EEGEROOF DESIGNATION OF ESSENTIAL NEWS, PRODUCTS AND TECHNOLOGY VOL. 14, NO. 12 THE MAGAZINE OF ESSENTIAL NEWS, PRODUCTS AND TECHNOLOGY When the chips are down, an applications-oriented semiconductor directory is your best bet for optimum device selection. Bipolars, FETs, UJTs and integrated circuits are listed by key parameters. You also learn who-makes-what in diodes, SCRs and rectifiers. Articles show design basics, trade-offs. # FAIRCHILD LOW **POWER LOGIC** #### FEATURES: Low Power drainless than 1mW/gate (typ.) @ 50% duty cycle less than 4mW/clocked flip-flop Single power supply requirement 5V optimum, 4.5V to 5.5V range Guaranteed noise immunity 450mV min. at temperature extremes Logic propagation delays 60nsec, typical Binary clock rate2.5Mc Full temperature range55°C to +125°C #### LPDTµL LOW POWER DIODE-TRANSISTOR MICROLOGIC™ CIRCUITS Fairchild LPDT_uL integrated circuits offer high performance in the low milliwatt range. High resistance values and small chip geometry hold down power consumption. The flip-flop element operates either in the R-S or J-K mode, with maximum dissipation of 6mW at a 2Mc toggle rate. Gates provide fan-out capability of 10 LPDT_uL low power logic unit loads. or one standard Fairchild DTµL diode-transistor logic unit load. (Standard Fairchild DTµL logic circuits can be used to extend the fan-out capability still further). The circuits come in Fairchild's Cerpak flat package, and can be used in satellites, battery-operated field equip- ment, or other instruments where reliability and high performance must be achieved with limited power. Fairchild LPDT_µL low power integrated circuits are available in **FAIRC** evaluation quantities from distributors. For complete information write to: # ELECTRONIC DESIGN'S SEMICONDUCTOR DIRECTORY 1966 Mark B. Leeds, Rene Colen Technical Editors Here is the industry's only complete applications-oriented semiconductor directory. Combining Electronic Design's fourteenth annual transistor data chart and third annual microelectronics data chart with a who-makes-what diode guide, the directory gives you in one package: - All the device information you need to pinpoint solid-state design needs—listed according to major design parameters. - Technical articles explaining how to use the specifications, major application areas and the governing design parameters. - Convenient Reader-Service Card (good for a full year) to order detailed device specifications direct from the manufacturer. Transistors are classified according to seven application categories: Audio and General-Purpose, High-Frequency, Power, Low-Level Switching, High-Level Switching, Unijunction and Field-Effect. Within each category, types are arranged in order of improving values of a key design parameter. This listing method permits rapid identification of close substitutes, because device specifications can be compared at a glance. The manufacturer listed in the "Mfr." column is the original registrant of the type for which data are supplied. Alternate suppliers are listed in the "Remarks" column. The diode chart provides a fast guide to the manufacturers who make the specific type of diode you need. Microelectronic devices are divided into two major categories: Digital and Linear. Within these categories the devices are listed by logic type, in the case of digital circuits, and by application, in the case of linear circuits. Cross-indexes for both transistors and microcircuits simplify the job of finding the specific device when the type number is known. #### Keep your semiconductor data up-to-date by doing the following: Step 1: Obtain specification sheets and other data, by finding the appropriate numbers on the manufacturers' literature list (pp. 4-9) and circling them on the Reader-Service Card. Step 2: Get your own copy of the 1966 Semiconductor Directory by circling Reader-Service No. 500. May 17, 1966 # Looks are deceiving... CDE's new XTX capacitor packs T3 capacitance in a T2 case! Meet the XTX...a totally new tantalum capacitor with unmatched volumetric efficiency. A capacitor which offers twice the capacitance value of the CL65-yet retains CL65 case sizes! Voltage range is widest, too: from 6 all the way to 100. The inside story? Dependability. CDE's exclusive seal construction virtually eliminates the possibility of electrolytic leakage. Rugged internal construction makes the XTX incredibly shock and vibration-resistant. It is, in fact, an advanced product...one just right for computer circuitry, copy machines and many other applications. CDE's new XTX capacitor: just another example of doing the job just a little better. CALL YOUR CDE AUTHORIZED INDUSTRIAL DISTRIBUTOR. ## **Table of Contents** - 4 List of manufacturers and their literature offerings. - 208 Technical article reprints and reader service card. #### **TRANSISTORS** - 10 Parameters key applications, govern transistor selection. - 18 How to use the charts and key to transistor types. - 21 Transistor who-makes-what chart. - 22 **Bipolar transistor** data charts: - Audio and general purpose. High-frequency. Low-level switching. High-level switching. - 56 Power. - 94 For the how, why and where of FET usage, consult parameters. - 104 Field-effect transistor data charts: - 104 Analog switching. 106 Digital switching. 107 Low-drift single-ended dc amplifier. 108 General-purpose ac amplifier. 111 Low-noise ac amplifier. 112 High-frequency ac amplifier. - 114 Use the UJT that does the job best. - 118 Unijunction transistor data charts: - 118 Pulse generating and 118 High-frequency control. SCR triggering. 118 Low-frequency control. - 122 Transistor cross-index (bipolars, FETs and UJTs). #### **DIODES/RECTIFIERS** - 144 Selecting thyristors to fill a control need? - 156 In choosing diodes, don't settle for second-best! - 164 Diode data chart (who-makes-what). #### **MICROELECTRONICS** 200 170 Choosing ICs needn't be a chore. Microelectronics cross-index. - 174 Microelectronics data charts: - 174 Diode-transistor logic. 192 Resistor-capacitor logic. - 180 Direct-coupled transistor logic 194 Complementary-transistor logic. and resistor-transistor logic 195 Digital circuits (miscellaneous - 184 Transistor-transistor logic types). - 190 Emitter-coupled logic 196 Linear circuits. The cover photo, courtesy of Fairchild Semiconductor, Mountain View, Calif., shows a number of popular solid-state devices. At the upper right is part of an SCR (2N4319 type); resting on the left portion of the SCR structure is a FET (F1100 type); in the center foreground is a 2N1724 power transistor with an isolated collector; to its left, a hybrid flip-flop (SH2300 type); slightly above and to the right of the flip-flop is a μ A709 monolithic operational amplifier; at the extreme upper left is part of a dual-bipolar unit (2N2060 type). ELECTRONIC DESIGN is published bi-weekly by Hayden Publishing Company, Inc., 850 Third Avenue, New York, N. Y., 10022. James S. Mulholland, Jr., President. Printed at Poole Bros., Inc., Chicago, III. Controlled-circulation postage paid at Chicago, III., and New York, N. Y. Copyright © 1966, Hayden Publishing Company, Inc., 61,114 copies this issue. # List of Manufacturers and their literature offerings Bring your semiconductor data file up to date. Use the Reader-Service card to obtain data sheets, catalogs, application notes and other useful information. Consult dot charts (Transistors: p. 21, Diodes/Rectifiers: p. 164, and Microelectronics: p. 179, 182, 188) to learn who makes what in each device category. Starred (*) listings mean requests for literature and data sheets must go directly to the manufacturers. | Code | Company | Type of
Information
Offered | Transistor | Diode | Micro- | |------|---|--|------------|-------|--------| | | Airtron Div., Litton Industries
200 E. Hanover Ave.
Morris Plains, N.J. 07950
(201) 539-5500 | Data sheets.
Article reprints. | | 201 | | | | Alpha Industries
381 Elliot St.
Newton Upper Falls, Mass. 02164
(617) 969-5310 | Data sheets. Catalogs.
Customer applications
service. | | 202 | | | AL | Amelco Semiconductor
1300 Terra Bella Ave.
Mountain View, Calif. 94042
(415) 968-9241 | Short form catalog. | 203 | | 204 | | | American Electronic
Laboratories Inc.
P.O. Box 552
Lansdale, Pa. 19446
(215) 822-2929 | Data sheets. Catalogs.
Article reprints.
Customer applications
service. | | 205 | | | | American Semiconductor Corp.
4 N. Hickory Ave.
Arlington Heights, III. 60004
(312) 392-8830 | Data sheets. Catalogs. | | 206 | | | AMP | Amperex Electronic Corp.
Providence Pike
Slatersville, R.I. 02876
(401) 762-9000 | Data sheets. Catalogs.
Application notes.
Customer applications
service. Design aids. | 207 | 208 | 209 | | | Atlantic Semiconductor Inc.
905 Mattison Ave.
Asbury Park, N.J. 07712
(201) 775-1827 | Data sheets. Catalogs.
Data manuals. | | 210 | | | | Bell, F. W., Inc.
1356 Norton Ave.
Columbus, Ohio 43212
(614) 294-4906 | Data sheets. | | 211 | | | Code | Company | Type of
Information
Offered | Transistor | , Diode | Micro-
electronics | |------|--|---|------------|---------|-----------------------| | BE | Bendix Semiconductor Div.
South St.
Holmdel, N.J. 07733
(201) 747-5400 | Catalogs. Design aids. | 212 | 213 | | | | Bradley Semiconductor Corp.
275 Welton St.
New Haven, Conn. 06506
(203) 787-7181 | Data sheets. | | 214 | | | BU | Burroughs Corp.
Electronic Components Div.
P.O. Box 1226
Plainfield, N.J. 07061
(201)
757-5000 | Data sheets.
Facilities brochure. | 215 | 216 | | | CBS | CBS Laboratories
High Ridge Road
Stamford, Conn.
(203) 325-4321 | | | * | * | | | Chatham Electronics Div. Tung-Sol Electric Inc. 630 W. Mt. Pleasant Ave. Livingston, N.J. 07039 (201) 992-1100 | Data sheets. Catalogs. | | 217 | | | | Computer Diode Corp.
Pollitt Drive
Fair Lawn, N.J. 07410
(201) 797-3900 | Data sheets. | | 218 | | | | Conant Laboratories
6500 O St.
Lincoln, Neb. 68501
(402) 488-0432 | Catalogs. | | 219 | | | CDC | Continental Device Corp.
12515 Chadron St.
Hawthorne, Calif. 90250
(213) 772-4551 | Data sheetsCatalogs.
Article reprints. | 220 | 221 | | | Code | Company | Type of
Information
Offered | Transistor | Diode | Micro-
electronics | |------|--|--|------------|-------|-----------------------| | СТ | Crystalonics Inc.
147 Sherman St.
Cambridge, Mass. 02140
(617) 491-1670 | Short form catalog. | 222 | 223 | | | DE | Delco Radio Div.,
General Motors Corp.
700 E. Firmin St.
Kokomo, Ind. 46901
(317) 457-8461 | Short form catalog. | 224 | 225 | | | | Delta Semiconductors Inc.
879 W. 16th St.
Newport Beach, Calif. 92660
(714) 646-3286 | Data sheets. Catalogs. | | 226 | | | DIC | Dickson Electronics Corp.
P.O. Box 1387
Scottsdale, Ariz. 85252
(602) 947-5751 | Data sheets. Catalogs. Application notes. Article reprints. Customer applications service. | 227 | 228 | | | | Diodes Incorporated
20235 Nordhoff
Chatsworth, Calif. 91311
(213) 341-4850 | Data sheets, Catalogs, | | 229 | | | | Eastern Delta Corp.
29-09 Broadway
Fairlawn, N.J. 07411
(201) 797-4200 | Data sheets. | | 230 | | | | Eastron Corp.
25 Locust St.
Haverhill, Mass. 01830
(617) 373-3824 | Data sheets. Catalogs.
Application notes. | | 231 | | | | Edal Industries
4 Short Beach Road
East Haven, Conn. 06512
(203) 467-2591 | Data sheets, Catalogs,
Article reprints,
Customer applications
service, Design aids, | | 232 | | | | Edgerton, Germeshausen & Grier, Inc. 160 Brookline Ave. Boston, Mass. 02215 (617) 267-9700 | Data sheets.
Application notes. | | 233 | | | | Electro-Optical Systems Inc.
255 N. Haistead
Pasadena, Calif. 91107
(213) 449-1230 | | | ٠ | | | | Electronic Devices Inc.
21 Gray Oaks Ave.
Yonkers, N.Y. 10710
(914) 965-4400 | Data sheets. | | 235 | | | ETC | Electronic Transistors Corp.
153-13 Northern Blvd.
Flushing, N.Y. 11354
(212) 539-6700 | Data sheets, Catalogs, | 236 | | | | | Erie Technological Products
Inc.
644 W. 12th St.
Erie, Pa. 16512
(814) 456-8592 | Catalogs. Application notes. | | 237 | | | FA | Fairchild Semiconductor
313 Fairchild Drive
Mountain View, Calif. 94040
(415) 962-5011 | Data sheets. Catalogs.
Application notes.
Article reprints.
Customer applications
service. | 238 | 239 | 240 | | | Fansteel Metallurgical Corp.
Number One Tantalum Place
North Chicago, III. 60064
(312) 336-4900 | | | ٠ | | | Code | Company | Type of
Information
Offered | Transisto | Diode | Micro-
electronics | |------|--|---|-----------|-------|-----------------------| | GE | General Electric Co.
Semiconductor Products Dept.
Bldg. 7, Electronics Park
Syracuse, N.Y.
(315) 456-2798 | Data sheets. Catalogs.
Application notes.
Article reprints. | 242 | 243 | 244 | | GI | General Instrument Corp.
Technical Service Center
600 W. John St.
Hicksville, N.Y. 11802
(516) 681-8000 | Data sheets. Catalogs. | 245 | 246 | 247 | | GME | General Micro-electronics Inc.
2920 San Ysidro Way
Santa Clara, Calif. 95051
(408) 245-2966 | Catalogs. | 248 | | 249 | | | General Semiconductors, Inc.
230 W. 5th St.
Tempe, Ariz. 85281
(682) 966-7263 | Data sheets. Catalogs. Data manuals. Customer applications service. | | 250 | | | | Green Rectifier Corp.
1-10 30 St.
Fairlawn, N.J. 07411
(201) 797-8100 | | | * | | | | HP Associates
620 Page Mill Road
Palo Alto, Calif. 94304
(415) 321-8510 | Data sheets. Application notes. | | 252 | | | | Heliotek Div.,
Textron Electronics Inc.
12500 Gladstone Ave.
Sylmar, Calif. 91342
(213) 365-6301 | | | * | | | HOF | Hoffman Electronics Corp.
Semiconductor Div.
Hoffman Electronic Park
El Monte, Calif. 91734
(213) 686-0123 | Data sheets. Catalogs.
Application notes.
Article reprints. | 254 | 255 | 256 | | HU | Textron Electronics Inc. 12500 Gladstone Ave. Sylmar, Calif. 91342 (213) 365-6301 Hoffman Electronics Corp. Semiconductor Div. Hoffman Electronic Park El Monte, Calif. 91734 | Data sheets.
Application notes. | 257 | 258 | 259 | | | 2617 Andjon | | | * | | | ITT | ITT Semiconductors
3301 Electronics Way
West Palm Beach, Fla. 33402
(305) 842-2411 | Catalogs. | 260 | 261 | 262 | | IND | Industro Transistor Corp.
35-10 36th Ave.
Long Island City, N.Y.
(212) 392-8000 | | ٠ | | | | | Instrument Systems Corp.
770 Park Ave.
Huntington, N.Y.
(516) 423-6200 | Data sheets. | | 264 | | | IN | Intellux, Inc.
26 Coromar Dr.
Goleta, Calif. 93017
(805) 968-3541 | Data sheets. Catalogs. Application notes. Article reprints. Data manuals. Customer applications service. Design aids. | | | 265 | | | International Diode Corp.
90 Forrest St.
Jersey City, N.J. 07304
(201) 432-7151 | | | * | | May 17, 1966 5 | Code | Company | Type of
Information
Offered | Transistor | Diode | Micro | |------|---|--|------------|-------|-------| | IEC | International Electronics Corp.
316 South Service Road
Melville, L.I., N.Y. 11749
(516) 694-7700 | Data sheets. Catalogs.
Customer applications
service. | 267 | 268 | | | | International Rectifier Corp.
233 Kansas St.
El Segundo, Calif. 90245
(213) 678-6281 | Data sheets. Catalogs.
Application notes.
Article reprints.
Customer applications
service. Design aids. | | 269 | | | | IRC Inc., Semiconductor Div.
71 Linden St.
W. Lynn, Mass. 01905
(617) 598-4800 | Data sheets. Catalogs.
Customer applications
service. | | 270 | | | KMC | KMC Semiconductor Corp.
Parker Road
Long Valley, N.J. 07853
(201) 876-3811 | Data sheets. Catalogs. Application notes. Article reprints. Customer applications service. | 271 | 272 | | | KSC | KSC Semiconductor Corp.
437 Cherry St.
West Newton, Mass.
(617) 969-8451 | | * | | | | | Korad Corp.
2520 Colorado Ave.
Santa Monica, Calif, 90404
(213) 393-6737 | | | * | | | LAN | Lansdale Transistor &
Electronics Inc.
1111 N. Broad St.
Lansdale, Pa. 19446
(215) 855-9004 | | * | | | | | Ledex, Inc.
123 Webster St.
Dayton, Ohio 45402
(513) 224-9891 | Catalogs. | | 274 | | | LAN | MSI Electronics Inc.
116-06 Myrtle Ave.
Richmond Hill, N.Y.
(212) 441-6420 | Data sheets. Catalogs. | | 275 | | | | Mallory Semiconductor Co.
424 S. Madison St.
DuQuoin, III. 62832
(618) 542-2154 | Data sheets, Catalogs,
Application notes,
Article reprints,
Data manuals,
Customer applications
service, Design aids, | | 276 | | | MEP | Mepco, Inc.
Columbia Road
Morristown, N.J. 07960
(201) 539-2000 | Data sheets. | | | 277 | | | MicroSemiconductor Corp.
11250 Playa Court
Culver City, Cal. 90230
(213) 391-8271 | Data sheets. Catalogs.
Application notes.
Article reprints.
Customer applications
service. Design aids, | | 278 | | | | Micro State Electronics Corp.
Subsidiary of Raytheon Co.
152 Floral Ave.
Murray Hill, N.J. 07971
(201) 464-3000 | Data sheets. Catalogs.
Application notes.
Article reprints. | | 279 | | | | Microwave Associates
Northwest Industrial Park
Burlington, Mass. 01803
(617) 272-3000 | Data sheets. | | 280 | | | MO | Motorola Semiconductor
Products, Inc.
5005 E. McDowell Road
Phoenix, Ariz. 85008
(602) 273-6900 | Data sheets.
Short form catalogs.
Application notes. | 281 | 282 | 283 | | Code | Company | Type of
Information
Offered | Transistor | Diode | Micro-
electronics | |------
--|---|------------|-------|-----------------------| | | National Electronics Inc.
Geneva, III. 60134
(312) 232-4300 | Data sheets. | | 284 | | | NA | National Semiconductor Corp.
Commerce Road
Danbury, Conn.
(203) 744-0060 | | * | | * | | NOR | Norden Div., United Aircraft Corp.
Helen St.
Norwalk, Conn. 06856
(203) 838-4471 | Data sheets, Catalogs,
Application notes,
Article reprints,
Customer applications
service, | | | 285 | | NUC | National Electronics Inc. Geneva, III. 60134 (312) 232-4300 National Semiconductor Corp. Commerce Road Danbury, Conn. (203) 744-0060 Norden Div., United Aircraft Cor Helen St. Norwalk, Conn. 06856 (203) 838-4471 Nucleonic Products Co., Inc. Components and Devices Div. 3133 E. 12th St. Los Angeles, Calif. 90023 (213) 968-3464 Ohmite Manufacturing Co. 3601 Howard St. Skokie, III. 60076 (312) 675-2600 Philbrick Researches, Inc. Allied Drive at Route 128 Dedham, Mass. 02026 (617) 329-1600 Philco Corp. Church Road Lansdale, Pa. 19446 (215) 855-4681 Power Components, Inc. P.O. Box 421 Scottdale, Pa. 15683 (412) 887-6600 Radiation Inc. P.O. Box 37 Melbourne, Fla. 32901 (305) 723-1511 Radio Corp. of America Electronic Components & Devices 415 S. Fifth St. Harrison, N.J. 07029 (201) 485-3900 Raytheon Co. Semiconductor Operation 350 Ellis St. Harrison, N.J. 07029 (201) 485-3900 Raytheon Co. Semiconductor Operation 350 Ellis St. Harrison, N.J. 07029 (201) 485-3900 Raytheon Co. Semiconductor Operation 350 Ellis St. Harrison, N.J. 07029 (201) 485-3900 Raytheon Co. Semiconductor Operation 350 Ellis St. Harrison, N.J. 07029 (201) 485-3900 Raytheon Co. Semiconductor Operation 350 Ellis St. Harrison, N.J. 07029 (201) 485-3900 Raytheon Co. Semiconductor Operation 350 Ellis St. Harrison, N.J. 07029 (201) 485-3900 Raytheon Co. Semiconductor Operation 350 Ellis St. Harrison, N.J. 07029 (201) 485-3900 Raytheon Co. Semiconductor Operation 350 Ellis St. Harrison, N.J. 07029 (201) 485-3900 Raytheon Co. Semiconductor Operation 350 Ellis St. Harrison, N.J. 07029 (201) 485-3900 Raytheon Co. Semiconductor Operation 350 Ellis St. Harrison, N.J. 07029 (201) 485-3900 Raytheon Co. Semiconductor Operation 350 Ellis St. Harrison, N.J. 07029 (201) 485-3900 | Data sheets. | 286 | 287 | 1 | | | 3601 Howard St.
Skokie, III. 60076 | | | * | | | PR | Allied Drive at Route 128
Dedham, Mass. 02026 | Data sheets. Catalogs.
Application notes.
Article reprints.
Data manuals.
Customer applications
service. | | | 288 | | PH | Church Road
Lansdale, Pa. 19446 | Data sheets. Short form catalogs. Application notes. Article reprints. Design aids. | 289 | 290 | 291 | | | P.O. Box 421
Scottdale, Pa. 15683 | Data sheets. Catalogs.
Application notes.
Customer applications
service. Design aids. | | 292 | | | RAD | P.O. Box 37
Melbourne, Fla. 32901 | Data sheets. | | 293 | 294 | | RCA | Electronic Components & Devices
415 S. Fifth St.
Harrison, N.J. 07029 | Catalogs. | 295 | 296 | | | RA | Semiconductor Operation
350 Ellis St.
Mountain View, Cal. 94041 | | * | * | * | | | 20 Village Park Road
Cedar Grove, N.J. 07009 | Catalogs. | | 297 | | | | Esp ey Míg. Corp.
P.O. Box 422
Saratoga Springs, N.Y. | Data sheets. | | 298 | | | | | Data sheets. Catalogs.
Application notes.
Data manuals.
Customer applications
service. Design aids. | | 299 | | | | Schauer Mfg. Corp.
4500 Alpine Ave.
Cincinnati, Ohio 45242
(513) 791-3030 | Catalogs. Application notes. Price lists. | | 300 | | 6 ELECTRONIC DESIGN # Show us where you can't afford to use silicon power and we'll show you the new Bendix B-5000. (25 watts at 2.5 amps, 10 volts and 100°C.) # It costs under 40¢.* New manufacturing and packaging techniques make the B-5000 possible. These techniques include new internal device element assembly, along with new-concept plastic molding operations. The result is a simple, low-cost, reliable silicon power transistor with no power compromise when mounted upon the normal heat sink. B-5000's low cost opens up whole new application areas for you. Now you can afford to put silicon power to work in many industrial and consumer products. Lighting equipment, TV sets, audio amplifiers, appliance sensing amplifiers and industrial controls, to mention a few. Compare the cost of the Bendix® B-5000 with any other silicon power unit of equal rating. You'll discover significant savings. B-5000 offers advances in size, weight and thermal resistance. Leads and collector strips are a highly conductive material, offering excellent solderability, strength and ability to withstand flex and pull. Plastic encapsulant offers outstanding insulation resistance, hermeticity, adhesion ability and high temperature characteristics. In no way does B-5000 compromise traditionally accepted reliability practices. With B-5000 you can tailor mounting techniques to fit your needs exactly. Depending on heat sink, available space and degree of assembly line mechanization, B-5000 can be mounted in the fashion best suited to your operation. For example, B-5000 is readily adaptable to the newer assembly solder techniques without degradation. B-5000 lends itself equally well to other commonly used production line techniques. #### **Electrical specifications** | Charac- | L | .imit | В | Test Conditions | | | | | | | |---|-------------------------------|-------------------------------------|---------------|-----------------|----------------------|---------------------------------|----------|----------|--|--| | teristic | Min. | Max. | Unit | VCB
V | VCE | IC
A | IB
mA | TJ
°C | | | | VCEO
ICEO
ICBO
VBE
hFE
hFE
VCE(s) | 35
-
-
30
20
- | 10
1.5
1.2
250
—
1.2 | V mA mA V V | 14 | 25
14
14
14 | 0.2
0.5
0.5
1.0
1.0 | 50 | 150 | | | #### Absolute maximum ratings VCE0 = 35 volts, IC = 3 amps, IB = 1 amp, Tstg = -65 to 175°C, TJ = -65 to 150°C. For complete information about the new Bendix B-5000 silicon power transistor, write to us in Holmdel, New Jersey. volume quantities **Bendix Semiconductor Division** HOLMDEL, NEW JERSEY | | Сотрапу | Type of
Information
Offered | Transistor | Diode | Micro | |------|--|---|------------|-------|-------| | | Semcor Div., Components Inc.
3540 W. Osborn Road
Phoenix, Ariz. 85019
(602) 272-1341 | Data sheets. Catalogs. | | 301 | | | | Semicon Inc.
Sweetwater Ave.
Bedford, Mass. 01730
(617) 275-8542 | Data sheets. Catalogs. | | 302 | | | | Semiconductor Devices Inc.
875 W. 15th St.
Newport Beach, Calif. 92663
(714) 642-5100 | Data sheets, Catalogs, | | 303 | | | | Semiconductor Specialists Inc.
5700 W. North Ave.
Chicago, III. 60639
(312) 622-8860 | Data sheets. Catalogs.
Customer applications
service. | | 304 | | | | Semi-Elements Inc.
Saxonburg Blvd.
Saxonburg, Pa. 16056
(412) 352-1548 | Catalogs. | | 305 | | | | Semtech Corp.
652 Mitchell Road
Newbury Park, Cal. 91320
(213) 628-5392 | Data sheets. Catalogs. Application notes. Data manuals. Customer applications service. Design aids. | | 306 | | | SA - | Siemens America Inc.
230 Ferris Ave.
White Plains, N.Y. 10603
(914) 948-3434 | Data manuals. | 307 | | | | SIG | Signetics Corp.
811 E. Arques Ave.
Sunnyvale, Calif. 94086
(408) 739-7700 | Data sheets. Application notes. Article reprints. | | | 308 | | STC | Silicon Transistor Corp.
E. Gate Blvd.
Garden City, N.Y.
(516) 742-4100 | Data sheets. Catalogs.
Application notes.
Customer applications
service. | 309 | 310 | | | SI | Siliconix Inc.
1140 W. Evelyn Ave.
Sunnyvale, Calif. 94086
(408) 245-1000 | Catalogs. | 311 | | 312 | | | Slater Electric Inc.
45 Sea Cliff Ave.
Glen Cove, N.Y.
(516) 671-7000 | Data sheets. Catalogs.
Application
notes. | | 313 | | | | Solar Systems Inc.
8241 N. Kimball Ave.
Skokie, III. 60076
(312) 676-2040 | Data sheets. Catalogs.
Application notes.
Article reprints.
Data manuals.
Customer applications
service. | | 314 | | | SSP | Solid State Products Inc.
One Pingree St.
Salem, Mass. 01970
(617) 745-2900 | Data sheets, Catalogs,
Application notes,
Customer applications
service. | 315 | 316 | | | SOL | Solitron Devices Inc.
1177 Blue Heron Blvd.
Riviera Beach, Fla. 33404
(301) 848-4311 | Data sheets.
Short form catalogs.
Data manuals. | 317 | 318 | | | SSD | Sperry Semiconductor
380 Main Ave.
Norwalk, Conn. 06852
(203) 847-3851 | Data sheets. Catalogs. | 319 | | | | SPR | Sprague Electric Co.
491 Marshall St.
North Adams, Mass. 01247
(413) 664-4411 | Data sheets. Application notes. Short form catalog. | 320 | | 321 | | Code | Company | Type of
Information
Offered | Transistor | Diode | Micro | |------|--|--|------------|-------|-------| | SW | Stewart-Warner Microcircuits Inc. 730 E. Evelyn Ave. Sunnyvale, Calif. 94086 (408) 245-9200 | Data sheets, Catalogs,
Application notes,
Article reprints,
Customer applications
service. | | | 322 | | SY | Sylvania Electric Prod.
100 Sylvan Road
Woburn, Mass. 01801
(617) 933-3500 | Data sheets, Catalogs,
Application notes,
Customer applications
service, Design aids, | 323 | 324 | 325 | | | Syntron Company
283 Lexington Ave.
Homer City, Pa. 15748
(412) 479-8011 | Data sheets. Catalogs. | | 326 | | | TRWS | TRW Semiconductors Inc.
14520 Aviation Blvd.
Lawndale, Calif. 90260
(213) 679-4561 | Data sheets.
Article reprints.
Short form catalog. | 327 | 328 | 1 | | TI | Texas Instruments Inc. P.O. Box 5012 Dallas, Tex. 75222 (214) 235-3111 | Data sheets. Catalogs.
Application notes.
Customer applications
service. | 329 | 330 | 331 | | TR | Transitron Electronic Corp.
168 Albion St.
Wakefield, Mass. 01881
(617) 245-4500 | Short form catalog. | 332 | 333 | 334 | | | Trio Laboratories
80 DuPont St.
Plainview, N.Y. 11803
(516) 681-0400 | Data sheets. Application notes. Customer applications service. | | 335 | | | UC | Union Carbide Electronics
365 Middlefield Road
Mountain View, Calif. 94041
(415) 961-3300 | Data sheets, Catalogs,
Application notes,
Customer applications
service, Design aids, | 336 | | | | | Unitrode Corp.
580 Pleasant St.
Watertown, Mass. 02172
(617) 926-0404 | Data sheets. Catalogs. Data manuals. Customer applications service. Samples. Test reports. | | 337 | | | | Vactec Inc.
2423 Northline Industrial Blvd.
Maryland Heights, Mo. 63045
(314) 432-4200 | Data sheets. | | 338 | | | | Varian/Bomac Div. Beverly, Mass. 01915 (617) 922-6000 | Data sheets, Catalogs,
Application notes,
Customer applications
service, Design aids, | | 339 | | | VAR | Varo Inc., Special Products Div.
2201 Walnut St.
Garland, Tex. 75040
(214) 276-6141 | Data sheets. Catalogs.
Article reprints.
Design aids. | | 340 | 341 | | VEC | Vector Solid State Labs.
Southampton, Pa. 18966
(215) 357-7600 | | * | | | | | Western Semiconductors Inc.
2200 Fairview St.
Santa Ana, Calif. 92704
(714) 546-2250 | Data sheets. Catalogs.
Application notes.
Customer applications
service. Design aids. | | 343 | | | WH | Westinghouse Electric Corp. Molecular Electronics Div. Box 7377 Elkridge, Md. 21227 (301) 796-3666 | Data sheets.
Short form catalog. | | | 344 | | WH | Westinghouse Electric Corp.
Semiconductor Div.
Youngwood, Pa. 15697
(412) 925-7272 | Data sheets. Catalogs.
Application notes.
Article reprints.
Design aids.
Short form catalog. | 345 | 346 | | ELECTRONIC DESIGN # (Con Avionics Has Another New Line) When we cut \$100 from the going market price for systems power supplies, we kept all the features you need most. For example, Con Avionics' new line carries an unconditional five year guarantee. It has a Mean Time Between Failure of 35,000 hours, calculated according to Mil Handbook 217. We use silicon transistors exclusively, so the units operate to 75°C. They are designed and manufactured to meet specifications under the worst possible combination of operating conditions. The secret to maintaining all this quality at a low price lies in designing a *systems* power supply right from the start. Most modules used in high power systems applications are just modified lab units. But when you design a supply just for systems use you worry about things like panel space. So Con Avionics new HS supplies are available in rack and half-rack size. You can pack 12 volts at 20 amps into $5\frac{1}{4}$ " of panel height and 8" of width. And in a system supply you design-in optimum air flow, for both vented and forced air cabinets. Our units are self-cooled, too. Before you buy another power supply for a systems application, remember that the price is now \$100 lower than it used to be. Call, write, wire or TWX Mr. Gerry Albers at Con Avionics for all the details. #### **CONSOLIDATED AVIONICS** 800 Shames Drive ■ Westbury, L. I., New York ■ 516-ED 4-8400 #### PARTIAL SPECIFICATIONS Input: 105-125 VAC, 47-63 cps Regulation: (Line and load combined) ±0.05% Ripple: 1 mv RMS max. Response time: 25 microseconds Temperature Coefficient: 0.015%/°C or 18 mv/°C., whichever is higher Temperature: 75°C max. The entire voltage range between 5.5 vdc and 51.0 vdc is covered in twenty-six models. Currents range from 8.0 amps to 46.0 amps. Wattages from 104.5 to 816. # **Select the best transistor** for the job by knowing which parameters govern for a given application. Here is the lowdown–from dc to RF and low-level thru large signal. Modern bipolar transistors, unlike first-generation types (devices generally numbered below 2N700), have been specifically tailored to achieve optimum performance in certain applications. The key to transistor selection, then, lies in understanding and consulting the parameters which reflect a transistor's suitability for any particular application. Here is a master chart which shows the governing parameters according to major application categories. It embraces small- and large-signal amplifiers, low- and high-speed low-level switching circuits, power switching networks and RF power amplifiers. The frequency range runs from dc to the gigahertz region. #### Application categories narrow the search Simply stated, the best transistor for an application is one which performs the intended function at lowest cost. Years ago, when nearly all transistors were made by an alloy process, differences between types could be predicted quite readily. Compromises were inevitable; the general trade-off was between frequency response and power-handling ability. For a time, the dream of a universal transistor was entertained with the advent of mesa, planar and annular types of transistors. But the vision never materialized because with each technological advance it was found that transistors tailored to very specialized applications could be designed. These devices enabled performance in these applications to exceed by far all prior expectations. To narrow the search for the transistor best suited to your application, a key parameter chart (see table) has been developed. The chart is applicable to the majority of available devices, including modern ones made by mesa or passivated technologies as well as older types made by alloy and grown processes. The following definitions delineate the application categories. ■ Small-signal amplifiers to 3 Mhz. These devices handle small amounts of power, and they need only have a limited frequency response. Operation is small-signal, that is, no large excursions of collector current are required, although collector-voltage swings may be large. • Small-signal amplifiers above 30 MHz. These devices are similar to those above but are primarily intended for RF applications. There are some differences in the significant characteristics, particularly in gain, noise and agc. ■ Low level, low-speed switching and large-signal drivers. These cover switching speeds or amplification at frequencies below 1 MHz. They are generally of the same type as those in the first category, but additional specifications such as saturation voltages and response times are needed to define switching and large-signal performance. ■ Low-level, high-speed switching. Devices in this group are typified by a high f_T value (> 50 MHz, generally) and a low storage time. • Large-signal amplifiers and power switching. Representative devices have a dissipation figure in excess of five watts at a 25°C case temperature. RF power amplifiers. Devices in this category "Why settle for second-best?" Pick the optimum transistor type for your application by using author Roehr's guide to distinguishing between bipolar devices. It shows where and why transistors can and should be used. William D. Roehr, Manager, Device Characterization Section, Applications Engineering, Motorola Semiconductor Products Inc., Phoenix, Ariz. are especially designed for use as power amplifiers and oscillators at frequencies exceeding 10 MHz. #### Gain: major factor in small-signal amplifiers In small-signal amplification to 30 MHz, the primary characteristic of the amplifier is the power gain of the circuit. The power gain of an amplifier-operated common-emitter with no circuit feedback is easily determined from the transistor h parameters: $$G = \frac{R_L h_{fe}^2}{(1 + h_{oe} R_L) (h_{ie} + \Delta h R_L)}, \qquad (1)$$ where R_L is the load resistance, h_{fr} the small-signal current gain (β) , h_{oe} the input admittance and h_{ie} the input impedance. Note that Δh
is the determinant of the $h_{ie} - h_{fe} - h_{re} - h_{oe}$ matrix where h_{re} is the voltage feedback ratio. In many cases $R_L < < h_{oe}$, so that Δh and gain may be approximated by $$G = \frac{h_{fe}^2 R_L}{h_{ie}}. (2)$$ At low frequencies, input impedance h_{ie} may be written as $r'_b + h_{fe} r_e$, so that Eq. 2 may be further simplified to $$G = h_{fe} \left[\frac{R_L}{r_e + (r'_b/h_{fe})} \right], \tag{3}$$ where r'_b is the transistor base resistance, and r_e the transistor dynamic emitter resistance. A transistor stage has a power gain equal to the product of a current gain and a voltage gain. Parameter h_{fe} establishes the current gain and the resistances (primarily the R_L/r_e ratio) determine the voltage gain. The actual amplifier design can proceed once the h parameters as a function of the operating point and some data on their inter-relationships are known. This information is usually found on the curves of a transistor data sheet. #### Frequency response: a figure of merit Second in importance only to gain in small-signal amplifiers is the frequency response. Here the gain-bandwidth frequency (f_T) is of prime interest.³ It serves as a very useful figure of merit. To calculate circuit cutoff-frequency, the capacitance from base to collector (C_{ob}) must also be considered. For a common-emitter amplifier without degeneration, the response will be down 3 dB at the critical frequency given by $$f_c \approx \frac{f_T/h_{fe}}{2 \pi f_T R_L C_{ob}}.$$ (4) Older specification sheets generally use the term "beta-cutoff frequency," $f_{\alpha e}$, which is related to f_T by $$f_{\alpha e} \approx f_T/h_{fe}. \tag{5}$$ In the front ends of preamplifiers, the noise figure is all-important. Noise will be lowest for transistors having high h_{fe} and low r_b values. Designing for low noise is usually quite involved, but helpful data sheet design curves are usually supplied. If it is not specified, assume that the transistor will usually be too high to be satisfactory for first-stage preamplifier operation, particularly when low frequencies are to be handled. Aside from gain, frequency response and noise, there are a number of other, in general, secondary parameters that must be considered. For linear operation, the available voltage swing must generally be confined. This avoids This micropower switching transistor geometry is the 2N3493 device (Motorola). Featuring input and output capacitances of 0.7 pF, the transistor itself is in the rectangular-shaped overlap area between the circles. A ring-dot geometry is exhibited by the 2N3783 bipolar transistor. Suitable for very low-noise RF amplification, this Motorola device has a maximum noise of only 2.2 dB at 200 MHz. The yolk-colored pattern is the base area. distortion due to saturation in the low-voltage region and avalanche effects in the high-voltage area. The guideline to follow—since linearity is seldom specified—is to take the specified value of $V_{\it BE}$ and nine-tenths of $V_{\it CEO}$ as suitable limits for load-line excursions. Even though small-signal amplifiers dissipate low power, the power-dissipation rating at ambient temperature and the maximum junction-temperature rating deserve some attention. In addition, although the I_{CBO} leakage current is negligible in modern silicon transistors, it is large enough to cause stability problems in germanium types; where it, too, must be taken into account. In all transistors, the variation of base-emitter voltage and current gain as a function of temperature directly affects stability, although V_{BE} and h_{fe} were neglected in older treatments of the subject because the effect of I_{CBO} was so much greater. Devices classified as general purpose transistors will perform best in audio and video amplifying applications. In general, the best present types are silicon pnp passivated units, as they have the flatest curve of h_{Ie} vs I_C and the lowest noise. Engineers occasionally stretch a point in their search for a universal device. They may use a transistor which has been optimized for some other function in a small-signal amplifier application, just because the device is handy, or economical in large quantities. This may be foolhardy. For example, both silicon and germanium transistors intended for high-speed switching or RF amplification are poor choices as general-purpose devices. The switches, if made of silicon, will be gold-diffused to reduce storage time in saturatedmode switching service. This manufacturing practice causes the h_{fe} to be low and to fall off at low current, and also produces high leakage currents and high noise. A germanium-type switch is a poor choice because of low voltage-ratings and relatively high leakage currents. Similarly, the RF device will exhibit low gain at low frequencies and its h_{ef} is often very sensitive to changes in I_c and/ or V_{CE} . #### Oscillation frequency index of RF performance RF small-signal amplifier applications require a new look at the gain and frequency parameters. The characteristics of importance in the RF region are in general quite different from those in the audio realm. Here too, gain is important, but the best indicator of it in the high-frequency region above the beta-cutoff frequency f_{ae} is f_{max} , the #### Key parameters based on application | | | | Req | uired s | pecificati | on ratings | | | | CI | naracteri | stics lim | its | | V | |--|--|----|-----|---------|------------------|---------------------------------------|------------------|---|-----------------|---|------------------|---------------|-------------------|----|--------------------------------------| | Device types | Use category | Pc | PA | Т | V _{CBO} | V _{CEO} or *V _{CES} | V _{EBO} | f _T
or
*f _{max} | C _{ob} | h _{FE}
or
*h _{fe} | SV _{CE} | Noise
fig. | Edge
of
sat | ts | Func-
tional
test | | Alloy (GPA or GPS)
Grown, mesa
Planar
Annular (no gold)
(standard diffusion) | Small-signal
amplifiers
(to 30 MHz) | | X | х | | х | | х | X | X* | | x | X | | - | | Drift, mesa
Planar
Annular
(RF diffusion) | Small-signal
amplifiers
(above 30 MHz) | | X | Х | | х | | X* | X* | | | х | | | G _e ,
agc | | Alloy, grown (no gold)
Mesa
Planar
Annular | Low-level, low-
speed switching
(to 1.0 MHz);
Large-signal
drivers
(below 30 MHz) | | x | х | х | х | х | х | х | х | x | | Х | х | - | | Mesa (gold-doped Planar or Annular low-voltage (standard diffusion) | Low-level, high-
speed switching
(above 1.0 MHz) | | X | X | х | х | X | X | X | x | X | | X | х | - | | All power types with standard base diffusion | Large-signal
amplifiers;
Power-switching
(below 10 MHz) | х | | х | х | X | х | х | х | x | Х | | х | X | - | | RF types only | Power-class
amplifiers;
Oscillators
(above 10 MHz) | X | | Х | | X* | | | х | | X | | | | G _e ,
P _{out} | maximum frequency of oscillation.6 The power gain at high frequencies for practical amplifiers is given as $$G_e \approx \frac{f_T}{8 \pi f^2 r'_b C_{re}},$$ (6) where f_T is the gain-bandwidth product, f the frequency of operation, r'_b the base-spreading resistance and C_{re} the collector-base feedback capacity. The maximum frequency of oscillation, f_{max} , may be found by solving Eq. 6 for the frequency where power gain is unity. This yields $$f_{max} \approx \sqrt{\frac{f_T}{8 \pi r'_b C_{re}}}.$$ (7) Note that power gain will increase at the approximate rate of 6 dB/octave as circuit operation is shifted down in frequency from f_{max} . Precise calculations can be made by using the two-port admittance parameters provided on the modern data sheet. Once again, for the input stages of a system, noise figure is important. As with audio amplifier types, devices that do not have a specified noise figure will probably not be suitable for front-end operation at vhf and uhf. #### Agc is a bias factor RF devices generally exhibit a maximum gain when operated at certain bias conditions. Many transistors are designed to have special automatic gain control (agc) characteristics, so that gain decreases at a certain rate in relation to changes in the dc bias. The gain may be reduced by decreasing the collector current (reverse agc), or increasing the collector current (forward agc). All transistors are capable of reverse-agc operation, whereas a forward agc characteristic is obtained only by special device design. Forward-agc operation is suitable only at frequencies above $f_{\alpha e}$; reverse agc may be used at any frequency. Forward agc has the advantage of an increasing signal-handling capability with rising input signal. This agc information is usually supplied for devices which are designed for particular use as gain-controlled amplifiers. Other characteristics to be considered include the breakdown-voltage rating, $V_{\it CEO}$, because it comes into play when choosing power supply voltages, and allowable output-voltage swings. Ambient-temperature power rating and the junction-temperature limit are of only passing interest. This is because RF applications are typified by low power-dissipation figures. Functional tests of gain and noise, as specified on some data sheets, show the optimum operating point and are an excellent guide to whether the device will be suitable for a given application. As for the matter of "universality," the RF device is most emphatically a special product. General-purpose and switching transistors are not nearly as suitable in RF applications. In general, the gain of these units will be very low, they will be unstable, and they will exhibit high
noise. #### Saturation, dc modes set switching stage In low-level, low-frequency (≤ 1 MHz) switching, many of the characteristics specified for most modern devices must be weighed. The same type of transistor that makes a good audio amplifier may very well serve as a good switch. Here, specifications additional to the audio figures are required. Of primary importance in a switching system is the gain of the stage which approaches the dc gain (h_{FE}) . Also, because most devices operate in a saturated mode, the saturation voltage is of considerable interest. It sets a system-voltage level and largely determines the power dissipation. Finally, the remaining set of major parameters is the switching times.⁸ Included here is the storage time, for in the case of the older, alloy-junction devices, it can be lengthy. Nearly all modern types of transistors, however, have storage times which are quite small by comparison; they are therefore suitable for low-speed switching circuits. It is nonetheless desirable to have a storage time (t_s) , specification, which is approximated by $$t_{s} = \tau_{s} \ln \frac{I_{B1} + I_{B2}}{(I_{c}/h_{FE} + I_{B2})}, \tag{8}$$ where τ_8 is the storage-time time-constant, I_{B1} the turn-on base current, I_{B2} the turn-off base current, I_C the collector current and h_{FE} the dc current gain. Equation 8 is helpful in estimating storage time at a point other than the one specified on the data sheet. For alloy devices, Eq. 8 holds quite well; for modern devices, it is found that τ_8 varies somewhat with I_C . In the latter case, Eq. 8 may result in an error of 2:1 and therefore should not be used indiscriminately. Another figure of merit is the sum of the rise and fall times. An index of the rise-and-fall-time values can be obtained from f_T and C_{ob} . Parameter f_T predominates in the rise-time equation in the high-current region, while output capacitance C_{ob} is paramount in the low-current region. To predict rise time, t_r , both parameters must be known and used in: $$t_r \approx \left(\frac{1}{2 \, \pi \, f_T} + \, R_L \, C_{ob}\right) \left(\frac{I_C/I_{B1}}{1 - I_C/2 \, I_{B1} \, h_{FE}}\right). \tag{9}$$ In Eq. 9 f_T is the gain-bandwidth product, R_L the load resistance, C_{ob} the collector-base capacitance, I_C the collector current, I_{B1} the base current and h_{FE} the dc current gain. #### Load line control is essential The expression is reasonably accurate providing that $I_c/I_{BI} < h_{FE}/2$. In applying it, the I_{BI} value must approximate a step of current, R_L should be a pure resistor and the values of f_T and C_{ob} must be averaged over the load line used. The voltage breakdown rating, $V_{\it CEO}$, usually proves to be the best indicator of an upper voltage limit. But in many cases, careful control of the load line and the reverse bias placed on the transistor makes it possible to switch voltages up to the $V_{\it CBO}$ rating. For switching applications such as multivibrators and flip-flops, where capacitors are used in the base-coupling circuit, the V_{EBO} rating must be known, as it is quite easy to exceed this limit inadvertently. The rated dissipation at ambient temperature and the maximum junction-temperature limit rate attention, but are not of prime importance, because the power dissipated here is fairly small. The leakage currents of germanium and silicon devices may be a selection factor. In today's silicon transistors they are so low that they are not of design significance. On the other hand, the leakage of germanium devices may prove troublesome. Silicon transistors are generally preferable to germanium types in switching applications because the former have a higher $V_{\rm BE}$ turn-on voltage. This and their lower leakage currents make it easier to maintain the cut-off state. #### Storage time a key in high-speed switching The characteristics of importance to high-speed switching applications are essentially the same as those in the previous group. But there is greater emphasis on the storage-time specifications, since they prove to be a primary limit on how fast a logic system can operate. To achieve low storage time, the recommended devices are low-voltage germanium or gold-doped silicon units. These transistors are generally un- This power transistor features an isolated collector. Shown before being sealed, this semiconductor type (2N1724) unit comes in a TO-61 package. suitable for applications other than switching. Silicon npn types achieve the fastest switching. Designers are sometimes tempted to use an RF transistor in a switching application. The results are disappointing, for RF devices have low $V_{\it EBO}$ ratings, low $h_{\it FE}$ values, high storage times and poor saturation characteristics. #### Power rates high in large-signal amplifiers In large-signal amplification, large amounts of power are handled and the power rating of the transistor at a specified case temperature becomes of paramount interest. The voltage which it can tolerated, as indicated primarily by the BV_{CKO} rating, is also of great importance. The other voltages normally mentioned on data sheets generally do not greatly affect these applications. In such devices, the edge of the saturation region, as evidenced by the knee in the collector V-I curve is significant. This is particularly so for the linear power amplifier, as it is obviously desirable to handle current peaks and voltage excursions as close to the saturation region as possible for maximum efficiency. Edge of saturation information can often be obtained from data sheet curves. In power transistors, saturation will often occur when $V_{CE} > V_{BE}$. occur when $V_{\it CE} > V_{\it BE}$. These power units are also used in power-switching, where many of the characteristics that are of consequence are the same parameters that govern in low-level applications. In this category, storage time may also limit the speed at which switching can be handled, although speed itself is usually not of primary importance. Rise time at high currents is a major interest, but because of the current range over which these devices are switched, the use of f_T measured at a single point does not correlate with measured rise time if fitted to Eq. 9, and the rise-time specifications and curves must be used. Gain (h_{FE}) matters because efficiency is a prime consideration, and so too does saturation voltage because of the large currents usually handled. The product of the current and saturation voltage largely determines the power dissipation and dictates the requirements for the heat dissipator. #### Current excursions modify frequency response A common denominator for both large-signal-amplification and power-switching applications is frequency response. The gain-bandwidth frequency (f_T) serves as an indicator of amplifier high-frequency response, but as with switching service, the amplifier's large current excursions cause discrepancies. When attempting to calculate frequency response, Miller effect due to C_{ob} should be considered as well as f_T . Generally, better amplifier performance predictions can be obtained from proper use of the transistor switching data. If rise-time data is plotted as a function of I_c with V_{cE} as a parameter (under the condition $I_c/I_{B1} << h_{FE}$), a large signal cutoff frequency can be found from $$f_{A} = \frac{I_{C}}{2\pi t_{r} h_{FE} I_{B1}}$$ (10) In Eq. 10, f_A is the large-signal common-emitter cut-off frequency and I_c the ON collector current. Parameter t_r is the rise time obtained from switching data at the collector current (I_c) and voltage swing of interest. Note that V_{cE} of the switching test is the same as ΔV_{CE} in amplifiers, and $I_{c(on)}$ of the switching test corresponds to $I_{C(PK)}$ in amplifiers; h_{FE} is the transistor dc current gain and I_{B1} is the turn-on base current used in the switching test. Flat curves of h_{FE} vs I_C are desirable for silicon transistors, as they are commonly driven from high-impedance sources to obtain the best thermal stability and the lowest distortion. For germanium power transistors, a low-impedance drive circuit is required to achieve the same ends, so that a flat curve of transconductance vs collector current is needed.10 An extremely important characteristic of power devices is the safe operating area.11 Data are usually presented in graphic form showing permissible regions of V_{cE} - I_c operation as a function of time. Unfortunately, safe area does not correlate very well with the power ratings based upon thermal resistance. All the same, safe area, not power rating, is more often than not the arbiter of power-handling ability, and therefore is the prime concern. #### Functional tests guide RF operation RF operation creates conditions such that conventional parameters simply give no indication of a particular transistor's suitability. The only way to select devices, then, is to refer to the functional test on the manufacturer's data sheet. Here you will find the power gain at a given power output under the optimum conditions for which the devices were designed. Bear in mind that the BV_{CES} voltage rating has proved to be the most useful single voltage rating for RF power transistors. As in low-frequency power applications, the edge of saturation is significant and so is safe area information. Secondary considerations are the maximum temperature rating and 25°C case power-dissipation rating. When designing the tuning circuit, output capacitance C_{ob} must be known. #### Sewing up the tailored device choice A theme of this discussion has been that there is no universal transistor. It is wisest to select transistors with specifications tailored by the manu- facturer to a given application.¹² It is found, for example, that devices intended for high-speed, low-level saturated switching service
possess very high noise figures and very low gain as audio-frequency amplifiers. Germanium switches, made from low-resistivity material to achieve low storage time, similarly should not be used indiscriminately in audio amplifiers. Devices intended for RF applications are de- Pick the right device! When faced with a number of transistor geometries, cans, etc., to choose from, use the key parameters as a guide to application. signed to have very low base-spreading resistances. For this, a diffusion profile in the base is made to have an average low resistivity. As a result, the input capacity is rather high, the current gain very low, rendering this type of device unsuitable for audio and switching applications. Conversely, the switching device, designed to have a high emitter-breakdown voltage and a low input capacitance, will have a high-base-spreading resistance. This results in low power gain and high noise when it is operated as an RF amplifier. In the power area, too, the same types of tradeoffs are evident. #### References: 1. R. F. Shea et al., Transistor Circuit Engineering (New York: John Wiley & Sons, Inc., 1957), chap. iv. 2. A. B. Phillips, Transistor Engineering (New York: McGraw-Hill Book Co., 1962, chaps. xii & xiii. 3. Ibid., chap. xiv. 4. J. R. Miller et al. Communications Handbook (Dallas, Tex.: Texas Instruments Inc.), Part II, chaps. i, 5. H. Weber, A Method of Predicting Thermal Stability (Phoenix, Ariz.: Motorola Semiconductor Products, Inc.), Technical Information Note AN 182. 6. Phillips, op. cit., chap. xv. 7. Miller, loc. cit. 8. W. D. Roehr et al., Switching Transistor Handbook (Phoenix, Ariz.: Motorola, Inc., 1963), chap v. 9. Ibid., chap. iii. 10. Weber, loc. cit. 11. R. Greenburg, Determining Maximum Reliable Load Lines for Power Transistors (Phoenix, Ariz.: Motorola Semiconductor Products, Inc.), Semiconductor Technical Information AN 137-R1. 12. J. F. Kane, Silicon Annular Switching Transistor Design Considerations (Phoenix, Ariz.: Motorola Semi-conductor Products, Inc.), Technical Information Note #### **NEW TWISTER...** ACCURATE TIME/COUNT CONTROL New and consistently better! At the left is the new face of our famous Microflex® reset timers and counters. High-visibility, direct reading dials enable you to make highly accurate settings, easier! The larger, 20-turn scale, for example, may be in minute divisions with the inner in seconds. Settings as short as 3/60th of a second with ± 1/60th second accuracy are readily obtained. Other dial selections to 120 hours are available. After the desired pre-set time period, a variety of 15 amp. contacts can be opened or closed to control motors, solenoids, valves, etc. Uniform new lettering and attractive neutral grey color make units compatible with all other Eagle Signal types and with your most advanced machine designs. For full details about these new timers and counters, use Reader Service Card, circle number 91. #### TURN...TURN...TURN... MINUTES SECONDS And not one turn too many! The operating characteristics of radio tuning coils depend on precise winding techniques. The Man from E.A.G.L.E. did a good turn for a leading manufacturer when he suggested the system shown above. Using a Microflex counter, variations in motor speed resulting from wire tension changes are taken care of . . . and an accurate product is produced each time. The operator merely needs to set the high-visibility dial and press the button. The arbor turns the pre-set number of revolutions and stops automatically. In this system, the Microflex counter controls brake, clutch and motor. Complete information is in Bulletin 730. For a copy, use Reader Service Card, circle number 92. #### FILL'ER UP... 0 And ${f not}$ one ounce too many! A leading food supply manufacturer presented the Man from E.A.G.L.E. with the packaging requirement shown at the left. This manufacturer wanted to accurately fill containers. A versatile Microflex timer was the answer. It moves the containers under the hopper...filling and advancing them by the time lapse technique. The limit switch in this system activates the Microflex which controls hopper-valve and motor circuits. An accuracy of 1/10% of full scale is consistently maintained and the manufacturer can vary the container sizes and amounts he wants them to carry. Intriguing? Write for Bulletin 110 for full data. Use Reader Service Card, circle number 93. The Man from E.A.G.L.E. would like you to see his complete "showcase" of process control ideas. May we send you our catalog? For your copy, use the handy Reader Service Card, circle number 94, or write directly to Eagle Signal Division, E. W. Bliss Company, Federal Street, Davenport, Iowa 52803. #### UNDERCOVER OPERATOR 22AP Plug-in General Purpose Relay ship and design. Versatile to the Nth degree on loads to 10 amps. Available in 8- and 11-pin styles for AC, DC and plate circuit requirements. Features include: forms to 3PDT plus specials on request; standard units have gold-plated contacts for longer shelf life; lower pull-in voltages (DC; 70% of nominal, AC: 75% of nominal); AC operating voltages 0.5 to 250, DC 0.2 to 130 in current ranges from .005 to 10 amp. Complete information is in our new relay bulletin. For your copy, use Reader Service Card, circle number 95. #### SPECIFICATIONS - · Contacts: SPDT, DPDT, 3PDT - Contact Rating: 5 and 10 amps. - Pull-in: 22 milliseconds average - Drop-out Speed: 12 milliseconds average - · Size: 13/8 " x 21/8 " x 13/8" - Weight: 3 ounces #### POWERFUL PARTNER 25PS Medium Power Relay power-handling assignments to this workhorse. 25PS types carry loads to 20 amps. on a fast duty cycle in a breeze. UL listed. Features include: rugged 3/4" diameter silver cadmium oxide alloy contact; lower puli-in voltages (DC: 75% of nominal. AC: 76% of nominal); AC operating voltages 4 to 250, DC 1 to 130 in current ranges from .02 to 10 amp. For full technical information on this and other Eagle Signal general purpose and medium power relays, use the Reader Service Card, and circle number 96. #### SPECIFICATIONS - Contacts: SPDT - Contact Rating: 20 amps. 115/230 VAC 60 cycle resistive ● 1 HP @ 115/230 VAC motor-inductive - Pull-in: 50 milliseconds max. - Drop-out Speed: 30 milliseconds max. - Size: 21/4 * x 19/32 * x 11/16" - Weight: 3 ounces #### RELAY DESIGNERS' RELAY 25AA Open Frame General Purpose Relay Ask the man from E.A.G.L.E. to open his "showcase" of ideas for you. Many can help solve your process control problems. Want our complete catalog? Use the handy Reader Service Card, circle number 98 or write: Eagle Signal Division, E. W. Bliss Company, Federal Street, Davenport, Iowa 52803. ... and boy what a relay it is! Versatile, dependable, economical. You'll find hundreds of uses for these 5 or 10 amps., UL listed high-reliability types. Standard units have gold-plated contacts which permit longer shelf life. Other significant features include: lower pull-in voltages (DC: 70% of nominal, AC: 75% of nominal). AC operating voltages 0.5 to 250, DC 0.2 to 130 in current ranges from .005 to 10 amp. Detailed specifications on these and other Eagle Signal general purpose relays are given in a new technical bulletin. For your copy, use Reader Service Card, circle number 97. #### **SPECIFICATIONS** - Contacts: SPDT, DPDT, 3PDT - Contact Rating: 5A and 10A @ 115 VAC●5A-1/10 HP @ 115 VAC, 1/6 HP @ 230 VAC●10A-1/6 HP @ 115 VAC, 1/3 HP @ 230 VAC - Pull-in: 22 milliseconds average - Drop-out Speed: 12 milliseconds average - Size: 11/8" x 1/32" x 11/2" - Weight: 2 ounces BLISS A DIVISION OF THE E. W. BLISS COMPANY # How to use the charts A tint pairs the transistor type with the value of its key parameter for most applications in each transistor category. Devices are listed in order of increasing value of that key parameter. Note, however, that since various manufacturers may characterize their types differently, some "jumps" may take place in the sequence. Consider, for example, a type in the high-frequency category. Its key characteristic will be $f_{\alpha e}$ or f_T (values of f_T are preceded by a single asterisk). But $f_{\alpha e}$ is the frequency at which h_{fe} drops to 0.707 of its low-frequency value, and f_T is the gain-bandwidth product, or the product of h_{fe} and frequency at a point where h_{fe} is dropping by 6 dB per octave. Thus, f_T is about h_{fe} times greater than $f_{\alpha e}$ for a given type. Under maximum ratings, manufacturers were asked to specify collector power dissipation at 25° C case temperature, this generally being the most meaningful single rating. The derating factor can then be used to estimate P_c for other operating temperatures. Either $V_{\scriptscriptstyle CEO}$ or $V_{\scriptscriptstyle CEO}$ is listed as a maximum voltage rating. $V_{\scriptscriptstyle CEO}$ is related to collector-emitter diode breakdown and $V_{\scriptscriptstyle CEO}$ to collector-base diode breakdown. But bear in mind that many manufacturers' data sheets will list other important voltage ratings, such as $V_{\scriptscriptstyle CES}$ or $V_{\scriptscriptstyle CER}$. Under *characteristics*, ELECTRONIC DESIGN asked manufacturers to supply typical values —maximums, minimums or spreads. Where deviations from this occur, they are noted. Finally, a word of caution: the characteristics listed serve primarily as a guide and generally should not be used *exclusively* for direct comparison of types. This is because it is impossible to list the wide variety of test conditions under which characteristics have been measured. V_{CEO} , for example, can differ considerably for comparable devices when measured at a collector current of 100 μ A in one case and 1 mA in another. The best bet is to consult the manufacturers' data sheets before making the final selection. Also, scan the articles that preface each listing section. Each article contains important information about parameter evaluation. #### Key to Symbols |
key to Sy | Allocis | |-----------------------|---| | fae | = small-signal short-circuit forward current transfer ratio cutoff fre- | | | quency (commont-emitter) | | fab | = small-signal short-circuit forward | | | current transfer ratio cutoff frequen- | | | cy (common-base) | | f _T | = gain-bandwidth product | | Pc | = collector power dissipation (average) | | T _i | = junction temperature °C | | mW/°C | = derating factor | | V _{CEO} | = max collector voltage, collector to emitter, base open | | V _{CBO} | = max collector voltage, collector to | | • CBO | base, emitter open | | 1 _c | = max collector current | | I _p | = max collector current (peak) | | h _{fe} | = small-signal short-circuit forward | | | current transfer ratio (common-
emitter) | | h _{FE} | = dc short-circuit forward current transfer ratio (common-emitter) | | lco | = collector cutoff current (dc), emitter open | | Coe | = output capacitance (common emit ter) | | Cob | = output capacitance (common-base) | | tr | = rise time | | t _s | = storage time | | V _{CE(sat)} | = collector-to-emitter saturation volt- | | g _m | age transconductance | | V _P | = pinch-off voltage | | DSS | = zero-bias drain current | | BV _{DGO} | = drain-gate breakdown voltage with gate-source open-circuited | | BV _{DGS} | = breakdown voltage from drain to gate with drain shorted to source | | Cis | = common source short-circuit input capacitance | | N.F. | = noise figure | | η | = intrinsic standoff ratio | | I _{EO} | = max emitter reverse current | | I_p | = max peak point emitter current | | V _{E(sat)} | = max emitter saturation voltage | | V_{EB2} | = min emitter reverse voltage | | V _{OB1} | = min base one peak pulse voltage | # Solitron announces a family of 90 Amp NPN Silicon Planar Power Transistors featuring fast switching, high voltage capabilities with P_T =350W@ 25°C! | | | DESIG | ON LIMITS | | PERFORMANCE SPECIFICATIONS | | | | | | | | | |---------|--------------|-------------|------------------|----------------------|----------------------------|----------------------|--|-----------------------|-------------------------|----------------|--|--|--| | | Pr | ВУсво | V _{CEO} | BVEBO | h | FE | V _{BE} (sat) | V _{CE} (sat) | Icao | f _T | | | | | Туре | Watts | | Volts | 14.14 | | | 14-14- | 14-14- | | | | | | | Number | 25°C | 25°C Volts | | Volts | | | Volts | Volts | μA | MH | | | | | | Case | $I_c = 1mA$ | $I_c = 0.2A$ | I _E = 1mA | $I_c = 75A$ | I _c = 90A | $I_c = 50A$ | , 1 ₈ = 5A | V _{CB} = 60V | | | | | | | Max. | Min. | Min. | Min. | Min. | Min. | Max. | Max. | Max. | Тур. | | | | | MHT8920 | 350 | 80 | 60 | 8 | 10 | 5 | 2.0 | 1.5 | 10 | 20 | | | | | MHT8921 | 350 | 100 | 80 | 8 | 10 | 5 | 2.0 | 1.5 | 10 | 20 | | | | | MHT8922 | 350 | 120 | 100 | 8 | 10 | 5 | 2.0 | 1.5 | 10 | 20 | | | | | MHT8923 | 350 | 140 | 120 | 8 | 10 | 5 | 2.0 | 1.5 | 10 | 20 | | | | | | 50°C
Case | $l_c = 2mA$ | | | I _c = 50A | | I _c = 50A, I _B = 10A | | V _{CB} = RATED | MIN. | | | | | 2N3149 | 300 | 80 | 80 | 10 | 10 | - | 2.5 | 1.5 | 2000 | 0.1 | | | | | 2N3150 | 300 | 100 | 100 | 10 | 10 | - | 2.5 | 1.5 | 2000 | 0.1 | | | | | 2N3151 | 300 | 150 | 150 | 10 | 10 | _ | 2.5 | 1.5 | 2000 | 0.1 | | | | TRANSISTOR DIVISION # ON DEVICES, INC. 1177 BLUE HERON BLVD. / RIVIERA BEACH, FLORIDA / (305) 848-4311 / TWX: (510) 952-6676 Leader in Germanium and Silicon Power Transistors, Cryogenic Thermometers, High Voltage Rectifiers, Hot Carrier Diodes, Temperature Compensated Zeners, Voltage Variable Capacitors, Random/White Noise Components, Microelectronic Circuits, and High-Pac Interconnection Systems. #### Key to Transistor Types | | Construction | GD | Grown diffused | |-----|-------------------------------------|------|-------------------------------| | AE | Annular epitaxial | GJ | Grown junction | | AJ | Alloy junction | GR | Rate grown | | AD | Alloy diffused | MB | Meltback | | | | MD | Micro-alloy diffused base | | DD | Double diffused | MS | Mesa | | DG | Grown diffused | PE | Planar epitaxal | | DJ | Diffused junction | PL | Planar | | DM | Diffused mesa | SBT | Surface barrier | | DDM | Double-diffused mesa | SP | Surface precision alloy | | DP | Diffused planar | TDP | Triple-diffused planar | | DR | Drift | | | | ED | Electro-chemical diffused-collector | PADT | Past alloy diffused technique | | EM | Epitaxial mesa | | Matariala | | EP | Epitaxial | | Materials | | FA | Fused alloy | ge | germanium | | FJ | Fused junction | si | silicon | ## New DC Scope! ... the Heathkit 10-14 . Sets New Standard for Performance & Value . . . \$299.00 Kit . . . \$399.00 Assembled • DC to 8 mc Bandwidth-0.04 usec. rise time . Calibrated Vertical Attenuator - .05 v/cm to 600 v. (max.) Input • Triggered Sweep — 18 calibrated rates • Delay-Line Vertical **Amplifiers for Fast Rise Signal** Analysis . Electronically Regulated Power Supplies - Forced Air Cooling . Built for Continuous-Duty Industrial & Lab Use A 5" DC scope with calibrated time base & 5X sweep magnifier. For 115/230 volt, 50-60 cycle operation. Kit 10-14, 45 lbs....\$299.00 Assembled IOW-14, 45 lbs. \$399.00 #### FREE CATALOG! Fully 20 Describes Over 250 Heathkit Electronic **Products** Heath Company, Dept. 60-5 Benton Harbor, Michigan 49022 ☐ Please send FREE Heathkit Catalog & Information describing the New Heathkit 10-14 Oscilloscope HEATHKIT Enclosed is \$_ _, plus shipping. Please send model. Prices & specifications subject to change without notice ON READER-SERVICE CARD CIRCLE 7 Name. Address. City TE-141 ## FREE FOLDER #### **ECCOSHIELD®** RF SHIELDING MATERIALS Brand new six page folder in color describes a complete line of Eccoshield products to combat RFIconductive plastic sheet and gaskets, adhesives, coatings, caulking compounds, metallic foil-the works. > This valuable Folder is yours. Write or use Reader Service Card. #### EMERSON & CUMING, INC. - Canton, Massachusetts - 604 W. 182d St., Gardena, Calif. - 9667 Allen Ave., Rosemont, III. Emerson & Cuming Europe N. Y. Oevel, Belgium #### Manufacturers and their lines | Manufacturer - | Symbol | Audio
A | High-Frequency
HF | Power
P | Low-Level
LL | High-Level
HL | Field-Effect
FET | Unijunctio
UJT | |---------------------------|--------|------------|----------------------|------------|-----------------|------------------|---------------------|-------------------| | Amelco | AL | • | • | • | • | • | • | | | Amperex | AMP | • | • | • | • | • | | | | Bendix | BE | | • | • | | • | | | | Burroughs | BU | | | | • | | | | | Continental Device | CDC | • | • | • | • | • | | | | Crystalonics | СТ | • | • | • | • | | • | | | Delco | DE | | | • | | • | | | | Dickson | DIC | | | | | | • | | | Electronic Transistor | ETC | • | • | • | • | • | | | | Fairchild | FA | • | • | • | • | • | • | | | General Electric | GE | • | • | | | • | | • | | General Instrument | GI | • | | • | | | | The state of | | General Micro-electronics | GME | • | | | • | | • | | | Hughes | ни | | | | • | • | • | | | ITT Semiconductors | ITT | | • | • | | • | | | | Industro Transistor | IND | • | • | | | | | | | International Electronics | IEC | • | • | | • | | | 77.11 | | KMC Semiconductor | KMC | | | | | | • | | | KSC Semiconductor | KSC | | | • | | • | | | | Lansdale | LAN | • | | • | • | | | | | Motorola | MO | • | • | • | | • | • | • | | National Semiconductor | NA | • | | • | • | • | | | | Nucleonic Products | NUC | • | | • | • | • | | | | Philco | PH | | • | | • | | | | | Radio Corp. of America | RCA | • | | • | • | • | • | | | Raytheon | RA | • | | | • | • | | | | Siemens America | SA | • | | • | • | • | | | | Silicon Transistor | STC | | | • | | • | | | | Siliconix | SI | | | | | | • | | | Solid State Products | SSP | | • | • | | • | | | | Solitron | SOL | | | • | | | | | | Sperry Semiconductor | SSD | • | | | | | | | | Sprague | SPR | • | • | • | | | | | | Sylvania | SY | • | | • | • | • | | | | Texas Instruments | TI | • | | • | | | | | | Transitron | TR | • | | • | • | | | | | TRW Semiconductors | TRWS | • | | • | | • | | | | Union Carbide | UC | • | | | | • | | | | Vector | VEC | | | • | • | | | | | Westinghouse | WH | | | • | | | | | May 17, 1966 21 # **Audio and General Purpose** Mostly audio and general-purpose types handling less than one watt. Listed in order of increasing forward-current transfer ratio. | | | | | | | MAX. | RATINGS | | | CHARACT | ERISTICS | | | |-----------------------|---|---------------------------------|---|--|--|--|--------------------------------------|-----------------------------------|-----------------------------------|-------------------------------------|------------------------------|-----------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | h _{fe} | P _c (mW) | (°C) | m₩/°C | YCEO
*VCBO
(V) | I _c (mÅ) | ί
(/1 ∀) | fae
*fT
(MHz) | Package
Outline
(TO-) | Remarks | | A 1 | 2N1439
2N1223
NS-664
NS-668
2N927 | NA
SSD
NA
NA | pnp,A,si
AJ
pnp,A,si
pnp,A,si
pnp,A,si | 5-12
6
7-22
7-22
8-22 | 400
250
400
150 | 200
175
175
175
175
200 | 2.25
1.67
2.5
1
.85 | 50
40
50
50
60 | 100
100
100
100
100 | .025
0.1
1
1
.025 | - | 5
5
5
18
18 | CT
CT, SPR
Industrial Type
Industrial Type
SPR | | | 2N935
2N938
2N1024
2N1025
2N1028 | 022
022
022
022
022 | A)
A)
A) | *9
9
9
9 | 385
250
250
250
250
250 | 160
175
175
175
175 |
2.85
1.67
1.67
1.67
1.67 | 40
35
15
35
10 | 50
50
100
100
100 | 0.1
.025
.025
.025
.025 | 0.2 | 18
18
5
5
5 | CT, SPR
CT, SPR
AMP, CT, SPR
AMP, CT, SPR
CT, SPR | | A 2 | 2N1154
2N1155
2N1156
2N1220
2N1222 | TI
TI
TI
SSD
SSD | npn,si
npn,si
npn,si
AJ
AJ | 9
9
9
*9 | 750
750
750
250
250 | 150
150
150
175
175 | 6
6
6
1.67
1.67 | *50
*80
*120
25
25 | 60
50
40
100
100 | 5
5
5
0.1
0.1 | - | -
-
5
5 | TR. NA. ETC
TR. NA. ETC
TR. NA. ETC
CT. SPR
CT. SPR | | | 2N1586
2N1587
2N1588
2N332A
2N1440 | TI
TI
TI
GE
NA | npn,si
npn,si
npn,si
npn,DG,si
pnp,A,si | 9
9
9
9-20
9-22 | 125
125
125
500
400 | 87.5
87.5
87.5
175
200 | 2
2
2
3.33
2.25 | 10
20
40
45
50 | 25
25
25
25
25
100 | 1
1
1
.5
.025 | | -
-
5
5 | TR, ETC
TR, ETC
TR, ETC
TR
AMP, CT | | A 3 | 2N2673
2N1394
2N1408
2N1643
2N1672A | GE
GI
GI
CT
GI | pnp, DG, si
pnp, ge
pnp, AJ, ge
pnp, si
npn, AJ, ge | 9-22
10
*10
*10
*10 | 250
50
150
250
120 | 175
-
100
160
85 | 1.66
0.8
2
1.9
2 | *60
*10
*50
25
*55 | 25
-
-
50
- | .1
15
7.0
.001
25 | -
1
-
2 | 46
-
5
5
5 | мо | | | BCZ12
2N925
2N470
2N471
2N472 | AMP
NA
TR
TR
TR | pnp,AJ,si
pnp,A,si
npn,PL,si
npn,PL,si
npn,PL,si | 10
10-24
10-25
10-25
10-25 | 250
150
200
200
200 | 150
200
175
175
175 | 2
.85
1.2
1.2
1.2 | 60
40
15
30
45 | 50
100
25
25
25
25 | 0.1
.025
.5
.5 | 1
-
8
8
8 | 1
18
5
5
5 | SPR | | A 4 | 2N472A
2N1082
2N102
2N117
2N332 | TR
TR
SY
TI
TI | npn,PL,si
npn,PL,si
npn,AL,ge
npn,si
npn,si | 10-25
*10-50
*10.5
12 | 200
200
1000
150
150 | 175
175
75
175
175 | 1.2
1.5
-
1
1 | 45
*25
*30
*45
*45 | 25
50
1500
25
25 | .5
.5
500
2
2 | 8
17.2
-
- | 5
5
13
-
5 | TR
GE, TR | | | 2N1474
2N1476
2N756
2N756A
2N923 | SSD
NA
NA
NA | AJ
AJ
npn,DM,si
npn,DM,si
pnp,A,si | 12
12
12-22
12-22
12-30 | 250
250
500
500
150 | 175
175
200
200
200 | 1.67
1.67
2.5
2.5
.85 | 60
100
45
60
25 | 100
100
100
100
100 | .050
0.2
0.2
0.1
.025 | - | 5
5
18
18
18 | CT, AMP, SPR
CT, SPR
TR
TR
SPR | | A 5 | NS-731
NS-733
2N1149
2N726
2N1248 | NA
NA
TI
TI
TR | npn,DM,si
npn,DM,si
npn,si
npn,si
npn,PLE,si | 12-55
12-55
12.3
15
*15 | 400
400
150
300
30 | 175
175
175
175
175
150 | 2.5
2.5
1
2 | 15
30
*45
20
6 | 100
100
25
50
5 | 1
1
2
1
.01 | -
-
-
- | 18
18
-
18
5 | Industrial Type
Industrial Type
TR
GE | | | 2N1311
2N1655
2N2177
2N2178
2N2370 | GI
RA
SSD
SSD
NA | npn,AJ,ge
pnp,si
AJ
AJ
pnp,A,si | *15
*15
*15
*15
*15 | 120
250
100
100
200 | 85
160
175
175
200 | 2
1.85
.67
.67
1.0 | *75
125
6
6
15 | 50
50
50
50
100 | 7.0
1.0
.005
.005
.005 | 1.5
.050
-
-
- | 5
5
5
18
5 | TI CT, SPR CT, SPR CT, SPR CT, SPR Low Level, Low Noise, AMP, CT, SPR | | A 6 | 2N2372
2N2391
BCY30
BCY33 | NA
TI
AMP
AMP | pnp,A,si
pnp,si
pnp,AJ,si
pnp,AJ,si | *15
15
15
15 | 150
300
250
250 | 200
175
150
150 | 1
2
2
2 | 15
20
*64
*32 | 100
50
100
100 | .005
10
.1
.1 | -
.25
.4 | 18
50
5
5 | Low Level, Low Noise, CT, SPR | | | BCZ13
2N529
NS-663
NS-667
MA885 | AMP
GI
NA
NA
MO | pnp,AJ,si
pnp,A,si
pnp,A,si
pnp,AJ,ge | 15
15-20
15-36
15-36
15-40 | 85
100
400
150
200 | -
85
175
175
100 | .9
2
2.5
1
2.67 | *20
*15
50
50
*50 | 10
-
100
100
500 | .01
5.0
1
1
1 | 1.5
2.5
-
-
†0.5 | -
5
5
18
5 | Sub min case
Industrial Type
Industrial Type
†fab | | A 7 | 2N243
2N936
2N939
2N1026
2N1027 | 17
022
022
022
022 | npn,si
AJ
AJ
AJ | 16
*18
18
18 | 750
385
250
250
250 | 150
160
175
175
175 | 6
2.85
1.67
1.67
1.67 | *60
35
35
35
35
15 | 60
50
50
100
100 | 1
0.1
.025
.025
.025 | | -
18
18
5
5 | TR, NA
CT, SPR
CT, SPR
CT, SPR
CT, SPR | | | | | | | | MAX. | RATINGS | | | CHARACT | TERISTICS | | | |-----------------------|--|--------------------------------|---|---|--|--|-------------------------------------|---------------------------------|---------------------------------|-----------------------------------|-------------------------------|-----------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | hfe
*hFE | P _c (mW) | T _j (°c) | m₩/°C | YCEO
*VCBO
(V) | I _c (mA) | ι
(μ Α) | f
ae
*fT
(MHz) | Package
Outline
(TO-) | Remarks | | | 2N1219
2N1221
2N1474A
2N1441
2N757 | SSD
CSSD
SSD
NA
NA | AJ
AJ
AJ
pnp,A,si
npn,DM,si | *18
18
18
18-36
18-40 | 250
250
250
250
400
500 | 175
175
175
200
200 | 1.67
1.67
1.67
2.25
2.5 | 25
25
60
35
45 | 100
100
100
100
100 | 0.1
0.1
.050
.025
0.2 | | 5
5
5
5
18 | SPR
CT, SPR
CT, SPR
AMP, CT
TR, GI | | A 8 | 2N333A
2N2674
2N928
2N334A
2N758 | GE
GE
NA
GE
NA | npn, DG,si
npn, DG,si
pnp, A,si
npn, DG,si
npn, DM,si | 18-44
18-44
18-55
18-90
18-90 | 500
250
150
500
500 | 175
175
200
175
200 | 3,33
1,66
,85
3,33
2,5 | 45
*60
60
45
45 | 25
25
100
25
100 | .5
.1
.025
.5
0.2 | 11
-
-
12
- | 5
46
18
5
18 | TR
SPR
TR
TR, GI | | | 2N758A
2N734
2N738
2N1273
2N1274 | NA
TI
TI
TI | npn,DM,si
npn,si
npn,si
pnp,ge
pnp,ge | 18-90
20
20
20
20
20 | 500
500
500
150
150 | 200
175
175
85
85 | 2.5
3.33
3.33
2.5
2.5 | 60
60
80
*15
*25 | 100
50
50
150
150 | 0.1
1
1
14
14 | 1111 | 18
18
18
5
5 | GI
TRWS, TR
TR | | A 9 | 2N1310
2N1312
2N1372
2N1373
2N1380 | GI
GI
TI
TI | npn, AJ, ge
npn, AJ, ge
pnp, ge
pnp, ge
pnp, ge | *20
*20
*20
*20
*20
20 | 120
120
250
250
250
250 | 85
85
100
100 | 2
2
3.3
3.3
3.3 | *90
*50
*25
*45
*12 | 200
200
200
200 | 7
7
-
14 | 1 2 - | 5
5
5
5
5 | TI
TI | | | 2N1381
2N1383
2N1445
2N1564
2N1572 | TI
TI
TI
TI | pnp,ge
pnp,ge
npn,si
npn,si
npn,si | 20
20
*20
20
20
20 | 250
200
800
600
600 | 100
85
200
175
175 | 3.3
3.3
4.57
4 | *25
*25
*120
60
80 | 200
200
750
50
50 | 14
14
10
1 | | 5
5
5
5
5 | TRWS, TR
TR | | A 10 | 2N1672
2N2371 | GI
NA | npn,AJ,ge
pnp,A,si | *20
*20 | 120
200 | 85
200 | 2 1.0 | *40
15 | 100 | 25
.005 | 2 | 5
5 | Low Level, Low Noise, AMP, CT, SPR | | | 2N2373
2N3579 | NA
SSD | pnp,A,si
pnp,EP | *20
*20 | 150
400 | 200
200 | 1
2.28 | 15
60 | 100
30 | .005
0.05 | -
80 | 18
46 | Low Level, Low Noise, CT, SPR | | | 2N3877
2N3877A
A130
A310
A311 | GE
GE
AMP
AMP | npn,PL,si
npn,PEP,si
npn,PL,si
npn,PL,si
npn,PL,si | *20 min.
*20 min.
*20
*20
*20 | 200
200
360
300
300 | 100
100
200
175
175 | 2.67
2.67
2
2
2 | 70
85
*90
*135
*80 | 50
50
-
- | 0.5
0.5
-
.5
.5 | 135
135
30
50
30 | 98
98
5
5
5 | | | A 11 | BCY38
2N530
2N2042
2N2042A
2N926 | AMP
GI
MO
MO
NA | pnp,AJ,si
pnp,AJ,ge
pnp,AJ,ge
pnp,A,si | *20
20-25
*20-50
*20-50
20-55 | 120
100
200
200
200
150 | 150
85
100
100
200 | 2
2
*2.67
*2.67
.85 | | 250
-
200
200
100 | .1
5
10
10
.025 | .45
3
-
- | 5
5
5
5
18 | TI
TI
SPR | | | 2N339A
2N340A
2N341A
2N118
2N333 | TR
TR
TR
TI
TI | npn,PL,si
npn,PL,si
npn,PL,si
npn,si
npn,si | *20-80
*20-80
*20-80
24
24 | 250
250
250
150
150 | 175
175
175
175
175
175 | 3
3
3
1
1 | 60
85
125
*45
*45 | 150
150
150
25
25 | 1
1
1
2
2 | 10
10
10
- | 11
11
11
-
5 | TR
GE, TR | | A 12 | 2N1150
2N924
NS-662
NS-666
2N330A | TI
NA
NA
NA
RA | npn,si
pnp,A,si
pnp,A,si
npn,A,si
pnp,si | 24
24-60
24-60
24-60
25 | 150
150
400
150
380 | 175
200
175
175
160 | 1
.85
2.5
1
2-9 | *45
25
40
40
-30 | 25
100
100
100
50 |
2
.025
1
1
0.1 | -
-
-
0.05 | -
18
5
18
5 | TR
Industrial Type
Industrial Type
SSD, AMP, CT | | | 2N563
2N564
2N1589
2N1590
2N1591 | GI
GI
TI
TI | pnp,AJ,ge
pnp,AJ,ge
npn,si
npn,si
npn,si | 25
25
25
25
25
25 | 150
120
125
125
125 | 85
85
87.5
87.5
87.5 | 2.5
2
2
2
2
2 | *30
*30
10
20
40 | 300
300
25
25
25 | 5
5
1
1
1 | 0.8
0.8
-
- | -
5
-
- | IND
TR
TR
TR
TR | | A 13 | 2N1623
2N2304
2N2617
2N2831
BCY31 | RA
RA
AMP
SY
AMP | pnp,si
npn,PL,si
pnp,si
npn,PE,si
pnp,AJ,si | *25
*25
*25
*25
*25
25 | 250
600
350
360
250 | 160
300
150
175
150 | 1.85
3-4
2
-
2 | 20
30
*25
*40
*64 | 50
250
50
200
100 | 1.0
.010
.001
.30 | 0.05
10
3
250
.25 | 5
5
-
18
5 | CT, SPR
TRWS | | | BCY34
SA2253
2N531
2N658
2N306 | AMP
AL
GI
TI
SY | pnp,AJ,si
npn,si
-
pnp,AJ,ge
npn,AL,ge | 25
*25
25-30
*25-80
*25-125 | 250
-
100
250
180 | 150
150
85
100
85 | 2
-
2
6.66 | *32
*40
*15
12
*20 | 100
-
-
1000 | .1
.05
5.0
6
20 | .6
-
3.5
-
.600 | 5
5
5
5
22 | | | A 14 | 2N2860
2N279
2N662
2N727
2N1477 | SY
AMP
TI
TI
SSD | npn,PE,si
pnp,AJ,si
pnp,AJ,ge
npn,si
AJ | *25-125
30
*30
30
30 | 200
125
250
300
250 | 175
75
100
175
175 | 2.5
6.66
2
1.67 | *30
30
12
20
100 | 10
100
50
100 | 1
110
6
1
0.2 | *1000
0.15
-
- | 18
1
5
18
5 | Low Noise
CT, SPR | | | | | | | | MAX. | RATINGS | | | CHARACTE | RISTICS | | | |-----------------------|--|--------------------------------|--|--|--|--|--------------------------------------|---------------------------------|--|-----------------------------------|--------------------------------|-----------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | hfe
hfe | P _c
(mW) | T _j (°C) | m₩/°C | VCEO
*VCBO
(V) | I _c
(mÅ) | (m v) | fae
*fT
(MHz) | Package
Outline
(TO-) | Remarks | | | 2N1654
2N1656
2N2173
2N2173
2N2392 | RA
RA
TI
MO
TI | pnp,si
pnp,si
pnp,ge
pnp,ge
pnp,si | *30
*30
*30
*30
30 | 250
250
240
240
300 | 160
160
100
100
175 | 1.85
1.85
3.2
3.2
2 | 80
125
15
15
20 | 50
50
750
750
750
50 | 1
1
10
10 | .050
.050
-
- | 5
5
5
5
5 | CT, SPR
CT, SPR | | A 15 | 2N2599A
BCY39
BCZ14
2N532
2N1101 | SSD
AMP
AMP
GI
SY | pnp,EP
pnp,AJ,si
pnp,AJ,si
-
npn,AL,ge | *30
*30
30
30-35
*30-60 | 400
120
85
100
180 | 200
150
-
85
85 | 2.28
2
.9
2 | 100
*69
*20
*15
*20 | 30
250
10
-
100 | 0.025
.1
.01
5 | 60
.85
1.5
4.0
.10 | 46
5
-
5
22 | sub min case | | | 2N1102
2N1442
2N650
2N650A
2N653 | SY
NA
MO
MO
MO | npn,AL,ge
pnp,A,si
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | *30-60
30-65
30-70
30-70
30-76 | 180
400
200
200
200 | 85
200
100
100
100 | -
2,25
2,67
2,67
2,67 | *40
30
*45
*45
*30 | 100
100
500
500
250 | 50
.025
10
10
15 | 0.10
-
-
1 | 22
5
5
5
5 | CT
TI
TI
TI | | A 16 | 2N1186
2N1191
MA881
MA886
2N2711 | MO
MO
MO
MO
GE | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
npn,PL,si | 30-70
30-70
30-70
30-70
30-90 | 200
200
200
200
200
200 | 100
100
100
100
100 | 2,67
2.67
2.67
2.67
2.67 | *60
*40
*60
*50 | 500
200
500
500
100 | 10
15
10
15
.5 | †0.75
†0.75
†0.75 | 5
5
5
98 | TI
†fab
†fab
NUC | | | 2N2713
MPS2711
MPS2715
2N1051
2N1707 | GE
MO
MO | npn,PEP,si
npn,EP,si
npn,EP,si
npn,DD,si
pnp,AJ,ge | *30-90
*30-90
*30-90
30-100
30-150 | 200
310
310
500
200 | 100
135
135
150
100 | 2.67
2.81
2.81
4
2.66 | 18
18
18
40
*30 | 200
100
25
100
400 | 0.5
0.5
0.5
.1
15 | -
-
4
†4 | 98
92
92
5.
5 | Full line spread
NA
†fab | | A 17 | 2N244
2N405
2N406
2N780
2N1010 | TI
RCA
RCA
TI
RCA | npn,si
pnp,AJ,ge
pnp,AJ,ge
npn,si
npn,AJ,ge | 32
35
35
*35
35 | 750
150
150
300
20 | 150
71
71
175
55 | 6
-
-
2
- | *60
*20
*20
*5
*10 | 60
35
35
50
2 | 1
14
14
0.01
10 | 0.65
0.65
-
2 | -
40
1
18
1 | TR, NA
LAN
AL
LAN | | A 10 | 2N2389
BCY32
2N533
40234
AC 121 | TI
AMP
GI
RCA
SA | npn,si
pnp,AJ,si
-
npn,P,si
pnp,AJ,ge | 35
35
35-40
35-180
35-190 | 450
100
100
500
900 | 200
150
85
175
90 | 2.57
2
2.0
3.3
20 | *75
*64
*15
18
20 | 500
50
-
100
300 | 0.01
-
5
0.5 (max)
5 | -
4
4.5
*60
1.5 | 50
9
5
-
1 | | | A 18 | 2N2926
MPS2926
2N937
2N940
2N1469 | GE
MO
SSD
SSD
SSD | npn,PL,si
npn,EP,si
AJ
AJ
AJ | †35-470
35-470
*36
36
36 | 200
310
385
250
250 | 100
135
160
175
175 | 2.67
2.81
2.85
1.67
1.67 | -
18
30
35
35 | 100
100
50
50
100 | 0.5
0.5
0.1
.025
.025 | - | 18
92
18
18
5 | NUC, † Full line spread, GME
CT, SPR
CT, SPR
CT, SPR | | A 10 | 2N1475
2N759
2N759A
2N335A
2N2675 | SSD
NA
NA
GE
GE | AJ
npn,DM,si
npn,DM,si
npn,DG,si
npn,DG,si | 36
36-90
36-90
37-90
37-90 | 250
500
500
500
500
250 | 175
200
200
175
175 | 1.67
2.5
2.5
3.33
1.66 | 60
45
60
45
*60 | 100
100
100
25
25 | .050
0.2
0.1
.5 | - | 5
18
18
5
46 | AMP, CT, SPR
TR, GI, TI
SPR, GI, TI
TR | | A 19 | 2N334
2N1151
2N735
2N739
2N934 | TI
TI
TI
TI
RCA | npn,si
npn,si
npn,si
npn,si
pnp,MS,ge | 39
39
40
40
•40 | 150
150
500
500
150 | 175
175
175
175
175 | 1
1
3,33
3.33 | *45
*45
60
80
13 | 25
25
50
50 | 2
2
1
1 | | 5
-
18
18
18 | GE, TR
TR
TRWS, TR,
TR, | | A 20 | 2N1370
2N1371
2N1374
2N1375
2N1382 | TI
TI
TI
TI | pnp.ge
pnp.ge
pnp.si
pnp.ge
pnp.ge | 40
40
40
40
40 | 150
150
250
250
200 | 85
85
100
100
85 | 2.5
2.5
3.3
3.3
3.3 | 25
45
•25
•45
•25 | 150
150
200
200
200
200 | 14
14
7
7
14 | | 5
5
5
5
5 | | | A 20 | 2N1413
2N1565
2N1573
2N1622
2N2868 | GE
TI
TI
GI
GE | pnp,AJ,ge
npn,si
npn,si
npn,AJ,ge
npn,PE,si | *40
40
40
*40
40 | 200
600
600
120
2800 | 85
175
175
85
200 | 3.33
4
4
2
16 | *35
60
80
*90
40 | 200
50
50
-
1000 | 12
1
1
7.0
.010 | -
-
1
130 | 5
5
5
5
5 | TRWS, TR
TR | | A 21 | 2N2909
2N3064
2N3065
2N3580
A306 | GE
CT
CT
SSD
AMP | pnp,PE,si
pnp,si
pnp,si
pnp,EP
npn,PL,si | 40
40
40
*40
40 | 2800
400
400
400
360 | 200
200
200
200
200
200 | 16
2.3
2.3
2.28
2 | 40
*110
110
60
*25 | 1000
100
100
30 | .010
.01
.01
0.05
.01 | 130
-
-
80
100 | 46
46
46
46
18 | | | A 21 | BCY11
BCY12
ME900
SFT325
2N480A | AMP
AMP
AMP
NUC
TR | pnp,AJ,si
pnp,AJ,si
npn,PL,si
pnp,ge
npn,PL,si | 40
40
40
*40
40-100 | 310
310
360
500
200 | 150
150
200
85
175 | 2.5
2.5
2
-
1.2 | 60
32
•40
•32
45 | 500
500
-
500
25 | 0.1
0.1
.01
30
.5 | 1.5
1.5
100
 | 1
1
18
1
5 | GE | | | | | | | | MAX. | RATINGS | | | CHARACT | TERISTICS | | | |-----------------------|---|---------------------------------|---|---|--|--|--------------------------------------|-----------------------------------|--|---|----------------------------------|-----------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | h _{fe}
*h _{FE} | P _c
(mW) | T _j | mW/°C | VCEO
*VCBO
(V) | I _c
(mA) | (hyy) | fae
*fT
(MHz) | Package
Outline
(TO-) | Remarks | | | 2N2043
2N2043 A
2N659
2N2244
2N2247 | MO
MO
TI
NA
NA | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
npn,DM,si
npn,DM,si | *40-100
*40-100
*40-110
40-120
40-120 | 200
200
250
500
500 | 100
100
100
200
200 |
2.67
2.67
6.66
2.5
2.5 | 105
105
12
20
45 | 200
200
1000
100
100 | 10
10
6
.01 | 0.75
0.75
-
-
- | 5
5
5
18
18 | TI
TI
Low Level
Low Level | | A 22 | 2N2250
2N2253
2N4030
2N4031
NS-732 | NA
NA
FA
FA
NA | npn, DM, si
npn, DM, si
pnp, PE, si
pnp, PE, si
npn, DM, si | 40-120
40-120
40-120
40-120
40-125 | 500
500
800
800
400 | 200
200
200
200
200
175 | 2.5
7.5
22.8
22.8
25 | 20
45
60
80
15 | 100
100
-
-
100 | .01
.01
.2
.2 | -
100
150 | 18
18
5
5
18 | Low Noise, CDC
Low Noise, CDC, AMP
Industrial Type | | 4.00 | NS-734
2N1192
2N3691
OC79
2N104 | NA
MO
FA
AMP
RCA | npn,DM,si
pnp,AJ,ge
npn,PL,si
pnp,PADT,ge
pnp,AJ,ge | 40-125
40-135
•40 - 160
42
44 | 400
200
625
0.55
150 | 175
100
150
75
70 | 2.5
2.67
2
1.2 | 30
*40
*35
*26
*30 | 100
200
50
0.3
50 | 1
15
.05
10
10 | -
*200
1,2
0.7 | 18
5
-
1
40 | Industrial Type
TI
RO97A package, CDC | | A 23 | 2N215
2N3709
MPS3709
2N3708
MPS3708 | RCA
TI
MO
TI
MO | pnp,AJ,ge
npn,PE,si
npn,EP,si
npn,PE,si
npn,EP,si | 44
*45-165
*45-165
*45-660
*45-660 | 150
250
310
250
310 | 70
125
135
125
135 | 2.5
2.81
2.5
2.81 | *30
30
30
30
30
30 | 50
30
30
30
30
30 | 10
0.1
0.1
0.1
0.1 | 0.7
-
-
-
- | 1
†
92
†
92 | †Plastic
†Plastic | | | 2N280
OC71N
2N119
2N335
2N1152 | AMP
AMP
TI
TI | pnp, AJ, ge
pnp, AJ, ge
npn, si
npn, si
npn, si | 47
47
49
49
49 | 125
110
150
150
150 | 75
75
175
175
175 | 2.5
0.45
1.19
1 | 30
30
*45
*45
*45 | 10
10
25
25
25 | 150
-
1
2
2 | 0.1
-
-
-
- | -
1
-
5
- | Special Case TR GE, TR TR | | A 24 | 2N917
2N918
2N1443
2N2616
2N2729 | FA
FA
NA
FA
FA | npn,DP,si
npn,PE,si
pnp,A,si
npn,PE,si
npn,PE,si | 50
*50
50
*50
*50 | 300
300
400
800
800 | 200
200
200
200
200
200 | 1.71
1.71
2.25
4.56
4.56 | 15
15
15
15
15 | 50
100
50
50 | 0.0005
0,002
.025
0.002
0.002 | *800
*900
-
*900
900 | 18
18
5
18
18 | TI, RCA, AL, TRWS
MO, TI, RCA, AL, TRWS
CT
AL
AL | | A 25 | 2N3581
A569
A570
A1341
BC410 | SSD
AMP
AMP
A L
AMP | pnp,EP
npn,PL,si
npn,PL,si
npn,si
pnp,AJ,si | *50
*50
*50
*50
*50 | 400
300
300
200
310 | 200
175
175
150
150 | 2.28
2
2
-
2.5 | 40
*20
*20
*75
32 | 30
-
-
-
500 | 0.02
.01
0.1
.010
0.1 | 30
100
100
-
1.5 | 46
18
18
18
1 | Chopper, ▲Voff,=50½V
Chopper, Voff,=100½V | | A 25 | ME216
NS-661
NS-665
2N214
2N1059 | AMP
NA
NA
SY
SY | npn,PL,si
pnp,A,si
pnp,A,si
npn,AL,ge
npn,AL,ge | 50
50
50
*50-100
*50-100 | 360
400
150
180
180 | 200
175
175
85
85 | 2
2.5
1
-
- | *20
30
30
*40
*20 | 100
100
100
100 | .5
1
1
50
20 | 100
-
-
.01
.10 | 18
5
18
22
22 | Industrial Type
Industrial Type | | A 20 | 2N651
2N651A
2N1187
MA882
MA887 | MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 50-120
50-120
50-120
50-120
50-120 | 200
200
200
200
200
200 | 100
100
100
100
100 | 2.67
2.67
2.67
2.67
2.67 | *45
*45
*60
*60
*50 | 500
500
500
500
500
500 | 10
10
10
10
10 | -
2
†1.0
†1.0 | 5
5
5
5
5 | TI
TI
†fab
†fab | | A 26 | 2N654
2N2706
PA1001
40232
BC 122 | MO
MO
AL
RCA
SA | pnp,AJ,ge
pnp,AJ,ge
npn,DP,si
npn,P,si
npn,PE,si | 50-125
50-150
*50-150
50-180
50-400 | 200
200
-
500
75 | 100
100
200
175
125 | 2.67
2.66
2
.33
5.0 | *30
*25
*60
18
20 | 250
400
-
100
50 | 15
10
.010
0.25
0.01 | †3
-
*60
250 | 5
5
18
 | †fab | | A 27 | 2N565
2N566
2N2717
OC58
2N3394 | GI
GI
GE
AMP
GE | pnp,AJ,ge
pnp,AJ,ge
npn,PL,si
pnp,AJ,ge
npn,PL,si | 55
55
55
55
*55-110 | 150
120
200
20
20 | 85
85
100
75
100 | 2.5
2.0
2.67
1.5
2.67 | *30
*30
-
7
25 | 300
300
100
5
100 | 5
5
0.5
1.5
0.1 | 1
1
-
1.6 | -
5
18
-
98 | IND
Sub min case
Epoxy case | | K 21 | MPS3394
MPS3397
MPS3398
2N169
2N449 | MO
MO
GE
GE | npn,EP,si
npn,EP,si
npn,EP,si
npn,GR,ge
npn,GR,ge | *55-110
*55-500
*55-800
*60
*60 | 310
310
310
65
65 | 135
135
135
85
85 | 2.81
2.81
2.81
1.1
1.1 | 25
25
25
15
15 | 100
100
100
20
20 | 0.1
0.1
0.1
-
- | -
-
8
8 | 92
92
92
- | | | A 28 | 2N736A
2N929
2N957
2N1097
2N1098 | TI
TI
FA
GE
GE | npn,si
npn,si
npn,DD,si
pnp,AJ,ge
pnp,AJ,ge | 60
60
*60
*60
*60 | 500
300
800
175
175 | 175
175
150
- | 3.33
2
6.5
2.9
2.9 | 60
45
20
*16
*16 | 100
30
-
200
200 | 0.5
0.01
1.0
16
16 | -
250
-
- | 18
18
18
5
5 | TR
FA, GI, TR, AL, SPR, UC, MO
TRWS, AMP | | A 20 | 2N1121
2N1376
2N1377
2N1414
2N1566A | GE
TI
TI
GE
TI | npn,GR,ge
pnp,ge
pnp,ge
pnp,AJ,ge
npn,si | *60
60
60
*60
60 | 65
250
250
200
600 | 85
100
100
85
175 | 1.1
3.3
3.3
3.33
4 | 15
*25
*45
*35
60 | 20
200
200
200
200
100 | 7
7
7
12
0.1 | 8
-
-
-
- | 5
5
5
5 | | | | | | | | | MAX | RATING | | | CHARACT | ERISTICS | | 12. | |-----------------------|--|--------------------------------|---|---|--|----------------------------------|--------------------------------------|---------------------------------|----------------------------------|------------------------------------|--------------------------|-----------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | h _{fe}
*h _{FE} | P _c (m W) | T _j (°c) | m₩/°C | VCEO
CBO | I _c (mA) | (μ Α) | f
ae
*fT
(MHz) | Package
Outline
(TO-) | Remarks | | | 2N2387
2N2600A
BCZ10
BCZ11
OC60 | SSD
AMP
AMP
AMP | npn,si
pnp,EP
pnp,AJ,si
pnp,AJ,si
pnp,AJ,ge | *60
*60
60
60 | 300
400
250
250
20 | 175
200
150
150
75 | 2
2.28
2
2
1.5 | 45
100
25
25
7 | 30
30
50
50
5 | 0.01
0.025
0.1
0.1
1.5 | 80
l
3
1.6 | 50
46
1
1 | Sub min case | | A 29 | \$15660
\$FT323
\$FT353
2N3858
2N3858A | FA
NUC
NUC
GE
GE | npn,DPE,si
pnp,ge
pnp,ge
npn,PEP,si
npn,PEP,si | *60
*60
60
*60-120
*60-120 | 600
200
200
200
200
200 | 200
85
85
100
100 | 3.42
-
-
2.67
2.67 | *40
*24
*24
30
60 | 1000
250
150
100
100 | -
15
15
0.5
0.1 | 650
-
-
-
- | -
1
1
98
98 | RO83 package | | | 2N660
2N3721
MPS3721
2N2430
2N175 | TI
GE
MO
AMP
RCA | pnp,AJ,ge
.npn,PL,si
npn,EP,si
npn,ge
pnp,AJ,ge | *60 - 150
60-660
60-660
*63
65 | 250
200
310
360
20 | 100
100
135
90
71 | 6.66
2.67
2.81
3.3 | 12
18
18
*32
*10 | 1000
100
100
30
2 | 6
0.5
0.5
-
12 | -
-
-
.85 | 5
98
92
1
40 | | | A 30 | 2N220
2N407
2N408
2N649
2N1924 | RCA
RCA
RCA
RCA
GE | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,ge | 65
*65
*65
*65
*65 | 20
150
150
100
225 | 71
71
71
71
71
85 | -
-
-
-
3.7 | *10
*20
*20
25
*60 | 2
70
70
50
50 | 12
14
14
14
10 | 0.85
-
-
-
- | 1
40
1
1
5 | LAN
LAN | | | 2N3062
2N3063
BCY40
2N270
2N281 | CT
CT
AMP
RCA
AMP | pnp,si
pnp,si
pnp,AJ,si
pnp,AJ,ge
pnp,AJ,ge | 65
65
*68
*70
70 | 400
400
120
250
165 | 200
200
150
50
75 | 2.3
2.3
2
- | *90
*90
*32
*25
*32 | 100
100
250
75
50 | .01
.01
.1
10
4.5 | -
.85
1
0.9 | 46
46
5
7
1 | | | A 31 | 2N 282
2N 59 1
2N 647
2N 1592
2N 1593 | AMP
RCA
RCA
TI
TI | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
npn,si
npn,si | 70
70
•70
70
70 | 165
50
100
125
125 | 75
71
71
87.5
87.5 | .3
-
-
2
2 | *32
32
25
10
20 | 50
20
50
25
25 | 4.5
7
14
1 | 0.9
0.7
-
- | 1
1
1
- | Matched Pair 2N281's
LAN
TR
TR | | | 2N1594
2N3128
A1109
2N1175A
2N1705 | TI
NA
AL
MO
MO | npn,si
npn,PL,si
npn,si
pnp,AJ,ge
pnp,AJ,ge | 70
70
*70
*70-140
70-150 | 125
150
-
200
200 | 87.5
150
150
100
100 | 2
1.2
-
3.33
2.66 | 40
20
*45
*35
*18 |
25
100
-
200
400 | 1
.002
.10
12
10 | -
-
-
+3 | -
-
18
5
5 | TR
†fab | | A 32 | 2N213
2N1251
2N109
2N217
2N412 | SY
SY
RCA
RCA
RCA | npn, AL, ge
npn, AL, ge
pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge | 70-250
*70-250
*75
*75
75 | 180
180
150
150
80 | 85
85
71
71
71 | - | *40
*20
*25
*25
13 | 100
100
70
70
15 | 50
20
7
7
10 | 0.1
7.5
1
1 | 22
22
40
1 | LAN
LAN
LAN | | | 2N1378
2N1379
40253
OC74
2N1431 | TI
TI
RCA
AMP
SY | pnp,ge
pnp,ge
pnp,AJ,ge
pnp,AJ,ge
npn,AL,ge | 75
75
*75
*75
75
*75-150 | 250
250
650
0.55
180 | 100
100
90
75
85 | 3.3
3.3
10
.66 | *12
*25
*25
20
*25 | 200
200
500
300
100 | 7
7
14 (max)
10
20 | -
*1
1.5
.01 | 5
5
1
1
22 | | | A 33 | 2N1189
2N2712
2N2714
2N3402
2N3404 | MO
GE
GE
GE
GE | pnp,AJ,ge
npn,PL,si
npn,PEP,si
npn,PE,si
npn,PE,si | *75-175
*75-225
*75-225
*75-225
*75-225 | 200
200
200
560
560 | 100
100
100
150
150 | 2.67
2.67
2.67
4.47
4.47 | *45
18
18
25
50 | 500
100
200
500
500 | 10
0.5
0.5
0.1
0.1 | | 5
98
98
98
98 | NUC
Epoxy case, heat clip
Epoxy case, heat clip | | | 2N3414
2N3416
MPS2712
MPS2716
2N336A | GE
GE
MO
MO
GE | npn,PE,si
npn,PE,si
npn,EP,si
npn,EP,si
npn,DG,si | *75-225
*75-225
*75-225
*75-225
76-333 | 360
360
310
310
500 | 150
150
135
135
175 | 2.67
2.67
2.81
2.81
3.33 | 25
50
18
18
45 | 500
500
100
25
25 | 0.1
0.1
0.5
0.5
.5 | 1111 | 98
98
92
92
5 | Epoxy case
Epoxy case | | A 34 | 2N760
2N760A
2N2676
2N661
2N736 | NA
NA
GE
TI
TI | npn, DM, si
npn, DM, si
npn, DG, si
pnp, AJ, ge
npn, si | 76-333
76-333
76-333
*80
80 | 500
500
250
250
500 | 200
200
175
100
175 | 2.5
2.5
1.66
6.66
3.33 | 45
60
*60
12
60 | 100
100
25
100
50 | 0.2
0.1
.1
6 | - | 18
18
46
5
18 | TR, GI, AL
TR, GI, AL
TRWS, TR | | | 2N740
2N1415
2N1566
2N1574
2N3462 | TI
GE
TI
TI
AMP | npn,si
pnp,AJ,ge
npn,si
npn,si
npn,si | 80
*80
80
80
*80 | 500
200
600
600
600 | 175
85
175
175
200 | 3.33
3.33
4
4
1.7 | 80
*35
60
80
35 | 50
200
50
50
50 | 1
12
1
1
0.07 | - | 18
5
5
5
18 | TR, AL
TRWS, TR
TR
Low Noise | | A 35 | 2N3463
40261
OC59
2N543A
2N2245 | AMP
RCA
AMP
TR
NA | npn,si
pnp,DR,ge
pnp,AJ,ge
npn,PL,si
npn,DM,si | *80
80
80
80-200
80-250 | 300
80
20
200
500 | 200
85
75
175
200 | 1.7
1.2
1.5
1.2
2.5 | 50
*50
7
50
20 | 50
10
5
25
100 | 0.002
12 (max)
1.5
.5 | -
*40
2,2
10 | 18
1
-
5
18 | Low Noise Sub min case Low Level | # Try a new source # for planar 2N2222 & 2N2369 families If you've been wishing for a new source of silicon planar general purpose amplifiers or high speed switches, ITT has now provided the answer. ITT is in full production on the popular 2N2222 amplifier family and the 2N2369 high-speed switching family. You can have the same transistor performance you've been getting from other suppliers, plus the supplier performance you can only get from ITT. If you're buying silicon planars from either of these families, evaluate the new source. Order them today . . . get them today . . . from any distributor of ITT Semiconductors. ITT Semiconductors, 3301 Electronics Way, West Palm Beach, Florida, is a division of the International Telephone and Telegraph Corporation. FACTORIES IN PALO ALTO. CALIFORNIA: LAWRENCE, MASSACHUSETTS; WEST PALM BEACH, FLORIDA, HARLOW AND FOOTSCHAY, ENGLAND; FREIBURG AND NURENBERG, GERMANN | | | | | | | MAX | RATINGS | | | CHARACT | ERISTICS | | | |-----------------------|---|---------------------------------|---|---|--|--|--------------------------------------|----------------------------------|--|--|--------------------------------|-----------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | h _{fe}
*h _{FE} | P _c (mW) | T _j (°C) | m₩/°C | VCEO
*VCBO
(V) | I _c (mA) | (/t V) | fae
*fT
(MHz) | Package
Outline
(TO-) | Remarks | | A 20 | 2N2248
2N2251
2N2254
2N2715
2N3060 | NA
NA
NA
GE
CT | npn,DM,si
npn,DM,si
npn,DM,si
npn,PL,si
pnp,Si | 80-250
80-250
80-250
82
85 | 500
500
500
200
400 | 200
200
200
100
200 | 2.5
2.5
2.5
2.67
2.3 | 45
20
45
•18-18
•70 | 100
100
100
100
100 | .01
.01
.01
0.5
.005 | - | 18
18
18
18
46 | Low Level
Low Noise, CDC
Low Noise
IEC, GME | | A 36 | 2N1144
2N1145
2N1925
2N2431
2N3058 | GE
GE
GE
AMP
CT | pnp,AJ,ge
pnp,AJ,ge
pnp,ge
pnp,ge
pnp,si | *90
*90
*90
*90
90 | 175
175
225
1000
400 | 85
85
85
75
200 | 2.9
2.9
3.7
3.3
2.3 | *16
*16
*60
*32
6 | 200
200
500
1000
100 | 16
16
10
10
.0001 | -
-
1.7 | -
5
1
46 | | | | OC75N
2N2923
2N3393
MPS3393
40231 | AMP
GE
GE
MO
RCA | pnp,AJ,ge
npn,PL,si
npn,PL,si
npn,EP,si
npn,P,si | 90
90-180
*90-180
*90-180
90-300 | 110
200
200
310
500 | 75
100
100
135
175 | 0.45
2.67
2.67
2.81
.33 | 30
25
25
25
25
18 | 10
100
100
100
100 | -
0.5
0.1
0.1
0.5 | -
-
-
-
*60 | 1
98
98
92
- | IEC, GME
Epoxy case, GME | | A 37 | 40233
2N3710
MPS3710
MPS3396
2N120 | RCA
TI
MO
MO
TI | npn, f,si
npn,PE,si
npn,EP,si
npn,EP,si
npn,si | 90-300
*90-330
*90-330
*90-500
99 | 500
250
310
310
150 | 175
125
135
135
175 | .33
2.5
2.81
2.81 | 18
30
30
25
*45 | 100
30
30
100
25 | 0.5
0.1
0.1
0.1
2 | *60
-
-
- | -
†
92
92
- | † Plastic | | | 2N336
2N1153
2N567
2N568
2N3130 | TI
TI
GI
GI
NA | npn,si
npn,si
pnp,AJ,ge
pnp,AJ,ge
npn,PL,si | 99
99
100
100
100 | 150
150
150
120
150 | 175
175
85
85
150 | 1
1
2.5
2.0
1.2 | *45
*45
*30
*30
60 | 25
25
300
300
100 | 2
2
5.0
5.0
.002 | -
1.5
1.5 | 5
-
-
5
- | GE, TR
TR
IND | | A 38 | 2N3582
A307
ME213
ME217
ME900A | SSD
AMP
AMP
AMP
AMP | pnp,EP
npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si | *100
100
100
100
100 | 400
360
360
360
360 | 200
200
200
200
200
200 | 2.28
2
2
2
2
2 | 40
*25
*45
*20
*40 | 30
-
-
-
-
- | 0.02
.01
.1
.5
.01 | 30
100
100
100
100 | 46
18
18
18
18 | | | | ME901
ME901A
2N508A
2N3859
2N3859A | AMP
AMP
MO
GE
GE | npn,PL,si
npn,PL,si
pnp,AJ,ge
npn,PEP,si
npn,PEP,si | 100
100
*100-200
*100-200
100-200 | 360
360
200
200
200 | 200
200
100
100
100 | 2
2
3.33
2.67
2.67 | *40
*40
*30
30
60 | -
200
100
100 | .01
.01
7
0.5
0.1 | 100
100
-
-
- | 18
18
5
98
98 | | | A 39 | 2N652
2N652A
2N1188
MA883
MA888 | MO
MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 100-225
100-225
100-225
100-225
100-225 | 200
200
200
200
200
200 | 100
100
100
100
100 | 2.67
2.67
2.67
2.67
2.67 | *45
*45
*60
*60
*50 | 500
500
500
500
500
500 | 10
10
10
10
10 | -
-
1.25
†1.25 | 5
5
5
5 | TI
TI
†fab
†fab | | 4.40 | 2N213A
2N655
2N1193
2N4032
2N4033 | SY
MO
MO
FA
FA | npn,AL.ge
pnp,AJ.ge
pnp,AJ.ge
pnp,PE,si
pnp,PE,si | 100-250
100-250
100-250
100-300
100-300 | 180
200
200
800
800 | 85
100
100
200
200 | 2.67
2.67
22.8
22.8 | *40
*30
*40
60
80 | 100
250
200
-
- | 50
15
15
.2
.2 | 0.1
-
-
100
150 | 22
5
5
-
- | TI
TI | | A 40 | PA1000
2N3692
2N3707
MPS3707
2N2716 | AL
FA
TI
MO
GE | npn,DP,si
npn,PL,si
npn,PE,si
npn,EP,si
npn,PL,si | *100 - 300
*100 - 400
*100-400
*100-400
110 | 625
250
310
200 | 200
150
125
135
100 | 2
2
2.5
2.81
2.67 | *30
*35
30
30 | 50
30
30
100 | .010
.05
0.1
0.1
0.5 | *200
-
- | 18
-
†
92
18 | RO97A package, CDC
†Plastic
NUC, IEC, GME | | | 40329
2N2171
2N1926
2N1190
BC 107 | RCA
MO
GE
MO
SA | pnp,AJ,ge
pnp,AJ,ge
pnp,ge
pnp,AJ,ge
npn,PE,si | 120
120-310
*121
*125-300
*125-500 | 125
- 500
85
200
260 | 100
100
3.7
100
175 | 2.8
6.7
*60
2.67
5.0 | *25
*50
500
*45
45 | 100
400
10
500
100 | 14
(max)
10
-
10
0.0007 | 1.5
†7.5
-
150 | 1
5
5
5
18 | †fab | | A 41 | 2N2903
2N2903A
2N2428
AC 163
2N2706 | AL
AL
AMP
SA
AMP | npn,DP,si
npn,DP,si
pnp,ge
pnp,AJ,ge
pnp,AJ,ge | *125 - 625
*125 - 625
130
*130
*135 | 600
600
500
900
500 | 200
200
75
90
90 | 3.5
3.5
0.3
20
0.37 | *60
*60
32
24
*32 | -
100
200
200 | .010
.010
-
10 | -
1.7
2.3
2.5 | 5
5
1
1
1 | Dual
Dual | | | 2N2707
AF 127
2N569
2N570
2N930 | AMP
SA
GI
GI
TI | ge
pnp,AD,ge
pnp,AJ,ge
pnp,AJ,ge
npn,Si | *135
140
150
150
150 | 500
60
150
120
300 | 90
75
85
85
175 | 0.37
2.5
2.5
2.0
2 | *32
32
*30
*30
45 | 200
10
300
300
300 | -
1.2
5
5
0.01 | 2.5
75
2
2 | 1
18
-
5
18 | Matched NPN, PNP Pair IND FA, GI, TR, NUC, SPR, UC, MO | | A 42 | 2N2388
2N2586
2N3129
40262
AC172 | TI
TI
NA
RCA
AMP | npn,si
npn,si
npn,PL,si
pnp,DR,ge
npn,AJ,ge | 150
150
150
150
150 | 300
300
150
80
280 | 175
175
150
85
75 | 2
2
1.2
1.2
2.7 | 45
45
45
*50
32 | 30
30
100
10
200 | 0.01
0.002
.002
12 (max
10 | -
-
-
*30 | 50
18
-
1
1 | AMP, FA, AL, UC | # After 130,000,000 diodes # 1-amp glass rectifiers come easy The basic technology required for making silicon glass rectifiers has long since been proved out in ITT's diode operation. More than 130,000,000 diodes last year paved the way for 1966 1-amp glass rectifier capability that's already operating at better than a 1.2 million annual rate. If you're using old-fashioned top-hats because delivery is slow on DO-29 glass rectifiers, make the switch now. ITT offers immediate shipment of 200 to 1000 V, 1-amp glass rectifiers from factory stock or from ITT distributors' shelves. See how fast silicon glass rectifier delivery can be — call your ITT factory representative or any of ITT's semiconductor distributors throughout the United States today. ITT Semiconductors, a division of International Telephone and Telegraph Corporation, 3301 Electronics Way, West Palm Beach, Florida. FACTORIES IN PALO ALTO, CALIFORNIA, LAWRENCE, MASSACHUSETTS, WEST PALM BEACH, FLORIDA; HARLOW AND FOOTSCRAY, ENGLAND, FREIBURG AND NURENBERG, GERMANY | | | | | | | MAX. | RATING | | | CHARAC | TERISTICS | | | |-----------------------|--|------------------------------|---|---|--|--|--------------------------------------|---------------------------------|------------------------------------|----------------------------------|------------------------------------|-----------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | hfe
*hFE | P _c (mW) | T _j (°C) | mW/°C | V
CEO
*V
CBO
(V) | i _c (mA) | (/r \P) | fae
*fT
(MHz) | Package
Outline
(TO-) | Remarks | | A 42 | 2N2924
2N3392
2N3860
2N4086
MPS3392 | GE
GE
GE
MO | npn,PL,si
npn,PL,si
npn,PEP,si
npn,PL,si
npn,EP,si | 150-300
*150-300
*150-300
*150-300
*150-300 | 200
200
200
200
200
310 | 100
100
100
100
135 | 2.67
2.67
2.67
2.67
2.81 | 25
25
30
12
25 | 100
100
100
100
100 | 0.5
0.1
0.5
0.1
0.1 | 1111 | 98
98
98
98
98 | IEC, GME
Epoxy case, GME | | A 43 | 2N2246
2N2249
2N2252
2N2255
MPS3395 | NA
NA
NA
NA
MO | npn,DM,si
npn,DM,si
npn,DM,si
npn,DM,si
npn,EP,si | 150-450
150-450
150-450
150-450
*150-500 | 500
500
500
500
500
310 | 200
200
200
200
200
135 | 2.5
2.5
2.5
2.5
2.81 | 20
45
20
45
25 | 100
100
100
100
100 | .01
.01
.01
.01
0.1 | | 18
18
18
18
92 | Low Level
Low Level
Low Noise, CDC, AMP
Low Noise | | A 44 | 2N2453
2N2453A
2N3061
2N2613
2N3241 | AL
AL
CT
RCA
RCA | npn,DP,si
npn,DP,si
pnp,si
pnp,AJ,ge
npn,PL,si | *150 -600
*150 -600
155
160
175 | 600
600
400
120
500 | 200
200
200
100
175 | 114
1.14
2,3 | *60
*80
*70
*30
25 | 9
9
100
50
100 | .005
.005
.005
5 | -
-
10
60 | 5
5
46
1 | Dual
Dual
ffT | | A 44 | 2N3242
2N3403
2N3405
2N3415
2N3417 | RCA
GE
GE
GE
GE | npn,PL,si
npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si | 175
*180-540
*180-540
*180-540
*180-540 | 500
560
560
360
360 | 175
150
150
150
150 | 4.47
4.47
2.67
2.67 | 25
25
50
25
50 | 200
500
500
500
500 | 0.01
0.1
0.1
0.1
0.1 | 60
-
-
-
- | 98
98
98
98 | †1T
Epoxy case, heat clip
Epoxy case, heat clip
Epoxy case
Epoxy case, heat clip | | | 2N3711
MPS3711
2N1185
MA884
MA889 | TI
MO
MO
MO
MO | npn,PE,si
npn,EP,si
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | *180-660
*180-660
190-400
190-400
190-400 | 250
310
200
200
200
200 | 125
135
100
100
100 | 2.5
2.81
2.67
2.67
2.67 | 30
30
*45
*60
*50 | 30
30
500
500
500 | 0.1
0.1
10
10
15 | -
-
†1.75
†1.75 | †
92
5
5
5 | †Plastic
†fab
†fab | | A 45 | 2N1194
2N1086
2N1086A
2N1087
2N571 | MO
GE
GE
GE | pnp,AJ,ge
npn,GR,ge
npn,GR,ge
npn,GR,ge
pnp,AJ,ge | 190-500
195
195
195
200 | 200
65
65
65
150 | 100
85
85
85
85 | 2.67
1.1
1.1
1.1
2.5 | *40
9
9
9
*30 | 200
20
20
20
20
300 | 15
-
-
-
5 | -
8
8
8
3 | 5
-
-
- | ТІ | | | 2N572
2N2614
2N3059
2N3427
MA1703 | GI
RCA
CT
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,si
pnp.AJ,ge
pnp,AJ,ge | 200
200
200
200
200-500
200-500 | 120
120
400
200
200 | 85
100
200
100
100 | 2.0
-
2.3
2.67
2.67 | *30
*40
6
*45
*25 | 300
50
100
500
500 | 5
5
.0001
3.0
3.0 | 3
10
-
6.0
†3.0 | 5
1
46
5
5 | IND
†fab | | A 46 | MA1706
2N2429
2N2925
D16E7
D16E9 | MO
AMP
GE
GE
GE | pnp,AJ,ge
pnp,ge
npn,PL,si
npn,PEP,si
npn,PEP,si | 200-500
220
235-470
*235-470
*235-470 | 200
500
200
200
200
200 | 100
75
100
100
100 | 2.67
3.3
2.67
2.67
2.67 | *15
32
25
18
25 | 500
100
100
100
100 | 15
-
0.5
- 0.5
0.5 | †3.0
2.3
—
— | 5
1
98
98
98 | †fab
IEC, GME | | | ME 495
2N 3900A
2N 3391
2N 3391A
2N 3900 | AMP
GE
GE
GE
GE | npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si | *250
250-500
*250-500
*250-500
*250-500 | 360
200
200
200
200
200 | 200
100
100
100
100 | 2
2,67
2,67
2,67
2,67 | °40
18
25
25
18 | 100
100
100
100
100 | 1
0.1
0.1
0.1
0.1 | | 18
98
98
98
98 | 5 dB(max nf)
Economy — Epoxy, NUC, IEC, GME
5 dB(max nf), GME | | A 47 | 2N4087
2N4087A
ME213A
2N2953
2N4017 | GE
GE
AMP
RCA
FA | npn,PL,si
npn,PL,si
npn,PL,si
pnp,AJ,ge
pnp,DPE,si | 250-500
250-500
300
350
*350 | 200
200
360
120
600 | 100
100
200
100
200 | 2.67
2.67
2
-
3.4 | 12
12
45
*30
*80 | 100
100
-
150
200 | 0.1
0.1
.1
5 | -
100
10
5.5 | 98
98
18
1 | 5 dB(max nf) RO52A package, Dual pnp | | | 2N3428
MA1704
MA1707
2N3078
2N3390 | MO
MO
MO
AMP
GE | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
npn,PL,si
npn,PL,si | 350-800
350-800
350-800
360
*400 - 800 | 200
200
200
200
360
200 | 100
100
100
200
100 | 2.67
2.67
2.67
2.06
2.67 | *45
*25
*15
*80
25 | 500
500
500
500
100 | 3.0
3.0
15
.01
0.1 | 8.0
†5.0
†4.0
– | 5
5
5
18
98 | †fab
†fab
TR
Economy – Epoxy, NUC, IEC, GME | | A 48 | 2N4018
2N4019
MA1702
MA1705
MA1708 | FA
FA
MO
MO
MO | pnp,DPE,si
pnp,DPE,si
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | *500
*500
500
500
500 | 600
600
200
200
200 | 200
200
100
100
100 | 3.4
3.4
2.67
2.67
2.67 | *60
*45
*45
*25
*15 | 200
200
500
500
500 | 10
10
3.0
3.0
15 | 7.0
7.0
†7.0
†6.0
†5.0 | -
5
5
5 | RO52A package, Dual pnp
RO52A package, Dual pnp
†fab
†fab
†fab | | | 2N3077
A520/A521
S15650
2N3395
2N3396 | AMP
AMP
FA
GE
GE | npn,PL,si
npn,PL,si
npn,DPE,si
npn,PL,si
npn,PL,si | 600
600
*600
800
800 | 360
300
200
-200
200 | 200
200
125
125
125 | 2.06
1.72
5
0.375
9.375 | *80
80
25
25
25 | 50
50
-
100
100 | .01
.005
.050
0.1 | 60
40
- | 18
5
-
† | TR
6 lead diff amp
RO110 package
Economy — Epoxy, GME, IEC
Economy — Epoxy, GME, IEC | | A 49 | 2N3397
2N3398
2N2785
2N997
2N35 | GE
GE
GE
TI | npn,PL,si
npn,PL,si
npn,PL,si
npn,si
pnp,AS,ge | 800
1250
2000
*7000 | 200
200
1800
500
50 | 125
125
200
175 |
0.375
0.375
10
3.33 | 25
25
40
40
*25 | 100
100
500
300 | 0.1
0.1
10
0.01 | -
-
- | †
†
5
18 | Economy — Epoxy, GME, IEC
Economy — Epoxy, GME, IEC
SPR
(Darlington),FA, SPR
SY, GI | # Why ITT wet tantalum capacitors can't leak Every ITT Red Cap® wet tantalum capacitor gets a "total stress" seal that, unlike the ordinary single-crimp seal, positively prevents electrolyte leakage. To accomplish this, ITT inserts a teflon end seal, then spins down the open end of the can until end seal, anode and insulating washer are under a predetermined compressive force. Seal integrity is further insured by the addition of an epoxy end fill. Since the epoxy's expansion coefficient is less than that of the can, temperature cycling cannot relax the spun seal. If you're tired of electrolyte leaks and the problems that go with them, here's an easy solution. Order the ones that can't leak — the Red Caps® — from your ITT Capacitor distributor or from ITT Semiconductors, a division of International Telephone and Telegraph Corporation, 3301 Electronics Way, West Palm Beach, Florida. FACTORIES IN PALO ALTO, CALIFORNIA: LAWRENCE, MASSACHUSETTS; WEST PALM BEACH, PLORIDA; HARLOW AND FOOTSCRAY, ENGLAND: FREIBURG AND NURENBERG, GERMANY- | | | | | | | MAX. | RATING | | | CHARAC | TERISTICS | | | |-----------------------|---|--|--|-------------|--|--|--|--|---|--|---|--|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | hfe
*hFE | P _c
(m₩) | T _j (°C) | mW/°C | *VCEO *VCBO (V) | I _c (mA) | Ι
(μ Α) | fae
*fT
(MHz) | Package
Outline
(TO-) | Remarks | | A 50 | 2N331
2N1392
2N1393
2N4020
2N4021
2N4021
2N4022
2N4023
2N4024
2N4025
FT4020 | GI
GI
FA
FA
FA
FA
FA | pnp,AJ,ge
pnp,ge
pnp,ge
pnp,DPE,si
pnp,DPE,si
pnp,DPE,si
pnp,DPE,si
pnp,DPE,si
pnp,DPE,si
pnp,DPE,si | - | 200
50
50
600
600
600
600
600
600
500 | 71
-
-
200
200
200
200
200
200
200
200 | - 0.8
0.8
2.3
2.3
2.3
2.3
2.3
2.3
2.3
2.3 | *30
*20
*20
*45
*45
*45
45
45
45
45 | -
200
200
200
200
200
200
200
200 | 16
8.0
8.0
10
10
10
10
10
10 | -
-
160
160
160
160
160
160
0.7 | 5 | MO, GI, IND RO52A package, Dual pnp Dual pnp | | A 51 | FT4021
FT4022
FT4023
FT4024
FT4025
ME209
ME214
SP10801
SP10810
SP10811 | FA
FA
FA
FA
AMP
AMP
FA
FA | pnp, DPE, si
pnp, DPE, si
pnp, DPE, si
pnp, DPE, si
pnp, DPE, si
npn, PE, si
npn, DP, si
pnp, DPE, si
pnp, DPE, si
pnp, DPE, si | | 500
500
500
500
500
500
300
350
350
350 | 200
200
200
200
200
200
175
175
200
200 | 2.8
2.8
2.8
2.8
2.8
2.2
2 | 60
60
45
60
60
*10
*45
*45
*20
*20 | 200
200
200
200
200
200 | 10
10
10
10
10
10
.002
.002 | 0.55
0.7
0.7
0.55
0.7 | -
-
-
-
18
18
89
89 | Dual pnp Dual pnp Dual pnp Dual pnp Dual pnp Dual pnp Chopper, Voff=250nV Chopper, Voff=500nV | (see pages 4-9 for explanation of company abbreviations.) #### Late-arrivals . . . The following bipolar transistor families, manufactured by General Instrument, are epoxy encapsulated units (TO-18 cans) similar or equivalent in characteristics to their metal-can counterparts (for detailed information on device properties use the literature offering form and reader-service card, p. 4): #### Audio and general purpose 2N2711 - 2N2716 2N3390 - 2N3398 2N2721 - 2N2726 2N3414 - 2N3416 #### High-frequency 2N3563 · 2N3566 2N3702 · 2N3711 2N3605 · 2N3607 2N3900 · 2N3905 2N3638 · 2N3645 2N3983 · 2N3985 #### High-level switching 2N4140 - 2N4143 (similar to 2N2221, 2N2222, 2N2906, 2N2907) 2N4227 - 2N4228 (direct equivalents of metal-can types) #### NEW contactless meter relays (4½") Utter reliability...utter simplicity. Completely fail-safe circuitry insures 100% reliability. No limitation on pointer travel due to mechanical contacts. Model 3324XA meter relays are CONTACTLESS. An infinite life lamp and photo-conductors do the sensing. Solid state switching circuit and relay (10 amp, DPDT, 115 VAC) are contained internally on single control point units. Double control point models also available. Control point indication is within 2% of actual switching. Available THROUGH DISTRIBUTORS in ranges shown. | ١ | RANGE | Approx. | Single (
Cat. No. | Control
Price | Double C | Ontrol
Price | |---|----------------|---------|----------------------|------------------|----------|-----------------| | | DC Microamm | | | | | , | | | 0-50 | 3000 | 16451 | \$99.00 | 16470 | \$136.35 | | | 0-100 | 1300 | 16452 | 96.15 | 16471 | 133.65 | | | 0-200 | 570 | 16453 | 96.15 | 16472 | 133.50 | | | 0-500 | 220 | 16454 | 96.15 | 16473 | 133.50 | | | DC Milliammet | ter | | | | | | | 0-1 | 80 | 16455 | 95.10 | 16474 | 132.45 | | | DC Millivoltme | ter | | | | | | 1 | 0-50 | 10 | 16460 | 63.60 | 16480 | 137.25 | #### NEW miniature edgewise meters (1½") Takes only half the space of a $2\frac{1}{2}$ " Edgewise meter with little sacrifice in scale length. Movement is self-shielded. DC accuracy is $\pm 2\%$ (F.S.); AC (rectifier type), $\pm 3\%$ (F.S.) at 25°, 60 cycle sine wave. Dustproof case. Meter comes complete with bezel and mounting hardware. 20 Ranges are STOCKED (see sampling below). Contact your ELECTRONIC DISTRIBUTOR about Model 1521. | RANGE | Approx.
Ohms | Cat.
No. | Price | |----------------------------|-----------------|-------------|---------| | DC Voltometers
0-150 | 1000 o/v | 10358 | \$15.45 | | DC Milliammeters
0-100 | 1.35 | 6817 | 15.90 | | DC Millivoltmeters
0-50 | 10 | 0713 | 16.20 | | DC Microammeters
0-25 | 3150 | 4552 | 23.40 | | AC Voltmeters
0-150 | 1000 o/v | 10415 | 20.10 | For Complete Details, Request Bulletin 2073 and Meter Relay Reprint Article. SIMPSON ELECTRIC COMPANY 5202 W. Kinzie Street, Chicago, III. 60644 • Phone: 312-379-1121 Export Dept.: 400 W. Madison Street, Chicago, III. 60606 • Cable, Amergaco In Canada: Bach-Simpson Ltd., London, Ontario In India: Ruttonsha-Simpson Private Ltd., International House, Bombay-Agra Road, Vikhroli, Bombay # **High-Frequency** Includes types ranging up to and above the vhf range. Listed in order of increasing $f_{\alpha e}$ or $f_{\rm T}$. | | | | | | MAX. RATINGS | | | | CHARACTERISTICS | | | | | | |-----------------------|---|---------------------------------|---|------------------------------|--|--|---------------------------------|--------------------------------------|-----------------------------------|--|---|---|---------------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Type | fae *fT (MHz) | P _c (mW) | T _j
(°C) | m₩/°C | *YCEO
*YCBO
(V) | (mA) | ^h fe
*h FE | ICO
*ICEO
†ICEX
(µA) | C _{oe}
*C _{ob}
(pF) | Package
Outline
(TO-) | Remarks | | HF 1 | 2N2709
2N444
2N444A
2N3296
2N3297 | RA
GI
GI
MO
MO | pnp,si
npn,AJ,ge
npn,AJ,ge
npn,E,si
npn,E,si | 0.05
1
1
*1
*1 | 250
100
150
6W
25W | 160
85
100
175
175 | 1.85
1.67
2
40
167 | 35
*15
*35
*60
*60 | 50
-
700
1.5a | *10
10
15
*5-50
*2.5-35 | 1
6
4
0.1
1.0 | *110
*16
*14
*20
*60 | 5
5
5
3 | TI, ETC
TI, ETC
Special ceramic stud-mount | | HF 2 | 2N94
2N233
2N233A
2N2445
2N445A | SY
SY
SY
GI
GI | npn,AL,ge
npn,AL,ge
npn,AL,ge
npn,AJ,ge
npn,AJ,ge | 2
2
2
2
2
2. | 150
150
150
100
150 | 100
85
85
85
100 | -
-
1.67
2.0 | *20
*10
*10
*15
*25 | 100
100
100
- | *10-80
10
*10
20
35 | 30
-
-
6
4 | 9
7
7
*16
*14 | 22
22
22
5
5 | ETC
ETC
ETC
TI, ETC
TI | | | 2N515
2N516
2N3295
2N1391
2N2946 | SY
SY
MO
GI
CT | npn,AL,ge
npn,AL,ge
npn,E,si
npn,AJ,ge
pnp,PE,si | 2
2
2
3
•3 | 150
150
2W
150
400 | 85
85
175
100
200 | -
13.3
2
2.4 | *18
*18
*60
*25
*40 | 100
100
250
-
100 | *10-50
*15-75
*20-60
*40-160
*30-150 | 50
50
0.1
4
0.0005 | 8
8
*8
*20
*10 | 22
22
5
5
46 | SPR | | HF3 | SFT337
2N212
2N517
2N1058
2N139 |
NUC
SY
SY
SY
RCA | pnp,ge
npn,AL,ge
npn,AL,ge
npn,AL,ge
pnp,AJ,ge | 3
4
4
4
4.7 | 150
150
150
50
80 | 80
85
85
75
70 | | *15
*18
*18
*18
*16 | 100
100
100
50
15 | 60
*10-30
*20-100
*10-23
48 | 2.5
30
50
50
6 | 7
8
7 | 1
22
22
22
22
40 | | | | 2N218
2N94A
2N211
2N446
2N446A | RCA
SY
SY
GI
GI | pnp.AJ.ge
npn.AL.ge
npn.AL.ge
npn.AJ.ge
npn.AJ.ge | 4.7
5
5
5
5 | 80
150
150
100
150 | 70
100
85
85
100 | -
-
1.67
2 | *16
*20
*18
*15
*25 | 15
100
100
-
- | 48
*7-21
*20-100
30
60 | 6
30
30
6.0
4.0 | 9
7
*16
*14 | 1
22
22
5
5 | TI
TI | | HF 4 | 2N1090
2N2945
FK3962
FV3962
2N2276 | RCA
SPR
FA
FA
SPR | npn,AJ,ge
pnp, PE, si
pnp, DP, si
pnp, DP, si
pnp, AT, si | 5
*5
5.5
5.5
*6 | 120
400
175
175
150 | 85
200
200
200
200
140 | 2.4
2
2
1.3 | *25
*25
60
60
*15 | 400
100
50
50
50 | *30
*40-250
*300
*300
*15 | 8
0.0002
-
0.003 | *25
*10
*6
*6
*6.0 | 5
46
-
51
*18 | GI
Hermet package
Matched Pair 2N227 | | | 2N2277
3N90
3N91
3N92
3N93 | SPR
SPR
SPR
SPR
SPR | pnp, SP,s i
pnp,PE,si
pnp,PE,si
pnp,PE,si
pnp,PE,si | *6
*6
*6
*6 | 150
300
300
300
300
300 | 140
200
200
200
200
200 | 1.3
1.7
1.7
1.7
1.7 | *15
30
30
30
30
50 | 50
20
20
20
20
20 | *15
-
-
-
- | 0.003
0.01
0.01
0.01
0.01 | *6.0
8
8
8 | 18
18
18
18
18 | Matched Pair 2N2276
Duet, Voff < 50 μ V
Duet, Voff < 100 μ V
Duet, Voff <200μ V
Duet, Voff < 50μ V | | HF5 | 3N94
3N95
3N112
3N113
2N409 | SPR
SPR
SPR
SPR
RCA | pnp,PE,si
pnp,PE,si
pnp,PE,si
pnp,PE,si
pnp,AJ,ge | *6
*6
*6
*6
6.7 | 300
300
200
200
80 | 200
200
200
200
200
71 | 1.7
1.7
1.1
1.1 | 50
50
*50
*50
*13 | 20
20
20
20
20
15 | -
1.5
1.5
48 | 0,01
0.01
.010
.010
10 | 8
8
*10
*10 | 18
18
90
90
40 | Duet, Voff < 100μ V
Duet, Voff < 200μ V
Dual
Dual | | | 2N410
FK3964
FV3964
SA-313
SA-314 | RCA
FA
FA
SPR
SPR | pnp, AJ, ge
pnp, DP, si
pnp, DP, si
pnp, SP, si
pnp, SP, si | 6.7
7
7
•7
•7 | 80
175
175
150
150 | 71
200
200
140
140 | -
2
2
1.3
1.3 | *13
45
45
20
15 | 15
50
50
50
50 | 48
*500
*500
*6
*8 | 10
-
-
0.01
0.02 | *6
*6
6 | 2
-
51
5
5 | LAN
Hermet package
Symmetrical
Symmetrical | | HF6 | SA-316
SA-413
SA-414
SA416
2N2378 | SPR
SPR
SPR
SPR
SPR | pnp,SP,si
pnp,SP,si
pnp,SP,si
pnp,SP,si
pnp,SAT,si | *7
*7
*7
*7
*7.2 | 150
150
150
150
150 | 140
140
140
140
140 | 1.3
1.3
1.3
1.3
1.3 | 10
20
15
10
•10 | 50
50
50
50
50 | *10
*6
*8
*10
*25 | 0.003
0.01
0.02
0.003
0.001 | 6
6
6
*6 | 5
18
18
18 | Symmetrical
Symmetrical
Symmetrical
Symmetrical | | | 2N3318
2N471A
2N472A
2N473
2N474 | SPR
TR
TR
TR
TR | pnp, SPAT, si
npn, PL, si
npn, PL, si
npn, PL, si
npn, PL, si | *7.6
8
8
8 | 150
200
200
200
200
200 | 140
175
175
175
175 | 1.3
1.2
1.2
1.2
1.2 | 15
30
45
15
30 | 50
25
25
25
25
25 | 10-25
10-25
20-50
20-50 | 0.001
.5
.5
.5
.5 | *9
*8
*8
*8 | 18
5
5
5
5 | Chopper | | HF7 | 2N474A
2N475
2N475A
2N495
2N581 | TR
TR
TR
SPR
RCA | npn,PL,si
npn,PL,si
npn,PL,si
pnp,SPAT,si
pnp,AJ,ge | 8
8
8
*8
8 | 200
200
200
150
150 | 175
175
175
140
85 | 1.2
1.2
1.2
1.3 | 30
45
45
25
*18 | 25
25
25
50
100 | 20-50
20-50
20-50
15-30
30 | .5
.5
.5
0.1
3 | *8
*8
*8
*12 | 5
5
5
1
5 | GI, TI , LAN, IND | | | 2N1054
2N1118
2N1118A
2N2377
SA-312 | TR *SPR *SPR SPR SPR | npn,PL,si
pnp,SAT,si
pnp,SAT,si
PNP,SAT,si
pnp,SP,si | 8
8
8
*8 | 600
150
150
150
150 | 175
140
140
140
140
140 | 23
1.3
1.3
1.3
1.3 | *125
25
25
*25
*25
10 | 750
50
50
50
50
50 | *20
35
25
30
*10 | 5
0.001
0.001
0.002
0.01 | *120
*6
*6
*6
6 | 5
5
5
18
5 | SSP
*PH orig Reg, CT
*PH orig Reg, CT
Symmetrical | | | | | | | | M | X. RAT | NGS | | CHARA | CTERISTI | CS | | | |-----------------------|--|-----------------------------------|---|--------------------------------------|---|--|--------------------------------------|----------------------------------|-----------------------------------|--|--|--------------------------------|----------------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*fT
(MHz) | P
(m₩) | т _ј
(°С) | mW/°C | *VCEO
*VCBO
(V) | I C (m A) | hfe
*hFE | ¹ CE0
¹ CEX
(μÅ) | Coe
*Cob
(pF) | Package
Outline
(TO-) | R em ork s | | HF 8 | SA-315
SA-412
SA-415
2N447
2N447A | SPR
SPR
SPR
GI
GI | pnp,SP,si
pnp,SP,si
pnp,SP,si
npn,AJ,ge
npn,AJ,ge | *8
*8
*8
9 | 150
150
150
100
15 | 140
140
140
85
100 | 1.3
1.3
1.3
1.67
2 | 12
10
12
•15
•25 | 50
50
50
-
- | *10
*30
*10
50
85 | 0.01
0.01
0.01
6
4 | 6
6
* 16
* 14 | 5
18
18
5
5 | Symmetrical
Symmetrical
Symmetrical | | nro | 2N447B
2N140
2N219
2N411
2N541 | GI
RCA
RCA
RCA
TR | npn,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
npn,PL,si | 9
10
10
10
10 | 150
80
80
80
200 | 100
70
70
71
175 | 2
-
-
1.2 | *25
*16
*16
*13
15 | -
15
15
15
25 | 150
75
75
75
80-200 | 4
6
6
10
.5 | *14
-
-
-
*20 | 5
40
1
40
5 | GE | | NE o | 2N542
2N542A
2N543
2N602
2N1206 | TR
TR
TR
GI
TR | npn,PL,si
npn,PL,si
npn,PL,si
pnp,DR,ge
npn,PL,si | 10
10
10
*10 | 200
200
200
120
3000 | 175
175
175
175
85
175 | 1.2
1.2
1.2
2.0
25 | 30
30
50
*30
60 | 25
25
25
-
150 | 80-200
80-200
80-200
*20-80
*20-80 | .5
.5
.5
8
1 | *20
*8
*20
*7
50 | 5
5
5
5
5 | GE
GE
GE | | HF 9 | 2N1207
2N1907
2N1908
2N1974
2N2944 | TR
TI
TI
FA
CT | npn,PL,si
pnp,ge
pnp,ge
npn,DP,si
pnp,PE,si | 10
*10
*10
*10
*10 | 3000
60000
60,000
3w
400 | 175
100
100
200
200 | 25
2000
2000
17.2
2.4 | 125
*100
*130
60
*15 | 150
20
20
-
100 | *20-80
*20
*20
*20
70
*80-450 | 1
500
500
0.005
0.0001 | *50
-
-
*13
*10 | 5
3
3
5
46 | TRWS, CDC, TR, AMP
SPR | | | 2N3317
2N3319
SA-310
SA-311
SA-410 | SPR
SPR
SPR
SPR
SPR | pnp,SPAT,si
pnp,SP,si
pnp,SP,si
pnp,SP,si
pnp,SP,si | *10
*10
*10
*10
*10 | 150
150
150
150
150 | 140
140
140
140
140 | 1.3
1.3
1.3
1.3
1.3 | 30
30
10
6 | 50
50
50
50
50 | -
*30
*15
*30 | 0.001
0.001
0.01
0.01
0.01 | *9
*9
6
6 | 18
16.
