Electronic Design the magazine of essential news, products and technology VOL. 15 NO. Seek the right semiconductor by starting here, and you'll find the devices that will make your circuit designs sparkle. Charts in this issue list more than 5000 transistors and microcircuits by function and key parameter. But don't stop there. Get detailed catalogs and application notes too. How? Turn to page 81. #### **ULTRAMINIATURE TRANSISTOR TRANSFORMERS** & INDUCTORS | Type No. | Pri. Imp. | D C mai | Sec. Imp. | Pri.
Res. | M w | Application | |----------|---------------------------|----------|------------------------------|--------------|--------|---------------------------------------| | DI-T225 | 80 CT
100 CT | 12 | 32 split
40 split | 10 | 500 | Interstage | | DI-T230 | 300 CT | 7 | 600 CT | 20 | 500 | Output or line to line | | DI-T235 | 400 CT
500 CT | 8 | 40 split
50 Split | 50 | 500 | Interstage | | DI-T240 | 400 CT
500 CT | 8 | 400 split
500 split | 50 | 500 | Interstage or output
(Ratio 2:1:1) | | DI-T245 | 500 CT
600 CT | 3 | 50 CT
60 CT | 65 | 500 | Output or matching | | DI-T250 | 500 CT | 5.5 | 600 CT | 35 | 500 | Output or line to line or mixing | | DI-T255 | 1,000 CT
1,200 CT | 3 | 50 CT
60 CT | 110 | 500 | Output or matching | | DI-T260 | 1,500 CT | 3 | 600 CT | 90 | 500 | Output to line | | DI-T265 | 2,000 CT
2,500 CT | 3 | 8,000 split
10,000 split | 180 | 100 | Isol. or interstage
(Ratio 1:1:1) | | DI-T270 | 10,000 CT
12,000 CT | 1 | 500 CT
600 CT | 870 | 100 | Output or driver | | DI-T273 | 10,000 CT
12,500 CT | 1 1 | 1,200 CT
1,500 CT | 870 | 100 | Output or driver | | DI-T276 | 10.000 CT
12.000 CT | 1 1 | 2,000 CT
2,400 CT | 870 | 100 | Interstage or driver | | DI-T278 | 10,000 CT
12,500 CT | 1 | 2,000 split
2,500 split | 620 | 100 | Interstage or driver | | DI-T283 | 10,000 CT
12,000 CT | 1 | 10,000 CT
12,000 CT | 970 | 100 | Isol. or interstage
(Ratio 1:1) | | DI-T288 | 20,000 CT
30,000 CT | .5
.5 | 800 CT
1,200 CT | 870 | 50 | Interstage or driver | | DI-T204 | Split Induct
(2 wdgs) | | | | | maDC, DCR 25Ω
3 20 maDC, DCR 6Ω | | DI-T208 | Split Induct
(2 wdgs) | | | | | maDC, DCR 10512
2 maDC, DCR 2612 | | DI-T212 | Split Inducti
(2 wdgs) | | | | | maDC, DCR 63012
maDC, DCR 15712 | | DI-T216 | Split Inducti
(2 wdgs) | §§ 1. | Hys @ 2 maD
1 Hys @ 4 mal | DC3 H | ys (a) | 4 maDC, DCR 2300Ω
8 maDC, DCR 575Ω | TDCma snown is for single ended useage (under 5% distortion—100m w—1KC). Torp ush pull, DCma can be any balanced value taken by 5W transistors (under 5% distortion—500m w—1KC) Di-T200 units have been designed for transistor application only ... not for vacuum tube service. U.S. Pat. No. 2,949 591 cther pending. Where windings are listed as split, ¼ of the listed impedance is available by paralleling the windings. winding. §Series connected; §§Parallel connected. Write for catalog of over 1.300 UTC TOP QUALITY STOCK ITEMS **IMMEDIATELY AVAILABLE** from your local distributor. #### **DUMET LEADS** (gold plated, weldable and solderable) #### STRAIGHT PIN TERMINALS (printed circuit application) #### HIGHEST PERFORMANCE for size in the industry #### METAL ENCASED (Grade 4, Ruggedized) #### ALL STOCK UNITS MIL TYPE TF4RX Class "S" Available on Special Order | High Power Rating | up to 100 times greater. | |---------------------|-----------------------------------| | Excellent Response | twice as good at low end. | | Low Distortion | reduced 80%. | | | up to 30% better compare DCR. | | Moisture Proof | hermetically sealed to MIL-T-27B. | | Ultraminiature Size | 5/16 Dia. x 3/8" H, 1/15 Oz. | The unique structural design of the DI-T200 series transformers and inductors provides the excellent electrical characteristics, high reliability and wide application possibilities inherent in the UTC DO-T family of miniaturized units. The DI-T200 series units employ the same high quality design found in UTC's DO-T, DI-T, and PIP lines. This unique transformer constructural in UTC's DO-T, DI-T, and PIP lines. This unique transformer constructural concept affords unprecedented power handling capabilities coupled with extremely small size. Further, the high degree of reliability has been dynamically proven in the field. These characteristics are basic in the structure, which is ruggedized, hermetically sealed, employing a completely rigid bobbin, eliminating stress and wire movement. The turns are circular in shape rather than square, eliminating turn corner stress, and effecting uniform wire lay. The coil wire and external lead are rigidly anchored terminal board fashion, employing no tapes and brought out through strain relief. The curves illustrated indicate the superior performance of these units compared to similar size units now on the market. units compared to similar size units now on the market. The leads are uninsulated 1" long, .016 D Dumet wire, spaced on a .1" radius circle to conform to terminal spacing techniques of the "TO-5" case semiconductors and micrologic elements. #### IMMEDIATE DELIVERY FROM STOCK #### UNITED TRANSFORMER CO. DIVISION OF TRW INC. . 150 VARICK STREET, NEW YORK, N. Y. 10013 ## SEES THROUGH NOISE! New hp Model 3410A AC Microvoltmeter measures low level repetitive signals obscured by noise—3 μ V to 3 V full scale—accuracy $\pm 3\%$. RMS noise voltages up to 20 dB above full scale do not affect readings. Sensitivity, low cost and ease of operation are the 3410A's contribution. This new microvoltmeter uses an hp designed phase-locked synchronous detector to separate effects of noise from signal. The detector is an electronic gate controlled by an oscillator phase-locked to the input signal. No external reference is required to lock to the input signal. Simply adjust front panel tuning control within 1% of signal frequency and phase-lock circuits lock-on and track input signal with $\pm 5\%$ variation in the 5 Hz to 600 kHz frequency range. Phase-lock circuits track 0.5%/sec change in signal frequency without a change in voltmeter accuracy. Input impedance is 10 M Ω shunted by 20 pF. The new Model 3410A has two outputs on the rear panel. One is a dc recorder output for monitoring long term drifting ac voltage amplitudes. The other is an output for driving an electronic counter to make precise frequency measurements. For full specifications on the new hp Model 3410A AC Voltmeter, call your hp field engineer. Or, write to Hewlett-Packard, Palo Alto, California 94304, Tel. (415) 326-7000; Europe: 54 Route des Acacias, Geneva. Price: hp Model 3410A, \$800.00. New hp 3410A Measures 300 nanovolts Buried in Noise Measure 1 μ V, 500 kHz signal out of 40 dB noise. Measure 10 mV, 5 Hz amplitude modulating 1 V, 400 Hz. Measure 300 nanovolts, 10 kHz signal superimposed on 10 μ V, 1 kHz. Measure frequency of signal in noise up to 560 kHz by using square wave output, i.e. as a counter preamplifier. #### **Unit Citation** We're honored! Not that we've won our crusade yet...just another battle ribbon. A while back we scored a military victory with our Model 880, the *first* solid state Mil Spec counter. This time it's a fully-militarized 5MHz all-silicon solid state universal countertimer. Call it USN/AN-245, sir. There's a good reason you should be interested. You see, the military model had its basic reliability well proved by our original commercial version, Model 607A. Now there's the one for you! It offers more features and capabilities than even the Admirals asked for. And it's available on-the-double. Now hear this: Our lowest-bidder-type price is only \$1,575. (Check that saving against our competitor!) Then check these features: Model 607A is ideal for wide-range frequency measurements, frequency ratio determination, period and multiple period or time interval measurements, and pulse count totalizing. Time base is a 1 MHz crystal oscillator (for 1 microsec resolution). Display is six decade inline with display storage. BCD output transfers directly to CMC Model 410 tape printer, computer systems, etc. Automatically positioned illuminated decimal. Either ac or dc coupling of input signal. Front and rear A and B channel inputs. Rugged, compact (approx. 31/2" high). Available for bench or rack. #### THANKS With all our pride and excitement over our USN/AN-245award, and other new products, we haven't forgotten our fellow Crusaders who've made this success possible...YOU. A FREE Crusading Engineers medal is our fun-loving way of saying thanks. Get yours by writing for data so you can "Check the Specs" of our 607A. Your "chief" will be so proud of you at mail call! 12973 Bradley/San Fernando, California Phone (213) 367-2161 / TWX 910-496-1487 #### **NEWS** - News Scope Liquid lasers for high-power cw operation sought Wider pulsed applications and such features as 'tunable' colors investigated. - 24 Europe girds for battle with Goliaths of U.S. France studies plans to end Europe's dependence on U.S. microcircuitry. - 29 Washington Report - 33 Electronics taught with 'domino' modules. - 38 Electronic robot speeds training of doctors Breathing, heart beat, even reaction to drugs are simulated in 'patient.' - 44 Scanner converts maps for EDP storage. - 54 Letters - 77 Editorial: They just keep rolling along **Semiconductor Reference Directory** Pages 81 - 228 #### **TECHNOLOGY** - 230 Check the 0-TC point in your FETs. Experiments show that theoretical values of bias current for 0-TC are not accurate. - 236 Stagger-tune the IC amplifier stages in an IF or RF strip design. It will have just the right gain and selectivity curve. - 241 Ideas for Design #### **PRODUCTS** | 248 | Semiconductors | 258 | Test Equipment | |-----|----------------------|-----|----------------| | 253 | Microelectronics | 260 | Microwaves | | 254 | Materials | 262 | Components | | 257 | Production Equipment | | | #### **Departments** | 266 | Application Notes | 272 | Advertisers' Index
| |-----|-------------------|-----|---------------------| | 268 | Design Aids | 275 | About the magazine | | 269 | New Literature | 276 | Designer's Datebook | Reprints on Special Reader Service card facing p. 226 Regular Reader Service card inside back cover ELECTRONIC DESIGN is published biweekly by Hayden Publishing Company, Inc., 850 Third Avenue, New York, N. Y. 10022. James S. Mulholland, Jr., President. Printed at Poole Bros., Inc., Chicago, III. Controlled-circulation postage paid at Chicago, III., Cleveland, Ohio, and New York, N. Y. Application to mail at controlled postage rates pending at St. Louis, Mo. Copyright © 1967, Hayden Publishing Company, Inc. 61,945 copies this issue. ### Go modular the easy way This entirely new approach to modularization is the AMPMODU* Interconnection System. It permits almost unlimited design flexibility, high production speed, and economies resulting from automation and low per line cost. economies resulting from automation and low per line cost. Specifically designed for modular applications using printed circuit boards, it enables mounting module cards at 90° to a mother board, stacking them, or putting them end to end. The female contacts may be staked directly to a printed circuit board or enclosed in molded housings. Male contacts may be staked directly to a printed circuit board, used in nylon incremental connectors, or mounted with nylon bushings in aluminum grid plates. Two sizes of contacts are available: the standard size, which uses .031 x .062" posts for mounting on .156" centers, and the miniature size, which uses .025 x .025" posts for mounting as dense as .100". Electrical and mechanical efficiency are enhanced by the simplicity of the female contact design, which includes dual cantilever-beam springs for redundant contact action and anti-overstress devices to ensure reliability. The long life of the phosphor bronze contacts is a result of AMP's special gold plating. New modular ideas don't have to dead-end at the design stage. For information on how you might use the AMPMODU Interconnection System to modularize your product and lower your costs, write us today. Automatic machines can stake contacts to printed circuit boards at rates of up to Miniature AMPMODU contacts may be mounted ten to the inch The AMPMODU female contacts may be mounted in one of three ways for modular connection versatility - A. AMPMODU Male Incremental Connectors - B. Miniature AMPMODU Female Contacts in strip form C. Standard AMPMODU Female Contacts in strip form D. Miniature contacts in two-row housings - D. Miniature contacts in two-row housings E. Grid Plate Header F. Horizontally staked AMPMODU Contacts with incremental connectors - G. Vertically staked AMPMODU Contacts - H. Flexible tape cable AMPMODU Connectors - Connectors I. Molded-in AMPMODU Pin Header and printed circuit board connector J. Miniature Crimp-Barrel AMPMODU Female Contacts K. Individual Standard AMPMODU Female Contacts ON READER-SERVICE CARD CIRCLE 4 ## Only from Lambda — New 7-inch, broadest line of .015% regulated #### All convection cooled FULL RACK-7" LK SERIES FULL RACK-51/4" LK SERIES 1/4 RACK-LH SERIES HALF RACK LK SERIES LA-178 ## high current models in the all-silicon power supplies For test equipment and lab use—rack or bench From 1/2 to 66 amps, 0-10, 0-20, 0-40, 0-60, 0-120 VDC Full five year guarantee on materials and labor #### **Features and Data** - Convection Cooled - Remote Programming - Remote Sensing - Regulation-.015% or 1 MV (Line or Load) - Temp. Coef. .015%/°C - Transformer—designed to MIL-T-27 Grade 6 - Completely Protected— Short circuit proof-Continuously adjustable Automatic current limiting - Constant I./Constant V. by automatic crossover - Series/Parallel Operation - No Voltage Spikes or Overshoot on "turn on", "turn off" or power failure - Meet Mil. Environment Specs. Vibration: MIL-T-4807A Shock: MIL-E-4907A Proc. 1 & 2 Humidity: MIL-STD-810 Meth. 507 Temp Shock: MIL-E-5272C (ASG) Proc. 1 Altitude: MIL-E-4970A (ASG) Proc. 1 Marking: MIL-STD-130 Quality: MIL-Q-9858 Ripple— LK models-500 µV RMS LH models-250 μV RMS, 1 MV P-P Wide Input Voltage and Frequency Range- Models LK360-362FM: 200-250 VAC, 47-63 cps Other LK models: 105-132 VAC, 47-63 cps LH models: 105-135 VAC, 45-480 cps. - LH models meet RFI Spec.-Mil-I-16910 - Rack Adapters LRA-1-51/4" Height x 161/2" Depth (For use with chassis slides) Price \$60.00 LRA-2-5¹/₄" Height Price \$25.00 3 Full-rack Models - Size 7" x 19" x 181/2" | M = d=12 | Voltage | CURRE | Price 2 | | | | |--------------------|---------|-------|---------|-------|-------|--------| | Model ² | Range | 40°C | 50°C | 60°C | 71°C | Price. | | LK 360 FM | 0-20VDC | 0-66A | 0-59A | 0-50A | 0-40A | \$995 | | LK 361 FM | 0-36VDC | 0-48A | 0-43A | 0-36A | 0-30A | 950 | | LK 362 FM | 0-60VDC | 0-25A | 0-24A | 0-22A | 0-19A | 995 | 3 Full-rack Models - Size 51/4" x 19" x 161/2" | Model ² Vol | Voltage | CURRENT RANGE AT AMBIENT OF: | | | | | |------------------------|---------|------------------------------|-------|---------|-------|---------| | Model 4 | Range | 40°C | 50°C | 60°C | 71°C | Price 2 | | LK 350 | 0-20VDC | 0-35A | 0-31A | 0-26A | 0-20A | \$675 | | LK 351 | 0-36VDC | 0-25A | 0-23A | 0-20A | 0-15A | 640 | | LK 352 | 0-60VDC | 0-15A | 0-14A | 0-12.5A | 0-10A | 650 | 5 Quarter-rack Mcdels - Size 53/14" x 43/14" x 151/2" | Model ² | Voltage | CURRENT RANGE AT AMBIENT OF: | | | | | | |--------------------|----------|------------------------------|---------|---------|---------|--------------------|--| | MOGEL 4 | Range | 30°C | 50°C | 60°C | 71°C | Price ² | | | LH 118 | 0-10VDC | 0-4.0A | 0-3.5A | 0-2.9A | 0-2.3A | \$175 | | | LH 121 | 0-20VDC | 0-2.4A | 0-2.2A | 0-1.8A | 0-1.5A | 159 | | | LH 124 | 0-40VDC | 0-1.3A | 0-1.1A | 0-0.9A | 0-0.7A | 154 | | | LH 127 | 0-60VDC | 0-0.9A | 0-0.7A | 0-0.6A | 0-0.5A | 184 | | | LH 130 | 0-120VDC | 0-0.50A | 0-0.40A | 0-0.35A | 0-0.25A | 225 | | 11 Half-rack Models - Size 51/16" x 81/8" x 151/8" | Model ² | Voltage | CURREN | Price2 | | | | |--------------------|----------|---------|---------|---------|--------|--------| | MIGGEL 2 | Range | 30°C | 50°C | 60°C | 71°C | Price* | | LH 119 | 0-10VDC | 0- 9.0A | 0- 8.0A | 0- 6.9A | 0-5.8A | \$289 | | LH 122 | 0-20VDC | 0- 5.7A | 0- 4.7A | 0- 4.0A | 0-3.3A | 260 | | LH 125 | 0-40VDC | 0- 3.0A | 0- 2.7A | 0- 2.3A | 0-1.9A | 269 | | LH 128 | 0-60VDC | 0- 2.4A | 0- 2.1A | 0- 1.8A | 0-1.5A | 315 | | LH 131 | 0-120VDC | 0- 1.2A | 0- 0.9A | 0- 0.8A | 0-0.6A | 320 | | | Voltage | CURRENT RANGE AT AMBIENT OF: 1 | | | | | | |--------------------|---------|--------------------------------|---------|---------|--------|---------|--| | Model ² | Range | 40°C | 50°C | 60°C | 71°C | Price 2 | | | LK 340 | 0-20VDC | 0- 8.0A | 0- 7.0A | 0- 6.1A | 0-4.9A | \$330 | | | LK 341 | 0-20VDC | 0-13.5A | 0-11.0A | 0-10.0A | 0-7.7A | 385 | | | LK 342 | 0-36VDC | 0- 5.2A | 0- 5.0A | 0- 4.5A | 0-3.7A | 335 | | | LK 343 | 0-36VDC | 0- 9.0A | 0- 8.5A | 0- 7.6A | 0-6.1A | 395 | | | LK 344 | 0-60VDC | 0- 4.0A | 0- 3.5A | 0- 3.0A | 0-2.5A | 340 | | | LK 345 | 0-60VDC | 0- 6.0A | 0- 5.2A | 0- 4.5A | 0-4.0A | 395 | | Current rating applies over entire voltage range. Prices are for non-metered models (except for models LK360FM thru LK362FM which are not available without meters). For metered models, add suffix (FM) and add \$25 to price of LH models; add \$30 to price of LK models. Overvoltage Protection: add suffix (OV) to model number and add \$60 to the price of LH models; add \$70 to price of half-rack LK models; add \$90 to price of 5½" full-rack LK models; add \$120 to price of 7" full-rack LK models. Chassis Slides for full rack models: Add suffix (CS) to model number and add \$60 to the price. SEND FOR NEW LAMBDA CATALOG ELECTRONICS CORP. 515 BROAD HOLLOW ROAD • MELVILLE, L.I., NEW YORK 11746 • (516) 694-4200 A (Veeco) SUBSIDIARY ### Are you sure you can't afford Heinemann circuit breakers? ### Here's one you can have for just \$4.05. We really are trying to meet you half-way. We've gone to a lot of trouble to produce a breaker which would lower the price barrier without lowering our standards. The result is our little Series JA breaker. It has all of the advantages inherent in hydraulic-magnetic operation, all of the features of our larger, more expensive models. But it's priced to make new friends out of passing acquaintances. In quantities of just six to twenty-five, OEM's can buy this breaker for a nickel more than four dollars. And of course, as the quantity goes up, the price goes down even lower. The JA is our idea of meeting you half-way. If you'd like to learn more about it, or any of our other breakers, drop us a line. We'll be happy to send you more complete information. Heinemann Electric Co., 2616 Brunswick Pike, Trenton, N. J. 08602. #### ... ABOARD GRUMMAN'S LUNAR MODULE #### ERIE - GRUMMAN'S CHOICE FOR EMI FILTERS These superior EMI FILTERS passed Grumman's critical qualification requirements — including random vibration and high transient withstanding capability. Most of these very small filters weigh less than 10 grams, and their inherent reliability make Erie a natural selection as Grumman's filter source. **Bonded Filter Stock** . . . inventories under lock and key in our Quality Control Department . . . is available for LM subcontractors or for other critical programs requiring Established Reliability Filters. The typical 100 Vdc rated Erie Filter will provide an insertion loss of 67 db @ 150 kHz. A broad line of ERIE FILTERS is available — including MULTIPLE SECTION FILTERS and special configurations for STRIP LINE applications. Custom filters for your applications can be designed. Why not call in an Erie Filter specialist for your project? Write for new catalog 9000 . . . ERIE ELECTRONIC FILTERS Another Series of Components in Erie's Project "ACTIVE" Advanced Components Through Increased Volumetric Efficiency TECHNOLOGICAL PRODUCTS, INC. Erie, Pennsylvania ## Did You
Know Sprague Makes 51 Types of Foil and Wet Tantalum Capacitors? #### FOIL-TYPE RECTANGULAR TANTALEX® CAPACITORS Type 300D polarized plain-foil Type 301D non-polarized plain-foil Type 302D polarized etched-foil Type 303D non-polarized etched-foil **ASK FOR BULLETIN 3650** ON READER-SERVICE CIRCLE 162 #### SINTERED-ANODE TUBULAR TANTALEX® CAPACITORS Type 109D elastomer seal 85 C Type 130D elastomer seal 125 C Type 137D hermetic seal 125 C **ASK FOR BULLETINS 3700F, 3701B, 3703** ON READER-SERVICE CIRCLE 165 #### SINTERED-ANODE RECTANGULAR TANTALEX® CAPACITORS Type 200D negative terminal grounded Type 202D both terminals insulated **ASK FOR BULLETIN 3705A** ON READER-SERVICE CIRCLE 168 #### FOIL-TYPE TANTALUM CAPACITORS TO MIL-C-3965C CL20, CL21 tubular 125 C polarized etched-foil CL22, CL23 tubular 125 C non-polar etched-foil CL24, CL25 tubular 85 C polarized etched-foil CL26, CL27 tubular 85 C non-polar etched-foil CL30, CL31 tubular 125 C polarized plain-foil CL32, CL33 tubular 125 C non-polar plain-foil CL34, CL35 tubular 85 C polarized plain-foil CL36, CL37 tubular 85 C non-polar plain-foil CL51 rectangular 85 C polarized plain-foil CL52 rectangular 85 C non-polar plain-foil CL53 rectangular 85 C polarized etched-foil CL54 rectangular 85 C non-polar etched-foil CL54 rectangular 85 C non-polar etched-foil ON READER-SERVICE CIRCLE 163 ### SINTERED-ANODE CUP STYLE TANTALEX® CAPACITORS Type 131D 85 C industrial-type Type 132D 85 C vibration-proof Type 133D 125 C vibration-proof ASK FOR BULLETINS 3710B, 3711 ON READER-SERVICE CIRCLE 166 #### SINTERED-ANODE TANTALUM CAPACITORS TO MIL-C-3965C CL14 cylindrical, %" diam. CL16 cylindrical, 3/8" diam., threaded neck CL17 cylindrical, 11/8" diam. CL18 cylindrical, 11/8" diam., threaded neck CL44 cup style, uninsulated CL45 cup style, insulated CL55 rectangular, both terminals insulated CL64 tubular, uninsulated CLO4 tubular, uninsulated CL65 tubular, insulated ON READER-SERVICE CIRCLE 169 ### 125 C FOIL-TYPE TUBULAR TANTALEX® CAPACITORS Type 120D polarized plain-foil Type 121D non-polarized plain-foil Type 122D polarized etched-foil Type 123D non-polarized etched-foil **ASK FOR BULLETIN 3602C** ON READER-SERVICE CIRCLE 161 #### 85 C FOIL-TYPE TUBULAR TANTALEX® CAPACITORS Type 110D polarized plain-foil Type 111D non-polarized plain-foil Type 112D polarized etched-foil Type 113D non-polarized etched-foil **ASK FOR BULLETIN 3601C** ON READER-SERVICE CIRCLE 164 #### SINTERED-ANODE CYLINDRICAL TANTALEX® CAPACITORS Type 140D up to 175 C operation, %" diam. Type 141D up to 175 C operation, 11/8" diam. **ASK FOR BULLETIN 3800** ON READER-SERVICE CIRCLE 167 For comprehensive engineering bulletins on the capacitor types in which you are interested, write to: Technical Literature Service Sprague Electric Company 347 Marshall Street North Adams, Mass. 01247 4SC-3158 ### **SPRAGUE**° THE MARK OF RELIABILITY Sprague and '(2)' are registered trademarks of the Sprague Electric Co ## News Laboratory liquid lasers open new vistas for communications and biological research. Here a device is placed in a flash tube that pumps it to a 1-MW energy burst. Page 17 **Europe's dependence on U.S. electronics expertise**—and its reaction—evident at Paris components show. Page 24 'Domino' modules help the study of electronics. Page 33 #### Also in this section: **Electronic robots simulate patients' conditions** as medical training aid. Page 38 **Complementary MOS arrays** about to be marketed. Page 21 News Scope, Page 13 . . . Washington Report, Page 29 . . . Editorial, Page 77 ## HYBRID to CIRCUITS with precision components not found in monolithic integrated microcircuits ### Up to 12 bits with less than 1/2 bit error! - Silicon-base hybrid microcircuits in hermeticallysealed flat packs. - 3 to 1 size reduction over conventional converters using discrete components. - Improved tracking over temperature range of -55 C to +125 C. - Reduced handling of components...fewer external connections...lower assembly costs. - 4-bit series expandable to 8 or 12 bits...5-bit series expandable to 10 bits. - Combination of precision thin-film tantalum nitride resistors, nickel-chromium resistors, and active devices of planar construction. - Packaged for compatibility with monolithic circuits. For complete technical data on D-to-A microcircuits, write to Technical Literature Service, Sprague Electric Company, 347 Marshall Street, North Adams, Massachusetts 01247. #### SPRAGUE COMPONENTS THIN-FILM MICROCIRCUITS INTEGRATED CIRCUITS TRANSISTORS CAPACITORS RESISTORS 485-7101 PULSE TRANSFORMERS INTERFERENCE FILTERS PULSE-FORMING NETWORKS TOROIDAL INDUCTORS ELECTRIC WAVE FILTERS CERAMIC-BASE PRINTED NETWORKS PACKAGED COMPONENT ASSEMBLIES BOBBIN and TAPE WOUND MAGNETIC CORES SILICON RECTIFIER GATE CONTROLS FUNCTIONAL DIGITAL CIRCUITS ON READER-SERVICE CARD CIRCLE 8 'Sprague' and '②' are registered trademarks of the Sprague Electric Co ## NASA and contractor take blame for Apollo Fire The massive 3000-page final report issued earlier this month on the tragic Apollo accident appears to have raised more questions than it answered. Though the specific cause of the tragedy may never be known, the report did reveal many problems of a technical as well as a managerial nature which, many observers feel, could seriously affect the nation's \$23 billion Apollo project. In their testimonies before Congressional investigating committees, officials of the National Aeronautics and Space Administration and of North American Aviation, Inc., the Apollo spacecraft manufacturer, conceded that they were both blameworthy for the accident and agreed generally with the board's findings. James E. Webb, NASA Administrator, told sharply critical Congressional investigators that the men of the Apollo project could correct their errors and reach their goal of placing a man on the moon by 1970. He suggested, however, that the review board may have "overstated the case" against Apollo. North American executives defended their quality control procedures and denied charges that there had been deficiencies in the electrical wiring design, though they admitted that the company had not de- signed the cockpit to guard against a fire on the ground. The special eight-man Accident Review Board identified, in their report, the probable cause of the fire as Teflon insulation in a power cable near the environmental control unit. Repeated opening and closing of a compartment door may have worn the wire thin, they said. Although the board was unable to determine the specific initiator of the Apollo fire, it identified the conditions which it felt led to the disaster. These were: - A sealed cabin, pressurized with an oxygen atmosphere. - An extensive distribution of combustible materials in the cabin. - Vulnerable wiring carrying spacecraft power. - Vulnerable plumbing carrying a combustible and corrosive coolant. - Inadequate provisions for the crew to escape. - Inadequate provisions for rescue or medical assistance. The board concluded that "in its devotion to the many difficult problems of space travel, the Apollo team failed to give adequate attention to certain mundane but equally vital questions of crew safety." The investigation revealed "many deficiencies in design and engineering, manufacture and quality control." Apollo environmental control unit where fatal fire may have broken out The board reported that it found "numerous examples of poor installation, design and workmanship in the wiring." For instance, it cited a wrench socket found among some cabling in the spacecraft. The report gave a wide sampling of problems and shortcomings with the Apollo program in support of its conclusions. Typical of those cited were these three: - A NASA memorandum issued in September 1966 during mating of the command module with the service module which stated: "Many open design change orders were completed and various malfunctions were noted and corrected..." - A manned test with flight crew which was initiated soon afterwards but was discontinued after reaching a simulated altitude of 13,000 feet because of failure of a transistor in a spacecraft inverter. - A second manned altitude test which was discontinued when a failure occurred in an oxygen system regulator. The review board concluded its report with a long list of recommendations, some of which the space agency is already reported to be implementing. A new quick-release hatch is on the drawing boards. More fire-resistant materials will be substituted for nylon, where it was used, and they will be located at a safe distance from potential ignition sources. #### French color-TV tube challenges shadow mask The French are confident that they have come up with a new color-TV tube that will replace the shadow-mask tube in worldwide color set manufacture. It uses a grille of vertical wires and color stripes, rather than dots, to produce color pictures. The wire-grille tube takes one-third the power of the shadow-mask, and thus lends itself well to transistorized design. The developer of the tube, CFT (Compagnie Française de Télévision)—which also developed SECAM, the French color-TV transmission system—showed a transistorized prototype in operation at its laboratories in Lavellois, near Paris, during the International Components Exhibition, April 5-10. The set produced bright, high-quality pictures #### News Scope Continued in a well-lighted room. Several other advantages of the tube were cited during the demonstration by André Fouquier, one of the engineers on the CFT team that developed the tube. These include: - Simple production. - Flat screens. - Brighter pictures. - Use of the same glass as for black-and-white tubes, rather than special glass as the shadow-mask requires. Since CFT is only an R&D laboratory, it will license manufacturers to make the tube. Already a pilot plant has been sold to the Soviet Union, although the Russians are using the shadow-mask tube for initial color-set production. The French
company hopes to get an American licensee to supply the U.S. market; talks are in progress although the company declines to discuss details. The tube is a 3-gun type with a series of 550 thin stainless-steel wires strung side by side vertically between the guns and the screen. The wires are 0.1 mm in diameter and are spaced 0.75 mm apart. The phosphors are coated on the screen in vertical stripes. There are 480 groups of three color stripes—in blue-green-red sequence—coated on the screen with no spacing between them. Each of these color stripes is Color-TV tube contains flat screen and three guns. 0.27 mm wide. This vertical striping gives the viewer a picture with vertical lines rather than the familiar horizontal pattern. At full brightness no horizontal scan pattern was visible at all, although scanning is done in the normal horizontal manner. At low beam currents, the horizontal pattern begins to be visible, but this would not occur normally. Voltages for the CFT transistorized set are 25 kV for the screen, 7500 volts for the grid, and 8 kV for the last electrode of each electron gun, according to François Dognin, the engineer who designed the set. He showed that at full brightness the three guns were draining only 100 μ A. The tube draws a mean value of about 88 watts from the mains, he said, compared with 350-400 watts for a shadow-mask set. Key to the low power requirements is the high transmissibility of the mesh. It is about 80% transparent to the beams. In production the grilles and screens can be made separately, and then any mesh used with any screen. In the shadow-mask tube, matching of mask and dot-pattern on the screen is critical. Alignment of the mask and screen is also simpler in the CFT tube, according to Fouquier, because it has to be done in only the vertical plane. The wires are bonded into the tube envelope between two glass surfaces. One problem the tube does not eliminate is achieving wider deflection angles, and thus a shorter tube. This tube would run into convergence problems just as the shadowmask would, according to Fouquier. #### GE enters market for linear ICs General Electric Co. has revealed that this year it will begin selling off-the-shelf, low-cost, plastic linear integrated circuits. This was disclosed in the company's announcement of a multimillion-dollar program to accelerate development and manufacture of integrated circuits. Hitherto the company has manufactured ICs only for internal use and in limited quantities for special orders. The program includes establishment of an Internal Integrated-Circuit Center to fill the research and development needs of General Electric's electronic equipment manufacturers. The company will also expand the development and manufacturing capabilities of its Semiconductor Products Dept. The Internal Integrated-Circuit Center (IICC) will be an organizational part of the company's Research and Development Center, headquartered in Schenectady, N. Y. It will, however, be located at GE's Electronics Park in Syracuse, N. Y. The expanded facilities of the Semiconductor Products Dept. will be added to existing integrated-circuit activities at Electronics Park. The department is responsible for innovations and development in inexpensive electronic devices. Several GE consumer products paved the way for this expansion, according to a company spokesman. A micro-circuit clock-radio with a built-in battery charger was announced last year. A portable stereo phonograph and a recent stereo tape cartridge player have proved the flexibility of the integrated-circuit approach to entertainment products, he said. A zero-voltage switching IC for application in electric heating has also been announced recently. #### Army moves to adopt computer-aided design Computer-aided circuit design is likely to become a standard Army engineering tool, according to a Pentagon spokesman. Lt Col. Daniel J. Walsh of the Army Office of the Chief of Research and Development said that the move would probably accompany the Army's adoption of large-scale integration. He told a NASA seminar at MIT that the Army was already putting computer-aided design to extensive use in a number of applications: - ECAP, NET-1 and CIRCUS programs are in use at the Redstone Laboratories, Huntsville, Ala., in the analysis of the effects of radiation on electronic circuitry. - SCEPTRE is being investigated by the Nuclear Engineering Directorate at Picatinny Arsenal, Dover, N. J., for use in the safety analysis of solid-state circuits. - NET-1 is being applied to synthesizing uhf switching circuits as part of an optimization program at Fort Monmouth, N. J. ### evaluating semiconductors? ## use one of these Tektronix transistor curve tracers to meet your needs The performance range of the Type 575 enables you to evaluate the dynamic characteristics of most semiconductor devices. Several transistor characteristic curves may be displayed including the collector family of NPN or PNP devices in a common base or a common emitter configuration with forward or reverse biasing. The Type 575 features collector sweep supply ranges continuously variable from 0 to 20 V at 10 A, or 0-200 V at 1 A. A base or emitter step generator, operating at either 2 or 4 times the line frequency, provides 4 to 12 steps per family of characteristic curves in single or repetitive display modes. The step generator provides voltage increments from .01 V/step to 0.2 V/step or current increments from .001 mA/step to 200 mA/step. Choose the Type 575 MOD 122C transistor curve tracer for evaluating higher voltage devices. The Type 575 MOD 122C has the same features of the Type 575 plus the capability of diode breakdown test voltage variable from 0 to 1500 V at 1 mA and a much higher collector supply voltage of up to 400 V at 0.5 A. For evaluating high current semiconductors, add the Type 175 High Current Adapter to either of these curve tracers. The Type 175 features collector sweep supply ranges of 0-200 A at 0-20 V and 0-40 A at 0-100 V. The Type 175 step generator provides current ranges from 1 mA/step to 1000 mA/step and voltage steps from 0.5 to 10 V/step with driving resistance selectable from 11 values ranging from 0.5 ohms to 1 k ohm. Other resistance values may be added externally. Type 575 Transistor Curve Tracer (including accessories) \$1075 Type 575 Transistor Curve Tracer MOD 122C (including accessories). \$1325 Type 175 High Current Adapter (including accessories) \$1475 Tektronix, Inc. For complete information, contact your nearby Tektronix field engineer or write: Tektronix, Inc., P.O. Box 500, Beaverton, Oregon 97005 ## PAR offers a line of superior precision voltage/current reference sources OO1% STABILITY .0001% #### INDEX OF PAR REFERENCE SOURCES | MODEL
NO. | CONST. V. | PUTS
CONST. I. | | CURACY
V. CONST. I. | CONST. V. | CONST. I. | | JR STABILITY
. V. CONST. I. | PRICE | |----------------------|--|--|-------------------|---|----------------|------------------------------------|-------|--|--------------------------| | TC-260R | 0 to 60 V
(a 2 A max. | 0 to 2 A
11 60 V max.
(Requires Ext.
Resistors) | 0.01% | 0.01% ±
Accuracy
of Ext.
Resistors | 1 μV | Determined
by Ext.
Resistors | .001% | .001%
± stability
of external
resistors | \$1,250 | | TC-100.2R | 0 to 100 V
7 200 mA max. | 0 to 100 mA*
@ 100 V max. | 0.01%
of F. S. | 0.02%
of F. S. | 1 mV | 1 μΑ | .001% | .002% | \$1,500. | | TC-602CR | n to 5 V
n to 60 V
@ 2 A max. | 0 to 60 mA
0 to 600 mA
0 to 2 A
@ 60 V max. | 0.01%
of F. S. | 0.03%
of F. S. | 1 μV
min. | 10 nA
min. | .001% | .002% | \$1,750. | | TC-100.2AR | 0 to 100 V
0 to 10 V
0 to 1 V
@ 200 mA max. | 0 to 100 mA°
0 to 10 mA
0 to 1 mA
@ 100 V max | 0.01% | 0.02% | 10 µV
min. | 10 nA
min. | .001% | .002% | \$1,800. | | TC-100.2BR | 0 to 100 V
0 to 10 V
0 to 1 V
© 200 mA max. | 0 to 100 mA*
0 to 10 mA
0 to 1 mA
@ 100 V max. | 0.01% | 0.02% | 100 nV
min. | 100 pA
min. | .001% | .001% | \$2,200. | | SF-Series
(Fixed) | Any fixed
voltage to 100 V
@ 2 amps max. | Any fixed current to 2 amps @ 100 V max. | Within
resolut | setting
ion | adjust | l ppm of
able range
nominal | .001% | .001% | By
quotation
only. | ^{*}Available to 200 mA (at extra charge). Princeton Applied Research Corporation offers a sophisticated line of power supplies providing extremely stable voltage and current outputs whose accuracy is traceable to N.B.S. All models are completely solid state and feature a careful, conservative design leading to highly reliable operation. Indicative of the features found in these units is a unique chopperstabilized amplifier with a DC openloop gain of 5 x 106, falling off no faster than 6 db/octave to unity gain. This insures extremely low output impedance (less than 10 micro-ohms at DC) and fast transient response without ringing. PAR Reference Sources permit considerable operational flexibility, having been used in such diverse applications as serving as the reference voltage in analog computers to providing the constant current required in "bucking" coils in elaborate magnetometer systems. All units feature digital output selectors, complete short circuit protection, and low ripple and noise. Write for Bulletin No. 112. #### Liquid lasers for high-power cw operation sought #### Wider pulsed applications and such laboratory features as 'tunable' colors are also investigated Richard N. Einhorn News Editor The search for new laser materials has been going on ever since Theodore H. Maiman developed the first working model of a laser in 1960. Solids, gases, plasmas, semiconductors, plastics—all
have been tried with varying degrees of success. Liquids, too, have been used, and, in the opinion of some scientists, liquid lasers offer the greatest potential for high-power, continuous operation. But other applications are being studied, too. Two recent developments in liquid-laser technology have been announced by major companies. In the first, General Telephone and Electronics Laboratories, New York, unveiled an experimental device using a class of chemicals not previously tried as a lasing medium. Its laser is capable of producing a 1-MW burst that lasts a fraction of a microsecond. Researchers hope ultimately to achieve continuous operation at high power for communications applications. The second was the disclosure by the Research Div. of the International Business Machines Corp., Yorktown Heights, N. Y., of a rapidly pumped liquid laser that can radiate four colors, one at a time, through the routine substitution of one solution of organic dye for another in the laser cell. The previous color literally goes down the drain. In principle, this offers a useful source of all wavelengths in the visible-infrared spectrum for laboratory work. #### Liquids may best solids Why the interest in liquids? Well, the energy output of a laser is a function of the volume of the active medium. The larger the lasing medium, the greater the ultimate energy output. Since liquid lasers can be made in lengths far exceeding those of crystalline lasers, the ultimate energy output of the liquid laser is expected to be higher. But there are other advantages as well. Take solids. To get solid-state TAPER JOINT SEAL AND BALL EXPANSION CHAMBER CELL FLASH TUBES (3) EXT. MIRRORS 1. Energies of 1 MW have been achieved in liquid laser by General Telephone scientists. Three flash tubes activate a lasing solution in a cell only 6 inches long. The medium is a rare earth in a heavy inorganic solvent. lasers to function, an almost perfect glass is needed, for example. It must be free from strains or distortions, and it must possess a uniform refractive index. Even a slight imperfection might ruin it for laser purposes, because of erratic operation and shortened lifetime. In high-power operation, rubies and other crystals often fail catastrophically when subjected to the massive internal scattering that accompanies laser action. The heat causes cracking and sometimes explosions of the crystal or glass. In liquid lasers, on the other hand, circulation of the liquid could remove heat and thereby permit continuous operation. Even without circulation the liquid can restore itself during pulsed operation. Liquid lasers have the potential of constant optical character. They are about as good as gas lasers in spatial coherence and beam divergence. They are not readily degraded. Even if the lasing solution decomposes or is contaminated, it can be purified by circulation through a bladder-like device. Or, if a nonlasing peroxide should form because of exposure to air, oxygen can be driven off by heating in the dark. Still another benefit is the economy of producing liquid lasing materials. Fabricating a perfect glass rod a foot or more in length is a major undertaking that costs thousands of dollars. Solid-state crystal lasers require a laborious, expensive growing process. By way of contrast, liquids can be prepared in a few minutes in the laboratory. #### First liquid laser used chelate The first successful demonstration of a liquid laser was reported in 1963 by Alexander Lempicki and Harold Samelson of General Telephone and Electronics Research Laboratories. Acting on the 1958 theoretical prediction of Charles H. Townes and Arthur L. Schawlow that it should be possible to build a laser using +3 ions of the rareearth element europium, Lempicki and Samelson proceeded to do just that. However, they introduced a #### (liquid lasers, continued) new wrinkle: they dissolved europium benzoylacetonate in an alcohol solution. Townes and Schawlow had had a solid in mind. This material is known as a chelate—a compound of a rare earth in an organic solvent. Unfortunately, chelate lasers were limited in performance because the light atoms of the chelate absorb much of the energy. Recently scientists at General Telephone and Electronics Laboraimproved upon their tories pioneering efforts. Lempicki and Adam Heller evolved a liquid laser in which the active medium is formed by dissolving neodymium, a rare earth, in selenium oxychloride, an inorganic compound. The advantage lies in the absence of atoms of low mass. This greatly increases efficiency, because the neodymium ions are more likely to emit photons, which are discrete quanta of light energy, than to dissipate their energy in heating the solvent. The new approach is not limited to these specific chemicals. Conceivably a whole new family of liquid lasers could arise in which the active medium would be a combination of rare-earth ions and heavy-atomicweight solvents. Already Lempicki and Heller have achieved energy bursts of 1 MW peak—approximately 100 times greater than the output of previous liquid lasers—but only for a fraction of a microsecond. Still, they claim to have the first liquid laser that is competitive with solid lasers. #### Engineering problems loom High-power, continuously operating liquid lasers, however, are not imminent. Says Lempicki: "There are both fundamental and engineering problems to be solved before continuous liquid lasers can be developed. From the point of view of efficiency of the medium itself, it (the neodymium-selenium oxychloride solution) is a completely satisfactory material. But no one has come up with a really good method for handling the liquids. "There are serious engineering problems in the circulation. The liq- 2. High-speed flash lamp is the key to IBM liquid laser that varies color of beam simply by flushing cell and introducing different organic dye solution. uid is quite corrosive and requires the development of a special pump." The compound is indeed chemically stable. At the recent IEEE International Convention the laser was flashed more than 500 times for curious engineers, and at the end the liquid was just as good as at the beginning. The device operates most effectively at room temperature or slightly above it. Its properties are affected only by variations in temperature, not by elevated temperature per se. Circulating the fluid would maintain uniform temperature, but this, of course, would require the special pump that Lempicki mentioned. "One of our objectives is to build a laser which will pulse 20 times a second," he says, "but for high repetition rate you must have circulation of the lasing liquid." In its present version, with stationary fluid, the laser is flashed once a minute. #### Communications use desired The application for a continuously operating liquid laser would be obvious: communications. A continuous laser beam is theoretically capable of accommodating a great many telephone conversations, as well as business data and television data. It is particularly well suited to space communications. "If we had a continuous laser, we would definitely try to use it for communications," Lempicki says. "However, we are also working on pulsed lasers for special communications, such as for the Air Force." At present the device works at a wavelength of 1.06 microns, which lies within the infrared region. This is not unlike glass lasers. When asked whether devices of this type could work in the visible spectrum, Lempicki replied, "We have not done this yet. Offhand, there is no fundamental reason why it shouldn't be possible to do this." The General Telephone laser (Fig. 1) uses commercially available flash tubes to activate the lasing medium. Input energy required is about the same as that for a solid-state or glass laser of comparable size. Extensive research would be needed before laser communications links could become a reality. But General Telephone's development is a significant step forward. There are other applications for The design advantages of FLEXPRINT circuitry for Sperry's HZ-6B Attitude Director Indicator were evident from the start. Four thin, custom-engineered FLEXPRINT circuits would replace 67 separate SANDERS ASSOCIATES, INC. FLEXPRINT PRODUCTS DIVISION Creating New Directions in Electronics ## At Sperry Phoenix...when FLEXPRINT® Circuitry goes in, the package gets smaller... and costs go down bulky conductors. The finished assembly would then fit into a much smaller package. The production benefits were less obvious. It took actual experience to demonstrate that attaching connectors and other components to FLEXPRINT circuitry before installation made assembly faster, simpler and error-free . . . and resulted in a reduction of 25% in installed wiring costs. FLEXPRINT circuits handle like components - can be completely pre-tested, assembled faster, keyed for one-way insertion, and mass produced with precision — at savings over any other interconnection method. Take advantage of our experience and capabilities in solving interconnection problems at lower installed costs. A FLEXPRINT engineering representative is fully qualified to discuss the best answer to your needs: FLEXPRINT circuitry, FLEXMAX flexible multilayer circuits or INTRAMAX* multilayer hardboard. Call or write Sanders Associates, Inc., FLEXPRINT Products Division, Grenier Field, Manchester, New Hampshire 03103. Phone: (603) 627-3811 *T.M. Sanders Associates Inc. ## Did you know Sprague makes...? #### MINIATURE MOLDED-CASE PULSE TRANSFORMERS Molded construction for superior temperature/ humidity resistance. Variety of turns ratios and magnetizing inductances with increased bandwidth available. Designed for general digital use. **ASK FOR BULLETIN SERIES 40225** On Reader Service Card Circle 883 #### **DELAY LINES** Single or multiple delay in lumped constant or distributed constant designs are tailored to meet customer requirements. Furnished in either cast epoxy or
molded cases. Applications include digital circuits in computers, radar equipment, etc. On Reader Service Card Circle 885 #### DYNACOR® BOBBIN CORES Logical flux values in popular physical sizes are stocked in production quantities for fast delivery. Value engineered for quality with economy. Widely used for current regulation and memory drive. ASK FOR BULLETIN SERIES 50000 On Reader Service Card Circle 887 #### HIGH SPEED, FLAT T.C. MEMORY TRANSFORMERS Featuring nanosecond output rise time, minimum variation of magnetizing inductance with temperature, and balanced output be- tween windings. Ideally suited for interstage coupling, output drive, and sense memory applications. Rapid delivery to facilitate prototype evaluation. **ASK FOR BULLETIN 40350** On Reader Service Card Circle 882 #### MEMORY TEMPERATURE CONTROLLERS EMI-free. Type VZS Series SCR firing packages employing zero voltage or cross-over switching. Low in cost. Temperature regulation, $\pm 2^{\circ}$ F typical. Controls resistive or inductive loads. ASK FOR BULLETIN 87500 On Reader Service Card Circle 884 #### MAGNETIC LOGIC CIRCUITS For those applications where only magnetics will do. Sprague Electric offers custom engineering service and experience in depth. Fixed and variable incremental scalers, shift registers, gates, and associated driving circuitry. #### On Reader Service Card Circle 886 For complete technical data on any of the standard products, write for applicable Engineering Bulletin(s) to Technical Literature Service, Sprague Electric Co., 347 Marshall St., North Adams, Mass. 01247. For information on custom delay lines or magnetic logic devices, address your inquiry to Special Components Marketing. 4SSC-6157 Sprague' and '(2)' are registered frademarks of the Sprague Electric Co **NEWS** (liquid lasers, continued) liquid lasers, and other configurations as well. For example, Bell Telephone Laboratory scientists make incidental use of liquid media for frequency-mixing experiments. #### Organic dyes change beam color A completely different tack has been taken by Peter P. Sorokin and J. R. Lankard of the IBM Research Div. They have developed a compact, conveniently operated device that may well provide energy at almost every wavelength in the visible-infrared spectrum. The basic idea is to substitute organic dyes in a range of colors to fill the spectrum. The color of the beam is changed simply by flushing the cell and refilling it with another dye. Following the unsuccessful attempts of others, these two men observed lasing action in organic dyes in 1966. In their initial experiments, however, they had to pump the active medium with a giant pulsed-ruby laser. This was expensive and cumbersome, and no wavelengths shorter than the ruby's could be produced without complex frequency-doubling techniques. Sorokin and Lankard learned to circumvent this by observing the properties of the organic dyes. They came to the conclusion that earlier experiments using flashlamps as laser pumps had failed because there had been no control over occurrence of the giant pulse. Intense flashlamps with slow rise times tended to introduce more loss than gain because of inductance effects. Since flashlamps were rich in energy throughout the infrared and visible spectrum, they would, however, be an ideal source. Sorokin and Lankard proceeded to develop a flashlamp with a rise time measured in nanoseconds. The new laboratory device consists of an active laser cell, a flashlamp that surrounds the cell and a disk-shaped discharge capacitor (Fig. 2). The cell that contains the liquid is a quartz tube with polished ends. This is surrounded by a second quartz cylinder. The flashlamp discharges into the space between the two cylinders. The capacitor is a thin disk mounted coaxially with the two cylinders. A copper conducting sleeve fits over the outer cylinder to form a path to the two end electrodes. This configuration lowers lamp inductance, thereby contributing to a sharper rise time for the pumping pulse. To date, Sorokin and Lankard have successfully produced lasing in four different fluorescent organic dyes of the xanthene family. They have observed green, yellow, orange and red. Sorokin says that there is no theoretical reason they cannot reproduce all the wavelengths in the visible-infrared spectrum. #### Multicolor for biological research One use to which the IBM laser may be put is as a laboratory tool for cell biology. "The different components of a cell, which in turn have different functions, often have the property of being stained with different dyes," Sorokin explains. "When a given component takes up a dye, you can selectively destroy it by pulsing it with a laser frequency that coincides with the dye absorption spectrum. You can study the cell for a few minutes to discover how it functions without the de- stroyed component." Microphotographers have already used ruby lasers, but the IBM laser is more widely useful because the experimenter can run through the spectrum until every component has been tested. Sorokin uses the term "tunability" in order to describe the usefulness of the dye-substitution method. Tunability is not an idly chosen word. In addition to gross changes in color, the emission band of any one dye can be shifted at least 600 A by changing the concentration of the dye. Other applications for this laser might be in aircraft, beacons and for satellite-tracking, Sorokin points out. It is compact and inexpensive to make and it can be designed for high repetition rates. The optical properties of this laser more closely resemble those of a solid laser than of a gas laser. Since alcohol is commonly used in the solvent, the swirling action must be allowed to settle after the flash. There is an initial decrease in power after flashing, but this tends to stabilize. #### IBM laser does not operate cw Unlike the General Telephone and Electronics laser, the IBM device is not expected to serve in continuous operation. "It will not have the brute continuous power or duty cycle of a carbon dioxide laser, but it will give off 1-MW pulses," Sorokin says. The device is scaled down in power from a ruby laser. With an input energy of 50 joules, the output is 0.2 joule—an efficiency of 0.4%. However, this was achieved with air as the pumping gas. Sorokin sees no difficulty in achieving 1% efficiency with xenon. By way of comparison, Bell Telephone Laboratories cites 0.1% for helium-neon lasers at 0.2 watts in continuous operation. YAG (yttrium-aluminum-garnet) solid lasers operate at 1% efficiency at 25 watts continuous. But YAG lasers are limited to the kilowatt range for pulsed operation, whereas the liquid devices mentioned have megawatt potentialities. The future of liquid lasers, like that of all other types, is problematical. Sorokin points out that the entire laser technology is less than seven years old. "Liquid lasers just open one more class. Whether they are any better or any worse than the others remains to be seen." he comments. #### Complementary MOS arrays going to market There are two ways to achieve high-speed switching (above 2 GHz) at extremely low-power dissipation with MOS logic arrays: use either four-phase logic or complementary MOS arrays. RCA feels that the processing problems associated with diffusion of complementary MOS transistors are not very serious and that it is easier to overcome them than to put up with the disadvantages of operating four-phase logic. Four-phase, says RCA physicist Dr. Richard Ahrons, is only suitable for ac logic: the clock must be running and data must be moving through the system at all times. Complementary MOS transistors can perform static logic as well as ac logic. RCA will market a complementary MOS dual-input NOR gate in June. Current cannot flow directly to ground in this complementary MOS array. It dissipates 10 nanowatts when idle and 400 microwatts at 100 kHz. ### PULSE RESPONSE with Matched Crystal Filters by DAMON Matched Crystal Filter Model 5399A Center Frequency: Every 10 KHz from 5000 KHz to 5150 KHz Size: 3" L x 1" H x 1/4" W Optimization of the signal-to-noise ratio of a pulse receiver is now possible with the Damon Matched Crystal Filter. The illustration, above, compares the response of a conventional crystal filter with that of a Damon Matched Crystal Filter. The Damon Matched Crystal Filter not only minimizes overshoot and ringing, but since the filter is matched to the transform of the input pulse, maximum signal-to-noise ratio is also achieved. Solutions to complex pulse modulation crystal filter designs cannot be "picked from a chart". Consultations between circuit designers and Damon engineers are the best route to proper filter selection. As a starter, may we invite you to write for our Technical Bulletin on Matched Crystal Filters. Damon Engineering, Inc., 115 Fourth Avenue, Needham Hts., Mass. 02194 (617) 449-0800. **DAMON** ON READER-SERVICE CARD CIRCLE 12 **NEWS** ### Semiconductor sets charges off safely A detonator that exploits the thermal-runaway characteristics of semiconductors has been developed by the Sandia Corp., Albuquerque, N. M. The device is said to provide an extremely reliable means of detonation. Thermal runaway is obtained by applying the energy signal and the control signal simultaneously. This is ordinarily bad practice in semiconductor design, because resistance decreases, current flows more heavily and the temperature at the main pn junction rises. But in the new detonator the resultant heat is used to set off the explosive charge. Since this device requires coincidence of two signals, it is far less susceptible to accident than bridge wires or resistance wires, which can be activated by human error, circuit malfunction or radiation fields. An even greater margin of safety can be built in by using three or more signals, Sandia says. The detonator contains Si layers doped with p- and n-type impurities. The electrodes are mounted axially, like the
