Electronically regulated power supply permits automatic control of microwave oscillators... p 132
5 ACES !!!

NEW PRODUCTS
marketed by CPPC during 1961

ACE: Of first rank in excellence — WEBSTER.
We are proud to have produced 5 such diversified servo components during the past
year. But of considerably more importance is what these components can do for you
the systems designer.

First of all, they were designed with your
hardware in mind. They are not "Ivy Tower" components which will do well in
our tests but won't behave in your systems.

Secondly, in accuracy and dependability
they live up to the high standards set by
CPPC in the synchronous and servo field over
the past 14 years. If it's a Clifton Precision
component, it's QUALITY.

For further information on these and other
Clifton products, call 215-MADISON 2-1000
or our Representatives.

CLIFTON PRECISION PRODUCTS CO., INC.
Clifton Heights, Pa.
Colorado Springs, Colo.

COVER: A pebble from the beach . . .
a rusty nail in a board . . . yesterday's newspaper. These are a few of
the ingredients in the heady brew
dished up by many modern artists.
In their more recognizable forms,
such assemblages are called collages.
To some artists (and most art lovers)
pastups of scraps of printed matter,
cloth and other materials suggest
merely interesting texture and/or
composition. To ELECTRONIC DESIGN's artist, the collage offered a
graphic means of expressing a design concept. He used different-
textured paper—Kraft, corrugated,
chrome-coat, newsprint and wood-
grained—to create a background in
which four areas are dominant. These
background areas and the typography display (itself reminiscent
of early collages that used random
scraps of printed matter) represent
the four types of equipment that can
be controlled with the modular-type
power supply.

Sidelights of This Issue
English as she is spoke and wrote
by engineers must make lexicogra-
phers wince on occasion. It is perhaps
inevitable that a precocious science
like electronics should outgrow its
mother tongue.

Consider, now, the formidable task
of the foreigner trying to write for
American engineers in their peculiar
brand of English. Go a step further,
and think of the added handicap for
the Japanese translator, whose Eng-
lish often is many decades removed
from space-age jargon.

It is in this vein of amused symp-
athy that we pass along a few
thoughts culled from the report written
in Japan on a new millimeter-
wave klystron (see p 134):
"In the figure, we indicated the
values of the factors calculated stand-
ing on the assumption."
"The value is pretty greater
than

This leads us to the conclusion that the output was too greatly measured or the circuit efficiency was too small obtained in our measurement circuit

"Accordingly the output of about 30 w will be possible, if so required, by improving the design."

"We trust the above advantages will make this tube good as the oscillator in the mm-wave FM radar, FM communications etc."

. . . and then the oscillation is enabled."

An Electronic Design editor tried for weeks to get details on the Japanese device from the American distributor. Each call brought the same response from the distributor's secretary: "Sorry, but he went to Japan."

Our editor had just about concluded that his man had "gone native", when the distributor returned. Japan's a nice place to visit, but . . .

Vistas Unlimited

Silicon-controlled rectifiers (see p 46) may not have the glamour of nanosecond-computer transistors, but their potential can, nevertheless, make the mind boggle.

A case in point is the frenetic competition between the two major manufacturers of automatic bowling-alley equipment for the first logic system for automatic scorekeeping. The secrecy involved in this scramble would do credit to the most advanced defense project.

The problem is, of course, attainment of a realistic reliability-to-cost ratio, and SCRs are expected to help solve it.

Beyond the automation of bowling scorekeeping lie such dreams as automated supermarkets, vending-machine systems, mail-order warehouses and traffic control.

In fact, now that inexpensive semiconductor devices with power-handling capability such as SCRs, are available, think of the many slow, unreliable and bulky electromechanical logic systems waiting to be updated and expanded. And think of the thousands of areas without the benefit of electromechanical logic.

NEW products from RAYTHEON

. . . hatch a new design

Looking for new ideas? New Raytheon Raysistors® may be the components you need to spark a new design or solve a circuit problem.

Raysistors are four terminal circuit components. They consist of a light source and photocell assembled in a light-tight casing. When the input to the light source is varied, the photocell resistance changes — without electrical connection between the light source and photocell, and without moving parts. The result: low noise pedestal-free switching of AC or DC signals over a wide dynamic range without transients, contact or wiper chatter.

Raysistors come in a wide range of types: standard, printed circuit, miniature, high voltage. They are ideal for use as relays, potentiometers, choppers and isolation for high voltages. For complete technical data, please write: Raytheon Company, Industrial Components Division, 55 Chapel Street, Newton 58, Mass.
Countdown on MicroWaves

The editorial offices of ELECTRONIC DESIGN soon will hum with the tension of a Cape Canaveral block house. In March, 1962, we will place a new magazine—MicroWaves—into orbit.

The launching preparations took an important step forward this week. Robert E. Ahrensdorf, publisher of MicroWaves, announced that Manfred Meisels will be managing editor of the new magazine. Manfred has been an ELECTRONIC DESIGN editor for two years, and has specialized as technical editor in charge of the MicroWaves section. He has a science degree from Purdue and is working toward his master's degree in physics at New York University. He is a member of the IRE and of the New York Business Paper Editors Association.

Manfred, together with a staff of engineer-editors now being recruited in a nation-wide search, will bring new depth and perspective to the reporting of microwave developments.

PM 3101 represents an outstanding value in a wideband DC amplifier—with specs equaling or surpassing models costing a third more. This is a chopper-stabilized amplifier with all solid-state plug-in circuit board construction. Eight units mount in 3½” of 19” rack space. It features 50 megs single-ended input impedance...single-ended or differential input...less than 2 uv drift in 100 hours...0.01% gain stability...DC to 35KC bandwidth...gains of 10 to 1000...wideband noise <20uv...less than 0.06 ohms output impedance...±15 volts at 100 ma output capability...linearity better than 0.02% of output. The 3101 meets all specs with source impedance up to 5K and from 0°C to 60°C. It can't be damaged by output short circuits and it retains its stability with virtually any capacitive loading. Ten different plug-in attenuators are available. Contact PM for detailed technical data. Model 3101 (Basic Amplifier) $540. Most Expensive Potentiometric Plug-In $85. Most Expensive Differential Plug-In $130.
RFI Men Still Guessing On Pentagon Specs

Turmoil Evident at Chicago Conference—Analysis Center Begins
To Chart Data Base—Companies Rush to Develop Instruments

Alan Comeretto
News Editor

The radio-frequency-interference community has been thrown into turmoil by the Defense Dept.'s new and much-needed plan to assure electromagnetic compatibility of electronic equipment. The plan is gathering momentum, equipment is being developed, measurements are being taken, yet design engineers are still wondering what it all will mean to them.

There is agreement that the DOD's new RFI approach, which has been described by industry engineers as a "clampdown," will upset many industry practices. But no specifics are discussed, despite the widespread activity triggered by military plans.

The activity was apparent at the Seventh Conference on Radio Interference Reduction and Electronic Compatibility, held Nov. 7 to 9 at the Illinois Institute of Technology, Chicago. Officials of the Electromagnetic Compatibility Analysis Center, Annapolis, Md., reported on plans and progress, but said later that it is too early to tell what influence the interference center will have on equipment and system design. Authors of technical papers described new techniques and devices but said they wished they knew more about future requirements in instrumentation for DOD's compatibility program.

Compiling a Data Base to be Main Activity
Of Annapolis Interference Center

S. I. Cohn, technical operations director of the analysis center, reported that the facility is rapidly taking shape at the Naval Experimental Engineering Station. The center is housed temporarily in various buildings at the naval station and is still concerned mainly with hiring and training personnel. It expects to move into a new building next spring. But the center has started to direct several projects in the areas of collecting spectrum signatures and conducting research on models.

The four main activities of the center will be acquisition of a data base for all studies relating to controlling RFI, formulation and adoption of validation tests, establishment of permanent facilities and activities, and operational problem analysis.

Included in the data base will be: spectrum signatures of all military emitters and receivers; an environmental file of locations of all emitters and receivers detailing such information as hours of operation, frequency, bandwidth, and antenna height; technical literature and diagrams on all equipment; details on present and future R&D programs for equipment and test instruments; engineering standards; and interference reports.

There was much discussion at the meeting of the difficulty of taking spectrum signatures, and, indeed, of properly interpreting the published procedures for measurements. DOD experts made it clear that in cases of doubt the best procedure is to follow the intention of the collection plan. The plan is meant to provide complete characteristics of the significant outputs of emitters throughout the frequency spectrum and the response characteristics of receivers.

Signatures are being collected and the requirement to collect them is being written into some equipment contracts. Environmental data sheets, or maps, also are being produced. Two such maps, for the San Diego area and the Montgomery, Ala., air-defense sector, are being examined by analysts of the center. Future data will be collected on forms to be processed for the center by the Bureau of Census, which will use FOSDIC mark-sensing equipment. This is expected to make the collected data easy to analyze automatically with computers.

The maps will be updated continuously, so that designers and users of equipment intended for a particular site will be able to learn instantly what interference their equipment will be up against.

Microwave Source, Transient Generator
Among Devices and Techniques Described

Among the devices described at the meeting was a high power, wide-frequency-range
Diagram of the role of the Dept. of Defense's interference center at Annapolis was developed to show how the center, the tasks it is to perform, and the complete compatibility program are dependent on each other for maximum effectiveness.

A tunable oscillator provides a 500 to 1,000-mc signal that is amplified in the same band. Frequency is raised by successive steps of harmonic generation and amplification. Desired signals are selected by filters, Mr. Farmer said.

To produce signals between 40 mc and 500 mc, the output of the 500-1,000-mc oscillator is heterodyned with the output of a second oscillator operating at a fixed frequency. Both fixed and variable oscillators are stabilized by referencing their output to a crystal-controlled oscillator.

The equipment, which occupies six large racks, was developed for the Rome, N. Y., Air Development Center, and can be extended in frequency coverage by addition of passive doublers or amplifiers, for which power and control circuits already are included. Mr. Farmer reported that power output could be raised in the C, X and K bands with suitable traveling-wave-tube amplifiers.

An audio transient generator designed to permit testing of interference susceptibility

Less than 2μv of drift for over 400 hours of continuous operation! That's just one of the many outstanding features of KINTEL'S new 112A wideband DC amplifier - the unit that is the successor to KINTEL'S 111 series DC amplifiers. Frequency response is from DC to beyond 40 kc, output capability up to 40 volts. It has an integral power supply, fits the same cabinets and modules, and can be used to replace any KINTEL Model 111 amplifier.

HIGH ACCURACY. The 112A amplifies microvolt-level signals from DC to 2 kc with a gain accuracy of ±0.5% on any gain setting, better than ±0.01% accuracy on individual gain settings by means of the Micro-Gain adjustment.

RELIABILITY. Overall dissipation has been reduced and reliability enhanced by replacing the tubes used in the 111 amplifier power supply with silicon rectifiers in the 112A. Special heat-conducting shields, heat sinks, and an improved mechanical layout further improve cooling efficiency. Polystyrene capacitors are used in all critical areas. Rugged, militarized components are used wherever compatible with required performance characteristics. Write today for technical information or demonstration.

PRICES:
112A Amplifier with a 112A A plug-in unit that provides 10 gain steps from 20 to 1000 with 1 to 2 times vernier adjustment at each step...$625
112A Amplifier with a 112A-A0 unit having the same 10 gains plus provisions for an external summing, integrating, or other operational network...$635
112A Amplifier with a 112A-B plug-in unit that converts the amplifier to a -1 unit having an input impedance over 10,000 megohms, a gain accuracy within ±0.001%...$615
112A Amplifier with a 112A-O empty plug in unit for installing an internal summing, integrating, or other operational network...$575

Immediate delivery from stock in reasonable quantities. Representatives in all major cities.

5725 Kearny Villa Road, San Diego 12, California. Phone: BRowning 7-6700

CIRCLE 5 ON READER-SERVICE CARD

ELECTRONIC DESIGN • November 22, 1961
NOW! A REMARKABLE, NEW 0-40 volt @ 500 ma DC POWER SUPPLY BY PERKIN THE ONLY POWER SUPPLY AVAILABLE COMBINING THESE 20 FEATURES:*

![Model TV1404R-05 0-40 volts @ 0-500 ma](image)

1. **Voltage Regulation:** ±0.1% or ±2 mv
2. **Current Regulation:** ±0.2% or ±50a amp
3. **Remote Voltage Programming:** Full-range 0-40 v
4. **Factory calibered at 100 ohms/volt ±2%**
5. **Remote Current Programming:** Full-range 15-500 ma
6. **Factory calibered at 1 mho/ampere ±1%**
7. **Voltage Limiting:** Continuously adjustable 0-42 v
8. **Current Limiting:** Continuously adjustable 0-600 ma
9. **Remote Voltage Sensing & Parallel Operation**
10. **9 Series Operation**
11. **Continuous Voltage Adjust:** 5 mv resolution
12. **Current Sensing:** 1 mA resolution
13. **Transistor-Field Short-Circuit Proof**
14. **Extremely Fast Response:** 25 µsec
15. **Low Ripple:** 50 µv volts (voltage regulation mode)
16. **Convection Cooling:** 17, Portable, 18, Regulation Mode Switch
17. **Master-Slider Operation:** 20, Excellent Long-Term Stability

Additional Specs
- **Input:** 105-125 v, 120, 47-420 cps, 0.5 A
- **Max. Ambient Temp.:** 45°C
- **Meters:** Dual Scale 0-50 V, DC, 0-600 ma
- **Dimensions:** 3.5” x 7 x 9” D—adapter to mount two in 19” rack
- **Weight:** 15 lbs. (approx.)
- **Finishes:** Gray per MIL-E-15909B

AND ALL FOR JUST $198 f. o. b. El Segundo

PERKIN ELECTRONICS CORPORATION
345 Kansas Street, El Segundo, California □ SPring 2-2171

PERKIN SALES REPRESENTATIVES

- **Albuquerque, N. M.:** Brooks-Feegar Assn.
- **Anchorage, AK:** Law Instrument Co.
- **Atlanta, GA:** 217 & 8101-R
- **Atlantic City, NJ:** E. C. Holmes & Assoc.
- **Baltimore, MD:** 4639 Roswell Rd., N. E.
- **Boston, MA:** BL 5-6560
- **Baltimore, MD.:** Gavler-Know Co.
- **Baltimore, MD.:** 807 E. Seminary Ave. Towson 4, Md.
- **Chicago, IL:** 5-3151
- **Cleveland, OH:** Safford & Assoc.
- **Cleveland, OH:** 6200 Crouse Drive Hillwood (Cleveland), Ohio
- **Dallas, TX:** Winchester 3-7371
- **Denver, CO.:** 5220 N. Kimball Ave. JI 8-9005
- **Cleveland, OH.:** 3041 S. Broadway Englewood, Colo.
- **Detroit, MI.:** 2147 E. Outer Drive Detroit 24; Michigan
- **Boston, MA.:** 557 E. 11-7353
- **Des Moines, IA.:** 2702 41st Pl.
- **Des Moines, IA.:** BL 5-4854
- **Detroit, MI.:** 2147 E. Outer Drive Detroit 24; Michigan
- **Greenwood, Ind.:** 500 Crouse Drive Hillwood (Greenwood), Ohio
- **Kearfott Corp.:** 15-7004
- **Kansas City, MO.:** 2600 Grand Ave
- **Dallas, TX.:** 15-1160
- **Los Angeles, CA.:** 3455 Cahuenga Blvd., Suite D
- **Los Angeles, CA.:** Hollywood, Calif.
- **Minneapolis, MN.:** 200 W. 7th St.
- **New York, NY.:** 3455 Cahuenga Blvd., Suite D
- **Orlando, FL.:** 200 W. 7th St.
- **Portland, OR.:** 2222 SW Salmon St.
- **San Francisco, CA.:** 2000 Folsom Blvd., JI 3-1372
- **San Francisco, CA.:** 2000 Folsom Blvd., JI 3-1172
- **Seattle, WA.:** 2000 Folsom Blvd., JI 3-1172
- **Tampa, FL.:** 2000 Folsom Blvd., JI 3-1172
- **Philadelphia, PA.:** 2000 Folsom Blvd., JI 3-1172

PHOENIX, ARIZ.: Brooks-Feegar Assn.
Salt Lake City, UT: Brooks-Feegar Assn.
San Antonio, TX: 349 W. First St.
Scottsdale, AZ.: Brooks-Feegar Assn.
Westlake, OH.: WH 6-2111
San Diego, CA.: 349 W. First St.
San Diego, CA.: Brooks-Feegar Assn.

RFL Designers ...

Continued from p 5

... of airborne weapon systems was described by R. C. Dyer, Boeing Co., Seattle. The two main design problems that had to be solved were generating, externally, audio transients of the same shape as those observed in the systems under test, and providing enough power to inject the transient into the power lines of the system.

The generator has an available transient power output of 400 w on a given line and was said to be capable of producing transient shapes adjustable over a wide range. It consists of three functional units: a signal generator, an ac modulator, and a dc modulator. The signal generator synthesizes the desired transient shapes by integration and differentiation of rectangular pulses, using circuits with variable time constants, Mr. Dyer said.

Injection of the transients directly into power lines was chosen because it permits checking of all maximum susceptibility points without analyzing the design to estimate the location of these points. **■ ■**

Inexpensive Photo-Glass Circuits Stir Trade Talk

The passive portions of small computer-type circuits are being bought at unit prices as low as $1 by a small California company. The recent development has attracted considerable attention from defense contractors.

The manufacturing method consists of photographically developing resistors, capacitors, and conductor patterns on glass substrates. The technique was developed by Intellux, Inc., Santa Barbara, Calif.

Among the companies reported to be investigating the photographic method are North American Aviation, Inc., Los Angeles; the Naval Ordnance Laboratory, Kearfott Div. of General Precision, Inc., Little Falls, N. J.; and Litton Industries, Beverly Hills, Calif.

Intellux says it can deliver units at the rate of thousands per week on short notice. Intellux supplies the glass substrate with 14 passive elements. The 10 active elements
Exploded view of Intellux's photographic process shows the relative positions of the glass substrate, the top and bottom conducting layers, the resistive layer, the dielectric films and capacitor plates, and the final glass seals. Research is under way to include thin-film semiconductor devices in the process.

are added by the customer.

Intellux says the photographic approach will enable it to control the shapes of the thin-film circuits, and therefore the electrical parameters, very closely. The company also says that it can add more glass over the final substrate to achieve a true hermetic seal for the whole module.

The next steps in the process now under investigation at Intellux are the inclusion of thin-film silicon diodes on the substrate and, after that, inclusion of transistors.

Substrate for this flip-flop can be produced for $1 in quantities of several thousand units. The substrate is glass and contains twelve resistors produced by a multi-layered photographic process. The four transistors, two capacitors and six diodes are added afterwards. It is possible to incorporate the capacitors on the substrate and the maker hopes soon to deposit silicon diodes on the substrate. The flip-flop was made for evaluation by North American Aviation.

Where ever temperature variations affect the "percentage" of heat required to maintain efficient operation, the new Bulova proportional control oven eliminates temperature cycling, RF interference noise, surges of oven power, and the drift of temperature differential due to aging. The oven temperature can be set to an accuracy of ±.5°C and has a range of +40°C to +125°C.

The stepless control of the Bulova proportional system is accomplished by two highly stable Bulova developments: (1) a temperature sensitive bridge, and (2) a transistorized amplifier supplying power proportional to the output of the bridge. Thus any unbalance created by resistance changes is amplified and conveyed to the heater... which receives only enough power to take care of heat loss with a .01°C stability or better. DC proportional control is employed to eliminate any interference of oven control circuitry with the internal circuitry.

If you'd like more information on how the Bulova proportional control oven can extend the life of your units to equal that of the solid state components used, write Department 1771, Bulova Electronics, Woodside 77, New York.

BULOVA

PROPORTIONAL

SILICON TRANSISTOR

CONTROLLED OVEN
New in Integrated Circuits: Transistor-Coupled Logic

Experimental Design Replaces Diodes, Resistors as Couplers in Digital Fan-Outs; Technique Paves Way to High-Yield Modules, Yet Simplifies Production

T. E. Mount
West Coast Editor

TRANSISTOR-COUPLED logic circuits, (TCLs), now under development, are said to show promise for inexpensive, fast, integrated-circuit modules. The new technique uses transistors, instead of resistors or ultrafast diodes, to couple input-transistor switches to the output fan-outs in digital circuits.

James L. Buie, project engineer at Pacific Semiconductors, Inc., Culver City, Calif., pointed to the significance of his company’s coupling-transistor development for integrated circuitry. Unlike direct-coupled (DCTL) or resistance-coupled logic, (RCTL), he said, transistor parameters need not be held to extreme tolerances. In DCTL or RCTL, V_{o} of the output transistors must be nearly identical to avoid “current hogging” by one of the transistors.

Diode-coupled logic avoids this problem, but to make an integrated circuit that contains both fast diodes and transistors requires certain production compromises.

Simple Process Expected To Improve Reliability

With coupling transistors, logic modules could be produced in high-yield batches since manufacture is simplified, Mr. Buie asserted. Super-close tolerances need not be held in diffusing sets of transistors, and there is no need for diffusing fast diodes on the same silicon slab with the transistors, which require different temperature sequencing.

Other advantages of coupling-transistor techniques include wider design and production latitude, level shifting so the integrated circuits can communicate with other types of logic schemes and fast coupling.

According to Mr. Buie, TCL circuits simulated in the lab, using conventional components, allow 1-K resistors to be connected indiscriminately from one terminal to another without causing the circuit function to fail. Fault currents due to degradation of the transistor would not cause the inte-
grated circuit to be out of specification. Mr. Buie thinks.

In conventional diode-coupled logic, fault currents of much less than 1 ma will cause the output transistor switch to turn on.

Typical TCL logic levels are 0.2 and 0.8 v. The output of any module, however, could communicate directly with a system requiring logic levels of up to 3 v, and at the same time drive other integrated circuits connected to the same terminal.

Fast Coupling Claimed

For TCL Circuitry

TCL is said to be a relatively fast method of coupling, equal to or better than propagation times observed with very fast diodes. The coupling transistor is in the “always-saturated” state. In switching, the only internal effect is a redistribution of excess carriers in the base region, Mr. Buie explained.

“The charge storage in the collector region—which is the real problem in saturated switching for the diffusion silicon transistor—is either not affected or only slightly so,” he said. Propagation time is less than 1 nsec.

Development of TCL leads to more sophisticated kinds of coupling-transistor logic. By diffusing on one or more extra emitters during manufacture, logic circuits like that shown in the diagram are possible. In this NAND circuit only one resistor need be deposited or diffused for two transistors. “We end up with twice as many transistors as resistors,” Mr. Buie said.

The coupling-transistor approach shows so much promise for integrated circuitry that Pacific Semiconductors is planning to market TCL modules, as well as take orders for conventional integrated circuit modules, when development is complete.

New PHILCO matched Silicon Choppers

Philco SPAT* choppers, industry’s most reliable telemetry multiplex switches, assure highest fidelity in multiplexing data from a missile’s many sensors such as strain gauges and thermocouples—data that is the only legacy of a multi-million dollar missile flight. For this data is used in post-flight simulations which, in effect, make the missile “fly” twice.

Philco’s missile-proved SPAT choppers are produced on industry’s only fully-automatic chopper transistor production line—to assure the uniformity so important to matched pairs.

Only Philco Choppers offer you these 6 advantages:

1. Low Offset Current—1 nanoampere maximum;
2. Low Offset Voltage—50 μvolts maximum (for the matched pair);
3. Guaranteed Match over a temperature range—25° to 85° C;
4. Guaranteed maximum offset voltage for a wide range of base current values;
5. High gain-bandwidth product;
6. Meet all requirements of MIL-S-19500B.

Typical Chopper Circuit

![Typical Chopper Circuit](image)

2N2185 Characteristics

- Emitter Voltage, V_{EY} = 30 volts
- Collector Cutoff Current I_C (at V_EY = 100) = 0.9 mA max.
- Emitter Cutoff Current I_E (at V_C = 100) = 0.9 mA max.
- Offset Voltage V_{OC} (at V_EY = 100) = 1.5 mA max.
- Offset Voltage V_{OC} (2N2187 Matched pair, I_E = 1 ma at all temperatures from 25°C to 85°C) = 50 μA max.

To assure maximum reliability in systems for telemetry, multichannel communications, analog computers, and other low level data handling applications, be sure to specify Philco SPAT choppers. There’s a Philco SPAT chopper for every application. You can choose from seven types (2N2181 through 2N2187).

For complete data, write Department ED 112261.

Philco Corporation Trademark for Silicon Precision Alloy Transistor
Look to Parsons for Performance in
DISTANCE MEASURING EQUIPMENT

PARSONS ELECTRONICS has extensive experience in the design, development, manufacture, and installation of Miss-Distance Indicators and Distance Measuring Equipment— including active (PARAMI) and passive (PARPAS) systems for missile evaluation and scoring. This experience, coupled with a continuing research program, will provide systems to meet widely diversified and rapidly changing requirements. Let Parsons help you with your distance measuring problems by providing TOTAL CAPABILITY— SINGLE SOURCE RESPONSIBILITY.

For technical information, write:
THE RALPH M. PARSONS COMPANY
ELECTRONICS DIVISION
151 South De Lacey Avenue, Pasadena, California

NEWS
SIGNIFICANT BITS
Important news items for electronic designers written for fast scanning.

Efficiency of present digital-circuit approaches creates serious problems for micro-miniature circuits of the future because of expected heat-dissipation problems. Richard H. Baker of MIT’s Lincoln Laboratory warned at the recent Electron Devices Meeting in Washington (see ED, Nov. 8, p 4). For example, he said, core memories with inputs in volts and amperes give outputs in mv and ma—efficiency: 10⁻⁴. Thin film memories with inputs on the same order give outputs in mv and ma—efficiency: 10⁻⁵. Low-gain devices are used for both amplifiers and detectors—particularly detectors where resistors are sometimes used. He suggested that in space, where computation speed is usually not critical, switching time could be traded for power dissipation in digital designs.

All parts of the horizon will be covered by an 85-ft-diam tracking antenna now rising in College, Alaska. The X-Y mounted antenna will be used by the National Aeronautics and Space Administration for Project Nimbus, a meteorological satellite experiment. The antenna, made by Blaw-Knox Co., Pittsburgh, is 110 ft. high, weighs 200 tons and has a 6,000-sq-ft parabolic aluminum reflecting surface. The surface of the antenna will allow

ELECTRONIC DESIGN • November 22, 1961
operation to about 10 Gc. The antenna is expected to be completed next spring.

Sales of Hewlett-Packard Co. products in Canada will be handled by a new sales company, Hewlett-Packard (Canada) Ltd. Principal office, warehouse and service facilities will be in Montreal, with branches in Ottawa and Toronto. The operation will begin Jan. 1. The company has been using an independent sales representative in Canada.

Closed-Circuit TV Teaches 2,000 at Air University

A closed-circuit television system, capable of providing instruction simultaneously to 2,000 officers at 165 viewing locations has been placed in operation at the Air University, Maxwell Air Force Base, near Montgomery, Ala.

The system includes a new television tape recorder developed by Radio Corp. of America. Another feature is a talk-back facility, which allows students to relay questions to the TV lecturer while he is appearing before the studio cameras.

In addition to the monitors, the intercommunications unit and tape recorder, the closed-circuit layout includes four RCA TK-11 image-orthicon TV cameras, two audio consoles, two multiplexing film systems, switching and distribution equipment and "off-air" pickup facilities.

New from Sprague!

HIGH-FREQUENCY TRANSISTORS...

TYPE XT-200

80% Oscillator Efficiency with 1.6 Watts Output!

As a high-frequency power amplifier or oscillator, Sprague's New XT-200 makes possible significant performance improvements in communications circuitry. This remarkable transistor features typical f, of 1 Kmc, and power dissipation of 1 watt at 25°C case temperature. Low r, permits significant reduction in power losses.

The XT-200 is another technological break-through resulting from Sprague's exclusive ECDC* (Electro-Chemical Diffused Collector) process. This TO-9 encased transistor is now available for engineering evaluation and prototype designs.

Here Are Some Significant Characteristics:

- Oscillator Efficiency
 - at 160 Mc, 0.5 watt output: 50% typ.
 - at 27 Mc, 1.6 watt output: 80% typ.

- f, at Vce = -10V,
 - Ic = -80 mA

- Amplifier Power Gain
 - at 160 Mc, 0.3 watt output: 8 db typ.
 - at 160 Mc, 1.0 watt output: 4 db typ.

- Vce at Ic = 100 μA

- r, Ic, at Vc = 10V,
 - Ic = 20 mA, f = 46 Mc

*trademark of Sprague Electric Co.

For application engineering assistance, write Product Marketing Section, Transistor Division, Sprague Electric Co., Concord, New Hampshire.

NEWS

FAA Forms Systems-Design Team

Group to Implement Project Beacon Suggestions, Seek Better Weather Data and Airport Standards

Robert Haavind
Chief News Editor

Rapid expansion of support systems for national civilian air traffic is promised by the formation of a new Systems Design Team within the Federal Aviation Agency, and by proposals made in the recent Project Beacon report.

A significant proposal made by the Project Beacon task force, appointed by Najeeb E. Halaby, FAA administrator, was the integration of present SAGE air defense radars and communications links into the civilian air-traffic-control system. SAGE computers and displays, however, were called inadequate for handling traffic needs in high-density terminal areas.

The evolution to an integrated national air-traffic system will be administered by the new Systems Design Team. This group, presently being formed within the FAA's Aviation Research and Development Service, is headed by Albert Brown, formerly chief of plans for the R&D Service.

The team will consist of about 14 specialists—predominantly engineers. For example, Mr. Brown told ELECTRONIC DESIGN, men skilled in such diverse fields as management, meteorology, aeronautics, communications, navigation, flight rules and procedures, and data acquisition will be in the systems group. Mr. Brown pointed out that studies of future air-traffic control have not been implemented.

Problems other than air-traffic control to be handled by the new Systems Design Team include improved operational standards for airports and a nationwide Weather Data System.

Steps will be taken to improve facilities at airports that do not meet the new standards.

Improved weather sensing, prediction and data dissemination are among the requirements.

W/L on target!

New METOHM line exceeds MIL-R-10509D

As a supplement to the unexcelled VITROHM resistors, Ward Leonard now offers to designers of commercial, military and industrial electronic equipment a line of molded metal film precision resistors, designed and tested to exceed the requirements of MIL-R-10509D, characteristics B, C and E. You can stake your reputation on Ward Leonard resistors.

Available in 1/4, 1/2 and 1/2 watt sizes, W/L METOHM precision resistors feature the highest degree of built-in reliability and operating stability. Temperature coefficients, over the range -55°C to +175°C, may be as low as ±25 parts per million. Standard tolerance ±1%. Tolerances down to ±0.1% on special order.

<table>
<thead>
<tr>
<th>METOHM TYPE</th>
<th>MIL EQUIVALENT</th>
<th>RATED WATTS</th>
<th>OHMIC VALUES</th>
<th>MAX. VOLTAGE RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>WL 60</td>
<td>RN 60</td>
<td>1/4</td>
<td>500K</td>
<td>250 V.</td>
</tr>
<tr>
<td>WL 65</td>
<td>RN 65</td>
<td>1/2</td>
<td>1 meg.</td>
<td>300 V.</td>
</tr>
<tr>
<td>WL 70</td>
<td>RN 70</td>
<td>1/2</td>
<td>1.5 meg.</td>
<td>350 V.</td>
</tr>
</tbody>
</table>

Write for complete specifications and a list of distributors. Ward Leonard Electric Co., 77 South Street, Mount Vernon, New York.

Plan Position Data Display (PPDD), center, now being evaluated by the FAA is designed to display data such as flight identification and altitude from a computer along with a radar blip. This computer data, now obtained from flight plans, would come from beacon transponders on the aircraft under the planned air traffic system. General Precision Laboratories, Inc., designed this display unit.
Project Beacon Plans

Several important policy shifts in air-traffic control were recommended by an eight-man Project Beacon task force in the recently released "Study of the State and Efficient Use of Airspace." Some of the recommendations important to electronic equipment designers are:

- All aircraft should carry $500 short-range transponders for altitude data, flight identification and blip enhancement. These would work between airports as well as in terminal areas.
- Displays should show flight numbers and altitude beside blips.
- SAGE computers should not be used. Commercially available, rather than specially designed, computers are preferable.

The report estimates that a system based on these recommendations could be operational in five years, at a cost of $500 million for equipment. R&D costs could be handled by present budgets, the planners said.

of the proposed Weather Data System. Mr. Brown noted that aviation requires weather information on a relatively short-term basis—that is the 0- to 2-hour periods—in contrast with the longer-term needs of the general public. Also, he said, localized, rather than area-wide, predictions are needed.

The FAA is now evaluating automatic weather stations that sense conditions and broadcast data at regular intervals, Mr. Brown said. Computers already are being used to some extent.

Dissemination of information to pilots in flight is another important step in this program, Mr. Brown explained. This data will be transmitted from airports and picked up by VOR sets aboard aircraft in the vicinity.

Target date for the complete weather network is 1964, Mr. Brown said, but portions will become operational as they emerge from development.

Another CMC First...

100 mc SOLID STATE Universal Counter-Timer

KEY SPECIFICATIONS

FREQUENCY
0 cps to 100 mc

TIME INTERVAL
0.02 sec to 100 sec

PERIOD
0 cps to 10 mc

INPUT SENSITIVITY
1.0 V rms

GATE TIMES (FREQUENCY)
1 usec to 10 sec in 8 decade steps or external. Reads in cps, kc, mc.

FREQUENCY OUTPUTS
0.1 cps to 1 mc output in decade steps

ACCURACY
±1 count ± stability
±10 nanosecond ± stability

STABILITY
Short term: ±1 part in 10^4
Long term: within 5 parts in 10^4

PRICE, F.O.B. FACTORY
$3,950; Inline readout $208 extra

* SEVEN BASIC FUNCTIONS, including dc to 100 mc frequency measurements without heterodyning techniques * Time interval measurements with 10 nanosecond resolution * Straight or totalizing counting * Frequency ratio measurement * Period measurement * Sensitivity better than 1.0 V rms * Power consumption 50 watts * Decade countdown time base (no adjustments necessary) * Two year free service warranty * No vacuum tubes * Connector on rear providing standard 1-2-4-8 BCD output for operating printer, punch, etc.

Model 728B is a production unit, not a showpiece prototype. Demonstrators are now in the hands of CMC engineering reps. Call, wire or write to arrange a demonstration. Complete technical data plus a copy of our new 20 page short form catalog is yours for the asking.

CIRCLE 13 ON READER-SERVICE CARD
NEW!
SYLVANIA
2N781
2N782

epitaxial
GERMANIUM
mesas

SYLVANIA 2N781
...world's fastest PNP germanium switch!

<table>
<thead>
<tr>
<th>CONDITIONS</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{	ext{BE}} = 0.5 \text{ V}$, $I_{B} = -1 \text{ mA}$</td>
<td>$t_{C} = 60 \text{ nsec}$</td>
</tr>
<tr>
<td>$V_{	ext{CE}} = -3.5 \text{ V}$, $R_{C} = 300 \text{ Ohms}$</td>
<td>$t_{20} = 20 \text{ nsec}$</td>
</tr>
<tr>
<td>$I_{	ext{BA}} = 0.25 \text{ mA}$</td>
<td>$t_{50} = 50 \text{ nsec}$</td>
</tr>
</tbody>
</table>

...features unusually low $V_{	ext{CE}}$ (sat)

<table>
<thead>
<tr>
<th>CONDITIONS</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{C} = -10 \text{ mA}$, $I_{E} = -1 \text{ mA}$</td>
<td>-0.16 V</td>
</tr>
<tr>
<td>$I_{C} = -100 \text{ mA}$, $I_{E} = -10 \text{ mA}$</td>
<td>-0.25 V</td>
</tr>
</tbody>
</table>

SYLVANIA 2N781—a remarkable advance in epitaxial mesa techniques—is a superior switching device featuring speeds previously unattainable with a germanium transistor. Too, it provides exceptionally low saturation voltage at all current levels.

SYLVANIA 2N782, electrically similar to the 2N781, is specifically designed for service where high speed switching, low saturation voltage and economy are prime design requirements.

SYLVANIA 2N781, 2N782, utilize the TO-18 package with the collector internally tied to the case. Both are products of highly automated Sylvania manufacturing techniques and possess exceedingly uniform electrical characteristics.

IN STOCK NOW! For immediate delivery call your Sylvania Franchised Semiconductor Distributor or contact your Sylvania Sales Engineer. Technical data available from Semiconductor Division, Sylvania Electric Products Inc., Dept. 1811, Woburn, Mass.

NEWS
Crystal Grower Makes Production Flexible

A multi-purpose crystal-growing machine developed for the Air Force by ITT Federal Laboratories is reported to be capable of producing a variety of quality single crystals, ranging from semiconductors, to alumina and other oxides.

With the new grower, germanium and silicon crystals can be made by the Czochralski, float-zone or horizontal zone-leveling technique. Alumina crystals—such as rubies and sapphires—and ferrites—such as garnets—can be made by the newly developed Bauer-Marino method. This process uses high-frequency (50 mc) induction heating instead of conventional flame fusion.

Designed for the Air Force Cambridge Research Laboratories by ITTs' Nutley, N.J., division, the crystal grower has provision for accurate rotation and pulling of a semiconductor crystal from a melt for use with the Czochralski method. The crystal ends also can be made to rotate at different rates for the float-zone technique. A container permits growth of larger crystals with the horizontal zone-leveling process, which is similar to float-zoning.

In the Bauer-Marino method no gas is used for heating, so there is less chance of impurities combining with the growing crystal, Fred A. Muller, director of the ITT Basic Sciences Laboratories, explained.

The grower has provision for 450-ke, 5-mc and 50-m induction heating.

Four crystal-growing techniques, including the newly developed Bauer-Marino method for growing rubies and sapphires, can be used with ITTs multi-purpose crystal grower. Sometimes called "flameless fusion," the Bauer-Marino method uses 50-mc induction heating. Semiconductors can be grown by Czochralski, float-zone or horizontal zone-leveling processes.
EIA Seeks Standardization Of Wirewound Resistors

A program to standardize wirewound resistors has been announced by the Electronics Industries Association. The EIA appealed to the industry to aid in the project.

The study also will emphasize implementation of high-reliability specifications in accordance with the Defense Dept. report, "Parts Specifications Management for Reliability," also known as the Darnell Report.

Companies can contact the EIA group by writing to J. Howard Schumacher, EIA Engineering Dept., 11 W. 42nd St., New York 36, N.Y.

Snap 10A Nuclear Unit To Generate 500 W

Snap-10A, the most advanced unit developed under the Snap-reactor concept, will have an output of 500 w and be suitable for use in communication satellites. This was reported by A. B. Martin, vice president of Atomics International Div. of North American Aviation, Inc., at the recent Atomic Forum in Chicago.

Snap-10A will be a completely static reactor-thermoelectric unit with a life expectancy of about one year. Like the other units in the Snap family, its performance characteristics will be extendable well beyond initial figures, Mr. Martin said. Its reactor core consists of a bundle of homogenous uranium-zirconium-hydride fuel moderator rods, the high hydrogen content of which is mainly responsible for the compactness and lightness of the core.

External Control System Simplifies Design

The reactor is controlled by drums in the beryllium reflector, rather than by conventional in-core control and safety elements.

In use, Snap-10A would ride on the top of a communications satellite. Thermoelectric converter units would ride between the reactor and the satellite body. The thermocouples would be connected in series-parallel to produce the required 500 w and to provide redundancy for reliability.

Temperature and power density of the reactor are sufficiently low that the reflector-control drums are needed only for startup of the reactor. After equilibrium is reached, the system operates as a completely static system.
Pulse Counters, Air Samplers Unveiled at AtomFair

AtomFair '61, the exhibit of nuclear instruments and equipment held in conjunction with the winter meeting of the American Nuclear Society and the Atom Forum, Nov. 6-9, reinforced evidence that designers of nucleonic equipment need take a back seat to no one. Latest design features, transistorization, remote control, modular construction and fine styling were apparent in the equipment displayed at the Conrad Hilton Hotel, Chicago.

Remote monitoring system (left) for atmosphere-borne radioactive particles draws in about 1 cu ft of air per min and counts pulses of radiation to indicate intensity in microcuries per cc of air. Two sets of scintillators and counting equipment are included for reliability of operation and accuracy of readings. Small indicator and alarm unit at top right is for monitor office. Range of the air monitor, made by Eberline Instrument Corp., Santa Fe, N. M., is from 0 to 2,000,000 counts per min.

Air sampler (right) for laboratory and reactor environments monitors alpha, beta and gamma radiation at count rates of 50 to 50,000 per min. New circuitry provides, for first time, a reading of the alpha-to-beta-and-gamma ratio. Transistorized unit is being produced by Nuclear Measurements Corp., Indianapolis, Ind.

Remote handler (above) proposed for use under water has four arms: two for holding itself in place, two for working. A propeller for hovering and for up-and-down motion rotates within the circle of fuel tanks. Two TV cameras and arc lights are at center and at right of unit, which would be about 6 ft high. System is under study at Hughes Aircraft Co., Culver City, Calif.
First transistorized 800-channel pulse-height analyzer retains up to a million counts per channel in a ferrite-core memory. The ST800DM, made by Victoreen Instrument Co., Cleveland, Ohio, accepts up to 50,000 pulses per sec per input, and up to 8 detector inputs. Main feature is said to be fast and linear analog-to-digital conversion circuitry.

Modular counting system consists of, from left, power supply, amplifier and discriminator, 6-decade preset count scaler, and 5-decade timer. System was designed by Radiation Instruments Development Laboratory Inc., Melrose Park, Ill., so that interchangeable modules could be plugged in. Maximum continuous count rate of scaler is 1 mc with five-decade preset.

1/4" multiplied by the number of capacitors used on your circuit boards is the amount of space you can save by substituting "VY" Axial-Radial Capacitors for the axial units you may now be using.* Leads are inboard the body in radial configuration, yet may be moved to a straight axial position when required. Available in four sizes, 0.5 to 5600 muf, 300 and 500 v ratings.

"Assuming minimum allowance of 1/8" for lead bend at each end of body for axial capacitors

CONFORMS TO MIL-C-11272B

*CIRCLE 17 ON READER-SERVICE CARD
Simplify all your Electrical Connections with Phelps Dodge Solderable Magnet Wires!

Four wires—with low temperature solderability—which permit direct soldering of connections, thus eliminating need for stripping of insulation:

Sodereze®—The Phelps Dodge Polyurethane film with excellent electrical properties. Ideal for layer wound coils, I.F. coils and hundreds of other applications where solderability is required.

Nyleze®—Nylon over Sodereze—Class B. Ideal for random wound coils, armatures, Class B transformers and the difficult winding applications.

Grip-eze®—A special frictional surface over Sodereze which prevents end-turn fall down. Ideal for "basket-weave" and "universal" wound coils.

Reliable electrical connections are assured with these Phelps Dodge solderable wires. Their uniformly high quality permits use on automated, as well as manual soldering lines. When used in either operation, these wires offer important overall time and cost savings benefits.

Magnet Wires that Pace the Industry

PHELPS DODGE COPPER PRODUCTS CORPORATION
INCA MANUFACTURING DIVISION FORT WAYNE, INDIANA

NEWS

Adaptive Control System Tested

Adaptive flight-control system, designed for flight test in the hypersonic X-15, gets final check by researcher at Minneapolis-Honeywell's Aeronautical Div. Constant-response performance to command inputs is obtained by use of a "model," or network analog of ideal response performance. Vehicle response follows the model output. Basic damper system is dual redundant; outer loop modes are not redundant. Checkout console is at left.

Standard Ensures Uniformity In Shock-Testing Processes

After three years of research by the Air Force and industry, a standard has been issued specifying the design, construction and operation of a medium-impact shock-testing device.

According to the American Standards Association, which has approved and published the specification, the shock-testing process will provide industry and the government with uniform procedures for determining shock characteristics.

The device itself is of the drop-table type and can test loads ranging from 150 to 400 lb. The load is tested by dropping it from a height of up to 13 in. into a sandbox at the base of the machine.

The Acoustical Society of America and the American Society of Mechanical Engineers served as sponsors of the committee that developed the standard. C. E. Grede of the California Institute of Technology was committee chairman.

Copies of the standard (S2.1-1961) are available for $1.00 from the American Standards Association, 10 E. 40th St., New York 16, N. Y.
Micromin Digital Computer Uses Semiconductor Net

A microminiature digital computer, using semiconductor logic networks, rather than individual components, has been built by Texas Instruments Inc., Dallas, for the Air Force.

The experimental model, having a total volume of 6.3 cu in. and weighing 10 oz, uses 587 digital solid circuits, each formed within a small bar of silicon material. The binary computer is a serial, fixed-point machine with an operand word length of 10 bits, plus sign. The computer uses synchronous logic, being timed from an internal 100-ke clock.

Flip-Flops, NOR Gates, Logic Drivers Are Used

Three types of semiconductor networks are used in the tiny computer: flip-flops, NOR gates and logic drivers. The individual hermetically sealed semiconductor networks, measuring 0.250 x 0.125 x 0.030 in. are assembled by welding 8 to 16 of them together in a stack and then encapsulating the stack to form a rigid module.

The computer consists of 17 modules. Each module contains an average of 12 networks, occupies approximately 0.057 cu in. and weighs about 0.04 oz. Total power dissipation of the computer is 16 w, according to the company.

The experimental computer was developed as a part of a molecular electronic program under the technical guidance of the Electronic Technology Laboratory, Aeronautical Systems Div.

Module, containing a dozen solid circuit semiconductor networks, is plugged into tiny computer, insert. At right, the module stands next to a computer containing 8,500 components with conventional circuitry that performs the same functions.
WASHINGTON REPORT

NASA BEATS PENTAGON TO THE DRAW

The National Aeronautics and Space Administration has taken the New Frontier play away from the Defense Dept. in an R&D policy swing from private industry to government laboratories (See ED, Nov. 8, p 20). Glamorous—and aggressive—NASA is not waiting for the Pentagon to get things moving. The space agency is embarked on a nation-wide drive to upgrade its own force of scientists, designers and engineers—possibly at the expense of the Defense Dept. itself.

While Defense Secretary Robert S. McNamara and Dr. Harold Brown, the Pentagon research chief, mapped lobbying plans to ask Congress next year for higher pay for in-house personnel, NASA's administrator, James E. Webb, went to the White House. In the face of an administration order to all federal departments and agencies to cut down on hiring, Webb came away with President Kennedy's approval of a recruitment campaign to add 2,000 specialists to NASA payrolls at salaries running to $21,000.

"All of our organizations will participate in the recruiting drive," Webb announced—and they simultaneously posted specific personnel needs in Operation Upgrade. "Special teams composed of NASA scientists will visit virtually every area of the U. S. in coming weeks to interview candidates," Webb said.

NASA employment office doors swung wide open at Ames Research Center, Mountain View, Calif.; Flight Research Center, Edwards, Calif.; Goddard Space Flight Center, Greenbelt, Md.; Langley Research Center, Hampton, Va.; Lewis Research Center, Cleveland; Marshall Space Flight Center, Huntsville, Ala.; Wallops Station, Wallops Island, Va.; and Manned Spacecraft Center, Houston.

All electronic space-age fields—data systems, measurement and instrumentation systems, experimental facilities and equipment, flight systems, etc.—will be tapped by NASA. In want-ad style, Webb made this pitch: "Aerospace technology career opportunities with NASA offer interesting and important positions in research, development, design, operations, and administration."

Webb said "recent science graduates who are just beginning their careers" will be wooed in particular to take government, instead of private, jobs. McNamara and Brown were given no announced assurances that specialists in Defense Dept. establishments would be off limits to NASA recruiters. In fact, they are bracing themselves for NASA raids.

HUMPHREY PROMOTES MEDICAL ELECTRONICS

A "vast expansion" in federally financed work on applications of electronics to medical science has been called for by Sen. Hubert H. Humphrey (D, Minn.). Issuing a progress report by a government operation subcommittee, which he heads, the assistant Senate Democratic leader said there are "impressive vistas" in medical electronics, which are barely seen now. Humphrey urged more budget
money for research on artificial organs, patient-monitoring equipment and other electronic instrumentation.

R&D GOLIATHS FACE SMALL-FIRM COMBINE

The Small Business Administration has matched a David against the Goliaths in the field of prime government R&D contracts. In a precedent-making move to encourage small companies to take on big ones, the SBA has officially approved formation of the first small business combine specifically to compete for defense R&D work in electronics and related areas.

GOVERNMENT GRANTS BYLINES, TOO

The Federal Council for Science and Technology, a White House office set up in 1959 to coordinate government-supported research projects, is adding some fringe benefits to new contracts. It has adopted a government-wide policy of paying “page charges” levied by nonprofit journals of learned societies for printing research reports, which otherwise might be filed and forgotten.

The council thus gave official recognition to a tradition in scientific circles—that a research project is not really entitled to notice until its results have been published under a proper imprimatur. Not all scientific journals charge authors for printing reports, but those that do collect an average of about $20 per page. This can run into money for young scientists who need space to tell what they have been doing.

Under the new policy, a token allowance for page charges will be written into research grants. The amount will be subject to adjustment after a final report is written and submitted to a journal—but there will be ground rules to make sure that the publisher assesses printing costs with an even hand.

Another innovation in communications between scientists has been proposed by a Massachusetts Institute of Technology research team. After two years of study for the Commerce Dept.'s Office of Technical Services, the team reported that what is needed is a “science information network” utilizing newspapers, radio and television. This would speed “the flow of information between originator and user,” the MIT researchers said. Issuing their report, the OTS noted dryly that “actual construction” of such a network was left “in the realm of speculation.”

CAPITAL CAPSULES:

New at the Bureau of Standards: an electronic differential analyzer to simulate melting in small-diameter tungsten rods; work on superconducting magnets with field strengths higher than any previously known; and a tabulation of intensity values for 70 chemical elements in a wavelength range of 2,000 to 9,000 Å.

Computers have been given the job of speeding the Pentagon's $93-million fallout-shelter survey. The computers will do the job of 2,000 to 3,000 architect-engineer companies, which the Pentagon first thought it would need.

PULSE-FORMING NETWORKS

FROM WATTS

to MEGAWATTS

…and everything in between!

- When it comes to pulse capacitors and pulse-forming networks, many complexities in parameters and design factors must be considered. These specialized units must be designed and manufactured by a specialized organization. And because Sprague maintains a highly-technical special engineering section devoted exclusively to pulse capacitors and networks, it has been, from the very beginning, a major supplier of these complex units for radar equipment (ground, marine, aircraft, missile), tube testing, and similar pulse circuit applications.

- This special engineering section performs four important functions: One group designs custom units in accordance with required parameters. Another group builds pulse capacitors and networks to these precise specifications. In another area, a group of specially-trained field engineers provides application assistance wherever needed. And yet another independent group works toward the future developing new materials, new design concepts, and new techniques for manufacture.

- This concentration on pulse capacitors and pulse-forming networks has enabled Sprague to introduce product improvements such as heliarc sealing of cases, rugged alumina bushing assemblies, Fabmika® dielectric, and improved hermetic sealing of closures.

Sprague and **®** are registered trademarks of the Sprague Electric Co.

CIRCLE 21 ON READER-SERVICE CARD
cores: ordered by 3:00

sent by 5:00

Even if we receive it as late as three in the afternoon, your order for stock tape wound cores is on its way to you before your night watchman starts his rounds.

Neat trick? Yes . . . and you can take part of the credit. The reason: your past orders (and those of purchasing agents, supervisors and design engineers like you) have been studied. A five-year record indicates generally what items should be stocked at Butler, Pasadena and New York. (We call this a "customer controlled" inventory.) Teletype between the three depots permits shipment from an alternate point on the rare items in the otherwise easy-to-fill order.

What's in stock is as varied as a smorgasbord. Take your pick . . . there are Permalloy 80, Supermalloy, Orthonol® and Magnesil®. There are cores with G.V.B. finish (guaranteed voltage breakdown, if you don't like initials), anodized aluminum boxes and phenolic boxes. There are large sizes and small sizes. There are cores carefully matched in pairs and quads.

What's more, all cores are tested to our published guaranteed limits, using AIEE standard test procedures.* Then they go on the stock shelf.

Want specifics? There's a lot more information on what's in stock at Butler in the regularly published (bi-weekly) stock list we send out to purchasing agents and engineers who want to keep up-to-date. You get your copy by writing Magnetics Inc., Department ED-95, Butler, Pa.

*CCFR Test per AIEE #432

NEWS

Standardized Testers Imminent—Air Force

Procurement Requirements for 45 ATE Modules Are Due Early in '62

PROCUREMENT requirements for 45 standard modules to be used as building blocks for automatic test equipment are scheduled to be announced by the Air Force early in 1962, ELECTRONIC DESIGN has learned.

Specifications for the modules are being drawn up at the Dayton Air Force Depot, according to Air Force officials. The next step will be the preparation of documentation for procurement offices, which will write requests for quotes. This should be completed in January or February, 1962, a spokesman said.

The 45 modules described in the specifications are said to satisfy up to 90 per cent of Dept. of Defense electronic-equipment test requirements. They will be designed to plug together in "tinkertoy" fashion to create automatic test equipment for missile and aircraft electronics.

When the missile design is changed or becomes obsolete, the test equipment could be dismantled and the modules returned to the shelves of a supply "library."

The first major effort at standardization in the ATE field, the Air Force program will call for black boxes with standard electrical input-output characteristics and physical configuration to be supplied in "service-test quantities" to Dayton Air Force Depot. The depot will serve as a pilot-shop to work out any bugs in the building-block concept.

From there, the program will be extended to the Air Force Logistics Command at the depot level. The third stage will be to supply field facilities on an Air Force-wide basis, it was learned.

Modules to Comprise Control, Measuring, Stimulus Functions

Functions provided by the standard modules will include programming, comparison, switching, measurement and stimulus functions, Air Force ATE officials said. Programmable signal generators, pulse generators, power supplies, impedance loads and conversion equipment will be included in the procurement list. Exact specifications for the
modules, and identification of their precise functions, have not been made public.

Since each module would have standard electrical and physical characteristics, modules could be procured from any of several competing manufacturers. Each manufacturer would be free to use whatever components or electronic circuits he wanted—within the specified black box. Module cost, with large quantities on order in a competitive situation, will come down, the Air Force thinks.

Additional modules, providing specialized functions required by any given prime equipment, also will be ordered, spokesmen said.

According to John R. Taylor, assistant secretary of defense for installations and logistics and director of maintenance policy for the Air Force, the Air Force is definitely not looking for “universal” test equipment, which may require complex and expensive adapters. Varying needs of different missiles result in much duplication of equipment in adapters.

Reaction to the standardized building-block concept by other military services is said to be favorable. At a tri-service seminar held in Dayton earlier this year the concept appeared to meet with immediate acceptance by all the services according to Air Force spokesmen. ■ ■

Tracker to Guide Moon Shot

This antenna angle-positioning system will be used in controlling the flight of the Surveyor space vehicles and their landing on the moon. The positioning system, developed by Datex Corp., Monrovia, Calif., will provide and record digitally the angular position of the axes of an equatorially mounted radio-tracking antenna. The system also will generate and record time, record Doppler frequency, data condition, and parameter data.

NONDESTRUCTIVE INSPECTION DEVICES SEEK OUT MINUTE FLAWS—help New Departure make better bearings!

One such device is the N/D Ball Scanner. As eagle-eyed instruments, they subject balls coming down the lines to the closest scrutiny. With unfailing consistency, they automatically reject balls having the minutest traces of rust, pits, grind marks, blemishes, and other faults, normally undetected by visual inspection. Result—balls made by New Departure are more defect-free than ever before. Bearings assembled with these balls and used in your products deliver better performance with greater reliability.

Development of nondestructive inspection devices has long been one of New Departure's principal R & D efforts. The Ball Scanner is just one of the existing devices that are already bringing you higher quality and more reliable bearings. Others are still under "wraps," but are destined to bring you even better bearings in the near future.

The advantages of these ball bearings are available to you now. Contact the New Departure Sales Engineer in your area. New Departure, Division of General Motors Corporation, Bristol, Connecticut.
NOVEMBER
22-27 Milan, Italy 5th Conference on Automation and Instrumentation; Federazione delle Società Scientifiche e Techniche di Milano, via S. Tomaso 3, Milan.
26-Dec. 1 New York Mechanical Engineers' Winter General Meeting; Statler-Hilton Hotel; ASME.
29-Dec. 1 Asbury Park, N. J. Communication Wires and Cables Symposium; Berkeley-Carteret Hotel, Communications Dept. of U. S. Army, Fort Monmouth, N. J.
30-Dec. 1 Minneapolis 12th National Conference on Vehicular Communications; Radisson Hotel; PGVC.

DECEMBER
4-6 Orlando, Fla. Aerospace Support and Operations Conference; San Juan and Angebilt Hotels; IAS.
4-8 Bellevue, France International Colloquium on Ionic Bombardment; Bellevue, France. (National Scientific Research Center, 15 Quai Anatole France, Paris 7e, France.
12-14 Washington, D. C. Eastern Joint Computer Conference; Sheraton Park Hotel; IRE, AIEE, ACM.
26-31 Denver Annual Meeting and Exposition of Science and Industry; Hilton Hotel; AAAS.
27-29 Los Angeles American Physical Society Meeting; University of California; APS.

JANUARY
9-11 Washington, D. C. 8th National Symposium on Reliability and Quality Control; Statler-Hilton Hotel, PGRQC, AIEE, ASQC, EIA.
29-Feb. 2 New York AIEE Winter General Meeting and Exposition; New York Coliseum; AIEE.

EIGHT WATT OUTPUT 250mc VHF AMPLIFIER

The diagram above shows a straight forward approach to obtain eight watts output at 250mc with 19db power gain and 30% over all efficiency. The popular 2N1506 and 2N1709 transistors are used in conjunction with the readily available and lower cost PC122 Varicap® frequency multiplier.

© Varicap is the registered trademark of Pacific Semiconductors, Inc.

50 WATT OUTPUT 30mc POWER AMPLIFIER

Fifty watts output at 30mc is obtained in the above circuit. Power gain is 17db, efficiency 60%. PSI Triplet Diffused Planar Transistors 2N1710 and 2N1899 in this application make possible all-transistorized Class C Amplifiers of substantial power. Component values available on request.
PSI triple diffused silicon planar transistors

Stocked in depth by the leading distributor in all major electronic centers. Off-the-shelf delivery at factory prices to 999 units.

ASK ABOUT NEW LOW PRICES!

Pacific Semiconductors, Inc.
12955 Chadron Ave.
Hawthorne, California
Power switching and RF Amplifier Transistor application notes are the result of exhaustive work employing the most advanced power switching and power amplifier transistors available today. They will be valuable additions to your reference files.

Fill out and mail TODAY!

Please send applications notes checked below:

- [] Power Switching Applications
- [] Converter Design
- [] Switching Applications – 2N1899-2N1901
- [] Pulse Driving with 2N1899-2N1901
- [] Transistorized Nixie Drivers
- [] Transistorized Relay Drivers
- [] High Speed Logic Laminar Transistors
- [] Citizens Band Transmitter
- [] RF Oscillators & Amplifiers
- [] Power Transistor Data Sheets
- [] RF Power Applications
- [] Transistor Catalog
- [] General Catalog
DIFFUSED SILICON PLANAR TRANSISTORS

OUTSTANDING POWER SWITCHES!

- Fastest high current switches available
- Highest efficiency power switches available (lowest \(V_{CE} \) (Sat) with low leakage)
- High voltage breakdown

PSI Triple Diffused Silicon Planar Power Transistors in the 10 ampere range (2N1899 and 2N1901 group) are ideally suited for use in light weight, small size inverters and converters requiring unusually high performance characteristics.

PSI Triple Diffused Silicon Planar Transistors in the two ampere range (PT600 and PT601 group) have wide application in thin film–core driver–memory driver circuits because of their fast switching and low saturation features. A single PT600 can replace a half dozen or more 2N697 or 2N1613 transistors in certain circuits. Compare these power switches with any other transistors available today!

For any power transistors application it will pay you to “look first to PSI”!

Split-Focus Grid Device Eliminates TV Image Lines

Television-picture lines are eliminated by a new split-focus grid device that is said to be readily adaptable to existing sets.

The tube eliminates the scanning lines by subjecting the electron beam to a small-amplitude, high-frequency deflection and enlarging it vertically to fill the black areas between information lines.

The output of an oscillator is used to deflect the scanning spot, instead of having it trace a straight path. If the frequency of the oscillator is high enough, the lines blend to give the impression of a thicker line, rather than just one that oscillates.

The new tube was developed by the Electronic Tube Div. of Westinghouse Electric Corp., Elmira, N. Y. In exchanging the new tube for an old one, a plug-in unit would be inserted between its base and the existing socket.

Except for the separate leads from each half of the split electrode, which are brought out at the base of the tube for connection to the plug-in oscillators, the gun structure is conventional.

System Tested at Sea

A new underwater navigation system, developed by the Martin Co. for use by submerged submarines, is being tested aboard an elaborately equipped floating electronic laboratory. James W. Fitzgerald, president of The Geraldines Ltd., owner of the craft, examines some of the gear. Acoustical apparatus aboard includes: an audio-signal generator, one-half octave analyzer, narrow-band analyzer, level recorder, monitory hi-fi speaker system for monitoring, hydrophone, projector, four-channel tape recorder, and POM sound-measuring set.
Illiac II Computer Shaping Up for Tests Next Spring

University of Illinois Expects Giant Asynchronous Machine
With 2-Microsec Add Time to be Doing Useful Work by End of '62

Alan Comeretto
News Editor

Illiac II, the University of Illinois' scientific computer, is expected to be ready for its first system tests next spring.

At that time the arithmetic units, some of the control units, core storage and some tape units should be completed. At present, the repetitive parts of the arithmetic units have been run error-free, the first 4,000 words of core storage are being debugged, and the computer's special buffer memory—or flow gate—is nearing completion. Illinois project engineers expect the computer to be doing useful work by the end of 1962.

The Illiac II is said to be the most asynchronous computer so far devised. Latest performance specifications given for the machine are:

- Multiply time—6 to 8 \(\mu \text{sec.} \)
- Add time—1.5 to 2 \(\mu \text{sec.} \)
- Divide time—15 to 20 \(\mu \text{sec.} \)
- Core cycle time—1.8 to 2 \(\mu \text{sec.} \)
- Access time to fast buffer store—0.25 \(\mu \text{sec.} \)

These figures are for floating-point operations on 52-bit words, of which 7 bits form an exponent representing a power of 4 and 45 bits the fractional part.

Because the university will be the only user of Illiac II, the computer is being built with only 8,192 words of core storage, divided into two units. These will be backed up by 65,536 words of storage on magnetic drums having an access time of 7 \(\mu \text{sec.} \) once in synchronism. Illiac's designers say that computing time will be slowed only 10 or 15 per cent by the lack of all-core storage, and that the saving in cost of hardware more than compensates for this.

One of the basic considerations affecting design of the computer was the inequality in speeds of arithmetic and storage operations. Because of the relative slowness of storage, Illiac II was organized so its programs require as few references to core memory as possible. Also, the core memories are designed to be fast in themselves and to be used in multiplex. To enhance the effects of these steps, fast controls were designed and the arithmetic unit and input-output devices were linked to the core memories. The design objective was to make the operating time for all devices roughly equal and to run them concurrently.

To minimize access to core storage, Illiac is provided with a compact order code, fast storage of short loops, storage of intermediate results through use of a fast buffer and an organization that permits concurrent operation of core and arithmetic units, initial decoding of addresses, decoding of instructions and transfers of memory blocks.

Word Length Increased, Number of Bits Reduced

Also, to reduce the necessity for access to instructions, word length was increased and instructions were designed to be more powerful than usual for a given number of bits. The number of bits per instruction was reduced.

Another design feature allows a number of instructions held in fast transistor registers to be obeyed repeatedly without further reference to the core memory for instruction.

To reduce the number of bits per instruction, variable-length instructions are used in the Illinois computer. Long 26-bit instructions are used only where needed. The rest of the time, 13-bit instructions are used.

Because the computer is designed to be asynchronous to an unusual degree—which the designers call speed-independence—control is critical and is achieved in a novel fashion. In addition to interplay control and an arithmetic control that corresponds to the usual delayed control (DC), Illiac includes an advanced control. This circuitry processes every instruction; it is said to correspond to the memory bus, instruction unit and look-ahead of the Stretch scientific computer, made by International Business Machines Corp.

At Illinois, speed independence means the elimination of race conditions in control cir-
Transistorized arithmetic unit is one of the basic modules consisting of circuitry wired into frames for later mounting in racks. The module is about 4 in. high, permitting access to every connection.

circuitry during computer operation. In synchronous, clock-controlled computing systems, circuits operate according to timing instructions from the clock, and, in effect, race to complete their operations so that other operations may begin. In the speed-independent Illiac II, circuits are designed so that wherever possible the slow ones do not hinder the fast ones. Though a clock is not used, completion of each circuit operation is signalled by that circuit so that succeeding operations can begin.

The disadvantages of this relatively complicated organization are said to be compensated for by the gains in parallel operation and its resulting speed. The computer's arithmetic units are not speed-independent, however; the relatively small advantages that would be possible in the already fast units reportedly would not be worth the added complications.

Module-Frame Construction, Rather than Circuit Boards, Used

Circuit-board construction is not used for Illiac II. Instead, module frames measuring about 2 ft by 1 ft are used as the basic units. These are mounted in ceiling-to-floor racks in an air-conditioned room at the university's digital computing laboratory.

The basic transistors used were the fastest available when the computer was in early design three years ago. They are custom-made by Western Electric Co. and Texas Instruments Inc. and resemble the pnp germanium mesa 2N559, but have a power dissipation of 200 mw. They are used mainly in nonsaturated circuitry. More than 36,000 transistors ultimately will be used in the Illiac II. In the storage units, current-switching diodes are used in emitter-follower logic.

Design and construction of the computer are being supported by the Atomic Energy Commission, the Office of Naval Research, and the University of Illinois.

ELECTRONIC DESIGN • November 22, 1961
Introducing...

NEW Baird-Atomic MODEL OA-1 SCR TEST SET

With the introduction of the new Model OA-1 Tester for Silicon Controlled Rectifiers, Baird Atomic continues to offer the most complete line of transistor and semiconductor test equipment available. The Model OA-1 tests for:

Vf: Forward Breakover Voltage
also measures gate current to fire at any anode voltage.. . provision for connecting external gate bias...front panel current and voltage sensing jacks for graphic display of characteristics on external oscilloscope.
I. Forward Leakage Current
I. Reverse Leakage Current
V. Voltage drop from anode to cathode at forward current I. also measures gate firing characteristic
I. Holding Current

With this new Test Set, Silicon Controlled Rectifiers may be safely evaluated under dynamic circuit conditions, since the power supplies of the Model OA-1 have built-in current limiting load resistors. And rear panel jacks are provided for connecting in additional resistance if required. The Model OA-1 features a high voltage power supply - up to 6000 V - and a high current supply - up to 10A - and provision is made for continuous control over all power supply ranges.

For the safety and convenience of the operator, an interlock jack is provided for controlling applications of high voltage to the front panel terminals. All components of the Model OA-1 SCR Test Set are conservatively rated for continuous operation at maximum specified currents. Call or write for detailed technical information.

Engineers and scientists Investigate challenging opportunities with Baird-Atomic Write Industrial Relations Director. All qualified applicants will receive consideration for employment without regard to race, color or national origin.

Baird-Atomic, Inc.
33 University Road, Cambridge, Mass.

ADVANCED OPTICS AND ELECTRONICS...SERVING SCIENCE

CIRCLE 27 ON READER-SERVICE CARD

NEWS

Navy Static Inverter Uses Tunnel Diodes

Low-Voltage Device Provides Square Waves From TE Cells

A STATIC inverter consisting of two tunnel diodes and a square-loop magnetic-core transformer has provided square waves from low-voltage, high-current dc inputs reliably over reasonably wide ambient conditions.

Developed at the U.S. Naval Research Laboratory, Washington, D.C., the inverter is intended for use with such power sources as thermoelectric, thermionic and fuel-cell generators. According to J. M. Marzolf of the laboratory, the normal practice of connecting such power sources in series to build their voltages—of around a quarter of a volt—to usable levels is less desirable than raising the voltage by transforming it.

