 1$ to $1: 0.222$. Sliding back with detented lock enables spaced multiple exposures per frame. Synchro shutters allow remote arming of scopes for single sweeps.
Allen B. DuMont Laboratories, Dept. ED, 750 Bloomfield Ave., Clifton, N. J.
See at Show Booth 1614-20.

Transmitter Converter

Range is 2,200 to $2,300 \mathrm{mc}$. Type 1090 transmitter converter provides an output of 9 w when driven by a standard telemetry transmitter having a range of 215 to 260 mc . Gain is unity with up to 6 w into 50 ohms at 500 v dc or 2 db with up to 9 w into 50 ohms at $1,000 \mathrm{v}$ dc.

American Bosch Arma Corp., Tele-Dynamics Div., Dept. ED, 5000 Parkside Ave., Philadelphia, Pa .
Availability: in samples.
See at Show Booth 4126-28.

Portable Electrocardiograph

515
Self-contained portable electrocardiograph called Cardioview is enclosed by a leather carrying case which contains all accessories. The unit is powered by a rechargeable battery. Chart speeds are 5,25 , and 50 mm per sec. A hotstylus pen volatises wax-paper surface to produce a dark black line. Amplifier, transistorized, has a response of dc to $60 \mathrm{cps}, \pm 3 \mathrm{db}$. Carrying case measures $9-3 / 4 \times 4-1 / 2 \times 7 \mathrm{in}$.

New Electronic Products Lid.. MinneapolisHoneywell Regulator Co., Dept. ED, 2747 Fourth Ave., South, Minneapolis 8, Minn.
See at Show Booth 3:01-07.

Precision Fluxmeter

Accurate within 10 ppm. Fluxmeter model 611, with readout and remote control provision, can measure fields with an accuracy to 1 part in 10. Four standard probes cover the 500 - to 30,000 -gauss range. The instrument can be used as a control unit to regulate a magnetic field. Fie!ds need not be homogeneous for measuresent. Special probes are available.
The J. C. Carter Co., Dept. ED, 671 W. 17th St., Costa Mesa, Calif.

See at Show Bonth 111.
Continued on Galley 373

Dynamic evaluation of silicon-controlled rectifiers is provided by the model OA-1 test set. Instrument measures forward breakover voltage and gate current to fire at any anode voltage. forward and reverse leakage current, voltage drop and holding current. Power supplies have limiting load resistors, and are rated to 600 v , 10 amp .
Baird-Atomic, Inc., Dept. ED, 33 L゙niversity Road. Cambridge 38. Mass.
Arailability: from stock in October
See at Show Booth 3i20-22.

Digital Oscilloscope

600
Automatic digital oscilloscope model 51000 has all-solid-state circuitry and 10 -me vertical bandwidth. Sweep speed, vertical sensitivity, positioning, and triggering are automatic. Vertical sensitivity and horizontal sweep speed are indicated digitally on Nixie readouts. De positioning is calibrated. with offset displayed on disital readout. U'nit measures $8-3 / 4 \times 14 \times$ 22-1/2 in.
California Instruments Corn., Dept. ED, 3511 Midway Drive, San Diego, Calif.
P\&A: about $\$ 1.500$; from stock on October
See at Show Booth $4+12$.
Spectrum Analyzer

Continuous, real-time spectrum and analyzer makes simultaneous, multi-channel graphic recording of all relative amplitudes and fre quencies in any bandwidth. Recording electrode is on a loop. Bandwidths are 3 to 450 срs Paper advance rates are 1 ft per hr to 1 ft per sec.

Alden Electronic \& Impulse Recording Equip ment Co., Inc., Dept. ED, Westboro, Mass.
See at Show Booth 4314 .

New \qquad model NC-1 performs transistor tests up to 50 amps at 750 watts peak power!

Here s the only direct reading, variable duty cycle test set for non-destructive measure ment of medium 3nd high powar transisturn The B A Model NC-1 applies suitable pulse arive signals to the transistor under test and then peak detects the resulting current pulses so they have the same measuring value as steady state DC. Because the average pulse signal poweris considerably lowerthan that of steady state DC. less stress is put on the tran sistor This permits power tests to be made al a level many times that of rated dissipation

- Minimizes heat sink requirements.
- Under optimum conditions, requires only b/10ths of 1% of the input power used in conventional DC current reats
- Permite 750 watts max. power with max current of 50 A or max voltage of 250 V
- Provides DC meter readings of V_{n}. I_{n}, V., and I. common emitter configuration under pulse conditions.
- Measures leakage and breakdown currents by standard DC technıques
- Evaluates awitching capabilities of device uader dynamic conditions.
- Pulsed breakdown measurements at low duty cycle with simple external hook. up.
Write today for additional information and name of your nearby Baird•Atomic repre sentative.
Engineers and scientista: Investigate challene ing opportunities with Baird-Atomic. Write Indusrial Relarions Director. All qualified applicants will kard ro race, creed, color or national orikin.
$7 E$ GAIRD-ATOMIC,INC.
33 University Road Cambridge 38. Mass.

Four views of the versatile new Torsion Auto-Shift Table and the heart of its exclusive new design principle.

Efficient, Convenient, Contemporary . . . New Torsion Auto-Shift Table

Advanced design-A searching look will tell anyone who uses a drafting table that this is the equipment he'd create, given the time.

As any designer knows, simplicity is often difficult to achieve, and the appearance of simplicity even more difficult. Both are found in exclusive features of the new Hamilton Torsion Auto-Shift.

Tailored to the user-Unlike other designs, this is engineered, functional equipment for drafting, not just a drawing board slung on four legs or hung on a modified office desk. It is designed without compromise to promote greatest efficiency by adapting to the work habits and convenience of the individual using it. Its special characteristics will speed drafting substantially over conventional equipment in a one-man or one hun-dred-man department.

Unique features - The Hamilton Torsion Auto-Shift will counter-balance, regardless of table angle or weight of board accessories. It is attached and pivots at only two points-atop twin elevating columns, easily raised or lowered by foot pressure through a $12^{\prime \prime}$ vertical
range. Operating and adjusting mechanisms are readily accessiblewithout the need for bulging sheet metal covers or protruding hardware.

Stratacore ${ }^{\text {® }}$ board - Further features include the new Stratacore drawing board . . a light weight, linoleum-surfaced top of remarkable strength and stability. Slide-type reference surface can be used from front or rear. All drawers are reversible for use from one side or the other. Tool and catalog drawers may be installed at left or right, or on both ends.

Clearly, the new Hamilton Torsion Auto-Shift now offers even greater dividends for long-term investment in space economies, increased drafting output and improved user comfort.

Ask your Post dealer for full details, layout aids and planning assistance to put this prestige drafting furniture in your near future. Or, write Frederick Post Company, 3644 No. Avondale Ave., Chicago 18, IIl.

SENSITIZED PAPEES \& CIOIMS - PRACING \& DRAWING MEDIUNS - DRANING INSTRUMENTS \& SLIDE RUIES EINGINEEDING EQUIPMENT \& DRAFTING SUPPIIES - FIEID EOUIPMENP \& DAFTING FURNITURE

NEW PRODUCTS at wescon

Ceramic Capacitor

710
From 0.05 to 0.15μ capacitances are available in this line of ceramic capacitors. Maximum working voltage is 600 v dc. Units are $1 / 2$ in . in diameter and 1 to 2.2 in . long.

Dale Electronics, Inc., Dept. ED, Columbus, Neb.
Availability: made to order only.
See at Show Booth 2112 and 2123.

Flexible Printed Circuits

Mounted on Teflon FEP. these flexible printed circuits are electrically insulated and protected from moisture and gases. Circuits, etched copper sandwiched between two layers of the plastic, can be bent or twisted without disturbing the conductors. Temperature range is -122 to +400 F .

Garlock Electronic Products, Dept. ED, Camden 1. N. J.

See at Show Booth 1118.

Wire Cutting Pliers

570
For subassembly work. Type 265-5 wire-cutting pliers loop and twist as well as cut fine solid or stranded wire, eliminating the need for several tools. Tips are designed to grip without scratching and can be used to attach connections in confined areas.

Kelsey-Hayes Co., U'tica Drop Forge \& Tool Div., Dept. ED, U'tica 4, N. Y.

P\&A: \$4.85; stock.
See at Show Booth 5031.

Program Relay

706
Requires 0.05 u-sec for pulse operation or 2 w for conventional actuation. Series 1450 program relay is a 5 -pole, 12 -position switch for sequential control of computer, machine tool or TV remote or supervisory circuits. Speed is 10 msec for a $0.055-\mathrm{w}$-sec pulse.

Cornell-Dubilier Electronics, Dept. ED, Fuquay Springs, N. C.

See at Show Booth 3405-09.

Resolvers and Pancakes

704
High-accuracy resolvers and pancakes are manufactured with stainless-steel ball bearings and housings. Laminations material is nickel iron. The units are for use in ballistic-missile guidance control systems.

Daystrom Inc., Transicoil Div., Dept. ED, Worchester, Pa.
Availability: 75 to 90 days.

See at Show Booth 2915.

CUSTOM SERVICE FROM

CAPS offer you custom service Cannon Plugs assembled to your order at locations near you. CAPS carry the most extensive and complete line of plugs in the industry. specials as well as standards. Available for fast delivery at factory prices. Call your nearest CAPS for more information:

Atlanta, Georgia
ELECTRO AIR CORPORATION
Chicago, illinuis
UNITED AIRCRAFT SUPPLY CORP
Dallas. Texas
текко. INC.
Denver. Colorado
KIMBALL ELECTRONICS
Great Neck, LI., New York
time electronic sales
Ingle wood, California LIBERTY ELECTRONICS

Mineola, L.I., New York SCHWEBER ELECTRONICS

North Hollywood, California
RICHEY ELECTRONICS
Philadelphia, Pennsylvanıa AERCON, INC

South Bend, Indiana
RADIO DISTRIBUTING CO

CIRCLE OE ON READER-SERVICE CARD

Quick disconnect plugs for aircraft, missiles, and all applications requiring miniature plugs. Our standard solder-pot versions, including hermetic seals, are completely interchangeable with all bayonet-lock plugs designed to MIL-C-264821

Solder pot version now available from Cannon CAPS Distributors

> ALSO KPT/KSP PLUGS WITH CRIMP SNAP-IN CONTACTS AND TWO SHORE INSULATOR.

> CPIMP SNAP IL CONTCTS

Two shore resilient insulators molded out of two different hardness materials (polychloroprene) into a homogenous piece. The rear portion of the insulator is the softer in order that the conductors can be sealed properly, and the front portion is the harder to retain the snap-in contacts. The two shore insulator insures a continuous moisture and pressure
seal from front to back to provide superior electrical performance at high altitudes. This method of sealing and contact retention offers the industry a most reliable crimp series meet. ing the requirements of MIL.C-26482. Write for catalog KPT/KSP- 1 to:

CANHON ©. PLUGS

CANNON ELECTRIC COMPANY, 3208 Humboldt St., Los Angeles 31, Calif. CIRCLE 99 ON READER-SERVICE CARD

NEW PRODUCTS

at wescon
Fan 709

Moves 100 cu ft of air per min under free delivery conditions. Called the Gold Seal Muffin Fan. the fan has an aerodynamically designed grille which has a low noise level and does not collect dust. Skeleton, venturi, grilled, or filtered styles are available.
Rotron Manufacturing Co., Dept. ED, Woodstock, N. Y

See at Show Booth 3006-08.

Diallyl Phthalates

599
Flame-resistant Diall FS-80 is a diallyl meta-phthalate filled with $1 / 2-\mathrm{in}$. glass fibers. Type FS-10 is supplied in granular form. Type FS-60, a diallyl orthophthalate, is asbestos-filled and in granular form. providing high flame and heat resistance, but does not survive heavy loads or stresses. Type $50-52$ is dacron-filled, providing high impact strength

Mesa Plastics Corp., Dept. ED, 13370 Nebraska Ave., Los Angeles 25, Calif.
Availability: from stoch:
See at Show Booth 5021.
Straight Variable
Delay Line

Kange is 0.2 to $1 \mu \mathrm{sec}$. Designed to meet MIL-STD 202 environmental specs, the straight variable delay line has an impedance range of 500 to 1,000 ohms. Units with special characteristics can be made on order.

PCA Electronics, Inc., Dept. ED, 16799 Schoenborn St., Sepulveda, Calif.
P\&A: 895; \& weeks.
See at Show Booth 1423.

The new CLARE Type LF, magnetic latching subminiature relay offers designers simplified circuitry in small space by providing latching effect without transistors. Magnetic latching results in power economy.

The Type LF is available with either 2-coil or 1-coil configuration. The 2-coil relay allows complete control of the latching operation within the relay and provides an extremely compact operating unit. The 1-coil relay is somewhat more sensitive; it is adaptable to existing circuits where outside control is provided. (See opposite page for specifications and circuit diagrams.) The Type LF provides the same wide range of mounting arrangements and terminals as the CLARE Type F relay.

FOR NON-LATCHINQ

CLARE Type F Subminiature Crystal Can Relay The CLaRE Type F rolay is oxrcemely tast and more than moderately sensitive. It is buift to whthstand temperature extremes, heavy shock and extreme vibration. perature extremes, heavy shock and extreme vibration.
Contacts, ratind it 3 amperes, are excellent for low-lovel Contacts, ratied int 3 amperes, are excelient for low

For coll and mounting data on CLARE Type LF relay send for CPC-12. Address: C. P. Clare \& Co., 3101 Pratt Blud., Chicago 45, Illinois. In Canada: C. P. Clare Canada Lid., 840 Caledonia Road, Toronto 19, Ontario. Cable Address: CLARELAY.
C. P. CLARE \& CO. Relays and related control components

Model HFL-2500 linear amplifier, has continuously variable tuning between 2 and 30 mc . Unit, including self-contained power supply, measures 60×24 x 24 in. and operates continuously at 10.000 ft . Signal modes A1, A2, A3, SSB, ISB. and TSB can be accommodated.
Gates Radio Co. Dept. ED, Quincy, Ill.
See at Show Booth 514 .

Magnetic Shield

For use with a crt, this magnetic shield can be furnished in sizes from 5 to 21 in . to fit tubes of various shapes and sizes. It is basically a thin laminar metallic enclosure to provide protection from nearby magnetic fields and other spurious electromagnetic influences.

General Dynamics/Electronics Information Technology Div., Dept. ED, P. O. Box 2449, San Diego 12. Calif.

See at Show Booth 201-03.

Synchro Resolver

Size 11 synchro resolver has a built-in dual buffer amplifier to stabilize resolver operations. This arrangement improves signal-tonoise ratio and eliminates the need for chassis mounting of electronics.
General Precision, Inc., Kearfott Div., Dept. ED, 1150 McBride Ave., Little Falls, N. J.

See at Show Booth 3309-21.

This exceptionally small, lightweight single-phase static inverter supplies accurate 400 cycle power to rate gyros and maintains it precisely throughout the entire temperature and environment range. For telemetry and guidance systems, the inverter offers the outstanding features of low distortion - less than 4\%; an efficiency of more than 55% at full load; operation into variable power factor loads; non-dissipative regulation for greater dependability; lightweight - only $13 / 4$ pounds; small size - 20 -cubic-inch volume. Designed, developed and produced by Temco Electronics, this rate gyro inverter is a solid state, off-theshelf unit that meets or exceeds all applicable portions of MIL-E-5272. We invite your inquiries on this unit, as well as for information on higher power units also available.

NEW PRODUCTS at wescon

Nonlinear-Potentiometer Tester 722

Tape-programed conformity-tester measures deviation of nonlinear potentiometers from theoretical values. Potentiometer resistance is measured at 5 -deg shaft increments, the measured value is compared to a predetermined resistance, and error up to 1% is indicated on a panel meter. Dual-channel oscillograph output is also provided.

Jonathon Electronics Corp., Dept. ED. 720 E. Walnut St., Fullerton, Calif.

See at Show Booth 4830.

Character Generator 715

High-speed character generator, model TD549, can display over a million words per minute in any alphabet. Output is 100,000 characters per sec. There are 64 plug-in characters and codes available. Display is on a cathode ray tube face.

Transdata, Inc., Dept. ED, P. O. Box 1369, San Diego 12, Calif.
P\&A: $\$ 8,860$; 30 days.
See at Show Booth 114 .

Cleaning Device

574
For semiconductors, switches, relays and other components, model RT-S-8-6 cleaning device processes up to 600 units per hr. An atomized spray of solvent is combined with filtered steam. The turntable indexes automatically.

Cobehn, Inc., Dept. ED, 226 Passaic Ave., Caldwell, N. Y.
P\&A: about $\$ 5,750$; made to order.
See at Show Booth 4824.

Chassis Fixture
 573

Rotates, positions and transports electronic chassis for assembly, test and servicing. The TD model A chassis fixture has adjustable spindle height, eight-point clamping and nylon glides. It can be adapted for a wide range of chassis sizes.

Technical Devices Co., Dept. ED, 11242 Playa Court, Culver City, Calif.

See at Show Booth 4802.

Size 5 Synchros

For 400 -cps use. These size 5 synchros are housed in stainless-steel cases $1 / 2 \mathrm{in}$. in diameter. They meet all applicable requirements of MIL-E-5272. Operating temperature range is -55 to +95 C . Excitation voltage is 10.2 v .

Daystrom, Inc., Transicoil Div., Dept. ED, Worchester, Pa.
Availability: 75 to 90 days.

See at Show Booth 2915.

With rariable speeds. Model 612 semiconductor slicer has a cross-feed index within $=0.0001$. It is driven by a de motor and controlled by full-wave rectified ac with dc ripples filtered in an lc circuit. The ac supply is regulated with a voltage-regulator transformer.

Reid Brothers Co., Inc., Dept. ED, 140 Elliott St., Beverly, Mass.
See at Show Booth 440.5

Cathode-Ray Tubes

610
Space-saving crt type K 1988 has electrostatic focus and magnetic deflection with grid drive of 10 to 20 v . Type K1813 has a 7 -in. diameter flat face and multigun spiral accelerator. Highsensitivity crt type 3BFP has high deflection sensitivity at full scan. Flat face size is 3 in . Allen B. DuMont Laboratories, Dept. ED, 750 Bloomfield Ave., Clifton. N. J.

See at Show Booth 1614-20.

Delay Line

607
Miniature delay line, model 37-34, has better than 35 to 1 delay to rise time ratio and an attenuation of 2 db . Unit operates from -55 to +125 C . The case occupies $3-1 / 2 \mathrm{cu}$ in.

ESC Electronics Corp., Dept. ED. 534 Bergen Blvd., Palisades Park. N. J.

See at Show Booth 2609.

Transistor Retainer

Heat is dissipated from TO18-packaged transistors by the type TXBP-018-28 retainer. Device accommodates transistor cases from 0.175 to 0.19 in . in diameter. Retainer is pressed onto transistor, and does not damage case.

International Electronic Research Corp., Dept. ED, 135 W. Magnolia Blvd., Burbank, Calif.
P\&A: $\$ 1.05$ to \$0.50; from stock.
See at Show Booth 1501.05.
ELECTRONIC DESIGN • August 2, 1961

CORDLESS PATCHBOARDING CUTS COSTS, SIMPLIFIES OPERATIONS, SAVES SPACE, EXTENDS VERSATILITY OF SYSTEMS

As every electronics engineer knows, programming and switching capabilities determine the parameters of a system or a piece of equipment. Until recently, field programming was an expensive, cumbersome and involved affair employing a confusing array of patchcords and plugs. Switching multiple functions in various combinations required expensive, and very limited multi-point switches.
A year ago, the Sealectro Corporation introduced the Sealectoboard. This device, so simple in concept, yet so functional to the design and operation of electronic systems, is now used by manufacturers of a wide range of equipment. Its dependability, versatility and performance has been proved beyond the doubts of the most critical users.

The Sealectoboard offers a degree of versatility beyond that at any other switching device. It permits the interpositioning of components; the switching of functions in parallel or series operations; the interposing of associated circuitry at any point; test equipment analysis of any point in the system.

All these functions are carried out in minimum space. Function points are laid out in $.250^{\prime \prime}$ matrix, providing 16 points in a square inch of panel area.

In operation, any function through the Sealectoboard may be actuated by merely pushing a pin in at the desired X - and Y-axis coordinate point. There is no cord clutter, no polarization dual plugs. The Sealectoboard automatically makes the desired circuit connections upon insertion of the single pin.

If you use multi-point switching, component interposing, programming in the field, or any of a host of other functions, it will pay you to investigate the Sealectoboard.

Cross-sectional view of Sealectoboard. Two rows of contacts are run at 90° angles permitting interconnections and interposing associated circuitry at any coordinate. Beryllium copper, silver plated, or gold plated upon special order, provide contacts of low resistance. long life.

Sealectoboards can be made up in any configuration, to best fit the customer's requirements. Panel coding is available according to application needs. Sealectoboard is Patent Pending.

Standard Sealectoboard design incorporates contacts bussed together in each X - and Y point. Sealectoboards are also available with each contact point on the bottom deck brought out individually for specialized applications. Special designs may be made up bussing pairs, or any specified number of points on the bottom deck. The application possibilities of these various designs are virtually unlimited.

Pins are either of the straight shorting design connecting the two contact decks, or insulated coaxial design which brings both contacts out through the handle of the pin. These are used as component holders, or test lead pins.

WRIIE FOR

cOMPLETE
detalls...

british branchi surrey, enolano

NEW PRODUCTS at wescon

Telemetry Modules

Welded into their circuits, the Weld-Stick series telemetry modules are made for missile applications. Units are said to withstand more severe temperature, shock, and vibration environments than soldered printed-circuit boards.

Lockheed Aircraft Corp., Missiles and Space Div., Dept. ED, Sunnyvale, Calif.

Availability: from stock in September
See at Show Booth 2711-15.

Photosensitive Devices

Ten-stage photomultiplier tube 7860 is $3 / 4$ in . in diameter and $3-7 / 8 \mathrm{in}$. long. Fourteenstage type 6810 A has fast transient time and high gain. Ten-stage, tri-alkali tube type K1927, with S20 response, has photocathode with high luminous sensitivity and low thermionic dark current. Image dissector type K2035, 5 in. in diameter, can observe events as short as 10^{-7} Response is S 11 .
Allen B. DuMont Laboratories, Dept. ED, 750 Bloomfield Ave., Clifton, N. J.

See at Show Dooth 1614-20.

Air Dryer

Handling from 500 to $16,000 \mathrm{cu}$ ft per $\mathbf{h r}$, the series MS-RD dryers recirculate air or gas through dessicant beds. Dew points of -100 F are obtained. Units weigh from 460 to 3.250 lb and have blowers of $3 / 4$ to 7.5 hp .
C. I. Hayes, Inc., Dept. ED, 800 Wellington Ave., Cranston 10, R. I.

See at Show Booth 5030 .

largest selection of adjustment potentiometers...

More engineers specify Trimpot because:
Trimpot line is complete
Bourns offers you the largest selection of leadscrew actuated potentiometers.. 23 basic models-4 terminal types - three mounting methods.

Trimpot is small
Space saving size and rectangular shape permit the installation of 12 to 17 units in one square inch of panel area.
Trimpot is accurate
Multi-furn screwdriver adjustment provides up to 9000° of rotation...you can make and repeat the finest adjustments.

Trimpot is stable
Adjustment shaft is self-locking...set tings are virtually immune to severe acceleration, vibration and shock.

Trimpot is fully tested
All instruments are 100% inspected before shipment to assure you of reliable performance.

Trimpot ${ }^{\circ}$

Trimpot is proved
It is used in more military and commercial equipment than any other leadscrew actuated potentiometer

Only Trimpot potentiometers give you all of these outstanding features
$\begin{array}{ll}\text { TERMIMATION-Alloyed with multiple turns of the resist- } & \text { ELEMENT-Special metal mandrel is } \\ \text { ance wire, the exclusive Bourns Silverweldo termination is } & \text { precision wound with low-tempera- }\end{array}$ virtually indestructible under thermal or mechanical stress.

CLUTCH ASSEMBLY-Exclusive clutch design and positive stop at ends of wiper trevel prevent internal mechan icsil damase.

60DY-High-temperature, thermosetting plastic body is sealed enabling potentiometer to meet Mil Specs for mumidity, send, dust, fungus, salt spray, etc.
ture-coefficient resistance wire.

WIPER PICK-OFF - Spring pick-of provides positive electrical conprovides positive electrical contiometer performance, reliability.
"O" PIMCS Two hish emperature silicone ubber " 0 " rings pro vide effective double seal against humidity.

ADJUSTMENT SCREWStainloss steel lead screw accommodates tandard screwdrive moets military requi ments for salt spray.

This eutamey of Model 3250 is typical of the design of all Bourns Irimpot potentiometers though some fertures may vary from model to model.

Potentiometers

General.Purpose Wirewound Trimpot-Model General. Purpose Wirewound Trimpot-Model
200 Operstes at $105{ }^{\circ} \mathrm{C}$, L. S. Storminals
025 watt 10 ohms to 100 K . Available as a rheostat. Model 201.

Mumidity Proof Wirewound Trimpot - Model
 0.8 watt 10.10
for humidity.

General-Purpose Resistond Carbon Trimpot-
Model 215 Operates $1255^{\circ} \mathrm{C} / \mathrm{L}$. S. Pitermi-
nals $/ 0.25$ watt $/ 20 \mathrm{~K}$ to 1 Meg .

Subministure Wirewound Trimpot-Model 220 Operates at $175^{\circ} \mathrm{C}$ / L. W iterminals / 1 wati,
100 ohms to 30 K . Meots Mil Specs for humidity.

General. Purpose Resiston Carbon Humidity Proof Trimpoi-w L S. Pitminals 0.25 watt / 20 K to 1 Mes. Meets Mil Specs for humidity.

Subminiature Migh Temperature Wirowound Trimpot - Model 3000 , Ogerates at $175^{\circ} \mathrm{C}$, to 20 K . Resiston carbon version gyailable.

Write for detailed specifications and list of stocking distributors.

Low.Cost Commercial Wirewound E-Z Trim(:) nals / 0.5 watt / 100 ohms to 20K. Meets steady state humidity, Available in Resiston carbon as Model 3068 / 20 K to 1 . Meg. Priced under $\$ 1$ in
production quantities.

Subminiature Mumidity.Proof Wirewound Trimpopes of P terminals / 1 watt / 100 ohms to types of P terminals / 1 watt / 100 ohms to
50 K . Meots Mil Specs for humidity.

$1 / 2^{\prime \prime}$ Wirewound Single. Turn Potentiometer -
Model 3367 . Operates at $105^{\circ} \mathrm{C} / \mathrm{P}$. S termin Model 3367 . Operates at $105^{\circ} \mathrm{C} / \mathrm{P}$, Sterminals
with panel mount collar 0.5 wati 1100 ohms
to 20k. Meets stoady state humidity.

High-Power Wirewound Trimpot - Model 3030 High-Power Wirewound Trimpot-Mode! 3030
15 watts Operates at $265^{\circ} \mathrm{C} / \mathrm{L}$ terminals
ions to 10 K .

PANEL MOUNTED UNITS - All models except 3250 are now available with panel mounting, to on the shipli" units. In addition, mounting are avallable from factory or distributor stock

Koy to terminal types:
Koy to torminal types:
$\stackrel{L}{=}$ Insulated stronded leads
$=$ Solder lugs S = Soldar lugs (linc
P $\left.\begin{array}{l}\text { bushing only) } \\ \mathbf{W}=\text { Printed circuit pins }\end{array}\right\}$ Uninsulated wires
 200500 1K 2 K 5 K 10 K 20 K 25 K (wirewound
only) 50 K 100 K 200 K 500 K 750 K 1 Mes.
Other resistances avilable on other resistances available on special order.

Program Relay

Miniaturized program relay series 1450 is a 5 -pole, 12 -position switch said to have fast. quiet operation, and high reliability in severe environmental conditions. Measuring $2 \times 2 \times$ $1-5 / 8 \mathrm{in}$. and weighing $4-1 / 2 \mathrm{oz}$, the relay operates in 10 msec max for a 0.055 -w-sec pulse. Coil ratings are 6 to $220 \mathrm{v}, 60 \mathrm{cps}$. Cornell-Dubilier Electronics, Dept. ED, Fuquay Springs, N. C.

See at Show Booth 3405-09.

RF Shielding Assembly

Ready-to-install honeycomb structure with integral rf gasketing, called Teckcell, provides cool air flow and excellent rf shielding. Also offered, Teckstik combines an rf seal with a fluid gasket for simple installation.

Technical Wire Products, Inc., Dept. ED, 129 Dermody St., Cranford, N. J.

See at Show Booth 215.

Wafer Resistors

Measuring $0.31 \times 0.31 \times 0.01 \mathrm{in}$., these wafer resistors are available with resistance values from 100 ohms to 100 K . Tolerance is 1% and power dissipated is $1 / 2-\mathrm{w}$ max. Four resistive elements can be placed in a single wafer.

Dale Electronics, Inc., Dept. ED, Columbus. Neb.
Availability: in sample quantities.
See at Show Booth 2112 and 2123.
Strain-Gage Pressure Transducer
608

High-line, low-differential strain-gage pressure transducer, model $3 S-G$, operates in corrosive media. Silicon sensing elements operate from -65 to +250 F , has combined linearity and hysteresis of $\pm \mathbf{0 . 2 5 \%}$. Ranges are $\mathbf{0 - 1 0}$ to $\mathbf{0 - 1 0 , 0 0 0}$ psid, or ± 10 to $\pm 10,000$ psid. Standard electrical outputs are $0.05,0.25$, and 5 v dc.

Fairchild Controls Corp., Dept. ED, 219 Park
Ave., Hicksville, L. I., N. Y.
See at Show Booth 820-22.

[^3]ELECTRONIC DESIGN • August 2, 1961

VERY NARROW TO VERY WIDE

 SWEEP WIDTHS*

... ALL IN ONE INSTRUMENT

NEW
 nimis SWEEP SIGNAL GENERATOR

Here's the last word in versatility and precision, the ultimate instrument for all your IF. VHF-UHF requirements. The new Jerrold 900 B offers unusual stability in sweep widths as narrow as 10 kc and as wide as 400 mc . Frequency range 500 kc to 1200 mc .
$\$ 198000$ \%.0. Philadelphia.0.
-Illuatration of scope at left ahows typical communications recaiver re epones 4 kc band width at 7 mc . Illustra ton at right showe typical distributed amplifier reeponse 2.220 mc .
${ }^{\text {- }}$ Prices and specifications subject to change without notice.

- Built-in crystal-controlled harmonic markers at 1,10 , and 100 mc intervals.
- Each marker output individually controls from front panel.
- Built-in variable-gain dc-coupled scope preamplifier with 200X gain.
- Built-in precision attenuator from zero to 50 db in 10 db steps.
- Accurately calibrated frequency dial.
- High-level metered output.

Write for complete technical data.

ELECTRONICS CORPORATION

Industrial Products Division, Dept. ITE-109
The Jerrold Building, Philadelphia 32, Pa.
Jernold Electronica (Canada) Lid., Toronto -
Export Representative: Rocke International, New York 16, N.Y.

NEW PRODUCTS at wescon

Coaxial Termination Resistors 721

For $3 / 8$ in. type N connectors, the type 5127 coaxial termination resistor assembly has a standard resistance of 50 ohms . A vswr of 1.05 is achieved from dc to 4 Gc ; with impedance matching the range can be extended to 10 Gc . Tolerances to 2% are available, and units dissipate 1 w .

Filmohm Corp., Dept. ED, 48 W. 25th St.. New York 10, N. Y Availability: from stock.

See at Show Booth 1006.

Power Wire Cutter

 572Air-activated, diagonal head wire cutter type UA-100 is for high-volume production work. Equipped with an $8-\mathrm{ft}$ air hose, it operates on existing air supplies with 90 -psi line pressure. Portable gas supply can also be used. No special valves or controls are needed.

Kelsey-Hayes Co., Utica Drop Forge \& Tool Div., Dept. ED, L'tica 4, N. Y.

P\&A: $\$ 69.50$; stock
See at Show Booth 5031.

Servo Motors

705
Size 8 servo motors eliminate the need for damping tachometers. Theoretical acceleration is 130,000 radians per sec ${ }^{-}$; no-load speed is $10,000 \mathrm{rpm}$; stall torque is 0.35 min ; maximum output power is 0.6 w .

Daystrom, Inc., Transicoil Div., Dept. ED. Worchester, Pa.
Availability: 55 to 90 days.
See at Show Booth 2915.

Power Resistors

711
From 0.05% to 3% tolerances are available for this series of power resistors. Wattage ratings are from 5 to 11 w at 25 C , and resistances range from 10 ohms to 200 K . Temperature coefficient is 20 ppm per C between -55 and - 350 C. MIL specs are met.

Dale Electronics, Inc., Dept. ED, Columbus, Neb.
Availability: made to order.
See at Show Booth 2112, 2123.

Ratio Box

Miniature ratio box model RB-521, an autotapped transformer, offers a ratio range of (0) to 1.111 at 50 to $3,000 \mathrm{cps}$ with an accuracy of 10 ppm . Device is made for calibrating resolvers, synchros, and related components in ground support equipment. Unit measures 3$3 / 16 \times 2-7 / 8 \mathrm{in}$.

North Atlantic Industries, Inc., Dept. ED, Plainview, N. Y.

See at Show Booth 2812-14.

Made for rapid ejestion, these spring-action printed-circuit-board fasteners hold plug-in boards securely in place, but automatically eject the boards when lever arms are raised. Each board uses two fasteners.
Southco Div., South Chester Corp., Dept. ED, Lester, Pa

See \&f Show Booth 4804.

Nanosecond Pulser

605
Providing 0 to $2,000 \mathrm{v}$ amplitude, the model 961 nanosecond pulser has a repetition rate of 60 pps and an output impedance of 51 ohms. A light pulse is generated simultaneously with the electrical pulse, enabling phototure evaluation. Light output jitter is less than 4%
Menlo Park Engineering. Dept. ED, 711 Ham ilton Ave., Menlo Park, Calif.
See at Shou Booth 2111.

Sampling Plug-Ins

612
Recurrent signals with rise times to 0.35 nsec can be observed with the type 4210 plugins, made for use with the 425 oscilloscope. Sweep speeds from 0.2 nsec per cm to 10 nsec per cm in 1, 2, and 5 steps are provided.
Allen B. DuMont Laboratories, Dept. ED, 750 Bloomfield Ave., Clifton, N. J.
See at Show Booth 1614-20.
Solid-State Chopper

Miniature chopper is all transistorized, has no moving parts. Noise level at 60 cps is 100 $\mu \mathrm{s}$. Unit is encased in a standard seven-pin miniature plug assembly.

Hughes Aircraft Co., Semiconductor Div., Dept. ED, 500 Superior Ave., Newport Beach, Calif.

See at Show Booth 2421-27.

FROM TUNG-SOL...

 MIL TYPE GERMANIUM COMPUTER TRANSISTOR*Type JAN 2N526 is a PNP alloy-junction germanium transistor designed for use in small signal audio amplifiers, low to medium power amplifiers, and medium speed switching circuits. The exceptional stability of Tung-Sol 2N526 has been proved by 1,000).hour life tests.
Others in the Tung.Sol family of PNP alloy-junction ger. manium transistors are $2 \mathrm{~N} 381,2 \mathrm{~N} 382,2 \mathrm{~N} 383,2 \mathrm{~N} 460$, 2N161. 2N1:0.5, 2N1706 and 2N1:07.
Rigid quality control at Tung.Sol is your assurance of rugged long life and superior performance. Tung-Sol is a reliatle source of audio and switching transistors.
Write for complete technical details: Tung.Sol Electric Inc., Newark 1, N.J. тw: "Meets all requirements of MuLS $19500,60 \mathrm{C}$

reliability data	
An analysis of 800 life Iest sa tion (several hundred thousa	pes selected from latest produc. units) indicates the following:
1. electaical life - no catastrophic failures - no end point failures	3. $100^{\circ} \mathrm{C}$ stornoe life - no catastrophic faliurea - no end point falures
2. as"C STOMAGE LIFE - no catastrophic failures - no end point failures	4. humid life - no cataetrophic failure - I end point failare

maximum matimas		ELECTmical emanactenistics		
тve			conamion	

2×1750	200	25
2×1707	200	30

techmical assistance is available through the followimg sale OFFICES: ATLANTA, GA: COLUMBUS. OHIO: CULVER CITY. CALIF, DALLAB, TEX: DENVER, COLO.: DETROIT, MICH.: IRVINGYON, N.J.: MELROBE PARK, ILL.;
NEWARK. N. J.: PHILADELPHIA. PA.; SEATTE, WABH. IN CANADA: ABBEY NEWARK, N. J.: PHILADELPHIA.

The new Borg 3000 Series concentric-scale Microdial is a $1^{\prime \prime}$ diameter, ten-turn, precision turns-counting dial. Ideal companion units for the $7 / 8^{\prime \prime}$ Borg 2100 Series and 2440 Series Micropot ${ }^{\circ}$ potentiometers, these dials can be mounted on $11 / 4^{\prime \prime}$ centers - 40 brakeless models would fit conveniently on this page! of The 3000 Microdial offers the instrument designer functional color-keying versatility and distinctive panel enrichment. Five brake knob colors and three combinations of numeral and background colors are standard. Custom treatment can be given to control knobs, brake knobs, numeral configuration and color. gj Despite miniaturization, the 3000 Microdial is easy to read and offers the same smooth, silent gear action inherent with all Borg Microdial Series. Contact your nearest Borg technical representative, distributor or write for complete data.
 Add one of these dash numbers: $1=$ Whilie brake inob 5 Light gray brake inob ${ }_{3}=$ Rod brate knob

EORG EQUIPMENT DIVISION

Amphenol-Borg Electronlce Corporation
Janesville, Wlaconsln • Phone Pleasant 4-8816

See them at Wescow!! Boothe 3411-3+13 CIRCLE OJ ON READER-SERVICE CARD

NEW PRODUCTS at wescon

Test Equipment

Clean, functional styling is featured in this line of test instruments, including vtvm's, vom's, vswr indicators, rf power meters, and signal generators operating from hf to shf frequencies. Cabinets with low silhouettes have foldaway handles. Units have wind-up power cords. Panel meters are large and recessed.

Borg-Warner Controls, Dept. ED, P. O. Box 1679, Santa Ana, Calif.

See at Show Booth 2717-21.

Fault Indicator

Miniature magnetic latch-in fault indicator. model HCM $3 / 4$, is held permanently in off position until it receives an energizing signal. when it switches to on position, where it remains until reset. Indicating flag may be imprinted or color-coded. Indication is maintained under 500 cps vibration at 10 g .
Minneapolis-Honeywell, Precision Meter Div., Dept. ED, Grenier Field. Manchester, N. H.
Availability: 30 to 60 days.
See at Show Booth 3501-07.

Digital Oscilloscope

A 35-mc general-purpose oscilloscope, modei 425 accepts a variety of plug-ins. It has direct digital readout on both axes, plus universal controls for one-hand positioning of wave forms. The instrument can be used as an analog-to-digital converter.
Allen B. DuMont Laboratories, Dept. ED. 750 Bloomfield Ave., Clifton, N. J.

See at Show Booth 1614-20.

Convergence Coils

For crt use. Convergence coils are solenoids which produce a magnetic field to return the crt magnetic beam exactly to the tube axis. Originally designed for use with the firm's Charactron tubes, they can be supplied for a variety of tubes having a $2-\mathrm{in}$. neck diameter.

General Dynamics/Electronics, Information Technology Div., Dept. ED, P. O. Box 2449, San Diego 12. Calif.

See at Show Booth 201-03.
ELECTRONIC DESIGN • August 2, 1961

ELECTRON TUBE NEWS from SYLVANIA

If you've been seeking tubes with an optimum combination of high performance, resistance to environmental stresses, genuine interchangeability, small size / weight, assured reliability . . . let Sylvania shorten your search.

Few devices can fill those requirements so impressively as these five new Gold Brand Subminiature Tubes featuring Strap Frame Grids... Sylvania-7962. 7963, 8070, 8071, SR-2662A. Here's why -

HIGH PERFORMANCE - Sylvania Strap Frame Grid design significantly improves tube characteristics for Gm, Gm:Ib, gain, bandwidth, and noise. (Fig. 1)
ELECTRICAL STABILITY-rugged Strap Frame Grids retain precise physical dimensions and, therefore, electrical stability, over an exceedingly long, useful life. Specially designed heaters tolerate wide voltage variations of $\pm 10 \%$ of specified ratings. Too, Gold Brand Subminiature types exhibit an inherent resiliency to plate and screen voltage surges.

DURABILITY
Shock-Sylvania Gold Brand Subminiature Tubes are designed to withstand impact acceleration tests of 500 g and fatigue tests of 2.5 g for periods of 96 hours.
Radiation - they demonstrate remarkable resistance to radiation effects, tolerate dose rates of $10^{12} \mathrm{nv}$, total dosage of $10^{18} \mathrm{nvt}$.
Temperature - not susceptible to thermal runaway, they perform at ambient bulb temperatures of as high
as $220^{\circ} \mathrm{C}$, withstand prolonged storage temperatures. INTERCHANGEABILITY - exceptionally low dispersion of characteristics (electrical uniformity) from tube to tube within a given type offers genuine interchangeability without costly preselection and testing. RELIABILITY - several authoritative, documented examples of reliability under field and laboratory conditions are cited on the following page.

FEATURE STRAP FRAME gRIIS

FIG. 1 average characteristics							
		$\begin{aligned} & 7863 \\ & \text { ceuble } \\ & \text { criode } \end{aligned}$	$\underset{\substack{8070 \\ \text { triode }}}{ }$	8071 triode			Units
$\begin{aligned} & \hline \mathrm{El} \\ & \mathrm{II} \\ & \mathrm{~Eb} \\ & \mathrm{Ra} \\ & \mathrm{ID} \\ & \mathrm{Cm} \\ & \mathrm{~cm} \mathrm{mid} \\ & \mathrm{mu} \end{aligned}$	$\begin{aligned} & \hline 6.3 \\ & 235 \\ & 60 \\ & 200^{\circ} \\ & 9.0^{\circ} \\ & 9.500^{\circ} \\ & 1.055^{\circ} \\ & 20^{\circ} \end{aligned}$	$\begin{aligned} & 63 \\ & 350 \\ & 100 \\ & 270^{\circ} \\ & 7.5^{\circ} \\ & 13.000^{\circ} \\ & 1.70^{\circ} \\ & 40^{\circ} \\ & \hline \end{aligned}$	6.3 125 110 -- 9.0 11,000 1.222 58	$\begin{aligned} & \hline 6.3 \\ & 125 \\ & 150 \\ & 100 \\ & 130 \\ & 13.000 \\ & 1.000 \\ & 55.2 \end{aligned}$	$\begin{aligned} & 26.5 \\ & 90 \\ & 55 \\ & -7 . \\ & \hline 9.0 \\ & 9.00 \\ & 1.80 \\ & 20^{\circ} \end{aligned}$		V ma Ohms ma umhos رmhos:mA
meitar.matenter Conditions							
	Crounder Cathode Circut 1200 me)			GraundedGrill (4e0me)		af cascente	
$\begin{aligned} & \text { Gain } \\ & \text { BW } \\ & \text { EF } \end{aligned}$	$\begin{aligned} & 14.8^{\circ} \\ & 8.0^{\circ} \\ & 4.0^{\circ} \end{aligned}$	$\begin{aligned} & 15.1^{\circ} \\ & 9.5^{\circ} \\ & 4.0^{\circ} \end{aligned}$	$\begin{aligned} & 17.5 \\ & 11.8 \\ & 4.4 \end{aligned}$	$\begin{array}{r} 14.0 \\ 9.5 \\ 7.2 \end{array}$		$\begin{aligned} & 21^{\circ} \\ & 8.5^{\circ} \\ & 6.4^{\circ} \end{aligned}$	db mc db

Sylvania-7963, medium-mu double triode

For use as an RF or pre-IF amplifier in missiles, radar, radiosonde and beacon receivers, telemetering equipment or as a blocking tube oscillator. It's a high-performance version of the generalpurpose 6021 with higher heater power and huskier cathode. Per section: Gm is $13,000 \mu \mathrm{mhos}, \mathrm{Gm}: \mathrm{Ib}$ is 1,730 .

Sywania-7962, medium-mu double triode . . .
Featuring very low heater power of 0.7 W per section, low Eb of 30 V per section. It's designed for application as an RF or pre-IF amplifier or multivibrator in conjunction with low B^{+}supplies. Per section: Gm is $9,500 \mu$ mhos $(80 \%$ higher than conventional prototypes), Gm : Ib is 1,055 .

Sylvania-8070, high-mu triode . . .

Draws only 125 mA (a) 6.3 V heater power. It's used as an RF amplifier in communication equipment, pre-IF amplifier in navigational radar and beacon receivers, telemetering receivers. Gm is $11,000 \mu$ mhos, $G \mathrm{~m}: \mathrm{Ib}$ is 1,222 . 8070 provides 2.5 db better gain than usually encountered in present high-performance types.

Sylvania-8071, high-mu VHF triode . . .

Is the industry's first subminiature tube for grounded grid amplifier applications. It offers very low heater power of 125 mA "/ 6.3 V , as much as 50% less than types with comparable $\mathbf{G m}$ and Ib . Gm is $13,000 \mu$ mhos. 8071 exhibits a 2.5 to 7 db gain improvement, 1.5 to 4 db noise improvement at 480 mc than normally encountered with popular grounded-grid RF amplifier types.

Syivania SR-2662A, medium-mu VHF double triode . .

Features 26.5V heater and plate operation. Designed for use as a cathode-follower or RF amplifier-mixer in hybrid systems. In airborne or mobile equipment using a 26.5 V energy source, SR-2662A eliminates the need for special plate and heater supply circuits. enhancing equipment compactness and reliability. Per section, Gm is $9,000 \mu \mathrm{mhos}$.
Examine the extraordinary performance advantages of Sylvania Strap Frame Grid Subminiature Tubes for your design. Ask your Sylvania Sales Engineer for full information, or write for technical data to Electronic Tubes Division, Sylvania Electric Products Inc. 1100 Main St., Buffalo 9, N. Y.

How to predict reliability of
 end-equipment!

FIG. 4

6111 Survival curve for inopera tives through 15.000 hours 15.000 hours (

A laboratory-proven design transferred to production line -then to actual field-use-may sometimes perform in an unexpected, erratic manner. Yet Management and Military are demanding increased assurances of reliability How do you solve the dilemma for your design? One way: specify components offering documented, fieldproven reliability.
Take the case for tubes. Tests by ARINC Research Corp. ${ }^{*}$ illustrate the dramatic improvements in tube reliability since 1954. The results of tests conducted aboard naval vessels show a combined tube removal rate of 15% per 1000 hours in 1954. By 1960 this figure dropped to 1.2% for miniature tubes and a remarkable 0.19% for subminiature tubes. All the controlled subminiature types were Sylvania tubes.*
Survival tests by Sylvania (Figs. 3 \& 4) on Gold Brand Subminiature types 5718 and 6111 demonstrate similar outstanding results. Sylvania-5718. UHF medium-mu triode, shows better than 90% survival at 12.00) hours. Sylvania-6111, medium-mu double triode, shows an average decline in Gm of only 2.4% per 100() hours and bet ter than 90% tube survival at 12.000 hours.
Further quantitative measure of reliability is provided by Sylvania acceptance criteria for Gold Brand Subminia ture Tubes. Based on the average number of cumulative failures per $1(\mathcal{X})$ hours for a 5 -lot moving average. instead of the customary 1 -lot. it offers a stringent control over an exceptionally wide range of production. And, it provides a highly accurate basis for statistical prediction of \% failure rate in $\operatorname{I(M)}$) lube hours.
If you're being asked to predict reliahility of your military or industrial design, call upon the expert assistance of Sylvania. Your Sylvania Sales Engineer will gladly supply detailed documentation of Gold Brand Subminiature Tube reliability.
*Sylvania-5636, 5644, 5647, 5718, 5719, 5840, 5899, 5902
The suhminiature tubes were use-tested in SRR-13A receivers. +Courtesy ARINC Research Corp. as published in publication $=101-28-166,=101-26-160$

MICROWAVE DEVICE NEWS from SYLVANIA

50\% SMALLERI 75\% LIGHTERI

Low Cost, High Performance PPMFOCUSED TWT's
for operation from 1 to 12Gc

Now available from Sylvania - a new family of traveling wave tubes designed for highperformance microwave amplifier applications where economy, compactness, light weight are vital design considerations.

Less than 4 lbs . in weight and $21 / 4^{\text {" }}$ in maximum diameter, these TWT's present unusual opportunities for compact design of such endproducts as microwave test equipment. No electrical performance is sacrificed in attaining these advantages over bulky, 12-16 lb. solenoid types. In addition, they are priced at less than $\$ 1,000$ each in quantity.

For further information contact your nearest Sylvania Sales Engineering Office, or write Electronic Tubes Division, Sylvania Electric Products Inc., 1100 Main St., Buffalo 9, N. Y.

Frequency Range (Gc)	$\begin{aligned} & \text { Sylumia } \\ & \text { Type } \end{aligned}$	Power Output	Min. Gain (dB)
1-2	TW. 4267	15mW	35**
1.2	TW. 4268	1W	30*
2.4	TW-4261	10 mW	35**
2.4	TW-4260	1 w	30*
48	TW. 4281	10 mW	35**
48	TW. 4278	1W	30 *
8-12	TW-4282	5 mW	$35 *$
8-12	TW. 4273	1w	30*

Hewlett-Packard specified Sylvania TWT in the new versatile 1 -Watt amplifiers, Models 489A (1 to 2 Gc) and 491C (2 to 4 Gc).

Zener Diodes

Cover 3.9 to 33 v. Rated at 250 mw , types 1N1313 to 1320 subminiature glass Zener diodes cover 8.2 to 33 v ; types 1 N 1927 to 1937 cover 3.9 to 27 v . Temperature coefficient is $0.06 \tau_{c}$ per deg C and impedance is to 8 ohms at 10 ma . Both 5% and 10% tolerances can be furnished.

International Rectifier Corp., Dept. ED, 233 Kansas St., El Segundo, Calif.
P\&A: 11.93 to \$.3.60: stock.
See at Show Booth 1701-03.

Mounting Blocks

687
Of beryllium oxide. These mounting blocks insulate components electrically while providing a path for heat flow away from them In some cases, blowers and other cooling devices can be eliminated.

National Beryllia Corp., Dept. ED, First \& Haskell Aves., Haskell, N. J.
See at Show Booth 4624.

Telephone Pickup Coil

To eliminate stray hum pickup. This telephone pickup coil is for use with high-impedance input tape recorders, amplifiers and dictating machines used in transcribing telephone conversations. Model HP-71 is with a molded phone plug and model HP-70, without.

Microtran Co., Inc., Dept. ED, 145 E. Mine ola Ave., Valley Stream. N. Y.
Price: $\$ 7.50$ and $\$ 6.95$.
See at Show Booth 911
Time-Delay Relay 477

For up to 5 amp with spdt or dpdt contacts. Type B hydraulic-magnetic time-delay relay can have delays of $1 / 4$ to 120 sec . Snap-action contacts are completely enclosed. A continuousduty coil is used. The relay can be furnished for ac or dc operation.

Heinemann Electric Co., Dept. ED, 229 Magnetic Drive., Trenton 2, N. J.
Availability: sample quantities by September.
See at Show Booth 3701-3703.

If you manufacture electronic or integrated data processing equipment...

Expand your sales opportunities with expert nation-wide service

- without investing in service personnel or training!
- without spending for equipment and service overhead!

If your sales growth has been restricted due to lack of service facilities, RCA Service Company can open new frontiers of opportunity for you.

Through its network of Service Points from coast-to-coast, this highly skilled electronic service organization will function as your ou'n serrice department to install and maintain your equip ment on a regular basis. We'll work for you on a contract basis at a fixed annual rate which will provide Scheduled Preventive Maintenance, as well as Demand Service Requirements. More than this, we'll assume your warranty obligations covering both installation and maintenance, if you wish.

Many manufacturers of electronic products have found RCA Service Company to be a highly profitable adjunct to their sales efforts-for good service means satisfied customers, and satisfied customers mean more business.

RREE BOOKLET ! For full information on how RCA Serrice Company can help you expand your sales opportun itizer, send for our free booklet. "NEW PROFIT FRONTIERS FOR ELECTRONIC EQUIPMENT MANEFACTLRERS." Just clip the coupon. and
attach it to your company letterhead. atlach it to your compony letter

```
RCA SERVICE COMPANY
Dopl. A, Dids. 206-1
```

```
M
```

Yes I l'd like to receive a sopy of your new booklet. "New Protil Frontiers for Electronic Equipment Manufacturess." without obligation.
\qquad _ritie_

The Most Trusted Name in Electronics radio corporation of america

NEW PRODUCTS at wescon

Circuit Breaker

For severe environments. Series SM mili-tary-type circuit breaker is offered in two and three-pole types. Current ratings are from 0.05 to 15 amp ; voltage ratings are 120 v ac at 60 or 400 cps or 50 v dc . Units can have fast or slow inverse-time delay.
Heinemann Electric Co., Dept. ED, 229 Magnetic Drive, Trenton 2, N. J
Availability: sample quantities, September.
See at Show Booth 3701-03.
Magnetically Held Switches

DPDT magnetically held switches, type 6ET1T are sealed momentary-action toggle switches with a built-in solenoid. The solenoid permits conversion to a maintained-contact type switch and provides remote electrical release of the toggle.

Minneapolis-Honeywell Regulator Co., MicroSwitch Div., Dept. ED, Freeport, Ill.
See at Show Booth 3501-07.

FM Transmitter

Rated at 12 w , type 1009 fm transmitter covers 215 to 260 mc . It has a 0.01% crystalstabilized carrier. Sensitivity is 0.01 v per kc; modulation range is 20 cps to 100 kc . The rf power output can be increased to 20 w with plate voltage input. Volume is 37.5 cu in .
American Bosch Arma Corp., Tele-Dynamics Div., Dept. ED, 5000 Parkside Ave., Philadelphia, Pa.
Availability: samples.
See at Show Booth 4126-28.

BRAND-REX CABLEMANSHIP BOEING'S Communications Link between

America's first "push-button" missile system, the Minuteman is predicated upon high reliability, maximum simplicity and greatly improved cost effectiveness. Supporting the effective missilemanship of Boeing, the Minuteman systems integrator, is the Cablemanship of Brand-Rex.
Linking the vast complex of Minuteman Communications systems are a broad range of Brand-Rex multi-conductor cables. By combining the most suited plastics for the specific purpose, they insure functional and environmental integrity. Polyethylene, with its excellent electrical characteristics, is used as primary insulation; nylon jackets impart dimensional stability to single conductors as temperature increases; and over-all neoprene jackets provide low tem-
perature flexibility, abrasion resistance and resiliency. The processing problems inherent in such material combinations have been successfully solved by Brand-Rex technicians.
If your requirements for wire, cable and insulating materials demand the reliablity, uniformity, and adherence to specifications of the Communications system of the Minuteman project, call on the Cablemanship of Brand-Rex!
*Brand-Rex Cablemanship - a combination of technology, skill, design engineering, 3 -plant production capability and technical service provided by a tightly knit organization of cable specialists . all backed by the vast resources of American Enka Corporation.

From the smallest single U/L approved hook-up wire to the most complex Teflon primary insulated and jacketed multiconductor cable, Brand-Rex Cablemanship makes the big difference.
Brand-Rex Cablemanship is a combination of technology, skill, progressive cable design engineering, the production capability of three modern plants and technical field senvice . . . all delivered through a tightly-knit organization backed by the vast resources of the American Enka Corporation.

Regardless of how varied your requirements may be for conduc tors, lay-up patterns, shields, armors or jackets, your specifica tions will be met when you place your confidence in Brand-Rex!

Write for complete information and samples today.
-Registered Trademark of DuPont

American E NKA Corporation sudeuar mono. concono, mazacwusetris TELEMONE, EMEnSOM 2-mso

Carbon Potentiometers

Rating is $\mathbf{3} / \mathbf{4} \mathbf{w}$. Model N hot-molded carbon composition potentiometers have rotation of 300 $\pm 3 \mathrm{deg}$ with a rotational torque of $502-\mathrm{in}$. They meet environmental and test requirements of MIL-R-94B. Units with lock bushing or standard shaft can be furnished.
Globe-Union Inc., Centralab Electronics Div. Dept. ED, 900 E. Keefe Ave., Milwaukee 1, Wis 4vailability: stock.
See at Show Booth 920-22.
Tuning Fork Oscillator
543

Output is 10 w. Series DFO-71 tuning fork oscillator has less than 5% harmonic distortion in the range of 60 to $6,500 \mathrm{cps}$. Frequency tolerance is $\pm 0.005 \%$ to $\pm 0.04 \%$. depending on temperature and frequency. The unit uses silicon semiconductors and is encapsulated in a package $2 \times 6 \times 5$ in.

Delta-F, Inc., Dept. EI), 113 E. State St., Geneva. III.
Availability: 6 to 7 weeks.
See at Show Booth 4503.

Power Supply

Output is 24 to 30 v de at 35 amp max. Model EA-267 power supply has a regulation of $\pm 0.1 \%$ for line changes of $\pm 10 \%$ with constant load, $\pm 1 \%$ for load changes of 2 to 35 amp . Input is 208 v нс, 60 cps , three-phase. Ripple is 100 mv max. Mil specs are met.
Thermador Electrical Manufacturing Co., Div. of Norris-Thermador Corp., Dept. ED, 715 S. Raymond Ave., Alhambra, Calif.
P\&A: \$2,870; 4 weeks.
See at Show Booth 1811.

CAL-R POWER RESISTORS

offer Reliability \& Proven Performance

SILICONE COATED SERIES "SR" MINIATURE PRECISION WIRE WOUND POWER RESISTORS

For the Engineer who Demands Accuracy 15 types from .5 to 10 watts meet or exceed applicable requirements of MIL-R-26C, Characteristic "G."
SPECIFICATIONS Small size for wattage rating. Single layer space wound with largest wire permissible. Maximum wire coverage of core for cooler operation and reliability. Thermal shock proof of $275^{\circ} \mathrm{C}$ to $-55^{\circ} \mathrm{C}$. Impervious to moisture and Salt spray. Insulation strength 1000 VAC. Temperature coefficient .00002 degree C. Close tolerance to $.05 \%$. Low noise and thermal EFM. High stability, less than 1% drift in 1000 hours operation at full wattage rating. Resistance range from .05 to 210,000 .
W'rite or call for complete Data. Unsurpassed design characteristics for highest performance and new standards of stability and reliability.
CALIFORNIA RESISTOR copponation
1631 Colorado Avenue, Santa Monica, California UPton 0-6867 • EXbrook 3-9861

NEW PRODUCTS at wescon

Switches and Indicators

Miniature series 302PB1 pushbutton switches maintain operation when the button is depressed and released with the operating mechanism assuming a nonoperative position the second time the button is depressed. Series 302LT indicators are similar in appearance.

Minneapolis-Honeywell Regulator Co., Micro Switch Div., Dept. ED, Freeport, Ill.
See at Show Booth 3501-07.

Connector Blocks

Permit solderless connection between chassis and terminal-card modules. Crossover connector blocks mount to the underside of the chassis and hold circuit cards carrying all interconnections. Circuits may be printed, etched or wired.

Alden Products Co., Dept. ED, 117 N. Main
St., Brockton, Mass.
Availability: stock.
See at Show Booth 4219.

Axial-Lead Resistors

Wirewound, military-grade axial-lead resistor types RW67, 68 and 69 have resistance ranges of 0.1 to $3.6 \mathrm{~K}, 8.2 \mathrm{~K}$ and 910 ohms. Temperature coefficient is 20 ppm per deg C. Tolerance is $\pm 5 \%$.

Ohmite Manufacturing Co., Dept. ED, 3646 Howard St., Skokie, III.
See at Show Booth 1601-03.

New Hamilton Standard steam-proof inverter designed to meet rugged secondary power requirements in ambients to 150° F...shocks to 50G's

A new solid-state inverter has been developed by Hamilton Standard to meet the full range of combat conditions in tanks and other ordnance vehicles. This unit is the result of a comprehensive development program in which the primary design criteria were exceptional reliability in temperatures as high as $150^{\circ} \mathrm{F}$ and dependable performance despite shocks to SOG's and constant vibration.
Rated at $18-30 \mathrm{~V}$ DC input; $115+5,-3 \vee \mathrm{AC}$ output. the inverter operates at 400 cycles $\pm 1 \%$ and in ambients from $-65^{\circ} \mathbf{F}$ to $+150^{\circ} F$. The unit is silent, fully silicontransistorized, and utilizes conservatively rated components throughout. It is completely sealed against water, dirt, dust
.... and impervious even to steam cleaning. Because the inverter is self-enclosed, internal temperatures may attain 285 F , yet performance is unaffected.

Although designed specifically for tanks, this static inverter suits power requirements for a variety of ordnance vehicles. It is an ideal power supply for gyros, servos, control motors, and power computers in such vehicles as: weapon or personnel carriers, missile launchers, tank destroyers, and gun directors.

An illustrated static power conversion guide is available on request. For your copy, write: Hamilton Standard Electronics Section 120, Broad Brook, Connecticut.

UNITED AIRCRAFT CORPORATION HAMITTOM STAMDARD DUUISTON

ELECTRONICS

Dissipation is 150 mw , saturation voltage is 0.05 v and gain bandwidth product is f_{ℓ} of 150 mc. Type 2N2048 switching transistor is designed for applications in saturated switching circuits in high-speed computer logic and automation equipment.

Philco Corp., Lansdale Div., Dept. ED, Lansdale, Pa .
P\&.A: \$1.32; stock.
See at Show Booth 919-21.

Indicator Lights

Water-tight indicator lights type 177-8430971 have two $1 / 16$-in. neoprene retained O-ring seals. Units measure $1-3 / 16$ in. in overall length and mount in single $15 / 32-i n$. clearance holes. They are fully insulated with mili-tary-grade phenolic material.

Dialight Corp., Dept. ED, 60 Stewart Ave. Brooklyn 37, N. Y.
Availability: samples. 5 to 15 days.
See at Show Booth 2,519-21.
RF Power Amplifier

For 215 to 260 mc . Model 1114 power amplifier has an output of 15 w at 400 v de from an input of 2 w , or 15 w at 250 v dc from 3.5 w . It withstands $100-\mathrm{g}$ shock, $100-\mathrm{g}$ acceleration and $15-\mathrm{g}$ vibration from 20 to $2,000 \mathrm{cps}$. Temperature range is $\mathbf{- 5 5}$ to $\pm 100 \mathrm{C}$.
American Bosch Arma Corp., Tele-Dynamics Div., Dept. ED, 5000 Parkside Ave., Philadelphia, Pa .
Availability: samples.
See at Show Booth 4126-28.

NEW PRODUCTS AT WESCON

Subminiature Relay

432

Sensitivity is 20 mw . Designed for an operational life of over 100,000 cycles, model BR-12K subminiature relay withstands $50-\mathrm{g}$ vibration through 3.000 cps and $125-\mathrm{g}$ shock for 11 msec . It meets all requirements of MIL-R-5757D.

Babcock Electronics Corp., Babcock Relay Div., Dept. ED, 1645 Babcock Ave., Costa Mesa, Calif. P\&A: 14.50; 2 to $\$$ weeks.

See at Show Booth 312.

Silicon Transistors

Rated at 150 w , types $2 N 1015$ and 2N1016 silicon transistors are and 2.1016 silicon transistors are
diffused-junction npn devices with a collector-emitter voltage of 100 \mathbf{v}, a saturation resistance of 0.5 ohm and a minimum beta of 10 at 5 amp . Uses include in power converters, power-supply regula. tors and servo amplifiers.

Silicon Transistor Corp., Dept. ED, Carle Place, N. Y

See at Show Booth 1224.

High-Speed Multiplexer 435

A 50-channel unit, the MXV5 solid-state multiplexer has a rate of over 20,000 independent samples per sec. Comprised of five 10-channel 5×8 in. cards, it operates in conjunction with the firm's V16-AD converter which has conversion rates up to 1,400 per sec.
Adage Inc., Dept. ED, 292 Main St., Cambridge 42, Mass.
See at Show Booth 3610.

