

Thermionic activity heats up as new advances promise silent power for the Army, high power for long-range space flight. A 100 -watt thermionic diode is
shown below. • New heat pipe allows greater efficiency in heat source-to-diode coupling. - Coming: A 3-kW generator with a 36 -diode array. (See page 17.)



We have been designers and manufacturers of flight controls and special aircraft devices for the past 10 years. A great many engineers and purchasing people think of Clifton only as a leadermanufacturer of rotating components, synchros, servo motors and resolvers. We would like to point out that we also develop, design and produce servo sub-assemblies, to the most exacting requirements. These precision-engineered modules are now flying, or will soon fly, in our coun-
try's most important aircraft.
These packages are built to Clifton synchro standards of reliability and accuracy . . . and in production quantities. While we can hand build models for you, we excel in "in-line" quantity and quality production.

Give us the opportunity to discuss your next servo package need! Do it now, today!

Call 215 622-1000 and ask for Mr. E. Fisher, or TWX 215 623-1183.

## Select the oscillator you want,

 then choose the power supply that gives the performance you need... power, frequency stability, pulse and/or square-wave modulation, amplitude-regulated output, $115-\mathrm{V}$ or $230-\mathrm{V}$ input.

There are 32 different combinations offered here, each with a different set of features for your measurement needs. The seven oscillators from which you can choose provide continuous frequency coverage from 500 kHz to 2000 MHz and have typical outputs of several hundred milliwatts. All but two of these can be mated with any of five power supplies to provide a variety of operating conditions. Prices for oscillator/power-supply combinations range from $\$ 355$ to $\$ 1104$ in the U.S.A.

Please write for complete information.


## Typical Oscillator/Power-Supply Combination <br> Type 1361-A4 . . . \$680

$450-$ to $1050-\mathrm{MHz}$ oscillator with a power supply that provides stable CW and $100 \%$ square-wave and pulse modulation, bench model. This oscillator also usable with any of the other four power supplies, for bench use or rack mounting.


## ARE YOU OVERLOOKING REDCOR'S 663 series A to D converter (15 bit accuracy) and MULTIPLEXER (up to 256 channels) SYSTEMS ?



## CHECK THESE FEATURES

$\square$ SYSTEM REPEATABILITY AND RESOLUTION $- \pm 0.01 \% \pm$ $1 / 2$ L.S.B., 3 sigma error distribution ( 15 bit binary or 17 bit BCD).
$\square$ SYSTEM THROUGHPUT RATES -43 kc at 13 bits and 36 kc at 15 bits.
$\square$ DIFFERENTIAL SAMPLE AND HOLD - ADerture time less than 100 nanosecs; $5 \mu$ secs settling time. ( $0.01 \%$ )
$\square$ HIGH INPUT IMPEDANCE - 100 megohms for both differen tial and common mode signals (selected or unselected channels). $\square$ ANALOG-DIGITAL GROUND ISOLATION is obtained by differential amplifiers with high common mode rejection maintaining a system accuracy of $0.01 \%$
$\square$ OVERLOAD RECOVERY - Each input is clamped so that the system will recover from a 100 V overload in one channel time.
$\square$ "NO COST" OPTIONS include true and false digital outputs, positive or negative logic levels from 6 V to 12 V , Absolute Value and Sign or complement output coding, internal-external bit clock, and internal-external reference.
$\square$ AUTOMATIC - sequential or random access multiplexer ad dress, internal-external bit clock. MANUAL by front panel multiplexer advance and A.D start
$\square$ EXTRA CARD SLOTS for expansion of the basic system using compatible REDCOR modules to meet specific customer total data acquisition systems requirements.

MULTIPLEXER EXPANDABLE from 1 to 256 channels in 1 channel increments (1 plug-in microelement per channel)
$\square$ INTEGRATED CIRCUIT DESIGN AND ALL SILICON DESIGN increases system reliability and overall performance; reduces physical size; lowers system power consumption.
$\square$ MTBF - Calculated per MIL handbook 217 - 3500 hours. Actual experience in excess of 36 machine months operation with no failures
$\square$ TOTAL PLUG•IN FEATURES including power supply and front panel assembly provides unique ease of maintenance.
$\square$ PLUG-IN MICROELEMENTS allow inexpensive spares provisioning and minimizes total troubleshooting costs.
$\square$ BUILT.IN FILTER AND ATTENUATOR - No reduction in num. ber of channels necessary.
$\square$ EXTERNAL REFERENCE - The A-D Converter can be slaved to an external reference voltage if desired.
$\square$ PATCHABLE number of sequence positions or channels.
$\square$ TEST POINTS on the integrated circuit modules eliminates the necessity of back-plane probing.
$\square$ COMPLETE FUNCTIONS are contained on individual 8"x12" modules for ease of maintenance. The system consists of only 5 different types of modules including power supply.
For complete specifications, write for Brochure 663

# Electronic Design 16 

## NEWS

13 News Scope
17 Interest renewed in thermionic converters
Army is developing $3-\mathrm{kW}$ devices for field use and NASA is testing the feasibility of $200-\mathrm{W}$ nuclear-fueled units for space service.
20 Phased arrays break the inertia barrier Computer, ferrite and semiconductor technology brings new life to radar in the form of phased arrays.
26 Vest-pocket TV demonstrated.
28 Hearing aids protect aircraft.
31 Washington Report
33 Letters
35 Editorial: An ill wind blows for the baccalaureate.

## TECHNOLOGY

38 Simplify IF amplifier design by letting gain and bandwidth guide the stage development. Here is the procedure for a double-tuned, wide-band $45 \cdot \mathrm{MHz}$ strip.
46 Make impedance matching easier by dividing the Smith chart into regions that provide a quick insight into the effects of alternate matching circuits.
52 Microelectronics opens the gate to faster digital computers. Faster algorithms take advantage of reductions in hardware size and cost.
60 Nomograph gives amplifier noise data rapidly once a transistor noise figure is known. It also helps to select the correct device.
64 So you want to be an inventor. There are three things you had better do before applying for a U.S. patent. Do them before you start to invent.
70 Ideas for Design

## PRODUCTS

78 Test Equipment: Digital memory scope plucks obscured signals out of noise.
86 Components
90 Production Equipment
92 Semiconductors
96 Microelectronics
98 Microwaves

## Departments

100 Design Aids
102 Application notes
106 New Literature
110 Advertisers' Index
112 Designer's Datebook

## Spanning the

 range of low-noise klystron oscillator capabilities

C BAND
Frequency
Mechanical Tuning
Power Output
AM Noise
Performance (Bench)

VA-521
5.5 to 7.0 GHz

100 Mc
Up to 5 Watts
Better than 125 db below the
Carrier (in a 1 Kc bandwidth 10 Kc from the Carrier)

Ka BAND
Frequency (Fixed)
Power Output
FM Noise
Performance Under
Environment
FM Vibration Sensitivity

VA-531
26.5 to 33.0 GHz

Up to 1 Watt
(Random Vibration or Sinusoidal)

Less than 200 Hz per G at the vibration frequency

When ultra-low spectral noise is a critical factor in your oscillator requirements, Varian offers you proven, total capability from C band through Ka band.
Measuring low noise is standard procedure at Varian, and has been for many years. Noise measurements are made under both laboratory AND stringent environmental conditions.

For more information about Varian's low spectral noise capabilities, write the Palo Alto Tube Division, 611 Hansen Way, Palo Alto, California. In Europe: Varian A.G., Zug, Switzerland. In Canada: Varian Associates of Canada, Ltd., Georgetown, Ontario.
(vA varian


## I had an expensive feature-packed power supply. didn't think I needed this one, too. I was wrong.

I bought my inexpensive Acopian K55 Power Supply just as a stand-by source of regulated DC. I soon found it would handle most of my solid state work and I kept it right on my bench. Not for long, though.

Everytime I switched it off, someone took it.
"Perfect for production testing," said our Manufacturing Manager.
"Can I borrow it for classroom use?" asked our Training Director.

Qualification Testing wanted it to power a month-long life test.
"Great for product demonstrations," say the salesmen. "It fits into a brief case."

One morning it was gone - kidnapped to operate equipment at a trade show!

Now the K 55 is back on my bench again. All I did was suggest (tactfully) that they all buy their own: only $\$ 98$. And they did.

ON READER-SERVICE CARD CIRCLE 216

There are many uses for the compact Acopian K55 Power Supply. It is voltage regulated, all silicon, and electronically protected against shorts. It delivers 300 ma over a range of 1.25 to 30 volts DC, yet weighs only 3 pounds.

For specifications, demonstration, or 3-day shipment, contact your local Acopian representative, or call Acopian Corp., Easton, Penna. (215) 258-5441.

A AqMint

# Tektronix spectrum analyzers cover the spectrum 

## 

1 MHz to 36 MHz
TYPE 1 L10

## 10 MHz to 4.2 GHz

TYPE 1 L 20

## 925 MHz to 10.5 GHz <br> TYPE 1L30

They're all designed by Tektronix specifically for use in Tektronix oscilloscopes

Features of Tektronix Spectrum Analyzers<br>(Types 1L20 and 1L30)<br>- Internal phase lock<br>- 100 MHz calibrated dispersion<br>- 1 kHz resolution<br>- $\pm 1.5 \mathrm{~dB}$ display flatness

With any Tektronix oscilloscope that accepts letter and 1 -series plug-ins, plus one of these spectrum analyzer plug-ins, you can extend the measurement capability of your laboratory to include spectrum analysis in the frequency range between 1 MHz and 10.5 GHz .
The Tektronix combination of spectrum analyzer and oscilloscope lets you make simple and accurate frequency measurements directly from the CRT display. The availability of many other plug-ins makes the oscilloscope an even more versatile laboratory measurement instrument.
Tektronix offers an outstanding measurement value in an oscilloscopespectrum analyzer package, particularly when its cost is compared with a typical single-purpose spectrum analyzer.

TEKTRONIX SPECTRUM ANALYZER CHARACTERISTICS

For a demonstration, call your nearby
Tektronix field engineer, or write:
Tektronix, Inc.,
P. O. Box 500,

Beaverton, Oregon 97005.
U.S. Sales Prices, I.o.b. Beaverton, Oregon

|  | TYPE 1 L10 (for use in letle | TYPE 1 L20 ektronix oscilloscop and 1 -series plug-in | TYPE 1 L30 accepting units) | TYPE 3L10 (for use in Type 561 A, 564 and 565 |
| :---: | :---: | :---: | :---: | :---: |
| Frequency Range | 1 MHz to 36 MHz | 10 MHz to 4.2 GHz | 925 MHz to 10.5 GHz | 1 MHz to 36 MHz |
| Sensitivity | -100 dBm | $\begin{aligned} & -110 \mathrm{dBm} \text { to } \\ & -90 \mathrm{dBm} \end{aligned}$ | $\begin{aligned} & -105 \mathrm{dBm} \text { to } \\ & -75 \mathrm{dBm} \end{aligned}$ | -100 dBm |
| Calibrated Dispersion | $\begin{aligned} & 2 \mathrm{kHz} / \mathrm{cm} \text { to } \\ & 10 \mathrm{~Hz} / \mathrm{cm} \end{aligned}$ | $10 \mathrm{MHz} / \mathrm{cm}$ to $1 \mathrm{kHz} / \mathrm{cm}$ |  | $2 \mathrm{kHz} /$ div to $10 \mathrm{~Hz} / \mathrm{div}$ |
| Resolution | 1 kHz to 10 Hz | 100 kHz to 1 kHz |  | 1 kHz to 10 Hz |
| Incidental FM | IF: 5 Hz LO: $25 \mathrm{~Hz}+$ <br> $1 \mathrm{~Hz} / \mathrm{MHz}$ dial frequency | With internal phase lock, less than 300 Hz |  | IF: 5 Hz <br> LO: $25 \mathrm{~Hz}+$ $1 \mathrm{~Hz} / \mathrm{MHz}$ dial frequency |
| Display | Log, linear, linear X 10 and video | Log, linear, square law and video |  | Log; linear and video |
| Price | \$1100 | \$1825 | \$1825 | \$1200 | in oscilloscope design, write D. A. Thompson, professional placement manager.

## Chances are about 100 to 1 that one of these three frequency synthesizers will do your job better... and for less too! Cover the frequency range of 50 Hz to 11 MHz with the Model 304 A ; the 50 Hz to 1.1 MHz band with the Model 303A... and from 10 Hz to 110 KHz with the Model 302A. If one of these won't do, we can probably make a special that will; give us a call.

Fluke/Montronics frequency synthesizers use direct synthesis. Because phase locked oscillators aren't used, the output is extremely pure and phase stable. These synthesizers may be remotely programmed. Readout is illuminated inline.

Each band is covered in 1 Hz steps. Modular construction means 0.1 or 0.01 Hz steps on order. The search oscillator can be used to vary continuously the output frequency. Oscillator voltage is controlled from either front panel calibrated dial or an external source.

Long term stability and accuracy equal that of the input source. Switching time from one frequency to any other is less than 1 millisecond. Price of the Model 304A is $\$ 6,950$; the Model 302A $\$ 4,250$; and the Model 303A, $\$ 4,825$.

For full information, call your Fluke/Montronics representative or write.


MONTRONICS, INC.

MONTRONICS•Box 7428, Seattle, Wash. • Phone: (206) 776-3141•TWX: (910) 449-2850
Model 303A

Model 302A


# Uniring grounds a shielded cable in less time than it takes to heat a soldering iron. 



Uniring combines inner and outer ferrules in unitized construction. Simply insert a stripped conductor and tap wire, then crimp. One crimp does it. No heat. No burnt cables.
Result: A vibration-resistant, noise-free connection that is mechanically and electrically stable. A uniform connection that takes virtually no time to make.

Uniring terminations are color coded for fool-proof size selection. And the insulated Uniring employs a nylon sleeve that's flared for fast, easy insertion of the shielding braid and tap. (These connectors are also available uninsulated.) No other type of connector is as fast, as reliable, or as low in cost to use. Time and labor savings offered
by the compression method of grounding and terminating shielded cable are recognized by the military and referred to in MIL-E-16400 and MIL-I-983. Burndy Uniring terminations conform in all details to MIL-F-21608 (dated 1/5/59). Send today for a free sample and catalog.


# Small and stable -capacitors for a filter man's thinking 



ACTUAL SIZE

Kemet Flat-Kap: Parylene dielectric extended-foil capacitors with excellent stability in a very small plug-in conformal design. Available with tight tolerances.

Typical retrace stability is $0.1 \%$ from cycling, use, or storage, over the full operating range from $-55^{\circ}$ to $+125^{\circ} \mathrm{C}$, with nominal T.C. $-200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. They are available in any value from 0.001 to $0.100 \mu \mathrm{~F}, 50$ VDC, with tolerances as tight as $\pm 1 \%$. Insulation resistance is $1,000,000$ megohms, minimum, at $25^{\circ} \mathrm{C}$. Flat-Kap capacitors are up to $95 \%$
smaller than glass, mica, porcelain or polystyrene.
The reason: A remarkable new dielectric from Union Carbide research called Parylene. Vacuum-vapor-deposited in micron-range thickness on aluminum foil, Parylene offers, in minimum capacitor volume, the very stable characteristics demanded by today's precision circuitry.

Even if you're not a filter designer, you'll probably think of circuit problems the Flat-Kap capacitor can solve. For technical details, mail the coupon.


Superior capacitance stability of Flat-Kap capacitors.
Regional Sales Offices
East Coast: J. G. Egan, 1341 Hamburg Turnpike, Wayne, New Jersey 07472. Phone: 201-696-2710/Mid-Atlantic: R. H. Robecki, 1341 Ham burg Turnpike, Wayne, New Jersey 07472. Phone: 201-696-2710 / MidWest and South: K. S. Collart, P. O. Box 6087, Cleveland, Ohio 44101 Phone: 216-221-0600 / West Coast: B. G. Bryant, 701 East Whittier Blvd. Whittier, California 90605. Phone : 213-698-8077.

KEMET is a registered trade mark of Union Carbide Corporation.


## Did you know Sprague makes...?

## UNICIRCUIT ${ }^{\circ} \mathrm{mW}$ RTL

 INTEGRATED CIRCUITS
to. 5 CASE
Types US-0908 through US-0921 . . . Fully interchangeable mW digital building blocks featuring power consumption of $4 \mathrm{~mW} /$ node and propagation delay of 40 nsec

DIFFERENTIAL AMPLIFIER TRANSISTOR PAIRS


NPN or PNP • Matched characteristics. $h_{\mathrm{FE}}=10-20 \% . \Delta \mathrm{V}_{\mathrm{BE}}=5.20 \mathrm{mV}$. $\Delta \mathrm{V}_{\mathrm{BE}} / \mathrm{Temp}=5-20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.

ON READER-SERVICE CIRCLE 103



ON READER-SERVICE CIRCLE 106


ON READER-SERVICE CIRCLE 109

ON READER-SERVICE CIRCLE 108
CIRCLE 102

## UNICIRCUIT ${ }^{\circ}$ CUSTOM HYBRID CIRCUITS



Combine monolithic silicon circuits with tantalum or Ni - Cr alloy resistors. Close resistance tolerances, low temperature coefficient. Resistor matching, $\pm 1 / 2 \%$.
integrated circuits THIN.FILM MICROCIRCUITS TRANSISTORS
CAPACITORS
RESISTORS
499.6120
pulse transformers interference filters PULSE.FORMING NETWORKS TOROIDAL INDUCTORS electric wave filters

CERAMIC-BASE PRINTED NETWORKS packaged component assemblies bobbin and tape wound magnetic cores silicon rectifier gate controls FUNCTIONAL DIGITAL CIRCUITS

## UNICIRCUIT ${ }^{\bullet}$ RCTL INTEGRATED CIRCUITS


( 8 X actual size)
Sprague Series US-0100 . . . a complete line of monolithic digital building blocks featuring low power consumption (2 mW typ.)

ON READER-SERVICE CIRCLE 101


ON READER-SERVICE CIRCLE 104

## SILICON ALLOY REPLACEMENT TRANSISTORS

full planar reliability

| 2N327A | 2N945 | 2N1026 |
| :--- | :--- | :--- |
| 2N328A | 2N946 | 2N1469 |
| 2N329A | 2N1025 | 2N1917 |

Sprague makes 82 standard high-emitter-voltage full planar silicon alloy replacement types.

ON READER-SERVICE CIRCLE 107


## SPRAGUE <br> the mark of reliability

'Spragua' and '(2)' are resistered trademarks of the Sprague Electric Co.

## News



Phased-array antennas are today ushering in a new era in radar design. Page 20.


Recent developments stimulating renewed interest in thermionic converters. Page 17.


Pocket-television may not be practical, but the technical capability exists. Page 24.

## Also in this section:

Aircraft may soon be fitted with hearing aids. Page 28.
News Scope, Page 13. . Washington Report, Page 31 . . Editorial, Page 35. <br> Plug in to the Industry's

\title{

Most Advanced

# Most Advanced Counter Line 

 Counter Line}



100 MHz Prescaler
512 MHz Converter Model ${ }^{1979}$ Dual Measurement

Model 1291

Model 1924
Systron-Donner's system for direct readout of microwave frequencies from $0-15 \mathrm{GHz}$ provides an unprecedented simple and low cost solution - features no other Gc counting system offers. Further, S-D's "think ahead" design provides even greater flexibility. As you can see, an ever-growing number of plug-ins can be used interchangeably in the basic 50 and 100 MHz counters. When your digital measuring needs change, you change plugins, not counters. That way you always have a state-of-the-art-counter
EXCEPTIONAL STABILITY-Another exclusive feature of S-D's counter line is a high stability oscillator with an aging rate of better than

1 part in $\mathbf{1 0}^{9}$ per 24 hours!
NEW INSTRUMENT STYLING - In addition to unmatched performance and flexibility in counting instrumentation, new styling refinements have been added to the entire line of S-D counters: die cast front panel, wrap-around cabinetry, tilt stand, and a simplified method for bench or rack installation.
*ACTO: Automatic Computing Transier Oscillator plugins. For fully automatic microwave measurements with counter accuracy and instantaneous direct readout.


DVM
Time Interval
Model 1926A Preset


Alodel 1936 ACTO*
ACTO* $\quad 2.96-8.2 \mathrm{GHz}$ ACTO* Model 1944


10 MHz
Counter
Model 1034


300 kHz
Counter
Model 1013

## gYgTRON

COR PORATION

## News scope

## Solar-powered satellites spring into orbit

Market for satellite batteries takes a dip.

On Thursday, June 16, 1966, a Titan III-C lifted eight exclusively solar-cell-powered satellites into an orbit around the equator and ejected them one by one.

Built for the Air Force, the satellites are to provide a global emergency communications system known as IDCSP (Initial Defense Communication Satellite Program). They contain no storage cells, but though these orbiting relay stations can operate only in sunlight, eight scattered randomly in the equatorial


Eight-to one shot


Philco scientists at work
plane ensure global coverage $97 \%$ of the time.

The satellites were held in a tubular frame dispenser on the booster and ejected by springs at intervals of a few seconds. Though initially close together, they drifted slowly apart in orbit because they were ejected at slightly different velocities.

Seven of them were made by Philco's Western Development Laboratory in Palo Alto, Calif., and the eighth by General Electric.

The 36 -inch-diameter Philco satellites, after ejection, were made to spin at 150 rpm by cold nitrogen gas squirted out of them through small nozzles. This gives them enough angular momentum to maintain a constant attitude.

The General Electric satellite does not spin. It telescopes out two 52 -foot arms. The arms have mass and extend in opposite directions from the satellite's central hub. The satellite orbiting in the earth's gravitation field acts somewhat like a weak dipole, aligning itself along an axis from the earth's center. This is because the gravitational field is not uniform, but rather, has a measurable gradient: It attracts the nearer arm more strongly than the farther arm. Gravity-gradient alignment has worked at low altitudes before, but this time it is being checked at approximately 18,200 nautical miles distance.

A single satellite at this altitude can relay radio signals between ground stations 9000 miles apart. Because all eight units operate on the same X -band frequencies they can transmit a signal from one to another all around the earth.

Each Philco satellite contains one wideband amplifier, a solid-state local oscillator/varactor multiplier train and two traveling-wave tube amplifiers. These are all contained in a 12 -inch cylinder through the
middle of the nearly spherical satellite. The whole assembly with its outer skin of solar cells weighs 100 pounds. The GE satellites function in a similar manner.

In an actual emergency, the satellites would transmit scrambled, coded digital information.

Two emergency-satellite-launching programs will follow this. The next be known as ADCSP (Advanced Defense Communication Satellite Program).

## FORTRAN gets nod as language standard

FORTRAN has become the first computer programing language to be approved and accepted as a standard by The American Standards Association. It is to be published as ASA Standard X3.9-1966.

An abbreviated version, called basic FORTRAN, has also been approved and will be published as ASA Standard X3.10-1966. Basic FORTRAN is suitable for implementation and use on small computers having limited storage and operating capability.

## Meteorologists to marry satellites and balloons

A new method of gathering meteorological data for long-range weather forecasting will be tested iointly by the space agencies of the United States and France. Designated Eole (the French word for Aeolus, god of the winds in Greek mythology), the project will seek to demonstrate the value and technical feasibility of collecting meteorological data on a global scale by means of constant-altitude balloons and an Earth-orbiting satellite.

The purpose of the Eole project is to obtain data on the circulation of the atmosphere at one or more levels over a large oceanic area.

Pressure, temperature and location data from the drifting balloons will be telemetered to, and recorded in, the satellite memory for later transmission to ground stations.

Agreement for the Eole project is contained in a recently concluded Memorandum of Understanding between the French National Center for Space Studies (CNEE) and NASA. The agreement provides that CNEE will be responsible for

News
SCODA $_{\text {continued }}$
the development and launching of the balloons and their payloads and for the design, fabrication and testing of the proposed satellite. NASA will provide the launching rocket, perform the launching and train French personnel, as required.

## New avionics system contract flies to Sperry



ILAAS to control A-7 . . .
A $\$ 17.9$ million contract to develop, produce and test four prototypes of the Navy's integrated light attack avionics system (ILAAS) has been granted to Sperry Gyroscope. The ILAAS will be the first fixed-wing-aircraft avionics system to integrate fully the functions of navigation, central control, communications, weapons delivery and displays through a computer control complex.
Two redundant computers, weighing less than 45 pounds each, will be used to enhance system reliability. In addition, the principle of functional modularity will be employed in the system, so that subsystem functions can be added or removed without affecting the rest of the system. This will provide growth potential and allow ILAAS to be adapted to changes in weapon technology or other mission applications. Present plans include the ILAAS in an advanced version of the Navy's A-7 aircraft.

## Congress asked to soften antitrust restrictions

In a report to Congress, a toplevel study group has requested legislation to allow sweeping mergers among U.S. international com-
munications companies. The report states that mergers, or restructuring, could lead to "more efficient use of plant, reductions in cost and therefore rates, and an increased ability to make overseas telecommunications a more effective instrument of national policy." Present antitrust laws prevent such restructuring.

The report notes that various Government agencies, which are heavy users of international communications, are concerned at the impact of the industry's present structure on their "national security and foreign relations responsibilities". This problem relates "both to the speed with which necessary facilities are installed and to the security and reliability of communications, which under present operating conditions are often routed through areas that are vulnerable in emergencies."

The report also noted that many foreign users of U.S. communications services are "Government-controlled monopolies, having a superior negotiating position and opportunities to play off one U.S. carrier against another."

Most companies that would be affected by the proposed legislation are withholding comment pending closer study of the report. However, Howard R. Hawkins, president of RCA Communications, comments: "This has been advocated by RCA for some time in view of the dynamic developments in global communications. We need new procedures attuned to the realities of the space era."

The study group that prepared the report comprised representatives of the Federal Communications Commission, and the State, Justice and Defense departments.

## USAF may counter USSR radar with big missiles

A U.S. Air Force response to a Soviet anti-missile, anti-bomber network presently under construction in the northwest part of the Soviet Union may cost this country several billion dollars.

According to an article in the New York Times (June 20, 1966, p. 1), the Air Force is considering development of a giant missile called ICM-Improved-Capability

Missile. It will also speed up programs to develop advanced Polaris and Minuteman missiles.

A spokesman at the Pentagon indicated that, although the Air Force has made no explicit statements about a new ICM program, information on improved versions of both Polaris and Minuteman (to be called Minuteman III) has appeared in Congressional testimony, posture statements by Defense Secretary McNamara, budget hearings and Senate investigations of strategic preparedness. The Pentagon source indicated that the term ICM might be some reporter's term for Minuteman III.

## Compatibility keynotes communications meeting

The keynote of this year's International Communications Conference in Philadelphia was compatibility. The speakers noted that contemporary technology made a vastly improved global communications system possible. But the major obstacle to direct international television broadcasting and telephone dialing, for instance, was differences in national standards. Until these were regularized, full advantage of present possibilities could not be taken. "How would the Danes, who have no " $W$ " on their dials, manage to call a WAlnut exchange in the U.S.?" asks L. W. Wimgert, vice president of AT\&T's Long Lines Division.

## Floating satellite surveys land across oceans

Another floating star, actually the Pageos I aluminum-skinned balloon satellite, has joined the Echo series in the heavens. The new balloon, launched into a polar orbit from Vandenberg Air Force Base, Calif., June 23, has a far different mission though.

It will allow scientists to survey points across large bodies of water. The distance between distant points on separate continents can be measured with a trangulation technique between at least three ground stations and the balloon. This will assist map-makers and ICBM-aimers. Pageos' orbit is about 2600 miles high, and it glows as brightly as the North Star.


# THIS 4 AMP, 100 AMP SURGE RECTIFIER has Controlled avalanche Too 

READ HOW IT CAN SOLVE YOUR SPACE PROBLEMS

CASE HISTORY

Bob has the job of designing power supplies for his company, an electronic equipment manufacturer. Requirements vary considerably from one piece of equipment to the next, with ratings all the way from 1 to 10 amps in both single and three phase configurations. He had a dilemma--what should the physical arrangement of his bridges be:


Both were bulky, and--worse yet--each was a custom design requiring long vendor lead times, not to mention the expense. One day, a Compar salesman suggested that if Bob used Unitrode UT 4000 series diodes, he could make his own bridges with only this comparative space required...
... TO GET 10 AMPS AT 500 VOLTS without additional heat sinking.

Space and lead time were both saved. In addition, Bob's production department could produce the bridges using individual diodes for far less than

vendors were charging for special bridge assemblies ... and the work stayed in-house.

Also Bob could supplement his small laboratory stock by drawing on Compar's substantial inventory of Unitrode semi-conductors. No more weeks of waiting. Now he could instantaneously breadboard any bridge he needed.
There were other bonuses from the Unitrode rectifiers: reliability, stability, ruggedness and ... the controlled avalanche feature ensuring the diodes' ability to absorb reverse transient surges as high as 0.8 joules. And Bob's regulation problems were solved as well--with Unitrode 5 watt zeners in the same small package.


YOU CAN SAVE SPACE AND TIME ON YOUR BRIDGE DESIGNS TOO
Contact the factory, call your local Compar office, Daniel and Company office, or circle the reader service number on the magazine reply card. You will receive technical data and samples of Unitrode UT 4000 series rectifiers plus a complete catalog on other Unitrode devices immediately.


NEW 32 PAGE DIODE CATALOG

- Technical Specifications
- Mounting Data
- Applications Information
- Physical Drawings
- Derating Information
- Multiple Surge Ratings




## Automatic crossover between constant voltage and constant current modes

# Sorensen QRC PowerSupplies offer $\pm .005 \%$ regulation 

The Sorensen QRC series - wide range, transistorized power supplies-provide constant voltage/constant current regulation so sharp the units operate without ever leaving the specified regulation band. Voltage regulation is $\pm .005 \%$ for line and load combined. The QRC's are provided with front panel dial set adjustment of voltage and current limits, as well as voltage/current mode indicator lights. Other design features include: Low ripple . . . 1 mV rms • No turn-on/turn-off overshoots - Remote sensing and
programming - Series/parallel operation - Input voltage $105-125$ or 201-239 Vac, $50-400 \mathrm{c} / \mathrm{s}$ - Temperature capability to $71^{\circ} \mathrm{C}$ - RFI spec meets MIL-I-26600 and MIL-I-6181D. All Sorensen power supplies conform to proposed NEMA standards. For QRC details, or other standard/custom power supplies, AC line regulators or frequency changers, contact your local Sorensen rep, or write: Raytheon Company, Sorensen Operation, Richards Ave., Norwalk, Connecticut 06856 Tel: 203-838-6571.

| MODEL NUMBER | OUTPUT VOLTAGE RANGE (Vde) | CURRENT OUTPUT RANGE (Ade) | vOLTAGE REGULATION (LINE \& LOAD COMBINED) | RIPPLE VOLTAGE (rms) | CURRENT REGULATION | $\begin{aligned} & \text { RIPPLE } \\ & \text { CURRENT } \\ & \text { (rms) } \end{aligned}$ | RACK HEIGHT (INCHES) | PRICE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| QRC20-08A | 0-20 | 0-8 | $\pm .005 \%$ or $\pm 1 \mathrm{mv}$ | 1 mv | $\pm .05 \%$ or $\pm 4 \mathrm{ma}$ | 1 ma | $31 / 2$ | \$410.00 |
| QRC20-15A | 0-20 | $0-15$ | $\pm .005 \%$ or $\pm 1 \mathrm{mv}$ | 1 mv | $\pm .05 \%$ or $\pm 8 \mathrm{ma}$ | 2 ma | 51/4 | 525.00 |
| QRC20.30A | 0-20 | 0.30 | $\pm .005 \%$ or $\pm 1 \mathrm{mv}$ | 1 mv | $\pm 05 \%$ or $\pm 16 \mathrm{ma}$ | 4 ma | 7 | 700.00 |
| QRC40-4A | 0-40 | 0.4 | $\pm .005 \%$ or $\pm 1 \mathrm{mv}$ | 1 mv | $\pm .05 \%$ or $\pm 3 \mathrm{ma}$ | 1 ma | $5 \dagger$ | 315.00 |
| QRC40-8A | 0-40 | $0-8$ | $\pm .005 \%$ or $\pm 1 \mathrm{mv}$ | 1 mv | $\pm .05 \%$ or $\pm 4 \mathrm{ma}$ | 1 ma | $31 / 2$ | 450.00 |
| QRC40-15A | 0.40 | 0.15 | $\pm .005 \%$ or $\pm 1 \mathrm{mv}$ | 1 mv | $\pm .05 \%$ or $\pm 8 \mathrm{ma}$ | 2 ma | $51 / 4$ | 575.00 |
| QRC40-30A | 0.40 | 0-30 | $\pm .005 \%$ or $\pm 1 \mathrm{mv}$ | 1 mv | $\pm .05 \%$ or $\pm 16 \mathrm{mo}$ | 4 ma | 7 | 775.00 |

# Interest renewed in thermionic converters 

## Army is developing 3-kW devices for field use. Nuclear-fuel 200-W converters are also under test.

## Howard Bierman Editor

Renewed efforts to evolve thermionic diodes for direct conversion of heat into electricity are in progress now that heat-coupling and material problems appear to have been overcome. The Army is developing a compact $3-\mathrm{kW}$ generator and NASA is proving the feasibility of a 200 -watt nuclear-fueled thermionic converter for space service.

Key to the new interest in thermionic devices is the heat-pipe design concent, originated at the Los Alamos Scientific Laboratory. Basically, the heat pipe is a long, evacu-
ated enclosure containing a capillary structure along its inside walls. The capillaries are filled with a fluid that has substantial vapor pressure at the desired operating temperature. When heat is applied to the input end of the pipe, some fluid is evaporated and transferred by pressure differential to the output end where it condenses and releases its heat of vaporization. The condensed fluid then returns to the evaporator through the wick by capillary action. Since operation of the heat pipe does not depend on gravity, the device can operate in the weightless environment of outer space And because the heat pipe


1. This thermionic-converter design uses a molybdenum-alloy heat pipe to concentrate heat from the flame-heated burner to the converter emitter. Thirty-six of these diodes, built by RCA, will be combined to develop a $3-\mathrm{kW}$ generator for Army field use.
requires only a slight temperature difference for condensation (about $1^{\circ} \mathrm{C}$ ), it may be considered a con-stant-temperature device with little or no thermal loss.

A heat source and a thermionic diode with dissimilar power-density characteristics can be matched with the heat pipe by adjusting the heat input and output areas. For example, a burner producing 15 watts per square centimeter at maximum efficiency can be matched to a thermionic converter requiring an input of 30 watts per square centimeter if the input area is designed to be double the output area.

## 3-kW generator being developed

A $3-\mathrm{kW}$ hydrocarbon-fueled thermionic supply, comprising 36 individual converters, represents the most ambitious program to date. Under development by RCA and the U.S. Army Engineering R\&D Labs., the 150 -pound generator will be packaged in three $1-\mathrm{kW}$ building blocks; each module will house 12 diodes delivering 4 volts dc to a sol-id-state power conditioner, which will provide 28 volts dc or ac at either $50-60 \mathrm{~Hz}$ or 400 Hz . Between six and seven per cent over-all efficiency is anticipated for the $3-\mathrm{kW}$ generator, according to G. Y. Eastman, RCA project manager.

The molybdenum-alloy heat pipe (see Fig. 1) uses lithium as the heat-transfer fluid to couple thermal energy from the burner to the emitter of each thermionic diode. The capillary structure is a wick formed of several wraps of woven molybdenum mesh. The nine-inchlong heat pipe, less than 0.75 inch in diameter, will sustain a heat flow exceeding 1000 thermal watts at $1350^{\circ} \mathrm{C}$ with less than $1^{\circ} \mathrm{C}$ temperature difference. The effective thermal conductivity achieved by this approach would be more than 8000 times that of an equivalent copper bar, if copper were useful at this temperature, Eastman reported.
The cylindrical thermionic converter is mounted at the heat-delivery end of the heat pipe. Waste heat from the collector is rejected with

## NEWS

(converters, continued)
the aid of a cooling blower. The converter-heat-pipe assembly is expected to provide 100 watts at an efficiency of 13 per cent; to date, a maximum of 86.5 watts has been achieved with a flame-heat source.

The Army is investigating the compact generator - each $1-\mathrm{kW}$ module occupies only 1.3 cubic feet-for applications in the field.