No static device, however, is capable of being used as a chopper in such a transforming circuit. This is so because the saturation resistance of the high-power transistors and silicon-controlled rectifiers used is not low enough for efficient operation.

The inverters built at the laboratory use two high-current tunnel diodes. The diodes operate as switches rather than as amplifiers, Mr. Marzolf reports. Some of the diodes are experimental units with peak currents ranging as high as 27 amp. Power-handling capability of the inverters has exceeded 2 w.

Efficiency has gone as high as 50 per cent. Though these figures are relatively low, they could be raised significantly if tunnel diodes became available with peak currents

Static-inverter circuit using two tunnel diodes as switches oscillates under proper operating conditions, permitting inversion of low-voltage inputs, as from thermoelectric generators. Transformer is square-loop magnetic core unit.
in the thousands-of-ampere range. Efficiency probably could be increased to 80 or 90 per cent, Mr. Marzolf thinks.

Some tunnel-diode inverters already have been used experimentally on thermoelectric generators at the laboratory, where they provided good square-wave outputs. Output voltage and frequency of the inverters were inversely proportional to the load for a fixed input voltage, and directly proportional to the input voltage for a given load.

Mr. Marzolf reported on the device at the recent Fall General Meeting of the American Institute of Electrical Engineers, in Detroit.

How Navy’s Tunnel-Diode Static Inverter Works

The operation of the inverter can be understood by referring to the adjoining diagrams from Mr. Marzolf’s AIEE paper. It can be assumed that the input-terminal voltage is OB in the drawing of the curve, and the slope of the dc load line, BG, is such that the load line intersects the tunnel-diode characteristic curve at a single point, F, somewhere within the negative resistance region.

If an input voltage is applied to the terminals of the device, currents I₁ and I₂ will start to flow as shown in the schematic.

If both loops including the tunnel-diode characteristics were identical, the currents would be identical at all times and the circuit would not oscillate. However, in a practical circuit this condition cannot occur because the loop impedances and the diode characteristics will be slightly different.

Therefore, it can be assumed that I₁ is larger than I₂, and very quickly reaches its operating or dynamical equilibrium point, C, on the curve. The current OA consists of the load current, the magnetizing current for the core and the current in the other primary loop, I₁. When operating at this point, AC represents the voltage across the diode, CG represents the voltage induced

Characteristic curve, left, and idealized hysteresis loop of magnetic-core material, right, of tunnel-diode static inverter.

Phelps Dodge Thermaleze sales go up as users’ costs go down!

Standardizing with Poly-Thermaleze means reduction of your costs because this film wire upgrades all grades and permits, in most cases, interchangeability of grades as well as reduced inventories.

This one versatile wire matches with PLUS values—in practically all respects—the properties of Class A, B and F rated film wires.

Here are the PLUS values:

1. HIGH TEMPERATURE CUT THROUGH—giving physical-thermal protection between turns in service.
2. CLASS “A” through CLASS “F plus”—no heat shock.
3. COMPATIBILITY—the highest order of compatibility with conventional varnishes including epoxy encapsulated systems.
4. OUTSTANDING SOLVENT RESISTANCE—remarkable resistance to conventional varnish solvents.
5. HIGH DIELECTRIC STRENGTH—highest volts/mil of any wire available.
6. EXCELLENT WET DIELECTRIC STRENGTH—best retention of electrical properties under extreme water conditions.
7. HERMETICS—now performance proved in Refrigerant 12 and 22.
8. WINDABILITY—extreme flexibility and toughness.

Experience has already proved that equipment using Poly-Thermaleze “lives longer” at normal operating temperatures.

To obtain the PLUS values of Poly-Thermaleze, do not accept substitutes. Poly-Thermaleze was developed by Phelps Dodge and is made only by Phelps Dodge and its licensees**.

Magnet Wires that Pace the Industry!

PHelps DODGE COPPER PRODUCTS
INCA MANUFACTURING DIVISION
FORT WAYNE, INDIANA

CIRCLE 28 ON READER-SERVICE CARD
Low cost silicon voltage regulators

Help Yourself!

Help yourself to improved circuit performance at a new low cost with these Tarzian 1-watt units. Epoxy-enclosed, they combine:
1. sharp and instantaneous breakdown (avalanche) and instantaneous recovery
2. small size, inherent ruggedness, and physical simplicity that are distinct improvements over other types of regulators
3. low cost—less than a dollar in production quantities at the standard 20% tolerance. All standard tolerances available on request.

At these low prices, their regulating, clamping, limiting, and protecting functions and advantages can be used to improve the performance of more circuits than ever before.

Write for price and ordering information. Application assistance is available. For even faster service, contact the Tarzian Industrial Distributor near you.

Other Tarzian silicon voltage regulators are available in 1/4-, 1-, and 10-watt series, 31 units in each series, 5.6 to 100 Zener volts in 10% increments; standard tolerance 10%.

Send for free SVR Catalog: includes data on all four Tarzian series of silicon voltage regulators, plus design and test information.

SARKES TARZIAN, INC.
World's Leading Manufacturers of TV and FM Tuners • Closed Circuit TV Systems • Broadcast Equipment • Air Trimmers • FM Radios • Magnetic Recording Tape • Semiconductor Devices

SEMICONDUCTOR DIVISION • BLOOMINGTON, INDIANA
in Canada: 100 Weston Rd., Toronto 3 • Export Ad Aurora, Inc., New York
CIRCLE 30 ON READER-SERVICE CARD

NEWS

Static Inverter . . .

(continued from p 29)

in the primary winding by the changing flux in the core and represents the induced component of the load voltage referred to the primary circuit, and \(GH \) represents the IR drop of the primary circuit. The sum of these three voltages equals the input voltage \(OB \).

The changing flux in the core will induce a voltage in the lower half of the primary winding, also equal to \(CG \). However, its polarity is such that it adds to the input voltage in determining the voltage impressed across the lower tunnel diode. Thus, if \(BE \) is made equal to \(CG \) and the load line \(DE \) is drawn parallel to \(BG \) the operating point for the lower loop will be established at point \(D \).

In the lower loop \(KO \) will be the current, \(KD \) represents the voltage across the diode and \(DL \) represents the IR drop in the primary loop. The sum of \(KD \) and \(DL \) equals the sum of the input voltage \(OB \) and the induced voltage \(BE \). Therefore, the parameters of the circuit constrain its operation so that while the core flux is changing from \(W \) to \(X \), as shown in the drawing of the hysteresis loop, the induced voltage \(CG \) will

Computer Aids Eye Research

Using an analog computer (AD-1.64PB), Dr. V. E. Kinsey (standing) and Dr. D.V.N. Reddy of Kresge Eye Institute, Detroit, determine by what means and in what quantities various substances are exchanged between the blood vessels and ocular chambers. The computer's ability to solve partial differential equations has shed new light on the mechanics of several therapeutic agents used in the treatment of ocular diseases. The computer was designed and built by Applied Dynamics, Inc., Ann Arbor, Mich.

ELECTRONIC DESIGN • November 22, 1961
remain constant. Thus, both the magnetizing current and the load current will remain constant. Consequently the difference in the primary currents, AK, will also be constant.

When the core saturates at point X on the loop, the induced voltage CG and BE decrease rapidly. The only way this can happen with the operating points remaining on the diode characteristic curve is for the difference between I_1 and I_2 to increase rapidly, and this can only be accomplished by I_1 increasing and I_2 decreasing. Thus, C will move toward P and D will move toward V. Also the operating point for the transformer core will move from X to Y.

Tunnel-Diode Characteristics Cause Instabilities Leading to Oscillation

When the peak and valley points are reached, (I_1,I_2) can no longer increase because of the tunnel-diode characteristics; an unstable condition occurs. Very rapid transient conditions cause the operating point for the upper loop to shift from P to M and the lower loop to shift from V to N. Operation at these points requires that the induced voltage in the respective windings be reversed, which can be accomplished by a rapid decrease in (I_1,I_2). Thus I_1 must decrease and I_2 must increase very rapidly, causing the operating point of the upper loop to move from M to L and the lower loop to move from N to C. During this time, the transformer-core operating point moves from Y to Z in the loop. When point Z is reached, the flux decreases from Z to U establishing a stable condition similar to the period while traversing the distance WX except that the induced voltages in the windings are now reversed. This condition will continue with the operating point for the lower loop at C and the upper loop at D, until the core saturates in the negative direction. Then, the circuit will quickly switch back to the initial conditions and complete one cycle, which will be repeated. Because the switching transient occurs rapidly, the load voltage will have a good ac-square-waveform.

Accuracy Is Our Policy

The work being done by several companies to develop hydraulic logic devices is being carried on under license from the individual patent-holders of the basic hydraulic logic element, rather than under license from the Diamond Ordnance Fuze Laboratories, as stated in the article on pp 4 and 5 of the May 24, 1961 issue of ED.
Raytheon Circuit-Pak modules can raise your circuit designs to new levels of reliability — at surprisingly low cost. Many years of experience in the refinement of circuit packaging and the development of extensive facilities and capabilities enable Raytheon to provide you with many engineering and economic advantages. Carefully matched semiconductor devices interconnected by precisely engineered techniques and encapsulated by advanced methods of high temperature epoxy molding assure compact, ruggedized packaging. You save by eliminating expensive package development costs and by cutting lead time from design to production units.

Complete circuits are available for efficiently developing any custom design you may require. You may also choose from large stocks of standardized circuit-paks which include 54 new diode quads designed as bridge rectifiers, ring modulators, voltage multipliers, and series strings. For technical data as well as consultation on circuit packaging please call your local Raytheon office listed below.

NEWS

Signal Analyzer To Simulate Ear

Analog Device Will Aid Study of Invariants in Speech

An analog dynamic-signal analyzer, nearing completion at the University of Illinois, is designed to permit study of speech waveforms by approximating the operation of the human ear. The device is said to be a multiple-tap transmission-line model of the ear.

Basically, the analyzer is a network of low-Q-tuned resonators coupled to provide oscilloscope displays of certain transients in speech-derived signals. The transients, it is hoped, would be those in the formants of speech that carry key information. The idea behind the device is that invariants of speech are characterized by the rate of change of formant parameters. This is why

Analyzer has been described as a multiple-tap transmission-line model of a portion of the ear. Its three main sections, or lamina, consist of filter or summer networks that reduce input signals into formants, take second and fourth derivatives, and display transient characteristics on scopes. Display from third lamina, it is hoped, would show speech invariants.
the analyzer is designed to study signals in their transient, rather than their equilibrium, form.

The equipment, which occupies several large racks, functions by first normalizing incoming speech signals for amplitude. The normalized signals go to a bank of 96 distributed audio filters, which reduce them into formants. These filters, whose function resembles that of the lamina section of the ear, range in value from 30 to 8,000 cps.

Second and Fourth Derivatives
Taken by Summing Networks

Each of the 96 filters is connected to three adjacent analog summers in a network of 94 units. The summing network takes a second derivative of the amplitude-vs-frequency curve of the incoming signals. Its effect is to sharpen the curves of the signals being passed by the filters. Each of the summers is connected to five other analog summers in another network designed to take the fourth derivative of its amplitude-vs-frequency input curves. The function of this network of 92 units is said to resemble that of the ear's basilar membrane, which, according to some theories, is believed to translate frequency information into nerve signals.

To study the signals processed by the analyzer, the university researchers have included sequencing switches at the outputs of all the individual filters and summers—one switch for each group, or lamina. The gates of these switches examine more than 90 inputs and 1 output at a rate of 1,200 per sec. The gates can examine half-millisecond-
SAVE SPACE WITH THIN, EXTRA-STRONG ELECTRICAL TAPES OF MYLAR®

Here's a pressure-sensitive tape that packs great strength into thinner gauges (20,000 psi for 1 mil). Tape of Mylar® polyester film saves space because manufacturers can use thinner gauges with no loss in performance... at lower cost per linear foot.

Want more? "Mylar" also provides—flexibility for snug wraps—high dielectric strength (4,000 v/m)—dimensional stability at high humidities—moisture and chemical resistance—resistance to temperatures from -60°C to 150°C. And "Mylar" lasts and lasts because there's no plasticizer to dry out with age.

Insulation of "Mylar" gives motors 50 to 100% longer service-free life. Gives capacitors longer-lasting stability, greater reliability. In a wide variety of electrical applications, the advantages of "Mylar" can improve the performance, lower costs. Evaluate "Mylar" for your product. Write for free booklet (SC) detailing properties. Du Pont Co., Film Dept., Wilmington 98, Delaware.

CIRCLE 34 ON READER-SERVICE CARD

NEWS

Signal Analyzer...
(continued from p. 33)

wide pulses in sequence going from a +6-v level to a -6-v level during the sampling time. Outputs from the sequencing switches are to be displayed on five oscilloscopes, which can be connected anywhere in the system.

If the analyzer works as expected, it will provide invariants in speech that could be used to develop automatic speech-recognition systems, the researchers report. In such an application, the analyzer would function as a preprocessing input to an adaptive system. A similar but less complex analyzer under construction at the University of Arizona, and called a cochleagraph, is designed to process no further than the second derivative.

The Illinois device is expected to be completed in about two months and will cost about $15,000.

Shutter Protects Eyes Against Nuclear Flash

A device to protect operators of optical equipment from nuclear flash blindness in the battlefield is under development.

The heart of the eye-protection device, designed at Electro-Optical, Inc., Pasadena, Calif., is a unit called a stressed-plate shutter. The shutter is placed in front of the objective end of a pair of binoculars or a

Strain from piezoelectric drivers is transmitted by rigid-beam assembly to the shutter plate. Strain in glass causes double refraction, which changes polarization of light beam passing through shutter plate.

ELECTRONIC DESIGN • November 22, 1961
Stressed-plate shutter, used in this experimental eye-protection device, can effectively close out the light from a nuclear flash in 0.0001 sec.

telescope. When a sensing device, developed by Edgerton, Germehausen & Grier, Inc. of Boston, detects a nuclear detonation, the shutter will close out the resultant flash in 0.0001 of a sec.

The stressed-plate shutter consists of an ordinary piece of glass plate mounted between a pair of rigid beams. Placed at either end of the beams are stacks of piezoelectric drivers. Voltage applied to these driver stacks causes them to expand or contract, depending upon the voltage polarity. This train is transmitted by the rigid-beam assembly to the shutter plate. Strain induced in the glass causes temporary double refraction, which changes the state of polarization of a light beam passing through the shutter plate.

If the shutter plate is mounted between a pair of crossed or parallel polarizers, and a modulation voltage is applied to the driver stacks, the light beam passing through the modulator will be modulated from a full-open to a full-close. The shutter is a mechanical analog of the Kerr cell.

The stressed-plate shutter is for use in the battlefield, since its relatively low operating requirement of 3,000 v can be supplied by batteries.
NEW!

Sylvania

2N782

TRI-PAK

offers 50% cost-saving approach to epitaxial device testing and evaluation

Famous Sylvania 2N782 Epitaxial PNP Germanium Mesa Transistor features high-speed switching, low saturation voltage, with exceptional economy. Now you can discover for yourself the many benefits derived from circuits designed around Sylvania 2N782. The new Sylvania TRI-PAK—packaged in a handy book-style folder suitable for reference shelf or desk top—includes (a) 6 Sylvania 2N782 transistors, (b) 12 application circuits, (c) complete data and electrical characteristics.

Now—Sylvania 2N782 transistors are available for engineering evaluation in the TRI-PAK package at 50% below established OEM prices. **Six for the price of three!** Order direct from the Sylvania Franchised Semiconductor Distributor nearest you!

SYLVANIA

SUBSIDIARY OF

GENERAL TELEPHONE & ELECTRONICS

FRANCHISED SEMICONDUCTOR DISTRIBUTORS

CONNECTICUT: EAST COAST

HARTFORD

SCSI ELECTRONICS, 70 Maple Avenue

IN 3-5544 Mr. Burton S. Prager

MARYLAND: BALTIMORE

BASIC ELECTRICAL SERVICE, S. R. Howard St.

Leesburg 8-3135 Mr. John J. Baglan

MASSACHUSETTS: BOSTON

SUMMARY ELECTRIC SUP. CO., 1095 Commonwealth Av.

Algonguin 4-9000 Mr. Francis DelMarmo

A. MAYER CO., 494 Racine St.

Copley 7-5350 Mr. Henry Sapier

NEW YORK: BUFFALO

GEMINI RADIO INC., 7500 Delaware Ave.

5-3661 Mr. Frank Bernard

CIRCUIT DISTRIBUTORS INC., 918 Main St.

CITATION 5-1060 Mr. Mel Fischer

PENNSYLVANIA: PHILADELPHIA

FEDERAL ELECTRICAL CO., 2235 53rd Ave.

Phillips 6-1081 Mr. Lee Hershoff

STATE COLLEGE

746 ELECTRONIC BUSINESS, 123 South Pugh

Alamo 6-2777 Mr. J. Baker

WASHINGTON, D.C.

CAPITOL RADIO Wholesalers, 2330 14th St. N.W.

Alamo 6-2777 Mr. Cliff Williams

ELECTRONIC WHOLESALE, 2345 Sherman Ave. N.W.

Alamo 6-2777 Mr. J. E. Farps

JEFFERSON ELECTRONIC, 1331 Apple Ave.

Melrose 6-3070 Mr. Larry DeMata

PITTSBURGH

BASIL PARTS CO., 6401 Pennsylvania Ave.

EM 5-4600 Mr. Jack J. Sager

EASTERN

THE GEORGE R. BERRY CO., INC., 333 N. 4th St., P.O. Box 2

Plains 6-1011 Mr. Leo Munson

MIDWEST

35TH ELECTRONIC BUSINESS, 1239 14th St. N.W.

Alamo 6-2777 Mr. Cliff Williams

FEDERAL ELECTRICAL CO., 2235 53rd Ave.

Phillips 6-1081 Mr. Lee Hershoff

JEFFERSON ELECTRONIC, 1331 Apple Ave.

Melrose 6-3070 Mr. Larry DeMata

CENTRAL

ILLINOIS:

CHICAGO

ALLEN RADIO, 390 N. Western Ave.

3-5350 Mr. H. E. Clark

HENDRUM ELECTRONIC SUP. CORP., 723 W. Madison St.

B. C. 1-2700 Mr. Frank Baiter

BASIL PARK

NATIONAL ELECTRONICS, 341 Madison St.

El Dorado 5-6000 Mr. George O. O'Sullivan

INDIANA

STANDARD ELECTRONIC SUP. CO., 111 S. Senate Ave.

NE 5-4640 Mr. Gordon Graham

GOLDEN DISTRIBUTORS, 811 N. Senate Ave.

NE 5-0551 Mr. Bill Hartley

KENTUCKY

CECIL RAYCO

RAIDER, 610 East Street, N.W.

Alamo 6-2777 Mr. Arndt-Jacobs

MICHIGAN

ANS RADIO

WEBB ELECTRIC SUP. CO., 210 W. Fourteenth Ave.

2-3451 Mr. R. Butterfield

SILVERBELT ELECTRONIC SUP. CO., 1250 Hamilton Ave.

CLINTON 2-3040 Mr. Lou Fleming

GRAND RAPIDS

INDUSTRIAL ELECTRONIC SUP., 1250 Jefferson Avenue

STEVENS 3-6650 Mr. William Gillis

WISCONSIN:

HUMBLE/UPPER

NORTHEAST ELECTRONICS CORP., 57 So. 17th St.

PL 8-1650 Mr. E. G. Peterson

GREEN ELECTRONICS, 370 Minnesota St.

Chestnut 4-9604 Mr. Max Bryan

MISSOURI

KANSAS CITY

RADIOLINE INC., 1617 Grand Ave.

NE 5-1171 Mr. Alfred Knechtle

N. LOUIS

ELEKTRONIC COMPONENTS FOR INDUSTRY

4700 NE 29th St.

NE 5-0551 Mr. Bernie Bortz

ERWIN INSTRUMENT ELECTRONICS, 2607 S. Jefferson

PINEBROOK 1-9700 Mr. Don Sweet

OHIO

CINCINNATI

UNITED RADIO, 1314 Hope St.

5-8120 Mr. John Cole

CIRCLE 37 ON READER-SERVICE CARD

ELECTRONIC DESIGN • November 22, 1961
EDITORIAL

Engineering Meetings: Room For Improvement

Are engineering-society-sponsored meetings really worthwhile? To this perennial question the answer usually is, "Yes, BUT . . ." The "but" often is supplemented by: "The papers could have been so much more worthwhile if . . ."

Some of the papers at the Electron Devices Meeting in Washington, D. C., Oct. 26-28, seemed to be clouded by the "company proprietary" issue.

We will be the first to grant that there are good reasons in some cases for a manufacturer to withhold information on an in-house process or device. One wonders, though, if this procedure is not being abused.

We have heard engineers speculate that a "new advanced process" will prove to be so simple—even nontechnical in nature—that it is kept secret merely to avoid the embarrassment of explanation.

There are other factors to consider. The solid-state industry, for example, has not yet attained the point in its life cycle equivalent to that of the tube industry. Thus we get a much more frank interchange of information in the latter field. "There are no secrets in the tube business" is an oft-repeated, if not entirely accurate, cliche.

In the end, one wonders whether withdrawal of a paper is not the best solution for both company and author when a large portion of the announcement must be couched in generalities. And what of the engineer attending the conference? Is it proper to entice him to a meeting, at an expense both in time and money, and expect him to listen to product "pitches" lacking technical explanations?

Finally, a note on the speaker's question-and-answer period. The speaker can greatly improve its value by:

- Making clear in his presentation which part of his work is theoretical and which has been reduced to practical experimentation. This avoids answers beginning, "I didn't mean to mislead you, but we haven't actually tried that yet . . ."
- Making clear, in the paper itself, that certain items are proprietary and cannot be discussed in more detail.
- Anticipating basic questions arising from his disclosure. In the case of a device, it is fairly obvious that even another device man will be interested in its ultimate applications. This might warrant a back-up talk by an associate who is oriented toward applications.

Generally speaking, we thought the Electron Devices Meeting was well-conducted, timely and interesting. Fortunately, engineers always seem to find room for improvement.

DONALD CHRISTIANSEN

HOW MUCH SHOULD A TRANSDUCER COST?

$100? $500? $2,000? It depends. How small must it be? How severe is the application? What accuracies must it perform to? All determine the price. Servonic's L-113 was developed for a missile program at a company sponsored cost of nearly $50,000. It sells for $400 in quantity. Here's why. It weighs only 1.7 oz. and measures 1" x 1", yet it will withstand 100 g acceleration with an error of less than 1%. A patented force summing mechanism is utilized to detect pressure change which is transmitted as a proportional linear movement through a metallic belt linkage to the wiper of a precision potentiometer. This is accomplished by an aneroid capsule connected to the inlet pressure fitting. Pressure media are contained within the aneroid capsule, isolated from the electrical component to enable operation in deleterious atmospheres without adverse effects. Wipers are precious metals. Platinum alloy wire is used as the resistance element. Forty-seven separate operations go into assembly of every unit—each individually checked for quality and reliability.

We'll be pleased to price out a unit for your particular requirements. Write for further details on the L-113.

SERVONIC INSTRUMENTS, INC.
Manufacturers of pressure transducers, pressure switches, rectilinear potentiometers and slip ring assemblies.
1644 Whittier Avenue, Costa Mesa, California.
Guidelines for Selecting Battery-Operated Governed Motors

Millihorsepower, battery-operated motors, with few exceptions, require governed operating speeds. R. K. Warnimont presents information useful for the designer who has to select and apply these governed motors in his electronic equipment.

SMALL, battery-operated governed motors may be classified according to whether the governor contacts are electrically integral with, or external to, the armature circuit.

In both cases the governor contacts are fastened to, and rotate with, the armature. Also, an arc-suppression resistor invariably is connected across the contacts to minimize contact wear and to reduce radio-frequency interference. The resistor is necessary because the high inductance of the armature may produce breakaway currents of hundreds of milliamps.

In the integral governor, Fig. 1, the contacts are connected directly in series with one of the armature circuits, as shown in Fig. 2a. The governor components, mounted on a plastic disk, rotate with the armature. These components include the contacts, a speed-calibration screw (not always supplied), and the arc-suppression resistor.
Motors having integral governors generally consist of from three to six commutator segments, and the rotors are designed with a corresponding number of poles. The electrical connections are made directly on the armature; hence, only the two brush terminals are external. To operate these motors ungoverned in one direction requires a directional-sensitive switch to bypass the governor contacts.

The external governor, Fig. 3, has its contacts armature-mounted, but connections are made through a commutator, brushes and two external terminals, as shown in Fig. 2b. In this case, the resistor may be mounted outside the motor. Advantages claimed for the external, or series, governor are (1) improved utilization of rotor copper and (2) easier suppression of radio interference generated by brushes and governor contacts.

In some applications, such as tape recorders, the motor may be operated either governed or ungoverned, by bypassing the governor with a single-pole, single-throw switch.

Torque-Load Range
Set by Motor Design

The governed torque range of these small battery-driven motors is a direct function of the applied voltage and the motor winding.

The maximum load that can be governed occurs at the point at which the contacts just remain closed; minimum governed load is at the point at which the contacts just remain open. For a motor operating at its highest voltage (as when the batteries are new), this governing range is indicated in Fig. 4 by the points of T_{max} and T_{min}. As the battery voltage decreases to its lowest permissible level, both maximum and minimum governed torques decrease and the speed-torque curve in Fig. 4 shifts to the left (dashed lines). Also, as the battery voltage decreases, the average governed speed usually drops slightly.

For these reasons, the use of the motor is limited by the minimum torque at the highest working voltage and the maximum required torque at the lowest (T_{min} to T_{max}). Usually, the motors are designed so that minimum operating torque is no-load torque, as shown in Fig. 5. There is no reason, however, why a specific governed range cannot begin with a minimum torque higher than no-load, such as shown in Fig. 4.

Optimum Governed Speed Depends on Motor Curves

From curves, such as shown in Fig. 5, the range of operating torque should fall between no-load at maximum voltage (T_{max}) and maximum torque at minimum voltage (T_{min}), in this case about 0.2 oz-in. The drop in governed speed with voltage also must be considered. If it is outside required limits, a new motor design may have to be considered.

The importance of matching the motor to the load cannot be overemphasized. The torque-speed curves of Fig. 6, for example, show that there is a preferred governing speed at which performance will be optimal. If adjusted to run faster than the preferred speed, the governing torque range is greatly reduced. At lower speeds, the governing range is extended somewhat, but governing characteristics and electrical efficiency may not be optimal. Reduced efficiency means higher battery drain and consequent reduced battery life. In general, motors can be designed to govern over a wide range of speeds.

On most inexpensive motors, governed speed cannot be changed because they include no means for adjustment. On more expensive motors, an access hole and an adjusting screw permit adjustment either of the contacts or of the tension on the governor spring.

If the initial adjustment falls in the middle of the specified operating range, governed speed can be adjusted about \pm15 per cent of this value. Thus, for a 2,400-rpm motor, lowest recommended governed speed would be 2,000 rpm, while highest would be 2,800. If the desired speed is near the limit of the governor adjustment, another motor should be selected to provide the best efficiency. This involves a change in armature-wire size, governor springs or weights.

Sample Motor Tests
Determine Required Torque

When specifying a governed motor, a common method of determining required torque seems to be an educated—but frequently incorrect—guess. The problem is that in typical applications of these millihorsepower
motors, the torque loss due to driving-belt or pulley friction, or gears, frequently can be larger than that of the driven element. Consequently, calculations are seldom useful. Thus, if a precision dynamometer is not available, the following practical and reasonably accurate methods for determining torque are recommended.

The first method uses a sample motor having a relatively wide governed-torque range at the speed and voltage of interest.

Mount the motor in the prototype device and apply the nominal operating voltage at the motor terminals. Now, from the motor curves, read off the torque at the measured armature current. For example, from Fig. 5, with the motor operating at 12.5 v and drawing 100 ma, the vertical dropped from the intersection of 100 ma and the nominal current curve intersects the torque axis at approximately 0.15 oz-in. (Be sure to check that operation is at governed speed.)

The second, and somewhat more precise, method of torque determination, uses an un-governed motor (or a governed motor with the contacts shorted), together with its typical curves.

Apply voltage to the motor and increase it until the motor reaches and stabilizes at the desired operating speed. Use a stroboscope or other speed-measuring instrument that will not impose any added load. As an example, in Fig. 7, let us assume that required speed is 2,400 rpm, voltage at the motor terminals is 10 v, and current drawn is somewhat over 200 ma. On the motor curves, interpolate the 10-v value, as shown. From the intersection of 2,400 rpm and 10 v (point A), drop a vertical to the torque axis. It intersects at approximately 0.56 oz-in. of torque. This is double-checked by reading the current (about 230 ma).

As torque on the driven element is varied between assumed maximum and minimum loading conditions, it will be reflected in a change of both the voltage and current required to drive the motor at 2,400 rpm. Torque thus can be determined for several pairs of these values. By providing the motor designer with a tabulation of these results, he is in a position to provide the most efficient motor for the job.

Standard Mounting and Coupling Reduce Motor Costs

Motor costs can be minimized by specifying the motor with standard terminals (no special leads) and without special markings, mounting flanges or brackets. Here, the user can save money by adapting his mounting to standard motor designs. Most motor manufacturers provide mounting holes on the housing. Another low-cost, frequently applied method is to use a large spring clip lined with sponge rubber. To mount, the motor simply is snapped into place. If required, the open ends of the clip can be secured with a simple fastener. Advantages of this mounting lie in freedom of motor movement, protection of motor against shock, and, most important, reduction of mechanical noise. Examples of these snap-in clip mountings are found in tape recorders and dictating machines.

Where a gear train is required, the motor must be mounted accurately to mesh the pinion with the driven gear. Precise means for locating the motor must be provided and, in some cases, the front end of the motor housing strengthened to withstand the load.

Methods for coupling the motor to the load vary with the application. To minimize mechanical noise and to dampen any wow, jitter or flutter, compliant belts or friction drives often are used. Belt pulleys should be spring-loaded to minimize vibration and armature-end play.

In applications requiring gears, nylon or its equivalent frequently are specified to reduce noise and to provide self-lubrication at low cost.

Motors are available with either ball or sleeve-type bearings. The sleeve type permits resilient mounting and is inherently quieter, but ball bearings can give more uniform performance throughout the motor life. Sleeve bearings can maintain closer alignments at tolerable prices. Ball bearings can provide equivalent precision, but they may frequently cost more than the entire motor.

Electrical Interference Must Be Reduced, Suppressed

Because of the sparking inherent in both commutator and governor contacts, interference becomes a problem in many applications having sensitive circuitry. While filtering is the first answer, sources of noise unique to these devices should be checked carefully.

For example, armature concentricity and balance play an important role. Out-of-roundness or imbalance cause brush bounce and excessive sparking at the commutator. Also, brush material should have a low resistance, as well as optimal frictional characteristics. Silver graphite or copper graphite are excellent for such use.
It has been found that electrical noise is generated when the armature slaps back and forth inside the housing. This may be due to excessive end play or to unbalanced forces on the motor shaft. For this reason, pulleys, belts and gears should be arranged so that the armature will seek a neutral position while running and maintain it. This, of course, is an important consideration for mounting and coupling.

The batteries driving the motor also may be a source of electrical noise. That one battery is "noisier" than another may be a function of internal impedance and structure. It is well for the designer to consider a variety of battery types to be sure he has specified the best.

Probably the most important noise-reducing factor is to place the motor away from high-gain circuits. Shielding the motor with a soft iron case is good design practice, but more frequently it is a matter of putting the motor in a shielded location. Usually, the shield need not be an integral housing, but simply a conducting barrier between the motor and the "hot" circuitry.

Adequate Leads, Suitable Ground Paths Important

In all cases, it is important to provide leads of adequate size and to insist on low-resistance and low-impedance ground paths. In addition, leads to and from the motor should be filtered and shielded, as indicated in Fig. 8. Do not use tubular capacitors for filters, but install wafer types. Best of all, use feed-through types, installing them in the barrier shield.

Motor leads should be shielded. However, they may be left open if they are kept as short as possible in unshielded areas, and if they are separated from amplifier circuits.

Grounding the motor case should be standard practice. But what is usually not realized is that the motor shaft extending outside the case frequently acts as a high-frequency radiator. Grounding the shaft with a cat whisker eliminates this antenna effect.

Another handy trick is the use of lossy ferrite beads, which are slipped over the motor leads close to the motor housing. These beads sharply attenuate the higher frequencies and substantially reduce this radiation.

In still other cases, a change in the value of governor shunt resistor or capacitor can have a marked effect on attenuation of sharp voltage pips on contact break. It is well to consult the motor manufacturer if unusual noise problems are encountered.

Arnold offers you the widest range of shapes and sizes of iron powder cores on the market.

In addition to toroids, bobbin cores and cup cores—typical groups of which are illustrated below—Arnold also produces plain, sleeve and hollow cores, threaded cores and insert cores, etc., to suit your designs. Many standard sizes are carried in warehouse stock for prompt shipment, from prototype lots to production quantities. Facilities for special cores are available to order.

The net result is extra advantage and assurance for you. No matter what shapes or sizes of iron powder cores your designs require, you can get them from a single source of supply—with undivided responsibility and a single standard of known quality. And Arnold's superior facilities for manufacture and test assure you of dependably uniform cores, not only in magnetic properties but also in high mechanical strength and dimensional accuracy.

For more information on Arnold iron powder cores, write for a copy of our new 36-page Bulletin PC-109A. The Arnold Engineering Company, Main Office and Plant, Marengo, Illinois.

ARNOLD SPECIALISTS in MAGNETIC MATERIALS

--

TOROIDS
BOBBINS
CUPS
ETC.

CIRCLE 39 ON READER-SERVICE CARD

ELECTRONIC DESIGN • November 22, 1961
Printed-Circuit Boards: A Guide to Fabricating Techniques

Lockheed Aircraft's Missiles and Space division, a heavy user of printed-circuit boards, undertook an evaluation of board-manufacturing methods. In this two-part series, author Prise presents, first, the step-by-step fabrication procedures and, in part 2, the survey's findings and recommendations.

Fig. 1. Process A—Conductive pattern of photoetched board is solder-coated, with either (a) flat or (b) funnel eyelets placed in drilled holes.

Fig. 2. Process B—Conductive pattern of photoetched board is gold-plated; plated-thru hole is used.

Fig. 3. Process C—Completed board of process B has either (a) flat or (b) funnel eyelets added to it.

Fig. 4. Process D—Eyelets are resistance fused to the conductive pattern which has been prepared as in process A.
Part 1 of a Two-Part Series

Walter J. Prise
Design Specialist
Missile & Space Div.
Lockheed Aircraft Corp.
Sunnyvale, Calif.

A PRINTED-CIRCUIT board basically consists of a conductive foil affixed to a dielectric baseboard. This conductive pattern may be deposited on either one or both sides of the board. Further, either or both sides of the board may have electronic components attached and, often, the opposite sides of the board are interconnected electrically.

There are certain characteristics a well-manufactured printed-circuit board should have. The baseboard should be:

1. high in insulation resistance
2. machinable
3. impervious to moisture, vibration, fungus, shock and temperature changes
4. homogeneously constructed
5. light in weight

The conductive pattern should be:

1. a good conductor
2. easy to machine and drill
3. easy to solder-coat or plate
4. uniform in thickness, width and surface finish
5. non-corrosive
6. non-magnetic
7. strongly bonded to the baseboard
Process C—Gold-Plated, Through-Hole Plus Eyelet

Process B—Gold-Plated, Through-Hole

<table>
<thead>
<tr>
<th>Process Step</th>
<th>Potential Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1 & C-1</td>
<td>Drill Holes</td>
</tr>
<tr>
<td>B-2 & C-2</td>
<td>Remove Dust by Vacuum</td>
</tr>
<tr>
<td>B-3 & C-3</td>
<td>Apply Photoresist</td>
</tr>
<tr>
<td>B-4 & C-4</td>
<td>Develop & Remove Photoresist</td>
</tr>
<tr>
<td>B-5 & C-5</td>
<td>Apply Photoresist Dye</td>
</tr>
<tr>
<td>B-6 & C-6</td>
<td>Retouch</td>
</tr>
<tr>
<td>B-7 & C-7</td>
<td>Soak in Cleaning Tank</td>
</tr>
<tr>
<td>B-8 & C-8</td>
<td>Insert into Sensitizing Solution</td>
</tr>
<tr>
<td>B-9 & C-9</td>
<td>Rinse in Tap Water</td>
</tr>
<tr>
<td>B-10 & C-10</td>
<td>Dip in Hot Water</td>
</tr>
</tbody>
</table>

Process D—Resistance-Fused Eyelet

<table>
<thead>
<tr>
<th>Process Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-1 to D-12</td>
<td>Title & Description of Steps are identical with A-1 to A-12</td>
</tr>
<tr>
<td>D-13</td>
<td>Installation of eyelet (eyelet must be placed before unvallation)</td>
</tr>
<tr>
<td>D-14</td>
<td>Fusing of Eyelets</td>
</tr>
<tr>
<td>D-15</td>
<td>Installation of Terminals Same as A-13 if other than resistance fusing process is used</td>
</tr>
</tbody>
</table>

Interconnections such as eyelets, which penetrate the board, must provide a strong mechanical and electrical bond with the conductive patterns. This penetrating connection also should not change the patterns’ mechanical and electrical characteristics.

On an assembled board, components must be firmly attached. Good electrical connection must be made between component leads and conductive patterns. And, the whole assembly should be impervious to fungus growth, electrolytic corrosion, short circuit or mechanical damage and component displacement.

Printed Boards Are Made By One of Four Methods

Four main processes exist for manufacturing printed-circuit boards. These can be described as:

A—(Fig. 1) Boards are photo-etched, conductive pattern is solder-coated and eyelets are placed in holes drilled through the solder-coated foil. (Process 1A uses flat eyelets; process A, funnel eyelets.)

B—(Fig. 2) Board is photo-etched using gold plating as an etching resist. Conductive pattern of the board is gold-plated and gold-plated through-holes are used.

C—(Fig. 3) Board is photo-etched in the same manner as in process B. Conductive pattern is gold-plated with gold-plated through-holes. Eyelets are installed after gold-plating. (Process 1C uses flat eyelets; process 2C funnel eyelets.)

D—(Fig. 4) Similar to process A except in the method of installing the eyelets. In this process, eyelets are resistance-fused to the conductive pattern of the board.

The tables detail the step-by-step procedures involved in each of these processes. At each step, potential problem areas are pointed out.

Gamewell made this special completely from scratch. Every part of this rotary switch was newly designed by Your Engineered Specials service to meet a customer’s special requirements. The unit provides bi-directional operation at 160 rpm max. It is rated at 28 VDC, 60 ma...has high vibration and shock resistance...and –55° to +150°C. temperature range. Although this design called for only six poles and 11 switching segments, many more could have been provided. □ Gamewell’s YES service has developed answers to hundreds of special “pot” and rotary switch problems. Interested? Why not write for the full story? Your Engineered Specials service.
"Power-Logic" with SCRs

Industrial and consumer-equipment manufacturers are taking a second look at silicon-controlled rectifiers. Price cuts are enhancing the utility of SCRs as a means of handling power and logic simultaneously and efficiently. Here is a preview of new “power-logic” circuits, which will be described in the new edition of General Electric's SCR application manual.

The silicon-controlled rectifier (SCR) is one of the few semiconductor devices capable of both bistable action and efficient control of large blocks of power. Therefore, it has many applications where a moderate amount of logic must be applied during the control of power. Three classes of circuits, binary computing, time-delay, and fault switching, will be described to show how the SCR's “power-logic” abilities may be put to work.

1 Ring Counter
and Shift Register

A ring counter may be considered as a circuit that sequentially applies voltage to two or more loads, one at a time. These may be either power loads or signal loads. An SCR flip-flop (Fig. 1) is thus a two-stage ring counter and most SCR ring counters are
simply an extension of the basic flip-flop circuit with minor modifications in the pulse-gating circuitry and the commutating circuitry. Several configurations of the SCR ring counter are possible, differing mainly in the commutating principle used, but the circuit of Fig. 1 is presented as being one of the most versatile and as offering a good example of the principles involved.

In this circuit, SCR₁, SCR₂, and SCR₃, form a three-stage ring counter. SCR₄ is a reset pulse generator which is not required for all applications. When power is first applied to the circuit none of the SCRs will turn on. To “set” the circuit a positive pulse is applied to the “set pulse input,” which turns on SCR₁, and applies voltage to the lamp load I. The diodes CR₄ and CR₁ will be reverse biased by 8 v while CR₁ will be reverse biased by less than 1 v as determined by the voltages on the anodes of the various SCRs.

If a positive pulse with a peak amplitude of less than 8 v and greater than 3 v is applied to the “shift pulse input,” CR₁ and CR₂ will block the pulse from the gate of SCR₁ and SCR₂, while the pulse will be transmitted to the gate of SCR₁ through CR₂ and C, causing SCR₁ to turn on. When SCR₁ turns on, the discharge current of C, through SCR₁, causes a large voltage pulse to appear across inductor L, thus reverse biasing SCR₁, and causing it to turn off.

Note that C, serves to hold the anode voltage of SCR₁ down during the commutating interval. When the next shift pulse occurs SCR₁ turns on and SCR₁ turns off in a similar manner, SCR₁ turns on and SCR₁ turns off, etc.

If a pulse occurs at the “reset pulse input” at any time, SCR₁ will fire and turn off any of the other SCRs that happen to be on at the time. SCR₁ then will remain on until one of the other SCRs turns on which in turn will cause SCR₁ to turn off. Additional stages can be added to the circuit as desired. A 10-stage circuit using 10 SCRs can be used to perform the function of a decade counter with direct lamp readout.

The circuit as shown can function as a shift register in which any combination of SCRs can be on at one time and the entire pattern will move one stage to the right each time a pulse occurs at the trigger pulse input. The circuit also has the advantage that the commutation pulses do not appear across the loads that are not being switched.

An alternate version of the circuit in which the commutating capacitors C₂, C₄, and C₆ are connected between the anodes of the adjacent SCRs can be used if only simple ring-counter operation is required and if the appearance of the commutating pulses across all the loads is not objectionable. This version permits both the commutating capacitors and the commutating inductor to be reduced by a factor of 2 for a given load over that for the circuit of Fig. 1.

2 Time Delay Circuits

Time-delay circuits are used frequently in industrial controls and aircraft and missile systems to apply or remove power from a load at a predetermined time after an initiating signal is applied. Cascaded time-delay circuits can be used to sequentially perform a series of timed operations.

Fig. 2 illustrates a time-delay circuit using...
Low Cost Cubic S-70 Data System Reads 100 Channels/Minute

Because of the high operating speed of the reed relays (used in the digital voltmeter) the new Cubic S-70 Data System gives readings 6 times faster than any others using stepping switch voltmeters. The Cubic S-70 monitors up to 100 separate channels, provides instantaneous large digital readout on the voltmeter, and prints out a permanent record on paper tape of 100 readings a minute. Yet it costs only $4650, a fraction of the cost of most data systems now in use. Price includes the Cubic V-70 Reed Relay Digital Voltmeter, the Cubic Scanner to rapidly sample 100 channels, and an 11-column printer. An ac-dc converter or a pre-amplifier may be added at slight additional cost. The reed relays in the voltmeter assure you of at least a decade of flawless service without periodic maintenance. This is a simple, pre-packaged, standard system made up of production modules. You simply plug it in and start recording data. For more details on the S-70 Data System, write to Department ED-111.

A form of “electronic crowbar,” shown in Fig. 3, has proved very useful for protecting dc circuits against input-line voltage transients and short-circuit load conditions. If the dc supply exceeds the desired maximum value as determined by the setting of potentiometer R_p, the voltage at the emitter of UJT, exceeds the peak-point voltage, causing UJT, to fire; this in turn fires the SCR. The full supply voltage is then ap-
ELECTRON TUBE NEWS from SYLVANIA

Recording data on film with fiber optic CRT.

- 30 times increased light output
- improved image resolution

At Sylvania, the amazing phenomenon of optical fibers is revolutionizing resolution capabilities of cathode ray tubes. These tiny light pipes, transparent dielectric cylinders only 10 microns in diameter, conduct light from the phosphor screen to the outside surface of the CRT face. This dramatic new technique completely eliminates parallax. Used in photo-recording applications, it eliminates lens requirements, enables direct photoprinting.

Now available for sampling are: 5" diameter CRT's with faceplates composed entirely of optical fibers or with a .250" x 4.125" array of optical fibers for linear scanning; a rectangular 3" x 1½" CRT featuring a .250" x 2.750" array of fiber optics. These remarkable tubes can be supplied with either electrostatic or magnetic deflection and focus and with aluminized or nonaluminized P11 or P16 screens.

Currently under development are fiber optic CRT's capable of magnifying images and of coding signals by "scrambling" light transmission.

If your project calls for exceptionally high resolution in photo recording, flying spot scanning, mapping or reconnaissance systems, these extraordinary developments deserve your careful examination. Ask your Sylvania Sales Engineer for complete information.
Sylvania SC-3090 is a high-precision instrument with a 5½" square face. Its tri-gun structure is so accurately designed and aligned it provides a tracking error of less than .055" at any point on the face. Electrostatically deflected and focused, it offers high deflection sensitivity, high resolution and writing speed, minimal pattern distortion. SC-3090 is available with aluminized screen and P19 phosphor.

Single-gun Spiral Accelerators, 5BGP/T51, 5BHP/T54, are available with a new brighter phosphor and "Bonded Shield" safety cap for increased image readability. Assembled on Sylvania-developed mounting jigs to exceptionally close tolerances, they provide superlative precision performance.

<table>
<thead>
<tr>
<th>Key Characteristics</th>
<th>3BGP—</th>
<th>3BMP—</th>
<th>SC-3016</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anode #3 Voltage</td>
<td>6600*</td>
<td>6600*</td>
<td>6600*</td>
<td>Vdc</td>
</tr>
<tr>
<td>Anode #2 Voltage</td>
<td>2750*</td>
<td>2750*</td>
<td>2750*</td>
<td>Vdc</td>
</tr>
<tr>
<td>Anode #1 Voltage</td>
<td>1100*</td>
<td>1100*</td>
<td>1100*</td>
<td>Vdc</td>
</tr>
<tr>
<td>Face Dimension</td>
<td>1½x3</td>
<td>1½x3</td>
<td>1½x3</td>
<td>Inches</td>
</tr>
<tr>
<td>Over-All Length</td>
<td>9½</td>
<td>10</td>
<td>6</td>
<td>Inches</td>
</tr>
</tbody>
</table>

Absolute maximum ratings.

Low grid drive! Low current heater!

Sylvania-10ANP

for radar display

Sylvania-10ANP is ideally suited to compact radar equipment. Here's why: small yoke for increased sensitivity, low grid voltage requirements and 300mA heater enable excellent performance from transistorized power supplies; further, it features small, 0.840" diameter neck, short over-all length of only 16" and 9-pin miniature base.

Sylvania-10ANP offers magnetic deflection and focus, aluminized screen and a wide range of phosphors. Currently under development at Sylvania are 5", 7" and 12" versions of the 10ANP.

If your design demands specialized cathode ray tubes, call on the high quality-quantity capabilities of Sylvania. For technical data on specific types, write Electronic Tubes Division, Sylvania Electric Products Inc., 1100 Main Street, Buffalo 9, New York.
NEEDED NOW:

Radiation-Resistant Components!

Few reliability studies hold such great import for national security as those investigating radiation effects on electronic components. Will, for example, electronic components withstand continuous radiation from the reactor of a nuclear-powered craft?

Intense radiation is known to have disastrous effects on solid-state performance. How, then, do you design for reliable, compact circuitry without imposing prohibitive weight penalties of massive shielding?

One good way: design around radiation-resistant Sylvania Gold Brand Subminiature Vacuum Tubes. All Gold Brand Subminiature types are rated for steady state radiation resistance. Extensive testing prove them capable of withstanding 10^{14} neutrons/sq. cm./sec. dose rate for a total dosage of 10^{19} neutrons/sq. cm.

Further, Gold Brand Subminiature Tubes tolerate pulses of pure gamma radiation of approximately 10^6 R./sec. Compare this with the gamma dose rate of 0.1 R./sec. absorbed $\frac{1}{4}$ mile from a 20KT bomb—it's well within the operating capability of Gold Brand Subminiature Tubes.

Vacuum tubes are compatible not only with nuclear environments but extreme shock and excessive temperatures. Extended periods of storage, too, have little or no effect on vacuum tubes. Ask your Sylvania Sales Engineer for complete information on the many remarkable capabilities of electronic tubes. He can supply you with detailed documentation of Sylvania Gold Brand Subminiature Tube reliability.
Sylvania-8100 is the first of a new family of Cadmium Sulfide photoconductive devices for industrial-commercial light-actuated control applications. Proven in self-adjusting TV brightness and contrast controls, Sylvania-8100 features two foot-candle resistance of 5000 Ohms and a minimum dark resistance of 200,000 Ohms.

Sealed-in-glass techniques provide a moisture-resistant device, protect wafer, assure long, reliable life. Blue Dot Protection on light-sensitive wafer indicates device is vacuum-tight. If the unusual occurs and a leak develops, blue dot turns to pink . . . a special confidence feature on all Sylvania photoconductors. Hydrogen-Filled after thorough evacuation, improves dissipation characteristics, enhances stability and uniformity.

Automated Techniques provide excellent control of physical characteristics such as the configuration of electrodes on the CdS wafer, assure superior characteristics of uniformity.

If your design area includes lighting, sorting, door controls, headlight dimmers, data processing, fire or smoke detection or similar work, contact your Sylvania Sales Engineer. He will give you complete information on this and other photoconductors under development at Sylvania. For technical data on Sylvania-8100, write Electronic Tubes Division, Sylvania Electric Products Inc., 1100 Main St., Buffalo 9, N. Y.
Fig. 3. Fast-acting circuit breaker: it will trip on either excessive voltage or current.

plied to the circuit-breaker trip coil, causing the circuit breaker to open the main dc supply bus.

Besides increasing the speed of the circuit-breaker action, this circuit instantly loads down the dc bus, preventing the voltage on the load from rising until the circuit breaker has time to operate.

The circuit also protects the load and the supply against short-circuit conditions by monitoring the current through resistor R_1. When the voltage across R_1 exceeds the desired maximum value as determined by the setting of potentiometer R_2, the voltage at the emitter of UJT_2 exceeds the peak-point voltage, causing UJT_2 and the SCR to fire as before. Due to the stable firing voltage of the UJT, the trip voltage across R_1 can be very low, a value in the range from 100 to 500 mv being entirely suitable for most applications.

If only overvoltage protection is desired the circuit of Fig. 3 can be simplified by eliminating UJT_2 and its associated circuitry. Similarly, if only overcurrent protection is desired UJT_1 and its associated circuitry can be eliminated.

In the circuit of Fig. 4 rectifier CR_1 and capacitor C_2 are used to provide filtering against negative-voltage transients, which would otherwise result in false tripping of the circuit. The values of potentiometer R_2 and R_3 are chosen to have appropriate time constants with C_1 and C_2 so as to give the desired voltage-time response in the tripping action.

The SCR is ideal for this type of circuit because of its ability to switch on within a few microseconds after being triggered. Its high surge rating permits it to carry momentary currents as high as 2,000 amp for 2 msec without damage, in the case of the 2N1909 SCR series.

VECO PIONEERS NEW THERMISTOR FRONTIERS

It's mighty important to know if you're working on sub-zero human survival programs for the Armed Forces. That's why scientists tape VECO Thermistors to penguins...even bury them in penguin eggs...to record the precision temperature data on living cells that can save lives in Antarctic-type environments.

You may never have to Thermistorize a penguin, but when reliability counts, it's good to know you can count on VECO. Reliability is the reason engineers in every field specify VECO Thermistors and Varistors where precision thermal or electrical measurement and control are critical. They know their Thermistor and Varistor reliability programs begin at Victory. Unsurpassed quality control is the reason. Not one VECO product ever leaves the plant until it individually passes tests for reliability far exceeding applicable specifications. VECO quality control processes are accepted under MIL-Q-9858 standards.

FREE: If you want to control, measure, or use temperature for any project between the North and South poles, you'll find VECO's Thermistor-Varistor Catalog valuable in producing high-reliability circuitry.

how cool is a penguin?

CIRCLE 43 ON READER-SERVICE CARD

ELECTRONIC DESIGN • November 22, 1961
Today everyone who measures RF power in coaxial systems wants the answer in watts. The BIRD Model 43 THRULINE reads watts!

Connect the Model 43 between transmitter and antenna or load. The meter reads RF power directly. Measure forward or reflected power instantly.

No calibration charts. No adjustments. No calculations. No auxiliary power.

Plug-in elements are used to cover 2 to 1000 mc, and powers to 1000 watts.

BIRD Quick-Change (QC) Connectors eliminate adapters. Any standard series of coaxial line fittings may be accommodated.

Write, TWX or call us for complete specifications on the Model 43 and other BIRD products.

Price:
Instrument only . . . $95.00 each
Plug-in elements . . . $30.00 each

The viewing screen of the "Cue" indicator switch is mounted as a push button. When the button is depressed, displays are selected in sequence with each subsequent depression.

ELECTRONIC DESIGN • November 22, 1961
placement possible in a few seconds. For the model using a dpdt switch, the operating force is 2.5 lb with an electrical rating of 5 amp at 250 v ac.

The switch combines a standard switching device with a series 120,000 miniature 12-position rear-projection readout. The viewing screen is mounted as a push button. When the button is depressed, displays are selected in sequence with each subsequent depression. Used in conjunction with stepping switches and relays, the unit can provide a high degree of selectivity of display.

By depressing the front portion of the unit, the viewing surface moves approximately 1/8 in. and this movement is transmitted to a standard miniature-switch mechanism that actuates a spst or a dpdt switching contact. The actual type and number of switching contacts are not restricted by the basic design of the unit and a large variety of special configurations can be provided. Voltage rating and current-carrying capacity of the switch contacts are available over a large range.

There are two basic modes of operation possible with the switch-display. In the first mode of operation, the control equipment determines that some action is to be taken or observed by the operator, and the appropriate circuits are opened or closed to change the message or instructions projected onto the viewing screen of the unit. The second mode of operation is to some extent the reverse of the first in that the operator initiates the operation by actuating the switch-display unit. The control equipment then will perform a given pre-determined function and when completed, will report the present status by displaying a new message on the face of the switch.

Available with 3- to 4-week delivery, these units are priced at $55 each with quantity-discount prices available. For more information on these indicator switches, turn to the Reader-Service Card and Circle 250.

The new Elco Connector Module illustrated is less than an inch square, yet provides up to 81 of our equally new Series 8200 Microcon contacts. Up to 81 of such Modules may be mounted on a 9-inch square board, thereby offering 6561 contacts — Varicon-type contacts, at that, with their unparallelled reliability an added “plus.” The Module shown is an hermaphroditic type, with potting shell. A female type is also available, and both types offer 81 possible positions for guide pins, which also act as a polarizing feature. Smaller Modules, with a lesser number of Microcon or other Varicon contacts are likewise available. In fact, this new Elco high-density series opens an entirely new concept in sophisticated packaging. We respectfully suggest that you write for complete information immediately. Just specify “Microcon Modules” and we will forward specifications and data at once.

ELCO CORPORATION: M Street below Erie, Philadelphia 24, Pa., CU 9-5500

ELCO Pacific: 2200 Centinela, West Los Angeles 64, Calif., Granite 8-0671
International Elco A.S., Lindeal 42, Copenhagen, Vanlose, Denmark
Elco Australasia, Bradbury House, 55 York Street, Sydney, Australia

CIRCLE 45 ON READER-SERVICE CARD
NEW PRODUCTS

Covering all new products generally specified by engineers designing electronic original equipment. Use the Reader-Service Card for more information on any product. Merely circle number corresponding to that appearing at the top of each description.

Digital Resistance Bridge Has Broad Test Range

Using a self-balancing wheatstone bridge, this unit measures the per cent deviation of resistors from their rated value, and then displays this deviation via a four-window, in-line read-out. Model EM 1291A, which measures from 10 ohms to 15.9 meg, permits the operator to preset the allowable deviation limits from ±0.1% to ±9.9% in 0.1% steps. Featuring an accuracy of 0.1%, the equipment is readily adapted to accommodate an external digital display unit or printer.

Solartron, Inc., Dept. ED, 1743 S. Zeyn St., Anaheim, Calif.

P&A: $2,495.00 fob Anaheim; stock to 30 days.

Pulsed Laser Has Zoom Lens

The sighting telescope is equipped with a 2.5 to 8 power "zoom" lens and transmits mounting and has a range to several hundred yards. Low-cost model 100, which accommodates materials to 4-1/2 in. in length and 1/2 in. in diam, features a peak power of 1 kw nominally and a pulse width of 0.5 msec nominally with ruby laser materials. Available with a choice of two power supplies, the instrument has built-in Fabry-Perot 3/4-in. multi-layer end reflectors at ruby wave-length of 6,943 A which permit use as both a coherent light source and laser materials tester.

P&A: $2,310 to $2,965 with power supply; 4 weeks.

Dual Gun Oscilloscope Uses Only Two Tube Types

Two identical vertical amplifiers, each with a bandpass of dc to 5 mc and a sensitivity of 100 mv to 100 v continuously adjustable, are featured in model 5 Mc-2P/R. Sensitivity of the lower amplifier is increased to 1 mv per cm with a built-in preamplifier. A Schmitt Trigger with both internal and external capabilities provides the sweep, which has 1% linearity from a constant current RC network. The compact unit, which uses only two types of vacuum tubes, weighs 22 lb.

Packard Bell Electronics, Dept. ED, 12333 W. Olympic Blvd., Los Angeles 64, Calif.

P&A: $570.00; stock.
The "case" for 300-volt Tantalytic* capacitors

The best capacitor case for 300-volt operation is General Electric's High Voltage Tantalytic* Capacitor. Its single-cell construction is the smallest and lightest for its rating. It weighs 0.1 ounce and measures only 0.875 inch in length.

Performance of this G-E unit distinguishes it as quickly as its size.

Capacitance stays within 10% of original value even after 2000 hours testing at rated voltage and temperature. Impedance is lower at

These same features characterize the full line of ratings from 200V (.15 uf) to 300V (25 uf). Polar or non-polar designs are available from stock for 85C and 125C applications.

Data on G-E High Voltage Tantalytic Capacitors is found in Bulletin GEA-7065. Ask your G-E Sales Engineer for a copy today. Or write to General Electric Co., Schenectady, N. Y. Capacitor Department, Irmo, South Carolina.

Progress Is Our Most Important Product

General Electric also offers these reliable Tantalytic capacitors

- **High-Reliability Foil and Solid Capacitors**: Bulletin GEA-7227
- **Porous-Anode Tantalytic Capacitors**: Bulletin GEA-7008
- **125C KSR** Tantalytic Capacitors**: Bulletin GEA-6766
- **"A Case" Tantalytic Capacitors**: Bulletin GEA-7226
- **125C Cylindrical Tantalytic Capacitors**: Bulletin GEA-7085
New Products Directory

A complete index of all new products contained in this issue of ELECTRONIC DESIGN, including page and reader-service numbers.

<table>
<thead>
<tr>
<th>Category</th>
<th>p</th>
<th>rnn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers and Preamplifiers</td>
<td>64 429 75 568 94 529</td>
<td></td>
</tr>
<tr>
<td>amplifier, compression</td>
<td>64 429</td>
<td></td>
</tr>
<tr>
<td>amplifier, dc</td>
<td>75 568</td>
<td></td>
</tr>
<tr>
<td>amplifier, wideband dc</td>
<td>94 529</td>
<td></td>
</tr>
<tr>
<td>conditioner, thermocouple</td>
<td>55 529</td>
<td></td>
</tr>
<tr>
<td>signal</td>
<td>64 429</td>
<td></td>
</tr>
<tr>
<td>preamplifier</td>
<td>94 529</td>
<td></td>
</tr>
<tr>
<td>preamplifiers, receiver</td>
<td>55 529</td>
<td></td>
</tr>
<tr>
<td>Communications Equipment</td>
<td>85 521 114 355 63 590</td>
<td></td>
</tr>
<tr>
<td>antenna, vertical dipole</td>
<td>85 521</td>
<td></td>
</tr>
<tr>
<td>multiplexer, low-level</td>
<td>114 355</td>
<td></td>
</tr>
<tr>
<td>multiplexer, solid-state</td>
<td>63 590</td>
<td></td>
</tr>
<tr>
<td>Components</td>
<td>108 390 108 419 61 360 69 409 89 445 89 468 62 449 109 373 110 379 62 460 89 571 92 598 78 543 109 371 102 445 97 591 90 430 59 487 63 400 89 351 95 361 71 433 107 421 101 416 103 408 91 337 91 337 91 337 95 478 96 469 65 479 106 433 99 386 91 512 88 545 86 453 84 471 114 401 117 530</td>
<td></td>
</tr>
<tr>
<td>assembly, lamp</td>
<td>108 390</td>
<td></td>
</tr>
<tr>
<td>assemblies, silicon rectifier</td>
<td>82 544</td>
<td></td>
</tr>
<tr>
<td>capacitor, ceramic</td>
<td>108 419</td>
<td></td>
</tr>
<tr>
<td>capacitor, tantalum</td>
<td>61 360</td>
<td></td>
</tr>
<tr>
<td>choke, ferrite bead</td>
<td>69 409</td>
<td></td>
</tr>
<tr>
<td>delay line</td>
<td>89 445</td>
<td></td>
</tr>
<tr>
<td>delay line, non-inductive</td>
<td>89 445</td>
<td></td>
</tr>
<tr>
<td>delay lines</td>
<td>109 373</td>
<td></td>
</tr>
<tr>
<td>delay lines, coaxial</td>
<td>110 379</td>
<td></td>
</tr>
<tr>
<td>disks, varistor</td>
<td>62 460</td>
<td></td>
</tr>
<tr>
<td>inductors, toroidal</td>
<td>79 571</td>
<td></td>
</tr>
<tr>
<td>lamp, signal indicator</td>
<td>92 598</td>
<td></td>
</tr>
<tr>
<td>light, indicator</td>
<td>78 543</td>
<td></td>
</tr>
<tr>
<td>motor, computer drive</td>
<td>109 371</td>
<td></td>
</tr>
<tr>
<td>motor, nylon-impregnated</td>
<td>102 445</td>
<td></td>
</tr>
<tr>
<td>motor, stepping</td>
<td>90 450</td>
<td></td>
</tr>
<tr>
<td>motor, synchronous</td>
<td>66 463</td>
<td></td>
</tr>
<tr>
<td>motors, limited rotation</td>
<td>66 463</td>
<td></td>
</tr>
<tr>
<td>oscillator, silicon transistor</td>
<td>63 400</td>
<td></td>
</tr>
<tr>
<td>potentiometer</td>
<td>89 351</td>
<td></td>
</tr>
<tr>
<td>potentiometers, carbon</td>
<td>95 361</td>
<td></td>
</tr>
<tr>
<td>potentiometers, multiple-turn</td>
<td>71 433</td>
<td></td>
</tr>
<tr>
<td>relay, electronic pilot</td>
<td>107 421</td>
<td></td>
</tr>
<tr>
<td>relay, electronic pilot</td>
<td>107 421</td>
<td></td>
</tr>
<tr>
<td>relay, miniature</td>
<td>103 408</td>
<td></td>
</tr>
<tr>
<td>relay, polarized</td>
<td>103 408</td>
<td></td>
</tr>
<tr>
<td>relay, uniselect</td>
<td>91 337</td>
<td></td>
</tr>
<tr>
<td>relay, power</td>
<td>91 337</td>
<td></td>
</tr>
<tr>
<td>relay, sealed</td>
<td>95 478</td>
<td></td>
</tr>
<tr>
<td>relay, sensitive</td>
<td>96 469</td>
<td></td>
</tr>
<tr>
<td>resistor, microminiature</td>
<td>106 433</td>
<td></td>
</tr>
<tr>
<td>resistors, power</td>
<td>99 386</td>
<td></td>
</tr>
<tr>
<td>resistors, power</td>
<td>91 512</td>
<td></td>
</tr>
<tr>
<td>thermistors, grade 4</td>
<td>98 545</td>
<td></td>
</tr>
<tr>
<td>transformers, chopper input</td>
<td>84 471</td>
<td></td>
</tr>
<tr>
<td>transformers, differential</td>
<td>114 401</td>
<td></td>
</tr>
<tr>
<td>transformers, pulse current</td>
<td>117 530</td>
<td></td>
</tr>
<tr>
<td>Control Devices and Equipment</td>
<td>92 529 94 525 116 422</td>
<td></td>
</tr>
<tr>
<td>controller, power</td>
<td>92 529</td>
<td></td>
</tr>
<tr>
<td>controller, proportional</td>
<td>94 525</td>
<td></td>
</tr>
<tr>
<td>controller, proportional</td>
<td>116 422</td>
<td></td>
</tr>
<tr>
<td>Control Devices and Equipment (Cont.)</td>
<td>89 429 97 587 119 396 72 472 63 539 50 539 78 525 78 370 68 486 73 458 78 447 90 583 79 446 107 456 78 548 116 397 118 446 56 463 65 468 71 447 62 465 76 469 88 434 98 394 75 564 58 431 61 451 109 359 96 459 119 438 109 432 93 432 96 417 88 432 112 444 68 443 89 352 92 452 102 435 95 407 96 563 96 437 91 326 135 432 96 417 96 395 63 452 112 444 68 484 59 348 69 371 79 481 110 381 89 372 78 525</td>
<td></td>
</tr>
</tbody>
</table>
only U. S. Switch has the revolutionary self energized spring *

NEW DESIGN GIVES THESE IMPORTANT FEATURES:

- Life rating 15 times that of any other switch.
- Guaranteed high repeatability.
- High positive contact force.
- Guaranteed against dead break.

This precision snap-action switch is especially suitable where size, precision and dependability are important factors. The self-energized spring assures long life and high repeatability. This is the ideal switch for use in control systems, missiles, aircraft, safety and interlock controls, and other applications where small movement differential, close operating tolerances, and high electrical rating are required.

CUSTOMER SERVICE AND ENGINEERING: U. S. Switch Corporation's engineers will work with you in solving your particular design for unique applications.

PAY PENDING

new U. S. Switch catalog with complete specifications. Get the facts on this revolutionary new switch with the self-energized spring.