- circle 70 on reader-service card

For milliwatt ranges, model 6254 rf wattmeter and load can be furnished with ranges to 25, 50 , 100. 250, 500 or $1,000 \mathrm{mw}$. It measures power output and terminates low-power 50 -ohm systems. Power is direct reading from 30 to 500 mc with a vswr of less than 1.15 . Bird Electronic Corp., Dept ED, 30303 Aurora Road, Cleveland 39, Ohio.
P\&A: 885; stock
See at Show Booth 1922-24.

Microminiature Relay

391
For military use. Type MM-22 microminiature dpdt relay has a life of 10 million operations in dry circuit applications and a contact life of 100,000 cycles at 3 amp or 500,000 at 2 amp . Operate and release times are 5 msec max. Dimensions are $0.9 \times 0.4 \times$ 0.961 in

Automatic Electric Co., Dept. ED, Northlake, IIl.
P\&A: \$20: by December
See at Show Booth 2201-03.

Sonic Cleaning System

Cleaner, rinse and dryer comprise the $1420-\mathrm{A}$ sonic cleaning system. Dimensions of the cleaning chamber are $14 \times 20 \times 11-1 / 2$ in. Frequency is 21 kc; generator output is 800 w. Input is 205 to 250 v, 60 cps , single-phase. Each of the three units can be furnished separately

The Bendix Corp., Pioneer Central Div., Dept. ED, Davenport. Iowa.

See al Show Booth 2606.

Compact chassis of Osborne 300 CBT Citizens Band Transceiver.

Greater selectivity in a miniature package

. . . and increased stability at a decreased cost. Further, magnetic shielding can be eliminated as well as the necessity for factory and field alignment. That's why CLEVITE'S ceramic i-f filters are rapidly replacing conventional components in today's mobile or high quality commercial receivers. Basic component of these rugged fixed-tuned devices is the CLEVITE piezoelectric "Transfilter" developed especially for great stability of resonant frequency with respect to time and temperature. Cascading and coupling these resonators provide excellent selectivity at desired bandwidths. Size, $1 \frac{1}{2} 2^{\prime \prime} \times 3 / 4^{\prime \prime} \times 2.0^{\prime \prime}$ high; Center Frequency, 455 kc ; Shape Factor ($60 / 6 \mathrm{db}$), 3:1 to 6:1; Bandwidth, 4 to 20 kc ; Insertion Loss, 6 to 12 db max. (depending on bandwidth); Impedance, 2700 ohms in and out; Temperature Range, $-20^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$. Call, write or wire for complete details. CLEVITE ELECTRONIC COMPONENTS

NEW PRODUCTS at wescon

Do you have any of these transient analysis problems?

Development of a unique new instrument-the Hughes Highfrequency Memo-scope ${ }^{\text {® }}$ Oscilloscope-now makes solving transient analysis problems quicker, easier and more economical. Secret of this instrument is its ability to freeze high frequency impulses until intentionally erased. It is the only instrument on the market today that can give you stored response at fast writing speeds! Here are six case histories which demonstrate the types of problems which can be solved:

Low Level Signal Data Processing-A leading West Coast research facility used the Memo-scope oscilloscope for passive satellite tracking. The instrument was able to integrate very small signal levels over a very high random noise level. Result: the company was able to track satellites in an environment where the noise amplitude actually exceeded the signal amplitude.
Quality Control Inspection - A large Eastern firm uses the Memo-scope oscilloscope to dramatically improve the reliability levels of incoming components and systems which were subject to transient behavior. Typical items tested included relays, switches, coils, capacitors, diodes, transistors, transformers, and complete computer and servo systems.
Shock and Impact Testing - A well-known missile manufacturer used the Memo-scope oscilloscope to calibrate accelerometers. Using a Model 105 Memo-scope oscilloscope, with a Multitracer Unit, this firm was able to compare a shock signal from a "calibrated standard" accelerometer against newly purchased units and those undergoing their periodic checks.
Medical Research-A large Texas medical institution used this unique Hughes instrument for a study of the human nervous system. They were able to obtain an early diagnosis of nervous system deterioration by measuring the exact elapsed time that an electrical pulse takes to pass between two points in the central nervous system.

Welding Control-To permit high-reliability welding of metals, a leading Southern California aircraft and missile

manufacturer uses the Memoscope oscilloscope as a precision monitoring device. They were able to precisely control heat, pressure and time throughout the entire welding process.
System Check-out: Production and Field -A
known aircraft manufacturer used the Memo-scope oscilloscope as a key element in a check-out console. The communications and radar automatic gain controls, as well as the servo systems adjustments, were precisely monitored. It was also used in cross-talk analysis; interference monitoring; stress, vibration and flutter analysis; and general trouble-shooting.

SPECIFICATIONS

Conventional Mode:

- DC to 10 mc Band Pass
- Sweep Range: 0.1μ secs/ division to $1 \mathrm{sec} /$ division: 5 X
Magnifier for speeds to. 02μ Magnitier for speeds to. 02μ
secs/division: Multiplier tot secs/division: Multiplier fot
sweeps long as 10 secs/ division
- Rise Time: 35 nanoseconds - Built-in Delay Line (0.25μ secs)
- Numerous Trigger Selections
- Plug-in Preamplifiers

Storage Mode:
(All features of Conventional
Mode, PLUS:)

- One million inches per sec Writing Speed
- Unlimitea Storage Time
- Fast Erase lless than 150
millisecs)
- X-Y Plotting
- Single Shot Trigger
- Photograph or Trace Directly Off Scope Face

If you have a transient analysis problem and would like a complete technical data sheet, you are urged to write: Memo-scope Oscilloscope, Hughes Industrial Systems Divio sion, Hughes Aircraft Company, Box 90904, Los Angeles 45, California.

With outputs of $\mathbf{5 0 0} \mathbf{~ m a}$ or $\mathbf{3 0} \mathbf{~ a m p}$ at (0) to $\mathbf{4 0}$ v dc. Model TVCR-040-0.5 power supply has a response time of $25 \mu \mathrm{sec}$; model TVCR-040-30, 50 usec. Line regulation is $\pm 0.01 \%$ or 2 mv , $\pm 0.02 \%$ or $50 \mu \mathrm{a}$; load regulation is the same. Remote programing and remote sensing are possible.

Perkin Electronics Corp., Dept. ED, 345 Kansas St., El Segundo, Calif.
P\&A: type 040-0.5, \$198; 040-30. \$1.598: to 120 days.

See at Show Booth :516-18.

Radiation Thermometers

For airborne or field use, models 14-310 and 14-311 portable radiation thermometers measure radiation from remote water surfaces, clouds. backgrounds or other targets. Range is 1% to 85 F ; accuracy is $=1 . \overline{\mathrm{F}} \mathrm{F}$; sensitivity is 0.5 F . Power required is 70 w

Barnes Engineering Co., Dept. E[), 3f Commerce Road, Stamford, Conn.
Arailability: stock.
See at Show Booth 1308-09.

Power Supply
419

Regulation is $\pm 0.01 \%+1 \mathrm{mv}$ and ripple is 0.5 mv rms max. Model QCR 36 -30 power supply has an adjustably output of up to 36 v dc. Remote programing is provided for. Dimensions are $8-3 / 4 \times 19-1 / 8 \times 13-1 / 2 \mathrm{in}$.
Raytheon Co., Sorensen Products, Dept. ED, Richards Ave., S. Norwalk, Conn.

See at Show Booth 3404-22.
"Leadership in semiconductors"

FOR TECHNICAL ASSISTANCE AND SERVICE CONTACT THE TRANSITRON FIELD OFFICE nearest you as listed below.
ealtimore, Maryland 2319 Maryland Ave....
..CHesapeake 3-3220 boston, Massachusetts
168-182 Albion St. 245-5640
CAmden. New Jorsey
CAMDEN. New Jersey
227 S. Sixth 31...............WOodlawn 6-2877 emicago. Illinois
6641 W. North Ave.
Oak Park, III.
.............. VIllage 8-5556
cleveland. Ohio
14625 Detroit Ave.
Lakewood. Ohio.
oallas, Texas
511 Braniff Airways Bidg.
Dallas 35, Texas...............FLeetwood 7.9448
DAYTON, Ohio
379 W. First St. BAIdwin 4-9651
denver, Colorado
first National Bank Bldg.
621 Seventeenth St..................AComa 2-1686
DETROIT, Michigan
2842 West Grand Blvd............. TRinity 5.2440
mansas city, Missouri
Wirtham Bidg.
31st and Troost Sts...............VAlentine 1-1819 cos angeles, California
6362 Hollywood Blvo.
Hollywood 28, Calif..
mewark. New Jersey
1060 Broad St........
ORLANDO, Florida
\#10 Jacklind Bldg.
205 E. Jackson St..
PhoEnix, Arizona
2727 North Central Ave. CRestwood 7-3366
ST. PAUL, Mianesota
Griggs-Midway BIdg.
1821 University Ave................MIdway 6 -1891
SAN DIEGO, California
3620 30th St....
.......CYpress 7-3708
san framcisco. California
535 Middlefield Rd.
Palo Alto, Calif.........
SEATtLE, Washington
SEATILE, Washingion
3466 East Marginal Way MAin 4.0783
syracuse, New York
srancuses New York
winston-salem, North Carolina
Nissen Building
Nissen Building
310 W. Fourth St
PArk 3.0363

Transitron
 olectrente eor poration wahefield, mecocetweotis

CIRCLE 73 ON READER-SERVICE CARD CIRCLE 246, 247, 248, 249 ON

READER-SERVICE CARD -

rew sllcon Power NEW DEVELOPMENTS IN ITS ADVANCED LINE OF... Transsiois

IN THE HIGH POWER RANGE, THE TRANSITRON UNITS FEATURE:

- the widely accepted stud-mounted package, Dioneered by Transitron - Iow saturation resistances - voltages to 100 volts - reliability-tested specifications				
Type	$\begin{aligned} & \text { Maximum } \\ & \text { Poweol } \\ & \text { Dissiodtion } \\ & \text { al looc case } \\ & \text { (Watts) } \end{aligned}$	Maximum Vollectar Ves (Volts)		
2 N 1616	30	60	15	0.7
2 L 1617	30	80	15	0.1
2 N 1618	30	100	15	0.7
2 N 1210	30	60	15	0.1
2N1211	30	80	15	0.7
2 N 1620	30	100	15	0.7

IN THE INTERMEDIATE POWER RANGE,
THE NEW TRANSITRON UNITS FEATURE:

		- Khab hex base stud-mounted package - saturation resistances under 3 ohms (2N1647.50 series $)$ - guarantoed Betas over normal operating - yols - vollago ratings es high as 200 volts $-(2 N 2 \mathrm{I}$ 18.21 series $)$ - true intermediate power capability Write for Bulletins TE-1335S and TE-1355-2018			
Type			$\begin{gathered} \text { Minimum } \\ \text { ComCon } \\ \text { Common } \\ \text { Euriter } \\ \text { at Sain } \\ \text { sio mA } \\ \beta \end{gathered}$		$\begin{gathered} \text { Typical } \\ \text { Saturation } \\ \text { Ressistance } \\ \text { (Ohms) } \end{gathered}$
2 N 2018	150	20	20	125	3.5
2 2 2019	200	20	20	140	3.5
2 N 2220	150	20	40	125	3.5
2 2 2021	200	20	40	140	3.5
2 W 1677	80	20	15	60	1.9
2 N 1648	120	20	15	80	1.9
2 M 169	80	20	30	60	1.9
2 N 1650	120	20	30	80	1.9

The widest range of silicon power transistors is now available as the result of Transitron's development of an advanced line of competitively priced silicon transistors in the intermediate and high power ranges.
Electrical and mechanical advantages of the Transitron devices include low saturation resistances, voltages up to 200 volts, and solutions to heat dissipation problems that have long plagued designera. Included in this broad line are a number of silicon power transistors that Transitron is marketing at prices geared to the budget of the industrial designer!
ALSO AVAILABLE2N1047-50
and 2N1047A.50A SERIES OF
INTERMEDIATE POWER
SILICON TRANSISTORS
for applications which require
the single-ended, stud package.
Write for Bulletin TE-1355-1017

OF NATURAL CONVECTION COOLERS

Transitron has recently canvassed the marker for the beas available natural convection coolers. Under laboratory condi. to determine which coolers possess the best heat dissipaston copabilities for Transitron power semiconductors.
As a result, Transitron now offors a now standard line of four As a resur,. Transitron now offors a now standard line of four know-how. Transitron is thereby the first company to offer he eustomers a systematic and continuing program of service for the solution of annoying heat dissipation problems.
For further information, write for Application Motes AN-1355C and Bulletin TE-1355-1.

Reodenstomics Cond MEET US AT WESCON - BOOTHS 3EO2-3E04

Transitron
 electronic corporation

wakefield, melrose, boston, mass.
SALES OFFICES IN PRINCIPAL CITIES ThROUGHOUT THE U.S.A. AND EUROPE - CABLE ADDRESS. TRELCO

NEW PRODUCTS
AT WESCON
Sonic-Energy Cleaners
429

Two types offered. Type 48 son-ic-energy cleaner with one transducer has a tank measuring 4×8 $\times 6$ in. Type 128 with three transducers has a tank $8 \times 12 \times 10$ in Frequency for both is 20 kc ; both employ solid state generators and operate from an input of $117 \mathrm{v}, 60$ cps, single-phase.
The Bendix Corp., Pioneer-Central Div., Dept. ED, Davenport,

Iowa.

P8A: \$295; stock
See at Show Booth 2606.

Digital Calendar

With BCD output. Model 2800BCD digital calendar provides an 8-4-2-1 binary-coded-decimal output representing the month and day. Logic circuits adjust for different lengths of months.

Chrono-Log Corp., Dept. ED
Box 4587, Philadelphia 31, Pa.
P\&A: \$460; 4 weeks.
See at Show Booth 4503-05
Permanent-Magnet

Motor

With 1 -in. diameter. The HYLM permanent magnet dc motor has ratings of $1 \mathrm{lb}-\mathrm{in}$. of torque $0.017 \mathrm{hp} ; 1,700 \mathrm{rpm}$; 0.85 amp : 23 w ; 53% efficiency. Uses include program switches, tuning mechanisms, timing devices, cooling fans, blowers and electromechanical actuators.
Barber-Colman Co., Dept. ED Rockford III
P\&A: 550 ; 45 to 60 days.
See at Show Booth 3601-03

${ }^{a}$ New and superior latching P\&B relay...

LIES FLAT FOR GREATER PACKAGE DENSITY, HIGHER PERFORMANCE

This DPDT, permanent magnel, latching relay is superior on these counts: (1) shorter height for maximum compactness between stacked circuit boards: (2) greater sensitivity (80 milliwatts); (3) better vibration resistance (30 g to 2000 cps); (4) better shock resistance (100 g).

Designated the FL Series, this relay meets all applicable sections of MIL-R-5757D, MIL-R-6106C and ABMA PD-R-187.

FL SERIES SPECIFICATIONS

 no contact osoninge. \quad ol mic coil tomporature (conatitiva)

This large family of dual coil, permanent magnet relays
can be supplied with built-in diodes,
special terminals and mounting brackets.
a Non-latching or latching relays can be supplied in conventional crystal cases with or without shoulder brackets, studs or mounting plates. Straight pin, hook-end or 3° flexible terminals are available
B Potting 3° terminals with epoxy resin at the relay's header keeps glase beads from cracking through mishandling during installation . . . adds only $.25^{\circ}$ max. to height of case. Your production is speeded, reliability is increased.
c A diode becomes an integral part of the relay circuit in SC or SL relays. It is incorporated in the relay case and is used to minimize arcing in special applications. Four diodes can be used as a full-wave bridge rectifier for 400 cycles.
D Terminals spaced on $.200^{\circ}$ grids are available on all P\&B microminiature relays. These carry a " $G^{\prime \prime}$ " suffix (SCG and SLG) and are only slightly larger in size, measuring $.890^{\circ}$ high, $.800^{\circ}$ wide, $.400^{\circ}$ deep, man.
SC/SL SERIES SPECIFICATIONS

TEMmanal

moumpimes.
Nub In: scilo \triangle stilo
Pue In: SC11D \& SLIID
Sheute Crached: SCIIOA \& SLIIDA
 Bach Moum: e teso stude SCIIDC a sLIIDC

With seated height of 0.45 in . Features of model BR-12P print-ed-circuit-board relay include drycircuit current requirement of 1 $\mu \mathrm{a}$ at 1 mv with 100 -ohm max contact resistance, $3-\mathrm{amp}$ contact rating at 32 v dc resistive, 5 msec max operate-release time.
Babcock Electronics Corp., Babcock Relays Div., Dept. ED, Costa Mesa, Calif.
P\&A: \$14; 2 to 3 weeks.
See at Show Booth 312.

AC-DC Calibration
 Standard

A precision voltage-current meter, model 1605 A ac-dc calibration transfer standard measures dc to $1,500 \mathrm{v}$ and 15 amp , and frequencies from 20 cps to 50 kc . Ac accuracy is $\pm 0.05 \%$; dc accuracy is $\pm 0.04 \%$. The unit is housed in a single package and can be used in mobile and field service.
Radio Frequency Laboratories, Inc., Dept. ED, Powerville Road, Boonton, N. J.
P\&A: \$s,150; stock.
See at Show Booth 2912-14.

Semiconductor Tester

433

Performs 24 tests, 12 on diodes and 12 on transistors. Model T350 A semiconductor tester automatically makes 12 tests in 0.6 sec The tests are interchangeable and may be programed in different combinations during any test sequence. Provision is made for ac beta tests.
Atlantis Electronics Corp., Dept. ED, P. O. Box 451, Garland, Tex. See at Show Booth 4508.

To Contractors and Subeontractors on U. S. Government Projects

Western Electric offers high reliability semiconductors from Laureldale

- Western Electric's Laureldale, Pennsylvania, plant is now in its ninth year of producing semiconductor devices of ultra-high quality and reliability for government applications.
- Devices designed by a resident Bell Telephone Laboratories group have performance standards exceeding specification requirements which are based on MIL-S-19500B.
- Mechanized production facilities and a comprehensive statistical quality control program assure uniformity and contribute to obtaining ultimate process capabilities.
■ Reliability requirements specify 1000 -hour elevated temperature life storage tests on all products shipped from Laureldale.

Western Electric and Bell Laboratories have an applications engineering group in residence at Laureldale. The codes shown above (and a complete range of other high reliability semiconductor devices) can be purchased in quantity from Western Electric's Laureldale plant. For technical information on these and other codes, please address your request to Mr. F. A. Mark, Regional Sales Manager, Room 103. Western Electric Company, Incorporated, Laureldale Plant, Laureldale, Pa. Telephone-Area Code 215-WAlker 9-9411.

NEW PRODUCTS at wescon

Infrared Reference

385

Range is 200 to $\mathbf{1 , 0 0 0}$ C. Model 11-201 infrared radiation reference source comprises a black-body simulator with 28 -deg conical cavity radiator plus a temperature control that provides an accuracy of $\pm 5 \%$. An aperture plate with a selector disk containing seven etched aperture diameters is optional.

Barnes Engineering Co., Dept. ED. 30 Commerce Road, Stamford. Conn.
See at Show Booth 1308-09.

Pushbutton Switches

Lighted pushbutton switches in the 50PB series can be furnished in momentary and al-ternate-action designs. They have bush mounting and provide one-button control of two isolated circuits. Rating is 10 amp .

Minneapolis-Honeywell Regulator Co., Micro Switch Div., Dept. ED, Freeport. III.
See at Show Booth 3501-07.

Mica Capacitor

490
Welded-seal button mica capacitors can be furnished with capacitances up to 1.500 pf at 500 wvdc in a wide variety of mounting configurations. Solder-free design permits the use of high-temperature soldering for circuit installation.

Sangamo Electric Co., Dept. ED, Springfield, III.

See at Show Booth 2207-09.

Telemetry Antenna

Inflatable, helical antenna type $53000-2 \mathrm{~N}$ can be put into use with a hand pump. Gain is better than 9.5 db over isotropic with a vswr of less than 1.5:1 over the range of 215 to 265 mc . Weighing less than 10 lb , the $4-\mathrm{ft}$ antenna is for mobile tracking systems.
Andrew Corp., Dept. ED, P. O. Box 307. Chicago 42, III.
See at Show Booth 1821.
ELECTRONIC DESIGN • August 2, 1961

Sunlight Sensing Device

For attitude control and orientation in space vehicles. Accuracy is ± 0.05 deg. Called the Sun Sensor, this sunlight sensing device consists of a four-section photodetector and an optical system, which provides proportional displacement error signals. The optical system projects light on the detector elements by means of four light pipes, each covering $90-\mathrm{deg}$ azimuth and $82.5-\mathrm{deg}$ elevation.

The Bendix Corp., Eclipse-Pioneer Div., Dept. ED, Teterboro, N. J.

See at Show Booth 2801-03.

Military Resistors
423

Meet MIL-R-19365C. These adjustable military resistors are similar to the Dividohm industrial units. Resistance wire is wound on a ceramic core and covered with vitreous enamel. A complete range of sizes and resistances is offered. Ohmite Manufacturing Co., Dept. ED, 3675 Howard St.. Skokie, III.

See at Show Booth 1601-03.

Bandswitching Discriminator
390

For all IRIG channels. This bandswitching discriminator includes 23 frequency detectors and 23 input bandpass filters. Frequency deviation is $\pm 7.5 \%$; input impedance is at least 51 K ; input sensitivity is 10 mv rms; input dynamic range is 60 db to $10 \mathrm{v} \mathrm{rms}, 30 \mathrm{v}$ peak-to-peak.
Airpax Electronics Inc., Seminole Div., Dept. ED, Fort Lauderdale, Fla.
Availability: 3 to 6 weeks.
See at Show Booth 1716-18.

AMP INCORPORATED

GENERALOFFICES: HARRISBURG, PENNSYLVANBA
 CIRCLE 77 ON READER-SERVICE CARD

NEW PRODUCTS at wescon

Silver-Zinc Battery

Two-section silver-zinc battery model P134A provides 29 v at 1 amp for 25 min and 28 v at 8 amp for 3 min . Designed as an auxiliary power source for an ICBM decoy system, the unit exceeds MIL-E-5272, has an activation time of 1 sec or less and weighs 3 lb .
Telecomputing Corp., Power Sources Div., Dept. ED, 3850 Olive St., Denver, Colo.

See at Show Booth 2022-24.

Horizon Sensors

For space vehicles, series 13-160 horizon sensors detect thermal discontinuity between the atmosphere of the earth and that of outer space. They sense a local vertical to within 0.1 deg, sense pitch and roll errors relative to this reference axis, and produce control signals proportional to these errors.
Barnes Engineering Co., Dept. ED, 30 Commerce Road, Stamford, Conn.

See at Show Booth 1308-09.

Magnetostrictive Delay Lines

Long delays are featured in small units. Models 192, 157, 158 and 159 magnetostrictive delay lines include fixed-output types as well as adjustable-time and multiple-output laboratory types.

Deltime Inc., Dept. ED, 608 Fayette Ave. Mamaroneck, N. Y.

See at Show Booth 714.

SILICONE NEWS from Dow Corning

When Going Is Rough

For Environmental Engineering... Select Silicone-Glass Laminates

LOX cold . . . high Mach heat . . . corona . . . ozone . . . launching and sonic shock - more and more environmental challenges are being met by Dow Corning Silicones.

Take glass laminates bonded with Dow Corning silicone resins, as examples. Silicone glass laminates have good mechanical strength, low loss factor, low moisture absorption, excellent resistance to arcing, corona. corrosive atmospheres, fungus and contaminants. What's even more important, they retain these properties despite elevated temperatures, storage, environmental aging, rapidly changing ambients, vibration and shock. Heat resistance of silicone-glass laminates is exceptional . . . up to 250 C continuous for years . . . much higher for short time periods. Lastly, silicone-glass laminates, even in thin sections, have fine machinability and resist creep under pressure of terminal fasteners.

Lear, Inc., Grand Rapids, Michigan mounts the mica capacitors of their Model 2013J Stable Platform on this formed siliconeglass laminate terminal board. Lear engineers chose glass laminates after an intermediate material had been tried. Tolerance requirements, plus assembler variations, dictated a material that could be formed . . . would withstand soldering temperatures . . . would hold its form despite environmental extremes. Environ. mental conditions are: -40 to 160 F : shocks of 30 G 's for about 11 milliseconds each; complex wave vibration for 20 min utes in each plane as follows - $30-100 \mathrm{cps}$: $0.46 \mathrm{~g}^{2} / \mathrm{cps}$ and $100-2000 \mathrm{cps}: 0.015 \mathrm{~g}^{2} / \mathrm{cps}$. Silicone-glass laminates made with Dow Corning resins are available from leading laminators. Write for a list.

For 12.page manual "Silicones for the Electronic Enkineer" $\begin{gathered}\text { Write Dept. } 4020 \\ \text { Wrate }\end{gathered}$

first in
silicones

...Specify Silicones

Flexible from - $\mathbf{1 0 0}$ to 300F

Silastic ${ }^{\text {® }}$, the Dow Corning silicone rubber, is specified by Airtron. a division of Litton Industries, for the jacket of their silver-plated brass, and all-aluminum flexible waveguide designed to resist operating temperatures from -100 to 300 F . With its Silastic jacket, Airtron's Flexaquide is particularly suited for applications in the missile field where environmental operating conditions are severe. In addition, the jacket supports the waveguide during flexure, insures airtightness for pressurized applications. Silastic resists a long list of environments including: cold, heat, ozone, oxygen, voltage stress, thermal cycling, corona, corrosive atmospheres, and weathering.

Rigid, Void-Free Protection

This induction heating coil is used to keep metal molten. Metal splatter caused frequent insulation and coil failure until the decision was made to encapsulate the unit in Dow Corning solventless silicone resin. The resin - with zirconium orthosilicate filler - forms a tough. rigid armor that withstands temperatures as high as 300 C indefinitely . . much higher for short time periods. With no solvents to evaporate, the resin cures without voids. Note the excellent fill between plates of an encapsulated test capacitor.

Circie soi on reader service card

Circle 802 on reader service card

For Rapid Heat Dissipation

Dow Corning silicone fluids are used as dielectric coolants for rapid heat dissipation because of their thermal stability and relatively flat viscosity-temperature curves. They can be pumped at high speeds without breakdown due to shear ; maintain consistency from - 65 to 250 C ; and they will not oxidize or act as corrosives to metals even at high temperature. For these reasons and because of low vapor pressure. Sierra Electronics, Menlo Park, California specifies Dow Corning 200 Fluid as the heat transfer medium in their 100 and 500 watt, 60 ohm coaxial RF loads.

Snap-action, subminiature switches have uniform stress distribution throughout the spring. Called Cricket switches, they are rated at 5 amp at 125 to 250 v ac, inductive and resistive; 4 amp at 30 v dc, resistive; 2.5 amp at 30 vdc , inductive. These ratings are valid for altitudes to 50 ,000 ft . Weight is less than 0.08 oz .

Fansteel Metallurgical Corp., Contacts \& Specialties Div., Dept. ED, North Chicago, III. See at Show Booth 606-10.

Microfilm Readout

Magnification of 300 times or more is provided on a closed-circuit TV screen by this microfilm readout device. Any detail of the picture can be selected for examination. A continuous range of 10 to 300 diameters of magnification is available.
General Precision, Inc., GPL Dir., Dept. ED, Pleasantville, N. Y.
See at Show Booth 3309-21.

Pushbutton Switches

With millisecond pulse. Series 1 PB3000 pushbutton suitches produce a square wave pulse which is factory adjustable from 30 to 500 msec and 6 to 55 v . Temperature range is 0 to 55 C ; contact arrangement is spdt. Power required is 6 to 20 ma .

Minneapolis-Honeywell Regulator Co., Micro Switch Div., Dept. ED. Freeport, III.

See at Show Booth 3501-07.
Binary-Decimal Modules

For 1-2-2-4 and 1-2-4-8 systems, types BIP5501 and BIP-5502 modules convert binarycoded decimal information to decimal form. Called BIPCO Modules, they operate with transistor amplifiers such as the firm's Trixie driver modules.
Burroughs Corp., Electronic Components Div., Dept. ED, P. O. Box 1226, Plainfield, N.J. P\&A: \$45; stock.
See at Show Booth 2507-09.

PRECISION MEASUREMENTS

RESISTANCE DECADES-MODEL DR
Available in 2 wide variety of standard models. Accuracy at
1.0 and 0.1 ohm steps is $\pm 0.25 \%$. Accuracy of all other resistors is $\pm 0.1 \%$ of indicated value. Self.cleaning. molded
nylon and silver piated brass switch mounted below panel Zero resistance is less than 1003 ohms per dial. Hardwood
case. Models

 DR-700 and OR-7
8 ibs. shipDing.

ELECTRICAL SPECIFICATIONS			
model Mo.	Total Res. Onms	Decade steps	Accuracy
DA. 10	1.110.000	$10 \times(1,000+10,000+100,000)$	$\pm 0.1 \%$
DR-20	111.000	$10 \times(100+1,000 \div 10,000)$	$\pm 0.1 \%$
DR-30	11,100	$10 x(10+100+1,000)$	+0.1\%
DR-40	1,100	10x(1. $+10+100)$	$\pm 0.25 \& \pm 0.1 \%$
0R.500	11,111	$10 x(.1+1+10+100+1,000)$	± 0.25 \& $\pm 0.1 \%$
0n-510	111,110	$10 \mathrm{x}(1+10+100+1.000+10.000)$	$\pm 0.25 \& \pm 0.1 \%$
0R.520	1,111,100	$10 \times(10+100+1,000+10,000+100,000)$	$\pm 0.1 \%$
0R. 700	1,111,111	$10 \times(.1+1+10+100+1,000+10,000+100,000)$	$\pm 0.25 \& \pm 0.1 \%$
DR.710	11,111,110	$\begin{gathered} 10 \times(1+10+100+1,000+10,000 \\ +100,000+1,000,000) \end{gathered}$	± 0.25 \& $\pm 0.1 \%$

WHEATSTONE BRIDGES - MODEL RN Universally used for the measurement of all types of resistance devices and circuits where high accuracy is required. Models available for performing MurrayVarley Loop tests.				
ELECTRICAL SPECIFICATIONS				
Model	Total Res. of Decase	Ratie Dial Settings	Circuits	Dimensions
RN-1	$9 \mathrm{x}(1+10+100+1000)$.001, .01, .1, 1.0, 10, 100, 1000	$9 " \times 80 \times 61 / 20$
RN-2	$9 \times(1+10+100+1000)$	$\begin{aligned} & \text {.001, 01. 1, 1.0. 10, 1000, M10. } \\ & \text { M100, Miooo } \end{aligned}$	$\begin{aligned} & \text { Murray } \\ & \text { \& Variey } \end{aligned}$	9 " $\times 8$ " $\times 61 / 2^{\prime \prime}$
RN-3	$10 \times(1+10+100)+9(1000)$	1/1000, 1/100, 1/10, 1/9, 1/4, 1/1, 10/1, 100/1, M10, M100, M1000	$\begin{aligned} & \text { Murray } \\ & \text { \& Varley } \\ & \hline \end{aligned}$	$91 / 2^{\prime \prime} \times 8^{\prime \prime} \times 61 / 2^{\prime \prime}$

CAPACITANCE DECADES - MODEL DK
These are 3 -dial units with the sum of the dial setting indicating total capacity in microfarads. Mylar and silver. mica capacitors are used for high stability, low-loss characteristics. Polished hardwood case, engraved dial

Industríal Instrumemts.
 89 COMMERCE ROAD, CEDAR GROVE N. J.

CIRCLE 70 ON READER-SERVICE CARD

NEW PRODUCTS at wescon Brake-Clutches

Size 8 and 11 electrically operated brakeclutches have BuOrd mountings. Type size 11 has minimum brake or clutch torque of $16 \mathrm{oz}-\mathrm{in}$. and a total response time from brake-engage to clutch-engage of 23 msec . The size 8 is similar with a brake-engage, clutch-engage time of 12 msec .
Bowmar Instrument Corp., Dept. ED, 8000 Bluffton Road, Fort Wayne, Ind.
See at Show Booth 2922.

Static Inverter

Rated at 2.5 kw . This silicon-controlled rec tifier static inverter operates from submarine batteries and delivers three-phase, 400 -cps power. Regulation is 1.75% for voltage, 0.1% for frequency. Load range is no load to 150% and power factor is 0.8 to unity.
Varo Inc., Dept. ED, 2201 Walnut St., Garland. Tex.

See at Show Booth 3609-11.

Integrating Gyro

Angular rate and position are provided by this integrating gyro, a single-degree-of-freedom instrument. The algebraic sum of the individual signals is provided on a single pickoff Gimbal drift is 0.1 to 0.2 deg.

Telecomputing Corp., Whittaker Gyro Div. Dept. ED, 16217 Lindberg St., Van Nuys, Calif.

For mounting circuitry, they're neater - - quicker -- and cost a lot less

What could be neater? Or quicker? Leads are locked firmly. There's no pre-forming. No feeding through holes. No wrapping around a post. In experimental circuitry, components can be snapped out, re-used. In production equipment, terminals can bstaked quickly, automatically or by hand. Components can be mounted in place and sissipated pader in the terminal, not in dissipated faste the component.
Best news: the cost . . . far lower than conventional terminals. Average price: about zac apioce.

Alden miniaturized ratchet terminals are part of an integrated building block system that lets you lay out and package a singte unit or a complete electronics system with "off-the-shelf" Alden components for plug-in, modular construction.

For complete information, write:

ALDEN

PRODUCTS COMPANY 8139 North Main street, Brockton, Mass. WESCDM B00TM \#4219
Circle to on reader-service caro ELECTRONIC DESIGN • August 2, 1961

Stability is $\pm 2 \times 10^{-9}$. The vlf synchrophase receiver frequency standard provides simultaneous outputs of 10,100 and $1,000 \mathrm{kc}$. The local reference source, a highstability oscillator, is adjusted through a servo system to a signal from NBA or WWVL.
nal from NBA or WWVL.
Motorola Inc., Communications
Div., Dept. ED, 4501 W. Augusta Blvd., Chicago 51, Ill.
P\&A: \$5,850; 3 months.
See at Show Booth 1116.

Name Plates

Two types are offered: aluminum foil and polyvinyl chloride. These self-adhesive name plates are mounted on dispenser cards. The aluminum foil type resists temperatures to 350 F as well as solvents, oil and dirt. The vinyl plates are for use where color coding is needed.
W. H. Brady Co.. Dept. EI), 727 W. Glendale Ave., Milwaukee 9. Wis

See at Show Booth 4831-33.

Two-Channel Dynograph 373

Sensitivity is to 1 Hv per mm with preamplifiers and 1 mv without. Model RS two-channel dynograph has selectable paper speeds of $1,5,20$ and 100 mm per sec. Frequency response is within 10% for 150 cps and 20% to beyond 200 cps for ink and electric recording. Transistorized, it can be rack mounted or portable.
Offner Electronics Inc., Dept. ED, 3900 River Road, Schiller Park, III.
Availability: 30 days.
See at Show Booth 1513-14.

RAYTHEON TRANSFORMER TALK

 facts about transtormers that have solved equipment desizn problems. No. 4 in a series.
Look at what epoxy encapsulation

has done for high-voltage plate transformers

Raytheon encapsulation tech. niques are successfully applied to 3.25 KVA units for startling reductions in size and weight.
The transformer illustrated at left measures just $99 / 18 \times 153 / 18 \times 911 / 18 \mathrm{in}$. Yet, it will deliver 11,750 dc volts at 0.275 dc amperes in a full-wave bridge rectifier circuit.
Reliability? Raytheon produced over 500 units of this design for military applications without a single reported failure.
Epoxy encapsulation, now commonly used in small transformers, had never before been successfully applied to large high-voltage power transformers. Now, with newly developed techniques in casting and curing epoxy, Raytheon has solved one of the toughest encapsulation problems known.
This same kind of engineering experience and skill is being applied to a wide range of transformer design and production problems from small silicone rubber impregnated units for high-temperature application to highvoltage designs like the one described here.
Write today for descriptive folder and technical article describing Raytheon encapsulated transformers. Address Magnetics Operation, Microwave and Power Tube Division, Raytheon Company, Foundry Avenue, Waltham 54, Massachusetts.

RAYTHEON

TO PROVIDE IMPROVED

 SERVICE AND DESIGN INENGINEERED
SHIELDING!

Now, a new name from an old Company in the field of RF Shielding brings you a complete line of fine products, developed and produced by specialists in engineered shielding. The "old company" is the Electronics Division of Metal Textile Corporation-the "new name" is Metex Electronics Corporation!

Born of industry's growing acceptance and demand for Metex Shielding, Metex Electronics Corporation takes with it all the skilled key engineering and production per-
sonnel of the Electronics Division of Metal Textile Corporation. This is your assurance of continued and even better product performance and service.
With this new broadened operation, Metex Electronics can definitely deliver the finest materials and latest advancements to solve your present and future RF problems. Write today for a complete new fact-filled Metex Data File and the name of your local representative. No obligation of course.

METEX ELECTRONICS CORP. WALNUT AVENUE, CLARK, NEW JERSEY

APPLICATION PROVED ENGINEERED SHIVELING CIRCLE AI ON READER-SERVICE CARD

NEW PRODUCTS at wescon

Frequency Converter

Range is to 220 mc with an accuracy of ± 1 count when the unit is used with a $10-\mathrm{mc}$ digital frequency meter. Model 420 frequency converter has an input impedance of 50 ohms, an input sensitivity of 2 mv and an output amplitude greater than 1 v .
Transistor Specialties, Inc., Dept. ED, Terminal Drive, Plainview, L.I., N.Y.
P\&A: 8710; so days.
See at Show Booth 4101.

Primary AC Shunts

Range is 5 ma to 26 amp . Model HCS- 1 primary ac shunts are coaxial, four-terminal resistors with a minimum of self-induction. Accuracy of ac-dc difference from 5 cps to 50 kc is 0.02%. Since no ratio calculation is used, the absolute resistance of the shunt does not affect the measuring accuracy. Connectors are uhf-type.

Holt Instrument Laboratories, Div. of Holt Hardwood Co., Dept. ED, Oconto, Wis.
P\&A: \$700; 45 days.
See at Show Booth 3305-07.
Vacuum Oven

Range is to $10^{-6} \mathbf{m m ~ H g}$ with temperatures to 400 C. Model 1631 vacuum oven has Fiberglas insulation and an all stainless steel interior. A thermocouple indicating-controlling pyrometer is used. The control box, mounted on top, contains all electrical equipment.
Temperature Engineering Corp., Dept. ED, 1 Tempcor Blvd., Riverton, N. J.
P\&A: 11,695 ; so days.
See at Show Booth 4922.
ELECTRONIC DESIGN • August 2, 1961

Precision Inverter

Provides 800-cps power regulated to $\pm 4 \mathrm{cps}$ for all changes of line, load and temperature. Model EA-276 precision inverter has power channel outputs of $103.5,115.0$ and 126.5 v at 0.5 amp , single phase, externally programable. Single-channel output is 0.1 to 39.999 v at 0.8 ma. single-phase, externally programable in $1-\mathrm{mv}$ steps.
Thermador Electrical Manufacturing Co., Div. of Norris Thermador Corp., Dept. ED, 715 S. Raymond Ave., Alhambra, Calif.
P\&A: \$3,250; 6 weeks.
See at Show Booth 1811.

Oscilloscope Cameras

492
For Polaroid cut film. The $4 \times 5 \mathrm{in}$. prints make it possible to multiple-expose a $10-\mathrm{cm}$ timebase. Types 3006 and 3007 oscilloscope cameras have $F / 1.9$ flat field and $F / 4.5$ lenses, respectively. Types 3008 and 3009 are similar but have data chambers to record identifying information on the film.

Analab Instrument Corp., Dept. ED, Cedar Grove, N. J.
P\&A: \$480 to \$585; stock.
See at Show Booth 1218.

Counter Module

For $1-\mathrm{mc}$ use, type DC-116 Beam-X counter module has 10 outputs for functions such as operating printers and presetting. Consisting of three silicon transistors, a shielded Beam-X switch and a Nixie indicator tube, the unit is compatible with the firm's $100-\mathrm{kc}$, type DC-114 counter.
Burroughs Corp., Electronic Components Div., Dept. ED, P. (). Box 1226, Plainfield, N. J. P\&A: \$125; October.

See at Show Booth 2507-09.
ELECTRONIC DESIGN • August 2, 1961

NEW-Fluke Precision Potentiometers Provide 10 TURN RESOLUTION...

WITH ONLY

 11/2
TURNS

-Save: Time-Space-Effort-Cost

The FLUKE Model 20A Vernier Potentiometer provides resolution equivalent to that of 10 turn helical potentiometers with only 550 of shaft rotation. At the same time, the 20A requires only a fraction of the space occupied by helical potentiometers, and, in fact, occupies less space than many single turn, low resolution potentiometers.
This high resolution, small size, and ease of operation, is achieved by a unique FLUKE patented design. A schematic of the Model 20A is shown below. Basically, the Model 20A consists of a main resistance element and a concentric smaller vernier. The vernier element is connected to the main element through two contacts spaced 30^{-}apart. This spreads any 30° segment of the main winding over the 270 of vernier rotation. The vernier slider is rotated by the potentiometer shaft. As the shaft is turned and the vernier slider completes its rotation, a mechanical stop causes the vernier frame to turn, moving the spaced vernier contacts along the main element. This method provides a coarse adjustment at either end of the vernier adjustment.
This unique design results in a versatile, high performance potentiometer. For example, thin card-type windings reduce residual reactance and allow operation at much reduce residual reactance and allow operation at much DC specifications. The one and one-half turn control of

NEW FLUKE MODEL 20A
the entire adjustment range allows substantial time savings in frequently adjusted or multiple potentiometer installations such as analog computers and data logging systems. Equipped with a screwdriver slotted shaft, the Model 20A also makes an ideal high resolution trimmer.

The Model 20A is available from stock in resistance values ranging from 100 ohms to 25 K ohms, and can be provided with a calibrated readout dial and lock-type knob.
If greater resistance values are required, write for information on the FLUKE Models 21A, 22A, and 30A. The Model 21A and 22A have increased power ratings and are available in resistance values to 100 K . The Model 30A features resolution of 20 times that of the 20A series, resistance values from 1 K . to 100 K , and a power rating of 5 watts.

MANUFACTURERS OF ELECTRONIC TEST AND MEASURING INSTRUMENTS FOR LABORATORY-PRODUCTION LINE circle er on reader-service caro

NEW PRODUCTS
at wescon

Variable-Speed Drives 372

For $1 / 8$ to $3 / 4-\mathrm{hp}$ motors, the 400 series variable-speed drives have outputs from 0 to $1,200 \mathrm{rpm}$ with $1,800 \mathrm{rpm}$ input. Features include built-in overload protection, lever control for speed with no slipping and venting of the motor to reduce heat rise.
Zero-Max Co., Dept. ED, 2845 Harriet Ave., S., Minneapolis 18, Minn.
P\&e4: \$45 to \$500; stock.
See at Show Booth 416.

Logic Pack
407
Silicon transistor-diode logic pack, housed in a TO-5 case, provides an integrated circuit component with a fan-out of five diodes. Switching times are on the order of 20 nsec .
Philco Corp., Lansdale Div., Dept. ED, Lansdale, Pa.
See at Show Booth 919-21.
Military Relay

High-speed, spdt, 2-amp military relay weighs less than 0.017 oz and measures 0.275 in . in diameter and 0.9 in . long. Called the Micro-Mite, it is offered in a wide range of ac and dc coil voltages and in several mounting designs. Electro-Mechanical Specialties Co., Inc., Dept. ED, Whittier, Calif.
P\&A: \$24; stock.
See at Show Booth 1122.

greater derating margin for higher reliability...at lower cost

 than lower rated typesWestinghouse 2N1015 and 2N1016 transistorsCircuits which use power transistors can be upgraded in reliability by changing to the Westinghouse 2 N1015. 2N1016 series. The low saturation resistance and high dissipation rating (150 watts) of these transistors mean cooler operation-more safety factor in service. In fact, the 2N1015-2N1016 series offers twice the derating margin you can get in competitive types. Their high voltage ratings-up to 200 volts V_{cE}-also mean an end to series connections of lower rated types. Yet all this is yours at less cost than you are now paying.
In addition to these manycircuit advantages. the 2N1015. 2N1016 transistors give you the reliability assurance of

For missile checkout, the DMM digital multimeter measures dc and ac absolute voltage; dc to dc, and ac absolute volage; dc to dc,
ac to ac, ac to dc and dc to ac voltage ratios. It is comprised of the V16-AD converter with signal conditioner and programing modules. Military designation is AN/ TS-5022.
Adage, Inc., Dept. ED, 292 Main St., Cambridge 42, Mass. See at Show Booth 3610.

Metal Pull Handles

409
In 3, 4, or 6 -in. lengths. These metal pull handles can be furnished in stainless steel aluminum, in bright or nonreflective finishes. Diameter is $5 / 16$ in.
Raytheon Co., Industrial Components Div., Dept. ED, 55 Chapel St., Newton 58, Mass.
P\&A: \$0.86; stock.
See at Show Booth 3404-22.

Magnetic Tape

For audio use, this magnetic tape has a signal output strength regulated to less than 0.5 db . Base material is acetate or Mylar and is precoated. A static coating process is also used as the final prevention against dust. Tape is $\mathbf{1 / 4}$ in. wide; standard reel lengths can be furnished.
Burgess Battery Co., Div. of Servel, Inc., Dept. ED, Freeport, III.

See at Show Booth 1719.
\rightarrow CIRCLE 83 ON READER-SERVICE CARD

When engineering specifications require continuous duty and quiet long life, Air Marine offers multistage blowers for low volume, higher pressure applications to 1 psi with air delivery to $10 \overline{0}$ CFM. Featured is long life with low noise. Where high pressure is required or on such vacuum applications as tape retention, the Air-Marine multistage blowers are the efficient answer.

Our field engineers will gladly assist you in the selection and application of motors, blowers or fans.
Air Marine motors, blowers and fans have been designed and tested to meet the specifications of both the military and industry.

CIRCLE SA ON READER-SERVICE CARD

NEW PRODUCTS at wescon

Electronic-Flash Unit

395
Exposure time is $\mathbf{1 / 2} \mu \mathrm{sec}$ for photography of bullets and other high-velocity objects. With an adaptor, the Microflash electronic-flash unit becomes a light source of silhouette photography and shadowgraphy. A $1 / 16-\mathrm{in}$. aperture delivers 400,000 candle-power for $1 \mu \mathrm{sec}$.

Edgerton, Germeshausen \& Grier, Inc., Dept. ED, 160 Brookline Ave., Boston, Mass.

See at Show Booth 3518-20.

Zener Diodes

Rated at 400 mw , these subminiature glass Zener diodes have a dynamic impedance of 5 ohms with an I_{z} of 20 ma . Voltage range is 6.8 to 33 v . Types 1 N 957 to 973 have $\pm 20 \%$ tolerance; $1 N 957 \mathrm{~A}$ to 973 A have $\pm 10 \%$ tolerance; types IN95iB to $973 \mathrm{~B}, \pm 5 \%$. Types 1N962B to 973B meet MIL-S-19500/117.

International Rectifier Corp., Dept. ED, 233 Kansas St., El Segundo, Calif.
P\&A: $\$ 2.25$ to \$4.00; stock.
See at Show Booth 1701-03.

General-Purpose Relays

402
Are 1, 2 or 3 -pole, single or double throw with a contact rating of 5 amp at 115 v ac or 32 v dc. Model GR relays are available with coil voltages to 440 v ac at 60 cps or 230 v dc. They can be used in printed-circuit assemblies, for below-chassis, above-chassis or plug-in connections.

Ohmite Manufacturing Co., Dept. ED, 3672 Howard St., Skokie, III.
Availability: stock.
See at Show Booth 1601-03.

Oscilloscope Plug-In

491
Dual-channel plug-in type 300 has a bandwidth of dc to 500 kc with a sensitivity of 1 mv per cm . Sweep range is from 0.5 sec to 1μ sec per cm in 18 ranges. Trigger and sweep circuits are built-in. It can be used with the firm's main frames.

Analab Instrument Corp., Dept. ED, 30 Canfield Road, Cedar Grove, N. J.
P\&A: \$260; stock.
See at Show Beoth 1218.

$\pm \underline{1}$
 accuracy on all ranges

For the first time, accuracy of ± 1 percent is now available in multi-range Panel-Mounting Electronic Voltmoters (PMEV's)

Metronix offers two such instruments: Model 300-1 for DC measurements and Model 311-1 for AC measurements.

These instruments, like all Metronix PMEV's, also offer these familiar advantages:

- Continuous monitoring of critical parameters
- Minimum panel space - no larger than the meter itself
- Maximum reliability
- Easy adaptability to special needs

Call, wire or write for dara sheets. We welcome inquiries on special volsage monitoring problems.

METRONIX, inc. a subsidian of Aesembly Products, Inc. chesterland. omie
Telephone: HAmilton 3-4440
Visil Booth 111 , NEC
CIRCLE 5 ON READER-SERVICE CARD

Magnet Wires

397
High－permeability Netic，Co－Netic AA and Co－Netic B alloy magnet wires are available flat or round in sizes 3 to 40 AWG．They offer a low reluctance path to the magnetic flux concentrating the field in transformer and oth er inductance applications．

Perfection Mica Co．，Magnetic Shield Div． Dept．ED， 1322 N．Elston Ave．，Chicago 22，Ill． Availability：stock

See at Show Booth 1606

Transistor Drivers

For Nixie tubes．Called Trixie Modules，these silicon transistor drivers use 10 npn silicon transistors to amplify low－level signals．Type 41 operates miniature indicator tubes and type 58 operates standard and large sizes．They are suitable for both industrial and military equip－ ment．

Burroughs Corp．，Electronic Component Div， Dept．ED，P．O．Box 1226，Plainfield，N．J．
P\＆A：\＄40；stock．
See at Show Booth 2507－09．

Electronic Drawer Handles

398
With finger－tip action．The Power－Lock han－ dles have a recessed lever which cams the last $3 / 4-\mathrm{in}$ ．of drawer travel with a mechani－ cal advantage of $6 \cdot 6: 1$ ．They provide a secure panel－to－rack lock and meet applicable Mi specs．
Jonathan Manufacturing Co．，Dept．ED， 720 E．Walnut Ave．，Fullerton，Calif
P\＆A：\＄18；stock
See at Show Booth 4830 ．

Tape Punch and Reader

489
Speed is 100 characters per sec．The BRPE tape punch and the CS tape reader operate together in tape－to－tape communications sys tems．The punch produces perforated tape and can be furnished for 5 －level code or for 6， 7 or 8 －level codes．The tape reader can read perforat ed or chadless tape and transmit data from the BRPE or slower－speed equipment．

Teletype Corp．，Dept．ED， 5555 Touhy Ave． Skokie，III．

See at Show Booth 4418－20．

NEW
from Belden

NEW！

Mบ！！！！！！！！リリリ

NEWI HOOK－UP WIRE

Complete Range of New Mil－Spec Numbers
newl
Mil－W－76B－Plastic MW－Vinyl－1000V－80C MW－Shielded－1000V－80C MW－Shielded－Nylon Jacket－ 1000V－80C
MW－Glass Braid－1000V－80C MW－Glass Braid－Shielded－ $1000 \mathrm{~V}-80 \mathrm{C}$
MW－Nylon Jacket－1000V－90C HW－Vinyl－Gauges 16－22 2500V Gauges 6－14－600V－80C HW－Glass Braid－600V－80C LW－Vinyl－300V－80C LW－Nylon Jacket－300V－90C
new！
Mil－W－1G878D－Plastic
B－Vinyl－600V－105C
B－Vinyl－Nylon Jacket．600V－115C
C－Vinyl－1000V－105C
C－Vinyl－Nylon Jacket－1000 V－115C
D－Vinyl－3000V－105C
new！
Mil－W－5086A \＆Mil－C－7078A Aircraft Power and Lighting Cables
Mil－W－5086A－Types $1 \& 2-600 \mathrm{~V}$ Mil－C－7078A－Type 1－600V

One wire source for everything electronic and electrical
masnet wire lead wire e lectronic wire control cables－power supply cords． welding cable eutomotive and aircraft wire a cable

SENSITIVE 2 AMP RELAY for
*15 gto $\mathbf{2 0 0 0} \mathbf{c p s}$ vibration

OPERATING CONDITIONS:

aVERAOE PULL-IN POWER:
SPDT 25 milliwatts at $25^{\circ} \mathrm{C}$
DPDT 40 milliwatts at $25^{\circ} \mathrm{C}$
CONTACT RATINOS:
Non-inductive - 2 amperes at 29 volts d-c
or 1 ampere at 115 volts a.c
Low level contacts are available on request vieration:
5.55 cps at 0.12 inch double amplitude
$55-2000 \mathrm{cps}$ at a constant 15 g

- 20 g available on request вноск:
50 g operational TERMIMALS:
0.2 inch grid spaced WEIOHT:
1.1 ounce maximum Write for Bulletin JSH $\# 62$
8 ALLIED CONTROL ©
ALLIED COMTROL COMPANY, INC.
a East emd avenue, mew vonk 2i, M. y. CIRCLE BT ON READER-SERVICE CARD

NEW PRODUCTS at wescon

Oscilloscope Camera

With $\mathbf{F} / 4.5$ lens. Type 3005 oscilloscope camera is for use in applications not requiring the fastest possible recording capabilities. It provides prints in 10 sec with type 47 Polaroid film.

Analab Instrument Corp., Dept. ED, Cedar Grove, N. J.
P\&A: \$370; stock.
See at Show Booth 1218.

Voltohmmeter

Five-digit model M25 has an accuracy of $\pm 0.01 \% \pm 1$ digit in ranges of $\pm 9.9999,99.999$, $9999.9 \mathrm{v} ; 0.99999 ; 9.9999,99.999$ voltage ratio $9.9999,99.999,999.99 \mathrm{~K}$. All control functions can be remotely operated. Digital output signals are furnished to operate printed, tape and card punch systems and voltage comparators.

Non-Linear Systems, Inc., Dept. ED, Del Mar, Calif.
P\&A: $\$ 6,000$; by September.
See at Show Booth 1518-20.

Variable Inductor

Frequency drift is less than 1% over a wide temperature range due to built-in heater. Based on 1-w control power, model OM-101 variable inductor has a range of 10 to 20 mc min and 40 to 80 mc max. Maximum inductance is $1.6 \mu \mathrm{~h}$, with $0.4 \mu \mathrm{~h}$ at saturation.

Vari-L Co., Inc., Dept. ED, 207 Greenwich Ave., Stamford, Conn.
P\&A: \$60; stock.
See at Show Booth 4312.

Military Blower

532
Provides 12 cfm at $0.2-\mathrm{in}$. SP. Equipped with a $60-\mathrm{cps}$ blower, the STA-300-11050 blower is designed for military ground applications and can be used in test equipment, power supplies, radar, transmitters and other equipment. Weight is 0.5 lb .
The Torrington Manufacturing Co., Dept. ED, Torrington, Conn.
Availability: 5 to of weeks.
See at Show Booth 4117.

REDUCE TOROIDAL COIL WINDING COSTS

 with these NEW WINDING MACHINESMODEL \mathbf{S} - first to have fully: transistorized in-line digital electric turns and pootage counting pick-ups, Torotalall. winds 16.650 nire and down to $0.05^{\circ}(1$ is $)$ finished I.D.? nell twist-locking interchangeable heads for rantom arol precise laver winding

MODEL 1S-I-lias high speed. 4-dikit prederermining electromechanical transistorized counter and photo-electric turns
and fowtage comating pick-ups. and foutage counting pick-ups.
Wire range $120-140$ Alir;
 82750. Complete.

> WESCON SHOW
Booth No. 4532

UNIVERSAL \qquad
4
MANUFACTURING COMPANY, Inc.
$1168 E D$ Grove Streat, levington 11, N. J. ESsex $4-9800$
The most COMPLETE line of TOROIDAL equipment in the werld.

CIRCLE 88 ON READER-SERVICE CARD

GURLEY

Photoelectric PULSE GENERATORS
Add...Subtract...Count
Gurley photoelectric pulse generators are shaft-driven, deliver electrical pulses at terminals. Pulse frequency is directly proportional to shaft speed; pulse amplitude is independent of shaft speed. Used basically as rate generators or angle-measuring devices. All available with direction-sensing photo cells.

Model 8602
Housing Diameter 1.375"
Length Up to 1024 apertures Inertia2. $2.8 \mathrm{Gm} \cdot \mathrm{Cm}^{2}$
Torque ... less

Model 8603

Synchro Mount 3.4 ${ }^{\text { }}$ dia. Length. $\mathrm{Gm} \cdot \mathrm{Cm}^{2}$ Up to 5000 aperture $340 \mathrm{Gm} \cdot \mathrm{Cm}^{2}$
an 0.1 in .0 oz . Torque ... less than 0.1 in.-oz.
Built-in amplifiers availablo.

Write for information on one or all. W. \& L.E. GURLEY, TROY, N.Y. 525 fulton Stroot

FOR THE ELECTRONIC ENGINEER FREE-\$2,800.00

EXTRA IN 1961

It's true. This is the average increase in salary of the Electronics Men placed through Cadillac in 1961
The nation's largest placement service, Cadillac is employed by 520 of the nation's leading electronic firms-from coast-to-coast. Our service is completely confidential and available to you absolutely free of charge. In all probability, at least 3 dozen of our clients are looking right now for a man of your background.

FREE-Opportunities Bulletin

Find out the top positions in electronics every month. Send us your name and home address direct or circle Reader Service Card No. 890

LON D. BARTON CADILLAC
ASSOCIATES, INC. 29 East Madisom Blag. Chicage 2, Illinois Flamecial 69400

CIRCLE B9O ON READER-SERVICE CARD

CIRCLE OI ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 2, 1961

Brushless Encoder

Output is true binary and has a total count of 2^{13} for each input-shaft revolution. The Dicap single-shaft encoder provides a serial or parallel output from pulse or step command. The output level is about +10 v for a " 1 " and about $+1 / 2 \mathrm{v}$ for a " 0 ". Output impedance is about 2,000 ohms.
General Precision, Inc., Kearfott Div., Dept. ED, 1150 McBride Ave., Little Falls, N. J.

See at Show Booth 3309-21.

Frequency Meters

668
Two types. Model 1130-A digital-time and frequency meter include data storage for continuous display. Model 1142-A frequency meter and discriminator is an analog meter with a direct-reading accuracy of $\pm 0.01 \%$
General Radio Co., Dept. ED, W. Concord, Mass.

See at Show Booth 2202-04.

Plug-In Unit

Vertical amplifier and two independent operational amplifiers comprise type 0 plug-in unit, for use with the firm's oscilloscopes. The preamplifier has a $20-\mathrm{mc}$ passband and a sensitivity of 50 mv per cm . The operational amplifiers have $12-\mathrm{mc}$ gain-bandwidth product and open-loop dc gain of 2,500 .
Tektronix, Inc., Dept. ED, P. O. Box 500, Beaverton, Ore.

See at Show Booth 1726-28, 1823.

Digital Clocks

Output is 8-4-2-1 binary-coded decimal and decimal in the same clock. Model 2000 digital clocks have parallel outputs with a separately wired common for each decimal digit position for easy conversion to serial form. Time resolutions of minutes, tens of seconds or seconds are available.
Chrono-Log Corp., Dept. ED, Box 4587, Philadelphia 31, Pa.
P\&A: $\$ 335$ to $\$ 600$; 2 to 6 weeks.
See at Show Booth 4503-05.

Color ILLUMINATED LEVERS!

It's Red

For the first time, an illuminated switch designed to color code your switching positions! One switch, one lamp - replaces an ordinary switch and up to 3 indicator lamps. Reduces panel space! Eliminates costly wir ing!

The "Lever-Lite" Switch, Series 25000, combines fast action multiple-circuit switching - in 2 or 3 position action - locking or non-locking types with "human-engineered" illuminated colors. The serrated lever actuator adds dimensional visibility for greater operator reaction. Your choice of these colors - Red, Green, Amber, White. Two lamp voltages - 6 V and 28 V .

The "Lever-Lite" is applicable to many control panels where space is at a premium -illumination is desirable and where the proven dependability of leaf-type switching is needed. Write for details.

Eooth 1510 Woscon Show. Auguz 22-25 . Cow Polace o San Frameisc
STTTMERAFT.

CIRCLE 92 ON READER-SERVICE CARD

NEW FROM FAIRCHILD

6
 NS
 E
 CT_{5} M

3 nsec propagation delay

SILICON planai 2NT09

MADE POSSIBLE BY FAIRCHILD PLANAR PROCESS

ULTRA-FAST SPEED

$100-200 \mathrm{mc}$ saturated switching circuits are now made possible and practical because of: typical fT of 800 mc , average DC propagation delay time of 3 nsec. (6 nsec . max.), 3 pf Cob (max.) and 2 pf CTE (max.).

LOW LEAKAGE

With the 2N709 you can design micropower high speed satellite circuits with minimum allowances for leakage. Provides the parameter stability and uniformity characteristic of Fairchild's silicon Planar devices.

LOW COST

2N709 is on distributor shelves, ready for immediate delivery. You can have this ultra-fast, guaranteed, high-performance device at prices practical for the "breadboard" budget as well as quantity production.

Contact your Fairchild Distributor or Field Office. Or write for complete specifications and pricing information.

SEE US AT WESCON BOOTH NO, 814-16

545 WHISMAN ROAD, MOUNTAIN VIEW. CALIF. YORKSHIRE 8-8161 - TWX: MN WW CAL 853
A DIVISION OF GAIRCHILO CAMERA AND IASTRUMINT CORPORATION

Eact, reel of l-inch tape recorded by the new Porter High Density Recording System will hold as much data as eleven reels recorded by the most common computer system! This dramatic break-through makes recording so reliable that in 40 hours of continuous operation, less than 2 seconds of re-read time is required to recover drop-outs due to transient error! And you get data transfer rates of 360.000 alpha-numeric characters per second at densities to 1500 bits per inch on 1 -inch tape with drop-outs fewer than 1 in 10^{κ}.
In the BENDIX G-20 COMPUTER SYSTEM delivered to the Carnegie Institute of Technology, the Potter HI-D te:hnique has proved completely reliable. To learn how High Density Recording can be applied to your data handling problem . . . write for details today.

NEW PRODUCTS at wescon

Transistorized Instruments

Use submodules including differential and chopper stabilized operational amplifiers to provide a variety of ranges. A typical instrument in the 1800 series provides a variable gain of 0 to 1,000 from 0 to $20,000 \mathrm{cps}$ with an input impedance of greater than 1 meg and an output impedance suitable for driving a 100-ma galvanometer.

Burr-Brown Research Corp., Dept. ED. Box 6444. Tucson, Ariz.

P\&A: $\$ 225$ to $\$ 575$; stock to 60 days.
See at Show Booth 3320.

Silver-Zinc Battery

675
Long-life Silvercel silver-zinc battery can achieve more than 440 cycles during 30 months of application. The compact unit is suitable for a wide variety of uses.

Yardney Electric Corp., Dept. ED, 40-52 Leonard St., New York 13, N. Y.

See at Show Booth 3402.

DPDT Chopper

639
For 400-cps use. This dpdt chopper has less than $1-m v$ spurious signal caused by both noise and thermal drift. Action is make-before-break. Maximum difference in phase lag is 3 deg. Vibration limit is 30 g at up to $2,000 \mathrm{cps}$. The Bristol Co., Dept. ED, Waterbury 20. Conn.

See at Show Booth 3316-18.

Power Resistors

Rated at 10,25 , and 50 w . Types MC and MCX miniature, wirewound power resistors are inductive and noninductive units, respectively. Operating temperature range is -55 to +275 C ; tolerance is 0.05%; insulation is better than $1,000 \mathrm{v}$ ac; temperature coefficient is 0.00002 per deg C.

California Resistor Corp., Dept. ED, 1631 Colorado Ave., Santa Monica, Calif.
See at Show Booth 3506-08.

MANUFACTURED TO YOUR SPECIFICATIONS

Large stocks of many different glass types and sizes-including the unusual. Available for immediate redraw.
Customer minded - We constantly up. grade equipment and techniques to keep ahead of your needs. You'll find us especially helpful on difficult requirements.
On-time deliveries-GARNER is geared for volume production to tight specifica. tions - on a day-to-day basis. You get the parts you need... when you need them.