## Bonded shell-emitter is durable

Another approach embodying the heat-pipe-thermionic-converter combination has a nickel structure and uses potassium as the working fluid
to transfer heat from the diode collector to a finned structure where heat can be rejected by convection. With this, auxiliary cooling devices are unnecessary. The emitter (the hemispherical end of the diode shown in Fig. 2) is coated with silicon carbide for protection against the combustion products of the flame. The bonded shell-emitter, according to L. J. Lazaridis, manager of Hydrocarbon Thermionics, Thermo Electron Engineering Corp., Waltham, Mass., makes it possible to construct a practical and usable flame-heated thermionic converter that combines durability with a capacity for extensive cycling.

The principal parts of the converter are the emitter shell, an insu-

2. In this thermionic converter, a heat pipe conveys the heat rejected by the collector to external cooling fins. Designed by Thermo Electron Engineering Co., the device will del.iver 100 watts when the hemispherical end is placed in a $1400^{\circ} \mathrm{C}$ flame-heated burner.
lating assembly, the collector and the collector cooling fins. Using a tungsten emitter and nickel collector with a spacing of 0.01 inch , the thermionic diode is designed to deliver 100 watts when operating at $1400^{\circ} \mathrm{C}$. Heat is rejected by convection from its main body and the finned structure.

## Nuclear devices have space use

Many problems involved with matching isotope sources to thermionic diodes have been solved by the heat-pipe concept, according to B. I. Leefer of NASA. At the high temperatures involved $\left(1400^{\circ} \mathrm{C}\right)$, material problems ensue if the isotope and converters are joined; heat-transfer problems result if they are separated. For space applications, he explained, many isotope fuels have power densities too low to operate thermionic diodes; other isotopes have decay half-lives much shorter than required for practical mission durations. The heat pipe now permits the use of low power-density isotopes for relatively long space missions.

An experimental converter has been developed by RCA and NASA with electrode materials and structural members made of vacuum arccast molybdenum. The heat pipe is made of a molybdenum alloy, TzM, and the capillary structure consists of a molybdenum mesh; lithium is the working fluid.

Using computer-aided design, the device has been optimized for maximum efficiency-rather than maximum power-to obtain the highest system power-to-weight ratio. The design will have the converter supply about 185 watts at $1450^{\circ} \mathrm{C}$ with 16.5 per cent efficiency. If maximum power output is the prime objective, the design shows that 225 watts could be delivered at an efficiency of 13 per cent. Three converters have been built and early test results indicate that the required output power and performance characteristics are being met.

Advances in fuel cells, primary and secondary batteries and solar cells were discussed at the Power Sources Conference held May 24-26 in Atlantic City, N. J. The Proceedings will be available in October and copies may be ordered, at $\$ 15$ each, from the PSC Publications Committee, P. O. Box 891, Red Bank, N. J. 07701. -


## If you think making silicon mesas better is tough, try making people believe you've finally succeeded.

Succeed we did. The man above, one of our device engineers, is responsible. Thanks to his efforts, Bendix silicon mesas are now the lowest priced, best-built power transistors available.

You'll find the Bendix Silicon Mesa 2N3055 and its sister types equally impressive. These diffused junction power transistors are a natural for your high power switching and amplifier applications. Beta stability is excellent over the entire operating temperature range of $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$. Low saturation voltage and high collector
voltage rating. Dimensions conform to JEDEC TO-3 outline.
Take our new B-170000 through B-170026 series, for example. You can choose VCEO's up to 100 volts, hFE at IC up to 5 amps and Pc up to 120 watts. Use them for amplifier, regulator and switching applications. Use them with no fear of secondary breakdown, either. All are SOAR (Safe Operating ARea) specified.
Availability of Bendix silicon mesas? They don't come any faster. For complete information just write or phone our nearest sales office.

2N3055

| $\begin{array}{ll} \text { VCBO }=100 \mathrm{~V} & \text { VCEO }=60 \mathrm{~V} \\ \text { IC }=15 \mathrm{~A} & \text { Ppeak }=900 \mathrm{~W} \\ \mathrm{VCE}(\mathrm{~s})=0.4 \mathrm{~V} \text { Typ at } \mathrm{IC}=4 \mathrm{~A}, \mathrm{IB}=0.4 \mathrm{~A} \\ \mathrm{tr}=5 \mu_{\mathrm{S}} \text { Typ } \\ \text { It } \left.=1 \mu_{\mathrm{S}} \mathrm{ljP}\right\} \text { t } \mathrm{IC}=7.5 \mathrm{~A} & \end{array}$ |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |

B-170000 SERIES



# Bendix Semiconductor Division 

holmdel, New Jersey


[^0]
# Phased Arrays Break the Inertia Barrier 

## Computer, ferrite and semiconductor technology contribute to new era of radar design.

Neil Sclater<br>East Coast Editor

New procurement of electronically scanned radars has hastened the merger of radar with computer and semiconductor technology. The phased-array antenna, in existence for more than 20 years, has received new emphasis because of military and space demands. Development of this antenna concept is accelerating because of the impact on radar of computers, microcircuitry, semiconductors, and ferrite technology.

Improvements in the effectiveness of these complex antennas and reductions in cost and weight resulting from the merger are making them feasible for all types of radar.

The full theoretical possibilities of microwave physics can now be brought to bear on the problems of detecting and identifying large numbers of aircraft, satellites and even ICBMs. Microsecond reaction time is especially critical in the case of ballistic missiles.

Integrated circuitry, semiconductors, ferrites and computers, used to some extent in conventional radars with rotating or oscillating antennas, have made the striking improvements in phased-array performance possible. The benefits of


Space Track Radar AN/FPS-85, the first phased-array space surveillance system, uses many power tubes with separate transmit array (left). Receive array (right) is over 140 ft high.
this merger are just as apparent in new concepts for airborne radar and satellite communication systems as they are in existing large ground-based or shipboard systems.

The theories of electronic beam scanning have been well-known for many years, but it required a combination of factors, some technical and some economic, to set off the current wave of activity. The primary cause was the inability of conventional, mechanically scanned radar to collect and handle data at the required rate to deal simultaneously with many high-velocity aircraft, ballistic missiles and satellites.

Many farsighted engineers, both in industry and government, had long seen the advantages of electronic scanning but were frustrated by the lack of funding and the inability of the radar engineer to take advantage of the results of computer techniques. While radar technology dawdled in doldrums some years ago because of the lack of funding for new programs, computers and their allied technology were leaping forward. When the need existed and the funds became available, the merger took place.

## The phaser seesaw

Significant in the future of


Multi Function Array Radar, MAR is prototype for systems to direct NikeX. MAR will benefit from R\&D efforts to assure maximum capability and reliability at reasonable cost.
phased-array antenna designs is the current research and development controversy between ferrite and diode phase shifters. These components steer the RF beam and direct return signals on computer command. Better comprehension of basic theory and vast improvements in ferrite and diode materials have led to phasers covering most of the microwave spectrum with low losses. Unfortunately, neither ferrite nor diode types can cover all the frequency bands with equal effectiveness.

Phase shifters can be reciprocal or nonreciprocal, analog or digital, and ferrite or diode. For modern arrays, the reciprocal digital type is preferred. Analog devices produce phase shifts proportional to an applied voltage or current while digital devices produce shifts in binary increments. These shifts, generally including $180^{\circ}, 90^{\circ}, 45^{\circ}$ and 22$1 / 2^{\circ}$, can be programed in digital computer format. The computer selects the appropriate combinations of increments required for beam steering. Because they have two stable states, the switching action is referred to as latching.

The most popular phasers are yt-trium-iron-garnet ferrites and pintype semiconductor diodes. Ferrites can be used in both reciprocal and non-reciprocal shifters of either analog or digital varieties. However, diodes so far have been of the recip-


HAPDAR phased-array radar shown during final assembly. Its $30-\mathrm{ft}$. dia. planar lens, illuminated by a single power tube, has successfully tracked reentry vehicles.
rocal digital type.
Diode devices which work best at the lower frequency bands are considered to be limited in their ability to perform without undue losses at frequencies much higher than 5 GHz (C-band). Ferrite phase shifters, on the other hand, dominate in higher frequencies because of their low magnetic losses. However, they present an unresolved weight problem.
Regardless of their handicaps and power or frequency capability, each version has its own advocates. Carl Blake, an antenna scientist at MIT's Lincoln Laboratory, favors the ferrite phase shifters and believes that ferrite thin fllms will meet the weight problem raised in connection with their use in aircraft or satellites. In his view, diodes and ferrites rate about even in power-handling ability and insertion losses at S-band, but ferrites are superior in performance at C-band and higher frequencies.

Another advocate of ferrite phase shifters, Julian Brown, an engineering section head at Sperry's Clearwater, Fla, Microwave Division, stresses high-power, longrange arrays (see ED 14, June 7, 1966, pp. 34-38).

Sperry Gyroscope's Gerard Hanley, a research section head and diode man, is optimistic about the diodes' future. He predicts that they will be developed with cutoff frequencies approaching 1000 MHz for use in low-loss phase shifters operating at frequencies up to 16 GHz (see ED 13, May 24, 1966, pp. 46-52).

Progress is being made on reciprocal shifters, especially necessary in reflecting arrays. Dr. Lawrence Whicker, engaged in ferrite development at Westinghouse's Baltimore Defense and Space Center, says, however, that results so far lag behind those of nonreciprocal devices by four to five years.

There is general agreement among all phaser specialists that the see-saw contest will last well into the 1970's but that both types have their place in systems depending upon the mission.

## Where the phased arrays are

Major contractors participating in phased-array programs are General Electric, Hughes, ITT Gilfillan, Raytheon, Western Electric, West-

# ENERGY-STORAGE CAPACITORS for every type of discharge application 

 for energy-storage applications than any other capacitor manufacturer. If your project involves lasers, masers, electronic photoflash, time-control circuits, exploding wire, thermonuclear fusion research. magnetization of permanent magnets, medical equipment, or similar discharge applications, Sprague can provide a capacitor to meet your specific needs.

Light, Maderefe, or Heavy Dufy Capacifors Available types range from small, light-weight units for aerospace applications such as satellites. missiles, etc., to heavy-duty capacitors for high-current/high-frequency oscillatory discharges. Broad Range of Electrical Ratings
Voltages from 2 kilovolts to 24 kilovolts. Energy ratings up to 6700 joules. Self-inductance as low as .0025 microhenry.

Paper, Metallized Paper, and Paper/Film Designs Metallized capacitors intended for light-weight, space-saving applications . . . one-half the size, onethird the weight of conventional capacitors. Other available designs include castor oil impregnation for extremely long life (assuring a high number of discharges), and non-flammable synthetic askarel impregnation for applications where non-combustibility is a prerequisite.


For complete information or application engineering assistance on Sprague EnergyStorage Capacitors, write to Field Engineering Department, Sprague Electric Company, 347 Marshall St., North Adams, Mass. 01248.

## SPRAGUECOMPONENTS

capacitors

## transistors

RESISTORS
THIN-FILM MICROCIRCUITS
integrated circuits interference filters 4SC-317
packaged component assemblies FUNCTIONAL DIGITAL CIRCUITS magnetic components putse transformers ceramic-base printed networks pulse-forming networks

## SPRAGUE

THE MARK OF RELIABILITY

Sprague' and (2) are registered trademaths of the Sprague Electrie Co

## NEWS

(phased arrays, continued) inghouse, Bendix and Sperry.

Despite security wraps, enough information on two significant large-scale projects is available to permit a view of trends.

The Space Track Radar, AN/ FPS 85, built by Bendix under sponsorship of the Air Force's ESD and RADC, is the first space sur-
veillance system. Located at Eglin, Fla., the site was recently rebuilt after a destructive fire. It is designed to track and catalog accurately all orbiting satellites. Known satellites can be identified from new satellites and the presence of ICBMs can be determined.

The system's computer will use a series of tracking data points to determine the orbit or trajectory of targets. Many low-power, identical

RF generators, rather than one large RF power source, will form the transit beam. The receive array, separate from the transmit array, has many redundant receiver modules.

Henry Dantzig, Bendix senior engineer, says that this design offers higher reliability than is possible with other radars because failure of individual power amplifiers or receiver modules will have little effect

## Basic Electronic Scanning Concepts

Three basic techniques exist for electronically scanning an electromagnetic beam: phase, frequency and feed. In phase scanning, the most popular, the beam is positioned by varying the phase of the energy fed to the separate elements of an array (Fig. 1). Feeding a number of radiating elements equally spaced along a straight line with in-phase currents yields a broadside beam. The beam direction is an arc sine function of the interelement phase shift. For one-dimensional pencil beam scanning,


1. Phase scanning occurs at a constant frequency. Beam direction is determined by phase shift between radiating elements.

2. Pencil beam obtained with planar array is provided by vertical and horizontal feeds.
the beam is focused in the unscanned dimension by a reflector or by radiating elements supplied from the phasing network (Fig. 2). Two-dimensional scanning can be obtained by various combinations and modifications of one-dimensional scanning. One important type (Fig. 3a) employs a lens having a cellular structure with a ferrite or diode digital R-F phase shifter in each cell. This scanning method is obtained by combining the phase increment associated with the vertical and horizontal beam-positioning in each module.

## Feeding the antenna

Various methods are used to divide and feed R-F power to phase shifters. Typically, the feed network is bilateral so that received energy is combined and sent to the receiver with the same network. Two basic categories are the confined feed and the space or optical feed.

In confined feed, RF power is contained within a waveguide,

(a)
3. Optical feed systems. A lens array is shown in (a) and a reflector array is depicted in (b). These arrays eliminate need for power-distribution networks. Array phase shifters are computer controlled.
on system performance.
Sperry's hard-point demonstration array radar, HAPDAR, uses a different design approach. A planar optical array, it produces a pencil beam in two dimensions. The system employes one RF power source and a passive diode phase-shifting network in a novel antenna design. Now operating at the U.S. Army Missile Command's White Sands, N.M., range, HAPDAR is being used to evaluate designs for highperformance, low-cost, phased arrays. This information is vital in planning large-scale hardened antimissile radar sites.

A Univac 1218 digital computer controls the diode phase-shifting network and gives HAPDAR its rapid scanning and multiple-target acquisition and tracking capability. In addition, it provides datarecording, self-test, and simulation functions.

Peter Kahrilas, HAPDAR engineering manager, reports that the system has already successfully acquired and tracked numerous Agena re-entry vehicles at the White Sands Range.

## Arrays with wings

Airborne phased arrays so far are in the design concept and proto-type-model stage, according to Ed Shubel, an antenna engineer at Maxson Electronics Corp. This, he said, is due to problems of weight, complexity and cost effectiveness. In Mr. Shubel's opinion, use of mi-cro-circuitry can make phased arrays serious competitors of the airborne mechanical dish. Future systems can perform the functions of at least two conventional aircraft radars.

## Arrays from blocks

Texas Instruments reports that it is building microminiature modules containing solid-state RF power sources and receive and phase-shift functions. The design goal is to produce modules which are essentially miniature radar sets. These can be combined to form a phased-array system. At X-band, for example, the modules must be smaller than one cubic inch because of the geometry associated with maximum scan angle. Integrated circuit techniques, according to the TI report, offer the only realistic method of achieving this goal. - -


Mepco's S.M.A.C. technique permits the use of pre-selected quality components, tested and approved before application... S.M.A.C. means minimal handling, plus the advantages of rigidly controlled, automated assembling. And QC inspection of all bonds is fast and effective. This all adds up to Improved Reliability in Mepco's Film Hybrid Microcircuits.


If your programs call for custom-designed film hybrid microcircuits, in high volume, at lower costs, and with faster delivery dates than you thought possible, then be sure to call Mepco . . . Ask about S.M.A.C. Find out how this new breakthrough in mass-producing film hybrid microcircuits can benefit your production plans.


MANUFACTURERS OF PRECISION
ELECTRONIC DEVICES

MEPCO, INC.
COLUMBIA ROAD, MORRISTOWN, NEW JERSEY 07960
(201) 539-2000

Performance Ratings (typ)

- Propagation Delay
- Power Dissipation
- Toggle Frequency
- Fan-Out
- Supply Voltage ( $\mathrm{V}_{\mathrm{EE}}$ )
- Temperature Range MC300 Series MC350 Series
FLIP-FLOPS
MC302F/G, MC352F/G
MC308F/G, MC358F/G
MC314F/G, MC364F/G
GATE EXPANDERS
MC305F/G, MC355F/G
LOGIC GATES
3-INPUT GATES MC306F/G, MC356F/G MC307F/G, MC357F/G
5-INPUT GATES MC301F/G, MC351F/G
DUAL 2-INPUT GATES MC309F/G, MC359F/G MC310F/G, MC360F/G MC311F/G, MC361F/G
DUAL 3-INPUT GATES MC312F/G, MC362F/G
QUAD 2-INPUT GATES MC313F, MC363F
BIAS DRIVERS
MC304F/G, MC354F/G
HALF-ADDERS
MC303F/G, MC353F/G
LAMP DRIVERS
MC316F/G, MC366F/G
LINE DRIVERS
MC315F/G, MC365F/G
LEVEL TRANSLATORS
MC317F/G, MC367F/G
ON READER-SERVICE CARD CIRCLE 121

| Gate | Flip-Flop |
| :--- | :--- |
| 6 nsec | 8 nsec |
| 35 mW | 80 mW |
| - | 30 MHz |
| 25 | 25 |
| -5.2 V | -5.2 V |
| $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |
| $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ |  |

Your immediate production requirements for three of today's popular integrated circuit series- 300 -series MECL, 930 - series DTL, and 900 -series RTL-can be supplied by Motorola - right now! And, you can choose from a selection of temperature ranges for commercial, industrial, or military application requirements.
Your local Motorola franchised semiconductor distributor has units available for immediate evaluation. For complete technical data on each of the Motorola integrated circuit series, write: Technical Information Center, Motorola Semiconductor Products Inc., Box 955, Phoenix, Arizona 85001.

MDTL
MC930 SERIES • MC830 SERIES

## Performance Ratings (typ)

- Propagation Delay (Gates)
- Power Dissipation/Node
- Toggle Frequency
- Fan-Out
- DC Noise Margin
- Supply Voltage
- Temperature Range MC930 Series

30 nsec 5 mW 5 MHz (min) 8 (min)
500 mV
4.5 to 5.5 V

MC830 Series
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
FLIP-FLOPS
MC931F, MC831F
MC931G, MC831G
MC945F, MC845F
MC945G, MC845G
MC948F, MC848F
MC948G, MC848G
GATE EXPANDERS
MC933F, MC833F
MC933G, MC833G
MULTIPLE GATES
DUAL 2-3 INPUT "NAND/NOR" GATES MC930G, MC830G
DUAL 2-3 INPUT POWER GATES MC944G, MC844G
DUAL 4-INPUT "NAND/NOR" GATES MC930F, MC830F
dUAL 4-INPUT POWER GATES MC944F, MC844F
TRIPLE 3-INPUT "NAND/NOR" GATES MC962F, MC862F
TRIPLE 1-2.2."NAND/NOR" GATES MC962G, MC862G
QUAD 2-INPUT "NAND/NOR" GATES MC946F, MC846F
QUAD INVERTER MC946G, MC846G
DUAL BUFFERS
MC932F, MC832F MC932G. MC832G

Suffix "F" denote Flat Package Suffix " $G$ " denotes Can

## MRTL <br> MC900 SERIES - MC800 SERIES <br> MC700 SERIES • MC908 SERIES

Performance Ratings (typ)

|  | MRTL | mW mRTL |
| :--- | :--- | :--- |
|  |  | Propagation Delay (Gates) |
| - | 12 nsec | 25 nsec |
| - Power Dissipation/Node | 12 mW | 2.5 mW |
| - Toggle Frequency | $8 \mathrm{MHz}(\mathrm{min})$ | $3 \mathrm{MHz}(\mathrm{min})$ |
| - Fan-Out | $5(\mathrm{~min})$ | $4(\mathrm{~min})$ |
| - Supply Voltage | $3 \mathrm{~V} \pm 10 \%$ | $3 \mathrm{~V} \pm 10 \%$ |

- Temperature Range

MC900, MC908 Series $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
MC800 Series $0^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
MC700, MC708 Series $+15^{\circ} \mathrm{C}$ to $+55^{\circ}{ }^{\circ}$ "
*Supply Voltage $3.6 \mathrm{~V} \pm 10 \%$
FLIP-FLOPS
MC902G, MC802G, MC702G
MC916G, MC816G, MC723G
MC926G, MC826G, MC726G
LOGIC GATES
3.INPUT GATES

MC903G, MC803G, MC703G
4-INPUT GATES
MC907G, MC807G, MC707G
5-INPUT GATES
MC929G, MC829G, MC729G
DUAL 2-INPUT GATES MC914G, MC814G, MC714G
DUAL 3-INPUT GATES
MC915G, MC815G, MC715G
QUAD INVERTER
MC927G, MC827G, MC727G
HALF ADDERS +
MC904G, MC804G, MC704G
BUFFERS $\dagger$
MC900G, MC800G, MC700G
DUAL BUFFERS
MC999G, MC899G, MC799G
COUNTER ADAPTERS
MC901G, MC801G, MC701G
HALF-SHIFT REGISTERS
MC905G, MC805G, MC705G
MC906G, MC806G, MC706G
| MC908 Series - also includes Gate Expander and Adder Circuits
ON READER-SERVICE CARD CIRCLE 123

## MOTOROLA Semiconductors

- where the priceless ingredient is care!


## Prototype shirt-pocket TV set demonstrated

In the near future, millions of teen-agers may be walking about with a tiny TV set tucked in their shirt pocket. Such a possibility was envisioned by the Advanced Engineering Laboratory of Motorola's Consumer Products Division during the June 13-14 Broadcast and TV Receiver Conference in Chicago.
The 29-transistor, 14 -diode receiver (see Fig. 1) was designed and built in 1964 and so does not include integrated circuits. Weigh-


1. Motorola's experimental TV set is powered by four penlight cells.

2. The earphone lead serves as the antenna in the tiny set. RF chokes prevent RF grounding.
ing only 12.5 oz . and occupying 13 cubic inches, the tiny prototype, demonstrated during the conference, receives one vhf channel; a miniature multi-section switch could have been included but was considered inessential for the feasibility project. Half the volume is filled by the 1-1/8-inch-diameter, 4 -inch-long electrostatic-deflection picture tube; the receiver circuits are packed into a three-layer module taking up a total space of $1.2 \mathrm{cu}-$ bic inches. Average input power is about 1.5 watts.

Power for the set is provided by four penlight cells which drive a dc-to-dc converter that delivers 11 V , $100 \mathrm{~V}, 275 \mathrm{~V}, 1200 \mathrm{~V}$ and 3000 V to various sections with no need for dropping resistors. Interference from switching transients in the dc-to-dc converter is reduced to an acceptable level by operation close to the horizontal scanning frequen$c y$. The close proximity of the picture tube and batteries make it impossible to locate the converter module in a position where interference would be partially self-canceling.

A clever element of the design is
the use of the earphone lead as the receiver antenna (see Fig. 2). The RF chokes permit the audio to reach the earphones and prevent the RF signals from shorting to ground. The $0.002-\mu \mathrm{F}$ capacitor couples the RF to the input coil while blocking the dc. To obtain sensitivity comparable to present portable sets, the signal chain includes an RF stage, mixer, three IF stages, and a two-stage video amplifier. Reverse agc is used with bias obtained from the first video amplifier rather than the conventional video detector take-off.

The vertical and horizontal outputs are the same- 200 volts peak-to-peak-even though the aspect ratio is $3: 4$. This is because the horizontal deflection plates are closer to the electron gun assembly.

Motorola flatly states that they have no intention at this time of marketing the receiver. Should someone be interested in manufacturing such a set, the following improvements were offered:

- To extend battery lifetime, use a low-heater power picture tube.
- Develop a display tube that would fill the entire front of the set. - -


3. Horizontal deflection for electrostatic deflection is obtained from an emittercoupled multivibrator feeding phase shifters which drive push-pull amplifiers.

"Off the Shelf" DISTRIBUTOR PRICES
SIIGHETICS IITTEGRATEO CIRCUITS


A subsidiary of Corning Glass Works
811 East Arques Avenue, Sunnyvale, California Tel.: (408) 739-7700 TWX: (910) 339-9220

| Type |  | $1000-2499$ <br> Mixed | $100-999$ <br> One Type | $100-999$ <br> Mixed | $25-99$ <br> Mixed | $1-24$ |  |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
|  | SP616A | Dual 4-Input NAND/NOR | 2.35 | 2.45 | 2.60 | 2.95 | 3.70 |
|  | SP620A | J-K Binary Element | 2.65 | 2.80 | 2.95 | 3.35 | 4.20 |
| SP629A | RS/T Binary Element | 2.65 | 2.80 | 2.95 | 3.35 | 4.20 |  |
|  | SP631A | Quad-2 Gate Expander | 2.35 | 2.45 | 2.60 | 2.95 | 3.70 |
|  | SP659A | Dual 4-Input Driver | 2.65 | 2.80 | 2.95 | 3.35 | 4.20 |
|  | SP670A | Triple 3-Input NAND/NOR | 2.35 | 2.45 | 2.60 | 2.95 | 3.70 |
|  | SP680A | Quad 2-Input NAND/NOR | 2.35 | 2.45 | 2.60 | 2.95 | 3.70 |

NEWS

## Low-cost hearing aid protects aircraft

A simple, budget-priced airborne listening system will soon be saving lives and costly aircraft in Viet Nam. Sniper fire from concealed Viet Cong, always a serious risk, is even more of a menace when an aircrew is unaware that it is being fired upon. The noise of the engines masks the sound of gunfire and the flight crew of ten knows that its craft is a target only after bullet holes appear or, worse yet, vital systems are damaged or casualties sustained. The new listening device will permit pilots to take evasive action, and to some degree even locate their attackers.

Basic parts of the system are dual microphones located on opposite sides of a drop-shaped nacelle below the fuselage, an acoustic filter and a solid-state amplifier. The filter eliminates fundamental engine and propeller or rotor noise and the amplifier raises the received sound of gunshots. The output of the hearing device is fed directly to the pilot's communication headset. A stereo effect, due to the positioning of the listening microphones, makes it possible for the pilot to determine the approximate position of the sniper.

## Proven components used

A development of the Air Force Cambridge Research Laboratories, Bedford, Mass., the hearing aid is the essence of simplicity. The components are all readily available, relatively inexpensive and of proven reliability. The electronic components of the system can be packaged into about 10 cubic inches and the complete installation in production quantities will cost approximately $\$ 100$.

Prototype models of the "aerophone" have been jointly tested by Air Force and Army electronics engineers at Eglin, Fla., and at Fort Devens and Camp Edwards in Massachusetts. Pilots experienced in flying over combat zones have proved the system's effectiveness in tests performed on the $\mathrm{H}-13$ helicopter, the C-47 and other light ob-servation-type aircraft.


## IRC expands rectifier line Wide choice of MIL and industrial devices

Now, IRC is offering an even larger selection of silicon rectifiers. These devices are immediately available from stock to fill the vast majority of your MIL and industrial requirements. Most IRC rectifiers are also available in reverse polarity.

- Ratings from .045 to 250 amps, and 50 volts to 100 Kv
- MIL types meet all performance and environmental requirements of MIL-S-19500
- Subminiature, high-voltage types to 4000 volts
- 100 and 250 amp controlled avalanche units for industrial use
- Fast recovery types-200 nsec-in five package choices

If you specify or buy silicon rectifiers, you should know about the money-saving advantages of IRC's silicon rectifier line. For new semiconductor catalog, prices and samples, write: IRC, Inc., Semiconductor Division (formerly North American Electronics), 71 Linden St., West Lynn, Massachusetts 01905.


IRC.

## ONLY 3C OFFERS <br> A CHOICE OF $1 \mu$ SECI/C CORE MEMORIES WITH 4K TO 32K WORDS IN 514" UNITS



Standard ICM-40 mounts horizontally, provides $1 / 4$ million bits of economical high speed storage in a single compact $51 / 4^{\prime \prime}$ high unit which pulls out, swings, and tilts for easy access.


Shown: $11 / 2$ million bits ( 98 K words) of core memory. Standard $5 \frac{1}{4 \prime \prime}$ " ICM-40 mounts vertically in standard $19^{\prime \prime} \times 24^{\prime \prime}$ cabinet. Memory module swings out, tilts for easy access to module side or wired side of hardware.
$1 \mu \mathrm{sec}$ cycle time, 500 nsec access time - capacities from $4 \mathrm{~K} \times 4$ bits to $32 \mathrm{~K} \times 84$ bits. Extensive features of ICM-40† Core Memories include proven I/C reliability, adjustment-free operation, and compact packaging with unique ready access to all components.

ICM-40's are designed and built for critical computer level speeds and reliability at minimal user cost. All logic, addressing, decoding, control, line driving, and sensing functions utilize 3C $\mu$-PAC integrated circuit logic modules. (Discrete active components employed only in the core stack selection switch.) All modules are interchangeable; tuning is accomplished by adjusting power supply voltage only. ICM-40's interface comfortably with both discrete component and integrated circuit systems.

## SPECIFICATIONS

| Capacity* | 4096 words $\times 4-28$ bits |
| :--- | :--- |
| (in a single 51/4" high unit) | 8192 words $\times 4-28$ bits |
|  | 16,384 words $\times 4-28$ bits |
|  | 32,768 words $\times 4-14$ bits |
| Speed | $1.0 \mu$ sec for Clear $/$ Write and Read/ |
|  | Regenerate |
|  | $1.25 \mu \mathrm{secs}$ for Read/Modify/Write |
| Access | $<0.5 \mu \mathrm{sec}$ |
| Input logic levels | ZERO: 0.0 volts to +1.0 volt |
| (other input logic levels on | ONE: +3.0 volts to +6.5 volts | request)

$\begin{array}{ll}\text { Output logic levels } & \text { ZERO: } 0.0 \text { volts to }+0.4 \text { volt } \\ \text { (other output logic levels } & \text { ONE: }+4.0 \text { volts to }+6.5 \text { volts }\end{array}$ on request)

| Power | 115 or 230 volts $( \pm 15 \%), 50$ or 60 <br> cps $( \pm 1 \mathrm{cps})$ |
| :--- | :--- |
| Weight | $<55$ pounds |

## $\dagger$ Patent Applied For

*NOTE: System word capacity and bit length can be increased by com. bining several ICM-40's in a single cabinet.


Washington Report:masum

## High-speed trains pick up steam

The research-and-development end of the Commerce Department's high-speed ground transportation (HSGT) program has been boosted by the award of a $\$ 71,129 \mathrm{R} \& \mathrm{D}$ contract to Garrett Airesearch Manufacturing Division, Los Angeles. Under its terms Garrett will investigate the possibility of using a linear induction motor to power future high-speed trains. (See also this column in ED 5, Mar. 1) The new contract follows hard on the heels of one awarded to Melpar, Inc., Falls Church, Va., to instrument the high-speed test cars that will begin operating late this summer over the Pennsylvania Railroad's tracks between Trenton and New Brunswich, N. J.
The department is also about to sign contracts for the upgrading of the track to be used for the tests and for the operation of the test cars. Over $\$ 950,000$ will be spent on the latter; the test track will cost $\$ 1.6$ million, and the instrumentation and test contract is valued at $\$ 1.1$ million. Another $\$ 2$ million in R\&D contracts have already been earmarked. And Robert A. Nelson, director of the HDGT Office, has an additional $\$ 3$ million for R\&D in hand, which he says plans have already been made to spend.
In announcing the 12 -month Garrett contract the Commerce Department stated only that the project would include "theoretical studies." However, HSGT officials have declared earlier that a contract would include detailed analysis of force-speed, force-weight, efficiency and power-factor characteristics, with both magnetic and nonmagnetic conductors. It would also involve a design study of various motors to evaluate such quantities as pole pitch, slots per pole, stator copper and iron configurations and the rotor conductor configurations. Both multi-fixed-frequency and continuously-variable-frequency power supplies are expected to come under study. Several methods of speed control for different types of vehicles will likely be investigated.

Commerce Under Secretary for Transportation Alan S. Boyd did announce, however, that if Garrett's theoretical studies prove out, "we may authorize development and testing of scale-
model motors." Boyd went along with the department's technicians who favor linear induction motors if practicable. They cite such advantages over conventional motors as the elimination of bearings, centrifugal stresses, windage and heating. Above all is the consideration that a vehicle powered by a linear induction motor would carry only half the power plant of a conventional locomotive and hence have a greatly reduced dead load.

## Boom in education technology anticipated

Educators and industrialists alike came away from a recent symposium on the application of technology-especially computers-to education, looking forward to a period of rapid growth involving big money and radical new techniques for the education-technology industry.
The educators were represented by the Defense Department and the U.S. Office of Education which jointly sponsored the "Engineering Systems for Education and Training Conference" in co-operation with the National Security Industrial Association. Industry was represented by some 500 intent observers from scores of electronic, aerospace, computer, copying-machine, software-research and publishing firms.
The main reason for the air of optimism was the Office of Education's repeated emphasis that profit-making industry was now eligible for its R\&D support. R. Louis Bright, the office's associate commissioner for research, indicated that, while little money could be spent with industry in Fiscal 1967, Fiscal 1968, which starts next July, may see a large part of USOE business that formerly went to universities and nonprofit organizations being switched to industry.

Before passage of the Elementary and Secondary Education Act of 1965, the USOE's external research program consisted by law almost entirely of support for unsolicited proposals from universities and nonprofit organizations. Ever since the bill was passed, little use has been made of its authority to broaden participation; few contracts have gone to industry.

Now the USOE plans to begin entertaining unsolicited proposals from industry; it even plans to ask selected firms to submit proposals for specific projects.
U.S. Commissioner of Education Harold Howe II said: "Recent legislation has made it possible for the office to contract with profitmaking organizations for the conduct of research and development programs. As yet, we have not taken real advantage of this opportunity, but we can identify several areas -job training, for example-where industry has unique capability to contribute to our efforts."

Both Howe and Bright noted that industry would have to take a "total systems" approach to solutions of problems. Hitherto, Bright pointed out, the hardware sold to schools has originally been designed for some other purpose. He commented: "There is little real evidence that a tape recorder designed for commercial recording studios has all of the characteristics necessary for an effective language laboratory, or that an entertainment system such as home TV is equally effective for education; most certainly, computers designed for business data processing are not ideally suited for computerized classrooms."

Howe and Bright also pointed up the need for new approaches to software. Howe said that while local school districts have so far invested $\$ 200$ million in equipment ranging from overhead projectors to complex electronic gear to supplement the shortage of teachers, there is considerable doubt that adequate software is available to make the hardware effective. For this reason, he said, the hardware has been earning a bad reputation in some places.

Development of both software and hardware, the USOE feels, is being inhibited by the difficulty of pleasing and selling to the 26,000 separate school districts in the nation. USOE may help industry to overcome this through the new network of regional educational laboratories. Couching what they have to say in the most circumspect terms lest they scare any local school district or incur the wrath of a Congressman, Federal education experts say that the fruits of hardware and software R\&D will be tried out in the regional laboratories. When satisfied that the new equipment can make a significant contribution in relation to its cost, the laboratories will demonstrate it to encourage local school
districts to adopt new techniques and apparatus.
Is the market worth it to industry? Many electronic firms apparently believe it is. Harvard professor J. Sterling Livingston, who is also executive director of the Sterling Institute, listed a few of the companies that have committed themselves heavily to it.

Livingston said that a new "education technology industry" was coming into being as an offshoot of the information technology industry. He went on: "It is being created by the great electronic equipment firms such as General Electric, R.C.A., Raytheon, IBM, General Telephone, I.T.\&T., Sylvania and Litton Industries; by reproduction equipment companies such as Xerox and Minnesota Mining; and by communication companies such as Western Union and American Telephone \& Telegraph, often in association with publishing firms such as Time Inc., Random House, D. C. Heath, and Wesleyan University Press" (now American Education Publications).

What do these companies have their eye on? Just to start with, there is Title I of the Elementary and Secondary Education Act, which contains a Congressional authorization to disburse more than one billion dollars a year. And the total potential market for these companies is immense: The U.S., one way and another, is already spending $\$ 40$ billion a year on education.