5
5
18 | Chopper
Chopper
Symmetrical
Symmetrical
Symmetrical | | HF 10 | SA-411
2N476
2N477
3N114
3N115 | SPR
TR
TR
SPR
SPR | pnp,SP,si
npn,PL,si
npn,PL,si
pnp,PE,si
pnp,PE,si | *10
12
12
*12
*12
*12 | 150
200
200
300
300 | 140
175
175
200
200 | 1.3
1.2
1.2
1.7
1.7 | 10
15
30
*30
*30 | 50
25
25
20
20 | *30
30-60
30-60
3 | 0.01
.5
.5
.010
.010 | 6
*10
*10
*10
*10 | 18
5
5
18
18 | Symmetrical Dual Dual | | | 3N116
3N117
3N118
3N119
2N582 | SPR
SPR
SPR
SPR | pnp, PE,si
pnp,PE,si
pnp,PE,si
pnp,PE,si
pnp,AJ,ge | *12
*12
*12
*12
*12 | 300
300
300
300
300
150 | 200
200
200
200
200
85 | 1.7
1.7
1.7
1.7 | *30
*50
*50
*50
*25 | 20
20
20
20
20
100 | 3
3
3
3
60 | .010
.010
.010
.010 | *10
*10
*10
*10 | 18
18
18
18
5 | Dual
Dual
Dual
Dual
GI, TI, RCA, LAN, IND | | HF 11 | 2N1429
2N478
2N479
2N479A
2N480 | TR
TR
TR
TR | pnp,SAT,si
npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si | 18
20
20
20
20
20 | 100
200
200
200
200
200 | 140
175
175
175
175 | 0.86
1.2
1.2
1.2
1.2 | 6
15
30
30
45 | 50
25
25
25
25
25 | 45
40-100
40-100
40-100
40-100 | 0.001
.5
.5
.5 | *7
*8
*8
*8 | 5
5
5
5
5 | SPR, CT
GE
GE
GE
GE | | | 2N496
2N1065
2N2432
2N4138
S15649 | *SPR
GI
TI
TI
FA |
pnp,SPAT,si
pnp,DR,ge
npn,PE,si
npn,PE,si
npn,DP,si | *20
*20
*20
*20
*20 | 150
120
300
300
200 | 140
85
175
175
125 | 1.3
2.0
2
2
5 | 10
*40
30
30
25 | 50
-
100
100 | *25
*20-80
50
50
200-1000 | 0.1
8
0.01
0.01
3 | *12
*7
*12
*12
4 | 1
5
18
46
- | •PH orig. Reg. R0110 package | | HF 12 | 2N1411
OC45
2N274
2N344
2N345 | SPR
AMP
RCA
*SPR
*SPR | pnp, MA, ge
pnp, AJ, ge
pnp, DR, ge
pnp, SBT, ge
pnp, SBT, ge | *25
*25
30
30
30 | 25
83
120
20
20 | 85
75
100
55
55 | 1.6
1.33
1.33 | *5
*15
-
*5
*5 | 50
5
-10
5
5 | *75
75
60
22
35 | 0.3
0.5
4
0.7
0.7 | *3
-
*2
*3
*3 | 24
-
44
24
24 | PH, GI Vcev=- 40 *PH orig Reg *PH orig Reg | | WE 12 | 2N371
2N372
2N603
2N754
2N755 | RCA
RCA
GI
TR
TR | pnp, DR, ge
pnp DR, ge
pnp, DR, ge
npn, PLE, si
npn, PLE, si | 30
30
*30
30
30
30 | 80
80
120
300
300 | 71
71
85
175
175 | -
2
3
3 | *24
*24
*30
*60
*100 | 10
10
-
50
50 | 80
80
*30-100
*15
*15 | 10
10
8
1 | -
*5
*10
*10 | 7
7
5
18
18 | TI | | HF 13 | 2N840
2N842
2N1224
2N1226
2N1395 | TR
TR
RCA
RCA
RCA | npn,PLE,si
npn,PLE,si
pnp,DR,ge
pnp,DR,ge
pnp,DR,ge | 30
30
30
30
30
30 | 300
300
120
120
120 | 175
175
85
85
100 | 3
2
-
- | 45
45
•40
•60
•40 | 50
50
-
-
10 | *30-100
*20-55
60
60
90 | 1
1
12
12
4 | *15
10
-
-
*2 | 18
18
33
33
33
33 | CDC AMP AMP SY, AMP | | | 2N 1983
2N 1984
2N 1985
2N 2225
2N 37 42 | FA
FA
FA
KSC
MO | npn, DD, si
npn, DD, si
npn, DP, si
pnp, ge
npn, AE, si | *30
*30
*30
30
*30 | 2000
2000
2000
2000
200
5000 | 150
150
150
100
200 | 16
16
0.016
-
28.6 | 25
25
25
*15
300 | -
-
400
50 | 100
80
60
*60
*20-200 | 1
1
25
0.2 | *35
*35
*35
*14
*6 | 5
5
5
5
5 | TRWS, CDC, AL
TRWS, CDC, AL, AMP
TRWS, CDC, AL, AMP | | HF 14 | 2N3743
TN-55
TN-56
TN-57
TN-58 | MO
SPR
SPR
SPR
SPR | pnp,AE,si
npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si | *30
30
30
30
30
30 | 5000
800
500
800
500 | 200
200
200
200
200
200 | 28.6
4.57
2.86
4.57
2.86 | 300
30
30
*40
*40 | 50
800
800
800
800 | *25-250
100
100
80
80 | 0.3
.010
.010
0.010
0.010 | *15
8
8
*8
*8 | 5
5
18
5
18 | | WHAT GIVES YOU AN UNNEUTRALIZED, 3-STAGE TV-IF WITH 90db STABLE GAIN, HAS LOW FEEDBACK CAPACITANCE, CUTS COMPONENT COSTS, MINIMIZES ALIGNMENT TIME AND HAS NEVER BEEN USED IN A SINGLE TV SET? 36 Electronic Design Integrated-Shield Transistors. How come they've never been used before? Simple. They've never been available before; they're brand new from Amperex. Until now, the big problem in designing transistorized TV-IF's has been the transistor feedback capacitance. Amperex's breakthrough to integrated shielding has now produced the types A467 and A473 with feedback capacitance so low that the need for neutralizing the circuit is completely eliminated. In the Amperex Integrated-Shielding process, we diffuse a special shield between the collector and the base lead "tab" to clamp the base at the emitter RF potential. In common emitter circuits of the type used in TV-IF amplifiers the net effect is the elimination of the major source of feedback capacitance: the capacity between the collector and the base-lead "tab." Thus the $C_{\rm re}$ for the type A467 is a low 150 mpf and only 220 mpf for the type A473. Now you can build a three-stage, unneutralized video IF amplifier, using the A467 and two Λ473's to produce an overall minimum stable gain of 90db at 44mHz. The gain control range of the type A467 stage is 55db minimum; in the output stage the A473 will provide swings of 7.7 volts undistorted into 2700 ohms. For complete data and application information, write: Amperex Electronic Corporation, Semiconductor and Special Purpose Tube Division, Slatersville, Rhode Island, 02876. | Туре | f _T | Cre | 45 Mc
Useable
Gain | | |------|----------------|--------------------|--------------------------|------------| | | | 150 mpf
230 mpf | 33 db
34 db | -
36 db | **Amperex** | | | | | | | МА | X. RATI | NGS | | CHARA | CTERIST | CS | | | |-----------------------|---|-------------------------------------|---|---------------------------------------|-------------------------------------|------------------------------------|-----------------------------------|----------------------------------|---------------------------------|---|-----------------------------------|---|-----------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*f _T
(MHz) | P
∈
(m₩) | т _ј
(°С) | m₩/°C | CBO
(V) | 1 _C (mA) | h _{fe} *hFE | *ICEO *ICEX (µA) | C _{oe}
*C _{ob}
(pF) | Package
Outline
(TO-) | Remarks | | | 2N 1524
2N 1525
2N 1526
2N 1527
2N 1417 | RCA
RCA
RCA
RCA
TR | pnp, DR, ge
pnp, DR, ge
pnp, DR, ge
pnp, DR, ge
npn, si | 33
33
33
33
*34 | 80
80
80
80
150 | 71
71
71
85
150 | -
-
-
1.25 | *24
*24
*24
*24
15 | 10
10
10
10 | 60
60
130
130
60 | 16
16
16
16
0.05 | -
-
*2
*1.5 | 1
40
1
40
5 | | | HF 15 | 2N1418
2N794
2N795
2N393
2N841 | TR
RCA
RCA
*SPR
TR | npn,si
pnp, ge
pnp, ge
pnp,MA,ge
npn,PE,si | *34
*35
*35
40
40 | 150
150
150
25
300 | 150
85
85
100
175 | 1.25
-
0.63
3 | 30
*13
*13
*6
45 | -
100
100
50
50 | 60
*50
*75
155
*60-400 | 0.05
13
13
1.5
1 | *1.5
*12
12
*3.5
*15 | 5
18
18
24
18 | SPR
SPR
*PH orig Reg, GI
TRWS, CDC | | 115.16 | 2N843
2N1122
2N1122A
2N1300
2N1409 | TR
*SPR
*SPR
SPR
RA | npn,PE,si
pnp,MA,ge
pnp,MA,ge
pnp,ge
npn,si | 40
*40
*40
*40
*40 | 300
25
25
150
550 | 175
85
85
85
85
150 | 2
0.63
0.63
-
4.5 | 45
*12
*15
*13
*30 | 50
50
50
100
500 | *45 - 150
35
35
30
*30 | 1
5
5
3
10 | *10
6
6
-
35 | 18
24
24
5
5 | *PH orig Reg
*PH orig Reg
GI | | HF 16 | 2N1410
2N1638
2N3565
2N3566
2N3712 | RA
RCA
FA
FA
TI | npn,si
pnp,DR,ge
npn,PL,si
npn,PL,si
npn,PL,si | *40
40
*40
*40
*40
*40 | 550
80
500
800
800 | 150
85
125
125
175 | 4.5
-
5.0
8.0
5.33 | *30
*34
25
30
150 | 500
10
-
-
200 | *30
-
*150-600
*400
*30-150 | 10
0.05
0.05
0.1 | 35
-
*4.0
25
9 | 5
1
-
-
5 | GI
CDC, IEC, GME
CDC, IEC, GME
Metal header, MO | | UE 17 | PADT50
2N128
2N1631
2N1632
2N1637 | AMP
*SPR
RCA
RCA
RCA | pnp,PADT,ge
pnp,SBT,ge
pnp,DR,ge
pnp,DR,ge
pnp,DR,ge | *40
45
45
45
45 | 6000
25
80
80
80 | 75
85
85
85
85 | -
0.82
-
-
- | *70
*10
*34
*34
*34 | 700
5
10
10
10 | 40
40
80
80
48 | 0.6
16
16 | *2.5
-
-
- | 3
24
40
1 | *PH orig Reg | | HF 17 | 2N 1639
2N 2509
2N 2510
2N 2511
OC44 | RCA
AL
AL
AL
AMP | pnp, DR, ge
DP
DP
DP
pnp, PADT, ge | 45
45
45
45
•45 | 80
1.2w
1.2W
1.2W
83 | 85
200
200
200
75 | 6.9
6.9
6.9 | *34
80
65
50
*15 | 10
-
-
-
5 | 40
150
240
100 | -
.005
.005
.005
0.5 | -
*6
*6
*6 | 1
18
18
18
- | GI, TR, AMP, UC
GI, TR, AMP, UC
GI, TR, AMP, UC
Special Case | | | 2N504
2N604
2N605
2N606
2N607 | *SPR
GI
GI
GI | pnp,MD,ge
pnp,DR,ge
pnp,DR,ge
pnp,DR,ge
pnp,DR,ge | 50
*50
*50
*50
*50 | 30
120
120
120
120 | 85
85
85
85
85 | 0.75
2
2
2
2
2 | *35
*30
*15
*15
*15 | 50
-
-
-
- | 16
*40-140
40
60
80 | 10
8
10
10
10 | *2.5
*5
*7
*7
*7 | 1
5
5
5
5 | *PH orig Reg, GI
TI | | HF 18 | 2N796
2N844
2N845
2N1409
2N1410 | RCA
TR
TR
TRWS
TRWS | pnp, ge
npn,PLE,si
npn,PLE,si
npn,PL,si
npn,PL,si | *50
50
50
*50
*50 | - 150
300
300
600
600 | 85
175
175
175
175 | 3 3 4 4 | *13
*60
*100
*30
*45 | 100
50
50
500
500 | *85
*40-120
*40-120
*15-45
*30-90 | 13
1
1
10
10 | *12
*10
10
35
24 | 18
18
18
5
5 | SPR
GI
GI | | | 2N1427
2N1683
2N1752
2N1785
2N1786 | *SPR
RCA
*SPR
*SPR
*SPR | pnp,MA,ge
pnp,ge
pnp,MD,ge
pnp,MD,ge
pnp,MD,ge | *50
*50
50
50
50 | 25
150
60
45
45 | 85
85
100
85
85 | -
0.8
0.75
0.75 | *6
12
*12
*10
*10 | 50
100
50
50
50 | 120
*50
250
150
250 | 0.5
3
0.8
2
2 | *3.5
*12
*1.0
*1.5
*1.7 | 24
5
9
9 | *PH orig Reg,
GI
SPR
*PH orig Reg
*PH orig Reg
*PH orig Reg | | HF 19 | 2N1787
2N1864
2N1893
2N1978
2N1986 | *SPR
*SPR
FA
FA
FA | pnp,MD,ge
pnp,MD,ge
npn,si
npn,DP,si
npn,DD,si | 50
50
50
*50
*50 | 45
60
3
3000
2000 | 85
100
200
200
150 | 0.017
172 | *15
*20
80
*60
25 | 50
50
0.5
-
- | 120
60
*40-120
*30
150 | 1.5
1.5
0.01
1
1 | *1.5
*1.6
*15
*70
*25 | 9
9
5
-
5 | *PH orig Reg
*PH orig Reg
RCA, TR, NA, TRWS
TRWS, CDC, GI, AL, AMP | | HF 20 | 2N1987
2N1988
2N1989
2N2427
2N1900 | FA
FA
FA
TR
TRWS | npn,DD,si
npn,DD,si
npn,DD,si
npn,PE,si
npn,PL,si | *58
*58
*50
50
\$>50 | 2000
2000
2w
500
125000 | 150
150
150
175
175 | 16
2.86 | 25
45
45
40
•140 | -
-
-
50
10000 | 50
*75
*40
40
5.0 | 1
1
1
.5
10000 | *25
*17
*17
*8
*1000 | 5
5
5
18
38 | TRWS, CDC. GI, AL, AMP
TRWS, CDC, GI, AL
TRWS, CDC, GI, AL
Single Ended | | nr zu | 2N1903
2N2223
2N2223A
T1538
2N346 | TRWS
MO
MO
TI
SPR | npn,PL,si
npn,AE,si
npn,AE,si
pnp,PE
pnp,SBT,ge | *> 50
* 50
* 50
* 50
60 | 125000
3000
3000
200
20 | 150
200
200
125
55 | 1000
17.2
17.2
2
1.33 | *140
60
60
32
*5 | 10000
500
500
50
50 | 5.0
*25-150
*25-150
25
35 | 10000
.01
.01
0.1
0.7 | *1000
*15
*15
*0.5
*3 | 39
77
77
92
24 | Double Ended
Diff. Amp.
Diff. Amp.
*PH orig Reg | | | 2N370
2N698
2N717 | RCA
FA
FA | pnp,DR,ge
npn,DP,si
npn, DD, si | 60
*60
*60 | 80
3.0W
1.5W | 71
200
175 | -
17.2
10 | *24
60
*60 | 10
-
- | 100
*40
*40 | 10
0,0005
0.01 | -
*13
*17 | 7
5
18 | TRWS, TR, STC, AMP, CDC
TRWS, CDC, TR, GI, AMP, | | HF 21 | 2N719 | FA | npn, DD, si | *60 | 1.5W | 175 | | *120 | - | *40 | 0. 01 | •12 | 18 | TRWS, CDC, TR, GI, AMP | | | 2N719A
2N720A | FA
FA | npn,DP,si
npn,DP,si | *60
*60 | 1.8W
1.8W | 200
200 | 10.3
10.3 | *120
*120 | - | *40
*80 | 0.005
0.005 | *12
*12 | 18
18 | TRWS, CDC, AMP, AL, GI, TR
TRWS, CDC, GI, AMP, AL,
TR, RCA | | 1-3 | 2N912
2N1301 | FA
SPR | npn,DP,si
pnp,ge | *60
*60 | 1800
150 | 200
85 | 10.3 | 60
*13 | -
100 | 45
30 | 0.005
3 | *13 | 18
5 | TRŴS, CDC, AMP, AL | | | | | | | | M. | AX. RATI | NGS | | CHAR | ACTERISTI | CS | | | |-----------------------|--|--------------------------------------|---|---|--|--|--------------------------------------|-------------------------------------|--|--|---|---|-----------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*fT
(MHz) | P c (mW) | т _ј
(°С) | m₩/°C | *VCEO
*VCBO
(V) | l _C (mA) | hfe
*h | ICO
*ICEO
*ICEX
(µA) | C _{oe}
*C _{ob}
(pF) | Package
Outline
(TO-) | Remarks | | HF 22 | 2N 1972
2N 1975
2N 2060
2N 2060A
2N 2595 | FA
FA
MO
MO
SSD | npn,DD,si
npn,DP,si
npn,AE,si
npn,AE,si
pnp,PL | *60
*60
*60
*60
*60 | 2.0
3W
3000
3000
400 | 175
200
200
200
200
200 | 10
17.2
17.2
17.2
2.3 | *60
60
60
60 | -
500
500
50 | *250
45
*40-120
*40-120
*15 | 0.1
0.005
.002
.002
.025 | *25
*13
*15
*15
*16 | 5
5
77
77
46 | TR, AMP, TRWS
TRWS, CDC, AL, TR, AMP
Diff. Amp.
Diff. Amp. | | nr ZZ | 2N2598
2N2601
2N2980
2N2981
2N3567 | SSD
SSD
FA
FA
FA | pnp,PL
pnp,PL
npn,DP,si
npn,DP,si
npn,PE,si | *60
*60
*60
*60
*60 | 400
400
750
750
800 | 200
200
200
200
200
125 | 2.3
2.3
4.3
4.3
8.0 | 80
60
60
60
40 | 50
50
500
500 | *15
*12.5
*100
*100
*80 | .025
.025
0.0001
0.0001
0.05 | *6
*6
*8.
*8 | 46
46
18
18 | GI
GI
TEC, GME | | 115.00 | 2N3568
2N3569
MM2483
MM2484
2N2483 | FA
FA
MO
MO
FA | npn,PE,si
npn,PE,si
npn,EP,si
npn,EP,si
npn,DP,si | *60
*60
*60
*60
*69 | 800
800
1200
1200
1.2W | 125
125
200
200
200 | 8.0
8.0
6.9
6.9 | 60
40
60
60 | -
-
50
50
50 | *80
*150
*40-120
*100-500
*280 | 0.05
0.05
.01
.01
0.0001 | *20
*18
*6
*6
*3.5 | -
18
12
18 | IEC, GME AMP, GI, TR, AL, UC | | HF 23 | 2N911
2N1335
2N1336
2N1337
2N1338 | FA
TRWS
TRWS
TRWS
TRWS | npn,DP,si
npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si | *70
*70
*70
*70
*70
*70 | 1800
800
800
800
800 | 200
175
175
175
175
175 | 10.3
5.3
5.3
5.3
5.3 | 60
*120
*120
*120
*80 | 300
300
300
300
300 | 70
*10-150
*10-150
*10-150
*10-150 | 0.005
1
1
1
1 | *13
*8
*10
*8
*10 | 18
5
5
5
5 | TRWS, CDC, AMP, AL | | | 2N1339
2N1340
2N1341
2N1342
2N1505 | TRWS
TRWS
TRWS
TRWS
TRWS | npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si | *70
*70
*70
*70
*70
*>70 | 800
800
800
800
3W | 175
175
175
175
175
175 | 5.3
5.3
5.3
5.3
20 | *120
*120
*120
*150
*50 | 300
300
300
300
300
500 | *10-150
*10-150
*10-150
*12
1.0 | 1
1
1
10
50 | *8.
*8
*8
*8.
*10 | 5
5
5
5
5 | NUC | | HF 24 | 2N2092
2N2093
2N2914
2N2915
2N2916 | AMP
AMP
FA
FA
FA | pnp.PADT.ge
pnp.PADT.ge
npn.DP.si
npn.DP.si
npn.DP.si | *70
*70
*70
*70
*70 | 83
83
1.5W
1.5W
1.5W | 85
85
200
200
200 | 0.6
1.7
3.42
3.42
3.42 | *25
*25
45
45
45 | 10
10
30
30
30 | 150
150
• 450
• 240
• 450 | -
0.001
0.001
0.001 | -
*5
*5
*5 | 7
7
5
5
5 | SPR. GI. AL, UC, MO
GI. AL, UC, MO, SPR
SPR. GI. AL, UC, MO | | WE 05 | 2N2917
2N2918
2N2919
2N2920
2N2972 | FA
FA
FA
FA | npn,DP,si
npn,DP,si
npn,DP,si
npn,DP,si
npn,DP,si | *70
*70
*70
*70
*70
*70 | 1.5W
1.5W
1.5W
1.5W
750 | 200
200
200
200
200
200 | 3.42
3.42
3.42
3.42
1.71 | 45
45
60
60
45 | 30
30
30
30
30 | *240
*450
*240
*450
*240 | 0.001
0.001
0.001
0.001
0.001 | *5
*5
*5
*5
*5 | 5
5
5
5
18 | SPR, GI, UC, RCA, AL, MO
SPR, GI, UC, RCA, AL, MO
SPR, GI, AL, UC, MO
SPR, GI, AL, UC, MO
GI, AL, UC, MO, SPR | | HF 25 | 2N2973
2N2974
2N2975
2N2976
2N2977 | FA
FA
FA
FA | npn,DP,si
npn,DP,si
npn,DP,si
npn,DP,si
npn,DP,si | *70
*70
*70
*70
*70 | 750
750
750
750
750
750 | 200
200
200
200
200
200 | 1.71
1.71
1.71
1.71
1.71 | 45
45
45
45
45 | 30
30
30
30
30 | *450
*240
*450
*240
*450 | 0.001
0.001
0.001
0.001
0.001 | *5
*5
5
5
*5 | 18
-
18
18
18 | GI, AL, UC, MO, SPR
GI, AL, UC, MO, SPR, VEC
GI, AL, UC, MO, SPR, VEC
GI, AL, UC, MO, SPR
GI, AL, UC, MO, SPR | | us ac | 2N2978
2N2979
2N2982
2N3056
2N3019 | FA
FA
FA
RA
RA | npn,DP,si
npn,DP,si
npn,DP,si
npn,PL,EP
npn,PL,EP | *70
*70
*70
*70
*70
*70 | 450
750
750
400
800 | 200
200
200
300
300 | 1.71
1.71
4.3
2.3
4.6 | 60
60
60
60
80 | 30
30
500
1000 | *240
*450
*100
*40
*100 | 0.001
0.001
0.0001
.010
.010 | 5
*5
*8
*12
*12 | 18
18
18
46
5 | GI, AL, UC, MQ SPR, VEC
GI, AL, UC, MO, SPR, VEC
GI
MO, TRWS | | HF 26 | 2N3020
2N3057
2N3075
2N990
2N993 | RA
RA
AMP
AMP
AMP | npn,PL,EP
npn,PL,EP
pnp,PADT,ge
pnp,PADT,ge
pnp,PADT,ge | *70
*70
70
75
*75 | 800
400
140
67 | 300
300
90
75
75 | 4.6
2.3
3.1
1.33
1.7 | 80
60
30
*32
*32 | 1000
1000
20
10 | *40
*100
27
150 | .010
.010
10 | *12
*12
3
- | 5
46
12
18
18 | MO, TRWS 4 Lead 4 Lead | | HF 27 | 2N2089
2N2590
2N2671
2N2672
2N696 | AMP
SSD
AMP
AMP
FA | pnp,PADT,ge
pnp,PL
pnp,AD,ge
pnp,AD,ge
npn,DD,si | 75
*75
75
75
*80 | 100
400
100
100
2.0W | 85
200
75
85
175 | 0.6
2.3
0.6
0.6
13.3 | *32
60
*32
*32
*60 | 10
50
10
10 | 150
*20
150
150
*40 | -
.025
8
8
0.01 | *6
2.5
2.5
*20 | 7
46
12
39
5 | Veb=1 Volt
TRWS, TR, GI, AMP, CDC,
NA , | | 21 | 2N699
2N718 | FA
FA | npn,DD,si | *80 | 2.0W
1.5W | 175
175 | 13.3
10 | *120
*60 | - | *80
*75 | 0.01
0.01 | 12
•17 | 5
18 | TRWS, SY, TR, GI, AMP,
CDC, NA, RCA
TRWS, CDC, SY, TR, GI,
AMP, AL, NA, MO | | HE OR | 2N718 A
2N720
2N870
2N910 | FA
FA
FA | npn,DP,si
pro,D0,si
npn, DP, si
npn,DP,si | *80
*80
*80
*80 | 1.8W
1.5W
1.8W
1800 |
200
175
200
200 | 10.3
10
10.3
10.3 | *75
*120
60
60 | | *80
*80
*75
140 | 0.003
0.01
0.004
0.005 | *18
12
*13
*13 | 18
18
18 | CDC, MO, TR, GI, AMP, AL,
NA, RCA, TRWS
TRWS, CDC, TR, GI, AMP, AL
TRWS, CDC, GI, AMP, AL
TRWS, CDC, AMP, AL | | HF 28 | 2N1252
2N1613
2N1748
2N1749 | FA
FA
*SPR
*SPR | npn, DD, si
npn, DP, si
pnp, MD, ge
pnp, MD, ge | *80
*80
*80
*80 | 2.0W
3W
60
75 | 175
200
100
100 | 13.3
17.2
0.8
1.0 | *30
*75
*25
*40 | -
-
50
10 | *35
*80
45
45 | 0.1
0.003
1.5
1.5 | *30
*18
*1.3
*1.3 | 5
5
9 | AL, NA, GI
TRWS, CDC, MO, TR, GI,
AMP, AL, RCA
*PH Orig Reg
*PH Orig Reg | (see pages 4-9 for explanation of company abbreviations.) May 17, 1966 39 | | | | | | | МА | X. RATI | NGS | | CHARA | CTERISTI | CS | | | |-----------------------|--|--------------------------------------|--|--------------------------------------|------------------------------------|--|------------------------------------|--|------------------------------------|--|------------------------------------|--------------------------------------|-----------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Type | fae
*fT
(MHz) | P
(mW) | T _j (°C) | m₩/°C | *YCEO
*YCBO
(Y) | 1 C (mA) | hfe
*hFE | lC0
*lCE0
±lCEX
(μA) | Coe
*Cob
(pF) | Package
Outline
(TO-) | Remarks | | HE 20 | 2N1973
2N2451
2N2720
2N2721
T1537 | FA
SPR
SSD
SSD
TI | npn,DP,si
pnp,MAT,ge
npn,PL
-
pnp,PE | *80
*80
*80
*80
*80 | 3W
25
600
600
200 | 200
85
200
200
125 | 4.56
4.54
3.4
3.4
2 | 60
*6
60
60
32 | 50
50
50
50 | 140
40
*35
*35
45 | 0.005
5
.010
.010
0.1 | *13
6
-
*6
*0.5 | 5
24
5
5
92 | TRWS, CDC, AL, AMP, TR Differential amp, AL, SPR Differential amp, AL, SPR | | HF 29 | 2N501
2N2188
2N2190
2N2596
2N2599 | *SPR
TI
TI
SSD
SSD | pnp,MD,ge
pnp,AD,ge
pnp,AD,ge
pnp,PL
pnp,PL | *90
*90
90
*90
*90 | 60
125
125
400
400 | 100
85
85
200
200 | 0.8
2.1
2.1
2.3
2.3 | *15
*40
*60
60
80 | 50
30
30
50
50 | *35
90
90
*30
*30 | 1
1.0
1.0
.025
.025 | *1.5
*1.6
*1.6
*6
*6 | 1
58
58
46
46 | *PH orig Reg, GI | | HF 30 | 2N2602
2N4104
2N384
2N697 | SSD
TI
RCA
FA | pnp,PL
npn,PL,si
pnp,DR,ge
npn,DD,si | *90
*90
100
*100 | 400
300
120
2.0W | 200
175
100
175 | 2.3
2
-
13.3 | 60
60
40
•60 | 50
50
- | *25
*400
60
*75 | .025
0.01
12
0.01 | *6
4.5
-
*20 | 46
18
44
— | TRWS, MO, TR, GI, AMP, CDC, BE
NA, RCA | | 111 30 | 2N728
2N729
2N871
2N956 | TR
TR
FA | npn,PE,si
npn,PE,si
npn,DP,si
npn,DP,si | 100
100
*100 | 300
300
1.8W | 175
175
200
200 | 4
4
10.3 | 15
30
60
*75 | 100
100
10A | *20-200
*20-200
*30 | 5
5
0.004
0.003 | *12
12
*13 | 18
18
18 | TRWS, CDC, GI, AMP, AL
NA, RCA, AMP
TRWS, CDC, MO, GI, AMP | | | 2N979
2N980
2N987
2N1180
2N1225 | SPR
SPR
AMP
RCA
RCA | pnp,MD,ge
pnp,MD,ge
pnp,PADT,ge
pnp,DR,ge
pnp,DR,ge | *100
*100
100
100
100 | 60
60
86
80
120 | 100
100
90
71
85 | 0.8
0.8
1.33 | *20
*20
*40
*30
*40 | 100
100
10
10
10 | *70
*70
100
100
60 | 1
1
1
-
12
12 | *1.5
*1.5
-
- | 18
18
18
45
33 | 4 Lead | | HF 31 | 2N1396
2N1420 | RCA
FA | pnp,DR,ge
npn,DD,si | 100
*100 | 120
2W | 100
175 | -
13.3 | *40
*60 | 10 - | 90
*200 | 4
0.01 | *2
17 | 33
5 | SY, AMP
TRWS, CDC, MO, TR, GI, AMP, | | | 2N1499A
2N1711 | *SPR
FA | pnp,MD,ge
npn,DP,si | *100
*100 | 60
2W | 100
200 | 0.8
17.2 | *20
*75 | 100 | *70
*130 | 1
.003 | *1.5
*18 | 9 5 | *PH orig Reg, GI
TRWS, CDC, MO, TR, GI, AL | | | 2N1726
2N1727
2N1728
2N1746
2N1747 | *SPR
*SPR
*SPR
*SPR
*SPR | pnp,MD,ge
pnp,MD,ge
pnp,MD,ge
pnp,MD,ge
pnp,MD,ge | 100
100
100
100
100 | 60
60
60
60 | 100
100
100
100
100 | 0.8
0.8
0.8
0.8 | *20
*20
*20
*20
*20
*20 | 50
50
50
50
50 | 60
*60
*60
70
70 | 1.5
1.5
1.5
1 | *1.5
*1.5
*1.5
*1.2 | 9
9
9
9 | PH orig Reg | | HF 32 | 2N1748A
2N1788
2N1789
2N1790
2N1893A | *SPR
*SPR
*SPR
*SPR
TRWS | pnp,MD,ge
pnp,MD,ge
pnp,MD,ge
pnp,MD,ge
npn,PL,si | *100
100
100
100
*>100 | 60
60
60
60
3W | 100
100
100
100
200 | 0.8
0.8
0.8
0.8
17.14 | *25
*35
*35
*35
*140 | 50
50
50
50
50
50 | 70
150
200
120
•40-120 | 1.5
1.5
1.5
1.5
.01 | *1.3
*1.5
*1.5
*1.5
*1.5 | 9
9
9
9 | °PH orig Reg
°PH orig Reg
°PH orig Reg
°PH orig Reg
GI, TR | | | 2N 1958
2N 1958A
2N 1959
2N 1959
2N 1959A
2N 1964 | 2Y
2Y
2Y
2Y
2Y
2Y | npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si
npn,EP,PL,si | *100
*100
*100
*100
*100 | 600
600
600
600
400 | 175
175
175
175
175
175 | - | *60
*120
*60
*120
*60 | 500
500
500
500
500 | *20-60
*20-60
*40-120
*40-120
*20-60 | 0.5
300
0.5
0.5
0.5 | 18
18
18
18
18 | 5
5
5
46 | GI
GI
SY, GI, NA
GI, NA
NA | | HF 33 | 2N 1965
2N 2084
2N 2330
2N 2331
2N 2405 | SY
AMP
MO
MO
RCA | npn,EP,PL,si
pnp,PADT,ge
npn,PE,si
npn,PE,si
npn,si | *100
100
*100
*100
*100 | 400
125
3W
1.8W
5W | 175
90
175
175
200 | 1.93
5.33
3.33
28.6 | *60
*40
*30
*30
*120 | 500
10
-
-
1000 | 40-120
100
*50
*50
*60-200 | 0.5
-
0.001
0.001
0.01 | 18
-
*10
*10
*15 | 46
33
5
5
5 | NA
GI, MO, TRWS | | | 2N2591
2N2722
2N2895
2N2896
2N2897 | SSD
SSD
RCA
RCA
RCA | pnp,PL
npn,PL
npn,si
npn,si
npn,si | *100
*100
*100
*100
*100 | 400
600
1800
1800
1.8W | 200
200
200
200
200
200 | 2.3
3.4
10.3
10.3
10.3 | 60
45
65
90
45 | 50
50
1000
1000
1a | *35
*60
*40-120
*60-200
*50-200 | .025
.001
.002
.01 | *6
*6
*15
*75
*15 | 46
5
18
18
18 | Differential AMP, AL, SPR | | HF 34 | 2N2898
2N2899
2N2900
2N2947
2N2948 | RCA
RCA
RCA
MO
MO | npn,si
npn,si
npn,si
pnp,EP,si
npn,EP,si | *100
*100
*100
*100
*100 | 1800
1800
1800
25W
25W | 200
200
200
200
175
175 | 10.3
10.3
10.3
167
167 | 65
90
45
•60
•40 | 1000
1000
1000
1.5
1.5 | *40-120
*60-200
*50-200
2.5-35
2.5-100 | .002
.01
.05
1 | *75
*15
*15
*60
*60 | 46
46
46
3
3 | | | | 2N2949
2N2950
2N3702
2N3703
2N3704 | MO
MO
TI
TI
TI | npn,EP,si
npn,EP,si
pnp,PL,si
pnp,PL,si
npn,EP,si | *100
*100
*100
*100
*100 | 6W
6W
300
300
300 | 175
175
125
125
125
150 | 40
40
3
3
3 | *60
*60
25
25
20 | .7
.7
200
200
800 | 5-100
5-100
*60-300
*50-150
*90-330 | .1
0.1
0.1
0.1
0.1 | *20
*20
*12
*12
12 | 11111 | Plas IEC, GME
Plas IEC, GME
Plas IEC, GME | | HF 35 | 2N3705
2N3706
2N3798
2N3799
2N3800 | TI
TI
MO
MO
MO | npn,EP,si
npn,EP,si
pnp,AE,si
pnp,AE,si
pnp,AE,si | *100
*100
*100
*100
*100 | 300
300
1200
1200
360 | 150
150
200
200
200 | 3
3
6.9
6.9
2.06 | 30
20
60
60
60 | 800
800
50
50
50 | *45-165
*30-660
*150-450
*300-900
*150-450 | 0.1
0.1
.01
.01
.01 | 12
12
*4
*4
*4 | -
18
18
71 | Plas IEC, GME
Plas IEC, GME
Dual | # WHICH BRANCH # OF THE PNP SILICON TRANSISTOR FAMILY TREE # ARE YOU CONCERNED WITH? # **LOW LEVEL** LOW NOISE ICBO < 1 nAhFE (10 μ A-5V) 100-300 NF 3 db 2N2603 2N2604 2N2605 2N3544 # **MEDIUM POWER** ${}_{\rm BVCEO}^{\rm CEO} > 60{\rm V}$ hFE (.1mA to 100 mA) >100 tTCT < 100 N SEC **INTEGRATED CHOPPERS** > $BV_{EE} > 50V$ $V_0 < 50_{\mu}V$ |EE0 < 1 nA| # DIFFUSED **EPITAXIAL** **BVCBO** BV CEO > 50V BV_{EBO} $^{\rm h}FE > 50$ ICBO < 10 nA ## DIFFERENTIAL **AMPLIFIERS** hFE > 100 hFEI 10% hFE2 V_{BE_1} - $V_{BE_2} = \pm 3 \text{ mV}$ 2N3548 2N3549 2N2485A 2N2486A 2N2904A - 2N2907A 2N3502 - 2N3505 3N90 - 3N953N114 - 3N119 2N329A 2N2944 2N2945 2N2946 2N3857 2N3058 - 2N3065 2N328A NS7200 NS7201 2N3502 2N3503 2N3504 2N3505 2N3800 - 2N3811 NEC-130 Whichever branch of PNP's you are concerned with, before you specify a brand GHECK THE NSC LINE. Write for spec sheets on any of these devices - or better yet, the NSC Composite Catalog. 41 | | | | | | | MA | X. RATI | NGS | | CHARA | CTERISTIC | cs | | | |-----------------------|--|-----------------------------------|--
--|--|--|--|----------------------------------|---|--|------------------------------------|--|--|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | †ae
*f _T
(MHz) | P
(mW) | T _j (°C) | m₩/°C | VCEO
VCBO
(V) | 1 C (mA) | h _{fe} *h | ICO
*ICEO
ICEX
(µA) | C o t (pF) | Package
Outline
(TO-) | Remarks | | | 2N3801
2N3802
2N3803
2N3804
2N3805 | MO
MO
MO
MO | pnp,AE,si
pnp,AE,si
pnp,AE,si
pnp,AE,si
pnp,AE,si | *100
*100
*100
*100
*100 | 360
360
360
360
360 | 200
200
200
200
200
200 | 2.06
2.06
2.06
2.06
2.06
2.06 | 60
60
60
60 | 50
50
50
50
50 | *300-900
*150-450
*300-900
*150-450
*300-900 | .01
.01
.01
.01 | *4
*4
*4
*4 | 71
71
71
71
71
71 | Dual
Diff. Amp.
Diff. Amp.
Diff. Amp.
Diff. Amp. | | HF 36 | 2N3806
2N3807
2N3808
2N3809
2N3810 | MO
MO
MO
MO | pnp,AE,si
pnp,AE,si
pnp,AE,si
pnp,AE,si
pnp,AE,si
pnp,AE,si | *100
*100
*100
*100
*100 | 600
600
600
600 | 200
200
200
200
200
200 | 3.4
3.4
3.4
3.4
3.4 | 60
60
60
60 | 50
50
50
50
50 | *150-450
*300-900
*150-450
*300-900
*150-450 | .01
.01
.01
.01
.01 | *4
*4
*4
*4
*4 | 77 mod
77 mod
77 mod
77 mod
77 mod | Dual; Low Profile Can
Diff. Amp.; Low Profile Can
Diff. Amp.; Low Profile Can | | | 2N3811
40084
40354
FT34A
FT34B | MO
RCA
RCA
FA
FA | pnp,AE,si
npn,si
npn,si
npn,DPE,si
npn,DPE,si | *100
*100
*100
100
100 | 600
1.8W
500
- | 200
200
175
200
200 | 3.4
10
3.3
.0286
.0286 | 60
40
*150
*150
*120 | 50
1a
50
- | *300-900
*50-250
-
*120
*300 | .01
0.25
.005 (ma | *4
15
x) 2.8
1.2
1.2 | 77 mod
18
-
59
59 | Diff. Amp.; Low Profile Can | | HF 37 | NS1355
MCS2135
MCS2136
MCS2137
NS1356 | NA
MO
MO
MO
NA | npn,PL,si
npn,AE,si
npn,AE,si
pnp,AE,si
npn,PL,si | *100
*100
*100
*100
*100 | 600
150
150
150
800 | 200
125
125
125
200 | 3.5
1.5
1.5
1.5
4.5 | 40
60
60
60
40 | 100
50
50
50
50 | *30-100
*100-300
*250-750
*100-300
*30-100 | .025
.01
.01
.02
.025 | *7
*3
*3
*3
*7 | 18
-
-
-
5 | VHF 400mW @ 70 Hz | | | MCS2138
T1411
TN-53
TN-54
TN-59 | MO
TI
SPR
SPR
SPR | pnp,AE,si
npn,EP,si
npn,PE,si
npn,PE,si
npn,PE,si | *100
*100
100
100
100 | 150
300
800
800
800 | 125
150
200
200
200 | 1.5
2.4
4.57
2.86
4.57 | 60
30
45
45
30 | 50
800
800
800
800 | *250-750
*180-660
*50
*50
*100 | .02
0.1
.010
.010
.020 | *3
*12
8
8 | -
-
5
5
5 | Plas IEC, GME | | HF 38 | TN-60
TN-61
TN-62
TN-63
TN-64 | SPR
SPR
SPR
SPR
SPR | npn, PE, si
npn, PE, si
npn, PE, si
npn, PE, si
npn, PE, si | 100
100
100
100
100 | 500
800
500
800
500 | 200
200
200
200
200
200 | 2.86
4.57
2.86
4.57
2.86 | 30
30
30
20
20 | 800
800
800
800
800 | *100
30
30
20
20 | .020
.020
.020
0.1
0.1 | 8
8
8
8 | 18
5
18
5
18 | | | | TN-237
TN-238
2N1253
2N2189
2N2191 | SPR
SPR
FA
TI | npn, PE, si
npn, PE, si
npn, DD, si
pnp, AD, ge
pnp, AD, ge | 100
100
*110
110
110 | 800
500
2.0W
125
125 | 200
200
175
85
85 | 4.57
2.86
13.3
2.1
2.1 | *35
*35
*30
*40
*60 | 800
800
-
30
30 | 30
30
*45
135
135 | 1
1
0.1
1.0
1.0 | *8
*8
*30
*1.6
*1.6 | 5
18
5
58
58 | AL, NA | | HF 39 | 2N501A
2N1023
2N1066
2N1397
2N1500 | *SPR
RCA
RCA
RCA
*SPR | pnp,MD,ge
pnp,DR,ge
pnp,DR,ge
pnp,DR,ge
pnp,MD,ge | *120
120
120
120
120
*120 | 60
120
120
120
120
60 | 100
100
100
100
100 | 0.8
-
-
-
0.8 | *15
40
*40
*40
*15 | 50
-
-
10
50 | *100
60
*60
90
*50 | 1
12
12
4
1 | *1.5
-
-
*2
*1.5 | 1
44
33
33
9 | *PH orig Reg, GI
AMP KSC
SY, AMP
*PH orig Reg, GI | | | 2N2597
2N2600
2N2603
2N2798
2N2799 | SSD
SSD
SSD
SPR
SPR | pnp,PL
pnp,PL
pnp,PL
pnp,ED,ge
pnp,ED,ge | *120
*120
*120
*120
*120 | 400
400
400
75
75 | 200
200
200
200
100
100 | 2.3
2.3
2.3
1 | 60
80
60
*60
*30 | 50
50
50
100
100 | *60
*60
*50
*50
*50 | .025
.025
.025
- | *6
*6
*6
*2.5
*2.5 | 46
46
46
9 | | | HF 40 | 2N2837
2N2838
2N2943
2N1710
2N768 | MO
MO
SPR
TRWS
*SPR | pnp,EP,si
pnp,EP,si
pnp,ED,ge
npn,PL,si
pnp,MD,ge | *120
*120
*120
*120
*> 120
*124 | 1.8W
1.8W
150
15000
35 | 200
200
100
175
100 | 10.3
10.3
2
100
0.467 | 35
35
*30
*60
*12 | 800
800
100
2000
100 | *30-90
*75-225
*50
4.0
*40 | -
-
-
50
1 | *25
*25
*2.5
*40
*1.6 | 18
18
9
8
18 | ◆PH orig Reg | | | 2N2592
40340
40341
SFT443A
2N2193A | SSD
RCA
RCA
NUC
GE | pnp,PL
npn,si
npn,si
npn,si
npn,PE,si | *125
*125
*125
*125
*125
*130 | 400
70W
70W
12,000
2.8W | 200
200
200
-
200 | 2.3
400
400
-
1.6 | 60
-
-
80
50 | 50
10A
10A
-
1A | *70
-
-
*15
*40-120 | .025
*100
*100
10
.01 | *6
*120
*85
20
*20 | 46
60
60
60
5 | Vcev= 60; overlay type
Vcev= 80; overlay type
CDC, GI, FA, NA, MQ AL | | HF 41 | 2N2194A
2N2195A
2N2243A
2N2350A
2N2351A | GE
GE
GE
GE | npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si | *130
*130
*130
*130
*130 | 2.8W
2.8W
2.8W
5,000
5,000 | 200
200
200
200
200
200 | 16
16
16
28.5
28.5 | 40
25
80
25
50 | 1A
1A
1a
1,000
1,000 | *20-60
20
*40-120
*20
*40-120 | .010
0.01
.01
.01 | *20
*20
*20
*20
*20
*20 | 5
5
5
46
46 | CDC, FA, GI, NA, MO, AL
CDC, FA, GI, MO, AL
GI | | 115.40 | 2N2352 A
2N2353 A
2N2364 A
2N3843
2N3843 A | GE
GE
GE
GE | npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si
npn,PEP,si | *130
*130
*130
*135
*135 | 5,000
5,000
5,000
200
200 | 200
200
200
100
100 | 28.5
28.5
28.5
2.67
2.67 | 40
25
80
30
30 | 1,000
1,000
1,000
1,000
100 | *20-60
*20
*40-120
20-40
*20-40 | .01
.01
.01
0.5
0.5 | *20
*20
*20
*2.8
*2.8 | 46
46
46
98
98 | NA
NA
CDC, NA
10.5 dB (max rf nf)
8.5 d B (max rf nf) | | HF 42 | 2N3844
2N3844A
2N3845
2N3845A
2N1177 | GE
GE
GE
RCA | npn,PE,si
npn,PEP,si
npn,PE,si
npn,PEP,si
pnp,DR,ge | *135
*135
*135
*135
*135
140 | 200
200
200
200
200
80 | 100
100
100
100
100
71 | 2.67
2.67
2.67
2.67 | 30
30
30
30
*30 | 100
100
100
0.5
10 | 35-70
*35-70
60-120
*60-120
100 | 0.5
0.5
0.5
0.5 | *2.8
*2.8
*2.8
*2.8 | 98
98
98
98
45 | 10.5 d B (max rf nf)
8.5 d B (max rf nf)
10.5 d B (max rf nf)
8.5 d B (max rf nf)
LAN | | | | | | | | МА | X. RATI | NGS | | CHARA | ACTE RIST | CS | | | |-----------------------|--|--|--|---|---|--|--------------------------------------|---------------------------------|-------------------------------------|--|--------------------------------------|---------------------------------------|-----------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*f _T
(MHz) | P(m₩) | T _j (°C) | m₩/°C | *VCEO
*VCBO
(V) | 1 C (mA) | hfe
hFE | ICO
*ICEO
*ICEX
(µA) | C _{oe} •C _{ob} (pF) | Package
Outline
(TO-) | R em ark s | | 115.42 | 2N1178
2N1179
2N1506
2N1506A
2N2874 | RCA
RCA
TRWS
TRWS
TRWS | pnp,DR,ge
pnp,DR,ge
npn,PL
npn,PL,si
npn,PL,si | 140
140
*>140
*>140
*>140
*140 | 80
80
3W
3.5W
15000 | 71
71
175
200
175 | -
20
20
100 | *30
*30
*60
*80
*75 | 10
10
500
500
2000 | 40
80
2
2
2 | 12
12
10
.05
10 | -
*10
*10
*40 | 45
45
5
5 | LAN
LAN
NUC | | HF 43 | 2N2781
2N2782
2N2783
2N702
2N703 | TRWS
TRWS
TRWS
TI | npn,PL,si
npn,PL,si
npn,PL,si
npn,si
npn,si | *>140
*>140
*>140
*>150
*150 | 15000
15000
15000
300
300 |
175
175
175
175
175
175 | 100
100
100
2
2 | *75
*100
*100
25
25 | 2000
2000
2000
50
50 | 2
2.
2
*20
*40 | 500
500
10
0.5
0.5 | *40
*40
*40
*3
*3 | 8
8
8
18
18 | TRWS: GI, NA
TRWS: FA, SY, GI, NA | | | 2N758B
2N995
2N1499B
2N1709
2N2048 | SSD
FA
SPR
TRWS
*SPR | npn,PL
pnp,PE,si
pnp,ED,ge
npn,PL,si
pnp,MD,ge | *150
*150
*150
*150
*150 | 500
1.2W
75
15000
150 | 200
200
100
175
100 | 2.85
6.9
1
100
2 | 60
15
*30
*75
*20 | 50
-
100
2000
100 | *12.5
*70
*70
5
*125 | .005
0.001
0.6
10 | *6
*8
*2.5
*40
*1.5 | 18
18
9
8 | MO, TR NUC *PH orig Reg | | HF 44 | 2N2048 A
2N2400
2N2520
2N2593
2N2604 | *SPR
*SPR
SSD
SSD
SSD | pnp,MD,ge
pnp,MD,ge
npn,PL
pnp,PL
pnp,PL | *150
*150
*150
*150
*150 | 150
150
400
400
400 | 100
100
200
200
200
200 | 2
2
2.3
2.3
2.3 | *30
*12
60
60
45 | 100
100
50
50
50 | *50
*30
*12.5
*100
*60 | 3
.005
.025
.010 | 3
4
*6
*6
*6 | 9
18
46
46
46 | *PH orig Reg
*PH orig Reg
TI, AL, UC | | | 2N2654
2N2797
2N2927
2N2942
2N3081 | AMP
SPR
FA
SPR
SY | pnp,AD,ge
pnp,ED,ge
pnp,PE,si
pnp,ED,ge
pnp,EP,PL,si | 150
*150
*150
*150
*150 | 100
75
3000
150
600 | 75
100
200
100
175 | 0.5
1
4.56
2 | *32
*40
25
*50
*70 | 10
100
-
100
600 | 50
*80
*60
*80
*30-90 | 8
-
0.001
-
.01 | *1.5
*2.5
*12
*2.5
13 | 12
9
5
9 | | | HF 45 | 2N3081/46
2N3081/51
2N3245
2N3262
2N3638 | SY
SY
MO
RCA
FA | npn,PL,EP,si
npn,PL,EP,si
pnp,ED,si
npn,si
pnp,PE,si | *150
*150
*150
*150
*150 | 400
300
5W
8.75W
700 | 175
175
200
200
125 | 28.6
5.71
7.0 | *70
*70
50
80
25 | 600
600
1A
1.5A
500 | *30-90
*30-90
*30-90
3
*40 | .01
.01
.050
0.1
0.0001 | 13
13
*25
*20
*12 | 46
51
5
39 | TI
IEC, GME | | WE 40 | 2N3763
2N3765
2N3818
SFT440
2N1499A | MO
MO
MO
NUC
PH | pnp.AE.si
pnp.AE.si
npn.EP.si
npn.si
pnp.ge | *150
*150
*150
*150
*160 | 4000
2000
25000
12,000
60 | 200
200
175
-
100 | 22.8
11.4
167
-
0.8 | 60
60
*60
80
*20 | 1500
1500
2000
1000
100 | *20-80
*20-80
*5 - 50
*10
*70 | -
1
10
0.6 | *15
*15
*40
15
*1.5 | 5
46
60
60
9 | cex=0.1
 cex=0.1 | | HF 46 | 2N3962
2N3963
2N3964
2N3965
40263 | FA
FA
FA
RCA | pnp,DP,si
pnp,DP,si
pnp,DP,si
pnp,DP,si
pnp,DR,ge | 160
160
160
160
160 | 1.2 W
1.2 W
1.2 W
1.2 W
1.2 W | 200
200
200
200
200
100 | 6.85
6.85
6.85
6.85
2.66 | 60
80
45
60
*20 | 50
50
50
50
50 | *300
*300
*500
*500
12 | -
-
-
-
10 | *6
*6
*6
*6 | 18
18
18
18 | | | | 2N2525
A301
2N2913
2N735A
2N739A | TRWS
AMP
FA
SSD
SSD | npn,PL,si
npn,PL,si
npn,DP,si
npn,PL
npn,PL | *162
*165
*170
*175
*175 | 16000
300
1.5W
500
500 | 200
175
200
200
200 | 91.43
2
3.42
2.85
2.85 | 80
*40
45
60
80 | 1000
40
30
50
50 | 2.23
*600
*240
*30
*30 | -
.5
0.001
.005
.005 | *25
11
*5
*6
*6 | -
18
5
18
18 | SPR, GI, AL, UC, MO
TR
TR | | HF 47 | 2N759B
2N2207
2N2459
2N2463
2N2512 | SSD
AMP
SSD
SSD | npn,PL
pnp,AD,ge
npn,PL
npn,PL
pnp,AD,ge | *175
175
*175
*175
*175
175 | 500
?60
400
500
260 | 200
75
200
200
75 | 2.85
0.25
2.3
2.85
0.25 | 60
*70
60
60
*70 | 50
50
50
50
50 | *25
200
*20
*20
*20
200 | .005
-
.002
.002
5 | *6
*6
*6 | 18
7
46
18
33 | AMP | | | 2N2515
2N2518
2N2519
2N2521
2N2605 | D22
D22
D22
D22
D22
D22 | npn,PL
npn,PL
npn,PL
npn,PL
pnp,P.L | *175
*175
*175
*175
*175
*175 | 400
400
400
400
400
400 | 200
200
200
200
200
200 | 2.3
2.3
2.3
2.3
2.3 | 60
80
80
60
45 | 50
50
50
50
50 | *30
*30
*60
*25
*150 | .005
.005
.005
.005
.010 | *6
*6
*6
*6
*6 | 46
46
46
46
46 | TI, AL, UC | | HF 48 | 2N3244
2N3253
2N1493
2N2494
2N2495 | MO
MO
RCA
AMP
AMP | pnp,ED,si
npn,AE,si
npn,si
pnp,AD,ge
pnp,AD,ge | *175
*175
*180
180
180 | 5W
5W
3W
100 | 200
200
175
85
85 | 28.6
28.6
20
1.67
1.67 | 40
*40
*100
*35
*35 | 1A
-
50
10
10 | *50-150
*25-75
15-200
70
70 | .050
.5
10
2
2 | *25
*12
*5
- | 5
5
39
7
33 | TI
NA | | | 2N2496
2N3074
2N3762
2N3764
2N588 | AMP
AMP
MO
MO
*SPR | pnp,AD,ge
pnp,PADT,ge
pnp,AE,si
pnp,AE,si
pnp,MD,ge | 180
180
*180
*180
200 | 100
140
4000
2000
30 | 85
90
200
200
85 | 1.67
3.1
22.8
11.4
0.75 | *35
25
40
40
*15 | 10
20
1500
1500
50 | 70
*14
*30 - 120
*30 - 120 | 2
10
-
3 | -
3
*15
*15
- | 18
12
5
46
1 | icex=0.1
icex=0.1
*PH ong Reg, GI | | HF 49 | 2N706/51
2N706A/51
2N706B/46
2N706B/51
2N706C/46 | SY
SY
SY
SY
SY | npn,si
npn,si
npn,PE,si
npn,si
npn,si | 200
200
*200
200
200 | 300
300
400
300
400 | 200
200
200
200
200
200 | 11111 | 15
*25
*25
*25
*15 | 50
50
50
50
50 | *20-60
*20-60
*20-60
*20-60
*20-60 | .025
0.5
0.5
0.5
.025 | 5
5
5
5
5 | 51
51
46
51
46 | TR
TR
GI, TR, NA
TR
GI, TR | | | | | | | | MA | X. RATI | NGS | | CHARA | CTERIST | ICS | | | |-----------------------|---|----------------------------------|---|--|--|--|-------------------------------------|--|--------------------------------------|---|--------------------------------------|---|-----------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Турс | fae *fT (MHz) | P (m W) | T _j
(°C) | m₩/°C | *VCEO *VCBO (V) | 1
(mA) | hfe
*hFE | ICO
*ICEO
*ICEX
(µA) | C _{oe}
*C _{ob}
(pF) | Pockage
Outline
(TO-) | R em ark s | | HF 50 | 2N706C/51
2N736B
2N740A
2N752
2N760B | Y2
D22
D22
AA
D22 | npn,si
npn,PL
npn,PL
npn,DM,si
npn,PL | 200
*200
*200
*200
*200
*200 | 300
500
500
500
500
500 | 200
200
200
200
200
200 | 2.85
2.85
2.5
2.85 | 15
60
80
45
60 | 50
50
50
100
50 | *20-60
*60
*60
40-120
*50 | .025
.005
.005
0.1
.005 | 5
*6
6
5
*6 | 51
18
18
18
18 | TR
TR
TR | | HT 3U | 2N783
2N869
2N1962
2N1963
2N2397 | SY
FA
SY
SY
SY | npn,EP,si
pnp,DP,si
npn,PE,si
npn,PE,si
npn,PE,si | 200
*200
200
*200
*200
*200 | 300
1.2W
400
400
300 | 100
200
175
175
200 | 6.86
-
-
- | *40
18
*40
*30
*35 | 200
-
200
200
200
200 | *20-80
*60
*20-80
*25
*25-120 | .025
0.005
0.25
0.25
0.1 | 3.5
*60
3.0
3.5
5 | 18
18
46
46
51 | FA
MO | | us 61 | 2N2401
2N2460
2N2464
2N2516
2N2522 | *SPR
SSD
SSD
SSD
SSD | pnp,MD,ge
npn,PL
npn,PL
npn,PL
npn,PL | *200
*200
*200
*200
*200
*200 | 150
400
500
400
400 | 100
200
200
200
200
200 | 2.0
2.3
2.85
2.3
2.3 | *15
60
60
60
60 | 100
50
50
50
50 | *50
*35
*35
*60
*50 | 1.5
.002
.002
.005 | 4
*6
*6
*6
*6 | 18
46
18
46
46 | *PH orig Reg | | HF 51 | 2N2618
2N2618/4
2N2876
2N2904
2N2904A | SY
SY
RCA
MO
MO | npn,PE,si
npn,PE,si
npn,si
pnp,AE,si
pnp,AE,si | *200
*200
*200
*200
*200
*200 | 600
400
17500
3W
3W | 175
175
200
200
200 | -
100
17.2
17.2 | *60
*60
60
40
60 | 750
750
2500
600
600 | *50-200
*50-200
50-275
*40-120
*40-120 | .25
.25
0.1
.02
.01 | 14
14
*20
*8
*8 | 5
5
-
5
5 | TRWS TI, VEC GI, TR, SPR, AL GI, TR, SPR, AL | | HF 52 | 2N2905
2N2905A
2N2906
2N2906A
2N2907 | MO
MO
MO
MO | pnp,AE,si
pnp,AE,si
pnp,AE,si
pnp,AE,si
pnp,AE,si | *200
*200
*200
*200
*200
*200 | 3W
3W
1.8W
1.8W
1.8W | *100
200
*100
200
200
200 | 200
17.2
10.3
10.3
10.3 | 40
60
40
60
40 | 600
600
600
600 | 100-300
100-300
40-120
*40-120
*100-300 | .02
.01
.02
0.01
.02 | *8
*8
*8
*8 | 5
5
18
18
18 | GI, TR, SPR, AL
GI, TR, SPR, AL
TR, SPR, AL
GI, TR, SPR, AL
GI, TR, SPR, AL | | Hr 32 |
2N2907A
2N2951
2N2952
2N3133
2N3134 | MO
MO
MO
MO | pnp,AE,si
npn,EP,si
npn,EP,si
pnp,AE,si
pnp,AE,si | *200
*200
*200
*200
*200 | 1.8W
3W
1.8W
3W
3W | 200
175
175
200
200 | 10.3
20
12
17.3
17.3 | 60
*60
*60
35
35 | 600
250
250
600
600 | *100-300
*20/150
*20/150
*40-120
*100-300 | .01
0.1
.1
.05 | *8
*8
*8
*10
*10 | 18
5
18
5
5 | GI, TR, SPR, AL
TRWS, SPR
TRWS
SPR
SPR | | 115 62 | 2N3135
2N3136
2N3229
2N3252
2N3258 | MO
MO
RCA
MO
MO | pnp,AE,si
pnp,AE,si
npn,si
npn AE,si
npn,E,si | *200
*200
*200
*200
*200
*200 | 1.8W
1.8W
17.5W
5W
1W | 200
200
200
200
200
175 | 10.3
10.3
100
28.6
6.67 | 35
35
60
*30
*25 | 600
600
2.5A
-
100 | *40-120
*100-300
-
*30-90
*60-120 | 0.05
.05
0.1
.5
0.5 | *10
*10
*20
*12
*6 | 18
18
60
5
18 | SPR
SPR
15W (min.)@ 50MHz
NA
TRWS | | HF 53 | 2N3323
2N3324
2N3325
2N3426
2N3619 | MO
MO
MO
FA
BE | pnp,EA,ge
pnp,EM,ge
pnp.EM,ge
npn,PE,si
npn,PE,si | *200
*200
*200
*200
*200
*200 | 300
300
300
3W
7.5W | 100
100
100
200
175 | 4
4
4
17.2
50 | *35
*35
*35
12
*75 | 100
100
100
1A
2.5A | *30-200
*30-200
*30-200
*50
*40 | 10
10
10
1.5
25 | *3
*3
*6.2
*50 | 18
18
18
-
5 | | | | 2N3621
2N3622
2N3620
2N3623
2N3624 | BE
BE
BE
BE
BE | npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si | 200
200
200
200
200
200 | 15W
15W
7.5W
7.5W
7.5W | 175
175
175
175
175
175 | 200
200
50
50
50 | *75
*75
*75
*75
*75
*75 | 5A
10A
5A
25
5A | *40
*40
*40
*40
*40 | 25
25
25
1 | *50
*50
*50
*50
*50 | 61
61
†
5 | Isolated Collector
+ MT-27
+ MT-27 | | HF 54 | 2N 3625
2N 3626
2N 3627
2N 3628
2N 3629 | BE
BE
BE
BE
BE | npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si | 200
200
200
200
200
200 | 15W
15W
7.5W
7.5W
20W | 175
175
175
175
175
175 | 200
200
50
50
200 | *75
*75
*100
*100
*100 | 5A
10A
2.5A
5A
10A | *40
*40
*40
*40
*40 | 25
1
1
1
1 | *50
*50
*50
*50
*50 | 61
61
5
† | + MT-27
isolated collector | | uc ec | 2N3630
2N3691
2N3692
2N3693
2N3694 | BE
FA
FA
FA | npn,PE,si
npn,PL,si
npn,PL,si
npn,DP,si
npn,DP,si | 200
*200
*200
200
200 | 20W
625
625
500
500 | 175
150
150
125
125 | 200
2
2
5
5 | *100
*35
*35
45
45 | 10A
50
50
- | *40
*40-160
*100-400
*40
*100 | 1
.05
.05
5 | *50
.5-3.5
.5-35
- | 61
-
-
-
- | R097A package, CDC
R097A package, CDC
R0110 package
R0110 package | | HF 55 | 2N 3701
2N 3766
2N 4125
A 415
A1590 | FA
FA
MO
AMP
AMP | npn,DPE,si
npn,DPE,si
pnp,AE,si
npn,PL,si
npn,si | 200
200
*200
*200
200 | 1.8 W
1.8 W
310
165
165 | 200
200
135
175
175 | 10.3
10.3
2.81
1.1
1.1 | 80
80
30
*50
*50 | 1000
1000
200
30
30 | *120
*300
*50-150
*125
*125 | 10
10
.05
.010 | -
-
*4.5
-
- | 18
18
92
72
72 | Cre=0.55 pf.
Cre=0.55 pf. | | חב ני | FT4017
FT4018
MPS706
MPS2923
MPS2924 | FA
FA
MO
MO
MO | pnp,DPE,si
pnp,DPE,si
npn,EP,si
npn,EP,si
npn,EP,si | *200
*200
*200
*200
*200 | 1.1 W
1.1 W
500
200
200 | 200
200
125
100
100 | .0062
.0062
5
2.67
2.67 | 80
60
•25
25
25 | 200
200
-
100
100 | *100-500
*100-600
*20
235-470
150-300 | .010
.010
0.5
0.5
0.5 | -
*6
*12
*12 | -
92
92
92
92 | Dual pnp
Dual pnp | | HF 56 | MPS2925
SFT445
TN-81
UD-3005
UD-3006 | MO
NUC
SPR
SPR
SPR | npn,EP,si
npn,si
npn,PE,si
npn,PE,si
pnp,PE,si | *200
*200
200
200
200 | 200
3
800
350
350 | 100
-
200
200
200
200 | 2.67
-
4.57
- | 25
*80
20
*60
*60 | 100
-
800
600
600 | 90-180
*10
*50
*100-300
*100-300 | 0.5
1
0.1
0.010
0.010 | *12
8
*8
*8
*8 | 92
5
5
85
85 | npn Quad
pnp Quad | # Who could build a better silicon power transistor than our DTS-423? # We could. Meet DTS-431. | PARAMETER | MAXIMUM | TYPICAL | MINIMUM | |---|---------|---------|---------| | V _{CEO} | 400V | | | | V _{CBO} | 400V | | | | V _{CEO} (sus) | | 370 | 325 | | lc | 5A | | | | IB | 2.0A | | | | Junction
Temperature | 150° C | | – 65° C | | h _{FE}
(1 _C =2.5A V _{CE} =5V) | 35 | | 15 | | h_{fE} (1c=3.5A $V_{CE}=5V$) | | | 10 | TYPICAL SWITCHING TIMES: Rise time —0.40 Microseconds Storage time—0.45 Microseconds Fall time —0.35 Microseconds Introducing the DTS-431, the newest addition to Delco Radio's line of high voltage silicon power transistors. It offers you a number of distinct design advantages over the DTS-423, including an even higher current capability. What's more, the DTS-431 permits you to design with complete freedom within the rated specifications, for its safe operating data is not based on mere probability. Sustaining voltage (VCEO SUS) tests are performed on every DTS-431 we make. Not just a sample. Every one. Why not get all the facts from your nearest Delco Radio sales office or distributor? # **DELCO RADIO** DIVISION OF GENERAL MOTORS, KOKOMO, INDIANA FIELD SALES OFFICES UNION, NEW JERSEY* Box 1018 Chestnut Station (201) 687-3770 1054 J CHICAGO, ILLINOIS* 5151 N. Harlem Avenue (312) 775-5411 726 S2 *Office includes field lab and resident engineer for application assistance. SYRACUSE, NEW YORK 1054 James Street (315) 472-2668 SANTA MONICA, CALIF.* 726 Santa Monica Blvd. (213) 870-8807 ON READER-SERVICE CARD CIRCLE 15 DETROIT, MICHIGAN 57 Harper Avenue (313) 873-6500 GENERAL SALES OFFICE: 700 E. Firmin Kokomo, Ind. (317) 457-8461—Ext. 2175 | | | | | | | M | AX. RATI | NGS | | CHARA | CTERISTI | CS | | | |-----------------------|--|----------------------------------|---|---|--------------------------------------|--|--------------------------------------|---------------------------------------|-----------------------------------|--|---|---|-----------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*fT
(MHz) | P (mW) | T _j (°C) | mW/°C | *VCEO *VCBO (V) | 1
(mA) | hfe
*hFE | ICO
*ICEO
†ICEX
(μΑ) | C _{oe}
*C _{ob}
(pF) | Package
Outline
(TO-) | Remarks | | HF 57 | UD-3007
WS154
AF 106
2N2461
2N2465 | SPR
WH
SA
SSD
SSD | npn, pnp, PE,si
-
pnp,MS,ge
npn,PL
npn,PL | 200
*200
220
*225
*225 | 350
-
60
400
500 | 200
-
90
200
200 | -
2.5
2.3
2.85 | *60
-
18
60
60 | 600
-
10
50
50 | *100-300
30
*50
*70
*70 | 0.010
-
0.5
.002
.002 | *8
-
-
*6
*6 | 85
-
18
46
18 | Complementary Quad
Quad | | nr 3/ | 2N996
2N499
2N499A
2N3588
2N929A | FA
•SPR
•SPR
AMP
SSD | pnp,PE,si
pnp,MD,ge
pnp,MD,ge
pnp,PADT,ge
npn,PL | *230
240
240
*240
*250 | 1.2W
30
60
100
500 | 200
85
100
75
200 | 6.85
0.75
0.8
2.2
2.85 | 12
*30
*30
*25
45 | -
50
50
10
50 | *75
8.5
50
*65
*60 | 0.0002
1
1
8
.002 | *7.5
*1.3
*1.3
2
*6 | 18
1
1
18
18 | TR *PH orig Reg, GI *PH orig Reg 4 lead AMP, TR, AL, UC | | | 2N947
2N957
2N1491
2N2217 | FA
FA
RCA
MO | npn,DP,si
npn,DD,si
npn,si
npn,PE,si | *250
*250
*250
*250
*250 | 1200
800
3000
3W | 200
150
175
175 | 6.9
6.5
20
20 | *20
20
*30
30 | 100
-
50
- | *40
*60
15-200
*20-60 | 0.1
1
10
0.01 | *7
*5
*5
8 | 18
18
39
5 | TRWS, AMP GI, FA, SPR, TR, NA, TRWS. AMP. AL | | HF 58 | 2N2218
2N2218A
2N3292
2N3293 | MO
MO
MO | npn,PE,si
npn,AE,si
npn,E,si
npn,E,si | *250
*250
*250
*250
*250 | 3W
3W
300
300 | 175
175
200
200 | 20
20
1.71
1.71 | 30
40
•25
•20 | -
50
50 | *40-120
40-120
10-200
10-200 | 0.01
.01
0.1
0.1 | 8
*8
*2
*2 | 5
5
18
18 | GI, FA, SPR, TR, NA, TRWS,
AL, AMP
SPR, TR, NA, AL
AL
AL | | | 2N3294
2N3326
2N3409
2N3410
2N3411 | MO
GI
MO
MO | npn,E,si
npn,PE,si
npn,si
npn,PE,si
npn,PE,si | *250
*250
250
250
250
250 | 300
800
600
600
600 | 200
175
200
200
200 | 1.71
5.33
3.4
3.4
3.4 | *20
45
*60
*60
*60 | 50
800
500
500
500 | 10-200
*40-120
*30-120
*30-120
*30-120 | 0.1
0.01
0.01
0.01
0.01 | *2
*8
*8
*8 | 18
5
5
5
5 | AL
SPR
SPR
SPR | | HF 59 | 2N3502
2N2219
2N2220 | FA
MO
MO |
pnp,PE,si
npn,PE,si
npn,PE,si | *250
*250
*250 | 3W
3W | 200
175
175 | 17.2
20 | 60
30
30 | 600
-
- | *70
*100-300
*20-60 | 0.00005
0.01
0.01 | 4.5
8 | 5
5
18 | TI
GI, FA, SPR, TR, NA, TRWS,
AL, AMP
GI, FA, SPR, TR, NA, TRWS,
AMP, AL | | | 2N2221
2N2221A
2N2222 | MO
MO
MO | npn,AE,si
npn,AE,si
npn,AE,si | *250
*250
*250 | 1.8W
1.8W
1.8W | 175
175
175 | 12
12
12 | 30
40
30 | | *40-120
40-120
*100 - 300 | 0,01
.01
0.01 | 8
*8
8 | 18
18
18 | GI, FA, SPR, TR, NA, TRWS,
AMP, AL
GI, SPR, TR, NA, AL
TRWS, GI, FA, SPR, TR, NA,
AL, AMP | | HF 60 | 2N2273
2N2402
2N2462
2N2466
2N2476 | MO
*SPR
SSD
SSD
RCA | pnp,EM,ge
pnp,MD,ge
npn,PL
npn,PL
npn,PE,si | *250
*250
*250
*250
*250
250 | 150
150
400
500
2W | 100
100
200
200
200
200 | 2
2
2.3
2.85
3.4 | 15
*18
60
60
*60 | 100
100
50
50 | *20-75
*60
*100
*100
*20 | 10
1.5
.002
.002
0.2 | *3.5
*4
*6
*6 | 18
18
46
18
5 | *PH orig Reg | | | 2N2477
2N2523
2N2537
2N2538
2N2539 | RCA
SSD
MO
MO
MO | npn,PE,si
npn,PL
npn,AE,si
npn,AE,si
npn,AE,si | 250
*250
*250
*250
*250
*250 | 2W
400
3W
3W
1.8W | 200
200
200
200
200
200 | 3.4
2.3
17.2
17.2
10.3 | *60
45
30
30
30 | . 50
-
-
- | *40
*40
*50-150
*100-300
*501.50 | 0.2
.002
.25
.25
.25 | 10
*6
*8
*8 | 5
46
5
5 | SPR
GI, NA, SPR
GI, NA, SPR
GI, NA, SPR | | HF 61 | 2N2540
2N2787
2N2788
2N2789
2N2790 | MO
GI
GI
GI | npn,AE,si
npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si | *250
*250
*250
*250
*250
*250 | 1.8W
3W
3W
3W
1.8W | 200
300
300
300
300
300 | 10.3
5.33
5.33
5.33
3.33 | 30
*75
*75
*75
*75
*75 | 800
800
800
800 | *100/300
*20-60
*40-120
*100-300
*20-60 | .25
0.01
0.01
0.01
0.01 | *8
*8
*8
*8 | 18
5
5
5
18 | GI, NA, SPR
SPR
SPR
SPR
SPR
SPR | | | 2N2791
2N2792
2N2958
2N2959
2N3015 | GI
GI
MO
MO
FA | npn,PE,si
npn,PE,si
npn,AE,si
npn,AE,si
npn,PE,si | *250
*250
*250
*250
*250
*250 | 1.8W
1.8W
3W
3W
3W | 300
300
175
175
200 | 3.33
3.33
20
20 | *75
*75
20
20
*60 | 800
800
600
600 | *40-120
*100-300
*40-120
*100-300
*10 | 0.01
0.01
.025
.025 | *8
*8
*8
*8 | 18
18
5
5 | SPR
SPR
GI, SPR, TRWS
GI, SPR, TRWS
SPR | | HF 62 | 2N3115
2N3116
2N3118
2N3119
2N3248 | MO
MO
RCA
RCA
MO | npn,AE,si
npn,AE,si
npn,si
npn,si
pnp,ED,si | *250
*250
*250
*250
*250
*250 | 1.8W
1.8W
4000
4000
1.2W | 175
175
200
200
200 | 12
12
22.9
22.9
6.9 | 20
20
60
80
12 | 600
600
500
500 | *40-120
*100-300
*50-275
*50-200
*50-150 | .025
.025
.1
50
0.05 | *8
*6
*6
*8 | 18
18
5
5
18 | GI, SPR, TRWS
GI, SPR, TRWS | | WE 62 | 2N3250
2N3283
2N3284
2N3285
2N3286 | MO
MO
MO
MO | pnp,ED,si
pnp,EM,ge
pnp,EM,ge
pnp,EM,ge
pnp,EA,ge | *250
*250
*250
*250
*250
*250 | 1.2W
100
100
100
100 | 200
100
100
100
100 | 6.9
1.33
1.33
1.33
1.33 | *40
*25
*25
*20
*20 | 200
50
50
50
50
50 | *50-150
*10-200
10-200
5-200
5-200 | .02
10
10
10
10 | *6
*1.5
*1.5
*1.5
*1.5 | 18
18
18
18
18 | | | HF 63 | 2N3291
2N3503
2N3504
2N3505
2N2656 | MO
FA
FA
FA
TRWS | npn,E, si
pnp,PE,si
pnp,PE,si
pnp,PE,si
npn,PL,si | *250
*250
*250
*250
*250
*>250 | 300
3W
1.3W
1.3W
1200 | 200
200
200
200
200
200 | 1.71
17.2
2.28
2.28
6.86 | *25
60
45
45
•25 | 50
600
600
600
200 | 10-200
*70
*70
*70
*70
160 | 0.1
0.00007
0.00005
0.00005
0.5 | *2
4.5
*4.5
*4.5
*5 | 18
5
18
18
18 | AL
TI
TI
TI
KSC | | | | | | | | MA | X. RATI | NGS | | CHARA | CTERISTI | CS | | | |-----------------------|---|---------------------------------|--|--|---|--|--------------------------------------|---------------------------------|--|--|--|---------------------------------------|-----------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*f _T
(MHz) | P
c
(mW) | T _j
(°C) | m₩/°C | *VCEO
*VCBO
(V) | I C (mA) | h _{fe}
*h _{FE} | ICO
*ICEO
*ICEX
(uA) | C _{ae} *C _{ob} (pF) | Package
Outline
(TO-) | Remarks | | HF 64 | 2N3734
2N3735
2N3736
2N3737
2N3903 | MO
MO
MO
MO | npn,AE,si
npn,AE,si
npn,AE,si
npn,AE,si
npn,AE,si | *250
*250
*250
*250
*250
*250 | 4000
4000
2000
2000
310 | 200
200
200
200
200
135 | 22.8
22.8
11.4
11.4
2.81 | 30
50
30
50
40 | 1500
1500
1500
1500
200 | *30-120
*20-80
*30-120
*20-80
*50-150 | †0.2
†0.2
†0.2
†0.2
†0.2
†.05 | *9
*9
*9
*9 | 5
5
46
46
92 | | | H1 04 | 2N3905
2N3946
2N4123
2N4126
2N930A | MO
MO
MO
SSD | pnp,AE,si
npn,AE,si
npn,AE,si
pnp,AE,si
npn,PL | *250
*250
*250
*250
*275 | 310
1200
310
310
500 | 135
200
135
135
200 | 2.81
6.9
2.81
2.81
2.85 | 40
40
30
25
45 | 200
200
200
200
200
50 | *50-150
*50-150
*50-150
*120-360
*150 | †.05
†.01
.05
.05
.002 | *4.5
*4
*4
*4.5
*6 | 92
18
92
92
18 | AMP, AL | | HF 65 | 2N1492
2N2524
AF 109
FT4019
2N784 | RCA
SSD
SA
FA
SY | npn,si
npn,PL
pnp,MS,ge
pnp,DPE,si
cpn,EP,si | *275
*275
280
*280
300 | 3000
400
60
1,1 W
300 | 175
200
90
200
175 | 20
2.3
2.5
.0062 | *60
45
18
45
*30 | 50
50
12
200
200 | 15-200
*100
*100
*250-600
*25-150 | 10
.002
1.0
.010
.25 | *5
*6
-
-
3.5 | 39
46
18
-
18 | agc pre-stages
Dual pnp
FA | | NF 63 | 2N784/51
2N784A
2N835
2N835 46
2N835/51 | YZ
Y
MO
SY
SY | npn,EP,si
npn,EP,si
npn,EP,si
npn,PE,si
npn,PE,si | 300
300
*300
*300
*300 | 300
360
1W
400
300 | 175
200
175
200
200 | -
6,67
- | *30
*40
*25
*25
*25 | 200
200
200
200
200
200 | *25-150
*25-150
201-
*20
*20 | .025
.025
0.5
0.5
0.5 | 3.5
3.5
4
*4
*4 | 51
18
18
46
51 | SY, GE, GI, ITT, SPR
GI | | 115.00 | 2N914/46
2N914/51
2N915
2N963
2N967 | SY
SY
FA
MO
MO | npn,PE,si
npn,PE,si
npn,DP,si
pnp,EM,ge
pnp,EM,ge | *300
*300
*300
*300
*300 | 400
300
1200
300
300 | 200
200
200
100
100 | -
6.9
4
4 | *40
*40
50
*12
*12 | | *30-120
*30-120
*100
*20/-
40/- | .025
.025
0.005
5 | *6
6
*3
*5
*5 | 46
51
18
18
18 | GI
AMP, NA, AL
SY, TI, RCA
SY, TI, RCA | | HF 66 | 2N9BB
2N9B9
2N1493
2N2219A
2N2222A | TRWS
TRWS
RCA
MO
MO | npn,PL,si
npn,PL,si
npn,si
npn,PE,si
npn,AE,si | *300
*300
*300
*300
*300 | 1000
1000
3000
3W
1,8W | 175
175
175
175
175
175 | 6.67
6.67
20
20
12 | *20
*20
*100
40
40 | 220
220
50
800 | *20-120
*20-120
15-200
100-300
*100-300 | 0.5
0.5
10
0.01
.01 | *4
*3.5
*5
*8
*8 | 18
18
39
5
18 | CT
TR, SPR, TRWS
GI, SPR, TR, NA, TRWS | | | 2N2318
2N2319
2N2320
2N2381
2N2382 | GI
GI
MO
MO | npn,si
npn,si
npn,si
pnp,EM,ge
pnp,EM,ge | *300
*300
*300
*300
*300 | 360
300
600
750
750 | 175
175
175
100
100 | 2.0
1.7
3.4
10
10 | 15
15
15
15
20 | -
-
500
500 | *40
*40
*40
*40
*40 | .050
.050
.050
1 | *5
*5
*5
*3.5
*3.5 | 18
46
5
5 | STC
STC
STC | | HF 67 | 2N2489
2N2795
2N2796
2N2885
2N2887 | SPR
SPR
SPR
TR
TRWS | pnp,ED,ge
pnp,ED,ge
pnp,ED,ge
npn,PL,si
npn,PL,si | *300
*300
*300
300
*300 | 60
75
75
150
25000 | 100
100
100
175
200 | 0.8
1
1
1
1
142.8 | *20
*25
*20
15
80 | 100
100
100
50
1200 | *20
*100
*60
*30-120
*15-80 | 2.5
-
-
.025
- | 3
*2.5
*2.5
*6
*30 | 18
18
18
51 | | | HF 68 | 2N3043
2N3249
2N3251
2N3281
2N3282 | SPR
MO
MO
MO
MO | npn,PE,si
pnp,AE,si
pnp,AE,si
pnp,EM,ge
pnp,EM,ge | *300
*300
*300
*300
*300 | 1.4W
1.2W
1.2W
100
100 | 200
200
200
100
100 | 9.33
6.9
6.9
1.33
1.33 | 45
12
*50
15
15 | 30
-
200
50
50 | *100-300
*100-300
*100-300
*10-100
*10-100 | 0.01
-
-
5
5 | *8
*8
*6
*1.2
*1.2 |
18
18
18
18 | Flat Pack | | Mr 68 | 2N3289
2N3290
2N3307
2N3308
2N3309 | MO
MO
MO
MO | npn,E,si
npn,E,si
pnp,EA,si
npn,EA,si
npn,E,si | *300
*300
*300
*300
*300 | 300
300
300
300
300
3_5W | 200
200
200
200
200
175 | 1.71
1.71
1.71
1.71
23.3 | 15
15
35
25
*50 | 50
50
50
50
50
500 | *10-200
*10-200
*40-250
*25-250
*5-100 | 0.010
0.010
0.010
0.010
0.5 | *1.5
*1.5
*1.3
*1.3
*10 | 18
18
18
18
5 | AL
AL | | | 2N3854
2N3854A
2N3904
2N3906
2N3947 | GE
GE
MO
MO
MO | npn,PE,si
npn,PEP,si
npn,AE,si
pnp,AE,si
npn,AE,si | *300
*300
*300
*300
*300 | 200
200
310
310
1200 | 100
100
135
135
200 | 2.67
2.67
2.81
2.81
6.9 | 18
30
40
40
40 | 100
100
200
200
200 | *35-70
*35-70
*100-300
*100-300
*100-300 | 0.5
0.5
*.05
*.05
*.01 | *2.5
*2.5
*4
*4.5
*4 | 98
98
92
92
18 | | | HF 69 | 2N4124
2N4264
2N4265
40292
A467 | MO
MO
MO
RCA
AMP | npn,AE,si
npn,AE,si
npn,AE,si
npn,si
npn,PL,si | *300
*300
*300
*300
*300 | 310
310
310
23.2W
150 | 135
135
135
200
175 | 2.81
2.81
2.81
132
1.0 | 25
15
12
-
•40 | 200
200
200
1.25A
25 | *120-360
*40 - 160
*100 - 400
-
*60 | .05
†0.1
†0.1
•250
.001 | *4
*4
*4
*30 | 92
92
92
60
72 | Vces=90; overlay type
Cre=.015 pf | | | ED-322
MM709
T1408
T1409
2N503 | SPR
MO
TI
TI
*SPR | pnp,ge
npn,AE,si
npn,PL,si
npn,PL,si
pnp,MD,ge | *300
*300
*300
*300
320 | 75
750
200
200
25 | 100
200
125
125
85 | 1.0
4.3
2
2
0.5 | 15
8
12
12
*20 | 100
100
30
30
50 | *50
*15-120
*15
*15
4.2 | -
.015
0.5
0.5
3 | *3
*3
2.2
2.2
2 | 18
52
-
-
9 | Hi Rel 2N2795
Plast IEC, GME
Plast IEC, GME
*PH orig. Reg. | | HF 70 | 2N779A
2N846A
2N968
2N969
2N970 | *SPR
*SPR
MO
MO
MO | pnp,MD.ge
pnp,MD.ge
pnp,MD.ge
pnp,MD.ge
pnp,MD.ge | *320
*320
*320
*320
*320 | 60
60
300
300
300 | 100
100
100
100
100 | 0.8
0.8
4
4 | *15
*15
*15
*12
*12 | 100
100
-
-
- | *90
*50
*35
*35
*35 | 1.0
1.0
3
3 | *1.9
*1.9
*4
*4
*4 | 18
18
18
18 | *PH orig Reg
*PH, orig, Reg
SY, TI
TI | | | | | | | | M | AX. RATI | NGS | | CHAR | ACTERIST | ics | | | |-----------------------|--|------------------------------|--|--------------------------------------|--|--|--------------------------------------|--------------------------------|---------------------------------|--|---|---|---------------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae *fT (MHz) | P
(mW) | T _j (°C) | m₩/°C | VCEO
*VCBO
(V) | I _C (mA) | hfe
*hFE | lCO
*ICEO
†ICEX
(µA) | C _{oe}
*C _{ob}
(pF) | Package
Outline
(TO-) | Remarks | | UE 21 | 2N971
2N972
2N973
2N974
2N975 | MO
MO
MO
MO
MO | pnp,MD,ge
pnp,MD,ge
pnp,MD,ge
pnp,MD,ge
pnp,MD,ge | *320
*320
*320
*320
*320 | 300
300
300
300
300
300 | 100
100
100
100
100 | 4
4
4
4 | *7
*15
*12
*12
*7 | 1111 | *35
*75
*75
*75
*75 | 10
3
3
3
10 | *4
*4
*4
*4
*4 | 18
18
18
18
18 | TI
TI
TI
TI | | HF 71 | 2N2256
2N2257
2N2258
2N2259
2N834/46 | MO
MO
MO
SY | npn,ME,si
npn,ME,si
pnp,ME,ge
pnp,ME,ge
npn,EP,si | *320
*320
*320
*320
*350 | 1000
1000
300
390
400 | 175
175
100
100
200 | 6.67
6.67
4
4 | 7
7
7
7
*40 | 100
100
100
100
200 | *30
*50
*30
*50
*25 | 3
3
3
3
0.5 | *4
*4
*4
*4 | 18
18
18
18
46 | CL
CL
GI, NA | | | 2N834/51
2N914 | SY
FA | npn,EP,si
npn,PE,si | *350
*350 | 300
1.2W | 200
200 | -
6,9 | •40
15 | 200 | *25
*55 | 0.5
0.004 | 4
•4.5 | 51
18 | SY, MP, TR, GI, AMP, SPR, NUC, | | | 2N984
2N2170 | SPR
SPR | pnp,MD,ge
pnp,MD,ge | *350
*350 | 60
60 | 100
100 | 0.8
0.8 | *15
*15 | 100
100 | *70
*70 | 1 | *1.9
*1.9 | 18
9 | MU | | HF 72 | 2N2501
2N2845
2N2846
2N2847
2N2848 | MO
FA
FA
FA
FA | npn,AE,si
npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si | *350
*350
*350
*350
*350 | 1.2W
1.2W
3W
1.2W
3W | 200
200
200
200
200
200 | 6.9
6.9
17.2
6.9
17.2 | 20
30
30
20
20 | 11111 | *50-150
*60
*60
*60
*60 | -
0.04
0.04
0.04
0.04 | *4
*6
*6
*6
*6 | 18
18
5
18
5 | SY, GI, TR, SPR
SPR, NA
SPR, NA
SPR, NA
SPR, NA, RCA, NUC | | | 2N2894
2N2955
2N3009 | FA
MO
FA | pnp,PE,si
pnp,EM,ge
npn,PE,si | *350
*350
*350 | 1.2W
300
1200 | 200
100
200 | 6.85
4
6.85 | 12
*40
*40 | -
100
200 | *75
*20/60
*15 | 5
-
- | *3.3
*2.5
*5 | 18
18
52 | ŢΙ | | HF 73 | 2N3287
2N3288
2N3855
2N3855A
40282 | MO
MO
GE
GE
RCA | npn,E,si
npn,E,si
npn,PE,si
npn,PEP,si
npn,si | *350
*350
*350
*350
*350 | 300
300
200
200
23,2W | 200
200
100
100
200 | 1.71
1.71
2.67
2.67
015 | 20
20
18
30
18 | 50
50
100
100
2a | *15-150
*15-150
*60-120
*60-120 | 0.010
0.010
0.5
0.5
* 250 | *1.1
*1.5
*2.5
*2.5
*45 | 18
18
98
98
98 | | | | MPS834
2N741
2N741A
2N2487
2N2488 | MO
MO
MO
SPR
SPR | npn,EP,si
pnp,DM,ge
pnp,DM,ge
pnp,ED,ge
pnp,ED,ge | *350
*360
*360
*360
*360 | 500
300
300
60
60 | 125
100
100
100
100 | 5
2
2
0.8
0.8 | 30
*15
*20
*15
*15 | 200
100
100
100
100 | *25
*25
*25
*20
*20 | 0.5
.2
.2
.2
3 | *6
*6
*3
3 | 92
18
18
18 | SY. TI
SY. TI | | HF 74 | 2N2956
2N3856A
2N3856
2N706
2N706B | MO
GE
GE
FA
MO | pnp,EM,ge
npn,PEP,si
npn,PE,si
npn,DD,si
npn,EP,si | *375
*375
*375
*400
*400 | 300
200
200
1.0W
1W | 100
100
100
175
175 | 2.67
2.67
6.7
6-7 | *40
30
18
*25
*25 | 100
100
100
- | *40-120
*100-200
*100-200
*45
*20-60 | 10
0.5
0.5
0.005
0.005 | *2.5
*2.5
*2.5
*5
*5 | 18
98
98
18
18 | SY, MO, TR, GI, AMP, SPR, ITT
FA, SY, GI, TR, ITT | | | 2N706C
2N707
2N708
2N828
2N828A | FA
FA
MO
MO | npn,DD,si
npn,DD,si
npn,DP,si
pnp,EM,ge
pnp,EM,ge | *400
400
*400
*400
*400 | 1.2W
1.0W
1.2W
300
300 | 200
175
200
100
100 | 6.9
6.7
6.9
.4 | 15
*56
15
*15
*15 | 50
-
-
200
200 | *40
*12
*50
40
*40 | 0.010
0.005
0.004
.4
0.4 | *4
*5
*4
*3.5
*2.2 | 18
18
18
18
18 | GI, TR
TRWS, MO. GI
FA, SY, MO. TR, GI, AMP. RCA
SY, TI, RCA, LAN
TI | | HF 75 | 2N829
2N916
2N2096
2N2097
2N2099 | MO
FA | pnp,EM,ge
npn,DP,si
pnp,ED,ge
pnp,ED,ge
pnp,ED,ge | *400
*400
*400
*400
*400 | 300
1200
750
750
750 | 100
200
100
100
100 | 6.9
10
10 | *15
25
*25
*40
*25 | 200
-
500
500
500 | *80
*100
*40
*70
*40 | 0.4
0.005
6
6
6 | *2.2
*5
*15
*15
*15 | 18
18
31
31
9 | TI
TRWS, AMP, NA, MO
MO
MO
MO
MO | | | 2N2100
2N2957
2N2996
2N2997
2N3279 | MO
TI
TI
MO | pnp,ED,ge
pnp,EM,ge
pnp,ge
pnp,ge
pnp,EM,ge | *400
*400
*400
*400
*400 | 750
300
75
75
100 | 100
100
100
100
100 | 10
4
1
1
1.33 | *40
*40
*15
*30
20 | 500
100
50
50
50 | *70
*100
35
50
*10-70 | 6
-
5
5
5 | *15
*2.5
*3
*1.8
*1.0 | 9
18
72
72
72
18 | МО | | HF 76 | 2N3280
2N3299
2N3300
2N3301
2N3302 | MO
FA
FA
FA | pnp,EM,ge
npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si | *400
*400
*400
*400
*400 | 100
3W
3W
1.8W | 100
200
200
200
200
200 | 1.33
17.2
17.2
10.3
10.3 | 20
30
30
30
30 | 50
-
-
-
- | *10-70
*75
*220
•75
*220 | 5
0.0002
0.0002
0.0002
0.0002 | *1.2
*6.0
*6.0
*6.0
*6.0 | 18
5
5
18
18 | | | UE 23 | 2N3327
2N3337
2N3338
2N3339
2N3371 | NSC
FA
FA
FA
TI | npn
npn,PE,si
npn,PE,si
npn,PE,si
pnp,ge | 400
*400
*400
*400
*400 | 20W
500
500
500
150 | 200
200
200
200
200
100 | 134
2.86
2.86
2.86
2 | 65
40
40
40
*25 | 2.0a
-
-
-
100 | *10
*30
*30
*30
*30
25-500 | 500mA
0.025
0.025
0.025
7 | *30
*1.6
*1.6
*1.6
*4 | 60 | | | HF 77 | 2N3632
2N3688 | RCA
FA | npn,si | *400 | 23W
500 | 200 | 130 | 40
40 | 3A | -
30-70 | 250
5 | *20 | 60 | RCA "Overlay" emitter
type,
MO, VEC
RO110 package | | | 2N3689
2N3690 | FA
FA | npn,PL,si
npn,PL,si
npn,PL,si | 400
400
400 | 500
500
500 | 125
125
125 | 5
5
5 | 40
40
40 | 4 4 4 | 30-70
30-70 | 5
5 | 1.1
1.1
1.1 | - | RO110 package RO110 package RO110 package | # GENERAL INSTRUMENT SEMICONDUCTORS CONDENSED CATALOG / 1966 ### INTRODUCTION #### From the simplest diode . . . #### to the most complex Microelectronics array ... That, in a few words, is an apt description of General Instrument's Semiconductor line. But it is by no means complete, because this line is characterized by several far-reaching technical developments which have had a profound effect on many segments of the electronic industry. Two such developments are depicted on the cover of this publication: The enormously complex MOS array, for example, represents previously unimagined opportunity for the computer manufacturer. The idea of an entire computer on a single 80-by 58 mil chip is already entirely feasible. You'll find MOS arrays and field effect transistors listed on Page 4. And, at the other end of the semiconductor spectrum, the simple diode has undergone an amazing evolution. The recent General Instrument announcement of the HERCULEADST.M. Beam-Lead Diode (listed on Page 10) has ushered in a new era in processing discrete semiconductors. No bigger in its entirety than a typewriter period (it takes 4 million to make a pound), the HERCULEADS diode is practically indestructible — it can withstand impact shocks of 200,000 G's; is immune to the metallurgical "diseases" that plague conventional devices; and is completely "passivated" in the production process, so that it needs no hermetically sealed container to protect it from environmental effects. These are just two of many technical achievements you'll find incorporated in General Instrument's semiconductor line. Glass-Amp® Rectifiers and Zener Diodes; Hybrid Micro-circuits; a new line of low-cost epoxypackaged silicon transistors — they're all listed on the following pages in an easy-to-use format. Also, you'll find the numerical index beginning on Page 22 an additional convenience. And it goes without saying, of course, that service from any of the General Instrument sales offices or authorized distributors throughout the country is no further away than your telephone. # CONTENTS | SECTION | | PAGE | |---------|--|--| | 1 | INTRODUCTION | 2 | | 2 | PRODUCTS MOS SEMICONDUCTORS MOS MICROCIRCUIT ARRAYS MOS FIELD EFFECT TRANSISTORS HYBRID MICROCIRCUITS HIGH SPEED DIGITAL MICROCIRCUITS MULTICHIP ANALOG CIRCUITS SILICON RECTIFIERS Glass-Amp® SILICON RECTIFIERS SILICON RECTIFIERS & DIODES SILICON DIODES HERCULEADS™ BEAM-LEAD DIODES ZENER VOLTAGE REGULATOR DIODES GERMANIUM TRANSISTORS SILICON TRANSISTORS EPOXY ENCAPSULATED SILICON TRANSISTORS GERMANIUM DIODES GERMANIUM DIODES SOLID STATE ASSEMBLIES SELENIUM RECTIFIER ASSEMBLIES | 4
4
5
5
6
7
8
9
10
11
13
14
15
16
18
20 | | з | NUMERICAL INDEX | 22 | | 4 | CASE DRAWINGS | 24 | | | SALES OFFICES | | AND AUTHORIZED **DISTRIBUTORS** 5 26 # MOS SEMICONDUCTORS #### MOS MICROCIRCUIT ARRAYS (TA = -55°C to +85°C) | TYPE | FUNCTION | CASE | FUNCTION
DIAGRAM
FIG. NO. | POWER
CONSUMPTION
(mW) | SUPPLY
VOLTAGE
(VOLTS) | SHIFT PULSE
FREQUENCY
(kHz) | INPUT
CAPACITANCE
(pf) | OUTPUT
IMPEDANCE
(KΩ) | |---|--|-------------|---------------------------------|------------------------------|------------------------------|---------------------------------------|------------------------------|-------------------------------------| | SHIFT REGI | STER, FLIP-FLOP CIRCU | JITS | | | | | | | | ¹ MEM 3021
² MEM 3020
³ MEM 1005 | 21-Bit dc, 1ϕ clock
20-Bit Dynamic, 2ϕ clock
RST Flip-Flop | 1
1
1 | 1
2
3 | <200
<200
< 80 | 28 ±5%
26 ±5%
28 ±5% | dc to 500
dc to 1 Mc
dc to 1 Mc | 2
2
2 | <2
<2
{ 2 @ "0"
{ 10 @ "1" | ¹ Formerly MEM 501. ² Formerly MEM 521. ³ Formerly MEM 529. | LOGIC CIR | CUITS | | | | | PROPAGATION
DELAY
(nsec) | CAPACITANCE (pf) | FREQUENCY
(kHz) | |----------------------|-----------------------|-----|---|----|--------------|--------------------------------|------------------|--------------------| | ¹ MEM1002 | Dual 3-Input NOR-Gate | 1 7 | 4 | 30 | -26 ±5% | 500 | 3.0 | dc to 500 | | MEM 1000 | Dual Full Adder | | 5 | 25 | -12 & 26 ±5% | 500 | 3.0 | dc to 500 | Formerly MEM 522. | SERIES SH | UNT CHOPPER | | OFFSET
VOLTAGE | CLOCK ϕ | FRE-
QUENCY
(kHz) | SERIES SHUNT
RESISTANCE
RESISTANCE
RATIO (TYP) | ON RESISTANCE PER UNIT (SERIES OR SHUNT) (12 TYP) | OFF RESISTANCE PER UNIT (SERIES OR SHUNT) (\Omega TYP) | SIGNAL VOLTAGE
HANDLING
RANGE
(TYP) | |-----------|---|---|-------------------|--------------|-------------------------|---|---|--|--| | ¹MEM 2008 | Integrated Series Shunt
Chopper Circuit (See Fig. 6) | 4 | 0 | 1 | 100 | 200 DB | 6x10+3 | 1013 | 1μV up to 10V | ¹ Formerly MEM 590. | MULTIPLEX | ER CIRCUITS | CASE | OFF RESISTANCE
(Ω TYP) | ON RESISTANCE
(Ω TYP) | CAPACITANCE
(pf) Cgd | BVDSS
(VOLTS) | BVGSS
(VOLTS) | |---|---|------------------|---------------------------|--------------------------|--------------------------|--------------------------|--------------------------| | MEM 2001
MEM 2002
MEM 2003
MEM 2004 | See circuit diagram No. 7
See circuit diagram No. 8
See circuit diagram No. 9
See circuit diagram No. 9 | 7
7
8
8 | 10"
10"
10"
10" | 500
500
500
250 | 1.1
1.1
1.1
1.5 | -30
-30
-30
-30 | —25
—25
—25
±40 | | MEM 2004A
MEM 2005
MEM 2006
MEM 2007 | See circuit diagram No. 9
See circuit diagram No. 10
See circuit diagram No. 11
See circuit diagram No. 11 | 8
7
8
8 | 10"
10"
10" | 250
500
500
250 | 1.5
1.1
1.1
1.5 | —30
—30
—30
—30 | —25
—25
—25
—25 | ¹MEM 2001 thru MEM 2007 formerly MEM 5001 thru MEM 5007 #### MOS SILICON P-CHANNEL ENHANCEMENT MODE FIELD EFFECT TRANSISTORS (TA = 25°C, body grounded) | TYPE | CASE | VG:
(VOI
MAX. | | ID (ON)
(mA TYP) | IDSS
(nA TYP) | IGSS
(na TYP) | BVoss
(VOLTS) | BVGSS
(VOLTS) | Υ _{fs}
(μmho TYP) | Cgd
(pf TYP) | ros ON
(Ω TYP) | |--|--------------------|----------------------------|----------------------|---------------------|------------------|-----------------------------|--------------------------|--------------------------|---------------------------------|-----------------------|-----------------------| | MEM 511
MEM 517
MEM 517A
MEM 517B | 10
5
6
10 | -3
-2.5
-2.5
-2.5 | —6
—5
—5
—5 | 6
60
60 | .2
.8
.8 | .05
.05
.05 | —40
—30
—30
—30 | —30
—25
—25
—25 | 2500
12000
12000
12000 | 1.5
10
16
10 | 250
45
45
45 | | MEM 520
MEM 550
MEM 551 | 10
2
13 | —3
—3
—3 | —6
—6
—6 | —6
—3
—3 | .2
.2
.2 | .0 01
.05
.001 | —30
—30
—30 | ±40
—25
±40 | 2500
2500
2500 | 1.5
1.1
1.1 | 250
500
500 | #### **FUNCTION DIAGRAMS** FIGURE 6 **MEM 2001** FIGURE 7 FIGURE 11 FIGURE 5 # HYBRID MICROCIRCUITS #### **AMPLIFIERS** | TYPE* (TA = 25°C) | FUNCTION | CASE | Voltage
Gain
(db) | input
impedance
(K ohms) | Input
Offset
Voitage
(mV) | Offset
Voltage
Drift
(µV/°C) | Common-
Mode
Rejection
(db) | Input
Broadband
Noise
(µVrms) | Band
Width
(KHz) | Supply
Voltages
(Vdc) | Temp.
Range
°C | |-------------------|---|---------|-------------------------|--------------------------------|------------------------------------|---------------------------------------|--------------------------------------|--|------------------------|-----------------------------|----------------------| | NC/PC-101 | NANOCIRCUIT VIDEO
AMPLIFIER | 22 & 23 | 20 | 1.2 | _ | _ | - | 10 | 20,000 | +6 | —55 to +125 | | PC-200 | OPERATIONAL AMPLIFIER GENERAL PURPOSE | 24 | 73 | 100 | 1 | 5 | 80 | 5 | 15 | ±12 | —55 to +125 | | PC-201 | OPERATIONAL AMPLIFIER
HIGH COMMON — MODE
REJECTION | 25 | 73 | 200 | 1 | 5 | 100 | 5 | 15 | ±12 | —55 to +125 | | PC-210 | OPERATIONAL AMPLIFIER LOW NOISE, WIDE B.W., H.V. | 32 | 70 | 90 | 3 | 4 | 80 | 4 | 1,500 | ±18 | —55 to +125 | | PC-212 | OPERATIONAL AMPLIFIER LOW NOISE, WIDE B.W. | 32 | 64 | 100 | 3 | 4 | 80 | 4 | 1,200 | ±12 | —55 to +125 | | PC-250 | OPERATIONAL AMPLIFIER
ULTRA-HIGH (MOS)
INPUT IMPEDANCE | 26 | 50 | 10 ¹⁴ (ohms) | 50 | 500 | 42 | _ | 30 | ±12 | —55 to +85 | |
PC-251 | OPERATIONAL AMPLIFIER
ULTRA-HIGH (MOS)
INPUT IMPEDANCE
SHORT CIRCUIT PROOF | 26 | 50 | 10 ¹⁴ (ohms) | 50 | 500 | 42 | _ | 30 | ±12 | —55 to +85 | | TYPE*
(TA = 25°C) | FUNCTION | CASE | Output
Voltage
(Vdc) | Load
Regulation
% | Line
Regulation
% | Ripple
Rejection
µout/ µin | Output
Impedance
ohms | Temp.
Coefficient
mV/°C | Power
Dissipation
25°C
(mW) | Temp.
Range
°C | |----------------------|-------------------------------------|---------|----------------------------|-------------------------|-------------------------|----------------------------------|-----------------------------|-------------------------------|--------------------------------------|----------------------| | POWER SUI | PPLY VOLTAGE REGULA | TORS** | | | | | | | | | | PC-501 | 12 V OVERLOAD | 18 | +12V | .025 | 0.5 | .03 | 0.1 | 0.3 | 500 | —55 to +125 | | PC-503 | PROTECTION | 18 | 12V | .025 | 0.5 | .03 | 0.1 | 0.3 | 500 | —55 to +125 | | PC-502 | 24 V OVERLOAD PROTECTION | 18 | +24V | .05 | 0.5 | .06 | 0.2 | 1.5 | 500 | —55 to +125 | | PC-504 | | 18 | —24V | .05 | 0.5 | .06 | 0.2 | 1.5 | 500 | —55 to +125 | | NC/PC-511 | 12 V GENERAL | 19 & 20 | +12V | .025 | 0.5 | .03 | 0.1 | 0.3 | 500 | —55 to +125 | | NC/PC-513 | PURPOSE APPLICATION | 19 & 20 | —12V | .025 | 0.5 | .03 | 0.1 | 0.3 | 500 | —55 to +125 | | PC-512 | 24 V GENERAL PURPOSE APPLICATION | 20 | +24V | .05 | 0.5 | .06 | 0.2 | 1.5 | 500 | —55 to +125 | | PC-514 | | 20 | 24V | .05 | 0.5 | .06 | 0.2 | 1.5 | 500 | —55 to +125 | | PC-521 | 6 V GENERAL PURPOSE APPLICATION | 21 | +6V | .07 | 0.4 | .04 | .05 | 0.3 | 500 | —55 to +125 | | PC-523 | | 21 | —6V | .07 | 0.4 | .04 | .05 | 0.3 | 500 | —55 to +125 | | †NCS-675A | †5 V GENERAL
PURPOSE APPLICATION | 14 | +5V | .04 | 0.5 | _ | .005 | 5 | 500 | —55 to +12 | #### HIGH VOLTAGE ANALOG SWITCHES | TYPE
(TA = 25°C) | FUNCTION | CASE | Turn On
Time
(nsec) | Turn Off
Time
(nsec) | Offset
Voltage
(mV) | Turn On
Voltage
(Volts) | Repetition
Rate
(KHz) | Maximum
Supply
Voltage
(Volts) | Maximum
Analog
Voltage
(Volts) | Overshoot
Voltage
(Volts) | |---------------------|---------------------|------|---------------------------|----------------------------|---------------------------|-------------------------------|-----------------------------|---|---|---------------------------------| | PC-401 | SINGLE INPUT | 12 | 50 | 200 | 20 | 3 | 200 | +50 | +35 | 2.5 | | PC-402 | COMPLEMENTARY INPUT | 13 | 50 | 200 | 20 | 3 | 200 | +50 | +35 | 2.5 | | | | | TEMPERATUR | E RANGE -55° | C to +125°C | SUPPLY | CLAMP | MAXIMUM | | |-----------------------------------|--|--------------------------|---|----------------------------------|-----------------------------|---------------------------|---------------------------|-----------------------------|-------------------------------------| | TYPE* | FUNCTION | | PROPAGATION
DELAY @ 25°C
(nsec TYP) | POWER
DISSIPATION
(mW TYP) | FANOUT
(EACH
OUTPUT) | VOLTAGE
(VOLTS)
VCC | VOLTAGE
(VOLTS)
VCL | REPETITION
RATE
(MHz) | LOGIC
LEVELS
(VOLTS) | | BINARY CIR | CUITS | | | | | | | | | | NC-8, PC-8
NC-9, PC-9
PC-13 | FLIP-FLOP
STEERING GATE
RST FLIP-FLOP | 14 & 11
15 & 27
16 | = | 200
200 | 3 NORS
and/or
5 NANDS | +12V
+12V
+12V | +4.2V
+4.2V
+4.2V | 20
20
20 | +.3V, +5V
+.3V, +5V
+.3V, +5V | | NOR-GATES | | | | | | | | | | | NC-10
PC-10
PC-14 | SINGLE 4-INPUT
SINGLE 6-INPUT
DUAL 3-INPUT | 17
16
16 | 8
8
8 | 170
170
170 | 4 NORS
and/or
5 NANDS | +12V
+12V
+12V | +4.2V
+4.2V
+4.2V | 12
12
12 | +.3V, +5V
+.3V, +5V
+.3V, +5V | | NAND-GATES | S | | | | | | | | | | NC-11
PC-11
PC-15 | SINGLE 4-INPUT
SINGLE 6-INPUT
DUAL 3-INPUT | 17
16
16 | 8
8
8 | 60
60
60 | 4 NORS
and/or
5 NANDS | +12V
+12V
+12V | +4.2V
+4.2V
+4.2V | 15
15
15 | +.3V, +5V
+.3V, +5V
+.3V, +5V | | ELAY CIRC | UITS | | | | | | | | | | NC-16, PC-16
PC-18 | SINGLE SHOT
TRIGGERED SINGLE SHOT | 14 & 29
30 | Ξ | 200
200 | 3 NORS
and/or
5 NANDS | +12V
+12V | +4.2V
+4.2V | 10¹
10¹ | +.3V, +5V
+.3V, +5V | | RIGGER CI | RCUITS | | | | | | | | | | NC-17, PC-17 | SCHMITT TRIGGER | 14 & 3 | 1 — | 200 | 3 NORS
and/or
5 NANDS | +12V | +4.2V | 5 | +.3V, +5V | CUSTOM CIRCUITS: Complete facilities available to meet your special requirements. 120 mA @ .3V 70 mA @ 5V² +4.2V +.3V, +5V NC-12, PC-12 NON-INVERTING AMPLIFIER 15 & 28 ^{*} PC prefix indicates flat packs; NC indicates TO-5 package. † Specified with external pass transistor with 3 amp load. ** These units are self-contained voltage regulators and with an external pass transistor can regulate leads up to 10 amperes. NOTE: 1 60% maximum duty cycle. 2 With external 100 ohm resistor. TOP HAT TYPE RECTIFIERS CASE 33 | | | RECTIFIED 1/2 WAVE, | A AVERAGE
D CURRENT
RES. LOAD
Hz | OPERA
Tei
Rai | AP. | STOR
TER
RAN | MP. | MAXIMUM FORWARD PEAK SURGE CURRENT 1~, 60 Hz SUPERIMPOSED | FOR VOL | IMUM
WARD
TAGE
A 25°C
MB | | CURRENT
ATED
NG VOLTAGE | |--|---------------------------------|--|---|---------------------------------|--|---------------------------------|---------------------------------|---|-----------------------------------|--------------------------------------|---------------------------------|-------------------------------------| | TYPE | PRV
VOLTS | mA AAV | @ TA
°C | MIN
°C | MAX
°C | MIN
°C | MAX
°C | АРК | V _F
V _{DC} | IF
mAdd | Vr
Vdc | IR
μ A DC | | 1N440
1N440B
1N441
1N441B
1N442 | 100
100
200
200
300 | 300
750
300
750
300 | 50
50
50
50
50 | —55
—55
—55
—55
—55 | 150
165
150
165
150 | —55
—55
—55
—55
—55 | 175
175
175
175
175 | 15
15
15
15
15 | 1.5
1.5
1.5
1.5
1.5 | 300
750
300
750
300 | 100
100
200
200
300 | 0.30
0.30
0.75
0.75
1.0 | | 1N442B
1N443
1N443B
1N444
1N444B | 300
400
400
500
500 | 750
300
750
300
650 | 50
50
50
50
50 | —55
—55
—55
—55
—55 | 165
150
165
150
150 | —55
—55
—55
—55
—55 | 175
175
175
175
175 | 15
15
15
15
15 | 1.5
1.5
1.5
1.5
1.5 | 750
300
750
300
650 | 300
400
400
500
500 | 1.0
1.5
1.5
1.75
1.75 | | 1N445
1N445B
1N530
1N531
1N532 | 600
600
100
200
300 | 300
650
300
300
300 | 50
50
100
100 | —55
—55
—55
—55
—55 | 150
150
100
100
100 | —55
—55
—55
—55
—55 | 175
175
180
180
180 | 15
15
1.5
1.5
1.5 | 1.5
1.5
2.0
2.0
2.0 | 300
650
300
300
300 | 600
600
100
200
300 | 2.0
2.0
3.0
7.5
10.0 | | 1N533
1N534
1N535
1N536
1N537 | 400
500
600
50
100 | 300
300
300
250
250 | 100
100
100
150
150 | —55
—55
—55
—65
—65 | 100
100
100
175
175 | —55
—55
—55
—65
—65 | 180
180
180
200
200 | 1.5
1.5
1.5
15 | 2.0
2.0
2.0
1.1
1.1 | 300
300
300
500
500 | 400
500
600
50
100 | 15.0
17.5
20.0
10
10 | | +1 N538
1 N539
+1 N540
+1 N547
+1 N560 | 200
300
400
600
800 | 250
250
250
250
250
500 | 150
150
150
150 | —65
—65
—65
—65
—55 | 175
175
175
175
175 | 65
65
65
65 | 200
200
200
200
175 | 15
15
15
15
25 | 1.1
1.1
1.1
1.1 | 500
500
500
500
500 | 200
300
400
600
800 | 10
10
10
10
5 | | 1 N561
1 N599
1 N599A
1 N600
1 N600A | 1000
50
50
100
100 | 500
300
300
300
300 | 100
100
100
100
100 | —55
—55
—55
—55
—55 | 175
150
150
150
150 | —65
—55
—55
—55
—55 | 175
175
175
175
175 | 25
2
2
2
2 | 1.1
1.5
1.5
1.5
1.5 | 500
300
300
300
300 | 1000
50
50
100
100 | 5
2.5
1.0
2.5
1.0 | | 1N601
1N601A
1N602
1N602A
1N603 | 150
150
200
200
300 | 300
300
300
300
300 | 100
100
100
100
100 | —55
—55
—55
—55
—55 | 150
150
150
150
150 | —55
—55
—55
—55
—55 | 175
175
175
175
175 | 2
2
2
2
2 | 1.5
1.5
1.5
1.5
1.5 | 300
300
300
300
300 | 150
150
200
200
300 | 2.5
1.0
2.5
1.0
2.5 | | 1 N603A
1 N604
1 N604A
1 N605
1 N605A | 300
400
400
500
500 | 300
300
300
300
300 | 100
100
100
100
100 | —55
—55
—55
—55
—55 | 150
150
150
150
150 | —55
—55
—55
—55
—55 | 175
175
175
175
175 | 2
2
2
2
2 | 1.5
1.5
1.5
1.5
1.5 | 300
300
300
300
300 | 300
400
400
500
500 | 1.0
2.5
1.0
2.5
1.0 | | 1N606
1N606A
1N1095
1N1097
1N1100 | 600
600
500
600
100 | 300
300
250
250
250 | 100
100
135
130
150 | —55
—55
—65
—65
—55 | 150
150
175
175
150 | —55
—55
—65
—65
—55 | 175
175
200
200
180 | 2
2
15
15 | 1.5
1.5
1.1
1.1 |
300
300
500
500
750 | 600
600
500
600
100 | 2.5
1.0
10
10
0.1 | | 1N1101
1N1102
1N1103
1N1104
1N1105 | 200
300
400
500
600 | 250
250
250
250
250
250 | 150
150
150
150
150 | —55
—55
—55
—55
—55 | 150
150
150
150
150 | —55
—55
—55
—55
—55 | 180
180
180
180
180 | 15
15
15
15
15 | 1.2
1.2
1.2
1.2
1.2 | 750
750
750
750
750 | 200
300
400
500
600 | 0.1
0.1
0.1
0.1
0.1 | | 1N1169
1N1692
1N1693
1N1694
1N1695 | 400
100
200
300
400 | 300
250
250
250
250 | 100
100
100
100
100 | —55
—55
—55
—55
—55 | 100
115
115
115
115 | —55
—55
—55
—55
—55 | 180
175
175
175
175 | 35
20
20
20
20
20 | 1
0.6
0.6
0.6
0.6 | 300
250
250
250
250 | 400
100
200
300
400 | 100
500
500
500
500 | | 1N1696
1N1697
1N1763
1N1764
PT505 | 500
600
400
500
50 | 250
250
500
500
1000 | 100
100
75
75
100 | —55
—55
—65
—65
—55 | 115
115
100
100
125 | —55
—55
—65
—65
—55 | 175
175
100
100
175 | 20
20
35
35
15 | 0.6
0.6
1
1
1.5 | 250
250
500
500
500 | 500
600
400
500
50 | 500
500
10
10 | | PT510
PT515
PT520
PT525
PT530 | 100
150
200
250
300 | 1000
1000
1000
1000
1000 | 100
100
100
100
100 | —55
—55
—55
—55
—55 | 125
125
125
125
125 | —55
—55
—55
—55
—55 | 175
175
175
175
175 | 50
50
50
50
50 | 1.5
1.5
1.5
1.5
1.5 | 500
500
500
500
500 | 100
150
200
250
300 | 10
10
10
10 | | PT540
PT550
PT560
PT580
S91 | 400
500
600
800
100 | 1000
1000
1000
1000
200 | 100
100
100
50
85 | —55
—55
—55
—55
—55 | 125
125
125
125
125
185 | —55
—55
—55
—55
—55 | 175
175
175
175
175 | 50
50
50
50
5 | 1.5
1.5
1.5
1.5
1.5 | 500
500
500
500
200 | 400
500
600
800
100 | 10
10
10
10 | | S91H
S92
S92H
S93
S93H | 100
200
200
300
300 | 250
200
250
200
250 | 85
85
85
85 | —55
—55
—55
—55
—55 | 125
185
125
185
125 | —55
—55
—55
—55
—55 | 150
100
150
100
150 | 5
5
5
5
5 | 1.5
1.5
1.5
1.5 | 250
200
250
200
250 | 100
200
200
300
300 | 10
10
10
10
10 | [•] Indicates MIL Type # Glass-Amp[®] SILICON RECTIFIERS | | MAXIMUM AVERAGE RECTIFIED CURRENT V2 WAVE, RES. LOAD TEMP. 60 Hz RANGE | | MP. | TE | RAGE
MP.
NGE | MAXIMUM
FORWARD
PEAK SURGE
CURRENT
1~, 60 Hz
SUPERIMPOSED | FOR
VOLT | (IMUM
WARD
AGE @
25°C | REV
CURR
RAT
BLOO
VOL | IMUM
TERSE
ENT @
ED DC
CKING
TAGE
CAMB | MAXI
REVE
RECO
@ 2 | RSE
VERY
5°C | JUNG
CAPAC
@ 2
* IND | 25°C | | | |---|--|-------------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|------------------------------------|-----------------------------------|--|--------------------------------------|-----------------------|-------------------------------|------|-----------|----------| | TYPE
NUMBER | PRV
VOLTS | mA | © TA | MIN °C | MAX | MIN | MAX
°C | Арк | V _F
V _{DC} | IF
mADC | VR
VDC | IR
mADC | REF.
NOTE | μS | VR
VDC | CJ
DF | | G100B
1N4383
1N4384
1N4385
1N4585 | 100
200
400
600
800 | 1000
1000
1000
1000
600 | 100
100
100
100
100 | 65
65
65
65 | 175
175
175
175
175 | 65
65
65
65 | 175
175
175
175
175 | 50
50
50
50
50 | 1.0
1.0
1.0
1.0 | 1000
1000
1000
1000
1000 | 100
200
400
600
800 | 10
10
10
10 | = | = | = | | | 1 N4586
1 N4250
1 N4251
1 N4252
1 N4253 | 1000
800
1000
1200
1500 | 600
500
500
500
500 | 100
55
55
55
55 | 65
65
65
65 | 175
160
160
160
160 | -65
-65
-65
-65
-65 | 175
200
200
200
200 | 50
10
10
10 | 1.0
2.0
2.0
2.0
2.0 | 1000
500
500
500
500 | 1000
800
1000
1200
1500 | 10
10
10
10 | = | | = | = | | 1N4254
1N4255
1N4256
1N4257
DG100J | 1500
2000
2500
3000
1200 | 250
250
250
250
250 | 55
55
55
55
100 | 65
65
65
55 | 160
160
160
160
150 | 65
65
65
55 | 200
200
200
200
200
175 | 6.25
6.25
6.25
6.25
30 | 4.8
4.8
4.8
4.8
2.0 | 250
250
250
250
250 | 1500
2000
2500
3000
1200 | 10
10
10
10 | = | | | | | DG100K
DG100M
KG100F
KG100G
KG100H | 1600
2000
3000
4000
5000 | 250
250
150
150
150 | 100
100
50
50
50 | —55
—55
—55
—55
—55 | 150
150
150
150
150 | 55
55
55
55 | 175
175
175
175
175 | 30
30
20
20
20 | 2.0
2.0
5.0
5.0
5.0 | 500
500
500
500
500 | 1600
2000
3000
4000
5000 | 5
5
5
5
5 | = | = | = | | | Glass-Amp® | FAST | RECO | VERY | RECTIFI | ERS | | | | | | | | | CA | SE 38 | ì | |------------|------|------|------|---------|-----|-----|-----|----|-----|------|-----|-------|---|----|-------|---| | 1N5055 | 100 | 1.0 | 50 | 55 | 125 | _55 | 175 | 30 | 1.2 | 1000 | 100 |
1 | 2 | | 25 | 7 | | 1N5056 200 1.0 50 —55 125 —55 175 185057 400 0.7 50 —55 125 —55 175 | 30 1.3 1000 100 5 1 .2 -4 35
30 1.3 1000 200 5 1 .2 -4 35
30 1.3 1000 400 5 1 .4 -4 23
30 1.3 1000 600 5 1 .8 -4 23 | |---|--| |---|--| | Glass-Amp® | CON | TROLLED | ΔΥΔΙ | ANCHE | RECT | rifif r s | | | | | | | AVALA
BREAK
VOLT
RAM | DOWN | AVALA
POV | VER | |--|--|---|----------------------------------|----------------------------|--|---------------------------------|--|--|---------------------------------|---|--|----------------------------------|-------------------------------|------------|--------------|------| | AG100D
AG100G | 200 | 1000 | 50
50 | —55
—55 | 175
175 | —55
—55 | 175
175 | 50
50 | 1 | 1000 | 200
400 | 5
5 | 500
750 | 240
450 | 7 | 00 | | LANGELES | S RE | 1000
CTIFIERS | 50 | <u>55</u> | 175 | 55 | 175 | 50 | ī | 1000 | 600 | 5 | 1000 | 675 | 71 | SE 3 | | 1 N2610
1 N2611
1 N2612
1 N2613
1 N2614
1 N2615 | 100
200
300
400
500
600 | 750
750
750
750
750
750
750 | 50
50
50
50
50
50 | 65
65
65
65
65 | 175
175
175
175
175
175 | —65
—65
—65
—65
—65 | 175
175
175
175
175
175 | 30
30
30
30
30
30
30 | 1.0
1.0
1.0
1.0
1.0 | 750
750
750
750
750
750
750 | 100
200
300
400
500
600 | 10
10
10
10
10
10 | | = | | | | 1 N2616
1 N2617
1 N3189
1 N3190
1 N3191 | 800
1000
200
400
600 | 1000 | 50
50
100
100 | 65
65
65
65 | 175
175
175
175
175 | —65
—65
—65
—65 | 175
175
175
175
175 | 30
30
30
30
30 | 1.0
1.0
1.0
1.0 | 750
750
7 5 0
750
750 | 800
1000
200
400
600 | 10
10
5
5 | = | = | = | | | PLASTIC | RECTIFII | ERS | | | | | | | | | | | | | CA | ISE 37 | |--|---------------------------------|---------------------------------|-------------------------------|---------------------------------|---------------------------------|----------------------|---------------------------------|----------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------|---|---|---|---| | 1N2069
1N2070
1N2071
PA300
PA305 | 200
400
600
1000
50 | 500
500
500
500
500 | 100
100
100
50
50 | —65
—65
—65
—65
—65 | 100
100
100
125
125 | 65
65
65
65 | 125
125
125
150
150 | 22
22
22
15
15 | 1.2
1.2
1.2
1.5
1.5 | 500
500
500
500
500 | 200
400
600
1000
50 | 10
10
10
10 | = | = | = | = | | PA310
PA315
PA320
PA325
PA330 | 100
150
200
250
300 | 500
500
500
500
500 |
50
50
50
50
50 | —65
—65
—65
—65 | 125
125
125
125
125 | 65
65
65
65 | 150
150
150
150
150 | 15
15
15
15
15 | 1.5
1.5
1.5
1.5
1.5 | 500
500
500
500
500 | 100
150
200
250
300 | 10
10
10
10 | = | = | | = = | | PA340
PA350
PA380 | 400
500
800 | 500
500
500 | 50
50
50 | —65
—65
—65 | 125
125
125 | —65
—65
—65 | 150
150
150 | 15
15
15 | 1.5
1.5
1.5 | 500
500
500 | 400
500
800 | 10
10
10 | Ξ | Ξ | = | = | Note: 1. When switched from 1 ampere forward current to -30 volts. # SILICON RECTIFIERS AND DIODES STUD TYPE RECTIFIERS CASE 34 | TYPE PRV | RECTIFIED 1/2 WAVE, 60 | I AVERAGE
CURRENT
RES. LOAD
Hz | OPERAT
TEN
RAN | IP. | STOR
TEN
RAN | IP. | MAXIMUM FORWARD PEAK SURGE CURRENT 1 ~, 60 Hz SUPERIMPOSED | MAXI
FORW
VOLT
@ TA | ARD
AGE | MAXII
REVERSE (
@ RA
DC BLOCKIN
@ 25° | CURRENT
ITED
IG VOLTAGI | | |---|---------------------------------|---|---------------------------------------|---------------------------------|---------------------------------|---------------------------------|--|----------------------------------|-----------------------------------|---|---------------------------------|------------------------------| | TYPE | PRV
VOLTS | MA MA | ° Tc | MIN | MAX | WIN | MAX | АРК | VF
VDC | IF
mAdc | VR
VDC | IR
µAdc | | 1N253
1N254
1N255
1N256
1N332 | 100
200
400
600
400 | 1000
400
400
200
400 | 135
135
135
135
135 | —55
—55
—55
—55
—55 | 150
150
150
150
150 | —55
—55
—55
—55
—55 | 175
175
175
175
175 | 4.0
1.5
1.5
1.0
2.5 | 1.5
1.5
1.5
2.0
1.25 | 1000
500
500
500
400 | 175
150
350
500
400 | 10
10
10
20
10 | | 1 N 3 3 3
1 N 3 3 4
1 N 3 3 5
1 N 3 3 6
1 N 3 3 7 | 400
300
300
200
200 | 200
400
200
400
200 | 150
150
150
150
150 | —55
—55
—55
—55
—55 | 175
175
175
175
175 | —55
—55
—55
—55
—55 | 175
175
175
175
175 | 1.5
2.5
1.5
2.5
1.5 | 2.0
1.25
2.0
1.25
2.0 | 200
400
200
400
200 | 400
500
300
200
200 | 10
10
10
10 | | 1N338
1N339
1N340
1N341
1N342 | 100
100
100
400
400 | 70
400
200
400
200 | 150
150
150
150
150 | —65
—55
—55
—55
—55 | 175
175
175
175
175 | —65
—55
—55
—55
—55 | 175
175
175
175
175 | 6.0
2.5
1.5
2.5
1.5 | 2.0
1.25
2.0
1.25
2.0 | 2000
400
200
400
200 | 100
100
100
400
400 | 10
10
10
10 | | 1N343
1N344
1N345
1N346
1N347 | 300
300
200
200
100 | 400
200
400
200
70 | 150
150
150
150
150 | —55
—55
—55
—55
—65 | 175
175
175
175
175 | —55
—55
—55
—55
—65 | 175
175
175
175
175 | 2.5
1.5
2.5
1.5
6.0 | 1.25
2.0
1.25
2.0
2.0 | 400
200
400
200
200 | 300
300
200
200
100 | 10
10
10
10 | | 1N348
1N349
1N562
1N563
1N2026 | 100
100
800
1000
50 | 400
200
400
400
1000 | 150
150
25 AMB
25 AMB
150 | —55
—55
—55
—55
—65 | 175
175
150
150
175 | —55
—55
—55
—55
—65 | 175
175
175
175
175 | 2.5
1.5
1.5
1.5
25 | 1.25
2.0
1.3
1.3
2.0 | 400
200
400
400
2000 | 100
100
800
1000
50 | 10
10
1.5
2.0
10 | | 1 N2027
1 N2028
1 N2029
1 N2030
1 N2031 | 200
300
400
500
600 | 1000
1000
1000
1000
1000 | 150
150
150
150
150 | —65
—65
—65
—65 | 175
175
175
175
175 | 65
65
65
65
65 | 175
175
175
175
175 | 25
25
25
25
25
25 | 2.0
2.0
2.0
2.0
2.0 | 2000
2000
2000
2000
2000 | 200
300
400
500
600 | 10
10
10
10 | GLASS DIODES CASE 35 | | | MAXIMUM
RECTIFIED
1/2 WAVE, R
60 I | CURRENT
LES. LOAD
Iz | OPERAT
Ten
Ran | IP. | STOR
TEN
RAN | AP. | MAXIMUM FORWARD PEAK SURGE CURRENT 1 ~, 60 Hz SUPERIMPOSED | VOLT
@ TA | IMUM
VARD
TAGE
25°C
MB | MAXII
REVERSE
@ R!
DC BLOCKIN
@ 25° | CURRENT
TED
IG VOLTAGE | |--|--|---|--|--|--|--|--|--|---------------------------------|--|---|--------------------------------------| | TYPE | PRV
Volts | MAV @ | °C | MIN | MAX
°C | MIN
°C | MAX | Арк | VF
VDC | IF
mAdd | VR
VDC | IR
μAdc | | 1N456
1N456A
•1N457
1N457A
•1N458 | 25
25
60
60
125 | 40
70
33
70
25 | 150
150
150
150
150 | —65
—65
—65
—65
—65 | 175
175
175
175
175 | —65
—65
—65
—65
—65 | 200
200
200
200
200
200 | 1
1
1
1 | 1.0
1.0
1.0
1.0 | 40
100
20
100
7 | 25
25
60
60
125 | .025
.025
.025
.025
.025 | | 1N458A
•1N459
1N459A
1N461
1N461A | 125
175
175
25
25 | 70
18
70
27
70 | 150
150
150
150
150 | —65
—65
—65
—65
—65 | 175
175
175
175
175 | 65
65
65
65 | 200
200
200
200
200 | 1
1
1
1 | 1.0
1.0
1.0
1.0 | 100
3
100
15
100 | 125
175
175
175
25 | .025
.025
.025
.50 | | 1 N462
1 N462A
1 N463
1 N463A
1 N464 | 60
60
175
175
125 | 22
70
13.5
70
18 | 150
150
150
150
150 | —65
—65
—65
—65
—65 | 175
175
175
175
175 | 65
65
65
65 | 200
200
200
200
200 | 1
1
1
1 | 1.0
1.0
1.0
1.0 | 5
100
1
100
3 | 25
60
60
175
175 | .50
.50
.50
.50 | | 1 N464A
1 N482
1 N482A
1 N482B
1 N483 | 125
36
36
36
70 | 70
100
200
200
100 | 150
25
25
25
25
25 | —65
—55
—55
—55
—55 | 175
200
200
200
200 | —65
—55
—55
—55
—55 | 200
200
200
200
200 | 1
1
2
2
2 | 1.0
1.1
1.0
1.0 | 100
100
100
100
100 | 175
30
30
30
60 | .50
.25
.025
.025
.25 | | 1N483A
•1N483B
1N484
1N484A
1N484B | 70
70
136
130
130 | 200
200
100
200
200 | 25
25
25
25
25
25 | —55
—55
—55
—55
—55 | 200
200
200
200
200 | —55
—55
—55
—55
—55 | 200
200
200
200
200 | 2
2
1
2
2 | 1.0
1.0
1.1
1.0
1.0 | 100
100
100
100
100 | 60
60
125
125
125 | .025
.025
.25
.025
.025 | | 1N485
1N485A
•1N485B
1N486
1N486A
•1N486B | 180
180
180
225
225
225 | 100
200
200
100
200
200 | 25
25
25
25
25
25
25 | —55
—55
—55
—55
—55
—55 | 200
200
200
200
200
200 | —55
—55
—55
—55
—55
—55 | 200
200
200
200
200
200 | 1
2
2
1
2
2 | 1.1
1.0
1.0
1.1
1.0 | 100
100
100
100
100
100 | 175
175
175
225
225
225 | .25
.025
.025
.25
.025 | [·]Indicates MIL Types # SILICON DIODES **GLASS DIODES** CASE 35 | | | REC
CUF
1/2 WAVE
61 | MAXIMUM AVERAGE
RECTIFIED
CURRENT
/2 WAVE, RES. LOAD
60 HZ
ÅAV @ TA | | TIONAL
Mp.
Nge | TE | RAGE
MP.
NGE | MAXIMUM
FORWARD
PEAK SURGE
CURRENT
1~, 60 Hz
SUPERIMPOSED | FOR
VOLTA | IMUM
WARD
AGE @
25°C
MB | REVI
CURRI
RATE
BLOC
VOL | MUM
ERSE
ENT @
ED DC
EKING
TAGE | MAXI
REVI
RECO
@ 2 | RSE
VERY
15°C | TYPI
JUNC
CAPACI
@ 2
* INDI | TION
ITANCE
5°C
CATES | |--|--|--------------------------------------|--|----------------------------|--|---------------------------------|--|--|-----------------------------------|--------------------------------------|--|--|-----------------------------|---------------------|---|---| | TYPE | PRV
VDLTS | MA MA | @ TA | MIN | MAX
°C | MIN | MAX
°C | APK | V _F
V _{DC} | IF
mAdc | VR
VDC | IR
μAdc | REF.
NOTE | μS | VR
VDC | CJ
pF | | 1N487
1N487A
1N488
1N488A
•1N645 | 300
300
380
380
225 | 100
200
100
200
150 | 25
25
25
25
25
150 | 65
65
65
65 | 200
200
200
200
200
175 | —65
—65
—65
—65 | 200
200
200
200
200 | 1.0
2.0
1.0
2.0
5.0* | 1.1
1.0
1.1
1.0
1.0 |
100
100
100
100
400 | 300
300
380
380
225 | .25
0.1
.25
0.1
.025 | = | | = - | _
_
_
_
20 | | 1N646
•1N647
1N648
•1N649
1N881
1N882 | 300
400
500
600
200
300 | 150
150
150
150
50
50 | 150
150
150
150
25
25 | 65
65
65
65
65 | 175
175
175
175
175
150 | —65
—65
—65
—65
—65 | 200
200
200
200
200
200 | 5.0
5.0*
5.0
5.0*
0.5
0.5 | 1.0
1.0
1.0
1.0
1.0 | 400
400
400
400
50
50 | 300
400
500
600
200
300 | 0.2
.025
0.2
.050
20
20 | | 1 | 4 | 20
20
— | | 1N883
1N884
1N885
1N886 | 400
500
600
700 | 50
50
50
50 | 25
25
25
25 | —65
—65
—65
—65 | 150
150
150
150 | 65
65
65 | 200
200
200
200 | 0.5
0.5
0.5
0.5 | 1.0
1.0
1.0
1.0 | 50
50
50
50 | 400
500
600
700 | 20
20
20
20 | = | | = | | | 1 N887
1 N888
1 N889
1 N890 | 800
900
1000
70 | 50
50
50
100 | 25
25
25
25 | —65
—65
—65
—55 | 150
150
150
150 | —65
—65
—65
—55 | 200
200
200
175 | 0.5
0.5
0.5
0.5 | 1.0
1.0
1.0
1.0 | 50
50
50
20 | 800
900
1000
70 | 20
20
20
.025 | | | | ======================================= | | *At 150°C | | | | | | | | | | | | | | | | | #### CASE 35 FAST RECOVERY GLASS DIODES 0.5 0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 1.5 4.0 4.0 4.0 4.0 4.0 1N625 1N626 30 50 100 100 —80 —80 150 150 150 150 20 35 8.0 8.0 44444 -801.0 1N627 1N628 1N629 -80 -80 -80 150 150 150 75 125 175 1.0 1.0 1.0 8.0 8.0 8.0 100 150 5 5 5 100 100 -80 200 -80 ī 150 —65 —65 —65 —65 150 150 175 175 175 0.5 0.5 0.6 0.5 0.5 * 3 * 3 6.0 6.0 6.0 150 150 200 1N643 1N643A 175 175 40 40 25 25 25 25 25 --65 --65 10 100 0.3 10 10 22344 100 100 100 200 100 100 —65 —65 —65 0.3 0.3 0.3 4.0 4.0 4.0 1N658 100 .05 1N659 50 100 200 6 50 100 1N660 1N661 25 0.5 200 4 200 100 -65 175 -65 200 6 10 0.3 4.0 6.0 10 50 50 20 20 --65 1N662 85 100 25 175 --65 200 0.5 1 10 5 0.5 4.0 6.0 20 1 N663 1 N 789 1 N 790 200 120 120 25 25 25 —65 —65 —65 175 150 150 0.5 0.5 0.5 0.5 0.5 0.25 4.0 4.0 4.0 -65 200 100 6.0 6.0 6.0 5 6 6 —65 —65 10 15 160 200 120 120 160 1N791 1N792 1N793 0.5 0.6 0.5 0.5 0.5 0.5 0.5 0.25 0.25 —65 —65 150 150 -65 -65 175 175 4.0 4.0 4.0 6.0 6.0 8.0 8.0 8.0 30 60 60 60 25 25 25 25 25 50 20 50 50 50 6 100 150 150 150 --65 --65 --65 175 175 175 175 -65 -65 888 -65 -65 1N794 1N795 4.0 50 60 120 120 25 25 25 —65 —65 —65 —65 150 150 150 150 150 175 175 175 175 175 175 0.6 0.5 0.5 0.5 0.5 0.5 0.25 0.5 0.5 1N796 200 120 120 -65 -65 -65 50 100 9 8.0 100 1N797 1N798 1N799 4.0 4.0 4.0 4.0 8.0 8.0 8.0 8.0 10 10 50 100 8889 1 5 5 5 100 100 100 120 120 160 25 25 -65 -65 1N800 150 150 150 150 150 150 -65 -65 0.5 0.5 0.5 0.5 10 50 10 50 50 0.5 0.5 0.5 0.5 1N801 120 25 25 25 25 25 25 --65 175 175 175 175 4.0 4.0 4.0 4.0 4.0 8.0 8.0 88883 --65 --65 160 120 160 1N802 #### "W" SINGLE PHASE BRIDGE CASE 41 W005 W02 W04 50 200 400 1000 1000 1000 100 100 100 —55 —55 —55 —55 —55 —55 —55 150 150 150 50 50 50 50 1.0 1.0 1.0 1000 1000 1000 50 200 400 10 10 10 10 -55 -55 WOR 600 1000 100 125 0.6 0.6 Notes: 1. To 400K ohms minimum measured in modified IBM "Y" test circuit when switched from 30mA forward current to —35 volts. 25 25 2. To 200K ohms when switched from 5mA forward current -65 -65 —65 —65 175 175 175 -65 -65 -65 200 200 - To 200K ohms when switched from 5mA forward current (1 µs pulse) to -40 volts in JAN 256 circuit. To 80K ohms when switched from 5mA forward current to -40 volts in JAN 256 circuit. To 400K ohms when switched from 35mA forward current to -35 volts in JAN 256 circuit. To 100K ohms when switched from 5mA forward current to -40 volts in JAN 256 circuit. - 6. - To 200K ohms when switched from 5mA forward current to -20 volts in JAN 256 circuit. To 100K ohms when switched from 5mA forward current 7. 125 125 50 100 50 10 0.1 0.1 3 .3 4.0 - 200K ohms when switched from 5mA forward current —20 volts in JAN 256 circuit. 200K ohms when switched from 5mA forward current —40 volts in JAN 256 circuit. 100K ohms when switched from 5mA forward current —40 volts in JAN 256 circuit. to —20 volts in JAN To 200K ohms when - Indicates MIL types. 1 8.0 8.0 8.0 8.0 8.0 1N803 1N804 1N891 1 N892 1 N893 200 200 50 100 200 200 200 200 # SILICON RECTIFIERS AND DIODES GLASS DIODES CAPSIL® CASE 35 | | MAXIMUM
Working
Volts
@ 25°C | NOMINAL
Capacitance
@ —4 volts DC,
25°C | CAPACITANCE
RANGE
@ —4 VOLTS DC,
25°C | TEI
RA | TIONAL
Mp.
Nge | TEI
RAI | RAGE
MP.
NGE | MIN. Q
@ 50 MHz,
—4 Volts DC,
25°C | Q 50 MHz,
AND MAX.
WORKING
VOLTAGE
25°C | |--|--|---|--|--|--|------------|--|--|--| | TYPE | VOLTS
DC | pF | pF | MIN | MAX
°C | MIN
°C | MAX
°C | Q | a | | CS7
CS10
CS12
CS15
IN3945
CS20
CS27
CS33
IN954
CS40
CS47
IN3628
IN955
IN3488
CS56
CS68
IN3947
IN3947
IN3946
CS82
CS100 | 25
25
25
25
25
25
25
25
25
25
25
25
15
15
15
15
15 | 7
10
12
15
20
27
30
33
35
40
47
50
56
56
68
70
71
82 | 5.6-8.4 8.0-12.0 9.6-14.4 12.0-18.0 18.0-22.0 16.0-24.0 21.6-32.4 24.0-36.0 26.4-39.6 28.0-42.0 32.0-48.0 37.6-56.4 47.0-53.0 40.0-60.0 50.4-61.6 44.8-67.2 54.4-81.6 56.0-84.0 62.5-79.5 65.6-98.4 80.0-120.0 | —65
—65
—65
—65
—65
—65
—65
—65 | 175
175
175
175
175
175
175
175
175
175 | | 200
200
200
200
200
200
200
200
200
200 | 20
20
20
20
7
20
18
18
18
18
18
30
7
7
7
16
16 | 50
50
50
50
45
45
45
45
45
20
45
20
25
30
 | ULTRA-FAST PLANAR COMPUTER DIODE CASE 40 | | | MAXIMUM AVERAGE RECTIFIED CURRENT 1/2 WAVE, RES. LOAD 60 Hz PRV AAV @ TA | | OPERATER | AP. | STOR
TEN
RAN | IP. | MAXIMUM
FORWARD
PEAK SURGE
CURRENT
1 ~ 60 Hz
SUPERIMPOSED | MAXI
FORW
VOLTA
TA =
AM | ARD
GE @
25°C | MAXI
REVE
CURRE
RATE
BLOC
VOLT
25 | RSE
NT @
DC
(ING
AGE | MAXII
REVE
RECOV
@ 2:
AM | RSE
/ERY
5°C | TYPI
JUNC
Capaci
@ 2 | TION | |--|----------------------------|--|----------------------------------|--------------------------|---------------------------------|---------------------------------|---------------------------------|--|-------------------------------------|----------------------------|---|----------------------------------|--------------------------------------|-----------------------|-------------------------------|-----------------------| | TYPE | PRV
VOLTS | MAV (| @ TA
°C | oc
MIN | MAX
°C | MIN
°C | MAX
°C | APK | VF
VDC | IP
mAdc | VR
VDC | IR
μ A DC | REF.