leads of a transistor. Several configurations of the multisignal detonator are possible, all of which lead to considerably greater miniaturization than is possible with conventional detonators. The device was designed and patented by Frank A. Goss, Jr., who is on leave from Bell Telephone Laboratory. Multisignal detonator uses thermalrunaway properties of a semiconductor to satisfy a logic function. ## Bring on your complex, small, noisy, difficult signals. We'll give you traces that show them for what they really are. When you need the greatest possible degree of signal-conditioning precision and operational control, Sanborn 7700 Series oscillographs with solid-state "8800" plug-ins will give you chart recordings of maximum resolution and intelligibility. Seven highly versatile signal conditioners offer unique performance capabilities: three DC types with a 1 uV - 250 V dynamic range, floating differential input and calibrated zero suppression . . . an AC-DC Converter with calibrated zero suppression and scale expansion permitting resolution better than 0.1%, 10 ms response and isolated, 1 meg. input . . . a phase-sensitive demodulator with calibrated reference phase shift, 90° calibrated dial with four quadrant selections, and a frequency range of 60 Hz to 5 kHz . . . a carrier preamp with 2400 Hz internal transducer excitation supply, calibrated zero suppression, cal. factor control and conversion gain of 10,000 . . . and a general-purpose DC preamp particularly useful for 100 mm wide chart recording. Use any of these "8800" plug-ins in the 7700 thermal writing oscillograph matched to your packaging and channel requirements — 4-, 6- and 8-channel 7704A, 7706A and 7708A console types . . . 2-channel 7702A system in rack-mount or mobile cart versions . . . single-channel 7701A wide chart (100 mm) portable system. Every one of these ther- mal writers will give you permanent, rectangular-coordinate recordings whose resolution and accuracy make all your measurements more useful. For a new brochure describing the advantages and wide choice of Sanborn thermal writing oscillographs, write Hewlett-Packard Company, Sanborn Division, 175 Wyman Street, Waltham, Mass. 02154. #### At the Paris Electronics Show #### Europe girds for battle with Goliaths of U.S. #### France studying plan that aims to make Europe independent of U.S. microcircuit technology Robert Haavind Managing Editor PARIS European dependence on American financing and expertise in electronics has become a major political issue on the Continent, and nationalistic efforts are under way to counteract the trend. Both the degree of the present dependence and the European reaction against it were much in evidence at the International Components Exhibition here April 5-10. The French appear to be making the strongest efforts to develop their own electronic industry. Consideration of a Plan Composants by the Government of Charles de Gaulle was revealed at the show by Marc Colonna, who heads the Industry Ministry's Direction des Industries Mécaniques, Electriques et Electroniques. The plan would be similar to Plan Calcul, which was initiated at the beginning of this year to achieve a completely Europeanbased computer industry. The aim of the new program, show exhibitors said, would be to develop independent microcircuit technology, so that Plan Calcul computers would not have to be built with U.S.-supplied chips Comparison of the exhibits here with the IEEE Show in New York in March—or even more significantly with discussions at the Solid State Circuits Conference in Philadelphia in February—reveals what an enormous task Europe faces. One engineer from a large British company in the microelectronics business summed up the situation with a colorful twist of phrase: "We're just a bit of fur on the top of the beast. We could stand here and hop up and down all day long and no one would notice." The big difference between European and American electronic progress, this engineer and others indicated, is that American research is almost entirely subsidized by the Government. "We can't keep up with outfits like TI or Fairchild with all that Government support," the British engineer commented. "In our case the Government market is peanuts. We're going it for the industrial and consumer business." Microcircuitry on display at the show was primarily based on silicon planar technology. A little MOS developmental work by CSF-Compagnie Générale de Télégraphie Sans Fil was in evidence, while the General Instrument Corp. and Philco-Ford's Microelectronics Div. showed they were ready to market MOS arrays—GI through a Milan subsidiary and Philco-Ford with a master decal approach. The latter approach, to be introduced in May, allows the user to design and fabricate his own circuit configuration. The promise of electronics for raising the entire economic status of a nation appears to be behind the French urgency to curtail dependency on the U.S. Plan Calcul was initiated to offset investments by the General Electric Co. in Compagnie des Machines Bull in 1964, when Bull was on the verge of going bankrupt. Appointed to head the European venture in computer design and programing training was Robert Galley, fresh from a major post in the development of a French nuclear capability. As an official in atomic energy, Galley was responsible for organizing French industry to construct a \$1-billion enriched-uranium plant. Independent companies have been formed to develop computers (Compagnie Internationale pour l'Informatique) and peripheral gear (Société Sperac). #### 1968 marketing goal Galley is expected to have about \$130 million over the next four years for computer development and programing training. He will also have a say in all Government computer purchases. Since the French endeavor doesn't expect to have a machine on the market until late '68, IBM and Bull-GE, the largest suppliers here, expect to get a continuing share of the market for some time. Bad feeling engendered by the Bull-GE maneuver—layoffs were necessary before the company regained its equilibrium—is being felt in the components and semiconductor areas here, according to some French representatives. Other American manufacturers are proceeding much more warily than in E. Schafer of Depex, N.V., Holland, inspects an amplifier chain for collective antennas, being shown by M. Portenseigne of France. Don't be manipulated on SCR's—trust IR. IR's Application Fact Book lets you select only specs that count. SCR specifications take on a refreshing air of common sense when you read the new IR Application Fact Book. When do premium parameters really affect circuit performance? What do you give up to get a given parameter? What *combinations* of premium parameters are needed *and possible*...and at what price? You get the answers straight from IR, and you make your selection from quality SCR's rated from 4.7 amps to 550 amps RMS—25 to 1300 volts. Specifying engineers are in the pivotal position today to smooth out production problems, to end delivery dilemmas, and protect performance. How? By writing specs around the parameters actually needed and actually available...off-the-shelf, overnight. Most of the information needed to write such common sense specs can be found right in the book. If your application is farther out, call an IR sales engineer. We are pioneers, too, and know how to help you innovators. APPLY YOURSELF TO THE FACTS OF SCR DESIGN. Write for IR's Application Fact Book. It's free, and it's packed with data to help you sidestep problems from design to delivery of: regulated power supplies, frequency converters, DC motor drives...you name it! (Paris show, continued) the past, after watching the GE experience. An exchange of views at a reception given by the American Electronic Industries Association on the second day of the exhibition reflected this wariness. William T. Ellis of the EIA's international department, reading some remarks in French with a somewhat Americanized pronunciation, expressed the hope that the French electronic industry had benefited by the investments and technical assistance of American companies. The reply by Charles Legorju, president of the Components Exhibition, was quite pointed: "You have made allusion to the importance of American investments in France. This concerns a delicate matter, because our country lacks the enormous absorption possibilities that your national marketplace offers, and it's important that competition between companies respects the scale of the differences." Although some fresh European ideas were apparent at the show, many merely reflected the domi- nance of U.S. technology. Following is a run-down of some of the more significant products of both types: A 140-MHz quartz-crystal oscillator shown by the Marconi Co., Ltd., Chelmsford, England, was mounted on a TO-5 header. The oscillator will put out 15 mW at frequencies from 60 to 140 MHz, depending on the crystal chosen. In airborne equipment several oscillators might be kept in an oven to get higher stability, according to Dr. S. S. Fortes, manager of applications engineering for Marconi's Microelectronics Div. The price is \$30 to \$50, depending on quantity. Multiple standard chips were used rather than a single monolithic circuit, Dr. Fortes explained, because volume did not warrant the expense of making special masks. A 150-MHz transistor of unique design that has already produced 25-W outputs and is expected to reach 50 W soon was a highlight of the CSF-Compagnie Générale de Télégraphie Sans Fil display. Cosem, the CSF semiconductor subsidiary, is developing the device and expects to market it in 1968. In structure the device resembles RCA's interdigitated transistor. The unique aspect is the doping profile (shown in the diagram), according to a CSF spokesman. CSF was also showing ferrite waffle-iron memories, based on work at Bell Telephone Laboratories that was reported to the Solid State Circuits
Conference three years ago. Nondestructive readout may be possible with a new technique developed by CSF. In this type of memory a flat ferrite plate has grooves cut in rows and columns. Nickel-iron films are deposited over the resulting checkerboard pattern. The films are isotropic, but the grooves beneath them give an anisotropic effect (preferred directions of magnetization), needed for storage. In the normal destructive type of memory, bits are stored diagonally across an intersection. In the nondestructive mode being studied by CSF, the bits are stored in fields linking vertically adjacent corners. Cofélec, CSF's magnetics subsidiary, will be marketing a destructive readout memory featuring a 200-ns read-write cycle time. This type of memory operates on small currents; yet it is insensitive to exterior magnetic fields, in contrast with thin-film types. It should be easier to manufacture than core memories, CSF believes. The company expects applications (continued on p. 32) French-made 150-MHz transistor has reached 50 watts output at 150 MHz. It has an interdigitated emitter (top). **Oscillator** in a **TO-5** can has a quartz crystal (top) mounted over a multichip circuit. The smallest chip in the center is a transistor. The one to the left of it is a resistor network and the two above it are capacitors. #### **American Bosch** #### uses Allen-Bradley Oriented Ceramic Permanent Magnets... because of their uniformity in staying within specifications, and delivery schedules—though tight—are kept! American Bosch permanent magnet motors are used for... power windows electric windshield wipers power seats ■ Allen-Bradley's quality control procedures assure the continuously uniform properties—both electrical and physical—that are essential to profitable large volume motor production. The most modern manufacturing facilities in the hands of technically experienced craftsmen produce the highest quality, radially oriented ceramic permanent magnet segments that are presently available. Allen-Bradley ceramic permanent magnets can be furnished for a wide range of motor sizes—from 34" diameter up to a 10 hp motor rating. They are available in a variety of types—having different properties—to satisfy your specific requirements. A-B application engineers will be happy to consult with you in developing your dc motors for maximum motor performance. Allen-Bradley Co., 1344 S. Second St., Milwaukee, Wis. 53204. In Canada: Allen-Bradley Canada Limited. Export Office: 630 Third Ave., N.Y., N.Y., U.S.A. 10017. Properties of typical Allen-Bradley ceramic permanent magnets #### ALLEN-BRADLEY QUALITY MOTOR CONTROL QUALITY ELECTRONIC COMPONENTS 866-3AB ## Now tunnel diodes cost as little as 50¢ #### Hadn't you better switch fast? If tunnel diode performance at transistor prices sounds impossible, take another look at GE tunnel diodes. Now you can get a typical switching speed of 1.5 nsec. or better in current ratings from 0.5 mA to 10 mA. Power dissipation is as low as 40 microwatts per unit. All that performance can cost as little as $50 \, e$. And your circuits will benefit from greater packaging density, lower power consumption, and fewer components to perform a given function. New General Electric tunnel diodes are available either in axial lead packages, or in pellet form for hybrid integrated circuits. At the new low prices you can now Planar and thin film fabrication techniques, used to form the germanium tunnel junction, make lower prices possible. use GE diodes in many new applications. Why not try them for current or time delay thresholding, high-speed logic circuits, high-frequency oscillators or amplifiers, UHF mixers, or sense amplifiers? This is just one more example of the low-cost semiconductor leadership and total electronic capability GE offers you. For further details call your nearest GE engineer/salesman, or semiconductor distributor. Or write to Section 220-50, General Electric Company, Schenectady, N.Y. In Canada: Canadian General Electric, 189 Dufferin St., Toronto, Ont. Export: Electronic Components Sales, IGE Export Division, 159 Madison Ave., New York, N.Y. SEMICONDUCTOR PRODUCTS DEPARTMENT Wanted: A huge allied network #### Billion-dollar radio link sought Over a billion dollars may be involved in developing a common radio communications system to link United States and allied forces on the battlefield. That is the figure used by Defense Dept. officials who are discussing the plan. It will link battle units of the United States, Canada and Australia, and, perhaps later, most NATO countries. The proposal, which may include communication satellites, involves so much money that the U. K. has withdrawn for financial reasons. Pentagon officials are trying to persuade the British to rejoin. Observers believe that any such success may rest on granting the British a large measure of the development and production contracts. Project Mallard, as the planning phase is called, has received approval from the Director of Defense Research and Engineering, John S. Foster, the No. 3 man in the Pentagon, and has now been sanctioned by Defense Secretary Robert S. McNamara (see News Scope, p. 14). The system will permit not only allied battlefield commanders to talk to one another, it will also allow communications between the troops of one nation and those of another. Thus an Australian infantry patrol leader could direct U.S. fighter-bombers to tactical targets, or a U.S. company commander could call for support from Canadian tanks previously designated as his back-up. The hope at the Pentagon is that Mallard will so completely standardize radio equipment and communications practices among the cooperating nations that lower-echelon commanders will be able to talk directly to one another without going through a high-echelon switchboard. The Pentagon has selected Canada and Australia—and hopes to regain Britain—for the early phases of the program because of the common language. Wherever possible, voice communications will be used. Messages between small battle units attached to the same large element will be relayed by portable ## Washington Report S. DAVID PURSGLOVE, WASHINGTON EDITOR ground stations, according to present plans. Messages between more widely separated units would be handled by communications satellites. According to McNamara's announcements, the project will be operated from Fort Monmouth, N. J., under the direction of Brig. Gen. Paul A. Feyereisen. A staff member of the Canada-U.S. Military Cooperation Committee said Canada would be represented in the project by Lt. Col. D. C. Coughtry, and Australia by Lt. Col. L. G. Moore. The U.S. Defense Dept. hopes to have the system operational by 1975-77. About three and a half years would be allowed for development of working designs. This project-definition phase would cost \$40 million, of which the U.S. would provide 60 per cent. The U. K. was to have put up 32 per cent and Canada and Australia 4 per cent each. If Britain cannot be persuaded to rejoin the effort, the U.S. would likely pick up her share. If the project definition works out on schedule, Pentagon sources say, then a \$1-billion production program would follow. #### U.S. aid for school computers urged A Presidential committee has urged that the Federal Government give computer programs in colleges the same degree of financial support that it now gives the schools' libraries—about \$60 a student. If the recommendation is followed, the advanced computer facilities now available at a few pioneering colleges and universities would be commonplace by 1971 at nearly all institutions of higher learning in the country. The suggestion for aid has come from a panel on computers within the President's Science Advisory Committee. The panel contends that computers have become such important learning tools that the Government should support a program to give every college student access to one. (continued on p. 30) ## Washington Report CONTINUED The committee is headed by Dr. Donald Hornig, the Presidential Science Adviser, and the chairman of the computer panel was Dr. John R. Pierce of Bell Telephone Laboratories, Inc., Murray Hill, N. J. Once a program for Federal aid is under way, the panel suggested, it could be extended to computer programs in high schools. #### Post Office R&D gains momentum A year ago a staff member of the House Science and Astronautics Committee, noting the growing postal research and engineering program, commented that the Post Office R&D budget might easily exceed \$100 million a year in about five years. Now he says his estimate was too conservative. That budget was \$12 million in fiscal 1966, \$16.2 million in 1967, and the request for 1968 is over \$23 million. The biggest part of the budget is given over to electronics. Here are projects in the works: The Post Office Bureau of Research and Engineering is looking for digital recording equipment that might be applied to "off-line" letter-sorting systems. It would provide a system for "canceling" without touching the envelope or defacing it. Presumably the mail—of a special type—would be numbered, and the digital system would record the numbers as the envelopes passed by. A number used twice would be subject to the same penalty as an attempt to use a canceled stamp. Companies with experience are being sought to develop a presorting technique that would separate mail addressed in an ordinary way from mail carrying addresses that could be scanned by optical-reading machines. The general concepts have already been laid out by postal R&D specialists; the electronics companies would reduce the concept to hardware and refine it. The system must be better than 95 per cent accurate. #### Train controls report published The long-awaited report is in on the first Government-sponsored study of automatic train controls envisioned for high-speed transportation systems. The Department of Housing and Urban Development, through three urban
mass-transportation demonstration grants, supported a test of controls in the San Francisco Bay Area Rapid Transit District. In a nutshell: All four control systems under evaluation successfully met the "general functional requirements," but no single system was outstanding. The systems were tested on three laboratory cars over three miles of double track. They were under evaluation for their capabilities in train protection, speed and running-time regulation, and programed precision stopping at stations. The test may have to be repeated on a larger scale, because the propulsion and braking systems of the test cars were themselves developmental and under evaluation, and this may have clouded some of the detailed performance data. Nevertheless the Government believes that the test was valid enough to prove the reliability of fully automatic controls. #### World weather forecasting spurred The U.S. plans to contribute approximately \$20 million over four years to help poorer nations develop their weather forecasting services. This has been indicated by Robert M. White, head of the U.S. delegation to the Fifth Congress of the World Meteorological Organization in Geneva. The funds would help the poorer nations participate in the worldwide forecasting network that utilizes satellites, high-speed communications systems and computers. #### **Electronic patent reform suggested** Two representatives of the National Association of Manufacturers have called the U.S. Patent Office the most efficient in the world—"but even so," they add, "it takes them at least two to three years to issue a patent." Writing in Challenge, the Magazine of Economic Affairs, Frederic O. Hess and Reynold Bennett of the NAM's Patent Committee say the situation is worse elsewhere in the world. For the inventor who wants international protection, they assert, it is near chaos: he must deal with over 80 different national patent systems. Their remedy: an international patent office, with "highcapacity satellites synchronized with large patent-data-processing and information storage systems." Patent applications could be processed in days, the authors contend. ## NOW...a full-sized VOM in a palm sized "package" Carrying Case— Cat. No. 2225 \$ 9.50 Accessory Leads— Probe Tip Lead— Cat. No. 2055 \$ 2.75 160 Volt-Ohm-Milliammeter ## Simpson 160 Handi-VOM Simpson Handi-VOM gives you the ranges, the time-saving conveniences and the sensitivity of a full-sized volt-ohm-milliammeter—yet it's only 3-5/16" wide, weighs a mere 12 ounces. Recessed range-selector switch never gets in the way... polarity-reversing switch saves fuss and fumble. Self-shielded taut band movement assures high repeatability and freedom from external magnetic fields. Diode overload protection prevents burnout—permits safe operation by inexperienced employees and students. The demand is BIG, so get your order in to your electronic distributor, TODAY! #### RANGES DC VOLTS: 0-0.25, 1.0, 2.5, 10, 50, 250, 500, 1000 @ 20,000 Ω/v AC VOLTS: 0-2.5, 10, 50, 250, 500, 1000 @ 5000 Ω/v . DC MICROAMPERES: 0-50 DC MILLIAMPERES: 0-1, 10, 100, 500 DB: -20 to +10, -8 to +22, +6 to +36, +20 to +50 "O" REFERENCE: 1 MW into 600Ω RESISTANCE: Rx1, Rx10, Rx100, Rx1K, Rx10K (30 Ω center) ACCURACY: ±3% FS DC, ±4% FS AC #### SIMPSON ELECTRIC COMPANY 5200 W. Kinzie Street, Chicago, Illinois 60644 • Phone: (312) 379-1121 Export Dept: 400 W. Madison Street, Chicago, Illinois 60606, Cable, Simelco IN CANADA: Bach-Simpson Ltd., London, Ontario IN INDIA: Ruttonsha-Simpson Private Ltd., International House, Bombay-Agra Road, Vikhroli, Bombay WORLD'S LARGEST MANUFACTURER OF ELECTRONIC TEST EQUIPMENT See Telephone Yellow Pages # Funny. If you want things like pushbutton test sequencing in your IC tester, you have to buy the lower-priced make. The Birtcher Model 800 has the most advanced features you'll find in an IC test set, yet it carries one of the lowest price tags. ■ For \$2000, you get a modular system with all this: five integral DC power supplies—one of them a constant current source, all of them digitally settable; a 10x20 crossbar (not pin board) matrix with provision for five external inputs or (like multiple-input gates) without reprogramming; hook-up for external DVM or oscilloscope display; voltage and current measurements, accurate to 1% full scale. ■ For not very much more, you can add an integral pulse generator and decade load resistors and capacitors, and double your matrix capacity to 10 x 40. ■ The modular construction keeps it flexible, and there's a full complement of test adapters that makes it universal. Feature for feature, you won't find anything close to the Birtcher Model 800 at anything close to the price. (You'd have trouble matching Birtcher delivery time, too: 2 weeks ARO.) ■ Write us for detailed data sheets. #### the BIRTCHER CORPORATION INSTRUMENT DIVISION 1200 Monterey Pass Road / Monterey Park, California 91754 / (213) 264-6610 NEWS (Paris show, continued from p. 26) in 10⁴-to-10⁵-bit memories. For smaller memories, it believes semi-conductor types will be preferred, because the peripheral circuits can be built in. Cofélec will also market a permanent type of memory using Permalloy films. Meanwhile CSF expects to spend a year or more studying the nondestructive version before it will know whether it is commercially producible. Although there were no displays of working color TVs at the show this year—the show management having decided to rule them out—there was one big announcement in this area: a wire-grid color tube, which the manufacturer, Compagnie Française de Télévision, believes will replace the shadow-mask tube (see News Scope, p. 13). Among the other developments were these: - Fluid logic devices by the Plessey Co., Ltd., Ilford, England, were shown in four devices: an OR/NOR gate, a memory device, an amplifier, and a flip-flop based on the Coanda effect. - A photo of an 800-W molecular CO₂ laser was displayed by Compagnie Industrielle des Lasers, a French laser company. It expected to demonstrate the laser at the French Physics Society's show here last week. The show was sponsored by five French professional societies and was held under the auspices of the Fédération Nationale des Industries Electroniques. Miss D. de Saint of Pile Wonder, a French battery manufacturer, shows a battery with an O-ring seal that has resisted leakage despite 15 days in a short circuit. ## Component and Circuit from SYLVANIA Electronic Components Group **PHOTOCONDUCTORS** #### Now, highly reliable UV detection ... even in IR ambients A shortcoming of many ultraviolet detectors is that they're also sensitive to infrared radiation. Thus it's often difficult, if not impossible, to use them to detect just UV in an ambient containing both infrared and ultraviolet radiation. Last year, Sylvania introduced a UV cell with attenuated infrared characteristics. Now, an improved version of this device has greater sensitivity and shows even better infrared attenuation. Sylvania's new Type SRP-3614B further the detection and measuremore sensitive photocell. unit are a power dissipation rating of 300 mW, an ON resistance of 1,300 ohms at 64 µW/cm2 irradiance, and Ascent time is 130 msec (at 64 μ W/ ment of UV radiation. Like previous designs, the new device requires only simple low voltage circuits to provide an inexpensive, highly reliable UV detection system. The SRP-3614B does differ from earlier types in two important characteristics: it is less sensitive to IR radiation and uses a Key electrical ratings for the new 130 ms 720 ms 40 ms cm²) while descent time is 40 msec at the same radiation level. The SRP-3614B has the proven high reliability of Sylvania's hermetically sealed cadmium-sulfide photoconductors, but with the spectral response characteristic shifted into the ultraviolet region in the range of 2500 to 4000 angstroms. The excellent electrical character-(continued) #### This issue in capsule Integrated Circuits — How to prevent unused inputs from degrading IC performance. CRTs - Eliminate unnecessary tradeoffs when choosing computer displays. Microwave Diodes -- Punch-through varactors, new route to improved harmonic efficiency. Photoconductors — How photoconductor-lamp assemblies are making music sound better. Diodes - With whiskerless diodes, you can get more components on a board. PHOTOCONDUCTORS (continued) istics of this improved photoconductor are protected by a small, rugged package with a maximum diameter of 0.70" and a length of 1.625". Coupling the small size, long life, analog response characteristic with the simple associated circuit requirements makes the SRP-3164B ideal for applications where UV detection, measurement, control or regulation are needed, such as intrusion and fire alarm systems. The new photoconductor can effectively and economically replace many avalanche or continuous monitoring devices. CIRCLE NUMBER 300 MARKETING MANAGER'S CORNER ## Circuit Designer-IC Manufacturer... Conflict or Complement? The rapid growth of the integrated circuit industry has given rise to a pertinent question: whether or not there is a functional conflict between the IC manufacturer and the manufacturer of electronic equipments and/or systems. In other words, are we, as IC manufacturers who produce complete functional circuits. overstepping our bounds and infringing on the functions of circuit designers? What about circuit design engineers? Will they become high priced order clerks, purchasing all the circuits they need to build an equipment out of an IC catalogue? To aggravate the picture, the trend in the IC industry appears to be headed for even greater density. LSI (large scale integration) is now in the horizon, cramming many more and larger circuits into a single package. It may be possible to eventually encapsulate an entire automated operation or computer function into a single IC package. Will this development turn the computer manufacturers into
automated factories, whose purpose it will be to merely assemble various combinations of IC packages? Not at all! On the contrary, as the electronics industry expands, all its constituent components will expand along with it. With standard circuits such as flip-flops, gates, registers, and counters available as packaged items, the design engineer can concentrate on larger and more complex circuit configuration. Furthermore, many cir- cuits required for equipment design have a unique configuration, in one aspect or another, and, therefore, must be designed by the equipment manufacturer; the IC manufacturer only fabricating these "customized" circuits. With reference to this last point, it should be remembered that in order to work effectively with the integrated circuit manufacturer, the circuit designer must familiarize himself with integrated circuit technology, its advantages, its applications, and its limitations. He should know the IC circuits that are available as "off-theshelf items." He should also be knowledgeable of the manufacturing process of integrated circuits so that he can design new circuits which are most applicable to the present state of the art. This will result in a reduction of IC costs, a functionally superior IC, and a better working relationship between circuit designers and integrated circuit manufacturers. The same situation exists with regard to system designers. No matter how complex and dense ICs become, they will only serve as building blocks for large systems. Furthermore, the systems of today will become the subsystems of tomorrow's larger, more complex and sophisticated systems. Therefore, with the availability of larger and more efficient "building blocks," system design engineers will be able to concentrate on solving the design problems associated with cre- ating larger and more efficient systems. Finally, it must be noted that the trend toward LSI is not a self-generating movement. IC manufacturers are not simply producing denser ICs just for the sake of cramming more circuitry into a package. This trend, to a great extent, is the result of certain design requirements dictated by military and industrial contractors. The great need for space and weight savings, and the requirement for extended operation reliability within the space program has had a significant effect on IC design. The noise immunity requirements of high frequency circuitry and high speed computers also have dictated the direction which IC manufacturers have had to take. However, when one looks at the total picture, he finds the word that describes the relationship of equipment and systems manufacturers, and IC manufacturers, is "complementary"; each has its own function which complements the other. And the very evident direction of motion is upward. The electronics industry continues to grow; equipment and systems are becoming more complex and sophisticated. Keeping up with this growth in complexity and sophistication is the IC manufacturer. Roger a Swanson #### How PL assemblies are making music sound better Photoconductor-lamp (PL) assemblies are being used to produce special musical effects such as tremolo, vibrato and percussion. What makes these units ideal for these applications is the intrinsic characteristics of the photoconductor-lamp combination. It provides noise-free operation because of electrical isolation between control and signal circuitry. This, of course, eliminates the introduction of hum from the control circuit. Result is an effect pleasing to the listener. Here's how a tremolo circuit using a Sylvania PL assembly makes an electric guitar sound more pleasing. Tremolo effects—subsonic modulation of an audio signal—can be produced easily and reliably by an electric guitar amplifier which uses Sylvania's PL assembly. The circuit shown uses a PL-8224C assembly and a phase shift oscillator to get the tremolo effect. The oscillator output frequency of 40 to 8 Hz is controlled by a 1-megohm potentiometer in one arm of the phase shift network. Output of the oscillator is decoupled by a 330 K resistor into another 1-megohm potentiometer which varies the level of the control signal voltage fed into the PL driver stage. The on/off switch can ground the arm of the 'Depth' potentiometer to remove modulation from the light source portion of the PL assembly. The dc operating current of the light source is determined by the setting of cathode resistor in the PL driver stage. The ac output of the 'Depth' control is superimposed on this dc level, providing an ac variation in the resistance of the PL. Shunting this ac varying resistance divider across the volume control gives the desired modulation of the audio signal. Depth of modulation depends on the setting of the 'Depth' control and may approach 100 percent. Basic action of this circuit is that of a volume control being varied around its operating point at a sinusoidal rate with the rate controlled by a low frequency oscillator. The type PL-8224C assembly used in this application consists of a hermetically sealed cadmium sulfide photoconductor and an incandescent lamp potted in a metal cylinder 1.75 inches long and 0.31 inches in diameter. Its cell voltage is rated at 300 V max and can handle up to 50 mW at 25°C. Cell resistance varies from below 60 K (ON) to above 10 megohms (OFF). The PL-8224C is just one of many standard and custom PL Assemblies available from Sylvania. These PL assemblies, because they have the characteristics of both a switch and a potentiometer, have many other circuit applications in addition to generating musical effects. Such applications as: On-Off Switch, Sequential Switch, Logic Functions, Gain/Volume Controls, Electrically Controlled Circuit Functions (Delays, Oscillators, Filters), Linear Amplifiers, Voltage and Current Regulators, Motor Speed Regulators and Modulators. In all these applications the PL assemblies provide moderate power handling capability, noise-free operation, and high circuit isolation. CIRCLE NUMBER 301 ## **Preventing unused inputs from degrading IC performance** Frequently, all inputs of an integrated circuit are not required in a particular application. What does the circuit designer do with these unused inputs? They may be left open, but this could degrade circuit operation; or additional components can be added to insure top performance. SUHL™ devices by Sylvania require only simple wiring and no extra components to obtain optimum performance characteristics. Here's the how and why for gates and flip-flops. The high drive capability of SUHL I and II output networks allows unused gate inputs of these ICs to be tied directly to signal inputs with insignificant sacrifice in speed or static characteristics. In the same way, unused inputs of these SUHL flipflops can be tied to active inputs or outputs to maintain propagation delay time, clock width, and amplitude. With SUHL gates and flip-flops it's basically a matter of eliminating the effect of the capacitance associated with each of the unused inputs. In SUHL gates, each input has a capacitance to ground of about 1.2 pF (package and chip). If wiring is also connected to the emitter, then additional capacitance is added. How the capacitance of unused inputs influences circuit operation can be explained by Figure 1. Here, if input A goes to logic "0" and input B is float- ing, the voltage at B tries to follow the voltage at A. In time, B falls to logic "0." When A rises to logic "l," B is held down until its capacitance charges through the base resistor. This action slows down the recognition of the logic "1" data at A. To prevent this, unused emitters should be terminated with a voltage greater than the logic "1" threshold voltage. In this way, stray capacitance on the inactive inputs will always be at logic "1" and won't slow circuit operation. There are a number of ways to insure that these gate inputs remain at logic "1." The unused inputs can be connected to a dc voltage as shown in Figure 2A. For SUHL units, the voltage should never be higher than 5.5 V, the breakdown rating of the inputs. A 5.0 V supply is satisfactory if it never goes above 5.5 V, even during power turn on. Should the supply go above 5.5 V, then a resistor (ranging from 500 to 5000 ohms) is placed between the emitters and the supply as indicated in Figure 2B. Many emitters can be tied together. One convenient method of supplying the required voltage is to use one NAND gate with its inputs grounded to hold all unused emitters at Logic "1." A more convenient neutralization technique is to tie unused emitters to one of the signal emitters as shown in Figure 2C. This requires no extra components. Only simple wiring is needed and performance of the system is not degraded. In this approach, when the data signed goes to "0," all capacitance is directly discharged to "0" through the driver. Since this capacitance is small and the drive capability of SUHL is high, there is a negligible effect on speed (about 0.03 nsec/pF). In this configuration, input current is the same as if only one input were used, because the base resistor limits current flow. In Figure 2C, when the driver rises to logic "1," each input and its capacitance is pulled to a positive voltage. Again, because of the high drive capability of SUHL output networks, pull-up speed is negligibly affected by the small capacitance increase (about 0.4 nsec/pF). The high current capability of the output network of all SUHL elements also means that static characteristics remain constant. These SUHL output characteristics are shown in Figure 3. Even with many milliamps of loading, logic levels are still high and well above threshold. In flip-flops, it is extremely important that all inactive inputs be terminated. Not only is propagation delay time effected, but so is clock width, amplitude and the waveform required for triggering. Synchronous or data inputs of flipflops can be terminated with dc in the same manner as a gate,
but for each flip-flop there are signal carrying inputs or outputs to which unused inputs can be connected. Examples are shown in Figures 4 and 5. Unused asynchronous input terminals (DC Set, Preset, Reset) can also have a degrading effect on performance, particularly if they are connected to wiring or board metalizing which increase capacitance. Even at low frequencies it is important that asynchronous inputs be connected to a positive voltage or terminated in some other way. The same techniques used for gates or those shown in Figures 4 and 5 can be employed. CIRCLE NUMBER 302 **CRTs** ## Eliminate unnecessary trade-offs when choosing computer displays The value of a computer often is directly related to how fast the information output can be obtained by the people who need the information. CRTs provide an effective and very fast graphic display of such information. But picking the right tube (and the right tube manufacturer) for computer display applications is not simple. Many factors must be evaluated. A good way to start is to look at the manufacturer's present capability in CRTs for computers. Years of leadership in CRT technology and display design give Sylvania the full capability needed to meet demands for computer CRTs. This capability is based on a solid background of providing CRTs for the computers of several manufacturers. These CRT displays offer many advantages. Display of alphanumeric information on a tube face is much faster than waiting for a typed output. A dynamic display also permits on-line program debugging, text editing and revision, and rapid scanning of stored material. Coupled with a camera, these displays can give a hard-copy output. The growing interest in using displays to permit on-line, two-way conversation with the com- puter opens up a host of applications. For instance, results of calculations can be plotted, and the user can select regions where he wants calculations to be carried out in more detail. Selecting the optimum tube for such applications can be a difficult chore. Many factors must be considered; such factors as size of display, deflection, focusing method, sensitivity, resolution, brightness, power requirements, and phosphor characteristics. Trade-offs may be necessary. But, at Sylvania these trade-offs are kept at a minimum; because the designer isn't limited to a few off-theshelf items. Sylvania's wide range of standard and custom tubes permit a better match of tube to application. | TYPICAL COMPUTER TYPES | | | | | | |---|-----|-----|---------------------|-----------|--| | Basic Type Deflection Screen Useful Overa Angle Size Scan Lengt | | | | | | | SC-4649 | 70° | 7" | 5-3/4" x 4-3/8" | 10" | | | 8QP- | 90° | 8" | 7-3/16" x 5-3/8" | 9-15/16" | | | 8KP- | 90° | 8" | 7-3/16" x 5-3/8" | 11-15/16" | | | 17DWP- | 70° | 17" | 11-1/8" x 14-5/16" | 19-3/16" | | | 21EYP- | 72° | 21" | 19·1/16" x 15·1/16" | 23-1/32" | | CIRCLE NUMBER 303 ### Punch-through varactors: new route to improved harmonic efficiency There's a great deal of confusion in the microwave industry regarding high-order multiplier diodes. Names such as step diodes, step recovery varactors, snap diodes, snap-off varactors, etc. are being used to describe diffused diodes having a varying capacitance-voltage relationship. Sylvania uses the term PTV, or Punch-Through Varactor, to better describe a diode which was developed to have a sharp decrease in junction capacitance, as well as a series resistance at a reverse bias 15 to 20% of the rated breakdown voltage. This deflection point occurs when the depletion width "punches-through" the thin epitaxial layer of high-resistivity silicon. The Sylvania D-4410 PTV exhibits little capacitive nonlinearity in the reverse bias region, but shows a marked nonlinearity in the forward bias region because of charge storage. The relatively flat capacitance change over a large reverse bias range offers several advantages, such as minimal detuning over the temperature range, simplified tuning procedure, and improved dynamic range. Simplified matching techniques can be employed, and under broad band operating conditions improved operating efficiencies can be realized. If PTVs are driven into the forward bias region, high conversion efficiencies can be obtained as a result of the marked non-linear capacitance curve. The lower average R, value over the drive cycle also contributes to better efficiency by reducing the power dissipation. Harmonic generators operating with multiplication ratios as high as 27:1 or as low as 2:1 will yield highly efficient performance at frequencies from VHF to Ku-band. These diodes, made from epitaxial silicon, have diffused junctions tailored for punch-through at a reverse bias voltage which is low relative to the breakdown voltage. Electrical specifications and typical operation in a multiplier circuit for a Sylvania PTV are given in the table. Carefully controlled fabrication techniques give Sylvania's PTVs these additional advantages: uniformity of performance characteristics, higher power handling capability, improved circuit stability, higher power, and frequency operating range. All units are baked at a minimum temperature of 200°C for at least 16 hours prior to final hermetic sealing. Finished devices see these test procedures: centrifugal acceleration of 20,000 G, temperature cycling from -65°C to +150°C; breakdown checking at 150°C; 48 hour burn in at 200°C; and gross and fine leak (Radioflo) testing. Units in the new PTV series are available in four packages: the 017, 023, 075, and 099. | SPECIFICATIONS (Type D-4440) | PERFORMANCE
IN MULTIPLIER
(Type D-4440) | |---|---| | $V_8 = 45 \text{ Volts}$ $C_1 (-6V) = 1 - 1.5 \text{ pF}$ | F _{in} = 1 GHz | | $T_s = 250 \text{ picosec}$
$T_1 = 60 \text{ nanosec}$ | F _{out} = 10 GHz | | $R_s = 0.8 \text{ ohms}$ $I_E = 100 \text{ milliamps}$ | P _{In} = 1 watt | | R _T = 45°C/watt max | Efficiency = 13% | **CIRCLE NUMBER 304** #### PTV DIODES In a varactor multiplier, power handling capability and conversion efficiency are determined by the breakdown voltage, junction capacitance, junction conductance, and series resistance. Breakdown voltage is determined primarily by the resistivity of the N-type semiconductor material used in the P-N junction. The other parameters are shown in the simplified equivalent circuit of Figure 1. The nonlinearity of the voltage-variable junction capacitance is the dominant factor in the frequency multiplication process. Junction conductance and series resistance dissipate power, limiting output power and conversion efficiency. The frequency conversion process also depends on the quality factor Q or cutoff frequency $w_{\rm co}$. These are given by the equations $Q = 1/wR_{\rm s}C_{\rm j}$ and $w_{\rm co} = 1/R_{\rm s}C_{\rm j}$. Specifically, frequency conversion depends on the average values of these factors over the drive cycle of the multiplier. Since both R_s and C_j vary with reverse voltage, their values should be kept at a minimum over most of the drive cycle. The nature of these nonlinear parameters can be examined with the aid of the simplified P-N junction of Figure 2. Here, a thin layer of lightly doped, n-type semiconductor of thickness t is grown epitaxially on a substrate of heavily doped, n-type material, and p-type dopant is diffused to a depth X into the n-type layer. A reverse bias voltage applied to the varactor sweeps mobile carriers out of the lightly doped n-region. These carriers recombine in the p region, forming a depletion region of width W in the n layer. Width of this region varies with applied voltage as; $W = K_1 (\phi - V) \gamma$. Where ϕ is the built-in voltage of the junction, K_1 is a constant, and V is the applied reverse bias. The term γ varies from 1/3 to 1/2 depending on the type of junction. The depletion region boundaries act as a parallel plate capacitor with capacitance of: $C_{j} = EA/w = k_2 (\phi - V)^{-\gamma}$, where E is the dielectric constant of the n-type material, A is the junction area and k_2 is a constant. Increasing the applied reverse voltage V increases w and decreases C_1 . Two additional factors determine the variation of C_j as V increases. One is the maximum allowable applied reverse voltage, with the reverse breakdown voltage V_{bc}. At V_{bd}, avalanche multiplication takes place and a large current flows through the diode. The second factor is the thickness t of the n-type layer. Depletion width, w, increases continuously with applied voltage, but it cannot exceed thickness t, because at that point the depletion region boundary is in contact with the heavily doped n+ substrate. When w = t, no further decrease in junction capacitance can occur. Depending upon thickness and resistivity of the n-layer, avalanche breakdown may occur at a reverse voltage either lower or higher than that at which w = t. The voltage at which w = t is the punch-through voltage, Vp. Figure 3 shows the junction capacitance and applied reverse voltage relationship for the punchthrough and conventional (or "normal") varactors. If the punch-through voltage occurs at a voltage which is low with respect to the breakdown voltage, then the overall capacitance-voltage relationship approaches the case where $\gamma = 0$ and C_i is constant for any applied reverse voltage beyond the punch-through point. While the PTV exhibits little capacitive nonlinearity with a reverse bias, a marked nonlinearity occurs with a forward bias. This is due to charge storage. This charge storage capacitance, sometimes called the diffusion capacitance, is an exponental function of forward voltage, and also depends upon the recombination lifetime of the semiconductor material. For effective charge storage, the recombination lifetime should be large compared to a
period of the drive frequency. Figure 4 shows an idealized capacitance-voltage plot ($\gamma = 0$) of a punch-through varactor. The series resistance, R, of an epitaxial varactor consists of a sum of four terms: $R_s = R_p + R_n + R_{n+} + R_c$. Resistance Rp is that of the p-layer; R_n that of the n-layer; R_n+ that of the substrate; and Re that of the ohmic contacts. In practice, Rc is usually a few tenths of an ohm at uhf frequencies, but may be higher at high microwave frequencies because of skin effect in the connecting leads. For surface concentrations normally used in epitaxial varactors, Rp is usually negligible compared to Rc and Rn. Likewise, R_{n+} is negligible for a highly doped substrate. Thus, the resistance of the epitaxial layer, R_n, is the dominant component of Rs, and is given by $R_n = P_n L/A = P_n (t-w)/A$. P_n is the resistivity of the epitaxial n-layer, and L is as shown in Figure 2. Since w varies with reverse voltage, Rn and Rs also vary with V. As with C_j , if $|V_{bd}| < |V_p|$, then R_s decreases continuously as voltages from zero to V_{bd} are applied. If $|V_p| < |V_{bd}|$, then R_n vanishes at V_p. This is because w = t, L = O and the total series resistance is $R_s \approx R_c(|-V| \ge |V_p)$. Figure 5 shows the variation of R_s, for the normal and punch-through cases. The change in series resistance with reverse voltage may be quite appreciable. For epitaxial varactors with breakdown voltages of 50 to 100V, the ratio of series resistance at zero bias to that at the breakdown voltage may be greater than 2:1 and up to 10:1 for higher-voltage varactors. Varactors with the same value of Rs at breakdown may have quite different values of Rs at lower reverse voltages. In the PTV, the Rs is lower at zero bias than in a conventional varactor and reaches its minimum value at the punch-through voltage. The result is a lower average Rs over the drive cycle and higher conversion efficiency than in the normal varactor. **CIRCLE NUMBER 304** Use Sylvania's "Hot Line" inquiry service, especially if you require full particulars on any item in a hurry. It's easy and it's free. Circle the reader service number(s) you're most interested in; then fill in your name, title, company and address. We'll do the rest and see you get further information almost by return mail. #### BUSINESS REPLY No Postage Stamp Necessary if Mailed in the United States POSTAGE WILL BE PAID BY #### SYLVANIA ELECTRONIC COMPONENTS GROUP Sylvania Electric Products Inc. 1100 Main Street Buffalo, New York 14209 FIRST CLASS Permit No. 2833 Buffalo, N.Y. Dept. B4 4 4 ## How whiskerless diodes let you get more components on a board Designing computers or other equipment which requires fast logic circuits or small signal switching? Here's your chance to get more money for your diode dollar. Use Sylvania's miniature whiskerless diodes to replace DO-7 types, to get significant savings in mounting space, and improve reliability without any increase in cost. Because Sylvania's miniature dual stud whiskerless diodes are much smaller than DO-7 types, they allow designers to decrease circuit board requirements significantly. Costing no more than their electrical equivalents in DO-7 packages, the rugged whiskerless units have a package volume which is 68 percent smaller. But smaller size is not the only advantage of these newer diodes. The single unit construction makes for higher reli- ability and for devices able to take shock and vibration environments. With these 0.075" dia. by 0.160" long Sylvania units you get top electrical performance. Typical reverse leakage currents of units in the whiskerless line are a low 15 na. Switching speeds are in the order of 4-10 nsec. Ratings for these silicon epitaxial diodes include average rectified currents of up to 150 mA (with surges of 500 mA) and a power dissipation of 500 mW. Key construction features of the whiskerless devices are: use of a plated silver sphere to make contact to the junction, dumet studs for good heat conduction away from the junction, and protection of the active area with a soft glass sleeve. What results is a rugged single-piece device capa- ble of taking high-g shocks. Reliability of this simple structure is enhanced further by the pains taken during the manufacturing process. Sylvania has developed special production techniques to make sure the silicon dice used is more symmetrical and is free from any jagged edges, cracks, or out-of-tolerance parameters. Sylvania's whiskerless diodes can be used with standard automatic insertion equipment. CIRCLE NUMBER 305 | SILICON | EPITAXI | AL DIODES | |---------|----------------|--------------------------| | Туре | Outline | Electrical
Equivalent | | 1N4148 | DO-35 | IN914 | | 1N4149 | DO-35 | IN916 | | 1N4151 | DO-35 | IN3604 | | 1N4152 | DO-35 | IN3605 | | 1N4153 | DO-35 | 60V IN4152 | | 1N4154 | DO-35 | IN4009 | | 1N4446 | DO-35 | IN914A | | 1N4447 | DO-35 | IN916A | | 1N4448 | DO-35 | IN914B | | 1N4449 | DO-35 | IN916B | #### **ABSOLUTE MAXIMUM RATINGS:** | ABOULUIE MAXIMUM RATING | J. | |-----------------------------------|-----------------| | Average Rectified Current, lo | 75 mA | | Peak Forward Current, Ipk | 225 mA | | Forward Surge Current, (1 sec) | 500 mA | | Power Dissipation, P _T | 500 mW | | Junction Temperature, T | -65 C to +175°C | This information in Sylvania Ideas is furnished without assuming any obligations. ## SYLVANIA SUBSIDIARY OF GENERAL TELEPHONE & ELECTRONICS GT&E NEW CAPABILITIES IN: ELECTRONIC TUBES . SEMICONDUCTORS . MICROWAVE DEVICES . SPECIAL COMPONENTS . DISPLAY DEVICES | NAME | | | | | | | |----------|----------|------------|--------------|-------------|--------|----| | TITLE | | | | | | | | COMPANY_ | | 2 7 28 1 | | | | | | ADDRESS_ | | | | | | 11 | | CITY | | 215 | S | TATE | | - | | | Circle I | Numbers Co | orresponding | g to Produc | t Item | | | | 300 | 301 | 302 | 303 | 304 |) | | | 305 | | | | |) | ☐ Please have a Sales Engineer call #### HOT LINE INQUIRY SERVICE Need information in a hurry? Clip the card and mail it. Be sure to fill in all information requested. We'll rush you full particulars on any item indicated. You can also get information using the publication's card elsewhere in this issue. Use of the card shown here will simplify handling and save time. ## ADVANCING ELECTRONIC/OPTICAL #### Electronics taught with domino module Electronic "domino" modules are helping students learn about electronics without the bother of wiring and soldering components. The modules are quickly snapped together to form a variety of circuits—and just as quickly, they can be taken apart. More than 90 different electronic experiments are possible with each set, according to the Macalaster Scientific Corp. of Watertown, Mass., distributor of the teaching aids. Among the circuits that can be formed, Macalester says, are radio receivers, a fire alarm, a tone generator, a rectifier, and amplifier, a sound-level meter and even an electronic flash unit. The modules are held together by built-in magnets, which also make an effective electrical contact. This is said to permit the assembly of a transistorized radio receiver in about 10 minutes. The circuit elements are packaged in transparent plastic boxes, with schematic symbols imprinted on opaque covers. When put together, a complete schematic is formed. The student is able to view both the component and its representation while assembling and checking his experiments. A radio receiver is assembled in an electronic theory class the easy way, by snapping together components packaged as "dominoes." ON READER-SERVICE CARD CIRCLE 19 > ## Direct answers Bausch & Lomb V.O.M. Recorders give just that. Without external converters, they will *directly* measure and record d-c voltage, current and resistance. They provide performance you can depend on with their multiple inputs, fast pen response, photoelectric chopper, high off-balance impedance, built-in paper take-up reel or instant reference tear-off. V.O.M. Recorders come equipped with features that are usually sold as optional extras—five variable chart speeds, an event marker, a zener stabilized reference supply, three-position operation and a full scale zero set. Low cost V.O.M. Recorders offer extra versatility at no extra cost. Bausch & Lomb V.O.M. Recorders are available in a variety of models with different full scale sensitivity. A wide range of accessories further extend their usefulness. Customized models can be built to handle special applications. Write for Catalog 37-2194. Or, if you prefer, let us show you how to get direct answers with a personal, no-obligation demonstration. Bausch & Lomb, 91540 Bausch Street, Rochester, New York 14602. ## Now there's a "4th generation" ### of signal instrumentation This new Monsanto[™] Model 3100A Digital Frequency Synthesizer has a computer-optimized design that creates new standards of stability, purity, precision and value for general purpose signal generators. Gather 'round and look it over. From its clean, functional, prize-winning* cabinet to its all-solid-state, I/C circuitry, this unique design is all new . . . the first of our "fourth generation" instruments. The 3100A outperforms all other synthesizers. Select or program any frequency from 0.01 to 1.3 MHz (in 130 million steps). You've never had it so pure—from any signal source. Harmonics are down at least 50 db, and spurious components are down at least 80 db! Stability? 1 part in 109/day, by an oven stabilized crystal oscillator. The output is DC coupled with a ± 2 v offset bias control at a constant 50 ohms, through an accurate 90 db stepping attenuator. There is a flexible dual-frequency internal sweep and external AM, too. For maximum computer-system compatibility, the programming time is less than 20 microseconds. This versatile instrument has more of what you need in a signal source. Here is the clincher. At \$3950, the Monsanto 3100A sells well below
old-styled frequency synthesizers. (USA price f.o.b. New Jersey) Write or phone us for the full story. Monsanto Electronics Technical Center, 620 Passaic Avenue, West Caldwell, N.J. 07006 (201) 228-3800. ON READER-SERVICE CARD CIRCLE 20 # AUTONATIC SCANNING FOR EMI MEASUREMENTS from 20-15,000 Hz WITH THE APPROVED ONE #### EMPIRE Noise and Field Intensity Meter Solid-State, Compact and Lightweight Model NF-315A is preferred by military and civilian government agencies, and major aerospace contractors for rapid and precise EMI measurements. Here's why: - Three scanning modes: manual, sector, and single sweep over the complete frequency range - Three separate calibrated scales peak, average and RMS - 180 db signal range - 0.005 µv sensitivity - 7 or 70 Hz bandwidth selection - Reliable scanning at maximum sensitivity - >70 db spurious response rejection - Internal frequency and amplitude calibrators for on-the-spot checking without disconnecting signal input leads - Highly stable circuits eliminate recalibration when tuning to new frequencies - Excellent shock, vibration and temperature characteristics - Six hours of continuous operation with built-in rechargeable batteries Write for complete technical data; better yet, call for a demonstration. 'à Tradenson et THE BINGER COMPARY EMC . GERTSCH . PANORAMIC . SENSITIVE RESEARCH IN SINGER INSTRUMENTATION THE SINGER COMPANY, METRICS DIVISION • 915 Pembroke St., Bridgeport, Conn. 06608. U. S. A. • PHONE (203) 366-3201 E -67- #### Chapter II. #### The Word from GENISCO. #### LET THERE BE LIGHT OR #### Tell me about the Free \$50 Switch It's yours absolutely, unconditionally free. All we ask is that you give us \$50 for it. Why do we call it "free" when we are carnest about getting paid for it? Two reasons: First of all, when you throw the mechanical switch on, nothing happens until a teeny solid-state device senses that the voltage passes through zero. Then the switch turns the circuit on. When you throw the mechanical switch off and the current passes through zero, the circuit is turned off. That means that the on-off switching is done at the point of minimum energy. And that means no step function voltage to generate high-frequency components. And that means that the switch is free from radio frequency interference. Quad est demonstradum. The second reason we call it "free" is we thought that if you thought you could get a \$50 switch for nothing you'd probably be greedy enough to read this ad. There appears to be some justification for this assumption. #### Circle reader service #121 #### OUR TELEMETRY GEAR WILL NEVER GET OFF THE GROUND Because we manufacture only equipment associated with checking out telemetry transmission while the transmitter is still nice and accessible. For example, our new, compact FM Discriminator for playback in FM/FM telemetry systems. The pulse average design has 0.1% linearity. The Model 71-282 operates on all IRIG channels, 1-21, and A through H, with an input sensitivity of 20 mV. Accommodates any center frequency from 300 Hz to 300 KHz. Each one weighs less than a pound. Disgustingly inexpensive, too. #### Circle reader service #122 How We Invented The Sandwich To make the ruggedest possible field portable tape recorder we suspended the entire tape transport mechanism between two parallel flat plates. This gives double support to all members, and as the tape contacts only the primary drive mechanism, reel hubs, two turn rollers and the head surfaces, its oxide coating gets maximum protection. As you know, the flanges on tape reels are cantilevered members which can be supported against extreme shock and vibration only at the cost of a substantial increase in the rotational inertia of a system. So we got rid of them. The tape can't slip off the reel because hoop tension forces resulting from normal pulling of the tape provide great compressive forces within the reel stack. It would take in excess of 300 g's for slippage to occur. The result of our Sandwich and Flangeless design approaches (plus a few other neat ideas): a rugged, high performance field portable tape system. Request full information. #### Circle reader service #123 Our Rate-of-Turn Table Laughs At Abuse Our new Model 1147 maintains high precision performance regardless of rough handling and transportation. (One reason it's used as the AGE gyro test table for F-111 Aircraft System.) Hydrostatic bearings give precise dimensional stability, excellent alignment, low runout and eccentricity, low mechanical noise and long life. The bearing is capable of smooth rotation at less than siderial rates (.004°/sec.). And up to 1500°/sec. The Model 1147's compactness makes it ideal for field or bench checking. Its ruggedness makes it ideal in case you just happen to feel like kicking hell out of a fine piece of equipment. Circle reader service #124 Filled with supreme confidence the engineer plugs in his newly designed gem of a system. Then discovers that it's too noisy. So off to the supplier for a custom filter. It's expensive and its weird configuration makes it almost impossible to maintain a hermetic seal under the stresses of high pressures and extreme temperature variations. We can help you avoid the what-meneed-a-filter syndrome. Give us a work statement. For free, we'll crank the system parameters into our computer and it will design the Perfect Filter. It will do the job right, and cost you about 40% less than one that must be produced downstream. Out of the hundred or so companies in the industry only two or three use computers. We're better at it than they are, and besides our salesmen know good jokes. Come on, give us a break. Circle reader service #125 GENISCO TECHNOLOGY CORPORATION 18435 SUSANA ROAD COMPTON, CALIFORNIA 90221 #### Electronic robot speeds training of doctors #### Breathing, heartbeat, even reaction to drugs are simulated in 'patient' and recorded for analysis The modern Frankensteinian scientist doesn't slink covertly in an eerily lighted laboratory; he works at a modern industrial plant with the help of university professors and a U.S. grant. His robot doesn't look or act like Boris Karloff; it looks like a hospital patient and acts very much like one. And no bolt of lightning is needed to get the robot moving; electronic circuitry and a computer do the job nicely. Such a robot has been developed to train doctors in operating-room procedures. It is called Sim One by its creators—engineers of the Aerojet-General von Karmon Center in Azusa, Calif., and researchers of the University of Southern California in Los Angeles. Working under a \$272,130 grant from the U.S. Office of Education, the research team devised a "patient" that has soft, plastic skin; a jaw that opens on a full set of teeth, a tongue, vocal cords, a windpipe and other vital structures; eyes that open and close; carotid and temporal pulse beats; blood pressure; a moving diaphragm and chest, paced by the breathing apparatus; and such physiological reactions as muscles that can freeze in paralysis, a brow that can wrinkle and eye pupils that dilate and constrict when different drugs are administered. Dr. J. S. Denson of the University of Southern California School of Medicine, co-director of the project with Dr. Stephen Abrahamson, says that Sim One is sufficiently lifelike to be truly representative of a human on an operating table awaiting surgery. The school hopes the simulator will cut drastically the time needed to teach anesthesia procedures to students (see ED 4, Feb. 15, 1967, p. 68). For example, it now takes about two months to teach a student to insert an air tube delicately into the windpipe without damaging tissue. With Sim One, it is hoped this time can be slashed to two days. To develop Sim One, Aerojet engineers reduced all of the physiological responses desired to mathematical equations. A general-purpose computer with 4000 24-bit words of memory and a 10- μs add time is used to control the electropneumatic system that activates the manikin's physical reactions. A computer-controlled typewriter printout makes a permanent record of everything the student doctor does to the "patient" and the time it takes the doctor to respond. A strip chart records the action of all vital physical signs as they occur. #### Monitored by instructor The instructor, seated at a control and display console, monitors the student's actions and the simulated physiological data. The instructor can insert emergency situations, such as severe spasm and closing of the larynx, a block in either the right or left bronchial tube or bucking—an attempt to cough the air tube out of the throat. Heart arrest and even vomiting can be induced. The robot was manufactured by the Sierra Engineering Co., of Sierra Madre, Calif. One of Aerojat's biggest problems was to devise a simple way to detect the quantity and kind of drugs administered. This was eventually solved by magnetically coding the needle on each syringe used for injections. In normal surgical procedures, a needle and cup device is inserted into the patient's arm before the surgery begins, and all drugs are administered through this cup. In Sim One a magnetic sensing coil has been placed in the cup to detect which magnetically coded needle is inserted. A piston in the patient's arm is displaced by the drug (which is actually water). The piston operates a potentiometer to indicate the quantity injected. **Electronically controlled manikin** exhibits all the physical properties of a real patient. Student anesthesiologist is adjusting the oxygen flow while the instructor monitors the procedure from the control console. #### TRANSITRON INDUSTRIAL DISTRIBUTORS Malabama, HUNTSVILLE MOUNTAIN VIEW 94040 M G Electronics & Equipment Co., Inc., Avnet Corporation, (415) 961-7700 (205) 534-0608 Arizona, PHOENIX 85016 Kimball Electronics, Inc., (602) 264-4438 (602) 264-4438 California, CULVER CITY 90230 Avnet Corporation, (213) 870-0111 GARDENA 90247 Bell