MW Antennas

<table>
<thead>
<tr>
<th>Category</th>
<th>p</th>
<th>pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>common carrier</td>
<td>136</td>
<td>712</td>
</tr>
<tr>
<td>S-band</td>
<td>144</td>
<td>703</td>
</tr>
</tbody>
</table>

MW Devices

<table>
<thead>
<tr>
<th>Category</th>
<th>p</th>
<th>pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>actuator, solenoid</td>
<td>146</td>
<td>721</td>
</tr>
<tr>
<td>attenuators, variable</td>
<td>143</td>
<td>682</td>
</tr>
<tr>
<td>circulator, Y-junction</td>
<td>148</td>
<td>674</td>
</tr>
<tr>
<td>detector, crystal</td>
<td>136</td>
<td>728</td>
</tr>
<tr>
<td>filters, bandpass</td>
<td>149</td>
<td>696</td>
</tr>
<tr>
<td>isolators, miniature</td>
<td>144</td>
<td>715</td>
</tr>
<tr>
<td>lines, slotted</td>
<td>147</td>
<td>714</td>
</tr>
<tr>
<td>multipliers, varactor</td>
<td>136</td>
<td>702</td>
</tr>
<tr>
<td>phototransistor</td>
<td>142</td>
<td>714</td>
</tr>
<tr>
<td>power supplies</td>
<td>147</td>
<td>711</td>
</tr>
<tr>
<td>semiconductor switch, C-band</td>
<td>147</td>
<td>721</td>
</tr>
<tr>
<td>switch, double-throw</td>
<td>137</td>
<td>727</td>
</tr>
<tr>
<td>switch, waveguide</td>
<td>145</td>
<td>717</td>
</tr>
<tr>
<td>tuner, waveguide</td>
<td>140</td>
<td>703</td>
</tr>
<tr>
<td>varactors, gallium arsenide</td>
<td>137</td>
<td>726</td>
</tr>
<tr>
<td>waveguide feed, circular</td>
<td>144</td>
<td>720</td>
</tr>
</tbody>
</table>

MW Equipment

<table>
<thead>
<tr>
<th>Category</th>
<th>p</th>
<th>pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>altimeter, radar</td>
<td>140</td>
<td>706</td>
</tr>
<tr>
<td>booster, crystal</td>
<td>136</td>
<td>729</td>
</tr>
<tr>
<td>compressors, miniature</td>
<td>149</td>
<td>695</td>
</tr>
<tr>
<td>oscillator, backward wave</td>
<td>143</td>
<td>693</td>
</tr>
<tr>
<td>oscillators, C-band</td>
<td>140</td>
<td>711</td>
</tr>
<tr>
<td>parametric amplifier, X-band</td>
<td>130</td>
<td>709</td>
</tr>
<tr>
<td>power supplies</td>
<td>132</td>
<td>724</td>
</tr>
<tr>
<td>microwave tube</td>
<td>132</td>
<td>713</td>
</tr>
<tr>
<td>pressurizing system</td>
<td>128</td>
<td>713</td>
</tr>
<tr>
<td>radar beacon, C-band</td>
<td>150</td>
<td>708</td>
</tr>
<tr>
<td>system, microwave</td>
<td>150</td>
<td>686</td>
</tr>
</tbody>
</table>

MW Hardware

<table>
<thead>
<tr>
<th>Category</th>
<th>p</th>
<th>pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>adapters, waveguide-coaxial</td>
<td>152</td>
<td>722</td>
</tr>
<tr>
<td>coating, dielectric</td>
<td>143</td>
<td>663</td>
</tr>
<tr>
<td>connector, coaxial</td>
<td>151</td>
<td>705</td>
</tr>
<tr>
<td>covers, flange</td>
<td>142</td>
<td>692</td>
</tr>
<tr>
<td>junctions, hybrid</td>
<td>147</td>
<td>677</td>
</tr>
<tr>
<td>radomes, microwave</td>
<td>151</td>
<td>704</td>
</tr>
</tbody>
</table>

MW Test Equipment

<table>
<thead>
<tr>
<th>Category</th>
<th>p</th>
<th>pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>card kit, resistance</td>
<td>152</td>
<td>716</td>
</tr>
<tr>
<td>oscilator, klystron</td>
<td>159</td>
<td>645</td>
</tr>
<tr>
<td>probe, rf</td>
<td>152</td>
<td>689</td>
</tr>
<tr>
<td>probe, tunable rf</td>
<td>142</td>
<td>710</td>
</tr>
<tr>
<td>pulse generator</td>
<td>143</td>
<td>709</td>
</tr>
</tbody>
</table>

MW Tubes

<table>
<thead>
<tr>
<th>Category</th>
<th>p</th>
<th>pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>klystron, amplifier</td>
<td>138</td>
<td>649</td>
</tr>
<tr>
<td>klystron, mm-wave</td>
<td>134</td>
<td>725</td>
</tr>
<tr>
<td>radar display</td>
<td>131</td>
<td>719</td>
</tr>
</tbody>
</table>

CIRCLE 47 ON READER-SERVICE CARD

U. S. SWITCH CORPORATION

7 JEFFY LANE HICKSVILLE, L. I., NEW YORK
NEW!
the world's first totally-transistorized 8½" x 11" x-y recorder

...easily fits into an attaché case, almost as portable! Numerous mechanical and electrical design advances have been incorporated into this completely new EI recorder. Besides greater reliability and low power dissipation resulting from its all-transistorized design, the Model 300 provides faster slewing speeds, improved accuracies, additional scales and ranges and other performance features to widen its application. The distinctive, modern cabinet design is "human engineered," with operating controls and inputs conveniently grouped at one end for maximum operator convenience. All electronic circuitry is contained in a single assembly that can be removed in seconds. Without a doubt, the new Model 300 is the most advanced 8½" x 11" X-Y recorder available today, developed and proved by more than 5 years' experience. Let your EI Field Engineer demonstrate this exciting new recorder to you. Through a nationwide staff of factory sales and service men you are assured the most for your money—before, during and after the sale. Write today for new x-y catalog!

Electro Instruments, Inc.

8611 BALBOA AVE.
SAN DIEGO 11, CALIFORNIA

NEW PRODUCTS

Wire Cleaning Compound 452
Removes borate coating and copper oxides formed by the fusing of Dumet wire to glass. Cleaner No. 206 may be used at room temperature or at 110 to 125 F. The manufacturer claims that the cleaner will not cause undercutting or attack on the copper even after long immersion period.
Fidelity Chemical Products Corp., Dept. ED, 470 Frelinghysen Ave., Newark 14, N. J.
P&A: $40.80 per 12-oz container; stock.

Digital Recorder 403

Automates microscope readings. This system converts translational motions along three orthogonally related axes, x, y, and z, of a film scanning microscope into coded digital data on punched paper tape. Three encoder assemblies provide 1,000 counts per input shaft revolution and have a total count capacity of 100,000 counts.
Datex Corp., Dept. ED, Monrovia, Calif.

Planar Epitaxial Diode 451
FD 600 features a reverse recovery time which is typically 2 nsec and a minimum forward current of 200 ma at 1 v. Other guaranteed electrical characteristics include: breakdown voltage, 75 v (min) at 5 ma; capacitance, 2 pf (max) at 0 v; reverse current, 50 na (max) at 50 v and power dissipation of 500 mw at 25 C.
Fairchild Semiconductor, Dept. ED, 545 Whisman Road, Mountain View, Calif.
P&A: $5.00 (100-999); stock from distributors.

< CIRCLE 48 ON READER-SERVICE CARD
Senses gas pressure from below 1 micron to 25 lb. The Barocel consists of a thin metal diaphragm (0.0003 to 0.002 in. thick, depending on full-scale range) stressed with approximately 60,000 lb and supported between two capacitor plates. When used as a null detector, the output voltage can be read with an ac servo ratio-meter, direct ac voltmeter, hand operated bridge balance control or analog to digital converter or ratiometer.
Datametrics Inc., Dept. ED, 87 Beaver St., Waltham, Mass.

Beryllium Analyzer 409
Laboratory model BAL 33 detects 0.005% of BeO per 100 g sample. Radioactive source is Sb-124 which meets ICC specifications for radiation safety. The unit, which handles 80 and 190 g samples, weighs 450 lb including scaler and timer. Accessories include a model 20 survey meter, dosimeters, chargers, and standard samples.
Kleber Laboratories, Inc., Dept. ED, 2530 N. Ontario St., Burbank, Calif.
Price: $6,750.00 fob Burbank.

Teflon Wire Coding 358
Wire from AWG 26 to 2 is custom coded. This cored coding can be any distance from the center of the wire. The wire may be furnished by customer and can be in continuous coils or cut to length.
Manager Electric Co., Dept. ED, N. State St., Stamford, Conn.

The smooth, easy insertion and extraction action, the self-wiping, self cleaning features and the double-sided, flexing action of both mating contact members make Micro-Ribbons the first miniature connectors to provide reduction in size with added reliability.

CINCH MINIATURE BLUE RIBBON CONNECTORS
Bodies are molded of an improved Diethyl-Phthalate with extremely high impact strength and excellent dielectric features. (Type MDG per MIL-M-14E) Contacts are plated .002 silver plated plus .00003 gold. Shells are brass cadmium plated plus either clear chromate or yellow chromate per QQ-P-416 Type 2 Class 2.

CABLE-TO-CHASSIS MOUNTING TYPES
The compact housings are equipped with sturdy spring type latches on the receptacles which are guided and held by cut-outs in the plug tangs.
Receptacle shells have floating bushings allowing a float of .020 in each direction.

CINCH MANUFACTURING COMPANY
1026 South Honan Ave., Chicago 24, Illinois
Division of United-Way Fastener Corporation, Boston, Mass.

RACK AND PANEL CODE NOS.

<table>
<thead>
<tr>
<th>CONTACTS</th>
<th>PLUG</th>
<th>SOCKET</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>57-10140</td>
<td>57-20140</td>
</tr>
<tr>
<td>24</td>
<td>57-10240</td>
<td>57-20240</td>
</tr>
<tr>
<td>36</td>
<td>57-10360</td>
<td>57-20360</td>
</tr>
<tr>
<td>50</td>
<td>57-10500</td>
<td>57-20500</td>
</tr>
</tbody>
</table>

CABLE-TO-CHASSIS CODE NOS.

<table>
<thead>
<tr>
<th>PLUG WITH CAP</th>
<th>SOCKET WITH LOCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>57-30140</td>
</tr>
<tr>
<td>24</td>
<td>57-30240</td>
</tr>
<tr>
<td>36</td>
<td>57-30360</td>
</tr>
<tr>
<td>50</td>
<td>57-30500</td>
</tr>
</tbody>
</table>

NOTE Above code nos. have shells cadmium plated plus clear chromate.
For cadmium plus yellow chromate Add 1 to the use above.

Manufactured by agreement with Amphenol-Berg Electronics Corporation
NEW PRODUCTS
Multiplier Phototube

Two-in. diam head-on type has venetian blind dynode structure and has S-11 response. Type 8053 is designed specifically for scintillation counter applications. Features include a semi-transparent photocathode having a minimum useful diameter of 1.68 in., a first dynode having large area, a flat window to facilitate mounting flat phosphor crystals, and 10 dynode (secondary emitter) stages.

Electron Tube Div., Radio Corp. of America, Dept. ED, Harrison, N. J.

Teflon Cable

CR Teflon cables are rated up to 15,000 v ac and 50,000 v dc, with higher ratings available on special order. The insulation contains an agent that reacts under corona bombardment to form a liquid. The liquid covers the wall of the corona cavity with a protective film which absorbs the impact of corona ions, preventing them from penetrating the solid dielectric.

Feedthru Connector

Contact point is cone-shaped, with a sharp apex for minimum contact resistance on low-current control circuits. Model FT-SM-706 measures 0.125 in. max diam by 0.218 in. overall length. The Teflon-insulated unit is designed for high-density assemblies.

Seal Electro Corp., Dept. ED, 139 Hoyt St., Mamaroneck, N. Y.

Availability: stock, to 2 weeks.

New, improved EDC contains 8,700 New Product items arranged by product category.

HIGH SPEED WITH LOWEST $V_{CE}^{(sat)}$ RATINGs

PLANAR EPITAXIAL PASSIVATED

The new G-E 2N2193-2195 and "A" series combines three of the most advanced processes in semiconductor technology to bring you new standards of silicon transistor performance, reliability and stability. This series of PEP transistors features greatly improved $V_{CE}^{(sat)}$ ratings, and can replace standard units without basic circuit changes.

Planar Passivated 2N696-2N699, 2N1613, 2N1711, and 2N1893 silicon transistors are also available. They feature superior h_{fe} holdup at low currents, lower I_{CEO} and I_{LED}, and remarkable reliability of performance and stability of parameters due to planar passivation.

TYPICAL PULSE GENERATOR CIRCUIT WITH PEP TRANSISTORS SWITCHES 1/2 AMP IN 25 NANOSECONDS

Unprecedented versatility is still another unique advantage of General Electric PEP transistors in new and or existing applications. The pulse generator circuit shown illustrates the versatility of 2N2193 in an existing circuit, without the need for redesigning. Also, by combining low saturation resistance, high voltage, dissipation and frequency response, controlled gain over four decades of current, and low leakage, with the stability of passivation, the 2N2193 approaches "ideal" transistor characteristics. These characteristics make the 2N2193 equally effective in linear or switching applications. Examples: direct conversions of germanium transistor circuits, low level linear amplifiers, power stages, and computer type switching applications.
The silicon oxide is thermally grown during the planar diffusion process. It forms a passivated surface over the junction that provides maximum protection against contamination and degradation of characteristics during the entire life of the transistor. The thin epitaxial layer on low resistivity substrate gives negligible body drop resulting in extremely low saturation resistance and increased uniformity from unit to unit.

Synchronous Motor

Angular rotation is constant within ±0.1 deg. no load to full load. Type GS has power output up to 1/100 hp and 1:1 speed ratio depending on driving frequency. The motor current is approximately 75 ma per phase. It can be operated single phase in the plate circuit of a single ended amplifier or as a two-phase motor when driven by a push-pull amplifier.

Zener Reference Diodes

Consisting of 26 voltages ranging from 18.5 to 200 v, the units feature temperature coefficients of 0.005% per deg C max with a ±5% max tolerance on nominal zener voltage. Units have temperature ranges of 0 to +75 C and −55 to +100 C. They were designed to meet the mechanical and environmental requirements of MIL-S-18500B.

Dickson Electronics Corp., Dept. ED, 248 Wells Fargo Ave., Scottsdale, Ariz.

Variable Speed Drives

SCRs in conjunction with magnetic trigger and other solid-state circuitry are used in this drive to control dc shunt motors in the range of 3/4 to 5 hp. Units feature NEMA enclosures, modular construction and circuit design, optional tachometric feedback and reversing. Models are available for operation from 115 v, single phase and 230 v, single and 3-phase.

Magnetic Amplifiers Div., The Siegler Corp., Dept. ED, 632 Tinton Ave., Bronx 55, N. Y.

Accuracy Is Our Policy

Specifications for the Glennite CT 10 capacitor, manufactured by Gulton Industries, Inc. of New Jersey, should have read: Length is 0.255 ±0.010 in., and diameter is 0.095 ±0.003 in. The item appeared on p 159 of the Oct. 25 issue of ELECTRONIC DESIGN.
NEW PRODUCTS

Epoxy Resins 372

Ecosene 1207, an impregnant, is a high-
temperature epoxide of low viscosity. Stycast
1205, an encapsulant, is a casting resin which
also has high thermal stability. Together,
these two materials may be used for trans-
former and coil embedments.

Emerson & Cuming, Inc., Dept. ED, Canton,
Mass. P&A: $2.50 fob Canton; stock.

Sweep-Signal Generator 448

Model SP-135 features eight adjustable out-
puts. Each of the 8 plug-in type oscillators
may be selected at any fixed frequency to
124 mc and can be equipped with up to six
crystal-controlled pulse markers. A single out-
put on the front panel provides a horizontal
sawtooth voltage of approximately 15 v peak
to peak into 1.000 ohms.

Telsonic Industries, Inc., Dept. ED, Beech
Grove, Ind.

Enclosure Tubes 436

Metallized units withstand down-shock from
275 C to ice water. Standard metallizing con-
sists of fired-on silver, copper plated, and
electro-tin plated. The glass has a coefficient
of expansion of 3.3 x 10⁻⁶ in. per in. per C; den-
sity at 25 C is 2.25; and the dielectric constant
is 4.0 at 100 mc.

Electronic Components, Corning Glass Works,
Dept. ED, Bradford, Pa.

Phase Sensitive Voltmeter 483

Measures in-phase, quadrature, and funda-
mental rms voltages and phase angle lead of
any 400-cps voltage from 0-300 v with respect
to a line reference. Voltage accuracy is within
±5% and phase accuracy is within ±2%. The
unit requires 115 v ac, 400 cps at 60 va.

Kearfott Div., General Precision, Inc., Dept.
ED, Little Falls, N. J.

8,700 New Product items arranged by category
Thermistor Probes

Maximum temperature in standard units is 150°C, with higher temperature units available on special request. Probes are produced in a resistance range of 50 ohms to 100 kΩ, using grade 1 through 4 materials. Standard diameters are 1/4-in. with a 1/8-in. pipe thread mounting.

Folded Circuit Board

Folded Edmore, on continue Units

Tantalum Capacitors

Type W wet slugs are designed for use over the temperature range -55 to +85°C. Units are available in working voltages from 6 to 125 V dc in a range from 1.7 to 560 μF. Case size is from 29/64-in. length x 3/16-in. diam.

Transitron Electronics, Inc., Dept. ED, West Road, Bennington, Vt.

Power Resistors

Miniature precision power resistors Code C-2 have temperature coefficients of ±2 ppm per C. Tolerances ±0.05%, ratings from 1/2 to 10 w, resistance from 25 to 275 K ohms and inductive or non-inductive windings are available. Similar to the Code C-2, Codes C-5 and C-10 have coefficients of ±5 and ±10 ppm per C.

Omtronics Manufacturing, Inc., Dept. ED, P. O. Box 1419, Peony Park Station, Omaha 14, Neb.

Tantulam Capacitors

Stemming from over seven years of research-to-production experience, these USN approved families of silicon voltage references and regulators incorporate quality-assurance features derived from Transitron's contributions to the Minuteman and Titan reliability programs.

Designed to meet demanding military requirements, all types are now available to industry in volume quantities. Both series offer long life, with long-term stability a proven feature of the silicon voltage references.

Ask for the Transitron bulletins indicated... For further information relative to specifications, ratings, or specific applications, direct your inquiries to the Transitron field office in your area — or, contact Transitron's main facility in Wakefield, Massachusetts.

For quantities 1 - 999, call your nearest Transitron Industrial Distributor.

MILITARY TYPE SILICON VOLTAGE REFERENCES (MIL-S-19500/159 (NAVY))

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Reference Voltage 0-7.5 mAdc (Volts @ 25°C)</th>
<th>Maximum Dynamic Impedance @ 7.5 mA (ohms)</th>
<th>Voltage - Temperature Stability (ΔV in volts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USN1N821</td>
<td>5.90</td>
<td>6.50</td>
<td>15</td>
</tr>
<tr>
<td>USN1N823</td>
<td>5.90</td>
<td>6.50</td>
<td>15</td>
</tr>
<tr>
<td>USN1N827</td>
<td>5.90</td>
<td>6.50</td>
<td>15</td>
</tr>
</tbody>
</table>

* Determined by measuring a change of voltage from -55°C to +25°C and a change of voltage from +25°C to +100°C.

MILITARY TYPE 400 MILLIWATT REGULATORS (MIL-S-19500/127 (NAVY))

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Breakdown Voltage 0-25°C mA (Volts ±5%)</th>
<th>Maximum Dynamic Impedance @ 2 mA (ohms)</th>
<th>Maximum Dynamic Impedance @ 20 mA (ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USN1N746A</td>
<td>3.3</td>
<td>250</td>
<td>28</td>
</tr>
<tr>
<td>USN1N747A</td>
<td>3.6</td>
<td>250</td>
<td>24</td>
</tr>
<tr>
<td>USN1N749A</td>
<td>3.9</td>
<td>250</td>
<td>22</td>
</tr>
<tr>
<td>USN1N750A</td>
<td>4.7</td>
<td>250</td>
<td>19</td>
</tr>
<tr>
<td>USN1N751A</td>
<td>5.1</td>
<td>250</td>
<td>17</td>
</tr>
<tr>
<td>USN1N752A</td>
<td>5.6</td>
<td>250</td>
<td>11</td>
</tr>
<tr>
<td>USN1N754A</td>
<td>6.4</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>USN1N755A</td>
<td>7.5</td>
<td>50</td>
<td>6</td>
</tr>
<tr>
<td>USN1N76A</td>
<td>8.2</td>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td>USN1N757A</td>
<td>9.1</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>USN1N758A</td>
<td>10</td>
<td>50</td>
<td>17</td>
</tr>
<tr>
<td>USN1N759A</td>
<td>12.0</td>
<td>50</td>
<td>30</td>
</tr>
</tbody>
</table>

Write for bulletin TE-1352FL.

CIRCLE 802, 803, ON READER-SERVICE CARD
NEW PRODUCTS

Varistor Disks 460
Disks of 0.75- and 1.12-in. diam are rated at 0.75 and 1.5 w max continuous dc power rating respectively. "Thyrite" units are available in sizes to cover a voltage range of 15 to 15 v dc for the 0.75-in. disks, and from 30 to 300 v dc for the 1.12-in. disks. Standard voltage tolerances for both families of devices are ±20%.

Military Synchros 465
Size 11 synchros meet the latest requirements of MIL-S-20708A. Each of these units operates in an ambient temperature range of −55 to +85 C and weighs 4.7 oz. Synchros feature a rotor moment of inertia of 2 gm cm², friction of 0.05 oz-in. max at 25 C, and friction of 0.07 oz-in. max at −55 C.

Kearfott Div., General Precision, Inc., Dept. ED, 1150 McBride Ave., Little Falls, N. J.

Sonic Delay Line 449
Delays from 20 to 1,500 μsec with ±2 μsec adjustment. Rise and fall times are to 0.1 μsec. Input pulse width is 0.4 μsec; amplitude is 16 v at 50 ma; and pulse repetition frequency, 1 mc return to zero. Output amplitude is 20 mv into 3.9 K and pulse width is a double dipulse of 1.0 μsec ±0.15 μsec peak-to-peak. Series 596, which has an insertion loss of 55 db, features a temperature coefficient of ±0.1 μsec from 0 to 50 C.

Trying to find manufacturers' sales offices? Phone numbers? See EDC 1961-62.
Westinghouse announces new 70-amp ratings in “Rock-Top” Trinistor® controlled rectifiers

Highest rated flag type in the industry. Type 809 Trinistor controlled rectifier series, in both flag terminal and flexible lead types, now immediately available in production quantities at 70-amp ratings! Exclusive Westinghouse “Rock-Top” construction offers superior electrical and mechanical characteristics for greater reliability under all operating conditions. Provides positive protection against arcing at highest voltages. Exclusive new flag terminal design has lower weight, requires less headroom. Outstanding parameters include: ■ 70-amp average forward current at 180° C. conduction ■ maximum rating of 110 amperes D.C. ■ 600 nanosecond switching time ■ efficiencies in excess of 98% ■ minimum noise level ■ peak reverse voltages to 480 volts ■ ideal parameters for high-speed static switch functions.

Industrial, commercial, and military applications include: high-frequency power generation; variable frequency controls; pulse generation; igniton firing; welding control. Trinistors also replace thyatrons, contactors, magnetic amplifiers, relays.

For more information, or technical assistance, contact your nearest Westinghouse representative, or write: Westinghouse Electric Corporation, Semiconductor Department, Youngwood, Penna. You can be sure... if it’s Westinghouse.

SC-1046

For Immediate “Off-The-Shelf” Delivery, Order From Those Westinghouse Distributors:

Sleeving Cutter

Maintains length tolerances of ±2%. Automatic cutter adjusts to any cutting length from 1/32 in. up to 6 in. and operates at the rate of up to 7,200 cuts per hr. The unit handles tubing of up to 3/16-in. OD, wire of up to No. 20 gage, solder, and several diameters of fiber glass and Teflon tubing.

Compton Industries, Inc., Dept. ED, Vestal, N. Y.

Price: $495.00.

DC Microvoltmeter

Accuracy is ±0.1%. Model 1101 has resolution of 1 μV on the 1 mv full-scale range. Ranges are: 1,000 μV, ±10, ±50, and ±100 mv. This unit, which weighs 35 lb, operates from 110-115-v. 60-cps ac source. The equipment is useful in measuring outputs from bonded or unbounded strain gages, thermocouples, etc.

Physical Sciences Corp., Dept. ED, 389 S. Fair Oaks Ave., Pasadena, Calif.

Silicon Transistor Oscillator

Epoxy-encapsulated units have a temperature range of -20 to -85°C. Two models are designed to create a sine-wave signal source. Current drain for each oscillator is 28 v at 2 ma. Distortion is less than 5% total.

Model S-100 operates from 400 to 50,000 cps; Model S-200, from 25 to 50,000 cps.

Solid State Electronics Co., Dept. ED, 15321 Rayen St., Sepulveda, Calif.

P&A: $186.00-$275.00; 4 weeks.

< CIRCLE 55 ON READER-SERVICE CARD
NEW PRODUCTS

Compression Amplifier 432

Features automatic stepped gain control. Model OR-LA/1 has a wide band response of from 3 to 20,000 cps and low distortion. Input signals of up to 100 db dynamic range can be compressed to 20 db. Variable gain is provided in 10 db increments. Output gain is continuously adjustable from 0 to 50 db, for a maximum output voltage range of 1 to 10 v.

Gulton Industries, Inc., Dept. ED, 212 Durham Ave., Metuchen, N. J.
P&A: $1,600.00; 3 months.

Chopper Input Transformers 471

High impedance units feature balanced windings and magnetic and electrostatic shielding. They are available in step-up and step-down configurations for use in transistor, Nuvistor and tube circuitry. Sizes are miniature (1-1/4-in. seated height) and microminiature (3/4-in. seated height). Units are designed to meet MIL-T-27A.

James Electronics, Inc., Dept. ED, 4050 N. Rockwell St., Chicago 18, Ill.
P&A: $8.75 to $18.00 each; samples from stock.

Test Block Connector 482

Printed circuit five-point connector has 5-amp current rating and contact to contact voltage breakdown of 3,000 v rms at sea level and 675 v rms at 70,000 ft. Molded of glass filled diallyl phthalate MIL-M-19833, type GDI-30, the device meets applicable paragraphs of MIL-C-8384 and MIL-C-5015.

Lionel Electronic Laboratories, Dept. ED, 1226 Flushing Ave., Brooklyn 37, N. Y.
Availability: 4 to 6 weeks.

Accuracy Is Our Policy

The New Product item appearing on p 69 of the Oct. 11 issue of ELECTRONIC DESIGN was in error. The double-acting quick release pin, manufactured by the Hartwell Corp., of Los Angeles, Calif., was described as single acting.
Predetermining Counter

Push button reset is featured on panel mounting adding predetermining electrical counter. Presetting is by means of a parallel set of wheels underneath the hinged cover. Upon reaching the preset count, an spdt knockoff switch is thrown. Switch is reset to normal only with push button. Count rate is 25 per sec, panel dimensions are 2-1/2 x 3-3/8 in.

Presin Co., Inc., Dept. ED, 2014 Broadway, Santa Monica, Calif.
P&A: $56.50; stock.

Paper-Tape Reeler

Unidirectional equipment is capable of supplying tape at any speed up to 40 in. per sec and rewinding at speeds from 45 to 60 in. per sec. Model RS-200 is said to prevent tape breakage under all conditions. Standard 10-1/2-in. reels are accommodated.

Sensitive Relay

Two-coil relay allows switching up to spdtt at 5 amp, 120 v ac, 60 cps. Snap-action switching of 1,000 w of tungsten lampload is possible. Typical coil power required is 0.1 w for pick-up and 0.025 for drop-out. Type 100 relays can be produced to meet UL requirements. They can be hermetically sealed or dust covered.

Telex/Aemco, Dept. ED, 10 State St., Mankato, Minn.

(ELECTRONIC DESIGN • November 22, 1961)

(AND THEN SOME) HANDY & HARMAN CAN HELP YOU WITH ELECTRONICS APPLICATIONS

...Take Rotary Stepping Switches — The single wiper for this rotary stepping switch is made of Handy & Harman Consil 995. This silver-magnesium-nickel alloy possesses extremely high thermal and electrical conductivity and retains its spring properties and excellent conductivity even at high ambient temperatures. The bank contacts are silver plated from Handy & Harman anodes — available in a range of finenesses including the standard 999 fine. Switch components courtesy of North Electric Company, Galion, Ohio.

...Take Heat Dissipating Tube Shields — Handy & Harman Consil 995B and Fine Silver are helping to meet the critical problems of vibration and heat in subminiature tubes. The shield assembly makes use of pure silver which, being extremely soft, conforms to tube irregularities and conducts heat away with an efficiency unmatched by any other commercially produced metal. The shield base or heat sink is made of Consil because of the alloy's excellent thermal conductivity and ability to stay rigid at elevated temperatures. The Consil and Fine Silver are joined with EASY-FLO, a Handy & Harman silver brazing alloy. Photo courtesy of International Electronic Research Corporation, Burbank, California.

...And Then Some — These two examples are indicative of the ways in which the electronics and electrical industries are solving their problems with Handy & Harman precious metals: gold and silver and their alloys in wire, strip and foil; silver powders, flake and paint; silver chlorides and oxides; bi-metals; silver sintered metals; anodes, etc. The "etc."

Your No. 1 Source of Supply and Authority on Precious Metals

HANDY & HARMAN

General Offices: 850 Third Avenue, New York 22, N.Y.

Offices and Plants: Bridgeport, Conn. • Chicago, III. • Cleveland, Ohio • Dallas, Texas • Detroit, Mich. • Los Angeles, Calif. • Mt. Vernon, N.Y. • Providence, R.I. • Toronto, Ontario • Montreal, Quebec

CIRCLE 58 ON READER-SERVICE CARD

65
NEW PRODUCTS

Epitaxial Transistor 510

For computer switching applications. This germanium npn mesa type, 2N828, meets the mechanical and environmental requirements of MIL-S-19500B and features a storage time of 50 nsec max. This type features a high minimum gain-bandwidth product of 3000 mc min at VCE = -1 v and Ic = -10 ma; and low saturation voltages.

Radio Corp. of America, Semiconductor and Materials Div., Dept. ED, Somerville, N. J.

Availability: stock.

Synchronous Motor 463

Output speeds are 300, 600, or 1,200 rpm. Type 5001 ac three-speed hysteresis motor operates from 115 v ac to 60 cps, and can drive tapes at speeds of 3-3/4 in. per sec through 30 in. per sec. The unit is insensitive to voltage changes of 40 v in either direction, according to the manufacturer. Minimum synchronous rotor torque is 7 oz-in. and temperature range is -65 to +165 F.

Beau Electronics, Inc., Dept. ED, 1060 Wolcott Road, Waterbury, Conn.
P&A: $145.00; 60 days.

Grade 4 Thermistors 453

Resistivity is 10 times that of grade 1 material, according to the manufacturer. Resistances range from 1-k to 1 meg. Units are available in a range of sizes from 0.05 to 0.17-in. diam rods, and from 0.05 to 1.0-in. diam disks or washers. Temperature sensitivity is said to be approximately 10% higher than grade 1 material.

FOR IMMEDIATE DELIVERY
CONTACT THESE STC DISTRIBUTORS

in Alabama:
MG Electronics & Equipment Co.
Birmingham — FA 2-0449

in Arizona:
Southwest Electronic Devices, Inc.
Phoenix — AL 2-1741

in California:
Finn Electronics Corp.
San Carlos — LY 1-4423
Hollywood Radio & Electronics, Inc.
Hollywood — HO 4-8321
Kierulf Electronics, Inc.
Los Angeles — RI 8-2444
San Diego — BR 6-3334
Shanks & Wright, Inc.
San Diego — BE 9-0176

in Connecticut:
N.E.E.D., Inc.
Danbury — PI 3-9844
Sun Radio & Electronics Co., Inc.
Stamford — WH 9-7715

in Florida:
Gulf Semiconductors, Inc.
Miami — MO 5-3574
Hammond Electronics, Inc.
Orlando — GA 5-0511

in Indiana:
Finn Electronics Supply, Inc.
Indianapolis — ME 4-8486

in Maryland:
Valley Electronics, Inc.
Towson — VA 5-7820

in Massachusetts:
Durrell Electronics, Inc.
Waltham — TW 3-7020
N.E.E.D., Inc.
Watertown — WA 6-1130

in New Jersey:
Sun Radio & Electronics Co., Inc.
Princeton — WA 1-2150

in New York:
Arrow Electronics, Inc.
Mineola, L.I. — PI 6-8686
Progress Electronics
New York — CA 6-5611
Standard Electronics, Inc.
Buffalo — TT 3-5000
Sun Radio & Electronics Co., Inc.
New York — OR 3-8600

in Pennsylvania:
Herbach & Rodeman, Inc.
LO 7-4309
Philadelphia Electronics, Inc.
Philadelphia — LO 8-7444

in Tennessee:
Electra Distributing Co.
Nashville — AL 5-8444

in Texas:
All State Electronics, Inc.
Dallas — BI 1-1295
Loren Company
Houston — CA 4-2663

STC's 2N2034 with saturation resistance under 0.3 ohms at 1.0 amps in the TO-5 package improves power switching circuit efficiency by 97% as compared with the 10 ohm 2N424 mounted in a heat sink as illustrated above. Specs: Hf 20 to 60 at 1 amp; BVCEO 80 volts min; IC = 3 amps.

The 2N2035 in the TO-8 package and the 2N2036 in the TO-37 package with higher power dissipation are also available.

SILICON TRANSISTOR CORPORATION
CARLE PLACE, L.I., NEW YORK, PIONEER 2-4100
CIRCLE 60 ON READER-SERVICE CARD
CIRCLE 61 ON READER-SERVICE CARD

ELECTRONIC DESIGN • November 22, 1961
PARTS ARE PART OF CUSTOM POWER...
BUT THE BIG PART IS BRAIN POWER

NJE leads the custom power supply field because of its unparalleled engineering experience...experience that turns simple hardware into sophisticated power sources for computers, military equipment and systems for automation.

Very often your supply must be designed from the ground up, with specialists attacking a completely new problem. In other cases, we can modify an existing design to fit your needs in order to speed delivery and reduce costs.

NJE's completely new plant includes all research and development, engineering, drafting, sheet metal work, stock, painting, meter calibration, transformer production, assembly and testing—all under one roof!

Here are just a few of the leading projects now using NJE power supplies and systems: U.S. Navy computer memory power supply; "Hustler" ground support power supply system; Radar system power supply; Hawk missile check-out; F-105 flight simulator power supply system; Atlas missile check-out; Nike Zeus.

For complete details on custom designs and a catalog on one of America's widest line of standards, write today!

NEW PRODUCTS

Selector Switch

Up to 24 positions are available with the remotely controlled unit. Use of a second unit can give the user individual command of 216 different circuits. Design combinations permit great variety of applications for stepping, counting, adding, subtracting, programming and sequencing. Hermetically sealed models are also available.

Ledex Inc., Dept. ED, 123 Webster St., Dayton 2, Ohio.

Electromagnetic Pulse Counter

Type ZM-53 has 10 armatures operating sequentially on application of a pulse series. Nominal minimum pulse duration for operation of the device is 210 msec and minimum interval between pulses is nominally 20 msec. Actuating winding is available in 24- and 60-v designs with ratings of 650 and 324 ma, respectively.

Components Div., International Telephone and Telegraph Corp., Dept. ED, Clifton, N. J.
P&A: $14.75 each (1-99); stock.

Melamine-Glass Cloth Laminate

For applications involving high moisture. Laminate exceeds requirements of MIL-P-15037C, type GME; and MIL-P-15037B, type GMG. Typical absorption value for 1/16-in. thicknesses of Lamicoid 6038E is 0.68%. Material is available in thicknesses from 2 to 0.008 in.

Mica Insulator Div., Minnesota Mining & Manufacturing Co., Dept. ED, Schenectady, N. Y.
P&A: 36 x 42 x 1/16-in. sheet, $2.50 per lb for 300 lb or over; stock to 4 weeks.

Accuracy Is Our Policy

Model T-X/NF-105 tuning unit extends the range of noise and field intensity meter NF-105; its tuning range is 14 to 150 kc. An incorrect description of the unit, manufactured by Empire Devices of Amsterdam, N. Y., appeared on p 89 of the Sept. 27 issue of ELECTRONIC DESIGN.
A Trio of Tunable Ferrite Pot Cores for Transformer & Inductor Applications

This Trio was carefully designed to fulfill several levels of required accuracy of performance and adjustment. Decide on the precision required for your particular application and select the assembly for the job. Many features are common to all three tunable ferrite cores, such as (1) close permeability tolerances; (2) very high “Q” for applications up to 3 Mc; (3) excellent linear temperature stability; (4) ease of assembly; (5) ease of “vernier” adjustment. Interested? Write us today for the full story.

FERROXKOR®

The unexcelled optimum in a precision assembly. All factors fully controlled to obtain precision adjustability and stability. Minimum tuning range of 14%. Final adjustment accuracy of 0.02%. Unique, labor-saving, ruggedly constructed hardware allows accurate and repeatable re-alignment of pot core halves. Easy disassembly. Effective electrostatic shielding. Full selection of stock assemblies available. Complete with individual design data.

FERROXKOR® STAGE IV

Precision made, optimized ferrite pot cores and tuning assembly. Minimum tuning range of 14%. Assembled with simple, clamp-type hardware. For applications where size is of prime importance, or where slightly less precision can be tolerated.

FERROXKOR INTERNATIONAL SERIES

Utilizes new optimized pot core design in industry-wide standard sizes. Versatile line in a variety of ferrite materials. Ideally suited where less precision than that afforded by FERROXKOR is required. Newly engineered metal-plastic tuning assembly offers 10% tuning range with 0.1% accuracy.

(Also available with interchangeable, all-polystyrene tuning mechanism providing an accuracy of 0.5%).

*All assemblies use precision ferrite pot core sets which are electrically pre-adjusted to allow -3% inductance pre-calculation of the assembled inductor.

FERROXCUBE CORPORATION OF AMERICA
SAUGERTIES, NEW YORK • FOREMOST IN THE FIELD OF FERRITE
NEW PRODUCTS

Power Relay

Type 136 is a heavy current switching or multi-pole relay with up to 24 contact points for either ac or dc circuit switching. The unit is said to be capable of exceeding 5 million mechanical operations with 4pdt 15-amp contacts. Protective covered, hermetically sealed or plug-in units are available.

Telex/Aemco, Dept. ED, 10 State St., Mankato, Minn.

AFC Systems

Three distinct types of automatic frequency control units, series C, are available: miniature tubes, subminiature tubes or transistors. High temperature components, such as silicon transistors and tantalytic capacitors are employed to insure high temperature operation of 125 C.

Orion Electronic Corp., Dept. ED, 108 Columbus Ave., Tuckahoe, N. Y.

Availability: 4 to 6 weeks.

Plug-In Connectors

Gold-plated heavy brass terminals for low resistance are provided for use with standard printed circuit connectors. Because switches use fine silver contacts and brushes, the assembly is suitable for dry circuits where low contact resistances of less than 1.5 milliohms are desired.

New from Mallory...

Packaged silicon rectifier circuits cut
Now you can get a complete full-wave bridge or voltage doubler circuit—in a single compact package ready to mount in a chassis or printed circuit—at a cost lower than that of the individual rectifiers. Mallory rectifier packages simplify assembly, reduce your purchasing, handling and inventory requirements. And, while bringing important savings in your plant, these packaged circuits deliver top-flight performance in your products, in commercial-industrial equipment and appliance applications.

All Mallory rectifier packages are of cold-case design, encapsulated in moisture-impervious resin. Their unique new cell construction results in exceptional reliability: low forward voltage drop, low leakage current, high temperature stability. Our engineers are ready to help you make profitable use of Mallory packaged silicon rectifier circuits. Write today for data or a consultation.

Costs of stocking, wiring, assembly

Encapsulating Material

“ThermoSlee” sleeves are dropped over the component and heat is applied in excess of 275°F for 3 to 8 sec causing the sleeve to shrink and tightly grip the resistor or capacitor in a moisture-tight casing. All variations have a dielectric strength up to 1,000 v per mil. Continuous temperatures from −67 to 275°F and up to 500°F for short periods will not damage the material.

Ray clad Tubes, Inc., Dept. ED, Redwood, Calif.

High-Accuracy Resolvers

Size 11, CR4 0987 00 — resolvers feature 0.1% function error, ±3 min inter-axis error, and 0.1% transformation ratio unbalance. Each of these units weighs 4.0 oz and has the following mechanical characteristics: 2 gm-cm² rotor moment of inertia; 4 gm-cm friction at 25°C; 16 gm-cm friction at −55°C; and an operating temperature range of −55 to +125°C.

Kearfott Div., General Precision, Inc., Dept. ED, 1150 McBride Ave., Little Falls, N. J.

Availability: 30 to 60 days.

Fused Eyelet Processor

Automatic eyelet attaching machine model NR-ESSM feeds, sets and fuses eyelets as small as 0.033 in. ID to printed wiring boards as thin as 1/32 in. The process meets requirements of MIL-STD-275A. Model TW has a 15-in. throat depth and can fuse eyelets to 0.020-in. ID in boards as thin as 1/64 in.

Edward Segal, Dept. ED, 132 Lafayette St., New York 13, N. Y.

P&A: $705.00 to $3,400.00; 4 to 6 weeks.

Multiple Turn Potentiometers

Three series are available including 10-, 5- and 3-turn units. Eighty standard units range from 100 to 300,000 ohms. Maximum dc voltages across terminals are: series A, 773 v; series R, 1,000 v; and series D, 446 v. Operating temperature range for all series is −55 to +110°C.

Arcon Electronics, Dept. ED, Box 31, Los Alamitos, Calif.
When you need

POWER

FOR TELEMETERING, CONSUMER PRODUCTS, CONTROLS, GUIDANCE, MICROWAVE, PORTABLE EQUIPMENT, ALARM SYSTEMS,

 Depend on Reliable

NICAD® Nickel Cadmium Rechargeable Battery Cells

Sealed Cells

Vented Cells

If you need battery POWER you will find a NICAD Sealed or Vented Power Cell designed to meet your most demanding and exacting specifications.

A product of intensive research and sound engineering, these NICAD cells offer a dependable, constant power supply for: Emergency Lighting, Controls and Alarms, Switchgear Operation, Toys, Hearing Aids, Dictating Equipment, Flashlights, Telemetering, Microwave, Engine Starting, Radio Transceivers, Telephone, Transmitters, Instrumentation, Computers and many, many more. Compact, lightweight, low in operating cost, requiring practically no maintenance, NICAD cells are ruggedly constructed and are virtually unaffected by temperature extremes.

To design reliable and economical power into your systems or products choose from the wide range of sizes and types in the NICAD line. If you need more detailed information on your particular problem write . . .

NICAD BATTERY DIVISION

GOULD-NATIONAL

BATTERIES, INC./E-1410 First National Bank Bldg., St. Paul 1, Minnesota

NEW PRODUCTS

DC to DC Voltage Regulator 472

Efficiency is better than 50% with 24 v input at full load. A pair of alloy junction power transistors perform the switching function. The unit is designed for use in computer installations, telephone and telegraph terminals, and other military and industrial systems which require a regulated decrease in dc voltage for their transistorized circuits.

Polyurethane Coating 426

Coating is designed for printed-circuit boards, wave guides, etc. Pro-Seal 768 is said to have favorable electrical and physical properties. The material exhibits 600% elongation, has a tensile strength of 7,000 psi, and an operating range of from -80 F with permissible intermittent exposures at 275 F.

Coast Pro-Seal & Manufacturing Co., Dept. ED, 2235 Beverly Blvd., Los Angeles 57, Calif.

Telemetering Switch 468

Provides up to 90 channels per pole on each of five poles in a 5-1/2-cu in. volume and 7 oz weight for airborne and ground telemetering applications. Sampling rate of "Micromax" is up to 30 rps. Contact resistance is less than 1 ohm with a 100-ohm switching load.

General Telemetry, Inc., Dept. ED, 475 Watchung Ave., Watchung, N. J.

Accuracy Is Our Policy

The 7/8-in. sine-cosine potentiometer, manufactured by Fairchild Controls Corp., Hicksville, N.Y., was incorrectly described in a New Product release as a 1/8-in. unit. The item appeared on p 149 of the Oct. 11 issue of ELECTRONIC DESIGN.
NEW...FILTERCONS BY ERIE for highest attenuation in the 100MC to 2000MC range

As shown in the graph (right), FILTERCONS provide optimum performance in the UHF range of 100MC to 2000MC, far exceeding the performance of a theoretical 1000pF capacitor. Measurement is made in accordance with MIL-STD-220A.

FILTERCONS are available in single-section small and large bushing and eyelet mounts plus six and twelve section units. Minimum attenuation is 45 dB from 200MC to 2000MC or 50 dB from 100MC to 2000MC. Low frequency capacitance is 1000pF for small mount FILTERCONS at 200 VDCW, 2000pF for large mount at 500 VDCW, and 5000pF for six and twelve section units at 350 VDCW. All styles have operating temperature ranges of -55°C to either +85°C or +125°C.

Circle 831 on Reader Service Card

New Development—THE TANTACON an hermetically sealed, solid electrolyte tantalum capacitor

Makes possible high capacitance per unit volume while maintaining stable temperature-capacitance characteristics and low dissipation factor over an operating temperature range of -80°C to +85°C. Solid electrolyte eliminates leakage problems. Supplied in metal MIL cases, sizes A, B, C, D (insulated and non-insulated).

Capacitance Range: 0.6mF to 30mF
Capacitance Tolerances: ±5% (on request), ±10%, ±20%
Voltage Ratings: 6, 10, 15, 20 and 35 VDCW

Circle 833 on Reader Service Card

Sturdy and reliable—NEW ERIE PRECISION GLASS TRIMMERS operate at 1000 VDCW from -55°C to +125°C

ERIE glass-dielectric trimmers feature linear, nonreversing capacitance change with rotation, uniform torque, and positive stop at maximum and minimum settings to prevent accidental disengagement of the piston. Less mounting space is required because drive screw and piston never extend beyond the trimmer body.

Available for panel or printed circuit mounting.

Capacitance Ranges: 1.0pF to any of the following: 4.5pF, 6.5pF, 12.0pF, 18.0pF, 30.0pF
Temperature Coefficient: 400 ± 100ppm/°C or 0 ± 100ppm/°C

Circle 832 on Reader Service Card

ERIE TRANSCAPS* The smallest 0.2mF, 25 VDCW ceramic capacitor on the market

Exclusive Erie developed techniques of producing thin-fIlm dielectrics make possible the TRANSCAP with capacitance values from 0.05mF to 0.2mF, capacitance tolerance of ±80%, ±20%, ±5%, 25 VDCW, and operating temperature range of -30°C to +85°C (EIA: Y5U).

Ideally suited to transistor circuits, TRANSCAPS are supplied with conventional, kinked, or Wil-Lok® leads.

Circle 834 on Reader Service Card
NEW SEMICONDUCTOR COMPONENTS

Electron Research, Inc., a division of Erie Resistor Corporation, is a specialist in the manufacture of germanium and silicon diodes and rectifiers. Production capabilities are available for Point Contact, Gold Bond, Alloy Junction and Epitaxial Germanium Diodes and Rectifiers, and for Diffused Junction, Alloy-Diffused Junction, Planar, Mesa and Epitaxial Silicon Diodes and Rectifiers. Many diodes can be fabricated by several different methods but Erie diodes and rectifiers are fabricated by the One Best Method for each individual application.

Among the latest products from Electron Research are:

NEW ULTRA-FAST RECOVERY GERMANIUM COMPUTER DIODE

<table>
<thead>
<tr>
<th>Type #</th>
<th>FWD. Volt Drop @ 10 ma</th>
<th>Max. Inverse Operating Voltage</th>
<th>Max. Reverse D. C. Current</th>
<th>Max. D. C. Fwd. Current ma</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN909</td>
<td>.34V</td>
<td>.37V</td>
<td>10 µA @ 10V</td>
<td>100</td>
</tr>
<tr>
<td>IN910</td>
<td>.34V</td>
<td>.37V</td>
<td>10 µA @ 10V</td>
<td>100</td>
</tr>
<tr>
<td>IN911</td>
<td>.34V</td>
<td>.37V</td>
<td>10 µA @ 10V</td>
<td>100</td>
</tr>
</tbody>
</table>

*Measured in ERI @ Recovery Circuit from 20 ma to 0.1 ma.

NEW CONTROLLED LOW FORWARD VOLTAGE DROP GERMANIUM DIODE

<table>
<thead>
<tr>
<th>Type #</th>
<th>FWD. Volt Drop @ 10 ma</th>
<th>Max. Inverse Operating Voltage</th>
<th>Max. Reverse D. C. Current</th>
<th>Max. D. C. Fwd. Current ma</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN923</td>
<td>.50V</td>
<td>.37V</td>
<td>28V</td>
<td>250</td>
</tr>
<tr>
<td>IN930</td>
<td>.50V</td>
<td>.37V</td>
<td>58V</td>
<td>250</td>
</tr>
<tr>
<td>IN931</td>
<td>.50V</td>
<td>.37V</td>
<td>100V</td>
<td>250</td>
</tr>
<tr>
<td>IN932</td>
<td>.50V</td>
<td>.37V</td>
<td>200V</td>
<td>250</td>
</tr>
</tbody>
</table>

NEW CONTROLLED LOW FORWARD VOLTAGE DROP SILICON DIODE

<table>
<thead>
<tr>
<th>Type #</th>
<th>FWD. Volt Drop @ 10 ma</th>
<th>Max. Inverse Operating Voltage</th>
<th>Max. Average Rectified Current ma</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN923</td>
<td>.50V</td>
<td>.37V</td>
<td>28V</td>
</tr>
<tr>
<td>IN930</td>
<td>.50V</td>
<td>.37V</td>
<td>58V</td>
</tr>
<tr>
<td>IN931</td>
<td>.50V</td>
<td>.37V</td>
<td>100V</td>
</tr>
<tr>
<td>IN932</td>
<td>.50V</td>
<td>.37V</td>
<td>200V</td>
</tr>
</tbody>
</table>

NEW CO-AXIAL PACKAGE, HERMETICALLY SEALED SILICON RECTIFIER

Erie Electronic Components are available in quantities under 1,000 pieces from leading electronics distributors.

ERIE ELECTRONICS DIVISION

Erie Resistor Corporation
644 West 12th Street
Erie Pennsylvania
Sales Offices in principal cities of U.S.A., Canada, Europe
Pressure Switch

Series 70-2940 switches handle up to 5 amp. Designed to MIL-E-5272 and MIL-F-8615, these spdt-NO or NC units have setting from 0.5 psig to 3,000 psig. The 2-11/16 x 1-1/4 in. sq switch comes in aluminum and stainless steel, with a burst pressure as high as 7,500 psig. Operating temperature is -65 to -250 F.

International Resistance Co., Dept. ED, Box 401 N, Broad St., Philadelphia 8, Pa.

DC Amplifier

Model 993 is entirely self contained and features -2% linearity. Clear lucite is used to encase the mechanism, which is mounted on a bakelite base. Ten to one amplification of photovoltaic cell outputs is achieved with this unit. Amplifier is powered by 1.34-v mercury cell.

Weston Instrument Div., Daystrom Inc., Dept. ED, 614 Frelinghuysen Ave., Newark 14, N. J.

Price: $825.00.

Tube Tester

All the newest tubes, as well as standard foreign and domestic tubes, can be checked. Model 107A can run a mutual conductance test on a prewired chassis, or up to 9 positive checks for leakage, shorts and grid emission. Unit comes in a carrying case with a flip chart of setup data.

Seco Electronics Inc., Dept. ED, 5015 Penn Avenue South, Minneapolis 19, Minn.

Price: $149.50.

Globe’s basic high quality motors are designed hysteresis-synchronous and induction in various stack lengths. Our a.c. motors span the torque spectrum through 10 oz. in. at synchronous speed (induction torques are 50% higher). New frame sizes of 1/2" and 2 1/2" dia. are coming. Units are for 60, 400 cycles, variable frequency, very high cycle, or special square wave power. Our d. c. motors span the same performance and size range.

We furnish gearmotors—using standard odd or even ratio gear reducers—providing the exact speed-torque output you need in one compact package. This is the most efficient way to meet your requirements from the standpoints of good design, reasonable cost, undivided responsibility. Many available for immediate prototype delivery.

Please ask for Bulletin AC-1 from Globe Industries, Inc., 1784 Stanley Avenue, Dayton 4, Ohio, Tel. Area Code 513 222-3741.

GLOBE INDUSTRIES, INC.

PRECISION MINIATURE MOTORS, GEARMOTORS, TIMERS, ACTUATORS, CLUTCHES, BLOWERS, MOTORIZED DEVICES

OF COURSE, GLOBE MAKES A.C. MOTORS

TYPE SC Sub-miniature motor rated 15 oz. in. max.
 sync. torque. Size: 1.07" dia. x 1.32" long. 2.4 oz.
 To 200 v. a. c. 2, 4, or 6 poles. 49 std. gear ratios.

TYPE MC Miniature motor rated 0.8 oz. in. max.
 sync. torque. Size: 1.62" dia. x 1.32" long. 5 oz.
 To 200 v. a. c. 2, 4, or 6 poles. 101 std. gear ratios.

TYPE FC Small motor rated 1.6 oz. in. max.
 sync. torque. Size: 1 1/16" dia. x 2 1/2" long. 13.4 oz.
 To 200 v. a. c. 2, 4, or 6 poles. 101 std. gear ratios.

TYPE LC Small motor rated 10 oz. in. max.
 sync. torque. Size: 3 3/16" dia. x 3 3/4" long. 53 oz.
 To 200 v. a. c. 2, 4, or 6 poles. Gearbox to order.

CIRCLE 67 ON READER-SERVICE CARD
Solve Breadboard Needs Now

24 Hour SERVO Delivery!

- Wright 400 Cycle Motors, Motor Tachs, Inertia Damped Motors
- Advanced Designs, Including Very High Acceleration
- Full Production Quality Meeting All MIL Specs
- All Have Pinion Shafts .437” Long

This NEW service on quantities up to 10 pieces per item. Shipments made 24 hours after receipt of order - no spec. modifications. Normal fast delivery on larger quantities.

<table>
<thead>
<tr>
<th>SERVO MOTORS</th>
<th>FRAME</th>
<th>VOLTS</th>
<th>VOLTS</th>
<th>STALL TORQUE</th>
<th>SPEED RPM</th>
<th>STALL PWR.</th>
<th>ACCEL RAD / SEC²</th>
</tr>
</thead>
<tbody>
<tr>
<td>20D633-2C</td>
<td>6</td>
<td>26</td>
<td>26</td>
<td>22 OZ IN</td>
<td>6200</td>
<td>2.3W</td>
<td>106,000</td>
</tr>
<tr>
<td>20D634-2C</td>
<td>6</td>
<td>26</td>
<td>36 CT</td>
<td>22 OZ IN</td>
<td>6200</td>
<td>3.1W</td>
<td>95,000</td>
</tr>
<tr>
<td>20D636-2C</td>
<td>11</td>
<td>115</td>
<td>115</td>
<td>.3 OZ IN</td>
<td>6200</td>
<td>3.5W</td>
<td>98,000</td>
</tr>
<tr>
<td>20D638-2C</td>
<td>11</td>
<td>115</td>
<td>115</td>
<td>.6 OZ IN</td>
<td>6200</td>
<td>3.5W</td>
<td>43,000</td>
</tr>
<tr>
<td>20D642-2C</td>
<td>15</td>
<td>115</td>
<td>115</td>
<td>1.3 OZ IN</td>
<td>6200</td>
<td>4.2W</td>
<td>27,000</td>
</tr>
<tr>
<td>20D644-2C</td>
<td>15</td>
<td>115</td>
<td>115</td>
<td>2.3 OZ IN</td>
<td>4800</td>
<td>9.1W</td>
<td>31,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MOTOR TACHS</th>
<th>FRAME</th>
<th>VOLTS</th>
<th>VOLTS</th>
<th>TACH VOLTS</th>
<th>STALL TORQUE</th>
<th>SPEED RPM</th>
<th>V/1000 RPM</th>
<th>TOTAL NULL</th>
<th>ACCEL RAD / SEC²</th>
</tr>
</thead>
<tbody>
<tr>
<td>20D629-2C</td>
<td>8</td>
<td>115</td>
<td>115</td>
<td>26</td>
<td>.3 OZ IN</td>
<td>6200</td>
<td>20</td>
<td>.019W</td>
<td>75,800</td>
</tr>
<tr>
<td>20D631-2C</td>
<td>8</td>
<td>26</td>
<td>36 CT</td>
<td>26</td>
<td>.35 OZ IN</td>
<td>6200</td>
<td>20</td>
<td>.019W</td>
<td>83,500</td>
</tr>
<tr>
<td>20D632-2C</td>
<td>8</td>
<td>26</td>
<td>26</td>
<td>22 OZ IN</td>
<td>6200</td>
<td>20</td>
<td>.019W</td>
<td>75,000</td>
<td></td>
</tr>
<tr>
<td>20D633-2C</td>
<td>8</td>
<td>26</td>
<td>36 CT</td>
<td>26</td>
<td>.3 OZ IN</td>
<td>6200</td>
<td>20</td>
<td>.019W</td>
<td>75,000</td>
</tr>
<tr>
<td>20D636-2C</td>
<td>11</td>
<td>115</td>
<td>115</td>
<td>115</td>
<td>.3 OZ IN</td>
<td>6200</td>
<td>500</td>
<td>.019W</td>
<td>32,600</td>
</tr>
<tr>
<td>20D638-2C</td>
<td>11</td>
<td>115</td>
<td>115</td>
<td>115</td>
<td>.6 OZ IN</td>
<td>6200</td>
<td>500</td>
<td>.019W</td>
<td>32,600</td>
</tr>
<tr>
<td>20D642-2C</td>
<td>15</td>
<td>115</td>
<td>115</td>
<td>115</td>
<td>1.3 OZ IN</td>
<td>4800</td>
<td>3.1</td>
<td>.019W</td>
<td>17,500</td>
</tr>
<tr>
<td>20D644-2C</td>
<td>15</td>
<td>115</td>
<td>115</td>
<td>115</td>
<td>2.3 OZ IN</td>
<td>4800</td>
<td>3.1</td>
<td>.019W</td>
<td>25,900</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INERTIA DAMPED</th>
<th>FRAME</th>
<th>VOLTS</th>
<th>VOLTS</th>
<th>STALL TORQUE</th>
<th>STALL POWER</th>
<th>SPEED RPM</th>
<th>DAMPING</th>
</tr>
</thead>
<tbody>
<tr>
<td>20D618-2B</td>
<td>8</td>
<td>115</td>
<td>40</td>
<td>10 OZ IN</td>
<td>3.5W</td>
<td>6200</td>
<td>40 DYNE CM</td>
</tr>
<tr>
<td>20D605-2D</td>
<td>11</td>
<td>115</td>
<td>115</td>
<td>60 OZ IN</td>
<td>3.5W</td>
<td>6200</td>
<td>100 DYNE CM</td>
</tr>
<tr>
<td>20D613-2C</td>
<td>18</td>
<td>115</td>
<td>115</td>
<td>2.3 OZ IN</td>
<td>3.5W</td>
<td>4800</td>
<td>750 DYNE CM</td>
</tr>
</tbody>
</table>

NEW PRODUCTS

Production Tester 580

Electronic assemblies and components can be produced on a model 8522 test set. High voltage breakdown to 2.5 kV, with automatic readout of leakage current and insulation breakdown are featured. Resistance reading up to 500 ohms with signal lights for above or below tolerance ratings, can be used to actuate external equipment for fully automatic installations.

Associated Research, Inc., Dept. ED, 3777 W. Belmont Ave., Chicago 18, Ill.

Power Supplies 413

Provide 40 v dc at 5, 10 or 30 amp from an input of 115 v, single-phase. Model TCV-40-10 power supplies can be adjusted for voltage or current regulation by means of a switch. Current regulation is 0.02% for ±10% line change; voltage regulation is 0.01 for ±10% line change.

Spectromagnetic Industries, Dept. ED, P. O. Box 3306, Hayward, Calif.

Circuit Patterns 427

Automatic step and repeat photographic machines facilitate rapid, accurate production of microminiaturized electronic circuit patterns. In copying area sizes of 25 x 26 in. and 29 x 43 in., accommodating originals up to 9 x 12 in. Larger model, available in sizes from 40 x 56 to 56 x 80 in., will accommodate originals up to 24 x 24 in.

Royal Zenith Corp., Dept. ED, 180 Varick St., New York 14, N.Y.

dial any output from 0-1000 volts!

Keithley Regulated DC Supplies provide the stability, ease and accuracy necessary for a wide range of laboratory tests. Typical applications include calibration of meters and dc amplifiers, testing insulation, diode, and capacitor leakage resistances, or furnishing potentials for photo-multiplier tubes and ionization chambers.

MODEL 241—0.05% accuracy

A dc secondary standard featuring a long-life photo-chopper and resonant reference. It is immune to shock and vibration, and offers long-term calibration stability.

- Accuracy: 0.05% or 1 millivolt.
- DC Output Voltage: -0.0100 volts — plus, minus or floating, with 5 calibrated dials and 100 mV resolution.
- Output Current: ± 0.020 milliamperes max.
- Stability: ±0.005% short term.
- Ripple: less than 1 mV RMS.
- Overload Protection: fast-acting relay circuit.
- Price: $800.00

MODEL 240—1.0% accuracy

A general-purpose version of the Model 241 available at lower cost.

- Accuracy: 1.0% or 100 millivolts.
- DC Output Voltage: ± 0.1000 volts — plus, minus or floating, with 5 calibrated dials and 10 mV resolution.
- Output Current: ± 0.020 milliamperes max.
- Stability: ±0.005% per eight hours.
- Ripple: less than 0.1 mV RMS above 5 cps.
- Overload Protection: fast-acting relay circuit.
- Price: $345.00

Full details in latest catalog

KEITHLEY INSTRUMENTS

12415 Euclid Avenue • Cleveland 6, Ohio
CIRCLE 69 ON READER-SERVICE CARD

ELECTRONIC DESIGN • November 22, 1961
Transistor Test Rack 511
Modular basis design allows life test rack to accommodate any number of modules. Each module holds 20 transistors, with dissipation of 50 to 100 W. Heat exchanger design maintains transistor case temperature within ±5 °C of nominal test temperature from 70 to 150 °C.
Bay State Electronics Corp., Dept. ED, 43 Leon St., Boston 15, Mass.
P&A: $9,800.00; 10 to 12 weeks.

Slip Ring Assemblies 564
For −200 to +200 C use, these Teflon-clad slip ring assemblies handle high voltages without arcing damage, even under conditions of extreme humidity. They maintain high resistance between circuits.
Eletro-Tec Corp., Dept. ED, 10 Romanelli Ave., S. Hackensack, N. J.

Acrylic Slewing 528

Class B (130 °C) insulating material, Hygrade AC-761, is compatible with epoxy, acrylic, polyester, phenolic, formvar, and is non-corrosive to conductor wire. Excellent electrical characteristics, oil resistance and cut-through resistance are claimed by the manufacturer.

Silicon Rectifiers 514
Ten 5-amp diffused-junction silicon rectifiers have stud mounting. Rectifiers meet military, environmental and mechanical needs. Zirconium-copper alloy mounting stud withstands 25 in-lb torque. Dynamic leakage current is 1 ma max at 150 °C case temperature, for the 1N1612 through 1N1616. Reverse polarity models are also made. Radio Corp. of America, Semiconductor Div., Dept. ED, Somerville, N. J.
P&A: 100 to 999, $1.85 for 50 v and $8.30 for 600 v; immediately.

New TI DALMESA Transistors Give IMPROVED HF Oscillator Performance From −40 to +70°C

Solve your industrial communications design problems today with TI's new DALMESA 2N2188 series. This new germanium alloy diffused mesa transistor family is specifically designed to meet your requirements for high-performance, low-noise, economically-priced transistors for application over the entire communications band from dc to 150 mc. The extremely low, low-frequency noise corner and high alpha cutoff frequency offered by new DALMESA transistors result in low-noise performance over a very wide bandwidth—the 2N2188 series gives you a typical mid-frequency noise figure of 1.5 db.

These new devices also give you guaranteed gain/bandwidth products of 60 and 102 mc to assure excellent performance in your IF, RF and video amplifiers. Increased high-frequency stability results from the guaranteed maximum output capacitance of 2.5 pf at 9 volts. Apply new DALMESA transistors to your communications designs today and take advantage of the increased performance capabilities of this new Texas Instruments series. These new 125-mw transistors are immediately available through your nearest TI Sales Office or Authorized TI Distributor.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>2N2188</th>
<th>2N2189</th>
<th>2N2190</th>
<th>2N2191</th>
</tr>
</thead>
<tbody>
<tr>
<td>BVCEO+ AND BVCE</td>
<td>IC = −50 μA</td>
<td>40 v min</td>
<td>40 v min</td>
<td>60 v min</td>
<td>60 v min</td>
</tr>
<tr>
<td>BVCEO+</td>
<td>IC = 0</td>
<td>100 μA</td>
<td>2 v min</td>
<td>2 v min</td>
<td>2 v min</td>
</tr>
<tr>
<td>hFE</td>
<td>VCE = −6 V</td>
<td>IC = −50 μA</td>
<td>40 v min</td>
<td>60 v min</td>
<td>40 v min</td>
</tr>
<tr>
<td>hFE (at 1 kc)</td>
<td>VCE = −6 V</td>
<td>IC = −50 μA</td>
<td>40 v min</td>
<td>60 v min</td>
<td>40 v min</td>
</tr>
<tr>
<td>IC</td>
<td>VCE = −6 V</td>
<td>IC = −50 μA</td>
<td>60 mc min</td>
<td>102 mc min</td>
<td>60 mc min</td>
</tr>
<tr>
<td>ICBO</td>
<td>VCB = −12 V</td>
<td>IC = 0</td>
<td>3 μA max</td>
<td>1 μA max</td>
<td>3 μA max</td>
</tr>
<tr>
<td>CBO (at 1 kc)</td>
<td>VCB = −3 V</td>
<td>IC = 0.5 ma</td>
<td>3.5 pf max</td>
<td>3.5 pf max</td>
<td>3.5 pf max</td>
</tr>
<tr>
<td>Noise figure (at 1 mc)</td>
<td>VCE = −5 V</td>
<td>IC = 0.5 ma</td>
<td>1.5 db typ</td>
<td>1.5 db typ</td>
<td>1.5 db typ</td>
</tr>
<tr>
<td>Maximum Power Dissipation</td>
<td>25°C Ambient</td>
<td>125 mw</td>
<td>125 mw</td>
<td>125 mw</td>
<td>125 mw</td>
</tr>
</tbody>
</table>

TI = 516 AIR DUX OR EQUIVALENT N 1 TURNS; N 2 TURNS; ALL RESISTOR VALUES 1/2 W 10%
this failure-proof
3 amp glass diode

now in

STACKS* to 20,000 Volts at 125°C

BRIDGES* to 2 amps and to 5,000 Volts
SINGLE AND 3 PHASE

UNITRODE STACKS - high voltage rectifiers. Unique resistance to voltage spikes and ability to sustain overloads mean no need to string on capacitors and resistors to balance out the network.

- Both faces of the silicon wafer are bonded throughout their entire surfaces to the terminal pins.
- A hard glass sleeve is fused to all exposed silicon and terminal pin surfaces to positively exclude any space, air, or contaminants.

Available in standard configurations shown, or TO-3 and other miniature packages and mounting styles. A selection of lead materials for soldering and welding, lugs, or plug-in pins.

UNITRODE BRIDGES — single phase and three phase full wave bridge rectifiers. Bridge modulators, phase sensitive detectors, and suppressed carrier modulators.

The Unitrode glass diode takes high forward current, because the heat generated in the junction is quickly dissipated through the terminal pins, and the glass fused to the silicon permanently stabilizes its super-clean surface. There is no whisker to burn out. All materials are stable to over 600°C.

The Unitrode glass diode withstands up to 5,000 volt reverse transients, because it conducts zener current with no degradation until the transient voltage drops to the rated level. Elimination of voids prevents internal arcing.

Unitrode stacks and bridges conduct up to 2 amps at 125°C, because of the high temperature materials used and the high thermal conductivity of the package. No heat sinks are required. The one-piece diode construction insure a rugged mechanical package, unaffected by shock or vibration.

NEW PRODUCTS

Translator and Display 600
Portable transistor translator and decimal display translates binary, 8-4-2-1, code to decimal equivalent. The TADD-4-BCD unit has no relays and is completely transistorized. The case is for standard relay rack mounting and most parts are mounted on the cover for easy access.

Norden, Div. of United Aircraft Corp., Dept. ED, Norwalk, Conn.

Readout Oscilloscope 367

Digital presentation on automatic computing programmer is simultaneous with analog display on 5 in. crt. Indicators light to designate the readout zone, while the actual measurement is given in a 4-digit decimal display, on model 567. Delay, rise, storage and fall times can be read directly in such applications as transistor switching measurements.

Tektronix, Inc., Dept. ED, P. O. Box 500, Beaverton, Ore.
P&A: $700.00; late 1961.

Thermocouple Signal Conditioner 374
Up to eight channels may be accommodated. Model TSC-1 has one to four different ranges, plus or minus calibration, and 1- or 2-digit calibration and zero. Mercury cells are used in bias and calibration circuits. The unit features controls for loop-impedance monitor and adjust.

Plated Copper Wire 507
Single-ended copper conductors electroplated with a continuous nonporous coating of pure nickel are available in five standard plating thicknesses. Designed for use where continuous temperature of between 250 and 750°C are encountered, the wires are normally employed under high temperature insulations such as Teflon TFE and ceramic coatings.

Hudson Wire Co., Dept. ED, Ossining, N. Y.
Here's One Way to Automate Coffee-Pots With Servo Pots...