NOTE | ns | VR
VDC | CJ
pF | | GP101A
GP101B
GP102A
GP102B
GP103A | 10
10
20
20
30 | 100
100
100
100
100 | 25
25
25
25
25
25 | —65
—65
—65
—65 | 175
175
175
175
175 | —65
—65
—65
—65
—65 | 200
200
200
200
200 | 1
1
1
1 | 1
1
1
1 | 20
20
20
20
20 | 10
10
10
10
20 | .05
.05
.05
.05 | 1
1
1
1 | 2
2
2
2
2 | 0
0
0
0 | 2
4
2
4
2 | | GP103B
GP104A
GP104B
GP105A
GP105B | 30
40
40
50
50 | 100
100
100
100
100 | 25
25
25
25
25 | —65
—65
—65
—65 | 175
175
175
175
175 | —65
—65
—65
—65 | 200
200
200
200
200 | 1
1
1
1 | 1
1
1
1 | 20
20
20
20
20 | 20
20
20
20
20 | .05
.05
.05
.05 | 1
1
1
1 | 2
2
2
2
2 | 0
0
0
0 | 4
2
4
2
4 | Note 1-When switched from 10 mA forward current to -6V in special computer test circuit. Recovery to 1 mA through loop impedance 100 ohms. #### **HERCULEADS***...The Ultimate Diode General Instrument's HERCULEADS beam-lead diode is a self-contained diode package with total environmental immunity — the smallest discrete diode available — and it is virtually indestructable. - 1 Special low resistance contact area. - 2 Gold leads. Lead mass large relative to mass of diode. Both leads on same face of chip. - 3 Bonding area external to active device. - 4 Junction completely shielded by leads. - **5** Oxide-passivation. - 6 Silicon Chip # Electrical Specifications for XH100 SERIES at 25°C. | PRV | 90V | |-----|------------------------| | 1, | 40 mA @ 1V | | 1. | 2nA @ —40V | | C | 2.4 pf @
0V | | t | 4 ns, 10ma, I, to -40V | *Trade Mark All Dimensions in N The HERCULEADS* BEAM-LEAD DIODE is sold as a 10-PAK package containing 10-XH100 beam-lead diodes. # ZENER VOLTAGE REGULATOR DIODES | 200 mW | TYPE | S | | | | | | CAS | E 39 | |--|---|----------------------------|--|---------------------------------|--|----------------------------------|-----------------------------|---------------------------------|------------------------------------| | TYPE | POWER
RATING | | ZENER
VOLTS
@ IZT | TEST
CUR-
RENT
IZT | MAXI
DYNA
IMPED
(See N
@ IZT | MIC | TEST
CUR-
RENT
IZK | CUR
@ 2 | ERSE
RENT
25°C | | ITPE | mW | NOTES | VOLTS | mA | OHMS | OHMS | mA | μА | VOLTS | | 1N225
1N226
1N227
1N228
1N229 | 200
200
200
200
200 | 2
2
2
2
2 | 7.5-10
9-12
11-14.5
13.5-18
17-21 | 0.2
0.2
0.2
0.2
0.2 | | | | 0.5
0.5
0.5
0.5
0.5 | 6.8
8.2
10
12
15 | | 1N230
1N231
1N232
1N233
1N234 | 200
200
200
200
200 | 2
2
2
2
2 | 20-27
25-32
30-39
37-45
43-54 | 0.2
0.2
0.2
0.2
0.2 | | | | 0.1
0.1
0.1
0.1
0.1 | 18
22
27
33
39 | | 1N235
1N236
1N237
1N238
1N239 | 200
200
200
200
200 | 2
2
2
2
2 | 52-64
62-80
75-100
90-120
110-145 | 0.2
0.2
0.2
0.2
0.2 | | | | 0.1
1
1
1 | 47
56
68
82
100 | | 1N465
1N466
1N467
1N468
1N469 | 200
200
200
200
200 | 3
3
3
3 | 2-3.2
3-3.9
3.7-4.5
4.3-5.4
5.2-6.4 | 5
5
5
5 | | 60
55
45
35
20 | 10
10
10
10 | 75
50
5
5
5 | 1
1
1
1.5
1.5 | | 1N470
1N471
1N472
1N473
1N474
1N475 | 200
200
200
200
200
200
200 | 3
2
2
2
2
2 | 6.2-8.0
3-3.9
3.7-4.5
4.3-5.4
5.2-6.4
6.2-8.0 | 5
5
5
5
5
5 | | 10
65
60
50
40
25 | 10
10
10
10
10 | 5
50
5
5
5
5 | 3.5
1
1
1.5
1.5
3.5 | | 250 | mW | TYPES | | | | | | | CASE | 39 | |---------------------------------|-------------------|--|-----------------------|---|---------------------------------|------------------------------------|----------------------------|----------------------------|-------------------------|---------------------------| | 1N7
1N7
1N7
1N7
1N7 | 03
04
05 | 250
250
250
250
250
250 | 4
4
4
4
4 | 2-3.2
3-3.9
3.7-4.5
4.3-5.4
5.2-6.4 | 5
5
5
5
5 | | 60
55
45
35
30 | 10
10
10
10
10 | 75
50
5
5
5 | 1
1
1
1.5
1.5 | | 1N7
1N7
1N7
1N7
1N7 | 08
09
10 | 250
250
250
250
250 | 4
4
4
4 | 6.2-8.0
5.6
6.2
6.8
7.5 | 5
25
25
25
25 | 3.6
4.1
4.7
5.3 | 10 | 10 | 5 | 3.5 | | 1N7
1N7
1N7
1N7
1N7 | 113
114
115 | 250
250
250
250
250 | 4
4
4
4 | 8.2
9.1
10
11 | 25
12
12
12
12 | 6
7
8
9
10 | | | | | | 1N7
1N7
1N7
1N7
1N7 | 18
19
20 | 250
250
250
250
250 | 4
4
4
4 | 13
15
16
18
20 | 12
12
12
12
12
4 | 11
13
15
17
20 | | | | | | 1N7
1N7
1N7
1N7
1N7 | 23
24
25 | 250
250
250
250
250 | 4
4
4
4 | 22
24
27
30
33 | 4
4
4
4 | 24
2 8
35
42
50 | | | | | | 1N7
1N7
1N7
1N7
1N7 | 28
29
30 | 250
250
250
250
250 | 4
4
4
4 | 36
39
43
47
51 | 4
4
4
4 | 60
70
84
98
115 | | | | | | 1N7
1N7
1N7
1N7
1N7 | 33
34
35 | 250
250
250
250
250 | 4
4
4
4 | 56
62
68
75
82 | 4
2
2
2
2 | 140
170
200
240
280 | | | | | | 1N7
1N7
1N7
1N7 | 38
39
40 | 250
250
250
250
250 | 4
4
4
4 | 91
100
110
120
130 | 1
1
1
1 | 340
400
490
570
650 | | | | | [·] Indicates MIL Type. Notes: 1. Unless otherwise specified in notes, dynamic impedance is measured by superimposing alternating current equal to 10% of the direct current IZT or IZK. - 2. 10% tolerance: suffix A = 5%, Double anode type. - 3. 10% tolerance: suffix A =5%, suffix B = 1%. - 4. 10% tolerance: suffix A = 5%. - 5. 10% tolerance: suffix A = 5%. For dynamic impedance superimpose 1mA ac upon $\ensuremath{\text{IZT}}$ - 6. 10% tolerance. - 7. 20% tolerance: suffix A = 10%, suffix B = 5%. | | 250 | mW | TYPES | Cont'd | |--|-----|----|--------------|--------| |--|-----|----|--------------|--------| | 250 mW | TYPE | S Con | it'd | | | | | CASE 39 | |---|---------------------------------|-----------------------|---|-----------------------------|--|------|-----------------------------|---| | TVDF | POWER
RATING | | ZENER
VOLTS
@ IZT | TEST
CUR-
RENT
IZT | MAXI
DYNA
IMPED
(See N
@ IZT | MIC | TEST
CUR-
RENT
IZK | REVERSE
CURRENT
@ 25°C
IR @ VR | | TYPE | mW | NOTES | VOLTS | mA | OHMS | онмѕ | mA | μA VOLT | | 1N742
1N743
1N744
1N745
1N761 | 250
250
250
250
250 | 4
4
4
4
6 | 150
160
180
200
4.3-5.4 | 1
1
1
1
10 | 860
970
1200
1400
40 | | | | | 1N762
1N763
1N764
1N765
1N766 | 250
250
250
250
250 | 6
6
6
6 | 5.2-6.4
6.2-8.0
7.5-10
9-12
11-14.5 | 10
10
10
5
5 | 18
7
12
45
55 | | | | | 1N767
1N768
1N769
1N3477 | 250
250
250
250 | 6
6
4 | 13.5-18
17-21
20-27
2.2 | 5
5
5
5 | 70
100
150
60 | | | | | 400 mW | TYPES | | | | | | | CA | SE 39 | |--|---------------------------------|------------------------------|---------------------------------|------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------|---------------------------------| | •1 N746A
•1 N747A
•1 N748A
•1 N749A
•1 N750A | 400
400
400
400
400 | 5
5
5
5
5 | 3.3
3.6
3.9
4.3
4.7 | 20
20
20
20
20 | 28
24
23
22
19 | | | 5
5
5
10 | 1.0
1.0
1.0
1.0
2.0 | | •1N751A
•1N752A
•1N753A
•1N754A
•1N755A | 400
400
400
400
400 | 5
5
5
5 | 5.1
5.6
6.2
6.8
7.5 | 20
20
20
20
20 | 17
11
7
5
6 | | | 10
10
10
5
5 | 2.0
3.0
4.0
5.0
6.0 | | ·1N7564
·1N757A
·1N758A
·1N759A
1N957 | 400
400
400
400
400 | 5
5
5
7 | 8.2
9.1
10
12
6.8 | 20
20
20
20
20
18.5 | 8
10
17
30
4.5 | 700 | 1.0 | 5
5
5
5 | 6.5
7.0
8.0
9.0 | | 1N958
1N959
1N960
1N961
1N962B | 400
400
400
400
400 | 7
7
7
7 | 7.5
8.2
9.1
10
11 | 16.5
15
14
12.5
11.5 | 5.5
6.5
7.5
8.5
9.5 | 700
700
700
700
700 | 0.5
0.5
0.5
0.25
0.25 | | | | 1N963B
1N964B
1N965B
1N966B
1N967B | 400
400
400
400
400 | 7
7
7
7 | 12
13
15
16
18 | 10.5
9.5
8.5
7.8
7.0 | 11.5
13
16
17
21 | 700
700
700
700
750 | 0.25
0.25
0.25
0.25
0.25 | | | | 1 N9688
1 N969B
1 N970B
1 N971B
1 N972B | 400
400
400
400
400 | 7
7
7
7 | 20
22
24
27
30 | 6.2
5.6
5.2
4.6
4.2 | 25
29
33
41
49 | 750
750
750
750
750 | 0.25
0.25
0.25
0.25
0.25 | | | | 1N973B
1N974B
1N975B
1N976B | 400
400
400
400
400 | 7
7
7
7 | 33
36
39
43
47 | 3.8
3.4
3.2
3.0
2.7 | 58
70
80
93
105 | 1000
1000
1000
1500
1500 | 0.25
0.25
0.25
0.25
0.25 | | | | 1N978B
1N979B
1N980B
1N981B
1N982B | 400
400
400
400
400 | 7
7
7
7 | 51
56
62
68
75 | 2.5
2.2
2.0
1.8
1.7 | 125
150
185
230
270 | 1500
2000
2000
2000
2000 | 0.25
0.25
0.25
0.25
0.25 | | | | ·1N983B
·1N984B
·1N985B
·1N986B
·1N987B | 400
400
400
400
400 | 7
7
7
7
7 | 82
91
100
110
120 | 1.5
1.4
1.3
1.1
1.0 | 330
400
500
750
900 | 3000
3000
3000
4000
4500 | 0.25
0.25
0.25
0.25
0.25 | | | | ·1N988B
·1N989B
·1N990B
·1N991B
·1N992B | 400
400
400
400
400 | 7
7
7
7
7 | 130
150
160
180
200 | .95
.85
.80
.68 | 1100
1500
1700
2200
2500 | 5000
6000
6500
7100
8000 | 0.25
0.25
0.25
0.25
0.25 | | | # ZENER VOLTAGE REGULATOR DIODES 1 WATT FLANGELESS TYPES CASE 36 1 WATT Glass-Amp® CASE 38 | | POWER RATING | | ZENER
VOLTS
@ IZT | TEST
CUR-
RENT
IZT | IMPER
(See N | MUM
MIC
DANCE
lote 1)
@ lzk | TEST
CUR-
RENT
IZK | CUR
@ | ERSE
RENT
25°C
@ VR | |--|-----------------------|-----------------------|--|--------------------------------------|--
--|--|----------------------------|------------------------------| | TYPE | (Watts) | NOTE | VOLTS | mA | OHMS | OHMS | mA | μА | VOLT | | •1N3021
•1N3022
•1N3023
•1N3024
•1N3025 | 1
1
1
1 | 1
1
1
1 | 11
12
13
15
16 | 23
21
19
17
15.5 | 8
9
10
14
16 | 700
700
700
700
700 | 0.25
0.25
0.25
0.25
0.25 | 10
10
10
10 | Î | | •1N3026
•1N3027
•1N3028
•1N3029
•1N3030 | 1
1
1
1 | 1
1
1
1 | 18
20
22
24
27 | 14
12.5
11.5
10.5
9.5 | 20
22
23
25
35 | 750
750
750
750
750 | 0.25
0.25
0.25
0.25
0.25 | 10
10
10
10 | | | •1N3031
•1N3032
•1N3033
•1N3034
•1N3035 | 1
1
1
1 | 1
1
1
1 | 30
33
36
39
43 | 8.5
7.5
7
6.5
6 | 40
45
50
60
70 | 1000
1000
1000
1000
1500 | 0.25
0.25
0.25
0.25
0.25 | 10
10
10
10 | E 2 - | | •1N3036
•1N3037
•1N3038
•1N3039
•1N3040 | 1
1
1
1 | 1
1
1
1 | 47
51
56
62
68 | 5.5
5
4.5
4
3.7 | 80
95
110
125
150 | 1500
1500
2000
2000
2000 | 0.25
0.25
0.25
0.25
0.25 | 10
10
10
10 | SEE NOTE | | •1N3041
•1N3042
•1N3043
•1N3044
•1N3045 | 1
1
1
1 | 1
1
1
1 | 75
82
91
100
110 | 3.3
3
2.8
2.5
2.3 | 175
200
250
350
450 | 2000
3000
3000
3000
4000 | 0.25
0.25
0.25
0.25
0.25 | 10
10
10
10 | | | •1N3046
•1N3047
•1N3048
•1N3049
•1N3050
•1N3051 | 1
1
1
1
1 | 1
1
1
1
1 | 120
130
150
160
180
200 | 2
1.9
1.7
1.6
1.4
1.2 | 550
700
1000
1100
1200
1500 | 4500
5000
6000
6500
7000
8000 | 0.25
0.25
0.25
0.25
0.25
0.25 | 10
10
10
10
10 | ļ | | | POWER
RATING | | ZENER
VOLTS
@ IZT | TEST
CUR-
RENT
IZT | MAXI
DYN/
IMPEC
(See N
@ IZT | AMIC | TEST
CUR-
RENT
IZK | CUR
@ | ERSE
RENT
25°C
@ Vr | |---|----------------------------|----------------------------|---|--|---|--|--|---|------------------------------| | TYPE | (Watts) | NOTE | VOLTS | mA | OHMS | OHMS | mA | μА | VOLT | | 1N4162
1N4163
1N4164
1N4165
1N4166 | 1
1
1
1 | 1
1
1
1 | 10
11
12
13
15 | 25
23
21
19
17 | 7
8
9
10
14 | 700
700
700
700
700 | 0.25
0.25
0.25
0.25
0.25 | 10
5
5
5
5 | Î | | 1N4167
1N4168
1N4169
1N4170
1N4171 | 1
1
1
1 | 1
1
1
1 | 16
18
20
22
24 | 15.5
14
12.5
11.5
10.5 | 16
20
22
23
25 | 700
750
750
750
750 | 0.25
0.25
0.25
0.25
0.25 | 5
5
5
5
5 | | | 1N4172
1N4173
1N4174
1N4175
1N4176 | 1
1
1
1 | 1
1
1
1 | 27
30
33
36
39 | 9.5
8.5
7.5
7.0
6.5 | 35
40
45
50
60 | 750
1000
1000
1000
1000 | 0.25
0.25
0.25
0.25
0.25 | 5
5
5
5
5 | 2 | | 1N4177
1N4178
1N4179
1N4180
1N4181 | 1
1
1
1 | 1
1
1
1 | 43
47
51
56
62 | 6.0
5.5
5.0
4.5
4.0 | 70
80
95
110
125 | 1500
1500
1500
2000
2000 | 0.25
0.25
0.25
0.25
0.25 | 5
5
5
5
5
5 | SEE NOTE | | 1N4182
1N4183
1N4184
1N4185
1N4186 | 1
1
1
1 | 1
1
1
1 | 68
75
82
91
100 | 3.7
3.3
3.0
2.8
2.5 | 150
175
200
250
350 | 2000
2000
3000
3000
3000 | 0.25
0.25
0.25
0.25
0.25 | 5 | | | 1 N4187
1 N4188
1 N4189
1 N4190
1 N4191
1 N4192
1 N4193 | 1
1
1
1
1
1 | 1
1
1
1
1
1 | 110
120
130
150
160
180
200 | 2.3
2.0
1.9
1.7
1.6
1.4 | 450
550
700
1000
1100
1200
1500 | 4000
4500
5000
6000
6500
7000
8000 | 0.25
0.25
0.25
0.25
0.25
0.25
0.25 | 5
5
5
5
5
5
5
5
5
5
5 | | ·Available in MIL Type. Note: 1. 20% tolerance: suffix A = 10%, suffix B = 5%. 2. $V_R = Vz \times [100 - (\% \text{ tolerance})] \times 0.8 \times 1/100$ # **Glass-Amp**® - Handles one full ampere at 100°C; PRV to 1,000V - Miniature Space-Saver Symmetrical package (only .150" x .360") STILL THE INDUSTRY'S MOST POPULAR 1-AMP SILICON RECTIFIER # OVER 50 MILLION NOW IN USE! - Fully insulated, hermetically sealed body mounts directly on PC boards. - Withstands 50-ampere surge current # GERMANIUM TRANSISTORS #### GERMANIUM COMPUTER TRANSISTORS/INTERMEDIATE TO HIGH CURRENT/MEDIUM SPEED D.C. SWITCHING RATINGS AT 25°C AMBIENT TEMPERATURE (UNLESS OTHERWISE SPECIFIED) | | | | | MAXIMUM
@ 2 | | | lo | СВО | | TIC FORWARD
RANSFER RATIO | | | Alpha | 90 | |---|-----------------------|--|---------------------------------|----------------------------|----------------------------|------------------------------|----------------------------|-----------------------|---------------------------------|--------------------------------------|----------------------------------|----------------------------|------------------------------|---------------------------------| | | Polarity | | Pc | | | VCEO *VCES #VCER | Vсв | May | TEST CON | IDITIONS | LI | MITS | Cutoff
Frequency | Collector
Capacity | | TYPE | P-PNP
N-NPN | Case | @25°C
mW | VCBO
Volts | VEBO
Volts | +VCEX
Volts | Volts | Max.
μA | IC
mA | VCE
Volts | Min. | Max. | fara
Min.
MHz | Max.
pF | | 2N315A
2N316
2N316A
2N356
2N356A | PPPZ | 6
6
6
6 | 150
100
150
100
150 | 30
20
30
20
30 | 20
20
20
20
20 | 20
10
15
18
20 | 5
5
5
5 | 2
2
2
5
5 | 100
200
200
100
100 | 0.2
0.2
0.2
0.25
0.25 | 20
20
20
20
20
20 | 50
50
50
50
50 | θ5
θ12
θ12
θ3
θ3 | #14
#14
#14
#14
#14 | | 2N357A
2N358
•2N358A
2N377A
2N388A | 2222 | 6
6
6 (G.B.)
6 (G.B.) | 150
100
150
150
150 | 30
20
30
40
40 | 20
20
20
15
15 | 20
12
15
+40
#20 | 5
5
1.0
1.0 | 5
5
5
5
5 | 200
300
300
200
200 | 0.25
0.25
0.25
0.75
0.75 | 25
20
25
20
30 | 75
50
75 | θ6
θ9
θ9
θ6 | θ14
θ14
θ14
20
20 | | ·2N396A
2N579
2N580
·2N1306
·2N1307 | P
P
P
N
P | 6 (G.B.)
6
6
6 (G.B.)
6 (G.B.) | 200
150
150
150
150 | 30
20
20
25
30 | 20
12
20
25
25 | 20 | 20
12
12
25
25 | 6
5
6
6 | 200
400
400
200
200 | 0.35
0.3
0.3
0.35
0.35 | 15
20
30
20
20 | 150 | 5
5
10
10
10 | 20
20
20 | #### COMPUTER TRANSISTORS/MEDIUM CURRENT FOR MEDIUM SPEED D.C. SWITCHING | ·2N404
·2N404A
2N438A
2N439A
2N440A | P
P
N
N | 6
6
6 (G.B.)
6
6 | 150
150
150
150
150 | 25
40
30
30
30 | 12
25
25
25
25 | 25
25
15 | 12
12
25
25
25 | 5
5
10
10 | 50
50
50 | 1.0
1.0
1.0 | 20
30
40 | | 4
4
2.5
5
10 | 20
20
20
20
20
20 | |---|-----------------------|------------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------|----------------------------|--------------------------------------|-----------------------------|-------------------------------|---------------------------|---| | 2N444A
2N445A
2N446A
2N447A
2N519A | N N N N P | 6
6
6
6 | 150
150
150
150
150 | 40
30
30
30
25 | 10
10
10
10 | 25
18
15
12
18 | 5
5
5
5 | 4
4
4
2 | 20
20
20
20
20 | 0.25
0.25
0.25
0.25
0.25 | 20
40
60
80
20 | 40
160
250
300
50 | 0.5
2
5
9
0.5 | $ \begin{array}{c} \theta 14 \\ \theta 14 \\ \theta 14 \\ \theta 14 \\ \theta 14 \end{array} $ | | 2N520A
2N521A
2N522A
2N523A
2N585 | P
P
P
P
N | 6
6
6
6 | 150
150
150
150
150 | 25
25
25
20
25 | 10
10
10
10
20 | 15
12
10
6 | 5
5
5
5
2.5 | 2
2
2
2
6 | 20
20
20
20
20 | 0.25
0.25
0.25
0.25
0.25 | 40
60
80
100
20 | 170
250
320
400 | 3
8
15
21
3 | $ \begin{array}{c} \theta 14 \\ \theta 14 \\ \theta 14 \\ \theta 14 \\ 20 \end{array} $ | #### MEDIUM POWER ALLOY JUNCTION TRANSISTORS FOR SWITCHING AND AMPLIFIER APPLICATIONS | 2N597 | P | 6 | 250 | 45 | 45 | *40 | 1.5 | 5 | 100 | 1.0 | 40 | 225 | 3 | 20 | |---------------------------|-------------|--------------------------------|-------------------|----------------|----------------|------------------|------------------|-------------|----------------------------|-------------------|-----------------|------------|---------------------
----------------| | •2N598 | P | 6 | 250 | 35 | 30 | *35 | 1.5 | 5 | 100 | 1.0 | 70 | | 5fT | 20 | | •2N599 | P | 6 | 250 | 30 | 20 | *20 | 1.5 | 5 | 100 | 1.0 | 100 | | 10fT | 20 | | •2N600
2N601
2N2648 | P
P
P | Fig. 12
Fig. 12
6 (G.C.) | 750
750
300 | 35
30
35 | 30
20
30 | *35
*20
10 | 1.5
1.5
15 | 5
5
5 | 100
100
1.0 A | 1.0
1.0
0.5 | 70
100
80 | 225
500 | 5fr
10fr
10fr | 20
20
30 | #### HIGH VOLTAGE TRANSISTORS FOR NIXIE AND OTHER NEON TUBE DRIVERS | 2N398A | 2.5 14 5
5 7 5
5 7 5
5 7 5
5 7 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | |--------|--|---| |--------|--|---| #### BILATERAL TRANSISTORS FOR CORE AND DRUM MEMORY ADDRESSING CHOPPER SERVICE | | | | | | | | | | IB. | | | | | |-------------------------|-------|-------------|-------------------|----------------|----------------|----------------|-------------|-------------|-------------------|-------------------|----------------|---------------|--| | 2N594
2N595
2N596 | 2 2 2 | 6
6
6 | 150
150
150 | 20
20
20 | 20
20
20 | 20
15
10 | 5
5
5 | 5
5
5 | 1.0
1.0
1.0 | 0.2
0.2
0.2 | 20
35
50 | 1.5
3
5 | $ heta 15 \\ heta 15 \\ heta 15 \\ heta 15$ | #### AUDIO TRANSISTORS FOR AUDIO AND LOW SPEED COMPUTER APPLICATIONS | | | | | MAXI | MUM RAT
@ 25°C | INGS | lc | ВО | | | CURRENT
ION EMITT | | | ALPHA
CUTOFF | |--|----------------------------|------------------|---------------------------------|----------------------------|----------------------------|----------------------|--------------------------|----------------------|------------------|---------------------------|-----------------------|-----------------------------|------|-------------------------------------| | TYPE | Polarity
P-PNP
N-NPN | Case | Pc
@ 25°C
mW | VCBO
Volts | VEBO
Volts | VCEO
Volts | V _{CB}
Volts | Max.
μA | IC mA | ONDITIONS
VCE
Volts | Freq. | LIN
Min. | Max. | Frequency
facto
Min.
MHz | | +2N331
+2N464
+2N465
+2N466
+2N467 | P
P
P | 6
6
6
6 | 150
150
150
150
150 | 30
45
45
35
35 | 12
12
12
12
12 | 40
30
20
15 | 20
20
20
20 | 15
15
15
15 | 1
1
1
1 | 6
6
6
6 | 1
1
1
1
1 | 30
14
27
56
112 | 70 | 0.4
θ0.7
θ0.8
θ1.0
θ1.2 | Notes: #Typical Values · Available to Military Specifications G.B. - Base Connected to Case G.C. - Collector Connected to Case # SILICON TRANSISTORS | | | | | MAXII | MUM RAT | rings | | VARD CURR | | V | BE | VCE | (SAT) | GAIN
BAND- | COLLECTOR | |------------------------------|-----------|------------------|-------------------|------------|---------|------------------|-------------------|----------------|------------------|-------------------|-------------------|-------------------|--------------------|---------------|-----------| | TYPE | 2240 | POLARII
P—PNP | @ 25°C | VCBO | VEBO | +VCER | lc | | | lc | VOLTS | Ic | VOLTS | T MIN. | Cob MAX. | | HIGH SPI | FFD | SWITCH | | VOLTS | VOLTS | VOLTS | mA | MIN. | MAX. | mA | MAX. | mA. | MAX. | MHz | pF | | 2N706 | 9 | N | 300 | 25 | 3 | +20 | 10 | 20 | | 10 | 0.9 | 10 | 0.6 | 200 | 6 | | 2N706A | 9 | N | 300 | 25 | 5 | 15
+20 | 10 | 20 | 60 | 10 | 0.9 | 10 | 0.6 | 200 | 5 | | 2N706B | 9 | Ν | 300 | 25 | 5 | 15
+20 | 10 | 20 | 60 | 10 | 0.9 | 10 | 0.4 | 200 | 5 | | 2N708 | 9 | N | 360 | 40 | 5 | 15
+20 | 10 | 30 | 120 | 10 | 0.8 | 10 | 0.4 | 300 | 6 | | 2N743
2N744 | 9 | N | 300
300 | 20
20 | 5
5 | 12
12 | 10
10 | 20
40 | 60
120 | 10
10 | 0.85
0.85 | | | 280
280 | 5 | | 2N753 | 9 | N | 300 | 25 | 5 | 15
+20 | 10 | 40 | 120 | 10 | 0.9 | 10 | 0.6 | 200 | 5 | | 2N834
2N835 | 9 | N | 300
300 | 40
25 | 5 | 20 | 10
10 | 25
20 | | 10
10 | 0.9
0.9 | 10
10 | 0.25
0.3 | 350
300 | 4 4 | | LOW LEV | EL, I | LOW NO | DISE AMP | LIFIER | | | | | | | | | | | | | 2N929
2N929A | 9 | N | 300
300 | 45
60 | 5
6 | 45
45 | 0.01 | 40
40 | 120
120 | 10
10 | 1.0 | 10
10 | 1.0
0.5 | 30
45 | 8 | | 2N930 | 9 | N | 500 | 45 | 5 | 45 | 0.01 | 100 | 300 | 10 | 1.0 | 10 | 1.0 | 30 | 8 | | 2N930A
2N2483 | 9 | N
N | 500
360 | 60
60 | 6 | 45
60 | 0.01
0.01 | 100
40 | 300
120 | 10
0.1 | 0.9 | 10
1.0 | 0.5
0.35 | 45
60 | 6 | | CORE DR | 9
IVED | N | 360 | 60 | 6 | 60 | 0.01 | 100 | 500 | 0.1 | 0.7 | 0.1 | 0.35 | 60 | 6 | | | | | | | - | 30 | | | | | | | | | | | 2N2537 | 6 | N | 800 | 60 | 5 | +40
30 | 500 | 20 | | 500 | 2.6 | 500 | 1.6 | 250 | 8 | | 2N2538
2N2539 | 6
9 | N | 800 | 60 | 5 | +40
30 | 500 | 30 | | 500 | 2.6 | 500 | 1.6 | 250 | 8 | | 2N2539
2N2540 | 9 | N | 500
500 | 60
60 | 5
5 | +40
30 | 500
500 | 20
30 | | 500
500 | 2.6 | 500
500 | 1.6 | 250
250 | 8 8 | | GENERAL | _ | RPOSE, | MEDIUM | SPEED. | MEDI | +40 | | PLIFIER | AND | SWITCH | 2.6 | 300 | 1.6 | 230 | | | 2N696 | 6 | N N | 600 | 60 | 5 | +40 | 150 | 20 | 60 | 150 | 1.3 | 150 | 1.5 | 40 | 35 | | 2N697 | 6 | N | 600 | 60 | 5 | +40 | 150 | 40 | 120 | 150 | 1.3 | 150 | 1.5 | 50 | 35 | | 2N698
2N699 | 6
6 | N
N | 800
600 | 120
120 | 7
5 | +80
+80 | 150
150 | 20
40 | 60
120 | 150
150 | 1.3
1.3 | 150
150 | 5
5 | 40
50 | 15
20 | | 2N718 | 9 | N | 400 | 60 | 5 | +40
32 | 150 | 40 | 120 | 150 | 1.3 | 150 | 1.5 | 50 | 35 | | 2N718A | 9 | N | 500 | 75 | 7 | +50
35 | 150 | 40 | 120 | 150 | 1.3 | 150 | 1.5 | 60 | 25 | | 2N721 | 9 | Р | 400 | 50 | 5 | +50
35 | 150 | 20 | 45 | 150 | 1.3 | 150 | 1.5 | 50 | 45 | | 2N722 | 9 | Р | 400 | 50 | 5 | +50
35 | 150 | 30 | 90 | 150 | 1.3 | 150 | 1.5 | 60 | 45 | | 2N1131
2N1132 | 6 | P
P | 600 | 50
50 | 5
5 | +50
35 | 150
150 | 20
30 | 45
90 | 150
150 | 1.3 | 150
150 | 1.5
1. 5 | 50
60 | 45
45 | | 2N1613 | | - N | 600
800 | 75 | 7 | +50
+50 | 150 | 40 | 120 | 150 | 1.3 | 150 | 1.5 | 60 | 25 | | 2N1711 | 6
6 | N | 800 | 75
75 | 7 | +50
+50
80 | 150 | 100 | 300 | 150 | 1.3 | 150 | 1.5 | 70 | 25 | | 2N1893
2N2192 | 6
6 | N
N | 800
800 | 120
60 | 7
5 | +100
40 | 150
150 | 40
100 | 120
300 | 150
150 | 1.3
1.3 | 150
150 | 5
0.35 | 50
50 | 15
20 | | 2N2192A | 6 | N | 800 | 60 | 5 | 40 | 150 | 100 | 300 | 150 | 1.3 | 150 | 0.25 | 50 | 20 | | 2N2192B
2N2193 | 6 | N
N | 800
800 | 60
80 | 5
8 | 40
50 | 150
150 | 100
40 | 300
120 | 150
150 | 1.3 | 150
150 | 0.18
0.35 | 50
50 | 20
20 | | 2N2193A
2N2193B
2N2217 | 6 | N
N | 800
800
800 | 80
80 | 8 | 50
50
30 | 150
150 | 40
40
20 | 120
120
60 | 150
150
150 | 1.3
1.3
1.3 | 150
150
150 | 0.25
0.18 | 50
50 | 20
20 | | 2N2217
2N2218 | 6
6 | N | 800 | 60
60 | 5
5 | 30 | 150
150 | 40 | 120 | 150 | 1.3 | 150 | 0.4 | 250
250 | 8 8 | | 2N2218A
2N2219 | 6 | N | 800
800 | 75
60 | 6
5 | 40
30 | 150
150 | 40
100 | 120
300 | 150
150 | 1.2
1.3 | 150
150 | 0.3
0.4 | 250
250 | 8 | | 2N2219A
2N2220 | 6
9 | N
N | 800
500 | 75
60 | 6
5 | 40
30 | 150
150 | 100
20 | 300
60 | 150
150 | 1.2
1.3 | 150
150 | 0.3
0.4 | 300
250 | 8 8 | | 2N2221
2N2221A | 9
9 | N
N | 500
500 | 60
75 | 5
6 | 30
40 | 150
150 | 40
40 | 120
120 | 150
150 | 1.3
1.2 | 150
150 | 0.4
0.3 | 250
250 | 8 | | 2N2222
2N2222A | 9 | N
N | 500
500 | 60
75 | 5 | 30
40 | 150
150 | 100
100 | 300
300 | 150
150 | 1.3
1.2 | 150
150 | 0.4
0.3 | 250
300 | 8 8 | | 2N2303 | 6 | Р | 600 | 50 | 5 | 35
+50 | 150 | 75 | 200 | 150 | 1.3 | 150 | 1.5 | 60 | 45 | | 2N2837
2N2838 | 9 | P
P | 500
500 | 50
50 | 5
5 | 35
35 | 150
150 | 30
75 | 90
225 | 150
150 | 1.3 | 150
150 | 0.4 | 120
120 | 25
25 | | 2N2938
2N2904 | 6 | P | 600 | 60 | 5 | 40 | 150
150
500 | 40
20 | 120 | 150
500 | 1.3 | 150
500 | 0.4 | 200 | 8 | | 2N2904A | 6 | Р | 600 | 60 | 5 | 60 | 150
500 | 40
40 | 120 | 150
500 | 1.3 | 150
500 | 0.4 | 200 | 8 | | 2N2905 | 6 | Р | 600 | 60 | 5 | 40 | 150
500 | 100
30 | 300 | 150
5 JO | 1.3
2.6 | 150
500 | 0.4
1.6 | 200 | 8 | | 2N2905A | 6 | Р | 600 | 60 | 5 | 60 | 150
500 | 100
50 | 300 | 150
500 | 1.3
2.6 | 150
500 | 0.4 | 200 | 8 | | 2N2906 | 9 | P | 400 | 60 | 5 | 40 | 150
500 | 40
20 | 120 | 150
500 | 1.3
2.6 | 150
500 | 0.4
1.6 | 200 | 8 | | 2N2906A | 9 | Р | 400 | 60 | 5 | 60 | 150
500 | 40
40 | 120 | 150
500 | 1.3
2.6 | 150
500 | 0.4
1.6 | 200 | 8 | | 2N2907 | 9 | Р | 400 | 60 | 5 | 40 | 150
500 | 100
30 | 300 | 150
500 | 1.3 | 150
500 | 0.4 | 200 | 8 | | 2N2907A | 9 | Р | 400 | 60 | 5 | 60 | 150
500 | 100
50 | 300 | 150
500 | 1.3 | 150
500 | 0.4
1.6 | 200 | 8 | | 2N3133
2N3134 | 6 | P
P | 600
600 | 50
50 | 4 | 35
35 | 150
150 | 40
100 | 120
300 | 150
150 | 1.5
1.5 | 150
150 | 0.6
0.6 | 200
200 | 10
10 | | 2N3135
2N3136 | 9 | P
P | 400
400 | 50
50 | 4 | 35
35 | 150
150 | 40
100 | 120
300 | 150
150 | 1.5
1.5 | 150
150 | 0.6
0.6 | 200
200 | 10 | | 2.10100 | - | | →00 | 30 | | 35 | 130 | 100 | 300 | 150 | 1.5 | | 0.0 | 200 | 10 | # EPOXY ENCAPSULATED TRANSISTORS **EPOXY ENCAPSULATED TRANSISTORS** CASE 42 | | POLARITY
N-NPN | Vсво | VCEO | VEBO |
hfe | @ VCE | . Ic | h _{fe} (| @ VCE | lc | ft | Cob @ | VCB | VCE (SAT | VCE @ I | С | PD | |--|---|----------------------------------|----------------------------------|--|--|----------------------------------|--|---|---------------------------------|---|---|--|----------------------------------|--|---|---|---| | TYPE* | P—PNP | VOLTS | VOLTS | VOLTS | | VOLTS | mA | | VOLTS | m A | MHz | pF | VOLTS | | mA. | m A | mW | | 2N2711
2N2712
2N2713
2N2714
2N2715 | 2222 | 18
18
18
18
18 | 18
18
18
18 | 5.0
5.0
5.0
5.0
5.0 | 30-90
75-125
30-90
75-225
30-90 | 4.5
4.5
4.5
4.5
4.5 | 2
2
2
2
2 | 30-120
80-300
30-120
80-300
30-120 | 4.5
4.5
4.5
4.5
4.5 | 2
2
2
2
2 | = = = | 4.5-12
4.5-12
—
5.0 | 10
10
—
10 | .30 | 50
50 | 3
3
— | 200
200
200
200
200 | | 2N2716
2N2921
2N2922
2N2923
2N2924 | 2222 | 18
25
25
25
25
25 | 18
25
25
25
25 | 5.0
5.0
5.0
5.0
5.0 | 75-225
—
—
—
— | 4.5
—
—
— | <u>2</u>
 | 80-300
35-70
55-110
90-180
150-300 | 4.5
10
10
10 | 2
2
2
2
2 | = | 5.0
4.5-12
4.5-12
4.5-12
4.5-12 | 10
10
10
10 | | = | ======================================= | 200
200
200
200
200 | | 2N2925
2N2926
2N3390
2N3391
2N3391A | N
N
N
N | 25
18
25
25
25 | 25
18
25
25
25 | 5.0
5.0
5.0
5.0
5.0 | | -
4.5
4.5
4.5 | | 235-470
35-470
400-1250
250-800
250-800 | 10
10
— | 2
2
— | ======================================= | 4.5-12
4.5-12
4.5-10
4.5-10
4.5-10 | 10
10
10
10 | | | | 200
200
200
200
200 | | 2N3392
2N3393
2N3394
2N3395
2N3396 | 2 | 25
25
25
25
25
25 | 25
25
25
25
25
25 | 5.0
5.0
5.0
5.0
5.0 | 150-300
90-180
55-110
150-500
90-500 | 4.5
4.5
4.5
4.5
4.5 | 2
2
2
2
2 | 150-500
90-400
55-300
150-800
90-800 | = | = | = | 4.5-10
4.5-10
4.5-10
4.5-10
4.5-10 | 10
10
10
10 | | ======================================= | = | 200
200
200
200
200 | | 2N3397
2N3398
2N3414
2N3416
2N3563 | N
N
N
N | 25
25
25
50
30 | 25
25
25
50
12 | 5.0
5.0
5.0
5.0
4.0 | 55-500
55-800
75-225
75-225
20-200 | 4.5
4.5
4.5
4.5 | 2
2
2
2
8 | 55-800
55-1250
75
75
20-250 | | _
_
_
8 | | 4.5-10
4.5-10
—
—
1.7 | 10
10
—
10 | .30 |
50
50 |
3
3 | 200
200
360
360
200 | | 2N3564
2N3565
2N3566
2N3605
2N3606 | 2 2 2 2 2 2 2 | 30
30
40
18
18 | 15
25
30
14
14 | 4.0
6.0
5.0
5.0
5.0 | 20-500
150-600
150-600
30
30 | 10
10
10
1 | 15
1
10
10
10 | 120-750
— | | <u>1</u>
 | 400-1200
40-240
40-240
300
300 | 3.5
4.0
25
6.0
6.0 | 10
5.0
10
10 | .30
1.0
.25
.25 | 20
100
10
10 | 2
10
1 | 200
200
300
200
200 | | 2N3607
2N3638
2N3638A
2N3641
2N3643 | N
P
N
N | 18
25
50
60 | 14
25
50
30
30 | 5.0
4.0
4.0
5.0
5.0 | 30
30
30-180
40-120
100-300 | 1
1
1
10
10 | 10
50
50
150
150 | 25
25
— | 10
10
— | 10
10
— | 300
100
100
250
250 | 6.0
20
10
8.0
8.0 | 10
10
10
10 | .25
1.0
1.0
.22 | 10
300
300
150
150 | 1
30
30
15 | 200
300
300
350
350 | | 2N3644
2N3645
2N3662
2N3663
2N3691 | P
P
N
N | 45
60
18
30
35 | 45
60
12
12
20 | 5.0
5.0
3.0
3.0
4.0 | 100-300
100-300
20
20
40-160 | 10
10
10
10 | 150
150
8
8 |

40-200 | _
_
_
_
10 |

5 | 200
200
700-2100
700-2100
200-500 | 8.0
8.0
.8-1.7
.8-1.7
.5-3.5 | 10
10
10
10 | .25
.25
—
.70 | 50
50
—
10 | 2.5
2.5
—
—
1 | 300
300
200
200
200 | | 2N3692
2N3702
2N3703
2N3704
2N3705 | N
P
N
N | 35
40
50
50
50 | 20
25
30
30
30 | 4.0
5.0
5.0
5.0
5.0 | 100-400
60-300
30-150
100-300
50-150 | 1
5
5
3
2 | 10
50
50
50
50 | 100-560
—
—
—
— | 10
 | 5
—
— | 200-500
100
100
100
100 | .5-3.5
12
12
12
12 | 10
10
10
10 | .70
.25
.25
.60
.80 | 10
50
50
100 | 1
5
5
5 | 200
300
300
360
360 | | 2N3706
2N3707
2N3708
2N3709
2N3710 | 2222 | 40
30
30
30
30 | 20
30
30
30
30 | 5.0
6.0
6.0
6.0 | 30-600
100-400
45-660
45-165
90-330 | 2
5
5
5
5 | 50
.1
1
1 | 100-550
45-800
45-250
90-450 | 5
5
5
5 | .1
1
1
1 | 100
 | 12
 | 10
 | 1.0
1.0
1.0
1.0 | 100
10
10
10
10 | 5
5
5
5 | 360
250
250
250
250 | | 2N3711
2N3721
2N3793
2N3794
2N3825 | 2222 | 30
18
40
40
30 | 30
18
20
20
15 | 6.0
5.0
5.0
5.0
4.0 | 180-600
20-120
100-600
20 | 5
10
10
10 | 1
10
10
2 | 180-800
60-660
— | 5
10
— | 1
- |
100-600
100-600
200-800 | 4.5-12
10
10
3.5 | 10
10
10
10 | 1.0
 | 10
10
10
2 | 5
1
1
2 | 250
200
250
250
250 | | 2N3828
2N3843A
2N3844A
2N3845A
2N3858 | N N | 40
30
30
30
30 | 40
30
30
30
30 | 3.0
4.0
4.0
4.0
4.0 | 30-200
20-40
35-70
60-120
60-120 | 20
4.5
4.5
4.5
4.5 | 12
2
2
2
2 | = | <u>-</u>
-
- | ======================================= | 200-500*
60-230
90-250
126-290
90-250 | 2.5-5
2-4
2-4
2-4
2-4 | 20
10
10
10 | = | = | = | 300
200
200
200
200 | | 2N3859
2N3860
2N3900
2N3900A
2N3903 | 2 2 2 2 2 2 2 | 30
30
18
18
60 | 30
30
18
18
40 | 4.0
4.0
5.0
5.0
6.0 | 100-200
150-300
250-500
250-500
50-150 | 4.5
4.5
4.5
4.5 | 2
2
2
2
10 |
170-800
170-800
50-200 | 4.5
4.5
10 | | 90-250
90-250
—
—
250 | 2-4
2-4
4.5-12
4.5-12
4.0 | 10
10
10
10
5.0 | .30 |

50 | | 200
200
200
200
310 | | 2N3904
2N3905
2N3906
2N3983
2N3984
2N3985 | N
P
P
N
N | 60
40
40
30
30
30 | 40
40
40
12
12 | 6.0
5.0
5.0
3.0
3.0
3.0 | 100-300
50-150
100-300
30
20
20 | 1
1
1
10
10 | 10
10
10
4
4 | 100-400
50-200
100-400
— | 10
10
10
— | 1
1
— | 300
200
250
500-1800
400-1800
300-1800 | 4.0
4.5
4.5
.7-1.6
.7-2.2 | 5.0
5.0
5.0
10
10 | .30
.40
.40
— | 50
50
50
— | 5
5
— | 310
310
310
200
200
200 | | 2N4140
2N4141
2N4142
2N4143
2N4227
2N4228 | N | 60
60
60
60
60 | 30
30
40
40
30
40 | 5.0
5.0
5.0
5.0
5.0
5.0 | 40-120
100-300
40-120
100-300
75-150
75-150 | 10
10
10
10
10
10 | 150
150
150
150
150
150 | | _
_
_
_ | | 250
250
200
200
200
250
200 | 8.0
8.0
8.0
8.0
8.0
8.0 | 10
10
10
10
10
10 | .40
.40
.40
.40
.40
.40 | 150
150
150
150
150
150 | 15
15
15
15
15
15 | 300
300
300
300
300
300
300 | ^{*}All devices are in a TO-18 type epoxy package. # GERMANIUM DIODES #### GERMANIUM FAST RECOVERY DIODES CASE 35 | TYPE | MIN. FO | MINIMUM
FORWARD CURRENT
(mA)
@ +1.0 VOLT | | IAXIMUM I
@ Vr | | E CURRI | | REVER
IF | RSE REC | OVERY
Vr | LEVEL | LIMIT | LEVEL | LIMIT | | |--|-----------------------------|---|-----------------|---|--------------------------|----------------------|----------------------|--------------------------|------------|----------------------|---------------------------|--------------------------------|-------------------|----------------------|--| | @ 25°C) | (Volt) | | (µa) | (V) | (μ a) | (V) | (°C) | (mA) | (mA) | (Volts) | (KΩ) | nsec | (ΚΩ) | nsec | REVERSE RECOVERY CIRCU | | 1N60
1N191
1N192
1N276
1N480 | 30
90
70
100
90 | 5.0
5.0
40
5.0 | 25
100 | 10
10,55°C
10,55°C
50
20,60°C | 125
250
100
125 | 50
50
10
50 | 55
55
75
60 | 5
30
30
5
30 | 1.0 | 35
35
40
35 | ∞
50
50
80
50 | 80
500
500
300
500 | 400
200
400 | 3500
3500
3500 | Tektronix "S" Unit
IBM-Y Ckt
IBM-Y Ckt
JAN 256
JAN 256 | | 1 N490
1 N631 | 90
90 | 5.0
15mA | 100
20 |
20,60°C
10 | 120 | 50
60 | 60 | 30 | | 35 | 50 | 500
Fwd. F | 200
Recover | 3500
y @ 50r | JAN 256
nA; 100KC <3.5 Volts | | 1N770
1N777
1N994 | 25
70
8 | @ 0.5V
100
10 | 25
30 | 10, 55°C
6 | 40
125 | 10
50 | 40
55 | 5
30
10 | | 10
40
6 | 15
50
2 | 350
500
2 | 50
400 | 700
3500 | IBM-Y Ckt
IBM-Y Ckt
Sampling Scope | | 1 N995 | 15 | 10mA
@ .5V | 10 | 6 | | | | 10 | | 6 | 2 | 6 | | | Sampling Scope | | 1 N 9 9 6 | 25 | 40mA
@ .8V | 15 | 15 | | | | 5 | | 10 | 20 | 300 | | | JAN 256 | | 1N3203 | 40 | 35mA
@ .5V
20mA | 50 | 25 | 20 | 5 | 55 | 20 | | 4 | 16 | 300 | | | IBM-Y Ckt | | 1N3467 | 15 | @ .5V
20mA | 15 | 10 | | | | 10 | | 6 | 1 | 2 | | | Sampling Scope | | 1 N3468 | 15 | @ .5V | 60 | 10 | | | | 10 | | 6 | 1 | 2 | | | Sampling Scope | | 1N3592 | 30 | 2mA @ .35V
15mA @ .5V
200mA | 4
10 | 4.5
20 | 20 | 20 | | 2 | 0.2 | | 00 | 40 | | | Tektronix "S" Unit | | 1N3666
1N3773 | 80 | .5-1.0V
2mA @ .35V | 25 | 50 | 150 | 20 | 70 | 30 | | 10 | 20 | 300 | | | JAN 256 | | 1N4008 | 25 | 15mA @ .5V
10mA | 4 | 3 | 20 | 20 | | 2 | 0.2 | | 00 | 40 | | | Tektronix "S" Unit | | 1N4381 | 25
25 | @ .5V
2mA
.2535V | 100
100
2 | 20
20
3 | 25 | 12 | 45 | 10
2 | 1.0
0.2 | | 00 | 70
100 | | | Tektronix "S" Unit
Tektronix "S" Unit | | DR211 | 75 | 200 | 100 | 50 | | | | 5 | | 40 | 50 | 300 | | | JAN 256 | | DR362 | 50 | 100
20mA | 50
25 | 20
10,50°C | 125 | 50 | 50 | 40
30 | | 10
35 | 20
50 | 300
500 | 400 | 2000 | JAN 256
IBM-Y Ckt | | DR401
DR402 | 60
60 | @ .5V
20mA | | 10,50°C | | 50 | 50 | 30 | | 35 | 50 | 500 | 200 | 2000 | IBM-Y Ckt | | DR403 | 60 | @ .5V
20mA
@ .5V | 20 | 10 | 100 | 50 | 30 | 5 | | 40 | 80 | 300 | 200 | 2000 | IBM-Y Ckt | | DR404 | 60 | 20mA
@ .5V | 20 | 10 | 100 | 50 | | 5 | | 40 | 50 | 300 | | | IBM-Y Ckt | | DR407
DR408 | 75
60 | 5.0
200 | 12
20 | 6
10 | 20
100 | 10
50 | 55 | 5
5 | | 10
40 | 50
80 | 500
300 | 500 | 3500 | JAN 256
IBM-Y Ckt | | DR419 | 25, 55°C | 10m A | 20 | 3 | | | | 30 | | 5 | 25 | 1000 | | | JAN 256 | | DR422 | 75 | 50 | 300 | 50 | | | | 5 | | 40 | 50 | 3000 | | | JAN 256 | | DR437 | 75 | 40mA
@ .5V | 20 | 4,55°C | 50 | 10 | 55 | 30 | | 10 | 10 | 500 | 50 | 2000 | JAN 256 | | DR459 | 15 | 10mA
@ .5V | 200 | 10 | | | | 5 | | 6 | 20 | 200 | | | JAN 256 | | DR481
DR482 | 40
60 | 100
100 | 200
20 | 20
40 | | | | 5
25 | | 20
35 | 50
40 | 1000
400 | | | JAN 256
JAN 256 | | DR498 | 20 | 10mA
@ .37V | 10 | 10 | | | | 5 | | 20 | 40 | 300 | | | JAN 256 | | DR500 | 50 | 20
10mA | 12.5 | 25 | | | | 5 | | 40 | 500 | 500 | | | JAN 256 | | GD400 | 15 | @ .5V
10mA | 3 | 5 | | | | 10 | | 6 | 2.0 | 10 | | | Sampling Scope | | GD401 | 15 | @ .5V
10mA | 5 | 5 | 15 | 20 | | 10 | | 6 | 2.0 | 10 | | | Sampling Scope | | GD402 | 45 | @ .5V
10mA | 5 | 10 | 15 | 30 | | 10 | 2.0 | | 00 | 80 | | | Tektronix "S" Unit | | GD403 | 35 | @ .5V | 10 | 10 | | | | 10 | 2.0 | | 00 | 80 | | | | | GD404 | 35 | 10mA
@ .5V
10mA | 6 | 10 | 10 | 20 | | 10 | 2.0 | | 00 | 60 | | | Tektronix "S" Unit | | GD405 | 35 | @ .5V
10mA | 10 | 10 | 40 | 20 | | 10 | 2.0 | | 00 | 60 | | | Tektronix "S" Unit | | GD406 | 60 | @ .5V
10mA | 5 | 10 | 20 | 30 | | 10 | 2.0 | | 00 | 125 | | | Tektronix "S" Unit | | GD407
GD408 | 50
75 | @ .5V
10mA | 10
6 | 10
10 | 30
50 | 30
50 | | 10
30 | 2.0 | 35 | ∞
50 | 125
400 | | | Tektronix "S" Unit
JAN 256 | | GD409 | 60 | @ .5V | 10 | 10 | 100 | 50 | | 30 | | 35 | 50 | 400 | | | JAN 256 | | GD410 | 135 | @ .5V
10mA | 30 | 40 | 65 | 40 | | 30 | | 35 | 50 | 750 | | | JAN 256 | | GD411 | 100 | @ .5V
10mA
@ .5V | 100 | 100 | 100 | 80 | | 30 | | 35 | 50 | 750 | | | JAN 256 | #### ABSOLUTE MAXIMUM RATINGS FOR ALL TYPES | OPERATING TEMPERATURE | -65°C to +90°C | SURGE CURRENT (ONE SEC) | 400mA | |-------------------------------|----------------|--------------------------------|----------------------| | STORAGE TEMPERATURE | 100°C | CONT. POWER DISSIPATION @ 25°C | 80mW | | LEAD TEMPERATURE 1/6" ± 1/32" | 230°C | DERATING FACTOR | 10mW/10°C ABOVE 25°C | | FROM CASE FOR 10 SECONDS | | AVERAGE RECTIFIED CURRENT | 50mA (Typ.) | # GERMANIUM DIODES MEDIUM VOLTAGE GERMANIUM DIODES CASE 35 | MEDIUM | VOLTAG | | וום ואט | ODES | | CA | SE 35 | |---|----------------------------------|--|--|----------------------------------|-------------------|----------------------|----------| | TYPE | MIN. | MINIMUM
FORWARD
CURRENT
(mA) | MA)
IR @ | | REVERSE | CURRE
Vr @ T | | | (@ 25°C) | (Volt) | @ +1.0 VOLT | (μa) | (V) | [(μa) | (V) | (°C) | | 1N34A
1N48
1N51
1N54
1N54A | 75
85
50
85
75 | 5.0
4.0
4.0
4.0 | 30
833
1677
150 | 10
50
50
50 | 500 | 50 | | | 1N56A
1N66
1N69
1N69A
1N90 | 50
60
75
75 | 5.0
15
5.0
5.0
5.0 | 7
300
50
850
500 | 10
30
10
50
50 | 800
50
30 | 50
50
10
10 | | | 1N95
1N96
1N96A
1N108
1N116 | 75
75
75
75
65
75 | 5.0
10
20
40
50
5.0 | 800
800
800
500
200
100 | 50
50
50
50
50
50 | | | | | 1N117
1N118
1N118A
1N126
1N128 | 75
75
75
75
75
50 | 10
20
40
5.0
3.0 | 100
100
100
50
10 | 50
50
50
10 | 850 | 50 | | | 1 N281
1 N287
1 N288
1 N289
1 N292 | 75
60
85
85
75 | 100
20
40
20
100 | 30
1500
350
50
200 | 10
50
50
50
50 | 500 | 50 | | | 1N294
1N294A
1N295
1N298A | 70
70
50
85 | 5.0
5.0
—
30mA | 10
10
200 | 10
10
10 | 800
800
250 | 50
50
40 | 50 | | 1 N498
1 N499 | 60
75 | @ 2.0 Volts
100
100 | 25
30 | 40
50 | | | | | 1 N500
1 N632
1 N636
1 N772
1 N772A | 80
90
60
80 | 100
7.0
2.5
100
200 | 40
20
10
50 | 60
10
10
50 | 120
500
500 | 60
80
80 | | | 1N773
1N773A | 75
75 | 200 | 10 | 10 | 100
500
100 | 50
75
50 | | | 1N774 | 70 | 100 | 15 | 10 | 500
150 | 75
50 | | | 1N774A | 70 | 200 | 15 | 10 | 500
150
500 | 70
50
70 | | | 1N775 | 70 | 100 | 20 | 10 | 250
500 | 50
70 | | | 1N909
1N3465 | 60
60 | 10mA
0.35-0.37
200 | 10
20 | 10
45 | 500 | 70 | | | 1 N 3 7 5 3
1 N 3 7 6 9 | 55
90 | 150
25mA
@ 0.5 Volts | 5
5 | 10
5 | 20 | 65 | | | DR128
DR207
DR213
DR283 | 60
75
75
75 | 40
20
100
100 | 100
50
20 | 50
50
50 | 2 | 10 | | | DR291
DR295 | 60
60 | 50
1mA
@ 0.35 Volts | 100 | 25
2 | 50 | 50 | | | DR302
DR303
DR307
DR308
DR309
DR313
DR314 | 80
60
60
80
80
80 | 400
400
200
200
400
100 | 100
50
50
10
10
2
50 | 50
50
20
10
10
10 | 50
50
20 | 50
50
50 | | | DR317
DR318
DR319
DR323
DR324
DR325
DR326 | 80
60
60
80
80
60 | 50
50
50
100
100
100 | 50
2
5
75
250 | 50
10
10 | 200
500
250 | 50
50
50 | 75
75 | | DR328
DR329
DR330
DR338 | 80
60
80
75 | 300
300
300
40 | 100
50
10
100 | 50
20
10
50 | 50 | 50 | | | DR351
DR352 | 50
50 | 200
10mA | 100 | 30 | 1500
300 | 30
30 | 50
50 | | DR366
DR385 | 75
50 | @ 0.35 Volts
50
10mA
@ 0.37 Volts | 100
10 | 50
10 | | | | | DR389
DR463 | 60
85 | 200
300 | 50
100 | 50
10 | 500 | 50 | | HIGH VOLTAGE GERMANIUM DIODES CASE 35 | | | derimanion. | T | | | | 3E 33 | |---|---------------------------------|---------------------------------------|---------------------------------|--------------------------------|------------------------------|----------------------------|-------| | TYPE | MIN.
PIV | MINIMUM
FORWARD
CURRENT
(mA) | | AXIMUM
2 VR | | VR @ T | | | (@ 25°C) | (Volt) | @ +1.0 VOLT | (μ a) | (V) | (μ a) | (V) | (°C) | | 1 N 3 4
1 N 3 8
1 N 3 8 A
1 N 5 5
1 N 5 5 A | 100
120
120
170
170 | 8.5
4.0
4.0
3.0
4.0 | 15
6
6
300
500 | 10
3
3
100
150 | 800
500
500
800 | 50
100
100
150 | | | 1 N55B
1 N57
1 N58
1 N58A
1 N61 | 190
100
115
120
140 | 5.0
3.6
5.0
4.0
5.0 | 500
300
800
600
300 | 150
75
100
100
100 | 700 | 125 | | | 1N62
1N63
1N67
1N67A
1N68 | 120
125
100
100
120 | 5.0
4.0
4.0
4.0
3.0 | 50
5
5
625 | 50
5
5
100 | 50
50 | 50
50 | | | 1 N 6 8 A
1 N 7 O
1 N 8 B
1 N 8 9
1 N 9 7 | 130
100
110
100
100 | 3.0
3.0
2.5
3.5
10 | 625
25
100
8
8 | 100
10
50
5
5 | 300
100
100 | 50
50
50 | | | 1N98
1N98A
1N99
1N100 | 100
100
100
100
100 | 20
40
10
20
40 | 8
8
5
5 | 5
5
5
5
5 | 100
100
50
50
50 | 50
50
50
50
50 | | | 1N102
1N127
1N198 | 125
125
100 | 15
3.0
4.0 | 3
25
10
50 | 25
10
10
50 | 300
250 | 50
50 | 75 | | 1N270
1N277 | 100
120 | 200
100 | 100
75 | 50
10, 75°C | ; | | | | 1N290
1N291
1N297
1N310
1N313 | 120
120
100
130
125 | 5.0
40
3.5
40
40 | 100
100
10
20
10 | 100
100
5
20
20 | 100
100 | 50
100 | | | 1N501
1N502
1N633
1N634
1N771 | 100
120
120
115
100 | 100
100
125
50
100 | 40
50
40
45
25 |
80
100
20
45
50 | 180
100
500 | 90
100
100 | | | 1N771A
1N771B
DR209
DR272
DR292 | 100
100
125
150
120 | 200
400
40
400
4.0 | 25
25
100
20
200 | 50
50
100
100
100 | 500
500 | 100
100 | | | DR301
DR304
DR305
DR306
DR310 | 100
190
100
100
120 | 400
200
200
200
100 | 100
500
100
100
50 | 50
150
50
50
100 | | | | | DR311
DR312
DR315
DR316
DR321 | 120
100
120
100
100 | 100
100
50
50
200 | 100
5
50
100 | 100
10
100
100 | 20
125 | 100
50 | 75 | | DR327
DR336
DR337
DR379 | 100
120
100
150 | 300
4.0
40
200 | 100
8
5 | 50
5
5 | 100
50
50 | 50
50
20 | 50 | LOW VOLTAGE GERMANIUM DIODES CASE 35 | TYPE
(@ 25°C) | MIN.
PIV
(Volt) | MINIMUM
FORWARD
CURRENT
(mA)
@ +1.0 VOLT | MAX
IR @ | | REVERSE
IR @ | | TEMP. | | |---|----------------------------|--|---------------------------------|---------------------------|-----------------|----|-------|--| | 1N56
1N64
1N107
1N279
1N308 | 40
20
15
40
10 | 15
150
100
300 | 300
100
200
200
500 | 30
10
10
20
8 | | | | | | 1N309
1N497
1N776
1N910 | 40
30
30
40 | 100
100
50
10mA | 100
20
200 | 20
20
10 | 500 | 30 | | | | 1N911 | 30 | 0.35-0.37
10mA
0.34-0.37 | 10 | 10 | | | | | | 1N3466 | 40 | 200 | 15 | 30 | | | | | | 1N4502 | 20, 55°C | 3mA
0.3 Volts | 10 | 6 | 80 | 6 | 55 | | | DR365 | 20 | 10mA
0.4 Volts | 60 | 6 | | | | | | DR427 | 20 | 50 | 500 | 10 | | | | | | DR434 | 30 | 10mA
0.37 Volts | 10 | 10 | | | | | | DR435 | 20 | 10mA
0.37 Volts | 10 | 10 | | | | | | DR464 | 12 | 50 | 100 | 5 | | | | | ### SOLID STATE ASSEMBLIES General Instrument maintains complete facilities for design fabrication and testing of virtually any type of solid state assembly... and at prices that can save substantial sums for the user who may be faced with a heavy investment to produce these assemblies "in house." You will find examples of GI's capability in the wide range of standard devices shown here. # HIGH VOLTAGE RECTIFIER CARTRIDGES #### HIGH TEMPERATURE TYPES Data Sheet No. RB1163 Type 1N1731A-1N1734A, 1N2382A to 1N2384A PRV 1.5 kV to 10 kV I₀ to 350 mA #### • GENERAL PURPOSE TYPES Data Sheet No. RB1152 1—Pigtail 2—Ferrule 3—Fuse Clip Mounting All styles — PRV 1kV to 30 kV I₀ to 350 mA #### • FAST SWITCHING TYPES To 50 KC All Styles PRV 1kV to 10 kV Io to 300 mA Consult factory for data sheet. #### • MINIATURE TYPES PRV to 10 kV $$I_{0}$$ to 100 mA Consult factory for data sheet. # HIGH VOLTAGE RECTIFIER BLOCKS #### GLASS-AMP HV BLOCKS Featuring Controlled Avalanche Design PRV 1kV to 18 kV I₀ to 1.0 Amperes Data Sheet No. RB1165 # SOLID STATE TUBE REPLACEMENTS 1N1262 4.8 Volt Tube Replacement 1N570/6X4 Tube Replacement PRV 1500 V @ 75 mA FW PRV 25,000 V @ 500 mA HW All intermediate types — Data Sheet SPR 3 #### KILOPOTENTIAL RECTIFIERS #### R-C COMPENSATED ASSEMBLIES Standard Puck Modules **Custom Board Assemblies** PRV 20 to 200 kV I₀ to 150 mA Data Sheet No. RB3002-1 I₀ to 300 mA Data Sheet No. RB3002-2 PRV 20 to 200 kV oil immersed I_0 to 1.0 Amperes Consult Factory for data sheet #### GENERAL PURPOSE RECTIFIER ASSEMBLIES • 1.5 AMP FULL WAVE RECTIFIERS • 3.0 AMP FULL WAVE RECTIFIERS - STUD TYPE Center Tap & Doubler . 1.5 AMP TO 9.0 AMP OPEN FIN ASSEMBLIES All Configurations shown on Data Sheet No. RB1176 #### **CUSTOM SOLID STATE ASSEMBLIES** - G. I. offers a complete custom packaging facility including: Custom molding of shell and welded devices - Component interconnection by welding and soldering - · Specialized test facilities Zener Diodes & Controlled Forward Diodes Modulator Bridge & Ring Assemblies ## SELENIUM RECTIFIER ASSEMBLIES #### TRI-AMP POWER ASSEMBLIES General Instrument Tri-Amp Selenium Power Rectifier Assemblies are completely unaffected by aging — a unique advantage which brings to the user reliability previously considered unattainable. In addition, they incorporate a true P-N diffused junction and safely withstand large transients. Standard Power Assemblies use cells manufactured with the Tri-Amp process. As shown in the life test curve, Tri-Amp does not age! #### LIFE CURVE PERCENT CHANGE IN FORWARD VOLTAGE DROP #### A COMPLETE RANGE OF ASSEMBLIES ARE AVAILABLE FOR EVERY APPLICATION Typical Units: Three Phase Bridge For Elevator Control Panel. 260 V. AC 3.3 A. DC. Center Tap Fast Battery Charger using Heat Sink Backing Plate. 26 V. AC 100 A. DC. Fan Cooled. Single Phase Bridge with Special Edge Protection for unusual moisture and vibration conditions. 26 V. AC 10A. DC. Single Phase Bridge Typical Cathodic Protection Unit. 26 V. AC 24 A. DC. Three Phase Bridge Welding Stack 78 V. AC 400 A. DC. Fan Cooled. For detailed information, see Tri-Amp Bulletin No. RB2010A. #### LOW COST MINIATURE **BRIDGE ASSEMBLIES** Ideal for use in control equipment, AC-DC motors, and small battery chargers. These miniature assemblies are available in bridge, doubler and center-tap configurations. NOTE: All Miniature Bridge Assembly photos are actual size. See Bulletin No. RB-2019. #### LINE VOLTAGE See Bulletin No. RB2015A #### **ASSEMBLIES FOR** RADIO AND TV APPLICATIONS RADIO/PHONO Voltage-380V PRV 130 RMS G165N 65 mA DC See Bulletin No. RB-2017 COLOR TELEVISION **Boost Rectifier** 11GA300 300 mA DC General Instrument Selenium Assemblies have accumulated millions of hours of reliable performance in home entertainment products throughout the 16GA500 500 mA DC TVC 3 4 Diode Convergence Rectifier 6500 PRV Focus Cartridge TRANSISTORIZED TELEVISION High Voltage Rectifier to 30,000 PRV #### HIGH VOLTAGE INDUSTRIAL CARTRIDGES PRV 1 through 25 KV DC Current .4 to 30 mA See Bulletin No. RB-2002A #### LOW COST - LOW VOLTAGE DIODES An ideal answer to your high volume, mass production requirements where economy as well as dependability are major considerations. ZIP DIODE PRV to 50V DC Current to 150 mA See Bulletin No. RB-2020 #### **CUSTOM MINIATURE ASSEMBLIES** 4 Diodes with 1 Common Electrode PRV to 50 V DC Current to 150 mA $\begin{array}{l} {\rm ERMS} = 26~{\rm Max}. \\ {\rm Idc} = 500~{\rm mA} \end{array}$ $\begin{array}{c} {\rm ERMS} = 130 {\rm V~Max.} \\ {\rm Idc} = 125 {\rm ~mA} \end{array}$ # **NUMERICAL INDEX** #### PRODUCT FAMILY IDENTIFICATION CODES CS GD GR CAPSIL® Voltage Variable Capacitor Diode Germanium Diode Silicon Transistor Micro Diode MOS **MOS Microcircuit** STE **Epoxy Silicon Transistor** Glass-Amp® Silicon Rectifier Germanium Transistor Glass-Amp® Zener Voltage Regulator Diode RB Rectifier Bridge (Selenium) TR Tube Replacement Zener Voltage Regulator Diode Before product identification code indicates encapsulated assembly or epoxy package. SB Stabistor ZD GT Silicon Diode GZ SR Silicon Rectifier MC | Type
No. | Prod. Page
Code No. | |------------------------|------------------------|--------------------|------------------------|------------------------|------------------------|------------------|------------------------|--------------------|------------------------| | 1N34
1N34A | GD 17
GD 17 | 1N309
1N310 | GD 17
GD 17 | 1N533
1N534 | SR 6
SR 6 | 1N739
1N740 | ZD 11
ZD 11 | 1N970
1N971 | ZD 11
ZD 11 | | 1N38 | GD 17 | 1N313 | GD 17 | 1N535
1N536 | SR 6
SR 6 | 1N741
1N742 | ZD 11
ZD 11 | 1N972
1N973 | ZD 11
ZD 11 | | 1N38A
1N48 | GD 17
GD 17 | 1N332
1N333 | SR 8
SR 8 | 1N537 | SR 6 | 1N743 | ZD 11 | 1N974 | ZD 11 | | 1N51
1N54 | GD 17
GD 17 | 1N334
1N335 | SR 8
SR 8 | 1N538
1N539 | SR 6
SR 6 | 1N744
1N745 | ZD 11
ZD 11 | 1N975
1N976 | ZD 11
ZD 11 | | 1N54A | GD 17 | 1N336 | SR 8 | 1N540 | SR 6 | 1N746
1N747 | ZD 11
ZD 11 | 1N977
1N978 | ZD 11
ZD 11 | | 1N55
1N55A | GD 17
GD 17 | 1N337
1N338 | SR 8
SR 8 | 1 N 5 4 7
1 N 5 6 0 | SR 6
SR 6 | 1N748 | ZD 11 | 1N979 | ZD 11 | | 1N55B
1N56 | GD 17
GD 17 | 1 N339
1 N340 | SR 8
SR 8 | 1N561
1N562 | SR 6
SR 8 | 1N749
1N750 | ZD 11
ZD 11 | 1N980
1N981 | ZD 11
ZD 11 | | 1N56A | GD 17 | 1N341 | SR 8 | 1N563 | SR 8 | 1N751
1N752 | ZD 11
ZD 11 | 1N982
1N983 | ZD 11
ZD 11 | | 1N57
1N58 | GD 17
GD 17 | 1N342
1N343 | SR 8
SR 8 | 1N570
1N599 | KSR 18
KSR 6 | 1N753 | ZD 11 | 1N984 | ZD 11 | | 1 N 5 8 A
1 N 6 O | GD 17
GD 16 | 1N344
1N345 | SR 8
SR 8 | 1N599A
1N600 | KSR 6
KSR 6 | 1N754
1N755 | ZD 11
ZD 11 | 1N985
1N986 | ZD 11
ZD 11 | | 1N61 | GD 17 | 1N346 | SR 8 | 1N600A | KSR 6 | 1N756
1N757 | ZD 11
ZD 11 | 1N987
1N988 | ZD 11
ZD 11 | | 1N62
1N63 | GD 17
GD 17 | 1N347
1N348 | SR 8
SR 8 | 1N601
1N601A | KSR 6
KSR 6 | 1N758 | ZD 11 | 1N989 | ZD 11 | | 1N64
1N66 | GD 17
GD 17 | 1N349
1N440 | SR 8
SR 6 | 1 N602
1 N602A | KSR 6
KSR 6 | 1N759
1N761 | ZD 11
ZD 11 | 1 N990
1 N991 | ZD 11
ZD 11 | | 1N67 | GD 17 | 1N440B
1N441 | SR 6
SR 6 | 1N603
1N603A | KSR 6
KSR 6 | 1N762
1N763 | ZD 11
ZD 11 | 1N992
1N994 | ZD 11
GD 16 | | 1N67A
1N68 | GD 17
GD 17 | 1 N441B | SR 6 | 1N604 | KSR 6 | 1N764 | ZD 11 | 1N995 | GD 16 | | 1N68A
1N69 | GD 17
GD 17 | 1N442
1N442B | SR 6
SR 6 | 1N604A
1N605 | KSR 6
KSR 6 | 1N765
1N766 | ZD 11
ZD 11 | 1N996
1N1095 | GD 16
SR 6 | | 1N69A | GD 17 | 1N443
1N443B | SR 6 | 1N605A
1N606 | KSR 6
KSR 6 | 1N767
1N768 | ZD 11
ZD 11 | 1N1097
1N1100 | SR 6
SR 6 | | 1N70
1N88 | GD 17
GD 17 | 1N443B | SR 6
SR 6 | 1N606A | KSR 6 | 1N769 | ZD 11 | 1N1101 | SR 6 | | 1N89
1N90 | GD 17
GD 17 | 1N444B
1N445 | SR 6
SR 6 | 1N625
1N626 | SD 9
SD 9 | 1N770
1N771 | GD 16
GD 17 |
1N1102
1N1103 | SR 6
SR 6 | | 1N95 | GD 17 | 1N445B | SR 6 | 1N627 | SD 9
SD 9 | 1N771A
1N771B | GD 17
GD 17 | 1N1104
1N1105 | SR 6
SR 6 | | 1N96
1N96A | GD 17
GD 17 | 1 N456
1 N456A | SD 8
SD 8 | 1N628
1N629 | SD 9 | 1N772 | GD 17 | 1N1169 | KTR 6 | | 1N97
1N98 | GD 17
GD 17 | 1N457
1N457A | SD 8
SD 8 | 1N631
1N632 | GD 16
GD 17 | 1N772A
1N773 | GD 17
GD 17 | 1N1262
1N1692 | KTR 18
SR 6 | | 1N98A | GD 17 | 1N458 | SD 8 | 1N633 | GD 17 | 1N773A
1N774 | GD 17
GD 17 | 1N1693
1N1694 | SR 6
SR 6 | | 1N99
1N100 | GD 17
GD 17 | 1N458A
1N459 | SD 8
SD 8 | 1N634
1N636 | GD 17
GD 17 | 1N774A | GD 17 | 1N1695 | SR 6 | | 1N100A
1N102 | GD 17
GD 17 | 1N459A
1N461 | SD 8
SD 8 | 1N643
1N643A | SD 9
SD 9 | 1N775
1N776 | GD 17
GD 17 | 1N1696
1N1697 | SR 6
SR 6 | | 1N107 | GD 17 | 1N461A | SD 8 | 1N645 | SD 9 | 1N777
1N789 | GD 16
SD 9 | 1N1731A
1N1732A | KSR 18
KSR 18 | | 1N108
1N116 | GD 17
GD 17 | 1N462
1N462A | SD 8
SD 8 | 1N646
1N647 | SD 9
SD 9 | 1N790 | SD 9 | 1N1733A | KSR 18 | | 1N117
1N118 | GD 17
GD 17 | 1N463
1N463A | SD 8
SD 8 | 1N648
1N649 | SD 9
SD 9 | 1N791
1N792 | SD 9
SD 9 | 1N1734A
1N1763 | KSR 18
SR 6 | | 1N118A | GD 17 | 1N464 | SD 8 | 1N658 | SD 9 | 1N793
1N794 | SD 9
SD 9 | 1N1764
1N2026 | SR 6
SR 8 | | 1N126
1N127 | GD 17
GD 17 | 1N464A
1N465 | SD 8
KZD 11 | 1 N659
1 N660 | SD 9
SD 9 | 1N795 | SD 9 | 1N2027 | SR 8 | | 1N128
1N191 | GD 17
GD 16 | 1N466
1N467 | KZD 11
KZD 11 | 1N661
1N662 | SD 9
SD 9 | 1N796
1N797 | SD 9
SD 9 | 1N2028
1N2029 | SR 8
SR 8 | | 1N192 | GD 16 | 1 N468 | KZD 11 | 1 N663 | SD 9 | 1N798
1N799 | SD 9
SD 9 | 1N2030
1N2031 | SR 8 | | 1N198
1N225 | GD 17
ZD 11 | 1N469
1N470 | KZD 11
KZD 11 | 1N702
1N703 | ZD 11
ZD 11 | 1 N800 | SD 9 | 1N2069 | SR 7 | | 1N226
1N227 | ZD 11
ZD 11 | 1N471
1N472 | KZD 11
KZD 11 | 1N704
1N705 | ZD 11
ZD 11 | 1N801
1N802 | SD 9
SD 9 | 1N2070
1N2071 | SR 7
SR 7 | | 1 N228
1 N229 | ZD 11 | 1N473 | KZD 11 | 1N706
1N707 | ZD 11
ZD 11 | 1N803
1N804 | SD 9
SD 9 | 1N2382A
1N2383A | KSR 18
KSR 18 | | 1N230 | ZD 11
ZD 11 | 1N474
1N475 | KZD 11
KZD 11 | 1N708 | ZD 11 | 1N881 | SD 9 | 1N2384A | KSR 18 | | 1N231
1N232 | ZD 11
ZD 11 | 1N480
1N482 | GD 16
SD 8 | 1N709
1N710 | ZD 11
ZD 11 | 1N882
1N883 | SD 9
SD 9 | 1N2610
1N2611 | SR 7
SR 7 | | 1N233
1N234 | ZD 11
ZD 11 | 1N482A | SD 8
SD 8 | 1N711
1N712 | ZD 11
ZD 11 | 1N884
1N885 | SD 9
SD 9 | 1N2612
1N2613 | SR 7
SR 7 | | 1N235 | ZD 11 | 1N482B
1N483 | SD 8 | 1N713 | ZD 11 | 1N886 | SD 9 | 1N2614 | SR 7 | | 1N236
1N237 | ZD 11
ZD 11 | 1 N483A
1 N483B | SD 8
SD 8 | 1N714
1N715 | ZD 11
ZD 11 | 1N887
1N888 | SD 9
SD 9 | 1N2615
1N2616 | SR 7
SR 7
SR 7 | | 1N238
1N239 | ZD 11 | 1N484 | SD 8 | 1N716
1N717 | ZD 11
ZD 11 | 1N889
1N890 | SD 9
SD 9 | 1N2617
1N3021 | SR 7
ZD 12 | | 1N253 | ZD 11
SR 8 | 1N484A
1N484B | SD 8
SD 8 | 1N718 | ZD 11 | 1N891 | SD 9 | 1N3022 | ZD 12 | | 1 N 2 5 4
1 N 2 5 5 | SR 8
SR 8 | 1N485
1N485A | SD 8
SD 8 | 1N719
1N720 | ZD 11
ZD 11 | 1N892
1N893 | SD 9
SD 9 | 1N3023
1N3024 | ZD 12
ZD 12 | | 1N256
1N270 | SR 8
GD 17 | 1N485B | SD 8 | 1N721
1N722 | ZD 11
ZD 11 | 1 N909
1 N910 | GD 17
GD 17 | 1N3025
1N3026 | ZD 12
ZD 12 | | 1N276 | GD 16 | 1N486
1N486A | SD 8
SD 8 | 1N723 | ZD 11 | 1N911 | GD 17 | 1N3027 | ZD 12 | | 1N277
1N279 | GD 17
GD 17 | 1N486B
1N487 | SD 9
SD 9 | 1N724
1N725 | ZD 11
ZD 11 | 1 N954
1 N955 | CS 10
CS 10 | 1N3028
1N3029 | ZD 12
ZD 12 | | 1N281
1N287 | GD 17
GD 17 | 1N487A
1N488 | SD 9
SD 9 | 1N726
1N727 | ZD 11
ZD 11 | 1N957
1N958 | ZD 11
ZD 11 | 1N3030
1N3031 | ZD 12
ZD 12 | | 1N288 | GD 17 | 1N488A | SD 9 | 1N728 | ZD 11 | 1N959 | ZD 11 | 1N3032 | ZD 12 | | 1N289
1N290 | GD 17
GD 17 | 1N490
1N497 | GD 16
GD 17 | 1N729
1N730 | ZD 11
ZD 11 | 1N960
1N961 | ZD 11
ZD 11 | 1N3033
1N3034 | ZD 12
ZD 12 | | 1N291 | GD 17 | 1N498 | GD 17 | 1N731
1N732 | ZD 11
ZD 11 | 1N962
1N963 | ZD 11
ZD 11 | 1N3035
1N3036 | ZD 12
ZD 12 | | 1N292
1N294 | GD 17
GD 17 | 1N499
1N500 | GD 17
GD 17 | 1N733 | ZD 11 | 1 N964 | ZD 11 | 1N3037 | ZD 12 | | 1N294A
1N295 | GD 17
GD 17 | 1N501
1N502 | GD 17
GD 17 | 1N734
1N735 | ZD 11
ZD 11 | 1N965
1N966 | ZD 11
ZD 11 | 1N3038
1N3039 | ZD 12
ZD 12 | | 1N297 | GD 17 | 1N530 | SR 6 | 1N736
1N737 | ZD 11
ZD 11 | 1N967
1N968 | ZD 11
ZD 11 | 1N3040
1N3041 | ZD 30
ZD 12 | | 1N298A
1N308 | GD 17
GD 17 | 1N531
1N532 | SR 6
SR 6 | 1N738 | ZD 11 | 1N969 | ZD 11 | 1N3042 | ŽD 12 | | Type
No. | Prod. Pag
Code No. | Type
No. | Prod. Page
Code No. | Type
No. | Prod. Page
Code No. | Type
No. | Prod. Page
Code No. | Type
No. | Prod.
Code | Pa | |----------------------------|-----------------------|-------------------|------------------------|--------------------|------------------------|--------------------|------------------------|---------------------|---------------|----| | 13043
13044 | ZD 12
ZD 12 | 2N444A
2N445A | GT 13
GT 13 | 2N2905A
2N2906 | ST 14
ST 14 | DCBS100J
DG100J | KSR 20
GR 7 | MEM511
MEM517 | MOS
MOS | 4 | | 13045
13046 | ZD 12
ZD 12 | 2N446A
2N447A | GT 13
GT 13 | 2N2906A
2N2907 | ST 14
ST 14 | DG 100K
DG 100M | GR 7
GR 7 | MEM517A
MEM517B | MOS
MOS | 4 | | 13047
13048 | ZD 12
ZD 12 | 2N464
2N465 | GT 13
GT 13 | 2N2907A | ST 14
STE 15 | DR128 | GD 17 | MEM520 | MOS | 4 | | 13049
13050 | ZD 12
ZD 12 | 2N466
2N467 | GT 13
GT 13 | 2N2921
2N2922 | STE 15 | DR207
DR209 | GD 17
GD 17 | MEM550 | MOS | 4 | | 13051 | ZD 12 | 2N519A | GT 13 | 2N2923
2N2924 | STE 15
STE 15 | DR211
DR213 | GD 16
GD 17 | MEM551
MEM1000 | MOS
MOS | 4 | | 13189
13190 | SR 7
SR 7 | 2N520A
2N521A | GT 13
GT 13 | 2N2925
2N2926 | STE 15
STE 15 | DR272
DR283 | GD 17
GD 17 | MEM1002
MEM1005 | MOS
MOS | 4 | | 13191
13203 | SR 7
GD 16 | 2N522A
2N523A | GT 13
GT 13 | 2N3015
2N3133 | ST 14
ST 14 | DR291
DR292 | GD 17
GD 17 | MEM2001 | MOS | 4 | | 13465
13466 | GD 17
GD 17 | 2N579
2N580 | GT 13
GT 13 | 2N3134
2N3135 | ST 14
ST 14 | DR295
DR301 | GD 17
GD 17 | MEM2002
MEM2003 | MOS
MOS | 4 | | 13467 | GD 16 | 2N585 | GT 13 | 2N3136 | ST 14 | DR302 | GD 17 | MEM2004
MEM2004A | MOS | 4 | | 13468
13477 | GD 16
ZD 11 | 2N594
2N595 | GT 13
GT 13 | 2N3252
2N3253 | ST 14
ST 14 | DR303
DR304 | GD 17
GD 17 | MEM2005 | MOS | 4 | | 13488
13592 | CS 10
GD 16 | 2N596
2N597 | GT 13
GT 13 | 2N3390
2N3391 | STE 15
STE 15 | DR305
DR306 | GD 17
GD 17 | MEM2006
MEM2007 | MOS
MOS | 4 | | 3628
 3666 | CS 10
GD 16 | 2N598
2N599 | GT 13
GT 13 | 2N3391A
2N3392 | STE 15
STE 15 | DR307
DR308 | GD 17
GD 17 | MEM2008
MEM3020 | MOS
MOS | 4 | | 13753
13769 | GD 17
GD 17 | 2N600
2N601 | GT 13
GT 13 | 2N3393 | STE 15 | DR309
DR310 | GD 17 | MEM3021 | MOS | 4 | | 3773 | GD 16 | 2N696 | ST 14 | 2N3394
2N3395 | STE 15
STE 15 | DR311 | GD 17 | NC8
NC9 | MC
MC | | | 3945
3946 | CS 10
CS 10 | 2N697
2N698 | ST 14
ST 14 | 2N3396
2N3397 | STE 15
STE 15 | DR312
DR313 | GD 17
GD 17 | NC10
NC11 | MC
MC | | | 3947
4008 | CS 10
GD 16 | 2N699
2N706 | ST 14
ST 14 | 2N3398
2N3414 | STE 15
STE 15 | DR314
DR315 | GD 17
GD 17 | NC12
NC16 | MC
MC | | | 4162
4163 | GZ 12
GZ 12 | 2N706A
2N706B | ST 14
ST 14 | 2N3416 | STE 15 | DR316
DR317 | GD 17
GD 17 | NC17 | MC | | | 4164
4165 | GZ 12
GZ 12 | 2N708
2N718 | ST 14
ST 14 | 2N3563
2N3564 | STE 15 | DR318 | GD 17 | NC101
NC511 | MC
MC | | | 4166 | GZ 12 | 2N718A | ST 14 | 2N3565
2N3566 | STE 15
STE 15 | DR319
DR321 | GD 17
GD 17 | NC513
NCB75 | MC
KSR | 2 | | 4167
4168 | GZ 12
GZ 12 | 2N721
2N722 | ST 14
ST 14 | 2N3605
2N3606 | STE 15
STE 15 | DR323
DR324 | GD 17
GD 17 | NCB100
NCB300 | KSR
KSR | 2 | | 4169
4170 | GZ 12
GZ 12 | 2N743
2N744 | ST 14
ST 14 | 2N3607
2N3638 | STE 15
STE 15 | DR325
DR326 | GD 17
GD 17 | NCS675A
PA300 | MC
SD | - | | 4171
4172 | GZ 12
GZ 12 | 2N753
2N759 | ST 14
ST 14 | 2N3638A | STE 15 | DR327
DR328 | GD 17
GD 17 | PA305 | SR | | | 4173 | GZ 12 | 2N759A | ST 14 | 2N3641
2N3643 | STE 15
STE 15 | DR329 | GD 17 | PA310
PA315 | SR
SR | | | 4174
4175 | GZ 12
GZ 12 | 2N760
2N760A | ST 14
ST 14 | 2N3644
2N3645 | STE 15
STE 15 | DR330
DR336 | GD 17
GD 17 | PA320
PA325 | SR
SR | | | 4176
4177 | GZ 12
GZ 12 | 2N834
2N835 | ST 14
ST 14 | 2N3662
2N3663 | STE 15
STE 15 | DR337
DR338 | GD 17
GD 17 | PA330
PA340 | SR
SR | | | 1178
1179 | GZ 12
GZ 12 | 2N914
2N929 | ST 14
ST 14 | 2N3691 | STE 15 | DR351 | GD 17 | PA350 | SR | | | 4180
4181 | GZ 12
GZ 12 | 2N929A
2N930 | ST 14 | 2N3692
2N3702 | STE 15
STE 15 | DR352
DR362 | GD 17
GD 16 | PA380
PC8 | SR
MC | | | 4182 | GZ 12 | 2N930A | ST 14
ST 14 | 2N3703
2N3704 | STE 15
STE 15 | DR365
DR366 | GD 17
GD 17 | PC9
PC10 | MC
MC | | | 4183
4184 | GZ 12
GZ 12 | 2N1131
2N1132 | ST 14
ST 14 | 2N3705
2N3706 | STE 15
STE 15 | DR379
DR385 | GD 17
GD 17 | PC11
PC12 | MC
MC | | | 4185
41 8 6 | GZ 12
GZ 12 | 2N1306
2N1307 | GT 13
GT 13 | 2N3707 | STE 15 | DR389
DR401 |
GD 17
GD 16 | PC13 | MC | | | 4187
4188 | GZ 12 | 2N1310 | GT 13 | 2N3708
2N3709 | STE 15
STE 15 | DR402 | GD 16 | PC14
PC15 | MC
MC | | | 4189 | GZ 12
GZ 12 | 2N1311
2N1312 | GT 13
GT 13 | 2N3710
2N3711 | STE 15
STE 15 | DR403
DR404 | GD 16
GD 16 | PC16
PC17 | MC
MC | | | 4190
4191 | GZ 12
GZ 12 | 2N1408
2N1613 | GT 13
ST 14 | 2N3721
2N3793 | STE 15
STE 15 | DR407
DR408 | GD 16
GD 16 | PC18
PC101 | MC
MC | | | 4192
4193 | GZ 12
GZ 12 | 2N1711
2N1893 | ST 14
ST 14 | 2N3794 | STE 15 | DR419
DR422 | GD 16 | PC200 | MC | | | 4250
4251 | GR 7
GR 7 | 2N2192
2N2192A | ST 14 | 2N3825
2N3828 | STE 15
STE 15 | DR427 | GD 16
GD 17 | PC201
PC210 | MC
MC | | | 4252
4253 | GR 7 | 2N2192B | ST 14
ST 14 | 2N3843A
2N3844A | STE 15
STE 15 | DR434
DR435 | GD 17
GD 17 | PC212
PC401 | MC
MC | | | 1254 | GR 7
GR 7 | 2N2193
2N2193A | ST 14
ST 14 | 2N3845A
2N3858 | STE 15
STE 15 | DR437
DR459 | GD 16
GD 16 | PC402
PC501 | MC
MC | | | 1255
1 25 6 | GR 7
GR 7 | 2N2193B
2N2217 | ST 14
ST 14 | 2N3859
2N3860 | STE 15
STE 15 | DR463
DR464 | GD 17
GD 17 | PC502
PC503 | MC
MC | | | 4257
4381 | GR 7
GD 16 | 2N2218
2N2218A | ST 14
ST 14 | 2N3900
2N3900A | STE 15
STE 15 | DR481
DR482 | GD 16
GD 16 | PC504 | MC | | | 1383(G100D) | GR 7 | 2N2219 | ST 14 | 2N3903 | STE 15 | DR498 | GD 16 | PC511
PC512 | MC
MC | | | 1384(G100G)
1385(G100J) | GR 7
GR 7 | 2N2219A
2N2220 | ST 14
ST 14 | 2N3904
2N3905 | STE 15
STE 15 | DR500
EG100 | GD 16
GR 7 | PC513
PC514 | MC
MC | | | 1502
1585(G100K) | GD 17
GR 7 | 2N2221
2N2221A | ST 14
ST 14 | 2N3906
2N3983 | STE 15
STE 15 | GD400
G0401 | GD 16
GD 16 | PC521
PC523 | MC
MC | | | 1586(G100M)
1055 | GR 7
SR 7 | 2N2222
2N2222A | ST 14
ST 14 | 2N3984 | STE 15 | GD402
GD403 | GD 16
GD 16 | PC250 | MC | | | i056
i057 | SR 7 | 2N2303
2N2368 | ST 14 | 2N3985
2N4140 | STE 15 | GD404 | GD 16 | PC251
PT505 | M C
SR | | | 058 | SR 7 | 2N2369 | ST 14
ST 14 | 2N4141
2N4142 | STE 15
STE 15 | GD405
GD406 | GD 16
GD 16 | PT510
PT515 | SR
SR | | | A300
A500 | KSR 21
KSR 21 | 2N2369A
2N2483 | ST 14
ST 14 | 2N4143
2N4227 | STE 15
STE 15 | GD407
GD408 | GD 16 | PT520
PT525 | SR
SR | | | 315A
316 | GT 13
GT 13 | 2N2484
2N2501 | ST 14
ST 14 | 2N4228
AG100D | STE 15
GR 7 | GD409 | GD 16
GD 16 | PT530 | SR | | | 316A | GT 13 | 2N2537 | ST 14 | AG100G | GR 7 | GD410
GD411 | GD 16
GD 16 | PT540
PT550 | SR
SR | | | 331
356 | GT 13
GT 13 | 2N2538
2N2539 | ST 14
ST 14 | AG100J
CS7 | GR 7
CS 10 | GI65N
GP101A | SD 21 | PT560
PT580 | SR
SR | | | 356A
357A | GT 13
GT 13 | 2N2540
2N2648 | ST 14
GT 13 | CS10
CS12 | CS 10
CS 10 | GP101B | SD 10
SD 10 | S91
S91H | SR
SR | | | 358
358A | GT 13 | 2N2711
2N2712 | STE 15 | CS15 | CS 10 | GP102A
GP102B | SD 10
SD 10 | S 92 | SR | | | 377A | GT 13 | 2N2713 | STE 15
STE 15 | CS20
CS27 | CS 10
CS 10 | GP103A | SD 10 | S92H
S93 | SR
SR | | | 388A
396A | GT 13
GT 13 | 2N2714
2N2715 | STE 15
STE 15 | CS33 | CS 10
CS 10 | GP103B
GP104A | SD 10
SD 10 | S93H
TLB1 | SR
RB | : | | 398A
404 | GT 13
GT 13 | 2N2716
2N2837 | STE 15
ST 14 | CS40
CS47 | CS 10
CS 10 | GP104B | SD 10 | TLB2
TVC3 | RB
KSR | 2 | | 404A
 438A | GT 13
GT 13 | 2N2838
2N2904 | ST 14 | CS56 | CS 10 | GP105A
GP105B | SD 10
SD 10 | W005
W02 | SR
SR | 1 | | 439A | GT 13 | 2N2904
2N2904A | ST 14
ST 14 | CS68
CS82 | CS 10
CS 10 | KG100F
KG100G | SR 7
SR 7 | W04 | SR | | # LOOK TO YOUR AUTHORIZED GENERAL INSTRUMENT DISTRIBUTOR FOR . . . RAPID RESPONSE TO YOUR SEMICONDUCTOR REQUIREMENTS #### AUTHORIZED DISTRIBUTORS BIRMINGHAM-M.G. Electronics, (205) FA 8-4525 HUNTSVILLE—Electronic Wholesalers, Inc. (205) 539-5722 M.G. Electronics, (205) 837-0350 ARIZONA-PHOENIX R.V. Weatherford Co., (602) 272-7144 CALIFORNIA-NORTHERN MOUNTAIN VIEW—Avnet Corp., (415) 961-7700 Kierulff Electronics, Inc., (415) 968-6292 OAKLAND—Elmar Electronics, (415) 834-3311 PALO ALTO—Elmar Electronics, (415) 961-3611 CALIFORNIA-SOUTHERN CALIFURNIA—SOUTHERN CULVER CITY—Avnet, (213) 837-7111 INGLEWOOD—Liberty Electronics, Inc., (213) OR 8-8111 LOS ANGELES—Kierulff Electronics, Inc., (213) 685-5511 SAN DIEGO—Milo of California, Inc., (714) BE 2-8951 COLORADO—DENVER Industrial Electronic Sales Co., (303) 757-1261 FLORIDA MELBOURNE-Electronic Wholesalers, Inc., (305) PA 3-1441 MIAMI—Electronic Wholesalers, Inc., (305) 0X 6-1620 Southeastern Radio Parts Co., (401) JA 4-7536 ILLINOIS—CHICAGO AREA CHICAGO—Newark Electronics Corp., (312) ST 2-2944 FRANKLIN PARK—Avnet Corp., (312) 678-8160 SCHILLER PARK—Pace Electronic Supplies Inc., (312) 678-6310 EASTERN AREA General Instrument Corporation 2021 Clinton Ave., W., Huntsville, Ala. 35805 Tel.: (205) 536-9671 General Instrument Corporation 235 Passaic St., Newark, N.J. 07104 Tel.: (201) 485-0072; TWX: 201-621-8041 608 Ferry Blvd., Stratford, Conn. 06497 Tel.: (203) 378-2992 General Instrument Corporation 2435 Virginia Ave., N.W., Washington, D.C. 20037 Tel.: (202) 965-3712; TWX: 202-965-0474 General Corporation 1520 Edgewater Drive, Orlando, Fla. Tel.: (305) 241-3384; TWX: 305-275-0424 General Instrument Corporation Southwest Park, Westwood, Mass. 02181 Tel.: (617) 329-1480; TWX: 617-326-9332 Tel.: (716) 652-1221 Henry Reid Associates, Inc. 530 Main Street, Fort Lee, New Jersey 627 Bethlehem Pike, Philadelphia, Pa. 19118 General Instrument Corporation INDIANA-INDIANAPOLIS Graham Electronic Supply, Inc. (317) ME 4-8486 AREA HEADQUARTERS General Corporation Harries-Kershaw Tel.: (201) 944-9323 Tel.: (215) 248-3377 . H. Newson Assoc., Inc. IOWA-CEDAR RAPIDS Deeco, Inc., (319) EM 5-7551 LOUISIANA—BATON ROUGE Southern Radio Supply Co., (504) 355-0396 MARYLAND WASHINGTON, D.C. BALTIMORE—Electronic Wholesalers, Inc. (301) 945-3400 Radio Electric Service Co. of Baltimore, Inc. (301) LA 9-3835 BETHESDA—Empire Electronics Supply Co., (301) OL 6-3300 HYATTSVILLE—Milgray Washington, Inc., (301) UN 4-6330 WASHINGTON, D.C .- Electronic Wholesalers, Inc., (202) 483-5200 MASSACHUSETTS BURLINGTON—Avnet Corp., (617) 272-3060 CAMBRIDGE—R & D Electronics Supply Co., Inc., (617) UN 8-6644 NEWTON—The Greene-Shaw Co., (617) WO 9-8900 MICHIGAN—KALAMAZOO Electronic Supply Corp., (616) WO 5-1241 MISSOURI KANSAS CITY—Walters Radio Supply Co., Inc., (816) 531-7015 UNIVERSITY CITY—Olive Industrial Electronics, Inc., (314) VO 3-7800 NEW JERSEY—CAMDEN General Radio Supply, (609) 964-8560 NEW MEXICO-ALBUQUERQUE Electronic Parts Co., Inc., Albuquerque (505) 265-8401 (505) 265-8401 NEW YORK (METROPOLITAN AREA) YONKERS—Delburn Electronics, (914) 423-2800 NEW YORK—Milgray Electronics, Inc., (212) YU 9-1600 Terminal Hudson Electronics, Inc., (212) CH 3-5200 NEW YORK STATE BINGHAMTON—Stack Industrial Electronics, (607) RA 3-6326 NEW YORK STATE—(Continued) BUFFALO—Summit Distributors, (716) TT 4-3450 NORTH CAROLINA-WINSTON SALEM Electronic Wholesalers, Inc., (919) 725-8711 OHIO-CINCINNATI Newark-Herrlinger Electronics Corp., (513) 421-5282 OKLAHOMA—TULSA Radio, Inc., (918) LU 7-9124 PENNSYLVANIA PHILADELPHIA—Herbach & Rademan, Inc., (215) LO 7-4309 Milgray Delaware Valley, Inc., (215) WA 3-2210 TENNESSEE KNOXVILLE—McClung Appliances, (615) 524-1811 NASHVILLE—Electra Distributing Co., (615) AL 5-8444 ARLINGTON—Beta Electronics, Inc., (214) TA 1-1120 DALLAS—Contact Electronics, Inc., (214) ME 1-9530 Solid State Electronics, (214) 352-2601 EL PASO—McNicol, Inc., (915) 566-2936 FT. WORTH—Scooters Radio Supply Co., (817) ED 6-7448 HOUSTON—Busacker Electronic Equipment Co., (713) JA 6-4661 UTAH-SALT LAKE CITY Kimball Electronics, Inc., (810) 328-2075 VIRGINIA CHARLOTTESVILLE—Virginia Radio Supply Co., Inc., (703) 296-4184 NORFOLK—Priest Electronics, Inc., (703) 855-0141 WASHINGTON-OREGON-SEATTLE Seattle Radio Supply, Inc., (206) MA 4-2341 WISCONSIN-MILWAUKEE Electronic Expeditors, Inc., (414) UP 1-3000 #### SALES OFFICES #### **CENTRAL AREA** AREA HEADQUARTERS General Instrument Corporation 6054 W. Touhy Ave., Chicago, Illinois 60648 Tel.: (312) 774-7800; TWX: 312-265-1424 Jerry Vrbik Co. 2818 "A" Ave., N.E., Cedar Rapids, Iowa 52402 Tel.: (319) 365-0461; TWX: 319-552-7118 G & H Sales 16815 James Couzens Highway, Detroit, Michigan 48235 Tel.: (313) 342-4747 Hamilton, Graydon, Flemmer Inc. Hamilton Rd., Hopkins, Minn. Tel.: (612) 941-1120; TWX: 612-292-4013 Hyde Electronics Co. 5206 Constitution Ave., N.E., Albuquerque, New Mexico Tel.: (505) 265-8895 G & H Sales P.O. Box 37416, Cincinnati, Ohio 45237 Tel.: (513) 761-6185; TWX: 513-577-1239 G & H Sales P.O. Box 7013, Cranwood Station, Cleveland 28, Ohio Tel.: (212) 621-3242 G & H Sales 137 Lakeview Ave., Dayton 59, Ohio Tel.: (513) 885-3181 Ammon & Champion 5545 East Skelly Drive/Suite #5, Tulsa, Oklahoma 74114 Tel.: (918) 627-7670; TWX: 918-627-6033 Ammon & Champion P.O. Box 35263, Blanton Tower 628, Dallas, Texas 75235 Tel.: (214) 357-8441; TWX: 214-899-8306 Ammon & Champion 115-14 Burdine, Houston, Texas 77035 Tel.: (713) 729-1233; TWX: 713-571-3133 #### **WESTERN AREA** AREA HEADQUARTERS General Instrument Corporation 6108 W. Venice Blvd., Los Angeles, Calif. 90034 Tel.: (213) 933-7261; TWX: 213-937-2187 General Instrument Corporation 647 Veterans Blvd., Redwood City, Calif. 94063 Tel.: (415) 365-1920 Suite No. 1 Vistronics 5957 Fairmont Ext., San Diego 20, Calif. Tel.: (714) 283-3946 Electronic Component Sales Inc. 2340 W. Main St., Littleton, Colo. 80120 Tel.: (303) 798-8481; TWX: 303-798-8114 Bill Waddell Co. 10211 N.E. 31st Place, Bellevue, Wash. Tel.: (206) 822-9629; TWX: 206-999-1875 GENERAL INSTRUMENT CORPORATION SEMICONDUCTOR PRODUCTS GROUP #### **CASE
DRAWINGS** Orientation of exhaust hole is not restricted relative to positioning of transistor insert within the stud heat-sink. - 040 MAX (NOTE 4) +.001 -.324 -.000 DIA. C'BORE 45° CHAMFER TO .342 DIA E(NOTE 3) (THREAD LENGTH 25 ## CASE DRAWINGS #### **OUTLINE DIMENSIONS** All dimensions are in inches. See respective data sheet for complete outline dimensions and specifications of industrial types. # High-Frequency (continued) | | | | | | MAX. RATINGS CHARACTERISTICS | | | | | CHARA | CTERISTIC | cs | | | |-----------------------|---|--------------------------------|---|--|---------------------------------------|--|-------------------------------------|----------------------------------|--------------------------------------|---|---------------------------------------|------------------------------------|-----------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae *fT (MHz) | P (m W) | T _j
(°C) | mW/°C | *VCEO *VCBO (V) | C
(mA) | h _{fe}
*h | *ICEO *ICEX (/(A) | Coe
*Cob
(pF) | Package
Outline
(TO-) | Remarks | | HF 78 | 2N 3728
2N 3729
2N 3733
40281
40307 | FA
FA
RCA
RCA
RCA | npn,DPE,si
npn,DPE,si
npn,si
npn,si
npn,si | 400
400
400
*400
*400 | 1.6 W
1.6 W
23W
11.6W
23W | 200
200
200
200
200
200 | 9.15
9.15
130
660
131 | 30
30
-
18
40 | 500
500
3A
1a
3A | *30-280
*30-280
-
*10 (min) | .010
.010
*250
*100
*0.25 | -
*20
*22
*20 | -
60
60
60 | Vces=40; overlay type
† Iceo
Overlay type | | nr /6 | A 466
MM1945
MPS2894
2 N834
2N982 | AMP
MO
MO
MO
SPR | npn,. L,si
npn,E,si
pnp,EP,si
npn,EP,DD,si
pnp,MD,ge | *400
*400
*400
*450
*450 | 150
800
1000
500
60 | 175
175
125
175
175
100 | 1.0
5.33
10
2
0.8 | *40
*40
12
*40
*20 | 25
500
-
200
100 | *60
*25
*40-150
5
*100 | .001
0.5
.08
.01 | -
*5
*6
*2.8
*1.9 | 72
18
92
18
18 | Cre=.015 pf
SY, TR, Gi, FA, NA, SPR, ITT | | HF 79 | 2N983
2N1562
2N2168
2N2169
T1407 | SPR
MO
SPR
SPR
TI | pnp,MD,ge
pnp,DM,ge
pnp,MD,ge
pnp,MD,ge
npn,PL,si | *450
*450
*450
*450
*450
*450 | 60
3W
60
60
200 | 100
100
100
100
100
125 | 0.8
40
0.8
0.8
2 | *15
25
*20
*15
12 | 100
250
100
100
30 | *85
9
*100
*85
*20 | 1
10
1
1
0.5 | *1.9
*10
*1.9
*1.9
2.2 | 18
-
9
9 | Plast, IEC, GME | | nr /9 | 2N960
2N961
2N962
2N964
2N964A | MO
MO
MO
MO
MO | pnp, EM, ge
pnp, EM, ge
pnp, EM, ge
pnp, EM, ge
pnp, EM, ge | *460
*460
*460
*460
*460 | 300
300
300
300
300 | 100
100
100
100
100 | 4
4
4
4
4 | *15
*12
*12
*15
*15 | 11111 | *40
*40
*40
*70
*80 | 0.3
.3
-
.3
.3 | *4
*4
.3
*4
*4 | 18
18
18
18 | SY, TI, RCA
TI, RCA
SY, TI, RCA
SY, TI, RCA
SY, TI | | WE 00 | 2N965
2N966
2N502
2N700
2N835 | MO
MO
*SPR
MO
MO | pnp,EM,ge
pnp,EM,ge
pnp,MD,ge
pnp,DM,ge
npn,PE,si | *460
*460
500
*500
*500 | 300
300
60
-
500 | 100
100
85
100
175 | 4
4
1
1
2 | *12
*12
*20
*25
*25 | -
50
50
200 | *70
*70
45
4
4.5 | 0.3
0.3
3
2
0.01 | *4
*4
*1.0
1.5
*2.8 | 18
18
9
17
18 | SY, TI, RCA
SY, TI, RCA
*PH orig Reg | | HF 80 | 2N1561
2N2095
2N2098
2N2480A
2N2883 | MO
SPR
SPR
-
FA | pnp,DM,ge
pnp,ED,ge
pnp,ED,ge
npn,PE,si
npn,PE,si | *500
*500
*500
*500
*500 | . 3W
1W
1W
2W
1750 | 100
100
100
200
200 | 40
13.3
13.3
11.4
10 | 25
*30
*30
*80
200 | 250
300
300
500
300 | 10
-
-
*35
*30 | 10
2
2
0.01
0.1 | *10
*6.5
*6.5
*20
*1.0 | 31
9
5
5 | PG=6 dB@160 MHz
PG=6 dB@160 MHz
diff amp, MO, TRWS | | | 2N2884
2N3227
2N3375 | FA
SPR
RCA | npn,PE,si
npn,PE,si
npn,si | *500
*500
*500 | 1750
1200
11.6W | 200
200
200 | 10
6.85
660 | 20
* 40
40 | 300
500
1.5A | *30
*30 | 0.1
0.2
100 | *1.0
*4
*10 | 5
18
60 | RCA "Overlay" emitter type, | | HF 81 | 2N3553 | RCA | npn,si | *500 | 7W | 200 | 1,14 | 40 | 1 | - | 100 | •10 | 39 | MO, VEC
RCA "Overlay" emitter type
MO, VEC | | UL 01 | 2N3924
2N3925
2N3926
2N3927 | MO
MO
MO
MO | npn,A*,si
npn,A*,si
npn,A*,si
npn,A*,si | *500
*500
*500
*500 | 7000
10000
11600
23200 | 200
200
200
200
200 | 40
57.1
66.3
132.5 | 18
18
18
18 | 500
1000
1500
3000 | 5
5
5
5 | 100
100
100
250 | *12.5
*12.5
*12.5
*25 | 39
102
60
60 | *Annular
*Annular
*Annular
*Annular | | | 2N3961
2N4012
40290
40291
40305 | MO
RCA
RCA
RCA
RCA | npn,si
npn,si
npn,si
npn,si
npn,si | *500
*500
*500
*500
*500 | 10000
11.6W
7W
11.6W
7W | 200
200
200
200
200
200 | 57.2
66
40
66
40 | 40
-
-
-
40 | 1000
1.5A
0.5A
0.5A
1000 | 5
-
-
-
*10 (min) | 1000
*0.1
*100
*100
*0.1 | *10
*10
*17
*17
*10 | 102
60
39
60
39 | Vces=40; overlay type
Vces=90; overlay type
Vces=90; overlay type
Overlay type | | HF 82 | MPS3639
MPS3640
40306
A1243
AF139 | MO
MO
RCA
AMP
SA | pnp,EP,si
pnp,EP,si
npn,si
pnp,MS,ge
pnp,MS,ge | *500
*500
*500
*500
*500 | 500
500
11.6W
50
60 | 125
125
200
75
90 | 5
5
66
.9
2.5 | 6
12
40
20
15 | 80
80
1.5A
7 | *30-120
*30-120
*10 (min)
*10
*50 | -
*0.1
8
0.7 | *3.5
*3.5
*10
- | 92
92
60
18
18 | Ices=.01
Ices=.01
Overlay type
uhf-stages | | | AFY39
MM1943
2N869A
2N1195
2N2368 | SA
MO
FA
-
FA | pnp,MS,ge
npn,E,si
pnp,PE,si
pnp,DM,ge
npn,PE,si | 500
*500
*550
*550
*550 | 225
600
1200
250
1200 | 90
175
200
100
200 | 5.0
4.0
6.85
3.33
6.85 | *32
*40
18
*30 | 30
200
200
40.0
500 | 85
*25
*75
13.0
*40 | 0.4
0.1
0.00005
2.0
0.1 | -
*4
*3.0
4.0
*2.5 | 18 lg
18
18
5 | vhf antennas
MO, TI
SPR, MO | | HF 83 | 2N3013
2N3014
2N4072
2N4073
40280 | FA
FA
MO
MO
RCA | npn,PE,si
npn,PE,si
npn,AE,si
npn,AE,si
npn,si | *550
*550
*550
*550
*550 | 1. 2W
1. 2W
350
1500
7W | 200
200
200
200
200
200 | 6.85
6.85
2.0
8.57
1.14 | 15
20
20
20
20
18 | -
100
150
500 | *60
*60
*10
*10 | 0.1
0.1
0.1
*100 | *5
*5
*4
*4
*15 | 52
52
18
5 | | | UE 24 | A472
A473
2N709 46
2N709 51
2N769 | AMP
AMP
SY
SY
*SPR | npn,si
npn,si
npn,si
npn,si
npn,si
pnp,MD,ge | *550
*550
600
600
*600 | 230
230
400
300
35 | 175
175
200
200
100 | 1.54
1.54
-
-
0.467 | *40
*40
*15
*15
*12 | 25
25
-
-
100 | *150
*150
*20-120
*20-120
*55 | .001
.001
.005
.005
.005 | -
*3.0
*3.0
*1.5 | 72
72
46
51
18 | Cre=.023 pf.
Cre=.023 pt.
TR
TR
*PH orig Reg | | HF 84 | 2N976
2N2998
2N3049
2N3320
2N3321 | SPR
TI
TI
SPR
SPR | pnp,MD,ge
pnp,ge
npn,PE,si
pnp,ge
pnp,ge | *600
*600
*600
*600
*600 | 100
75
1.4W
75
75 | 100
100
200
100
100 | 1.33
1
9.33
1.0
1.0 | *15
*15
*25
10
*12 | 100
20
100
100
100 | *80
20-500
*20
*40
*80 | 1.0
5
0.01
5
5 | *1.5
*1.7
*8
*3
3.5 | 18
72
-
18
18 | °PH, orig Reg
Flat Pack, SPR | #### High-Frequency (continued) | | | | | | MAX. RATINGS | | | CHARA | CTERISTI | CS | | | | | |-----------------------|--|--------------------------------|--|--|---|--|------------------------------------|---------------------------------|-------------------------------|--|--|---|----------------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | f _{αe} *f _T (MHz) | P
(m₩) | T _j
(°C) | mW/°C | *VCEO
*VCBO
(V) | l _C (mA) | hfe
*hFE | ICO
*ICEO
†ICEX
(µA) | C _{oe}
*C _{ob}
(pF) | Package
Outline
(TO-) | Remarks | | HF 85 | 2N3322
2N3399
2N3423
2N3424
2N3544 | SPR
AMP
FA
FA
MO | pnp,ge
pnp,MS,ge
npn,PE,si
npn,PE,si
npn,E,si | *600
*600
*600
*600
*600 | 75
80
1.2 W
1.2 W
400 | 100
90
200
200
175 | 1.0
1.1
3.44
3.44
2.67 | *12
*20
15
15
*25 | 100
7
50
50
100 |
*25
*10
*20-200
*20-200
*25 | 5
1
0.010
0.010
0.1 | 3.5
1.27
1.7
1.7
*2.5 | 18
18
-
-
18 | 4 lead low Noise
AL
AL | | | 2N3683
2N3995
AF139
MM1941
MPS918 | KMC
TI
AMP
MO
MO | -
pnp,ge
pnp,MS,ge
npn,E,si
npn,EP,si | *600
*600
*600
*600
*600 | 200
300
50
600
500 | 200
140
75
175
125 | 1.74
4
.9
4.0
5 | *30
*20
*20
*30
15 | 30
100
7.0
200 | *150
150-450
*10
*25
*20 | .05
3
12
0.1
.01 | *2.0
*4
-
*0.5
*1.7 | 72
39
18
18
92 | | | HF 86 | MPS3563
2N502A
2N502B
2N2369
2N3303 | MO
*SPR
*SPR
FA
FA | npn,EP,si
pnp,MD,ge
pnp,MD,ge
npn,PE,si
npn,PE,si | *600
620
620
*650
650 | 500
75
75
1200
3W | 125
100
100
200
200 | 5
1
1
6.85
17 | 12
*30
*30
15
12 | -
50
50
500
1A | *20-200
45
50
*80
*60 | .05
3.0
3.0
0.1
100 | *1.7
*1.0
*1.0
*2.5
*6.0 | 92
9
9
18 | PH orig Reg
PH orig Reg
TR, MO, SPR, NUC
MO | | nr ao | D16K1
D16K2
D16K3
2N2369A
2N2708 | GE
GE
GE
FA
RCA | npn,PL,si
npn,PL,si
npn,PE,si
npn,PE,si
npn,EP,si | 650
650
*650
*675
*700 | 200
200
200
1,2W
200 | 100
100
100
200
200 | 2.67
2.67
2.67
6.85 | 30
30
30
15
35 | 25
25
25
200 | *110
*110
*110
*110
*65
180 | 0.5
0.5
0.5
0.05
0.01 | *1.4
*1.4
*1.4
*23
1.5 | 98
98
98
18 | For AGC @ 45 MHz
For AGC @ 45 MHz
For AGC @ 200 MHz
SPR
AL | | | 2N2962
2N2963
2N3784
2N3785
2N2964 | SPR
SPR
MO
MO
SPR | pnp,ED,ge
pnp,ED,ge
pnp,EM,ge
pnp,EM,ge
pnp,ED,ge | *700
*700
*700
*700
*700 | 3000
3000
150
150
3000 | 100
100
100
100
100 | 40
40
2
2
40 | *40
*40
20
12
*30 | 300
300
20
20
300 | -
*20-200
*15-200 | 1.5
1.5
5
5
1.5 | 7
7
*1
*1
*7 | 37
37
72
72
72
37 | PG = 6db @ 160MHz
PG = 5db @ 160MHz
PG = 6db @ 160MHz | | HF 87 | 2N2965
2N3304
40404
2N3137
2N3564 | SPR
FA
RCA
FA | pnp,ED,ge
pnp,PE,si
npn,EP,si
npn,PE,si
npn,PE,si | *700
*700
*700
*750
*750 | 3000
500
300
1000
500 | 100
200
175
200
125 | 40
2.0
2
5.71
5.0 | *30
6.0
*40
20
15 | 300
-
500
- | *63
*25-65
*70
*70 | 1.5
0.010
.025 (ma
12
0.05 | *7
*1.9
ex) 4 (ma
*2.8
*2.5 | 37
18
x)
5 | PG=5db@160MHz
MO
CDC, IEC, GME | | | S15657
S15658
S15659
2N709
2N709A | FA
FA
FA
FA | npn,DPE,si
npn,DPE,si
npn,DPE,si
npn,PE,si
npn,PE,si | 750
750
750
*800
*800 | 200
600
1.0 W
0.5W
500 | 125
125
200
200
200 | 5
6
5.71
5 | 15
15
20
6.0
6.0 | | -
*70
*70
*55
*60 | .050
.050
0.005
0.005 | *2.5
-
-
*2.5
*2.5 | -
5
18
18 | R0110 package
R0110 package
SY. AL, TI, RCA, VEC
SY, TR, VEC | | HF 88 | 2N709A/46
2N709A/51
2N917
2N3866
2N3783 | SY
SY
FA
MO
MO | npn,si
npn,si
npn,DP,si
npn,si
pnp,EM,ge | 800
800
*800
*800
*800 | 400
400
300
5000
150 | 200
200
200
200
200
100 | -
1.71
28.5
2 | *15
*15
15
30
20 | -
-
400
20 | *30-90
*30-90
50
-
*20-200 | 5
.005
0.0005
20
5 | *3.0
*3.0
*1.5
*3
*1 | 46
51
18
39
72 | AL, TI, TRWS
RCA | | | A1220
2N2966
2N3600
40405
2N743/46 | AMP
PH
RCA
RCA
SY | pnpPADT,ge
npn,PE,si
npn,EP,si
npn,si | *820
*850
*850
*850
900 | 90
60
300
300
400 | 90
100
-
175
200 | -
.5
-
2
- | 25
20
*30
*40
*20 | 15
100
-
500
200 | *20
*15
*20
*20 (min)
*20-60 | .6
1
0.01
-
10 | *1.4
1
1.7
3.5 (m | -
18
-
nax) -
46 | Low Noise type
UHF amplifier
GI, TR | | HF 89 | 2N743/51
2N744/46
2N744/51
2N918
2N2729 | SY
SY
SY
FA
FA | npn,si
npn,si
npn,si
npn,PE,si
npn,PE,si | 900
900
900
*900
*900 | 300
400
300
300
0.8W | 200
200
200
200
200
200 | -
1.71
4.56 | *20
*20
*20
15 | 200
200
200
50
50 | *20-60
*40-120
*40-120
*50
*50 | 70
10
10
0.0002
0.0001 | 5
5
5
*1.4
*2.4 | 51
46
51
18
46 | TR
GI. TR
TR
MO, AL, TI, NUC, TRWS
AL | | UE 00 | 2N3478
2N3563
2N3662
2N3663
40238 | RCA
FA
GE
GE
RCA | npn,PE,si
npn,PE,si
npn,PEP,si
npn,PEP,si
npn,PL,si | 900
*900
*900
*900
*900 | 200
500
200
200
180 | 200
125
100
100
175 | 5.0
2.67
2.67
1.2 | *30
12
*18
*30
*35 | -
25
100
50 | *25
50
*75
*75
40-170 | 0.02
0.05
0.5
0.5
0.02 (ma | *2
*1.4
1.2
1.2 | -
98
98 | CDC, IEC, GME | | HF 90 | 40239
40240
2N700A
2N955
2N2482 | RCA
RCA
MO
RCA
RCA | npn,PL,si
npn,PL,si
pnp,DM,ge
pnp,MS,ge
npn,DM,si | *900
*900
*1000
*1000
*1000 | 180
180
-
150
150 | 175
175
100
100
100 | 1.2
1.2
1 | *35
*35
*25
*12
*20 | 50
50
50
150
100 | 27-100
27-275
4
*30
25-200 | 0.02 (ma
0.02 (ma
2
5
5 | (x) -
(x) -
1.4
*4
*4.5 | -
17
18
18 | | | 115.01 | 2N2784
2N2808
2N2809
2N2809
2N2810
2N2857 | SY
RA
RA
RA
RCA | npn,si
npn,si
npn,si
npn,si
npn,PE,si | 1000
*1000
*1000
*1000
*1000 | 300
200
200
200
200
300 | 200
300
300
300
300
200 | 1.15
1.15
1.15
1.15 | 15
10
15
10
*30 | 25
25
25
25
20 | 40-120
*20
*20
*20
*30-150 | .005
.01
.01
.01
.01
0.01 | 3.0
*0.7
*0.7
*0.7
1.3 | †
18
18
18 | † TO-18, 46, 51, VEC
4 Leads
4 Leads
4 Leads | | HF 91 | 2N3572
A490
MM2503
MM2550
MM2552 | T1
AMP
MO
MO
MO | npn, PL, si
npn,si
pnp,EP,ge
pnp,EP,DJ,ge
pnp,EP,DJ,ge | *1000
1000
1000
*1000
*1000 | 200
200
75
300
600 | 200
200
100
100
100 | 1.14
1.12
1.0
4
8 | 13
*30
15
10 | 50
20
20
100
100 | 20-300
*70
*20
*20
*30 | 0.01
.010
10
10 | 0.85
1.8
*2
*3
*3 | 72
72
72
18
5 | 4 lead sum to TO 18 | # NOW! Solid State Time Delay Relays for as little as \$1750 (P&B QUALITY, OF COURSE) # why pay for operating characteristics you don't need? Here is a practical cost-saving answer to many timing applications which do not require the extreme precision of much more expensive relays. CH Series solid state time delay relays are quality-built to perform dependably in most industrial applications. Where more critical perameters are required, we recommend our CD Series. **SAVE UP TO 60%**—You can save up to 60% of your time delay relay costs with our new CH Series. Adjustable or fixed models are available with delays on operate or release as well as "interval on". **ACCURACY** $\pm 10\%$ —Accuracy is $\pm 10\%$ over the -10° to 55° C temperature range for adjustable time delays. Fixed delays have an accuracy of $\pm 5\%$ at 25° C ambient temperature. Reset time is 100 milliseconds. INTERNAL RELAY RATED 10 AMPERES—An internally-mounted DPDT relay is rated at 10 amperes, 115 VAC, resistive. Both AC and DC models are available and all come in a white nylon case with octal plug. CH relays for DC operation have an internal protection against damage by reversal of input polarity. Relays will not operate falsely nor be damaged by a transient input voltage having a magnitude up to twice rated input voltage and a duration of eight milliseconds. Write for the complete catalog of P&B Time Delay Relays. You can get CH Series relays from your local electronic parts distributor. #### **SPECIFICATIONS** **CH and CD Series Comparison** | | CH SERIES | CD SERIES | |---|--|---| | Dial Setting | Reference scale | Time-calibrated ± 5% of full scale | | Temperature
Range | -10°C to +55°C | -40°C to +55°C | | Accuracy Over
Temperature and
Voltage Range | ±10% of nominal | ±5% of nominal | | Transient
Protection | Twice rated input voltage for 8 milliseconds | Tested to 1000V—
½ cycle surges (on
all 115V AC models) | | Inherent False
Operation | Contacts may transfer
momentarily if
timing interval
is interrupted | None | | Reset Time | 100 milliseconds | 60 milliseconds | | Repeatability | ± 2% | ±1% | | Polarity
Reversal
Protection
(on DC) | Yes | Yes | #### POTTER & BRUMFIELD Division of American Machine & Foundry Co., Princeton, Ind. Export: AMF International, 261 Madison Ave., New York, N.Y. ON READER-SERVICE CARD CIRCLE 17 #### High-Frequency (continued) | | | | | | | М | AX. RATI | INGS | | CHAR | ACTERISTI | ICS | | | |-----------------------|---|--------------------------------|--|--|--|--|------------------------------------|--------------------------------|--------------------------------------|--
---|------------------------------------|-----------------------------|---| | Crass
Index
Key | Type
No. | Mfr. | Туре | fae
*f _T
(MHz) | P
c
(mW). | T _j
(°C) | mW/°C | °VCEO
CBO
(V) | C (mA) | hfe
*hFE | lCO
*ICEO
†ICEX
(μΑ) | Coe
*Cab
(pF) | Package
Outline
(TO-) | Remarks | | HF 92 | MM2554
2N2929
2N2808A
2N2809A
2N2810A | MO
MO
RA
RA
RA | pnp,EP,DJ,ge
pnp,EM,ge
npn,si
npn,si
npn,si | *1000
*1100
*1200
*1200
*1200 | 600
750
200
200
200 | 100
100
300
300
300
300 | 8
10
1.15
1.15
1.15 | 10
10
10
15
10 | 100
100
25
25
25
25 | *30
*10-100
*20
*20
*20 | 10
5
.01
.01
.01 | *3
*2.5
*0.7
*0.7
*0.7 | 5
5
18
18 | 4 Leads
4 Leads
4 Leads | | 111 32 | 2N3571
2N3880
40235
40236
40237 | TI
KMC
RCA
RCA
RCA | npn, PL, si
-
npn, PL, si
npn, PL, si
npn, PL, si | *1200
*1200
*1200
*1200
*1200
*1200 | 200
200
180
180
180 | 200
200
175
175
175 | 1.14
1.74
1.2
1.2
1.2 | 15
*30
*35
*35
*35 | 50
30
50
50
50 | 20-200
•150
40-170
40-275
27-275 | 0. 01
.01
0.02 (max
0.02 (max
0.02 (max | () – | 72
-
-
-
-
- | 4 lead sim to TO 18 | | | 2N3633
2N3953
2N3959
2N2999
TIXM104 | TR
KMC
MO
TI
TI | npn,si
npn,si
pnp,ge
pnp,PL,ge | 1300
*1300
*1300
*1400
*1400 | 300
*200
750
75
40 | 200
200
200
100
125 | 1.71
1.74
4.3
1 | 6
*15
12
*15
*12 | 50
30
30
20
20 | *75
*200
*40-200
15
10-250 | 0.005
0.1
†.005
5
6 | *2.5
*2.0
*2.5
1.7 | 18
72
18
72
— | | | HF 93 | 2N3570
TIX3024
TIXM101
2N3932
2N3933 | TI
TI
TI
RCA
RCA | npn,PL,si
pnp,PL,ge
pnp,PL,ge
npn,PE,si
npn,PE,si | *1500
*1500
*1500
*1600
*1600 | 200
75
75
175
175 | 200
100
100
175
175 | 1.14
1
1
1.12
1.12 | 15
*15
*15
30
40 | 50
50
50
- | 20-150
30-300
30-300
40-150
60-200 | 0. 01
7
7
0.01
0.01 | 0.75
*3
*3
0.55
0.55 | 72 | 4-lead sim to To 18 | | | 2N3960
2N4260
TIXM103
2N4261
2N2480 | MO
MO
TI
MO
GE | npn,si
pnp,AE,si
pnp,PL,ge
pnp,AE,si
npn,PE,si | *1600
*1600
*1800
*2000
2500 | 750
200
40
200
2W | 200
200
125
200
200 | 4.3
1.14
1
1.14
11.4 | 12
15
•12
15
•75 | 30
30
20
30
500 | *40-200
*30 - 150
10-250
*30 - 150
*20 | †.005
†.005
6
†.005
0.05 | *2.5
*2.5
-
*2.5
*20 | 18
72
-
72
5 | diff amp, MO, SPR, TRWS | | HF 94 | AFY34
2N144
2N231
2N262
2N374 | SA
SY
*SPR
RCA
RCA | pnp,EP,MS,ge
npn,AL,ge
pnp,SBT,ge
pnp,ge
pnp,DR,ge | 3500
-
-
-
- | 1000
9
80
80 | 90
75
55
71
71 | 6.3
-
0.9
- | *40
*60
*4.5
34
25 | 20
800
3
-
- | 10
*10.5
66
-
- | 500
3
5
8 | | †
13
24
7
7 | † coax
*PH orig Reg | | | 2N656
2N657 | TI
Ti | npn,si
npn,si | | 4 | 200 | 22.8 | 60
100 | - | *30
*30 | 10
10 | - | - | TRWS, FA, TR, AMP, CDC.
STC, SSP
TRWS, FA, TR, AMP, CDC,
STC, SSP
RCA | | HF 95 | 2N706A
2N710
2N715
2N716
2N738 | TI
TI
TI
TI
TI | npn,si
pnp,ge
npn,si
npn,si
npn,si | 11111 | 300
300
500
500
500 | 175
100
175
175
175 | 2.0
4.0
3.33
3.33
3.33 | 20
*15
35
40
80 | 50
50
100
100
50 | 2
6
1
*10
20 | 10
3
1
1 | *5
-
*6
*6
*10 | 18
18
18
18 | FA, SY, MP, TR, GI, ITT, MO
SY
NA
NA
TR | | | 2N739
2N740
2N743
2N744
2N753 | TI
TI
TI
TI | npn,si
npn,si
npn,si
npn,si
npn,si | 1111 | 500
500
300
300
300
300 | 175
175
175
125
175 | 3.33
3.33
2
2
2 | 80
80
12
12
20 | 50
50
200
200
50 | 40
80
•20
9
•40 | 1
1
1
1
0.5 | *10
*10
*5
*5
*5 | 18
18
18
18 | TR
TR, AL
FA, SY, GI, TR, ITT
FA, SY, MP, TR, GI, ITT, MO
FA, SY, MP, TR, GI, ITT, MO | | HF 96 | 2N781
2N782
2N797
2N849/T1430
2N850/T1431 | SÝ
SY
TI
TI | pnp, EP, ge
pnp, EP, ge
npn, ge
npn, si
npn, si | 11111 | 300
300
150
300
300 | 100
100
100
175
175 | -
2
2
2 | *15
*12
7
15
15 | 200
200
150
50 | *25
*20
6
6 | 3
3
1
0.5
0.5 | -
*4
*5
*5 | 18
18
18
50
50 | AL | | | 2N851/TI-422
2N852/TI-423
2N929
2N930 | TI
TI
TI
TI | npn,si
npn,si
npn,si
npn,si | 1111 | 300
300
300
300 | 175
175
175
175 | 2
2
2
2 | 12
12
45
45 | 200
200
30
30 | 9
9
60
150 | -
0.01
0.01 | *5
*5
*8
*8 | 50
50
18
18 | FA. GI, SPR, AL, TR, MO, UC
FA, GI, SPR, AL, TR, NUC, MO,
UC | | HF 97 | 2N985
2N998
2N1052
2N1141
2N1141A | TI
FA
TR
TI
TI | pnp,ge
npn,DP,si
npn,PL,si
pnp,ge
pnp,ge | 11111 | 150
1800
600
750
750 | 100
200
175
100
100 | 2
10.3
6
10
10 | 7
60
•200
•35
•35 | 200
500
200
100
100 | *60
*5,000
*20-80
*40
15,6 | 3
0.01
-
0.7
4 | *6
*25
-
- | 18
18
5
- | SY, MO
AL
MO, SY
SY | | | 2N1142
2N1142A
2N1143
2N1143A
2N1247 | TI
TI
TI
TI
TR | pnp,ge
pnp,ge
pnp,ge
pnp,ge
npn,PLE,si | 11111 | 750
750
750
750
750
30 | 100
100
100
100
100
150 | 10
10
10
10
.24 | *30
*30
*25
*30
6 | 100
100
100
100
100
5 | *40
15.6
*40
15.6
*15 | 0.7
4
0.7
4
.005 | -
-
-
-
*20 | -
-
-
-
5 | SY, MO
SY
SY, MO
SY
GE | | HF 98 | 2N1507
2N1564
2N1565
2N1566
2N1572 | T1
T1
T1
T1
T1 | npn,si
si,npn
npn,si
npn,si
npn,si | | 600
600
600
600 | 175
175
175
175
175
175 | 4
4
4
4
4 | *60
60
60
60
80 | 1000
50
50
50
50
50 | *100
20
40
80
20 | 1
1
1
1
1 | *35
*10
*10
*10
*10 | 5
5
5
5 | TRWS, CDC
TRWS, TR
TRWS, TR
TRWS, TR
TRWS, TR | # High-Frequency (continued) | | | | (contin | | MAX. RATINGS CHARACTERISTICS | | | | | | | | | | |-----------------------|---|--------------------------------------|--|---------------------------------|---|--|------------------------------------|----------------------------------|--|--|-------------------------------------|---|---------------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*f _T
(MHz) | P
c
(mW) | T _j
(°C) | mW/°C | *VCEO
*VCBO
(V) | 1
(mA) | hfe
th FE | ICO
*ICEO
*ICEX
(//A) | C _{oe}
*C _{ob}
(pF) | Package
Outline
(TO-) | Remarks | | | 2N1573
2N1574 | TI
TI | npn,si
npn,si | - | 600
600
150 | 175
175
100 | 4 4 2 | 80
80
*15 | 5
50
50 | 40
80
*20 | 1
1
3 | *10
*10
*5 | 5 5 | TR
TR | | HF 99 | 2N 1646
2N 1742
2N 1743 | *SPR
*SPR | pnp,ge
-
- | - | 60 | 125
125 | | *20
*20 | -
-
- | *33
*33 | 0.8
0.8 | -
-
- | 9 9 | *PH orig. Reg.
*PH orig. Reg. | | 111 33 | 2N1744
2N1745
2N1754
2N1865
2N1866 | *SPR
*SPR
*SPR
*SPR
*SPR | -
pnp,MD,ge
pnp,Md,ge
pnp,Md,ge | | 60
60
50
60 | 125
125
100
100
100 | -
0.8
0.8
0.8 | *20
*20
*13
*20
*35 | -
100
50
50 | *33
*33
*20
70
70 | 1
1.0
1.0
1.0 | -
*1.5
-
- | 9
9
9
9 | °PH orig. Reg.
°PH orig. Reg.
°PH orig Reg, GI
°PH orig Reg
°PH orig Reg | | | 2N1867
2N1868
2N1960
2N1961
2N1990 | *SPR
*SPR
SY
SY
FA | pnp,MD,ge
pnp,MD,ge
pnp,ge
pnp,EP,ge
npn,DD,si | 1 10 11 | 60
60
150
150
2W | 100
100
100
100
150 | 0.8
0.8
-
-
16 | *35
*20
*15
*12
*100 | 50
50
200
200
1A | 50
*33
*25
*20
*30 | 1.0
1.5
3.0
3.0
1.0 | 1111 | 9
9
46
46
5 | *PH orig Reg
*PH orig Reg
TRWS, CDC, SY, GI, AMP, AL | | HF 100 | 2N2188
2N2189
2N2190
2N2191 | TI
TI
TI | pnp,ge
pnp,ge
pnp,ge
pnp,ge | 1 1 1 1 | 125
125
125
125
125 | 85
85
85
85 | 2.1
2.1
2.1
2.1
2.1 | 25
25
25
25
25 | 30
30
30
30 | 40
60
40
60 | 3
3
3
3 | *2.5
*2.5
*2.5
*2.5 | - | | | | 2N2192A
2N2360
2N2361
2N2362
2N2389 | GE
*SPR
*SPR
*SPR
TI | npn,PE,si

-
-
npn,si | 11111 | 2.8W
60
60
60
450 | 200
125
125
125
200 | 16
-
-
-
2.57 | 40
*20
*20
*20
*75 | 1A
-
-
-
500 | *100-300
*33
*33
*33
35 | 0.010
0.8
0.8
1
0.01 | *20
-
-
-
*25
 5
12
12
12
12
50 | CDC, GI, FA, NA, MO, AL
RF Amp, *PH orig. Reg.
RF mixer, *PH orig. Reg.
RF osc, *PH orig. Reg. | | HF 101 | 2N2395
2N2399
2N2398
2N2410
2N2411 | *SPR
*SPR
TI | npn,si

npn,si
pnp,si | - | 450
60
60
800
300 | 200
125
125
200
200 | 2.57
-
-
4.57
1.72 | 40
*20
*20
30
20 | 300
-
-
800
100 | *20
*33
*33
*30
*20 | 0.01
.8
0.8
0.3
0.01 | *30
-
-
*11
*5 | 50
12
12
5
18 | RF mixer, *PH orig. Reg.
RF amp, *PH orig. Reg.