Send for complete data.
ITT. H. GARNER COMPANY
177 S. Indian Hill Elvd.
Claremont, Calif. - NAtional 63526

Direct-reading model 375 vacu-um-tube voltmeter has ranges of $1.5,5,15,50,150,500$ and $1,500 \mathrm{v}$ dc and ac, rms and peak to peak; 5, 50 and $500 \mathrm{ma} ; 0.5$, $5,50,500 \mathrm{~K}, 5,50$ and $1,000 \mathrm{meg}$. Accuracy is $\pm 3 \%$ full scale; input resistance is 11 meg on all dc ranges.

B\&K Manufacturing Co., Dept. ED, 1801 W. Belle Plaine Ave., Chicago 13, III.
P\&A: \$89.95; stock
See at Show Booth 4122.
Punched-Tape Reader 524
Speed is 8,000 bits per min. Using $70-\mathrm{mm}$ Mylar tape, this punched-tape reader simultaneously processes 32 parallel Form A contacts rated at $28 \mathrm{v}, 150 \mathrm{ma}$. It is claimed to have a reliability of 99.99997%. It can be rack mounted or sealed for remote installation. Mil specs are met.
Chalco Engineering Corp., Dept. ED, 6043 Hollywood Blvd., Los Angeles 28, Calif.

See at Show Booth 2703.

Energy-Storage

Capacitors

Inductance is $0.04 \mu \mathrm{~h}$ or less. This 2,800-J energy-storage capacitor has s life expectancy of better than 100,000 ringing train discharges. Voltage reversal above $\mathbf{9 0 \%}$ is possible. Units rated at 50 kv dc with an inductance of $0.015 \mu \mathrm{~h}$ are also available.
Sangamo Electric Co., Dept. ED, Springfield, III.
See at Show Booth 2:07-09.
CIRCLE 96 ON READER-SERVICE CARD

HOW TO GET HIGH TEMPERATURE STABILITY AND INDUSTRIAL ECONOMY

With New TI Low-Cost

Silicon Industrial Transistors...

You can assure your customers optimum circuit performance up to $125^{\circ} \mathrm{C}$ when you design-in new, low-cost TI silicon industrial transistors. Priced comparable to lower-temperature industrial devices, these new TI silicon industrial units provide the high performance your industrial designs require.
Get greater margins of operational safety by applying these new silicon industrial transistors to your process control, communication, aviation system, electronic instrumentation, and computer applications today.

Characteristics					aplicetions					
TYPE	MIN BVicbo	DC Beta Range	Maxicbo@ $100^{\circ} \mathrm{C}$	1 ab (typ)	E		$3{ }^{3}$			+
T1480	50 v	${ }^{9-360}$ - 5 ma	$50 \mu \mathrm{e}$ @ 30 v	1 mc	T1480					
T1481	80 v	9-36**. 5 ma	$50 \mu \mathrm{c}$ ¢ 30 v	1 mc	T1 481					
T1 482	20 v	>20 @ $30 \& 150 \mathrm{ma}$	50 ma ¢ 10 Vt	60 mc			T1482	T1482		
T1483	40 V	20-60@ 150 ma	50 ma ¢ 30 ut	60 mc			T1483	T1 483		
T1481	40 V	40-120 ® 150 ma	$50 \mathrm{\mu a}$ @ 30 lt	60 mc			T1 464	T1 484		
T1 485	20 V	15-60 ¢. 10 ma	20μ \& ¢ 15 vt	200 mc					T1 485	
T1 486	80 v	20-80 ¢ 200 ma	$300 \mu \mathrm{a}$ (a 60 v :	15 mc			F1 186			
T1 487	80 V	20-80 ¢ 200 ma	$300 \mu \mathrm{u}$ ¢ 660 v \%	15 mc			T1487			
TI 492	40 v	$15-45^{\circ}$ ® 1 ma	$50 \mathrm{\mu a}$ @ 30 V	8 mc		T1492				
T1493	40 V	15-45 ¢ 10 ma	$50 \mathrm{\mu a}$ e 20 v	20 mc		T1 493				
T1 494	40 v	40-125 ¢ 10 ma	50μ a @ 20 v	20 mc		T1 494				
T1 495	40 V	$120-250$ «4. 10 ma		20 mc		II 495				
T1496	40 v ,	$>10-3 \mathrm{ma}$	$75 \mathrm{\mu a}$ ® 40 V	1 mc						T1496

CUTTING

SORTING

PUNCHING

The examples shown above have one thing in common. They fit into com pect space. Design engineers, for ex ample, often find that a Ledex Rotary Solenoid will fit into one-quarter to one-half the space of a straight pul solenoid.
This compactness results from the unique Ledex design which converts an efficient short axial stroke into high torque to size rotary motion. A more uniform force is produced throughout the stroke, making use of otherwise wasted energy at the end of the stroke. This rotary motion can be used directly as in the cutting and sorting examples above, or can be

Compact Solutions with Ledex Rotary Solenoids

converted into linear motion, as in the punching example.
Ledex Rotary Solenoids come in 8 compact sizes, with operating volt ages from 3 to 350 VDC. Choice of over 250 stock models ready for im mediate shipment.

Other Ledex products are ready to so to work as compact solutions to your actuating, stepping or circuit witching applications. Write for lit erature mentioning application to Ledex Inc., Dayton 2, Ohio; Marsland Engineering, Ltd., Kitchener Ont.; NSF Ltd., 31 Alfred Place London, Eng.: AEMGP, 115 Ave Clement, Boulogne, France.

NEW PRODUCTS at wescon
FM Transmitter

Range is 215 to 260 mc. Type 1053 A 1-w fm transmitter has a sensitivity of 0.01 v per kc , carrier deviation of $\pm 150 \mathrm{kc}$ and a modulation range of 100 cps to 150 kc . It operates at unlimited altitudes and withstands $20-\mathrm{g}$ random vibration from 20 to $2,000 \mathrm{cps}, 60-\mathrm{g}$ acceleration and $100-\mathrm{g}$ shock.
American Bosch Arma Corp., Tele-Dynamics Div., Dept. ED, 5000 Parkside Ave. Philadelphia Pa.

See at Show Booth $\mathbf{1 1 2 6 - 2 8}$.
Lever Switch

Illuminated lever switch, called Lever-Lite. is designed to color code switching positions. It replaces an ordinary switch and up to three indicator lamps. It can be furnished in the series 25000 , two and three-position, nonlocking types and the series 25000 L locking types. Switcheraft, Inc., Dept. ED, 5555 …Elston Ave., Chicago 30, III.
Availability: 30 deys.
See at Show Booth 1510.
Ratio Transformer

Range is 50 cps to 10 kc . Model RT-60 general-purpose ratio transformer is an inductive ac voltage divider with an accuracy of 0.001%. Five decades of transformer switch ing are provided, enabling the unit to be used for checking resolvers and servos, voltmeter calibration, computer testing and transformerturns ratio measurements.

Gertsch Products. Inc., Dept. ED, 3211 S La Cienega Blvd., Los Angeles 16, Calif.

See at Show Booth 1602-04.

Portable weld strength testers are made to develop weld schedules in component packaging as well as for quality control in production welding. Model VTA- 46 has a test range of 0 to 50 lb , and model VTA-47 has a range of 0 to 100 lb . Device has a jeweled meter movement, interchangeable jaws, and anti backlash provisions.
Hughes Aircraft Co., Vacuum Tube Products Div., Dept. ED, 2020 Short St., Oceanside, Calif.
P\&A: \$325; from stock.
See at Show Booth 2427.

Digital Circuit Modules

From 0 to 25 kc are handled by the V -series universal NOR digital circuit modules. Devices have welded electrical connections and are encapsulated. Rectangular units measure $0.95 \times$ $0.95 \times 0.5 \mathrm{in}$., and cylindrical units measure 7/8 in. in diameter and 1 in . high. MIL-STD202B requirements are met.

Engineered Electronics Co., Dept. ED, 1441 E. Chestnut Ave., Santa Ana. Calif.

P\&A: $\$ 10$ to \$14: from stock.
See at Show Booth 2320-26.

Size 8 Resolvers

Weigh 38 g . These size 8 resolvers are stable over the temperature range of -55 to +125 C . Constructed of corrosive-resistive materials, they meet applicable requirements of MIL-E5272.

Daystrom Inc., Transicoil Div., Dept. ED, Worchester, Pa.
Availability: 75 to 90 days.
See at Show Booth 2915.
ElECTRONIC DESIGN • August 2, 1961

From Indiana Steel Products Division of
INDIANA GENERAL CORPORATION

Indox ${ }^{\text {V }}$ magnets improve space chamber vacuums

Indiana Steel's Imoox V permanent magnets are helping Varian Vaclon pumps obtain verified vacuums past $10{ }^{\circ} \mathrm{mm} \mathrm{Hg}$. Result: better space chambers, plus many additional critical vacuum applications.

Advanced design ion pumps, manufactured by Varian Associates. Palo Alto, Calif., are providing ultra-high vacuums with greater efficiency. In fact, these pumps, using powerful Indox V magnets, are largely replacing diffusion pumps on critical vacuum applications.
After a mechanical roughing pump removes most of the air from a given vessel, the ion pump goes into operation. High voltage is applied, ionizing some of the gas particles and forcing electrons toward the anode. The powerful magnetic field of the Indox V permanent magnet deflects the traveling electrons into spiral paths, increasing path lengths and, therefore, the number of particle collisions and degree of ionization. Finally, the
ions bombard titanium cathode plates which frees titanium atoms to form stable compounds with the atoms of oxygen and nitrogen which are then deposited on the anode grid. Inert gases are also removed by burial in the cathode and entrapment on the anode.
Varian selected Indiana Steel Indox V magnets both for their magnetic characteristics and their uniform quality. Indox V is a highly oriented ceramic magnet material with a peak energy product $31 / 2$ times greater than conventional unoriented barium ferrite materials. It is lightweight and extremely resistant to the effects of demagnetization.
Whether it's a question of choice of magnet or a design problem, why don't you take advantage of Indiana's wealth of experience, research leadership and specialized engineering "know-how"? Write today, outlining your needs. For further details on the Indox family of magnetic materials, ask for Bulletin 18A, Dept. M-8.

INDIANA STEEL PRODUCTS
Phone HOward 2.3111 - Direct Distance Dialing Code 219 VALPARAISO. INDIANA
INDIANA PERMANENT MAGNETS CIRCLE 244 ON READER-SERVICE CARD

A toast to Itek for a wonderful thing . . . Itek Crystal Filter 968B, with a near-Gaussian attenuation characteristic makes possible a 10,000 channel receiver! In antenna circuits, this 5 MC Filter optimizes pulse response, minimizes overshoot, and eliminates adjacent channel interference.

Perhaps you don't need a Gaussian crystal filter. But could you use the ingenuity that built one? Could Itek technical leadership help you?

Of course, the world's largest and most complete selection of stock filters is available, too. Choose from more than 3,000 Itek-Hermes designs.

Write for free Brochure "WEESKACFAACP" or, What Every Engineel Should Knou About Crystal Filters At A Cocklail Party. You'll en joy it.
Itek Electro-Products Company
75 CAMBRIDGE PARKWAY, CAMBRIOGE 42, MASS. A DIVISION OF

NEW PRODUCTS at wescon

Microminiature Relay

Rating is 2 amp. resistive, at 28 v dc. Series A pillbox microminiature relays are especially suited for use on printed-circuit boards. Dielectric strength is $1,000 \mathrm{v}$; insulation reis 150 g for 11 msec ; design is dpdt.

Filtors, Inc., Dept. ED, 30 Sagamore Hill sistance is $10,000 \mathrm{meg} \mathrm{min}$ at 25 C ; shock limit Drive, Port Washington, N. Y.

See at Show Booth 513-515.

Plug-In Unit

Dual-trace sampling plug-in unit type 76 contains identical amplifiers having a sensitivity of 10 mv per cm . Each channel has a dc-coupled vertical output of 1 v per cm . Modes of operation include channels \mathbf{A} or \mathbf{B}, chopped and added. The unit is for use with the firm's 561 oscilloscope.

Tektronix, Inc., Dept. ED, P. O. Box 500, Beaverton, Ore.

See at Show Booth 1726-28, 1823.

Tuned Amplifier

With null detector in a single unit measuring $8 \times 6 \times 7-3 / 4 \mathrm{in}$. Type 1232-A tuned amplifier and null detector is for use as a bridge detector, preamplifier, tuned audio amplifier and audio spectrum analyzer. Completely transistorized and battery operated, the unit is housed in a rack bench cabinet.

General Radio Co., Dept. ED. W. Concord. Mass.
See at Show Booth 2202-04.
Pulse Generator

Remotely programable pulse generator type B-11 can provide repetition rates of 20 to $2,000,000 \mathrm{pps}$, pulse delays of up to $10,000 \mu \mathrm{sec}$ and pulse widths of 0.05 to $10,000 \mu \mathrm{sec}$. Pulse amplitude is 50 v to 60 db below 50 v ; pulse risetime is 0.015 to $1 \mu \mathrm{sec}$.
Rutherford Electronics Co., Dept. ED, 8944 Lindblade St., Culver City, Calif.

See at Show Booth 1501-02.

647

642

669

circle 101 on meader-service card ELECTRONIC DESIGN - August 2, 1961

Rapidly Delivered
 TO THESE

Quality-Conscious
CUSTOMERS

AIRCRAFT RADIO CORPORATION BAIRD-ATOMIC, INC BENDIX RADIO DIVISION CURTISS-WRIGHT CORPORATION EMERTRON, IMC. A SUBSIDIARY OF EMERSON RADIO \& PHONOGRAPH CORP

GENERAL DEVICES, IAC. GENERAL MILLS, INC ThE hallicrafter co.
LORAL ELECTRONICS CORPGRATION LYNN ELECTRONICS PRODUCTS CORP. THE MAGNAVOX COMPANY THE MARTIN COMPANY MECH-TRONICS CORPORATION MELPAR, INC. METALCRAFT, INC.
U. S NAVAL AVIONICS

NORDEN

NORTH AMERICAN AVIATION INC.
PWILCO CORPORATION
PRECISE METAL PRODUCTS CO.
PRINCETON UNIVERSITY
RAYTHEON COMPANY
RAYTOR CORPORATION
SPERRY GYROSCOPE COMPANY
THE STANDARD REGISTER CO.
TRACERLAB, INC.
Write reday for our complete cataleg . .

0
TAURUS
C O R P O R A T I O N

$$
\begin{array}{r}
\text { Academy Hill, Lambertville, N. J. } \\
\text { EXport } 7.2390 \text { - TWX LVL } 8526 \mathrm{U} \\
\text { *REQ. T.M, or, e.f, DURONT }
\end{array}
$$

Molded Film Capacitors

650

With high humidity resistance. Type 157P Filmite " E " polyester-film capacitors have a rating of 100 v dc and may be operated at up to 105 C with derating working voltages of 75 v . They withstand 95% RH at 40 C for 250 hr. Molded housing also offers protection from shock and heat.
Sprague Electric Co., Dept. ED, North Adams, Mass.

See at Show Booth 1904-08.

Teflon-Insulated Wire

676
For use at 260 C , continuous. This Tefloninsulated hook-up wire meets requirements of MIL-W-27300 and is available in AWG sizes 26 to 12. Nickel-plated copper conductors, manufactured to close dimensional and resistance tolerances, are used.

Tensolite Insulated Wire Co., Inc., Dept. ED, Tarrytown, N. Y.

See at Show Booth 4608.

Dual-Range Voltmeter

Frequency-selective voltmeter model 127A covers 2 to 350 kc and has a selectivity of 250 cps with audio monitoring capability. It measures -80 to +22 dbm . Powered by a rechargeable battery, the unit weighs less than 15 lb and has dimensions of $7-3 / 4 \times 7-3 / 4 \times 13 \mathrm{in}$.

Philco Corp., Sierra Electronic Corp., Dept. ED, 3885 Bohannon Drive, Menlo Park, Calif.

See at Show Booth 2006-08.
Counter-Timer

Range is dc to $\mathbf{2 0} \mathrm{mc}$. Model 925 solid-state counter timer has a sensitivity of 0.1 v rms on all three channels. Stability is 1 part per 108 per day; 5 parts per 108 per week. Time interval is $0.3 \mu \mathrm{sec}$ to 108 sec . Accuracy is ± 1 count, varying with time-base stability for all operating modes.

Erie-Pacific, Div. of Erie Resistor Corp., Dept. ED, 12932 S. Weber Way, Hawthorne, Calif.

See at Show Booth 1710-12.

DESIEN FOR PERFORMANCE

- HERE IS A STRAIGHTFORWARD approach to the problem of preventing electrons from returning to the screen region of a transmitting tube. When channeled into beams like those above, electrons reach the anode, where they do their useful work. Penta's exclusive, patented vanerype suppressor grid does the trick.
- THE CHARACTERISTICS of Penta rubes employing this electrode geometry approach those of the theoretically perfect beam tube. Plate current is practically independent of plate voltage. Kinks and wiggles are absent. Plate voltage can swing well below screen voltage without appreciable loss of current.
- THE RESLLT IS OUTSTANDING LINEARITY, efficiency, stability. Penta's PL-172, for example, delivers 1000 watts of Class AB_{1} useful output at only 2000 plate volts...more than 1500 watts at maximum Class AB_{1} ratings. Introduced in 1955. Penta tubes with vane-type suppressor grids are in important equipment the world over, and their use in high-quality linear amplifiers is growing daily.
- YOU TOO CAN ENJOY the advantages of this yearsahead design by specifying the PL.-177A, PL-175A or PL-172 for 100 -watt to 1.5 kilowatt power output applications. Detailed, factual data sheets are available for the asking. Ask also for your copy of "Transmitting Tubes for Linear Amplifier Service," which explains how and why this exclusive Penta design provides outstanding performance.

> It. DENTA LBORATORIES, NNG.
> 312 North Nopal Street, Santa Barbara, Calif.
> Trade Mark Reg. U. S. Pat. Olf.

NEW PRODUCTS

AT WESCON

Potentiometer

Molded carbon potentiometer type 63 M is a $1 / 2-\mathrm{in}$. unit designed for use in better grade commercial equipment. A wide range of resistance values is offered.

Clarostat Manufacturing Co., Inc., Dept. ED, Dover, N. H. See at Show Booth 1714.

Magnetic-Detector

For rapid testing. The CO 5 5495000 magnetic-detector test set determines whether magnetic detector windings are balanced or unbalanced, open or shorted. It can also be used to check wiring to the flux gate. It is powered by a rechargeable nickel-cadmium battery and is suitable for military use.
General Precision, Inc., Kearfott Div., Dept. ED, 1150 McBride Ave., Little Falls, N. J.
See at Show Booth 3309-21.
Transistor Adaptor
554

For use with diagraphs. Type BN 35616 transistor adaptor, for measurement of small circuit elements, has a range of 30 to 3,000 mc. Types ZDU and ZDD diagraphs, also available, have high or low frequency ranges. They are for the measurement of impedance and admittance, transmission char acteristics and phase angles. Rohde \& Schwarz Sales Co Dept. ED, 516 Bloomfield Ave. Montclair, N. J.
P\&A: $\$ 4,990$ to $\$ 5,300$ for dia graphs; stock.

See at Show Booth 2526-28.

For complete details see your Electronic Parts Distributor, or write

LINE FULIY MEETS YOUR NEEDS

The name TRIPLETT has been on instruments of our manufacture for more than 55 years, and is regarded as a symbol of customer satisfaction to industrials and distributors in all parts of the world. Our instruments can be built to customer
specifications or provided from our large stocks of standard ranges in hundreds of sizes and types. We also carry in stock many semi-finished movements which can be converted readily to special customer needs.

=urtrinkitin

Model 439-ty Unimetar AK"
wish milror seale

Model 234 Unimeter Stand

Accuracy is $0.01 \% \pm 1$ digit, absolute, for a range of 1 mv to $1,000 \mathrm{v}$ dc. Model V-46 digital voltmeter has an input impedance of 10 meg at balance, a sensitivity control continuously variable from 1 to 10 digits and a balancing time of less than 2 sec on any range.
Cubic Corp., Industrial Div., Dept. ED, 5575 Kearny Villa Road, San Diego 11, Calif.
Price: $\$ 1, \$ 40$.
See at Show Booth 3001-03.

Wideband Amplifier

Voltage gain is 20 min; frequency response, 150 cps to 300 kc. Type 1170 transistorized wideband amplifier is used to amplify mixed signal outputs of subcarrier oscillators. It operates from -20 to +100 C at unlimited altitudes and withstands $30-\mathrm{g}$ random vibration, $100-\mathrm{g}$ acceleration and $100-\mathrm{g}$ shock.

American Bosch Arma Corp., Tele-Dynamics Div., Dept. ED, 500 Parkside Ave., Philadelphia, Pa .

See at Show Booth 4126-28

Soldering Iron

In ratings of 30,40 and 50 w at 120 v . The 30 - and $50-\mathrm{w}$ soldering irons have an intregal ironclad tip and heater assemblies for maximum heat at the tip and fast recovery. The 40 -w type has a dip holder and heater assembly to accommodate 20 different ironclad and copper screw-on tips.
General Electric Co., Dept. ED 903 W. Burlington Ave., Western Springs, Ill.
P\&A: Under \$5; 30 and 50-w types, stock.

See at Show Booth 2214-16.
4 CIRCLE 104 ON READER-SERVICE CARD

Mclean

COOL COMPUTER RACKS IN

CURTISS-WRIGHT FLIGHT SIMULATORS

Mclean Reversible Fans cenl computer racks in lator. Similar fans are inlator. Similar fans are included in various simulators aircraft.

A lot rides with a Curtiss-Wright Simulator besides the trainees. Accuracy of data from the simulated flight is critical. And one way to insure this accuracy is to prevent fluctuating temperatures in the computer racks. The Electronics Division of CurtissWright Corporation selected McLean cooling equipment to do this important job. By keeping temperatures uniform, McLean fans maintain accuracy and critical calibration prevent system failure . . . and extend the life of sensitive and expensive electronic components.

Choose from over 100 models in various panel heights and CFM's.

Also a complete line of frectional horsepower motors

Y- 1 H ENGINEERING
 LABORATORIES

NEW PRODUCTS at wescon

Magnetic Latching Relay
634

With 10 pins. Type BR-9FX magnetic latching relay can be installed without regard to polarity. Contacts enable usage from dry circuit to $10-\mathrm{amp}$ resistive loads at 28 v dc or 110 v ac, 400 cps . Response time for a $10-\mathrm{msec}$, square wave or capacitor-discharge pulse is 12 msec max.

Babcock Electronics Corp., Babcock Relays, Dept. ED, 1645 Babcock Ave., Costa Mesa, Calif.
P\&A: \$27; 3 to 4 weeks.
See at Show Booth 312.

FM Discriminator

With up to 18 channels, mounted in a 19 -in. rack with a height of $5-1 / 4 \mathrm{in}$. Model AD 8001 operates on input signal levels of 10 mv to 10 v rms with an input impedance of 10 K . The bandpass filter and discriminator select one channel frequency and provide an output of $\pm 2.5 \mathrm{v}$ dc into 1 K .

Natel Engineering Co. Inc., Dept. ED, 15922 Strathern St., Van Nuys, Calif.
P\&A: $\$ 8,500$, complete; 30 to 90 days.
See at Show Booth 910.

Oscilloscope

Range is dc to 7.5 mc . Model S32 portable oscilloscope is designed around a crt with post-deflection acceleration and operating at 3.5 kv . Balanced dc-coupled amplifier has as sensitivity of 100 mv per cm and risetime of 50 nsec . Time-base speeds are to $0.1 \mu \mathrm{sec}$ per cm.

The Scopes Co. Inc., Dept. ED, P. O. Box 56, Monsey N. Y.
See at Show Booth 207.

Tucor

 Electronically primes TR Tubes

Wilton, Conn.-Tucor announces a breakthrough in TR tube design. The conventional TR tube requires the build-up of large RF voltages before the TR tube will "fire" and provide the high attenuation of which it is capable. These initial high RF voltages appear on the transmitted pulse as a spike containing large amounts of energy. This energy is often sufficient to damage the sensitive circuits which follow.

Tucor has now developed a type of TR tube which does not require the build-up of high RF voltages in order to initiate its attentuating function and, therefore, performs in such a fashion as to virtually eliminate spike leakage. In most cases this technique also allows an improvement in total attenuation characteristics and in recovery time characteristics.

In specific cases, Tucor's new elec-tronically-primed TR tubes have been built to have a spike leakage only 3 db above flat leakage and a recovery time without sweeping voltages superior to conventional tubes with sweeping voltages.

The new technique of electronicallv priming can be incorporated in tubes of conventional size which are interchangeable with most standard units. Tubes have been built in a variety of sizes suitable for use in $7 / 8^{\prime \prime}$ coax line (above), $1^{5 / 8^{\prime \prime}}$ coax line, $31 / 8^{\prime \prime}$ coax line and L-hand waveguide cavities.

If your application suffers due to spike leakage, these tubes are undoubtedly your cure. Please let us know your problems.

59 Denbury Roed (Rovit 7), Wilton, Connecticut

Signal-Comparator Amplifier

Meets Mil specs. Type COTo 3141002 signal-comparator amplifier opens an external circuit and closes a second one by means of a spdt relay when the input is 1.010 iny min. Input impedance is 2 meg. Applications include use as a null sensing device and synchro displacement indicator.

General Precision, Inc., Kearfott Div., Dept. ED, 1150 McBride Ave., Little Falls, N. J
See at Show Booth 3309-21.
Copper-Clad Laminate 527
For critical applications such as missiles. radar. aircraft and ground instruments. Grade 11584 copper-clad laminate withstands severe mechanical and thermal shock and has good resistance to solvents and etching solutions. Bond strength and flex strength are high.

General Electric Co.. Laminated Products Dept., Dent. ED, Coshocton, Ohio

See at Show Buoth 4811.

Voltage-Phase
 540 Comparator

Kange is $\mathbf{2 5} \mathrm{cps}$ to $\mathbf{1 0 ~ k c . ~ A c c u - ~}$ racy is ± 0.1 deg. Primary applications of type IPN-400 self-contained voltage and phase comparator include measuring in-phase and quadrature voltage components, harmonic content and noise. Input impedance is 10,000 meg; potentiometer resolution is 0.0003%.
Autonetics, Div. of North American Aviation, Inc., Dept. ED, 9150 E. Imperial Highway, Downey, Calif.

See at Show Booth 1418-20.
CIRCLE 107 ON READER-SERVICE CARD \rightarrow

High-Speed Switching at HALF THE COST with New CBS 2N2059 Economy MADT* Transistors

CBS 2N2059
SWITCHING TIME is 22 nanoseconds in this high-speed circuit.
High-speed switching . . . lower saturation voltage and resistance high current gain . . . lower collector capacitance . . . more uniform performance . . . all the advantages of automatically produced Micro Alloy Diffused-base Transistors are available at half the cost of other commercially available high-speed transistors in the new CBS MAD'T 2N2059.

Check the high-speed switching circuit above. It is easily cascaded and permits a reduction in the size and cost of power supply because it operates at only three volts. The CBS 2 N 2059 is a particularly economical choice for logic, pulse generating and shaping circuits as well as high-current pulse amplifiers.

Call or write your nearest CBS Electronics sales office or Manufacturer's Warehousing Distributor for data, price and delivery information . . . and order your engineering samples today.

- Micro Alloy Diffused-base Transistor, Trade-mark, Philco Corp
 SPECIFICATIONS
 CBS ELECTRONICS
Lowell, Mंassachusetts
A Division of Columbia Broadcasting System, Inc. MORE RELIABLE PRODUCTS THROUGH ADVANCED ENGINEERING
Sales Officas: Lowell, Mass., 900 Chelmsford St., GLenview 2-8961 • New York, N. Y., 46 E. 52nd St., PLaza 1-2345. Melrose Park, IIl., 1990 N. Mannheim Rd., EStebrook 9-2100. Los Angeles, Calif., 2120 S. Garfield Ave., RAymond 3-9081 - Dallas, Tex., Robert R. Thomas Co. 3603 Lemmon Ave., Suite 103, LA $8-1767$. St. Petersburg, Fla., ECRA Inc. P.O. Box 8215 , Madeira Beach,
WAverly 1.9735°. Maitland, Fla., ECRA Inc., P.O. Box 656 , Midway 7.7830^{-}Coral Gables, Fla., WAverly 1.9735 Maitland, Fla., ECRA Inc.. P.O. Box 656 , Mldway $7-7830$. Coral Gables, Fla.,
ECRA Inc., 123 Madeira Ave.. HIghlands 3.7439 . Decatur, Ga., ECRA Inc., P.O. Drawer 150, 378-7516. Philadelphia, Pa., WCAU Building, City \& Monument Aves., MOhawk 7-0464.
See us at Wescon! 'CBS Booths 2903 \& $2905 /$ low

With 10 -in. view screen. Type H-1059 storage tube has two writing guns, electrostatic focus and deflection and a Netic-Conetic laminated metal shield. The tube is $19-1 / 2 \mathrm{in}$. long and 11-1/4 in. in diameter. U'seful screen diameter is $8-1 / 2 \mathrm{in}$.

Hughes Aircraft Co., Vacuum Tube Products Div., Dept. ED, 2020 Short St., Oceanside, Calif.
Availability: 90 days.
See at Show Booth 3106-08.

Pressure-Sensitive Tapes

Have silicone adhesives for high-low temperature use. Three types of pressure-sensitive tapes are offered. One is a thin glass cloth. Another is an aluminum-foil, glass-cloth laminate with unusual heat-reflective properties. The third is a thermosetting Mylar tape with a special coating which bonds to encapsulating resins.

Mystik Adhesive Products, Inc., Industrial Div., Dept. ED, 2635 N. Kildare Ave., Chicago 39, III.
P\&A: $\$ 5.91$ per roll (36 yd); 21 days.
See at Show Booth 5016.
Mica Capacitor Packages

Resin-encapsulated mica capacitor packages meet MIL-C-5. Called REMC packages, they provide temperature coefficients as close as $\pm 5 \mathrm{ppm}$ per deg C and tolerances as close as $\pm \mathbf{0 . 1 \%}$. A typical unit containing five capacitors measures $1 / 8 \mathrm{in}$. thick and less than $9 / 16$ in. sq.

Cornell-Dubilier Electronics Div., Federal Pacific Co., Dept. ED, 50 Paris St., Newark. N. J.

Availability: made to meet customer specs.
See at Show Booth 3405-09.

TANTALUM CAPACITORS

. . . "wet slug," high temperature (to $200^{\circ} \mathrm{C}$)
. . . "wet slug," microminiature to miniature
. . . solid electrolyte, metal case or encapsulated
. . . foil type, polarized and non-polarized
. . . Mallory has what you want. Industry's broadest line. 13 types, hundreds of ratings. Write for complete catalog. Mallory Capacitor Company, Indianapolis 6, Indiana.

Complete line of aluminum and tantalum electrolytics, motor start and run capacitors

Mallory Tantelum Copocitors Stocked by thees distributors

Artington, Va.
Rucker Electronic Products
Ealtimore Md.
Radlo Electric Service
Binghamton, N.Y.
Federal Electronics
Boston, Mass.
Cramer Electronics, Inc.
DoMambro Radio Supply Ca
Larayctte Radr
Westconn Electronics
Bufialo, N.Y.
Wehle Eiectionics
Chicago, 1 H .
Alied Radio Corp
Nowark Electronics Corp.
Cincinnati, Ohto
United Radio
Pioneer Electronica
Dallas Texas
Enginearing Supply Co.
Darion, Olio
Allied Supply Co.
Denver, Cole. Denver Electronics
Aouston. Tozes
Harrison Equipment Co., Ince Lenert Company
Indianapolis, find. Graham Electronic:
Los Angeles, Colli. California Electronics Kierulff Electronics, Ine Electronic Supply Corp Radio Product Sales
Minnenpolis, Minn.
Northwest Radio
Montreal, Oue.
Canadian Electrical Supply Co
Mountainside, N.J.
Federated Purchaser. Inc.
Mashville, Tenn.
Eiectra Dist. Co.
Nemart, MJ.
Lafayett Ra
Mew Yerk, N.Y. Harrison Radio Corp. Harvey Radio Co., Inc. Milo Electronics Terminal Hudson Electronice
Dakland, Calif.
Eimar Electronics, Inc.
Ortandos Fla.
East Coast Radio
Otawa, Ont.
Wackiod Radio-TV Lab.
Falo Alto, Calf.
Zack Electronice
Porth Amboy, N.J. Atlas Electronics
Philladelphia, Fa.
Herbach \& Rademan
Philadelphia Electronica
Pittchurgh, Po.
Radio Parts Co.
8. Lowis, Mo.

Seatte Mach
Seatte, Wash.
Tempe. Floride
Tempa, Florida Thurow Distributors, Ine.
Taronce, One.
Alpha Aracon Radio Co. Electro Sonic Suppi Wholesalo Radio \& In Electronice
Tuesen. Aptz.
Standard Radio Parts
Tuisa, Otla.
Engineering Supply Co.
Washington DC.
Capitol Radio Wholesalers Electronic Industrial Sales
White Pains, N.Y.
Westchaster Electronic Supply Co., Ine.
Winaton-Salem, N.C.
Datton-Hege Radio

PR MALLORV\&COInc

IF Test Set

Sweep-frequency if filter test set model 1701 has a dynamic range of 76 db with three nar-row-band heads covering 2 to 50 mc . Sweep output is flat to ± 5 per 100 db over the highest single octave. Sweep rate is 60 per sec to 1 every 2 min . Rf reference is 2 mc calibrated, variable from 1 mv to 12 v rms ; dc reference is positive or negative from 1 mv to 12 v .

Jerrold Electronics Corp., Industrial Products Div., Dept. ED, 15th and Lehigh Ave., Philadelphia 32, Pa.

Price: $\$ 3,925$.

See at Show Booth 1002-04.

Logic-Circuit Tester
631

Automatic logic-circuit tester model 720 measures voltages, resistances and currents on a high-go-low basis. Test capacity of the standard model is 22 pins. For a given test, parameters such as input resistance, driving current at specified voltages and output levels with or without loading can be programed.

DIT-MCO, Inc., Dept. ED, 911 Broadway, Kansas City 5, Mo.
P\&A: 19,$500 ; 90$ days.
See at Show Booth 2625-26.

Plug•In Unit

Dual-trace plug-in oscilliscope unit type 82 has independent, dc-coupled amplifiers for each channel. Maximum sensitivity is 100 mv per cm ; risetime is 3.5 nsec. For channel A, a dccoupled X10 amplifier extends sensitivity to 10 mv per cm , risetime to 4.5 nsec .

Tektronix, Inc., Dept. ED, P. O. Box 500, Beaverton, Ore.

See at Show Booth 1726-28, 1823.

Potentiometer

Electro-optical potentiometer, called Betapot, uses a light source for pick-off, beaming a stream of photons through the semiconductor material. The movable light beam defines a path of high conduction between the annular collector and resistive elements. Uses include in gyro systems, where negligible drift is required.

Duncan Electronics, Inc., Dept. ED, 2865 Fairview Road, Costa Mesa, Calif.

See at Show Booth 808.

BALLANTINE Battery-Powered Vacuum Tube VOLTMETER model 302 C
Price: $\$ 255$

MEASURES VOLTAGES $100 \mu \mathrm{~V}$ to 1000 V at Frequencies from 2 cps to 150 kc

This is a vacuum tube voltmeter capable of measuring 100 microvolts to 1000 volts in seven decade ranges with an accuracy better than 3\% at any point on the scale. No other battery-operated instrument on the market meets this performance. It may be used as a hum-free amplifier with a maximum gain of 60 db , a high input impedance and an equivalent short-circuit input noise of less than 10 microvolts, which is considerably better than a transistorized amplifier with similar input impedance and bandpass. Panel controls are available to vary the preamplifier gain continuously or to select the more appropriate of two meter damping positions. Excellent as a null detector. Battery life exceeds 100 hours of normal operation.

BPECIFICATION8

Frequency hange
and
$2 \mathrm{cps}-150 \mathrm{kc}$
Iaput Impedance \qquad $2 \mathrm{M} \Omega$ shunted by $3 \% 5 \mathrm{cps}-100 \mathrm{kc}$ Weise Level..... Less than $10 \mu \mathrm{~V}$ referred to ANY POINT ON SCALE shorted input circuit
Scales...Logarithmic voltage scale from 1-10;
linear decibel scale from 0 to 20
Write for brochure giving many more dotails

BALLANTINE LABORATORIES inc.
Boonton, Now Jersey

 acout oun laboraront vor tace stamoanos to 1000 Mc

NEW PRODUCTS at wescon

Frequency-Selective Voltmeters

Cover 3 to $\mathbf{6 2 0} \mathbf{k c}$ with continuous tuning. Model 125B-CR frequency-selective voltmeter provides variable selectivity, flat ac vtvm covering 1 to 620 kc and crystal calibrator. Model $125 \mathrm{~B}-\mathrm{Y}$ is similar with a 20 -pin front-panel connector and expanded input circuitry for use with carrier rack fast-patch panels.

Philco Corp., Sierra Electronics Corp., Dept. ED, 3885 Bohannon Drive, Menlo Park, Calif. See at Show Booth 2006-08.

Crystal Mixers

Cover 225 to $\mathbf{6 , 0 0 0} \mathbf{m c}$ in seven overlapping ranges. The XR series single-ended coaxial crystals are fixed tuned and require no rf adjustment. They use standard ceramic cartridgetype crystals and meet Mil environmental specs. Local oscillator coupling may be varied over a $13-\mathrm{db}$ range.
Microlab, Dept. ED, 570 W. Mount Pleasant Ave., Livingston, N. J. P\&A: \$120; stock.

See at Show Booth 4306.

SPDT Chopper

Range is 0 to $1,050 \mathrm{cps}$. Dwell time is constant within ± 5 deg from 60 to $1,050 \mathrm{cps}$; phase lag is $76 \pm 15 \mathrm{deg}$ at $1,000 \mathrm{cps}$. Model $2 \mathrm{C}-$ 10 chopper has break-before-make action and model 2C-10M, make-before-break. Both are for operation at 6.3 v . Drive-coil resistance is 85 ohms; drive-coil current is 36 ma .
Collins Electronics, Inc., Dept. ED, Stevensville, Md.

See at Show Booth 1110.

Oscilloscope Camera

For any 5-in. scope, the Mark II Oscillotron oscilloscope camera provides external rack-andpinion focusing, direct-viewing port, electric shutter, shutter-open indicator light, rotating back for vertical or horizontal pictures and Polaroid dark slide. Object-to-image ratio is $1: 1$ through $1: 0.5$.
Beattie-Coleman, Inc., Dept. ED, 1006 N. Olive St., Anaheim, Calif.
See at Show Booth 2426.

666

677

METERS

You can SEE and READ

Series 1025-1026
 Hary interchangeable with

Brilliantly new in their high visibiluty polystyrene cases are these modern type Meteri by HoYT which sive a true reading at a glance! Here longer scale length and the elitinination of shadows plus clean desisn add up to a topnotch combination to tm corporate in any panel.

The famous HOYT high torque movement with preelse and rugged errafsmanchip gives you what you've been looking for Im changeable with all round Bakelite metera, and are avallable in all AC and DC ranges as Ammeters, Milliammeters, Mleronmmeters. Voltimeten and Mililvoltmeters. are also availoble for any modern panel meter application.

The HOYT square plastic case series (HMS and $\# 853$ shown) in available in $2 \mu^{n} h^{31 / 2 "}$ and ine types. Just right for use where modern dealgn requirements. These instruments are interchangeable with square Bakellte metera and can be supplied with a frosted or colored band on the case front In any AC and DC range. Extra logg scales
in shadow free eases give you the most value and quality for your money.
Write us for the NEW HOYT PANEI, METER Brochure showing a complete line of plastic and Bakelite models.

VISIT US AT THE WESCON SHOW

BURTON-ROGERS COMPANY
Sales Division, Dept. ED-8
42 Carleton Seroet, Cambrideg 42, Mase.
CIRCLE 110 ON READER-SERVICE CARD
ELECTRONIC DESIGN• August 2, 1961

Accuracy is $\pm 3 \mathrm{sec}$. Type CO56402004 angle positioner can be used in a variety of laboratory and production-line applications. Features include a dial indicator, synchro or resolver bridges as integral parts and aluminum housing.
General Precision, Inc., Kearfott Div., Dept. ED, 1150 McBride Ave., Little Falls, N. J.
See at Show Booth 3309-21.

Melamine-Resin

525

Laminate

Glass-cloth. melamine-resin laminate grade 11588 offers good moisture resistance and flexural strength. high arc resistance, flame retardance, plus good impact and dielectric strength. Developed primarily for electric apparatus and appliance manufacturers, it can be used in a wide variety of applications.
General Electric Co., Laminated Products Dept., Dept. ED, Coshocton. Ohio.

See at Show Booth 4811.

Printed-Circuit-Card

Cage

Of aluminum construction. made in 16 sizes, the Varipak II printed-circuit-card cage makes it possible to package boards and connectors in correct alignment. The guides are polycarbonate plastic rated for temperatures to 300 F.

Elco Corp., Dept. ED, M Street below Erie Ave., Philadelphia 24. Pa.
Pe
P\&A: \$19.50; stock
See at Show Booth 2124-25.
CIRCIE 111 on reader-service card \geqslant

Narrow tapered nose... ideal for confined places

DIAMALLOY

©

dIAGOHAL cutting PLIERS

Edges ground for flush culting, hand honed to stay sharp.

Ask your Industrial or Electronic Distributor for Diamalloy Pliers.
" There is nothing finer than a lliamond"

Dianiania taral and Horseshoe Ca. duluth, minnesota - toronto, ontario

Many Other Pliers
Designed for
the Electronic Industry are Made by
Diamond Tool and Horseshoe Co.

Long Nose Plier LN54

Curved Long Nose Plier
CN54

Duck Bill Plier DN54

Transverse End Cutting Plier EC54

Diagonal Cutting Plier MS54

HIGHER TEMPERATURE HIGH VACUUM OVEN

New and now available to industry - a low cost, high temperature, high vacuum bake oven. Tri Metal's $0-8$ oven perates at 800 C white maintaining pressures as low as $1 \times 10^{-6} \mathrm{~mm} \mathrm{Hg}$.
The $0-8$ achieves temperature uniformity of 3° al 0 to $800^{\circ} \mathrm{C}$ and is the low cost oven that functions perfectly at temperatures above $250^{\circ} \mathrm{C}$ and pressures on the 6 th scale without custom modification.
Tri Metal's new oven not only saves you money at purchase time, it is also extremely economical to operate and easy to maintain.
No water-cooling of the door is required. Accepts bench or dry box mounting.
Tri Metal Works has been engaged in the custom fabrication of high vacuum components and equipment for leading manufacturers and users since 1946. You are invited to see demonstration of 0.8 in our plant laboralory. Call or write for appointment.

HIGHER TEMPERATURES UD $10800^{\circ} \mathrm{C}$.
BETTER UNIFORMITY
Plus or minus $3^{\circ} \mathrm{C}$. \bullet
LESS MAINTENANCE Low-Cost. Neoprene " 0 " ring gaskets guaranteed one year.
FASTER HEAT UP
500 C in 23 minutes.
CLOSER CONTROL
IC Thermocouple INSIDE the work zone. HIGHER VACUUM $1 \times 10^{-}$- Torr* (mm Hg) @ $500^{\circ} \mathrm{C}$. COOLER EXTERIOR All surfaces cool to the touch.

TRI METAL WORKE INC.

For a Froe Detailed Brochure Writo TO TAI METAL WORKS INC. Industial Division

 1600 Bannard Stroet. East Riverton, New Jersey.or Phone $829-2000$.

See us in Booth \#5117 WESCON Show, Cow Palace, San Francisco, Aug. 22-25 CIRCLE 112 ON READER-SERVICE CARD

NEW PRODUCTS at wescon

Character Generator

High-speed type TD-549 character generator displays up to 100,000 characters per sec. Accepting digital signals from computers, highspeed tape readers and high-speed data links, it presents information on a CRT. It has 64 plug-in characters and codes.
Transdata, Inc., Dept. ED, P. O. Box 1369, San Diego 12, Calif.
P\&A: 88,860; 30 days.
See at Show Booth 114.

Latching Relays

Dual-coil, rotary-motor type PL Microlatch latching relays require a $6-\mathrm{msec}$ pulse at nominal coil voltage to switch positions. The four coil leads are brought out through a $10-t e r-$ minal header. The relay maintains its switch position under $20-\mathrm{g}$ vibration at $2,000 \mathrm{cps}$ and shock of 50 g for 11 msec . Design is dpdt.

Filtors, Inc., Dept. ED, Port Washington, N. Y.

See at Show Booth 513.

Switching Transistor

High-speed silicon planar switching transistor, type 2 N 709 , is rated at 300 mw power. Typical charge storage time constant is 3 nsec : average propagation time delay is 2.5 nsec in direct-coupled transistor logic circuits, 7.5 nsec with 3.5 nsec rise time in diode-transistor logic circuits. Ratings include: $\mathrm{BV}_{\mathrm{CbO}}, 12 \mathrm{v}$ min ; h_{FB} $20 \mathrm{~min}, 120 \mathrm{max}$ at $10 \mathrm{ma} ; \mathrm{f}_{\mathrm{T},} 800 \mathrm{mc}$.
Fairchild Semiconductor, Dept. ED, 545 Whisman Road, Mountain View, Calif.
P\&A: $\$ 8.50$ ea, 100 to 999; from distributors
See at Show Booth 814-816.

Plug-In Unit

Sampling sweep plug-in type 77 provides a calibrated sweep range of 1 nsec to $10 \mu \mathrm{sec}$ per cm, continuously variable between the 13 steps, uncalibrated. Single-sweep facilitates photographic recording. The unit is for use with the firm's 561 oscilloscope.

Tektronix, Inc., Dept. ED, P. O. Box 500 Beaverton Ore.

See at Show Booth 1726-28, 1823.
ELECTRONIC DESIGN • August 2, 1961

ATVADEABLES FROM STOCMZ
 PRECISION FILM POTS

You can have any of these precision film pots on their way to you within hours．No need to wait for＂custom＂pots．

LIMEAR SINGLE TURN FILM POTENTIOMETERS

Diameter$1 / 2^{\circ 0}$	Resimance Bineority
	IK＿＿士 ．5\％
	10K＿
	50r
7／8＊	1 R －$\pm .5 \%$
	10R —— \pm 5\％
	50\％＿＿士 ．5\％
	10K＿
	50k $\pm .25 \%$
1－3／32＂	1K＿＿工
	100＿
	50K＿工．－ 5 \％
	1K 士 ．25\％
	10K
	50k
$2^{\prime \prime}$	5K 士 ． 25%
	20K 士． 25%
	50K．
	5K
	20k 士．1\％
	50\％．\quad ． 1%
$3^{\prime \prime}$	5K＿$\quad \pm .1 \%$
	200＿＿．＿．
	50K＿工
	5K－
	20K 士 ． 05%
	50K 士． 05%

SINE－COSINE SINGLE TURN FILM POTENTIOMETERS

$3 / 32^{\prime \prime} \quad 100<20 \mathrm{~K}$ — $\pm .75 \%$
$2^{\prime \prime} \quad 10 \mathrm{~K}$ — $\pm 25 \%$

$3^{\prime \prime}$	20 K

LINEAR MOTION FILM POTENTIOMETERS
Sizo Rosistonce stroko Linearity 10k l＂stroke $\pm .5 \%$ 10K $2^{\prime \prime}$ Strote $\pm .3 \%$ 20K ${ }^{\text {IN }}$ Stroke $+25 \%$ $100 \quad 3^{\prime \prime}$ Srroke $\pm .1 \%$ 200 3 ＂Srroko $\pm .1 \%$

WRITE OR CALL IN YOUR ORDER！POTENTIOMETERS WILL BE IN YOUR PLANT WITHIN 24 HOURS！

HERE＇S ONE WAY
TO GET WORK DONE WHEN WIRE－WOUMD POT FAILURES OCCUR

C．I．C．
PRECISION FILM
POTENTIOMETERS

HERE＇S ONE WAY TO SOLVE SERVO＂HUNTING｀PROBLEMS．．．

＊Only C．I．C．Film Potentiometers can meet your most demanding specifications because they feature：
－Infinite Resolution
－Inherent Reliability
－Precision Linearity
－Low Operational Noise
－Multi－Million Cycle Life
COMPUTER INSTRUMENTS CORPORATION
92 MADISON AVENUE－HEMPSTEAD，L．I．，NEW YORK

Write for Bulletin 760 or call your local Representative. Mo's listed in Sweet's Product Design Fila, section 7d/EA, of in Thomas Rocistor.

Precision Interval Timers

Ping in Reset Timers

Multiple Circuit timers
 Multiple Cam Timers

Predetermined Counters

Hermetically Salad
Timers

EAGLE SIGMAL COMPANY - Moline, Illinois

 INDUSTRIAL DIVISIONDIVISION DR TME GAMEwELL COMPANY, AN E. w. BLISS COMPANY SUBSIDIARY CIRCLE 115 ON READER-SERVICE CARD

NEW PRODUCTS at wescon

Coolant Pumping System

Provides 7 gal per min at 135 psi. Model 6449 coolant pumping system contains a centrifugal pump with an electric motor and an integral reservoir expansion chamber. Immersion heaters bring the fluid to an operating temperature of $41 \pm 5 \mathrm{~F}$.
J. C. Carter Co., Dept. ED, 671 W. 17th St., Costa Mesa, Calif.

See at Show Booth 111.

Frequency Standard

Stable to 1 or 2 pp 10^{10}. Model 1120 frequency standard is available in two types: 1120-A with outputs of 5 and 1 mc and 100,10 and 1 kc (400 and 60 cps optional): $1120-\mathrm{AH}$ with additional outputs of 10,100 and $1,000 \mathrm{mc}$.

General Radio Co., Dept. ED, W. Concord. Mass.

See at Show Booth 2202-04.

Plug-In Unit

Up to four signals can be viewed separately or in any combination with type M plug-in oscilloscope unit. It consists of individual input amplifiers, each having separate attenuator, variable gain and vertical position controls. Sensitivity is 20 mv per cm .

Tektronix, Inc., Dept. ED, P. O. Box 500, Beaverton, Ore.

See at Show Booth 1726-28, 1823.

Encapsulated Transformers

Resist thermal shock, meeting the requirements of MIL-T-27A, class V. The encapsulation can be used with units of all configurations. It is resilient, resists abrasion, and has good adhesion characteristics. The coating thickness can be controlled to within $1 / 64$ in.

Collins Radio Co., Dept. ED, P. O. Box 1891, Dallas 21, Tex.
See at Show Booth 1301-02.

MAJOR ADVANCE IN THE SCIENCE OF ELECTRON BEAM DEFLECTION! SPOT RECOVERY

 Fastest! to $1 \mu \mathrm{~S}$ SPOT SIZESmallest - Reduced 25\% SPOT SWEEP Straightest * DEFLECTRONS for DISPLAYS Where ordinary precision yokes FAll to meet your requirements.
Wrife for NEW "DEFLECTRON" Data and Standard Yoke Catalog. \square
Celco
Canstantine Engineering Labarataries Ca.

Main Plant: MAMWAH, M. I. DAvis 7.1123
PACIFIC DIV- UPLAND, CALIF. YUkon 2.0215
CENTRAL DIV.-LANESBORO, PA. ULYsses 3-3500

Rectifier Columns

For radar and research. These rectifier columns provide voltages to 100 kv at up to 250 amp with de surge capacities to 2.500 amp . A typical unit, consisting of two three-phase bridge rectifiers, produces 70 kv at 55 amp and withstands a 1,000 -amp de short circuit for 10 cycles.

International Rectifier Corp., Dept. ED, 233 Kansas St., El Segundo. Calif.
Availability: 4 to 10 weeks
See at Show Booth 1701-03.

Accelerometers

547

Single-axis accelerometers em ploy fluid damping and torsionbar spring restraint. Types C 70 2006001 and C 702408000 have scale factors of 1 and 2 v per g. respectively: a range of ± 1 and $\pm 0.5 \mathrm{~g}$; linearity of 0.5% of read ing. $\pm 0.5 \%$ of full scale and 1% of reading, $\pm 0.1 \%$ of full scale.
General Precision Inc., Kear fott Div., Dept. ED, 1150 McBride Ave., Little Falls, N. J
See at Show Booth 3309-21.

Laminate

529
For computer, TV, radio and other circuit applications where CL requirements must be met Grade 11586 laminate, available in standard or copper-clad sheets, has good electrical properties under severe humidity, high dielectric reliability, good impact resistance and easy machinability
General Electric Co., Laminated Products Dept., Dept. ED, Coshocton. Ohio.

See at Show Booth 4811.

Molding Resins

498
For compression molding. The Epocast H-1469 series epoxy molding resins will mold under pressures of 200 psi or lower. Complicated moldings with or without inserts can be reproduced from thermosetting epoxy molding compounds

Furane Plastics Inc., Dept. ED 4516 Brazil St., Los Angeles 39, Calif.
P\&A: $\$ 1.55$ per lb, 100 lb ; stock See at Show Booth 4806 .

For RCA Reccriving Tubes......R.I.Q.A.P.

On May 17, 1961, the receiving tube manufacturing activity of the RCA Electron Tube Division received the coveted U.S. Army Signal Corps R. I. Q. A. P. award for product quality. Signifying "Reduced Inspection Quality Assurance Plan", the award means the Army Signal Corps accepts RCA tubes under R.I.Q.A.P. with a minimum of inspection. Conferred only after long and consistent delivery of "Quality" tubes, the award indicates the Army Signal Corps' acceptance of the quality control techniques in effect at RCA
Why not assure your own circuits the same high standard of performance? Specity RCA tubes throughout! For information on specific tube types, see your RCA Field Representative or write Commercial Engineering, Section H-18-Z-1, RCA Electron Tube Division, Harrison, N. J.

rea field offices

EAST: 744 Broad Streot, Nowark 2, N J HUmboldt 5 -3900.
MIOWEST: Suite 1154, Merchandise Mar Plaza. Chicago 54, Illinoie, Whitehall 4-2900 WEST: 6801 E. Washington BIVd, Los Angolea 22 California. RAymond 3-836i

The Most Trusted Name in Electronics

NEW PRODUCTS at wescon

Frequency-Selective Voltmeter

Covers 5 kc to $\mathbf{1 , 6 2 0} \mathrm{kc}$ in two bands. Model 126A frequency-selective voltmeter is designed for measuring frequencies in carrier systems with several hundred channels as well as laboratory wave analysis. It has a dual selectivity of 250 to $2,500 \mathrm{cps}$ and bridging inputs of 75,135 and 600 ohms. It measures -90 to +32 dbm .

Philco Corp., Sierra Electronic Corp., Dept. ED, 3885 Bohannon Drive, Menlo Park, Calif.

See at Show Booth 2006-08.
Receiver-Decoder

Range is 406 to 549 mc . Model BCR-50 re-ceiver-decoder has up to 20 IRIG channels for remotely controlling missiles and pilotless aircraft. Up to six channels can be used simultaneously with each channel having $\pm 20-\mathrm{kc}$ deviation. A $10-\mu \mathrm{v}$ signal energizes all six channels with 7.5 w input power.
Babcock Electronics Corp., Dept. ED, 1640 Monrovia Ave., Costa Mesa, Calif.

See at Show Booth 312.

Silicon Rectifiers

646
Rated at 6 and 12 amp in ranges of 600 to $1,000 \mathrm{v}$, the Golden Line silicon power rectifiers are improved versions of the 1 N 1199 to 1N1206 series. Reverse leakage is less than 1 aa. Typical units have a forward voltage drop of less than 1 v and a dynamic impedance of as low as 0.0035 ohm .
Hughes Aircraft Co., Semiconductor Div.. Dept. ED, 500 Superior Ave., Newport Beach, Calif.
Availability: stock.
See at Show Booth 2421-27.

Depth Recorder

Precision survey depth recorder model 418 provides dynamic tone shade response. Ranges are $400 \mathrm{ft}, 400$ and 4,000 fathoms at rates of 360, 60 and ti rpm, respectively. Resolution on the 400 -fathom range is better than ± 1 fathom. Power consumption is less than 200 w at 115 v . 60 cps.

Alden Electronic \& Impulse Recording Equipment Co., Inc., Dept. ED, Westboro, Mass. See at Show Booth 4314.

- Reduced Saturation Voltage! • Reduced Storage Time!

epitaxíal GERMANIUM 2N781 2N782

Refined by intensive research, proven by extensive testing - Sylvania Epitaxial Mesa Transistors offer extraordinary performance characteristics. They combine the high electrical and mechanical reliability, power dissipation capabilities, and fast switching speed of the mesa with the low saturation voltage, reduced collector capacitance, decreased storage time, and high gain at high current levels that are characteristic of the epitaxial process. Electrical uniformity, too, is superior because the epitaxial technique is ideally suited to the highly automated, modern production facilities of Sylvania. Result: remarkable high-speed switching and high-frequency amplifying devices that illustrate the dramatic advances being made in the solid state art at Sylvania.

SYLVANIA 2N781 - WORLD'S FASTEST PNP
GERMANIUM SWITCHING TRAMSISTOR
. . . is designed specifically for circuits with high speed and low saturation voltage as prime performance features. Sylvania 2 N 782 offers similar electrical characteristics at lower unit cost.

ABSOLUTE max. natimes (at $25^{\circ} \mathrm{C}$			
	2×701	201782	Unir
Collocter to bece Vortige	-15	-12	v
Collocter to Emittor Voltace	-15	-12	v
Emitter to Bese Veltage	-2.5	-1.0	v
collecter Curremt	100	100	ma
Power Disajpation (free ain)	150	150	mw
Power Dissigation (esse at $\mathbf{2 5}^{\circ} \mathrm{C}$)	300	300	mw
sterage Temperature	-65 to +100	-85 to +100	${ }^{\circ} \mathrm{C}$
ennetion Tomparature	+100	+100	${ }^{*}$

ELECTRICAL CHARACTERISTICS (AT $25 \cdot \mathrm{C}$) 20762						
Symal	Compitiont	mio.	Mes.	Min.	Mex.	unr
$\mathrm{VV}_{\text {cme }}$	$t_{6}=-100 \mu \mu L_{6}=0$	-15	-	-12	-	V
$\mathrm{Neco}^{\text {cem }}$	$t_{c}=-100 \mathrm{Mi} \mathrm{i}_{\mathrm{c}}=0$	-25	-	-1.0	-	v
$\mathrm{NCES}^{\text {ces }}$	$\mathrm{I}_{\mathrm{c}}=-100 \mathrm{~m} \cdot \mathrm{~V}_{\mathrm{K}}=0$	-15	-	-12	-	v
$4 n$	$\mathrm{I}_{\mathrm{c}}=-10 \mathrm{ma}$					
	$\mathrm{V}_{\mathrm{ct}}=-0.20 \mathrm{~V}$	25	-	-	-	
n_{n}	$\mathrm{I}_{c}=-10 \mathrm{ma}$					
*	$V_{\mathrm{ef}}=-0.25 \mathrm{~V}$	-	-	20	-	
Vm	$i_{c}=-10 \mathrm{ma} i_{4}=0 . \mathrm{ma}$	-0.34	-0.c4	-0.34	-0.50	v
${ }^{1}$	$v_{c e}=-5 \mathrm{~V}, 1_{1}=0$	-	-3.0	-	-3.0	nA
$V_{\text {cer }}(\mathrm{SCO})$	$\mathrm{I}_{8}=-10 \mathrm{~mA} \mathrm{I}_{8}=-1 \mathrm{ma}$	-	-0.16	-	-0.20	v
	$t_{c}=-100 \mathrm{ma} L_{8}=-10 \mathrm{ma}$	-	-0.25	-	-0.45	\checkmark
$4+6$	$V_{\text {E(t) }}=0.5 V_{,} 1_{(1)}=-1 \mathrm{mt}$	-	60	-	75	mesec
4	$V_{\text {cc }}=-3.5 \mathrm{~V}, \mathrm{i}_{\mathrm{c}}=300 \mathrm{cmms}$	-	20	-	35	nesec
t_{4}	$\mathrm{I}_{\text {mat }}=0.25 \mathrm{man}$	-	50	-	75	T-sue

Explore the advantages offered your designs by performanceproved Sylvania Epitaxial Mesa Transistors. A vailable from your Sylvania Sales Engineer or Sylvania Franchised Semiconductor Distributor now! For technical data, write Semiconductor Division, Sylvania Electric Products Inc., Dept. 188, 1100 Main Street, Buffalo 9, N. Y.

SYLVANIA 2N783 - WORLD'S FASTEST MPN SILICON SWITCHING TRANSISTOR . . . is designed specifically for circuits with high speed as a prime performance feature. Sylvania 2N784 delivers low saturation voltage combined with exceptional high-speed capabilities.

ABSOLUTE max. natimes (at $\mathbf{2 8}^{\circ} \mathrm{C}$)			
	20783	21784	UnIP
Collector to lose Voltase	40	30	v
Collecter to Emitter Voltage	20	15	v
Enittor to lese Veltage	5	5	v
Collector Carreat	50	50	mA
Prwer Dissiastion (fros alr)	300	300	mm
Prwer Dissiastion (cese at $25^{\circ} \mathrm{C}$)	1	1	w
storace temperature	-65 to +300	-65 to +300	${ }^{\circ}$
sunction Tompersure	+175	+173	" ${ }^{\text {c }}$

ELECTRICAL CHARACTERISTICS (AT $\mathbf{2 5}^{\circ} \mathrm{C}$)

Symal	Conditions	2N783		2N7C4		UNIT
		Min.	Max.	Mina.	Mar.	
$\mathrm{BN}_{\text {ceo }}$	$\mathrm{I}_{c}=100 \mu \mathrm{~A}_{1} \mathrm{I}_{\varepsilon}=0$	40	-	30	-	V
$\mathrm{BV}_{\text {eco }}$	$\mathrm{I}_{\mathrm{c}}=100 \mathrm{~mA}, \mathrm{~L}_{\mathrm{c}}=0$	5	-	5	-	V
$\mathrm{BV}_{\text {CER }}$	$\mathrm{I}_{\mathrm{c}}=10 \mu \mathrm{~V}, \mathrm{~V}_{\text {ge }}=0, \mathrm{R}_{\text {是 }}=10$ ohms	20	-	15	-	V
$\mathrm{I}_{\text {CBO }}$	$V_{C B}=25 \mathrm{~V}$	-	250	-	250	mun
	$V_{C B}=25 \mathrm{~V}, \mathrm{~T}=150^{\circ} \mathrm{C}$	-	30	-	30	MA
$h_{\text {fe }}$	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=1 \mathrm{~V}$	20	60	25	-	
$V_{\text {BE }}$	$\mathrm{I}_{C}=10 \mathrm{~mA}, \mathrm{I}_{B}=1 \mathrm{~mA}$	0.7	0.9	0.7	0.9	V
$\mathrm{V}_{\text {cES }}$	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$	-	. 25	-	. 16	V
C_{∞}	$V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, F=1 \mathrm{MC}$	-	3.0	-	3.5	$\mu \mu \mathrm{f}$
h_{10}	$V_{C B}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{c}}=10 \mathrm{~mA}, \mathrm{~F}=100 \mathrm{MC}$	2.0	-	2.0	-	
$t_{\text {on }}$	$\begin{aligned} & l_{(1)}=3 \mathrm{~mA}_{1} 1_{B(2)}=1 \mathrm{~mA} \\ & V_{c c}=3 \mathrm{~V}, a_{L}=270 \mathrm{a} \end{aligned}$	-	18	-	20	nsec
t_{s}	$\begin{aligned} & I_{B(1)}=10 \mathrm{mi}, I_{B(2)}=10 \mathrm{~mA} \\ & V_{c c}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{c}}=10 \mathrm{~mA}, R_{L}=1000 \mathrm{n} \end{aligned}$	-	10	-	15	nsec
toll	$\begin{aligned} & \mathrm{I}_{\mathrm{B}(1)}=3 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}(2)}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}=270 \Omega \end{aligned}$	-	30	-	40	nsec

Pressure Potentiometers

For airborne applications. Type P105 pressure potentiometers measure 0 to 10 up to 350 psia and deliver 75-v, full-scale output without amplification. They operate at vibration levels to 35 g at $2,000 \mathrm{cps}$ and withstand $75-\mathrm{g}$ shock and acceleration

Trans-Sonics, Inc.. Dept. ED, P. O. Box 328, Lexington 73, Mass.
P\&A: \$400; stock.
See at Show Booth 4414.