LONGER LINEAR SINGLE TURN FILM POTENTIOMETERS

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Resistance</th>
<th>Linearity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/8"</td>
<td>1K</td>
<td>±5%</td>
</tr>
<tr>
<td>10K</td>
<td>±5%</td>
<td></td>
</tr>
<tr>
<td>50K</td>
<td>±5%</td>
<td></td>
</tr>
<tr>
<td>7 1/8"</td>
<td>1K</td>
<td>±5%</td>
</tr>
<tr>
<td>10K</td>
<td>±5%</td>
<td></td>
</tr>
<tr>
<td>50K</td>
<td>±5%</td>
<td></td>
</tr>
<tr>
<td>10K</td>
<td>±25%</td>
<td></td>
</tr>
<tr>
<td>50K</td>
<td>±25%</td>
<td></td>
</tr>
<tr>
<td>1-3/32"</td>
<td>1K</td>
<td>±5%</td>
</tr>
<tr>
<td>10K</td>
<td>±5%</td>
<td></td>
</tr>
<tr>
<td>50K</td>
<td>±5%</td>
<td></td>
</tr>
<tr>
<td>1K</td>
<td>±25%</td>
<td></td>
</tr>
<tr>
<td>5K</td>
<td>±25%</td>
<td></td>
</tr>
<tr>
<td>2"</td>
<td>5K</td>
<td>±25%</td>
</tr>
<tr>
<td>20K</td>
<td>±25%</td>
<td></td>
</tr>
<tr>
<td>50K</td>
<td>±25%</td>
<td></td>
</tr>
<tr>
<td>20K</td>
<td>±1%</td>
<td></td>
</tr>
<tr>
<td>5K</td>
<td>±1%</td>
<td></td>
</tr>
<tr>
<td>5"</td>
<td>20K</td>
<td>±1%</td>
</tr>
<tr>
<td>10K</td>
<td>±1%</td>
<td></td>
</tr>
<tr>
<td>50K</td>
<td>±0.5%</td>
<td></td>
</tr>
<tr>
<td>5K</td>
<td>±0.5%</td>
<td></td>
</tr>
<tr>
<td>3"</td>
<td>5K</td>
<td>±0.5%</td>
</tr>
<tr>
<td>20K</td>
<td>±0.5%</td>
<td></td>
</tr>
<tr>
<td>5K</td>
<td>±0.5%</td>
<td></td>
</tr>
<tr>
<td>3"</td>
<td>5K</td>
<td>±0.5%</td>
</tr>
<tr>
<td>20K</td>
<td>±0.5%</td>
<td></td>
</tr>
<tr>
<td>5K</td>
<td>±0.5%</td>
<td></td>
</tr>
</tbody>
</table>

SINE-COSINE SINGLE TURN FILM POTENTIOMETERS

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Resistance</th>
<th>Conformity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3/32"</td>
<td>10K</td>
<td>±75%</td>
</tr>
<tr>
<td>2"</td>
<td>10K</td>
<td>±75%</td>
</tr>
<tr>
<td>5"</td>
<td>10K</td>
<td>±75%</td>
</tr>
<tr>
<td>3"</td>
<td>10K</td>
<td>±15%</td>
</tr>
<tr>
<td>20K</td>
<td>±25%</td>
<td></td>
</tr>
<tr>
<td>50K</td>
<td>±25%</td>
<td></td>
</tr>
<tr>
<td>20K</td>
<td>±1%</td>
<td></td>
</tr>
<tr>
<td>5K</td>
<td>±1%</td>
<td></td>
</tr>
<tr>
<td>20K</td>
<td>±1%</td>
<td></td>
</tr>
<tr>
<td>5K</td>
<td>±0.5%</td>
<td></td>
</tr>
<tr>
<td>50K</td>
<td>±0.5%</td>
<td></td>
</tr>
</tbody>
</table>

LINEAR MOTION FILM POTENTIOMETERS

<table>
<thead>
<tr>
<th>Size</th>
<th>Resistance</th>
<th>Stroke</th>
<th>Linearity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1" sq.</td>
<td>10K</td>
<td>1" stroke</td>
<td>±5%</td>
</tr>
<tr>
<td>20K</td>
<td>1" stroke</td>
<td>±5%</td>
<td></td>
</tr>
<tr>
<td>10K</td>
<td>2" stroke</td>
<td>±25%</td>
<td></td>
</tr>
<tr>
<td>20K</td>
<td>2" stroke</td>
<td>±25%</td>
<td></td>
</tr>
<tr>
<td>10K</td>
<td>3" stroke</td>
<td>±1%</td>
<td></td>
</tr>
<tr>
<td>20K</td>
<td>3" stroke</td>
<td>±1%</td>
<td></td>
</tr>
</tbody>
</table>

Typical Wire-wound Pots

- Servo-system is unstable and inaccurate.
- Coffee spills cup, spills over belt onto floor, where coffee-loving Fussy Cat (can't read colored, of course) attempts to keep floor clean. Note that cup (D) is overflowing, while cup (F) is only half full.
- As cup (D) reaches end of belt, paddle (G) is pushed forward causing string (I) to pull trigger of early 16th century solid-propellant missile launcher (U).
- Missile dislodges coin, thereby stopping entire system.

"Every major aircraft and missile manufacturer uses C. I. C. precision film potentiometers.

BUT THE BEST WAY YET...

Whether aiming missiles or coffee, use C. I. C. Precision Film Potentiometers... only C. I. C. film pots have infinite resolution, linearity to 0.01%, low starting torque and microvolt operational noise.

Computer Instruments Corporation

92 Madison Avenue - Hempstead, L.I., New York

Circle 77 on Reader-Service Card

Electronic Design • November 22, 1961
SILICONE NEWS from Dow Corning

For ease of processing

Silastic® RTV now gives greater protection with thicker section

For thick section embedding, specify Silastic RTV 601, a new fluid silicone rubber that vulcanizes at room temperature, cures thoroughly and completely... even in deep sections.

Like all potting and embedding materials in the Silastic RTV family, this one has excellent electrical and physical properties —resists moisture, voltage stress, corona, thermal cycling, temperature extremes, aging, weathering, ozone, many corrosive chemicals and their fumes.

Initial processing is easy. Mix RTV 601 with catalyst, vacuum de-air, and pour the low viscosity mixture into the desired area.

No exothermic heat or damaging internal stresses develop. Cure is uniform throughout sections even a foot or more thick. After curing, this Silastic RTV is usable over the wide temperature range of —60 to 260°C.

Embedded circuits can be repaired and components replaced by cutting Silastic RTV away from the defective section with a sharp knife. New Silastic RTV poured into the repaired area restores the original integrity of the encapsulant.

CIRCLE 770 ON READER-SERVICE CARD

Dow Corning

Dow Corning is your best source of a broad line of silicone fluids, gels, elastomers and rigid forms for potting, filling, embedding and encapsulating.

NEW PRODUCTS

Telephone Lever Switch

Locking telephone lever switch guards against accidental switching from shock, operator fatigue, vibration, or unintentional operation. Called the Lever-Lock switch, the device has 3-amp, 300-w contacts. Two or three position actuators are available. Switches are built to customer specifications.

Switchcraft, Inc., Dept. ED, 5555 N. Elston Ave., Chicago 3, Ill.

Indicator Light

All plastic, two-terminal neon panel light, model 858, does not expose bare wires. Using the NE-2-H bulb, it mounts in a 5/16-in. diam hole and is held in place behind the panel with a speed nut.

Color-Lite Div., The Sloan Co., Dept. ED, 7704 San Fernando Road, Sun Valley, Calif.

Data Processor

Solid-state modular digital data processor, model DDF-19, has 19 to 25 bit range. Unit utilizes base, 4- or 8-thousand word core memory, with 2.5 µsec access. Input is a 500 to 1,000 character per sec paper tape; output is Flexowriter.

Computer Control Co., Inc., Dept. ED, 2251 Barry Ave., Los Angeles 64, Calif.

Price: $120,000 to $100,000.
- specify these silicones

Solder melts — laminate unaffected

Specified for their excellent resistance to space age environments, silicone-glass laminates are easy to work with, too. Soldering heat doesn't loosen terminals even where complex wiring requires repeated soldering in a small, confined area. Made with Dow Corning silicone resins, glass laminates retain their excellent dielectric properties despite heat, moisture, storage, environmental aging, rapidly changing ambients and vibratory shock. Light in weight, strong at elevated temperatures, they resist ozone, arcing, corona and fungus attack. In addition, they are easy to fabricate and assemble; have good physical properties ... resist creep under pressure.

Silicone compound for heat sink seal

Heat sinks built by Fairfield Controls, Inc., Stamford, Conn., combine pure copper fins with Dow Corning 3 Compound to assure full load operation of silicon control rectifiers within the maximum allowable junction temperature of 125°C. Dow Corning compound with its petroleum jelly-like consistency, provides excellent heat transfer between the 25.5-amps diode shown here and the metallic parts of the heat sink assembly. The operating portion of the rectifier is inside the heat sink, with silicone compound to facilitate heat transfer from the entire diode body to the heat sink proper. At the same time, moisture and contaminants are sealed from the diode lead connections.

Key to stability — silicone fluid

Dow Corning silicone fluid is used in a new line of hermetically sealed precision film resistors developed by Key Resistor Corporation of Gardena, California, to "provide the ultimate in long term life and stability." According to Key engineers, "the unique silicone fluid filled construction results in excellent heat dissipation characteristics — minimizes effects of severe overloads." Dow Corning silicone fluids are used as filling and cooling media in numerous electronic and electro-mechanical applications because they maintain initial viscosity over a wide temperature range, are stable at high temperature, are excellent dielectrics ... offer numerous other advantages.

Free 12-page manual, "Silicones for the Electronic Engineer".
Write Dept. 4035, Dow Corning Corporation, Midland, Michigan.

Oscillograph

Seven in. of rack height is needed for this 24-channel, direct-recording oscillograph. Model 1508 visicorder records on 8-in. wide paper at frequencies of dc to 5,000 cps, at any of 12 speeds. The push-button unit records deflections of 8 in. peak to peak, in excess of 50,000 in. per sec writing speed.

P&A: $3,000 to $3,350; stock

Toroidal Inductors

Hf and vhf toroidal inductors have volume of 0.004 cu in., are vacuum encapsulated in epoxy and meet MIL-C-15305B, grade 1, class B. Series 91 has a frequency range of 25 to 150 MHz and ranges in inductance from 0.01 to 1.0 μH; series 92 has inductances of 0.1 to 33 μH and ranges from 1 to 50 μH.

Vanguard Electronics Co., Dept. ED, 3384 Motor Ave., Los Angeles 34, Calif.

Thermal Resistance Tester

Junction temperature of semiconductor diodes and rectifiers is measured by model 222 test set. Switching circuits allow heating currents up to 10 amperes, forward drops to 5 volts and temperature to 150°C. Unit measures 13 x 19 x 15 in. Adapter for transistors will be available in the future.

Wallson Associates, Inc., Dept. ED, 912 Westfield Ave., Elizabeth, N. J.

P&A: $1,620; stock

ELECTRONIC DESIGN • November 22, 1961
NEW PRODUCTS

Buoyant Cable

Single-conductor cable features an extruded natural polyethylene inner jacket over the center conductor and two additional jackets of black foamed polyethylene to give the cable a max of 0.76 specific gravity. Specification requirements include water testing at 600 psi.

Times Wire and Cable Co., Inc., Dept. ED, Wallingford, Conn.
Availability: 3 to 4 weeks.

Infrared Detectors

Heat seekers are capable of detecting a wide variety of items. The detectors, covering the band from 1 to 30 microns, are available in a variety of packages, using combinations of sensing materials and cooling techniques.

Two Gang Switch

Two snap-action switches mounted on a single panel form this miniature unit. It can be used in linear, rotary or rotary cam operations. Overtravel of 0.125 min eliminates close tolerance cam designs. Switches are rated: 10 amp, 125 v; 5 amp, 250 v; 1/3 hp 125 or 250 v ac.

Cherry Electrical Products Corp., Dept. ED, P. O. Box 66, Highland Park, Ill.

World-famous Castell #9030 Lead spans the whole complex of creative genius—because it gives you density saturation for a crisp, bold image • Chisel point or needlepoint, Castell #9030 lays down black, lightproof lines that don’t flake, feather or ‘burn out’ • Draws perfectly on all surfaces, including Cronar and Mylar base films • Strikes a perfect balance between coverage and easy erasability • Produces highest number of Diaztotypes or blueprints • Consistently uniform degrees, 7B to 10H, each as precise as a machine tool.

In plastic tube with gold cap • When your brain is in high gear, Castell #9030 doesn’t hesitate.

Fits all standard holders. Pick up a tube from your supplier today.

A.W. Faber-Castell Pencil Co., Inc., Newark 3, N. J.

New celebrating its 200th birthday

CIRCLE 77 ON READER-SERVICE CARD

ELECTRONIC DESIGN • November 22, 1961
Polarized Relays 527

One or two coil units on 8-pin octal base, and three or four coil units on 12-pin plug-in base are available in side-stable, spring-biased and center-off configurations. Selection of contact materials includes: silver, silver-platinum, tungsten, tungsten carbide and special gold alloy.

Magnetic Devices, Inc., Dept. ED, 712 East St., Frederick, Md.

Timer-Counter 513

Portable console has high-speed time interval and expandable cycle-counting capability. TC-1 uses transistorized plug-in digital modules and crystal controlled oscillators for time base interval. Unit is 10 x 15 x 15 in., weighs 30 lb, operates on 115 v ± 10 v, 60 cps at 35 w. Time interval is 0 to 999.999 sec in 1 msec steps.

Astro-Space Laboratories, Inc., Dept. ED, 2104 Memorial Parkway, Huntsville, Ala.
P&A: $4,000 ea; 60 days.

Electronic Welder 356

Solid-state capacitor-discharge welder has two ranges. Versatility of the unit is obtained through its two ranges of 0.4 to 9 w-sec low, and 0.2 to 45 w-sec high. Output is ±1% for 100 to 130 v ac input, regulated. Model 1059 has a discharge time of 0.001 sec. The unit measures 6-3/8 x 12 x 12-7/8 and weighs 41 lbs.

Weldmatic Div., Unitek Corp., Dept. ED, 950 Royal Oaks Drive, Monrovia, Calif.
P&A: $440.00; stock.

HOW TO

Measure Speed of an Object

Shielded by Plastic, Immerged in Oil, and Encased in Glass

Engineers at the Machlett Laboratories were faced with a perplexing problem — how to measure the speed of their new 10,000-rpm, rotating anode Dynamax "SOA" X-Ray tube while immersed in oil. For many years, stroboscopic equipment had been used to measure anode speeds of approximately 3600 rpm, but older stroboscopes did not produce sufficient light intensity at the higher operating speeds of newer X-Ray tubes.

The recently announced Type 1531-A Strobotac solved Machlett's problem. This new design with its intense white-light and concentrated "long-throw" beam easily pierces the plastic cover shield, the oil, and the tube's glass envelope at rates as high as 25,000 flashes per minute. Measurements are made without need of auxiliary equipment or direct electrical or mechanical connection to the object under test.

Type 1531-A STROBOTAC

Electronic Tachometer and Motion Analyzer

...$260

Flashing-Rate Range: 110 to 25,000 flashes per minute direct-reading; useful for speed measurements to 250,000 rpm.

Flash Duration: 0.8, 1.2, and 3.0 milliseconds of a second for high-, medium- and low-speed ranges, respectively. Short duration eliminates blur when observing rapidly moving parts — lets you study details previously impossible to see.

Accuracy: ±1/2% of dial reading — permanently assured by neon-bulb calibrator on instrument panel.

Bright White Light: 0.21, 1.2, and 4.2 million beam-candlepower (minimum) on high-, medium- and low-speed ranges, respectively. Long-throw beam reaches deep into machinery interiors, enables measurements under normal room lighting.

Easy to Use: simplified range switch... pivoting lamp... carrying case provides protection and doubles as an adjustable bench stand... light weight and compact, only 71/2 pounds... can be triggered with an external mechanical contractor or 6-volt peak-to-peak signal... can be operated from a 105-125 or 210-250 volt line, 50-60 and 400 cycles.

GENERAL RADIO COMPANY
WEST CONCORD, MASSACHUSETTS

CIRCLE 78 ON READER-SERVICE CARD
NEW PRODUCTS

Insulated Tape

Mica coated, type MGS is designed for use at 300 °C and has an electrical strength of 2,000-1,300 v per mil. At 1 mc, power factor is 0.12 and dielectric constant is 1.43. Types MGA and MMS are also stocked. Standard 25-yd rolls in various widths up to 3 in., as well as 250-yd rolls of 36-in. wide cloth, are available.

Silicon Rectifier Assemblies

Features 50,000 peak reverse voltage. SDI series double-diffused silicon high-voltage potted rectifier assemblies are designed in single phase and three phase types. They feature miniaturization (up to 6,000 v in 3/4 x 3/4 x 1 in.), high surge ratings, and operating and storage temperature range of 165 to +150 °C.

Solitron Devices, Inc., Dept. ED, 500 Livingston St., Norwood, N. J.

Microminiature Plugs

Made to hold 32 diodes, these microminiature plugs, called Microplugs, are 0.395 in. deep, excluding terminations. Pin contacts are twisted wire; they are self-aligning and individually shrouded in the insulator. Pins are set at 0.05 in. centers. A surface measuring 2-3/4 x 3-1/4 in. can hold 32 plugs.

Cannon Electric Co., Dept. ED, 3208 Humboldt St., Los Angeles 31, Calif.

Angle Counters

Continuous display from 0 to 359.9 deg is provided. Equipped with Geneva drives, the Mark II counters can be supplied with torque levels as low as 0.1 oz-in. and slew speeds up to 2,500 rpm. Parts are stainless steel. Military requirements for shock, vibration and case size are met.

General Precision, Inc., Dept. ED, 1150 McBride Ave., Little Falls, N. J.
Voltage Measurements

Measure to any degree of accuracy required...

1%, 0.2%, and 0.02% accuracies are now available to the electronics engineer as a result of Fluke research and development. The degree of accuracy desired is dependent on the particular application and the engineer need no longer be limited by the measuring equipment available to him.

FLUKE

Model 910A True RMS Voltmeter is a new basic instrument which combines true RMS response with 10% accuracy over a broad frequency range. Its true RMS response, by definition, guarantees that the accuracy of the indicated reading, of any periodic waveform, is maintained regardless of its amplitude characteristics.

Model 903 Differential Voltmeter, employing the differential measurement technique, provides versatility in measuring either AC or DC to high orders of accuracy.

Model 540A Thermal Transfer Standard, provides extreme accuracy for applications requiring measurement capability equal to the limits of accuracy certified by the National Bureau of Standards.

Receiver Preamplifiers

RPA series feature low-noise ceramic tubes and a weatherproof housing for mounting directly at antenna. Models RPA-1 to RPA-7 have bandwidths ranging from 2 to 5 mc and are designed to operate in a 50-ohm system. The units, which have type N connectors, require 117 v ac, 60 cps.

Defense Electronics Inc., Dept. ED, 5455 Randolph Road, Rockville, Md.
Price: $897.00 to $1,025.00

Frequency Standard

The Raloc system provides a means to acquire the VLF transmissions of primary frequency standards and to compare and/or lock the output frequencies of the local standard oscillator to the broadcast transmission. It becomes a true frequency standard which maintains continuously and automatically an accuracy of better than ±5 parts per 10^9.

Colored Laminates

Used for color coding, these copper-clad and unclad laminates are available in red, blue, grey and jet black. All colors exhibit the same dielectric strength as the natural green which conforms to the requirements of MIL-P-18177B and MIL-P-13949B. Type G-10 fireproof and type G-11 laminates are available in jet black. Sheet size is 24 x 42 in.

Fortin Plastics, Inc., Dept. ED, 14811 Keswick St., Van Nuys, Calif.

Operations Recorder

Transistorized, high-speed operation recorder, Panastat THOR VII, prints out events in exact sequence, with only 1 msec between occurrences. Printout cannot be scrambled due to simultaneous alarms and momentary alarms can never be lost, even with filled memory circuit. Operator can view off-normality of all alarms.

Informations Systems, Inc., Dept. ED, 10131 National Blvd., Los Angeles 34, Calif.

Field Tested and Proven...

Fluke has shipped over 12,000 precision voltmeters for use on the line and in the lab. This impressive figure alone, attests to the wide acceptance these instruments have enjoyed.

Thoroughly tested and proven, by a multitude of users, the Fluke line of voltmeters offers the widest range of user benefits coupled with specifications engineered to meet the most exacting demands.

Why not write today for additional information on these and other Fluke instruments; your inquiries are welcome.

SPECIFY FLUKE

JOHN FLUKE MFG. CO., INC.
P.O. Box 7426 Seattle 33, Washington

CIRCLE 79 ON READER-SERVICE CARD

ELECTRONIC DESIGN • November 22, 1961
TO THE ENGINEER

who wants to make the most of his etchings

If your printed circuit board designs involve switching, you can count on getting the best results by using AE Class E relays with direct-connect terminals.

Series EQPC relays, with end-mounted printed circuit lugs, occupy a minimum of board space, and furnish dramatic savings in assembly and wiring time.

The AE Series EQPC printed circuit relay is a miniaturized version of the premium-quality Class B telephone-type relay, with many of its best features. Contact reliability exceeding 200 million operations can be expected.

Automatic Electric also supplies Class E relays with Taper-Tab terminals, and prewired for plug-in, with 8- to 20-prong octal plugs, with or without hermetically sealed containers or dust-tight housings.

Want details? Just write the Director, Control Equipment Sales, Automatic Electric, Northlake, Illinois. Also ask for Circular 1702-E on Relays for Industry, and the new Conversion Factors booklet.

NEW PRODUCTS

Beam Power Tubes
Delivers plate current of 390 ma with zero bias and 60 v on plate. These 9-pin tubes, 6GT5, 12GT5 and 17GT5, have a "dark heater" which functions efficiently at operating temperatures 350 K below the 1,500 to 1,700 K of conventional heaters. These novar tubes feature all glass integral base design.
Radio Corp. of America, Electron Tube Div., Dept. ED, Harrison, N. J.
Availability: stock.

Pre-Amplifier
Unit consists of three stages of transistor amplifier with degeneration. A self powered device, it is suitable for increasing the sensitivity of laboratory instruments or transducers. Size is 1-1/4 x 1-1/2 x 2-1/2 in. including battery. Frequency response is from 1 mc down to 1 cps, 3 db bandwidth. Output impedance is less than 100 ohms and current consumption is 1.2 ma, with a max output as high as 8 v peak-to-peak clipping.

AD-YU Electronic Laboratories, Inc., Dept. ED, 249-259 Terhune Ave., Passaic, N. J.
P&A: $98.00; 2 weeks.

Rate-Gyro Subsystem
Three-axis telemetry subsystem is for measuring spin-stabilized missile speeds of up to 5,000 deg per sec. Input to the system is ±100 deg per sec on the yaw and pitch axes, and ±5,000 deg per sec on the roll axis. Sensitivity threshold is 0.05% of full scale. It withstands high shock and vibration.
Fairchild Controls Corp., Dept. ED, 225 Park Ave., Hicksville, L. I., N. Y.

Printed-Circuit Plugs
MIL-C-21097 specifications are met by the PBA-series printed-circuit plugs. Grids from 0.054 to 0.071 are accommodated. Contacts, gold-plated, are bellows bifurcated; terminals accommodate three AWG-No. 20 wires. Current rating is 5 amp. Flashover rating is 2,500 v, 60 cps.
Cannon Electric Co., Dept. ED, 3208 Humboldt St., Los Angeles 31, Calif.
Never before
resistors with this

DOCUMENTED RELIABILITY

250,000,000 hours mean-time-to-
failure rate. IRC’s new Type XLT resistors
have a failure rate of less than 0.0004%/1000
hours. This extreme reliability will be proven to
a 60% confidence level, by testing 65,000 units
for 4,000 hours. XLT failure is defined, not as
a catastrophic "open" or "short", but as any
resistance change greater than 0.5%.

To document this new high concept of reliability,
the production history of each XLT is shown
on a punched data card supplied with the unit.
XLT’s not allocated for MINUTEMAN are
available now for other applications requiring
ultra-reliable resistors.

Write for “Resistors with Documented Reliability.” International Resistance Company,
Documented Reliability Dept., 401 North Broad
Street, Philadelphia 8, Pa.

CAPSULE SPECIFICATIONS

Power Rating	1/4 W at 125° C, derating to zero at 165° C
Tolerance	± 1%
Resistance range	10 ohms to 100K ohms
Temperature coefficient	± 25 PPM/°C, ± 50 PPM/°C, ± 100 PPM/°C
Type	Evaporated metal film
Construction	Hermetically sealed glass, helium atmosphere
Leads	Weldable (gold-plated Dumet)
Body Length	.281 ± .030"
Body Diameter	.155 ± .015"
NEW PRODUCTS

Variable DC Power Supply

Output of model 723A can be programmed by external resistance for fast repetitive testing. Unit is variable at a 50 ohms per V rate from 0 to 40 V, with a full load output of 500 mA. Ripple and noise are less than 150 µV rms. A current limit control protects test circuits.

Hewlett Packard Co., Dept. ED, 1501 Page Mill Road, Palo Alto, Calif.
P&A: $225.00; 7 weeks.

Matrix Board

Fotoceram glass-ceramic board requires no etching. Board has universal ring-and-dot pattern of metalized runs, pads and through-plated holes. The 4-1/2 x 5-1/2 x 1/16 in. board is for use in ambient temperatures as high as 250°C.

Corning Glass Works, Dept. ED, Bradford, Pa.
P&A: $9.95; 1 week to 10 days.

Transient Voltage Detector

Solid-state, portable unit has three ranges: 100 V, 1 kV and 10 kV. Direct reading dial and built-in self-calibration features eliminate the need of charts. Accuracy is to ±1%, for transients to 1 mSec risetime, down to dc.

Halmar Electronic Products Co., Ltd., Dept. ED, 1550 R W. Mound St., Columbus 23, Ohio.

From industry's widest selection.

... EXCEPTIONAL STABILITY
... FREE FROM ELECTROLYTE LEAKAGE
... BROAD TEMPERATURE RANGE
... HIGH CAPACITANCE/VOLUME RATIO

Metal-case subminiature Type TAS; ratings from .33 to 330 mfd., 35 to 6 volts ... and encapsulated Type TAM; square-case, self-insulated, grid-spaced parallel leads.

... plus 11 other types—high temperature types ... microminiature to high capacity ... foil type ... hundreds of ratings. Write for complete literature on all 13 types of Mallory Tantalum Capacitors ... and for a consultation on your requirements. Mallory Capacitor Company, Indianapolis 6, Indiana.
transistorized miniature equipment

Shipped from stock at factory prices from these distributors

Arlington, Va.
Rucker Electronic Products
Baltimore, Md.
Radio Electric Service
Binghamton, N.Y.
Federal Electronics
Boston, Mass.
DeMambro Radio Supply Co.
Lafayette Radio
Bridgeport, Conn.
WestConn Electronics
Buffalo, N.Y.
Wahl Electronics
Chicago, Ill.
Allied Radio Corp.
Newark Electronics Corp.
Cincinnati, Ohio
United Radio
Cleveland, Ohio
Pioneer Radio
Dallas, Texas
Engineering Supply Co.
Dayton, Ohio
Allied Supply Co.
Denver, Colo.
Denver Electronics
Houston, Texas
Harrington Equipment Co., Inc.
Lenert Company
Indianapolis, Ind.
Graham Electronics
Los Angeles, Calif.
California Electronics
Kerullff Electronics, Inc.
Radio Product Sales
Minneapolis, Minn.
Northwest Radio
Monrovia, Calif.
Lynch Electronics
Montreal, Que.
Canadian Electrical Supply Co.
Mountainair, N.J.
Federated Purchaser, Inc.
Nashville, Tenn.
Electra Dist. Co.
Newton, Mass.
Cramer Electronics, Inc.
Newark, N.J.
Lafayette Radio
New York, N.Y.
Harrington Radio Corp.
Harvey Radio Co., Inc.
Lafayette Radio
Milo Electronics
Terminal Hudson Electronics
Oakland, Calif.
Elmar Electronics, Inc.
Orlando, Fla.
East Coast Electronics
Ottawa, Ont.
Wabash Radio-TV Lab.
Paul Alto, Calif.
Zack Electronics
Pasadena, Calif.
Allied Radio of California
Perris Amboy, N.J.
Atlas Electronics
Herbach & Rademan
Philadelphia Electronics
Pittsburgh, Pa.
Radio Parts Co.
St. Louis, Mo.
Ohio Electronics
Seattle, Wash.
F. B. Connolly Co.
Tampa, Florida
Thurow Distributors, Inc.
Toronto, Ont.
Alpha Aracon Radio Co.
Electro Sonic Supply
Wholesale Radio & Electronics
Tucson, Ariz.
Standard Radio Parts
Topeka, Ohio
Engineering Supply Co.
Union City, N.J.
Nidico—Union City
Washington, D.C.
Capitol Radio Wholesalers
Electronic Industrial Sales
White Plains, N.Y.
Westchester Electronic Supply Co., Inc.
Winston Salem, N.C.
Dalton-Hege Inc.

Add and subtract pulses turn stepping motor 9 deg each time a step signal is applied. Non-cumulative no-load position error is ±0.5 deg in the model 611. Frequency range is 0 to 6,000 cps, with 20 axial slots forming 10 pole sets. Applications include operating mechanical counters and positioning code disks.

U. S. Science Corp., Dept. ED, 5521 W. 102nd St., Los Angeles 45, Calif.

For process-control equipment remote indication and control is accomplished by the MT-61 Metertrol. The device has an optional explosion-proof enclosure. Input requirement is 15 kv 2 w, or 10 kv 3 w. Units can be adapted to specifications.

Jordan Controls, Inc., Dept. ED, 3235 W. Hampton Ave., Milwaukee 9, Wis.
Price: $96 to $270.

All solid-state unit has sampling rates between 20 and 200 frames per sec. Differential inputs range between 0 to 5 mv and 0 to 10 v full scale, with an output of 0 to 10 v. Accuracy is ±0.5% for the high level ranges; input impedance, 5 meg min for low level, and 0.5 meg for high level.

Apparatus Div., Texas Instruments Inc., Dept. ED, P. O. Box 6015, Dallas 22, Tex.
NEW PRODUCTS

Serial Word Generator 434
Selectable word lengths of up to 80 bits are offered by the model 5500 serial word generator. Clock rate selection provides bit rates from 100 cps to 1 mc in four decade ranges. Pushbutton data coding is provided. Both pulse and non-return to zero outputs are available. Circuitry is modular solid-state.
Servo Corp. of America, Dept. ED, 111 New South Road, Hicksville, L. I. N. Y.

Ultra-Miniature Resistors 545
Encapsulated wire-wound resistors are available with axial or radial No. 30 tinned-copper wire leads in resistances to 25 K. Series 203 resistors have a temperature range of -35 to +400 F and any temperature coefficient up to 4500 parts per million.
Spicer Electronics, Inc., Dept. ED, 2088 E. Villa St., Pasadena, Calif.
P&A: from $0.50; 2 to 14 days.

Power Supply Module 601
Transistor power module is designated TP. Included with an overload protection circuit, is regulation of 0.01%. The unit can be mounted in any position on any face. The housing is designed to eliminate the need of heat sinks or forced air for heat dissipation. Ranges are from 5 to 41 v. to 3.5 amp.
ACDC Electronics, Dept. ED, 2979 N. Ontario St., Burbank, Calif.

Teflon-Coated Glass Fabric 435
Low permeability low heat-sealing and laminating temperatures are offered by this addition to the firm's Armalon line of Teflon-coated fabrics. The material also has high dielectric strength and low moisture absorption. The material is made for aircraft, missile, cable, and printed-circuit applications.
Du Pont Co., Dept. ED, Room WT-902, Wilmington 98, Del.
Availability: in limited quantities.

RELAX...

with American Aluminum
Quality ... Dependability ... Service!

Yes, you can really relax when you place your aluminum fabricating problems in the competent hands of American Aluminum. Backed by 50 years of progressive engineering know-how, AA can serve you from design to finished product ... all under one roof. Immediate attention, with emphasis on quality and dependability, is given to your specific needs when using American Aluminum's "Peace of Mind" service. All you have to do is sit back and relax ... let us do the worrying!

SPECIALISTS IN CONTRACT MANUFACTURING
OF ALUMINUM FOR THE ELECTRONICS INDUSTRY

Send for brochure "ALUMINUM FABRICATING FOR INDUSTRY"

AMERICAN ALUMINUM COMPANY
Manufacturers of Aluminum Products for Industry since 1910
Sheffield Street, Mountainside, New Jersey

CIRCLE 85 ON READER-SERVICE CARD
ELECTRONIC DESIGN • November 22, 1961
Tung-Sol indicator thyratrons serve Friden, Inc. with life expectancy of 100,000,000 firings

An extremely high standard of reliability has been set for the five-tube plug-in units that perform information storage and programming functions in a converter that Friden, Inc. manufactures for the U. S. Government.

After being potted and sealed along with the other components, a life expectancy of 100,000,000 operations (firings) of each tube must be maintained. In order to observe which tubes are firing during operation, a small window has been provided directly over each tube.

Friden is another top-flight manufacturer who has called upon Tung-Sol to provide components of utmost reliability. Like all Tung-Sol tubes, indicator thyratrons are produced to rigid standards of quality control. The heavy-duty reliability of Tung-Sol tubes is built in. Tough tests assure that each production unit will provide uniformly rugged long life and minimum short-life failure rate under the most severe environmental stresses.

You can enjoy the same premium tube performance as Friden. Specify Tung-Sol power tubes for any military or industrial socket you must fill. For complete information on the Tung-Sol line of industrial and special purpose tubes, germanium transistors and silicon rectifiers, or to consult on your applications problems, contact: Tung-Sol Electric Inc., Newark 4, New Jersey. TWX: NK193

Technical assistance is available through the following sales offices: Atlanta, Ga.; Columbus, Ohio; Culver City, Calif.; Dallas, Texas; Denver, Colo.; Detroit, Mich.; Irvington, N. J.; Melrose Park, Ill.; Newark, N. J.; Seattle, Wash. In Canada: Abbey Electronics, Toronto, Ontario
ANNOUNCING THE FAIRCHILD FD600

PLANAR CONSTRUCTION features an integral passivated surface of silicon oxide over the junction, protecting it against contamination during manufacture and against change with time. Leakage current is extremely low.

EPITAXIAL CONSTRUCTION consists of a very pure, high-resistivity silicon layer grown on a low-resistance wafer.

Metalized Anode Contact

Protected Anode-Cathode Junction

for surface protection and reliability

for superior performance; high speed, high conductance

DIODES
EPITAXIAL CONSTRUCTION
A thin pure silicon epitaxial layer provides high breakdown voltage, low capacitance and fast reverse recovery. Added mechanical strength, low resistance path to the collector connection are made possible by thicker, low resistivity supporting wafer.

SILICON PLANAR RELIABILITY
An integral silicon oxide surface permanently protects the junction against contamination from the start of manufacture.

ADVANTAGES
Increases current handling capabilities of diode matrices without reducing speed. Decreases number of gate amplifiers between diode gates in series diode logic circuitry.

APPLICATIONS
High-speed, high conductance applications such as avalanche circuitry; core drivers; logarithmic amplifiers for pulse applications; critical circuitry requiring high conductance and low internal power dissipation, without sacrificing speed.

REVERSE RECOVERY TIME SPECIFIED FOR YOUR USE

- For magnetic memory applications
 Fast recovery with no turn-off current required
 \[t_{rr} = 20 \, \text{m} \mu \text{sec} \quad (I_F = 200 \, \text{mA}, \, I_R = 0 \, \text{mA}) \]

- For current mode switching in driver applications
 Fast recovery with high forward conductance
 \[t_{rr} = 2 \, \text{m} \mu \text{sec} \quad (I_F = I_R = 10 \text{ to } 400 \, \text{mA}) \]

- For diode logic applications
 Fast recovery with low reverse current
 \[t_{rr} = 4 \, \text{m} \mu \text{sec} \quad (I_F = 10 \, \text{mA}, \, I_R = 1 \, \text{mA}, \text{ recovery to } 0.1 \, \text{mA}) \]

FD600 GUARANTEED CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Current</td>
<td>200 mA (min.) @ 1 Volt</td>
</tr>
<tr>
<td>Breakdown Voltage</td>
<td>75 Volts (min.) @ 5 \mu A</td>
</tr>
<tr>
<td>Capacitance</td>
<td>2 \mu F (max.) @ 0 Volts</td>
</tr>
<tr>
<td>Reverse Current</td>
<td>50 mA (max.) @ 50 Volts</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>500 mW @ 25°C</td>
</tr>
</tbody>
</table>

FAIRCHILD SEMICONDUCTOR
545 WHISMAN ROAD, MOUNTAIN VIEW, CALIF. YORKE, MINN, CAL 853
A DIVISION OF FAIRCHILD CORPORATION

CIRCLE 87 ON READER-SERVICE CARD
Now!
High Power Level
from your present
signal generator—

10 Volts/ 50 Ohms
10 to 500 Mc

—with the new BRC Type 230-A
Signal Generator Power Amplifier

The new Signal Generator Power Amplifier Type 230-A is the ideal solution to your high RF power requirements including receiver testing, wattmeter calibration, antenna testing, filter and component testing, and attenuation measurements. The amplifier may be conveniently driven with any conventional signal generator and is designed to reproduce AM, FM, and pulse modulation characteristics of the driving generator with minimum distortion.

The new Signal Generator Power Amplifier Type 230-A employs three tuned, cascaded stages of grounded-grid amplification fed from a regulated power supply. An RF output voltmeter is also included and the unit is designed for either standard 19" rack or cabinet mounting.

NEW PRODUCTS

Digital Set Point 552

Type 510 digital set point unit, for use with HP-30 series Pyrometer, is accurate to ±0.25% total span. The unit will convert the HP-30 Pyrometer to a null-indicator, detecting a change of 0.25 F. Ambient operating range is 0 to 140 F.

General Electric Co., Dept. ED, Schenectady 5, N. Y.

Power Controller 520

Operates with any standard universal testing machine. Model TM-9 controls high and rapid rising temperatures on test specimens within 10 deg in a range from room temperature to 6,000 F. The unit has two controlled output voltages, a low voltage for self resistance heating and a high (220 or 440 vac) for control of ovens, etc.

The Marquadt Corp., Dept. ED, Van Nuys, Calif.

Field-Effect Transistors 518

Silicon field-effect transistors have low noise figures. Six types, C620 through C625, come in standard TO-5 cases. Maximum noise figures of 0.5 db on some of the series, is believed by the manufacturer to be below any amplifying device previously made.

Crystalonics, Inc., Dept. ED, 249 Fifth St., Cambridge 42, Mass.

Lamp Signals For Replacement 598

Twin filament miniature lamp is designed for use as a signal indicator lamp. It signals need for replacement. It is made with two filaments: one supplies the major portion of the light output, the other being designed for long life.

Chicago Miniature Lamp Works, Dept. ED, 1500 N. Ogden Ave., Chicago 10, Ill.
LOOK TO SOLA
the pioneer in a-c and d-c regulated power!

- Indianapolis: Graham Electronics Supply
- Radio Distributing Co
- South Bend: Radio Distributing Co, Inc
- Iowa: Davenport — TED Distributors Des Moines — Elbert Brown, Inc
- Kansas: Wichita: Intermediate Electronic Supply Corp
- Kentucky: Lexington: Radio Electronic Equipment Co, Inc
- Louisiana: New Orleans: Southern Radio Supply Co
- Maryland: Baltimore: Wholesale Radio Parts Co, Inc
- Bethesda: Empire Electronic Supply Co
- Silver Springs: Kenton Electronics Corp
- Massachusetts: Boston: Dekumbo Radio Supply Co
- A. M. Meyer Co
- Radio Shack Corp
- Cambridge: Electrical Supply Corp
- Mankaster Bicknell Co
- Newton: Guaranteed Electronics, Inc
- Springfield: E. J. Cushing, Inc
- Soundo Electronics Supply Co, Inc
- Michigan: Ann Arbor: Automated Electronic Supply Co
- Battle Creek: Electronic Supply Corp
- Detroit: Radio Specialties Co, Inc
- Jackson: Fulton Radio Supply Company
- Muskegon: Western Electronic Supply Co
- Minnesota: Minneapolis: Lew Born Co
- Northwest Electronics Corporation
- St. Paul: Getter Electronics Co
- Missouri: Joplin: Four State Radio Supply Co
- Kansas City: Burstein Appliance Co
- St. Louis: Walter Abele Radio Co
- Nebraska: Omaha: Radio Equipment Co
- New Jersey: Mount Airy: Federated Purchaser, Inc
- New Mexico: Albuquerque: Radio Sales & Services Co, Inc
- New York: Albany: Ft Orange Radio Dist Co, Inc
- Binghampton: Federal Electronics, Inc
- Buffalo: Radio Equipment Corp
- Summit Distributors, Inc
- Elmira: Brady Supply Corp
- Long Island City: H. L. Gans, Inc
- Lyndhurst: L. T.
- Peerless Radio Distributors, Inc
- Mineral: L. L.
- Arrow Electronics, Inc
- New York: Haver Radio Co, Inc
- Miso Electronics Corp
- Terminal Hudson Electronics Inc
- Doughteryville: Chief Electronics, Inc
- Rochester: Requa Electronic Supply Co, Inc
- Rochester Radio Supply
- Rome: Rome Electronics, Inc
- Schenectady: Flying City Radio Supply
- North Carolina: Asheville: Frack Radio Supply Co
- Raleigh: Southeastern Radio Supply Co, Inc
- Winston-Salem: Dalton Radio Supply Co
- North Dakota: Fargo: Universal Distributing Co
- Ohio: Akron: Akron Electronic Supply, Inc
- The Sun Radio Co
- Cincinnati: Harrington Distributing Co
- United Radio Incorporated
- Cleveland: Ponger Electronics Supply Co
- Radio & Electronic Parts Corp
- Columbus: Hughes Peters, Inc
- Dayton: The John A. Becker Co
- Seattle: Supco, Inc
- Lima: Lima Radio Parts Company
- Toledo: Warren Radio Company
- Youngstown: Ray Radio Co
- Oklahoma: Tulsa: Engineering Supply Company
- Radio Inc
- Oregon: Portland Radio Supply
- Oregon: Medford: Venti & Walter Co
- Portland: Central Distributors
- Las Vegas: Johnson Co, Inc
- Seattle: Electric Co
- United Radio Supply, Inc
- Pennsylvania: Erie: Erie Industrial Electric Supply
- Warren Radio, Inc
- Indiana: Radio Sales & Services Co
- Fischer Scientific Co
- Instrument Div
- Philadelphia: Herold & Rademan, Inc
- Pittsburgh: Empire Radio Co
- Fisher Scientific Co
- Radio Parts Co., Inc
- State College: Allied Electronics Distributors, Inc
- Rhode Island: Providence: Wm. Gabbett & Co
- South Carolina: Charleston: Southeastern Radio Supply Co
- Tennessee: Kingsport: Radio Electronic Supply Co
- Knoxville: Roden Electrical Supply Co
- Memphis: Bluff City Distributing Co
- Nashville: Electric Distributing Co
- Texas: Dallas: Engineering Supply Co
- Wholesale Electronic Supply of Dallas
- El Paso: Midland Specialty Co
- Houston: Bulshech Electronic Equip. Co, Inc
- Harrison Equipment Co, Inc
- Stirling Electronics, Inc
- Utah: Salt Lake City: Standard Supply Co
- Virginia: Chariottesville: Virginia Radio Supply Company
- Washington: Everett: Pringle Radio Wholesale Co
- Seattle: Pacific Electronic Sales Co
- Seattle: Radio Supply, Inc
- Western Electronics Co
- Spokane: Northwest Electronics, Inc
- Tacoma: C & C Electronics Co
- Walla Radio Supply, Inc
- Walla Walla: Ray Radio & Electric Co
- West Virginia: Beckley: ChemCity Electronic Distributors
- Huntington: West Virginia Electrical Supply Co
- Wisconsin: Madison: Saltville Electronics, Inc
- Milwaukee: Radio Parts Co, Inc

CIRCLE 89 ON READER-SERVICE CARD
Direct-Writing Recorders

Model 322 dc coupling recorder with medium gain amplifier has sensitivity ranges of 10, 20, 50, 100, 200, 500 mv per division and 1, 2, 5, and 10 v per division. Model 321 two-channel carrier recorder provides a 2,400 cps carrier frequency and 4.5 v excitation voltage. Maximum sensitivity is 10 μv (from transducer) per mm.
Sanborn Co., Industrial Div., Dept. ED, 175 Wyman St., Waltham 54, Mass.

Proportional Controller

Requires only two adjustments. The controller is used in conjunction with a suitable primary instrument equipped with a 250 ohm transmitting slidewire. Model 80410 operates on 115 v ac, 60 cps. The instrument measures 15-5/8 x 7-7/8 x 9 in. and weighs 30 lb.
Thermo Electric Co., Inc., Dept. ED, Saddle Brook, N. J.

Field Effect Adapter

Unit can adapt Tektronix 375 Transistor Tracer for field effect transistor use. The adapter is used externally and does not interfere with the tester being used for conventional transistors.
Crystalalloys, Inc., Dept. ED, 249 Fifth St., Cambridge 42, Mass.

P&A: $15.00: stock.

Zener Diodes

10-w silicon Zener diodes have 2.5, and 10% tolerances. This line of diodes is claimed to exceed MIL S-19500, through a range of 5.9 to 200 v, at -65 to +150 C.
American Semiconductor Corp., Dept. ED, 3940 N. Kilpatrick Ave., Chicago 41, Ill.

NEW! ALTERNATE ACTION LIGHTED PUSHBUTTON

Reliable snap-action switches

Here is a new concept in ultra-small lighted pushbutton switches for control with integral simultaneous visual indication. Switches in the "300" series are designed for military and industrial electronic control panels where space is an important factor.

In less than one cubic inch: double-pole double-throw switching; two integral lamps; choice of 15 combinations of two-color display screens. Alternate-action operation (push on—push off). Designed to conform to MIL-S-6743, MIL-S-6744, and MIL-E-5272.

Within the assembly are two SPDT switches, rated 7 amps. 115-230 vac or 28 vdc. A 5-volt sub-miniature lamp is under each half of display screen and there are 15 combinations of color display available. The complete unit snaps into panels 0.047 in. thick or greater. No installation tools needed. Minimum mechanical life is 100,000 operations. Lamp life is 60,000 hours at rated load.

Available in the same size are a momentary-action switch, and an indicator unit without switching function.
for electronic control panels

CUSTOM-BUILT CONTROL PANELS REQUIRE CAREFUL SELECTION OF SWITCHES

Immediately available are hundreds of small size switch units with variations in dimension, electrical capacity, shape, appearance and circuitry. All have undergone thorough tests in the most complete test laboratory of its kind.

Shown above and briefly described here are only a few of the hundreds of types of switch assemblies available.

1. Electronic switch-circuit for bounce-free voltage output.
2. Light force, rapid repeat pushbutton.
3. Synchronized "one-shot" pulse circuit.
4. Compact, 4-pole snap-action pushbutton.
5. Lighted pushbutton, modular design, barrier mount.
7. Two-color lighted pushbutton, snap-in flange mounting.
8. Bushing mount lighted pushbutton, high capacity, 2-ckt switch.

For more information and for experienced help in selection, contact one of our many branch offices listed in the Yellow Pages, or write for Catalog 67 and Bulletin 22.

Carbon Potentiometer

Temperature and moisture stability is offered by carbon element in model 3251, square shaped trimmer potentiometer. Resistance range is 20 K to 1 meg, 0.50 w at 50 C. Rotation is 25 turns, temperature range is -65 C to +150 C, size is 1/2 x 1/2 x 3/16 in. and weight is approximately 0.1 oz. Unit meets MIL-STD-202B.

Bourns, Inc., Dept. ED, 6135 Magnolia Ave., Riverside, Calif.
Price: $5.50 in quantities.

Molding Compound

Flame resistant diallyl phthalate compound is manufactured to comply with MIL-M-19833. Type 3-2-530 is also specifically designed to meet the requirements for new barrier type terminal boards as outlined in MIL-T-16784. The material is formulated with long glass fibers and heat resistant polymers.

Acme Resin Corp., Dept. ED, 1401 Circle Ave., Forest Park, Ill.

Vertical-Dipole Antenna

J-150 is a unity gain half wave end fed antenna designed for operation between 144 and 180 mc to a power level up to 250 w. At any specific frequency and cut length, the antenna has a vswr of less than 1.1 to 1. Across a bandwidth of 5 mc, vswr is 1.5 to 1, making two frequency operation feasible with one antenna.

Mark Products Co., Dept. ED, 5439-41 Fargo Ave., Skokie, Ill.

Sealed Relay

Less than 1-pf capacitance in this 1/4-oz. relay. Nominal coil power is 0.06 w and contacts are rated at 4 w. With a 6-v, 10-ma coil this relay has a speed of 0.8 maec. Unit is hermetically sealed in inert gas.

New Products, Inc., Dept. ED, Box 10763, Cameron Village Station, Raleigh, N. C.
P&A: $1.85 each small quantities; 30 days.
ANOTHER UNIQUE INSTRUMENT FROM ROHDE & SCHWARZ

10 kc TO 30 mc

Selective Microvoltmeter

DELIVERY FROM STOCK

WRITE FOR ADDITIONAL INFORMATION

ROHDE & SCHWARZ
ELECTRONIC MEASURING EQUIPMENT FOR THE UNCOMPROMISING
111 Lexington Ave., Passaic, N. J. • PREScott 3-8010

CIRCLE 91 ON READER-SERVICE CARD

NEW PRODUCTS

Radiation Measuring Device

The Sensor provides radiation level information for immediate area of fallout shelter. The unit establishes the amount of exposure permitted in a 24-hr period. Operation is push-button, for preservation of its D-cell battery supply. A 50-ft cable is used to mount the probe outside the shelter.

Radiation Equipment & Accessories Corp., Dept. ED, 665 Merrick Road, Lynbrook, N. Y.
P&A: $99.95; 4 to 6 weeks.

Solder Applicator

Twin automatic paste solder applicator makes two deposits at the same time. Double the amount of material can be applied or double the speed can be obtained by this method. Units can cycle together or independently.

Fusion Engineering, Dept. ED, 17921 Roseland Ave., Cleveland 12, Ohio.

Ultrasonic Cleaner

Self tuned cleaner needs no operator attention. Model MSS 90 series has a peak power of 300 w average power of 90 w, and operates on 117 v ac 60 cps. A complete line of accessories for this generator are readily available.

Sonic Systems, Inc., Dept. ED, 1250 Shames Drive, Westbury, N. Y.
Price: $819.50.
There is no direct writing recorder on the market that approaches the compact Mark II in sheer usefulness. It is a completely integrated engineering tool that can be operated by anyone... in the shop or in the field... for countless research or design requirements. Every function necessary for uniform, crisp, easily reproduced readouts is "built-in". The Mark II gives you two analog channels plus two event markers; 4 chart speeds; DC to 100 cps response with 40 mm amplitude; 10 mv/mm sensitivity; high input impedance. Ink or electric writing models. Immediate shipment from stock.
A LIBRARY ON TRANSISTORS
FOR THE ENGINEER AND
THE ENGINEER'S TECHNICIAN

A book that makes digital computer circuit design easy. To be of the greatest general utility, the book employs worst-case design techniques. "Worst-case" design is absolutely essential for digital type circuits, as these are of the nature of all or none circuits, and simple errors even over long periods of time cannot be tolerated. Pressman's design considerations permit circuits to work when all supply voltages, resistors, passive components and all transistor as well as diode parameters are simultaneously off their nominal values to the maximum expected tolerances. $21.50, cloth-bound, $9.95.

FUNDAMENTALS OF TRANSISTORS (2nd Ed., revised & enlarged) by Leonard M. Krugman, P.E. "... will be extremely useful to the budding engineer... many qualified engineers will find it very helpful. Few who are interested in transistors can afford to be without it." WIRELESS ENGINEER.
Attacks the study of transistors from the viewpoint of transistors and transistor circuit parameters. The book emphasizes theory. It makes theory understandable through mathematical derivations and many numerical examples and solutions. Theoretical operation of various transistor circuits is made clear by step-by-step mathematical analysis. Problems are given at the end of each chapter. A highlight of this book is a very extensive bibliography. $16.95, $2.50.

FUNDAMENTALS OF TRANSISTOR PHYSICS by Irving Gottlieb, P.E. A thorough analysis of the action of semiconductors from the physics viewpoint. Semiconductor physics is presented beginning with the theoretical aspects and culminating in the practical transistor and its fundamental circuit. Transistor circuit operation is dealt with only as it amplifies the theory. Hewings reached the fundamental transistor, the author presents analogies to similar fundamental vacuum tube circuits. Related semiconductor devices such as the double-base or tetrode transistor, the double-base diode, the unipolar field control transistor, and the silicon control rectifier are covered. Recent developments in transistor physics are discussed including the new tunnel diode. $26.70, $3.90.

PRINCIPLES OF TRANSISTOR CIRCUITS by S. W. Averee, B.Sc. Penetrates deeply into the 'why' and 'how' of transistor operation and explains three basic circuit configurations which form the foundation for all transistor circuits. $24.10, $3.90.

SEMICONDUCTORS & TRANSISTORS by Aleck Schure, Ph.D. (25th in Electronic Technology Series). This book is a design oriented text on transistors. It provides the mathematical approach to semiconductors and transistors in the design of circuits. It discusses and evaluates from the mathematical viewpoint, the theory and characteristics of these materials and devices including fabrication. The mathematical treatment is sufficiently extensive to make absolutely clear the pertinent ideas relating to transistor design. The reader, through presentation and practical situations and problems, is given an opportunity to apply the principles he has learned. Questions and problems are given at the end of each chapter. $16.25, $2.90.

BASIC TRANSISTORS "Fasterest-Text" version by Alex Schure, Ph.D. An ideal introduction to the entire field of semiconductors and transistors for the person approaching the transistor for the first time. In order that the reader may have full appreciation of the operation and potentialities of transistor circuits, a thorough coverage is made of the characteristics of semiconductors, materials, including what they are, how they are made, fundamental operation of a wide variety of transistor circuits in radio and general electronic equipment are analyzed and their actions described. The methods of heating and cooling in transistor circuits are described. Coverage includes conventional voltage amplifier transistors, the power type, and transistor units. Specially conceived illustrations make every phase of the subject of transistors completely understandable. $26.25, soft cover, $3.95; 262-H, hard cover, $3.50.

INTERNATIONAL TRANSISTOR SUBSTITUTION GUIDEBOOK (4000 direct substitutions) by Keala A. Fallein, Jr., Eng. D. "Possible substitutions deemed 'doubtful,' that is, they work in some cases, were omitted... thus substitution guide is a 'safe' guide" — INDUSTRIAL ELECTRONIC ENGINEERING & MAINTENANCE.
An indispensable 'tool' for everyone who works with transistorized equipment — designing, repairing, or maintaining. Only the painstaking, critical examination of the electrical specifications and the holding to close tolerances of each substitution could assure reliable circuit operation. Direct substitutions subject to qualifications bear the qualifying information. These are your assurances of reliability. Lists more than 4000 direct substitutions comprised of American, Japanese, British, French, German, Dutch and Italian transistor types. Includes triodes and tetrodes. Not only are the direct electrical substitutions shown, but case styles, dimensions, and testing diagrams for the original substitue also are given for maximum substitution flexibility. $21.00, $1.50.

FREE! DESCRIBES MORE THAN 250 TITLES Design, research and production 'tools' that every engineer must have! Write for free catalog.

JOHN F. RIDER PUBLISHER INC., 116 West 14th Street, New York 11, N. Y., a division of Hayden Publishing Company, Inc.
Canada: Chas. W. Pointon Ltd., 66 Rebecca Rd., Berksdale, Ont.
CIRCLE 240 ON READER-SERVICE CARD

For these books and more than 250 Rider titles visit electronics distributor, book store or department store, or order direct.
Twin Power Supply

Featuring automatic overload resetting, type AS 1164 comprises twin 0-30 V, 1 amp floating supplies. Can be used separately as positive and negative supplies, or switched into parallel to give 2-amp capacity. Each supply has separate overload limit selectors and current monitoring meters.

Solartron Laboratory Instruments Ltd., Dept. ED, Cox Lane, Chessington, Surrey, England.

DC Power Modules

Temperature rating is -40 to +100 C. More than 90 models are available ranging from 2.8 to 52 V at powers of 1.0 to 20 W. Input voltage range is 105-125 V, 50-400 cps. Models are produced with both 0.05% and 0.5% regulation.

Technipower, Inc., Dept. ED, 18 Marshall St., South Norwalk, Conn.

Zener Diodes

Silicon junction Zener diodes range from 250 mw to 50 W power dissipation. All series of the Syntron diodes have 10% tolerance. Standard decade values are available with other values on special order. Diodes of 1/4 and 1/2 W dissipation are glass bead encapsulated, 3/4 and 1 W units are top hat cases and all others are stud mounted.

Why?

Because our Research people at BMC work on the assumption that "Whatever the mind can imagine the hand can create." Here for your consideration are some of the things this thinking has accomplished. They are not offered as proud boasts but to assist you in deciding whether or not we can be of help to you.

Bureau of Ordnance U. S. Navy was responsible for our initial venture into photo-mechanical reproduction. With their cooperation, we produced the first metal reticle for the armed forces - revolutionizing fire control components.

Automation in photo-mechanical techniques — another first — produced 21 inch color TV shadow masks, each with 441,222 perfectly sized and spaced conical openings for the Radio Corporation of America.

A new standard for testing liquid and dry materials was adopted when BMC conceived and built a micro-mesh sieve for the Shell Development Co.

For Goodyear Aircraft and Bell Telephone Laboratories, BMC developed components for electrical domes with production accuracy of .015 inches in 17.48 feet.

A resolution target for Air Reconnaissance Center, Wright Patterson Air Force Base — certified for all services.

Developed the mesa transistor masks for Bell Telephone Laboratories.

Pure nickel storage mesh, designed for Hughes Products—Tube Division, 21 inch radar storage tube.

Gold connector strips for transistors and gold resistors to measure micrometeorites in space.

Anything that can be drawn in line can be reproduced — small runs at moderate costs — large runs on automatic equipment. Ask us — we just might have the answer for you.

CURRENT GAIN (beta, H_{pc}) exceeds 5,000. Type SST 610 contains a matched pair of hermetically sealed npn diffused mesa silicon transistors. Current range from 1 to 500 ma: dissipation is 1 w at 25 C case temperature. The unit, which has a temperature range from -55 to +150 C, is designed to meet MIL-S-19500B.

Solid State Electronics Co., Dept. ED, 15321 Rayen St., Sepulveda, Calif.
P&A: $66.00: stock.

CerAlloy 400 is available in the form of vacuum sintered coatings on molybdenum, kovar and inconel as strips measuring 1 x 0.005 x 9.0 in. coated on one or both sides. It is said to be effective over a wider temperature range than other getters.

Cerium Metals and Alloys Div., Ronson Metals Corp., Dept. ED, 45-65 Manufacturers Place, Newark 5, N. J.

Electric-motor-driven spur gear pump operates in dielectric coolant fluids. The RG17400 has an integral relief valve for flows from 1.5 to 2.5 gallons per min, at pressures to 225 psi. With "Coolanol" 45 fluid, the pump is rated 1.75 gallons per min at 175 F, against 50 psi back pressure, operating from 115 or 200 v, 400 cps ac.

Lear-Romec Div., Lear Inc., Dept. ED, 241 S. Abbe Road, Elyria, Ohio.

ELECTRONIC DESIGN • November 22, 1961
Space Camera

Four-hundred-ft capacity DBM 10 camera will operate at 16 or 24 fps with register pin for high definition, resolving in excess of 200 lines per mm. Manufactured to sustain an 80 g load, the unit is hermetically sealed for submerged or explosive environments. It emits an operating output pulse for telemetering and complies with radio interference specifications of MIL-I-6181D.

D. B. Milliken Co., Dept. ED, 131 N. 5th Ave., Arcadia, Calif.

Carbon Film Resistors

Resistors feature tolerances of ±1.0%, voltage coefficient of less than 0.0002% per v, and temperature coefficient of -0.02 to -0.05% per deg C. PT-D series range from miniature to subminiature. PT40 measures 0.090-in. body diam x 0.281-in. body length, and is rated at 1/10 w with a resistance range of 10 ohms to 500 K.

Limited Rotation Motors

Series 90 current to torque transducers have no wiping contacts. Angular rotation limits can be varied ±5 to ±25 deg from a central position. Units are available in flange or front face type mounting for clamps or screws. Present units range from 0.1 oz-in. for the size 15 motor to 2 oz-in. for the size 23 motor.

Power-Tronic Systems, Inc., Dept. ED, Pine Court, New Rochelle, N. Y.

P&A: $225.00-450.00; 8 weeks.

Motorola's new 3-amp power transistor series, the 2N2137-46, offers I_{CEO} (at 2 volts) of only 50 μA instead of the usual 200 μA. Also the thermal resistance of the new small junction devices has been reduced to 1.2°C/W instead of the usual values of 1.5 to 2.5°C/W previously associated with such units. This results in a power dissipation rating of 62.5 watts at 25°C instead of the 35 watts you may be getting out of your present devices.

These new Motorola units are ideal as drivers for such types as the 2N2082 as illustrated in the accompanying circuit diagram. They are also superior in such applications as the direct-coupled amplifier circuit shown above.

The new devices are more completely specified ... are available in “A” versions with complete life test data under Motorola’s exclusive Meg-A-Life program ... and they are available now at lower prices than comparable old-type units.

For complete specifications on the standard 2N2137-46 series, or the “A” versions available under the Meg-A-Life program, contact your Motorola district office, or call or write: Motorola Semiconductor Products Inc., Technical Information Department, 5005 East McDowell Road, Phoenix 8, Arizona.

MOTOROLA DISTRICT OFFICES:

Pick the device for your application from this new 2N2137-46 Series Box Selection Chart.

<table>
<thead>
<tr>
<th>I_{CEO} (at 2 V and 1C of 0.5A/2.0A)</th>
<th>30/60/15 min</th>
<th>50/100/25 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bvces 90 V</td>
<td>2N2141</td>
<td>2N2146</td>
</tr>
<tr>
<td>Bvces 90 V</td>
<td>2N2140</td>
<td>2N2145</td>
</tr>
<tr>
<td>Bvces 60 V</td>
<td>2N2139</td>
<td>2N2144</td>
</tr>
<tr>
<td>Bvces 50 V</td>
<td>2N2138</td>
<td>2N2143</td>
</tr>
<tr>
<td>Bvces 30 V</td>
<td>2N2137</td>
<td>2N2142</td>
</tr>
</tbody>
</table>
NEW PRODUCTS

DC Meter Linearity Tester

Model 113 checks 10 cardinal points on each meter, with an accuracy of ±0.2% or better. Meters may have full-scale sensitivities from 50 μA to 1 ma. Undamped meters may be tested by switching a variable shunt across the meter terminals.

IB Instruments, Dept. ED, Box 2460, Cleveland 12, Ohio.

Price: $99.50.

Multiple Key Switch

Available in 6 or 12 stations, the "MLK" requires only 2.3/32-in. depth behind the mounting panel. Contacts may be of fine silver rated at 3 amp, 120 v ac noninductive load (300 v max) or of palladium which is available on special order.

Switchcraft, Inc., Dept. ED, 5555 N. Elston Ave., Chicago 30, III.

Regulated Power Supply

Chal-Pak is designed for systems involving relays, dc motors, transistorized circuitry and other electronic devices requiring adjustable output voltages of 20 to 30 v and up to 30 amp. Completely contained in a transformer-type, chassis-mounting case, 6 x 7 x 13 in., the unit can be used in computers, test equipment, laboratories, instrumentation systems and inverters.

Chalco Engineering Corp., Dept. ED, 15126 S. Broadway, Gardena, Calif.

A GAS GENERATOR FOR THE MOST EFFICIENT AND ECONOMICAL PRODUCTION OF N₂, H₂ FORMING GAS MIXTURES

... provides the most economical and efficient method for the production of pure nitrogen—completely free of oxygen—with a hydrogen content precisely controlled at any desired percentage between 0.5% and 25%. Gas mixtures are supplied at a fraction of cylinder supply cost. • The Nitronel Generator is automatic except for startup, with no need for operating personnel. The unit performs instantly, efficiently anywhere in the range of from 25% to 100% of rated capacity. Installation requires only a 110 volt line, water, air, ammonia lines and drain facilities. • The catalyst lasts indefinitely—minimum maintenance costs.

INDUSTRIAL EQUIPMENT DIVISION
113 ASTOR STREET • NEWARK, N. J.
CIRCLE 812 ON READER-SERVICE CARD

PLATINUM SPIRALS MEASURE TEMPERATURE BY ELECTRICAL RESISTANCE CHANGE

Precise electrical thermometer using platinum spirals provides temperature measurements within ± 1/10th of 1°C. Voltage signal varies with temperature covering a range from -220°C to +500°C. The temperature transistor elements, sealed in hard glass thin wall tubes, provide fast time response. 25, 50 or 100 ohm units available as well as a selection of tube geometries. A similar group of platinum spirals are ceramic encased for measuring temperatures as high as 750°C with slightly less accuracy. Special laboratory standard precision electrical thermometers also available.

INDUSTRIAL EQUIPMENT DIVISION
850 PASSAIC AVENUE • E. NEWARK, N. J.
CIRCLE 814 ON READER-SERVICE CARD

FOR DETECTION AND MEASUREMENT OF OXYGEN IMPURITIES IN OTHER GASES

In metallurgical and chemical processes requiring an oxygen-free atmosphere, the Minoxox Indicator provides a means of ensuring that failure of purification or ingress of atmospheric oxygen through an unsuspected leak does not cause costly spoilage. The Minoxox Indicator ... measures traces of molecular oxygen in other gases—from 0 to 10 parts per million, and from 0 to 100 PPM. High sensitivity and rapid speed of response enable it to be used for laboratory investigation and production quality control.

INDUSTRIAL EQUIPMENT DIVISION
113 ASTOR STREET • NEWARK, N. J.
CIRCLE 811 ON READER-SERVICE CARD

LOOK TO AMERSIL FOR ALL HIGH PURITY FUSED QUARTZ REQUIREMENTS

Amersil manufactures and fabricates high purity fused quartz for ultraviolet transmission application, laboratory ware and production equipment. These products include standard apparatus, plain tubing in many intricate fabrications, crucibles, trays, cylindrical containers and piping in a full range of sizes up to 25" in diameter. Ingots and plates are available in general commercial quality as well as in special optical grades. Amersil engineers are also prepared to assist in developing fused quartz and silica equipment for special requirements.

AMERSIL QUARTZ DIVISION
685 RAMSEY AVENUE • HILLSIDE, N. J.
CIRCLE 813 ON READER-SERVICE CARD

ELECTRONIC DESIGN • November 22, 1961
FOR LOW COST PURIFICATION AND DRYING OF HYDROGEN AND OTHER GASES

The Deoxo Catalytic Purifier removes oxygen to less than one part per million from hydrogen gas. It can also be used with other gases such as Nitrogen, Nitrogen-Hydrogen Mixture, Argon, Helium, and Carbon Dioxide. A combination unit, the Deoxo Dual Puridryer, contains the Deoxo Catalytic Purifier plus an extremely efficient automatically operated drying unit. Removes oxygen to less than 1 PPM from hydrogen and dries the purified gas to a low point of minus 100°F. It will also purify and dry other gases in a similar manner.

CONTROL TEMPERATURE, CURRENT AND VOLTAGE WITH THERMOMETAL®

Leading manufacturers rely on the dependable performance of Wilco Thermometal in electrical appliances, thermal cutouts, heating controls and many other applications involving the indication and accurate control of temperatures, electrical currents, voltages, etc. Thermometal is supplied in strip form, rolled and slit to close tolerances and tempered to specification. Thermometal elements and sub-assemblies are also supplied to specifications, with or without contacts attached. Send for literature.

ECONOTAPE CONTACTS ARE MOST EFFICIENT FOR ELECTRICAL RELAYS

High reliability welded contacts and contact assemblies available for your relays. Weld strength guaranteed. Overall contact height held within ±0.0025. Assemblies are available in gold, platinum, palladium, silver and their various alloys—both solid and laminated. Single contact usable for various contact ratings, for wet and dry circuitry—assemblies protected for shelf life and handling. Designs for attachment to header by welding or brazing. Complete electrical and mechanical design services available.