FA, NA | | | 2N2412
2N2413
2N2415
2N2416
2N2485 | TI
TI
TI
TI
NA | pnp,si
npn,si
pnp, ge
pnp,ge
npn,D,si | - | 300
300
75
75
8700 | 200
175
100
100
175 | 1.72
2
1
1
50 | 20
18
10
10
120 | 100
200
20
20
20 | *40
*30
15
10 | 0.01
0.1
5
5 | *5
*5
*2
*2
*12 | 18
18
18
18
5 | MO
MO
VHF Power 5W @ 100MHz | | HF 102 | 2N2486
2N2635
2N2649
2N2650
2N2723 | NA
TI
NA
NA
SSD | npn,D,si
npn,ge
npn,D,si
npn,D,si
n,PL | | 8700
150
8700
8700
800 | 175
100
175
175
200 | 50
2
50
50
4.6 | 140
12
65
140
60 | 100
-
-
40 | *45
-
-
*2000 | 1.0
5
1.0
1.0
.010 | *12
*5
*12
*12 | 5
18
5
5
18 | VHF Power 3W @ 200MHz
SY, MO
2W @ 130MHz
VHF Power 4.5W @ 130MHz
Darlington amp, SPR | | UE 102 | 2N2724
2N2725
2N2861
2N2862
2N2863 | SSD
SSD
TI
TI
TI | n,PL
n,PL
pnp,si
pnp,si
npn,si | - | 800
800
300
300
800 | 200
200
200
200
200
200 | 4.6
4.6
1.72
1.72
4.57 | 60
45
20
20
25 | 40
30
100
100
1000 | *7000
*2000
50
25
*30 | .010
.002
0.01
0.01
0.5 | -
*6
*6
*13 | 18
18
18
18
18 | Darlington amp, SPR
Darlington amp, SPR | | HF 103 | 2N2864
2N2865
2N2936
2N2937
2N3016 | TI
TI
TI
TI
BE | npn,si
npn,si
npn,si
npn,si
npn,PE,si | | 800
200
300
300
25000 | 200
200
175
175
150 | 4.57
1.14
2
2
420 | 25
13
55
55
55 | 1000
50
30
30
2500 | *20
20
150
150
*60-150 | -
0.01
0.01
0.01
0.1 | *13
*25
*8
*8
*50 | 5
-
-
-
5 | AL
AMP, SPR
AMP, GI, SPR
SSP | | WE 104 | 2N3017
2N3018
2N3138
2N3139
2N3140 | BE
BE
NA
NA
NA | npn,PE,si
npn,PE,si
npn,D,si
npn,D,si
npn,D,si | 11111 | 25W
25000
20000
20000
20000 | 150
150
200
200
200 | 420
420
125
125
125 | 50
50
65
140
65 | 5A
10000
2000
200
200
2000 | *60-150
*60-150
-
-
- | 0.1
0.1
500
500
500 | *50
*50
30
*30
*30 | †
-
24
24
24 | MT27
Isolated Collector
VHF Power 7.5W = 70 MHz
VHF Power 14W @ 70 MHz
VHF Power 4W @ 130 MHz | | HF 104 | 2N3141
2N3142
2N3143
2N3144
2N3145 | NA
NA
NA
NA | npn,D,si
npn,D,si
npn,D,si
npn,D,si
npn,D,si | - | 20000
25,000
25,000
25,000
25,000 | 200
200
200
200
200
200 | 125
142
142
142
142 | 140
65
140
65
140 | 2000
2000
2000
2000
2000
2000 | - | 500
500
500
500
500 | *30
*30
*30
*30
*30 | 24
16
16
16
16 | VHF Power 8W = 130 MHz
VHF Power 5.4 W = 70 MHz
VHF Power 8.3 @ 70 MHz
VHF Power 4.0W @ 130 MHz
VHF Power 6.0W @ 130 MHz | | UE 105 | 40080
40081
40082
40242
40243 | RCA
RCA
RCA
RCA
RCA | npn,si
npn,si
npn,si
npn,PL,si
npn,PL,si | 11111 | 500
2W
5W
180
180 | 175
175
175
175
175 | 13W/0
330
1.2 | 30
+ 60
+ 60
*35
*35 | *250
*250
1.5a
50
50 | -
-
*80
*80 | | -
39
ax) 0.5
ax) 0.5 | 39
39
-
- | † Vcex
†Vcex | | HF 105 | 40244
40245
40246
40279
A1170 | RCA
RCA
RCA
RCA
AL | npn,PL,si
npn,PL,si
npn,PL,si
npn,si
npn,DP,si | 1 1 1 1 1 | 180
180
180
11.6W
300 | 175
175
175
200
200 | 1.2
1.2
0.66 | *35
*35
*35
40
10 | 50
50
50
1.5A | *65
*120
*55
*10 (min)
*10 | 0.02 (m | nax) 0.6
nax) 0.5
nax) 0.6
*10
*3.0 | | | | HF 106 | TIXSC9
TIXS10
TIX3016A | TI
TI
TI | npn,EP,si
npn,EP,si
npn,EP,si | | 200
200
200 | 200
200
200 | 1.14 | 13
15
15 | 50
50
50 | 20-300
20-200
20-200 | 0.01
0.01
0.01 | 1.7
1.7
1.7 | = | Ti-line Package
Ti-Line Package
Ti-Line Package | # RCA HOMETAXIAL-BASE MEANS # HOMOGENEOUS-BASE DESIGN IN AXIAL DIRECTION REDUCES RISKS OF SECOND BREAKDOWN... Used in RCA Silicon Power Transistor Line for applications up to 50 Kc/s ## RCA HOMETAXIAL-BASE TECHNOLOGY Hometaxial-Base means uniform junctions and homogeneous base construction free of fields in an axial direction. It is in the region of these fields, that second breakdown and electrical collapse occur, caused by excessive concentration of minority carriers. Hometaxial-Base technology provides current "fan-out" to the collector and creates carrier dispersion in the base, thereby reducing risks of second breakdown. Thus, every transistor can be used within its maximum current-voltage-temperature boundaries without derating! #### **EVERY RCA HOMETAXIAL-BASE TRANSISTOR MEANS RUGGEDNESS!** - Power-Rating Tested (PRT) at maximum power level for 1 second. - Low saturation voltage for greater switching efficiency. - Sharp saturation voltage knee for greater circuit efficiency. - Mechanically rugged—proved after long experience in Mil-approved and demanding aerospace applications. - Demonstrated superior performance in environmental tests of vibration, shock, and acceleration. - Improved beta characteristics for less distortion during operation. - From a family of single diffused types manufactured by RCA since 1957 and backed by more than 50 million hours of operational life tests. #### RCA HOMETAXIAL-BASE TRANSISTORS ARE NOW USED IN: - Series Regulators - High Fidelity Power Amplifiers - Inverters/Converters - Solenoid or Relay-Control Circuits - Magnetic Deflection Circuits - Switching Regulators - Vehicular Voltage Regulators - Ignition Circuits - Servo Power Amplifiers - Public Address Amplifiers - Ultrasonic Power-Amplifiers # NO ELECTRICAL COLLAPSE #### RCA'S HOMETAXIAL-BASE ECONOMY SILICON TRANSISTORS Offer the ultimate in design simplicity for applications from I mA to 30A | TO-5
I _C (Max) TO 1A | TO-66
I _E (Max) TO 4A | 10-3
I _C (Max) 10 15A | TO-3
I _C (Max) TO 30A | |---|--|---|---| | 40347 $h_{FE} = 20-80$ @ $I_{C} = 450 \text{ mA}$ $V_{CEV} \text{ (Max)} = 60V$ | 40250 $h_{FE} = 25-100$ @ $I_{C} = 1.5A$ V_{CEV} (Max) = 50V | 40251
h _{FE} = 15-60
@ I _C = 8A
V _{CEV} (Max) = 50V | $2N3771 \ h_{FE} = 15-60 \ @ I_C = 15A \ V_{CEO} (sus) (Min) = 40V$ | | 40348 $^{h}_{FE}=30\cdot100$ $^{@}$ $^{I}_{C}=300$ mA $^{V}_{CEV}$ (Max) = 90V | $2N3054$ $h_{FE} = 25-100$ $@ I_C = 0.5A$ $V_{CEV} (Max) = 90V$ | 2N3055
$h_{FE} = 20-70$
@ $I_{C} = 4A$
V_{CEV} (Max) = 100V | $2N3772$ $h_{FE} = 15-60$ @ $I_{C} = 10A$ V_{CE0} (sus) (Min) = 60V | | 40349 $^{h_{FE}}=25-100$ $^{@}$ $^{l}_{C}=150$ mA $^{V}_{CEV}$ (Max) = 140V | $2N3441$ $h_{FE} = 20-80$ $@ I_C = 0.5A$ $V_{CEV} (Max) = 160V$ | $h_{FE} = 20-70$ @ $I_{C} = 3A$ $V_{CEV} (Max) = 160V$ | 2N3773
h _{FE} = 15-60
@ I _C = 8A
V _{CEO} (sus) (Min) = 140V | #### AVAILABLE FROM YOUR RCA SEMICONDUCTOR DISTRIBUTOR RCA's Hometaxial-Base Silicon Transistor line is the workhorse of the industry at medium and low frequencies. Check into it. You'll find the industry's widest choice in current and voltage ratings—the right combination of characteristics that's right for your applications. This economy silicon line is backed by a comprehensive program of testing, so you can be sure every unit measures up to its reliability specifications. For prices and delivery information see your RCA Representative. For technical data, and your copy of SMA-35, 12-volt Audio Amplifier and Converter Designs using RCA Silicon Power Transistors, and a copy of the new 4-page folder describing RCA's Hometaxial-Base transistor line, write: RCA Commercial Engineering, Section IG5, Harrison, N.J. RCA ELECTRONIC COMPONENTS AND DEVICES, HARRISON, N. J. # **Power** Types rated at one watt and higher. In order of increasing power dissipation. | | | | | | MAX | RATIN | IGS | | СН | IARACT E RIST | ics | | | |-----------------------|---|-----------------------------|---|-----------------------------------|--|--|--------------------------------|--------------------------------------|---|---|---|-----------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Type | P _c (W) | w/°c | т _ј
(°С) | V
CEO
*V
CBO
(Y) | I _c (A) | hfe
*hFE | ICO
*ICEO
†ICEX
(mA) | fae
*f _T
(kHz) | Package
Outline
(TO-) | Remarks | | P 1 |
2N341A
2N709
2N2038
2N2039
2N2040 | TR
FA
TR
TR
TR | npn,PL,si
npn,PE,si
npn,PL,si
npn,PL,si
npn,PL,si | 0.25
0.5
.6
0.6
.6 | 0.003
0.005
.0055
.0055
.0055 | 175
200
175
175
175 | 125
6.0
45
75
45 | 0.15
-
.5
.5 | *20-80
*55
*12-36
*12-36
*30-90 | 0.001
0.000005
.015
.015
.015 | 10000
80000
2,000
2,000
2,000 | 11
18
5
5
5 | ETC
SY, TI, TR, VEC
ETC
ETC
ETC | | P 2 | 2N2041
2N957
2N339
2N340
2N341 | TR
FA
TI
TI | npn,PL,si
npn,DD,si
npn,si
npn,si
npn,si | .6
0.8
1
1 | .0055
0,0065
0.008
0.008
0.008 | 175
150
150
150
150 | 75
20
55
85
85 | .5
-
0.06
0.06
0.06 | *30-90
*60
9
9 | .015
10
0.001
0.001
0.001 | 2,000
*250000
-
-
- | 5
18
11
11
11 | ETC
TRWS, AMP
TR, ETC
TR
TR | | ΓŹ | 2N342
2N342A
2N342B
2N343
2N343A | TI
TI
TI
TI
TI | npn,si
npn,si
npn,si
npn,si
npn,si | 1
1
1
1 | 800.0
800.0
800.0
800.0
800.0 | 150
150
150
150
150 | 60
85
85
60
60 | 0.06
0.06
0.06
0.06
0.06 | 9
9
9
28
15 | 0.001
0.001
0.001
0.001
0.001 | | 11
11
11
11
11 | TR
TR
TR
TR | | | 2N343B
2N706 | TI
FA | npn,si
npn,DD,si | 1 1 | 0.008
0.0067 | 150
175 | 65
*25 | *0.06 | 28
•45 | 0.001
0,000005 | -
400000 | 11
18 | TR
ITT,SPR,SY,MO,TR,AMP | | | 2N 707
2N 2106 | FA
GE | npn, DD, si
npn, si | 1 | 0.0067
.008 | 175
200 | *56
*60 | -
1 | *12
12-36 | 0.000005 | 400000
15000 | 18
5 | GI, RCA, NUC
TRWS, MO, GI
TR | | P 3 | 2N2107
2N2108
2N708 | GE
GE
FA | npn,si
npn,si
npn,DP,si | 1
1
1,2 | .008
.008
0.0069 | 200
200
200 | *60
*60
15 | 1
1
- | 30-90
75-200
*50 | .2
.2
0.000004 | 15000
15000
400000 | 5
5
18 | TR, TI
TR, TI
ITT, SY, MO, TR, GI, AMP,
NA, RCA, NUC | | | 2N869 | FA | pnp,DP,si | 1.2 | 0,00686 | 200 | 18 | - | *60 | 0.000005 | *200000 | 18 | MO TO SEE AND SEE | | P 4 | 2N914
2N915
2N916
2N947
2N995 | FA
FA
FA
FA | npn,PE,si
npn,DP,si
npn,DP,si
npn,DP,si
pnp,PE,si | 1.2
1.2
1.2
1.2
1.2 | 0.0069
0.0069
0.0069
0.0069
0.0069 | 200
200
200
200
200
200 | 15
50
25
*20
15 | -
-
0.1 | *55
*100
*100
*40
*70 | 0.000004
0.000005
0.000005
10
0.000001 | *370000
*300000
*400000
*250000
*150000 | 18
18
18
18
18 | ITT, MO, TR, GI, NUC, SPR
NA, MO
TRWS, NA, MO
TR, MO | | | 2N996
2N2368
2N2369
2N978
SFT367 | FA
FA
FA
NUC | pnp,PE,si
npn,PE,si
npn,PE,si
pnp,DD,si
pnp,ge | 1.2
1.2
1.2
1.25
1.25 | 0,00685
0.0685
0.00685
0.010 | 200
200
200
150
85 | 12
15
15
20
16 | -
0.5
0.5
-
1 | *75
*40
*80
*30
*50 | 0.0002
0.001
0.001
0.001
0.01 | *230000
550000
*650000
*60000 | 18
18
18
18 | TR
TR, AL, MO, SPR
TR, MO, AL, NUC, SPR
TR | | P 5 | SF T377
T1159
T1160
T1161
T1162 | NUC
TI
TI
TI
TI | npn,ge
pnp,ge
pnp,ge
pnp,ge
pnp,ge | 1.25
1.4
1.4
1.4 | | 85
100
100
100
100 | 16
40
60
80
100 | 0.6
3
3
3
3 | *50
*20-60
*20-60
*20-60
*20-60 | 0.01
.65
.65
.65
.65 | -
6
6
6 | 1 - | | | P 3 | 2N717 | FA | npn, DD, si | 1.5 | 0.010 | 175 | *60 | - | *40 | 0.00001 | 60000 | 18 | TRWS, CDC, TR, GI, AMP | | | 2N718 | FA | npn, DD, si | 1.5 | 0.010 | 175 | *60 | - | *75 | 1 | 80 | 18 | TRWS, CDC, SY, MO, TR, GI, AMP, AL, NA | | | 2N719 | FA | npn, DD, si | 1.5 | 0.010 | 175 | *120 | - | *40 | 0.001 | 60000 | 18 | TRWS, CDC, TR, GI, AMP | | D.C. | 2N720
2N721
2N722
2N4105 | FA
FA
FA
AMP | npn, DD, si
pnp,DD,si
pnp,DD,si
npn,ge | 1.5
1.5
1.5
1.6 | 0.010
0.010
0.010
2.5 | 175
175
175
90 | *120
35
35
*25 | -
-
1.0 | *80
*60
*50
*200 | 0.001
0.001
0.001
.025 | *60000
*90000
*1.0 | 18
18
18
1 | TRWS, CDC, TR, GI, AMP, AL,
NA
KSC, TR
KSC, MO, TR | | P 6 | 2N4106
2N718A | AMP
FA | pnp,ge
npn, DP, si | 1.6
1.8 | 2.5
0.0103 | 90 200 | *25
*75 | 1.0 | *200
*80 | .025 | *1.0
80000 | 1
18 | CDC, TR, AMP. AL, GI, | | | 2N719A
2N720A | FA
FA | npn, DP, si
npn, DP, si | 1.8
1.8 | 0. 0103
0. 0103 | 200
200 | *120
*120 | = | *40
*80 | 0.000005
0.000005 | 60000
60000 | 18
18 | RCA, NA, MO, TRWS TRWS, CDC, AMP, AL, GI, TR TRWS, CDC, GI, AMP, AL, RCA, TR | | | 2N870
2N871 | FA
FA | npn, DP, si
npn, DP, si | 1.8 | 0. 0103
0. 0103 | 20 0
200 | 60
60 | - | *75
*130 | 0.000004
0.000004 | 80000
100000 | 18
18 | CDC, GI, AMP, AL
CDC, GI, AMP, AL. | | 0.7 | 2N910 | FA | npn,DP,si | 1.8 | 0.0103 | 200 | 60 | - | 140 | 0.000005 | *80000 | 18 | RCA, NA
TRWS, CDC, AL | | P 7 | 2N911
2N912
2N696
2N697
2N699 | FA
FA
FA
FA | npn,DP,si
npn,DP,si
npn, DD, si
npn, DD, si
npn, DD, si | 1.8
1.8
2
2
2 | 0.0103
0.0103
0.0133
0.0133
0.0133 | 200
200
175
175
175 | 60
60
*60
*60
*120 | - | 70
45
•40
•75
•80 | 0.000005
0.000005
0.00001
0.00001
0.00001 | *70000
*60000
-
- | 18
18
5
5
5 | TRWS, CDC, AL TRWS, CDC, AL TRWS, TR, GI, AMP, CDC, NA TRWS, MO, TR, GI, AMP, CDC, RCA, NA | | | | | | | MAX | . RATIN | IGS | | СН | ARACTERIST | rics | | | |-----------------------|--|--------------------------------------|---|--|---|--|-------------------------------------|--------------------------------------|---|--|---|-----------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | P _c
(W) | ₩/°C | т _ј
(°С) | V
CEO
*V
CBO
(V) | l _c
(A) | h _{fe}
*h | ICO
*ICEO
†ICEX
(mA) | fae
*fT
(kHz) | Package
Outline
(TO-) | Remarks | | | 2N1131
2N1132
2N1252
2N1253 | FA
FA
FA | pnp,DD,si
pnp,DD,si
npn,DD,si
npn,DD,si | 2
2
2
2
2 | 0.0133
0.0133
0.0133
0.0133 | 175
175
175
175
175 | 35
35
*30
*30 | 0.6
0.6
-
- | *30
*45
*35
*45 | 0.00001
0.00001
0.0001
0.0001 | *70000
*90000
*80000
*110000 | 5
5
5
5 | KSC, MO
KSC, MO
SY, TR, NA
NA | | P 8 | 2N 1420 | FA | npn, DD, si | 2 | 0.0133 | 175 | *60 | - | *700 | 0.00001 | 100000 | 5 | TRWS, CPC, MO, TR, GI, | | | 2N 1837
2N 1838
2N 1839 | TRWS
TRWS
TRWS | npn,PL,si
npn,PL,si
npn,PL,si | 2
2
2 | .013
.013
.013 | 175
175
175 | *80
*45
*45 | 0.50
0.50
0.50 | *40-120
*40-150
*12-50 | .0005
.0015
.0015 | 4500
2300
3500 | 5
5
5 | CDC
CDC
CDC | | P 9 | 2N1840
2N1983
2N1984
2N1985
2N1986 | TRWS
FA
FA
FA
FA | npn,PL,si
npn, DD, si
npn, DD, si
npn, DP, si
npn, DD, si | 2
2
2
2
2
2 | .013
0.016
0.016
0.016
0.016 | 175
150
150
150
150 | *25
25
25
25
25
25 | 0.50
-
-
-
- | *10-100
100
80
60
150 | 0.30
0.001
0.001
0.001
0.001 | 2000
30000
30000
30000
50000 | 5
5
5
5
5 | CDC
AMP, ETC, AL
AMP, ETC, AL
AMP, ETC, AL
GI, AMP, ETC, AL | | F 9 | 2N 1987
2N 1988
2N 1989
2N 1990
2N 1991 | FA
FA
FA
FA | npn, DD, si
npn, DD, Si
pnp, DD, si
npn, DD, si
pnp, DD, si | 2
2
2
2
2
2 | 0.016
0.016
0.016
0.016
0.016 | 150
150
150
150
150 | 25
45
45
*100
*30 | -
-
1.0 | 50
*75
*40
*30
*30 | 0.001
0.001
0.001
0.001
0.001 | 50000
50000
50000
-
50000 | 5
5
5
5 | GI, AMP. ETC, AL
GI. ETC, AL
STC, ETC, AL
SY. GI. AMP. AL
KSC, TR. MO | | P 10 | 2N2303
BFY 33
BFY 34
BFY 46
BFY 12 | FA
SA
SA
SA
SA | pnp, DD, si
npn,PL,si
npn,PL,si
npn,PL,si
npn,EP,PL,si | 2
2.6
2.6
2.6
2.6
2.6 | 0. 0133
0.016
0.016
0.016
0.016 | 175
200
200
200
200
200 | 35
*50
*75
50
40 | 0.5
0.5
0.5
0.5 | *90
>35
*40-120
100-300
33-170 | 0.001
.00002
.00001
.00001
.00002 | 70000
80000
80000
100,000
180,000 | 5
5
5
5
5 | TR, MO | | 1 10 | 2N 1335
2N 1336
2N 1337
2N 1338
2N 1339 | TRWS
TRWS
TRWS
TRWS
TRWS | pnp,PL,si
npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si | 2.8
2.8
2.8
2.8
2.8
2.8 | .019
.019
.019
.019
.019 | 175
175
175
175
175
175 | *120
*120
*120
*80
*120 | 0.30
0.30
0.30
0.30
0.30 | *10-150
*10-150
*10-150
*10-150
*10-150 | 0.001
0.001
0.001
0.001
0.001 | | 5
5
5
5 | | | P 11 | 2N 1340
2N 1341
2N 1342
2N 1409
2N 1410 | TRWS
TRWS
TRWS
TRWS
TRWS | npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si | 2.8
2.8
2.8
2.8
2.8 | .019
.019
.019
.0187
.0187 | 175
175
175
175
175
175 |
*120
*120
*150
*30
*45 | 0.30
0.30
0.30
0.50
0.50 | *10-150
*10-150
*12
*15-45
*30-90 | 0.001
0.001
0.01
0.010
0.010 | -
-
5000
2500 | 5
5
5
5 | GI
GI | | , 11 | 2N2192A
2N2193A
2N2194A
2N2195A
2N2243A | GE
GE
GE
GE | npn,si
npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si | 2.8
2.8
2.8
2.8
2.8
2.8 | .016
.016
.016
.016
.016 | 200
200
200
200
200
200 | 40
50
40
25
80 | 1
1
1
1 | 100-300
40-120
*20-60
20
*40-120 | 0.01
1
1
.01
0.1 | 130000
-
-
130000 | 5
5
5
5
5 | CDC, GI, MO, FA, NA, AL
CDC, FA, GI, MO, NA, AL
CDC, FA, GI, MO, NA, AL
CDC, FA, GI, MO, AL
CDC | | P 12 | 2 N698
2N1206
2N1207
2N1505
2N1506 | FA
TR
TR
TRWS
TRWS | npn, DP, si
npn, PL, si
npn, PL, si
npn, PL, si
npn, PL, si | 3
3
3
3 | 0.0172
.025
.025
.175
.175 | 200
175
175
175
175
175 | 60
60
125
*50
*60 | -
.15
.15
0.5
0.5 | *40
*20-80
*20-80
*7-100
*10-100 | 0.000005
0.001
0.001
.05
.01 | 10,000
10,000
20000
20000 | 5
5
5
5
5 | TRWS, TR, GI, AMP, CDC
TI
TI
NUC
NUC
STC, RCA, NA | | 1 12 | 2N1561
2N1562
2N1613 | MO
MO
FA | pnp,DM,ge
pnp,DM,ge
npn, DP, si | 3
3
3 | 0.04
0.04
0.0172 | 100
100
200 | 25
25
*75 | .25
.25
- | 10
9
*80 | 0.01
0.01
0.0000003 | *500
*450
80000 | -
-
5 | TRWS, CDC, MO, TR, GI, AMP,
AL, RCA | | B 12 | 2N1692
2N1693
2N1711
2N1893A
2N1973 | MO
MO
FA
TRWS
FA | pnp,DM,ge
pnp,DM,ge
npn, DT, si
npn,PL,si
npn, DP, si | 3
3
3
3 | 0.04
0.04
0.0172
.017
0.00456 | 100
100
200
200
200 | 25
0.04
*75
*140
60 | .25
.25
-
0.50 | 10
9
•130
•40-120
140 | 0.01
0.01
0.0000003
.0001
0.000005 | *500
450
100000
3000
80000 | -
5
5
5 | TRWS, CDC, MO, TR, GI, AMP,
GI, TR, NA
TRWS, AMP, TR | | P 13 | 2N 1974
2N 1975
2N 2049
2N 37 32
2N 1506 A | FA
FA
FA
RCA
TRWS | npn,DP,si
npn, DP, Si
npn, DP, si
pnp,DJ,ge
npn,PL,si | 3
3
3
3
3.5 | 0.0172
0.0172
0.0172
0.1
200 | 200
200
200
85
200 | 60
60
*75
*-100 | -
-
3
0.5 | 70
45
*130
-
*10-100 | 0.000005
0.000005
0.000004
0.2
.0005 | 70000
60000
86000
-
20000 | 5
5
5
3
5 | AL, TRWS, AMP, TR
TRWS, AMP, TR
AL
VEC | | | SP10800
2N497
2N498
2N656 | FA
TI
TI
TI | npn,DP,si
npn, TD, si
npn, TD, si
npn, si | 3.5
4
4
4 | .200
0. 0228
0. 0228
0.0228 | 200
200
200
200
200 | 45
60
100
60 | -
1
1
- | *60-600
*12-36
*12-36
*30 | .010
0.01
0.01
0.01 | -
*20
*20 | 89
5
5
- | Dual npn
TRWS
TRWS
TRWS, FA, TR, AMP, CDC, STC,
SSP | | P 14 | 2N657
2N1445
2N1943
2N2657
2N2658 | TI
TI
TI
SOL
SOL | npn,si
npn, TD, si
npn, TD, si
npn,si
npn,si | 4
4
4
4
4 | 0.0228
0.0228
0.0228
.04
.04 | 200
200
200
200
200
200 | 100
120
60
*80
*100 | -
1
1
5.0
5.0 | *30
*20-80
*30-90
*40-120
*40-120 | 0.010
0.01
0.01
100
.0001 | *20
*20
20000
20000 | -
5
5
5
5 | TRWS, FA, TR, AMP, CDC, STC TI, AMP, SSP TI, AMP, SSP | | | | | | | MAX | RATIN | IGS | | СНА | RACTERIST | rics | | | |-----------------------|--|----------------------------------|---|---------------------------|---|--|--------------------------------------|----------------------------------|---|---|---|--------------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | P _c (W) | w/°c | T _j (°C) | YCEO
*VCBO
(V) | I _c (A) | hfe
*hFE | ICO *ICEO †ICEX (mA) | fae
*fT
(kHz) | Package
Outline
(TO-) | Remarks | | | 2N3469
40264
NPC 514
2N497A
2N498A | SOL
RCA
NUC
GE
GE | npn,si
npn,si
npn,si
npn,si
npn,si | 4
4
4
5
5 | .04
0.2
~ | 200
150
-
200
200 | 35
300
*300
60
100 | 5
0.1
0.2
1 | *100
*60
*30
12-36
12-36 | .0001
0.1
0.1
.010 | *20,000
*25
-
15,000
15,000 | 5
-
-
5
5 | SSP, TR, TI
TR, SSP, TI | | P 15 | 2N656A
2N657A
2N699B
2N1067
2N1479 | GE
GE
FA
-
RCA | npn,si
npn,si
npn, DD, si
npn,si
npn,si | 5
5
5
5
5 | .0286
.0286
0.0286
0.33
.0286 | 200
200
200
200
175
200 | 60
100
80
*60
40 | 1
1
-
.5
1.5 | 30-90
30-90
*80
*15 - 75
*20-60 | .010
.01
0.3
.5 | 15,000
15,000
-
10
50 | 5
5
5
8
5 | TR, SSP, TI
TR, SSP, TI
GI, TRWS
STC
STC, TR | | P 16 | 2N1480
2N1481
2N1482
2N1615
2N1700 | RCA
RCA
RCA
TR
RCA | npn,si
npn,si
npn,si
npn,PL,si
npn | 5
5
5
5
5 | .0286
.0286
.0286
.045
.0286 | 200
200
200
175
200 | 55
40
55
100
40 | 1.5
1.5
1.5
.2
1 | *20-60
*35-100
*35-100
*25
*20-80 | .01
.01
.01
.002
.075 | 50
50
50
2,000
40 | 5
5
5
5
5 | STC, TR
STC, TR
STC, TR
CDC
STC, TR, TI | | P 16 | 2N2017
2N2282
2N2283
2N2284
2N2270 | GE
BE
BE
BE
RCA | npn,si
pnp,ge
pnp,ge
pnp,ge
npn,si | 5
5
5
5 | .0285
0.066
0.066
0.066
.0286 | 200
110
110
110
200 | 60
30
60
100
45 | 1
3
3
3
1 | *15-200
20
*20
*20
*20
*50-200 | 0.01
-
100
100
50 | -
-
-
-
1000 | 5
37
37
37
37
5 | CDC, GI, TR, NA | | 0.17 | 2N2297
2N2350A
2N2351A
2N2352A
2N2353A | FA
GE
GE
GE
GE | npn, PE, si
npn, PE, si
npn, PE, si
npn, PE, si
npn, PE, si | 5
5
5
5 | 0. 0286
.0285
.0285
.0285
.0285 | 200
200
200
200
200
200 | 35
25
50
40
25 | 1.0
1
1
1
1 | *50
*20
*40-120
20-60
*20 | 0. 2
0. 1
1
1 | 90000
-
-
-
- | 5
46
46
46
46 | TR, NA
NA
NA
NA | | P 17 | 2N2364A
2N2726
2N2727
2N2890
2N2891 | GE
GE
GE
FA
FA | npn,PE,si
npn,si
npn,si
npn,PE,si
npn,PE,si | 5
5
5
5 | .0285
.0266
.0266
0.0286
0.0286 | 200
200
200
200
200
200 | 80
*200
*200
80
80 | 1
1
1
- | *40-120
*30-90
*75-150
55
*80 | .0001
.01
.01
0.000002
0.000002 | -
-
*50000
*50000 | 46
5
5
5
5 | TI
TI | | P 18 | 2N3016
2N3056
2N3056A
2N3057
2N3057A | BE
FA
FA
FA | npn,DPE,si
npn,DPE,si
npn,DPE,si
npn,DPE,si | 5
5
5
5
5 | -
.286
.286
.286
.286 | 200
200
200
200
200 | *100
*100
*140
*100
*140 | 2.5
1
1
1
1 | *60-150
*120
*120
*300
*300 | 0.001
.010
.010
.010
.010 | -
80,000
200 MHz
100 MHz
200 MHz | 5
46
46
46
46 | | | r 10 | 2N3114
2N3374
2N3439
2N3440
2N3660 | FA
VEC
RCA
RCA
TR | npn,DP,si
npn,PE,si
npn,si
npn,si
pnp,si | 5
5
5
5
5 | 0.0286
.286
0.33
0.33
0.028 | 200
200
200
200
200
200 | 150
80
350
250
30 | -
.5
1
1
2 | *60
2.9
*40-160
*40-160
50 | 0.3
.00001
*0.02
*0.05
0.00001 | *54000

30Mc | 5
5
5
5
5 | MO, TRWS | | D 10 | 2N3661
2N3665
2N3665
2N3666
2N3699 | TR
TR
FA
FA
MO | pnp,si
npn,si
npn,DPE,si
npn,DPE,si
pnp, AE, si | 5
5
5
5 | 0.028
0.028
.0286
.0286
0.0286 | 200
200
200
200
200
200 | 50
80
*120
*120
60 | 2
1
1
1
3 | 50
*80
*120
*300
*35-150 | 0.00001
0.00005
150
150
0.001 | 30Mc
60Mc
60,000
60,000
*60 MHz | 5
5
5
5 | | | P 19 | 2N3731
2N3916
40309
40311
40314 | RCA
FA
RCA
RCA
RCA | pnp,DJ,ge
npn,DP,si
npn, si
npn, si
npn,si | 5
5
5
5
5 | 0.16
.040
0.028
0.028
0.028 | 85
150
200
200
200
200 | *-320
150
18
30
40 | 10
10
0.7
0.7
0.7 | -
*150
*70-350
*70-350
*70-350 | 0.2
-
250
250
250 | -
50,000
*100 MHz
*100 MHz
*100 MHz | 3
5
5
5
5 | | | D 20 | 40315
40317
40319
40320
40321 | RCA
RCA
RCA
RCA
RCA | npn, si
npn, si
pnp, si
npn, si
npn, si | 5 5 5 5 5 | 0.028
0.028
0.028
0.028
0.028
0.028 | 200
200
200
200
200
200 | 35
40
- 40
40
- | 0.7
0.7
-0.7
0.7
1 | *70 - 350
*40 - 200
*35 - 200
*40 - 200
*25 - 200 | 250
250
250
250
250
0. 1 | *100 MHz
-
*100 MHz
- | 5
5
5
5 | V _{CER} = 300 | | P 20 | 40323
40326
40327
40347
40348 | RCA
RCA
RCA
RCA
RCA | npn, si
npn, si
npn, si
npn, si
npn, si | 5
5
5
5
5 | 0. 028
0.028
0.028
0.028
0.028
0.028 | 200
200
200
200
200
200 | 18
40
-
40
65 | 0.7
0.7
1
1 | *70 -
350
*40 - 200
*40 - 250
*20 - 80
*30 - 100 | 250
250
0.005
0.001
0.001 | *100 MHz
-
-
-
- | 5
5
5
5 | lcen = 300 | | D.C. | 40360
40361
40362
40367
PT3500 | RCA
RCA
RCA
RCA
TRWS | npn, si
npn, si
pnp, si
npn, si | 5
5
5
5
5 | 0.028
0.028
0.028
0.028
0.028
0.03 | 200
200
200
200
200
200 | 70
70
70
55
40 | 0.7
0.7
-0.7
1.5
0.5 | *40 - 200
*70 - 350
*35 - 200
*35 - 100
10-80 | 0.001
-
0.004
0.1 | *100 MHz
*100 MHz
*100 MHz
-
- | 5 | $I_{CER}=0.001\text{mA}$ $I_{CER}=0.001\text{mA}$ | | P 21 | 40250VI
40375
2N3719
2N3720
0C30 | RCA
RCA
MO
MO
AMP | npn,si
npn,si
pnp,AE,si
pnp,AE,si
pnp,PADT,ge | 5.8
5.8
6
6
6 | 0.033
0.033
.034
.034 | 200
200
200
200
200
75 | 40
50
40
60
*16 | 4
10 (peak
3
3
1.4 | *25 - 100
*30 - 200
*25 - 180
*25 - 180
*36 | 1
*5
.01
.01 | *1000
*60 MHz
*60000
*60000 | 66
66
5
5 | free air heat radiator
free air heat radiator
Special AF Power | | | | MAX. RATINGS CHARACTERISTICS | | | | rics | | | | | | | | |-----------------------|--|----------------------------------|---|---|--|--|-----------------------------------|---------------------------------|---|---|---------------------------------------|--------------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | P _c (W) | w/°c | т _ј
(°С) | V
CEO
*V
CBO
(V) | I _c (A) | hfe
*hFE | ICO
*ICEO
†ICEX
(mA) | fae
*fT
(kHz) | Package
Outline
(TO-) | Remarks | | P 22 | 2N326
2N1183
2N1183A
2N1183B
2N1184 | SY
RCA
RCA
RCA
RCA | npn,AL,ge
pnp,ge
pnp,ge
pnp,ge
pnp,ge | 7
7.5
7.5
7.5
7.5 | 0.1
0.1
0.1
0.1 | 85
100
100
100
100 | *35
20
30
40
20 | 2
3
3
3
3 | *15-60
*20-60
*20-60
*20-60
*40-120 | .5
.25
.25
.25
.25 | 0.15
10
10
10
10 | 3
8
8
8 | | | P 22 | 2N1184A
2N1184B
2N4077
2N4078
2N122 | RCA
RCA
AMP
AMP
TI | pnp,si
pnp,ge
npn,ge
pnp, ge
npn,si | 7.5
7.5
7.5
8.0
8.75 | 0.1
0.1
0.12
0.13
0.07 | 100
100
90
90
150 | 30
40
*32
*32
*120 | 3
3
1.0
1.0
0.14 | *40-120
*40-120
*150
*150
*3 | .25
.25
.025
.018
0.01 | 10
10
*1.0
*1.0 | 8
8
-
- | | | P 23 | 2N2631
2N2881
2N2882
2N2911
V-600 | RCA
STC
STC
STC
VEC | npn,si
pnp
pnp
npn
npn,PE,si | 8.75
8.75
8.75
8.75
8.75 | .05
.05
.05
.05
.05 | 200
200
200
200
200
200 | 60
60
100
125
60 | 1.5
2
2
3
1.5 | *50-250
*20-60
*20-60
*20-60 | 0,0001
-
-
-
.000005 | 1500
-
-
-
-
- | 39
5
5
5
5 | VEC, TI
CT
CT | | 1 23 | V - 601
V - 602
2N1068
2N1714
2N1715 | VEC
VEC
TI
TI | npn,PE,si
npn,PE,si
npn,si
npn,si
npn,si | 8.75
8.75
10
10
10 | .050
.050
.067
0.134
0.134 | 200
200
175
175
175 | 60
40
*60
60
100 | 1.5
1.5
1.5
1 | -
*15-75
*20
*20 | .001
.001
.5
1 | -
10
-
- | 5
5
8
- | STC, KSC
SSP
AMP, BE, SSP | | P 24 | 2N1716
2N1717
2N1718
2N1719
2N1720 | TI
TI
TI
TI | npn,si
npn,si
npn,si
npn,si
npn,si | 10
10
10
10
10 | 0.134
0.134
0.134
0.134
0.134 | 175
175
175
175
175
175 | 60
100
60
100
60 | 1
1
1
1 | * 40
* 40
* 20
* 20
* 40 | 1
1
1
1 | | - | SSP
SSP
SSP
SSP
SSP | | r 24 | 2N1721
2N2017
2N2067
2N2067B
2N2067G | TI
BE
ITT
ITT
ITT | npn,si
-
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 10
10
10
10
10 | 0.134
-
-
-
- | 175
-
100
100
100 | 100
*100
*40
*40
*40 | 1
5
3.0
3.0
3.0 | *40
*30
-
- | 1 | -
7
7 | -
†
†
† | SSP
† MT-27, TI
†MS7, KSC
†MS7, KSC
†MS7, KSC | | P 25 | 2N2067-0
2N2067W
2N2068
2N2068-0
2N2068G | 1TT
1TT
1TT
1TT
1TT | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 10
10
10
10
10 | 1111 | 100
100
100
100
100 | *40
*40
*80
*80
*80 | 3.0
3.0
3.0
3.0
3.0 | 11111 | 11111 | 7
7
7
7 | † † † † † † | †MS7, KSC
†MS7, KSC
†MS7, KSC
†MS7, KSC
†MS7, KSC | | P 25 | 2N3418
2N3419
2N3420
2N3421
2N3730 | TI
TI
TI
TI
RCA | npn, EP, si
npn, EP, si
npn, EP, si
npn, EP, si
pnp, DJ, ge | 10
10
10
10
10 | 0 .133
0.133
0.133
0.133
0.133
0.33 | 175
175
175
175
175
85 | 60
80
60
80
•200 | 5
5
5
-3A | *20-60
*20-60
*40-120
*40-120 | 0. 00003
0. 00003
0. 00003
0. 00003
0.2 | *40
*40
*40
*40
-40 | 5
5
5
5
3 | | | P 26 | 2N4041
40256
40255
TIP14
2N301 | TRWS
RCA
RCA
TI
RCA | npn,si
npn,si
npn,EP,si
pnp,AJ,ge | 10
10
10
10
10 | 0.06
0.066
0.066
.133 | 200
200
200
150
85 | 40
350
250
60
*40 | 0.5
1
1
1
3 | * 10-80
*40-60
*40-160
*30-150
*70 | 0.2
*0.05
*20
.05 | -
-
-
10,000 | -
5
-
3 | MT59 package
Tab-Pac
DE, KSC, BE, ITT, LAN | | 1 20 | 2N301A
VX - 3375
2N3212
2N3213
2N3214 | RCA
VEC
DE
DE
DE | pnp, AJ, ge
npn, PE, si
ge
pnp, AD, ge
pnp, AD, ge | 11
11.6
12
12
12 | -
7
7
7 | 85
200
110
110
110 | 60
40
80
60
40 | 3
1.5
5
5
5 | *70
-
*30-90
30-90
*30-90 | 3
*0.1
1
1 | -
*600,000
30
30
30 | 3
-
37
37
37
37 | DE, KSC, BE, ITT | | P 27 | 2N3215
2N2147
2N2148
40022
40050 | DE
RCA
RCA
RCA
RCA | pnp, AD, ge
pnp, DR, ge
pnp, DR, ge
pnp, AJ, ge
pnp, AD, ge | 12
12. 5
12. 5
12. 5
12. 5
12. 5 | 7
-
0.66
0.66 | 110
100
100
100
100 | 30
*60
*75
*32
*40 | 5
5
5
5 | *30-90
*100
*100
*70
90 | 1
1
1
1
max. 0.5 | 30
4000
3000
*300
500 | 37
3
3
3
3 | LAN
LAN | | 1 21 | 40051
40254
2N1709
2N1710
2N2196 | RCA
RCA
TRWS
TRWS
GE | pnp,AD,ge
pnp,AJ,ge
npn,PL,si
npn,PL,si
npn,si | 12.5
12.5
15
15
15 | 0.66
0.66
0.1
0.1
.0667 | 100
100
175
175
200 | *50
*32
*75
*60
*80 | 5
5
2.0
2 | 90
*70
*7.5-75
*7.5-75
*30-90 | max. 0.5
3
0.01
0.05
.075 | 500
*300
2000
1600 | 3
8
8 | NUC
NUC
Special Heat Sink | | P 28 | 2N2197
2N2201
2N2202
2N2203
2N2204 | GE
GE
GE
GE | npn,si
npn,si
npn,si
npn,si
npn,si | 15
15
15
15
15 | 66.7
.067
.067
.067
.067 | 175
175
175
175
175 | *80
100
100
100
100 | 1
1
1
1 | *200
*30-90
30-90
30-90
30-90 | .05
.05
.05
.05 | 15000
15000
15000
15000 | | | | r 28 | 2N2239
2N2611
2N2781
2N2782
2N2783 | GE
GE
TRWS
TRWS
TRWS | npn,si
npn,si
npn,PL,si
npn,PL,si
npn,PL,si | 15
15
15
15
15
15 | .120
.067
0.1
0.1
0.1 | 200
175
175
175
175 | *60
100
*75
*100
*100 | 1
1
2
2
2 | *30-200
12-36
*7.5-75
*7.5-75
*7.5-75 | 10
.05
0.50
0.50
0.01 | 15000
1870
1870
1870
1870 | 5
-
8
8
8 | Special Heat Sink | | | | | | MAX. RATINGS | | | СН | ARACTERIS | rics | | | | | |-----------------------|---|-----------------------------------|---|------------------------------------|--|--|-----------------------------------|-----------------------------------|--|--|--|---|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | P _c (W) | w/°c | T _j (°C) | *VCEO (V) | I _c (A) | hfe
*hFE | CO *ICEO *ICEX (mA) | fae
*f _T
(kHz) | Package
Outline
(TO-) | Remarks | | | 2N2874
2N2987
2N2988
2N2989
2N2990 | TRWS
T!
T!
T!
T! | npn,PL,si
npn,P,si
npn,P,si
npn,P,si
npn,P,si | 15
15
15
15
15 | 0.1
0.15
0.15
0.15
0.15 | 175
200
200
200
200
200 | *75
80
100
80
100 | 2
1
1
1
1 | *7.5-75
*25-75
*25-75
*60-120
*60-120 | 0.01
0.000025
.000025
0.000025
.000025 | 1870
*30
*30
*30
*30 | 8
5
5
5
5 | | | P 29 | 2N2991
2N2992
2N2993
2N2994
2N2995 | TI
TI
TI
TI
GE | npn, P, si
npn, P, si
npn, P, si
npn, P, si
npn, Si | 15
15
15
15
15 | 0. 15
0. 15
0. 15
0. 15
0.15
0.0667 | 200
200
200
200
200
175
 80
100
80
100
100 | 1
1
1
1
1 | *25-75
*25-75
*60-120
*60 -120
*90 | . 000025
. 000025
. 000025
0.000025
0.01 | *30
*30
*30
*30 | ##
##
##
| ††MT 13
††MT 13
††MT 13
††MT 13 | | D 20 | 2N3919
2N3920
2N4000
2N4001
BD109 | FA
FA
TI
TI
SA | npn,DPE,si
npn,DPE,si
npn,EP,si
npn,EP,si
npn,PE,si | 15
15
15
15
15 | .200
.200
0.15
0.15
0.15 | 150
150
200
200
200
175 | *120
*120
80
100
40 | 10
10
1
1
2 | 120
300
30-120
40-120
20120 | -
0,002
0.002
0.0001 | 80,000
80,000
40,000
40,000
50,000 | 3
5
5 | SOT – 9 package | | P 30 | 2N2525
2N2835
2N4040
V-610
V-611 | TRWS
AMP
TRWS
VEC
VEC | npn,PL,si
pnp,AJ,ge
-
npn,PE,si
npn,PE,si | 16
16
17.5
17.5
17.5 | .091
0.25
0.1
.100
.100 | 200
90
200
200
200
200 | *100
32
40
60
60 | 1
1.0
2.5
2.5 | *>10
*30
10-80
- | -
.2
.000005
.001 | 10000
10
-
-
- | ======================================= | Special
MT59 package | | P 31 | V - 612
2N 156
2N 158
2N 158A
2N 1042 | VEC
KSC
KSC
KSC
TI | npn,PE,si
pnp,ge
pnp,ge
pnp,ge
pnp,ge | 17.5
20
20
20
20
20 | .100
.333
.333
.333
0.267 | 200
100
100
100
100 | 40
*30
*60
*80
*40 | 2.5
3
3
3
3.5 | *25
*21
*21
*20 | .001
1.0
1.0
1.0
0.125 | 4.0
4.0
4.0 | 13
13
13 | SY, KSC, BE | | F 31 | 2N1043
2N1044
2N1045
2N2552
2N2553 | T1
T1
T1
T1
T1 | pnp,ge
pnp,ge
pnp,ge
pnp,ge
pnp,ge | 20
20
20
20
20
20 | 0.267
0.267
0.267
0.267
0.267 | 100
100
100
100
100 | *60
*80
*100
*40
*60 | 3.5
3.5
3.5
3 | *20
*20
*20
18
18 | 0.125
0.125
0.125
0.125
0.125 | - | | SY, KSC, BE
*SY, KSC, BE
KSC, BE
KSC, BE
BE | | D 20 | 2N2554
2N2555
2N2556
2N2557
2N2558 | TI
TI
TI
TI
TI | pnp,ge
pnp,ge
pnp,ge
pnp,ge
pnp,ge | 20
20
20
20
20
20 | 0.267
0.267
0.267
0.267
0.267 | 100
100
100
100
100 | *80
*100
*40
*60
*80 | 3
3
3
3 | 18
18
18
18
18 | 0.125
0.125
0.125
0.125
0.125 | 1111 | 1111 | KSC, BE
KSC, BE
KSC, SY, BE
KSC, SY, BE
KSC, SY, BE | | P 32 | 2N2559
2N2560
2N2561
2N2562
2N2563 | TI
TI
TI
TI
TI | pnp,ge
pnp,ge
pnp,ge
pnp,ge
pnp,ge | 20
20
20
20
20
20 | 0.267
0.267
0.267
0.267
0.267 | 100
100
100
100
100 | *100
*40
*60
*80
*100 | 3
3.5
3.5
3.5
3.5 | 18
25
25
25
25
25 | 0.125
0.125
0.125
0.125
0.125 | | - | KSC, SY, BE
KSC, BE, NA
KSC, BE
KSC, BE
KSC, BE | | D 22 | 2N 2697
2N 2698
2N 2875
2N 37 38
2N 37 39 | SOL
SOL
TR
MO
MO | npn, si
npn, si
pnp,PLE,si
npn,si
npn,si | 20
20
20
20
20
20 | 0. 2
0. 2
.14
.133
.133 | 200
200
175
175
175 | *80
*100
50
225
300 | 5. 0
5. 0
2
.250
.250 | *40-120
*40-120
*15-60
*40-120
*40-120 | .0001
.0001
.001
0.1
0.1 | 20000
20000
-
*15000
*15000 | -
-
66
66 | | | P 33 | 2N3766
2N3767
2N3917
KM7007
KM7008 | MO
MO
FA
KSC
KSC | npn,si
npn,si
npn,DPE,si
pnp,AJ,ge
pnp,AJ,ge | 20
20
20
20
20
20 | .133
.133
5 | 175
175
150
100
100 | 60
80
40
30
60 | 1
1
10
3.0
3.0 | *40-160
*40-160
10
-
- | 0.1
0.1
.00001
-
- | *15000
*15000
*2500
6
6 | 66
66
3
† | 1MS-7
† MS-7 | | P 34 | KM7009
KM7010
2N234A
2N235A
2N235B | KSC
KSC
BE
BE
BE | pnp,AJ,ge
pnp,AJ,ge
pnp,ge
pnp,ge
pnp,ge | 20
20
25
25
25
25 | -
0.5
0.5
0.5 | 100
100
90
90
90 | 80
100
25
*50
*50 | 3.0
3.0
3
3 | 1111 | -
-
7
- | 6
6
-
- | †
†
3
3
3 | † MS-7
† MS-7
KSC
KSC, ITT
ITT | | 1 34 | 2N285A
2N285B
2N399
2N401
2N418 | BE
BE
BE
BE | ge,PNP
pnp,ge

- | 25
25
25
25
25
25 | 0.5
0.5
-
-
- | 95
95
-
-
- | - | 3
3
3
5 | -
*34-40
31-36
*40 | | - | 3
3
3
3
3 | KSC
KSC
KSC, JTT | | P 35 | 2N419
2N420
2N420A
2N1218
2N1483 | BE
BE
BE
SY
RCA | -
-
npn,AL,ge
npn,si | 25
25
25
25
25
25 | -
-
-
.143 | -
-
100
200 | -
-
-
•45
40 | 3
5
5
3
3 | 35
*40
*40
*40-160
*20-60 | -
-
3
.015 | -
-
7
40 | 3
3
3
3
8 | KSC
ITT
STC | | F 35 | 2N1484
2N1485
2N1486
2N2308
2N2887 | RCA
RCA
RCA
STC
TRWS | npn,si
npn,si
npn,si
npn
npn,PL,si | 25
25
25
25
25
25 | .143
.143
.143
.143
.143 | 200
200
200
200
200
200 | 55
40
55
80
*100 | 3
3
3
1.2 | *20-60
*35-100
35-100
*20-60
*15-80 | .015
.015
.015
.250 | 40
40
40
-
5000 | 8
8
8
8 | STC
STC
STC
STC
MO | MODEL 3490-A TRANSISTOR ANALYZER ONLY \$400.00 # 1 READS LEAKAGE CURRENT DOWN TO 100 nanoamperes on 6ua suspension meter Analyzes both power and signal types at specified voltages and currents. Continuously adjustable current — up to 30 amp collector. Voltage control for transistor supply electrodes. Great flexibility allows plotting of transistor characteristic curves along with setting up nearly any type of transistor test. Input bias reversing switch gives added versatility. TESTS: DC Beta Test • AC Beta Test • ICEO Leakage Test • ICO Leakage Test • IEO Leakage Test • Zener Diode Test • Punch Through Test • Saturation Test • Floating Potential Test • Alpha Test • Diode and Rectifier Tests • SCR Tests #### RANGES Input Current (Emitter or Base): Collector Current: iceo, ico (icho): Collector Voltage: Emitter or Base Voltage: Tetrode: **MODEL 3490-A** 0-100-300 ua, 0-1-3-10-30 Ma, 0-1-3-1-3 Amp. 0-300 ua, 0-1-3-10-30 Ma, 0-1-3-10-30 Ma, 0-10-30 Amp. 0-60 ua, 0-60 ua, 0-60 ua, 0-120 V. 0-60 V. 0-120 V, 0-60 V, 0-30 V, 0-12 V, 0-6 V, 0-3 V, 0-1.2 V. 0-12 V, 0-1.2 V. 0-10 V Calibrated Control. Shipping wt: 30 lbs. Suggested U.S.A. User Net TRIPLETT ELECTRICAL INSTRUMENT COMPANY, BLUFFTON, OHIO | | | | | | MA | C. RATIN | IGS | | СНА | RACTERIS | TICS | | | |-----------------------|--|---------------------------------|--|----------------------------------|---------------------------------------|--|-----------------------------------|-----------------------------|--|--|---|-----------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | P _c (W) | ₩/°C | T _j
(°C) | V
CEO
*V
CBO
(V) | I _c (A) | hfe
"hFE | ICO
*ICEO
*ICEX
(mA) | fae
*fT
(kHz) | Package
Outline
(TO-) | Remarks | | | 2N3018
2N3021
2N3022
2N3023
2N3024 | BE
MO
MO
MO | pnp,AE,si
pnp,AE,si
pnp,AE,si
pnp,AE,si
pnp,AE,si | 25
25
25
25
25
25 | 1.67
1.67
1.67
1.67 | 175
175
175
175
175 | *100
30
45
60
30 . | 10
3
3
3
3 | *40
*20-60
*20-60
*20-60
*50-180 | | 100,000
100,000
100,000
100,000 | * 3 3 3 3 3 | °MTIOA | | P 36 | 2N3025
2N3026
2N3230
2N3231 | MO
MO
RCA
RCA | pnp,AE,si
pnp,AE,si
npn,si | 25
25
25
25 | 1.67
1.67
0.143
0.143 | 175
175
200
200 | 45
60
60
80 | 3
3
7
7 | *50-180
*50-180
*2,000 -
20,000
*2,000 -
20,000 | -
0.1
0.1 | 100,000
100,000
- | 3
3
- | Darlington⊤ype, TI
Darlington Type, TI | | | 2N3441
2N3740
2N3741
2N3836 | RCA
MO
MO
TI | npn, si
pnp,si
pnp,si
npn,EP,si | 25
25
25
25
25 | 0.143
.143
.143
.143 | 200
200
200
200
200 | 140
60
80
60 | 3
1
1
7 | *20-80
*30-100
*30-100
*2 K-20 K | 5
0.1
0.1
0.01 | *4000
*4000
40,000 | 66
66
66 | Darlington | | P 37 | 2N3837
40368
PT5694
T1156
T1158 | TI
RCA
TRWS
TI
TI | npn,EP,si
npn, si
-
pnp,ge
pnp,ge | 25
25
25
25
25
25 | .143
0.143
.143
.33 | 200
200
200
100
100 | 80
55
40
30
60 | 7
3
2.0
3
3 | *2 K-20 K
*35 - 100
10-80
*25-75
*25-75 | 0.01
0.009
2.0
.65 | 40,000
-
3.0
6
6 | -
8
-
-
- | Darlington
MT59 package | | | T1539
T1540
V - 800
2N 1755
2N 1756 | TI
TI
VEC
ITT
ITT | pnp,ge
pnp,ge
npn,PL,si | 25
25
25
28
28 | .33
.33
.142
- | 100
100
200
95
95 | 60
60
140
25
40 | 3.5
3.5
-
3
3 | *30-75
*30-75
-
30
30 | 1
1
.750
1
1 | 6
6
-
15
15 | | KSC
KSC | | P 38 | 2N 1757
2N 1758
2N 1759
2N 1760
2N 1761 | 1TT
1TT
1TT
1TT
1TT | | 28
28
28
28
28
28 | - | 95
95
95
95
95 | 55
65
25
40
55 | 3
3
3
3 | 30
30
60
60 | 1
1
1
1 | 15
15
15
15
15 | - | KSC
KSC
KSC
KSC
KSC
 | | 2N1762
KM7000
KM7001
KM7002
40250 | HTT
KSC
KSC
KSC
RCA | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
npn, si | 28
28
28
28
28
29 | -
-
-
0.194 | 95
100
100
100
200 | 65
*60
*100
80
40 | 3
3.0
3.0
3.0
4 | 60
-
150
-
*25-100 | 1
-
-
1 | 15
10
9
- | -
†
†
†
66 | KSC
† MS-7
† MS-7
† MS-7 | | P 39 | 40310
40312
40316
40324
2N 1978 | RCA
RCA
RCA
RCA
FA | npn, si
npn, si
npn, si
npn, si
npn, DP, si | 29
29
29
29
29
30 | 0.16
0.16
0.16
0.16
0.172 | 200
200
200
200
200
200 | 35
-
40
35
*60 | 4
4
4
4 | *20 - 120
*20 - 120
*20 - 120
*20 - 120
*30 | 0.01
0.01
0.01
0.01
0.01 | *750
*750
*750
*750
*750
*50000 | 66
66
66 | Vcer = 60 | | 0.40 | 2N2150
2N2151
2N2869
2N2870
2N2877 | TI
TI
RCA
RCA
SOL | npn, TD, si
npn, TD, si
pnp, AJ, ge
pnp, A, ge
npn, si | 30
30
30
30
30 | 0. 4
0. 4
-
-
0.3 | 175
175
100
100
200 | 80
80
*60
50
*80 | 2
2
10
10
5 | *20-60
*40-120
*90
*90
*20-60 | 0.01
0.01
0.5
0.5
.0001 | *20
*20
-
450
30000 | 21
††
3
3
- | ††MT 21
LAN
LAN
TI, SSP | | P 40 | 2N2878
2N2879
2N2880
2N2892
2N2893 | SOL
SOL
SOL
FA
FA | npn,si
npn,si
npn,si
npn,PE,si
npn,PE,si | 30
30
30
30
30 | 0.3
0.3
0.3
- | 200
200
200
200
200
200 | *80
*100
*100
80
80 | 5
5
5
- | *40-120
*20-60
*40-120
*55
*80 | .0001
.0001
.0001
.0002
0.0002 | 50000
30000
50000
*50000 | - | TI, SSP
TI, SSP
TI, SSP
AMP
AMP | | D 41 | 2N3220
2N3221
2N3222
2N3744
2N3745 | GE
GE
GE
SOL
SOL | npn,si
npn,si
npn,si
npn,si
npn,si | 30
30
30
30
30
30 | 0.4
0.4
0.4
.3
.3 | 175
175
175
200
200 | 80
80
60
*60
*80 | 2
2
2
5
5 | 80
160
8
*20-60
*20-60 | 0.1
0.1
0.1
.0001 | -
-
*30,000
*30,000 | 11111 | TI
TI
TI
hex isolated col.
hex isolated col. | | P 41 | 2N 37 46
2N 37 47
2N 37 48
2N 37 49
2N 37 50 | SOL
SOL
SOL
SOL | npn,si
npn,si
npn,si
npn,si
npn,si | 30
30
30
30
30
30 | .3
.3
.3
.3 | 200
200
200
200
200
200 | *100
*60
*80
*100
*60 | 5
5
5
5 | *20-60
*40-120
*40-120
*40-120
*100-300 | .0001
.0001
.0001
.0001 | *30,000
*40,000
*40,000
*40,000
*50,000 | - | hex isolated col.
hex isolated col.
hex isolated col.
hex isolated col.
hex isolated col. | | | 2N3751
2N3752
2N3850
2N3851
2N3852 | SOL
SOL
SSP
SSP
SSP | npn,si
npn,si
npn,TDP
npn,TDP
npn,TDP | 30
30
30
30
30
30 | .3
.3
0.4
0.4
0.4 | 200
200
200
200
200
200 | *80
*100
*100
*60
*60 | 5
5
5
5 | *100-300
*100-300
*150
*90
*150 | .0001
.0001
.0001
.0001 | *50,000
*50,000
*40
*30
*40 | -
59
59
59 | hex isolated col.
hex isolated col. | | P 42 | 2N3853
2N3996
2N3997
2N3998
2N3999 | SSP
TI
TI
TI
TI | npn,TDP
npn,EP,si
npn,EP,si
npn,EP,si
npn,EP,si | 30
30
30
30
30
30 | 0.4
0.3
0.3
0.3
0.3 | 200
200
200
200
200
200 | *60
80
80
80
80 | 5
5
5
5
5 | *90
40-120
80-240
40-120
80-240 | .0001
0.005
0.005
0.005
0.005 | *30
40,000
40,000
40,000
40,000 | 59
-
-
-
- | 7/16 stud-Isot
7/16 stud-Isol
7/16 stud
7/16 stud | | | | | | | MA | (. RATIN | GS | 199 | CHA | RACTER | STICS | | | |-----------------------|---|---------------------------------|---|--------------------------------------|---|--|-----------------------------------|--|---|---|--|-----------------------------|---| | Crass
Index
Key | Type
Na. | Mfr. | Туре | P _c (W) | w/°c | т _ј
(°С) | *VCE0
*VCB0
(V) | l _c (A) | hfe
*hFE | ICO
*ICEO
†ICEX
(mA) | fae
*fT
(kHz) | Package
Outline
(TO-) | Remarks | | 0.40 | 2N4075
2N4076
FT207A
FT207B
KM7011 | FA
FA
FA
KSC | npn,DPE,si
npn,DPE,si
npn,DPE,si
npn,DPE,si
pnp,AJ,ge | 30
30
30
30
30
30 | .171
.171
2.7
2.7 | 200
200
200
200
200
100 | 80
80
80
80
80 | 3
3
50
50
50
5.0 | 30-90
50-150
20
20 | .0001
,0001
.0050
.0050 | *30,000
*30,000
*3.5
*3500
8 | 59
59
59
-
† | † MS-7 | | P 43 | KM7012
KM7013
KM7014
KM7015
KM7016 | KSC
KSC
KSC
KSC | pnp,AJ,ge
pnp,AJ,ge
pnp,LA,ge
pnp,LA,ge
pnp,AJ,ge | 30
30
30
30
30
30 | - | 100
100
100
100
100 | 60
80
100
60
80 | 5.0
5.0
5.0
5.0
5.0 | - | -
-
-
- | 8
8
8
10
10 | †
†
†
† | † MS-7
† MS-7
† MS-7
† MS-7
† MS-7 | | | KM7017
0C26
2N538
2N538A
2N539 | KSC
AMP
SOL
SOL
SOL | pnp,AJ,ge
pnp,A,ge
pnp,ge
pnp,ge
pnp,ge
pnp,ge | 30
30
34
34
34
34 | -
.9
0.46
0.46
0.46 | 100
90
100
100
100 | 100
32
*80
*80
*80 | 5.0
3.5
3.5
3.5
3.5
3.5 | -
*60
*20-50
*20-50
*30-75 | .20
2
2
2 | 10
150
200
200
200 | †
3
-
- | † MS-7
KSC
KSC
KSC | | P 44 | 2N539A
2N540
2N540A
2N1202
2N1203 | SOL
SOL
SOL
SOL | pnp,ge
pnp,ge
pnp,ge
pnp,ge
pnp,ge | 34
34
34
34
34 | 0.46
.46
0.46
0.46
0.46 | 100
100
100
100
100 | *80
*80
*80
*80
*120 | 3.5
3.5
3.5
3.5
3.5
3.5 | *30/75
*45-113
*45-113
*200
*25-75 | 2
2
2
2
2
2 | 200
200
200
200
200
200 | - | KSC
KSC
KSC
KSC | | | 2N1261
2N1262
2N1263
2N1501
2N1502 | \$0L
\$0L
\$0L
\$0L | pnp,ge
pnp,ge
pnp,ge
pnp,ge
pnp,ge | 34
34
34
34
34 | 0.46
0.46
0.46
0.46
0.46 | 100
100
100
100
100 | *80
*80
*80
*60
*40 | 3.5
3.5
3.5
3.5
3.5
3.5 | *20-50
*30-75
*45-113
*25-100
*25-100 | 2
2
2.
2
2 | 200
200
200
200
200
200 | | KSC
KSC
KSC
KSC
KSC | | P 45 | 2N400
2N1011
2N2836
2N3583
2N3584 | BE
BE
AMP
RCA
RCA | pnp;ge
pnp,AJ,ge
npn, si
npn, si | 35
35
35
35
35
35 | -
0.5
.66
0.2
0.2 | 95
90
200
200 | -
*80
55
175
250 | 3
5
3.5
*5
*5 | *30-40
*30-75
*30
40
*25-100 | -
15
.1
*10
*5 | | 3
3
3
66
66 | KSC
DE, KSC, MO, ITT
KSC | | | 2N3585
2N3878
40313
40318
40322 | RCA
RCA
RCA
RCA
RCA | npn, si
npn, si
npn, si
npn, si
npn, si | 35
35
35
35
35 | 0.2
0.2
0.2
0.2
0.2
0.2 | 200
200
200
200
200
200 | 300
50
-
- | 5
10(pea
2
2
2 | *25 - 100
ak) *50 - 200
*40 - 250
*40 (min.)
*40 (min.) | *5
*5
*5
*5
*5 | *10.000
*60,000
-
- | | Vcer = 300
Vcer = 300
Vcer = 300 | | P 46 | 40328
40364
2N663
2N665
2N3154 | RCA
RCA
DE
DE
ITT | npn,si
npn,si
pnp,AJ,ge
pnp,AJ,ge | 35
35
37.5
37.5
37.5 | 0.2
0.2
2
2 | 200
200
100
100
100 | -
25
40
25 | 2
7
4
5
3 | *20(min.)
*35-175
*25-75
*40-80
60 | *5
-
4
10
1 | -
*15
15
20
15 | 66
66
3
3 | CER = 300
VCER = 60; CER = 0.5
KSC
KSC, MO
KSC | | | 2N3155
2N3156
2N3157
2N3158
2N4241 | ITT
ITT
ITT
ITT
AMP | -
-
-
-
pnp, ge | 37.5
37.5
37.5
37.5
37.5 | -
-
-
0.5 | 100
100
100
100
100 | 40
55
65
25
*32 | 3
3
3
3
5.0 | 60
60
60
30
*50 | 1
1
1
1
45 | 15
15
15
10
5 | -
-
-
-
3 | KSC
KSC
KSC
KSC | | P 47 | 2N1047
2N1047A
2N1047B
2N1047C
2N1048 | TI
TI
TI | npn,si
pnp,si
npn,si
npn,si
npn,si | 40
40
40
40
40 | 0.228
0.228
0.228
0.228
0.228 | 200
200
200
200
200
200 | *80
80
80
80
*120 | 0.500
0.500
0.750
1
0.500 | *12
*12
*12
*12
*12 | 0.015
0.350
0.050
0.010
0.015 | - | - | STC, TR
STC, TR
TJ
STC, TR | | | 2N1048A
2N1048B
2N1048C
2N1049
2N1049A | TI
TI
TI | npn,si
pnp,si
npn,si
pnp,si
npn,si | 40
40
40
40
40 | 0.228
0.228
0.228
0.228
0.228 | 200
200
200
200
200
200 | 120
120
120
*80
80 | 0.500
0.750
1
0.500
0.500 | *12
*12
*12
*30
*30 | 0.350
0.100
0.010
0.015
0.350 | 11111 | | STC, TR
TI
STC, TR
STC, TR | | P 48 | 2N1049B
2N1049C
2N1050
2N1050A
2N1050B | TI
TI
TI | npn,si
npn,si
npn,si
npn,si
npn,si | 40
40
40
40
40 | 0,228
0,228
0,228
0,228
0,228 | 200
200
200
200
200
200 | 80
80
*120
120
120 |
0.750
1
0.500
0.500
0.750 | *30
*30
*30
*30
*30 | 0.050
0.010
0.015
0.350
0.100 | - | - | TI
STC, TR
STC, TR
STC, TI | | | 2N1050C
2N1647
2N1648
2N1649
2N1650 | TI
TR
TR
TR
TR | npn,si
npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si | 40
40
40
40
40
40 | 0.228
.267
.267
.267
.267 | 200
175
175
175
175 | 120
*80
120
*80
120 | 1
3
3
3.
3 | *30
*15-45
*15-45
*30-90
*20 | 0.010
.1
.1
.1 | -
3,000
2,000
3,000
2,000 | - | STC
STC
STC
STC | | P 49 | 2N 1690
2N 1691
2N 2018
2N 2019
2N 2020 | TI
TI
TR
TR
TR | npn,si
npn,si
npn,PL,si
npn
npn,PL,si | 40
40
40
40
40 | 0.228
0.228
.267
.267
.267 | 200
200
175
175
175 | 80
120
*150
*200
*150 | 500
500
2
2
2 | *20
*20
*15
*15
*25 | 0.015
0.015
.1
.1 | -
2,000
2,000
3,000 | - | STC
STC | | | | | | | MA | X. RATIN | IGS | | СН | ARACTERI | STICS | | | |-----------------------|--|--------------------------------|---|----------------------------------|--|--|-----------------------------------|--------------------------------|--|-----------------------------------|--|-----------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | P _c (W) | w/°c | т _ј
(°С) | V
CE0
*V
CB0
(V) | I _c (A) | hfe
*hFE | ICO
*ICEO
*ICEX
(mA) | fae
*fT
(kHz) | Package
Outline
(TO-) | Remarks | | D. 50 | 2N2021
2N2632
2N2633
2N2634
2N2828 | TR
SOL
SOL
SOL
STC | npn,PL,si
npn, si
npn, si
npn, si
npn | 40
40
40
40
40 | .267
.4
.4
.4
.229 | 175
200
200
200
200
200 | *200
*90
*120
*150
60 | 2
5. 0
5. 0
5. 0
3 | *25
*40-120
*40-120
*40-120
*20-60 | .1
0.0001
0.0001
0.0001 | 3000
20000
20000
20000 | -
-
-
• | * ⁷ / _" Hex, T! | | P 50 | 2N2829
2N2902
2N3551
2N4004
2N4005 | STC
TI
TI
TI
TI | npn
npn, TD, si
npn, TD, si
npn,EP,si
npn,EP,si | 40
40
40
40
40 | .229
0.228
0.53
0.4
0.4 | 200
200
175
200
200 | 60
120
60
80
100 | 3
2
12
20
20 | *20-60
*30-90
*20-90
*30-150
*30-150 | -
0. 25
10
1 | -
*2
*40
30,000
30,000 | 57
-
-
- | **/" Hex , TI
Thin-Pac
Thin-Pac | | | 2N3552
2N3851
PT5692
2N2266
2N2267 | TI
TI
TRWS
SOL
SOL | npn, EP, si
npn, EP, si

pnp, ge
pnp, ge | 40
40
40
43
43 | 0.53
0.53
.229
0.5
0.5 | 175
175
200
125
125 | 80
60
40
*100
*120 | 12
12
4.0
5 | *20-90
*20-90
10-80
*25-75
*25-75 | 10
10
4.0
2
2 | 40,000
40,000
2.5
200
200 | | Isol Thin-Pac
Isol Thin-Pac
MT59 package | | P 51 | 2N2268
2N2269
2N1120
2N456A
2N457A | SOL
SOL
BE
TI
TI | pnp,ge
pnp,ge
pnp,ge
pnp,ge
pnp,ge | 43
43
45
50
50 | 0.5
0.5
0.667
0.667
0.667 | 125
125
95
100
100 | *100
*120
*80
*40
*60 | 5
5
15
7
7 | *25-75
*25-75
30-120
*40
*40 | 2
2
15
0.5
0.5 | 200
200
-
-
- | -
41
3
3 | MO, ITT
DE, BE, MO, ITT
DE, KSC, BE, MO, ITT | | P 52 | 2N458A
2N463
2N678
2N678A
2N678B | TI
† KSC
BE
BE
BE | pnp,ge
pnp,AJ,ge
pnp,ge
pnp,ge
pnp,ge | 50
50
50
50
50 | 0,667
.67
0.66
0.66
0.66 | 100
100
100
100
100 | *80
*60
*15
*25
*60 | 7
5
15
15
15 | *40
*20-100
*50-100
*50-100 | 0.5
0.3
2
2
5 | 4
5
-
- | 3
32
3
3
3 | DE, BE, MO, ITT
† WE Orig Reg
KSC, TI, ITT
TI, ITT
TI, ITT | | | 2N678C
2N1014
2N1021
2N1022
2N1069 | BE
TI
TI | pnp,ge
pnp,ge
pnp,ge
pnp,ge
npn,ge | 50
50
50
50
50 | 0.66
100
0.714
0.714 | 100
-
75
95
175 | *60
*100
*100
*120
45 | 15
-
5
5
4 | *50-100
*20
*60
*60
*10-50 | 5
-
010
0.13 | -
-
-
10 | 3
-
3
3
3 | TI, ITT KSC DE, KSC, BE, MO, ITT DE, KSC, BE, MO, ITT STC, BE | | P 53 | 2N1070
2N1430
2N1722
2N1722A
2N1723 | BE
TI
TI
TI | npn,ge
-
npn,si
npn,si
npn,si | 50
50
50
50
50 | .33
-
0.667
0.67
0.67 | 175
175
175
175
175 | 45
40
80
120
80 | 4
10
5
5
5 | *10-50
*30-100
*20
*30
*50 | 0.5
0.1
0.1 | 10
-
-
-
- | 3
41
53
53
53 | STC, BE
STC, TR, BE
BE
BE
BE | | P 33 | 2N 1724
2N 1724A
2N 1725
2N 1905
2N 1906 | TI
TI
TI
RCA
RCA | npn,si
npn,si
npn,si
pnp, AJ, ge
pnp, AJ, ge | 50
50
50
50
50 | 0.667
0.67
0.67
- | 175
175
175
100
100 | 80
120
80
*60
*100 | 5
5
5
3 | *20
*30
*50
*90
*125 | 0.5
0.1
0.1
0.15
0.15 | -
-
*7500
*7500 | -
-
3
3 | STC, TR, BE, MO
BE
BE, MO, TR
LAN
LAN | | D.E.A | 2N2811
2N2812
2N2813
2N2814
2N236A | SOL
SOL
BE | npn, si
npn, si
npn, si
npn, si
npn, ge | 50
50
50
50
60 | 0. 5
0. 5
0. 5
0. 5
0. 83 | 200
200
200
200
200
100 | *80
*80
*120
*120 | 10
10
10
10
10 | *20-60
*40-120
*20-60
*40-120 | .0001
.0001
.0001
.0001 | 20000
30000
20000
30000 | -
-
61
3 | TI
TI
TI
TI
KSC | | P 54 | 2N236B
2N1073
2N1073A
2N1073B
2N1079 | BE
BE
BE
BE
TR | pnp,ge
pnp, ge
pnp, ge
pnp, ge
npn,PL,si | 60
60
60
60 | 0.83
0.833
0.833
0.833
.34 | 100
*110
*110
+110
175 | -
*-25
*-60
*-100
*60 | 3
-10
-10
-10
3 | -
*20-60
*20-60
*20-60
*20-80 | 15
20
20
10 | -
-
-
10,000 | 3
41
41
41
53 | DE, MO
DE, MO
DE, MO | | DEE | 2N 1080
2N 1210
2N 1211
2N 1616
2N 1618 | TR
TR
TR
TR
TR | npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si | 60
60
60
60 | .34
.40
.40
.40
.40 | 175
175
175
175
175
175 | *60
60
*80
60
*100 | 3
5
5
5
5 | *20-80
*15-75
*15-75
*15-75
*15-75 | 10
10
10
10
10 | 10,000
3,000
3,000
3,000
3,000 | 53
-
53
-
- | BE
BE, TI
STC, BE, TI
STC, BE, TI | | P 55 | 2N 1620
2N 1907
2N 1908
2N 2288
2N 2289 | TR
TI
TI
BE
BE | npn,PL,si
pnp,ge
pnp,ge
-
- | 60
60
60
60 | .40
2
2
-
- | 175
100
100
-
- | *100
*100
*130
-
- | 5
20
20
10
10 | *15-75
*20
*20
*20-60
*20-60 | 10
0.5
0.5
-
- | 3,000
-
-
-
-
- | 53
3
3
3
3 | STC, BE, TI | | P 56 | 2N2290
2N2291
2N2292
2N2293
2N2294 | BE
BE
BE
BE
BE | | 60
60
60
60 | - | 11111 | 11111 | 10
10
10
10
10 | *20-60
*50-120
*50-120
*50-120
*50-120 | - | - | 3
3
3
3
41 | ETC
ETC
ETC | | F 36 | 2N2295
2N2296
2N2137
2N2137A
2N2138 | BE
BE
MO
MO
MO | -
pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge | 60
60
62.5
62.5
62.5 | -
0.83
0.83
0.83 | -
1 00
100
100 | -
20
20
30 | 10
10
3
3
3 | *50-120
50-120
*30-60
*30-60
*30-60 | -
2
2
2
2 | -
20
20
20 | 41
41
3
3
3 | | | | | | | | мах | . RATIN | GS | | СНА | RACTERI | STICS | | | |-----------------------|--|---------------------------------|---|--------------------------------------|---------------------------------------|--|--------------------------------|-------------------------------|---|--------------------------------------|----------------------------------|--------------------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | P _c (W) | w/°c | T _j (°C) | *VCEO *VCBO (V) | l _c
(A) | h _{fe} *hFE | ICO
*ICEO
†ICEX
(mA) | fae
*fT
(kHz) | Package
Outline
(TO-) | Remorks | | P 57 | 2N2138A
2N2139
2N2139A
2N2140
2N2140 | MO
MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 62.5
62.5
62.5
62.5
62.5 | 0.83
0.83
0.83
0.83
0.83 | 100
100
100
100
100 | 30
45
45
60
60 | 3
3
3
3 | *30-60
*30-60
*30-60
*30-60
*30-60 | 2
2
2
2
2
2 | 20
20
20
20
20
20 | 3 3 3 3 3 | | | P 5/ | 2N2141
2N2141A
2N2142
2N2142
2N2142A
2N2143 | MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 62.5
62.5
62.5
62.5
62.5 | 0.83
0.83
0.83
0.83
0.83 | 100
100
100
100
100 | 65
65
20
20
30 | 3
3
3
3 | *30-60
*30-60
*50-100
*50-100 | 2
2
2
2
2
2 | 20
20
20
20
20
20 | 3
3
3
3 | | | 0.10 | 2N2143A
2N2144
2N2144A
2N2145
2N2145A |
MO
MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 62.5
62.5
62.5
62.5
62.5 | 0.83
0.83
0.83
0.83
0.83 | 100
100
100
100
100 | 30
45
45
60
60 | 3
3
3
3
3 | *50-100
*50-100
*50-100
*50-100
*50-100 | 2
2
2
2
2
2 | 20
20
20
20
20
20 | 3
3
3
3 | ETC
ETC
ETC
ETC | | P 58 | 2N2146
2N2146A
2N554
2N555
2N4070 | MO
MO
MO
MO
SOL | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
npn,si | 62.5
62.5
65
65
65 | 0.83
0.83
0.72
0.72
.66 | 100
100
90
90
200 | 65
65
*15
*30
*120 | 3
3
3
10 | *50-100
*50-100
55
55
*40-120 | 2
2
10
20
.0001 | 20
20
6
6
•20,000 | 3
3
3
3 | ETC
ETC
ITT
DE, KSC, ITT | | D. F. | 2N4071
2N1430
2N3223
2N1487
2N1488 | SOL
BE
GE
RCA
RCA | npn,si
pnp,ge
npn,si
npn,si
npn,si | 65
70
70
75
75 | .66
0.833
0.4
.429
.429 | 200
110
175
200
200 | *200
100
60
40
55 | 10
10
2
6
6 | *40-120
*30-90
160
*15-45
*15-45 | .0001
-
0.1
.025
.025 | *20,000
-
-
30
30 | 3
41
-
3
3 | TI
STC, BE, TI
STC, BE, TI | | P 59 | 2N1489
2N1490
2N1511
2N1512
2N1513 | RCA
RCA
RCA
RCA
RCA | npn,si
npn,si
npn,si
npn,si
npn,si | 75
75
75
75
75
75 | .429
.429
.429
.429
.429 | 200
200
200
200
200
200 | 40
55
40
55
40 | 6
6
6 | *25-75
*25-75
*15-45
*15-45
*25-75 | .025
.025
.025
.025
.025 | 30
30
30
30
30
30 | 3
3
36
36
36
36 | STC, BE, TI
STC, BE, TI
STC
STC
STC | | D.CO | 2N1514
2N1703
2N2912
40369
3N45 | RCA
RCA
MO
RCA
SOL | npn,si
npn,si
pnp,EP,ge
npn,si
pnp,ge | 75
75
75
75
75
75 | .429
200
1
0.429 | 200
.429
110
200
100 | 55
40
6
55
*60 | 6
5
25
3
12 | *25-75
*15-60
*75
*25-75
*30-120 | .025
.2
0.2
0.01
3 | 30
25
-
-
600 | 36
36
8
3
15 | STC
STC
75w@ 35°C | | P 60 | 3N46
3N47
3N48
DTG600
DTG601 | SOL
SOL
DE
DE | pnp,ge
pnp,ge
pnp,ge
pnp,PADT,ge
pnp,PADT,ge | 75
75
75
75
75
75 | 1
1
1
1.0
1.0 | 100
100
100
110
110 | *80
*40
*60
*90 | 12
12
12
25
25 | *20-80
*30-120
*20-80
115
115 | 3
3
-
- | 3 00
500
300
-
- | 15
15
15
3
3 | | | D.CI | DTG602
2N3264
2N3266
2N389
2N424 | DE
RCA
RCA
TI
TI | pnp,PADT,ge
npn, si
npn, si
npn,si
npn,si | 75
† 84
84
85
85 | 1.0
0.66
0.66
0.485
0.485 | 110
200
200
200
200
200 | 100
90
90
-
- | 25
25
25
1.5
0.75 | 115
*20-80
*20-80
12
12 | 10
10
- | | 3

63
53
53 | †Tc = 75C, TI
TI
TR, STC , BE
TR, STC , BE | | P 61 | 2N1210
2N1235
2N1260
2N2383
2N2384 | TI
TI
TI
STC
STC | npn, TD, si
npn, si
npn, si
npn
npn | 85
85
85
85
85 | 0. 425
0.485
0.485
.5
.5 | 200
200
200
200
200
200 | 60
*100
*120
60
60 | 2
2
2
3
3 | *15
*12
*12
*20-60
*20-60 | 0.25
10
10
-
- | *2
-
-
-
- | 53
53
53
- | STC
*11/ _m " Hex | | 0.60 | 2N2526
2N2527
2N2528
2N2832
2N2833 | MO
MO
MO
MO
MO | pnp,AD,ge
pnp,AD,ge
pnp,AD,ge
pnp,EP,ge
pnp,EP,ge | 85
85
85
85
85 | 1
1
1
1 | 110
110
110
110
110 | 80
120
160
50
75 | 10
10
10
20
20 | *20-50
*20-50
*20-50
*25-100
*25-100 | 3
3
3
.3 | 12
12
12
50
50 | 3
3
3
3 | | | P 62 | 2N2834
2N2908
2N3577
2N3611
2N3612 | MO
STC
TI
MO
MO | pnp,EP,ge
npn
npn, TD, si
pnp,AJ,ge
pnp,AJ,ge | 85
85
85
85
85 | 1
.45
0.565
1 | 110
200
175
110
110 | 100
*80
80
25
35 | 20
5
2
7
7 | *25-100
*12-60
*12-60
*35-70
*35-70 | .3
-
0.1
0.04
0.04 | 50
-
*10
- | 3
53
53
3,41
3,41 | | | D.C3 | 2N3613
2N3614
2N3615
2N3616
2N3617 | MO
MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 85
85
85
85
85 | 1
1
1
1 | 110
110
110
110
110 | 25
35
50
60
50 | 7
7
7
7
7 | *60-120
*60-120
*30-60
*30-60
*45-90 | 0.04
0.04
0.06
0.06
0.06 | 91111 | 3,41
3,41
3,41
3,41
3,41 | | | P 63 | 2N3618
MP2060
MP2061
MP2062
MP2063 | MO
MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 85
85
85
85
85 | 1
1
1
1 | 110
110
110
110
110 | 60
25
35
50
60 | 7
7
7
7 | *45-90
*30-200
*30-200
*30-200
*30-200 | 0.06
0.06
0.06
0.06
0.06 | - | 3.41
3
3
3
3 | | FOUR SPECIALISTS (and what they can do for you) These four high power Nu-Base germanium transistors were created to relieve some special problems where reliable peak power handling is a requirement. Each is in a class by itself with special benefits for ignition, TV horizontal sweep circuits and high power audio output (tentative specifications are provided). These are rugged, durable transistors with built-in protection against secondary breakdown (thanks to Delco's Hydrokinetic Alloy process). Extreme parameter stability is a result of our Surface Passivation and Ambient Control (SPAC). #### **THE DTG-1110** This is a 200-volt 15-amp transistor with high power dissipation characteristics, low thermal resistance and a rugged performance record. TV horizontal deflection incorporating the DTG-1110. The drive requirements for your circuits are substantially reduced because of the high saturated current gain of this special application transistor. #### **THE DTG-1010** A 325-volt 15-amp transistor, this device's higher voltage offers many advantages. It's ideal for switching high inductive loads as found in many CRT deflection circuits. #### **THE DTG-1200** With a (VCE Sus) rating of -120 volts, it offers excellent gain, high speed and high sustaining voltage characteristics. Automobile ignition circuit with the DTG-1200. It's the ideal transistor for an ignition circuit. Also can be used in fluorescent light power inverter circuits. Mobile or portable operation is possible and fluorescent tube efficiency is improved due to higher oscillation frequency. Tested sustaining voltage areas of the DTG-1110, DTG-1010 and DTG-1200. #### THE DTG-110B The DTG-110B is a high power transistor which will substantially reduce component costs and improve the reliability of quality home entertainment audio output circuits. It's designed especially for use in high fidelity amplifiers. The linear gain and the specific gain band-width product of the DTG-110B offer low distortion and improved amplifier gainphase characteristics. Exceptional efficiency in the driver stages is possible because of the DTG-110B's superb transconductance properties. This two-stage output circuit produces well in excess of 50 watts RMS audio power with a simple drive requirement. #### THE TO-3 PACKAGE Delco Radio's TO-3 package wraps up this group of transistors. With its solid copper base (1), maximum thermal resistance is just 0.8° per watt, and freedom from conventional weld contamination is assured with Delco cold weld construction (2). The TO-3 heavy-duty connectors (3) offer high current ruggedness, and the large germanium wafer (4) delivers high continuous and peak power handling ability. Totally, four Nu-Base specialists in Delco TO-3 packages. For data, prices and delivery, call one of our sales offices or your Delco Radio Semiconductor Distributor. | | DTG-1110 | DTG-1010 | DTG-1200 | DTG-110B | |--|----------|----------|----------|----------| | Collector Emitter Voltage (VCE SUS) | | A TO GO | -120V | -40V | | Collector to Emitter Voltage (VCEX) | -200V | 325V | | -90V | | Collector Emitter Voltage (VCEO) | | | | -40V | | *Emitter Diode Voltage (VEBO) | -1.0V | -1.0V | -1.0V | -2V | | Collector Current (IC) | —15A | —15A | —15A | -25A | | Base Current (IB) | —3A | —3A | —3A | —5A | | Maximum Junction Temperature | 110°C | 110°C | 110°C | 110°C | | Minimum Junction Temperature | —65°C | -65°C | -65°C | −65°C | | Lead Temperature $\frac{1}{16}'' \pm \frac{1}{32}''$ from case for 2 seconds | 245°C | 245°C | 245°C | 245°C | FIELD SALES OFFICES UNION, NEW JERSEY* Box 1018 Chestnut Station (201) 687-3770 SYRACUSE, NEW YORK 1054 James Street (315) 472-2668 DETROIT, MICHIGAN 57 Harper Avenue (313) 873-6560 CHICAGO, ILLINOIS* 5151 N. Harlem Avenue (312) 775-5411 SANIA MONICA, CALIFORNIA* 726 Santa Monica Blvd. (213) 870-8807 General Sales Office: 700 E. Firmin, Kokomo, Ind. (317) 457-8461—Ext. 2175 DELCO RADI Division of General Motors, Kokomo, Indiana | F | | | | | MAX | . RATIN | IGS | | CHA | RACTERIS | TICS | | | |-----------------------|--|-------------------------------|---|----------------------------|--------------------------------------|---------------------------------|--|----------------------------------|--|-------------------------------|------------------------------|-----------------------------
--| | Cross
Index
Key | Type
No. | Mfr. | Туре | P _c (W) | w/°c | T _j
(°C) | V
CEO
*V
CBO
(V) | I _c (A) | h _{fe} *hFE | ICO
*ICEO
†ICEX
(mA) | fae
*{T
(kHz) | Package
Outline
(TO-) | Remarks | | | 2N176
2N178
2N250A
2N251A
2N257 | MO
MO
TI
TI
CL | pnp,AJ,ge
pnp,ge
pnp,ge
pnp,ge
- | 90
90
90
90
90 | 1.2
1.43
0.42
1.2 | 100
90
100
100
100 | *40
30
*40
*60
35 | 3
3
7
7
5 | *25-90
*15-45
*35
*35 | -
3
1
2
2 | 7
5
-
-
5 | 3
3
3
3
3 | DE, KSC, ITT
KSC
KSC, BE, ITT
KSC, BE, ITT
KSC, BE | | P 64 | 2N268
2N268A
2N297A
2N350A
2N351A | ITT
ITT
ITT
MO
MO | -
-
pnp,AJ.ge
pnp,AJ.ge | 90
90
90
90
90 | -
-
1.2
1.2 | 100
100
100
100
100 | 60
60
60
*50
*50 | 5
5
5
3
4 | -
20
20
20-60
*25-90 | 2
2
2
2
3
3 | 6
-
-
5
5 | 3
3
3
3 | KSC, BE
KSC, BE
MO, KSC, BE, DE
KSC, BE
KSC, ITT | | D.C. | 2N375
2N376A
2N627
2N628
2N629 | MO
MO
MO
MO
MO | pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge
pnp, ge
pnp, AJ, ge | 90
90
90
90
90 | 1. 2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *80
*50
*40
*60
*80 | 3
5
10
10 | *35-90
*35-120
*10-30
*10-30
*10-30 | 20
3
20
20
20 | 7
5
8
8 | 3
3
3
3 | KSC, ITT
KSC
KSC
KSC | | P 65 | 2N637
2N637A
2N637B
2N638
2N638A | BE
BE
BE
BE
BE | - | 90
90
90
90
90 | - | 11111 | 30
55
65
30
65 | 5
5
5
5
5 | 30-60
*30-60
*30-60
*20-40
*30-60 | | | 3
3
3
3
3 | KSC
KSC
KSC
KSC | | | 2N638B
2N669
2N677
2N677A
2N677B | BE
MO
BE
BE
BE | -
pnp,AJ.ge
pnp,ge
pnp,ge
pnp,ge | 90
90
90
90
90 | -
1.6
0.66
0.66
0.66 | 100
100
100
100 | 65
*40
20
30
60 | 5
3
15
15
15 | *20-40
90
*20-60
*20-60
*20-60 | 3
-
-
- | 5
-
-
- | 3
3
3
3 | KSC
DE, KSC
KSC, TI, ITT
KSC, TI, ITT
KSC, TI, ITT | | P 66 | 2N677C
2N1031
2N1031A
2N1031B
2N1031C | BE
BE
BE
BE
BE | pnp,ge
pnp,ge
pnp,ge
pnp,ge
pnp,ge | 90
90
90
90
90 | 0.66
1.25
1.25
1.25
1.25 | 100
100
100
100
100 | 70
*50
*60
*90
*100 | 15
15
15
15
15 | *20-60
*20-60
*20-60
*20-60
*20-60 | 15
15
15
15 | -
-
-
- | 3
41
41
41
41 | KSC, T[, ITT
TL, ITT
TI, ITT
TI, ITT
TI, ITT | | | 2N1032
2N1032A
2N1032B
2N1032C
2N1136 | BE
BE
BE
BE
BE | pnp,ge
pnp,ge
pnp,ge
pnp,ge | 90
90
90
90
90 | 1.25
1.25
1.25
1.25 | 100
100
100
100
100 | *50
*60
*90
*100 | 15
15
15
15
15 | *50-100
*50-100
50-100
*50-100
*50-100 | 15
15
15
15 | - | 41
41
41
41
3 | ITT
ITT
ITT
ITT
KSC, ITT | | P 67 | 2N1136A
2N1136B
2N1137
2N1137B
2N1138 | BE
BE
BE
BE
BE | - | 90
90
90
90
90 | - | | 55
65
30
65
30 | 5
5
5
5 | *50-100
*50-100
75-150
*75-150
100-200 | - | - | 3
3
3
3
3 | KSC, ITT
KSC, ITT
KSC, ITT
KSC, ITT
KSC, ITT | | | 2N1138A
2N1138B
2N1146
2N1146A
2N1146B | BE
BE
LTT
ITT
ITT | - | 90
90
90
90
90 | - | -
100
100
100 | 55
65
20
30
60 | 5
5
15
15
15 | 100-200
100-200
60
-
60 | -
-
4
4
4 | -
4
4
4 | 3
3
3
3
3 | KSC, ITT
KSC, ITT
BE
KSC, BE
KSC, BE | | P 68 | 2N1146C
2N1147
2N1147A
2N1147B
2N1147C | 177
177
177
177 | - | 90
90
90
90
90 | - | 100
100
100
100
100 | 75
20
30
60
75 | 15
15
15
15
15 | 60
60
-
60
60 | 4
4
4
4
4 | 4
4
4
4
4 | 3
3
3
3
3 | KSC, BE
BE, TI
KSC, BE, TI
KSC, BE, TI
KSC, BE, TI | | D.CO. | 2N1162
2N1162A
2N1163
2N1163A
2N1164 | MO
MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *50
*50
*50
*50
*80 | 25
25
25
25
25
25 | *65
*65
*65
*65
*65 | 3
-
-
-
- | 4
4
4
4
4 | -
3
3
3
3 | BE, ITT BE BE, ITT BE BE, (TT | | P 69 | 2N1164A
2N1165
2N1165A
2N1166
2N1166A | MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *80
*80
*80
*100
*100 | 25
25
25
25
25
25 | 65
*65
*65
*65
*65 | - | 4
4
4
4
4 | 3
3
3
3
3 | BE
BE, ITT
BE
BE, ITT
BE | | 6.3- | 2N1167
2N1167A
2N1359
2N1360
2N1362 | MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *100
*100
*50
*50
*100 | 25
25
3
3
3 | *65
*65
*35-90
*60-140
*35-90 | -
3
3
3 | 4
4
10
8.5
10 | 3
3
3
3
3 | BE, ITT
BE
KSC, BE
KSC, BE
KSC, BE | | P 70 | 2N1363
2N1364
2N1365
2N1529
2N1529A | MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *100
*120
*120
*120
*40
*40 | 3
3
3
5
5 | *60-140
*35-90
*60-140
*20
*20 | 3
3
3
2
2 | 8.5
10
8.5
10
10 | 3
3
3
3
3 | KSC, BE
KSC, BE
KSC, BE
KSC, BE
KSC, BE | | | | 10 | | | MA | X. RATIN | GS | | CI | HARACTER | STICS | | | |-----------------------|---|--------------------------------|---|------------------------------|---------------------------------|---------------------------------|------------------------------------|----------------------------|---|-------------------------------|---------------------------------|-----------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | P _c
(W) | w/°c | T _j
(°C) | Y
CEO
*Y
CBO
(Y) | I _c (A) | hfe
*hFE | ICO
*ICEO
*ICEX
(mA) | fae
*f _T
(kHz) | Package
Outline
(70-) | Remarks | | D 71 | 2N1530
2N1530A
2N1531
2N1531A
2N1532 | MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *60
*60
*80
*80
*100 | 5 5 5 5 | *20
*20
*20
*20
*20 | 2
2
2
2
2
2 | 10
10
10
10
10 | 3
3
3
3 | KSC, BE
KSC, BE
KSC, BE
KSC, BE
KSC, BE | | P 71 | 2N1532A
2N1533
2N1534
2N1534A
2N1535 | MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *100
*120
*40
*60
*60 | 5
5
5
5 | *20
*20
*35
*35
*35 | 2
2
2
2
2
2 | 10
10
8.5
8.5
8.5 | 3
3
3
3 | KSC, BE
KSC, BE
DE, KSC, BE, ITT
KSC, BE
DE, KSC, BE, ITT | | D 70 | 2N1536
2N1536A
2N1537
2N1537A
2N1538 | MO
MO
MO
MO | pnp,AJ.ge
pnp,AJ.ge
pnp,AJ.ge
pnp,AJ.ge
pnp,AJ.ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *80
*80
*100
*100
*120 | 5
5
5
5 | *35
*35
*35
*35
*35 | 2
2
2
2
2
2 | 8.5
8.5
8.5
8.5
8.5 | 3
3
3
3 | DE, KSC, BE, ITT
KSC, BE
KSC, BE, ITT
KSC, BE
KSC, BE, ITT | | P 72 | 2N1539
2N1539A
2N1540
2N1540A
2N1541 | MO
MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *40
*40
*60
*60
*80 | 5
5
5
5 | *50
*50
*50
*50
*50 | 2
2
2
2
2 | 4
4
4
4 | 3
3
3
3 | DE, KSC, BE, TI, ITT
KSC, BE
DE, KSC, BE, TI, ITT
KSC, BE
DE, KSC, BE, TI, ITT | | P 73 | 2N1541A
2N1542
2N1542A
2N1543
2N1544 | MO
MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *80
*100
*100
*120
*40 | 5
5
5
5 | *50
*50
*50
*50
*75 | 2
2
2
2
2
2 | 4
4
4
4 | 3
3
3
3 | KSC, BE DE, KSC, BE, TI, ITT KSC, BE DE, KSC, BE, TI, ITT DE, KSC, BE, ITT | | F /3 | 2N1544A
2N1545
2N1545A
2N1546
2N1546A | MO
MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *40
*60
*60
*80
*80 | 5
5
5
5 | *75
*75
*75
*75
*75 | 2
2
2
2
2 | 4
4
4
4 | 3
3
3
3 | KSC, BE
DE, KSC, BE, ITT
KSC, BE
DE, KSC, BE, ITT
KSC, BE | | D 74 |
2N1547
2N1547A
2N1548
2N1549
2N1549A | MO
MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *100
*100
*120
20
20 | 5
5
5
15
15 | *75
*75
*75
*10
*10 | 2
2
2
3
3 | 4
4
4
10
10 | 3
3
3
3 | DE, KSC, BE, ITT
KSC, BE
KSC, BE, ITT
KSC, BE, ITT
KSC, BE | | P 74 | 2N1550
2N1551
2N1551A
2N1552
2N1552A | MO
MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | 30
40
40
50
50 | 15
15
15
15
15 | *10
*10
*10
*10
*10 | 3
3
3
3 | 10
10
10
10
10 | 3
3
3
3 | KSC, BE, ITT
KSC, BE, ITT
KSC, BE
KSC, BE, ITT
KSC, BE | | D 75 | 2N1553
2N1553A
2N1554
2N1554A
2N1555 | MO
MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | 20
20
30
30
40 | 15
15
15
15
15 | *30
*30
*30
*30
*30 | 3
3
3
3 | 6
6
6 | 3
3
3
3 | KSC, BE, TI, ITT, DE
KSC, BE
KSC, BE, TI, ITT, DE
KSC, BE
KSC, BE, TI, ITT, DE | | P 75 | 2N1555A
2N1556
2N1556A
2N1557
2N1557A | MO
MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | 40
50
50
20
20 | 15
15
15
15
15 | *30
*30
*30
*50
*50 | 3
3
3
3 | 6
6
5
5 | 3
3
3
3 | KSC, BE
KSC, BE, TI, ITT, DE
KSC, BE
KSC, BE, ITT, DE
KSC, BE | | P 76 | 2N1558
2N1558A
2N1559
2N1559A
2N1560 | MO
MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | 30
30
40
40
50 | 15
15
15
15
15 | *50
*50
*50
*50
*50 | 3
3
3
3 | 5
5
5
5
5 | 3
3
3
3 | KSC, BE, ITT, DE
KSC, BE
KSC, BE, ITT, DE
KSC, BE
KSC, BE, ITT, DE | | 70 | 2N1560A
2N2061A
2N2062A
2N2063A
2N2064A | MO
ITT
ITT
ITT
ITT | pnp,AJ,ge
-
-
-
- | 90
90
90
90
90 | 1.2
-
-
-
- | 100
100
100
100
100 | 50
15
15
20
20 | 15
5
5
5
5 | *50
20
50
20
50 | 3
2
2
2
2 | 5
5
1
5 | 3
3
3
3
3 | KSC, BE | | P 77 | 2N 206 5A
2N 206 6 A
2N 2423
DTG411
3N 49 | ITT
ITT
ITT
DE
SOL | -
-
-
npn,TDP,si
pnp,ge | 90
90
90
90
90 | -
-
0.8
1,25 | 100
100
100
150
100 | 40
40
75
300
*60 | 5
5
1.0
15 | 20
50
20
*90
*30-120 | 5
5
5
3 | 5
1
3
-
600 | 3
3
3
- | KSC | | F // | 3N50
3N51
3N52
2N2285
2N2286 | SOL
SOL
BE
BE
BE | pnp,ge
pnp,ge
pnp,ge
-
- | 94
94
94
100
100 | 1.25
1.25
1.25
-
- | 100
100
100
- | *80
*40
*60
30
60 | 15
15
15
25
25 | *20-80
*30-120
*20-80
*20
*20 | 3
3.0
3.0
-
- | 300
500
300
— | -
-
3
3 | | | | | | | | MAX | . RATI | IGS | | CHA | RACTERIS | TICS | | 2010 | |-----------------------|--|--------------------------------------|---|--|--|--|--------------------------------------|-----------------------------------|--|---------------------------------------|--|-----------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | P _c (W) | W/°C | T _j (°C) | VCEO *VCBO (V) | I _c (A) | hfe
*hFE | ICO *ICEO †ICEX (mA) | fae
*fT
(kHz) | Package
Outline
(TO-) | Remarks | | | 2N2287
2N3597
2N3598
2N3599
2N4002 | BE
SOL
SOL
TI | npn,si
npn,si
npn,si
npn,si
npn,EP,si | 100
100
100
100
100 | -
1
1
1 | 200
200
200
200
200 | 80
*60
*80
*100 | 25
20
20
20
20
30 | *20
*40-120
*40-120
*40-120
20-80 | 0.0001
0.0001
0.0001
1 | 30000
30000
30000
30,000 | 3 | *7/" hex, TI
*7/" hex, TI
*7/" hex, TI | | P 78 | 2N 4003
151-04
151-05
151-06
151-07 | TI
WH
WH
WH
WH | npn,EP,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 100
100
100
100
100 | 1
1.4
1.4
1.4 | 200
150
150
150
150
150 | 100
*80
*100
*120
*140 | 30
6.0
6.0
6.0
6.0 | *20-80
*11
*11
*11
*11 | 1
10
10
10
10 | *30,000
25
25
25
25
25 | 63
†
†
† | † MT-1
† MT-1
† MT-1
† MT-1 | | D 70 | 151-08
151-09
151-10
151-12
151-14 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 100
100
100
100
100 | 1.4
1.4
1.4
1.4
1.4 | 150
150
150
150
150 | *160
*180
*200
*145
*165 | 6.0
6.0
6.0
6.0
6.0 | *11
*11
*11
*11
*11 | 10
10
10
10
10 | 25
25
25
25
25
25 | +++ | † MT-1
† MT-1
† MT-1 | | P 79 | 151-16
151-18
151-20
152-04
152-05 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 100
100
100
100
100 | 1.4
1.4
1.4
1.4 | 150
150
150
150
150 | *185
*205
*225
*80
*100 | 6.0
6.0
6.0
6.0
6.0 | *11
*11
*11
*18
*18 | 10
10
10
10
10 | 25
25
25
25
25
25 | + + | † MT-1
† MT-1 | | D.O. | 152-06
152-07
152-08
152-09
152-10 | WH
WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 100
100
100
100
100 | 1.4
1.4
1.4
1.4
1.4 | 150
150
150
150
150
150 | *120
*140
*160
*180
*200 | 6.0
6.0
6.0
6.0
6.0 | *18
*18
*18
*18
*18 | 10
10
10
10
10 | 25
25
25
25
25
25 | †
†
†
† | † MT-1
† MT-1
† MT-1
† MT-1
† MT-1 | | P 80 | 152-12
152-14
152-16
152-18
152-20 | WH
WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 100
100
100
100
100 | 1.4
1.4
1.4
1.4 | 150
150
150
150
150 | *145
*165
*185
*205
*225 | 6.0
6.0
6.0
6.0
6.0 | *18
*18
*18
*18
*18 | 10
10
10
10
10 | 25
25
25
25
25
25 | 11111 | | | | 40355
DTS - 423
40363
2N3442
2N3445 | RCA
DE
RCA
RCA
MO | npn,si
npn,si
npn,si
npn,si
npn,AE,si | 100
100
115
117
117 | 1000
1.33
0.657
0.668
0.66 | 175
150
200
200
200
200 | 6.6
400
70
140
80 | *150
3.5
15
10
7.5 | 50
30-90
•20 - 70
•20-70
•20-60 | -
-
5
0.1 | .005 (max
6000
*700
— | 2.8
3
3
3
3 | lcer=0.5 mA | | P 81 | 2N3446
2N3447
2N3448
2N3487
2N3488 | MO
MO
MO
MO | npn,AE,si
npn,AE,si
npn,AE,si
npn,AE,si
npn,AE,si | 117
117
117
117
117 | 0.66
0.66
0.66
0.66
0.66 | 200
200
200
200
200
200 | 60
80
60
60
80 | 7.5
7.5
7.5
7.5
7.5 | *20-60
*40-120
*40-120
*20-60
*20-60 | 0.1
0.1
0.1
0.025
0.025 | | 3
3
3
61
61 | | | | 2N3489
2N3490
2N3491
2N3492
40251 | MO
MO
MO
MO
RCA | npn,AE,si
npn,AE,si
npn,AE,si
npn,AE,si
npn, si | 117
117
117
117
117 | 0.66
0.66
0.66
0.66
0.668 | 200
200
200
200
200
200 | 100
60
80
100
40 | 7.5
7.5
7.5
7.5
7.5 | *15-45
*40-120
*40-120
*30-90
*15-60 | 0.025
0.025
0.025
0.025
5 | -
-
- | 61
61
61
61
3 | | | P 82 | 40325
156-04
156-06
156-08
156-10 | RCA
WH
WH
WH
WH | npn,si
npn,DJ,si
npn,DJ,si
npn,DJ,si
npn,DJ,si | 117
120
120
120
120 | 0.668
0.68
0.68
0.68
0.68 | 200
200
200
200
200
200 | 35
40
60
80
100 | 15
8
8
8 | *12-60
*15
*15
*15
*15
*15 | 5
20
20
20
20
20 | 60
60
60
60 | 3
-
-
-
- | | | | 2N1899
2N1900
2N1901
2N1902
2N1903 | TRWS
TRWS
TRWS
TRWS
TRWS | npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si | 125
125
125
125
125
125 | 1.0
1.0
1.0
1.0 | 150
150
150
150
150 | *140
*140
*140
*140
*140 | 10
10
10
10
10 | 5.0
*>8
5
5
*>8 | 10
10
10
10
10 | 2500
5000
2000
5000
5000 | | | | P 83 | 2N 1904
2N 3076
2N 3263
2N 3265
DTS430 | TRWS
TRWS
RCA
RCA
DE | npn,PL,si
npn,PL,si
npn, si
npn, si
npn, TDP,si | 125
125
† 125
† 125
† 125
125 | 1
1.0
1
1
0.7 | 150
150
200
200
150 | *140
*140
60
60
400 | 10
10
25
25
25
2.5 | 5
5
*25-75
*25-75
*45 | 10
25
4
4 | 2000
2000
-
*4000 | -
-
63
3 | †Tc = 75C, TI
†Tc = 75C, TI | | | DTS431
2N2733
2N2734
2N2735
2N2736 | DE
SOL
SOL
SOL | npn, TOP, si
pnp, ge
pnp,
ge
pnp, ge
pnp, ge | 125
141
141
141
141 | 0.7
1.67
1.67
1.67
1.67 | 150
110
110
110
110 | 400
*80
*60
*40
*80 | 2.5
65
65
65
65 | *35
*30-120
*30-120
*30-120
*30-120 | 5.0
5.0
5.0
5.0
5.0 | *4000
350
350
350
350
350 | 3
-
-
- | | | P 84 | 2N2737
2N2738
2N173
2N174
2N174A | SOL
SOL
DE
DE
DE | pnp,ge
pnp,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 141
141
150
150
150 | 1.67
1.67
.5
.5 | 110
110
100
100
100 | *60
*40
45
55
40 | 65
65
15
15
15 | *30-120
*30-120
*37-70
*25-50
*40-80 | 5.0
5.0
4
4
8 | 350
350
10
10 | -
36
36
36
36 | MO, RCA
MO, RCA
MO | # precision dc voltage standards now available with— accuracies to 0.003% stability to 15 ppm from Cohu Electronics - COHU'S NEW MODEL 326 DC VOLTAGE STANDARD: an exceptionally accurate and stable source with a wide range of voltages at extremely low output impedance. Output voltages from 0 to ± 1222.2221 volts in 3 decade ranges, with steps as small as 1 μ V, and an accuracy of 0.003% of setting; stability within 15 ppm for 7 days, 25 ppm for 6 months; output current to 50 mA; output impedance less than (0.00025 \pm 0.00005Eout) ohms at DC; noise and hum less than 20 μ V rms. \$2490.00. - MODEL 303B DC VOLTAGE STANDARD: highly accurate, direct setting, stable output over a wide range of voltages. Specifications: output voltage accuracy to within 0.01% of setting; output voltage from 0 to ± 1111.1110 volts in 3 decade ranges, steps as small as 1 μ V; output current to 25 mA; stability within 25 ppm for 7 days, 50 ppm for 6 months; noise and hum less than 40 μ V rms. \$2000.00. - MODEL 313 PROGRAMABLE DC VOLTAGE STANDARD: from 0 to \pm 1111.1110 volts in any desired sequence. The instrument automatically responds to any program applied in the form of parallel entry, 1-2-4-4 BCD signals; output voltage accuracy is within 0.01%; stability is within 25 ppm for 8 hours and 50 ppm for 30 days; noise and hum is less than 40 μ V rms; output current up to 25 mA; maximum settling time of output approx. 1 second. \$3995.00. - MODEL 321/323 DC VOLTAGE STANDARDS: accurate, stable voltages, to 25 mA current in rackmount or cabinet configurations. Voltage range 0 to ± 1111.110 volts with steps as small as $10~\mu\text{V}$; output voltage accuracy within 0.01% of dial settings; stability is within 25 ppm for 8 hours and 50 ppm for 30 days; output noise and hum less than 40 μV rms; Model 321 (rackmount) or 323 (cabinet) versions available with or without nullmeter. \$1600.00 to \$1900.00. - MODEL 302 DC VOLTAGE STANDARD AND NULL VOLTMETER: range 1.000 to 502.110V; short term stability, ± 25 ppm $\pm 25 \mu$ V; output current to 20 mA; accuracy within 0.01% of setting $\pm 200 \mu$ V. \$1495.00. - MODEL 325 DC VOLTAGE CALIBRATOR: a stable dc voltage source with an accuracy within 0.02%. Output voltage is from 0 to ± 1111.110 V in steps as small as $10~\mu$ V; output current to 25 mA; lightweight; portable. \$995.00. Send for complete product information on these dc voltage standards, or any of COHU's line of precision instruments. Representatives in all major cities. Box 623, San Diego, California 92112 Phone 714-277-6700 | | | | | | MAX | . RATIN | igs | | CHA | ARACTERIS | TICS | | | |-----------------------|---|------------------------------|---|---------------------------------|--|--|-------------------------------------|----------------------------------|---|---------------------------------|---|-----------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | P _c (W) | w/°c | T _j (°C) | **CEO
**CBO
(V) | l _c
(A) | hfe
*hFE | ICO
*ICEO
ICEX
(mA) | fae
*f _T
(kHz) | Package
Outline
(TO-) | Remarks | | | 2N277
2N278
2N441
2N442
2N443 | DE
DE
DE
DE
DE | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 150
150
150
150
150 | .5
.5
.5
.5 | 100
100
100
100
100 | 25
30
25
30
45 | 15
15
15
15
15 | *35-70
*35-70
*20-40
*20-40
*20-40 | 8
4
8
4
4 | 10
10
10
10
10 | 36
36
36
36
36 | MO, RCA
MO, RCA
MO, RCA
MO, RCA
MO, RCA | | P 85 | 2N511
2N511A
2N511B
2N512
2N512A | TI
TI
TI
TI | pnp,ge
pnp,ge
pnp,ge
pnp,ge
pnp,ge | 150
150
150
150
150 | 2
2
2
2
2
2 | 100
100
100
100
100 | *40
*60
*80
*40
*60 | 25
25
25
25
25
25 | *20
*20
*20
*20
*20 | 0.5
0.5
0.5
0.5
0.5 | - | -
-
-
- | | | D 00 | 2N512B
2N513
2N513A
2N513B
2N514 | TI
TI
TI
TI | pnp,ge
pnp,ge
pnp,ge
pnp,ge
pnp,ge | 150
150
150
150
150 | 2
2
2
2
2
2.14 | 100
100
100
100
100
95 | *80
*40
*60
*80
40 | 25
25
25
25
25
25 | *20
*20
*20
*20
*40 | 0.5
0.5
0.5
0.5
0.5 | - | | | | P 86 | 2N514A
2N514B
2N1015C
2N1099
2N1100 | TI
TI
WH
DE
DE | pnp,ge
pnp,ge
npn, AJ, si
pnp,AJ,ge
pnp,AJ,ge | 150
150
150
150
150 | 2.14
2.14
1.43
.5 | 95
95
150
100
100 | 50
60
150
55
65 | 25
25
7.5
15
15 | *40
*40
*10
*35 70
*25-50 | 0.2
0.2
10
4 | -
25
10
10 | -
-
36
36 | STC
MO. RCA
MO. RCA | | P 87 | 2N1358
2N1412
2N1412USN
2N1936
2N1937 | DE
DE
DE
TI | pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge
npn, si
npn, si | 150
150
150
150
150 | 0.5
0.5
.5
2 | 100
100
100
175
175 | -80
100
60
60
80 | -15
15
15
20
20 | *40-80
*25-50
*25-50
*12
*12 | -4
4
4
-
- | 100
10
10
-
- | 36
36
36
- | RCA
RCA
MO | | P 87 | 2N2015
2N2016
2N2226
2N2227
2N2228 | RCA
RCA
WH
WH
WH | npn,si
npn,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 150
150
150
150
150 | .855
.855
2
2
2 | 200
200
150
150
150 | 50
65
50
100
150 | 10
10
10
10
10 | *15-50
*15-50
*100
*100
*100 | .05
.05
10
10 | 25
25
10
10
10 | 36
36
†
†
† | STC
STC
† MT 1
† MT 1
† MT 1 | | P 88 | 2N2229
2N2230
2N2231
2N2232
2N2233 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 150
150
150
150
150 | 2.0
2.0
2.0
2.0
2.0 | 150
150
150
150
150 | 200
50
100
150
200 | 10
10
10
10
10 | *100
*400
*400
*400
*400 | 10
10
10
10
10 | 10
7
7
7
7 | †
†
†
† | † MT 1
† MT 1
† MT 1
† MT 1
† MT 1 | | P 00 | 2N2338
2N3429
2N3430
2N3431
2N3432 | RCA
WH
WH
WH
WH | npn, si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 150
150
150
150
150 | 0. 855
1.33
1.33
1.33
1.33 | 200
175
175
175
175
175 | 40
*50
*100
*150
*200 | 7.5
7.5
7.3
7.5
7.5 | *15-60
*10
*10
*10
*10 | 0. 2
10
10
10
10 | 20
30
30
30
30
30 | 36
-
-
-
- | | | D 00 | 2N3433
2N3434
2N3470
2N3471
2N3472 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 150
150
150
150
150 | 1.33
1.33
2
2
2
2 | 175
175
150
150
150 | *250
*30
*50
*100
*150 | 7.5
7.5
10
10 | *10
*10
*100
*100
*100 | 10
1 0
10
10
10 | 30
30
10
10 | | | | P 89 | 2N3473
2N3474
2N3475
2N3476
2N3477 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 150
150
150
150
150 | 2
2
2
2
2
2 | 150
150
150
150
150
150 | *200
*50
*100
*150
*200 | 10
10
10
10
10 | *100
*400
*400
*400
*400 | 10
10
10
10
10 | 10
10
10
10
10 | | | | P 00 | 2N3713
2N3714
2N3715
2N3716
2N3771 | MO
MO
MO
MO
RCA | npn,si
npn,si
npn,si
npn,si
npn,si | 150
150
150
150
150 | .857
.857
.857
.857
0.855 | 200
200
200
200
200
200 | 60
80
60
80
40 | 10
10
10
10
30 | *25-90
*25-90
*50-150
*50-150
*15 - 60 | †1
†1
†1
†1
†1
2 | *4000
*4000
*4000
*4000
*700 | 3
3
3
3 | | | P 90 | 2N3772
2N3773
2N3789
2N3790
2N3791 | RCA
RCA
MO
MO
MO | npn, si
npn, si
pnp, si
pnp, si
pnp, si | 150
150
150
150
150 | 0.855
.855
.857
.857
.857 | 200
200
200
200
200
200 | 60
140
60
80
60 | 30
30
10
10 | *15 - 60
*15 - 60
*25-90
*25-90
*50-150 | 5
2
†1
†1
†1 | *700
*500
*4000
*4000
*4000 | 3
3
3
3 | | | 2.5 | 2N3792
2N3846
2N3847
2N3848
2N3849 | MO
TI
TI
TI | pnp,si
npn,TDM,si
npn,TDM,si
npn,TDM,si
npn,TDM,si | 150
150
150
150
150 | .85/
2
2
2
2
2 | 200
175
175
175
175
175 | 80
200
306
200
300 | 10
20
20
20
20
20 | *50-150
*15-60
*15-60
*15-60
*15-60 | †1
2
2
2
2 | *4000
10,000
10,000
10,000
10,000 | 3
·
63
63
63
63 | | | P 91 | T13027
T13028
T13029
T13030
T13031 | TI
TI
TI
TI
TI | pnp.ge
pnp.ge
pnp.ge
pnp.ge
pnp.ge | 150
150
150
150
150 | 2
2
2
2
2
2 | 100
100
100
100
100 | *45
*60
*80
*100
*120 | 7
7
7
7
7 | * 40
* 40
* 40
* 40
* 40 | 1
1
1
1 | - | 3
3
3
3 | | | | | 1 | | | MA | X. RATIN | IGS | | CH. | ARACTERI | STICS | | | |-----------------------|--|------------------------------|--|--|--|---------------------------------|---------------------------------|----------------------------------|---|-------------------------------|--|----------------------------------|----------------| | Cross
Index
Key | Type
No. | Mfr. | Туре | P _c (W) | w/°c | т _ј
(°С) | VCEO *VCBO (V) | I _c (A) | hfe
*hFE | ICO
*ICEO
†ICEX
(mA) | fae
*fT
(kHz) | Package
Outline
(TO-) | Remarks | | P 92 | 2N3146
2N3147
2N2075
2N2075A
2N2076 | TI
TI
MO
MO
MO | pnp,ge
pnp,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 150
150
170
170
170 | 2
2
2
2
2
2 | 100
100
110
110
110 | *150
180
65
65
55 | 15
15
15
15
15 | *30-90
30-90
*25-100
*25-100
*25-100 | 10
10
4
4
4 | - 5555 | 3
3
36
36
36 | DE
DE | | F 92 | 2N2076A
2N2077
2N2077A
2N2078
2N2078A | MO
MO
MO
MO
MO | pnp,AJ,ge
ge,LA,qnq
ge,LA,qnq
ge,LA,qnq
ge,LA,qnq | 170
170
170
170
170 | 2
2
2
2
2
2 | 110
110
110
110
110 | 55
45
45
25
25 | 15
15
15
15
15 | *25-100
*25-100
*25-100
*25-100
*25-100 | 4
4
4
4 | 5
5
5
5 | 36
36
36
36
36 | DE
DE | | P 93 | 2N2079
2N2079A
2N2080
2N2080A
2N2081 | MO
MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 170
170
170
170
170 | 2
2
2
2
2
2 | 110
110
110
110
110 | 65
65
55
55
45 | 15
15
15
15
15 | *40-160
*40-160
*40-160
*40-160
*40-160 | 4
4
4
4
4 | 5
5
5
5 | 36
36
36
36
36
36 | DE
DE
DE | | r 33 | 2N2081A
2N2082
2N2082A
2N2152
2N2152A | MO
MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 170
170
170
170
170 | 2
2
2
2
2
2 | 110
110
110
110
110 | 45
25
25
30
30 | 15
15
15
30
30 | *40-160
*40-160
*40-160
*50-100 | 4
4
4
4 | 5
5
5
2.7
2.7 | 36
36
36
36
36 | DE | | P 94 | 2N2153
2N2153A
2N2154
2N2154
2N2154A
2N2156 | MO
MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp, AJ,ge
pnp,AJ,ge | 170
170
170
170
170
170 | 2
2
2
2
2
2 | 110
110
110
110
110 | 45
45
60
60
30 | 30
30
30
30
30
30 | *50-100
*50-100
*50-100
*50-100
*80-160 | 4
4
4
4 | 2.7
2.7
2.7
2.7
2.7
2.7 | 36
36
36
36
36 | | | P 94 | 2N2156A
2N2157
2N2157A
2N2158
2N2158A | MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 170
170
170
170
170 | 2
2
2
2
2 | 110
110
110
110
110 | 30
45
45
60
60 | 30
30
30
30
30 | *80-160
*80-160
*80-160
*80-160
*80-160 | 4
4
4
4 | 2.7
2.7
2.7
2.7
2.7
2.7 | 36
36
36
36
36 | | | P 95 | 2N2357
2N2358
2N2359
2N2728
2N2720 | BE
BE
MO
SOL | -
-
pnp,AJ,ge
pnp, ge | 170
170
170
170
170 | -
-
2
2.0 | -
-
110
110 | 30
60
80
5
*80 | 50
50
50
50
50
65 | *15
*15
*50
*40-130
*30-120 | -
-
-
-
5. 0 | -
-
-
4.5
350 | 41
41
41
36
36 | | | 1 33 | 2N2731
2N2732
2N3311
2N3312
2N3313 | SOL
SOL
MO
MO
MO | pnp,ge
pnp,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 170
170
170
170
170 | 2
2
2
2
2 | 110
110
110
110
110 | *60
*40
20
30
40 | 65
65
5
5 | *30-120
*30-120
60-120
60-120
60-120 | 5
5
0.3
0.3
0.3 | 350
350
1.0
1.0 | 36
36
36
36
36 | | | D 04 | 2N3314
2N3315
2N3316
2N4048
2N4049 | MO
MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge'
pnp,ge
pnp,ge | 170
170
170
170
170 | 2
2
2
2
2 | 110
110
110
110
110 | 20
30
40
30
45 | 5
5
5
60
60 | 100-200
100-200
100-200
*60-120
*60-120 | 0.3
0.3
0.3
4
4 | 1.0
1.0
1.0
2
2 | 36
36
36
.36
.36 | | | P 96 | 2N4050
2N4051
2N4052
2N4053
MP500 | MO
MO
MO
MO | pnp,ge
pnp,ge
pnp,ge
pnp,ge
pnp,AJ,ge | 170
170
170
170
170 | 2
2
2
2
2
2 | 110
110
110
110
110 | 60
30
45
60
30 | 60
60
60
60 | *60-120
*80-180
*80-180
*80-180
*30-60 | 4
4
4
4 | 2
2
2
2
2
3.6 | 36
36
36
36
36 | | | P 97 | MP500A
MP501
MP501A
MP502
MP502A | MO
MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 170
170
170
170
170 | 2
2
2
2
2
2 | 110
110
110
110
110 | 30
45
45
60
60 | 60
60
60
60 | *30-60
*30-60
*30-60
*30-60
*30-60 | 4
4
4
4
3 | 3.6
3.6
3.6
3.6
3.6 | 36
36
36
36
36 | | | F 3/ | MP504
MP504A
MP505
MP505A
MP506 | MO
MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 170
170
170
170
170 | 2
2
2
2
2 | 110
110
110
110
110 | 30
30
45
45
45 | 60
60
60
60 | *50-100
*50-100
*50-100
*50-100
*50-100 | 4
4
4
4 | 3.6
3.6
3.6
3.6
3.6 | 36
36
36
36
36 | | | D 00 | MP506A
2N2580
2N2581
2N2582
2N2583 | MO
DE
DE
DE
DE | pnp,AJ,ge
pnp,DD,si
npn,DD,si
npn,DD,si
npn,DD,si | 170
178
178
178
178 | 2
.7
.7
.7 | 110
150
150
150
150 | 45
400
400
500
500 | 60
10
•@10A
•@5A | *50-100
10-40
*10
*10-40
10 | 4 | 3.6
50
50
50
50 | 36
36
36
36
36 | | | P 98 | 2N574
2N574A
2N575
2N575A
2N1157 | SOL
SOL
SOL
SOL | pnp,ge
pnp,ge
pnp,ge
pnp,ge
pnp,ge | 187
187
187
187
187 | 2.5
2.5
2.5
2.5
2.5
2.5 | 100
100
100
100
100 | *60
*80
*60
*80
*60 | 10
10
25
25
40 | *9-22
*9-22
*19-42
*19-42
*38-84 | 7
20.
7
20.
7 | 100
100
150
150
200 | - | | | | | | | | MAX. RATINGS | | | | | | ICS | | | |-----------------------|--|---------------------------------|---|--|---|--|---------------------------------|--|--|-------------------------------|--|---|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | P _c (W) | w/°c | T _j
(°C) | V
CEO
*V
CBO
(V) | l _c (A) | hfe
*hFE | ICO
*ICEO
†ICEX
(mA) | fae
*fT
(kHz) | Package
Outline
(TO-) | Remarks | | | 2N1157A
2N2739
2N2740
2N2741
2N2742 | SOL
WH
WH
WH | pnp,ge
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 187
200
200
200
200
200 | 2.5
2
2
2
2 | 100
175
175
175
175 | *80
50
100
150
200 | 40
20
20
20
20
20 | *38-84
*10
*10
*10
*10 | 20.
15
15
15
15 | 200
14
14
14
14 | -
+
-
- | † MT 1
† MT 1 | | P 99 | 2N2745
2N2746
2N2747
2N2748
2N2751 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 200
200
200
200
200
200 | 2
2
2
2
2
2 | 175
175
175
175
175 | 50
100
150
200
50 | 20
20
20
20
20
20 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 14.5
14.5
14.5
14.5
16 | †
†
†
† | † MT 1
† MT 1
† MT 1
† MT 1
† MT 1 | | D 100 | 2N2752
2N2753
2N2754
2N2757
2N2758 | WH
WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 200
200
200
200
200
200 | 2
2
2
2
2
2 | 175
175
175
175
175
175 | 100
150
200
50
100 | 20
20
20
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 16
16
16
14
14 | †
†
†
† | †MT 1
†MT 1
†MT 1
†MT 33
†MT 33 | | P 100 | 2N2759
2N2760
2N2761
2N2763
2N2764 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 200
200
200
200
200
200 | 2
2
2
2
2
2 | 175
175
175
175
175
175 | 150
200
250
50
100 | 30
30
30
30
30
30 | *10
*10
*10
*10
*10 |
15
15
15
15
15 | 14
14
14
14.5
14.5 | †
†
†
† | † MT 33
† MT 33
† MT 33
† MT 33
† MT 33 | | 0.101 | 2N2765
2N2766
2N2769
2N2770
2N2771 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 200
200
200
200
200
200 | 2
2
2
1
2 | 175
175
175
175
175
175 | 150
200
50
100
150 | 30
30
30
30
30
30 | *10
*10
*10
10
*10 | 15
15
15
15
15 | 14.5
14.5
16
16
16 | †
†
-
† | † MT 33
† MT 33
† MT 33
† MT 33 | | P 101 | 2N2772
2N2815
2N2816
2N2817
2N2818 | WH
STC
STC
STC
STC | npn,AJ,si
npn
npn
npn
npn | 200
200
200
200
200
200 | 2
1
1
1
1 | 175
200
1.0
200
200 | 200
80
100
150
200 | 30
20
20
20
20
20 | *10
*10-50
*10-50
*20-60
*10-50 | 15
-
-
-
- | 16
-
-
- | † | † MT 33
*7/" Hex, TI
*7/4" Hex, TI
*7/" Hex, TI
*7/" Hex, TI | | 0.102 | 2N2819
2N2820
2N2821
2N2822
2N2823 | STC
STC
STC
STC
STC | npn
npn
npn
npn | 200
200
200
200
200
200 | 1
1
1
1 | 200
200
200
200
200
200 | 80
100
150
200
80 | 25
25
25
25
25
30 | *10-50
*10-50
*10-50
*10-50
*10-40 | - | 1111 | : | **/" Hex, TI
**7" Hex, TI
**7" Hex, TI
**7" Hex, TI
**7" Hex, TI
**7" Hex, TI | | P 102 | 2N 2824
2N 2825
153-04
153-06
153-08 | STC
STC
WH
WH
WH | npn
npn
npn, AJ, si
npn, AJ, si
npn, AJ, si | 200
200
200
200
200
200 | 1
1
1.33
1.33
1.33 | 200
200
175
175
175 | 100
150
65
85
105 | 30
30
7.5
7.5
7.5 | *10-40
*10-40
*15
*15
*15 | -
10
10
10 | -
33
33
33
33 | : | * ⁷ / ₆ " Hex, TI
* ⁷ / ₈ " Hex, TI | | D.100 | 153-10
153-12
153-14
153-16
153-18 | WH
WH
WH
WH | npn, AJ, si
npn, AJ, si
npn, AJ, si
npn, AJ, si
npn, AJ, si | 200
200
200
200
200
200 | 1. 33
1. 33
1. 33
1. 33
1. 33 | 175
175
175
175
175
175 | 125
145
165
185
205 | 7.5
7.5
7.5
7.5
7.5
7.5 | *15
*15
*15
*15
*15 | 10
10
10
10
10 | 33
33
33
33
33
33 | 1111 | | | P 103 | 153-20
154-04
154-06
154-08
154-10 | WH
WH
WH
WH
WH | npn, AJ, si
npn, AJ, si
npn, AJ, si
npn, AJ, si
npn, AJ, si | 200
200
200
200
200
200 | 1.33
1.33
1.33
1.33
1.33 | 175
175
175
175
175
175 | 225
*65
85
105
125 | 7.5
7.5
7.5
7.5
7.5 | *15
*25
*25
*25
*25
*25 | 10
10
10
10
10 | 33
33
33
33
33 | | | | D 10: | 154-12
154-14
154-16
154-18
154-20 | WH
WH
WH
WH | npn, AJ, si
npn, AJ, si
npn, AJ, si
npn, AJ, si
npn, AJ, si | 200
200
200
200
200
200 | 1.33
1.33
1.33
1.33
1.33 | 175
175
175
175
175
175 | 145
165
185
205
225 | 7.5
7.5
7.5
7.5
7.5
7.5 | *25
*25
*25
*25
*25
*25 | 10
10
10
10
10 | 33
33
33
33
33 | | | | P 104 | 163-06
163-08
163-10
163-12
163-14 | WH
WH
WH
WH | pnp, AJ, si
npn, AJ, si
npn, AJ, si
npn, AJ, si
npn, AJ, si | 200
200
200
200
200
200 | 2.0
2
2
2
2
2 | 175
175
175
175
175
175 | 75
95
115
135
155 | 20
20
20
20
20
20 | *15
*15
*15
*15
*15 | 15
15
15
15
15 | 22
22
22
22
22
22
22 | †
†
†
† | † MT33
† MT 33
† MT 33
† MT 33
† MT 33 | | Dags | 163-18
163-20
164-04
164-06
164-08 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 200
200
200
200
200
200 | 2
2
2
2
2
2 | 175
175
175
175
175
175 | 175
215
55
75
95 | 20
20
20
20
20
20 | *15
*15
*25
*25
*25 | 15
15
15
15
15 | 22
22
22
22
22
22 | † | † MT 33
† MT 33
† MT 33
† MT 33
† MT 33 | | P 105 | 164-10
164-12
164-14
164-16
164-18 | WH
WH
WH
WH
WH | npn,AJ,si
npn, AJ,si
npn, AJ,si
npn, AJ,si
npn, AJ,si | 200
200
200
200
200
200 | 2
2.0
2.0
2.0
2.0
2.0 | 175
175
175
175
175 | 115
135
155
175
195 | 20
20
20
20
20
20 | *25
*25
*25
*25
*25
*25 | 15
15
15
15
15 | 22
22
22
22
22
22
22 | † | † MT 33
† MT 33
† MT 33
† MT 33
† MT 33 | ## INSPIRATIONAL THOUGHTS FOR THE TECHNICALLY INCLINED #### **ITTSY BITS** Why the baby talk? We're bubbling with happiness over our latest baby. It's the fifth generation of a nativeborn family, and although the smallest, it is undoubtedly the best today by virtue of its breeding. This latest offspring is the new Size 11 Shaft Encoder we have named ADAC. Now ADAC, like its ancestors, is characterized by engraved drums which are interconnected by high-speed, antibacklash, continuous gearing and by special brushes which interrogate and read out the drum position on the run or at rest. At this point we can almost hear you say, "So what's new about that?" It's an all-around better baby! First of all, the ADAC is a high-speed device designed to run at 200 rpm input shaft speed. It can be interrogated on a bit-by-bit basis in 1 millisecond while on the run. Even more important, it packs a lot of bits into a tiny package - for example, in a can only 1 062" in diameter and 2.355" long, you can buy a count of 16.384 bits (214). We have also included all the advantages of V scan (U scan optional) for unambiguous binary outputs and have incorporated all necessary diode logic as well. ADAC units are available as binary encoders covering the range of 2° through 2'4. We also have BCD encoders in decimal counts to 99999 and angular counts to 359.9°. A 2'° gray code device is also available. To give you a better idea of the new encoder's breeding, we think these statistics will prove helpful. #### TYPE SIZE 11 UNITS | CHARACTERISTIC | BINARY | BCD | |-----------------------|-------------------------|---| | Voltage/Current | 28vdc/20ma | 28vdc/20ma | | Interrogation | Pulsed or continuous | Serial | | Readout | On run ar | nd static | | Output | Parallel | Parallel digit, seria
between digits | | Time Sharing | | s are standard to permit
ne sharing | | Counts per revolution | 126 or 256 | 100 | | Starting Torque | 0.20 in. oz. | 0.20 in. oz. | | Accuracy | ± 1 bit for any a | given input shaft angle | | Life | utions at 300 rpm (min) | | #### SUMMARY OF OTHER FEATURES - Solid gold alloy drums and brushes In-line brush geometry - Continuous precision gearing - Flush conducting and nonconducting drum surface ■ Steel shafts and precision bearings - Standard Size 11 mounting - Isolation diodes for positive and negative logic included. The proud parents are anxious to send you a brand new brochure celebrating the event, so let us know who you are and where we can find you. #### **INERTIA** Sometimes it takes a sharp push to get things going. We say we're working against inertia. At other times we pull and haul to get things "off the dime" overcoming a kind of viscous unwillingness. But inertia and viscosity can be real advantages instead of irritants. There are times, for example, when a tach generator (we make them, too) can be replaced by a viscous or inertial damped servo motor. There's been a lot written on the subject, and we're not going to discuss the obvious advantages of these devices except for the following summary and an invitation to write for more details. #### TYPICAL DAMPED SERVOMOTOR CHARACTERISTICS | | I AME -AISCORS | | |-------------------------|-----------------------------|------------------------| | SIZE | 8 | 8 | | Part Number | CMO 0180 450 | CMO 1302 450 | | Stall Torque | 0.26 in. oz. | 0.31 | | No-Load Speed | 5190 rpm | 6200 | | Rotor Moment of Iner | tia 0.69 gm cm ² | 0.48 | | Theoretical Accel at St | tall 28,600 rad/sec2 | 48,500 | | Time Constant | 0.0531 sec | 0.0119 | | Fly Wheel Damping | - | 196 dyne-cm-sec | | Fly Wheel Inertia | | 4.6 gm cm ² | | Weight | 2.0 oz. | 2.6 | | | | | | 1 | TYPE-INERTIA | L | | |----------------------------|--------------|-----------|----------| | SIZE | 11 | 15 | 18 | | Part Number | CRO 1300 660 | T1310-41B | R1320-2B | | Stall Torque | 0.60 | 1.45 | 2.25 | | No-Load Speed | 6000 | 4500 | 4500 | | Rotor Moment of Inertia | 1.45 | 5.48 | 6.25 | | Theoretical Accel at Stall | 30,700 | 18,700 | 26,000 | | Time Constant | 0.022 | 0.0255 | 0.0185 | | Fly Wheel Damping | 100 | 750 | 750 | | Fly Wheel Inertia | 10 | 100 | 100 | | Weight | 6.0 | 12.0 | 18 | #### KEARFOTT DIVISION AEROSPACE GROUP Little Falls, New Jersey ON READER-SERVICE CARD CIRCLE 22 | | | | | | MAX | RATIN | GS | | С | CHARACTERISTICS | | | | |-----------------------|--|------------------------------|---|--|--|--|--|-------------------------------|--|-------------------------------|------------------------------------|---|--| |
Cross
Index
Key | Type
No. | Mfr. | Туре | P _c
(W) | w/°c | T _j
(°C) | V
CEO
*V
CBO
(V) | I _c (A) | h _{fe} *hFE | ICO
*ICEO
†ICEX
(mA) | fae
*fT
(kHz) | Package
Outline
(TO-) | Remarks | | P 106 | 164-20
2N2902
2N 1809
2N 1810
2N 1811 | WH
TI
WH
WH
WH | npn, AJ, si
npn,si
npn, AJ, si
npn, AJ, si
npn, AJ, si | 200
240
250
250
250 | 2. 0
1.37
2. 22
2. 22
2. 22 | 175
200
175
175
175 | 215
120
50
100
150 | 20
0.5
30
30
30 | *25
30
*10
*10
*10 | 15
0.005
15
15
15 | 22
-
14
14
14 | †
-
†
† | † MT 33
† MT 14
† MT 14
† MT 14 | | F 100 | 2N 1812
2N 1813
2N 1814
2N 1816
2N 1817 | WH
WH
WH
WH | npn, AJ, si
npn, AJ, si
npn, AJ, si
npn, AJ, si
npn, AJ, si | 250
250
250
250
250
250 | 2.22
2.22
2.22
2.22
2.22 | 175
175
175
175
175 | 200
250
300
50
100 | 30
30
30
30
30 | *10
*10
*10
*10
*10
*10 | 15
15
15
15
15 | 14
14
14
14. 5
14. 5 | †
†
†
† | † MT 14
† MT 14
† MT 14
† MT 14
† MT 14 | | P 107 | 2N 18 18
2N 18 19
2N 18 23
2N 18 24
2N 18 25 | WH
WH
WH
WH
WH | npn, AJ, si
npn, AJ, si
npn, AJ, si
npn, AJsi
npn, AJ, si | 250
250
250
250
250
250 | 2.22
2.22
2.22
2.22
2.22 | 175
175
175
175
175 | 150
200
50
100
150 | 30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 14. 5
14. 5
16
16
16 | †
†
†
† | † MT 14
† MT 14
† MT 14
† MT 14
† MT 14 | | F 107 | 2N 1826
2N 1830
2N 1831
2N 1832
2N 1833 | WH
WH
WH
WH | npn, AJ, si
npn, AJ, si
npn, AJ, si
npn, AJ, si
npn, AJ, si | 250
250
250
250
250
250 | 2. 22
2. 22
2. 22
2. 22
2. 22 | 175
175
175
175
175 | 200
50
100
150
200 | 30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 16
14
14
14
14 | †
†
†
† | † MT 14
† MT 14
† MT 14
† MT 14
† MT 14 | | P 108 | 2N2109
2N2110
2N2111
2N2111
2N2112
2N2113 | WH
WH
WH
WH | npn, AJ, si
npn, AJ, si
npn, AJ, si
npn, AJ, si
npn, AJ, si | 250
250
250
250
250
250 | 2. 22
2. 22
2. 22
2. 22
2. 22
2. 22 | 175
175
175
175
175 | 50
100
150
200
250 | 30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 14
14
14
14
14 | †
†
†
† | † MT 17
† MT 17
† MT 17
† MT 17
† MT 17 | | P 108 | 2N2114
2N2116
2N2117
2N2118
2N2119 | WH
WH
WH
WH
WH | npn, AJ, si
npn, AJ, si
npn, AJ, si
npn, AJ, si
npn, AJ, si | 250
250
250
250
250
250 | 2. 22
2. 22
2. 22
2. 22
2. 22 | 175
175
175
175
175
175 | 300
50
100
150
200 | 30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 14
14.5
14.5
14.5
14.5 | †
†
†
† | † MT 17
† MT 17
† MT 17
† MT 17
† MT 17 | | P 109 | 2N2123
2N2124
2N2125
2N2126
2N2130 | WH
WH
WH
WH | npn, AJ, si
npn, AJ, si
npn, AJ, si
npn, AJ, si
npn, AJ, si | 250
250
250
250
250
250 | 2. 22
2. 22
2. 22
2. 22
2. 22
2. 22 | 175
175
175
175
175 | 50
100
100
150
50 | 30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 16
16
16
16
14 | †
†
†
† | † MT 17
† MT 17
† MT 17
† MT 17
† MT 17
† MT 17 | | P 109 | 2N2131
2N2132
2N2133
2N3149
2N3150 | WH
WH
WH
STC
STC | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn
npn | 250
250
250
300
300 | 2.22
2.22
2.22
2
2 | 175
175
175
200
200 | 100
150
200
80
100 | 30
30
30
70
70 | *10
*10
*10
*10
*10 | 15
15
15
-
- | 14
14
14
-
- | † † * * * * * * * * * * * * * * * * * * | † MT 17
† MT 17
† MT 17
† MT 17
*1 ¹ / ₆ " Hex
*1 ¹ / ₆ " Hex | | P 110 | P2N3151
DTG-1010
DTG1200
DTG-2000
DTG-2100 | STC
DE
DE
DE
DE | pnp, ge
pnp, ge
pnp, ge
pnp, ge | 300
-
-
-
- | 2
0.8
1.25
1.25
1.25 | 200
110
110
110
110 | 150
*325
*120
60
*80 | 70
15
15
25
25 | *10
*12
0.2
*25
*25 | -
-
-
10
10 | 250
250
250
250
250 | *
3
-
3
3 | *1¹/ ₈₆ " Hex | | | DTG-2200
DTG-2300
DTG-2400
DTS-413
2N4079 | DE
DE
DE
DE
AMP | pnp,ge
pnp,ge
pnp,ge
npn,si
2N4077 & 2N | -
-
-
4078 combine | 1.25
1.25
1.25
0.8
ed to form ma | 110
110
110
150
tched comp | 100
*120
*140
400
olementary | 25
25
25
2.0
pair | *25
*25
*25
20-80 | 10
10
10
- | 250
250
250
5000 | 3
3
3
3 | | | P 111 | 2N4107
2N4136 | AMP
AMP | 2N4105 & 2N
2N2430 & 2N2 | | | | | | | | | | | This 5 MHz counter/timer from Monsanto is only $3\frac{1}{2}$ inches high, and weighs just 16 pounds. Yet it gives you a time base range from 1μ second to 100 seconds in decade steps, and resolution for frequency measurement of 0.01 Hz. **HOW COME?** Integrated circuits. In 90% of the active circuits. That's how Monsanto builds big performance into a small package. Plus speed, accuracy, reliability, low power consumption, low heat generation and easy maintenance. Six of the 13 printed circuit boards are interchangeable. **HOW MUCH?** Just \$1575. And that low selling price goes with these "high-priced" specs: • Measures average frequency: 0-5 MHz • Measures average periods: $0.2~\mu$ sec. to 1 sec. • Measures single periods: $1~\mu$ sec. to 10^6 sec. • Measures frequency ratios: 10^{-6} to 10^6 • Measures time intervals: $1~\mu$ secto 10^6 sec. • Counts: random or uniformly spaced signals. Want to know more? Just clip the coupon. | MONSANTO, ELECTRONICS DEPT. 800 NORTH LINDBERG | H BLVD. • ST. LOUIS, MO | |---|-------------------------| | Details, please, on the Model 1010 5 MHz Counter/Timer
Model 1000 20 MHz Counter/Timer | | | Name/Title | | | Firm | | | Address | | | City/State/Zip | | # **Low-Level Switching** Generally types rated under one watt. In order of fre or fr. | | | | | | | М. | AX. RAT | X. RATINGS CHARACTERISTICS | | | | | | | R. C. | |-----------------------|---|---------------------------------|---|--|--|--|-------------------------------------|--------------------------------|---------------------------------|--|---|-------------------------------------|--|-----------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*fT
(MH2) | P _c (mW) | T _j | m₩/°C | V
CEO
*V
CBO
(V) | C
(mA) | hfe
*hFE | lC0
*ICE0
(μΑ) | Coe
*Cob
(pF) | V _{ce(sat)}
(V) | Package
Outline
(TO-) | Remarks | | LL 1 | 2N327A
2N328A
2N328B
2N329
2N329A | RA
RA
TI
RA
RA | pnp, si
pnp, si
pnp, PL, si
pnp, si
pnp, si | 0.05
0.05
0.05
0.05
0.05
0.05 | 380
380
500
340
380 | 160
160
200
160
160 | 2.9
2.9
2.9
2.5
2.9 | 40
35
35
30
30 | 50
50
50
5
5 | *15
*30
*30
60
*60 | 0. 1
0.1
.001
0.1
0.1 | *110
*110
110
*110
*110 | 0.3
0.5
0.5
1.0
0.6 | 5
5
5
5 | SSD, CT, STC, ETC, SPR
SSD, CT, STC, ETC, TI, SPR
SPR
SSD, CT, STC, ETC, SPR, TI | | | 2N329B
2N1034
2N1035
2N1036
2N1037 | TI
RA
RA
RA | pnp, PL, si
pnp, si
pnp, si
pnp, si
pnp, si
pnp, si | 0.05
0.05
0.05
0.05
0.05 | 500
250
250
250
250
250 | 200
160
160
160
160 | 2.9
1.85
1.85
1.85
1.85 | 30
40
35
30
35 | 50
50
50
50
50 | *60
15
30
60
25 | .001
1
1
1
1 | 110
*110
*110
*110
*110 | 0.6
0.5
0.4
0.3
0.5 | 5
5
5
5
5 | SPR KSC, CT, ETC, SPR | | LL 2 | 2N1275
2N1640
2N1641
2N519
2N519A | RA
CT
CT
GI
GI | pnp,si
pnp,SYM
pnp,SYM
pnp,AJ,ge
pnp,AJ,ge | 0.05
*0.4
*.8
1 | 250
250
250
100
150 | 160
160
160
85
100 | 1.85
1.9
1.9
1.67
2.0 | 80
20
10
*15
*20 | 50
50
50
- | *15
*6
*10
15 | 1
.01
.01
2
2 | *110
*50
*50
*14
*14 | 0.3 | 5
5
5
5
5 | CT, SPR TI | | | 2N943
2N946
2N944
2N945
2N1091 | SSD
SSD
SSD
SSD
RCA | AJ
AJ
AJ
npn,AJ,ge | 1
1
1
1 | 250
250
250
250
250
120 | 175
175
175
175
175
85 | 1,67
1.67
1.67
1.67 | 18
80
18
50
*25 | 50
50
50
50
400 | -
-
-
-
•40 | .002
.004
.003
.004
8 | *14
*14
*14
*14
*25 | .003
.005
.004
.005 | 18
18
18
18
5 | CT, Chopper Pairs, SPR
CT, Chopper Pairs, SPR
CT, Chopper Pairs, SPR
CT, Chopper Pairs, SPR
GI | | LL 3 | 2N1614
2N3342
2N3344
2N3345
2N3346 |
GE
SSD
SSD
SSD
SSD | pnp, AJ, ge
pnp, AJ
pnp, AJ
pnp, AJ
pnp, AJ | 1 1 1 1 | 240
250
250
250
250
250 | 85
175
175
175
175 | 4
1.7
1.7
1.7
1.7 | 12
8
30
50
50 | 300
50
50
50
50 | *32
*30
*25
*15
*25 | 25
0. 02
0. 002
0. 005
0. 005 | -
*10
*12
*12
*12 | 90
0. 1
0. 0012
0. 003
0. 0015 | -
5
5
5
5 | SPR
SPR
SPR
SPR | | | 2 N3842
2N3977
2N3978
2N3979
2N1642 | SPR
SPR
SPR
SPR
CT | pnp,PE,si
pnp,PE,si
pnp,PE,si
pnp,PE,si
pnp,SYM | *1
1
1
•1.2 | 300
400
400
400
250 | 200
200
200
200
200
160 | 1.7
2.3
2.3
2.3
1.9 | 120
10
20
35
6 | 100
100
100
100
50 | 1
*40
*30
*20
15 | .020
0.001
0.001
0.001
.1 | *9
*14
*14
*14
*50 | 0.10
0.10
0.15 | 18
46
46
46
5 | Chopper
Chopper
Chopper
Chopper | | LL 4 | 2N594
2N3841
2N356
2N356A
2N426 | TI
SPR
GI
GI
TI | npn,AJ,ge
pnp, PE,si
npn,AJ,ge
npn,AJ,ge
pnp,AJ,ge | *1.5
*1.5
3
3 | 150
300
100
150
150 | 85
200
85
100
100 | 2.5
1.7
2.0
2.0
2.5 | 20
100
*20
*30
*30 | 300
100
-
-
400 | 50
1.5
*20-50
*20-50
*30-60 | 5
.002
5
5
25 | 17
*9
*14
*14
*20 | -
.20
.20
.32 | 5
18
5
5
5 | Chopper
TI
Ti | | | 2N520
2N528A
2N585
2N595
2N1012 | GI
GI
RCA
TI
GI | pnp,AJ,ge
pnp,AJ,ge
npn,AJ,ge
npn,AJ,ge
npn,AJ,ge | 3
3
*3
*3 | 100
150
120
150
150 | 85
100
71
85
100 | 1.67
2.0
-
2.5
2.0 | *15
*20
*25
15
*35 | -
200
300 | 20
40
•20
75
•40 | 2
2
3
5
5 | *14
*14
-
17
*20 | -
0.1
-
.20 | 5
5
9
5
5 | TI
GI | | LL 5 | 2N1051
2N1694
2N2946
T-404
2N404 | GE
CT
NUC | npn,DD,si
npn,ge
pnp,si
pnp,ge
pnp,AJ,ge | 3
3
*3
3.5
4 | 500
75
400
120
150 | 150
85
200
80
85 | 4
-
2.3
- | 40
20
*40
*25
24 | 100
25
100
100
100 | 30-100
*50
*30
-
*24 | .1
1.5
.0005
5
2 | *7
6
*10
*20 | 3.0 · | 5
5
46
1
5 | NA
AMP, GI, TI, RCA, NUC | | | 2N404A
2N1605
2N1605A
2N1808
2N1169 | RCA
RCA
RCA
TI
RCA | pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge
npn, AJ, ge
npn, AJ, ge | 4
4
4
4
4.5 | 150
150
200
150
120 | 85
100
100
100
71 | 2.5 | 35
*25
*40
25
18 | 100
100
100
300 | 24
*40
*40
*125
*20 | 2
5
10
5
10 | *20
*20
*20
*20 | .1
0.15
0.15
.15 | 5
5
5
5
5 | NUC
TI | | LL 6 | 2N1170
2N315
2N315A
2N315B
2N388 | RCA
GI
GI
GI
TI | npn,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 4.5
5
5
5
5 | 120
100
150
150
150 | 71
85
100
100
100 | -
2
2
2
2
2 | 20
*20
*25
*30
25 | 200
200
200
200
500 | *20
*15-30
*20-50
*20-50
*60-180 | 8
2
2
2
10 | 19
*14
*14
*14
*20 | | 5
5
5
5 | AMP
TI, IND
TI, IND | | | 2N388A
2N427
2N596
2N858
2N1090 | TI
TI
TI
*SPR
RCA | pnp,AJ,ge
pnp,AJ,ge
npn,AJ,ge
pnp,SP,si
npn,AJ,ge | 5
5
*5
*5 | 150
150
150
150
150 | 100
100
85
140
85 | 2
2.5
2.5
1.3 | 40
*30
10
40
*25 | 500
400
300
50
400 | *60-180
*40-80
100
33
*30 | 10
25
5
0.1
8 | *20
*20
17
*5
*25 | -
.32
-
0.07 | 5
5
5
18
5 | *PH orig Reg, CT
GI | | LL7 | 2N2945
2N3677
2N357
2N357A
2N859 | CT
CT
GI
GI
*SPR | pnp,si
pnp,si
npn,AJ,ge
npn,AJ,ge
pnp,SP,si | *5
5
6
6
*6 | 400
400
100
150
150 | 200
200
85
100
140 | 2.3
-
2
2
1.3 | 25
20
*20
*30
40 | 100
100
-
-
50 | *40
-
*20-50
*25-75
65 | .0002
.001
5
5
0.1 | *10
6
*14
*14
*5 | .001
.20
.20
0.06 | 46
46
5
5
18 | TI
TI
•PH orig Reg, CT | # Low-Level (continued) | | | | | | | MAX. RATINGS CHARACTERISTICS | | | | | | | | | | |-----------------------|---|---|---|-----------------------------------|--|--|------------------------------------|----------------------------------|-----------------------------------|--|---|---|------------------------------------|-----------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | fαe
*!T
(MHz) | P _c (mW) | T ; | m₩/°C | *V
CBO
(V) | 1 _C (mA) | h _{fe} *hFE | l _{CO}
*lCEO
(μA) | C _{ae}
*C _{ob}
(pF) | V _{ce(sat)} | Package
Outline
(TO-) | Remarks | | LL 8 | 2N 1319
2N 2274
2N 2275
2N 2276
2N 2277 | RCA
*SPR
*SPR
*SPR
*SPR | pnp,AJ,ge
pnp,SP,si
pnp,SP,si
pn p,SP,si
pnp,SP,si | 6
*6
*6
*6 | 120
150
150
150
150 | 71
140
140
140
140 | 1.3
1.3
1.3
1.3 | *20
25
25
*15
*15 | 400
50
50
50
50
50 | *30
*15
*15
*15
*15 | 2.5
0.003
0.003
0.003
0.003 | *20
*6.0
*6.0
*6.0
*6.0 | 0.2 | 5
18
18
18
18 | TI
Chopper, *PH orig Reg, CT
M. Pair 2N2274*PH orig Reg, CT
Chopper, *PH Orig Reg, CT
M. Pair 2N2276*PH orig Reg, CT | | LL 6 | 2N3840
3N123
UD-1001
UD-1002
UD-1003 | SPR
SPR
SPR
SPR
SPR | pnp,PE,si
pnp,PE,si
npn,PE,si
npn,PE,si
pnp,PE,si | *6
6
6
6 | 400
100
200
200
200
200 | 200
200
200
200
200
200 | 2.3
0.58
1.1
1.1
1.1 | 50
*30
30
30
50 | 100
20
20
20
20
20 | 1.5 | .0005
0.01
0.010
0.010
0.010 | *9
*10
*8
*8
*8 | | 46
72
90
-
- | Chopper
Dual
Twin Dual
Twin Dual, 8 lead flat pack
Twin Dual, 8 lead flat pack | | LL 9 | UD-2000
2N3317
2N860
2N2185
2N2186 | SPR
SPR
*SPR | pnp,PE,si
pnp,SP,si
pnp,SP,si
pnp,SP,si
pn p,SP,si | 6
*6.4
*6.5
*6.5
*6.5 | 400
150
150
150
150 | 200
140
140
140
140
140 | 1.3
1.3
1.3
1.3 | 50
30
25
30
30 | 100
50
50
50
50 | *50
-
33
-
- | 0.001
.001
0.1
0.001
0.001 | *6
*9
*5
*6.0
*6.0 | 0.1
-
0.07
- | -
18
18
18
18 | Twin Dual, 6 lead flat pack
Chopper
*PH orig Reg, CT
Chopper; CT, SPR
M. Pair 2N2185; *PH orig Reg,
CT | | LL 9 | 2N2187
2N1000
2N1119
2N861 | GI
*SPR
*SPR | pnp,SP,si
npn,AJ,ge
pnp,SAT,si
pnp,SR,si | *6.5
7
*7.2
*7.5 | 150
150
150
150 | 140
100
140
140 | 1.3
2.0
1.3
1.3 | 30
*40
10
25 | 50
-
50
50 | *40
*25
65 | 0.001
15
0.001
0.1 | *6.0
*20
*6.0
*5 | .25
0.08
0.06 | 18
5
5
18 | M. Pair 2N2185; CT, SPR *PH orig Reg, CT *PH orig Reg, CT | | | 2N2278
2N2279 | *SPR
†SPR | pnp,SP,si
pnp,SP,si | *7.6
*7.6 | 150
150 | 140
140 | 1.3
1.3 | 15
15 | 50
50 | - | 0.001
0.001 | *6.0
*6.0 | - | 18
18 | Chopper *PH orig Reg, CT
M Pair 2N2278 † PH Orig Reg, | | | 2N3318
2N414 | SPR
RCA | pnp,SP, si
pnp, AJ, ge | *7.6
8 | 150
150 | 140
85 | 1.3 | 15
*30 | 50
200 | -
80 | .001
2 | *9
*11 | = | 18
5 | CT
Chopper
LAN | | LL 10 | 2N521
2N521 A
2N579
2N581
2N583 | GI
GI
RCA | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 8
8
8
8 | 100
150
120
150
150
120 | 85
100
71
85
85 | 1.67
2.0
-
- | *15
*20
*20
*18
*18 | -
400
100
100 | 35
70
*30
30
*30 | 2
2
5
3
3 | *14
*14
-
-
- | -
0.2
0.2
0.2 | 5
5
9
5 | TI,
TI, IND
GI, IND
GI, TI, LAN, IND
GI, LAN | | | 2N862
2N2970
2N2971
2N358
2N358A | *SPR
SPR
SPR
GI
GI | pnp,SP,si
pnp,SP,si
pnp,SP,si
npn,AJ,ge
npn,AJ,ge | *8
*8
*8
9 | 150
150
150
100
150 | 140
140
140
85
100 | 1.3
1.3
1.3
2.0
2.0 | 15
*30
*30
*20
*30 | 50
50
50
-
- | 33
*10
*10
*20-50
*25-75 | 0.1
0.01
0.01
5
5 | *5
*6.0
*6
*14
*14 | 0.07
0.08
0.08
.20
.20 | 18
5
18
5 | *PH orig Reg, CT
Symmetrical
Symmetrical
TI
TI | | LL 11 | 2N428
2N863
2N942
2N2165
2N2166 | *SPR
SSD
SPR
SPR | npn,AJ,ge
pnp,SP,si
AJ
pnp,SP,si
pnp,SP,si | 10
*10
10
*10
*10 | 150
150
250
150
150 | 100
140
175
140
140 | 2.5
1.3
1.67
1.3
1.3 | *30
15
8
30
15 | 400
50
50
50
50 | *60
65
*25
- | 25
0,1
.0025
0.020
0.020 | *20
*5
*14
*6
*6 | .32
0.06
.004 | 5
18
18
5
5 | *PH orig Reg
CT, Chopper Pairs, SPR
Chopper, CT
Chopper, CT | | | 2N2944
2N2968
2N2969
2N2677
40346 | CT
SPR
SPR
GE
RCA | pnp,si
pnp,SP,si
pnp,SP,si
npn,DG,si
npn,si | *10
*10
*10
*10
*10 |
400
150
150
250
5W | 200
140
140
175
200 | 2.3
1.3
1.3
1.66
28.5 | *15
*30
*30
*45 | 100
50
50
25
0.5A | *80
*15
*15
*20-55
*20 (min) | .0001
0.01
0.01
.1
*5 | *10
*6
*6
*3 | 0.06
0.06
1.5
0.5 | 46
5
18
46
5 | Symmetrical Symmetrical VCER = 175 | | LL 12 | TW-135
2N316
2N316A
2N3019
2N3020 | SPR
GI
GI
FA
FA | pnp, PE, si
pnp, AJ, ge
pnp, AJ, ge
npn, DPE, si
npn, DPE, si | 10
12
12
12
12 | 400
100
150
800
800 | 200
85
100
200
200 | 2.4
2.0
2.0
28.6
28.6 | 30
*20
*25
*140
*140 | 100
200
200
100
100 | *50
*20-50
*20-50
5
4 | 0.001
2
2
-
- | *9
*14
*14
12
12 | 0.15
.18
.18
0.2
0.2 | 18
5
5
5
5 | Complementary to 2N2432
IND
IND | | | 2N3319
2N2162
2N2163
2N337 A
2N522 | SPR
SPR
SPR
GE
GI | pnp,SP,si
pnp,SP,si
pnp,SP,si
npn,DG,si
pnp,AJ,ge | *12
*14
*14
*15
15 | 150
150
150
500
100 | 140
140
140
175
85 | 1.3
1.3
1.3
3.33
1.67 | *10
30
15
*45
*15 | 50
50
50
20 | -
35
35
*20-55
60 | 50
0.001
0.001
.5
2 | *10
*6
*6
*3
*14 | -
-
1.5
- | 18
5
5
5
5 | Chopper
Chopper, CT
Chopper, CT
TR
TI | | LL 13 | 2N522A
2N580
2N1276
2N1277
2N1278 | GI
GE
GE
GE | pnp, AJ, ge
pnp, AJ, ge
npn, DG, si
npn, DG, si
npn, DG, si | 15
15
*15
*15
*15 | 150
120
150
150
150 | 100
71
150
150
150 | 2.0
-
1.2
1.2
1.2 | *20
*20
*40
*40
*40 | -
400
25
25
25
25 | 100
*45
9-22
18-44
37-90 | 2
5
1
1
1 | *14
-
*5
*5
*5.0 | 0.2
1
1 | 5
9
5
5
5 | TI, IND
GI, IND
TR
TR
TR | | | 2N1279
2N1309A
2N2349
2N3677
2N864 | GE
GI
GE
CT
*SPR | npn,DG,si
pnp,AJ,ge
npn,DG,si
EP,si
pnp,SP,si | *15
15
*15
*15
*16 | 150
150
150
400
150 | 150
85
150
200
140 | 1.2
2.5
1.25
2.3
1.3 | *40
*35
*40
*30
6 | 25
300
25
100
50 | 76-333
*80
*120-250
-
65 | 1
6
1
0.001
0.1 | *5
20
*4
*10
*5 | 1 .