Capacitance Bridge

Precision capacitance bridge type $1615-\mathrm{A}$ has a measurement range of 10^{-17} to $10^{-6} \mathrm{f}$. The resolution is $1 \mathrm{pp} 10^{6}$. Direct-reading accuracy is 0.02%.
General Radio Co., Dept. ED, W. Concord, Mass.

See at Show Booth 2202-04.

Deflection Yokes

729
With push-pull operation from constant-current sources, these deflection yokes provide horizontal and vertical electron-beam deflection in a crt. Magnetic damping allows rapid writing rates.
General Dynamics/Electronics, Information Technology Div., Dept. ED, P. O. Box 2449, San Diego 12, Calif.

See at Show Booth 201-030.
Two-Way Radio

Transmitter power is 1 w . The Duo-Com 120, class D, pocket size two-way radio is fully transistorized, using 11 transistors and two diodes. The crystal-controlled receiver has a sensitivity of better than 1 mv . Power is from a $12-\mathrm{v}$, rechargeable battery.
Osborne Electronics Corp., Communications Div., Dept. ED, 13105 Crenshaw Blvd., Hawthorne, Calif.
P\&A: \$149.50; stock.
See at Show Booth 612.

first from triolabe... a new standard of precision in

now measure both complex and sine waves with 0.25% accuracy

'Til now, no VTVM has been able to measure complex waves with high laboratory standard accuracy. Average-reading and peak-reading instruments are subject to significant distortions created by spikes and harmonics.

New triplab Model 120 achieves direct-reading, true RMS values of both sine and complex waves with deflection directly proportional to the square of the current-by use of a special dynamometer movement.

- DIRECT.READING

No knobs to twist or tedious balancing.

- INSTANT MEASUREMENT No sluggish, thermo-couple response.
- HIGHEST LEGIBILITY

Full $7^{\prime \prime}$ custom-calibrated, mirror scale.

- CONSTANT OVERALL GAIN For long life.
- diamond bearings

For perfect balance, smooth scale motion.
Ranges: 10 MV to 500 V rms, full scale. Input impedance: 1 meg. Fundamental freq. response: $50-2000 \mathrm{cps}$. Accuracy (above 50% electrical deflection): $1 / 4 \%$ f.s. at $400 \mathrm{cps} ; 1 / 2 \%$ f.s. at all other frequencies. Power: $115 \mathrm{VAC}, 50-400 \mathrm{cps}$.

AVAILABLE RACK-MOUNTED OR PORTABLE

triolab other laboratory and build-in miniature precision instruments can help you. Write for Catalog ED-8

triolab

TRIO LABORATORIES, INC., Plainview, L. I., N. Y. Export Dept: EMEC, 127 Grace St., Plainview, N.Y.

NEW PRODUCTS
 AT WESCON

Miniature Chopper

636
For airborne servo systems. Series C1425 Syncroverter miniature chopper has an 83deg nominal phase lag at 400 cps which eliminates the use of phasing networks. Designed to resist shock and vibration, the unit measures $1-3 / 8 \times 3 / 4 \mathrm{in}$. and can be furnished with a variety of mountings.

The Bristol Co., Dept. ED, Waterbury 20, Conn.

See at Show Booth 3316-18.

Trimming Potentiometers

High resolution and precision trimming are features of series 150 trimming potentiometers. Standard resistance range is 10 to 50 K ; power rating is 1 w at 60 C . Environmental requirements of MIL-E-5272A and MIL-STD-202 are met. Mechanical ratio is $30: 1$ for screw-driver adjustment.

Duncan Electronics, Inc., Dept. ED, 2865 Fairview Road, Costa Mesa, Calif.
P\&A: \$3.70 to \$7.80; stock.
See at Show Booth 808.

Oscilloscope

645
Dual-beam oscilloscope type RM565 has two separate vertical systems and two separate horizontal systems. Sweep ranges are $1 \mu \mathrm{sec}$ to 5 sec per cm in 21 calibrated steps, continuously variable between steps and to 15 sec per cm , uncalibrated with magnification of 10 times.

Tektronix, Inc., Dept. ED, P. O. Box 500, Beaverton, Ore.

See at Show Booth 1726-28, 1823

Resistor Decade Boxes

725
In-line, digital readout is provided by the Dekabox decade resistor boxes for four to six decades with resolution of 0.1 to 100 ohms per step. Individual resistors have temperature coefficient of $\pm 10 \mathrm{ppm}$ per C above 100 ohms, $\pm 20 \mathrm{ppm}$ per C below 100 ohms. Decade adjustment accuracy is $\pm 0.03 \%+0.01$ ohm per decade.

Electro Scientific Industries, Inc., Dept. ED, 7524 S. W. Macadam Ave., Portland 19, Ore.
P\&A: $\$ 100$ to $\$ 195$; so days.
See at Show Booth 1928-29.

> How to buy a down payment on a new home for ${ }^{\$} 1.25$ a day

Will he ever save the down payment? He'll be in his new home sooner than he thinks, if he saves something every payday. The effortless, automatic way is the Payroll Savings Plan for U.S. Savings Bonds.

Saving for a new home, or anything else in fact, is simply a matter of spending less than you earn. Thousands of Americans have found an automatic way: the Payroll Savings Plan where they work. Through this plan your payroll clerk sets aside a certain amount each payday for U.S. Savings Bonds. As little as $\$ 1.25$ a day buys a $\$ 50$ Bond a month (cost $\$ 37.50$). In 5 years you'll own Bonds worth $\$ 2,428.00$ -enough for a substantial down payment and closing costs.

Six nice things about
U.S. Savings Bonds

- You can save automatically on the Payroll Savings Plan or buy Bonds at any bank - You now earn $3^{3 / 4} \%$ to maturity - You invest without risk - Your Bonds are replaced free if lost or stolen - You can get your money with intereat anytime you want it - You buy shares in a stronger America.

You save more than money with U. S. Savings Bonds

Thin advertasing in donated by The Adverluaing Council and this magazine.

Shipboard Blower

533
Output is 350 cfm, 5.8 in . static pressure, 0.075 density. Designed for naval applications, type SVA-475-11000 blower can be furnished in speeds of $5,400,7,500$ and $11,500 \mathrm{rps}$, for ac or dc use. It weighs 5-3/4 lb.

The Torrington Manufacturing Co., Dept. ED, Torrington, Conn.
Availability: 5 to 6 weeks.
See at Show Booth 4117.
Zener Diodes

Rated at 250 mw . These JEDEC glass Zener diodes include: types 1 N 465 to 1 N 479 , covering 2.6 to 7.1 v , with tolerances of $\pm 1 \%$ in the B series and $\pm 5 \%$ in the A series; types 1N702 to 1N716, covering 2.6 to 12 v , with $\pm 5 \%$ and $\pm 10 \%$ tolerances; types 1N761 to IN766, covering 4.8 to $13 \mathrm{v}, \pm 10 \%$ tolerance.

International Rectifier Corp., Dept. ED, 233 Kansas St., El Segundo, Calif.
P\&A: $\$ 2.60$ to $\$ 12.50$; stock.
See at Show Booth 1701-03.
Magnetic Alloy
Energy product is 7.5 megagauss-oersteds. Columax magnetic alloy has a residual induction of 13,500 gauss and a coercive force of 760 Oersteds. Tensile strength is $5,500 \mathrm{psi}$ along magnetic axis. Weight is 0.264 lb per cu in

Thomas \& Skinner, Inc., Dept. ED, 1120 E. 23rd St., Indianapolis 7, Ind.

See at Show Booth 1819.

Silicon Rectifiers

Piv is up to $3,000 \mathrm{v}$. Measuring 0.27 in . long and less than 0.1 in in diameter, these silicon rectifiers handle currents of 100 ma . They use three junctions in a hermetically sealed glass enclosure and have a forward voltage drop of 2.5 v at 100 ma .

Motorola Semiconductor Products Inc., Dept. ED, 5005 E. McDowell Road, Phoenix, Ariz.

See at Show Bonth 914-16.

Silicone-Resin Laminate

Glass-cloth. silicone-resin laminate grade 11589 combines good machining properties with high heat-resistance which permits operation at 250 C . It has high bond, mechanical and flexural strength.
General Electric Co., Laminated Products Dept., Dept. ED, Coshocton, Ohio.
See at Show Booth 4811 .

EVEN AT HICH .HUMIDITIES, MYLAR GIVES CAPACITORS LONG-LASTING STABILITY!

Mylar* polyester films resist the three main causes of capacitor failure-humidity, high temperatures and voltage stress. "Mylar" has 35 times the moisture resistance of rag paper and can't dry out because it contains no plasticizer.

Because "Mylar" is so stable, capacitors retain high electrical characteristics ... last longer... offer the highest reliability. And you get these benefits in capacitors insulated with "Mylar" at a cost comparable to the lowest-priced capacitor types. Motors benefit from "Mylar", too. Run service-free 50 to 100% longer.

In a wide variety of electrical applications, "Mylar" can improve performance, lower costs. Here are some more reasons: dielectric strength of $4,000 \mathrm{~V} /$ mil \dagger thermal stability from $-60^{\circ} \mathrm{C}$. to over $150^{\circ} \mathrm{C}$. resistance to chemicals, aging, abrasion and tearing. Best of all, you can use less, often pay less... because you get all these advantages in thinner gauges.

Evaluate "Mylar" for your product. Write for free booklet (SC) detailing properties and applications. Du Pont Co., Film Department, Wilmington 98, Delaware.

eftien tmings cor hetier uving TWEOUGN CWEMESTR

DUPONT

*"Mylar" ns Du Poni's registered trodemark for its polyester film. Only Du Pont makes "Mylar." 1ASTM 0.149.

NEW PRODUCTS at wescon

Potentiometric Transducer

538
Ranges are 0 to $\mathbf{1 0}$, to $\mathbf{3 5 0}$ psia. Model L-113 potentiometric pressure transducer withstands $100-\mathrm{g}$ acceleration and is suitable for space satellite applications. High-level ac or dc output can be used without amplification for control or telemetry circuits.

Servonic Instruments, Inc., Dept. ED, 1644 Whittier Ave., Costa Mesa, Calif.

See at Show Booth 4107.

Frequency Generator
560

Range is 25 cps to 1 mc . This crystal-controlled microcircuitry frequency generator has a standard accuracy of 0.01% or 0.001% on special order. It weighs 1.75 oz and occupies 1.3 cu in . Models are available for chassis mounting, for soldering or plug-in connections Varo Inc., Dept. ED, 2201 Walnut St., Gar land, Tex.

See at Show Booth 3609-11.

Cable Carrier

Mounts to chassis slides. This cable carrier consists of two telescopic-action supporting arms which expand with slide movement, providing uniform support. When retracted, it occupies about 1 in . of storage space. It meets applicable Mil specs.

Jonathan Manufacturing Co., Dept. ED, 720 E. Walnut Ave., Fullerton, Calif.

P\&A: $\$ 15$ to $\$ 30 ;$ so days.
See at Show Booth 4830.

Subcarrier Oscillator

500
Low-level subcarrier oscillator type 1274A can be activated by a $\pm 5-\mathrm{mv}$ differential signal with an input impedance of greater than 90 K . Time drift is less than 0.2% for 48 hr . True differential input allows the transducer to operate at ground potential, at any level to ± 50 v dc, or it may be floated.

American Bosch Arma Corp., Tele-Dynamics Div., Dept. ED, 5000 Parkside Ave., Philadelphia, Pa .

See at Show Booth 4126-28.

A BETTER SHAKE FOR POLARIS... Aerojet-General installs Ling vibration system with world's highest force rating -60,000 pounds

When faced with unsolved vibration testing problems on its vital part of the Polaris program, Aerojet-General Corporation, a subsidiary of The General Tire and Rubber Company, turned to Ling Electronics. To give its solid propellant rocket engines the severest shake-up, Aerojet-General improved its test facilities with two Ling vibration systemscontrolled simultaneously or independently by one console. The system, now operating, includes two Model 249 shakers delivering 30,000 pounds force each and two Model PP $120 / 150,120 \mathrm{KVA}$ water-cooled amplifiers - for a total force delivery of 60,000 pounds. The special random/sine wave console not only provides simultaneous or independent control of both exciter systems, but features Ling's famous ESD-ASD 20 spectral density equalizer/analyzer, the industry standard. Like Aerojet-General, you too may find the superior quality and rugged reliability of Ling systems answer your testing problems. For more information, write Department ED-861 at the address below.

LING-TEMCO ELECTRONICE,INC.

Ling electronics division

1515 SOUTH MANCHESTER, ANAHEIM, CALIFORNIA. PROSDect 4.2900 CIRCLE 122 ON READER-SERVICE CARD

LING ELECTRONICS

The powerful Ling vibration system shown at the left is just one more example of the way Ling's continuing program of research serves industry and defense programs.

As package weights rise, so does the need for vibration testing systems of higher performance and reliability. And Ling engineers have consistently anticipated these demands with designs that keep pressing toward higher ratings.
The powerful Model 249 shaker shown below delivers 30,000 pounds of force when combined with its mating amplifier. Only the high force rating of the 249 shaker made it possible to meet the big systems needs of Aerojet-General as described at the left.
Ling amplifiers offer equally impressive ratings. Ling pioneered in the manufacture of electronic amplifiers for driving electro-dynamic shakers and has produced liquid-cooled amplifiers that deliver from 10,000 to $5,000,000$ watts.

Listed below are performance ratings of high power Ling vibration systems employing the Model 249 shaker:

LIQUID-	LIQUID-	FORCE	FORCE
COOLED	COOLED	LBS.	LBS.
SHAKER	AMPLIFIER	SINE	RANDOM
249	PP $175 / 240$	30,000	32,000
249	PP $120 / 150$	30,000	28,000
249	PP $75 / 90$	23,000	21,000

Whatever your needs in high power electronics - vibration testing, acoustics or sonar, you'll find Ling systems offer high performance, high reliability, and quality that sets the standard.

LINO-TEMCO ELECTRONICB,INC.

HIGH POWER ELECTRONICS FOR VIBRATION TESTING.ACOUSTICS.SONAR CIRCLE 123 ON READEN-SERVICE CARD ELECTRONIC DESIGN - August 2, 1961 ton. Conn. equipment.

Computer-Console Blower

Provides 400 cfm at $0.8-\mathrm{in}$. SP at a density of 0.075 , with a $3,100-\mathrm{rpm}$ motor. Type SC-400-400-11112 blower can also be furnished with motors having speeds of 3,450 and $1,550 \mathrm{rpm}$, in 115 and $230-\mathrm{v}$ models.

The Torrington Mfg. Co., Dept. ED, Torring-
Availability: 6 to 7 weeks.
See at Show Booth 4117.

Rotary Stepping Switch

Plug-in rotary stepping switch provides 240 individual connections. It has bridging type wipers, is completely wired to connectors and measures $6-5 / 16 \times 6 \times 4-9 / 16$ in. Applications include prosraming, sequence control and test

North Electric Co., Electronetics Div., Dept. ED, Galion, Ohio.
P\&A: 8125: 6 weoks.
See at Show Booth 2502-04.
Fan and Driver

Outpul is 100 cfm or better. Both fan and driver operate from -20 to +40 C . Type 8-1003 driver unit requires 12 v dc and supplies a 60 -cps output to operate any ac fan. Power consumption is 24 w and over-all efficiency is 85 F . Total weight of both units is 2.2 lb .

Palo Alto Engineering Co., Dept. ED, 620 Page Mill Road, Palo Alto, Calif.
P\&A: $\$ 25$ for both units; stock.
See at Show Booth 512 .

Power Transistors

Dissipate 170 w . The eight power transistors in this series have maximum junction temperature ratings of 110 C . They will be available under the firm's Meg-A-Life program which provides lot-test data with each order.

Motorola Semiconductor Products Inc., Dept. ED, 5005 E. McDowell Road, Phoenix, Ariz. See at Show Booth 914-16.

With Heinemann's Type A Silic-O-Netic ${ }^{8}$, you get two relays for the price of one: a time-delay relay and a load relay. In one small package (shown actual size above), you get a timedelay relay that can double, if you wish, as a load carrier, too. (It's got a continuous-duty coil; you don't have to use auxiliary lock-in circuits or slave relays.)

The Type A tips the scale-barely-at three ounces. It comes with any delay you spec, from a quarter-second to two minutes, can be supplied for use on any one of twenty standard AC or DC voltages. Contact capacities range up to three amps. Maximum power consumption is two watts AC, three watts DC. Switching is SPDT or DPDT. Operating life is somewhere in the millions (the hydraulic-magnetic delay element is hermetically-sealed, fatigue-free).

The Type A (and the entire line of Heinemann time-delay relays) is described in full in our Bulletin 5003. A copy is yours for the asking.

HEINEMANN ELECTRIC COMPANY

THERMAL TRANSFER VOLTMETER

nBS CERTIFIABLE
A new AC-DC transfer standard. Transfer measurement is made to a calibrated DC supply of the same voltage as the unknown AC being measured; thus eliminates ratio errors in the high frequency multiplier resistors.
Range - Three decade range multiplier. . 5 volt to 1200 volts. Full resolution in 1 volt steps from 1 to 999 volts.
Frequency Response -5 to 290 volits $.02 \%$ to 50 KC . 300 to 1200 volts $.02 \%$ tolOKC. Null Sensitivity $-.004 \% / \mathrm{mm}$. Thermocouple - DC reversal error less than $.02 \%$. Couples, plug in replaceable, at $\$ 40.00$ Input Resistance - $143 \mathrm{ohm} /$ volt.

aUdIO VOLTAGE STANDARD
 NBS CERTIFIABLE

The output is continuously variable in frequency as well as voltage so that complete information about the response of the unit or system under test may be obtained.
Range - 1 to 1000 volts RMS 35 cps to 2 KC .1 to 300 volts RMS 35 cps to 10 KC . Accuracy - Regulated voltage equal to dial setting $\pm(0.1 \%+2 \mathrm{mv})$ From 300 to 1000 volts accuracy is $\pm 0.25 \%$. Stability - 30 days. Long-term drift may be corrected by simple adjustment. Internal Oscillator - $60 \mathrm{cps}, 400 \mathrm{cps}$ or 1000 cps .

HOLT
 See us of WESCON BOOTH 3305. 3307
 INSTRUMENT LABORATORIES OCONTO. WISCONSIN circle 125 ON READER-SERVICE CARD

NEW PRODUCTS at wescon
Power Supply

Output is 245 to 255 v at 0 to 200 ma . Model PS4241M power supply with convection cooling operates at 71 C . Input is 105 to 125 v at 50 to 63 cps ; line regulation is less than 0.05%; load regulation is less than 0.1%.

Power Sources, Inc., Dept. ED, Northwest Industrial Park, Burlington, Mass.

See at Show Booth 2816-18.

Hand Tools

Custom made for special applications, tools include: the 740-1372 combination screwdriver-nut-driver for adjusting recording equipment; the 2201357 long-shank, prong tipped tool for adjusting computers; and the $300-1675$ insulated nutdriver-hammer for aligning and adjusting calculating machines.

Xcelite, Inc., Dept. ED, Orchard Park, N. Y. Availability: Made on order.

See at Show Booth 402.

PNP Epitaxial Transistors

For switching use. These pnp epitaxial germanium transistors handle $1 / 2 \mathrm{amp}$ at switching speeds of a few nanoseconds. Current gain in the region of 100 mc has been improved 10 fold over previous models.
Motorola Semiconductor Products Inc., Dept. ED, 5005 E. McDowell Road, Phoenix, Ariz.

See at Show Booth 914-16.

Transistor Fault Counter

With 10 indicators, model C-10 transistor fault counter displays the number of transistors which do not pass tests 1 to 10 . Also offered, model C-2 displays the total number of units tested and the total number which pass tests.

Optimized Devices, Inc., Dept. ED, 864 Franklin Ave., Thornwood, N. Y.
P\&A: \$850; 6 weeks.
See at Show Booth 1210.

487

496

anat on summ
 BARBER
 BARBER COLMAN

cotman
IIII

Ultrasensitive relays

helpful data for your CIRCUITRY IDEA FILE

The circuit drawing below indicate just one of the hundreds of ways many manufac-
turers utilize Micropositionert polarized relays to solve complez control problems.

SERVOMECHAMISMS APPLICATIOMS
Many remote positioning applications can be molved by utilizing the Barber-Colman Micropositioner ultra-sensitive relay either as a null detector or a differential relay. In the circuit shown above, movement of the transmitting potentiometer introduces en error signal in Micropositioner coil P, motor until balance is restored. Secondary relay: R_{1} and R_{2} operated by the Micropositioner handle larger loads. This circuit can also be applied to synchronization. or the Micropositioner can be utilized in the output of an electronic eervo control.
Among the many applications for this simplified servo control relay are positioning of antenna rotators and tuning condensers. aerial camera mounts . . . valves . . . teat cell apparatus.
If your projects involve servomechanisms. why not make a test with a Micropositioner designed for circuits similar to that shown above? Write for Engincering Bulletin No. 9.

BARBER-COLMAM

MICROP OSITIOMER ${ }^{\text {T }}$ POLARIZED D-C RELAYS Operate on input power as low as 40 microwatte. Available in three typea of adjustment: null seeking . . . magnetic latehing "memory" ... and form C break.
make tranafer. Also
transiatorized types with built-in preampli fier. Write for new quick reference file.

Barber-Colman Company DEPT. T. 1883 ROCK STREET. ROCKFORD, ILINOIS CIRCLE 126 ON READER-SERVICE CARD Electronic Design - August 2, 1961

Power Relay

Rated at 50 amp . Class 88D miniature power relay is for ac or de use at $6,12,24$ and 115 v . Contacts are spst, normally open or normally closed, double break, with silver-alloy points. Contact arms provide positive contact wiping. Magnecraft Electric Co., Dept. ED, 3350D W. Grand Ave., Chicago 51, III.
P\&A: $\$ 4.25$ to $\$ 6.75$; most types, stock.
See at Show Booth 3017.

FM Transmitter

482
For 215 to 260 mc . Type 1008, a 2 -w fm transmitter, provides 0.01% crystal-stabilized frequency control. Sensitivity is 0.01 v per kc ; carrier deviation is $\pm \mathbf{1 5 0} \mathrm{kc}$; modulation range, 20 cps to 100 kc . It operates over the temperature range of -55 to +100 C .
American Bosch Arma Corp., Tele-Dynamics Div., Dept. ED, 5000 Parkside Ave., Philadel phia, Pa .

See at Show Booth 4126-28.

Glass-Epoxy Laminate

528

Self-extinguishing grade 11587 glass-epoxy FR-4 laminate is especially suitable for applications where cyanide plating is required. It has high flexural and impact strength, insula tion resistance of $1,000,000 \mathrm{meg}$ and meets the humidity conditions of C-96/35/90
General Electric Co., Laminated Products Dept., Dept. ED, Coshocton, Ohio.
See at Show Booth 4811.

Trimming Potentiometers

Ranges are 10 ohms to $\mathbf{5 0} \mathbf{k}$. A monocrystal thick film with stable temperature characteristics provides these trimming potentiometers with long life, high power and infinite resolution. Units have the same dimensions as wirewound models 110, 120, 210, 220 and 320.
Atohm Electronics, Dept. ED, 7648 San Fernando Road, Sun Valley, Calif.
See at Show Rooth 3506-08.
ELECTRONIC DESIGN • August 2, 1961

You wire this new General Electric Silicon Controlled Rectifier as easily as a resistor!

IN LOW POWER SWITCHING AND CONTROL APPLICATIONS REQUIRING BLOCKING VOLTAGES UP TO 200 VOLTS' AND DC LOAD CURRENTS UP TO I.I AMPS

The unique double-ended mechanical design of the new General Electric 2N1929-1933 low current SCR's now gives you the advantage of point-to-point wiring flexibility in circuit layout design . . . and you don't need any external heat sink whatsoever even for relatively high current loads! Other important advantages: transient PRV ratings up to 300 volts; maximum gate current to fire, 15 ma at $25^{\circ} \mathrm{C}$.

For complete technical information on this new SCR, call your Semiconductor Products District Sales Manager or write Rectifier Components Department, Section 23H27, General Electric Company, Auburn, New York. In Canada: Canadian General Electric, 189 Dufferin Street, Toronto, Ontario.
Export: International General Electric, 150 E. 42nd Street, New York 17, New York.

FOR FAST DELIVERY OF GERMANIUM. SELENIUM AND SILICON RECTIFIERS. CALL YOUR AUTHORIZED G-E SEMICONDUCTOR DISTRIBUTOR

Progress /s Our Most /mportant Product GENERAL electric

SYNCHROS MIL-S-20708 \mid MIL-S-2335

Your complete source for all military type synchros with "off the shelf" delivery

SIZE 11	TXAb, 26V-TXAb
SIZE 15	cTAb, cxab, coxab, TRAE, TXAb, Toxab, ctsb, cxab, coxbb, TRGs
SIZE 18	ст4b, cxab, coxab, TR4b, Toxab, ct6b, cx6b, cox6b, Tx6, , TRx6s
SIZE 23	
SIZE 31	TRAd, TX48, TX4d, TDXAD, TDRAD, TRG6, TX6b, Tox6b, TDRAb
SIZE 37	TR4s, TX60, Toxas, TDRAs, TR66, TX66, TOX6a, ToR6a
TYPE 1	10. IF. Inct. IhDG, IMG
TYPE 3	30, ЗF, ЗнCT, зHDG, знG
TYPE 5	50, 5F, 5HCT, 5HDG, 5HG, 5N
TYPE 6	6HOG, 6HG

WRITE FOR FREE
Ropid Reforonce Guide to Military Synchros. \longrightarrow

Write on company lefterhead
for Synchro Engineering Catalog.

Weet Coant Sales and Sorvice OMce-117 East Providencia Avenue, Burbonk, Colifornia Cenedien Soles Othce - Aviation Electrik Limithed, 200 Laurentien SIvd., Montreal, Ouebec, Canade Expont Salos and Sorvice - Lendik Lenermational, 205 East 42 nd SI, Mow York 17, Now Yoak

Montrose Division
SOUTM MONTROSE, PA

NEW PRODUCTS at wescon

Range is $\mathbf{0 . 0 0 0 1}$ to $\pm \mathbf{1 , 2 0 0} \mathbf{v}$ with an accuracy of ± 1 count. Model 550 digital voltmeter has automatic polarity indication, effectively infinite input impedance and instantaneous reading. Modular plug-in construction is used.

Franklin Electronics Inc., Dept. ED, Bridgeport, Pa .
Price: $\$ 1, \$ 70$.
See at Show Booth 3510 .
FM Signal Generator

Kange is $\mathbf{4 0 0}$ to $\mathbf{5 5 0} \mathbf{~ m c}$. Model 1001 fm signal generator is continuously tunable and has a frequency drift of less than 0.015% per hr . Dial calibration accuracy is $\pm 0.5 \%$. Fm deviation is controlled on two ranges, 0 to 35 kc and 0 to 350 kc , accurate to $\pm 5 \%$ full scale.

R S Electronics Corp., Dept. ED, P. O. Box 11386, Station A, Palo Alto, Calif.
Availability: 45 dnys.
See at Show Booth 3322.
Miniature Amplifier

Rated at $5 \mathbf{w}$, type C70 3146001 amplifier is for use in ambient temperatures to 125 C . It occupies 1 cu in. Features include high stiff ness-to-weight ratio for missile and aircraft environments and resistance spot welding.

General Precision, Inc., Kearfott Div., Dept. ED. 1150 McBride Ave., Little Falls, N. J.

See at Show Booth 3309-21.

READALL READOUT NEWS from Union Switch \& Signal

New 64-Character READALL* Readout Instrument designed for use in low-level and solid-state circuitry

The new sealed case 64-character Readall Readout Instrument was designed especially to meet the severe environmental requirements of MIL-E-5422D and other military specifications. The sealed case provides reliable operation at 100% humidity and at altitudes up to 50,000 feet.

The great reduction in the amount of assuciated equipment required when Readall Readout Instruments are used simplifies circuitry. Outstanding features in this one small package are: readability of display, binary decoding, data storage and electrical readout.

This new Readall is back-lighted with two miniature aircraft-type lamps. Even if one lamp fails, readability is assured. Under normal conditions the black-and-white character belt is readable even without internal illumination.

The new Union sealed case 64 -character Readall is $817 / 22^{n}$ long and weighs just 14 ounces. It will mate with military standard connector MS-24013, and is a companion to the Union sealed case 12-character Readall. Write for Bulletin 1066.

READALLS reduce equipment requirements... simplify circuitry

Because Readalls are capable of so many functions, there is no need for the transistors, relays, magnetic cores and diodes and membrane translator units required to back up less sophisticated readout devices. Write for Bulletin 1057.

ES

UNION SWITCH \& BIONAL
division of westinghouse air brake company PITTSQURGH 18, PENNSYLVANIA

Reversible synchronous motor type 46100 delivers 30 oz -in. torque at 1 rpm . Designed for computer applications, it can be used with printed circuitry, potentiometer drives and other devices. No external breaks, quenching circuits or phase-shift networks are needed. It can be furnished with outputs of 300 rpm to $1 / 6 \mathrm{rph}$.
A. W. Haydon Co., Dept. ED, Waterbury, Conn.
Availability: 60 days.
See at Show Booth 2802-04.

Switching Relay

Life is 30 million cycles. Type A miniature switching relay has dpdt contact arrangement with a $4-40$ by $3 / 8-\mathrm{in}$. stud. Coils are from 100 to 2,500 ohms $\pm 20^{\circ}$ \% Operate time is as fast as 3 msec : release time, to 6 msec . Contact resistance is $\mathbf{6 0}$ milliohms at rated load.

North Electric Co., Electronetics Div.. Dept. ED. Galion, Ohio.
P\&A: $\$ 1.55$; sample quantities.
See at Show Booth 2502-04.
Multiple Diode

For computer logic. This plug-in multiple diode, called the Poly-Diode, consists of five separate diode junctions with individual leads, formed on a single silicon slice. The entire circuit is glass encapsulated.

Delta Semiconductors, Inc., Dept. ED, 835 Production Place, Newport Beach. Calif.
See at Show Booth 4512.

New 4-PDT-10-amp Relay Most Compact Rotary Type Available
 This new durable relay is designed to meet the requirements of Mil-R-6106. It's a rugged relay featuring exceptionally sturdy terminals and husky contacts for high current applications. Glass-coated cylindrical contact actuators attached to the rotary armature provide square mating of contact surfaces, thereby assuring longer relay life. The balanced rotary armature provides maximum re-

 sistance to severe shock and vibration.This small 4-PDT-10-Ampere relay is currently available with 115 VAC and various DC operating voltages. Various mounting styles are provided. Write for bulletin 1069.

Contact Redundancy in New UNION Crystal Case Relays

The UNION 2-pole double throw General Purpose Crystal Case Relay is designed to consistently meet the requirements of Mil-R-5757D and Mil-R$5757 / 10$. Its essential features . . . from minimum size to optimum reliability . . permit it to be used in aircraft, guided missiles, shipboard and ground control electronic equipment.

A unique torsion-wire armature suspension system and a rugged all-welded frame construction provide a high level of vibration and shock immunity. Contact redundancy, which assures reliability in dry circuit and higher level contact loads, is provided through the use of bifurcated contacts.
Available with $0.2^{\prime \prime}$ grid-spaced header or " S " type header, with various mountings, terminals, and operating voltages. Write for Bulletin 1064.

Why UNION Relays Are So Dependable

There's a good reason why our relays are the standard for reliability. For years, we've been building tough, reliable relays for use in airborne and guided missile electronic equipment and similar vital applications where perfect operation under severe environmental conditions is mandatory.
Our engineers created a compact 6-PDT miniature relay with just three major assemblies . . . instead of a fistful of small parts. This was accomplished by using a balanced rotary-type armature that provided a maximum resistance to the severe shock and vibration environment of aircraft and guided missiles. The rotary principle of operation is utilized in all our relays.
We have a reputation for building reliable electronic components and we intend to maintain our tradition for building reliable relays. And we supply these quality relays in quantity. Stocks are now available for prototype requirements in New York, Pittsburgh, Dallas and Los Angeles.
For additional information, write for Bulletin 1017 or call Churchill 2-5000 in Pittsburgh.
MEmBER OF THE MATIONAL Associatiom of relay mamufacturers

UNION SWITCH \& SIGNAL DIVISION OF WESTINGHOUSE AIR BRAKE COMPANY PITTSBURGH 1B, PENNSYLVANIA

NOT THIS

DOT UNIPLANE SWITCH CUTS COST 50-75\%

- Monoplanar Switching Ucinite's exclusive technique replaces bulky, multi-pole switch, component board and interconnecting harness with compact, accessible assembly for rapid, error-free, low-cost wiring.

Saves Time and Money, Enhances Reliability All wiring and assembly is done on single printed board. Switch patterns are in plain view. Components are dropped into position and soldered in. In typical applications, 75% savings are accomplished by reducing labor, materials test-time, rejects, repairs. Solder joints typically reduced by 65%, for much higher reliability. Patented DOT UNIPLANE lowtorque design eliminates many sources of rotary switch failure.

- Creates Additional Degree of

 Freedom Space savings of 30% to 80% plus the flexibility of orientation possible with Ucinite's exclusive 3-axis drive assembly, create a new degree of freedom in layout, often permit utilization of "waste space".Convenient Standard Kits Basic UNIPLANE parts are available in an inexpensive kit from which over 1000 different combinations of poles, positions, drive-axes and mounting surfaces can be assembled. In production selected kit-parts are fac-tory-assembled by Ucinite at additional savings.

- Custom Designs Ucinite designs custom UNIPLANE assemblies with printed interconnections, special test points, edge connectors, etc., to your specifications.
Write Dept. EBG-1 or use Reader Service Card.

Application-engineered, standard electronics products: Printed Circuit Test Jacks • Printed Circuit Connectors - Monoplanar Switches Printed Circuil Guide Channels, Polarizing Plugs and Keys - MIL STD and Commercial Jacks, Plugs, Suitches - Molded Rotary Switches - Shock and Vibration Mounts • Magnetron Connectors • Anode Connectors and Grid Caps.

The UCINITE COMPANY

Division of United-Carr Fastener Corporation Newtonville 60, Massachusetts

LAsell 7-8400

NEW PRODUCTS

Transistor Analyzer

469

Digital readout is available on model 2002 transistor dc analyzer. Measured parameters and operating ranges include: $\mathbf{0}$ to 100 v breakdown voltage; 0 to 10 v saturation voltage: $1.0 \mathrm{~m} \mu \mathrm{a}$ to $100 \mu \mathrm{a}$ reverse current; and 5 to 1,000 dc beta. Variable test currents from 10 $\mu \mathrm{a}$ to 100 ma and voltages from 0 to 100 v are available. Accuracy is better than 1%.

Merrithew and Syphers, Inc., Dept. ED, P. O. Box 178, Syracuse 11, N. Y.
P\&A: \$2,975; six weeks.

Biotelemetry System

579
Six data channels are provided by vest-type biotelemetry system model 99. Parameters include electrocardiogram, respiration, temperature, galvanic skin response, electro-encephalogram and voice. Range is 200 yards with 10 hr of continuous transmission. Complete unit weighs less than 3 lb . Standard IRIG frequencies are used.

Spacelabs Inc., Dept. ED, 15521 Lanark St., Van Nuys, Calif.
Availability: 90 days.

Portable Antenna

Light-weight helical antenna has 4 or 7 turns, and is made for space and missile telemetry systems. Unit, consisting of $15 \times 51 \mathrm{in}$. cylinder and $48-\mathrm{in}$. sq aluminum honeycomb plane, weighs 24 lb . Gain at band center is 10.5 and 13.5, beam width is 52 and 40 deg for 4 - and 7 -turn units respectively. Frequency range is 215 to 165 mc .

Temco Electronics Div., Dept. NB6237, Dept. ED, P. O. Box 6191, Dallas 22, Tex.

TELEMETRY BY

 TELE-DYNAMICS
Voltage Controlled Oscillator

Positive, reliable oscillator performance is essential to your aerospace telemetry needs. And Tele-Dynamic's newest-the Type 1270A Voltage-Controlled Oscillator is representative of Tele-Dynamic's creative effort in the complete telemetry field.

Characterized by excellent overall specifica. tions, this new oscillator is high in electrical performance and environmental characteristics. Input 0 to 5 volts or ± 2.5 volts, linearity $\pm 0.25 \%$ best straight line . . . a power requirement of 28 volts at 9 milliamps maximum. Distortion is 1% and amplitude modulation 10%.

Environmental characteristics include thermal stability of $\pm 1.5 \%$ design bandwidth from $-20^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$, unlimited altitude, 30 G random vibration and 100 G acceleration and shock. The 1270A weighs less than two ounces and has a volume of two cubic inches.

For detailed technical bulletins, call the American Bosch Arma marketing offices in Washington, Dayton or Los Angeles. Or write or call Tele-Dynamics Division, American Bosch Arma Corporation, 5000 Parkside Avenue, Philadelphia 31, Pa. Telephone TRinity 8-3000.

TELE-DYNAMICS DIvision

RHEMCAN BOSCN AREM conporation

5000 Rertoide Ave., Phrlochelphla 3t, No. CIRCLE 132 ON READER-SERVICE CARD

All-silicon power supply operates at 71 C ambient air. Designated model PS4241-M, the supply provides 245 to 255 v dc at 0 to 200 ma , with line regulation of 0.05% and load regulation of 0.1%. Transformer and choke are hermetically sealed, and meet MIL-T-27 requirements. Cooling is by convection, without blowers.

Power Sources, Inc., Dept. ED, Northwest Industrial Park, Burlington, Mass.

Delay Line

A 224- μ sec delay for automatic machine control is designed into the FM-400-224 Magline series of magnetostrictive delay lines. Unit accommodates two information channels which can be separated by clocking. Bit rate is 250 kc per channel. Output is 40 mv min with a 50 ma peak driving current. Units are mounted on printed circuit cards measuring $6 \times 4-3 / 4$ $\times 1 / 2$ in.

Control Electronics Corp. Inc., Dept. ED, 10 Stepar Place. Huntington Station, L. I., N. Y.

Oscillograph

Dual-channel direct-writing oscillograph, model 500 , has a measurement range from 0.0001 to 400 v and frequency response from dc to 100 cps . A variety of interchangeable plug-in preamplifiers are available. Chart speeds of 1 , 5,25 , and 100 mm per sec have push-button selection.

Photron Instrument Co., Dept. ED, 6516 Detroit Ave., Cleveland 2, Ohio.
P\&A: $\$ 1,325.00$; 30 days.

spfflh

SPERRY SEMICONDUCTOR DIVISION

OF
SPERRY RAND CORPORATION NORWALK, CONNECTICUT

NEARLY PERFECT SWITCH

(And we don't mean a shell game)

```
HERE ARE THE FACTS IN A NUTSHELL....
- High breakdown ratings - 50 to 80 volts
- Two point control of current/voltage offset parameters
- Matched pairs to standard tolerance of 100 \muv
- 10 million - to-1 minimum "off" to "on" resistance ratio
- Typically 30,000 megohms reverse resistance
- Typically 50 ohms forward resistance
- High temperature stability
- Unlimited quantities available
- Available from local Sperry Authorized Distributors
```

Don't gamble - you put your experience on the line when specifying for analog computers, D.C. amplifiers, electronic commutators and multiplex equipment.
Sperry now offers you a complete series of silicon transistors for single use or matched pairs that have the best combination of chopper characteristics - plus an extra margin of safety which provides true design flexibility.

Type Number	$\begin{gathered} \text { BVcıo } \\ \text { (Volts) } \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{BV}_{\text {cis }} \\ & \text { (Volts) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { BV } \begin{array}{c} \text { sio } \\ \text { (Volts) } \end{array} \\ \hline \end{gathered}$	$V_{n 1}$ (max) Offset Voltage (mV)	In (max) Offset Current $\left(\mathrm{m}_{\mu} \mathrm{A}\right)$	$\begin{aligned} & \text { Price } \\ & 1-99 \end{aligned}$	$\begin{aligned} & \text { PRICE } \\ & 100-999 \\ & \hline \end{aligned}$
2N1917	-8	-25	-25	1.0	1.0	\$ 9.75	\$7.50
2N1918	-8	-25	-25	3.0	3.0	7.80	6.00
2N1919	-18	-40	-40	2.0	1.0	12.35	9.50
2N1920	-18	-40	-40	3.0	1.5	8.77	6.75
2N1921	-50	-50	-50	4.0	2.0	5.20	4.00
2N1922	-80	-80	-80	4.0	2.0	6.50	5.00

Write for 16 page Technical Application Bulletin \#2107 and new Chopper transistor data sheets on types 2N1917 through 2N1922.

READOUTS THAT DO MORE THAN DISPLAY NUMBERS
I.E.E.s complete line of rear-projection readouts display words, numbers, symbols, and color. The alpha-numeric Bina-View readout is self-decoding and operates direct from binary self-decoding and operates direct from binary output. And al
The engineering staff and facilities of Industrial Electronic Engineers, Inc. have approached trial Electronic Engineers. Inc. have approached the prubleations, the case in point being that

numbers are only one form in a host of methods in visual communications. The engineering in visual communications. The engineering more forms of visual communications that are more forms of visual communications that are avaive breakdown. In a word; complete.
Your inquiry to complete readout visual communications is invited.

Pr Imdustrial Electronic Engimeers, inc.
S520 Vinelind Avonue. Morth Mollywood. Caitiomia

CIRCLE 134 ON READER-SERVICE CARD

NEW PRODUCTS

Memory System

This 8,000-character, 56 bit-per-character random access core memory system, model 8000 K 56 R , operates with a cycle time of 6 $\mu \mathrm{sec}$. Access time is $2.5 \mu \mathrm{sec}$. Uncompensated temperature range is $\mathbf{1 5}$ to $\mathbf{4 0} \mathrm{C}$. The system contains 448,000 cores, and is available with a memory test unit.
General Ceramics Dis., Indiana General Corp., Dept. ED, Keashey, N. J.

Gate Drive

Made for silicon-controlled rectifiers, the Flat Top gate drive has a pulse rise time of 1 to 5μ sec. Pulse leading edge advances linearly with control signal until the phase shift is 180 deg. This 180 -deg phase shift is maintained even for excessive control signals. Unit is housed in a hermetically sealed metal case measuring $4-1 / 4 \times 3-1 / 4 \times 3-1 / 2 \mathrm{in}$.
VeeTrol Engineering. Inc.. Dept. ED, 8 i Magee Ave., Stamford, Conn.

Epoxy Cement

For strain gages. The three-hour setting time of B-3 epoxy cement allows strain gage alignment while cement is setting up. Temperature limits are 200 F static, 250 F dynamic. Cement can be applied to porous or smooth surfaces.
The Budd Co., Dept. C. Instruments Div,, Dept. ED, P. O. Box 245, Phoenixville, Pa.

Pulsed Ruby Laser

Less than 200 J are required to fire this pulsed laser. Chromium-doped ruby is activated by a single flash tube housed in an elliptical

ELECTRONIC DESIGN • August 2, 1961
reflector. Laser head measures 8 in . long and 5 in . in diameter. Power supply provides 2,000 v from a $400-\mu \mathrm{f}$ reservoir. Instrument is made for industrial and institutional research.

Raytheon Co., Special Microwave Devices Op eration, Dept. ED, 130) Second Ave., Waltham, Mass.
P\&A: $8.5880 ; 3$ to 4 weeks.

Wirewound Resistors

Less than I pf distributed capacitance for resistances up to 800 K , and less than 1.5 pf up to 1.25 meg is held by these precision wirewound resistors. Units are noninductive, encapsulated, and have a temperature range of -65 to +125 C. Sizes up to 5 meg, 2 w dissipation are available, with tolerances as low as 0.01%. Units measure $3 / 4 \mathrm{in}$. long and $1 / 4 \mathrm{in}$. in diameter.

Kelvin Electric Co., Dept. ED, 5907 Noble Ave., Van Nuys, Calif.

Isolation Transformers
504

Dual-shielded isolation transformers have in-put-output capacitance less than 0.05 pf. Units are available in 1 to 2.5 kva sizes for laboratory isolation. Test equipment isolation can be achieved with 5 -va to 500 -va units, packaged in MIL-T-27A cases with shielded leads.

L J Products. Dept. ED, 7464 Girard Ave., La Jolla, Calif.

Multiplex Stereo Generator

Tests multiplex equipment. Multiplex stereo generator, model 830 , operates with an fm signal generator, an audio oscillator, and an oscilloscope to provide a composite stereo signal. Stereo records or tapes may serve as input for listening tests.
H. H. Scott, Inc., Dept. ED, 111 Powdermill Road, Maynard, Mass.
P\&A: \$1,000; regular production in September.

AND 67 SIIES IN BETWEEN

Continental's line of PC connectors include nearly seventy sizes and types. Name your requirement - and the chances are Continental has a standard production type that meets it exactly.
These service-proven connectors are available with up to 210 contacts, for $1 / 32,3 / 64,3 / 32,1 / 16$ and $1 / 8^{*}$ PC boards, in both single- and double-row construction. Wiring styles include eyelet lug, wire wrap lug, taper tab and contacts for dip soldering. Continental's patented Bellowform contacts permit use of undersized or oversized boards while maintaining low contact resistance.

New PC connector designs are constantly under development. Our Engineering Department will be pleased to assist you in solving special connector problems. Simply call or write, stating your requirements.

DESIGNERS' DATAFILE If yourre dosigning around printed circuits you'll want to have continental's Con-Dax File PC. compilec to help you solect and specify the PC connectors best suited to your needs for your copy, please write to
 Now York (Excluarive Salee Agent) RAvenswood 1 \$000.

MICRO-MINIATURE • SUB-MINIATURE • MINIATURE • PRINTED CIRCUIT•RIGHT ANGLE PIN \& SOCKET•CENTER SCREWLOCK

CONTINENTAL CONNECTOR CORPORATION WOODSIDE 77, NEW YORK VISIT US AT WESCON SHOW - Booths 1919-1921

CIRCLE 136 ON READER-SERVICE CARD

PROTECT UNDERWATER CIRCUITRY WITH SPECIAL BENDIX CABLES AND CONNECTORS

Based on a concept developed by Portsmouth Naval Shipyard, special cable and connector assemblies offering maximum protection for underwater circuitry are now available from the Scintilla Division of The Bendix Corporation.

These watertight assemblies are available in a variety of configurations. The specification covering this design stipulates that the cable and connector assembly must be capable of operation, mated or unmated, at high pressures. Connector receptacle shells are fabricated of non-corrosive metal. Connector plugs are sealed to the cables by watertight, pressuretight molding.

Bendix has a wealth of experience in fabricating cables and connectors for underwater applications. If you have needs in these areas-and want top quality at no premium in price write today for complete information.

BENDIX CONNECTORS BENDIX CABLES ...

Designed together
to work best together!

Scintilla Division
Sidney, New Yort

NEW PRODUCTS

Transistor Straightener

One thousand transistor leads an hour are straightened by model AL3S, or cut and notched by model AL3NS machines. Machines do not roll, twist or affect the seals or leads electrically. When a transistor is inserted into the machine, the leads are straightened, or cut and notched, and the transistor is ejected. Power requirements: $110 \mathrm{v}, 60 \mathrm{cps}$, and 80 psi of compressed air.

Design Tool Co., Dept. ED, 1055 Stewart Ave., Garden City, L. I., N. Y.
Price: Straightener, \$2,490; cutter-notcher, \$2,790.

Glass-Epoxy Laminate

Copper-clad glass-epoxy laminate Textolite grade 11584 withstands severe mechanical and thermal shock. It retains 50% of room-temperature flexural strength at 150 C and 50% of the copper bond strength after seven days at 325 F , and is resistant to solvents and etchants. Thickness range is 0.010 to 1.000 in . unclad, 0.010 to 0.250 in . copper-clad.

General Electric Co., Laminated Products Dept., Dept. ED, Coshocton, Ohio.

Power Regulators

Ovens and furnaces can be controlled by these multi-channel ac power regulators. Up to 10 channels can be installed in a standard instrument rack. Model Y4079 is a single-channel, plug-in module rated at 40 amp . Model G4078 is rated at 100 amp per channel. Overloads of 200% can be tolerated for short periods. Cooling apparatus is contained in the rack.

Research, Inc., Dept. ED, P. O. Box 6164, Minneapolis 24, Minn.

445

576
IT'S
at WESCON Booth 2412-14
WHERE
Boonton Electronics
WILL SHOW
A NEW
SEMSITIVE
RF VOLTMETER
$300 \mu \mathrm{~V}$ to 3 volts 1.2 KC to 1200 MC Accuracy to 3%

WE WILL ALSO DISPLAY

- Capacitance Bridges
- Inductance Bridges
- DC Voltmeters
- RF Microwatt Meter
- AC \& DC Null Detectors
- Grid Dip Meters
- Distortion Meters

> Boonton MLBCTRONICS Corporation

> Morris Plains, N, J. - JEfferson 9-4210

CIRCLE 138 ON READER-SERVICE CARD
ELECTRONIC DESIGN•August 2, 1961

Serial Memories

629
Five types are offered, with delays from 19 to 100 up to 1.501 to $2,000 \mu \mathrm{sec}$. Type SM-10 serial memories contain a driver circuit, a magnetostrictive delay line and an amplifier reshaper. Storage capacity is to 2,000 bits; greater loop storage can be obtained by cascading.

Computer Control Co., Inc., Dept. ED, 983 Concord St., Framingham, Mass.
P\&A: \$294 to \$427; from stock.

Audio Tone Oscillators

457

Specific frequencies from 50 cps through 30 kc are generated by these transistorized tone-oscillator packages. Plug-in and solderterminal versions are available. Output load is 600 ohms or 10 K . Typical frequency accuracy is $\pm \mathbf{2 \%}$. Units, hermetically sealed. occupy 1-1/2 cu in. and are rated from - 29 to -55 C

M F Electronics Corp., Dept. ED, 118 E. 25th St., New York $10, N$.
Availability: one to two weeks.

Plastic Tubing

679
Shrinkable plastic tubings, called Flexite. shrink on application of heat to provide snug fittings around wires, components, and irregular shapes.
L. Frank Markel and Sons, Dept. ED, Norristown, Pa.

Subcarrier Oscillator

Miniature subcarrier oscillator, model VOG-140-002, is designed for guided-missile and aircraft applications. Device measures $1-7 / 8 \times 1-27 / 64 \times 2-3 / 16 \mathrm{in}$. and weighs less than 7.4 oz . Dc voltage information is converted to an fm subcarrier signal on any standard RDB channel. Controls and test point are on front of oscillator. All MIL specs are met.

Astronautics. Inc., Dept. ED, Melbourne, Fla.

> Only Ampex AR-300/FR-700 systems make all these wideband recording techniques practical and routine

Abstract

It takes a me response to fully encompass all the above applications. Increasing tape speed past static heads would demand $1,300 \mathrm{ips}$ and record only 3 minutes, using massive $1^{\prime \prime}$ reels ... but Ampex puts a full hour on standard $10^{1 / 2 "}$ reels, by rotating the recording heads at 12.000 rpm transversely across slow-moving tape ($12 \frac{1}{2}$ and 25 ips) to get the needed relative head-to-tape speed for 4 mc . In so doing, the AR-300 and FR-700 recorders borrow from Ampex's videotape* Recorders, which use an identical technology to capture TV frequencies.

More blts per hour, another bonus from rotating hoads. Rotating heads reconcile two ideals: relative freedom from information dropout, and maximum information recorded per reel of tape. With head-to-tape speed to spare, each bit of information can be permitted to occupy a greater wave length along the track to minimize dropout. At the same time, rotating heads are ideal for recording very narrow, closelyspaced tracks across the tape. This narrow spacing puts 64 tracks into each inch. Up to $5,000,000$ bits of PCM data can be recorded per second, or 1.8×10^{11} bits on a one-hour reel.

750 similar recorders have written the reliability record. Better than 99% reliability from over 750 videotape Recorders in worldwide use is a matter of record. Sole routine replacements necessary are heads and tapes. On a megacycle-hour basis, life compares favorably with lower performance recording methods.

Some significant specifications. One or two tracks available. Tape speeds: $121 / 2 \mathrm{ips}$ for single track and I hour- 25 ips for two tracks and $1 / 2$ hour. Models: AR-300 Mobile or Airborne for record only -FR-700 single rack labor atory record/playback. Response: by FM 10 cps to $4 \mathrm{mc}(\pm 3 \mathrm{db}$). Tape: 1.0 mil Mylar (DuPont T. M.), $2^{\prime \prime}$ wide on $101 / 2^{\prime \prime}$ reels. Elecironics: all solid state. Environmental (AR-300): 50,000 feet altitude, temperatures $-54^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Tape interchangeability between all AR-300 and FR-700 recorders.

AMPEX INSTRUMENTATION PRODUCTS CO. Box 5000 . Redwood City, California

Radar reconnaissance and tracking Radar simulation and training Pre- and post-detection recording Wideband communications Infrared recording

QUADRATURE-FREE AC SIGNALS!

...now possible with two entirely new AC pots -precision-built by Helipot!

Even though today's potentiometers are developed to a level of performance never before achieved, their use as AC voltage dividers introduces several problems not present under DC conditions. Most important of these are quadrature voltage and phase shift-the extraneous voltage 90° out of phase with the input signal, which results from capacitance between wire turns and metallic mandrel.
How do you eliminate quadrature? And the many other considerations associated with AC applications what about them? Helipot solves all these problems with two new AC potentiometer series.

Let's talk specifics.

YOU'LL WANT THE ANSWERS TO THESE 5 QUESTIONS..

1. WHAT IS AN AC POTENTIOMETER?

Simply stated, a pot that's specifically designed for AC-excited circuits. It differs from ordinary wirewound pots in that quadrature effects are eliminated without the addition of elaborate compensating networks. At the same time, it provides lower output impedance, and improves linearity and reliability.
2. HOW DO AC POTS ELIMINATE QUADRATURE ERROR?
Helipot combines a multi-tapped pot with a multi-tapped autotransform-

12 seonewt
12 sroment
TMAMBronuce
er. The voltage existing at each pot tap point is determined by the reference voltage at the corresponding
autotransformer tap. The pot resistance element is divided into a series of independent low-resistance ele-ments-hence a reduction in quadrature.
The figure shown plots quadrature error against rotation. It illustrates the difference in phase shift between ordinary wire-wound pots and a Helipot AC unit with 12 -segment autotransformer. You'll note that quadrature error is at its maximum near the midpoint between taps and is nearly zero at tap points. The result: negligible quadrature error and phase shift.
3. HOW ARE INPUT AND OUTPUT

IMPEDANCE AFFECTED?
Input impedance remains high. Un$\operatorname{der} A C$ applications, total pot resistance is paralleled by the AC impedance of the autotransformer. Since this impedance is 10 to 100 times greater than that of the pot, the addition of an autotransformer has a negligible effect on the input impedance.
Output impedance is much lower The addition of an autotransformer to the basic pot results in a maximum output impedance occurring midway between each set of adjacent taps. It follows that total output impedance is greatly reduced-any energy required by the load is fed from the nearest auto-transformer tap.
4. HOW DOES THE AC POT

IMPROVE LINEARITY?
The overall linearity of AC pots is dependent on the linearity of pot sections between taps - not total pot linearity.
An important feature of autotransformer application is the ability to easily adjust the voltage appearing at each pot tap - without affecting
the voltage ratio at any other tap. It is therefore possible to pull all tap points into the desired linearity band, regardless of basic pot linearity. Another AC pot feature: It is capable of truly zero electrical "end coil."
5. ARE AC POTS MORE RELIABLE THAN BASIC POTS?
Yes-much more so. That's because a pot winding or tap lead going open affects only that portion of the pot between taps adjacent to the open. Even the opening of CW or CCW terminals has no effect beyond the adjacent tap point. Or, simply stated - the more taps, the greater the inherent reliability. Models with up to 28 taps are available as special from Helipot.

Helipot offers two AC pot series and 26 standard models with frequency ranges from 20 to $20,000 \mathrm{cps}$. Choose your linear or non-linear version of either the $3^{\prime \prime}$ diameter single turn Series 5800 or the $2^{\prime \prime}$ diameter multiturn Series 7800. They're precisionbuilt by Helipot to meet unusual conformities and perform in most any desired function.
Any more questions? Detailed specs and additional product information are included in a new 32 -page potentiometer catalog. To get a copy, call your nearest Helipot Sales Engineering Representative...or write direct :

NEW PRODUCTS

Variable Transformer

Panel-mounted variable transformer, model 250 BU , is rated at 2.5 amp and 0.33 kva max. Input voltage is 120 v , and output is 0 to 132 v . Transformer is 2-13/16 in. in diameter and 2 1/16 in. deep. Brush and brush track, within the coil, are protected from damage.
Standard Electrical Products Co.. Dept. EI), 2240 E. 3rd St., Dayton, Ohio.
P\&A: 89.50; from stock.

Antenna Tower

581
Light-weight tower, type G-10, is made for rapid, simple installation and low maintenance. Each $10-\mathrm{ft}$ section weighs 29 lb . A climbable ladder is on each side. Withstands 55,0010 psi.

E-Z Way Towers, Inc., Dept. ED, Tampa. Fla.
P\&A: $\$ 16.95$ per 10-ft section: from sfosk.

Pulse Generator

All-transistor laboratory pulse kenerator switches up to 30 amp at 75 v . Repetition rate is variable from 1 to 5 pulses per sec, pulse width variable from 2 to 15 msec . Panel height of the rack-mounted instrument is 7 in .

Crane Electronics Co., Dept. ED, 4345 Hollister Ave., Santa Barbara, Calif.

Frequency Synthesizer
502

Provides 2,000 frequency channels for radar. telemetry, navigation, and communications systems. The model NC- 3800 frequency synthesizer occupies less than 30 cu in . and has all solid-state circuitry, without mechanical elements. Power output is $\mathbf{3 0} \mathbf{~ m w}$. Frequency readout is in 23 -bit binary code.
National Co., Inc., Dept. ED, 61 Sherman St., Malden, Mass.

Regulated filament power supply, model PS130, gives $6.3 \mathrm{vac}, 5 \mathrm{amp}$ regulated within 0.5% for an input range of 95 to $135 \mathrm{v}, 360$ to 440 cps. Regulator circuit is magnetic-amplifier, Zener-diode type. Response time is 10 msec Components meet MIL specs, are rigidly mounted and encapsulated. Unit, hermetically sealed, meets MIL-E-52i2 specifications.
Dynex Industries, Inc., Dept. ED, 170 Eileen Way, Syosset, N. Y.

Extensible Cable

681
For up to $\mathbf{1 , 0 0 0}$ conductors. The extensible cable consists of two multiconductors, helical wound cables one wound inside the other. They spiral in opposite directions, resulting in a flexible assembly. A number of wire types can be used.

Spectra-Strip Wire \& Cable Corp., Dept. ED, P. O. Box 415, Garden Grove, Calif.

Availability: from stock or made to order.

Teflon Terminals

Stand-off and feed-through terminals are of one-piece Tefion construction. Press-fit mounting is simple and permanent. Dissipation factor is less than 0.0003 from 60 cps to over 10 Gc . Devices are made for nuclear instrumentation.

Tri-Point Industries, Dept. ED, Albertson, L. I., N. Y.

High-Voltage Capacitors

Miniature, encapsulated high-voltage capacitors function under severe environmental conditions. Capacitance values of series EF range from 0.005μ f through 1.0μ; voltages range from 2 to 30 kv . No derating is required up to 85 C . Requirements of MIL-C25C are met.
Dearborn Electronic Laboratories, Inc., Dept. ED, P. O. Box 3431, Orlando, Fla.

Chemicals
the raw materials of progress

Coolant helps cut 800 lbs. "Fat" from amplifier design

The exceptional heat dissipation properties of 3 M Brand fluorochemical coolant FC-75 make it possible for designers to achieve impressive advances in the miniaturization of airborne electronics equipment. Take the experience of The Martin Company
A VHF amplifier was of conventional design, weighed over ventional design, weighed over half a ton, took a standard sixroot high relay rack for install ation. At the time of design, overall size and weight were necessary factors of the cooling problem ...to handle in up encountered at extremes of up encountered at extremer temperature,
At work on miniaturizing the amplifier's design. Martin
designers found 3 M fluorochemical coolant FC-75 can effect heat removal at seven times or more the rate of nonvolatile organic liquid coolants! Thus amplifier size and weight could be drastically reduced. Martin engineers designed a new VHF unit using FC.75 as coolant; it weighed less than 200 lbs., occupied less than 3 cu . ft. The new deless than 3 cu . ft . The new designcompletelyeliminated heat
buildup, saved 800 lbs . weight and many feet of rack space
Other properties of FC-75 (as well as its companion product FC-43) are high dielectric strength, low solubility, great thermal stability, very, low pour point. See "Profile" column (right) for details. Then write for further information.

PROPERTIES PROFILE
on 3M Brand Inert Liquids FC-75 AND FC-43

These unique dielectric coolants possess unusual properties that can prove advantageous to the designer of electrical devices and instruments, as well as to the manufacturer. Increased range of operating temperatures, improved heat dissipation which permits miniaturization, and greatly increased protection from thermal or electrical overload are possible with their use.
FC-75 and FC-43 are non-explosive non-flammable, non-toxic, odorless and non-corrosive. They are stable up to non-corrosive
$800^{\circ} \mathrm{F}$., and are completely compatible with most materials \qquad all other dielectric coolams. Bible with self-healing after repeated arcing in either the liquid or vapor state.

ELECTRICAL PROPERTIES

	FC-75	FC-43
	Electrical Strength	35 KV
0 KV		
Dielectric Constant	1.86	1.86
Dissipation Factor	0.0005	0.0005

PHYSICAL PROPERTIES

	FC. 75	FC-43
Pour Point	<-100 ${ }^{\circ}$.	$-58^{\circ} \mathrm{F}$.
Boiling Point	$212^{\circ} \mathrm{F}$.	$340^{\circ} \mathrm{F}$.
Density	1.77	1.88
Surface Tension (dynes/cm)	$\begin{aligned} & \left(77^{\circ} \mathrm{F} .\right) \\ & 15 \end{aligned}$	16
Viscosity Centistokes	0.65 min .	2.74
Thermal Stability	y $750^{\circ} \mathrm{F}$.	$600^{\circ} \mathrm{F}$.
Chemical Stability	ty Inert	Inert
Radiation		
Resistance 25	$\begin{gathered} 25 \% \text { change (a } \\ 1 \times 10^{8} \mathrm{rads} \end{gathered}$	$\begin{gathered} 25 \% \text { change }(a \\ 1 \times 10^{8} \text { rads } \end{gathered}$

FC-75 and FC-43 have a nearly equivalent heat capacity in the liquid and gaseous state.

For more information on FC-75 and FC-43, write today, stating area of interest, to: 3M Chemical Division, Dept. KAP-81, St. Paul 6, Minn.

CHEMICAL DIVISION

Minnesora Minime and Manufacturima company
... WHERE RESEARCH IS THE KEY TO TOMORROW CIRCLE 142 ON READER-SERVICE CARD
ELECTRONIC DESIGN• August 2, 1961

CIRCLE 143 ON READER-SERVICE CARD

NEW PRODUCTS

Potentiometer

Up to 13 preset taps are available on the model 200-CEUS precision potentiometer, allowing it to be tapped and phased in the field. Nonlinear functions can be produced from stock potentiometers, or nonlinear units can be wound to any specified function. Up to 15 units can be stacked without decentering.

George Rattray and Co., Dept. ED, Hicksville, N. Y.
Availability: From stock.

Potentiometer

Encapsulated, molded-composition potentiometer model R1 is rated at 3 w standard and 2 w military (MIL-R-94B). Resistance range is 100 ohms to 5 meg, with 10% tolerance. Maximum operating temperature is 125 C , life is 100,000 rotations under full load. Size is 1-1/2 $\times 1-1 / 2 \mathrm{in}$.

Reon Resistor Corp., Dept. ED, 155 Saw Mill River Road, Yonkers, N. Y. P\&A: \$2 to $\$ 10 ; 4$ to 8 weeks.

Chopper

Transistorized chopper, model 20, switches or chops voltages up to $\pm 10 \mathrm{v}$, and can be driven from dc to 100 kc . Output noise is about $20 \mu \mathrm{v}$ rms, and does not increase with age. Device is housed in as transistor case and plugs into a standard 5-pin socket or can be soldered into a circuit. Unit is suitable for military, missile, and portable applications.