## Teamsters may go electronic

Teamsters Union president James R. Hoffa has jumped aboard the auto-safety bandwagon. At a little publicized press conference, Hoffa demonstrated the safety devices that he wants the Interstate Commerce Commission to make mandatory on all interstate trucks. The most unconventional was a system that detects when a driver has begun to doze, sounds an alarm and, if necessary, halts the truck.

The device works on the theory that an alert driver moves his steering wheel ever so slightly but almost constantly. When wheel movement ceases, a buzzer sounds. If this fails to awaken the driver, the device-called Drive-a-Lert-gently applies the brakes. It would sell for $\$ 35$ for the alarm alone; an additional $\$ 85$ would cover the braking system.
Hoffa's press conference went almost unnoticed, but some time later, hearings on Capitol Hill suddenly brought the selfsame Drive-a-Lert and two other devices that Hoffa called for into the limelight. Shortly thereafter a group of truckers assembled at a short-notice meeting in Washington, but forcibly ejected newsmen from the room. The topic they discussed? Tactics to keep the total $\$ 950$ worth of equipment out of ICC regulations.


## Power Packages

TO-3 Fig. 1
All dimensions in inches
Leads 1 and 2 electrically isolated from case
Case is third electrical connection (Collector)
Leads are nickel-alloy
Package weight is 8.71 grams


TO-5 Fig. 2
All dimensions in inches
Leads are gold-plated KOVAR *
Collector internally connected to case
Package weight is 1.10 grams


T0-18 Fig. 3
All dimensions in inches
Leads are gold-plated KOVAR•
Collector internally connected to case
Package weight is 0.43 gram


T0-46 Fig. 4
All dimensions in inches
Leads are gold-plated KOVAR*
Collector internally connected to case
Package weight is 0.36 gram


TO-59 Fig. 5

All dimensions in inches
Collector electrically isolated from case
Package weight is 6.44 grams.
(also available with isolated collector)

(also available with isolated collector)

Fig. 7
All dimensions in inches
Leads are gold-plated nickel alloy
Identical to "BU" except die mounting
pedestal is copper
Lead 1 and 2 electrically isolated from case
Case is third electrical connection
Package weight is 6.192 grams


|  | Package: |  | $V_{F X}$ \& $V_{R X}$ | $V_{F} @ \mathrm{I}_{\mathrm{F}}$ | $\mathrm{I}_{\text {GT }}$ | Device |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.5 Amp | TO. 18 | (Fig. 3) | 50 V | 1.6V@ 0.5A | $200 \mu \mathrm{~A}$ | 2N4108 |
|  |  |  | 100 V | $1.6 \mathrm{~V} @ 0.5 \mathrm{~A}$ | $200 \mu \mathrm{~A}$ | 2N4109 |
|  |  |  | 200 V | $1.6 \mathrm{~V} @ 0.5 \mathrm{~A}$ | $200 \mu \mathrm{~A}$ | 2N4110 |
|  | T0.46 | (Fig. 4) | 50 V | 1.6V@0.5A | $200 \mu \mathrm{~A}$ | 2N4096 |
|  |  |  | 100 V | $1.6 \mathrm{~V} @ 0.5 \mathrm{~A}$ | $200 \mu \mathrm{~A}$ | 2N4097 |
|  |  |  | 200 V | $1.6 \mathrm{~V} @ 0.5 \mathrm{~A}$ | $200 \mu \mathrm{~A}$ | 2N4098 |
| 1 Amp | TO-5 | (Fig. 2) | 50 V | 2V@1A | 10 mA | 2N1595 |
|  |  |  | 50 V | 2V@1A | 10 mA | 2N1595A |
|  |  |  | 50 V | $1.4 \mathrm{~V} @ 1 \mathrm{~A}$ | $50 \mu \mathrm{~A}$ | 2N2322 |
|  |  |  | 50 V | 1.4V@1A | $50 \mu \mathrm{~A}$ | 2N2323 |
|  |  |  | 50 V | 1.4V@1.6A | $200 \mu \mathrm{~A}$ | 2N3559 |
|  |  |  | 50 V | 2V@1A | $200 \mu \mathrm{~A}$ | 2N2009 |
|  |  |  | 50 V | 2V@1A | $200 \mu \mathrm{~A}$ | 2N2010 |
|  |  |  | 100 V | 2V@1A | 10 mA | 2N1596 |
|  |  |  | 100 V | 2V@1A | 10 mA | 2N1596A |
|  |  |  | 100 V | $1.4 \mathrm{~V} @ 1 \mathrm{~A}$ | $50 \mu \mathrm{~A}$ | 2N2325 |
|  |  |  | 100 V | $1.4 \mathrm{~V} @ 1 \mathrm{~A}$ | $50 \mu \mathrm{~A}$ | 2N2324 |
|  |  |  | 100 V | $1.4 \mathrm{~V} @ 1.6 \mathrm{~A}$ | $200 \mu \mathrm{~A}$ | 2N3560 |
|  |  |  | 100 V | $1.4 \mathrm{~V} @ 1.6 \mathrm{~A}$ | $200 \mu \mathrm{~A}$ | 2N3561 |
|  |  |  | 100 V | 2V@1A | $200 \mu \mathrm{~A}$ | 2N2011 |
|  |  |  | 200 V | $2 \mathrm{~V} @ 1 \mathrm{~A}$ | 10 mA | 2N1597 |
|  |  |  | 200 V | 2V@1A | 10 mA | 2N1597A |
|  |  |  | 200 V | 1.4V@ 1 A | $50 \mu \mathrm{~A}$ | 2N2327 |
|  |  |  | 200 V | $1.4 \mathrm{~V} @ 1 \mathrm{~A}$ | $50 \mu \mathrm{~A}$ | 2N2326 |
|  |  |  | 200 V | 1.4V@1.6A | $200 \mu \mathrm{~A}$ | 2N3562 |
|  |  |  | 200 V | $2 \mathrm{~V} @ 1 \mathrm{~A}$ | $200 \mu \mathrm{~A}$ | 2N2012 |
|  |  |  | 300 V | $2 V @ 1 A$ | 10 mA | 2N1598 |
|  |  |  | 300 V | $2 \mathrm{~V} @ 1 \mathrm{~A}$ | 10 mA | 2N1598A |
|  |  |  | 300 V | 1.4V@1A | $50 \mu \mathrm{~A}$ | 2N2328 |
|  |  |  | 300 V | $2 \mathrm{~V} @ 1 \mathrm{~A}$ | $200 \mu \mathrm{~A}$ | 2N2013 |
|  |  |  | 400 V | 2 V @ 1A | 10 mA | 2N1599 |
|  |  |  | 400 V | 2V@1A | 10 mA | 2N1599A |
|  |  |  | 400 V | $1.4 \mathrm{~V} @ 1 \mathrm{~A}$ | $50 \mu \mathrm{~A}$ | 2N2329 |
| 5 Amp | T0.66 | (Fig. 7) | 200 V | $2.8 \mathrm{~V} @ 3 \mathrm{~A}$ | 15 mA | 2N3228 |
|  |  |  | 400 V | 2.8 V @ 3A | 15 mA | 2N3525 |
|  | TO-5 | (Fig. 2) | 100 V | $2.4 \mathrm{~V} @ 5 \mathrm{~A}$ | $200 \mu \mathrm{~A}$ | 2N3273 |
|  |  |  | 200 V | 2.4V@ 5A | $200 \mu \mathrm{~A}$ | 2N3274 |
|  |  |  | 300 V | $2.4 \mathrm{~V} @ 5 \mathrm{~A}$ | $200 \mu \mathrm{~A}$ | 2N3275 |
|  |  |  | 400 V | 2.4V@ 5A | $200 \mu \mathrm{~A}$ | 2N3276 |
| 10 Amp | TO-3 | (Fig. 1) | 100 V | 2.2V@ 10A | 2-15mA | SE9030 |
|  |  |  | 200 V | 2.2V@10A | 2.15 mA | SE9031 |
|  |  |  | 300 V | 2.2V@ 10A | 2-15mA | SE9032 |
|  |  |  | 400 V | 2.2V@10A | 2-15mA | SE9033 |
|  | TO-59 | (Fig. 5) | 100 V | 2.2V@ 10A | $200 \mu \mathrm{~A}$ | 2N3269 |
|  |  |  | 200 V | 2.2V@ 10A | $200 \mu \mathrm{~A}$ | 2N3270 |
|  |  |  | 300 V | 2.2V@ 10A | $200 \mu \mathrm{~A}$ | 2N3271 |
|  |  |  | 400 V | 2.2V@10A | $200 \mu \mathrm{~A}$ | 2N3272 |
|  | T0.66 | (Fig. 7) | 100 V | 2.2V@ 10A | 2-15mA | 2N4316 |
|  |  |  | 200 V | 2.2V@ 10A | 2-15mA | 2N4317 |
|  |  |  | 300 V | 2.2V@ 10A | 2-15mA | 2N4318 |
|  |  |  | 400 V | 2.2V@ 10A | 2.15 mA | 2N4319 |

## Planar Power Transistors

| PNP | Package | $B V_{\text {CEO }}$ | $\mathrm{hfe}_{\text {fe }}$ | Test Conditions <br> $V_{C E}$ $\mathrm{I}_{\mathrm{C}}$ | $f_{T}$ | Power <br> Dissipation <br> at case <br> Temperature | Fairchild Device Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 Amp | TO-59 (Fig. 5) <br> with isolated collector | 80 V | 10 min. | 5 V 1A | 100 MHz | 5 W @ $75^{\circ} \mathrm{C}$ | FT55 |
| 5 Amp | TO-59 (Fig. 5) <br> with isolated collector | 80 V | 40 min . | 5 V 5A | 80 MHz | 30 W @ $100^{\circ} \mathrm{C}$ | FT400A |
|  |  | 80V | 20 min. | 5V 5A | 80 MHz | 30 W @ $100^{\circ} \mathrm{C}$ | FT400B |
|  | TO.3 (Fig. 1) | 80 V | 15 min . | 5 V - 5A | 80 MHz | $30 \mathrm{~W} @ 80^{\circ} \mathrm{C}$ | SE9541 |
|  |  | 60 V | 20 min . | 5V 5A | 80MHz | $30 \mathrm{~W} @ 50^{\circ} \mathrm{C}$ | SE9540 |
|  | TO-5 (Fig. 2) | 80 V | 15 min . | 5 V 5A | 80 MHz | $5 \mathrm{~W} @ 25^{\circ} \mathrm{C}$ | FT400C |
| NPN | Package | $B V_{\text {cEO }}$ | $\mathrm{h}_{\text {fe }}$ | Test Conditions <br> $V_{C E} \quad I_{C}$ | $f_{T}$ | Power Dissipation at case <br> Temperature | Fairchild Device Number |
| 150 m | T0-66 (Fig. 7) | 300 V | 40-240 | 10 V | 30 MHz | 6 W @ $75^{\circ} \mathrm{C}$ | SE7020 |
|  | TO-5 (Fig. 2) | 300 V | 40-240 | 10 V | 30 MHz | 3.5 W @ $75^{\circ} \mathrm{C}$ | FT300B |
|  | TO-66 (Fig. 7) | 150 V | 30-260 | 10 V ( 150 mA | 30 MHz | $5 \mathrm{~W} @ 25^{\circ} \mathrm{C}$ | SE7006 |
| 2 Amp | TO-59 (Fig. 5) *indicates isolated collector | 80 V | 30-90 | 2 V 1A | 30 MHz | $17 \mathrm{~W} @ 100^{\circ} \mathrm{C}$ | 2N2892 |
|  |  | 80 V | 50-150 | 2 V 1A | 30 MHz | $17 \mathrm{~W} @ 100^{\circ} \mathrm{C}$ | 2N2893 |
|  |  | 80 V | 30-90 | 2 V 1A | 30 MHz | $17 \mathrm{~W} @ 100^{\circ} \mathrm{C}$ | 2N4075* |
|  |  | 80 V | 50-150 | 2V 1A | 30 MHz | $17 \mathrm{~W} @ 100^{\circ} \mathrm{C}$ | 2N4076* |
|  |  | 80 V | 40-120 | $2 \mathrm{~V} \quad 2 \mathrm{~A}$ | 80 MHz | 15W@ $100^{\circ} \mathrm{C}$ | FT34A |
|  |  | 60V | 100-300 | $2 \mathrm{~V} \quad 2 \mathrm{~A}$ | 80 MHz | 15W@ $100^{\circ} \mathrm{C}$ | FT34B |
|  | TO.3 (Fig. 1) | 60 V | 40-120 | 2 V 2A | 80 MHz | 15W@ $75^{\circ} \mathrm{C}$ | 2N3919 |
|  |  | 60V | 100-300 | $2 \mathrm{~V} \quad 2 \mathrm{~A}$ | 80 MHz | 15W@ ${ }^{\text {a }}{ }^{\circ} \mathrm{C}$ | 2N3920 |
|  |  | 40V | 10 min. | $4 \mathrm{~V} \quad 2 \mathrm{~A}$ | 30 MHz | 20W@ $50^{\circ} \mathrm{C}$ | 2N3917 |
|  |  | 40 V | 30-260 | $5 \mathrm{~V} \quad 0.5 \mathrm{~A}$ | 30 MHz | $10 \mathrm{~W} @ 100^{\circ} \mathrm{C}$ | SE3035 |
|  | TO-5 (Fig. 2) | 80V | 30-90 | 2 V 1A | 30 MHz | 2.8W@ $100^{\circ} \mathrm{C}$ | 2N2890 |
|  |  | 80 V | 50-150 | 2 V 1A | 30 MHz | 2.8W@ $100^{\circ} \mathrm{C}$ | 2N2891 |


| NPN | Package: | BV ${ }_{\text {ceo }}$ | $\mathbf{h f e}_{\text {fe }}$ | Test Conditions <br> $\mathbf{V}_{\mathrm{CE}} \quad \mathrm{I}_{\mathrm{C}}$ |  | $f_{T}$ | Power Dissipation at case Temperature | Fairchild Device Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 80 V | 30-250 | 2V | 1 A | 30 MHz | $10 \mathrm{~W} @ 100^{\circ} \mathrm{C}$ | SE9001 |
| Continued |  | 60V | 30-250 | 2V | 1A | 30 MHz | 10W @ $100^{\circ} \mathrm{C}$ | SE9002 |
| 5 Amp | TO-59 (Fig. 5) *indicates isolated collector | 80 V | 40 min . | 5 V | 5A | 70 MHz | 30 W @ $100^{\circ} \mathrm{C}$ | 2N4116* |
|  |  | 80 V | 20 min . | 5 V | 5A | 70 MHz | 30 W @ $100^{\circ} \mathrm{C}$ | 2N4115* |
|  |  | 60 V | 20 min . | 5 V | 5A | 70 MHz | 30 W @ $100^{\circ} \mathrm{C}$ | FT72078 |
|  | TO-3 (Fig. 1) | 80 V | 20 min . | 5 V | 5A | 70 MHz | $30 \mathrm{~W} @ 50^{\circ} \mathrm{C}$ | 2N4113 |
|  |  | 80 V | 40 min . | 5 V | 5A | 70 MHz | $30 \mathrm{~W} @ 50^{\circ} \mathrm{C}$ | 2N4114 |
|  |  | 80V | 15 min. | 5 V | 5A | 80 MHz | 30 W @ $100^{\circ} \mathrm{C}$ | SE9041 |
|  |  | 60V | 20 min . | 5 V | 5A | 70 MHz | $30 \mathrm{~W} @ 50^{\circ} \mathrm{C}$ | 2N4111 |
|  |  | 60V | 40 min . | 5 V | 5A | 70 MHz | 30 W @ $50^{\circ} \mathrm{C}$ | 2N4112 |
|  |  | 60V | See note 1 |  |  | 70 MHz | $15 \mathrm{~W} @ 75^{\circ} \mathrm{C}$ | SE3034 |
|  |  | 60 V | 20 min. | 5 V | 5A | 80 MHz | $30 \mathrm{~W} @ 50^{\circ} \mathrm{C}$ | SE9040 |
| Note 1: Vce (SAT) @ Ic/Is $=5 \mathrm{~A} / 0.5 \mathrm{~A}=0.4 \mathrm{~V}$ max. |  | 80 V | 40-120 | 2V | 2A | 80 MHz min. | 5 W @ $25^{\circ} \mathrm{C}$ | FT34C |
|  |  | 60 V | 100-300 | 2V | 2A | $80 \mathrm{MHz} \mathrm{min}$. | $5 \mathrm{~W} @ 25^{\circ} \mathrm{C}$ | FT34D |
| 7 Amp | TO-3 (Fig. 1) | 150 V | 10 min. | 1.2 V | 7A | 30 MHz | $50 \mathrm{~W} @ 25^{\circ} \mathrm{C}$ | SE9020 |
| 10 Amp | TO-3 (Fig. 1) | 60 V | 40-120 |  | 2A | 4 MHz | 15W@ $5^{\circ}{ }^{\circ} \mathrm{C}$ | 2N3919 |
|  |  | 60 V | 100-300 | ${ }^{2 V}$ See note $1{ }^{2 A}$ |  | 4 MHz | 15W@ $5^{\circ}{ }^{\circ} \mathrm{C}$ | 2N3920 |
|  |  | 60 V |  | See note 1 |  | 4 MHz | 15W@ $75^{\circ} \mathrm{C}$ | SE3030 |
|  |  | 60 V |  | See note 1 |  | 4 MHz | $15 \mathrm{~W} @ 75^{\circ} \mathrm{C}$ | SE3032 |
|  |  | 60V |  | See note 2 |  | 4 MHz | $15 \mathrm{~W} @ 75^{\circ} \mathrm{C}$ | SE3031 |
|  |  | 60V |  | See note 2 |  | 4 MHz | $15 \mathrm{~W} @ 75^{\circ} \mathrm{C}$ | SE3033 |
|  |  | 80 V |  | See note 1 |  | 4 MHz | $15 \mathrm{~W} @ 100^{\circ} \mathrm{C}$ | FT34A |
| Note 1: $\mathrm{V}_{\text {CE }}(\mathrm{SAT}) @ \mathrm{IC} / \mathrm{I}_{\mathrm{B}}=10 \mathrm{~A} / 1 \mathrm{~A}=1.2 \mathrm{~V}$ <br> Note 2: $\mathrm{VCE}_{\mathrm{CE}}(\mathrm{SAT}) @ \mathrm{Ic} / \mathrm{I}_{\mathrm{B}}=10 \mathrm{~A} / 1 \mathrm{~A}=1.8 \mathrm{~V}$ |  | 60V |  | See note 1 |  | 4 MHz | 15W@ $100^{\circ} \mathrm{C}$ | FT34B |
| 12 Amp | TO-3 (Fig. 1) | 200V | 10 min. | 1.5 V | 12A | 30 MHz | 60W@ $25^{\circ} \mathrm{C}$ | SE9010 |
|  | T0.61 (Fig. 6) <br> with isolated collector | 200V | 10 min. | 1.5 V | 12A | 30 MHz | $60 \mathrm{~W} @ 25^{\circ} \mathrm{C}$ | FT301A |

Fairchild Suggested Equivalents

This cross-reference list is intended as a guide only. In some instances there will be package, thermal resistance, and safe area differences. The nearest electrical equivalent was selected on the
basis of $\mathrm{V}_{\mathrm{CEO}}$ and $\mathrm{h}_{\mathrm{fE}}$. Please refer to individual device specifications for additional information.


Reliability of a transistor depends on many factors. It is a mistake to consider a single factor, such as operating junction temperature, as the overall determinant of the transistor's reliability and life expectancy. There are at least two significant areas, usually neglected by the power transistor buyer, where Planar construction can add materially to the reliability of the device: 1. Long-term drift, and 2. Ambient influences.

Long-Term Drift and Stability: Planar devices are inherently more stable and are affected less by long-term drift as a function of temperature and time. This is due to the passivated junctions of Planar transistors.

Ambient Influences: Reliability depends on the susceptibility of a given junction to ambient influences within the encapsulation. The passivation techniques used in the Planar process prohibit external influences from contaminating and degrading the junction surface.

## Secondary Breakdown

Secondary breakdown frequently shows itself as localized spot heating which melts through the base region and causes a collector-to-emitter short. Take away the localized heating (or the concentration of currents which cause it) and you have removed the major cause of secondary breakdown. Fairchild does this by introducing nickel-chromium thin film resistors in series with the emitters. This prevents concentration of currents in any one spot. Here's how it works:

All power transistors can be represented mechanically as thousands of separate transistors placed in parallel. Theoretically,
the same amount of current flows through each. But in reality, because each transistor has slightly different characteristics, one will draw more than its share of current. This causes localized heating, which in turn causes the transistor to "hog" yet more current, which causes more heating. If this unpleasant cycle continues unchecked, the result is secondary breakdown.

The NICR resistors, placed in series with the emitters, prevent this from happening. When a transistor tries to "hog" more than its share of current, the resistor induces a negative feedback which pulls it right back into the safe zone.

Thus, the key to solving secondary breakdown is not wider base areas, and/or lower frequencies. Fairchild power transistors, such as 2N4111 through 2N4116, have the resistors diffused right into the chip, and assure current sharing over the entire emitter periphery. This technique is highly successful in preventing secondary breakdown, while maintaining the superior performance of Planar technology.

## Test Planar Power

To help you prove to yourself the reliability of Fairchild Planar power, we have prepared two sample kits of Fairchild power devices. One kit contains our latest power transistors, the other contains our SCR's. These kits are offered at a fraction of their retail value, so that you may put the devices to the test on your own breadboards. But hurry. The offer expires July 30th, 1966. So call a Fairchild Distributor (listed on the back page) and ask for the FAIRCHILD POWER PACK.


## Alabama

SCHWEBER ELECTRONICS
Huntsville, Alabama
Tel: 205-539-2756

## Arizona

G. S. MARSHALL COMPANY

A Division of Marshall Industries
Scottsdale, Arizona
Tel: 602-946-4276
HAMILTON ELECTRO OF ARIZONA
Phoenix, Arizona
Tel: 602-272-2601

## California

AVNET CORPORATION
Culver City, California
Tel: 213-837-7111
HAMILTON ELECTRO SALES
Culver City, California
Tel: 213-870-7171
TWX: 213-836-0412
HAMILTON ELECTRO SALES -
NORTH
Mountain View, California
Tel: 415-961-7000
DENNY-HAMILTON ELECTRONICS
San Diego, California
Tel: 714-279-2421
G. S. MARSHALL COMPANY

A Division of Marshall Industries
San Marino, California
G. S. MARSHALL COMPANY A. Division of Marshall Industries San Diego, California Tel: 714-278-6350
G. S. MARSHALL COMPANY

A Division of Marshall Industries
Redwood City, California
Tel: 415-365-2000

## Colorado

HYER ELECTRONICS
Denver, Colorado

Connecticut
CRAMER ELECTRONICS, INC
Hamden, Connecticut
Tel: 203-288-7771

## Florida

POWELL-CRESCENT
Orlando, Florida
Tel: 305-423-8586

CRAMER FLORIDA, INC
Fort Lauderdale, Fiorida
Tel: 305-566-7511

HALL MARK ELECTRONICS
Orlando Florida
Tel. 305' 855 -4020

Illinois
AVNET ELECTRONICS OF ILLINOIS
Franklin Park, Illinois
Tel: 312-678-8160
SEMICONDUCTOR
SPECIALISTS, INC
Chicago, llinois
Tel: 312-622-8860

## Kansas

COMTEC. INC
Prairie Village, Kansas
Tel: 913-648-0120

Maryland
VALLEY ELECTRONICS, INC Baltimore, Maryland
Tel: 301-668-4900
POWELL ELECTRONICS, INC
Beltsville. Maryland
Tel: 301-47

Massachusetts
CRAMER ELECTRONICS, INC
Newton, Massachusetts
Tel: 617-969-7700
L. L. SCHLEY CO., INC

Watertown, Massachusetts
Tel: 617-926-0235
SCHWEBER ELECTRONICS
Waltham, Massachusetts
Tel: 617-891-8484

## Michigan

SEMICONDUCTOR
SPECIALISTS, INC
Dearborn Heights, Michigan
Tel: 313-584-5901

Minnesota
AVNET ELECTRONICS OF
MINNESOTA
Minneapolis, Minnesota
Tel: 612-920-5866
SEMICONDUCTOR
SPECIALISTS, INC
Minneapolis, Minnesota
Tel: 612-866-3435

## Holiday road death rate questioned

Sir:
Wayne Willie of the National Safety Council (sic) is merely unbelievable! His "statistical" juggling of holiday vs nonholiday traffic deaths [ED 11, May 10, 1966, p. 33] is hilarious-typical of the distorted and meaningless data that emanate from his organization.

The two rates are only comparable if the relevant vehicle and/or passenger miles are known; in other words, how much more driving is done over holiday weekends than on nonholiday ones. I'll wager that, if these data were added, the NSC might be in for a surprise about how safely people drive during holidays.

Let's try a few other NSC "statistics" while we're about it. How about the " $75 \%$ (or some such figure) of all accidents occur within 15 miles of home"? What percentage of all driving is done within 15 miles of home? Then there's that " $80 \%$ of all deaths occur at under 35 mph " claim, which is again suspect unless we know what percentage of all driving is done at under 35 mph . As for that hoary old "Speed Kills" dirge, I guess they'd better not tell the astronauts who have survived $18,000 \mathrm{mph}$. In Los Angeles, slowness kills on the freeways, since the traffic there has a way of removing the slow and obstructive driver who impedes traffic, usually in the left lane.

As a matter of record, some well researched experiments have proved that speeding up traffic has reduced accidents, but this kind of information has a way of getting buriedit doesn't get votes or swell a city's coffers with violation money.

John Joss
1060 Los Altos Ave.
Los Altos, Calif.
Sir:
A recent letter from Wayne Willie of the National Safety Council [ED 8, May 10, 1966, p. 33] manipulated some figures for last Labor Day weekend auto deaths, finally settling on 765 . If 78 hours is the base for total deaths due to auto ac-
cidents, this yields a rate of 9.8 deaths per hour.

Will Willie or someone please add up the deaths for the 54 -hour weekend preceding Labor Day, including those who died later, and tell me the rate of deaths per hour? Only then can we make a comparison unobscured by columns of verbiage.

Jon P. Ramer
7219 Ravenna Ave.
Orlando, Fla.
Sir:
I thoroughly agree with J. W. Streater [ED 8, Apr. 12, 1966, pp. 39-40]. People just are not interested in safety in cars. Nine times out of ten, seat belts are not used even when they are installed.

Walter A. White

## Engr.

Sylvania Electronic Systems Buffalo, N. Y.

## More support for the siemens

Sir:
In recent issues of ED voices have been raised against the use of the siemens as the unit of conductance. One argument [ED 4, Feb. 15,1966, p. 42] was that even in Germany companies hesitate to use it. This, however, just is not so; publications, data sheets, handbooks, etc. prove the contrary. Here it is a generally used unit. I cannot believe that anyone writing or reading $\mathrm{S}, \mathrm{mS}$ or $\mu \mathrm{S}$ is thinking of a competitive firm.

Another argument was that nobody knows who Siemens was. Siemens' discovery of the dynamoelectric principle exactly 100 years ago was not inferior to the ideas of James Watt, who one century earlier showed the narrow correlation between progress in the technical and physical fields.

Let siemens be the unit-and Siemens a pioneer for all!

Dr. Werner Muschler

## Max-Planck-Institut

für Aeronomie
3411) Lindau/Harz

West Germany

Sir:
For purely personal reasons, of course, it is disheartening to learn of Howard Cook's [ED 4, Feb. 15,

1966, p. 42] and Thomas Parsons' protest against the substitution of the siemens for the mho. Being a relatively modest person, I must heartily agree with Parsons that Siemens does not belong in the company of Faraday, Henry and Ohm. But I must retain the hope that springs eternal that surely someone knows who I am. As for the question, "What did he do?" maybe it would be better that it remain unanswered rather than have my employer join in asking it, too.

While I understand that other names are certainly more deserving of preservation for posterity in this manner, you can understand that without any reservations the siemens gets my vote.

Harry A. Siemen, Sr. RCA Service Co., Inc.
Patrick AFB, Fla.

## Accuracy is our policy

In ED 11, May 10, 1966, NASA Tech Briefs, pp. 73 \& 74, the diagram with " 70 watt-hours/lb from regenerative fuel cell" illustrates the following Brief, "Sleeve for RF cables bridges shielding gap," and vice versa.

In "Device-hunting for motor speed control," ED 11, May 10, 1966, p. 40, Fig. 4b, the inscription above the circuit should read: "C30B for $I_{A} \geqslant 2 \mathrm{~A}$," not "C30B for $I_{A} \leqslant 2$ A."

In "New FETs replace tubes," ED 6, Mar. 15, 1966, p. 199, the schematic of Fig. 5 belongs above the caption of Fig. 4, and vice versa.

In "Carpet plotting is easy," ED 6 , Mar. 15, 1966, all the dotted lines shown in the graph below were omitted from Fig. 8, p. 228.



## ...especially our new metallized polycarbonates!

TRW has now extended its leadership in film capacitors to include metallized polycarbonate types. Two features of the X463UW are outstanding. Precise processing assures low TC through temperature ranges to $125^{\circ}$ C. Metallized construction reduces size to less than one half that of film-foil designs. Other features of the line include:

- Capacity range from .01 to 10.0 mfd
- Low dielectric absorption
- Available in tolerances to $\pm 1 \%$
- Humidity resistance per MIL-C-27287 For full information contact: TRW Capacitors, Box 1000, Ogallala, Nebraska. Phone: 308-284-3611 • TWX: 910-620-0321.


## Editor

Howard Bierman

## Managing Editor

Robert C. Haavind
Technical Editors
Joseph J. Casazza
Rene Colen
Maria Dekany
Richard Harnar
Mark B. Leeds

## News Editors

Frank Egan
Roger K. Field
East Coast Editor
Neil Sclater

West Coast Editors
Ralph Dobriner
Peer Fossen
Copy Editor
Peter Beales

New Products Editors
David Surgan
Genevieve Adee

Washington Editor
S. David Pursglove

Editorial Production
Dollie S. Viebig
Anne T. Lombardi
Art Director
Clifford M. Gardiner
Art Assistant
William Kelly
Technical Illustrators
Lewis D. Hill
Cheh Nam Low
Douglas Luna
Robert Ranta

Production Manager
Thomas V. Sedita
Asst. Production Manager
Helen De Polo
Production Assistants
Carl Merkin
Bernard Wolinsky
Circulation Manager
Nancy L. Merritt
Reader Service
Diane Pellechi


## An ill wind blows for the baccalaureate

When is an electronics engineer a "professional"? Today it is when he receives a sheepskin signifying he has met the requirements for a B.E.E. or a B.S.E.E. But is this a satisfactory system? The timeliness of such questions is underlined by a recent report* of the American Society for Engineering Education, "Goals of Engineering Education." Briefly, the report recommends acceptance of the master's degree as the first recognized professional engineering degree; it would be awarded after five years' study. At the end of four, students would qualify for a bachelor's degree, which would be regarded as an introductory engineering degree.

The proposal is based on the premise that a longer period of study would necessarily improve the level of competence, and hence raise the professional status of engineering.

The main issue is the effectiveness of the proposal. Professional status is a vague, ill-defined term. Does it mean wider recognition from the general public? Is it a measure of individuals' responsibilities within their companies? Or is it their standing among their peers? Until a consensus is reached on the exact meaning of this goal, discussion of means to achieve it will amount to little more than academic argument. The report's recommendation would answer the first definition, but the second and third would require much more thoroughgoing changes.

Even today many engineers are not used to the full extent of their capabilities. Many are obliged to perform routine testing, administrative duties and other essentially noncreative but necessary engineering tasks. It goes without saying that not every engineer can attain the same position-there must be some Indians among the chiefs. But would an engineer with an advanced degree deign to do down-to-earth hardware-oriented work?

At present, advanced degrees still command higher pay and more responsibility. But, if most engineers had master's degrees, would the advanced degree preserve its standing, or would it become roughly equivalent to today's bachelor's degree from one of the better colleges or universities?

Another fundamental issue is whether there should be any formalized revision of the educational standard at all? Perhaps it should be shaped according to the demands of industry and the enterprise of individuals. Already many students recognize the need for continued education. The demands of industry are obvious from the "Help Wanted" columns: The master's degree is becoming a basic requirement of many companies. Is there, then, any need to establish a formal, binding requirement for it when the technical society is already demanding it?

A multitude of questions must be raised and answered before any change is made. The engineering community must be heard before steps of such impact and far-reaching effect are taken. Let us know your opinion and we'll forward it to the "Goals" committee.

Maria Dekany
*A copy of the "Goals of Engineering Education" may be obtained from ASEE, Dupont Circle ,Building, 1346 Connecticut Ave., N.W., Washington, D. C. 20036 , for $\$ 1$.

## Two sets of our switches meet quietly in space.

When Gemini 6 caught up with Gemini 7 late in 1965 , the programmed approach to space exploration was proved. Our skilled Astronauts, the NASA team, McDonnell, and America's aerospace industries had passed a major milestone on our way to the moon.

Cutler-Hammer people are especially proud of this achievement. Many of our positiveaction switches are employed on each Gemini vehicle.
We earned our part in Gemini-and every manned space vehicle before it-based on almost half a century of experience. Dating back to 1920 when we created the first line of switches especially for airborne use. Today, nearly everything that flies uses Cutler-Hammer positive-action switches.

Our leadership is built on reliability. Through painstaking design and manufacture. Proved by exhaustive in-process inspection and $100 \%$ final testing.

Whatever your aerospace project, get the Cutler-Hammer switch and power relay story before firming up design. Many standard items are available from our Distributors' shelves. For specials-and full application supportcall your nearby Cutler-Hammer Sales Office.


There are Cutler-Hammer positive-action switches, miniafure and standard size, for almost everything that flies.

## Technology



Measuring and testing the performance of IF amplifier that has simplified design. Page 38


Division of Smith Chart into regions facilitates choice of devices to match circuits. Page 46


High-speed binary circuits using microelectronics usher in faster digital computers. Page 52

## Also in this section:

## Nomograph gives amplifier noise data. Page 60

Three things must be done before seeking a U.S. patent on your invention. Page 64 Ideas for Design. Pages 70 to 74

# Simplify IF amplifier design by letting gain and bandwidth guide the stage development. Here is the procedure for a double-tuned, wide-band $45-\mathrm{MHz}$ strip. 

Why make the design of transistorized wideband, double-tuned amplifiers any more complicated than need be? Use a practical approach based on the only primary criteria that really guide the over-all design-gain and bandwidth.

Consider the transistor as the primary determinant of gain and the double-tuned network as that of bandwidth. We need thus be concerned only with the functioning of each unit independently and with their influence upon each other.

Such important considerations as noise figure, dynamic range, biasing, gain controls, selectivity and mode of operation will not be covered in detail here. Our aim is to develop a systematic approach to double-tuned amplifier design. Therefore, all parameters other than gain and bandwidth will be deemed beyond the scope of our effort, as their inclusion would only serve to obscure the over-all design theme.

## Speed design by using curves

In designing double-tuned amplifiers, many engineers consult the IF-stage design curves in the MIT Radiation Laboratory Series.* The data in the curves are used in reference to the design of 30 and 45 MHz IF strips. Few engineers realize, however, that the curves may be extended to the design of double-tuned circuits with center frequencies considerably above or below these levels.

A step-by-step design for a wideband, doubletuned amplifier will demonstrate the usefulness of the technique. Frequent use will be made of the master design curves, to show how they apply to transistorized IF strips. The design will cover the following aspects of IF circuitry:

- Which configuration (common-emitter, com-mon-base or common-collector) to use, and why.
- Determination of the number of stages to use.
- Bandwidth considerations (in each stage, over-all and shrinkage factors).
- Coupling factors (bandwidth and frequency aspects).
- Admittance effects (trade-offs, which param-

[^1]eters to use and the influence of strays).

- Frequency considerations (resonance, Q figures and compensation).
- Transformer design (coil, coupling and frequency behavior).

The design itself entails the use of an equal- $Q$ transformer. These transformers require a great deal of RC shunting across both primary and secondary windings. This tends to mismatch and swamp out the parameter variations that are so characteristic of transistors. Equal-Q transformers typically have a low gain-bandwidth product, but this sacrifice in gain is well worth the improvement in stability and ease of design.