0.2
1.5
-
0.06 | 5
5
5
18
18 | TR
TI
Low Rec (SAT) Chopper
*PH orig Reg, CT | | LL 14 | 2N941
2N1676
2N1677
2N2167
2N2280 | SSD
*SPR
*SPR
SPR
SPR
*SPR | AJ
pnp,SAT,si
pnp,SAT,si
pnp,SP,si
pnp,SP,si | 16
*16
*16
*16
*16 | 250
100
100
150
150 | 175
140
140
140
140
140 | 1.67
0.87
0.87
1.3
1.3 | 8
4.5
4.5
*12
*10 | 50
50
50
50
50
50 | *25
-
50
-
- | .0025
0.001
0.001
0.002
0.003 | *14
*7
*7
*6
*7 | .002
0.04
0.055
-
0.05 | 18
5
5
5
18 | CT, Chopper Pairs, SPR
Chopper, *PH orig Reg
Chopper, *PH orig Reg
Chopper, CT
Chopper, *PH orig Reg, CT | (see pages 4-9 for explanation of company abbreviations.) May 17, 1966 79 # Low-Level (continued) | | | | | WATE TO | | M | AX. RAT | _ | | CHARACTERISTICS | | | | | | |-----------------------|---|--------------------------------|---|--------------------------------------|--|--|-----------------------------------|---------------------------------|----------------------------------|--|----------------------------------|-------------------------------------|---|-----------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae *fT (MHz) | P c (m₩) | T _j | mW/°C | *VCEO *VCBO (V) | C
(mA) | hfe
*h | l _{CO}
*lCEO
(μA) | Coe
*Cob
(pF) | V _{ce(sat)}
(V) | Package
Outline
(TO-) | Remarks | | LL 15 | 2N2281
2N582
2N317
2N317A
2N1384 | RCA
GI
GI
RCA | pnp, SP, si
pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge
pnp, DR, ge | *16
18
20
20
*20 | 150
150
100
150
240 | 140
85
85
100
85 | 1.3
-
2.0
2.0
- | *10
*25
*20
*25
*30 | 50
100
400
400
500 | -
60
•20-60
•20-60
•20 | 0.003
2
2
2
2
4 | *7
-
*14
*14
- | -
0.2
.20
.20 | 18
5
5
5
11 | Matched 2N2280's, SPR, CT
GI, TI, RCA, IND
TI, IND
TI, IND | | EL 13 | 2N2350
2N2351
2N2352
2N2353
2N2678 | GE
GE
GE
GE | npn, PL, si
npn, PL, si
npn, PL, si
npn, PL, si
npn, DG, si | 20
20
20
20
20
*20 | 400
400
400
350
250 | 200
200
200
200
200
175 | 2.3
2.3
2.3
-
1.66 | 40
50
40
25
*45 | 1
1
1
25 | *300
*120
*60
*20
45-150 | 1 1 | 20
20
20
20
20
*3 | 0, 35
0, 35
0, 35
0, 35
1,5 | 46
46
46
46
46 | | | 11.10 | UD-1000
2N523
2N523A
2N865
2N2164 | SPR
GI
GI
*SPR
SPR | npn,PE,si
pnp,AJ,ge
pnp,AJ,ge
pnp,SP,si
pnp,SP,si | 20
21
21
•24
•24 | 200
100
150
150
150 | 200
85
85
140
140 | 1.1
1.67
2.0
1.3
1.3 | 20
*15
*15
*10
*12 | 20
-
-
50
50 | -
80
125
150
40 | 0.010
2
2
0.1
0.002 | *10
*14
*14
*5
*6 | -
-
0.05
- | 90
5
5
18
5 | Twin Dual
IND
*PH orig Reg, CT
Chopper, CT | | LL 16 | 2N33BA
2N524A
2N842
2N1060
2N525A | GE
MO
TR | npn,DG,si
pnp,AJ,ge
npn,PE,si
npn,DM,si
pnp,AJ,ge | 25
25-42
30
30.0
34-65 | 500
225
300
350
225 | 175
100
175
150
100 | 3.33
6.67
2
2.0
6.67 | 45
*45
45
40
*45 | 25
500
50
50
50 | 45-150
18-41
*20-55
20
30-64 | .5
10
1
0,1
10 | 3
*40
10
*10
*40 | 1.5
0.130
1.2
0.3
0.130 | 5
5
18
18
5 | TR
NA | | | 2N794
2N843
2N1300
2N1854
2N1683 | TR
RCA
RCA
RCA | pnp,MS,ge
npn, PE, si
pnp,MS,ge
pnp, DM, ge
pnp,MS,ge | 40
40
*40
40
*50 | 150
300
150
150
150 | 85
175
85
85
85 | 2 | *13
45
*13
*18
12 | 100
50
100
100
100 | *50
*45-150
30
40-400
*50 | 13
1
3
4.2
3 | -
*10
-
-
- | ī. 2
-
0. 25 | 18
18
5
5
5 | SPR
SPR, TI
TI, SPR | | LL 17 | TN-79
TN-80
2N526A
2N795
2N1301 | SPR
SPR
MO
RCA | npn, PE, si
npn, PE, si
pnp, AJ, ge
pnp, MS, ge
pnp, MS, ge | 50
50
53-90
60
*60 | 800
500
225
150
150 | 200
200
100
85
85 | 4.57
2.86
6.67
- | *30
*30
*45
*13
*13 | 800
800
500
100
100 | *100
*100
44-88
*75
30 | 0.010
0.010
10
13
3 | *10
*10
*40
- | -
C.130
-
- | 5
18
5
18
5 | DC/AC Chopper
DC/AC Chopper
SPR
SPR, TI | | | \$18200
2N398A
2N3107
2N3109
2N3340 | FA
MO
FA
FA
SSD | npn,DPE,si
pnp,AJ,ge
npn,DPE,si
npn,DPE,si
npn,PL | 60
65
70
70
*70 | .4
150
800
800
400 | 200
100
200
200
200
200 | 11.4
2
4.57
4.57
2.28 | 60
105
100
80
20 | 500
200
1000
1000
30 | 300
*65
60
60
*60 | -
12
.01
.01
0.001 | 20
-
20
25
*6 | .25
.11
10
150
0.2 | 50
5
5
5
46 | GI, TI, RCA | | LL 18 | 2N3341
2N527A
2N796
2N1131A
2N1132A | MO HU | pnp, EP
pnp,AJ,ge
pnp,MS,ge
pnp
pnp | *70
72-121
80
*80
*80 | 400
225
150
750
750 | 200
100
85
175
175 | 2.28
6.67
-
- | 20
*45
*13
*60
*60 | 30
500
100
-
- | *60
60-120
*85
*30
*60 | 0. 01
10
13
- | *6
*40
-
- | 0. 25
0.130
-
-
- | 46
5
18
5
5 | SPR
MO | | | 2N1132B
2N1252
2N3108
2N3110
2N1139 | HU
FA
FA
FA
TR | pnp
npn,DD,si
npn,DPE,si
npn,DPE,si
npn,PE,si | *80
*80
96
96
100 | 750
2.0
800
800
500 | 175
175
200
200
175 | 13.3
4.57
4.57
6.6 | *70
*30
100
80
15 | -
1000
1000
1000 | *60
*35
40
40
*20-200 | -
0.1
.01
.01
5 | *30
20
25
12 | -
0.6
10
150
.7 | 5
5
5
5 | MO
SY, AL, NA | | LL 19 | 2N 1254
2N 1255
2N 1256
2N 1257
2N 1258 | HU
HU
HU
HU | pnp
pnp
pnp
pnp
pnp | *100
*100
*100
*100
*100 | 275
275
275
275
275
275 | 175
175
175
175
175
175 | | 30
30
40
40
30 | - | 30
*60
*30
*60
*100 | | 8
8
8
8 | - | 5
5
5
5 | | | | 2N 1259
2N 1444
2N 2102
2N 2569
2N 2570 | HU
RCA
AMP
AMP | pnp
npn, DM, si
npn,si
npn,PE,si
npn,PE,si | *100
100
*100
100
100 | 275
500
5W
300
300 | 175
150
200
175
175 | -
4
28.6
2
2 | 50
*60
65
*20
*20 | 250
1a
100
100 | *50
*25
*40-120
*50
*50 | -
0.5
.002
.01 | 8
*32
*75
*10
*10 | -
1.5
0.5
0.2
0.2 | 5
5
5
18
18 | NA
CDC, GI, TR, TRWS
Chopper – Voltset=145
Chopper – Voffset=350 | | LL 20 | 2N3883
3N71
3N72
3N73
FT34C | MO
2SD
SSD
SSD
FA | pnp,EM,ge
n,PL
n,PL
n,PL
npn,DPE,si |
*100
*100
*100
*100
100 | 750
100
100
100
100
800 | 100
200
200
200
200
200 | 10
.57
.57
.57
.0286 | 15
*15
*15
*15
*15 | 300
10
10
10
10 | *30
*40
*40
*40
*120 | ,010
,010
,010
,010 | *8
*6
*6
*6 | 0.5
50
100
200 | 5
18
18
18
5 | Ices =100
Dual-Emitter Chopper
Dual-Emitter Chopper
Dual-Emitter Chopper | | | FT34D
MCS2135
MCS2136
MCS2137
MCS2138 | FA
MO
MO
MO
MO | npn,DPE,si
npn,AE,si
npn,AE,si
pnp,AE,si
pnp,AE,si | 100
*100
*100
*100
*100 | 800
150
150
150
150 | 200
125
125
125
125
125 | .0286
1.5
1.5
1.5
1.5 | 120
60
60
60
60 | 50
50
50
50
50 | *300
*100-300
*250-750
*100-300
*250-750 | .01
.01
.02 | -
*3
*3
*3 | 1
0.3
0.3
0.2
0.2 | 5 | | | LL 21 | 2N1204
2N1204A
2N1253
2N1494
2N1494A | MO
MO
FA
MO
MO | pnp, EP, ge
pnp, EP, ge
npn, DD, si
pnp, EP, ge
pnp, EP, ge | *110
*110
*110
*110
*110 | 750
750
2.0
750
750
750 | 100
100
175
100
100 | 10
10
13.3
10
10 | 15
15
•30
15
15 | 500
500
-
500
500 | *15
*25
*45
*15
*25 | 7
7
0.1
7 | *6.5
*6.5
*30
*6.5
*6.5 | 0. 4
0. 4
0.6
0. 4
0. 4 | 5
5
5
31
31 | GI, AL, NA | | | | | | | | М | AX. RAT | INGS | | (| HARACTE | RISTICS | | | | |-----------------------|--|---------------------------------|---|--|--|--|-------------------------------------|----------------------------------|--|---|---|---------------------------------------|--------------------------------------|-----------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*f _T
(MHz) | P _c (mW) | T _j (°c) | m₩/°C | V
CEO
(V) | I C (mA) | h _{fe} h _{fE} | ¹ C0
* ¹ CE0
(μA) | Coe
*Cob
(pF) | Y _{ce(sat)}
(V) | Package
Outline
(TO-) | Remarks | | LL 22 | 2N2800
2N2801
40366
2N1754
S18100 | MO
MO
RCA
*SPR
FA | pnp,AE,si
pnp,AE,si
npn,si
MADT,ge
npn,DPE,si | *120
*120
*120
*120
*125
130 | 3W
3W
5W
50 | 200
200
200
85
200 | 1,73
17.3
28.5
-
11.4 | 35
35
65
*13
*60 | 800
800
1 A
100
500 | *30 - 90
*17 - 225
*40-1 20
*75
150 | †0.1
†0.1
2 nA
.6 | *25
*25
*15
*1.5 | .4
.4
0.5
.12
.25 | 5
5
5
9
50 | †Icex
†Icex
High-Reliability type
GI, *PH orig. Reg. | | LL 22 | 2N702
2N703
2N 1495
2N 1496
2N2330 | TI
TI
MO
MO
MO | npn,si
npn,si
pnp, EP, ge
npn, EP, ge
npn, AE, si | *150
*150
*150
*150
*150
*150 | 300
300
750
750
3w | 175
175
100
100
175 | 2
2
10
10
20 | 25
25
25
25
25
20 | 50
50
500
500 | *20
*40
*25
*25
50/— | 0.5
0.5
7
7
0.001 | *3
*6.5
*6.5
*10 | 0.5
0.5
0.3
0.3
0.001 | 18
18
5
31
5 | TRWS, GI, NA
TRWS, FA, SY, GI, NA
SPR | | 11.00 | 2N2331
2N3554
2N1499
2N1708
2N2205 | MO
TI
PH
RCA
RCA | npn,AE,si
npn,EP,si
pnp,ge
npn,PE,si
npn,PE,si | *150
*150
*160
*200
*200 | 1.8W
800
60
300
300 | 175
200
100
175
175 | 12
4.57
-
- | 20
30
•20
•25
•25 | 1200
100
200
200 | 50
*25-100
*70
*20
*20 | 0001
0.5
.6
12
0.025 | *10
*25
*1.5
*6
*6 | 0.001
0.7
.12
0.22
0.22 | 18
5
9
46
18 | SPR
FA,SY, GI
SY, RCA | | LL 23 | 2N2206
2N3485
2N3485A
2N3486
2N3486A | RCA
FA
FA
FA
FA | npn,PE,si
pnp,PE,si
pnp,PE,si
pnp,PE,si
pnp,PE,si | 200
200
200
200
200
200 | 300
360
2000
2000
2000 | 175
200
200
200
200
200 | -
11.4
11.4
11.4
11.4 | *25
40
40
40
40 | -
600
600
600
600 | *40
4C-120
40-120
100-300 | 0.025
.020
.020
.020
.020 | 6
8
8
8 | 0.22
0.4
0.4
0.4
0.4 | 46
46
46
46
46 | SY | | LL 24 | 2N3644
2N3645
2N3905
2N4125
40218 | FA
FA
MO
MO
RCA | npn,DPE,si
pnp,DPE,si
pnp,AE,si
pnp,AE,si
npn,MS,si | 200
*200
*200
*200
*200
*200 | 700
700
310
310
300 | 125
125
135
135
135 | 7.0
7.0
2.81
2.81
2 | 45
60
40
30
•25 | 500
500
200
200
200
50 | 200
*200
*50-150
*50-150
*20-60 | -
+
.05
0.5 (max) | 4.5
4.5
*4.5
*4.5
5 (max) | -
0.25
0.4
0.6 (max | 92
92
92
52 | | | LL 24 | 40222
FK3299
MPS706
UD-3005
UD-3006 | RCA
FA
MO
SPR
SPR | npn,PE,si
npn,DPE,si
npn,EP,si
npn,PE,si
npn,PE,si | *200
200
*200
200
200
200 | 300
175
500
350
350 | 175
200
125
200
200 | 2
2
5
- | *25
30
*25
60
60 | 200
20
-
600
600 | *20 (min)
40-120
*20
*100-300
*100-300 | .025 (ma:
.15
0.5
0.010
0.010 | x) 6 (max)
8
*6
*8
*8 | .22 (max
.22
0.6
0.4
0.4 |) 52
-
92
85
85 | Hermet package
npn Quad
pnp Quad | | I.I. or | UD-3007
2N827
2N2048
2N2475
2N2476 | SPR
MO
*SPR
RCA
RCA | npn,PE,si
pnp,DM,ge
MADT,ge
npn,PE,si
npn,PE,si | 200
*250
*250
250
250
250 | 350
150
150
600
600 | 200
100
100
200
200 | 2 - | 60
*20
15
*60
*60 | 600
100
100
-
- | *100-300
*100
*125
*20
*40 | 0.010
5
1
0.2
0.2 | *8
9
*1.5
*10
*10 | 0.4
0.25
.13
0.4
0.4 | 85
18
9
5
5 | Complementary Quad
TI
*PH orig. Reg.
SPR | | LL 25 | 2N3015
2N3250
2N3641
2N3642
2N3643 | FA
FA
FA
FA | npn,EP,si
pnp,DPE,si
npn,PE,si
npn,PE,si
npn,PE,si | *250
250
*250
*250
*250
*250 | 800
360
700
700
700 | 200
200
125
125
125
125 | 4.57
6.9
7.0
7.0
7.0 | 30
*50
30
45
30 | 200
-
-
- | *30-120
150
*75
*75
*220 | 0.2
-
0.05
0.5
0.5 | *8
.25
*6.0
*6.0
*6.0 | 0.4
0.25
0.35
0.35
0.35 | 5
18
-
- | TI, SPR CDC, IEC, GME CDC, IEC, GME CDC, IEC, GME | | 11.00 | 2N3903
2N3906
2N3946
2N4123
2N4126 | MO
MO
MO
MO | npn,AE,si
pnp,AE,si
npn,AE,si
npn,AE,si
pnp,AE,si | *250
*250
*250
*250
*250
*250 | 310
310
1200
310
310 | 135
135
200
135
135 | 2.81
2.81
6.9
2.81
2.81 | 40
40
40
30
25 | 200
200
200
200
200
200 | *50-150
*100-300
*50-150
*50-150
*120-360 | †
†
.05
.05 | *4
*4.5
*4
*4
*4.5 | 0.2
0.25
0.2
0.3
0.4 | 92
92
18
92
92 | | | LL 26 | FK3300
FK3502
FK3503
FV3503
MPS2713 | FA
FA
FA
MO | npn,DPE,si
pnp,DPE,si
pnp,DPE,si
pnp,DPE,si
npn,AE,si | 250
250
250
250
250
*250 | 175
175
175
175
175
310 | 200
200
200
200
200
135 | 2
2
2
2
2
2.81 | 30
45
60
60
18 | 20
500
500
500
200 | 100-300
300
300
300
*30-90 | .15
10
10
10
0.5 | 8
8
8
8
*2.5 | .22
.25
.25
.25
.25 | -
-
51
92 | Hermet package
Hermet package
Hermet package | | 11 07 | MPS2714
NS1110
NS1111
NS1500
NS1510 | MO
NA
NA
NA | npn,AE,si
npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si | *250
250
250
*250
*250
*250 | 310
500
500
500
500
500 | 135
200
200
200
200
200 | 2.81
3
3
25
2.5 | 18
110
60
20
20 | 200
100
100
100
100 | *75-225
-
-
*50-100
*50-100 | 0.5
1
1
0.5
0.5 | *2.5
*6
*6
5
3.8 | 0.3
-
-
.1
.1 | 92
18
18
18
18 | Avalanche Transistor
Avalanche Transistor | | LL 27 | 2N784A
2N835
2N838
2N914/46
2N2381 | SY
MO
MO
SY
MO | npn,EO,si
npn,EP,si
pnp,EM.ge
npn,PL,EP,si
pnp,EM.ge | 300
*300
*300
300
*300 | 360
1W
150
400
750 | 200
175
100
200
100 | 6.67
2
-
10 | *40
*25
*30
*40
15 | 200
200
100
-
500 | *25-150
20
*30
*30-120
*40 | .025
0.01
10
.025 | 3.5
*2.8
4
*6
*3.5 | .65
30
0.18
0.7
.25 | 18
18
18
46
5 | ITT, SPR
GI | | 11.00 | 2N2382
2N2717
2N3131
2N3251
2N3605 | MO
AMP
NA
FA
GE | pnp,EM,ge
pnp, AD, ge
npn,si
pnp,DPE,si
npn,PEP,si | *300
300
*300
300
300
300 | 750
275
200
360
200 | 100
75
175
200
100 | 10
0.50
-
6.9
2.67 | 20
*20
15
*50
14 | 500
300
100
200
200 | *40
*50
*30-120
300
*65 | 1
-
.025
-
0.5 | *3.5
-
*4
.25
*4.8 | .25
0.35
.25
0.25
.25 | 5
18
-
18
98 | | | LL 28 | 2N3606
2N3607
2N3904
2N3947
2N4124 | GE
GE
MO
MO
MO | npn,PEP,si
npn,PEP,si
npn,AE,si
npn,AE,si
npn,AE,si | 300
300
*300
*300
*300 | 200
200
310
1200
310 |
100
100
135
200
135 | 2.67
2.67
2.81
6.9
2.81 | 14
14
40
40
25 | 200
200
200
200
200
200 | *65
*65
*100-300
*100-300
*120-360 | 0.5
0.5
†
† | *4.8
*4.8
*4
*4 | .25
.25
0.2
0.2
0.3 | 98
98
92
18
92 | | (see pages 4.9 for explanation of company abbreviations.) May 17, 1966 81 | | | | | | | M. | AX. RAT | | | (| HARACTE | RISTICS | | | | |-----------------------|---|------------------------------|---|--|-----------------------------------|--|---------------------------------------|----------------------------------|---------------------------------|--|---------------------------------------|--|--|-----------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | †ae
*† _T
(MHz) | P (m W) | T _j (°c) | m₩/°C | *VCEO *VCBO (V) | 1 C (mA) | h _{fe}
*h _{FE} | ICO
*ICEO
(μΑ) | C _{oe} *C _{ob} (pF) | V _{ce(sat)}
(V) | Package
Outline
(TO-) | Remarks | | LL 29 | 2N4264
2N4265
40219
40221
MM709 | MO
MO
RCA
RCA
MO | npn,AE,si
npn,AE,si
npn,PL,si
npn,PE,si
npn,AE,si | *300
*300
*300
*300
*300 | 310
310
360
360
750 | 135
135
200
200
200 | 2.81
2.81
2.06
2.06
4.3 | 15
12
•40
•40
8 | 200
200
-
-
100 | *40 - 160
*100 - 400
*30-120
*30-120
*15-120 | | *4
*4
() 6 (max)
() 6 (max)
*3 | 0.22
0.22
0.4 (max)
0.7 (max)
0.35 | | | | LL 23 | 2N2256
2N2257
2N2258
2N2259
2N834 | MO
MC
MC
MO
MO | npn,ME,si
npn,ME,si
pnp,ME,ge
pnp,ME,ge
npn,EM,si | *320
*320
*320
*320
*320
350 | 1000
1000
300
300
1 W | 175
175
100
100
175 | 6.67
6.67
4
4
6.67 | 7
7
7
7
*40 | 100
100
100
100
200 | *30
*50
-
-
25 | 3
3
3
0.01 | *4
*4
*4
*4
*2.8 | -
-
-
-
0.25 | 18
18
18
18
18 | FA, SY, TR, GI, NA, ITT, SPR | | LL 30 | 2N3009
2N3647
2N3973
2N3974
2N3975 | FA
FA
GE
GE
GE | npn,EP,si
npn,DPE,si
npn,PEP,si
npn,PEP,si
npn,PEP,si | *350
350
*350
*350
*350 | 360
400
360
360
360 | 200
200
150
150
150 | 2.06
11.43
2.67
2.67
2.67 | 15
10
•60
•60
•60 | 200
500
400
400
400 | *30-120
25-150
*35-100
*55-200
35-100 | 0.5
-
0.5
0.5
0.5 | *5.4
*5.2
*5.2
*5.2 | 0.18
0.4
0.3
0.3
0.3 | 18
46
98
98
98 | ТІ | | 22 30 | 2N3976
40220
MPS834
MPS3646
2N706 | GE
RCA
MO
MO
FA | npn,GE,si
npn,PE,si
npn,EP,si
npn,AE,si
npn,DD,si | *350
*350
*350
*350
*400 | 360
300
500
500
1.0 | 150
175
125
125
175 | 2.67
2
5
5.0
6.7 | *60
*40
30
15
*25 | 400
200
200
200
200 | 55-200
*25 (min)
*25
*30-120
*45 | 0.5
0.5 (max)
0.5
†
0.005 | *5.2
4 (max)
*4
*5
*5 | 0.3
.25 (max)
0.25
0.2
0.3 | 98
52
92
92
18 | tlces=0.5
SY,MO,TR,GI,AMP,ITT,SPR,
RCA,MO,NUC | | | 2N706A | TI | npn,si | | 300 | 175 | 2 | 20 | 50 | •20 | 10 | *5 | 0.6 | 18 | FA, SY, TR,,GI, JTT, GE, MO,
RA, RCA | | LL 31 | 2N706B
2N707 | MO
FA | npn,EP,si
npn,DD,si | *400
*400 | 300
1.0 | 175
175 | 6.7 | *25
*56 | 500 | 4
•12 | .005
0.005 | *5
*5 | .3
0.3 | 18
18 | FA, SY, GI, TR, ITT
TRWS, MO, GI | | LL JI | 2N708
2N742 | FA
NA | npn,DP,si
npn,si | *400 | 500 | 200 | 6.9 | 15
25 | 100 | *50
*25 | 0.004 | *4 | 0.3 | 18 | SY, MO, TR, GI, AMP, ITT, RCA,
MO, NA, NUC | | | 2N828
2N2537 | MO
MO | pnp,EM,ge
npn,AE,si | *400
*400 | 300
3W | 100 200 | 4
17.2 | 15
30 | 200 | *40
*50 - 150 | .4 .25 | *3.5
*8 | .18 | 18 5 | SY, RCA, TI, LAN
SPR, GI, SY, NA | | | 2N2538
2N2539
2N2540
2N3011
2N3012 | MO
MO
MO
TI
FA | npn,AE,si
npn,AE,si
npn,AE,si
npn,EP,si
pnp,EP,si | *400
*400
*400
*400
*400
*400 | 3W
8W
1.8W
360
360 | 200
200
200
200
200
200 | 17.2
10.3
10.3
2.06
2.06 | 30
30
30
12
12 | -
-
200
200 | *100 - 300
50 - 150
*100 - 300
*30-120
*30-120 | .25
.25
.25
0.4
0.08 | *8
*8
*4
*6 | .45
.45
.45
0.2
0.15 | 5
18
18
18 | SPR, GI, SY, NA
SPR, GI, NA
SPR, GI, NA
TI | | LL 32 | 2N3493
2N3576
2N3722
2N3723
40217 | MO
TI
FA
FA
RCA | npn,EA,si
pnp,EP,si
npn,PE,si
npn,PE,si
npn,MS,si | *400
*400
400
400
*400 | 250
360
800
800
300 | 200
175
200
200
175 | 1.43
2.4
22.8
22.8
2 | 8
15
60
80
•25 | 200
500
500 | *40-120
*40-120
-
-
*20 (min) | † .005
0.01
-
-
0.5 (max) | *4.5
9.0
9.0
5 | 0.15
.75
.75
0.3 | 18
5
5
5 | † Icex | | | MPS2894
2N3648
2N4046
2N4047
2N960 | MO
FA
FA
FA
MO | pnp,EP,si
npn,DPE,si
npn,PE,si
npn,PE,si
pnp,EM,ge | *400
450
450
450
*460 | 1000
400
.8
.8
.8 | 125
200
200
200
200
100 | 10
11.43
20
20
4 | 12
15
50
50
*15 | 500
500
500
- | *40-150
30-120
*150
*150
*40 | .084 | *6
4
12
10
*2.2 | 0.15
0.4
.75
.95
0.13 | 92
46
5
5 | RCA | | LL 33 | 2N961
2N964
2N965
2N966
MPS3639 | MO
MO
MO
MO | pnp, EM, ge
pnp, EM, ge
pnp, EM, ge
pnp, EM, ge
pnp, EP, si | *460
*460
*460
*460
*500 | 300
300
300
300
500 | 100
100
100
100
100
125 | 4
4
4
4
5 | *12
*15
*12
*12
6 | -
-
-
80 | *40
*70
*70
*70
*70
*30-120 | .4
.4
.4
.4 | *2.2
*2.2
*2.2
*2.2
*3.5 | .13
.11
.11
.11
0.16 | 18
18
18
18
92 | RCA
RCA
RCA
RCA
tlces =.01 | | | MPS3640
2N1195
2N2368
2N3646
2N4121 | MO
FA
FA
FA | pnp,EP,si
pnp,DM,ge
npn,PE,si
npn,PE,si
pnp,DPE,si | *500
*550
*550
550
550 | 500
250
1200
500
200 | 125
100
200
125
125 | 5
3.33
6.85
5.0
5 | 12
*30
15
15
40 | 80
40.0
500
-
100 | *30-120
13.0
*40
*60
200 | † 2.0
0.1
0.4 | *3.5
4.0
*2.5
*3.3
4.5 | 0.2
0.54
0.2
0.39 | 92
5
18
- | tices = .01
TI, MO
TR, AL, MO, SPR
ICE, GME
R0110 package | | LL 34 | 2N 1992
2N 2475
2N 3010
2N 3640
2N 4122 | RCA
FA
FA
FA | npn,D,si
npn,PE,si
npn,EP,si
pnp,PE,si
pnp,DPE,si | *600
*600
*600
*600
600 | 350
500
300
500
200 | 150
200
200
200
125
125 | 2
-
1.71
5.0
5 | 15
*15
6
12
40 | 50
-
50
-
100 | *45
-
*25-125
*63
300 | .5
0.002
0.1
0,00005 | *5
*2.1
*3
*1.85
4.5 | .25
0.26
0.25
0.18 | 18
18
52
— | NA
TI
IEC, GME
R0110 package | | 11.05 | 2N2369
2N2369A
2N2787
2N2788
2N2788 | FA
FA
GI
GI | npn,PE,si
npn,PE,si
npn,si
npn,si
npn,si | *650
*675
*700
*700
*700 | 1200
1200
800
800
800 | 200
200
175
175
175 | 6.85
6.85
5.33
5.33
5.33 | 15
15
35
35
35
35 | 500
200
-
-
- | *80
*65
*20-60
*40-120
*100-300 | 0.1
0.05
.01
.01 | *2.5
*2.3
*8
*8
*8 | 0.2
0.14
0.4
0.4
0.4 | 18
18
5
5
5 | TR, MO, AL
TR, AL, SPR
STC, SPR
STC, SPR
STC, SPR | | LL 35 | 2N2790
2N2791
2N2792
2N709
2N917 | GI
GI
FA
FA | npn,si
npn,si
npn,si
npn,PE,si
npn,DP,si | *700
*700
*700
*700
*800
*800 | 500
500
500
0.5
0.3 | 175
175
175
200
200 | 3.33
3.33
3.33
5
1.71 | 35
35
35
6
15 | -
-
-
- | *20-60
*40-120
*100-300
*55
50 | .01
.01
.01
0.005
0.0005 | *8
*8
*8
*2.5
*1.5 | 0.4
0.4
0.4
0.21
0.4 | 18
18
18
18
18 | STC, SPR
STC, SPR
STC, SPR
SY, AL, TI, TR, VEC
TI, RCA, AL, TRWS | | | | | | | | МА | X. RAT | INGS | | С | HARACTE | RISTICS | | | | |-----------------------|---|------------------------------|---|---|--|--|--|---------------------------------|-----------------------------------|---|-------------------------------------|--|------------------------------------|-----------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*f _T
(MHz) | P c (mW) | T _j | mW/°C | VCEO
*VCBO
(V) | 1
(mA) | hfe
*hFE | lCO
*lCEO
(μΑ) | Coe
*Cob
(pF) | V _{ce(sat)} | Package
Outline
(TO-) | Remarks | | LL 36 | V - 120
2N918
2N955A
MM2550
MM2552 | VEC
FA
RCA
MO
MO | npn,PE,si
npn,PE,si
npn,
DD, ge
pnp,EP,DJ,ge
pnp,EP,DJ,ge | *800
*900
*1000
*1000
*1000 | 0.3
150
300
600 | 200
200
100
100
100 | 1.71
-
4
8 | *15
15
*12
10
10 | -
50
150
100
100 | *110
*50
*50
*50
*20
*30 | .00009
0.0002
0.6
10
10 | *2.1
*1.4
*4
*3
*3 | .12
0.12
0.22
0.2
0.2 | 18
18
18
18
5 | MO, TI, RCA, AL, TRWS, VEC | | 00 | MM2554
2N3959
2N3960
2N4260
2N4261 | MO
MO
MO
MO | pnp,EP,DJ,ge
npn,AE,si
npn,AE,si
pnp,AE,si
pnp,AE,si | *1000
*1300
*1600
*1600
*2000 | 600
750
750
200
200 | 100
200
200
200
200
200 | 8
4.3
4.3
1.14
1.14 | 10
12
12
15
15 | 100
30
30
30
30
30 | *30
*40-200
*40-200
*30 - 150
*30 - 150 | 10
0.1
0.1
†.005
†.005 | *3
*2.5
*2.5
*2.5
*2.5 | 0.25
0.2
0.2
0.35
0.35 | 5
18
18
72
72 | | | LL 37 | BSY 62
2N284
2N284A
2N337
2N338 | SA
AMP
AMP
TI
TI | npn,EP,PL,si
pnp,AJ,ge
pnp,AJ,ge
npn,si
npn,si | *20000
-
-
-
- | 0 860
125
125
125
125
125 | 175
75
75
150
150 | 7
2.5
2.5
1
1 | 15
32
60
•45
•45 | 200
125
125
20
20 | 20-60
*45
*45
66
99 | 0.5
4.5
4.5
1 | 5
-
*1.2
*1.2 | 0.6
0.4
0.4
- | 18
1
1
5
5 | GE, TR
GE, TR' | | LL 3/ | 2N398
2N586
2N705
2N707A
2N710 | RCA
TI
TI
TI | pnp,AJ,ge
pnp,AJ,ge
pnp,ge
npn,si
pnp,ge | | 50
250
150
500
300 | 55
85
100
175
100 | -
2
3.33
4 | 105
*45
*15
40
*15 | 100
250
50
100
50 | *20
30
*40
*9
*40 | 14
12
0.3
1
3 | -
*5
*6
- | 0.35
0.25
0.3
0.6
0.5 | 5
7
18
18
18 | MO, GI , TI, RCA
SY, MO, RCA
MO. GI
SY, RCA | | | 2N711
2N711A
2N711B
2N725
2N744 | TI
TI
TI
TI | pnp,ge
pnp,ge
pnp,ge
pnp,ge
npn,si | | 150
150
150
150
150
300 | 100
100
100
100
100
175 | 2
2
2
2
2
2 | *12
7
7
*15 | 100
100
100
50
200 | 1.5
*40
*40
*20
*40 | 3
1.5
1.5
3
1 | *7.5
*6
*6
*5
*5 | 0.5
0.30
0.25
-
0.35 | 18
18
18
18
18 | SY, MO, AMP. RCA
SY, MO
SY, MO
FA, SY, MO, TR, GI, ITT | | LL 38 | 2N781
2N782
2N797
2N849/TI4
2N850/TI4 | | pnp,EP,ge
pnp,EP,ge
npn,ge
npn,si
npn,si | | 300
300
150
300
300 | 100
100
100
175
175 | -
2
2
2
2 | *15
*12
7
15
15 | 200
200
150
50
50 | *25
*20
*40
*20
*40 | 3
3
1
0.5
0.5 | -
-
*4
*5
*5 | 0.2
0.2
0.14
0.6
0.6 | 18
18
18
50
50 | AL | | | 2N851/TI4
2N852/TI4
2N985
2N999
2N1216 | | npn,si
npn,si
pnp,ge
npn,DP,si
pnp,MS,ge | 11111 | 300
300
150
500
75 | 175
175
100
200 | 2
2
2
10.3 | 12
12
7
60
*25 | 200
200
200
500
100 | *20
*40
*60
- | -
3
0.0001 | *5
*5
*6
*15 | 0.35
0.35
0.15
1.2 | 50
50
18
18
5 | мо | | LL 39 | 2N1228
2N1229
2N1230
2N1231
2N1232 | HU
HU
HU
HU | pnp
pnp
pnp,
pnp
pnp | 11111 | 400
400
400
400
400 | 160
160
160
160
160 | | 15
15
35
35
60 | - | 20
40
20
40
20 | .1
.1
.1
.1 | - | .2
.2
.2
.2
.2 | 5
5
5
5
5 | SPR, AMP, CT
SPR, AMP, CT
SPR, AMP, CT
SPR, AMP, CT
SPR, AMP, CT | | | 2N1233
2N1234
2N1302
2N1303
2N1304 | HU
HU
TI
TI | pnp
pnp
npn,ge
pnp,ge
npn,ge | 11111 | 400
400
150
150
150 | 160
160
85
85
85 | -
2.5
2.5
2.5
2.5 | 60
110
*25
*30
*25 | -
300
300
300
300 | 40
20
*20
*20
*20
*40 | .1
.1
6
6
6 | -
*20
20
20 | .2
.2
0.2
0.2
0.2 | 5
5
5
5 | SPR, AMP, CT
SPR, AMP, CT
AMP, GE, RCA, NUC
AMP, GI, RCA, NUC
AMP, GI, RCA, NUC | | LL 40 | 2N1305
2N1306
2N1307
2N1308
2N1309 | TI
TI
TI
TI
TI | pnp,ge
npn,ge
pnp,ge
npn,ge
pnp,ge | 11111 | 150
150
150
150
150 | 85
85
85
85
85 | 2.5
2.5
2.5
2.5
2.5
2.5 | *30
*25
*30
*25
*30 | 300
300
300
300
300 | *40
*60
*60
*80
*80 | 6
6
6
6 | 20
20
20
20
20
20 | 0.2
0.2
0.2
0.2
0.2 | 5
5
5
5 | AMP, GI, RCA, NUC
AMP, GI, RCA, NUC
AMP, GI, RCA, NUC
AMP, GI, RCA, NUC
AMP, GI, RCA, NUC | | | 2N1404
2N1404A
2N1507
2N1510
2N1853 | TI
TI
TI
GE
RCA | pnp,ge
pnp,ge
npn,si
npn,GR,ge
pnp,DM,ge | 11111 | 150
150
600
75
150 | 85
85
175
85
85 | 2.5
2.5
4
1.25 | *25
*25
*60
*75
*18 | 300
300
1a
20
100 | *30
*100
*30
30-400 | 5
5
1
0.5
4.2 | *20
*20
*35
- | 0.15
0.15
1.5
0.26
0.2 | 5
5
5
-
5 | CDC, AL | | LL 41 | 2 N1917
2N1918
2N1919
2N1920 | D22
D22
D22
D22 | A)
VA
VA | 1111 | 250
250
250
250 | 175
175
175
175 | 1.67
1.67
1.67 | 8
8
18 | 50
50
50
50 | *25
*25
- | .002
.006
.002 | *14
*14
*14
*14 | .002
.004
.003 | 5
5
5 | TRWS, CT, Chopper Pairs, SPR
Chopper Pairs, CT, SPR
TRWS, AMP, CT, Chopper Pairs,
SPR
TRWS, AMP, CT, Chopper Pairs, | | | 2N 1921 | SSD | AJ | - | 250 | 175 | 1,67 | 50 | 50 | - | .004 | *14 | .005 | 5 | TRWS, AMP, CT, Chopper Pairs | | | 2N1922
2N1994 | SSD
TI | AJ
npn,ge | - | 250
150 | 175
85 | 1.67
2.5 | 80
15 | 50
300 | -
*15 | .004
6 | *14
*20 | .005
0.25 | 5
5 | SPR
CT, Chopper Pairs, SPR | | LL 42 | 2N 1995
2N 1996
2N 1997
2N 1998
2N 1999 | TI
TI
TI
TI | npn,ge
npn,ge
pnp,ge
pnp,ge
pnp,ge | 11111 | 150
150
250
250
250
250 | 85
85
100
100
100 | 2.5
2.5
3.3
3.3
3.3 | 15
15
15
15
15 | 300
300
500
500
500 | *25
*35
*40
*70
*100 | 6
6
5
5
5 | *20
*20
*20
*20
*20
*20 | 0,25
0,25
0,2
0,2
0,2 | 5
5
5
5 | ETC
ETC
ETC | | | | | | | | MA | X. RAT | INGS | | (| CHARACTI | ERISTICS | | | | |-----------------------|--|---------------------------------|---|---------------------|--|--|---------------------------------|-----------------------------------|-----------------------------------|-------------------------------|---|------------------------------------|--|-----------------------------|------------------------| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*fT
(MHz) | P c (mW) | T _j | nW∕°C | V
CEO
*V
CBO
(V) | 1 C (mA) | hfe
*h | ^I C0
* ^I CE0
(μΑ) | Coe
*Cob
(pF) | V _{ce(sat)} | Package
Outline
(TO-) | Remarks | | | 2N2000
2N2001
2N2188
2N2189
2N2190 | T1
T1
T1
T1
T1 | pnp,ge
pnp,ge
pnp,ge
pnp,ge
pnp,ge | 1111 | 300
300
125
125
125 | 100
100
85
85
85 | 4
4
2.1
2.1
2.1 | 15
15
25
25
25
25 | 1000
1000
30
30
30 | *50
*100
40
60
40 | 10
6
3
3
3 | *35
*35
*2.5
*2.5
*2.5 | 0.25
0.2
-
- | 5
5
-
- | | | LL 43 | 2N2191
2N2551
2N2692
2N2871
2N2872 | TI
HU
TI
HU
HU | pnp,ge
pnp
npn,si
pnp
pnp | 11111 | 125
400
300
400
400 | 85
160
175
160
160 | 2.1 | 25
150
30
60
110 | 30
-
50
-
- | 60
20
•90
20
20 | 3
-
0.01
-
- | *2.5
-
*5
-
- | -
0.2
- | 5
18
5
5 | | | | 2N2938
3217
3218
3219
2N4058 | RCA
CT
CT
CT
TI | npn,PE,si
pnp,si
pnp,si
pnp,si
pnp,PE,si | 111111 | 300
400
400
400
400
250 | 175
200
200
200
200
125 | 2.3
2.3
2.3
2.5 | *25
*15
*25
*40
30 | 500
100
100
100
30 | *60
10
5
3
100 | .003
.001
.001
0.001
0.1 | 3.5
*14
*14
*14 | 0.22
-
-
-
0.7 | 18
46
46
46
92 | SPR
SPR
SPR | | LL 44 | 2N 4059
2N 4060
2N 4061
2N 4062
2013 | TI
TI
TI
TI
BU | pnp,PE,si
pnp,PE,si
pnp,PE,si
pnp,PE,si | 11111 | 250
250
250
250
250
500 | 125
125
125
125
125
150 | 2.5
2.5
2.5
2.5
- | 30
30
30
30
30
*65 | 30
30
30
30
30
3.0 | 45
45
90
110
*30 | 0.1
0.1
0.1
0.1
0.5 | -
-
-
7.0 | 0.7
0.7
0.7
0.7
0.7
0.5 | 92
92
92
92
94 | † flat pack | | | PADT60
SA-537
SA-538
SA-539
SA-540 | AMP
SPR
SPR
SPR
SPR | pnpn,PADT,ge
pnp,SP,si
pnp,SP,si
pnp,SP,si
pnp,SP,si
pnp,SP,si | | 83
150
150
150
150 | 75
140
140
140
140 | 1.7
1.3
1.3
1.3
1.3 | *35
*25
*10
*25
*10 | 25
50
50
50
50 | 10
10
10
10 | 50
0.1
0.1
0.01
0.01 | *5
*9
*9
*9 | 0.6
0.15
0.15
0.15
0.15 | 1
1
1
18
18 | 4 Layer Control Device | | LL 45 | V - 120RH
V - 220
V - 221
V - 222 | VEC
VEC
VEC
VEC | npn,PL,si
npn,PE,si
npn,PE,si
npn,PE,si | | 350
-
-
- |
200
200
200
200
200 | 1111 | 10
*15
*15
*15 | - | *110
*70
*110
*140 | .0001
5
5
5
5 | *1.7
*3.0
*3.0
*3.0 | .13
.30
.30
.30 | 18
18
18
18 | | ## IRC can fill all your MIL and industrial needs Now, IRC offers one of the industry's largest selections of MIL and industrial zener diodes. And, with the addition of new production facilities, they are immediately available from stock to meet all your application, environment and price requirements. - 229 MIL devices—power ratings range from 250mW up to 10 watts - All popular industrial-type devices—power ratings up to 50 watts - The industry's only 1-watt zener in a DO-7 package - New high-strength Poly-Sil zeners—up to 30% smaller and up to 2½ times more wattage dissipation than glass packages. Over 400 JEDEC types - Complete selection of package styles and mechanical configurations If you specify or buy zener diodes, you should know about the money-saving advantages of IRC's complete zener diode line. Write for new catalog, prices and samples to: IRC, Inc., Semiconductor Division (formerly North American Electronics), 71 Linden Street, West Lynn, Massachusetts 01905. Complete choice, including sub-miniature, fast recovery and high-power types. All popular configurations. ### AXIAL LEAD RECTIFIERS AR16—AR24 replaces 363 JEDEC devices for 50 to 1000 V/.25 to 1A needs. Cost less than stud types. SCR'S MIL and industrial devices, including fast-switching types. Choice of ratings and package shapes. Rectifier stacks, potted bridges, epoxy resin encapsulations and high voltage assemblies. # **High-Level Switching** Generally types rated at one watt and above. In order of f_{α_e} or $f_{\rm T}$. | | | | | | | м | AX. RATIN | IGS | | CHARA | CTERISTI | cs | | | |-----------------------|---|------------------------------|---|--------------------------------------|--|--|--|----------------------------------|----------------------------------|---|-------------------------------------|---|----------------------------------|---------------------------------| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*f _T
(kHz) | P c (W) | Т _ј
(°С) | w/°c | *VCEO *VCBO (V) | 1 _C (A) | h _{fe} *hFE | ICO
*ICEO
*ICEX
(mA) | V _{ce(sat)}
(V) | Package
Outline
(TO-) | Remarks | | HL 1 | 2N1518
2N1519
2N1520
2N1521
2N1521 | DE
DE
DE
DE | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 4
4
4
4
4 | 150
150
150
150
150 | 100
100
100
100
100 | .5
.5
.5
.5 | 40
60
40
60
40 | 25
25
35
35
50 | *15-60
*15-60
*17-68
*17-68
*25-100 | 4
4
4
4 | .7
.7
.7
.7 | 36
36
36
36
36
36 | ETC
ETC
ETC
ETC
ETC | | | 2N1523
2N2230
2N2231
2N2232
2N2233 | DE
WH
WH
WH | pnp,AJ,ge
npn, AJ, si
npn,AJ,si
npn,AJ,si
npn, AJ, si | 4
7
7
7
7 | 150
150
150
150
150 | 100
150
150
150
150 | .5
2
2
2
2 | 60
50
100
150
200 | 50
10
10
10
10 | *25-100
*400
*400
*400
*400 | 4
10
10
10
10 | .7
2.2
2.2
2.2
2.2
2.2 | 36
-
-
- | ETC | | HL 2 | 2N2560
2N2564
2N2565
2N618
2N1907 | TI
KSC
KSC
MO
TI | pnp,ge
pnp,ge
pnp,ge
pnp,AJ,ge
pnp,ge | 8
8
8
8.5
*10 | 20
20
20
90
60 | 100
100
100
100
100 | 0.5
0.5
0.5
1.25
2 | *40
*40
*60
*80
*100 | 3
3
3
3
20 | *20-60
*20-60
*20-60
*90
*20 | 0.65
0.65
0.65
0. 8
0.5 | -
-
.3
1.0 | -
-
3
3 | NA, KSC, BE | | | 2N 1908
2N 2226
2N 2227
2N 2228
2N 2229 | TI
WH
WH
WH
WH | pnp,ge
npn, AJ, si
npn, AJ, si
npn, AJ, si
npn, AJ, si | *10
10
10
10
10 | 60
150
150
150
150 | 100
150
150
150
150 | 2
2
2
2
2
2 | *130
50
100
150
200 | 20
10
10
10
10 | *20
*100
*100
*100
*100 | 0.5
10
10
10 | 1.0
2.2
2.2
2.2
2.2 | 3 | | | HL 3 | 2N1809
2N1810
2N1811
2N1812
2N1813 | WH
WH
7/H
WH
WH | npn, AJ, si
npn, AJ, si
npn, AJ, si
npn, AJ, si
npn, AJ, si | 14
14
14
14
14 | 250
250
250
250
250
250 | 175
175
175
175
175
175 | 2.22
2.22
2.22
2.22
2.22
2.22 | 50
100
150
200
250 | 30
30
30
30
30
30 | *10
*10
*10
*10
*10
*10 | 15
15
15
15
15 | 0.4
0.4
0.4
0.4
0.4 | - | | | | 2N 1814
2N 1830
2N 1831
2N 1832
2N 1833 | V/H
WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 14
14
14
14
14 | 250
250
250
250
250
250 | 175
175
175
175
175 | 2,22
2,22
2,22
2,22
2,22
2,22 | 300
50
100
150
200 | 30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 0.4
0.875
0.875
0.875
0.875 | - | | | HL 4 | 2N2109
2N2110
2N2111
2N2112
2N2113 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 14
14
14
14
14 | 250
250
250
250
250
250 | .75
175
175
175
175 | 2.22
2.22
2.22
2.22
2.22
2.22 | 50
100
150
200
250 | 30
30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 0.4
0.4
0.4
0.4
0.4 | | | | | 2N2114
2N2130
2N2131
2N2132
2N2133 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 14
14
14
14
14 | 250
250
250
250
250
250 | 175
175
175
175
175
175 | 2.22
2.22
2.22
2.22
2.22
2.22 | 300
50
100
150
200 | 30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 0.4
0.875
0.875
0.875
0.875 | | | | HL 5 | 2N2739
2N2740
2N2741
2N2742
2N2757 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 14
14
14
14
14 | 200
200
200
200
200
200 | 175
175
175
175
175 | 2
2
2
2
2
2 | 50
100
150
200
50 | 20
20
20
20
20
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 0.4
0.4
0.4
0.4
0.4 | | | | | 2N2758
2N2759
2N2760
2N2761
2N1816 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 14
14
14
14
14 | 200
200
200
200
200
250 | 175
175
175
175
175
175 | 2
2
2
2
2
2,22 | 100
150
200
250
50 | 30
30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 0.4
0.4
0.4
0.4
0.63 | 11111 | | | HL 6 | 2N1817
2N1818
2N1819
2N2116
2N2117 | WH
WH
WH
WH | npn, AJ, si
npn, AJ, si
npn, AJ, si
npn, AJ, si
npn, AJ, si | 14.5
14.5
14.5
14.5
14.5 | 250
250
250
250
250
250 | 175
175
175
175
175
175 | 2.22
2.22
2.22
2.22
2.22
2.22 | 100
150
200
50
100 | 30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 0.63
0.63
0.63
0.63
0.63 | - | | | | 2N2118
2N2119
2N2745
2N2746
2N2747 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 14.5
14.5
14.5
14.5
14.5 | 250
250
200
200
200
200 | 175
175
175
175
175
175 | 2.22
2.22
2
2
2 | 150
200
50
100
150 | 30
30
20
20
20 | *10
*10
*10
*10
*10
*10 | 15
15
15
15
15 | 0.63
0.63
0.63
0.63
0.63 | | | | HL 7 | 2N2748
2N2763
2N2764
2N2765
2N2766 | WH
WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 14.5
14.5
14.5
14.5
14.5 | 200
200
200
200
200
200 | 175
175
175
175
175
175 | 2
2
2
2
2
2 | 200
50
100
150
200 | 20
30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 0.63
0.63
0.63
0.63
0.63 | | | High-Level (continued) | | | | | | | N | AX. RATI | IGS | | CHAR | ACTERISTIC | CS | | Territory - | |-----------------------|--|-----------------------|--|--|--|--|--|---|--|--|-------------------------------|--------------------------------------|-----------------------------|---------------------------------| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*f _T
(kHz) | P c (W) | Т _ј
(°С) | w/°c | *V _{CEO} *V _{CBO} (V) | I _C (A) | h _{fe}
*hFE | ICO
*ICEO
*ICEX
(mÅ) | V _{ce(sat)} | Package
Outline
(TO-) | Remarks | | HL 8 | 2N1823
2N1824
2N1825
2N1826
2N2123 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 16
16
16
16
16 | 250
250
250
250
250
250 | 175
175
175
175
175
175 |
2.22
2.22
2.22
2.22
2.22
2.22 | 50
100
150
200
50 | 30
30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 0.74
0.74
0.74
0.74
0.74 | | | | זב א | 2N2124
2N2125
2N2126
2N2751
2N2752 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 16
16
16
16
16 | 250
250
250
200
200 | 175
175
175
175
175
175 | 2.22
2.22
2.22
2
2
20 | 100
150
200
50
100 | 30
30
30
20
2 | *10
*10
*10
*10
*10
*10 | 15
15
15
15
15 | 0.74
0.74
0.74
0.74
0.74 | | | | | 2N2753
2N2754
2N2769
2N2770
2N2771 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 16
16
16
16
16 | 200
200
200
200
200
200 | 175
175
175
175
175 | 2
2
2
2
2
2 | 150
200
50
100
150 | 20
20
30
30
30 | *10
*10
*10
*10
*10
*10 | 15
15
15
15
15 | 0.74
0.74
0.74
0.74
0.74 | 11111 | | | IL 9 | 2N2772
163-04
163-06
163-08
163-10 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 16
22
22
22
22
22 | 200
200
200
200
200
200 | 175
175
175
175
175 | 2
2
2
2
2
2 | 200
55
75
95
115 | 30
20
20
20
20
20 | *10
*15
*15
*15
*15 | 1.5
15
15
15
15 | 0,74
.30
.30
.30 | | | | | 163-12
163-14
163-16
163-18
163-20 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
s,LA,nqn
is,LA,nqn
is,LA,nqn | 22
22
22
22
22
22
22 | 200
200
200
200
200
200 | 175
175
175
175
175
175 | 2
2
2
2
2
2 | 135
155
175
175
195
215 | 20
20
20
20
20
20 | *15
*15
*15
*15
*15 | 15
15
15
15
15 | .30
.30
.30
.30
.30 | 11411 | | | 1L 10 | 164-04
164-06
164-08
164-10
164-12 | WH
WH
WH
WH | npn, AJ,si
npn, AJ,si
npn, AJ,si
npn, AJ,si
npn, AJ,si | 22
22
22
22
22
22
22 | 200
200
200
200
200
200 | 175
175
175
175
175
175 | 2
2
2
2
2
2 | 55
75
95
115
135 | 20
20
20
20
20
20 | *25
*25
*25
*25
*25
*25 | 15
15
15
15
15 | .25
.25
.25
.25
.25 | 1 1 1 1 1 | | | | 164-14
164-16
164-18
164-20
2N1015 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 22
22
22
22
22
22
25 | 200
200
200
200
200
150 | 175
175
175
175
175
150 | 2
2
2
2
1.43 | 155
175
195
215
30 | 20
20
20
20
20
7.5 | *25
*25
*25
*25
*10 | 15
15
15
15
15 | .25
.25
.25
.25
.25 | 11111 | STC | | 1L 11 | 2N1015A
2N1015B
2N1015C
2N1015D
2N1015E | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 25
25
25
25
25
25 | 150
150
150
150
150 | 150
150
150
150
150 | 1.43
1.43
1.43
1.43
1.43 | 60
100
150
200
250 | 7.5
7.5
7.5
7.5
7.5
7.5 | *10
*10
*10
*10
*10 | 10
10
10
10
10 | 0.5
0.5
0.5
0.5
0.5 | 11111 | STC
STC
STC
STC
STC | | | 2N1702
151-04
151-06
151-08
151-10 | RCA
WH
WH
WH | npn, si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 25
25
25
25
25
25 | 75
100
100
100
100 | 200
150
150
150
150
150 | 0. 429
1.4
1.4
1.4
1.4 | 40
80
120
160
200 | 5
6.0
6.0
6.0
6.0 | *15-60
*11
*11
*11
*11 | 0.2
10
10
10
10 | 0.6
0.6
0.6
0.6 | 3 | STC | | L 12 | 152-04
152-06
152-08
152-10
2N 1016 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 25
25
25
25
25
30 | 100
100
100
100
150 | 150
150
150
150
150 | 1.4
1.4
1.4
1.4
1.43 | 80
160
200
30 | 6.0
6.0
6.0
6.0
7.5 | *18
*18
*18
*18
*18 | 10
10
10
10
10 | 0.9
0.9
0.9
0.9
0.9 | | STC | | IL 13 | 2N 1016A
2N 1016B
2N 1016C
2N 1016D
2N 1016E | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,FJ,si | 30
30
30
30
30
30 | 150
150
150
150
150 | 150
150
150
150
150
150 | 1.43
1.43
1.43
1.43
1.43 | 60
100
150
200
250 | 7.5
7.5
7.5
7.5
7.5
7.5 | *10
*10
*10
*10
*10 | 10
10
10
10
10 | 0.6
0.6
0.6
0.6
0.6 | | STC
STC
STC
STC
STC | | | 2N1701
153-04 | RCA
WH | npn, si | 30 | 25 | 200 | 1,33 | 40
*65 | 2.5 | *20-80 | .1 | - 0.6 | 8 | STC | | | 153-06 | WH | npn,AJ,si | 33 | 200 | 175 | 1.33 | *85 | 7.5
7.5 | *15
*15 | 10 | 0.6 | = . | | | łL 14 | 153-08
153-10
153-12
153-14
153-16 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 33
33
33
33
33
33 | 200
200
200
200
200
200 | 175
175
175
175
175
175 | 1.33
1.33
1.33
1.33
1.33 | *105
*125
*145
*165
*185 | 7.5
7.5
7.5
7.5
7.5 | *15
*15
*15
*15
*15
*15 | 10
10
10
10
10 | 0.6
0.6
0.6
0.6
0.6 | | | | _ 17 | 153-18
153-20
154-04
154-06
154-08 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 33
33
33
33
33
33 | 200
200
200
200
200
200 | 175
175
175
175
175 | 1,33
1,33
1,33
1,33
1,33 | *205
*225
*65
*85
*105 | 7.5
75
7.5
7.5
7.5
7.5 | *15
*15
*25
*25
*25
*25 | 10
10
10
10
10 | 0.6
0.6
0.9
0.9
0.9 | | | (see pages 4.9 for explanation of company abbreviations.) May 17, 1966 87 High-Level (continued) | - 1 | | | 1211 | | | M. | AX. RATIN | IGS | | CHARA | CTERISTIC | S | | | |-----------------------|---|------------------------------|---|--|--|--|---|--------------------------------------|-------------------------------------|---|--|----------------------------------|-----------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*f _T
(kHz) | P (W) | Т _;
(°С) | w/°c | VCEO
*VCBO
(V) | I _C | h _{fe} *hFE | ICO
*ICEO
*ICEX
(mA) | V _{ce(sat)}
(V) | Package
Outline
(70-) | Remarks | | UI tr | 154-10
154-12
154-14
154-16
154-18 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 33
33
33
33
33
33 | 200
200
200
200
200
250 | 175
175
175
175
175 | 1.33
1.33
1.33
1.33
1.33 | *125
*145
*165
*185
*205 | 7.5
7.5
7.5
7.5
7.5 | *25
*25
*25
*25
*25
*25 | 10
10
10
10
10 | 0.9
0.9
0.9
0.9
0.9 | | | | HL 15 | 154-24
2N1409
2N1410
2N1768
2N1769 | WH
RA
RA | npn,AJ,si
npn,si
npn,si
npn,si
npn,si | 33
*40
*40
40
40 | 200
2.8
2.8
40
40 | 175
150
150
200
200 | 1.33
.22
.22
.229
.229 | *225
*30
*30
40
55 | 7.5
05
0.5
3
3 | *25
*30
*60
*35-100
*35-100 | 10
.010
.010
.015
.015 | 0.9
0.5
0.5
- | -
5
5
-
- | GI
GI
STC
STC | | | 2N3850
2N3852
2N2310
2N2311
2N2312 | SSP
SSP
RA
RA | npn, TDP
npn, TDP
npn, si
npn, si
npn, si | *40
*40
*50
*50
*50 | 30
30
3
3 | 200
200
300
300
300
300 | 0. 4
0. 4
.017
.017
.017 | *100
*60
60
100
60 | 5
5
0.5
0.5
0.5 | *150
*150
*12
*12
*12
*30 | .0001
.0001
10
10 | 0.25
0.25
5
1.5 | 59
59
46
46
46 | | | HL 16 | 2N2313
2N2314
2N2315
2N2316
2N2317 | RA
RA
RA
RA | npn,si
npn,si
npn,si
npn,si
npn,si | *50
*50
*50
*50
*50 | 3
3
3
3 | 300
300
300
300
300
300 | .017
.017
.017
.017
0.17 | 100
35
35
60
40 | 0.5
0.5
0.5
0.5
0.5 | *30
*15
*40
*40
*40 | 10
10
10
10
10 | 5
1.5
1.5
5
1.5 | 46
46
46
46
46 | | | | 2N3506
2N3507
2N2270
2N3468
2N3495 | MO
MO
RCA
MO | npn, EA, si
npn,EA,si
npn,si
pnp,EA,si
pnp.EA,si | *60
*60
*100
*150
*150 | 5
5
5
5
3 | 200
200
200
200
200
200 | 0.029
0.029
.0286
0.0057
0.0172 | 40
50
45
50
120 | 3
3
1
1
100 | *40-200
*30-150
*50-200
*25-75
*40 | † 0. 001
† 0. 001
5
0.0001
0.0001 | 1.0
1.0
-
0.6
0.35 | 5
5
5
5 | † Icex
† Icex
TRWS, GI
TI | | HL 17 | 2N3497
2N3498
2N3499
2N3500
2N3501 | MO
MO
MO
MO | pnp, EA, si
npn, EA, si
npn, EA, si
npn, EA, si
npn, EA, si | *150
*150
*150
*150
*150 | 1.8
5
5
5
5 | 200
200
200
200
200
200 | 0.0103
0.0057
0.0057
0.0057
0.0057 | 120
100
100
150
150 | 100
0.5
0.50
0.30
0.300 |
*40
*40-120
*100-300
*40-120
*100-300 | 0.0001
0.00005
0.00005
0.00005
0.00005 | 0.35
0.4
0.4
0.4
0.4 | 18
5
5
5
5 | TRWS | | | 2N3634
2N3636
2N3253
2N3444
2N3467 | MO
MO
MO
MO | pnp,EA,si
pnp,EA,si
npn,AE,si
npn,AE,si
pnp,EA,si | *150
*150
*175
*175
*175 | 5
5
5
5
5 | 200
200
200
200
200
200 | 0.029
0.029
0.029
0.029
0.029
0.0057 | 140
175
40
50
40 | 1
1
-
1 | *50-150
*50-150
*25-75
*20-60
*40-120 | 0.00010
0.00010
0.0005
0.0005
0.0001 | 0.5
0.5
0.6
0.6
0.5 | 5
5
5
5 | | | HL 18 | 2N456B
2N457B
2N458B
2N1666
2N1667 | TI
TI
TI
AMP | pnp,ge
pnp,ge
pnp,ge
pnp,PADT,ge
pnp,PADT,ge | *200
*200
200
200
200
200 | 150
150
150
30
30 | 100
100
100
90
90 | 2.0
2.0
2
- | 30
40
45
60
48 | 7
7
7
6
6 | *40
*40
*40
*55
140 | 0.5
0.5
7.0
<100
<100 | | 3
3
3
3 | DE, KSC, ITT
DE, KSC, ITT
TI, DE | | | 2N 1668
2N 1669
2N 2397
2N 3252
2N 3426 | AMP
AMP
SY
MO
FA | pnp,PADT,ge
pnp,PADT,ge
npn,PE,si
npn, AE, si
npn, PE, si | 200
200
*200
*200
*200 | 30
30
300
5
3.0 | 90
90
200
200
200 | -
-
0. 029
0. 017 | 48
60
*35
30
12 | 6
6
200
-
1.0 | 75
110
*25-120
*30-90
*50 | <100
<100
0.1
0.0005
0.0000015 | -
0.3
0.5
0.18 | 3
3
51
5 | | | HL 19 | 2N3429
2N3430
2N3431
2N3432
2N3433 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | *200
*200
*200
*200
*200 | 150
150
150
150
150 | 175
175
175
175
175
175 | 1.33
1.33
1.33
1.33
1.33 | *50
*100
150
*200
*250 | 7.5
7.5
7.5
7.5
7.5 | *10
*10
*10
*10
*10 | 10
10
10
10
10 | 0.9
0.9
0.9
0.9
0.9 | | | | 111 00 | 2N3434
2N3485
2N3485A
2N3486 | WH
MO
MO
MO | npn,AJ,si
pnp,AE,si
pnp,AE.si
pnp,AE.si | *200
*200
*200
*200
*200 | 150
2
2
2
2 | 175
200
200
200
200 | 1.33
0.011
0.011
0.011 | *300
40
60
40 | 7.5
0.6
0.6
0.6 | *10
*40-120
*40-120
*100-300 | 10
0.00002
0.00001
0.00002 | 0.9
0.4
0.4
0.4 | -
46
46
46 | TI
TI
TI | | HL 20 | 2N3486A
2N3494
2N3496
2N3635
2N3637 | MO
MO
MO
MO | pnp, AE, si
pnp, EA, si
pnp, EA, si
pnp, EA, si
pnp, EA, si | *200
*200
*200
*200
*200 | 2
3
1.8
5
5 | 200
200
200
200
200
200 | 0.011
0.0172
0.0103
0.029
0.029 | 60
80
80
140
175 | 0.6
100
100
1 | *100-300
*40
*40
*100-300
*100-300 | 0.00001
0.0001
0.0001
0.00010
0.00010 | 0.4
0.3
0.3
0.5
0.5 | 46
5
18
5
5 | TI | | | 2N2217 | мо | npn,EA,si | 250 | 3 | 175 | . 02 | 30 | 0.8 | 20-160 | 0, 00001 | 0, 4 | 5 | GI,SY,SPR,TR,AMP,
TRWS, AL | | | 2N2218
2N2219 | MO
MO | npn,AE,si | *250 | 3 | 175
175 | .02 | 30 | 0.8 | *40 - 120
100-300 | 0.00001 | -
C. 4 | 5 5 | GI, SY, SPR, TR, AMP,
TRWS, AL
GI, SY, SPR, TR, AMP | | HL 21 | 2N2219
2N2219 | MO | npn, AE, si
npn, AE, si | 250
250 | 3 | 175 | .02 | 30 | 0.8 | 100-300 | 0.00001 | 0.4 | 5 | GI, SY, SPR, TR, AMP, | | | 2N2220 | MO | npn,AE,si | 250 | 1.8 | 175 | .012 | 30 | 0.8 | 20-60 | 0.00001 | 0.4 | 18 | AL
GI, SPR, TR, AMP, | | | 2N2221 | мо | npn, AE, si | 250 | 1.8 | 175 | .012 | 30 | 0.8 | 40-120 | 0. 00001 | 0.4 | 18 | AL
GI, SPR, TR, AMP,
AL | High-Level (continued) | | | | | | | М | AX. RATIN | GS | | CHARA | CTERISTIC | S | | | |-----------------------|---|-----------------------------|---|---|----------------------------------|--|---|-------------------------------------|---------------------------------------|---|--|--|-----------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*f _T
(kHz) | P c (W) | T _j
(°C) | w/°c | *YCEO
*YCBO
(Y) | I _C (A) | h _{fe} *hFE | ICO
*ICEO
*ICEX
(mA) | V _{ce(sat)} | Package
Outline
(TO-) | Remarks | | | 2N2222 | МО | npn,AE,si | 250 | 1.8 | 175 | .012 | 30 | 8.0 | 100 - 300 | 0.00001 | 0.4 | 18 | TRWS, GI, SPR, TR,
AMP, AL | | HL 22 | 2N3250A
2N3734
2N3504
2N3735 | MO
MO
FA
MP | pnp,AE,si
npn,AE,si
pnp,PE,si
npn,AE,si | *250
*250
*250
*250 | 1.7
4
1.3
4 | 200
200
200
200
200 | 0.0069
. 023
0. 0022
. 023 | 60
30
45
50 | 0.2
1.5
0.6
1.5 | *50-150
*30 - 120
*70
*20 - 80 | †0.00002
†.0002
0.050
†.0002 | 0.25
0.2
0.5
0.2 | 18
5
18
5 | †Icex
TI | | 112 22 | 2N3736
2N3737
2N914/46
2N2481 | 0M
0 Y2
0M | npn, AE,si
npn, AE,si
npn, PL, EP,si
npn, AE,si | *250
*250
*300
*300 | 2
2
400
1.2 | 200
200
200
200
200 | .011
.011
-
0.0069 | 30
50
•40
15 | 1.5
1.5
-
- | *30 - 120
*20 - 80
*30-120
*40-120 | †.0002
†.0002
.025
0.00005 | 0.2
0.2
0.7
0.25 | 46
46
46
18 | GI
TI | | | 2N3251A
2N3647
2N3510
2N3714
2N3511 | MO
MO
MO
MO | pnp, AE, si
pnp, EA, si
npn, EA, si
npn, si
npn, EA, si | *300
*350
*350
*400
*450 | 1.2
2.0
1.2
150
1.2 | 200
200
200
200
200
200 | 0. 0069
0. 011
0. 0069
.857
0. 0069 | 60
10
10
80
15 | 0. 2
0. 50
0. 50
10
0. 50 | *100-300
*25-150
*25-150
*25-90
*30-120 | † 0. 00002
† 0. 000025
† 0. 000025
†1. 0
† 0. 000025 | 0.4 | 18
46
52
3
52 | | | HL 23 | 2N3648
2N3227
2N3055
2N3470
2N3471 | MO
MO
RCA
WH
WH | npn, EA, si
npn,AE,si
npn,si
npn,AJ,si
npn,AJ,si | *450
*500
*500
*500
*500 | 2.0
1.2
115
150
150 | 200
200
200
150
150 | 0.011
0.0069
0.657
2
2 | 15
20
60
*50
*100 | 0.50
-
15
10
10 | *30-120
*100-300
*20 - 70
*100
*100 | †0.000025
0.0002
†5
10 | 0. 4
0.25
1.1
2.2
2.2 | 46
18
3
-
- | † Icev, MO | | | 2N3472
2N3473
2N3474
2N3475
2N3476 | WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | *500
*500
*500
*500
*500 | 150
150
150
150
150 | 150
150
150
150
150 | 2
2
2
2
2
2 | *150
*200
*50
*100
*150 | 10
10
10
10
10 | *100
*100
*400
*400
*400 | 10
10
10
10
10 | 2.2
2.2
2.2
2.2
2.2
2.2 | - | | | HL 24 | 2N3477
2N3508
2N3509
2N3013
2N3014 | WH
MO
MO
FA
FA | npn,AJ,si
npn,EA,si
npn,EA,si
npn,PE,si
npn,PE,si | *500
*500
*500
*550
*550 | 150
2.0
2.0
1.2
1.2 | 150
200
200
200
200
200 | 2
0.011
0.011
0.00685
0.00685 | *200
20
20
15
20 | 10
-
-
-
- | *400
*40-120
*100-300
*60
*60 | 10
0.0002
0.0002
40
40 | 2.2
0.25
0.25
0.16 | -
46
46
52
52 | TI
TI | | | 2N3424
2N3546
2N3054
156-04
156-06 | FA
MO
RCA
WH
WH | npn, PE, si
pnp,EA,si
npn, si
npn,DJ,si
npn,DJ,si | *600
*700
*1000
*1000
*1000 | 1.2
1.2
25
120
120 | 200
200
200
200
200
200 | 0. 29
0. 0069
0. 143
0.68
0.68 | 15
12
55
40
60 | .050
-
4
8
8 | *20-200
*30-120
*25-100
*15
*15 | 0.000010
0.000010
1.0
20
20 | 0. 4
0.15
1. 0
1.0
1.0 | -
18
66
3
3 | | | HL 25 | 156-08
156-10
0C80
0C22
0C23 | WH
WH
AMP
AMP | npn,DJ,si
npn,DJ,si
pnp,PADT,ge
pnp,PADT,ge
pnp,PADT,ge | *1000
*1000
2000
2500
2500 | 120
120
.55
15
16 | 200
200
75
75
75 | 0.68
0.68
-
.333
.333 | 80
100
*32
32
40 | 8
8
0.3
1 | *15
*15
180
*200
*200 | 20
20
.01
.03
.03 | 1.0
1.0
-
- | 3
3
1
3
3 | | | | 0C24
2N551
2N552
2N1055
2N1212 | AMP
TR
TR
TR
TR | pnp,PADT,ge
npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si | 2500
3000
3000
3000
3000 | 15
3
3
3
85 | 75
175
175
175
175 | .333
.025
.025
.025
.025
.485 | 32
60
30
100
60 | 1
.2
.2
.2
.2
5 | *200
*20-80
*20-80
*20-80
*12-36 | .03
.015
.015
.015 | -
-
2
5 | 3
5
5
5 | CDC, STC, SSP
CDC, STC
SSP
STC, TI | | HL 26 | 2N1620
2N545
2N546
2N547
2N548 | TR
TR
TR
TR
TR | npn,PL,si
npn,PL,si
npn,PL,si
pnp,PL,si
npn,PL,si | 3000
4000
4000
4000
4000 | 60
5
5
5
5 | 175
175
175
175
175 | .40
.045
.045
.045
.045 | *100
60
30
60
30 | 5
.8
.8
.8 | *15-75
*15-80
*15-80
*20-80
*20-80 | 10
.015
.015
.015
.015 | - | 53
5
5
5
5
5 | SSP, TI
SSP, TI
CDC, STC, SSP, TI
CDC, STC, SSP, TI | | | 2N549
2N550
2N1117
2N3713
2N3715 | TR
TR
TR
MO
MO |
npn,PL,si
npn,PL,si
npn,PL,si
npn,si
npn,si | 4000
4000
4000
• 4000
• 4000 | 5
5
5
150
150 | 175
175
175
200
200 | .045
.045
.045
.857
.857 | 60
30
60
60
60 | .8
.8
.8
10 | *20-80
*20-80
*40-150
*25 - 90
*50 - 150 | .015
.015
.015
†1.0
†1.0 | -
4
1.0
1.0 | 5
-
5
3
3 | CDC, STC, SSP, TI
CDC, STC, TI
STC, CDC, SSP, TI | | HL 27 | 2N3716
2N3740
2N3741
2N1116
2N3738 | MO
MO
MO
TR
MO | npn,si
pnp,si
pnp, si
npn,PL,si
npn,si | *4000
*4000
*4000
6000
*15,000 | 150
25
25
25
5
20 | 200
200
200
175
175 | .857
.143
.143
.045
.133 | 80
60
80
60
225 | 10
1
1
.8
.250 | *50 - 150
*30 - 100
*30 - 100
*40-150
*40 - 200 | †1.0
0.1
0.1
.015
0.1 | 1.0
0.6
0.6
5
2.5 | 3
66
66
5
66 | STC, CDC, SSP, TI | | | 2N3739
2N3766
2N3767
2N1983
2N1984 | MO
MO
MO
FA
FA | npn,si
npn,si
npn,si
npn,DD,si
npn,DD,si | *15,000
*15,000
*15,000
*30000
*30000 | 20
20
20
20
2 | 175
175
175
150
150 | .133
.133
.133
0.016
0.016 | 300
60
80
25
25 | .250
1
1
-
- | *40 - 200
*40 - 160
*40 - 160
100
80 | 0.1
0.1
0.1
0.001
0.001 | 2.5
2.5
2.5
0.25
0.25 | 66
66
66
5 | TRWS, CDC, AMP. AL
TRWS, CDC, AMP. AL | | HL 28 | 2N1985
2N698 | FA
FA | npn,DP,si
npn,DP,si | *30000
*40000 | 2 3 | 150
200 | 0.016
0.0172 | 25
60 | - | 60
*40 | 0.001 | 0.25 | 5 5 | TRWS, CDC, AMP, AL
TRWS, TR, GI, | | | 2N2852
2N2856 | SSP | npn,PE,si
npn,PE,si | *40000
*40000 | 5 5 | 200
200 | 0.005
0.005 | *100
*60 | 5 5 | *45
45 | 0.001
0.001 | 0.2
0.2 | 5 5 | AMP, CDC
TI
TI | ## High-Level (continued) | | | | | | | - | MAX. RATING | SS | | CHAR | ACTERIST | cs | | | |-----------------------|---|-------------------------------|---|---|---------------------------------------|--|--|--------------------------------------|----------------------------------|--|---|------------------------------------|-----------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Type | fae
*fT
(kHz) | P _c (W) | Т _ј
(°С) | w/°c | VCE0
*VCB0
(V) | ¹ с
(А) | h _{fe} *hFE | ICO
*ICEO
*ICEX
(mA) | V _{ce(sat)} | Package
Outline
(TO-) | Remarks | | | 2N1899
2N1901
2N1902
2N1904
2N1978 | TRWS
TRWS
TRWS
TRWS | npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si
npn,DP,si | *50000
*50000
*50000
*50000
*50000 | 125
125
125
125
125
30 | 150
150
150
150
200 | 1
1
1
1
0.172 | *140
*140
*140
*140
*160 | 10
10
10
10 | *10-30
*20-60
*10-30
*20-60
*30 | 10
10
10
10
10
0.001 | 1.0
1.0
1.0
1.0
1.0 | - | | | HL 29 | 2N 1986
2N 1987 | FA
FA | npn,DD,si
npn,DD,si | *50000
*50000 | 2 2 | 150
150 | 0.016
0.016 | 25
25 | - | 150
50 | 0.001
0.001 | 0.4 | 5
5 | TRWS, CDC, GI
AMP, AL
TRWS, CDC, GI,
AMP, AL | | | 2N 1988 | FA | npn,DD,si | *50000 | 2 | 150 | 0.016 | 45 | - | *75 | 0.001 | 1.5 | 5 | TRWS, CDC, GI. AL | | | 2N 1989
2N 1991
2N 3076 | FA
FA
TRWS | npn,DD,si
pnp,DD,si
npn,PL,si | *50000
*50000
*50000 | 2
2
125 | 150
150
150 | 0.016
0.016
1 | 45
*30
*140 | -
10 | *40
*30
*30-90 | 0.001
0.001
25 | 1.5
1.2
1.0 | 5 5 * | TRWS, CDC, GI, AL
TRWS, KSC, TR. MO
Single Ended
*MT-38 Case | | HL 30 | 2N717
2N719 | FA
FA | npn,DD,si | *60000 | 1.5 | 175 | 0.010 | *60 | - | *40 | 0,001 | 0.7
2.5 | 18 | TRWS, CDC. TR. GI
AMP, NA
TRWS, CDC, TR, GI | | | 2N719A
2N720A | FA
FA | npn,DP,si | *60000 | 1.8 | 200 | 0.0103 | *120 | - | *40 | .000005 | 0.8 | 18 | TRWS, CDC, AMP,
AL, GI, TR
TRWS, CDC, GI,
AMP, AL, NA, TR, RCA | | | 2N721
2N909
2N912
2N978
2N2850 | FA
FA
FA
FA
SSP | pnp,DD,si
npn,DD,si
npn,DP,si
pnp,DD,si
npn,PE,si | *60000
*60000
*60000
*60000
*60000 | 1.5
1.5
1.8
1.25
5 | 175
175
200
150
200 | 0.010
0.010
0.0103
0.010
0.005 | 35
*60
60
20
*100 | -
-
-
-
5 | *60
*250
45
*30
*85 | 0.001
.00001
.000005
.001 | 1.0
0.3
0.16
1.3
0.15 | 18
18
18
18
5 | KSC, TR
TRWS, AMP
TRWS, AMP, AL
TR | | HL 31 | 2N2851
2N2853
2N2855
2N1972
2N1975 | SSP
SSP
SSP
FA
FA | npn,PE,si
npn,PE,si
npn,PE,si
npn,DD,si
npn,DP,si | *60000
*60000
*60000
*60000 | 5
5
5
2
3 | 200
200
200
175
200 | 0.005
0.005
0.005
0.010
0.0172 | *100
*60
60
*60
60 | 5
5
5
- | *85
*85
85
*250
45 | 0,001
0,001
.0001
.00005 | 0.2
1.0
0.2
0.4
0.16 | 5
5
5
5 | AMP, TR, TRWS
TRWS, CDC, AMP. | | | 2N3117
2N3719
2N3720
2N3879
2N911 | FA
MO
MO
RCA
FA | npn,DP,si
pnp,AE,si
pnp,AE,si
npn,si
npn,DP,si | *60000
*60,000
*60,000
*60,000
*70000 | 1.2
6
6
35
1.8 | 200
200
200
200
200
200 | 0.00685
.034
.034
0.2
0.0103 | 60
40
60
75
60 | -
3
3
10(peak) | *300
*25 - 180
*25 - 180
*20 - 80
70 | .00001
.01
.01
*5
.00005 | 0.3
0.75
0.75
1.2
0.13 | 18
5
5
66
18 | UC
TRWS, AMP. AL | | HL 32 | 2N1131
2N1974
2N696
2N699 | FA
FA
FA | pns,CD,s;
npn,DP,si
npn,DD,si | *70000
*70000
*80000 | 2
3
2 | 175
200
175 | 0.0133
0.0172
0.0133
0.0133 | 35
60
*60
*120 | 600 | *30
70
*40
*80 | 0.001
.000005
.00001 | 1.0
0.13
- | 5
5
5 | KSC, TR.MO TRWS, CDC, AMP TRWS, TR, GI, AMP CDC.NA TRWS, SY, TR, CDC | | | 2N718
2N718A | FA
FA | npn .DD,si
npn,DP,si | *80000
*80000 | 1.5 | 175
200 | 0.010
0.0103 | *60
*75 | - | *75
*80 | .00001 | 0.7 | 18 | TRWS, CDC, SY, TR
GI, AMP, AL, NA, MO
CDC, MO, TR, GI, AMP,
AL, NA, RCA, MO, | | HL 33 | 2N720
2N870 | FA
FA | npn,DD,si | *80000 | 1.5 | 175 | 0.010 | *120 | - | *80
*75 | .001 | 2.5 | 18 | TRWS, CDC, TR, GI
AMP, AL, NA | | | 2N910
2N1252 | FA
FA | npn,DP,si
npn,DD,si | *80000
*80000
*80000 | 1.8
1.8
2 | 200
200
175 | 0.0103
0.0103
0.0133 | 60
60
*30 | - | 140
*35 | .00004
.00005
.0001 | 0.6
-0.13
0.6 | 18
18
5 | GI, AMP, AL
TRWS, AMP, AL
SY, AL, NA | | | 2N1613
2N1973
2N2849
2N2854 | FA
SSP
SSP | npn,DP,si
npn,DP,si
npn,PE,si
npn,PE,si | *80000
*80000
*80000
*80000 | 3 5 5 5 | 200
200
200
200 | 0.0172
0.00456
0.005
0.005 | *75
60
*100
*60 | -
5
5 | ^80
140
*150
*150 | .00003
.0005
-
0.001 | 0.6
0.13
0.2
0.2 | 5
5
5
5 | TRWS, CDC: MO. TR. AMP, RCA TRWS, CDC, AMP, | | HL 34 | 2N3919
2N3920
2N3108
2N3110
2N722 | FA
FA
FA
FA | npn,DPE,si
npn,DPE,si
npn,DP,si
npn,DP,si
pnp,DD,si | 80000
80000
*86000
*86000
*90000 | 15
15
5
5
1.5 | 150
150
200
200
175 | .200
.200
0.0286
0.0286
0.010 | 60
60
60
40
35 | 2
2
-
.00001 | *40
*100
*70
*70
*50 | -
.0004
.0004
.001 | .6
.6
0.16
0.16 | 3
3
5
5 | KSC, MO, TR | | WI 25 | 2N 1132
2N 1838
2N 1839
2N 1840
2N871 | FA
TRWS
TRWS
TRWS | pnp,DD,si
npn,PL,si
npn,PL,si
npn,PL,si
npn,DP,si | *90000
*90000
*90000
*90000
*100000 | 2
2
2
2
2
1.8 | 175
175
175
175
175
200 | 0.0133
.013
.013
.013
0.0103 | 35
*45
*45
*25
60 | 0.6
0.50
0.50
0.50
- | *45
*40-150
*12-50
*10-100
*130 | .00001
.0015
.0015
0.30
.0004 | 1.0
1.4
1.4
1.4
0.35 | 5
5
5
5
18 | KSC, TR, MO
CDC
CDC
CDC
CDC
CDC, GI, AMP, AL | | HL 35 | 2N1420
2N1711 | FA
FA | npn,DD,si
npn,DP,si | *100000
*100000 | 2 | 175
200 | 0.0133
0.0172 | *60
*75 | - | *200
*130 | .00001 | 0.7
0.5 | 5 | TRWS, CDC, MO, TR
GI, NA, AMP
TRWS, CDC, MQ,
AMP, GI, AL, TR, NA
RCA | High-Level (continued) | | | | | | | М | AX. RATIN | IGS | | CHARA | CTERISTIC | S | | | |-----------------------|---|------------------------------|---|--|-------------------------------------|--|---|---------------------------------|-------------------------------------|---|---|--------------------------------------|-----------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
f _T
(kHz) | P _c (W) | т _ј
(°С) | w/°c | *VCEO
*VCBO
(V) | C
(A) | hfe
*hFE | ICO
*ICEO
†ICEX
(mA) | V _{ce(sat)}
(V) | Package
Outline
(TO-) | Remarks | | |
2N1893A
2N3053
2N1253
2N219A | TRWS
RCA
FA
GE | npn,PL,si
npn, si
npn,DD,si
npn,PE,si | *100000
*100,000
*110000
*130000 | 3
5
2
2.8 | 200
200
175
200 | .017
0.0286
0.0133
.016 | 80
40
*30
40 | 0.50
0.7
-
1 | *40-120
*50-250
*45
*100 - 300 | .0001
0, 00025
.0001 | 2.0
1.4
0.6
.25 | 5
5
5
5 | GI, TR, NA
AL, NA
GI, NA, CDC, FA, MO,
AL | | HL 36 | 2N2193A
2N2194A | GE
GE | npn,PE,si
npn,PE,si | *130000
*130000 | 2.8
2.8 | 200
200 | .016
.016 | 50
40 | 1 1 | *40-120
*20-60 | 10
1 | .25
.25 | 5
5 | CDC, GI, NA, MO, AL
CDC, GL NA FA
MO, AL | | | 2N2195A
2N2243A | GE
GE | npn,PE,si
npn,PE,si | *130000
*130000 | 2.8
2.8 | 200
200 | .016
0.16 | 25
80 | 1 | *20
*40-120 | 10 | .25
.25 | 5
5 | CDC, GI, MO, AL
GI, NA | | | - 2N2350A
2N2351A
2N2352A
2N2353A
2N2364A | GE
GE
GE
GE | npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si | *130000
*130000
*130000
*130000
*130000 | 5
5
5
5 | 200
200
200
200
200
200 | .0285
.0285
.0285
.0285
.0285 | 25
50
40
25
80 | 1
1
1
1 | *20
*40-120
*20-60
*20
*40-125 | 1
1
1
1 | 25
25
.25
25
25
.25 | 46
46
46
46
46 | NA
NA
NA
NA, CDC | | HL 37 | 2N 1837
2N 3763
2N 3765
2N 3762
2N 3764 | TRWS
MO
MO
MO
MO | npn,PL,si
pnp, AE,si
pnp, AE,si
pnp, AE,si
pnp, AE,si | *140000
*150,000
*150,000
*180,000
*180,000 | 2
4
2
4
2 | 175
200
200
200
200
200 | .013
.023
.011
.023
.011 | *80
60
60
40
40 | 0.50
1.5
1.5
1.5
1.5 | *40-120
*20 - 80
*20 - 80
*30 - 120
*30 - 120 | .0005
†.0001
†.0001
†.0001
†.0001 | 0.8
0.1
0.1
0.1
0.1 | 5
5
46
5
46 | CDC | | | BF140
BF155
2N947
2N3502
2N3503 | NUC
NUC
FA
FA
FA | npn,si
npn,si
npn,DP,si
pnp,PE,si
pnp,PE,si | *180 MHz
180 MHz
*250000
*250,000
*250,000 | 1
1
1.2
3.0
3.0 | 200
200
200
200 | -
0.0069
0.017
0.017 | *135
*155
*20
60
60 | -
0.1
.600
0.6 | *40
*40
*40
*70
*70 | 0.001
0.001
.0001
0.05
0.0000000 | -
0.3
0.5
07 0.5 | 5
5
18
5
5 | TI
TI | | HL 38 | 2N3505
2N915 | FA
FA | pnp, PE, si
npn, DP, si | *250,000
*300000 | 1.3
1.2 | 200
200 | 0.0023
0.0069 | 45
50 | 0.6 | *70
*100 | 0.0000000
.0005 | 0.5
0.8 | 18
18 | TI
TRWS, AMP, NA, MO,
AL | | | BSY18
BSY63 | SA
SA | npn,EP,PL,si
npn,EP,PL,si | *300,000
*300,000 | 1.0
1.0 | 200
200 | 0.007
0.007 | 12
*40 | 0. 2
0.2 | *40120
30120 | 0.000025
0.000025 | 0.25
0.4 | 18
18 | AL | | | 2N3512
2N708 | RCA
FA | npn, EP, si
npn, DP, si | 375,000
*400000 | 1.2 | 200
200 | 0.0069 | *60
15 | - | 80
*50 | 0.5
.0004 | 0. 28
0. 3 | 5
18 | SY, TR, GI, AMP
RCA, MO, FA, NA | | | 2N916
2N3299 | FA
FA | npn,DP,si
npn,PE,si | *400000
*400,000 | 1.2
3.0 | 200
200 | 0.0069
0.017 | 25
*30 | - | *100
*75 | .0005
0,000000 | 0.4 | 18
5 | TRWS, AMP, NA, MO | | HL 39 | 2N3300
2N3301
2N3302
BSY34
BSY58 | FA
FA
SA
SA | npn, PE, si
npn, PE, si
npn, PE, si
npn, EP, PL, si
npn, EP, PL, si | *400,000
*400,000
*400,000
*400,000
*400,000 | 3. 0
1. 8
1. 8
2.6
2. 6 | 200
200
200
200
200
200 | 0.017
0.010
0.010
0.016
0.016 | *30
*30
*30
40
25 | -
-
0.6
0.6 | *220
*75
*220
42
*42 | 0.0000002
0.0002
0.0002
0.00001
0.00012 | 0. 4
0. 4
0. 4
0. 3
0. 3 | 5
18
18
5
5 | | | | 2N2368
2N3209
2N2455
2N3423
2N2369 | FA
FA
SY
FA
FA | npn,PE,si
npn,PE,si
npn,EP,ge
npn,PE,si
npn,PE,si | *550000
*550000
600,000
*600,000
*650000 | 1.2
1.2
150
1.2
1.2 | 200
200
100
200
200 | 0.0685
0.00685
-
0.29
0.00685 | 15
20
•15
15
15 | 0.5
0.0002
200
.050
0.5 | *40
*75
*20-100
*20-200
*80 | .0001
.00002
2.0
0.000010
.0001 | 0.2
0.07
.19
0.4
0.2 | 18
18
18
- | TR, AL, SPR AL, NUC, SPR | | HL 40 | 2N3303
2N917
2N418
2N420
2N420A | FA
FA
BE
BE
BE | npn,PE,si
npn,DP,si
pnp,ge
pnp,ge
pnp,ge | *650000
*800000
-
-
- | 3.0
0.3
25
25
25
25 | 200
200
100
100
100 | 0.017
0.00171
0.5
0.5
0.5 | 12
15
-
-
- | 1.0
-
5
5
5 | *60
50
*40
*40
*40 | 0.1
.00005
1.0 | 0.18
0.4
-
- | 18
3
3
3 | MO
AL, TI, RCA, TRWS
KSC, ITT
ITT
ITT | | | 2N424A
2N637
2N637A
2N637B
2N638 | STC
BE
BE
BE
BE | npn
pnp,ge
pnp,ge
pnp,ge | | 85
25
25
25
25 | 200
100
100
100 | .483
0.5
0.5
0.5
- | 80
*25
*60
*60 | 3
5
5
5 | *12-60
*30-60
30-60
*30-60 | -
0.5
2-5
2-5 | .8-1.5
.5
.5 | 53
3
3
3 | STC, TR, BE
KSC
KSC
KSC
KSC | | HL 41 | 2N638A
2N638B
2N656
2N657 | BE
BE
TI
TI | -
npn,si
npn,si | | -
4
4 | -
200
200 | -
0.0228
0.0228 | -
60
100 | 1111 | -
*30
*30 | -
0.010
0.010 | 2111 | | KSC
KSC
TRWS, FA, TR, AMP,
TRWS, FA, TR, AMP,
CDC, STC, SSP | | WI 40 | 2N730
2N731
2N1011
2N1038
2N1039 | TI
TI
BE
TI | npn,si
npn,si
pnp,ge
pnp,ge
pnp,ge | | 0.5
0.5
35
20
20 | 175
175
95
100
100 | 3.33
3.33
0.5
0.267
0.267 | *60
*60
*80
*40
*60 | 1
1
5
3
3 | *20
*40
*35-75
*20
*20 | 1
1
5
0.125
0.125 | 1.5
1.5
1.5
0.25
0.25 | 18
18
3
- | TR
TR
MO, ITT
SY
SY | | HL 42 | 2N1040
2N1041
2N1046
2N1046A
2N1046B | TI
TI
TI
TI | pnp,ge
pnp,ge
pnp,ge
pnp,ge
pnp,ge | - | 20
20
30
50
50 | 100
100
100
100
100 | 0.267
0.267
0.400
1.0
1.0 | *80
*100
50
50
50 | 3
3
12
12
12 | *20
*20
*40
*40
*40 | 0.125
0.125
2.0
2.0
2.0 | 0.25
0.25
0.4
0.4
0.9 | 3 3 3 | SY
SY | (see pages 4-9 for explanation of company abbreviations.) May 17, 1966 91 ## High-Level (continued) | | | | | | | MA | X. RATIN | IGS | | CHARA | CTERISTI | CS | | | |-----------------------|---|----------------------------|--|---------------------------------|--|---------------------------------|---|--------------------------------|---------------------------------|--|-------------------------------|----------------------------------|-----------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Type | fae
+f _T
(kHz) | P c (W) | T _j (°C) | w/°c | *VCEO
*VCBO
(V) | l _C (A) | h _{fe}
"hFE | ICO
*ICEO
*ICEX
(mA) | V _{ce(sat)}
(V) | Package
Outline
(TO-) | Remarks | | | 2N1073
2N1073A
2N1073B
2N1208
2N1209 | BE
BE
BE
TR
TR | pnp,ge
pnp,ge
pnp,ge
npn,PL,si
npn,PL,si | - | 60
60
60
85
85 | 110
110
110
175
175 | 0.833
0.833
0.833
.485
.485 | *25
*60
*100
60
45 | 10
10
10
5
5 | *20-60
*20-60
*20-60
*15
*20-80 | 15
20
20
10
20 | 1
1
1
5
5 | 41
41
41
- | DE, MO
DE, MO
DE, MO
STC, TI
STC, TI | | HL 43 | 2N 1238
2N 1239
2N 1240
2N 1241
2N 1242 | HU
HU
HU
HU | pn p
pnp
pnp
pnp
pnp | | 1
1
1
1
1 | 160
160
160
160
160 | - | 15
15
35
35
60 | - | 20
40
20
40
20 | - | -
-
-
- | - | | | | 2N1243
2N1244
2N1990 | HU
HU
FA | pnp
pnp
npn,DD,si | - | 1
1
2 | 160
160
150 | -
-
0.016 | 60
110
*100 | -
1 | 40
20
*30 | -
-
0.001 | -
-
0,4 | -
-
5 | TRWS, CDC, GI,
AMP, AL, NUC | | | 2N2285 | BE | pnp.ge | - | 100 | 110 | 1.25 | 30 | 25 | *35-140 | 5 | - | 3 | AWIF, AL, NOC | | HL 44 | 2N2286
2N2287
2N2288
2N2289
2N2290 | BE
BE
BE
BE
BE | pnp,ge
pnp,ge
pnp,ge
pnp,ge
pnp,ge | | 100
100
60
60
60 | 110
110
110
110
110 | 1.25
1.25
0.833
0.833
0.833 | 60
80
*40
*80
*120 | 25
25
10
10 | *35-140
*35-140
*20-60
*20-60
*20-60 | 5
5
5
5
5 | -
-
-
- | 3
3
3
3
3 | | | | 2N2291
2N2292
2N2293
2N2294
2N2295 | BE
BE
BE
BE
BE | pnp,ge
pnp,ge
npn,ge
pnp,ge
pnp,ge | | 60
60
60
60 | 110
110
110
110
110 | 0.833
0.833
0.833
0.833
0.833 | 30
50
70
30
50 | 10
10
10
10 | 50-200
50-200
50-200
50-200
50-200 | 5
5
5
1 | - | 3
3
3
41
41 | | | HL 45 | 2N2296
2N2359
2N2358
2N2357
2N2389 | BE
BE
BE
BE
TI | pnp,ge
pnp,ge
pnp,ge
pnp,ge
npn,si | | 60
170
170
170
170
0.45 | 110
110
110
110
200 | 0.833
2
2
2
2
0.00257 | 70
30
60
80
*75 | 10
50
50
50
50 | 50-200
*30-90
*30-90
30-90
35 | 2
50
50
50
10 | -
-
-
1.5 | 41
41
41
-
50 | | | | 2N2390
2N2394
2N2395
2N2410
2N2411 |
TI
TI
TI
TI
TI | npn,si
pnp,si
npn,si
npn,si
pnp,si | 11111 | 0.45
0.45
0.45
0.8
0.3 | 200
175
200
200
200 | 0.00257
0.003
0.00257
0.00457
0.00172 | 30 | 0.5
0.3
0.3
0.8
0.1 | *100
30
*20
*30
*20 | 10
1
10
0.3
10 | 1.5
1.5
1.0
0.45
0.2 | 50
50
50
50
5 | SY, NA | | HL 46 | 2N2526
2N2527
2N2528
DTG1110 | MO
MO
MO
DE | pnp,AD,ge
pnp,AD,ge
pnp,AD,ge
pnp,PADT,ge | 1711 | 85
85
85
80 | 110
110
110
110 | 1.25
1.25
1.25
1.0 | 80
120
160
*200 | 10
10
10
15 | 2050
2050
2050
- | 3
3
3 | 0.8
0.8
0.8
0.5 | 3
3
3
3 | DE | ## CRYSTAL SUPPORTS: FRONT AND CENTER When you stop to realize that the crystal support is a required part of any semiconductor, you'll realize that it's more than coincidence that the leading semi-conductor manufacturers specify Stackpole crystal supports rather than manufacturing their own. You see, they know that a compatible coefficient of thermal expansion just isn't enough. They also need Stackpole's unique combination of good electrical conductivity, excellent thermal conductivity, and a surface finish which assures wetability. And they depend on the flat surfaces which Stackpole features to give them maximum contact and conductivity between the base and crystal. Get on this bandwagon...let Stackpole supply your guest conductors, too. Phone, wire or write Stackpole Carbon Company, Carbon Division, St. Marys, Pa. ### How, why and where to use FETs can be determined by referring to their parameters. Here's a detailed look at the meaning of these characteristics and how to apply them. What's so special about field-effects? How alike are the junction-FET and the metal-oxide semiconductor (MOS)? Where are they to be preferred over bipolar transistors? Which of their parameters indicate their suitability for specific In response to these questions, we have prepared a detailed examination which shows how to choose between different units in the FET family. It also offers guide lines for making the most effective use of field-effect devices in circuit design. It takes a long look at FET specifications, shows how and why they are measured and where each one is of prime importance. And finally, it explains the meaning of each parameter. This parameter-oriented analysis of field-effects - What's unique about them and how they work: - How to interpret and use the parameter specifications: - Which parameters govern their small-signal behavior; and - The difference in characteristics and applications of junction-FETs and MOSs. #### The basic properties of FETs The field-effect transistor (FET) has a number of important attributes that set it apart from other active semiconductor devices: extremely high input resistance, nearly constant current-output characteristics, an almost completely unilateral gain function, a controllable temperature coefficient, and voltage-controlled resistance when operated at low drain-source voltages. Many users think of the highly popular FET as a near-universal replacement for the vacuum tube. And indeed, its qualities are such that it does possess the dc characteristics of the pentode vacuum tube (Fig. 1a). Present limitations, however, generally restrict FET use to circuits operating below 500 MHz and at power levels less than a few hundred milliwatts. The FET is simplicity itself, consisting only of a conducting channel flanked by a pair of control electrodes (Fig. 1b). Source and drain connections are made to either end of the channel, and a gate connection is made to the control electrodes. The primary gate electrode may be a pn junction (junction-FET) or an insulated metal electrode (MOS-FET). The secondary gate electrode is a pn junction in any case. A voltage applied between gate and source (or gate and drain) modulates the crosssectional area of the channel, thus controlling channel resistance.1,2 #### Very high power gain is a FET feature The input resistance is that of a reverse-biased silicon pn junction (SiO2 insulated-metal electrode in MOS devices), and is measured in gigaohms (>1012 ohms for MOS) at dc. The FET is a voltage- or field-controlled device exhibiting very high power gain at low frequencies. Because neither load nor signal current crosses the gatechannel junction, there is almost perfect inputoutput isolation and unilateral gain. The closer you pare the differing FET properties, the more apparent becomes their suitability for various applications. Author Sherwin measures FET parameters on a MONITOR automatic FET/transistor test set. | Parameter | Test conditions (must be specified) | Mean of specification | Parameter | Test condi-
tions (must
be specified) | Meaning of specification | |-------------------|---|--|-----------|--|---| | BV _{GSS} | $I_{\rm G} \\ V_{\rm DS} = 0$ $I_{\rm G} \\ V_{\rm DS} = 0$ | Breakdown voltage from gate to channel. Drain and source are shorted, and a reverse bias is placed across the gate-channel junction. This is shown as the breakdown point where $V_{\rm GS} \approx BV_{\rm GSS}$. (Fig. 3) Identical to $BV_{\rm GSS}$. | less | $\begin{matrix} V_{\text{DS}} \\ V_{\text{DS}} \! = \! 0 \end{matrix}$ | Gate-channel leakage with $V_{DS}=0$. This represents total gate leakage current at a point below breakdown voltage (Fig. 3) Specified at $\frac{1}{2}$ to 1 times the minimum specified BV _{GSS} . When specified at min BV _{GSS} , l _{GSS} may replace the BV _{GSS} specification in that l _{GSS} is $<$ l _G in the BV _{GSS} specification. | | ВV _{GDO} | $l_s = 0$ | Breakdown voltage from gate to drain with source open. Under these conditions Vos \approx Vos(OFF) due to self-biasing required to prevent current flow from drain to source. | Ιραο | V _{DG}
. Is = 0 | Drain-to-gate leakage current with source open. As $V_{CS} \approx V_{CSCOFF}$ for reasons indicated under BV_{DCO} , $I_{CS} \neq 0$. Then $-I_{DCO} = I_{CD}$ [at specified V_{DC}] + I_{CS} [at $V_{CS} \approx V_{CSCOFF}$]. | | BV _{sgo} | I_s $I_D = 0$ | Breakdown voltage from gate to source with drain open. $V_{\text{QD}} \approx V_{\text{QD}(\text{OFF})}$. | | | See Fig. 4 for a comparison of loss, loso, lsco, and loopers. loso is representative of lo un- | | BVnss
BVngs | $V_{\text{GS}} = 0$ | Breakdown from drain to source with $V_{\rm GS}\!=\!0$. This is normally specified for Type-C MOS devices. It represents | | | der worst probable operating conditions when $V_{\rm GS} = V_{\rm GS(OFF)}$ and $V_{\rm DG} = {\rm maximum}$ allowable. | | | | breakdown from drain to substrate. | Isgo | V_{8G} $I_D = 0$ | Source-to-gate leakage current with drain open. Note | | BVD8X | I _D
V _{GS} | Breakdown from drain to source with $V_{GS} \neq 0$. Nor- | | | that $-I_{SGO} = I_{GS}$ at $[V_{DG}] + I_{GD}$ at $[V_{GD} \approx V_{GD(GFP)}]$. | | | | mally specified only for Type-B MOS devices when $V_{\rm GS} > V_{\rm GS(OFF)}$. It represents breakdown from drain to substrate. | la | V_{DS} or V_{DG} V_{GS} | Gate leakage current under certain operating conditions. In is usually somewhat lower than IDEO since IDEO is the limiting case of Ic. | 1. FET output characteristics resemble those of the pentode (a). Construction (b) shows how voltage applied between the gate and source terminals modulates channel resistance. | Parameter | Test condi-
tions (must
be specified) | Meaning of specification | Parameter | Test conditions (must be specified) | Meaning of specification | |-----------------------|--|--|---|--|---| | lDSS | $\begin{matrix} V_{\text{D8}} \\ V_{\text{G8}} = 0 \end{matrix}$ | Drain saturation current, the value of I _D measured above the knee of the V _{DS} ·I _D charac- | V ₁₁ , V _{G1S(OFF)} | $\begin{array}{l} V_{\text{DS}} \\ I_{\text{D}} \\ V_{\text{G2S}} = 0 \end{array}$ | Gate 1 cut-off voltage for tetrodes. | | | | teristic curve, where $V_{DS} > V_{P}$ (Fig. 1). I_{DSS} is actually defined as I_{D} at the V_{DS} required for channel pinch-off | VP2, VG2S(OFF) | $\begin{array}{l} V_{\mathrm{DS}} \\ I_{\mathrm{D}} \\ V_{\mathrm{G1S}} = 0 \end{array}$ | Gate 2 cut-off voltage for tetrodes. | | | | when the two gate-channel-
junction depletion regions
meet near the drain. ⁶ V _{GS}
must be zero. At this point
I _D is self-limiting, and any | V _{G8(th)} | V _D 8 | Gate-threshold voltage. Gate-source voltage required to initiate channel conduction in Type-C MOS
devices (Fig. 5b). | | | | increase in V _{DS} causes only slight increase in I _{D.7} In Type-C MOS devices, I _{DSS} is essentially the drain-substrate leakage plus any residual drain-source channel current. | V _{G8} (r-t) | $\begin{array}{l} V_{\rm D8} \\ I_0 \\ V_{\rm G28} = 0 \end{array}$ | Gate-to-gate reach-through voltage. Found in tetrodes only. This is the point at which gate current flows from gate to gate. Measured with $V_{\rm G2S}=0$, hence the subscript $GS(r\cdot t)$ rather than | | D(ON) | V _{G8} | Drain current under specified bias conditions. Specified for Type-B and Type-C MOS devices as a max intended op- | V _{GS} | V _{D8} | G1G2(r-t). Gate-source voltage at any given operating point. | | | | erating drain current when Vos is biased for max channel conduction. | V _{GSX} | V_{DS} or V_{DG} | Same as $V_{\rm GS}$ but a particular set of operating conditions is implied. | | l _D x | V_{DS} or V_{DG} V_{GS} | Drain-source current under certain specified operating conditions. Same as I _D but a particular | V _{G8z} | V_{DS} or V_{DG} | Same as $V_{\rm GSX}$ but often used to denote $V_{\rm GS}$ for zero temperature coefficient operation. | | | V _{GS} | set of operating conditions is implied. | $ V_{GS_1}\text{-}V_{GS_2} $ | V_{DG} Is or ID | Magnitude of gate-to-gate dif-
ferential offset voltage in dif- | | lυz | $V_{\rm DS}$ or $V_{\rm DG}$ | Same as I _{DX} but often used to denote drain current for zero temperature-coefficient operation. | $\triangle V_{SG1}\text{-}V_{GS2} $ | V _{DG}
Is or I _D | ferential (matched) pairs. Change in $ V_{\rm GS1}-V_{\rm GS2} $ over given temperature range. | | D(OFF) | V _{D8}
V _{G8} | Drain-gate leakage current with Vos > Vos(OFF). This | $\frac{\triangle \left V_{GS_1}\text{-}V_{GS_2} \right }{\triangle T}$ | TA1 & TA2 | Incremental change in $ V_{GS1}-V_{GS2} $ expressed in $\mu V/^{\circ}C$. | | | | represents the drain current observed in an analog-gate circuit which has been biased to the OFF state. IDIOFED | | $\begin{array}{l} V_{\rm D8} \\ V_{\rm G8} = 0 \end{array}$ | Match in $I_{\rm DSS}$ of differential pairs, expressed as a fraction. | | W | V | is slightly lower than lpgo (Fig. 7a). | | V _{DS} & V _{GS}
V _{DG} or & I _D
T _A | Magnitude of match in lo for differential pairs. Usually specified at an elevated tem- | | V _{GS} (OFF) | V _{DS}
I _D | Gate cut-off voltage. Gate-
source voltage required to
cut-off channel current (Fig. | r _{ds(on)} | l _D | perature near 100°C. Static drain-source resist- | | V _P | | 5b). Pinch-off voltage, interchangeable with VGR(OFF). | | V _{DS} &/or
V _{GS} | ance when biased to full ON condition (maximum operating I_D). | The output resistance is that of a current-limited device when operating with drain-gate voltages of more than a few volts, as shown by the flat section of the output-characteristic curves in Fig. 1a. Magnitude of output conductance ranges from 1 to 100 μ mhos, depending on device geometry. When operating at very low values of drain-source voltage, the FET behaves as a voltage-controlled resistor. The output-characteristic curves drawn in Fig. 2a for a low value of applied V_{DS} retain the same slope crossing through the origin. Thus, r_{ds} exhibits a bidirectional characteristic for low V_{DS} values of either polarity.8 The temperature dependence of drain current is the combined effect of a negative temperature coefficient due to the majority carrier mobility and a positive temperature coefficient due to the change in gate-channel depletion-layer potential. (As the depletion region narrows with increasing temperature, thus increasing the channel cross-section, a positive temperature coefficient of drain current results). The two temperature-dependent effects tend to cancel and, at a specific value of I_D or V_{GS} , a zero temperature coefficient exists. The effect is shown on the transfer curves of Fig. 2b.^{4,5} #### Breaking the specification dilemma Despite wide use of field-effect units, a number of their parameter specifications are still not 2. A voltage-controlled-resistance property exists in FETs; it is bidirectional and is limited to the low-level region of V_{D8} (a). A zero temperature coefficient, exhibited by most FETs, can be seen on the transfer curve (point 0 on b). clearly understood. FET data sheet specifications may also seem confusing to some who have worked only with bipolar transistors. Since a proper grasp of the parameters is essential, those likely to be encountered will be explained. Table 1 contains both the definitions and the necessary test conditions. Some of the parameters are self-explanatory; others become clearer if a schematic or characteristic curve is provided (see Figs. 3-6. Note that leakage effects are included.^{6,7}). The small-signal characteristics of FETs and MOSs involve admittance, transconductance, capacitance and resistance terms (Table 2). FET operation here is typified by biasing so that the largest ac signal to be amplified is small in comparison to the dc bias current and voltage. Equally interesting are the response times and equivalent-noise parameters, the most important of which are presented in Table 3. #### The distinction between FET and MOS The MOS or insulated-gate FET differs from the junction-FET in that the primary gate of the MOS is a metal electrode electrically isolated from the channel by an oxide. This gives it its name, metal-oxide-semiconductor (MOS) or insulated-gate field-effect transistor (IGFET). The generalized structure of the MOS is shown in Fig. 7. A p-type substrate is used for an n-channel MOS. Into the substrate are diffused two separate N+ regions: these become the source and drain connections. Next, an oxide layer is grown over the entire surface. Holes are then etched through the oxide layer over the N+ regions. Finally, a metal pattern is deposited on the surface allowing metal contact through to the source and drain connections. The metal region over the oxide spanning the two N+ regions is the gate electrode. There is no conducting channel from source to drain. This process produces a normally-OFF or enhancement-mode MOS, which will not conduct until a positive control signal is applied to the gate. Fig. 8 shows the effect of a positive gate potential applied with respect to the channel. Owing to the electrostatic field created, a redistribution of the minority carriers in the p-type substrate occurs. This results in the formation of an n-type resistive channel between source and drain. As the gate potential is increased, the channel carrier concentration and induced-channel depth increase to form a lower resistance channel. Thus, the electric field at the gate creates and controls the resistance of a conducting channel between source and drain. This device is now being described on data sheets as a Type-C Field-Effect Transistor, an enhancement-type device, according to EIA JEDEC type registration procedures. It may be conveniently described as a normally-OFF device. A second type of MOS is the normally-ON or depletion-mode MOS (Fig. 9). This is similar to the device in Fig. 7 except that a conducting channel exists from source to drain in the absence of a gate voltage. A negative gate voltage depletes the channel of carriers, and a positive gate voltage enhances the channel or increases the number of carriers. This device may therefore operate in either the depletion or enhancement mode. Data sheets refer to this device as a Type-B, a depletion unit intended for both enhancement-mode and depletion-mode operation. The junction field-effect transistor (JFET or just plain FET) is referred to as Type-A, a depletion-type device only for depletion-mode operation. Operation of the three devices is made appar- Table 2. Small Signal Characteristics of FETS | Parameter | Test Condi-
tions (must
be specified) | Meaning of specification | Parameter | Test Conditions (must be specified) | Meaning of specification | |------------------|---|--|---------------------|---|--| | rds (on) | V _{GS} | Drain-to-source resistance | gis | | Same as giss. | | y _t , | V _{D8} = 0 or I ₈ frequency | when biased to full ON condition (max operating I _D). Magnitude of common-source | goss | | Common-source output conductance with input shorted. | | | | forward transfer admittance. Sometimes the magnitude signs are omitted. Measured at $V_{\rm GS} = 0$, unless otherwise | RE y _{oss} | V _{DS} & V _{GS}
V _{DG} & I _D | Real part of yoss. Identically equal to goss. Sometimes used instead of goss. | | ge= | | specified. Magnitude of common-source forward transfer conductance. Sometimes the magnitude circum are specified. This | gos
Im yoss | $v_{gs} = 0$ frequency | Same as g_{oss} . Imaginary part of y_{oss} . Output susceptance b_{oss} . Identically equal to $1/\omega C_{oss}$. Sometimes used in lieu of C_{oss} . | | | | tude signs are omitted. This is perhaps a more informative term than y_{rs} . At 1kHz, $y_{rs} \approx g_{rs}$. However, at high | Ctes | V _{D8}
V _{O8} | Common-source input capacitance, output shorted. $C_{100} = C_{dg} + C_{g0}$. (Fig. 6). | | | | frequencies y _{fs} includes the effect of gate-drain capacity, | Cia | v _{ds} =0
frequency | Same as C_{los} if $v_{ds} = 0$. | | | | hence may be misleadingly | Cgas | | Same as C ₁₈₈ . | | | | high. The term grs should be used for all
high-frequen- | Cres | V _{D8} | Reverse transfer capacitance, input shorted. | | | | cy measurements. | Crs | $V_{G8} = 0$ | Same as Crss. | | gfsz | V _{DS} & V _{GS} or V _{DG} & I _D | Same as g _{rs} but a particular set of operating conditions is implied. | Cdg | frequency | Same as Crss, actual value of drain-gate capacitance. | | gts1
gts2 | frequency | Match in grs for differential pairs. Expressed as a frac- | Cge | Values in equivalent | Actual value of gate-capacitance. | | gran
gran | | tion. Match in g_{rsx} for differential pairs. | Cds | circuit not
measurable
directly. | Actual value of drain-source capacitance, essentially header capacitance. | | grez | | Same as g_{fsx} but often used to denote g_{fs} when biased for zero temperature coefficient operation. | Coss | V _{D8}
V _{G8} | Common-source output capacitance, input shorted. $C_{\text{oss}} = C_{\text{rss}} + C_{\text{ds}}$. However, C_{ds} is essentially header capaci- | | g _m | | Mutual conductance. Sometimes used in lieu of gre. | Com | v _{gs} = 0
frequency | tance. Same as C_{oss} if $v_{gs} = 0$. | | g _{mo} | | Same as g _m , but specifically | Cdga | | Same as Coss. | | Утвя | | at $V_{\rm OS}\!=\!0$. Common-source input admittance with output shorted. Important for high-frequency operation. | Caga | $\begin{array}{l} V_{\rm D8} \\ V_{\rm O8} \\ v_{\rm dg} \! = \! 0 \\ \text{frequency} \end{array}$ | Source-to-gate capacitance, gate and drain shorted. $C_{\text{sgs}} = C_{\text{gs}} + C_{\text{ds}}$. | | gles | $\begin{array}{l} V_{D8} \\ V_{G8} \\ v_{ds} \! = \! 0 \end{array}$ | Common-source input conductance with output shorted. This must be specified for high-frequency applications as $g_{1s} \propto 1/\omega^2$. | Cdgn | V_{DG} V_{GS} or $I_S = 0$ $I_s = 0$ frequency | D rain-to-gate capacitance with source open. $C_{\rm dgo}{=}C_{\rm rss}$ $+\frac{C_{\rm gs}}{C_{\rm gs}{+}C_{\rm ds}}{>}C_{\rm rss}$, cut ${<}C_{\rm dgs}$. | | Relyiss | | Real part of y _{1.55} . Identically equal to g _{1.55} . Sometimes used instead of g _{1.55} . | Cago | V_{DS} or $I_D = 0$ $i_d = 0$ frequency | $ \begin{array}{llllllllllllllllllllllllllllllllllll$ | ent by the Type-A, -B, and -C gate-to-drain transfer characteristics (see Fig. 5b). #### Gate control separates MOS from FET Construction differences between the MOS and FET result in some fairly significant differences in electrical characteristics, including bidirectional gate control, gate current, breakdown paths, do stability and noise. Bidirectional gate control, already described, is graphed in Fig. 5b. While FET gate input resistance decreases sharply when forward-biased more than a few tenths of a volt, the MOS gate may be biased to either polarity. As a result, MOS drain current is limited by dissipation and breakdown characteristics rather than by input-resistance considerations. The ON resistance of the depletion-type MOS may then be considerably decreased below that of the zero-bias state. Characterization of the MOS will include $r_{ds(on)}$ in an enhanced state at a given V_{os} , where $I_{D(ON)}$ is also specified. The Type-C enhancement-mode MOS is unique in the FET family because it is normally in an OFF state. I_{DSS} is a very low value, similar to $I_{D(OFF)}$ of Types A and B. A new term for Type-C devices only, gate-source threshold voltage $V_{GS(th)}$, describes the gate voltage at which drain current **Table 3. FET Performance Parameters** | Parameter | Test conditions (must be specified) | Mean of specification | |-------------|--|---| | tdelay(on) | V _{DD}
ID(ON)
VG8(ON) | Delay time before turn on when pulsed from OFF to ON condition. | | trazi | V _{GS(OFF)} Test circuit Pulse rate | Fall time when pulsed from OFF to ON condition. | | tdelay(off) | Input pulse character-
istics | Delay time before turn off when pulsed from ON to OFF condition. | | trise | Oscilloscope character-istics | Rise time when pulsed from ON to OFF condition. | | ton | 13(103 | trall+tdelay(on). | | torr | | trise+tdelsy(off). | | e. | V _{DS} V _{GS} or I _D frequency bandwidth | Common-source equivalent short-circuit input noise voltage. Measured at the output with the input shorted, and referred to the input. Expressed as rms volts per root cycle, $\mu V/\sqrt{Hz}$. A function of frequency, so frequency value must be stated. | | Ĭn | V _{D8}
V _{GS} or I _D
frequency
bandwidth | Common-source equivalent open-circuit input noise current. Expressed as pA/\sqrt{Hz} , a function of frequency. | | NF | V _{D8} V _{GS} or I _D R _{generator} frequency bandwidth | Noise figure. This represents a ratio between input signal to noise and output signal to noise. NF is a function both of frequency and of generator resistance Rs. Both must be stated or the specification is meaningless. When properly qualified, NF includes the effects of both en and in. | begins to increase. Except for a translation along the V_{GS} axis, $V_{GS(th)}$ is not unlike $V_{GS(OFF)}$ in Types A and B. In fact, the difference between Type-B and Type-C devices is a simple translation of the transfer curve along the V_{GS} axis (see Fig. 5a). Gate current of the MOS is predictably much less than that of the FET because of the insulating properties of the oxide layer. MOS and FET gate currents may be compared in much the same manner as the leakage of a ceramic dielectric capacitor may be compared to the reverse current of a signal diode. Whereas FET gate current exhibits a significant temperature and voltage dependence, the dc input resistance of the MOS gate is generally greater than 10¹² ohms under all operating conditions. #### A better understanding of breakdown The voltage breakdown characteristics of the MOS differ markedly from those of the FET. The FET exhibits an avalanche breakdown across the most highly stressed point (draingate) of the gate-channel diode junction. In tetrode devices (junction FETs with two gates), there is also a reach-through breakdown from gate to gate when the channel becomes depleted of majority carriers at gate bias levels approaching the cut-off 3. FET input gate characteristic shows the breakdown point where $V_{GS} \approx BV_{GSS}$ (see Table 1). Table 4. FET and MOS applications | Application | Preferred
MOS | device
FET | |----------------------------------|------------------|---------------| | Analog switch | X | Х | | Digital switch | X | | | General-purpose amplifier | | х | | Low-noise amplifier | | х | | High-frequency amplifier | X | х | | Differential amplifier | | х | | Low-drift single-ended amplifier | | x | voltage. Different values of reach-through voltage are observed on gates 1 and 2, which are of unequal resistivity. It is important to note that in tetrodes, where one gate (usually the substrate gate) has been internally connected to the source, it is impossible to measure I_{GSS} or BV_{GSS} at voltage levels above the gate-1 reach-through value. The MOS breakdown mechanisms are of a different nature. Take, for example, the enhancement of device. Breakdown from gate-to-source or gate-to-drain depends upon the thickness and quality of the insulating oxide. When the dielectric strength of the oxide is exceeded, breakdown occurs, puncturing the insulating layer. The breakdown is destructive in nature because a virtual short circuit occurs at the puncture point. This type of breakdown is quite common in dry climates when adequate handling precautions are not observed. For instance, a static electric potential of several thousand volts may easily build up on the gate from contact with nylon smocks. The gate then becomes permanently damaged. To avoid this, some manufacturers supply units with built-in Zener protection or with shorting clips across the gate-to-source junction. There is also a breakdown from source to drain 4. Leakage currents that flow in the FET are measured with these circuits (see Table 1). on the Type-C and Type-B units when either is biased to cut-off. In each case there is no channel connecting the source and drain which are isolated by the substrate. If the substrate is floating, two diodes appear back-to-back between source and drain. Drain-to-source breakdown (BV_{DSS}) occurs in either polarity across one or the other of these diodes. If a Type-B device is under consideration, BV_{DSS} is usually replaced by BV_{DSS} where the subscript X indicates some specific bias condition— $V_{GS} > V_{GS(OFF)}$ in this case. When the substrate is internally connected to the source, the breakdown takes place across the drain-substrate junction. A drain-source voltage greater than a few tenths of a volt of opposite polarity will cause forward conduction of the drain-substrate junction. This condition prevents use of the device in high-level, analog-switching circuits. #### FET more stable than MOS The dc stability of the MOS is inferior to that of the FET. Whereas, with the FET, the equivalent drift of V_{GS} is a predictable and repeatable function of temperature, that of the MOS is dependent upon temperature and/or V_{GS} history (recent past excursions). When a gate-channel voltage is applied to the MOS, there is a charge migration in the insulating oxide. When the bias is removed, the time required for restoration of equilibrium is a function of the bias applied, the length of time the bias had been applied, and the temperature both during biasing and after removal of bias. As these relationships are complex, it is impossible to predict residual gate field conditions accurately. The
effect of the disturbance in charge equilibrium is that a residual gate bias exists; this controls the channel as if a small but unknown gate voltage were present. The effect on drain current is that of an indeterminate translation of the gate-drain transfer-characteristic curve horizontally along the $V_{\rm GS}$ axis. High-voltage bias alone has some effect, but high-temperature storage by itself has no effect except to speed the return to equilibrium. The variation in drain current from normal may be less than one per cent after a period of low-voltage biasing at room temperature. It may rise to 30% after several hours of 10-volt biasing at 100°C. A specific bias point exists on FETs where the drain current exhibits a zero temperature coefficient. Such a point also exists for the MOS, except that a true zero temperature coefficient is rarely, if ever, observed. In MOSs, a zero t.c. exists only for a much smaller range of temperature variation. Bias stability has been observed to be no better than $\Delta |V_{GS}| \ 0 - \approx 10$ mV for a variation of $75\,^{\circ}\mathrm{C}$. This compares with $\Delta |V_{GS}| < 0.5$ mV over $\Delta T = 100\,^{\circ}\mathrm{C}$ for the FET. The noise performance of the MOS is also inferior to that of the FET, except perhaps at VHF and above. ¹⁰ A high level of excess noise is present at low frequencies, and is believed to be due to the relatively unprotected nature of the MOS channel surface. #### MOS forte is switching applications From the preceding discussion of electrical characteristics, it is apparent that the MOS is well suited for some, but not all, circuit applications. Table 4 serves as a guide to suitable FET and MOS applications. A listing in the table does not necessarily mean that the unlisted device is not suitable for the application, but that the listed device is preferred. Several manufacturers have developed multiple MOS arrays in digital integrated circuits. They have been acclaimed as a means of reducing size, cost and power consumption of digital computers. The MOS is very well suited to switching applications because, as the control voltage varies to turn the device ON, a voltage clamp is not required to prevent gate current flow. Considerable use of the MOS as an analog multiplexer gate may occur within the next few years. The capabilities of $I_{D(OFF)}$ less than 1 nA, $r_{ds(on)}$ less than 100 Ω , and the normally-OFF advantage are all-important in this application. It is necessary in these analog gating circuits for the MOS substrate to be isolated from source and drain so that the V_{DS} may be of either polarity. Consider the analog gate circuit of Fig. 10a which uses a connected-substrate MOS. Note that if a 5. Transfer characteristic (a) shows how key parameters V_P and $I_{D(OFF)}$ are measured (see Table 1). This is for a Type-A FET unit (depletion mode). All three FET types (depletion, depletion-enhancement (Type-B) and enhancement (Type-C) have unique transfer properties (b). Each governs device suitability for different applications. 6. The equivalent circuit of the FET is used in small-signal applications (see Table 2). 9. **Depletion-type MOS** is a normally-ON device. With zero gate potential, conducting channel from source to drain. 7. Starting with a p-type substrate (a), three additional steps are used in MOS construction. negative input signal were present, the drainsubstrate junction would become forward-biased, allowing signals to appear at the output even in the absence of a gate drive. In the circuit of Fig. 10b, an MOS with isolated-substrate is used. Here the substrate is biased more negative than the largest signal to be handled, thus preventing drain-substrate conduction. Another point of consideration in analog gate circuit design is the relationship between threshold voltage and signal voltage. With the gate at ground potential, a negative signal on the source is equivalent to a positive V_{GS} . Then, if the MOS in Fig. 10b is in its normally-OFF state, the $V_{GS(th)}$ must exceed the maximum peak-signal level. 8. An enhancement channel is formed in the MOS when a positive gate potential is applied. #### Low ON resistance a high point In digital switching applications, the MOS is the most promising device available. The desirable characteristics for this are low ON resistance, low capacitance, high switching speed, high input resistance, high threshold voltage, and a normally-OFF state. The Type-C MOS may be designed to meet all of these characteristics within reasonable limits. Low ON resistance increases switching speed and produces low $V_{DS(ON)}$ values. The latter term is equivalent except in magnitude to $V_{CE(sat)}$ of bipolar transistors. Low May 17, 1966 10. The MOS is well suited for analog-switching. A connected-substrate unit is an analog gate (a) for basic multiplexing. The isolated-substrate version blocks output signals (b) when the input goes negative. capacitance provides for increased switching speed. High input resistance yields a high fan-out capability. High threshold voltage produces good noise immunity. The normally-OFF state allows for simple direct-coupled operation with a single power supply. Combinations of normally-ON and normally-OFF MOS devices within a digital system are another intriguing possibility. The MOS is not specifically suitable as a general-purpose amplifier because of the drain current instability with bias and temperature. In applications where ambient temperature is moderate and some drift in operating point is tolerable, the normally-ON MOS may be useful. Audio-frequency applications would be limited to medium and/ or high-level signals, owing to the large amount of excess noise exhibited by present MOS devices at low frequencies. Because of its relatively inferior noise performance, the MOS is ill-suited as a low-frequency, low-noise amplifier. #### MOS is O.K. for RF amplification The MOS is also limited for use in dc amplifier circuits because of the instability problem already noted. The only possibility at present for this application would be when the MOS is biased near the zero temperature coefficient point. This use is limited only to dc amplifiers with moderate short-term drift performance requirements and a wide latitude on long-term drift performance. The instability restricts the MOS to laboratory uses allowing > 10-m V drift in V_{68} and military applications allowing >100-mV drift. The MOS does, however, show promise for use as an RF amplifier, particularly where the squarelaw transfer characteristic produces very low levels of cross-modulation. The low input conductance of the MOS makes it suitable for efficient operation to several hundred megahertz. And, although low-frequency noise is excessive, highfrequency noise may be of a sufficiently low magnitude to permit uhf operation with noise figures below 5 dB. FET applications are not exclusively limited to amplifiers. FETs are ideally suited to switching applications where the load resistance is high compared to channel resistance. The most important characteristics for each application are listed in Table 5. When referring to the FET tables (pp. 104 to 112), consult these key parameters. They are indices of the suitability of a device for a Table 5. FET applications | Application | | Characteristic Definition | |----------------------------------|--|--| | Analog
switch | Idh(On) LD(OFF) Cdgs/Caga | Series ON resistance
OFF leakage current | | | Or
Cago / Cago | Gate-channel capacitance | | Digital | rds (on) | ON resistance | | switch | V _{GS(th)} | Control voltage threshold | | | VGS(OFF)
t(on) + t(off) | Sum of rise, fall, and switch ing delay times | | General- | seal | Drain current at zero gate | | purpose
amplifier | grs
Vgs(Off) | bias Transconductance at zero gate bias Gate cut-off voltage | | Low-noise amplifier | e _n | Equivalent short-circuit input noise voltage | | | Īn | Equivalent open-circuit input noise current | | | NF
g _{ts} | Noise figure for a given source resistance Transconductance | | High-fre-
quency
amplifier | gra
Cras | Transconductance
Reverse transfer capacitance,
drain-to-gate
Input conductance at intend- | | | Ciss | ed operating frequency
Input capacitance | | Differential amplifier | $\frac{\triangle V_{GS1} - V_{GS2} }{\triangle T} \\ V_{GS1} - V_{GS2} $ | Differential input voltage drift with temperature Initial input offset voltage at 25°C | | | | Input current match at maximum operating temperature Transconductance under operating conditions Transconductance match under operating conditions | | Low-drift | DZ | Zero temperature coefficient drain current | | single-
ended
amplifier | graz
Io
Vosz | Transconductance at l _{D2} Gate current at l _{D2} Gate-source voltage at l _{D2} | particular application.* *A more detailed treatment of FET and MOS applications will be provided in a three-part follow-up design article appearing in the next 3 issues of ELECTRONIC DESIGN. 1. A. D. Evans, "Characteristics of Unipolar Field-Effect Transistors," *Electronic Industries*, March, 1963, p. 99. p. 99. 2. John D. Tomkins, "FET Terminology and Parameters," EDN, July, 1964, p. 48. 3. C. D. Todd, "FETs As Voltage Variable Resistors," ELECTRONIC DESIGN, Sept. 13, 1965, p. 66. 4. L. J. Sevin, "Effect of Temperature on FET Characteristics," Electro-Technology, April, 1964, p. 103. 5. L. L. Evans, "Biasing FETs for Zero DC Drift," Electro-Technology, Aug., 1964, p. 93. 6. W. Shockley, "A Unipolar Field-Effect Transistor," Proc. IRE. Nov., 1952, p. 1365. 6. W. Shockley, "A Unipolar Field-Effect Transistor," Proc. IRE, Nov., 1952, p. 1365. 7. Grosvaldt et al., "Physical Phenomenon Responsible 7.
Grosvaldt et al., "Physical Phenomenon Responsible for Saturation Current in Field-Effect Devices," Solid State Electronics, Jan.-Feb., 1963, p. 65. 8. Herman and Hapstein, "Metal-Oxide Semiconductor Field-Effect Transistor," Electronics, Nov. 30, 1964, p. 50. 9. Mitchell and Ditrick, "Stability Effects in MOS Enhancement Transistors," Solid State Design, Nov., 1965, 10. Jordan and Jordan, "Theory of Noise in MOS Devices," IEEE Transactions on Electron Devices, ED-XII No. 3 (March, 1965), 142. ## LESS DISTORTION WITH FETS the best performance from DC to 500 MHz **Cross-modulation distortion** in FM, TV, and communications receiver r-f stages is minimized by using devices with square-law transfer characteristics. A tube's power-law characteristic produces much less cross-modulation than the bipolar transistor with its exponential characteristic. The best answer of all is the FET, with its perfect square-law characteristic. Next time you're working on an r-f design, plug in one of the Siliconix 2N3821-24 series and measure the remarkable improvement. Harmonic distortion in low-frequency amplifiers comes from (A) a nonlinear transfer characteristic and (B) input impedance variations with signal level, resulting in nonlinear loading on the signal source. The latter problem is the major cause of distortion in bipolar transistor amplifiers lacking a constant-current drive. With the high input impedance FET the problem is eliminated. The curve shows that amplitude distortion increases as the FET's bias point is moved toward cutoff. The square-law transfer characteristic explains this effect. The whole distortion story is much longer, so we'd like to mail it to you. Circle the number on the card and you'll receive the undistorted viewpoint on low-distortion FETs. #### FRANCHISED DISTRIBUTORS ALA., HUNTSVILLE, Tec-Sel, Inc., 837-4541 • ARIZ., PHOENIX, Barnhill Associates, 959-2115 • CALIF., HOLLYWOOD, Hollywood Radio and Electronics, 464-8321 • LOS ANGELES, Kierulff Electronics Inc., 685-5511 • MENLO PARK, Hollywood Radio and Electronics, 322-3431 • SAN DIEGO, Kierulff Electronics Inc., 278-2112 • SAN JOSE, Weatherbie Industrial Electronics., Inc., 297-9550 • COLO., DENVER, Barnhill Associates, 934-5505 • CONN., HAMDEN, Cramer Electronics Inc., 288-7771 • FLA., WEST PALM BEACH, Perrott Associates, Inc., 647-3038 • ILL., CHICAGO, Semiconductor Specialists, Inc., 622-8860 • MD., BALTIMORE, Wholesale Radio Parts Co., Inc., 685-2134 • MASS., NEWTON, Cramer Electronics, Inc., 959-7700 • MICH., DEAR-BORN, Semiconductor Specialists, Inc., 584-5901 • MINN., MINNEAPOLIS, Semiconductor Specialists, Inc., 866-3435 • MO., ST. LOUIS, Semiconductor Specialists, Inc., 521-8866 • N. J., BERGENFIELD, Technical Electronics Distributors, Inc., 384-3633 • N. Y., BUFFALO, Summit Distributors, Inc., 884-3450 • NEW YORK CITY, Milgray, 989-1600 • SYRACUSE, Eastern Semiconductor Sales, Inc., 455-6641 • OHIO, DAYTON, Alpine Industries, Inc., 278-5861 • Semiconductor Specialists, Inc., 731-2050 • YORK, Wholesale Radio Parts Co., Inc., 758-5891 • TEX., DALLAS, Sterling Electronics, 519921 • HOUSTON, Lenert Company, 224-2663 • WASH., SEATTLE, Garretson Radio Supply, Inc., 682-8881 • WASH., D.C., HYATTSVILLE, MD., Milgray, 864-6330. CANADA: MONTREAL; Preloc Electronics, Ltd., 389-8051 • OTTAWA; Wackid Radio, Ltd., 232-3563 • TORONTO; Electro Sonic Supply Co., Ltd., 924-9251 ## Field-Effect Type 1(a). Analog-switching: Listed by descending order of $r_{ds(on)}$. | Cross
Index
Key | Type
No. | Mfr. | Channel,
Construction,
Class And
No. of Elements | ^r ds(an)
[Max.]
(ohms) | I _{D(off)}
[Max.]
(µA) | Cdgs or *Csgs or †Ciss [Max.] (pF) | BVGSS
or
*BVDSS
[Min.]
(volts) | VGS (off) *VGS(TH) [Max.] (volts) | 9fs
[MinMax.]
(µmhos) | IGSS
ar
*IDGO
[max.]
(nA) | I _{DSS}
(MinMax.,
(AA) | TO- | Alternate
Sources
and
Remarks | |-----------------------|--|-------------------------------|---|---|---|------------------------------------|--|-------------------------------------|--|---------------------------------------|---|----------------------------------|--| | FET 1 | K1504
2N3610
2N3376
2N3377
C6692 | KMC
GME
SI
SI
CT | p,M,4
p,M,4
p,DP,F,3
p,DP,F,3
n,EP,F,3 | 10000
3000
1500
1500
1500 | 10
-
0004
0004
1.0 | 4.5
0.6
3
2
5 | 25
* -20
30
30
25 | -8
*-7
5
5
6 | 800
150 (min)
-800-2300
800-2300
- | 0.05
0.0002
3
3
1.0 | .05
0.00001
-(0.6-6.0)
-(0.6-6.0) | 18
18
72
-
18 | Flat pack | | | 2N2497
2N3329
2N3460
D1185
D1303 | TI
TI
AL
DIC
DIC | p,DP,F,3
p,DP,F,3
n,DPE,F,3
n,DPE,F,3
n,DPE,F,3 | 1000
1000
1000
1000
1000 | 0.01
-
-
-
- | -
6
6 | -
-
50
40
25 | 15
5
2
2
2 | 1000-2000
1000-2000
1000-4500
1000-4500
1000-4500 | 10
10

- | 1-3
1-3
0.2-1
0.2-1
0.2-1 | 5
72
18
18
18 | DIC'21' NC | | FET 2 | DN X9
TIXS11
2N2498
2N3330
2N3378 | DIC
TI
TI
TI
SI | n,DPE,F,3
p,PL,M,3
p,DP,F,3
p,DP,F,3
p,DP,F,3 | 1000
1000
800
800
750 | -
0.01
0.01
-
0004 | 6 3 | 50
30
-
-
30 | 2
*3-6
15
6
5 | 1000-4500
800 (min)
1500-3000
1500-3000
1500-2300 | -
0.003
10
10
3 | 0.2-1
2-6
2-6
2-6
-(3-6) | 18
72
5
72
72 | SI, UC | | CCT 0 | 2N3379
2N3437
2N3459
C6690
C6691 | SI
DIC
DIC
CT
CT | p,DP,F,3
n,DPE,F,3
n,DPE,F,3
n,EP,F,3
n,EP,F,3 | 750
700
700
700
700
700 | 0004
-
1.0
1.0 | 2
6
6
5
5 | 30
50
50
30
25 | 5
4
4
10
10 | 1500-2300
1500-6000
1500-6000
- | 3
-
1.0
1.0 | -(3-6)
0.8-4
0.8-4
- | -
18
18
18
18 | Flat pack | | FET 3 | D1184
D1302
DNX8
2N2499
2N3331 | DIC
DIC
DIC
TI
TI | n,DPE,F,3
n,DPE,F,3
n,DPE,F,3
p,DP,F,3
p,DP,F,3 | 700
700
700
600
600 | | 6 6 - | 40
25
50
- | 4
4
4
15
8 | 1500-6000
1500-6000
1500-6000
2000-4000
2000-4000 | -
-
10
10 | 0.8-4
0.8-4
0.8-4
0.5-15
5-15 | 18
18
18
5
72 | | | | 2N3380
2N3381
2N3631
2N3436
2N3458 | SI
SI
SI
DIC
DIC | p,DP,F,3
p,DP,F,3
n,M,3
n,DPE,F,3
n,DPE,F,3 | 600
600
550
450
450 | 0005
0005
0001
- | 3
2
1.6
6 | 30
30
20
50
50 | 9.5
9.5
-6
8 | 1500-2300
1500-2300
1400-2800
2500-10,000
2500-10,000 | 3
3
-
-
0.25 | -(3-20)
-(3-20)
2-10
3-15
3-15 | 72
-
18
18
18 | Flat pack | | FET 4 | D1183
D1301
DNX7
M100
2N3382 | DIC
DIC
SI
SI | n,DPE,F,3
n,DPE,F,3
n,DPE,F,3
n,M,3
p,DP,F,3 | 450
450
450
350(typ)
300 | -
-
.001
002 | 6
6
- | 40
25
50
20
30 | 8
8
8
-5
5 | 2500-10,000
2500-10,000
2500-10,000
1000-2200
4500-12,500 | -
-
-
-
15 | 3-15
3-15
3-15
1.5-4.5
-(3-30) | 18
18
18
18
18
72 | | | | 2N3383
2N3608
2N3994
DE1004
M101 | SI
GME
TI
GME
SI | p,DP,F,3
p,M,4
p,D,4
n,M,3 | 300
300
300
300
300
(typ) | 002
-
1.2
- | 5
3
-
3.5
†7.5 | 30
• -30
25
• -20
20 | 5
*-6
1-5.5
*-8
-8 | 4500-12,500
800 (min)
4000-10,000
600 (min)
1500-3300 | 15
0.002
1.2
1000 | -(3-30)
0.00003 (max)
2 (min)
0.0001
4-12 | -
5
72
18
18 | Flat pack | | FET 5 | F10049
2N3824
UC401
2N3966
HA2010 | FA
TI
UC
AL
HU | p,DP,M,6
n,EP,F,3
p,F,3
n,DP,F3
p,M,4 | 270
250
250
250
220
200 | 0.001
0.1
.0001
0.001
1000 | 0.7
-
4
1.5 | 30
30
30
30
30
•-35 | -6
8
8
6.0
•5 | 2000 (min)

-
1000-2000 | -
0.1
0.1
0.1
0 | 1000
-
8 (min)
2 (min) | 72
72
72
18
72 | UC | | | U139D
2N3384
2N3385
2N3386
2N3993 | SI
SI
SI
TI | p,DP,F,6
p,DP,F,3
p,DP,F,3
p,DP,F,3
p,DP,F,3 | 200
180
180
150
150 | 002
002
002
0025
1.2 | 6
6
5
6 | 20
30
30
30
30
25 | 10
5
5
9.5
4-9.5 | 5000 (min)
7500-12,500
7500-12,500
7500-15,000
6000-12,000 | 10
15
15
15
15 | -(4-50)
-(15-30)
-(15-30)
-(15-50)
10 (min) | 5
72
-
72
72
72 | Dual
Flat pack | | FET 6 | TIS05
2N3387
U139
UC451
2N3972 | TI
SI
SI
UC
SI | p,DP,F,3
p,DP,F,3
p,DP,F,6
p,F,3
p,DPE,F,3 | 150
150
150
150
150 | 2
0025
0025
.00025
0.25 | 5
5
6
6
†25 | 25
30
30
25
40 | 10
9.5
7
6
-3 | 5000-12,000
7500-15,000
7000 (min)
- | 2
15
10
0.25
*0.25 | 10-45
-(15-50)
-(9-35)
3.75-37.5
5-30 | 72
-
5
18
18 | Flat pack
Dual | | | UC201
2N4093
CM600
UC251
TIXS42 | UC
AL
CT
UC
TI | n,F,3
n,DP,F,3
n,EP,F,3
n,F,3
n,EP,F,3 | 100
80
75
75
75 | .00025
.00002
3.0
.001 | 6
5.0
15
6 | 50
40
10
30
25 | 8
5.0
7
6
10 | -
10-30000
- | 0.25
0.2
3
1 | 15 (min)
8 (min)
-
7.5-75
10 (min) | 72
18
18
18
18 | | | FET 7 | 2N3971
TIXS33
U C450
2N4092
CM601 |
SI
TI
UC
AL
CT | n,DPE,F,3
n,EP,F,3
p,F,3
n,DP,F,3
n,EP,F,3 | 60
60
60
50
50 | .00025
1
.00025
.00002
.003 | †25
6
5.0
15 | 40
30
25
40
15 | -5
10
10
7.0
10 | 12000 (min)
-
-
10-30000 | *0.25
-
0.25
0.2
3 | 25-75
25 (min)
25-75
15 (min) | 18
72
18
18
18 | | #### Key to FET listings Definitions of parameters used appear in the article devoted to FET and MOS characteristics (pp. 94 to 102). In the column headed "Channel, construction, class and number of elements": channel refers to p or n type; classes F and M signify junction-FET and MOS-FET, respectively; construction is indicated by an abbreviated form of the manufacturing process (see page 20 for key to symbols); and number of elements designates the number of accessible leads on the package, e.g., 3 for FETs, 4 for tetrode FETs or MOSs, etc. | Cross
Index
Key | Type
No. | Mér. | Channel,
Construction,
Class And
No. of Elements | ^f ds(on)
[Max.]
(ahms) | ID(off)
[Mox.]
(μΑ) | Cdgs or *Csgs or tCiss [Max.] (pF) | BV _{GSS} BV _{DSS} [Min.] (volts) | VGS (oH) or °VGS(TH) [Max.] (volts) | 94s
[MinMax.]
(µmhos) | GSS
or
DGO
[mox.]
(nA) | DSS
[MinMax.]