RFI GASKETING

Monel knitted wire makes up Teckmat gasket. This shielding can be used between complex mating surfaces and is easily installed and positioned for positive case and interstage shielding. Custom formed to order, this gasketing is usually produced in sizes of less than 40 in.

Technical Wire Products, Inc., Dept. ED, 125 Dermody St., Cranford, N. J.
Price: $30 to $40, 1 to 5 prototype units.

Electronic Pilot Relay

Cold cathode tube (Type TT-1) permits the unit to control large values of current and power with a current flow of 2 millionths of an ampere. The relay, which operates over any input resistance from a dead short to 10 megohms, requires 115 v, 60 cps, and consumes 2 w.

Haledy Electronics Co., Dept. ED, 99 Wall St., New York, N. Y.
P&A: $47.50; stock.

Standard Frequency Comparator

Cabinet enclosure permits conversion from cabinet model to rack mount. Model WWVC has a sensitivity of 1 μv and crystal controlled frequencies of 25, 50, 15 and 20 mc. Visual measurements may be checked on the built-in 2-in. oscilloscope tube, and a 3-in. loudspeaker is provided for aural measurement.

Specific Products, Dept. ED, 21051 Costanso, Woodland Hills, Calif.
Price: $750.00.
When should you use Mercury-Wetted Contact Relays?

An unusual combination of advantages found only in mercury-wetted relays has led many design engineers to specify them for tough switching jobs. Here are the 3 typical characteristics of our JM series:

RELIABILITY. Sealed-in-glass mercury contacts are renewed with every operation. Won't pit or weld. Make or break is positive...every time. No bounce, no chatter. Signals ranging from a few microamps to 5 amps are switched with singular consistency.

LONG LIFE. Think in terms of billions of operations when considering JM series relays. Proper application, of course, is a requisite.

SPEED. Operate time is just less than 3 milliseconds using 2 watts of power. Release time is about 3.2 milliseconds. Thus, relays can be driven 100 times per second.

If your project calls for exceptional relay performance, perhaps the answer lies in our JM Mercury-Wetted contact relay.

JM SERIES ENGINEERING DATA

Contact Rating:
5 amperes maximum
500 volt maximum
250 volt-amp max. with required contact protection.

Contact Configuration:
Each capsule SPDT. Combination of capsules in one enclosure can form DPDT, 3PDT, 4PDT. (All Form D.)

Terminals:
Plug-in or hook solder; 8, 11, 14, or 20-pin headers.

Coil Resistance:
2 to 50,000 ohms.

More information?
Write today for free catalogue.

P&B STANDARD RELAYS ARE AVAILABLE AT YOUR LOCAL ELECTRONIC PARTS DISTRIBUTOR

POTTER & BRUMFIELD

NEW PRODUCTS

Altimeter-Barometer 398

Measures altitude up to 18,000 ft above sea level. Model 3D21d works on the barometric principle—through the measurement of air pressure. The unit weighs 3 oz and measures 2-1/2 x 2-1/2 x 3/4 in. It is easily read with the help of a pointer and recording disk.

AGA Corp. of America, Dept. ED, Box 447, South Plainfield, N. J.

Conformable Coatings 407

Two grades are available. Epo-cast H-1780 is a dark-colored low-viscosity grade capable of penetrating between fine electrical wires or into porous metal castings to develop a smooth uniform coating on metal surfaces. Epo-cast H-1724 shrouds the components in an all enveloping protective blanket.

Furane Plastics, Inc., Dept. ED, 4516 Brazil St., Los Angeles 39, Calif.

Nongeared AC Motor 405

Series YAA sizes offer ratings to 0.005 hp, no-load speed of 3,000-3,300 rpm, starting torques to 0.19 lb-in. and alignable sleeve bearings. Approximate dimensions are 2.9 x 2.25 in. Various mounting arrangements are available.

Barber-Colman Co., Motors & Components Div., Dept. ED, Rockford, Ill.

< CIRCLE 96 ON READER-SERVICE CARD
Portable Ohmmeters 406

Accuracy to 1/2 of 1%. Model 244-A has four ranges, allowing measurements from 0.05 to 50,000 ohms, with center-scale value of 1.2 ohms on low range. Model 246-A provides measurement from 0.1 to 100,000 ohms. Indicating meters on both models have mirrored scales 4 1/2 in. long.

Associated Research, Inc., Dept. E.D., 3777 W. Belmont Ave., Chicago 18, Ill.

Miniature Relay 408

Features high resistance to shock and vibration. Typical operating time is 600μsec for 28-volt dc relay at nominal voltage. Contact to coil capacitance is 5 pF open and 10 pF closed at 1 kc. Units feature 1,000-volt rms, 50-cps breakdown voltage (contacts to coil) for 1 min, and operating temperature of −54 to +75°C continuous. Natural contact frequency is 2,700 to 3,200 cps.

Transfer Device 357

Parts up to one pound can be handled and placed by Transfe-Robot 200. Items can be placed in dies, jaws or nests with a tolerance of ±0.002 in. Horizontal stroke is continuously adjustable from 3 to 10 in. and the vertical stroke from 5 8 to 2 in. The entire unit is 24 x 6 x 10 in., weighs 36 lbs, and operates on 110 to 115 v, 60 cps ac.

P&A: $2,500.00; stock.

Sanborn® 7-Channel FM tape system for $6800* complete

uses interchangeable FM and direct record/reproduce electronics entirely contained in 7" x 19" panel space

COMPARE PERFORMANCE, PRICE PER CHANNEL

Here is the ideal combination of high performance and economy in a 7-channel, 4-speed system that meets IRIG Telemetry Standards. Versatility is another advantage. The Model 2000 system uses interchangeable Sanborn FM or direct record/reproduce electronics — all solid-state, in 7" of panel space — and you can have any combination of direct and FM channels simply by changing circuit cards. Recording capability may be extended beyond the system's minimum input levels through the use of Sanborn "850" and other compatible amplifiers.

The Model 2000 Magnetic Data Recorder has four speeds and uses standard 1/2-inch tape on 10 1/2-inch reels. All controls are on the front, and several convenience features are included: an integral FM Alignment Meter that eliminates the need for electronic counters, an automatic squelch, a tape footage counter, and provision for using one channel for flutter compensation.

Complete details are available from Sanborn Sales-Engineering Representatives in principal cities throughout the U. S., Canada and foreign countries.

SPECIFICATIONS

Input ± 2.5 V into 10,000 ohms, single ended, adjustable.
Output ± 2.5 V into 1,000 ohms or more, single ended; level, position adjustable.

Bandwidths (Max)

<table>
<thead>
<tr>
<th>Speed</th>
<th>FM</th>
<th>Direct</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4/sec</td>
<td>0-625 cps</td>
<td>50-3,250 cps</td>
</tr>
<tr>
<td>7/8/sec</td>
<td>0-1,250 cps</td>
<td>50-6,250 cps</td>
</tr>
<tr>
<td>15/sec</td>
<td>0-2,500 cps</td>
<td>50-25,000 cps</td>
</tr>
<tr>
<td>30/sec</td>
<td>0-5,000 cps</td>
<td>100-50,000 cps</td>
</tr>
</tbody>
</table>

(100% modulation on FM = ± 40% carrier deviation)

Linearity Maximum error due to nonlinearity: 0.2%.

Drift ± 0.5% of full scale for 10 V power line change, 10°C ambient temperature change, or for 24 hours at constant power line voltage and ambient temperature.

Signal-to-Noise Ratio (Min)

Direct: 40 db at all speeds.
FM: 40 db RMS at 30/sec and 15/sec; 35 db RMS at 30/sec; 33 db RMS at 30/sec.

*Price FOB Waltham, Mass., in Continental U. S. A.; subject to change without notice. State and local taxes must be added where applicable.

(Specifications subject to change without notice)

Sanborn Company

INDUSTRIAL DIVISION

175 Wyman Street, Waltham 54, Massachusetts
NEW PRODUCTS

Planar Epitaxial Transistors

PASSIVATED SILICON TRANSISTORS operate at frequencies from 50 to 120 mc. P.E.P. series includes types 2N2193-2195 and 2N2193A-2N2195A. These devices are capable of dissipating 2.8 w with a case temperature of 25 C. Housed in a TO-5 case, the units are rated for operation from -65 to +200 C, and for storage from -65 to +300 C.

General Electric Co., Semiconductor Products Div., Dept. ED, Kelley Building, Liverpool, N. Y.
P&A: $3.50 to $13.75 each (100-999); stock.

Differential Transformers

Three linear variable models (E100D, E200D, and E300D) have linear range from ±0.100 to ±0.300 in. Signal output has ±1% linearity over the specified range. Full-scale output voltage into a 500-K load is from ±0.3 v to ±1.26 v dependent upon model. Operating temperature range is -65 to 180 F. The device uses a standard 60 cps input at a 6-v level.

Schaevitz Engineering, Dept. ED, Route 130 and Schaevitz Blvd., Pennsauken, N. J.
P&A: $9.00-$15.00; stock.

Mach 5...Mach 10...and Beyond

STEVENS Certified THERMOSTATS

Up where the "wild blue yonder" becomes inky black, you can't afford to gamble on precise, reliable temperature control. And that's the natural domain of Stevens Thermostats. They are compact and lightweight...withstand high G's...are utterly reliable even under wide temperature swings. For Stevens Thermostats are a product of creative engineering...coupled with the most stringent environmental testing and quality control programs in the industry. If space is your dimension, take the measure of Stevens Thermostats first.

2° to 6°F Differential Standard
1° to 4°F Differential Special
Maximum spread of 6°F including differential and tolerance.

6°F is difference between maximum open and minimum close.

STEVEN'S THERMOSTATS

STEVE'S

STEMCO

THERMOSTATS

Passivated silicon transistors operate at frequencies from 50 to 120 mc. P.E.P. series includes types 2N2193-2195 and 2N2193A-2N2195A. These devices are capable of dissipating 2.8 w with a case temperature of 25 C. Housed in a TO-5 case, the units are rated for operation from -65 to +200 C, and for storage from -65 to +300 C.

General Electric Co., Semiconductor Products Div., Dept. ED, Kelley Building, Liverpool, N. Y.
P&A: $3.50 to $13.75 each (100-999); stock.

Differential Transformers

Three linear variable models (E100D, E200D, and E300D) have linear range from ±0.100 to ±0.300 in. Signal output has ±1% linearity over the specified range. Full-scale output voltage into a 500-K load is from ±0.3 v to ±1.26 v dependent upon model. Operating temperature range is -65 to 180 F. The device uses a standard 60 cps input at a 6-v level.

Schaevitz Engineering, Dept. ED, Route 130 and Schaevitz Blvd., Pennsauken, N. J.
P&A: $9.00-$15.00; stock.

CIRCLE 98 ON READER-SERVICE CARD
Liquid Level Detectors 412

Permits remote indication and monitoring of levels. Model 369 transducer makes it possible to indicate level, temperature and pressure on the same instruments. An adjustment is provided to calibrate the resistance level transducer for liquid specific gravity variations of from 0.7 to 1.1.

Magnetic Material 361

Type 4000 iron oxide combines high permeability with high resistivity. The combination of high initial permeability with low density makes the material suitable as a magnetic ink component. Its low chemical reactivity makes it suitable as a magnetic trace material.

Wright Industries, Inc., Dept. ED, 412 55th St., Brooklyn 20, N. Y.

Pressure Indicators 410

Deltadyne indicators are available for system working pressures up to 10,000 psi, operating temperatures from -65 to +275 F and actuation from 1.5 to 100 psi differential. Extended ranges can be supplied on special order. The units are designed for corrosive service, with housings of aluminum or stainless steel.

Pall Corp., Dept. ED, 30 Sea Cliff Ave., Glen Cove, N. Y.
NEW E-I

TRANSISTOR BASES

The new Electrical Industries line of heretically sealed transistor bases includes types for Jedec Series TO5, TO9, TO18, TO33 and TO46 packages, miniatures for hearing aids and other applications, and bases for practically all military and commercial requirements. MIL types equal or exceed military specifications. Available in a broad selection of terminal configurations with finishes of Brite Gold, electro-tin or high purity gold for direct fusion of semiconductor elements to header base. Special plating on order.

NEW PRODUCTS

Microminiature Resistor

Diameter is $1/8 + 1/64\text{ in.}$ and maximum length is $5/16\text{ in.}$ Series 2005 operates at twice full rated power for extended periods and withstands ambient temperatures to 500 F. Resistances range from 10 ohms to 100 K. Maximum voltage is 100 v, and wattage rating is 0.1 w at 125 C, derated to zero at 145 C.

Robinson Electronic Components, Inc., Dept. ED, 409 McGroarty St., San Gabriel, Calif.

Availability: 1 week.

Multi-Output Power Supply

Computer grade unit offers one to five individually regulated outputs. Chal-Multi-Pak has ranges from 0 to 50 v and from 0 to 10 amp with a total output power capacity of 1KW. The unit also features self-contained cooling and modular construction.

Audio Equalizer

Plug-in type is used with ceramic phonograph cartridges. Model 328A enables a ceramic cartridge to be plugged directly into the magnetic input of any amplifier without any modification. One is needed for monaural, two for stereo.

Switchcraft, Inc., Dept. ED, 5555 N. Elston Ave., Chicago 30, Ill.
Electronic Relay

Equipped with a cold-cathode thyratron, contact amplifier type CV 2 is designed for actuation by very light contacts varying between 10 and 60 mw or by high-output impedance apparatus. The unit is an electromagnetic pendent armature relay with electronic gain amplification consisting of the thyratron which is fed direct, without rectifier or transformer, from the 220-v alternating grid.

Availability: 2 weeks.

Silicon Rectifiers

Three series are available: medium and high voltage, 1,200 v piv to 1,100 ma average rectified current; 1,000 piv at 1,100 ma average; and 800 v piv to 1,100 ma average. The units are designed to exceed MIL-STD E-1084 and MIL-STD 202 method 103A humidity test.

Solitron Devices, Inc., Dept. ED, 500 Livingston St., Norwood, N. J.

P&A: from $0.85; stock.

Subminiature Thermostat

Snap-acting thermal switch is hermetically sealed and resistant to severe environmental conditions. Model 3001-2 meets or exceeds all applicable MIL specifications. The unit is designed for electronic communications equipment and missile and aircraft controls. Instantaneous "make and break" action eliminates creeping and false cycling.

Thermel, Inc., Dept. ED, 669 Elmwood Ave., Providence, R. I.
NEW PRODUCTS

Lamp Assembly

Series RLA replaceable assembly makes possible continuous mounting of replaceable indicators on horizontal and vertical centers as close as 3/8 in. Unlimited lengths and widths of displays on 3/8-, 1/2-, 3/4- and 1-in. centers can be achieved with series RLA indicator lights, according to the manufacturer. Twelve lens colors, transparent and translucent, in flat top and optional watertight design are available.

Tec-Lite Div., Transistor Electronics Corp., Dept. ED, 3357 Republic Ave., Minneapolis 26, Minn.

Transistor Sockets

Featuring gold-plated contacts. The socket mounts in a single round hole by compression fit of its Teflon body. Connections are made within 5/16 in. of the transistor case. Units withstand continuous use at 200 C.

P&A: $0.65 to $1.75; stock.

Ceramic Capacitors

Ratings for both 50 wvdc and 200 wvdc capacitors are at 85 C, and derated by 50% at 125 C. Temperature coefficient from -55 to +125 C is +10% to -30% at 0 v, and +10% to -40% at rated voltage. Series resistance is 0.20 ohms max at 8 to 10 mc and power factor is 2% max. Cerol capacitors are designed for general applications in by-pass coupling, filtering and blocking circuits.

Hi-Q Div., Aerovox Corp., Dept. ED, Olean, N. Y.

Availability: 3 to 4 weeks.

CAPABILITY and RELIABILITY

Hoyt Meters

A brilliant new concept in panel meters, which provides scale lengths approximately 50% longer than comparable round meters, provides high visibility to your meter panels. Shadow-free Polystyrene and smart design add to the appearance while the famous HOYT high torque gives you trouble-free movements. These meters come in matching cases for AC and DC measurements...standard and matched colors on case front lined area are available.

In the broad and comprehensive selection offered in HOYT Meters there is a type of meter for every panel or instrument application. With the HOYT Square Plastic Case Series 649 and 653 shown above, you have Meters interchangeable with square Bakelite Meters. These are supplied with frosted or colored band on the case front...all DC and AC ranges.

WRITE FOR HOYT CATALOG TODAY

ELECTRICAL INSTRUMENTS

BRUTON-ROGERS COMPANY

Sales Division Dept. ED11
42 Carlston Street, Cambridge 42, Mass.

CIRCLE 104 ON READER-SERVICE CARD

108 ELECTRONIC DESIGN • November 22, 1961
Circuit Card

Series DC10C 10-mc systems cards measure 2.75 x 5.5 in. and mount from two to four standard modules together with filter and bias components. The cards are fabricated from 0.062-in. black epoxy glass. The modules are 0.8 x 1.7 x 0.5 in. and occupy a volume of 0.625 cu in.

Control Logic, Inc., Dept. ED, 11 Mercer Road, Natick, Mass.

Delay Lines

Pulse information is stored for periods from 5 μsec to 1.5 msec. Lines consist of a nickel tube with transducers in the form of encapsulated ferrite cored coils threaded thereon. The delay lines can be supplied mounted in metal containers.

Computer Drive Motor

High-temperature, 40-frame dc motor. Model 4026-4 operates on an input voltage of 50 v. Output is rated at 500 oz-in. torque at 0 rpm, and a no-load speed of 1,500 rpm. Length is 8 in. and diameter is 4 in. The unit is equipped with a special shaft, brake, and flange mounting to meet exacting computer specifications.

Eicor Div., Indiana General Corp., Dept. ED, 517 W. Walnut St., Oglesby, Ill.

Terminal Systems

Panel-mounting systems are made in capacities of 100, 256, 400, 625 and 900; rack-mounting systems in 1250, 2500, 3750, and 5000. Single conductor color-coded leads have lengths from 3 to 35 in.

Automation Connector Div., Caine Electronic Sales Co., Dept. ED, 4120 W Lawrence Ave., Chicago 30, Ill.
HIGH-ACCURACY, HALF-OUNCE BENDIX® SIGNAL GENERATORS NOW IN PRODUCTION

These Microsyn units are particularly suited to applications demanding an extremely accurate electrical signal output proportional to angular displacement. Less than 1° in diameter, they feature low null, high signal-to-null ratio, good linearity, and low reaction torque. They use no brushes or slip rings, are ideal as transducers for accelerometers, pressure sensors, gyro pick-offs, and other similar devices. Write us at Teterboro, N. J., for complete performance data, prices, and delivery on these production units.

Manufacturers of
GYROS • ROTATING COMPONENTS
RADAR DEVICES • INSTRUMENTATION
PACKAGED COMPONENTS

MULTI-POLE AUTOSYN LINE EXPANDED TO INCLUDE 11:1 AND 25:1 RATIOS.

Our family of low impedance, multi-pole Autosyn® synchros also includes other ratios. You can be sure that all units will provide stable operation under all environmental conditions. High-performance accuracies in the order of 10 secs. max. are available. The units are designed for accurate data transmission with maximum simplicity on such applications as star trackers, flight control systems, radar, test equipment, and inertial guidance systems. Other frame sizes, accuracies and functions can be developed to your specific needs. Write us at Teterboro, N. J. for complete information.

NEW PRODUCTS

Delay Lines

Designed for space vehicles. Units are packaged in half an epoxy ring with 1.625-in. OD, 0.375-in. ID, and 0.5-in. thickness. Leads are No. 22 AWG nickel. Type DL 397 has a total delay of 0.2 μsec, rise time of 0.033 μsec and impedance of 500 ohms. Type DL 809 has a total delay of 0.03 μsec, rise time of 0.005 μsec and impedance of 200 ohms.

Valor Instruments, Inc., Dept. ED, 13214 Crenshaw Blvd., Gardena, Calif.

Availability: 2 weeks.

Humidity Reader-Controller

Reading and controlling accuracy is ±0.25% relative humidity. Model PCRC Hygrocon-1 has four 25% expanded scales and a complete 0-100% scale. Differential control has independently adjustable high and low limits. The unit is fully transistorized and is available for 115- or 230-v, 50- or 60-cps operation for foreign use.

Phys-Chemical Research Corp., Dept. ED, 40 E. 12th St., New York 3, N. Y.
P&A: $750.00; 4 weeks.

Graphic Recorder

Features a 30-in. sq recording area. Model 7 has an accuracy of ±0.1% of full-scale and pen speed of 20 in. per sec max for each axis. Selector switches provide 13 voltage ranges in 1-2-5 sequence from 1 mv per in. to 10 v per in. or 30 mv to 300 v full scale on each axis. This instrument uses either individual sheets of graph paper or 50-yd roll charts.

P&A: $6,500.00; stock.
Impact Noise Analyzer

Push button resets signal storage circuit of type 1556-B. Peak value of a single pulse of short duration can be measured by the storage feature of this unit. Noises of any type can be measured with this battery operated analyzer. One meter can measure peak, quasi peak and time average on one impact.

Price: $220.00.

Epoxy Cement

Two-component 1/10-oz Pa-Kit mixer packages are available for use in production lines, service kits and laboratories. Catalyst and resin are sealed in a vacuum-formed polyethylene container. Contents are mixed on-the-job just prior to use. Both components are of contrasting colors to furnish a visual indication of an even mixture.

Plastic Associates, Dept. ED, P. O. Box 36, Laguna Beach, Calif.

Digital Voltmeter

Model 412 measures ac and ±dc between 0.001 and 999.9 v. The militarized equipment consists of two units: a 466 ac-de measurement unit containing all metering circuits, and a 474 control unit and readout containing all switches for voltmeter operation. Dc measurements are accurate to within 0.01% ±1 digit; ac accuracy is within 0.1% of full scale. Unit meets MIL-E-4158A.

Cohu Electronics, Inc., Kin-Tel Div., Dept. ED, 5725 Kearny Villa Road, San Diego 12, Calif.
P&A: $10,000 (5 to 10) fob San Diego; 12 weeks.

MOTOROLA ZENER DIODES

One big reason most zener diode users look first to Motorola is the depth of the Motorola line. The availability of over 2,000 different types helps simplify circuit development . . . offers you the precise device for your exact circuit requirement. This wide selection, however, is not the only reason Motorola zener diodes are the most popular in the industry. In addition Motorola offers:

OUTSTANDING PERFORMANCE — including lower dynamic impedance, lower temperature coefficients and sharper knees.

COMPLETE SPECIFICATIONS — a detailed description of the diode characteristics with temperatures and forward characteristics fully specified.

HIGHEST RELIABILITY — backed by the industry's most advanced Quality Control and Reliability programs.

APPLICATIONS ASSISTANCE — a comprehensive Zener Diode Applications Handbook and time-saving zener diode selection chart are available to assist you in circuit development projects.

NATIONWIDE AVAILABILITY — through 26 strategically located industrial electronic distributors.

So, when you need zener diodes, look first to Motorola. Contact your local Motorola Semiconductor Distributor, today, for complete information.

MOTOROLA Semiconductor Products Inc.

LOOK TO MOTOROLA FOR ALL YOUR SEMICONDUCTOR REQUIREMENTS

POWER TRANSISTORS • RESEL SWITCHING & AMPLIFIER TRANSISTORS • MILLIWATT TRANSISTORS • SILICON RECTIFIERS • ZENER DIODES

CIRCLE 108 ON READER-SERVICE CARD

ELECTRONIC DESIGN • November 22, 1961
NEW PRODUCTS

Radar Detector

For motorists. Available with a dual-band circuit, "Radar Sentry" is said to be able to detect all commonly used police radar speed meters and traffic control units. The device measures 3 5/8 x 2 1/4 x 3 1/4 in. and weighs 13 oz. Three colors are available: beige, sapphire blue, and emerald green.

Radatron, Inc., Dept. ED, 232 Zimmerman St., North Tonawanda, N. Y.
Price: $39.95.

Asbestos-Polyester Insulation

Quinterraborb No. 880 is designed for applications to 50 kv at temperatures in the 155 to 180°C range. Produced in 35 x 72-in. sheets, the material is available in standard thicknesses ranging from 1/32 to 1/2-in. It has a density of 110 lb per sq ft, a perpendicular dielectric strength of 350 v per mil (1/16-in.), and a tensile strength of 30,000 psi (1/16-in.).

Johns-Manville, Dept. ED, 22 E. 40th St., New York 16, N. Y.
P&A: $2.00 per lb; 6 to 8 weeks in large quantities.

NEW CECO HIGH OUTPUT
SOLID-STATE VIDEO AMP
(8 VOLS, 18 MCS)

SPECIFICATIONS
45 db gain
25 db gain control range
5 cps to 18 mc ± 5 db
2% maximum overshoot
2% maximum tilt on
60 cps sq. wave
20 nano sec. rise time
8.2 db noise figure
75 ohms in and out
8 volts output peak to peak
10 volts maximum input
19" rack, 3 ¾" high
117 V, 50-60 cps power in

Equalization units are supplied to compensate for any length of cable up to one mile of RG-11/U or 8000 feet Foam 11, ± 5 db to 8 mc.

WRITE FOR BULLETIN 1019
Other wide band amplifiers and low noise preamplifiers to 1000 mc.

Community Engineering Corporation
STATE COLLEGE, PENNSYLVANIA
Telephone AD 8-2461
Area Code 814
Switch Assemblies
Circuits with up to 6pdt or 3pdt are available in various combinations of normally open and normally closed contacts. Assemblies employ standard pushbutton switchlights mounted on either 3/4 or 1-in. centers. Available types include: independent, momentary interlocking, independent locking and interlocking, locking with master release, etc.
Pendar, Inc., Dept. ED, 14744 Arminta St., Van Nuys, Calif.
Availability: 2 to 3 weeks.

RF Parameter Tester
Instruments provide direct meter readings of the various rf parameters of mesa, drift, and surface barrier transistors. Units can provide measurements of the 20-mc current gain, the collector capacitance and the extrinsic base resistance-collector capacitance product. They are available as individual rack mounted units or as plug-in units that mount in a bias supply cabinet.
Dynatran Electronics Corp., Dept. ED, 178 Herricks Road, Mineola, N. Y.
P&A: model 1527PA, $725.00; 6 weeks.
Power supply for high-power radar
...designed in 1 week delivered in 6 weeks

This 52.5 kVA Raytheon power supply was in the field and functioning perfectly just six weeks after the order was received. Actual electrical design work was completed in seven days.

The 2 1/2 ton power supply provides high voltage for a radar modulator in a National Aeronautics and Space Administration System. This three-phase full-wave rectifier supply is capable of emergency operation on single phase which is an unusual feature for a power supply of this size and output.

Raytheon's capability of designing and building high-voltage power supplies can be put to work for you. Write us today for a descriptive folder on the power supply shown here or for a prompt and expert answer to any design problem you may have.

Address Magnetics Operation, Microwave & Power Tube Division, Raytheon Company, Waltham 54, Massachusetts

NEW PRODUCTS

Switching Diode 354

Gallium arsenide diode has nsec recovery time. The 3 types, DGS-51, -52, and -54 can be operated at temperatures up to 300 C. The units can be used in logic design or other low-current switching applications. Maximum inverse current rating is 1.0 and 10 μA at 25 and 300 C. Power dissipation of the device is 200 mw.

Diotron Inc., Dept. ED, 3650 Richmond St., Philadelphia 34, Pa.
P&A: $14.30 to $15.65, 1 to 99; stock.

Cleaning Unit 359

Ultrasonic generator model UG 1000 has average power of 1,000 w. Unit has a drift free oscillator and a power amplifier circuit that permits full output with 1 v input. Model UG 110 is a compatible tank, holding 11 gallons of solution.

Ultrasonic Systems, Inc., Dept. ED, 2255 S. Carmelina Ave., Los Angeles 64, Calif.

Low-Level Multiplexer 355

Transistorized unit is capable of commutating input signals from 0 to ±15 v, with resolution to 1 μv. Offset voltage does not exceed 50 μv, with variations in source impedance of 0 to 10 K and -20 to +85 C. The system, with 15 channels, weighs less than 9 oz and volume is about 9 cu in. Units can be stacked to increase channels.

Alpha-Tronics Corp., Dept. ED, 1033 Engracia, Torrance, Calif.

RAYTHEON COMPANY
MICROWAVE AND POWER TUBE DIVISION
Sintered Copper

Electrical conductivity of sintered copper is 93% that of wrought copper. Tensile is 39,000 psi, as opposed to 45,000 and 35,000 for hard and soft wrought copper respectively. This process can be used for many shapes or forms.

Ferrite Cores

For use in magnetic-memory systems, etc. At a full driving current of 480 ma, the 232M1 has a switching time of about 1 psec. In “impulse switching” operation, the 401M1 at a “read” driving current of 570 ma can switch in 0.20 psec. The 501M1 has a switching time of approximately 2.3 psec at a setting current of 360 ma and a full driving current of 160 ma.

Radio Corp. of America, Semiconductor and Materials Div., Dept. ED, Somerville, N. J.

Balance and Control Unit

For check weighing, sorting, statistical evaluation, and accurate production control. Seven different models are available with rated capacities from 1 to 1,000 g. Sensitivity is 0.05%; weighing speed is up to 10,000 per hr. The system consists of a spring balance with rapid response, and an electronic control unit containing relays for control of further operations.

Mettler Instrument Corp., Dept. ED, P. O. Box 100, Princeton, N. J.

International Rectifier Multi-Cell High Voltage Silicon Rectifiers

Contemporary circuits designed with semiconductor high voltage rectifier elements are free from the complexities of vacuum tube operation... require fewer associated components... operate more efficiently... are smaller in size... weigh less... are physically rugged... and can be produced economically with high reliability.

Since 1948, International Rectifier engineers have pioneered in the development and application of semiconductor devices that have brought simplicity and compactness to high voltage circuitry. In 1966, IR introduced the first silicon high voltage rectifiers in the industry, offering high operating temperature characteristics and miniaturization qualities not previously available. For applications in the megawatt range, IR recently developed a complete series of standard superpower columns that open the way to assemblies in size and ratings limited only by the imagination. Considering the scope of the product line and the experienced technology IR has developed over the years, chances are good that your special high voltage requirement is a standard with us. It's well worth looking into.

International Rectifier Corporation

Symbol of quality in semiconductors
It takes just three components to do the job. A Continuous Reading Meter-Relay (CRMR): a power supply; a load relay. Put them together and you have a complete control "system." With it you can add continuous indication and automatic on-off control to any equipment package. That's right—any equipment package. The CRMR will monitor and control any variable transduceable to current or voltage values—even at low, un-amplified microamp or millivolt levels. • For the work it does, a CRMR control requires remarkably little space. The meter-relay itself (there are several case styles) requires only a meter-sized panel space. The power supply and load relay are plug-in units; you can mount them on one of our racks or directly on the equipment chassis. • If you are presently working on equipment that could use (or be improved by) continuous indication combined with discrete set-point control, you'd do well to have a look at our Bulletin No. 5. It will give you applicational information, detailed specs, and prices.

NEW PRODUCTS

Printed-Circuit Connector

Seventeen-in., double-row connector has 210 terminals. Three types of contacts are available; pierced, straight-dip solder, or right-angle-dip solder. Standard insulator material is diallyl phthalate per MIL-M-18794 that withstands 450 F. Current rating is 10 amp max and voltage breakdown at sea level is 3,200 v dc.

Viking Industries, Inc., Dept. ED, 21343 Roscoe Blvd., Canoga Park, Calif.

Availability: stock.

Rotary-Bar Printing System

Model RBP-72-20 buffer and control unit incorporates all input-output control, storage, conversion, and decoding functions for a 72-character per line, rotary-bar printer in a single 7-in. rack panel structure. Input rate is 100 kc. RBP systems are available in five standard capacities, with a wide range of standard and optional control and command facilities.

Proportional Controller

Operates on the principle of a light beam being interrupted when a pre-set point is reached. Proportional action of the controller is based on the system of switching-time modulation. Bandwidth of the proportionality area is adjustable between 0 and 10% of the full-scale length.

Availability: 2 weeks.

VECTOR 1024 TIME CODE GENERATOR provides pulse code for digital measurements of clock time. Output jackplug allows entry of Real Time into digital systems or computers.

Operates in combination modes. Continuous visible display with jackplug output in hours, minutes, and seconds, or in electrical or mechanical full seconds.

Switch controlled for six magnetic tape speeds. Real Time channel displayed on oscillograph or tape in six-digit sequential Binary Coded Decimal frequency.

Transistorized solid-state circuitry. Rack or bench models available.

Write for further information.

VECTOR MANUFACTURING CO., INC.

Commercial and Industrial Division
Southampton, Pennsylvania

CIRCLE 116 ON READER-SERVICE CARD

ELECTRONIC DESIGN • November 22, 1961
Rise times are less than 20 nsec, and output voltages are 0.25 v per amp. Model EDA-PCTD-3001 is capable of monitoring pulse currents of 100 amp peak and has a center hole large enough to accommodate a stripped RG-17U cable. Model EDA-PCTD-3002 monitors pulse currents of 2,000 amp peak at 300 kv dc in oil.

Electronic Design Associates, Dept. ED, 514 High St., Palo Alto, Calif.
P&A: $75.00 to $297.50; stock to 2 weeks.

Vertical Sensing Element 565

Snap-action, subminiature type 228571-1 vertical sensing element has a tilt angle of 0.75 deg. Differential output is 18 v; maximum current through either contact is 18 ma; range is 75 to 135 min of arc. Design is single-axis.

General Precision, Inc., Kearfott Div., Dept. ED, 1150 McBride Ave., Little Falls, N. J.

Wideband DC Amplifier 529

An open loop amplifier with very high gain, model 3102 has less than 1 μv per C drift, 0.01 gain stability, 50 meg-ohm input impedance and 0.06-ohm output impedance. The unit is capable of ±15 v output at 100 ma. Bandwidth is 35 kc.

PM Electronics, Inc., Dept. ED, 5221 University Ave., San Diego 8, Calif.
P&A: $390.00; 1 week.

INSTANT ENGINEERING DRAWINGS

FASTER PRINTS MEAN FASTER PRODUCT DEVELOPMENT, FASTER PRODUCTION. Imagine locating a drawing or record in seconds. Imagine having a work-size print in just 8 seconds. All this, and more, can happen when your drawings and records are on microfilm ... with FILMSORT® Aperture Cards and THERMO-FAX "Filmac" Reader-Printers. This is the way many companies are saving valuable engineering and drafting time, saving the cost of full-size print preparation, saving space, and saving print distribution costs. The cost? Far less than you would expect for such amazing efficiency. Find out now how you, too, can put microfilm to work—get Instant Engineering Drawings when you need them, where you need them—with 3M Microfilm Products.

3M MICROFILM PRODUCTS

CIRCLE 117 ON READER-SERVICE CARD
The Ins and Outs of System Packaging

Development of the common cabinet drawer was as important a contribution to storage as the wheel to mobility. Use of ball-bearings appreciably improves the action of both. Advanced drawer design has been applied by Jonathan to electronic chassis storage in the form of close tolerance, extruded aluminum ball-bearing slides for precision packaging. Now chassis are instantly accessible for maintenance and replacement. Gear of any weight may be accommodated without restriction of length and travel, and with tilting and locking features.

First Precision-Designed Cable Carrier

The new Power-Track Cable Carrier facilitates servicing rack-mounted electronic chassis without disconnecting the power source. It is the first cable carrier with uniform telescopic action in the carrier and the slides. Telescopic supporting arms are mounted to opposing sides of 3-member Jonathan Thinline telescoping chassis slides, forming a carrier along which the cable is supported. This transfers cable weight to the strong, smooth-running arms and ball-bearing slides, effectively preventing damaging vibration and shock.

The telescoping action allows full drawer extension and 90° tilting up and down. Since the cables are unable to sag or bind, there is no longer risk to stored electronic chassis. Cable is compactly stored in minimum depth. The carrier system meets all applicable military standards.

Write for new 16 page descriptive brochure.

JONATHAN MANUFACTURING COMPANY

720 East Walnut Avenue Fullerton, California

Eastern District Offices 1000 Teaneck Road Teaneck, New Jersey

CIRCLE 118 ON READER-SERVICE CARD

NEW PRODUCTS

Digital Readout 440

Binary input decimal readout, model RO-2, features positive imprinted digits for readability in any ambient light. Driving power is as low as 35 mw. All readouts in a line are driven by a single ac motor. The readout device incorporates two position snap action switches.

Calibration Standards Corp., Dept. ED, 1025 Westminster Ave., Alhambra, Calif.
P&A: model RO-2, $65.00; accompanying motor package, $55.00; stock.

Transparent Scales 458

Four new reticles are available for use with the firm's magnifying comparator. No. 141 measures circles from 0.005 to 0.125 in. in diam. No. 142 measures widths from 0.1 to 2.0 mm by increments of 0.1 mm. No. 143 shows correct point angle and lip clearance for drilling various materials, and No. 144 measures circles from 0.1 to 2.0 mm in diam.

Finescale Co., Dept. ED, 218 S. Western Ave., Los Angeles 4, Calif.
P&A: comparator, $15.50; reticles, $1.00 per pair; stock.

It's the Combination that Counts

Component qualifications for a Bliley crystal oscillator package begin with high precision glass-mounted crystals that will deliver long term performance with minimum aging. In combination with custom built circuitry and temperature control, each unit is individually tested to meet rigid quality standards. This is the essence of product reliability.

Typical Bliley oscillator packages are described in Bulletins 520A, 522 and 526.

Packaged oscillator stability can only be as reliable as the crystal source!

...if you buy quality

BLILEY ELECTRIC COMPANY - Union Station Building - Erie, Pennsylvania

CIRCLE 119 ON READER-SERVICE CARD

ELECTRONIC DESIGN • November 22, 1961
Ferrite Bead Choke 445

Designed for use in high frequency and vhf ranges. At frequencies above 10 mc, these units are said to exhibit a constant ac resistance and impedance.

Multiple Assembly Socket 438

DL 100 is a printed circuit dial light socket designed for data computers, processing equipment, switchboards and automation applications. The common side is pre-wired, leaving only one lead per socket for hand wiring.

Allegri-Tech, Inc., Sockets Div., Dept. ED, 141 River Road, Nutley 10, N. J.

Fluid Quality Meter 459

For two-phase cryogenic flow systems. The instrument provides a continuous indication of per cent vapor, by volume, over the range 0 to 100% vapor with an accuracy of 1% full scale, and to within 1 db to 400 cps.

WORD MASTER

FOR DIGITAL AND PULSE APPLICATIONS

NEW!

- Word Generator
- Word Display
- Variable Bit Delay
- Multi-Pulse Code Generator

Model 1040

0-500 KC

0-40 bits

Only $1950.00

O-5 MC UNIT ALSO AVAILABLE

DIGITAL ELECTRONICS CORP.

161 Sullivan Lane

Westbury, L.I., N.Y.

Newest-Smallest High Voltage Capacitors!

Compact configuration, lighter weight and extremely low noise are features desired by design engineers seeking smaller, more reliable high voltage capacitors.

BWE Series epoxy tube capacitors are designed for applications as AC and DC power supply ripple filter capacitors, voltage doubler circuits and blocking capacitors. Basic construction is similar to the Mil-C-14157 Hi-Rel Spec and meets environmental test conditions of Mil-C-25. Rectangular shaped, non-metallic case eliminates need for large stand-off terminals. The BW wrap and fill version is available for similar applications in less stringent environments.

Up to 30,000V operation with standard capacity from .001 to 2 mfd. Standard capacity tolerance ±20% (also available to ± 1%). Competitively priced against other less sophisticated versions. Technical information and test data available upon request.

Specifications:

- Operating Temperature: -55°C to +125°C
- Insulation Resistance: 30,000 M ohms @ 25°C
- Dissipation Factor: 1.0% max. @ 25°C
- Test Voltage: 200% of rated voltage

ELECTRON PRODUCTS

430 North Halstead Street, Pasadena, California

division of Marshall Industries
it's easy to use Electronic Design's 27th issue:

THE NEW, IMPROVED PRODUCT LOCATOR

8700 recent electronic products are listed and described

For example . . . are you looking for an amplifier? 361 of them are listed from audio to wideband, many of the write-ups describing entire series of amplifiers. Here's a typical entry:

MINIATURE (Model 207G): germanium-transistor unit for servo, audio, pulse applications. Temp range -50 to 50 C. Measures 1-1/4 x 3/4 x 3/8 in. Open-loop gain is over 40 db; closed-loop 10 to 26 db.

Taber Instrument Corp. 2/17/60 Pg 81 *2764

An asterisk * precedes the reader service inquiry number. For more information, write in this number on EDC's postpaid reader service cards (in this case the number is *2764).

Note that each listing gives page number and issue date the new product write-up originally appeared in Electronic Design magazine.

Remember, if you are looking for new products, EDC offers the most accurate new product information source available in the industry. It's unique!
Varian Associates introduces the new VA-204 reflex oscillator klystron to fulfill an industry need—low cost tubes with traditional Varian reliability.

The fixed-frequency VA-204 satisfies design requirements for nearly all types of low-power doppler radar systems intended for operation in public service radio location bands. Features include long life, rugged construction and simplicity of installation. Ideal for long periods of unattended operation.

Beam voltage, 300 Vdc; beam current, 28 mAdc. Waveguide output, single plug power connection. For more information, write Tube Division.

APPLICATIONS:
- POLICE RADAR
- TRAFFIC CONTROL RADAR
- METEOROLOGICAL ROCKETS
- SECURITY RADAR
- RAILROAD TRAFFIC CONTROL

Varian Associates
PALO ALTO 21, CALIFORNIA
Subsidiaries:
- SOMAC LABORATORIES, INC.
- VARIAN ASSOCIATES OF CANADA, LTD.
- S-F-D LABORATORIES, INC.
- SEMICON ASSOCIATES, INC.
- SEMICON OF CALIFORNIA, INC.
- VARIAN A. G. (SWITZERLAND)

CIRCLE 122 ON READER-SERVICE CARD
New Microwave TWT Combines High Power and Bandwidth

An experimental megawatt peak-power traveling-wave tube with a 3-db bandwidth of 27 per cent at 3.4 Gc has been developed by the Sperry Electronic Tube Division, Great Neck, N. Y. The tube's performance is due to a novel, ring-loaded meanderline slow-wave structure.

The meanderline tube, developed under a Bureau of Ships contract, combines the high power levels of klystrons and the broad bandwidths heretofore available only in low-power twts. As such, the tube would be a natural choice for use in frequency-shift radars designed to outwit jamming.

Small-signal gain of the new tube is 47 db at the center of the band, tapering to 25 db at the edges. Efficiency is 28 per cent.

Sperry engineers note that these performance figures are for an experimental, uncooled tube. More refined versions, employing liquid-cooled slow-wave structures should deliver from 3 to 5 megawatts of peak power or 10 kw average power—again at S Band. In addition, the principle could be extended to twts for C or X Bands, though power output would be considerably reduced.

The meanderline slow-wave structure (see illustration), consists of two serpentine conductors separated by a row of parallel rings. The wave propagates along one "U" of the serpentine, meanders around one-half the circumference of a ring to the opposite serpentine, then along the opposite serpentine to the next ring, and so on down the tube. The electron beam, generated by a conventional klystron micropervance gun, travels down the center of the rings.

Upper frequency cutoff occurs when the slot length of the structure (one-half the ring circumference plus the periphery of a "U") is one-half the free-space wavelength of the propagating signal. There is no discrete low-frequency cutoff; rather, gain diminishes gradually as the frequency is reduced.

The serpentine is supported by ceramic rods along most of its length. The rods stop short of the output end, however, in order to minimize arcing. The unsupported section of the line includes loading pins that approximate the dielectric constant of the ceramic rod, thus avoiding electrical discontinuities that might induce spurious modes.

Carl Burklund, Sperry engineer, associated with the tube project, notes that the low-dispersion, high-impedance characteristics of the meanderline are primarily responsible for the performance of the tube. Also, the line has no fundamental backward wave modes, thus eliminating a major source of spurious oscillation, he explained.

The megawatt output of the meanderline tube was achieved with a 78.5-kw electron beam. Stronger beams, not currently available for testing should raise power output and improve the small signal gain at the edges of the band, Mr. Burklund told Electronic Design.

The meanderline structure was originated by Dr. E. L. Chu of Stanford University as an evolution of his earlier work on cross-wandering helices and connecting-ring structures. Dr. Chu noted that in addition to the absence of backward modes, enabled by the inherent symmetry of the line, the meander structure embodies an unusually high heat dissipation factor. To date no companies other than Sperry appear interested in Dr. Chu's line. When asked why, Dr. Chu remarked: "It probably looks too simple."
Design of a Broadband UHF Diode Switch

To date, little has been reported on high speed switching of semiconductors in the vhf-uhf range. Author James Hendershot here describes a high speed spst coaxial switch operating from 100 to 1,000 Mc. Design of a multiport 6-throw switch is also discussed.

James H. Hendershot
Electronic Communications, Inc.,
Research Division
Timonium, Md.

The switch described in this article consists of a diode in series with the center conductor of a 50-ohm coaxial line. A schematic diagram of the switch is illustrated in Fig. 1.

When the diode is biased “on” with a positive voltage, it presents a low impedance to the incident rf power. For a negative applied voltage, diode impedance is very large and nearly all incident rf power is reflected.

The equivalent circuit for a diode enclosed in a cartridge is shown in Fig. 2 where

- \(L \) is the whisker inductance,
- \(R \) is the spreading resistance,
- \(R \) is barrier resistance of the point contact, and
- \(C \) is barrier capacitance of the semiconductor.

The resistance \(R \) is nonlinear and varies as a function of the applied bias voltage. Barrier capacitance \(C \) must not be overlooked in design of the switch. Capacitive susceptance can become greater than the conductance \(1/R \) and consequently bypass or shunt out the effect of the barrier resistance when the diode is in the high impedance state.

Diode selection was based on forward and reverse resistance characteristics as a function of positive and negative bias voltages. For example, a 1N23E silicon crystal diode, tested for its forward and reverse resistance characteristics, had a forward resistance of approximately 13.7 ohms with a 2 v bias, and a reverse resistance of approximately 8,000 ohms with a -2 v bias. Other diodes of similar configuration such as the 1N21C, 1N23C, 1N25A and 1N263, exhibited approximately the same resistance characteristics as the 1N23E.

A second important parameter is barrier capacitance. The barrier capacitance specified by the manufacturer for the above diodes was 0.3 pf. Two other diodes, the Hughes 1N100 and 1N118 showed forward resistances of approximately 15 ohms and reverse resistances of approximately 2.5 megohms when biased at +0.7 and -10 v respectively. Barrier capacitance of each diode was 0.5 pf.

1N100 Preferred for Size, Cost, And Lower Barrier Resistance

After comparing the characteristics of all these diodes for the switching application, the 1N100 was selected because of its high ratio of reverse-to-forward resistance, small physical size, low cost and reasonably low barrier capacitance. Although dc characteristics of the 1N118 are very similar to the 1N100, its rf characteristics are not. The insertion loss of the 1N118 diode switch is slightly higher within the entire frequency range of 100 to 1,000 mc.

The voltage-input feed arrangement for biasing the diode “on” or “off” must be designed so that the coil is not self-resonant within the operating frequency range of the switch. The two coils feeding into the main rf line must provide sufficient inductance to prevent rf leakage. Most commercially wound fixed coils are self-resonant within 100 to 1,000 mc, and cannot be used in the switch.

A 3-turn coil of No. 40 wire with turns spaced 0.100 in. apart, wound around 0.300 in. OD Teflon and enclosed within the coaxial line, concentric with the center conductor was arrived at empirically to solve the problem. The measured inductance of the coil was 0.35 \(\mu \)H.

Insertion loss vs frequency for the two coils in shunt with the main rf line (housed in the diode holder without the diode) is shown in Fig. 3. The 3-turn coil sacrifices insertion loss at the low end of the frequency range for band-width. Any increase in number of turns per coil results in self-resonance near the upper limit of the frequency band. Switch performance is illustrated in Fig. 4. Switching power for the “on” condition is approximately 30 mw; bias voltage for the “off” condition is -2.0 v.

The complete switch shown in Figs. 5 and 6, consists of two UG-23 D/U connectors, a
Fig. 5. Packaged diode switch. Entire assembly is housed in 1-in x 1-1/4-in aluminum block, exclusive of connectors.

Fig. 6. Cross-section of packaged diode switch.

Fig. 2. Equivalent circuit of spst diode switch.

Fig. 3. Insertion loss of switch coils in shunt with the main rf line. Coils were housed in the diode holder (without diode).

Fig. 4. Performance of spst diode switch from 100 to 1,000 mc.
Fig. 7. Circuit diagram of single-pole 6-throw switch employing basic SPST switch configuration.

Fig. 9. Performance of typical part of single-pole 6-throw switch from 100 to 1,000 mc.

Fig. 8. Construction of single-pole 6-throw switch.
BNC connector, a Hughes 1N100 diode, two shunt voltage input coils, and a 250 pf button feedthrough capacitor.

Modification of Voltage-Feed Coil Improves Switching Ratios

At lower frequencies, better switching ratios can be achieved through modification of the voltage-feed coil arrangement. Increasing the number of turns per coil to increase the inductance, gives greater isolation from the main rf line. The self-resonance will again occur but can be positioned well out of the frequency band of concern.

A single-pole six-throw switch, shown in Figs. 7 and 8, was designed around the same basic spst switch configuration. Line length between the common junction and the diodes was kept very short to minimize the effect of line length when some of the diodes are in the high impedance state. The high impedances could otherwise appear as short circuits to the incident rf power when transferred back to the common junction.

A plot of insertion loss vs frequency for one typical port is shown in Fig. 9. The minimum crosstalk for any two ports is 23 db below the rf power level. Attenuation for this switch ranges from 50 db to 23 db in the “off” condition, and from 5.5 db to 0.9 db in the “on” condition. The higher attenuation for the “on” condition at the low-frequency end of the band can be attributed to insufficient inductance of the voltage-feed coils.

The gradual degradation of insertion loss with increasing frequency in the “off” condition is due to the barrier capacity of the diodes.

Minimum switching time for the 6-port device is 40 nsec.

These switches are useful for switching low-power signals in such receiver applications as frequency channel selection or antenna switching. They have alternate uses as modulators, choppers, and attenuators.

References

Versatile Waveguide Nomogram

Speeds S-Band Design

All aspects of the waveguide equation, including the effects of various dielectrics, are united in this nomogram. Author Burrell Hatcher developed the nomogram to aid him in design of dielectric-loaded waveguides for phasing of antenna arrays at S Band. Now he describes how it can be used to solve quickly a variety of common waveguide calculations. For added convenience, he has keyed the nomogram to the cutoff wavelengths of several standard RG guides.

Burrell R. Hatcher
Chu Associates
Littleton, Mass.

The nomogram (Fig. 1) combines the equations

\[\frac{1}{\lambda_c^2} = \frac{1}{\lambda_o^2} - \frac{1}{\lambda_e^2} \]

and

\[\lambda_e = \frac{\lambda_o}{\sqrt{\varepsilon}} \]

where

- \(\lambda_o \) = free space wavelength,
- \(\lambda_c \) = cutoff wavelength in the guide,
- \(\lambda_e \) = guide wavelength,
- \(\varepsilon \) = relative permittivity of the dielectric in the guide,

and

\[\lambda_d = \frac{\lambda_o}{\sqrt{\varepsilon}} \]

wavelength in an unbounded isotropic medium of relative permittivity \(\varepsilon \) (for air, \(\varepsilon = 1 \)).

Since the quantity \(\lambda_d \) is common to both equations, a combined nomogram is possible and calculations for dielectrics other than air can be solved graphically with ease.

In the nomogram, all wavelengths are expressed in cm. Frequency (\(f \)) corresponding to the free-space wavelength \(\lambda_o \) is in Gc.

Fig. 1. Waveguide nomogram for S Band. All wavelengths are in cm. Frequency (\(f \)) corresponding to the free-space wavelength \(\lambda_o \) is in Gc.
pressed in centimeters. The \(f \) scale represents the frequency in Gc corresponding to \(\lambda_p \). Cutoff wavelengths for each of four standard RG-XX U guides excited in the TE\(_{00}\) mode also are indicated.

Typical applications of the nomogram will be described.

Example 1:

Determine the TE\(_{00}\) guide wavelength at 3 Gc in RG-48/U guide filled with a dielectric of relative permittivity 2.

As illustrated in Fig. 2, connect the points \(f = 3 \) and \(\epsilon = 2 \) by a straight line extended to the \(\lambda_d \) scale. The point of intersection on the \(\lambda_d \) scale then is connected to the cutoff frequency of the RG-48/U guide and extended to intersect the \(\lambda_g \) scale. This intersection gives \(\lambda_g = 8.08 \) cm as the guide wavelength.
This is TELONIC Versatility...
A Sweep/Signal Generator for Audio to 3000 MC

As a major designer and manufacturer of RF instruments and components, Telonic once again leads the field with the introduction of the SM-2000 Sweep and CW Signal Generator. New from every standpoint, the SM-2000 provides unmatched versatility for laboratory or production operations. Now, with one instrument and several, interchangeable plug-in oscillators, an engineer can cover a frequency range from audio to 3000 mc.

Telonic has designed 19 different oscillator heads for specific and general purposes that enable the user to change range of the SM-2000 in a matter of seconds. For general applications, only two plug-in units are necessary to cover frequencies from 3 to 2000 mc.

And, in addition, the operator may select four different functional modes with the SM-2000—swept RF, modulated swept RF, CW, and modulated CW. He can set attenuation from 0 to 60 db in 1 db steps with the two built-in attenuators. He also has provisions in the instrument for use of an external marker, or for adding up to eight fixed, plug-in markers if desired.

All these features are combined with the fine basic performance that has made the name Telonic synonymous with the best in RF instrumentation—low VSWR, high display linearity and excellent workmanship. If you would like more complete details on this new sweep generator please write for Technical Bulletin T-233.

Example 2:
Determine the free space wavelength if the guide length in a section of RG-48/U guide, filled with dielectric material (\(\varepsilon = 2\)), is 7 cm.

Connect \(\lambda_d = 7\) and the RG-48/U cutoff frequency by a straight line, as shown in Fig. 3. From the intersection of this line at the \(\lambda_d\) scale, extend a line through \(\varepsilon = 2\) to the \(\lambda_o\) scale. The intersection of this line on the \(\lambda_o\) scale is 8.9 cm, the free space wavelength.

Fig. 3. Solution for example 2.

Fig. 4. Solution for example 3.
Example 3:

RG-49/U guide is filled with a dielectric. The guide wavelength in the dielectric is 10 cm at 2.75 Gc. Find λ_d.

Connect $\lambda_d = 10$ cm and the cutoff frequency for the RG-49/U guide by a straight line, as shown in Fig. 4. From the intersection of this line with the λ_d scale, draw a line to $f = 2.75$ Gc. The intersection of this line with the λ_d scale gives the solution 2.7.

The same procedure can be used to determine the dielectric constant in coaxial lines.

Example 4:

In air-filled RG-48/U guide it is desired to know the guide wavelength as the free space wavelength is changed.

Since ε in air = 1, the λ_d scale denotes the free space wavelength. By pivoting a straight edge about the cutoff frequency for RF-48/U (see Fig. 5), λ_d for any free-space wavelength can be read directly, as for instance:

| λ_d(cm) | 5 | 6.60 | 7.95 | 9.60 |

ONE SOURCE

For Complete Antenna Instrumentation Systems

Recording, Receiving, Transmitting and Control Equipment, Antenna Positioners, Microwave Components, and Recorder Supplies

PATTERN RECORDERS—Two basic pattern recorders are available: the Series APR 20 Rectangular, and Series APR 30 Polar. They can be combined to form the popular APR 20/30 Polar-Rectangular Recorder. Pen responses include logarithmic, linear, and square root.

Features include servo control with tachometer feedback, a noise compression circuit, an electric pen lift, and a three-axis syncro input selector. The rectangular recorder has an automatic chart-cycle advance, illuminated chart, three chart scale expansions with forward-reverse, and chart position control. The polar recorder features a recording diameter of 7 and 13 inches, a turntable slip-clutch, pen standby and load switch, calibrated turntable, and chart center light.

WIDE RANGE RECEIVING SYSTEM—A double conversion superheterodyne receiver, the Scientific-Atlanta Series 402 covers the range from below 30 mc to more than 100 kmc. Features include a sensitive AFC circuit which prevents the receiver from losing track during transmitter frequency drift. One coaxial cable eliminates costly lossy wave guides and rotary joints. Antennas can be located up to 75 feet away with negligible loss in sensitivity, or more than 200 feet away with low loss cables. Reception of cw signals from simple sources eliminates need for precise modulation.

Modification P-4 adds 20 db to the normal 40 db dynamic range providing 1 db linearity over a full 60 db dynamic range. Modification Z adds a precision IF attenuator and VTVM appreciably reducing the number of components and instruments required for level, gain, and isolation measurements.

ANTENNA POSITIONERS—Scientific-Atlanta offers medium and heavy duty azimuth and multi-axis antenna positioners. Standard models range from the PMA-3 medium duty azimuth positioner designed for a maximum vertical load of 200 pounds with a maximum bending moment of 200 foot pounds to the large PAEA 29 H azimuth over elevation over azimuth for vertical loads of 15 tons and a bending moment of 30,000 foot pounds.

Features include use of Kaydon four-point contact bearings which minimize sliding friction, weather and dust proof design, and 1:1 and 36:1 speed synchs for each axis of rotation. Slip rings, rotary joints, and limit switches can be provided in any axis of any positioner.

MICROWAVE COMPONENTS—Scientific-Atlanta also offers a coaxial rotary joint for dc to 16 kmc at speeds up to 2000 rpm, a series of coax to waveguide adaptors, standard gain horns, crystal mixers, transmitting antennas, polarization positioners, model range towers and recorder supplies.

WRITE FOR OUR NEW CATALOG

Ask your Scientific-Atlanta engineering representative for a copy of our new catalog or write directly to the factory.

Scientific Atlanta, Inc.

2162 Piedmont Road, N.E. • Atlanta, Georgia

Phone: 404-7291
NOW...X BAND
NONDEGENERATE
PARAMETRIC AMPLIFIERS
with a tuning range of 1.1 Gc!

Single-knob tuning over a range of 1.1 Gc in the X band is featured in this nondegenerate parametric amplifier by Texas Instruments Incorporated. Bandwidth is 30 mc and gain is 15 db. Noise figure, including circulator loss and normal second stage, is 4.5 db. Its broadband signal frequency response and fixed pump frequency give you dependable operation with a minimum of tuning adjustment.

TYPICAL MODEL X-22
SERIES SPECIFICATIONS

<table>
<thead>
<tr>
<th>Mode of Operation</th>
<th>Nondegenerate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuning Range</td>
<td>8.5 to 9.6 Gc</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>30 mc</td>
</tr>
<tr>
<td>Gain</td>
<td>15 db</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>4.5 db</td>
</tr>
<tr>
<td>Diode</td>
<td>Gallium Arsenide Diode</td>
</tr>
<tr>
<td>Pump Frequency</td>
<td>24.0 Gc</td>
</tr>
<tr>
<td>Pump Power</td>
<td>50 mw</td>
</tr>
</tbody>
</table>

For more details about this amplifier or other Texas Instruments parametric amplifiers operating at L, S, C, and X bands, contact RADAR AND MICROWAVE PRODUCTS DEPARTMENT.

MW-Tube Power Supplies Have All-Electronic

HIGH-performance power supplies are electronically controlled by a direct-coupled electrical signal. They are designed for microwave-tube applications where the rf frequency is to be controlled or programmed automatically and incidental fm is to be minimized. These instruments also have low ripple, high regulation and are packaged in a small unit.

Manufactured by Micro-Power, Inc., 20-21 Steinway St., Long Island City 5, N. Y., models 401 and 402 are provided on a catalog basis. A wide variety of electrical characteristics covers the power and control requirements for many tube types.

The direct-coupled electronic control provides rapid adjustment of the low-ripple output over the full voltage range (20 to 1) in direct relation to the control signal. The input-control signal to the supply is 30 v peak into 10-K. The output voltage responds at 500 kv per sec full load for a step waveform at the input.

The circuitry consists of a cascade of feedback amplifiers that amplify the low-level control and reference signal to the required voltage and power level.

The dc-coupled control signal is introduced at a virtual ground in the circuit so that no interaction occurs between the manual set-

Fig. 1. Performance specifications for model 401 and 402 power supply.
Control

ting of the dc-output level by the manual-control amplifier and the control-signal source.

This technique facilitates the incorporation of a shaping network further down the amplifier chain that shapes both the control signal and the dc setting introduced by the manual control. A diode-segmented shaping network can be adjusted to compensate for the nonlinear relationship between the voltage vs frequency characteristics of the backward-wave oscillator and thereby provide a linear relationship between the control signal and the output rf frequency for all settings of the manual control or operating-center frequency.

For protection, the maximum current supplied to the tube electrodes can be set by means of a current-limit adjustment. Helix overload current will cause removal of all power to the tube.

The electrical performance characteristics of a typical power supply unit are shown in Fig. 1. This unit is 5-1/4 in. high and mounts in a standard 19-in. rack.

Power-supply units are composed of sub-modules, which are selected according to the tube requirements and the electrical performance desired by the customer. Each sub-module is identified with the microwave-tube electrode and is electronically or manually controlled.

Models 401 and 402 are available with a 30-day delivery at $1,980, fob Long Island City, N.Y. Power supplies for other microwave tubes range from $900 to $2,000. For more information on these electronically controlled microwave-tube power supplies, turn to the Reader Service Card and circle 724.
LOOKING FOR BUBBLES
ANTENNA SEAL TEST

In the seal test to qualify for the supersonic B-58, Transco L-band antennas are placed in a chamber evacuated to 28.85 inches of mercury (75,000 ft). Ice cubes keep the water between 32° and 40° so that it will not boil while the test engineer checks for air bubbles. Transco engineers developed special epoxy sealing techniques to pass this severe test. If you have a design or development requirement for antennas or antenna sub-systems, call a Transco application engineer or representative located throughout the United States and Canada, or write Transco Products Inc., 12210 Nebraska Ave., Los Angeles 25, California.

MM-Wave Klystron
Has 7-W CW Output

THE "Laddertron" is a tunable, flatbeam, single-cavity, multi-gap, mm-wave klystron, capable of continuous power-output levels on the order of 7 w. Indications are that output levels may be increased in the near future to as high as 30 w.

OKI Electric Industry Co., Ltd., of Tokyo, represented in this country by Butler Roberts Associates, Inc., 202 E. 44th St., New York 17, N. Y., manufactures two types of the "Laddertron", models 35F10 and 50F10. They are 8.6- and 6-mm types, respectively, with power outputs of 5 to 7 w cw.

As a drift section, the "Laddertron" employs a pair of slotted-plane "ladders" in the center of a rectangular cavity, between which passes a flat, high-density electron beam. As shown in Fig. 1, twelve coupling gaps are provided in the ladders through which the interaction between the beam and the cavity field takes place. The cavity

Fig. 1. Slotted-plane ladders are located in the center of a rectangular cavity. Twelve coupling gaps are provided in the ladders through which interaction between the beam and cavity takes place.
has two waveguides coupled through apertures on opposite side walls. One is used to vary the resonant frequency of the cavity by means of an adjustable plunger, the other provides output coupling to the external load. The electron gun is of the convergent confined-flow type. The electron beam is emitted by a wide surface cathode and is bunched statically and magnetically. The beam is led through a rectangular tunnel measuring 0.35 x 1 x 11.8 mm. Beam transmission of 95 per cent is obtained. Maximum transmission current is more than 115 ma, or in terms of current density, 15 amp per cm².

Typical operating characteristics for the 35F10 are: center frequency, 35 Gc; beam voltage, center, 1,850 v; beam current, 130 ma max; output power, 7 w max; electronic tuning range, 50 mc; mechanical tuning range, 2 Gc.

The advantages of the "Laddertron" klystron as outlined by the manufacturer are:
- High output with relatively low operating voltages.
- Linear fm with low-level input.
- Wide frequency range with mechanical tuning.
- Possibility of sub-mm applications using multipliers.

The "Laddertron" type of floating-drift klystrons will be available in January, 1962. The model 35F10 is priced at $2,350, fob, Miami, Fla; model 50F10 is $3,415, fob Miami. For further information on these tunable, mm-wave klystrons, turn to the Reader Service Card and circle 725.
simple, low-cost way to increase equipment

MI\textsc{cro}WAVES

MICROWAVE PRODUCTS

Crystal Detector

Exceptionally flat frequency response of \(\pm 1 \) db over the entire range of 1 to 11 Gc is provided by model D120 crystal detector. The unit, which operates from 1 to 12.4 Gc, has a vswr of less than 2.2 to 1. Sensitivity is 0.1 v per mw. Maximum input power is 20 mw. Use of the detector permits accurate oscilloscope display of rf component characteristics which vary with frequency. The flat response makes it useful for automatic gain or power control.

Alfred Electronics, Dept. ED, 3176 Porter Drive, Palo Alto, Calif.

P&A: $90; from stock.

Crystal Booster

Model Q 11 is an amplifier for increasing outputs of microwave crystals. Operating on mercury batteries the unit measures 5-1/2 x 1-5/8 x 2 in. and weighs about 1 lb. Input impedance is 50 ohms; output matches to 1 meg and the gain is 40 db.

Quantadyne, Dept. ED, P. O. Box 353, Woodland Hills, Calif.

P&A: $95.00; immediate to 2 weeks.
GaAs Varactors

High cut-off frequency gallium arsenide varactors, types MS-2602 to MS-2606 have a 30-v working voltage. These units are diffused junction mesa structures in coaxial pin packages. They are designed for use in harmonic generators, RF limiters, microwave switches and phase shifters. The coaxial pin package makes power disposition of 1-w practical. Types MS-2602 to 2606 have a zero bias capacitance range of 0.2 to 1.1 pf and a range of cut-off frequencies from 40 to 120 Gc. Types MS-2620 to 2623 have a zero bias capacitance range of 3 to 6 pf and cut-off frequencies of 10, 20, 40 and 60 Gc. Types MS-2630 to 2632 have a capacitance range of 6 to 10 pf and 10, 20 and 40 Gc cut-off frequencies.

Micro State Electronics Corp., Dept. ED, 152 Floral Ave., Murray Hill, N. J.
P&A: $85 to $250 ea, 1 to 99; 1 to 4 weeks.

Double-Throw Microwave Switch

Solid-state, broad-band, double-throw microwave switch model X450 has the following applications: switching microwave power up to 6 w; sharing one local oscillator between two or more systems; as a fast acting radar duplexer and antenna switching for obstacle avoidance systems. Specifications are: peak power, 300 w at 0.001 duty cycle; max average power, 6 w; open channel attenuation, 20 db; closed channel attenuation, 3 db; frequency range, 8.2 to 12.4 Gc; switching rate, 0 to 200 mc; temperature range, -55 to +90 C.

Somerset Radiation Laboratory, Inc., Dept. ED, 192 Central Ave., Stirling, N. J.
P&A: $180 ea; from stock.

Nearly two centuries ago, Karl Gauss, "Prince of Mathematicians," kept a diary which was destined to become one of the most significant documents in the history of mathematics.

In his diary Gauss jotted down the results of elaborate calculations that had led him to fundamental discoveries in mathematics. But he never published these discoveries, and many of them remained undisclosed during his lifetime.

It wasn't until almost 50 years after Gauss's death that his diary was found and published. Much time and talent, meanwhile, had been spent in duplicating Gauss's efforts. Mathematical progress had been needlessly slowed.

In contrast, today's scientists and engineers are alert to the importance of sharing their findings through publication. In fact, the number of definitive papers published in a scientific or technological field has become a sure sign of the creative effort in that field.

Bell Laboratories scientists and engineers publish more than 800 papers a year, reporting new observations and new thinking in the arts and sciences that serve communications. They have also authored more than 50 technical books, many of which have become standard works of reference. The steady stream of new information that comes out of Bell Laboratories again reflects the scope and depth of the creativity that works to improve Bell System communications.

BELL TELEPHONE LABORATORIES

World center of communications research and development
FOR POWER MEASUREMENT

Bi-directional power monitors, 2 to 1000 MC, 1 to 1000 watts!