Not a trace of instability is found by Author Snow as he checks the performance of his wide-band, double-tuned $45 \cdot \mathrm{MHz}$ IF amplifier.


1. Simplified wideband, double-tuned amplifier uses a common-collector, common-base combination. This mode yields a resistive-capacitive input and a flat gain response.

## Measuring Y parameters

$Y_{i}=$ short-circuit input admittance
$Y_{f}=$ short-circuit forward transfer admittance
$Y_{r}=$ short-circuit reverse transfer admittance
$Y_{o}=$ short-circuit output admittance
Second subscript: $e=$ common-emitter
$b=$ common-base
$c=$ common-collector
$Y_{i e}$ is determined from measurements with jig 1. $Y_{o e}$ is determined from measurements with jig 2. $Y_{o o o}$ is determined from measurements with jig 2, but with the asterisked capacitor removed. $Y_{\text {ebscb }}$ is determined from measurements with jig 3.


For each of the above measurements the Boonton $R_{x}$ meter, Model 250-A, is first nulled at the desired frequency, and the appropriate jig is then placed across its terminals. $V_{c e}$ is adjusted to the desired
collector voltage, and $V_{b e}$ is adjusted for the desired collector current, $I_{c}$. The $R_{p}$ and $C_{p}$ dials are then adjusted for a null on the meter and the respective values noted and recorded.

The admittance is calculated from:

$$
\begin{equation*}
Y_{i e}=\left(1 / R_{p}\right)+\mathrm{j} \omega_{o} C_{p} . \tag{1}
\end{equation*}
$$

The rest of the common-emitter short-circuit admittances are calculated from

$$
\begin{align*}
& Y_{f e}^{\prime} \approx Y_{e b s c b}-\left(Y_{i e}+Y_{o e}\right)  \tag{2}\\
& Y_{r e}=-Y_{i e}\left(Y_{o e o}-Y_{o e}\right) / Y_{f e}^{\prime}  \tag{3}\\
& Y_{r e}=Y_{f e}^{\prime}-Y_{r e} . \tag{4}
\end{align*}
$$

If the common-base or common-collector parameters are required, they may be calculated with

$$
\begin{align*}
& Y_{i b}=Y_{i e}+Y_{r e}+Y_{f e}+Y_{o e}  \tag{5}\\
& Y_{r b}=-\left(Y_{r e}+Y_{o e}\right)  \tag{6}\\
& Y_{r b}=-\left(Y_{f e}+Y_{o e}\right)  \tag{7}\\
& Y_{o b}=Y_{o e}  \tag{8}\\
& Y_{i c}=Y_{i e}  \tag{9}\\
& Y_{r c}=-\left(Y_{i e}+Y_{r e}\right)  \tag{10}\\
& Y_{f c}=-\left(Y_{i e}+Y_{o e}\right)  \tag{11}\\
& Y_{o c}=Y_{i e}+Y_{r e}+Y_{f e}+Y_{o e} \tag{12}
\end{align*}
$$

## $Y$ parameters indicate compatibility

To select a proper transistor, it is important to determine first its short-circuit $Y$ parameters at the frequency and bias conditions used. Many transistor manufacturers specify these parameters, but if they are not available, they can be determined by following the procedure outlined (see box). The $Y$ parameters help to give an insight into the transistor's effect on the double-tuned network and to determine whether its input and output admittance will be compatible with the design values (see Reference).

Transistors operated in the common-emitter (CE) configuration generally exhibit a resistivecapacitive input admittance that is desirable in designing the tuned circuit. However, the shortcoming of this configuration is that the gain of the transistor is not flat over a wide band of frequencies. This CE property is due to the high intrinsic feedback between the base and collector of the transistor.

It is easily avoided through the use of a com-mon-base configuration. The input admittance of the common-base mode, however, is generally a resistive-inductive combination, which is undesirable in double-tuned networks.

By combining a common-collector and commonbase configuration (Fig. 1), the designer can achieve both a resistive-capacitance input admittance and a flat transistor gain response. Moreover this network offers the added feature of dc stability with temperature changes.

This is not to say that a single transistor in each stage in a common-emitter or common-base configuration should not be used. But it does imply that the calculated values associated with the tuned network will have to be altered to offset the shortcomings of these particular transistor modes. This complicates the tuned network design and is sometimes difficult to achieve physically. A transistor like the 2 N 918 has small feedback problems at frequencies below 50 MHz and can usually be used directly in the common-emitter configuration without much compensation. However, this transistor is relatively expensive. Let us therefore use the inexpensive two-stage approach (Fig. l) and develop our design around it.

The first element to consider is the total number of stages needed for a particular IF application. We therefore turn to the gain-bandwidth-cutoff frequency curve (Fig. 2).

## Spotlight on stage needs

To demonstrate the application of this curve, Fig. 1 will be used as a basic stage configuration in the following example:

Design an IF strip with these parameters:

- Over-all nominal gain $(G)=30 \mathrm{~dB}$
- Over-all bandwidth $(B W)=30 \mathrm{MHz}$
- Center frequency $\left(f_{o}\right)=145 \mathrm{MHz}$.
- Use 2N706 transistors- $f_{T}=400 \mathrm{MHz}$.

The optimum number of stages $(n)$ to be used is based on the over-all gain ( $G$ ) and bandwidth ( $B W$ ) requirements. To use Fig. 2, the designer must first relate the gain-bandwidth of the tran-

2. To determine the number of stages needed in an IF amplifier strip, the gain-bandwidth relationship must be considered. The ordinate here uses the ratio of gainbandwidth cut-off to over-all bandwidth, and the abscissa is over-all gain.

Table-Short-circuit $Y$ parameters*

|  | Common-emitter | Common-base | Common- <br> collector |
| :--- | :--- | :--- | :--- |
| $\mathrm{Y}_{1}$ | $6.7+\mathrm{j} 6.7$ | $26-\mathrm{j} 10.7$ | $6.7+\mathrm{j} 6.7$ |
| $\mathrm{Y}_{\mathrm{r}}$ | $-(0.14-\mathrm{j} 1.51)$ | $-(0.5-\mathrm{j} .3)$ | $-(6.6+\mathrm{j} 5.2)$ |
| $\mathrm{Y}_{\mathrm{f}}$ | $18.8-\mathrm{j} 17.1$ | $-(19.4-\mathrm{j} 15.9)$ | $-(25.5-\mathrm{j} 10.4)$ |
| $\mathrm{Y}_{\mathrm{n}}$ | $0.64+\mathrm{j} 1.2$ | $0.64+\mathrm{j} 1.2$ | $26-\mathrm{j} 10.7$ |

For 2 N 06 at 30 MHz
sistor to the over-all bandwidth. Thus,

$$
\begin{equation*}
f_{T} \sqrt{2} / B W=1.415(400) / 30=18.9 \tag{1}
\end{equation*}
$$

Note that the over-all gain required is 30 dB . To guarantee this, a factor of at least 20 per cent should be added to compensate for losses due to mismatch, transformer losses, etc. The new gain figure is thus 36 dB . The number of stages can now be determined by intersecting 36 dB on the abscissa with 18.9 on the ordinate. This produces a stage requirement of $n=4$.

Having established the number of stages, we turn to the calculation of the bandwidth shrinkage factor ( $s f$ ). Using Fig. 3, we see that for $n=4$, $s f=0.66$. To achieve an over-all bandwidth of 30 MHz , each stage must have an individual bandwidth ( $B$ ) of BW/sf. Therefore

3. Bandwidth shrinkage factor is determined by using this plot of shrinkage vs number of stages.

$$
\begin{equation*}
B=30 \mathrm{MHz} / 0.66=45.4 \mathrm{MHz} . \tag{2}
\end{equation*}
$$

The next design step involves the coefficient of coupling ( $k$ ). To use the master curve (Fig. 4), we must first compute the ratio of individual bandwidth ( $B$ ) to center frequency ( $f_{o}$ ). Thus

$$
\begin{equation*}
B / f_{o}=45.4 \mathrm{MHz} / 45.0 \mathrm{MHz}=1.01 \tag{3}
\end{equation*}
$$

Consulting Fig. 4, we see that $k=0.615$.
Knowledge of the value of $k$ permits us to calculate the RC component values. Referring to the plot of loaded-Q vs k (Fig. 5), we read off a value of $Q_{l .} / 2 \pi=0.23$. Thus

$$
\begin{align*}
& Q_{\iota} / 2 \pi=0.23=f_{o} R_{1} C_{1}=f_{o} R_{2} C_{2}  \tag{4a}\\
& R_{1} C_{1}=R_{22} C_{2}=0.23 / 45 \times 10^{6}=5.1 \times 10^{-5} \tag{4b}
\end{align*}
$$

## RC product mates transistor and transformer

We must now determine how much effect the input and output admittance of the transistor has on the double-tuned transformer. The criterion for this compatibility is set up by the RC product that has just been calculated (Eq. 4b).

Naturally the best source of information here is experience in designing similar amplifiers with the same transistors, within the frequency range under consideration. Otherwise, the short-circuit input ( $Y_{i}$ ) and output ( $Y_{o}$ ) admittances should be determined. Parameters $Y_{o e}$ (common-emitter) and $Y_{o b}$ (common-base) give excellent results, as they do not change appreciably from the actual

4. The coefficient of coupling (interstage) is affixed by the bandwidth to center frequency ratio.
output admittance in the final amplifier circuit. $Y_{i e}$ also is a very good index, but $Y_{i b}$ is not, for it will indicate a capacitive input that in reality becomes inductive in the final design.

The short-circuit $Y$ parameters of the 2 N 706 at 30 MHz have been measured and calculated for the three basic transistor configurations (see table). Since 45 MHz is within the same frequency range, the appropriate values for this design wiil be used.

Using the data in the table, we see that the input admittance is $Y_{i c}=(6.7+\mathrm{j} 6.7)$ mmhos (commoncollector). Thus, $R_{i}=1 / 6.7 \times 10^{-3}=150$ ohms, and $C_{i}=6.7 \times 10^{-3} /(2 \pi 30) 10^{6}=35.5 \mathrm{pF}$. Similarly the output admittance $Y_{o b}=(0.64+\mathrm{j} 1.2)$ mmhos (common-base) ; Thus $R_{o}=1 / 0.64 \times 10^{-3}=1560$ ohms, and $C_{o}=1.2 \times 10^{-3} / 2 \pi 30 \times 10^{6}=6.4 \mathrm{pF}$.

Experience tells us that $C_{1}$ is not 35.5 pF but more likely 9 pF , mainly due to the inductive load presented to the common-collector by the input admittance of the common-base amplifier (in Fig. 1). Having obtained the values for the input and output admittances, we now proceed to the design of the interstage connections.

## Interstage connections must match RC

The interstage connections between the two transistors (Fig. 6) should meet the RC product established in Eq. 4. Referring to Fig. 6, we see a typical interstage connection for which the following equations apply:


COEFFICIENT OF COUPLING (k)
5. The RC component values are established by the loaded-Q figure. The relationship betweell the coefficient of coupling and $\mathrm{Q}_{\mathrm{L}}$ sets the RC product of each stage.

6. Interstage connections must account for all stray and shunt values of resistance and capacitance. Their influence must be accommodated by the RC products fixed by resonance.

$$
\begin{align*}
& R_{1}=R_{o} R_{1}{ }^{\prime} /\left(R_{o}+R_{1}{ }^{\prime}\right)  \tag{5}\\
& C_{1}=C_{0}+C_{1}{ }^{\prime}+C_{s}  \tag{6}\\
& R_{2}=R_{i} R_{2}{ }^{\prime} /\left(R_{i}+R_{2}{ }^{\prime}\right)  \tag{7}\\
& C_{2}=C_{i}+C_{2}{ }^{\prime}+C_{8} . \tag{8}
\end{align*}
$$

In these equations $C_{8}$ is the stray capacity (approximately 2 pF ), $R_{1}$ is the physical primary shunting resistance, $C_{1}$ is the physical primary shunting capacity, $R_{2}$ is the physical secondary shunting resistance, and $C_{2}$ is the physical secondary shunting capacity.

Note that any design procedure for determining the values of $R_{1}{ }^{\prime}, C_{1}{ }^{\prime}, R_{2}{ }^{\prime}$ and $C_{2}{ }^{\prime}$ may be altered, if desired, provided the RC product of the primary and secondary circuit are adjusted to equal the value previously calculated (Eq. 4). In accordance with Eqs. 6 and 8, $C_{1}{ }^{\prime}$ will be a variable type with a mid-capacity of half $C_{o}+C_{8}$. Therefore

$$
\begin{equation*}
C_{1}{ }^{\prime}=0.5\left(C_{o}+C_{s}\right)=0.5(6.4+2)=4.2 \mathrm{pF} . \tag{9}
\end{equation*}
$$

Thus $C_{1}=1.5\left(C_{o}+C_{n}\right)=1.5(6.4+2)=12.6 \mathrm{pF}$, and since $R_{1} C_{1}=5.1 \times 10^{-9}(\mathrm{Eq} .4 \mathrm{~b})$, we see that $R_{1}=$
$5.1 \times 10^{-9} / 12.6 \times 10^{-12}=406$ ohms, and $R_{1}{ }^{\prime}=R_{1} R_{0} /$ $\left(R_{o}-R_{1}\right)=406 \times 1560 / 1154=550$ ohms. Choosing a value of 100 ohms for $R_{2}$ and using Eqs. 7, 4b and 8 (in that order), we learn that $R_{2}{ }^{\prime}=(100)$ (150) $/ 50=300$ ohms, $C_{2}=(5.1)\left(10^{-9}\right) / 100=51 \mathrm{pF}$, and $C_{2}{ }^{\prime}=C_{2}-C_{i}-C_{8}=51-9-2=40 \mathrm{pF}$.

Having calculated the resistor and capacitor values, we proceed to the design of the transformer inductances. Once again we make use of a master curve plot of coupling coefficient vs frequency ratios (Fig. 7). In this curve $f_{1}$ and $f_{2}$ are the respective open-circuit primary and secondary resonant frequencies. For an equal-Q circuit, $f_{1}$ and $f_{2}$ are equal, and they determine the inductances of the primary and secondary of the transformer.

It can be seen (Fig. 7) that as the coupling increases, the open circuit resonant frequency must decrease from $f_{0}$. This is to compensate for the impedance that is reflected from the secondary to the primary and vice-versa. These impedances reduce the respective inductances and cause the equivalent circuits to resonate at higher frequencies. Using $k=0.615$, we read $f_{1} / f_{o}=f_{2} / f_{o}=0.876$. Thus, $f_{1}=f_{2}=(0.876) 45 \mathrm{MHz}=39.4 \mathrm{MHz}$.

The primary and secondary inductances are computed from the relationship $L=1 / 4 \pi^{2} f^{2} C$. Thus

$$
\begin{gather*}
L_{1}=\frac{1}{4 \pi^{2} f_{1}{ }^{2} C_{1}}=\frac{16.3 \times 10^{-18}}{12.6 \times 10^{-12}}=1.3 \mu \mathrm{H}  \tag{9a}\\
L_{2}=\frac{1}{4 \pi^{2} f_{2}{ }^{2} C_{2}}=\frac{16.3 \times 10^{-18}}{51 \times 10^{-12}}=0.31 \mu \mathrm{H} . \tag{9b}
\end{gather*}
$$

## Transformer design follows form

Once the size and type of coil form have been chosen, the design of the transformer is relatively

7. A plot of the ratio of primary and secondary resonant frequencies to center frequency, as a function of coupling coefficient, is used to compute transformer inductances.
simple. Since the loaded Q of a wideband transformer is generally small, the unloaded Q of the primary ( $L_{1}$ ) and secondary ( $L_{2}$ ) windings need not cause particular concern; the form can be selected almost entirely on the basis of packaging.

The transformer for this example will be designed for a standard Cambion coil form No. 1532 (PLST). To allow for sufficient adjustment of the coupling (the moving of one coil with respect to the other), the length ( $l$ ) of each coil will be made half the length of the coil form, or 0.140 inch.

## Wrapping up coil design

Also, for ease and consistency of fabrication, the coils will be closely wound. The following equations are used to determine both the total number of turns required and the diameter of the wire used:

$$
\begin{align*}
& l=N d \text { (close windings) }  \tag{10}\\
& N^{2}=L_{o}(9 l+3 D) / 0.2 D^{2}(\text { single-layer coil }) . \tag{11}
\end{align*}
$$

In Eqs. 10 and 11, $L_{o}$ is the air core inductance in microhenries, $D$ is the mean diameter of coil in inches, $l$ is the length of windings in inches, $N$ is the total number of turns, and $d$ is the diameter of wire in inches.

When the appropriate dimensions for the No. 1532 coil form are substituted into the equations, the latter reduce to $D=0.205$ (if the diameter of the coil form is much greater than $d$ ) and $l=0.140$ (half the length of the coil form).

We may now write $d=0.140 / N$ and $N=14.9$ $\left(L_{o}\right)^{1 / 2}$ as simplified expressions. Since $L_{1}$ of the primary winding is $1.3 \mu \mathrm{H}, N=14.9(1.3)^{1 / 2}=17.0$ turns and $d=0.140 / 17.0=0.0082$ inch (for No. 32

8. Proper coupling between stages must account for the ratio of the open-circuit capacitance to the short-circuit capacitance.
gauge wire). Using a secondary winding inductance of $L_{2}=0.31 \mu \mathrm{H}$, we see that $N=14.9(0.31)^{1 / 2}=8.3$ turns and $d=0.140 / 8.3=0.0169$ inch (for No. 26 gauge wire).

## Winding up transformer needs

To ease the winding of the secondary on top of the primary, a single-layer piece of Scotch or Teflon tape should be put between the windings. After the transformer is wound, the following procedure is used to check the windings for accuracy and adjustment for the proper coupling:

With a meter such as the Boonton $R_{x}$, model $250-\mathrm{A}$, measure the resonant capacity of the primary coil at $f_{1}$ and check to see if it agrees with $C_{1}$. If it doesn't, add or remove turns, as required, until $C_{1}$ is reached. Repeat the same procedure for the secondary coil, using $f_{2}$ and $C_{2}$ values (see box).

Measure the resonant capacity $C_{o}{ }^{\prime}$ of the primary at the center frequency ( $f_{o}$ ) with the secondary open-circuited. Once again we must use a master design curve-namely, the plot of coupling coefficient as a function of the ratio of open-circuit capacitance to short-circuit capacitance (Fig. 8). Using $k=0.615$, we pick off a $C_{o}{ }^{\prime} / C_{s}{ }^{\prime}$ ratio of 0.625 . Using the measured value of $C_{0}{ }^{\prime}=9.6 \mathrm{pF}$, we calculate $C_{s}{ }^{\prime}=15.3 \mathrm{pF}$.

Now short-circuit the secondary and adjust it with respect to the primary, until the primary resonates with the capacity value (used) equal to $C_{8}^{\prime}$.

## Complete IF strip uses 4 stages

Establishment of the transformer elements completes the design of the IF strip. Each of the four stages makes use of two 2N706 transistors (Fig. 9 ) and standard value components for the resistive and capacitive units.

## Measured data from Rx meter

| Parameter | $\mathbf{C}_{p}$ | $\mathbf{R}_{p}$ |
| :--- | ---: | ---: |
| $\mathbf{Y}_{\text {ie }}$ | 35.5 pF | $150 \Omega$ |
| $\mathrm{Y}_{\text {oe }}$ | 6.4 pF | $1560 \Omega$ |
| $\mathrm{Y}_{\text {oeo }}$ | 6.4 pF | $220 \Omega$ |
| $\mathbf{Y}_{\text {ebscb }}$ | -25 pF | $38 \Omega$ |

Note that this data was taken with the 2N706 transistor. The device was biased with a $V_{c e}$ of 12 volts dc at a collector current of 8.0 mA . The measurement frequency was 30.0 MHz. Jig decoupling-capacitor used was 1500 pF and the RFC coil was $18.0 \mu \mathrm{H}$.
This data was used in calculating the values of the short-circuit Y-parameters ( $Y_{i}, Y_{r}, Y_{l}$ and $Y_{o}$ ) for the three basic configurations (see Table on p. 40).

9. Complete IF strip consists of four stages, has over-all gain of 30 dB over a bandwidth of 30 MHz and a center frequency of 45 MHz .

10. For better parameter control, either of the transformer circuits shown in "a" may be used (in place of the unit in Fig. 9). The "degenerate T" (b), which uses only two inductors, is still another alternative.

Alternate designs may be turned to for the dou-ble-tuned transformer portion of the circuit. If packaging allows, either of the equivalent circuits shown in Fig. 10a could be used to give better control of the parameters, especially for production units.

A special form of the equivalent "T," called a degenerate " $T$," could also be used. Note that with the degenerate " T " the condition $L_{2}=M=$ $k\left(L_{1} L_{2}\right)^{1 / 2}$ must be satisfied (Fig. 10b).

If there is a need for variable coils, powderediron cores can be used. Eqs. 10 and 11 are still used to determine the coil construction parameters, with the inductance $L_{o}$ modified by

$$
\begin{equation*}
L_{o}=\frac{L}{\left[1+a\left(\frac{r_{1}}{r_{2}}\right)^{2}\binom{l_{1}}{l_{2}}(u-1)\right]}, \tag{12}
\end{equation*}
$$

where $L_{o}$ is the air-core inductance, $L$ the pow-dered-iron core inductance, $r_{1}$ the radius of iron core and $r_{2}$ the mean radius of the coil.

Also, $l_{1}$ is the length of core and $l_{\mathrm{E}}$ the length of coil; $a=0.8$, when $l_{1}$ is less than $l_{2}$, and 1.0 when $l_{2}$ is less than $l_{1}$, and $u$ is a factor equal to 1.5 to 3.0 , depending on the density of the coil form used. With the No. 1532 form, $L_{n}=0.8 L$ with a centered iron core. - -

## Reference:

TECHNEWS, Amperex Electronic Corp., Jan.-Feb. 1961, Vol. II, No. 1.
who needs
a better
1000 Mc transistor than our
type
2N2857

## anybody who wants the more linear, high current $f_{T}$ and $h_{i t}$ of our new type A485

The Amperex A485 NPN silicon planar epitaxial transistor is intended for applications in which low noise, low intermodulation distortion and high gain at frequencies through the UHF region are required. Advances by Amperex in the design of etching masks and improved material and process controls have allowed us to produce a transistor with high linear $f_{T}$ and $h_{F E}$ characteristics from 2 ma to 20 ma .

The A485 allows the design engineer to optimize his circuit at an operating point of his choice while maintaining the outstanding features of the device.

Typical applications for the new A485 are in small signal RF amplifiers, telemetry, test equipment and any equipment requiring a high quality RF front end.

For complete data and applications information on the new A485 and the Amperex 2N2857, write: Amperex Electronic Corporation, Semiconductor and Receiving Tube Division, Department 371. Slatersville, Rhode Island, 02876.

COMPARISON OF ELECTRICAL PARAMETERS
Parameters Amperex 2N2857 Amperex A485
$\mathrm{f}_{\mathrm{T}}(\mathrm{min}) \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \ldots .1000 \mathrm{Mc}$ at $\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V} \mid 1000 \mathrm{Mc}$ at $\mathrm{I}_{\mathrm{C}}=2 \mathrm{ma}$ $\mathrm{h}_{\mathrm{FE}}(\mathrm{min}) \mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V} \ldots .30-150$ at $\mathrm{I}_{\mathrm{C}}=3 \mathrm{ma}\left\{\begin{array}{l}25-200 \text { at } \mathrm{I}_{\mathrm{C}}=2 \mathrm{ma} \\ 20-200 \text { at } \mathrm{I}_{\mathrm{C}}=20 \mathrm{ma}\end{array}\right.$

$$
\mathrm{C}_{\text {obo }}(\max ) \ldots . . . . . . . .1 .8 \mathrm{pf} \ldots . . . . . . . .1 .5 \mathrm{pf}
$$

$$
\mathrm{V}_{\mathrm{BE}} \text { sat ............. - ............ 0.75-0.95 V }
$$

$$
\text { dim (Intermodulation distortion) } \ldots . . . . . . . . .-53 \text { db typ }
$$

$\mathrm{I}_{\mathrm{C}}=14 \mathrm{ma}, \mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}$
$t=217 \mathrm{mc}$
$\mathbf{V}_{0}=10 \mathrm{mv}, R_{2}=37.5 \Omega$
$\mathrm{I}_{1}=183 \mathrm{Mc}, \mathrm{f}_{2}=200 \mathrm{Mc}$

$$
\begin{aligned}
& \text { NF (max) } 200 \mathrm{Mc} \text {. ..... - ............ } 3.5 \mathrm{db} \\
& 450 \mathrm{Mc} . . . . . .4 .5 \text {. . . . . . . . . . . } 4.5 \mathrm{db}
\end{aligned}
$$

# Make impedance matching easier by dividing the Smith chart into regions that provide a quick insight into the effects of alternate matching circuits. 

The engineer needs no special expertise to use the Smith chart to solve impedance-matching problems. By dividing it into eight regions, he can quickly pick out the best matching circuit with the minimum number of components.

Every engineer who spends any part of his time with microwave problems eventually encounters impedance-matching networks. In a typical situation, an antenna or a transistor must be matched to a system. Since the impedance of the element to be matched is known, the designer usually turns to the Smith chart to find the simplest and best impedance-matching network.

The regions of the Smith chart, shown in Fig. 1 , are bounded by circles of constant resistances and conductances. The circled numbers inside each of the eight areas correspond to the recommended matching circuits.

If the impedance of the element to be matched falls in regions I, II, III or IV, a single reactance will do the job. In regions I and II series or shunt capacitances, respectively, are needed. In regions III and IV series or shunt inductances are needed, respectively.

If there is a bandwidth to be matched, the situation becomes more complex. A single reactance for impedance matching will do the following:

- Shunt C: Moves the high frequency more than the low frequency.
- Shunt L: Moves the low frequency more than the high frequency.
- Series C: Moves the low frequency more than the high frequeny.
- Series L: Moves the high frequency more than the low frequency.


## Two reactances needed at pheriphery of circle

An impedance in regions V, VI, VII or VIII can be matched with a better than $2: 1$ vswr only through the use of two or more reactances. Again, the circuits in Fig. 1 show the different alternatives for achieving the best vswr. The choice de-

[^2]pends on the availability of dc bias, the need for dc grounding and so on.
Note that a series reactance moves an impedance along a line of constant resistance, and a shunt reactance moves an impedance along lines of constant conductance. (The constant conductance lines can be visualized by overlaying a reversed transparent Smith chart on top of another Smith chart so that zero impedance on one chart is over infinite impedance on the other.

A parallel resonant circuit that shunts the load can wrap an impedance plot of the type shown in Fig. 2 into a smaller circle. A series resonant circuit in series with the load improves impedances of the type shown in Fig. 3.

The amount of improvement can be controlled by varying the LC ratio of the resonant circuit, or, if transmission lines are used at matching elements, by varying the characteristic impedance of the stub.

An impedance that plots in either region V or VII may also be improved through an in-line transformer.

In region V the characteristic impedance of the in-line transformer must be lower than that of the chart's center. In region VII, the transformer's impedance must be higher.

The in-line transformer may be larger than several lumped Ls and Cs, but it provides a match over a greater bandwidth. The in-line transformer is a distributed equivalent of cascaded Ls and Cs , with a certain characteristic impedance and an electrical length. Its design combines the Smith chart and the $Z \theta$ chart.

## In-line transformer from $Z \Theta$ chart

The characteristic impedance of an in-line transformer is given by the equation: ${ }^{1}$

$$
\begin{equation*}
Z_{t r a n s}=\sqrt{\frac{R_{L}\left|Z_{G i}\right|^{2}-R_{G}\left|Z_{L}\right|^{2}}{R_{G}-R_{L}}} \tag{1}
\end{equation*}
$$

and its length is determined by:

$$
\begin{equation*}
\tan (\beta l)_{\text {trans }}=\frac{Z_{o}\left(R_{L}-R_{r:}\right)}{R_{L} X_{G}-R_{G i} X_{L}}, \tag{2}
\end{equation*}
$$

where
$Z_{G}=$ generator impedance $=R_{G} \pm j X_{G}$, and


1. Divide the Smith chart into eight regions for a quick look at the effects of matching circuits (a). The circles
inside the areas correspond to the recommended matching circuits (b) that use the least number of components.

2. Parallel resonant circuit, in shunt with the load, wraps certain impedances into a smaller circle, and thus improves the match.

$$
Z_{L}=\text { load impedance }=R_{L} \pm j X_{L}
$$

Obviously it is easier to use the Smith chart than the equation. The exception is if the load impedance falls on the resistive axis. In this case the in-line transformer must be a quarter-wave long, and its impedance is easy to compute without the chart:

$$
\begin{equation*}
Z_{T}=\sqrt{Z_{\text {gen }} Z_{\text {load }}} \tag{3}
\end{equation*}
$$

However, if the load is complex, the so-called $\mathrm{Z} \theta$ chart is helpful in determining the characteristic impedance and the length of an in-line transformer. A load impedance, plotted on a Smith chart with 50 ohms as its center, can be replotted on to a $Z \Theta$ chart of the same size by overlaying the Smith chart on a $Z \Theta$ chart and piercing through the impedance point on to the $Z \theta$ chart. The resulting point on the $\mathrm{Z} \theta$ chart identifies the $\mathrm{Z} \theta$ of the load. The overlaying and piercing operation simply converts the rectangular coordinates of an impedance to its polar coordinates.

The $\mathrm{Z} \theta$ chart is a valuable tool when a load impedance must be converted from one characteristic impedance reference to another. For instance, consider the in-line junction of two transmission lines with different $\mathrm{Z}_{0}$ 's. The load impedance, plotted with reference to one $\mathrm{Z}_{0}$, can be quickly replotted with reference to the other $Z_{o}$ by moving the load point along a line of constant angle. The amount of shift depends on the ratio of the two $\mathrm{Z}_{0}$ 's.

## How the charts are used

Consider the following problem: At a frequency of 1080 MHz , match an impedance of $250-j 150$ $\Omega$ with an in-line transformer.

3. Series resonant circuit, in series with the load, improves the match for impedances represented by the solid line.

Plot the impedance on a $Z \ominus$ chart. This may be done by converting $R-j X$ to $Z / \Theta$, using the fundamental mathematical method, or by overlaying the Smith chart plot (Fig. 1) on a $Z \theta$ chart (Fig. 4). (The charts must be of the same size and have the same center $Z_{0}$.) Pinpoint through the plot on to the $Z \Theta$ chart. The load impedance is 290 ohms, at $31^{\circ}$.

With a compass, draw an arc that passes through the load impedance and the $\theta=0$ line. This is approximately $7 Z_{o}$ in this example.

Compute the line tranformer's $Z_{o}$ with $Z_{\text {load }}$ $=7 Z_{\text {gen }}$ :

$$
\begin{aligned}
& Z_{T}=\sqrt{\left(Z_{g e n}\right)\left(Z_{l o a d}\right)}= \sqrt{\left(Z_{\text {gen }}\right)\left(7 Z_{\text {gen }}\right)}= \\
& \sqrt{7 Z_{\text {gen }}{ }^{2}}=2.65 Z_{\text {gen }} .
\end{aligned}
$$

$Z_{T}=2.65 \times 50 \Omega=132.5 \Omega$.
Replot the load on a $Z \theta$ chart with $132.5 \Omega$ as its center:

$$
\frac{Z_{1 o a d}}{Z_{o}}=\frac{290 /-31^{\circ}}{132.50}=2.19 /-31^{\circ} .
$$

Draw a straight line from the chart's center through the load $Z_{0}$ (referenced to the in-line transformer $Z_{0}$ ) out to the edge of the $Z \theta$ chart. From the intersection of this line with the edge of the chart, determine the length of the in-line transformer. In this example the transformer must be $0.21 \lambda$ to move the plot toward the generator to the purely resistive line.

The impedance, at this plane, can be transferred back to a $50-\Omega \mathrm{Z}_{0}$ line, to provide an excellent match.

## Reference:

1. Henry Jasik, Antenna Engineering Handbook, McGraw Hill Co., 1961 p 31-9.


( $)$
2. $\mathbf{Z}_{\Theta}$ chart, combined with the Smith Chart, is helpful in the design of in-line transformers to match impedances
that fall into regions $V$ and VII . The reference $Z_{i s}$ may be changed by a shift along lines of constant angles.

## Timely, Thorough, To-The-Point

Three new books to keep you abreast of modern electronic theory and practice

## MATRIX ALGEBRA FOR ELECTRONIC ENGINEERS



PAUL HLAWICZKA. A working knowledge of matrix algebra has become a useful and often indispensable tool for solving many problems in electronics. This introductory book gives a general orientation and shows the solution of numerous simple problems. Part I covers the essentials of matrix methods and their applications to various networks - requiring only a basic algebra background. Part II treats more complex methods, applying them to the differential equations of linear networks. 224 pages, illustrated, clothbound, $\$ 8.75$.


## PRINCIPLES OF TRANSISTOR CIRCUITS

3rd Ed.
S. W. AMOS. Keeping up with the rapid advance in transistor technology, this updated revision contains fifty per cent more information than the second edition. Includes new material on dc stabilization of amplifiers by direct-coupled feedback, phase shift and Weinbridge oscillators, blocking oscillators and transistor sawtooth generators. New appendices of transistor parameters and transistormanufacture add to the completeness of this definitive work. 293 pages, illustrated, clothbound, \$7.95.

## THE ELECTRON IN ELECTRONICS

M. G. SCROGGIE. An engineer's introduction to the modern physical concepts such as wave mechanics, quantum theory and relativity. These give an entirely new view of the electron, the structure of atoms, and the radiation of energy all insights of particular importance to the understanding of solid state electronics. This descriptive treatment is expressed in terms and symbols used by the practicing engineer rather than the mathematical physicist. 275 pages, illus., clothbound $\$ 9.95$.


# 10-DAY FREE EXAMINATION - SEND NO MONEY! 

Hayden Book Co., Inc., Dept. ED-71, 116 W. 14th St., N. Y., N. Y. 10011
Gentlemen:
Send me the book(s) checked below. At the end of ten days, I will remit payment (plus a few cents postage) or return the books with no further obligation.
$\square$ Matrix Algebra for Electronic Engineers, $\$ 8.75$
The Electron in Electronics, $\$ 9.95$
Name $\qquad$ Title
Company
Address
$\qquad$

City $\quad$ Check here if payment is enclosed. Publisher will pay postage with same return guarantee.

## NEW MICROTRANSFORMERS AND MICROINDUCTORS

## MIL-Spec Reliability, Laminated-Core Efficiency in a $1 / 4$-inch Cube!

Now - microtransformers and microinductors created especially for tight, hi-rel military / aerospace environments. The new Bourns Models 4210 and 4220 exceed the environmental requirements of MIL-T-27B and the transformer-reliability specifications of MIL-T-39013!
In performance, too, these models hit new highs. They are the only units to give you the efficiency of laminated-core construction. At 1000 cps the insertion loss is less than 3 db . In high. frequency operation, the model 4210 is dramatically superior to the smallest solid-core units available. In square-wave operation, droop is as low as $5 \%$, overshoot as low as $10 \%$ and rise time as little as 100 nanoseconds. In every performance category. Models 4210 and 4220 give you the industry's highest ratio of performance to size.
Like Bourns potentiometers, the 4210 and 4220 are subjected to the intensive testing of the exclusive Bourns Reliability Assurance Program. The big " B " on the cover means there's a full measure of reliability in the package.
We specialize in winding custom microtransformers and micro-
inductors to meet your exact requirements, and we substantiate performance in our qualified test laboratory.
Write today for complete technical datal
Standard Specifications, Model 4210 and 4220

Size: $.25^{\circ} \times .25^{\circ} \times .25^{\circ}$
Maximum operating temp.: $+130^{\circ} \mathrm{C}$
Frequency response: - $2 \mathrm{db}, 400 \mathrm{cps}$ to 250 kcps (Model 4210)
Power rating: 1 watt at 10KC (Model 4210)
Insertion loss: 3db max. (Model 4210)
Primary impedance range:
$100 \Omega$ to $200 \mathrm{~K} \Omega$
Secondary impedance range: (Model 4210) $3.2 \Omega$ to $10 \mathrm{~K} \Omega$
Turns ratios: to $15: 1$ (Model 4210) Inductance range: . 08 to 66 Hy (Model 4220) MIL-Specs: designed to exceed MIL-T-27B and MIL-T-39013


Standard Models available from stock!