Electronic Corp., (213) FAculty 1-5802 MENLO PARK 94025 Bell Electronic Corp., (415) DAvenport 3-9431 NORTH HOLLYWOOD 91601 Richey Electronics, Inc., (213) 877-2651 REDWOOD CITY 94063 Fortune Electronics Corp., (415) 365-4000 SAN DIEGO 92111 Avnet Corporation, (714) 279-1550 SAN DIEGO 92111 Bell Electronic Corp., (714) BR 8-4350 Florida, PALM BEACH GARDENS 33403 Industrial Electronics Associates, Inc., (305) 848-8686 Georgia, ATLANTA 30308 Specialty Distributing Co., Inc., (404) TRinity 3-2521 Hawall, HONOLULU 96810 Industrial Electronics, Inc., 506-095 Illinois, CHICAGO Radio Distributing Co., Inc., (312) 379-2121 FRANKLIN PARK Avnet Corporation, (312) 678-8160 SCHILLER PARK Pace Electronic Supply (312) 678-6310 Indiana, SOUTH BEND 46624 Radio Distributing Co., Inc., (219) 287-2911 (219) 287-2911 Iowa, CEDAR RAPIDS Iowa Radio Supply Co., (319) EM 4-6154 Kansas, WICHITA 67201 Radio Supply Co., Inc., (316) AMherst 7-5214 Louisiana, NEW ORLEANS Radio Parts, Inc., (504) 522-0217 Maryland, BALTIMORE 21211 Kann-Ellert Electronics, Inc., (301) TUxedo 9-4242 ROCKVILLE 20850 Pioneer Standard Electronics, Inc., (301) 427-3300 Massachusetts, BURLINGTON Avnet Corporation, (617) 272-3060 CAMBRIDGE 02139 R & D Electronic Supply Co., Inc., (617) UN 4-0400 WATERTOWN L. L. Schley Co. Inc., (617) 926-0235 TRANSITRON ELECTRONIC CORPORATION, 168 ALBION STREET, WAKEFIELD, MASSACHUSETTS 01880 Transitron plastic-packaged silicon planar transistors offer an excellent combination of performance, reliability and low, low price. Both NPN and PNP types are available. They are encapsulated in a TO-18 size package with leads hermetically sealed. Each package has a locating flat, and leads which will fit the TO-18 standard socket without A broad range of types is available for fast delivery from Transitron stock. #### PLASTIC-PACKAGED SHICON PLANAR TRANSISTOR FAMILIES | LENGTHO-LUCKAGEN SIFIC | UN PLANAN | I LY LOIS I | N LYWIFIE? | | | |--|--------------------------|--------------------------------------|--------------------------------------|--|--| | APPLICATION | ТҮРЕ | PLASTIC-
PACKAGED
FAMILY | SIMIL AR
TO-18 FAMILY | | | | High gain, general purpose amplifier | NPN
NPN
PNP
PNP | 2N3709
2N3710
2N4288
2N4289 | 2N929
2N930
2N2604
2N2605 | | | | General purpose
high frequency
amplifier and driver | NPN
NPN
PNP
PNP | 2N4140
2N4141
2N4142
2N4143 | 2N2221
2N2222
2N2906
2N2907 | | | | High frequency logic | NPN
NPN
PNP
PNP | 2N4274
2N4275
2N4121
2N4122 | 2N744
2N2369
2N3248
2N3249 | | | | VHF/UHF unit for
high frequency oscillator
and amplifier service | NPN | 2N3563 | 2N918 | | | | 7130 - 4000 | | | | | | ORE DIA (3 LEADS) 188- TRANSITRON INDUSTRIAL DISTRIBUTORS (Continued) TRANSITRON INDUSTRIAL Minnesota, MINNEAPOLIS, Northwest Electronic Inc., (612) 645-0631 Missouri, Kanss City 64106 Burstein-Applebee Co., (816) Baltimore 1-1155 ST. LOUIS 63130 Ensco Distributing Corp., (314) PA 6-2233 New Jersey, CHERRY HILL Valley Electronics, Inc., (609) NO 2-9337 New York, BINGHAMTON 13902 Federal Electronics, Inc., (607) Pioneer 8-8211 BUFFALO Radio Equipment Corp., (716) 856-1415 BUFFALO 14202 Summitt Distributors, Inc., (716) 884-3450 (716) 884-3450 LONG ISLAND CITY 11106 H. L. Dalis, Inc., (212) EMpire 1-1100 NEW YORK 10013 Milo Electronics Corp., (212) BE 3-2980 WESTBURY, L.I. Avnet Corp., (516) 333-8650 North Carolina, WINSTON-SALEM 27108 Kirkman Electronics, Inc., (919) 724-0541 (919) 724-0541 Ohio, CINCINNATI Hughes Peters, Inc., (513) 381-7625 CLEVELAND 44115 Radio & Electronic Parts Corp., (216) UTah 1-6060 COLUMBUS 43211 Hughes Peters, Inc., (614) 294-5351 DAYTON Stotts Friedman Co., (513) 224-1111 Oklahoma, TULSA 74119 Radio, Inc., (918) LUther 7-9124 Pennsylvania, McKEESPORT Barno Radio Co., Industrial Electronic Div., (412) 462-7575 PHILADELPHIA 19106 Radio Electric Service Co. of Pa., Inc., (215) WAlunt 5-6900 (215) WAlunt 5-6900 Texas, DALLAS 75207 Contact Electronics, Inc., (214) ME 1-9530 DALLAS Solid State Electronics of Texas, (214) FL 2-2601 EL PASO Mc Nicol, Inc., (915) 566-2936 HOUSTON 77019 Busacker Electronic Equip. Co., (713) JACKSON 6-4661 Utah, SALT LAKE CITY 84104 Kimball Electronics, Inc., (801) 328-2075 Washington, SEATTLE 98121 Kierulf Electronics, (206) 725-1550 In Canada contact MONTREAL 9 ETR Supply Company, Ltd., (514) 735-2471 DON MILLS, ONTARIO Western Companents Supply Ltd., (416) 445-2340 VANCOUVER 9 L. A. Varah Ltd., (604) 736-6411 TRANSITRON ELECTRONIC CORPORATION, 168 ALBION STREET, WAKEFIELD, MASSACHUSETTS 01880 ON READER-SERVICE CARD CIRCLE 24 # THIS IS SIGMA'S NEW SOLID-STATE DATACEL. An opto-electronic switching device that provides input-output circuit isolation. Solid-state and opto-electronic switching benefits are combined in low-cost Sigma Series 301 Datacels. Electrically Isolated Input-Output Circuits: Light-beam coupling to 1, 2 or 4 photocells provides isolation resistance on the order of 109 ohms and smooth turn-on, turn-off. **AC-DC Capability:** Both input and output circuits can handle either AC or DC signals. Cell loads may range from millivolt to 250-volt levels. Application Versatility: Functions include high isolation interface switching, logic switching (and/or gate, inverter, latch circuits), audio switching, multiplexing, data sampling, feedback gain control, noiseless potentiometer. Compact Construction: 1, 2 and 4 pole versions all designed for high-density printed-circuit packaging. Also socket conversion to solder terminal mounting. In addition each unit visually indicates its on-off state to aid system trouble-shooting. We'd like to give you a new solid-state Sigma Datacel—or any of our standard relays. It's the best way we know to prove what we say about Sigma performance. Just circle our reader service number on the reader service card. We'll send you the new Sigma catalog and a "free" request form. Return the form to us and your Sigma representative will see that you get the sample you need. Need fast delivery? Opto-electronic Datacels are available off-the-shelf from your Sigma distributor. Call him today. SIGMA INSTRUMENTS INC Assured Reliability With Advanced Design / Braintree, Mass. 02185 Sigma Instruments (Canada) Ltd., P.O. Box 43, Toronto 18 #### **Siemens Semiconductors:** Germanium Transistors Silicon Transistors Germanium Diodes • Tunnel Diodes Silicon Diodes Silicon Zener Diodes Photo Diodes • Photo-Voltaic Cells Negative Temperature Coefficient Thermistors Positive Temperature Coefficient Thermistors ## transistors **Siemens Transistors** for transformerless output stage with complimentary pairs Write for further information, or tell us your application and we will suggest specific items. #### SIEMENS AMERICA INCORPORATED Components Division • 230 Ferris Avenue, White Plains, N. Y. 10603 ON READER-SERVICE CARD CIRCLE 26 #### Scanner converts maps for EDP storage An automatic scanner that converts maps into binary data for computer processing is helping the Canadian government manage land resources. Surveys of natural resources covering vast expanses of terrain are being stored in computer memories or on tape for convenient reference when needed. More than 30,000 such maps have been made in Canada in the last 40 years, according to government sources. The maps contain information on such points as these: land being used for farming that is unsuitable for this purpose; land unsuitable for farming that is desirable for forestry; land suitable for forestry that should be protected for its wildlife and recreation potential. Until the introduction of the computer technique, there was no way of bringing all this information together conveniently. The cartographic scanning system being used by the Canadian Agricultural Rehabilitation and Development Administration was built by the International Business Machines Systems Development Div. at Kingston, N. Y. It consists of a motor-driven drum, a lens-fiber optic array, an amplifier and register, magnetic-tape and control logic units and a clock. Specially prepared maps up to 50 inches by 50 inches are rolled around the 16-inch drum and held by vacuum. When the drum is rotated, the eight-channel optical head is set to travel down the length of the drum. This action forms a spiral scan over the map. Each fiber optic channel views a four-mil-square area and is pulsed to eliminate overlap. If at least half the area seen by each channel is black when the pulse is received, a "one" bit is generated. If not, a "zero" bit is formed. The "ones" and "zeros" from each pulse are recorded in groups of eight bits—called bytes—on magnetic tape. IBM spokesmen say the eightchannel, parallel-to-serial method of scanning simplifies the data transfer to magnetic tape and decreases scanning time. Bytes are produced at tape speed, they say; so a 16square-foot map (of 18 million bytes) can be scanned in less than 11 minutes. The scanner is used "off line" with an IBM 2401 magnetic tape unit. Maps to be scanned must be specially prepared to meet minimum standards for contrast, line width and line separation. One way, IBM engineers suggest, is to place a white-coated sheet of transparent plastic over the source map. A stylus is then used to trace the boundaries of the map onto the plastic sheet. As it traces, the stylus removes an eight-thousandths-inchwide strip of the white coating. When the traced map is placed over the black drum surface, the boundaries appear as high-contrast lines. After a map has been completely scanned, the tape unit shuts off and the scan head is returned automatically to the starting position. The map can then be removed. IBM says that it takes less than a minute to mount a new map. The complete geographic information system, which includes the scanner, will use an IBM 360 computer model 65 to create the "data bank." Information obtained from the
Canada Land Inventory program could, according to IBM, be extremely valuable to pulp and paper companies seeking the best possible sites for locating their mills. An IBM cartographic scanner uses an eight-channel fiberoptic array to scan eight 4-by-4-mil spots for parallel-to-serial conversion. Phototransistors convert optical signals from maps into bits for recording on magnetic tape. ## An Ace on every Mission #### The Kind of Knowledge that makes progress possible... During the 1890's, a Paterson, N. J. schoolteacher named John P. Holland was busy perfecting a submarine. It was the ninth underwater vessel he had built in over thirty years, and his eight previous attempts had taught him well. This ship was motordriven and carried torpedos within its hull. It could travel submerged for fifty miles. In 1900, the U.S. Navy not only commissioned the vessel, but honored its inventor by naming it after him. Since the *Holland*, men have piled fact upon fact in an unending scientific quest to improve the materials, the propulsion, the range, the striking power, the defenses and the livability of submarines. Today's nuclear-powered submarines are marvels of engineering, controlled by a maze of intricate electronic #### IS THE KIND OF KNOWLEDGE YOU GET FROM KESTER systems. They can launch missiles while submerged. They can roam the seas for months without resurfacing, while their crews live in a cleaner atmosphere than do most city dwellers. The modern submarine is an amazing example of man's application of accumulated knowledge. This knowledge of experience is the kind of knowledge you get from Kester. Even before the Holland sub was commissioned, Kester Solder products and soldering knowledge were serving industry. And as technology accelerated, Kester kept pace. Today, after 67 years of working with development engineers in the technology of solders, fluxes and their applications, Kester stands ready to serve you. Write, phone or wire for specific information. #### **KESTER SOLDER COMPANY** 4201 Wrightwood Avenue, Chicago, Illinois 60639 • Newark, New Jersey 07105 • Anaheim, California 92805 • Brantford, Ontario, Canada 1899-1966—67 years devoted to production of products of the highest reliability—solders and fluxes ON READER-SERVICE CARD CIRCLE 28 If you're checking frequency response of a high power circuit you just can't get along without it! Now, with one of Telonic's four PD Sweep Signal Generators you can test response at power conditions that simulate actual operation of the circuit. The PD instruments provide a full 4 watts of swept RF or 2 watts CW covering frequencies from 20 to 1000 MHz. Sweep width is continuously variable from 0.2% to 15% and a 1 db stepping attenuator provides a wide 59 db of attenuation range. Call your local Telonic representative for a demonstration or write for Catalog 70 covering the entire line of Telonic Sweep Generators and "How To Use Them." General Specifications | Models | Range (MHz) | Function | |--------|-------------|--------------------| | PD-2 | 20-100 | Sweep-14 volts RMS | | PD-3 | 100-250 | into 50 (4 watts) | | PD-7 | 200-375 | CW—2 watts | | PD-8 | 375-1000° | into 50 ahms | *Up to 2000 MHz (with 2 watts output) using Telonic Frequency Multiplier. 60 North First Ave., Beech Grove, Indiana 46107 Tel.: (317) 787-3231 TWX: 810-341-3202 Represented throughout the U.S. and overseas. Factory offices in Maidenhead, England, and Frankfurt, Germany. ON READER-SERVICE CARD CIRCLE 29 #### Device measures minute distance An ultrasensitive instrument that accurately measures extremely short distances— 10^{-3} to 10^{-6} cm—with an accuracy of about 10 parts per million has been developed by a National Bureau of Standards scientist. The accuracy of the instrument, according to its developer, Dr. Russell Young, is limited only by available calibration techniques. Called a field-emission ultramicrometer, the instrument is basically an arrangement of field-emission electrodes enclosed in a vacuum chamber. The electrodes are connected to a constant-current electrical circuit (see diagram) such that a precise digital voltmeter indicates a voltage directly related to the spacing between the electrodes. The current source ensures a constant electron flow through the emitter to the anode. #### Available devices of limited use Devices for precise measurement of short distances have been available, Young noted, but are limited in two important respects: They involve delicately balanced bridges and mechanical or optical Field-emission ultramicrometer can measure distances in the 10-3-to-10-6-cm range with a reproducibility said to be within 1 part in 105. In the experimental setup above, the tantalum strip serves as the anode. The recorded voltage is directly related to the spacing between the emitter and anode. ## You name it. Dale's new 1/2 watt trimmer - costs less than \$1.00 This great new trimmer starts our 2300 commercial series. Give it the right trade name and you'll win \$500. Remember these 3 important tips: - 1. It costs less than \$1.00*. - 2. It is interchangeable with other one inch commercial models. - 3. It has excellent setting stability. One thing more, it's a direct descendant of Dale's Mil-Style trimmer line and uses many similar design and production techniques. Go ahead. Send us the name you like best on the reply card. It could earn you an easy \$500. There's nothing to buy-unless you're looking for a better source for 1/2 watt commercial wirewounds - for less than \$1.00*. *In 1,000 quantities #### Send this postpaid entry card today. Complete contest details on reverse side. DALE ELECTRONICS, INC. 1300 28th Avenue, Columbus, Nebraska 68601 In Canada: Dale Electronics Canada, Ltd. FIRST CLASS PERMIT NO. 503 Dept. 88600, P.O. Box 609 No Postage Necessary if Mailed in the United States REPLY CARD BUSINESS Postage will be paid by Columbus, Nebraska 68601 ## Win \$500. #### Name Dale's new ½ watt commercial trimmer - costs less than one dollar **Read before entering.** These details can help you choose a good trade name for Dale's 2300 Series. They can also acquaint you with a better source for low cost trimmers. Lid ultrasonically welded for excellent protection against dust and dirt. - Lead screw with shockproof insulated nylon head. Installation method generates ample torque for good setting stability. - Exclusive Dale Mil-Style wiper arm provides positive settings. Idles at either end to prevent overtravel damage. - Integral element and P.C. terminal assembly provides simple, reliable termination. Both P.C. terminals and hook-type solder lugs are standard. - Collector bar and P.C. terminals are gold plated for good conductivity. - Precision molded case made for use with production soldering processes. #### **SPECIFICATIONS** Standard Resistance Range: 10 ohms to 50K ohms Resistance Tolerance: ±10% standard **Resolution:** .18% to 1.82% Power Rating: 0.5 watt at room temperature to 0 watt at 85° C Operating Temperature Range: -55°C to 85°C Mechanical Adjustment: 15 turns nominal Mechanical Stops: None. Clutch mechanism permits overtravel without damage **Dimensions:** 1.0" L x .36" H x .28" W Terminals: P.C. terminals (Model 2387) Hook-type solder lugs (Model 2389) I think Dale's 2300 Series Trimmers should be trade named: | Send | me | addi | tional | information | |--------|------|------|--------|-------------| | on the | e 23 | 00 S | eries | | | | | | | | My job function: - □ Design Engineering - □ Specification - ☐ Procurement NAME . TITLE COMPANY ADDRESS. CITY STATE ZIP. Card must contain all requested information in order to qualify for contest. ## **Enter today!** #### It's easy-just fill out & mail this postcard. Make it short! Something that quickly describes 2300 advantages. Examples are "Cost-Trim" or "PC-Pot". Nothing to buy – but if you want to call for a price on the 2300 Series, our number is 402-564-3131. **CONTEST RULES** Send the return postcard at left or a similar form containing identical details to Dale Electronics, Dept. 88600, Box 609, Columbus, Nebraska 68601. Submit only one name per card. Entry must be postmarked by midnight, June 15, 1967, and must be received by Dale by June 22, 1967. Anyone living in the United States or its possessions is eligible except employees of Dale Electronics, affiliated companies, advertising agencies and their families. All entries become the property of Dale Electronics and entrant relinquishes all claims for use of proposed trade name submitted. Entries will be judged solely on the basis of their usefulness as a trade name describing Dale 2300 Series Trimmer Potentiometer. Judges decision is final. In case of duplication, winner will be determined by earliest postmark. Winner will be notified by mail approximately 30 days after contest closes. No other correspondence will be entered into. Winner assumes all tax responsibility for prize. Contest void where prohibited by law. For complete information circle 181 #### DALE ELECTRONICS, INC. 1300 28th Avenue, Columbus, Nebraska 68601 In Canada: Dale Electronics Canada, Ltd. levers that are sensitive to high temperatures. ■ They have to be in physical contact with the object that is to be measured. The field-emission ultramicrometer overcomes these limitations. It is particularly suited to measuring curved surfaces where errors may be introduced by depressions or scratches, the scientist said. The simplicity and small size of the sensor is another advantage cited by Young. The ultramicrometer is expected to have a variety of applications. These include uses as a strain gauge to measure the deformation of structural materials, as a differential thermal expansion cell, as a contact-free delineator of surface profiles and contours, and as a means for measuring the diameters of balls and holes. #### Operation similar however used The operation of the instrument for the various applications is essentially the same. For example, as a delineator of surface
profile, a field-emission tip serves as one electrode (at a high negative voltage) and the surface to be measured as the other. As the field emitter moves across the surface, recorded changes in voltage indicate changes in profile. Equations fix the relationship between the voltage and the distance from the emitter to the surface. The accuracy of the minimum detectable displacement, Young said, depends on solutions of Laplace's equation, the precision of the voltmeter, the stability of the constant-current source, and the mechanical stability of the components. These factors, Young said, can all be evaluated without recourse to any form of experimentation. The field-emission ultramicrometer has already been used in several applications at the NBS Institute for Basic Standards (U.S. Dept. of Commerce). NBS has decided not to patent the device but has put it in the public domain. Consequently, a number of outside manufacturers have expressed great interest in it. One company, according to Young, plans to use it to detect the surface roughness of steel balls. Another foresees uses in measuring the curvature of optical surfaces. ## Shortest accurate distance between two points... ### * A5N Grids *ACCURATE, STABLE, NON-REPRODUCIBLE Too many electronic designers spend their time over-designing to compensate for inaccurate graphs and grids. Adapting. Redesigning. Erasing . . . and losing some of the grid lines. These are handicaps the CAPITOL *ASN grid can eliminate. Grids may resemble each other. But if your requirements call for $\pm.0015''$ accuracy, the CAPITOL *ASN grid is your best buy. The CAPITOL grid is available in two stable grid materials: mylar and glass. The *ASN mylar grid is provided with either blue line or black line grids. The *ASN glass grid in blue or black line is unmatched for extremely high accuracy. Either the fifth or the tenth line on *ASN grids is broken to permit easier interpretation of dimensions. And the CAPITOL grid will not smear or erase. A designer's time is too expensive to waste on inaccuracies. That's why you need CAPITOL *ASN grids. FREE SAMPLES Test the accuracy of a CAPITOL *ASN mylar grid. Circle the reader service card number indicated below. #### CAPITOL REPRODUCTIONS, INC. 215 East 12 Mile Road Madison Heights, Mich. 48071 Phone (313) 564-4820 ON READER-SERVICE CARD CIRCLE 30 ## IBM Circuit Design and Packaging Topics □ packaging cost reductions □ high-speed switching □ reed switch application data #### packaging cost reductions Performance Measurements Co., Detroit, Michigan, reports significant savings in packaging their new electronic recording system. The packaging method previously employed required two gates to mount the components in the main console. Now, with IBM's modular packaging as pictured below, only one gate is needed. That's because the IBM technique makes the most efficient use of console space with compactly mounted and connected circuit boards, relays and hardware. Mounting time has been saved too. Pluggable components, low-cost card receptacles and interlocking card guides have so simplified the packaging job, that Performance Measurements now saves 70% on the cost of mounting hardware. Fewer and shorter wires are needed in the compact console—eliminating three feet of 1½-inch cable and shortening a second cable by eight inches. The modular chassis gave designers freedom to experiment freely with various mounting configurations. It also permits easy access for servicing and diagnostic analysis. The same design freedom, plus significant hardware and labor savings are available in many applications. IBM components and packaging can help you in timing control, digital logic testing, telemetering, process or numerical control. #### ☐ high-speed switching IBM wire contact relays were originally designed for data processing use. Now they are being used extensively in machine tool and assembly applications. One of these assembly applications is a numerically-controlled component insertion machine. It sequentially inserts random combinations of up to 24 different types of axial lead resistors and diodes into printed circuit boards. Such machines have been widely used, often on a round-the-clock, three-shift basis, in IBM's electronic assembly operations. Insertion rates range from 3,000 to 4,500 components per hour, depending upon the type of components being inserted. Instructions from an 8-channel punched paper tape provide the logic input to the relay gate. The gate employs three rows of 6- and 12-pole IBM wire contact relays. These relays control the movement of each printed circuit board through the X and Y axis positioning of the board for each component insertion. They also control the component feed, component insert, and cut-and-clinch cycles for each insertion operation. IBM wire contact relays can perform in excess of 200 million operations with an operate speed as fast as 4.5 ms, a release time of 5 ms maximum. The product line includes 4-, 6-, and 12-pole Form C relays, 4- and 6-pole latch models, all with compact, solderless, pluggable mountings—with coil-voltages up to 100 VDC. #### \square reed switch application data Data on the magnetic switching characteristics of miniature dry reed switches is available to design engineers on request. The data was compiled from ex- tensive tests conducted by IBM to help the design engineer use these switches most effectively. It can also help him determine the motion and position of the magnet required. Simply described, a miniature dry reed switch operates under the influence of a permanent magnet. When the magnet is adjacent to the reed switch, the flux of the magnet flows through the cantilever beams, as illustrated. While this magnetic flux is being carried by the beams, a polarity exists across the beams. Look at the overlap area of the beams. The north pole of one beam and south pole of the other beam are in proximity. Since unlike poles of a magnet attract each other, when the magnetic force becomes great enough to overcome the physical mass of the beams, they "snap" together, thus switching. On the graph the X axis represents the displacement (in degrees for rotary motion, inches for lateral motion) of a magnet's center with reference to the center of the reed switch. The Y axis represents displacement (in inches) of the magnet from the outer edge of the dry reed switch glass envelope. Dimensions shown along both axes represent displacement from the center of the magnet in alignment with the center of the reed switch. There are some "gray areas" where performance varies due to minor differ- ences in the characteristics of each switch. In these areas the status of each switch is not completely predictable. Assume the zero point on the X axis is the magnetic center of an IBM reed switch. The magnet is positioned with its center at +.5 on the X axis, and .04 inches above the glass envelope. If the magnet is set in motion along the X axis toward the center of the switch, some reeds will pick when the center of the magnet reaches the point +.12 on the X axis. (The magnet has then reached the "gray area"). If motion is continued toward the center of the switch, all reeds will pick when the center of the magnet reaches the point +.09 on the X axis. | IBM Industrial Products Marketing
1000 Westchester Avenue
White Plains, New York 10604 | Dept. T1 | |---|----------| | □ packaging cost reductions □ high-speed switching □ reed switch application data | | | name | | | position | | | company | | | address | | | citystate | zip | ### Tips on cooling off hot transistors See how circuit designers use IERC heat dissipators to protect semiconductors... improve circuit performance and life. A 2N1837 transistor mounted only to a p-c board with IERC's unique LP dissipator can be operated at 5 watts with a junction temperature of only 153°C. The LP's clamping method makes good thermal contact on both surfaces of the transistor flange, minimizing thermal resistance from transistor to dissipator. Heat from power transistors or diodes is quickly dissipated with IERC's HP dissipators. Large finger area maximizes efficiency in natural convection or forced air environments. Staggered-finger design which prevents finger surfaces from "looking at each other," radiates heat to the ambient, not back to the dissipator. Send for test reports. The most thorough test reports in the industry are available on IERC Heat Dissipators. These are multipage reports complete with graphs showing case and junction temperatures vs. power dissipation for transistors in several mounting conditions. Please indicate which test reports you wish—LP, UP, HP or Therma-Link. On your company letter-head, please. Mounting matched transistors for thermal stability so electrical characteristics stay identical is simple with back-to-back Therma-Link dissipators/retainers. Also used as heat sinks. Fan-top dissipators increase transistor performance levels, permit use of cheaper transistors. Note how design needs no board space, permits other components to be positioned close by. New dissipator for TO-66 transistor uses only 1.7 sq. in. of board space. IERC's unique, staggered-finger design dissipates 9 watts with case temperature of less than 150°C. Free 8-page catalog gives complete pictorial and ordering data on IERC dissipators, retainers and tube shields, also prices. Send for a copy. INTERNATIONAL ELECTRONIC RESEARCH CORPORATION • A corporate division of Dynamics Corporation of America 25 135 West Magnolia Ave. • Burbank, Calif. 91502 ## The Unbeatable IC System: Your logic design and Raytheon Computer modules and hardware. Laminated power bus bars installed and wired in each module case. Reduces noise, eliminates power inter-connections, cuts hours from assembly and test time. Raytheon
Computer's M-Series — more than 30 modules—connectors, cases, power supplies and power distribution are so thoroughly engineered you can concentrate on logic and electronic design, not mechanical details. Every step—design, assembly, test, check-out, troubleshooting—is easier than you thought it could be. We'll even help you design your logic. Call or write today for a visit from a helpful applications engineer or for the whole story in print. Ask for Data File M-136. Raytheon Computer, 2700 S. Fairview St., Santa Ana, Calif., 92705, Phone: (714) 546-7160. another for 400. ## Lamb Electric engineering turns your product on. #### Example: the whole world of floor care If your product has got to vacuum, scrub or polish, you need Lamb engineering. Lamb products turn on the whole range of equipment that cares for floors. For example, you might be interested in our gear motors customized from standard Lamb parts . . . or one of our many vacuum motors that assure you of the right combination of performance, life and cost. Whatever floor care product you manufacture, Lamb Electric has the motor that will do the job for you. Let Lamb engineers turn your product on. Write for motor details and performance curves. Put us to the test. We'll turn your product on . . . with exactly the motor that you need. Ametek, Inc., Lamb Electric Division, Kent, Ohio 44240. **AMETEK** / Lamb Electric ON READER-SERVICE CARD CIRCLE 34 #### Letters #### FBI affirms interest in computer fingerprinting Sir I am concerned about the misinformation appearing in the "Washington Report" by S. David Pursglove published in the March 1, 1967, issue of ELECTRONIC DESIGN [ED 5, p. 31]. His inaccurate comments regarding the study undertaken to develop a computer program for FBI fingerprint files tend to discredit the efforts of our own and the automatic-data-processing industry personnel. The facts are that a request for a quotation was submitted to the industry on Dec. 16, 1966. The closing date for proposals in response to this request was set at Feb. 20, 1967. As an indication of the industry's interest, it is noted that representatives of more than 30 companies attended a preproposal conference held on Jan. 12, 1967, at FBI Headquarters. A number of proposals have been received and are currently being studied. The entire law enforcement community is eagerly awaiting this milestone development in the war on crime. In view of the widespread importance of the study and in the interest of fairness and accuracy, I want to bring these facts to the attention of your readers. J. Edgar Hoover Director Federal Bureau of Investigation Washington, D. C. #### Correspondent's reply Much misinformation in reportorial coverage of the FBI stems from that agency's unhealthy compulsion toward secrecy extending even to its purchases of office stationery and supplies. When we heard of the request for proposals to which Mr. Hoover refers, our Washington Office telephoned a public-relations official at the FBI for details. He replied that (continued on p. 60) #### With a little ingenuity... you can interconnect GR874-equipped coaxial elements to form countless unique "instruments" or special-purpose circuits that are both practical and inexpensive. Experimentation with various setups is greatly simplified by the sexless design of the GR874 connector; any two connectors mate, whether they are locking or non-locking types. The GR874 connector is the keystone of a versatile coaxial system that includes a wide variety of elements and components . . . power dividers, air lines, trombones, tees, elbows, pads, terminations, adaptors, etc. Typical VSWR of a pair of locking-type, rigid-air-line connectors is less than 1.02 to 6 GHz and about 1.06 at 9 GHz. Pulses are passed faithfully by the connector without ringing or deterioration of rise /fall times. You can build a simple one-transistor amplifier operable to 5 GHz with two tuners (each comprising a GR874 tee and a GR874 adjustable stub), two bias insertion units (Type 874-FBL), and a transistor mount (one of eight types available) arranged as follows: As another example of GR874 versatility, the components shown below can be used to produce bursts of high-rep-rate pulses from the output of a low-frequency, subnanosecond-rise-time pulse generator. The delays (up to 1 ns per section) are provided by GR874 air lines. For complete information on the GR874 line, write General Radio, W. Concord, Massachusetts 01781; telephone (617) 369-4400; TWX 710 347-1051. **GENERAL RADIO** Type 874-BBL Basic Connector (locking) for use on %16-inch-ID, rigid, 50-ohm air lines. ## all systems GO ...when a Belden team of wire specialists shows you their dozen or so ways to wring out hidden values and costs. For example you can delve into design..maneuver with materials... analyze assembly..pry into processing..pick different packaging..or a host of others. But success takes a supplier who is really perceptive - one who makes all kinds of wire for all kinds of systems. Want to join us in wringing out values and costs? Just call us in...Belden Manufacturing Belden Company, P.O. Box 5070-A, Chicago, Illinois 60680. #### MCCOY DOES EVERY DAY! That's the final step in cutting crystal blanks at MCCoy. Prior to this several cuts are made with diamond saws...and after each cut, blanks are X-rayed to assure proper angle. X-ray inspection equipment is accurate to 1/300 of 1° of angle. Angle accuracy is vital because it influences crystal behavior under varying temperatures. Blanks are then lapped—a few millionths of an inch at a time—to the desired thickness, accurate within 10 millionths of an inch. Crystals are then coated with metal films (in high vacuum evaporation platers) only a few millionths of an inch thick to provide the *exact* frequency required. These are but a few of the precision operations that assure you of the highest quality available when you specify MCCoy crystals, oscillators and filters. For full details on these precision components, write for our new product catalog. #### M°COY ELECTRONICS COMPANY A Subsidiary of OAK ELECTRO/NETICS CORP Mt. Holly Springs, Pennsylvania 17065 You can go wild with Signetics new Designer's Choice 8000 Series: it gives you the widest selection of design trade-offs in speed, power, noise immunity and price ever offered in a TTL family. The family consists of a very high speed set (the 8800's) and a fully compatible but slower low power set which offers very high AC noise immunity. Now TTL system designs can be optimized without laborious calculations, unusually expensive and time-consuming special ground-plane designs, or extensive use of outboard discrete components in areas where the highest possible speed is not required. All you do is follow the published S8000-series usage rules. All circuits are compatible over the full MIL temperature range of −55°C to +125°C and are available off-the-shelf in Signetics 14-lead glass-Kovar flat pack. Hunt up your local Signetics distributor. For further information on the Designer's Choice 8000 Series, write Signetics, at 811 E. Arques Avenue, Sunnyvale, California 94086. ■ At the IEEE Show, be sure to check into Rooms 3000A & B at the New York Coliseum, for latest Signetics news. | TYPE | DESCRIPTION | | | | |-------|----------------------------|-------|--------------------------------|--| | S8416 | Dual 4-Input Nand Gate | S8816 | Dual 4-Input Nand Gate | SIGNETICS TO THE STATE OF S | | S8417 | Dual 3-Input Nand Gate | S8825 | DC Clocked J-K Binary Element | Olditt 1100 | | S8424 | Dual AC Binary Element | S8826 | Dual J-K Binary Element | INTECDATED | | S8440 | Dual Exclusive-Or Gate | S8840 | Dual 4-Input Exclusive-Or Gate | INTEGRATED | | S8455 | Dual 4-Input Buffer/Drive | S8855 | Dual 4-Input Power Gate | III I Edilini ED | | S8480 | Quadruple 4-Input Expander | S8870 | Triple 3-Input Nand Gate | CIDCILITC | | S8806 | Dual 4-Input Expander | S8880
 Quadruple 2-Input Nand Gate | PIUPUII 9 | | S8808 | 8-Input Nand Gate | | | A SUBSIDIARY OF CORNING GLASS WORKS | ## NEW OPERATIONAL AMPLIFIER ...COMPACT ELECTROMETER, TOO! Keithley Model 300 This economical little package is a true electrometer operational amplifier. It combines more than 10^{14} ohms input resistance, less than 5×10^{-14} ampere offset current and ultra-low current drift of 10^{-15} ampere per day into a precise single-ended output design that meets demands in conditioning signals as low as 10^{-14} ampere. Completely shielded, the 300 is a simple-to-use, easy mounting plug-in module. An output voltage of 11 volts at 11 ma is provided. Works to specs on unregulated supplies from ± 16 to ± 25 volts, at ± 25 ma or ± 8 ma. For experiments or systems requiring extraordinary conditioning of small current signals, the Model 300 is the finest operational amplifier on the commercial market. Particularly for researchers in automated R & D, designers and producers of process or production control equipment. Ask your Keithley engineer for a demonstration. But read our technical engineering note first. It's yours by dropping us a line. #### CHARACTERISTICS Voltage Gain Voltage Offset adjustable to dc open loop: >20,000 <500 uv/hr. Voltage Drift Input ±400V >1014 ohms Overload Limit Resistance: Capacitance: <10 pf Current Offset: <5 x 10⁻¹⁴ amp Current Drift: <10⁻¹⁵ amp/day Output ±11V ±11ma Voltage Current: #### SINGLE UNIT \$200 ... LESS IN QUANTITIES #### KEITHLEY INSTRUMENTS 12415 Euclid Ave. • Cleveland, Ohio 44106 EUROPE: 14 Ave. Villardin, 1009 Pully, Suisse ON READER-SERVICE CARD CIRCLE 39 #### **LETTERS** (continued from p. 54) details would be forthcoming as soon as he could contact the technical authorities. Later in the day, however, he informed us that no information would be made available. Following a discussion—sometimes heated on both sides—he said that the internal activities of the FBI including procurement plans extending even to office supplies were privileged matters, not public information. We therefore followed time-honored journalistic practice and bypassed the official spokesman. The story that was published was the outcome of talks with officials involved with the technical problems. Mr. Hoover could ensure accurate coverage of the FBI by the simple expedient of cooperation with the information media, making available to the public facts from his office. S. David Pursglove Washington, D.C. #### Meter measures forward-biased diodes Sir George L. Snider's article, "Measure capacitance and resistance" [in ED 4, Feb. 15, 1967, pp. 92-95], certainly offers one approach to forward-biased diode measurements. The Hewlett Packard 4815A vector impedance meter, however, will eliminate all the tedium of building the suggested bridge circuit. After biasing the diode with a dc supply or battery, the vector impedance is measured simply by placing the probe across the diode. Thus the vector impedance is found at any frequency from 500 kHz to 110 MHz with a meter type of instrument. The 4815A injects a constant signal of 4 uA rms and measures the voltage, which is directly proportional to impedance. Sales Engineer Hewlett Packard Co. Rockaway, N. J. #### The author replies Sir: James Brockmeier indicated in his letter that measurements could (continued on p. 66) James A. Brockmeier OHMICONE® SILICONE-CERAMIC COATED AXIAL LEAD RESISTORS # Choices from OHMITE OHMICONE Silicone-Ceramic—Not just a conventional silicone coating, but rather silicone combined with a ceramic compound. Blending the two materials provides a coating which has the best characteristics of each. Developed and patented by Ohmite, Ohmicone envelopes a wire-wound resistor in an unusually tough, resilient jacket that has high moisture resistance and excellent dielectric properties, plus good stability and low temperature coefficients. Choose either the molded or conformal coating in accordance with your requirements. RHEOSTATS • POWER RESISTORS • PRECISION RESISTORS • VARIABLE TRANSFORMERS • RELAYS TAP SWITCHES • TANTALUM CAPACITORS • SEMICONDUCTOR CONTROLS • R.F. CHOKES MANUFACTURING COMPANY 3643 Howard Street • Skokie, Illinois 60076 Phone: (312) ORchard 5-2600 ON READER-SERVICE CARD CIRCLE 40 # Lew, noncorrosive one-part RTV... tough silicone protection Dow Corning® 3140 RTV coating and 3145 RTV adhesive/sealant are designed to be used in corrosion-sensitive equipment without harm to delicate electronic circuits and components. Both are products of new silicone technology. Dow Corning 3140 RTV coating is ideal for conformal protection of printed circuits... encapsulation of circuits, components and connectors. It is tough, translucent, self-leveling. Clarity of the coating allows easy visual inspection, identification, and faulty component removal. Repairs in the coating are easily made without loss of dielectric integrity. Dow Corning 3145 RTV adhesive/sealant has high cured strength . . . is opaque, nonflowing . . . withstands long term exposure to temperature of 250 C — to 300 C for short periods. This tough material is excellent for bonding wires and terminals, mounting resistors, sealing electronic enclosures and providing a flexible adhesive for glass, ceramics, plastics and silicone rubber. Dow Corning leads the way in making materials for the job you have at hand. For complete information on Dow Corning 3140 RTV coating and Dow Corning 3145 RTV adhesive/sealant, write Dept. 3916, Electronic Products Division, Dow Corning Corporation, Midland, Michigan 48640. # WIRE HARNESS LACING, like most manual jobs—costs money! Saving by using low cost lacing material seems good economy... ...until production lags and rejects pile up! GUARANTEE of Quality This GUDEBROD Lacing Tape is Manufactured under strict Quality Control. Complete test data is on file for your protection under Lot #18861 For real economy you need the <u>uniformity</u>, the high quality of GUDEBROD LACING TAPE. > That's why this guarantee can help you cut costs in cable harnessing! You owe it to your zero defects program to investigate Gudebrod lacing tape. Its guaranteed quality and its constant uniformity are important to you—and to your harnessing operation. Why? Because Gudebrod smooths and speeds the hand operation of lacing and knot tying. There's no need for readjusting or retying. Rejects are minimal. The result? You save time—and that saves money and hastens delivery. Gudebrod sets its manufacturing standards high and adheres to them. When you use Gudebrod tapes you can set production goals and achieve them. This is the combination that saves you money in your harness department. Ask for the Gudebrod Product Data Book. #### **GUDEBROD CABLE-LACER** The first hand tool engineered for wire harnessing. Handle holds bobbins, feeds tape as needed, grips tape for knotting. Speeds, eases harnessing. Pays for itself in time saving. Area Code 215, WA 2-1122 UDEBROD BROS. SILK CO., INC. etronico. Division 12 SOUTH 12th STREET, PHILADELPHIA, PENNSYLVANIA 19107 ON READER-SERVICE CARD CIRCLE 42 # Something new in a thin film ion-pumped system # .Sputtering! . . . Here's the only system specially designed to deposit thin films by sputtering in an ion-pumped chamber. The new CVI-18 combines with CVC's PlasmaVac® sputtering unit to give you the first and finest ionpumped sputtering system capable of electronic and optical thin-film deposition. With the CVI-18 you get faster, more efficient coating cycles for pilot plant or production line operation: An automatic pre-bake saves up to two hours every working day. The high efficiency Quick-Start ion pump and gettering system give you faster pumpdown, high throughput that allows starting in the 50 micron range, and ultimates to the 10-10 range. You get more consistent performance, too-with a new titanium sublimation unit. System pressure may be automatically held below a preset process pressure over a wide range of gas loads. Typical CVI-18 applications include electronic, optical, and optoelectronic coating as well as environmental studies. The CVI-18 is something new, something better in an ion-pumped coater. Just write for full details. Consolidated Vacuum Corporation, Rochester, N.Y. 14603. A subsidiary of Bell & Howell, ON READER-SERVICE CARD CIRCLE 43 You could string together several hundred zeners. Or you could specify one Victoreen Corotron. It is the gaseous equivalent of the zener with all the advantages of an *ideal* HV zener diode. For space research and other rugged applications requiring absolute power supply stability, GV3S Series, shown, provide the ideal reference voltage anywhere in the range of 400 to 3000 volts. They enable circuitry to maintain constant high voltage regardless of battery source voltage or load current variations. Cubage and weight (GV3S Corotron weighs only 4 gm.) are important considerations. So is temperature variation (Corotrons operate from 200°C down to -65°C). Ruggedized versions withstand shock to 2000 G, vibration 10 to 2000 cps. If you're trying to simplify circuits . . . to cut cost, size and weight . . . to upgrade performance—you need Corotron high voltage regulators. Models are available now from 400 to 30,000 volts. A consultation with our Applications Engineering Dept. will speed up the countdown. VICTOREEN **Components Division** THE VICTOREEN INSTRUMENT COMPANY 10101 WOODLAND AVENUE • CLEVELAND, OHIO 44104 EUROPEAN SALES OFFICE: GROVE HOUSE, LONDON RD., ISLEWORTH, MIDDLESEX, ENGLAND ON READER-SERVICE CARD CIRCLE 44 **LETTERS** (continued from p. 60) easily be made with the Hewlett Packard 4815A meter. The measurement procedure apparently involved only biasing the diode with a dc supply or battery, and measuring the impedance by placing the instrument probe across the diode. In making the measurement by this method, there are several questions that occur: - What is the effect of stray capacitance and inductance due to the wiring
necessary to connect the diode to the voltage source? - If there is no isolation between the dc supply and the diode, will not the impedance reading include the effects of power supply impedance? - What is the effect of probe residual impedance on measuring low-capacitance diodes (<2 pF)? I have attempted measuring forward-biased diode parameters with the Model 8405A vector voltmeter in the manner suggested in an article by Fritz K. Weinert of Hewlett Packard. The arrangement used was that suggested for measurement of a complex impedance. I found, however, that the meter was extremely sensitive to stray capacitance and inductance, and above 15 MHz it was impossible to obtain repeatable results. I concluded that it was impossible to get repeatable measurements without the need to resort to carefully fabricated "plumbing" fixtures. The method that I suggested in my article in ELECTRONIC DESIGN does have certain advantages: - The circuitry is inexpensive to build—\$150 for parts and labor. This is far less than the cost of the RF vector impedance meter—\$2650. - The accessory equipment required is available in any electronics laboratory. - The readout is direct. No computation is required to obtain the resistance and capacitance values. The method has also been used to measure transistor junction impedance under forward-bias conditions and the source-drain impedance of field-effect transistors as a function of gate voltage. Moreover I have been able to extend the range of the method to resistance values of 200 $k\Omega$ and ca- (continued on p. 72) ### Sweep Oscillator gives top performance in the 100 kHz to 110 MHz range All solid-state Hewlett-Packard 3211A Sweep Oscillators with RF and marker plug-ins meet virtually all of your swept frequency testing requirements. Variable bandwidth markers permit accurate, well defined marking under a variety of test conditions. The main frame of the 3211A contains everything you could hope to find in a sweeper. RF plug-ins operate at fundamental frequencies with good linearity and spurious mixing products are eliminated. Plug-in markers offer not only variable bandwidth, but also Z-axis or pulse-type marking. An accurate 59-db attenuator makes the unit a valuable tool for testing both high- and low-gain circuits. The 3211A is ideal for general testing in the video to VHF range where flat, linear output and an accurate marking system is required. Typical applications are: alignment, calibration and design of FM tuners and receivers and testing filters, amplifiers, transformers, resonant circuits and IF sections of TV receivers, radar and communications systems. For complete specifications, contact your local Hewlett-Packard field engineer or write Hewlett-Packard, Green Pond Road, Rockaway, N.J. 07866. #### **NEW DEUTSCH SYSTEM OBSOLETES** #### THE TERMINAL JUNCTION A new system for point to point wire connection and integration This newest, most flexible system releases today's engineer from the limitations usually associated with interconnection. One wire or thousands of wires may be connected by this simple, reliable method that: - Replaces terminal strips and binding posts - Does away with contact damage - Eliminates splices and solder - Uses standard crimp tools - Uses one fail-safe, expendable assembly tool - Uses one fool-proof assembly procedure - Is self-locking - Is modular - Saves weight and space - Connects and disconnects instantly - Protects connections without potting - Meets or exceeds MIL-C-26482 where applicable, and exceeds most user specifications The Terminal Junction system is the ultimate in simplicity. - The wire termination is ruggedized so that it can't bend, break, bind or gall - Crimping the terminal to any wire is done with standard tools, and provides strong, reliable termination . When inserted in the modular block, the terminations are interconnected instantly in a variety of hook-up patterns - The low-resistance connections are secured by self-locking retainers that defy vibration, shock and high pulling loads System build-up, breadboarding and all processes where one must patch, bus, splice or feedthru can be vastly simplified with this flexible, "people oriented" system. Its simplicity, combined with total reliability, makes possible immediate conversion without special training of assembly personnel... and, with the move to Terminal Junctions come the benefits of efficiency and upgraded connections. The following columns describe how you can save time, space and circuits. Read on...let your own ingenuity dictate how you can benefit by using this revolutionary system. #### TIME SAVER The Terminal Junction system eliminates wasted time and motion in all phases of equipment design, breadboard, prototype, assembly, checkout and maintenance. Quick, reliable crimp termination of wires with standard tools *Terminal Junction modules shown are model TJ11E-02** which connect wire sizes AWG 20 through AWG 24. ### **EXISTING CONNECTION METHODS** #### SPACE SAVER Terminal Junctions occupy a fraction of the space formerly needed for an equal connection capacity. And, there is no limit to the number of modules and multi-module assemblies that may be used to form high density interconnection panels and systems. Typical module and multi-module assemblies for space-saving connection and integration. Standard units shown will handle wire sizes AWG 24 through AWG 4. White lines on each module outline points of common connection. Sixty four size AWG 20 wires perfectly connected and fully protected in a fraction of the space previously needed. Compare the amount of space saved in this case...the terminal strip handles only 28 wires, and affords them no protection. Use Feedthru Terminal Junctions for all through-connection applications; use them as high density, lightweight, fully environmental connectors; or, use multi-module assemblies for patchboard and through-panel applications. The **JIFFY JUNCTION**® is a fully environmental single conductor connector. Use it as a replacement for splices or any one-wire connection problem. #### **CIRCUIT SAVER** Circuit and equipment failures due to the breakdown of exposed or poorly protected junctions and splices are eliminated by Terminal Junctions. All connections in each module are protected from mechanical damage by solid dielectric material; shorting caused by moisture and contaminants is prevented by resilient silicone rubber sealing glands at each wire entry point; the positive locking retention system resists shock, vibration and high pulling loads to assure perfect continuity in each circuit. Dielectric separation between circuits exceeds military specifications, and because the tool used for connection and disconnection is of dielectric material the shorting possibility normally associated with checkout and maintenance is reduced to a minimum. Actual size modules are shown in a multi-module assembly; typical busing layouts are included (white lines outline common connection points). Those entry points not occupied by wires are sealed by plugs to assure complete environmental immunity. The Terminal Junction is the newest member of the performance proven Rear Release Family of Deutsch connectors and interconnection devices. Using **one** type of crimp tooling, **one** assembly procedure, and **one** fail-safe insertion/removal tool, any interconnection system may be upgraded to modern levels of efficiency and reliability. For more information about Terminal Junctions contact your local Deutschman, or write today; ask for Data File TJ-3. The largest privately owned microwave system was built, installed, and is maintained by the General Electric Company for use by the Southern Railway System. One of the major features of this system is its total capability for handling all kinds of communication: graphic, voice-(including telephone) tone signals, block signals, control VHF radio, and signals from "hot box" detection equipment. This modern communication system links the Southern Railway network with 3744 path miles, 1,000,000 total channel miles, 4256 channel ends, and 221 microwave stations. Over 1,600 Varian Klystrons and almost 500 Traveling Wave Tubes are used in this unique system—with outstanding records for long life, linearity, and stability. Over a recent 24-month period the VA-244 and VA-259 klystron oscillators used in this system accumulated 1000 years of experience with less than 1 day of downtime, including all failures. For your copy of the complete story of this remarkable system and more information about the long life microwave tubes described above, write: Palo Alto Tube Division, 611 Hansen Way, Palo Alto, California. Or write Varian of Canada, Ltd., Georgetown, Ontario. In Europe: Varian A.G., Zug, Switzerland. # Capacitor Problems That Require A Lot Of Self-Control...Chemically Speaking **Problem 1:** How to make sure the silver paste composition used for electrodes provides the best results for each electrical parameter in a given capacitor design? **Problem 2:** How to improve the recognized moisture reliability of our dipped mica capacitors without adversely affecting life reliability? **Problem 3:** How to upgrade the reliability of molded mica capacitors to equal that of dipped mica capacitors so designers can take advantage of body uniformity and axial lead design? **Solution:** Chemical self-control! To do this we operate our own chemical manufacturing plant where we formulate silver pastes, phenolic dipping compounds, and epoxy molding compounds — all under strict controls. **Result:** Dipped mica capacitors and molded mica capacitors of equally high reliability that operate up to 150°C. Send for technical literature and always insist on El-Menco brand capacitors . . . your assurance of better quality and reliability through control. #### THE ELECTRO MOTIVE MFG. CO., INC. **WILLIMANTIC, CONNECTICUT 06226** Dipped Mica • Molded Mica • Silvered Mica Films • Mica Trimmers & Padders