Solid State Electronics Co., Dept. ED. 15321 Rayen St., Sepulveda, Calif. P\&A: \$39.00; from stock.

507

683

THAT NEVER SLEEP

NEWI CETRON

lead sulfide PHOTO CELLS

WITH INFRA-RED SENSITIVITY
FOR USE IN:

- Electronic Computers
- Sound Projectors
- Temperature Measurement
- Infra-Red Communications
- Missile Guidance Systems
- Fire Detection
- Computing Solar Temperatures

These new developments in the semiconductor field are especially sensitive to infra-red radiation. Cetron's careful production control insures reliable performance characteristics in all of your photo cell requirements.

Cefron engineers are always available to help in your fube requirementsjust write, wire or phone.

YOUR DEPENDABLE SOURCE FOR RECTIFIER. THYRATRON ANO PHOTO TUBES
CETRON
ELECTRONIC CORPORATION

Range is $\mathbf{1 / 2}$ to $\mathbf{9 0}$ sec. Having instantaneous reset, this time delay can be used in teletype circuits, heli-arc welding and process control. It can also be used for time delay between operation of an initiating relay or switch and the opening or closing of up to three circuits.
Pioneer Electric \& Research Corp., Dept. ED, 743 Circle Ave. Forest Park, III.

Accelerometer

Three-axis linear accelerometer, type LA39-0301-1, has a range from ± 2 to $\pm 200 \mathrm{~g}$. Accuracy is 1%. Device, suitable for missiles, measures $2-1 / 2 \mathrm{in}$. in diameter and 2 in . high, and weighs 10 oz .
Humphrey, Inc., Dept. ED, 2805 Canon St., San Diego 6, Calif.

Low-Temperature

 Chamber

 Chamber}Capacity is 250 cu ft for model 6SR-110-250-R recessed chamber, measuring $120 \times 60 \times 60 \mathrm{in}$. Designed for metallurgical processing of ferrous and nonferrous aircraft materials at -110 F . it chills $1 / 2$ ton of steel from ambient in 2 hr . Two $16-\mathrm{in}$. fans are flush-mounted in the backwall.
Cincinnati Sub Zero Products, Dept. ED, 3932 Reading Road, Cincinnati 29, Ohio.

Transistor Clip

700
For TO-23 cases. Type 100-320 cadmium-plated beryllium copper clip designed for holding the 2N535B, 2N799 and other transistors, has two annealed tabs for insertion in printed-circuit boards. Tab lengths are $1 / 32$ to $1 / 4 \mathrm{in}$. It is slotted to provide cooling area and to prevent shock and vibration.
Atlee Corp., Atlas Div., Dept. ED, 47 Prospect St., Woburn, Mass.
P\&A: $\$ 0.27$ to \$0.9s; from stock.

designed for style

Distinctively styled for the 60's, General Electric BIG LOOK panel meters offer you modern appearance, excellent readability, and improved reliability . . . for all your products and equipment. Complete line includes $21 / 2,31 / 2$, and $41 / 2$-inch AC, DC and rectifier designs . . . all 2% accuracy class (rectifier types, 3%). Self-shielded DC mechanism eliminates interaction, ends special calibration, minimizes effect of stray magnetic fields. Sealed cases on $21 / 2$ and $31 / 2$-inch meters protect internal mechanism in corrosive atmospheres . . . 41/2-inch design features snap-on, snap-off cover. Priced right, BIG LOOK panel meters are available from stock for on-time delivery. Like to know more? Contact your nearest G-E Sales Office or Distributor. For informative bulletin GEA7034, write to Sect. 597-13, General Electric Co., Schenectady 5, N. Y. In Canada, contact Canadian G.E. Co., Ltd., 940 Lansdowne Ave., Toronto 4, Ontario.

CIRCLE IAC ON READER-SERVICE CARD

"We'll Call it 'Electronic Highway'."
(ELECTRONIC DESIGNERS' CATALOG has 100% coverage among design engineers located along this route.)

NEW PRODUCTS

Digital Tape System

Portable digital magnetic tape recorder and playback system has direct decimal data entry, all-solid-state electronics, and playback compatible with all data-processing systems. Model R-1 recorder, designed for remote data recording, and model P-1 playback comprise the system. Recorder measures $8-3 / 16 \times 4-7 / 16 \times$ $3-5 / 8 \mathrm{in}$.
Infotronics Corp., Dept. ED, 1401 S. Post Oak Road, Houston 27, Tex.

Switching Transistor

Epitaxial mesa switching transistor, type 2N835, has a storage time of 16 nsec and an over-all switching time of 47 nsec . Typical collector capacitance is 2.8 pf . Saturation voltage is 0.15 v at 10 ma , and gain bandwidth product is 300 mc min . Junction and storage temperature is 175 C max. Dissipation is 1 w . Device replaces type $2 N 706$.
Motorola Semiconductor Products. Inc., Dept. ED, 5005 E. McDowell Road, Phoenix 8. Ariz. P\&A: \$5.10: from distributors.

Heavy-Duty Switches

Snap-acting precision switches for heavy-duty operations have screw terminals, so that wires can be attached to either face of the switch. Designated series 2HL, the switches include plunger-operated, leaf, and lever-actuator types for operation at $2 \mathrm{hp}, \mathbf{2 5 0} \mathrm{v}$ ac; $1 \mathrm{hp}, 125 \mathrm{vac}$; $20 \mathrm{amp}, 125,250$, or 480 vac ; and inrush current of $75 \mathrm{amp}, 480 \mathrm{vac}$.
Unimax Switch, Dept. ED, Ives Road, Wallingford, Conn.

Germanium Transistors

Consumer germanium transistors are avail able in three series. Series GAM-1, made for radio receivers, have a current gain of 32 to 40 db at 455 kc and an output impedance greater than 1 meg. Series GAM-2, for fm applications, have a high-frequency response of 120 mc and collec-tor-base time constant less than 20 psec . Power transistors for audio applications have breakdown voltages of 30,45 , oí 60 v , dissipation of 25 w , and beta from 30 to 150 at 0.5 or 1 amp collector current.
Texas Instruments Inc., Dept. ED, P. O. Box 5012. Dallas 22, Tex.

Transmission Line

462
Broadband coaxial cable, Spri-O-foam, is foam-polyethylene insulated, aluminum-sheathed, semi-flexible transmission line. Lengths up to $\mathbf{1 , 0 0 0} \mathrm{ft}$ are available. Connectors are electrically matched to the cable.
Prodelin. Inc., Dept. ED, 307 Bergen Ave., Kearny, N. J.
Availability: Immedinte.

Stroboscopes

High-intensity stroboscopes offer up to 4,000 flashes per min. Series 161 are triggered flawh units with push-to-see switch. for permanent or semi-permanent inspection installations. Series 163 are general purpose units for motion study, having a built-in oscillator and triggered flash. Series 165 has a precision frequency meter and is suited for tachometer measurements. Both series 163 and 165 have synchronizing, triggered flash, and output pulse circuitry.

Slaughter Co.. Dept. ED, Piqua, Ohio.
Price: \$119.50, \$147.50, and \$245.00.

Immediate Minuteman

 and Dyna-Soar openings for Electronic and Electrical EngineersElectronics is one of the fastest growing areas of engineering at Boeing. Electronic and electrical engineers interested in the advancement of space-age technologies will find challenging and deeply rewarding opportunities in advanced Bueing programs, including the DynaSoar manned space glider and the solid-fuel Minuteman ICBM. Assignments exist in your particular area of interest and at the level you require for career satisfaction and advancement. For your convenience, a professional application form appears at the right, and continues on the following page.

RETLRN TO: MR. W'. B. EVANS THE BOEING COMPANY
P. O. BOX 3707.ESG SEATTLE 24, WASHINGTON

PROFFSSIONAL POSITION APPLICATION (All replies held in strict confidence)

Date of this Application
Name last First midde luse no initials)
Social Security No.

Present Address			
	no.		
	STREET		
	CITY	ZONE	STATE

Telephone No
Ht — Wt \qquad
\qquad U.S. Citizen

Male
Female
Marital Status
No. of Children Other Dependents
U.S. Veteran_.Entry Date

Discharge Date
Type of Discharge
Spouse's Maiden Name
Employer
Previous Boeing Employee?
If the answer to following three questions is "yes," explain on supplementary sheet:

1) Have you any physical defects?
2) Have you ever been arrested (except traffic and juvenile)?

IICHFR EDUCATION

Colleepe and Location 1.	Dhese Allended	Desege and Mal...
2.		

EMPLOYMENT HISTORY (Attach Resume)

Frue Nase anal Adidrees	Rame Pav so $\mathrm{hr} / \mathrm{Wh}$	$\begin{aligned} & \text { Dares Empliwnal } \\ & \text { Monit Vear } \end{aligned}$
1.............		
Proition \& Dutioe		
2.		
Puoition \& Duties		
3...........		
Poation © Dutiea		

REFERENCES. Give full names, occupations and addresses.
Professional (previous supervisor preferred):
1.
2.

Character (other than relatives or former employers):
1
\qquad

LIST TYPE OF WORK PRFFERRED UPON EMPLOYMENT:

Have you ever been cleared for classified military information? \qquad If yes, give date, level and company

May we contact your former and present employer prior to completion of employment negotiations? Yes__ No_ If "yes," I authorize, without liability, the release of all employment and personal information.

Electronic and electrical engineers will find unique opportunities at Breing. Activities in research, design and test are making sig. nificant contributions to the state-of-the-art as well as to the development manufacture and installation of systems associated with Dyna-Soar Minuteman, Bomarc, advanced aircraft, and orbital vehicle programs.
Assignments encompass broad areas of electronics activities including surveillance, communications, guidance and control, systems engineering, systems integration, antennas, cabling, circuit design, electromagnetic warfare, electronic packaging, electronics ground support, instrumentation, rallio frequency interference control, reliability, systems test, solid state circuit design and many others.
Exceptional opportunities exist for logical designers and for specialists in systems design; in data processing associated with telemetry, and in digital design techniques embracing circuit telemetry, and in digital design techniques embracing circuit borne computers and supporting ground electronics.
You'll find space in the application at the left to indicate your special interests. Fill in and mail today.

Saling on 23 -mule Lake Wachington in Seatule.

Matching the career advantages at Boeing are the family living advantages of the Pacific Northwest. This uncongested, evergreen area is famous for mild, year round climate, unexcelled recreational facilities, fine modern homes, excellent educational and cultural institutions and healthful outdoor Western living for the entire family.

NEW PRODUCTS

Tank Circuits

Frequencies from 165 to $\mathbf{1 , 0 0 0} \mathbf{m c}$ are covered by this series of tank circuits, models LC-371 through LC-375. Units consist of a precision miniature piston capacitor soldered across an air-core coil. Nominal Q is above 230. Resonant frequency of each coil is variable over a range of about 400 mc .
JFD Electronics Corp., Dept. ED, 6101 16th Ave., Brooklyn 4, N. Y. Availability: Four weeks.

Compact Terminations

Narrow band, ultra-compact terminations. series 2300, are suitable for use in S, C, X and K-type waveguides. They cover any 6% banduidth with a max visur of 1.5 and an at tenuation of 30 db or greater. They are available in a variety of materials.

Custom Components, Inc., Dept. ED, Caldwell, N.J.
Arailability: 30 days.

Swept Signal Sources

A line of 17 swept microwave signal sources has frequency ranges from a low of 0.4 to 1.2 to \& high of 63.0 to 75.0 Gc . Models measure $19 \times 13 \times 7 \mathrm{in}$. and weigh about 40 lb . Auxiliary microwave levelers are available to maintain power output at a constant level. Single control adjusts sweep width.
Wave Particle, Dept. EI), 150 S. Second St., Richmond, Calif.
Price: From $\$ 2$, , 50 to $\$ 9,000$.

Resistive-loop, bi-directional couplers, model S-61, are intended for power and vswr monitoring. Coupling value is $45 \mathrm{db} \pm 0.5 \mathrm{db}$ including frequency sensitivity over a 10% band. Directivity is 30 db min over the band from 1.27 to 1.40 Gc . Main-line vswr is less than 1.05 db while secondary vswr is less than 1.30 max. Coupling ratios are in values from 30 to 45 db .

Amphenol-Borg Electronics Corp., FXR Div., Dept. ED, 25-26 50th St., Woodside 77, N. Y. P\&A: $\$ 1,200$ approx; 60 to 90 days.

Cutter Kit

Wire and ribbon cutters available in a kit include three hand-honed, hand-filed cutting tools for precision clipping of small wire and ribbon stock, and two tweezers for clip removal, wire bending and straightening. Cutters are guaranteed against failure.
The Sippican Corp., Dept. ED, P. O. Box 537. Marion, Mass.

PRA: $\$ 35.00$; from stock.
Rack and Panel Connectors
"Do it yourself" connector components press into a 0.136 in . diameter hole in the mounting panel. Probe type PR-400 and jack type SKT400 comprising the series have Teflon bodies and floating contacts which allow for normal misalignment and rocking motions in connecting and disconnecting. No special tools are needed. Sealectro Corp., Dept. ED, 610 Fayette Ave., Mamaroneck, N. Y.

Shallcross

Standard 'Specials' in Shallcross Miniature Switches

me-wined a harnessed switches - Dochi pre. wired boote
and rime.

PIINTED CIRCUIT TERMINALS-availabie an tin.
sie-dect or last deck of multi-doct swithes.
 SPRING RETURN ROTORS-on vither
or both directions of retor traval.

MAXIMUM CIRCUIT SWITCHING IN MINIMUM SPACE

Here's a positive approach to mini-aturization-a way to handle more circuits per cubic inch! Conservatively estimated, over 650 circuits may be switched in only 38 cubic inches by a Shallcross Miniature Series switch... and with the quality and reliability only a buttoncontact, multi-leaf wiper arm switch can provide. In one recent application, the single 24 -deck Shallcross Miniature switch shown above re placed four "subminiature" units. Equally impressive space advantages are possible with dual concentric shaft versions of the Shallcross Miniature Series. Either shaft may

For indirect switching of complex circuits, or to avoid "over plex circuits, or to avoid "over
stepping" positions in critical stepping positions in critical
circuits, most Shallcross Miniacircuits, most Shal cross Minia-
ture Switches can be furnished ture Switches can be furnished
with solenoid operation. Outline your circuit requirements for a prompt recommendation by Shallcross engineers.
operate up to five of a total of ten decks. The inner shaft may also control a rheostat, variable capacitor, or other device.
If, in addition to size, switch quality is also your concern, the following highlights substantiate why Shallcross Miniature Switch users repeatedly specify these switches, repeatedy specify these switches,
and no others, for critical airborne, missile control, and computer applications.
Low initial contact resistance-less than 0.002 ohm.

Stable contact resistance- 0.5 milliohm for 10,000 operations.
Mighly Immune to vibration damageexceeds MIL-S-3786 requirements. Uncompromisod matorial qualliy-silver button contacts; silver alloy, multileaf, self-cleaning wipers; diallyl phthalate rotors; epoxy-laminate decks (filament woven with glass fiber).
Designed to applicable miL-S-3786 Spocifications.
minimum thermocouple onocts-similar materials for all current-carrying parts.
Excollont RF characteristics.
Minimum depth-1" first deck, $5 / 8^{\prime \prime}$ each additional deck.
Maximum Vorsatility-up to 32 positions. 1 to 4 poles, shorting or nonshorting in the same switch, 1 to 24 decks, ball detents, many special modifications.

For complete dofalls, wrife for Shallerose Switeh Eullotin Precision wirewound resistors. Switches. Instruments. Delay lines. Resistance neeworks. Audio attenuators.

- meets most environmental requirements per MIL-E-5272 and MIL-S-3786

COMPLETELY NEW - A real midget - genuine Grayhill quality. Conservatively rated to break one ampere at 115 VAC, resistive circuit, and to carry 5 amperes - life expectancy $100,000 \mathrm{cy}$ cles. Single deck, single pole, shorting or non-shorting, totally enclosed - provided with 2 to 6 positions (stop standard on 2 to 5 positions) and 6 positions normally supplied as continuous rotation. The Series 45 incorporates 60° indexing with a stop strength of 10 pound inches, and a rotational torque of approximately 12 ounce inches.
Complete specifications and prices available on request.

NEW PRODUCTS

Rotary Acceleration Generator
et

From 3 to 500 g are provided by model RA-ATC-500-1 rotary acceleration generator. Spin table is 20 in . in diameter. Variable speeds from 10 to $2,000 \mathrm{rpm} \pm 0.5 \%$ are available. Above 40 rpm , wow is 0.5% and drift is 0.1%.

Pacific Southwest Instrument Laboratories, Dept. ED, 5705 Centinella, Culver City, Calif. P\&A: $\$ 3,400$ fob Culver City; six weeks.

Coaxial Connectors

Aluminum, rf coaxial connectors are available in both TNC and TM types. Features include: heat treated beryllium copper contacts: gold plate over silver plate on all contacts; low vswr and inserion loss.
General RF Fittings, Inc., Dept. ED, 702 Beacon St., Boston 15, Mass.
Availability: Immediate.

Solenoid Selector Assembly
471

Hermetically sealed, miniaturized solenoid selector assembly meets MIL specs and is protected from sand, dust, salt spray, explosion, humidity, altitude, and fungus. Device has a 12 -position rotary switch coupled to a rotary solenoid. Switching circuits, arranged to customer's requirements, can have 28 external connections. Unit measures $3-1 / 4 \mathrm{in}$. long and $1-1 / 2 \mathrm{in}$. in diameter.
Oak Manufacturing Co., Dept. ED, Crystal Lake, III.

Nimy

High
Accuracy,
Small
Package
'FREQUÉNCY
STANDARDS
At New

Cost.

MELPAR

V.UT $\%$

Check these outstanding product features:

- Hish Accuracy ($\pm 0.01 \%$ and better)
- Small Packare Size (under 2.9 ounces and 2.8 cubic inches)
- Simal Package size funder square wave and sine wave output
- Simuitaneous sadare wave and sine
- Thermal stability witho
- Resistance to thermal shock, mechanical shock and vibration
Whatever your application
from missile guidance systems to seismic geophysical probing equipment
 mare a precision tuning fork requency standards and economy. Remarkable frequency accuracy is obtained without an oven:
$\pm 0.01 \%\left(0^{\circ} \mathrm{C} /+85^{\circ} \mathrm{C}\right)$ to $\pm 0.05 \%\left(-55^{\circ} \mathrm{C} /+85^{\circ} \mathrm{C}\right)$ from 400 to 3000 cps.
Both a sine wave and square wave output can be obtained simultaneously from this miniature package. Tuning forks and frequency dividers also are available in the same size case.
Write today for detailed specifications and prices:

3000 ARLINGTON BOULEVARD, FALLS CHURCH, VIRGINIA
CIRCLE 152 ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 2, 1961

C-Band Isolators

Designed for the commercial frequency ranges in C-band, this line of 24 isolators ranges in lenkth from 2.1 to 4.5 in . All are bilaterally matched with a max vswr of 1.10. Typical mid-band isolation: insertion loss ratios range above 60 to 1 .

E \& M Laboratories, Dept. ED, 15145 Califa St., Van Nuys, Calif.
PRA: $\$ 150$ en; immediate.

Shaker

461
For production testing of miniature components. Type VS-10 shaker is a bench instrument with a frequency range from 20 cps to 27 kc at full thrust, flat from 50 cps to 10 kc , and with useful power up to 100 kc . Force is 5 lb per amp. Shaker is 8 in . high and 6 in . wide, and weighs 45 lb .
Vibrasonics, Inc., Dept. ED, 10 High St.. Boston, Mass.

Marking Ink

459
Permanent epoxy marking ink, series M, adheres to glass, metal, and thermosetting plastic surfaces and resists abrasion, solvents, chemicals, acids, and alkalis. Can be applied by marking machines, stamp pad, or roller printing. Wornow Process Paint Co., Dept. ED. 1218 Long Beach Ave., Los Angeles 21. Calif.

Power Connector

Kack and panel power connector is designed for convenient mounting. Four No. 16 AWG conductors may be mounted, to carry maximum current of 12 amp . Molded-in positive polarizing guide pins and bushings are provided.
Precision Connectors Inc., Dept. ED, P. O Box 96, Mineola, L. I., N. Y.

CIRCUIT IDEA FILE

New Transistor Applications

Looking for closer gain-matching?
PUSH.PULL IN
COMPLEMENTARY SYMMETRY

HONETWELL
TETRODE 3N52

If you are looking for closer gain-matching in your push-pull complementary Symmetry circuits, you will find the answer in these Honeywell Power Tetrodes.

	THE PROBLEM		THE AMSWER
POWER TRANSISTORS	PNP	NPN	TWO-BASE PNP TETRODE
CURRENT GAIN	HIGH	AVERAGE	AVERAGE*
TRANSCONDUCTANCE	HIGH	AVERAGE	AVERAGE*
LEAKAGE	AVERAGE	LOW	LOW

- Because of irs controllable gain feature. the Honeywell Power Terrode is capable of closely matching the current gain, the
transconductance, and the leakage of either silicon or permanium NPN transistors when used in the push-pull com.
plementary Symmetry circuir shown above.

Honeywell

II Finst in Control

Saies and Serrice offices in all
principal cities of the world.

MAY WE HELP YOU?
\square Please send me your Application Data on Power Tetrodes.
\square I bave an application problem uith Pouer Transistors. I uould welcome the assistance of your field engineer and Applications Lab.
Name
AdDress_
Company
City \qquad State
Send coupon to Honeju ell, Dept. ED.8-120. Minneapolis 8, Minn. CIRCLE IS3 ON READER-SERVICE CARD
fanaber microwave memo

Announcing 30-Day Delivery on U Band, Two-Cavity Oscillators For Parametric Amplifier Pumping
Sperry Electronic Tube Division, Gainesville, Florida, announces an immediate solution to the drive source problems which have plagued developers of parametric amplifiers for some time. Now Sperry can deliver a U band, two-cavity klystron oscillator in just 30 days.

Fast delivery is possible because development work is completed on all tubes within the frequency and power output parameters described below. Soundness of the development work is already proved, since tubes of this type have been operating in several systems for some time

Sperry has developed a whole family of these oscillators. They cover the entire U band, and deliver output powers from 200 mW to 1.5 W .

APPLICATIONS

All tubes in the new Sperry family operate with a characteristic flattop mode. This constant relationship between beam voltage and output power makes tubes in the series particularly suited for driving parametric amplifiers, and for use in doppler radars and FM communication systems.

One important benefit of the flat-top mode characteristic is the availability of frequency modulation with very low incidental amplitude modulation. This inherent amplitude stability, together with high power output levels, makes the new oscillator family particularly useful for parametric amplifier applications. The same characteristics contribute to the desirability of these tubes for use in doppler radars and FM communication systems.

Beom Voltoge
Typical mode shapes of two-cavily axillater.

RATINGS

Two-cavity oscillators in the Sperry series completely blanket the 12.5 to 18 kMc frequency range covered by the U band. The "family" of
tubes is divided into two branches, one ranging from 12.5 to 15.5 kMc , and the other covering the 15.5 to 18 kMc area.

Output power ranges from 200 mW to 1.5 W in the lower frequency group, and from 200 mW to 1 W at the higher frequencies.

If optimum tuned, rather than flat-top mode operation is desired, power output may be increased 25\%.

A typical main mode, adjusted for optimum flat. lop oporation.

INHERENT BENEFITS

Tubes in the new Sperry family enjoy all the inherent benefits of two-cavity klystron design. These
include precision tuning, high stability, amazing ruggedness and unusual stability at high output levels.

The series incorporates two design features which result in significant size and weight savings.

1. Electrostatic focusing, eleminating the heavy focusing magnets required in many designs.
2. A unique fixed-tuned design. in which the cavities are pressed into a configuration which delivers the customer's specified frequency.

All the tubes in this series show efficiencies in the area of 3.4% with the flat-top mode, and all have low levels of vibrationinduced AM and FM noise.

PRICE AND AVAILABILITY

At power output levels from 0.2 to 0.5 watts, tubes in the new Sperry family are priced at $\$ 2,295$ each. With output from . 5 to 1.5 watts, the price is $\$ 2,795$ each. Tubes will be tuned to your specified center frequency, and they will deliver your specified power output level. All oscillators in this U band series will be shipped within thirty days of receipt of order.

tUaE DIVISION

NEW PRODUCTS

Printed-Circuit Connector

For 1/16-in. boards. Series 062 printed circuit connector is available with $6,10,15,18$, 22. 28,30 and 43 single or dual-row contacts with eyelet, dip solder or other terminations. Contacts are self-aligning to residual warping along the length of the board.

Precision Connectors Inc., Dept. ED, P. O. Box 96, Mineola, L. I., N. Y.
Availability: immediate.

Digital Data Recorder

With 50 or 100 channels. Digital data recorder LP 981A commutates, digitizes and prints voltage outputs from 50 or 100 channels at a 2 -per-sec rate with accuracy of 0.1%. Analog signals of either polarity can be converted into digital form for driving the printer. A four-digit voltmeter visually presents the output of each channel.

Solartron, Inc., Dept. ED, 1743 S. Zeyn St., Anaheim, Calif.

Automation Device

Assembly-line operations can be carried out by the TransfeRobot 200 which operates under the command of its own electronic brain. Device consists of an arm and actuator which can be fitted with various types of fingers and jaws. Machine is said to perform operations normally done by custom-built machines.
U. S. Industries, Inc., Dept. ED, 250 Park Ave., New York 17, N. Y.
Price: $\$ 2,500$.

FOR CW ILLUMINATORS AND NAVIGATION

OSGILATORTS
1 WATT TO 50 WATTS

Varian Associates' family of low-noise oscillator klystrons assures superior performance in such applications as CW illuminators, fixed-frequency doppler navigation transmitters, and similar uses.

All tubes in this low-noise family are two-cavity klystron oscillators. All are fixed-frequency. All are electrostatically focused. They cover a wide power range (from 1 W to 50 W). Tubes in K_{u} band include the air-cooled VA-503B and the liquid-cooled VA-504B. Tubes in X-band include the air-cooled VA. 514 and VA-508 and the liquid-cooled VA.511. All are available now.

Characteristics of the VA-511 are typical of the oscillators in this group. The VA-511 produces 50 W minimum power at 10 kMc , and operates at 10 kV , 60 milliamperes. $F M$ noise is less than 1 cycle. Weight, less than 2402. s size: $6 \frac{1}{4}$ in. $\times 2 \frac{1}{4}$ in. $\times 1 \frac{3}{4}$ in.

For additional technital information oif this tine family of klystion oscil lators, address Tube Division

VARIAN assoctates PALO ALTO 21, CALIFORNIA

Sinbsidinties:
BOMAC LABORATORIES. INC VARIAN ASSOCIATES OF CANADA, LTO S-F.D LABORATORIES. INC.
SEMICON OSS CALIFORNIA INC. GARIAN A. G. (SWITZERLANO)

That Extra Something
Renewed interest in the G-line, described in the article on the facing page, is merely one aspect of increasing research into new microwave transmission media-particularly for millimeter waves. In recent weeks there have been reports of new work in beam waveguides, dielectric waveguides, plastic waveguides, Fresnel zone plates and ultra-thin coaxial cables.

One can foresee an increasing number of alternatives to waveguides and coax cables in their present form. While these new techniques may not challenge the dominance of coax cables and rectangular metallic guides. the designer will in time have recourse to that extra something in meeting those especially difficult performance specs.

Now interest in a long-known but little applied mirrowar transmission medium is reporterl in

New Applications Being Developed for Surface-Wave Transmission Lines
p 155
Magnetic radar modulators are being increasingly applied in radar systems because of their inherently superior reliability. A step-by-step procedure for design of these modulators is presented in
Practical Design of Magnetic Radar Modulatorsp 160 Straight talk on Doppler morhelators by two designers wellrualitied to speak on
Doppler Modulation Systems-
The Pros and Cons p 166
The fratured microwave product this issue is a
Microwave Power Meter Accurate Within ± 0.5 \% wave oscillators and spectrum analyzers is described in
Microwave Productsp 172

New Applications Being Developed For Surface-Wave Transmission Lines

Manfred Meisels

Technical Editor

D
OTENTIAL competition to coaxial cables, waveguides and relay links for broad-band and high-power microwave communications is being posed by renewed design interest in surface wave transmission lines.

Advantages claimed for the so-called Gline (named after its inventor, Dr. Georg Goubau of the Army Signal Corps R\&D Laboratory) include:

- Low propagation loss.
- Broad-band transmission characteristics.
- High power-handling capability.
- Convenient tap-off anywhere along the line without physical contact.
- Reduced weight.
- Lower cost.

Since its invention some 10 years ago, the G-line has been occasionally, but increasingly applied in antenna lines and in feeder lines for community antenna television systems. Until recently, the greater commercial and technical interest in G-lines has been evidenced overseas.

Of late, however, American advocates of the G-line have been stressing its advantages in railway and industrial applications and in long-haul microwave communications over existing pole lines. Simple probes can cou-
ple energy into and out of the G-line without physical interruption; and the line can be strung along existing pole routes.

The New York Central Railroad has recently completed extensive tests of a 4.5 mile G-line erected along its tracks. Television and vhf communications were successfully transmitted along the entire length of the line as well as to and from a specially equipped cart moving on the rails. Remote control of trains via television has been considered with a G-line system.
"Results of our test line have been extremely promising and we would like to conduct more conclusive tests over a 150 mile length of G-line," Robert C. Karvwatt, the Central's director of communications told Electronic Design. "Other railroads, especially those not already committed to microwave relays are also interested, but are waiting to see what luck we're having with the G-line," he added.
The Central's line is suspended from the poles by nylon strings-the generally accepted method of supporting G-line, though rigid plastic rods have also been used. No repeaters are required as propagation losses at uhf frequencies average only 10 db per mile. The line itself consists of polyethylenecoated No. 6 wire terminated at each end by launching horns. Installation cost averaged

Surface-wave antenna line on German television transmitter. The G-line is supported within the metal rings by nylon cords. Note the parallel coupling method used (lower half of photo) between two G-lines in close proximity. Such applications, while popular abroad, have lagged in this country despite major cost savings claimed for the G-line. Renewed interest in uhf television may, however, provide new impetus for G-line use here.

Nonradiating surface waves in conducting wire are excited by the finite resistivity of the wire. This causes a reduction in the phase velocity of the field as compared to the free-space velocity. By coating the wire with a suitable dielectric, phase velocity is further reduced and the surface wave is propagated with greater efficiency.
The G-line can also be derived from a coaxial cable in which the diameter of the outer conductor is gradually increased. Ultimately, the conductor becomes so large that its effect on the field is negligible and the coaxial wave is thus gradually transformed into a surface wave.
This is in fact achieved by the launching horn and tapered wire that terminate the G-line.

The surface wave extends only a few wave lengths from the line. Within this region, however, signals can be coupled into and out of the wave by radial or parallel-wire probes.

Cross-talk among several parallel G-lines could occur if they are not separated by several wavelengths. It can be minimized, however, by using a different thickness of dielectric for each line so that each surface wave has a different velocity. There is little or no cross-talk bet ween signals propagating in opposite directions.

Termination and wave propagation of G-line. Note the taper of wire and insulation at the narrow end of the horn. This structure converts the coaxial wave to a surface wave. Radiation extends a few wavelengths from the line.

Coupling methods for the G-line. Radial coupler at left is suitable for communication to moving vehicles such as trains and mobile TV cameras. Longitudinal coupler at right, developed in Russia, is for fixed applications. The several types of longitudinal couplers that have been designed are considerably more efficient than the radial couplers.

G-line system for $10-\mathrm{kw}, 500-\mathrm{mc}$ television station in Munich. The line runs from launching horn at lower right to receiving horn near middle of the tower
approximately $\$ 750$ per mile.
In industry, G-lines are being proposed in lieu of coaxial cables and open lines for mobile, closed-circuit television. Steel mills and atomic installations are considering use of G-line in such systems. A security fence, where the presence of intruders would disturb wave propagation along the surface of the line, has also been proposed.

Long-haul communications via G-line are presently limited to a few community antenna TV systems here and abroad and to an experimental telephone circuit in Paris installed by Lignes Telegraphiques et Telephoniques.

In this country, a 14 -mile G-line provides community TV for Helena, Mont. The line, which has been operating realiably for almost five years employs eight intermediate repeaters. These were not, however, specifically designed for use with the G-line, and a lesser number of more efficient units would be adequate. Other G-lines for community TV and broadcasting have been installed at Muscle Shoals, Ala., France, England, Ger-

Launching horn at repeater along the community TV feeder system for Helena, Mont. The 14 -mile-long G. line was strung on existing poles at a total cost of $\$ 890$ per mile
many, Austria and Japan. Costs are said to be a fraction of those for coaxial or microwave relays.

An apparent disadvantage of G-line for long-haul systems is that it cannot be buried but must be strung on poles.
"In this age of satellites, I suppose that telephone poles seem primitive, but it is unfortunate that this psychological barrier prevents designers from realizing the broadband, low loss and low cost advantages of G-line," declares Theodore Hafner, president of Surface Conduction, Inc., N. Y., licensors of the G-line. Dr. Hafner has proposed a world-wide "information thruway" of lines across the U'.S., Latin America, and Eurasia, connected by a microwave link across the Bering Strait.

Dr. Hafner believes that such a system would be more reliable than communications satellites and do the job at a fraction of their cost. "For underdeveloped nations, the low cost and installation ease of G-line makes it an ideal transmission medium," Dr. Hafner added. He also noted that surface wave trans-

New multi-purpose BROADBAND PFRRITI IV VODDLATOR

First to cover the entire X-band, 8.2 to 12.4 Gc

FXR's new X158A broadband ferrite modulator is the first absorption amplitude modulator to provide full coverage of X-band, 8.2 to 12.4 Gc . A primary use of this unit is to provide a clean AM microwave signal for high accuracy measurements. Previously any attempt to modulate a microwave oscillator left much to be desired because of error-producing FM, jitter and double moding.

The modulator coil of the X158A has been designed so that any standard, 1 watt, commercial audio oscillator will provide substantially 100% modulation at $1,000 \mathrm{cps}$.

APPLICATIONS

Microwave Measurements
As an amplitude modulator for high accuracy micro. wave measurements

Microwave Transmitter Modulation With proper biasing of the control solenoid low distortion modulation is obtained over the audio range

> Fast Microwave Switching

For front panel or remote switching of signal gene rators and other low power units

Electrically Confrolled Microwave Attenuation For electrically controlled microwave attenuation of system energy from either remote or local positions

MODEL XI58A
Price: $\$ \mathbf{2 5 0 . 0 0}$

Covers entire X-band, 8.2 1o 12.4 Gc

- Metallized plastic conotruction for high frequency audio response
- Low driving power required

Q 30 db minimum dynomic altonuelion

- Low insertion loss-with ne coil current

ATTENUATION. SOLENOID CURRENT

SPECIFICATIONS FOR MODEL XI58A FERRITE MODULATOR

Freq. range: 8.2 to 12.4 Gc

Max. insert loss: 1.0 db
Min. dymamic attenuation: 30 do
Max. inport ant outpot VSWR: 1.20
Max, averge Rf inpit power: 2 watts
Coil claracteristics: 35 millihenries Max salentid current: 300 ma DC Insertion lengli: $47 / 3^{3}$ Cover flamges to mate mith: UG-39/U Waveguite type: WR90

SEE US AT OUR WESCON SHOW BOOTHS 220, 222 Wast Const office: 4134 Dol Ray Ava., Venice, Califormie EXmont 1-7141-2, TWX: SMON 7725 701 Welch Rd., Palo Alto, Calif.
DAvenport 6.9026 DAvenport 6.9026
precision microwave equipment - high-power pulse modulators - high-voltage power supplies - electronic test equipment CIRCLE ISG ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 2, 1961

(1)
microwayes
mission lines are being developed by Russia and Communist China.

Because the G-line propagates information via closed surface waves, it provides an essentially radiationless "private atmosphere" for broad-band transmission not regulated by the FCC. This, together with acceptably low loss over a wide part of the spectrum, has stimulated interest in the line for highdensity microwave communications. With a $500-\mathrm{mc}$ carrier, up to 250 mc of band-width would be available, it is claimed.

Somewhat wider acceptance of the G-line has occurred in antenna line applications. The Signal Corps has specified G-lines for its TRC-29 and AN/GRC-59 radio relay equipment. The first operates in the $2-\mathrm{Gc}$ range, while latter covers 4.4 to 5.0 Gc . The line for the AN/GRC-59 has a loss of 3 db per 100 ft in contrast to 14 db for coaxial cable, according to the Signal Corps.

The G-line is also smaller and more flexible than coaxial cable and can thus be easily reeled. It consists of 37 strands of No. 36 silver-plated, copper-clad steel and is Tefloncoated.

Above 5 Gc rain and ice accumulating on the line tends to affect performance since water droplets act as radiating dipoles. Losses of up to 15 db per 100 ft have been recorded under these conditions. However, Signal Corps engineers have designed a mechanical hammer that vibrates the line sufficiently to dislodge the droplets. In addition, a de-icing current equivalent to 3 w per ft is applied to the cable.
The G-line has also been used overseas in several vhf and uhf television transmitters, notably in a 10 -kw system erected in Germany by Rohde \& Schwartz. Considerable economy over coaxial lines is claimed and Surface Conduction, Inc., is preparing several bids for forthcoming vhf and uhf transmitters in this country. Dr. Hafner believes that the higher powers required in uhf television will increase the attractiveness of G-line to designers. Plans are also under way to market a complete uhf lead-in system for home and amateur use. This would consist of the line itself and launching and receiving horns.

Surface wave transmission lines may also prove useful in millimeter-wave work. Experiments in the 100 - to $300-\mathrm{Gc}$ range by

ULTRAMICROWAVE*

Klystron Mount

Microwaves

Electronic Communications, Inc., Timonium, Md., indicate that such lines exhibit much less attenuation than do rectangular waveguides. At 150 Gc , loss in the surface lines tested averaged about 0.03 db per ft .
These lines are uninsulated, solid copper. It is believed that surface irregularities and contamination provide sufficient wave slowing at the surface to excite the nonradiating modes. - ■

Plastic Waveguides Under Test in Labs

Experimental plastic waveguides said to cost approximately $\$ 10$ per ft are being tested by the Bell Telephone Laboratories and the Bendix Corp. The guides consist of copper-plated epoxy pipe manufactured by Resisto Chemical, Inc., of Wilmington, Del.

Resisto developed the pipe primarily for handling corrosive fluids, but the highly polished interior surface achieved in extruding the pipe suggested waveguide applications. For this purpose the interior is either copperplated or silver-plated, with the metallic finish retaining the high lustre of the unplated pipe.

Samples of 2-in. ID copper-plated circular pipe are being tested by Bell, which for some years has done considerable research into metallic circular waveguides. These tests have just begun, and the findings are not available at this time.

Bendix, on the other hand, has ordered a rectangular pipe of 0.4 -in.-by- 0.9 -in. interior cross-section for its test program.

Advantages claimed for the epoxy waveguide include low cost, uniform interior finish and good environmental characteristics.

Resisto has also developed an epoxy-carbon composition pipe of unusual electrical characteristics. Because of the orientation of the carbon particles achieved in extrusion, electrical resistance along the length of the pipe is much lower than resistance through the wall. Longitudinally the pipe has good relative electrical conductivity, while transversely it is an insulator.

Practical Design of Magnetic Radar Modulators

Because of their high reliability, series-type magnetic modulators are being increasingly applied in radar systems. In this article, author Philip gives a step-by-step procedure for designing such modulators and indicates the areas of possible compromise among weight, efficiency and other operating characteristics. A dc-operated version, made practical by the recent development of heavy-duty silicon controlled rectifiers, is also discussed.

Ralph M. Philip
Light Military Electronic Dept.
General Electric Co.

THE BASIC ac resonant magnetic modulator (first proposed by Melville) ${ }^{1}$ is shown in Fig. 1. Circuit consists of the following:

- Ac input source.
- Ac resonant charging circuit (L, C_{1}).
- First compression stage (C_{1}, P_{1}, P_{2}).
- Intermediate compression stage (C_{2}, P_{2}. P_{3}).
- Final pulse forming network (C, P).
- Bias circuit.

The pulsactor in each of the compression stages acts as a closed switch when it is unsaturated and as an open switch when saturated. A sine wave from the input source thus passes through the modulator as a series of successively narrower half-sine waves. Sufficient compression stages are included to narrow the half-sine wave to the
approximate pulse end value. The pulse forming network then generates the wave form required for the proper firing of the particular magnetron specified in the radar system.

Typical voltage and current waveforms for successive portions of a magnetic modulator are illustrated in Fig 2. In a typical radar system the output pulse may have the following characteristics:

- Length-0.5 $\mu \mathrm{sec}$
- Pulse repetition frequency-2,000 pps
- Peak voltage- $1,500 \mathrm{v}$
- Peak current-15 amps

Design of the modulator is generally constrained by several pre-established system parameters. These include:

- Modulator load impedance (R), in ohms
- Modulator load voltage $\left(V_{R}\right)$, in volts
- Pulse width of the modulator load voltage (τ), in seconds

Fig. I. Ac resonant magnetic modulator. Circuit includes three cempression stages with final stage $\left(C_{3}, P_{3}\right)$ also serving as pulse-forming network. Bias is shown only for the first stage, though the designer may elect to bias subsequent compression stages as well.

- Angular frequency of the input source (${ }^{\text {anupply }}$), in radians
For rapid design of the modulator within these parameters, the following procedure is suggested:

1. Determine required number of compression stages.
2. Design pulsactors for each stage.
3. Compute the capacitance values for each stage.
4. Determine the bias for the first pulsactor.
5. Calculate the inductance of the resonant charging choke.
6. Determine the required supply voltage.
7. Breadboard modulator and modify component values to improve performance.
8. Redesign the modulator to contain one more and one less compression stage than initially chosen; then calculate performance and physical characteristics of the new designs.
9. Select final configuration from these designs to satisfy the most important requirement (weight, size, efficiency).
The methods detailed for each step assume lossless components in the initial design.

First Step - Determine Required Number of Compression Stages. The number of stages required in the modulator is to some extent a function of the over-all compression ratio (ρ) achieved by the unit.

$$
\begin{equation*}
\rho=\frac{\mathbf{1}}{2 f_{\text {w upply }} T} \tag{1}
\end{equation*}
$$

A fairly typical ρ of 400 is assumed in this article.

From the standpoint of minimum core ma-

Fig. 2. Voltage and current waveforms in various elements of the modulator. Note progressive compression of the voltage and current waves from input to output. The auxiliary schematic is n simplified version of Fig. 1.

Fig. 3. Nomogram to determine supply voltage for initial design of the modulator. To use the nomogram: (1) draw a line between known circuit values of $\lambda \beta$ and $f_{1 n}$ and mark its intersection on the $f_{\text {in }}$ $\Delta \beta$ line; (2) draw a second line between known circuit values of A and N for the first pulsactor and mark its intersection on the A.N line; (3) connect the points on the $f_{1 n}-\Delta \beta$ and $A \cdot N$ lines and read intersection on the $V_{r m}$ scale.

Micnowayis

KEY: A-N — VRMS—IIN- $\Delta \beta$
EXAMPLE: GIVEN: $\Delta \beta=20,000$ GAUSS $A=1.0 \mathrm{~cm}^{2}$
$\mathrm{N}=200$ TURNS $\mathrm{fIN}^{\circ} 2,000 \mathrm{CPS}$
$V_{\text {Rus }}=12 I \mathrm{~V}$
terial, Mathias and Williams: have derived the following optimum number of compression stages as a function of μ.

p	Optimum Number of Stages (n)
10	-1
50	7
100	9
200	10
500	12

If one considers the weight of the associated capacitors, chassis, wiring, etc., minimum total weight is achieved by selecting a lesser number of stages than n. A feel for this trade-off can be obtained from the following table which illustrates the effect on core weight when using a lesser number of stages in an optimally 11 -stage design.

$$
\begin{array}{cc}
\text { Number of stages } & \begin{array}{c}
\text { Core Weight } \\
\text { (Referenced to } \\
\text { three stages) }
\end{array}
\end{array}
$$

$1,150.00$

2	5.10
3	1.00
4	0.48
5	0.33
6	0.26

The weights are expressed with reference to a three-stage design, as it has been found from experience that this number of stages is a good compromise in most applications requiring a compression ratio between 150 and 300 . The selection of three or four stages is strongly suggested for the initial design.

Second Step - Design Pulsactors for Each Stage. To assure satisfactory matching between the modulator and its load, it is preferable to begin the design from the load end and work back toward the supply. Proper matching is, in fact, the major consideration in design of the last stage. The design equations presented here for the last stage have been modified from generalized equations by
inclusion of constants specifically calculated to result in optimum matching.

Melville shows that for maximum unidirectional current through the load, $L_{*_{3}}$ (the saturated inductance of the pulse transformer secondary winding) is

$$
\begin{equation*}
L_{a s}=0.265 R_{\text {lond }} \tau \text { henries } \tag{2}
\end{equation*}
$$

The turns-area product of this winding is
$N_{:} A_{3}=\frac{13.7 V_{\text {load }} T}{2 \beta_{n}} \times 10^{\text {c turns }}-\mathrm{cm}^{2}$
where β_{Ω} is the saturation flux density of the core material in P.
This turns-area product is chosen to permit C_{3} to charge fully in an interval of 10 T and represents a compromise between efficiency of the final compression stage and application of minimum reverse voltage to the load. A charging interval shorter than 10 t tends to increase the reverse voltage,

Fig. 4. Circuir showing nomenclature used in compuring capacitances.

Fig. 5. Power loss breakdown in a typical ac magnetic modulator.
while one longer than 10τ reduces efficiency Core volume for the pulsactor in the final stage is given by

$$
\begin{equation*}
v_{3}=\frac{4 \pi\left(N_{3} A_{3}\right) \mu_{e_{3}} \mathrm{~cm}^{3}}{L_{e_{3}}} \tag{4}
\end{equation*}
$$

where $\mu_{8_{3}}$ is the permeability of P_{3} at saturation. At this point in the design a value of 1.0 can be safely assumed for $\mu_{s_{3}}$.

For minimum initial total core volume in the three-stage modulator, the three pulsactors should have equal core volumes.

$$
\begin{equation*}
v_{1}=v_{2}=v_{3} \tag{5}
\end{equation*}
$$

Assuming that identical magnetic cores are used in each stage, the turns on each pulsactor are related by the equation

$$
\begin{equation*}
N_{1}=10 N_{2}=100 N_{\mathrm{s}} \tag{6}
\end{equation*}
$$

The progressive decrease of inductance between successive stages results in voltage compression from stage to stage. However, the unsaturated inductance of the third pulsactor should be much greater than the saturated inductance of the second pulsactor for efficient discharge of C_{2} into C_{3}.

The saturated inductance ($L_{s_{1}}$) of the first pulsactor should be such that the circuit $C_{1} P_{1} C_{2}$ will resonate at n times the input frequency. The term n is known as the compression factor and is typically chosen between 5 and 10. Thus,

$$
\begin{equation*}
L_{x_{1}}=\frac{1}{4 \pi^{2} f_{2}^{2}\left(\frac{C_{1} C_{2}}{C_{1}+C_{2}}\right)} \text { henries } \tag{7}
\end{equation*}
$$

where $f_{2}=n f_{1}$
Similarly, the saturated inductance of the second pulsactor must form a series resonant circuit with C_{2} and C_{3} at $n f_{2}$, where n

Table 1. Factors in determining number of bias turns on the first pulsactor.

Many Turns on a Core Of Small Cross-Sectional Area	Few Turns on a Core Of Large Cross-Sectional Area
Input circuit power factor is improved if $\sigma>2 .{ }^{1}$	Input circuit power factor is poor if $a<2 .{ }^{1}$
Compression of the first stage is small. (L_{s}, is large)	Compression of first stage is large. ($L_{s_{1}}$ is small)
$l^{2} R$ loss is large and larger C_{1} may be required.	$\mathrm{I}^{2} \mathrm{R}$ loss is small.
Unit may be heavier (more copper) but core may be smaller.	Unit may be lighter (less copper) but core loss may increase.
Larger bias is required to reset core, larger rectifiers are thus needed.	Smaller bias is required to reset the core.
Resonant frequency of a-c resonant charging circuit is affected only slightly.	Resonant frequency of a.c resonant charging circuit is affected.

is the compression factor for the second stage. Therefore,

$$
L_{\delta_{2}}=\frac{1}{4 \pi^{2} f_{3}{ }^{2}\left(\frac{C_{2} C_{3}}{C_{2}+C_{3}}\right)}
$$

where $f_{3}=n f_{2}$.
With core volume and inductance for the first pulsactor now established, the designer must determine the most practical number of turns for the core. Several considerations involved in arriving at a compromise between relatively many or few turns are listed in Table I.

Third Step - Compute the Capacitance Values for Each Stage. For maximum unidirectional current through the load, the capacitance of the third stage is

$$
\begin{equation*}
C_{\mathrm{x}}=\frac{1.06 \tau}{R_{\text {load }}} \text { farads } \tag{9}
\end{equation*}
$$

Maximum energy transfer between stages is theoretically obtained when all stages have equal capacitance.

$$
\begin{equation*}
C_{1}=C_{2}=C_{3} \tag{10}
\end{equation*}
$$

This approximation is adequate for the initial design. In practice, however, there should be slight, progressive increases of capacitance between stages.

Fourth Step - Determine the Bias for the First Pulsactor. The first pulsactor core must be biased via a separate winding so that saturation is not reached until one full cycle of input current has elapsed. The bias sets the operating point on the magnetization loop of the core and provides for stable, cyclic operation of the circuit.

The magnetizing force $\left(H_{p}\right)$ that must be developed by the bias winding for proper operation of the modulator is

$$
\begin{equation*}
H_{p} \approx \frac{0.4 \pi N_{1}\left(C_{1} V_{c_{1}} f_{\text {oupply }}\right)}{l} \text { oersteds } \tag{11}
\end{equation*}
$$

where
$l=$ mean length of the magnetic path of core P_{1} in cm ,
$V_{c 1}=$ peak charged voltage across C_{1} ($\pi \sqrt{2} V_{\text {rmit supply }}$) and
$N_{1}=$ Number of turns on main winding of P_{1}.
Fifth Step - Calculate Inductance of the Resonant Charging Choke. The modulator described here employs full-cycle charging in which the voltage across the resonant charging capacitor C_{3} reaches a theoretical (lossless) peak of $V_{\mathrm{m}} \pi$ where the input

MicroWaves

voltage is $V_{m} \sin \omega t$. The charging choke is thus designed to resonate with the C_{1} at the supply frequency. Accordingly,

$$
L=\frac{1}{4 \pi\left(f_{\text {supply }}\right)^{2} C_{1}} \text { henry }
$$

Sixth Step - Determine the Required Supply Voltage. There are two separate methods the designer can employ to determine the required input voltage. He can note the energy required to saturate the first pulsactor, allow for losses in the charging circuit, and specify an input voltage that will deliver the required energy at the output.

Since over-all efficiency cannot be readily calculated before the breadboard is assembled, the first method is more suitable for the initial design. It has been found in practice that the equation

$$
\begin{equation*}
V_{r m a}=\frac{\Delta \beta N_{1} A_{1} f_{i n} \times 10^{-9}}{0.66} \text { volts } \tag{13}
\end{equation*}
$$

where all terms refer to the first pulsactor, is a useful approximation for the required supply voltage. This equation has been reduced to the nomogram of Fig. 3.

In the second method it can be shown that

$$
\begin{equation*}
V_{i m v}=\frac{0.707}{\pi} \sqrt{\frac{2\left(V_{R} \text { peak }\right)^{2} \tau}{C_{1} R \eta / \text { modulator }}} \tag{14}
\end{equation*}
$$

Seventh Step - Breadboard Modulator and Modify Component Values to Improve Performance. Due to inefficiency in each stage, capacitor values should increase progressively from the supply end to the load end. In the three-stage modulator described here, $C_{1}>C_{2}>C_{1}$. The increase in capacitance is inversely proportional to the efficiency. In the circuit of Fig. 4, for example,

$$
\begin{equation*}
C_{b}=\frac{C_{i}}{\eta_{i}} \tag{15}
\end{equation*}
$$

The total loss in each stage is the sum of the hysteresis and eddy current losses ${ }^{5}$ in the pulsactor core and the copper loss in the winding. Losses in the capacitors can generally be neglected.

$$
\eta_{c}=\frac{Q}{\pi}\left(1-{ }^{c}-\frac{\pi}{\varphi}\right)
$$

(16)
where
$Q=\frac{\omega_{0} L}{R}$, and
$R=$ all losses of the input circuit.

124 completely hermetically sealed Microwave Mixer and Video Diodes

ALL ARE DIRECTLY SUBSTITUTABLE FOR CONVENTIONAL DIODES TO ASSURE UNPRECEDENTED SYSTEMS RELIABILITY.

Microwave Associates has answered your need for truly hermetically-sealed diodes. For the first time, both fixed-base and reversible polarity types have CERAMIC-TO-METAL SOLDER SEALS plus SOLDER END SEALS.
Whatever the requirement-from 1 Mc to 18 kMc , a new diode is available to replace the kMc, a new diode is available to replace the present diode - extra high burnout types for high signal level circuits and behind radar du-
plexers-new low-noise types for doppler receivers.
The MA-458F, for example, replacing the 1 N23E, has a calculated overall noise figure of 7.0 db - the lowest noise figure available for high reliability applications.

These diodes (and coaxial case and subminiature glass packaged diodes) assure military and commercial applications the reliability essential to uninterrupted service for exceptional time spans. They perform to $150^{\circ} \mathrm{C}$ and meet the applicable environmental requirements of MIL-S-19500.

MICROWAVE ASSOCIATES, INC
SEMICONDUCTOR DIVISION burlington, massachusftis - western union fax TWX: BURLINGTON, MASS. 942 - BROWNING 2.3000

Export Sales: Microwave International Corp.
36 W. 44th St., N.Y.C., N.Y., U.S.A. Cable: Microken
SILICON MIXER DIODES CARTRIDGE CASE
Improved Types
For low noise supertheterodyne mixer performance

For use in pulse radars or other receivers enposed to high RF radiation fields - Interchangeable with 1 N21 series

simplified beacon recevers. Cest equipmen ind other uses

- Replace ma408 series CARTRIDGE CASE

For low noise superifīiercadyne mirer performance

COAXIAL CASE
COAXIAL CASE
For lowed 7 nolse superheterodyne mixer performance
Feplace

SILICON VIDEO DIODE;

firec Aase Types		$\begin{aligned} & \text { Meversible } \\ & \text { Palaifs } \end{aligned}$	$\begin{gathered} \text { Bunowt } \\ \text { tergs) } \end{gathered}$
Pomerify	$\begin{aligned} & \text { Reversed } \\ & \hline \text { Polatily } \\ & \hline \end{aligned}$		
$\begin{aligned} & \text { MA } 452 \\ & \text { MA } 452 \mathrm{~A} \\ & \text { BA } 552 B \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MA 452R } \\ & \text { MA }+5 \text { S5R } \\ & \hline \text { M } 52 B R \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MA } 461 \\ & \text { MA } 461 \\ & \text { MA } 461 B \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$
Whati Bu-rrout Wide Dynamic Rani I I pout For use in video receivers exposed to high RF radiation fields - Interchangeable with MA 408 series			
MA4128	ma 412 BR	MA 4129	50

See this new and revolutionary instrument at the Wescon Shaw Beoth 205. We invite your immediate request for complete details and specifications.

STODDART

AIRCRAFT RADIO CO.. INC. 6644 SANTA MONICA BLVD HOLLYWOOD 38, CALIFORNIA HOllywood 4.9292

Power loss breakdown in a typical magnetic modulator is illustrated in Fig. 5. The final stage generally has the greatest core loss which varies directly as the core volume of the final pulsactor.

The pulsactor in the first stage, however, has many more turns than does the final pulsactor. Thus, the core initially chosen may not accommodate both the main and the bias windings. In this event, a core with a larger window area must be chosen.

The main winding of each pulsactor performs two functions. In the unsaturated state, the turns-area product must be such that the pulsactor can absorb the volt-second product applied to the core. In the saturated state, inductance must be sufficiently small to provide the required pulse compression. The turns on each core may have to be modified to arrive at a suitable compromise between saturated and unsaturated inductance requirements.

In some instances bias of subsequent pulsactor stages may be desirable. However, the designer must weight the advantage of increased efficiency against the disadvantages of added weight, size and circuit complexity if separate bias schemes are used for each pulsactor.

In practice, a self-biasing circuit can be used in preference to the separate dc supply shown in Fig. 1.

Final Design Steps. At this point the designer can consider alternate choices containing one stage more and one stage less than the trial breadboard. These can be de-
veloped on paper and the trends in weight, size and efficiency noted. If either of the alternate designs appears particularly promising, it should be breadboarded and performance evaluated before arriving at a final choice.

A disadvantage of the ac resonant magnetic modulator is that the pulse repetition rate is identical to the input frequency. Pulse width may be varied by switching different components into the circuit, but this is at best a cumbersome process.

Greater flexibility of operation is possible through dc resonant charging in which pulse rate and width can be controlled by switching the input current. Until recently, however, such switching could be accomplished only with thyratrons, whose use is not consistent with the reliability desired of a solidstate device. However, the recent advent of high-power silicon controlled rectifiers has led to renewed interest in dc resonant magnetic modulators.

A typical de resonant modulator is shown in Fig. 6. Apart from greater operating flexibility, replacement of the first pulsactor by the silicon controlled rectifier provides greater pulse compression in the first stage.

In Fig. 6, the de resonant charging capacitor C_{1} charges to $2 E_{\text {b }}$ through resonant charging choke L and hold-off diode $\boldsymbol{C R}$. The charge remains until a gating pulse is applied to the silicon controlled rectifier SCR. Energy is discharged into (C) and pulse compression occurs in the same manner as described for the ac modulator The circuitry beyond C_{2} is identical to that in the ac modulator.

Detailed design procedures for the input stages of the de magnetic modulator are described in the literature by Manteuffel and Conper:" -

References

1. Melville, W. S., "The Use of Saturable Reactors as Discharge Devices for Pulse Genera
ceedings, $98: 185-207$, Part III, 1951.
2. Mathias, R. A., and Williams, E. M.. "Economic Design of Saturating Reactor Magnetic Pulsers," Transaction Paper No. 55-179, AIEE Committee on Special Communication Applications, 1955.
3. Ibid.
4. Melville, W. S., op cit, p. 190.
5. Mathias, R. A., Taylor, M. E., and Walker, J, M., "An 5. Mathias, R. A." Taylor, M. E., and Walker, J, M., An Monthly Report for Contract AF-30(602)-904, Feb. 1955.
6. Manteuffel. E. W.. and Cooper, R. E., "DC Charged Magnetic Pulse Modulator," Communications and
Electronics, Jan. 1960.

Recording, Receiving, Transmitting and Control Equipment, Antenna Positioners, Microwave Components, and Recorder Supplies

PATERN RECORDERS - Two basic pattern recorders are available: the Series APR 20 Rectangular, and Series APR 30 Polar. They can be combined to form the popular APR 20/30 Polar-Rectangular Recorder. Pen responses include logarithmic, linear, and square root.
Features include servo control with tachometer feedback, a noise compression circuit, an electric pen lift, and a three axis synchro input selector. The rectangular recorder has an automatic chart-cycle advance, illuminated chart, three chart scale expansions with forward-reverse, and chart position control. The polar recorder features u recording diameter of 7 and 13 inches, a turntable slip-clutch, pen standby and load switch, calibrated turntable, and chart center light.
wioe range receiving system - A double conversion superheterodyne receiver, the Scientific-Atlanta Series 402 heterodyne receiver, the Scientifc-Atlanta Series 402
covers the range from below 30 mc to more than 100 kmc . Features include a sensitive AFC circuit which prevents the receiver from losing track during transmitter frequency drift. One coaxial cable eliminates costly lossy wave guides and rotary joints. Antennas can be located up to 75 feet away with negligible loss in sensitivity, or more than 200 feet away with low loss cables. Reception of cw signals from simple sources eliminates need for precise modulation.

Excellent amployment opportunities exist for electronic, microwave.
and mechanical engineers.

Modification P-4 adds 20 db to the normal 40 db dynamic range providing 1 db linearity over a full 60 db dynamic range. Modification \mathbf{Z} adds a precision IF attenuator and VTVM appreciably reducing the number of components and instruments required for level, gain, and isolation measurements.
antenna positioners - Scientific-Atlanta offers medium and heavy duty azimuth and multi-axis antenna positioners. Standard models range from the PMA-3 medium duty azimuth positioner designed for a maximum vertical load of 200 pounds with a maximum bending moment of 200 foot pounds to the large PAEA 29 H azimuth over elevation over azimuth for vertical loads of 15 tons and a bendtion over azimuth for vertical loads of
ing moment of 30,000 foot pounds.
Features include use of Kaydon four-point contact bearings which minimize sliding friction, weather and dust proof design, and $1: 1$ and $36: 1$ speed synchros for each axis of rotation. Slip rings, rotary joints, and limit switches can be provided in any axis of any positioner.
mICROWAVE COMPONENTS - Scientific-Atlanta also offers a coaxial rotary joint for dc to 16 kmc at speeds up to 2000 rpm, a series of coax to waveguide adaptors, standard gain horns, crystal mixers, transmitting antennas, polarization positioners, model range towers and recorder supplies.

WRITE FOR OUR NEW CATALOG

Ask your Scientific-Atlanta engineering representative for a copy of our new catalog or write directly to the factory.

SCIENTIFIC
 ATLANTA, INC.

2162 Piedmont Road, N.E. - Atlanta, Georgia See Us at WESCON - Booth 3522

Doppler Modulation Systems-The Pros and Cons

Abstract

Choice of modulation systems is a major element in the keen competition among manufacturers of Doppler equipment. Each of the four major systems now in use has inherent advantages and limitations with respect to its applications in a particular class of vehicle. Doppler experts Whitney and Laschever analyze the four modulation systems in a concise but to-the-point article that should be of value to designers interested in the fast-growing Doppler field.

Douglas Whitney, Norman Laschever Laboratory For Electronics
Boston, Mass.

THE WAY in which the transmitted signal is modulated is the most important factor in determining whether a Doppler velocity sensor will perform satisfactorily in a given aircraft or space vehicle.

Four basic modulation systems are used. They are:

- Cw-continuous wave
- Self-coherent pulse
- Fm/cw-frequency modulated cw
- Icw-Interrupted cw

Block diagrams of the four systems are illustrated in Figs. 1 through 4. Each system employs several microwave beams and associated receiver/frequency tracker channels so as to measure velocity along more than one coordinate axis. However, Figs. 1 through 4 illustrate only one channel for each system as other channels operate in a similar manner.
The cw system transmits and receives continuously. The self-coherent pulse system transmits low-duty-cycle rf pulses and receives for the rest of its operating cycle.

The fm cw system receives continuously while continuously transmitting a cyclical frequen-cy-swept carrier. The icw system alternately transmits and receives during nearly equal periods whose durations vary with the altitude of the vehicle.

Cw and fm cw systems derive the Doppler shift, $f_{l}=2 / \lambda_{t} v_{i}$ cps by continuous comparison of the transmitted and received signals. (λ_{t} is the transmitted wavelength and v_{i} the velocity along the i-th beam).

An icw system operates in much the same manner except that the sample of the transmitted signal is derived from a cw oscillator coherent with the transmitted pulse during the receiving interval.

In the self-coherent pulse system signals

Fig. 1. Cw Doppler system Iransmits and receives continuously. Velocity is determined merely by tracking the Doppler frequency shiff f_{D}. Signal leakage from transmitter to receiver is noted in the diagram.
from a forward pointing and rearward pointing antenna are compared (providing twice the Doppler shift noted above).

The pros and cons of each system are summarized in Table 1. Generally, advantages such as design simplicity, good utilization of transmitted power and stable operation are accompanied by such drawbacks as noise, signal leakage, complex antenna structures and altitude "holes".

Cw systems offer simple design (a modulator is not needed) and maximum use of transmitted power. The performance penalties result from:

- Signals leakage form the transmitting to the receiving antenna.
- Uncontrollable noise content of the transmitted signal.
- Inability to discriminate between near and distant signals.
The advent of progressively quieter transmitting tubes should to some extent alleviate the signal noise drawbacks of cw Doppler. However, random, low-frequency modulation of the leakage signal induced by vibrating surfaces near the antennas introduces a masking noise level that remains a problem.