Four power level ranges with each plug-in
- Power range down to 1 watt full scale
- Nine plug-ins for wide frequency coverage
- Linear scale on all power ranges
- No correction factor required for calibration on any range

Power is read directly on a linear scale with accuracy of ±5% on Sierra 164 Series Bi-Directional Power Monitors, which permit intermittent or continuous measuring of incident and reflected power, plus convenient matching of loads to lines. Direct connecting, they measure forward and reverse power merely by turning a plug-in control. No connections to switch.

Complete frequency coverage is provided with nine plug-in elements, each offering four power ranges selectable by the turn of a knob. Power capacity ranges from 1 watt full scale to 1000 watts full scale, frequency coverage from 2 to 1000 MC. Plug-in versatility is indicated in the adjacent table.

Calibration is adjustable on each range independently, so that no correction factor need be applied. The power monitors are available with Type N, C, LC, HN or UHF male or female connectors. High directivity and low insertion VSWR assure maximum accuracy with minimum disturbance to the transmission line under test. No auxiliary power is required.

Sierra Model 164 Power Monitor, $110.00.

PLUG-IN ELEMENTS FOR MODEL 164

<table>
<thead>
<tr>
<th>Model</th>
<th>Full-Scale Power (Watts)</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>180-50</td>
<td>0-1/10/10/50</td>
<td>25-52 MC</td>
</tr>
<tr>
<td>180-148</td>
<td>0-1/10/10/50</td>
<td>50-148 MC</td>
</tr>
<tr>
<td>180-470</td>
<td>0-1/10/10/50</td>
<td>144-470 MC</td>
</tr>
<tr>
<td>180-1000</td>
<td>0-1/10/10/50</td>
<td>460-1000 MC</td>
</tr>
<tr>
<td>181-250</td>
<td>0-1/10/10/50</td>
<td>25-250 MC</td>
</tr>
<tr>
<td>181-1000</td>
<td>0-1/10/10/50</td>
<td>200-1000 MC</td>
</tr>
<tr>
<td>270-30</td>
<td>0-50/100/500/1000</td>
<td>2-30 MC</td>
</tr>
<tr>
<td>270-75</td>
<td>0-50/100/500/1000</td>
<td>10-75 MC</td>
</tr>
<tr>
<td>270-470</td>
<td>0-50/100/500/1000</td>
<td>70-470 MC</td>
</tr>
</tbody>
</table>

Plus these Power Measuring Instruments

Directional Couplers for VSWR, reflection coefficient, power measurements, 1 to 1200 MC. Seven models available covering power levels to 1000 watts. $120 to $150.

50-Ohm Coaxial Loads, including the new 160-1200 three-way termination, 0-1000 MC, with associated accessories for power capacities of 1200, 2000 and 3000 watts. Model 160 Series Loads also available in 1, 5, 20, 100 and 500 watt sizes.

Low Pass Filters, to 400 MC, provide low insertion loss (max. 0.4 db in pass band), sharp cut-off, max. 1.5 VSWR, rejection greater than 60 db from 1.25 to 10 times cut-off frequency. Five models, cut-off 44, 76, 135, 230, 400 MC. Power range, 25 watts in pass band, 25 watts in rejection band. $100 each.

Termination Wattmeters: Sierra Series 185 average-reading termination wattmeters, to terminate rf coax lines and measure rf powers, 2 models 0 to 30/100 and 0 to 150/500 watts, 20 to 1000 MC, accuracy ±5%, max. VSWR 1.2. Model 185A-100, $260; Model 185A-500, $375.

MicroWaves PRODUCTS

Common Carrier Microwave Antenna 712

Five models of button-hook and taper feed common carrier microwave antennas have excellent gain, pattern and performance. Inputs are waveguide flange selected to mate with customer requirements and bleeder ports are provided to permit pressurization of the feed. Taper feed is 8- and 10-ft reflectors; button-hook in 6-, 8- and 10-ft models. Frequency range covered is 3,700 to 4,200 mc.

Technical Appliance Corp., Dept. ED, Sherburne, N. Y.

Amplifier Klystron

Pulse-power of 1.25 megawatt is provided by type X-841 amplifier klystron for long range radar systems. It has operated successfully at 2.5 megawatt peak power at 6% duty and 150 kw average power at better than 40% efficiency at a gain of 40 db. It stands 10-ft high and weighs over 700 lb.

Eitel-McCullough, Inc., Dept. ED, San Carlos, Calif.

Pressurizing System

Purifying and pressurizing gas system is for use with waveguides, cavities, dupplexers and coaxial cable. It utilizes sulfur hexafluoride, a stable, non-toxic, gaseous dielectric; it is convertible to air or other gases. The system has 2-1/2 times the dielectric strength of air or nitrogen and arc-quenching ability 100 times that of air pressurization systems. Operation is completely automatic. Life is 25,000 hr min.

Applied Pneumatics, Inc., Dept. ED, 740 Colfax Ave., Kenilworth, N. J.
Inquire about Sperry Tubes from these convenient Cain & Company offices

REGIONAL OFFICES
- Burbank, California
 2615 W. Magnolia Blvd.
 VI 9-6781
- Great Neck, Long Island, N.Y.
 260 Northern Boulevard
 HN 6-0600
- Chicago 45, Illinois
 3508 Devon Avenue
 OR 6-9500
- St. Petersburg, Florida
 410 - 150th Avenue
 Madeira Beach Prof. Bldg.
 391-0151

DISTRICT OFFICES
- Boston, Massachusetts
 Phone VO 2-5330
- Philadelphia, Pennsylvania
 Phone VI 8-1700
- Washington, D.C.
 Phone EX 3-7587
- Dayton, Ohio
 Phone RO 7-8661
- Dallas, Texas
 Phone BL 5-2050
- Albuquerque, New Mexico
 Phone 268-5300
- San Francisco, California
 Phone VO 8-0995
- San Diego, California
 Phone HU 8-0665
- Seattle, Washington
 Phone MA 3-3303

Sperry extends 30-day delivery to cover ECM and augmenter TWT's operating in L, S, and X bands

In a dramatic extension of its capability for delivering high-performance microwave tubes on short notice, Sperry Electronic Tube Division has added three system-proved traveling wave tubes to the list of those available in 30 days. Included in the move are tubes operating in L, S, and X bands. They cover a frequency range 11.1 to 11.0 KMc.

APPLICATION FLEXIBILITY
The tubes in this series are particularly suited to application in augmenters and ECM equipment. The inherent broadband characteristic and unusual ruggedness of these PPM focused tubes makes them unusually versatile in airborne applications. A full course of MIL and environment tests, as well as considerable in-system experience have verified these characteristics.

INCREASED POWER POSSIBLE
Although these tubes nominally operate in the 1-2 watt power output range, optimum tuning can increase power to as much as 5 watts. A high-mu control grid adds to the versatility of these tubes by allowing remote switching, modulation control and gain adjustment.

SYSTEM DESIGN SIMPLIFIED
Use of these Sperry tubes greatly simplifies system design problems. Low voltage and high gain reduce power supply requirements. Application is further simplified, since ambient cooling is sufficient in most applications and the tubes may be mounted in any position.

For FREE technical information on these Sperry Traveling Wave Tubes, write to Section 503, Sperry Electronic Tube Division, Gainesville, Florida.

The L-Band tube is priced at $1,900, the S-Band tube at $2,195, and the X-Band at $2,540.

For application assistance and quotation, consult your nearest Cain & Co. representative. His address and phone number appear in the adjacent column.

A typical saturated power versus frequency curve for an L band Sperry TWT.

Drive characteristics at mid-band for a typical Sperry ECM/augmenter TWT.

SPERRY ELECTRONIC TUBE DIVISION
SPERRY RAND CORPORATION
CIRCLE 134 ON READER-SERVICE CARD

ELECTRONIC DESIGN • November 22, 1961

CIRCLE 135 ON READER-SERVICE CARD
C-Band Oscillators

Tune the entire C-Band from 5.2 to 6.0 Gc. Power output is greater than 10 mw from 5.4 to 5.9 Gc and greater than 5 mw over the entire band. Type 9127C is 2-1/2 in. long x 7/8 in. in diam and weighs 3-1/4 oz. Type 2970 is 1/2 in. shorter and weighs 3 oz.

Trak Microwave Corp., Dept. ED, Tampa, Fla.

Waveguide Tuner

Waveguide slide screw tuner series covers 5.85 to 40.0 Gc. The series consists of 6 standard models and is used for matching microwave devices, or matching design structures in laboratories.

Waveline Inc., Dept. ED, Caldwell, N. J.

P&A: model 883, $135.00; 30 days.

Radar Altimeter System

Pulsed X-band radar altimeter, provides real altitude information from 80,000 to 1,000 ft altitude. The system, including batteries and antenna, weighs only 6-1/2 lbs.

Wiley Electronics Co., Dept. ED, 2045 W. Cheryl Drive, Phoenix, Ariz.

Table: Disc-Seal Triodes

<table>
<thead>
<tr>
<th>Type</th>
<th>f up to</th>
<th>f</th>
<th>P_0</th>
<th>E_p</th>
<th>E_b</th>
<th>I_b</th>
<th>E_b</th>
<th>I_b</th>
<th>E_r</th>
<th>I_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>RH 6 C</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>400</td>
<td>60</td>
<td>600</td>
<td>30</td>
<td>72</td>
<td>6.0</td>
<td>0.9</td>
</tr>
<tr>
<td>RH 7 C</td>
<td>9</td>
<td>6</td>
<td>1.8</td>
<td>400</td>
<td>60</td>
<td>600</td>
<td>25</td>
<td>72</td>
<td>6.0</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Table: Reflex Klystrons

<table>
<thead>
<tr>
<th>Type</th>
<th>f</th>
<th>P_0</th>
<th>Δf</th>
<th>S_m</th>
<th>ΔS_m/S_m</th>
<th>E_b</th>
<th>I_b</th>
<th>E_r</th>
<th>I_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>RK 6</td>
<td>5.775</td>
<td>0.10</td>
<td>60</td>
<td>2.5</td>
<td>1</td>
<td>400</td>
<td>50</td>
<td>1</td>
<td>6.3</td>
</tr>
<tr>
<td>Traveling Wave Tubes</td>
<td>f</td>
<td>P_0</td>
<td>G</td>
<td>F</td>
<td>E_r</td>
<td>E_b</td>
<td>I_b</td>
<td>focus.</td>
<td>E_r</td>
</tr>
<tr>
<td>RW 6</td>
<td>5.8</td>
<td>10</td>
<td>38</td>
<td>25</td>
<td>1</td>
<td>2500</td>
<td>44</td>
<td>2</td>
<td>6.3</td>
</tr>
</tbody>
</table>

Table: Backward Wave Oscillator

<table>
<thead>
<tr>
<th>Type</th>
<th>f</th>
<th>P_0</th>
<th>E_p</th>
<th>I_b</th>
<th>focus.</th>
<th>E_r</th>
<th>I_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>RWO 40</td>
<td>30</td>
<td>40</td>
<td>800</td>
<td>2700</td>
<td>12</td>
<td>4</td>
<td>6.3</td>
</tr>
</tbody>
</table>
new from NARDA!

high-directivity coax couplers

Specifically designed for REFLECTOMETER applications!

- Here are two brand new coax couplers, specifically designed by Narda to provide the extremely high directivity needed in Reflectometer set-ups. And when we say "extremely high directivity", we mean it! For example: Model 3020 (250 to 1000 mc) has a directivity of 35 db minimum, which means a maximum error in VSWR of only 1.035 can occur as a result of the finite directivity. Main line VSWR is held to 1.05 maximum; secondary line VSWR is 1.10 maximum!

- What's more, each model covers two full octaves; each features extremely accurate tracking (0.3 db maximum change in difference between forward and reverse coupling over the band); each has a power rating of 100 watts CW, 10 kw peak. Check the table for full specifications—and compare with any other units available.

- These are just two examples of the complete line of unusually fine microwave and UHF instrumentation available from Narda. Write today for your free copy of our newest catalog. Address: Dept. ED-61-4.

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>MODEL 3020</th>
<th>MODEL 3022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>250 to 1000 mc</td>
<td>1000 to 4000 mc</td>
</tr>
<tr>
<td>Directivity</td>
<td>35db min</td>
<td>30db min</td>
</tr>
<tr>
<td>Coupling - both arms</td>
<td>20db nominal</td>
<td>20db nominal</td>
</tr>
<tr>
<td>Frequency sensitivity</td>
<td>≈0.6db approx.</td>
<td>≈0.6db approx.</td>
</tr>
<tr>
<td>Max VSWR - main line</td>
<td>1.05</td>
<td>1.10</td>
</tr>
<tr>
<td>Max VSWR - secondary lines</td>
<td>1.10</td>
<td>1.15</td>
</tr>
<tr>
<td>Power Rating</td>
<td>100W cw</td>
<td>100W cw</td>
</tr>
<tr>
<td></td>
<td>10kw peak</td>
<td>10kw peak</td>
</tr>
<tr>
<td>Tracking</td>
<td>0.3db total</td>
<td>0.3db total</td>
</tr>
<tr>
<td>Price</td>
<td>$200</td>
<td>$185</td>
</tr>
</tbody>
</table>

UHF to 90 Gc!

NARDA '61 Microwave Catalog puts all this at your fingertips:

- Complete specs and prices on attenuators, bolometers, coax couplers, ferrite devices and magnetron modulators, plus over 600 microwave instruments and components!
- Standard waveguide data chart
- Single and double ridged waveguide standards
- 17 additional pages of technical data and charts

MAIL COUPON TODAY

Gentlemen: Please send me your 1961 Catalog.

Name

Title

Company

Address

City

State

ELECTRONIC DESIGN • November 22, 1961
Get the Mark Approach to MICROWAVE ON 6 TO 8 kmc.

If you're "going microwave," write for Bulletin 620 on significant new developments from Mark Products. For example:

PARABOLIC ANTENNAS with exclusive ISOPOLARIZED FEED...offering important electrical features along with exceptional mechanical stability and lightweight construction, provided by hollers welded back frame and feed supports.

NEW SIMPLE POLARIZATION ADJUSTMENT...ISOPOLARIZED FEED allows for 360 degrees of continuous polarization adjustment without rotating dish or feed horn!

REVERSIBLE POLARIZATION ADJUSTMENT...adapts the standard MARK Parabola to dual polarization at any time in the field.

EASE OF INSTALLATION...flexible mounting with horizontal roof mounts and vertical pipe mounts.

RELIABLE ELECTRICAL CHARACTERISTICS...assured by holding tight precision parts tolerances and thorough quality control at every step of the production process.

DE-ICING...by MARK'S Heated Radomes...or use MARK'S unheated radomes...installation stays clean one way.

Patent Number 2,996,714

MARK also manufactures antennas for 2 Way Communications in the VHF and UHF bands...point to point Grid Parabolas for 450 to 2200 mcs...rail and mobile units.

Mark Products makes the most rugged parabolic antenna structure!

MARK PRODUCTS CO.
Dept. ED-11 • 5439 W. Fargo Ave. • Orlando 5-1500 • Skokie, Ill.

CIRCLE 139 ON READER-SERVICE CARD

MicroWaves PRODUCTS

Impedance Plotter

Providing instantaneous display of reflection coefficient as a continuous function of frequency in the 350 to 12,000 mc range, the Smith Chart Plotter provides peak accuracy with speed and simplicity. It measures vswr to an uncertainty as low as 0.10. Ten models from 350 mc to 12.4 Gc provide two push-pull outputs for horizontal and vertical oscilloscope channels. Impedances at the coupler-swept reference point may be read directly on the oscilloscope.

Dielectric Products Engineering Co., Dept. ED, Raymond, Me.

Flange Covers

Low-density, polyethylene microwave flange covers are designed to provide effective all-around flange protection for interplant, masking and shipping purposes. Strict molding tolerances provide a tight fit that eliminates additional masking time and material. Styles are available for flanges with EIA waveguide designations from WR28 through WR650.

Tunable RF Probe

Model 229B features a fine wire probe, adjustable in depth over a wide range by a fine-pitch threaded knob. Tuning elements may be operated over the range of 900 to 18,000 mc. Either standard microwave crystals or model N-610B bolometers may be used. An rf output is also available to enable the unit to be used with microwave receivers or other external detectors.

Narda Microwave Corp., Dept. ED, 118-160 Herricks Road, Mineola, N. Y.

P&A: $145.00; stock.
Four models operate at temperatures up to 130°C. Bilateral vswr is 1.20 (max), and rf leakage is negligible. The attenuating vane in models MA-527A and MA-670 is controlled by a micrometer mounted atop the control box. In models MA-580A and MA-587, the attenuating vane is controlled by a spring-loaded knob driven tuner.

Dielectric Coating 683

Multilayer film can provide up to 99.9±% reflectivity for laser oscillators. This coating is available on new rods or can be applied to rods already in use, and can increase output gain between 7 to 1 and 8 to 1.

Adolf Meller Co., Dept. ED, Box 6001, Providence, R. I.

Backward-wave Oscillator 693

Two tubes are for X-band, and are available with type 'N' or waveguide adaptor termination at the end of RG55U coax cable. The units have a life of 5,000 hr. The control grid makes possible power cutoff with low negative grid voltage, and the anode is usually employed in leveler circuits to provide ultra-flat power output characteristics.

Stewart Engineering Co., Dept. ED, Santa Cruz, Calif.

New klystrons hold characteristics in grueling aerospace environments

K- and K-band tubes are tunable from 34.0–35.6 and 23.5–24.5 kHz

Now, Raytheon combines the advantages of small size, extreme ruggedness, thermal stability, and smooth wide-range tunability in a 20mW reflex klystron.

The new QKK 834 for K-band and QKK 923 for K band are all ceramic and metal tubes with typical electronic tuning range of 110 Mc. The tuner, utilizing a sapphire rod, can be specified for positioning anywhere on the circumference of the resonator at least 90 degrees from output flange (see illustrations above). Write today for detailed technical data or application service to Microwave & Power Tube Division, Raytheon Company, Waltham 54, Massachusetts. In Canada: Waterloo, Ontario.

RAYTHEON COMPANY

MICROWAVE AND POWER TUBE DIVISION

<table>
<thead>
<tr>
<th>QKK 834, QKK 923—GENERAL CHARACTERISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Output 20 mW (nominal)</td>
</tr>
<tr>
<td>Frequency 34-35.6; 23.5-24.5 kHz</td>
</tr>
<tr>
<td>Resonator Voltage 400 V</td>
</tr>
<tr>
<td>Reflector Voltage Range . . . -65 to -175V</td>
</tr>
<tr>
<td>Temperature Coefficient . . . ± 0.5 Mc/°C</td>
</tr>
<tr>
<td>Cooling convection (no blower needed)</td>
</tr>
<tr>
<td>Overall Dimensions . . . 1 5/8 x 1 1/16 x 2 in.</td>
</tr>
<tr>
<td>*QKK 834 1QKK 923</td>
</tr>
</tbody>
</table>
Microwave Sweep Oscillators

with

FLAT OUTPUT

NEW in Alfred Series 620 Oscillators:

- BUILT-IN FEEDBACK LEVELER

Holds power output constant to ± 1/4 db over these ranges...1 to 2, 1.4 to 2.5, 2 to 4, 4 to 8, 7 to 11 Gc. Feedback Leveler unique in holding output variation to approximately ± 0.1 db over any 100 Mc interval. Feedback method makes RF flatness independent of RF level or microwave tube aging. Components being developed for leveling above 11 Gc.

- SYMMETRICAL NARROW BAND SWEEP

Up to ± 5% of band width; about any center frequency. A significant time saver for component testing.

PLUS ALL THESE FEATURES, STILL EXCLUSIVE WITH ALFRED
- Drift — less than ± 0.02% per hour.
- Residual FM — less than 0.0025% peak.
- Adjustable Frequency Markers — time-saving indicators of band limits or intermediate frequency values.
- Quick Look Readout — shows frequency range, markers and sweep time at a glance.
- Ten Frequency Ranges, 1 to 26 Gc — covering 1—2; 1.4—2.5; 2—4; 4—8; 6.5—11.5; 8—12.4; 8.2—12.4; 10—15.5; 12.4—18; 15—22; 18—26.5 Gc. (Internal leveling 1 to 11 Gc only.)
- 0.5 microsecond rise and fall response to AM — equivalent to a 2 megacycle band pass.
- Frequency accuracy ± 1% unswept or swept.
- Direct coupled external sweep connection — response dc to 10 kc. Ideal for external frequency programming.

GET COMPLETE DETAILS — Alfred's policy is to publish specifications — not to withhold them. All specifications are guaranteed as stated. For detailed information on Series 620 oscillators, contact your Alfred engineering representative or write to:

ALFRED ELECTRONICS

3176 Porter Drive, Palo Alto, California • Phone: Davenport 6-6496
A NEW FAMILY OF Metal Ceramic K_u Band TWT's

9 Different PPM and Solenoid Focused Tubes Available in Production Quantities

MEC now offers the first complete line of low and medium power K_u band traveling wave tubes. Rugged and reliable, these new tubes use MEC's proven design and fabrication techniques that are setting the pace for the industry.

A typical member of the MEC K_u band family is the M2405B, a PPM focused medium power amplifier designed for instrument and system applications. Metal ceramic construction allows high temperature processing and exhaust, resulting in stable operation, low spurious modulation, and high overload capacity. The magnetically shielded PPM format eliminates the effect of stray magnetic fields; tubes may be mounted close to magnetic materials and/or each other.

The M2405B delivers more than 3 watts CW power over the major portion of the 12 to 18 Gc range. Greater than 250 milliwatts power can be obtained over the 10 to 20 Gc range with the M2405H, a related tube. Another close relative of the M2405B group is a harmonic generator providing greater than 50 milliwatts output over the 24 to 36 Gc region. Other tubes in the MEC K_u band family are described in the accompanying table.

Environmental Extremes All MEC tubes are designed to meet severe environmental extremes. For military applications, tubes can be provided to satisfy the requirements of MIL-E-5400, Class 2. Tubes have been tested at 20 g shock and 15 g vibration from 5 to 2000 cps with no performance degradation.

One More Example of MEC Capability The new K_u band family of traveling wave tubes is one more example of MEC's ability to develop and produce tubes for difficult frequency ranges. MEC tubes are reproducible in production quantities because their metal ceramic format and ceramic rod supported precision helices ensure stability and dimensional accuracy.

Results obtained in the K_u band assure similar success in the production of broadband traveling wave tubes for higher K band frequencies.

<table>
<thead>
<tr>
<th>PPM FOCUSED TUBES</th>
<th>Frequency Range</th>
<th>Min. Power Output</th>
<th>Min. Small Signal Gain</th>
<th>Noise Figure Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2114B</td>
<td>12.4-18.0</td>
<td>5 mw</td>
<td>25 db</td>
<td>14 db</td>
</tr>
<tr>
<td>M2114G</td>
<td>12.4-18.0</td>
<td>5 mw</td>
<td>25 db</td>
<td>20 db</td>
</tr>
<tr>
<td>M2208B</td>
<td>12.4-18.0</td>
<td>10 mw</td>
<td>30 db</td>
<td>30 db</td>
</tr>
<tr>
<td>M2405B</td>
<td>12.4-18.0</td>
<td>1 watt</td>
<td>30 db</td>
<td>35 db</td>
</tr>
<tr>
<td>M2405H</td>
<td>10.0-20.0</td>
<td>1 (12.4-18) watt</td>
<td>30 db</td>
<td>35 db</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOLENOID FOCUSED TUBES</th>
<th>Frequency Range</th>
<th>Min. Power Output</th>
<th>Min. Small Signal Gain</th>
<th>Noise Figure Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2114A</td>
<td>12.4-18.0</td>
<td>5 mw</td>
<td>25 db</td>
<td>12 db</td>
</tr>
<tr>
<td>M2114F</td>
<td>12.4-18.0</td>
<td>5 mw</td>
<td>25 db</td>
<td>17 db</td>
</tr>
<tr>
<td>M2208A</td>
<td>12.4-18.0</td>
<td>10 mw</td>
<td>30 db</td>
<td>30 db</td>
</tr>
<tr>
<td>M2405F</td>
<td>12.4-18.0</td>
<td>1 watt</td>
<td>30 db</td>
<td>35 db</td>
</tr>
</tbody>
</table>

To keep posted on current and new developments at MEC, you are invited to ask for a copy of our new catalog. For your copy, call your nearest MEC engineering sales representative or write directly to us.

MEC Reports on...
FC-75 keeps klystron “on the beam”!

Coolant stabilizes microwave frequency for -40 to +140°F ambient temperatures

A must for microwave communications equipment: a constant operating temperature for power-generating klystron tubes that assures unchanging frequency output. Now, with 3M Brand Inert Liquid FC-75, Bell Telephone Laboratories has developed for use in the new Western Electric TL Microwave Radio Relay System a stabilizing technique that saves space, money, and time of ambient temperatures over a 180-degree F. range.

The exceptional heat-dissipation properties of FC-75 permit use of a simple boiler-condenser cooling system that replaces space-consuming cooling oils, thermostats and blowers. And the klystron frequency is held within 0.05% over a -40 to +140°F range in ambient temperature—without need for expensive frequency control circuitry.

With this new technique, heat generated by the klystron is absorbed by FC-75, causing it to boil. The FC-75 releases the heat and returns to a liquid state in the condenser tube, then drains back into the boiler. A rubber bag at the top of the condenser tube seals the system and expands or contracts as the FC-75 boils at varying rates in proportion to changes in ambient temperature. The pressure inside the boiler remains very close to atmospheric, which results in a constant boiling temperature.

FC-75 minimizes maintenance because it is non-corrosive and compatible with rubber, plastics, metals, other materials used in microwave equipment. It affords maximum safety because it is non-toxic, non-flammable, non-explosive. Its low pour point protects the boiler from freezing at the lowest expected ambient temperature. For additional details on FC-75 and its companion product, FC-43, see the profile at right.

PROPERTIES PROFILE

on 3M Brand Inert Liquids FC-75 AND FC-43

These unique dielectric coolants possess unusual properties that can prove advantageous to the designer of electrical devices and instruments, as well as to the manufacturer. Increased range of operating temperatures, improved heat dissipation which permits miniaturization, and greatly increased protection from thermal or electrical overload are possible with their use.

FC-75 and FC-43 are non-explosive, non-flammable, non-toxic, odorless and non-corrosive. They are stable up to 800°F., and are completely compatible with most materials...even above the maximum temperatures permissible with all other dielectric coolants. Both are self-healing after repeated arcing in ether the liquid or vapor state.

ELECTRICAL PROPERTIES

<table>
<thead>
<tr>
<th></th>
<th>FC-75</th>
<th>FC-43</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electrical Strength</td>
<td>35KV</td>
</tr>
<tr>
<td></td>
<td>Dielectric Constant</td>
<td>(1-40MC) or 75°F</td>
</tr>
<tr>
<td></td>
<td>(1000 cycles)</td>
<td>0.0005</td>
</tr>
</tbody>
</table>

PHYSICAL PROPERTIES

<table>
<thead>
<tr>
<th></th>
<th>FC-75</th>
<th>FC-43</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pour Point</td>
<td>10°F</td>
</tr>
<tr>
<td></td>
<td>Boiling Point</td>
<td>212°F</td>
</tr>
<tr>
<td></td>
<td>Density</td>
<td>1.17</td>
</tr>
<tr>
<td></td>
<td>Surface Tension</td>
<td>(77°F)</td>
</tr>
<tr>
<td></td>
<td>Viscosity</td>
<td>0.65 min.</td>
</tr>
<tr>
<td></td>
<td>Thermal Stability</td>
<td>75°F</td>
</tr>
<tr>
<td></td>
<td>Chemical Stability</td>
<td>Inert</td>
</tr>
<tr>
<td></td>
<td>Radiation Resistance</td>
<td>25% change @: 1 x 10⁶ rads</td>
</tr>
</tbody>
</table>

FC-75 and FC-43 have a nearly equivalent heat capacity in the liquid and gaseous state.

For more information on FC-75 and FC-43, write today, stating area of interest, to: 3M Chemical Division, Dept. KAP-111, St. Paul 6, Minn.

Microwaves PRODUCTS

Varactor Multipliers 702

Four varactor frequency multipliers consist of two doublers and two triplers. Conversion efficiency of the doublers is claimed to be 55 to 75%, and that of the triplers from 40 to 60%. These solid-state units can be cascaded in various combinations. Output is 4 w, from 800 to 1,250 mc from 10 w hf or vhf source. Micromega Corp., Dept. ED, 4134 Del Rey Ave., Venice, Calif.

Waveguide Switch 717

All solid-state microwave waveguide switch, MA-3470 2X1, is a compact unit for applications in which ultra-fast switching, typically 2 nsec, is desired. It is available in spdt for operation at X-band. Driving power required is approximately 75 mw. Insertion loss in the closed position is 4.5 db max; isolation of 60 db min is provided in the open position.

Solenoid Actuator 721

High speed, low power solenoid actuator, type ASM has 0.002 sec operating time and average power is 2 w. Attenuator pin movement is 0.1 in. Coil energizing time is 50 nsec and mounting is directly on the plumbing. Hathaway Denver, Dept. ED, 5800 E. Jewell Ave., Denver 22, Colo.

P&A: $100 ea, small quantities; made to order.
"ANSWERING SERVICE" IN SPACE

ACF TRANSISTORIZED RADAR BEACONS greatly extend the range to which ground radar can track satellites and missiles accurately and effectively. As a pioneer in the development of long-range Radar Beacons, ACF designs, manufactures and tests its own components and sub-assemblies. This "in-plant" capability eliminates long-lead procurement time for critical components and assures reliable, controlled performance of flight-ready units off the ACF shelf.

THE TYPE 148 RADAR BEACON is designed as an airborne, pulse-type tracking aid for long-range space or missile application in both S and C Bands. These "miniature sending stations" have exceptionally high reliability and long life, respond to coded or uncoded interrogations and provide "echo boost" at low power consumption. ACF Beacons have qualified for more major satellite and missile programs than any other beacon.

ACF ELECTRONICS
DIVISION

ACF INDUSTRIES

For technical data, write or call Paramus Plant. Free beacon range nomographs on request. 11 Park Place, Paramus, N. J. Telephone: COifax 1-4100

CIRCLE 241 ON READER-SERVICE CARD

CIRCLE 784 THRU 795 ON READER-SERVICE CARD FOR FURTHER INFORMATION ON AIRBORNE INSTRUMENT LABORATORY
Get top performance with...

AIL test instruments for lab or field use

...including the most complete line for noise figure measurement

It will pay you to know this family of test equipment. In it you'll find the most versatile line of noise figure measurement instruments available. You'll find a growing family of transistorized devices—portable, reliable...equally useful in laboratory or field application.

You'll find many unique devices, including low-cost instruments that give you the measurement you want at a fraction of the cost of alternate approaches.

...And in all AIL test equipment you'll find design refinements and superior performance that stem from the company's years of scientific leadership in microwave, space and military electronic research.

Prompt attention to your inquiries from leading test instrument representatives. Prices and specifications subject to change without notice.

For more information send the coupon below or circle publication inquiry numbers 784-795

AIRBORNE INSTRUMENTS LABORATORY
Division of CUTLER-HAMMER INC.
Where applied science helps build practical products
Deer Park, Long Island, New York

Send FREE information and specifications on the following precision test instruments: (Please circle type numbers.)

Receiver test equipment
Type 390A-3, 391, 393
Type 30
Type 132
Type 70
Type 71
Type 74
Type 113030

Special purpose test equipment
Type 133
Type 124C
Type 120
Type 50
Type 90

Please check □ send only literature □ have a representative contact me

Name ___________________________ Title ___________________________

Company ________________________

Address _________________________

City ____________________________ State ____________

RECEIVER TEST EQUIPMENT
(including the most complete line for noise figure measurement.)

(LEFT TO RIGHT)

TYPE 390A-3, 391, 393—Crystal Test Sets
Simplified, accurate LOW COST tests are provided by these instruments. Measure microwave or video crystals rapidly in the field or lab. Measure noise figure, pair matching, conversion loss, relative or tangential sensitivities. Price from $97 to $299. Circle publication No. 784.

TYPE 30—Precision I-F Attenuator
Get the highest available accuracy in this piston type attenuator.

FEATURES: 50 and 80 Mc standard frequencies. Continuously variable over 80 db range above minimum insertion loss. Accuracy ±.006 db per db from 10 to 80 db; ±.00 db from 0-10 db. Price $250 to $295. Circle publication No. 785.

TYPE 132—Precision Test Receiver
Many types of precise measurements of R-F circuits are possible with this excellent labora-
tory tool. Calibrate R-F attenuators and couplers. Measure noise figure and selectivity.

TYPE 30 — Attenuators. 30 and 60 Mc standard frequencies. Noise figure 1.8 db at 30 Mc, 2.4 db at 60 Mc. Prices $1,350 and $1,400. Circle publication No. 788.

TYPE 70 — Broad Band Noise Generators

Features: Frequency range from 10 Mc to 40 Kmc, relative excess noise temp. 15.3 db = 0.25 db. Price $125 to $330. Plus new, exclusive hot-cold body generator to provide highest accuracy available in 0 to 2 Kmc range, excess noise 0.83 db = 0.1 db. Price $875. Circle publication No. 787.

TYPE 71 — Power Supply

Provides power for all nine Type 70 argon discharge noise generators when used manually. Price $165. Circle publication No. 788.

TYPE 74 — Automatic Noise Figure Indicator

Features: Frequency coverage is yours with this equipment. Plus maximum flexibility. Exclusive tunable I-F amplifier available.

Features: R-F range 10 Mc to 40 Kmc with Type 70 noise generators. I-F range — 30, 60 and 40 to 180 Mc. Noise figure ranges — 0 to 35 db, ± 0.5 db, 33 to 36 db, ± 1.0 db. Prices $865 and $330. Circle publication No. 789.

Type 113030 (not illustrated) — Radar Performance Monitor. Transistorized. Measures noise figure, checks mixer crystals, checks transmitted and reflected power. Circle publication No. 790.

SPECIAL RECEIVER

NEW — Type 133 — Parametric Amplifier

Extremely low noise amplifiers for microwave applications through X-Band featuring excellent amplitude and phase stability and simple operation. Fixed tuned narrow band, tunable narrow band and fixed tuned wide-band (10%) designs available. We will gladly quote on special designs. Circle publication No. 781.

SPECIAL PURPOSE TEST EQUIPMENT (LEFT TO RIGHT)

Type 124C — Wide Range Power Oscillator

Watts of power over a wide range makes this oscillator invaluable in many microwave tests.

Features: 200 to 2,500 Mc. Internal or external modulation. Nominal 30 watts output. Price $2,485. Circle publication No. 782.

Type 120 — Function Generator

Three Wave Forms are provided in one lightweight transistorized package. Sine waves, square waves or pulses with constant amplitude within ± 1 db over the 30 to 39,000 Cpe range. Output amplitude and pulse width adjustable. Price $299. Circle publication No. 783.

TYPE 50 — Transistorized Power Bridge

Smallest, lightest, lowest-cost power bridge on the market. You get the same accuracy as with higher-priced units.

Features: Ranges 1.0 and 10 mw; ± 5%. R-F coverage 10 Mc to 40 Kmc, depending on thermistor used (not supplied). Circle publication No. 784.

Type 90 — Circuit Design Reliability Tester

Prove and improve your circuit designs with this instrument. An especially valuable tool with low frequency circuits where the customer demands ultimate in reliability. Uses "extreme values" technique on up to 16 parameters. Binary readout of circuit parameters at time of failure. Price $3,600. Circle publication No. 785.
RAYTHEON HIGH-POWER FERRITE DEVICES

<table>
<thead>
<tr>
<th>BAND</th>
<th>RAYTHEON MODEL</th>
<th>FUNCTION</th>
<th>POWER LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Average</td>
</tr>
<tr>
<td>UHF</td>
<td>IUH11</td>
<td>Isolator</td>
<td>100 kW</td>
</tr>
<tr>
<td>L</td>
<td>CLH4</td>
<td>Circulator</td>
<td>150 kW</td>
</tr>
<tr>
<td></td>
<td>ILH31</td>
<td>Isolator</td>
<td>15 kW</td>
</tr>
<tr>
<td>S</td>
<td>CSH9</td>
<td>Circulator</td>
<td>100 kW</td>
</tr>
<tr>
<td>C</td>
<td>CCH5</td>
<td>Circulator</td>
<td>4 kW</td>
</tr>
<tr>
<td>X</td>
<td>CXH6</td>
<td>Circulator</td>
<td>40 kW</td>
</tr>
</tbody>
</table>

*Peak power capacity can be increased by pressurization.

Devices with higher power ratings can be designed per your specifications.

Now from Raytheon...

World's most comprehensive line of HIGH-POWER FERRITE DEVICES

Write for technical details or tell us about your requirements. Address Special Microwave Devices Operation, Raytheon Company, Waltham Industrial Park, Waltham 54, Massachusetts.

Raytheon Company

Special Microwave Devices Operation

Circle 242 on Reader-Service Card
Hybrid Junctions

Coupling of 3 db is provided by these hybrid couplers. Input energy is divided equally between the two outputs with a 90-deg phase separation. Three models cover frequencies from 1 to 8 Gc. Isolation between diagonally opposite terminals is 20 db min. Maximum size is 3-1/8 x 2-3/4 x 5/8 in.

Empire Devices, Inc., Dept. ED, Amsterdam, N.Y.

Slotted Lines

Available in all waveguide sizes from WR-430 through WR-2300, these slotted lines have a broadband probe. Tunable or rf probes are available. Residual vswr is less than 1.02; slope is less than 0.1 db. Line can be calibrated in either inches or centimeters.

C-Band Semiconductor Switch

Microwave switch has a power capability of 2 w at 5,585 mc. Insertion loss is less than 2 db from 5,000 to 5,900 mc and isolation is better than 50 db over the same range. Output pulse rise and fall time is less than 0.1 μsec each. Unit meets MIL-E-5400 environmental tests.

Radio Corp. of America, Aerospace Communications and Controls Div., Dept. ED, Burlington, Mass.
Pulse Generator

Model 5-6826P provides 300 to 450 v, at 250 ma peak for modulating microwave amplifiers. Internal modulation rate is adjustable from 10 to 10,000 pps, or external triggering can be used with a 20 v peak pulse. Pulse duration can be adjusted from 1 to 12 μsec, with rise and fall time better than 0.5 μsec.

Alfred Electronics, Dept. ED, 3176 Porter Drive, Palo Alto, Calif.

P&A: $550.00; stock.

Variable Attenuator

Full range of attenuation on L, S, C, and X band. This 2-1/2 x 2 x 5/8 in., continuously variable coaxial attenuator, has an insertion loss of 0.5 db and an average power capacity of 2 w. Unit comes with type N male or female connectors and is adaptable to servo or remote control.

Mico Products, Dept. ED, 1025 W. Bonnie Brae, Ontario, Calif.

P&A: $150.00; stock.

Y-Junction Circulator

Uhf, L-band, three-port Y-junction circulator model CU-900 has typical frequency ranges of 1 to 1.2 or 0.965 to 1.15 Gc over a temperature range of -20 to +71 C. For operation on the near side of resonance, it uses small permanent magnets. Bandwidths of 18% are available with 20-db isolation, 0.4 db insertion loss and 1.25 vswr.

Rantec Corp., Dept. ED, Calabasas, Calif.

FXR a new symbol in electronics for your single source of rf components, microwave test equipment and sub-systems

On September 22nd, Amphenol-Borg Electronics Corporation unified two of its divisions... RF PRODUCTS and FXR. The name of the new division is FXR.

What does this mean to you?

It means that in the future you can expect components that meet not only mechanical requirements but also the exacting electronics specifications of the systems and sub-systems in which they are used. It means that the specialized capabilities that have made AMPHENOL, RXR, IPC and FXR hallmarks of reliability have been combined to give you integrated design across the rf spectrum. From hardware to microwave sub-systems, the new RXR insures you of more advanced, more authoritative design and engineering.

Is this important to you?

We believe that it is. The full implications of this change are subtle and progressive. At RXR we're building for tomorrow—but our customers can profit from it today. The same representatives who served you when we were two separate organizations will continue to serve you.

If you have any questions about the products and services we can now offer, we invite you to write to us. Address your inquiries to: Vice President—Marketing, RXR, 33 East Franklin Street, Danbury, Connecticut.
Now...a single source of supply for
DK* Coaxial Switches and FXR Waveguide Switches

MicroWaves

Miniature Compressors 695

Produce volumes to 3 cfm. Two
models provide pressures to 100
psig and weigh between 3 and 8
lb with motor. The units, which
operate from 3-phase, 400 cps, do
not use carbon rings, thereby
eliminating carbon deposits in the
air system.
Applied Pneumatics, Inc., Dept.
ED, 740 Colfax Ave., Kenilworth,
N. J.

Klystron Oscillator 685

Frequency range is 26.5 to 31.5
Gc. Model GK-70 provides power
output of 100 mw and has nor-
mal heater voltage of 6.3 to 7.3
at 0.7 to 0.8 amp. Beam voltage
is 1,500 to 2,000 v; beam current
is 20 to 30 ma. Output connection
is 599/U waveguide flange. The
4-oz unit may be blowor or con-
vection cooled. Model GK-71 is
the same with lock-nut tuner.
Geisler Laboratories, Dept. ED,
P. O. Box 353, Woodland Hills,
Calif.

Bandpass Filters 696

Butterworth and Tchebycheff
designs are both available. Modu-
Filters can be constructed to op-
erate over the RG-52 waveguide
range (8.2 to 12.4 Gc). Unload-
ed Q's of 2,200 per cavity can
be realized. As an example, this
filter with a center frequency of
9,010 mc and a bandwidth at 3
db points of 20 mc has a maxi-
mum insertion loss at center fre-
quency of 1.2 db.
Scope Inc., Dept. ED, 121 Fall-
fax Drive, Falls Church, Va.
Shown above are Huggins TWT’s producing a power output range within ±1 DB over an input range of -40 to +5 DBM.

This pair of X-Band, light weight, PPM focused tubes is only one example of our ability to furnish TWT’s to almost any specifications.

Please send for Engineering Note No. 6: “Cascading TWT’s.”

CIRCLE 147 ON READER-SERVICE CARD

NEW COAXIAL DIRECTIONAL COUPLERS

from 0.3 to 11 km; high directivity; coupling variation 0.2 to 0.4 DB maximum; main line VSWR 1.10 to 1.25 maximum; coupling 10 to 30 DB; forward power 50 watts to 1 kw, 10 kw peak. Send for data on new PRD 430 Series!

PRD ELECTRONICS, INC.: 202 Tillary St., Bklyn. 1, N. Y., UL. 2-6800; 1608 Centinela Ave., Inglewood, Calif., OR. 8-9048. A Subsidiary of Harris-Intertype Corp.

CIRCLE 148 ON READER-SERVICE CARD

data recorders expensive?

not any more

now, Mnemotron gives you a complete, easy-to-use 4-channel analog tape record/reproduce system with 0.2% precision for only $3,495

Complete with 10½" reel tape transport, rack mounted.

Mnemotron offers a unique pulsed FM principle and fully transistorized, self-contained unit that records all analog data - data acquisition - storage, analysis and reduction - time scale contraction and expansion - programming - computer read in and read out - dynamic simulation. With Mnemotron, you can do more with paper recorders - expanding frequency response and channel capacity, saving you from being deluged with data, permitting you to look at the same data at different time scales.

Model M-304 Features:
- PRD recorder
- 5000 cps @ 1.5 ips
- 10000 cps @ 1.5 ips
- 15000 cps @ 1.5 ips
- 30000 cps @ 1.5 ips
- Noise: -30 db full scale
- Cables: below 70 db

Extended range systems also available

Write, wire, phone today for complete details.

CIRCLE 149 ON READER-SERVICE CARD
In less time than it takes light to cross this room, a new product, Delco's New high speed 10 mc silicon modules, could: (1) correct the course of a missile in flight; (2) make it possible for sonar pickups to track and compute the position of targets with microsecond accuracy; and (3) handle any number of other airborne guidance and control functions that previous modules—due to low speed or environmental or performance limitations—could not handle. Delco Radio's 10mc modules, with a maximum gate-switch speed of 40 nanoseconds, convert data 100 times faster—even under the most extreme environmental conditions.

These silicon modules come epoxy encapsulated, and operate over a temperature range of -55°C to +100°C. And these same reliable digital circuits are available packaged on plug-in circuit cards. These Delco modules are environmentally proved to: Shock, 1,000G's in all planes. Vibration, 15G's at 10 to 2,000 cps. Humidity, 95% at max. temp. Storage and sterilization Temp. -65°C to +125°C. Acceleration, 20G's. Designed for systems using from one module to 100,000, and the module's rated performance considers the problems of interconnection. Data sheets are available. Just write or call our Military Sales Department.

Physicists and electronics engineers: Join Delco Radio's search for new and better products through Solid State Physics.
Bendix 25-AMP DAP'S!

Bendix Semiconductor Division

A complete kit containing a varied assortment of high-stability microwave attenuation material is available in easy-to-use card form. It includes 35 metallic resistance cards, 2 1/2 x 6 in., and one metallized mica resistance card 2 1/2 x 2 1/2 in., plus fabrication instructions. Available in card format, card sets are available up to 70 dB over 110 ohms.

RF Probe

Designed for use with all waveguide and coaxial instrumentation, this probe can be ordered with microwave diodes. It is designed for use with microwave equipment, such as Microwave Resonator Associates, Inc., 118-160 rue, and Microwave Resonator Associates, Inc., 118-160 rue.

Connectors

Connectors are type N, male and female. Adapters are available in waveguide and N via waveguide adapters, 185-185, 118-190, and 118-190, respectively. N type connectors are supplied on request. The following types are available:

- Type A: for high harmonic frequencies
- Type B: for low harmonic frequencies
- Type C: for ultra-high-frequency applications

Waveguide-Coaxial Adapters

722
Graphical Techniques Help Multiply and Divide Complex Phasors

A. Moses
425 W. Chestnut St.
Las Cruces, N. M.

Graphical techniques commonly used for adding and subtracting phasors can also be used to multiply and divide, and with a considerable saving of time.

Let us look at multiplication. First, draw the phasors on the complex plane. Then draw a line from the head of one phasor, \(Z_1 \), to the point \(1 + j0 \). This phasor, the line, and the real axis form a triangle. Next, draw a similar triangle in which the second phasor, \(Z_2 \), corresponds to the part of the first triangle along the real axis. The leg of the second triangle corresponding to \(Z_1 \) is the product.

As an example, multiplication of \(0.4 + j0.3 \) by \(1.5 + j0.45 \) is shown in Fig. 1. The product is measured to be \(0.75 + j0.25 \).

Division is done by multiplying by an inverse phasor. First, draw the phasor, \(Z_1 \), whose inverse is desired. Draw a circle of unit radius. Draw the reflection of \(Z_1 \) in the real axis, that is, a phasor making the same angle with the real axis, but on the opposite side.

If \(Z_1 \) lies within the unit circle, draw a perpendicular through the end of the reflected phasor. The perpendicular will be a chord of the unit circle. Draw a tangent to the unit circle where the perpendicular cuts it. The tangent will intersect the reflected phasor, determining the head of the phasor inverse to \(Z_1 \).

If the head of \(Z_1 \) lies outside of the unit circle, the process is reversed. First draw a tangent to the unit circle from the head of \(Z_1 \). Draw a chord perpendicular to \(Z_1 \) and passing through the point of tangency. The point of intersection of the chord and \(Z_1 \) is then reflected through the real axis, determining the head of the inverse phasor.

As an example, the inverse of \(0.4 + j0.3 \) is constructed in Fig. 2.
NEW LITERATURE

Heat Transfer 260

The "Heat Transfer Design Manual" gives "graphical" solutions in BTUs/sq ft/hr and watts/sq ft versus temperature difference to a variety of types of heat transfer problems. It also contains additional data on heat transfer coefficients and specific heat and thermal conductivities. Electrofilm, Inc., 7116 Laurel Canyon Blvd., North Hollywood, Calif.

Multiple Connectors 262

Three separate lines of multiple connectors, with a specific data sheet included for each line, are described in a six-page folder. Fastin-Faston connectors for appliance and automotive uses; Ampeez, for major appliance equipment, and Amp-Lok connectors for TV and commercial electronics, are described. AMP, Inc., Eisenhower Blvd., Harrisburg, Pa.

Electrical Products 261

A 96-page illustrated catalog describes over 1,500 electrical wiring devices, switches and receptacles, transformers, extension and cord sets, fuses, wall plates, pushbuttons and lamps. Products are cross-indexed for easy locating. Underwriters' listings and Federal Specification numbers are also included. Eagle Electric Manufacturing Co., Inc., 23-10 Bridge Plaza S., Long Island City 1, N. Y.

Retention/Cooling Units 263

More than 10,000 electronic cooling and/or retention devices are described in eight-page catalog 1-W. Units include clamps for retaining tubes and components, tube top-holding retainers, JAN shield inserts for tubes, transistor retaining clips, and transistor/component heat radiators. The Birtcher Corp., Industrial Div., 745 S. Monterey Pass Road, Monterey Park, Calif.

WEBSTER KNOWS

In fact, his definition certainly applies to CAMBION® Standard Solder Terminals. As parts which terminate plenty of trouble in electronic circuitry construction, they've gained universal approval from manufacturers, professional technicians and hams.

Starting with top quality brass, each CAMBION solder terminal is precision machined, quality inspected, electroplated with silver, electro-tin or gold—or to your own plating specifications. Close quality control is maintained, and inspections made at each successive manufacturing step to assure that each terminal meets or exceeds applicable MIL specifications, such as MIL-Q-5823C.

That's why, as with all components in the broad CAMBION line, top quality is guaranteed for the more than 100,000 CAMBION Solder Terminals in stock... in more than 107 different types: single, double and triple turret; feed-through, double-ended, hollow and split.

The broad CAMBION line includes plugs and jacks, solder terminals, insulated terminals, terminal boards, capacitors, shielded coils, coil forms, panel hardware, digital computer components. For a catalog, for design assistance or for both, write to Cambridge Thermionic Corporation, 467 Concord Ave., Cambridge 38, Mass.

CAMBION®
The guaranteed electronic components
CIRCLE 153 ON READER-SERVICE CARD

100 K ohms in a 3/4" wirewound trimmer pot! Only Atohm has it!

Atohm precision, high reliability pots provide higher resistances, better resolution, higher wattages, larger wire-per-value for greater reliability, machine-wound elements for uniformity and lower cost, and other design advantages that merit your consideration. Write for the new Atohm catalog, It makes trimmer pot selection easy.

ATOHM ELECTRONICS INC.
7648 San Fernando Road, Sun Valley, California
*between mounting holes

CIRCLE 134 ON READER-SERVICE CARD
ELECTRONIC DESIGN • November 22, 1961
Potentiometers 264
A 16-page catalog, 11-60 section 4, provides description, complete technical specifications, dimensional drawings and photographs of eight series of composition element potentiometers and their military versions, plus power switches. Clarostat Manufacturing Co., Inc., Dover, N. H.

Inductors 265
A wide line of electrically variable Vari-L inductors is covered in 16-page catalog No. 61. Application data, characteristics charts and curves, operating principles and much other information are provided. Vari-L Co., Inc., P. O. Box 1433, Stamford, Conn.

Zener Diodes 266
A 6-page catalog (SR-265) provides ratings, characteristics, applications and power dissipation data on over 270 JEDEC and IR “High Spec” diode types. Write on company letterhead to International Rectifier Corp., Dept. ED, 233 Kansas St., El Segundo, Calif.

Solid-State Amplifiers 266
A four-page short-form catalog provides detailed specifications on instrumentation, telemetry and laboratory testing applications. A variety of differential dc amplifiers is included. Video Instruments Co., Inc., 3002 Pennsylvania Ave., Santa Monica, Calif.

Insulating Resins 267
The “Maraset Electrical Resins Selector,” a six-page chart-folder, is a guide to resins and their uses for potting, encapsulating, and coating electrical and electronic products, parts, and assemblies. Marbotite Corp., 37-31 30 St., Long Island City 1, N. Y.

RF Power Bridges 268
Precision power bridges, thermistor mounts and X-band power standards are described in this 12-page technical brochure. It also includes data on precise methods of determining rf power levels. Weinschel Engineering, 10503 Metropolitan Ave., Kensington, Md.

LINDE
High-Purity
RARE GASES & High-Accuracy MIXTURES
keep pace with the expanding needs of electronic progress
LINDE special mixtures of monatomic and diatomic gases—with purity as high as 99.9975 per cent—serve as fills in many electronic devices. These include thyratrons, Geiger-Muller, and high-voltage regulator tubes; x-ray fluorescence analyzers; high-voltage insulation; incandescent and special-type lamps and many other uses.

Optimum purity is the keystone of all LINDE produced gases—optimum accuracy the keystone of LINDE gas mixtures.
Whatever your rare gas mixture requirements, LINDE’s huge productive capacity can supply them—and LINDE’s widespread distribution system is ready to make fast delivery throughout the country.

For complete data on rare gases or combinations, write for a copy of F-1002C, “LINDE High Purity Gases.” Address Dept.ED113, Linde Company, Division of Union Carbide Corporation, 270 Park Avenue, New York 17, N. Y. In Canada: Linde Company, Division of Union Carbide Canada Limited, Toronto 7.

LINDE COMPANY

PROVED AND PREFERRED!
PARAMOUNT Spiral Wound PAPER TUBES

SQUARE, RECTANGULAR, ROUND
Regular-type PARAMOUNT paper tubes used for millions of coil forms and other applications. Hi-Dielectric. Hi-Strength. Kraft. Fish Paper, Red Rope, Acetate, or any combination spirally wound on automatic machines. Any size from 1/8" to 30" long, from .150" to 25" I.P. Produced from wide range of stock arbors or specially engineered for you.

PARAFORMED—SQUARE OR RECTANGULAR
Exclusive Paraforming method of tube making without artificial heat or pressure. Makes perfectly flat side walls, square inside corners, and very small radius on the four outside corners—and does it all at the time of actual spiral winding. No sharp outside edges to cut wire. No need for wedges to tighten wire. Full rigidity and physical strength. Permits winding coils to closer tolerances. Allows faster automatic stacking of coils. Approved and used by leading manufacturers. No extra cost!

PARAMOUNT PAPER TUBE CORP.
608 LAFAYETTE ST., FORT WAYNE 2, IND.
Standard of the Coil Winding Industry for Over 30 Years

Linde and Union Carbide are registered trademarks.

CIRCLE 155 ON READER-SERVICE CARD
ELECTRONIC DESIGN * November 22, 1961
CIRCLE 156 ON READER-SERVICE CARD
155
Ordinary AC VTVM's measure voltage... only.
Then, too, they are "earth-bound"—practically
 tied to their case and power line. Not this one!
The Model 131-1 tells you almost everything a rea-
sonable man could want to know about an AC signal:
voltage (at or above ground), phase, phase-shift, in-
phase and quadrature components. It will measure
 amplifier gain/phase characteristic and angular error
in servo devices. It's also a feedback-stabilized, linear
 amplifier, for simultaneous CRO waveform observa-
 tion.
How natural for trio/lab, 8-year pioneers in "build-
 ins" (the most VTVM in the least space at minimum
cost) to put this accurate, versatile, reliable work-
 horse on your lab bench for only $345!
For $100 less, you can enjoy the "floating" sensa-
tion without the phase-discriminating feature —
Model 109-2. Both are in stock.

Triple your measuring capabilities
with this unique new VTVM!
Normal and Phase-Discriminating modes
... both "floating" from ground.
Power Rectifiers
The revised "Guide to Semiconductor Power Rectifiers," a 56-page catalog, describes rectifiers for applications including: anodizing, aircraft ground power supplies, battery chargers, capacitor manufacturing, current limiting, electron tube testing, relay testing, shop power supplies, and complete semiconductor power conversion systems. Write on company letterhead, indicating whether electroplating or industrial supplier literature is wanted, to The Meaker Co., Dept. ED, Nutley 10, N.J.

Frequency Synthesizers 273
Development of quartz crystal radio frequency synthesizers is discussed in a 16-page booklet. Supported by circuit diagrams, curves, drawings, and photographs, it traces the historical development of these synthesizers, discussing typical performance parameters to be achieved. Manson Laboratories, Inc., 375 Fairfield Ave., Stamford, Conn.

High-Density Packaging 274
Facilities for producing miniaturized electronic assemblies of high density by the Weldbloc technique are described and illustrated in a six-page bulletin. Numerous typical products are illustrated, and the Weldbloc approach to packaging is discussed in detail. Kearfott Div., General Precision, Inc., Little Falls, N.J.

Vibration Control 275

Oscillators 276
A line of transistorized audio tone oscillators is illustrated and described in detail in a 12-page bulletin. Specifications, circuit diagrams, and numerous other data are included. MF Electronics Corp., 118 E. 25 St., New York 10, N.Y.

Appearance is not a good indicator of drafting film workability or reproduction quality—see test offer below.

In drafting films, it's the coating that counts
Film Similarities
All drafting films share one common characteristic—every major brand employs a polyester base. This polyester material may vary somewhat in grade (from clear to milky) or in gauge (from .002 to .007). However, its properties remain so nearly identical that no appreciable difference in print-back speed can be noted by exposing diazo material through the uncoated film. Accordingly, all polyester films have these unique features: dimensional stability, transparency, flexibility, moisture resistance, and tear strength.

Coating Differences
These advantages mean nothing to the draftsman or architect until a surface receptive to pencil and ink is put on the film. Post applies three distinct micro-coatings to its polyester film, baking these elements and the film at such high temperatures that they are literally fused. This process also "preshrinks" the material, endowing

Polytex with slightly greater dimensional stability.

More Drafting Latitude
The net result of the exclusive Post coating process is the most durable drafting film surface available—a surface on which, if circumstances demand, you can use the hardest grade of pencil without destroying the coating. Some pencils work better than others, of course. Plastic-based pencils are best of all when permanency or washability are considered.

Test Offer
To convince you, regardless of previous or present drafting film experience, that Post Polytex offers a superior coating with outstanding erasability, pencil and ink adhesion, a free Polytex test kit is yours without obligation. We'll mail an 8 1/2 x 11 drafting film sample, plus a vinyl eraser and drafting pencil assortment, packed in a Post Pocket Protector. Write for it on your letterhead today. Frederick Post Company, 3644 N. Ardalond Avenue, Chicago 18, Ill.
plan ahead!

To be really sure of getting your pot deliveries on time, you could assemble your own! But just when you're counting on sub-contractors to deliver the necessary parts— you might find they're tied-up on someone else's job! So if you must be sure, lay in a good supply of raw materials in quantity lots— metals, glass, wire, plastics, bearings— the works!

But before you load up the living-room with bar stock, check with Ace. You'll find, to your relief, that Ace abundantly warehouses all their own raw materials— just for the express purpose of being able to make everything they need— when it's needed. for controlled delivery! So if delivery of precision pots is a prime consideration, talk to the company that does its own sub-assembly manufacture— see your Acerop!

From raw materials to completed pot— within the plant— our servo-mount A.I.A. size 7/8" ACEPOT®. As with all the others, from 1/2" to 6".

NEW LITERATURE

Miniature Connectors 277

Complete technical descriptions and specifications are provided for a wide range of TPS plugs, jacks, receptacles, adapters, etc. in the firm's new 8-page TPS catalog. General RF Fittings, Inc., 702 Beacon St., Boston 15, Mass.

Epoxy Resins 278

Four-page folder compares 17 of the firm's epoxy resins, their components, primary uses, handling characteristics, and physical and electrical properties. Material is in comparison chart form. Mitchell-Rand Manufacturing Corp., 51 Murray St., New York 7, N.Y.

Plastic Components 279

A new 6-page brochure, which includes a handy materials guide and design data sheet, describes the firm's capabilities in the custom fabrication of plastic electronic components. Emmco Plastics Corp., Everett, Mass.

Instruments and Systems 280

Scientific instruments and systems are featured in a new 16-page catalog No. S/1-61 which covers the company's line for electronics, missile and nuclear applications. Physical Sciences Corp., 389 N. Fair Oaks Ave., Pasadena, Calif.

Reconnaissance Systems 281

An analysis of space-age reconnaissance systems developed by the firm for both industry and government is outlined in a pamphlet just released. Planning Research Corp., 1333 Westwood Blvd., Los Angeles 24, Calif.

Polyurethane Coated Wire 282

Technical information on polyurethane coated magnet wire, along with physical and electrical property data are contained in the firm's four-page bulletin M-W-1003. Hudson Wire Co., Magnet Wire Div., Winsted, Conn.
Power Supplies 283
Selection guide No. 4-2 for solid-state power supplies and transducer control modules for telemetry, data processing and laboratory testing applications is available. Video Instruments Co., Inc., 3002 Pennsylvania Ave., Santa Monica, Calif.

Automated Test Facilities 284

Turbine Flow Transducer 285
An electrical pulse output type transducer, applicable to any liquid or gas that will withstand line pressure of up to 5,000 psi, is described in a four-page brochure. Principles of operation, specifications and other data are provided. Hydro-poise, Inc., 230 S. Wells Fargo Drive, Scottsdale, Ariz.

Industrial Expositions 286
Results of an intensive study of visitors' desires and needs at industrial expositions have been combined into a useful 16-page booklet, titled "What They Want." Clapp & Poliak, Inc., 341 Madison Ave., New York 17, N. Y.

Traveling Wave Tubes 287
A line of metal-ceramic traveling wave tubes, in both ppi and solenoid focused formats, is illustrated and described in an eight-page catalog. Low-noise, medium-power, low-power, serrodyne, and special-purpose units are included. Microwave Electronics Corp., 4061 Transport St., Palo Alto, Calif.

Modern Mapmaking 288
A short illustrated course on the production of modern charts and maps is provided in an informative 12-page, 7-color brochure. Title is "Map Production with Stabilene Film." Keuffel & Esser Co., Hoboken, N. J.

EICO
PUTS THE BEST IN CREATIVE ELECTRONICS INTO YOUR HANDS
Send for FREE
Catalog
28 PAGES OF PROFESSIONAL ELECTRONIC EQUIPMENT IN KIT AND WIRED FORM -- FOR LAB... LINE... HOME

BECKMAN® SIZE 8 SERVOMOTORS

HIGHEST PERFORMANCE COSTS NO MORE!

Where highest performance and reliability are a must, you can count on a Beckman Size 8 Servomotor. Choose from 10 models—Servomotors, Velocity-Damp Servomotors, Inertia-Damp Servomotors and Servomotor-Generators. They're precision-built by Helipot and available at competitive prices—and in many cases can be shipped immediately from stock.

All Beckman Size 8's are rated for operation to 200°C total temperature. They're available for either 26 volt or 115 volt excitation. For other representative specs, check the table below:

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Model 9008-0101-0</th>
<th>Model 9008-0102-0</th>
<th>Model 9008-0103-0</th>
<th>Model 9008-0104-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size & Servomotor</td>
<td>9008-0101-0</td>
<td>9008-0102-0</td>
<td>9008-0103-0</td>
<td>9008-0104-0</td>
</tr>
<tr>
<td>Voltage</td>
<td>115v</td>
<td>115v</td>
<td>26v</td>
<td>26v</td>
</tr>
<tr>
<td>Excitation Fixed Phase</td>
<td>33/16.5v</td>
<td>33/16.5v</td>
<td>33/16.5v</td>
<td>33/16.5v</td>
</tr>
<tr>
<td>Torque at stall, oz-in. (nominal)</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>Acceleration at stall, rad/sec²</td>
<td>16,500</td>
<td>12,500</td>
<td>67,000</td>
<td>53,800</td>
</tr>
<tr>
<td>Overall length, inches</td>
<td>1.165</td>
<td>1.657</td>
<td>1.350</td>
<td>1.350</td>
</tr>
<tr>
<td>Weight, ounces</td>
<td>1.6</td>
<td>2.4</td>
<td>1.9</td>
<td>2.0</td>
</tr>
</tbody>
</table>

For complete application, price or delivery information, call your local Helipot Engineering Sales Representative... or write directly to:

Beckman INSTRUMENTS, INC.
HELIPOT DIVISION
Fullerton, California

CIRCLE 164 ON READER-SERVICE CARD
The only solid state
10 MC counter-timers
that provide complete
front end flexibility.
All models are readily
convertible to universal counter-
timers by use of plug-in units.

The 1039 series equipment represents
a significant engineering design
contribution to user convenience; ease
of operation, performance,
flexibility and modular solid state
reliability are achieved.

Pick a plug-in for your signal

Universal Amplifier AC-DC Coupled

- Sensitivity: 0.1v rms 0 to 11 mc
- Impedance: 1m ohm 50 pf
- Attenuator: 1, 3, 10, 30, 100
 with trigger level control

Low Impedance Unit — DC Coupled

- Sensitivity: 0.25v rms 0 to 10 mc
- Impedance: 93 ohm or 50 ohm
- Trigger Level: ± 1 volt

These instruments, depending upon the
model desired, are priced between
$2,325.00 and $2,750.00

Let us send you complete specifications
of the Model 1039 Series.

NEW LITERATURE

Digital Data System 289

An eight-page brochure describes
the Series 7000 line of modular digital
data systems for alarm scanning and
digital recording of virtually any
type or combination of analog values.
System features, applications, and
a variety of building blocks and
subassemblies are covered. Monitor
Systems, Inc., Epsco, Inc., Dept. 33,
Fort Washington Industrial Park,
Fort Washington, Pa.

Ground Support Equipment

A new 29-page book describes the
capabilities and electronic devices
manufactured by the company in mis-
sile ground support equipment, elec-
tronic testing gear for weapons sys-
tems, and devices for automating
production machinery and office
equipment such as billing and ship-
ving machines. Write on company
letterhead to Kidde Aero-Space Div.,
Dept. ED, Belleville 9, N. J.

Data Gathering System 290

The model S-3100 Portable Data
Gathering System is described in a
four-page brochure. Capable of re-
cording up to 100 analog voltage in-
puts on tape in suitable format for
direct entry to a digital computer, the
system is in two aluminum carrying
cases. Detailed specifications are pro-
vided. Systems Div., Epsco, Inc., 275
Massachusetts Ave., Cambridge 39,
Mass.

Dials and Verniers 291

The capabilities of the Instrumenta-
tion and Apparatus Div., as well as
many of its products, are delineated
in a 24-page brochure. Products in-
clude dials and verniers, with arcs
and segments accurate to 1 sec of
arc; tapered spindles accurate to 0.00005
in; and precision level-vial as-
semblies. C. L. Berger & Sons, Inc. 37
Williams St., Boston, Mass.

Type MCM Lever Switch

All lever combinations available.
Four contact quadrants.
Variety of circuits permitted.
Handle-bearing lever action
is smooth and positive. 1 amp.
contacts are mounted on an
easily removed contact block.
Single-hole mounting.

Write for Bulletin CL-100

All General Control switches feature riveted coin
silver or palladium alloy contacts and are individu-
ally adjusted and inspected. Switch types are
available from 1 to 10 amperes.
Also available are special switches and contact
assemblies to customer specifications.

Systron

Division of Systron-Donner
Corporation

950 Galindo Street
Concord, California

CIRCLE 165 ON READER-SERVICE CARD
Components

This 140-page catalog No. 100 features such items as precision gears, magnetic clutches and brakes, differentials, couplings, gear heads, limit stops, bearings and electronic hardware. Siamco Div., Tech-Ohm Electronics, Inc., 36-11 33rd St., Long Island City 6, N. Y.

Transistors

Connectors

An expanded line of precision miniature electronic connectors, made by Continental Connector Corp., is described in a six-page brochure (Form MM-861). Connectors are rectangular plug and socket types. DeJur-Amsco Corp., 45-01 Northern Blvd., Long Island City 1, N. Y.

Now you can take another look at

BEVEL GEARS

Designers can now reconsider the use of bevel gears due to the latest Gleason confix system of bevel gear proportions which we employ to minimize gear mounting problems and for less trouble after assembly. Costs are less by this method, better finishes and smoother gear operations are a result, and because bevel gears are so efficient, they can now be used more extensively than ever before.

We can make bevel gears up to 3" in diameter with up to 16 diametral pitch for such products as instruments, power tools, differential, appliances, and fishing reels. Process bevel gears are precision engineered, deliveries are prompt.
Contact Redundancy in New UNION Crystal Case Relays

The UNION 2-pole double throw General Purpose Crystal Case Relay is designed to consistently meet the requirements of Mil-R-5757D and Mil-R-5757 10. Its essential features...from minimum size to optimum reliability...permit it to be used in aircraft, guided missiles, shipboard and ground control electronic equipment.