Mylar-Paper Dipped • Paper Dipped • Mylar Dipped • Tubular Paper Exclusive Supplier to Jobbers and Distributors In the U. S. and Canada: ARCO ELECTRONICS, INC., Community Drive. Great Neck, L. I., New York West Coast Manufacturers contact: COLLINS & HYDE CO., 900 N. San Antonio Rd., Los Altos, California 94022 1250 E. Artesia Avenue, Long Beach, California #### everyone here works for... Ingenuity and reliability merge in Borg-Warner Instrumentation Recorders. For example, the Model R-305 is a continuous-loop tape recorder for space vehicle reentry. Extremes in temperature, strain, vibration and g forces were overcome in this application. Borg-Warner recorders are in use right now, successfully fulfilling their missions of collecting data for transmittal to earth. This is not surprising though, because BWC has 14 flight proven magnetic tape recorder models. Whatever your recorder requirement: Continuous-loop, reel-to-reel, or random bin. Whatever your use: Orbiting space station, reentry, geological or ocean survey and other hazardous environments, or ground station applications — Borg-Warner Controls probably has an instrumentation recorder design ready for you. If modification to existing design is necessary, or if you need a recorder beyond the state-of-the-art, Borg-Warner Controls can solve your problem with ingenuity and reliability. BORG-WARNER CONTROLS 3300 South Halladay Street, Santa Ana, California 92702 aerospace equipment ON READER-SERVICE CARD CIRCLE 49 #### **LETTERS** (continued from p. 66) pacitance values as low as 1 pF through modification of the circuit and test procedure. Since I have an RF vector voltmeter at hand, any advice on its possible use in this area of measurement would be appreciated. Of particular value would be suggestions about methods of fabricating test fixtures and about means to eliminate or compensate for stray capacitance and inductance. George L. Snider Senior Engineer Arinc Research Corp. Santa Ana, Calif. #### Accuracy is our policy In "New technology keys Solid-State Circuits show," ED 5, March 1, 1967, pp. 17-20, John Copeland of Bell Telephone Laboratories, Inc., calls attention to a typographical error. On p. 18, column 1, para. 2 should read: "Copeland reported that he has achieved 0.7 watts with 0.7% efficiency at 51 GHz . . .," omitting the words ". . . 33 watts of pulsed power at 10 GHz . . .," which were interpolated by mistake. In the Idea for Design, "Generate pulses by varying length of the termination line," published in ED 3, Feb. 1, 1967, on p. 94, there were three errors in the accompanying schematic. The upper left-hand portion of that schematic is reproduced below with the three errors corrected. The errors were: resistor R2 was unlabeled; capacitor C2 was omitted; and the polarity dots for T1 were left out. #### Measurement of Complex Impedance with the HP 8405A Vector Voltmeter The measurement of complex impedance in the 1 to 1000 MHz range using slotted line or bridges has always been a time-consuming and cumbersome process, particularly when determining phase angle. Now, with the HP 8405A Vector Voltmeter, faster and simpler techniques are possible. Below 100 MHz, the method illustrated above is especially convenient. Signal power is equally split, and the voltage drop across the unknown impedance is compared against the drop across the known. Results are easily entered on the Smith Chart for rapid determination of impedance. From 100 MHz to 1 GHz, impedance is measured in the form of Reflection Coefficient, using a new, extremely wideband dual directional coupler as in the set-up shown below. The 8405A Vector Voltmeter measures incident and reflected voltage and their phase angle, allowing quick entry into the Smith Chart. #### Free Application Data Application Note 77-3 discusses "Measurement of Complex Impedance". For your copy write Hewlett-Packard, 1501 Page Mill Road, Palo Alto, Calif. 94304; Europe: 54 Route des Acacias, Geneva. You can appreciate the wide-range of the 8405A from these brief specifications; match them to your measurement requirements. And call your HP field engineer for complete information on this wideband, 2-channel RF millivoltmeter-phasemeter. #### Major Specifications, HP 8405A Vector Voltmeter Frequency Range is 1 to 1000 MHz in 21 overlapping octave bands; automatic tuning within each band. Voltage Range for Channel A (synchronizing channel), 300 μ V to 1 V rms (5-500 MHz), 500 μ V to 1 V rms (500-1000 MHz), 1.5 mV to 1 V rms (1-5 MHz). Voltage Range for Channel B (input to Channel A required), $100~\mu V$ to 1~V rms, full scale. Full-scale meter ranges from $100~\mu V$ to 1~V in 10~dB steps. Both channels can be extended to 10~V rms with 11576A~10:1~Divider. Phase Range of 360° indicated on zero-center meter with end-scale ranges of $\pm 180^\circ$, $\pm 60^\circ$, $\pm 18^\circ$, $\pm 6^\circ$. Phase meter OFFSET of $\pm 180^\circ$ in 10° steps permits use of $\pm 6^\circ$ range for 0.1° phase resolution at any phase angle. Price: \$2750. With our new PG-13 you can get ± 100 V or, as a current source, ± 2 A pulses. And 10 ns rise and fall times; repetition rate 1 Hz to 25 MHz; duty cycle 50% at 1A out with a pulse width to 5 ms. No hedging. The specs are real specs: when we say ± 100 volts we mean ± 100 volts; 10 ns rise time means 10 ns rise time, worst case, at 100 volts. So if you need a truly fast high-output pulser for, say, magnetic core testing, radar pulse simulation or similar applications you would do very well to consider the PG-13. This is why, in brief part: The PG-13 is all solid-state (rack height $3\frac{1}{2}$ "). Operates in either voltage or current modes; in the voltage mode the range is ± 100 mV to ± 100 V from a 50 ohm source; in the current mode it is ± 50 mA to ± 2 A from a 1K, min, source. PRF, 1 Hz to 25 MHz. Single or double pulses plus sync. Instantaneous overload protection and a front panel warning light. Can be gated or triggered up to the max rep rate. Manual one-shot. DC-offsets either direction to 100 mA. Independently variable rise and fall times, 10 ns to 50 ms. PRF, rise, fall, amplitude, width (of either pulse independently), offset and delay are all variable continuously. The PG-13 is one of the 3-I/Chronetics new generation pulse generators. We'll be glad to whisk a PG-13 to your lab for a demonstration. And there's a new catalog on the new generation pulse generators. Please write or 'phone for either or both. Intercontinental Instruments Inc. an affiliate of CHRONETICS U.S.A.: 500 Nuber Avenue, Mt. Vernon, New York (914) 699-4400 TWX 710 560 0014Europe: 39 Rue Rothschild, Geneva, Switzerland (022) 31 81 80 TELEX 22266 # New Tally 500 series photoelectric tape readers work up to 1000 characters per second. #### That's not unique. # But working without pinch rollers, friction brakes, clutches, or solenoids – that is! There's no point in Number 1 introducing just another "me too" product. Just to give you an idea of how good the new line is, in a recent life test, one photoelectric reader ran for 15,000 hours at maximum speed without a failure. You can see why we say these new readers represent genuine "state of the art" achievement. Adding them to the Tally line rounds out the broadest line of perforated tape equipment on the market today. #### The 500R, 500RF, and 500T. These three readers operate at up to 200 characters per second asynchronously (stop on character), up to 500 char/sec in the synchronous or free running mode (stop before next character), and 1000 char/sec in the wind/search mode. All feature printed motor direct capstan drive, and bi-directional reading and winding. The Model 500R (recess mounted) and the Model 500RF (flush mounted) are reader and spooler com- binations, while the Model 500T comes without the reel servo system. For tape handling only, two spoolers using printed circuit motors and proportional reel servo are offered, one with 8 inch reels, the other with 10½ inch reels. #### MIL-SPEC reader, Model 500RM and "ruggedized" reader, Model 500RF/10 Fully militarized, the Model 500RM is the first high speed reader that meets all applicable military specifications without exception. Featuring the same basic design as other Series 500 photoelectric readers, this unit will work in environments of -40°F to +145°F, in humidities of 100%, and take more than 15 g's shock. Pertinent RFI specs are met. MTBF is 5,000 hours. Expected life is 10,000 hours minimum. Where severe environmental conditions are not encountered, the Model 500 RF/10 will perform with the same accuracy and life for about half the cost. Reading speeds for both readers are Model 500 RM 150 char/sec asynchronously, 500 char/sec synchronously, and 1000 char/sec wind/search. Full disclosure. For all the facts, Tally sales engineer call your full service Tally sales engineer (see EEM), or write KenCrawford. Tally Corporation, 1310 Mercer Street. Seattle, Washington 98109. In the U.K. and Europe, address Tally Europe, Ltd., Radnor House, 1272 London Road, London, S. W. 16, England. #### IRON POWDER CORES #### From 5" dia. to Subminiature Toroids Arnold has total capability across all design configurations—toroids, insert cores, threaded cores, plain cores, bobbin cores, sleeve and hollow cores, cup cores and subminiature toroids. All the necessary raw materials are carried in stock to provide optimum performance over the specified frequency spectrum. Our facilities include the most modern powder processing, pressing, quality control and final test equipment available in the industry. Call us, write us, TWX us, we can handle any problem. Arnold is also Permanent Magnets Tape Wound Cores MPP Cores Magnetic Shielding Electrical Alloy Transformer Laminations Transformer Cans and Hardware Silectron Cores Special Magnetic Materials. THE ARMOLD ENGINEERING COMPANY, Main Office MARENGO, ILL BRANCH OFFICES and REPRESENTATIVES in
PRINCIPAL CITIES Co-Publishers James S. Mulholland, Jr. Robert E. Ahrensdorf Editorial Director Edward E. Grazda Editor Howard Bierman Managing Editor Robert C. Haavind Technical Editors Peter N. Budzilovich Maria Dekany Frank Egan Roger K. Field News Editors Ralph Dobriner, Chief Richard N. Einhorn East Coast Editor Neil Sclater West Coast Editor Ron Gechman Copy Editor Peter Beales New Products Editors David H. Surgan Daniel R. Butterly Washington Editor S. David Pursglove Editorial Production Dollie S. Viebig Karen L. Sherman Art Director Clifford M. Gardiner Art Assistant William Kelly Technical Illustrators Cheh Nam Low William Alvarez Sheila F. Ward Production Manager Thomas V. Sedita Asst. Production Manager Helen De Polo Production Assistants Bernard Wolinsky Robert B. Lichtig Circulation Manager Nancy L. Merritt Reader Service Diane Mandell **EDITORIAL** ### They just keep rolling along . . . Eight years ago, after careful investigation of the diode market, we became alarmed at the rising numbers of devices being produced and the difficulty facing the design engineer who has to choose the right diode for his application. And so, in the June 10, 1959, issue of ELECTRONIC DESIGN we published an editorial. In it we warned that diode types had increased from 2500 to 4000 in one year; we urged the industry to take steps toward meaningful standardization of diodes. Today there are more than 30,000 diode types on the market! Of the many lessons that may be drawn from this development, these seem at least fairly reasonable: nobody cares what is said in an editorial; industry doesn't care about the problems of design engineers; engineers don't care that industry doesn't care—they welcome punishment on the job. We keep wondering how much time the design engineer spends to keep track of all these devices, their latest specs, exact testmethod descriptions, sources of supply and other pertinent facts. We doubt that any designer patiently searches for just the right device; we suspect he settles for the types he's used before. A comparable situation is shaping up for transistors. ELECTRONIC DESIGN has just completed its fifteenth annual Semiconductor Directory. It's fatter than last year's. Close to 3200 JEDEC-registered transistor types are listed, compared with 2600 in 1966. There are now almost 1900 IC types, against 1100 a year ago. We have never criticized the introduction of new types that offer improvements in equipment performance; they're needed and welcome. But we continue to oppose "new" devices that offer slight parameter improvements at the cost of almost hopeless confusion for the designer who attempts to evaluate the selection. Roger Field and Peter Budzilovich, the editors responsible for ELECTRONIC DESIGN'S applications-oriented Semiconductor Directory, join us in urging semiconductor manufacturers to increase their efforts to standardize device packages, test methods and specification data formats. Let's work to bring ICs under control before the list gets out of hand. In the meantime, if you're a designer, you'd better check the Semiconductor Directory, which starts on page 81. It's the best aspirin around to ease your headache. HOWARD BIERMAN # Who makes a complete line of electronic packaging hardware?...Scanbe does! #### **Exclusive from Scanbe** - SINGLE SOURCE SERVICE COMPLETE AND WIDEST SELECTION OF HARDWARE OFF-THE-SHELF AVAILABILITY - EXPERIENCED DESIGN ASSISTANCE PRECISION MANU-FACTURING ■ RIGID QUALITY CONTROL Save money and time without sacrificing performance—contact Scanbe, the specialist in electronic packaging hardware. Write for Scanbe's new electronic packaging hardware guide. #### SCANBE MANUFACTURING CORP. 1161 Monterey Pass Road • Monterey Park, California 91754 • Tel. (213) 264-2300 TWX (213) 266-8853 # Technology Semiconductor reference directory lists over 5000 devices by major parameters. Page 81 Stagger-tuning of IC amplifier stages gives the right gain and selectivity curve. Page 236 #### Also in this Section: Measure the 0-TC point of FETs: theoretical values may be inaccurate. Page 230 Ideas for Design. Pages 241 to 245 # While other major semiconductor manufacturers are eagerly trying... ### **One** company has already mastered the practical production of Large Scale Integration... Only General Instrument's exclusive MTOS (Metal-Thick-Oxide-Silicon) process provides Large Scale Integration without the need for high-cost discretionary wiring. Before MTOS, there existed no practical Large Scale Integration of any real significance. LSI, much discussed, widely experimented with, and heralded throughout the industry as the microcircuitry of the future, was just that...the microcircuitry of the future. While MOS represented an important step on the road to LSI, what was required to make LSI a present-day reality was a major technical breakthrough. General Instrument's exclusive MTOS process provided that breakthrough. For the first time, yield, cost, reliability and performance parameters are being effected that make LSI a dramatic and meaningful reality ...today. #### The MTOS process—second generation MOS In the MTOS process a thick oxide is grown over the entire silicon chip except for the gate regions. The thin oxide over the gate regions is retained to keep the threshold voltages low. The thick-oxide layer produced by the MTOS process is ten times as thick over the P-regions as any other known process employed in the manufacture of MOS devices. This strengthened thick-oxide layer over the P-regions, and the sequence of steps used in the MTOS process, which limits the etching time before metallization, eliminate the problems caused by pinholes that could occur at crossover points, a major cause of failure in integrated circuits. Further, the thick oxide over the P-regions also minimizes the possibility of electrical short-circuits caused by the breakdown of the oxide resulting either from a flaw in the oxide layer or an accidental overvoltage. #### Speed and MTOS Because crossovers occur over the thick oxide, stray capacitance is reduced, thereby increasing frequency and switching speeds by a factor approaching 10 for the more complex circuits. The MTOS process, in providing higher yields, permits the production of larger, more complex chips. This increased complexity makes possible the utilization of highly sophisticated circuitry to further improve speed capabilities. One example of such a circuit now in use is a multi-phase dynamic system which not only enhances operating speeds, but reduces still further the low power dissipation inherent in MTOS circuits. MTOS arrays are now being delivered with rated operating frequencies of 5MHz. (Pilot production devices are operating at still higher frequencies.) #### LSI means Large Scale Benefits, too... The unprecedented packaging density and high yields made possible with the MTOS process provide cost and reliability advantages never before attainable in integrated circuits. In addition to the resulting lower initial costs per function, costs are further reduced by the elimination of most external wiring, printed circuit boards and assembly labor. Moreover, by minimizing the need for external interconnections, a higher order of reliability, improved performance and product yield are obtained, making available the most complex functions so far achievable on a single monolithic chip. #### What MTOS can do for you - It can lower the cost of your equipment - It can shrink the size of your equipment - It can upgrade the reliability of your equipment - It can improve the performance of your equipment - It can put you ahead of your less innovative competitors...and at least abreast of your more aware ones! General Instrument's exclusive MTOS has made Large Scale Integration a practical reality. There is no longer any need to await the possible future developments of LSI...It is ready now for utilization in your equipment designs — whether you want to choose from the only broad line available, or in order to meet your special requirements—at General Instrument. Write for full information and the "MTOS Circuit Digest." # Looks are deceiving... CDE's newTX capacitor packs T3 capacitance in a T2 case! Meet the TX...a totally new tantalum capacitor with unmatched volumetric efficiency. A capacitor which offers twice the capacitance value of the CL65-yet retains CL65 case sizes! Voltage range is widest, too: from 6 all the way to 100. The inside story? Dependability. CDE's exclusive seal construction virtually eliminates the possibility of electrolytic leakage. Rugged internal construction makes the TX incredibly shock and vibration-resistant. It is, in fact, an advanced product...one just right for computer circuitry, copy machines and many other applications. CDE's new TX capacitor: just another example of doing the job just a little better. #### Addenda to ELECTRONIC DESIGN 1967 Semiconductor Directory (ED 9, April 26, 1967) The following integrated circuits manufactured by Sprague Electric Co. were omitted from our 1967 Semiconductor Directory. Included are their operating temperature ranges and package descriptions. For full specifications, circle **388** on the Reader-Service Card in this issue. Operating temperature ranges -55 C to +125 C Series SE, US -20 C to +85 C Series SU 0 C to +70 C Series NE, ST +10 C to +55 C Series LU +15 C to +70 C Series SP Packages (letter following the type number)A 14-lead plastic dual in-lineE T0-91B 10-lead flat packG T0-91C T0-85J T0-88D T0-78K T0-100 | | | | Fan-out | Propagation
delay
(nsec) | Average power (mW) | |-------
---|--|---|---|---| | DTL | NE106A, NE106J, SE106J SE111J NE112A, NE112J, SE112J NE116A, NE116J, SE116J NE124A, NE124J, SE124J NE125A, NE125J, SE125J SE155J NE156A, NE156J, SE156J NE161A, NE161J, SE161J NE170A, NE170J, SE170J NE180A, NE180J, SE180J SP616A, ST616A SP620A, ST620A SP629A, ST629A SP631A, ST631A SP659A, ST659A SP670A, ST670A SP680A, ST670A SP680A, ST670A SP680A, ST670A SP680A, ST670A SP680A US-721J US-727J US-727J US-730J US-731J US-732J | Dual 5-input gate expander Dual 4-input high fan-out gate Dual 3-input high fan-out gate Dual 4-input NAND gate RST binary element J-K binary element Dual 4-input clock/cap. line driver Dual 4-input clock/cap. line driver Monostable multivibrator Triple 3-input NAND gate Quadruple 2-input NAND gate Quadruple 2-input NAND gate J-K binary element RST binary element Quadruple 2-input gate expander Dual 3-input buffer/driver Triple 3-input NAND gate Quadruple 2-input NAND gate Quadruple 2-input NAND gate Triple 3-input 2-input NAND gate Triple 2-input NAND gate Triple 2-input NAND gate Triple 2-input NAND gate RST binary element Dual 5-input gate expander 12-input gate expander | 19
19
6
7
8
19
19
4
6
6
5
5
5
7
6
6
7
6
7 | 20
20
25
18 MHz
12 MHz
20
20
25
25
25
30
5 MHz
10 MHz
25
30
30
25
25
25
30 | 34
34
15
28
40
34
34
51
15
15
34
28
40
-
34
15
15
15
15 | | mWRTL | US-0908D, US-0908E
US-0909D, US-0909E
US-0910D, US-0910E
US-0911D, US-0911E
US-0912D, US-0912E
US-0913D, US-0913E
US-0921D, US-0921E | adder
buffer
dual gate
gate
half adder
register
gate expander | - | 120
80
40
80
120
120
40 | 10
10
4
4
8
15 | | TTL | NE416A, NE416J, SE416J
NE417A, NE417J, SE417J
NE424A, NE424J, SE424J
NE440A, NE440J, SE440J
NE455A, NE455J, SE455J
NE480A, NE806J, SE806J
NE806A, NE806J, SE806J
NE806A, NE806J, SE816J
NE825A, NE825J, SE825J
NE826A, NE825J, SE826J
NE840A, NE840J, SE840J
NE855A, NE855J, SE855J
NE870A, NE870J, SE870J
NE880A, NE880J, SE880J
SE8416J | Dual 4-input expandable NAND gate Dual 3-input expandable NAND gate Dual AC binary element Dual exclusive OR gate Dual 4-input power/driver Quad 2-input NAND gate Dual 4-input expander Single 8-input NAND gate Dual 4-input NAND gate Dual 4-input NAND gate Dual 4-input vander Dual 4-input NAND gate Dual 4-input NAND gate Dual 4-input exclusive OR gate Dual 4-input power gate Triple 3-input NAND gate Quad 2-input NAND gate Dual 4-input expandable NAND gate | 7
7
7
7
24
7
10
10
10
10
30
10
10 | 32
35
9 MHz
25
29
25
-
13
13
20 MHz
30 MHz
13
13
13
13 | 9
8
14
10
12
9
-
20
20
70
35
35
35
25
20
4.5 | Operating temperature ranges -55 C to +125 C Series SE, US -20 C to +85 C Series SU 0 C to +70 C Series NE, ST +10 C to +55 C Series LU +15 C to +70 C Series SP Packages (letter following the type number) A 14-lead plastic dual in-line E TOB 10-lead flat pack G TOC TO-85 J TOD TO 79 E TO-91 G TO-91 J TO-88 D TO-78 K TO-100 | | | | Fan-out | Propagation
delay
(nsec) | Average power (mW) | |-----------------|---|---|--|--|--| | TTL | SE8417J SE8424J SE8440J SE8440J SE8455J SE8480J SE8806J SE8806J SE8816J SE8825J SE8826J SE8826J SE8840J SE8855J SE8870J SE8880J SP416A, ST416A SP417A, ST417A SP424A, ST424A SP440A, ST424A SP440A, ST455A SP480A, ST480A SP806A, ST806A SP808A, ST806A SP808A, ST806A SP808A, ST806A SP808A, ST816A SP808A, ST816A SP808A, ST816A SP825A, ST825A SP826A, ST825A SP840A, ST840A SP855A, ST855A SP870A, ST855A SP870A, ST870A SP880A, ST880A | Dual 3-input expandable NAND gate Dual AC binary element Dual exclusive OR gate Dual 4-input buffer/driver Quad 4-input NAND gate Dual 4-input expander Single 8-input NAND gate Dual 4-input NAND gate Dual 4-input NAND gate Dual 4-input exclusive OR gate Dual 4-input exclusive OR gate Dual 4-input expandable NAND gate Quad 2-input NAND gate Dual 4-input expandable NAND gate Dual 3-input expandable NAND gate Dual 4-input expandable Dual 4-input power/driver Quad 2-input NAND gate Dual 4-input expander Single 8-input Dual 4-input NAND gate Dual 4-input exclusive OR gate Dual 4-input exclusive OR gate Dual 4-input exclusive OR gate Dual 4-input power gate Triple 3-input NAND gate Quad 2-input NAND gate | 7 7 7 7 20 7 10 10 10 10 10 10 7 7 7 7 7 24 7 8 8 8 8 8 8 8 8 | 50
9 MHz
25
28
25
-
12
12
12
12
12
12
12
12
12
40
40
9 MHz
45
40
-
20
20 MHz
30 MHz
20
20 MHz
20 MHz | 4.5
9.0
4.5
7.0
3.5
-
20
20
70
35
25
25
20
20
12
12
12
22
18
16
9.0
-
25
25
25
25
25
25
25
25
26
27
28
29
20
20
20
20
20
20
20
20
20
20 | | RCTL | US-0100B
US-0101B
US-0102B
US-0103B
US-0104B
US-0106B
US-0107B
US-0108B
US-0109B
US-0110C
US-0111C
US-0112C
US-0113C
US-0114B
US-0115B | R-S flip-flop/counter/shift reg. R-S flip-flop/counter/shift reg. G-input NOR/NAND gate G-input NOR/NAND gate Dual 3-input NOR/NAND gate Exclusive OR circuit Dual 2-input NOR/NAND gate and inv. Clock driver circuit Single shot multivibrator Pulse exclusive OR gate R-S flip-flop with dual resets R-S flip-flop with dual resets Triple 2-input NOR/NAND gate Triple 2-input NOR/NAND gate 4x1x1 input NOR/NAND gate
4x1x1 input NOR/NAND gate | 4
20
5
25
5
5
25
20
5
5
4
20
5
5
5 | | 2
3
2
2
2
3
4
6
2
3
2
2
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | | Linear Circuits | NE501, SE501
NE505, SE505
NE506, SE506
NE518, SE518 | RF/video/pulse amplifier
Small signal diff. amplifier
Operational amplifier
Voltage comparator | - | 4-40 MHz
1 MHz
500 kHz
5 MHz | 25
100
180
170 | | Utilogic | LU300K, SU300K
LU305K, SU305K
LU306K, SU306K
LU314K, SU314K
LU315K, SU315K
LU316K, SU316K
LU320K, SU320K
LU331K, SU331K
LU332K, SU332K | Dual 3-input gate expander 6-input AND gate Dual 3-input AND gate 7-input NOR gate Dual 3-input NOR gate Dual 2-input NOR gate J-K binary element Dual 2-input OR gate Dual 3-input OR gate | -
10
10
17
17
17
17
17 | 25
25
30
30
30
30
4 MHz
30 | -
5
18
18
18
18
90
36
36 | The following companies should be added to the diode chart: Company Parametric Industries, Inc. 63 Swanson Street Winchester, Mass. 01890 Tel.: (617) 729-7333 **Products** Varactors PIN diodes Company Monsanto Electronics 800 N. Lindbergh Blvd. St. Louis, Mo. 63166 Tel.: (314) 694-2136 **Products** Lasers Visible and invisible light emitting diodes and arrays Company Victory Engineering P.O. Box 187 Springfield, N.J. Tel.: (201) 379-5900 **Products Varistors** ### 1967 ### Semiconductor Directory Reference Issue Roger Kenneth Field Peter N. Budzilovich Technical Editors ELECTRONIC DESIGN's Fifteenth Annual Semiconductor Data Charts once again are tailored to the specific needs of the design engineer. Unlike other existing lists, which group devices by manufacturer or numerical sequence (and are fine for salesmen but of limited use to engineers), the devices in ELECTRONIC DESIGN's directory are listed both by application categories and numerically with cross-indexes. Within each application category (see table of contents below) the devices are arranged in order of the corresponding key parameter. | List of semiconductor manufa | acturers | | 86 | |--------------------------------------|-----------|--|-----| | How to use the charts and glo | ossary of | symbols | 85 | | Bipolars: | | | | | Audio and General-Purpose | 95 | Low-level switching | 138 | | High-frequency | 102 | High-level switching | 146 | | Power | 120 | | | | Field-Effect transistors: | | | | | Analog switching | 156 | Differential dc amplifiers | 162 | | Digital switching | 158 | General-purpose ac amplifiers | 162 | | Low-drift single-ended dc amplifiers | 160 | Low-noise ac amplifiers High-frequency ac amplifiers | 166 | | Unijunction | | riigh-hequency ac ampimers | 107 | | Pulse generating and | | High-frequency control | 154 | | SCR triggering | 154 | Low-frequency control | 154 | | Transistors cross index (bipol | ars, FET | s, UJTs) | 170 | | Diode-Rectifier chart (who m | nakes wl | nat) | 186 | | Microelectronics data charts | | | | | 1. DTL | 190 | 5. RCTL | 210 | | 2. RTL and DCTL | 197 | 6. CTL | 210 | | 3. TTL | 201 | 7. MOS | 211 | 208 8. Miscellaneous Digital 9. Linear circuits 4. ECL Microelectronics cross-index group of devices that were put at the disposal of Electronic Design by Fairchild 212 214 218 # Update Your Semiconductor File ...in two easy steps (at no charge) #### Step 1 Discard obsolete data sheets and catalogs. #### Step 2 Circle appropriate numbers on the Reader-Service card and receive the latest data sheets, application notes and catalogs from semiconductor manufacturers. Full test details, recommended applications, price lists and other specific data will be sent to you. #### Result ... a completely updated semiconductor file. #### 1967 Semiconductor Directory #### How to use the charts There are two ways to locate the devices—by the application on hand or by the device number (only JEDEC numbers for bipolars are listed). If you are looking for a device to do some specific job, follow these steps: - 1. Locate the proper chart as defined in the table of contents, page 83. - 2. Locate the device in accordance with the required value of the key parameter (shaded column in all charts). If you know the device number, go through these steps: - 1. Locate the device in the proper Cross Index. - 2. The Cross Index will tell you exactly where the device is listed in the data charts. The manufacturer whose data is used for each device is listed under "Mfr." in coded form. Manufacturers full names and addresses appear in the manufacturers list, page 86. Other suppliers of the same device are found under "Remarks". There is no implication that the company listed under "Mfr." is a prime supplier or a cheaper source. The final choice of supplier is obviously up to the designer. Values of only major device parameters are listed in the charts. Detailed specifications in all cases may be obtained by circling appropriate numbers as called out on the Reader-Service card (which is valid for one year). Circle as many numbers as you please. | Key to Sy | mbols | |-----------|-------| |-----------|-------| | f_{ae} | = small signal short-circuit | |----------|------------------------------| | | forward current transfer | | | ratio cutoff frequency | | | (common-emitter) | - fab = small-signal short-circuit forward current transfer ratio cutoff frequency (common-base) - f_T = gain-bandwidth product = collector power dissipation (average) - T_{j} = junction temperature °C - $mW/^{\circ}C = derating factor$ = max collector voltage, VCEO collector to emitter base - open = max collector voltage, V_{CBO} collector to base, emit- - ter open I_{c} = max collector current - = max collector current l_p (peak) - = small-signal short-cirhfe cuit forward current transfer ratio (commonemitter) - = dc short-circuit forward hFE current transfer ratio (common-emitter) - = collector cutoff current lco (dc) emitter open - C_{oe} =output capacitance (common-emitter) - =output capacitance C_{ob} (common base) - = rise time t_r = storage time t. - = collector-to-emitter saturation voltage - = transconductance gm = pinch-off voltage V_p = zero-bias drain current DSS $BV_{DGO} = drain-gate breakdown$ voltage with gate-source open-circuited - BV_{DGS} = breakdownvoltage from drain to gate with drain shorted to source - Cis = common source shortcircuit input capacitance - N.F. = noise figure - = intrinsic standoff ratio - leo = max emitter reverse cur- - lp = max peak point emitter current - $V_{E(sat)}$ = max emitter saturation voltage - = min emitter reverse volt-V_{EB2} - V_{OB1} = min base one peak pulse voltage #### Construction - AE = Annular epitaxial = Alloy junction ΑJ - = Alloy diffused AD DD = Double diffused - DG = Grown diffused - = Diffused junction DI DM = Diffused mesa - DDM = Double diffused mesa DP = Diffused planar - DR = Drift - ED = Electro-chemical diffused-collector - EM = Epitaxial mesa EP = Epitaxial - FA = Fused alloy - = Fused junction FJ - GD = Grown diffused = Grown junction GI - GR = Rate grown MB - = Meltback MD =Micro-alloy diffused - base MS = Mesa - PE = Planar epitaxial - = Planar PL SBT = Surface barrier - SP = Surface precision alloy TDP = Triple-diffused planar - PADT = Past alloy diffused technique #### **Materials** = germanium ge = silicon iz #### **FET Symbols** = n-type channel = p-type channel p F = junction FET M = MOS FET #### Microelectronic package types - Α = TO-5 type packages. - В = TO-47 - C $= \frac{1}{4}$ in. sq. flat-pack (TO-86, TO-91) - D $= \frac{1}{4} \times \frac{1}{8}$ in. flat-pack (TO-84, TO-85, TO-89, TO-90) - Ε = 3/8 in. sq. flat-pack F - $= \frac{1}{4} \times \frac{3}{8}$ in. flat-pack (TO-87, TO-88, TO-95) - G = Special packages DIP = Dual in-line package (14 # List of Semiconductor Manufacturers #### and their literature offerings Bring your semiconductor data file up to date. Use the Reader-Service card to obtain data sheets, catalogs, application notes and other useful information. Letter codes in the first column are used to identify transistor and microelectronics manufacturers in the data charts. Consult dot charts for Diodes and Rectifiers (p. 186) to learn who makes what. | Code | Сотрапу | Type of
Information
Offered | Transistor | Diode | Micro- | |------|--|---|------------|--------------------------|--------| | | Airtron Div., Litton Industries
200 East Hanover Avenue
Morris Plains, N.J. 07950
(201) 539-5500
TWX: 201-538-6744 | Data sheets.
Article reprints. | | 250 | | | | Alpha Industries
381 Elliot St.
Newton Upper Falls, Mass. 02164 | Data sheets.
Short form catalog. | | 251 | | | | Alpha Microelectronics Co., Inc.
10501 Rhode Island Avenue
Beltsville, Maryland 20705
(301) 474-1222 | Application notes. | | | 252 | | AL | Amelco Semiconductor
1300 Terra Bella Avenue
Mountain View, California 94042
(415) 986-9241
TWX: 415-969-9112 | Short form catalog. Application notes. Data sheets. Complete catalog. Article reprints. Customer applications service. | 253 | 250 | 254 | | | American Electronic Laboratories, Inc.
P.O. Box 552
Lansdale, Pa.
(215) 822-2929
TWX: 510-661-4976 | Data sheets. Catalogs.
Article reprints.
Customer applications
service. | | | | | | American Semiconductor
4 N. Hickory Ave.
Arlington Heights, III. 60004 | Data sheets. Catalogs. | | 256 | | | AMP | Amperex Electronics Corp. Providence Pike Slatersville, Rhode Island 02876 (401) 762-9000 TWX: 710-387-1591 | Data sheets,
Complete catalog.
Customer applications
service. Design aids,
Short form
catalog.
Article reprints. | 257 | 250
251
251
255 | 259 | | | Atlantic Instrument & Elect. Inc.
50 Hunt Street
Newton, Massachusetts 02158
(617) 926-2400 | | 260 | | | | Code | Сотрапу | Type of
Information
Offered | Transistor | Diode | Micro | |------|--|---|------------|-------------------|-------| | | Atlantic Semiconductor Inc.
905 Mattison Ave.
Asbury Park, New Jersey 07712
(201) 775-1827 | Data sheets. | | 261 | | | | Bell, F. W., Inc.
1356 Norton Avenue
Columbus, Ohio 43212
(614) 294-4906
TWX: 810-482-1716 | Data sheets. | | 262 | | | BE | Bendix Semiconductor Div.
South Street
Holmdel, New Jersey 07733
(201) 747-5400
TWX: 201-946-9400 | Application notes.
Short form catalog. | 263 | 261 | | | | Bradley Semiconductor Corp.
275 Welton St.
New Haven, Connecticut 06506
(203) 787-7181
TWX: 203-772-0676 | Short form catalog. | | 264 | | | | Bunker-Ramo Corporation
8433 Fallbrook Avenue
Canoga Park, California 91304
(213) 346-6000
TWX: 213-348-2361 | | | | 265 | | BU | Burroughs Corp. Electronic Components Div. Mt. Bethel Road Plainfield, New Jersey 07061 (201) 757-5000 TWX: 710-981-7907 | | 266 | 261
262
263 | | | | CTS Corporation
1142 W. Beardsley Avenue
Elkhart, Indiana
(219) 523-0210
TWX: 810-294-2256 | | | | 268 | | Code | Company | Type of
Information
Offered | Transistor | Diode | Micro-
electronics | |------|--|---|------------|--|-----------------------| | | Centralab Div. Globe-Union Inc. 5757 N. Green Bay Ave. Milwaukee, Wisconsin 53201 (414) 228-2616 TWX: 910-262-3084 | Data sheets. | | | 269 | | | Columbia Components Corp.
24-30 Brooklyn-Queens Expressway
Woodside, New York 11377
(212) 932-0800 | Catalog, Application notes on hybrid circuits. | | | 270 | | | Computer Diode Corp. Pollitt Drive Fairlawn, N.J. 07410 (201) 797-3900 TWX: 201-796-0660 | Data sheets. | | 271 | | | | Conant Laboratories
6500 O St.
Lincoln, Nebraska 68501
(402) 488-0432 | Catalogs. | | | | | CDC | Continental Device Corp.
12515 Chadron Street
Hawthorne, California 90252
(213) 772-4551
TWX: 910-325-6217 | Data sheets. Catalogs.
Article reprints. Short
form catalog. | 273 | 274 | | | СТ | Crystalonics Inc.
147 Sherman Street
Cambridge, Mass. 02140
(617) 491-1670
TWX: 617-499-9156 | Application notes. Data sheets. Short form catalog. Complete catalog. Article reprints. | 275 | 276 | | | DE | Delco Radio Div.
General Motors Corp.
700 East Firmin Street
Kokomo, Indiana 46901
(317) 457-8461
TWX: 317-452-5747 | Short form catalog. | 277 | 274
5 276
7 278
279
2 281 | | | | Delta Semiconductors Inc.
879 W. 16th St.
Newport Beach, California 92660
(714) 540-4160
TWX: 714-642-1335 | Data sheets. Catalogs. | | | | | DIC | Dickson Electronics Corp. Gains Guaranty Building 20 West Main Street Scottsdale, Arizona 85252 (602) 947-5751 TWX: 602-949-0146 | Data sheets.
Application notes. | 280 | 271
272
274
276
278
279
281
282
283
284 | | | | Diodes Incorporated
9261 Independence Avenue
Chatsworth, California 91311
(213) 341-4850
TWX: 213-341-2912 | | | | | | | Eastern Delta Corporation
2909 Broadway
Fairlawn, New Jersey 07411
(201) 797-4200 | Data sheets. | | | | | | Eastron Corporation
25 Locust Street
Haverhill, Massachusetts 01830
(617) 373-3824 | Data sheets,
Application notes. | | | | | | Edal Industries
4 Short Beach Road
East Haven, Connecticut 06512
(203) 467-2591 | Data sheets. Complete catalog. Short form catalog. Application notes. | | 285 | | | | Edgerton, Germeshausen & Grier, Inc.
160 Brookline Ave.
Boston, Massachusetts 02215
(617) 267-9700
TWX: 617-262-9317 | Data sheets.
Application notes. | | 286 | | | | Electro-Optical Systems, Inc.
300 North Halstead
Pasadena, California 91107
(213) 449-1230
TWX: 213-577-0060 | | | 287 | | | Code | Company | Type of
Information
Offered | Transistor | Diode | Micro-
electronics | |------|--|---|------------|-------|-----------------------| | | Electronic Control Corp.
1010 Pamela Drive
P.O. Box J
Euless, Texas
(817) 283-1596 | | | 288 | | | | Electronic Devices Inc.
21 Gray Oaks Avenue
Yonkers, New York 10710
(914) 965-4400
TWX: 914-476-3110 | Application notes. נ'mplete catalog. | | 289 | | | ETC | Electronic Transistors Corp.
153-13 Northern Boulevard
Flushing, New York 11354
(212) 539-6700 | Data sheets. Catalogs. | 290 | 288 | | | | Erie Technological Products, Inc.
644 West 12th St.
Erie, Pennsylvania 16512
(814) 456-8592
TWX: 814-453-6816 | Complete catalog. | | 291 | | | | Espey Mg. & Electronics Corp.
Box 422
Saratoga Spring, N.Y. 12866
(518) 584-4100 | Data sheets. | | 292 | | | FA | Fairchild Semiconductor
545 Whisman Rd.
Mountain View, California 94040
(415) 962-5011
TWX: 910-379-6435 | Data sheets. Application notes. Short form catalog. | 293 | 294 | 295 | | | Gemini Semiconductors, Inc.
482 Ridgedale Ave.
Hanover, N.J. 07936
(203) 887-8181 | Catalogs with application notes. | | 296 | | | GE | General Electric Co.
Semiconductor Products Dept.
Bldg. 7, Electronics Park
Syracuse, N.Y.
(315) 456-2798
TWX: 710-541-0498 | Data sheets. Catalogs.
Application notes.
Article reprints. | 297 | 298 | 299 | | GI | General Instrument Corp.
100 Andrews Rd.
Hicksville, N.Y. 11802
(516) 681-4042 | Application notes. Data sheets. Complete catalog. Short form catalog. Technical bulletin. | 311 | 312 | 313 | | | General Semiconductors, Inc.
230 West 5th Street
Tempe, Arizona 85280
(682) 966-7263
TWX: 910-950-1942 | Data sheets. Catalogs.
Data manuals.
Customer applications
service. | | 314 | | | | Green Rectifier Corp.
1-10 30 Street
Fairlawn, N.J. 07411
(201) 797-8100 | | | 315 | | | | HP Associates
2900 Park Boulevard
Palo Aito, Calif. 94304
(415) 321-8510 | Data sheets.
Application notes.
Catalogs. | | 316 | | | | Halex, Inc.
139 Maryland Street
El Segundo, Calif.
(213) 772-2545
TWX: 213-322-1608 | Data sheets. | | | 317 | | | Heliotek Div. Textron Electronics Inc. 12500 Gladstone Ave. Sylmar, Calif. 91734 (213) 365-6301 TWX: 213-764-5923 | | | 318 | | | HOF | Hoffman Electronics Corp. Semiconductor Division 4501 North Arden Drive El Monte, Calif. 91734 (213) 686-0123 TWX: 910-587-3429 | Data sheets. Catalogs,
Application notes.
Article reprints. | | 319 | | | Code | Company | Type of
Information
Offered | Transistor | Diode | Micro- | |------|---|--|------------|-------|--------| | HU | Hughes Aircraft Co. Microelectronics Division 500 Superior Ave. Newport Beach, Calif. 92663 (714) 548-0671 TWX: 714-548-0671 | Data sheets.
Application notes. | 320 | 321 | 322 | | | Hunt Electronics Co.
2617 Andjon
Dallas, Texas 75220
(214) 352-8421 | | | 323 | | | ITT | 1TT Semiconductors
3301 Electronics Way
West Palm Beach, Fla. 33402
(305) 842-2411
TWX: 510-952-6667 | Catalogs. | 324 | 324 | 324 | | IND | Industro Transistor Corp.
35-10 36th Avenue
Long Island City, N.Y.
(212) 392-8000 | | 325 | | | | | Instrument Systems Corp.
770 Park Avenue
Huntington, N.Y.
(516) 423-6200
TWX: 516-421-4042 | Data sheets. | | 326 | * | | IN | Intellux, Inc.
26 Coromar Dr.
Goleta, Calif. 93017
(805) 968-3541
TWX: 805-449-7223 | Data sheets. Catalogs.
Application notes.
Article reprints.
Data manuals.
Customer applications
service. Design aids. | | | 327 | | | International Diode Corp.
90 Forrest St.
Jersey City, N.J. 07304
(201) 432-7151 | Data sheets. Short form catalog. | | 328 | | | IEC | International Electronics Corp.
316 South Service Rd.
Melville, L.I., N.Y. 11749
(516) 694-7700
TWX: 212-479-9410 | Data sheets. Application notes. Complete catalog. | 329 | 329 | | | | International Rectifier Corp. 233 Kansas Street El Segundo, Calif. 90245 (213) 678-6281 TWX: 213-322-2623 | Data sheets.
Complete catalogs.
Application notes. | | 330 | | | | IRC, Inc.
Semiconductor Div.
71 Linden Street
West Lynn, Mass. 01905
(617) 598-4800
TWX: 617-599-4391 | Data sheets.
Complete catalog.
Short form catalog. | | 331 | | | KMC | KMC Semiconductor Corp.
Parker Road
Long Valley, N.J. 07853
(201) 876-3811 | Data sheets. Complete catalogs. Application notes. Article reprints. Short form catalog. | 332 | 332 | | | KSC | KSC Semiconductor Corp.
437 Cherry St.
West Newton, Mass.
(617) 969-8451 | Data sheets.
Complete catalog.
Short form catalog. | 333 | | | | | Kemtron Electron Products
14 Price Place
Newburyport, Massachusetts 01950
(617) 462-4464 | | | 334 | | | | Korad Corporation
2520 Colorado Avenue
Santa Monica, Calif. 90404
(213) 393-6737
TWX: 213-879-0556 | | | 335 | | | LAN | Lansdale Transistor & Electronics Inc.
1111 North Broad Street
Lansdale, Pa. 19446
(215)
885-9004
TWX: 510-661-7532 | | 336 | | | | Code | Сотрапу | Type of
Information
Offered | Transistor | Diode | Micro-
electronics | |------|---|--|------------|---|-----------------------| | | Ledex, Inc.
123 Webster Street
Dayton, Ohio
(513) 224-9891
TWX: 513-944-0286 | Catalogs. | | 337 | | | | M.S. Transistor Sub. of Silicon Transistor Corp. 80-07 51st Ave. Elmhurst, N.Y. 11373 (212) 478-3134 | Short form catalogs. | 338 | | | | | MSI Electronics Corporation
116-06 Myrtle Avenue
Richmond Hill, N.Y.
(212) 441-6420 | | | 339 | | | | Mallory Semiconductor Co.
424 South Madison Street
DuQuoin, III. 62832
(618) 542-2154
TWX: 618-542-4120 | | | 340 | | | MEP | Mepco, Inc.
35 Abbett
Morristown, New Jersey 07960
(201) 539-2000
TWX: 710-986-7437 | Data sheets. | | | 341 | | | MicroSemiconductor Corp.
11250 Playa Court
Culver City, Calif. 90230
(213) 391-8271 | Data sheets. Catalogs.
Application notes.
Article reprints.
Short form catalog. | | 342 | 343 | | | Micro State Electronics Corp. Subsidiary of Raytheon Co. 152 Floral Avenue Murray Hill, N.J. 07971 (201) 464-3000 TWX: 710-984-7966 | Data sheets. Catalogs.
Application notes.
Article reprints.
Short form catalog. | | 340 | | | | Microwave Associates
South Street
Northwest Industrial Park
Burlington, Mass. 01803
(617) 272-3000
TWX: 272-1492 | Data sheets. Application notes. Complete catalogs. | | | 7 | | MO | Motorola Semiconductor Products, Inc.
P.O. Box 955
Phoenix, Ariz. 85001
(602) 273-6900
TWX: 602-255-0590 | Data sheets. Catalogs.
Short form catalogs.
Application notes. | 346 | 347 | 341 | | | National Electronics Inc.
628 North
Geneva, III. 60134
(312) 232-4300
TWX: 910-237-1685 | Data sheets. | | 3339
340
342
344
345
347 | | | NA | National Semiconductor Corp.
Commerce Rd.
Danbury, Conn. 06810
(203) 744-0060
TWX: 203-456-1142 | Data sheets.
Short form catalog. | 350 | | 351 | | NOR | Norden Div., United Aircraft Corp.
Commerce Road
Norwalk, Conn. 06856
(203) 838-4471
TWX: 710-468-0888 | Data sheets, Catalogs,
Application notes,
Article reprints,
Customer applications
service. | | | 352 | | NUC | Nucleonic Products Co., Inc.
3133 East 12th Street
Los Angeles, Calif. 90023
(213) 968-3464
TWX: 910-321-3077 | Data sheets. | 353 | 354 | | | | Ohmite Manufacturing Co.
3601 Howard Street
Skokie, 111. 60076
(312) 675-2600
TWX: 312-677-6704 | | | 355 | | | Code | Company | Type of
Information
Offered | Transistor | Diade | Micro- | |------|---|--|------------|-------------------|--------| | PR | Philbrick Researches, Inc.
Allied Drive at Route 128
Dedham, Mass. 02026
(617) 329-1600
TWX: 617-326-5754 | | | | 356 | | РН | Philco-Ford Corporation
Microelectronic Div.
2920-San Ysidro Way
Santa Clara, Calif. 95051
(408) 245-2966 | Data sheets.
Short form catalog. | 357 | 358 | 359 | | | Power Components, Inc.
P.O. Box 421
Scottsdale, Pa. 15683
(412) 887-6600
TWX: 412-887-5152 | Catalogs.
Application notes. | | | | | RAD | Radiation Inc.
P.O. Box 37
Melbourne, Florida 32901
(305) 723-1511
TWX: 305-723-7865 | Data sheets. | | 361 | 361 | | RCA | Radio Corp. of America
Electronic Components & Devices
415 S. Fifth Street
Harrison, N.J. 07029
(201) 485-3900
TWX: 201-621-7846 | Catalogs. | 362 | 362 | 362 | | RA | Raytheon Co.
Semiconductor Operation
350 Ellis St.
Mountain View, Calif. 94041
(415) 968-9211
TWX: 910-379-6445 | Data sheets. Catalogs. | 363 | 364
366
367 | 365 | | | Rectico Inc.
20 Village Park Road
Cedar Grove, N.J. 07009
(201) 239-6464 | | | | | | | Sanford Miller Corp.
89 Throop Avenue
Brooklyn 6, N.Y.
(212) 387-0600 | Complete catalog. | | | | | | Sarkes Tarzian, Inc.
415 N. College Avenue
Bloomington, Indiana 47401
(812) 332-1435
TWX: 810-351-1384 | Data sheets. Catalogs.
Application notes.
Data manuals.
Short form catalog. | | 368 | | | | Schauer Mfg. Corp.
4500 Alpine Avenue
Cincinnati, Ohio 45242
(513) 791-3030 | | | 369 | | | | Semcor Div., Components Inc.
3540 W. Osborn Road
Phoenix, Arizona 85019
(602) 272-1341
TWX: 602-255-0479 | | | 370 | | | | Semicon Inc.
Sweetwater Avenue
Bedford, Mass. 01730
(617) 275-8542
TWX: 617-862-3302 | | | 371 | | | | Semiconductor Devices Inc.
875 W. 15th St.
Newport Beach, Calif. 92663
(714) 642-5100 | | | 372 | | | | Semiconductor Specialists Inc.
5700 W. North Avenue
Chicago, III. 60639
(312) 622-8860
TWX: 910-221-1333 | | | 373 | | | | Semi-Elements Inc.
Saxonburg Boulevard
Saxonburg, Pa. 16056
(412) 352-1548 | Catalogs. Data sheets. | | 374 | | | Code | Company | Type of
Information
Offered | Transister | Diode | Micro-
electronics | |------|--|--|------------|-------|-----------------------| | | Semtech Corp.
652 Mitchell Rd.
Newbury Park, Calif. 91320
(213) 628-5392
TWX: 805-499-7137 | Data sheets. Catalogs.
Short form catalog. | | 375 | | | SA | Siemens America Inc.
230 Ferris Ave.
White Plains, N.Y. 10603
(914) 948-3434
TWX: 914-997-0725 | Data sheets.
Complete catalog.
Short form catalog. | 376 | 377 | 378 | | SIG | Signetics Corp.
811 E. Arques Ave.
Sunnyvate, Calif. 94086
(408) 739-7700
TWX: 910-339-9220 | Data sheets. Application notes. Article reprints. | | | 379 | | STC | Silicon Transistor Corp.
E. Gate Blvd.
Garden City, N.Y.
(516) 742-4100
TWX: 510-222-8258 | Data sheets. Catalogs.
Application notes.
Customer applications
service. | 380 | 380 | | | SI | Siliconix Inc.
1140 W. Evelyn Ave.
Sunnyvale, Calif. 94086
(408) 245-1000
TWX: 408-737-9948 | Application notes. Data sheets. Article reprints. | 381 | | 382 | | | Slater Electric, Inc.
45 Sea Cliff Ave.
Glen Cove, N.Y.
(516) 671-7000
TWX: 516-671-3815 | Data sheets. Catalogs.
Application notes. | | 383 | | | | Solar Systems Inc.
8241 N. Kimball Ave.
Skokie, III. 60076
(312) 676-2040
TWX: 910-233-3642 | | | 384 | | | SSP | Solid State Products Inc.
One Pingree St.
Salem, Mass. 01970
(617) 745-2900
TWX: 710-347-0226 | Data sheets. Catalogs.
Application notes.
Customer applications
service. | 385 | 385 | | | SOL | Solitron Devices Inc.
1177 Blue Heron Blvd.
Riviera Beach, Fla. 33404
(301) 848-4311
TWX: 510-952-6676 | Data sheets. Catalogs.
Short form catalogs.
Application notes. | 386 | | | | CZZ | Sperry Semiconductor
380 Main Ave.
Norwalk, Conn. 06852
(203) 847-3851
TWX: 710-468-0591 | Data sheets. Application notes. Short form catalog. | 387 | | 387 | | SPR | Sprague Electric Co.
491 Marshall St.
North Adams, Mass. 01247
(413) 664-4411
TWX: 413-663-3581 | Data sheets. Application notes. Short form catalog. | 388 | | 388 | | SW | Stewart-Warner Microcircuits Inc.
730 W. Evelyn Ave.
Sunnyvale, Calif. 94086
(408) 245-9200 | | | | 389 | | SY | Sylvania Electric Prods.
100 Sylvan Road
Woburn, Mass. 01801
(617) 933-3500 | Data sheets. Catalogs,
Application notes.
Customer applications
service. Design aids, | 390 | 391 | 392 | | | Syntron Co.
283 Lexington Ave.
Homer City, Pa. 15748
(412) 479-9477 | | | 393 | | | TRWS | TRW Semiconductors Inc.
14520 Aviation Blvd.
Lawndale, Calif. 90260
(213) 679-4561
TWX: 910-325-6206 | Data sheets.
Article reprints.
Short form catalog. | 394 | 395 | | ## First \$110 cermet trimmer sealed for board washing ON READER-SERVICE CARD CIRCLE 57 ## New CAMBION integrated circuit assemblies... Typical Logic Assembly (4 1/2" x 4 1/2") Shown Front and Back #### 150 ways to better logic design Start projects at the systems level. New low cost, highly flexible and universal, CAMBION IC logic assemblies comprise a broad selection of logic functions such as decoders, counters, shift registers, etc. CAMBION DTL (diode transistor logic) integrated circuit logic assemblies are characterized by high speed operation, positive logic levels, low power input, large noise threshold and 70 pin output/input configuration. Send for our latest Fact-pak on CAMBION digital logic assemblies. It's FREE. Cambridge Thermionic Corporation, 410 Concord Avenue, Cambridge, Massachusetts 02138. Phone: (617) 876-2800. In Los Angeles, at 8703 La Tijera Boulevard 90045. Phone: (213)776-0472. Standardize on CAMBION...21,541 guaranteed electronic components | Code | Company | Transistor | Diode | Micro-
electronics | | | |------|---|--|-------|-----------------------|-----|--| | TI | Texas Instruments Inc. Semiconductor Components Div. P.O. Box 5012 Dallas, Texas 75222 (214) 238-2011 TWX: 214-231-1492 | Data sheets. Catalogs.
Application notes.
Customer applications
service. | 396 | 397 | 398 | | | TR | Transition Electronic Corp.
168 Albion St.
Wakefield, Mass. 01881
(617) 245-4500
TWX: 617-245-7823 |
 399 | 399 | 399 | | | TRI | Trio Laboratories
80 DuPont St.
Plainview, N.Y. 11803
(516) 681-0400
TWX: 516-433-9573 | Data sheets.
Application notes. | | 400 | 401 | | | UC | Union Carbide Electronics
365 Middlefield Rd.
Mountain View, Calif. 94040
(415) 961-3300 | | 402 | | 403 | | | | Unitrode Corp.
580 Pleasant St.
Watertown, Mass. 02172
(617) 926-0404
TWX: 710-327-1297 | Data sheets. Catalogs. Data manuals. Customer applications service. Design aids. | | 404 | | | | | Vactec Inc.
2423 Northline Industrial Blvd.
Maryland Heights, Mo. 63045
(314) 432-4200 | | | 405 | | | | | Varian/Bomac Div.
Salem Road
Beverly, Mass. 01915
(617) 922-6000
TWX: 617-922-1978 | | | 406 | | | | VAR | Varo Inc., Special Products Div.
2201 Walnut St.
Garland, Texas 75040
(214) 276-6141
TWX: 214-276-8577 | | | 407 | 408 | | | VEC | Vector Solid State Labs.
Southampton, Pa. 18966
(215) 357-7600 | | 409 | | | | | | Wagner Electric Corp. 1 Summer Ave. Newark, N.J. 07104 (201) 484-8500 TWX: 710-995-4607 | Data sheets. Catalogs. | | 410 | | | | | Western Semiconductors Inc.
2200 Fairview St.
Santa Ana, Calif. 92704
(714) 546-5717
TWX: 714-546-2245 | Data sheets. Catalogs,
Customer applications
service. | | 411 | | | | | Western Transistor Corp.
11581 Federal Drive
El Monte, Calif. | | 412 | | | | | WH | Westinghouse Electric Corp. Molecular Electronics Division Box 73J7 Elkridge, Maryland 21227 (301) 796-3666 TWX: 301-761-4340 | Data sheets. Short form catalog. Complete catalog. Application notes. Article reprints. | | | 413 | | | WH | Westinghouse Electric Corp.
Semiconductor Div.
Youngwood, Pa. 15697
(412) 925-7272
TWX: 412-679-2783 | Data sheets. Catalogs,
Application notes.
Article reprints.
Design aids.
Short form catalog. | 414 | 415 | | | # Design Aid Working Tool Valuable Time Saver Unique Professional ### Useful Easy to Use Unparalleled #### Dynamic #### Informative Dear Reader, If you find our Fifth Annual Semiconductor Reference Issue any one or more of these adjectives, the tremendous amount of work it represents will have been well worthwhile. We would appreciate any comments and suggestions you may have. Please drop us a line. Electronic Design #20, to be published September 27, will also contain our Test Instrument Issue. It, too, will contain a wealth of information which we hope you find useful. The Editors of Electronic Design Type faces supplied by City Typographic Service, New York City. # KMC IS BIG ON MICROWAVE TRANSISTORS. # For amplifier, converter or oscillator circuitry from VHF to 4 GHz For instance, our K5001, a double-diffused NPN Silicon transistor designed for low level, low noise UHF and VHF amplifier applications. At 450mc, the K5001 will give you a 1.5 db max. system noise figure. The K5201C for low noise amplifier applications in our exclusive channel strip line package has a typical noise figure of 5db at 2GHz. The K3510 in the TO-39 package is the same transistor as the K3520 in a beryllia package. | Part No. | Noise Figure @
Given Frequency | Power Output as Oscillator at Given Frequency (typ.) | ft in
Min. | GHz
Typ. | Price
Quantity 1 to 9 | | |----------|-----------------------------------|--|---------------|-------------|--------------------------|--| | K5001 | 1.5 db @ 450 MHz | | 1.5 | 1.8 | \$300 ea. | | | K5201C | 3 db @ 1 GHz | | 1.5 | 2.0 | \$100 ea. | | | K5503C | * 1 | 60 mw @ 2.5 GHz | 1.5 | 2.0 | \$150 ea. | | | K3510 | | 1 watt @ 1 GHz | 1.0 | 1.4 | \$ 25 ea. | | | K2604 | | 25 mw @ 2 GHz | 1.0 | 1.4 | \$ 30 ea. | | | K2126 | 2 db @ 60 MHz | | 1.0 | 1.4 | \$ 10 ea. | | | K2121 | 2.5 db @ 450 MHz | | 1.0 | 1.4 | \$ 25 ea. | | | K3520 | | 0.4 watts @ 2 GHz | 1.5 | 2.0 | \$ 50 ea. | | The chart above lists some of our other types. For information about a specific requirement or literature describing our complete line call or write us. See us at the Microwave Exposition Booth 314, Collseum, N.Y.C. "One of the proven dependables" semiconductor corp. Parker Road, Long Valley, New Jersey 201 876 3811 ON READER-SERVICE CARD CIRCLE 59 # RCA...where the From RCA "overlay"... the industry's best performing plastic RF-power transistor— 15 watts min. at 400 MHz Now . . . get in on the action with the rfpower advantages of RCA "overlay" in plastic!! RCA's new 2N5017 stud-mounted plastic transistor provides 15 watts at 400 MHz ... 22 watts typ. at 225 MHz ... operates from 28-v supply! And this circuit capability is delivered in a unique package that sets new standards for performance, ruggedness, and versatility at VHF and UHF frequencies. Performance—the industry's lowest emitter and base inductances (0.1 nH and 0.2 nH respectively) result in optimum gain and power capability right up to 700 MHz...efficient for broadband and narrowband transmitters. Ruggedness—unexcelled mechanical strength with short "anchor" pins eliminating problems due to lead breakage or vibration. Versatility—"terminal block" structure permits choice of stripline, printed circuit (both flush and bottom-mounted), or lumped circuit mounting. Call your RCA representative today for more information on the 2N5017 for military, microwave, and industrial communications usage. If your applications still call for hermetically sealed packages, ask him about the RCA 2N5016—it offers similar electrical performance but in the popular TO-60 case. For technical data, write RCA Commercial Engineering, Section IG4 4A Harrison, N. J. 07029. Strip-line leads can be easily soldered to terminal block with pins providing additional mechanical strength. # action is plastic From RCA Hometaxial-Base... the industry's most powerful plastic power transistors— dissipation up to 83 watts Tomorrow's action needs are here today... as RCA, leader in silicon power, now introduces its famous Hometaxial-Base technology in plastic! Eight transistors in all, RCA's new power program is the first to combine the low cost of plastic with brute power-handling ability—83 watts or 36 watts—each is an industry-high for plastic! And this power comes in your choice of package...a straight-lead design for PC-board mounting or a bent-lead design compatible with standard TO-3 or TO-66 mounting techniques. | TYPE | PACKAGE | Vcte (sus) | lc | hit | Өл-с | P1
@ 25°C | |------------------|----------------------------------|--------------------------------------|----|---------------------|-------------|--------------| | 2N5036
2N5037 | TO-3
equivalent
P.C. type | 60 V @
R _{BI} = 100 ohms | 88 | 20·70
@
3A | 1.5
°C/W | 83 W | | 2N5034
2N5035 | TO-3
equivalent
P.C. type | 45 V @
Ret = 100 ahms | 6A | 20-70
@
2.5A | 1.5
°C/W | 83 W | | TA7155
TA2911 | TO-66
equivalent
P.C. type | 60 V @
R _{II} = 100 ohms | 4A | 25-100
@
0.5A | 3.5
°C/W | 36 W | | TA7156
TA7137 | TO-66
equivalent
P.C. type | 50 V @
Ref = -500 ohms | 4A | 20-120
@
0.1A | 3.5
°C/W | 36 W | Performance is tops—RCA mounts the silicon chip directly onto a solid copper base for better current handling, thermal resistance, and dissipation capabilities. You get unsurpassed freedom from second breakdown...the inherent advantage of RCA Hometaxial-Base technology. Put the cost and performance benefits of RCA plastic transistors in your circuits... they'll do the big job for audio amplifiers and a broad range of industrial applications. Call your RCA representative for more information or write Commercial Engineering, Section IG4-4B Harrison, N.J. 07029. Also available through your RCA distributor. **RCA Electronic Components and Devices** **The Most Trusted Name in Electronics** ### **Audio and General Purpose** #### under one watt | | | | r. Type | h _{fe} | MAX. RATINGS | | | | | CHARACTERISTICS | | | | | |---------------------|--|--|--|--|--|---|--|---|--|--|--------------------------------|---|--|--| | rass
ndex
Key | Туре | Mfr. | | | P _c
(mW) | T _j (°C) | mW/°C | *VCEO
*VCBO
(V) | I _c (m A) | Ι
(μ Α) | fae
*fT
(MHz) | Package
Outline
(TO-) | Remarks | | | A 1 | 2N1439
2N1223
2N927
2N935
2N938 | NA
SSD
NA
SSD
SSD | pnp,A,si
AJ
pnp,A,si
AJ
AJ | 5-12
6
8-22
•9 | 400
250
150
385
250 | 200
175
200
160
175 | 2.25
1.67
.85
2.85
1.67 | 50
40
60
40
35 | 100
100
100
50
50 | .025
0.1
.025
0.1
.025 | -
-
0.2 | 5
5
18
18
18 | CT, SSD
CT,SPR
ST,SSD
CT,SPR
CT,SPR | | | | 2N 1024
2N 1025
2N 1028
2N 1154
2N 1155 | SSD
SSD
SSD
TI | AJ
AJ
AJ
npn,si
npn,si | 9
9
9
9 | 250
250
250
250
750
750 | 175
175
175
150
150 | 1.67
1.67
1.67
6 | 15
35
10
*50
*80 | 100
100
100
60
50 | .025
.025
.025
5 | 1 | 5
5
5
- | AMP,CT,SPR
AMP,CT,SPR
CT,SPR
TR,NA,ETC
TR,NA,ETC | | | A 2 | 2N1156
2N1220
2N1222
2N1586
2N1587 | TI
DZSD
DZSD
TI
TI |
npn,si
AJ
AJ
npn,si
npn,si | 9
*9
9
9 | 750
250
250
125
125 | 150
175
175
87.5
87.5 | 6
1.67
1.67
2 | *120
25
25
10
20 | 40
100
100
25
25 | 5
0.1
0.1
1 | - | 5 5 - | TR.NA.ETC
CT.SPR
CT.SPR
TR.ETC
TR.ETC | | | | 2N1588
2N332A
2N1440
2N2673
2N1394 | TI
GE
NA
GE
GI | npn,si
npn,DG,si
pnp,A,si
pnp,DG,si
pnp,ge | 9
9-20
9-22
9-22
10 | 125
500
400
250
50 | 87.5
175
200
175 | 2
3.33
2.25
1.66
0.8 | 40
45
50
*60
*10 | 25
25
100
25 | 1
.5
.025
.1
15 | - | 5
5
46
- | TR,ETC
TR,TI, NA
AMP,CT,SSD | | | A 3 | 2N 1408
2N 1643
2N 1672A
2N 925
2N 470 | GI
CT
GI
NA
TR | pnp,AJ,ge
pnp,si
npn,AJ,ge
pnp,A,si
npn,PL,si | *10
*10
*10
10-24
10-25 | 150
250
120
150
200 | 100
160
85
200
175 | 2
1.9
2
.85
1.2 | *50
25
*55
40
15 | -
50
-
100
25 | 7.0
.001
25
.025 | 1
-
2
-
8 | 5
5
5
18
5 | MO, TI
SSD
SPR, SSD | | | | 2N471
2N472
2N472A
2N1082
2N102 | TR
TR
TR
TR
TR
SY | npn,PL,si
npn,PI,si
npn,PL,si
npn,PL,si
npn,AL,ge | 10-25
10-25
10-25
*10-50
*10.5 | 200
200
200
200
200
1000 | 175
175
175
175
175
75 | 1.2
1.2
1.2
1.5 | 30
45
45
•25
•30 | 25
25
25
50
1500 | .5
.5
.5
.5
500 | 8
8
8
17.2 | 5
5
5
13 | | | | A 4 | 2N117
2N332
2N1474
2N1476
2N756 | TI
TI
SSD
SSD
SSD
NA | npn,si
npn,si
AJ
AJ
npn,DM,si | 12
12
12
12
12
12-22 | 150
150
250
250
500 | 175
175
175
175
175
200 | 1
1.67
1.67
2.5 | *45
*45
60
100
45 | 25
25
100
100
100 | 2
2
.050
0.2
0.2 | | 5
5
5
18 | TR
GE, TR, TI, NA
CT, AMP,SPR
CT, SPR
TR | | | A 5 | 2N756A
2N923
2N1149
2N726
2N1248
2N1311
2N1655
2N2177
2N2178
2N2370 | NA NA TI TI TR GI RA SSD SSD NA | npn,DM,si
pnp,A,si
npn,si
npn,si
npn,PLE,si
npn,AJ,ge
pnp,si
AJ
pnp,A,si | 12-22
12-30
12.3
15
*15
*15
*15
*15
*15
*15
*15
*15 | 500
150
150
300
30
120
250
100
10
200 | 200
200
175
175
150
85
160
175
175
200 | 2.5
.85
1
2
.24
2
1.85
.67
.67 | 60
25
•45
20
6
•75
125
6
15 | 100
100
25
50
5
-
50
50
50 | 0.1
.025
2
1
.01
7.0
1.0
.005
.005 |
-
-
-
1.5
.050 | 18
18
-
18
5
5
5
5
5
5
5
5
5
5
5
5 | TR SPR,SSD TR IEC GE TI CT, SPR CT, SPR CT, SPR LOW Level, Low Noise, AMP, CT, SPR | | | | 2N2372
2N2391
2N529
2N243
2N936 | NA
TI
GI
TI
SSD | pnp,A,si
pnp,si
-
npn,si
AJ | *15
15
15-20
16
*18 | 150
300
100
750
385 | 200
175
85
150
160 | 1
2
2
6
2.85 | 15
20
°15
°60
35 | 100
50
-
60
50 | .005
10
5.0
1
0.1 | 2.5 | 18
50
5
- | Low Level, Low Noise, CT, SPR TR, NA CT, SPR | | | A 6 | 2N939
2N1026
2N1027
2N1219
2N1221 | D22
D22
D22
D22
D22
D22 | AJ
AJ
AJ
AJ | 18
18
18
•18 | 250
250
250
250
250
250 | 175
175
175
175
175 | 1.67
1.67
1.67
1.67
1.67 | 35
35
15
25
25 | 50
100
100
100
100 | .025
.025
.025
.025
0.1 | - | 18
5
5
5
5 | CT, SPR
CT, SPR
CT, SPR
SPR
CT, SPR | | | | 2N1474A
2N1441
2N757
2N333A
2N2674 | SSD
NA
NA
GE
GE | AJ
pnp,A,si
npn,DM,si
npn,DG,si
npn,DG,si | 18
18-36
18-40
18-44
18-44 | 250
400
500
500
250 | 175
200
200
175
175 | 1.67
2.25
2.5
3.33
1.66 | 60
35
45
45
*60 | 100
100
100
25
25 | .050
.025
0.2
.5 | | 5
5
18
5
46 | CT, SPR
AMP, CT, SSD
TR, GI
TR, TI, NA | | | A 7 | 2N928
2N334A
2N758
2N758A
2N734 | NA
GE
NA
NA
TI | pnp, A, si
npn, DG, si
npn, DM, si
npn, DM, si
npn, si | 18-55
18-90
18-90
18-90
20 | 150
500
500
500
500 | 200
175
200
200
175 | .85
3.33
2.5
2.5
3.33 | 60 •
45
45
60
60 | 100
25
100
100
50 | .025
.5
0.2
0.1 | 12
-
-
- | 18
5
18
18
18 | SPR, SSD
TR
TR, GI
GI, SSD
TRWS, TR, NA | | | A 8 | 2N738
2N1273
2N1274
2N1310
2N1312 | TI
TI
TI
GI
GI | npn,si
pnp,ge
pnp,ge
npn,AJ,ge
npn,AJ,ge | 20
20
20
•20
•20
•20 | 500
150
150
120
120 | 175
85
85
85
85 | 3.33
2.5
2.5
2
2 | 80
*15
*25
*90
*50 | 50
150
150
-
- | 1
14
14
7
7 | -
-
1
2 | 18
5
5
5
5 | TR
TI, IEC
TI | | | | 2N1372
2N1373
2N1380
2N1381 | TI
TI
TI
TI | pnp,ge
pnp,ge
pnp,ge | *20
*20
20
20 | 250
250
250
250
250 | 100
100
100
100 | 3.3
3.3
3.3
3.3 | *25
*45
*12
*25 | 200
200
200
200
200 | -
14
14 | - | 5
5
5
5 | | | | 383
4445
445
4564
1572
2371
2373
3579
3292
2293
3877
3877A
330
2042A
226
339A
340A
341A
3793
3118 | Mfr. TI TI TI GI NA NA SSD NA NA GE GE GI MO MO TR TR TR | pnp.ge npn.si npn.si npn.si npn,si npn,A.si pnp.A.si pnp.EP,si npn,EP,si npn,EP,si npn,PL,si npn,PL,si npn,PL,si npn,PL,si npn,PL,si npn,PL,si npn,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge | **PFE 20 **20 **20 **20 **20 **20 **20 **20 | Pc (mW) 200 800 600 600 120 200 150 400 200 200 200 200 | 85
200
175
175
85
200
200
200
200
150 | mW/°C 3.3 4.57 4 4 2 1.0 1 2.28 | *CEO
*CBO
(V)
*25
*120
60
80
*40 | 200
750
50
50 | 1 co (µA) 14 10 1 1 1 25 | fae
*fT
(MHz) | Package
Outline
(TO-) | Remarks TRWS, TR, NA | |--|---|--|--|---|--|--|---|-------------------------------------|---------------------------------|----------------------------------|-----------------------------|---| | 1.445
1.564
1.572
1.672
2371
2373
1579
1292
1293
18877
18877A
130
2042
2042
206
1339A
1341A
13793 | TI
TI
GI
NA
NA
SSD
NA
NA
GE
GE
GI
MO
NA
TR
TR | npn, si
npn, si
npn, si
npn, AJ, ge
pnp, A, si
pnp, EP
npn, EP, si
npn, EP, si
npn, PL, si
npn, PEP, si
-
pnp, AJ, ge | *20 20 20 *20 *20 *20 *20 *20 *20 *20 *2 | 800
600
600
120
200
150
400
200
200
200
200 | 200
175
175
85
200
200
200
150 | 4.57
4
4
2
1.0 | *120
60
80
*40 | 750
50
50 | 10
1
1 | - | 5
5
5 | | | 2373
2373
23579
1292
1293
38877
8877A
330
2042
2042A
326
339A
340A
341A | NA
SSD
NA
NA
GE
GE
GI
MO
MO
NA
TR
TR | pnp, A, si
pnp, EP
npn, EP, si
npn, EP,
si
npn, PL, si
npn, PEP, si
pnp, AJ, ge | *20
*20
*20
*20
*20 min.