Lack of range discrimination results in noise figures of 30 db or greater above receiver thermal noise for cw Dopplers. Highaltitude and low-velocity performance are thus limited.
In general, system performance of cw Dopplers can be considered signal-to-leakage limited rather than signal-to-noise limited. Increasing transmitter power is of little avail as working noise level is similarly increased.
Self-coherent pulsed Doppler overcomes tube noise and leakage problems by shutting
off the transmitter during the receiving interval of the operating cycle. These advantages are accompanied by three new drawbacks which may rule out this system in certain applications.

The frequency difference in returns from a single pulse of rf energy transmitted in two opposite directions provides sufficient information for measuring horizontal velocity in the plane of the two beams. However, one cannot distinguish which of the two return signals is of higher frequency. This information cannot be extracted because a coherent reference is not present. Additionally, the system cannot sense when both frequencies change by the same amount (as would be the case for vertical motion) since velocity is sensed as the difference between forward and rearward frequency shifts.

The antenna must be vertically stabilized to assure "simultaneity" (similar Doppler spectra) of returns which are to be compared.

Self-coherent pulse Dopplers employ conventional pulse radar receiver techniques, reaching typical system noise figures as low as 12 to 15 db above thermal noise. The duration and high peak power of the transmitted pulse, in addition to finite receiver recovery time, cause a low-altitude hole extending to at least 300 ft . Below this altitude, the return signal is obscured by the main bang.

Fm/cw Doppler avoids the noise and leakage problems of the cw system and the velocity sense and vertical sense problems of the self-coherent pulse technique but introduces serious "altitude hole" problems.
The transmitted and local oscillator signals are identically frequency-modulated. When the received signal is mixed with the local oscillator, no output is obtained from the mixer unless the signal is delayed by the round trip time. If the signal is delayed, the Doppler shift frequency is derived by combining the mixer output with the modulation frequency and measuring the resulting difference. Leakage signals, not being delayed by a detectable amount, produce no output from the mixer.

Altitude holes occur when the round trip time is equal to the period of the modulation frequency, or some multiple of it. These are due to the inability of the mixer to distinguish between a 0 delay and a 360 -deg delay. This problem is less critical at high altitudes because there is a spectrum of round trip times within the finite width of the an-

MicroWavis

Table 1. Characteristics of Doppler Modulation Systems

Modulation System	Advantages	Disadvantages
Cw	Simplicity Modulator not required Transmitter carrier frequency relatively easy to stabilize Maximum utilization of all radiated power Transmitter provides coherent reference for receiver	Maximum altitude performance limited by sig. nal-to-leakage ratio rather than signal-to-receiver noise ratio. (Keeping this ratio high implies considerable art in antenna design and antenna installation). Tracking of Doppler ground return may be inaccurate or impossible due to biasing or masking effects of direct signal leakage modulated by acoustical or engine-induced vibrations. Must employ separate antennas for transmitting and receiving (more antenna bulk for given beamwidth than any of other types) Requires self-contained radome.
Self-Coherent Pulse (Low-Duty-Cycle Pulse)	Simple Transmitter Pulse-to-pulse frequency stability of transmitted pulse not required. Local oscillator not required. Doppler velocities (frequencies) are Janus-stabilized against aircraft pitch and roll thus reduc. ing frequency tracking rate re. quirement.	Cannot detect velocity sense (direction) Must stabilize antenna in pitch and roll (complex, heavy, slower) Poor use of total radiated power. Propagation losses degrade to $1 / R^{\nu}$ at high altitudes. High transmitted peak power and receiver recovery time preclude elimination of low-altitude hole.
Fm/Cw	Relative simplicity Leakage signals produce no output. Local oscillator (LO) signal is a sample of transmitted power so problem of providing a strong coherent LO signal during receiver on time (requiring sidestep LO, microwave amplification, etc.) is avoided.	No way to eliminate lowest altitude hole (from zero to say 300-500 ft.) Low-altitude hole introduces serious tracking inaccuracies prior to complete loss of Doppler return. High altitude holes exist (effect may be minimized but at the cost of wider beamwidths than necessary and degraded tracking accuracy). Transmitted power utilization 10 db poorer than ideal cw system, 7 db poorer than icw . Does not operate through 0 velocity.
$\begin{aligned} & \text { Icw (High } \\ & \text { Duty Cycle) } \end{aligned}$	Uses same antenna for transmitting and receiving. Antenna may be hard mounted. Self-contained radome not necessary. Direct signal leakage impossible Vibrating surfaces in near environment not important.	Maintaining transmitter coherence during receive interval requires side-step local oscillator technique and microwave amplification with attendant complexity. Requires prf change as a function of altitude to prevent altitude holes. Requires transmit-receive overlap operation at low altitudes to avoid zero-altitude hole.

Fig. 3. Fm/cw Doppler transmits continuous, frequencymodulated signal. Internal reference signal is similarly modulated. Signal leakage problem is thus eliminated as the system cannot generate an output when the leakage signal is identical to the reference signal. Signals delayed by a round trip will, however, be shifted in frequency and will be detected by the system.

Fig. 2. Self-coherent pulse Doppler employs Janus antennas. (two antennas transmitting or receiving simultaneously). Since the antennas point in opposite directions, their Doppler shifts have opposite signs. The two received signals are combined so that the velocity is proportional to $2 f_{l}$,

Fig. 4. Icw Doppler combines pulsed transmission with variable prf to eliminate oltitude holes and signal leakage. For any given prf there exist round trip times that coincide with the intervals during which the receiver coincide with the intervals during which the receiver
is off. These are avoided by decreasing the prf in discrete steps as the altitude increases. An intermediate frequency detection system is then employed to deter. mine the Doppler shift.

Table 2. Doppler Modulation Technique Applicability

Class of Air or Space Vehicle	Medium Altitude, Low Maneuverability	High Altitude Medium Maneuverability	Low.Medium Altitude, High Maneuverability	Extremely High Altitude, High Maneuverability
Examples	Commercial \& Military Jet Transports	Fighters, Bombers Reconnaissance A/C	Helicopters V/STOL	Space Vehicles Space Probes
Applicable Criteria (See Text)	None	A, E, G, H	$\begin{gathered} \text { B, C, D, E, F, } \\ \text { G. H } \end{gathered}$	$\begin{aligned} & \text { A, B, C, D, E, } \\ & \text { F, G, H } \end{aligned}$
Doppler Modulation Technique				
Cw	X		X	
Self-Coherent Pulse	X	X		
Fm/Cw	X			
Icw	X	x	X	X

Microwaves

In selecting a Doppler modulation system for a given application, one or more of the following criteria may apply:
A. Must performance be optimum over a large range of altitudes?
B. Is operation to 0 altitudes essential?
C. Is 0 velocity demanded?
D. Is a knowledge of velocity sense needed?
E. Is vertical velocity required?
F. Is high dynamic response necessary for hovering control?
G. Must operation remain unimpaired under unusual pitch and/or roll?
H. Are installation requirements extreme? (available space for antenna aperture, vibration levels, etc.)
Table II indicates how the several Doppler systems can best be combined with actual vehicles. The vehicle in which the Doppler equipment is to be used may belong to any of four classes as defined in the table.

For the first class, consisting of mediumaltitude, low-maneuverability aircraft such as commercial or military jet transports, all four types of modulation systems will perform satisfactorily: In practice, self-coherent pulse and $\mathrm{fm} / \mathrm{cw}$ Dopplers are preferred because of somewhat lower cost.

In the high-altitude, medium-maneuverability class, encompassing many fighters, bombers and reconnaissance aircraft, cw Doppler, while used in some instances, is apt to be ruled out at altitudes above, say, 50,00) ft. Self-coherent pulse and $\mathrm{fm} / \mathrm{cw}$ Dopplers have been used here, though their performance at very low altitudes may disqualify them for airplanes that may also be called upon to fly sustained low-altitude missions. Total coverage of all possible operational altitudes is likely to be best met by an icw Doppler.

Helicopters and V/STOL (Vertical/Short Take-Off and Landing) vehicles commonly employ cw or icw Dopplers. Low-altitude holes limit the use of self-coherent pulsed and $\mathrm{fm} / \mathrm{cw}$ systems. The icw system may offer some advantage over cw Dopplers in performance near 0 velocity and at negative velocities.

Space vehicles and probes will likely employ icw modulation because of its favorable signal-to-noise ratio and high altitude capability. For short range terminal guidance in planetary landings, however, cw Doppler may also prove satisfactory. - -

ELECTRONIC DESIGN • August 2, 1961

FOR
 Sierra introduces
 3 versatile new instruments:

 THE FIRST TIME... at WESCON!

Model 160-1200 Coaxial Load
There's remarkable versatility in this new three-way coaxial termination .. . Sierra Model 160-1200. Power capacity to 1200 watts in standard form, to 2000 watts with accessory air cooler, to 3000 watts with accessory water cooler. Both accessories are easily attached, can be delivered with the termination . . . or order the power capacity you need now, expand it later. 0 to 1000 mc , low VSWR, may be ordered with Type N, HN or LC connectors.
Model 126A Two-Band Frequency Selective Voltmeter
Here's new broad frequency coverage,
5 to $1,620 \mathrm{kc}$ in two bands, in a continuously tuneable frequency selective voltmeter that offers

- Dual selectivity, 250 or $2,500 \mathrm{cps}$
- Level ranges, -90 to +32 dbm
- Three bridging inputs, 75,135 and 600 ohms
- Two-speed dial drive for extra convenience
- Crystal Controlled calibration oscillator
- Sierra reliability and rugged, modular construction

Plus REAL convenience with the new Model 127A Solid State Frequency Selective /M1
You can see it at WESCON: The new solid state Model 127A Frequency Selective Voltmeter, 2 to 350 kc , - only $73 \mathbf{y}^{\prime \prime} \times 73 \%^{\prime \prime} \times 13^{\prime \prime}$! It weighs less than 15 lbs.! It's completely portable with rechargeable battery pack! 250 cycle selectivity with audio monitoring capability. measures -80 to +22 dbm . You have to see it to believe it!

ALSO TO BE SEEN AT WESCON:

Sierra Model 186B 50-ohm Coaxial Water Load, dc to $4000 \mathrm{mc}, 1000 \mathrm{~W}$ av., $10,000 \mathrm{~W}$ peak Sierra Model 125B-CR Frequency Selective VM, with provision for carrier reinsertion Sierra Model 125B-Y with front-panel 20-pin connector, expanded input circuitry for carrier rack fast patch

Don't miss the Sierra Instrumentation at Wescon! Booth 2006-8, Main Floor

SIERRA ELECTRONIC CORPORATION
t306k bomammon drive - davemport e-2080 - area cooz als memlo park, calif, u. S.a. Sales representatives in all major areas

Canada: Atlas instrument Corporation. Lid.., Montreal, Ottawa. Toronto, Vancouver Export: Frazar A Hansen, Lto., San Francisco
CIRCLE ISA ON READER-SERVICE CARD

NEWS! API NOW HAS A CONTINUOUS READING METERRELAY. No signal-sampling interrupters necessary. The CRMR indicates continuously, controls continuously, resets automatically. Built around an unrestrained D'Arsonval movement, it will monitor and control any variable translatable to analogous voltage or current values. Sensitive enough to operate on inputs as small as 5 millivolts or 10 microamps full scale, it will accept low-level signals without amplification. Compact as a panel meter, it needs only a power supply and load relay (both of which API can furnish) to make a complete little control system. Or, you can build it into an equipment control network. Bulletin S-2.1 will give you details on operation, along with specifications and price information. A copy is yours for the asking.

ASSEMBLY PRODUCTS, INC. CHESTERLAND 17, OHIO

Microwave Power Meter Accurate Within $\pm 0.5 \%$

DIRECT-READING microwave power meter model 450 provides measurement accurate within ± 0.5 per cent of full scale on all scale ranges. Measurements may be made continuously over the range from $0 . \overline{5}$ $\mu \mathrm{w}$ to 10 mw . The high accuracy results from the use of a precision con-stant-current dc power source and a self-contained potentiometric system of measurements.

Made by General Microwave Corp., 47 Gazza Blvd., Farmingdale, N. Y., the meter exhibits a stability of better than 2 ppm per deg C over a wide
temperature range when used with the firm's 402 series of temperaturecompensated coaxial and waveguide thermistor mounts. The coaxial series operates from 0.01 to 10 Gc , the waveguide mounts from 2.6 to 18.0 Gc. The meter may be used with any 100 - or 200 -ohm uncompensated detector, if some degradation in performance due to thermal drift can be tolerated.

Five scale ranges are provided with full-scale readings of $0.1,0.3,1.0,3.0$, and 10.0 mw . Corresponding scales are calibrated in decibels from -30 to +10 dbm . The $12-\mathrm{in}$. scale yields a resolution of $0.1 \mu \mathrm{w}$ on the lowest range. Instruments are calibrated against dc transfer standards with certification traceable to NBS, and may easily be recalibrated by the user.

The accuracy obtainable by use of dc replacement power is combined with the direct-reading feature as shown in the diagram. The rf bridge network is supplied with power from both a dc constant-current supply and an adjustable ac bias supply. With these two independent and noncoherent sources, dc power can initially be kept at is fixed value and the barretter brought to its proper operating resistance ($\mathbf{1 0 0}$ or $\mathbf{2 0 0}$ ohms) with the adjustable ac power. Any change

in dc power in the bridge which the operator may later effect with the potentiometer is then directly measurable.

In operation, the dc power level in the barretter is selected with the power range switch. The bridge is then applied and the dc power reduced to rebalance the bridge. The change in that dc power, which is equal to the rf power, is then read directly from the potentiometer dial.

To sense the bridge balance a sensitive differential amplifier and a synchronous detector circuit are used. This arrangement converts the lowlevel ac unbalance across the bridge to a dc current applied to the centerzero null meter.

Barretter sensitivity to ambient temperature changes is compensated by a dual-bridge system. The compensating bridge contains a thermistor whose characteristics parallel those of the rf thermistor. This thermistor is housed in close proximity to the rf thermistor so that it responds almost identically to environmental influences but is shielded from rf effects. A temperature variation in the compensating thermistor will produce a change in the ac bias power fed to the rf bridge, maintaining balance. When uncompensated detector mounts are used, a self-contained thermistor is switched into the compensating bridge network.

The model 450 is $7-1 / 2 \mathrm{in}$. wide, 11-1/2 in. high, and 14 in . deep. Weight is 18 lb . It is available off the shelf, price $\$ 495$.

For more information on this precision microwave power meter, turn to the Reader-Service Card and circle 25.9.

Alfred electronics

*Fust in

microurve instrumentation

MICROWAVE SWEEP GENERATORS
Still the industry's most advanced oscil lators. Series 620 single band models and Model 605 use convenient plug-in generator heads covering $1-26.5 \mathrm{kmc}$. Models 6001 B-6004C provide 1 watt output, electronically swept or stable single frequency, $1-12 \mathrm{kmc}$

Features include built-in leveler and narrow band symmetrical sweep, ad justable irequency markers, and Quick Look readout. Drift, less than $\pm .02 \%$ per hour, residual FM. less than $\pm .0025 \%$ peak.

These units save valuable engineer ing time by providing constant RF power input to microwave tubes and other components under test. With constant input, variations in output in dicate directly component transfer characteristics. Microwave properties chare examined over continuous spec trum assuring accuracy during broad or narrow band iesting Prices. Model 620 naries $\$ 2890-340$. Model 605 de 750 Cenerator Heads $\$ 1.500$ 1,990; Mode ; Mode 6001 B-6004C, \$7,250-8,690.

MICROWAVE LEVELER

Ideal instruments for maintaining constant power output ($\pm 1 \mathrm{db}$) with long term stability. CW or square wave mod ulation. Fast response, very high gain assure flat RF output from BWO's. Also available: Model 700 leveler amplifier which may be used with external RF components. Prices: Microwave Level ers, \$875-990; Model 700, \$575

MICROWAVE AMPLIFIERS

Alfred manufactures microwave amplifiers for virtually every requirement general purpose, medium power, high gain, and low to medium noise figure. All models feature low spurious moduation and stable operation. General purpose amplifiers provide 30 db gain and 10 mw power output with 25 db noise figure. Medium power models offer power up to 10 watts. High power amplifiers provide up to 1 Kw pulse power. Low noise amplifiers provide noise figure from 6 to 15 db at frequencies from . 5 to 12 kmc.
In addition to standard amplifiers, Alfred offers periodic or permanen magnet focused amplifiers where light weight and low input power is required as well as amplifiers designed specifically for phase modulation. Prices: General purpose amplifiers, $\$ 1.490$ 1,690; Medium power amplifiers, \$1,550-3,590; Low noise amplifiers, \$3,150-4,990. POWER SUPPLIES
Alfred furnishes four basic types of power supplies. Model 250 Traveling Wave Tube Supply operates low and moderate power traveling wave ampli-
fier and oscillator tubes. This instrument provides all normal sources - helix, collector, four separate anodes, grid, heater, solenoid and blower-from one compact unit
Microwave Power Supplies Model 252 , with the unregulated and regulated solenoid supplies Model 253 and 254, operate all presently known low and medium noise figure TW tubes. Model 252 furnishes electrode and heater power for permanent magnet focused TW tubes. Electromagnet focused TW ubes require in addition either Model 253 or 254 solenoid supply. Alfred's Sweeping Power Supplies serve as general purpose sources for either elecronically swept or fixed frequency operation of voltage tuned magnetrons, BWO's and similar microwave tubes. Alfred's floating high voltage supplies provide extremely stable and highly regulated DC voltages, featuring wide voltage and current ranges, very small ripple and accurate voltage adjustment. Prices: Model 250 , \$1.990; Models 252 . 890. 253 300. 254 \$400. Sweeping Power Supplies, \$1,650-1.690; High Power Supplies $\$ 6901$ 1,690 Free caralog available. Write to:

Alfred electronics

897 Commercial Street - Palo Alto, California Phone: DAvenport 6-6496

- SEE US AT
WESCON BOOTH 1412

GERTSCH VARIABLE PHASE STANDARD

--permits shifting of phase between
2 self-generated voltages to any desired angle, with accuracy better than $\pm .05^{\circ}$

Precise generation of voltage vectors. The Gertsch VPS-1 generates 2 signals differing in phase by any angle from 0 to 360°, as determined by front-panel controls. The reference signal has a fixed amplitude of 50 V rms. The vector output, which may be displaced in phase, has a maximum amplitude of 50 V rms , and can be attenuated in steps of 50 mv within a range of $0-50 \mathrm{~V} \mathrm{rms}$.

Operation at any 3 frequencies within a range of $150-3000$ cps is provided by a front panel selector switch. Fine adjust control permits varying the frequencies $\pm 5 \%$ max.

Completely self-contained-unit requires no accessories for (p)eration. Case or rack mounted. Send for literature VPS-I.

3211 South La Cienega Boulevard, Los Angeles 16, California / UPton 0-2761 - VErmont 92201

MICROWAVE PRODUCTS

Frequency Meter

510
Direct-reading frequency meter model S60-13, used from 7.5 to 9.6 Gc , offers continuous high resolution with 1 mc as the least dial division. Accuracy of ± 1 mc is maintained from +32 to +85 F . High-Q resonant cavity is tuned by a noncontacting choke plunger.

FXR, Inc., Dept. ED, 25-26 50th St., Woodside 77. N. Y.

P\&A: On request; 60 to 90 drys.
See at Show Booth 220-22.

Backward-Wave Oscillators

Compact, lightweight backward-wave oscillators QKB890 (12.4 to 18 (ic) and QKB891 (18 to 26.5 Gc) are rated at 20 mw min output power, and have a control grid for low-voltage pulsed applications. Both feature permanent-magnet focusing, and may be mounted with a spacing of 2 in . between tubes. The metalceramic tubes are useful as swept local oscillators, and as pump tubes for parametric amplifiers. Military requirements are met.

Raytheon Co., Microwave and Power Tube Div., Dept. ED, Foundry Ave., Waltham 54, Mass.

See at Show Booth 3410-12.

Broadband Ferrite Circulators

512
Rapid tuning over octave bandwidths is provided by this line of ferrite circulators. Models 2395-T through 2398-T cover 0.4 to 7 Gc in four units. Bandwidths range from 50 to 250 mc . Insertion loss is 0.5 db max, isolation 18 db min in all models. The vswr is $1.25: 1$ max. Average power rating is 100 w , peak 5 kw .

The Narda Microwave Corp., Dept. EI), 118 160 Herricks Doad, Mineola. N. Y.
P\&A: $\$ 370$ to \$450: 120 dayк.
See at Show Booth 2407-09.

Synchroscope/Spectrum Analyzer 514
Complete signal analysis, am, fm or pulse, as a function of time and as a function of frequency is provided by model TSA-S synchroscope and spectrum analyzer. Plug-in tuning units span 10 mc to 44 Gc in five models. Resolution is 5 kc to 5 mc .
Polarad Electronics Corp., Iept. ED, 4:3-20 34th St., Long Island City 1, N. Y.
P\&A: IUU-3A, \$2.685: twnin!y units $\$ 1.590$ to さ2,650; so days.
See at Show Booth 1911-13.
ELECTRONIC DESIGN • August 2, 1961

New! Sifind Micadine

- Microline Multiholes are precision directional couplers characterized by flatness of coupling and high directivity over broad frequency ranges. These characteristics especially adapt them for broadband matching, reflection measurements and isolation of signal sources. Microline Multiholes may also be utilized as fixed attenuators.
Available in 3, 10 and 20 db coupling values, the Microline 45 () 1 couplers cover the range of 2.6 to $\mathbf{4 0}$. Gc in eight waveguide sizes. The secondary arm of each coupler is an H-plane bend terminated in a standard flange.

SPERRY MICROWAVE ELECTRONICS COMPANY, CLEARWATER, FLORIDA - DIVISION OF SPERRY RAND CORPORATION Mlcroline Instruments - Radar Test Sets - Systems Instrumentation - Solid State Devices and Materials - M.crowave Components and Antennas CIRCLE 165 ON READER-SERVICE CARD
microwaves
products at wescon

Plug-in oscillators on the model MS-2000 sweep generator cover requency ranges from audio to 3 Gc. Microwave and vhf heads are tuned over a $2: 1$ range about cener frequency, and are swept at a 50 - to 60 -cycle rate. Low-frequency heads are swept electronically at any rate from 0.01 to 100 cps . Ranges up to $1,250 \mathrm{mc}$ may be attenuated in 1 db steps to 60 db .
Telonic Industries, Inc., Dept. ED, Beech Grove, Ind.

See at Show Booth 2813-15.

Receiver

Unmanned-aircraft receiver has 10 channels. Designated type BCR47 A , the instrument is crystal controlled for fm operation between 406 and 550 mc Six channels can 406 and 550 mean be used simultaneously with a ± 20 kc deviation per channel Each channel operates a 2-amp spst relay. Made for missile-target aircraft, unit is all solid-state.
Babcock Electronics Corp., Dept. ED, 1640 Monrovia Ave., Costa Mesa, Calif.

See at Show Booth 312.
FM Signal Generator

Continuously tunable fm signal generator model 1001 operates

ALL CERAMIC AND METAL X-BAND MAGNETRON provides 250 kW power at 8.500 9,600 Mc. Avaılable in mechanically and hydraulically tuned models, QKH 1000 and QKH 1001

LIGHIWEIGH X-BAND BWO is electrostatically focused ideal for volt age tunable ap plications. QKB 830 covers 8.5 to 9.6 Mc range

NEWEST ELECTRONICALL' TUNED BWO's have 40 mW minimum power output; are half the size and weight of their predecessors. QKB 890 for 12.418 and QKB 891 for $18-26.5 \mathrm{kMc}$

OTHER RAYTHEON MICROWAVE TUBES TO BE FEATURED AT WESCON

- 100 kw coaxial L-band Amplitron* for phased arrays, QKS 1012
- Minıature ten-watt cw S-band Amplitron for space telemetry, QKS 997
- 2.5 kW three-cavity power amplifier klystron for cw radar, QKK 809
- Experımental X-band high-ambient-temperature magnetron, QR 933
- Reflex klystron that extends millimeter band coverage to 120 kMc , QKK 971
- Rugged miniature magnetron for missile beacon transponders, QKH 821
-Raytheon Trademark

RAYTHEON at WESCON puts emphasis on AEROSPACE MICROWAVE TUBES

Raytheon has been moving fast to l,reak the bottleneck in the development and production of new microwave tules for aerospace systems. WESCON engineers will see the evidence of this as a variety of new tubes for airborne, space and missile applications are introduced at WESCON.

Whether or not you plan to visit San Francisco, you'll want to skim the opposite page

Sion u: It II E.S.(O) -Booth 3410-3412
for tubes that will answer your aerospace sys. tems needs . . . then let usknow where to send the appropriate information bulletins.

WRITE TODAY, SPECIFYING TUBES that interest you, or tell us about your particalar microwave problem. Address Microwave and Power Tube Division, Raytheon Company, Waltham 54, Massachusetts. In Canada: Waterloo, Ontario.
rom 400 to 550 mc Modulation is controllable over 0 to 35 kc and to $350 \mathrm{kc} \pm 5 \%$. Output is $0.25 \mu \mathrm{~V}$ to 0.1 v into 50 ohms , calibrated to $\pm 1 \mathrm{db}$. Frequency drift is 0.015% per hr; dial calibration accuracy $\pm 0.5 \%$. Three plug-in oscillators give frequency check.
R S Electronics Corp., Dept. ED
P. O. Box 11368, Station A, Palo

Alto, Calif.
See at Show Booth 3322.

Traveling Wave Tube

Made for relay links, type GKW928 periodic-permanent magnet focused traveling wave tube operates from 5,925 to $7,125 \mathrm{mc}$. Minimum saturated power output is 12 w Small signal gain is 36 db . Tube is said to have excellent vswr char acteristics. It is of rugged metalceramic construction, and creates low external magnetic fields.

Microwave and Power Tube Div. Raytheon Co., Dept. ED, Foundry Ave., Waltham 54, Mass.

See at Show Booth 3410-12.
RFI Equipment

The 1 - to $10-\mathrm{Ge}$ spectrum is covered by model NM-62A radio in-terference-field intensity measuring equipment. Device consists of a calibrated microvoltmeter and receiver. Impulse bandwidth is 0.5 and 5 mc , with minimum sensitivity of 12 and $5.5 \mu \mathrm{v}$ respectively.

Stoddart Aircraft Radio Co., Dept. ED, 6644 Santa Monica Blvd., Hollywood 38, Calif.
P\&A: \$17,750 less antenna8; from stock in April, 1962.

See at Show Booth 205.

Microwavis
PRODUCTS AT WESCON
Transistor
516

Micro alloy diffused-base tran. sistor has a typical power gain of 10 db at 1 Gc . Housed in a coaxial package, unit is designed to be used as a uhf amplifier.

Philco Corp., Lansdale Div., Dept. ED, Church Rd., Lansdale, Pa .

See at Show Booth 919-21.

Waveguide Seals

520

Positive fluid sealing provided by Electr-O-Seals, prevents rf leakage, burning, and arcing. They fit standard EIA guides and are reusable.

Parker Seal Co., Dept ED, 10567 W. Jefferson Blvd., Culver City, Calif.

See at Show Booth 4828.
Coaxial Connectors 515

Weatherproof three-pin bayonet connectors are rated at 500 v rms, sea level. Characteristic impedance is 50 ohms to 10 Gc . Operating temperature range is -65 to +260 F. Metal parts are brass, with gold over silver plate. Series designation is TPS.

General RF Fittings, Inc., Dept. ED, 702 Beacon St., Boston 16, Mass.
P\&A: \$2 to \$10; stock.
See at Show Booth 314.

NLY POLARAD CAN OO mc BANDIWIDTH ISUAL MICROWAVE

Polarad takes another giant stride in advancing the state of the art for microwave research and develop-ment-you can now observe a complete $4,000 \mathrm{mc}$ bandwidth on one scope, at one time, with the new Model WSA Wide Band Spectrum Analyzer.
Here's the value to microwave engineers. To see the entire tuning range of transmitters, generators and all other broadband devices, just push one appropriate band selection button-no traching, no further tuning.
Here's the value in RFI work. Because you can view n wide band of frequencies at one time, you can see interfering signals instantly. And by switching over to narrow band analysis, the exact nature of the signal can be determined-an aid in compiling a "spectrum signature.'
Model WSA joins the most comprehensive line of visual microwave analysis equipment available today.

SPECIFICATIONS MODEL WSA

Frequency Range

10 mc to $40,000 \mathrm{mc}$ in 20 Bands

Band Selection

Automatic; with illuminated pushbuttons

Dispersion

Narrow Band: 1 mc to 25 mc .
Wide Band: 50 mc to $4,000 \mathrm{mc}$.
Resolution............. Wide Band: 1.5 mc

I-F Frequencies

$8,200 \mathrm{mc}, 3,600 \mathrm{mc}, 1,000 \mathrm{mc}, 160$ mc, depending on band selection.

High Intermediate Frequency

Assures image rejection and prevents video detection.

DISPLAY FOR ANALYSIS

Which of these Polarad Microwave Spectrum Analyzers solves your problem?

From 10 to $\mathbf{1 0 0 , 0 0 0} \mathrm{mc}$, Polarad offers spectrum analyzers for every aspect of microwave research and development. Thousands of the instruments shown here are in use today throughout the electronics industry-in laboratories, on the production line, in systems, out in the field and at research centers.
Ask your Polarad representative to work with you in selecting the equipment that will most efficiently accomplish your objectives.
all polarad spectrum analyzers feature:

- 1 to 30 cps adjustable sweep rate
- Direct-reading UNIDIAL tunine control, with no kilystron modes to set
- High accuracy, resolution and sensitivity
- Mon-contacting klystron cavity chokes for noiseless tuning
- Provision for use with Multi-pulse Spectrum Decoder (Model SD-1)

TRANSISTORIZED MOBILITY?

STANDARD
OPERATION?

TIME AND FREOUENCY DISPLAY?

DURING WESCON VISIT US AT BOOTH 1911.1913

ELECTRONICS CORPORATION

43.20 34th Street - Long Island City 1, New York

In ruggedized and long-life image orthicons westinghouse leads the industry. Development contract work, continuous since 1953, resulted in the first truly ruggedized orthicon WL 7198. The latest version of this same tube, WX 4493, provides a special S-20 photo cathode that extends the red response, and a rugged thin film storage target that enhances sensitivity for low-light level applications.
Westinghouse also developed the WL 7611-the first image orthicon with a glass target that minimizes sticking and increases life expectancy. This tube is the first in the industry to be warranted for 1000 hours, and tubes have been recorded operating satisfactorily after 7000 hours in field applications.
Present development work includes: mimage intensifier orthicons. ■ fiber optic inputs. ultraviolet and infrared sensitive tubes. field mesh tubes. - higher resolution capabilities.

Whether your application is standard or special, write on your Company letterhead to: Westinghouse Electric Corp., Elmira, N.Y. You can be sure . . . if it's Westinghouse.

Westinghouse

Examples of Westinghouse image orthicon design capabilities

tube TYPE	voltact matimas.				SPICTRALRESPONSE		special rlatumes amd comments Δ
	amoder voits vis	$\begin{aligned} & \text { pmorocainoot } \\ & \text { Volts } \end{aligned}$	rvennes	nemes	plat	188	
WL-5820	1350	-550	7×10^{-5}	$5 \times 10-4$	4500	7500	
WL.6899	1350	-550	3×10.5	5×104	4500	7500	Wico samees saro
WL-7198	1350	-550	3×105	5×104	4500	7500	Austedized 5820 (will meet environmental con. ditions per MIL. 5212 A)
WL. 7611	1350	-550	7×10^{-5}	5×104	4500	7500	Direet replacement far 5820 with long life Larget essemtially free of image rotention and target bura throughout inde.
wx-4299	2200	$\begin{aligned} & 13 \mathrm{l} .=20.000 \\ & 2 n \mathrm{~d} . \\ & \hline 800 \end{aligned}$	5×10.80	$2.8 \times 10 \cdot 7$	4250	8250	furgedired image inlomsares 10.6Dynodesfactor of 700 more sensitive at low light Ioval man 5020
wX.4322	1350	-550	2.5×100	1.3×10^{-5}	4500	7500	Thin film target-factor of $10-15$ more sensitive than 5020 an lew-lighl levels.
wx-4323	1350	-550	7 $\times 107$	4×106	4250	8250	Thunfilm tarext-s 20 (tio olluii) otrotesurfacefocier el 50 mere sensitive than 5820 al lowlight levals
wx-476	1850	-650	2.5×106	13×105	4500	1500	Gustatizes (capableal moeting Wh-718 specs) -thinfilim target lactor of 10 is more semative then Sect el low-light ievals.
wx-4993	1850	-650	7 $\times 107$	4:106	4250	8250	Gurgedired (eapatis of meeting WLL - IIst specs) -Min film targed laciar ar so more semsilive than 5820 al low-lutht levels

Crystal Mixers

Coaxial XR series. Single-ended mixers cover 225 to 6 Gc in 7 overlapping frequency ranges. They are fixed tuned and require no rf adjustment over the specified frequency bands. Standard ceramic type crystals are used.
Microlab, Dept. ED, 570 W. Mount Pleasant Ave., Livingston, N. J.

P\&A: \$120.00; from stock.
See at Show Booth 4306.

Calorimetric Power Meter

Using plug-in calorimeters power meter model N680 measures rf power from dc to 10 Gc . Nine ranges from 0.1 to $1,000 \mathrm{mw}$ are available, accurate to 2%. Noise is less than $0.2 \mu \mathrm{v}$, with a sensitivity of 51 to $130 \mu \mathrm{v}$ per mw of rf. Device, in a portable cabinet measuring $7-3 / 4 \times 10-1 / 2$ $\times 15 \mathrm{in}$., weighs 20 lb .

PRD Electronics, Inc., Dept. ED, 202 Tillary St., Brooklyn 1, N. Y.
P\&A: $\$ 1495.00 ; 60$ to 90 dayr.
See at Show Booth 2109-10.
Impulse Generator

For portable use. Transistorized model IC120 impulse generator has a frequency range of 1 kc to 10 Gc flat within $\pm 1 / 2 \mathrm{db}$. Pulse polarity is automatically reversed every second. Pulse width is 0.02 nsec; pulse train width is 0.06 nsec ; pulse repetition rate is 1 kc , fixed internally. Output level is 710 to $\mathbf{7 , 1 0 0} \mu \mathrm{v}$, adjustable.
Polarad Electronics Corp., Dept. ED, 43-20 34th St., Long Island City 1, N. Y.

See at Show Booth 1911-13.

Attenuator

Multihole-coupler fixed microwave attenuator. Attenuation is adjusted by displacing the hole patterns relative to one another and fixing the waveguides in position.

ITT Federal Laboratories, Dept. ED, Fort Wayne, Ind.
Availability: Six weeks or less.

Coaxial Isolator

Ferrite coaxial isolator C993-100-910 provides isolation of 70 db min over 5.0 to 5.9 Gc . Insertion loss is 2.0 db max, vswr $1.20: 1$ max. Weight is 3 lb . Type N female coaxial connectors are standard.

General Precision, Inc., Kearfott Div., Microwave Products, Dept. ED, 14844 Oxnard St., Van Nuys, Calif.

Portable Power Source

300 to 600 of cw or modulated rf microwave power from 350 mc to 10.5 kmc can be provided by this portable power source. Designated model L-3653, the equipment accepts modulation frequencies from 50 to 5,000 cycles, and requires about 300 w into 500 ohms for 100% modulation at full power. The source was designed for high-power testing of microwave components and for driving high-power amplifier tubes.
Litton Industries, Electron Tube Div., Dept. ED, 960 Industrial Road, San Carlos, Calif.

Thnable-X Band Fliters

MAXIMUM REJECTION - LOW INSERTION LOSS

 - DELIVERY FROM STOCKNow, Frequency Standards, world leader in microwave filter technology. introduces a new series of precision tunable bandpass filters covering the range of 7 to 12.5 Gc assembled and delivered from stock in two weeks or less! These filters feature a bandwidth of 8 to 12 mc at 3 db and 30 mc at 30 db with 2 db insertion loss ... VSWR of 1.5 max. at $\mathrm{F}_{\mathrm{o}} . .$. temperature stability of $3 \mathrm{cps} \mathrm{Mcs} / \mathrm{C}$ maximum drift over wide temperature range...two direct-coupled $T E_{111}$ mode cylindrical cavities with single tuning control...counterdial and calibration chart or slotted shaft adjustment. Price: $\$ 398.00$ each (less quantity discount).
Frequency Standard's 14 years of experience in the development and production of high performance microwave filters is available to you without obligation. Look into our capabilities for special preselectors with balanced mixer as well as low bandpass and band rejection filters for both high and low power applications. Write for Bulletin P-26102 or send specific bandwidth and other requirements to Department KF.
FIFIDENGY STADDAMS BOX 504. ASBURY PARK. N. J. . PROSPECT $4-0500$
Center for new ideas in microwave technology - Discriminators, Antenna Couplers, Diplexers, Wavemeters, Reference Cavities, Signal Sources, Darectional Couplers. Antennas, Cavities

ACCURATE RF POWER MEASUREMENTS

$\frac{1}{1000}-100,000$ WATTS
CW - PULSE or ANY OTHER WAVEFORM with the MOST COMPLETE LINE of CALORIMETRIC POWER METERS in the Frequency Range of $1: 10-12000 \mathrm{MC}$

DIRECT
READING Calorimeter Bridge
MODEL CB-31 ilustrated

four scales with the following full scale deflections: 1 Milliwatt. 10 Milliwatts, 100 Milliwatts, 1000 Milliwatts

> ACCURACY: 1%-except in the 1 milliwatt range. DC-10 KMC - Input Impedance: 51.5 shms

In this Calorimeter the R.F. power to be measured is compared to an accurately known D.C. power, by means of a null indicator and 260 thermocouples in 2 differential thermopiles, which sense the very low temperature rise of .0015 degrees C per milliwatt of the circulating fluid. This fluid is flowing at the rate of $2 / 3$ of an ounce per minute.

Since R.F. power is compared to D.C. power, both of which will depend to an equal extent on the ambient temperature, the effect of the ambient temperature on this power measurement is cancelled out. The R.F. power is then read directly on a $1 / 4 \%$ D.C. milliameter, calibrated in milliwatts. The null indicator pointer is deflected $1 / 4^{\prime \prime}$ by a power difference of 100 microwatts.

WRITE TODAY for COMPLETE INFORMATION

Electra mpulse laboratory
 208 RIVER STREET - RED BANK, NEW JERSEY Phone: SHadyside 1-0404

CIRCLE 170 ON READER-SERVICE CARD

MICROWAVES PRODUCTS

Traveling-Wave Tube

X-band traveling-wave tube LY 10 is capable of supplying 20 kw power, 30 w avg. The gridmodulated tube has $15 \% \mathrm{~min}$ bandwidth to $3-\mathrm{db}$ points. Gain is $13 \mathrm{db} \min$ from 9 to 10 Gc

Ferranti Electric Inc., Electronics Div., Dept ED, Industrial Park No. 1. Plainview. N. Y

Backward-Wave Oscillator

695

Is electrostatically focused. Type QKB830 operates over a frequency range of 8.5 to 9.6 Gc with no mechanical tuning. Minimum power output is 10 mw . A control electrode is provided for low-voltage pulse or amplitude modulation The lightweight tube is 6 in . long.
Raytheon Co., Microwave \& Power Tube Div. Dept. ED, Foundry Ave., Waltham 54. Mass

Reflex Klystron

Producing $\mathbf{2 5 0} \mathbf{m w}$ at $\mathbf{7 0} \mathbf{~ G c}$, type VA-99 reflex klystron oscillator is for radar and communications systems applications. It is factory preset to the customers desired frequency, between 68.0 and 72.0 Gc . Provision is made for subsequent fine trimming to exact operating frequency.
Varian Associates, Tube Div., Dept. ED, 611 Hansen Way, Palo Alto, Calif.

 SEE US AT WESCON SHOW, BOOTH \#A13 CIRCLE 171 ON READER-SERVICE CARD
— Wigher Temperatures $\begin{aligned} & \text { - Wider Range Resistances }\end{aligned}$ - Wider Range Resistances

- Miniaturization $\ldots 1 / 2$ to 10 watt

C>NI
miniature precision power resistors To Meet or Ereeed Applicabie Paragraphs of MIL-R-26

Designed to withstand the high reliability requirements o sophisticated circuitry, O.M.I. engineers and chemists have developed TEMP-COTE, a new, silicone hase coating material, permitting the series T sistors to operate up to 350^{-}C
improved winding techniques, and careful matching of macerials render the series T resistors as the outstanding choice where extremes of nironmental condicions are ound, such as thermal shock. posure, high humidity, salt pray and vibration or mechan ical shock.

Watlage Range... 10 ba sic sizes, $1 / 2$ to 10 watts. Resistance Range ... 0.05 phms to 200K ohme de Sending on size. tandard Tolerances
$\pm 0.05 \%$ to
$=5.0 \%$ pending on type and value Operating Temperature
to
$+3.50^{\circ} \mathrm{C}$ Temperature Coefficient
$-.0 .00002 /{ }^{\circ} \mathrm{C}$. MAX. Dielectric Strength... 1000 VAC - V block test. Fungus proot, all mater
expediteo delivemies OM PAECISION TOLERMCE Requinements

1
OMTRONICS MANUFACTURING. INC

CIRCLE 172 ON READER-SERVICE CARD
ELECTRONIC DESIGN•August 2, 1961

LOUDAND CLEAR
 RADIATION MODEL SI18

FM TELEMETRY TRANSMITTER PROVIDES...

- Carrier frequency stability to within $\pm \mathbf{0 . 0 1 \%}$
- Frenquency response within 0.5 db
from 100 to $100,000 \mathrm{cps}$
from 100 to $100,000 \mathrm{cps}$
- 2 watts minimum output
- Virtual immunity to extreme environments
- Low microphonics
- Reliability proven in Tiros I, Redstone, Jupiter,
Snark and other misall programs
- Off-the-hehelf availability

For complete Information on the Model 3115 ask for: Technical Bulletin RAD B-102. Write Dopt. ED- 8

RADIATION
NCORPORATED
Melbourne. Florida
CIRCLE 173 ON READER-SERVICE CARD

YOU CAN OWN THIS VALUABLE AUTHORITY ON PERMANENT MAGNETS FOR ONLY \& 20 . You'll find the answers to almost all of your questions about permanent magnets in this authoritative Crucible handbook - because its 346 pages cover everything from selecting magnet alloys for TV systems to interpreting molecular fields.
Just look at the chapter headings: Permanent Magnet Design - Permanent Magnet Measurements - Theory of Ferromagnetism - Electromagnetism - Permanent Magnet Ster Magnetization and Demagnetization
For your copy, send check or money order for $\$ 10^{\circ}$ to Crucible Steel Company of America, Four Gateway Center, P.O. Box 88, Pittsburgh 30. Pa
-Add sor for state satea tax if you are located in Pennsyluania.

CRUCIBLE STEEL COMPANY OF AMERICA

circle 174 ON READER-SERVICE CARD

ELECTRONIC DESIGN • August 2, 1961

P\&A: \$10 ea; stock.

NOW. . . S-BAND, NON-DEGENERATE AMPLIFIERS
 uith banducidths up to i.j me at 1.5 (l) !all!.

FOR MILITARY ENVIRONMENTSI

Broadband parametric amplifiers for applications at L, S, C, and X band are available now from Texas Instruments. The S-band model, designed with a TI XD-500 gallium arsenide diode, gives bandwidths p to 75 mc at 15 db gain. Gain variation is no greater than 3 db over temperatures ranging from $-40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$, and the unit meets the vibration requirements of MIL-E-5400D. Noise figure, including circulator loss is $\mathbf{3 d b}$. The associated circulator is a miniaturized, three-port ferrite unit with 0.5 db insertion loss and 20 db isolation.

IYRIGAL MODEL S-22 85:IIS SPECIFICATIOLS	
Ircaueney	2.8 to 2.96 Gc
bandwidth	40 mc
gain	15 db
melse fipure (includes circu.	3 db
(includes circulator loss)	
pump Iraqueney	X band
diode	Texas Instruments XD. $500 \mathrm{Fs} \geqq 70 \mathrm{kmc}$ at
	$-2 v \text { bias }$
tomperature	$-40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
ranjo	
Pmip power	$\begin{aligned} & \text { per } \mathrm{ml} \\ & 50 \end{aligned}$

For details on TI's S-band amplifiers, write for Bulletin No. DLA-1217. For information on specific applications at all frequencies, contact MARKETING DEPARTMENT.
for absolute and relative power measurements up to 18 Gc . Ratings are 200 or 100 ohms at 8.75 or 4.5 ma . The hermetically sealed devices use gold-plated contacts. Square-law response error are less than 1% up to 0.2 mw .
Microwave Semiconductor \& Instruments Inc., Dept. ED, 116-06 Myrtle Ave., Richmond Hill 18, N. Y.

MicroWaves
Phase Shifter
701

Has wide range. Phase shifter BLP-123 provides a shift of 360 deg at $2.6 \mathrm{Gc}, 450 \mathrm{deg}$ at 2.86 Gc , and 770 deg at 3.95 Gc . Made in RG48/U waveguide, it is also a two-terminal component consisting of mitered elbows, a shortslot hybrid and ganged moving shorts for changing phase. Electrical length is manually varied. Power level is 1.0 -megawatt peak, 2.7megawatt peak pressurized. Insertion loss is 0.15 db max, input vswr 1.1:1 max. Weight is 22.5 lb .

Bomac Laboratories Inc., Dept. ED, Salem Road, Beverly, Mass.

Coaxial Attenuators

363
Attenuations of 60,70 , and 80 db are now available in the model 50 line of coaxial attenuators. Insertion loss test data is supplied with each attenuator. Connectors, type N, are stainless steel. Units are identified by color coding.

Weinschel Engineering Co., Dept. ED, Kensington, Md.
Price: $\$ 90.00$.

Bolometers

TEXAS
 yet reported at K_{E} band

New degenerate amplifier has noise figure of 3 db with double sideband signal
This parametric amplifier offers a greater signal-to-noise ad vantage than any yet announced for 13.5 kMc operation. The model described here is ideally suited for application as a pre-amplifier in MTI radar receivers. However, Raytheon can supply units with comparable performance at other frequencies to meet your particular requirement.
Write today for details on this or other Raytheon develop. ments in microwave devices. Special Microwave Devices Operation, Rastheon Company, Waltham Industrial Park, Waltham, Massachusetts.

TYPICAL SPECIFICATIONS	
Mode of Operation	Degenerate
Signal Frequency	13.5 kMc
Pump Frequency	27 kMc
Noise Figure (double sideband)	3 db max.
Gain	17 db min.
Bandwidth	10 Mc min.
Tunability of Amplifier	$10 \% \mathrm{~min}$.
Typical Pump Power	50 mw max.
(Function of Diode)	2.0 lbs.
Weight (includes 6 oz. circulator)	

RAYTHEON
SPECIAL MICROWAVE DEVICES OPERATION

Frequencies of 2.5 to 3.9 Gc are covered by a line of triode cavity oscillators. Units have a single tuning control. Oscillators operate from a 200-v plate power supply, and are built for extreme environmental conditions.

Waveline, Inc., Dept. ED, Caldwell, N. J.

Magnetron

Operating between 9 and 9.5 Gc, type VF11 pulsed magnetron can be tuned over $\pm 15 \mathrm{mc}$ about the central frequency. Peak output power is 1.0 mw . The magnetron is designed for use with an electromagnet. Anode is liquid cooled.
Ferranti Electric, Inc., Dept. ED, Industrial Park No. 1, Plainview, L. I., N. Y.

Backward-Wave Oscillator

Ten to 20 mw from 15 to 22 Gc is provided by the model OD 15-22 backward-wave oscillator. The tube is said to offer a wide-range electronic tunability, a smooth curve of power output over the frequency range, and uniform, reproducible characteristics.
Stewart Engineering Co., Dept. ED, Santa Cruz, Calif.
P\&A: 81,250; 30 days.

Both Portable and Stationary FREQUENCY and TIME STANDARDS

DECADE FREQUENCY SYSTEMS

Generate and Measure Frequencies from Zero to Kilomegacycles with Crystal Accuracy

FEATURES

- Frequency range from d.c. to 12.6 kilomegacycles.
- Accuracy and stability better than 1 $\times 10-9$ day, according to crystal oscillator used.
- Smallest crystal locked step 10 eps.
- Smallest frequency increment

5 millicycles.

- Crystal control steps rigidly locked to frequency standard.
- Continuous variable output voltage from less than $100 \mu \mathrm{~V}$ to more than I volt.
- Simplicity of operation by small number of front panel controls.

Type CAQ BN 7850
PORTABLE, FULLY TRANSISTORIZED FREQUENCY AND TIME STANDARD

STANDARD TIME SYSTEMS

Permits Measurement of Drift in Frequency Standards by means of Comparison of Time Signals

FEATURES

- This system embodies more than 20 years' experience in the field of time and frequency standards.
- Simplicity of operation obtained by completely integrated system.
- Special time-comparison oscilloscope for photographic logzine.
- Emergency power supply prevents loss of calibration due to line failure.
- Special accessories, such as sidereal time converters, are available.

The decade frequency measuring system is based on the principle of the frequency synthesizer, which generates a continuously variable frequency with the accuracy of the driving standard oscillator. Unknown frequencies are measured by heterodyning with this variable reference frequency, and the difference frequency is measured on a precision meter with magnifier. Facilities for recording also are available.

The standard time system generates a time signal, derived from the frequency standard, for comparison with time signals from WWV, etc., on a special timecomparison oscilloscope. Daily log without calculation may be kept by a photographic recording. The system provides frequency divider, motor-driven phase shifter, and all-wave receiver for time signals from 14 kc to 28 mc . Frequency standard has built-in servo system for remote control from VLF standard frequency by means of a phase comparator.

ROHDE \& SCHWARZ

111 Lexington Ave., Passaic, N. J. - PRescott 3-8010
see us of the WESCON show - Beoths 2526-2528
CIRCLE 177 ON READER-SERVICE CARD

\section*{MAKE NEW

.. EmJADBOARDINE MODULES! These exclusive Sanders TRI.PLATE atrip transmission line components... standard or custom-engineored attenuator pads. coax transitions. mounts for transistors, tunnel diodes, varactors and switching diodes, etc.. alt all with integral connectors. You sssamble them in minutes with thumbscraws.

PRODUCTION PROTOTVPE ready for quantity productiont Unitized TRI.PLATE "Penages", like this 4-way power divider for broad band operation at prequencies up through x band, feature low radiation and cross talk, precise reproducibility and mil-spec rellability. I woizhs 1/to as much, rakes the the space of waveguide and at tose cost.

\section*{microwave IDEAS

microwave IDEAS PAY OFF SOONER right through production! with Sanders' exclusive strip transmission line techniques and services!

YOUR NEW CIRCUIT IDEAS for microwave applications.abo no matter how new, different or daring... can now be breadboarded need is a hit of off-theshelf

WORKING CIRCUIT built with modules ready to test! This sub. $s s e m b l y$ is a balanced. single-end mixer. It coul parametric amplifier... or a sadically new microwave development of your own. Performance matehes that of conventional plumbing as much as ton times larger and heavier.

SANDERS TRII-PLATE® STRIP TRANSMISSION LINE
Breadboarding Modules . . . Cusfom-Engineering . . . Quantify Production
Visif Beorhs "2523 \&2525, WESCON Show
asondery Ameciation, Iac

Handle 70 to $2.700 \mathbf{k w}$. Waveguide couplers are offered in three general configurations: cross-guide coupling, sidewall coupling, and topwall coupling to meet requirements of low cost, high power and high directivity respectively. Devices are available with customer specified coupling value.
Bomac Laboratories, Inc., Dept. ED, Salem Road, Beverly, Mass.

ELECTRONIC DESIGN • August 2, 1961

Band-Pass Filter

For L hand. Coaxial band-pass filter model 1319 has 0.5 db or less insertion loss. Standard center frequencies are 1,270 and $1,320 \mathrm{mc} ; 3-\mathrm{dh}$ bandwidth is $40 \mathrm{mc}, 20-\mathrm{db}$ bandwidth about 90 mc . Other center frequencies are made on order.
Radar Design Corp., Dept. ED. Pickard Drive, Syracuse 11, N. Y
P\&A: $\$ 300$ to \$245; 4 weeks.

Ferrite Attenuator

591
For X-band use. Unit provides up to 50 db of attenuation. Attenuation is adjusted by passing a direct current through a magnetizing coil around a waveguide containing a length of ferrite. The ferrite is tapered at both ends and has a rectangular cross section coincident with the waveguide axis.

ITT Federal Laboratories, Dept. ED. Fort Wayne Ind.
Availability: 6 weeks or less.

UHF Antenna

Has dual pattern. Data-link antenna type 35500 has dual radiation pattern coverage controlled by a coaxial switch. One pattern is essentially omnidirectional in azimuth; the other is a cardioid pattern with front-to-back ratio of -17 db or more over 225 to 400 mc . The vswr is less than 2.5:1 in the omni pattern, 1.5:1 in the cardioid pattern. Antenna meets military specifications and environmental tests.
Transco Products, Inc., Dept. ED, 12210 Nebraska Ave., Los Angeles, Calif.

NEW DVM CONCEPT!

FAST: Two readings per second ACCURATE: 0.01% accuracy LOW COST: Only $\$ 1,580$
In the above test of a satellite's telemetry and solar cells, it was necessary to make 100 accurate measurements every minute. The job was done with the new Cubic V-70 digital voltmeter that reads out four times as fast as any instrument with stepping switches. The V-70 uses ultra-reliable reed relays hermetically sealed in glass for a life expectancy of at least 10 years. It has no moving parts, requires no maintenance, will operate in any position, and is resistant to thermal and physical shock. The V-70 is the only DVM offering 0.01% accuracy and less than 1 second balance time for less than $\$ 2,000$ (Model V-70, \$1,580; Model V-71 with automatic ranging and polarity, $\$ 2,200$). For details, write to Dept. ED-107.

INDUSTRIAL DIVISION SANDIEGO 11. CALIFORNIA OTHER OFFICES: LOS ANGEEES, CNLIFORNIA - ROME, ITALY (CUBIC EUROPA S.P.A) - REPRESENTATIVES IN PRINCIPAL U.S. AND CAMADIAN CITIES

[^4]
ONE SOURCE FOR ALL YOUR METAL HOUSINGS

Extra

High Purity Gold Plate!

TEMPEREX HD electroplate meets or surpasses the most exacting specifications of the electronics industry. Its deposits of $99.99+$ purity provide a uniformity of metallurgical characteristics never before attainable in gold electroplate.
Other advantages: 75 Knoop hardness; easy to solder or weld; and an exceptional ductility that permits cork-screw twisting of electroformed strips without fracturing!

Phase-Lock Receiver

Modular model SRA 506 is a fixed-tuned receiver with crystal control. Operating frequency, bandwidth, demodulation capabilities, phaselock characteristics, and output can be adjusted by substituting modules. Frequency range is 38 to $2,500 \mathrm{mc}$, with phase-lock loop filter bandwidths from 20 cps up. Linear or logarithmic response is available.

Smyth Research Associates, Dept. ED, 3555 Aero Court, San Diego 11. Calif.

Adjustable Attenuator

589
For X-band use. Insertion loss is less than 0.1 db . Maximum attenuation is up to 40 db and swr is less than 1.15 over the waveguide bandwidth. Calibrated dial plates (less index) can be supplied on the $270-\mathrm{deg}$ units.

ITT Federal Laboratories, Dept. ED, Fort Wayne, Ind.
Availability: 6 weeks or less.

Coaxial Rotary Joint

355

For antenna-receiver and servo-drive applications, model 320 rotary joint operates from 0.8 to 12 Gc . Maximum vswr is 1.1 at 0.8 Gc and 1.3 at 12 Gc . Maximum insertion loss is 0.3 db at $0.8 \mathrm{gc}, 0.1 \mathrm{db}$ at 12 gc . Torque is $1 \mathrm{oz}-\mathrm{in}$. max. Continuous-duty rotational speed is 1,000 rpm. Models can be supplied with any connector for a 50 -ohm line.

Sage Laboratories, Inc., Dept. ED, 3 Huron Drive, East Natick Industrial Park. Natick, Mass.
P\&A: 125.00 ; from stock in small quantities.

Low nolse
 TWTs....
 wide dynamic
 range

Huggins low-noise traveling wave tubes provide 7 DBM minimum saturation Pout over major portions of octave bandwidthscoincident with low-noise performance. An example is the HA70 characteristics shown above. The low noise figure plus high Pout results in the maximum degree of linear operation consistent with the present state of the TWT manufacturing art.

S-band low-noise lubes perform at extremely low noise levels, in solenoids requiring 125 walts maximum power and weighing 25 pounds.

Huggins low-noise fubes carry
a $\mathbf{1 5 0 0}$ hour warranty.
Contact Huggins for further TWT information, including modification of standard tubes to your system specifications.

NOW...the smallest microwave oscillators we've ever made!

Microwave projects, impossible before, are now possible with these new sub-miniafure Trak microwave ascillafors. Limired quantities of de velopmental models now available TRAK TYPE 9180 Size: 7/" long by $3^{3 / 1}$ diameter, excluding projections. Frequency: plate pulse. 4.5 KMc to 6 KMc ; CW service, 4.0 to 5.5 KMc . Tuning range is limited to approximately 100 megacycles.
TRAK TYPE 9181 Size: $11 / 2^{\prime \prime}$ long by $9 / 16^{\prime \prime}$ diameter, excluding projections. Frequency: CW serv. ice, 5.0 KMc to 6.0 KMc with tentative funing range of 400 megacycles.

TRAK MICROWAVE offers a com plete line of microwave energy fources including osecillators, ampliWiers and harmonic generators. See our WESCON display - Booth 2117; ISA display - Booth 501.

TRAK MICROWAVE
CORPORATION

5006 N. Coolidgo

PHONF: REdwood 6.0422 or REdwood 6S407
Speciolists In Miniature Microwave Energy Sources CIRCLE 183 ON READER-SERVICE CARD ELECTRONIC DESIGN • August 2, 1961 isfied. circulator.

GAIN MORE GAIN

with Statham's new SA9-0
Directional Couplers

Miniature coaxial directional couplers operate from 200 to $4,000 \mathrm{mc}$ in octave ranges, and couple from 3 to 20 db . Model CA has both ends of the auxiliary line available; the CB series has one end permanently terminated. Military environmental requirements are sat-

Microlab, Dept. ED, 570 W. Mount Pleasant Ave., Livingston, N. J.
P\&A: $\$ 100$ to $\$ 150$; from stock.

Permanent Magnet Material

Ceramic material is used in periodic-focused traveling wave tubes. Called Indox VI-A, the material has an intrinsic coercive force of 3 , 000 oersteds at 20 C and 2,300 oersteds at -65 C. At 20 C , the maximum energy product is 2.55 million and residual induction is 3.300 guass.

Indiana Steel Products Div., Indiana General Corp., Dept. ED, Valparaiso, Ind.

Ferrite Switch

Ka-band switch operates on a 6% band, centered at 35.0 Gc . Designated type R-300LS, the device is 3.11 in . long and has four ports. Isolation is greater than 20 db , insertion loss less than 0.5 db , vswr less than 1.25 , and switching time less than $1 \mu \mathrm{sec}$. A permanent magnet can convert the device to a four-port

Ferrotec. Inc., Dept. ED, 217 California St., Newton, Mass. Availability: 45 days.

DC to DC Signal Amplifier

Here's a major advance in DC signal amplifier design that gives you the HIGHEST GAIN available today - combined with a wider temperature range, a smaller sized package. and unequalled stability! The new versatile SA9-0 provides complete utilization of low-level DC signals from thermocouples, thermal sensing to bridges and DC excited transducers, etc. It gives you the utmost in dependability under extreme environmental conditions. Modular construction makes the compact transistorized SA9-0 ideal for airhorne applications requiring multiple channel installation in limited space. Write for complete technical data!

GAIN: Continuously variable from 50 to 500. (Special models up to 1000)

TEMPERATURE RANGE
OPERATING: -65 F. to $+165^{\circ} \mathrm{F}$
NON-OPERATING: $-65 \mathrm{~F} \cdot$ to +225 F
THERMAL COEFFICIENT
OF SENSITIVITY: $0.02 \% / \mathrm{F}$
THERMAL ZERO SHIFT: $0.01 \% /{ }^{\circ} \mathrm{F}$. of full scale out put.
OUTPUT: 0 to 5 V DC
INPUT REQUIREMENTS: 0 to 5 mv DC.
P(OWER REQUIREMENTS: 30 mat $28 \mathbb{V C} \pm 10 \%$.
WEIGHT: 8 oz. (approx.)
SIZE: less than 8 cu. in.

Statham Instruments, Inc., 12401 W. Olympic Blvd.
Los Angeles 64. Calif. / (IRanite 8-0361 / TWX: West Los Angeles CAL 6602 CIRCLE IS4 ON READER-SERVICE CARD

NOW-ORDER YOUR PRINTED BOARDS AND EDGE CONNECTORS IN ONE READYASSEMBLED PACKAGE

New convenience, new reliability, new speed in delivery! Graphik Circuits now manufactures edge connectors of all types in their City of Industry plant, and can supply assembled printed circuit boards with mating edge connectors. This means guaranteed Graphik Circuits compatibility. edge connectors custom-designed for your boards if you wish-and exactly half the number of purchase orders for you to process!

Off-the-shelf deliveries can be made on Graphik Circuits bifurcated connectors with conventional wiring tail, dip solder tail for .051 hole, and wire post tail. All types with 6 to 25 contact positions. All connectors meet MIL-C-21097A (ships) specifications.

See samples of these complete assemblies at our WESCON Booth, No. 405.

Dtwision ef Cinch Manufacturing Company, 200 So. Turnbull Canyon Roas, City of Induatry (Los Angeles), Calli. offices in 19 Principal cities throughout United States listed under Cinch Mig. Co. or United Cart fastener Corp. CIRCLE 185 ON READER-SERVICE CARD

NEW LITERATURE

Dip Brazing

261
This eight-page illustrated brochure covers the basic advantages of using the dip braze method for joining numerous aluminum segments into a complex assembly. It provides data on material selection and factors to be considered when designing a unit that is to be assembled by this process. Precision Dipbraze, Inc., 12031 Vose St., North Hollywood, Calif.

Commercial Glasses

"Properties of Selected Commercial Glasses," 16 pages, covers mechanical, electrical and optical properties, thermal stress, heat transmission and viscosity of 32 glasses. Also included is information on evaluating the hardness of glass. Write on company letterhead to Corning Glass Works, Dept. ED. Corning, N. Y.

Ceramic Products

Industrial ceramics for electrical and electronic components, instrument and measuring apparatus and for laboratory testing and analysis applications are listed in a 20 -page catalog. Electrical and mechanical properties and design recommendations are included. Saxonburg Ceramics, Inc., Saxonburg, Pa.

RF Connectors

263
RF connectors are described in a 120-page catalog containing illustrations and complete technical data. Included are telephone jacks and plugs as well as special items for specific applications. A cross reference index is supplied that matches the company's numbers to MIL specification numbers. Kings Electronics Co., Inc.. 40 Marbledale Road. Tuckahoe, N.Y.

Nicknamed the "Micro Mite", these reliable, rugged coile oxhibit high Q. very low distributed capacity, all concentrated into an amaxingly small package.

Miller's now "Micro Mite" coils are perfect for use where weight, space and high Q considerations are involved. Their volumetric reduction ranges up to 80%, with current ratings approximately $75-300$ millampa and standard series values up to 10,000 uh.

The "Micro Mito" coil construction pormits miniaturization without the uee of ferrite materials, thus maintaining tempercture stability to $125^{\circ} \mathrm{C}$. These hermetically sealed molded coils coniorm to MIL-C-15305A.

ASK FOR OUR MICRO-MITE BULLETIN
J. W. MILLER COMPANY • 5917 So. Main St. Los Angeles 3, Calif.

Electron Guns

264
Electrons guns for all types of cathode ray tubes are described in this 34 -page catalog. A cross reference chart specifying the correct gun mounts for all categories of cathode ray tubes of domestic and foreign manufacture is also included. Superior Electronics Corp., 208-212 Piaget Ave., Clifton, N.J.