Precision-assembled laminated core. Cement is applied across edges of applied across edges of
laminations and cured while core is in assembly press.

High-temperature plastic bobbin for outstanding dimensional stability under temperature extremes.

Double encapsulation. Assembly is first buffer. coated with compound which remains viscous at high temperatures and protects wires from mechanical stress during temperature change. After buffer coating is cured, cover is mounted and cavity is filled.

Superior coils - the result of 20 years of precision wire-winding experience. Coils are produced on Bourns' own winding machines.

Printed circuit pins of goldplated nickel (MIL-STD. 1276 type N), molded securely into header.

# Microelectronics opens the gate to faster digital computers. Faster algorithms take advantage of reductions in hardware size and cost. 

## Part 1 of a two-part article.

Faster algorithms that take advantage of inexpensive, high-density microcircuits can improve the speed of digital computers' arithmetic units at reasonable cost.

In general, any increase in computer speed requires additional hardware. Up to a point the increase in speed is proportionally greater than the required increase in hardware. Advances in integrated-circuit technology, however, have given the designer greater freedom in dealing. with this speed-to-hardware trade-off. Greater circuit density in less space and at lower cost now permits the use of algorithms that simply weren't feasible a few years ago.

The phase of computer design to be dealt with here is the procedure by which the computer executes arithmetic functions. Methods for both high-speed addition and multiplication will be discussed.

First will be the slowest form of parallel adder, the ripple-carry adder, which allows a carry to ripple through each adder position from the lowest-order bit to the highest, one position at a time. The ripple-carry adder will then be used as a basis for comparison for a second method, which allows the carry to skip across adder positions rather than ripple through them. This is called, predictably enough, the carry skip technique. Boolean expressions will be used to describe the operation of both the ripple carry and carry skip techniques.

Finally, improved methods of binary multiplication will be described and compared with the basic method of multiplication by repeated addition.

The basic arithmetic unit in a digital computer consists of the registers, adders, controls and other elements used to perform fundamental arithmetic operations. Fig. 1 shows a minimum configuration for a parallel arithmetic unit.

Registers 1 and 2 hold arguments for addition and subtraction. The result from the adder replaces the contents of register 2. Multiplication begins with the multiplicand in register 1 and the multiplier in register 3 . The high-order bits of the product are obtained in register 2, while the loworder bits are obtained in register 3.

Division starts with registers 2 and 3 holding the dividend, and register 1 holding the divisor. When

[^3]

1. Here is a basic parallel arithmetic unit as used in a digital computer. How the circuits process data to produce the desired result is explained in the text.
the operation is complete the quotient is in register 3, with the remainder in register 2.

Subtraction is performed by 2's complement addition. The contents of register 2 are inverted before entering the adder by passing through the complement gates, and an additional 1 is effectively added by inserting a carry into the low order position of the adder.

The shifter is used for shifting intermediate results during multiplication and division. It may also be used for aligning operands before addition, or for shifting the final result.

Modern arithmetic units are considerably more complex than this basic parallel arithmetic unit. They include additional adders and registers; in some systems, addition, multiplication, and division are performed in separate, special purpose units to permit optimization in the design, and concurrent operation.

## Fast parallel adders

The ripple-carry adder is a simple parallel adder consisting of identical stages, one corresponding to each bit position of the incoming operands. Each stape produces a sum output and a carry output based on the corresponding bits of the two input operands and the carry from the previous stage. These stages are called full adders and are interconnected as shown in Fig. 2 to form

Handling multiplier bit-pairs

| Multiplier <br> Bits <br> 00 | Old <br> Borrow | Multiple <br> Required | New <br> Borrow |
| :---: | :---: | :---: | :---: |
| 01 | 0 | 0 | 0 |
| 10 | 0 | 1 | 0 |
| 11 | 0 | 2 | 0 |
| 00 | 1 | -1 | 1 |
| 01 | 1 | 1 | 0 |
| 10 | 1 | 2 | 0 |
| 11 | 1 | -1 | 1 |


2. Carries ripple through the full-adder stages of this 4 bit ripple-carry adder. Eliminating the stage-by-stage ripple increases the adder's speed of operation. Ripple time limits the speed of this adder.
the parallel adder. Carries ripple through each succeeding stage starting from the lowest-order bits.

The speed of the ripple-carry adder is limited by the time required for the carry to ripple through each stage. The methods used for accelerating addition aim at speeding up stage-to-stage transmission of these carries.

The logic functions describing the sum and carry in each stage are:

$$
S_{n}=\left(A_{n} \oplus B_{n}\right) \oplus C_{n}^{+1}
$$

where $\oplus$ indicates the EXCLUSIVE OR, and

$$
C_{n}=A_{n} B_{n}+\left(A_{n}+B_{n}\right) C_{n}^{+1}
$$

In the expression for the carry, the $A B$ term signals when a carry is generated at that stage, while the $(A+B)$ term signals when a carry can propagate through the stage. We can therefore define two auxiliary functions, carry generate, $G_{n}$, and carry propagate, $P_{n}$ :

$$
\begin{aligned}
& G_{n}=A_{n} B_{n} \\
& P_{n}=A_{n}+B_{n}
\end{aligned}
$$

We can rewrite the carry expression as:

$$
\begin{equation*}
C_{n}=G_{n}+P_{n} C_{n}^{+1} \tag{1}
\end{equation*}
$$

For a four-bit adder, (see Fig. 3) the carries can be generated directly from the inputs, elim-

## The speed/cost trade-off

To illustrate the relationship between speed and cost, consider two algorithms for decimal multiplication. Algorithm A is illustrated below.

| 76 | Storage Registers: | multiplicand multiplier product |
| :---: | :---: | :---: |
| + 43 |  |  |
| 76 |  |  |
| + <br> $+\quad 76$ | Total hardware: | 3 registers and 1 adder |
| 152 |  |  |
| + 76 |  |  |
| 228 | For many-digit numbers, time required is: worst-case 9 additions/digit average 4.5 additions/digit |  |
| + 76 |  |  |  |
| 988 |  |  |  |
| + 76 |  |  |  |
| 1748 |  |  |  |
| 176 $+\quad 76$ |  |  |  |
| 2508 |  |  |  |
| $\begin{array}{r} \\ +\quad 76 \\ \hline\end{array}$ |  |  |  |
| 3268 |  |  |  |

In this algorithm, multiplication is done by adding the multiplicand a number of times equal to the multiplier digit. A worst case of 9 additions could be required, but the average should be only 4.5 per digit. Besides the adder, 3 registers are required. The result of each addition is stored in the third register, which, at completion, contains the product.

Algorithm B, which accomplishes the same result, is shown below.

76228 ( $3 \times$ multiplicand)
$\begin{array}{r}\times \quad 43 \\ \hline 228\end{array}$

| $228$ | Storage Registers. | multiplier |
| :---: | :---: | :---: |
| 2508 |  | $3 \times$ multiplicand |
| 76 |  | product |
| 3268 | Total hardware: | 4 registers and |

For many-digit numbers, time required is: worst-case 4 additions/digit average $\quad 2.1$ additions/digit

In this algorithm, three times the multiplicand is first obtained and stored in a register for future use. A worst case of 4 additions could be required (if digit is 8 ), with an average of 2.1 per digit. Two additions are also needed initially to obtain the 3 -times multiplicand. For many-digit numbers, this method requires less than half as many additions as algorithm A, but an extra register is needed. Assuming that the adder requires about twice as many circuits as a register, an increase in cost of about $20 \%$ gives a better than $2: 1$ speed improvement, for this particular example. If more registers were used, further improvement would be obtained, but it would be proportionately much less.

In the above example, only the relative cost and speed for the multiplication function were considered. In practice, one should compare the relative costs and over-all speed of the entire system. Functions which are used frequently might be designed for speed, while other functions which are seldom used might be designed for minimum cost.

3. This 4-bit adder uses the auxiliary functions generate $(G)$ and propagate $(P)$ to speed up the transmission of
carries between full-adder stages. An adder using these functions is called a carry-look-ahead adder.
inating the delays through each stage. The functions for each carry are found by substitution in equation (1):

$$
\begin{align*}
C_{4} & =G_{4}+P_{4} C_{\mathrm{in}}  \tag{2}\\
C_{3} & =G_{3}+P_{3} C_{4} \\
& =G_{3}+P_{3} G_{4}+P_{3} P_{4} C_{\mathrm{in}}  \tag{3}\\
C_{2} & =G_{2}+P_{2} C_{3} \\
& =G_{2}+P_{2} G_{3}+P_{2} P_{3} G_{4}+P_{2} P_{3} P_{4} C_{i n}  \tag{4}\\
C_{1} & =G_{1}+P_{1} C_{2} \\
& =G_{1}+P_{1} G_{2}+P_{1} P_{2} G_{3}+P_{1} P_{2} P_{3} G_{4} \\
& =+P_{1} P_{2} P_{3} P_{4} C_{i n}, \tag{5}
\end{align*}
$$

where $C_{1}$ is the carry-out of the adder.
Examining the terms in the expression for $C_{1}$, we see that the first stage (i.e. the $A_{1} B_{1}$ adder) has a carry if it generates it ( $G_{1}$ ); OR if it can propagate it and the second stage generates it (e.g. $P_{1} G_{2}$ ); OR if the first two stages can propagate it and the third stage generates it (e.g. $P_{1} P_{2^{-}}$ $G_{3}$ ); and so forth. The last term says that there is a carry from the first stage if there is a carry into the fourth stage, and all the intervening stages propagate it.

As the adder gets much larger, three effects prohibit us from implementing the carry functions in this direct matter:

- Fan-in (number of inputs) to the circuit soon exceeds allowable limitations.
- The driving capability of the circuits forming the propagate and generate functions is soon exceeded.
- The number of components increases nearly by the square of the number of bits, and eventually becomes a limiting factor.

It therefore becomes necessary for the adder to be broken into small groups. The carries within a group are only functions of the adder inputs corresponding to the group, and a carry into the low-order bit of the group. For a four-bit group, the expressions for the carries would be the same as shown for the four-bit adder.
The carry, $C_{i n}$, into the group would be the carry-out of the next-lower-order group. For a small number of groups, the carries might be permitted to ripple between groups. For a larger number of groups, however, carry speed-up circuits can be used between them.

Looking at equation (5) note that the first four terms are the conditions which generate a carry from the group, while the fifth term is the condition for propagating a carry from the lower groups. Auxiliary functions, similar to those defined for the internal carries of a group, may be defined for the carries between groups.

$$
\begin{aligned}
& G_{\sigma i}=\text { group carry generate } \\
& P_{\theta i}=\text { group carry propagate }
\end{aligned}
$$

Rewriting the expression for the group carry gives:

$$
C_{1}=G_{G 1}+P_{G_{1}} C_{i n} .
$$

Suppose an adder has five groups, numbered from left to right. The group carries above the lowest-order group are found by the method used for equations (2) through (5):

$$
\begin{aligned}
C_{o 1} & =G_{\sigma_{4}}+P_{\sigma_{4}} C_{\sigma_{5}} \\
C_{o 3} & =G_{\sigma_{3}}+P_{\sigma} C_{o 4} \\
& =G_{o 3}+P_{\sigma_{3}} G_{\sigma 4}+
\end{aligned}
$$


4. Carry-look ahead techniques are especially useful in large capacity adders. The circuit shown here illustrates

$$
P_{\sigma J} P_{G 4} C_{\sigma 5}
$$

and similarly for $C_{a_{2}}$ and $C_{a_{1}}$.

## Look-ahead adder speeds carries

An adder which uses the auxiliary functions generate and propagate as described above in carry speed-up circuits is called a carry look-ahead adder (Fig. 4). The levels which a signal must go through in the longest path of a carry look-ahead adder are as follows.

At the first level, the auxiliary function $P_{n}$ and $G_{n}$ are generated simultaneously. Next, the group auxiliary functions are formed. From these, the group carries are developed. The group carries are combined with the auxiliary functions $P_{n}$ and $G_{n}$ to obtain the carries to each bit. Thus, only four levels are needed to obtain all the carries. A final level is needed for the sums. Each of the levels cited might require more than one circuit level to implement, depending on the logical power of the circuit family used.

For very large adders, the groups may be organized to form several sections, each section containing many groups. Further auxiliary functions may easily be defined to provide look-ahead between sections. As many as six levels might be needed to obtain all carries. The list of levels for the longest path would be:

1st level: $P_{n}, G_{n}$, auxiliary function for internal carries
2nd level: $P_{G}, G_{G}$, group auxiliary, functions
3rd level: $P_{s}, G_{s}$, section auxiliary functions
4th level: $C_{8}$, section carry
the generation of a carry from a group of 4-bit look-ahead adders. Generate and propagate functions are used.

5th level: $C_{\theta}$, group carry 6th level: $C_{n}$, internal carry 7th level: $S_{n}$, sum

## How a computer multiplies

Multiplication in a binary machine is usually performed by repeated addition. The multiplier is examined one bit at a time from the right hand side to determine when the multiplicand should be added to the partial product, as in the following example:


While it appears that the multiplicand is shifted left for each iteration, the proper relative positions between the multiplicand and the partial product can be maintained also by shifting the partial product to the right.

If the multiplier bit under examination is 1 , the multiplicand is added to the partial product. The output of the adder then shifts the result to the right before replacing it in the partial product register. This lines it up in the proper position with respect to the multiplicand when the next bit of the multiplier is examined. If the multiplier bit is 0 , the partial product is shifted without addi-

5. Carry-save adders reduce three input quantities to two outputs which can then easily be processed by a parallel adder. This technique can be used to obtain higher multiplication speeds.

6. Six operands are reduced to two by use of carry-save adders. The resulting two operands can then be summed in the parallel adder.
tion. A variable shifter can be provided which would permit 0 's in the multiplier to be skipped over without additional delay. The time required to perform multiplication then is proportional to the number of additions required. On the average, an addition would have to be performed for every two bits in the multiplier. The worst case, however, would require an addition for each multiplier bit, as in the case where they are all 1 's. Some methods of reducing the number of additions required will now be discussed.

Consider a string of $n 1$ 's in the multiplier. With respect to the low-order bit in the string, the value of the string would be $2^{n-1}+2^{n-2}+2^{n-3}+\ldots$ $+2^{1}+2^{n}$. It is easily verified that it is equivalent to $2^{n}-1$. For example, using a signed digit representation, the string 1111 could be written as 1000-1. Thus, for any string of ones in the multiplier, one subtraction and one addition of the multiplicand would be sufficient. In practice, subtraction is usually performed by adding the 2 's complement of the multiplicand. The resulting partial product is always negative after a subtraction, and is usually left in complement form. It should be noted here that when a complement partial product is shifted to right, 1 's must be inserted at the high-order end.

It should now be apparent that multiplication can be considerably improved by permitting additions and subtractions. The time required to do subtraction is the same as the time required to do addition. Speed of multiplication can therefore be measured by the number of additions and subtractions that must be performed.

Multiplication speed can also be increased by a method which only requires one addition or subtraction for every two multiplier bits. This method permits a uniform shift of two after each iteration. It also provides a basis for understanding how further improvement can be achieved with carry-save adders, which will be described later.

In this method, the multiplier bits are considered in pairs. Clearly, if the first pair is 00 , no addition is required. If it is 01 or 10 , only one addition is needed. The pair 10 calls for the twotimes multiple of the multiplicand, which is obtained by shifting it one position to the left as it is entered into the adder. The pair 11 calls for the addition of three times the multiplicand. This can be accomplished by subtracting one times the multiplicand from the partial product and later adding the four-times multiple. Since the addition of the four-times multiple is postponed, a "borrow trigger" may be turned on to remember that it must be performed. We must now consider how to treat the pair of multiplier bits when the "borrow trigger" is on. Since the partial product is shifted two places to the right after each iteration, a request for four times the multiplicand may be satisfied with one times the multiplicand after the shift. We therefore take the numerical equivalent of the new pair under consideration and add 1 to it. Thus, the pair 00 is now interpreted to mean a request of one times the multiplicand. Similarly, the pair 01 would now be treated as 10 . The pair 10 would be treated as 11 , which again calls for subtraction of one times the multiplicand, and leaves the "borrow trigger" on. The pair 11 now calls for the four times multiple, which leaves the borrow trigger on, but requires no addition or subtraction during the present iteration. The actions which may be taken for each pair of multiplier bits are summarized in Table 1.

The method of multiplication just described requires one iteration for every two bits of the multiplier. One additional iteration is required if the "borrow trigger" is on after processing the high-order bits. One multiple of the multiplicand is added to the partial product during each iteration. The number of iterations required would be reduced if several multiples could be added to the partial product simultaneously. Naturally, several pairs of multiplier bits would have to be examined at the same time, but this poses no serious problem. The use of carry-save adders provides a means of adding more than two operands in a single operation.

## The carry-save adder (CSA) at work

The addition of three quantities is performed as shown below:

> 11001110 10001100 $\frac{01101101}{00101111}$ sums $\frac{11001100}{111000111}$ carries final sum

The sums and carries in each column are formed separately. The carries are moved one position to the left so they can be added to the sums to form the final sum. The element which forms the sum and carry in each column is the full adder, which we previously encountered in the discussion of the ripple-carry adder.

The versatility of this element is further exploited in performing the addition of the three quantities shown in the example. The carries are not immediately passed on to succeeding stages but are saved for later use. There is no interconnection between each of the full adders. Figure 5 shows a group of full adders arranged to form the sums and carries of three quantities, $X, Y$, and $Z$.

Notice that with full adders, the three quantities are reduced to only two. They can now be added in a parallel adder. A group of full adders used in this manner is called a carry-save adder (CSA).

It may be argued that the same reduction could be achieved by putting two of the quantities through a parallel adder. In fact, a ripple-carry adder would require the same number of circuits. However, the delay through the ripple-carry adder to the carry outputs would be $n$ times the delay through the carry-save adder. If a parallel adder with look-ahead circuits for the carries were used, it would still have considerably more delay than the carry-save adder. It would also require one-and-one-half times or twice the number of circuits.

## Multiplication using CSAs

As we've seen, the CSA reduces three operands to two operands, which can then be added in a parallel adder. Several CSA's may be used if more than three operands must be added. Each CSA reduces the number of operands by one, so that if six operands are to be added, four CSA's would reduce this number to two, which would then be added. A system for adding six quantities is shown in Fig. 6.

With four CSA's, six multiples of the multiplicand can be entered at the start of multiplication, permitting twelve bits of the multiplier to be decoded at once. The resulting sum is the first partial product which must be used as one of the operands on the following iteration. This allows five multiples of the multiplicand to be entered on each iteration after the first, corresponding to ten multiplier bits.

Techniques for increasing the division speed of a computer will appear in Part 2 of this article, in the next issue. - -

## Bibliography

Flores, I. The Logic of Computer Arithmetic. New York: Prentice-Hall, 1963.
Ledley, R. S. Digital Computer and Control Engineering. New York: McGraw-Hill, 1960.
Maley, G. A., and Earle, J. The Logic Design of Transistor Digital Computers. New York: Prentice-Hall, 1963.
McClusky, E. J. Introduction to the Theory of Switching Circuits. New York: McGraw-Hill, 1965.
MacSorley, O. L. "High Speed Arithmetic in Binary Computers." Proceedings of the I.R.E., Jan. 1961.


Cosmo Plastics is your one complete source for bobbins, whatever your requirements in size and shape. Square, rectangular, round, cup core and reed switch bobbins are available from stock. Both standard and custom molded forms are produced in nylon, glassfilled nylon, Delrin or Lexan. Cosmo can supply bobbins in flange sizes up to $3^{\prime \prime} \times 33 / 44^{\prime \prime}$, core sizes from $1 / 8^{\prime \prime}$ to $21 / 2^{\prime \prime}$, core lengths from $1 / 4^{\prime \prime}$ to $3^{\prime \prime}$, with wall thickness from $.025^{\prime \prime}$ to $.100^{\prime \prime}$. Over 900 standard sizes and shapes are listed in our new catalog. Send for a copy. You may find an off-the-shelf part to fit your needs.


Terminal leads cosmo can aid in reducing your assembly cost by incorporating soldering terminals into the bobbin. This unique service can eliminate one of your major secondary operations. By including the terminal insertion in the manufacture of the bobbin, you can reduce the number of man-hours required to finish the coil. All terminal designs offered by Cosmo are adaptable to automatic soldering techniques. Take advantage of this ex clusive service.


Lead slot groove you can save time, money and improve overall quality by having Cosmo include a lead slot groove in your next bobbin. It provides an insulated passageway for the lead wire, and makes automatic wind ing a faster, easier operation. The need for a hand taping operation is eliminated, and wire breakage due to tape interference is no longer a factor. The groove also assists in winding an exact number of turns per layer. Let Cosmo engineers show you how the lead slot groove can improve your coil winding operation.

If your design calls for a special size and shape, send us your print for an immediate quotation. Cosmo offers the same quality, delivery and service on custom molded parts as on off-the-shelf items.
COSMO PLASTICS COMPANY
3239 West 14th Street - Cleveland, Ohio 44109
Phone 216.861-5596


# SPEED SEOUENTIAI Push a Button.. 



## NAVEFORM TESTS

## lead a Trace!

## EW PUSH-BUTTON, PROGRAMMABLE OSCILLOSCOPE



Sequential testing is now a one-two procedure with the new hp Model 155A/1550A Push-Button, Programmable Oscilloscopel All you do is select a test point, then - push a button . . . and read a trace.
This new automated hp oscilloscope is the first scope specifically designed for production line and automatic systems applications. It will reduce test time per unit, simplify test procedures, minimize operator errors, shorten training time - and can even reduce the number of required test stationsI Check-out routines in automatic systems are speeded by eliminating all manual adjustments.

The 155A oscilloscope embodies all the features of a conventional laboratory instrument, with push-button convenience. Most frequently used controls are located on the front panel. All other controls are located behind the swingdown access door.

You can insert up to 18 test programs in each 1550A digital programmer, or cascade programmers for additional capability. Each test program can control any or all major scope functions - including vertical positioning, sensitivity, input coupling, sweep time, trigger source, and trigger slope - with the press of a buttonl Each programmed function can
be manually over-ridden at any time. Back-lighted indicators show program, sweep, sensitivity, and vertical position for error-free readout.

Only a few minutes are required to insert diode pins for setting up programs in the all-digital programmer. Diodecontrolled, digital programming makes the 155A/1550A fully compatible with any contact-closure-to-ground programmer for high speed, automatic check-out systems.

Measurements are repeatable, because the unique hp DC stabilizer circuitry eliminates DC drift. The trace stays where it is positioned for measurement confidence, regardless of sensitivity or sweep. Calibrated positioning over $\pm 25 \mathrm{~cm}$ dynamic range can eliminate need for voltmeters. Typical DC measurement accuracy is $\pm 2 \%$ of reading.

To find out what this new measure of scope performance means to you in speeding your sequential testing, call your nearest hp sales office for a demonstration of the new hp Model 155A/1550A Push-Button Programmable Oscilloscope. Or, write Hewlett-Packard, Palo Alto, California 94304, Tel. (415) 326-7000; Europe: 54 Route des Acacias, Geneva. Price: hp Model 155A Oscilloscope, $\$ 2450.00$; hp Model 1550A Programmer, $\$ 600.00$, f.o.b. factory.

## Nomograph gives amplifier noise data rapidly and accurately once a transistor noise figure is known. It also helps to select the correct device.



Here is a nomograph that permits designers to find out quickly the equivalent noise voltage at the input to an amplnier.

To use it, merely take the noise figure of the input transistor stage from the specification sheet. A nomogram scale indicates the amplifier input noise. It also tells if a given transistor is suitable for use in an amplifier stage.

The nomograph is a solution to the well-known equation describing the equivalent-noise input voltage of an amplifier (at room temperature), $E_{n}$ :

$$
\begin{equation*}
E_{n}=1.58 \times 10^{-10} \sqrt{B W} \overline{R_{g}\left(f^{i}-1\right)}, \tag{1}
\end{equation*}
$$

where $B W$ is the $3-\mathrm{dB}$ bandwidth and $R_{g}$ is the source resistance (in ohms). In addition the amplifier is assumed to have a high-frequency rolloff of 6 dB per octave, this giving it a noise bandwidth of $1.57 B W$.

Note that the noise figure, $N F$, rather than the noise-voltage factor $f$ (of Eq. 1), is used in the chart. These two parameters are related by:

$$
\begin{equation*}
f=\operatorname{antilog} N F / 20 \tag{2}
\end{equation*}
$$

An example will illustrate the use of the nomograph:

An amplifier with a voltage gain of 1000 and a bandwidth of 6 kHz has a maximum output noise specification of 0.002 volt. Will a 2 N780 transistor be suitable for the first stage?

## Solution

1. The 2 N 780 has a noise figure of 7 dB (maximum) for a source resistance of $5 \mathrm{k} \Omega$. Draw a straight line between 7 on the $N F$ scale and 5 k on the $R_{g}$ scale.
2. Connect the point of the intersection of this line and the reference line with the $6-\mathrm{KHz}$ point on the $B W$ scale.
3. This last line crosses the $\bar{E}_{n}$ scale at 1.75 microvolts. Since the amplifier gain is 1000 , the noise output is 0.00175 volt, which is below the allowable maximum. Therefore the 2 N 780 will be satisfactory. - -

[^4]

Need noise data? Then use author Feinman's nomogramit quickly and easily reveals amplifier noise voltage, $\mathrm{E}_{\mathrm{n}}$.

# free wall chart 

Eccobond ${ }^{\$ 1}$ Adhesives



This fully illustrated fold-out chart in color for notebook or wall mounting gives complete physical and electrical data on over 20 adhesive systems-conductive, non-conductive-liquids, powders, pastes-for electrical or mechanical applications-various chemical types.

This valuable Chart is yours Write or use the Reader Service Card

EMERSON \& CUMING, INC.

- Canfon, Massachuseffs
- 604 W. 182d St., Gardena, Calif.
- 9667 Allen Ave., Rosemonf, III.

Emerson \& Cuming Europe N. V. Oevel, Belgium
ON READER-SERVICE CARD CIRCLE 20

## New Delay Timer for the O.E.M. Market.



Our new RB Delay Timer is designed to fill requirements of the original equipment manufacturer for a highly reliable, low cost, delay timer. It is all plastic construction for total insulation with 15 ampere load
contact capacity. Available in 6 models cycling from 5 seconds to 4 minutes, 30 seconds. For complete Model RB technical information ask for Bulletin \#307. For an RB prototype specify time cycle and voltage.


65 U.S. HIGHWAY \#287, PARSIPPANY, NEW JERSEY IN CANADA: SPERRY GYROSCOPE OTTAWA LIMITED, ONTARIO

# What do you want from a new operational amplifier? 



If that's what you want, you need Hamilton Standard's A-505 operational amplifier. It meets all these expectations and more. We'll send you a data sheet free. And a sample unit for $\$ 95$.


DMS. 3200 main Frame $\$ 320$
(shown with DP-100)


DP-100
DC Voltmeter Plug-in
\$175
DP. 150 1 MC Counter Plug-in
\$175

DP- 170
Ohmmeter Plug-in
\$240
DP-200
Capacity Meter Plug-in \$240

## HIGHLIGHT FEATURES

3-digit Biquinary Tube Read-out
Plug-in Flexibility
All-electronic
Fully-transistorized
Modular Design
Fully Field-tested
Automatic Polarity Indication Automatic Decimal Point Indication

AS A DIGITAL DC VOLTMETER (DP100 Plug-in)
Range 0.1 millivolts to 1000 volts Accuracy $\pm 0.1 \%$ FS, $\pm 0.1 \%$ of reading True integrating voltmeter design 10 megohms input impedance at all times

AS A DIGITAL 1 MC COUNTER (DP150 Plug-in)
$\pm 0.005 \%$ accuracy: Resolution 1 part in $10^{7}$
(Overrange capability with sector read-out
permits 3 -digit display to be equivalent of a
7-digit instrument)
Frequency measurement range 0.1 cps to 1 mc Period measurement range 0.1 ms to 999 sec onds

AS A DIGITAL OHMMETER (DP170 Plug-in)
Range 0.01 ohm to 1,000 megohms
Accuracy $\pm 0.1 \%$ FS, $\pm 0.2 \%$ of reading
AS A DIGITAL CAPACITY METER (DP200 Plug-in)
Range 1.0 picofarad to 10,000 microfarads
Accuracy $\pm 0.1 \%$ FS, $\pm 0.2 \%$ of reading

The DMS-3200 is designed for rugged industrial and laboratory applications. By utilizing a design which has the optimum combination of accuracy capability and number of digit display, the DMS 3200 meets the general purpose measurement needs of industry for reliable, precision digital measurement equipment in the $\$ 400-\$ 500$ price range.

# So you want to be an inventor. There are three things you had better do before applying for a U.S. patent. Do them before you start to invent. 

Many an engineer fancies himself a would-be inventor merely because he has devised something novel. But before he approaches the United States Patent Office with his brainchild, he is well-advised to take three basic steps. Otherwise he is probably wasting his own and everyone else's time.

The three steps are these:

1. He must be sure he has an invention. Odd as it may sound, not all things that the public loosely calls "inventions" qualify as such legally.
2. He must find out if he has something that can be patented. Mere newness is not the final test here; sufficient advantage and ingenuity in comparison with previous inventions in the same field are at stake. A patent search must be made.
3. He must prove he is entitled to a patent. Exhibits, drawings, witnesses-all are important in the presentation of the inventor's case. Ideally, the work of getting a patent starts long before the inventor comes up with the finished, patentable product.

## An invention is something tangible

What then is an invention-legally? An invention is a device or process that is useful and has not existed before. Two words in that definition are worth repeating: an invention is a device or process. A mere idea will not do; neither will a simple discovery nor some profound theoretical research, by itself. Not even an Einstein could patent the Theory of Relativity. The facts obtained through research or discovery must be built into a useful device or method before you have a patentable invention. The inventor must tell the public how to construct the machine or perform the process to derive new and useful results. This is an essential part of invention as defined by the United States Patent Office.

## Check the patents already issued

What is an invention by definition is not necessarily an invention that can be patented. There is the question of whether it is sufficiently new and better than previously known similar devices to

[^5]merit the grant of a patent. If the invention is a natural result of everyday activities, in all probability it will not satisfy the criteria of the Patent Office. To find out whether he has a patentable invention, the engineer must know what preceded him in the field.

If he works for a good-sized company, he should turn to its patent department. Most patent departments keep files on disclosures submitted to them and will allow the engineer to search them. Larger companies have a scientific library, and the librarian should be consulted for a literature search. The company patent department may run a patent search to determine the state of the art in Washington, D. C., besides checking its own patent files.

Reference librarians in better libraries can do much for the individual inventor by recommending the proper references. If possible, he should also conduct his own search in Washington. This type of search is known as a "pre-x" search and can be undertaken at a minimal cost by the inventor or by his attorney.

Besides becoming more familiar with the problem, the inventor may be able to improve his concept after such research. In any event, he is in a much better position to ascertain whether or not he has a patentable invention.

## How to prove you're "first"

All fair-minded persons agree that, if a patent is to be granted, it should go to the first, the true, inventor. This requires proof-written proof that fixes the time of the invention and shows that the person who signs the patent application is the true inventor.

In organizations where several persons are working or thinking about the same general problem, considerable care must be taken to decide which person is entitled to sign the patent application. If there is any doubt, the patent department should be consulted. If more than one person is to share the credit, then they are joint inventors, and they must be so designated.

The inventor's dated laboratory notebook entries are accepted proofs that he is the first. Therefore, these entries must be made regularly and as completely as possible. Indeed, the inventor should get into the habit of writing down his achievements at the end of each day.

The entries should be made in bound notebooks
that are assigned to the engineer. Records are more easily preserved in a bound notebook, and, more importantly, if they are entered properly, it is virtually impossible to make a change or substitution without detection. Thus, this type of notebook possesses greater credibility than loose-leaf notes. The following rules should be observed when making entries:

- Use ink whenever possible.
- Write the date and a short title for the material at the beginning of each invention.
- Sign and date the entry at the end.
- Have at least one witness, preferably two, read, sign and date the entry at the end.
- Make all entries on a page in handwriting on the same date. Witnesses may sign the page at a later date.
- Don't leave blank space at the bottom of the page.
- Put changes and corrections on a new page, dated at the day these changes are made. The new page, together with the original entry, forms a complete record.

In addition, any sketches, drawings or written descriptions outside the notebook should likewise be dated, signed and witnessed. All of these records should be preserved in the engineering department's files.

Models of the invention should be clearly identified. Photographs should be taken, if possible.

The models and photographs should also be filed in the engineering department, and a fully witnessed record should be kept of the date of completion. Tests of a model or process should be conducted in the presence of at least one witness, preferably two or more. Witnesses' signatures should take the following form:

> ""On (date), I personally wit- nessed the tests referred to herein and certify that the results are accurately set forth in this record. Signed:
Date:
These witnessed data, too, should be preserved by the engineering department. A copy of the test results should be sent to the company patent department, if an application has not been filed before the tests are completed.

## Select your witnesses carefully

In all cases the witnesses must have sufficient technical knowledge to understand the nature of the invention when it has been explained to them or after reading the notebook entries. This is very important. A person who merely signs his name to a notebook entry, without understanding the nature of the invention, is not a very good corroborative witness. There have been instances where such witnesses have been the stenographer or the


Laboratory notebooks, if prepared the right way, protect the inventor, by proving the progress and the date of the
invention. Signing witnesses must be capable of grasping the significance of the material.

## Electronic and

## Mechanical

## Engineering

## Openings

at NOL

The U. S. Naval Ordnance Labaratory, one of the world's best known and best equipped R\&D facilities, has openings for electronic and mechanical engineers to work in the following areas:

Experimental work in Electromagnetic
Radiation and Antenna Design.

Includes application of existing components and techniques to the solution of problems concerning small antennas for missile ap plications and original work on components and techniques. Must be able to analyze test results, write technical reports. II vacancy)
Starting Salary $\$ 9,267$ to $\$ 10,619$
Electronic Circuit Design
for Missile Subsystems.
Requires experience in one or more of these areas: R.F. stripline circuit design and fabrication; miniature solid state trans mitters; miniature solid-stare ac-de con verters. nuclear vulnerability solid state circuitry. (1 vacancy)
Starting Salary $\$ 9,267$ to $\$ 10,619$.
Design of Large Scale
Digital Control System.
Requires experience in one or more of these areas; Digital computer design; digital dis play circuilry: high-speed A-D and D.A conversion: digital system interface control Knowledge of weapon fire contral systems desirable. 12 vacancies)
Starting Salary $\$ 9,267$ to $\$ 10,61^{\circ}$

Mechanical Configuration and Packaging Design.
and stress analysis of complex electro mechanical devices, their mountings and related missile structures, from basic concept through production design. Experi mental and analytical experien
Starting Salary $\$ 9,267$ to $\$ 10,619$.
Design Engineer
to function as project engineer responsible for the development, from inception to production, of small mechanical and elee tromechanical devices for air and surface weapons. Devices include timers, inertia sensars, and fuzes. 11 vacancy) Starting Salary $\$ 10,619$

Send resume or form S.57 to: L. E. Probst

Professional Recruitment Division,
U. S. Naval Ordnance Laboratory White Oak, Maryland 20910

An Equal Opportunity Employer
wife of the engineer. These persons have very little idea of what the invention is about and are unable to relate the circumstances of the invention to prove the contents of the entries.

Another important point is that all correlated data-drawings and information that substantiate the notebook entries-should be mentioned in these entries and kept for reference.

If these entries are made properly and promptly and all correlated information and data are collected, there should be very little doubt of proving the actual chronology and facts of inventorship.

## Notes help tell the story

Laboratory notes are the basis from which a patent disclosure is prepared by the company patent department. It is a part of the patent law that an inventor must disclose his invention in the best and most complete manner. Therefore, it is necessary to scan the data in the notebook entries and to fashion such information into a logical, clear description of the invention.