*20 min
20-25 | 150
400
200
200
200
200
200 | 200
200
150 | 1 | 15 | | | 2 | 5 | ŤΪ | | 3579
1292
1293
18877
3877A
330
2042
2042A
326
339A
341A | NA NA GE GE GI MO NA TR TR | pnp,EP
npn,EP,si
npn,EP,si
npn,PL,si
npn,PEP,si
-
pnp,AJ,ge | *20
*20
*20
*20 min.
*20 min
20-25 | 400
200
200
200
200
200 | 200
150 | | | 100 | .005 | - | 5 | Low Level, Low Noise, AMP, CT
SPR | | 3877
3877A
530
2042
2042A
326
339A
340A
341A | GE
GE
GI
MO
MO
NA
TR
TR | npn,PL,si
npn,PEP,si
-
pnp,AJ,ge
pnp,AJ,ge | *20 min.
*20 min
20-25 | 200
200 | 150 | 1.60 | 15
60
•30 | 100
30
- | .005
0.05
0.5 | -
80
•600 | 18
46
- | Low Level, Low Noise, CT, SPR | | 326
339A
340A
341A | NA
TR
TR | | | 100
200 | 150
100
100
85
100 | 1.6
2.67
2.67
2
*2.67 | *30
70
85
*15
105 | -
50
50
-
200 | 0.5
0.5
0.5
5
10 | *600
135
135
3 | 98
98
5
5 | ТІ | | | 117 | npn,PL,si
npn,PL,si
npn,PL,si | *20-50
20-55
*20-80
*20-80
*20-80 | 200
150
250
250
250
250 | 100
200
175
175
175 | *2.67
.85
3
3 | 105
40
60
85
125 | 200
100
150
150
150 | 10
.025
1
1 | -
10
10
10 | 5
18
11
11 | TI
SPR, SSD | | 333
1150
924 | NA
TI
TI
TI
NA | npn,DD,EP,si
npn,si
npn,si
npn,si
pnp,A,si | *20-105
24
24
24
24
24-60 | 250
150
150
150
150 | 150
175
175
175
175
200 | 2.0
1
1
1
.85 | *40
*45
*45
*45
*45
25 | 500
25
25
25
25
10 | 0.5
2
2
2
2
.025 | *1.0
-
-
- | -
5
-
18 | TR
GE, TR, NA
TR
SSD | | 330A
563
564
1589 | RA
GI
GI
TI | pnp,si
pnp,AJ,ge
pnp,AJ,ge
npn,si
npn,si | 25
25
25
25
25
25 | 380
150
120
125
125 | 160
85
85
87.5
87.5 | 2-9
2.5
2
2 | 30
*30
*30
10
20 | 50
300
300
25
25 | 0.1
5
5
1 | 0.05
0.8
0.8
- | 5
-
5
- | SSD, AMP, CT
TI, SSD
IND, TI
TR
TR | | 1591
1623
2304
2617
2831 | TI
RA
RA
AMP
SY | npn,si
pnp,si
npn,PL,si
pnp,si
npn,PE,si | 25
•25
•25
•25
•25 | 125
250
600
350
360 | 87.5
160
300
150
175 | 2
1.85
3-4
2 | 40
20
30
*25
*40 | 25
50
250
50
200 | 1
1.0
.010
.001
.30 | -
0.05
10
3
250 | 5
5
-
18 | TR CT, SPR STC TRWS | | 531
4298
558
306
2860 | GI
RCA
TI
SY
SY | npn,TOP,si
pnp.AJ.ge
npn,AL.ge
npn,PE,si | 25-30
*25-75
*25-80
*25-125
*25-125 | 100
20,000
250
180
200 | 85
175
100
85
175 | 2
133
6.66
- | *15
350
12
*20
*30 | -
1000
1000
-
- | 5.0
100
6
20
1 | 3.5
*60
-
.600
*1000 | 5
66
5
22
18 | | | 279
562
727
1477
1654 | AMP
TI
TI
SSD
RA | pnp,AJ,si
pnp,AJ,ge
npn,si
AJ
pnp,si | 30
*30
30
30
*30 | 125
250
300
250
250 | 75
100
175
175
160 | 2.5
6.66
2
1.67
1.85 | 30
12
20
100
80 | 10
100
50
100
50 | 110
6
1
0.2 | 0.15
-
-
-
.50 | 1
5
18
5
5 | CT, SPR
CT, SPR | | 1656
2173
2173
2173
2392
2599A | RA
TI
MO
TI
SSD | pnp,si
pnp,ge
pnp,ge
pnp,si
pnp,EP | *30
*30
*30
*30
*30 | 250
240
240
300
400 | 160
100
100
175
200 | 1.85
3.2
3.2
2
2.28 | 125
15
15
20
100 | 50
750
750
750
50
30 | 1
10
10
10
0.025 | .050
-
-
-
-
60 | 5
5
5
50
46 | CT, SPR | | 532
1101
1102
1442
550 | GI
SY
SY
NA
MO | npn,AL,ge
npn,AL,ge
pnp,A,si
pnp,AJ,ge | 30-35
*30-60
*30-60
30-65
30-70 | 100
180
180
400
200 | 85
85
85
200
100 | 2
-
-
2.25
2.67 | *15
*20
*40
30
*45 | 100
100
100
100
500 | 5
50
50
.025 | 4.0
.10
0.10
- | 5
22
22
5
5 | CT. SSD | | 550A
553
1186
1191
2711 | MO
MO
MO
MO
GE | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
npn,PL,si | 30-70
30-70
30-70
30-70
30-90 | 200
200
200
200
200
200 | 100
100
100
100
100 | 2.67
2.67
2.67
2.67
2.67
2.67 | *45
*30
*60
*40
18 | 500
250
500
200
100 | 10
15
10
15
.5 | -
1
-
- | 5
5
5
5
98 | TI
TI
TI,IEC
NUC,CDC, IEC | | 27 13
1051
17 07
2 4 4
405 | GE
GE
MO
TI
RCA | npn,PEP,si
npn,DD,si
pnp,AJ,ge
npn,si
pnp,AJ,ge | *30-90
30-100
30-150
32
35 | 200
500
200
750
150 | 100
150
100
150
71 | 2.67
4
2.66
6 | 18
40
*30
*60
*20 | 200
100
400
60
35 | 0.5
.1
15
1
14 | -
4
† 4
-
0.65 | 98
5
5
-
40 | Full line spread CDC,IEC
NA
† fab, TI
TR, NA | | 406
780
1010
2389
533 | RCA
TI
LAN
TI
GI | pnp,AJ,ge
npn,si
npn,AJ,ge
npn,si | 35
*35
35
35
35
35-40 | 150
300
20
450
100 | 71
175
55
200
85 | 2
-
2.57
2.0 | *20
45
*10
*75
*15 | 35
50
2
500
- | 14
0.01
10
0.01
5 | 0.65
-
2
-
4.5 | 1
18
1
50
5 | LAN
AL | | 1284
1285
2926 | NA
NA
GE | pnp,EP,si
pnp,EP,si
npn,PL,si | *35-150
*35-150
†35-470 | 250
250
200 | 150
150
100 | 2.0
2.0
2.67 | *25
*35
18 | 100
100
100 | 0.10
0.01
0.5 | *7.0
*7.0
~ | -
-
98 | NUC, † Full line spread, GME,
CDC, IEC
CT, SPR | | 33333333333333333333333333333333333333 | 33 3 3 3 3 3 4 4 3 3 3 4 4 3 3 3 4 4 3 3 3 4 4 3 3 3 4 4 3 3 3 4 4 3 4 4 4 4 7 7 7 7 | 3 TI 14 NA CA RA 3 GI 4 NA CA RA 3 GI 4 TI 191 TI 1923 RA 107 AMP 11 SY 1 GI 188 RCA 177 TI 177 SSD 187 RA 187 TI 188 T | TI | TI | TI | TI | TI | Ti | 30 | 3 | 30 | 30 | | | | | | TO TO | | MAX. | RATINGS | | | CHARACT | ERISTICS | | | |---------------------|---|-----------------------------------|--|--|--|--|---|---------------------------------|---|--|------------------------------------|-----------------------------|--| | ross
ndex
Key | Type
No. | Mfr. | Туре | hfe
*hfE | P _c (mW) | T _j (°C) | m₩/ °C | *VCEO
*VCBO
(V) | i _c
(mA) | (/r \) | fae
*fT
(MHz) | Package
Outline
(TO-) | Remarks | | A 17 | 2N940
2N1469
2N1475
2N759
2N759A | SSD
SSD
SSD
NA
NA | AJ
AJ
AJ
npn,DM,si
npn,DM,si | 36
36
36
36-90
36-90 | 250
250
250
250
500 | 175
175
175
200
200 | 1.67
1.67
1.67
2.5
2.5 | 35
35
60
45
60 | 50
100
100
100
100 | .025
.025
.050
0.2
0.1 | | 18
5
5
18
8 | CT. SPR
CT. SPR
CT. SPR
TR, GI, TI, SSD
SPR, GI, TI, SSD | | | 2N335A
2N2675
2N334
2N1151
2N735 | GE
GE
TI
TI | npn, DG,si
npn, DG,si
npn,si
npn,si
npn,si | 37-90
37-90
39
39
40 | 500
250
150
150
500 | 175
175
175
175
175
175 | 3.33
1.66
1
1
3.33 | 45
*60
*45
*45
60 | 25
25
25
25
25
50 | .5
.1
2
2
1 | | 5
46
5
-
18 | TR, TI, NA GE, TR, NA TR TRWS, TR, INA, SSD | | A 18 | 2N739
2N934
2N1370
2N1371
2N1374 | TI
RCA
TI
TI | npn,si
pnp,MS,ge
pnp,ge
pnp,ge
pnp,si | 40
*40
40
40
40 | 500
150
150
150
250 | 175
-
85
85
100 | 3.33
-
2.5
2.5
2.5
3.3 | 80
13
25
45
*25 | 50
-
150
150
200 | 1
 | -
-
-
- | 18
18
5
5 | TR, SSD | | | 2N1375
2N1382
2N1413
2N1565
2N1573 | TI
TI
GE
TI | pnp.ge
pnp.ge
pnp,AJ,ge
npn,si
npn,si | 40
40
*40
40
40 | 250
200
200
600
600 | 100
85
85
175
175 | 3.3
3.3
3.33
4 | *45
*25
*35
60
80 | 200
200
200
50
50 | 7
14
12
1 | | 5
5
5
5 | TI, MO
TRWS, TR, NA
TR | | A 19 | 2N 1622
2N 2868
2N 2909
2N 3064
2N 3065 | GI
GE
GE
CT
CT | npn, AJ, ge
npn, PE, si
pnp, PE, si
pnp, si
pnp, si | *40
40
40
40
40 | 120
2800
2800
400
400 | 85
200
200
200
200
200 | 2
16
16
2.3
2.3 | *90
40
40
*110
110 | -
1000
1000
100
100 | 7.0
.010
.010
.01
.01 | 1
130
130
-
- | 5
5
46
46
46 | TI
IEC
NA
NA | | | 2N3580
2N480A
2N2043
2N2043A
2N659 | SSD
TR
MO
MO
TI | pnp,EP
npn,PL,si
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | *40
40-100
*40-100
*40-100
*40-110 | 400
200
200
200
200
250 | 200
175
100
100
100 | 2.28
1.2
2.67
2.67
6.66 | 60
45
105
105
12 | 30
25
200
200
1000 | 0.05
.5
10
10 | 80
20
0.75
0.75 |
46
5
5
5
5 | GE
TI
TI | | A 20 | 2N2244
2N2247
2N2250
2N2253
2N4026 | NA
NA
NA
NA
FA | npn, DM, si
npn, DM, si
npn, DM, si
npn, DM, si
pnp, PE, si | 40-120
40-120
40-120
40-120
•40-120 | 500
500
500
500
2000 | 200
200
200
200
200
200 | 2.5
2.5
2.5
7.5
11.4 | 20
45
20
45
60 | 100
100
100
100
100
1000 | .01
.01
.01
.01
.01 | -
-
-
•100 | 18
18
18
18
18 | Low Level
Low Level
Low Noise, CDC
Low Noise, CDC, AMP | | | 2N4027
2N4030
2N4031
2N4855
2N1192 | FA
FA
FA
TI
MO | pnp.PE.si
pnp.PE.si
pnp.PE.si
pnp/npn.EP.si
pnp.AJ.ge | *40-120
40-120
40-120
*40-120
40-135 | 2000
800
800
600
200 | 200
200
200
175
100 | 11.4
22.8
22.8
4
2.67 | 60
60
80
40
*40 | 1000
-
-
600
200 | 0.05
.2
.2
.2
0.01
15 | 100
100
150
*200 | 18
5
5
5
5 | Complementary (pnp/npn)
Ti | | A 21 | 2N3691
2N3826
2N43A
2N215
2N3709 | FA
IEC
GE
RCA
TI | npn,PL,si
npn,PE,si
pnp,AJ,ge
pnp,AJ,ge
npn,PE,si | *40-160
40-160
42
44
*45-165 | 625
300
240
150
250 | 150
150
85
70
125 | 2
0.33
4
-
2.5 | *35
45
*45
*30
30 | 50
100
300
50
30 | .05
0.10
16
10
0.1 | *200
360
1.30
0.7 | 18
-
1
† | R097A package, CDC, IEC R032 †Plastic, CDC | | | 2N4060
2N3708
2N4059
2N280
2N119 | TI
TI
TI
AMP
TI | pnp,EP,si
npn,PE,si
pnp,EP,si
pnp,AJ,ge
npn,si | *45-165
*45-660
*45-660
47
49 | 250
250
250
250
125
150 | 125
125
125
75
175 | 2.5
2.5
2.5
2.5
2.5
1.19 | 30
30
30
30
45 | 30
30
30
10
25 | 0.1
0.1
0.1
150 | -
-
0.1 | 92
†
92
–
– | †Plastic, CDC
Special Case
TR | | A 22 | 2N335
2N1152
2N917
2N918 | TI
TI
FA
FA | npn,si
npn,si
npn,DP,si
npn,PE,si | 49
49
50
*50 | 150
150
300
300 | 175
175
200
200 | 1
1
1.71
1.71 | *45
*45
15
15 | 25
25
-
50 | 2
2
0.0005
0.002 | -
*800
*900 | 5
-
18
18 | GE, TR, NA
TR
TI, RCA, AL, TRWS, NA, IEC
MO, TI, RCA, AL, TRWS, VEC.
NA, IEC | | | 2N1443
2N2432A
2N2616
2N2729
2N2946A | NA
TI
FA
FA
TI | pnp, A, si
npn, EP, si
npn, PE, si
npn, PE, si
pnp, EP, si | 50
*50
*50
*50
*50 | 400
300
800
800
400 | 200
175
200
200
200 | 2.25
2
4.56
4.56
2.3 | 15
45
15
15
*40 | 100
100
50
50
100 | .025
0.01
0.002
0.002
0.0005 | -
*20
*900
900
*5 | 5
18
18
18
46 | CT, SSD
Chopper
AL, IEC
AL, IEC
Chopper | | A 23 | 2N3581
2N4138
2N214
2N1059
2N4248 | SSD
TI
SY
SY
SY
FA | pnp,EP
npn,EP,si
npn,AL,ge
npn,AL,ge
pnp,PE,si | *50
*50
*50-100
*50-100
*50-110 | 400
300
180
180
500 | 200
175
85
85
125 | 2.28
2
-
-
5.0 | 40
30
• 40
• 20
40 | 30
100
100
100
50 | 0.02
0.01
50
20
0.01 | 30
*20
.01
.10
*40 | 46
46
22
22
18 | Chopper | | 4.00 | 2N651
2N651A
2N1187
2N654
2N2706 | MO
MO
MO
MO
MO | pnp,AJ,ge
gs,LA,qnq
gs,LA,qnq
gs,LA,qnq
gs,LA,qnq
gs,LA,qnq | 50-120
50-120
50-120
50-125
50-150 | 200
200
200
200
200
200 | 100
100
100
100
100 | 2.67
2.67
2.67
2.67
2.66 | *45
*45
*60
*30
*25 | 500
500
500
250
400 | 10
10
10
15
10 | -
2
-
†3 | 5
5
5
5 | TI
TI
TI
TI
Hab | | A 24 | 2N4296
2N4299
2N4290
2N4354
2N4355 | RCA
RCA
NA
FA
FA | npn,TDP,si
npn,TDP,si
pnp,DD,EP,si
pnp,PE,si
pnp,PE,si | 50-150
*50-150
*50-300
*50-500
*50-500 | 20,000
20,000
250
800
800 | 175
175
150
125
125 | 133
133
2.0
8.0
8.0 | 250
350
*30
60 | 1000
1000
200
1000
1000 | 100
100
0.5
0.05
0.05 | *60
*60
*100
*100
*100 | 66
66
-
5
5 | | | | | | | | | MAX. | RATINGS | | | CHARACT | ERISTICS | | | |-----------------------|---|--------------------------------|---|---|--|--|--------------------------------------|---------------------------------|---------------------------------------|------------------------------------|---|-----------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | hfe
*hFE | P _c (mW) | T _j (°C) | m₩/ °C | CEO
CBO
(V) | I _c (mA) | ι _{co}
(μΑ) | fae
*fT
(MHz) | Package
Outline
(TO-) | Remarks | | A 25 | 2N566
2N2717
2N3394
2N169
2N449 | GI
GE
GE
GE | pnp, AJ. ge
npn, PL, si
npn, PL, si
npn, GR, ge
npn, GR, ge | 55
55
•55-110
•60
•60 | 120
200
200
65
65 | 85
100
100
85
85 | 2.0
2.67
2.67
1.1
1.1 | *30
-
25
15
15 | 300
100
100
20
20 | 5
0.5
0.1
- | 1
-
-
8
8 | 5
18
98 | IND, TI
Epoxy case, CDC, IEC | | | 2N736A
2N929 | TI
TI | npn,si
npn,si | 60
60 | 500
300 | 175
175 | 3.33 | 60
45 | 100
30 | 0.5
0.01 | - | 18
18 | TR, NA
FA, GI, TR, AL, SPR, UC, MO. | | 4.00 | 2N957
2N1097 | FA
GE | npn,DD,si
pnp,AJ,ge | *60
*60 | 800
175 | 150 | 6.5
2.9 | 20
•16 | _
200 | 1.0
16 | 250 | 18
5 | NA, SSD, IEC
TRWS, AMP, IEC
TI | | A 26 | 2N1098
2N1121
2N1376
2N1377
2N1414 | GE
GE
TI
TI
GE | pnp,AJ,ge
npn,GR,ge
pnp,ge
pnp,ge
pnp,AJ,ge | *60
*60
60
60
*60 | 175
65
250
250
200 | 85
100
100
85 | 2.9
1.1
3.3
3.3
3.33 | *16
15
*25
*45
*35 | 200
20
200
200
200
200 | 16
-
7
7
12 | 8

- | 5
-
5
5
5 | MO TI | | | 2N1566A
2N2387
2N2600A
2N3858
2N3858A | TI
TI
SSD
GE
GE | npn,si
npn,si
pnp,EP
npn,PEP,si
npn,PEP,si | 60
60
*60
*60-120
*60-120 | 600
300
400
200
200 | 175
175
200
100
100 | 4
2
2.28
2.67
2.67 | 60
45
100
30
60 | 100
30
30
100
100 | 0.1
0.01
0.025
0.5
0.1 | -
-
80
-
- | 5
50
46
98
98 | | | A 27 | 2N660 = 2N3721 | TI
GE
AMP
RCA
RCA | pnp,AJ,ge
npn,PL,si
npn,ge
pnp,AJ,ge
pnp,AJ,ge | *60-150
60-660
*63
65
65 | 250
200
360
20
20 | 100
100
90
71
71 | 6.66
2.67
3.3
- | 12
18
•32
•10
•10 | 1000
100
30
2
2 | 6
0.5
-
12
12 | -
-
.85
0.85 | 5
98
1
40
1 | NUC | | | 2N407
2N408
2N649
2N1924
2N3062 | RCA
RCA
RCA
GE
CT | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,ge
pnp,si | *65
*65
*65
*65
65 | 150
150
100
225
400 | 71
71
71
85
200 | -
-
3.7
2.3 | *20
*20
25
*60
*90 | 70
70
50
500
100 | 14
14
14
10
.01 | | 40
1
1
5
46 | LAN
LAN
TI, MO
NA | | A 28 | 2N 3063
2N 270
2N 281
2N 282
2N 647 | CT
RCA
AMP
AMP
RCA | is,qnq
pnp,LA,qnq
pnp,LA,qnq
pnp,LA,qnq
pnp,LA,qnq | 65
•70
70
70
•70 | 400
250
165
165
100 | 200
50
75
75
71 | 2.3
-
.3
.3 | *90
*25
*32
*32
25 | 100
75
50
50
50 | .01
10
4.5
4.5
14 | 1
0.9
0.9 | 46
7
1
1 | NA
Matched Pair 2N281's
LAN | | | 2N1592
2N1593
2N1594
2N2945A
2N3128 | TI
TI
TI
TI
NA | npn,si
npn,si
npn,si
npn,EP,si
npn,PL,si | 70
70
70
•70
•70 | 125
125
125
125
400
150 | 87.5
87.5
87.5
200
150 | 2
2
2
2.3
1.2 | 10
20
40
•25
20 | 25
25
25
100
100 | 1
1
0.002
.002 | -
-
*10
- | -
-
46
- | TR
TR
TR
Chopper | | A 29 | 2N1175A
2N1705
2N213
2N1251
2N109 | MO
MD
SY
SY
RCA | pnp,AJ,ge
pnp,AJ,ge
npn,AL,ge
npn,AL,ge
pnp,AJ,ge | *70-140
70-150
70-250
*70-250
*75 | 200
200
180
180
150 | 100
100
85
85
71 | 3.33
2.66
-
- | *35
*18
*40
*20
*25 | 200
400
100
100
70 | 12
10
50
20
7 | †3
0.1
7.5
1 | 5
5
22
22
40 | TI
Hab, TI
LAN | | | 2N217
2N412
2N1378
2N1379
2N1431 | RCA
RCA
TI
TI
SY | pnp,AJ.ge
pnp,AJ.ge
pnp,ge
pnp,ge
npn,AL,ge | *75
75
75
75
75
*75-150 | 150
80
250
250
180 | 71
71
100
100
85 | -
3.3
3.3
- | *25
13
*12
*25
*25 | 70
15
200
200
100 | 7
10
7
7
20 | 1
10
-
-
.01 | 1
1
5
5
22 | LAN | | A 30 | 2N1189
2N2712
2N2714
2N3402
2N3404 | MO
GE
GE
GE
GE | pnp,AJ,ge
npn,PL,si
npn,PEP,si
npn,PE,si
npn,PE,si | *75-175
*75-225
*75-225
*75-225
*75-225 | 200
200
200
200
560
560 | 100
100
100
150
150 | 2.67
2.67
2.67
4.47
4.47 | *45
18
18
25
50 | 500
100
200
500
500 | 10
0.5
0.5
0.1
0.1 | - | 5
98
98
98
98 | TI
NUC,
IEC
IEC
Epoxy case, heat clip
Epoxy case, heat clip | | | 2N3414
2N3416
2N4297
2N336A
2N760 | GE
GE
RCA
GE
NA | npn,PE,si
npn,PE,si
npn,TOP,si
npn,DG,si
npn,DM,si | *75-225
*75-225
75-300
76-333
76-333 | 360
360
20,000
500
500 | 150
150
175
175
200 | 2.67
2.67
133
3.33
2.5 | 25
50
250
45
45 | 500
500
1000
25
100 | 0.1
0.1
100
.5
0.2 | -
*60
- | 98
98
66
5 | Epoxy case, CDC, IEC
Epoxy case, CDC, IEC
TR, TI, NA
TR, GI, AL, TI, SSD | | A 31 | 2N760A
2N2676
2N661
2N736
2N740 | NA
GE
TI
TI | npn,DM,si
npn,DG,si
pnp,AJ,ge
npn,si
npn,si | 76-333
76-333
*80
80
80 | 500
250
250
500
500 | 200
175
100
175
175 | 2.5
1.66
6.66
3.33
3.33 | 60
*60
12
60
80 | 100
25
100
50
50 | 0.1
.1
6
1 | - | 18
46
5
18 | TR, GI, AL, TI, SSD TRWS, TR, NA, SSD TR, AL, SSD | | A 20 | 2N1415
2N1566
2N1574
2N3462
2N3463 | GE
TI
TI
AMP
AMP | pnp.AJ.ge
npn.si
npn.si
npn.si
npn.si | *80
80
80
*80
*80 | 200
600
600
600
300 | 85
175
175
200
200 | 3.33
4
4
1.7
1.7 | *35
60
80
35
50 | 200
50
50
50
50
50 | 12
1
1
0.07
0.002 | | 5
5
5
18
18 | TI, MO
TRWS, TR, NA
TR
Low Noise
Low Noise | | A 32 | 2N3930
2N3931
2N4357
2N4358
2N543A | FA
FA
FA
FA
TR | pnp,PE,si
pnp,PE,si
pnp,PE,si
pnp,PE,si
npn,PL,si | *80
*80
*80
*80
80-200 | 1400
1400
1400
1400
200 | 200
200
200
200
200
175 | 8.0
8.0
8.0
8.0 | 180
180
240
240
50 | 50
50
50
50
50
25 | 0.01
0.01
0.02
0.02
.5 | *40-160
*40-160
*40-160
*40-60 | 18
18
18
18
5 | GE | | | | | | | | MAX | RATINGS | | | CHARAC | TERISTICS | | | |-----------------------|---|-------------------------------|--|--|---|--|---|---------------------------------------|---|-------------------------------------|------------------------------------|-------------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | hfe
*hFE | P _c (mW) | (°C) | mW/°C | *CEO
*VCBO
(V) | 1 _c (mA) | (/r \) | fae
*fT
(MHz) | Package
Outline
(TO-) | Remarks | | A 33 | 2N2245
2N2248
2N2251
2N2254
2N2715 | NA
NA
NA
NA
GE | npn, DM, si
npn, DM, si
npn, DM, si
npn, DM, si
npn, PL, si | 80-250
80-250
80-250
80-250
82 | 500
500
500
500
200 | 200
200
200
200
200
100 | 2.5
2.5
2.5
2.5
2.5
2.67 | 20
45
20
45
*18-18 | 100
100
100
100
100 | .01
.01
.01
.01
.05 | - | 18
18
18
18
18 | Low Level
Low Level
Low Noise, CDC
Low Noise
GME, CDC | | | 2N3060
2N1144
2N1145
2N1925
2N2431 | CT
GE
GE
GE
AMP | pnp,si
pnp,AJ,ge
pnp,AJ,ge
pnp,ge
pnp,ge | 85
*90
*90
*90
*90 | 400
175
175
225
1000 | 200
85
85
85
85
75 | 2.3
2.9
2.9
3.7
3.3 | *70
*16
*16
*60
*32 | 100
200
200
200
500
1000 | .005
16
16
10 | -
-
-
-
1.7 | 46
-
-
5
1 | NA TI, MO NUC | | A 34 | 2N3058
2N2923
2N3393
2N3710
2N4061 | CT
GE
GE
TI | pnp,si
npn,PL,si
npn,PL,si
npn,PE,si
pnp,EP,si | 90
90-180
*90-180
*90-330
*90-330 | 400
200
200
250
250 | 200
100
100
125
125 | 2.3
2.67
2.67
2.5
2.5 | 6
25
25
30
30 | 100
100
100
30
30 | .0001
0.5
0.1
0.1
0.1 | | 46
98
98
†
92 | IEC, GME, CDC, IEC
Epoxy case, GME, CDC, IEC
†Plastic, CDC | | | 2N120
2N336
2N1153
2N567
2N568 | TI
TI
TI
GI | npn,si
npn,si
npn,si
pnp,AJ,ge
pnp,AJ,ge | 99
99
99
100
100 | 150
150
150
150
150
120 | 175
175
175
175
85
85 | 1
1
1
2.5
2.0 | *45
*45
*45
*30
*30 | 25
25
25
300
300 | 2
2
2
5.0
5.0 | -
-
1.5
1.5 | 5
-
-
5
5 | TR
GE, TR, NA
TR
IND | | A 35 | 2N2944A
2N3130
2N3582
2N508A
2N3794 | TI
NA
SSD
MO
NA | pnp,EP,si
npn,PL.si
pnp,EP
pnp,AJ,ge
npn,DD,EP,si | *100
100
*100
*100-200
*100-200 | 400
150
400
200
250 | 200
150
200
100
150 | 2.3
1.2
2.28
3.33
2.0 | *15
60
40
*30
*40 | 100
100
30
200
500 | 0.0001
.002
0.02
7
0.5 | *15
-
30
-
*1.0 | 46
-
46
5
- | Chopper TI, GE | | | 2N3859
2N3859A
2N652
2N652A
2N1188 | GE
GE
MO
MO | npn,PEP,si
npn,PEP,si
pnp.AJ,ge
pnp,AJ,ge
pnp,AJ,ge | *100-200
100-200
100-225
100-225
100-225 | 200
200
200
200
200
200 | 100
100
100
100
100 | 2.67
2.67
2.67
2.67
2.67 | 30
60
•45
•45
•60 | 100
100
500
500
500 | 0.5
0.1
10
10 | - | 98
98
5
5
5 | CDC
CDC
TI
TI
TI | | A 36 | 2N213A
2N655
2N1193
2N4249
2N4250 | SY
MO
MO
FA
FA | npn,AL.ge
pnp,AJ.ge
pnp,AJ.ge
pnp,PE.si
pnp,PE.si | 100-250
100-250
100-250
*100-250
*100-250 | 180
200
200
500
500 | 85
100
100
125
125 | 2.67
2.67
5.0
5.0 | *40
*30
*40
60 | 100
250
200
50
50 | 50
15
15
0.01
0.01 | 0.1
-
-
•40
•40 | 22
5
5
18
18 | TI
TI | | A 37 | 2N3838
2N4028
2N4029
2N4032
2N4033 | T1
FA
FA
FA | pnp/npn,EP,si
pnp,PE,si
pnp,PE,si
pnp,PE,si
pnp,PE,si | *100-300
*100-300
*100-300
100-300
100-300 | 350
2000
2000
800
800 | 175
200
200
200
200
200 | 2.34
11.4
11.4
22.8
22.8 | 40
60
60
60
80 | 600
1000
1000
- | 0.01
0.05
0.05
.2
.2 | *200
*150
*150
100
150 | 89
18
18
- | | | N 3/ | 2N4291
2N4854
2N3692
2N3707
2N4058 | NA
TI
FA
TI | pnp,DD,EP,si
pnp,EP,si
npn,PL,si
npn,PE,si
pnp,EP,si | *100-300
*100-300
*100-400
*100-400
*100-400 | 250
600
625
250
250 | 150
175
150
125
125 | 2.0
4
2
2.5
2.5 | *40
40
*35
30
30 | 200
600
50
30
30 | 0.2
0.01
.05
0.1
0.1 | 100
*200
*200
-
- | -
5
-
†
92 | Complementary (pnp npn)
RO97A package, CDC, IEC
†Plastic, CDC | | | 2N2716
2N2171
2N1926
2N1190
2N2903 | NUC
MO
GE
MO
AL | npn,PL,si
pnp,AJ,ge
pnp,ge
pnp,AJ,ge
npn,DP,si | 110
120-310
*121
*125-300
*125-625 | 200
500
85
200
600 | 100
100
3.7
100
200 | 2.67
6.7
*60
2.67
3.5 | *50
500
*45
*60 | 100
400
10
500 | 0.5
10
-
10
.010 | -
†7.5
-
-
- | 18
5
5
5
5 | IEC, GME, CDC
Hab, TI
TI, MO
TI
Dual,SSD, MO | | A 38 | 2N2903A
2N2428
2N2706
2N2707
2N569 | AL
AMP
AMP
AMP
GI | npn, DP, si
pnp, ge
pnp, AJ, ge
ge
pnp, AJ, ge | *125-625
130
*135
*135
150 | 600
500
500
500
150 | 200
75
90
90
85 | 3.5
0.3
0.37
0.37
2.5 | *60
32
*32
*32
*32
*30 | -
100
200
200
300 | .010
-
-
-
5 | 1.7
2.5
2.5
2.5 | 5
1
1
1 | Dual, SSD, MO
Matched npn, pnp pair | | | 2N570
2N930 | GI
TI | pnp,AJ,ge
npn,si | 150
150 | 120
300 | 85
175 | 2.0 | *30
45 | 300
30 | 5
0.01 | 2 _ | 5
18 | IND. TI
FA, GI, TR, NUC, SPR, UC, MO. | | A 39 | 2N2388
2N2586 | TI
TI | npn,si
npn,si | 150
150 | 300
300 | 175
175 | 2 2 | 45
45 | 30
30 | 0.01
0.002 | - | 50
18 | AL, NA, SSD, IEC AMP, FA, AL, UC, NA, SSD | | L 33 | 2N3129
2N3241A
2N4074
2N2924
2N3392 | NA
RCA
RCA
GE
GE | npn,PL.si
npn,DPE,si
npn,DPE,si
npn,PL,si
npn,PL,si | 150
*150
*150
150-300
*150-300 | 150
2000
2000
2000
200
200 | 150
175
175
100
100 | 1.2
20
20
2.67
2.67 | 45
25
40
25
25 | 100
-
300
100
- | .002
0.1
0.01
0.5
0.1 | *175
*80
- | 104
104
104
98
98 | IEC, GME, CDC, IEC
Epoxy case, GME, CDC | | | 2N3860
2N4086
2N2246
2N2249
2N2252 | GE
GE
NA
NA | npn,PEP,si
npn,PL,si
npn,DM,si
npn,DM,si
npn,DM,si | *150-300
*150-300
150-450
150-450
150-450 | 200
200
500
500
500 | 100
100
200
200
200
200 | 2.67
2.67
2.5
2.5
2.5 | 30
12
20
45
20 | 100
100
100
100
100 | 0.5
0.1
.01
.01 | - | 98
98
18
18 | CDC
Low Level
Low Level
Low Noise, CDC, AMP | | A 40 | 2N2255
2N2453
2N2453A
2N4286
2N4287 | NA
AL
AL
NA | npn, DM.si
npn, DP,si
npn, DP,si
npn, DD, EP,si
npn, DD, EP,si | 150-450
*150-600
*150-600
*150-600
*150-600 | 500
600
600
250
250 | 200
200
200
150
150 | 2.5
114
1.14
2.0
2.0 | 45
*60
*80
*30
*45 | 100
9
9
100
100 | .01
.005
.005
0.05
0.05 | -
-
-
*40
*40 | 18
5
5
- | Low Noise
Dual, TI, GE,
SSD, MO
Dual, GE, SSD, MO | | | | | | | | MAX. | RATINGS | | | CHARACT | ERISTICS | | | |---------------------|--|--|--|---|--|--|--|--|--|---|--|---|---| | ross
idex
Key | Type
Na. | Mfr. | Туре | hfe
*hFE | P _c (mW) | T _j (°C) | m₩/ °C | CEO
CBO
(V) | l _c
(mA) | ι
(μ Α) | fae
*fT
(MHz) | Package
Outline
(TO-) | Remarks | | A 41 | 2N4288
2N4289
2N3061
2N2613
2N3403 | NA
NA
CT
RCA
GE | pnp,DD,EP,si
pnp,DD,EP,si
pnp,si
pnp,AJ,ge
npn,PE,si | 150-600
150-600
155
160
*180-540 | 250
250
400
120
560 | 150
150
200
100
150 | 2.0
2.0
2.3
-
4.47 | *30
*60
*70
*30
25 | 100
100
100
50
500 | 0.05
0.01
.005
5
0.1 | *40
*40
10 | -
48
1
98 | NA
Epoxy case, heat clip | | A 42 | 2N3405
2N3415
2N3417
2N4424
2N4425 | GE
GE
GE
GE | npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si | *180-540
*180-540
*180-540
*180-540
*180-540 | 560
360
360
360
560 | 150
150
150
150
150 | 4.47
2.67
2.67
2.67
2.67
4.47 | 50
25
50
40
40 | 500
500
500
500
500 | 0.1
0.1
0.1
0.1
0.1 | - | 98
98
98
98
98 | Epoxy case, heat clip
Epoxy case
Epoxy case, heat clip | | A 42 | 2N3711
2N4062
2N1185
2N1194
2N1086 | TI
TI
MO
MO
GE | npn,PE,si
pnp,EP,si
pnp,AJ,ge
pnp,AJ,ge
npn,GR,ge | *180-660
*180-660
190-400
190-500
195 | 250
250
200
200
65 | 125
125
100
100
85 | 2.5
2.5
2.67
2.67
1.1 | 30
30
*45
*40
9 | 30
30
500
200
20 | 0.1
0.1
10
15 | -
-
-
-
8 | † 92
5
5 | †Plastic, CDC
TI
TI | | A 43 | 2N1086A
2N1087
2N571
2N572
2N2614 | GE
GE
GI
GI
RCA | npn,GR.ge
npn,GR.ge
pnp,AJ.ge
pnp,AJ.ge
pnp,AJ.ge | 195
195
200
200
200 | 65
65
150
120
120 | 85
85
85
85
100 | 1.1
1.1
2.5
2.0 | 9
9
*30
*30
*40 | 20
20
300
300
50 | -
5
5
5 | 8
8
3
3
10 | -
-
5
1 | TI
IND | | A 43 | 2N3059
2N3242A
2N3427
2N2429
2N2925 | CT
RCA
MO
AMP
GE | pnp,si
npn,DPE,si
pnp,AJ,ge
pnp,ge
npn,PL,si | 200
*200
200-500
220
235-470 | 400
2000
200
500
200 | 200
175
100
75
100 | 2.3
20
2.67
3.3
2.67 | 6
40
• 45
32
25 | 100
500
100
100 | .0001
0.01
3.0
-
0.5 | *175
6.0
2.3 | 46
104
6
1
98 | TI
IEC, GME | | A 44 | 2N3900A
2N3391
2N3391A
2N3900
2N2953
2N4017
2N3428
2N3078
2N3078
2N3104 | GE
GE
GE
RCA
FA
MO
AMP
GE
TI | npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si
pnp,AJ,ge
pnp,DPE,si
pnp,AJ,ge
npn,PL,si
npn,PL,si | 250-500
*250-500
*250-500
*250-500
350
*350
*350
360
*400-800
*400-800 | 200
200
200
200
120
600
200
0.360
200
300 | 100
100
100
100
100
200
100
200
100
175 | 2.67
2.67
2.67
2.67
2.67
3.4
2.67
2.06
2.67
2 | 18
25
25
18
•30
•80
•45
•80
25
60 | 100
100
100
100
150
200
500
50
100
50 | 0.1
0.1
0.1
0.1
5
10
3.0
0.01
0.1
0.01 | -
-
10
5.5
8.0
-
*90 | 98
98
98
98
1
-
5
18
98
18 | 5 dB(max n1)
Economy-Epoxy,NUC,IEC,GME
5 dB(max n1), GME, IEC
RO52A package, Dual pnp
TI
TR
Economy-Epoxy,NUC,IEC,GME, | | A 45 | 2N4018
2N4019
2N3077
2N3395
2N3396
2N3397
2N3398 | FA
FA
AMP
GE
GE
GE | pnp,DPE,si
pnp,DPE,si
npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si | *500
*500
600
800
800
800 | 600
600
360
200
200
200 | 200
200
200
125
125
125
125 | 3.4
3.4
2.06
0.375
9.375
0.375 | *60
*45
*80
25
25
25
25 | 200
200
50
100
100
100 | 10
10
0.01
0.1
0.1
0.1 | 7.0
7.0
-
-
- | 18
†
†
† | RO52A package, Dual pnp
RO52A package, Dual pnp
TR
Economy—Epoxy, GME, IEC, CDC,
IEC
Economy—Epoxy, GME, IEC,
CDC
Economy—Epoxy, GME, IEC,
CDC
Economy—Epoxy, GME, IEC,
CDC | | A 46 | 2N2785
2N997
2N35
2N331
2N1392 | GE
TI
MO
GI | npn,PL,si
npn,si
pnp,AS,ge
pnp,AJ,ge
pnp,ge | 2000
*7000
-
- | 1800
500
50
200
50 | 200
175
71 | 10
3.33
-
0.8 | 40
40
•25
•30
•20 | 500
300
-
- | 10
0.01

16
8.0 | 111111 | 5
18
-
5 | SPR, MO
(Darlington), FA, SPR, GE
SY, GI
GI, IND, IEC | | | 2N1393
2N4020
2N4021
2N4022
2N4023 | GI
FA
FA
FA | pnp,ge
pnp,DPE,si
pnp,DPE,si
pnp,DPE,si
pnp,DPE,si | 10111 | 50
600
600
600
600 | 200
200
200
200
200 | 0.8
2.3
2.3
2.3
2.3
2.3 | *20
*45
*45
15
45 | 200
200
200
200
200 | 8.0
10
10
10
10 | 160
160
160
160 | | RO52A package, Dual pnp
RO52A package, Dual pnp
RO52A package, Dual pnp
RO52A package, Dual pnp | | A 47 | 2N4024
2N4025
3N74
3N75
3N76 | FA
FA
TI
TI | pnp,DPE,si
pnp,DPE,si
npn,PL,si
npn,PL,si
npn,PL,si | | 600
600
300
300
300
300 | 200
200
175
0.75
175 | 2.3
2.3
2
2
2 | 45
45
*50
*50
*50 | 200
200
20
20
20
20 | 10
10
0.01
0.01
0.01 | 160
160
*30
*30
*30 | 72
72
72
72 | RO52A package, Dual pnp
RO52A package, Dual pnp
Double emitter chopper
Double emitter chopper
Double emitter chopper | | | 3N77
3N78
3N79
3N108
3N109 | TI
TI
TI
TI | npn,PL,si
npn,PL,si
npn,PL,si
pnp,EP,si
pnp,EP,si | 11111 | 300
300
300
300
300
300 | 175
175
175
200
200 | 2
2
2
1.71
1.71 | *40
*40
*40
*50
*50 | 20
20
20
20
20
20 | 0.01
0.01
0.02
0.25
0.25 | *30
*30
*30
*12
*12 | 72
72
72
72
72
72 | Double emitter chopper
Double emitter chopper
Double emitter chopper
Double emitter chopper
Double emitter chopper | | A 48 | 3N110
3N111 | TI
TI | pnp,EP,si
pnp,EP,si | | 300
300 | 200 200 | 1.71
1.71 | *50
*50 | 20 20 | 0.5
0.5 | *12
*12 | 72
72 | Double emitter chopper
Double emitter chopper | #### DESIGNER'S P. R. MALLORY & CO. INC., INDIANAPOLIS, INDIANA 46206 #### New space-saving switch now available on Mallory carbon controls A new kind of rotary switch, with flat configuration, can now be supplied on Mallory carbon controls for applications where back of panel space is limited. From front face of the mounting bushing to tip of the terminals, the total back-of-panel depth of a Mallory LC single control with the new switch measures only 0.798"—compared with 1.00" for the usual single LC control-switch combination. The new switch is rated 3 amperes at 125 VAC, and is presently available in the SPST design. It has UL approval. Price is slightly lower than that of the standard Mallory "O" ring switch. The FAC switch can be supplied on all standard Mallory LC series controls. CIRCLE 106 ON READER SERVICE CARD ### Reliability Report on Mallory Wet Slug Tantalum Capacitors Cutaway view of 3-cell Type XT capacitor U.S. Patent 3,275,902 Ever since we started making wet slug tantalum capacitors 17 years ago, we have been accumulating data on their reliability. At latest count, we had over 22 million piecehours of testing for this product line on which to base evaluation of reliability. The incidence of catastrophic failure has been exceptionally low. This quality is an inherent property of the wet slug construction, which provides a self-healing capability. The data shown on the chart represents a summary of test programs to date on several Mallory wet slug types. We will be glad to supply detailed test records on specific capacitor models. And we welcome your personal inspection of our manufacturing, quality control and life test facilities. CIRCLE 105 ON READER SERVICE CARD #### SUMMARY OF RELIABILITY DATA MALLORY WET SLUG TANTALUM CAPACITORS | Capacitor | | est
itions | Total
Unit | Failures | rate: % | between
failures: | |-----------|-------|---------------|---------------|-----------|------------|------------------------| | Туре | Temp. | Volts | test hrs. | (catast.) | 1000 hrs.* | hours* | | MTPH | 85°C | Rated | 6,214,300 | 1 | 0.032 | 3 x 10 ⁶ | | TLS | 85°C | Rated | 832,750 | 0 | 0.11 | 0.9 x 10° | | | 125°C | 67%
Rated | 697,650 | 1 | 0.29 | 0.32 x 10 ⁶ | | All XT | 85°C | Rated | 8,291,100 | 6 | 0.09 | 1.1 x 10 ⁶
| | Series | 175°C | 67%
Rated | 7,361,200 | 7 | 0.11 | 0.9 x 10 ⁶ | ^{*60%} confidence level #### Matched dual controls for stereo systems For the leading manufacturers of stereo equipment, we have been producing dual volume controls whose resistance tapers are closely matched throughout the audible range of the control. Single-knob control of both stereo channels simultaneously becomes practical, with perfect tracking of both amplifiers without need for adjustment of a clutch coupling the control sections. This simplification of stereo adjustment is made possible by the refined production control procedures which Mallory applies to the manufacture of carbon control elements. We were the first to make dual controls which tracked within 2 db, from 0 to -50 db, and are now producing matched controls in a variety of tapers for audio equipment—including the lower resistance values used in solid-state circuitry. CIRCLE 107 ON READER SERVICE CARD ### **Dual trigger diode generates** voltage peaks for SCR circuits The Mallory STD dual trigger diode is a symmetrical three-layer avalanche diode which has many applications in activating SCR's and bi-switches. It's somewhat like two zener diodes connected back to back. When you apply AC to it, it allows current to pass only during that part of each half cycle when applied voltage exceeds its firing voltage. Thus it produces impulses, whose phase can be readily controlled, to switch the SCR on at different points in the cycle. The STD has a symmetrical switching mode, as shown by the typical characteristic curve. At voltages beyond the breakover point, its resistance decreases rapidly; this "snap back" characteristic affords improved stability of control in the SCR circuit. The STD comes in molded case only .375" long by .200" in diameter. It is rated 1 watt average at $50^{\circ}\mathrm{C}$ ambient. It can handle 1.0 ampere peaks of 20 microseconds duration on a 0.5% duty cycle. Standard breakover voltage ratings go from 24 to 120 volts, in standard tolerance of $\pm 10\%$. Symmetry of breakover voltage is within 5%. CIRCLE 108 ON READER SERVICE CARD #### Miniature cells for Microcircuits Circuits have shrunk and now so have batteries—but that doesn't mean that efficiency suffers in the least. The new Mallory mercury batteries in sizes to complement integrated circuits retain their extraordinary high energy density. Performance, if anything, is improved. Miniature Mallory mercury cells are now available to power everything from hearing aids to ordnance devices. Capacities range from 16 MAH to 160 MAH, sizes from 0.225" to 0.450" diameter. (See Table below.) | | RM-212 | RM-312 | RM-575 | RM-675 | |-------------------|--------|--------|--------|--------| | CAPACITY