Silicon Transistors

Working principles of silicon fieldeffect transistors are described in a four-page booklet. It gives parameters and typical circuits. Crystalonics, Inc., 249 Fifth St., Cambridge, Mass.

Chopper Transistors

Bulletin No. 2107, 16 pages, describes transistor characteristics required in low level chopper applications. Included are circuit diagrams, performance charts and graphs, equations and general characteristics. Sperry Rand Corp., Sperry Semiconductor Div., Norwalk, Conn.

Digital Modules

268
The firm's T-PAC series plug-in digital modules are described in this 12-page catalog. Block diagrams, specifications and prices are given. Computer Control Co., Inc., 983 Concord St., Framingham, Mass.

Coaxial Relays, Switches 269

This 28-page catalog describes and illustrates the firm's series DX coaxial relays and switches. Characteristics and operating principles are included for the units. RF Products, 33 E. Franklin St., Danbury, Conn.

CIRCLE 187 ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 2, 1961

T. 330 TMANSISTORIZE: 1-F AMPLIFIEAS
 WIDE BAMD AMPLIFIEAS

SEDIES R.20s PREAMPLIFIEAS

54

INSTRUMENTS FOR INDUSTRY, INC.
101 NEW SOUTH ROAD
HICKSVILLE, L. I., NEW YORK
CIRCLE 18 ON READER-SERVICE CARD
Not by choice, but because we've been up to our ears in developing some of the nation's most sophisticated electronic counter-measures systems.

With the lid off, we applied our hard earned engineering and production experience and knowledge in developing a line of IFI amplifiers that meet some pretty tough specifications at lower cost than you'll find elsewhere. Available for immediate delivery.

Take a moment now to write for data sheets on IFI amplifiers, and judge for yourself.

HEART OF THE

 CIRCUIT

NEW LITERATURE

Silver-Cadmium Batteries
The advantages of silver-cadmium batteries are presented in this paper. Physical characteristics and applications of the firm's batteries are described. Yardney Electric Corp., 40-52 Leonard St., New York 13, N.Y.

Coaxial Cable

271
Flexible air-dielectric coaxial cable is described in 16-page Catalog H. Characteristics of the cable are given, and terminals and various accessories are described. Andrew Corp., P. O. Box 307, Chicago 42, Ill.

Microwave Equipment

272
Klystrons, wave tubes, magnetrons, switching tubes, and other microwave and general electronic equipment are described in this catalog. Varian Associates, 611 Hansen Way, Palo Alto, Calif.

Parabolic Antenna Calculator

Performance data on parabolic antennas can be determined with this parabolic antenna calculator. The calculator provides information on: wavelength in inches or centimeters; beam width relative to frequency and parabolic reflector diameter; gain at given efficiency; free space attenuation at required frequency and range; subtended angle at given frequency and diameter; return and mismatch loss vs vswr; and the force exerted on the mounting structure at winds up to 200 mph . Send $\$ 2.50$ to Technical Appliance Corp., Dept. ED, Sherburne, N. Y.

Amplifiers

273
A line of pulse, $\mathbf{r f}$, and if amplifiers are described in six-page brochure No. 1010A. Detailed specifications are included. RHG Electronics Laboratory, Inc., 94 Milbar Blvd., Farmingdale, L. I., N. Y.

Relay Definitions

274
Terms commonly used in connection with relays are defined in this 13 -page booklet, "Definitions of Relay Terms." The material has been approved as American Standard. National Association of Relay Manufacturers, c/o Dr. Charles F. Cameron, School of Electrical Engineering, Oklahoma State University, Stillwater, Okla.

AC

METER

ACCURATE

DEPENDABLE

MODEL 610
the beede repulsion trpe AC METER IS AN EXCELLENT COMPANION TO THE DEPENDABLE LINE OF DC METERS AND IS AVAILABLE in a wide selection of RANGES. WRITE FOR ADDITIONAL INFORMATION.
 CIRCLE 190 ON READER-SERVICE CARD

All Janco switches are designed and built to exceed MIL-S6807A. Possessing long-life with a high degree of reliability. they exceed the operational and environmental requirements of shock, vibration, altitude, and explosion. Because of their design and construction, all Janco switches are ideally suited for dry circuit and signal level switching applications.

SPECIFICATIONS

Electrical Rating: Make, braak, and carry
UD to 5 amps $115 V A C$ and $28 \mathrm{~V} D \mathrm{C}$ resistive.
Contect Positions. 2 to 12 positions
Contact Positions: 2 to 12 positions
Index: $30^{\circ}, 36^{\circ}, 45^{\circ}, 60^{\circ}$, and 90° indexing Decks: 1 to 16 decks (single pole)
Write today for complote detalled speclications.

JANCOCORPORATION
 3111 Winona Avenue, Burbank, Callfornia

CIRCLE 193 ON READER-SERVICE CARD
ELECTRONIC DESIGN - August 2, 1961

ROBOTEC
overlood and short protection WII HEATRAN
electronic
dissipotion contro $\$ 23950$ 23 WESCON WOSCON BOOTH 2705

1) Pourer Designs inc

100 sMames drive, westbury, new yonk
CIRCLE 192 ON READER-SERVICE CARD

PRECISION METERS
 Catalog Available

If your operation demands accuracy to $1 / 10$ of 1% you need this AMF Catalog, which includes specifications, sizes and weights of Frequency and Volt Meters for test, research, industrial, military and government use.
AMF Meters are rugged. They compensate for practically any temperature and environment. They can be tailored to your requirements - or are available immediately from stock. Send today for your Catalog! Address Department I.

American Machine \& Foundry Company
1101 N Royal Street, Alozandric, Virginio
CIRCLE 191 on reader-service card
ELECTRONIC DESIGN • August 2, 1961

Instrumentation Abstracts
 275

Abstracts of technical journals, U. S. patents, and selected papers are distributed to subscribers weekly on $5 \times 8 \mathrm{in}$. cards. The abstracts inform instrumentation engineers of developments in their field. Lowry-Preston Technical Abstracts Co., 914 Chicago Ave., Evanston, Ill.

Wire Coatings

276
Electrical and physical properties of Tenite polypropylene formulas developed for solid and cellular wire coatings are described in Technical Report No. 7. The report describes extrusion conditions for the coatings and presents, with diagrams, techniques for applying the plastic material to wire. Eastman Chemical Products, Inc., Kingsport, Tenn.

Telemetering Instruments

277
A line of airborne fm telemetering instruments is described in this four-page condensed catalog. Included are descriptions and condensed specifications of subcarrier oscillators, mixers and amplifiers, reference oscillators and calibration units, and vhf power amplifiers and transmitters. ElectroMechanical Research, Inc., Sarasota, Fla.

Push Buttons

278
Miniature industrial oil-tight push buttons are described in 12-page bulletin No. GEA-7127A. Four-color illustrations, dimensional drawings, and electrical specifications are included. General Electric Co., Schenectady 5, N. Y.

Power Resistors

279
Fixed wirewound power resistors, including ceramic and enamel-coated, flexible, and stack-mounted types are described in 12page catalog No. EEM-4600. Descriptions, specifications, dimensional drawings and photographs are included for eight different styles. Clarostat Manufacturing Co., Inc., Dover, N. H.

Pressure Transducers

280
This data folder describes the firm's series SP-2 pressure transducers, giving physical and electrical specifications and application recommendations. It also contains a glossary defining standard terms related to pressure transducers. Standard Controls, 1130 Poplar Place, Seattle 44, Wash.

EXPERT Help in

Laminated Plastics From Specialists

An Example of
 Synthane You-shaped Versatility

Do you have a materials problem? Perhaps laminated plastics is the answer: Why not discuss it with our field representative in your territory? He has behind him the entire Synthane organization with over 32 years of experience in the manufacture and fabrication of laminated plastics. Our engineers, technicians and field representatives are specialists in this field, and over two-thirds of our people have over 10 years' experience with Synthane. The solution to your materials problem can probably be found at Synthane.
You-shaped Versatility makes Synthane a Better Buy in Laminales

Synthane C

Please send me information relating to Synthane as a source for laminated plastics materials and parts.

Name
Address
City_Z_Z_State__
CIRCLE 194 ON READER-SERVICE CARD

For sxiteme environments

- meet these tough MARKITE 'specs'!

1. A petentiomater element - ambodyins resist. ance trach end take-off track of conductive plas. tie co-motied to an insulator bese. 2. An li-s contilever duel spring (mith preclous metol wipars) malatalns contact with conductlve tracts oven under 703 w. bration at 5.2000 CDS , ealeration I

Instrument Specialties' cantilever springs provide high reliability in potentiometers, servomechanisms, electro-mechanical controls and instruments for aircraft, missiles and similar continuous-duty applications.
Employed in Markite conductive plastic precision potentiometers, I-S beryllium copper cantilever springs maintain their high spring forces. thereby complying with Markite's standards for infinite resolution and minimal contact noise over an operational life span of more than 50 mil lion revolutions.

If you have spring problem-Ask 1-8 enjneers for a recommendation on your apecific application: of request catalog containing complete data on I-S Beryllium Copper Compression Springs, Flat Springs, Contact Stripe, Strip Springs, Contact Rings and Screw Machine Parta

TWX:LTP8,
N. J. 1023

INSTRUMENT SPECIALTIES COMPANY - INC.

NEW LITERATURE

Switching Components

Information on electromechanical and electronic switching devices and components is given in this $\mathbf{1 0 0}$-page handbook. Relay and switch terminology and theory, unique switching, and control circuits, and reference, application, and technical data are included. Specifications for some of the firm's components are given. Send $\$ 1.00$ to Component Products, Electronetics Div., North Electric Co., Dept. ED, Galion, Ohio.

Vacuum Equipment

Vacuum pumps and related equipment are described in this 13-page condensed catalog. Pumps with capacities from 0.2 to 10,000 liters per sec, power supplies, valves, control units, systems and accessories are described and illustrated. Varian Associates, 611 Hansen Way, Palo Alto, Calif.

Waveguide Chart 282

Electrical performance and mechanical dimensions of standard EIA waveguides between IVR10 and WR2300 are tabled on this notebooksize waveguide chart. Standard JAN flange references and a cross reference between WR and RG numbers are given. Multiplication and scaling factors are also tabled. Microwave Development Laboratories, Inc., 15 Strathmore Road, Natick Industrial Centre, Natick, Mass.

Data-Handling Systems

283
Product Digest No. 160, 18 pages, catalogs a line of data-handling instruments including oscillographs, telemetering equipment, instrumentation and audio tape systems, and servo devices. Illustrations, descriptions, and general specifications are given. Midwestern Instruments, P. O. Box 7509, Tulsa 18, Okla.

Rare Earths

284

Thorium, yttrium chemicals, and metals and alloys of rare earths are cataloged in this eight-page brochure. Properties and chemical analyses of over 50 products are listed. Vitro Chemical Co., 342 Madison Ave., New York 17, N. Y.

High-Temperature Switches 285

Precision switches for use at high temperatures are described in this four-page folder, No. 84-449. Illustrations and specifications are included. Micro Switch Div., MinneapolisHoneywell Regulator Co., Freeport, III.

Crossguide Couplers

Data on a line of microwave crossguide couplers are supplied by eightpage catalog No. XT-61. Electrical and mechanical data are included. Microwave Development Laboratories, Inc., 15 Strathmore Road, Natick Industrial Centre, Natick, Mass.

Semiconductor Alloys

Physical properties of aluminumindium, gold-silicon, and lead-silver alloys are given on data sheets No. $6 R, 9 R$, and 12. Phase diagrams are included. Available die sizes are listed. Alpha Metals, Inc., 56 Water St., Jersey City, N. J.

Oscilloscopes

288
This 15-page abridged catalog describes the firm's line of conventional, portable, and rack-mounted oscilloscopes. Auxiliary equipment is also covered. Illustrations, specifications, and prices are included. Tektronix, Inc., P. O. Box 500, Beaverton, Ore.

Vacuum Components

289
High-vacuum valves, baffles, traps, and adapters are covered by 27 -page bulletin No. 10-1. Descriptions, cutaway drawings, and selection guides are included. Consolidated Vacuum Corp., 1775 Mount Read Blvd., Rochester 3, N. Y.
deep drawn aluminum boxes and covers

Choose from more than 11,600 sizes, shapen and heights of aquare, round, rectanxular boxea and covers nay no tooling charge! All can be trimmed and modified to your apecificntion... bracketa and fasteners can be inatalled, holea and louvers punched, etc. Complete facilities for welding and painting tool Send print or contact your Zero Renrementative for quate on cuatom deep drawn sinta uning the exclusive Zero-Muthod tooling.

ZERO

MANUFACTURING CO.
1121 Cheatnut Street, Burbank, California Telephone Vletorin 9-5521 - TWX HRH 9×62

representatives in kotl cities covering the U.S.

प圆圆c

COOLS

 POWER
TRANSISTORS

 BEST-FOR LESS!*-ATENT PENOINO

*LESS WEIGHT! LESS SPACE! LESS COST!

 MORE VERSATILE! MORE EFFICIENT!The unique design of IERC's UP Series Transistor Heat Dissipators give amazing cooling performance in natural and forced-air installations. Technical data covering the unusual performance benefits of Universal Power Series Transistor Heat Dissipators is available now - write TODAY!

IER8 d

\$44 Darchester Ave., Boston 25, Mass. - Avenue B-7700 magootic digital/analog systems and components
CIRCLE 200 ON READER-SERVICE CARD

REPICON* REMOVABLE CONTACT CONNECTOR

Now from Gon-Pro: Repicon "C" high density removable contact connector offers unlimited application in writing installations. Available in 34, 42, 50.75 and 104 contacts. In accordance with re. quirements of MIL-C.22857. interchangeable with other connectors of MIL-C-8384 configuration and contact pattern

Repicon Removable Contacts in crimp or solder type give higher contact retention, closely controlled engagement and separation forces and low millivolt drop Usable in other existing connector body sizes and configurations. Contacts are ordered separately for assembly by user.

SOCKET CONTACT

GRMERAL PRODUCTS CORPORATION Over 25 Vears of Quallity Molding
UNION SPRINGS, NEW YORK TWX No. 169

NEW LITERATURE

Electromechanical Parts
 290

Catalog No. 65, 552 pages, lists the firm's line of electromechanical components, including speed reducers, magnetic clutches and brakes, differentials, and hardware. Specifications are included. Designatronics, Inc., Sterling Instrument Div., 5 Sintsink Drive, Port Washington, N. Y.

Variable Capacitors

291
Military-type trimmer air-dielectric variable capacitors are described and illustrated in 16-page catalog No. 61. Physical and electrical specifications are given for over 20 different types. Hammarlund Manufacturing Co., 460 W. 34th St., New York 1, N. Y.
cable dimensions for required capacitance without using equations. Calculator is on laminated acetate, and contains information on cables and a chart on insulation and jacket combinations. Write on company letterhead to General Electric Co.. Chemical and Metallurgical Div., Dept. ED, Bridgeport 2. Conn.

High Voltage Equipment

292
Ten high voltage test sets and power supplies are described in this eightpage catalog. Included are a special cable hi-pot tester, insulating oil dielectric tester, ac-dc test set, industrial high voltage dc power unit and a corona pick-up network. Peschel Electronics, Inc., Pattersen, N. Y.

Capacitance Calculator

Nomograph permits rapid estimation of cable capacitance or necessary

Magnetic Clutches

Miniature magnetic clutches, clutch-brakes and brakes are covered

Try this simple test. Tie a piece of Gudelace around a pencil in a half hitch and pull one end. Gudelace's flat, nonskid surface grips the pencil-no need for an extra finger to hold Gudelace in place while the knot is tied!
Gudelace makes lacing easier and faster, with no cut insulation, or fingers-no slips or rejects-and that's real economy. Gudelace is the original flat lacing tape. It's engineered to stay flat, distributing stress evenly over a wide area. The unique nonskid surface eliminates the too-tight pull that causes strangulation and cold flow. Gudelace is made of sturdy nylon mesh, combined with special microcrystalline wax, for outstanding strength, toughness, and stability.

Write for a free sample and test it yourself. See how Gudelace takes the slips-and the problems-out of lacing.

GUDERROD BROS. sILK CO., INC.

```
Electronic Division
225 West 34th Street - 12 South 121 h Street
Now Yert I, M.Y
Visit Gudobrod Booth 4718 at The Wescon Show
Philadelo
```

CIRCLE 202 ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 2, 1961
by this 12 -page catalog. Schematics and operational descriptions of each model are included. Write on company letterhead to Fae Instrument Corp., Dept. ED, 16 Norden Lane, Huntington Station, L. I., N. Y.

Optical Comparators

Optical comparators and universal measuring machines are described in the 60 -page catalog No. 6013. It contains complete specifications. Also included are an illustrated demonstration of how basic measuring is accomplished, details on accessories, and illustration of over 20 applications. Jones \& Lamson Machine Co., Springfield, Vt.

Power Supplies

Over 150 regulated dc power supplies, including semiconductor, vacuum tube, magnetic, and hybrid types, are listed with illustrations and specifications in this 32 -page cat-
alog, No. B-611. A nomograph of line voltage drop as a function of current and wire size is included. Kepco, Inc., 131-38 Sanford Ave., Flushing 52, N. Y.

Air Pumps

Catalog 660, 12 pages, describes rotary air motors, air compressors and vacuum pumps for original equipment manufacturers or plant use. Complete physical and electrical specifications are given for both oilless and lubricated models. Gast Manufacturing Corp., Box 117, Benton Harbor, Mich.

Cryogenic Sensors
296
Platinum resistance temperature transducers for use with cryogenic fluids are described in eight-page bulletin No. 2000. Operating principles, calibration techniques, and applications are considered. Trans-Sonics, Inc., P. O. Box 328, Lexington 73 Mass.

Atohm's new catalog has all the information you need to select the appropriate trimmer potentiometer for every application. Models and specifications, including terminal configurations, are clearly and simply presented to make selection easy. Write for your copy today.
ATOHM ELECTRONICS INC.
7448 gan Farnando Road. Bun Valloy. California

Automatic Battery Charger

Q.

Why does the Hughes Electronics Company use General Flectric Sillicon Controlled Rectifiers in lts automatic battery chargers?
"The General Electric SCR replaces the magnetic amplifier used as the main regulator in less advanced automatic chargers. It permits substantial savings in weight and size with no increase in cost, plus higher efficiency, unlimited life and absolute stability."

Modular construction of the "full-float" automatic battery charger developed by Hughes Electronics Co., Los Angeles, Eliminates moving parts, relays, eliminates moving parts, relays, Another example of advanced Another example of advanced equipment design made possi-
ble by the use of the General ble by the use
Electric SCR.

Features of the Hughes Automatic Batters charger include:

- Improved voltage regulation (less than $3 / 2$ of 1%)
- Curremt Ilmiting to $\mathbf{1 1 0 \%}$ load
-

Constant voltage output

- Overload protection th AC and DC ctrcuits

Natural draft cooling
Now lower-priced than ever before, the SCR opens new areas for engineering development. Can you aford to wait any longer? Write today for application information. Rectifier Components Department. Section 23H23. General Electric Company, Auburn, New York.
general electric

CIRCLE 204 ON READER-SERVICE CARD

DC Motor Speed Control

Q Why are the new DC motor Why are the new DC motor Filectronics Division desikned around General Flectric Silicon Controlled Rectifiers?
A "General Electric Silicon Controlled Rectifiers and patented ACF magnetic triggers are largely responsible for makins ACF DC motor speed controls smaller. and provide longer reliable life in any application or drive using a DC motor whose speed is regulated."

Control for 10 H.P. motor illustrates dramatic size reduction made possible for DC Motor Speed Controls from 120 to is HP ontrols from $1 / 20$ to Division, Paramus, N.J.AnDivision, Paramus, N.J. Another example of advanced
equipment design made possiequipment design made possi-
ble by General Electric SCR's.

Features of the ACF Motor Speed Control Include:

- Instant starting - mo warm-up time

Precise regulation over wide speed range

More eficient over full speed range

Less voltage drop

Smaller, Ifghter wetght

Greater performance rellability

Now lower priced than ever before, the SCR opens new areas for engjneering development. Can you afford fo wait any lonrer? Write today for application information. Section 23 H 24 Rectifier Components Department, General Electric Company. Auburn, New York.

08
 GENERAL ELECTRIC

IDEAS FOR DESIGN

Vote for Ideas Valuable to You

Vote for the Ideas which are valuable to you. Other engineers will vote for the Ideas which are most valuable to them. The Idea which receivea the most "Valuable" votes will be judged "Most Valuable of Issue." Its author will receive a $\$ 50$ award.

Choose the Ideas which suggest a solution to a problem of your own or stimulate your thinking or which you think are clever.

The Ideas chosen as the most valuable in each issue will be eligible for the $\$ 1,000$ Idea of the Year award.
So vote for the Ideas you find most valuable. And, after you've voted, why not send in an Idea of your own?

Tuning Fork Oscillator
 746
 Produces Square Waves Directly

Used in a square-wave generator, a tuningfork oscillator usually provides about a $4-\mathrm{v}$ sinusoid to be fed into a Schmitt trigger, or other squaring circuit. However, much higher voltage square waves can be obtained directly from the oscillator by introducing

Fig. 1. Usual tuning fork oscillator produces low-volt age sinusoid which is fed to squaring circuit.

Table I.		
Tube	R	Output (pk-pk)
5814 A	220 K	110 v
$12 \mathrm{AT7}$	62 K	110
5751	33 K	65

positive feedback, as shown in Fig. 2. And, the square-wave output has good rise and fall times.
Any of the three common twin triodes may be used by changing the value of R,

Fig. 2. With positive feedback applied, funing fork oscillator produces higher voltage square waves, rather than sinusoids.
which is a function of the tube rather than of frequency. The table lists values of R for maintaining a 50 per cent duty cycle. Peak-to-peak output amplitudes are also indicated. The tuning fork used was a Philamon Laboratories model MJ.

William C. Whitworth, Design Engineer, Scottsdale, Ariz.

If this Idea is valuable to you, give it a vote by circling Reader-Service number 746.

Sixth \$50

"Most Valuable of Issue" Award For Emitter-Follower Bias Method

Donald W. Bramer, engineer with the General Railway Signal Co., Rochester, N. Y., has won Electronic Design's sixth \$50 Most Valuable of Issue Award.
Mr. Bramer receives the award for his Idea for Design. "Bypassed Bias Resistor Increases Emitter-Follower Input Z," which appeared in the May 10 issue. The idea described a method for biasing an emitter follower so that its input impedance would be greater than could be obtained with conventional connection.

Voltage Comparator Uses

Tunnel Diode Flip-Flop

A voltage comparator was needed to detect a $5-\mathrm{mv}$ output change from the "off" to the "on" state at a frequency of 2 mc .
The voltage comparator designed for the job proved to be extremely sensitive. It used two silicon 4.7-ma peak current tunnel diodes connected as shown in the figure.

Essentially the tunnel diodes are biased as a flip-flop, one in the high conduction state, and the other in the low conduction state

A positive pulse at the input switches the diodes to the opposite states.

The bias point is chosen so that 0.8 ma or more is required to make the diodes switch. Resistor R_{1} is used to adjust the amount of switching current. This circuit was able to detect a voltage of 1 mv resolution from the "off" state to the "on" state.

As an example, assume that an output is required when the input is above +1 v .

When the input is just below 1 v the diodes do not switch; they remain at their initial

Tunnel diode voltage comparator uses diodes biased to form a flip-flop.
bias point. As the input voltage approaches +1 v , the additional current switches the diodes. (R, is adjusted until the point is reached where the diodes switch.)
Nicholas Marchese, Assistant Electrical Engineer, Lockheed Electronics, Metuchen, N. J.

If this Idea is valuable to you, give it a vote by circling Reader-Service number 747.

How You Can Participate

Rules For Awards

Here's how you can participate in Ideas for Designs Seventh Anniversary Awards:
All engineer readers of ELECTRONIC DESIGN are eligible.

Entries must be accompanied by filled-out Official Entry Blank or facsimile. Ideas submitted must be original with the outhor, and must not have been previously published \{publication in internal company magazines and literature excepted).
Ideas suitable for publication should deal with: 1. new circuits or circuit modifications
2. new design techniques
3. designs for new production methods
4. clever use of new materials or new com. ponents in design
5. design or drafting aids
6. new methods of packaging
7. design short cuts
8. cost saving tips

Awords:

1. Each Idea published will receive an honorarium of $\$ 20$.
2. The Idea selected as the most valuable in the issue in which it appears will re. ceive $\$ 50$.
3. The Idea selected as the Idea of the Year will receive a Grand Prize of $\$ 1,000$ in cash.

The Idea of the Year will be selected from those entries chosen Most Valuable of the Issue.

Most Valuable of the Issue and Idea of the Year selections will be made by the readers of Electronic Design. The readers will select the outstanding Ideas by circling keyed numbers on the Reader-Service cards. Payment will be mode eight weeks after Ideas are published.
Exclusive publishing rights for all Ideas will remain with the Hayden Publishing Co.

SEVENTH ANNIVERSARY AWARDS

IDEAS-FOR-DESIGN

Entry Blank
Ideas-for-Design Editor
Electronic Design
8.50 Third Ave.

New York 22, N. Y.
Idea (State the problem and then give your solution. Include sketches or photos that will help get the idea across.)

(Use separate sheet of necessary)

I submit my Idea for Design for publication in Electronic Desigs. I understand it will be eligible for the Seventh Anniversary Awards- $\$ 20$ if published, $\$ 50$) if chosen Most Valuable of Issue, $\$ 1,000$ if chosen Idea of the Year.

I have not submitted my Idea for Design for publication elsewhere. It is entirely original with me and does not violate or infringe any copyrights.
 Drssos. This right oxtends to the subsequent vase of the Idea for Dosign by Hayden in any of its other publications. Hooorariums, if amy, for subse-

Name \qquad Title

Company Name

Address

\qquad
For Additional Entry Blanks, circle 750 on Reader-Service Card.

Isoplys (isolated power supplies) can be used ungrounded.
Unlike conventional power supplies, Isoplys have low shunt capacitance to ground and low noise in ungrounded applications. They are relatively insensitive to power line fluctuations and give excellent frequency responso.
Many components once thought essential in conventional circuits can be eliminated. Design and assembly time can be speeded. Troublesome interaction
betwoen circuits is substantially reduced. This
also helps simplity maintenance as well as solve difficult circuit problems.
Let lsoplys help simplify a circuit design you are working on now. Be prepared for design problems in the future.

wrile por pull informatlon
ELCOR Incorporated
Subsidian of Welex Electronics Corporation
Sales / R \& D Laboratory / Manufacturing
1225 W. Broad Street / Falls Churen, Virginia
JElferson 2-8850
CIRCLE 206 ON READER-SERVICE CARD

IDEAS FOR DESIGN

Sine-Cosine Pots Form White-Noise Signal Generator

Advanced design procedures of networks, control loops and communication systems usually require the testing of their response to signals found in their normal, operating environment. Such testing procedures can be aided considerably by the almost white-noise generator shown in Fig. 1.

The generator was built to produce the low-frequency, nonpredictable forcing function required for a certain tracking problem. It consists of 1 per cent accuracy potentiometers driven from a single, constant-speed reversible ac motor at nonharmonic circular frequencies. Successive gear trains reduce the speed of rotation from one shaft to the next by the same ratio, r. The value selected was

$$
\begin{equation*}
r=\frac{23}{28} \tag{1}
\end{equation*}
$$

When the potentiometers are biased symmetrically by the voltages $\pm \boldsymbol{A}$ and the outputs from the sine and cosine wipers are summed separately, they produce the signals:

$$
\begin{align*}
& f_{s}(t)=\underset{0}{\operatorname{A\Sigma }} \sin \left(r^{n} \omega_{0} t+\phi_{n}\right) . \tag{2}\\
& 19 \\
& f_{t}(t)=A \underset{()}{\underset{~(~}{S}} \cos \left(r^{n} \omega_{n} t+\phi_{n}\right) \text {. } \tag{3}
\end{align*}
$$

where the phases ϕ_{n} are random.
By a gear shift, either one of the following two basic frequencies may be selected:

$$
\begin{equation*}
f_{0}=f_{\mathrm{mas}}=\frac{\omega_{\rho}}{2 \pi}=1 \text { or } 2 \mathrm{cps} \tag{1}
\end{equation*}
$$

Consequently, for the first setting the twenty component frequencies cover the range 0.0 .0228 to 1.0000 cps . By using one multiplier the fol lowing signal may be generated:

$$
F(t)=f_{c}(t)\left[f_{c}(t)+f_{r}(t)+A\right]-10 A^{2}
$$

Fig. 1. Twenty wire wound sine-cosine potentiometers are driven on a single shaft in this repeatable, whitenoise signal generator

Fig. 2. (a) Sample of signal output, $F(t)$ of the white noise generator with (b) Number of component frequencies within steps of 0.1 cps .
or

$$
19 \quad 1919
$$

 $\left.\left.r^{m}\right) \omega_{0} t+\left(\phi_{n}+\phi_{m}\right)\right]$
$+\cos \left[\left(r^{n}-r^{m}\right) \omega_{0} t+\left(\phi_{n}-\phi_{m}\right)\right] \quad(5)$
This is a signal of an absolutely flat spectrum containing 400 frequencies between 1.8214 and 0.0050 cps none of which is an harmonic of another. A sample of the signal $F(t)$ is shown in Fig. 2, while in Fig. 3 the number of component frequencies within steps of 0.1 cps is shown. The packing density of component frequencies was made intentionally higher at the Inwer end of the spectrum because the resolution of any linear system (the distinguishable frequency step) decreases as the signal frequency increases.

Because the numerator of the ratio r in Eq. 1 is a prime number, the ratio is irrational. Thus, the number of rotations of the fastest shaft necessary for all the terms of the genmetric series:

$$
1, \frac{23}{28}, \ldots .,\left(\frac{23}{28}\right)^{19}
$$

to become integers is 28^{19}. When this value is reached the signal will start repeating for the first time. Since each rotation requires one second, the repetition period is $28^{10} \mathrm{sec}$ or $10^{23} \mathrm{yr}$.

If an rpm counter is coupled to the fastest shaft and the generator is run from a starting count M to a count N, it will generate a signal of total length ($N-M$) sec. If the motor

PULSE POINTERS

Popular E-P 3450D pulse generator quickly converts to 6 standard pulse instruments*

Modular flexibility, simplicity of operation expand versatility, cut pulse costs

Modular concept extends instrument versatility, guards agalnst obsolescence, cuts costs. Standard modules. designed to accomplish specific instrument and system functions, quickly plug into both front and rear of rack frames. Simplicity of operation is nighlighted throughout.

Can one general-purpose pulse generator handle such common laboratory and production applications as the design and test of radar, navigation and fire control systems, digital computers. then quickly convert to transistor and diode delay line testing, production line testing, quality control, high-voltage drive of strain gages, system transient testing, and other pulse applications? Yes, the Electro-Pulse Model 3450D This popular general-purpose pulse generator is winning plaudits from both production and the lab.
The secret: modular plug-in con struction and adjustable pulse-forming controls-standard with all ElectroPulse instruments.
Interchangeable plug-in printed cir cuit modules quickly and economically extend instrument performance to meet changing requirements. Integral front panels and controls achieve both elec trical and mechanical standardization. Add the 3450D's fully regulated output amplitude; stable, jitter-free repeulue many apaciala
tition rate and delay; reliable output overload protection; and high resolution controls.
The result is a single versatile source of high power; very fast rise time; single or recurrent pulses ...controllable in repetition rate, delay from trigger, duration, rise time, and top slope
Take these basic specifications:
Positive and negative polarity
$2 \mathrm{mc}-2 \mathrm{cps}$ rep. rate
$0-10,000 \mu \mathrm{~s}$ delays
$.05-10,000 \mu \mathrm{~s}$ widths
± 50 volts into 50 ohms
15 nanosec. continuous rise time
Modify, with these staudard modules
Y Simultaneous complementary output.
X Twin pulse and pulse train capability.
T . $05-5,000 \mathrm{cps}$ rep. rate.
I 1 volt input trigger sensitivity.
G ON-OFF gated output.
In effect, you end up with 6 different instruments.

Model 3450D is just one of 33 cataloged instruments in the broad ElectroPulse line, which includes as many as 200 standard pulse and digital circuit modules (both tube and transistor types). Advanced pulse techniques and circuitry, coupled with traditional Servo Corp. instrument quality and reliability, make E-P the wisest buy.

4500 Series 10-Megacycle

Pulse Generators

7 standard models - solid state reliability and circuits - variable delay and width • optional output characteristics For reliable generation of variable parameter pulses at very high repetition rates. Wide application in development and testing of components, logic ircuitry, and high clock rate digita systems.

Servo Corporation of America
111 New South Road
Hicksville, L. I., N. Y.
Gientlemen:
\square Please send detailed catalog.
\square Please contact me for demonstration \square Please send me a free SERVO slide rule.
$-\mid$ name|

(title)

(organization)
(addrese)
rity, zone. otatel

Electro-Pulse Products

(9) SERVO CORPORATION OF AMERICA
 111 Now South Road • Hickzville, L. I., N. Y. • WElle 日-9700

Sales \& serice offices cuast-fo-coast - Representatives in major cities

DETUNE VIBRATION ISOLATE SHOCK

From Aeroflex Laboratories - a major development in the cointrol of vibration and shock -
the all new field proven Cable Isolation Systein.

NOW YOU CAN:

- Isolate your equipment against shock, vibration and noise, or any combination thereof - even in the presence of constant or long term " G " loading.
- Have three dimensional, all attitude isolation.
- Tune your isolation system in the field.
- Have a vibration control system that does not bottom out under heavy " G " loading and functions in a wide variety of environmental conditions including a temperature range of $-100^{\circ} \mathrm{F}$ to $+1000^{\circ} \mathrm{F}$.

For information on how an Aoroflex Cable Isolation Syatom can bo used to solve your vibration and shock problome, write today to Dopt. BR-5.

Licensed under Patents and Patent application of Kerley Engineering Inc.

AEROFLEX LABORATORIES

 INCORPORATED48-25 36th STREET - LONG ISLAND CITY 1, N. Y.

IDEAS FOR DESIGN

is then reversed and the system returned to the original count M, it will be ready to generate the same signal with absolute repeatability. This is a great asset in cases where the forcing function must be repeated. It is also very valuable in comparing the performance of two or more systems, especialty when these systems are nonlinear.
Various other combination possibilities exist. Thus, it is easy to find that the signal $[F(t)]^{2}$ will contain approximately 80,000 frequencies in the range 0.00 to 4.0 cps . However, 400 will have twice the amplitude of the rest as well as being the first harmonics of others.
N. D. Diamantides, Engineering Scientist, Goodyear Aircraft Corp., Akron, Ohio.

If this Idea is valuable to you, give it a vote by circling Reader-Service number 730.

AF Tuned Amplifier
 742
 Has Adjustable Bandwidth

Here's a circuit for a tuned af amplifier with adjustable bandwidth and an essentially constant gain-bandwidth product. If desired, it can be made voltage tunable by adding a single varactor diode.

The amplifier is basically of the regenerative type. Transistor Q_{1} is used as a commonbase amplifier. The second transistor Q_{2}, together with the transformer T, form a negative-resistance generator that reflects approximately $-R_{e}$ ohms into the collector circuit of Q_{1}. Transformer T can be either a center-tapped inductor or a small audio autotransformer.

Resistor R_{e} is the equivalent emitter-cir-

Tuned af omplifier has adjustable bandwidth and fairly constant gain-bandwidth product.

The basic Robotester measures:

- Voltages AC \& DC
- Impedance
- Resistance
- Insulation Resistance

Robotester accessories extend test capabilities to meet complex problem configurations and provide a complete test system built around the Robotester.
For complete details write to:
cuit resistance of Q_{2} at the signal frequency. Adjustment of the potentiometer R_{l}, which is part of R_{e}, controls both the gain and bandwidth of the amplifier.
The following measurements were obtained at a center frequency of 990 cps :

| Voltage gain | 500 | 100 | 20 |
| :--- | :--- | :--- | :--- | $\begin{array}{llll}\text { Bandwidth cps } & 6 & 35 & 180\end{array}$ $\begin{array}{lllll}\text { Input signal } \mu \mathrm{V} & 0.02 & 0.1 & 0.5\end{array}$ $\begin{array}{llll}\text { Signal to noise voltage } & 12 & 30 & 50\end{array}$ These results correspond to a noise figure of approximately 7 db .

Clement A. Skalski, Engineer, Norden Div., United Aircraft Corp., Norwalk, Conn.

If this Idea is valuable to you, give it a vote by circling Reader-Service number 742.

"See-Saw" Multivibrator
 Uses a Single Capacitor

By ignoring the conventional approach to multivibrator design, it is possible to use a circuit configuration with a number of characteristics, which make it superior, in most applications, to the conventional designs.

The circuit shown has the following advantages:

Multivibrator designed with only a single capacitor has several advanlages over conventional circuits.

1. It is inherently self-starting.
2. It has an output isolated from the timing circuits.
3. It has an input isolated from the timing circuits.
4. It uses only one capacitor.

The only design requirement for reliable operation is that the resistors be proportioned so that the transistors are not saturated in a de analysis. (Assume the capacitor is omitted).

Roy P. Foerster, Group Engineer, The Martin Co., Baltimore, Md.
If this Idea is valuable to you, give it a vote by circling Reader-Service number 735.

veren

precision resolver developments by FOR GUIDANCE • STABILIZATION • COMPUTER APPLICATIONS

10-3ECOND ACCURACY PANCAKE RESOLVER
Integral bearings permit direct mounting to gimbal structures of stable platforms. Beryllium housings provide highly stable operation in environments with extreme temperature variations.

0.008\% PUNCTIONAL ACCURACY PANCAKE RESOLVER

100\% compensated Resolver with integral Class III precision rotor gear. The ideal unit for high accuracy computer chains.
0.01\% FUNCTIONAL ACCURACY SIZE 23 RESOLVER
100% compensated winding. Extreme accuracy in a standard resolver case size.

For complete information, write for Technical Data File 208
Qualified engineers seeking rewarding epportunities in these advanced fields are invited to get in touch with us.

REEVESINSTRUMENT CORPORATION
A Subsidiary of Dynamics Corporation of America, Roosevelt Field, Garden City, New York
soe our display of WESCON - Cooths 3216 and 3218 - Cooths 3216 and 3216 R perred gRvol

CIRCLE 210 ON READER-SERVICE CARD

New from Raytheon...

QUALITY PULL HANDLES
 inSTAINLESSorALUMINUM

from Factory Stock or Raytheon's 350 Distributors

Raytheon now offers a complete new line of stainless steel and aluminum pull handles - designed for equipment that deserves the precision engineered look.

Both bright and non-reflective finishes are offered in three sizes, $3^{\prime \prime}, 4^{\prime \prime}$, and $6^{\prime \prime}$. All major dimensions are uniform and a generous $11 / 2^{\prime \prime}$ finger clearance is provided on all sizes. Highest quality military grade corrosion resistant alloys are used and all finishes are to military specifications. Matching ferrules are also available.

Twelve models, designed to meet your exacting industrial and military equipment requirements, are available for immediate delivery from your local Raytheon electronic parts distributor. Also ask him about Raytheon's complete line of quality control knobs and panel hardware. For complete data on pull handles write to Raytheon, Industrial Components Division, 55 Chapel Street, Newton 58, Massachusetts.

IDEAS FOR DESIGN

RC Pair Safely Sets Initial State of Relay Driver

 744Driving a relay by using the relay cril as a collector load of a flip-flop, as shown in Fig. 1, is not uncommon. However, when power is first applied to this circuit the relay will energize. This occurs because the coil inductance initially witholds current from the base Q_{2}. Thus Q, conducts first, energizing the relay.

Fig. 1. Slandard flip-flop with relay coil as collector load. Relay will energize when S_{1} is closed.

Fig. 2. Relay will not energize, in this modified flipflop, when power is first applied.

It was necessary, in a particular application, that the relay not energize when power was first applied. This problem was solved by adding $\boldsymbol{R}_{1} \boldsymbol{C}_{1}$ as shown in Fig. 2.

When power is first applied to this circuit, a negative pulse is coupled by $\boldsymbol{R}_{1} C_{1}$ to the base of Q_{2} forcing it to conduct. This sets the flip-flop to the required initial state. After the power has been applied, the RC combination has no further effect on the operation of the circuit.

Using a -10.5 v supply, as shown, values

If they aren't what they should be, then you ought to be specifying Coaxial Connectors by
Automatic
METAL PRODUCTS CORPORATION 323 Berry St., B'klyn 11, M. Y. - EVergreen \&-6037

GET LATEST DATA... ULTRASONIC DELAY LINES

Write today for NEW CATALOG . . . complete, timely specs on the industry's most complete line . . .

ALSO get your copy of "Definitions of terms used in Ultrasonic Delay Lines" a helpful guide to accurate specifying prepared by H. H. Lockhart, Manager, Delay Line Operations.
CFE

Laboratory for electronics, inc.
Computer Products Division 1079 COMMONWEALTH AVENUE BOSTON, MASSACHUSETTS See a domonstration af WESCON August 22-25. Booths 2408-2410 CIRCLE 213 ON READER-SERVICE CARD ELECTRONIC DESIGN • August
of $R_{1}=5.1 \mathrm{~K}$, and $C_{1}=0.68 \mu \mathrm{f}$ gave reliable performance.

Richard J. Bouchard, Electronics Engineer, Sanders Associates, Nashua, N. H.
If this Idea is valuable to you, give it a vote by circling Reader-Service number 744.

AC Amplifier Is
 Wide Band, Less Bulky

Because of their large number of bypass capacitors, multistage transistor amplifiers become bulky and expensive, especially if designed for low cut-off frequencies. Wide-band performance can, however, be obtained if the stages are ac coupled as shown in the figure. Bulk and expense are reduced because only one capacitor is used.

Any number of these amplifiers can be connected in cascade, since the dc potential at the amplifier output is equal to the potential at the input. The peak-to-peak output voltage is equal to the dc supply voltage. The dc collector voltage of V_{s} and the emitter voltage of V_{1} are maintained at the same potential. The voltage drop across \boldsymbol{R}_{2} can be made negligible.

Gain stability is obtained by a proper choice of open loop gain and R_{1} and R_{2}. A small capacitor is usually required to prevent oscillations near the transistor cut-off frequency. Transistors V_{2} to V_{3} should have substantial current gain at $\boldsymbol{V}_{\text {cb }}=\mathbf{0}$. Most silicon and some germanium units meet this requirement.

The amplifier can be designed for excellent

Direct-coupled amplifier has wide band and high gain, and operates without bulky and expensive bypass capacitors.
temperature stability (1 db for a 100 C change in temperature) and wide-band performance (0.1 cps to 2 mc) at high gain.

Peter Laakmann, Project Engineer, American District Telegraph Co., New York, N. Y.
If this Idea is valuable to you, give it a vote by circling Reader-Service number 748.

New *OC-SERIES

TERMALINE COAXIAL LOAD RESISTORS

A new series of Loads with QUICK-CHANGE CONNECTORS

This new series of TERMALINE Load Resistors are portable, general purpose, 50 -ohm coaxial terminations. Their low VSWR, freedom from radiation and ruggedized construction, make them ideally suited as loads during the adjustment and testing of transmitters. All models in this series utilize the Bird QuickChange Connectors (QC), which are available to accommodate any standard series of coaxial line fittings. VSWR specifications are 1.1 max. to 1000 mc , and less than 1.25 to 4000 mc .

Higher power loads with QC feature are available.
*QUICK CHANGE CONNECTORS

Eliminate connector-adapter problems. Any connector may be readily changed. QC connectors of the most popular types are illustrated below. For complete specifications request Bulletin R-QC•1.

Male "MN"' Fomale "HN" Male "C" Fomale "C" Male "N" Fomale "N". Fomale UMF人Aす) I I ELECTROMIC CORPORATIOM 30303 Aurora Rd., Cleveland 39 (Solon), Ohio

CHurchill 8-1200
TWX CGN FS 679
Western Representative:
VAN GROOS COMPANY, Woodland Hills, Colif.
See us af W'escon Shou' Boorb Nos. 1922-1924
CIRCLE 214 ON READER-SERVICE CARD

IDEAS FOR DESIGN

Trigger Pulse Generates Two Separate Outputs

A circuit was required which, after receiving an input trigger, would produce two separate pulses in sequence. These pulses were to be used to drive a cold cathode counter tube. The circuit we designed is shown in the figure.

Negative frigger generates separate pulses of the transistor collectors. Variable delay between these pulses can be obtained by inserting RC elements at base of Q1.

Initially Q1 and Q2 are biased "on". A negative input pulse turns Q1 "off". Capacitor $C 1$ then charges to B^{*} through $R 1$ and the base of Q2 with a time constant R1C1. This positive going signal is transmitted to the base of Q2. Since Q2 is already conducting no change takes place at the collector of Q2.

When the input pulse passes, Q1 is again turned on. The negative signal at the collector of Q1 is transmitted to the base of Q2. This turns Q2 off. Capacitor C1 now starts to charge to B^{+}through $R 2$ and the saturation resistance of $Q 1$. It does so with a time constant of approximately R2C1. When it reaches $1 / 2 \mathrm{v}$ it turns Q2 on again and the circuit returns to its quiescent state.

Thus, an output pulse is generated at the collector of Q1 as the input pulse begins, and a second pulse is generated at the collector of $Q 2$ as the input pulse terminates.

The pulse at Q2 can be delayed from the input pulse by adding a time constant element, such as an RC combination, at the base of Q1.

Gordon Silverman, Senior Electrical Engineer, Loral Electronics Corp., Bronx, N. Y.
If this Idea is valuable to you, give it a vote by circling Reader-Service number 740.

at the WESCON SHOW
MACHES!
over commercial telephone circuils equipped with

Rixon's sebil 21
data Transmilter-Receiver

 Voicobond iveh os in long ditonco Roll

 molering oequipment.
 ond vell.contoinod. Vorioble erting AGGC
 ond logenoration ot resoived dote sionols rock mounting.

SEE IT AT THE WESCON SMOW COW PALACE, SAN RRANCISCO
AUGUST 22nd THROUGM 2Sth AUGUST 22nd THROUGH 2St
cifications available on aeouest

RIXON

ELECTRONICS, INC.
2121 industalal parkway MONTGOMERY INDUSTRIAL PARK silver Spring. Md., Maytair 2-2 121 CIRCLE 237 ON READER-SERVICE CA?O

hivar CAPACITORS ... ORFER 75% REDUCTION IN WEIGHT VOLUME
 Hi-Var capacitors have prime application in lightweight airborne equipments. Ideal for polted and oil immersed circuitry from tea level to 100,000 loet. High valf. age radial corminals are space saving with long. heavy horizontal creepage poth minimizing corona - yet permitting highest voltoge in minioture circuitry.
 18ullotin 10-78-601
 CIEAR-PASS* CAPACITORS
 A new subminiature foed-thru Rf interference suppressor, Dearborn Clear-Pass capacitors combine maximum insertion loss over a broad band of radio frequencies with minimum size? waight. Uniqualy designod thread neck offectively eliminales inductanca beiwoen noiso source and output terminals and minimizes contoct resistance to chassis - thus oblaining oplimum inserfion loss.
 18ullotin 11.78-601

PULSE FORMING

 NETWORKSUsing Deltoply* laminotad dieloctrics, Oearborn's PfN provide reductions in volume weight as well as exronded life and superior retrace characteristics. Units hove application which require the use of E" 'ype high voltoge nelworks ond produce rectongular shoped pulses to near pertection.
(Bulletin 9.78.60)

WRITE ROR

THE ABOVE GULLETINS

LABORATORIEB, INC.
P.O. Dor 3431 - TErrace 8-5400

Orlando. Flerida

Regenerative Switch Demodulates Sinusoid

By using what is basically a direct-coupled, regenerative switch, the carrier of a pulsemodulated sinusoid can be easily removed, leaving only the pulse modulation.

In fm-fm telemetry systems this function is usually performed by discriminator circuits. The output pulse can then be directly applied to digital circuitry.
The circuit shown is designed for a system where the digital transfer rate is at 2.5 kc , with a 20 -kc carrier. Its hysteresis is less than $50 \mu \mathrm{sec}$. Bandpass filtering of the carrier was not necessary for the application in which the circuit was originally used.

Hysteresis is kept low by placing the filter in the feedback circuit. There, its time constant is effectively amplified by the gain of Q_{1} and Q_{2}. This allows a smaller capacitor to be used at the input.

Positive feedback is adjusted by potentiometer $R 5$ to eliminate all ac from the output. The adjustment from this point, to the point where the switch is locked on, is quite broad.

Transistor Q_{1} is held off by the drop across $C R 3$ caused by the leakage current. Its base is held at ground potential by the return through $R 1$ and $R T 2$ in parallel. The $I_{\text {rHO }}$ of Q_{1} flowing through this combination does not produce a drop sufficient to overcome the threshold voltage of Q_{1} plus the drop across $C R 3$.

Transistor Q_{2} is similarly held off by $C R_{4}$ and R3. An incoming signal is half-wave rectified by CR1 and clamped to ground by $C R 2$. No filtering is used here since the discharge time constant of a filter of sufficient size would materially increase the circuit hysteresis.

The positive peaks of the rectified signal

Simple demodulator removes carrier of pulse-modulated sinusoid, leaving only the modulating waveform.

CIRCLE 238 ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 2, 1961

sub-miniature ceramic plate capacitors

 conserve valuable printed board spaceHigh capacitance in limited board space is made possible by WEECON Ceramicons'. designed by Erie to offer the ultimate in miniaturization of ceramic capacitors.
Sub-miniature size and rectangular design permit a higher component density on printed circuit boards and in applications where space is a critical factor. Available in MIL lead spacing for printed wiring boards or conventional spacing for point-to-point wiring.
WEECON Ceramicons are conservatively rated at the following specifications:
Temperature Range: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Also available for $125^{\circ} \mathrm{C}$ at

Working Voltage: Life Test Voltage:
Flash Test Voltage:
Coating:

> lower working voltages

200 VDC
$2 \times$ VDCW 1000 hours $85^{\circ} \mathrm{C}$
$3 x$ VDCW
Dipped, resin coated

Style	4815	4825	4835	4845	4855	4865
Max. Size	$\begin{aligned} & .150 x \\ & .150 \end{aligned}$	$\begin{aligned} & .200 x \\ & .200 \\ & \hline \end{aligned}$	$\begin{aligned} & .300 x \\ & .300 \end{aligned}$	$\begin{aligned} & .400 x \\ & .400 \end{aligned}$	$\begin{aligned} & .500 x \\ & .500 \\ & \hline \end{aligned}$	$\begin{aligned} & .600 x \\ & .500 \end{aligned}$
Thickness	. 100°	.100"	. $100{ }^{\prime \prime}$.100*	. 150 "	150'
Capaci. tance	6 pf to 3300pi	$\begin{aligned} & 110 \mathrm{fto} \\ & 6200 \mathrm{pf} \end{aligned}$	$\begin{array}{r} 25 \mathrm{pf} \text { to } \\ .0135 \mathrm{mf} \\ \hline \end{array}$	$\begin{aligned} & 48 \mathrm{pf} \text { to } \\ & .025 \mathrm{mf} \\ & \hline \end{aligned}$	$\begin{aligned} & 76 \mathrm{pf} \text { to } \\ & .040 \mathrm{mf} \\ & \hline \end{aligned}$	90 pf to .05 mf

For more information on WEECON Ceramicons, write for New Product Bulletin NP-128-1

ELECTRONICS DIVISION ERIE RESISTOR CORPORATION 645 West 12th Street - Erie 6. Pennsylvania Soles offices in principal cities of USA, Canoda, Europe

WHEN HIGH QUALITY.

 is the Criterionin Airborne Telemetry...

Vitro Electronics Nems-Clarke airborne telemetry equipment should be the unquestioned choice in applications where proven performance and the utmost dependability outweigh considerations of size and weight. A thoroughly equipped system of this nature might, for instance, have Vitro Electronics Nems-Clarke Type 1403 Airborne Telemetry Receivers. Effective supporting aıxiliary equipment in such an installation would include:
Preamplifiers for amplification and improvement of received signals \square Multicouplers for distribution of received signals to as many as 8 receivers \square Phase-lock telemetry receivers-key units of a system \square Diversitycombiners combining reception of up to 4 receivers into one output as good as best single receiver output-or better than equal outputs from all associated receivers \square Spectrum display unit to each 4 receivers-for visual monitoring of received signals to determine character and modulation

 - nobucens on INEMS-CT,ARERE raunment

018 JESUP-BLAIR DRIVE, BILVER SPRIME, MARYLAMD/2301 PONTIUB AVEMUE, LOS AMEELES OA, CALIFORWIA CIRCLE 240 ON READER-SERVICE CARD

IDEAS FOR DESIGN

turn Q_{1} on, supplying Q_{2} with a base current path. The output of Q_{2} is rectified by $C R 5$ and filtered by the combination of $C 2$. $R_{4}, R 5$ and the base return of Q_{1}. This signal constitutes positive feedback on the base of Q_{1}, switching it into saturation. This in turn causes Q_{2} to saturate, producing a pure digital output.

The feedback is actuated so that the dc from the collector of Q_{2} through R_{4} and R5 in series is, by itself, insufficient to keep Q_{1} on. Therefore, when the input signal is removed Q_{1} starts to turn off, causing a regenerative action in the reverse direction. Because the time constant associated with C2 is short, no appreciable hysteresis results.

As the temperature increases the circuit becomes much more sensitive. This occurs because as temperature goes up (a) the threshold potential of Q_{1} and forward drop of CR3 decrease approximately $0.2 \mathrm{mv} / \mathrm{C}$ and (b) $I_{\text {CRO }}$ of Q_{1} increases causing a greater drop across $R 1$ and thermistor $R T 2$ in parallel.

However, the resistance of $R T 2$ decreases with increasing temperature, reducing the positive feedback. The circuit operated satisfactorily from 0 C to 40 C .

William C. Silbert, Design Engineer, The Martin Co., Baltimore, Md.

If this Idea is valuable to you, give it a vote by circling Reader-Service number 743.

Pulse Circuit Provides
 731 Sharp, Variable Pulse Delays

Here is a circuit we designed which yields a sharp, unattenuated and accurate pulse delay on either the leading or trailing edges of the pulse. The delay times of the circuit, Fig. 1, depend upon the time constant $R C$ and the voltage factor K.

Assuming zero source impedance and a

Fig. 1. Delay circuit can be adjusted for variable delays of pulse edges. With $\tau_{1}=\tau_{2}$, factor K equals 1.83 and the input pulse is not distorted. payday without getting a raise

You save more shan money. You make sure of enjoying the things you're saving for. Every U.S. Savings Rond helps your Government kerep the Puace.

Why wait for a raise when you can do something now about increasing your income? More than 8 million Americans are doing it every payday by buying U.S. Savings Bonds on the Payroll Savings Plan. It works like this: each payday your payroll clerk sets aside whatever amount you wish, buys your Bonds, and delivers them. You receive $\$ 4$ for every $\$ 3$ you put in, guaranteed. Why not start planning a bigger payday this easy way today?

> Why U.S. Savings
> Bonds are good to buy and hold

You can save automatically on the Payroll Savings Plan. You now earn 33, \% to maturity • You invest without risk - Your Honds are replaced free if lost or stolen. You can get your money with interest anytime you want it . You buy shares in a stronger America.

You save more than money with U.S. Savings Bonds

[^5]FROM ROME CABLE

COMPLETE CABLE ASSEMBLIES TO YOUR SPECIFICATIONS

The next time your requirements call for a complete harness or cable assembly, take a look at what Rome's Special Products Facility has to offer.

Rome Cable can supply complete assemblies as well as bulk cable-in prototype or production quantities.

Save time and costs. Order custom cable assemblies ready for installation. To your exact specification we can supply: miniature or heavy-duty assemblies with cable bundles up to 4 inches in diameter, underwater cable and waterproof assemblies, umbilical cable assemblies for missiles. molded and potted connector terminations, molded breakouts, special jacket materials, special connectors and hardware for unusual applications.

Build extra reliability into your electrical system. Call a Rome Cable specialist during the design stage.

For your files, ask for a copy of a 4 -page brochure on our Special Products Facility. Write to Rome Cable Division of ALCOA Special Products Facility, 2937 South Tanager Street, Los Angeles 22, California. ELECTRONIC DESIGN • August

(a)

(b)

Fig. 2. (a) Equivalent charging circuil for capacitor C is used to derive expression for τ_{2}. (b) Circuit of (a) can be further reduced by combining voltage sources $K V$ and V.
very high input impedance for the emitterfollower, a circuit analysis shows that the delay times, τ_{1}, and τ_{2}, of the edges of the pulse are given by:

$$
\begin{align*}
& \tau_{1} \cong \frac{R C}{2} \ln \frac{K+3}{K-1} \tag{1}\\
& \tau_{2} \cong R C \ln \frac{K+3}{2} \tag{2}
\end{align*}
$$

These equations are derived from the following considerations:

When $v_{\text {i }}$ goes to $-V$, transistor T_{1} saturates with low $V_{r e}$, and the equivalent charging circuit for capacitor C is as shown in Fig. 2. From Fig. 2b it is seen that:

$$
\begin{equation*}
i_{1}=C \frac{d v_{c}}{d t}=\frac{\frac{V}{2}(K-1)-v_{i}}{\frac{R}{2}} \tag{3}
\end{equation*}
$$

Integrating Eq. 3 and solving for t_{1}, yields :

$$
\begin{equation*}
t_{1}=\frac{R C}{2} \ln \left[\frac{\frac{V}{2}(K+3)}{v_{c}-\frac{v}{2}(K-1)}\right] \tag{4}
\end{equation*}
$$

since at $t_{1}=0, v_{c}=-\boldsymbol{V}$.
When $t_{1}=\tau_{1}$, the capacitor voltage has reached the value V and T_{1} is cut off. Thus Eq. 3 reduces to Eq. 1.

Eq. 2 is derived from the equivalent discharge circuit of capacitor, C, taken as r_{i} goes to ground at the end of the input pulse.

For equal edge-delays, that is, for an undistorted pulse, Eqs. 1 and 2 are set equal. This yields:

$$
\tau_{1}=r_{2}=0.88 R C \text { and } K=1.83
$$

The constant K may be adjusted to compensate for the asymmetrical effects of storage time and stray capacitance. A similar analysis will yield the relationships for a nonzero source impedance.

David Borkum, Engincer. Lehigh Design Co., Newark, N.J.

If this Idea is valuable to you, give it a vote by circling Reader-Service number 731.

See the New．．． （ADC）BLUE CHIP

TRANSISTOR TRANSFO

 At WESCON booth \＃4218
Wide Choice of Power Rafings

Tiny plastic encapsulated ADC trans－ formers are now available for printed circuit applications in a wide choice of power ratings．Five sizes vary from .08 to 1.2 cubic inches．

Sixty－Four New Types

Sixty－four new ratings listed below show the available power levels for voice and extended frequency operation．They take into account not only power han－ dling capacities at minimum frequencies
but also total harmonic distortion under stated conditions．Variations in both power and distortion levels are pos－ sible，within the limits shown，depend－ ing upon the minimum operating frequency．

Designed to meet MIL Specs．

These new transformers were designed to meet MIL－T－27A Grade 5，Class S requirements．

Order from stock after September Ist

NIN LaYout： 400 I	Catalog MUMIER	$\begin{aligned} & \text { PRIMARY } \\ & \text { IMPED.- } \\ & \text { OMMS } \end{aligned}$	SECOMDAAY IMPED．－ OMMS	PMIMARY－SECOMDAAYDC RESISTAMCE－OHMS		$\begin{aligned} & \text { max. DC } \\ & \text { in Paim. } \\ & \text { ma. } \end{aligned}$
Pin Diameter：	324－6A	－100k－CT	1000－CT	3000	70	0
	324－68	25k－CT	1000－CT	2800	120	0
Weight： 0.15 oz．	124－6C	100－CT	100－CT	1100	1200	1
	324－60	100－CT	1500－Ct	1100	180	1
OESPONSE：	324－66	100－Cr	600－ct	1100	73	1
	224－65	$4000-\mathrm{Cr}$	100－CT	40	1200	15
pt as motac．	324－66	${ }^{1000-C T}$	600－Ct	110	75	3
	324－64	$1000-\mathrm{CT}$	4	110	05	3
	224－61	$600-\mathrm{cr}$	25k－cr	65	3000	4
N Layout：ABC－	124－6K	${ }^{600}-\mathrm{CY}$	600－cr	65	75	4
fori	边324－84	$600-\mathrm{Cr}$	60	65	，	4
				65	05	4
Pin congth： yc°	324－51	100\％－CT	1000－CT	11，000	120	0
Woight： 0.4 oz．	边 $324-58$	（ $25 \mathrm{Kk}-\mathrm{Cr}$	$1000-\mathrm{Cr}$ $10 \mathrm{~K}-\mathrm{cr}$	2800	120	1
	324－50	100－CT	${ }^{1500-c T}$	1100	1200	1
MESPONSE：$=1$ DB 60 to 50.000 CPS OSTOATION： 10% at 10 MW .60 to 50.000 CPS， or 10% at iso MW ． 200 10．50，000 CPS	$324-56$ 224 26－58	100－CT	${ }^{600-\mathrm{Cr}}$	1100	75	，
	224－58	边 $4000-\mathrm{CT}$	${ }^{100}$－CY	110	1200 75	15
	324－54	1000－ct	600	110	${ }^{5}$	3
	224－5J	600－CT	25k－cr	65	3000	4
	${ }_{\text {124 }}^{124}$	${ }^{600}$－cr	600－ct	65	75	4
	$\begin{aligned} & 324-5 L \\ & 324-5 M \end{aligned}$	600－CT $500-\mathrm{Cr}$	60	65	7	4
	324－4A	－100k－C	1000－CT	11.000	120	0
Pin Diamoter：	324－48	25k－CT	1000－CT	2000	120	0
Pin Longin：$y_{2}{ }^{\circ}$	122－4C		100 K － Cr	1100	1200	！
Weight 0.9 oz．	324－4E	100－CT	$1300-C T$ $600-\mathrm{ct}$	11100	180	1
	324－48	1006－CT	，	1100	$0{ }^{\circ}$	1
MESPONSE： 1 DB 60 to 30.000 CPS， DISTORTION： 1.5% at $20 \mathrm{MW}, 60$ to 30,000 CPS．or 10% at $500 \mathrm{MW}, 200$ to 30,000 CPS． except as noted．	224－6c	$4000-\mathrm{cr}$	${ }^{15 \mathrm{~K}-\mathrm{Cr}}$	40	1200	13
	324－4N	$1500-\mathrm{Cr}$ $1000-\mathrm{Cr}$	600－c	165 110	${ }_{78}^{2}$	${ }_{3}{ }^{5}$
	324－6k	$1000-\mathrm{Cr}$	4	110	0.5	3
	224－4L	600－cr	25k－cr	63	3000	4
	$124-4 \mathrm{M}$ 324 A	600－CT	${ }_{600-\mathrm{CT}}^{60}$	${ }^{63}$	75	4
Lavout：ates I		600－CT	190	${ }_{65}^{65}$	2	4
	324－40	600－ct	4	63	${ }_{0}^{2}$	4
	224－4R	250	600－Cr	30	75	7
Pin Diamator：	Wian mome timeti 580 mm					
	324－34	$10 \mathrm{~K}-\mathrm{CT}$ 10 KCT	$10 \mathrm{~K}-\mathrm{CY}$ 600 Cr	800	1100	
orght： 1.5 oz ．	$324-38$ 324	10k－Cr	$600-\mathrm{cr}$	${ }^{200}$	${ }_{0}^{65}$	1
4×40 Inserts．	324－30	$1500-\mathrm{Cr}$	15	120	2	25
$0.6^{\circ} \times 0.8^{\circ}$	324－38	$1000-\mathrm{Cr}$	600－ct	${ }^{0}$	65	3
MESPONSE： 1 DE 50 to 10.000 CPS． DISTORTION： 1.5% It 60 MW， 60 to 10.000 CPS．or 10% at $3.5 \mathrm{~W}, 200$ to 10,000 CPS．except as noted．	324－3F	${ }^{1000-C T}$	4	80	05	，
	222－39	－$600-\mathrm{Cr}$ $600-\mathrm{cr}$	${ }^{23 \mathrm{~K}-\mathrm{Cr}}$ 600－ct	50 50	2800	4
	124－31	600－CT		$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\stackrel{4}{4}$
	324－3k	600－ct	15	50	\％	－
T Pin Diamater：	anar momel tovel 250					
	124－2A	101				
	324－28	－ $10 \mathrm{~K}-\mathrm{cr}$	600 －$¢$	700	\＄5	1
Pin Oiamater： O40	324－20	－10k－cr	is	700	$0{ }^{5}$	1
（a）Pin Length： $1 /{ }^{\circ}$	334－20	$1500-\mathrm{Cr}$ $1000-\mathrm{CT}$	15 $600-\mathrm{ct}$	105 70	15	25
Mounting $2-$	324－2F	$1000-\mathrm{Cr}$	${ }^{6} 8$	70	S5	3
4x40 inserts，	224－26	－ $600-\mathrm{Cr}$	25k－Cr	45	2600	4
	124－2M	600－CT	$600-\mathrm{CT}$	45	55	4
SPONSE：${ }^{1} \mathrm{DB} 30$ to 10.000		600－CT		45		$\stackrel{4}{4}$
（ex	324－24	600－cr	4	45	05	4
as noted．	224－2M	250	$600-\mathrm{Cr}$	20	55	7

WRITE FOR COMPLETE INFORMATION
ADC PRODUCTE
A Divlsion of Magnatic Controls Company

Milestones in Engineering

The Romans were great road builders. They recognized that merely laying a road from one point to another did not provide adequate access and travel to and from any but "in line" points. Thus, they evolved the "network" principle of road building, with crossings or interchanges, affording the traveler alternate routing to enable him to select the "path" that most adequately satisfied his need.