(mA) | TO- | Alternate
Sources
and
Remarks | |-----------------------|--|----------------------------|---|---|-------------------------------------|------------------------------------|--|-------------------------------------|---|---|--|----------------------------------|--| | | CM602
TIXS36
U182
CM603
2N4091 | CT
TI
SI
CT
AL | n,EP,F,3
n,EP,F,4
n,DPE,F,3
n,EP,F,3
n,DP,F,3 | 50
50
40
35
30 | 3.0
-
.00025
3.0
.00002 | 15
-
†25
15
5.0 | 30
30
40
15
40 | 10
10
-10
10
10 | 10-30000
10,000-20,000
-
20-60000 | 10
10
*0.25
3
0.2 | -
10,000-
50-150
-
30 (min) | 18
18
18
18
18 | | | FET 8 | UC250
T1XS41
2N2386
2N2500
2N3332 | UC
TI
TI
Ti
TI | n,F,3
n,EP,F,3
p,DP,F,3
p,DP,F,3
p,DP,F,3 | 30
25
-
-
- | .001
0.5
0.01
- | 6
-
-
- | 30
30
-
-
- | 10
10
8
15
6 | -
1000 (min)
1000-2200
1000-2200 | 0.1
0.2
10
10 | 50-150
50 (min)
-
1-6
1-6 | 18
18
5
5
72 | | | | 2N3796
2N3797
2N3819
2N3820
2N3821 | MO
MO
TI
TI | n, DP, M, 4
n, DP, M, 4
n, EP, F, 3
p, PL, F, 3
n, EP, F, 3 | - | - | 0.8
0.8
-
- | *25
*25
25
20
50 | -4
-4
8
8 | 900-1800
1500-3000
2000-6500
800-5000
1500-4500 | -0.001
-0.001
2
20
0.1 | 0.5-3
4-6
2-20
0.3-1 5
0.5-2.5 | 18
18
92
92
72 | | | FET 9 | 2N3822
2N3823
2N3909
2N4220
2N4221 | TI
TI
TI
MO
MO | n,EP,F,3
n,EP,F,3
p,PL,F,3
n,DP,F,3
n,DP,F,3 | - | 1 | -
-
2
2 | 50
30
20
-30
-30 | 6
8
0.3-7.9
-4
~6 | 3000-6500
3500-6500
1000-5000
1000-4000
2000-5000 | 0.1
0.5
10
-0.1
-0.1 | 2-10
1-7,5
0.3-15
0.5-3
2-6 | 72
72
72
72
72
72 | | | | 2N4222
3N124
3N125
3N126
MFE2093 | MO
MO
MO
MO
MO | n,DP,F,3
n,DP,F,3
n,DP,F,4
n,DP,F,4
n,DP,F,3 | 1 | - | 2
2
2
2
2
2 | -30
-50
-50
-50
-50 | -8
-2.5
-4.0
-6.5
-2.5 | 2500-6000
500-2000
800-2400
1200-3600
250-500 | -0.1
-0.25
-0.25
-0.25
-0.1 | 5-15
0.2-2
1.5-4.5
3.0-9.0
0.1-0.7 | 72
72
72
72
72
72 | | | FET 10 | MFE2094
MFE2095
TIS14
TIS34
TIXS35 | MO
MO
TI
TI | n,DP,F,3
n,DP,F,3
n,EP,F,3
n,EP,F,3
n,EP,F,4 | - | | 2
2
-
- | -50
-50
30
30
30 | -4.5
-5.5
6.5
1-8
1-5 | 350-700
400-800
1000-7500
3500-6500
10,000-20,000 | -0.1
-0.1
1
5 | 0.4-1.4
1-3
0.5-15
4-20
10-50 | 72
72
72
72
92
72 | | Type 1(b). Digital-switching: Listed by descending order of $V_{\rm GS(TH)}.$ | Cross
Index
Key | Type
No. | Mår. | Channel,
Construction,
Class And
No. of Elements | V _{GS} (TH) or °V _P [MinMax.] (volts) | ^r ds (an)
 Max.
ahms | DSS
[MinMax.]
(mA) | IGSS
or
*IDGO
[Max.]
(nA) | BVGSS *BVDSS or †BVDSX [Min.] (volts) | C _{rss}
 Max.
(pF) | C _{iss}
[Max.]
(pF) | ton toff
(Max.)
(µs) | TO- | Alternate
Sources
and
Remarks | |-----------------------|---|------------------------------|---|---|--|--|--|---------------------------------------|------------------------------------|------------------------------------|----------------------------|----------------------------------|--| | FET 11 | 2N2497
2N2498
2N2499
2N2500
2N3970 | TI
TI
TI
TI
UC | p,DP,F,3
p,DP,F,3
p,DP,F,3
p,DP,F,3
n,F,3 | 15 (max)
15 (max)
15 (max)
15 (max)
10 (max) | 1000
800
600
-
30 | 1-3
2-6
5-15
1-6
50-150 | 10
10
10
10
0.25 | -
-
-
40 | -
-
-
6 | 32
32
32
32
32
25 | -
-
-
50 | 5
5
5
18 | | | | TIS05
TIXS33
TIXS41
TIXS42
2N2386 | TI
TI
TI
TI | p,DP,F,3
n,EP,F,3
n,EP,F,3
n,EP,F,3
p,DP,F,3 | 10 (max)
10 (max)
10 (max)
10 (max)
8 (max) | 150
60
25
70 | 10-45
25 (min)
50 (min)
10 (min) | 2
-
0.2
-
10 | 25
30
8
25 | -
5
18
9
- | 12
20
-
18
50 | -
-
18
-
- | 72
72
92
5 | | | FET 12 | 2N3331
2N3819
2N3820
2N3823
2N3824 | TI
TI
TI
TI | p,DP,F,3
n,EP,F,3
p,PL,F,3
n,EP,F,3
n,EP,F,3 | 8 (max)
8 (max)
8 (max)
8 (max)
8 (max) | 600
-
-
-
250 | 5-15
2-20
0.3-15
1-7.5 | 10
2
20
0.5
0.1 | 25
20
30
50 | 16
2
3 | 20
8
32
6
6 | - | 72
92
92
72
72 | | | | TIS14
2N3330
2N3332
2N3631
2N3329 | TI
TI
TI
SI
TI | n,EP,F,3
p,DP,F,3
p,DP,F,3
n,M,4
p,DP,F,3 | 6.5 (max)
6 (max)
6 (max)
*-6 (max)
5 (max) | -
800
-
550
1000 | 0.5-15
2-6
1-6
2-10
1-3 | 1
10
10
- | 30
-
-
†20 | 1.6 | 8
20
20
7.5
20 | | 72
72
72
72
18
72 | | | FET 13 | 2N3971
M101
M100
U182
2N3993 | UC
SI
SI
SI
TI | n,F,3
n,M,4
n,M,4
n,DPE,F,3
p,DP,F,3 | 5 (max)
*-8(max)
*-5 (max)
*-(4-10)
4-9.5 | 60
300 typ
350(typ)
40
150 | 25-75
4-12
1.5-4.5
50-150
10 (min) | 0.25
-
*0.25
1.2 | 40
†20
†20
40
25 | 6
-
6
4.5 | 25
7.5
7.5
25
16 | 90
-
-
50 | 18
18
18
18
72 | | | | 2N3608
HA2000
2N3821
TIXS36
DE1004 | GME
HU
TI
TI
GME | p,M,4
p,M,4
n,EP,F,3
n,EP,F,4
p,M,4 | -(4-6)
4-5
4 (max)
3-10
-(3-8) | 300
200
-
50
300 | 0,00003
-
0.5-2.5
40-200
0.0001 | 0.002
-
0.1
10
1000 | -30
•-35
50
30
•-20 | 1
3
5
3 | 8
6
12
10 | 0.003 | 5
72
72
72
72
18 | | | FET 14 | 2N 4066
2N 4067
2N 4267
2N 4268
FI-0049 | FA
FA
FA
FA | p,EP,M,6
p,EP,M,6
p,EP,M,4
p,EP,M,4
p,EP,M,6 | 3-6
3-6
3-6
3-6
3-6
3-6 | 500
250
250
250
125
500 | 0.00 1
0.001
0.001 (max)
0.001 (max)
0.001 (max) | 0.0025
0.0025
0.005
0.005
0.0025 | 30
30 | 1.5
1.5
3
0.7 (typ) | 7
7
15
15
0.5 (typ) | 0.01
0.01
-
- | 76
76
72
72
72 | | | Cross
Index
Key | Type
No. | Mêr. | Channel,
Construction,
Class And
No. of Elements | VGS(TH) or "Vp [MinMax.] (volts) | ^r ds (on)
(Max.)
ohms | DSS
[MinMax.]
(mA) | IGSS
or
*IDGO
[Max.]
(nA) | BVGSS *BVDSS *BVDSX [Min.] (volts) | C _{rss}
[Max.]
(pF) | C _{iss}
(Max.)
(pF) | 1 on + t off [Max.] (µs) | TO- | Alternate
Sources
and
Remarks | |-----------------------|--|----------------------------|---|--|--|--|---|--------------------------------------|------------------------------------|------------------------------------|--------------------------|----------------------------------|--| | | TIXS11
2N3972
F1-100
2N3971
2N3994 | TI
UC
FA
SI
TI | p,PL,M,4
n,F,3
p,EP,M,4
n,DPE,F,3
p,DP,F,3 | 3-6
3 (max)
2.5-6.0
-2-5(Vp)
1-5.5 | 250-1000
100
1000
60
300 | 5-30
-
25-75
2 (min) | 0.003
0.25
0.0025
*0.25
1.2 | 30
40
30
40
25 | 3
6
1.0
6
5 | 8
25
3.5
25
16 | 180
-
90
- | 72
18
72
18
72 | | | FET 15 | MM2103
TIXS35
TIS34
MM2102
2N3972 | MO
TI
TI
MO
SI |
p,DP,M,4
n,EP,F,4
n,EP,F,3
n,DP,M,3
n,DPE,F;3 | -(1.5-5)
1-5
1-8
1-4
*-(0.5-3) | 600
-
-
200
100 | 0 -0.005
10-50
4-20
0-0.010
5-30 | 0.010
10
5
0.010
*0.25 | *-25
30
30
*25
40 | 2.5
5
2
1.5
6 | 6.5
12
6
4.5
25 | 0.15
-
0.15
180 | 72
72
92
72
18 | | | | 2N3909
2N3824
2N4065
2N4120
2N4220 | TI
MO
FA
FA
MO | p,PL,F,3
n,DP,F,3
p,EP,M,4
p,EP,M,4
n,DP,F,3 | 0.3-7.9
-
-
-
- | 250
1500
1000 | 0.3-15
 | 10
-0.1
0.0025
0.0025
-0.1 | 20
-50
30
30
-30 | 16
3
0.7
0.7
2 | 32
6
4.5
4.5
6 | -
0.65
0.65 | 72
72
72
72
72
72 | | | FET 16 | 2N4221
2N4222
3N124
3N125
3N126 | MO
MO
MO
MO | n,DP,F,3
n,DP,F,3
n,DP,F,4
n,DP,F,4
n,DP,F,4 | | - | 2-6
5-15
0.2-2.0
1.5-4.5
3.0-9.0 | -0.1
-0.1
-0.25
-0.25
-0.25 | -30
-30
-50
-50
-50 | 2
2
2.0
2.0
2.0
2.0 | 6
6
14
14
14 | | 72
72
72
72
72
72 | | | FET 17 | MFE2093
MFE2094
MFE2095 | MO
MO
MO | n,DP,F,3
n,DP,F,3
n,DP,F,3 | 1 | | 0.1-0.7
0.4-1.4
1.0-3.0 | -0.1
-0.1
-0.1 | -50
-50
-50 | 2
2
2 | 6
6
6 | = | 72
72
72 | | Type 2(a). Low-drift, single-ended dc amplifiers: Listed by ascending order of $I_{\rm DX}$. | Cross
Index
Key | Type
No. | Mir. | Channel,
Construction,
Class And
No. of Elements | I _{DX}
[Min. M ox.l
(mA) | 915x
[MinMax.]
(µmhos) | I _{GX}
or
*I _{GSS}
[Max.]
(nA) | BVGSS
or
*BVDSS
[Min.]
(velts) | VGSX or oV P [MinMax.] (volts) | 9 _{05.3}
[Max.]
(whos) | C _{iss}
[Max.]
(pF) | NF
[Mox.]
dB at (f=-kHz
R _{gen} =-kΩ | TO- | Alternate
Sources
and
Remarks | |-----------------------|--|------------------------------|---|--|---|--|--|---|---------------------------------------|------------------------------------|--|---------------------------------------|--| | FET 18 | 2N3112
2N3113
2N2606
2N2841
2N2607 | SI
SI
SI
SI
SI | p,DP,F,3
p,DP,F,3
p,DP,F,3
p,DP,F,3
p,DP,F,3 | .008 (tŷp)
.008 (typ)
.01 (typ)
.014 (typ)
.03 (typ) | 20
20 (typ)
40 (typ)
50 (typ)
120 (typ) | *0.05
*0.05
*1
-
*3 | 20
20
30
30
30 | 0.4-3.5
0.4-3.5
0.4-3.5
1.2 (max)
0.4-3.5 | | 2
3.5
6
6
10 | -
-
3(1 / 10000) | 18
18
18
18 | | | FET 19 | 2N2B42
2N2608
MFE2093
2N2B43
3N124 | SI
SI
MO
SI
MO | p,DP,F,3
p,DP,F,3
n,DP,F,3
p,DP,F,3
n,DP,F,4 | .04 (typ)
.1 (typ)
0.1-0.7
0.12 (typ)
0.2-2 | 150(typ)
370(typ)
250-500
450(typ)
500-2000 | -
*10
-0.1
-
-0.25 | 30
30
-50
30
-50 | 1,2 (max)
0,4-3,5
-2.5
1.2 (max)
-2.5 | 1.5 | 10
17
6
17
14 | 3(1/10000)
-
-
3(1/1000) | 18
18
72
18
72 | | | LET IS | 2N2609
2N3820
2N3909
2N2844
MFE2094 | SI
TI
TI
SI
MO | p.DP.F.3
p.PL.F.3
p.PL.F.3
p.DP.F.3
n.DP.F.3 | 0.27 (typ)
0.3-15
0.3-15
0.4 (typ)
0.4-1.4 | 1200(typ)
800-5000
1000-5000
1400(typ)
350-700 | *30
20
10
-
-0.1 | 30
20
20
30
-50 | 0.4-3.5
8 (max)
0.3-7.9
1.2 (max)
-4.5 | -
-
-
-
3,0 | 30
32
32
30
6 | -
-
-
3(1/1000) | 18
92
72
18
72 | | | FET 20 | 2N3969
2N3821
2N3796
2N4220
TIS14 | AL
TI
MO
MO
TI | n,DP,F,3
n,EP,F,3
n,DP,M,3
n,DP,F,3
n,EP,F,3 | 0.4-2.0
0.5-2.5
0.5-3
0.5-3
0.5-15 | 1300 (min)
1500-4500
900-1800
1000-4000
1000-7500 | 0.1
0.1
-0.001
-0,1
1 | 30
50
•25
-30
30 | *1.7(typ) 4 (max) -4 -4 6.5 (max) | 5.0
-
25
10 | 5.0
6
7
6
8 | 1.5(0.1/1000)
5(0.01,1000)
-
- | 18
72
18
72
72
72 | | | r E 1 Zu | 2N2497
2N3329
MF E2095
2N3968
2N2500 | TI
TI
MO
AL
TI | p,DP,F,3
p,DP,F,3
n,DP,F,3
n,DP,F,3
p,DP,F,3 | 1-3
1-3
1.0-3.0
1.0-5.0
1-6 | 1000-2000
1000-2000
400-800
2000 (min)
1000-2200 | 10
10
-0.1
0.1
10 | -
-50
30 | 15 (max)
5 (max)
-5.5
*3 (typ)
15 (max) | -
10
15 | 32
20
5
5.0
32 | 3(1/1000)
1.5(0.1/1000) | 5
72
72
72
18
5 | | | | 2N3332
2N3823
3N125
2N3994
2N2498 | TI
TI
MO
TI
TI | p,DP,F,3
n,EP,F,3
n,DP,F,4
p,DP,F,3
p,DP,F,3 | 1-6
1-7.5
1.5-4.5
2 (min)
2-6 | 1000-2200
3500-6500
800-2400
4000-10,000
1500-3000 | 10
0.5
-0.25
1.2 | -
30
-50
25 | 6 (max)
8 (max)
-4.0
1-5.5
15 (max) | -
-
10
-
- | 20
6
14
16
32 | 1(1/1000)
2.5(100000/1)
-
- | 72
72
72
72
72
72
5 | | | ET 21 | 2N3330
2N3797
2N4221
2N3822
2N3819 | TI
MO
MO
TI
TI | p,DP,F,3
n,DP,M,3
n,DP,F,3
n,EP,F,3
n,EP,F,3 | 2-6
2-6
2-6
2-10
2-20 | 1500-3000
1500-3000
2000-5000
3000-6500
2000-6500 | 10
-0.001
-0.1
0.1
2 | -
*25
-30
50
25 | 6 (max)
-4
-6
6 (max)
8 (max) | 60
20
- | 20
8
6
6
8 | 3-1-1000
-
5(0.01/1000) | 72
18
72
72
72
92 | мо | | SET 22 | 2N3967
3N126
TIS34
2N2499
2N3331 | AL
MO
TI
TI
TI | n,DP,F,3
n,DP,F,4
n,EP,F,3
p,DP,F,3
p,DP,F,3 | 2.5-10
3-9
4-20
5-15
5-15 | 2500 (min)
1200-3600
3500-6500
2000-4000
2000-4000 | 0.1
-0.25
5
10
10 | 30
-50
30
- | *2.0-5.0
-6.5
1-8
15 (max)
8 (max) | 35
20
-
-
- | 5.0
14
6
32
20 | 1.5(0.1/1000)
-
-
4(1/1000) | 18
72
92
5
72 | | | FET 22 | 2N 4222
3N 98
TIXS 35
3N 99
TIXS 36 | MO
RCA
TI
RCA
TI | n,DP,F,3
n,DP,M,4
n,EP,F,4
n,DP,M,4
n,EP,F,4 | 5-15
7.7 (max)
10-50
10.5
40-200 | 2500-6500
1000-3000
10,000-20,000
1000-4000
10,000-20,000 | -0.1
0.05
10
0.05
10 | -30
*32
30
*32
30 | -8
6 (max)
1-5
6 (max)
3-10 | 40
200
-
200 | 6
7
12
7
12 | 7(1/1000)
7(1/1000) | 72
72
72
72
72
72 | | | FET 23 | 2N2386
HA2020
TIXS11 | TI
HU
TI | p,DP,F,3
p,M,4
p,PL,M,3 | - | 1000 (min)
1000-2000
800 (min) | 10
0
0.003 | -
*-35
30 | 8 (max)
80 (min)
3-6 | - | 50
8.0
8 | 2(5000 / .05) | 5
72
72 | | #### Late-Arrivals. . . The following silicon p-channel enhancement mode MOS-FETs, manufactured by General Instrument, are general-purpose ac amplifying units with characteristics similar to cross-index group FET 41: MEM 511 MEM 520 MEM 517 MEM 550 MEM 517A MEM 551 MEM 517B Use the literature offering and reader-service card (p. 5) to obtain detailed information on the parameters of these devices. May 17, 1966 107 Type 2(b). Differential dc amplifiers: Listed by descending order of $\frac{\Delta |\mathbf{V}_{\mathrm{GS}}|}{\Delta |\mathbf{T}|}$ | Cross
Index
Key | Type
No. | Mfr. | Channel,
Construction,
Class And
No. of Elements | \\V_GS \[\lambda T \\ [Max.] \\ (\(\nu\)\ volts \(\sigma\)\ \(\nu\)\ \\(\nu\)\ \(\nu\)\ \(\nu\)\ \(\nu\)\ \\(\nu\)\ \(\nu\)\ \\(\nu\)\ \\(\nu\)\ \\(\nu\)\ \\(\nu\)\ \\(\nu\)\ \\\(\nu\)\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | V _{GS1} -V _{GS2}
 Max.
(volts) | | V _P or *VGS (off) [Min Max.] (volts) | GSS
or
*IGX
[Max.]
(nA) | IDSS [MinMax.] (mA) | I _{G1} - I _{G2} [Max.] (nA) | 9fsx
(Min Max.)
(µmhos) | то. | Alternate
Sources
and
Remarks | |-----------------------|--|-----------------------------|---|---|---|----------------------------------|---|--------------------------------------|---|---|---|----------------------------|--| | FET 24 | 2N3336
2N3335
TIS27
2N3334
TIS26 | T1
T1
T1
T1 | p,DP,F,6
p,DP,F,6
n,EP,F,6
p,DP,F,6
n,EP,F,6 | 520
280
210
200
140 | 0.050
0.040
0.015
0.020
0.010 | 20
20
50
20
20
50 | 0.3-1.6
0.3-1.6
6 (max)
0.3-1.6
6 (max) | 10
10
0.25
10
0.25 |
0,3-1
0,3-1
0.5-8
0,3-1
0.5-8 | 200
100
10
50 | 600-1800
600-1800
1500-6000
600-1800
1500-6000 | 89
89
5
89
5 | uc
uc | | FET 25 | 2N3609
3N97
2N3958
2N3333
2N3957 | GME
SI
UC
TI
UC | p,M,4
p.DP.F.6
n,PL,F,6
p,DP,F,6
n,PL,F,6 | 110
106
100
80
75 | 0.1
0.2
0.025
0.015
0.020 | *30
30
50
20
50 | 3.3
1.0-4.5
0.3-1.6
1.0-4.5 | 0.002
5
0.0001
10
0.1 | 35
-0.5-2.5
0.5-5.0
0.3-1
0.5-5.0 | -
3
10
50
10 | | 5
5
71
89
71 | | | 1 1 23 | TIS25
SU2079
SU2081
2N3935
2N3956 | TI
AL
AL
UC | n,EP,F,6
n,F,6
n,DP,F,6
n,DP,F,6
n,PL,F,6 | 70
60
60
50
50 | 0.005
0.015
0.015
0.005
0.015 | 50
50
50
50
50 | 6 (max)
4 (max)
4 (typ)
3 (typ)
1.0-4.5 | 0.25
0.25
0.5
0.1
0.1 | 0.5-8
0.25-2
1.0-10
0.25-1,3
0.5-5.0 | 10
-
-
-
10 | 1500-6000
300 (min)
1500 (min)
300 (min)
1000-3000 | 5
18
18
18
71 | UC | | FET 26 | SU2078
SU2080
2N3922
2N3955
2N4083 | AL
AL
UC
AL | n,F,6
n,DP,F,6
n,DP,F,6
n,PL,F,6
n,DP,F,6 | 35
35
25
25
25 | 0.015
0.015
0.005
0.010
0.015 | 50
50
50
50
50 | 4 (max)
4 (typ)
3 (typ)
1.0-4.5
3 (typ) | 0.25
0.5
0.25
0.0001
0.1 | 0.25-2
1.0-10
1.0-10
0.5-5.0
0.25-1.3 | -
-
10
- | 300 (min)
1500 (min)
1500 (min)
1000-3000
300 (min) | 18
18
18
71
18 | | | PEI 26 | 2N4085
3N96
2N3921
2N3934
2N3954 | AL
SI
AL
AL
UC | n,DP,F,6
p,DP,F,6
n,DP,F,6
n,DP,F,6
n,PL,F,6 | 25
13
10
10
10 | 0.015
0.1
0.005
0.005
0.005 | 50
30
50
50
50 | 3 (typ)
3.3 (typ)
3 (typ)
3 (typ)
1.0-4.5 | 0.25
5
0.25
0.1
0.0001 | 1.0-10
-0.5-2.5
1.0-10
0.25-1.3
0.5-5.0 | 1.0
-
-
10 | 1500 (min)
250-500
1500 (min)
300 (min)
1000-3000 | 18
5
18
18
71 | UC
UC | | FET 27 | 2N 4082
2N 4084
HA2030 | AL
AL
HU | _n,DP,F,6
n,DP,F,6
p,M,4 | 10
10
- | 0.015
0.015
0.005 | 50
50
35 | 3 (typ)
3.0 (typ)
— | 0.1
0.25
- | 0.25-1.3
1.0-10
0.000001 | -
0 | 300 (min)
1500 (min)
1000-2000 | 18
18
72 | | Type 3(a). General-purpose ac amplifiers: Listed by ascending order of $I_{\rm DSS},\,$ | Type
Na. | Mfr. | Channel,
Construction,
Class And
No. of Elements | IDSS
[MinMax.]
(mA) | 9fs
[MinMax.]
(µmhos) | VP
or
° VGS (off)
[MinMax.]
(volts) | IGSS
[Max.]
(nA) | BVGSS
or
°BVDSS
or
¹BVDGO
[Min.]
(volts) | C _{iss}
[Max.]
(pF) | C _{rss}
[Max.]
(pF) | 9 ₀₅₅
[Max.]
(µmhos) | TO- | Alternate
Sources
and
Remarks | |---|---|--|--|---
--|--|--|---|--
--|---|--| | UC852
2N2841
DNX3
2N4117
2N3112 | SI
DIC
SI
DIC | p,F,3
p,DP,F,3
n,DPE,F,3
p,DPE,F,3
p,DP,F,3 | 0.025 (min)
-(.02512)
0.025-0.25
0.03-0.09
-(.035175) | 60
60 (min)
200-700
60-170
50-115 | 6 (max)
1.7 (max)
-2 (max)
-0.7-2
1-4 | 2
1
-1.0
-0.01
0.05 | 25
-
50
40
20 | 6
6
-
3
3.5 | -
-
1,5 | -
-
3
- | 18
18
18
72
72 | UC | | 2N3113
UC750
2N3068
2N3367 | SI
UC
AL | p,DP,F,3
n,F,3
n,DP,F,3
n,DP,F,3 | -(.035175)
G.05 (min)
0.05-0.25
0.05-0.25 | 50-115
120
200-1000
100-1000 | 1-4
6 (max)
2.5 (max)
2.5 (max) | 0.05
2
1.0
5 | -
30
†50 | 2.0
6
10 | - | = | 18
18
18 | Flatpäck
DIC, UC,
SI
DIC, UC,
SI | | 2N3454
2N3457
2N369B
D1103 | AL
AL
UC
DIC | n, DP, F, 3
n, DP, F, 3
p, F, 3
n, DPE, F, 3 | 0.05-0.25
0.05-0.25
0.05-0.25
0.05-0.25 | 100-600
150-600
250-750
200-1000 | 2.5
2.5
0.3-1.2
-2.5 (max) | 0.1
0.04
0.1
-10 | †50
†50
30
25 | 6
5
5 | 1.5
1.2 | = | 18
18
72
18 | UC, SI
UC, SI | | D1179
DN3068A
UC801
UC803
UC-41 | DIC
DIC
UC
UC
UC | n,DPE,F,3
n,DPE,F,3
p,F,3
p,F,3
p,F,3 | 0.05-0.25
0.05-0.25
0.05-1.5
0.05-5.0
0.06-0.3 | 200-1000
200-1000
75-750
250-2500
100 (min) | -2.5 (max)
-2.5 (max)
6 (max)
6 (max)
1-2.5 | -5.0
-1.0
0.2
0.5
0.01 | 50
50
25
25
30 | -
10
3
6
1.4 | 1.5 | 5
-
- | 18
18
72
72
72
72 | | | UC-43
UC853
2N2842
2N4118
C680 | UC
UC
SI
SI
CT | p,F,3
p,F,3
p,DP,F,3
p,DPE,F,3
n,F,3 | 0.06-0.3
0.065 (min)
-(.065325)
0.08-0.24
0.08-0.4 | 100 (min)
180
180 (min)
80-220
200-500 | 1-2.5
6 (max)
1.7 (max)
-1.0-3.5
0.5-2.5 | 0.01
4
3
-0.01
1.0 | 30
25
30
40
30 | 1.4
10
10
3
5 | 1.5 | -
-
-
5
- | 18
18
72
5 | UC | | C681
UC751
U1285
2N2606 | CT
UC
AL
SI | n,F,3
n,F,3
n,DP,F,3
p,DPE,F,3 | 0.08-0.4
0.1 (min)
0.1 (min)
-(0.1-0.5) | 200-500
350
200-1200
110-500 | 0.5-2.5
6 (max)
8.0 (max)
4 (max) | 1.0
2
5.0
1.0 | 30
30
†30
–40 | 5
10
-
6 | 2
-
- | = | 18
18
18
18 | AL, DIC,
UC | | 2N3687
U114
2N3071 | UC
SI
AL | n,F,3
p,DP,F,3
n,F,3 | 0,1-0.5
-(0.10-0.50)
0,1-0.6 | 500-1500
110 (min)
500-2500 | 0.3-1.2
1-4
2.5 (max) | 0.1
1
1.0 | 50
30
†50 | 4.0
6
15 | 1.2
-
1.5 | i. | 72
46
18 | DIC, UC,
SI
DIC, UC | | | No. UC852 2N2841 DNX3 2N4117 2N3113 UC750 2N3068 2N3367 2N3454 2N3457 2N3658 D1103 D1179 DN3068A UC801 UC803 UC-41 UC-43 UC853 2N2842 2N4118 C680 C681 UC751 U1285 2N2606 | No. Mfr. UC852
2N2841
DNX3
2N4117
SI UC
2N2841
SI
2N3112
SI 2N3113
UC750
2N3068
AL SI
UC750
UC
2N3068
AL 2N3454
2N3457
AL
2N3457
2N3698
UC
D1103
DIC AL
UC 2N3698
UC
D102
DN3068A
UC UC803
UC UC803
UC UC803
UC UC803
UC UC853
UC UC853
UC
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC751
UC75 | Type No. Mdr. Construction, Class And No. of Elements UC852 UC p.F.3 DNX3 DIC p.DP.F.3 DNX368 AL p.DP.F.3 DNX368 AL p.DP.F.3 DNX368 AL p.DP.F.3 DNX368 AL p.DP.F.3 DNX368 DIC p.F.3 DN | Type Na. Mfr. Class And Na. of Elements (Min. Max.) (Class And Na. of Elements (Min. Max.) (mA) (mA) (mA) (mA) (mA) (mA) (mA) (mA | Type No. Mdr. Class And [Min. Max.] Max. | Channel Construction Class And No. of Elements No. No. of Elements | Channel, Construction, Class And No. of Elements | Type No. Metr. Construction, Class And No. of Elements (mA) (mA) (lambdax.) (volts) (Min. Max.) (volts) (volts) (No. of Elements (mA) (volts) (volts) (volts) (volts) (volts) (No. of Elements (mA) (volts) (| Type Mr. Chomnel, Construction, P. Class And Na. of Elements Min. Max. (mA) (m | Type No. No. Channel, Construction, No. of Elements 1DSS [MinMax.] (mA) [| Type No. Metr. Construction, Constr | Type No. Metr. Construction, Class and Metr. Construction, | Field-Effect (continued) | Cross
Index
Key | Type
No. | Mfr. | Channel,
Construction,
Class And
No. of Elements | IDSS
[MinMax.]
(mA) | 9fs
[MinMax.]
(umhos) | Vp
or
°VGS (off)
[MinMax.]
(volts) | I _{GSS}
[Max.]
(nA) | BVGSS
or
*BVDSS
or
†BVDGO
[Min.]
(volts) | C _{iss}
[Max.]
(pF) | C _{rss}
[Max.]
(pF) | g _{oss}
[Max.]
(µmhos) | 10- | Alternate
Sources
and
Remarks | |-----------------------|--|------------------------------------|--|--|--|---|--|--|------------------------------------|------------------------------------|---------------------------------------|----------------------------------|--| | | D1182
D1203
DN3071A
DNX6
MFE2093 | DIC
DIC
DIC
DIC
MO | n,DPE,F,3
n,DPE,F,3
n,DPE,F,3
n,DPE,F,3
n,DP,F,3 | 0.1-0.6
0.1-0.6
0.1-0.6
0.1-0.6
0.1-0.7 | 500-2500
300-1500
500-2500
500-2500
250-500 | 2.5 (max)
-2.5 (max)
-2.5 (max)
2 (max)
*-2.5 | 5
10
-1.0
-
-0.1 | 50
25
50
50
-50 | -
15
-
6 | -
-
-
2 | 7
-
1.5 | 18
18
18
18
18
72 | | | FET 32 | DNX2
U110
UC850
UC701
U1280 | DIC
SI
UC
UC
AL | n,DPE,F,3
p,DP.F,3
p,F,3
n,F,3
n,DP | 0.1-1.0
-(0.1-1.0)
0.1-1
0.1-3.0
0.1-10 | 300-1000
110 (min)
110
150-1500
250 (min) | -4 (max)
1-6
6 (max)
6 (max)
10 (max) | -1.0
4
2
0.2
0.1 | 50
20
*20
40
†50 | -
6
6
3
- | | = | 18
18
18
72
18 | | | FET 33 | UC703
UC804
UC21
UC23
U1286 | UC
UC
UC
UC
AL | n,F,3
p,F,3
n,F,3
n,F,3
n,DP | 0.1-10
0.1-12
0.12-0.6
0.12-0.6
0.2 (min) | 500-5000
500-5000
200 (min)
200 (min)
1000-10,000 | 6 (max)
8 (max)
1-2.5
1.0-2.5
8.0 (max) | 0.5
0.5
0.1
0.01
10 | 40
25
30
30
†30 | 6
8
2.0
1.3 | | | 72
72
72
72
-
18 | | | 12133 | UC854
2N3697
2N4119
2N2843 | UC
SI
SI | p,F,3
p,F,3
p,DPE,F,3
p,DPE,F,3 | 0.2 (min)
0.2-0.6
0.20-0.60
(0.2-1.0) | 540
500-1000
100-250
540 (min) | 6 (max)
0.6-2.0
-2.5-6.0
1.7 (max) | 15
0.1
-0.01
10 | 25
30
40
30 | 17
5
3
17 | 1.2
1.5 | -
10
- | 18
72
72
72
18 | uc | | FET 34 | 2N3067
2N3366
2N3438
2N3453
2N3456
2N3460 | AL
AL
AL
AL
AL
AL | n,DP,F,3
n,DP,F,3
n,DP,F,3
n,DP,F,3
n,DP,F,3
n,DP,F,3 | 0.2-1.0
0.2-1.0
0.2-1.0
0.2-1.0
0.2-1.0
0.2-1.0 | 300-1000
250-1000
800-4500
150-900
300-900
800-4500 | 5 (max) 7 (max) 2.5 (max) 5 (max) 5 (max) 2 (max) | 1.0
5.0
0.5
0.1
0.04
0.25 | †50
†40
†50
†50
†50
†50
†50 | 10
-
18
6
5
18 | -
-
-
1.5 | | 18
18
18
18
18
18 | DIC, UC,
SI
DIC, UC,
SI
UC, SI
UC, SI
UC, DIC,
SI | | FET 35 | D1102
D1178
D1185
D1303
DN3067A | DIC
DIC
DIC
DIC
DIC | n,DPE,F,3
n,DPE,F,3
n,DPE,F,3
n,DPE,F,3
n,DPE,F,3 | 0,2-1.0
0.2-1
0.2-1.0
0.2-1.0
0,2-1.0 | 300-1000
300-1000
800-4500
800-4500
300-1000 | -5 (max)
-5 (max)
-2 (max)
-2 (max)
-5 (max) | -10
-5.0
-5
-10
-1.0 | 25
50
50
25
50 | -
-
-
-
10 | -
-
-
1.5 | -
-
-
-
20 | 18
18
18
18
18 | 31 | | 12133 | UC-40
UC-42
U1279
3N124
UC704 | UC
UC
AL
MO
UC | p,F,3
p,F,3
n,DP
n,DP,F,4
n,F,3 | 0.2-1.0
0.2-1.0
0.2-1.5
0.2-2.0
0.2-24 | 150 (min)
150 (min)
250 (min)
500-2000
1000-10,000 | 2-5
1.0-2.5
2.5 (max)
*-2.5
8 (max) | 0.01
0.01
0.1
-0.25
0.5 | 30
30
†50
–50
40 | 2.5
1.4
 | -
-
2
- | -
-
2
- | 72
-
18
72
72 | | | 557.00 | U1284
2N3277
UC752
2N2607
U133 | AL
FA
UC
SI
SI | n,DP
p,EP,F,3
n,F,3
p,DP,F,3
p,DP,F,3 | 0.2-40
0.25 (typ)
0.3 (min)
- (.30-1.5)
- (0.30-1.5) | 1000 (min)
150 (min)
1000
330 (min)
330 (min) | 10 (max)
5(typ)
6 (max)
1-4 | 0.5
0.1
6
3 | †50
25
30
30
50 | 18
-
17
10
10 | | - | 72
18
18
18 | DIC, UC, AL | | FET 36 | 2N3820
2N3909
UC814
UC805
2N3686 | TI
TI
UC
UC
UC | p,PL,F,3
p,PL,F,3
p,F,3
p,F,3
n,F,3 | 0.3-15
0.3-15
0.3-15
0.3-25
0.4-1.2 | 800-5000
1000-5000
800-5000
1000-10,000
1000-2000 | *8 (max) *0.3-7.9 8 (max) 8 (max) 0.6-2.0 | 20
10
2
1
0.1 | 20
20
25
25
50 | 32
32
16
12
4.0 | 16
16
8
-
1.2 | | 92
72
72
72
72
72 | Si, UC | | | MFE2094
C682
C683
UC20
UC22 | MO
CT
CT
UC
UC | n,DP,F,3
n,F,3
n,F,3
n,F,3
n,F,3 | 0,4-1,4
0.4-1,6
0.4-1,6
0.4-2,0
0.4-2,0 | 350-700
400-1000
400-1000
300 (min)
300 (min) | *-4.5
1.0-5.0
1.0-5.0
2.0-5.0
2.0-5.0 | -0.1
1.0
1.0
0.01
0.01 | -50
30
30
30
30
30 | 6
5
5
2.0
1.3 | 2 2 2 | 3.0
-
-
- | 72
5
18
72
- | | | FET 37 | UC855
2N2844
U1325
2N3696
2N3089
2N3089A | UC
SI
AL
UC
DIC
DIC | p,F,3
p,DP,F,3
n,F,3
p,F,3
n,DPE,F,3
n,DPE,F,3 | 0.44 (min)
- (0.44-2.2)
0.5 (typ)
0.5-1.5
0.5-2.0
0.5-2.0 | 1400
1400 (min)
500 (min)
250-1250
300-900
300-900 | 6 (max) 1.7 (max) 1.2 (max) 1-3.5 -5 (max) -5 (max) | 50
30
0.1
0.1
-1.0
-1.0 | 25
30
-
30
40
40 | 25
30
-
5
14
14 | 1,2 | -
-
-
-
50
50 | 18
18
18
72
18
18 | uc | | FET 38 | 2N3070
2N3369
2N3821 | AL
AL
TI | n,F,3
n,DP,F,3
n,DP,F,3 | 0.5-2.5
0.5-2.5
0.5-2.5 | 750-2500
600-2500
1500-4500 | 5 (max)
7 (max)
•-4 | 1.0
5.0
-0.1 | †50
†40
–50 | 15
-
6 | 1.5 | -
-
10 | 18
18
72 | DIC, UC,
SI
DIC,
UC,
SI
MO, UC | | 1 2 1 38 | 3N89
D1181
D1202
DN3070A
DNX5 | SI
DIC
DIC
DIC
DIC | p,DP,F,4
n,DPE,F,3
n,DPE,F,3
n,DPE,F,3
n,DPE,F,3 | -(0.5-2.5)
0.5-2.5
0.5-2.5
0.5-2.5
0.5-2.5 | 450-1300
750-2500
600-2000
750-2500
750-2500 | 3.3(typ)
5 (max)
-5 (max)
-5 (max)
4 (max) | 5
5
10
-1.0 | 30
50
25
50
50 | 3
-
-
15
- | | of company | 72
18
18
18
18 | | (see pages 4-9 for explanation of company abbreviations.) 109 | Cross
Index
Key | Type
No. | Mfr. | Channel,
Construction,
Class And
No. of Elements | IDSS
[MinMax.]
(mA) | 9f6
[MinMox.]
(umhos) | Vp
or
*VGS (off)
[MinMax.]
(volts) | I _{GSS}
[Max.]
(nA) | BYGSS
or
*BYDSS
or
!BYDGO
[Min.]
(valts) | C _{iss}
[Max.]
(pF) | C _{rss}
[Max.]
(pF) | 9 ₀₅₅
[Max.
(µmhos) | TO- | Alternate
Sources
and
Remarks | |-----------------------|---|---------------------------------|---|--|---|---|------------------------------------|--|------------------------------------|------------------------------------|---|----------------------------------|--| | 557.00 | UC420
2N3796
2N4220
U1278
U89 | UC
MO
MO
AL
SI | p,F,3
n,DP,M,3
n,DP,F,3
n,DP
p,DP,F,4 | 0.5-2.5
0.5-3.0
0.5-3.0
0.5-3.0
-(0.5-5.0) | 1500 (min)
900-1800
1000-4000
350 (min)
450-1300 | 2.5 (max)
*-4
1-4
4.5 (max)
3.3 (typ) | 0.1
-0.01
-0.1
0.1
10 | 30
-25
-30
†50
20 | 8
7
6
-
3 | 0.8
2
- | 25
10
- | 72
18
72
18
72 | | | FET 39 | K1004
2N3822
TIS14
UC705
2N3376 | KMC
UC
TI
UC
SI | n,M,4
n,F,3
n,EP,F,3
n,F,3 | 0.5-7.0
0.5-10
0.5-15
0.5-50 | 800 (min)
3000-6500
1000-7500
2000-20,000
800-2300 | 12 (max)
6 (max)
*6.5 (max)
8 (max)
1-5 | 0.05
0.1
1
1
3 | 15
50
30
40
30 | 4.5
6
8
12
5 | 0.7
3
4
-
3 | 1000
-
-
-
-
- | 18
72
72
72
72
72 | | | | 2N3377
P1003
U168
2N3278
2N3084 | SI
AL
SI
FA
CT | p,PL,F,3
p,DP,F,3
p,EP,F,3
n,F,3 | 0.6-6.0
-(0.6-6)
0.67 (typ)
0.8-3.0 | 800-2300
1000-3500
800 (min)
200 (min)
400-1200 | 1-5
3 (max)
5 (max)
8 (typ)
~10 | 3
3
30
0.1
0.1 | 30
-50
20
25
30 | 4
20
65
-
5 | 2
-
-
-
2 | = | 18
18
72
5 | | | FET 40 | 2N3085
2N3086
2N3087
2N3365
2N3066 | CT
CT
CT
AL
AL | n,F,3
n,F,3
n,F,3
n,DP,F,3
n,DP,F,3 | 0.8-3.0
0.8-3.0
0.8-3.0
0.8-4.0
0.8-4.0 | 400-1200
400-1200
400-1200
400-2000
400-2000 | -10
-10
-10
12 (max)
10 (max) | 0.1
1.0
1.0
5.0
1.0 | 30
40
40
40
†40
†50 | 5
5
5
-
10 | 2
2
2
2
-
1.5 | - | 18
5
18
18
18 | DIC
DIC, UC
DIC, UC,
SI | | | 2N3437
2N3452
2N3455
2N3459 | AL
AL
AL
AL | n, DP,F, 3
n,DP,F, 3
n,DP,F, 3
n,DP,F, 3 | 0.8-4.0
0.8-4.0
0.8-4.0
0.8-4.0 | 1500-6000
200-1200
400-1700
1500-6000 | 5.0
10 (max)
10 (max)
4 (max) | 0.5
0.1
0.04
0.25 | †50
†50
†50
†50 | 18
6
5
18 | -
1.5
5 | - | 18
18
18
18 | NC'21
NC'21
NC'21 | | FET 41 | D1101
D1177
D1184
D1302
DN3066A | DIC
DIC
DIC
DIC
DIC | n,DPE,F,3
n,DPE,F,3
n,DPE,F,3
n,DPE,F,3
n,DPE,F,3 | 0.8-4.0
0.8-4.0
0.8-4.0
0.8-4.0
0.8-4.0 | 400-2000
400-2000
1500-6000
1500-6000
400-1000 | -10 (max)
-10 (max)
-4 (max)
-4 (max)
-10 (max) | -10
-5
-5
-10
-1.0 | 25
50
50
25
50 | -
-
-
10 | -
-
-
-
1.5 | -
-
-
50 | 18
18
18
18
18 | | | | DNX1
UC753
2N2608
2N3578
2N2386 | DIC
UC
SI
SI
TI | n,DPE,F,3
n,F,3
p,DP,F,3
p,DP,F,3
p,DP,F,3 | 0.8-6
0.9(min)
-(0.90-4.5)
-(0.9-4.5)
-(0.9-9.0) | 400-1500
2500
1000 (min)
1200-3500
1000 (min) | -8 (max)
6 (max)
1-4
1.5-4
8 (max) | -1.0
10
10
15
10 | 50
30
30
20
20 | 25
17
65
50 | 11111 | = | 18
18
18
18
5 | AL, UC
SI, UC | | FET 42 | U112
UC851
2N3328
UC807
2N3821 | UC
SI
UC
SI | p.DP.F.3
p.F.3
p.DP.F.3
p.F.3
n.F.3 | -(0.9-9.0)
0.9-9
-1 (max)
1 (min)
1-2.5 | 1000 (min)
1000
100 (min)
2500-25,000
1500-4500 | 16
6 (max)
6 (max)
12 (max)
4 (max) | 4
4
1
2
0.1 | 20
•20
20
20
50 | 17
17
4
30
6 | -
-
-
3 | - | 18
!8
72
18
72 | uc | | | 2N2497
2N3329
MF E2095
2N3685
UC220 | TI
SI
MO
UC
UC | p,DP,F,3
p,DP,F,3
n,DP,F,3
n,F,3
n,F,3 | 1-3
-(1-3)
1.0-3.0
1.0-3.5
1.0-5.0 | 1000-2000
1000-2000
400-800
1500-2500
3000 (min) | 15 (max)
*5 (max)
*-5.5
1.0-3.5
2.5 (max) | 10
0.01
-0.1
0.1
0.1 | -
-20
-50
50 | 32
20
6
4.0
7.0 | -
-
2
1.2 | -
-
10
-
- | 5
72
72
72
72
72 | SI, UC
TI, UC | | FET 43 | 2N2500
2N3332
2N3823
U1283
UC240 | TI
TI
TI
AL
UC | p,DP,F,3
p,DP,F,3
n,EP,F,3
n,DP
n,F,3 | 1-6
1-6
1-7.5
1.0-10
1.0-10 | 1000-2200
1000-2200
3500-6500
1500 (min)
1200 (min) | 15 (max)
6 (max)
*8 (max)
2.5 (max)
5.0 (max) | 10
10
0.5
0.5
0.1 | -
30
†50
50 | 32
20
6
18
18 | -
2
- | = | 5
72
72
18
18 | UC
UC
UC | | | 2N3695
3N125
C684
C685
U1277 | UC
MO
CT
CT
AL | p,F,3
n,DP,F,4
n,F,3
n,F,3
n,DP | 1.25-3.75
1.5-4.5
1.5-6.0
1.5-6.0
1.5-8.0 | 1000-1750
800-2400
600-1500
600-1500
450 (min) | 2-5
*-4.0
2.0-10
2.0-1.0
8.0 (max) | 0.1
-0.25
1.0
1.0
0.1 | 30
-50
30
30
+50 | 5
14
5
5 | 1.2
2
2
2 | 10

 | 72
72
5
18
18 | | | FET 44 | 2N2498
2N3330
2N4221
UC410
2N3069 | TI
SI
MD
UC
AL | p,DP,F,3
p,DP,F,3
n,DP,F,3
p,F,3
n,F,3 | 2-6
(2-6)
2-6
2-6
2-10 | 1500-3000
1500-3000
2000-5000
2250 (min)
1000-2500 | 15 (max)
6 (max)
• -6
4 (max)
10 (max) | 10
0.01
-0.1
0.1
1.0 | -
-20
-30
30
†50 | 32
20
6
8
15 | -
-
2
-
1.5 | -
20
- | 5
72
72
72
72
18 | SI, UC
TI, UC
DIC, UC,
SI | | | 2N3822
2N2609
D1180
D1201 | TI
SI
DIC
DIC | n.EP.F.3
p,DP.F.3
n,DPE.F.3
n,DPE.F.3 | 2-10
-(2-10)
2-10
2-10 | 3000-6500
2500 (min)
1000-2500
1000-2500 | *6 (max)
1-4
10 (max)
-10 (max) | 0.1
30
5
10 | 50
30
50
25 | 6
30
-
- | 3 | = | 72
18
18
18 | MO
AL, UC | | FET 45 | DN3069A
DNX4
2N3368
2N3819 | DIC
DIC
AL | n,DPE,F,3
n,DPE,F,3
n,DP,F,3
n,EP,F,3 | 2-10
2-10
2-12
2-20 | 1000-2500
1000-2500
1000-4000
2000-6500 | -10 (max)
8 (max)
12 (max)
*8 (max) | -1.0
-
5.0
2 | 50
50
†40
25 | 15
-
-
8 | -
-
-
4 | 80
-
-
- | 18
18
18 | DIC, UC,
SI | | Cross
Index
Key | Туре
Но. | Mfr. | Channel,
Construction,
Class And
No. of Elements | IDSS
[MinMax.]
(mA) | 9fs
(MinMax.)
(umhos) | Vp
or
°VGS (off)
[MinMax.]
(volts) | I _{GSS}
[Max.]
(nA) | BVGSS *BVDSS or †BVDGO [Min.] (volts) | C _{iss}
[Max.]
(pF) | C _{rss}
[Max.]
(pF) | g _{ass}
[Max.]
(µmhos) | TO- | Alternate
Sources
and
Remarks | |-----------------------|---|------------------------------|--|---|--|---|------------------------------------|--|------------------------------------|------------------------------------|---------------------------------------|----------------------------------|--| | | P1004
U183
UC714
2N3684
UC707 | AL
SI
UC
UC
UC | p,PL,F,3
n,DPE,F,3
n,F,3
n,F,3
n,F,3 | 2-20
2-20
2-20
2-5-7.5
2.5-250 | 2500-6000
2000-6500
2000-6500
2000-3000
5000-50,000 | 5 (max)
-8 (max)
8 (max)
2-5
12 (max) | 3
-2
1
0.1
2 | -50
-25
30
50
20 | 20
8
8
4.0
30 | -
4
4
1,2 | 50
-
-
- | 18
72
72
72
72
18 | | | FET 46 | 2N2386
2N3378
2N3379
3N126
2N3436 | TI
SI
SI
MO
AL | p,F,3
p,DP,F,3
p,DP,F,3
n,DP,F,4
n,DP,F,3 | 3(typ)
-(3-6)
-(3-6)
3-9
3.0-15 | 1000-3000
1500-2300
1500-2300
1200-3600
2500-10,000 | 8 (max)
4-5
4-5
•-6.5
10 (max) | 10
3
3
-0.25
0.5 | 20
30
30
-50
†50 | 5
4
14
18 | 3
2
2 | -
-
20
- | 5
72
-
72
18 | SI, UC UC, SI | | | D1183
D1301
2N3458
2N3797
UC210 | DIC
DIC
AL
MO
UC |
n,DPE,F,3
n,DPE,F,3
n,DP
n,DP,M,3
n,F,3 | 3-15
3.0-15
3.0-15
4-6
4-12 | 2500-10,000
2500-10,000
2500-10,000
1500-3000
4500 (min) | -8 (max) -8 (max) 8 (max) -4 4.0 (max) | -5
-10
0.25
-0.001
0.1 | 50
25
†50
–25
50 | -
-
18
8
7.0 | -
-
0,8 | -
-
60
- | 18
18
18
18
18
72 | UC,SI | | FET 47 | TIS34
U1282
2N2499
2N3331
2N4222 | TI
AL
TI
TI
MO | n,EP,F,3
n,DP
p,DP,F,3
p,DP,F,3
n,DP,F,3 | 4-20
4.0-20
5-15
5-15
5-15 | 3500-6500
2500 (min)
2000-4000
2000-4000
2500-6000 | 1-8
4.5 (max)
15 (max)
8 (max)
*-8 | 5
0.5
10
10
-0.1 | 30
50
-
-
-
-30 | 6
-
32
20
6 | 2
-
-
-
2 | -
-
-
40 | 92
18
5
72
72 | SI, UC | | | UC400
P1005
U1281
UC200
TIXS35 | UC
AL
AL
UC
TI | p,F,3
p,PL,F,3
n,DP
n,F,3
n,EP,F,4 | 5-15
5-25
8 (max)
10-30
10-50 | 3000 (min)
3500-7000
250 (min)
6000 (min)
10,000-20,000 | 6 (max)
8 (max)
10 (max)
6.0 (max)
*1-5 | 0.1
3
0.1
0.1
10 | 30
-50
†50
50
30 | 8
20
-
7.0
12 | -
-
-
5 | | 72
18
18
72
72 | | | FET 48 | U146
2N2841
TIXS36
U147
2N2842 | SI
DIC
TI
SI
DIC | p,DP,F,3
n,DPE,F,3
n,EP,F,4
p,DP,F,3
p,DPE,F,3 | -25 (min)
25-125
40-200
-65 (min)
-(65-325) | 60 (min)
60-300
10,000-20,000
180 (min)
180-500 | 6 (max)
1.7 (max)
*3-10
6 (max)
1.7 (max) | 10
1.0
10
20
3 | 20
-40
30
20
-40 | -
6
12
-
6 | 5 | = : | 18
18
72
18
18 | UC | | FET 49 | U1287
U148
U149
2N3608
DE1004 | AL
SI
SI
GME
GME | n,DP,F,3
p,DP,F,3
p,DP,F,3
p,M,4
p,M,4 | 100(typ)
-
- | 20,000
540 (min)
1400 (min)
800 (min)
600(min) | 15 (max)
6 (max)
6 (max)
•.4 (typ)
•3 | 2.0
60
200
0.002
1000 | 30
20
20
•-30
•20 | -
-
8.0
10 | -
-
2.5
3 | : | †
18
18
5
18 | †MT25 package
*loss (min.) = 0.2
*loss (min.) = 0.44 | | 49 | HA2001
TIXS11 | HU
Ti | p,M,4
p,PL,M,3 | : | 1000-2000
800 (min) | 3-6 | 0,003 | *35
30 | 8.0
8 | 1 3 | - | 72
72 | | Type 3(b). Low-noise ac amplifiers: Listed by descending order of NF. | Cross
Index
Key | Type
No. | Mfr. | Channel,
Construction,
Class And
No. of Elements | e _n nV/\(\frac{\bar{H}_2}{\bar{H}_2}\) [M at (f = -\bar{k}\bar{H}_2) o "NF [Max.] (dB) | f=_kHz | 9fs
[MinMax.]
(umhos) | IDSS
[MinMax.]
(mA) | BVGSS
or
*BVDSS
[Min.]
(volts) | IGSS
[Max.]
(nA) | C _{iss}
[Max.]
(pF) | V _P or * VGS (off) [MinMax.] (volts) | TO. | Alternate
Sources
and
Remarks | |-----------------------|--|----------------------------|---|--|--|--|--|--|--|------------------------------------|---|----------------------------------|--| | FET 50 | U168
2N3578
2N3458
2N3796
2N3797 | SI
SI
SI
MO
MO | p,DP,F,3
p.DP,F,3
n,DPE,F,3
n,DP,F,3
n,DP,M,3 | 25/(1)
18/(1)
•6
•5
•5 | 0.019
0.017
.02/1000
200000/
200000/- | 800 (min)
1200-3500
2500-10,000
900-1800
1500-3000 | -(0.6-6.0)
0.9-4.5
3-15
0.5-3
4-6 | 20
20
-
-25
-25 | 30
15
0.25
-0.001
-0.001 | 65
65
18
7
8 | 5 (max)
1.5-4
7.8 (max)
-4 (typ)
-4 (typ) | 18
18
18
72
72 | | | | 2N3821
2N3822
2N4220
2N4221
2N4222 | TI
TI
MO
MO
MO | n,EP,F,3
n,EP,F,3
n,DP,F,3
n,DP,F,3
n,DP,F,3 | *5
*5
*5
*5
*5 | 0.01/1000
0.01/1000
200000/-
200000/-
200000/- | 1500-4500
3000-6500
1000-4000
2000-5000
2500-6000 | 0.5-2.5
2-10
0.5-3
2-6
5-15 | 50
50
-30
-30
-30 | 0.1
0.1
-0.1
-0.1
-0.1 | 6
6
6
6 | *4 (max) *6 (max) -4(typ) -6(typ) -8(typ) | 72
72
72
72
72
72 | | | FET 51 | 2N4223
2N3331
2N3455
2N3456
2N3457 | MO
TI
SI
SI | n,DP,F,3
p,DP,F,3
n,DPE,F,3
n,DPE,F,3
n,DPE,F,3 | *5
*4
*4
*4
*4 | 200000/-
1/1000
.02/1000
.02/1000
.02/1000 | 3000-7000
2000-4000
400-1200
300-900
150-600 | 3-18
5-15
0.8-4.0
0.2-1.0
0.05-0.25 | -30
-
50
50
50 | -0.25
10
-0.04
-0.04
-0.04 | 6
20
5
5
5 | *-1-7 *8 (max) -9.8 (max) -4.8 (max) -2.3 (max) | 72
72
72
72
72
72 | | | | 2N3460
2N3459
2N3088
2N3089
2N3329 | SI
SI
CT
CT | n,DPE,F,3
n,DPE,F,3
n,F,3
n,F,3
p,DP,F,3 | *4
*4
*3
*3
*3 | .02/1000
.02/1000
.01/1000
.01/1000
1/1000 | 800-4500
1500-6000
300-900
300-900
1000-2000 | 0.2-1.0
0.8-4.0
0.5-2.0
0.5-2.0
1-3 | 50
50
15
15 | 0.25
0.25
1.0
1.0 | 18
18
5
5
20 | 1.8 (max)
3.4 (max)
5 (typ)
5 (typ)
*5 (max) | 18
18
5
18
72 | | | FET 52 | 2N3330
P-102
2N3452
2N3453
2N3454 | TI
SI
SI
SI
SI | p,DP,F,3
p,DP,F,3
n,DPE,F,3
n,DPE,F,3
n,DPE,F,3 | *3
*3
*2.0
*2.0
*2.0 | 1/1000
1/1000
.1/1000
.1/1000
.1/1000 | 1500-3000
1600 (typ)
200-1200
150-900
100-600 | 2-6
0.90-4.5
0.8-4.0
0.2-1.0
0.05-0.25 | 30
50
50
50 | 10
10
-0.1
-0.1
-0.1 | 20
17
6
6
6 | *6 (max)
1-4
-9.8 (max)
-4.8 (max)
-2.3 (max) | 72
18
72
72
72 | | | Cross
Index
Key | Type
No. | Mfr. | Channel,
Construction,
Class And
No. of Elements | on NF (dB) | pA/\sqrt{Hz} $f = -kHz$ $R = -k\Omega$ | 9{s
[MinMax.]
(µmhos) | IDSS
[MinMax.]
(mA) | BVGSS
or
*BVDSS
[Min.]
(volts) | GSS
 Max.
(nA) | C _{iss}
{Max.}
(pF) | Vp-
or
*VGS (off)
[MinMax.]
(volts) | TO- | Alternate
Sources
and
Remarks | |-----------------------|---|---------------------------------|--|---|---|--|---|--|----------------------------------|------------------------------------|---|----------------------------------|--| | FET 53 | 2N3823
2N3823
2N3332
2N3088A
2N3089A | TI
SI
TI
CT
CT | n,EP,F,3
n,DPE,F,3
p,DP,F,3
n,F,3
n,F,3 | *2.5
*2.5
*1
*0.5
*0.5 | 100000/1
.1/1000
1/1000
.01/1000
.01/1000 | 3500-6500
3200 (min)
1000-2200
300-900
300-900 | 1-7.5
4-20
1-6
0.5-2.0
0.5-2.0 | 30
30
-
15
15 | 0.5
-0.5
10
1.0
1.0 | 6
6
20
5
5 | *8 (max)
-8 (max)
*6 (max)
5(typ)
5(typ) | 72
72
72
72
5
18 | | | 1 2 1 33 | DN3066A
DN3067A
DN3068A
DN3069A
DN3070A | DIC
DIC
DIC
DIC
DIC | n, DPE, F, 3
n, DPE, F, 3
n, DPE, F, 3
n, DPE, F, 3
n, DPE, F, 3 | *0.25
*0.25
*0.25
*0.25
*0.25 | 1/1000
1/1000
1/1000
1/1000
1/1000 | 400-1000
300-1000
300-1000
1000-2500
750-2500 | 0.8-4.0
0.2-1.0
0.05-0.25
2-10
0.5-2.5 | 50
50
50
50
50 | 1.0
1.0
1
-1.0
-1.0 | 10
10
10
15
15 | -(3.5-10)
-(1.5-5)
-(.4-2.5)
-(2.5-10)
-(1.0-5) | 18
18
18
18
18 | | | | DN3071A
2N3695
2N3696
2N3697
2N3698 | DIC
UC
UC
UC
UC | n,DPE,F,3
p,F,3
p,F,3
p,F,3
p,F,3 | *0.25
0.20
0.20
0.20
0.20 | 1/1000
-
-
-
- | 500-2500
1000-1750
750-1250
500-1000
250-750 | 0.1-0.6
1.25-3.75
0.5-1.5
0.2-0.6
0.05-0.25 | 50
30
30
30
30
30 | -1.0
0.1
0.1
0.1
0.1 | 15
5
5
5
5 | -(0.4-7.5)
2-5
1-3.5
0.6-2.0
0.3-1.2 | 18
72
72
72
72
72 | | | FET 54 | 2N3684
2N3685
2N3686
2N3687
UC240 | UC
UC
UC
UC | n,F,3
n,F,3
n,F,3
n,F,3
n,F,3 | 0.15
0.15
0.15
0.15
0.02 | - | 2000-3000
1500-2500
1000-2000
500-1500
1200 (min) | 2.5-7.5
1-3.5
0.4-1.2
0.1-0.5
1-10 | 50
50
50
50
50 | 0.1
0.1
0.1
0.1
0.1 | 4
4
4
4
18 | 2-5
1-3.5
0.6-2.0
0.3-1.2
5-18 | 72
72
72
72
72
18 | | | | 2N2386
2N2497
2N2498
2N2499
2N2500 | TI
TI
TI
TI | p;DP,F,3
p,DP,F,3
p,DP,F,3
p,DP,F,3
p,DP,F,3 | | | 1000 (min)
1000-2000
1500-3000
2000-4000
1000-2200 | -
1-3
2-6
5-15
1-6 | - | 10
10
10
10
10 | 50
32
32
32
32
32 | 8 (max)
15 (max)
15 (max)
15 (max)
15 (max) | 5
5
5
5
5 | | | FET 55 | 2N3819
2N3820
2N3909
TI\$14
TI\$34 | TI
TI
TI
TI
TI | n,EP,F,3
p,PL,F,3
p,PL,F,3
n,EP,F,3
n,EP,F,3 | | | 2000-6500
800-5000
1000-5000
1000-7500
3500-6500 | 2-20
0.3-15
0.3-15
0.5-15
4-20 | 25
20
20
30
30 |
2
20
10
1
5 | 8
32
32
8
6 | *8 (max) *8 (max) *0.3-7.9 *6.5 (max) 1-8 | 72
72
72
72
72
72 | | | FET 56 | TIXS11
TIXS35
TIXS36 | TI
TI
TI | p,PL,M,3
n,EP,F,4
n,EP,F,4 | | 1.1.1 | 800 (min)
10,000-20,000
10,000-20,000 | 10-50
40-200 | 30
30
30 | 0.003
10
10 | 8
12
12 | 3-6
*1-5
*3-10 | 72
72
72 | | Type 3(c). High-frequency (f \geq 1MHz) ac amplifiers: Listed by ascending order of g_{fs} . | Crass
Index
Key | Type
No. | Mfr. | Channel,
Construction,
Class And
No. of Elements | 9{s
[MinMax.]
(µmhas) | C _{rss}
[Max.]
(pF) | C _{iss}
[Max-1
(pF) | 9iss
[Max.]
(µmhos) | BVGSS
or
*BVDSS
[Min.]
(valts) | I _{DSS}
[MinMax.]
(mA) | Vp
or
*VGS (off)
[MinMax.]
(volts) | $\begin{array}{c} \text{NF} \\ [\max,] \\ \text{dB of } (f=-k\text{Hz}) \\ \\ \hline R_{gen}=-k\Omega \end{array}$ | 10- | Alternate
Sources
and
Remarks | |-----------------------|--|--------------------------------|---|---|------------------------------------|------------------------------------|---------------------------|--|--|--|---|----------------------------------|--| | FET 57 | 3N89
U89
DE 1004
2N 3608
TIXS11 | SI
SI
GME
GME
TI | p, DP, F. 4
p, DP, F. 4
p, M, 4
p, M, 4
p, PL, M, 3 | 450-1300
450-1800
600 (min)
800 (min)
800 (min) | -
3
2.5
3 | 3
3
10
8
8 | | 30
30
•-20
•-30
30 | ~(0.5-2.5)
~(0.5-5.0)
0.0001
0.00003
~ | 3.3(typ)
3.3(typ)
-
-
3-6 | - | 72
72
18
5
72 | | | | 2N3376
2N3377
2N3820
K1001
K1201 | SI
KWC
KWC
SI | p,DP,F,3
p,DP.F,3
p,PL,F,3
n,M,4
n,M,4 | 800-2300
800-2300
800-5000
1000 (min)
1000 (min) | 3
2
16
0.7
0.3 | 5
4
32
4.5
3.0 | -
-
800
800 | 30
30
20
15
15 | 0.6-6
0.6-6
0.3-15
5-12
1-5 | 1-5
1-5
*8 (max)
6 (max)
5 (max) | -
-
-
4.5 (200 MHz)
4.5 (450 MHz) | 72
72
18
18 | | | FET 58 | TIS14
2N3378
2N3379
2N3380
2N3381 | TI
SI
SI
SI | n,EP,F,3
p,DP,F,3
p,DP,F,3
p,DP,F,3
p,DP,F,3 | 1000-7500
1500-2300
1500-2300
1500-3000
1500-3000 | 4
3
2
3
2 | 8
5
4
5 | - | 30
30
30
30
30
30 | 0.5-15
3-6
3-6
3-20
3-20 | *6.5 (max)
4-5
4-5
5-9.5
5-9.5 | | 72
72
72
FP
72
FP | | | | 2N4038
2N4039
2N3821
2N3819
2N4224 | TRWS
TRWS
TI
TI
MO | n,DP,M,3
n,DP,M,3
n,EP,F,3
n,EP,F,3
n,DP,F,3 | 1500-3000
1500-3000
1500-4500
2000-6500
2000-7500 | 0.2
0.2
3
4
2 | 2.5
2.5
6
8
6 | -
-
-
-
800 | *20
*20
50
25
30 | 0-0.1
0-0.1
0.5-2.5
2-20
2-20 | 0-2
(2-6)
*4 (max)
*8 (max)
*(1-7.5) | 3(100MHz/1 MΩ)
3(100MHz/1 MΩ)
5(0.01 KHz/1 MΩ)
- | 72
72
72
72
72
72 | | | FET 59 | 2N3822
2N4223
2N3823 | TI
MO
TI | n,EP,F,3
n,DP,F,3
n,EP,F,3 | 3000-6500
3000-7000
3500-6500 | 3 2 2 | 6
6
6 | 800
- | 50
30
30 | 2-10
3-18
1-7.5 | *6
*-(1-7)
*8 (max) | $\begin{array}{c} \text{5(0.01KHz/1M}\Omega) \\ \text{5(200MHz/1K}\Omega) \\ \text{2.5(100MHz/1K}\Omega) \end{array}$ | 72
72
72 | SI,
UC | | | TIS34 | TI | n,EP,F,3 | 3500-6500 | 2 | 6 | | 30 | 4-20 | 1-8 | - | 72 | | | FET 60 | K1003
FT57
TIXS35
TIXS36 | KMC
FA
TI
TI | n,M, 4
n,EP,M,4
n,EP,F,4
n,EP,F,4 | 4000 (min)
6000 (min)
10,000-20,000
10,000-20,000 | 1.0
0.8
5
5 | 3.5
2.7
12
12 | 800
60(typ)
- | 15
25
30
30 | 12-20
9-26
10-50
40-200 | 6 (max)
10 (max)
*1-5
*3-10 | 4,5 (200 MHz)
4 at 0.1GHz/2.5KΩ
— | 18
72
72 | | ## Now! All the Features of Larger Size Potentiometers-Except Larger Size! - Dimensions: 1/4" x 1/4" x 0.17" - Multi-turn adjustment - Damage-proof clutch action Indestructible SILVERWELD® termination - (5) Standard resistances from 10 Ω to 20K - (6) 20 ppm wire Write today for complete technical data TRIMPOT is a registered trademark of Bourns, Inc. ## Use the unijunction transistor that does the job best. Listed by major parameters, these three charts facilitate selection. Choice of the right unijunction transistor (UJT) for any application will save a lot of design and test time. To facilitate selection, ELECTRONIC DESIGN has separated the UJTs into three categories, each intended for a specific set of applications. The parameter definitions and test set-ups that follow provide a good understanding of how the UJT works, and show the relationship between application and UJT parameter specifications. Within the limits of its relatively low frequency capabilities (a few hundred kilohertz at most), the UJT is ideal for such applications as relaxation oscillators, timing circuits, voltage and current level-sensing, frequency dividing, precision triggering of the SCR, SCS, and Triac, control of frequency for inverters and oscillators, and saw- tooth and pulse generation. The UJT data listings are organized according to key design parameters. These are: Type 1—for pulse applications such as SCR triggering; in order of increasing V_{0B1} (base-one peak-pulse voltage). ■ Type 2—for high-frequency, short timing period, and voltage-sensing applications; in order of increasing I_{ν} (valley current). ■ Type 3—for low-frequency, long timing period, and current-sensing applications; in order of decreasing values of I_P (peak-point current). To select a UJT, many other factors should also be considered. These include circuit acceptance of parameter spreads, supply voltage requirements, frequency, ambient temperature range, power dissipation, current limitations, package type and size, and device cost. #### Basic concepts explained The UJT, a three-terminal semiconductor device, is distinctive by having a negative resistance characteristic which is highly stable with voltage, temperature and time. Fig. 1 shows the schematic symbol for the UJT as well as the relationship of the leads when the device is housed in a standard transistor can. By examining the simplified equivalent circuit shown in Fig. 2, the operation of this device can be easily visualized. Though different geometries exist, the UJT consists basically of a pellet of n-type silicon with ohmic Dwight V. Jones, Applications Engineer, Semiconductor Products Dept., General Electric Co., Syracuse, N. Y. contacts, base-one (B_1) and base-two (B_2) , at opposite ends of the pellet. At some point between these two, a single rectifying contact, the emitter (E), is attached. The interbase resistance, R_{BBO} , is the sum of R_{B1} and R_{B2} and is between 5 and 10 In the equivalent circuit, the diode (D) represents the UJT's emitter diode. In normal circuit operation, a positive bias voltage (V_{BB}) is applied at base-two. With no emitter current flowing, the silicon pellet acts as a simple voltage divider; a certain fraction, η , of V_{BB} appears at the emitter. If the emitter voltage, V_E , is less than ηV_{BB} , the emitter becomes reverse-biased and only a small emitter leakage current flows. If V_E is greater than η V_{BB} , the emitter is forward-biased and emitter current flows. This causes a decrease in the resistance between the emitter and base-one. As the emitter current increases, the emitter voltage decreases and a negative-resistance characteristic is obtained. This characteristic is shown in Fig. 3 for a typical UJT. On this curve, the two major points of interest are the peak point and the valley point. To the left of the peak point is the cut-off region where the emitter is reverse-biased and only a small leakage current flows. To the right of the valley point is the saturation region where the dynamic resistance is positive. The negative resistance region lies between these two points. A better understanding can come from examining the relaxation oscillator circuit, shown in Fig. 4a, which is basic to most UJT applications. At the beginning of each cycle the emitter is reversebiased and hence non-conducting. As the capacitor (C_T) is charged through the resistor (R_T) , the emitter voltage rises toward the supply voltage, 1. Unijunction transistor is represented by this symbol, where the emitter, base-one and base-two are identified by E, B_1 , and B_2 . The circular outline shows the pin relationships for a transistor type package. 2. Simplified equivalent circuit of a unijunction transistor aids device analysis. When $V_{\rm E}$ is larger than $\eta~V_{\rm BB}+V_{\rm D}$, the diode conducts, $R_{\rm B1}$ reduces in value, and a large emitter current flows. V_1 . When the emitter voltage reaches the peakpoint voltage, V_P , the emitter becomes forward-biased and the dynamic resistance between the emitter and base-one drops to a low value. Capacitor C_T then discharges through the emitter. When the emitter voltage reaches $V_{E(MIN)}$, as shown in Fig. 4b, the emitter ceases to conduct and the cycle is repeated. The minimum emitter voltage, $V_{E(MIN)}$, is approximately equal to 0.5 $V_{E(SAT)}$. If R_1 is zero, it is relatively independent of bias voltage, temperature and capacitance. For small values of R_1 and R_2 , the frequency of oscillation is: $$f \approx \frac{1}{R_r C_r \ln (1/1 -
\eta)}.$$ (1) The UJT relaxation oscillator is noteworthy for its ability to operate over a wide range of circuit parameters and ambient temperature. Several important conditions must be satisfied if this circuit is to operate satisfactorily. These are: ■ The load line. formed by resistor R_T , must intersect the emitter characteristic curve to the right of the peak point. This condition ensures that R_T can supply sufficient current to the emitter to trigger the UJT. This condition may be written: $$\frac{V_1 - V_P}{R_T} > I_P. \tag{2}$$ Generally I_P is specified at an interbase voltage of 25 volts and is inversely proportional to V_{BB} . This equation sets the maximum limit on R_T . R_T must be chosen to satisfy this inequality under the worst conditions for each of the other parameters. The worst conditions would include the maximum value of V_P , the minimum value of V_1 , and the maximum value of I_P at the minimum temperature of operation. ■ The load line formed by R_T must also intersect the emitter characteristic to the left of the valley point. This may be written: $$\frac{V_1 - V_V}{R_T} < I_V. \tag{3}$$ Since V_v is circuit-dependent, its value should be measured in the actual circuit. If this condition is not satisfied, the load line will intersect the emitter-characteristic curve in the saturation region 3. Emitter characteristic curve shows the three operating regions. When the emitter diode goes into conduction, the device shifts its operating point through the negative resistance region to the saturation region. and the UJT may not turn off after it triggers on the first cycle. Note that the value of valley current includes the effects of the base-one and base-two external series resistors. If these are large, the value of I_v will be reduced as indicated in Fig. 5. ■ Finally the operation of the UJT relaxation oscillator greatly depends on the allowable range of capacitance C_T . As the size of C_T decreases from 0.01 to 0.001 μ F, the amplitude of the emitter waveform will decrease. This decrease is actually a function of the frequency capability of the UJT being used. For most UJTs the emitter peak current should not exceed two amperes for values of C_T less than 10 μ F and peak-point voltages less than 30 volts. For higher values of C_T or V_T , resistance should be used in series with the capacitor to protect the emitter circuit. This additional series resistance should be on the order of at least one ohm per microfarad of C_T . In general the limitations imposed by the first two conditions are not severe. A maximum value of I_P might be 2 μ A and a minimum value of I_V might be 8 mA. The allowable range of R_T then would be 1000 to 1 or approximately 3 k Ω to 3 M Ω . #### Defining the parameters To properly select the device that will function best in any particular circuit, it is important to understand the meaning attached to each of the parameters and the methods by which these values can be checked in the laboratory. The following definitions and test circuits will greatly help in achieving a working design. The intrinsic stand-off radio (η) , one of the most important parameters, is defined by the equation: $$V_P = \eta V_{BB} + V_D,$$ where V_P is the peak-point emitter voltage, V_{BB} is the interbase voltage, and V_D is the emitter diode's forward-voltage drop. For a given UJT type, there is a range of values for the intrinsic stand-off ratio from device to device. Since the basic UJT circuit has a frequency characteristic which is dependent on $R_{\scriptscriptstyle T}$, $C_{\scriptscriptstyle T}$ and η , a wide range of η will greatly affect the operating frequency of this basic oscillator. Though $R_{\scriptscriptstyle T}$ can be adjusted to compensate for this 4. The basic unijunction circuit, a relaxation oscillator (a), provides a sawtooth output. The characteristic curve (b) shows the effect of increasing the value of the charging capacitor, $\mathbf{C_T}$. 5. Emitter characteristic curves, for a typical unijunction transistor, as a function of the base-one series resistance (a) and the base-two series resitance (b). 6. Test circuit for measuring the intrinsic stand-off ratio (η) uses a simple peak detector to measure the peak emitter voltage. Direct reading meter is set to read full scale by R_3 when the CAL button is pressed. variation, in narrow-range and critical circuits, the use of a unijunction having a narrow range of η will greatly simplify the design, assure better temperature stability, and lower component cost. In addition, if the desired circuit is to operate with a low supply voltage, a UJT with a high value of η will permit a lower resistance value for the basetwo temperature-compensating resistor (R_2) . This results in a higher interbase voltage (V_{BB}) which increases the control range of the emitter timing resistor. The circuit shown in Fig. 6 may be used to measure η . In this circuit R_1 , C_1 and the UJT form a relaxation oscillator. The remainder of the circuit serves as a peak-voltage detector. The diode automatically subtracts the emitter-diode voltage, V_D . To use the circuit, the "CAL" button is pushed and R_3 is adjusted until the meter reads full scale. The "CAL" button is then released and the value of η is read directly from the meter. To protect the unijunction, the power supply should have a current limit control. The base-one peak-pulse voltage (V_{OB1}) is an important measurement when pulse generation is desirable or required. Essentially a circuit measurement, the use of a standard test circuit allows for easy comparison of various devices. The output of the circuit shown in Fig. 7 can be monitored with a scope to determine all of the pulse characteristics. The valley current (I_{ν}) is the emitter current at the valley point. This current will increase as the interbase voltage increases, and decrease with the resistance in series with base-one or base-two. Where fast response or high-frequency operation is desirable, this becomes an important parameter. Being circuit-dependent, this measurement should be made on the actual circuit. The peak-point current (I_P) represents the minimum current which is required to trigger the UJT. It corresponds to the emitter current at the peak-point and is inversely proportional to the interbase voltage. In applications that require a high input impedance or a long timing period, this parameter becomes important while I_V does not. The circuit shown in Fig. 8 is used to measure I_P . While observing the meter, the potentiometer setting is slowly increased until the UJT fires, as 7. Base-one peak-pulse voltage may be measured by putting a scope across $R_{\rm B_{\rm I}}$. This simple circuit may be used to compare the pulse capabilities of different UJTs. For SCR triggering, a large pulse is desirable. evidenced by a sudden jump and oscillation of the meter needle. The current reading just prior to the jump is the peak-point current. The emitter reverse current (I_{EO}) , similar to I_{CO} in a conventional transistor, can be measured by applying a voltage between base-two and the emitter, with base-one open-circuited. Unijunction transistors that have a guaranteed low I_P value generally also have a low leakage current. The stability of a UJT is improved as the ratio of the average capacitance-charging current to I_{EO} is increased. The interbase resistance (R_{BBO}) is the resistance measured between base-one and base-two, with the emitter open-circuited. By using devices that have a higher R_{BBO} rating, power dissipation can be decreased. This is important when higher values of interbase voltages are being used and the interbase power dissipation becomes an appreciable part of the total power dissipation. Since the interbase resistance has a positive temperature coefficient of 0.8%/°C, this characteristic can be used either for temperature compensation or in the design of temperature sensitive circuits. The value of the interbase resistance can be measured with any conventional ohm meter or resistance bridge, if the applied voltage is kept at five volts or less. The emitter saturation voltage $(V_{E(SAT)})$ indicates the forward drop from emitter to baseone when the device is in the saturation region. Generally, it's measured at an emitter current of 50 mA and an interbase voltage of 10 volts. A low value of emitter saturation voltage will permit the generation of higher amplitude sawtooth voltages and also allow the use of lower supply voltages. In general, the higher the V_{OB1} rating a unijunction transistor has, the lower the saturation voltage will be. The emitter reverse voltage (V_{EB2}) is the maximum voltage rating for the emitter junction. This rating should never be exceeded and thus restricts the choice of device to one that is compatible with the supply voltage being used. ### Data list simplifies selection Type 1—The UJT is an excellent trigger source 8. **Peak-point emitter current** is measured with this circuit. R_1 is increased until a jump in reading is observed on the meter. The current reading just before the jump is the peak-point emitter current. firing silicon-controlled-rectifiers silicon-controlled-switches (SCS), and triode-acswitches (Triac). The trigger pulse generated may represent frequency control, time delay, amplitude level change, or phase control. The base-one peak pulse voltage, V_{OB1} , is the key parameter for these applications. The most desirable UJT types are those with the highest value of guaranteed minimum V_{oB1} . Unijunction transistors that feature high values of V_{OB1} are especially useful for triggering the higher-current SCRs. They are also preferred in circuits where the trigger supply voltage is low or where the size of the oscillator capacitance is limited. Many of the
specification sheets will have trigger-circuit design curves which assure SCR triggering over a temperature range. The minimum I_V specification should also be considered. High values of this parameter enable the circuit designer to use a low resistance for R_T without running into a "latch-on" problem. The lower value of R_T also increases the average charging current to the capacitance C_T ; this minimizes the effect of the temperature-sensitive leakage currents in the charging circuit. **Type 2**—In designing circuits for high-frequency-control, short-timing-period and voltage-sensing applications, the minimum value of I_v , the valley current, is the key parameter. Higher I_{ν} ratings allow the use of lower values of R_{τ} . The result is a faster response time for any given capacitor size. Also, where large pulse outputs are required, the capacitor value may be increased. Finally, since I_{ν} decreases with supply voltage, the higher I_{ν} ratings are an advantage for low-supply-voltage applications. **Type** 3—In low-frequency-control, long-timing-period, and current-sensing applications, the maximum value of I_P , the peak-point current, is the key design parameter. A low I_P permits longer time constants $(R_T C_T)$ in the emitter circuitry. This enables the designer to use smaller charging capacitors for a given timing period. These, in turn, will have lower leakage figures. Also, as the supply voltage decreases, the lower I_P rating helps to maintain a lower trigger-current requirement. This is an advantage in timing and level-sensing. # Unijunction Type 1. Pulse Generation (e.g., SCR Triggering): In order of increasing values of V_{OB1} | | Type
Number | Orig.
Reg. | Туре | V _{OB1}
[min]
(volts) | ly
[min]
(mA) | V _{EB2} [max] (volts) | η
[min-max] | R _{BBO}
[min]
(kΩ) | l _P
{max}
(μ A) | l _{EO}
[max]
(μ A) | V _{E(SAT)} [max] (volts) | Alternate
Sources and
Remarks | |--------|----------------|---------------|----------|--------------------------------------|---------------------|--------------------------------|----------------|-----------------------------------|--|---|-----------------------------------|-------------------------------------| | | 2N489A | GE | pn,si | 3.0 | 8.0 | 60 | 0.51-0.62 | 4.7 | 12.0 | 2.0 | 4.0 | TI, TO-5 | | | 2N490A | GE | pn,si | 3.0 | 8.0 | 60 | 0.51-0.62 | 6.2 | 12.0 | 2.0 | 4.0 | TI, TO-5 | | | 2N491A | GE | pn,si | 3.0 | 8.0 | 60 | 0.56-0.68 | 4.7 | 12.0 | 2.0 | 4.3 | TI, TO-5 | | | 2N492A | GE | pn,si | 3.0 | 8.0 | 60 | 0.56-0.68 | 6.2 | 12.0 | 2.0 | 4.3 | TI, TO-5 | | | 2N493A | GE | pn,si | 3.0 | 8.0 | 60 | 0.62-0.75 | 4.7 | 12.0 | 2.0 | 4.6 | TI, TO-5 | | | 2N494A | GE | pn,si | 3.0 | 8.0 | 60 | 0.62-0.75 | 6.2 | 12.0 | 2.0 | 4.6 | TI, TO-5 | | TLU | 2N1671A | TI | pn,si | 3.0 | 8.0 | 30 | 0.47-0.62 | 4.7 | 25.0 | 2.0 | 5.0 | | | 1 1 10 | 2N1671B | GE | n,si | 3.0 | 8.0 | 30 | 0.47-0.62 | 4.7 | 6.0 | 0.2 | 5.0 | | | 1 | 2N2160 | GE | pn,si | 3.0 | 8.0 | 30 | 0.47-0.80 | 4.0 | 25.0 | 2.0 | - | TI, TO-5 | | | 2N2646 | GE | pn,AE,si | 3.0 | 4.0 | 30 | 0.56-0.75 | 4.7 | 5.0 | 12.0 | 2.0 (typ) | MO, TI | | | SJ1034 | TI | pn,si | 3.0 | - | 30 | 0.50-0.80 | 4.0 | ~ | 15.0 | _ | TO-5 | | | \$J5898 | TI | pn,si | 3.0 | 2.0 | 30 | 0.55-0.80 | 4.0 | 5.0 | 0.01 | 4.0 | T-69 (Plastic Planar) | | | 2N2647 | GE | pn,si | 6.0 | 8.0 | 30 | 0.68-0.82 | 4.7 | 2.0 | 0.20 | 2.0 (typ) | | | | SJ1158 | TI | pn,si | 6.0 | 3.0 | 30 | 0.56-0.85 | 4.0 | 5.0 | 0.01 | 4.0 | TO-18 (Planar) | | | SJ1159 | TI | pn,si | 6.0 | 4.0 | 30 | 0.65-0.85 | 4.7 | 2.0 | 0.01 | 4.0 | TO-18 (Planar) | Type 2. High-Frequency Control, Voltage-Sensing, Frequency Dividing and Short Timing Periods: In order of increasing values of Iv | | Type
Number | Orig.
Reg. | Type | I _V [min] (mA) | η
[min-max] | R _{BBO}
[min]
(kΩ) | I _{EO}
[max]
(j:A) | I _P [max] (µA) | V _{E(SAT)} [max] (volts) | V _{EB2}
[max]
(volts) | V _{OB1}
[min]
(volts) | Alternate
Sources and
Remarks | |-----|----------------|---------------|----------|---------------------------|----------------|-----------------------------------|-----------------------------------|---------------------------|-----------------------------------|--------------------------------------|--------------------------------------|-------------------------------------| | | 2N3980 | TI | pn,AE,si | 1.0 | 0.68-0.82 | 4.0 | 0.01 | 2.0 | 3.0 | 30 | 6.0 | MO | | | \$1993 | T1 | pn,si | 4.0 | 0.56-0.75 | 4.7 | 0.01 | 5.0 | 4.0 | 30 | 3.0 | TO-18 (Planar) | | | SJ1127 | TI | pn,si | 8.0 | 0.68-0.82 | 4.7 | 0.01 | 2.0 | 4.0 | 60 | 6.0 | TO-18 (Planar) | | | 2N489 | GE | pn,si | 8.0 | 0.51-0.62 | 4.7 | 2.0 | 12.0 | 5.0 | 60 | - | TI, TO-5 | | TLU | 2N490 | GE | pn,si | 8.0 | 0.51-0.62 | 6.2 | 2.0 | 12.0 | 5.0 | 60 | - | Ті, ТО-5 | | 2 | 2N491 | GE | pn,si | 8.0 | 0.56-0.68 | 4.7 | 2.0 | 12.0 | 5.0 | 60 | - | TI, TO-5 | | | 2N 492 | GE | pn,si | 8.0 | 0.56-0.68 | 6.2 | 2,0 | 12.0 | 5.0 | 60 | - | TI, TO-5 | | | 2N493 | GE | pn,si | 8.0 | 0.62-0.75 | 4.7 | 2.0 | 12.0 | 5.0 | 60 | - | TI, TO-5 | | | 2N494 | GE | pn,si | 8.0 | 0.62-0.75 | 6.2 | 2.0 | 12.0 | 5.0 | 60 | - | TI, TO-5 | | | 2N1671 | TI | pn,si | 8.0 | 0.47-0.62 | 4.7 | 12.0 | 25.0 | 5.0 | 30 | - | TO-5 | Type 3. Low-Frequency Control, Long Timing-Periods and Current-Sensing: In order of decreasing values of Ip | | Type
Number | Orig.
Reg. | Type | lp
[max]
(μ A) | l _{EO}
[max]
(μ A) | η
[min-max] | V _{OB1}
[min]
(volts) | R _{BBO}
[min]
(kΩ) | l _V [min] (mA) | V _{E(SAT)} [max] (volts) | V _{EB2}
[max]
(volts) | Alternate
Sources and
Remarks | |-----|----------------|---------------|-------|------------------------------|---|----------------|--------------------------------------|-----------------------------------|---------------------------|-----------------------------------|--------------------------------------|-------------------------------------| | | 2N489B | GE | pn,si | 6.0 | 2.0 | 0.51-0.62 | 3.0 | 4.7 | 8.0 | 4.0 | 60 | TI, TO-5 | | | 2N490B | GE | pn,si | 6.0 | 2.0 | 0.51-0.62 | 3.0 | 6.2 | 8.0 | 4.0 | 60 | TI, TO-5 | | | 2N491B | GE | pn,si | 6.0 | 2.0 | 0.56-0.68 | 3.0 | 4.7 | 8.0 | 4.3 | 60 | TI, TO-5 | | | 2N492B | GE | pn,si | 6.0 | 2.0 | 0.56-0.68 | 3.0 | 6.2 | 8.0 | 4.3 | 60 | TI, TO-5 | | | 2N494B | GE | pn,si | 6.0 | 2.0 | 0.62-0.75 | 3.0 | 6.2 | 8.0 | 4.6 | 60 | T1, T0-5 | | UJT | 2N495B | GE | pn,si | 6.0 | 2.0 | 0.62-0.75 | 3.0 | 4.7 | 8.0 | 4.6 | 60 | TI, TO-5 | | 3 | 2N1671B | TI | pn,si | 6.0 | 0.20 | 0.47-0.62 | 3,0 | 4.7 | 8.0 | 5.0 | 30 | GE, TO-5 | | | 2N490C | GE | n,si | 2.0 | 0.02 | 0.62-0.91 | 3.0 | 6,2 | 8.0 | 4.0 | 60 | | | | 2N492C | GE | n,si | 2.0 | 0.02 | 0.62-0.91 | 3.0 | 6.2 | 8.0 | 4.3 | 60 | | | | 2N494C | GE | pn,si | 2.0 | 0.02 | 0.62-0.75 | 3.0 | 6.2 | 8.0 | 4.6 | 60 | TI, TO-5 | | | 2N1671C | GE | pn,si | 2.0 | 0.02 | 0,47-0,62 | 3,0 | 4,7 | 8.0 | 5.0 | 60 | | | | 2N2647 | GE | pn,si | 2.0 | 0.20 | 0.68-0.82 | 6.0 | 4.7 | 8.0 | 2.0 (typ) | 30 | MO, TO-18 (Planar) | | | 2N 3980 | TI | pn,si | 2.0 | 0.01 | 0.68-0.82 | 6.0 | 4.0 | 1.0 | 3.0 | 30 | TO-18 (Planar) | (see pages 4-9 for explanation of company abbreviations.) # AND STRIP! Our new Mallinckrodt photoresist stripper needs no added chemicals, and it works hot or cool. Here's the organic stripper that eliminates the mess of mixing and, in many cases, the need for heating. New Photostrip 66 TransistAR®. You just pour it out and put it to work at room temperature. Or heat it up where the application requires. Photostrip 66 is non-flammable and non-alkaline. It softens and removes resist quickly, without attacking aluminum deposits on your silicon. Give our new Photostrip 66 a whirl. It works beautifully and it's a step faster than anything you've ever used before. For product data, write Electronic Chemicals, Mallinckrodt Chemical Works, St. Louis, Mo. 63160. Mallinckrodt MALLINCKRODT CHEMICAL WORKS/Electronic Chemicals St. Louis • New York • Los Angeles # Siemens components are developed and produced by one of the world's leading electrical organizations, employing 257,000 people—15,000 in R & D alone—manufacturing in 33 countries and represented in over 100. include Ferrite materials Capacitors Electron tubes Microwave tubes Rectifiers offer advanced design, reliability, long life, versatility Siemens metallized polyester capacitors Small size and high reliability are new standards set by Siemens capacitors. Twenty years' experience in making metallized capacitors has resulted in advanced precision techniques which closely control every capacitor property, making them 100% "foolproof" in service. Less than one breakdown (self-healing) per year and per mF—that is the consistent average shown by tests at nominal voltage. Two-way self-healing gives double protection. Internal voltage breakdown very rarely occurs. If it does, the thin metal coatings at the breakthrough point, vaporize immediately, eliminating the breakthrough point within microseconds. Electrochemical self-healing is the second protective process. It starts whenever and wherever insulation resistance decreases in the dielectric material and operates at any voltage, eliminating the point electrically. Highly stable capacitance. Overload tests (at 2.2 nominal voltage and at 85°C) show negligible change of characteristics. Small size—MKH (metallized polyester) capacitors are available with axial or radial leads, in flat compact form. Leads soldered to metallized ends ensure reliable contact. MKH properties. Operating temperatures: -40° to $+125^{\circ}$ C (for 1000 hours), $+100^{\circ}$ C for continuous operation. Insulation resistance: 20,000 megohms or 10,000 megohms X mF, whichever is lower. Dissipation factors: 0.5%
at 1 kc; 1.5% at 10 kc (typical values). Immediate shipment: Substantial stocks are held in White Plains, N.Y. Write now for full information on Metallized Polyester Capacitors. SIEMENS AMERICA INCORPORATED Components Division 230 Ferris Avenue, White Plains, N.Y. In Canada: SIEMENS CANADA LIMITED 407 McGill Street, Montreal 1, P.Q. # How To Use The Cross Index Types are listed in numerical sequence. EIA-registered types come first, followed by house-numbered types. The code following each type identifies its application category and the block of 10 types in which it is located. A3, for example, means the type can be found in the third block of the Audio section. Key to the letter codes is: A = audio and general-purpose, P = power, HF = high-frequency, LL = low-level switching, HL = high-level switching, FET = field-effect, UJT = unijunction. | 2N35 | A49 | 2N251A | P64 | 2N337 | LL37 | 2N407 | A30 | |----------------|------|--------|------|-----------------|---------|--------|----------------| | 2N94 | HF2 | 2N257 | P64 | 2N337A | LL13 | 2N408 | A30 | | 2N94A | HF3 | 2N262 | HF94 | 2N337A
2N338 | LL37 | 2N409 | HF5 | | | | | | | LL3/ | | | | 2N102 | A4 | 2N268 | P64 | 2N338A | LL16 | 2N410 | HF5 | | 2N104 | A23 | 2N268A | P64 | 2N339 | P2 | 2N411 | HF8 | | 2N109 | A32 | 2N270 | A31 | 2N339A | A12 | 2N412 | A32 | | 2N117 | A4 | 2N274 | HF12 | 2N340 | P2 | 2N414 | LL10 | | 2N118 | A12 | 2N277 | P85 | 2N340A | A12 | 2N418 | HL40, P34 | | 2N119 | A24 | 2N278 | P85 | 2N341 | P2 | 2N419 | P35 | | 2N120 | A37 | 2N279 | A14 | 2N341A | P1, A12 | 2N420 | HL40, P35 | | 2N122 | P22 | 2N280 | A24 | 2N342 | P2 | 2N420A | HL40, P35 | | 2N128 | HF17 | 2N281 | A31 | 2N342A | P2 | 2N424 | P61 | | 2N139 | HF3 | 2N282 | A31 | 2N342B | P2 | 2N424A | HL41 | | 2N140 | HF8 | | | 2N343 | P2 | | LL4 | | 2N144 | HF94 | 2N284 | LL37 | 2N343A | P2 | 2N426 | | | 2N156 | P31 | 2N284A | LL37 | 2N343B | P3 | 2N427 | LL7 | | 2N158 | P31 | 2N285A | P34 | 2N344 | HF12 | 2N428 | LL11 | | 2N158A | P31 | 2N285B | P34 | | | 2N441 | P85 | | 2N169 | A27 | 2N297A | P64 | 2N345 | HF12 | 2N442 | P85 | | 2N173 | P84 | 2N301 | P26 | 2N346 | HF20 | 2N443 | P85 | | | | 2N301A | P26 | 2N350A | P64 | 2N444 | HF1 | | 2N174 | P84 | 2N306 | A14 | 2N351A | P64 | 2N444A | HF1 | | 2N174A | P84 | 2N315 | LL6 | 2N356 | LL4 | 2N445 | HF2 | | 2N175 | A30 | 2N315A | LL6 | 2N356A | LL4 | 2N445A | HF2 | | 2N176 | P64 | | LL6 | 2N357 | LL7 | 2N446 | HF3 | | 2N178 | P64 | 2N315B | | 2N357A | LL7 | 2N446A | HF3 | | 2N211 | HF3 | 2N316 | LL12 | 2N358 | LL11 | 2N447 | HF8 | | 2N212 | HF3 | 2N316A | LL12 | 2N358A | LL11 | 2N447A | HF8 | | 2N213 | A32 | 2N317 | LL15 | 2N370 | HF20 | 2N447B | HF8 | | 2N213A | A40 | 2N317A | LL15 | 2N371 | HF13 | | | | 2N214 | A25 | 2N326 | P22 | 2N372 | HF13 | 2N449 | A27 | | 2N215 | A23 | 2N327A | LL1 | 2N374 | HF94 | 2N456A | P51 | | 2N217 | A32 | 2N328A | LL1 | 2N375 | P65 | 2N456B | HL18 | | 2N218 | HF3 | 2N328B | LL1 | 2N376A | P65 | 2N457A | P51 | | 2N219 | HF8 | 2N239 | LL1 | 2N384 | HF30 | 2N457B | HL18 | | 2N219A | HL36 | 2N329A | LL1 | 2N388 | LL6 | 2N458A | P52 | | 2N220 | A30 | 2N329B | LL2 | 2N388A | LL7 | 2N458B | HL18 | | 2N231 | HF94 | 2N330A | A12 | 2N389 | P61 | 2N463 | P52 | | 2N231
2N233 | HF2 | 2N331 | A50 | | HF15 | 2N470 | A4 | | 2N233A | HF2 | 2N332 | A4 | 2N393 | LL37 | 2N471 | A4 | | 2N234A | P34 | 2N332A | A3 | 2N398 | | 2N471A | HF6 | | | | | | 2N398A | LL18 | 2N472 | A4 | | 2N235A | P34 | 2N333 | A12 | 2N399 | P34 | | | | 2N235B | P34 | 2N333A | A8 | 2N400 | P45 | 2N472A | A4, HF6
HF6 | | 2N236A | P54 | 2N334 | A19 | 2N401 | P34 | 2N473 | Hrb | | 2N236B | P54 | 2N335 | A24 | 2N404 | LL5 | 2N474 | HF6 | | 2N243 | A7 | 2N335A | A19 | 2N404A | LL6 | 2N474A | HF7 | | 2N244 | A17 | 2N336 | A38 | 2N405 | A17 | 2N475 | HF7 | | 2N250A | P64 | 2N336A | A34 | 2N406 | A17 | 2N475A | HF7 | ELECTRONIC DESIGN # There is no adhesive like EASTMAN 910° Adhesive SETS FAST—Makes firm bonds in seconds to minutes. **VERSATILE**—Joins virtually any combination of materials. HIGH STRENGTH—Up to 5,000 lb./in.² depending on the materials. **READY TO USE**—No catalyst or mixing necessary. **CURES AT ROOM TEMPERATURE**—No heat required to initiate or accelerate setting. ### CONTACT PRESSURE SUFFICIENT. LOW SHRINKAGE—Virtually no shrinkage on setting as neither solvent nor heat is used. **GOES FAR**—One pound contains about 30,000 one-drop applications. (Or in more specific terms, approximately 20 fast setting one-drop applications for a nickel). The use of EASTMAN 910 Adhesive is not suggested at prolonged temperatures above 175°F., or in the presence of extreme moisture for prolonged periods. ### SHEAR STRENGTH OF BONDS | Bond Type | Time to
Firm Set
(minutes) | Representative
Shear Strength†
(psi) | Age of Bond | | | |-------------------------------------|----------------------------------|--|--|--|--| | Aluminum-
Aluminum | 2 | 1,484
2,188
2,700
2,800 (Tensile) | 10 mins.
1 hr.
48 hrs.
24 hrs. | | | | Steel-Steel | 2 | 1,362
2,224
2,800
5,030 (Tensile) | 10 mins.
1 hr.
48 hrs.
48 hrs. | | | | Aluminum-Steel | 10 ½ (with surface activator*) | 84
173
1,007
1,653 | 10 mins.
1 hr.
10 mins.
1 hr. | | | | Butyl Rubber-
Butyl Rubber | 1/2 | 51 ¹ 63 | 10 mins.
4 yrs. ² | | | | Butyl Rubber-
Steel | 1 | 521
761 | 10 mins.
4 yrs. ² | | | | Butyl Rubber-
Aluminum | 1 | 731
691 | 10 mins.
4 yrs. ² | | | | SBR Rubber-
SBR Rubber | ½ | 90 l
56 l
88 l | 10 mins.
4 yrs. ²
30 days, salt
spray cycle
(ASTM B
117-57T) | | | | Neoprene Rubber-
Neoprene Rubber | 1 /2 | 541
45 | 10 mins.
4 yrs. ² | | | | Natural Rubber-
Natural Rubber | 1/2 | 46 ¹
39 | 10 mins.
4 yrs. ² | | | | SBR Rubber-
Butyrate | V 2 | 95
110
112 | 10 mins.
2 yrs. ²
30 days, salt
spray cycle
(ASTM B117-57T) | | | | SBR Rubber-
Phenolic | ¥2 | 105 ¹
110 ¹ | 10 mins.
2 yrs. ² | | | | Butyl-
Polyester | 1/2 | 102 ¹
154 | 15 mins.
2 yrs. ² | | | | Bond Type | Time to
Firm Set
(minutes) | Representative
Shear Strength†
(psi) | Age of Bond | |--------------------------------|--|---|--| | Butyl-
Phenolic | 1/2 | 114 ¹
178 ¹ | 15 mins.
2 yrs. ² | | Neoprene-
Polyester | 1/2 | 1121
136 | 15 mins.
2 yrs. ² | | Nylon-Nylon | 1 | 327
1,400 | 10 mins.
48 hrs. | | Nylon-Aluminum | 1 | 500
1,436
956
1,024 | 10 mins.
48 hrs.
1 yr. ⁴
2 yrs. ⁴ | | Phenolic-Phenolic | 1 | 747
600 ³ | 10 mins.
4 yrs.4 | | Phenolic-
Aluminum | 1 | 647
920
348 | 10 mins.
48 hrs.
2 yrs.4 | | Polyester-
Stainless Steel | 1 | 696
664
432 | 48 hrs.
6 mos. ⁴
2 yrs. ⁴ | | Acrylic-
Stainless Steel | 1 | 620 ³
484 ³
488 | 6 mos.4
1 yr.4
2 yrs.4 | | Flexible Vinyl-
Aluminum | 1 | 207 ³
192 ³
200 ³ | 6 mos.4
1 yr.4
2 yrs.4 | | Polystyrene-
Polystyrene | 2
½
(with surface
activator*) | 327
70
447 ³ | 10 mins.
1 yr. ²
10 mins. | | Polypropylene
Polypropylene | 2
2
/ ₂
(with surface
activator*) | 180 4113 (Flame treated polypropylene) 4013 (Flame-treated polypropylene) | 24 hrs.
24 hrs.