MAH | 16 | 36 | 100 | 160 | | RATED
DRAIN MA | .75 | 2 | 3 | 5 | | DIA. (IN.) | .225 | .305 | .450 | .450 | | HT. (IN.) | .130 | .135 | .130 | .200 | | WT. (OZ.) | .01 | .02 | .05 | .09 | CIRCLE 109 ON READER SERVICE CARD #### High-Frequency one MHz and above | | | | | | | MAX | RATING | \$ | | CHAR | ACTERIST | IC2/ | | | |----------------------|---|--|---|--|--|--|-----------------------------------|-----------------------------------|--|--|--|----------------------------------|-----------------------------|--| | Cross
ndex
Key | Type
No. | Mfr. | Туре | fae
*£T
(MHz) | P
c
(mW) | Т _ј
(°С) | m₩/°C | *VCEO
*VCEO
(V) | 1 C (mA) | hfe
hFE | ICO
*ICEO
*ICEX
(µA) | C _{ob} (pF) | Package
Outline
(TO-) | Romark s | | IF
1 | 2N2709
2N444
2N444A
2N3296
2N3297 | RA
GI
GI
MO
MO | pnp,si
npn,AJ,ge
npn,AJ,ge
npn,E,si
npn,E,si | 0.05
1
1
*1
*1 | 250
100
150
6W
25W | 160
85
100
175
175 | 1.85
1.67
2
40
167 | 35
*15
*35
*60
*60 | 50
-
-
700
1.5A | *10
10
15
*5-50
*2.5-35 | 1
6
4
0.1
1.0 | *110
*16
*14
*20
*60 | 5
5
5
-
3 | TI, ETC
TI, ETC
Special ceramic stud-mount | | łF | 2N94
2N233
2N233A
2N445
2N445A | SY
SY
SY
GI
GI | npn,AL,ge
npn,AL,ge
npn,AL,ge
npn,AJ,ge
npn,AJ,ge | 2
2
2
2
2
2 | 150
150
150
100
150 | 100
85
85
85
100 | -
-
1.67
2.0 | *20
*10
*10
*15
*25 | 100
100
100
- | *10-80
10
*10
20
35 | 30
-
-
6
4 | 9
7
7
°16
°14 | 22
22
22
5
5 | ETC
ETC
ETC
TI, ETC
TI | | 2 | 2N515
2N516
2N3295
2N1391
2N2946 | SY
SY
MO
GI
CT | npn,AL.ge
npn,AL.ge
npn,E,si
npn,AJ.ge
pnp,PE,si | 2
2
2
3
*3 | 150
150
2W
150
400 | 85
85
175
100
200 | 13.3
2
2.4 | *18
*18
*60
*25
*40 | 100
100
250
-
100 | *10-50
*15-75
*20-60
*40-16J
*30-150 | 50
50
0.1
4
0.0005 | 8
8
*8
*20
*10 | 22
22
5
5
46 | TI
SPR, NA, SSD | | łF | 2N212
2N517
2N1058
2N139
2N218 | SY
SY
SY
RCA
RCA | npn,AL,ge
npn,AL,ge
npn,AL,ge
pnp,AJ,ge
pnp,AJ,ge | 4
4
4
4.7
4.7 | 150
150
50
80
80 | 85
85
75
70
70 | 9 1 1 1 1 | *18
*18
*18
*16
*16 | 100
100
50
15
15 | *10-30
*20-100
*10-23
48
48 | 30
50
50
6
6 | 7
8
7
- | 22
22
22
40
1 | | | 3 | 2N94A
2N211
2N446
2N446A
2N1090 | SY
SY
GI
GI
RCA | npn,AJ,ge
npn,AJ,ge
npn,AJ,ge
npn,AJ,ge
npn,AJ,ge | 5
5
5
5 | 150
150
100
150
120 | 100
85
85
100
85 | -
1.67
2 | *20
*18
*15
*25
*25 | 100
100
-
-
400 | *7-21
*20-100
30
60
*30 | 30
30
6.0
4.0 | 9
7
*16
*14
*25 | 22
22
5
5
5 | TI
TI
GI, TI | | łF | 2N2945
2N2276
2N2277
3N90
3N91 | SPR
SPR
SPR
SPR
SPR
SPR | pnp,PE,si
pnp,AT,si
pnp,SP,si
pnp,PE,si
pnp,PE,si | *5
*6
*6
*6 | 400
150
150
300
300 | 200
140
140
200
200 | 2.4
1.3
1.3
1.7
1.7 | *25
*15
*15
30
30 | 100
50
50
20
20 | *40-250
*15
*15
- | 0.0002
0.003
0.003
0.01
0.01 | *10
*6.0
*6.0
8 | 46
*18
18
18
18 | NA, SSD Matched Pair 2N2277 Matched Pair 2N2276 Duet, Voff $<50\mu$ V, CT, NA Duet, Voff $<100\mu$ V, CT, NA | | 4 | 3N92
3N93
3N94
3N95
3N112 | SPR
SPR
SPR
SPR
SPR | pnp,PE,si
pnp,PE,si
pnp,PE,Si
pnp,PE,si
pnp,PE,si | 6
*6
*6
*6 | 300
300
300
300
200 | 200
200
200
200
200
200 | 1.7
1.7
1.7
1.7
1.7 | 30
50
50
50
50
*50 | 20
20
20
20
20
20 | -
-
-
-
1.5 | 0.01
0.01
0.01
0.01
0.01 | 8
8
8
*10 | 18
18
18
18
90 | Duet, Voff $<200\mu$ V, CT. NA Duet, Voff $<50\mu$ V, CT. NA Duet, Voff $<100\mu$ V, CT. NA Duet, Voff $<200\mu$ V, CT. NA Duel, Voff $<200\mu$ V, CT. NA Dual, CT | | -lF | 3N113
2N409
2N410
2N2378
2N3318 | SPR
RCA
RCA
SPR
SPR | pnp,PE,si
pnp,AJ,ge
pnp,AJ,ge
pnp,SAT,si
pnp,SPAT,si | *6
6.7
6.7
*7.2
*7.6 | 200
80
80
150
150 | 200
71
71
140
140 | 1.1
-
-
1.3
1.3 | *50
*13
*13
*10
15 | 20
15
15
50
50 | 1.5
48
48
*25 | .010
10
10
0.001
0.001 | *10
-
-
*6
*9 | 90
40
2
18
18 | Dual, CT
LAN
Chopper, CT | | 5 | 2N471A
2N472A
2N473
2N474
2N474A | TR
TR
TR
TR
TR | npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si | 8
8
8
8 | 200
200
200
200
200
200 | 175
175
175
175
175 | 1.2
1.2
1.2
1.2
1.2 | 30
45
15
30
30 | 25
25
25
25
25
25
25 | 10-25
10-25
20-50
20-50
20-50 | .5
.5
.5
.5 | *8
*8
*8
*8 | 5
5
5
5 | | | HF | 2N475
2N475A
2N495
2N581
2N1054 | TR
TR
SPR
GI
TR | npn,PL,si
npn,PL,si
pnp,SPAT,si
pnp,AJ,ge
npn,PL,si | 8
8
*8
8 | 200
200
150
150
600 | 175
175
140
85
175 | 1.2
1.2
1.3
-
23 | 45
45
25
*18
*125 | 25
25
50
100
750 | 20-50
20-50
15-30
30
*20 | .5
.5
0.1
3
5 | *8
*8
*12
-
*120 | 5
5
1
5 | TI, LAN, IND | | 6 | 2N1118
2N1118A
2N2377
2N78A
2N167A | *SPR
*SPR
SPR
IEC
IEC | pnp.SAT.si
pnp.SAT.si
pnp.SAT.si
npn,PE.si
npn,PE.si | 8
8
*8
9.00
9.00 | 150
150
150
360
360 | 140
140
140
150
150 | 1.3
1.3
1.3
0.91
0.91 | 25
25
*25
0.3
0.3 | 50
50
50
50
50 | 35
25
30
30-300
30-300 | 0.001
0.001
0.002
0.1
0.1 | *6
*6
*6
3.0
3.0 | 5
5
18
18 | *PH orig Reg, CT
*PH orig Reg, CT | | HF | 2N447
2N447 A
2N447 B
2N1173
2N140 | GI
GI
GI
IEC
RCA | npn, AJ, ge
npn, AJ, ge
npn, AJ, ge
npn, PE, si
pnp, AJ, ge | 9
9
9
9.00
10 | 100
15
150
360
80 | 85
100
100
150
70 | 1.67
2
2
0.91 | *15
*25
*25
0.3
*16 | -
-
50
15 | 50
85
150
30-300
75 | 6
4
0.1
6 |
*16
*14
*14
3.0 | 5
5
5
18
40 | TI
TI
TI | | 7 | 2N219
2N411
2N541
2N542
2N542A | RCA
RCA
TR
TR
TR | pnp.AJ.ge
pnp.AJ.ge
npn.PL.si
npn.PL.si
npn.PL.si | 10
10
10
10
10 | 80
80
200
200
200 | 70
71
175
175
175 | -
1.2
1.2
1.2 | *16
*13
15
30
30 | 15
15
25
25
25
25 | 75
75
80-200
80-200
80-200 | 6
10
.5
.5 | -
*20
*20
*8 | 1
40
5
5
5 | GE, NA
GE, NA
GE | | HF | 2N543
2N602
2N1206
2N1207
2N1907 | TR
GI
TR
TR
TR | npn,PL,si
pnp,DR,ge
npn,PL,si
npn,PL,si
pnp,ge | 10
*10
10
10
*10 | 200
120
3000
3000
6000 | 175
85
175
175
100 | 1.2
2.0
25
25
2000 | 50
*30
60
125
*100 | 25
-
150
150
20 | 80-200
*20-80
*20-80
*20-80
*20-80 | .5
8
1
1
500 | *20
*7
50
*50 | 5
5
5
3 | GE, NA | | 8 | 2N 1908
2N 1974
2N 2944
2N 3317
2N 3319 | TI
FA
CT
SPR
SPR | pnp.ge
npn.DP,si
pnp,PE,si
pnp,SPAT,si
pnp,SP,si | *10
*10
*10
*10
*10
*10 | 60,000
3W
400
150
150 | 100
200
200
140
140 | 2000
17.2
2.4
1.3
1.3 | *130
60
*15
30
30 | 20
-
100
50
50 | *20
70
*80-450
-
- | 500
0.005
0,0001
0.001
0.001 | *13
*10
*9
*9 | 3
5
46
18
18 | TRWS, CDC, TR. AMP
SPR, NA, SSD
Chopper, CT
Chopper, CT | | | | | | 100 | | MAX | RATING | S | | CHARA | CTERIST | ics | | | |----------------------|--|-----------------------------------|--|---------------------------------------|---|--|---------------------------------|--------------------------------------|----------------------------------|---|------------------------------------|---------------------------------|------------------------------|---| | Crass
ndex
Key | Type
No. | Mfr. | Туре | fae
* T
(MHz) | P
c
(mW) | т _ј
(°С) | m₩/°C | **CEO
**CBO
(V) | 1 _C (mA) | hfe
*hFE | CO
*ICEO
*ICEX
(//Å) | Coe
*Cob
(pF) | Package
Outline
(TO-) | Remarks | | HF
9 | 2N476
2N477
3N114
3N115
3N116 | TR
TR
SPR
SPR
SPR | npn,PL,si
npn,PL,si
pnp,PE,si
pnp,PE,si
pnp,PE,si | 12
12
*12
*12
*12 | 200
200
300
300
300
300 | 175
175
200
200
200
200 | 1.2
1.2
1.7
1.7
1.7 | 15
30
•30
•30
•30
•30 | 25
25
20
20
20 | 30-60
30-60
3
3
3 | .5
.5
.010
.010 | *10
*10
*10
*10
*10 | 5
5
8
18
18 | Dual, CT, NA
Dual, CT, NA
Dual, CT, NA | | HF | 3N117
3N118
3N119
2N582
2N1429 | SPR
SPR
SPR | pnp.PE.si
pnp.PE.si
pnp.PE.si
pnp.AJ.ge
pnp.SAT.si | *12
*12
*12
*12
18
18 | 300
300
300
150
100 | 200
200
200
200
85
140 | 1.7
1.7
1.7
-
0.86 | *50
*50
*50
*25
6 | 20
20
20
100
50 | 3
3
3
60
45 | .010
.010
.010
2
0.001 | *10
*10
*10
-
*7 | 18
13
18
5
5 | Dual, CT,NA
Dual, CT, NA
Dual, CT, NA
GI, TI, RCA, LAN, IND
SPR, CT | | 10 | 2N478
2N479
2N479A
2N480
2N496 | TR
TR
TR
TR
*SPR | npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si
pnp,SPAT,si | 20
20
20
20
20
*20 | 200
200
200
200
200
150 | 175
175
175
175
175
140 | 1.2
1.2
1.2
1.2
1.3 | 15
30
30
45
10 | 25
25
25
25
25
50 | 40-100
40-100
40-100
40-100
*25 | .5
.5
.5
.5 | *8
*8
*8
*8
*12 | 5
5
5
1 | GE
GE
GE
GE, CDC, NA
*PH orig. Reg. | | HF | 2N1065
2N2432
2N4138
2N1411
2N274 | GI
TI
TI
SPR
RCA | pnp.DR.ge
npn.PE.si
npn.PE.si
pnp.MA.ge
pnp.DR.ge | *20
*20
*20
*25
30 | 120
300
300
25
120 | 85
175
175
85
100 | 2.0
2
2
-
1.6 | *40
30
30
*5 | -
100
100
50
-10 | *20-80
50
50
*75
60 | 8
0.01
0.01
0.3
4 | *7
*12
*12
*3
*2 | 5
18
46
24
44 | NA
PH, GI
Vcev = -40 | | 11 | 2N344
2N345
2N603
2N754
2N755 | *SPR
*SPR
GI
TR
TR | pnp,SBT,ge
pnp,SBT,ge
pnp,DR,ge
npn,PLE,si
npn,PLE,si | 30
30
*30
30
30 | 20
20
120
300
300 | 55
55
85
175
175 | 1.33
1.33
2
3
3 | *5
*5
*30
*60
*100 | 5
5
-
50
50 | 22
35
*30-100
*15
*15 | 0.7
0.7
8
1
1 | *3
*3
*5
*10
*10 | 24
24
5
18
18 | °PH orig Reg
°PH orig Reg
TI | | HF | 2N840
2N842
2N1224
2N1226
2N1395 | TR
TR
RCA
RCA
RCA | npn,PLE,si
npn,PLE,si
pnp,DR,ge
pnp,DR,ge
pnp,DR,ge | 30
30
30
30
30
30 | 300
300
120
120
120 | 175
175
85
85
100 | 3
2
-
- | 45
45
• 40
• 60
• 40 | 50
50
-
-
10 | *30-100
*20-55
60
60
90 | 1
1
12
12
4 | *15
10
-
-
*2 | 18
18
33
33
33 | CDC
AMP
AMP
SY, AMP | | 12 | 2N1983
2N1984
2N1985
2N2225
2N3742 | FA
FA
KSC
MO | npn, DD, si
npn, DD, si
npn, DP, si
pnp, ge
npn, AE, si | *30
*30
*30
30
*30 | 2000
2000
2000
2000
200
5000 | 150
150
150
100
200 | 16
16
0.016
-
28.6 | 25
25
25
*15
300 | -
-
400
50 | 100
80
60
*60
*20-200 | 1
1
1
25
0.2 | *35
*35
*35
*14
*6 | 5
5
5
5 | TRWS, CDC, AL
TRWS, CDC, AL
TRWS, CDC, AL | | HF | 2N3743
2N1524
2N1526
2N1417
2N1418 | MO
RCA
RCA
TR
TR | pnp.AE,si
pnp.DR.ge
pnp.DR.ge
npn.si
npn.si | *30
33
33
*34
*34 | 5000
80
80
150
150 | 200
71
71
71
150
150 | 28.6
-
-
1.25
1.25 | 300
*24
*24
15
30 | 50
10
10
- | *25-250
60
130
60
60 | 0.3
16
16
0.05
0.05 | *15
-
-
*1.5
*1.5 | 5
1
1
5
5 | GE
GE | | 13 | 2N794
2N795
2N393
2N841
2N843 | RCA
RCA
* SPR
TR
TR | pnp.ge
pnp.ge
pnp.MA.ge
npn.PE.si
npn.PE,si | *35
*35
40
40
40 | 150
150
25
300
300 | 85
85
100
175
175 | -
0.63
3
2 | *13
*13
*6
45
45 | 100
100
50
50
50 | *50
*75
155
*60-400
*45-150 | 13
13
1.5
1 | *12
12
*3.5
*15
*10 | 18
18
24
18
18 | SPR
SPR, TI
*PH orig Reg, GI
TRWS, CDC | | HF | 2N 1122
2N 1122A
2N 1300
2N 1409
2N 1410 | *SPR
*SPR
SPR
RA
RA | pnp,MA,ge
pnp,MA,ge
pnp,ge
npn,si
npn,si | *40
*40
*40
*40
*40 | 25
25
150
550
550 | 85
85
85
150
150 | 0.63
0.63
-
4.5
4.5 | *12
*15
*13
*30
*30 | 50
50
100
500
500 | 35
35
30
*30
*30 | 5
5
3
10
10 | 6
6
-
35
35 | 24
24
5
5 | *PH orig Reg
*PH orig Reg
GI
GI | | 14 | 2N 1638
2N 3565
2N 3566
2N 3712
2N 128 | RCA
FA
FA
TI
*SPR | pnp.DR, ge
npn,PL, si
npn,PL, si
npn,PL, si
pnp,SBT, ge | 40
*40
*40
*40
45 | 80
500
800
800
25 | 85
125
125
175
85 | 5.0
8.0
5.33
0.82 | *34
25
30
150
*10 | 10
-
-
200
5 | *150-600
*400
*30-150 | 0.05
0.05
0.1
0.6 | *40
25
9
*2.5 | 1
-
-
5
24 | LAN
CDC, JEC, PH
CDC, JEC, PH
Metal header, MO
*PH orig Reg | | HF | 2N1631
2N1632
2N1637
2N1639
2N2509 | RCA
RCA
RCA
RCA
AL | pnp, DR, ge
pnp, DR, ge
pnp, DR, ge
pnp, DR, ge
DP | 45
45
45
45
45 | 80
80
80
80
1.2W | 85
85
85
85
200 | -
-
-
6.9 | *34
*34
*34
*34
80 | 10
10
10
10 | 80
80
48
 | 16
16
-
-
.005 | -
-
-
-
*6 | 40
1
1
1
1
18 | GI, TR, AMP, UC, NA | | 15 | 2N2510
2N2511
2N2605A
2N504
2N604 | AL
AL
SSD
*SPR
GI | DP
DP
pnp,PL
pnp,MD,ge
pnp,DR,ge | 45
45
•45
50
•50 | 1.2W
1.2W
400
30
120 | 200
200
200
200
85
85 | 6.9
6.9
2.28
0.75 | 65
50
45
*35
*30 | -
30
50 | 150
240
150
16
*40-140 | .005
.005
0.002
10
8 | *6
*6
*6
*2.5
*5 | 18
18
46
1 | GI, TR, AMP, UC, NA
GI, TR, AMP, UC, NA
*PH orig Reg, GI
TI | | HF | 2N605
2N606
2N607
2N796
2N844 | GI
GI
GI
SPR
TR | pnp, DR, ge
pnp, DR, ge
pnp, DR, ge
pnp, ge
npn, PLE, si | *50
*50
*50
*50
*50 | 120
120
120
150
300 | 85
85
85
85
175 | 2
2
2
2
-
3 | *15
*15
*15
*13
*60 | -
-
100
50 | 40
60
80
*85
*40-120 | 10
10
10
13
1 | *7
*7
*7
*12
*10 | 5
5
5
18
18 | TI | | 16 | 2N845
2N1409
2N1410
2N1427
2N1683 | TR
TRWS
TRWS
*SPR
SPR | npn,PLE,si
npn,PL,si
npn,PL,si
pnp,MA.ge
pnp,ge | 50
*50
*50
*50
*50
*50 | 300
600
600
25
150 | 175
175
175
175
85
85 | 3
4
4
-
- | *100
*30
*45
*6
12 | 50
500
500
50
100 | *40-120
*15-45
*30-90
120
*50 | 1
10
10
0.5
3 |
10
35
24
*3.5
*12 | 18
5
5
24
5 | GI
GI
*PH orig Reg, GI | | | | | | | | MAX | RATING | S | | CHAR | ACTERIST | ics | | | |-----------------------|---|--------------------------------------|--|--|---------------------------------------|---------------------------------|-------------------------------------|---|--|---|--|---------------------------------------|-----------------------------|---| | Crass
Index
Key | Type
Na. | Mfr. | Туре | fae
*f _T
(MHz) | P (mW) | Т _ј
(°С) | m₩/°C | *VCEO
*VCBO
(V) | I _C (mA) | hfe
*hFE | ICO
*ICEO
†ICEX
(µA) | C _{oe} *C _{ob} (pF) | Package
Outline
(TO-) | Romarks | | HF
17 | 2N1752
2N1785
2N1786
2N1787
2N1864 | *SPR
*SPR
*SPR
*SPR
*SPR | pnp,MD,ge
pnp,MD,ge
pnp,MD,ge
pnp,MD,ge
pnp,MD,ge | 50
50
50
50
50 | 60
45
45
45
60 | 100
85
85
85
100 | 0.8
0.75
0.75
0.75
0.75 | *12
*10
*10
*15
*20 | 50
50
50
50
50 | 250
150
250
120
60 | 0.8
2
2
1.5
1.5 | *1.0
*1.5
*1.7
*1.5
*1.6 | 9
9
9
9 | °PH orig Reg
°PH orig Reg
°PH orig Reg
°PH orig Reg
°PH orig Reg | | HF | 2N 1893
2N 1978
2N 1986
2N 1987
2N 1988 | FA
FA
FA
FA | npn,si
npn,DP,si
npn,DD,si
npn,DD,si
npn,DD,si | 50
*50
*50
*50
*50 | 3
3000
2000
2000
2000 | 200
200
150
150
150 | 0.017
172
16
16
16 | 80
*60
25
25
45 | 0.5
-
-
- | *40-120
*30
150
50
*75 | 0.01
1
1
1
1 | *15
*70
*25
*25
*17 | 5
-
5
5
5 | RCA, TR, NA, TRWS, TI, CDC. MO
TRWS, CDC, GI, AL, AMP
TRWS, CDC, GI, AL, AMP
TRWS, CDC, GI, AL | | 18 | 2N1989
2N2427
2N1900
2N1903
2N2223 | FA
TR
TRWS
TRWS
MO | npn,DD,si
npn,PE,si
npn,PL,si
npn,PL,si
npn,AE,si | *50
50
*>50
*>50
*>50
*50 | 2W
500
125000
125000
3000 | 150
175
150
150
200 | 16
2.86
1000
1000
17.2 | 45
40
*140
*140
60 | 50
10000
10000
500 | *40
40
5.0
5.0
*25-150 | 1
.5
10000
10000
.01 | *17
*8
*1000
*1000
*15 | 5
18
38
39
77 | TRWS, CDC, GI, AL
Single Ended
Double Ended
Diff. Amp. TI, AL, GE | | HF | 2N2223A
2N346
2N370
2N698
2N717 | MO
*SPR
RCA
FA
FA | npn,AE,si
pnp,SBT,ge
pnp,DR,ge
npn,DP,si
npn,DD,si | *50
60
60
*60
*60 | 3000
20
80
3.0W
1.5W | 200
55
71
200
175 | 17.2
1.33
-
17.2
10 | 60
*5
*24
60
*60 | 500
5
10
- | *25-150
35
100
*40
*40 | .01
0.7
10
0.0005
0.01 | *15
*3
-
*13
*17 | 77
24
7
5 | Diff. Amp. TI, AL, GE *PH orig Reg TRWS, TR, STC, AMP. CDC TRWS, CDC, TR, GI, AMP. | | 19 | 2N719
2N719A
2N720A | FA
FA
FA | npn,DD,si
npn,DP,si
npn,DP,si | *60
*60
*60 | 1.5W
1.8W
1.8W | 175
200
200 | 10
10.3
10.3 | •120
•120
•120 | | *40
*40
*80 | 0.01
0.005
0.005 | *12
*12
*12 | 18
18
18 | NA, TI, IEC TRWS, CDC, TR, GI, AMP. TI TRWS, CDC, AMP, AL, GI, TR, TI TRWS, CDC, GI, AMP. AL TR, RCA, TI | | uc. | 2N912
2N1301
2N1972
2N1975
2N2060 | FA
SPR
FA
FA
MO | npn,DP,si
pnp,ge
npn,DD,si
npn,DP,si
npn,AE,si | *60
*60
*60
*60
*60 | 1800
150
2.0
3W
3000 | 200
85
175
200
200 | 10.3
-
10
17.2
17.2 | 60
*13
*60
60 | -
100
-
-
500 | 45
30
•250
45
•40-120 | 0.005
3
0.1
0.005
.002 | *13
-
*25
*13
*15 | 18
5
5
5
77 | TRWS, CDC, AMP. AL. TI TR, AMP, TRWS, CDC TRWS, CDC, AL, TR, AMP Diff. Amp. TI, AL, GE | | HF
20 | 2N2060A
2N2484
2N2595
2N2598
2N2601 | MO
IEC
SSD
SSD
SSD | npn,AE,si
npn,PE,si
pnp,PL
pnp,PL
pnp,PL | *60
*60
*60
*60 | 3000
360
400
400
400 | 200
150
200
200
200 | 17.2
0.49
2.3
2.3
2.3 | 60
50
60
80
60 | 500
25
50
50 | *40-120
100
*15
*15
*15 | .002
25
.025
.025 | *15
3.0
*6
*6
*6 | 77
13
46
46
46 | Diff. Amp. AL | | HF | 2N2980
2N2981
2N3567
2N3568
2N3569 | FA
FA
FA
FA | npn,DP,si
npn,DP,si
npn,PE,si
npn,PE,si
npn,PE,si | *60
*60
*60
*60
*60 | 750
750
800
800
800 | 200
200
125
125
125 | 4.3
4.3
8.0
8.0
8.0 | 60
60
40
60
40 | 500
500
-
- | *100
*100
*80
*80
*150 | 0.0001
0.0001
0.05
0.05
0/05 | *8
*8
*20
*20
*18 | 18
18
-
- | GI
GI, IEC
TEC. CDC, PH. IEC
CDC, IEC
IEC, CDC, PH | | 21 | 2N2483
2N911
2N1335
2N1336
2N1337 | FA
FA
TRWS
TRWS
TRWS | npn,DP,si
npn,DP,si
npn,PL,si
npn,PL,si
npn,PL,si | *69
*70
*70
*70
*70 | 1.2W
1800
800
800
800 | 200
200
175
175
175 | 6.9
10.3
5.3
5.3
5.3 | 60
60
•120
•120
•120 | 50
-
300
300
300 | *280
70
*10-150
*10-150
*10-150 | 0.0001
0.005
1
1 | *3.5
*13
*8
*10
*8 | 18
18
5
5
5 | AMP, GI, TR, AL, UC, NA, SSD
TRWS, CDC, AMP, AL, TI | | HF | 2N 1338
2N 1339
2N 1340
2N 1341
2N 1342 | TRWS
TRWS
TRWS
TRWS
TRWS | npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si | *70
*70
*70
*70
*70 | 800
800
800
800
800 | 175
175
175
175
175 | 5.3
5.3
5.3
5.3
5.3 | *80
*120
*120
*120
*120
*150 | 300
300
300
300
300
300 | *10-150
*10-150
*10-150
*10-150
*12 | 1
1
1
1
10 | *10
*8
*8
*8 | 5
5
5
5 | | | 22 | 2N1505
2N2092
2N2093
2N2914 | TRWS
AMP
AMP
FA | npn,PL,si
pnp,PADT,ge
pnp,PADT,ge
npn,D P ,si | *>70
*70
*70
*70
*70 | 3W
83
83
1.5W | 175
85
85
200 | 20
0.6
1.7
3.42 | *50
*25
*25
45 | 500
10
10
30 | 1.0
150
150
*450 | 50
-
-
0.001 | *10
-
-
*5 | 5
7
7
5 | NUC, NA SPR, GI, AL, UC, MO, TI, AMP. GE, SSD, NA | | HF
23 | 2N2915
2N2916
2N2917 | FA
FA
FA | npn,DP,si
npn,DP,si
npn,DP,si | *70
*70
*70 | 1.5W
1.5W
1.5W | 200
200
200 | 3.42
3.42
3.42 | 45
45
45 | 30
30
30 | *240
*450
*240 | 0.001
0.001
0.001 | *5
*5
*5 | 5
5
5 | GI, AL, UC, MO, SPR, TI, AMP.
GE, SSD, NA
SPR, GI, AL, UC, MO, TI, AMP.
GE, SSD, NA
SPR, GI, UC, AL, MO, TI, AMP.
GE, NA, SSD | | | 2N2918
2N2919 | FA
FA | npn,DP,si
npn,DP,si | •70
•70 | 1.5W
1.5W | 200
200 | 3.42
3.42 | 45
60 | 30
30 | *450
*240 | 0.001
0.001 | *5
*5 | 5
5 | SPR, GI, UC, AL, MO, TI, AMP.
NA, GE, SSD
SPR, GI, AL, UC, MO, TI, AMP
GE, SSD, NA | | HF
24 | 2N2920
2N2972
2N2973
2N2974 | FA
FA
FA | npn,DP,si
npn,DP,si
npn,DP,si
npn,DP,si | *70
*70
*70
*70 | 1.5W
750
750
750
750 | 200
200
200
200 | 3.42
1.71
1.71
1.71 | 60
45
45
45 | 30
30
30
30 | *450
*240
*450
*240 | 0.001
0.001
0.001
0.001 | *5
*5
*5
*5 | 5
18
18
- | SPR, GI, AL, UC, MO, TI, AMP
GE, SSD, NA
GI, AL, UC, MO, SPR, NA, SSD
GI, AL, UC, MO, SPR, NA, SSD
GI, AL, UC, MO, SPR, VEC, NA,
SSD | | | 2N2975
2N2976
2N2976 | FA
FA
FA | npn,DP,si
npn,DP,si
npn,DP,si | *70
*70
*70 | 750
750
750 | 200
200
200 | 1.71
1.71
1.71 | 45
45
45 | 30
30
30 | *450
*240
*240 | 0.001
0.001
0.001 | 5
5
5 | 18
18
18 | GI, AL, UC, MO, SPR, VEC. NA.
SSD
GI, AL, UC, MO, SPR, NA, SSD
GI, AL, UC, MO, SPR, NA, SSD | #### 4 NEW MINIATURE HIGH POWER DIODES Which of these new Unitrode developments is going to help you build a smaller, lighter, more reliable circuit this year? #### RADIATION-RESISTANT HIGH CURRENT RECTIFIERS - Actual Size - 2 Amp Continuous Rating - 25 Amp Surge Rating - PIV's to 250 Volts These high current, controlled avalanche diodes are capable of withstanding substantial dosages of various types of radiation with negligible change in specified parameters. They may be operated at their full 2 Amp rating after withstanding a cumulative neutron dose in excess of 10¹⁴ N.V.T. Both gamma and electron radiation have negligible effect. CIRCLE 131 ON INQUIRY CARD #### HIGH POWER THYRISTOR DIODES Actual Size - 1.5 Amp Continuous Rating - Firing Voltages to 300 Volta - High Surge Ratings Four-layer diodes have been available for some years, but this is the first miniature high power and high voltage controlled avalanche version to be offered. Firing voltages are available from 40 to 300 volts. Continuous current is 1.5 amp and short duration surges as high as 500 amps can be withstood, with an 8.3 msec surge rating of 15 amps. CIRCLE 132 ON INQUIRY CARD #### ULTRA-FAST RECOVERY RECTIFIER Actual Size - Typical Recovery under 50 Nanoseconds - 25 Amp Surge Rating - PIV's to 250 Volts These ultra-fast recovery, controlled avalanche rectifiers can operate at frequencies of 100 KC square wave, or 350 KC sine wave. These 2 amp rated devices have typical recovery times of 50
nanoseconds; they can withstand surges up to 25 amps, and have leakages under 1 microamp at 25°C. CIRCLE 133 ON INQUIRY CARD #### 9 AMP FAST-RECOVERY RECTIFIER (Stud Mount) Actual Size - Controlled Avalanche - 150 Amp Surge Rating - 40 KC Square Wave Operation Recovery times as low as 250 nanoseconds permit full power operation at frequencies as high as 40 KC square wave, or even higher frequencies sine wave. These miniature stud mount rectifiers provide a 9 amp continuous and 150 amp surge rating in a package that, at less than 1.5 grams, is only one-fifth the weight and one-quarter the volume of conventional types. THE SAME PACKAGE IS ALSO AVAILABLE IN REGULAR RECOVERY WITH A 12 AMP RATING CIRCLE 134 ON INQUIRY CARD #### THE UNIQUE UNITRODE CONSTRUCTION NEW 32 PAGE DIODE CATALOG SEND FOR YOURS TODAY! - Technical Specifications - Mounting Data - Applications Information - Physical Drawings - Derating InformationMultiple Surge Ratings The silicon wafer is metallurgically bonded between two terminal pins of the same thermal coefficient as the silicon. A sleeve of hard glass is then fused to the pins and all the exposed silicon surface, resulting in a voidless, monolithic, whiskerless structure. UNITRODE® 580 PLEASANT STREET, WATERTOWN, MASS, 02172 TELEPHONE (617) 926-0404 TWX (710) 327-1296 | | | | | 1 | | MAX | RATING | S | | CHAR | ACTERIST | ICS | | | |-----------------------|---|--------------------------------------|---|---------------------------------------|----------------------------------|--|-----------------------------------|---|-------------------------------------|--|---|--------------------------------------|-----------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*f _T
(MHz) | P c (mW) | Т _;
(°С) | mW/°C | *VCEO
*VCBO
(V) | I _C | h _{fe} *hFE | ICO
*ICEO
*ICEX
(µA) | Coe
*Cob
(pF) | Package
Outline
(TO-) | Romarks | | HF
25 | 2N2977
2N2978
2N2979 | FA
FA | npn,DP,si
npn,DP,si
npn,DP,si | *70
*70 | 750
750
750 | 200
200
200 | 1.71
1.71
1.71 | 45
60
60 | 30
30
30 | *450
*240
*450 | 0.001
0.001
0.001 | *5
5
*5 | 18
18 | GI, AL, UC, MO, SPR, NA, SSD
GI, AL, UC, MO, SPR, VEC, NA
SSD
GI, AL, UC, MO, SPR, VEC, NA,
SSD | | | 2N2982
2N3056
2N3019
2N3020
2N3057 | FA
RA
RA
RA | npn,DP,si
npn,PL,EP
npn,PL,EP
npn,PL,EP
npn,PL,EP | *70
*70
*70
*70
*70 | 750
400
800
800
400 | 200
300
300
300
300
300 | 4.3
2.3
4.6
4.6
2.3 | 60
60
80
80
60 | 500
1000
1000
1000
1000 | *100
*40
*100
*40
*100 | 0.0001
.010
.010
.010
.010 | *8
*12
*12
*12
*12 | 18
46
5
5
46 | GI
MO, TRWS, NA
MO, TRWS | | HF
26 | 2N3075
2N990
2N993
2N2089
2N2590 | AMP
AMP
AMP
AMP
SSD | pnp,PADT,GE
pnp,PADT,ge
pnp,PADT,ge
pnp,PADT,ge
pnp,PADT,ge
pnp,PL | 70
75
*75
75
*75 | 140
67
67
100
400 | 90
75
75
85
200 | 3.1
1.33
1.7
0.6
2.3 | 30
*32
*32
*32
60 | 20
10
10
10
10 | 27
150
150
150
150
•20 | 10
-
-
-
-
.025 | 3
-
-
-
*6 | 12
18
18
7
46 | 4 Lead
4 Lead | | | 2N2671
2N2672
2N696 | AMP
AMP
FA | pnp,AD,ge
pnp,AD,ge
npn,DD,si | 75
75
*80 | 100
100
2.0W | 75
85
175 | 0.6
0.6
13.3 | *32
*32
*60 | 10
10
- | 150
150
•40 | 8
8
0.01 | 2.5
2.5
*20 | 12
39
5 | Veb=1 Volt
TRWS, TR, GI, AMP, CDC,
NA, TI, ITT, IEC | | HF
27 | 2N699
2N718
2N718A | FA
FA | npn,DD,si
npn,DD,si
npn,DP,si | *80
*80
*80 | 2.0W
1.5W
1.8W | 175
175
200 | 13.3
10
10.3 | *120
*60
*75 | | *80
*75
*80 | 0.01
0.01
0.003 | 12
•17
•18 | 5
18
18 | TRWS, SY, TR, GI, AMP. CDC, NA, RCA, TI TRWS, CDC, SY, TR, GI, AMP, AL, NA, MO, ITT, IEC CDC, MO, TR, GI, AMP, AL, NA, RCA, TRWS, TI | | | 2N720
2N870
2N910 | FA
FA
FA | pnp,DD,si
npn,DP,si
npn,DP,si | *80
*80
*80 | 1.5W
1.8W
1800 | 175
200
200 | 10
10.3
10.3 | *120
60
60 | - | *80
*75
140 | 0.01
0.004
0.005 | 12
*13
*13 | 18
18
18 | TRWS, CDC, TR, GI, AMP. AL.
TI
TRWS, CDC, GI, AMP. AL, IEC
TRWS, CDC, AMP. AL, TI, NA | | 4F
28 | 2N1252
2N1613
2N1748
2N1749 | FA
FA
*SPR
*SPR | npn,DD,si
npn,DP,si
pnp,MD,ge
pnp,MD,ge | *80
*80
*80
*80 | 2.0W
3W
60
75 | 175
200
100
100 | 13.3
17.2
0.8
1.0 | *30
*75
*25
*40 | -
-
50
10 | *35
*80
45
45 | 0.1
0.003
1.5
1.5 | *30
*18
*1.3
*1.3 | 5
5
9
9 | AL, NA, GI
TRWS, CDC, MO, TR, GI,
AMP, AL, RCA, IEC, TI
*PH orig Reg
*PH orig Reg | | HF | 2N1973
2N2451
2N2645
2N2720
2N2721
2N501 | SPR
IEC
SSD
SSD
*SPR | npn,DP,si
pnp,MAT.ge
npn,PE,si
npn,PL
npn,PL
pnp,MD,ge | *80
80
*80
*80
*80
*90 | 25
500
600
600
60 | 85
150
200
200
100 | 4.54
0.35
3.4
3.4
0.8 | *6
75
60
60
*15 | 50
-
50
50
50 | 40
100
*35
*35
*35 | 0.005
5
0.01
.010
.010
1 | *13
6
25
-
*6
*1.5 | 5
24
18
5
5 | Differential amp, AL, SPR, MO Differential amp, AL, SPR, MO "PH orig Reg, GI | | 29 | 2N2188
2N2190
2N2596
2N2599
2N2602 | TI
TI
SSD
SSD
SSD | pnp, AD, ge
pnp, AD, ge
pnp, PL
pnp, PL
pnp, PL | *90
90
*90
*90
*90 | 125
125
400
400
400 | 85
85
200
200
200 | 2.1
2.1
2.3
2.3
2.3 | *40
*60
60
80
60 | 30
30
50
50
50 | 90
90
*30
*30
*25 | 1.0
1.0
.025
.025
.025 | *1.6
*1.6
*6
*6 | 58
58
46
46
46 | AL | | HF | 2N4104
2N384
2N466
2N697 | TI
RCA
IEC
FA | npn,PL,si
pnp,DR,ge
pnp,PE,si
npn,DD,si | *90
100
100
*100 | 300
120
360
2.0W | 175
100
150
175 | 2
-
0,3
13.3 | 60
40
0.3
*60 | 50
50
- | *400
60
30-300
*75 | 0.01
12
0.1
0.01 | 4.5
-
36
*20 | 18
44
18 | TRWS, MO, TR, GI, AMP, CDC,
NA, RCA, ITT, IEC | | 30 | 2N728
2N729
2N871
2N956
2N979 | TR
TR
FA
FA
SPR | npn,PE,si
npn,PE,si
npn,DP,si
npn,DP,si
pnp,MD,ge | 100
100
*100
*100
*100 | 300
300
1.8W
1.8W
60 | 175
175
200
200
100 | 4
4
10.3
10.3
0.8 | 15
30
60
•75
•20 | 100
100
10A
-
100 | *20-200
*20-200
*30
*130
*70 | 5
5
0.004
0.003 | *12
12
*13
*18
*1.5 | 18
18
18
18
18 | TRWS, CDC, GI, AL, IEC, TI
TRWS, CDC, MO, GI, AMP | | HF | 2N980
2N987
2N1180
2N1225
2N1396 | SPR
AMP
RCA
RCA
RCA | pnp,MD,ge
pnp,PADT,ge
pnp,DR,ge
pnp,DR,ge
pnp,DR,ge | *100
100
100
100
100 | 60
86
80
120
120 | 100
90
71
85
100 | 0.8
1.33
-
- | *20
*40
*30
*40
*40 | 100
10
10
-
10 | *70
100
100
60
90 | 1
-
12
12
4 | *1.5
-
-
-
*2 | 18
18
45
33
33 | 4 Lead
AMP
SY, AMP | | 31 | 2N1420
2N1499A
2N1711 | FA
*SPR
FA | npn,DD,si
pnp,MD,ge
npn,DP,si | *100
*100
*100 | 2W
60
2W | 175
100
200 | 13.3
0.8
17.2 | *60
*20
*75 | -
100
- | *200
*70
*130 | 0.01
1
.003 | 17
*1.5
*18 | 5
9
5 | TRWS, CDC, MO, TR, GI, AMP, NA, TI, IEC, CDC *PH orig Reg, GI TRWS, CDC, MO, TR, GI, AL, NA, RCA, AMP, TI, NA, RCA, II | | HF | 2N1726
2N1727
2N1728
2N1746
2N1747 | *SPR
*SPR
*SPR
*SPR
*SPR | pnp,MD,ge
pnp,MD,ge
pnp,MD,ge
pnp,MD,ge
pnp,MD,ge
pnp,MD,ge | 100
100
100
100
100 | 60
60
60
60 | 100
100
100
100
100 | 0.8
0.8
0.8
0.8 | *20
*20
*20
*20
*20
*20 | 50
50
50
50
50 | 60
*60
*60
70
70 | 1.5
1.5
1.5
1 | *1.5
*1.5
*1.5
*1.2 | 9
9
9
9 | *PH orig Reg *PH origi Reg | | 32 | 2N1748A
2N1788
2N1789
2N1790
2N1893A | *SPR
*SPR
*SPR
*SPR
TRWS | pnp,MD,ge
pnp,MD,ge
pnp,MD,ge
pnp,MD,ge
npn,PL,si | *100
100
100
100
*>100 | 60
60
60
60
3W | 100
100
100
100
100
200 | 0.8
0.8
0.8
0.8
17.14 | *25
*35
*35
*35
*35
*140 | 50
50
50
50
50 | 70
150
200
120
•40-120 | 1.5
1.5
1.5
1.5
1.5 | *1.3
*1.5
*1.5
*1.5
*1.5 | 9
9
9
9 | *PH orig Reg
*PH orig Reg
*PH orig Reg
*PH orig Reg
GI, TR | | | | | | | | MAX | . RATING | S | | CHARA | CTERIST | CS | | | |-----------------------|---|----------------------------------|--|--|--|--|--|-----------------------------------|--------------------------------------|--|--------------------------------------|---
--|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*f _T
(MHz) | P (mW) | Т _.
(°С) | mW/°C | *YCEO
*YCBO
(Y) | ¹ C (mA) | hfe
*hFE | ICO
*ICEO
¹ICEX
(μΑ) | Cob
(pF) | Package
Outline
(TO-) | Remarks | | HF
33 | 2N 1958
2N 1958A
2N 1959
2N 1959A
2N 1964 | 72
72
72
72
72
72 | npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si
npn,EP,PL,si | *100
*100
*100
*100
*100 | 600
600
600
600
400 | 175
175
175
175
175 | | *60
*120
*60
*120
*60 | 500
500
500
500
500 | *20-60
*20-60
*40-120
*40-120
*20-60 | 0.5
300
0.5
0.5 | 18
18
18
18
18 | 5
5
5
5
46 | GI
GI
SY, GI, NA
GI, NA
NA | | HF | 2N 1965
2N 2084
2N 2330
2N 2331
2N 2405 | SY
AMP
MO
MO
RCA | npn, EP,PL, si
pnp, PADT, ge
npn, PE, si
npn, PE, si
npn, si | *100
100
*100
*100
*100
*100 | 400
125
3W
1.8W
5W | 175
90
175
175
200 | 1.93
5.33
3.33
28.6 | *60
*40
*30
*30
*120 | 500
10
-
1000 | 40-120
100
*50
*50
*60-200 | 0.5
-
0.001
0.001
0.01 | 18
*10
*10
*15 | 46
33
5
5
5 | NA
GI, MQ, TRWS | | 34 | 2N2591
2N2695
2N2696
2N2722
2N2895 | SSD
IEC
IEC
SSD
RCA | pnp,PL
npn,PE,si
npn,PE,si
npn,PL
npn,si | *100
100
100
*100
*100 | 400
360
360
600
1800 | 200
†150
150
200
200 | 2.3
0.49
0.49
3.4
10.3 | 60
0.25
20
45
65 | 50
500
500
50
1000 | *35
30
30
*60
*40-120 | .025
0.025
0.5
.001
.002 | *6
20
12
*6
*15 | 46
18
18
5
18 | Differential amp, MO, AL, SPR
CDC | | HF | 2N2896
2N2897
2N2900
2N2947
2N2948 | RCA
RCA
CDC
MO
MO | npn,si
npn,si
npn,si
pnp,EP,si
npn,EP,si | *100
*100
*100
*100
*100 | 1800
1.8W
1800
25W
25W | 200
200
200
200
175
175 | 10.3
10.3
10.3
167
167 | 90
45
45
*60
*40 | 1000
1A
1000
1.5
1.5 | *60-200
*50-200
*50-200
2.5-35
2.5-100 | .01
.05
.05
1 | *75
*15
*15
*60
*60 | 18
18
46
3
3 | CDC | | 35 | 2N2949
2N2950
2N3702
2N3703
2N3704 | MO
MO
TI
TI | npn,EP,si
npn,EP,si
pnp,PL,si
pnp,PL,si
npn,EP,si | *100
*100
*100
*100
*100 | 6W
6W
300
300
300 | 175
175
125
125
150 | 40
40
3
3
3 | *60
*60
25
25
20 | .7
.7
200
200
800 | 5-100
5-100
*60-300
*50-150
*90-330 | .1
.1
0.1
0.1
0.1 | *20
*20
*12
*12
12 | 11111 | Plas IEC, PH
Plas IEC, PH
Plas IEC, CDC, PH | | HF | 2N3705
2N3706
2N3798
2N3799
2N3800 | TI
TI
MO
MO
MO | npn,EP,si
npn,EP,si
pnp,AE,si
pnp,AE,si
pnp,AE,si | *100
*100
*100
*100
*100 | 300
300
1200
1200
360 | 150
150
200
200
200
200 | 3
3
6.9
6.9
2.06 | 30
20
60
60
60 | 800
800
50
50
50 | *45-165
*30-660
*150-450
*300-900
*150-450 | 0.1
0.1
.01
.01 | 12
12
•4
•4
•4 | -
18
18
71 | Plus IEC, CDC, PH
Plas IEC, CDC, PH
TI
TI
Dual | | 36 | 2N3801
2N3802
2N3803
2N3804
2N3805 | MO
MO
MO
MO
MO | pnp,AE,si
pnp,AE,si
pnp,AE,si
pnp,AE,si
pnp,AE,si | *100
*100
*100
*100
*100 | 360
360
360
360
360 | 200
200
200
200
200
200 | 2.06
2.06
2.06
2.06
2.06
2.06 | 60
60
60
60 | 50
50
50
50
50 | *300-900
*150-450
*300-900
*150-450
*300-900 | 10.
10.
10.
10.
10. | •4
•4
•4
•4 | 71
71
71
71
71
71 | Dual
Diff. Amo.
Diff. Amp.
Diff. Amp.