To do this, companies usually provide a disclosure form that helps engineers organize the data. A disclosure sheet includes basic data-like the date of the invention, the name of the inventor, a drawing of the device, its advantages and objec-tives-and a brief description of the device and its operation. Two competent witnesses have to sign the document.

The components of the drawing should be numbered to agree with the description. The drawing should show structures of all necessary parts. In the case of a process, all apparatus required to carry out the steps of the process must be included. Although the drawing need not show the design in a form suitable for commercial use, it is essential to provide an operable circuit, structure or a completed series of process steps.

To obtain complete patent protection for the invention, the description must encompass even the smallest details. Since most inventors are extremely familiar with the problem concerned. they are prone to describe the components of the structure, circuit or process very sketchily. They forget that a disclosure may be relatively new to the attorney who is to prepare the patent application.

The inventor should proceed in his description as though he were demonstrating his device or progress to someone unskilled in the field. Technical jargon should be carefully defined.

In describing the structure in the drawing, remember the following:

- All elements should be numbered.
- The important element should be isolated from the description and specially emphasized.
- The operation of the device should be described.
- The principle of operation should be explained, if possible.
- The novel features of the invention should be pointed out, together with the advantages over other patents.


## INFRARED ENGINEERS AND SCIENTISTS:

## Can you contribute to the development of products like these?



Rapid growth of Hughes infrared activities in the Aerospace Divisions and the Santa Barbara Research Center has created many responsible positions for qualified engineers and scientists in all phases of IR systems development from conception through production engineering
Immediately available assignments include openings in such diverse technologies as optical design, semiconductor physics, cryogenics, mechanical engineering, precision electro-mech-
anisms, electronic circuit design, servo systems... and many other areas

Current Hughes IR contracts include advanced systems for: space exploration, weather satellites, anti-ballistic missile defense, night reconnaissance, aircraft and space vehicle defense, and tactical weapon guidance and fire control.

Professional experience, an accredited degree and U.S. citizenship required.

For immediate consideration, please airmail your resume to

## Mr. Robert A. Martin

 Head of Employment Hughes Aerospace Divisions 11940 W. Jefferson Blvd. Culver City 42 , California
## HUGHES

HUGHESARCGAFTCOMPANV
AEROSPACE DIVISIONS

An equal opportunity employer


## ACE Digital Test Command System

Motorola's leadership in Integrated Circuits has been extended by another state-of-the-art achievement - the design and production of the First Integrated Circuit Automatic Checkout Equipment, used at Cape Kennedy for compatibility testing of Apollo systems prior to launch. This DTCS, (shown above) processes command messages to produce and channel test stimuli to various spacecraft systems under test. Each DTCS contains some 8,000 Motorola MECL Integrated Circuits.
This is but one example of Integrated Circuit Applications. New technology is being applied daily to advanced analog, RF, and digital circuitry in sophisticated system configurations. We have proj. ects ready and waiting for qualified circuit design engineers and system analysts.
Check the specific job openings listed below and contact Phil Nienstedt, Manager of Recruitment. Department 627.

Space Communications<br>Radar Systems<br>Tracking \& Telemetry Fuzing<br>Digital Data Transmission<br>Guidance \& Navigation<br>ECM \& Elint<br>\section*{Checkout Systems} Coherent Transponders Radar Transponders Integrated Electronics Antennas \& Propagation Reliability \& Components Advanced RF \& Microwave Techniques<br>MOTOROLA

## Looking for a New Job?

- Fill out one application
- Check off the companies that interest you . . .


## - We do the rest

Contacting the job market takes only ten minutes with ELECTRON. IC DESIGN's Career Inquiry Service. To put Career Inquiry Service to work for you, fill in the attached resume. Study the employment opportunity ads in this section. Then circle the numbers at the bottom of the form that correspond to the numbers of the ads that interest you.
ELECTRONIC DESIGN will be your secretary, type neat duplicates of your application and send them to any number of companies you se-lect-the same day the resume is received.
Career Inquiry Service is a fast. efficient way to present your job qualifications to companies recruiting engineering personnelas confidentially and discreetly as you would in person. This service is the first of its kind in the electronic field, and one that engineers have used effectively since its inception in 1959.
We take the following precautions to ensure that your application receives complete, confidential protection

- All forms are delivered unopened to one reliable specialist at ELECTRONIC DESIGN.
- Your form is kept confidential and is processed only by this specialist.
- The "circle number" portion of the form is detached before the application is sent to an employer, so that no company will know how many numbers you circled.
- All original applications are placed in confidential files at ELECTRONIC DESIGN and after a reasonable lapse of time they are destroyed.

[^6]After completing, mail career form to Electronic Design, 850 Third Avenue, New York, N. Y. Our Reader Service Department will forward copies to the companies you select below.
(Please print with a soft pencil or type.)


Recent Special Training

Employment History

| City and State |  | Dates | Title | Engineering Specialty |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

Outstanding Engineering and Administrative Experience $\qquad$
$\qquad$

Professional Societies
Published Articles
Minimum Salary Requirements (Optional)
Use section below instead of Reader Service Card. Do not write personal data below this line. This section will be detached before processing.

Circle Career Inquiry numbers of companies that interest you

| 900 | 901 | 902 | 903 | 904 | 905 | 906 | 907 | 908 | 909 | 910 | 911 | 912 | 913 | 914 | 915 | 916 | 917 | 918 | 919 | 920 | 921 | 922 | 923 | 924 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 925 | 926 | 927 | 928 | 929 | 930 | 931 | 932 | 933 | 934 | 935 | 936 | 937 | 938 | 939 | 940 | 941 | 942 | 943 | 944 | 945 | 946 | 947 | 948 | 949 |

## Tandem dimmer uses Triac power controllers



Triac power-controller establishes a tandem dimmer. Potentiometer $R_{3}$ determines relative lamp brightness.

The tandem dimmer is an electronic, solid-state control that simultaneously increases the brightness of one lamp while decreasing the brightness of another. This system can be easily and inexpensively realized with two Triac power-controllers.

This type of light action is often employed in the theater for fading out one scene while bringing up another or for dimming out the stage as the auditorium lights go up. It can also be used in the home for transferring from room lighting to the light of a slide or movie projector. This crossfading action can lend a professional touch to slide projection by transferring back and forth between two slide projectors to bring in one picture while the previous picture fades out.
The tandem dimmer (see schematic) uses the Triacs to control power to the two lamps. The Triacs are triggered by Diac trigger diodes from an RC phase-shift network that is cross-coupled between the Triacs. A single potentiometer, $R_{3}$, controls both lamps.

When the potentiometer is set at the extreme end closest to $D_{1}$, lamp \#1 is operating at full brightness and lamp \#2 is completely OFF. As the potentiometer is moved across to the other extreme, lamp \#2 will increase in brightness and lamp \#1 will decrease in brightness. The circuit components have been chosen so that during the transition from one lamp to the other the total light emitted by both lamps together is virtually constant, changing by no more than $15 \%$ through

[^7]the entire transition range. This particularly suits the system to the slide projector application.

If a wider variation in total light level is desired, the control circuit can be further simplified by eliminating resistors $R_{4}, R_{5}$, and $R_{6}$, and capacitor $C_{2}$, and by changing the value of potentiometer $R_{3}$ from $150 \mathrm{~K} \Omega$ to $75 \mathrm{~K} \Omega$. Radio frequency interference is suppressed through use of inductors $L_{1}$ and $L_{2}$ and capacitors $C_{4}$ and $C_{5}$.
If the lamp load on either Triac is less than 100 W, the LC filter circuit may tend to oscillate and prevent proper operation of the Triac. Should this occur, the LC circuit must be damped by the addition of resistance (approximately $33 \Omega$ ) in series with capacitors $C_{4}$ and $C_{5}$. The damping resistors should be bypassed by small capacitors (approximately $0.02 \mu \mathrm{~F}$ ) to preserve RF interference suppression at higher RF frequencies.
E. K. Howell, Applications Engineer, General Electric Co., Auburn, N. Y.

Vote for 110

## IC double-gate stabilizes monostable multivibrator

Temperature stability of a conventional twotransistor IC monostable multivibrator can be improved by use of IC double-gates. A stability of better than $\pm 0.5 \%$ accrues simply with the addition of a pair of diodes and resistors.

Two-transistor multivibrators are commonly sensitive to temperature as well as to supplyvoltage variations. This is particularly true when the supply voltage is low, as is typical in integrated circuit versions. With reference to the figure, a


## It's only a beginning.

MIT says career engineers should spend $10 \%$ of their time keeping up with new technology. IBM agrees. Whatever degree you hold, you can't afford to stop learning.
If you worked at IBM's Office Products Division in Lexington, you could take graduate courses just across town at the University of Kentucky. Participate in the Accelerated Master's Degree Program there-using part of your actual work as thesis material. And if you qualified for the IBM Resident Graduate Program, you can do advanced
study almost anywhere.
These are only a few of the educational opportunities available through IBM Lexington. There are over 30 Voluntary Education Programs. Plus conferences with research and developmental managers from all other company divisions. And seminars with top scientists and engineers.
If you're looking for a location where you can keep growing while earning an excellent salary, better look into IBM Lex-ington-where engineers strike a balance between theory and
application, year in and year out.
Right now we have openings in development, product and manufacturing engineering; product testing; tool or manufacturing methods engineering; and mechanical design.
Write or call:
Mr. Thomas A. Viola
Dept. 555U. IBM Corporation New Circle Road Lexington, Kentucky 40507
Phone: 252-2250
(Area Code 606)
An Equal Opportunity
Employer (M/F)


Temperature stability better than $\pm \mathbf{0 . 5 \%}$, from -10 to $+70^{\circ} \mathrm{C}$, is achieved in this standard IC multivibrator by addition of resistors $\mathrm{R}_{1}, \mathrm{R}_{2}$ and the two diodes shown.
multivibrator period is given by:
$T=R_{x} C_{x} \log \{$

$$
\left.\frac{\frac{R_{x}}{R_{x}+R_{b}}\left(V_{1}-V_{B R S A T}\right)+V_{O O}-V_{O B}{ }_{\text {SAT }}}{V_{1}-V_{A(\text { THRESHOLD }}}\right\}
$$

Most of temperature drift comes from $V_{B E}{ }_{S A T}$ and $V_{\text {Ath }}$ variations. These variations, similar to those of the forward voltage drop, $V_{D}$, of a diode, can be canceled by making $d V_{1}=K d V_{B E}=K d V_{D}$. This is realized with a two-resistor-two-diode network where:

$$
1<K=\frac{2 R 2}{R_{1}+R_{2}}<2 .
$$

This compensation network has been proved successful with a monostable using a Fairchild double gate $\mu \mathrm{L} 914$. When $R_{r}=10 \mathrm{k} \Omega, R_{1}=200$ $\Omega$ and $R_{2}=470 \Omega(K=1.4)$, the temperature drift was reduced from $\pm 6 \%$ to less than $\pm 0.5 \%$ in the $-10^{\circ}$ to $+70^{\circ} \mathrm{C}$ temperature range. Variations of $T$ have been reduced to less than $3 \%$ for a $\pm 30 \%$ supply-voltage change.

Monostable multivibrators built with other types of RTL ICs can be compensated in the same way. $K$ must be adjusted (in most cases between 1.3 and 1.6 ) to give optimum results.

Jean C. Rivet, Applications Engineer, SGS Fairchild, Milan, Italy.

Vote for 111

## Adaptor provides plug-in convenience for IC flat-packs

Flat-packs, the most widely used integratedcircuit packages, give many assembly problems in breadboard and prototype design. In order to reduce these problems, an adaptor has been designed to which the flat-packs can be hand-soldered. A set of connector pins enables the user to plug any flat-pack into a mating receptacle located on an assembly board.


Etched printed-circuit board and gold-flashed nickel pins are major ingredients in this useful adaptor. Matching socket is a readily available off-the-shelf item.

The adaptor (see photograph) is made up of only three components: an etched $1 / 32$-inch singleclad epoxy printed-circuit board; a set of pins ( 10 or 14 per adaptor) (Eltee Mfg. Co.); and a socket ( 10 or 14 pin) (Barnes Development Co.). The pins, 0.24 -inch long and about 0.02 -inch in diameter, are made of gold-flashed nickel wire. A shoulder on one end permits soldering to the pad.

After the leads are bent to mate with the holes in the PC board, the flat-pack is inserted on the board and both pins and flat-pack soldered in place. The mating socket may then be mounted on an assembly board or in a test circuit. Recently, a total of 350 such adaptor-modules were used in assembly board or in a test circuit.
Frederick A. Buuck, Engineering Specialist, ITT Federal Laboratories, Fort Wayne, Ind.

VOTE FOR 112

## Diodes and capacitor make astable self-starting

Astable multivibrators can easily be made selfstarting by the addition of two diodes and a capacitor to the multi circuitry. This modification is far simpler and less expensive than the complex feedback techniques usually employed.

When power is applied to a conventional astable multivibrator, it is possible for both its transistors to become saturated and lock up. This condition may cause persistent starting problems.

In the modified astable circuit (see schematic) $C R_{1}$ and $C R_{2}$ cause capacitor $C_{3}$ to be charged to the positive supply and thus provide charge current through resistors $R_{5}$ and $R_{6}$ to $C_{1}$ and $C_{2}$. Should both $Q_{1}$ and $Q_{2}$ become saturated, $C_{3}$ will automatically be discharged and $Q_{1}$ or $Q_{2}$ will be turned OFF. This shut-down will set off regeneration in the multivibrator. In the circuit, $R_{1}=R_{4}$ $<R_{5}=R_{6} ; C_{3} \gg C_{1}$ and $R_{2}=R_{3} . R_{2}$ is chosen

## Does your present custom power supply give you

| $70 \%$ to $90 \%$ |
| :--- |
| efficiency? |



Add-on power capability by using more modules?

Ability to handle full load steps while maintaining out put in regulation band?

## New Omnimod does!



Omnimod power control module.


Omnimod control amplifier.

OMNIMOD gives you all these features-and more-and at a lower price! Want to know more?
OMNIMOD is a dc to dc converter using transistors in a CONSTANT PULSE WIDTH, variable repetition rate switching mode to regulate output voltage or current. Two small plug-in units make-up the OMNIMOD concept-a power control module and a control amplifier.

Output can be regulated between $\pm 2$ and $\pm 60$ dc at up to 20 amperes using the OMNIMOD family of modules WITHOUT MODIFICATION OR ADJUSTMENT. Higher current ratings are obtained by paralleling power control modules.
Any number of power controller modules can be controlled by one amplifier. OMNIMOD has a current limiting parameter, over voltage protection, voltage sequencing, and remote sensing.
To design a custom power supply, one must simply

1. design one input power converter to change unregulated line ac power to unregulated dc power
2. select the number of plug-in OMNIMOD power control modules to supply the power needed for each output
3. package these elements with filter capacitors and a plug-in amplifier module for each output
All the power used by every element in a typical data processing system could be supplied by custom power supplies constructed with interchangeable OMNIMOD modules.
Isn't this enough to consider OMNIMOD for your custom requirement? We will design an OMNIMOD custom power supply to your specs, or will help you design your own system using our plug-in OMNIMOD modules. Write for the complete story. We'll have it to you within 48 hours.
[^8]IDEAS FOR DESIGN


Diodes and capacitor provide astable multivibrator with a guaranteed self-starting capability.
to negate the $I_{\text {cbo }}$ effects at high temperatures.
A. Mall and J. F. Shagena, Jr., Design Engineers, Bendix Radio Div., Baltimore, Md.

Vote for 113

## Cam-shaft adds contacts to push-button switches

A simple ratchet-operated cam-shaft can be used to facilitate the construction of illuminated pushbutton switches when more than the standard two contacts are required. Normally, when more than two positions are needed a wafer switch is used. But if the switch location is poorly illuminated, this poses the additional problem of either providing auxiliary lighting or using edge-lighted plastic panels with engraved identifications.


ENLARGED VIEW OF SHAFT
Ratchet-operated cam-shaft offers a simple way to increase the number of contacts that an illuminated push. button switch can handle.

The figure shows an illuminated push-button switch with an energizing ratchet that has four cams, each offset by $90^{\circ}$. This arrangement enables a single switch to yield four useful positions. This approach can also be used for to up to eight positions. There the ratchet would have to have eight cams, each offset by $45^{\circ}$.

Louis J. Brocato, P. E., Box 1897, Baltimore, Md.
Vote for 114

## Phase-controlled oscillator has electronic frequency-tuning

Phase-controlled oscillators are extremely useful in frequency-synthesis and harmonicgeneration applications. With such an oscillator a crystal-controlled high-frequency signal may be used to control a frequency up in the UHF range. Such a circuit (see schematic) offers extreme simplicity and economy and high output levels.

Additional benefits include the ability to produce a selected signal that is 40 dB above adjacent


Oscillator uses back-to-back Varicaps to provide electronic tuning capability. This circuit produces a selected signal that is 40 dB above adjacent harmonics.
harmonics and the possibility of frequency-programing the oscillator by using Varicap tuning.

The gating input is a $10-\mathrm{MHz}$ crystal-controlled positive-going pulse, which accurately controls the output of a uhf oscillator. The frequency of operation of the oscillator is selected by tuning the LC circuit at the output; in this particular circuit, a positive signal between 4 and 10 volts adjusts the oscillator frequency, centered at 200 MHz , over a $\pm 15-\mathrm{MHz}$ tuning range. The output frequency, varies directly with increasing positive voltage.

The phase-controlled oscillator's frequency can be changed to any harmonic of the input signal that falls within the tuning range of the Varicap tuned circuit. Frequency-shifting may be accomplished by applying predetermined dc control levels, or positive time-variable alternating signals, to the Varicap tuned circuit.

Frank A. Memmo, Sr. Project Engineer, EIMAC, Div. of Varian Assoc., San Carlos, Calif.

Vote for 115
IFD Winner for March 29, 1966
Murray F. Feller, Design Engineer, Santa Maria, Calif.

His idea, "Two-stage network provides $60-\mathrm{dB}$ agc," has been voted the $\$ 50$ Most Valuable of Issue Award.
Cast Your Vote for the Best Idea in this Issue.


## Westinghouse offers the two IC op amps for low impedance drive applications



You can drive sizable inductive, capacitive, or resistive loads directly with either of these two IC op amps. They're unmatched for "muscle". Using them, you can omit an intermediate driver stage or power amplifier in many applications.

The driving power of the WS 161 and WM 174 can make equipment smaller, simpler, and lower in cost. With this pair, you can fill virtually all integrated op amp requirements. They come in 14 -lead, $1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}$ Q-style packages.

If you want maximum unity gain bandwidth, moderate open loop gain, and very high current output with low voltage drift, no other IC op amp comes near the WS 161.
If you want maximum open loop gain, maximum output cur-
rent, and very high unity gain bandwidth, the WM 174 is far and away your first choice.
Get the full data on these outstanding IC's now. They'll do difficult jobs for you. Call your Westinghouse distributor. Or write Westinghouse Molecular Electronics Division, Box 7377, Elkridge, Maryland 21227.
J. 09126

|  | WS 161 | WM 174 |
| :---: | :---: | :---: |
| Open Loop Gain | 2,000 | 50,000 |
| Unity Gain BW | 20 MHz | 10 MHz |
| Output Current | 10 mA | 20 mA |
| Output Impedance | $40 \Omega$ | 70 , |
| Input Current | 120 nA | 120 nA |

You can be sure if it's Westinghouse

# Producis 



Noisy signals are quickly found with this digital memory oscilloscope. Serial digitizing
gives it elephantine memory. Counting circuits automatically normalize data. Page 78.


Up-down counter includes four flip-flops, preset and reset inputs and all gating. Page 96.


Low-cost iron simultaneously cuts and heat seals PC board epoxy encapsulants. Page 90.

## Also in this section:

Digital driver replaces ns relay for dc logic transmission. Page 86.
Microminiature transformer has hollow laminated core. Page 88.
Postmortem failure analysis of mounted semiconductors. Page 90.

## TEST EQUIPMENT



## Digital memory scope plucks recurrent signals from noise

The problems of rising "baseline" and data normalization commonly associated with "totalingtype" signal averagers have been largely eliminated in the NS-544 digital memory oscilloscope. It has none of the ambiguities associated with memory overflows. Self-contained automatic timing circuits keep the growth of signals independent of sweep speed.

Basically, the scope has a serial digitizer and adder and a sequentially addressed 1024 -word memory to produce totals of a recurrent signal waveform. It employs a timeaveraging technique to eliminate noise present with the test signal. Originally tailored to the needs of biomedical and nuclear magnetic instrumentation, the scope should find applications in any low-level analysis.

The two-channel scope samples a signal in 512 or 1024 time intervals and measures digital magnitudes by means of an A/D converter. The magnetic core remembers the values, and, as later signals occur, their voltage magnitudes are meas-
ured across the same intervals and added to the information in the memory. Since the polarity of noise components is random, totals increase consistently due only to the true signal component. The scope accepts information at a rate of two readings per ordinate point per signal occurrence for all sweep speeds except $62.5 \mu \mathrm{~s} /$ point. Sweep speeds range from $62.5 \mu \mathrm{~s} /$ point to 250 $\mathrm{ms} /$ point in 12 switch-selected steps. The sweep consists of advancing the memory address scaler in sequence from one point to the next. This is accomplished with a quartz oscillator and a decimal-scaler frequency divider. External oscillators are not used.

With other scopes, displayed signals "grow and ride" on a rapidly rising baseline causing memory overflows and ambiguities. The NS544 has a 10 -turn pot baseline adjustment for each input which is digitally held at a fixed value for proper setting of dc level.

Normalization problems have previously arisen because of the dependence of signal growth rate
upon sweep speed. In the NS-544, signals grow at a rate of 128 units per unit signal voltage per signal occurence for all sweep speeds. Automatic timing circuits stop the measurement after $2^{n}$ signal occurrences ( $n$ is switch-selectable from 0 to 11). This "autostop" may be switched off if no stop is wanted. The number of signals measured is automatically recorded in the memory and digitally recorded during read-out. This value is, in fact, the normalizing constant needed to convert the recorded coordinates to absolute values. The unit automatically normalizes data during the readout mode for an experiment of $2^{\text {n }}$ sweeps. At the operator's option, read-out information in each ordinate is divided by the constant preset on the "autostop" switch. The digital display scale selector is a binary switch providing a scale change of factors of 2 per switch position. When "autostop" has been used, the waveform is exactly normalized when the signal count recorded is displayed at full scale.

The instrument may also be operated in a subtract mode. Noisy signals may be measured, a parameter in the test system changed and the same number of signals subtracted to show differences.

Memory groups are 0 to 1023, and 0 to 511 and 512 to 1023 , with an included display overlap of these memory halves. Word lengths are 16 bits. Digitizer resolution is 0 to 128 pulses per ordinate per signal and linearity is $\pm 0.5 \%$. Resolution of the display decoder is seven bits. Input signals may range from $0-2 \mathrm{~V}$ to $0-100 \mathrm{~V}$ depending on attenuator setting. Input impedance is $1 \mathrm{M} \Omega$ $\pm 5 \%$. Trigger signal range is $\pm 4$ V with internal, external or automatically recurrent modes. Stability is $\pm 20 \mathrm{mV} /$ day. Sweep output is $0-0.1 \mathrm{~mA}$ to $0-10 \mathrm{~mA}$ in seven steps. Sweep current linearity is $\pm 0.01 \%$ and stability is $\pm 0.1 \% / 10$ hours. Sweep speed accuracy is $\pm 0.02 \%$ for sweep-flyback, multi-channel scaling, latency histogram or interval histogram mode. Readout is via a 5 -in. CRT. Waveforms may be recorded with a pen recorder and final values may be recorded with a computer readout typewriter

P\&A: $\$ 9400$; 30 days. Northern Scientific Inc., 303 Price Pl., Madison, Wis. Phone: (608) 238-4741.

Circle No. 300

## BELL LABORATORIES

## "Beam lead" technique for fabricating solid-state devices



Row or "ladder" of beam-lead transistors fabricated experimentally at Bell Laboratories has a transistor every 16 mils along its length. Each transistor (on light-gray areas) has three beam leads (dark-gray rectangular areas) for electrical and mechanical connection. The side rails at top and bottom of photo are used only for support and ease of handling.

To make tiny solid-state devices and circuits, groups of elements are generally formed on a single semiconductor slice or substrate. Then the slice is "diced" (physically scparated) into pieces as either individual units or groups of units for integrated circuits. If used individually, they are connected to terminals or to other devices with short segments of extremely fine wire - a difficult and time-consuming operation. If used as groups of devices, they often need special processing to electrically isolate those making up each circuit.

Bell Laboratories' M. P. Lepselter has developed a promising solution to both of these problems. After the device elements are formed, mechanically strong electrical leads are deposited onto them. These electrically and mechanically intraconnect the devices and circuits. Unwanted semiconductor material between the individual devices in a circuit is then removed . . . isolating them electrically, yet leaving them mechanically
joined. This permits batch processing of electrical leads, eliminating many individual connections and requiring only connection to external terminals.

Thus, handling tiny devices and circuits is simplified. The leads, precisely positioned with respect to each other, are easily connected to a cir-
cuit board or other support, perhaps eventually by automated techniques. They are strong enough so that the semiconductor wafer or chip needs no further attachment to the substrate. Entire circuits joined by beam intraconnections can be handled as one unit.

M. P. Lepselter examines beam-lead model (enlarged about 300 times). Beams were thermally aged in $360^{\circ} \mathrm{C}$ steam for 1000 hours, centrifuged to $\mathbf{1 3 0 , 0 0 0} \mathbf{G}$, bent $90^{\circ}$ twenty times without failure. Beams can be tapered for smooth impedance matching, widened to act as heat sinks.

## If you can't believe an electrolytic can be this good unless it's in a metal can...

## Test the molded-case MTA yourself.



## Here's what you'll find:

Life at High Temperature-zero failures in one million piece-hours at $85^{\circ} \mathrm{C}$. Only one failure in $21 / 2$ million piece-hours at $65^{\circ} \mathrm{C}$.

Stability at Low Temperature - equal to or better than most metal-case miniatures down to $-30^{\circ} \mathrm{C}$.

Maximum Values - 800 mfd , 3 VDC, to 85 mfd , 50 VDC.

# Call Jim Shaffer, collect at 317-636-5353, extension 403, for sample order. 

Available from stock at factory prices in quantities to 2499 from franchised Mallory distributors


## HIGH Q

 HIGHK wafer encapsulated
## Now, JFD Uniceram ${ }^{\text {® }}$ Fixed Capacitors Come THREE ways

High Q Uniceram High Q ceramic fixed capacitors offer a unique combination of small size, exceptional stability and a guaranteed minimum Q of 5000 . . . with up to ten times more capacitance per unit volume than competitive units . . . up to $.206 \mathrm{mfd} / \mathrm{in}^{3}$.
GLASS ENCAPSULATED-105 models, with capacitance values from 0.5 to 3000 pf, provide the ultimate in High Q, reliability and stability. All models meet applicable requirements of MIL-C.11272B.
WAFERS-Uniceram High Q capacitors are also available as unencapsulated wafers with metalized edges. 88 lowcost units, with capacitance values from 0.5 to 3000 pf,
offer the same outstanding electrical properties. These wafers are ideally suited for hybrid integrated circuits, can be soldered directly to printed circuit boards or used as discrete components.
High K ENCAPSULATED-A High K series of Uniceram ceramic fixed capacitors with up to 1 mfd capacitance is also available. These glass encapsulated units meet applicable requirements of MIL-C-11015C. Volumetric efficiency . . . up to $48 \mathrm{mfd} / \mathrm{in}^{3}$.
WAFERS-Uniceram High K capacitors will soon be avail. able as unencapsulated wafers, also.
WRITE FOR CATALOG UNM $\mathbf{6 5 - 2}$


## Upset? Power contactor deliveries rescheduled again? <br> Next time call Leach!

We've got hundreds of power contactors in stock throughout the country. Contactors like the models 9324 ( 20 amp ), 9123 ( 25 amp ), and the 9124 ( 50 amp ).

These new units are the smallest, lightest power contactors meeting mil-r-6106E. True balanced armature construction lets them take up to $50 g$ shock and $25 g$ vibration with a contact opening of less than 10 microseconds.

The Model 9324 (MS27418) is a $20 \mathrm{amp}, 3$ PST/no contactor. Under motor load, its rating is 15 amp break and 75 amp make at $115 \mathrm{VAC}, 3$ phase. Operate time 20 milliseconds, with release at 10 milliseconds.

The 25 amp model 9123 (MS27997) and 50 amp 9124

(ms27222) meet the latest requirement of the aircraft and aerospace industries. Basic models are 3PST/NO and 3PST/NO with 5 amp auxiliary contacts. Industry standard mounting makes them interchangeable with older, larger, top-hat type ms24143 and ms24376.
Interested? Then ask for our new Power Contactor Brochure, or better still, send us your purchase order. You'll have your power contactors by return mail. Leach Corporation, Relay Division, 5915 Avalon Bl.
Los Angeles, California; 90003 Phone (Area code 213) 232-8221 Export: leach international s. a.


## IS A "THINNESS"; NOT A THICKNESS

Sixty-nine millionths of an inch is the thinness to which The Arnold Engineering Company has precisely rolled metals and alloys as soft as copper. Alloys as hard as Type 302 stainless, Elgiloy, S-816, Nichrome V and other hard materials have been rolled to $0.0002^{\prime \prime}$ and less.

Orders to these specifications obviously aren't average. Then Arnold isn't average, either. The Arnold Engineering Company is fully equipped to roll ultra-thin gauges of ferrous and nonferrous metals to extremely close tolerances. With dual source, non-contacting beta-ray gauges Arnold has held tolerances totalling $0.000017^{\prime \prime}$ on a week's run of .0011 gauge.

Clean room techniques are observed in order that ultra-thin gauge foils for photo etching, shims, strain gauges, honeycomb structures, capacitors, etc. can be rolled virtually free of pin holes. All facilities housed in pressurized, air conditioned and filtered clean rooms to minimize foreign particles which could cause pin holes in finished work. Centerless grinding facilities to maintain complete control over roll grinding and lapping.

The Arnold Engineering Company has the capability of precision rolling over 55 different metals within tolerances of millionths of an inch.

Now's the time to put Arnold engineering know-how to work for you.

## The Brush Mark 280. Once you've seen it work, the chain makes a lot of sense.



People who use the Brush Mark 280 can get pretty possessive.

No wonder.
True rectilinear traces so crisp and clear you'll never miss the message. Dual recording channels a full 80 millimeters wide. Resolution the likes of which you've never seen. A pressurized inking system. Metrisite pen positioning. Low cost chart
paper. Pushbutton choice of 12 chart speeds. Solid state electronics. Response as high as 200 cps at useable amplitude and better than 30 cps full scale. System accuracy of $1 / 2 \%$ !

And now get set for the big sur. prise: the performance-packed Brush Mark 280 measures just $101 / 22^{\prime \prime}$ $\times 183 / 8^{\prime \prime} \times 111 / 2^{\prime \prime}$ !

Search no more for a full perform.
ance portable. No one but no one has anything to compare with the amazing Mark 280. Ask your Brush representative for a demonstration. Or write today for our free booklet. Brush Instruments Division,
 Clevite Corporation, 37th and Perkins, Cleveland, Ohio 44114.

TEST EQUIPMENT


## Spectrum generator

Model BSSG-1 has an output amplitude of $1000 / 400 / 10 / 1 \mu \mathrm{~V}$ for any spectral line into $50 \Omega$ resistive. Spectral line spacing can be either 100 or 50 kHz from $100-\mathrm{kHz}$ internal oscillator or 5 to 500 kHz from an external source. External drive is 100 kHz nominal input, 1 to 20 V $\mathrm{p}-\mathrm{p}$ at $500 \Omega$. The internal oscillator stability is $\pm 10 \mathrm{ppm}$ at 0 to $50^{\circ} \mathrm{C}$. Leakage is 10 dB below $1 \mu \mathrm{~V}$.

Squires-Sanders Inc., Martinsville Rd./Liberty Corner, Millington, N. J. Phone: (201) 647-3200.

Circle No. 252


## Pulse modulator

A hard-tube pulse modulator finds applications in high resolution radar studies, microwave tube development and nondestructive testing. Pulse widths extend down to 25 ns at amplitudes of 10 kV at 30 A . Rep rate is single shot to 250 kHz continuously variable, and up to 500 kHz at $60 \%$ voltage. Floating deck design permits either polarity and $25-\mathrm{ns}$ rise and fall times.

Cober Electronics Inc., 7 Gleason Ave., Stamford, Conn. Phone: (203) 327-0003.

Circle No. 253


The Model 5201 memory voltmeter is a dc to 20 mc instrument which measures and stores indefinitely the maximum peak voltage applied, including continuous or one shot pulses as short as 50 nanoseconds. A memory reset-switch on the front panel allows the 5201 to monitor peak values of a varying waveform, either positive or negative going.

The solid-state 5201 is also available with a 4 -digit in-line Nixie ${ }^{\circledR}$ tube readout. The voltage range may be extended to 30 kv with optional high voltage probes. For complete technical information, contact the Micro Instrument representative near you or write directly to us.

Specifications

| voltage range | $0-3,10,30,100,300,1000$ volts. <br> Can be operated up to 1000 volts above ground. |
| :---: | :---: |
| InPut impedance | $100 \mathrm{k} \cdot 10$ megohms (depending on range). |
| PULSE WIDTH | DC to 50 (typically 30) nanoseconds. |
| operating modes | ,$+- \pm$ ( DC or AC coupled). |
| READOUT | $5{ }^{\prime \prime}$ mirror-backed $1 \%$ meter. |
| PRICE | \$695.00. |

13100 CRENSHAW BLVD., GARDENA, CALIFORNIA 90249 PHONES: (213) 323-2700 \& 321-5704 / TWX (213) 327-1312


AEMCO Type 156 with plug-in-solder terminals

## USE THIS POPULAR 4 POLE RELAY?

We call it AEMCO Type 156. It's directly interchangeable with similar relays of other leading manufacturers.

## then, compare all five... for quality...for price

If you're already using this relay, you'll reap great rewards by looking at ours, too. Compare quality . . . compare price. American made, too. Request a sample today!
Never tried this relay? Here's what it offers . . .
Compactness! Only $17 / 64^{\prime \prime} h \times 55 / 64^{\prime \prime} d \times 17 / 64^{\prime \prime} \mathrm{w}$. Long life! 200,000 operations at rated load ( 3.0 amperes at 28 vdc or 117 vac resistive); 100,000,000 mechanical operations. Ease of mounting. Solder; plug-in; or printed circuit terminals. And, now Taper Tab terminals only from AEMCO.
Economy. For example, a $24-28 \mathrm{vdc}$ relay with dust cover and choice of terminals is only $\$ 4.30$ ( $1-24$ price). Generous quantity discounts, too.
 Taper Tab terminals

## new ease of installation...

## An AEMCO first!

New Taper Tab terminals give even greater flexibility of application to this popular relay. You can achieve new economies and increased reliability in wiring complex circuits. A uniformity of connections is assured.
The relay-it's the same compact long-life relay as other Aemco Type 156 relays.
The price-that's good news! For example, a 4PDT relay with a $24-28$ vdc coil; dust cover; and Taper Tab terminals is only $\$ 4.30$ ( 1.24 price). Generous quantity discounts apply, too.

INTERESTED?
Call or wire today.


## Research photometer

A research photometer employs FET design and features plug-in printed circuitry. Model IL600 has 9 ranges of sensitivity for a total range of $300,000: 1,4$ ranges of cancellation current and a recorder output with 5 drive positions. Accuracy is $1 \%$. It operates from an integral regulated ac supply or from its 8 -hour rechargeable battery. The instrument operates with photoresistive and photovoltaic cells, solidstate photo detectors and gas or vacuum phototubes.
P\&A: \$625; stock. International Light Inc., 12 Unicorn St., Newburyport, Mass. Phone: (617) 4655923.

Circle No. 254


## Crossbar multiplexer

Crossbar multiplexers connect one analog input at a time to a single output in accordance with a fixed or controllable program. They are designed for time-sharing dc differential amplifiers between a large number of input channels. Series 3080 features 1 -, 2 - or 3 -pole switching, 50 -channel second scanning and 100 to 1000 channel inputs.