15 mins. | †Laboratory test results rubber failure ²weathered outdoors 3plastic failure 450% Relative Humidity and 75°F. *In certain cases, most notably those involving polystyrene, pickled or dissimilar metal surfaces, bonding with EASTMAN 910 Adhesive is sometimes slow. EASTMAN 910 Surface Activator is designed to restore the rapid polymerization of the adhesive. It is also quite valuable in maintaining consistent results in production line bonding situations. Further information on this product is available. Other materials that can be bonded successfully with EASTMAN 910 Adhesive are: polyurethanes, acetal resins; most hard woods; brass, copper. Recent work indicates that polyolefin and acetal plastic bonds are significantly improved by flame treatment of the plastic material prior to bonding (shear strengths up to 500 psi). If you have applications in which extreme speed of setting is needed, or where design requirements involve small joining surfaces, complex mechanical fasteners, or heat sensitive assemblies, EASTMAN 910 Adhesive may save you many man-hours of production time. Send \$10 for a trial kit to use on your toughest bonding job. Kits and further information are available from Armstrong Cork Co., Industry Products Division, Lancaster, Pennsylvania, or from Chemicals Division, EASTMAN CHEMICAL PRODUCTS, INC., subsidiary of Eastman Kodak Company, Kingsport, Tennessee. See Sweet's 1966 Product Design File 8a/Ea. | 011476 | LIETO | ONESCA | D44 | 2N650 | 2N741 HF73 | |------------------|--------------|-----------------|----------------|---|--------------------------------------| | 2N476 | HF10 | 2N538A | P44 | 2N659 A22 | | | 2N477 | HF10 | 2N539 | P44 | 2N660 A30 | | | 2N478 | HF11 | 2N539A | P44 | 2N661 A34 | 2N742 LL31 | | 2N479 | HF11 | 2N540 | P44 | 2N662 A14 | 2N743 HF96 | | 2N479A | HF11 | 2N540A | P44 | 2N663 P46 | 2N743/46 HF89 | | 2N480 | HF11 | 2N541 | HF8 | 2N665 P46 | 2N743/51 HF89 | | 2N480A | A21 | 2N542 | HF9 | 2N669 P66 | 2N744 LL38, HF96 | | 2N489 | UJT2 | 2N542A | HF9 | 2N677 P66 | 2N744/46 HF89 | | 2N489A | UJT1 | 2N543 | HF9 | 2N677A P66 | 2N744/51 HF89 | | 2N489B | UJT3 | 2N543A | A35 | 2N677B P66 | 2N752 HF50 | | 2N490 | UJT2 | 2N545 | HL26 | 2N677C P66 | 2N753 HF96 | | 2N490A | UJT1 | 2N546 | HL26 | 2N678 P52 | 2N754 HF13 | | 2N490B | UJT3 | 2N547 | HL26 | 2N678A P52 | 2N755 HF13 | | 2N490C | UJT3 |
2N548 | HL26 | 2N678B P52 | 2N756 A5 | | 2N491 | UJT2 | 2N549 | HL27 | 2N678C P52 | 2N756A A5 | | 2N491A | UJT1 | 2N550 | HL27 | 2N696 HL32, P7, HF27 | 2N757 A8 | | 2N491B | UJT3 | 2N551 | HL26 | 2N697 P7, HF30 | 2N758 A8 | | 2N492 | UJT2 | 2N552 | HL26 | 2N698 HL28, P12, HF21 | 2N758A A9 | | 2N492A | UJT1 | 2N554 | P58 | 2N699 HL32, P7, HF27 | 2N758B HF43 | | 2N492B | UJT3 | 2N555 | P58 | 2N699B P15 | 2N759 A19 | | 2N492C | UJT3 | 2N563 | A13 | 2N700 HF80 | 2N759A A19 | | 2N493 | UJT2 | 2N564 | A13 | 2N700A HF90 | 2N759B HF47 | | 2N493A | UJT1 | 2N565 | A27 | 2N702 LL22, HF43 | 2N760 A34 | | 2N494 | UJT2 | 2N566 | A27 | 2N703 LL22, HF43 | 2N760A A34 | | 2N494A | UJT1 | 2N567 | A38 | 2N705 LL37 | 2N760B HF50 | | 2N494B | UJT3 | 2N568 | A38 | 2N706 LL30, P3, HF74 | 2N768 HF40 | | 2N494C | UJT3 | 2N569 | A42 | 2N706/51 HF49 | 2N769 HF84 | | 2N495 | HF7 | 2N570 | A42 | 2N706A LL31, HF95 | 2N779A HF70 | | 2N495B | UJT3 | 2N571 | A45 | 2N706A/51 HF49 | 2N780 A17 | | 2N496 | HF12 | 2N572 | A46 | 2N706B LL31, HF74 | 2N781 LL38, HF96 | | 2N497 | P14 | 2N574 | P98 | 2N706B/46 HF49 | 2N782 LL38, HF96 | | 2N497A | P15 | 2N574A | P98 | 2N706B/51 HF49 | 2N783 HF50 | | 2N498 | P14 | 2N575 | P98 | 2N706C/46 HF49 | 2N784 HF65 | | 2N498A | P15 | 2N575A | P98 | 2N706C/51 HF49 | 2N784A LL27, HF65 | | 2N499 | HF57 | 2N579 | LL10
LL13 | 2N707 LL31, P3, HF74 | 2N784/51 HF65 | | 2N499A | HF57 | 2N580 | | 2N707A LL37 | 2N794 LL17, HF15 | | 2N501 | HF29 | 2N581 | LL10, HF7 | 2N708 HL39, LL31, P3, | 2N795 LL17, HF15 | | 2N501A | HF39 | 2N582 | LL15, HF11 | HF75 | 2N796 LL18, HF18
2N797 LL38, HF96 | | 2N502 | HF80 | 2N583 | LL10
LL5 | 2N709 LL35, P1, HF87 | 2N797 LL38, HF96
2N827 LL25 | | 2N502A | HF85 | 2N585
2N586 | LL37 | 2N709/46 HF84 | 2N828 LL31, HF75 | | 2N502B | HF86 | 2N588 | HF49 | 2N709/51 HF84 | 2N828A HF75 | | 2N503 | HF70
HF17 | 2N591 | A31 | 2N709A HF88 | 2N829 HF75 | | 2N504 | A39 | 2N594 | LL4 | 2N709A/46 HF88 | 2N834 LL29, HF78 | | 2N508A | P85 | 2N595 | LL5 | 2N709A/51 HF88 | 2N834/46 HF71 | | 2N511 | P85 | 2N596 | LL7 | 2N710 LL37, HF95 | 2N834/51 HF71 | | 2N511A | P85 | 2N602 | HF9 | 2N711 LL38 | 2N835 LL27, HF65, 80 | | 2N511B
2N512 | P85 | 2N603 | HF13 | 2N711A LL38 | 2N835/46 HF65 | | 2N512A | P85 | 2N604 | HF18 | 2N711B LL38 | 2N835/51 HF65 | | 2N512B | P86 | 2N605 | HF18 | 2N715 HF95 | 2N838 LL27 | | 2N513 | P86 | 2N606 | HF18 | 2N716 HF95 | 2N840 HF13 | | 2N513A | P86 | 2N607 | HF18 | 2N717 HL30, P5, HF21 | 2N841 HF15 | | 2N513B | P86 | 2N618 | HL2 | 2N718 HL33, P5, HF27 | 2N842 LL16, HF13 | | 2N514 | P86 | 2N627 | P65 | 2N718A HL33, P6, HF27 | 2N843 LL17, HF16 | | 2N514A | P86 | 2N628 | P65 | 2N719 HL30, P5, HF21 | 2N844 HF18 | | 2N514B | P86 | 2N629 | P65 | 2N719A HL30, P6, HF21
2N720 HL33, P6, HF28 | 2N845 HF18 | | 2N515 | HF2 | 2N637 | HL41, P65 | 2N720 HL33, F6, HF28
2N720A HL30, P6, HF21 | 2N846A HF70 | | 2N516 | HF2 | 2N637A | HL41, P65 | 2N721 HL31, P6 | 2N849/T1-430 LL38, | | 2N517 | HF3 | 2N637B | HL41, P65 | 2N722 HL34, P6 | HF96 | | 2N519 | LL2 | 2N638 | HL41, P65 | 2N725 LL38 | 2N850/T1-431 LL38, | | 2N519A | LL2 | 2N638A | HL41, P65 | | HF96 | | 2N520 | LL5 | 2N638B | HL41, P66 | 2N726 A5
2N727 A14 | 2N851/T1-422 LL38, | | 2N521 | LL10 | 2N647
2N649 | A31
A30 | 2N728 HF30 | 2N852/T1-423 LI 39, | | 2N522 | LL13 | 2N650 | A16 | 2N729 HF30 | HF96 | | 2N522A | LL13 | 2N650A | A16 | 2N730 HL42 | 2N858 LL7 | | 2N523 | LL16 | | | 2N731 HL42 | 2N859 LL7 | | 2N523A | LL16
LL16 | 2N651
2N651A | A26
A26 | 2N734 A9 | 2N860 LL9 | | 2N524A | LL16 | 2N652 | A39 | 2N735 A19 | 2N861 LL9 | | 2N525A
2N526A | LL17 | 2N652A | A39 | 2N735A HF47 | 2N862 LL11 | | 2N527A | LL18 | 2N653 | A16 | 2N736 A34 | 2N863 LL11 | | 2N528A | LL5 | 2N654 | A26 | 2N736A A28 | 2N864 LL14 | | 2N529 | A7 | 2N655 | A40 | 2N736B HF49 | 2N865 LL16 | | 2N530 | A11 | | 41, P14, HF94 | 2N738 A9, HF95 | 2N869 P3, HF50 | | 2N531 | A14 | 2N656A | P15 | 2N739 A19, HF95 | 2N869A HF83 | | 2N532 | A15 | 2N657 HL | .41, P14, HF95 | 2N739A HF47 | 2N870 HL33, P7, HF28 | | 2N533 | A18 | 2N657A | P15 | 2N740 A35, HF95 | 2N871 HL35, P7 HF30 | | 2N538 | P44 | 2N658 | A14 | 2N740A HF50 | 2N909 HL31 | | | | | | | | | 2N910
2N911
2N912
2N914
2N914/4 | HL33, P7, HF28
HL32, P7, HF23
HL31, P7, HF21
P4, HF72
46 HL22, LL27,
HF65 | |--|--| | 2N916 | | | 2N923
2N924
2N925
2N926
2N927
2N928
2N929
2N930
2N930
2N930
2N936
2N935
2N936
2N937
2N938
2N939
2N940
2N941 | A24, LL36, HF89
A5
A12
A4
A11
A8
A28, HF97
HF57
A42, HF97
HF64
A19
A2
A7
A18
A2
A7
A18
LL14
LL11 | | 2N942
2N943
2N944
2N945
2N946
2N947
2N955
2N955A | LL3
LL3
LL3
LL3
HL38, P4, HF57
HF90
LL36 | | 2N956
2N957
2N960
2N961
2N962
2N963
2N964 | HF30
A28, P2, HF57
LL33, HF79
LL33, HF79
HF79
HF66
LL33, HF79 | | 2N964A
2N965
2N966
2N967
2N968
2N969
2N970
2N971 | HF79
LL33, HF79
LL33, HF79
HF66
HF70
HF70
HF70 | | 2N972
2N973
2N974
2N975
2N976
2N978
2N979
2N980
2N982 | HF70
HF71
HF71
HF71
HF84
HL31, P4
HF30
HF30 | | 2N983
2N984
2N985
2N987
2N988
2N989 | HF78
HF72
HF97
LL39, HF97
HF31
HF66
HF66 | | 2N990
2N993
2N995
2N996
2N997
2N998
2N999 | HF26
HF26
P4, HF43
P4, HF57
A49
HF97
LL39 | | 2N1000
2N1010
2N1011
2N1011 | LL9
A17
HL42, P45
LL5 | If your programs call for custom-designed film hybrid microcircuits, in high volume, at lower costs, and with faster delivery dates than you thought possible, then be sure to call Mepco... Ask about S.M.A.C. Find out how this new breakthrough in mass-producing film hybrid microcircuits can benefit your production plans. # MEPCO, INC. COLUMBIA ROAD, MORRISTOWN, NEW JERSEY 07960 (201) 539-2000 MANUFACTURERS OF PRECISION ELECTRONIC DEVICES ON READER-SERVICE CARD CIRCLE 32 | 2N1014 | P52 | 2N1086 | A45 | 2N1175A | A32 | 2N1276 | LL13 | |--|--------------------------------------|--|-------------------|----------------------------|---------------------------------|-------------------------------|--------------------------------| | 2N1015 | HL11 | 2N1086A | A45 | 2N1177 | HF42 | 2N1277 | LL13 | | 2N1015A | HL11 | 2N1087 | A45 | 2N1178 | HF42 | 2N1278 | LL13 | | 2N1015B | HL11 | 2N1090 | LL7, HF4 | 2N1179 | HF42 | 2N1279 | LL14 | | 2N1015C | HL11, P86 | 2N1087 | A45 | 2N1180 | HF31 | 2N1300 | LL17, HF16 | | 2N1015D | HL11 | 2N1091 | LL3 | 2N1183 | P22 | 2N1301 | LL17, HF21 | | 2N1015E | HL11 | 2N1097 | A28 | 2N1183A | | 2N1302 | LL40 | | 2N1016 | HL12 | 2N1098 | A28 | 2N1183B | | 2N1303 | LL40 | | 2N1016A | HL13 | 2N1099 | P86 | 2N1184 | P22 | 2N1304 | LL40 | | 2N1016B | HL13 | 2N1100 | P86 | 2N1184A | | 2N1305 | LL40 | | 2N1016C | HL13 | 2N1101 | A15 | 2N1184B | | 2N1306 | LL40 | | 2N1016D | HL13 | 2N1102 | A16 | 2N1185 | A45 | 2N1307 | LL40 | | 2N1016E | HL13 | 2N1116 | HL27 | 2N1186 | A16 | 2N1308 | LL40 | | 2N1021 | P52 | 2N1117 | HL22 | 2N1187 | A26 | 2N1309 | LL40 | | 2N1022
2N1023
2N1024 | P52
HF39
A2 | 2N1118
2N1118A | HF7
HF7 | 2N1188
2N1189
2N1190 | A39
A33
A41 | 2N1309A
2N1310
2N1311 | LL14
A9
A6 | | 2N1025 | A2 | 2N1119 | LL9 | 2N1191 | A16 | 2N1312 | A9 | | 2N1026 | A7 | 2N1120 | P51 | 2N1192 | A23 | 2N1319 | LL8 | | 2N1027 | A7 | 2N1121 | A28 | 2N1193 | A40 | 2N1335 | P10, HF23 | | 2N1028 | A2 | 2N1122 | HF16 | 2N1194 | A45 | 2N1336 | P10, HF23 | | 2N1031 | P66 | 2N1122A | HF16 | 2N1195 | LL34, HF83 | 2N1337 | P10, HF23 | | 2N1031A | P66 | 2N1131 | HL32, P8 | 2N1202 | P44 | 2N1338 | P10, HF23 | | 2N1031B | P66 | 2N1131A | LL18 | 2N1203 | | 2N1339 | P10, HF23 | | 2N1031C | P66 | 2N1132 | HL35, P8 | 2N1204 | | 2N1340 | P11, HF24 | | 2N1032 | P67 | 2N1132A | LL18 | 2N1204A | | 2N1341 | P11, HF24 | | 2N1032A | P67 | 2N1132B | LL19 | 2N1206 | P12, HF9 | 2N1342 | P11, HF24 | | 2N1032B | P67 | 2N1136 | P67 | 2N1207 | P12, HF9 | 2N1358 | P87 | | 2N1032C | P67 | 2N1136A | P67 | 2N1208 | HL43 | 2N1359 | P70 | | 2N1034 | LL2 | 2N1136B | P67 | 2N1209 | HL43 | 2N1360 | P70 | | 2N1035 | LL2 | 2N1137 | P67 | 2N1210 | P55, 61 | 2N1362 | P70 | | 2N1036 | LL2 | 2N1137B | P67 | 2N1211 | P55 | 2N1363 | P70 | | 2N1037 | LL2 | 2N1138 | P67 | 2N1212 | HL26 | 2N1364 | P70 | | 2N1038 | HL42 | 2N1138A | P68 | 2N1216 | LL39 | 2N1365 | P70 | | 2N1039 | HL42 | 2N1138B | P68 | 2N1218 | P35 | 2N1370 | A20 | | 2N1040 | HL42 | 2N1139 | LL19 | 2N1219 | A8 | 2N1371 | A20 | | 2N1041 | HL42 | 2N1141 | HF97 | 2N1220 | A2 | 2N1372 | A9 | | 2N1042 | P31 | 2N1141A | HF97 | 2N1221 | A8 | 2N1373 | A9 | | 2N1043 | P31 | 2N1142 | HF97 | 2N1222 | A2 | 2N1374 | A20 | | 2N1044 | P31 | 2N1142A | HF97 | 2N1223 | A1 | 2N1375 | A20 | | 2N1045 | P31 | 2N1143 | HF98 | 2N1224 | HF13 | 2N1375 | A20 | | 2N1046 | HL42 | 2N1143A | HF98 | 2N1225 | HF31 | 2N1376 | A28 | | 2N1046A | HL42 | 2N1144 | A36 | 2N1226 | HF13 | 2N1377 | A28 | | 2N1046B | HL42 | 2N1145 | A36 | 2N1228 | LL39 | 2N1378 | A33 | | 2N1047 | P47 | 2N1146 | P68 | 2N1229 | LL39 | 2N1379 | A33 | | 2N1047A | P47 | 2N1146A | P68 | 2N1230 | LL39 | 2N1380 | A9 | | 2N1047B | P47 | 2N1146B | P68 | 2N1231 | LL39 | 2N1381 | A10 | | 2N1047C | P47 | 2N1146C | P68 | 2N1232 | LL39 | 2N1382 | A20 | | 2N1048 | P47 | 2N1147 | P68 | 2N1233 | LL40 | 2N1383 | A10 | | 2N1048A | P48 | 2N1147A | P68 | 2N1234 | LL40 | 2N1384 | LL15 | | 2N1048B | P48 | 2N1147B | P68 | 2N1235 | P61 | 2N1391 | HF2 | | 2N1048C | P48 | 2N1147C | P68 | 2N1238 | HL43 | 2N1392 | A50
 | 2N1049 | P48 | 2N1149 | A5 | 2N1239 | HL43 | 2N1393 | A50 | | 2N1049A | P48 | 2N1150 | A12 | 2N1240 | HL43 | 2N1394 | A3 | | 2N1049B | P48 | 2N1151 | A19 | 2N1241 | HL43 | 2N1395 | HF13 | | 2N1049C | P48 | 2N1152 | A24 | 2N1242 | HL43 | 2N1396 | HF31 | | 2N1050
2N1050A
2N1050B | P48
P49
P49 | 2N1153
2N1154
2N1155 | A38
A2 | 2N1243
2N1244
2N1247 | HL44
HL44
HF98 | 2N1397
2N1404
2N1404A | HF39
LL41
LL41 | | 2N1050C
2N1051
2N1052 | P49
A17, LL5
HF97 | 2N1156
2N1157 | A2
A2
P98 | 2N1248
2N1251
2N1252 | A5
A32
HL33, LL19, P8, | 2N1408
2N1409 | A3
HL15, P11,
HF16, 18 | | 2N1054
2N1055
2N1058 | HF7
HL26
HF3 | 2N1157A
2N1162
2N1162A
2N1163 | P99
P69
P69 | 2N1253 | HF28
HL36, LL21, P8,
HF39 | 2N1410
2N1411 | HL15, P11,
HF16, 18
HF12 | | 2N1059
2N1060
2N1065 | A25
LL16
HF12 | 2N1163A
2N1164 | P69
P69
P69 | 2N1254
2N1255
2N1256 | LL19
LL19
LL19 | 2N1412
2N1412USN
2N1413 | A20 | | 2N1066 | HF39 | 2N1164A | P69 | 2N1257 | LL19 | 2N1414 | A28 | | 2N1067 | P15 | 2N1165 | P69 | 2N1258 | LL19 | 2N1415 | A35 | | 2N1068 | P23 | 2N1165A | P69 | 2N1259 | LL20 | 2N1417 | HF15 | | 2N1069
2N1070
2N1073A
2N1073B | P52
P53
HL43, P54
HL43, P54 | 2N1166
2N1166A
2N1166A | P69
P69
P70 | 2N1260
2N1261
2N1262 | P61
P45
P45 | 2N1427 | HF15
L35, P8, HF31
HF18 | | 2N1073B
2N1079
2N1080
2N1082 | P54
P55
A4 | 2N1167
2N1167A
2N1169
2N1170 | P70
P70
LL6 | 2N1263
2N1273
2N1274 | P45
A9
A9 | 2N1429
2N1430
2N1431 | HF11
P53, 59
A33 | | 2111002 | A4 | 211170 | LL6 | 2N1275 | LL2 | 2N1439 | A1 | | 2N1440 | A3 | |-------------------|--------------------| | 2N1441 | A8 | | 2N1442 | A16 | | 2N1443 | A24 | | 2N1444
2N1445 | LL20
A10, P14 | | 2N1469 | A10, 114 | | 2N1474 | A5 | | 2N1474A | A8 | | 2N1475 | A19 | | 2N1476 | A5 | | 2N1477
2N1479 | A14
P15 | | 2N1480 | P16 | | 2N1481 | P16 | | 2N1482 | P16 | | 2N1483 | P35 | | 2N1484 | P35 | | 2N1485
2N1486 | P35
P35 | | 2N1487 | P59 | | 2N1488 | P59 | | 2N1489 | P59 | | 2N1490 | P59 | | 2N1491 | HF58 | | 2N1492 | HF64 | | 2N1493
2N1494 | HF48, 66 | | 2N1494
2N1494A | LL21
LL21 | | 2N1495 | LL22 | | 2N1496 | LL22 | | 2N1499 | LL23 | | 2N1499A | HF31, 46 | | 2N1499B
2N1500 | HF44 | | 2N1500
2N1501 | HF39
P45 | | 2N1502 | P45 | | 2N1505 | P12, HF24 | | 2N1506 | P12, HF43 | | 2N1506A | P13, HF43 | | 2N1507
2N1510 | LL41, HF98
LL41 | | 2N1511 | P59 | | 2N1512 | P59 | | 2N1513 | P59 | | 2N1514 | P60 | | 2N1518 | HL1 | | 2N1519
2N1520 | HL1
HL1 | | 2N1521 | HL1 | | 2N1522 | HL1
HL1 | | 2N1523 | HL2 | | 2N1524 | HF15 | | 2N1525
2N1526 | HF15
HF15 | | 2N1526
2N1527 | HF15 | | 2N1529 | P70 | | 2N1529A | P70 | | 2N1530 | P71 | | 2N1530A | P71 | | 2N1531 | P71 | | 2N1531A
2N1532 | P71
P71 | | 2N1532
2N1532A | P71 | | 2N1533 | P71 | | 2N1534 | P71 | | 2N1534A | P71 | | 2N1535 | P71 | | 2N1536
2N1536A | P72
P72 | | 2N1536A
2N1537 | P72 | | 2N1537A | P72 | | 2N1538 | P72 | | 2N1539 | P72 | | 2N1539A | P72 | | 2N1540
2N1540A | P72
P72 | | -111J4UA | 1/2 | General Electric is geared to produce a broad line of semiconductor parts. Make G. E. your one source for all components such as: Component Assemblies—Semiconductor lead-in wires—Dumet "slug" leads—molybdenum "slug" leads—whisker welds and other 2 or 3 part welded lead wires—molybdenum diode slugs—plastic transistor headers—plastic integrated circuit packages. Lead and Interconnection Wires—Tungsten, molybdenum, and borated Dumet wire for glass to metal sealing—unborated and gold plated Dumet for interconnections and "pigtail" leads—tungsten and molybdenum whisker wire, bare or gold plated. Sheet and Discs—Molybdenum and tungsten sheet—molybdenum and tungsten discs (punched, pressed and sintered, cut from rod). **Evaporative Sources for Functional Coatings**—Stranded tungsten metallizing wire and coils—tungsten and molybdenum boats. And More! Get all the data. Write or call for our new booklet "Products for the Semiconductor Industry." General Electric Lamp Metals & Components Dept., 21800 Tungsten Rd., Cleveland, Ohio 44117. Tel: (216) 266-2970 Progress Is Our Most Important Product ON READER-SERVICE CARD CIRCLE 33 | 2N1 E 4 1 | P72 | 2N1649 | P49 | 2N1808 | LL6 | 2N1990 HIZ | 4, P9, HF100 | |-------------------|------------------|------------------|------------------------|------------------|----------------------------------|--------------------|----------------| | 2N1541
2N1541A | P73 | 2N1650 | P49 | 2N1809 | HL3, P106 | 2N1991 | HL30, P9 | | 2N1542 | P73 | 2N1654 | A15 | 2N1810 | HL3, P106 | 2N1992 | LL34 | | 2N1542A | P73 | 2N1655 | A6 | 2N1811 | HL3, P106 | 2N1994 | LL42 | | 2N1543 | P73 | 2N1656 | A15 | 2N1812 | HL3, P106 | 2N1995 | LL42 | | 2N1544 | P73 | 2N1666 | HL18 | 2N1813 | HL3, P106 | 2N1996 | LL42 | | 2N1544A | P73 | 2N1667 | HL18 | 2N1814 | HL4, P106 | 2N1997 | LL42 | | 2N1545 | P73 | 2N1668 | HL19 | 2N1816 | HL6, P106 | 2N1998 | LL42 | | 2N1545A | P73 | 2N1669 | HL19 | 2N1817 | HL6, P106 | 2N1999 | LL42 | | 2N1546 | P74 | 2N1671 | UJT2 | 2N1818 | HL6, P107 | 2N2000 | LL43 | | 2N1546A | P74 | 2N1671A | UJT1 | 2N1819 | HL6, P107 | 2N2001 | LL43 | | 2N1547 | P74 | 2N1671B | UJT1, 3 | 2N1823 | HL8, P107 | 2N2015 | P87 | | 2N1547A | P74 | 2N1671C | UJT3 | 2N1824 | HL8, P107 | 2N2016 | P87 | | 2N1548 | P74 | 2N1672 | A10 | 2N1825 | HL8, P107 | 2N2017 | P16, 24
P49 | | 2N1549 | P74 | 2N1672A | A3 | 2N1826 | HL8, P107 | 2N2018
2N2019 | P49 | | 2N1549A | P74 | 2N1676 | LL14 | 2N1830 | HL4, P107 | 2N2019
2N2020 | P49 | | 2N1550 | P74 | 2N1677 | LL14 | 2N1831
2N1832 | HL4, P107
HL4, P107 | 2N2021 | P50 | | 2N1551 | P74 | 2N1683 | LL17, HF19 | 2N1833 | HL4, P107 | 2N2038 | P1 | | 2N1551A
2N1552 | P74
P74 | 2N1690
2N1691 | P49
P49 | 2N1837 | HL37, P8 | 2N2039 | P1 | | 2N1552A | P74 | 2N1691
2N1692 | P13 | 2N1838 | HL35, P8 | 2N2040 | PI | | 2N1553 | P75 | 2N1693 | P13 | 2N1839 | HL35, P8 | 2N2041 | P1 | | 2N1553A | P75 | 2N1694 | LL5 | 2N1840 | HL35, P9 | 2N2042 | A11 | | 2N1554 | P75 | 2N1700 | P16 | 2N1853 | LL41 | 2N2042A | A11 | | 2N1554A | P75 | 2N1701 | HL13 | 2N1854 | LL17 | 2N2043 | A22 | | 2N1555 | P75 | 2N1702 | HL12 | 2N1864 | HF19 | 2N2043A | A22 | | 2N1555A | P75 | 2N1703 | P60 | 2N1865 | HF99 | 2N2048 | LL25, HF44 | | 2N1556 | P75 | 2N1705 | A32 | 2N1866 | HF99 | 2N2048A | HF44 | | 2N1556A | P75 | 2N1707 | A17 | 2N1867 | HF99 | 2N2049 | P13
HF22 | | 2N1557 | P75 | 2N1708 | LL23 | 2N1868 | HF99 | 2N2060
2N2060A | HF22 | | 2N1557A | P75 | 2N1709
2N1710 | P27, HF44
P27, HF40 | 2N1893 | HF19 | | P76 | | 2N1558 | P76 | | .35, P13, HF31 | 2N1893A | HL36, P13, | 2N2061A
2N2062A | P76 | | 2N1558A | P76 | 2N1714 | P23 | 0111000 | HF32 | 2N2063A | P76 | | 2N1559 | P76 | 2N1715 | P23 | 2N1899 | HL29, P83 | 2N2064A | P76 | | 2N1559A | P76 | 2N1716 | P24 | 2N1900
2N1901 | P83, HF20
HL29, P83 | 2N2065A | P77 | | 2N1560 | P76
P76 | 2N1717 | P24 | 2N1901
2N1902 | HL29, P83 | 2N2066A | P77 | | 2N1560A
2N1561 | P12, HF80 | 2N1718 | P24 | 2N1903 | P83, HF20 | 2N2067 | P24 | | 2N1562 | P12, HF78 | 2N1719 | P24 | 2N1904 | HL29, P83 | 2N2067B | P24 | | 2N1564 | A10, HF98 | 2N1720 | P24 | 2N1905 | P53 | 2N2067G | P24 | | 2N1565 | A20, HF98 | 2N1721 | P24 | 2N1906 | P53 | 2N2067-0 | P25 | | 2N1566 | A35, HF98 | 2N1722 | P53 | 2N1907 F | HL2, P55, HF9 | 2N2067W | P25 | | 2N1566A | A28 | 2N1722A | P53 | 2N1908 H | HL3, P55, HF9 | 2N2068 | P25 | | 2N1572 | A10, HF98 | 2N1723 | P53 | 2N1917 | LL41 | 2N2068G | P25
P25 | | 2N1573 | A20, HF98 | 2N1724 | P53 | 2N1918 | LL41 | 2N2068-0
2N2075 | P92 | | 2N1574 | A35, HF98 | 2N1724A | P53 | 2N1919 | LL41 | 2N2075A | P92 | | 2N1586 | A3 | 2N1725 | P53 | 2N1920 | LL41 | 2N2076 | P92 | | 2N1587 | A3 | 2N1726 | HF31 | 2N1921 | LL42 | 2N2076A | P92 | | 2N1588 | A3
A13 | 2N1727
2N1728 | HF31
HF32 | 2N1922 | LL42 | 2N2077 | P92 | | 2N1589
2N1590 | A13 | 2N1742 | HF99 | 2N1924 | A30 | 2N2077A | P92 | | 2N1591 | A13 | 2N1743 | HF99 | 2N1925
2N1926 | A36
A41 | 2N2078 | P92 | | 2N1592 | A31 | 2N1744 | HF99 | 2N1936 | P87 | 2N2078A | P92 | | 2N1593 | A31 | 2N1745 | HF99 | 2N1937 | P87 | 2N2079 | P93 | | 2N1594 | A32 | 2N1746 | HF32 | 2N1943 | P14 | 2N2079A | P93
P93 | | 2N1605 | LL6 | 2N1747 | HF32 | 2N1958 | HF32 | 2N2080
2N2080A | P93 | | 2N1605A | LL6 | 2N1748 | HF28 | 2N1958A | HF32 | 2N2080A | P93 | | 2N1613 HL3 | 4, P12, HF28 | 2H1748A | HF32 | 2N1959 | HF33 | 2N2081A | P93 | | 2N1614 | LL3 | 2N1749 | HF28 | 2N1959A | HF33 | 2N2082 | P93 | | 2N1615 | P16 | 2N1752
2N1754 | HF19
LL22, HF99 | 2N1960 | HF100 | 2N2082A | P93 | | 2N1616 | P55 | 2N1755 | P38 | 2N1961 | HF100 | 2N2084 | HF32 | | 2N1618 | P55 | 2N1755
2N1756 | P38 | 2N1962 | HF50 | 2N2089 | HF26 | | 2N1620
2N1622 | HL26, P55
A20 | 2N1757 | P38 | 2N1963 | HF50 | 2N2092 | HF24 | | | | 2N1758 | P38 | 2N1964 | HF33 | 2N2093 | HF24 | | 2N1623 | A13
HF17 | 2N1759 | P38 | 2N1965 | HF33 | 2N2095 | HF80 | | 2N1631
2N1632 | HF17 | 2N1760 | P38 | 2N1972 | HL31, HF21 | 2N2096 | HF75 | | 2N1632
2N1637 | HF17 | 2N1761 | P38 | | L34, P13, HF28 | 2N2097 | HF75
HF80 | | 2N1638 | HF16 | 2N1762 | P39 | | HL32, P13, HF9
L31, P13, HF22 | 2N2098
2N2099 | HF75 | | 2N1639 | HF17 | . 2N1768 | HL15 | | L29, P39, HF19 | 2N2100 | HF75 | | 2N1640 | LL2 | 2N1769 | HL15 | | HL28, P9, HF14 | 2N2102 | LL20 | | 2N1641 | LL2 | 2N1785 | HF19 | | HL28, P9, HF14 | 2N2106 | LL3. P3 | | 2N1642 | LL4 | 2N1786 | HF19 | 2N1985 I | HL28, P9, HF14 | 2N2107 | P3 | | 2N1643 | A3 | 2N1787 | HF19 | 2N1986 | HL29, P9, HF19 | 2N2108 | P3 | | 2N1646 | HF99 | 2N1788 | HF32 | 2N1987 I | HL29, P9, HF19 | 2N2109 | HL4, P108 | | 2N1647 | P49 | 2N1789 | HF32 | | HL29, P9, HF20 | 2N2110 | HL4, P108 | | 2N1648 | P49 | 2N1790 | HF32 | 2N1989 | HL30, P9, HF20 | 2N2111 |
HL4, P108 | # A unique new way to prevent hidden defects in IC's. Only Westinghouse production lines use anything like this 18-wafer carrier (cover and below). It vastly reduces a major cause of hidden potential failures in IC's...the oxide faults and scratches from tweezer-handling of wafers. At Westinghouse, 18 wafers at a time go from one mechanized work station to another without being touched by tweezers. The benefit for you: a new order of reliability in IC's. This is how closely Westinghouse quality control people look at every IC wafer. Each one undergoes microscopic inspection. If any diffusion pattern or metallized contact isn't in perfect alignment, it shows up 200 times life size. Westinghouse takes a big look at quality. #### 100% electrical testing. You're looking through a microscope as 18 electrical probes contact active test points on an IC wafer. Once aligned, this automatic machine indexes precisely...running elaborate electrical tests for every device on the wafer. Every circuit. Not just samples. # Unique inside look at an operating integrated circuit. The exclusive Westinghouse Scanning Electron Microscope is the only one in the integrated circuit field. On a CRT, it displays what's happening 5, 10, or any number of microns inside the solid silicon of an operating IC chip. The picture here shows the isolation wall p-n junction of a typical flip-flop. It could be seen in no other way without cutting apart the silicon circuit. Such pictures reveal imperfections which elude all conventional electrical and visual tests. They lead to design changes for even more reliable IC's. ### Continuous strip bonding of IC's. Here's another mechanized Westinghouse production step that eliminates defects caused by manual handling of assemblies. Glass and Kovar® packages are fed on strips through final assembly, not handled one by one. They come out as finished flat packs. Result: no mangled leads, scratched gold plating, or stresses in the glass-to-metal seal which could later cause hermetic failure. # Exhaustive high-temperature test cycles. Exposed to elevated temperatures for up to 1000 hours, Westinghouse integrated circuits undergo batteries of actual power-on tests. After this workout, the IC's are put through even more complex electrical and mechanical tests checking dozens of parameters. During all phases of environmental and final testing, the IC's are completely protected against handling damage. They remain in AUTO-PAK® carriers and test board systems, as shown here. Here's extra assurance they will be shipped to you in perfect "as tested" condition. You can be <u>sure</u> if it's Westinghouse Space projects and you both get ultimate IC reliability from Westinghouse The Westinghouse IC's you buy are virtually as reliable as those used in missiles and satellites. The reason: production and quality control steps developed for Defense Department reliability programs...particularly with North American Aviation's Autonetics Division for the Minuteman program...are standard Westinghouse procedures. On the previous pages, you've just seen four examples. The 18-wafer carrier, the continuous strip bonders, the unique scanning microscope, and our high-temperature test cycles all resulted from development contracts with the Air Force Materials Laboratory, Manufacturing Technology Division. All contribute reliability by helping us prevent hidden defects. All raise IC production yields, thus making Westinghouse IC's more economical. The happy result is unmatched reliability and value...both yours at once when you specify Westinghouse integrated circuits. Let us send you information on Westinghouse integrated circuits. Write Westinghouse Electric Corporation, Molecular Electronics Division, Box 7377, Elkridge, Maryland 21227. You can be <u>sure</u> if it's Westinghouse | 2N2112
2N2113
2N2114
2N2116
2N2117
2N2118
2N2123
2N2124
2N2125
2N2126
2N2130
2N2131
2N2137
2N2137
2N2137
2N2137
2N2137
2N2139
2N2139
2N2139
2N2140
2N2140
2N2140
2N21414
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
12141A
1 | HL4, P108 HL4, P108 HL4, P108 HL6, P108 HL6, P108 HL7, P108 HL7, P108 HL8, P109 HL8, P109 HL8, P109 HL5, P109 HL5, P109 HL5, P109 HL5, P109 HS, P56 P56 P57 | |--
---| | 2N2178
2N2185
2N2186
2N2187 | A6
LL9
LL9
LL9 | | 2N2188 LL
2N2189 LL
2N2190 LL
2N2191 LL
2N2192A
2N2193A | 43, HF29, 100
43, PF39, 100
43, HF29, 100
43, HF39, 100
P11, HF100 | | 2N2193A
2N2194A | HL36, P11,
HF41
HL36, P11, | | 2N2195A | HF41
HL36, P11, | | | | Reliable solid-state sensing makes the difference! The sensor is a self-heated NTC (negative temperature coefficient) resistor. Mounted in the air stream and connected in series with a special rating of the KLIXON 4MC magnetic circuit breaker, it monitors the cooling capacity of the air stream. Loss of cooling effect as a result of clogged inlets, fan failure, air conditioner loss, or any combination of these causes a sharp drop in sensor resistance. The resultant increased current will trip the circuit breaker. Unlike conventional thermistors, KLIXON 2ST Detectors sense over their entire surface, instead of only one point. This simplifies installation and mounting. Moreover, they can handle directly a current large enough to actuate a circuit breaker without intermediate amplification. They can be designed to operate at any voltage between 3 and 24 v-dc/60 cycle ac. **Bulletin PRET-16** gives you all the facts you need to evaluate these exclusive TI developments. Write for your copy today. | 2N2195A | HF41 | 2N2295 | HL45, P56 | 2N2416 | HF102 | 2N2563 | P32 | |------------------|------------------------|------------------|---------------------|------------------|-------------------------|------------------|----------------------| | 2N2196 | P27 | 2N2296 | HL45, P56 | 2N2423 | P77 | 2N2564 | HL2 | | 2N2197 | P28 | 2N2297 | P17 | 2N2427 | HF20 | 2N2565 | HL2 | | 2N2201 | P28 | 2N2303 | P10 | 2N2428 | A41 | 2N2569 | LL20 | | 2N2202 | P28 | 2N2304 | A13 | 2N2429 | A46 | 2N2570 | L20 | | 2N2203 | P28 | 2N2308 | P35 | 2N2430 | A30 | 2N2580 | P98 | | 2N2204 | P28 | 2N2310 | HL16 | 2N2431 | A36 | 2N2581 | P98 | | 2N2205 | LL23 | 2N2311 | HL16 | 2N2432 | HF12 | 2N2582 | P98 | | | LL23 | 2N2312 | HL16 | 2N2451 | HF28 | 2N2583 | P98 | | 2N2206 | HF47 | 2N2313 | HL16 | 2N2453 | A44 | 2N2586 | A42 | | 2N2207 | | 2N2314 | HL16 | 2N2453A | A44 | 2N2590 | HF27 | | 2N2217 | HL21, HF58 | | | 2N2455 | HL40 | 2N2591 | HF33 | | 2N2218 | HL21, HF58 | 2N2315 | HL16 | | | 2N2592 | HF40 | | 2N2218A | HF58 | 2N2316 | HL16 | 2N2459 | HF47 | 2N2593 | HF44 | | 2N2219 | HL21, HF59 | 2N2317 | HL16 | 2N2460 | HF50 | 2N2595 | HF22 | | 2N2219A | HL21, HF66 | 2N2318 | HF66 | 2N2461 | HF57 | 2N2596 | HF29 | | 2N2220 | HF21, HF59 | 2N2319 | HF66 | 2N2462 | HF60 | 2N2597 | HF39 | | 2N2221 | HL21, HF59
HF60 | 2N2320
2N2330 | HF67
LL22, HF33 | 2N2463
2N2464 | HF47
HF51 | 2N2598 | HF22 | | 2N2221A | | 2N2331 | LL23, HF33 | 2N2465 | HF57 | 2N2599 | HF29 | | 2N2222 | HL22, HF60 | 2N2349 | LL14 | 2N2466 | HF60 | 2N2599A | A15 | | 2N2222A | HF66 | .2N2350 | LL15 | 2N2475 | LL25, 34 | 2N2600 | HF39 | | 2N2223 | HF20 | | | 2N2476 | LL25, HF60 | 2N2600A | A29 | | 2N2223A | HF20 | 2N2350A | HL37, P17, | | | 2N2601 | HF22 | | 2N2225 | HF14 | 0810051 | HF41 | 2N2477 | HF60 | 2N2602 | HF29 | | 2N2226 | HL3, P87 | 2N2351 | LL15 | 2N2480 | HF94 | 2N2603 | HF4 | | 2N2227 | HL3, P87 | 2N2351A | HL37, P17, | 2N2480A | HF80 | 2N2604 | HF4 | | 2N2228 | HL3, P87
HL3, P88 | 2N2352 | HF41
LL15 | 2N2481
2N2482 | HL22
HF90 | 2N2605 | HF4 | | 2N2229 | HL2, P88 | 2N2352A | HL37, P17, | 2N2482
2N2483 | HF23 | 2N2606 | FET18, 3 | | 2N2230 | | ZINZSSZA | HF41 | | | 2N2607 | | | 2N2231 | HL2, P88 | 2N2353 | LL15 | 2N2485
2N2486 | HF102
HF102 | 2N2607
2N2608 | FET18, C
FET19, 4 | | 2N2232 | HL2, P88 | 2N2353A | HL37, P17, | 2N2487 | HF74 | 2N2609 | FET19, 4 | | 2N2233 | HL2, P88 | 2112333A | HF41 | 2N2488 | HF74 | 2N2611 | P2: | | 2N2238 | P88
P28 | 2N2357 | HL45, P95 | | | 2N2613 | A44 | | 2N2239 | | 2N2358 | HL45, P95 | 2N2489 | HF67 | 2N2614 | A46 | | 2N2243A | HL36, P11,
HF41 | 2N2359 | HL45, P95 | 2N2494 | HF48 | 2N2616 | A24 | | 2112244 | A22 | 2N2360 | HF100 | 2N2495 | HF48 | 2N2617 | A13 | | 2N2244 | A35 | 2N2361 | HF100 | 2N2496 | HF48
FET2, 11, 20, | 2N2618 | HF51 | | 2N2245 | A43 | 2N2362 | HF101 | 2N2497 | | 2N2618/4 | HF51 | | 2N2246 | A22 | 2N2364A | HL37, P17, | 2012409 | 42, 55 | 2N2631 | P23 | | 2N2247 | | Z112304A | HF42 | 2N2498 | FET2, 11, 21,
44, 55 | 2N2632 | P50 | | 2N2248 | A36 | 2N2368 | HL40, LL40, | 2N2499 | FET3, 11, 22, | 2N2633 | P50 | | 2N2249 | A43 | 2112300 | P4, HF83 | 2112433 | 47, 55 | 2N2634 | P50 | | 2N2250 | A22 | 2N2369 | HL40, LL35, | 2N2500 | FET8, 11, 20, | 2N2635 | HF102 | | 2N2251 | A36
A43 | | P4, HF86 | LITEGO | 43, 55 | 2N2646 | UJT1 | | 2N2252 | A22 | 2N2369A | LL35, HF86 | 2N2501 | HF72 | 2N2647 | UJT1, 3 | | 2N2253
2N2254 | A36 | 2N2370 | A6 | 2N2509 | HF17 | 2N2649 | HF102 | | 2N2255 | A43 | 2N2371 | A10 | 2N2510 | HF17 | 2N2650 | HF102 | | 2N2256 | LL29, HF71 | 2N2372 | A6 | 2N2511 | HF17 | 2N2654 | HF44 | | 2N2257 | LL29, HF71 | 2N2373 | A10 | 2N2512 | HF47 | 2N2656 | HF63 | | 2N2258 | LL29, HF71 | 2N2377 | HF7 | 2N2515 | HF47 | 2N2657 | P14 | | 2N2259 | LL29, HF71 | 2N2378 | HF6 | 2N2516 | HF51 | 2N2658 | P14 | | 2N2266 | P51 | 2N2381 | LL27, HF67 | 2N2518 | HF47 | 2N2671 | HF27 | | 2N2267 | P51 | 2N2382 | LL28, HF67 | 2N2519 | HF48 | 2N2672 | HF27 | | 2N2268 | P51 | 2N2383 | P61 | 2N2520 | HF44 | 2N2673 | A3 | | 2N2269 | P51 | 2N2384 | P61 | 2N2521 | HF48 | 2N2674 | A8 | | 2N2270 | HL17, P16 | 2N2386 | FET8, 12, 23, | 2N2522 | HF51 | 2N2675 | A19 | | 2N2273 | HF60 | 011000 | 43, 46, 55 | 2N2523 | HF60 | 2N2676 | A34 | | 2N2274 | LL8 | 2N2387 | A29 | 2N2524 | HF64 | 2N2677 | LL12 | | 2N2275 | LL8 | 2N2388 | A42 | 2N2525 | P30, HF46 | 2N2678 | LL15 | | 2N2276 | LL8, HF4 | 2N2389 | A18, HL45, | 2N2526 | HL46, P62 | 2N2692 | LL43 | | 2N2277 | LL8, HF4 | 0110000 | HF101 | 2N2527 | HL46, P62 | 2N2697 | P33 | | 2N2278 | LL10 | 2N2390 | HL46 | 2N2528 | HL46, P62 | 2N2698 | P33 | | 2N2279 | LL10 | 2N2391 | A6 | 2N2537 | LL31, HF61 | 2N2706 | A26, 41 | | 2N2280 | LL14 | 2N2392 | A15 | 2N2538 | LL32, HF61 | 2N2707 | A42 | | 2N2281 | LL15 | 2N2394 | HL46
HL46, HF101 | 2N2539 | LL32, HF61 | 2N2708 | HF86 | | 2N2282 | P16 | 2N2395
2N2397 | HL19, HF50 | 2N2540 | LL32, HF61 | 2N2709 | HF1 | | 2N2283 | P16 | 2N2397
2N2398 | HF101 | 2N2551 | LL43 | 2N2711 | A16 | | 2N2284 | P16 | 2N2399 | HF101 | 2N2552 | P31 | 2N2712 | A33 | | 2N2285 | HL44, P77 | 2N2400 | HF44 | 2N2553 | P31
P32 | 2N2713 | A17 | | 2N2286 | HL44, P77 | 2N2401 | HF50 | 2N2554
2N2555 | P32
P32 | 2N2714
2N2715 | A33
A36 | | 2N2287 | HL44, P78 | 2N2401
2N2402 | HF60 | 2N2556 | P32 | 2N2715
2N2716 | A40 | | 2N2288 | HL44, P55 | 2N2402
2N2405 | HF33 | 2N2557 | P32 | 2N2717 | A27, LL28 | | 2N2289 | HL44, P55 | 2N2410 | HL46, HF101 | 2N2558 | P32 | 2N2720 | HF29 | | 2N2290 | HL44, P56
HL45, P56 | 2N2411 | HL46, HF101 | 2N2559 | P32 | 2N2721 | HF29 | | 2N2291
2N2292 | HL45, P56 | 2N2412 | HF101 | 2N2560 | HL2, P32 | 2N2722 | HF33 | | 2N2293 | HL45, P56 | 2N2413 | HF101 | 2N2561 | P32 | 2N2723 | HF102 | | 2N2294 | HL45, P56 | 2N2415 | HF102 | 2N2562 | P32 | 2N2724 | HF102 | | L112237 | , | | | | | | | | 2N2725 2N2726 2N2727 2N2728 2N2729 2N2730 2N2731 2N2733 2N2734 2N2735 2N2736 2N2737 2N2738 2N2738 2N2739 2N2740 2N2741 2N2745 2N2745 2N2745 2N2745 2N2745 2N2745 2N2746 2N2747 2N2748 2N2757 2N2752 2N2753 2N2754 2N2757 2N2758 2N2757 2N2758 2N2760 2N2761 2N2763 2N2766 2N2766 2N2766 2N2767 2N2787 2N2788 2N2787 2N2788 2N2788 2N2789 2N2797 2N2787 2N2788 2N2789 2N2797 2N2798 2N2799 2N2797 2N2798 2N2799 2N2799 2N2800 2N2801 2N2801 2N2809 | HF102 P17 P17 P95 A24, HF89 P95 P95 P95 P84 | |--|---| | 2N2801
2N2801
2N2808
2N2808A
2N2809
2N2809A
2N2810
2N2810A | LL22
HF90
HF90
HF92
HF91
HF92
HF91 | | 2N2824 | P102 | 2N2912 | P60 | 2N3018 | P36, HF103 | 2N3147 | P92 | |------------------|----------------------------|------------------|--------------|-------------------|--------------------|------------------|--------------------------| | 2N2825 | P102 | 2N2913 | HF47 | 2N3019 | LL12, HF26 | 2N3149 | P109 | | 2N2828 | P50 | 2N2914 | HF24 | 2N3020 | LL12, HF26 | 2N3150 | P109 | | 2N2829 | P50 | 2N2915 | HF24 | 2N3021 | P36 | 2N3151 | P110 | | 2N2831 | A13 | 2N2916 | HF24 | 2N3022 | P36 | 2N3154 | P46 | | 2N2832 | P62 | 2N2917 | HF24 | 2N3023 | P36 | 2N3155 | P47 | | 2N2833
2N2834 | P62
P62 | 2N2918 | HF25
HF25 | 2N3024 | P36 | 2N3156 | P47 | | 2N2835 | P30 | 2N2919
2N2920 | HF25 | 2N3025
2N3026 | P36
P36 | 2N3157
2N3158 | P47
P47 | | 2N2836 | P45 | 2N2923 | A37 | 2N3043 | HF67 | 2N3209 | HL40 | | 2N2837 | HF40 | 2N2924 | A43 | 2N3049 | HF84 | 2N3212 | P26 | | 2N2838 | HF40 | 2N2925 | A46 | 2N3053 | HL36 | 2N3213 | P26 | | 2N2841 | FET18, 28, 48 | 2N2926 | A18 | 2N3054 | HL25 | 2N3214 | P26 | | 2N2842
2N2843 | FET19, 30, 48
FET19, 33 | 2N2927
2N2929 | HF45
HF91 | 2N3055 | HL23 | 2N3215
2N3220 | P27
P41 | | 2N2844 | FET19, 37 | 2N2936 | HF103 | 2N3056
2N3056A | P18, HF26
P18 | 2N3221 | P41 | | 2N2845 | HF72 |
2N2937 | HF103 | 2N3057 | P18, HF26 | 2N3222 | P41 | | 2N2846 | HF72 | 2N2938 | LL44 | 2N3057A | P18 | 2N3223 | P59 | | 2N2847 | HF72 | 2N2942 | HF45 | 2N3058 | A36 | 2N3227 | HL23, HF80 | | 2N2848 | HF72 | 2N2943 | HF40 | 2N3059 | A46 | 2N3229 | HF53 | | 2N2849 | HL34 | 2N2944 | LL12, HF9 | 2N3060 | A36 | 2N3230 | P36 | | 2N2850 | HL31 | 2N2945 | LL7, HF4 | 2N3061 | A44 | 2N3231 | P36 | | 2N2851 | HL31
HL28 | 2N2946 | LL5, HF2 | 2N3062
2N3063 | A31
A31 | 2N3241 | A44 | | 2N2852
2N2853 | HL31 | 2N2947
2N2948 | HF34
HF34 | 2N3064 | A21 | 2N3242
2N3244 | A44
HF48 | | 2N2854 | HL34 | 2N2949 | HF34 | 2N3065 | A21 | 2N3245 | HF45 | | 2N2855 | HL31 | 2N2950 | HF34 | 2N3066 | FET40 | 2N3248 | HF62 | | 2N2856 | HL28 | 2N2951 | HF52 | 2N3067 | FET34 | 2N3249 | HF67 | | 2N2857 | HF91 | 2N2952 | HF52 | 2N3068 | FET29 | 2N3250 | LL25, HF62 | | 2N2860 | A14 | 2N2953 | A47 | 2N3069 | FET44 | 2N3250A | HL22 | | 2N2861 | HF103 | | HF73 | 2N3070 | FET38 | 2N3251 | LL28, HF68 | | 2N2862
2N2863 | HF103
HF103 | 2N2955
2N2956 | HF74 | 2N3071
2N3074 | FET31
HF48 | 2N3251A | HL23 | | 2N2864 | HF103 | 2N2957 | HF75 | 2N3075 | HF26 | 2N3252 | HL19, HF53 | | 2N2865 | HF103 | 2N2958 | HF62 | 2N3076 | HL30, P83 | 2N3253 | HL18, HF48 | | 2N2868
2N2869 | A20
P40 | 2N2959
2N2962 | HF62
HF86 | 2N3077 | A49 | 2N3262
2N3263 | HF45
P83 | | 2N2870 | P40 | 2N2963
2N2964 | HF86
HF87 | 2N3078
2N3081 | A48
HF45 | 2N3264
2N3265 | P61
P83 | | 2N2871 | LL43 | 2N2965 | HF87 | 2N3081/46 | HF45 | 2N3266 | P61 | | 2N2872 | LL43 | 2N2966 | HF88 | 2N3081/51 | | 2N3277 | FET36 | | 2N2874 | P29, HF43 | 2N2968 | LL12 | 2N3084 | FET40 | 2N3278 | FET40 | | 2N2875 | P33 | 2N2969 | LL12 | 2N3085 | FET40 | 2N3279 | HF76 | | 2N2876
2N2877 | HF51
P40 | 2N2970 | LL11 | 2N3086
2N3087 | FET40
FET40 | 2N3280 | HF76 | | 2N2878 | P40 | 2N2971 | LL11 | 2N3088 | FET52 | 2N3281 | HF68 | | 2N2879 | P40 | 2N2972 | HF25 | 2N3088A | FET53 | 2N3282 | HF68 | | 2N2880 | P40 | 2N2973 | HF25 | 2N3089 | FET37, 52 | 2N3283 | HF62 | | 2N2881 | P23 | 2N2974 | HF25 | 2N3089A | FET37, 53 | 2N3284 | HF63 | | 2N2882 | P23 | 2N2975
2N2976 | HF25
HF25 | 2N3107
2N3108 | LL18
HL34, LL19 | 2N3285
2N3286 | HF63
HF63 | | 2N2883
2N2884 | HF80
HF80 | 2N2977
2N2978 | HF25
HF25 | 2N3109 | LL18 | 2N3287
2N3288 | HF73
HF73 | | 2N2885 | HF67 | 2N2979 | HF26 | 2N3110 | HL34, LL19 | 2N3289 | HF68 | | 2N2887 | P35, HF67 | 2N2980 | HF22 | 2N3112 | FET18, 28 | 2N3290 | HF68 | | 2N2890 | P17 | 2N2981 | HF22 | 2N3113 | FET18, 29 | 2N3291 | HF63 | | 2N2891 | P17 | 2N2982 | HF26 | 2N3114 | P18 | 2N3292 | HF58 | | 2N2892
2N2893 | P40
P40 | 2N2987 | P29 | 2N3115
2N3116 | HF62
HF62 | 2N3293 | HF58 | | 2N2894 | HF73 | 2N2988 | P29 | 2N3117 | HL32 | 2N3294 | HF58 | | 2N2895 | HF34 | 2N2989 | P29 | 2N3118 | HF62 | 2N3295 | HF2 | | 2N2896 | HF34 | 2N2990 | P29 | 2N3119 | HF62 | 2N3296 | HF1 | | 2N2897 | HF34 | 2N2991 | P29 | 2N3128 | A32 | 2N3297 | HF1 | | 2N2898 | HF34 | 2N2992
2N2993 | P29
P29 | 2N3129
2N3130 | A42
A38 | 2N3298
2N3299 | HF53
HL39, HF76 | | 2N2899
2N2900 | HF34
HF34 | 2N2994
2N2995 | P29
P29 | 2N3131 | LL28 | 2N3300
2N3301 | HL39, HF76
HL39, HF76 | | 2N2902
2N2903 | P50, 106
A41 | 2N2996 | HF76 | 2N3133
2N3134 | HF52
HF52 | 2N3302 | HL39, HF76 | | 2N2903A | HF51 | 2N2997 | HF76 | 2N3135 | HF52 | 2N3303 | HL40, HF86 | | 2N2904 | | 2N2998 | HF84 | 2N3136 | HF52 | 2N3304 | HF87 | | 2N2904A | HF51 | 2N2999 | HF93 | 2N3137 | HF87 | 2N3307 | HF68 | | 2N2905 | HF51 | 2N3009 | LL30, HF73 | 2N3138 | HF104 | 2N3308 | HF68 | | 2N2905A | | 2N3010 | LL34 | 2N3139 | HF104 | 2N3309 | HF68 | | 2N2906 | | 2N3011 | LL32 | 2N3140 | HF104 | 2N3311 | P95 | | 2N2906A | | 2N3012 | LL32 | 2N3141 | HF104 | 2N3312 | P95 | | 2N2907 | | 2N3013 | HL24, HF83 | 2N3142 | HF104 | 2N3313 | P95 | | 2N2907A | | 2N3014 | HL24, HF83 | 2N3143 | HF104 | 2N3314 | P96 | | 2N2908 | | 2N3015 | LL25, HF62 | 2N3144 | HF104 | 2N3315 | P96 | | 2N2909 | A21 | 2N3016 | P18, HF103 | 2N3145 | HF104 | 2N3316 | P96 | | 2N2911 | P23 | 2N3017 | HF103 | 2N3146 | P92 | 2N3317 | LL9, HF10 | | 2112311 | 123 | 2113017 | 111103 | 2113170 | 1 32 | 2140017 | LL9, 11110 | | 2N3318
2N3319
2N3320
2N3321
2N3322
2N3323
2N3324
2N3325
2N3326
2N3327
2N3328
2N3329 | LL10, HF6
LL13, HF10
HF84
HF84
HF53
HF53
HF53
HF58
HF76
FET2, 13, 20,
43, 52
FET2, 13, 21,
44, 52 | |--|--| | 2N3331 | FET3, 12, 22,
47, 51 | | 2N3332 | FET8, 13, 21, | | 2N3333
2N3334
2N3335
2N3336
2N3336
2N3337
2N3340
2N3341
2N3342
2N3344
2N3345
2N3366
2N3367
2N3368
2N3367
2N3376
2N3377
2N3376
2N3377
2N3378
2N3378
2N3379
2N3379
2N3379
2N3381
2N3381
2N3382
2N3385
2N3386
2N3387
2N3386
2N3387
2N3387
2N3387
2N3388
2N3389
2N3389
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391
2N3391 | 43,53
FET25
FET24
FET24
FET24
FET24
FET24
FET26
HF77
LL18
LL3
LL3
LL3
LL3
FET34
FET34
FET35
FET38
FET31
HF77
P18
HF81
FET1, 40, 58
FET2, 46, 58
FET2, 46, 58
FET4, 58
FET4, 58
FET5
FET6
FET6
FET6
FET6
FET6
FET6
FET6
FET6 | # If this can't faze our four-slides... nothing can! Stick Art Wire with your wire form nightmares. We're in business to handle impossible delivery dates, ridiculous tolerances and unbelieveable forms. We like to be challanged. Save money, too. Art Wire takes over your down-time, overhead and inventory problems and makes them our own. Let us do the worrying. We're good at it. Send us a part or a print. If you're in a hurry, phone 201-621-7272. Bulletin 501 shows what we can do. Use the inquiry card for your copy. ### ART WIRE & STAMPING CO. 17 Boyden Place Newark, New Jersey 07102 | ON | READER-SERVICE | CARD | CIRCLE | 38 | |----|----------------|------|--------|----| | 2N3421
2N3423
2N3424
2N3426
2N3427
2N3428
2N3429
2N3430
2N3431
2N3432 | P25
HL40, HF85
HL25, HF85
HL19, HF53
A46
A48
HL19, P88
HL19, P88
HL19, P88
HL19, P88 | 2N3546
2N3551
2N3552
2N3553
2N3554
2N3563
2N3564
2N3565
2N3566
2N3567 | HL25
P50
P51
HF81
LL23
HF89
HF87
HF16
HF16 | |--|---|--|---| | 2N3433
2N3434
2N3436
2N3437
2N3438
2N3439
2N3440
2N3441
2N3442
2N3444
2N3445
2N3445
2N3446 | HL19, P89
HL20, P89
FET4, 46
FET3,
41
FET34
P18
P18
P37
P81
HL18
P81
P81 | 2N3568
2N3569
2N3570
2N3571
2N3572
2N3577
2N3577
2N3578
2N3579
2N3580
2N3581
2N3582
2N3583 | HF22
HF23
HF93
HF92
HF91
LL32
P62
FET42, 50
A10
A21
A25
A38
P45 | | 2N3448
2N3452
2N3453
2N3454
2N3455
2N3456
2N3457
2N3458
2N3469
2N3460
2N3462
2N3463
2N3463 | P81
FET41, 52
FET34, 52
FET29, 52
FET41, 51
FET34, 51
FET29, 51
FET4, 47, 50
FET3, 41, 52
FET2, 34, 52
A35
A35
HL18 | 2N3584
2N3585
2N3588
2N3597
2N3598
2N3599
2N3600
2N3605
2N3607
2N3607
2N3608
2N3609
2N3610
2N3611 | P45
P46
HF57
P78
P78
P78
HF89
LL28
LL28
LL28
FET5, 14, 49, 57
FET25
FET1
P62 | | 2N3468
2N3469
2N3470
2N3471
2N3472
2N3474
2N3475
2N3476
2N3477
2N3478
2N3485
2N3485
2N3486 | HL17
P15
HL23, P89
HL24, P89
HL24, P89
HL24, P89
HL24, P89
HL24, P89
HL24, P89
HL24, P89
LL23, HL20
LL23, HL20 | 2N3612
2N3613
2N3614
2N3615
2N3616
2N3617
2N3618
2N3620
2N3621
2N3622
2N3623 | P62
P63
P63
P63
P63
P63
P63
HF53
HF54
HF54 | | 2N3486A
2N3487
2N3488
2N3489
2N3490
2N3491
2N3492
2N3493
2N3494
2N3495
2N3496
2N3497
2N3498 | LL23, HL20
P81
P81
P82
P82
P82
LL32
HL20
HL17
HL17
HL17 | 2N3624
2N3625
2N3626
2N3627
2N3628
2N3630
2N3631
2N3631
2N3633
2N3634
2N3635
2N3635
2N3635 | HF54
HF54
HF54
HF54
HF54
HF54
FET4, 13
HF77
HF92
HL18
HL20
HL18 | | 2N3499
2N3500
2N3501
2N3502
2N3503
2N3504
2N3505
2N3506
2N3507
2N3508
2N3509
2N3510
2N3511
2N3512
2N3544 | HL17
HL17
HL38, HF59
HL38, HF63
HL22, HF63
HL17
HL17
HL17
HL24
HL24
HL23
HL23
HL39
HF85 | 2N3638
2N3640
2N3641
2N3642
2N3643
2N3644
2N3645
2N3646
2N3660
2N3661
2N3662
2N3663
2N3665 | HF45
LL34
LL25
LL25
LL25
LL24
LL34
HL23, LL30
HL23, LL33
P18
P19
HF90
HF90
P19 | | 2N3666
2N3677
2N3683
2N3684
2N3685
2N3686
2N3688
2N3689
2N3690
2N3691
2N3692
2N3693
2N3694
2N3695
2N3696
2N3697
2N3698
2N3699
2N3701
2N3702
2N3703
2N3704
2N3705 | P19
LL7, 14
HF85
FET46, 54
FET33, 54
FET31, 54
HF77
HF77
A23, HF54
A40, HF55
HF55
FET43, 54
FET37, 54
FET29, 54
P19
HF55
HF35
HF35 | |--|---| | 2N3706
2N3707
2N3708
2N3709
2N3710
2N3711
2N3712
2N3713
2N3714
2N3715
2N3716
2N3720
2N3721
2N3722
2N3722
2N3723
2N3728
2N3729
2N3730
2N3731
2N3732
2N3733 | HF35 A40 A23 A23 A37 A45 HF16 HL27, P90 HL27, P90 HL27, P90 HL32, P21 HL32, P21 HL32, P21 HL32, P21 FF77 HF77 P25 P19 P13 HF78 | | 2N3734
2N3735
2N3736
2N3737
2N3738
2N3739
2N3740
2N3741
2N3742
2N3743
2N3744
2N3745
2N3746
2N3747
2N3748
2N3747
2N3748
2N3750
2N3751
2N3752 | HL22, HF63
HL22, HF64
HL22, HF64
HL27, P33
HL28, P33
HL27, P37
HF14
HF14
P41
P41
P41
P41
P41
P41
P41
P41
P41
P | | 2N3762
2N3763
2N3764
2N3765 | HL37, HF49
HL37, HF45
HL37, HF45
HL37, HF45
IL28, P33, HF55
HL28, P33
P90
P90
P90
HF88
HF88
HF88 | # WE'RE PROLIFERATING!! We've developed an entirely new line of Press-Lite switches and press-to-test indicator lights—including a high quality series of lights and switches that meet industry standards for appearance and performance. We're proliferating in the catalog department, too. Write for complete details of the industry's finest line of neon lamps, indicator lights, illuminated pushbutton switches and their transistorized or EMI shielded versions. Many options available. # MARCO-OAK INDUSTRIES 207 SOUTH HELENA STREET, ANAHEIM, CALIFORNIA 92803 PHONE: 714-535-6037 • TWX: 714-776-6111 ON READER-SERVICE CARD CIRCLE 39 # **MOUNTING PADS** for TO-18, TO-5, duals, integrated circuits, lead converters, lead spreaders...all are contained in Thermalloy's new catalog #65-8. Complete mechanical drawings, materials and specifications are included along with Thermalloy's new PAD SELECTOR GUIDE! | 2N3790 | P90 | 2N3919 | HL34, P30 | 2N4050 | P96 | |---------|------------------|--------|--------------|---------|----------------| | | | 2N3920 | HL34, P30 | 2N4051 | P96 | | 2N3791 | P90 | | | | | | 2N3792 | P91 | 2N3921 | FET26 | 2N4052 | P96 | | 2N3796 | FET9, 20, 39, 50 | 2N3922 | FET26 | 2N4053 | P96 | | 2N3797 | FET9, 21, 47, 50 | 2N3924 | HF81 | 2N4058 | LL44 | | | 115, 21, 47, 30 | 2N3925 | HF81 | | LL44 | | 2N3798 | HF35 | | HF81 | 2N4059 | | | 2N3799 | HF35 | 2N3926 | | 2N4060 | LL44 | | 2N3800 | HF35 | 2N3927 | HF81 | 2N4061 | LL44 | | 2N3801 | HF35 | 2N3932 | HF93 | 2N4062 | LL44 | | | | | HF93 | | | | 2N3802 | HF35 | 2N3933 | | 2N4065 | FET16 | | 2N3803 | HF36 | 2N3934 | FET26 | 2N4066 | FET14 | | 2N3804 | HF36 | 2N3935 | FET25 | 2N4067 | FET14 | | | HF36 | 2N3946 | LL26, HF64 | 2N4070 | P58 | | 2N3805 | | 2N3947 | LL28, HF69 | | | | 2N3806 | HF36 | | | 2N4071 | P59 | | 2N3807 | HF36 | 2N3953 | HF92 | 2N4072 | HF83 | | 2N3808 | HF36 | 2N3954 | FET26 | 2N4073 | HF83 | | 2N3809 | HF36 | 2N3955 | FET26 | 2N4075 | P43 | | | HF36 | 2N3956 | FET25 | 2N4076 | P43 | | 2N3810 | | 2N3957 | FET25 | | | | 2N3811 | HF36 | | FET25 | 2N4077 | P22 | | 2N3818 | HF46 | 2N3958 | | 2N4078 | P22 | | 2N3819 | FET9, 12, 21, | 2N3959 | LL36, HF93 | 2N4079 | P110 | | 2143013 | | 2N3960 | LL36, HF93 | 2N4082 | FET27 | | 0110000 | 45, 55, 59 | 2N3961 | HF81 | | | | 2N3820 | FET9, 12, 19, | | LL37, HF93 | 2N4083 | FET26 | | | 36, 55, 58 | 2N3960 | | 2N8084 | FET27 | | 2N3821 | FET9, 14, 20, | 2N3962 | HF46 | 2N4085 | FET26 | | | 38, 42, 51, 59 | 2N3963 | HF46 | 2N4086 | A43 | | 2012022 | FET9, 21, 39, | 2N3964 | HF46 | 2N4087 | A47 | | 2N3822 | | 2N3965 | HF46 | | | | | 45, 51, 59 | 2N3966 | FET5 | 2N4087A | A47 | | 2N3823 | FET9, 12, 21, | | | 2N4091 | FET8 | | | 43, 52, 53, 59 | 2N3967 | FET22 | 2N4092 | FET7 | | 2N3824 | FET5, 12, 16 | 2N3968 | FET20 | 2N4093 | FET7 | | | P37 | 2N3969 | FET20 | | | | 2N3837 | | | FET11 | 2N4104 | HF29 | | 2N3838 | P37 | 2N3970 | | 2N4105 | P6 | | 2N3840 | LL8 | 2N3971 | FET7, 13, 15 | 2N4106 | P6 | | 2N3841 | LL4 | 2N3972 | FET6, 15 | 2N4107 | P111 | | 2N3842 | LL4 | 2N3973 | LL30 | | FET28 | | | | 2N3974 | LL30 | 2N4117 | | | 2N3843 | HF42 | 2N3975 | LL30 | 2N4118 | FET30 | | 2N3843A | HF42 | | | 2N4119 | FET33 | | 2N3844 | HF42 | 2N3976 | LL30 | 2N4120 | FET16 | | 2N3844A | HF42 | 2N3977 | LL4 | 2N4121 | LL34 | | 2N3845 | HF42 | 2N3978 | LL4 | | LL34 | | | | 2N3979 | LL4 | 2N4122 | | | 2N3845A | | | | 2N4123 | LL26, HF64 | | 2N3846 | P91 | 2N3980 | UJT2, 3 | 2N4124 | LL28, HF69 | | 2N3847 | P91 | 2N3993 | FET6, 13 | 2N4125 | LL24, HF55 | | 2N3848 | P91 | 2N3994 | FET5, 15, 21 | 2N4126 | LL26, HF64 | | | P91 | 2N3995 | HF85 | | | | 2N3849 | | 2N3996 | P42 | 2N4136 | P111 | | 2N3850 | HL16, P42 | | P42 | 2N4138 | HF12 | | 2N3851 | P42, 51 | 2N3997 | | 2N4220 | FET9, 16, 20, | | 2N3852 | HL16, P42 | 2N3998 | P42 | | 39, 51 | | 2N3853 | P42 | 2N3999 | P42 | 2N4221 | FET9, 16, 21, | | 2N3854 | HF68 | 2N4000 | P30 | 214122 | 44, 51 | | | | | P30 | 0114000 | FFT10 16 00 | | 2N3854A | | 2N4001 | | 2N4222 | FET10, 16, 22, | | 2N3855 | HF73 | 2N4002 | P78 | | 47, 51 | | 2N3855A | | 2N4003 | P78 | 2N4223 | FET51, 59 | | 2N3856 | HF74 | 2N4004 | P50 | 2N4224 | FET59 | | 2N3856A | | 2N4005 | P50 | 2N4241 | P47 | | | A29 | 2N4012 | HF81 | 2N4260 | LL36, HF93 | | 2N3858 | | 2N4017 | A47 | | | | 2N3858A | | | | 2N4261 | LL36, HF94 | | 2N3859 | A39 | 2N4018 | A48 | 2N4264 | LL29, HF69 | | 2N3959A | A39 | 2N4019 | A48 | 2N4265 | LL29, HF69 | | 2N3860 | A43 | 2N4020 | A50 | 2N4267 | FET14 | | | HF88 | 2N4021 | A50 | 2N4268 | FET14 | | 2N3866 | | | | | P60 | | 2N3877 | A11 | 2N4022 | A50 | 3N45 | | | 2N3877A | | 2N4023 | A50 | 3N46 | P60 | | 2N3878 | P46 | 2N4024 | A50 | 3N47 | P60 | | 2N3879 | HL32 | 2N4025 | A50 | 3N48 | P60 | | | | 2N4030 | A22 | 3N49 | P77 | | 2N3880 | HF92 | | | | | | 2N3883 | LL20 | 2N4031 | A22 | 3N50 | P77 | | 2N3900 | A47 | 2N4032 | A40 | 3N51 | P77 | | 2N3900A | | 2N4033 | A40 | 3N52 | P77 | | | LL26, HF64 | 2N4038 | FET59 | 3N71 | LL20 | | 2N3903 | | | | 3N72 | LL20 | | 2N3904 | LL28, HF69 | 2N4039 | FET59 | | | | 2N3905 | LL24, HF64 | 2N4040 | P30 | 3N73 | LL20 | | 2N3906 | LL26, HF69 | 2N4041 | P26 | 3N89 | FET38. 57 | | 2N3909 | FET9, 16, 19. | 2N4046 | LL33 | 3N90 | HF4 | | 2143303 | 36, 55 | 2N4047 | LL33 | 3N91 | HF4 | | 0010000 | | | | | HF4 | | 2N3916 | P19 | 2N4048 | P96 | 3N92 | | | 2N3917 | P33 | 2N4049 | P96 | 3N93 | HF4 | | | | | | | | | 3N94 | HF5 | 164-14 | HL11, P105 | 40340 | HF40
HF41 | |------------------|--------------------------------|------------------|--------------|----------------|--------------| | 3N95 | HF5 | 164-16 | HL11, P105 | 40341 | LL12 | | 3N96 | FET26 | 164-18 | HL11, P105 | 40346 | P20 | | 3N97 | FET25 | 164-20 | HL11, P106 | 40347 | P20 | | 3N98 | FET22 | 2013 | LL44 | 40348 | | | 3N99 | FET22 | 3217 | LL44 | 40354 | HF37 | | 3N112 | HF5 | 2318 | LL44 | 40355 | P81 | | 3N113 | HF5
HF10 | 3219 | LL44
P27 | 40360
40361 | P21
P21 | | 3N114
3N115 | HF10 | 40022
40050 | P27 | 40362 | P21 | | 3N116 | HF11 | 40051 | P27 |
40363 | P81 | | 3N117 | HF11 | 40080 | HF104 | 40364 | P46 | | 3N118 | HF11 | 40081 | HF104 | 40366 | LL22 | | 3N119 | HF11 | 40082 | HF105 | 40367 | P21 | | 3N123 | LL8 | 40084 | HF36 | 40368 | P37 | | | FET10, 16, 19, 35 | 40217 | LL32 | 40369 | P60 | | 3N125 | FET10, 16, 21, 43 | 40218 | LL24
LL29 | 40375 | P21
HF87 | | 3N126
151-04 | FET10, 16, 22, 46
HL12, P78 | 40219
40220 | LL30 | 40404
40405 | HF89 | | 151-05 | P78 | 40221 | LL29 | A130 | A11 | | 151-06 | HL12, P78 | 40222 | LL24 | A301 | HF46 | | 151-07 | P78 | 40231 | A37 | A306 | A21 | | 151-08 | HL12, P79 | 40232 | A26 | A307 | A38 | | 151-09 | P79 | 40233 | A37 | A310 | A11 | | 151-10 | HL12, P79 | 40234 | A18 | A311 | A11 | | 151-12
151-14 | P79
P79 | 40235
40236 | HF92
HF92 | A415 | HF55 | | 151-16 | P79 | 40237 | HF92 | A466
A467 | HF78
HF69 | | 151-18 | P79 | 40238 | HF90 | A472 | HF83 | | 151-20 | P79 | 40239 | HF90 | A473 | HF83 | | 152-04 | HL12, P79 | 40240 | HF90 | A490 | HF91 | | 152-05 | P79 | 40242 | HF105 | | A49 | | 152-06 | HL12, P80 | 40243 | HF105 | A520/A521 | A25 | | 152-07 | P80 | 40244 | HF105 | A569 | | | 152-08
152-09 | HL12, P80
P80 | 40245 | HF105 | A570
A1109 | A25
A32 | | 152-10 | HL12, P80 | 40246 | HF105 | A1170 | HF105 | | 152-12 | P80 | 40250 | P39 | A1220 | HF88 | | 152-14 | P80 | 40250VI
40251 | P21
P82 | A1243
A1341 | HF82
A25 | | 152-16 | P80 | 40253 | A33 | A1519 | HF55 | | 152-18 | P80 | 40254 | P27 | AC121 | A18 | | 152-20 | P80 | 40255 | P26 | AC163 | A41 | | 153-04 | HL13, P102 | 40256 | P26 | | A42 | | 153-06 | HL13, P102 | 40261 | A35 | AC172 | HF57 | | 153-08 | HL14, P102 | 40262 | A42 | AF106 | | | 153-10
153-12 | HL14, P103
HL14, P103 | 40263 | HF46 | AF109
AF127 | HF65
A42 | | 153-14 | HL14, P103 | 40264 | P15 | AF139 | HF82, 85 | | 153-16 | HL14, P103 | 40279 | HF105 | AFY34 | HF94 | | 153-18 | HL14, P103 | 40280 | HF83 | AFY39 | HF82 | | 153-20 | HL14, P103 | 40281 | HF78 | BC107 | A41 | | 154-04 | HL14, P103 | 40282
40290 | HF73
HF82 | BC122 | A26 | | 154-06 | HL14, P103 | 40291 | HF82 | BC410 | A25 | | 154-08 | HL14, P103 | 40292 | HF69 | BCY11 | A21 | | 154-10
154-12 | HL15, P103
HL15, P104 | 40305 | HF82 | BCY12
BCY30 | A21
A6 | | 154-14 | HL15, P104 | 40306 | HF82 | BCY31 | A13 | | 154-16 | HL15, P104 | 40307 | HF78 | BCY32 | A18 | | 154·18 | HL15, P104 | 40309 | P19 | BCY33 | A6 | | 154·20 | P104 | 40310 | P39 | BCY34 | A14 | | 154-24
156-04 | HL15
HL25, P82 | 40311
40312 | P19
P39 | BCY38 | A11 | | 156-06 | HL25, P82 | 40313
40314 | P46
P19 | BCY39
BCY40 | A15
A31 | | 156-08
156-10 | HL25, P82
HL25, P82 | 40315 | P20 | BCZ10
BCZ11 | A29
A29 | | 163-04 | HL9, P104 | 40316 | P39 | BCZ12 | A4 | | 163-06 | | 40317 | P20 | BCZ13 | A7 | | 163-08 | HL9, P104 | 40318 | P46 | BCZ14 | A15 | | 163-10 | HL9, P104 | 40319 | P20 | BD109 | P30 | | 163-12 | HL10, P104 | 40320 | P20 | BF140 | HL38 | | 163-14 | HL10, P104 | 40321 | P20 | BF155 | HL38 | | 163-16
163-18 | HL10
HL10, P105 | 40322 | P46 | BFY12 | P10 | | 163-20 | HL10, P105 | 40323
40324 | P20
P39 | BFY33
BFY34 | P10
P10 | | 164-04 | HL10, P105 | 40325 | P82 | BFY46 | P10 | | 164-06 | HL10, P105 | 40326 | P20 | BSY18 | HL38 | | 164-08 | HL10, P105 | 40327 | P20 | BSY34 | HL39 | | 164-10 | HL10, P105 | 40328 | P46 | BSY58 | HL39 | | 164-12 | HL10, P105 | 40329 | A41 | BSY62 | LL37 | # Total production control for top quality in Gold Bonding Wire (99.99%) Every production step is repeatedly checked to assure Gold Bonding Wire that meets our traditionally high standards...The same critical care is taken with the spooling and packing... The wire is respooled on precision winding equipment especially designed by our plant engineers...Winding tension and pitch are fully controlled so that the single layer winding will not shift or slip...Plastic case with dust-free cushion keeps spool safe in transit. The single layer package is designed for: 400 feet of .0007" 400 feet of .0010" 250 feet of .0015" 150 feet of .002" Write for latest brochure # Sigmund Cohn Corp. 121 So. Columbus Ave., Mt. Vernon, N.Y. # rugged CDS-5 (To-5) ### reliable CDS-7 # top performance CDS-9 # POWERMASTER PHOTOCELLS Outstanding construction and design of Pioneer Photocells assure long-life and top performance. New heavy base (.080) allows compression glass to metal seal on leads, eliminates danger of air leakage and cell deterioration. Available in one inch, half inch and To-5 sizes over a wide sensitivity range. Consult us on special applications of photo sensitive layers. Photocells pictured are actual size. # The **Pioneer**Electric & Research Corp. Subsidiary of PENN Controls, Inc. 715 Circle Avenue • Forest Park, III. | BSY63
C680
C681
C682
C683
C684
C685
C6690
C6691
C6692 | HL38
FET30
FET31
FET37
FET37
FET43
FET44
FET3
FET3 | FK3964
FT34A
FT34B
FT34C
FT34D
FT57
FT207A
FT207B
FT4017
FT4018 | HF5
HF37
HF37
LL20
LL21
FET60
P43
P43
HF55 | MFE2093
MFE2094
MFE2095
MM709
MM1941
MM1943
MM1945
MM2102 | 19, 32
FET10, 17,
19, 37
FET10, 17,
20, 43
LL29, HF69
HF85
HF82
HF78
FET15 | |--|---|--|--|---|---| | CM600
CM601
CM602
CM603
D16E7
D16E9
D16K1
D16K2
D16K3
D1101
D1102 | FET7
FET8
FET8
A46
A46
HF86
HF86
HF86
FET41
FET35 | FT4019
FT4020
FT4021
FT4022
FT4023
FT4024
FT4025
FV3503
FV3962
FV3964
HA2000 | HF65
A50
A51
A51
A51
A15
LL26
HF4
HF5
FET14 | MM2103
MM2483
MM2484
MM2503
MM2550
MM2552
MM2554
MP500
MP500A
MP501
MP501A | FET15
HF23
HF23
HF91
LL36, HF91
LL36, HF91
LL36, HF91
P96
P97
P97 | | D1103
D1177
D1178
D1179
D1180
D1181
D1182
D1183
D1184
D1185 | FET29
FET41
FET35
FET30
FET45
FET38
FET32
FET4, 46
FET3, 41
FET2, 35 | HA2001
HA2010
HA2020
HA2030
K1001
K1003
K1004
K1201
K1504
KM7000
KM7001 | FET49
FET5
FET23
FET27
FET58
FET60
FET39
FET58
FET1
P39 | MP502
MP502A
MP504A
MP504A
MP505
MP505A
MP506A
MP506A
MP2060
MP2061
MP2062 | P97
P97
P97
P97
P97
P97
P97
P98
P63
P63 | | D1201
D1202
D1203
D1301
D1302
D1303
DE1004 FET5,
DN3066A
DN3067A
DN3068A
DN3069A | FET45
FET38
FET32
FET4, 47
FET3, 41
14, 49, 57
FET41, 53
FET35, 53
FET30, 53
FET30, 53 | KM7002
KM7007
KM7008
KM7009
KM7010
KM7011
KM7012
KM7013
KM7014
KM7015 | P39
P33
P33
P34
P34
P43
P43
P43
P43
P43 | MP2063
MPS706
MPS834
MPS918
MPS2711
MPS2712
MPS2713
MPS2714
MPS2715
MPS2716 | P63
LL24, HF56
LL30, HF73
HF85
A17
A34
LL26
LL27
A17
A34 | | DN3070A
DN3071A
DNX1
DNX2
DNX3
DNX4
DNX5
DNX6
DNX7
DNX8 | FET38, 53
FET32, 54
FET41
FET32
FET28
FET45
FET38
FET32
FET4
FET3 | KM7016
KM7017
M100
M101
MA881
MA882
MA883
MA884
MA885
MA885
MA886
MA887 | P43
P44
FET4, 13
FET5, 13
A16
A26
A39
A45
A7
A16
A26 | MPS2894
MPS2923
MPS2924
MPS2925
MPS2926
MPS3392
MPS3393
MPS3394
MPS3395
MPS3396
MPS3397 | LL33, HF78
HF56
HF56
A18
A43
A37
A27
A43
A37
A27 | | DNX9 DTG411 DTG600 DTG601 DTG602 DTG1010 DTG1110 DTG1200 DTG2000 DTG2100 DTG2100 | PET2
P77
P60
P61
P110
HL46
P110
P110
P110 | MA888
MA889
MA1702
MA1703
MA1704
MA1705
MA1706
MA1707
MA1708
MCS2135
MCS2136 | A39
A45
A48
A46
A48
A48
A46
A48
LL21, HF37
LL21, HF37 | MPS3398
MPS3563
MPS3639
MPS3640
MPS3646
MPS3707
MPS3708
MPS3710
MPS3711
MPS3721 | A27
HF85
LL33, HF82
LL34, HF82
LL30
A40
A23
A23
A23
A37
A45 | | DTG2300
DTG2400
DTS413
DTS423
DTS430
DTS431
ED322
FI100
FI0049
FK3299
FK3300
FK3502 | P110
P110
P110
P81
P83
P84
HF69
FET15
FET5, 14
LL24
LL26
LL26 | MCS2137
MCS2138
ME209
ME213
ME213A
ME214
ME216
ME217
ME495
ME900
ME900A
ME901 | LL21, HF37
A51
A38
A47
A51
A25
A38
A47
A21
A38
A47
A21
A38 | NPC514
NS661
NS662
NS663
NS664
NS665
NS666
NS667
NS6668
NS731
NS732
NS733 | P15
A25
A12
A7
A1
A25
A12
A7
A1
A5
A22
A5 | | FK3503
FK3962 | LL26
HF4 | ME901A
MFE2093 | A39
FET10, 17, | NS734
NS1110 | A23
LL27 | # L-BAND AND S-BAND KMG SILIGON LOW-NOISE AMPLIFIER AND OSCILLATOR # TRANSISTORS AMPLIFIER NOISE FIGURE — 6 db @ 1.5 Gc. AMPLIFIER NOISE FIGURE — 7 db @ 2 Gc. CLASS "A" OSCILLATOR — 1 WATT OUTPUT @ 1 Gc. ### THE K 1201 MOS FET 4.5 db max. System Noise Figure at 450 mc, 45 db AGC range, 400 mv Dynamic Range giving 1% cross-modulation. Selected Gm's to 3000 umhos minimum. All Kmc MOS transistors are produced with our exclusive MEGA-STABL process, for extra stability. ### IMMEDIATE
DELIVERY ON: 2N2857 2N3683 2N3953 2N3880 2N3570 2N3571 2N3572 # Kime TUNNEL DIODES Back diodes . . . down to 25 microamps. Low-noise microwave diodes in Ge, GaSb and GaAs to 50 Gc., 1.0 K — factor max. @ $f_{ro} = 50$ Gc. KMC MANUFACTURES SEMICONDUCTOR DEVICES ONLY, AND IS NOT YOUR "BLACK-BOX" COMPETITOR. FOR CATALOGS AND SPECIFICATIONS · · · WRITE OR PHONE ### semiconductor corporation PARKER ROAD, LONG VALLEY, NEW JERSEY (201) 876-3811 ON READER-SERVICE CARD CIRCLE 43 We don't recommend our young friend's technique but we do applaud his resourcefulness. Because we at IERC figure we're pretty resourceful at "beating the heat" too. We should be, because we go at it quite seriously. The result is the most efficient heat dissipating devices for electron tubes and semiconductors you'll ever see. Shucks, why be modest? We make more styles, versions, models, types, sizes, and kinds than anybody else in the business. In fact, we started the whole heat dissipating shield business 12 years ago. ■ We've got a bushelful of reasons why you should use IERC heat dissipators in your circuit designs - such as better performance, longer life, simpler circuits, lower costs, and so forth. And application ideas you probably never dreamed of. Just mark our number on the magazine reply card and you can see for yourself. First in a pictorial series of unique solutions to the problems of heat, by IERC. Dept. ED-56. ON READER-SERVICE CARD CIRCLE 44 # HEAT BEATERS PERMACEL® Film Tapes of Kapton* provide outstanding thermal endurance, physical and dielectric strength in a wide range of hightemperature applications. At 200°C, these tapes have far greater tensile strength than any other available films. "Strength-with-thinness" makes them ideal for miniaturization and other critical insulating jobs. Two types, in 1 and 2-mil thicknesses, in 36-yard rolls from 1/2" to 17" wide. Write Dept. 919 for details and free sample. *Du Pont trademark for its Polyimide Film | TI156 TI158 TI159 TI160 TI161 TI162 TI407 TI408 TI409 TI411 TI537 TI538 TI539 TI540 TI3027 TI3028 TI3029 TI3030 TI3031 TIP14 TIS05 TIS14 | P38 P38 P38 P5 P5 P5 P5 P5 P5 P6 P79 HF70 HF70 HF37 HF29 HF20 P38 P38 P91 P91 P91 P91 P91 P91 P51 FET10, 13, 39, | |---|---| | TIS25
TIS26
TIS27
TIS34 | FET25
FET24
FET24
FET10, 15, 22,
47, 55, 59 | | TIX3016A
TIX3024
TIXM101
TIXM103
TIXM104
TIXS09
TIXS10
TIXS11 | HF106
HF93
HF94
HF93
HF94
HF105
HF105
FET2, 15, 23,
49, 56, 57 | | TIXS33
TIXS35 | FET7, 12
FET10, 15, 22, | | TIXS36 | 48, 56, 60
FET8, 14, 22,
48, 56, 60 | | TIXS41
TIXS42
TN53
TN54
TN55
TN56
TN57
TN58
TN59
TN60
TN61
TN62
TN63
TN64
TN79
TN80
TN81
TN237
TN238
TW135
U89
U110
U112
U114
U133
U139
U139D
U146
U147
U148
U149
U168
U182 | FET8, 12
FET7, 12
HF38
HF38
HF14
HF14
HF14
HF18
HF38
HF38
HF38
LL17
LL17
LL17
HF56
HF38
HF38
LL12
FET39, 57
FET32
FET42
FET42
FET42
FET42
FET45
FET6
FET6
FET6
FET6
FET6
FET6
FET48
FET48
FET49
FET49
FET49
FET49, 50
FET8, 13 | FET26 FET25 SU2080 SU2081 T404 | FET46 FET43 FET39 FET35 FET32 FET48 FET47 FET44 FET36 FET37 FET37 FET37 FET37 FET37 FET37 FET37 FET37 FET38 FET47 FET48 FET77 FET47 FET5 FET47 FET47 FET5 FET44 FET39 FET76 FET30 FET31 FET36 FET32 FET30 FET31 FET36 FET42 FET30 FET31 FET36 FET42 FET30 FET31 FET36 FET42 FET31 FET31 FET32 FET42 FET31 FET32 FET42 FET31 FET32 FET42 FET33 FET33 FET37 LL16 LL8 LL9 LL24 LL9 LL45 LL45 LL45 LL45 LL45 LL45 LL45 | |---| | LL45
LL45
LL45
LL45
P23 | | | # SILICON MOLDED ZENER DIODES HALF THE SIZE ... HALF THE WEIGHT ... HALF THE COST . . . **FULL 2 WATT** RATING . . . # LPM, LPMX SILICON MOLDED DIODES ARE LOW-COST REPLACEMENTS FOR ONE-WATT METAL ZENER DIODES. SEMCOR'S new LPM, LPMX silicon molded diodes are lowcost replacements for 1-watt metal zener diodes. Half the size, half the weight, and available at half the cost of conventional one-watt devices, SEMCOR'S new molded 2-watt zeners have almost limitless military and commercial applications. LPM's non-conductive epoxy body is capable of withstanding MIL-S-19500 environmental requirements. It has a full 2-watt rating. In terms of temperature shock, the devices are taken through temperature cycling from —55°C directly to 200°C before they are electrically tested. LPMX, identical with LPM but with only zener voltage measured at the specified current, costs even less than the 50 100 75 AMBIENT/CASE TEMPERATURE (°C) TWX: 602-255-0479 # ...new value from new pricing on hot carrier diodes from hpa Ultra-fast switching with hp associates 2900 Hot Carrier Diode is now more economical than ever. New production techniques and experience have reduced the cost of these popular devices, and the savings is passed on to you. The performance characteristics and pricing listed in the chart make the hpa 2900 ideally suited for use in TV tuners, commercial communications limiters, detectors and mixers, and multiplexing in signal processing. Contact your Hewlett-Packard field engineer for complete data. | TYPICAL SPEC | IFICATIONS, hp | a 2900 | |---|------------------------------|---------------------------------------| | Forward Current | Bre | eakdown Voltage
BV _R | | 20 ma min. @ $V_F = 1.0 \text{ v}$
1.0 ma min. @ $V_F = 0.4 \text{ v}$ | 10 v @ l _R =10 μa | | | Leakage Current | Lifetime $ au$ | Price | | 100 na @ V _R =−5.0 v | 100 ps | 1 to 99, \$3.00
100 to 999, \$2.25 | Data subject to change without notice. Prices f. o. b. factory. 99 ON READER-SERVICE CARD CIRCLE 47 ELECTRONIC DESIGN # Low-cost way to solid state # **G-E economy line semiconductors** ■ Today, low-cost solid state is a reality for dozens of applications never before thought possible. The reason: G-E economy line semiconductors. Now, for under \$2.00, a single G-E Triac can control a 600-watt load. Yet, less than 10 years ago, it would have taken two \$145.00 SCR's. G-E economy transistors cost as little as 15¢ each. Many high-sensitivity SCR's, less than half a dollar. And today you can buy one kind of rectifier to perform a number of different functions. New G-E A14 rectifiers will work almost anywhere you Actual size General Electric economy line semiconductors need dependable, low-power rectification. Surely you have at least one application problem that ought to be solved by low-cost solid state. Ask your G-E engineer/salesman or semiconductor distributor about it . . . and the application experts they can call on to help you. Or write to Section 220-32, General Electric Company, Schenectady, N. Y. In Canada: Canadian General Electric, 189 Dufferin St., Toronto, Ont. Export: Electronic Component Sales, IGE Export Division, 159 Madison Ave., New York, N. Y. SEMICONDUCTOR PRODUCTS DEPARTMENT GENERAL ELECTRIC ON READER-SERVICE CARD CIRCLE 48 # **Selecting a thyristor** to fill a control need doesn't have to be a difficult choice. These guidelines to the why, where and how of applications simplify the job. When it comes to switching power or controlling phase, think thyristor. No other family of semiconductor devices offers such a wide choice of suitable designs with comparable efficiency, reliability, flexibility and simplicity. In most cases the differences between thyristors and other semiconductor types is clear-cut. However, many users are not nearly as confident when it comes to selecting from among thyristors alone. At first glance, there appears to be some overlap in the differing thyristor roles. For example, one might ask, "Where does the SCR end and the Triac begin?" The answer to this and similar questions lies in a detailed examination of the thyristor family tree: - The silicon-controlled rectifier (SCR). - The silicon-controlled switch (SCS). - The gate-turn-off switch (GTO). - The four-layer (Shockley) diode, the silicon-unilateral switch (SUS) and the silicon-bilateral switch (SBS). - The light-activated SCR (LASCR). - The three-element, static, ac switch (Triac). In each case let us consider first the salient characteristics of the device, then its governing design parameters, and, finally, the major application areas for which each has been tailored. ### Understanding and using SCR parameters The SCR is a regenerative device of pnpn construction with three external connections. To get the most out of this unit and to be able to select the best SCR for an
application, one must have a good working knowledge of the basic parameters. The maximum allowable ratings of thyristors are listed on manufacturers' specification sheets, so the designer sees at a glance the one or two devices that are within his specifications. Here are the definitions of the maximum allowable ratings that are usually encountered on the specification sheets: - *PFV*—The peak forward voltage rating is the maximum allowable instantaneous value of forward voltage that may be applied between anode and cathode without risking damage to the device if switching to the ON state occurs. - V_{FXM} —The peak forward blocking voltage rating is the maximum allowable instantaneous value of forward blocking voltage, including transient voltages, which will not switch the SCR to the ON state. This specification usually states a definite impedance between gate terminal and cathode, or a specific bias voltage. - $V_{ROM(rep)}$ —The repetitive peak reverse voltage rating (with the gate open) is the maximum allowable instantaneous value of reverse voltage, including all repetitive transient voltages—but excluding all nonrepetitive transient voltages—that may occur across the SCR. - $V_{ROM(non-rep)}$ —The nonrepetitive peak reverse voltage rating (with the gate open) is the maximum allowable instantaneous value of reverse voltage, including all nonrepetitive transient voltages—but excluding all repetitive transient voltages—that may be applied across the SCR. This rating is slightly higher than $V_{ROM(rep)}$ for each specific voltage rating of an SCR type. Narrow down thyristor selection problems. Optimize and simplify your power and control designs by using Author Brookmire's guide to distinguishing between members of the thyristor family. James L. Brookmire, Applications Engineer, General Electric Semiconductor Products Dept., Auburn, N. Y. • V_{GT} —The gate trigger voltage rating is the dc voltage between the gate and the cathode required to produce the dc gate trigger current. • I_F rms—The rms forward current is the maximum steady-state rms current that the device is rated for. The rms or effective value in this specification is independent of waveform. ■ $I_{F(AV)}$ —The maximum average forward current depends upon the conduction angle and is usually given in chart form. The chart shows maximum allowable case temperature vs average current for either dc or various conduction angles of a sinusoidal waveform. ■ $I_{FM(surge)}$ —The peak one-cycle surge forward current, nonrepetitive, is the maximum allowable peak current through the collector junction for a positive anode to cathode voltage. This specification is for a single, forward, half cycle (8.3 ms) in a 60-Hz resistive load system. The surge may be preceded and followed by maximum reverse rated voltage, current and junction temperature conditions, and maximum allowable gate power may be concurrently dissipated. However, limitations on anode current during switching should not be exceeded. ■ I_{nx} —The holding current is the minimum current through the collector junction required to maintain the SCR in the ON state for specified conditions and load. The gate terminal is tied to the cathode through an impedance or bias voltage. ■ *I_{GT*—The dc gate trigger current is the minimum dc gate current required to cause switching from OFF to ON for a specified anodeto-cathode voltage, junction temperature and gate impedance. This is one of the most important specifications, for one should always design for the maximum gate current required to fire the particular device, unless selected units are desired.} • I^2t —This is the maximum allowable forward nonrecurring overcurrent capability for pulse durations greater than a specified time (usually given in milliseconds). Unit I is the rms amperes, and t is the pulse duration in seconds. This specification is for applicable fusing of the device used. ■ t_{off} —The circuit-commutated turn-off time is the interval between the time when the forward current decreases to zero and the device voltage reaches zero and is rising to a stated value of forward blocking voltage (at a stated rate of rise without turning on during switching). This is usually stated for specific conditions of junction temperature, gate impedance, etc. #### Don't underestimate rate of rise Two other SCR specifications that are very important in device selection are dv/dt and di/dt. Dv/dt is the rate of change of voltage, with respect to time, that is applied to the anode-cathode junction. Note that any pn junction has capacitance, and the larger the junction area the higher this capacitance. It follows then that the charging current to this capacitance is equal to $C \ dv/dt$. If a step function of voltage (line transient) is impressed across the anode to cathode of the thyris- 1. Holding current is what keeps an SCR in the conducting state. It is a function of gate-to-cathode resistance and temperature, and is a critical parameter in low-power systems and switching circuits. tor, the device may inadvertently switch on, due to the triggering action of this charging current. The definition of the rate of rise of the anode voltage (dv/dt) is the slope of a straight line starting at zero anode voltage and extending through the one-time constant point on an exponentially rising anode voltage. Methods used to increase the SCR's dv/dt capability are: select a higher voltage unit for the application; reverse-bias the gate with respect to the cathode, or provide a series-RC network across the anode-cathode junction to slow the rate of rise of the anode voltage transient. Di/dt is the rate of rise of the anode current with respect to time. In some cases where di/dt is faster than the time required for the junctions to reach a state of full forward conduction (at uniform current density), localized hot-spot heating will occur in the junction region that has begun to conduct. This may cause excessive temperature rise and subsequent device failure. Several methods may be utilized to reduce the harmful effect of di/dt.² To cite a few: seriessaturable reactors that limit the rise of current during the initial period of turn-on; small resistances placed in series with the anode-cathode, and combinations of these two remedies. Other parameters, such as storage temperature, delay times, leakage currents, turn-on times and other voltage ratings, are generally less important in most applications. Moreover the specification sheets usually contain several charts that refer to these factors and to the instantaneous voltagecurrent relationships, power dissipation vs conduction angles, maximum allowable ambient temperature vs average forward current for rectangular waveshapes, and gate trigger current vs gate pulse width, among others. These charts or graphs are usually self-explanatory and give insight into how the device will perform in (specific) applications. An example of such a graph is one showing holding current vs gate-to-cathode impedance for the C5 SCR (Fig. 1). This characteristic is especially important in low-power control logic and switching applications. #### A model of SCR behavior To obtain a basic understanding of how an SCR works, one may analyze its equivalent circuit. Since the SCR and all other thyristors are pnpn structures, a two-transistor analog may be used (Fig. 2).³ Figure 2a (from left to right) shows the four-layer structure with the three external connections. Figure 2b displays the two complementary transistors tied in such a way that collectors and bases of like material, either p or n, form a regenerative feedback connection. The complete transistor analog appears in Fig. 2c. The total anode to cathode current, I_A , equals the sum of I_{c_1} and I_{c_2} . It is expressed as $$I_{A} = \frac{(1 + h_{FE_{1}}) (1 + h_{FE_{2}}) (I_{CO_{1}} + I_{CO_{2}})}{1 - (h_{FE_{1}} h_{FE_{2}})}.$$ (1) With proper bias applied to the transistor pair (positive anode to cathode voltage), h_{FE1} and h_{FE2} are both low, and their product is much less than unity. This condition exists because the only currents involved are the leakage currents, which are innately small. And because h_{FE} is directly proportional to the collector current, these current gains are also small. Thus the equation develops a value of I_{A} that is only slightly higher than the sum of I_{CO1} and I_{CO2} . This mode of operation in a pnpn structure is referred to as the forward blocking state, or the OFF condition. Now, if the product of h_{FE1} and h_{FE2} is made to approach unity, the numerator of Eq. 1 approaches infinity and rapid regeneration takes place. Here the current builds up and drives both transistors to their saturated states, causing the thyristor to unblock or turn ON. The anode-to-cathode voltage becomes low and is the total drop of the three junctions indicated in Fig. 2a. 2. The SCR is a pnpn structure with three external connections (a). It may be represented by two interconnected complementary transistors (b). The complete 2-transistor analogy (c) shows current flow and the regenerative feedback connection. This condition of regeneration may be made to occur by increasing the temperature of the pnpn junction in such a way that the leakage currents become high enough to provide switching action by themselves. Another method is to increase the anode-to-cathode voltage, which again increases the leakage currents. The technique mainly used in the SCR is to provide a positive gate-to-cathode voltage (external base current to Q_1), which causes an unblocking state to be reached by transistor action. It is interesting to note that in some SCR specifications a maximum impedance to be applied between gate and cathode is usually specified. This is to insure that the SCR will block under a specific junction temperature and for a given forward voltage between anode and cathode. This impedance is necessary to divert part of
I_{c2} (mostly leakage current) away from the base of Q_1 , so that regeneration will not occur during the blocking mode. ### Charting the application course Let us now see how to use the parameter data given on specification sheets. We may consider the SCR as a two-circuit link—the gate section (input) and the anode portion (output). Note that the cathode is common to both. Figure 3 shows the gate-triggering characteris- 3. Gate triggering characteristics for a typical SCR (type C35). Note that a locus of firing points exists. Observe that temperature, a major factor on the triggering requirements, should be accounted for in the design. tic of the C35 SCR family. The equivalent circuit between the SCR's gate and cathode terminals consists of a low-voltage pn junction with some series resistance. Thus the gate characteristics may be considered to be those of a modified silicon pn junction. The small shaded area in Fig. 3 is enlarged in the upper portion of the graph. This area represents the locus of all points where triggering of all types of SCRs in the C35 family (C35U through C35N) will occur over the junction temperature range of -65° C to $+125^{\circ}$ C. The boundaries of the locus are also shown for operation over lesser temperature ranges. For example, note that a minimum gate current of 40 mA is required at 25° C to fire all units, whereas at -65° C, 85 mA is needed. A minimum gate signal of three volts is required for reliable triggering at both temperatures. It is imperative that the circuit designer stay out of "shaded areas" to guarantee that 100 percent of the units will trigger. It is recommended that the trigger point be slightly above and to the right of the top-right corner of the shaded area (point T). The preferred trigger area is bounded by the dotted peak-power dissipation curve and the outer limits of the shaded area. When operating with dc trigger signals, be sure that the steady average gate power dissipation rating isn't exceeded. The load line of the trigger source should pass through the preferred area of the gate characteristic graph so that the triggering signal is as close as possible to either the average power dissipation (for dc triggering) or to the peak power dissipation (for pulsed cases). The rise time of the trigger signal's leading edge should also be as fast as possible. Fast-rising, high-amplitude gate signals reduce anode switching time and minimize switching dissipation and jitter. This is especially desirable when switching into high anode currents. When the gate is driven with some intermediate type of waveform, such as a rectangular pulse, the 4. Maximum allowable case temperature for sinusoidal currents is a function of conduction angle. Note that the current decreases (for a given case temperature) as the conduction angle decreases. This is because the ratio of rms to average current increases as the conduction angle average gate power is determined by computing the duty cycle and multiplying it by the peak power value of the pulse. The product should be less than the rated average gate power dissipation of the SCR. The gate source is established by the opencircuit, gate-source voltage at zero current and the shorted circuit current that is produced by the source voltage, divided by the source impedance. One may easily visualize what actually occurs during a pulsed-gate triggered condition. The E-I dynamic curve before triggering starts at the origin of the graph and sweeps out to intersect the trigger source load line. At some lesser value of current than that given by the intersection of these two curves, the SCR triggers. #### The case for dc over rms For another example of how to use the specification sheet in designing with SCRs, refer to Fig. 4a. This graph shows the maximum allowable case temperature vs average forward current for different current conduction angles for a sinusoidal voltage waveform applied between the anode and cathode of the C35 SCR. Note that the current is not rms but average dc. One reason average values are used is that it is much easier to measure average current with a dc ammeter than to find a meter that will read the rms value of a phasecontrolled current. Curves are available that easily convert the average value to an rms value for any conduction angle. The specification sheets for leadmounted SCRs (like the C5 and C106 types) also give the curves for ambient temperature vs average current, since separate heatsinks are not generally used with these devices. It is very important to appreciate the difference between case temperature and junction temperature. Junction temperature always is higher than case by an amount determined by the thermal resistance (Θ) of the device. Parameter O is decreases. Thus, average current must be derated to keep $T_{\rm case}$ constant. Data in a plot of maximum forward current vs ambient temperature for various fin sizes (b) is used to help maintain the junction at a proper operating temperature. expressed in degree C rise—junction to case—per watt of dissipated junction power. Since average heating in the device is determined to some extent by the rms current flowing, the more watts that are generated, the higher the average temperature difference will be between the junction and case. Since the ratio of rms current to average current increases at smallerconduction angles, the allowable average current for a given case temperature must decrease as the conduction angle decreases, if constant rms is to be maintained. This derating at small conduction angles also ensures that the peak junction temperature of the device is not exceeded. Remember that small conduction angles lead to high peak power as well as high average power and that high peak power means high peak junction temperatures. A similar derating is necessary with rectangular current pulses. Note in Fig. 4a that the case temperature is absolute and defines the thermal gradient between case and junction. For example, if one selected an average current of 8 A at a 30° conduction angle, the maximum allowable case temperature would be 60°C, and one could assume that the junction was close to its rated value of 125°C. Since this particular device usually requires a heatsink to achieve any practical efficiency, the thermal resistance from case to heatsink (°C/watt) and the thermal resistance from heatsink to ambient must be known before values of current for specific ambients can be selected. The curve shown in Fig. 4b has already accomplished this for various fin sizes. It shows the maximum allowable average current, for various conduction angles and different heatsinks, that may be used with the SCR, so as to maintain proper junction temperature. So much for the input circuit design. Let us turn now to the output circuit, starting with the role of the load. ### Device trade-offs based on load A realistic method for selecting the right device is to investigate the characteristics of the load. Let us then look at three types of typical loads and examine the requirements of each. They are: 1. Incandescent lamp load operating from ac supplies. 2. Resistance loads of a power factor greater than 99 percent, also operating from ac supplies. 3. Inductive loads (phase control of motors, static switching, etc.) with both ac and dc supplies. Incandescent lamps or tungsten loads. Two major problems exist for the lamp load applications. First, the in-rush current due to a cold filament condition can be 15 to 20 times more than the steady-state current of the lamp for a single cycle of operation. This means that the SCR or Triac selected should be able to handle the transient in-rush current. The second problem occurs when the lamp burns out. In this case the lamp filament at burnout has a tendency to arc, thus drawing large amounts of current for a short time interval. An example of a potential misapplication would be to select an SCR that satisfied the steady-state load requirements of the lamp, plus in-rush conditions due to a cold filament, but was unable to handle the burnout condition with high enough reliability. Therefore an SCR of higher power than that required for steady-state conditions should be selected to handle the burnout. Non-incandescent resistive loads with a power factor of 99 percent or greater. With resistive load applications, di/dt and I^2t are generally not problems, since there is no inrush or burnout condition. The device must be selected on the basis of rms-supply voltage and load current. Sufficient heat-sinking must be provided to keep the junction temperature within specifications. In some cases especially when using Triacs) the system inductance (leakage reactance of transformers for instance) can cause some concern. If enough inductance exists in the voltage source supplying the load, commutation dv/dt can be a problem. The inductance causes a leading phase shift between the voltage applied to the thyristor and the current through it. This means that at the instant the current becomes zero for one polarity of conduction, a voltage is suddenly applied across the device in the opposite polarity. At this instant the thyristor to which forward voltage is applied may conduct, if the rate of rise of the applied voltage is higher than the dv/dt rating of the device. Since control is lost if this happens, external circuitry would be needed to suppress the rate of rise of the applied voltage to within the prescribed dv/dt rating of the device. A simple RC network in parallel with the thyristor does this. #### Inductive loads. One good example of an inductive load is a dc motor driven from an ac supply. Here, an SCR would normally be the logical choice for the following reasons: 5. Time-extended trigger signals must be supplied to the gate of the power SCR in inductive load circuits. Achieved by a separate control transformer, it permits sufficient current build-up in the power SCR to
guarantee latching. Alternatively, a series of pulses or a rectangular pulse may be applied to the gate. Table 1. Classifying SCRs by application | Category | SCR properties | Device characteristics | |------------------------------------|---|--| | Light-industrial SCRs | Narrow temperature ranges.
Low to medium current ratings.
Normal turn-off times. | Passivated structures. Available in plastic case. Typical features (C106): 2 A rms, 25-200 volts. Typical medium current unit (C35): 35 A rms, 25-800 volts. | | Heavy industrial and Military SCRs | Wide temperature ranges.
Highest current-handling capability.
High voltage ratings. | Usually a metal-encased unit.
Typical features (2N2542):
235 A rms, 25-800 volts, -40°C to +125°C. | | High-frequency SCRs | Rapid turn-off.
High current-handling capability.
Medium voltage ratings. | Frequency response approaches 50 kHz. Typical features (C141): 35 A rms, 25-400 volts, $10~\mu s$ turn-off. | - 1. With the larger dc motors, the voltage requirement is beyond the range of power transistor technology. - 2. The power transistor for the smaller motor applications requires separate rectification of the ac voltage supply. If SCRs are used instead, they rectify as well as control. - 3. In most cases of dc motor speed control, the power loss in the SCR is minimal, compared with the needs of a power transistor operating from a dc supply. - 4. The locked rotor condition at turn-on is a severe problem, because the only circuit resistance at this time is the motor armature resistance. The SCR inherently has a higher multicycle surge-current rating than that of a power transistor of comparable steady-state ratings. Therefore it is more capable of handling this problem. For most motors, ac or dc, the problem of commutation dv/dt exists. The use of an RC circuit across the SCR or Triac will limit the rate of rise of the voltage across the device. In full-wave bridge applications for dc motors, the motor inductance causes a holding current to flow through the SCR during the time the supply voltage goes through zero, thus preventing commutation. A free-wheeling diode placed across the load shunts this current away from the SCR, thereby permitting it to commutate properly. One must also consider the effect of the gate circuit when an inductive load is to be driven. If pulse firing is used, the inductance of the load may prevent sufficient current build-up through the thyristor to ensure that it stays on when the gate pulse is finished. To eliminate this possibility, it is necessary to supply the gate with a sustained trigger signal that lasts as long as the thyristor is conducting (during each forward half-cycle). A typical way of doing this is shown in Fig. 5. The pulse transformer fires into the resistive gate-cathode of the pilot SCR, which in turn fires the power SCR at the desired time. This method is suitable regardless of load power-failure. Next consider the application itself. Here, factors other than load are used to categorize SCRs. The primary determinants are current, voltage, temperature and switching speed. #### SCRs breakdown into 3 types Today's SCRs can be generally classified under three basic categories: light-industrial types, heavy industrial and military units, and highfrequency devices (see Table 1). The light industrial SCRs (Fig. 6a) are usually characterized by narrower temperature ranges, low-to-medium current ratings, and normal turn-off times. Low-current devices of planar-passivated structure are now entering this field. These SCRs are characterized by plastic molded cases and are relatively low priced. The planar construction gives a much higher gate-drift stability with junction temperature than the normal, diffused types. Note that this type of SCR may be selected with a tab heatsink. One may visualize the difference in size, case construction, and costs involved by comparing it with the medium-current unit (Fig. 6b). The heavy industrial and military types are characterized by wide temperature ranges, high current handling capacities, and high voltage ratings. Representative of this SCR family is the unit shown in Fig. 6c. The third general unit is the high-frequency or inverter type of SCR. While this device may generally be classified as a heavy industrial type, it is uniquely characterized by its ability to turn-off rapidly. Figure 6d depicts a typical unit in this category. Note that high-frequency types differ from the heavy industrial units in their application; the former are the only SCRs used in inverters, choppers, cyclo-converters and other higher-frequency applications. Their frequency response is nearing the 50 kHz level; the upper limit for heavy industrial units is closer to 2.0 kHz. Thus the case is made for the leading member of the thyristor family, the SCR. We now turn to 6. Thyristors may be classified according to application. Shown are light-industrial (a) and medium-industrial (b) types, a high-frequency unit (c), and a heavy industrial type suitable for military use (d). Type (a) has low-current ratings (to 2 A rms), (b) medium current ratings (to 35 A rms), (d) highest current ratings (typically 235 A rms) and (c) the fastest turn-off time $(10\mu s)$. 7. The SCS is a four-terminal device similar to the SCR. It is suitable for low-voltage and low-power applications (a). The equivalent circuit (b) shows the extra gate (terminal 3), which is sometimes used for preventing dv/dt effects from mistriggering the switch. its relatives, the SCS, GTO, 4-layer diode, SBS and SUS, LASCR and Triac devices. #### Spotlighting the rest of the thyristor family The remaining thyristor devices are suited for a number of specialized, SCR-like applications (see Table 2). They have not as yet been made available in as wide a variety of package sizes or with as high a power-handling capability as the SCR. The silicon-controlled switch (SCS), like the SCR, is a pnpn structure. However, it has four accessible leads (Fig. 7). The SCS is a device similar to two complementary transistors connected in a regenerative feedback arrangement. Therefore the normal parameters that cause beta to increase in a transistor, such as V_{CE} , I_C , V_{BE} and temperature, will cause the SCS to unblock (as was the case with the SCR). The main difference between the SCR and the SCS is that the latter is a four-terminal device used for low-voltage and low-power applications. The extra lead (anode gate) can be effectively used to prevent dv/dt triggering, by returning this gate to the positive supply through a large resistance. The anode gate may also be used as a second gate trigger. The transient response time of the SCS is dependent on the frequency response of the two transistors and the magnitude of the gate drive current. The larger the gate drive, the less the delay time with low anode currents, and thus the fastest response. Recovery time, or turn-off time, is a function of diverting the npn base drive current in such a way that this transistor will turn off. This may be accomplished by providing a negative signal to the cathode gate or by placing a short between the anode and the anode gate. By reverse-biasing the anode-cathode junction and tying the cathode gate to a negative polarity or ground, a fast recovery results. One of the unique features of the SCS is its high triggering sensitivity. At moderate temperatures, where leakage is negligible, very large input resistances may be utilized to provide extremely sensitive triggering levels. Some of the more important parameters of a typical SCS (type 3N82) are: 8. The gate turn-off switch (GTO) is a pnpn device tailored to dc switching application needs (a). It has a higher voltage rating than comparable bipolar transistors, as exemplified by this sawtooth generator application (b). Moreover, its trigger-power requirements are small. Anode to cathode (forward and 100 volts reverse) voltage (max) Continuous dc forward current 200 mA (max) Total power 400 mW (max) Operating junction temperature -65°C-150°C Holding current 1.5 mA (max) Cathode gate current to trigger 1 µA (max) Turn-on time $1.5 \mu s \text{ (max)}$ Recovery time $15 \mu s \text{ (max)}$ The SCS may be used as a bistable device, such as a Schmitt trigger; as a latching device, with negative gate turn-off; like an SCR, with no dv/dt problems, or as a signal SCR, with an extremely fast recovery time. #### GTO a natural for dc switching The gate turn-off switch (GTO) is a pnpn switching device with three terminals (Fig. 8). The GTO was designed primarily for dc switching applications, where it has these advantages over the transistor: a higher voltage capability and a lower triggering power requirement. Like an SCR, it may be latched by a positive pulse between gate and cathode; unlike the SCR, it may be unlatched by a negative pulse. A typical GTO is rated up to 400 volts in dc forward-blocking voltage, and it has a 25-volt (dc) reverse-voltage rating. A series diode in the anode lead enables the device to tolerate high reverse voltages when needed. But since the GTO is largely used in dc applications, the diode is a rare necessity. For fast turn-on and turn-off, the positive and negative gate pulses should have steep leading edges and slow decay times. These result in good turn-on and fast recovery times. #### SUS and SBS have two states The unilateral pnpn switching diode, commonly known as the Shockley (or four-layer) diode, is designed to block voltage until the breakover region is attained. The diodes may be obtained at various breakover voltages up to approximately 400 volts. Like the SCR, the switching level is dependent upon the build-up of the breakover current to the
threshold point of regeneration. The device then switches to a low saturation voltage level between anode and cathode. This results in a large voltage swing at the time of Table 2. Other members of the Thyristor cast | Туре | Major application areas | Characteristics | |--|--|---| | Silicon-controlled switch (SCS)
(see Fig. 7) | Sensitive voltage-level detectors. Binary and ring counters. Oscillators. Time-delay generators. Pulse generators. Relay drivers. Alarm systems. | A 4-terminal device. Used in low voltage (<250 V) and low power (<1.0 w) applications. High triggering sensitivity. Fast recovery time. | | Gate turn-off switch
(see Fig. 8) | High voltage flip-flops.
Ring counters.
Dc converters.
High-speed solenoid devices.
High-frequency chopping. | A 3-terminal device. Used in dc switching applications typified by higher voltages than transistors and low trigger-power requirements. | | 4-layer diode (Shockley diode)
unilateral switch;
Silicon bilateral switch (SBS)
(see Fig. 9) | Thresholding control. SCR/Triac phase control. Pulse sharpening. Voltage clipping. | Two regions: blocking and saturation. Forms part of UJT device. Rapid regeneration results in fast response time. | | Light-activated SCR (LASCR) | Optical relay control. SCR triggering. Power switching. Alarm systems. Fiber optic programming. Slaved light-activation. | An SCR with a built-in infrared and visible light-sensing capability. Rated to 200 volts at 440 mA dc. | | Triac (see Fig. 10) | Ac phase control. Synchronous switching. Motor-speed control. Lamp dimmers. Automotive systems. Temperature control. Electric heating. | Equivalent to two, inverse-parallel connected SCRs. Immune to voltage transients. May be triggered by ac or dc signals. Maximum peak one-cycle forward current rating is 80 A. Holding current is 50 mA dc (at 25°C). Typical dv/dt rating is 2 V/μs. | switching, and since the regeneration is very rapid, the response time is much faster than with similar devices. Another generation of pnpn switches has succeeded the four-layer diode. These devices are the silicon-unilateral switch (SUS) and the silicon-bilateral switch (SBS). They display excellent leakage characteristics, a low breakover voltage and a very good temperature coefficient of threshold voltage. The threshold level is approximately 7 volts, with switchdown to approximately 1 volt. Other representative characteristics are as follows: • Power level 350 mW (max) Forward current 200 mA Peak reverse voltage Operating temperature 30 volts (SUS) -65°C to 150°C ■ Threshold voltage tempera- 0.05%/°C (max) ture coefficient These devices show promise for applications where accurate control of thresholding (triggering level) under widely varying ambient temperatures is needed. They are also useful in lower voltage phase-control applications. Some units are available with a third lead for low voltage triggering and resetting, such as the UJT. The SBS voltage-current relationship is shown in Fig. 9. #### Focus on LASCR for optical control The light-activated SCR (LASCR) is another device in the thyristor family. It is a small SCR, typically mounted in a hermetically sealed TO-5 transistor case, with a glass window to permit triggering by means of light as well as by the normal gate signal. Typical devices are available up to 200 volts and are rated to 440 mA dc. These units were not developed to be highly accurate, threshold light-sensing devices, but they can be used in many applications where the sensing of infrared and visible light spectrums is needed. A typical unit (L8 type) will trigger with an incident irradiation of 0.01 watts/cm² from a tungsten lamp producing 750 footcandles of illumination at the LASCR sensing surface. The sensitivity of the device depends upon the external gate-to-cathode impedance, the junction temperature and ambient conditions. Moreover the anode voltage, anode current and frequency conditions also affect sensitivity. #### Turn to the Triac for ac control This recently developed thyristor provides low-cost control in many light-industrial applications. It is used when ac phase control and zero-voltage switching applications demand lower cost than can be provided with inverse-parallel SCRs. The Triac features bi-directional switching of load current with low power gate control (Fig. 10a). Unlike the SCR, the Triac cannot be damaged by voltage transients of either polarity, since excess voltage or dv/dt causes it to conduct, with unwanted power being dissipated into the load. The Triac may be triggered by ac or dc gate signals, with bi-directional gate voltages for each 9. The silicon bilateral switch (SBS) is a pnpn symmetrical device exhibiting two regions; blocking (high V, low I) and saturation (low V, high I). These are bordered by the breakover limit (point of changing state). 10. The Triac is the equivalent of two SCRs placed in an inverse-parallel configuration (a). In a simple phase-control application (b), the Triac is triggered by an SBS. As a solenoid driver (c), the Triac is easily controlled by a simple reed relay. anode polarity. For example, when anode 2 is positive with respect to anode 1, the most sensitive triggering polarity is gate-positive with respect to anode 1. Note that a maximum gate current specification for a typical Triac is 50 mA. This is referred to as first-quadrant positive firing. With the same respective anode polarities, the identical Triac may be triggered with negative polarity on the gate, with a maximum specification of 75 mA. This firing mode is referred to as Quadrant I. Similarly, Quadrant III refers to the opposite anode polarities; III- being the most sensitive (maximum is 50 mA) and III- being the least sensitive of the four cases, with no maximum gate current guaranteed. However, 75 mA in III- will trigger the majority of Triacs. The greatest percentage of Triacs will trigger in Quadrant I- and I- with gate currents between 5 and 25 mA. Selected units may also be obtained for guaranteed specific maximum triggering levels. At present, typical Triacs may be obtained in two voltage levels, namely 200 and 400 volts, with 6 and 10 A rms forward ratings in each voltage group. For resistive loads, single Triacs can switch up to 2.4 kW on a 240-volt rms line. Triacs are capable of being slave-driven in both phase-control and zero-voltage switching circuits. Thus large amounts of power may easily be controlled. The limiting point in power-handling capability is an economic factor that dictates a comparison between the cost of additional Triacs vs the cost of two high-current SCRs connected inverse-parallel (with their associated firing circuits). The typical dv/dt capability is 4 volts per microsecond under the conditions of maximum rated rms current, a case temperature of $75\,^{\circ}$ C, and a peak voltage of 200 applied at an exponential rate. Fig. 10b shows a Triac being triggered by a Diac (or SBS) in a simple phase-control application. In this circuit the Triac is being fired in Quadrants I $^{+}$ and III $^{-}$. For each half cycle, the capacitor begins to charge up to the line voltage until the threshold of the trigger switch is reached. At this time the capacitor discharges through the gate circuit of the Triac, switching the Triac ON. It remains latched until the end of the half cycle, at which time the process repeats. Let us now run through the step-by-step design procedure for a representative thyristor circuit. We choose the Triac device because it typifies a second-generation SCR. #### Step-by-step design of solenoid driver Let us assume we have a solenoid that will be energized with the contacts of a reed type switching relay. We will use a Triac in such a way that the contacts of the reed switch open and close the gate circuit of the Triac, thereby directly switching the solenoid ON and OFF. The parameters of the solenoid coil are L=0.1 H and R=1.0 Ω . Line voltage is 120 volts 60 Hz. Since this is a problem of static switching we first draw the proposed circuit diagram (Fig. 10c). A quick calculation for the full wave, steady state value of inductive reactance is: $X_L = j\omega L = j2\pi f L = j37.7 \Omega$. Since the coil R is 1.0 Ω , the circuit impedance (Z) is approximately j38 Ω . The rms current is $$I = \frac{120 + \text{j } 0}{\text{j38}} = \frac{120 \angle 0^{\circ}}{38 \angle 90^{\circ}} = 3.15 \angle -90^{\circ} \text{ A}$$ (2) Thus we find that the rms current in the anode circuit lags the applied voltage by 90°. We also know that we may use a 200-volt, 6-A rms Triac with a reasonably small heat sink, since the ambient requirement is normal room temperature. The Triac will be triggered in the first quadrant positive (I¹) and third quadrant negative (III-) and the maximum gate trigger current needed for either quadrant is 50 mA to insure reliable triggering of all Triacs used. We select R to be 150 Ω . This insures that the peak gate current is less than the 3-A rating; that the gate power dissipation is not excessive, and that the gate load line provides high gate current for fast switching. To test our final design, we construct the circuit in the laboratory. After switching on the circuit by energizing the reed switch, we find that we can't turn it off when the reed switch contacts are opened. Could we have neglected the commutation dv/dt Don't rule out high-power SCRs! This industrial SCR unit is water-cooled, operates directly from
480-volt distribution lines and can switch 1.5 MW loads. It blocks 1800 volts and can handle 1200 A rms. of the Triac? The answer is yes. When the relay contacts are turned off, the Triac will conduct until the load current becomes zero. At this time the line voltage is at a leading phase angle of approximately 90° and the solenoid coil voltage is zero such that the applied voltage is felt directly across terminals T_1-T_2 . Depending upon the distributed capacity of the solenoid, the rate of rise of this applied peak line voltage could very easily be greater than the dv/dt capability of the Triac (typical value = 2 volts/ μ s). A dv/dt suppression network may be required. The circuit is retested with a new Triac and the dv/dt is checked oscilloscope for the condition of circuit turn-off. Several trials indicate that dv/dt is approximately 5 volts/ μ s and that the Triac remains ON, even though the gate switch is OFF. A suppression network of 0.1 μ F in series with a 100 Ω resistor is placed in parallel with T_1-T_2 and the circuit performs satisfactorily for all Triacs tested. #### References: - 1. General Electric SCR Manual, Third Edition - 2. "Di/dt failures in SCR circuits—their cause and prevention," By R. Weschler, Electronic Design, Aug. 16, 1965, pp 140-145. - 3. General Electric Transistor Manual, Seventh Edition a little... Hoffman provides semiconductors of inherent reliability completely compatible with the manufacturer's needs. The Hoffman "N" series solar cell, an N/P, shallow diffused, photovoltaic device is optimized for operation in the spectrum of space. These cells are tested and qualified for radiation resistance in accordance with GSFC (NASA) Specification No. 63-106. An electrically conducting grid has been sintered to the active surface to reduce sheet resistance and thus increase conversion efficiency. These physical characteristics are manufacturing tolerances for all Hoffman Semiconductor Solar Cell Types. - 1. OHMIC CONTACT: (A) Electrically continuous and mechanically bonded. (B) Extends to .032 inches from the edge of the cell. - GRID LINES: Guaranteed to .100 inch tolerance. Hoffman's photo masking technique assures complete mechanical tolerances. - EDGE CHIPS: .010" wide, .100" long not to exceed one such chip per top and one per bottom edge of cell. - CORNER CHIPS: .030" on the hypotenuse of the chip. - 5. WEIGHT: N120CG .18 Gr. Avg. N220CG .36 Gr. Avg. N210CG .18 Gr. Avg. N230CG .54 Gr. Avg. #### Typical Electrical Specifications Test Temperature: $28^{\circ}\text{C} \pm 2^{\circ}\text{C}$. Hoffman solar cells are coated with silicon monoxide to render the active area anti-reflective to obtain maximum use of solar energy. These cells withstand temperature excursions from $-196\,^{\circ}\mathrm{C}$ to $+200\,^{\circ}\mathrm{C}.$ STANDARD ENVIRONMENTAL TEST: Each lot of cells is immersed in boiling DI water for periods to one hour followed by a live steam test for a comparable period. All of these advantages insure complete compatibility of products for industrial uses. Hoffman solid state photo-sensing devices are now being used for measuring, cloth cutting, sequence counting, liquid level gauging, data processing and other manufacturing functions requiring absolute accuracy. TYPICAL INDUSTRIAL COMPATIBLE PRODUCTS: A shaft encoder is currently being produced to mechanical tolerances of $\pm.0005^{\prime\prime}$ and electrical parameters matched within 2%. Data processing readouts are being produced with an $l_{\rm d}$ of 3 $\mu{\rm A}$ max. at 1.5 volts reverse bias. Other sensing elements are being made with active areas as small as .002" x .023" and as large as 2.5" x 1.0". For additional information regarding these products write: Hoffman Electronics, Dept. A, El Monte, Calif. **SEMICONDUCTORS** ON READER-SERVICE CARD CIRCLE 49 the full dimension of Motorola semiconductors, with instant capability Semiconductor 5700 WEST NORTH AVENUE · CHICAGO, ILLINOIS · (312) NA 2-8860 20203 Ann Arbor Trail • Suite 102, Bldg. A • Dearborn Heights, Michigan • (313) 271-4240 601 West 66th Street • Minneapolis, Minnesota • (612) UN 6-3434 6154 Jefferson Avenue • St. Louis, Missouri • (314) JA 1-8866 ON READER-SERVICE CARD CIRCLE 50 # In choosing diodes, don't settle for second best. Nearly all are optimized for a specific characteristic, so use this application guide to pick a winner every time. Few engineers realize that each diode type, including general-purpose, has been tailored to meet the needs of a specific class of applications. This "application-fitness," achieved by V-I characteristic, electrical parameter control, package, or wafer construction, is the governing criterion for choosing the best diode for the job. In line with this we have drafted a table of the major diode categories to help with selection.* It contains information on key application areas, critical design parameters and salient characteris- tics for the most popular diode types. Although a diode may be used with some measure of success in an application other than the one it has been optimized for, chances are that one or more of its parameters will be compromised and efficiency, life, or some other vital characteristic shortchanged. By contrasting the characteristics of different types, the table should give a clue to their suitability for any application. To supplement this contrast and selection information, here is a breakdown of the maximum ratings and electrical characteristics common to nearly all diode types. This examination includes the definition and procedures used in calling out these diode parameters. #### Maximum ratings ■ $V_{RM(wkg)}$ —Reverse voltage rating; the rated repetitive peak working voltage of a device is usually specified below the avalanche breakdown voltage to provide the safety factor required in the application for which it is designed. Higher voltage devices must sometimes be derated as a function of operating temperature due to forward and reverse power dissipation and increase leakage at elevated junction temperatures. ■ *I*_o—Average rectified forward current; this rating defines the current rating of diodes designed for use primarily in rectifying applications. It is determined by the manufacturing process, wafer size, and package design, and is rated as a function of operating temperature. ■ *I_{FM}*—Peak forward current; this rating defines the recurrent peak forward current which may be seen by the diode. An example of a severe case is operation of the diode in a capacitive-input filter circuit. I_{FM} is usually derated as a function of temperatures. - $I_{FM(surge)}$ —Surge current; this is the non-repetitive current rating. It is usually specified as the current which a rectifier may be subjected to for a given number of times (usually 100) without failure, and as such, is a fault-condition rating. Some manufacturers provide a more conservative surge rating which is not limited to a given number of occurrences. That rating may be used to determine the safe inrush current in capacitive-filter type applications. It normally assumes that the device is allowed to return to thermal equilibrium prior to re-application of the surge. - *P*—Power dissipation; the maximum power dissipation capabilities of the device under the conditions defined on the data sheet. #### **Electrical characteristics** - V_{BR} —Reverse breakdown voltage; this is specified as a minimum characteristic of the diode, usually at a low leakage current and at a specific temperature. - I_R —Static reverse current; the reverse leakage current under specified reverse bias and temperature. - V_F —Static forward voltage; the forward voltage drop at a stated forward current and temperature. Usually measured with pulse techniques to overcome junction heating errors. ■ Pinpointing diode parameters. Author McKenna works out the design of a diode circuit. He developed the applications-oriented guide to selecting diodes and rectifiers so as to save time and optimize circuit performance. Robert G. McKenna, Senior Engineer, Texas Instruments Inc., Semiconductor Division, Dallas, Tex. ^{*}This table is tailored to the "who-makes-what" chart in the diode section of this Directory (pp. 164). The table does not include thyristors, which are covered in a separate article (see p. 144). Applications - Oriented Parameter Study | Device type | Major applications | Governing parameters | Key characteristics | |------------------------------------|---|--|--| | General purpose diodes
(Fig. 1) | Low-power rectification with capacitive inputs (voltage-doublers, triplers). | I _{FM (surge)} for inrush current.
I _{FM} for peak, recurrent operating current. | Devices optimized for high-forward trans-
conductance. Application typified by
medium voltage levels (1 - 600 volts). | | | Low-power rectification with inductive inputs (L-filters, high-L transformers, magnetic amplifiers). | Peak transient reverse voltage rating. | | | | Clamping, decoupling, biasing circuits, dc relay networks. | Forward transconductance. | | | Rectifiers (Fig.2) | Power rectification (includes conventional rectification, high-voltage power supplies, photomultiplier tube biasing, radar and infrared systems). | Average forward current rating. Peak reverse voltage rating. Power dissipation. Surge current. Peak transient reverse voltage rating. Thermal resistance. Transient thermal impedance. | Devices are high-power diodes especially packaged for
rectifier service. Units are optimized for high forward-conductance and minimum thermal impedance. | | Fast-recovery rectifiers | High-frequency converters, multiphase rectifiers and high-speed power switching. | Reverse recovery time.
Reverse recovery current.
Total device capacitance. | Typified by recovery times of the order of 100 ns. | 1. Forward-biased diode characteristics for a general-purpose type show how temperature affects the V-I relationship (a). The reverse-biased characteristics demonstrates the contract of strate that junction temperature has a greater influence on the reverse current than that due to the applied reverse voltage (b). 2. Reverse recovery time is a critical parameter in rectifiers. Denoted by $t_{\rm rr}$, its measurement requires that a slope extrapolation be made. 5. Current vs voltage relationship for a reverse-blocking diode thyristor shows how a blocking characteristic is achieved in this device. 3. **RF diodes** are often used to switch high-frequency signals (a). Plot of off-port isolation vs frequency (b) shows that the series resistance of the diode at 1 kHz is within 15% of its value at 50 MHz. This magnitude is usually less than 1.0 $\Omega.$ Note that $\rm V_R$ refers to the reverse voltage. 4. A critical parameter for computer and high-speed diodes is the reverse recovery time, $t_{\rm rr}$. Measured by the test circuit (a), it is calculated from observations of the output-current waveform (b). 6. Noise diode characteristic shows the useful operating region (at the point of avalanche breakdown) for white noise generation. 7. Forward voltage drop is the criterion for establishing the region of matched characteristics for matched-diodes. Current level and temperature are the other key factors. Applications - Oriented Parameter Study (continued) | Device type | Major applications | Governing parameters | Key characteristics | |--|--|--|--| | RF diodes (Fig. 3) | RF detection circuits.
Small-signal, low-voltage diode applica-
tions. | Reverse recovery time. | Units have small-area junctions for mini-
mum capacitance. | | Computer and high-speed diodes (Fig. 4) | Diode gates, diode-capacitor storage,
low-power diode switching and other
''speed'' applications. | Reverse-recovery time (<300 ns),
Low junction-capacitance (<4pF at zero
volts). | Typified by reverse voltage ratings < 100 volts and forward voltage drops of 1 volt (approx.) at 10 - 50 mA. Note that forward transconductance, surge current ratings and reverse voltage ratings are relatively poor here. | | Reverse-blocking diode
thyristors and 4-layer
diodes (Fig.5) | Low-power circuits (bistable circuits, switching circuits, ring counters and SCR triggering). High-power circuits (power switching, squib firing, pulse-forming, tone generators, proportional power control). | Working blocking voltage. Anode breakover voltage. Average forward current. Peak recurrent forward current. Power rating. Conducting voltage drop. Holding current. Latching current. Allowable rate of dv/dt. | Blocking characteristic exists until a breakover value is reached; then devices switch through a negative-resistance region into a low-impedance conducting state. | | Noise diodes (Fig. 6) | White noise generation. Random noise source in ECM jamming equipment. Random function generator (vibration table drives). | Available noise level.
Bias voltage requirements. | White noise is generated at the point of avalanche breakdown. | | Matched diodes (Fig. 7) | Critical biasing circuits. Differential circuits. Logarithmic attenuators. Signal limiters. | Forward voltage drop. | Matched at several different current levels and (if required) at various temperatures. | | Microwave diodes (Fig. 8) | Parametric amplifiers. Parametric limiters. Microwave switches. Phase-shifters. Harmonic generators. Sub-harmonic oscillators. | Total capacitance, C _T . Cutoff frequency, f _{co} . Figure of merit, Q. Noise figure, NF. Package inductance. Power and voltage ratings. | Optimized for use at frequencies above 1
GHz. | 8. Junction capacitance, a key design parameter, and diode current are non-linear functions of voltage in the microwave diode. 9. In varactor diodes, the total capacitance $C_{\rm T}$ is inversely related to reverse voltage $V_{\rm R}.$ Two to five times the nominal capacitance is the range available. Applications - Oriented Parameter Study (continued) 10. The various operating regions and threshold levels of the tunnel diode are depicted in this forward currentforward voltage characteristic. 11. Symmetrical characteristics in varistors are obtained when two identical diode junctions are placed in an inverse parallel configuration. | Device type | Major applications | Governing parameters | Key characteristics | |--|--|---|--| | Varactor diodes (includes
variable reactance types)
(Fig. 9) | Automatic frequency-control. Voltage-variable tuning circuits. Harmonic generation. FM modulators. | Normal peak reverse voltage. Power dissipation. Total device capacitance, C _T . Capacitance ratio, C _{V1} /C _{V2} . Figure of merit, Q. | Optimized for their voltage - variable junction capacitance. Peak reverse-voltage ratings range between 15 and 100 volts. Device capacitance is between 2 and 50 pF and capacitance ratio range is 2.0 to 5.0. | | Tunnel diodes (Fig. 10) | Memory units. Logic circuits. Oscillators. Amplifiers. | Peak current, I _P . Valley current, I _V . Current ratio, I _V /I _P . Valley voltage, V _V . Delta voltage, V _V - V _P . | Provide a negative-resistance character-
istic in the forward-bias region below
the stand-off voltage. | | Varistors (Fig. 11) | Signal-limiters. Audio-clipper circuits. Noise and transient suppression. Meter protection. | Non-linear impedance vs voltage characteristic. | Usually two diode junctions connected in an inverse-parallel configuration. | # high speed mercury wetted relays Intended for printed circuit board mounting, relay types AWNA, AWPB, AWCA, AWCL, and AWCS introduce a new concept in relay design. Created to serve as an alternate for currently available Single and Two Switch mercury wetted contact relays, this feature, plus the inherent superior characteristics of Adlake mercury wetted contact relays, make these devices sought after by circuit and equipment designers. Available in either neutral, form D, bridging type or sensitive, form C, non-bridging type, the devices represent another group of Adlake quality mercury wetted contact relays. Single and dual windings-bifilar and/or concentric wound are available for all relay types. A few of the advantages of mercury wetted contact relays, such as freedom from contact bounce, high operating speeds (up to 200 times per second), long life and adequate current ratings add to the attractiveness of these new devices. See Bulletin No. 1263AW—193A20M for explicit data on current ratings. For contact protection network data see back cover of this bulletin. Simplicity of design has eliminated costly and weightadding parts. Gone are base plates fabricated from insulating materials that can be responsible for unexplained failures. Solder joints are held to a minimum, as additional insurance against relay malfunction. Covers are fabricated in a simple form from soft iron. A finish is provided to insure the esthetic quality of the relay throughout the device's life. The cover serves to protect the switch element and coil. Magnetic interaction between adjacent relays is minimized through the use of moderate gauge metal. (See interaction chart on reverse side for detailed dimensions). Relays are potted with either silica filled epoxy or polyurethane compounds. No wax is used, which eliminates the possibility of wax contamination under high operating temperatures. If desired, the relays can be supplied less the cover—available upon special order. (Note: For applications demanding excellent chemical resistance of its components, we recommend the epoxy filled relay). The following chart describes the relays in this series in general terms and identifies them with the presently available single switch mercury wetted contact relays. | Catalog Type | Contact Form | Related to Adlake
Catalog Type | | |--------------|-------------------|-----------------------------------|--| | AWNA-1600 | Neutral, Form D | MW-1600 | | | *AWPB-16000 | Polarized, Form D | MWP-16000 | | | *AWCA-16000 | Sensitive, Form C | MWS7 & MWSA-16000 | | | *AWCL-16000 | Sensitive, Form C | MWSL-16000 | | | AWCS-26000 | Sensitive, Form C | (None) | | | AWNA-2600 | Neutral, Form D | (None) | | | | | | | ^{*}Available as single-side-stable; bi-stable or chopper. # form C sensitive mercury wetted contact
relays #### type AWCA - 16000 (single switch) | catalog no. | coil | | coil current
milliamperes | | |-------------|--------------------|--------|------------------------------|-----------------| | | resistance
ohms | turns | must
operate | must
release | | AWCA-16011 | 2,400 | 7,700 | 7.8 | 1.3 | | AWCA-16021 | 4,000 | 15,000 | 4.0 | 0.67 | | AWCA-16041 | 675 | 5,200 | 11.6 | 1.9 | | AWCA-16121 | 115 | 2,000 | 30.0 | 5.0 | | AWCA-16261 | 450 | 4,650 | 12.9 | 2.1 | | AWCA-16351 | 940 | 5,800 | 10.4 | 1.7 | | AWCA-16511 | 65 | 1,575 | 38.1 | 6.3 | | AWCA-16541 | 1,250 | 6,400 | 12.1 | 1.6 | | AWCA-16571 | 1,950 | 7,375 | 8.2 | 1.3 | | AWCA-16581 | 1,425 | 7,125 | 8.4 | 1.4 | To prevent the accidental bridging of terminal pins with accumulated solder, solder steps or standoffs are used. When included in the relay design the front to back dimension (projection) is increased by 1/32". Note: This feature is optional and will be included upon request, at no increase in cost. #### type AWCL - 16000 (single switch) | catalog no. | cail | | coil current
milliamperes | | |-------------|--------------------|--------|------------------------------|-----------------| | | resistance
ohms | turns | must
operate | must
release | | AWCL-16011 | 2,500 | 18,800 | 1.43 | 0.17 | | AWCL-16021 | 4,000 | 23,400 | 2.0 | 1.0 | | AWCL-16091 | 7,000 | 31,675 | 0.87 | 0.14 | | AWCL-16121 | 130 | 4,900 | 5.58 | 0.96 | | AWCL-16191 | 40 | 2,800 | 12.2 | 3.8 | | AWCL-16241 | 25,000 | 53,000 | 0.52 | 0.09 | | AWCL-16261 | 500 | 9,450 | 2.89 | 0.50 | | AWCL-16421 | 350 | 7,660 | 3.56 | 0.61 | | AWCL-16431 | 1,000 | 12,350 | 2.21 | 0.38 | | AWCL-16721 | 11,000 | 38,050 | 0.72 | 0.12 | To prevent the accidental bridging of terminal pins with accumulated solder, solder steps or standoffs are used. When included in the relay design the front to back dimension (projection) is increased by 1/32". Note: This feature is optional and will be included upon request, at no increase in cost. #### type AWCS-26000 (two switch) | catalog no. | coil | | coil current
milliamperes | | |-------------|--------------------|--------|------------------------------|-----------------| | | resistance
ohms | turns | must
operate | must
release | | AWCS-26021 | 540 | 7,800 | 11.5 | 1.3 | | AWCS-26071 | 2,350 | 14,000 | 6.4 | 0.7 | | AWCS-26121 | 140 | 3,500 | 25.7 | 2.8 | | AWCS-26451 | 40 | 2,000 | 45.0 | 5.0 | | AWCS-26541 | 1,250 | 10,000 | 9.0 | 1.0 | ### form D neutral mercury wetted contact relays Relay types AWNA and AWPB are identical in size and configuration. Each is a single switch-Form D-neutral (bridging) type relay, and is available with either single or dual wound coil. Relay type AWPB is polarized by means of permanent magnets and is available in Single-Side-Stable, Bi-Stable or Chopper form. #### typeAWNA – 1600 (single switch) | catalog no. | coil | | coil current
milliamperes | | |-------------|--------------------|--------|------------------------------|-----------------| | | resistance
ohms | turns | must
operate | must
release | | AWNA-1601 | 2,000 | 10,550 | 18.0 | 8.0 | | AWNA-1604 | 750 | 7,825 | 24.3 | 10.7 | | AWNA-1605 | 50 | 2,000 | 95.0 | 42.0 | | AWNA-1613 | 200 | 3,800 | 50.0 | 22.1 | | AWNA-1615 | 1,500 | 9,580 | 19.9 | 8.8 | | AWNA-1626 | 450 | 5,675 | 33.5 | 14.8 | | AWNA-1648 | 20 | 1,225 | 155.0 | 68.6 | | AWNA-1651 | 70 | 2,250 | 84.5 | 37.3 | | AWNA-1653 | 4,300 | 14,200 | 13.4 | 5.9 | | AWNA-1654 | 1,100 | 8,350 | 22.8 | 10.0 | #### $type\ AWPB$ - $16000\ ext{(single switch)}$ | catalog no. | coil | | coil current
milliamperes | | |-------------|--------------------|--------|------------------------------|-----------------| | | resistance
ohms | turns | must
operate | must
release | | AWPB-16011 | 2,000 | 10,650 | 6.7 | 0.5 | | AWPB-16041 | 750 | 7,825 | 8.9 | 0.7 | | AWPB-16051 | 50 | 2,000 | 35.0 | 2.9 | | AWPB-16131 | 200 | 3,800 | 18.4 | 1.4 | | AWPB-16151 | 1,500 | 9,580 | 7.3 | 0.6 | | AWPB-16261 | 450 | 5,675 | 12.3 | 0.7 | | AWPB-16481 | 20 | 1,225 | 57.2 | 4.5 | | AWPB-16511 | 70 | 2,250 | 31.0 | 2.4 | | AWPB-16531 | 4,300 | 14,200 | 4.8 | 0.4 | | AWPB-16541 | 1,100 | 8,350 | 8.4 | 0.6 | #### type AWNA-2600 (two switch) | | coil | | coil current milliamperes | | |-------------|--------------------|--------|---------------------------|-----------------| | catalog no. | resistance
ohms | turns | must
operate | must
release | | AWNA-2602 | 540 | 7,800 | 27.5 | 12.0 | | AWNA-2607 | 2,350 | 14,000 | 15.7 | 6.9 | | AWNA-2612 | 140 | 3,500 | 62.8 | 27.7 | | AWNA-2645 | 40 | 2,000 | 110.0 | 48.5 | | AWNA-2654 | 1,250 | 10,000 | 22.0 | 9.7 | ## high speed mercury wetted relays #### contact protection Except for specific instances of light loads, the relay contacts must be protected by a network composed of a resistor and a capacitor in series as shown in the following diagram. This protection should be physically located as close as possible to the relay terminals. Contact Protection Network to be used with ADLAKE Neutral Type MW and Sensitive Type MWS Relays The preferred values of R and C, except for the conditions stated subsequently, can be evaluated from the following equations: (1) $$C = \frac{I^2}{10}$$ microfarads (2) $$R = \frac{E}{10 \text{ I}^{\times}}$$ ohms $$X = 1 + \frac{50}{E}$$ there $I = \text{load current in amperes immediately prior to$ where I = load current in amperes immediately prior to opening of contacts. **E** = source voltage immediately prior to closing of contacts. | A | В | С | D | |--------------|--------------------------|----------------------|----------------------------------| | Less than 50 | Less than
2.5 amperes | Use calculated value | May be omitted | | Up to 70 | All other conditions | Use calculated value | 3 X calculated value permissible | | @ 100 v. | All other conditions | Use calculated value | Within 50% of calculated value | | @ 150 v. | All other conditions | Use calculated value | Within 10% of calculated value | | Above 150 v. | All other conditions | Use calculated value | Follow calculated value closely | Note: For any voltages more than 50, the value of R must not be less than 0.5 ohm. #### magnetic interaction data Magnetic interaction is described as the unauthorized operation or variation in characteristics of a relay adjacent to another relay, when either device is energized or is being removed from the equipment. The following dimensions must be observed to insure that interaction between relays is eliminated. | Catalog Type | F/B | S/S | B/T | |--------------|-----|-----|------| | AWNA | 0" | 0" | 1/4" | | AWPB | 0" | 0" | 3/8″ | | AWCA | 0" | 0" | 1/4" | | AWCL | 0" | 0" | 1/4" | | AWCS-26000 | 0" | 0″ | 1/4" | | AWNA-2600 | 0" | 0" | 1/4" | | | | | | 12. Normal operating region in a typical zener diode characteristic is between $I_{\rm ZK}$ and $I_{\rm ZM}.$ The normal quiescent bias point is at $I_{\rm ZT}.$ 13. Wide-range ambient temperature excursions (ΔT_A) have little influence on the junction temperature (T_i) and oven power (W) in this compensated reference diode. FOR EQUAL VALUES OF RADIANT FLUX AT ALL WAVE LENGTHS 14. Photo diodes exhibit a variable response (impedance) over a portion of the wavelength spectrum (a). Note, however, that their frequency response (b) is fairly flat. | Device type | Major applications | Governing parameters | Key characteristics | |--|---|---|---| | Zener diodes (Fig. 12) | Reference elements. Shunt-voltage regulators. Voltage-reference elements. Biasing networks. Interstage coupling. Suppression circuits. Voltage clipping. | Zener breakdown voltages, V _Z . Temperature-coefficient of zener voltage, $\Delta v_Z/\Delta T_A$. Dynamic Zener impedance, Z _Z . Power rating, P _D . | Operate in avalanche-breakdown region.
Voltage ranges between 3 and 250 volts;
power rating is from 150 mW to 50 W. | | Low temperature-coefficient reference diodes (Fig. 13) | Voltage reference elements.
Standard cell replacements.
Critical voltage regulators. | Zener voltage, V_Z . Temperature coefficient, $\Delta V_Z/\Delta T_A$. Power requirements. | Usually a series combination of selected low-voltage Zener diodes and forward-biased diodes. Fixed bias current operation is recommended. | | Photo diodes (Fig. 14) | Character recognition. Card/tape readouts. Photoswitching. Proportional control systems. Difference amplifiers. Latching networks. Light-sensing. Photo-modulation. | Light current, I _L . Dark current, I _D . Total capacitance, C _T . Rise time and fall time. Spectral response. | Output impedance is usually inversely proportional to radiated light power levels. | # One Good Single-Turn Calls for Another... Now Bourns Offers You Eight! Whenever it's a question of single-turn precision potentiometers, you get <u>more</u> and <u>better</u> answers from Bourns. Here's the all-star lineup: | BUSHING MOUNT | SERVO MOUNT | |-------------------|-------------------| | Model 3530, 1/8" | Model 3580, 1/8" | | Model 3430, 11/6" | Model 3480, 11/6" | | Model 3410, 2" | Model 3460, 2" | | Model 3440, 3" | Model 3490, 3" | In this complete single-turn line, the quality matches the quantity. Exclusive SILVERWELD® multi-wire termination eliminates the chief cause of potentiometer failure. Construction insures humidity performance that meets the cycling requirements of MIL-R-12934. One hundred per cent inspection and the double-check
follow-through of the Bourns Reliability Assurance Program are your final quality guarantees. Whatever you need in single-turns, you'll find the answer at Bourns—the complete source! Write for technical data on our entire line of bushing and servo models, KNOBPOT® potentiometers, and turns-counting dials. Bourns' thin design lets you gang units in minimum depth; for example, Model 3580 allows 24 cup sections in less than 6 inches. BOURNS, INC., TRIMPOT DIVISION 1200 COLUMBIA AVE., RIVERSIDE, CALIF. PHONE 684-1700 - TWX: 714-682 9582 CABLE: BOURNSINC. SILVERWELD and KNOBPOT are registered trademarks of Bourns, Inc. Smaller and smaller and smaller parts . . . tighter and tighter tolerances . . . in larger and larger quantities . . . this is the story of microceramics. Regular production includes substrates so tiny that a teaspoon holds more than 8,000 parts! Coors offers a complete facility for creating small, consistent, ceramic substrates—in several Coors Alumina and Beryllia ceramics, metallized or unmetallized. To assure economy, "as-fired" parts are produced in quantity, to extremely close tolerances (as shown at right). Let Coors provide the special help you need. Write for "Ceramic Substrate Design," Data Sheet No. 7002, or call your nearest Coors Regional Sales Manager: Southern California: R. E. Ousley, (213) 347-3060, Los Angeles, Calif. Bay Area and Northwest: W. Everitt, (408) 245-2595, Sunnyvale, Calif. Midwest: Tom Daly, (312) 529-2510, Chicago, Ill. Central: Don Lewis, (216) 228-1000, Cleveland, Ohio; East Coast: Robert F. Doran, (516) 427-9506, Huntington, N.Y.; Herbert W. Larisch, (215) 563-4487, Philadelphia, Pa.; New England: Warren G. McDonald, (617) 222-9520, Attleboro, Mass.; Southwest: William H. Ramsey, (713) 864-6369, Houston, Tex.; John West, (214) AD 1-4661, Richardson, Tex. ON READER-SERVICE CARD CIRCLE 53 EXAMPLES OF AS-FIRED TOLERANCES HELD BY COORS IN REGULAR PRODUCTION # 1966 Diode Manufacturers' List (According to Device Type) To find the manufacturers of a specific type of diode, locate the device type in the columns on top. Dots are placed in the column to identify the manufacturers, listed at the left. To determine the diode product line of a specific manufacturer, locate the company name in the horizontal rows at the left. Dots are placed in that manufacturer's row under each type of diode device that forms a part of his product line. | | | / . | / | / | N. See. | | / | | | A Carriedo | | | , ouo | 100 | | 1 | | |---------------------------------|--|---------------|--|------|---------------|------|-------|--------|--------|------------|---|------|-------------|--------------|---|------------|--------------------| | Manufacturer | S. S | es of of long | P. F. P. F. P. | 13 | Found History | Agi. | House | Pour H | 10 No. | Tun Tun | / | 10/2 | Perfer IROS | S.C. Contine | | Pallolla S | Special
Purpose | | Airtron Div., Litton Industries | | | | | | | • | | • | | | | | | | | | | Alpha Industries Inc. | | | • | | | | | • | • | | | | | | | | N, P | | American Electronics Labs. Inc. | | | • | | | | | • | • | | | | | - | | | N, R | | American Semiconductor Inc. | | | | - | | | • | | | | | • | • | | | | | | Amperex Electronic Corp. | • | • | • | • | • | | • | | • | | | • | • | | | • | D, F | | Atlantic Semiconductor Inc. | | • | | | | 1 | | | | | | | | | | | B, H, St | | Bell, F. W., Inc. | | | | 0.00 | | | | | | | | | | | | | На | | Bendix Semiconductor Div. | • | • | | | | | | | | | | | | | | | | | Bradley Semiconductor Corp. | • | • | | | | | | | | | | | | | | P- | | | Burroughs Corp. | • | | | • | | | | | | | | | | | • | | | | CBS Laboratories | | | | | | | | | | | | • | • | | | • | | | Chatham Electronics | • | 901 | | | | | | | | | | | | • | | | В | | Computer Diode Corp. | • | • | • | • | | | • | • | • | | • | • | • | | | | С | | Conant Labs. | | • | | | | | | | | | | | | | | | B, Se | | Continental Device Corp. | • | • | • | • | | • | • | • | | | | • | • | • | | | | | Crystalonics Inc. | | | | | | | • | | • | | | | | | | | | | Delco Radio Div., Gen. Motors | • | • | | | | | | | | | | | | | | | D | | Delta Semiconductors Inc. | • | • | • | • | | • | • | • | • | | | • | • | | | | F | | Dickson Electronics Corp. | | • | | | | | • | | | • | | • | • | | | | | | Diodes Inc. | • | • | | • | | | • | | | | | • | | | | | B, D, H, St, S | | Eastern Delta Corp. | | • | 7 | | | | | | | | • | | | | | | B, S, St | | Eastron Corp. | | | | | | | • | | • | | | • | | | | | C, St | | Edal Industries | • | • | 4 | | | | • | | | | • | | | | | | B, Df, H, S | | Edgerton, Germeshausen & Grier | | | | | | | | 1 | | | | | | | | • | R | | Electro-Optical Systems Inc. | | | | | | | 1 | | | | | | | - | | • | | | Electronic Devices Inc. | • | • | | - | | | | | | | | • | | | | | B, D, H, M, V | | Erie Technological Products | • | • | | • | | | • | | | | | | | | | | В | | Fairchild Semiconductor | • | • | | • | | • | • | • | • | | | • | • | • | | • | A, E | | Fansteel Metallurgical Corp. | | • | | | | | | | | | | | | | | | Se | | General Electric Co. | • | • | • | • | • | | • | • | | • | • | • | • | • | • | • | La, P | #### Key to special purpose diodes category | A | = Arrays | N = Pin diodes | |----|---|----------------------------------| | В | = Bridges, stacked, or special assemblies | P = Snap diodes | | Bi | = Bilateral switch | Ph = Photo SCRs | | С | = Multi-junction forward regulators | R = Radiation detectors | | CC | = Constant-current source | S = Suppressors | | D | = TV dampers | Se = Selenium rectifiers | | Df | = Specially diffused silicon diodes | St = Stabistors | | E | = Light emitting diodes | Sym = Symmetrical switch | | F | = Controlled forward conductance diodes | T = Thin-film applications types | | Н | = High voltage elements | Tr = Trigger diode | | Ha | = Hall effect generators | U = Multi-current reference | | La | = Lasers | Y = Relay diode | | | | | | | | 1. | / | / | 1 | / | / | / | / | 1,00 | / | / | 100 | Lemo Land | / | / | .// | |--|----------|------------------|------------|---|-----------------|------|-------|---------|----------|-------------|-----|--------|--|----------------|-------
--|--| | Manufacturer | / Sunday | os out of out of | R.F. Miles | See | Four A Hi. Spen | 40's | Monce | Wie Por | No No No | Tune Parico | 100 | 10 / N | Reference of the state s | SCA CONTRACTOR | 25.50 | of the state th | Special
Purpose | | General Instrument Corp. | • | • | • | • | | | • | | • | | | • | • | • | | • | | | General Semiconductors Inc. | • | • | | | | | • | | • | | | • | • | | | | B,C,H,U | | Green Rectifier Corp. | | • | | | | | | | | | • | | | | | | B, S, St | | H P Associates | • | | • | • | | | • | • | | | | | | | | • | E, N, P, F | | Heliotek Div. Textron Elec-
tronics Inc. | | | | | | | | | | | | | | | | • | | | Hoffman Electronics Corp. | • | • | 15- | • | | • | | | | • | | • | • | • | | | | | Hughes Aircraft Co. Microelec-
tronics Div. | • | • | | • | | | • | | | | | | | | | | A | | Hunt Electronics Co. | | | | | | | | | | | | | | | | | Bi, Sym | | ITT Semiconductor | • | • | | • | • | | • | | | | | • | • | | | | | | Instrument Systems Corp. | 7.1 | | | | | | | | | | | | | | | | На | | International Diode Corp. | • | | | • | | | • | | | | | | | | | | | | International Electronics Corp. | • | • | • | • | | | • | | | | | • | | • | | • | | | International Rectifier Corp. | • | • | | | | | | | | | | • | • | • | | | | | IRC Semiconductor | • | • | | | | | | | | | | • | • | • | | | В | | KMC Semiconductor Corp. | | | | • | | | • | • | | • | | | | | | | E, R | | Korad Corp. | | | | | | | | | | | | | | | | | La | | Ledex | | • | | | | | | | | | | | | | | | | | MS1 Electronics Inc. | | | | | | | | • | • | | | | | | | | | | Mallory Semiconductor Co. | | • | | | | | | | | | | • | | | | | B, Tr, St | | MicroSemiconductor Corp. | • | • | • | • | | | • | • | • | | | • | • | | | | T | | Microstate Electronics Corp. | 1.33 | | | • | | | • | • | • | • | | | | | | | E, N, X | | Microwave Associates Inc. | | | • | | | | • | • | • | • | | | | | | | N, P, Df | | Motorola Semiconductor Products
Inc. | | | | | • | | • | • | | | | | • | • | | | CC, B, Tr | | National Electronics Corp. | 11-11 | | | - | | | | | | | | | | • | | | | | Nucleonic Products Co., Inc. | • | • | • | • | | | • | | • | | • | • | • | • | | • | В | | Ohmite Mfg. Co. | • | | • | • | | | • | | | | | | | | | | | | Philco Corp. | • | | • | • | | | | • | • | • | | | | | | • | B, CC, La, N, P, Ph, F
Sym, T, U, Y | | Power Components Inc. | • | | | | • | | • | | • | | | • | • | | | | St | May 17, 1966 165 # Tarzian value-researched Some research develops new products...some research develops better products at lower cost... Comprehensive design engineering data, including applications, test circuits, manufacturing methods and detailed electrical and mechanical specifications are available on Tarzian Semiconductors. This is just one phase of Tarzian value oriented service that includes application engineering assistance, MIL testing, quick quotations, fast sampling and competitive prices. #### **AVALANCHE SILICON RECTIFIERS** Avalanche characteristics standard at no extra cost. Low Current (1.0—1.6 amps DC, 100—800 PIV) Medium Current (2—12 amps DC, 100—600 PIV) High Current (25—350 amps DC, 100—600 PIV) High Voltage Cartridges (to 30,000 PIV, 50-250MA) Tube Replacement (over 25 types available) Check 191 Reader Service Card #### SILICON RECTIFIER ASSEMBLIES (AVALANCHE) Avalanche characteristics standard at no extra cost. 2.0-400 amp DC (50-600 PIV) single phase bridge 15-500 amp DC (50-600 PIV) three phase bridge Check 192 Reader Service Card #### ZENER VOLTAGE REGULATORS 0.25-50 watts, 5.6-200 volts-over 940 IN types in 5 voltage ratings and 8 series Check 193 Reader Service Card #### SELENIUM RECTIFIERS 20-320 volts, full wave, half wave, single phase, three phase, open, embedded, metal enclosed, and dozens of special types Check 194 Reader Service Card #### **SILICON CONTROLLED RECTIFIERS** 3-5 amps 100-600 volts Check 195 Reader Service Card STS 6612 # semiconductors TARZIAN CONDUCTS ALL THREE KINDS AND HERE IS AN EXAMPLE OF THE LATEST - #### **KLIPVOLT SURGE SUPPRESSORS** $63-1020~{\rm max}.$ clamping volts single phase non-polarized; peak discharge current .2 to 180 amps. 22-272 max. d-c blocking volts single phase polarized; max. discharge current .25 to 430 amps. 85-600 max. clamping volts three phase, nonpolarized; peak discharge current 2.5 to 180 amps. Check 196 Reader Service Card The highly condensed listings shown here represent literally thousands of different types of semiconductor rectifiers. Complete listings of standard units are given in the technical publications covering each product group. Special types can be designed to meet your specifications. Contact your local Sarkes Tarzian sales representative or write directly to us for details. #### IMMEDIATE DELIVERY on most types is available through a nation wide network of Tarzian Industrial Electronic Distributors. #### SARKES TARZIAN, INC. SEMICONDUCTOR DIVISION . BLOOMINGTON, INDIANA World's leading Manufacturers of TV and FM Tuners • Closed Circuit TV systems • Broadcast Equipment • Air Trimmers • FM Radios • Magnetic Recording Tape • Semiconductor Devices # TARZIAN AVALANCHE RECTIFIERS WITH UP TO 125% GREATER MEAN TIME TO FAILURE* A 2,000,000 unit hour test program recently completed by Tarzian shows statistically significant advantages for avalanche rectifiers and shows that the derating-safety factor concept is not applicable to avalanche rectifiers. TEST METHODS: Random samples were tested on an automatic life tester which provided load conditions closely approximating usual field operation. Daily test results of peak inverse voltage and forward voltage drop were automatically recorded and accumulated. Current and voltage variant sub-samples were used to test efficacy of derating-safety factor procedures. TEST CONCLUSIONS: Greater MTTF is exhibited by Tarzian avalanche rectifiers than by standard types without avalanche characteristics. When moderate, long term overloads are applied (133% of rated current), avalanche rectifiers have a minimum improvement of MTTF of 125%. At rated current, avalanche rectifiers have as much as 123% improvement of MTTF, and a minimum of 6% improvement in MTTF. Derated 33% from rated current, avalanche rectifiers have a 20% improvement in MTTF over conventional rectifiers. *with 95% confidence #### Key to special purpose diodes category = Arrays = Pin diodes = Bridges, stacked, or special assemblies = Snap diodes Bi = Bilateral switch Ph = Photo SCRs = Multi-junction forward regulators C R = Radiation detectors CC = Constant-current source = Suppressors D = TV dampersSe = Selenium rectifiers Df = Specially diffused silicon diodes St = Stabistors = Light emitting diodes Sym = Symmetrical switch = Controlled forward conductance diodes = Thin-film applications types = High voltage elements Tr = Trigger diode Ha = Hall effect generators = Multi-current reference La = Lasers = Relay diode | | | / | / | / | / | 0/ | / | / | / | / | / | / | / | 1. | 4 | / | // | |--|-----|-----------|-------|--|-----------------------|-----------|-------|-----------|---------|--------------|-----|-------|-------------------|------------------------|--------------|------------|---------------| | | / | P. Colore | R F | // | Foundation of History | 16. 19.0° | Marci | / Pag / 3 | Vo. Vo. | Ton S Parico | 100 | 10101 | Refer (Regulator) | SC. Continue IL De Ton | 1 2 | Pario Core | Special | | Manufacturer | / 6 | / 4 | / 4 | / | 1 40 | 1 20 | 1 * | 1 * | / = | 12 | 1 | /~ | 140 | 9 5 | 150 | 4 | Purpose | | Radiation, Inc. | | | | | | | | 4 | | | | | 1 | | | 0 | A | | Radio Corp. of America | | • | | | | | | | | • | | | • | • | 1 | • | B, La | | Raytheon Co. | • | | • | • | | | • | • | • | • | | • | • | | | • | E, N | | Rectico Inc. | | • | | | | | | | | | | | | | | | | | Saratoga Semiconductor
Div.,
Espey Mfg. | | | | | | | | | | | | | • | | | | | | Sarkes Tarzian Inc. | • | • | | | | | | | | | | • | | • | • | | B, H, Ph | | Schauer Mfg. Corp. | | | | | | | • | | | | • | • | • | | | | | | Semoor Div., Components Inc. | • | | | | | • | • | | | | | • | • | | | | | | Semicon Inc. | | • | | 1 | | | | | | | | | | • | | | Н | | Semiconductor Devices Inc. | | | | • | | 100 | | • | • | | 150 | | | | | | N, P | | Semiconductor Specialists Inc. | | | - | | | | • | | | | | • | • | | | | | | Semi-Elements Inc. | • | • | • | | • | | • | • | • | | | • | | | | • | E, La | | Semtech Corp. | • | • | | • | | A | • | | | | | • | • | | | | B, H, St | | Silicon Transistor Corp. | | | | | Cas | | | | | | | | | • | • | | | | Slater Electric Inc. | | • | | | | | | | | | | | | | | | La Carta | | Solar Systems Inc. | | | | | | | | | | | | | | | | | Df | | Solid State Products Inc. | | | | | • | | | | | | | | | • | • | • | Ph | | Solitron Devices Inc. | • | • | • | | 1 | | • | | • | | • | • | • | | | | N | | Sylvania Electric Products | • | • | • | • | | • | • | • | • | • | • | | | | • | | N | | Syntron Co. | | • | | | / | | | | | | | | | | • | | В, Н | | TRW Semiconductors | • | • | • | • | | | • | • | • | | | • | • | - | | 4-15 | St | | Texas Instruments Inc. | • | • | • | • | • | | • | • | • | • | • | • | 112 | • | • | • | E, L, St | | Transitron Electronic Corp. | • | • | • | • | | • | • | • | | • | | • | • | • | • | | U | | Trio Laboratories Inc. | | | | | | | 0.5 | | | | | • | | | | | CC | | Unitrode Corp. | • | • | | • | • | | • | | 10.3 | | | • | • | | | | B, C, H, N, S | | Vactec Inc. | | | 19 50 | | | | | | 1111 | | | | | | THE STATE OF | • | | | Varian/Bomac Div. | | | | | | | • | • | • | | | | | | | | N, P | | Varo, Inc., Special Products Div. | | • | | • | | | | | 1 | | | | | | | | H, B, D, Df | | Western Semiconductor Inc. | • | • | | • | • | • | • | | • | | • | • | • | • | • | | В | | Westinghouse Electric Corp.,
Semiconductor Div. | | | | | | | | | | | | • | • | | | | | ## SILICON TRANSISTOR CORPORATION # SILICON NPN AND PNP POWER TRANSISTORS Silicon Transistor Corp. makes more different silicon power transistors than any other manufacturer. #### **NPN** Types | Туре | Case
Type | Pd
Watts
100°C
Case | BVCEO
Volts | hfe
Min. | @
Ic
Amps. | VCE(sat.)
Volts
Max. | @
Ic
Amps. | |---------|----------------|------------------------------|----------------|-------------|------------------|----------------------------|------------------| | 2N1016B | 150W | 71 | 100 | 10 | 5 | 2.5 | 5 | | 2N1016C | 150W | 71 | 150 | 10 | 5 | 2.5 | 5 | | 2N1016D | 150W | 71 | 200 | 10 | 5 | 2.5 | 5 | | 2N1483 | T0-8 | 14.1 | 40 | 20 | 0.75 | | 0.75 | | 2N1484 | T0-8 | 14.1 | 55 | 20 | 0.75 | 2.0 | 0.75 | | 2N1485 | T0-8 | 14.1 | 40 | 35 | 0.75 | 0.75 | 0.75 | | 2N1486 | T0-8 | 14.1 | 55 | 35 | 0.75 | 0.75 | 0.75 | | 2N1487 | TO-3 | 43 | 40 | 15 | 1.5 | 3.0 | 1.5 | | 2N1488 | T0-3 | 43 | 55 | 15 | 1.5 | 3.0 | 1.5 | | 2N1489 | TO-3 | 43 | 40 | 25 | 1.5 | 1.0 | 1.5 | | 2N1490 | TO-3 | 43 | 55 | 25 | 1.5 | 1.0 | 1.5 | | 2N1618 | TO-61 | 45 | 80 | 15 | 2.0 | 2.0 | 2.0 | | 2N1722 | T0-53 | 50 | 80 | 20 | 2.0 | 1.0 | 2.0 | | 2N1724 | TO-61 | 50 | 80 | 20 | 2.0 | 1.0 | 2.0 | | 2N1768 | TO-75 | 22.8 | 40 | 35 | 0.75 | 0.75 | 0.75 | | 2N1769 | T0-75 | 22.8 | 55 | 35 | 0.75 | 0.75 | 0.75 | | 2N2033 | TO-5 | 5.0 | 60 | 20 | 0.5 | 0.8 | 0.5 | | 2N2034 | T0-5 | 5.0 | 60 | 20 | 1.0 | 0.3 | 1.0 | | 2N2035 | T0-8 | 14.1 | 60 | 20 | 1.5 | 0.45 | 1.5 | | 2N2036 | T0-37 | 10 | 60 | 20 | 2.0 | 1.0 | 2.0 | | 2N2823 | TO-63 | 100 | 80 | 10 | 20 | 1.1 | 20 | | 2N2824 | TO-63 | 100 | 100 | 10 | 20 | 1.1 | 20 | | 2N2825 | TO-63 | 100 | 150 | 10 | 20 | 1.1 | 20 | | 2N2828 | TO-59 | 22.8 | 60 | 20 | 0.5 | 0.4 | 0.5 | | 2N2829 | TO-59 | 22.8 | 60 | 20 | 1.0 | 0.3 | 1.0 | | 2N2858 | T0-5 | 5.0 | 80 | 20 | 1.0 | 0.3 | 1.0 | | 2N2859 | TO-5 | 5.0 | 100 | 20 | 1.0 | 0.3 | 1.0 | | 2N2911 | TO-5 | 5.0 | 125 | 20 | 1.0 | 0.3 | 1.0 | | 2N3149 | 1火。"
stud | 200 | 80 | 10 | 50 | 1.5 | 50 | | 2N3150 | 11/16"
stud | 200 | 100 | 10 | 50 | 1.5 | 50 | | 2N3151 | 11/16"
stud | 200 | 150 | 10 | 50 | 1.5 | 50 | | STC2500 | 11/4"
stud | 300 | 100 | 10 | 100 | 1.5 | 100 | | STC2501 | 1 1/4"
stud | 300 | 150 | 10 | 100 | 1.5 | 100 | #### **NPN Types** | Туре | Case
Type | Pd
Watts
100°C
Case | BVCEO
Volts | hFE
Min. | @
Ic
Amps. | V _{CE} (sat.)
Volts
Max. | @
Ic
Amps | |--------|--------------|------------------------------|----------------|-------------|------------------|---|-----------------| | 2N3237 | IND.
TO-3 | 100 | 75 | 12 | 10 | 2.0 | 10 | | 2N3238 | IND.
TO-3 | 85 | 80 | 8.5 | 10 | 3.0 | 10 | | 2N3239 | IND.
TO-3 | 85 | 80 | 8.5 | 10 | 1.0 | 10 | | 2N3240 | IND.
TO-3 | 85 | 160 | 8.5 | 10 | 1.0 | 10 | #### **PNP Types** | Туре | Case
Type | Pd
Watts
100°C
Case | BVCEO
Volts | hfe
Min. | @
Ic
Amps. | VCE(sat.)
Volts
Max. | @
Ic
Amps | |--------|--------------|------------------------------|----------------|-------------|------------------|----------------------------|-----------------| | 2N2881 | TO-5 | 5.0 | 60 | 20 | 0.5 | 0.4 | 0.5 | | 2N2882 | T0-5 | 5.0 | 100 | 20 | 0.5 | 0.4 | 0.5 | | 2N3163 | TO-61 | 45 | 40 | 12 | 1.0 | 0.75 | 1.0 | | 2N3164 | TO-61 | 45 | 60 | 12 | 1.0 | 0.75 | 1.0 | | 2N3165 | TO-61 | 45 | 80 | 12 | 1.0 | 0.75 | 1.0 | | 2N3166 | TO-61 | 45 | 100 | 12 | 1.0 | 0.75 | 1.0 | | 2N3175 | TO-61 | 45 | 40 | 10 | 2.0 | 1.0 | 2.0 | | 2N3176 | TO-61 | 45 | 60 | 10 | 2.0 | 1.0 | 2.0 | | 2N3177 | TO-61 | 45 | 80 | 10 | 2.0 | 1.0 | 2.0 | | 2N3178 | TO-61 | 45 | 100 | 10 | 2.0 | 1.0 | 2.0 | | 2N3202 | T0-5 | 5 | 40 | 20 | 1.0 | 0.3 | 1.0 | | 2N3203 | TO-5 | 5 | 60 | 20 | 1.0 | 0.3 | 1.0 | | 2N3204 | T.O-5 | 5 | 80 | 20 | 1.0 | 0.3 | 1.0 | | 2N3205 | T0-59 | 22.8 | 40 | 20 | 0.5 | 0.4 | 0.5 | | 2N3206 | TO-59 | 22.8 | 60 | 20 | 0.5 | 0.4 | 0.5 | | 2N3207 | TO-59 | 22.8 | 100 | 20 | 0.5 | 0.4 | 0.5 | | 2N3208 | TO-5 | 5.0 | 40 | 20 | 0.5 | 0.4 | 0.5 | Write today for new, complete catalog. #### SILICON TRANSISTOR CORPORATION EAST GATE BOULEVARD, GARDEN CITY, N.Y. 11532, 516-742-4100 **REGIONAL OFFICES:** CHICAGO, ILL. 60625, 5555 NORTH LINCOLN AVE., 312-271-0366-7, TWX 910-221-1304 / LOS ALTOS, CALIF. 94022, 1 FIRST ST., 415-941-2842 #### Choosing ICs need not be a chore. Use this directory of available circuits to eliminate those hours spent searching in vain. As the number of available microelectronic circuits, and in particular integrated circuits (ICs), becomes greater and greater, the task of selecting the best circuit for a given application becomes correspondingly more difficult and time-consuming. By listing the available integrated circuits by major logic categories and a key parameter; Electronic Design's Microelectronic Data Charts will save you many hours of needless searching. #### Data charts make selection easier These data charts provide a method of comparing available standard devices within the limitation of manufacturers' available data. For convenience, the charts are separated into the following categories: - Section 1—Diode Transistor Logic (DTL). - Section 2—Direct-Coupled Transistor Logic (DCTL) and Resistor-Transistor Logic (RTL). - Section 3—Transistor-Transistor Logic (TTL). - Section 4—Emitter-Coupled Logic (ECL). - Section 5—Resistor-Capacitor Transistor Logic (RCTL). - Section 6—Complementary Transistor Logic (CTL). - Section 7—Miscellaneous Digital Circuits - Section 8—Linear Circuits The attached table gives a fast run-down of the major parameters associated with digital circuits. As an example of circuit designs, a two-input NOR gate circuit is shown for each of the logic types. The parameter values given are based on typical values and serve only as a guide. To further aid your search, the first three sections of the directory, because of their extreme length, also contain a dot chart listing of logic circuits and the names of the manufacturers making them. The data charts are each divided into circuit sub-categories with headings such as Gates, Binary Elements, and Expanders for the digital circuits and Operational Amplifiers, Comparators, and Voltage Regulators for the linear circuits. The listings are again divided up, especially for the gate circuits, into AND, NAND, NOR, etc., subgroups. Within any group or subgroup, the listings are in order of increasing propagation delays. As is often the case, a particular model number may be known and it is the data listing that has to be found. The Cross-Reference Index, following Section Eight, provides a fast method for locating this information. The first column of the index lists all of the model numbers in an alpha-numerical sequence. The second column consists of a two or three digit listing which calls out the section, category and subgroup where the device is located. On the charts, these cross-references are listed in the first two columns. For example, suppose you wished to locate a device whose model number you know to be MC1114. The cross-reference listing is 1E1. In the first section (DTL), you would scan down the first column until you came to E (Gates). You then scan down the second column until you come to 1(AND). The device will be listed in this grouping. The charts are only a guide to the most useful circuits for a particular application. Though they will help to bring some order to the immense problem of selecting and purchasing integrated circuits, a thorough check of manufacturers' data sheets is imperative. #### Understanding the specs is a must Before analyzing the data listings, an understanding of what the various parameters mean is helpful. Manufacturers use various test methods, and though their reasons for doing so are usually meaningful, the design engineer should be aware of these different methods and understand their meaning in relation to his particular application.
Propagation delay, loosely defined as the time required to transfer a pulse through the integrated circuit device, is one of the most important measures of circuit performance. Since different methods of testing this parameter exist, manufacturers' data sheets must include both a description of the test circuit and a full definition of the waveforms measured. In addition, data sheets should spell out switching times as well, and some indication should be made of variations in these Typical IC characteristics and circuits | Symbol | Circuit diagram | Speed* | Power* | Fan-out* | Noise
immunity* | Remarks | |--------|--|-----------------------------------|-------------------------------|----------------------|-------------------------------------|--| | DCTL | | Medium | Medium | Low | Low | Variations in input characteristics result in base-current ''hogging'' problem. Proper operation not always guaranteed. More susceptible to noise because of low operating and signal voltages. | | RTL | Q+V | Low | Low | Low | Low | Very similar to DCTL. Resistors resolve current ''hogging'' problem and reduce power dissipation. However, operating speed is affected and also reduced. | | RCTL | | Low | Low | Low | Low | Though capacitors can increase speed capability, noise immunity is affected by capacitive coupling of noise signals. | | DTL | 0+V | Medium | Medium | Medium | Medium
to
High | Use of pull-up resistor and charge-control technique improves speed capabilities. Many modifications of this circuit exist, each having specific advantages. | | TTL | · · · · · · · · · · · · · · · · · · · | Medium | Medium | Medium | Medium
to
High | Very similar to DTL. Has lower parasitic capacity at inputs. With the many existing variations, this is becoming very popular. | | CML | O +V V _{REF} | High | High | High | Medium
to
High | Similar to a differential amplifier, the reference voltage sets the threshold voltage. High-speed, high fan-out operation is possible with associated high power dissipation. Also known as emitter-coupled logic (ECL). | | CTL | | High | High | Medium | Medium | More difficult manufacturing process results in compromises of active device characteristics and higher cost. | | | *Legend
Low =
Medium =
High = | < 5 MHz
5 to 15 MHz
>15 MHz | <5 mW
5 to 15 mW
>15 mW | <5
5 to 10
>10 | <300 mV
300 to 500 mV
>500 mV | | # Mortronics pioneered their development for in-car and home cartridge players! If you're designing a cartridge tape recorder or playback unit—take a good look at Nortronics' B2Q and B2L heads! These two popular 4-Track and 8-Track stereo heads lead the industry in acceptance, and offer: - Outstanding shielding against external magnetic fields. - Optimum high frequency resolution. Precision deposited quartz gaps, available from 50 to 500 micro-inches. - Hyperbolic, highly polished, all-metal faces for intimate tape-to-gap contact and reduced oxide build up. **B2L:** 8-Track Stereo Head; 20-mil tracks spaced 127-mils on centers. **B2Q:** 4-Track Stereo; 43-mil tracks spaced 136-mils on centers. 8185-C 10th Ave. No. • Minneapolis, Minnesota 55427 measurements as a function of loading (fan-out) and temperature. Fan-in refers to the number of inputs that the device takes. A carry-over from older times, this rating, where given, many provide additional information to that given in the "Type" column in the data charts. Fan-out is the measure of a circuit's capability to drive a specified number of the same circuit from its output. Though both typical and maximum values may be listed, only the latter value can realistically be used in making comparisons. Power dissipation may be given per node, gate, stage, circuit, or package; or it may be given without any qualifications. Any reasonable comparison of this rating is greatly complicated by this lack of a standard. In the data charts, a slash following a power rating indicates a per-gate value, if in the gates section, and a per-stage value, if in the binary elements section. Note that the power dissipation is a function of the supply voltage and that it varies directly with operating speed; in looking at manufacturer's data sheets, check that all the test data are taken under the same operating conditions. Noise margin or noise immunity indicates the minimum amount of noise voltage that will cause an "error" in the output of a logic circuit. Normally, noise immunity for a "0" logic state is defined as the difference between the minimum "0" input threshold and the maximum "0" output signal. For a "1" logic state, it is the difference between the minimum output signal and the maximum "1" input threshold. With logic errors possible in either of two available states, the noise immunity rating should be checked for both logical "0" and "1" conditions. Also, since supply voltage and loading conditions affect this circuit characteristic, only the worst-case measurement should be used. Temperature ratings are for a -55°C to +125°C range unless otherwise noted. Package types for integrated circuits basically fall into three categories: the flat-pack, the tenlead TO-5, and the dual-in-line packages. Though a number of manufacturers have registered their particular package designs with the JEDEC Semiconductor Device Council (JEDEC Publication 12E) there are still no standards set in the industry. The data charts in this directory use a letter code for the various packages, as follows: - \bullet A = TO-5 - B = TO-47 - C = 1/4 in. sq. flat-pack (TO-86, TO-91) - $D = 1/4 \times 1/8$ in. flat-pack (TO-84, TO-85, TO-89, TO-90) - E = 3/8 in. sq. flat-pack - $F = 1/4 \times 3/8$ in. flat-pack (TO-87, TO-88, TO-95) - G = Special package (TO-69, TO-70, TO-71, TO-73 through TO-80, TO-96, TO-97, TO-99, TO-100, TO-101) The numbers in parentheses refer to the JEDEC registered devices and are listed by their approximate size and style. • • # 4 NEW LINEAR-ECONOMY-LINE RCA INTEGRATED CIRCUITS ...pack this **Exceptionally high amplifier** - Voltage Gain: 67 dB typical @ 4.5 MHz - Power Gain: 75 dB typical @ 4.5 MHz - Exceptional limiting characteristics - Input Limiting Voltage (knee): 300 μv @ 4.5 MHz typical In TO-5 style package. into applications like this... **Excellent AM rejection** •>50 dB @ 4.5 MHz Four functions on a monolithic chip: - IF Amplifier - AM and Noise Limiter - FM Detector - Audio Preamplifier # ...at prices as low as \$200 (single unit price) #### **NEW ECONOMY AND PERFORMANCE FOR TV/FM/** INSTRUMENTATION FROM 100 KHz TO > 20 MHz Now four new RCA linear types make integrated circuits a working reality for a broad spectrum of communications and instrumentation applications. Here are all the economy, performance, and reliability advantages you've been waiting for, in practical, lowcost linear circuits. Included in this new RCA linear-economy-line, are: CA3011 Wideband Amplifier—up to 7.5v supply* CA3012 Wideband Amplifier—up to 10v supply* CA3013 Wideband Amplifier-Discriminator—up to 7.5v supply* CA3014 Wideband Amplifier Discriminator—up to 10v supply* *suggested maximum V_{CC} All four circuits are available now for your design and evaluation requirements. For price and delivery information, call your RCA Field Representative today. For technical data, write Commercial Engineering, Section IC-G-5-3, RCA Electronic Components and Devices, Harrison, N.J. 07029. †CA3011 \$2.00 (single-unit price) CHECK RCA'S VERSATILE LINEAR LINE FOR | Туре | CA3000 | CA3001 | CA3002 | CA3004
CA3005
CA3006 | CA3007 | CA3008
CA3010 | |-------------------|---------------|---------------|--------------------|----------------------------|---------------|--------------------| | Function | VIDEO AMPL. | DC AMPL. | IF AMPL. | RF AMPLS. | AF AMPL. | OPERATIONAL AMPLS. | | Gain
dB | 37
@ 1 KHz | 19
@ 1 MHz | 24.4
@ 1.75 MHz | 12-16
@ 100 MHz | 22
@ 1 KHz | 60
@ 1 KHz | | —3dB
Bandwidth | 650 KHz | 16 MHz | 11 MHz | 100 MHz | 20 KHz | 300 KHz | Available through your RCA distributor The Most Trusted Name in Electronics # 1. Diode-Transistor Logic | | | | | w, 1 | Propaga-
tion
Delay | $\overline{}$ | n-in | - | -out | Diss. | Supply
Voltage | Lev
(Vo | els | Noise
Margin | Temp
Range | Package | 3 | |----------------------|----------------
--|--|--|---|---------------|---------------------------------|--|--|---|---|---|--|---|---|--|--| | Adders
A | Logic Function | Type
Half
Half | A51
UC1004B | Mfr.'
SI
SPR | (ns)
35
40 | 1 y p. | Max. | Тур.