Diff. Amp. | | HF | 2N3806
2N3807
2N3808
2N3809
2N3810 | MO
MO
MO
MO
MO | pnp,AE,si
pnp,AE,si
pnp,AE,si
pnp,AE,si
pnp,AE,si | *100
*100
*100
*100
*100 | 600
600
600
600
600 | 200
200
200
200
200
200 | 3.4
3.4
3.4
3.4
3.4 | 60
60
60
60 | 50
50
50
50
50 | *150-450
*300-900
*150-450
*300-900
*150-450 | .01
.01
.01
.01 | *4
*4
*4
*4 | 77 mod
77 mod
77 mod
77 mod
77 mod | Dual; Low Profile Can, TI
Dual; Low Profile Can, TI
Diff. Amp.: Low Profile Can, TI
Diff. Amp.: Low Profile Can, TI
Diff. Amp.; Low Profile Can, TI | | 37 | 2N3811
2N1253
2N2189
2N2191
2N501A | MO
FA
TI
TI
*SPR | pnp, AE, si
npn, DD, si
pnp, AD, ge
pnp, AD, ge
pnp, MD, ge | *100
*110
110
110
*120 | 600
2.0W
125
125
60 | 200
175
85
85
100 | 3.4
13.3
2.1
2.1
0.8 | 60
*30
*40
*60
*15 | 50
-
30
30
50 | *300-900
*45
135
135
*100 | .01
0.1
1.0
1.0 | *4
*30
*1.6
*1.6
*1.5 | 77 mod
5
58
58
1 | Diff. Amp.; Low Profile Can, TI
AL, NA. IEC
*PH orig Reg, GI | | HF | 2N1023
2N1066
2N1397
2N1500
2N2597 | RCA
RCA
RCA
*SPR
SSD | pnp, DR, ge
pnp, DR, ge
pnp, DR, ge
pnp, MD, ge
pnp, PL | 120
120
120
*120
*120 | 120
120
120
60
400 | 100
100
100
100
200 | -
-
0.8
2.3 | 40
*40
*40
*15
60 | -
10
50
50 | 60
*60
90
*50
*60 | 12
12
4
1
.025 | -
*2
*1.5
*6 | 44
33
33
9
46 | AMP, KSC
SY, AMP
*PH orig Reg. GI | | 38 | 2N2600
2N2603
2N2798
2N2799
2N2837 | SSD
SSD
SPR
SPR
MO | pnp,PL
pnp,PL
pnp,ED,ge
pnp,ED,ge
pnp,EP,si | *120
*120
*120
*120
*120
*120 | 400
400
75
75
1.8W | 200
200
100
100
200 | 2.3
2.3
1
1
10.3 | 80
60
*60
*30
35 | 50
50
100
100
800 | *60
*50
*50
*50
*30-90 | .025
.025

- | *6
*6
*2.5
*2.5
*2.5 | 46
46
9
9 | AL NA | | HF | 2N2838
2N2943
2N1710
2N768
2N2592 | MO
SPR
TRWS
*SPR
SSD | pnp,EP,si
pnp,ED,ge
npn,PL,si
pnp,MD,ge
pnp,PL | *120
*120
*120
*124
*125 | 1.8W
150
1500
35
400 | 200
100
175
100
200 | 10.3
2
100
0.467
2.3 | 35
*30
*60
*12
60 | 800
100
2000
100
50 | *75-225
*50
4.0
*40
*70 | -
50
1
.025 | *25
*2.5
*40
*1.6
*6 | 18
9
8
18
46 | NA
NUC
*PH orig Reg | | 39 | 2N2193A
2N2194A
2N2195A
2N2243A
2N2350A | GE
GE
GE
GE | npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si
npn;PE,si | *130
*130
*130
*130
*130 | 2.8W
2.8W
2.8W
2.8W
5000 | 200
200
200
200
200
200 | 1.6
16
16
16
28.5 | 50
40
25
80
25 | 1A
1A
1A
1A
1O00 | *40-120
*20-60
20
*40-120
*20 | .01
.010
0.01
.01 | *20
*20
*20
*20
*20
*20 | 5
5
5
5
46 | CDC, GI, FA, NA, MO, AL, TI
CDC, FA, GI, NA, MO, AL, TI
CDC, FA, GI, MO, AL, TI
GI, CDC, NA | | HF | 2N2351A
2N2352A
2N2353A
2N2364A
2N3843 | GE
GE
GE
GE | npn.PE,si
npn.PE,si
npn.PE,si
npn.PE,si
npn.PE,si | *130
*130
*130
*130
*135 | 5000
5000
5000
5000
200 | 200
200
200
200
200
100 | 28.5
28.5
28.5
28.5
28.5
2.67 | 50
40
25
80
30 | 1000
1000
1000
1000
1000 | *40-120
*20-60
*20
*40-120
20-40 | .01
.01
.01
.01
.05 | *20
*20
*20
*20
*20
*2.8 | 46
46
46
46
98 | NA
NA
NA
CDC, NA
10.5 d B (max rf nf), CDC | | 40 | 2N3843A
2N3844
2N3844A
2N3845
2N3845A | GE
GE
GE
GE
GE | npn,PEP,si
npn,PE,si
npn,PEP,si
npn,PE,si
npn,PEP,si | *135
*135
*135
*135
*135
*135 | 200
200
200
200
200
200 | 100
100
100
100
100 | 2.67
2.67
2.67
2.67
2.67
2.67 | 30
30
30
30
30
30 | 100
100
100
100
0.5 | *20-40
35-70
*35-70
60-120
*60-120 | 0.5
0.5
0.5
0.5
0.5 | *2.8
*2.8
*2.8
*2.8
*2.8 | 98
98
98
98
98 | 8.5 d B (max rf nf)
10.5 d B (max rf nf)
8.5 d B (max rf nf)
10.5 d B (max rf nf)
8.5 d B (max rf nf) | | | | | | NE man | | MAX | RATING | S | | CHARA | CTERISTI | CS | | | |---------------------|--|--|--|---|---|---|--|---|--|---|---|---|---|--| | rass
idex
Key | Type
No. | Mfr. | Туре | fae
*f _T
(MHz) | P c (mW) | т _ј
(°С) | mW/°C | *VCEO
*VCBO
(V) | I C (mA) | h _{fe} *hFE |
ICO
*ICEO
†ICEX
(μΑ) | C _{ob}
(pF) | Package
Outline
(TO-) | Remarks | | dF
41 | 2N1177
2N1178
2N1179
2N1506
2N1506A | RCA
RCA
RCA
TRWS
TRWS | pnp, DR, ge
pnp, DR, ge
pnp, DR, ge
npn, PL
npn, PL, si | 140
140
140
\$140
\$140 | 80
80
80
3W
3.5W | 71
71
71
71
175
200 | -
-
20
20 | *30
*30
*30
*60
*80 | 10
10
10
500
500 | 100
40
80
2
2 | 12
12
12
10
.05 | -
-
*10
*10 | 45
45
45
5
5 | LAN
LAN
LAN
NUC
NA | | łF | 2N2874
2N2781
2N2782
2N2782
2N2783
2N702 | TRWS
TRWS
TRWS
TRWS | npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si
npn,si | *140
*>140
*>140
*>140
*>140
*>150 | 15000
15000
15000
15000
15000
300 | 175
175
175
175
175 | 100
100
100
100
2 | *75
*75
*100
*100
25 | 2000
2000
2000
2000
2000
50 | 2
2
2
2
•20 | 10
500
500
10
0.5 | *40
*40
*40
*40
*3 | 8
8
8
18 | TRWS, GI, NA | | 12 | 2N703
2N758B
2N995
2N1499B
2N1709 | TI
SSD
FA
SPR
TRWS | npn,si
npn,PL
pnp,PE,si
pnp,ED.ge
npn,PL,si | *150
*150
*150
*150
*150
*150 | 300
500
1.2W
75
15000 | 175
200
200
100
175 | 2
2.85
6.9
1
100 | 25
60
15
•30
•75 | 50
50
-
100
2000 | *40
*12.5
*70
*70
5 | 0.5
.005
0.001
0.6
10 | *3
*6
*8
*2.5
*40 | 18
18
18
9 | TRWS, FA, SY, GI, NA MO, TR, AL, IEC NUC | | 1F | 2N2O48
2N2O48A
2N2400
2N2520
2N2593 | *SPR
*SPR
*SPR
SSD
SSD | pnp,MD,ge
onp,MD,ge
pnp,MD,ge
npn,PL
pnp,PL | *150
*150
*150
*150
*150
*150 | 150
150
150
400
400 | 100
100
100
200
200 | 2
2
2
2.3
2.3 | *20
*30
*12
60
60 | 100
100
100
50
50 | *125
*50
*30
*12.5
*100 | 1
-
3
.005
.025 | *1.5
3
4
*6
*6 | 9
9
18
46
46 | *PH orig Reg
*PH orig Reg
*PH orig Reg | | 13 | 2N2604
2N2654
2N2797
2N2927
2N2942 | SSD
AMP
SPR
FA
SPR | pnp,PL
pnp,AD,ge
pnp,ED,ge
pnp,PE,si
pnp,ED,ge | *150
150
*150
*150
*150
*150 | 400
100
75
30 00
150 | 200
75
100
200
100 | 2.3
0.5
1
4.56
2 | 45
*32
*40
25
*50 | 50
10
100
-
100 | *60
50
*80
*60
*80 | .010
8
-
0.001
- | *6
*1.5
*2.5
*12
*2.5 | 46
12
9
5 | TI, AL, UC, NA | | 1F | 2N3081
2N3081/46
2N3081/51
2N3245
2N3262 | SY
SY
SY
MO
RCA | pnp,EP,PL,si
npn,PL,EP,si
npn,PL,EP,si
pnp,ED,si
npn,si | *150
*150
*150
*150
*150
*150 | 600
400
300
5W
8.75W | 175
175
175
175
200
200 | -
-
-
28.6
5.71 | *70
*70
*70
50
80 | 600
600
600
1A
1.5A | *30-90
*30-90
*30-90
*30-90
3 | .01
.01
.01
.50
0.1 | 13
13
13
*25
*20 | 5
46
51
5
39 | ті | | 14 | 2N3638
2N3763
2N3765
2N3818
2N3950 | FA
MO
MO
MO
MO | pnp,PE,si
pnp,AE,si
pnp,AE,si
npn,EP,si
npn,si | *150
*150
*150
*150
*150
*150 | 700
4000
2000
25000
70,000 | 125
200
200
175
200 | 7.0
22.8
11.4
167
900 | 25
60
60
•60
35 | 500
1500
1500
2000
3300 | *40
*20-80
*20-80
*5-50 | 0.0001
†0.1
†0.1
1
*10,000 | *12
*15
*15
*40
*120 | 5
46
60
60 | IEC, CDC. PH | | HF
\$5 | 2N4402
2N4932
2N4933
2N1499 A
2N3962
2N3963
2N3964
2N3965
2N2525
2N2913 | MO
RCA
RCA
PH
FA
FA
FA
TRWS | pnp,si
npn,si
npn,si
pnp,ge
onp,DP,si
pnp,DP,si
pnp,DP,si
pnp,DP,si
npn,PL,si
npn,DP,si | *150
*150
*150
*160
160
160
160
*162
*170 | 310
70 W
70 W
60
1.2W
1.2W
1.2W
1.5W | 135
200
200
100
200
200
200
200
200
200
200 | 2.81
400
400
0.8
6.85
6.85
6.85
91.43
3.42 | 40
25
35
*20
60
80
45
60
80
45 | 600
10 A
10 A
100
50
50
50
50
1000
30 | *50-150
-
*70
*300
*300
*500
*500
2.23
*240 | †0.1
1 mA
1 mA
0.6
-
-
-
-
-
0.001 | -
*120
*85
*1.5
*6
*6
*6
*6
*25
*5 | 92
60
60
9
18
18
18
18 | GI
TI
TI
TI
TI
SPR, GI, AL, UC, MO, AMP,
GE, NA, SSD | | łF | 2N735A
2N739A
2N759B
2N2207
2N2459 | SSD
SSD
SSD
AMP
SSD | npn,PL
npn,PL
npn,PL
pnp,AD,ge
npn,PL | *175
*175
*175
175
175
*175 | 500
500
500
260
400 | 200
200
200
75
200 | 2.85
2.85
2.85
0.25
2.3 | 60
80
60
•70
60 | 50
50
50
50
50 | *30
*30
*25
200
*20 | .005
.005
.005
-
.002 | *6
*6
*6
-
- | 18
18
18
7
46 | TR, TI | | 16 | 2N2463
2N2512
2N2515
2N2518
2N2519 | D22
D22
D22
D22
D22 | npn,PL
pnp,AD,ge
npn,PL
npn,PL
npn,PL | *175
175
*175
*175
*175
*175 | 500
260
400
400
400 | 20G
75
200
200
200 | 2.85
0.25
2.3
2.3
2.3 | 60
*70
60
80
80 | 50
50
50
50
50 | *20
200
*30
*30
*60 | .002
5
.005
.005
.005 | *6
*6
*6 | 18
33
46
46
46 | AMP | | 1F | 2N2521
2N2605
2N3244
2N3253
2N1493 | SSD
SSD
MO
MO
RCA | npn,PL
pnp,PL
pnp,ED,si
npn,AE,si
npn,si | *175
*175
*175
*175
*175
*180 | 400
400
5W
5W
3W | 200
200
200
200
200
175 | 2.3
2.3
28.6
28.6
20 | 60
45
40
*40
*100 | 50
50
1A
-
50 | *25
*150
*50-150
*25-75
15-200 | .005
.010
.050
.5 | *6
*6
*25
*12
*5 | 46
46
5
5
39 | TI, AL, UC, NA
TI
NA, TI, AMP | | 47 | 2N2494
2N2495
2N2496
2N3074
2N3762 | AMP
AMP
AMP
AMP
MO | pnp,AD,ge
pnp,AD,ge
pnp,AD,ge
pnp,PADT.ge
pnp,AE,si | 180
180
180
180
180
*180 | 100
100
100
140
4000 | 85
85
85
90
200 | 1.67
1.67
1.67
3.1
22.8 | *35
*35
*35
25
40 | 10
10
10
20
1500 | 70
70
70
70
*14
*30-120 | 2
2
2
10
1 0.1 | -
-
3
*15 | 7
33
18
12
5 | | | 1F | 2N3764
2N588
2N706/51
2N706A/51
2N706B/46 | MO
*SPR
SY
SY
SY | pnp,AE,si
pnp,MD,ge
npn,si
npn,si
npn,PE,si | *180
200
200
200
200
*200 | 2000
30
300
300
400 | 200
85
200
200
200 | 11.4
0.75
-
-
- | 40
*15
15
*25
*25 | 1500
50
50
50
50 | *30-120
-
*20-60
*20-60
*20-60 | #0.1
3
.025
0.5
0.5 | *15
-
5
5
5 | 46
1
51
51
46 | *PH orig Reg, GI
TR
TR
GI, TR, NA | | 48 | 2N706B/51
2N706C /46
2N706C /51
2N736B
2N740A | Y2
Y2
Y2
O22
O22 | npn,si
npn,si
npn,si
npn,PL
npn,PL | 200
200
200
•200
•200 | 300
400
300
500
500 | 200
200
200
200
200
200 | -
-
2.85
2.85 | *25
15
15
60
80 | 50
50
50
50
50 | *20-60
*20-60
*20-60
*60
*60 | 0.5
.025
.025
.005
.005 | 5
5
*6
6 | 51
46
51
18
18 | TR
GI, TR
TR
TR
TR | #### 85 MHz J-K FLIP-FLOP 8 ns FULL ADDER # ...you're in fast company with MECL II Integrated Circuits! The impressive speed credentials of Motorola's new MECL II* integrated circuit logic are well represented by the ultra-fast 85 MHz (typ) J-K Flip-Flop and the complex 12-gate-array Full Adder (and Subtractor, too) with 8 nanosecond typical propagation delay. These circuits command the attention of any designer who needs *speed* in his design. And, you can count on the entire line of multifunction MECL | | Min. | Max. | Unit | |---|----------|------|----------| | J-K FLIP-FLOP (MC1013P†, MC1213F†)
Toggle Frequency (50% duty cycle)
AC Fan-out | 70
15 | _ | MHz
— | | FULL ADDER (MC1019P, MC1219F) FULL SUBTRACTOR (MC1021P, MC1221F) Propagation Delay (Carry-in to sum) AC Fan-out | _
15 | 8 - | ns
— | †"P" suffix for plastic package (0 to +75°C temp. range) "F" suffix for flat package (-55°C to +125°C temp. range) II circuits to deliver state-of-the-art performance for fastest overall system operation. And, if you're already designing with MECL I* circuits, you'll find these new MECL II types fit right in your present designs — with identical logic levels and power supply requirements. (They are compatible with the 1.0 ns MECL III* gates we're presently developing, too.) If your design doesn't require highest speed, ask your Motorola representative about our other digital integrated logic families . . . MTTL*, MDTL*, MRTL*, MVTL*, MHTL* (high threshold), mWRTL*. We make them all. See your nearest Motorola distributor for evaluation quantities of new MECL II circuits for prototyping. For complete details, write Motorola Semiconductor Products Inc., Box 955, Phoenix, Arizona 85001. -where the priceless ingredient is care! | | | | | | | MAX | . RATING | S | | CHARA | CTERISTI | CS | | | |---------------------|---|---------------------------------|---|--|--|---
--------------------------------------|--|---------------------------------------|---|--------------------------------------|--|----------------------------------|--| | ross
idex
Key | Type
No. | Mfr. | Туре | fae
*fT
(MHz) | P c (mW) | Т _ј
(°С) | mW∕°C | °VCEO
°VCBO
(V) | l _C (mA) | hfe
*hFE | ¹ICEO
¹ICEX
(µA) | C _{ob} *C _{ob} (pF) | Package
Outline
(TO-) | Remarks | | IF
19 | 2N752
2N760B
2N783
2N869
2N1962 | NA
SSD
SY
FA
SY | pnp,DM,si
npn,PL
npn,EP,si
pnp,DP,si
npn,PE,si | *200
*200
200
*200
200 | 500
500
300
1.2W
400 | 200
200
100
200
175 | 2.5
2.85
-
6.86 | 45
60
*40
18
*40 | 100
50
200
-
200 | 40-120
*50
*20-80
*60
*20-80 | 0.1
.005
.025
0.005
0.25 | 5
*6
3.5
*60
3.0 | 18
18
18
18
46 | TR
FA. IEC
MO, AL, IEC | | łΕ | 2N1963
2N2397
2N2401
2N2460
2N2464 | SY
SY
*SPR
SSD
SSD | npn,PE,si
npn,PE,si
pnp,MD,ge
npn,PL
npn,PL | *200
*200
*200
*200
*200
*200 | 400
300
150
400
500 | 175
200
100
200
200 | -
2.0
2.3
2.85 | *30
*35
*15
60
60 | 200
200
100
50
50 | *25
*25-120
*50
*35
*35 | 0.25
0.1
1.5
.002
.002 | 3.5
5
4
*6
*6 | 46
51
18
46
18 | *PH orig Reg | | 0 | 2N2516
2N2522
2N2618
2N2618/4
2N2876 | SSD
SSD
SY
SY
RCA | npn,PL
npn,PL
npn,PE,si
npn,PE,si
npn,si | *200
*200
*200
*200
*200
*200 | 400
400
600
400
17500 | 200
200
175
175
200 | 2.3
2.3
-
100 | 69
60
*60
*60
60 | 50
50
750
750
750
2500 | *60
*50
*50-200
*50-200
50-275 | .005
.005
.25
.25
0.1 | *6
*6
14
14
*20 | 46
46
5
5
60 | TRWS | | | 2N2904 | MO | pnp,AE,si | *200 | 3W | 200 | 17.2 | 40 | 600 | *40-120 | .02 | *8 | 5 | GI, TR, SPR, AL, TI, GE, NA, IEC | | F | 2N2904A
2N2905
2N2905A | MO
MO
MO | pnp,AE,si
pnp,AE,si
pnp,AE,si | *200
*200
*200 | 3W
3W | 200
*100
200 | 17.2
200
17.2 | 60
40
60 | 600
600
600 | *40-120
100-300
100-300 | .01
.02
.01 | *8
*8
*8 | 5
5
5 | GI, TR, SPR, AL, TI, GE, NA
GI, TR, SPR, AL, TI, GE, NA
GI, TR, SPR, AL, TI, GE, NA | | 1 | 2N2906
2N2906 A
2N2907
2N2907 A
2N2921 | MO
MO
MO
MO
IEC | pnp.AE.si
pnp.AE.si
pnp.AE.si
pnp.AE.si
npn.PE.si | *200
*200
*200
*200
200 | 1.8W
1.8W
1.8W
1.8W
200 | *100
200
200
200
200
125 | 10.3
10.3
10.3
10.3
0.38 | 40
60
40
60
25 | 600
600
600
600
100 | 40-120
*40-120
*100-300
*100-300
35 | .02
0.01
0.2
.01
0.5 | *8
*8
*8
*8 | 18
18
18
18
18 | TR, SPR, AL, TI, GE, NA
GI, TR, SPR, AL, TI, GE, NA
GI, TR, SPR, AL, TI, GE, NA
GI, TR, SPR, AL, TI, GE, NA | | (F | 2N2922
2N2951
2N2952
2N3133
2N3134 | IEC
MO
MO
MO
MO | npn,PE,si
npn,EP,si
npn,EP,si
pnp,AE,si
pnp,AE,si | 200
*200
*200
*200
*200 | 200
3W
1.8W
3W
3W | 125
175
175
200
200 | 0.38
20
12
17.3
17.3 | 25
*60
*60
35
35 | 100
250
250
600
600 | 55
*20-150
*20-150
*40-120
*100-300 | 0.5
0.1
.1
.05
.05 | 12
*8
*8
*10
*10 | 18
5
18
5
5 | TRWS, SPR
TRWS
SPR, NA
SPR, NA | | 52 | 2N3135
2N3136
2N3229
2N3229
2N3252 | MO
MO
RCA
RCA
MO | pnp,AE,si
pnp,AE,si
npn,si
npn,si
npn,AE,si | *200
*200
*200
*200
*200 | 1.8W
1.8W
17.5W
17.5W
5W | 200
200
200
200
200
200 | 10.3
10.3
100
100
28.6 | 35
35
60
60
*30 | 600
600
2.5A
2.5A | *40-120
*100-300
-
-
-
*30-90 | 0.05
.05
0.1
0.1
.5 | *10
*10
*20
*20
*12 | 18
18
60
60 | SPR, NA
SPR, NA
15 W (min) @ 50 MHz
15 W (min) @ 50 MHz
NA, TI, AMP | | łF | 2N3298
2N3323
2N3324
2N3325
2N3426 | MO
MO
MO
MO
FA | npn,E,si
pnp.EA,ge
pnp.EM,ge
pnp.EM,ge
npn,PE,si | *200
*200
*200
*200
*200
*200 | 1W
300
300
300
300
3W | 175
100
100
100
200 | 6.67
4
4
4
17.2 | *25
*35
*35
*35
12 | 100
100
100
100
1A | *60-120
*30-200
*30-200
*30-200
*50 | 0.5
10
10
10
10 | *6
*3
*3
*3
*6.2 | 18
18
18
18 | TRWS
TI
TI
TI | | 53 | 2N3619
2N3621
2N3622
2N3620
2N3623 | BE
BE
BE
BE
BE | npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si | *200
200
200
200
200
200 | 7.5W
15W
15W
7.5W
7.5W | 175
175
175
175
175
175 | 50
200
200
50
50 | *75
*75
*75
*75
*75
*75 | 2.5A
5A
10A
5A
25 | *40
*40
*40
*40
*40 | 25
25
25
25
25
1 | *50
*50
*50
*50
*50
*50 | 5
61
61
† | Isolated Collector | | нF | 2N3624
2N3625
2N3626
2N3627
2N3628 | BE
BE
BE
BE
BE | npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si | 200
200
200
200
200
200 | 7.5W
15W
15W
7.5W
7.5W | 175
175
175
175
175 | 50
200
200
50
50 | *75
*75
*75
*100
*100 | 5A
5A
10A
2.5A
5A | *40
*40
*40
*40
*40 | 1
25
1
1 | *50
*50
*50
*50
*50
*50 | †
61
61
5 | † MT-27
Isolated Collector | | 54 | 2N3629
2N3630
2N3691
2N3692
2N3693 | BE
BE
FA
FA | npn,PE,si
npn,PE,si
npn,PL,si
npn,PL,si
npn,DP,si | 200
200
*200
*200
200 | 20W
20W
625
625
500 | 175
175
150
150
125 | 200
200
2
2
2
5 | *100
*100
*35
*35
45 | 10A
10A
50
50 | *40
*40
*40-160
*100-400
*40 | 1
1
.05
.05
5 | *50
*50
.5-3.5
.5-35 | 61
61
-
- | Isolated collector R097A package, CDC, IEC R097A package, CDC, IEC R0110 package, IEC | | HF | 2N3694
2N3701
2N3766
2N3825
2N3826 | FA
FA
FA
TI | npn,DP,si
npn,DPE,si
npn,DPE,si
npn,EP,si
npn,EP,si | 200
200
200
*200
*200 | 500
1.8W
1.8W
250
200 | 125
200
200
125
125 | 5
10.3
10.3
2.5
2 | 45
80
80
15
45 | 1000
1000
100
30 | *100
*120
*300
*20
*40 | 5
10
10
0.1
0.1 | -
-
-
*3.5
*3.5 | -
18
18
92
92 | ROIIO package, IEC | | 55 | 2N3827
2N4125
2N4400
2N4403
2N4433 | TI
MO
MO
MO
AMP | npn,EP,si
pnp,AE,si
npn,si
pnp,si
npn,PL,si | *200
*200
*200
*200
*200
200 | 200
310
310
310
310
165 | 125
135
135
135
135
175 | 2
2.81
2.81
2.81
1.1 | 45
30
40
40
30 | 30
200
600
600
30 | *100
*50-150
*50-150
*100-300
*220 | 0.1
.05
†0.1
†0.1
1.0 | *3.5
*4.5
*6.5
- | 92
92
92
92
92
72 | | | HF | 2N4435
2N2461
2N2465
2N996
2N499 | AMP
SSD
SSD
FA
*SPR | npn,PL,si
npn,PL
npn,PL
pnp,PE,si
pnp,MD,ge | 220
*225
*225
*230
240 | 145
400
500
1.2W
30 | 175
200
200
200
200
85 | 2.3
2.85
6.85
0.75 | 20
60
60
12
*30 | 30
50
50
50
- | *67
*70
*70
*75
8.5 | -
.002
.002
0.0002
1 | 1.4
*6
*6
*7.5
*1.3 | 72
46
18
18 | TR, IEC
*PH orig Reg, GI | | 56 | 2N 499 A
2N 3588
2N 929 A
2N 947
2N 957 | *SPR
AMP
SSD
FA
FA | pnp.MD.ge
pnp.PADT.ge
npn.PL
npn.DP,si
npn.DD,si | 240
*240
*250
*250
*250 | 60
100
500
1200
800 | 100
75
200
200
150 | 0.8
2.2
2.85
6.9
6.5 | *30
*25
45
*20
20 | 50
10
50
100
- | 50
*65
*60
*40
*60 | 1
8
.002
0.1
1 | *1.3
2
*6
*7
*5 | 1
18
18
18
18 | *PH orig Reg
4 lead
TR, AL, UC, TI, NA
TRWS, AMP, IEC | | | | | | | | MAX | RATING | S | | CHARA | CTERISTI | CS | | | |----------------------|---|-------------------------------------|---|--|---|---|---|--|---------------------------------------|--|--|---------------------------------------|----------------------------------|---| | Cross
ndex
Key | Type
No. | Mfr. | Туре | fae
*fT
(MHz) | P
c
(mW) | т _ј
(°С) | mW/°C | *VCEO
*VCBO
(V) | I _C (mA) | h _{fe}
*h _{FE} | ICO
*ICEO
*ICEX
(((A)) | C _{ob} *C _{ob} (pF) | Package
Outline
(TO-) | Romarks | | HF
57 | 2N1491
2N2217
2N2218 | RCA
MO
MO | npn,si
npn,PE,si
npn,PE,si | *250
*250
*250 | 3000
3W
3W | 175
175
175 | 20
20
20 | *30
30 | 50
-
- |
15-200
*20-60
*40-120 | 10
0.01
0.01 | *5
8 | 39
5 | GI, FA, SPR, TR, NA, TRWS,
AMP, AL, TI, ITT, IEC
GI, FA, SPR, TR, NA, TRWS,
AL, AMP, TI, ITT, IEC | | НF | 2N2218A
2N3292
2N3293
2N3294
2N3326 | MO
MO
MO
MO
GI | npn,AE,si
npn,E,si
npn,E,si
npn,E,si
npn,PE,si | *250
*250
*250
*250
*250
*250 | 3W
300
300
300
300
800 | 175
200
200
200
200
175 | 20
1.71
1.7
1.71
5.33 | 40
*25
*20
*20
45 | 50
50
50
50
800 | 40-120
10-200
10-200
10-200
*40-120 | .01
0.1
0.1
0.1
0.1
0.01 | *8
*2
*2
*2
*8 | 5
18
18
18
18 | SPR, TR. NA. AL. TI. ITT
AL
AL
AL | | 58 | 2N3409
2N3410
2N3411
2N2219 | MO
MO
MO
MO | npn,si
npn,PE,si
npn,PE,si
npn,PE,si | 250
250
250
*250 | 600
600
600
3W | 200
200
200
200
175 | 3.4
3.4
3.4
20 | *60
*60
*60
30 | 500
500
500 | *30-120
*30-120
*30-120
*100-300 | 0.01
0.01
0.01
0.01 | *8
*8
*8 | 5
5
5
5 | SPR
SPR
SPR
GI, FA, SPR, TR, NA, TRWS,
AL, AMP, TI, ITT, IEC | | HF
59 | 2N2220
2N2221
2N2221A
2N2222
2N2273
2N2402
2N2462 | MO
MO
MO
MO
*SPR
SSD | npn,PE,si
npn,AE,si
npn,AE,si
npn,EM,ge
pnp,MD,ge
npn,PL | *250
*250
*250
*250
*250
*250
*250
*250 | 1.8W
1.8W
1.8W
1.8W
150
150
400 | 175
175
175
175
100
100
200 | 12
12
12
12
12
2
2
2,3 | 30
30
40
30
15
18
60 | -
-
-
100
100
50 | *20-60
*40-120
40-120
*100-300
*20-75
*60
*100 | 0.01
0.01
.01
0.01
10
1.5
.002 | 8
8
*8
8
*3.5
•4
*6 | 18
18
18
18
18
18 | GI, FA, SPR, TR, NA, TRWS, AMP, AL, TI, ITT, IEC GI, FA, SPR, TR, NA, TRWS, AMP, AL, ITT, IEC GI, SPR, TR, NA, AL, TI, ITT TRWS, GI, FA, SPR, TR, NA, AL, AMP, TI, ITT, IEC TI *PH orig Reg | | HF | 2N2466
2N2476
2N2477
2N2523
2N2537 | SSD
RCA
RCA
SSD
MO | npn,PL
npn,PE,si
npn,PE,si
npn,PL
npn,AE,si | *250
250
250
*250
*250 | 500
2W
2W
400
3W | 200
200
200
200
200
200
200 | 2.85
3.4
3.4
2.3
17.2 | 60
*60
*60
45 | 50
-
-
50
- | *100
*20
*40
*40
*50-150 | .002
0.2
0.2
.002
.25 | *6
10
10
*6
*8 | 18
5
5
46
5 | SPR
SPR
GI, NA, SPR, TI, GE | | 60 | 2N2538
2N2539
2N2540
2N2787
2N2788 | MO
MO
MO
GI
GI | npn,AE,si
npn,AE,si
npn,AE,si
npn,PE,si
npn,PE,si | *250
*250
*250
*250
*250
*250 | 3W
1.8W
1.8W
3W
3W | 200
200
200
300
300 | 17.2
10.3
10.3
5.33
5.33 | 30
30
30
•75
•75 | -
-
800
800 | *100-300
*501.50
*100-300
*20-60
*40-120 | .25
.25
.25
0.01
0.01 | *8
*8
*8
*8 | 5
18
18
5
5 | GI, NA, SPR, TI, GE
GI, NA, SPR, TI, GE
GI, NA, SPR, TI, GE
SPR
SPR | | HF | 2N2789
2N2790
2N2791
2N2792
2N2958 | GI
GI
GI
MO | npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si
npn,AE,si | *250
*250
*250
*250
*250
*250 | 3W
1.8W
1.8W
1.8W
3W | 300
300
300
300
300
175 | 5.33
3.33
3.33
3.33
20 | *75
*75
*75
*75
*75 | 800
800
800
800
600 | *100·300
*20·60
*40·120
*100·300
*40·120 | 0.01
0.01
0.01
0.01
0.025 | *8
*8
*8
*8 | 5
18
18
18
5 | SPR
SPR
SPR
SPR
GI, SPR, TRWS | | 61 | 2N2959
2N3015
2N3115
2N3116
2N3118 | MO
FA
MO
MO
RCA | npn,AE,si
npn,PE,si
npn,AE,si
npn,AE,si
npn,Si | *250
*250
*250
*250
*250
*250 | 3W
3W
1.8W
1.8W
4000 | 175
200
175
175
200 | 20
-
12
12
22.9 | 20
*60
20
20
60 | 600
-
600
600
500 | *100-300
*10
*40-120
*100-300
*50-275 | .025
-
.025
.025
.1 | *8
*8
*8 | 5
5
18
18
5 | GI, SPR, TRWS
SPR. TI
GI, SPR, TRWS, NA
GI, SPR, TRWS | | HF | 2N 3119
2N 3248
2N 3250
2N 3283
2N 3284 | RCA
MO
MO
MO
MO | npn,si
pnp,ED,si
pnp,ED,si
pnp,EM,ge
pnp,EM,ge | *250
*250
*250
*250
*250
*250 | 4000
1.2W
1.2W
100
100 | 200
200
200
100
100 | 22.9
6.9
6.9
1.33
1.33 | 80
12
*40
*25
*25 | 500
-
200
50
50 | *50-200
*50-150
*50-150
*10-200
10-200 | 50
0.05
.02
10
10 | *6
*8
*6
*1.5
*1.5 | 5
18
18
18
18 | IEC
TI
TI | | 62 | 2N3285
2N3286
2N3291
2N3502
2N3503 | MO
MO
MO
FA
FA | pnp, EM,ge
pnp, EA,ge
npn, E,si
pnp, PE,si
pnp, PE,si | *250
*250
*250
*250
*250
*250 | 100
100
300
3W
3W | 100
100
200
200
200
200 | 1.33
1.33
1.71
17.2
17.2 | *20
*20
*25
60
60 | 50
50
50
600
600 | 5-200
5-200
10-200
•70
•70 | 10
10
0.1
0.00005
0.00007 | *1.5
*1.5
*2
4.5
4.5 | 18
18
18
5
5 | TI
TI
AL
TI, GE. NA
TI, GE. NA | | HF | 2N3504
2N3505
2N2656
2N3734
2N3735 | FA
FA
TRWS
MO
MO | pnp,PE,si
pnp,PE,si
npn,PL,si
npn,AE,si
npn,AE,si | *250
*250
*>250
*250
*250
*250 | 1.3W
1.3W
1200
4000
4000 | 200
200
200
200
200
200 | 2.28
2.28
6.86
22.8
22.8 | 45
45
*25
30
50 | 600
600
200
1500
1500 | *70
*70
160
*30-120
*20-80 | 0.00005
0.00005
0.5
†0.2
†0.2 | *4.5
*4.5
*5
*9 | 18
18
18
5
5 | TI, GE, NA
TI, GE, NA
KSC | | 63 | 2N3736
2N3737
2N3903
2N3905
2N3946 | MO
MO
MO
MO
MO | npn,AE,si
npn,AE,si
npn,AE,si
pnp,AE,si
npn,AE,si | *250
*250
*250
*250
*250
*250 | 2000
2000
310
310
1200 | 200
200
135
135
200 | 11.4
11.4
2.81
2.81
6.9 | 30
50
40
40
40 | 1500
1500
200
200
200 | *30-120
*20-80
*50-150
*50-150
*50-150 | † 0.2
† 0.2
† .05
†0.05
† .01 | *9
*9
*4
*4.5 | 46
46
92
92
18 | CDC | | HF | 2N4123
2N4126
2N4401
2N930A
2N1492 | MO
MO
MO
SSD
RCA | npn,AE,si
pnp,AE,si
npn,si
npn,PL
npn,si | *250
*250
*250
*250
*275
*275 | 310
310
310
500
3000 | 135
135
135
200
175 | 2.81
2.81
2.81
2.85
20 | 30
25
40
45
*60 | 200
200
600
50
50 | *50-150
*120-360
*100-300
*150
15-200 | .05
.05
1 0.1
.002
10 | *4.5
*6.5
*6 | 92
92
92
18
39 | AL, TI, NA | | 64 | 2N2524
2N784
2N784/51
2N784A
2N835 | D22
Y2
Y2
Y2
OM | npn,PL
npn,EP,si
npn,EP,si
npn,EP,si
npn,EP,si | *275
300
300
300
*300 | 400
300
300
360
1W | 200
175
175
200
175 | 2.3
-
-
-
6.67 | 45
•30
•30
•40
•25 | 50
200
200
200
200
200 | *100
*25-150
*25-150
*25-150
201 | .002
.25
.025
.025
.025 | *6
3.5
3.5
3.5
4 | 46
18
51
18
18 | NA
FA. ITT
SY, GE, GI, ITT, SPR, IEC | | | | | | | | MAX | . RATING | S | | CHARA | CTERISTI | CS | | | |-----------------------|---|---------------------------------|---|--|--|--|--------------------------------------|----------------------------------|--|---|--------------------------------------|-------------------------------------|-----------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*fT
(MHz) | P
(m₩) | T _;
(°C) | mW/°C | *CEO
*VCBO
(V) | l C (mA) | hfe
*hFE | ICO
*ICEO
†ICEX
(µÅ) | C _{ob} (pF) | Package
Outline
(TO-) | Remarks | | HF
65 | 2N835/46
2N835/51
2N914/46
2N914/51
2N915 | SY
SY
SY
SY
FA | npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si
npn,DP,si | *300
*300
*300
*300
*300 | 400
300
400
300
1200 | 200
200
200
200
200
200 | -
-
-
-
6.9 | *25
*25
*40
*40
50 | 200
200
-
- | *20
*20
*30-120
*30-120
*100 | 0.5
0.5
.025
.025
0.005 | *4
*4
*6
6
*3 | 46
51
46
51
18 | GI
GI
AMP, NA, AL, IEC | | HF | 2N963
2N967
2N988
2N989
2N1493 | MO
MO
TRWS
TRWS
RCA | pnp,EM,ge
pnp,EM,ge
npn,PL,si
npn,PL,si
npn,Si | *300
*300
*300
*300
*300 | 300
300
1000
1000
3000 | 100
100
175
175
175 | 4
4
6.67
6.67
20 | *12
*12
*20
*20
*100 | 220
220
220
50 | 20/-
40/-
*20-120
*20-120
15-200 | 5
5
0.5
0.5
10 | *5
*5
*4
*3.5
*5 | 18
18
18
18
18 | SY, TI, RCA
SY, TI, RCA | | 66 | 2N2219A
2N2222A
2N2318
2N2319 | MO
MO
GI
GI | npn,PE,si
npn,AE,si
npn,si
npn,si | *300
*300
*300
*300 | 3W
1.8W
360
300 | 175
175
175
175 | 20
12
2.0
1.7 | 40
40
15
15 | 800 | 100-300
*100-300
*40
*40 | 0.01
.01
.50
.050 | *8
*8
*5
*5 | 5
18
18
46 | TR, SPR, TRWS, TI, AL, ITT, NA
GI, SPR, TR, NA, TRWS,
TI, AL, ITT
STC
STC |
 HF | 2N2320
2N2381
2N2382
2N2489
2N2795 | GI
MO
MO
SPR
SPR | npn,si
pnp,EM,ge
pnp,EM,ge
pnp,ED,ge
pnp,ED,ge | *300
*300
*300
*300
*300 | 600
750
750
60
75 | 175
100
100
100
100 | 3.4
10
10
0.8
1 | 15
15
20
•20
•25 | 500
500
100
100 | *40
*40
*40
*20
*100 | .050
1
1
2.5
†0.35 | *5
*3.5
*3.5
3
*2.5 | 5
5
5
18
18 | STC
TI
TI | | 67 | 2N2796
2N2885
2N2887
2N3043
2N3249 | SPR
TR
TRWS
SPR
MO | pnp,ED,ge
npn,PL,si
npn,PL,si
npn,PE,si
pnp,AE,si | *300
300
*300
*300
*300 | 75
150
25000
1.4W
1.2W | 100
175
200
200
200 | 1
1
142.8
9.33
6.9 | *20
15
80
45
12 | 100
50
1200
30 | *60
*30-120
*15-80
*100-300
*100-300 | 10.35
.025
-
0.01 | *2.5
*6
*30
*8
*8 | 18
51
-
-
18 | NA
Flat Pack, TI, MO
IEC | | HF | 2N3251
2N3281
2N3282
2N3289
2N3290 | MO
MO
MO
MO
MO | pnp,AE,si
pnp,EM,ge
pnp,EM,ge
npn,E,si
npn,E,si | *300
*300
*300
*300
*300 | 1.2W
100
100
300
300 | 200
100
100
200
200 | 6.9
1.33
1.33
1.71
1.71 | *50
15
15
15
15 | 200
50
50
50
50 | *100-300
*10-100
*10-100
*10-200
*10-200 | 5
5
0.010
0.010 | *6
*1.2
*1.2
*1.5
*1.5 | 18
18
18
18
18 | TI
TI
AL
AL | | 68 | 2N3307
2N3308
2N3309
2N3854
2N3854A | MO
MO
MO
GE
GE | pnp,EA,si
npn,EA,si
npn,E,si
npn,PE,si
npn,PEP,si | *300
*300
*300
*300
*300 | 300
300
3.5W
200
200 | 200
200
175
100
100 | 1.71
1.71
23.3
2.67
2.67 | 35
25
*50
18
30 | 50
50
500
100
100 | *40-250
*25-250
*5-100
*35-70
*35-70 | 0.010
0.010
0.5
0.5
0.5 | *1.3
*1.3
*10
*2.5
*2.5 | 18
18
5
98
98 | CDC
CDC, IEC | | HF | 2N3904
2N3906
2N3947
2N4124
2N4264 | MO
MO
MO
MO
MO | npn,AE,si
pnp,AE,si
npn,AE,si
npn,AE,si
npn,AE,si | *300
*300
*300
*300
*300 | 310
310
1200
310
310 | 135
135
200
135
135 | 2.81
2.81
6.9
2.81
2.81 | 40
40
40
25
15 | 200
200
200
200
200
200 | *100-300
*100-300
*100-300
*120-360
*40-160 | *.05
*.05
*.01
.05
† 0.1 | *4
*4.5
*4
*4 | 92
92
18
92
92 | CDC | | 69 | 2N4265
2N4409
2N4410
2N4434
2N503 | MO
MO
MO
AMP
*SPR | npn,AE,si
npn,si
npn,si
npn,PL,si
pnp,MD,ge | *300
*300
*300
300
320 | 310
310
310
145
25 | 135
135
135
175
85 | 2.81
2.81
2.81
-
0.5 | 12
50
80
20
•20 | 200
250
250
30
50 | *100-400
*60-400
*60-400
*115
4.2 | † 0.1
0.01
0.01
-
3 | *4
-
-
1.4
2 | 92
92
92
72
9 | *PH orig. Reg. | | HF | 2N779A
2N846A
2N968
2N969
2N970 | *SPR
*SPR
MO
MO
MO | pnp,MD,ge
pnp,MD,ge
pnp,MD,ge
pnp,MD,ge
pnp,MD,ge | *320
*320
*320
*320
*320
*320 | 60
60
300
300
300 | 100
100
100
100
100 | 0.8
0.8
4
4 | *15
*15
*15
*12
*12 | 100
100
-
- | *90
*50
*35
*35
*35 | 1.0
1.0
3
3
3 | *1.9
*1.9
*4
*4
*4 | 18
18
18
18
18 | *PH orig Reg
*PH orig, Reg
SY, IT
TI
TI | | 70 | 2N971
2N972
2N973
2N974
2N975 | MO
MO
MO
MO | pnp,MD,ge
pnp,MD,ge
pnp,MD,ge
pnp,MD,ge
pnp,MD,ge | *320
*320
*320
*320
*320
*320 | 300
300
300
300
300
300 | 100
100
100
100
100 | 4
4
4
4 | *7
*15
*12
*12
*7 | | *35
*75
*75
*75
*75 | 10
3
3
3
10 | • 4
• 4
• 4
• 4 | 18
18
18
18
18 | TI
TI
TI
TI
TI | | HF | 2N2256
2N2257
2N2258
2N2259
2N834/46 | MO
MO
MO
SY | pnp,ME,si
npn,ME,si
pnp,ME,ge
pnp,ME,ge
npn,EP,si | *320
*320
*320
*320
*350 | 1000
1000
300
300
400 | 175
175
100
100
200 | 6.67
6.67
4
4 | 7
7
7
7
7
•40 | 100
100
100
100
200 | *30
*50
*30
*50
*25 | 3
3
3
0.5 | °4
°4
°4
4 | 18
18
18
18
18 | CL
CL
TI
TI
GI, NA | | 71 | 2N834/51
2N914 | SY
FA | npn,EP,si
npn,PE,si | *350
*350 | 300
1.2W | 200
200 | 6.9 | *40
15 | 200 | *25
*55 | 0.5
0.004 | 4
*4.5 | 51
18 | SY, MO, TR, GI, AMP, SPR, NUC.
MO, TI, IEC
TI, IEC | | | 2N984 | SPR | pnp,MD,ge | *350 | 60 | 100 | 0.8 | *15 | 100 | *70 | 1 | *1.9 | 18 | 11, 120 | | HF | 2N2170
2N2501
2N2845
2N2846
2N2847 | SPR
MO
FA
FA
FA | pnp.MD.ge
npn.AE.si
npn.PE.si
npn.PE.si
npn.PE.si | *350
*350
*350
*350
*350 | 60
1.2W
1.2W
3W
1.2W | 100
200
200
200
200
200 | 0.8
6.9
6.9
17.2
6.9 | *15
20
30
30
20 | 100
-
-
-
- | *70
*50-150
*60
*60
*60 | 1
-
0.04
0.04
0.04 | *1.9
*4
*6
*6
*6 | 9
18
18
5
18 | SY, GI, TR, SPR, IEC
SPR, NA, GE, IEC
SPR, NA, GE
SPR, NA, GE | | 72 | 2N2848
2N2894
2N2955
2N3009
2N3287 | FA
FA
MO
FA
MO | npn,PE,si
pnp,PE,si
pnp,EM,ge
npn,PE,si
npn,E,si | *350
*350
*350
*350
*350 | 3W
1.2W
300
1200
300 | 200
200
100
200
200
200 | 17.2
6.85
4
6.85
1.71 | 20
12
•40
•40
20 | -
.100
200
50 | *60
*75
*20-60
*15
*15-150 | 0.04
5
-
-
0.010 | *6
*3.3
*2.5
*5
*1.1 | 5
18
18
52
18 | SPR, NA, RCA, NUC, GE
TI, MO
TI
TI, ITT | ## Solitron's low cost ISOLITANIAL #### NPN SILICON TRANSISTORS PAT. PENDING SDT9901-4 #### **GUARANTEE RELIABILITY** with... Copper base assembly providing low thermal resistance t) comparison curves shown below TO COMPETITIVE 2N3055 The gain and V_{CE} (sat) comparison curves shown below warrant your inspection. They illustrate Solitron's new ISOLTAXIAL NPN Silicon Power Transistors which have characteristics of low-leakage planar units, combined with resistance to secondary breakdown offered by homogeneous devices. Developed with the high reliability standards associated with Solitron, these ISOLTAXIAL devices may be used in power supplies, audio amplifiers, inverters, converters, relay drivers and series regulators. Available in TO-3 and TO-61 cases, the ISOLTAXIAL transistors are priced lower than epitaxial or triple-diffused planar devices. 10 COLLECTOR CURRENT IN AMPS COMPARISON OF ISOLTAXIAL DEVICE CONTACT US TODAY FOR COMPLETE INFORMATION TRANSISTOR DIVISION 01 1177 BLUE HERON BLVD. / RIVIERA BEACH, FLORIDA / (305) 848-4311 / TWX: (510) 952-6676 Leader in Germanium and Silicon Power Transistors, Cryogenic Thermometers, High Voltage Rectifiers, Hot Carrier Diodes, Temperature Compensated Zeners, Voltage Variable Capacitors, Random/White Noise Components, Microelectronic Circuits, and Power-Sink Interconnection Systems. 100 | | | | | | | MAX | RATING | S | | CHARA | CTERIST | CS | | | |-----------------------|--|---|---|--|---|--|--|---|--|---|---|---|---|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*fT
(MHz) | P c (mW) | Т _ј
(°С) | m₩/°C | VCEO
CBO
(V) | 1 C (mA) | h _{fe} *hFE | ICO
*ICEO
*ICEX
(µÅ) | C _{oo} *C _{ob} (pF) | Package
Outline
(TO-) | Remarks | | HF
73 | 2N3288
2N3829
2N3855
2N3855A
2N4420 | MO
TI
GE
GE
TI | npn,E,si
pnp,EP,si
npn,PE,si
npn,PEP,si
npn,EP,si | *350
*350
*350
*350
*350 | 300
360
200
200
250 | 200
175
100
100
125 | 1.71
2.4
2.67
2.67
2.5 | 20
20
18
30
20 | 50
200
100
100
200 | *15-150
*30-120
*60-120
*60-120
*30-120 | 0.010
0.3
0.5
0.5 | *1.5
*6
*2.5
*2.5
+5 | 18
52
98
98
98 | CDC
CDC, IEC | | HF | 2N741
2N741A
2N2487
2N2488
2N3828 | MO
MO
SPR
SPR
TI | pnp, DM, ge
pnp, DM, ge
pnp, ED, ge
pnp, ED, ge
npn, EP, si | *360
*360
*360
*360
*360 | 300
300
60
60
300 | 100
100
100
100
100 | 2
2
0.8
0.8
3 | *15
*20
*15
*15
40 | 100
100
100
100
100 | *25
*25
*20
*20
*30-200 | 0.2
0.2
3
0.1 | *6
*6
*3
3
*5 | 18
18
18
18
92 | SY, TI
SY, TI | | 74 | 2N2956
2N3856A
2N3856
2N706 | MO
GE
GE
FA | pnp,EM,ge
npn,PEP,si
npn,PE,si
npn,DD,si | *375
*375
*375
*400 | 300
200
200
200
1.0W |
100
100
100
175 | 4
2.67
2.67
6.7 | *40
30
18
*25 | 100
100
100 | *40-120
*100-200
*100-200
*45 | 10
0.5
0.5
0.005 | *2.5
*2.5
*2.5
*5 | 18
98
98
18 | TI
IEC
SY, MO, TR, GI, AMP, SPR, ITT,
RCA, CDC, IEC | | 115 | 2N706B
2N706C
2N707
2N708 | MO
FA
FA
FA | npn,EP,si
npn,DD,si
npn,DD,si
npn,DP,si | *400
*400
400
*400 | 1W
1.2W
1.0W
1.2W | 175
200
175
200 | 6-7
6.9
6.7
6.9 | *25
15
*56
15 | 50
-
- | *20-60
*40
*12
*50 | 0.005
0.010
0.005
0.004 | °5
°4
°5
°4 | 18
18
18
18 | FA, SY, GI, TR, ITT
GI, TR
TRWS, MO, GI
FA, SY, MO, TR, GI. AMP, TI,
ITT, IEC | | HF
75 | 2N828
2N828A
2N829
2N916
2N2096 | MO
MO
MO
FA | pnp,EM,ge
pnp,EM,ge
pnp,EM,ge
npn,DP,si
pnp,ED,ge | *400
*400
*400
*400
*400 | 300
300
300
1200
750 | 100
100
100
200
100 | 0.4
4
4
6.9
10 | *15
*15
*15
*15
25
*25 | 200
200
200
-
500 | 40
*40
*80
*100
*40 | 0.4
0.4
0.4
0.005
6 | *3.5
*2.2
*2.2
*5
*15 | 18
18
18
18
18 | SY, TI, RCA, LAN
TI
TI
TRWS, AMP, NA, MO, TI, AL, IEC
MO | | HF | 2N2097
2N2099
2N2100
2N2957
2N2996 | MO
TI | pnp,ED,ge
pnp,ED,ge
pnp,ED,ge
pnp,EM,ge
pnp,ge | *400
*400
*400
*400
*400 | 750
750
750
750
300
75 | 100
100
100
100
100 | 10
10
10
4
1 | *40
*25
*40
*40
*15 | 500
500
500
100
50 | *70
*40
*70
*100
35 | 6
6
6
-
5 | *15
*15
*15
*2.5
*3 | 31
9
9
18
72 | MO
MO. TI
MO, TI | | 76 | 2N2997
2N3279
2N3280
2N3299
2N3300 | TI
MO
MO
FA
FA | pnp.ge
pnp,EM.ge
pnp,EM.ge
npn,PE.si
npn,PE.si | *400
*400
*400
*400
*400 | 75
100
100
3W
3W | 100
100
100
200
200 | 1
1.33
1.33
17.2
17.2 | *30
20
20
30
30 | 50
50
50
- | 50
*10-70
*10-70
*75
*220 | 5
5
5
0.0002
0.0002 | *1.8
*1.0
*1.2
*6.0
*6.0 | 72
18
18
5
5 | TI
TI
ITT
ITT | | HF | 2N3301
2N3302
2N3327
2N3337
2N3338 | FA
FA
NSC
FA | npn,PE,si
npn,PE,si
npn
npn,PE,si
npn,PE,si | *400
*400
400
*400
*400 | 1.8W
1.8W
20W
500
500 | 200
200
200
200
200
200 | 10.3
10.3
134
2.86
2.86 | 30
30
65
40
40 | -
2.0A
- | *75
*220
*10
*30
*30 | 0.0002
0.0002
500mA
0.025
0.025 | *6.0
*6.0
*30
*1.6
*1.6 | 18
18
60
- | ITT
ITT
NA | | 77 | 2N 3339
2N 337 1
2N 3576
2N 36 32 | FA
TI
TI
RCA | npn,PE,si
pnp.ge
pnp,EP,si
npn,si | *400
*400
*400
*400 | 500
150
360
23W | 200
100
175
200 | 2.86
2
2,4
130 | 40
*25
15
40 | 100
200
3A | *30
25-500
*40-120
- | 0.025
7
0.01
250 | - *1.6
*4
*4.5
*20 | -
18
18
60 | RCA "Overlay" emitter type, MO,
VEC, AMP, NA | | HF | 2N3688
2N3689
2N3690
2N3728
2N3729 | FA
FA
FA
FA | npn,PL,si
npn,PL,si
npn,PL,si
npn,DPE,si
npn,DPE,si | *400
400
400
400
400 | 500
500
500
1.6W
1.6W | 125
125
125
200
200 | 5
5
5
9.15
9.15 | 40
40
40
30
30 | 4
4
4
500
500 | 30-70
30-70
30-70
*30-280
*30-280 | 5
5
0.010
0.010 | 1.1
1.1
1.1
- | 11 10 13 | RO110 package
RO110 package
RO110 package | | 78 | 2N3733
2N4411
2N4419
2N834 | RCA
MO
TI
MO | npn,si
pnp,si
npn,EP,si
npn,EP,DD,si | 400
•400
•400
•450 | 23W
250
250
500 | 200
200
125
175 | 130
1.43
2.5
2 | 12
12
12
•40 | 3A
25
200
200 | *40-160
*30
5 | *250
*5000
0.4
0.01 | *20
-
+4
*2.8 | 60
72
92
18 | Vces = 40; overlay type, VEC. MO SY. TR. GI, FA, NA. SPR. ITT, CDC, IEC | | HF | 2N982
2N983
2N1562
2N2168
2N2169 | SPR
SPR
MO
SPR
SPR | pnp,MD,ge
pnp,MD,ge
pnp,DM,ge
pnp,MD,ge
pnp,MD,ge | *450
*450
*450
*450
*450 | 60
60
3W
60 | 100
100
100
100
100 | 0.8
0.8
40
0.8
0.8 | *20
*15
25
*20
*15 | 100
100
250
100
100 | *100
*85
9
*100
*85 | 1
1
10
1 | *1.9
*1.9
*10
*1.9
*1.9 | 18
18
-
9
9 | | | 79 | 2N960
2N961
2N962
2N964
2N964A | MO
MO
MO
MO | pnp,EM.ge
pnp,EM.ge
pnp,EM.ge
pnp,EM.ge
pnp,EM.ge | *460
*460
*460
*460
*460 | 300
300
300
300
300
300 | 100
100
100
100
100 | 4
4
4
4 | *15
*12
*12
*15
*15 | | *40
*40
*40
*70
*80 | 0.3
0.3
-
0.3
0.3 | *4
*4
0.3
*4
*4 | 18
18
18
18 | SY, TI, RCA
TI, RCA
SY, TI, RCA
SY, TI, RCA
SY, TI | | HF
80 | 2N965
2N966
2N502
2N700
2N835
2N1561
2N2095
2N2098
2N2480A
2N2883
2N2884 | MO
MO
*SPR
MO
MO
SPR
SPR
-
FA | pnp,EM,ge
pnp,EM,ge
pnp,MD,ge
pnp,DM,ge
npn,PE,si
pnp,DM,ge
pnp,ED,ge
pnp,ED,ge
npn,PE,si
npn,PE,si
npn,PE,si | *460
*460
500
*500
*500
*500
*500
*500
*500
*50 | 300
300
60

500
3W
1W
1W
2W
1750
1750 | 100
100
85
100
175
100
100
100
200
200
200 | 4
1
1
2
40
13.3
13.3
11.4
10 | *12
*12
*20
*25
*25
*30
*30
*80
200
20 | -
50
50
200
250
300
300
500
300
300 | *70
*70
45
4
4.5
10
-
-
*35
*30
*30 | 0.3
0.3
3
2
0.01
10
2
2
0.01
0.1 | *4
*1.0
1.5
*2.8
*10
*6.5
*6.5
*20
*1.0 | 18
18
9
17
18
-
31
9
5
5 | SY, TI, RCA SY, TI, RCA *PH orig Reg ITT, IEC PG = 6 dB @ 160 MHz PG = 6 dB @ 160 MHz diff amp, MO, TRWS, CDC, GE TI TI | | | | | | | | MAX. | RATING | \$ | | CHARA | CTERISTI | CS | | | |-----------------------|--|--|---|--|---|--|-------------------------------------|---|---|--|---|---|---|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*fT
(MHz) | P c (mW) | т _ј
(°с) | mW/°C | *VCEO
*VCBO
(V) | 1 _C (mA) | h _{fe} *hFE | ICO
*ICEO
*ICEX
(/(Å) | C ob (pF) | Package
Outline
(TO-) | Remarks | | HF
81 | 2N3227
2N3375
2N3553 | SPR
RCA
RCA | npn,PE,si
npn,si
npn,si | *500
*500 | 1200
11.6W
7W | 200
200
200 | 6.85
660
1.14 | *40
40
40 | 500
1.5A
1 | *30
-
- | 0.2
100
100 | *4
*10
*10 | 18
60
39 | IEC
RCA "Overlay" emitter type, MO,
VEC, AMP, NA
RCA "Overlay" emitter type, MO,
VEC, AMP | | HF | 2N3924
2N3925
2N3926
2N3927
2N3961 | MO
MO
MO
MO
MO | npn,A*,si
npn,A*,si
npn,A*,si
npn,A*,si
npn,si | *500
*500
*500
*500
*500 | 7000
10,000
11,600
23,200
10,000 | 200
200
200
200
200
200 | 40
57.1
66.3
132.5
57.2 | 18
18
18
18
40 | 500
1000
1500
3000
1000 | 5
5
5
5
5 | 100
100
100
250
1000 | *12.5
*12.5
*12.5
*25
*10 | 39
102
60
60
102 | *Annular, AMP
*Annular
*Annular, AMP
*Annular, AMP | | 82 | 2N4012
2N4418
2N4440
2N869A
2N1195 | RCA
TI
RCA
FA | npn,si
npn,EP,si
npn,si
pnp,PE,si
pnp,DM,ge | *500
*500
*500
*550
*550 | 11.6W
250
11.6 W
1200
250 | 200
125
200
200
100 | 66
2.5
66
6.85
3.33 | -
15
40
18
*30 | 1.5A
200
1.5 A
200
40.0 | *40-120
-
*75
13.0 | *0.1
0.4
0.1 mA
0.00005
2.0 | *10
+4
*10
*3.0
4.0 | 60
92
60
18
5 | Vces = 40; overlay type, MO MO, TI | | | 2N2368 | FA | npn,EP,si | *550 | 1200 | 200 | 6.85 | 15 | 500 | *40 | 0.1 | *2.5 | 18 | SPR, MO, TI, AL, AMP, CDC, | | HF | 2N3013
2N3014
2N4072 | FA
FA
MO | npn,PE,si
npn,PE,si
npn,AE,si | *550
*550
*550 | 1.2W
1.2W
350 | 200
200
200 | 6.85
6.85
2.0 | 15
20
20 | -
100 | *60
*60
*10 | -
0.1 | *5
*5
*4 | 52
52
18 | TI, ITT, IEC
TI, ITT | | 83 | 2N4073
2N709/46
2N709/51
2N769
2N976 | MO
SY
SY
*SPR
SPR | npn,AE,si
npn,si
npn,si
pnp,MD,ge
pnp,MD,ge | *550
600
600
*600
*600 | 1500
400
300
35
100 | 200
200
200
100
100 | 8.57
-
0.467
1.33 | 20
*15
*15
*12
*15 | 150
-
-
100
100 | *10
*20-120
*20-120
*55
*80 | 0.1
0.005
0.005
0.3
1.0 | *4
*3.0
*3.0
*1.5
*1.5 |
5
46
51
18
18 | TR
TR
*PH orig Reg
*PH orig Reg | | HF | 2N2998
2N3049
2N3320
2N3321
2N3322 | TI
TI
SPR
SPR
SPR | pnp.ge
npn.PE.si
pnp.ge
pnp.ge
pnp.ge | *600
*600
*600
*600
*600 | 75
1.4W
75
75
75 | 100
200
100
100
100 | 1
9.33
1.0
1.0 | *15
*25
10
*12
*12 | 20
100
100
100
100 | 20-500
*20
*40
*80
*25 | 5
0.01
5
5
5 | *1.7
*8
*3
3.5
3.5 | 72
-
18
18
18 | Flat Pack, SPR, TI, MO | | 84 | 2N3399
2N3423
2N3424
2N3544
2N3683 | AMP
FA
FA
MO
KMC | pnp,MS,ge
npn,PE,si
npn,PE,si
npn,E,si
- | *600
*600
*600
*600
*600 | 80
1.2W
1.2W
400
200 | 90
200
200
175
200 | 1.1
3.44
3.44
2.67
1.74 | *20
15
15
*25
*30 | 7
50
50
100
30 | *10
*20-200
*20-200
*25
*150 | 1
0.010
0.010
0.1
0.05 | 1.27
1.7
1.7
*2.5
*2.0 | 18
-
-
18
72 | 4 lead low Noise
AL, MO
AL, MO | | HF
85 | 2N3995
2N4430
2N4431
2N4252
2N4253
2N4254
2N4255
2N502A
2N502B
2N2369 | TI
TRWS
TRWS
TI
TI
TI
*SPR
*SPR
FA | pnp.ge
npn.si
npn.si
npn.EP.si
npn.EP.si
npn.EP.si
npn.EP.si
pnp.MD.ge
pnp.MD.ge
npn.PE.si | *600
600
600
*600
*600
*600
620
620
*650 | 300
10,000
18,000
200
200
200
200
75
75
1200 | 140
-65 to 200
-65 to 200
175
175
175
175
100
100
200 | | *20
40
40
18
18
18
18
*30
*30 | 100
1000
2000
50
50
50
50
50
50
50 | 150-450
20-200
20-200
*50
*30-150
*50
*30-150
45
50
*80 | 3
0.05
0.05
0.05
0.05
0.05
0.05
0.05
3.0
0.1 | *4
5
10
+0.45
+0.45
+0.65
+0.65
*1.0
*2.5 | 39
-
72
72
72
92
92
92
9
9 | *PH orig Reg
*PH orig Reg
TR, MO, SPR, NUC, TI, AL, AMP,
CDC, ITT, IEC | | HF | 2N3303
2N4876
2N2369A
2N2708
2N2962 | FA
TI
FA
RCA
SPR | npn,PE,si
npn,EP,si
npn,PE,si
npn,EP,si
pnp,ED,ge | 650
*650
*675
*700
*700 | 3W
720
1.2W
200
3000 | 200
175
200
200
100 | 17
4.8
6.85
-
40 | 12
30
15
35
•40 | 1A
200
200
-
300 | *60
20
*65
180 | 100
0,5
0.05
0.01
1.5 | *6.0
+3.5
*23
1.5
7 | 39
18
-
37 | MO, TI
SPR, TI, AL. AMP, CDC, ITT
AL, AMP
PG = 6 dB @ 160 MHz | | 86 | 2N2963
2N2964
2N2965
2N3304
2N3784 | SPR
SPR
SPR
FA
MO | pnp,ED,ge
pnp,ED,ge
pnp,ED,ge
pnp,PE,si
pnp,EM,ge | *700
*700
*700
*700
*700
*700 | 3000
3000
3000
500
150 | 100
100
100
200
100 | 40
40
40
2.0
2 | *40
*30
*30
6.0
20 | 300
300
300
-
20 | -
-
-
*63
*20-200 | 1.5
1.5
1.5
0.010
5 | 7
*7
*7
*1.9
*1 | 37
37
37
18
72 | PG = 5 dB @ 160 MHz
PG = 6 dB @ 160 MHz
PG = 5 dB @ 160 MHz
TI, MO | | HF | 2N3785
2N3948
2N4428
2N4429
2N3137 | MO
MO
TRWS
TRWS | pnp, EM, ge
npn, si
npn, si
npn, si
npn, PE, si | *700
*700
700
700
700
*750 | 150
1000
3.5W
5000
1000 | 100
200
-65 to 200
-65 to 200
200 | 2
5.71
-
-
5.71 | 12
20
35
35
20 | 20
400
425
425 | *15-200
*15
20-200
20-200
*70 | 5
0.1
0.02
0.02
12 | *1
*4.5
3.5
3.5
*2.8 | 72
39
39
-
5 | RF
MO | | 87 | 2N3564
2N709
2N709A
2N709A/46
2N709A/51 | FA
FA
FA
SY
SY | npn,PE,si
npn,PE,si
npn,PE,si
npn,si
npn,si | *750
*800
*800
800
800 | 500
0.5W
500
400
400 | 125
200
200
200
200
200 | 5.0
5
5
-
- | 15
6.0
6.0
*15
*15 | | *70
*55
*60
*30-90
*30-90 | 0.05
0.005
0.005
5
0.005 | *2.5
*2.5
*2.5
*3.0
*3.0 | 18
18
18
46
51 | CDC, IEC, PH
SY. AL, TI, RCA, VEC, AMP
SY. TR. VEC, TI | | HF | 2N917
2N3866
2N3783
2N3832
2N4427 | FA
RCA
MO
TI
RCA | npn,DP,si
npn,si
pnp,EM,ge
npn,EP,si
npn,si | *800
*800
*800
*800
*800 | 300
5000
150
200
3.5 W | 200
200
100
200
200 | 1.71
28.5
2
1.14
20 | 15
30
20
6
20 | -
400
20
35
0.4 A | 50
-
*20-200
*25-125 | 0.0005
20
5
0.01
*20 | *1.5
*3
*1
+0.85
*4 | 18
39
72
72
72
39 | AL, TI, TRWS. NA, FEC
VEC, MO
TI | | 88 | 2N4875
2N2966
2N3600
2N743/46
2N743/51 | TI
PH
RCA
SY
SY | npn,EP,si
-
npn,PE,si
npn,si
npn,si | *800
*850
*850
900
900 | 720
60
300
400
300 | 175
100
-
200
200 | 4.8
0.5
-
- | 25
20
•30
•20
•20 | 200
100
-
200
200 | 20
*15
*20
*20-60
*20-60 | 0,5
1
0.01
10
70 | +3.5
1
1.7
5
5 | 39
18
-
46
51 | UHF amplifier
AMP
GL TR
TR | | | | | | | | MAX | RATING | S | | CHAR | ACTERIST | CS | | | |----------------------|---|-------------------------------|--|---|---|---|-------------------------------------|---|---|--|--|---|--|--| | Cross
ndex
Key | Type
No. | Mír. | Туре | fae
*f _T
(MHz) | P
(mW) | Т _ј
(°С) | m₩/°C | VCEO
CBO
(V) | 1 _C (mA) | hfo
*hFE | ICO
*ICEO
*ICEX
(µA) | C _{oe} *C _{ob} (pF) | Package
Outline
(TO-) | Remarks | | HF
89 | 2N744 46
2N744/51
2N918 | SY
SY
FA | npn,si
npn,si
npn,PE,si | 900
900
*900 | 400
300
300 | 200
200
200
200 | -
1.71
4.56 | *20
*20
15 | 200
200
50 | *40-120
*40-120
*50 | 10
10
0.0002
0.0001 | 5
5
*1.4
*2.4 | 46
51
18
46 | GI, TR
TR
MO. AL, TI, NUC, TRWS, VEC,
NA. IEC
AL, IEC | | | 2N2729
2N3478
2N3563
2N3662
2N3663
2N4874 | RCA
FA
GE
GE | npn,PE,si
npn,PE,si
npn,PE,si
npn,PEP,si
npn,PEP,si
npn,EP,si | 900
*900
900
900
*900 | 200
500
200
200
720 | 200
125
100
100
175 | 5.0
2.67
2.67
4.8 | *30
12
*18
*30
20 | -
-
25
25
200 | *25
50
*75
*75 | 0.02
0.05
0.5
0.5
0.5 | *2
*1.4
1.2
1.2
+3,5 | -
-
98
98
98 | CDC. IEC. PH
CDC
CDC | | 1F
90 | 2N700A
2N955
2N2748
2N2808
2N2809 | MO
RCA
SY
RA
RA | pnp,DM,ge
pnp,MS,ge
npn,si
npn,si
npn,si | *1000
*1000
1000
*1000
*1000 | 150
300
200
200 | 100
100
200
300
300 | 1
-
-
1.15
1.15 | *25
*12
15
10
15 | 50
150
-
25
25 | 4
*30
40-120
*20
*20 | 2
5
0.005
0.01
0.01 | 1.4
*4
3.0
*0.7
*0.7 | 17
18
†
18
18 | TI
†TO-18, 46, 51, VEC
4 Leads
4 Leads | | HF | 2N2810
2N2857
2N3572
2N3839
2N4259 | RA
RCA
TI
RCA
RCA | npn,si
npn,PE,si
npn,PL,si
npn,PE,si
npn,EP,si | *1000
*1000
*1000
1000
1000 | 200
300
200
300
175 | 300
200
200
200
200
175 | 1.15
-
1.14
1.14
1.17 | 10
*30
13
*30
*40 | 25
20
50
40 | *20
*30-150
20-300
50-220
70-280 | 0.01
0.01
0.01
0.01
0.01 | *0.7
1.3
0.85
0.6
0.35 | 18
-
-
72
104 | 4 Leads
AMP, KMC
4 Lead sim to TO-18, KMC | | 91 | 2N2929
2N2808A
2N2809A
2N2810A
2N3571 | MO
RA
RA
RA
TI | pnp,EP,ge
npn,si
npn,si
npn,si
npn,PL,si | *1100
*1200
*1200
*1200
*1200 | 750
200
200
200
200
200 | 100
300
300
300
300
200 | 10
1.15
1.15
1.15
1.14 | 10
10
15
10
15 | 100
25
25
25
25
50 | *10-100
*20
*20
*20
*20
*20
20-200 | 5
0.01
0.01
0.01
0.01 | *2.5
*0.7
*0.7
*0.7
*0.7
0.85 | 5
18
18
18 | 4 Leads
4 Leads
4 Leads
4 Lead sim to TO-18, KMC | | HF | 2N3880
2N3633
2N3953
2N3959
2N2999 | KMC
TR
KMC
MO
TI | npn,si
npn,si
pnp,ge | *1200
1300
*1300
*1300
*1400 | 200
300
*200
750
75 | 200
200
200
200
200
100 | 1.74
1.71
1.74
4.3 | *30
6
*15
12
*15 | 30
50
30
30
20 | *150
*75
*200
*40-200
15 | 0.01
0.005
0.1
†0.005
5 | *1.8
*2.5
*2.0
*2.5
1.7 | 72
18
72
18
72 | | | 92 | 2N3570
2N3932
2N3933
2N3960
2N4260 | TI
RCA
RCA
MO
MO | npn,PL,si
npn,PE,si
npn,PE,si
npn,si
pnp,AE,si | *1500
*1600
*1600
*1600
*1600 | 200
175
175
750
200 | 200
175
175
200
200 | 1.14
1.12
1.12
4.3
1.14 | 15
30
40
12
15 | 50
-
-
30
30 | 20-150
40-150
60-200
*40-200
*30-150 | 0.75
0.01
0.01
†0.005
†0.005 | -
0.55
0.55
*2.5
*2.5 | -
-
-
18'
72 | 4
Lead sim TO-18, KMC | | HF | 2N4261
2N2480
2N144
2N231
2N262 | MO
GE
SY
*SPR
RCA | pnp, AE, si
npn, PE, si
npn, AL, ge
pnp, SBT, ge
pnp, ge | *2000
2500
-
-
- | 200
2W
1000
9
80 | 200
200
75
55
71 | 1.14
11.4
-
0.9 | 15
*75
*60
*4.5
*34 | 30
500
800
3 | *30-150
*20
*10.5
66 | †0.005
0.05
500
3
5 | *2.5
*20
-
- | 72
5
13
24
7 | diff amp. MO, SPR, TRWS, CDC
*PH orig Reg | | 93 | 2N374
2N656
2N657 | RCA
TI | pnp,DR,ge
npn,si
npn,si | 1 | 80
4
4 | 71
200
200 | 22.8
2.28 | *25
60
100 | 1 1 | *30 | 8
10
10 | -
- | 7
-
- | TRWS, FA, TR, AMP, CDC, GE, NA, STC, SSP
TRWS, FA, TR, AMP, CDC, GE, NA, STC, SSP | | HF | 2N706A
2N710
2N715
2N716 | TI
TI
TI | npn,si
pnp,ge
npn,si
npn,si | - | 300
300
500
500 | 175
100
175
175 | 2.0
4.0
3.33
3.33 | 20
*15
35
40 | 50
50
100
100 | 2
6
1
•10 | 10
3
1
1 | *5
-
*6
*6 | 18
18
18
18 | FA, SY, MO, TR, GI, ITT,
RCA, CDC
SY, MO
NA
NA | | 94 | 2N738
2N739
2N740
2N743
2N744 | TI
TI
TI
TI | npn,si
npn,si
npn,si
npn,si
npn,si | 11111 | 500
500
500
300
300 | 175
175
175
175
175
125 | 3.33
3.33
3.33
2
2 | 80
80
80
12 | 50
50
50
200
200 | 20
40
80
•20
9 | 1
1
1
1 | *10
*10
*10
*5
*5 | 18
18
18
18 | TR
TR, SSD
TR, AL, SSD
FA, SY, GI, TR, ITT, IEC
FA, SY, MO, TR, GI, ITT, IEC | | HF
95 | 2N753
2N781
2N782
2N797
2N849 T1430
2N850 T1431
2N851 T1422
2N852 T1423
2N929 | TI SY SY TI TI TI TI TI | npn,si
pnp,EP,ge
pnp,EP,ge
npn,ge
npn,si
npn,si
npn,si
npn,si
npn,si | | 300
300
300
150
300
300
300
300
300 | 175
100
100
100
175
175
175
175
175 | 2 - 2 2 2 2 2 2 2 2 | 20
*15
*12
7
15
15
12
12
45 | 50
200
200
150
50
50
200
200
30 | *40
*25
*20
6
6
6
9
9 | 0.5
3
3
1
0.5
0.5
- | *5
- 4
*5
*5
*5
*5
*5
*8 | 18
18
18
18
50
50
50
50 | FA, SY, MO, TR, GI, ITT, CDC, IEC AL. TI TI FA, GI, SPR, AL. TR, MO, UC. NA, IEC, SSD | | HF | 2N930
2N985
2N998
2N 1052 | TI
TI
FA
TR | npn,si
pnp,ge
npn,DP,si
npn,PL,si | - | 300
150
1800
600 | 175
100
200
175 | 2
2
10.3
6 | 45
7
60
*200 | 30
200
500
200 | 150
*60
*5000
*20-80 | 0.01
3
0.01 | *8
*6
*25
- | 18
18
18
5 | FA, GI, SPR, AL, TR, NUC, MO
UC, NA, SSD, IEC
SY, MO
AL, GE, NA, MO | | 96 | 2N1141
2N1141A
2N1142
2N1142A
2N1143 | TI
TI
TI
TI | pnp.ge
pnp.ge
pnp.ge
pnp.ge
pnp.ge | 11111 | 750
750
750
750
750
750 | 100
100
100
100
100 | 10
10
10
10
10 | *35
*35
*30
*30
*25 | 100
100
100
100
100 | *40
15.6
*40
15.6
*40 | 0.7
4
0.7
4
0.7 | 11111 | | MO, SY
SY
SY, MO
SY, MO | | | | | | | | MAX | . RATING | S | | CHARA | CTERIST | ICS | | | |-----------------------|--|--------------------------------------|---|---------------------|--|--|-----------------------------------|---------------------------------|--|---|---|----------------------------------|-----------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*fT
(MHz) | P
(mW) | Т _.