The network principle has been engineered, over the centuries, into countless applications where there is a requirement for routing flexibility and traffic handling capacity.

The principle of many crossing points for routing flexibility, for multiple path selection, for traffic handling capacity, is basic to the North Electric Crossbar Switch which provides 1200 switching points in a minimum of space - how many uses can you find for such flexibility and capacity?
For detailed specifications on the North Electric Crossbar Switch, write

REPORT BRIEFS

Reliability

Laboratory tests are described for determining the reliability of ground electronic equipment including radar, communications, and navigational aids. The tests are designed to determine the mean life of equipments prior to their use in the field through the measurement of equipment characteristics. The test procedure followed for an AN/GRC27 is presented as an illustrative example. Establishment of Methods and Procodures of Testing for Reliability in Ground Electronic Equipment, R. A. Miles, RCA Srrice Co., Camden, N. J., Dec. 1, 1957. 56 pp . Microfilm \$3.60, Photocopy \$9.30. Order PF 155152 from Library of Congress. Washington 25, D.C.

Acoustic Sources

Bibliography on acoustic sources and related fields is arranged in outline form under four major topics: single sources and receivers, arrays of sources and receivers. transducer properties, and acoustic fields. References listed are from 1935 through 1958. The subject outline is repeated by author, date, and topic title. Some entries are cross-referenced. A Bibliography on Acoustic Sources and Their Related Fields, G. B. Thurston and R. Stern. Willow Run Laboratories, University of Michigan, Ann Arbor. Mich., Feb. 1959, 68 pp, \$1.75. Order PB 161330 from OTS, Washington 25, D. C.

Machining Methods

As an aid to defense contractors in planning manufacturing operations, the principles and applications of four novel electrical machining techniques are described, and information on chemical and ultrasonic methods is given. The techniques can be used as alternatives to conventional machining methods for removing material. They have their widest application for processing materials such as carbides or ceramics and highstrength and temperature-resistant alloys that are difficult to cut. Review of Some Unconventional Methods of Machining, Defense Metals Information Center, Battelle Memorial Institute, Nov. 1960, $20 \mathrm{pp}, \$ 0.50$. Order PB 161225 from OTS Washington 25. D.C.

VISIT OUR BOOTHS 2502-4
 AT THE WESCON SHOW

NORTH ELECTRIC COMPANY

158 S. MARKET ST., GALION, OHIO

Organic Semiconductors

The specific resistivity as a function of temperature for a variety of organic compounds was determined. The resistivities were obtained of materials in various stages of purification, over a wide range of applied voltages, in nitrogen and in air, and in the solid, and, where feasible, in the liquid state. A zone refiner developed and used in the purification of several materials is described. A model for conductivity in organic compounds is advanced postulating that the primary process responsible for conductivity consists in the formation of biradicals. Investigation of Organic Semiconductors, G. P. Brown and S. Afterbut, General Electric Co. for Wright Air Development Division, U.S. Air Force, Sept. 1960, 76 pp, \$2.25. Order PE $1713 \ddagger 0$ from OTS, Washington 25, D.C.

Micro Flip-Flops

The feasibility of applying thin-film techniques to microminiature circuit plates or functional circuit blocks was demonstrated. The approach consisted of both active and passive elements fabricated by solid-state techniques on a silicon substrate. The active component, or transistor, which was unilaterally constructed, was found fully compatible with the one-sided approach to microminiaturization. Excellent switching characteristics were achieved with this active device. Research in Micro Flip-Flops, T. V. Sikina, Philco Corp., Aug. 1960. 91 pp , \$2.25. Order PE 171.566 from OTS. W'ashington 25, D.C.

Microwave Frequency Translator

Microwave circuitry was developed for a frequency translator which used a highly stable ammonia beam Maser output of 23,870 mc to stabilize a $300-\mathrm{mc}$ signal. This was achieved through the use of harmonic conversion and dual mixing techniques. Detailed design information of a harmonic generator, TE_{011} mode filters, and polarization converters is included. Microvave Circuitry for a Frequency Translator, by Robert D. Standley, Charles P. Heinzman, and Nathan Lipetz, Cornell Aeronautical Laboratory. Inc., Buffalo. N. Y., Oct. 6, 1958, USASRDL Technical Report 1944, 22 pp, 10 refs, Microfilm \$2.70. Photostat \$4.80. Order PB 148112 from Library of Congress, Photoduplication Service. Publications Board Project, Washington 25. D. C.

ND号

 MINTATUUREZED ONE-LFE
COMMUTATION SWITCH

See us at Booth 902-904 WESCON Show
August 22-25, 1961

CIRCLE 217 ON READER-SERVICE CARD

RUGGED • LOW COST • FAST RESPONSE • AVAILABLE MATCHED HUGHES' THERMOCOUPLE VACUUM GAUGE TUBE

For precise and dependable measurement of pres sures ranging from atmospheric to 1 micron,
Hughes offers the Type HV-2000 Thermocouple Gughes ofters

FEATURES:
Resistance to shock and vibration-heate and precision thermocouple designed for rugged operation.
Fast Response Time-approximately one second.
Unharmed by operation at atmospheric preseure.
Stable response over wide ambient temper ature range.
Available matched (Type HV-2000M)

See the complete line of HUGHES vacuum equipment at WESCON - Booth 3108

Hughes' new Thermocouple Gauge Controls, developed specifically for use with the Type HV-2000 Gauge Tube, feature easy-to-read scales for single or multiple station operation. Available in modern, self-contained portable cabinets-or for panel mounting.

For complete information on Hughes'

 Thermocouple Gavge Tubes and Con. Vacuum write of wire today: HUGHES Vacuum rube Products Devirson,ozo Short St. Oceanside. California for Export information, write: Hughes for Export information, write: Hughes
International, Culver Cilt, California

HUGHES
newum tuak phoducts division

REPORT BRIEFS

Semiconductor Diodes

Study and investigation are reported of the use of semiconductors as low-noise amplifiers, harmonic generators, and fast-acting TR switches. The use of the nonlinear reactance of a reverse-biased pn junction diode as a low-noise sum-frequency amplifier is analyzed in detail. The problem of using semiconductor devices as fast-acting TR switches is outlined, and an analysis of pertinent TR system parameters in terms of the series resistance of the semiconductor diode is presented. The power-handling capability of presently available semiconductor devices most suited to this application is also discussed. Application of Semiconductor Diodes to Low-Noise Amplifiers. Harmonic Generators and Fast-Acting TR Suitches, R. Gardner, J. C. Greene and others, Airborne Instruments Laboratory. Mineola, N. Y., Sept. 1958, 83 pp , Microfilm \$4.80, Photocopy \$13.80. Order PE 155258 from Library of Congress, Washington 25, D.C

Magnetic Recording

The effect of direct current in a magnetic recording head was measured. The point of occurrence (with respect to the signal) of maximum noise can be controlled; unidirectional signal-handling capability can be increased. The direct current does not increase dynamic range or the average signal-to-noise ratio, and the low-frequency response is reduced. Effect of DC in a Magnetir Recording Head. J. C. Hoadley, Diamond Ordnance Fuze Laboratories, Washington, D.C.. May 1960, 16 pp . Microfilm \$2.40. Photocopy \$3.30. Order PE 155618 from Library of Congress, Washington 2.5, D.C.

Interference Studies

Research results are presented on the theory of interference prediction and interference measurement techniques. Eight separate sections are devoted to permissible interference levels or susceptibilities, data presentation, methods and devices for measuring spurious and harmonic radiation, out of band pulsed and cw interference in a microwave receiver, loss of radar information due to blanking, bandwidth conservation in pulsed radars, graphical techniques
for great circle calculations, comments on military interference specifications, and prevention of moding in magnetrons. Interference Studies, O. M. Slati, K. A. Rosien and others, Moore School of Electrical Engineering, Unicersity of Pennsylvania, Philadelphia, Pa.. April 1958, 210 pp , Microfilm $\$ 9.30$, Photostat $\$ 31.80$. Order PB 146366 from Library of Congress, Photoduplication Service, Publication Board Project, Washington $2 \overline{5}, D . C$.

Pulse Modulators

Presented here is a compendium of current "hard tube" modulator circuits, together with a detailed analysis of their circuit characteristics-rise and fall times, droop. charge storage, and power-handling capacity: The following circuits are considered: trans-former-coupled, common cathode RC-coupled, common cathode direct-coupled, and gated modulators. From the detailed mathematical analysis presented, virtually all circuit design parameters can be computed for any desired modulator. Vacuum Tube Pulse Modulator Analysis, Henry Nettesheim, Electronic Defense Laboratory, Sylvania Electric Pronucts, Inc., Mountain View, Calif., Jan., 1960. Nov., 1960, 109 pp , Microfilm \$5.70, Photocopy \$16.80. Order PB 154213 from Library of Congress. Washington 25, D.C.

RFI

An investigation was made to determine a practical method for suppressing radio interference generated by a $2 \overline{5}-1 \mathrm{~b}$ wringer-type laundry washer. Measurements indicated that approximately every 20 sec (the time point at which the motor was reversed), narrow high-intensity pulses were radiated from the laundry washer. The magnitude of the pulses was of the order of $10^{4} \mu v$ per meter at frequency of 200 kc to 20 mc , measured 5 ft from the machine. Interference of n higher repetition rate and a lower level was observed continually throughout the above frequency range. Radio Interference Suppression of a Prosperity No. 2C-jr. Laundry Washer, A. M. Intrator and E. D. Pettler, Naval Civil Engineering Laboratory, Port Hueneme. Calif., Feb. 20, 1953, 14 pp, Microfilm \$2.40, Photocopy \$3.30. Order PB 154651 from Library of Congress, Washington 2.5, D.C.

With Eastman 910 Adhesive... Vinyl bonds to melamine-coated aluminum in seconds

In the assembly of its top-line "Galaxy" portable, Smith-Corona Typewriter division of Smith-Corona Marchant. Inc., has found four places to save time and materials with Eastman 910 Adhesive. Here's one: In seconds, the adhesive securely bonds
 six vinyl retainers to the melaminecoated aluminum paper bail. Just one

drop of adhesive per retainer is needed-no heat, no solvent, and only momentary pressure to position the parts is required. Further assembly proceeds without delay.

Eastman 910 Adhesive will form bonds between almost any plastics or other materials. Like to see for yourself? Just send $\$ 5$ for a trial kit to use on your toughest job. Kits and more information are available from Armstrong Cork Company, Industrial Adhesives Division, 9105 Indian Road, Lancaster, Pa.; or from Eastman Chemical Products, Inc., subsidiary of Eastman Kodak Company, Dept. PW-7, Chemicals Division, Kingsport, Tennessee.

Here are some of the bonds that can be made with Eastman 910 Adhesive
Among the stronger: vinyls, phenolics, cellulosics, polyesters, polyurethanes, nylon natural rubber, SBR, Buna N., most types of neoprene; most woods; steel, aluminum, brass, copper. Amung the weaker: polystyrene, polyethylene, and fluoro-hydrocarbon plastics (shear strengths up to $150 \mathrm{llbs./}$ sq. in.).

CIRCLE 219 ON READER-SERVICE CARD

PRIMARY VOLTAGE REFERENCE
 Neut [Solid State]

SETS Fis
minutes
Kast-Makes firm bonds in seconds to EERSATILE - Joins virtually any combination of

IGH STRENGTM - Up to 5,000 lbs./sq. in. depending on the materials.
aEady TO USE-No catalyst or mixing neces cunes at noom temperature no heat required to initiate or accelerate setting. CONTACT PRESSURE SUFFICIENT. LOW ShRimKAGE Virtually no shrinkage on setPAM On sur GOES FAR-One-pound package contains abou
14,000 one.drop applications. The use of Eastman 910 Adhesive is not sug. gested at temperatures above $175^{\circ} \mathrm{F}$; or in he presence of See Sweel's 1901 Product Design File 10d/Ea.

At CSC, a major breakthrough in the "state of the art" of precision Zener References has enabled Calibration Standards to design and manufacture a limited number of Primary Voltage References. Tests prove the stability of the Mudel PVR-6 Reference may be equal to or better than the stability of the Saturated Cell (temperature controlled) Each CSC Model PVR-6 Primary Voltage Reference is accompanied with readings. showing its stability for 3 months, referenced against a bank of temperature controlled saturated cells. Models 456-005 and 456-023 Plug In Zener References operate on 115 VAC or 40 VDC with Outputs of 6.5 or 13.5 VDC. These references are used in CSC's 200 and 110 Series Voltage Measuring Instruments. Write for detailed specifications or contact your local CSC represenative.

 OKLPMUA LANSDOWNEI, MOLOSWOMTM COMPANY.ARLIMOYON, VIMGIMIA, TME JAV

Three mutuolly perpendicular surfaces define unit for mechanized insertion.

Tunnel prevents moisture entrapment between capacitor and board.

Increased moisture resistant path along lead to capacifor inferior.

Radial lead design occupies minimum PC board oreo.

Superior shock and vibrafion characteristics

TYPE MR-330
ACTUAL SIZE

GET MICRO-MOLDED MINIATURE MYLAR*CAPACITORS FROM...

-•DUPOnt

REPORT BRIEFS

Organic Semiconductors

Results of experiments are presented for the temperature dependence of the resistivity of 13 organic compounds. Data are given on the rectification properties of copper phthalocyanine and other metal derivatives of space charge due to the presence of an oxidizing agent in the system. Preparations for a forthcoming study of the effects of high electric fields on anthracene and phenanthrene are discussed, and some qualitative results are presented. Organic Semiconductor Study, J. B. Rust and others, Hughes Aircraft Co.. for Wright Air Deielopment Division, U.S. Air Force, June 1960. 58 pp . \$1.75. Order PB 171177 from OTS, Washington 25, D.C.

Digital Computers

Written for those who do not have specialized knowledge of electronics or digital computing, this report is an introduction to electronic digital computers. It reviews current applications of digital computers, and cites some of the varied uses of computers in science, engineering, and business, as well as uses psychologists have found for computers. Mathematical aspects of digital computing are discussed, and practical factors of computer programing are reviewed. An Introduction To Digital Computers, B. F. Green, Jr., Lincoln Laboratory, Massachusetts Institute of Technology for Computprs Committee, American Psychological Association, and U.S. Armed Forces under contract to the Air Force, Aug. 1960, 46 pp . \$1.25. Order PB 171100 from OTS, Washington 25, D. C.

Carrier Frequency Networks

A unified theory is presented for the analysis and synthesis of linear carrier frequency networks, based on the work of various authors in the field. The response of the network to the modulation envelope is characterized by an envelope response function. This is a double complex expression, that depends on two independent parameters, the carrier frequency and the carrier phase resolution angle. The poles and zeros of the envelope transfer function are derived from the poles and zeros of the conventional network response function. A simple, practical method is described for the design of ac lead

ELECTRONIC

 ENGINEERS MAKE GOOD EDITORS

Jumes t. Lippke, Munaging Editor

All of Electronic Design's editors have "converted" from engineering to editorial duties.

If you get satisfaction out of communicating with others, if you enjoy organizing written material, if you enjoy using words to convey ideas, you will like editorial work.

Several openings are now available for Assistant Editors.

EE's with 2-3 years electronic design experience have the ideal background.

Write: JAMES A. LIPPKE
Managing Editor
Electronic Design 850 Third Avenue, New York 22, N.Y.

Extra Reliability With-

- Shell-Enclosed, Die-Cast Housings
- Diallyl Phthalate Moldings
- Positive Alignment \& Polarization
- Minimum Depth in Mated Position
- Beryllium Copper Contacts for Extended Insertion/Withdrawal Life

4 sizes: 13 to 41 high voltage contacts, 2 and 4 coaxial contacts; Meet applicable MIL spers;
Materials \& specifications modified to meet your special needs.

- Write Dept. 18-HW for Series S-20

Dimensional Data Sheets
(Formerly Anton Electronic Laboratoriag) 1226 Flushing Ave. Brooklyn 37, N. Y.
networks, particularly bridged-T's and par-allel-T's, directly from the pole-zero specifications. Carrier Frequency Networks, Gerald Weiss, Microuave Research Institute, Polytechnic Institute of Brooklyn, N. Y., Jan. 12. 1959, 192 pp , Microfilm \$8.70, Photocopy \$30.30. Order PB 155160 from Library of Congress, Washington 25, D.C.

Broadband Components

An engineering study is presented of possible methods of fabricating single-ridged waveguide and for determining the most suitable method of fabricating the two sizes of waveguide designed for the 3.75 -to-15kmc and 10 -to- $40-\mathrm{kmc}$ frequency ranges. The fabrication of lengths of 3 to 5 ft and lengths over i) ft were considered. Research and Dewlopment of Extremely Broadband Wave!!uide Components, E. Lampner. Polytechnic Research and Development Co., Inc., Brooklyn, N. Y., Sept. 1957. 75 pp. Microfilm \$4.50, Photocopy \$12.30. Order PB 155159 from Library of Conyroos, Washin!ノfon 25, I).C.

Endfire Antennas

The development of a new type of endfire antenna called the "Saucisson" antenna is described. It consists essentially of a twowire line surrounded by a wire helix. The principle of operation is explained by the transformation of the excited antisymmetrical mode into the symmetrical radiation mode. The influence of different geometrical parameters is investigated and a scale model of a $350-600-\mathrm{mc}$ range antenna working in the S band was built. A gain of about 20 db was achieved in the whole band with secondary lobes lower than 16 db . Feasibility and Rescarch on a new Type of Endfire Antenna "Saucisson Antenna". Erich Spitz, Compa!nie Generale de Telegraphic Sans Fil. Francr. Jan. 1-Sept. 1960, 62 pp , Microfilm \$3.90. Photocopy \$10.80. Order PB 153719 from Library of Congress. Washington 25. D.C.

Accuracy Is Our Policy . . .

The New Product description of high-temperature resistors appearing on $p 115$ of the June 21 issue listed an incorrect tolerance range. Made by Omtronics Manufacturing, Inc., P. O. Box 1419, Peony Park Station, Omaha 14, Nebr., the series T units cover a tolerance range of $\pm 0.05 \%$ to $\pm 5 \%$.

Angelica Uniforms and Victor Gloves Help Prevent Clean-Room Contamination

UNIFORM COMPANY

1427 Olive St. St. Louis 3. Mo. 107 W. 48th St., Now Yort 36. N. Y 177 N. Miehigan Ave. Chicago 1. Hllinois 1900 W. Pico Blwd., Los Angoles 6. Calif. 317 Hayden St. N., W., Atlente 13, Ga.

Victor Monofilament Nylon Gloves

Angelica has been appointed the only distributor of Victor Gloves, the finest protective gloves made. Victor's non-contaminating gloves of monofilament nylon with plastic coated palms, have maximum touch sensitivity for precision operations. Victor Gloves Inc. collaborated with Bell Laboratories, Inc., in developing these gloves and Bell is currently using them in the assembly of select devices sensitive to physical and chemical contamination.

Other models include ambidextrous gloves and gloves for LOX parts.

Static-Free Dacura* Uniforms

Angelica's coveralls and frocks, of comfortable moisture absorbent Dacura (Dacron** polyester and rayon), are non-linting, acid resistant and static-free. The tight weave of continuous filament yarns resists passage of contamination from the skin or undergarments.

There is a complete "engineer designed" line of Dacura, Dacron, or nylon uniforms and accessories by Angelica and Victor Gloves Inc.

Mail this coupon to the nearest Angelica office below.
-Rog. T.M. H. P. Ogden Co.
\bullet Reg. T.M. of Dupant - Res. T.M. of Dupont

CIRCLE 223 ON READER-SERVICE CARD

DESIGNING YOUR FUTURE

"Mechanize" Your Circuit Searches

> How easily can you find particular types of circuits in your circuit collection? Here is how one reader evolved a simple "sorting-needle-and-punch-card" system which represents mechanization on a level which makes sense to the individual engineer.

Donald H. Schuster
Collins Radio Co.
Cedar Rapids, Iowa.

THE ANSWER to "What was that circuit I saw . . .?" can be found quickly with a edge-notched card reference system. Mul-tiple-access to published articles on electronic circuits is provided through the author's surname, date, type of circuit, frequency range, type of transfer function, and whether tube or semiconductor.

About 10 years ago I started a notebook with circuits that interested me. I copied the circuits by hand from the periodical or obtained reprints of the pages.

After the notebook had grown to about 100 circuits, confusion set in. A number of times I wanted a specific circuit but couldn't find it readily in the notebook. Classification was the answer-or was it? The circuit diagram pages were of different sizes. Also there was the problem of refiling after a schematic had been used.

Then I happened to see an edge-notched
card system for psychological conditioning and galvanic skin-response experiments. Why not do the same for electronic circuits? But what indexes to use, or how to classify types of circuits?
Perusal of a book by Perry, Kent and Berry (1956) helped a little. The book discussed aspects of information retrieval, code construction and encoding abstracts. The information, though of a general nature, was very helpful.

At that time I felt the need for a specific electronic index. I looked at the IRE classification system for abstracts, printed in the IRE Proceedings, but I did not use it. I wanted a classification scheme for circuits of personal interest.

Circuits Are Put
On Unisort Cards
I put all of the circuits I had saved on Unisort cards and classified them several ways. Then I put the classifications aside
temporarily. New circuits were saved and categorized. Then I examined the classification system. More specific types of circuits were added to the classification list. The source periodical of the circuit-e.g., Proceedings of the IRE-was dropped.

Fig. 1 shows a sample card in the filing system. The card serves several purposes. It is a bibliographic reference: it provides the author's name, title of article, and source information (such as name of periodical, volume, number, date and page numbers) Next, the circuit itself is presented. Finally comments about the circuit, such as stability or reliability, can be added.

Fig. 2 shows the index card with several dimensions or types of circuit classification on it. The categories of information, starting at the bottom of the card, are: type of circuit, date of publication, type of basic active elements, approximate frequency range, transfer function, approximate complexity or size of circuit, and the author's surname (first and third letters).

Fig. 1. Sample circuit card shows the notches cut into the edges which permit the sorting needles to find circuits with certain features. An important advantage of this system is that it permits one to come up with new uses for circuits.

Fig. 2. Master index card shows where the sorting needles should be inserted for each category. Note the much wider lattitude in cross-indexing permitted by this system as compared to ordinary filing systems.

Dr. Schuster using his card sort system. The needle has been stuck through the category hole in the index card and a circuit falls out.

Cards are coded on these seven categories. These 5 in.-by- 8 -in. cards are coded with a red pencil mark for all possible classifications of the circuit on the card. Then the marks are punched out with a V-shaped punch. The resulting circuit card is notched around its periphery according to the various classifications of the circuit. All circuit cards are piled together in random order.

Sorting Needles

I sed To Locate Circuits
To find a given circuit, the user inserts a sorting needle into the deck of cards at the spot (or hole) indicating the type of circuit desired. The deck is lifted and jiggled. Most of the cards remain on the sorting needle. Only those cards with that particular hole punched out will drop. And these, of course, contain the circuits of interest to the user.

If a circuit can be classified under several headings within one category, it should be. For instance, a hi-fi set with a tape recorder would be coded both for "Hi-Fi" and "Recorders." If its amplifier circuitry were of special interest, then "Amplifiers, Class A and $2 B^{\prime \prime}$ would also be coded. This overclassification is a real help when looking for a specific circuit, as one may be searching under a different classification than the one that prompted saving of the circuit originally. (This can produce "inventions.")

Edge-notched cards can be obtained from at least two sources: the Royal-McBee Co. (Keysort cards) and the Todd Co., C. R. Hadley Div. (Unisort cards). These cards

YOU'RE STILL TUNED IN, HERR PROFESSOR DOPPLER!

Back in 1930, your principle helped provide the first step in the development of radar. Since that time, radar has grown up . . . always depending on the Doppler shift to measure the velocity of a moving object. Now, we're about to put your principle to work again; this time as an integral part of the Bombing Navigation System for the B-52 weapons system. If you would like to help us apply yesterday's principles, like Doppler's, to important projects like B-52 navigation, and if you have a BS, MS or PhD in EE, ME, Physics or Math, please contact Mr. G. F. Raasch, Director of Scientific and Professional Employment, Dept. G, 7929 S. Howell, Milwaukee 1, Wisconsin.

All qualified applicanta will be conaidered without regard we race, creed, color or national origin.
AC SPARK PLUG THE ELECTRONICS DIVISION OF GENERAL MOTORS milwaukee - los angeles . doston
CIRCLE 901 ON CAREER INQUIRY FORM
215

LP Record-Stellar Style

The message from Courier is just one of the challenges offered to you at PHILCO Western Development Laboratories, whose long record in space communications achievement merely presages the adventure ahead.

From the earliest plans to invade space, PHILCO Western Development Laboratories has played a vital role in satellite vehicle instrumentation, still but part of its contribution to space communications. From this newest electronics center on the San Francisco Peninsula comes a continuing flow of advanced missile tracking, range and data processing instrumentation.

Added research projects and growing programs assure you a long and rewarding career as a member of the PHILCO Western Development Laboratories. What you think and what you do can be unhampered and uninhibited. Personal recognition and advancement promptly follow performance, with monetary rewards to match. Northern California provides an affluent climate for living, as PHILCO Western Development Laboratories provides a stimulating climate for working. For information on careers in electronic engineering, please write Mr. W. E. Daly, Dept. D-8.

All qualified applicunts will rereive consideration for employment without rexard to race, creed. color or

DESIGNING YOUR FUTURE

are similar in appearance and use. When purchased in 100-1,000 quantities, the cost per card ranges from 1 to 5 cents. Sorting needles and special V-punches are also available from these companies.

A similar reference system for humanfactors literature is described in an article by Carol S. Evans. This utilizes Keysort cards. My electronic-circuits filing system uses Unisort cards.

IRE Classification
Should Be Included
After four years of use, I am fairly satisfied with my present classification system. If I had to do it over again, however, I probably would use the IRE classification as one category, to facilitate the use of the cards by others. Also, I am contemplating changing the "primary transfer function" category to the PERCOS instrument classes (Keller, 1960). These classes are: converter, switch, transducer, amplifier, passive network, indicator, energy source, comparator and storage element.

If the reader wishes to form his own classification lists, an article by A. P. Vigliotta and K. D. Swartzel may help. In reviewing the basic data, their system notes frequent key words, called Kros-Terms. A list of KrosTerms of interest can be used for classification of circuits.

This sytem works fine for a limited interest in circuits. The system is also size-limited: more than 500 cards are difficult to jiggle and sort at one time on the long sorting needle. When more than 500 cards accumulate, the deck is split into several smaller decks of major areas of interest. This system would not be feasible for library use, where more extensive classification and many more cards would be needed. For this, use an IBM card-sort. - -

References

Evans, Carol S. A Marginal Punched Card System for Human Factors Literature. Human Factors, Vol. 1, No. 4, Nov. 1959, pp 32-46.
Keller, E. A. PERCOS-Performance coding system of methods and devices used for measurement and control. Proc. of the IRE, 48, \#2, Feb. 1960, pp 148-155. Perry, J. W., Kent, A., \& Berry, M. M. Machine Litevature Searching, Interscience Pub., Western Reserve Univ. Press, 1956, 162 pp.
Vigliotta, A. P. \& Swartzel, K. D. Use of Kros-Term System for Quick Retrieval of the Technical Detail From Large Pools of Information. IRE National Convention Record, 1958, Part 8, p 36.

Advancement Your Goal? Use CONFIDENTIAL Action Form

Electronic Design's Confidential Co reer Inquiry Service helps engineers "sell" themselves to employers-as confidentially and discreetly as they would do in person. The service is fast. It is the first of its kind in the electronics field and is receiving high praise from personnel managers.
To present your job qualifications immediately to companies, simply fill in the attached resume.
Study the employment opportunity ads in this section. Then circle the numbers at the bottom of the form that correspond to the numbers of the ads that interest you.
Electronic Design will act as your secretary, type neat duplicates of your application and send them to all companies you select-the same day the resume is received.
The standardized form permits personne managers to inspect your qualifications rapidly. If they are interested, they will get in touch with you.
Painstaking procedures have been set up to ensure that your application receives complete, confidential protection. We take the following precautions:

- All forms are delivered unopened to one reliable specialist al Electronic Design.
- Your form is kept confidential and is processed only by this specialist.
- The "circle number" portion of the form is detached before the application is sent to an employer, so that no company will know how many numbers you have circled.
- All original applications are placed in confidential files al Electronic Design, and after a reasonable lapse of time, they are de stroyed.

If you are seeking a new job, act now!

After completing, mail career form to Electronic I)esign, 850 Third Avenue, New York, N. Y. Our Reader Service Department will forward copies to the companies you select below.
(Please print with u soft pencil or type.)

Recent Special Training

Outstanding Engineering and Administrative Experience

Professional Societies
Published Articles
Minimum Salary Requirements (Optional)
Use section below instead of Reader Service Card. Do not write personal
data below this line. This section will be detached before processing.
Circle Career Inquiry numbers of companies that interest you

| 900 | 901 | 902 | 903 | 904 | 905 | 906 | 907 | 908 | 904 | 910 | 911 | 912 | 913 | 914 | 915 | 916 | 917 | 918 | 919 | 920 | 921 | 922 | 923 | 924 |
| :--- |

$\begin{array}{lllllllllllllllllllllllllllllllllllll}925 & 926 & 927 & 928 & 929 & 930 & 931 & 932 & 933 & 934 & 935 & 936 & 937 & 938 & 939 & 940 & 941 & 942 & 943 & 944 & 945 & 946 & 947 & 948 & 949\end{array}$

Major Systems

 Programs Pinpoint Opportunities In 26 Areas Of SpecializationTraditional boundaries of defense system definitions are giving way to new, vast-scale operational requirements that may extend from the ocean depths to deep space. - Right now, a number of new programs at Defense Systems Department call for backgrounds ranging from Oceanography to Space Physics. - Openings for graduate engineers at all levels of competence are immediately available on project groups undergoing expansion and new groups currently being organized.

Specific experience is sought in these fields:
Applied Mathematics / Astronomy / Auto Pilots / Classical Mathematics / Communications / Computers / Computer Application Engineering / Data Handling / Guidance Equations Inertial Guidance / Infra-Red / Nuclear Physics / Oceanography Operations Analysis / Optics / Propagation Engineering / Radar Radiation Physics / Sonar / Space Physics / Systems Analysis Systems Engineering / Systems Synthesis / Systems Test Engineering / Technical Writing / Weapons Systems Analysis
All qualified applicants will receive consideration for employ. ment without regard to race, creed, color or national origin.
Write in confidence, briefly outlining your education

look for the NE W
 (TABLOID SIZE)

Electronic Daily

Visitors to this year's WESCON in San Francisco will be greeted by an all new, tabloid, king-size Electronic Daily. Your familiar convention news magazine has been completely re-vamped-new layout, new, easy-to-read typography, new features and departments.

The $11^{\prime \prime} \times 16^{\prime \prime}$ " size will enable the Daily to present more news in greater depth, jumbo photographs, more details about the show and its events.

Pick up your copy of the Daily in major hotels registering WESCON attendees-use it to plan your day at the convention. Other copies will be available in Electronic Daily booth P1, or at the entrances to the Cow Palace. The Daily is the only magazine published exclusively for the show.

Electronic Daily WESCON

ACF ELECTRONICS

. . . where your status as an individual and your career in engineering grow hand in hand day by day!

You can bring new meaning to your career in engineering by investigating opportunities in state-of-the-art developments at ACF. Experienced engineers at all levels are cordially invited to inquire about challenging positions in the following fields:

ANALOG \& DIGITAL TECHNIQUES SIMULATOR ENGINEERING IONOSPHERIC PROPAGATION HF, RF COMMUNICATIONS MICROWAVE COMPONENTS \& SYSTEMS OPTICS \& INFRARED AIRBORNE RADAR SYSTEMS FIELD ENGINEERING

These openings involve assignments at our laboratories located in SUBURBAN WASHINGTON, D. C. and the New York metro politan area at Paramus, New Jersey. Pleasant residential neighborhoods provide readily ovailable housing. Advanced study under tuition refund may be conducted at nearby univer. sities. All qualified applicants will receive consideration for employment without regard to race, creed, color or national origin.

Send resume to:
A. C. SUGALSKI Manager.
Professional Employment
af our Riverdale Facility
Dept. 12

ACF ELECTRONICS

DIVISION
ACF INDUSTRIES
RIVERDALE, MARYLLMD• HYATTSVILLE, MARYLAMD• PARAMUS, NEW JERSEY CIRCLE 904 ON CAREER INQUIRY FORM
ELECTRONIC DESIGN • August 2, 1961
at MOTOROLA in PHOENIX:

Leadership in action

Project leaders at Motorola are engineers and scientists who have won their right to leadership - with ideas, talent, and dedication - while working on challenging assignments in Project Groups. These teams are carefully selected - to get the optimum combination of experience and capabilities, and to utilize each man's talents to the fullest. Opportunities for individual advancement and career fulfillment are broadened and enhanced by Motorola's widely-diversified activities in advanced military electronics. Leadership in action is a vital force at Motorola. It provides the stimulus for challenging the state-of-the-art in Project Group assignments, assuring engineers and scientists of ever-broadening horizons for tomorrow. And Arizona's world-famed climate and beauty add to the whole family's year-round health and pleasure.

Immediate Opportunities

- Systems Test Equipment Design
- Communications and Navigation
- Systems Analysis and Preliminary Design
- Missile and Space Guidance and Control
- Digital Circuitry Design
- Microwave and Radar
- Reliability and Components
- Solid State Devices

All qualified applicants will receive consideration for employment without regard for race, creed, color, of national origin.

Join Sanders Associates in Nashua, New Hampshire

"The company is interested in NEW ways of doing things"..."work is carried on above the average level"..."circuit design here goes all the way from DC through microwave"-

- so say Engineers who have joined Sanders Associates in the past few months.
Such progressive philosophy has led to this young company's growth from 11 engineers to 1800 employees in only 10 years, with a current contract backlog of over $\$ 50$ million.
Still further expansion is planned for pioneering programs in many advanced areas including phased array radar, pulse doppler radar systems,
space radar and communications systems.

If you are interested in working on the threshold of the state-of-the-art, on the threshol by ine state-of-the-art.
untethered by conventional techniques, send a resume now to R. W. McCarthy
All qualifed applicants will receive consideration for employment withou regard to race, creed, color or national origin.
national origin.

receiver design engineers 3 to 8 years experience. For design and development of receivers for miliclude design of low noise front ends, IF strips, AGC circuitry and application of image rejection techniques. All transistorized.
transistor circuitay consultant To provide technical guidance at the Corporate level on a wide variety of transistor circuit design problems. Requires
ability to design detailed circuits rapidly CIRCUIT DESIGN ENGINEERS To translate conventional wire circuits into flexible and/or rigid printed circuitry and to design circuitry layout and approaches for printed circuits. A prime requisite is a keen and imaginative mind and native ingenuity to Requires EE, ME or ChE with printed circuit background TRANSMITTER DESIGN ENGINEERS For design and development of transmitters. VHF-UHF and microwave frequency range. tubes, pulse modulators. power in excess of 1 kilowatt for military and airborne

5RNDER5 RS5DCIRTE5, INC.
NASHUA. NEW HAMPSHIRE
(In the New Hampshire bill country about an hour from downtown Bosson)
CIRCLE 906 ON CAREER INQUIRY FORM

ELECTRONICS DIVISION

of Space Technolegy Laboratories, Inc.
Offers Immediate Assignments in Southern California

The continuing growth and diversification of Space Technology Laboratories, Inc. creates immediate career openings in the Communication, Electromechanical, Guidance, and Space Physics Laboratories of STL's Electronics Division.
In supporting STL's expanding contributions to the Advent, OGO, Atlas. Titan, and Minuteman programs, this division's responsibilities include analysis, design, and development of advanced guidance, control, and communications systems-at every phase from applied research through electronic product and ground support equipment design.
Immediate career opportunities exist here for outstanding engineers and scientists in the fields of:

- Digital computers
- Logical design
- Communication systems analysis
- Parts application
- Electronic packaging

Eystems development

- Ground support circuit design
- Systems design and integration
- Equipment systems-
checkout and evaluation
- Support equipment systems design

All qualified applicants, regardless of race, creed, color or national origin, are invited to communicate with Dr. R. C. Potter, Manager of Professional Placement and Development.
SPACE TECHNOLOGY LABORATORIES, INC.

- iubridiory at Thompeon Rame Wooldridgo inc.
P. O. Box 95005K1, Los Angeles 45, California

Those amonding WESCON are invitod to visif STL at Eooth Number 209

- Control systems analysis
- Electromechanical design
- Space communications system
- Telemetry systems design
- Antenna systems
- R-F rasisior equipment design
- Guidance systems analysis
- Materials and processes
- Reliability
- Aerospace ground equipment design

CIRCLE 907 ON CAREER INOUIRY FORM

August 2, 1961

at RCA'S Astro-Electronics Division
Princeton, N.J.

Creator of Tiros

Continued research and investigation into new areas of electronics and space technology has opened up a number of challenging opportunities for creative scientists and engineers at this rapidly growing division of RCA Immediate openings are available in the following areas

- APPLIED PHYSICS RESEARCH Advanced space electrical power and propulsion - SPACE SYSTEM ANALYSIS/Applied mathematics/Thermodynamics and mechanics
- PROPULSION STUDY AND DESIGN For final stage space craft
- ELECTRONIC SYSTEMS AND CIRCUIT DEVELOPMENT/Communications/Video and digital data processing TV camera and pickup tube design
- INFORMATION PROCESSING Data systems analysis,'Computer applications
 and programming research

To arrange a personal interview, call collect or write
MR. D D. BRODHEAD. HIRhtstown 8-0424
Astro-Electronics Division, Princefon, New' Jersey. Dept. PE -296
All qualified applicants considered regardless of race, creed, color or national origin

The Most Trusted Name in Electronics
radio corporation of america
CIRCLE 908 ON CAREER INOUIRY FORM

New
 CORNING CYFM CAPACITOR has reliability you can see

You get total protection against environment for less money than ever before

The new Corning CYFM capacitor gives you reliability at a markedly lower cost than that of any like capacitor

The CYFM goes far beyond MJL-C-11272B specs. It has proved its performance through more than $3,000,000$ hours of testing. It took a 50 -day MIL moisture test and a 96 -hour salt spray test with no measurable effects. We stopped testing only spray test with no measurable effects. We stopped testing only when it became evident that no more significant data could be developed. The CYFM went through other tests, with solvents,
fluxes, boiling salt, and steam, to make sure it is the most comfluxes, boiling salt, and steam, to make
pletely sealed capacitor you can biy.
Youll see why the CYFM can take such torture when you Youlf see why the CYFilernate layers of stable ribbon you check its design. We stack atternate layers of stable ribbon glas and aluminum foil. Then we weld the foils to the bead-ter inal assembly, which has a glass bead sealed to the Dime wire lead. With heat and pressure. the entire capacitive element is frozen in glass for complete protection against environment and for struc
tured protection against physical shock
True glass-to-metal seals at the weld area and along the leads bar moisture. The seal of the leads to the glass shifts stresses from the leads to the entire monolithic unit. guarding the capacitance area. Of course, you get electrical performance to match this environmental stability, since the CYFM has our glass-foil ca pacitor construction.

The CYFM is machine made . . . each capacitor is the same as every other, to give you uniformity which hand production cannot match.

You can get immediate delivery on the CYFM in four types The CYFM- 10 gives capacitance values from 0.5 to 300 pf ; the CYFM-15, from 220 to 1200 pf ; the CYFM-20. from 560 to 5100 pf , and the CYFM-30, from 3600 to 10000 pf .

For the rest of the story on this capacitor, send for our data sheet. Write to Corning Glass Works. 548 High St., Bradford. Pa.

This is the CYFM capacitor. 6 times actual size. The dark areas between the ends of the glass and the capacitance element are your visual proof of the complete glass-lo-metal seal.

Advertiser

Capitron Div.. AMP, Incorporated
Carborundum Co.. The
Celco Constantine Engineering Labs..... 223
Cetron Electronic Coporation
Clare \& Co. C. P
Clevite Electronic Component
Clevite Transistor 8
Clifton Precision Products Co... Inc. Cover 1
Communications Measurements
Laboratory. Inc.
Computer Instruments Corporation Consolidated Molded Products Cor Continental Connector Corporation Controls Company of Americ
Corning Glass Work
Crucible Steel Comp Cubic Corporation

Dearborn Laboratories, Inc
Delco Radio.
Div. of General Motors Corp. De Mornay-Bonardi
Diamond Tool \& Horseshoe Company 158.
Di/An Contronic. Ine.
Dick Electronic Research Labs.A. B. ${ }^{27}$
DuPont de Nemours \& Co
Mylar Div.
Mylar Div. 129

EICO
 Eagle Signal Company. The
 Eastman Chemical Products,

Elcor Incorporate
lectro Impulse Laboratory
Electronic Design
Electronic Measurement Catalog
Elgin Advance Relays
Equito Electronics Corporation
Erie Resistor Corp.

FXR. A Dis. of Amphenol-
Borg Electronics Corp.
Fairchild Semiconductor
Fluke Mig. C
nc.. John
Frequency Standards

Manufacturers' catalog appears in 1960-1961

Advertiser

G-V Controls, Ine

Garlock. Inc
Garner Company. T. H
General Applied Sclence Labs
General Electric Company
Defense Systems Dept.
General Electric Company.
Instrument Dept.
General Electric Company.
Magnetic Materials Section
Rectifer Components Dept
General Electric Company
Sillicone Products Dept
General Electric Company
Tantalytic Capacitors
General Instrument Corporation
General Motors Corporation
A. C. Spark Plug Div.

General Products Corporation
Gertsch Products,
Graphill, inc.
Gurley. W. \& L. E.
Gudebrod Bros. Silk Co.. Inc.

Electonic Pooducts NEWS by carborundum*

New Dummy Antenna Load offered to ham operators

This new coaxial antenna impedance simulator HL-CC-1 was developed by Carborundum for use with ham radio equipment

Specifications are: Short time powe rating 250 watts (up to 5 min .): continu ous rating 150 watts; V.S.W.R. 0-30 megacycles, 1.5 maximum.
With design changes, similar loads can With design changes, similar loads can be supplied for operation anywhere in the frequency range up to 1 kilo megaconcle and for
Resistive component of the load is one farborundum's high temperature non inductive resistors. It is furnished with coaxial terminations.
Available from electronic distributors these ham antenna loads prevent radia tion and interference while tuning, testing and making measurements
For more information on Carborundum's dummy loads for other applications write to Dept. EDL-81, Globar Plant, Refractories Div., Carborundum Co., Niag ara Falls, N. Y.

Circle ent on Peoder-Senvice Card

High Purity Crushable Ceramic Preforms meet Govt. Specs.

Crushable ceramic preforms for precision swaged thermocouples for atomic energy and turbine engine applications are available from Carborundum.
The following materials exceed the requirements of A.E.C. Specification SPC-SR-101-(ORO), Oak Ridge National Laboratories Specification ORNL Spec. 7444-1 and Knolls Atomic Power Labo. ratories ORPM 7-1

1. High Purity Magnesium Oxide-Type 0333. certified purity $99.4 \% \mathrm{~min} . \mathrm{MgO}$ $\mathrm{A1}_{2} \mathrm{O}_{3}$ and less than 2 ppm boron
2. High Purity Fused Aluminum OxideType 1513, certified purity $99.6 \% \mathrm{~min}$. $\mathrm{Al}_{2} \mathrm{O}_{3}$ and less than 2 ppm boron.
3. Stabilized Zirconium Oxide-Ty pe 0956, certified purity $91.9 \% \mathrm{~min}$. and less than 10 ppm boron.
Standard sizes are from 022 O.D. with holes from .005. Standard preforms are offered for 1, 2 and 4 hole applications. Others are available on request.
For Technical Data Sheet and other information contact Dept. EDP-81, Latrobe Plant, Refractories Div., Carborundum Co., Latrobe, Pa.

Circle sos on Reoder-Service Card

Janco Corp.

Kay Electric Company Key Resistor Corporation Kintel, Div. of Cohu Electronics. Inc.

Carborundum insulators make possible

 5 -yr. guarantee for Electronic Air CleanerKey to the operation of an electronic air is so successful that The Electro-Air cleaner made by The Electro-Air Cleaner Cleaner Co. is able to guarantee its prodCo., McKees Rocks, Pa., is the ionizing uct for a full five years. collecting cell shown here.
Insulators supporting the electrically charged plates are exposed to extreme charged plates are exposed to extreme conditions of dirt and moisture, yet must prevent high voltage leakage. The search or a suitable material ended with CarCeramic insulating materials and parts, Ceramic insulating materials and parts,
including metallized ceramics and ceramincluding metalized ceramics and ceram-ic-1o-metal assemblies, are specialties of
Carborundum's Latrobe Plant. For more information, write Dept. EDC-81, Refrac tories Division, Carborundum Company, Latrobe, Pa

```
For ceramic parts
```

For ceramic parts and metallized assemblies,

$$
\text { Circle } 006 \text { on Reoder-Sorvico Card }
$$

LAMBDA Convection Cooled Transistorized Regulated Power Supplies

LA SERIES

VDC	5	A
D. 34 VDC	10	AMP
O. 34 VDC		AM
20.105 VDC		
105		AMP
-105 VD	8	AM
75-330 VDC		
5.330 VDC		5 AM
5.330 VDC		

SPEGIAL FEATURES

- Convection Cooled-No infernal blowers or filfers-mainfenance free
- Ambient $50^{\circ} \mathrm{C}$
- No Voltage Spikes or overshoof on "furn on, furn off," or power failure
- Short Circuit Proof
- Remote programming over Vernier band
- Hermetically-sealed transformer designed
to MIL-T-27A
- Easy Service Access
- Constant Current Operation-Consuli Factory
- Guaranfeed 5 years

CONDENSED DATA

DC OUTPUT (Regulated for line and load)

Model	Volage Range ${ }^{\text {ar }}$	Vernier Band ${ }^{\text {(2) }}$	Current Range (3)	Price (4)
LA 50.03 A	0. 34 VDC	4 V	0. 5 AMP	\$ 395
LA100.03A	0. 34 VDC	4 V	0.10 AMP	510
LA200.03A	0. 34 V DC	4 V	0.20 A.MP	795
LA 20-05B	20.105 V'DC	10 V	0. 2 AMP	350
LA 40.05B	20.105 VDC	10 V	0- 4 AMP	495
LA 80.05B	20.105 VDC	10 V	0. 8 AMP	780
LA 8-08B	75-330 VDC	30 V	0. 0.8 AMP	395
LA 15.08B	75.330 VDC	30 V	0. 1.5 AMP	560
LA 30.08 B	75.330 VDC	30 V	0. 3 AMP	860

Regulation (line) less than 0.05 per cent or 8 millivoles (whichever is greater). For input varistions from 105.140(s) VAC.
. Less than 0.10 per cent or 15 millivolts (whichever is greater). For load varia.
tions from 0 to full load. tions from 0 to full load.

Ripple and Noise....... Less than 1 millivolt rms with either

Temperature

Coeflicient.
Less than $0.025 \% /{ }^{\circ} \mathrm{C}$.
(1) The DC output volage for each model io completely covered by four selecter
(1) The DC output voltage
(2) Center of vernier band
(3) Current rating applies may be set at any of 16 pointo throughoul voltage range.
(s) Prices are lor unmetered modelo. For metered modele add the ouffaz "M" and
 (5) Except for LA50.034. LA100.03A. LA200.034 which have AC inpul voltage of
100.130 VAC. 103.110 VAC available upon request at moderate surcharge. AC INPUT $\quad 105.140 \mathrm{VAC}, 60^{(5)} \neq 0.3$ cycle $^{(6)}$ (6) This frequeney band amply covero atandard commercial power line toleranceas
in the United Siatect and Canada. For operation over wider frequency band, con. ta the United Statet and Canada. For operation over wider frequency band, con.
oult factory.

Size

LA $50.03 \mathrm{~A}, \mathrm{I} . \mathrm{A} 20.05 \mathrm{~B}, \mathrm{LA} 8.08 \mathrm{BB} \quad 312^{\prime \prime} \mathrm{H} \times 19^{n \prime} \mathrm{~W}^{\prime} \times 14^{3 / /^{\prime \prime} \mathrm{D}}$ LA100.03A, LA $10-05 \mathrm{~B}, \mathrm{LA} 15.08 \mathrm{~B} \quad 7^{\prime \prime} \mathrm{H} \times 19^{\prime \prime} \mathrm{W} \times 143 /{ }^{\prime \prime} \mathrm{D}$ LA200-03A, LA80-05B, LA30-08B $1012^{\prime \prime}$ H $\times 19^{\prime \prime} W^{\prime} \times 1612^{\prime \prime}$ D

Send for new Lambda Catalog 61

\triangleLAMBDA ELECTRONICBCORP. BIG BROAD HOLLOW ROAD. HUNTINGTON. L. I., NEW YORK 516 MYRTLE 4.4200 Western Regional Office: 230 North Lake Avenue, Pasadeno, California • Phone: Code 213, MUrray 1-2544 New England Regional Office: 275 Boston Post Road, Marlboro, Massachuseths Phone: Code 617, HUntley 5-7122

Advertiser
Laboratory for Electronics. Inc
Lambda Electronics Corp.
Lavioe Laboratories. Inc.
Ledex, Inc. .
Linde Company
Ling-Temeo Electronics, Inc...74, 130, 131 Lionel Electronic Laboratories 213
Lockheed California Div. 57

McLean Engineering Laboratories Magnetics. Inc.
Magnetics. Inc.
Mallory \& Co., Inc. P.
Mallory \& Co., Inc. P. R
Metex Electronics Corp.
Melpar, Inc.
Metronix Inc
Microwave Associates, Inc
Miller Co., J. W.
Minneapolis-Honeywell Regu.......... 188
Semiconductor Div. Regulator Co.,
Minnesota Mining \& Még. Co
Chemical Div
Motorola Military Electronies Div.
Motorola Semiconductor Products. Inc
-Mycalex Electronics Corp

New England Instrument Co.
North Electric Company
Nytronics. Inc.

Omtronics Mfg. : n :

Paktron Packaged Electronics Paramount Paper Tube Corp. Paramount Paper Tu
Penta Laboratories
Penta Laboratories
Phelps Dodge Copper
Products Corporation
-Philco. Lansdale Division
Philco Corporation.
Western Development Labs.
Polarad Electronics Corporation
Post Co., Frederick
Potter \& Brumfield
Potter Instrument Co., inc
Power Designs, Inc.
Power Designs, Inc.
Premier Metal Products

Sanborn Company, Inc. 86.220
Sanders Associates, 26
Sanders Associates, Inc.18, 220
-Sarkes Tarzian, Inc........... 32 A-B-C-D
Sclentific Aulanta, Ine 165

- Sealectro Corporation

Sel-Rex Corp.
-Servo Corporation of America 19n) 186
Shallerose MPs. Co.
-Sierra Electronic Corporation
-Sigma Instruments, Inc.
Space Technology Corporation
Sperry Electronic Tube Div
Sperry Rand Corp.
-Sperry Microwave Electronics Co...... 152
-Sperty Semiconductor
Sprague Electric Company1. 20
prague Electric Company
Standard Press Steel

Switcheraft. Inc
dio Co............. 187
Sylvania Electric Producla. Inc
Electron Tube Div.so A-B-C-D
Sylvana Electic Products, Inc.
Semiconductor Div..............126. 127
Synthane Corporation 191

Taurus Corporation 113	
Tektronix. Inc.	63
Temperature Engineering Corporation	53
Texas Instruments Incorporated109. 181	
Thermalloy Company	
Trak Microwave Corporation	187
-Transitron Electronic Corporation	
Trio Laboratorles, Inc.	
Triplett Electrical Instrument Co. ..11	
Tri Metal Works. Ine.	
Tueor, Inc.	
Electr	

FR-100C $=$ maxt Smin $\$$

New Ampex FR-100C

Lightweight, single-rack recorder gives maximum performance
in minimum space for your recorder dollar

Brand New Modular Solid-State Plug-In CIrcuits combined with the world's most proved instrumentation tape transport have enabled Ampex engineers to design an exceptionally high performance recorder with great reliability and economy of operation. The new FR-100C offers:
Performance: Frequency response is 300 kc at 60 ips direct record-20 kc with FM record. Fourteen-inch reels provide 24 minutes record time at 60 ips (with 1 -mil tape). Tape handling is fully comparable to the Ampex FR-100B.
Versatlifity: Take your choice of direct, FM and PDM recording; six tape speeds; $1^{\prime \prime}$ and $1 / 2^{\prime \prime}$ tape; and up to 14 data channels and one auxiliary channel such as voice log or clocking generator.

Economy: Because the new FR-100C features modular plugin circuits, you can tailor your recorder to your immediate needs. You can specify only the features you need now without sacrificing future flexibility.
Operation: Signal inputs and outputs are available both front and back. All connection, adjustment and calibration points are easily accessible from the front. Lightweight single-rack unit takes minimum floor space.

Ampex Rellability Bullt In. In addition to its greater versatility and economy, the fourth-generation FR-100C is designed to the same high standards that have made Ampex recorders the standard of excellence throughout the world. For complete specifications, write .

ser	Page
"Ucinite Company, The	
Ultek Corporation	
Union Switch \& Signal.	
Div. Westinghouse Air Brake	1
Utica Drop Forge \& Tool Div.	
United Alrcraft Corporation	84.8
Universal Manufacturing Co..	

Western Electric Company 92 Westinghouse Electric

Advertising Representatives

Adv. Sales Manager: Robert W. Gas coigne
Sales Service Supvroz Alvin D. Ross New York: Richard Parker, Blair Mc Clenachan, Berry Conner, Jr., James P. Quinn, Charles J. Stillman, Jr. Kenneth M. George, John M. Weber Pierre J. Braudé, Thomas P. Barth 50 Third Avenue, Plaza 1-553
Chicaso: Thomas P. Kavooras, Fred T. Bruce, 664 N. Michigan Avenue, Superior 7-8054
Cleveland: Douglas H. Boynton
Los Angeles: John V. Quillman, 276 Wilshire Blvd.
Dunkirk 2-7337
San Francisco: Stanley I. Ehrenclou, 92 Walter Hayes Drive, Palo Alto, Davenport 1-7646
Sousheassern: Pirnie \& Brown, Morgan Pirnie, Harold V. Brown, G. H Krimsier, 1722 Rhodes-Haverty Bidg., Atlanta, Ga., Jackson 2-8113
London ECs: Brad Nichols, 151 Fleet Street
Tokyo: Karl H. Bachmeyer Associates 27 Morimoto-cho, 1-chome, Azabu, Minato-ku

NOW!

Measure phase
angle directly
in degrees
with counter speed and accuracy!

This new 526D plug-in unit for to 524C/D Electronic Counters allows fast, direct phase angle measurements ideal for servo applications

Other Plug-ins for 524C/D Counters

Order the measuring capability you need at present, later add other plug-ins to increase the usefulness of your 524 counter

- 505A Freauency Converter, seso.00. astends counter to 100 MC

4. s238 Frequency Converter. 830000 ertende countar to 270 MC

4 sasc Frequency Converter, $\mathbf{2 4} 5.00$, extende counter to 500 MC

ELECTRONIC DESIGN. ONE DAY SERYICE USE 日EFORE SEPTEMBER 13 th. 1961

Nomo

Home Addrens

For Chonge of Addren
Old Company Name

With the 524 Counter and the new 526D Phase Unit, you can measure phase angle between two signals conveniently, accurately and at any frequency from 1 cps to 20 KC . At 400 Cps, readings are direct in 10ths of degrees; at other frequencies readings are in time units with a resolution of 0.1 microsecond.

The new phase unit plug-in, whose specifications are given in detail below thus adds still greater versatility to the unique 524C/D counters. Details of other 525/526 series plug-ins appear on opposite page.

Brief details, $524 \mathrm{C} / \mathrm{D}$ Electronics Counters Measure frequency 10 cps to 10.1 MC . period to 100 KC without plug-ins. With plug-ins measure frequency to 500 MC (with accessories to 18.0 GC), time interval $1 \mu \mathrm{sec}$ to 100 days. Measurements are automatic, direct reading, require no tedious calcula tion or interpolation. Big, bright Nixie readout (524C) or columnar neon readout (524D). Maximum resolution $0.1 \mu \mathrm{sec}$, stability $3 / 10^{9}$ short term, $5 / 10^{8}$ per week. High sensitivity, high impedance. Can be standardized with WWV; available for printer operation Readily used by non-technical personnel. Highest quality construction, military type design. $\$ 524 \mathrm{C}$, $\$ 2,400.00$. 524D, $\$ 2,150.00$. Rack mount models available.

SPECIFICATIONS 50p 526D Phase Unit

Range: Phase angle 0 to 360°, lead or lag
Frequency Range: 1 cps to 20 KC
Reads In: Time units with maximum resolution of $0.1 \mu \mathrm{sec}$ over full frequency range. For frequencies 396 to 404 cps, $\times 3,600$ frequency multiplier provides readings direct in loths of degrees.
Accuracy: $\pm 0.1^{\circ} \pm F_{D} / F_{\mathrm{e}} \times 360^{\circ}$ (where F_{0} is frequency of phase-measured signal and F_{B} is counted frequency, assuming noise 65 db below signal).
Input Voltage: 5 to 120 v mm ; usable to 240 v rms.
Input Impedance: Approx. 1 megohm, 80 pf shunt
Price: $\$ 750.00$

8 other widely used Electronic Counters

7 523C/CR Electronic Counter 10 cps to 1.2 MC with now 0.1 V sensitivity arizht Nixie in-line readout Measure: 0.00001 CPs to 100 KC end phaso angl stablity $2 / 10^{\circ}$ per week. Improved cir cultry prevents trigsering by unwanted ignals, noise. Resuits appear in soconds, nsec, $\mu s e c$ or KC with automatic decima (cabinet) $\$ 1,575.00$

623D/DR Electronic Countor
offers electronic features identical with those of $\$$ S23CR but hes six-plece neon columnar resadout. © S230R (rack mount) $\$ 1,235.007$ - 923 D (cabinot) $\$ 1,310.00$.

(4) 522B/BR Electronic Counter
Popular so $5228 / B R$ measures fre quency 10 cps to 120 KC , period 0.00001 cps to 10 KC , time interval 10 usec to 10° sec. Reads direct in cps. base seconds. $1 / 20$ per meek; count automatically, resets, action repetitive. Applications include measure ment of production line quantities, nuctear radiation, power line fre with transducers, a wide array of physical quantities and phenomena. - 5228 (cabinet) $\$ 915.00$; 522 BR (rack mount) $\$ 900.00$.

HEWLETT-PACKARD COMPANY

1089K Page Mill Road
Cable "HEWPACK"
DAvenport 6-7000
rincipal areas

MEWLETT-PACKARD 8.A. Rue du Vieux Billard No. $1 \quad$ Geneva, Switzertand
Cable "HEWPACKSA"
Tel. No. (O22) 26. 43. 36

521 Series Industrial Counter

- offers five Model 521 countors, all useful in measuring frequency, random events per unit of time, and, with transducers, speed, ros, rpm, weight, presreadings, display time variable or "hold"; four instruments covor frequoncy range 1 cps to 120 KC; the fifth measures to 1.2 MC. Two models with big, bright, with columnar neon display. Prices $\$ 475.00$ to $\$ 955.00$. Cabinet and rack mounts avallable.
(
CIRCLE 235 ON READER-SERVICE CARO

Publisher: Robert E. Ahrensdorf Editor: Edward E. Grazda Managing Editor: James A. Lippke Technical Editors: G. H. Rostky, H. Bierman, R. H. Cushman, M. W. Meisels, A. Rosenblat News Editors: R. Haavind, Chief: A. Corneretto, R. N. Ross Now Products Editor: A. W. Solda Chief: C. H. Farley, E. G. Farrel Washington Editor: J. J. Christie Weat Coast Editor: T. E. Mount Consulting Editor: R. N. DeFloria Contributing Editorn: J. G. Adashko, E. Brenner, B. Bernstein Editorial Production: D. S. Viebig A. Abramoff

Art Director: R. A. Schulze
Art Assistant: J. Aruego
Production Manager: T. V. Sedita Asst. Prod. Mgro: H. De Polo Production Assistantn: P. Bergang, M. Spector

Circulation Manager: N. M. Elston Asat. Circ. Mgr.: H. A. Hunter Reader-Service: L. Blair

Hayden Publishing Company, Inc Chnirman of the Board:
T. Richard Gascoigne

President: James S. Mulholland, Jr.

Accuracy Policy

Recognizing the power of the printed word to influence it is Electronic DESIG:'s policy.

To make all reasonable efforts to insure accuracy of editorial matter. To publish prompely corrections the to our attention.
To not knowingly publish misleadilk adrertisempnts.
To reserre the right to refuse any adrertisement.
Readers noting errors or misstate ments of facts are encouraged to write the editor.

Subscription Policy

Electronic Desicn is circulated only to qualified design engineers of U.S. manufacturing ernment agencies. If design for manufactur
ing is your responsibility. you qualify for ing is your responsibility, you qualiry for
subscription wwhout charge provided you send us the following information on yout
company's letterhead: Your name and engicompany 's letterhead: Your name and products neering description of your design duties. The
and
letter must be signed by you personaliy ANY ADDRESS CHANGES FOR OLD SUB SCRIBERS NECESSUALEICATIONS SUb seription rate for nonqualifed subscribers-
$\$ 25.00$ per year U
\mathbf{S}. $\$ 35.00$ per year all Clacie 235 ON MEADE-Stevice CARD

RCA PRESENTS A NEW MICROWAVE FAMILY

[^0]: MicroWaves
 New interest in surface-wave transmission lines and a step-by-step design procedure for magnetic radar modulators are featured in this edition of MicroWaves. Beginning with this issue, microwave product features will appear regularly in the section.
 New Applications Being Developed for Surface-Wave
 Transmission Lines
 Long-known microwave transmission medium finds new uses

[^1]: Electronuc Design is published biweekly by Hayden Publishing Company, Inc., 830 Third Avenue. Now York 22, N. Y T. Richard Gascoigne. Chairman of the Boord; James S. Mulholland, Jr., President; Edmund C. Grainger, Jr. Secretory. Printed of Poole Bros. Ine., Chicago, III. Accepted as controlled circulation at Chicago, Ill., and of Now York, N. Y. Copyright © 1961, Hayden Publishing Company, Inc., 38,625 copies this issue.

[^2]: Union, New Jersey 324 Chestnut Street MUrdock 7-3770

[^3]: CIRCLE 60 ON READER-SERVICE CARD

[^4]: Wescon Booths 3001 \& 3003
 CHCLE ITQ ON READER-SERVICE CARD

[^5]: This advertising is donated by The Advertising Council and this magazine.