A unique torsion-wire armature suspension system and a rugged all-welded frame construction provide a high level of vibration and shock immunity. Contact redundancy, which assures reliability in dry circuit and higher level contact loads, is provided through the use of bifurcated contacts.

Available with 0.2” grid-spaced header or “S” type header, with various mountings, terminals, and operating voltages. Write for Bulletin 1064.

New 4-PDT-10-amp Relay Most Compact Rotary Type Available

This new durable relay is designed to meet the requirements of Mil-R-6106. It’s a rugged relay featuring exceptionally sturdy terminals and husky contacts for high current applications. Glass-coated cylindrical contact actuators attached to the rotary armature provide smooth mating of contact surfaces, thereby assuring longer relay life. The balanced rotary armature provides maximum resistance to severe shock and vibration.

This small 4-PDT-10-Ampere relay is currently available with 115VAC and various DC operating voltages. Various mounting styles are provided. Write for bulletin 1069.

Why UNION Relays Are So Dependable

There’s a good reason why our relays are the standard for reliability. For years, we’ve been building tough, reliable relays for use in airborne and guided missile electronic equipment and similar vital applications where perfect operation under severe environmental conditions is mandatory.

Our engineers created a compact 6-PDT miniature relay with just three major assemblies...instead of a fusible of small parts. This was accomplished by using a balanced rotary-type armature that provided a maximum resistance to the severe shock and vibration environment of aircraft and guided missiles. The rotary principle of operation is utilized in all our relays.

We have a reputation for building reliable electronic components and we intend to maintain our tradition for building reliable relays. And we supply these quality relays in quantity. Stocks are now available for prototype requirements in New York, Pittsburgh, Dallas and Los Angeles.

For additional information, write for Bulletin 1017 or call Churchill 2-5000 in Pittsburgh.

NEW LITERATURE

Radio Frequency Interference 298

A 4-page color brochure entitled “RFI Control” has been published listing the firm’s testing equipment, engineering personnel backgrounds and corporate experience. Electro-International, Inc., Box 391, Annapolis, Md.

Traveling Wave Tubes 299

Twenty-three types of traveling wave tubes and backward-wave oscillators are described in this catalog. Principal electrical characteristics and major dimensions are provided. Sylvania Electric Products, Inc., 1100 Main St., Buffalo 9, N. Y.

Slip Rings 300

Slip rings, brush assemblies, rotary switchers and commutators are described and illustrated in this 16-page catalog, which also furnishes a description of the facilities of the firm. Slip Ring Co. of America, 3612 W. Jefferson Blvd., Los Angeles 16, Calif.

Capacitors 301

Two two-page data sheets describe types STA polar and types STAN non-polar high-frequency solid-tantalum capacitors. Ten ratings of each type are covered. Electrical ratings, dimensional diagrams and performance curves are provided. Fansteel Metallurgical Corp., North Chicago, Ill.

Multi-Switches 302

Both non-illuminated and illuminated types of multi-switches in many different combinations of stations, rows, functions, solenoid releases, and stack types, are described in 12-page catalog S-306. Included is information on a new “Push-Push Switch.” Switchcraft, Inc., 5555 E. Elston Ave., Chicago 30, Ill.

Raysistor Applications 303

Applications of the Raysistor, including use as a control element in AGC vacuum tube circuits, SSB suppressed carrier receivers and “DE-Q” transistor circuits, and use as a switching element for low-level signals, are described in a 12-page bulletin. Operating data on this electro-optical component are also provided. Raytheon Co., Industrial Components Div., 55 Chapel St., Newton 58, Mass.
MOVING
AIR
IS
CHILD'S
PLAY

CONTROLLING
IT
TAKES
AN
EXPERT

Dexterity is achieved through patience and practice. Our ability to solve the most complex air moving and cooling problems depends partly on these qualities, but mostly on imaginative design, which comes only with experience . . . and maturity. Brochure 102 gives our background. Write for it.

TORRINGTON
MANUFACTURING COMPANY
TORRINGTON CONNECTICUT
TAKE A SECOND LOOK

IT'S THE 2N174—PART OF DELCO RADIO'S POWER TRANSISTOR FAMILY WHICH HAS
PROVED ITS STUFF FOR YEARS IN HUNDREDS OF MILITARY AND INDUSTRIAL APPLICA-
TIONS: MISSILES, COMMUNICATIONS, DATA PROCESSING, AND ULTRASONICS, TO NAME A FEW.
THIS MULTI-PURPOSE PNP GERMANIUM POWER TRANSISTOR HAS THE HIGH PERFORMANCE AND
VERSATILITY TO MEET OR EXCEED THE MOST RIGID ELECTRICAL AND ENVIRONMENTAL
REQUIREMENTS. DESIGNED FOR GENERAL USE WITH 28-VOLT POWER SUPPLIES, THE 2N174
MAY ALSO BE USED WITH 12 VOLTS WHERE HIGHER RELIABILITY IS DESIRED. MAXIMUM
EMITTER CURRENT—15 AMPERES, MAXIMUM COLLECTOR DIODE RATING—80 VOLTS, THERMAL
RESISTANCE—BELOW .6°C/W AND MAXIMUM POWER DISSIPATION—50 WATTS AT 71°C, MOUNTING BASE TEM-
PERATURE. THE 2N174'S LOW SATURATION RESISTANCE PROVIDES HIGH EFFICIENCY IN SWITCHING OPERA-
TIONS. LIKE ALL DELCO TRANSISTORS, EVERY 2N174 MUST PASS AT LEAST A DOZEN ELECTRICAL
AND ENVIRONMENTAL TESTS—BEFORE AND AFTER AGING—BEFORE IT LEAVES DELCO RADIO'S
LABORATORIES. THIS 200 PERCENT TESTING, COMBINED WITH FIVE YEARS OF REFINEMENTS IN
MASS PRODUCTION, MEANS CONSISTENT UNIFORMITY IN THE PRODUCT... AT A LOW PRICE.
THE 2N174 IS JUST ONE OF MANY DEPENDABLE TRANSISTORS PRODUCED BY DELCO RADIO TO
SUPPLY ALL YOUR TRANSISTOR NEEDS. FOR MORE DETAILS OR APPLICATIONS ASSISTANCE ON
THE 2N174 OR OTHER DELCO TRANSISTORS, CONTACT YOUR NEAREST DELCO RADIO SALES OFFICE.
Silver-Cadmium Batteries

The characteristics of sealed silver-cadmium batteries, including the ability of the cadmium negative to reabsorb oxygen produced at the silver electrode during charge and over charge, is described in a paper entitled "The Sealed Silver-Cadmium Battery." Yardney Electric Corp., 40-50 Leonard St., New York 13, N.Y.

Microwave Products

Coaxial transmission line equipment, antennas, waveguides, accessories, components and systems are described in detail in this 42-page catalog. Photographs, schematics, cut-aways, specifications and engineering data are included. Telerad, Div. of The Lionel Corp., Route 69-202, Flemington, N. J.

Choppers

Models 50, 60 and 70 electronic choppers are described in three two-page bulletins. All are solidly encapsulated units. Mechanical, electronic, operating and application data are provided. Solid State Electronics Co., 15321 Rayen St., Sepulveda, Calif.

Computing System

The hardware, software and service features of the G-20 computing system are described in a six-page brochure (BSP 07611). Also described is the customer support program of this firm, a program library, "space" programming, and on-site maintenance. Bendix Computer Div., 5630 Arbor Vitae St., Los Angeles 45, Calif.

Corona Testers

Complete data on a new line of integrated corona test sets, corona-free high-voltage testers, corona detectors, and corona pickup networks are provided in four-page technical bulletin 4-10.27. The equipment detects minute traces of corona and displays them on a scope. Associated Research, Inc., 3777 W. Belmont Ave., Chicago 18, Ill.

Electric Gaging

Honeywell

Does your regulated power supply burn out when short-circuited? If so, Honeywell's improved high current voltage regulator circuitry can help you. Check these basic circuit features:

- Circuit simplicity.
- Versatility. The basic circuit can be easily adapted to operate at higher load currents over wide output voltage ranges or over wider temperature ranges.

For a complete description of the features, theory of operation and adaptations of this circuit—plus circuit design procedures—send for Application Note ANIC. Simply fill out and return the coupon below to: Honeywell, Dept. ED-111, Minneapolis 8, Minnesota.

COMPONENTS

Q1—Honeywell 3N49
Q2—Honeywell 2N1263
Q3—2N595A
D1—Voltage Reference Diode
D2—3 ampere Silicon Diode

R1—180 ohm
R2—100 ohm
R3—390 ohm
R4—4700 ohm
R5—0.02 ohm
R6—3300 ohm
R7—20-50 ohm
R8—Load

Kindly check one or both of the following:
- Please send me your Application Note ANIC detailing a Series Voltage Regulator.
- Please have a Honeywell field engineer call on me at my convenience.

Name:______________________Address:______________________
Company:______________________City:______________________
State:______________________

CIRCLE 173 ON READER-SERVICE CARD
Filter Designs Combine Bias and Frequency Components

Circuit designers who use only passive networks for amplitude shaping may find valuable this straightforward approach to pass-filter design. The approach is illustrated by the pass-filter building blocks shown in the figures. These circuits:

1. Use the same components to achieve both the proper bias and frequency characteristics. No components are used exclusively as biasing functions; thus, their number is reduced.

2. Limit linear transistor amplifier configurations to the emitter-follower type. Only +1 gain operational amplifiers are used having inherently great gain stability. Their reliability can approach that of passive circuits.

The circuit in Fig. 1 allows capacitive coupling to the preceding stage. Resistor \(R_1 \) is chosen in conjunction with \(R_S \) for proper impedance matching, base biasing, and dc output level, without regard to preceding stage voltages.

The circuit in Fig. 2 allows direct coupling to the preceding stage. The value of \(R_2 \) is chosen for proper impedance matching and base biasing, considering the preceding stage dc level.

Because of the high-input/output impedance ratio of emitter-followers, little consideration need be given early interdependence. As examples, the filter in Fig. 3 was designed as a pulse-width demodulator. A bandpass filter-circuit arrangement is shown in Fig. 4.

Gerald F. Allen, Electronic Engineer, General Dynamics, Pomona, Calif.

If this idea is valuable to you, give it a vote by circling Reader-Service number 747.

Vote for Ideas Valuable to You

Vote for the Ideas which are valuable to you. Other engineers will vote for the Ideas which are most valuable to them. The Idea which receives the most "Valuable" votes will be judged "Most Valuable of Issue." Its author will receive a $50 award.

Choose the Ideas which suggest a solution to a problem of your own or stimulate your thinking or which you think are clever.

The Ideas chosen as the most valuable in each issue will be eligible for the $1,000 Ideas of the Year award.

So vote for the Ideas you find most valuable. And, after you've voted, why not send in an Idea of your own?

$50 "Most Valuable of Issue" Award for Angle-Conversion Tip

Solomon L. Linder, member of the Technical Staff, Bell Telephone Laboratories, Whippany, New Jersey, has won ELECTRONIC DESIGN's fourteenth Most Valuable of Issue Award.

Mr. Linder receives the award for his Idea for Design, "Slide Rule Converts Angles to Radians Quickly," which appeared in the August 30 issue. The idea described an easy way to convert from degrees to radians on the slide rule.
SEVENTH ANNIVERSARY AWARDS

IDEAS-FOR-DESIGN

Entry Blank

Ideas-for-Design Editor
ELECTRONIC DESIGN
850 Third Ave.
New York 22, N. Y.

Idea (State the problem and then give your solution. Include sketches or photos that will help get the idea across.)

(Use separate sheet if necessary)

I submit my Idea for Design for publication in ELECTRONIC DESIGN. I understand it will be eligible for the Seventh Anniversary Awards—$20 if published, $50 if chosen Most Valuable of Issue, $1,000 if chosen Idea of the Year.

I have not submitted my Idea for Design for publication elsewhere. It is entirely original with me and does not violate or infringe any copyrights, patents or trademarks or the property rights of any other person, firm or corporation.

Hayden Publishing Company, Inc. shall have the exclusive publication rights to these Ideas for Design selected for publication in ELECTRONIC DESIGN. This right extends to the subsequent use of the Idea for Design by Hayden in any of its other publications. Honorariums, if any, for subsequent publication shall be solely in the discretion of Hayden Publishing Company, Inc.

Name ___________________________ Title ___________________________

Company Name ___________________________

Address ___________________________

For Additional Entry Blanks, circle 750 on Reader-Service Card.
Advanced design gives better vibration resistance to **iei** miniature electrolytic capacitors

iei miniature electrolytic capacitors lead the industry in vibration resistance because of advanced design features proved out in continuing test programs.

iei capacitors achieve better vibration resistance in five ways. 1. Clean-cut foil edges have no burrs or slivers to cause noise or shorts. 2. Special impregnating techniques ensure tighter-packed foil—reduce danger of shorts due to vibration. 3. Leads are lead welded for greater strength. 4. Welds are further strengthened by encapsulation in plastic seals, which prevents stress in the critical weld area. 5. Improved cathode and anode seals prevent leakage under the most severe stresses. These and other features are found only in **iei** tantalum foil capacitors. For complete descriptions, send for Bulletins 2745 and 2773. International Electronic Industries Division, Standard Pressed Steel Co.

iei for many years has been the only company specializing in low-voltage, miniature electrolytic capacitors for transistor applications. **iei** offers full polar, partial polar and non-polar construction in 85° and 125° tantalum foil, from 3 to 150 WVDC, from 2 to 5200 mfd. Also a full line of aluminum foil, tantalum wet slug and solid tantalum types.

IDEAS FOR DESIGN

Straight-Line Representations 741

Simplify Data Comparisons

A recurring problem in design work is the comparison of experimental performance with theoretical prediction. In many cases it is possible to greatly simplify this process by

BASIC EQUATION:

\[\frac{1}{jwL} \]

REARRANGED EQUATION:

\[\frac{1}{jwL} = \frac{1}{jwC} + \frac{1}{jwC} \]

PROCEDURE: Plot \(\frac{1}{jwL} \) versus \(\omega^2 \)

EXPECTED CURVE:

Fig. 1. Equivalent inductance of an inductor with stray shunt capacitance.

BASIC EQUATION:

\[\frac{1}{jwC} \]

REARRANGED EQUATION:

\[\frac{1}{jwC} = \frac{1}{jwC} + \frac{1}{jwC} \]

PROCEDURE: Plot \(\frac{1}{jwC} \) versus \(\omega \)

EXPECTED CURVE:

Fig. 2. Input capacitance of a grounded-cathode amplifier stage.

BASIC EQUATION:

\[\frac{1}{jwC} \]

REARRANGED EQUATION:

\[\frac{1}{jwC} = \frac{1}{jwC} + \frac{1}{jwC} \]

PROCEDURE: Plot \(\frac{1}{jwC} \) versus \(\frac{1}{\omega^2} \)

EXPECTED CURVE:

Fig. 3. Waveguide wavelength.

International Electronic Industries Div.

sps

BOX 9036-12, NASHVILLE, TENNESSEE

CIRCLE 174 ON READER-SERVICE CARD
expected

If this idea is valuable to you, give it a vote by circling Reader-Service number 741.

Automatic Gain Control Circuit 748 Uses Unijunction Transistor

The unijunction transistor, with its negative resistance characteristic, lends itself quite simply to applications requiring limited automatic gain control. An agc circuit using a unijunction is shown in Fig. 1.

As the input rises, the current into the detector and the emitters also rises, causing the emitter-to-\(B \) resistance to fall. Since the output is \(IZ_{an} \) (\(Z_{an} \) is the \(B \) to \(B \) resistance), as \(I \) increases \(Z_{an} \) decreases.

The emitter-to-\(B \) resistance (for a 2N-
Gertsch CRT-3 Subminiature Coaxial RatioTran®
-ONLY 2½” IN DIAMETER
—ACCURATE TO 0.001%

-QUALIFIED TO MIL SPECS

These units are now in service in several major missile systems

EXCELLENT PERFORMANCE. This Gertsch AC voltage divider, has inherent characteristics of high input impedance, low effective output impedance, and very low phase shift. Input voltage: 0.35 f (f in cps) or 140-volt max, at 400 cps.
Frequency range: 50 to 10,000 cps. Unit is ageless, requiring no calibration tests. Performance approaches that of the ideal divider.

MANY TYPES. Subminiature RatioTrans are available with 4-place, 5-, and 6-place resolution, and in a wide variety of decade arrangements. Available either servo mount or flange mount. Complete data sent on request. Bulletin CRT-3. Or contact your Gertsch representative.

SHOCK: MIL-S-901B (5 foot drop, 400 lb. hammer)
VIBRATION OPERATING: MIL-STD-167, Type I
NON-OPERATING: MIL-E-4970, Proc. III
SALT SPRAY: MIL-E-5272A
DRIP PROOF: MIL-STD-108
FUNGUS: MIL-E-5272
HUMIDITY: MIL-STD-202A
HIGH TEMP. OPERATING: + 52° C
NON-OPERATING: + 71° C
LOW TEMP. OPERATING: - 18° C
NON-OPERATING: - 54° C
DIELECTRIC STRENGTH: 900 V RMS, 60 cps

= Gertsch =

GERTSCH PRODUCTS, INC.
3211 S. La Cienega Blvd., Los Angeles 16, Calif. • Upton 0-2761 • Vermont 9-2201

IDEAS FOR DESIGN

Fig. 2. Unijunction transistor is here used to compensate an oscillator whose output varied universally with frequency. Graph shows effect of agc.

492) varies from approximately 4.6 K for zero emitter current, to 150 ohm for an emitter current of 10 ma. This change in resistance is fairly linear for emitter currents of from 1 to 5 ma (emitter-to-β, resistance from 2 K to 240 ohm). For linear operation, these emitter current values should not be exceeded.

Fig. 2 presents a unijunction age circuit used to compensate an oscillator whose output decreased as the frequency increased. The graph illustrates the result of this age compensation.

This circuit is only one of many in which age may be obtained with the unijunction transistor. Thus, the unijunction could also be used in place of the emitter resistance in an amplifier, controlling the gain by varying this resistance.

Richard S. Hughes, Electronic Engineer, U. S. Naval Ordnance Test Station, China Lake, Calif.

If this Idea is valuable to you, give it a vote by circling Reader-Service number 748.

A Two-Transistor Amplitude-Modulated Oscillator

This circuit was designed to modulate a phono-oscillator from a single audio stage driven by a high-impedance crystal pickup.

CONNECTORS

A well-developed sonar system is standard equipment for the Porpoise...That, plus speed, maneuverability, and intelligence, rates him highly adaptable for underwater existence.

An equally well-adapted man-made combination is the Polaris Missile and its substructure, nuclear-powered launching pad. The Polaris program adds extra-reliability with Anton Series WM-20 Connectors by Lionel...These rugged, dependable devices afford the utmost in reliability and construction, the maximum in quality, design, materials, and workmanship...as proven by Polaris.

- Die-Cast housings
- Diallyl Phthalate moldings
- Five sizes, 34 to 104 contact range
- Also available to accept #16 wire
- Extended insertion/withdrawal life
- Meet applicable MIL Specs

(Special materials and modifications to meet specific requirements)

Delivery time slashed for Anton "special" connectors! New Lionel tooling practices provide rapid delivery of "specials" for unusual applications...within 6-8 weeks* of order date!

Write Dept. 1114A-W for Series WM-20 Technical Literature.

LIONEL
Electronic Laboratories
FORMERLY ANTON ELECTRONIC LABORATORIES
1226 Flushing Ave., Brooklyn 37, N.Y.

CIRCLE 176 ON READER-SERVICE CARD

CIRCLE 177 ON READER-SERVICE CARD

ELECTRONIC DESIGN • November 22, 1961
The npn-pnp biasing arrangement allows the high ac collector impedance of the grounded-base oscillator stage to be used for the ac load impedance of audio-modulating transistor Q_2. This provides a large audio gain and allows 100 per cent modulation of the oscillator output from the low-output power of a high-impedance crystal microphone or phono pickup.

Capacitor C_3 acts as an audio-bypass capacitor preventing negative feedback from the collector to the base of Q_2, which would decrease its audio gain and input impedance. The R_s, R_3 network also tends to stabilize the dc operating point of Q_1 and Q_2, and helps to maintain E_s constant during variations in ambient temperature and transistor parameters.

The audio-voltage gain of Q_2 will be approximately equal to its collector-load impedance, divided by R_s. For a typical audio transistor operating at 1 or 2 ma collector current, the ac collector impedance of Q_2 would be approximately 50 K. Thus, if R_s also is 50 K, the total collector-load resistance of Q_2 will be approximately 25 K since the impedance looking into the collector of Q_2 will be much greater than 50 K, or approximately 2-3 meg at the audio frequencies.

The voltage gain from base to collector of Q_2, will be 25 or greater, and 100 per cent modulation can be obtained with an audio input voltage of only 350 mv peak-to-peak.

The circuit works as follows: transistor Q_2, and its components form a simple Colpitts oscillator, with positive feedback provided by the capacitor-voltage divider network C_1 and C_2. L_1 and C_1 form the oscillator-tuned clos-

A little thermistor makes a big difference in many thermal conductivity instruments

Place two small bead thermistors in a bridge circuit where enough current flows to heat them to 150° C, and you'll find you have an instrument for the measurement of many different physical phenomena. For example:

GAS ANALYZER — Place the thermistor in small cavities filled with identical gases, and balance the bridge by varying the setting of "A". A change in the gas in one of the cavities will either raise or lower the resistance of the thermistor because of a change in thermal conductivity. This will unbalance the bridge and give a reading on a meter.

FLOW METER — Seal a thermistor in a cavity, and place the other thermistor in a pipe. Balance the bridge when there is no flow through the pipe. When the flow starts, the resistance of the thermistor changes, and the bridge becomes unbalanced.

ANEMOMETER — Design the instrument with a sensing thermistor held in free air, and it will be capable of measuring air velocity from the slightest breeze to a gale.

VACUUM GAUGE — Place one of the thermistors in an evacuated bulb and the other in a chamber connected to a vacuum pump. Pump the chamber down to a high vacuum, and balance the bridge. A reading can be obtained when the chamber is not a high vacuum because the presence of air will cool the thermistor and raise its resistance.

Thermistors can be used in many other circuits to great advantage. For details, application assistance and new Thermistor Catalog EMC 4, write:

Fenwal Electronics, 83 Fountain Street, Framingham, Mass.

CIRCLE 179 ON READER-SERVICE CARD
NEW HOT PEEL STRENGTH COPPER-CLAD LAMINATE at no increase in price!

IDEAS FOR DESIGN

Many wire failures are occurring in the soldering operation—at temperatures of 500°F—not at room temperatures. Printed circuit users therefore realize a real need for copper-clad laminates with HOT Peel Strength.

Synthane has developed a new grade of copper-clad laminate, G-10R, which meets or exceeds NEMA and MIL room temperature peel strength (9 lbs. per inch of width) and, in addition, has a hot peel strength, using 2-oz. copper, of 2 to 4 lbs. per inch of width (instead of the usual 0.1 to 0.2 lbs. per inch of width) measured on 1/8" and 1/4" widths.

G-10R uses no structural adhesive, meets all G-10 specifications, and doesn't cost a penny more.

AVAILABLE IMMEDIATELY

in sheets 36" x 36" and 36" x 48" with the usual copper foil thicknesses.

SYNTHANE CORPORATION OAKS, PENNA.

Gentlemen:

Please send me your latest brochure on Synthane G-10R and other Synthane copper-clad laminates.

Name

Address

City Zone State

170

CIRCLE 180 ON READER-SERVICE CARD

CIRCUIT 181 ON READER-SERVICE CARD

HIGH VOLTAGE POWER SUPPLIES

INSULATION TESTERS

PULSE MODULATORS

1,000 to 350,000 Volt Power Supplies Regulated or Unregulated

With extensive experience in the use of high voltage techniques, KILOVOLT CORP. brings to bear the very latest existing knowledge in the design and development of power supplies for specific applications.

KILOVOLT CORP. is prepared to recommend the standard unit best adapted to your needs or custom design and construct an especially suited power source or pulse modulator.

Long used in a wide range of industry KILOVOLT Corp. equipment enjoys an exceptional record of trouble-free performance under the most severe conditions. All units are engineered to provide the maximum protection to the operator and the equipment.

We'll be happy to help work out your high voltage power and pulse modulator needs. Call us without obligation.

KILOVOLT HUBBARD B-7373

238 HIGH STREET • HACKENSACK, N. J.

CIRCUIT 182 ON READER-SERVICE CARD

GET YOUR COPY

STAR'S CATALOG OF RIGHT-OFF-THE-SHELF STAINLESS STEEL FASTENERS

Save time . . . save money. This book lists over 8,000 stainless steel fastenings available for immediate delivery RIGHT OFF THE SHELF! Write for your new catalog TODAY.

STAINLESS STEEL FASTENERS

STAR STAINLESS SCREW CO.

663 Union Blvd., Paterson, N. J. • Clifford 6-2300

Direct New York City phone: Wisconsin 7-6310

Direct Philadelphia phone: Walnut 5-3660

CIRCLE 182 ON READER-SERVICE CARD

ELECTRONIC DESIGN • November 22, 1961

170
Pressure-sensitive Teflon tapes for Class H insulation. Tough, chemically inert, temperature stable.

Permacel NEW BRUNSWICK NEW JERSEY

Tapes • Electrical Insulating Materials • Adhesives

CIRCLE 184 ON READER-SERVICE CARD

Electronic Design • November 22, 1961

Fig. 1a. Basic analog computer circuit can perform operations such as addition, subtraction, integration with only minor circuit variations. Multiplication, division, other "nonlinear" operations require more complicated circuitry. **(b)** Basic photoelectric analog circuit can be readily modified to divide, multiply, perform nonlinearly.

Multiplication

\[
I_2 = I_1 R_2/R_1
\]

Division

\[
I_2 = I_1 R_2/R_1
\]

Square Root

\[
I_2 = I_1 R_2/R_1
\]

dependent, this operating equation may be applied as shown in the functional circuits.

Note that the feedback circuit does not rely on the relationship between current and intensity of the light source, or between intensity and resistance of the photoelectric elements.

John D. Howell, Development Engineer, Wallace & Tiernan, Inc., Belleville, N. J. If this idea is valuable to you, give it a vote by circling Reader-Service number 740.
Connector System Solves Large System

Connections can be a pain in the neck in large electronic installations, especially those systems such as TV networks and data systems which are subject to continual change. Here is one answer to the large-system interconnection problem. Originally devised for the Columbia Broadcasting System television network, it is now commercially available from Thomas & Betts Co., Inc.

A NEW version of the familiar push-on tab connector has been developed into an interconnection system suitable for large, multiple-rack electronic installations. The design decisions behind this interconnection system were made by a television network engineer as an answer for TV station interconnection problems. However, the resulting system has applications in data and computer systems as well.

The interconnection method is mainly concerned with subsystem-to-subsystem or rack-level interconnections. It combines the advantages of the terminal blocks and plug-in connectors usually used for these connections. On the one hand it approaches the low cost of terminal blocks and on the other it nears the quick-disconnect flexibility of plug-in connectors. Since its original development and trial in television last year, it has become a commercially available product marketed by the Thomas & Betts Co., Inc., Elizabeth, N. J., under the trade name “Connecto-Blok.”

Connection System Is Mechanically Very Simple

Fig. 1 shows the audio and control circuit version of the new connector. It is similar in appearance to “tree-type” solder ter-
Problems

Unlike connections accrue in the tabs available through electronic racks-mounted boards.

But the essential novelty of the new connector system lies in the tabs themselves. Unlike the usual crimped-on tab where the wire comes in at the end, here the wire is brought in at the middle of the tab (see Fig. 2). As will be seen, a number of benefits accrue from this simple change. These female tabs are then pushed over the male feed-through pins in the terminal blocks. Similar connections made on the other side carry the circuit on, it being easy enough to rotate the boards around in their mounting brackets for access to either side.

As Fig. 3 shows, each terminal board assembly is made up of a matrix array of feed-through pins (up to 300 pins per board are available) and a special "fanning strip" used to mechanically guide the laced wire bundles to each row.

Video frequency versions of the connector terminal blocks and is designed to be mounted in place of regular solder-terminal blocks in rack-mounted equipment.

A new method of consolidating tungsten powder into tungsten ingot has been created by LINDE's Crystal Products Department. This new material—in crystal form—changes the whole approach to use of tungsten in electronic applications.

Compared to metallurgically prepared (PM) tungsten, crystal tungsten offers 5 to 15 per cent higher electrical conductivity. Thermal conductivity is about 20 per cent higher at 500°F, resulting in improved heat dissipation. These properties can be advantageous in electronic design.

The high purity and zero porosity of the crystal tungsten also suggest its use not only in electrical contact points, but also in vacuum switches, electrical leads in vacuum tubes, and applications where outgassing or leakage is a problem. Their purity and lack of grain boundaries provide more even electron emission, making them valuable in several high pressure vacuum or open air switches. Other uses include: flexible sheet in electronic tubes; x-ray and anticathode targets.

LINDE crystal tungsten is considerably more ductile than undoped PM tungsten. It can be drawn into wire as fine as 1 mil, giving greater yield of finished product from the starting ingot.

Material easily worked

Significant is the fact that it can be easily worked and at temperatures 800°F lower than working temperature for powder metallurgy or vacuum-arc cast tungsten—making it useful for a wide range of non-electronic applications. Present shapes include swaged rods from 1/10 to 5/8-inch diameter, as grown ingots up to 3/4-inch diameter in production, and even larger diameters in development.

For more details on this new material, check the coupon below.

![Tungsten grid cap - one of many complex shapes made by LINDE "Plasmaplate" Process.](image)

Super-hot process metal-coats and fabricates intricate parts

Dense, high-purity metal coatings for certain base materials, and the fabrication of odd shapes, are accomplished with "Plasmaplate," a super-hot plasma stream process developed by LINDE's Flame-Plating Department.

In operation, a high-current torch uses temperatures up to 30,000°F to produce a supersonic stream of ionized gas—melt and accelerate to high velocity particles of any inorganic material that melts without decomposition.

High-purity coating materials—such as tungsten or other refractory metals—are thus permanently fused to the surfaces of materials such as graphite, brass, copper, steel, molybdenum, titanium, aluminum and others.

Parts of intricate configuration can be fabricated by depositing the coating material on a mandrel machined to the desired internal shape of the finished part. After the desired thickness is obtained, the mandrel is dissolved out by chemical means.

CHECK-CLIP COUPON-ATTACH TO BUSINESS LETTERHEAD

Linde Company, Dept. ED-114
270 Park Avenue
New York 17, N. Y.

Please send details on the items checked:

- LINDE Crystal Tungsten
- LINDE "Plasmaplate" Process
- LINDE Flame-Plating Process

CIRCLE 186 ON READER-SERVICE CARD
Eicor is now an operating division of the
INDIANA GENERAL CORPORATION

AERO-SPACE QUALITY...
ANY PLACE RELIABILITY

Precision motors — .001 to 7.5 hp

Designed for a wide range of military and non-military uses, Eicor precision quality motors are built to meet and exceed rigid aerospace requirements. This means building and testing prototypes for performance and reliability under adverse conditions. Eicor’s facilities include a well-equipped model shop and several test laboratories. Lab equipment includes an altitude chamber, radio noise room (screen room), vibration table, Brush surface analyzer, comparator, electro-limit gauge and many other testing devices.

Our engineers work closely with you to develop a motor for your exact needs. Fast delivery on both special and production motors. Phone or write Eicor, Oglesby, Illinois. Dept. M-11

INDIANA GENERAL
CORPORATION
EICOR DIVISION / Oglesby, Illinois

HIGH-RELIABILITY ROTATING EQUIPMENT
CIRCLE 187 ON READER-SERVICE CARD

DESIGN DECISIONS

blocks, Fig. 4, are necessarily less dense because of the physical size of the coaxial cable and the need for isolation between lines.

As the photos show, the matrix array of pins provides an ordered, centralized location for system trouble-shooting. Because the wires come out at right angles from the middle of the female tabs, handy circuit protrusions are available for test probing, whether the tabs are on the pins or not. Further, the protruding back ends of the female tabs have convenient holes to put the test probes in, or for superimposing strapping connections to gang up B+ or relay points (see Fig. 5).

The accessible layout of these boards and the ease with which the tabs can be pulled off and replaced with other tabbed wires make these terminals an orderly starting point for the system revisions and modifications so important in both TV and data systems or in fact in any system subject to evolutionary growth.

TV System Needs Not Be Too Different From Rest of Electronics

The engineer, Charles J. Neenan, who is in the Columbia Broadcasting System’s Television Network engineering department, said that by now his connection system has been in use for over a year in several extensive CBS network installations in both New York and Los Angeles. He said that the new system cut the installation costs of these systems 20 to 40 per cent. In systems where this type of connector would be replacing multiple-pin, plug-in connectors, savings on connector hardware alone might amount to 70 to 80 per cent, he estimated.

The same features that make the new con-

Fig. 4. Video version of connector has 70-db isolation between each line at video frequencies.
To Contractors and Subcontractors on U.S. Government Projects

NEW TRANSISTOR [2N1645]

- HIGH RELIABILITY ■ ONE WATT POWER OUTPUT AT 100 MC/S
- EFFICIENCY APPROXIMATELY 50%

The 2N1645 is a diffused base germanium mesa transistor for UHF power amplifiers, frequency multipliers, and very high speed, high current switching applications. Typical turn-on and turn-off times under constant voltage drive conditions are less than 5 and 15 nanoseconds respectively. Power output of one-half watt as a doubler may be achieved up to 250 megacycles.

MAXIMUM RATINGS AT 25°C

Collector Current .. 300 mAdc
Collector Voltage ... 35 Volts
Emitter Voltage ... 1 Volt
Junction Temperature 100°C
Power (TA = 25°C) .. 1 Watt
Power (TC = 25°C) .. 6 Watts

TYPICAL ELECTRICAL CHARACTERISTICS

\(f_t \) .. 600 mc
\(Re_{he} (250 \text{ mc}) \) 23 ohms
\(C_{cb} \) (dir) ... 10 pf
\(h_{fe} \) (1000 cps) 50
\(h_{fe} \) (IC = 100 mA) 35

TYPICAL CURRENT GAIN VS FREQUENCY

FREQUENCY IN MEGACYCLES

The 2N1645 transistor may be purchased in quantity from Western Electric's Laureldale Plant. For technical information, price, and delivery, please address your request to Sales Department, Room 103, Western Electric Company, Incorporated, Laureldale Plant, Laureldale, Pa. Telephone—Area Code 215—Walker 9-9411.

LAURELDALE PLANT

MAKER OF ELECTRON PRODUCTS
FOR U. S. MILITARY AND SPACE APPLICATIONS

ELECTRONIC DESIGN • November 22, 1961
DESIGN DECISIONS

that circuit trouble-shooting and wiring changes are difficult to make with plug-in connectors, therefore time-consuming and expensive. (The expense in terms of downtime during trouble-shooting goes beyond those costs which are immediately obvious: there is also the “expense” to a supplier's reputation as his equipment's percentage of availability begins to tumble.)

Ordinary terminal blocks on the other hand, particularly the tree-type with soldered connections, do permit a higher degree of space-wise concentration of connections and are more reliable than conventional connectors. But again, the wiring labor costs are high, especially on-the-site interconnections between equipment racks. Normal practice of fanning out and lacing the ends of a cable, skinning each wire, wrapping the wire around a terminal, and finally soldering each connection is awkward and costly. The fact that the terminal blocks are invariably located at either the tops or bottoms of cabinet assemblies does not help matters. In the case of terminals at the tops of racks, scaffolds have to be set up for the wiremen. But the wiring at the bottom of the racks is even more difficult, with the men being forced to make the tedious, closely-spaced soldered connections in a back-breaking position.

New Terminals Ease Each Production—Checkout—Use Step

The new connection system is a workable compromise between the faults and virtues of the above systems, Mr. Neenan says. In addition, it has some virtues of its own, he added.

To begin with, the connections in the new system are pre-made sliding-contact types. From six to ten pounds are needed to force each female tab on a male pin. Obviously, this amount of force per pin far exceeds the amount feasible with a multiple-pin, plug-in connector and explains why this joint, although also a sliding contact type, is more reliable.

In these types of tabs, the push-on operation causes the curled-over edges of the female tabs to make high-pressure sliding contacts with the male pins. It is believed that the tin-plated phosphor bronze terminals will give 10 to 20 years service, before they start developing contact resistance. No contact trouble has been experienced so far in the
Sensible Relays at Sensible Prices

Price Electric Series 1000 Relays Now Feature...

Sensitive Operation • Solder or Printed Circuit Terminals Open or Hermetically Sealed Styles • Low Cost

These versatile sensitive relays are designed for applications where available coil power is limited. They retain all the basic features, such as: small size, light weight and low cost, that make the Series 1000 General-Purpose Relays pace setters in their field.

Typical Applications
Remote TV tuning, control circuits for commercial appliances (including plate-circuit applications), auto headlight dimming, etc.

General Characteristics
Standard Operating Current: 1 to 7 milliamps DC at 20 milliwatt sensitivity
Maximum Coil Resistance: 16,000 ohms
Sensitivity: 20 milliwatts at standard contact rating; 75 milliwatts at maximum contact rating. Maximum coil power dissipation 1.5 watts.
Contact Combination: SPDT
Contact Ratings:
Standard 1 amp; optional ratings, with special construction, to 3 amps. Ratings apply to resistive loads to 26.5 VDC or 115 VAC.
Mechanical Life Expectancy: 30,000,000 operations minimum.
Dielectric Strength: 500 VRMS minimum.

For Additional Information, contact:

PRICE ELECTRIC CORPORATION
302 Church Street • Frederick, Maryland
MOnument 3-5141 • TWX: Fred 565-U
NEW AC Voltmeter

Model 100 is completely transistorized and battery operated. Operates over the frequency range 5 cps to 1 mc with 12 full scale ranges from 0.001 to 300 V rms. Input impedance 2 megohms. Noise less than 4% full scale (on 1 MV range with 100,000 ohms source impedance) and less than 2% of full scale all other ranges. Powered by two standard mercury cells with battery life of 100 hours (you check battery charge by flick of front panel switch). Accuracy is within 5% of full scale. The unit has an overload capacity of 600 volts peak on the 0.3 volt and higher ranges. 25 volts on 0.1 volt and lower ranges. Weighs only 4½ pounds. Write for Bulletin R-202. PRICE $240

Transistor Preamplifier

Increases sensitivity of VTM's and oscilloscopes to microvolt level. Low noise (≤ 2 db), high gain (1,000), and wide temp. range (−20°C to +50°C). Battery operated—300 hour life; battery check switch. Portable, 1½ lbs. Write for Bulletin R-201. Price, F.O.B. Chicago. $150.

Radiation Electronics Co.
Division of Comptometer Corporation
5600 Jarvis Avenue • Chicago 48, Illinois

Circle 194 on Reader-Service Card

Patents

Benjamin Bernstein

Delay Network

Maximum delay-bandwidth product is provided by a network consisting of two parallel paths, one a resistive attenuator and the other an amplifier shunted by two reactive impedance branches. The zeroes of one susceptibility correspond in frequency with the poles of the other susceptibility. The amplifier gain must exceed the loss in the attenuator by 12 db.

Source 1 feeds line 6, containing the attenuator 10, and line 5, comprising amplifier 7 in parallel with susceptances B, and B, and isolating resistors R, and R. Susceptance B, is made up of available reactive components which satisfy the zeroes of the network delay-frequency characteristic. The product of the susceptances is then determined by the magnitudes of the isolating resistances and the amplifier input and output impedances.

Saturable Magnetic Multivibrator

With separate load and feedback circuitry, a magnetic multivibrator operates independently of the load impedance. Feedback occurs only when the applicable reactor is in reset.

Assume reactor 10 is unsaturated while reactor 11 is in a saturated state. Diode 14 conducts alternating current from source 16 through load L. Magnetic flux links feedback

Pinpoint Precision

Throughout large volume

20" x 20" x 25"

Lower Gradients:
± 1° C. over large portion of test volume

Range:
−100°F to +600°F

Control Accuracy:
± 1/4° F.

Heating Time from 70°:
13 minutes to 350°F.
28 minutes to 500°F.

Cooling Time from 70°:
6 minutes to −65°F.
9 minutes to −100°F.

Call Delta representative or write direct for specifications

Delta Design

MODEL 1060B
Temperature Chamber
Cabinet Optional

3163 Adams Ave. • San Diego 16, California
ATwater 3-3133 • CABLE: DELTA • TWX: 8D 6480-U

Circle 195 on Reader-Service Card

Electronic Design • November 22, 1961
winding. A voltage drop exists across resistor 30 and capacitor 34 charges until core 10 saturates. The capacitor then discharges through control winding 33 to reset reactor 11. The switching cycle is completed when the capacitor charges in the opposite direction to reset reactor 10.

Power Supply

A transistorized, regulated power supply contains two paralleled transistors under heavy load. As the load current decreases one of the two transistors is biased to cut off and the second transistor acts alone as the series regulating element.

Transistor 44 passes the load current for small load. The bias voltage developed across resistor 42 holds transistor 58 cut off. As load current increases, transistor 58 becomes conducting and the voltage drop across resistor 60 maintains the output voltage at the specified value.

Another version of the circuit uses zener diode 62 to maintain transistor 58 cut off until the voltage across resistor 42 causes the diode to conduct. In effect, this replaces the two paralleled transistors.
Only MAXSON INSTRUMENTS DIVISION could offer the most accurate Phasemeter in the field. The Model 1010 measures the difference between sinusoidal voltages over the entire audio range. Outstanding features include a frequency range of 30 to 20,000 cps and a phase range of 0 to 360° without ambiguity. The extremely high accuracy, wide flexibility of applications and the time and error reduction via this self-aligning phasemeter make it the most economical investment for instrument buyers.

IDEAL FOR:
- TESTING & INSPECTION... of polyphase systems, goniometers, feedback amplifiers, filters, transformers, phase shifting networks
- MEASUREMENT... of residual L and C in resistors
- CALIBRATION... of production line phasemeters
- HIGH ACCURACY TESTING... of servo and synchro systems
- CONTINUOUS MONITORING... of phase changes with chart recorder

Write for the complete engineering bulletin on the Model 1010 Phasemeter

FOR MECHANICAL... ELECTRONICS & ELECTROMECHANICAL DEVICES & SWITCHES... LOOK TO

MAXSON INSTRUMENTS DIVISION

475 TENTH AVENUE • NEW YORK 18, NEW YORK

MAXSON ELECTRONICS CORPORATION

BOOKS

Transform Calculus For Electrical Engineers

Fourier series and integral, and Fourier and Laplace transforms are presented and applied, mainly in the field of electronics.

Principles Of Control Systems Engineering

Discusses feedback control systems at the senior-graduate level. Sections include time-domain, frequency-domain, root locus and computer approaches.

The Design of Small Direct-Current Motors

Presents methods for solving the problems involved in the calculation and design of direct-current machines. Precise instructions, alternative procedures and many numerical examples are given.

Linear Systems Analysis

Discussed theory as applied to passive linear circuits, linear electronic circuits, linear servomechanisms, and mechanical vibrating systems. Mathematical solutions are based on Laplace transformations.
Theory Of Microwave Valves
Russian translation deals with cavity resonators, planar diodes, klystrons, magnetrons, traveling wave tubes.

Ultrasonics and Its Industrial Applications

Algebraic Equations

Engineering Drawing and Geometry, Second Edition

Electronic Drafting Handbook

Electromagnetic Fields and Waves
Basic text on electromagnetic phenomena, including Maxwell's equations, waveguide techniques.

Theory of Maxima and Minima
Harris Hancock, Dover Publications, Inc., 180 Varick St., New York 14, N. Y., 210 pp, $1.50 (paperbound).

Transistors

Filters and Attenuators
Alexander Schure, Editor; John F. Rider Publisher, Inc., 116 W. 14 St., New York, N. Y., 96 pp, $2.25 (paperbound).

Management Guide For Maintenance Cost Reduction

Where signals must be delayed by microseconds and should be adjusted to nanoseconds...

CHOOSE THE PERFORMANCE OF DISTORTION-FREE HELIDEL® VARIABLE DELAY LINES!

...for calibrating phase shift, matching delays in transmission systems, short-term memory, converting analogue to digital, telemetering, scrambling, coding, jamming, measuring jitter...

Zero in on extremely short time intervals with continuously variable Helidel delay lines. Select one of 21 standard total delay time models-ranging from 0.25 microsecond total delay to 1.0 microsecond total delay. Adjust them in increments as fine as 0.02 nanoseconds–quickly and easily. Then hold the signal–with negligible overshoot and phase distortion.

These rugged all-metal delay lines are precision built by Helipot to put all other methods of retarding signals to shame. They feature typical rise times of less than 10% total delay time, and operate over an ambient range of −55°C to +80°C with linearity of ±2% and resolution to 0.0007%.

Choose from 1", 2" and 3¾" diameter Helidel series to meet your standard and spec requirements. Your nearest Helipot Sales Rep has all the details. Call him or write Helipot direct.

Cut Your Coil Form Costs

WITH

PRECISION PAPER TUBES

Lowest cost in any quantity.
Finest dielectric materials:
Kraft ... Fish Paper ...
Acetate ... Resinite (phenolic impregnated) ...
DuPont Mylar ... Johns-Manville Quinterra ...
Specials ... Combinations.

Any Shape ... Any O.D. or I.D. ... Any Length
Di-Formed or Bowed Sidewall Construction.

... Send for bulletin on
Precision's Complete
Coil Form Service.
Request Arbor List
of over 2000 sizes.

PRECISION PAPER TUBE CO.
2055 West Charleston Street • CHICAGO 47, ILL.
Plant No. 2, 1 Flower Street, Hartford, Conn.
CIRCLE 200 ON READER-SERVICE CARD
Designing Phototransistor Circuits

One of the most sensitive light receivers known for visible and near-infrared radiation (\(\lambda_{max} = 1.5\) microns, endpoint wavelength 1.8 microns) is the germanium phototransistor. Only photomultipliers have greater sensitivities. Phototransistors have other advantages, such as comparatively stable frequency characteristics, relatively low noise level, great mechanical strength, small dimensions and weight, and long life. Further, circuits with phototransistors do not require high-voltage power supplies.

Table 1. Main Design Equations for Fixed and Self Biased Phototransistor Circuits

<table>
<thead>
<tr>
<th>Formula No.</th>
<th>Fixed bias circuit (Fig. 4)</th>
<th>Formula No.</th>
<th>Self bias circuit (Fig. 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specified (\Phi_m)</td>
<td></td>
<td>Specified (\Phi_m)</td>
</tr>
<tr>
<td>I</td>
<td>(\phi_1 = \beta \Phi_m = 3 \times 10^4 \beta \text{ amp/lumen})</td>
<td>VI</td>
<td>Design by formulas: I, II, III, IV, V</td>
</tr>
<tr>
<td>II</td>
<td>(R_b = (10 \text{ to } 100)R_n)</td>
<td>VII</td>
<td>(E_{com} = E_r + E_b)</td>
</tr>
<tr>
<td>III</td>
<td>(I_b = I_{b opt})</td>
<td>VIII</td>
<td>(E_r = R_b(I_{co} + \frac{I_b}{(U_{c max} - U_m)/R_{22} - \beta I_{b opt}})</td>
</tr>
<tr>
<td>IV</td>
<td>(R_L = (U_{c max} - U_m)R_{22} + \frac{1}{R_{22}}) (</td>
<td>U_{c max} - U_m</td>
<td>)</td>
</tr>
<tr>
<td>V</td>
<td>(E_1 = -U_{c max} + \left[I_{co} - \beta I_{b opt} + \frac{(U_{c max} - U_m)}{R_{22}}\right] R_L)</td>
<td></td>
<td>(\delta = \frac{\Delta I_c}{\Delta I_b} = \frac{1 - \beta}{\beta + 1 + R_b/R_s} \times 100%)</td>
</tr>
<tr>
<td></td>
<td>Specified (\Phi_m)</td>
<td></td>
<td>Specified (\Phi_m)</td>
</tr>
<tr>
<td>IV*</td>
<td>(R_L = \frac{E_c - U_{c max}}{I_{co} - \beta I_{b opt} + (U_{c max} - U_m)/R_{22}})</td>
<td>X</td>
<td>(R_L = \frac{E_{com} - U_{c max} - R_I}{I_{co} - \beta I_{b opt} + (U_{c max} - U_m)/R_{22}})</td>
</tr>
<tr>
<td>V*</td>
<td>(\Phi_m = U_{c max} - U_m\left(\frac{1}{R_{22}} + \frac{1}{R_b}\right))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This article describes the optimum operating conditions of phototransistors and procedures to be followed for their circuit design.

Equivalent Circuit Helps Describe Operating Principles

The construction of a phototransistor is similar to that of a germanium transistor. Both consist of either a pnp or an npn junction with three electrodes—emitter, base, and collector, Fig. 1. The germanium crystal of the phototransistor is illuminated on the emitter side. Its sensitive surface is in the form of a ring with an area of 2 to 3 mm².

Illumination of the germanium crystal imparts the energy of the light quanta to the valence electrons bound to the crystal lattice atoms. If the quantum energy h_{ν} is greater than the activation energy ΔE (0.7 ev in the case of germanium), a pair of current carriers is formed—an electron and a hole.

In principle it is immaterial which area is illuminated—that of the emitter, base, or collector. The free electrons, carried by the field set up by the contact potential difference in the two pn junctions, move from the emitter and collector regions to the base regions. An external field causes the holes to diffuse predominantly into the collector. This produces a negative space charge in the base. Illumination makes the base potential more negative. The phototransistor amplifies this change in potential in the same manner as an ordinary transistor amplifies an external signal applied to its base.

Thus, in a practical application, the base lead of the phototransistor should be left free. The simplest circuit, Fig. 2, is called a “floating base” circuit. It is analogous to a grounded-emitter circuit, with the illumination equivalent to a current generator in the base circuit delivering

$$I_{bp} = \varphi_p \nu_b$$ (1)

where

φ—light flux in lumens,
ν_p—current sensitivity of a single pn junction, amp/lumen.

These RBM glass enclosed reed switches are extremely small, sensitive, fast operating, durable and contamination-free. Their unusual advantages and low cost open up entirely new areas of application in the field of electronics and instrumentation.

The RBM Bi-reed Switch consists of precious metal contacts hermetically sealed in a glass tube containing an inert gas atmosphere. Contact arms, or reeds, are precisely contoured with a controlled gap between contact surfaces. The method of construction prevents contamination and assures ultra-long performance. Highly shock proof and vibration resistant.

The sub-miniature size weighs only 1/2 gram and occupies 1/30 cubic inch.

Development of the RBM Bi-reed switch is carried forward in the application of the RBM Bi-reed Miniature Relays. Each of these relays is a capsulated unit of exceptional reliability.

The RBM Bi-reed Relays conform to many government electrical and mechanical specifications. They provide outstanding opportunities for improving existing circuitry and can be used with either panel or printed board wiring.

Because of their maximum compactness, fast and positive action, longevity, and freedom from contamination they have a virtually limitless field of application that has been restricted until now because of the lack of such devices.
Now Mincom offers the industry extended bandwidth and improved predetection recording... the MINCOM Series CM-100 Instrumentation Recorder/Reproducer

At 120 ips the Mincom Series CM-100 now delivers 1.5 mc*—and also makes possible predetection recording/reproducing with dropouts virtually reduced to zero. This superb improvement in predetection performance is accomplished by redundant data recording. The two carrier tracks are fed through a new and exclusive Tracklok® to eliminate skew, and thence as a single track into a demodulator to recover the original information. It's well worth seeing, especially if you need reliable operational predetection at your facility—and need it in FM/FM modulation, PCM and PCM/FM.

*Optional

1.5 megacycles

Physically, \(q_{pn} \) represents the charge accumulating in the base per unit time when the phototransistor is illuminated at an intensity of one lumen. This is the photosensitivity of the phototransistor at a quantum yield of unity (according to Shive\(^1 \), \(q_{pn} = 3 \times 10^{-2} \) amp/lumen).

The current in the collector circuit can be determined from the formula

\[
I_c = I_{c0} + \beta I_{b0}
\]

(2)

where

- \(\beta \)—gain in grounded-emitter circuit
- \(I_{c0} \)—dark current in the collector circuit with zero current in the base circuit

From Eqs. 1 and 2

\[
I_c = I_{c0} + \beta q_{pn} \Phi
\]

(3)

and the current photosensitivity will be

\[
q_c = \frac{dI_c}{d\Phi} = \beta q_{pn}
\]

(4)

or

\[
q_c = 3 \times 10^{-2} \beta \text{ amp/lumen}
\]

(5)

Tests on many phototransistors have shown that Eq. 5 is accurate enough for most practical applications.

From Eq. 5 it is evident that if the phototransistor pnp junctions have \(\beta \) values of 50 and higher, the photosensitivity will be greater than 1.5 amp/lumen. In practice, sensitivities of 10 amp/lumen can be obtained.

The equivalent circuit of the phototransistor can be represented as an active, linear two-port network, as shown in Fig. 3. The notation is analogous to that used for the conventional grounded-emitter circuit. The new element is the ideal current generator in the input circuit, providing the photocurrent in accordance with Eq. 1.

The parameters \(r_n, r_b, r_c, \) and \(r_o \) can be determined by the same methods used for ordinary transistors. The parameters are de-
terminated with the transistor darkened. However, the optimum operating point is chosen in a different manner.

Dynamic Mode Parameters Obtained From T Network

To calculate the dynamic mode parameters, the equivalent T network of the phototransistor is presented as a two-port network. This makes the determination of the parameters simpler because the illumination behaves as if it were supplied by an ideal current generator with infinite resistance. Therefore the output resistance R_{oa} (internal resistance of the two-port network) is

$$R_{oa} = \frac{1}{k_{22}} = r_r + r_s - r_r'$$ (6)

Other parameters of the phototransistor are analogous to the parameters of usual photocells. The static current and voltage sensitivities are respectively

$$\psi_i = \gamma \beta \psi_v$$ (7)

The dynamic values of these parameters can be determined from the formulas

$$\psi_{id} = \psi_i \frac{R_{22}}{R_L + R_{22}}$$ (8)

$$\psi_{id} = \frac{R_L}{R_L + R_{22}} \psi_{id} = \psi_i R_L$$ (9)

Choosing the Optimum Modes of Phototransistor Operation

The phototransistor circuit of Fig. 2 is used when the load resistance is low (meter, relay, etc.) and the incident light flux is relatively high. With this circuit the current sensitivity of the phototransistor, ψ_i, is of interest.

If the light flux is low and voltage amplification is used, stringent requirements are imposed on the phototransistor parameters. In particular, it is necessary to have maximum values for R_{22} and U_{max} and a minimum I_{dc}, where

AT 500 VOLTS... > 300°F... 20,000 PSI,

DOW EPOXY RESIN HOLDS 1000-MEGOHM RESISTIVITY!

Made of Dow epoxy resin, this electrical lead holder costs $85.00 less to produce than a similar unit constructed of other materials. Yet it maintains a constant high resistivity of 1000 megohms at 500 volts under tremendous bottom hole pressures and temperatures which can reach 20,000 psi and more than 300° F.

Dow epoxy resin was selected for laminating this part because of its durability, chemical resistance, low water absorption, and excellent electrical characteristics. This same resin is also used in making other accurate PGAC down-hole instruments.

The Dow family of epoxy resins for electronics applications includes unusual brominated epoxies... casting and laminating resins which offer self-extinguishing properties, and excellent electrical and other physical properties.

Dow offers designers the important advantage of uniform high purity and quality. Because Dow produces the raw materials required... and controls every step... in the production of epoxy resins, Dow can maintain absolute control over the purity and properties of its epoxies. This basic epoxy position assures a product you can depend on.

For information and data on the family of Dow epoxy resins, write us today in Midland, C/O Coatings Sales Department 1957BC11-22.
KAY AUDIO SPECTRUM ANALYZERS

PERMANENT RECORDS

DISPLAY NO. 1

Frequency

Time

Frequency & Amplitude vs. Time — 4” x 12” record on facsimile paper.

DISPLAY NO. 2

Intensity

Intensity vs. Frequency at Selected Time. Range: 35 db.

DISPLAY NO. 3

Amplitude

Time

Average Amplitude vs. Time. Logarithmic scale, 24 and 34 db ranges.

NEW KAY Misslyzer® 5-15,000 cps
Catalog No. 675

- Two separate channels for simultaneous recording of two signals. The Misslyzer is a wider range spectrum analyzer providing two identical channels for the simultaneous recording of two related signals. Built-in fast acting relays permit rapid automatic remote control.

SPECIFICATIONS

Frequency Range: Standard models, 5-15,000 cps, in hands listed below. Analyzing Filter Band

FREQ. RANGE NARROW WIDE

5-500 cps 2 cps 300 cps

50-5000 cps 6 cps 600 cps 8.0 seconds

50-15,000 cps 20 cps 2000 cps 2.4 seconds

Duration Recorded

FREQ. RANGE 4 SECONDS 34 SECONDS

Range: Amplitude

Intensity

Complete

Time

and vs.

DISPLAY & record Amplitude

Intensity

Selected

Log

istics:

Record-Reproduce Amplifier Characteristics: Frequency response switchable to provide FLAT or (for transducer usage) either 44-db or 60-db falling characteristic.

Frequency Calibration: Calibration markers at 30 cps or 240 cps intervals may be recorded on analysis paper.

Input Impedances, Selectable: High, 1.8 Megohms for low level and microphone input. Low, for high level signals, such as from tape recorders.

Price: $2950.00 f.o.b. factory. $3245.00 f.a.s., New York.

Kay Audio Analyzers employ a magnetic medium on which a selected (0.8 to 20 second) sample of a signal—transient and steady state—can be recorded and analyzed in a heterodyne type frequency analyzer. Both narrow and wide bandpass filters are available to emphasize either frequency resolution or time resolution. The permanent visual records are made on current sensitive facsimile-type paper.

KAY Soná-Graph

MODEL RECORDER
Catalog No. 662-A

- 85-12,000 cps

Easily stored, permanent or re-usable magnetic disc recording

The Sona-Graph Model Recorder is a new audio spectrograph for sound and vibration analysis. This instrument provides four permanent, storable records of any sample of audio energy in the 85-12,000 cps range . . . the three visual displays made by the Sona-Graph 661-A plus an aural record made on a 12” plastic-base magnetic disc which can be stored with the visual records.

SPECIFICATIONS

Frequency Range: 85 cps to 12 kc in two switched bands; 85 cps to 6 kc and 6 kc to 12 kc.

Frequency Response: ± 2 db over entire frequency range. Flat or 15 db high-frequency pre-emphasis in lower range.

Recording Medium: Plastic-base magnetic disc that can be removed and stored, or erased and re-used.

Analyzing Filter Bandwidths: 45 and 300 cps.

Recording Time: Any selected 4 second interval of any audio signal within frequency range.

Price: $2950.00 f.o.b. factory. $3245.00 f.a.s., New York.

KAY ELECTRIC COMPANY
Dept. ED-11, Maple Avenue, Pine Brook, N.J., Capitol 6-4000

CIRCLE 206 ON READER-SERVICE CARD

RUSSIAN TRANSLATIONS

R_{in}—static input ac resistance in the absence of light,

$U_{c max}$—allowable collector voltage,

$I_{c r}$—darkness currents in the collector circuit.

These parameters can be improved by applying positive bias on the base, Fig. 4, through a resistor much larger than the input resistance of the phototransistor ($R_b = 0.1$ to 10 meg). Here, the base lead is practically free-floating with respect to the variations in its potential induced by the illumination. The maximum voltage of the input resistance can be estimated from the formula

$$R_{in} = r_1 + r_2 (1 + \beta) \quad (10)$$

Typical curves, showing the dependence of the parameters of the phototransistor on the bias current, are shown in Fig. 5. These curves indicate the optimum bias for which the principal parameters are most suitable for the registration of small light fluxes.

On changing from the floating-base circuit to the circuit with “fixed” base, the principal parameters are measured when I_{in} is reduced to about one-tenth (to 5 μA) R_{22} is increased tenfold (to 10 ohms) $U_{c max}$ is increased (to approximately 12 v).

The photosensitivity r_1 is decreased relatively little (one-half) to 4 amp/lumen. The static voltage sensitivity is increased almost 100 times, to 4×10^3 v/lumen.

Design Procedure For

Fixed-Biased Phototransistor Circuits

The fixed-biased phototransistor circuit is best designed to satisfy the specified static volt-ampere characteristics obtained in darkness. The same circuit as in Fig. 4 can be used to plot these characteristics.

A typical family of output volt-ampere

Fig. 5. Static parameters of the phototransistor depend upon value of base bias current.
For your convenience
ELECTRONIC DESIGN
makes checking
READER-SERVICE CARD
easier with
FOLD-OUT CARDS

To use:

1
Fold out card.

2
Leave card folded out, and read magazine. No need to turn pages to reach card, or to tear out card until ready to mail. Circle to your heart's content.

3
Tear out card with items circled. Fill out name and address, and drop in mail box. Fold back remaining card for future use. ED will process your card within 24 hours of receipt.