-
- | Max . 5 5 | 40
130 | (Volts)
5
6,-3 | 1.1 | 2.7 | 700
500 | (°C) | A, D | Remarks | | Binary Elements
B | | R-S Flip Flop
R-S Flip Flop
R-S Flip Flop

Counter
Flip-Flop | RD-208
RD-308
RD-508
NC/PC8
NC/PC12
PC-13
8200
UC1002B
MC282G | RAD
RAD
GI
GI
GI
VAR
SPR
MO | 7
7
7
8
8
8
8
10
14
18 | | -
4
4
-
1
-
- | | 7
4
7
5
22
5
4
5 | 20
20
20
200
-
200
100
65
7.5 | 5
5
12, 4.2
12, 4.2
12, 4.2
6, 3
6, 3 | .250
0.25
0.25
0
0
0
0.5
0.4 | 4.5
5
5
5
5
5
5
5
5.8 | 800
800
800
-
-
-
-
500
550 | | D D D A, E A, E E - A A | Expandable
Expandable
MC*RCDT
MC RCDT
TF | | | | R-S Flip-Flop - J-K Flip Flop J-K Flip Flop R-S R-S R-S R-S R-S Shift Reg. | DTµL950
ND1003
RD-207
RD-307
RD-507
SW201
SW212
WM202
WM212
RC202T
RC212T
A09 | FA
NA
RAD
RAD
SW
SW
WH
WH
RA
RA
SI | 20
20
20
20
20
20
20
23
23
32
32
32(0 to 1) | | 2 2 3 3 | -
-
-
-
-
-
10
10 | 12
4
12
8
12
10
10
10 | 40
20
95
95
95
7
7
15
15
9.5
9.5 | 5.0
6
5
5
6
6
6
6
6
6 | 0.2
0.2
0.25
0.25
0.25
0.35
0.35
0.35
 | 5
4.0
3
3
2.0
2.0
2.0
2.0
-
-
2.7 | 600
750
800
800
550
550
550
550
550
900 | 0+75
-
-
-
-
-
- | A, C
D D D D D D D D D D D D D D D D D D D | And Expand. | | | | Shift - Reg | A49 | SI | 52(1 to 0)
32(0-1)
52(1-0) | - | - | - | 5 | 54 | 5 | 1,1 | 2.7 | 700 | 0 to 70 | A, D | | | | | R-S, J-K
Clocked R-S, J-K
R-S, J-K
Clocked R-S, J-K
R-S, J-K
Shift Reg. | DT _{JL} L948
MC831
MC848
MC931
MC948
A03 | FA
MO
MO
MO
MO
SI | 40
40
40
40
40
40
40(0 to 1) | | 2 | - | 12
7
11
7
9
5 | 45
20
45
20
45
40 | 5.0
5
5
5
5
5 | 0.2
0.2
0.2
0.2
0.2
1.0 | 5
5
5
5
2.7 | 600
500
500
500
500
900 | 0 to 75
0 to 75
0 to 75
 | A, C
A, C
A, C
A, C
A, C
A, D | Modified DTL
Modified DTL
Modified DTL
Modified DTL | | | 200 | Shift Reg | A43 | SI | 60(1 to 0)
40(0-1) | - | - | - | 5 | 40 | 5 | 1.1 | 2.7 | 700 | 0 to 70 | A, D | | | | | R-S J-K R-S J-K R-S J-K R-S J-K R-S-J-K Clocked J-K/R-S Pulse Triggered J-K/R-S Pulse Triggered Clocked JK-RS R-S, J-K R-S, J-K R-S, J-K R-S J | | SI
SW
SW
TI
TI
TI
TI
FA
MO
MO
PH
SI
SI
SI
SI
SI
SI
SI
SI
SI
SI
SI
SI
SI | 60(1-0)
40
40
40
45
45
45
50
50
50
50
50
50
50
50
50
50
50
60
60
60
60
60 | 2 | 2 2 2 2 2 2 2 2 | 8 8 8 |
12
12
10
-9
8
8
9
8
12
10
7
7
7
7
7
7
10
8
8
8
8
8
12
10
7
7
7
7
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8 | 45
45
20
48
35
-
35
35
35
35
20
20
35
35
42
20
30
40
16
20
30
40
16
20
30
40
40
40
40
40
40
40
40
40
40
40
40
40 | 5 5 4 6 6 4.5 - 5.5 4.5 - 5.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 0.2
0.2
0.6
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.4
0.4
0.4 | 5.0
5.0
3.0
2.6
-
-
-
5
5
5
5
5
5
5
5
5
5
5
5
5 | 600
600
1000
1000
750
750
750
750
500
500
500
500
500 | -25 to +12:
0 to 75
-
-
0 -75
0 -75
-
-
-
0 to 75
-
-
0 to 75
-
0 | D A - D, D D A, A, A, A, G D D D D D D D D D D D D D D D D D D | Modified DTL
Modified DTL | | | | J-K
Dual J-K
Dual J-K | SN5301
SN5302
SN5304 | TI
TI
TI | 60
60
60 | - | - | - | 10
10
10 | 27
27
27
27/
ff | 3 - 4
3 - 4
3 - 4 | | 1 1 1 | 300
300
300 | -
-
- | D
D | Preset &
Clear
Preset
Preset &
Clear | See pages 4-9 for manufacturer's name. -55° to +125°C unless otherwise indicated. MC= Multiple Chip; TF= Thin-film hybrid. | | | | | | Propaga-
tion | Fai | ı-in | Fon | -out | Power | Supply | Lev
(Vol | els | Noise
Margin | Temp
Range | D-al | | |---------------------|----------------|--|--|--|--|--|---|---|--|---|---|---|--|--|--|--|--| | | Logic Function | Туре | Model | Mfr! | Delay
(ns) | Тур. | Max. | Тур. | Max. | | Voltage
(Volts) | 0 | "]" | (mV) | (°C) | Package
Type | Remarks | | В | | J-K
J-K
Dual J-K | SN7301
SN7300
SN7302
SN7304 | TI
TI
TI | 60
60
60 | | | | 10
10
10 | 27
27
27 (1) | | - 1 - | 1 1 1 | -
300
- | 0-70
0-70
0-70 | D
D
D | Preset and
Clear
Preset
Preset | | | | Dual J-K - J-K Counter JK Pulse - J-K - J-K | SN7304 RC203T WM215 WM203 RC215T RC213T WM213 WM503 NC/PC19 WM225G | RA
WH
RA
RA
WH
WH
GI
WH | †5MHz
†5MHz
†5MHz
†5MHz
†11MHz
†12MHz
†20MHz | | | 4
-
9
8
-
10
- | 10
-
9
4
-
-
9
-
5
10 | 75
45
84
56
40
35
47
200
55 | 3-4
6 6.0
6 6
6 6
6 4.5
12, 4.2 | -
0.35
0.35
-
0.35
0.40
0 | -
2.0 | 550
550
550
550
550
550
-
550
- | 0-70
C to 125
-
-
-
- | A. D. A. C. D. A. C. D. A. D. A. C. D. A. C. D. A. C. D. D. A. E. D. A. E. D. A. E. D. | Preset and Clear † clock rate †fr †fc †clock rate †clock rate †clock rate †ff RCT | | Converters
C | | A to D
D to A | WS815
WS150 | WH
WH | - | | - | - | 5 - | 60
100 | 20, 4.0
10, 6.4 | 0.45
0.45 | 1.75
1.75 | | 0 to 125
0 to 125 | CC | | | Drivers / Buffers D | | Dual 4-input Dual 4-input Jual 4-input Jual 4-input Jual Jual Jual 8-input Jual 8-input Jual 4-input Jual 4-input Jual 4-input 4-input 4-input Jual Jual Jual Jual Jual Jual Jual Jual | RD - 209
RD-309
RD-509
UC1003B
8213
WM510
SE155
SE156
WM234G
DT _p L-932
MC932
PL 932
S1932
S1932
S1932
CS715
SE157
SW944
SN5832 | RADD
RADD
SPR
VAR
WH
SIG
SIG
WH
FA
MO
PH
SI
SI
SI
SI
SI
SI
SI
SI
SI
SI
SI
SI
SI | 7
7
14 | -
-
-
5
-
-
-
-
-
-
100
100 | 4
4
4
15
5
4
4
-
-
-
-
4
4
2
3
3
-
- | -
-
-
27
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | 12
8
12
15
10
-
19
19
16
25
25
25
25
25
25
25
19
19 | 22
22
22
25
55
-
20
30
30
20
30
30
30
30
30
30
30
30
30
30
30
30
30 | 5
5
6.3,-3
6.3,-3
4.5
+4
+4
6
5
5
5
5
5
5
5
4.4
-2
+4-2
4.6
4.5
-3.6
5
5
4.5
-4.5 | 0.25
0.25
0.25
0.4
0.5
0.4
0.4
2
0.2
0.2
0.2
0.2
0.2
0.2
0.4
0.4
0.4
0.4 | | 800
800
800
500
500
1000
1000
550
500
500
500
750
750
1000
100 | 0+75
 | DDD - DFFDA, A, C, DDA A - D | Expandable Expandable TF Expandable Modified DTL Modified DTL Expandable Expandable | | | | Dual 4 - input | SN15932 | TI | 25 | - | - | - | 20 | gate
15/
gate | 4.5 - 5.5 | - / | - | 750 | - | D | | | | | Quad Inverter/
Driver
Quad
Dual | SN535
SN7350
RC210T
RC210Q
RC210G | TI
TI
RA | 30
30
32 | 1 11 | - | -
-
11 | 10
10
- | gate
9/
gate
9/inv
9.5/
gate | 3-4
3-4
6 | 1 1 1 | 1 1 1 | 300
-
550 | 0-70
- | D, J
A, D | Modified DTL | | | | | ND1002
WM210
SE750
WS817
WS817Q
MC205
MC255
WS816
SN343A
SN346A | NA
WH
SIG
WH
WH
MO
MO
WH
TI
TI | 35
37
40
50
50
55
55
55
80
500
850 | 3 2 | 2 3 2 3 3 3 4 | 20
-
25
-
-
10
- | -
22
20
-
25
20
20
-
13
11 | 20
60
36
20
15
50
50
60
25
160 | 6
6
+4,-2
4.0
4.0
6, -6
4
4.0
24, 6-3 | 0.2
0.35
0.4
0.45
0.7
0.6
-
0.45
- | 1.75
-
- | 250
300
- | - 0 to 125
0-125
- 0 to 75
0 to 125
0 to 65
0 to 65 | A, C C C A, C C D D | 1000 ohm Load
Minuteman
Minuteman
Type | | | 44 | Dual | A60 | SI | - | - | 4 | 2 | _ | 7 | 5 5 | 1.0 | 2.7 | 700 | 0 to 70 | A, D
A, D | | | Gates
E | AND
1 | | MC203
8207
8208
8209
8210
MC1111
MC1112
MC1113
MC1114
MC215
MC253
MC265
CS705 | MO
VAR
VAR
VAR
MO
MO
MO
MO
MO
MO
SIG | 4
10
10
10
10
10
15
15
15
15
15 | 6
-
-
3-4
2,2,2
2,1
8
-
- | -
-
-
-
-
1, 1 | 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 10
10
10
10
10
-
-
-
-
-
6 | 100
-
-
-
200
300
300
100
-
-
5 | 6, 8
6
6
6
6
10
10
10
-
-
+4, 2 | 0.6
-
-
-
-
-
-
-
4
4
4
0.4 | 2.0
-
-
-
-
-
-
.3
.3
.3
3.9 | 500 | | A, C
C C C C C C C C C C C C C C C C C C | TF, Expand. TF, Expand. TF, Expand. | See pages 4-9 for manufacturer's name. -55° to +125°C unless otherwise indicated. MC= Multiple Chip; TF= Thin-film hybrid. | | | | | | Propaga-
tion
Delay | | n-in | For | -out | Power
Diss. | Supply
Voltage | Le | gic
vels
olts) | Noise
Margin | Temp
Range | Package | | |---|----------------|---
---|--|--|---|--------------------------------|-------------------------------|--|--|--|--|--|---|----------------------------------|---|--| | | Logic Function | Туре | Model | Mfr. | (ns) | Тур. | Max. | Тур. | Max. | | (Volts) | "0" | "]" | (mV) | (°C) | Туре | Remarks 3 | | E | AND/NAND | - | WS813Q | WH | 50 | - | 2 | 10 | - | 20 | 4.0 | 0.7 | 1.75 | 250 | 0 to 125 | С | | | | AND/OR 2 | 5-input
Dual | SN532
SN534 | TI
TI | 5 | - | - | - | 4 | 10 | 3-4 | - | - | 300
300 | 1 | D
D | Modified DTL
Modified DTL | | | | - | WS810Q
WS812Q
WS814Q | WH
WH
WH | 58
50
58 | | 2 3 2 | 10
10
10 | | gate
20
15
20 | 4.0
4.0
4.0 | 0.7
0.7
0.7 | 1.75
1.75
1.75 | 250
250 | 0 to 125
0 to 125
0 to 125 | CCC | | | | NAND
3 | - | NC-11
PC-11 | G1
G1 | 8 | - | 4 6 | - | 5 5 | 60
60 | 12, 4.2, 12, 4.2, | 0 | 5 5 | - | - | A
E | MC RCDT
MC RCDT | | | | Dual | PC-15 | GI | 8 | - | 3+3 | - | 5 | 60 | -3
12, 4.2
-3 | 0 | 5 | - | - | E | MC RCDT | | | | Dual
Triple
Dual
Triple
—
Dual | 8214
WM506
SWA05
WM556
U C 1001 B
SW708 | VAR
WH
SW
WH
SPR
SW | 10
10
12
12
15
15 | 5
3
-
3
20
4 | 15
3
4
3
15 | 2
10
-
12
8
10 | 4
-
10
-
4
15 | 50
57
15
30
30
15 | 6, 3, -3
4.5
5
4.5
6, -3
4 to 6 | 0.5
0.40
0.8
0.40
0.4
0.3 | 3.5
1.8
4.8
1.8
5.0
3.0 | 500
900
500
500
1000 | -
-
-
- | D
A
D
- | TF | | | | Dual Dual Triple 3 - input Dual 4 - input Dual 4 - input Dual 4 - input Dual 4 - input Dual Dual Dual Dual Dual Dual Dual Dual | SW930
SW401
SW402
WM226G
WM236G
WM241G
WM261G
WM296G
PL930
PL946
SW101
SW102
SW115
SW204
SW211
SW221
SW221
SW224
SW231
SW224
SW231
SW224
SW231
SW206
WM201
WM206
WM206
WM201
WM206
WM21
WM21
WM216
WM21
WM21
SW221
SW33
SW962
WM201
SW33
SW962
WM201
SW33
SW962
WM201
SW33
SW346
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW362
SW3 | SW WHH WHH PH SW | 17
18
18
19
19
19
19
19
20
20
20
20
20
20
20
20
20
20
20
20
20 | 4 4 3 8 4 4 5 5 0 2 2 3 3 3 3 4 4 2 2 4 2 2 3 3 4 | 10 4 4 2 2 3 - 4 4 3 3 3 4 4 2 | 5555 8888 662.66 | 8 15 16 16 16 16 16 16 18 8 7 7 7 11 11 11 11 11 11 11 11 11 11 11 | 5
7
7
7
59
59
39
39
117
4
4
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7 | 4 to 6 5 5 6 6 6 6 6 6 7 3 6 6 6 6 6 6 6 6 6 6 6 6 | 0.3
0.8
0.8
2
2
2
2
2
0.2
0.2
0.6
0.6
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35 | 3.0
2.5
2.5
1
1
1
1
4.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2 | 1000
900
900
550
550
550
550
500
500
500 | 0 to 125 | A A A D D D D D C C A A A A A A A A A A | & Expandable And Expand. And Expand. Expandable Expandable And Expand. And Expand. And Expand. And Expand. And Expand. And Expand. Expand. And Expand. And Expand. And Expand. | | | | Triple 3 - input | SN15862 | | 25 | _ | _ | | 8 | gate
5/
| 4.5 - 5.5 | | - | 750 | | D | | | | | Dual 4-input | SN15930 | | 25 | _ | _ | _ | 8 | gate
5/ | 4.5 - 5.5 | | - | 750 | _ | D | | | | | Dual 4-input | SN15944 | | 25 | - | - | _ | 20 | gate
15/ | 4.5 - 5.5 | | _ | 750 | - | D | | | | | Quad 2 - input | SN15946 | TI | 25 | - | _ | - | 8 | gate
5/ | 4.5 - 5.5 | | - | 750 | _ | D | | | | | Triple 3 - input | SN15962 | Ti | 25 | - | - | - | 8 | gate
5/ | 4.5 - 5.5 | - | - | 750 | - | D | | | | | -
-
Dual 3-input | WM204
WM214
WM224
RC201T | WH
WH
WH
RA | 28
28
28
30 | 4
6
8
- | 4
6
8
- | -
-
-
11 | 11
11
11
- | gate
7
7
7
7
9.5 | 6
6
6 | 0.35
0.35
0.35 | 2.0
2.0
2.0 | 550
550
550
550 | -
-
- | A, C, D
A, C, D
A, D
A | | ¹⁾ See pages 4-9 for manufacturer's name. 2) -55° to $+125^{\circ}$ C unless otherwise indicated. 3) MC= Multiple Chip; TF= Thin-film hybrid. | Logic Function | Туре | Model | Mfr.1 | Propaga-
tion
Delay
(as) | | n-in
Max. | Fan
Typ. | | Power
Diss.
(mW) | Supply
Voltage
(Volts) | Lev
(Vol | els
lts) | Naise
Margin
(mV) | Temp
Range
(°C) | Package
Type | 3
Remarks | |----------------|--|---|--|--|---|---|--|--|--|---|---|--|--|--|--|---| | 3 | Dual 4 input Dual 3-input Dual 4-input Quad 2-input Sextuple Triple 3-input 4-input 6-input 8-input Dual | RC211T
RC221T
RC231G
WM286G
WM286G
RC206G
RC216G
RC214T
RC214T
RC224T
WS811Q | RA
RA
RA
WH
RA
RA
RA
RA
WH | 38
36
30
38
30
32
32
32
35
35
35 | | -
-
-
-
-
-
-
3 | 11
11
11
-
-
11
11
11
11
11 | -
-
11
11
-
-
-
- | 9.5
9.5
9.5
38
57
9.5
9.5
9.5
9.5 | 6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6 | -
2
2
2
-
-
-
0.7 | -
-
1
1
-
-
-
-
1.75 | 550
550
550
550
550
550
550
550
550
550 | -
-
-
-
-
-
-
0 to 125 | A, D
A, D
D
D
D
D
D
A, D
A, D
A, D | | | NAND/NOR 4 | Triple 3 - input Quad 2 - input Dual 4 - input Triple 3 - input Quad 2 - input Dual 4 - input Triple 3 - input Quad 2 - input Dual 4 | RD - 205 RD - 206 RD - 206 RD - 210 RD - 306 RD - 306 RD - 310 RD - 505 RD - 510 µL 927 A05 A12 A13 A45 A45 A45 A45 A45 A60 A07 A14 A41 A42 A43 A45 A41 A44 A45 A47 A53 A51 SE111 SE113 SE111 SE113 SE111 SE112 SE170 CS720 CS720 CS721 CS727 CS730 CS721 CS727 CS730 DTµL 946 DTµL 946 DTµL 946 DTµL 946 MC830 MC846 | MO
MO
SI
SI
SI
SI
SI
SI
SI
SI
SI
SI
SI
SI
SI | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | 3 2 4 3 2 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 8 8 8 8 5 5 5 8 8 8 8 5 5 5 5 10 10 5 5 5 5 5 10 10 15 5 5 5 | 10
10
10
10
10
10
10
10
10
11
15
15
15
15
15
15
15
15
7
7
7
7
7
7 | 55555555555555555555555555555555555555 | 0.25
0.25
0.25
0.25
0.25
0.25
0.21
1.0
1.0
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1. | 55
54.55
54.55
55
6.84
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7 | 900
900
900
900
700
700
700
550
550
900
900
900
900
700
700
700
700
700
1000
10 | 0+75 0+75 0+75 0+75 0+75 0 to 70 | DDDDDDDDA'A' A'A' A A'A'A'A'D D A'A'A'A'DDFAA'A'AFFFFFFAA'A'A' C C | Expandable Expandable Line Driver Expandable Expandable W/expander W/expander Expandable Expandable Expandable Expandable Modified DTL Expandable Modified DTL Expandable | | | Dual 4-input | MC930 | MO | 25
25 | - | _ | - | 8 | 5 | 5 | 0.2 | 5 | 500 | 0 to 75 | C
A, C | Modified DTL
Expandable
Modified DTL | See pages 4-9 for manufacturer's name. -55° to +125°C unless otherwise indicated. MC= Multiple Chip; TF= Thin-film hybrid. | | | | | | Propaga-
tion
Delay | Fa | n-in | Fan | -out | Power | Supply
Voltage | Lev
(Vo | els | Noise
Margin | Temp
Range | Package | | |-------------------|----------------|--|--|--|--|---------|---|--------|----------------------------------|--|----------------------------------|---|--|--|---|---|--| | | Logic Function | Туре | Model | Mfr. | (ns) | Тур. | Max. | Тур. | Max. | | (Volts) | 0 | "]" | (mV) | (°C) | Type | Remarks | | E | 4 | Quad 2-input | MC946 | МО | 25 | - | - | - | 8 | 5 | 5 | 0.2 | 5 | 500 | - | С | Modified DTL,
Expandable | | | | Triple 3-input | MC962 | МО | 25 | - | - | - | 8 | 5 | 5 | 0.2 | 5 | 500 | - | С | Modified DTL
Expandable | | | | Dual 4-input Dual 4-input Quad Quad Quad Triple Triple Single Single Dual Dual Dual Dual Dual Dual Dual Dual | \$1930
\$1930D
\$1946
\$1946D
\$1946D
\$1946D
\$1962D
\$E101
\$E102
\$E115
MC202
MC202
MC206
MC207
MC208
MC212
MC213
MC251
MC256
MC256
MC256
MC256
MC256
MC257
MC258
MC263
SN531
\$N533 | SI
SI
SI
SI
SIG
SIG
MO
MO
MO
MO
MO
MO
MO
MO
MO
MO
MO
MO | 25
25
25
25
25
25
25
25
25
25
25
30
30
30
30
30
30
30
30
30
30
30
30
30 | 4 3 2-2 | 8 8 2 2 3 3 3 4 4 3 2 2 3 3 3 3 3 3 3 2 2 3 3 3 3 | | | 10, 10 | | 0.2
0.2
0.2
0.2
0.2
0.4
0.4
0.6
0.6
4
4
4
4
4
4
4
4 | 5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00 | 750
750
750
750
750
750
750
750
750
1000
100 | 0 to 75 - 0 to 75 | DDDDDA,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A, | Modified DTL
Modified DTL | | | | Dual 5-input Triple 3-input | SN5311
SN5331 | TI | 30 | _ | - | - | 10 | 10/
gate
10/ | 3-4 | - | _ | 300 | _ | D
D | Modified DTL Modified DTL | | | | Quad 2-input | SN5360 | TI | 30 | - | - | _ | 10 | gate
10/ | 3 - 4 | _ | - | 300 | - | D | Modified DTL | | | | 5-input
Dual 5-input | SN7310
SN7311 | TI
TI | 30
30 | - | - | - | 10
10 | gate
10
10 | 3-4
3-4 | - | - | _ | 0-70
0-70 | D
D | Expandable | | | | Dual 3-input | SN7330 | TI | 30 | - | - | - | 10 | gate
10/ | 3-4 | - | - | - | 0-70 | D | | | | | Triple 3-input | SN7331 | TI | 30 | - | - | - | 10 | gate
10 | 3-4 | - | - | - | 0-70 | D | | | | | Quad 2-input | SN7360 | TI | 30 | - | - | - | 10 | gate
10/ | 3-4 | - | - | - | 0-70 | D | | | | | Single
3-input
Duat
Dual
Dual 3-input
Dual 4-input | SE110
MC254
S1944
S1944D
MC650G
MC651F | SIG
MO
SI
SI
MO
MO | 35
40
40
40
50
50 | 3 | 3
-
4
4
4
5 | 111111 | 20
20
27
27
5
5 |
gate
36
30
20
20
180
180 | +4,-2
4
-
-
10
10 | 0.4
4
0.2
0.2
9.7
9.7 | 3.9
.3
5
.70
.70 | 1000
500
750
750
5V
5V | 0 to 75
0 to 75
0 to 75
0 to 75
0 to 75 | A, C
A, C
D
D
A
C | Modified DTL
Modified DTL | | | NOR | - | NC-10 | GI | 8 | - | 4 | - | 5 | 170 | 12, 4.2, | 0 | 5 | - | - | А | MC RCDT | | | 5 | - | PC-10 | GI | 8 | | 6 | - | 15 | 170 | 12, 4.2,
-3 | 0 | 5 | - | - | E | MC RCDT | | | | Dual | PC-14 | GI | 8 | - | 3+3 | - | 5 | 170 | 12, 4.2
-3 | 0 | 5 | - | - | Ł | MC RCDT | | | | - 1 | 8204 | VAR | 10-15 | - | 9 | 3 | 4 | 100 | 6.3 | 0.5 | 3.5 | - | - | - | TF | | | Exclusive – OR | Dual 4-input - Dual 4-input Dual 4-input Dual | ND1006
DT ₁ ,L944
MC204
MC844
MC944
SN5370 | NA
FA
MO
MO
MO
TI | 35
40
40
40
40
90 | 3 | 3
4
-
-
- | 10 | 27
20
27
27
27
10 | 20
20
40
20
20
20/
gate | 6
5.0
6, -6
5
3 - 4 | 0.2
0.2
0.6
0.2
0.2 | 4.0
5
2.5
5
5 | 750
750
500
500
500
300 | -
0 to 75
- | A, C
A, C
A, C
A, C | Modified DTL
Modified DTL
Modified DTL | | | | Dual | SN7370 | TI | 90 | - | Top | - | 10 | 20/
gate | 3-4 | - | _ | _ | 0-70 | D | | | te Expanders
F | | - | RC226
RC246
A04 | RA
RA
SI | 2 2 4 | 2,3 | 6 6 | | - | 1 - 1 | - | 1 1 1 | 1 1 1 | | - | _
_
A, D | Diode Array | See pages 4.9 for manufacturer's name. -55° to +125°C unless otherwise indicated. MC= Multiple Chip; TF= Thin-film hybrid. | | Logic Function | Туре | Model | Mfr.1 | Propaga-
tion
Delay
(ns) | Fan
Typ. | | Fan
Typ. | | Diss. | Supply
Voltage
(Volts) | Logi
Leve
(Vol | els | Noise
Margin
(mV) | Temp
Range
(°C) | Package
Type | 3
Remarks | |---------------------|----------------|---|---|--|--|----------------|--|-------------|--|--|--|----------------------|--|-------------------------|---|---|---| | F | | - | A44 | SI | 4 | - | 6 | - | - | - | - | - | - | - | - | A, D | Diode Array | | | | 5-input Dual 4-input Single 6-input Dual Dual Dual Dual Triple | SWA04
SN7320
DT,LP33
MC833
MC933
PL933
RD-111
S1933
S1933
CS703
CS731
CS732
SE105
UC1005B
UC1005B
UC1006B
SW933
SN15833
SN15933
WM217
WM227 | SW
TI
FA
MO
MO
PH
RAD
SI
SI
SIG
SIG
SIG
SIG
SIG
SPR
SPR
SPR
SPR
SW
TI
TI
WH | 4 5 | 8 5 4 - 7 7 11 | 6
4
4
4
4
4
4
4
3
2
12
6
5
7
7
11 | | 4 1 1 1 1 1 1 1 4 4 4 | 10 | 3-4
-
-
3-6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | .5 - | 4.0 | 500 | 0-70
0 to 75
-
-
0 to 75
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | D A A C C C C D D A C C F F A C C C D D A C C C D D A C C D D A C C D D A C D | Diode Array
Modified DTL
Modified DTL
Expandable
Expandable
Diode Array
Diode Array | | Inverters
G | | Quad
Dual | SE181
MC1115 | SIG
MO | 20
Toff=45
Ton=20 | - | 1 | - | 6 - | 20
250 | + 4 | 0.4 | 3.9 | 1000 | - | A | | | Logic Amplifie
H | | - | 8201
8202 | VAR
VAR | 10 | 1 2 | - | 4
8 | - | 50
100 | 6. 3
6. 3 | 3 0.5
3 0.5 | 3.5
3.5 | - | - | - | TF
TF | | Multivibrators
I | | Single-shot Single-shot 2-input Single-shot | NC/PC16
PC-18
DT _{\(\mu\)} L951
A08
A48
8203
SN15851
SN15951
SN5380
SN738C
SE160
SE161 | Gl | 8
8
25
30
30
30
50
50
100
100 | | 1 1 2 1 | 2 | 5
5
10
5
5
4
-
10
10
4
4 | 200
200
35
42
42
100
-
30
30
25
25 | 12, 4.2
5.0
5
5 | 0 0.2 1.0 1.1 0.5 -5 | 5
5
5
2.7
2.7
3.5
-
-
3.9
3.9 | | 0 to 70
0 - 75
-
0-70 | A, E
E A, C
A, D
A, D
D
D
D
A, C
A, F | MC RCDT
MC RCDT
TF
Modified DTL | | Shift Bit
J | | = | RC205T
WM205 | RA
WH | 200
†4 | - | - | 4 - | 4 | 75
84 | 6
6.0 | 0.35 | 2.0 | 0.55
550 | 0 to 125 | Ā, C | †f _T | #### Who makes what in DTL | | | | | | | | | | Gates | | | | | | | | | |---------------------------|--------|--------|--------------------|------------|---------------------|-----|----------|--------|-------|----------|-----|------------------|-------------------|-----------|---------------------|---------------------|-------------| | Manufacturer | Symbol | Adders | Binary
Elements | Converters | Drivers/
Buffers | AND | AND/NAND | AND/OR | NAND | NAND/NOR | NOR | Exclusive-
OR | Gate
Expanders | Inverters | Logic
Amplifiers | Multi-
vibrators | Shif
Bit | |
Fairchild | FA | | • | | • | | | 14 | | • | | • | • | | | • | | | General
Instrument | GI | | • | | | | | | • | | • | | | | | • | | | Motorola | MO | | • | | • | • | | | | • | | • | • | • | | | | | National
Semiconductor | NA | | • | | • | | | | | | | • | | | | | | | Philco | PH | | • | | • | | | | • | | | | • | | | | | | Radiation | RAD | | • | | • | | | | | • | | | • | | | | | | Raytheon | RA | | • | | • | | | | • | | | | • | | | | • | | Signetics | SIG | | • | | • | • | | | | • | | | • | • | | • | | | Siliconix | SI | • | • | | • | | | | | • | 16 | | • | | | • | | | Sprague | SPR | • | • | | • | | | | • | • | | | • | | | | | | Stewart-Warner | SW | | • | | • | | 99 | | • | | | | • | | | | | | Texas
Instruments | ТІ | | • | | • | | | • | • | • | | • | • | | | • | | | Varo | VAR | | • | | • | • | | | • | | • | | | | • | • | 1000 | | Westinghouse | WH | | • | | | | | | | | | | | | | | | # 2. Direct-Coupled Transistor Logic | | Lagic Function | Туре | Madel | ,
Mfr. | Propaga-
tion
Delay
(ns) | Far
Typ. | n-in
Max. | Fan- | _ | Diss. | Supply
Voltage
(Volts) | Logi
Leve
(Volt | ls
s) | Noise
Margin
(mV) | Temp
Range
(°C) | Pockage
Type | 3
Remarks | |----------------------|----------------|--|--|--|---|------------------|---|-------|---|---|---|--|---|--|--|---------------------------------------|---------------| | Adders
A | | Full Full Full Full Full Half Half Half Half Half Half Half Ha | μL904 MC908G PL908 MWμL908 MC708G MC804G MC904G PL904 H11001 H11004 A11 MC912G SN1734 PL912 MWμL912 MC704G MC712G SN1729 | FA
MO
PH
MO
MO
PH
NA
AL
SI
MO
TI
PH
FA
MO
MO
TI | 14
60
80
90
-
14
14
14
17
22
22
35
66
70/105
80
90
-
70/105 | 2 | 2 | 4, 5 | 5 4 4 4 4 5 5 5 5 5 4 4 4 4 4 16 4 3 | 45
10
10
10
3
45
45
45
45
42
40
8
8
8
8
8
10 | 3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | 0.15
0.9
0.220
0.9
1.1
1.1
0.18
0.12
0.12
0.9
-
0.220
1.1
0.9 | 0.1
0.1
0.8
1.2
1.1
1.1
0.1
-
0.8 | 300
-
900
-
150 | | A A - B B A, D A A, D A, C A | | | Binary Elements
B | | Flip-Flop Flip-Flop Flip-Flop - J-K Toggle J-K | MC702G µL902 MC802G MC902G PL902 PL916 NB1002 MC723G FµL916 MC726G FF1514B MC816G MC916G MC926G MC720G MC720G MC720G MC813G MC913G MMyL913 A17 | FA
MO | 10
14
14
14
14
120
22
25
40
40
40
50
50
60
60
60
70
70
70
100
150
3000
5000
5000 | | 2
1
2
2
2
-
-
1
4
3
2
5
5
1
4
4
4
4
4
1
1
4
1
1
1
1
1
1
1
1
1 | 4 | 13
4
4
4
4
4
3
-10
10
3
16
6
6
3
3
5
5
5
2
2
3
3
2
4
2
5
4
2
5
5
4
2
5
5
5
4
2
5
5
5
5
5 | 22
28
28
22
54
22
54
54
54
56
56
56
56
15
15
15
15
180
1928 | 7 max | 1.1
0.21
1.5
1.1
1.1
0
0
 | 0.1
1.0
0.1
0.8
0.8
0.8
-
0.1
1.0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1 | 250
-
-
- | 15 to 55 | A A A A A A A A A A A A A A A A A A A | TF
† | | Buffers
C | | | NB1000
B11004
BC11001
MC800G
MC900G
PL900
FμL90025
μL900
MC909G
SN1730
MWμL909
PL909
MC700G
MC709G | NA
AL
AL
MO
MO
PH
FA
MO
TI
FA
PH
MO
MO | 8
15
15
15
15
16
16
16
57
70
80
80 | 1 1 | 1 6 2 4 | 5, 25 | -
-
25
25
25
25
80
25
30
30
30
30
30
80
30 | 45
30
30
24
24
30
20
30
10
15
10 | 3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | 0.18
0.12
0.12
1.3
1.3
0
0.15
0.15
1.1
-
0.220
0
1.3
1.1 | 0.1
0.1
0.8 | 300
-
-
-
-
300
250
-
150
5 350 | 70
- 0 to 100
- 15 to 55
+15 to 55
15 to 55 | A, C
A
A, D
A, C | Modified DCTL | | Counter Adapter
D | | - | N B1001
MC801 G
MC901 G
PL901
C11001
C11004
MC701 G | NA
MO
MO
PH
AL
AL | 21
22
22
22
22
28
28 | -
-
2
- | 1 | 5 | -
5
5
25
-
-
16 | 55
55
55
55
50
50
20 | 3
3
3
3
3
3
3.6 | 0.18
1.3
1.3
0
0.12
0.12
1.3 | 0.1
0.1
0.8 | 300
-
-
-
-
-
- | -
0 to 100
-
-
-
70
15 to 55 | -
A
A
-
B
B
A | | | Gates
E | NAND/NOR
1 | 3-input
2-input
Dual 3-input
3-input
4-input
Dual 2-input
Dual 3-input | FµL90329
FµL9142
FµL9152
MC703G
MC707G
MC714G
MC715G | 9 FA
9 FA | 10
10
10
10
10
10
10 | 1111111 | 3
3
3
4
2
3 | | 16
16
16
16
16
16
16 | 20
20
20
-
-
-
- | 3.6
3.6
3.6
3.6
3.6
3.6
3.6 | 0.25
0.25
0.25
1.1
1.1
1.1 | 0.86
0.86
0.86
0.1
0.1
0.1 | 300 | 15 to 55
15 to 55
15 to 55
15 to 55
15 to 55
15 to 55
15 to 55 | A, C
A, C
A, C
A
A
A | | See pages 4-9 for manufacturer's name. -55° to +125°C unless otherwise indicated. MC= Multiple Chip; TF= Thin-film hybrid. #### DCTL and RTL (continued) | | | | | | Bragaga- | Fan | ı-in | Fan- | out | Power | Supply | Leve
(Vol | els | Noise | Temp | | | |---|----------------|---|--|--|---|----------------------------|-------------------------------------|--------------------------------------|---------------------------------|--|--|--|--|--|---------------|--|-----------| | | Logic Function | Туре | Model | Mfr.1 | Delay
(as) | | Max. | Тур. | | | Voltage
(Volts) | | "]" | Margin
(mV) | Range
(°C) | Package
Type | Remarks 3 | | E | | 5 input 5-input 4-input 4-input 3-input 3-input Dual 2-input Dual 3-input Dual 3-input Dual 3-input Dual 3-input Dual 3-input Dual 3-input 4-input Dual 3-input Dual 2-input Dual 3-input 4-input Dual 3-input 10-input Dual 3-input 10-input Dual 3-input 10-input Dual 3-input | G11001 G11004 J11001 J11004 K11001 L11004 K11001 L11004 M11001 M11004 µL903 µL914 MC803G MC8016 MC8016 MC907G MC914G MC915G PL907 PL915 FµL9112 MC710G MC711G MC711G MC910G MC910G MC910G MC910G MC910G MC910G MC910G MC910G | MO
MO
MO
MO
MO | 12
12
12
12
12
12
12
12
12
12
12
12
12
1 | 3 4 3 3 3 | | | | 10
10
10
10
10
20
20
20
22
24
27
27
54
54
54
27
27
54
54
4
4
96
2.5
4 | 33333333333333333333333333333333333333 | 0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12 | 1.1
1.1
1.1
1.1
1.1
1.1 | | 70 | BBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | | | | | 4-input
4-input
Dual 2-input
4-input
Dual 2-input
4-input | SN1733
MC911G
PL910
PL911
MWµL910
MWµL911 | | 35/70
49
40
40
45
80 | -
2
4
- |
-
4
-
2
4 | 11111 | 4
4
4
4
4 | gate 4 4 4 4 4 4 | 3
3
3
3
3 | 0.9
-
0.15
0.15 | -
0.1
0.8
0.8
1.0
1.0 | 150
250
-
350
350 | - | A, D
A
-
-
A, C
A, C | | | | NOR 2 | 3-input
4-input
Dual 2-input
Dual 3-input
4-input
Dual 3-input
Dual 3-input | NB1003
NB1007
NB1014
NB1015
μL907
μ7095
RC323
RC103 | NA
NA
NA
FA
PH
RA
RA | 11
11
11
11
12
13
18
20 | -
-
-
3
-
3 | 3
4
2.2
3.3
4
-
- | 5
5
5
5
-
5
5
5 | -
-
-
5
5
-
- | 19
19
38
38
12
3
4
15 | 3
3
3
3
3-6
3
3 | 0.18
0.18
0.18
0.18
0.15
0.2
-
0.15 | 1.2
1.2
1.0
1.0
-
1.0-
3.0
1.0- | 300
300
300
300
250
300
300
300 | | -
-
A, C
A
A, D | | | | | Dual | RC124 | RA | 20 | 2, 3 | - | 2, 5 | - | 2, 15 | 3 | 0.15 | | 300 | - | - | | | | | Dual | RC144 | RA | 20 | 2, 3 | - | 2, 5 | - | 2, 15 | 3 | 0.15 | 3.0
1.0-
3.0 | 300 | - | - | | | | | - | RC1033 | RA | 20 | 3 | - | 5 | - | 15 | 3 | 0.2 | 1.0-
3.0 | 300 | - | - | | | | | - | RC1233 | RA | 20 | 3 | - | 5 | - | 15 | 3 | 0.15 | 1.0-
3.0 | 300 | - | - | | | | | Dual | RC-1243 | RA | 20 | 2, 3 | - | 2, 5 | - | 2, 15 | 3 | 0.2 | 1.0-
3.0 | 300 | - | - | | | | | Dual | RC1443 | RA | 20 | 2, 3 | - | 2, 5 | - | 2, 15 | 3 | 0.2 | 1.0-
3.0 | 300 | - | - | | | | | _
Dual | RC401
RC322 | RA
RA | 23.5
25 | -
2, 2 | - | 4 2, 5 | - | 3.5
2, 5 | 3 4 | 0.15 | - 1 | 300
300 | - | A, D | | | | | Dual | RC324 | RA | 25 | 2, 3 | _ | 2, 5 | | 2, 5 | | 0.15 | 4.0 | 300 | _ | _ | | | | | Dual | RC342 | RA | 25 | 2, 2 | _ | 2, 5 | | 2, 5 | | 0.15 | 4.0 | 300 | _ | _ | | | | | Dual | RC344 | RA | 25 | 2, 3 | _ | 2, 5 | | 2, 5 | | 0.15 | 4.0 | 300 | _ | _ | - | | | | - | RC1031 | RA | 25 | 3 | _ | 5 | _ | 15 | 3 | 0.225 | 4.0 | 300 | 0 to 65 | _ | 1 | | | | | RC1032 | RA | 25 | 3 | _ | 4 | _ | 15 | 3 | 0.25 | 3.0 | 200 | 0 to 65 | _ | | | | | _ | RC1231 | RA | 25 | 3 | _ | 5 | _ | 15 | 3 | 0.23 | 3.0 | | 0 to 65 | | | | | | | RC1232 | RA | 25 | 3 | | 4 | | 15 | 3 | 0.223 | 3.0 | 200 | 0 to 65 | | | | | | _
Dual Inverter | WS277
A10 | WH | 25 | -
-
- | 3 | | 6 5 | 15
15
†180 | 3 | | 2.0 | 275 | - 0 10 63 | G | † μw | May 17, 1966 181 See pages 4-9 for manufacturer's name. -55° to +125°C unless otherwise indicated. MC= Multiple Chip; TF= Thin-film hybrid. #### DCTL and RTL (continued) | | | | | | Propaga-
tion
Delay | Fa | n-in | Fan | -out | Power | Supply
Voltage | Lev
(Vol | els | Noise
Margin | Temp
Range | Package | 3 | |---------------------|----------------|--|---|--|--|------|---|-------|-------------------------------------|--|---|---|--|---|---|---|---------| | | Lagic Function | Туре | Model | Mfr.1 | (ns) | Тур. | Max. | Typ. | Max. | (mW) | (Volts) | 0 | '''' | (mV) | (°C) | Type | Remarks | | E | 2 | 3-input | A14 | CBS | 3000 | - | 1 | - | 5 | †120 | 7 max | 0.30 | 0.65 | - | - | G | tμw | | Gate Expanders
F | | Dual 3-input Dual 3-input Dual 2-input Dual 2-input Dual 2-input Dual 2-input Dual 2-input Dual 2-input | E11001
E11004
MC721G
MC921G
SN1732
PL921
FµL92129
MWµL921 | | 12
12
25
25
35
40
- | 2 | -
2
2
2
-
2.66
2.66 | | -
-
-
-
3
0.5
0.5 | | 3
3.6
3
-
3
3.6
3 | 0.12
0.12
0.9
0.9
-
0
0.25
0.220 | 1.1
1.1
0.1
0.1
-
0.8
0.86
0.80 | 250
250
250
150
-
300
350 | 70
15 to 55
-
-
15 to 55 | A
A
A
A, D
A, C
A, C | | | Inverters
G | | Quad
Quad
Quad | MC727G
MC827G
MC927G | MO
MO
MO | | | | | -
5
5 | -
48
48 | 3.6
3 | 1.1
1.1
1.1 | 0.1
0.1
0.1 | - | 15 to 55
0 to 100 | A
A
A | | | Multivibrators
H | | Single-shot
Single-shot | T35-002
A15 | AL
CBS | 100
40 00 | - | 5 | - | _
25 | 20
†408 | 3
7 max | 0.12
0.30 | 1.1
0.65 | _ | - | A
G | †μw | | Shift Registers I | | Full 2-Phase Full 2-phase JK Full JK Full Full Half Half Half Half Half Half Half Ha | P11001
P11004
R11001
R11004
RC301
PL913
NB1005
PL905
Fr4L90529
#L905
MC705G
MC706G
S11001
#L906
MC806G
MC905G
MC906G
PL906
MC806G
SN1735 | AL AL RA PH NA PH FA MO MO AL AL AL MO MO PH MO TI | 35
35
35
60
80
111
115
18
20
20
22
22
22
22
22
22
22
22
22
22
22 | | -
-
-
1
-
3
3
3
3
3
3
-
3
3
3 | 5 4,5 | | 84
84
84
84
15
53
53
53
53
50
50
36
64
43
36
43
15 | 3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | 0.12
0.12
0.12
0.12
0.12
0.18
0.25
0.15
1.1
0.12
0.12
0.15
1.1
1.1 | 1.1
1.1
1.1
0.8
1.2
0.8
1.0
0.1
0.1
1.1
1.0
0.1
0.1
0.1 | | 70
-70
-70
-15 to 55
-15 to 55
-15 to 55
-70
-0 to 100
 | A A A A A A A A A A A A A A A B B A | | - See pages 4-9 for manufacturer's name. -55° to +125°C unless otherwise indicated. MC= Multiple Chip; TF= Thin-film hybrid. #### Who makes what in DCTL/RTL | | | | | | | Gate | es | | | | 61.44 | |------------------------|--------|--------|--------------------|---------|---------------------|--------------|------|-------------------|-----------|----------------|--------------------| | Manufacturer | Symbol | Adders | Binary
Elements | Buffers | Counter
Adapters | NAND/
NOR | NOR | Gate
Expanders | Inverters | Multivibrators | Shift
Registers | | Amelco | AL | • | • | • | • | • | | • | | • | • | | CBS | CBS | | • | | | | • | | | • | | | Fairchild | FA | • | • | • | | • | • | • | | | • | | Intellux | IN | | • | | | • | | | | | | | Motorola | MO | • | • | • | • | • | | • | • | | • | | National Semiconductor | NA | • | • | • | • | | • | | | | • | | Philco | PH | • | • | • | • | • | • | • | | | • | | Raytheon | RA | | | | | | • | | | | • | | Siliconix | SI | • | | | | | 1, 1 | | | | | | Texas Instruments | TI | • | | • | | • | | • | | | • | | Westinghouse | WH | | | | | | • | | | | | 182 ELECTRONIC DESIGN FIL: in power rectifiers: 4 amps this size 2 amps this size FIRST in power zeners: 5 watts this size 3 watts this size FIRST in high voltage assemblies: 7500 volts @ 2 amps FIRST in fast recovery rectifiers: 2 amps this size recovers in 75 Nsec FIRST in radiation 2 amps this size resistant diodes: @ 2 x 1014 NVT High surge capability: 100 amp or 250 watt this size Stability: All parts meet initial specifications for each parameter after 2000 hours life test at 100°C at full rating Controlled avalanche: Equal surge capability in both forward and reverse directions Reliability: Failure rate < 0.0052%/1000 hours at 60% confidence without acceleration factors UNITRODE CORPORATION 580 PLEASANT STREET • WATERTOWN, MASSACHUSETTS 02172 • TELEPHONE (617) 926-0404 • TWX (710) 327-1296 **ALL HAVE:** # 3. Transistor-Transistor Logic | | | | | | Propaga- | F. | m-in | £ | -out | | Supply | Lev
(Vo. | els | Noise | Temp | | | |------------------------|----------------|---|--|---|--|---|-----------------|--|---|---|--|--|--|---|------------------------|--|------------------------------| | | Logic Function | Туре | Model | Mfr. | Delay
(ns) | | Max. | Typ. | Max. | | Voltage
(Volts) | | "]" | Margin
(mV) | Range
(°C) | Package
Type | Remarks | | Adders | | Half | SG90, SG91 | | 12 |
- | - | 6 | 20 | 15 | - | - | - | 1000 | - | - | Differ in | | A | | Full | SG92,SG93
SN5480 | TI | Add: 70 | - | - | - | - | 105 | 4.5 - 5.5 | - | - | 1000 | - | D | Temp & F.O. Includes | | | | Full | SN7480 | TI | Carry: 8
Add: 70
Carry: 8 | - | - | - | - | 105 | 4.75
5.25 | - | - | 1000 | 0 to 70 | D | gating
Includes
gating | | Binary Elements | | R-S | SF10,SF11
SF12,SF13 | | 12 | - | - | 6 | 20 | 15 | - | 11 | - | 1000 | - | - | Differ in
Temp & F.O. | | В | | Clocked | SF20,SF21
SF22,SF23 | | 12 | - | - | 6 | 20 | 15 | - | - | - | 1000 | - | - | Differ in
Temp & F.O. | | | | Single-phase | SF30,SF31
SF32,SF33 | ,SY | 12 | - | - | 6 | 20 | 15 | - | - | - | 1000 | - | - | Differ in
Temp & F.O. | | | | J-K
J-K
Dual
Dual
Dual
Dual
Jual
J-K | SF50,51
SF52,53
TFF 3011
TFF3013
TFF3015
TFF3017
SE826
SF60,61 | SY
SY
TR
TR
TR
TR
SIG
SY | 12
12
18
18
18
18
20
25 | 111111111 | 4 4 3 3 2 2 2 4 | 1111111 | 15
12
20
7
20
7
5
15 | 15
15
30
30
30
30
50
45 | 8
8
5-6
5-6
5-6
+5
5.0 | 0.26
0.26
0.20
0.20
0.20
0.20
0.4
.26 | 3.3
3.3
3.0
3.0
3.0
3.0
2.4
3.3 | 1000
1000
1000
1000
1000
1000
1000
100 | | D, G
D, G
A, F
A, F
A, F
D, G | | | | | J-K
Single
Dual latch
Dual latch | SF62,63
SE825
SN5474
SN7474 | SY
SIG
TI | 25
30
30
30
30 | 1111 | 4 | 11111 | 12
10
10
10 | 45
50
40/ff
40/ff | 4.75- | .26
0.4
- | 3.3 2.4 | 1000
1000
1000
1000 | 0, +75
-
0 to 70 | D, G
F
D | | | | | Dual M/S
Master/Slave | SN5473
SN7472 | TI
TI | 35
35 | -1 - | - | 10 | 10
10 | 50 /
50 | 5.25
4.5 - 5.5
4.75- | - | - | 1000
100 | -
0 to 70 | D | | | | | Dual M/S | SN7473 | TI | 35 | - | - | - | 10 | 50/f | 5.25
f 4.75- | - | - | 1000 | 0 to 70 | D | | | | | J-K
J-K
J-K | SW5470
SW7470
SN5470 | SW
SW
TI | 40
40
40 | 6 | | 10
10 | -
10 | 65
65
60 | 5.25
4.5-5.5
4.8-5.3
4.5 to | | 3 3 | 1000
900
1000 | 0 to +75 | _
_
D | Single-phase | | | | Master/Slave
J-K | SN5472
SN7470 | TI
TI | 35
40 | 1.1 | - | - | 10
10 | 50
60 | 5.5
4.5 - 5.5
4.75- | 1.1 | - | 1000
1000 | _
0-70 | D | Single phase | | | | J-K/R-S
J-K/R-S | SN54948
SN74948 | TI
TI | 40
40 | | = | = | 10
10 | 60
60 | 5.25
4.5-5.5
4.75- | | - | 1000
1000 | -
0-70 | D
D | | | | | Gated RS FF R-S R-S R-S Dual Dual J-K | MC652
SWF10
SWF11
SWF12
SWF20
SWF21
SWF22
SWF22
SWF23
SWF50
SWF51
SWF55
SWF250
SWF251
SWF252
SWF253
SWF260
SWF261
SWF263
SWF261
SWF262
SWF263
SF250,251
SF252,253
SF250,261
SF262,263 | SY | 80 20MHz 30MHz | 166666666666666666666666666666666666666 | 6 | 15
7
12
6
15
7
12
6
10
5
10
5
12
6
10
5 | 4 | 200
30
30
30
30
35
35
35
50
50
50
55
55
55
55
55
55
55
55 | 5.25
10.5.6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6 | 10
0.4
0.4
0.45
0.45
0.4
0.4
0.45
0.45
0. | 3
3
3
3
3
3.5
3.5
3.5 | 5V
1000
900
900
1000
1000
1000
1000
900
1000
1000
1000
900
9 | 0 to 75 | A, | | | Drivers / Buffers
C | | Dual
Triple 2-input
Triple 2-input
Dual 4-input | SE855
SG160,161
SG162,163
SN54932 | SY | 15
15
15
18 | 1111 | 4 | 1111 | 30
15
12
30 | 25
15
15
25/
gate | +5
-
4.5-5.5 | 0.4
0.26
0.26 | | 1000
1000
1000
1000 | 0 to 75 | F
D, G
D, G | | See pages 4-9 for manufacturer's name. -55° to +125°C unless otherwise indicated. MC= Multiple Chip; TF= Thin-film hybrid. TTL (continued) | | | | | | Propaga-
tion
Delay | Fai | n-in | Fon | -out | | Supply
Voltage | Log
Leve
(Vol | els | Noise
Margin | Temp
Range | D.J | | |---|-----------------|--|---|--|---|---|-------------------------|--|----------|--
---|---|--------------------|---|--|-----------------|--| | | Logic Function | Туре | Model | Mfr. | (ns) | Тур. | Max. | Тур. | Max. | | (Volts) | "0" | "]" | (mV) | (°C) | Package
Type | Remarks 3 | | С | | Dual 4-input | SN74932 | TI | 18 | - | - | - | 30 | 25/
gate | 4.75-
5.25 | - | - | 1000 | 0 to 70 | D | | | | | Dual 4-input
Dual 4-input | SG130, 13
SG132,13 | | 25
25 | - | - | = | 30
24 | 30 | - | 0.26
0.26 | 3.3
3.3 | 1000
1000 | 0 to 75 | D, G
D, G | | | D | AND/OR/NOT
1 | Dual 4-input Dual 4-input Dual 4-input Dual 4-input Expandable Quad Expandable Quad Expandable Quad Expandable Quad Dual Dual Dual 4-input Dual 4-input Dual 4-input Dual 4-input Quad 2-input Quad 2-input Quad 2-input Quad 2-input Quad 2-input Triple 3-input | SWG210
SWG211
SWG212
SWG213
SWG250
SWG250
SWG252
SWG58
SWG58
SWG111
SWG112
SWG113
SWG51
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SWG50
SW | WW WW SWW WW SWW WW SWW WW SWW WW SWW WW | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 4
4
4
4
4
9
9
9
9
9
9
20
20
20
20
20
20
20
20
20
20
20
20
20 | 3 4 | 12
6
10
5
6
6
10
5
7
7
12
6
7
7
12
6
7
7
12
6 | 15 15 15 | 30
30
30
30
30
43
43
43
15
15
20
20
20
20
20
20
20
20
25
25
25
25 |
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6 | 0.4
0.45
0.45
0.45
0.4
0.4
0.45
0.5
0.5
0.4
0.4
0.45
0.45 | 3.0
3
3
3 | 1000
1000
900
900
1000
1000
1000
1000
1 | - 0 to +75 - 0 to +75 - 0 to +75 0 to +75 0 to +75 0 to 70 to 70 | A A | Expandable | | | NAND 2 | Quad 2-input Quad 2-input Quad 2-input Quad 2-input Quad 2-input Dual 4-input Dual 4-input Dual 4-input B-input B-inpu | SWG220
SWG221
SWG221
SWG222
SWG2240
SWG241
SWG243
SWG262
SWG263
SE808
SE816
SE870
SE816
SE870
SWG463
SW104
SWG44
SWG44
SWG44
SWG44
SWG40
SWG41
SWG41
SWG41
SWG41
SWG41
SWG43
SWG41
SWG43
SWG43
SWG13
SWG13
SWG13
SWG13
SWG14
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
S | SW S | 6 6 6 6 6 6 6 6 6 8 8 8 8 8 10 10 10 10 10 11 11 11 11 12 12 12 12 12 12 12 12 12 | 22224446688888 | 8 4 3 3 2 4 8 8 3 4 4 4 | 12
6
10
5
12
6
10
-
12
6
10
5
-
-
-
-
-
-
-
15
7
7
12
6
15
15
15
15
15
15
16
16
17
17
17
18
18
18
18
18
18
18
18
18
18
18
18
18 | | 22
22
22
22
22
22
22
22
22
22
22
22
22 | 4.5-6-6-6-6-6-6-6-6-6-6-6-6-6-6-5-5-5-5-5 | 0.4
0.4
0.45
0.45 | | 1000
1000
900
900
1000
1000
1000
1000
1 | | | | May 17, 1966 185 See pages 4-9 for manufacturer's name. -55° to +125°C unless otherwise indicated. MC= Multiple Chip; TF= Thin-film hybrid. TTL (continued) | | | | | | Propaga- | Fo | n-in | For | -out | | Supply | Levi
(Vol | els | Noise | Temp | | | |-----|--------------|---|---|--|---|--------------------------------------|------|------------------------------------|---|--|--|---|---|---|---|-----------------|--| | Log | ic Function | Туре | Model | Mfr. | Delay
(ns) | | Max. | Typ. | | Diss. | Voltage
(Volts) | 0 | "]" | Margin
(mV) | Range
(°C) | Package
Type | Remarks 3 | | D | 2 | Triple 3-input | SN5410 | TI | 13 | - | - | - | 10 | 10/ | 4.5to | - | - | 1000 | - | D | | | | - 1 | Dual 4-input | SN5420 | TI | 13 | - | - | - | 10 | gate
10/ | 5.5
4.5 to | - | - | 1000 | - | D | | | | | Quad 2 - input | SN7400 | TI | 13 | - | - | - | 10 | gate
10/ | 5.5
4.75 - | - | - | 1000 | 0-70 | D | | | | | Triple 3 - input | SN7410 | TI | 13 | - | - | - | 10 | gate
10/ | 5.25
4.75 - | - | - | 1000 | 0-70 | D | | | | | Dual 4-input | SN7420 | TI | 13 | - | - | - | 10 | gate
10/ | 5.25
4.75 - | - | - | 1000 | 0-70 | D | | | | | Dual 4-input | SN 54930 | TI | 13 | - | - | - | 10 | gate
10 | 5.25
4.5-5.5 | - | - | 1000 | - | D | | | | | Quad 2-input | SN54946 | TI | 13 | - | - | - | 10 | gate
10 | 4.5-5.5 | - | - | 1000 | - | D | | | | | Triple 3-input | SN54962 | TI | 13 | - | - | - | 10 | gate
10. | 4.5-5.5 | - | - | 1000 | - | D | | | | | Dual 4-input | SN 74930 | TI | 13 | - | -
 - | 10 | gate
10/ | 4.75- | ~ | - | 1000 | 0 to 70 | D | | | | | Triple 3-input | SN74962 | TI | 13 | _ | _ | _ | 10 | gate
10/ | 5.25
4.75- | _ | _ | 1000 | 0 to 70 | D | | | | | Quad 2-input | SN74946 | TI | 13 | _ | _ | _ | 10 | gate
10/ | 5.25
4.75- | _ | - | 1000 | 0 to 70 | D | | | | | 8-input
8-input
8-input | SW5430
SW7430
SWG60 | SW
SW | 15
15
15 | 8 8 8 | - | 10
10
7 | - | gate
10
10
15 | 5.25
4.5-5.5
4.8-5.3
4.5-6 | 0.4
0.45
0.4 | 3 3 3 | 1000
900
1000 | -
0 to 75 | - | | | | | 8-input
8-input
8-input
8-input | SWG61
SWG62
SWG63
SN5430 | SW
SW
SW
T! | 15
15
15
15 | 8 8 8 - | - | 7
12
6 | -
-
-
10 | 15
15
15
10 | 4.5-6
4.5-6
4.5-6
4.5 to | 0.4
0.45
0.45 | 3 3 - | 1000
900
900
1000 | -
0 to +75
0 to +75 | -
-
D | | | | | 8 - input | SN7430 | TI | 15 | _ | _ | - | 10 | 10 | 5.5
4.75 - | _ | _ | 1000 | 0 - 70 | D | | | | | 8-input
8-input | SN54965
SN74965 | TI
TI | 15
15 | - | - | - | 10
10 | 10
10 | 5.25
4.5-5.5
4.75- | - | <u>-</u>
- | 1000
1000 | 0 to 70 | D
D | | | | | | SWG16
SWG120
SWG121
SWG122
SWG123
SW5440
SW7440
SN5440 | SW
SW
SW
SW
SW
SW
TI | 15
16
16
16
16
17.5
17.5 | 20
20
20
20
20
4
4 | 8 | 7
7
7
12
6
30
30 | -
-
-
-
-
-
-
30 | 15
15
15
15
15
10
10
25/ | 5.25
5
4.5-6
4.5-6
4.5-6
4.5-5.5
4.8-5.3
4.5 to | 0.5
0.4
0.4
0.45
0.45
0.4
0.45 | 3.0
3
3
3
3
3 | 1000
1000
1000
900
900
1000
900
1000 | -
-
0 to +75
0 to +75
-
0 to +75 | A D | Expandable
Expandable
Expandable
Expandable | | | | Dual 4-input | SN7440 | TI | 18 | _ | _ | - | 30 | gate
25/ | 5.5
4.75- | _ | _ | 1000 | 0-70 | D | Power gate | | | | Dual | SW402 | SW | 100 | - | 3 | _ | 5 | gate
0.10 | 5.25
3.0 | 0.3 | 2.0 | 300 | - | A | | | N.E | AND/NOR
3 | Quad 2-input Quad 2-input Dual 4-input Dual 4-input Single 8-input Single 8-input Dual Dual Dual Dual Dual Dual Dual Dual | SG220,221
SG222,223
SG240,241
SG242,243
SG260,261
SG262,263
B01
TNG3043
TNG3047
TNG3141
TNG3143
TNG3145
TNG3145
TNG3147
TNG3241
TNG3241
TNG3241
SG42,SG43
SG40,SG41
SG42,SG43
SG40,SG41
SG42,SG43
SG60,SG61 | SY
SY
SY
SY
SI
TR
TR
TR
TR
TR
TR
TR
TR
TR
TR
TR
TR
TR | 6
6
6
6
8
8
8
10
10
10
10
10
10
10
10
10
10
10
10
10 | | | | 12
10
12
10
12
10
15
15
15
20
7
20
7
20
7
20
7
20
7
20
7
20
7
20 | 22
22
22
22
22
22
22
22
21
16.5
15
15
15
15
15
15
15
15
15
15
15
15
15 | | 0.25
0.25
0.25
0.25
0.25
0.25
0.5
0.20
0.20 | 3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0 | 1000
1000
1000
1000
1000
1000
1000
100 | 0 to 75 -0,+75 -0 to 75 -55 to 165 -55 to 165 | | Differ in
Temp & F.O.
Differ in | See pages 4-9 for manufacturer's name. -55° to +125°C unless otherwise indicated. MC= Multiple Chip; TF= Thin-film hybrid. TTL (continued) | | | | | | Propaga-
tion
Delay | | n-in | - | -out | Diss. | Supply
Voltage | Lev
(Vol | els
lts) | Noise
Margin | Temp
Range | Package | 3 | |--------------------|----------------|---|--|---|---|--|---|--|--|--|---|--|--|---|---|---|--| | | Logic Function | Туре | | Mfr. | (ns) | Тур. | Max. | Тур. | Max. | | (Volts) | 0,, | "ן" | (mV) | (°C) | Туре | Remarks | | D | 3 | Expandable | TNG3013 TNG3015 TNG3017 TNG3017 TNG3111 TNG3113 TNG3115 TNG3117 TNG3131 TNG3213 TNG3213 TNG3215 TNG3215 TNG3213 TNG3213 TNG3215 TNG3213 TNG4103 #7104 #7105 #7106 WM701 | TRRTTRRTTTRTTTRTTTRTTTRTTTRTTTRTTTRTTTRTTTRTTTRTTTRTTTRTTTRTTTRTTTRTTTRTTTT | 15
15
15
15
15
15
15
15
15
15
15
15
15
1 | 111111111111111111111111111111111111111 | 8 8 6 6 4 4 4 4 3 3 3 2 4 4 4 3 3 3 2 4 8 4 8 4 8 4 8 4 8 4 8 8 4 8 8 4 8 | 6
 | 20
20
7
20
7
7
20
7
7
20
7
7
20
7
7
20
7
7
20
7 | 15
15
15
15
15
15
15
15
15
15
15
15
15
1 | - 6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6 | 0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20 | 3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0 | 1000 1000 1000 1000 1000 1000 1000 100 | +10 to 60 -10 to 60 | A, FF FF A, | Differ in
Temp & F.O. | | | Exclusive OR 4 | Dual 4-input Dual 4-input Quad 2-input Quad 2-input Quad 2-input Dual Single 8-input Maj. Voter Dual Dual Dual Dual Dual Dual
Dual Dua | \$G210,211
\$G212,213
\$G250,251
\$G252,253
\$E840
\$G50,\$G51
\$G52,\$G53
\$G100,101
\$G102,103
\$G110,111
\$G112,113
\$WG90
\$WG91
\$WG91
\$WG92
\$WG93
\$W5450
\$W7450
\$N5450
\$N5451
\$N7451
\$N7456
\$N74966 | SY
SY
SIG
SY
SY | 7
7
7
7.5
7.5
10
12
12
12
12
14
14
14
14
15
15
15
15
15 | 6666620 | 1 | -
-
-
-
6
6
6
6
15
7
12
6
10
10 | 12
10
12
10
10
20
20
20
20
 | 30
30
43
43
14
15
15
15
15
30
30
30
10
10
14/
gate
14/
gate
14/
gate
14/
gate | 4.5-6
4.5-6
4.5-6
4.5-6
4.5-5.5
4.5-5.5
4.5-5.5
4.5-5.5
4.75-
5.25
4.75-
5.25 | 0.45 | 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 | 1000
1000
1000
1000
1000
1000
1000
100 | 0 to 75 0, +75 - 0 to 75 - 0 to 75 - 0 to +75 0 to +75 0 to +75 - 0 to 70 - 0 to 70 | D, G
D, G
D, G
D, G
F | Expandable Expandable Differ in Temp & F.O. Differ in Temp & F.O. Differ in Temp & F.O. Expandable Expandable Expandable Expander Inputs | | ate Expanders
E | | Quad 2-input Quad 2-input Quad 2-input Quad 2-input Quad 2-input Dual 4-input Dual 4-input Dual 4-input Quad 2-input Quad 2-input Quad 2-input Dual 4-input Dual 4-input Dual 4-input Quad Quad Quad Quad Quad Quad Quad Quad | SWG230
SWG231
SWG232
SWG233
SWG270
SWG271
SWG272
SWG273
SG230,231
SG232, 233
SG270, 271
SG272, 273
SE806
SWG150
SWG151
SWG152
SWG153
SWG153
SWG170 | SY | 2 | 8
8
8
8
8
8
8
8
-
-
-
10
10
10
10
8 | | | -
-
-
-
-
12
10
15
12
4
-
- | 28
28
28
28
6.7
6.7
6.7
6.7
5
5
5
5
5 | 4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
-
-
+ 5
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6 | | 3.5 | | 0 to +75
0 to +75
0 to +75
0 to +75
0 to +75
0 to 75
0 to 75 | 0.000000000000000000000000000000000000 | | May 17, 1966 187 See pages 4-9 for manufacturer's name. -55° to +125°C unless otherwise indicated. MC= Multiple Chip; TF= Thin-film hybrid. #### TTL (continued) | | Logic Function | Туре | Model | Mfr.¹ | Propose - Tion Delay (ns) | | n-in
Max. | | -out | Diss. | Supply
Voltage
(Valts) | Leve
(Val | els
ts) | Noise
Margin
(mV) | Temp
Range
(°C) | Package
Type | 3
Remarks | |---|----------------|---|--|----------------|---------------------------|--------------------------------------|--------------|-------------|---|--|--|-------------------|---------------|------------------------------------|--|------------------------|---------------------------------------| | E | | Dual 4-input 3-input | SWG171
SWG172
SWG180
SWG181
SWG182
SWG183
SW5460
SW7460
SG170,17
SG172,17
SG180,18 | 3 | 1 1 2 4 5 6 7 7 | 8
8
8
8
8
8
4
4 | | 11111111116 | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | 5
5
5
1
1
1
5
5
15 | 4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-5
4.8-5.3 | | | -
-
-
-
-
-
1000 | - 0 to +75
0 to +75
- 0 to +75
0 to +75
0 to +75 | | Difter in
Temp & F.O.
Differ in | | | | Dual 4-input Dual 4-input | SG182,18
SN5460
SN7460
TNG3051
TNG3251
SN5453 | TI
TI
TR | | 1 1 11 | -
8
4 | | 4 4 - 10 | 5/exp.
5/exp
5
5 | 4.5 to
5.5 | -
0.20
0.20 | -
-
3.0 | 1000
1000
1000 | -
0 to 70
-
- | D
D
A, F
A, F | Temp & F.O. | - See pages 4-9 for manufacturer's name. -55° to +125°C unless otherwise indicated. MC= Multiple Chip; TF= Thin-film hybrid. #### Who makes what in TTL | | | | | | | G | ates | | | | |-------------------|--------|--------|--------------------|---------------------|----------------|------|--------------|------------------|-------------------|----------| | Manufacturer | Symbol | Adders | Binary
Elements | Drivers/
Buffers | AND/OR/
NOT | NAND | NAND/
NOR | Exclusive-
OR | Gate
Expanders | Inverter | | Fairchild | FA | | | | | | • | | | | | Motorola | MO | | • | | | | | | | | | Philco | PH | | | | | | • | | | | | Signetics | SIG | | • | • | | • | | • | • | | | Siliconix | SI | | | | | | • | | | | | Stewart-Warner | SW | | • | | • | • | | • | • | | | Sylvania | SY | • | • | • | | | • | • | • | | | Texas Instruments | TI | • | • | • | • | • | | • | • | • | | Transitron | TR | | • | | | | • | | • | | | Westinghouse | WH | | | | | | • | | | | # Amelco high-reliability silicon epitaxial devices ## MONOLITHIC LINEAR INTEGRATED CIRCUITS These high-performance differential amplifiers, operational amplifiers and video amplifiers are the result of advanced planar diffusion techniques. Precise photo-etching and diffusion processes result in closely matched diffused resistors and small geometry transistors for high performance. #### **TRANSISTORS** Covering General Purpose, Small Signal Amplifiers and High Frequency types Amelco Transistors are of the passivated planar silicon diffused construction. Small Signal transistors provide excellent gain at low collector currents, and High Frequency devices benefit from precise control of small geometries. ## HYBRID LINEAR INTEGRATED CIRCUITS Characterized by high reliability and low cost engineering, these circuits utilize thin-film deposition on ceramic substrates for passive components and interconnections, and die attached active components. Standard circuits include analog gates amplifiers, multivibrators and counters, with a variety of custom circuits readily available. #### FIELD EFFECT TRANSISTORS Amelco offers an extensive line of N channel silicon FET's, noted for high transconductance, low noise, low leakage and high reliability. These devices are made by passivated planar diffusion techniques and are specified in a wide range of Pinch-Off Voltage and other parameters. Available in metal cans or epoxy packages. ## MONOLITHIC INTEGRATED LOGIC CIRCUITS Amelco digital circuits encompass Direct Coupled Transistor Logic (DCTL) and Transistor Transistor Logic (T²L). DCTL, called OMIC for Optimized Micro-circuits, include transistors with dual collectors for improved performance. Available in 3 grades and over 14 circuits. T²L circuits are designed for high packaging density and low power dissipation to meet the requirements of airborne systems. #### DIFFERENTIAL AMPLIFIERS Amelco 'Diff Amps' consist of two silicon transistors in a single package. The transistors are matched to close tolerances for use in many critical applications. Both conventional and field effect transistors are used. Amelco's superior reliability and performance are in large part due to proprietary methods of ultra-precision photomasking and mask alignment combined with total quality control over the entire production process. Prompt attention is given to all inquiries through the home office or through Amelco Field Sales Offices, Representatives, and Distributors throughout the free World. #### AMELCO SEMICONDUCTOR DIVISION OF TELEDYNE, INC. 1300 TERRA BELLA AVENUE • MOUNTAIN VIEW, CALIFORNIA Mail Address: P. O. Box 1030, Mountain View, California Phone: (415) 968-9241 / TWX: (415) 969-9112 / Telex: 34-8416 ON READER-SERVICE CARD CIRCLE 59 # 4. Emitter-Coupled Logic | | | | | 1 | Propaga-
tion
Delay | | n-in | | -out | Diss. | Supply
Voltage | Leve
(Vol | els
ts) | Noise
Margin | Temp
Range | Package | 3 | |-----------------------------|----------------|--|---|----------------------|----------------------------|-------------|--------------------|------------------|--|----------------------------|----------------------------------|---|---------------------------------------|-----------------|-----------------------------------|--------------------------------------|--| | 14 | Logic Function | Туре | Model | Mfr. | (ns) | Тур. | Max. | Тур. | Max. | (mW) | (Volts) | 0 | | (mV) | (°C) | Туре | Remarks | | Adders
A | | Half
Half | MC303
MC353 | MO
MO | 6 6 | | | - | 25
25 | 60
60 | 10
10 | 1.55
1.55 | 0.75
0.75 | | -
0 to 75 | A, C
A, C | | | Binary Elements
B | | Set-Reset
J-K
Set-Reset
J-K
JK | MC302
MC308
MC352
MC358
SW308 | MO
MO
MO
SW | 10
10
10
10
10 | | | | 25
-
25
-
25 | 35
52
35
52
52 | 10
10
10
10
-5.2 | 1.55
1.55
1.55
1.55
1.55
-1.55 | 0.75
0.75
0.75
0.75
-0.75 | - | -
0 to 75
0 to 75
- | A, C
A, C
A, C
A, C
A, C | | | Drivers
C | | Line & Capacity
Line & Capacity
-
- | MC315
MC365
MC304
MC354
SW304 | MO
MO
MO
SW | 10
10
-
-
- | 3 3 | 25
25
-
- | -
5
5
5 | 25
25
25
25
25
25
25 | -
18
18
18 | -5.2
-5.2
10
10
-5.2 | 1.55
1.55
-
-
- | 0.75
0.75
-
- | | -
0 to 75
-
0 to 75
-
 A, C
A, C
A, C
A, C
A, C | | | Gates
D | NOR 1 | Dual 2-input Dual 2-input | MC309
MC310
MC311
MC359 | MO
MO | 6 | - | - | - | 26 | 49 | 10 | 1.55 | | | -
0 to 75 | A, C | Units differ in output configuration Units differ | | | | Dual | MC360
MC361
SW309
SW310 | SW | 6 | - | 2 | - | 26 | 49 | -5.2 | -1.5 | -0.75 | - | - | A, C | in output
configuration
Units differ in
output con- | | | | Dual
Dual
Dual | SW311
MC312
MC362
WS371 | MO
MO
WH | 6.5
6.5
10 | -
-
4 | 3
3
4 | -
-
25 | 25
25
- | 68
68
220 | 5.2
5.2
-5.0 | 75
75
-1.6 | -1.6
-1.6
-0.8 | | -
0 to 75
0 to 75 | A, C
A, C
C | figuration | | | OR/NOR | Dual | SN7000 | TI | 5 | - | - | - | - | 40/ | +1.25- | - | - | 250 | 0 to 70 | D | 4 load resistors | | | 2 | Dual | SN7001 | TI | 5 | - | - | - | - | gate
40/ | +1.25- | - | - | 250 | 0 to 70 | D | 2 load resistors | | | | - | SW301
SW306
SW307 | SW
SW | 6 6 | 3 | 5
25 | - | 26
26 | ga te
35
35 | -3.5
⋅5.2
-5.2 | -1.55
-1.55 | | | - | A, C
A, C | Units differ in output configuration | | 100 | OR/NOR/AND | 5-input | MC301 | МО | 6 | 3 | 25 | - | 26 | 35 | 10 | 1.55 | 0.75 | - | - | A, C | | | | NAND
3 | 3-input | MC306 | МО | 6 | 3 | 25 | - | 26 | 35 | 10 | 1.55 | 0.75 | - | -13 | A, C | | | | | 5-input
3-input | MC307
MC351
MC356
MC357 | MO
MO | 6 6 | 3 3 | 5
25 | - | 26
26 | 35
35 | 10
10 | 1.55
1.55 | 0.75
0.75 | | 0 to 75
0 to 75 | A, C
A, C | | | Gate E xpanders
E | | - | MC305
MC355
SW305 | MO
SW | 6
6
6 | - | | | | | 10
10
-5.2 | | | 1 - 1 | -
0 to 75
- | A, C
A, C
A, C | | | Level Translator
F | | DTL to CML
CML to DTL | MC1511
MC1512 | MO
MO | - | - | 1
25 | _ | 25
- | 25
80 | - | -1.97
-0.75 | | 400
- | Ξ | A
A | | ELECTRONIC DESIGN 190 See pages 4-9 for manufacturer's name. -55° to +125°C unless otherwise indicated. MC= Multiple Chip; TF= Thin-film hybrid. # Report from BELL LABORATORIES Diagram illustrating formation of high-purity thin film at ordinary vacuum level: Cathode consists of reactive metal which, transferred to substrate, forms thin film. Anode is shaped into enclosing cylinder. Surrounding atmosphere consists of argon and unwanted contaminants. When 1500-volt potential is applied, ionized argon "sputters" metal from cathode. During sputtering, metal atoms "getter" the contaminants—i.e., remove them from surroundings and hold them at the container walls. Then a protective shutter is swung aside (as shown here) and pure, uncontaminated metal travels from the cathode to the substrate to form the film. ## **High-purity thin films** H. C. Theuerer of Bell Laboratories prepares to place a thin-film substrate in getter sputtering equipment. Very thin films of metal offer many opportunities for achieving small high-performance, high-reliability electronic circuits. And the technology has now reached the point where numerous problems related to thin films are being solved. One of these problems was contamination of the films during preparation. At ordinary levels of vacuum, enough contaminants remained in the surrounding atmosphere to harm the characteristics of the film. Yet establishing an ultrahigh vacuum is expensive and time-consuming. A solution was found by H. C. Theuerer at Bell Telephone Laboratories. It consists of letting reactive metals do double duty. As shown in the drawing, the same metal that forms the film also removes the contaminants from the atmosphere. With the new process, known as "getter sputtering," film purities that formerly required a 10⁻¹² Torr vacuum can now be achieved with 10⁻⁶ Torr equipment. May 17, 1966 # 5. Resistor-Capacitor Transistor Logic | | | | | | Propaga-
tion
Delay | _ | n-in | | -out | Diss. | Supply
Voltage | Lev
(Vo | els | Noise
Margin | Temp
Range | Package | а | |----------------------|----------------|---|---|----------------|----------------------------------|-------------|-----------------------|------------------|-----------------------------|--|--|-----------------------------|---------------------------|--|---------------|------------------|---| | | Logic Function | Туре | Model | Mfr. | (ns) | Тур. | Max. | Тур. | Max. | (mW) | (Volts) | 0 | | (mV) | (°C) | Туре | Remarks | | Binary Elements
A | | J-K
R-S-T
-
Schmitt Trigg
R-S FF/Counter
R-S
FF/Counter | FF7317E
FF8317E
TMC40003
ST2514B
SN510B
SN511B | IN | 8
8
10
20
300
300 | 2 3 - 1 | 2
3
-
1
- | -
5
-
- | 4
4
5
6
4
20 | 96
96
48
145
2@3V
2@3V | 6
6
16, -3
12
3-6
3-6 | 0.2
0.2
0
0.2
- | <6
<6
6
<12
- | 1500
1500
1000
2500
200
200 | | G
G
G
D | TF
TF
TFH
TF
With Emitter
Follower | | | | R - S
R-S
Ripple-Counter
Ripple-Counter | SN5101B
SN5111
SN5112
SN5113
USO100A
USO101A | | 300
300
300
300
300 | | | | 20
16
16
4
20 | 2@3V
3@3V
3@3V
4@4V
2-7
2-7 | 3-6
3-6
3-6
3-6
3-6
3-6 | -
-
-
2.5
2.5 | -
-
-
0.3
0.3 | 200
200
200
200
-
- | | D
D
D
- | Dual Presets
Dual Preset | | Clock Driver B | | - | SN517 B | TI | _ | - | - | - | 20 | 3@3V | 3-6 | - | - | 200 | - | D | | | Gates
C | NAND/NOR | Dual 3-input Inverter 6-input 6-input | GG3317
TMC40001
TMC40004
SN512B
SN513B | | 4
10
10
65@6V
65@6V | 3 | 3 4 | 5 5 | 5
5
5
5
25 | 96
48
48
2@3V
3 @ 3V | 6
+6, -3
+6, -3
3 -6
3 -6 | 0.2
0
0
- | <6
6
6
- | 1500
1000
500
200
200 | | G
G
D | TF With Emitter Follower | | | | Dual 3 - input
Dual 2 - input
Triple 2 - input | SN514B
SN516B
SN5161B | TI
TI
TI | 65@6V
65@6V
65@6V | 1 | | | 5
25
5 | 2@3V
2@3V
2/ | 3 - 6
3 - 6
3 - 6 | | - | 200
200
200 | - | D
D
D | ronower | | | | Triple 2 - input | SN5162B | TI | 65@6V | | - | - | 25 | gate
2/ | 3 - 6 | - | - | 200 | - | D | Emitter
Follower | | | | Exclusive OR Pulse Exclusive OR | USO102A
USO103A
SN515B
SN5191 | | 100
100
100@6V
- | | 6 6 | 1111 | 5
25
5
5 | gate
2-7
2-7
393V
6@3V | 3-6
3-6
3-6
3-6 | 2.5
2.5
- | 0.3
0.3
- | -
200
200 | | -
D
D | ronower | | Multivibrators
D | | One-Shot
Medium Delay
One-shot | TMC40002
DM3510B
SN518B | | 10
- | -
1
- | -
1 | 5 - | 5 5 5 | 48
96
2@3V | +6, -3
12
3-6 | 0 0.2 | 6
<12 | 500
2500
200 | 1.1.1 | G
G
D | TF | See pages 4-9 for manufacturer's name. -55° to +125°C unless otherwise indicated. MC= Multiple Chip; TF= Thin-film hybrid. # **Increase Production...Lower Your Costs!** -with # **AUTOMATIC ASSEMBLY and** PRODUCTION MACHINES - WELDING - EXHAUSTING - SEALING - and other production operations Solve Your Production Problems! Call or write KAHLE for recommendations on your specific electronic and related manufacturing operations. KAHLE Automatic assembly and production machines are in use by hundreds of leading manufacturers where they have earned an industry-wide reputation for high efficiency and dependable performance! 3332 HUDSON AVE., UNION CITY, N. J. 07087 Telephone: UNion 7-6500 (Area Code 201) EUROPEA S.p.A.-Via Spartaco, 16, Caravaggio (Bergamo), Italy DESIGNERS AND BUILDERS OF AUTOMATIC ASSEMBLY AND PRODUCTION MACHINES FOR ELECTRONICS MANUFACTURING ON READER-SERVICE CARD CIRCLE 61 ## 6. Complementary Transistor Logic | | | | | | Propaga-
tion
Delay | For | ı-in | Fan | -out | Power | Supply
Voltage | Lev
(Vo | els | Noise
Margin | Temp
Range | Package | 3 | |----------------|----------------|---|-------------------------------|-------|---------------------------|------|------|----------------|------|-------|----------------------------|----------------------|------|-------------------|----------------------------------|-------------|---------| | | Logic Function | Туре | Model | Mfr.1 | | Тур. | Max. | Typ. | Max. | | (Volts) | 0., | "1" | (mV) | (°C) | Туре | Remarks | | Binary Element | | Dual - rank | CTµL951 | FA | 15-20 | - | - | 15 | - | 150 | 4.5,-2 | 0.36 | 2.25 | 400 | 15 to 55 | G | | | Buffers B | | - | CT _µ L956 | FA | 12 | - | - | - | 25 | 125 | 4.5,-2 | 0.36 | 2.25 | 400 | 15 to 55 | G | | | Gates C | AND 1 | 2,2,3 input
Dual 4-input
Single 8-input | CTμL953
CTμL954
CTμL955 | FA | 3
3
3 | 8 8 | - | 12
12
12 | = | | 4.5,-2
4.5,-2
4.5,-2 | 0.36
0.36
0.36 | | 400
400
400 | 15 to 55
15 to 55
15 to 55 | G
G
G | | | | NOR 2 | - | CTµL952 | FA | 9 | - | - | 10 | - | 55 | 4.5,-2 | 0.36 | 2.25 | 400 | 15 to 55 | G | | - 1) See pages 4-9 for manufacturer's name. - 2) -55° to $+125^{\circ}$ C unless otherwise indicated. - 3) MC= Multiple Chip; TF= Thin-film hybrid. The Choice of the Discriminating Communication Engineer . . . the Man who Never Settles for Anything Less than THE-VERY-BEST! # telrex "BEAMED-POWER" ANTENNAS and ANTENNA SYSTEMS Provide optimum performance and reliability per element, per dollar. Antennas from 500 Kc to 1500 Mc. Free PL88 condensed data and pricing catalog. describes military and commercial antennas, systems, accessories, Towers, Masts, Rotators, "Baluns" and transmission line data. Asbury Park 41, New Jersey, U.S.A. ON READER-SERVICE CARD CIRCLE 56 # R. F. INTERFERENCE
PLAGUING YOU? HOW ABOUT LITTELFUSE R.F. INTERFERENCE SHIELDED FUSE POSTS. MILITARY AND COMMERCIAL APPLICATIONS Write or phone for information #### LITTELFUSE DES PLAINES, ILLINOIS ON READER-SERVICE CARD CIRCLE 57 ELECTRONIC DESIGN # 7. Miscellaneous Digital Circuits | | Logic Function | Туре | Model | Mfr.! | Propaga-
tion
Delay
(ns) | | ı-in
Max. | | -out
Max. | Power
Diss.
(mW) | Supply
Voltage
(Volts) | Log
Lev
(Val | els | Noise
Margin
(mV) | Temp
Range
(°C) | Package
Type | 3
Remarks | |----------------------|--|--|---|--|--|-----------|--------------------------------------|---------|--|--|--|--|---|--|--|--|--------------------------------| | Counter
A | | BCD decade
BCD decade | SN5490
SN7490 | TI
TI | †12 MHz
†12 MHz | 1 1 | - | | | 150
150 | 4.5 - 5.5
4.75 to
5.25 | | 1 - | 1000
1000 | _
0-70 | D
D | † Count freq.
† Count freq. | | Diode Matrix
B | | -
-
-
Dual 3-input
Dual 3-input | *Nine mat
MC1116
MC1117
MC1118
MC217
MC267 | | † 10
es avail, fro
-
-
-
- | - 5 x | 5 to 15 | x 15 in | RM - 5 | 450
0,60,70
-
-
-
-
- | 40
series.
40(max)
40(max)
- | -
-
-
4
4 | -
-
-
.3
.3 | 1 11111 | -
-
-
-
-
0 to 75 | D, G
A
A
A, C
A, C | †Reverse
Recovery Time | | Level Detector | | - | WM208T | WH | 1 MHz | - | - | - | - | - | 6 | - | - | - | - | A, C, D | | | Level Shifter
D | | - | WS150Q | WH | - | - | - | - | - | 100 | 10, 6.4
- 10, -64 | | 5 2.5 -
9.0 | - / | - | С | | | Memory
E | | 16 - bit
16 - bit | SN5481
SN7481 | TI
TI | Read: 25
Write: 25
Read: 25
Write: 25 | | | | - | 150
150 | 4.5 - 5.5
4.75 to
5.25 | 1 1 | | 1000 | 0-70 | D, J | | | MOS
F | Adder
Analog Switch | Dual-Full
4-channel | MEM1000
PL4S01 | GI
GME | 500 | - | | - | 5 | 25
150 | -26,-12
-15-30+ | -2
10 | -10
0 | 1 V
1000 | -55 to +85
- | F
G | | | | Converter Counter Flip-Flop J-K Flip Flop Multiplexer NAND/NOR NOR-Gate Shift Reg. | BCD to Decimal BCD to Binary D to A BCD Decade RST Dual 6 - Channel 5 - Channel 4 - Channel 4 - Channel 4 - Channel 3 - Channel 3 - Channel 3 - Channel 5 - Channel 5 - Channel 5 - Channel 5 - Channel 6 - Channel 7 Channe | PL4G02
PL4G03
PL4G03
PL4G01
MEM1005
PL4M01
MEM2002
MEM2003
MEM2004
MEM2005
MEM2005
MEM2006
MEM2007
PL4G01
PL4R01
PL4R01
PL4R01
PL4R01
MEM3020
MEM3020
MEM3020 | GME
GI
GI
GI
GI
GI
GME
GME
GME
GME
GME | | | | | 5 5 5 5 | 100
50
75
75
80
100
 | 10, -24
-24, -12, -24
-12, -24
-12, -24
-30, -30
-30, -30
-30, -30
-30, -30
-30, -24
-26, -12, -24
-26, -22, -24 | -3
-3
-3
-2
-3
-3
-1
-1
-1
-3
-3
-3
-3
-2
-3
-3
-3
-2
-3
-3
-3
-3
-3
-3
-3
-3
-3
-3
-3
-3
-3 | -9
-9
-9
-10
-
-
-
-
-
-
-
9
-10
-9
-10 | | -55 to +85 | FGGGGGGAGGA AA | – 24v clock | | Pulse Source
G | | | NM4002 | NOR | 25 | - | - | - | - | 590 | +20 | 0 | +3 | - | - | A , B | Apollo pre-
core driver | | Schmitt Trigger
H | | - | NC/PC17 | GI | 8 | - | 1 | - | 5 | 200 | 12, 4.2,
-3 | 0 | 5 | - | - | A, E | MC RCT | | Shift Register
 | | 8 - bit
8 - bit | SN5491
SN7491 | TI
TI | ‡15MHz
±15MHz | | - | - | - | 190
190 | 4.5 - 5.5
4.75 to
5.25 | | 1.1 | 1000
1000 | _
0-70 | D
D | † Shift freq.
† Shift freq. | | Steering Gate J | | - | NC/PC9 | GI | - | - | - | - | - | - | - | - | - | - | - | A, E | MC RCDT | | Utilogic
K | AND Gate AND Gate NOR Gate NOR Gate NOR Gate OR Gate OR Gate Expander J-K Binary | Single Dual Single Dual Dual Dual Dual Dual Dual Single | SU305
SU306
SU314
SU315
SU316
SU331
SU332
SU300
SU320 | SIG
SIG
SIG
SIG
SIG
SIG
SIG
SIG | 15
15
20
20
20
20
20
20
20 | 111111111 | 6
3
7
3
2
2
2
3 | 1111111 | 10
10
17
17
17
17
17
17 | 5
18
18
18
36
36
5
90 | +4.5
+4.5
+4.5
+4.5
+4.5
+4.5
+4.5
+4.5 | -
0.6
0.6
0.6
0.6
0.6 | -
3.3
3.3
3.3
3.3
3.3
3.3 | -
1200
1200
1200
1200
1200
-
1200 | -20, +85
-20, +85
-20, +85
-20, +85
-20, +85
-20, +85
-20, +85
-20, +85
-20, +85 | A, C C C A, C | | 195 May 17, 1966 ¹⁾ See pages 4-9 for manufacturer's name. 2) -55° to $+125^{\circ}$ C unless otherwise indicated. 3) MC= Multiple Chip; TF= Thin-film hybrid. ## 8. Linear Circuits | Function | Model | Mfr.1 | Frequency
Range | In put
(Volts) | Goin
(db)
or
*(Volts) | Output
(mW)
or
*(Volts) | Input
Impedance
(ahms) | Output
Impedance
(ohms) | Supply
Voltage
(Volts) | Noise
Figure
(db)
or
*(Volts) | Package
Type | Remarks 2 | |------------------------------
--|--|---|---|--|---|---|---|--|---|---|--| | Amplifier Demodulator | MCM602 | KE | DC-2 kHz | - | *2.6 | - | 35 k ±10% | 4300 ± 10% | ±15VDC
±12 VDC | - | G | | | Analog switch
B | E16-501
45P912
4JP913
PC402
PC401
NM2017 | AL
GE
GE
GI
NOR | Ton <500 ns
Toff <600 ns
100 MHz
100 MHz
200 kHz
200 kHz
200 kHz | ±5
0.0006
0.0006
3
3
5 | †40
-
-
-
- | | -
10 k/3.9 k
10 k/3.9 k
10 k | | 40
20
20
+45, +28
+45, +28 | 1 11111 | A
A
A
E
E
D | thFE | | Audio Amp.
C | AMC101
8502
WC183G | AMP
VAR
WH | dc-20 KHz
10 Hz - 100 KHz
.5-10 KHz | 0-20 | 80
46
94 | .002
10
45 | _
10 k
40 k | 1000 | 5
10 to 20
4.5 | 6
10
•3 | G
D | | | Bit Driver D | WS151 | WH | Ton = 100 ns
Toff = 350 ns | - | - | - | 5 k | - | 10 | - | С | | | Broadband Amp.
E | 4JP108
PA7600
SE501
WM1146Q | GE
PH
SIG
WH | 6 MHz
0 · 200 MHz
40 MHz
dc - 100 MHz | 11111 | *20
† 43
28
16 | -
2.5
- | 50
1.3 k | 1 | 15
6
6.0
12 | -
5
4 dB
4 | A
A, C
C | †MHz Video Bandwidth | | D A Switch F | 4JP380 | GE | 250 MHz | - | - (| - | - | 20 | 5 | - | A | | | Demodulator Chopper G | NM2024 | NOR | 5 kHz | 26 | - | - | - | - | 28 | - | D | | | Differential Amp. H | D13-000 D13-001 D13-002 µA711 PC200 PC201 MC1519 MC1526 MC1527 MC1526 MC1527 MC1526 MC1527 MC1526 MC1527 MC1528 MC1528 MC1527 MC1528 MC1528 MC1527 MC1528 MC1528 MC1528 MC1527 MC1528 MC | MO
MO
MO
MO
NOR
NOR
NOR
SSD
TI
TI
TI
TI
WH
WH
WH
WH | 400 kHz 400 kHz 400 kHz 400 kHz 400 ns 0-20 kHz 100 kHz 1 MHz 1 400 kHz 1 400 kHz 1 400 kHz 1 MHz 1 1400 kHz 1 MHz 1 1000 kHz 1 MHz 1 000 kHz 1 MHz 1 000 kHz | - + 1 mV | 45
45
63
73
73
20
73/45
140
65
140
65
140
66
00
1500
00
40
64
40
40
63
43
43
60
63
hfe = 50 | 150
4
4
0.4
 | 100 k Diff.
200 k Diff.
20 k
2 M
2.6 k / 1.2 k †
2 k
80 k
3.2 k
250 k
1.5 M
4 k
75,000
10 k
100 k
100 k
150 k
20 k
3.5 k | 11 k 11 k 11 k 11 k 100 5 k 300 10 k 10 k 10 k 35 8 k 0.5 k - | ±12
±12
±12, -6
±2 to ±22
±6 to ±22
±14
±14
±14
±14
±14
±14
±12, -6
10
+12, /25
+6, -3
25
±12
±6
12, -6
-12, -6
-12, 12, 6
6, -12
-12, 12, 6
6, 12, -12
20 | | A,CCC
A,A,A E F F A A A A A A D T A, C A,D A,D D D D D D D C | dual input †offset voltage †CE/CC Darington (npn) (pnp) Darlington (pnp) †Offset Voltage †Offset Voltage †Offset Voltage | | Differential Comparator | μΑ710
μΑ710C
μΑ711C
NM1037
PA710 | FA
FA
NOR
PH
SIG | 40 ns
40 ns
40 ns
100 kHz
40 ns | †2 mV
†2 mV
†1 mV
±10
†2 mV | 63
63
*1000
64
*1700
Open Lo | *+3.2,
*+3.2,
*+4.5,
*6
*+3.2
-0.5 | -0.5
-0.5
 - | 200
200
200
3 k
200 | +12,-6
+12,-6
+12,-6
30
+12 -6 | 111111 | A, C
A, C
A
A, C
A, C | † offset voltage
† offset voltage
dual input † offset voltage
Min-Max Limit Detector
† Offset | | Driver Switch J | NM1 038 | NOR | 50 kHz | ±10 | - | - | 11 k | - | 34, 6, -6 | - | D | | | Emitter Coupled K | MC1110 | МО | DC - 300 | 0.114 | 26 | 10 | 2 k | 5 k | ±12 | 6 | A | | | General Purpose Amp.
L | 12X207
12X218
4JPA113
4JP114
MCM601
NM1032 | GE
GE
GE
KE
NOR | 10-100 kHz
10-100 kHz
100 kHz
1 MHz
3-100 kHz
dc – 190 kHz | 0.0001
-
-
-
-
- | *600
-
85
†3,000
26
45 | 50
45
0.8 | 10 k
50 M
20 k
1.5
4 M
34 k | 1 M
250
50
10
500
2 k | 30
25
15
6
+15 VDC
6, -12 | 10 mv rms
B
-
- | A
E
A
D | †Current gain | See pages 4-9 for manufacturer's names. MC= Multiple Chip; TF= Thin-film hybrid. 196 ## Linear Circuits (continued) | Function | Model | Mfr.¹ | Frequency
Range | In put
(Volts) | Gain
(db)
or
*(Volts) | Output
(mW)
or
*(Volts) | input
Impedance
(ohms) | Output
Impedance
(ohms) | Supply
Valtage
(Volts) | Noise
Figure
(db)
or
*(Volts) | Package
Type | 2
Remarks | |---------------------|---|--|--|---|--|---|---|---|--|---|---|--| | L | NM1033
UC1501A
UC1503A
UC1505A
UC1507A
PA7602
WM108 | NOR
SPR
SPR
SPR
SPR
PH
WH | dc - 190 kHz
3 - 250 kHz
200 Hz - 3 MHz
30 Hz - 11 MHz
10 Hz - 10 MHz
0-100 Hz
0-100 kHz | 1111111 | 66
84
60
40
34
76
†20,000 | 500
600
600
600
*6 | 3.4 k
2 k
20 k
47 k
47 k
†>25 k
10 M | 2 k
150
150
150
150
150
†<50 | 12, 6, -12
15
15
15
15
15
12
12 | 111111 | D A C | †Gain of 40dB
†gm | | Limiter M | UC1508A | SPR | 50 Hz - 12 kHz | 2 | 40 | 16 | 40 k | 15 | 15 | - | - | | | Mixer Osc. N | WM1102 | WH | 30 MHz | - | .10 | - | 100 | 200 | 12 | - | С | | | Operational Amp. O | A13-251
μΑ702 Α
μΑ702 C
μΑ709 C
4JPA107
4JPA135
TMC40006
MC1530
MC1531
PA702 A/
712 | AL
FA
FA
GE
GE
MEP
MO
PH | 10 MHz
dc-30MHz
dc-30 MHz
dc-500 kHz
dc-500 kHz
200 kHz
100 kHz
1.2 MHz
400 kHz
0.8 MHz | +2 m∀
+5 mV
+1 mV
+2 mV
-
-
±5
±5
+2 mV
 86
68
68
93
93
70
70
60
74
71
68 | 10 V
*±53
*±5.3
±14
±14
±10
*±4
-
10
10
*±5.3 | 250 k
25 k
20 k
400 k
250 k
750 k
1 M
100 k
10 k
1 M
25 k | 1 k
200
200
150
150
100
100
5 k
25
25
200 | ± 12
+12,-6
+12,-6
± 15
±15
±12
±6
±12
±9
±9 | | A A, C A, C A A A A A A A A C | † offset voltage
† offset voltage
† offset voltage
† offset voltage
Darlington Input
† Offset Voltage | | | PA7026
Q25AH
Q85AH
SE 506 | PH
PR
PR
SIG | 0-8 MHz
0-2 kHz
0-2000 kHz
300 kHz | †7 mV
±10
±11 | 68
86 - 116
86 - 116
*13,000
Open Lo | | 20 k
10 ²²
10 ⁶
200 k | 200
100 k
100 k | 12 · 6
±15
±15
+15,-15 | 0.5 | A, C
G
G
A, C | † Offset Voltage
FETs | | | SN521A
SN522A
SN524A
SN526A
SN724
WS161Q
PL-210
PL-212
PL-250
PL-250 | TI
TI
TI
TI
WH
GI
GI
GI
GI | dc - 50 kHz
dc - 50 kHz
dc - 3 MHz
dc - 1 MHz
dc - 3 MHz
500 kHz
1.5MHz
1.2MHz
30KHz
30KHz | ±4
±4
±5
±5
±5
†10
±8
±8
±20
±20 | 62
62
60
88
54
*2000
70
64
50 | 70
4
70
4
-
±15 V
±10 V | 12 k - 100 k
12 k - 100 k
1 M
1000 k
750 k
300 k
30k
100k
10 M | 10 k
160
75
12 k
75
40
50
50
150 | 10, 6, -9
10, 6, -9
±12
±12
±12
12
±18
±18
±12
±12
±12 | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | D
D
A, D
O
A, D
C
E
E
E | Emitter follower †Offset voltage Short-circuit proof | | Phase Splitter Amp. | UC1502A
UC1504A
UC1506A | SPR
SPR
SPR | 3 - 250 kHz
200 Hz - 3 MHz
30 Hz - 11 MHz | - | 84
58
39 | 160
230
230 | 2 k
20 k
20 k | 100
100
100 | 15
15
15 | - | = | | | Power Amp.
Q | MCM611
MC1524
NM1003
NM1008
WS140y
WS1454 | KE
MO
NOR
NOR
WH | $\begin{array}{lll} dc & - \ 4 \ \text{kHz} \\ 300 \ \text{kHz} \\ dc & - \ 20 \ \text{kHz} \\ dc & - \ 20 \ \text{kHz} \\ Ton < 0.45 \ \mu\text{sec} \\ Toff < 1.8 \ \mu\text{sec} \\ Ton < 0.45 \ \mu\text{sec} \\ Ton < 1.8 \ \mu\text{sec} \\ \end{array}$ | -
±5
0-60
0-60
- | -
*10/20/
54
46
hfe > 10
hfe > 10 | 8000
8000
00- | 8.5 k
10 k
10 k
- | 2
0.58
500
300
- | ±15
±12
36
36
40 | 11111 | A
G
G
stud | Modified To-53
Modified To-53 | | Pulse Amp. | UC1509A
UC1510A
12X264 | SPR
SPR
GE | _

10 MHz | 5
6.7
— | 22
0
25 | | 20 k
40 k
- | 100, 10
100, 10 | 15
15
15 | - | Ā | | | RF/IF Amp. | PA7602
PA713
WM1101 | PH
PH
WH | 10-200 MHz
0-200 MHz
0-3 MHz | - | 18
†33
30@
60 MHz | 1 - | 90
450
100 | 95
900
200 | ±6
6 | 7 5 | A
A-C | †12 MHz Video
Bandwidth | | Read Amp. T | WS934 | WH | 0-1 MHz | - | *4-32 V | /V- | 180 | 100 | ±9 | 4 | D | | | Sense Amp. | NM2012
NM2016 | NOR
NOR | 0-1 MHz
0-1 MHz | †1 mV
†4 mV | 49
54 | *4 | - | - | 13
30 | - | A, D
A, D | † Offset Voltage
† Offset Voltage
Temp. Compensated | | | SE500
SE504
SA10 SA1
SN5500
SN7500 | SIG
SIG
SY
TI
TI | 0-3 MHz
3000 kHz
7 MHz
†125 ns
†125 ns | -
17 mV
6
6 | 31
30
-
- | | 240
- | - | +13, +4, +1.
13
-25, 12, +1
±6
±6 | 1- | A, C
A, C
D, G
A, D
D | Digital Output 0-5V
† Prop. delay
† Prop. delay | | Summing Amp. V | 4JP116 | GE | 100 MHz | - | 1 x 10° | - | 1 | 1 | <u>+</u> 25 | - | A | | | Video Amp.
W | E13-511
NC/PC10
SA20
WS112y
WM1106
WM1116
WM1126
WM1136
WM1146 | AL
GI
SY
WH
WH
WH
WH | 50 MHz
40 MHz
up to 100 MHz
0-5 MHz
0-6 MHz
0-10 MHz
0-12 MHz
0-35 MHz | 0.26
0.2
-
-
-
-
- | 22
20
45
25
20
20
20
20
20
20 | 4.5 | 520
1 k
2.6 k
1 k
100
100
100
100
100 | 520
500
>5
1 k
1.3 k
1.3 k
1.3 k
1.3 k | +12
6
24
12
12
12
12
12
12
12 | 3
15
6
-
-
-
4 | A, E
A, C, F, (
C
C
C
C
C | G | May 17, 1966 197. See pages 4-9 for manufacturer's names. MC= Multiple Chip; TF= Thin-film hybrid. #### Linear Circuits (continued) | Function | Model | Mfr.1 | Frequency
. Range | In put
(Volts) | Gain
(db)
or
*(Volts) | Output
(mW)
or
*(Volts) | In put
Impedance
(ohms) | Output
Impedance
(ohms) | Supply
Voltage
(Volts) | Noise
Figure
(db)
or
*(Volts) | Package
Type | 2
Remarks | |--------------------|--------------------|-----------|----------------------|-------------------|--------------------------------|----------------------------------|-------------------------------|-------------------------------|------------------------------|---|-----------------|---------------------------------| | Voltage Regulators | PC501 | GI | 100 kHz | +16to+24 | - | 150mA | - | 0.2 | +12 | 0.4 mV | E | TO THE STATE OF | | X | PC502 | GI | 100 kHz | -16 to -24 | - | 150mA | _ | 0.2 | -12 | 0.4 mV | E | | | ^ | PC503 | GI | 100 kHz | +28 to +36 | - | 140mA | - | 0.4 | +24 | 1 mV | E | | | | PC504 | GI | 100 kHz | -28 to -36 | - | 140 mA | _ | 0.4 | -24 | 1 mV | E | | | | NC/PC51 | 1 GI | 100 kHz | +15 to +24 | - | 150mA | - | 0.1 | +12 | 0.4 mV | A or E | | | | PC512 | GI | 100 kHz | +27 to +36 | - | 140mA | _ | 0.2 | +24 | 1 mV | E | | | | NC/PC51 | 3 GI | 100 kHz | -15 to -24 | - | 150mA | - | 0.1 | -12 | 0.4 mV | A or E | | | | PC514 | GI | 100 kHz | -27 to -36 | - | 140mA | - | 0.2 | -24 | 1 mV | E | | | | PL-521 | GI | 100KHz | +28 | - | +6V | - | 0.05 | _ | - | E | Imax=200 mA | | | PL-523 | GI | - | -28 | - | -6 V | - | 0.05 | _ | - | E | Imax = 200 mA | | | NCS-675A
NM1004 | GI
NOR | - | +28
>20, >30 | ' - | +5V
†1.25mA | - | 0.1 | 715 | -
1 mV | А | Imax = 200mA
† Drive Current | - 1) See pages 4-9 for manufacturer's names. - 2) MC= Multiple Chip; TF= Thin-film hybrid. to what's new in Semiconductor Coolers # WAKEFIELD DISTRIBUTOR PRODUCTS CATALOG The latest designs in Heat Sinks are as near as your nearby authorized WAKEFIELD Electronic Distributor. His name is in our catalog along with the full line he stocks: milliwatt to high power coolers, circuit board coolers, extrusions, thermal joint compound, DELTA BOND 152 Thermally Conductive Adhesive. NC-680-1.0 FOR YOUR COPY, WRITE ## WAKEFIELD ENGINEERING, INC. LINGTINELKTING, TINC. 139 FOUNDRY ST. / WAKEFIELD. MASS. (617) 245-5900 • TWX 617-245-9213 ON READER-SERVICE CARD CIRCLE 63 # A NEW integrated-circuit, core memory system from FABRI-TEK Here is a compact, versatile memory system at a truly economical price which can perform any of the standard data storage functions with reliability. Full cycle time is 2 microseconds, half-cycle time is 1.25 microseconds. Access time is 850 nanoseconds. Four access modes are possible: Random; Sequential; Random/Sequential; and Sequential-interlaced. Capacities available are: 64, 128, 256, 512, 1024, 2048, and 4096 words, with 2 to 30 bits per word in increments of 2 bits. A choice of input and output interface circuits and optional address register is offered. Power supply and self-test exerciser are available options. Fabri-Tek's "standardized design" concept gives you a custom fit to your particular memory requirements with the economy of mass production. This new memory system from Fabri-Tek can be ordered out of a catalog. You choose the features by the number and your system will be delivered, ready to plug into your equipment rack. A connector wiring diagram of your specific system will be sent to you before delivery of the memory system so you'll be ready to operate without waste of time. Ask for Bulletin 6535, Series MUA2 Integrated-circuit core memory system. Write, call, or wire: Fabri-Tek, Incorporated, Amery, Wisconsin; phone 715-268-7155; TWX 510-376-1710. #### **FABRI-TEK LEADS IN MEMORY TECHNOLOGY** Fi Check with Fabri-Tek for rewarding engineering opportunities! # Index of microelectronic devices | NU | JMERICAL | A50 | 1E4 | —Е— | | MC207 | 1E4 | |--------------------|----------------|--|------------|--|------------|------------------|------------| | 4JP | 8E | A51 | 1A | E11001 | 2F | MC208 | 1E4 | | 4JP114 | 8L
8V | A52
A53 | 1E4
1E4 | E11001
E11004 | 2F | MC209
MC212 | 1B
1E4 | | 4JP116
4JP380 | 8F | A54 | 1E4 | E13-511 | 8W | MC213 | 1E4 | | 4JP912 | 8B | A55 | 1E4 | E16-501 | 8B | MC215 | 1E1 | | 4JP913 | 8B | A60 | 1D
8C | —F— | | MC217
MC251 | 7B
1E4 | | 4JPA107
4JPA113 | | AMC101 | 80 | 5515145 | 0.0 | MC252 | 1E4 | | 4JPA135 | 80 | —В— | | FF1514B
FF7317E | 2B
5A | MC253 | 1E1 | | 12X207 | 8L | B01 | 3D3 | FF8317E | 5A | MC254
MC255 | 1E4
1D | | 12X218
12X264 | 8L
8S | B02 | 3D3 | F _μ L90029
F _μ L90329 | 2C
2E1 | MC256 | 1E4 | | 203 | 8H | B11004 | 2C
2C | F _μ L90529 | 21 | MC257 | 1E4 | | 8200
8201 | 1B
1H | BC11001 | 20 | F _μ L91029 | 2E1 | MC258
MC259 | 1E4
1B | | 8202 | 1H | —c— | | F _μ L91129
F _μ L91429 | 2E1
2E1 | MC260 | 1B | | 8203 | 11 | C11001 | 2D | F _μ L91529 | 2E1 | MC262
MC263 | 1E4
1E4 | | 8204
8207 | 1E5
1E1 | C11004 | 2D | F _μ L92129 | 2F | MC265 | 1E1 | | 8208 | 1E1 | CS700
CS701 | 1E4
1E4 | F _μ L92329 | 2B | MC267 | 7B | | 8209 | 1E1 | CS704 | 18 | —G— | | MC281G
MC282G | 1E4
1B | | 8210
8213 | 1E1
1D | CS705 | 1E1 | G11001 | 2E1 | MC284G | 1E4 | | 8214 | 1E3 | CS709
CS715 | 1F
1D | G11001 | 2E1 | MC301 | 4D3 | | 8502 | 8C | CS716 | 1E4 | GG1514B | 2E1 | MC302
MC303 |
4B
4A | | | —A— | CS720 | 1E4 | GG3317 | 5C | MC304 | 4C | | | 154 | CS721
CS727 | 1E4
1E4 | —H— | | MC305 | 4E | | A01
A02 | 1E4
1E4 | CS729 | 1B | H11001 | 2A | MC306
MC307 | 4D3
4D3 | | A03 | 1B | CS730
CS731 | 1E4
1F | H11004 | 2A | MC308 | 4B | | A04
A05 | 1F
1E4 | CS731 | 1F | | | MC309 | 4D1
4D1 | | A06 | 1E4 | CTµL952 | 6C2 | | | MC310
MC311 | 4D1 | | A07 | 1E4 | CT _μ L953
CT _μ L954 | 6C1
6C1 | J11001
J11004 | 2E1
2E1 | MC312 | 4D1 | | A08
A09 | 11
1B | CT _{\(\mu\)} L955 | 6C1 | J11004 | 2E1 | MC315
MC351 | 4C
4D3 | | A10 | 1E4, 2E2 | CTμL956 | 6B | —К— | | MC351
MC352 | 4B | | A11 | 2A, 2E2 | CTμL957 | 6A | K11001 | 2E1 | MC353 | 4A
4C | | A12
A13 | 1E4
1E4, 2B | —D— | | K11004 | 2E1 | MC354
MC355 | 4E | | A13-251 | 80 | D13-000 | 8H | | | MC356 | 4D3 | | A14 | 1E4, 2E2 | D13-001 | 8H | | | MC357 | 4D3
4B | | A15
A16 | 1E4, 2H
2B | D13-002
DM3510B | 8H
5D | L11001
L11004 | 2E1
2E1 | MC358
MC359 | 4D1 | | A17 | 2B | DT _μ L930 | 1E4 | 111004 | 261 | MC360 | 4D1 | | A20 | 1D
1E4 | DTμL931 | 1B | —M— | | MC361 | 4D1 | | A41
A42 | 1E4 | DTμL932
DTμL933 | 1D
1F | M11001 | 2E1 | MC362
MC365 | 4D1
4C | | A43 | 1B | DT _μ L944 | 1E6 | M11004 | 2E1 | MC650G | 1E4 | | A44 | 1F
1E4 | DT _μ L945 | 1B | MC201 | 1E4
1E4 | MC651F | 1E4 | | A45
A46 | 1E4
1E4 | DTμL946
DTμL948 | 1E4
1B | MC202
MC203 | 1E1 | MC652
MC700G | 3B
2C | | A47 | 1E4 | DTμL950 | 1B | MC204 | 1E6 | MC701G | 2D | | A48 | 11
10 | DT ₄ L951 | 11
1E4 | MC205
MC206 | 1D
1E4 | MC702G
MC703G | 2B
2E1 | | A49 | 1B | DT _μ L962 | 104 | WICZUU | 114 | WIO/03G | 211 | 200 # Weld, Solder and Bond with this Versatile Machine! Weltek's new Model 750 can be set up in minutes to do microminiature welding, controlled soldering or "nail head" bonding. With this one piece of equipment you can solder or weld flat packs to p.c. boards, do module welding, point-to-point microsoldering or bond a wire to a transistor chip! The possibilities are unlimited. The 750 can do all of your miniature joining work...in the lab or in production. And it is reasonably priced. Send us your miniature joining problems ... we sample quickly. No obligation. Precision Bonders by WELLS ELECTRONICS, INC. 1701 S. Main Street, South Bend, Indiana, U.S.A. ON READER-SERVICE CARD CIRCLE 65 Send for your copy of this NEW catalog on . . . ## BUCKEYE matching Instrument Knobs Greatly expanded line of three standard series plus wide range of modifications • Molded of tough Implex or Cycolac in four standard colors • Concentrics, bar knobs and spinners • Standard with metal bushing and set screws Complete stock maintained to provide samples and quick delivery. the BUCKEYE stamping co. 555 MARION RD., COLUMBUS, O. 43207 "QUALITY PRODUCTS SINCE 1902" ON READER-SERVICE CARD CIRCLE 66 # \$280,00 # A REMARKABLE NEW IN-CIRCUIT # SEMICONDUCTOR TESTER # measures leakage IN-CIRCUIT of transistors, diodes, F.E.T.'s ... any semiconductor device #### ALSO MEASURES . . . - Low and high power transistors for 1000 cycle Beta within range 1 to 1000. - F.E.T. transconductance to 10,000 micromhos. - Resistance across semiconductor electrodes. #### FEATURES . . . - Battery operated. - Rugged, drip-proof, high impact plastic case and cover. #### **OPTIONAL FEATURES and EQUIPMENT** - Automatic Beta calibration sets collector current of transistor under test at 1 ma. - One hand operated in-circuit test probe. #### WRITE FOR TECHNICAL CATALOG For Fast, Off-The-Shell Delivery, Call DISTRIBUTORS Electronic Wholesalers • Washington, D. C. • (202) 483-5200 Allied Radio • Chicago, III. • (312) 421-6800 Radio Electric Service Co. • Phila., Pa. • (215) 348-3010 #### STOCKING REPRESENTATIVES Bonn Assoc. • Metuchen, N. J. • (201) 549-9573 NBS, Inc. • Orlando, Fla. • (305) 423-4856 Lightstone Corp. • Syracuse, N. Y. • (315) 454-3209 American Electronic Laboratories, Inc. P. O. BOX 552, LANSDALE, PA. 19446 • (215) 822-2929 # **Important Books** on Electronics #### INTRODUCTION TO LASER PHYSICS By BÉLA A. LENGYEL. Includes material on solid-state, fluid-state and gas lasers, variation of laser oscillations in space and time, and laser applications, with background on radiation, atomic physics and the theory of lasers. 1966. 311 pages. \$8.95 #### **NETWORK ANALYSIS AND SYNTHESIS** Second Edition. By F. R. Kuo. Covers modern network analysis and synthesis in a single unit. Includes new material on computer techniques in circuit design, Fourier series and Fourier integral, and approximation. 1966. 515 pages. \$11.95 #### **MODERN CERAMICS:** Some Principles and Concepts. Edited by J. E. Hove and W. C. RILEY. Reviews scientific and engineering principles and concepts which have led to the development of modern ceramic technology. Selected examples of exciting new classes of ceramics are described. 1965, 409 pages. \$14.50 #### **ELECTRONICS** By R. H. MATTSON. Provides the basic tools for effective circuit design. 1966. 620 pages. \$12.95 ## RECENT ADVANCES IN OPTIMIZATION TECHNIQUES Edited by A. LAVI and T. P. VOGL. Comprises the papers presented at a symposium held in Pittsburgh in April, 1965. 1966. 656 pages. Prob. \$12.50 #### THIN FILM MICROELECTRONICS: The Preparation and Properties of Components and Circuit Arrays. Edited by L. HOLLAND. 1966, 284 pages. \$9.00 #### **SEMI-CONDUCTORS** By D. A. WRIGHT. Third Edition. A Methuen Monograph on Physical Subjects. 1966. \$3.25. In press. ## FERROMAGNETISM AND FERROMAGNETIC DOMAINS By D. J. CRAIK and R. S. TEBBLE. A North-Holland (Interscience) publication in the Wohlfarth series. 1965. 337 pages. \$14.00 Available from your bookseller, or #### JOHN WILEY & SONS, INC. 605 THIRD AVENUE NEW YORK, N.Y. 10016 | MC704G MC705G MC706G MC706G MC707G MC708G MC709G MC710G MC710G MC711G MC712G MC711G MC712G MC714G MC712G MC721G MC723G MC723G MC723G MC726G MC727G MC800G MC801G MC802G MC803G MC804G MC805G MC805G MC805G MC805G MC805G MC805G MC805G MC805G MC806G MC807G MC813G MC814G MC815G MC816G MC816G MC826G MC827G MC831 MC826G MC827G MC833 MC844 MC845 MC846 MC848 MC845 MC901G MC902G MC901G MC902G MC903G MC901G MC902G MC903G MC901G MC902G MC901G MC902G MC903G MC903G MC903G MC903G MC904G MC904G MC904G MC904G MC904G | 2A 2I 2E1 | MC1115 MC1116 MC1117 MC1118 MC1511 MC1512 MC1519 MC1524 MC1525 MC1526 MC1527 MC1528 MC1528 MC1530 MC1531 MCM601 MCM602 MCM611 MEM1000 MEM1002 MEM1005 MEM2001 MEM2002 MEM2003 MEM2004 MEM2005 MEM2005 MEM2006 MEM2007 MEM3020 MEM3021 MWμL910 MWμL910 MWμL911 MWμL912 MWμL911 MWμL912 MWμL913 MWμL910 MWμL911 MWμL912 MWμL913 MWμL910 MWμL911 MWμL911 MWμL911 MWμL912 MWμL910 MHM3021 μ7095 μ7106 μA709 μA709 μA709 μA709 μA709 μA709 μA710 μA711 μA710 μL903 μL906 μL907 μL906 μL907 μL914 μL915 μL916 μL907 μL914 μL915 μL916 μL907 μL914 μL915 μL916 μL907 μL907 μL914 μL915 μL916 μL907 μL908 MB1001 NB1002 NB1003 NB1004 NB1004 | 1 G
7 B
7 B
8 A F
8 | |---|---|--
--| | MC944 | 1E6 | NB1003 | 2E2 | | MC948
MC962
MC1110 | 1B
1E4 | NB1007
NB1014 | 2E2
2E2 | | MC1111
MC1112 | 8K
1E1
1E1 | NB1015
NC-10
NC-11 | 2E2
1E5
1E3 | | MC1113
MC1114 | 1E1
1E1 | NC/PC8
NC/PC9 | 1B
7J | | | | Lit Flows of the | Dans | | NC/PC12
NC/PC16 | 1B
11 | |--------------------|-----------| | NC/PC17 | 7H | | NC/PC19 | 1B | | NC/PC101 | W8 | | NC/PC511 | 8X | | NC/PC513 | 8X | | ND1002 | 1D | | ND1003 | 1B | | ND1006
NM1003 | 1E6
80 | | NM1004 | 8X | | NM1005 | 8H | | NM1006 | 8H | | NM1008 | 8Q | | NM1021 | 8H | | NM1032 | 8L | | NM1033 | 8L | | NM1037 | 81 | | NM1038
NM2012 | 8J
8U | | NM2012 | 8U | | NM2017 | 8B | | NM2024 | 8G | | NM4002 | 7G | | - 100 | |--| | 21
21
80
81
88
88
88
1E5
1E3
1B
1E5
1E3
11
8H
80
80
80
80
88
88
8X
8X
8X
8X
8X
8X
8X
8X
8X
7F
7F
7F
7F
7F
7F
7F
7F
7F
7F
7F
7F
7F | | 2D
2B
2E1 | | | # RCL1/2"ROTARY SWITCHES ESTABLISHING A NEW SET OF PERFORMANCE STANDARDS! • Up to 12 positions per deck with stops. As many as 6 poles per deck. Shorting and non-shorting poles may be grouped on one deck in any combination. All individual deck parts are self-contained, and are permanently molded into place. • Wiring to switches possible "in the flat". • Easily assembled and disassembled with **WireEasy** construction. "Off-The-Shelf" Delivery Write for complete engineering information ELECTRONICS, INC. General Sales Office: One Hixon Place, Maplewood, New Jersey 07040 ON READER-SERVICE CARD CIRCLE 69 You name the shape, we have it-or we'll make it for you: # For everything in meters you can count on Ideal. Ideal is a specialist's specialist—a complete facility with 100% concentration on meter development and design exclusively. Ideal meters are used by every branch of the Military and by leaders in defense and industry. Whatever you need in meters—ruggedized or commercial, custom and stock, $V_2^{\prime\prime}$ to $7^{\prime\prime}$ —call Ideal, the proven leader. Write for free 52-pg. handbook and catalog. Ideal Precision Meter Co., Inc., 218 Franklin St., Brooklyn, N.Y. 11222. (212) EVergreen 3-6904. PL904 PL905 PL906 2A 2I 2I | PL907 PL908 PL909 PL909 PL910 PL911 PL912 PL913 PL915 PL916 PL921 PL930 PL931 PL932 PL933 PL946 —— Q25AH Q85AH R11001 R11004 R12001 RC103 RC123 RC124 RC144 RC201G RC201T RC202T RC203T RC204G RC201T RC202T RC203T RC204G RC204T RC205T RC206G RC210G RC210G RC210G RC210G | 2E1 2A 2C 2E1 2E1 2A 2C 2E1 2E1 2B 2F 1E3 1B 1D 1F 1E3 80 80 2I 2B 2E2 2E2 2E2 2E2 1E3 1E3 1E3 1E3 1E3 1D 1D 1D 1D | RC243 RC246 RC301 RC322 RC323 RC324 RC344 RC342 RC344 RC401 RC1031 RC1032 RC1033 RC1231 RC1232 RC1233 RC1243 RC1243 RC1243 RC1243 RC1240 RD-206 RD-207 RD-208 RD-206 RD-207 RD-208 RD-210 RD-305 RD-306 RD-307 RD-308 RD-307 RD-308 RD-309 RD-310 RD-505 RD-506 RD-507 RD-508 RD-509 RD-510 RD-509 RD-510 RD-711 RM-50 RM-60 RM-70 | 1E3
1F
2I
2E2
2E2
2E2
2E2
2E2
2E2
2E2
2E2
2E2 | \$1945
\$1945D
\$1946D
\$1948
\$1948D
\$1962
\$1962D
\$11001
\$11004
\$A10
\$A11
\$A20
\$E101
\$E102
\$E105
\$E106
\$E110
\$E111
\$E112
\$E113
\$E115
\$E115
\$E115
\$E124
\$E125
\$E155
\$E156
\$E157
\$E160
\$E170
\$E160
\$E170
\$E181
\$E181
\$E181
\$E181
\$E181
\$E181
\$E180
\$E181
\$E500
\$E504
\$E505
\$E506
\$E506
\$E560
\$E750
\$E806
\$E808 | 1B
1B
1E4
1E4
1B
1B
1E4
1E4
2I
2I
8U
8W
1E4
1E4
1E4
1E4
1E4
1E4
1E4
1B
1D
1D
1D
1D
1D
1D
1D
1D
8E
8U
8U
8U
8U
8U
8U
8W
1E4
1E4
1E4
1E4
1E4
1E4
1E4
1E4 | SF21
SF22
SF33
SF30
SF31
SF32
SF33
SF50
SF51
SF52
SF53
SF60
SF61
SF62
SF63
SF251
SF252
SF253
SF260
SF251
SF252
SF253
SF260
SF251
SF252
SF253
SF260
SF251
SF252
SF253
SF260
SF251
SF252
SF253
SF262
SF263
SG40
SG41
SG42
SG43
SG50
SG51
SG52
SG53
SG52
SG53
SG60
SG61
SG62
SG63
SG92
SG93
SG100
SG101
SG102
SG103 | 3B
3B
3B
3B
3B
3B
3B
3B
3B
3B
3B
3B
3B
3 | |--|--|--|--|---|---|---|---| | RC204Q
RC204T
RC205T
RC206G
RC210G | 1E3
1E3
1J
1E3
1D | RD-509
RD-510
RD-711
RM-50
RM-60 | 1D
1E4
1F
7B
7B | SE504
SE505
SE506
SE560
SE750 | 8U
8H
80
8I
1D | \$G63
\$G92
\$G93
\$G100
\$G101
\$G102
\$G103
\$G110
\$G111
\$G112
\$G113
\$G120
\$G121
\$G122
\$G123
\$G123
\$G130
\$G131
\$G132 | 3D3
3A
3A
3D4
3D4
3D4
3D4
3D4
3D4
3D3
3D3
3D3
3D3 | | RC231G | 1E3 | ide for Tu | 1E4 | SF20 | 3B |
SG133
SG160
SG161
SG162
SG163 | 3C
3C
3C
3C
3C | #### perection entag for tabular parts A new Selection Guide for thin metal tubing and tubular parts covers 62 alloys regularly drawn and fabricated including glass-to-metal sealing alloys. To facilitate mating with other parts during assembly, electronic parts are offered with ID-radiused ends. The same machinery that does the cutting and ID-radiusing also forms flares, flanges, bulges and constrictions at the same time thereby minimizing costs. Automated IDradiusing is limited to O.D.'s of 0.040" to 0.187", walls of 0.003" to 0.025" and lengths of $\frac{1}{8}$ " to 5/8". Standard forming techniques extend these sizes to 0.625" max. O.D., 0.003" min. O.D., walls as thin as 0.0005" and unlimited lengths. Uniform Tubes, Inc. Collegeville, Pa. 19426 3E 3E 3E 3E 3E 3E 3E 3E 3D3 3D3 3D3 3D3 3D4 3D4 3D4 3D4 3D3 3D3 3D3 3D3 SG170 SG171 SG172 SG173 SG180 SG181 SG182 SG183 SG190 SG191 SG192 SG193 SG210 SG211 SG212 SG213 SG220 SG221 SG222 | SG230 | 3E
3E | SN5470 | 3B
3B | |--------------------|------------|--------------------|------------| | SG231
SG232 | 3E | SN5472
SN5473 | 3B | | SG233 | 3E | SN5474 | 3B | | SG240 | 3D3 | SN5480 | 3A | | SG241 | 3D3 | SN5481
SN5490 | 7E
7A | | SG242
SG243 | 3D3
3D3 | SN5491 | 71 | | SG250 | 3D4 | SN5500 | 8U | | SG251 | 3D4 | SN5510 | 8H | | SG252 | 3D4 | SN5832
SN7000 | 1D
4D2 | | SG253
SG260 | 3D4
3D3 | SN7001 | 4D2 | | SG261 | 3D3 | SN7300 | 1B | | SG262 | 3D3 | SN7301 | 1B | | SG263 | 3D3
3E | SN7302
SN7304 | 1B
1B | | SG270
SG271 | 3E | SN7310 | 1E4 | | SG272 | 3E | SN7311 | 1E4 | | SG273 | 3E | SN7320
SN7330 | 1F
1E4 | | SN343A
SN346A | 1D
1D | SN7331 | 1E4 | | SN510B | 5A | SN7350 | 1D | | SN511B | 5A | SN7360 | 1E4 | | SN512B | 5C
5C | SN7370
SN7380 | 1E6
1 | | SN513B
SN514B | 5C | SN7400 | 3D2 | | SN515B | 5C | SN7410 | 3D2 | | SN516B
SN517B | 5C | SN7420
SN7430 | 3D2
3D2 | | SN518B | 5B
5D | SN7440 | 3D2 | | SN521A | 80 | SN7451 | 3D4 | | SN522A | 80 | SN7453
SN7460 | 3D1
3E | | SN523A
SN524A | 8H
80 | SN7470 | 3B | | SN525A | 8H | SN7472 | 3B | | SN526A | 80 | SN7473 | 3B | | SN530 | 1B | SN7474
SN7480 | 3B
3A | | SN531
SN532 | 1E4
1E2 | SN7481 | 7E | | SN533 | 1E4 | SN7490 | 7A | | SN534 | 1E2 | SN7491
SN7500 | 71
8U | | SN535
SN723 | 1D
8H | SN15830 | 1E3 | | SN724 | 80 | SN15831 | 1B | | SN1729 | 2A | SN15833 | 1F | | SN1730
SN1731 | 2C
2E1 | SN15844
SN15846 | 1E3
1E3 | | SN1731 | 2F | SN15848 | 1B | | SN1733 | 2E1 | SN15850 | 1B | | SN1734 | 2A | SN15851
SN15862 | 11
1E3 | | SN1735
SN5101B | 21
5A | SN15930 | 1E3 | | SN5111 | 5A | SN15931 | 1B | | SN5112 | 5A | SN15932
SN15933 | 1D
1F | | SN5113
SN5161B | 5A | SN15944 | 1E3 | | SN5161B
SN5162B | 5C
5C | SN15945 | 1B | | SN5191 | 5C | SN15946 | 1E3 | | SN5301 | 1B | SN15948
SN15950 | 1B
1B | | SN5302
SN5304 | 1B | SN15951 | 11 | | SN5304
SN5311 | 1B
1E4 | SN15962 | 1E3 | | SN5331 | 1E4 | SN54930
SN54932 | 3D2
3C | | SN5360 | 1E4 | SN54946 | 3D2 | | SN5370
SN5380 | 1E6 | SN54948 | 3B | | SN5400 | 3D2 | SN54962
SN54965 | 3D2
3D2 | | SN5410 | 3D2 | SN54966 | 3D2
3D4 | | SN5420 | 3D2 | SN74930 | 3D2 | | SN5430
SN5440 | 3D2
3D2 | SN74932 | 3C | | SN5450 | 3D2
3D4 | SN74946
SN74948 | 3D2
3B | | SN5451 | 3D4 | SN74962 | 3D2 | | SN5453 | 3F | SN74965 | 3D2 | | SN5460 | 3E | SN74966 | 3D4 | | | | | | # SHIELDED "BLACK BOXES" #### protect custom test circuits with effective RF shielding Use these unique component-mounting die-cast aluminum containers to package active, passive, or isolation networks, voltage dividers, attenuators, or other specific testing circuitry...with RF shielding. Select from 12 different connector combinations to fit existing test equipment. Aluminum cover secured by four self-tapping screws. Solder turret terminals provide permanent, noise-free connections. The complete series of Shielded "Black Boxes" is described and illustrated in the new Pomona General Catalog, 11-66. Write for your free copy today. ## **POMONA** ELECTRONICS CO., INC. 1500 East Ninth Street, Pomona, California 91769 Telephone (714) 623-3463 ON READER-SERVICE CARD CIRCLE 71 # IS AIR MOVEMENT YOUR PROBLEM? WANT GUARANTEED #### TROUBLE-FREE PERFORMANCE? Over 5 million successful installations! That's the record of the Howard Unit Bearing Motor, available only in HOW-ARD CYCLOHM Fans and Blowers. A complete line engineered to provide greater output at less cost, and guaranteed for 5 years to require no maintenance or re-lubrication. For rating tables, prices and full information, ask for the Howard Fan and Blower bulletins. | ST2514B
SU300
SU305
SU306
SU314
SU315
SU316
SU320
SU331
SU332
SW101
SW102
SW103
SW104
SW115
SW201
SW201
SW201
SW201
SW201
SW201
SW204
SW211
SW212
SW221
SW224
SW231 | 5A
7K
7K
7K
7K
7K
7K
1E3
1E3
1E3
1E3
1E3
1E3
1E3
1E3
1E3 | SWF253
SWF260
SWF261
SWF262
SWF263
SWG4A
SWG5A
SWG5B
SWG14
SWG16
SWG21
SWG40
SWG41
SWG40
SWG41
SWG42
SWG43
SWG50
SWG51
SWG52
SWG53
SWG53
SWG50
SWG51 | 3B
3B
3B
3B
3D2
3D2
3D1
3D1
3D2
3D2
3D2
3D2
3D1
3D1
3D1
3D1
3D1
3D1 | |---|---|---|--| | SW301 | 4D2 | SWG62 | 3D2 | | SW304 | 4C | SWG63 | 3D2 | | SW305 | 4E | SWG90 | 3D4 | | SW306 | 4D2 | SWG91 | 3D4 | | SW307 | 4D2 | SWG92 | 3D4 | | SW308 | 4B | SWG93 | 3D4 | | SW309 | 4D1 | SWG100 | 3D1 | | SW310 | 4D1 | SWG101 | 3D1 | | SW311 | 4D1 | SWG102 | 3D1 | | SW402 | 3D2 | SWG103 | 3D1 | | SW708 | 1E3 | SWG110 | 3D1 | | SW930 | 1E3 | SWG111 | 3D1 | | SW931 | 1B | SWG112 | 3D1 | | SW932 | 1D | SWG113 | 3D1 | | SW933 | 1F | SWG120 | 3D2 | | SW944 | 1D | SWG121 | 3D2 | | SW945 | 1B | SWG122 | 3D2 | | SW946 | 1E3 | SWG123 | 3D2 | | SW948 | 1B | SWG130 | 3D2 | | SW962 | 1E3 | SWG131 | 3D2 | | SW5400 | 3D2 | SWG132 | 3D2 | | SW5410 | 3D2 | SWG133 | 3D2 | | SW5420 | 3D2 | SWG140 | 3D2 | | SW5430 | 3D2 | SWG141 | 3D2 | | SW5440 | 3D2 | SWG142 | 3D2 | | SW5450 | 3D4 | SWG143 | 3D2 | | SW5460 | 3E | SWG150 | 3E | | SW5470 | 3B | SWG151 | 3E | | SW7400 | 3D2 | SWG152 | 3E | | SW7410 | 3D2 | SWG153 | 3E | | SW7420 | 3D2 | SWG170 | 3E | | SW7430 | 3D2 | SWG171 | 3E | | SW7440 | 3D2 | SWG172 | 3E | | SW7450 | 3D4 | SWG173 | 3E | | SW7460
SW7470
SWA01
SWA02
SWA04 | 3E
3B
1E3
1E3
1F | SWG180
SWG181
SWG182
SWG183 | 3E
3E
3E
3E | | SWA05 | 1E3 | SWG210 | 3D1 | | SWF10 | 3B | SWG211 | 3D1 | | SWF11 | 3B | SWG212 | 3D1 | | SWF12 | 3B | SWG213 | 3D1 | | SWF13 | 3B | SWG220 | 3D2 | | SWF20 | 3B | SWG221 | 3D2 | | SWF21 | 3B | SWG222 | 3D2 | | SWF22 | 3B | SWG223 | 3D2 | | SWF23 | 3B | SWG230 | 3E | | SWF50 | 3B | SWG231 | 3E | | SWF51 | 3B | SWG232 | 3E | | SWF52 | 3B | SWG233 | 3E | | SWF53 | 3B | SWG240 | 3D2 | | SWF250 | 3B | SWG241 | 3D2 | | SWF251 | 3B | SWG242 | 3D2 | | SWF252 | 3B | SWG243 | 3D2 | | SWG250
SWG251 | 3D1
3D1 | USO101A
USO102A | 5A
5C | |--|------------|--------------------|------------| | SWG252 | 3D1 | US0102A | 5C | | SWG253
SWG260 | 3D1
3D2 | w_ | | | SWG261 | 3D2 | WC183G | 8C | | SWG262
SWG263 | 3D2
3D2 | WM108
WM201 | 8L
1E3 | | SWG270 | 3E | WM202 | 1B | | SWG271
SWG272 | 3E
3E | WM203 | 1B
1E3 | | SWG273 | 3E | WM204
WM205 | 1J | | —T— | | WM206
WM208T | 1E3
7C | | T35-002 | 2H | WM210 | 1D | | TFF3011 | 3B | WM211
WM212 | 1E3
1B | | TFF3013
TFF3015 | 3B
3B | WM213
WM214 | 1B
1E3 | | TFF3017
TMC40001 | 3B
5C | WM214
WM215 | 1E3 | | TMC40002 | 5D | WM216
WM217 | 1E3
1F | | TMC40003
TMC40004 | 5A
5C | WM221 | 1E3 | | TMC40005 | 8H | WM224
WM225G | 1E3
1B | | TMC40006
TNG3011 | 80
3D3 | WM226G | 1E3 | | TNG3013
TNG3015 | 3D3
3D3 | WM227
WM231 | 1F
1E3 | | TNG3017 | 3D3 | WM234G
WM236G | 1D
1E3 | | TNG3031
TNG3041 | 3D3
3D3 | WM241G | 1E3 | | TNG3043 | 3D3 | WM246
WM246G | 1E3
1E3 | | TNG3045
TNG3047 | 3D3
3D3 | WM261G | 1E3 | | TNG3051 | 3E | WM286G
WM296G | 1E3
1E3 | | TNG3111
TNG3113 | 3D3
3D3 | WM503 | 1B | | TNG3115
TNG3117 | 3D3
3D3 | WM506
WM510 | 1E3
1D | | TNG3131 | 3D3 | WM556
WM701 | 1E3 | | TNG3141
TNG3143 | 3D3
3D3 | WM704 | 3D3
3D3 | | TNG3145 | 3D3 | WM1101
WM1102 | 8S
8N | | TNG3147
TNG3211 | 3D3
3D3 | WM1106 | W8 | | TNG3213
TNG3215 | 3D3
3D3 | WM1116
WM1126 | 8W
8W | | TNG3217 | 3D3 | WM1136
WM1146 | 8W
8W | | TNG3231
TNG3241 | 3D3
3D3 | WM1146Q | 8E | | TNG3243 | 3D3 | WS112y
WS115 | 8W
8H | | TNG3245
TNG3247 | 3D3
3D3 | WS123 | 8H | | TNG3251 | 3E | WS140y
WS141G | 8Q
8H | | ΤΤ _μ L103
ΤΤ _μ L104 | 3D3
3D3 | WS142
WS143G | 8H | | U | | WS144 | 8H
8H | | | 152 | WS150
WS150Q | 1C
7D | | UC1001B
UC1002B | 1E3
1B | WS151 | 8D | | UC1003B
UC1004B | 1D
1A | WS153
WS1610 | 8H
80 | | UC1005B | 1F | WS277 | 2E2 | | UC1006B
UC1501A | 1 F
8 L | WS371
WS8100 | 4D1
1E2 | | UC1502A | 8P | WS811Q
WS812Q |
1E3
1E2 | | UC1503A
UC1504A | 8L
8P | WS813Q | 1E1 | | UC1505A
UC1506A | 8L | WS814Q
WS815 | 1E2
1C | | UC1507A | 8P
8L | WS816 | 1D | | UC1508A
UC1509A | 8M
8R | WS817
WS8170 | 1D
1D | | UC1510A | 8R | WS934 | 8T | | USO100A | 5A | WS1454 | 8Q | 4700 Series # MICRO-MINIATURE Highest Q Variable Air Capacitors New Johanson 4700 Series variable air capacitors provide, in micro miniature size, the high Q important in demanding aerospace applications. In addition their ultra-rugged construction assures highest reliability in the most critical environments. Available in printed circuit, turret and threaded terminal types. #### SPECIFICATIONS Size: .145 diameter, ½" length Q @ 100 MC, >5000 Q @ 250 MC, >2000 Capacity Range: 0.35 pF to 3.5 pF Working Voltage: 250 VDC (test voltage, 500 VDC) Insulation Resistance: > 106 Megohms Temp. Range: —55°C to 125°C Temp. Coefficient: 50±50 ppm/°C Write today for full data. 400 Rockaway Valley Road, Boonton, N. J. 07005 (201) 334-2676 - GLECTRONIC ACCURACY THROUGH MECHANICAL PRECISION. ON READER-SERVICE CARD CIRCLE 26 # Why IEE rear-projection readouts make good reading Not the kind of good reading you'd curl up with on a rainy night. But a more important kind if you're designing equipment that requires message display. Reason is that IEE readouts are the most readable readouts around. If you've seen them, you know this to be fact. If you haven't as yet, here is why our readouts make such good reading: #### **SINGLE-PLANE PRESENTATION** No visual hash of tandem-stacked filaments. IEE readouts are miniature rear-projectors that display the required messages, one at a time, on a non-glare viewing screen. Only the message that's "on" is visible. #### EASY-TO-READ CHARACTERS Since IEE readouts can display anything that can be put on film, you're not limited to thin wire filament, dotted, or segmented digits. Order your IEE readouts with familiar, highly legible characters that meet human factors and Mil Spec requirements. This section from our sample type sheet gives you an idea of the styles available that offer optimal stroke/width/height ratio for good legibility. #### BALANCED BRIGHTNESS/CONTRAST RATIO The chart below is a reasonable facsimile of character brightness and how it affects readability. The background is constant, but the brightness increases from left to right. You can draw your own conclusions, armed with the fact that IEE readouts give you up to 90 foot lamberts of brightness. Brightness, however, isn't the sole factor in judging readability. Background contrast is equally important – a fact we've simulated below, reading from left to right. Obviously, brightness without contrast or vice versa, doesn't do much for readability. A balanced ratio of both gives you the crisp legibility of IEE readouts. IEE's unique combination of singleplane projection, flat viewing screen, balanced ratio of brightness/contrast, and big, bold characters makes for wide-angle clarity and long viewing distances. #### **OTHER WAYS IEE READOUTS MAKE GOOD SENSE** As if the superior readability of our readouts weren't enough, here are a few reasons why IEE readouts make good sense in other areas: #### INFINITE DISPLAY VERSATILITY Because our readouts use lamps, lenses, film, and a screen, they can display literally anything that can be put on film. That means you have up to 12 message positions with each readout to display any combination of letters, words, numbers, symbols, and even colors! **FIVE SIZES TO PICK FROM** IEE readouts now come in five sizes providing maximum character heights of %", %", 1", 2", and 3%". The smallest is the new Series 340 readout that's only %" H x %" W, yet can be read from 30 feet away. The largest, the Series 80, is clearly legible from 100 feet away. #### **EASY TO OPERATE** IEE readouts are available with voltage requirements from 6 to 28 volts, depending on lamps specified. Commercial or MS lamps may be used, with up to 30,000 hours of operation per lamp. Lamps may be rapidly replaced without tools of any kind. Our readouts operate from straight decimal input or will accept conventional binary codes when used with IEE low-current driver/decoders. For more proof why IEE rear-projection readouts make good reading, send us your inquiry. You'll see for yourself why they've been making the best seller list, year after year! 7720 Lemona Avenue, Van Nuys, California Phone: (213) 787-0311 • TWX (910) 495-1707 Representatives in Principal Cities 61966 IEE ### For free reprints just circle the numbers on your Reader-Service Card. Planning to use MOS arrays? Learn which factors influence equipment weight, size and power as well as system cost. Circle Reader-Service No. 510. New FETs replace tubes in audio equipment on a one-for-one basis. The advantages include higher gain and reduced distortion, with little parameter drift. *Circle Reader-Service No. 511*. Its what's up front that counts when good noise performance is needed in integrated amplifiers. An analysis of direct-coupled cascades proves the point. *Circle Reader-Service No. 512*. A FET operating at UHF? That's right. And here's how to design a high-gain, low-noise, stable 500 MHz amplifier with field-effect transistors. Circle Reader-Service No. 513. Simplify NAND-circuit synthesis in your next logic design. Here are the various methods for implementing a logic function entirely with NAND gates. *Circle Reader-Service No. 514*. # with TI semiconductor instrumentation #### MODEL 553 DYNAMIC TEST SYSTEM (upper right) for single-socket d-c and dynamic testing of IC's, thin films, modules, discrete semiconductors. The 553 makes digitally-programmed automatic measurements with an accuracy of 1% of reading. Operators can easily learn to program tests using simple mnemonic language. #### MODEL 665 TRANSISTOR TEST SYSTEM (upper left) for transistors and diodes features fast program changes. Change paper tape program in 10 seconds. Make any number of d-c and pulse tests with programmable socket configuration. #### MODEL 635B RESISTIVITY METER A portable a-c test instrument for measuring bulk, slice and sheet resistivity of semiconductor material. A 5-point probe gives high accuracy. Range is from .001 to 300 ohm-cm fs; 0.1 to 3000 ohms/sq. INDUSTRIAL PRODUCTS GROUP # TEXAS INSTRUMENTS APPARATUS DIVISION P. O. BOX 66027 HOUSTON, TEXAS 77006 # Did you know Sprague makes...? #### UNICIRCUIT® mW RTL INTEGRATED CIRCUITS TO-5 CASE Types US-0908 through US-0921 ... Fully interchangeable mW digital building blocks featuring power consumption of 4 mW/node and propagation delay of 40 nsec ON READER-SERVICE CIRCLE 102 #### UNICIRCUIT® CUSTOM HYBRID CIRCUITS Combine monolithic silicon circuits with tantalum or Ni-Cr alloy resistors. Close resistance tolerances, low temperature coefficient. Resistor matching, $\pm \frac{1}{2} \%$. ON READER-SERVICE CIRCLE 105 #### **DIGITAL-TO-ANALOG CONVERSION CIRCUITS** UT-1000-Four-bit ladder network UT-4001—Ladder switch for driving resistor ladder networks UT-4024—Buffer amplifier ON READER-SERVICE CIRCLE 108 #### DIFFERENTIAL AMPLIFIER TRANSISTOR PAIRS NPN or PNP . Matched characteristics. $h_{FE} = 10-20\%$. $\triangle V_{BE} = 5-20$ mV. $\triangle V_{BE}/Temp = 5-20\mu V/^{\circ}C$. ON READER-SERVICE CIRCLE 103 #### LOW-COST HERMETICALLY-SEALED PLANAR TRANSISTORS TN SERIES (NPN) High Voltage Switches Low Level Amplifiers High Speed Switch/Amplifiers Choppers Power Amplifiers Core Drivers TO SERIES (PNP) Low Level Amplifiers High Gain Switch/Amplifiers High Speed Switches ON READER-SERVICE CIRCLE 106 #### TW-3000 MICROPOWER PNP SILICON HIGH-SPEED **SWITCHING TRANSISTORS** Fastest switching transistor available in the 1 to 100 µA range $C_{ib} = 0.7 pF typ., 1.5 pF max.$ $C_{ob} = 1.5 pF typ., 2.5 pF max.$ #### UNICIRCUIT® RCTL INTEGRATED CIRCUITS Sprague Series US-0100 . . . a complete line of monolithic digital building blocks featuring low power consumption (2 mW typ.) ON READER-SERVICE CIRCLE 101 #### MULTIPLE TRANSISTORS (NPN-PNP PAIRS/QUADS) | Pairs | Quads | |-------------|-------------| | 2 NPN | 4 NPN | | 2 PNP | 4 PNP | | 1 NPN—1 PNP | 2 NPN—2 PNP | ON READER-SERVICE CIRCLE 104 #### SILICON ALLOY REPLACEMENT TRANSISTORS #### **FULL PLANAR RELIABILITY** 2N945 2N1026 2N327A 2N328A 2N946 2N1469 2N329A 2N1025 2N1917 Sprague makes 82 standard highemitter-voltage full planar silicon alloy replacement types. ON READER-SERVICE CIRCLE 107 For complete technical data on any of these products, write to: Technical Literature Service **Sprague Electric Company** 347 Marshall Street North Adams, Mass. 01247 ON READER-SERVICE CIRCLE 109 #### SPRAGUE COMPONENTS INTEGRATED CIRCUITS THIN-FILM MICROCIRCUITS TRANSISTORS CAPACITORS RESISTORS PULSE TRANSFORMERS INTERFERENCE FILTERS PHI SE FORMING NETWORKS TOROIDAL INDUCTORS **ELECTRIC WAVE FILTERS** CERAMIC-BASE PRINTED NETWORKS PACKAGED COMPONENT ASSEMBLIES BOBBIN and TAPE WOUND MAGNETIC CORES SILICON RECTIFIER GATE CONTROLS FUNCTIONAL DIGITAL CIRCUITS 'Sprague' and '@' are registered trademarks of the Sprague Electric Co