Price: $\$ 1700$. Control Equipment Corp., 19 Kearney Rd., Needham, Mass. Phone: (617) 444-7550.

Circle No. 255


## Fast 4-way relief for inventory headaches... mix your own!

Ordering and stocking a different connector configuration for each new product design requirement can be a real headache. If this is your problem, aspirin won't help you. But, our pin and socket connector housings will-four ways!
These housings, available with or without die-cast aluminum shells, now accept four types of size 16 contacts-including coaxial. Which means you can bring both power and shielded circuits through the same connector in any desired combination, up to 160 positions.
All four contacts are crimp snap-in types for tast, dependable termination with AMP's matched application tools. Three types of pin and socket contacts are available; type II is a precision screw. machined contact meeting applicable require ments of MIL-C-8384, types III and III(+) are continuous strip formed contacts for high production at lowest installed cost.
For your low-level signal lines, our new subminia. ture COAXICON* contact is ideal. It's applied by

AMP's exclusive single-stroke crimping technique which simultaneously crimps center conductor, braid and cable support. And, it snaps into any connector cavity just like the pin and socket contacts.

So take a tip, not a pill. Minimize your inventory problems by selecting A-MP* Series M, D, DD, W or WW connector housings in the materials and sizes you'll need. Then, mix your own contacts in whatever configuration the application calls for. Sound good? Write today and get the complete story.
*Trademark of AMP INCORPORATED


## INCORPORATED

Harrisburg, Pennsyivania
A-MP $\downarrow$ producls and engineering assistance available through subsidiary companies in: Australia e Canada - England - France - Holland - Italy - Japan - Mexico - Spain - West Germany

TEST EQUIPMENT


## Recording voltmeter

A memory voltmeter, combined with a strip chart recorder, measures and records the peak voltage of a single or repetitive pulse and displays this reading until reset. Reset interval is adjustable from 10 ms to 5 s , so that amplitude peaks as fast as 50 ns may be recorded. Automatic reset permits use as a peak-reading voltmeter to 50 MHz . Voltage range is 0 to 1000 V in 6 steps.

Price: \$995. Micro Instrument Co., 13100 Crenshaw Blvd., Gardena, Calif. Phone: (213) 321-5704.

Circle No. 256


## FET audio amplifier

A FET and silicon-planar transistors are incorporated in this audio amplifier. Primarily a microphone preamplifier, the $\mathrm{T}-11-08$ is also a booster or line amplifier. The unit has noise equivalent to an input of -124 dBm and low power drain. An external passive equalizer is enclosed in an active feedback loop of the amplifier allowing the operator to attenuate at high and low frequencies without loss or gain.

Universal Audio Products, 11922 Valerio St., North Hollywood, Calif. Phone: (213) 764-1500.

Circle No. 257


## Stray energy detector

The stray energy detector replaces a circuit squib element during a preliminary circuit check-out. Input impedance is matched to the squib bridge wire impedance. Level of sensitivity can be set at 5 mV min dependent upon input impedance. Detection of voltage is indicated by a warning-light which also opens the impedance circuit. Operating time ( 0.005 s min ) is a function of required impedance.

Assembly Engineers Inc., 3650 Holdrege Ave., Los Angeles. Phone: (213) 870-9861.

Circle No. 258

## With EASTMAN $910^{\circledR}$ Adhesive... Fast, strong nylon-to-metal bonds.

General Electric Company needed a rapidsetting adhesive for production line assembly of its electronic consoles. One that would give quick joint strength without use of jigs and be able to withstand operating temperatures of $160^{\circ} \mathrm{F}$. without loosening.


EASTMAN 910 Adhesive met these require ments.
GE people apply a few drops of EASTMAN 910 Adhesive to the edge of the console's metal harness assembly outlet. Then a nylon grommet is pressed in place. In seconds, the bond is set.
EASTMAN 910 Adhesive will form bonds with almost any kind of material without heat, solvent evaporation, catalysts, or more than contact pressure. Try it on your toughest bonding jobs.
For technical data and additional information, write to Chemicals Division, Eastman Chemical Products, Inc., subsidiary of Eastman Kodak Company, Kingsport, Ten nessee. EASTMAN 910 Adhesive is distributed by Armstrong Cork Company, Industry Products Division, Lancaster, Pa.

[^9]
## There is no adhesive like EASTMAN $910^{\circ}$ Adhesive

SETS FAST-Makes firm bonds in seconds to minutes. VERSATLLE-Joins virtually any combination of materials.
HIGH STRENGTH-Up to $5,000 \mathrm{lb}$./in. ${ }^{2}$ depending on the materials being bonded.
READY TO USE-No catalyst or mixing necessary
CURES AT ROOM TEMPEEATURE-No heat required to initiate or accelerate setting.
CONTACT PRESSURE SUFFICIENT
LOW SHRIIKAGE-Virtually no shrinkage on setting as neither solvent nor heat is used.
COES FAR-One-pound package contains about 30,000 one-drop applications. (Or in more specific terms, approximately 20 fast setting one-drop applications for a nickel.)
The use of EASTMAN 910 Adhasive is not surgestod at tomporatures continuousily abovi $175^{\circ} \mathrm{F}$., or in tho prosenca tomporatures continuousiy above
See Sweet's 1966 Product Design File 8a/Ea.
Now avallable! EASTMAN 810 Surface Activator When certain surlace conditions inhibit rapid bond formation, use of EASTMAN 910 Surface Activator is suggested to restore the rapid polymerization of EASTMAN 910 Adhesive.

## New VOM sits up so you can sit down

Put an end to the stoop and squint routine-use the VOM that gives you real legibility with $5 \frac{1}{2}$ " scale and refractive plastic scale overlay for parallax-free readings. New Weston Model 80 VOM permits you to reverse polarity even under load, provides a single switch for controlling functions and range, and gives you both fuses and diode overload protection. Matching family of multi-function test instruments also available.

ACCURACY: $1 \%$ dc, $1.5 \%$ ac. DC Volts: $0.25 v$ to 5 Kv in ten steps (1) 20 K ohms/volt. AC Volts: 2.5 v to 5 Kv in seven steps © 5 K ohms/volt. DC Current: $50 \mu$ a to 10 amps in six steps. Five Ohmmeter Ranges: 2 K to 20 meg full scale; 20 to 200 K center scale. DB Scale: -10 to +10 db .

Ask for the portable Model 80, or the convenient rack-mounted version, MODEL 80R, for 19" relay rack panel installation.

Contact your Weston Distributor, or Weston Instruments, Inc., Newark Division, Newark. N.J. 07114

## N $\mathrm{N}^{\circledR}$ prime source for precision . . . since 1888

COMPONENTS


## Floating digital driver replaces ns relay

An isolating digital circuit for transmission of dc logic levels is the equivalent of a nanosecond relay requiring very small reactive coupling between the drive circuit and the switch closure. The floating digital driver provides combinations for inversion, translation and bipolar operations of digital dc transmissions requiring ns response. The 7 oz package mounts directly on PC cards. Fan-out capability is sufficient for driving numerous circuits or matching to transmission lines. Operating frequency is from dc to 500 kHz and typical propagation plus rise or fall time is 500 ns for " 1 " and 700 ns for " 0 ". Leakage capacitance is 5 pF .

Dynamics Instrumentation Co. 583 Monterey Pass Rd., Monterey Park, Calif. Phone: (213) 283-7773. Circle No. 259


Wirewound trimmer pots
Wirewound $1 / 2-$ in. ${ }^{2}$ trimmer pots have molded-in PC board pins and epoxy seals. Rated 1 W at $70^{\circ} \mathrm{C}$, the units are available with resistance values from $10 \Omega$ to $50 \mathrm{k} \Omega$. Resistance tolerance is $\pm 5 \%$. The trimmers meet MIL-R-27208.

P\&A: $\$ 3.81$ ( 100 lots) ; stock to 4 wks. IRC Inc., 401 N . Broad St., Philadelphia. Phone: (215) 922-8900.

Circle No. 260

## Time delay relay



Strip mount connectors


Four standard time ranges and 2 levels of accuracy are offered by this time delay relay. Available as a plug-in or a panel-mount, it has standard delays of $15,30,60$, or 120 s. Standard accuracy is $\pm 10 \%$ with repeat accuracy of $\pm 5 \%$. Reset time is 30 ms and lifetime is claimed to be $10^{7}$ operations.

Giannini Controls Corp., Cramer Div., Old Saybrook, Conn. Phone: (203) 388-3547.

Circle No. 261

Strip mounted connectors with 3 to 51 contacts snap into PC boards without staking. The "split leg" design connectors feature one leg per contact. Contacts are retained in the strip by formed tabs extending through the upper surface. Contacts are gold plated phosphor bronze mounted on $0.1-\mathrm{in}$. staggered centers and are available with upper or lower rows only on $0.2-\mathrm{in}$. centers.

P\&A: $\$ .30$ to $\$ 2.75$; stock to 6 wks. Methode Electronics Inc., 7447 W. Wilson Ave., Chicago. Phone: (312) 867-9600.

Circle No.
262

Electrometer amplifier


The NF1 amplifier is a wideband, direct coupled electrometer with neutralizable input capacity. It has $10^{11} \Omega$ input resistance, input leakage current of $10^{-12} \mathrm{~A}$ and a gain of 3 . Frequency response extends from dc to over 1 MHz . A six-position, low-pass filter selects cutoff frequencies of $300 \mathrm{~Hz}, 1,3,10,30$ kHz , and maximum bandwidth.

Price: $\$ 470$. Bioelectric Instruments Inc., P.O. Box 204, Hastings-on-Hudson, N. Y. Phone: (914) 476-1234.

Circle No. 263

Elapsed time programer


A solid-state, elapsed time digital programer programs contact closures. The unit can start or stop a test at selected times by thumbwheel coding switches mounted on the front panel. Minimum resolutions are 0.1 s with a 60 Hz time base. The unit is available in ranges of up to six decades of time information.

Parabam Inc., 12822 Yukon Ave., Hawthorne, Calif. Phone: (213) 679-3393.

Circle No. 264


Wrong! /ts got GVB*. Even at more than 1500 volts, tests show no breakdown on M.A. bobbin cores with GVB. In addition to guaranteeing the core's ability to withstand at least 500 volts between bare winding and bobbin, GVB finish also seals the bobbin to withstand a ten-inch mercury vacuum.

It seals against potting material, provides a resilient, non-slip base for winding, and its epoxy skin protects the core against wire cuts. Abraded wire problems are eliminated and no prior taping is required.

GVB has proven itself on thousands of cores . . . and now Magnetics has applied it to the bobbin core, the
miniature workhorse of computers, high frequency counters, timers, oscillators, inverters and magnetic amplifiers.

Made from ultra-thin permalloy 80 and Orthonol ${ }^{8}$ ( $0.001^{\prime \prime}$ to $0.000125^{\prime \prime}$ ), Magnetics' bobbin cores are available in tape widths from $0.023^{\prime \prime}$ to $0.250^{\prime \prime}$ or wider on request. Core diameters range down to less than $0.100^{\prime \prime}$ with flux capacities down to several maxivells.

For more information on

GVB Bobbin Cores, write Magnetics Inc., Dept. ED-42, Butler, Pa. 16001.



## $1 / 2^{\prime \prime}$ SPACING for the new generation of miniaturized test equipment

Pomona created a complete line of $1 / 2$-inch spaced Banana plugs, jacks, cable assemblies, patch cords, adapters, and binding posts to meet the industry's continuing demand for miniaturization.
Banana plug springs formed of one piece Beryllium copper (per QQ-C-533), heat treated for long service life and low contact resistance. Tough, molded thermoplastic bodies provide maximum strength and insulation. Available in a wide selection of colors.

## WRITE FOR FREE CATALOG $\mathbf{1 1 . 6 6}$

Lists over 230 molded test accessories, all designed to meet rigid industrial and military spec-ifications-and built by the quality leader


POMONA
ELECTRONICS CO., INC.
1500 East Ninth Street, Pomona, California 91769
Telephone (714) 623.3463
ON READER-SERVICE CARD CIRCLE 32

A 1/4-in. ${ }^{3}$ MIL-spec transformer features a laminated core. At 1 kHz , insertion loss is less than 3 dB . Frequency range is 400 Hz to 250 kHz and droop is $5 \%$, overshoot is $10 \%$, and rise time is 100 ns for square wave operation. Power rating is 1 W max. Turns ratios to $100: 1$ are available.

Price: $\$ 10$ (over 100). Bourns Inc., 1200 Columbia Ave., Riverside, Calif. Phone: (714) 684-1700.

Circle No. 265

## Hollow-core transformer



Time mark generator


A new pocket-sized self-contained time mark generator is for use as a calibrator or frequency standard. Three preselected frequencies ( 100 $\mathrm{kHz}, 1 \mathrm{MHz}$, and 10 MHz ) having a tolerance of $\pm 0.005 \%$, or an optional $\pm 0.0025 \%$, are standard. A standard BNC interface for direct plug-in and internal battery power source are featured.

Price: $\$ 79.95$. Dayton Electronic Products Co., 117 E. Helena St., Dayton, Ohio. Phone: (513) 4614951.

Circle No. 266

## Audio amplifier



Miniature 6 pdt relay


Seven transistors and one thermistor give this audio amplifier frequency response of $\pm 1 \mathrm{~dB}, 20$ to $20,000 \mathrm{~Hz}$, and a harmonic distortion less than $1 \%$. Gain exceeds 80 dB. A shielded input transformer permits use with 50 - to $150-\Omega \mathrm{mi}$ crophones. Transformer output has an $8-\Omega$ and a $500-\Omega$ winding capable of delivering 200 MW . The unit draws approximately 100 mA .

Price: $\$ 34.50$. Round Hill Associates, 434 Avenue of the Americas, New York. Phone: (212) 228-6600.

Circle No. 267
A $50 \%$ size reduction over conventional 6 pdt relays is represented by this $2.2-\mathrm{oz}, 1-\mathrm{in}$. high, $1-\mathrm{in}$. diameter relay. It is designed for drycircuit to 2 -A applications. Coil resistance is $200 \Omega$ at $25^{\circ} \mathrm{C}$ and initial contact resistance is $0.05 \Omega$ max. Pull-in voltage is $14 \mathrm{Vdc} \max$ and drop-out voltage is 2 Vdc min. Operate and release times are 10 ms max at 26.5 Vdc . Insulation resistance is $1 \mathrm{G} \Omega \mathrm{min}$.

Electro-Tec Corp., P. O. Box 667, Ormond Beach, Fla. Phone: (305) 677-1771.

Circle No. 268


Under ordinary conditions, of course not. Putting together a memory system that meets critical MIL and NASA specs takes time. RCA has produced a wide variety of such systems and is now turning out systems for some of the top military and space projects, and for important industrial uses.
At the present time, RCA has available $2 \mu$ s coincident current memory systems, "off-the-shelf" so to speak, which could make 30 -day delivery possible.
These are heavy-duty systems, ruggedly built with allsilicon semiconductor complements and proved RCA ferrite cores, and meet applicable portions of a wide variety of MIL and NASA specifications, including:

| MIL-E-4158 | MIL-T-55110 | MSFC-STD-154 |
| :--- | :--- | :--- |
| MIL-E-16400 | MIL-Q-9858 | MSFC-PROC-158B |
| MIL-E-5400 | MIL-STD-275 | NPC 200-3 |

Full cycle time for these RCA MS-1 (M) systems is $2 \mu \mathrm{~s}$. Access time is $1 \mu \mathrm{~s}$. Operating modes are read/regenerate
and clear/write. System capacity is 1024, 2048, or 4096 words, 36 bits max. Interface signals are $0,+3$ to +7 volts available, for use with discrete components or integrated circuits. Ambient temperature operating range is from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$.

Special features include: (1) either random access or sequential addressing of memory storage locations and (2) integral power supply with built-in programming for information retention during power loss, and under-over voltage protection. Some systems include self-testing. Power requirements are $120 \mathrm{~V}, 60$ cycles. The systems are designed for standard $19^{\prime \prime}$ rack mounting ( $19^{\prime \prime} \mathrm{W}, 191 / 2^{\prime \prime} \mathrm{D}, 26^{1 / 4^{\prime \prime}}$ high ). Would you believe 30 days delivery? It is possible, depending on your specifications. Call, wire or write your local RCA office today for price and delivery information.

For technical data sheets, contact RCA Electronic Components \& Devices, Memory Products Operation, 64 "A" Street, Needham Heights 94, Mass., (617) 444-7200.

## Will you be upset

## if we now give you

## an improved model

 of our good old Type A time-delay relay

## for the same good old price?

For years the Heinemann Type A time-delay relay has been a great buy for the money.
The second-generation model is an even better buy. It has a more efficient magnetic circuit. Heavier contact blades. Fine-silver contacts with gold-diffused contacting surfaces. Plus a few other refinements you can't hardly see unless you look very closely.
We haven't changed the hydraulic-magnetic actuating element one whit. (What kind of a nut would monkey around with a device that's been proved-out to the point of tedium?) And we haven't changed the package, either. The relay is still remarkably compact and light in weight.
The Type A and our other time-delay relay models are available in sixteen standard timings, from $1 / 4$ to 120 seconds, with SPDT or DPDT switching and generous contact capacities (up to 5 amps at 125 or 250 VAC, in one model). All can be supplied with any of 20 AC or DC coil voltage ratings. And all have significantly lower power consumption and better temperature stability than thermal-type time-delay relays. Our Bulletin 5005 will give you full technical data. A copy is yours for the asking.
(We've improved these models, too.)



## Semiconductor probe

The "Autopsy Probe" enables testing of a mounted semiconductor device for failure analysis. The five probe points are manually controlled. An array of lens-shaped lamps provides illumination of devices under test. The probe consists of a base, an air-operated probe head and individually mounted probe point assemblies. The goldplated vacuum chuck is manually rotational and mounts directly on an X-Y mechanical stage.

P\&A : under $\$ 2000 ; 10$ days. Unitek, 950 Royal Oaks Dr., Monrovia, Calif. Phone: (213) 359-8361.

Circle No. 270

Ever since Brand-Rex developed a new process for toughening up silicone rubber sleeving, our improved TURBO 117 has stood up under some pretty rugged thumb tests . . . and worse.
If you're looking for a really tough, Class 200 sleeving (with un-

## Are you tough enough to test Turbo ${ }^{\circledR} 117 ?$

 usual flexibility, radiation resistance and other advantages), TURBO 117 is the one to choose. And if you're looking for a ready answer to other vexing sleeving or tubing problems, Brand-Rex is the supplier to choose.We've pioneered in silicone rubber sleeving, and a broad range of other materials since 1920, to bring you a truly superior line for a wide variety of applications.

Write us about TURBO 117 or any other sleeving or tubing need.

## AMERICAN EN KA CORPORATION BRAND-REX DIVISION $\underset{\text { BRAND }}{\text { REX }}$ <br> PHONE 203 423-777




## 9 Standard Modifications!

* External Remote Adjustment * Current Limiting - Remote Reset * AC Output Plus DC High Voltage
* Improved Load Regulation * Improved Line Regulation * Programmable Output
* Wider Input Voltage Range * 20 KV Breakdown * Wider Range Output Voltage Adjust

Series "SHU" DC-DC Converters deliver 40 Watts with outputs from 6.3VDC up to 5KVDC . . . we also have others - 3 Watts and up.
Thin design, light in weight, and small important considerations in airborne and systems support applications.
Troubled by DC-DC Conversion? RelaxAMC probably has a solution... maybe one we can ship the same day. Make sure you have all our specs.
We're BIG in Power Conversion... in a small way!

ON READER-SERVICE CARD CIRCLE 35

SEMICONDUCTORS


## Micromin chopper

Linear switching or chopping by this 0.5 -gram "Microchopper" covers a dynamic range from $\pm 20$ $\mu \mathrm{V}$ to $\pm 20 \mathrm{~V}$. The all-silicon chopper can be driven from dc to 100 kHz . Unfiltered output noise is approximately $100 \mu \mathrm{~V}$ rms and linearity deviates $\pm 0.5 \%$ max. Temperature coefficient is $5 \mu \mathrm{Vrms} /{ }^{\circ} \mathrm{C}$ at 5 $\mu$ Vrms, 400 Hz output.

P\&A: $\$ 79$; stock. Solid State Electronics, 15321 Raven St., Sepulveda, Calif. Phone: (213) 785-4473. Circle No. 271


## Germanium transistors

Packaged in a TO-1 case, these pnp germanium alloy transistors feature low noise ( 4 dB ) with a gain of 100 to 700 . They provide low leakage and are rated at 30 V (2N2613) and 40 V (2N2614).

Total power dissipation is 200 mW at $25^{\circ}$ ambient and 120 mW at $55^{\circ} \mathrm{C}$ derating linearly at 2.6 $\mathrm{mW} /{ }^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{Eb}}$ is -25 V and $\mathrm{I}_{\mathrm{C}}$ is 100 mA .

Nucleonic Products Co. Inc., 3133 E. 12th St., Los Angeles. Phone: (213) 268-3464.

Circle No. 272

## TOUGH NEW G-E SILICONE RUBBER INSULATION ENDS CUT-THROUGH HAZARD ON WIRING HARNESS

PROBLEM: In certain applications silicone rubber insulated wire must be bound into harness. This presents no problem with braided wire. With unbraided wire, however, excess tension on hinding harness ties often results in cutthrough on conventional silicone insulation.
SOLUTION: To satisfy the need for a tougher insulation that could be used without external braids, General Electric developed SE-9032 high-temperature insulation. This entirely new silicone compound has proved more than a match for harness ties, both in assembly and service. The new compound prevents cutthrough on walls as thin as 10 mils. This property combined with its low specific gravity of 1.38 means savings in space, weight and money.
RESULT: This new "hard-skinned" silicone compound restored to harness users all the advantages of silicone rubber insulation: exceptional resistance to dielectric fatigue, ozone and corona; dependable operation from $-55^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$, and unmatched flexibility over this entire operating range.

FREE NEW DATA BOOK


For more information on the new G-E silicone rubber insulation, get technical data book CDS-592, a comprehensive 36 -page guide to high perfo mance wire and cable.

Write to Section L7182R Silicone Products Dept., General Electric Co., Waterford, New York 12188.


## Photo-mixing diode

A high-speed germanium diode demodulates laser outputs in optical communication systems operating in the 0.5 to 1.8 micron range. The photo-mixing diode L-4520 has a peak spectral response at 1.4 mi crons, a light sensitive area of 0.03 $\mathrm{mm}^{2}$ and typical diode cutoff frequency of 1.5 GHz . A dc reverse bias greater than 6 V operates the diode in its most efficient high frequency detecting mode. The coherent minimum detectable power capability is estimated as less than $10^{-16} \mathrm{~W}$. The $\mathrm{L}-4500$ diode series covers the spectral range from 0.4 to 5.7 microns with cutoff frequencies extending beyond 20 GHz .

Price: $\$ 98$ (over 100). Philco Corp., Tioga \& C Sts., Philadelphia. Phone: (.?15) 443-5325.

Circle No. 273


## 3-W zener diode

A plastic-cased zener voltage-regulating diode dissipates 3 W rated at $25^{\circ} \mathrm{C}$. The diodes are available with breakdown voltages from 6 to 200 V , in 13 steps, with standard voltage tolerance of $10 \%$. Tolerances of 5 and $20 \%$ are available for all voltage ratings. Dynamic impedance is $1 \Omega$ for the 6-V unit.

Price: \$1.05 ( 1000 lots). Sarkes Tarzian Inc., 415 N. College Ave., Bloomington, Ind. Phone: (812) 332-1435.

Circle No. 274



MicroSystem ${ }^{\text {® }}$ is a new, simplified method of interconnecting flat pack integrated circuits in "sticks," each containing as many as 10 I.C. flat packs with standard, multilayer, interconnecting matrices.

EECoLog |IC|
catalog on requess.


Complete hardware for EECoLogic consists of: swing-out card files, card drawers, power supplies and all necessary accessories.

| EECoLog [1/il |  |
| :---: | :---: |
| catalog on request. |  |



ROTARY THUMBWHEEL SWITCHES - CUSTOM WELDED and PACKAGED CIRCUITS - SYSTEMS Area Phone Numbers: Boston (617) 275-0540 - New York City (201) 444.3220
 1441 East Chestnut Ave. Santa Ana, California 92702
Phone: (714) 547.5651 TWX: 714.531-5522 Cable: ENGELEX

See EECo at WESCON, booths 2016-2019.
ON READER-SERVICE CARD CIRCLE 37

## Old Faithfulthat's Remex

Read, read, read, all it evcr does is read.

Remex gives you predictable reliability.

That's why it's the top tape reader around. It's built simple; so it's rugged. We make rugged reliable readers in all sizes and types. We make spoolers the very same way.
That's the reason you'll find our equipment used by
leading manufacturers of computers, numerical controls and automatic test equipment. Call us at 213-772-5321 or write Remex Electronics, 5250 W. El Segundo Blvd., Hawthorne, Cal. 90250.


SEMICONDUCTORS


Low-noise FETs
Two n-channel FETs are designed for RF and audio amplifiers. Noise figure of the 2 N 4220 is 2 dB (typ) at 100 Hz . The high input impedance is indicated by the $0.1-\mathrm{nA}$ $\mathrm{I}_{\text {gss }}$ value at 15 V . Types $2 \mathrm{~N} 4223-$ 24 offer low cross-modulation and intermodulation distortion, a 200MHz noise figure of $5 \mathrm{~dB}(\max )$ and a minimum gain of 10 dB at 200 MHz . Both are supplied in TO72 cans.

P\&A: $\$ 1.90$ to $\$ 2.45$ ( 100 to 999 ) ; stock. Motorola Semiconductor Products, Box 955, Phoenix, Ariz. Phone: (602) 273-6900.

Circle No. 275


## SCR trigger transformers

SCR trigger transformers are rated for operation with line voltages to 550 Vac . Two epoxy encapsulated case styles are available. The radial lead is for hand wired circuits and a single-ended type is for PC applications.

Two- and three-winding unity ratio types are standard. Others are available.

P\&A: under $\$ 4$; stock to 3 wks. Gudeman Co., 340 W. Huron St., Chicago. Phone: (312) 337-7400.

Circle No. 276

## New addition to Varian's broad line of quality microwave components Low-noise Low-power TWT's.



Through a recent acquisition, Varian has gained over 10 years of research, development, and production experience in low-noise TWT's. These tubes are now available from Varian-with or without integral power supplies.
This acquisition marks the completion of a total TWT capability at Varian: in highpower, medium-power, and low-power TWT's. We will continue working to advance the state-of-the-art in this field. And we welcome the chance to work with youto help you advance the state-of-the-art in your own industry.
Write for details: Palo Alto Tube Division, 601 California Avenue, Palo Alto, California. In Europe: Varian A.G., Zug, Switzerland. In Canada: Varian Associates of Canada, Ltd., Georgetown, Ontario. LARGER SIZES


## NEW WANLASS R-3200

 VOLTAGE REGULATORSNOW... $1 \%$ LINE and LOAD REGULATION WITH 50 MICROSECOND RESPONSE and 47-63 CYCLE OPERATION.
AVAILABLE IN 9 SIZES FROM 15 to 1000
va. PRICES from $\$ 14.00$ to $\$ 137.00$.

| PRODUCT | COMPARISON |  |  | N CHART |
| :---: | :---: | :---: | :---: | :---: |
|  | R-32 <br> Waight | lass Serles Price ${ }^{\circ}$ | $\begin{array}{\|r} \text { TyI } \\ \text { Forror } \\ \text { Trans } \\ \text { Woight } \\ \hline \end{array}$ | ical sonant former Price |
| $\begin{aligned} & \text { R- } 3202 \\ & 1050 \end{aligned}$ | 6\# | \$ 48.00 | 25 \# | \$ 53.00 |
| R-3205 | 10\# | \$ 82.00 | $36 \#$ | \$83.00 |
| R-3207 | 15\# | \$115.00 | - | - |
| $\begin{aligned} & (750 \mathrm{va}) \\ & R .3210 \\ & (1000 \mathrm{va}) \end{aligned}$ | 17\# | \$137.00 | 54 \# | \$138.00 |

${ }^{\circ}$ All Prices FOB Santa Ana, Calif.
Why not send a P.O. today for a
$R$ - 3200 for evaluation?
WANLASS
ELECTRIC CO.


2189 s. Grand, Santa Ana, Calif. ON READER-SERVICE CARD CIRCLE 95


NOW ... TRUE 0.5\% RMS LINELOAD REGULATION WITH 50 MICROSECOND RESPONSE AND 47-63 CYCLE OPERATION

Characteristically $1 / 4$ to $1 / 2$ the size and weight of ferroresonant units. Available in 9 sizes from 15 to 1000 va. Priced from $\$ 21.00$ to $\$ 205.00$. Why not send a P.O. (for $\$ 36.00$ ) for a 90 va evaluation unit today? Or even tomorrow!

## All prices $F O B$ Santa Ana, Calif.

## WANLASS

ELECTRIC CO.


2189 S. Grand, Santa Ana, Calif.

## MICROELECTRONICS



## Dual-in-line sockets

Three new sockets provide highdensity packaging of dual-in-line ICs for production, life or sampling tests and for aging and breadboarding. Two hold dual-in-lines have up to 14 pins in two rows spaced 0.3 in. The 24 -pin unit holds devices having up to 8 pins per row with either 0.2 - or $0.3-\mathrm{in}$. row spacing. Contact resistance is less than 0.01 $\Omega$. Typical interlead capacitance is 0.26 pF for adjacent terminals and 0.10 pF for opposite ones at 1 MHz .

Barnes Development Co., Lansdowne, Pa. Phone: (215) 622-1525.

Circle No. 277


## Relay driver module

A microelectronic relay driver module is capable of driving any relay up to 28 Vdc and 500 mA . Drive circuitry contains an AND function with a choice of 2 inputs. The output incorporates a silicon planar transistor. Noise rejection is approximately 1 V . Package size is $0.41 \times 0.625 \times 0.35 \mathrm{in}$.

Price: $\$ 15$ to $\$ 50$. Solitron Devices Inc., 256 Oak Tree Rd., Tappan, N. Y. Phone: (914) 359-5050.

Circle No. 278


## 4-bit up-down counter

A 1-digit (4-bit) up-down counter is designed for standard binary or BCD applications and can be cascaded in any number of successive bit-groups with internal clock restore. Model 13-552 includes 4 flipflops with true and false outputs, preset and reset inputs and all gating. It accepts separate "count-up" and "count-down" pulses at inverted logic levels. Max count rate is 5 MHz and count pulse is $40 \mu \mathrm{~s}$ min. Logic true is +6 V and false is 0 V . The counter uses silicon-planar-epitaxial monolithic ICs in the form of 14-lead flat packs. Chips are resistance soldered to the glass epoxy board. The edge connector contains 62 rhodium-over-nickel plated contacts.

Canoga Electronics Corp., 8966 Comanche Ave., Chatsworth, Calif. Phone: (213) 341-3010.

Circle No. 279

## IC audio amplifier

An 8-transistor balanced circuit with internal dc feedback is fabricated on a single monolithic silicon chip. Three-stage class A preamplifiers providing high gain are followed by class B output stages for $55 \%$ over-all efficiency. The WC 183 IC low-level audio amplifier has a quiescent current of $1 \mathrm{~mA} \max$, and it achieves $72-\mathrm{dB}$ gain using a single one-cell battery for power. An optional roll-off capacitor makes the amplifier suitable for voice communications equipment. A simple external feedback network extends the flat frequency response well beyond the audio range.

P\&A: $\$ 10.50$ ( 1 to 49 ) , $\$ 7.50$ ( 50 to 499 ) ; stock. Westinghouse, Molecular Electronics Div., P.O. Box 7377, Elkridge, Md. Phone: (301) 796-3666.

Circle No. 280

## WHICH BRANCH

## OF THE PNP SILICON TRANSISTOR FAMILY TREE



## ARE YOU CONCERNED WITH?



Whichever branch of PNP's you are concerned with, before you specify a brand CHECK THE NSC LINE. Write for spec sheets on any of these devices - or better yet, the NSC Composite Catalog.

- Round The Clock WWVB 60 KHZ

Binary Time Code Broadcasts

- Most Accurate Time Signal Available
- Can Be Recorded Continuously

Radio Station WWVB is broadcasting complete time information using a level shift carrier time code ( 10 db level changes). This code, which is binary coded decimal (BCD) is broadcast con. tinuously and is synchronized with the 60 khz carrier signal. The station identification is provided by a phase shift of

45 degrees forward at exactly 10 minutes after each hour and the reverse shift at exactly 15 minutes after each hour.
The Schmitt BCD output can be com pletely automated for continuous monitor ing of extremely accurate real time and time interval information MODEL T-60A
$1 / 2^{\prime \prime} \times 19^{\prime \prime}$ rack panel with $5^{\prime \prime} \$ 480.00$ hind panel. Includes 117v, 50 to 400 cps supply, or an external 12 to 16 volts may be used.


Write, wire or phone for complete catalog information.



1-kw beacon magnetron


TWT amplifier


## Holy power devices, Batman! G-E SCR's and rectifiers sure switch fast

| HIGH SPEED SCR TYPES AVAILABLE |  |  |  |
| :---: | ---: | ---: | ---: |
| Series | Rating | Max. Turn- <br> off Time | Configu- <br> ration |
| C12U-D | 7.4 amps | $12 \mu$-sec. | TO-48 |
| C40U-E | 35 amps | $12 \mu$-sec. | T0-48 |
| C140/141F-D | 25 amps | $15 / 10 \mu$-sec. | T0-48 |
| C55U-M | 110 amps | $20 \mu$-sec. | T0-49 |
| C154/155A-E | 110 amps | $10 / 20 \mu$-sec. | T0-49 |
| C185A-E | 235 amps | $20 \mu$-sec. | $\mathrm{TO}-49$ |


| HIGH SPE ED RECTIFIER DIODE TYPES AVAILABLE |  |  |  |
| :---: | ---: | :---: | :---: |
| Series | Rating | Max. <br> Reverse <br> Recovery <br> Time | Configu- <br> ration |
| 1N3879-83 | 6 amps | 200 ns | DO-4 |
| 1N3884-89 | 12 amps | 200 ns | DO-4 |
| A28F-D | 12 amps | 100 ns | DO-4 |
| 1N3901-08 | 20 amps | 200 ns | DO-5 |
| 1N3909-13 | 30 amps | 200 ns | DO-5 |



- So fast, even Batman can't keep up with them.
High-power SCR's-like G-E 235-amp-RMS C185 devices, for example -give you typical turnoff times of only 15 microseconds. 110-amp Cl54's and Cl56's, just 10 microseconds. And the $25-\mathrm{amp}$ Cl40's and C141's give you not only quick turnoff times, but also the rated capability to switch at frequencies as high as 25 kilocycles per second.
Son-of-a-diode! That must mean G.E. has some awfully fast-switching rectifier lines, too.
Right! No fewer than 5 different G-E rectifier lines are available-all with reverse recovery speeds at least as fast as 200 nanoseconds. Lightning speeds like these let your circuits work at much higher frequen-
cies, generate less RFI even in 60 Hz circuits, develop less transient voltage problems, and improve circuit efficiencies, too. And quite often, they can even lower your circuit costs.
It would be criminal if you didn't try this dynamic duo in at least a few of your high frequency applications. This is one more example of General Electric's total electronic capability. Ask your G-E engineer/salesman or semiconductor distributor about G.E.'s leadership line of fast-switching power devices. Or write to Section 220-33, General Electric Company, Schenectady, N.Y. In Canada: Canadian General Electric, 189 Dufferin St., Toronto, Ont. Export: Electronic Component Sales, IGE Export Division, 159 Madison Ave., New York, New York.


# ONE WORD ESSAY ON HUGHES QUARTZ CRISTALS: 

## RELIABILITY

Reliability isn't a word we use lightly at Hughes. When it comes to manufacturing high quality crystals to your exacting requirements, we are our own best critic. In fact, we began producing crystals because no one could supply the high degree of dependable performance that was required for critical military and space programs.

Hughes quartz crystals are daily proving their outstanding reliability in major DOD and NASA programs. For example, they have been delivering uninterrupted, unerring performance in Syncom satellites since the first launching in July, 1963-and most recently have contributed to the successful Surveyor mission.