ELECTRONIC DESIGN
ONE DAY READERS INQUIRY SERVICE
850 Third Avenue
New York 22, New York
ELECTRONIC DESIGN - ONE DAY SERVICE

USE BEFORE JANUARY 3, 1982

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company Address</td>
<td>City</td>
</tr>
<tr>
<td>10 20 30 40</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
<tr>
<td>1 11 21 31 41</td>
<td>11 12 13 14 15</td>
</tr>
<tr>
<td>2 12 22 32 42</td>
<td>21 22 23 24 25</td>
</tr>
<tr>
<td>3 13 23 33 43</td>
<td>31 32 33 34 35</td>
</tr>
<tr>
<td>4 14 24 34 44</td>
<td>41 42 43 44 45</td>
</tr>
<tr>
<td>5 15 25 35 45</td>
<td>51 52 53 54 55</td>
</tr>
<tr>
<td>6 16 26 36 46</td>
<td>61 62 63 64 65</td>
</tr>
<tr>
<td>7 17 27 37 47</td>
<td>71 72 73 74 75</td>
</tr>
<tr>
<td>8 18 28 38 48</td>
<td>81 82 83 84 85</td>
</tr>
<tr>
<td>9 19 29 39 49</td>
<td>91 92 93 94 95</td>
</tr>
</tbody>
</table>

For employment brochures give home address

<table>
<thead>
<tr>
<th>Home Address</th>
<th>City</th>
<th>Zone</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 20 30 40</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 11 21 31 41</td>
<td>11 12 13 14 15</td>
<td>16 17 18 19 20</td>
<td></td>
</tr>
<tr>
<td>2 12 22 32 42</td>
<td>21 22 23 24 25</td>
<td>26 27 28 29 30</td>
<td></td>
</tr>
<tr>
<td>3 13 23 33 43</td>
<td>31 32 33 34 35</td>
<td>36 37 38 39 40</td>
<td></td>
</tr>
<tr>
<td>4 14 24 34 44</td>
<td>41 42 43 44 45</td>
<td>46 47 48 49 50</td>
<td></td>
</tr>
<tr>
<td>5 15 25 35 45</td>
<td>51 52 53 54 55</td>
<td>56 57 58 59 60</td>
<td></td>
</tr>
<tr>
<td>6 16 26 36 46</td>
<td>61 62 63 64 65</td>
<td>66 67 68 69 70</td>
<td></td>
</tr>
<tr>
<td>7 17 27 37 47</td>
<td>71 72 73 74 75</td>
<td>76 77 78 79 80</td>
<td></td>
</tr>
<tr>
<td>8 18 28 38 48</td>
<td>81 82 83 84 85</td>
<td>86 87 88 89 90</td>
<td></td>
</tr>
<tr>
<td>9 19 29 39 49</td>
<td>91 92 93 94 95</td>
<td>96 97 98 99 100</td>
<td></td>
</tr>
</tbody>
</table>

NEW ENGLAND ELECTRONIC DESIGN - ONE DAY SERVICE

USE BEFORE JANUARY 3, 1982

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company Address</td>
<td>City</td>
</tr>
<tr>
<td>10 20 30 40</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
<tr>
<td>1 11 21 31 41</td>
<td>11 12 13 14 15</td>
</tr>
<tr>
<td>2 12 22 32 42</td>
<td>21 22 23 24 25</td>
</tr>
<tr>
<td>3 13 23 33 43</td>
<td>31 32 33 34 35</td>
</tr>
<tr>
<td>4 14 24 34 44</td>
<td>41 42 43 44 45</td>
</tr>
<tr>
<td>5 15 25 35 45</td>
<td>51 52 53 54 55</td>
</tr>
<tr>
<td>6 16 26 36 46</td>
<td>61 62 63 64 65</td>
</tr>
<tr>
<td>7 17 27 37 47</td>
<td>71 72 73 74 75</td>
</tr>
<tr>
<td>8 18 28 38 48</td>
<td>81 82 83 84 85</td>
</tr>
<tr>
<td>9 19 29 39 49</td>
<td>91 92 93 94 95</td>
</tr>
</tbody>
</table>

For employment brochures give home address

<table>
<thead>
<tr>
<th>Home Address</th>
<th>City</th>
<th>Zone</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 20 30 40</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 11 21 31 41</td>
<td>11 12 13 14 15</td>
<td>16 17 18 19 20</td>
<td></td>
</tr>
<tr>
<td>2 12 22 32 42</td>
<td>21 22 23 24 25</td>
<td>26 27 28 29 30</td>
<td></td>
</tr>
<tr>
<td>3 13 23 33 43</td>
<td>31 32 33 34 35</td>
<td>36 37 38 39 40</td>
<td></td>
</tr>
<tr>
<td>4 14 24 34 44</td>
<td>41 42 43 44 45</td>
<td>46 47 48 49 50</td>
<td></td>
</tr>
<tr>
<td>5 15 25 35 45</td>
<td>51 52 53 54 55</td>
<td>56 57 58 59 60</td>
<td></td>
</tr>
<tr>
<td>6 16 26 36 46</td>
<td>61 62 63 64 65</td>
<td>66 67 68 69 70</td>
<td></td>
</tr>
<tr>
<td>7 17 27 37 47</td>
<td>71 72 73 74 75</td>
<td>76 77 78 79 80</td>
<td></td>
</tr>
<tr>
<td>8 18 28 38 48</td>
<td>81 82 83 84 85</td>
<td>86 87 88 89 90</td>
<td></td>
</tr>
<tr>
<td>9 19 29 39 49</td>
<td>91 92 93 94 95</td>
<td>96 97 98 99 100</td>
<td></td>
</tr>
</tbody>
</table>

For employment brochures give home address

<table>
<thead>
<tr>
<th>Home Address</th>
<th>City</th>
<th>Zone</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 20 30 40</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 11 21 31 41</td>
<td>11 12 13 14 15</td>
<td>16 17 18 19 20</td>
<td></td>
</tr>
<tr>
<td>2 12 22 32 42</td>
<td>21 22 23 24 25</td>
<td>26 27 28 29 30</td>
<td></td>
</tr>
<tr>
<td>3 13 23 33 43</td>
<td>31 32 33 34 35</td>
<td>36 37 38 39 40</td>
<td></td>
</tr>
<tr>
<td>4 14 24 34 44</td>
<td>41 42 43 44 45</td>
<td>46 47 48 49 50</td>
<td></td>
</tr>
<tr>
<td>5 15 25 35 45</td>
<td>51 52 53 54 55</td>
<td>56 57 58 59 60</td>
<td></td>
</tr>
<tr>
<td>6 16 26 36 46</td>
<td>61 62 63 64 65</td>
<td>66 67 68 69 70</td>
<td></td>
</tr>
<tr>
<td>7 17 27 37 47</td>
<td>71 72 73 74 75</td>
<td>76 77 78 79 80</td>
<td></td>
</tr>
<tr>
<td>8 18 28 38 48</td>
<td>81 82 83 84 85</td>
<td>86 87 88 89 90</td>
<td></td>
</tr>
<tr>
<td>9 19 29 39 49</td>
<td>91 92 93 94 95</td>
<td>96 97 98 99 100</td>
<td></td>
</tr>
</tbody>
</table>
ELECTRONIC DESIGN - ONE DAY SERVICE USE BEFORE JANUARY 3, 1962

Company Address

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 20 30 40</td>
<td>50 60 70 80 90</td>
</tr>
<tr>
<td>11 21 31 41</td>
<td>51 61 71 81 91</td>
</tr>
<tr>
<td>12 22 32 42</td>
<td>52 62 72 82 92</td>
</tr>
<tr>
<td>13 23 33 43</td>
<td>53 63 73 83 93</td>
</tr>
<tr>
<td>14 24 34 44</td>
<td>54 64 74 84 94</td>
</tr>
<tr>
<td>15 25 35 45</td>
<td>55 65 75 85 95</td>
</tr>
<tr>
<td>16 26 36 46</td>
<td>56 66 76 86 96</td>
</tr>
<tr>
<td>17 27 37 47</td>
<td>57 67 77 87 97</td>
</tr>
<tr>
<td>18 28 38 48</td>
<td>58 68 78 88 98</td>
</tr>
<tr>
<td>19 29 39 49</td>
<td>59 69 79 89 99</td>
</tr>
</tbody>
</table>

City Zone State

<table>
<thead>
<tr>
<th>Name</th>
<th>City Zone State</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 21 31 41</td>
<td>51 61 71 81 91</td>
</tr>
<tr>
<td>12 22 32 42</td>
<td>52 62 72 82 92</td>
</tr>
<tr>
<td>13 23 33 43</td>
<td>53 63 73 83 93</td>
</tr>
<tr>
<td>14 24 34 44</td>
<td>54 64 74 84 94</td>
</tr>
<tr>
<td>15 25 35 45</td>
<td>55 65 75 85 95</td>
</tr>
<tr>
<td>16 26 36 46</td>
<td>56 66 76 86 96</td>
</tr>
<tr>
<td>17 27 37 47</td>
<td>57 67 77 87 97</td>
</tr>
<tr>
<td>18 28 38 48</td>
<td>58 68 78 88 98</td>
</tr>
<tr>
<td>19 29 39 49</td>
<td>59 69 79 89 99</td>
</tr>
</tbody>
</table>

For employment brochures give home address

<table>
<thead>
<tr>
<th>Name Address</th>
<th>City Zone State</th>
</tr>
</thead>
</table>

For Change of Address

Old Company Name

<table>
<thead>
<tr>
<th>Name</th>
<th>City Zone State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5</td>
<td>6 7 8 9 10</td>
</tr>
<tr>
<td>11 12 13 14 15</td>
<td>16 17 18 19 20</td>
</tr>
<tr>
<td>21 22 23 24 25</td>
<td>26 27 28 29 30</td>
</tr>
<tr>
<td>31 32 33 34 35</td>
<td>36 37 38 39 40</td>
</tr>
<tr>
<td>41 42 43 44 45</td>
<td>46 47 48 49 50</td>
</tr>
<tr>
<td>51 52 53 54 55</td>
<td>56 57 58 59 60</td>
</tr>
<tr>
<td>61 62 63 64 65</td>
<td>66 67 68 69 70</td>
</tr>
<tr>
<td>71 72 73 74 75</td>
<td>76 77 78 79 80</td>
</tr>
<tr>
<td>81 82 83 84 85</td>
<td>86 87 88 89 90</td>
</tr>
<tr>
<td>91 92 93 94 95</td>
<td>96 97 98 99 100</td>
</tr>
</tbody>
</table>

New Company Name

<table>
<thead>
<tr>
<th>Name</th>
<th>City Zone State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5</td>
<td>6 7 8 9 10</td>
</tr>
<tr>
<td>11 12 13 14 15</td>
<td>16 17 18 19 20</td>
</tr>
<tr>
<td>21 22 23 24 25</td>
<td>26 27 28 29 30</td>
</tr>
<tr>
<td>31 32 33 34 35</td>
<td>36 37 38 39 40</td>
</tr>
<tr>
<td>41 42 43 44 45</td>
<td>46 47 48 49 50</td>
</tr>
<tr>
<td>51 52 53 54 55</td>
<td>56 57 58 59 60</td>
</tr>
<tr>
<td>61 62 63 64 65</td>
<td>66 67 68 69 70</td>
</tr>
<tr>
<td>71 72 73 74 75</td>
<td>76 77 78 79 80</td>
</tr>
<tr>
<td>81 82 83 84 85</td>
<td>86 87 88 89 90</td>
</tr>
<tr>
<td>91 92 93 94 95</td>
<td>96 97 98 99 100</td>
</tr>
</tbody>
</table>

For employment brochures give home address

<table>
<thead>
<tr>
<th>Name Address</th>
<th>City Zone State</th>
</tr>
</thead>
</table>

ELECTRONIC DESIGN - ONE DAY SERVICE USE BEFORE JANUARY 3, 1962

Company Address

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 20 30 40</td>
<td>50 60 70 80 90</td>
</tr>
<tr>
<td>11 21 31 41</td>
<td>51 61 71 81 91</td>
</tr>
<tr>
<td>12 22 32 42</td>
<td>52 62 72 82 92</td>
</tr>
<tr>
<td>13 23 33 43</td>
<td>53 63 73 83 93</td>
</tr>
<tr>
<td>14 24 34 44</td>
<td>54 64 74 84 94</td>
</tr>
<tr>
<td>15 25 35 45</td>
<td>55 65 75 85 95</td>
</tr>
<tr>
<td>16 26 36 46</td>
<td>56 66 76 86 96</td>
</tr>
<tr>
<td>17 27 37 47</td>
<td>57 67 77 87 97</td>
</tr>
<tr>
<td>18 28 38 48</td>
<td>58 68 78 88 98</td>
</tr>
<tr>
<td>19 29 39 49</td>
<td>59 69 79 89 99</td>
</tr>
</tbody>
</table>

City Zone State

<table>
<thead>
<tr>
<th>Name</th>
<th>City Zone State</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 21 31 41</td>
<td>51 61 71 81 91</td>
</tr>
<tr>
<td>12 22 32 42</td>
<td>52 62 72 82 92</td>
</tr>
<tr>
<td>13 23 33 43</td>
<td>53 63 73 83 93</td>
</tr>
<tr>
<td>14 24 34 44</td>
<td>54 64 74 84 94</td>
</tr>
<tr>
<td>15 25 35 45</td>
<td>55 65 75 85 95</td>
</tr>
<tr>
<td>16 26 36 46</td>
<td>56 66 76 86 96</td>
</tr>
<tr>
<td>17 27 37 47</td>
<td>57 67 77 87 97</td>
</tr>
<tr>
<td>18 28 38 48</td>
<td>58 68 78 88 98</td>
</tr>
<tr>
<td>19 29 39 49</td>
<td>59 69 79 89 99</td>
</tr>
</tbody>
</table>

For employment brochures give home address

<table>
<thead>
<tr>
<th>Name Address</th>
<th>City Zone State</th>
</tr>
</thead>
</table>

For Change of Address

Old Company Name

<table>
<thead>
<tr>
<th>Name</th>
<th>City Zone State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5</td>
<td>6 7 8 9 10</td>
</tr>
<tr>
<td>11 12 13 14 15</td>
<td>16 17 18 19 20</td>
</tr>
<tr>
<td>21 22 23 24 25</td>
<td>26 27 28 29 30</td>
</tr>
<tr>
<td>31 32 33 34 35</td>
<td>36 37 38 39 40</td>
</tr>
<tr>
<td>41 42 43 44 45</td>
<td>46 47 48 49 50</td>
</tr>
<tr>
<td>51 52 53 54 55</td>
<td>56 57 58 59 60</td>
</tr>
<tr>
<td>61 62 63 64 65</td>
<td>66 67 68 69 70</td>
</tr>
<tr>
<td>71 72 73 74 75</td>
<td>76 77 78 79 80</td>
</tr>
<tr>
<td>81 82 83 84 85</td>
<td>86 87 88 89 90</td>
</tr>
<tr>
<td>91 92 93 94 95</td>
<td>96 97 98 99 100</td>
</tr>
</tbody>
</table>

New Company Name

<table>
<thead>
<tr>
<th>Name</th>
<th>City Zone State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5</td>
<td>6 7 8 9 10</td>
</tr>
<tr>
<td>11 12 13 14 15</td>
<td>16 17 18 19 20</td>
</tr>
<tr>
<td>21 22 23 24 25</td>
<td>26 27 28 29 30</td>
</tr>
<tr>
<td>31 32 33 34 35</td>
<td>36 37 38 39 40</td>
</tr>
<tr>
<td>41 42 43 44 45</td>
<td>46 47 48 49 50</td>
</tr>
<tr>
<td>51 52 53 54 55</td>
<td>56 57 58 59 60</td>
</tr>
<tr>
<td>61 62 63 64 65</td>
<td>66 67 68 69 70</td>
</tr>
<tr>
<td>71 72 73 74 75</td>
<td>76 77 78 79 80</td>
</tr>
<tr>
<td>81 82 83 84 85</td>
<td>86 87 88 89 90</td>
</tr>
<tr>
<td>91 92 93 94 95</td>
<td>96 97 98 99 100</td>
</tr>
</tbody>
</table>

For employment brochures give home address

<table>
<thead>
<tr>
<th>Name Address</th>
<th>City Zone State</th>
</tr>
</thead>
</table>
For your convenience
ELECTRONIC DESIGN
makes checking
READER-SERVICE CARD
easier with
FOLD-OUT CARDS

To use:

1. Fold out card.

2. Leave card folded out, and read magazine. No need to turn pages to reach card, or to tear out card until ready to mail. Circle to your heart's content.

3. Tear out card with items circled. Fill out name and address, and drop in mail box. Fold back remaining card for future use. ED will process your card within 24 hours of receipt.
SERVO modular serial word generators offer broad test flexibility for digital circuitry and logic design

Flexible basic design features:
- Clock Rate: Pulse spacing continuously variable 0.5 to 10,000 µsec—2Mc. to 100 cps
- Syncs: Variable and delayed
- 80 bit capacity
- Word length selectable by two 10 position switches—1 to 99 bits
- Arbitrary coding
- Clock output 0.2 µsec wide, pos. 4.5v into 600 ohms
- Complementary pulse output simultaneous positive and negative outputs with pulse tops at ground. 12v open circuit 6v into 50 ohms each
- NRZ

One of 33 cataloged instruments in a broad Electro-Pulse line (which includes as many as 200 standard pulse and digital circuit modules—both tube and transistor type), the Electro-Pulse precision pulse generator couples advanced pulse techniques and circuitry with traditional Servo Corporation instrument quality and reliability.

Fill in coupon for details.

Electro-Pulse Products

SERVO CORPORATION OF AMERICA
111 New South Road
Hicksville, L. I., N.Y.

Sales & service offices coast-to-coast • Representatives in major cities

Single pulse generators • Double pulse generators • Word generators • Pulse train and pulse code generators • Time delay and gate generators • Current generators and core testers • Modules

CIRCLE 207 ON READER-SERVICE CARD
Eq. 12 takes into account that when the base bias is positive, I_b decreases with increasing I_c. (Fig. 4 reverses sign).

Solving Eq. 12 simultaneously with the equation $E = U_c + I_c R_c$, and Eq. 8, we can determine all the elements of the circuits shown in Fig. 4.

The table lists the main design equations, assuming (as already mentioned) that the parameters $I_b\text{ opt}, I_c\text{ opt}, R_b, \beta, U_c\text{ max}, U_m$ have been determined from the output volt-ampere characteristics.

If the circuit of Fig. 4 is to measure a wide range of light fluxes, it is necessary to specify the maximum light flux Φ_m up to which the light-response characteristic should be linear. In this case, as shown in the table, the load resistance R_L and the supply voltages E_b and E_c must be calculated from formulas I* and V*.

When the circuit is set to measure very small light fluxes, the design sequence is somewhat modified. It is then advantageous to select as large a value of E_b as possible (to 50 or 100 v). R_L and Φ_m are determined from formulas I* and V* in the table.

Design Procedure For
Self-Biased Phototransistor Circuits

By employing current self-bias on the base as shown in Fig. 7, the phototransistor can be used in stabilization circuits. Additional nonlinear elements are not required and the dc component of the light flux does not influence the output signal.

The design procedure for a circuit with self bias is the same as for a circuit with fixed bias. It can be carried out in two ways—to fit a specified Φ_m, or to fit a specified E_{com} (voltage of common power supply).

It is necessary to calculate the resistance R_c in the emitter circuit, using formula VII of the table, derived from the condition

$$R_c = R_b \frac{I_b\text{ opt}}{I_c\text{ opt}} = R_b \frac{I_b\text{ opt}}{I_c\text{ opt} - I_b\text{ opt}},$$

and also the capacitance C, determined from the specified frequency of modulation of the received light signal, f.

Complete temperature compensation and stabilization with respect to changes in a constant light signal cannot be obtained with this circuit. However, when β and R_c are large the instability amounts to a fraction of...
one per cent and can always be estimated by using Eq. 9. In the cases noted here, the value of the voltage dynamic sensitivity \(v_{ad} \) must be calculated from Eq. 9 and \(R_{se} \) can be estimated by using Eq. 10.

The equations for the circuit with fixed bias can also be used to design circuits with floating base, Fig. 2. For this case, \(I_{s} = 0 \).

This circuit, however, is usually used with low-resistance loads and large light fluxes, and where maximum output power is desired. The load resistance is usually chosen to satisfy the equality \(R_{L} = R_{pd} \). The value of the supply voltage \(E_{s} \) and the maximum light flux \(\Phi_{s} \) are calculated from the following:

\[
E_{s} = I_{s} R_{L} + 2U_{a_{max}} - U_{m}
\]

\[
\Phi_{s} = \frac{2(U_{a_{max}} - U_{m})}{E_{s} R_{L}}
\]

With Eastman 910 Adhesive...

Vinyl bonds to melamine-coated aluminum in seconds

In the assembly of its top-line “Galaxy” portable, Smith-Corona Typewriter division of Smith-Corona Marchant, Inc., has found four places to save time and materials with Eastman 910 Adhesive. Here’s one:

In seconds, the adhesive securely bonds six vinyl retainers to the melamine-coated aluminum paper bail. Just one drop of adhesive per retainer is needed—no heat, no solvent, and only momentary pressure to position the parts is required. Further assembly proceeds without delay.

Eastman 910 Adhesive will form bonds between almost any plastics or other materials. Like to see for yourself? Just send $5 for a trial kit to use on your toughest job. Kits and more information are available from Armstrong Cork Company, Industrial Adhesives Division, 9105 Indian Road, Lancaster, Pa.; or from Eastman Chemical Products, Inc., subsidiary of Eastman Kodak Company, Dept. PW-7, Chemicals Division, Kingsport, Tennessee.

Here are some of the bonds that can be made with Eastman 910 Adhesive

Among the stronger: vinyls, phenolics, celluloses, polyesters, polyurethanes, nylon; natural rubber, SBR, Buna S, most types of neoprene; most woods; steel, aluminum, brass, copper. Among the weaker: polystyrene, polyethylene, and fluoro-hydrocarbon plastics (shear strengths up to 150 lbs. sq. in.).

References

file your back copies in this sturdy, low cost BOX FILE

Here is the perfect container for your back copies of ELECTRONIC DESIGN. This sturdy box file will hold 13 average issues ... keeps ED’s valuable new product information and design data right at your fingertips. After it is filled, simply add your newest copy and throw the oldest copy away. Or, if you prefer to file all your issues, order more at this special low price.

only $2.50

(2.00 if cash with order)

To take advantage of cash discount, enclose check or money order with this coupon. Mail to ELECTRONIC DESIGN, 850 Third Avenue, New York 22, N. Y.

Please send ELECTRONIC DESIGN Box Files.

<table>
<thead>
<tr>
<th>Name & Title</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Address

City Zone State

ELECTRONIC DESIGN
850 Third Ave., N. Y. 22, N. Y.
Cash enclosed [] ($2.00 per unit)
Bill me [] ($2.50 per unit)
New Bourns Precision Potentiometer Resolves the Quality-Price Dilemma!

Here is military reliability in a competitively-priced industrial potentiometer. Bourns wirewound 10-turn Model 3500 measures just 3/8 in diameter by 1 in length—shorter by 1/2 than units available elsewhere—yet has a resistance element 20% longer than that of comparable potentiometers.

Fully meeting military requirements for steady-state humidity, Model 3500 can also be provided at a 10% premium to meet the cycling humidity specs of MIL-STD-202, Method 106. It's the only 3/8 10-turn potentiometer guaranteed to meet this spec. Its published characteristics incorporate wide safety margins. Reliability insurance is provided by the exclusive Bourns Silverweld® bond between terminal and resistance wire. Virtually indestructible under thermal or mechanical stress, this termination eliminates a chief cause of potentiometer failure. In addition, a special close-tolerance rotor almost completely does away with backlash.

Model 3500 is also subjected to the rigorous double-check of Bourns' exclusive Reliability Assurance Program. In short, every possible step is taken to ensure that the performance you specify is the performance you get. Write for complete data.

<table>
<thead>
<tr>
<th>Resistances</th>
<th>500Ω to 125K, ±3%, std. (to 250K spl.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearity</td>
<td>±0.25% std.</td>
</tr>
<tr>
<td>Power rating</td>
<td>2W at 70°C</td>
</tr>
<tr>
<td>Operating temp.</td>
<td>-65° to +125°C</td>
</tr>
<tr>
<td>Mech. life</td>
<td>2,000,000 shaft revolutions</td>
</tr>
</tbody>
</table>

GERMAN ABSTRACTS

E. Brenner

Pulse-Filter Design

TRANSFER functions whose pole-zero distribution follows the regular pattern of Fig. 1 have particularly simple time-frequency domain relationships. In addition, filters with such transfer functions readily can be realized with exact consideration given to circuit component losses. Transfer functions of filters with the pole pattern of Fig. 1 have the form:

\[H(s) = \frac{K}{\prod_{k=0}^{n} \left(s + \frac{\lambda}{\omega_n} \right)^2 + \frac{k^2}{\omega_n^2}} \]

Or, normalizing with respect to \(\omega_n \), let

\[\lambda = \frac{\omega}{\omega_n} \]

\[\eta = \frac{\sigma}{\omega_n} \]

and

\[H(\lambda) = \frac{K}{\omega_n^2} \prod_{k=0}^{n} \frac{1}{\left(\lambda + \eta \right)^2 + k^2} \]

The response of such a filter to the unit impulse input is shown in Fig. 2. The equa-

Fig. 1. Transfer-function pole pattern.
Fig. 2. Filter response to unit impulse.

Fig. 3. Filter output can be represented by a single pulse, with equivalent time duration given by the shaded rectangle.

The output wave shape can be shown to be

\[\frac{h(t)}{h(t_0)} = A_\alpha e^{\eta t} e^{-\alpha t} \sin \left(\frac{\omega t}{2} \right) \]

where

\[A_\alpha = \left[1 + \left(\frac{2}{n-1} \right)^{2\eta} \right]^{(n-1)/2} \]

B_\eta = 2\eta \tan^{-1} \left[\frac{(n-1)}{(2\eta)} \right]

The peak value of the response occurs at

\[t = t_0 \quad (\omega t_0 = \tau_0) \]

where

\[\tau_0 = 2 \tan^{-1} \frac{n-1}{2\eta} \]

The second peak of the response waveform has the value

\[e^{-2\eta} h(\tau_0) \]

and can be reduced arbitrarily by increasing \(\eta \). For example, the value \(\eta = 0.733 \) results in a second peak, which is 1 per cent of the first peak.

When the second (and subsequent) peak is made negligibly small, the filter output can be considered to be a single pulse, Fig. 3.

for component hermetic sealing

Capacitors, resistors, transistors, diodes, coils, and other components will more readily meet MIL specifications for temperature, humidity, and vibration when hermetically sealed in CENTRALAB metallized tubes.

Metallized tubes of steatite or high alumina ceramic are available from CENTRALAB in a comprehensive range of standard sizes—many of which can be delivered in 48 hours. Tubes of other dimensions, including smaller sizes, can also be supplied, with initial delivery in 5 to 6 weeks, repeat orders in 3 to 4 weeks.

These tubes are internally metallized on both ends and will generally meet MIL specifications for thermal cycling from -65°C to +125°C. Technical assistance for production sealing is provided by the CENTRALAB Engineering Department.

The standard sizes are listed in CENTRALAB Engineering Bulletin EP-978, available free on request.

STANDARD SIZE RANGES

<table>
<thead>
<tr>
<th>Inner Diameters</th>
<th>Outer Diameters</th>
<th>Lengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>.105" to .300"</td>
<td>.156" to .395"</td>
<td>.250" to 2.250"</td>
</tr>
</tbody>
</table>

The Electronics Division of Globe-Union Inc.
960L East Keefe Avenue • Milwaukee 1, Wisconsin
Centralab Canada Limited • Ajax, Ontario
E-614

ELECTRONIC SWITCHES • VARIABLE RESISTORS • CERAMIC CAPACITORS • PACKAGED ELECTRONIC CIRCUITS • ENGINEERED CERAMICS

CIRCLE 214 ON READER-SERVICE CARD
The Untouchables
Specify Crucible Charges of Deposited Hyper-Pure Silicon

Pre-packaged single piece crucible charges . . . in sizes and weights to meet the exact requirements of your Czochralski crystal growing equipment . . . are now available from Dow Corning.

Accurately Pre-weighed, these single piece crucible charges assure easy handling . . . smallest surface area . . . highest purity . . . an exceptionally clean melt and a savings in crucible costs.

High Quality is inherent in Dow Corning crucible charges. The deposited polycrystalline silicon in these charges has never touched a mold. Result — highest purity.

This High Purity means consistently higher quality crystals — simplifies doping procedures — increases device yield. Typical resistivity of N-type crystals grown from Dow Corning pre-packaged crucible charges is greater than 100-ohms centimeter for 90% of the crystal; maximum boron content, 0.3 parts per billion atoms; maximum donor impurity, 2.0 parts per billion.

Now You Specify the Weight and Diameter, up to 38 mm (about 1 1/2"), best suited for each crucible of your Czochralski crystal growing machines. Your crucible charges will be supplied in the appropriate length to provide the exact weight you require in just one piece.

Protective Packaging guards initial deposited purity right through crucible charging. Charges are individually wrapped in special cellophane, and sealed in airtight polyethylene envelopes to assure untouchable purity.

Whatever your need — deposited silicon crucible charges; polycrystalline rod or chunk; high resistivity P-type single crystal rod; single crystal rod doped to your specifications — Dow Corning should lead your list of sources.

The effective output-pulse duration is defined as the duration of the shaded rectangle, Fig. 3, whose area is identical with the area under the pulse. The relationship between this effective duration, t_1, and η is shown in Fig. 4 with n as a parameter. When n exceeds 9, the approximate formula

$$t_1 = \frac{2\pi}{\eta} \frac{(n-1)!}{\left[\left(\frac{n-1}{2}\right)\right]^2} \cdot 2^{n-1}$$

results in less than 1 per cent error. Since the step function is the integral of the impulse, the response of the filter to the unit step has a rise time approximated by t_1.

To realize the filter one can use reactance synthesis because all poles are on a line
Parallel Operation Of Pulse Transistors

When transistors are operated in parallel—that is with emitters and collectors connected directly—the individual collector currents differ because of the variations in equivalent collector-emitter resistances. Insertion of small ohmic emitter resistances,

\[s' = s + \sigma \]

results in a reactance function. Once the corresponding LC network is realized every inductance \(L_m \) is replaced by the series branch, \(R_m - L_m \). Every capacitance \(C_j \) is replaced by a parallel \(R_j - C_j \) branch where

\[\frac{R_m}{L_m} = \frac{1}{R_j \cdot C_j} = \sigma \]

The reactance transfer function can be realized as a symmetrical structure, Fig. 5. With the pi-configuration used to minimize the number of inductances, a capacitance is at the plane of symmetry if there are \(4m + 1 \) elements; an inductance if the element number is \(4m - 1 \). Developing the half section from the plane of symmetry, the network is developed as a ladder from driving point functions.

If \(n = 4m + 1 \), the normalized driving point admittance

\[\frac{Y_n}{Y_0} = \frac{\lambda^2 + 4}{\lambda^2 + 1} \frac{\lambda^2 + 16}{\lambda^2 + 9} \frac{\lambda^2 + \left(\frac{n-1}{2}\right)^2}{\lambda^2 + \left(\frac{n-3}{2}\right)^2} \]

applies. For \(n = 4m - 1 \), the normalized driving point impedance:

\[\frac{Z_n}{Z_0} = \frac{\lambda^2 + 1}{\lambda^2 + 4} \frac{\lambda^2 + 4}{\lambda^2 + 1} \frac{\lambda^2 + 9}{\lambda^2 + 16} \]

is developed.

"BR"...the new d. c. power supply with conservative design*

0-36 VOLTS D. C. AT 3, 5, 10 AND 15 AMPERES

Model BR 36/3 (illustrated) is a reliable, low cost, wide range, convection cooled transistorized power supply. In addition to remote sensing, modular construction and conservatively rated circuitry this unit has many extras...

SPECIAL FEATURES

<table>
<thead>
<tr>
<th>Model</th>
<th>D. C. Output</th>
<th>Volts</th>
<th>Amps</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR 36/3</td>
<td>0-36</td>
<td>0-3</td>
<td>0-3</td>
<td>3½" x 19" x 14"</td>
</tr>
<tr>
<td>BR 36/5</td>
<td>0-36</td>
<td>0-5</td>
<td>0-5</td>
<td>5½" x 19" x 14"</td>
</tr>
<tr>
<td>BR 36/10</td>
<td>0-36</td>
<td>0-10</td>
<td>0-10</td>
<td>5½" x 19" x 14"</td>
</tr>
<tr>
<td>BR 36/15</td>
<td>0-36</td>
<td>0-15</td>
<td>0-15</td>
<td>8½" x 19" x 14"</td>
</tr>
</tbody>
</table>

Write Today... Technical Data Sheet available with full specifications.
"Off the Shelf" availability.

GERMAN ABSTRACTS

Power transistors connected in parallel

R_c, shown in the figure, improves the uniformity of current distribution.

The optimum value of R_c is determined as follows: the collector current of the m^{th} transistor in the parallel array of n transistors is

$$I_{cm} = \left(I_c/n \right) + \Delta I$$

If the maximum deviation of collector-emitter voltage from the average value is ΔV and if it is assumed that all transistors except the m^{th} have

$$V_{ce} = (V_{ce})_{av} + \Delta V$$

while for the m^{th} transistor

$$V_{ce} = (V_{ce})_{av} - \Delta V$$

then (in this most unfavorable case) the maximum deviation in collector current is

$$\Delta I_{max} = \frac{2(n-1)}{n} \cdot \frac{\Delta V}{R_c}$$

Or, assuming that this maximum deviation is prescribed, the corresponding optimum emitter resistance is

$$R_c = \frac{2(n-1)}{n} \cdot \frac{\Delta V}{(\Delta I)_{max}}$$

If, for example, three transistors, rated at maximum collector current of 9 amps are connected in parallel to furnish 24 amps, the average collector current is 8 amps and ΔI_{max} is 1 amp. Assuming a 50 mv maximum deviation in collector-emitter voltage, the corresponding value of R_c is 0.066 ohm.

Because your career is a very personal matter, Electronic Design has taken several important steps to ensure its privacy.

ED's "Careers Section" contains bound-in resume forms ready for your use in responding to employment advertising. Circled numbers are detached from these forms before they are forwarded to companies. No one but you knows how many jobs you are interested in.

In addition, each Reader Service Card reserves a line for your home address. All replies to the employment inquiries you make on these cards will be directed to your home.

Both of these kinds of inquiries are handled at Electronic Design by a single specialist. The confidential nature of your career plans are respected at all times.

Use the Career Inquiry Service Form, and the Reader Service Card when job hunting. They will save you valuable time in your program for career advancement.
Automatic Character Identification

The increasing use of electronic computers has given great impetus to the development of automatic reading machines. The ideal machine for character and symbol identification must be judged by three criteria: it must be able to identify various typefaces and, eventually, handwriting; the process should not be noise sensitive (noise refers here to variation of contrast, intensity, paper-surface, etc.); and the machine should work rapidly, employing a minimum of equipment and personnel. In practice, there are two types of errors—the inability of the machine to identify a symbol and the misreading of a symbol.

Reading machines can be classified into eight categories that depend upon the principle used in character identification. The oldest principle (1928) is based on direct optical comparison using stencils and masks. The second uses special machine marks, which are, or in place of, ordinary numerals. (It can be argued that such procedures are not true character identification processes.) The third method is the index-control method. Here, certain discrete points in the symbol are sampled for identification. A fourth method consists of using linear zones in place of characteristic points.

The technique of evaluating the percentage of dark surface by scanning in two directions, which is used in American banking (The Stanford System), falls into the fifth category. Various sampling processes form a category of six. In another procedure, the locations of darkened points or regions in columns are used. The final category consists of methods using the curvature and direction changes of lines in the recognition process.

The preceding categories are suggested by Ingolf Sieburg in the July, 1961, issue of Nachrichtentechnische Zeitschrift. The author furnishes an extensive bibliography consisting of 144 references and including 45 references to German, American and British patents.

Use Hoskins Chromel-R

Premium Potentiometer Grade 800-Ohm Wire

B.C.—Before Chromel-R, that is—a spool of resistor wire having only 200 ohms of equivalent noise resistance was considered best obtainable by producers of precision potentiometers. Because then—as now—the lower the E.N.R. in the wire when received, the less cleaning and testing there is to be done to control the noise level in a finished wire-wound potentiometer. And the lower the electrical noise level is in a given potentiometer, the greater its stability and reliability in service.

Since Chromel-R, however, a good many producers of good precision potentiometers have come to regard wire having 200 ohms of E.N.R. in an entirely different light. Why? Because they have found—as you will, too—that E.N.R. in Chromel-R is controlled to much lower levels. Matter of fact, every foot of this premium potentiometer grade wire is unconditionally guaranteed to have less than 40 ohms of equivalent noise resistance as it comes off the spool. Its linearity of wire resistance is also guaranteed to be within close specified limits. And its superior roundness and surface finish permits more efficient winding of mandrels with greater uniformity of spacing between turns.

Want sample spools—plus technical data—for testing and evaluation? Your request on company letterhead will receive prompt attention!
Leaky-Wave Antennas

The design and performance are described of a flat, leaky-wave antenna in which the inductive, leaky surface is backed with a slab of dielectric. The analysis uses transverse resonance phenomena to determine the physical dimensions of the antenna for a certain specified aperture distribution. An antenna was built to compare the theoretical behavior with the measured performance. Ways of forming the dielectric to the antenna were also tested. A Dielectric-Loaded Leaky-Wave Antenna, J. Aasted and R. C. Honey, Stanford Research Institute, Menlo Park, Calif., March 27, 1961, 41 pp., $4.60. Order AD-260245 from OTS, Washington 25, D. C.

Tunnel Diodes

When low capacitance tunnel diodes are switched very rapidly, a higher output voltage is obtained than would be predicted from the static V-I characteristic of the diode. This indicates that the diode does not have good limiting properties in the thermal region. An attempt was made to verify the existence of this phenomenon and to obtain quantitative data. Observations of the transient response of tunnel diodes during high speed (1 μsec) switching are discussed with special attention to the lack of limiting. Techniques for measuring diode characteristics are also presented. Tunnel Diodes Characteristics and Circuit Considerations, E. A. Fisch, General Electric Co., Syracuse, N. Y., June 12, 1961, 47 pp., $4.60. Order AD-275334 from OTS, Washington 25, D. C.

High-Power Waveguides

Research was concerned with the effects in waveguide systems that lead to failures at ultrahigh power levels. Subjects discussed include: (1) breakdown in nonuniform fields that result from waveguide discontinuities and the nature of the propagating modes, (2) properties of gases other than air, and (3) effects of heating of the waveguide. Some preliminary experiments on breakdown and high average power effects are also presented. High Power Capabilities of Waveguide Systems, Meyer Gilden, Microwave Associates, Inc., Burlington, Mass., June 12, 1961, 48 pp., $4.60. Order AD-260111 from OTS, Washington 25, D. C.
Why Die Stamped Circuits by Dytronics?

ELECTRICAL PROPERTIES UNIMPAIRED

Die stamped circuits are produced by a dry technique which employs a heated metal-cutting die to delineate the conductor pattern and bond it to the base material by activating the adhesive between the metal foil and the insulating material.

The electrical properties of the base material are unimpaired, because no chemicals are used, and there is no adhesive residue or residual metal on the insulating surfaces. This gives the designer the advantage of selecting base materials for physical and electrical properties without considering chemical resistance.

A new booklet, "Designing with Dytronics Die Stamped Circuits," will help you evaluate and design with die stamped circuits. Write for your free copy today.

Emission From Semiconductors

A study of hot electron emission was made including: (1) basic investigation of hot electron emission, with the voltage applied across a semi-conductor pn junction varying over a wide range; (2) production of low electron affinity surfaces by suitable activation processes with alkali metals; (3) attempts to produce pn junctions parallel to the vacuum interface to obtain electron emission from larger areas. A review of the prebreakdown hot electron effects in semiconductors is also presented. Research in Electron Emission from Semiconductors, R. E. Simon and E. K. Gatech. David Sarnoff Research Center, Princeton, N. J., Dec. 31, 1960, 49 pp, $4.60. Order PB 157557 from OTS, Washington 25, D. C.

Radar Return

Program investigated the reradiation properties of terrain at near-vertical incidence at 415 and 3800 mc, using narrow-pulse type radar at altitudes of 2000 to 12000 ft. At frequencies over 400 mc most terrain acts as a scatterer of energy even at near-vertical incidence. The backscattering "radiation pattern" of the ground drops off rapidly for most target areas as the angle of incidence is increased from the vertical reference position. The experimental backscattering patterns agree reasonably well with predictions based on a simplified statistical model for ground roughness. Radar Return at Near-Vertical Incidence, A. R. Edison, R. K. Moore and B. D. Warner, New Mexico University Engineering Experiment Station, Albuquerque, Sept., 1959, 84 pp, $8.10. Order PB 157661 from OTS, Washington 25, D. C.

Elliptically-Polarized Radiators

Three general theorems giving conditions for a radiating system to exhibit stationary polarization, stationary gain and the coincidence of stationary polarization and gain in a prescribed direction are presented. These differ significantly from the earlier theorems of Bouix because of a sign error in his work. The theorems are applied to a number of circularly polarized sources and antennas which are broadly directional. Polarization Variation of Elliptically-Polarized Radiators, T. S. Chu and R. G. Kourymjian, Antenna Laboratory, Ohio State University Research Foundation, Columbus, Aug. 10, 1961, 42 pp, $4.60. Order AD-261020 from OTS, Washington 25, D. C.
AUTRONEX ACID GOLD® MEETS PERSHING MISSILE SPECS

Dev Tek, Inc., Orlando, Florida, uses the patented Autronex Acid Gold Process to plate circuit conductors, as applied to the new Pershing Missile. According to Mr. A. F. Goldsbury, Dev Tek President, Autronex Acid Gold affords easy compliance with the rigid ABMA-428 specifications for a hard, bright coating of gold 100-150 millionths thick covering all circuit conductors. Pershing Missile component-finishing specifications are acknowledged to be among the most exacting. Whenever tough specifications are to be met, whenever the unique properties of precious metals are required without the shortcomings of conventional electroplate, missile, electronics manufacturers and government agencies specify Sel-Rex. Technical literature free on request. Specify precious metal and your application.

REPORT BRIEFS

Magnetic Recording

Tests were made on the electronic portion of a wideband magnetic recording system to determine the effects of multiplexing on the video signal. A demultiplexer pulse generator was developed to aid in reconstructing the original signal from its samples. Pulses, identical in height and width (about 30 v and 0.15 µsec), were obtained. The alignment procedure for the electronic portion of the system is described. Wide-Band Magnetic Recording System, General Electric Co., Syracuse, N.Y., July 31, 1958, 83 pp. Order PB 157263-2 from OTS, Washington 25, D.C.

Intrinsic-BARRIER TRANSISTORS

The design theory for a 200 mc, 100 mw silicon transistor indicates that this must be an n-p-i-n, intrinsic-barrier transistor. The fabrication of a suitable structure requires the use of solid-state diffusion. Processes have been developed for a 100 mc, lower power transistor. These processes are shown to be in good control and npn transistor characteristics are given. Intrinsic-BARRIER TRANSISTOR TECHNIQUES (Silicon), J. L. Buie, M. A. Clark and others, Pacific Semiconductors, Inc., Culver City, Calif., Oct. 15, 1957, 35 pp. Order PB 152305 from OTS, Washington 25, D.C.

UHF-VHF Antenna

A solution to the problem of the scattering of plane waves from a material sphere was derived. Results indicate the regions of high energy density within the sphere that may make possible the design of small antennas with large effective apertures. Substantial progress was made in the solution of plane wave scattering from a material cylinder. Measurements on ferrite antennas were begun and problems of rf technique were partially solved. Study and Investigation of a UHF-VHF Antenna, A. T. Adams, R. M. Kalafus and others, Research Institute, University of Michigan, Ann Arbor, Aug. 8, 1961, 63 pp. Order AD-260 866 from OTS, Washington 25, D.C.

LF Ferrites

Development work is reported on low-frequency, broadband ferrite components. A four-wire line, an asymmetrically loaded stripline, and a stripline Y-circulator were
investigated. The Y-circulator was useful at frequencies as low as about 100 mc. High power measurements (1 megawatt peak) were performed on this structure. Performance and design data are given for all three structures. Low-Frequency Broadband Ferrite Components, F. V. Buchler and A. F. Eikenberg, Electronic Communications, Inc., Timonium, Md., June 30, 1961, 119 pp., $9.60. Order AD-260699 from OTS, Washington 25, D. C.

Masers

Four investigations were continued in the field of microwave solid-state masers: (1) Gadolinium in calcium tungstate as a maser material; (2) Harmonic spin coupling, an analytic study of the pumping of paramagnetics with harmonically related energy levels; (3) Space harmonic analysis of the comb-type slow-wave structure; (4) Characteristics of a 6.4 Gc traveling-wave maser. Solid-State Maser Research, H. E. D. Scofield, Bell Telephone Laboratories, Inc., Whippany, N. J., Aug. 14, 1961, 44 pp., $4.60. Order AD-261145 from OTS, Washington 25, D. C.

Nuclear Batteries

Three tritium battery components: the tritium source, the collector, and the enclosure were investigated. Two foils were made in the tritium-source production system, and were cut into smaller pieces for use in all battery types. Several enclosure types were designed with two different terminals. Models of two tritium battery types were fabricated and tested. The model R and R1 series produced 0.1 µA and the model R2 produced over 1.0 µA. A third battery producing 10 µA was designed to determine the upper limit. Nuclear Batteries, John H. Coleman, Radiation Research Corp., N. Y., May 15, 1961, 33 pp., $3.60. Order PB 157679 from OTS, Washington 25, D. C.

C-Band Amplifiers

Reported here is the design, development, and fabrication of tunable C-band reactance amplifiers with tunable range of 5250 to 5750 mc, bandwidth greater than 50 mc, power gain greater than 20 db, noise figure less than 4 db (at room temperature), phase stability less than 1 deg, and gain stability less than 0.1 db. Development of Tunable C-Band Reactance Amplifiers, Airborne Instruments Laboratory, Inc., Mineola, N. Y., Aug. 14, 1961, $2.60. Order AD-261150 from OTS, Washington 25, D. C.
YOUR CAREER

East is East, Etc.,
And How the Twain Met

Reader Charles D. McIntosh, Reseda, Calif., submits a summary of his company's solution to East-West Coast recruiting competition:

Last year, my company, Ecstatic Engineering, Inc. of Los Angeles was still using the standard smogland approach in its East Coast advertising for engineers:

ENGINEERS AND SCIENTISTS:
COME TO SUNNY CALIFORNIA!

Tired of bucking winter blizzards and scorching summers? Weary of wringing humidity out of your collar, and seeing your automobile rust right out from under you? Come to sunny California! Enjoy balmy year-round weather, skiing, Mexico, boating, fishing and hunting, all within an hour or two of your home.

ECSTATIC ENGINEERING INC.
L. A. 4787, Calif.

Meanwhile, our rival on the Atlantic Coast, Magnificent Missiles, Ltd., would come out in the West Coast papers with:

SCIENTISTS AND ENGINEERS:
COME BACK EAST!

Sighing for four honest seasons again? Desert dust and smog got you gasping for breath? Wish you could see a Broadway show? Come back East! Enjoy clean autumn air, crisp winter coziness, green spring newness, and balmy summer skies.

MAGNIFICENT MISSILES, LTD.
BFD No. 1
Burgsville, N. Y.

All this proved expensive and not very successful. So I imagine our stockholders and their stockholders were pleased when our president had a flash of inspiration. He merged the two companies to form Ecstatic Magnificences & Co. Our new company makes the same items on both coasts (the fact that the government agencies duplicate their missile and space programs has made this possible) and the new personnel policy made possible by the merger is proving most satisfactory.

Briefly, it consists of a master plan

Said Svante Arrhenius: "The change of the logarithm of a chemical reaction rate constant with respect to temperature, is inversely proportional to the square of the absolute temperature."

The aerospace industry is searching constantly for strong, light-weight, heat-resistant materials. Finely-spun glass fiber, bonded with a plastic binder, is beginning to exhibit superior properties. Until recently the glass fiber has been far more heat-resistant than any binder.

Scientists at Lockheed Missiles & Space Company, however, have developed a compatible binder. This now makes it necessary for the glass-producing industry to evolve a glass to match its superior heat-resistance.

Comparable successes are being achieved in dozens of disciplines in which Lockheed is engaged. As Systems Manager for the DISCOVERER, MIDAS, and other satellites, and the POLARIS FBMs, Lockheed probes all areas of aerospace endeavor.

LOCKHEED MISSILES & SPACE COMPANY
A GROUP DIVISION OF LOCKHEED AIRCRAFT CORPORATION

Systems Manager for the Navy POLARIS FBMs and the Air Force AGENA Satellite in the DISCOVERER and MIDAS programs. Other current programs include SANTA, MARIA, and such NASA projects as GO-50, OAO, ECHO, and NIMBUS.

SUNNYVALE, PALO ALTO, VAN NUYS, SANTA CRUZ, SANTA MARIA, CALIFORNIA • CAPE CANAVERAL, FLORIDA • HAWAII

ELECTRONIC DESIGN • November 22, 1961
Advancement
Your Goal?
Use
CONFIDENTIAL
Action Form

ELECTRONIC DESIGN's Confidential Career Inquiry Service helps engineers "sell" themselves to employers—as confidentially and discretely as they would do in person. The service is fast. It is the first of its kind in the electronics field and is receiving high praise from personnel managers.

To present your job qualifications immediately to companies, simply fill in the attached resume.

Study the employment opportunity ads in this section. Then circle the numbers at the bottom of the form that correspond to the numbers of the ads that interest you.

ELECTRONIC DESIGN will act as your secretary, type neat duplicates of your application and send them to all companies you select—the same day the resume is received.

The standardized form permits personnel managers to inspect your qualifications rapidly. If they are interested, they will get in touch with you.

Painstaking procedures have been set up to ensure that your application receives complete, confidential protection. We take the following precautions:

- All forms are delivered unopened to one reliable specialist at ELECTRONIC DESIGN.
- Your form is kept confidential and is processed only by this specialist.
- The "circle number" portion of the form is detached before the application is sent to an employer, so that no company will know how many numbers you have circled.
- All original applications are placed in confidential files at ELECTRONIC DESIGN, and after a reasonable lapse of time, they are destroyed.

If you are seeking a new job, act now!

ELECTRONIC DESIGN CAREER INQUIRY SERVICE USE BEFORE JAN. 3, 1962

After completing, mail career form to ELECTRONIC DESIGN, 850 Third Avenue, New York, N. Y. Our Reader Service Department will forward copies to the companies you select below.

(Please print with a soft pencil or type.)

Name ___________________________ Telephone ___________________________

Home Address ___________________________ City __________ Zone ______ State ______

Date of Birth ___________ Place of Birth ___________________________ Citizenship ______

Position Desired ___________________________

E AUTOMATION

<table>
<thead>
<tr>
<th>College</th>
<th>Dates</th>
<th>Degree</th>
<th>Major</th>
<th>Honors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recent Special Training ___________________________

Employment History

<table>
<thead>
<tr>
<th>Company</th>
<th>City and State</th>
<th>Dates</th>
<th>Title</th>
<th>Engineering Specialty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outstanding Engineering and Administrative Experience ___________________________

Professional Societies ___________________________

Published Articles ___________________________

Minimum Salary Requirements (Optional)

Use section below instead of Reader Service Card. Do not write personal data below this line. This section will be detached before processing.

Circle Career Inquiry numbers of companies that interest you
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
YOUR CAREER

whereby each engineer and scientist gets an automatic promotion to the next higher salary level (10 per cent increase) every two years. At the same time he and his family are transferred to the opposite coast with full per diem and moving expenses. The technical recruiting department and the advertising budget have been eliminated, and the resultant savings have enabled us to cut our bid rates to the government by 35 per cent.

The only trouble is the government is suing us under the antitrust laws.

Ramo on Contracts: Order In the Class

Dr. Simon Ramo, engineer-executive, recently proposed that the government's method of awarding military and space contracts be revised. Instead of the present bid-proposal system, which keeps pulling the best technical brains off projects-in-being to work on elaborate proposals for new work, Dr. Ramo proposed a performance-rating system.

While the details of Dr. Ramo's proposed changes have been widely publicized, the pointed analogy that he drew to describe the absurdity of the present system is less well known.

Dr. Ramo compared the present industry-government relationship to a geometry class, in which during the first three days of the course, no geometry is taught, but each child gives a three-minute oral presentation telling why he should receive an A. This is accompanied by a two-page written proposal telling how smart he is, how smart his parents have been before him, and how many hours a week he intends to spend studying geometry. The parents also telephone the teacher.

At the end of three days, the teacher decides on two students who will receive A's, seven B's, twenty-two C's, six D's, and four who flunk. Four students will not get a passing grade, no matter how hard they work. Naturally, Dr. Ramo said, the teacher works hard to help the A student. He is committed to do this at the beginning of the course.

Incentive, Competition

Drop by the Wayside

This system provides competition and incentive only for the preliminary days. Once the school year begins, competition and in-
centives are trivial factors.
Some claim there is protection in this system for next year’s trigonometry, Dr. Ramo said. During the three-day proposal period that opens that course, the trigonometry teacher will remember that some of the students who rated A and B in geometry did not come up to expectation. Their proposals will now be taken with a grain of salt—that is, if the high school and the teacher are the same as last year’s; and if the teacher studies the records, and has a good record system, thereby being able to correlate proposals with performance as a means of judging the next proposal.

Dr. Ramo’s own method of awarding contracts, by contrast, follows the rating system actually used in classrooms. All the contractors start off equal, like the children at the beginning of the term. But as they pass tests (perform well on contracts) the contractors build up their “performance ratings” with the government. As a reward for good grades, the contractors are allowed progressively greater profits on their contracts.

Education Lead Time Governs Nation's Research Directions
Is the solution of earth-bound problems more important than the exploration of space? Would it be better, for example, to spend the nation’s space budget on cancer research?

One reason against making quick changes in the national research objectives was voiced at the recent Space Flight Report to the Nation, sponsored by the American Rocket Society. At the end of a paper on arms control in space, Raytheon’s Clark C. Apt said the question of diverting the military and space budget into human research, such as disease, was really academic because it would take at least 10 years to produce the manpower needed for such research programs.

“The first ghost to be laid aside is the idea of a conservative system among technological resources,” Mr. Apt said. “No one has yet ventured to explain how the thousands of astronomical engineers (now in the space effort) could contribute to cancer research in lieu of space projects.”

Redirection of Projects
In Short Time Ruled Out

Mr. Apt continued:
“Although it is true that within a generation radical re-allocation of national man-

at RCA’S Astro-Electronics Division
Princeton, N. J.
Creator of Tiros

Continued research and investigation into new areas of electronics and space technology have opened up a number of challenging opportunities for creative scientists and engineers at this rapidly growing division of RCA. Immediate openings are available in the following areas:

- APPLIED PHYSICS RESEARCH: Advanced space electrical power and propulsion
- SPACE SYSTEM ANALYSIS: Applied mathematics, Thermodynamics and mechanics
- PROPULSION STUDY AND DESIGN: For final stage space craft
- ELECTRONIC SYSTEMS AND CIRCUIT DEVELOPMENT: Communications, Video and digital data processing, TV camera and pickup tube design
- INFORMATION PROCESSING: Data systems analysis, Computer applications and programming research

To arrange a personal interview, call collect or write:

MR. D. D. BRODHEAD, Hightstown 8-3177
Astro-Electronics Division, Princeton, New Jersey, Dept. PE-473

An Equal Opportunity Employer

RCA
The Most Trusted Name in Electronics
CIRCLE 904 ON CAREER INQUIRY FORM
ENGINERS ARE CHARTING A NEW COURSE AT AC

AC's newest assignment is Systems Integrator for the modified B-52C&D Bombing Navigation System. AC's responsibility includes program and engineering integration, and coordination of associate contractors in the production phase. Other programs at AC include a new, miniaturized inertial guidance system for the TITAN II missile. In addition, AC's Los Angeles Advanced Development Laboratory is currently developing an advanced STellar! Nertial Guidance System. AC is seeking qualified men to work on these important projects. If you have a BS, MS or PhD in Electrical Engineering, Mechanical Engineering or Physics, please contact Mr. G. F. Reasch, Director of Scientific and Professional Employment, Dept. 5753, 7929 South Howell, Milwaukee 1, Wisconsin. An Equal Opportunity Employer. Immediate positions available:

Milwaukee
- Radar Systems Engineers
- Radar Test Engineers
- Radar Reliability Engineers
- Design Review Engineers
- Contact Engineers
- Field Service Engineers

Los Angeles
- (Advanced Inertial Guidance System—Airborne Computers)
- Transistor Circuit Design Engineers
- Sr. Digital Computer Development Engineers

AC SPARK PLUG © THE ELECTRONICS DIVISION OF GENERAL MOTORS MILWAUKEE • LOS ANGELES • BOSTON

CIRCLE 905 ON CAREER INQUIRY FORM

YOUR CAREER

Power resources can change the relative proportion of skilled professional personnel available to different types of activity, this cannot be achieved by any substantial extent within the decade.

"Thus, most of the earth-bound projects so often recommended as superior alternatives to space exploration are not limited so much by financial support as by the long lead time needed to develop the skilled personnel.

"Personnel is an extremely long lead-time item not only because of the time it takes to educate professional personnel, but also because of the time it takes first to train the instructors of this professional personnel," he said. "If we had complete power over what courses college students take, we might in seven or eight years largely re-allocate the number of teachers available in various fields. The effect of this would not make itself felt to any substantial degree before some 10 years has elapsed from the decision time. . . . It must be concluded that those who would have us allocate less effort to space exploration and more to earthbound projects had best plan some 10 years in advance. This then puts the burden on them to prove that, 10 years hence, their decision has a good chance of having been the correct one."

Career-Counselling Service

For Theoretical Sciences

A division of theoretical sciences has been established by the employment-counselling firm, Cadillac Associates, Inc., Chicago.

This division will offer professional guidance to physicists, chemists, mathematicians, statisticians as well as chemical, industrial and mechanical engineers, metallurgists and those in operations research.

Salaries in these fields range from $10,000 to $25,000 for heads of departments, the firm said.

A broadened merit-raise program has been instituted at the Western Electric Co. to take the place of general salary increases. As reported in Western Electric's "Engineering Personnel Relations Notes," the increased emphasis on merit raises will help stop salary compression, and put more weight on true merit. The company still intends to adjust over-all salary ranges from time to time to reflect changes in the general level of salaries.
Boeing openings
in Design Reliability Assurance and Design For Maintainability

Expanding space and missile programs at Boeing's Aero-Space Division offer exceptional career opportunities to specialists in design reliability and design for maintainability. Requirements are a BS degree in Engineering, Physics or Mathematics/Statistics, plus one year of experience in Applied Mathematical Statistics and aircraft and/or missile systems equipment, development or analysis.

Assignments are available...
1. to establish engineering design reliability assurance policies; reliability goals for weapon and space exploration systems; reliability and maintainability design and evaluation methods; reliability monitoring, growth evaluation and display methods,
2. to select, evaluate, and improve electromechanical, electrical and electronic components,
3. to analyze and develop preferred circuits, and
4. to represent Boeing with customers, vendors and associate contractors.

Salaries are competitively commensurate with education and experience. These positions are in Seattle, in the uncongested Pacific Northwest, famous for mild year-round climate, unexcelled recreational facilities, housing and schools.

Send your resume today, to Mr. William B. Evans, The Boeing Company, P. O. Box 3707, ESI, Seattle 24, Washington. The Boeing Company is an equal opportunity employer.

The Making of History was not only His Privilege

...It was His Goal

If you are an advanced degree physicist, scientist or electronic management engineer who seeks to shape air and space vehicles to their unique environmental problems rather than stretch existing designs for marginal success, you are needed at McDonnell.

Write R. F. Kaletta, Professional Placement, McDonnell Aircraft, St. Louis 66, Missouri

AN EQUAL OPPORTUNITY EMPLOYER
YOUR CAREER

Financial-Management Course in Electronics

A course on credit and financial management for the electronics industry is offered by Dun & Bradstreet, Inc.

The course is tailored for credit personnel and engineers. It is designed to develop an understanding of special industry financial problems.

Subjects include credit policies, selling terms, analysis and accounting procedures, sources of information and government procurement.

ENGINEER-IMPROVEMENT COURSES AND SEMINARS

Seminar on Space Vehicles

The Second Annual Seminar On Reliability in Space Vehicles will be held Dec. 5 at the Rodger Young Auditorium, Los Angeles. It will be sponsored by the Los Angeles chapters of the IRE Professional Groups on Reliability and Quality Control, Electron Devices and Component Parts.

The morning session will stress systems, including a discussion on a transistorized computer circuit and reliability in space. The afternoon session will consider components and devices, including discussions of nuclear-radiation problems, reliability of solar arrays and welding of electronic modules for space environments.

For registration information write: Nick Khoury, Space Technology Laboratories, P. O. Box 95001, Los Angeles 45, Calif.

Computer Management Seminar

The Government & Industrial Group, Computer Div. of Philco Corp., is presenting a one-day seminar on computer management. It will be held at the Philco Computer Center in Willow Grove, Pa., on the following dates: Nov. 2 and 21, Dec. 5 and 19, Jan. 9 and 23, Feb. 6 and 20, and March 6 and 20.

Designed for executives and management personnel, the seminar will deal with large electronic data-processing systems, their use in commercial and scientific applications, and their installation. Emphasis will be on the Philco 2000 and 2400 computers.

For information, write C. A. Leventhal, manager of computer education, Philco Computer Div., 3900 Welsh Road, Willow Grove, Pa.
Wanted:

GEOLOGIST

with 4 years' experience on MARS or SATURN

Job function: to direct expansion of present line
of precision switches and indicator lights to include
controls suitable for extraterrestrial applications.

Write for details of present product line.
TIMING NETWORKS
highly reliable readily available

TIME DELAY RELAYS (Stock and Custom Designed) Literature Available

Time delay circuitry used in conjunction with the wide selection of rotary balanced armature relays insures you of an infinite variety of time delay relays with basic specifications as follows:

- **Time Delay:** 50MS to 3 minutes or more
- **Accuracies:** +10% and 5% or better
- **Contacts:** Single to 4 pole Form C, more poles where required.
- **Temperatures:** -55°C to +85°C or -65°C to +125°C
- **Vibration:** 10G or 20G to 2000 CPS
- **Shock:** 30G or 50G

SOLID STATE TIMING MODULES (Custom Designed)

Designed with no moving parts and to withstand excellent environmental conditions, these modules offer:

1. Wide timing ranges from milliseconds to several minutes.
2. Wide output current handling ranges from millamps to 50 amperes.
3. The ability to switch inductive, motor and other stringent loads.

SPECIAL ELECTRONIC PACKAGES AND ASSEMBLIES (Custom Designed)

Combinations of one or more of our various relay series, time-delay relays or solid state switch mechanisms can be used to provide you with:

- **Pulse Integrators** Over & Under Voltage Relays
- **Sequence Timers** Intervalometers
- **Stepping Switches** Phase Detectors
- **Close Differential Relays**

Due to the diversity of possible requirements and applications for the last two product categories, we have not been able to prepare general literature. Please send us your individual specifications.

FOR ENGINEERING KNOW-HOW IN RELAY AND SOLID STATE DESIGNS, CONTACT HI-G NOW!
All that's new in PLASMA research

Proceedings

December

for the facts!

No matter what your field in electronics, having a working knowledge of plasmas is greatly to your advantage. Why? Because plasmas are becoming increasingly important in electronics research and application.

Think of the major new developments in this field. Scientists are using gaseous plasmas to convert heat directly into electricity. Will this affect your work? Of course it will! Others are designing new vacuum pumps, again with gaseous plasmas helping to increase efficiency. Do you see the impact this will have on vacuum tubes, on a whole host of electronics products?

Much specialized research has been done on gaseous plasmas in the last few years. Much more is being planned. To catch up with it, you'd have to read a mass of technical papers, weed through conflicting theories, and often find at the end that the research is not pertinent to your work at all.

Realising this...

Proceedings of the IRE devotes its entire December issue to a survey of plasma research and findings to date. More than 15 technical papers, each one written by an authority, will spell out what plasmas are, how they behave, what they can do. Guest editor is Dr. E. W. Herold, Vice President, Research, Varian Associates.

Every special issue of *Proceedings* in the past has remained a definitive reference work for years. Many were sold out almost immediately. If you are not a member of the IRE, make sure of your copy of the December special issue on plasmas by sending in the coupon immediately.

Proceedings of the IRE

The Institute of Radio Engineers
1 East 79th Street, New York 21

Please send me the December 1961 issue of *Proceedings of the IRE*, containing a survey of the research carried out on plasmas.

- Enclosed is $3.00 (for non-members only).*
- Enclosed is company purchase order.

*Extra copies to IRE members, $1.25 each (limit: 1 extra to a member).

NAME:
COMPANY:
ADDRESS:

Manufacturers’ catalog appears in 1960-1961 ELETRONIC DESIGNERS’ CATALOG
High quality, high reliability plus

PLUG-IN VERSATILITY

 Tops in quality and reliability, the 170A MILITARIZED SCOPE gives you -

- 100% MILITARY SPECIFICATIONS
- Triple sweep, for precise measurements
- 30 MHz bandwidth
- Wide range of accessories

And for even greater versatility, there's the 160B MILITARIZED 15 MC SCOPE.

Seven horizontal, vertical plug-ins give you-

- 15 MHz bandwidth
- 100% MILITARY SPECIFICATIONS
- Multiple sweep options
- Wide range of plug-ins

Both scopes offer the unique feature of marking the sweep, allowing for precise and reliable measurements.

166A Plug-in (Time-Axis) furnished with the 166B and 170A Oscilloscopes (as pictured above), provides standard input connections for X-axis modulation and single-sweep arming.

166C Display Scope (Time-Axis plug-in) provides output to an X-Y recorder, any repetitive waveform appearing on CRT trace. Resolution with permanent, large-scale records is higher than either scope CRT or photograph, and it can observe the scope trace while records are made. Unit converts high speed signals to slower signals having the same wave shape; scanning speed is arranged to keep Y output within the bandwidth of conventional recorders.

166D Sweep Delay Generator (Time-Axis plug-in) delays the main sweep of the 166B and 170A Oscilloscopes for detailed examination of a complex signal or pulse train. In addition, it offers a unique mixed sweep feature to show an expanded segment of a delayed waveform, while retaining a presentation of earlier portions of the waveform. Delay time 1 to 10 sec. Delaying sweep 18 ranges. Delayed length 0 to 10 cm. Delay functions: trigger main sweep, arm main sweep, mixed sweep.

166B Time Mark Generator (Time-Axis plug-in) makes precise time measurements with ease, provides time modulation on the oscilloscope trace of either 166B or 170A. 0.01, 0.1, and 0.01 sec intervals, speed, simplicity, photography, calibration of fast oscilloscope sweeps and operation between calibrated sweep ranges with sweep vernier. Markers may also be used as triggers or for calibration of other devices. Accuracy ± 0.01%.

166B, $120.00.

166D, $85.00.
in these **hp** OSCILLOSCOPES

Vertical or horizontal plug-ins make possible

- Dual trace amplification
- Fast pulse amplification
- High gain amplification
- X-Y records of repetitive waveforms
- New sweep delay convenience
- Time markers for photos, calibration

Both oscilloscopes are highly ruggedized; both have conventional controls for simple, swift operation

Built to exacting military specifications, these **hp** oscilloscopes offer instantly expandable measurement capability—when you need it. It’s easy! Just add a moderately priced plug-in unit.

Both **hp** 160B and 170A employ the same vertical and time-axis plug-ins providing the widest range of application with minimum investment.

New **hp** 160B and 170A meet MIL specifications for shock, vibration, humidity and temperature. Important features include high stability tube transistor circuits, regulated dc filament voltages and premium components throughout.

Etched circuits on translucent epoxy glass provide great mechanical stability and simplify circuit tracing. Improved preset triggering insures optimum operation for almost all conditions with just one adjustment—even on signals down to 2 mm deflection. A push-button beam finder automatically locates an off-screen beam or trace, especially important during operation by inexperienced personnel.

hp 160B, 170A unmatched usefulness

hp 162A Dual Trace Amplifier: plug-in provides maximum sensitivity to 80 mV/cm. permits viewing of two phenomena simultaneously, offers differential input for common mode rejection. Electronic chopping extends simultaneous viewing of 8 signals to lower frequencies without flicker. **hp** 162A, $350.00.

hp 162D High Gain Vertical Amplifier: increases sensitivity to 5 mV/cm. 12 calibrated ranges, 5 mV/cm to 80 V/cm in 3.5, 5, 10 sec., accuracy ± 5%. Continuous vertical extends min. sensitivity to 0.5 mV/cm. Differential input with at least 30 db common mode rejection included for ranges 5 mV/cm through 500 mV/cm. AC or DC coupling of either of two inputs. **hp** 162D, $225.00.

hp 162F Fast Rise preamplifier: vertical plug-in allows full utilization of the excellent transient response of the 160B and 170A main vertical amplifiers. Rise time with **hp** 160B is 2 ns, with **hp** 170A is 12 ns, dc to 500 MHz; with **hp** 160B is 22 ns, dc to 150 MHz. Sensitivity is 0.5 mV/cm to 50 V/cm, available in 4 ranges, input impedance 1 meghohm shunted by 30 pf. **hp** 162F, $145.

hp 162B and 170A with **hp** 166A Plug-in

VERTICAL

- Bandwidth: **hp** 160B, > 15 MC; **hp** 170A, > 30 MC
- Voltage Calibrator: 8 calibrated ranges ± 3%, 0.2 mV to 100 V peak to peak

HORIZONTAL

- Bandwidth: DC to 1 MC
- Sensitivity: 7 ranges 0.1 V/cm to 10 V/cm. Vernier extends minimum sensitivity to 25 V/cm
- Input Impedance: 1 meghohm shunted by 30 pf

SWEEP GENERATOR

- Internal Sweep: 24 ranges, 0.1 μsec/cm to 5 sec/cm ± 3%. Vernier extends sweep to 15 sec/cm
- Magnification: 7 ranges, X1, X2, X3, X10, X20, X50 and X100
- Triggering: Increases fastest sweep to 0.02 μsec/cm. Internal, power line or vertical input signal (2 mm or more vertical deflection); external (½ V peak to peak or more). Trigger level of external sync signal adjustable ±30 to ±30 volts

PRICE:

- **hp** 160B, $1,850.00 (cabinet or rack mount)
- **hp** 170A, $2,150.00 (cabinet or rack mount)
RCA ANNOUNCES

New High-Voltage Silicon Rectifiers
covering the full range
from 1,200 to 10,000 PIV

10 RCA Diffused-Junction rectifiers with integral voltage-equalizing networks
offer outputs up to 825 ma DC for military and industrial applications

Here's important new flexibility for your critical high-voltage rectifier applications—RCA's broad line of encapsulated, insulated multi-cell rectifiers. Check the benefits these rectifiers can bring to your designs:

- Integral voltage equalization—Resistor-capacitor equalization network across each internal rectifier cell equalizes voltage distribution under both transient and steady-state conditions.
- Ratings you can use with confidence—RCA rectifiers are designed to provide top performance at maximum published ratings. Conservative RCA ratings provide built-in safety factor.
- High output current:
 - 550 to 825 ma at 60°C. Single-phase, half-wave circuit.
 - Up to 2.2 amps—6 rectifiers in 3-phase full-wave bridge circuit.
 - Up to 1.65 amps—4 rectifiers in single-phase full-wave bridge circuit.
- High efficiency and excellent regulation—Each diffused-junction cell has only 0.6-volt maximum voltage drop (full cycle average).
- Wide operating and storage temperature range—-65°C to +125°C.
- Compact size—2% to 51/2 cubic inches.
- Unique case design—allows rugged mounting; provides extra long corona path for added safety.
- Designed to meet military mechanical and environmental test specifications.

HALF-WAVE RECTIFIER SERVICE

Absolute-Maximum Ratings for Supply Frequency of 60 cps.
Single-Phase Operation, and with Resistive or Inductive Load

<table>
<thead>
<tr>
<th>Peak Inverse Volts</th>
<th>1200</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
<th>6000</th>
<th>7000</th>
<th>8000</th>
<th>9000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS Supply Volts</td>
<td>840</td>
<td>1400</td>
<td>2100</td>
<td>2800</td>
<td>3500</td>
<td>4200</td>
<td>4900</td>
<td>5600</td>
<td>6300</td>
<td>7000</td>
</tr>
<tr>
<td>DC Blocking Volts</td>
<td>1200</td>
<td>2000</td>
<td>3000</td>
<td>4000</td>
<td>5000</td>
<td>6000</td>
<td>7000</td>
<td>8000</td>
<td>9000</td>
<td>10000</td>
</tr>
<tr>
<td>Rated-Wave Milliampere Average</td>
<td>-</td>
<td>50</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>500</td>
<td>600</td>
<td>700</td>
<td>800</td>
</tr>
<tr>
<td>RI 100°C Ambient Temperature</td>
<td>825</td>
<td>875</td>
<td>915</td>
<td>955</td>
<td>1000</td>
<td>1040</td>
<td>1080</td>
<td>1120</td>
<td>1160</td>
<td>1200</td>
</tr>
<tr>
<td>Peak Reverse Voltage</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Peak Surge Ampere (Over half cycle, sine wave)</td>
<td>-</td>
</tr>
<tr>
<td>Ambient Temperature Range Operating and Storage</td>
<td>-65 to +125°C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- "CR"-Series types may be used in series up to 20,000 PIV without added voltage equalization.

Custom designs are available for higher voltages, higher temperature, oil submersion, special packaging requirements. Call your RCA REPRESENTATIVE today for full particulars on these 10 new rectifiers. For additional technical information, write RCA Semiconductor and Materials Division, Commercial Engineering, Section K-18, N. N., Somerville, N. J.

Available Through
Your RCA Distributor

The Most Trusted Name in Electronics
RADIO CORPORATION OF AMERICA

RCA FIELD OFFICES: EAST: Newark, N. J., 744 Broad St., Humboldt 5-3900 • Philadelphia 5-3900 • Boston 3-3900 • New York 2-3900 • Pittsburgh 4-2003 • Syracuse, N. Y., 731 James St., Room 407 (211 W. 48th St. New York, N. Y., 15500) • NORTHEAST: New York 5-1550 • NORTHEAST: Boston 3-3900 • Northeast Heights Rd., Miss., 400 World Trade Center, Suite 211, Garden 4-7668 • SOUTH CENTRAL: Dallas 2-8000 • Fort Worth 5-0760 • WEST: Los Angeles 7-1550, Calif., Box 50974, Hayward 5-8881 • Sun Prairie 5-3300 • Menasha, Wis., 5005 Excelsior Blvd., 5005 Excelsior Blvd., 5100 21st Street, Clifton 7-1650 • SOUTH CENTRAL: Dallas, Tex., 5050 Carpenter Freeway, Fleetwood 7-6161 • GOV'T: Dayton, Ohio, 234 W. Wilkinson St., GA-72266 • Washington, D. C., 1735 "K" St., 20500, Federal 7-8220

CONTROLLED CIRCULATION POSTAGE PAID AT CHICAGO, ILLINOIS