Hughes quartz crystals cover the frequency spectrum from 1 kc to 150 mc . For your next requirement demanding the most in reliability, look to the leader in frequency control devices. Write: Hughes Electronic Devices, 500 Superior Avenue, Newport Beach, California.

Design Aids


## Stripline impedance

Strip width versus impedance is listed in tabular form for singleboard thicknesses of $1 / 16-, 1 / 8$ - and $1 / 4$-in. ( $b=1 / 8-, 1 / 4$-, and $1 / 2$-in.) and the popular dielectric constant of 2.32 . The seven pages of tables are accompanied by a reference sheet of coaxial components. Electronic Standards Corp. of America.

Circle No. 285


## Hf antenna selection

A full-color high-frequency antenna selection chart aids in selection of an antenna to meet nearly any combination of environmental and transmission requirements in the 2 - to $32-\mathrm{MHz}$ range. The 188 antennas are arranged according to requirements for directivity, transmission, frequency range, power capacity, input impedance and ability to withstand wind and ice. Among the standard antennas listed are: point-to-point, sector-coverage, broadcast, transportable, steerable and diversity-reception types. Granger Associates.

Circle No. 286

## Why our reports usually outweigh our high reliability shipments



We document everything about our semiconduc-tors-logging-in data from diffusion furnaces to multiple burn-ins. We supply complete reports including computer print-outs, X-rays-just as we do with our shipments of semiconductors for Apollo, Gemini and Minuteman.
Complete documentation is readily available. Because, all Raytheon transistors and diodes are processed under our exclusive diffusion lot control system rather than time lot control. We log all data beginning with the processing of each group
of wafers through the diffusion furnace, and continue accurate documentation through every stage of manufacture. This ensures complete traceability of each diffusion lot.
Standard and special high reliability programs.
We meet all reliability requirements to your precise specifications, no matter how stringent. We also provide standard high reliability programs: our Mark X and XII, X-L and Trace programs can save you thousands of hours and dollars-as they have for many of our customers.

Write for Raytheon's Reliability Assurance Manual-over 100 pages covering Raytheon reliability assurance programs. Enclose check or money order for $\$ 2.00^{*}$ to cover printing and handling costs. Raytheon Company, Components Division, 141 Spring Street, Lexington, Massachusetts 02173.
*Residents of states where sales tax applies, please add necessary amount.


RAYTHEON


New Interesting Facts Now Brought To Light!
HSI Catalog 72 outlines conservative ratings for the 6100 and 6300 series switches. We haven't publicized the fact that: ... while the switches are normally rated 5 amp resistive, 3 amp inductive, we can furnish variations capable of handling 15 amp resistive 8 amp inductive loads, and the same switch will carry 100 amp squib load for 50 ms.
... while our standard rating for vibration is 20g 10-2000 CPS, the switches have actually performed under vibration conditions of $65 \mathrm{~g} 10-2000$ CPS.
. . . while the catalog doesn't specify contact resistance, superior cleaning and sealing techniques enable us to supply switches when required with consistently low contact resistance such as 30 milliohms initially and 40 milliohms over the life of the switch.
HSI emphasizes that performance characteristics such as operating and release forces, differential, pretravel, overtravel, etc. can be tailored to meet the specific requirements of an application.
000000000000000000000000000000
Or if you have a really tough requirement, perhaps our 6200 series hermetically sealed switch with glass to metal and Heliarc® metal to metal seals will solve the problem. Since no flux is used in the sealing process and there are no organic materials inside the switch, we can furnish the unit for high temperature operation up to $660^{\circ} \mathrm{F}$ or with different contact materials for low level work where the contact resistance will be exceptionally low and remain constant over the life of the switch.

## Application Notes



## Operational amplifiers

A 9-page application note (Part III in a continuing series), outlines the basic characteristics of 5 major operational amplifier types. General purpose differential, IC, wideband fast response, high input impedance, low input current and chopper-stabilized op amps are covered. The brochure discusses availability, listing names and addresses of 28 manufacturers. Five specification charts-one for each type-list published specifications and prices for each firm's product line.

Part I of the series covers principles of operation and error analysis. Part II details inverting, non-inverting and differential configurations. Analog Devices.

Circle No. 287

## Thermistors

This eight-page brochure provides some insight into the mechanisms of failure of various types of thermistors along with summary data for design and application purposes. Thermistor characteristics such as stability and preconditioning are fully covered. Victory Engineering Corp.

Circle No. 288

## SCR gate drives

Some solutions to the problems of precise control of motor shaft speed, power supply output voltage and heavy current flow are given in this 24 -page application note. The paper describes a three-phase SCR gate drive for three-phase circuits using 6 SCRs. The drive consists of 3 matched single phase circuits. A detailed analysis of the full-wave bridge is illustrated with oscillograms showing SCR gate pulses, anode voltage and current and load voltage. Graphs present various parameters as a percentage of output. Sprague Electric Co.

Circle No. 289

# PLANAR SCRs 0-400V, 0-10A, $150^{\circ} \mathrm{C}$ 

PNPN Planar Switching SCRs A complete line of silicon controlled rectifiers for switching applications is now available from Fairchild. We guarantee performance to $125^{\circ} \mathrm{C}$, up to $150^{\circ} \mathrm{C}$ in some instances. We cover the range from 0 to 400 volts, from 0 to 10 amps , in six package types (TO.3, TO.5, TO-18, TO.46, TO.59, and TO-66), for consumer, industrial, and military applications.
Whether you need a device for sensor control, for miniature motor control, for a counter or a timer, a solenoid or light dimmer, or for any of a dozen other applications, it will pay you to check with Fairchild. Our devices perform better, have lower forward and reverse leakages, and are competitively priced. And you get Planar reliability as a bonus. Sample specifications are shown below. For complete information drop us a note, or check with a Fairchild Distributor.

FAIRCHILD
SEMICONDUCTOR


# 口 E 5 I $G$ 

## Molded Zener Diodes give high reliability at low prices



The Mallory Type ZA zeners are molded units which give performance and reliability equal to that required by military specifications -at about half the price of hermetically sealed zeners.

One reason for this unusual quality is that Mallory uses the same silicon cell in the Type ZA as in the zener diodes we make for military requirements. Another is the unique Mallory production technique, in which complete classification, screening and
pre-testing can be done on silicon cells before packaging. And finally, there's the economy of the molded case-moisture-proof, electrically. cold, and so compact that highdensity circuit packages are readily accommodated.

The 1 -watt Type ZA and 3 -watt Type ZAC are available in zener ratings from 6.8 to 200 volts. Hermetically sealed and high wattage ratings are also available.
CIRCLE 240 ON READER SERVICE CARD

## Wire-Wound Controls with special Temperature Coefficients

When exceptional stability of resistance is needed over the normal operating temperature range, Mallory can supply custom-made wire-wound controls with special values of temperature coefficient. Selected types of resistance wire are used for the winding.
The minimum TC available is 20 parts per million per degree C . . . also stated as $.002 \%$ or $\pm .00002$ ohm/ohm $/{ }^{\circ} \mathrm{C}$. All styles of Mallory wire-wound controls-2, 3, 4, 5, 7 and $121 / 2$ watts-can be supplied with special TC.


CIRCLE 241 ON READER SERVICE CARD

## New Hermetic Seal Tantalum CapacitorsStyle CL55 of MIL-C-3965C

The new Mallory Type TL wet slug tantalum capacitor is a compact rectangular package designed for ability to withstand extreme environmental conditions. It has glass-to-metal terminal seals in a hermetic sealed outer case. Microfarad-volt ratings per unit volume are exceptionally high for this class of construction.


The TL offers the superior performance which is characteristic of Mallory wet slug capacitors. It has exceptional stability of capacitance and power factor, both over a broad temperature range from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, and throughout extended operating life and shelf tests. DC leakage is low; maximum values at top mfd-volt ratings are in the order of 10 microamps, with actual test values typically around 1 to 2 microamps.
Ratings available: $2400 \mathrm{mfd}, 15$ volts to $180 \mathrm{mfd}, 150$ volts. Temperature rating: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The TL is designed to meet performance criteria of style CL55, per MIL-C-3965C and MIL-C-3965/21B.

CIRCLE 242 ON READER SERVICE CARD


## No voltage de-rating needed on MTP wet slug tantalum capacitors

Many designers add their own "safety factor" by specifying a considerably higher voltage rating than actually needed for surge or steady state conditions in the circuit. With Mallory MTP miniature wet slug tantalum capacitors, you don't need to de-rate. And you can often save space and money by not de-rating. How come? In the first place, we've already built in a generous safety factor in the stated rating on the capacitor. And second, we've found out by tests that operating at reduced voltage neither improves nor impairs performance of the MTP. We have extensive data in a recent engineering report, which we'll be glad to send on request.
As an example of the size savings possible, a $33 \mathrm{mfd}, 60$ volt MTP measures $.225^{\prime \prime}$ in diameter by $.775^{\prime \prime}$ long. But the same 33 mfd at 50 volts fits into the next smaller case size: $.145^{\prime \prime}$ in diameter by $.590^{\prime \prime}$ long. And the cost is about $13 \%$ lower. The MTP, incidentally, has the most capacity per unit size of any tantalum capacitor-up to 178,000 mfd-volts/cubic inch, or about five times what you can get in any solid electrolyte type. And it's made in the same high-reliability facility as similar Mallory capacitors for Minuteman II.

CIRCLE 243 ON READER SERVICE CARD

## High capacity ceramic capacitors save space in transistor circuits



Whenever you need a lot of microfarads in a small space at transistor circuit voltages, use Magnacap( ${ }^{\text {( })}$ disc ceramic capacitors. Made by Radio Materials Company, a division of Mallory, Magnacaps are particularly applicable to by-pass and coupling in low impedance transistor circuits.

Because they maintain their impedance characteristics well into the radio frequency range, they are especially useful as emitter bypasses. They fill the range of capacitance values between standard

RMC Discap ${ }^{\circledR}$ Capacitors and Mallory aluminum or tantalum electrolytics.
Insulation resistance is amply high to assure excellent operation in battery powered equipment. Magnacaps have outstanding stability of capacitance from $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. They have a proven record of reliability, and are economically priced.
$3,12,16$ and 25 volt ratings are available. Maximum capacities: 2.2 mfd © 3 volts; 1.0 mfd © 12 volts; .22 mfd © 16 volts and 25 volts.
CIRCLE 245 ON READER SERVICE CARD


## WHY SPOIL THE LOOKS..



## PICK A DESIGNER SERIES THAT LOOKS GREAT!

Where can you get four different "Designer" styles of high quality low cost knobs that offer pointers, wings and concentrics? Kurz-Kasch "Warranted for Life" knobs are available "off the shelf" in production quantities from your Kurz-Kasch Industrial Electronic Wholesaler.
Write for "Designer" catalog with prices today!

## KURZ-KASCH,INC.

1415 S. Broadway
Dayton, Ohio 45401
(513) 223-8161

## new Líterature



## Thermoelectrics

A news bulletin on thermoelectrics contains technical and performance data and a glossary of thermoelectric terms. Attention is given to applications, design procedure for determining temperature control requirements and installation considerations. Cambridge Thermionic Corp. Circle No. 29(1)


## Drive systems

A 180-page, all-products, price and data catalog covers a line of mechanical and electrical drive products. It assists in selecting mechanical and electrical variable speed drives, gearmotors, separate reducers, and fractional and integral ac and dc motors. The catalog includes features, applications, selection tables, pricing and dimensional data. Reliance Electric \& Engineering Co. Circle No. 291

## Computer programing

Programed instruction in computer programing is offered in the form of an illustrated booklet and an enclosed $331 / 3 \mathrm{rpm}$ record. The record provides immediate feedback and paces the student through the exercises.

Available for $\$ 0.85$ from N.P.C. Inc., 5 Highlander Ave., Scotch Plains, N. J.

## Fluidic elements

Description, operating characteristics, applications and specifications of a fluid state diode, a bistable and a monostable fluid amplifier are given in 3 data sheets. Aviation Electric Ltd.

Circle No. 292


## Glow lamp manual

This 118-page, spiral-bound manual contains data and testing instructions for evaluating neon glow lamps and includes a substitute lamp guide. Subjects covered are the physics and characteristics of glow lamps, relaxation oscillators, logic and computer applications, test methods and specifications. General Electric, Miniature Lamp Div.

Circle No. 293

## Diallyl phthalate

A guide to existing end-uses of diallyl phthalate resin-based molding compounds and reinforced plastics is offered. This 32-page booklet reproduces trade press and newspaper clippings that describe commercial end-uses of the thermosetting material. Each clipping covers a different end-product. Over 120 are listed. FMC Corp.

Circle No. 294

# The Standard Reference For Electronic Test Instruments 

IRECTORY OF TECHNICAL SPECIFICATIONE

5

## FREQUENCY METERS



# CONVENIENT TABULAR FORMAT PROVIDES QUICK AND EASY MODEL-TO-MODEL COMPARISONS 

One look at the specimen pages will show you-better than words-the extent of the information furnished by the DIRECTORY OF TECHNICAL SPECIFICATIONS and the comparative arrangement of the data. These convenient tables are designed for rapid and accurate point-by-point comparison of instruments having similar functional capabilities. By providing a thorough across-the-market analysis, all alternatives can be considered in selecting the right instrument for any application.

## SAVE hours of engineering time

The Directory eliminates once and for all the necessity of searching catalogs, sales literature and periodicals to find suppliers, specifications, performance characteristics and prices. It provides in one comprehensive source, arranged and indexed for convenient use, all the information you need to keep completely up-to-date on available instruments, to evaluate competitive products and to select the best instrument at the best price.

## NO NEED FOR CATALOG FILES

Keeping and maintaining your own files of manufacturers catalogues, brochures and loose data sheets is completely unnecessary. The DIRECTORY OF TECHNICAL SPECIFICA-

TIONS gives you all the required data to select and specify electronic test instruments-all in one compact and easy to use reference. No other reference source is as complete or efficiently organized. The six-volume Directory lists approximately 14,000 instruments of more than 500 manufacturers and comprises 46 sections, each covering a different type of instrument.

## ALWAYS COMPLETE AND UP-TO-DATE

The constant changes in specifications and performance of electronic test instruments is making it increasingly difficult to keep abreast of the latest developments. The Directory is kept continuously up-to-date by the mailing of section revisions to subscribers at the rate of approximately one each week. The information in the entire Directory is completely revised in less than a year.

## AVAILABLE ON FREE 30-DAY TRIAL

The DIRECTORY OF TECHNICAL SPECIFICATIONS may be obtained on a FREE 30-DAY TRIAL BASIS for your examination and use. A one-year subscription includes the six-volume set of 46 sections plus the up-dating service to keep all information complete and current.
P. O. Box 514, Smithtown, N. Y. (516 $234-0100$

## Power supplies

"Power Suppiies Unlimited" describes and provides complete specification tables for the manufacturer's line of dc supplies. A chart cross-indexes model numbers with such factors as voltage range, current range, regulation, ripple and size. NJE Corp.

Circle No. 295

## Solder alloys

An illustrated technical bulletin details all the parameters involved in the proper selection of a solder alloy. "Choosing the Right Solder Alloy" features a detailed table of constituents, melting temperatures, and mechanical and physical properties for 20 common soldering alloys. Alpha Metals Inc.

Circle No. 296

## Surface preparation

A quarterly periodical specializes in the preparation of critical surfaces. Future issues will include articles on semiconductor polishing, cleaning and ultrasonic machining. Geoscience Instruments Corp.

Circle No. 297

## Subscription Policy

Electronic Design is circulated free of charge to qualified design engineers in the U.S., Western European Continent and Britain. To establish your qualifications, send Electronic Design the following information on your company's letternead: Your name, engineering title, description of your design duties and a list of your company's major products. The letter must be signed by you personally.

Subscription rates for nonqualified subscribers- $\$ 25$ a year in the U.S., $\$ 35$ in all other countries. Single copy, $\$ 1.50$.

## Change of Address

A subscriber's change of address requires a restatement of his qualifications. To expedite the change, and to avoid missing any issues, send along a label from a back copy.

## Microfilm Copies

[^10]
# Design Data from 

## Logic Module Data Packet



Specifications and descriptions given for line of logic module boards, pre-engineered and mass produced, generally available from stock. Both Discrete Component and Integrated Circuit Cards available for ninety per cent of logic card applications. Almost 100 standard discrete cards and over 20 IC cards include models for various types of flip-flops, gates, pulse generators, decoders, Schmitt triggers, and electronic switches, as well as numerous accessory cards. Design library of special cards available or designs built to customer specifications.
Wyle Laboratories, Products Division
El Segundo, California 90245
New Continuous Plating Saves 40\%!


New continuous reel-to-reel precious metal plating (gold, silver, Rhodium, etc.) on strip reduces materials cost up to $40 \%$. Provides extremely accurate depositing to specifications, allows selection of plated area (i.e.: 20 microinches one side, 100 microinches on opposite side).
Process also permits plating of pre-die cut integrated circuits for semi-conductors, etc., and allows forming after plating.

Burton Research Laboratories, Inc.
Division of Burton Silverplating Co.

## New Short-Form Catalog!



[^11]Allison Laboratories, Inc.

P. O. Box 844

La Habra, California 90631

# Electronic Design 

## Manufacturers

Advertisements of booklets, brochures, catalogs and data sheets. To order use Reader-ServiceCard

## General Electric Tantalytic ${ }^{\ominus}$ Guide



The Schweber Guide to the selection of General Electric tantalytic capacitors is a 15 -page compilation of foil and slug tantalum capacitors. However, the layout is unique because each specific type is listed in numerical sequence by microfarads, thus enabling the engineer and buyer to quickly and easily select the proper capacitor needed. Also included are case sizes, tolerances, temperature ratings, and MIL-C-3965 designations where applicable.

## Schweber Electronics

Westbury, N. Y. 11591
(516) ED 4-7474

172

## Reliable Fastener Seals Described



Parker Seal Company's Fastener Seals are well-known for their superior reliability in mechanical sealing. These famed "seal-for-sure" designs are described in a new catalog-handbook containing sizes, dimensions, engineering data, etc. It includes their new Thredseal, an extremely reliable, easy-to-use seal for sealing directly against threads as well as information on Stat-OSeals, Lock-O-Seals, etc.

## Parker Seal Company

10567 Jefferson Blvd.
Culver City, California 90230


## Terminal Block Selector



A new 24-page, completely illustrated catalog contains photos, descriptions, ratings, engineering drawings, and prices of the complete line of Curtis terminal blocks. Included are printed circuit, insulated feed-thru, quick disconnect, track type, and high current terminal blocks. Handy selection chart quickly locates the perfect block for your particular requirements. Send today for your free copy.

Curtis Development \& Mfg. Co.<br>Milwaukee, Wisconsin 53216

## Advertising

 RepresentativesNew York 10022
Robert W. Gascoigne
Thomas P. Barth
Samuel M. Deitch
Richard W. Nielson
850 Third Avenue
(212) PLaza 1-55s0

TWX: 867-7866
Philadelphia 19066
Fred L. Mowlds, Jr.
P. O. Box 206

Merion Station, Pa.
(215) MO 4-1073

Marblehead 01945
Richard Parker
7 Redstone Lane
(617) 742-0252

Chicago 60611
Thomas P. Kavooras
Berry Conner, Jr.
720 N. Michigan
(312) 337-0588

Cleveland 44107
Robert W. Patrick
8410 Treetower Drive
Chagrin Falls, Ohio
(216) 247-7670

Los Angeles 90303
Stanley I. Ehrenclou
Terrence D. Buckley
W. James Bischof

2930 W. Imperial Highwaij
Inglewood, Calif.
(213) 757-018s

San Francisco 94306
Ashley P. Hartman
541 Del Medio
Suite \#301
Mountain View, Calif.
(415) 327-6536

Southwestern 75206
Tommy L. Wilson
6200 North Central Expressway
Dallas, Tex.
(214) EMerson 1-2311

London W. 1
Brayton C. Nichols
44 Conduit Street
Tokyo
Yoshihiro Takemura
International Planning Service, Inc.
Room No. 512 Nikkoh
Mita Building
1, Nishidaimachi, ShibaTakanawa
Minato-ku, Tokyo


BPA

## Number ONE Choice PERMACOR ${ }^{\circ}$ for Every Electronic Powdered Iron Core Need.

There are many reasons why Permacor ranks as number one producer of iron cores. Experience, facilities and dedication to quality, are but a few of them. Whether your iron core needs are standard stock, or custom crafted, look into Permacor capabilities today.


Write for Complete Information


ON READER-SERVICE CARD CIRCLE 49

# Advertisers' Index 

*PARTICIPANTS IN<br>NIGHT LETTER PROGRAM

| Advertiser Page | Advertiser Page |
| :---: | :---: |
| *AMP. Incorporated ........................ 83 | - Mallory \& Co., Inc., P. R. .......... 104, 105 |
| Acopian Corp. | Mepco, Inc. |
| Aemco Division, Midtek Incorporated ... 82 | Micro Instrument Company |
| Allison Laboratories, Inc. . . . . . . . . . . . . 108 | Montronics, Inc.. a Subsidiary of |
| - Amperex Electronic Corporation, Semiconductor and Receiving Tube Division ..44.45 | John Fluke Mfg. Co., Inc. .............. 7 <br> - Motorola Semiconductor Products, Inc. 24, 25 |
| Arnold Magnetics Corp. ................. 92 |  |
|  | National Semlconductor Corporation |
| Bell Telephone Laboratories ............. 79 |  |
| Bendix Corporation. The, 19 | Pamona Electronics Co., Inc. ............ 88 |
| Semiconductor Division .................. 19 | Parker Seal Company .................... 109 |
| - Brand Rex. Div. of <br> American Enka Corporation ............ 91 | RCA Electron |
| Burndy Corporation | and Devices ...................89, Cover |
| Burton Research Laboratories, Inc. ...... 108 | Radio Cores, Inc. . . . . . . . . . . . . . . . . . . . . 110 |
|  | - Redcor Corporation |
| - Clifton Precision Products, Division of Litton Industries | Raytheon Company. Components Division 101 Remex Electronics, A Unit of |
| Contemporary Electronics ................. 73 | Excello Corporation |
| Cosmo Plastics Company ................ 57 |  |
| Curtis Development \& Mfg. Co. ......... 109 | Schweber Electronics .................... 109 |
| Cutler-Hammer. Inc. ..................... 36 | Signetics Integrated Circuits. A Subsidiary of Corning Glass Works ....... 27 |
| ${ }^{\bullet}$ Dale Electronics, Inc. ............. Cover III | Sorensen Operation, Raytheon Company 16 Specific Products |
| Eastman Chemical Products. Inc. ........ 84 | -Spectrol Electronics Corporation ........ 28 |
| Electronic Design ......................... 111 | gue Electric Co |
| $\bullet$ Emerson \& Cuming, Inc. . ............... 61 | Systron-Donner Corporation .............. 12 |
| Engineered Electronics Company ........ 93 | TRW Capacitors |
|  | Technical Information Co. |
| Fairchild Semiconductor, A Division | Technical Information Corp. |
| Fairchild Camera and Instrument <br> Corporation ......................32A-H, 103 | Tektronix, Inc., Oscilloscopes |
| $\bullet$ Fluke Mfg. Co., Inc., John | - Union Carbide Corporation, Linde Division 9 <br> -Unitrode Corporation ....................... 15 |
| General Electric Company. Semiconductor Products Department .. 99 |  |
| General Electric Company, <br> Silicone Products Department .......... 92 | $\bullet$ Varian Associates .......................4,95 |
| General Radio Company |  |
| Hamilton Standard, Division of | Westinghouse Molecular Electronics Division |
| United Aircraft Corporation ........... 62 | Weston Instruments, Inc. |
| Hayden Book Company, Inc. ............ 50 | Wood Electric Corporation ............... 112 |
| Haydon Switch \& Instrument Inc. ....... 102 <br> -Heinemann Electric Company ............. 90 | Wyle Laboratories ...................... 108 |
| Hewlett-Packard ...................... 58,59 |  |
| Hickok Electrical Instrument | Regional Advertislng |
| Co., Inc., The ........................... 63 | - Arnold Engineering Company, The .....80C |
| Honeywell, Computer Control Division .... 30 | - Brush Instrument Division of Clevite ...80D |
| Electronic Products Division ........... 100 | - JFD Electronics Corporation ............80A |
|  | -Leach Corporation .......................80B |
| - IRC, Inc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 |  |
| Industrial Timer Corporation ............ 61 | Career Advertising: |
| Kurz-Kasch, Inc. ........................ 106 | Hughes Aircraft Company <br> Aerospace Divisions |
|  | IBM Corporation ......................... 71 |
| -Magnetics, Inc. . . . . . . . . . . . . . . . . . . . . . . 87 | Motorola Military Electronics Division .. 68 |
| Mallory Capacitor Company .......... 80 | U.S. Naval Ordnance Laboratory ........ 66 |



## SIMPSON'S 24-PAGE INSERTS STIMULATE RESPONSE FROM ELECTRONIC DESIGN'S READERS

Director of Sales

Mel Buehring, Director of Sales, Simpson Electric Company, reports that Electronic Design has helped achieve record sales goals for his company. Mr. Buehring writes:
"A good portion of our advertising dollars are spent for ads and catalog inserts in Electronic Design to give your readers more complete product information. The results obtained throughout the years have contributed to our continued growth.
"The twenty-four-page panel meter and test equipment insert that we ran in October, 1964 produced excellent results. We are confident that the new twenty-four-page insert on panel meters and test equipment run in the February 15, 1966 issue, plus the twelve-page insert on our Lab-Line, including the new DVM, run in the March 1st issue, will help us achieve our 1966 sales objectives.
"Simpson Electric completed 1965 with its biggest sales increase in the history of the company, and we thought that you would like to know that Electronic Design played a good part in helping us achieve these sales goals. It appears that 1966 will be another good year.
"Keep up the good job."
What Mr. Buehring fails to mention is that the Simpson inserts offer unusually detailed product descriptions and specifying information-just the material Electronic Design readers need to know in order to select and purchase.
If you have a case history of interest to Electronic Design's management readers, please let us know. We'll pass it along in this ad series.


The above photograph shows Magnetic Circuit Breakers being calibrated to trip in less than 15 milliseconds at $120 \%$ of rated current. Other Magnetic types are adjusted to trip between 15 and 70 seconds at $125 \%$ and $150 \%$ of rated current. All Magnetic types will hold $100 \%$ of rated current indefinitely and operate at calibrated trip settings regardless of ambient temperatures.

There are other specs and other tests, lots of them, but they all have one purpose in common - to assure the most reliable performance in the industry. If it's by Wood Electric - you can depend on it!

Wood Electric also manufactures a complete line of Thermal Circuit Breakers with trip times from 0.5 to 90 seconds. Choose from a wide variety of proven commercial and military type Circuit Breakers to meet the specific needs of your application. Models are available with ratings from $1 / 2$ to 50 amp . . . AC or DC . . . single pole, two pole and three pole.

Write for Circuit Breaker Catalog CB-10-65

## Designer's Datebook



## July 6-9

Annual Meeting of the National Society of Professional Engineers (Minneapolis, Minnesota) Sponsor: National Society of Professional Engineers; Kenneth E . Trombley, 2029 K St., N.W., Washington, D. C.

## July 11-13

Electromagnetic Compatibility Symposium (San Francisco, Calif.) Sponsor: IEEE, G-EMC; A. Fong, Hewlett-Packard, 1501 Page Mill Rd., Palo Alto, Calif.

## July 11-14

Conference on Aerospace Systems (Seattle, Wash.) Sponsor: IEEE; Thomas J. Martin, 3811 E. Howell St., Seattle, Wash.

## July 18-20

Fifth Annual Reliability and Maintainability Conference (New York) Sponsor: AIAA, SAE, ASME, EIA, ASTM, AICHE \& ASTME : Stanley A. Rosenthal, Kollsman Instruments Corp., Syosset, N. Y.

## July 18-20

Microelectronics Symposium (St. Louis, Mo.) Sponsor: IEEE; Dr. John W. Buttrey, McDonnell Aircraft Corp., P. O. Box 516, St. Louis, Mo.

## August 17-19

Joint Automatic Control Conference (Seattle, Wash.) Sponsor: AACC; Prof. Arthur Bryson, Dept. of A\&A, MIT, Cambridge, Mass.

## August 23-26

WESCON (Western Electronic Show \& Convention) (Los Angeles, Calif.) Sponsor: IEEE; Don Larson, WESCON, 3600 Wilshire Blvd., Los Angeles, Calif.


## Dale RH Wirewounds have BONUS capacity to handle any power or stability problem.

Dale's RH Wirewound line offers 6 models, 5 to 250 watts. Each has bonus ability to dissipate heat beyond MIL-R-18546D requirements-see chart. In addition, you get an extra bonus of exceptional stability when RH models are derated to mil levels. To achieve this bonus performance, Dale combines precision wirewound elements with specially-conductive extruded aluminum housings and special molding compounds. The result is exceptional heat transfer ability matched by no other housed wirewound line.

## NEW HIGH-REL MODELS

The ARH, a high-rel version of the RH, is now available in four models: $5,10,15$ and 30 watts. ARH resistors meet the requirements of MIL-R39009 and are being produced on the same line as Dale's ARS and AGS - the world's most reliable wirewounds.

For complete housed resistor information including noninductive and thru-chassis models--write for Catalog A.

| RH RESISTOR SPECIFICATIONS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { DALE } \\ & \text { TYPE } \end{aligned}$ | EQuIV. MIL. TYPE | DALE RATING* | MIL. <br> RATING | RESISTANCE RANGE (OHMS) | STANDARD HEAT SINK |
| RH-5 | RE-60 | 7.5 (5) | 5 | . 1 -24K | $4 \times 6 \times 2 \times .040$ <br> Aluminum Chassis |
| RH-10 | RE-65 | 12.5 (10) | 10 | .1-47K |  |
| RH-25 | RE-70 | 25 | 20 | . 1 -95K | $5 \times 7 \times 2 \times .040$ <br> Aluminum Chassis |
| RH-50 | RE-75 | 50 | 30 | . 1 -273K | 12x12x. 059 Aluminum Panel |
| RH-100 | RE-77 | 100 | 75 | . 1 - 50 K | 12x12x. 125 Aluminum Panel |
| RH-250 | RE-80 | 250 | 120 | . 1 - 75K |  |

ELECTRICAL \& ENVIRONMENTAL SPECIFICATIONS
Tolerance: $.05 \%, .10 \%, .25 \%, .5 \%, 1 \%, 3 \%$
Load Life: $1 \%$ max. $\Delta R(R H-5-50) 3 \% \max . \Delta R(R H-100-250)$ in 1000-hour load life.
Operating Temp: $-55^{\circ} \mathrm{C}$ to $+275^{\circ} \mathrm{C}$
Overload: $\pm .5 \%$ max. $\Delta R$ per MIL-R-18546D

- Power Rating based on $275^{\circ} \mathrm{C}$ max. internal hotspot temperature with resistor mounted on standard heat sink. Figures in parentheses indicate wattage printed on RH-5 and RH-10. New construction allows higher ratings as shown, but these resistors will be printed with the higher rating only on customer request.


Now, meet your total circuit design needs with 2N4036 and 2N4037-new silicon p-n-p transistors from RCA in the popular TO-5 package. Geared toward applications requiring negative polarities, these two units are the first of a series of versatile p-n-p transistors designed to complement RCA's famous "universal" 2N2102 family.

RCA's 2N4036 and 2N4037 are new p-n-p epitaxial planar silicon transistors for simplifying circuitry. In many designs, you can now replace two n-p-n types with one $p-n-p$, or eliminate an inverter, transformer, or phase transformer stage.

Capable of delivering 1 watt free air, or 7 watts with heat sink at $25^{\circ} \mathrm{C}$, these $p-n-p$ transistors neatly fill the design gap for predriver/driver, medium power, and small signal applications with high heat dissipation capability. And for this performance, you can't beat the price-under a dollar in quantity.

See your RCA Representative for details on 2N4036 and 2N4037. For technical data sheets, write: RCA Commercial Engineering, Section IG7-1, Harrison, N.J.

| MAXIMUM RATINGS |  |  |
| :--- | :---: | :---: |
|  | 2N4036 | 2N4037 |
| $\mathrm{V}_{\text {CBO }}$ | -90 V | -60 V |
| $\mathrm{~V}_{\text {CEO }}$ | -65 V | -40 V |
| $\mathrm{~V}_{\text {EBO }}$ | -7 V | -7 V |
| $\mathrm{I}_{\mathrm{C}}$ | -1.0 A | -1.0 A |
| $\theta_{\mathrm{J}-\mathrm{C}}$ | $25^{\circ} \mathrm{C} / \mathrm{W}$ | $25^{\circ} \mathrm{C} / \mathrm{W}$ |

*\$.98 and \$.79 each for 2N4036 and 2N4037. respectively, in quantities of 1000 and up.

Also Available from your RCA Distributor


[^0]:    Baltimore (Towson), M 1.-(301) 828-6877; Chicago-(312) 637-6929; Dallas-(214) 357-1972; Detroit-(313) JOrdan 6.1420; Holmdel, N. J. -(201) 946-9400; Los Angeles-(213) 776.4100; Miami Springs, Fla.-(305) $887-5521$; Minneapolis-(612) 926-4633; Redwood City, Calif.James S. Heaton Co., (415) 369.4671; Seattle—Ray Johnston Co., Inc., (206) LA 4-5170; Syracuse, N. Y.-(315) 474-7531; Waltham, Mass. -(617) 899-0770; Export-(212) 973-2121, Cable: "Bendixint," 605 Third Avenue, New York; Ottawa, Ont. -Computing Devices of Canada, P.O. Box 508-(613) TAlbot 8-2711.

[^1]:    "Volume 18, Chapter 5 of "Vacuum Tube Amplifiers," by Valley and Waldman. Courtesy McGraw-Hill Book Co., New York.

    Philip Snow, Design Engineer, ITT Gilfillan Inc., Los An geles, Calif.

[^2]:    Gerald E. Martes, Section Head, Antennas, Electronic Specialty Co., Los Angeles.

[^3]:    Martin S. Schmookler, Project Engineer, IBM, Poughkeepsie, N. Y.

[^4]:    George Feinman, Design Engineer, Andrea Radio Corp., New York, N. Y.

[^5]:    Robert Levine, assistant resident patents counsel, P. R. Mallory \& Co., Inc., Indianapolis, Ind.

[^6]:    Military Electronics Division - Western Center • P. O. Box 1417. Scottsdale. Arizona MOTOROLA ALSO OFFERS OPPORTUNITIES AT CHICAGO, ILLINOIS - AN EQUAL OPPORTUNITY EMPLOYER

[^7]:    SEND US YOUR IDEAS FOR DESIGN. Submit your IFD describing a new or important circuit or design technique, the clever use of a new component, or a cost-saving design tip to our Ideas-for-Design editor. If your idea is published, you will receive $\$ 20$ and become eligible for an additional $\$ 30$ (awarded for the best-of-issue Idea) and the grand prize of $\$ 1000$ for the Idea of the Year.

[^8]:    128 North Jackson, Hopkins, Minn. 55343 Telephone 935-8481-Area Code 612 on reader-service card circle 24

[^9]:    Here are some of the bonds that can be made with EASTMAN 910 Adhesive
    Among the stronger: steel, aluminum, brass, copper; vinyls, phenolics, cellulosics, polyesters, polyure. thanes, nylon; butyl, nitrile, SBR, natural rubber, most types of neoprene; most woods. Among the weaker: polystyrene, polyethylene (shear strengths up to $150 \mathrm{lb} . / \mathrm{sq}$. in.).

[^10]:    Microfilm copies of all 1961, 1962, 1963, 1964 and 1965 issues of Electronic Design are available through University Microfilms, Inc., 313 N. First Street, Ann Arbor, Mich.

[^11]:    Variable Passive Filters. Fixed Filters. Encapsulated Amplifier Modules. Equalizers and Spectrum Shapers. Octave Band Analyzers. Noise Sources. And other analyzing instruments. These are the Allison products you'll find in this newly printed short-form catalog, with photos, descriptions, and brief specifications.