(°С) | mW/°C | *CEO
*VCBO
(V) | I _C | hfe
*hFE | ICO
*ICEO
*ICEX
(µA) | Coe
*Cob
(pF) | Package
Outline
(TO-) | Romarks | | HF
97 | 2N1143A
2N1247
2N1507
2N1564
2N1565 | TI
TR
TI
TI | pnp,ge
npn,PLE,si
npn,si
si,npn
npn,si | 1111 | 750
30
600
600
600 | 100
150
175
175
175 | 10
0.24
4
4 | *30
6
*60
60 | 100
5
1000
50
50 | 15.6
*15
*100
20
40 | 4
0.005
1
1
1 | *20
*35
*10
*10 | -
5
5
5
5 | SY
GE
TRWS, CDC, TI
TRWS, TR, NA
TRWS, TR, NA | | HF | 2N1566
2N1572
2N1573
2N1574
2N1646 | TI
TI
TI
TI
TI | npn,si
npn,si
npn,si
npn,si
pnp,ge | 1111 | 600
600
600
600
150 | 175
175
175
175
175 | 4
4
4
4
2 | 60
80
80
80
*15 | 50
50
5
50
50 | 80
20
40
80
*20 | 1
1
1
1
3 | *10
*10
*10
*10
*5 | 5
5
5
5 | TRWS, TR, NA
TR
TR
TR
TR | | 98 | 2N1742
2N1743
2N1744
2N1745
2N1754 | *SPR
*SPR
*SPR
*SPR
*SPR | -
-
-
pnp,MD,ge | 11111 | 60
60
60
60
50 | 125
125
125
125
125 | -
-
-
-
0.8 | *20
*20
*20
*20
*13 | -
-
-
-
100 | *33
*33
*33
*33
*20 | 0.8
0.8
1
1
1.0 | -
-
-
•1.5 | 9
9
9
9 | *PH orig Reg
*PH orig Reg
*PH orig Reg
*PH orig Reg
*PH orig Reg
*PH orig Reg, GI | | HF | 2N 1865
2N 1866
2N 1867
2N 1868
2N 1960 | *SPR
*SPR
*SPR
*SPR
SY | pnp,MD,ge
pnp,MD,ge
pnp,MD,ge
pnp,MD,ge
pnp,ge | 11111 | 60
60
60
60
150 | 100
100
100
100
100 | 0.8
0.8
0.8
0.8 | *20
*35
*35
*20
*15 | 50
50
50
50
50
200 | 70
70
50
*33
*25 | 1.0
1.0
1.0
1.5
3.0 | | 9
9
9
9
46 | *PH orig Reg
*PH orig Reg
*PH orig Reg
*PH orig Reg | | 99 | 2N 196 1
2N 1990
2N 2188
2N 2189
2N 2190 | SY
FA
TI
TI | pnp,EP,ge
npn,DD,si
pnp,ge
pnp,ge
pnp,ge | | 150
2W
125
125
125 | 100
150
85
85
85 | -
16
2.1
2.1
2.1 | *12
*100
25
25
25 | 200
1A
30
30
30 | *20
*30
40
60
40 | 3.0
1.0
3
3
3 | -
*2.5
*2.5
*2.5 | 46
5
-
- | TRWS, CDC, SY, GI, AMP, AL. NUC | | HF | 2N2191
2N2192A
2N2360
2N2361
2N2362 | TI
GE
*SPR
*SPR
*SPR | pnp.ge
npn,PE,si
-
- | 1111 | 125
2.8W
60
60
60 | 85
200
125
125
125 | 2.1
16
-
-
- | 25
40
•20
•20
•20 | 30
1A
-
- | 60
*100-300
*33
*33
*33 | 3
0.010
0.8
0.8
1 | *2.5
*20
-
-
- | 5
12
12
12 | CDC, GI, FA, NA, MO, AL, TI
RF Amp. "PH orig Reg
RF mixer, "PH orig Reg
RF osc, "PH orig Reg | | 100 | 2N2389
2N2395
2N2399
2N2398
2N2410 | TI
TI
*SPR
*SPR
TI | npn,si
npn,si
-
npn,si | | 450
450
60
60
800 | 200
200
125
125
200 | 2.57
2.57
-
4.57 | *75
40
*20
*20
30 | 500
300
-
-
800 | 35
*20
*33
*33
*30 | 0.01
0.01
0.8
0.8
0.3 | *25
*30
-
-
-
*11 | 50
50
12
12
5 | RF mixer, *PH orig Reg
RF amp, *PH orig Reg
FA, NA | | HF | 2N2411
2N2412
2N2413
2N2415
2N2416 | TI
TI
TI
TI | pnp,si
pnp,si
npn,si
pnp,ge
pnp,ge | 11111 | 300
300
300
75
75 | 200
200
175
100
100 | 1.72
1.72
2
1 | 20
20
18
10 | 100
100
200
20
20 | *20
*40
*30
15 | 0.01
0.01
0.1
5
5 | *5
*5
*5
*2
*2 | 18
18
18
18 | IEC
IEC
MO
MO | | 101 | 2N2485
2N2486
2N2635
2N2649
2N2650 | NA
NA
TI
NA
NA | npn,D,si
npn,D,si
npn,ge
npn,D,si
npn,D,si | | 8700
8700
150
8700
8700 | 175
175
100
175
175 | 50
50
2
50
50 | 120
140
12
65
140 | -
100
-
- | -
•45
- | 1.0
1.0
5
1.0
1.0 | *12
*12
*5
*12
*12 | 5
5
18
5 | VHF Power SW = 100 MHz
VHF Power 3W = 200 MHz
SY, MO
2W ≈ 130 MHz
VHF Power 4.5W ≈ 130 MHz | | HF | 2N2723
2N2724
2N2725
2N2861
2N2862 | SSD
SSD
SSD
TI
TI | n,PL
n,PL
n,PL
pnp,si
pnp,si | 1111 | 800
800
800
300
300 | 200
200
200
200
200
200 | 4.6
4.6
4.6
1.72
1.72 | 60
60
45
20
20 | 40
40
30
100
100 | *2000
*7000
*2000
50
25 | 0.010
0.010
0.002
0.01
0.01 | -
-
*6
*6 | 18
18
18
18
18 | Darlington amp, SPR, MO
Darlington amp, SPR, MO
Darlington amp, SPR, MO | | 102 | 2N2863
2N2864
2N2865
2N2936
2N2937 | TI
TI
TI
TI | npn,si
npn,si
npn,si
npn,si
npn,si | 1111 | 800
800
200
300
300 | 200
200
200
175
175 | 4.57
4.57
1.14
2
2 | 25
25
13
55
55 | 1000
1000
50
30
30 | *30
*20
20
150
150 | 0.5

0.01
0.01
0.01 | *13
*13
*25
*8
*8 | 5
5
-
- | AL
AMP, SPR
AMP, GI, SPR | | HF | 2N3016
2N3017
2N3018
2N3138
2N3139 | BE
BE
BE
NA
NA | npn,PE,si
npn,PE,si
npn,PE,si
npn,D,si
npn,D,si | 1 1 1 1 | 25,000
25W
25,000
20,000
20,000 | 150
150
150
200
200 | 420
420
420
125
125 | 50
50
50
65
140 | 2500
5A
10,000
2000
2000 | *60-150
*60-150
*60-150
-
- | 0.1
0.1
0.1
500
500 | *50
*50
*50
30
*30 | 5
†
-
24
24 | SSP
MT27
Isolated Collector
VHF Power 7.5W = 70
MHz
VHF Power 14W = 70 MHz | | 103 | 2N3140
2N3141
2N3142
2N3143
2N3144 | NA
NA
NA
NA | npnD,si
npn,D,si
npn,D,si
npn,D,si
npn,D,si | 11111 | 20,000
20,000
25,000
25,000
25,000 | 200
200
200
200
200
200 | 125
125
142
142
142 | 65
140
65
140
65 | 2000
2000
2000
2000
2000
2000 | - | 500
500
500
500
500 | *30
*30
*30
*30
*30 | 24
24
16
16
16 | VHF Power 4W = 130 MHz
VHF Power 8W = 130 MHz
VHF Power 5.4W = 70 MHz
VHF Power 8.3W = 70 MHz
VHF Power 4.0W = 130 MHz | | HF
104 | 2N3145
2N4315 | NA
AMP | npn,D,si
npn,DPE,si | 1.1 | 25,000
400 | 200
200 | 142
2.66 | 140
25 | 2000
50 | | 500
0.01 | *30
*6 | 16
77 | VHF Power 6.0W @ 130 MHz | | | | | | | | | | | | | | | | | #### Selected devices from the Amperex Total Capability... #### SEMICONDUCTORS #### for RF Applications: Low Power to 1500 MHz with Low Noise (3db) and Low Intermodulation Distortion: Use the Amperex 2N5054 and A210 families. High Gain, Extremely Low Feedback IF Amplifiers for frequencies through 60 MHz: Use the Amperex A467 and A473 families. General purpose RF and IF Amplifiers for AM/FM and TV Applications: Use the Amperex A415, A484 and A494 families. High Power to 36 watts at 175 MHz at 12.0V and 28.0V: Use the Amperex A202 and 2N3632 families. To 22 watts at 450 MHz or 8 watts at 1 GHz: Use the Amperex 1N4885 Varactor family. #### for Drive Applications: In Video Circuitry: Use the Amperex A779 family. In Indicator and Memory Circuits: Use the Amperex A983 SCS family. In Control Circuitry: Use the Amperex A903 SCR family. In Audio/Power Circuitry: Use the Amperex A523 family. #### for Small Signal and Logic Applications: To amplify low level signals to output levels between 1 μ A and 500 mA: Use the Amperex 2N2484, 2N2222 and 2N2920 families. Chopping or switching low level signals to output levels of up to 100 mA: Use the Amperex 2N2569 and 2N2369 families To amplify at impedance levels of 10,000 megohms with low noise and high gain. Use the Amperex A190 and A192 families of FET's. #### for Diode and Rectifier Applications: In High Speed Switching: Use the Amperex A23 diode. family. In Controlled Avalanche (12.5KV) CRT Focus Rectifier Circuits: Use the Amperex A74. In High Voltage Power Supplies up to 800V DC Output. Use the Amperex BY127 Rectifier In Bridge Rectifiers up to 400V DC Output: Use the Amperex BY123 Bridge Rectifier Assembly. #### for Audio Applications: Small Signal Silicon: Use the Amperex A104 series in TO-18 and the A747 series in the plastic autosert package. Silicon Power: Use the Amperex A515 in high voltage applications and the A522, A523 and A572 for high power. Complementary Germanium Pairs: Use the Amperex 2N4136 pair for 2watt systems and the 2N4107 or 2N4079 pairs for higher power. ## ...for all your solid state design requirements #### MICROELECTRONICS #### **Linear Monolithic Integrated Circuits for:** Small Signal Amplifiers up to 600 KHz: Use the Amperex TAA103, TAA263, TAA293. High Gain Audio Preamplifiers for Playback/Record: Use the Amperex TAA310. High Input Impedance, High Gain, Preamplifiers: Use the Amperex TAA320 BiFET. (A bipolar transistor and MOS/FET on a single chip.) #### Hybrid Integrated Circuits for: Control and Analog Amplification DC to 2MHz: Use the Amperex ATF401 Operational Amplifier. Custom Circuits for best combination of economy, performance and size: Use the Amperex Hybrid IC capability to fulfill your custom design requirements #### (Leadless Inverted Devices) For your custom, in-house, hybrid integrated circuit designs, Amperex offers the discrete semiconductors listed on the facing page, and many more, packaged in Amperex LIDS: Use the Amperex LDA Amplifier, LDD Diode and LDS Switching Families. Write for our latest condensed catalog. It includes basic specifications and application references on the entire line of transistors, diodes, integrated circuits and LIDS. Amperex Electronic Corporation, Semiconductor and Receiving Tube Division, Department 371, Slatersville, Rhode Island 02876. ## Amperex TOMORROW'S THINKING IN TODAY'S PRODUCTS #### Power one watt and above | | | | | | MAX. | RATIN | GS | | СН | ARACTERIS | TICS | | | |-----------------------|---|------------------------------|---|----------------------------------|--|---------------------------------|-------------------------------|--------------------------------------|---|---|---|-----------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | P _c (W) | w/°c | T _j (°C) | VCEO
VCBO
(V) | l _c (A) | h _{fe} | ICO
*ICEO
*ICEX
(mA) | fao
*fT
(kHz) | Package
Outline
(TO-) | Remarks | | P 1 | 2N341A
2N709
2N2038
2N2039
2N2040 | TR
FA
TR
TR
TR | npn,PL,si
npn,PE,si
npn,PL,si
npn,PL,si
npn,PL,si | 0.25
0.5
0.6
0.6
0.6 | 0.003
0.005
0.0055
0.0055
0.0055 | 175
200
175
175
175 | 125
6.0
45
75
45 | 0.15
-
0.5
0.5
0.5 | *20-80
*55
*12-36
*12-36
*30-90 | 0.001
0,000005
0.015
0.015
0.015 | 1 0000
80000
2000
2000
2000 | 11
18
5
5
5 | ETC
SY, TI,TR, VEC, AMP
ETC
ETC
ETC | | | 2N2O41
2N957
2N339
2N340
2N341 | TR
FA
TI
TI | npn,PL,si
npn,DD,si
npn,si
npn,si
npn,si | 0.6
0.8
1
1 | 0.0055
0.0065
0.008
0.008
0.008 | 175
150
150
150
150 | 75
20
55
85
85 | 0.5
-
0.06
0.06
0.06 | *30-90
*60
9
9 | 0.015
10
0.001
0.001
0.001 | 2000
*250000
-
-
- | 5
18
11
11
11 | ETC
TRWS, AMP, IEC
TR, ETC
TR
TR | | P 2 | 2N342
2N342A
2N342B
2N343
2N343A | T1
T1
T1
T1
T1 | npn,si
npn,si
npn,si
npn,si
npn,si | 1
1
1
1 | 0.008
0.008
0.008
0.008
0.008 | 150
150
150
150
150 | 60
85
85
60
60 | 0.06
0.06
0.06
0.06
0.06 | 9
9
9
28
15 | 0.001
0.001
0.001
0.001
0.001 | | 11
11
11
11
11 | TR
TR
TR
TR | | | 2N343B
2N706 | TI
FA | npn,si
npn,DD,si | 1 1 | 0.008
0.0067 | 150
175 | 65
•25 | *0.06
- | 28
*45 | 0.001
0.000005 | -
400000 | 11
18 | TR
ITT,SPR,SY,MO,TR,AMP | | | 2N707
2N2106 | FA
GE | npn,DD,si
npn,si | 1 1 | 0.0067
0.008 | 175
200 | *56
*60 | <u>-</u> | *12
12-36 | 0.000005
0.2 | 400000
15000 | 18 | GI, NUC, CDC, IEC
TRWS, MO, GI
TR, TI | | P 3 | 2N2107
2N2108
2N3948
2N708 | GE
GE
MO
FA | npn,si
npn,si
npn,si
npn,DP,si | 1
1
1
1.2 | 0.008
0.008
0.006
0.0069 | 200
200
200
200
200 | *60
*60
20
15 | 1
1
0.4 | 30-90
75-200
*15
*50 | 0.2
0.2
0.00001
0.000004 | 15000
15000
700,000
400000 | 5
5
39
18 | TR, TI
TR, TI
ITT,SY,MO,TR,GI,AMP,
NA, NUC, TI, CDC, IEC | | | 2N869
2N914 | FA
FA | pnp,DP,si
npn,PE,si | 1.2 | 0.00686
0.0069 | 200
200 | 18
15 | - | *60
*55 | 0.000005
0.000004 | *200000
*370000 | 18
18 | MO, AL, IEC
ITT,MO,TR,GI,NUC,SPR,TI, | | | 2N915
2N916 | FA
FA | npn,DP,si
npn,DP,si | 1.2
1.2 | 0.0069
0.0069 | 200
200 | 50
25 | - | *100
*100 | 0.000005
0.000005 | *300000
*400000 | 18
18 | AMP, IEC
NA, MO, AL, IEC
TRWS, NA, MO, TI, AL, IEC | | 9 4 | 2N947
2N995
2N996
2N2368 | FA
FA
FA
FA | npn, DP, si
pnp, PE, si
pnp, PE, si
npn, PE, si | 1.2
1.2
1.2
1.2 | 0.0069
0.0069
0.00685
0.0685 | 200
200
200
200
200 | •20
15
12
15 | 0.1
-
-
0.5 | *40
*70
*75
*40 | 10
0.000001
0.0002
0.001 | *250000
*150000
*230000
550000 | 18
18
18
18 | TR, MO, TI, AL, IEC
TR, AMP, IEC
TR,AL,MO,SPR,TI,AMP,CDC
ITT, IEC | | | 2N2369 | FA | npn,PE,si | 1.2 | 0.00685 | 200 | 15 | 0.5 | *80 | 0.001 | *650000 | 18 | TR, MO, AL, NUC, SPR. TI.
CDC, IEC | | | 2N978
2N717 | FA
FA | pnp, DD, si
npn, DD, si | 1.25
1.5 | 0.010
0.010 | 150
175 | 20
•60 | - | *30
*40 | 0.001
0.00001 | *60000
60000 | 18
18 | TR
TRWS, CDC, TR, GI, AMP
NA, TI, IEC | | P 5 | 2N718 | FA | npn,DD,si | 1.5 | 0.010 | 175 | •60 | - | *75 | 1 | 80 | 18 | TRWS, CDC, SY, MO, TR, GI
AMP, AL, NA, ITT, IEC | | | 2N719
2N720 | FA
FA | npn,DD,si
npn,DD,si | 1.5
1.5 | 0.010
0.010 | 175
175 | *120
*120 | - | *40
*80 | 0.001
0.001 | 60000
80000 | 18
18 | TRWS, CDC, TR, GI, AMP, T
TRWS, CDC, TR, GI, AMP, A
NA, TI, CDC | | | 2N721
2N722
2N4105
2N4106
2N718A | FA
FA
AMP
AMP
FA | pnp,DD,si
pnp,DD,si
npn,ge
pnp,ge
npn,DP,si | 1.5
1.5
1.6
1.6
1.8 | 0.010
0.010
2.5
2.5
0.0103 | 175
175
90
90
200 | 35
35
•25
•25
•75 | -
1.0
1.0 | *60
*50
*200
*200
*80 | 0.001
0.001
0.025
0.025
0.0000003 | *60000
*90000
*1.0
*1.0
80000 | 18
18
1
1
1 | KSC, TR, CDC, NA, IEC KSC, MO, TR, NA, IEC CDC, TR, AMP, AL, GI, | | P 6 | 2N719A | FA | npn,DP,si | 1.8 | 0.0103 | 200 | *120 | _ | *40 | 0.000005 | 60000 | 18 | RCA, NA, MO, TRWS, TI TRWS. CDC. AMP: AL. GI. | | | 2N720A | FA | npn,DP,si | 1.8 | 0.0103 | 200 | •120 | - | *80 | 0.000005 | 60000 | 18 | TR, TI
TRWS, CDC, GI, AMP. AL,
RCA, TR, TI | | | 2N870
2N871 | FA
FA | npn,DP,si
npn,DP,si | 1.8 |
0.0103
0.0103 | 200
200 | 60
60 | 2 | *75
*130 | 0.000004
0.000004 | 80000
100000 | 18
18 | CDC, GI, AMP, AL, TI, IEC
CDC, GI, AMP, AL, RCA, | | | 2N910
2N911 | FA
FA | npn, DP, si
npn, DP, si | 1.8
1.8 | 0.0103
0.0103 | 200
200 | 60
60 | - | 140
70 | 0.000005
0.000005 | *80000
*70000 | 18
18 | NA, TI, IEC
TRWS, CDC, AL, TI, NA
TRWS, CDC, AL, TI, CDC | | P 7 | 2N912
2N696 | FA
FA | npn,DP,si
npn,DD,si | 1.8 | 0.0103
0.0133 | 200
175 | 60
•60 | - | 45
*40 | 0.000005
0.00001 | *60000
- | 18
5 | TRWS, CDC, AL, TI
TRWS, TR, GI, AMP, CDC, N | | | 2N697 | FA | npn,DD,si | 2 | 0.0133 | 175 | *60 | - | *75 | 0.00001 | - | 5 | TI, ITT, IEC
TRWS, MO, TR, GI, AMP, CD
ITT, IEC | | | 2N699 | FA | npn,DD;si | 2 | 0.0133 | 175 | *120 | - | *80 | 0.00001 | - | 5 | TRWS, SY, TR, GI, AMP. CD
RCA, NA, TI | | | 2N1131
2N1132
2N1252 | FA
FA
FA | pnp,DD,si
pnp,DD,si
npn,DD,si | 2 2 2 | 0.0133
0.0133
0.0133 | 175
175
175 | 35
35
*30 | 0.6
0.6 | *30
*45
*35 | 0.00001
0.00001
0.0001 | *70000
*90000
*80000 | 5
5
5 | MO, TI, NA, IEC
MO, TI, NA, IEC
SY, TR, NA, IEC | | P 8 | 2N1253
2N1420 | FA
FA | npn,DD,si
npn,DD,si | 2 2 | 0.0133
0.0133 | 175
175 | *30
*60 | = | *45
*700 | 0.0001
0.00001 | *110000
100000 | 5 5 | NA, IEC
TRWS, CDC, MO, TR, SI, | | | 2N1837
2N1838 | TRWS
TRWS | npn,PL,si
npn,PL,si | 2 2 | 0.013
0.013 | 175
175 | *80
*45 | 0.50
0.50 | *40-120
*40-150 | 0.0005
0.0015 | 4500
2300 | 5 5 | NA, AMP, TI, IEC
CDC
CDC | | | | | | | MAX. | RATIN | GS | | СН | ARACTERI | STICS | | | |-----------------------|--|---|---|--|--|--|--|--------------------------------------|---|--|---|--------------------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | P _c
(W) | w/°c | T _j
(°C) | VCEO
CBO
(V) | l _c
(A) | hfe
*hFE | ICO
*ICEO
*ICEX
(mA) | fae
°f _T
(kHz) | Package
Outline
(TO-) | Remarks | | P 9 | 2N1839
2N1840
2N1983
2N1984
2N1985 | TRWS
TRWS
FA
FA
FA | npn,PL,si
npn,PL,si
npn,DD,si
npn,DD,si
npn,DP,si | 2
2
2
2
2
2 | 0.013
0.013
0.016
0.016
0.016 | 175
175
150
150
150 | *45
*25
25
25
25 | 0.50
0.50
-
- | *12-50
*10-100
100
80
60 | 0.0015
0.30
0.001
0.001
0.001 | 3500
2000
30000
30000
30000 | 5
5
5
5
5 | CDC
CDC
AMP, ETC, AL, CDC
AMP, ETC, AL, CDC
AMP, ETC, AL, CDC | | P 10 | 2N1986
2N1987
2N1988
2N1989
2N1990 | FA
FA
FA
FA | npn,DD,si
npn,DD,si
npn,DD,si
pnp,DD,si
npn,DD,si | 2.0
2
2
2
2 | 0.016
0.016
0.016
0.016
0.016 | 150
150
150
150
150 | 25
25
45
45
•100 | -
-
-
-
1.0 | 150
50
•75
•40
•30 | 0.001
0.001
0.001
0.001
0.001 | 50000
50000
50000
50000 | 5
5
5
5
5 | GI, AMP, ETC, AL, CDC GI, AMP, ETC, AL, CDC GI, ETC, AL, CDC STC, ETC, AL, CDC SY, GI, AMP, AL, CDC, IEC | | r 10 | 2N1991
2N2303
2N3241A
2N3242A
2N4074 | FA
FA
RCA
RCA
RCA | pnp,DD,si
pnp,DD,si
npn,DPE,si
npn,DPE,si
npn,DPE,si | 2
2
2
2
2 | 0.016
0.0133
0.02
0 02
0.2 | 150
175
175
175
175
175 | *30
35
25
40
40 | -
-
-
0,3 | *30
*90
*150
*200
*150 | 0.001
0.001
0.1
0.01
0.01 | 50000
70000
•175
•175
•80 | 5
5
104
104
104 | TR. MO. CDC
TR, MO, TI, IEC | | | 2N1335
2N1336
2N1337
2N1338
2N1339 | TRWS
TRWS
TRWS
TRWS
TRWS | pnp,PL,si
npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si | 2.8
2.8
2.8
2.8
2.8 | 0.019
0.019
0.019
0.019
0.019 | 175
175
175
175
175
175 | *120
*120
*120
*80
*120 | 0.30
0.30
0.30
0.30
0.30 | *10-150
*10-150
*10-150
*10-150
*10-150 | 0.001
0.001
0.001
0.001
0.001 | - | 5
5
5
5
5 | | | P 11 | 2N1340
2N1341
2N1342
2N1409
2N1410 | TRWS
TRWS
TRWS
TRWS
TRWS | npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si | 2.8
2.8
2.8
2.8
2.8 | 0.019
0.019
0.019
0.0187
0.0187 | 175
175
175
175
175
175 | *120
*120
*150
*30
*45 | 0.30
0.30
0.30
0.50
0.50 | *10-150
*10-150
*12
*15-45
*30-90 | 0.001
0.001
0.01
0.010
0.010 | -
-
5000
2500 | 5
5
5
5
5 | GI
GI | | | 2N2192A
2N2193A
2N2194A
2N2195A
2N2243A | GE
GE
GE
GE | npn,si
npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si | 2.8
2.8
2.8
2.8
2.8 | 0.016
0.016
0.016
0.016
0.016 | 200
200
200
200
200
200 | 40
50
40
25
80 | 1
1
1
1
1 | 100-300
40-120
•20-60
20
•40-120 | 0.01
1
1
0.01
0.1 | 130000
-
-
130000 | 5
5
5
5
5 | CDC, GI, MO, FA, NA, AL, TI
CDC, FA, GI, MO, NA, AL, TI
CDC, FA, GI, MO, NA, AL, TI
CDC, FA, GI, MO, AL, TI
CDC, TI, AL, NA | | P 12 | 2N698
2N1206
2N1207
2N1505
2N1506 | FA
TR
TR
TRWS
TRWS | npn,DP,si
npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si | 3
3
3
3
3 | 0.0172
0.025
0.025
0.175
0.175 | 200
175
175
175
175 | 60
60
125
•50
•60 | -
0.15
0.15
0.5
0.5 | *40
*20-80
*20-80
*7-100
*10-100 | 0.000005
0.001
0.001
0.05
0.01 | -
10,000
10,000
20000
20000 | 5
5
5
5
5 | TRWS, TR, GI, AMP, CDC
TI
TI
NUC, NA
NUC, STC, RCA, NA | | | 2N1561
2N1562
2N1613 | MO
MO
FA | pnp,DM,ge
pnp,DM,ge
npn,DP,si | 3
3
3 | 0.04
0.04
0.0172 | 100
100
200 | 25
25
•75 | 0.25
0.25
- | 10
9
*80 | 0.01
0.01
0.000003 | *500
*450
80000 | -
-
5 | TRWS, CDC, MO, TR, GI, AMP.
AL, RCA, TI, IEC | | P 13 | 2N 1692 | MO | pnp,DM,ge | 3 | 0.04 | 100 | 25 | 0.25 | 10 | 0.01 | ° 500 | - | AL, NOA, 11, ILC | | | 2N1693
2N1711 | MO
FA | pnp,DM,ge
npn,DT,si | 3 | 0.04
0.0172 | 100
200 | 0.04
•75 | 0.25 | 9
*130 | 0.01
0.0000003 | 450
100000 | 5 | TRWS, CDC, MO, TR, GI, AMP. | | | 2N1893A
2N1973 | TRWS
FA | npn,PL,si
npn,DP,si | 3 3 | 0.017
0.00456 | 200
200 | *140
60 | 0.50 | *40-120
140 | 0.0001
0.000005 | 3000
80000 | 5 5 | NA, RCA, IEC
GI, TR, NA, TI, AL
TRWS, AMP, TR, CDC | | P 14 | 2N1974
2N1975
2N2049
2N3732
2N1506A
2N497
2N498
2N656 | FA
FA
FA
RCA
TRWS
TI
TI | npn,DP,si
npn,DP,si
npn,DP,si
pnp,DJ,ge
npn,PL,si
npn,TD,si
npn,TD,si
npn,si | 3
3
3
3
3.5
4
4
4 | 0.0172
0.0172
0.0172
0.1
0.200
0.0228
0.0228
0.0228 | 200
200
200
200
85
200
200
200
200 | 60
60
*75
*-100
*80
60
100
60 | -
-
3
0.5
1
1 | 70
45
*130
-
*10-100
*12-36
*12-36
*30 | 0.000005
0.000005
0.000004
0.2
0.0005
0.01
0.01
0.010 | 70000
60000
86000
-
20000
*20
*20 | 5
5
5
5
5
5
5
5 | AL, TRWS, AMP, TR, CDC
TRWS, AMP, TR, CDC
AL, CDC
VEC, NA
TRWS, STC, CDC, GE, NA
TRWS, STC, CDC, GE, NA
TRWS, FA, TR, AMP, CDC, STC
SSP, GE, NA
TRWS, FA, TR, AMP, CDC,
STC, GE, NA | | P 15 | 2N1445
2N1943
2N2657
2N2658
2N3469 | TI
TI
SOL
SOL
SOL | npn,TD,si
npn,TD,si
npn,si
npn,si
npn,si | 4 4 4 4 | 0.0228
0.0228
0.04
0.04
0.04 | 200
200
200
200
200
200 | 120
60
*80
*100
35 | 1
1
5.0
5.0
5 | *20-80
*30-90
*40-120
*40-120
*100 | 0.01
0.01
100
0.0001
0.0001 | *20
*20
20000
20000
*20,000 | 5
5
5
5
5 | TI, AMP, SSP, NA
TI, AMP, SSP, NA
TI | | . 13 | 2N497A
2N498A
2N656A
2N657A
2N699B | GE
GE
GE
FA | npn,si
npn,si
npn,si
npn,si
npn,DD,si | 5
5
5
5
5 | 0.0286
0.0286
0.0286
0.0286
0.0286 | 200
200
200
200
200
200 | 60
100
60
100
80 | 1
1
1
1 | 12-36
12-36
30-90
30-90
*80 | 0.010
0.01
0.010
0.01
0.01 | 15,000
15,000
15,000
15,000 | 5
5
5
5 | SSP, TR, TI
TR, SSP, TI
TR, SSP, TI, NA
TR, SSP, TI, NA
GI, TRWS, CDC | | P.16 | 2N1067
2N1479
2N1480
2N1481
2N1482 | RCA
RCA
RCA
RCA | npn,si
npn,si
npn,si
npn,si
n pn,si | 5
5
5
5
5 | 0.33
0.0286
0.0286
0.0286
0.0286 | 175
200
200
200
200
200 | *60
40
55
40
55 | 0.5
1.5
1.5
1.5
1.5 | *15-75
*20-60
*20-60
*35-100
*35-100 | 0.5
0.01
0.01
0.01
0.01 | 10
50
50
50
50 | 8
5
5
5
5 | STC
STC, TR
STC, TR
STC, TR
STC, TR | | P 16 |
2N1615
2N1700
2N2017
2N2282
2N2283 | TR
RCA
GE
BE
BE | npn,PL,si
npn
npn,si
onp,ge
pnp,ge | 5
5
5
5
5 | 0.045
0.0286
0.0285
0.066
0.066 | 175
200
200
110
110 | 100
40
60
30
60 | 0.2
1
1
3
3 | *25
*20-80
*15-200
*20
*20 | 0.002
0.075
0.01
-
100 | 2000
40
-
-
- | 5
5
5
37
37 | CDC
STC, TR, TI
CDC, TR, TI | | | | | | | MAX. | RATIN | GS | - | СН | ARACTERI | STICS | | | |-----------------------|--|---------------------------------|--|--------------------------------------|--|--|----------------------------------|---------------------------------|---|---|--|-----------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | P _c (W) | w/°c | T _j (°C) | VCEO (V) | l _c
(A) | hfe
*hFE | ICO
*ICEO
*ICEX
(mA) | fae
*f _T
(kHz) | Package
Outline
(TO-) | Remarks | | P 17 | 2N2284
2N2270
2N2297
2N2350A
2N2351A | BE
RCA
FA
GE
GE | pnp.ge
npn.si
npn.PE,si
npn.PE,si
npn.PE,si | 5
5
5
5
5 | 0.066
0.0286
0.0286
0.0285
0.0285 | 110
200
200
200
200
200 | 100
45
35
25
50 | 3
1
1.0
1 | *20
*50-200
*50
*20
*40-120 | 100
50
0.2
0.1 | -
1000
90000
-
- | 37
5
5
46
46 | CDC, GI, TR. NA
TR, NA, AL
NA | | . 10 | 2N2352A
2N2353A
2N2364A
2N2726
2N2727 | GE
GE
GE
GE | npn,PE,si
npn,PE,si
npn,PE,si
npn,si
npn,si | 5
5
5
5
5 | 0.0285
0.0285
0.0285
0.0285
0.0266
0.0266 | 200
200
200
200
200
200 | 40
25
80
*200
*200 | 1
1
1
1 | 20-60
*20
*40-120
*30-90
*75-150 | 1
1
0.0001
0.01
0.01 | - | 46
46
46
5
5 | NA
NA
TI
TI | | 2 18 | 2N2890
2N2891
2N3016
2N3056
2N3056 A | FA
FA
BE
FA
FA | npn,PE,si
npn,PE,si
-
npn,DPE,si
npn,DPE,si | 5
5
5
5 | 0.0286
0.0286
-
0.286
0.286 | 200
200
-
200
200 | 80
80
•100
•100
•140 | -
2.5
1 | 55
*80
*60-150
*120
*120 | 0.000002
0.000002
0.001
0.010
0.010 | *50000
*50000
-
80,000
200 MHz | 5
5
5
46
46 | TI, NA
TI, NA | | | 2N3057
2N3057A
2N3114
2N3374
2N3439 | FA
FA
VEC
RCA | npn,DPE,si
npn,DPE,si
npn,DP,si
npn,PE,si
npn,si | 5
5
5
5
5 | 0.286
0.286
0.0286
0.286
0.33 | 200
200
200
200
200
200 | *100
*140
150
80
350 | 1
1
-
0.5
1 | *300
*300
*60
2.9
*40-160 | 0.010
0.010
0.3
0.00001
*0.02 | 100 MHz
200 MHz
*54000
- | 46
46
5
5
5 | MO, TRWS, TI, NA | | P 19 | 2N3440
2N3660
2N3661
2N3665
2N3665 | RCA
TR
TR
TR
FA | npn,si
pnp,si
pnp,si
npn,si
npn,DPE,si | 5
5
5
5
5 | 0.33
0.028
0.028
0.028
0.028
0.0286 | 200
200
200
200
200
200 | 250
30
50
80
•120 | 1
2
2
1
1 | *40-160
50
50
*80
*120 | *0.05
0.00001
0.00001
0.00005
150 | | 5
5
5
5 | TI
TI
TI | | | .2N 3666
2N 3699
2N 37 31
2N 39 16
2N 37 19 | FA
MO
RCA
FA
MO | npn.DPE,si
pnp,AE,si
pnp.DJ,ge
npn,DP,si
pnp,AE,si | 5
5
5
5
6 | 0.0286
0.0286
0.16
0.040
0.034 | 200
200
85
150
200 | *120
60
*-320
150
40 | 1
3
10
10
3 | *300
*35-150
-
*150
*25-180 | 150
0.001
0.2
-
0.01 | 60,000
*60 MHz
-
50,000
*60000 | 5
5
3
5
5 | TI
TI | | P 20 | 2N3720
2N4234
2N4235
2N4236
2N326 | MO
MO
MO
WO | pnp,AE,si
pnp,si
pnp,si
pnp,si
npn,AL,ge | 6
6
6
7 | 0.034
0.034
0.034
0.034 | 200
200
200
200
200
85 | 60
40
60
80
*35 | 3
3.0
3.0
3.0
2 | *25-180
30-150
*30-150
*30-150
*15-60 | 0.01
*1.0
*1.0
*1.0
0.5 | *60000
*3000
*3000
*3000
0.15 | 5
5
5
5
3 | ті | | | 2N3593
2N3594
2N4862
2N4863
2N1183 | GE
GE
SOL
SOL
RCA | npn,MS,si
npn,MS,si
npn,PL,si
npn,PL,si
pnp,ge | 7
7
7
7
7.5 | 0.04
0.04
25
25
0.1 | 175
175
200
200
100 | *200
*200
120
120
20 | 1
1
2
2
3 | *30-90
*75-150
50-150
50-150
*20-60 | 0.001
0.001
0.1
0.1
0.25 | -
80,000
80,000
10 | -
-
46
5
8 | | | P 21 | 2N1183A
2N1183B
2N1184
2N1184A
2N1184B | RCA
RCA
RCA
RCA
RCA | pnp,ge
pnp,ge
pnp,ge
pnp,si
pnp,ge | 7.5
7.5
7.5
7.5
7.5 | 0.1
0.1
0.1
0.1
0.1 | 100
100
100
100
100 | 30
40
20
30
40 | 3
3
3
3 | *20-60
*20-60
*40-120
*40-120
*40-120 | 0.25
0.25
0.25
0.25
0.25
0.25 | 10
10
10
10
10 | 8
8
8
8 | | | D 22 | 2N4077
2N4078
2N122
2N2033
2N2034 | AMP
AMP
TI
STC
STC | npn.ge
pnp.ge
npn.si
npn.si
npn.si | 7.5
8.0
8.75
8.75
8.75 | 0.12
0.13
0.07
0.5
0.5 | 90
90
150
200
200 | *32
*32
*120
*80
*80 | 1.0
1.0
0.14
3
3 | *150
*150
*3
*20
*20 | 0.025
0.018
0.01
0.15
0.15 | *1.0
*1.0
-
-
- | -
-
-
5
5 | | | P 22 | 2N2631
2N2858
2N2859
2N2881
2N2882 | RCA
STC
STC
STC
STC | npn,si
npn,si
npn,si
pnp
pnp | 8.75
8.75
8.75
8.75
8.75 | 0.05
-
-
0.05
0.05 | 200
-
-
200
200 | 60
*100
*128
60
100 | 1.5
3
3
2.0
2.0 | *50-250
*20
*20
*20-60
*20-60 | 0.0001
-
-
- | 1500
-
-
- | 39
5
5
5
5 | VEC, TI CT, TI CT, TI | | | 2N2911
2N3202
2N3203
2N3204
2N3208 | STC
STC
STC
STC
STC | npn
pnp,si
pnp,si
pnp,si
pnp,si | 8.75
8.75
8.75
8.75
8.75 | 0.05
0.05
0.05
0.05
0.05 | 200
200
200
200
200
200 | 125
-40
-60
-80
-40 | 3.0
-3
-3
-3
-3 | *20-60
*20-60
*20-60
*20-60
*20-60 | †0.075
†0.075
†0.075
†0.075 | - | 5
5
5
5 | TI
CT
CT
CT | | P 23 | 2N1068
2N1714
2N1715
2N1716
2N1717 | TI
TI
TI
TI | npn,si
npn,si
npn,si
npn,si
npn,si | 10
10
10
10
10 | 0.067
0.134
0.134
0.134
0.134 | 175
175
175
175
175
175 | *60
60
100
60
100 | 1.5
1
1
1
1 | *15-75
*20
*20
*40
*40 | 0.5
1
1
1
1 | 10
-
-
-
- | 8
-
-
- | STC, KSC
SSP
BE, SSP
SSP
SSP | | | 2N1718
2N1719
2N1720
2N1721
2N2017 | T1
T1
T1
T1 | npn,si
npn,si
npn,si
npn,si
npn,si | 10
10
10
10
10 | 0.134
0.134
0.134
0.134 | 175
175
175
175
175 | 60
100
60
100
•100 | 1
1
1
1
5 | *20
*20
*40
*40
*30 | 1
1
1
1 | | -
-
-
† | SSP
S SP
SSP
SSP
TMT-27 | | P 24 | 2N2067
2N2067 B
2N2067 G
2N2067 - 0
2N2067 W | 1TT
1TT
1TT
1TT | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 10
10
10
10
10 | | 100
100
100
100
100 | *40
*40
*40
*40
*40 | 3.0
3.0
3.0
3.0
3.0 | - | | 7
7
7
7
* 7 | †
†
†
† | HMS7, KSC
HMS7, KSC
HMS7, KSC
HMS7, KSC
HMS7, KSC | Circle as many numbers on the reader-service card as you like. ## MAN ## semi-automatic integrated circuit analyzer ## MICA 150 Now the integrated circuit user can get all the flexibility and performance of an expensive, large scale IC test system in an accurate and reliable DC bench top analyzer. The new MICA-150 Modular Integrated Circuit Analyzer tests all IC configurations of up to 40 pins with unique programming, fast pushbutton sequencing and built-in DVM readout. Fast, Versatile Programming Two independent 10x40 crossbar switches and rapid pushbutton sequencing provide up to 40 tests on a single device without re-programming. For example, it's now quick and easy to check a 10 pin device using four completely different test programs without resetting any switches to advance the test from pin-to-pin or program-to-program. Additional flexibility allows the built-in DVM to measure current on one pin of the device and voltage on another—all pre-programmed. Universal Test Adapters Through use of universal test adapters, the MICA-150 is designed to check ICs according to the number of pins of a particular package, not device or circuit type. Adapters are available for diode, transistor, TO-5, flat-pack, dual inline and other package configurations, and can also be provided for Kelvin connections. Accurate Digital Readout Specifically designed for the MICA-150 analyzer, the built-in Digital Volt/Ammeter has a conservatively rated readout accuracy of 0.1% with a four digit display. Other features include automatic ranging and polarity selection, self-calibration, automatic voltage or current readout selection. Measures currents as low as 1 nanoamp, voltages to 1 mv. Modular Design Modular construction allows users to select an economical, customized tester without obsolescence problems. Maximum capacity of eight function generators permits later expansion, including modules for
AC and pulse testing, without additional modifications. Variable Soak Time Marginal device operation can be easily detected through use of an adjustable test time control which provides a period for thermal stabilization prior to measurement. A continuous position on the control allows parameters to be varied while observing results. Precision, Wide Range Power Supplies Highly precise supplies utilize multi-turn calibrated potentiometer controls with high resolution and repeatability. Constant current supplies are continuously variable from 0-100 ma with voltage compliance adjustable to 100v. Constant voltage supplies are variable from 0-100v with automatic current limiting to 100 ma to provide device protection. #### **"QUICK ACTION REPLY"** Detailed technical literature on the MICA-150 will be mailed immediately upon receipt of this request. Attn.: A. Norman Into, Marketing Manager Computer Test Corporation, Three Computer Drive Cherry Hill, N.J. 08034 • Phone: (609) 424-2400 Name_____ Address City_____State___Zip___ | | Type
No. | | Туре | | MAX. | RATIN | GS | | СН | ARACTERI | STICS | | | |-----------------------|---|----------------------------------|--|-----------------------------------|---|--|--|---------------------------------|--|--|--|-----------------------------|---| | Cross
Index
Key | | Mfr. | | P _c
(W) | w/°c | T _j (°C) | VCEO
VCBO
(V) | l _c (♠) | hfe
*hFE | ICO
*ICEO
*ICEX
(mA) | fae
*f _T
(kHx) | Package
Outline
(TO-) | | | P 25 | 2N2068
2N2068-0
2N2068G
2N3418
2N3419 | 1TT
1TT
T1
T1
T1 | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
npn,EP,si
npn,EP,si | 10
10
10
10
10 | -
-
0.133
0.133 | 100
100
100
175
175 | *80
*80
*80
60
80 | 3.0
3.0
3.0
5
5 | -
-
-
*20-60
*20-60 | -
-
0.00003
0.00003 | 7
7
7
*40
*40 | †
†
5
5 | HMS7, KSC
HMS7, KSC
HMS7, KSC
NA
SSP, NA | | | 2N3420
2N3421
2N3730
2N4041
2N4063 | TI
TI
RCA
TRWS
RCA | npn,EP,si
npn,EP,si
pnp,DJ,ge
-
npn,si | 10
10
10
10
10
•10 | 0.133
0.133
0.33
0.06
0.066 | 175
175
85
200
200 | 60
80
•200
40
250 | 5
5
-3A
0.5 | *40-120
*40-120
-
10-80
*40-160 | 0.00003
0.00003
0.2
0.2
*20 | *40
*40
-
- | 5
5
3
-
5 | NA
NA
MT59 package | | P 26 | 2N4064
2N301
2N301A
2N3212
2N3213 | RCA
RCA
RCA
DE
DE | npn,si
pnp,AJ,ge
pnp,AJ,ge
ge
pnp,AD,ge | 10
11
11
12
12 | 0.066
-
-
7
7 | 200
85
85
110
110 | 350
*40
60
80
60 | 1
3
3
5
5 | *40-60
*70
*70
*30-90
30-90 | *0.05
3
1
1 | -
-
-
30
30 | 3
3
37
37 | DE, KSC, BE, ITT, LAN, TI
DE, KSC, BE, ITT, TI | | | 2N3214
2N3215
2N2147
2N2148
2N2035 | DE
DE
RCA
RCA
STC | pnp,AD,ge
pnp,AD,ge
pnp,DR,ge
pnp,DR,ge
npn,si | 12
12
12.5
12.5
14.3 | 7
7
7
-
0.143 | 110
110
100
100
200 | 40
30
*60
*75
*80 | 5
5
5
5
3 | *30-90
*30-90
*100
*100
*20 | 1
1
1
1
150 | 30
30
4000
3000 | 37
37
3
3
8 | LAN
LAN | | P 27 | 2N1709
2N1710
2N2196
2N2197
2N2201 | TRWS
TRWS
GE
GE
GE | npn,PL.si
npn,PL,si
npn,si
npn,si
npn,si | 15
15
15
15
15 | 0.1
0.1
0.0667
66.7
0.067 | 175
175
200
175
175 | *75
*60
*80
*80
100 | 2.0
2
1
1 | *7.5-75
*7.5-75
*30-90
*200
*30-90 | 0.01
0.05
0.075
-
0.05 | 2000
1600
-
-
15000 | 8
8
-
-
- | NUC
NUC
Special Heat Sink | | | 2N2202
2N2203
2N2204
2N2239
2N2611 | GE
GE
GE
GE | npn,si
npn,si
npn,si
npn,si
npn,si | 15
15
15
15
15 | 0.067
0.067
0.067
0.120
0.067 | 175
175
175
175
200
175 | 100
100
100
*60
100 | 1
1
1
1
1 | 30-90
30-90
30-90
*30-200
12-36 | 0.05
0.05
0.05
10
0.05 | 15000
15000
15000
-
15000 | 5 - | Special Heat Sink | | P 28 | 2N2781
2N2782
2N2783
2N2874
2N2987 | TRWS
TRWS
TRWS
TRWS | npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si
npn,P,si | 15
15
15
15
15 | 0.1
0.1
0.1
0.1
0.1
0.15 | 175
175
175
175
175
200 | *75
*100
*100
*75
80 | 2
2.0
2
2
1 | *7.5-75
*7.5-75
*7.5-75
*7.5-75
*25-75 | 0.50
0.50
0.01
0.01
0.000025 | 1870
1870
1870
1870
1870
*30 | 8
8
8
8
5 | | | | 2N2988
2N2989
2N2990
2N2991
2N2992 | TI
TI
TI
TI | npn,P,si
npn,P,si
npn,P,si
npn,P,si
npn,P,si | 15
15
15
15
15 | 0.15
0.15
0.15
0.15
0.15
0.15 | 200
200
200
200
200
200 | 100
80
100
80
100 | 1
1
1
1 | *25-75
*60-120
*60-120
*25-75
*25-75 | 0.000025
0.000025
0.000025
0.000025
0.000025 | *30
*30
*30
*30
*30 | 5
5
5
†† | †HMT 13
†HMT 13 | | P 29 | 2N2993
2N2994
2N2995
2N3589
2N3590 | TI
TI
GE
GE
GE | npn,P,si
npn,P,si
npn,si
npn,MS,si
npn,MS,si | 15
15
15
15
15 | 0.15
0.15
0.0667
0.0667
0.0667 | 200
200
175
175
175 | 80
100
100
*200
*200 | 1
1
1
1
1 | *60-120
*60-120
*90
*30-90
*75-150 | 0.000025
0.000025
0.01
0.001
0.001 | *30
*30
-
-
- | ††
††
-
- | ††MT 13
††MT 13
TI | | | 2N3591
2N3592
2N3595
2N3596
2N3919 | GE
GE
GE
FA | npn,MS,si
npn,MS,si
npn,MS,si
npn,MS,si
npn,DPE,si | 15
15
15
15
15 | 0.0667
0.0667
0.0667
0.0667
0.200 | 175
175
175
175
175
150 | *200
*200
*200
*200
*200
*120 | 1
1
1
1
10 | *30-90
*95-150
*30-90
*75-150
120 | 0.001
0.001
0.001
0.001 | -
-
-
-
80,000 | -
-
-
-
3 | | | P 30 | 2N3920
2N4000
2N4001
2N4300
2N2525 | FA
TI
TI
TI
TRWS | npn,DPE,si
npn,EP,si
npn,EP,si
npn,PE,si
npn,PL,si | 15
15
15
15
16 | 0.200
0.15
0.15
0.15
0.091 | 150
200
200
200
200
200 | *120
80
100
80
*100 | 10
1
1
2
1 | 300
30-120
40-120
*30-120
*>10 | -
0.002
0.002
0.01
- | 80,000
40,000
40,000
*40,000
10000 | 3
5
5
5 | | | D2: | 2N2835
2N4040
2N156
2N158
2N158A | AMP
TRWS
KSC
KSC
KSC | pnp,AJ,ge
—
pnp,ge
pnp,ge
pnp,ge | 16
17.5
20
20
20 | 0.25
0.1
0.333
0.333
0.333 | 90
200
100
100
100 | 32
40
*30
*60
*80 | 1
1.0
3
3
3 | *30
10-80
*25
*21
*21 | -
0.2
1.0
1.0 | 10
-
4.0
4.0
4.0 | -
-
13
13
13 | Special
MT59 package | | P31 | 2N1042
2N1043
2N1044
2N1045
2N2552 | TI
TI
TI
TI
TI | pnp.ge
pnp.ge
pnp.ge
pnp.ge | 20
20
20
20
20
20 | 0.267
0.267
0.267
0.267
0.267 | 100
100
100
100
100 | *40
*60
*80
*100
*40 | 3.5
3.5
3.5
3.5
3.5 | *20
*20
*20
*20
*20 | 0.125
0.125
0.125
0.125
0.125 | | - | SY, KSC, BE
SY, KSC, BE
SY, KSC, BE
KSC, BE
KSC, BE | | D 33 | 2N2553
2N2554
2N2555
2N2556
2N2557 | TI
TI
TI
TI
TI | pnp.ge
pnp.ge
pnp.ge
pnp.ge | 20
20
20
20
20
20 | 0.267
0.267
0.267
0.267
0.267 | 100
100
100
100
100 | *60
*80
*100
*40
*60 | 3
3
3
3 | 18
18
18
18 | 0.125
0.125
0.125
0.125
0.125 | -
-
-
-) | - | BE, KSC
KSC, BE
KSC, BE
KSC, SY, BE
KSC, SY, BE | | P 32 | 2N2558
2N2559
2N2560
2N2561
2N2562 | TI
TI
TI
TI | pnp.ge
pnp.ge
pnp.ge
pnp.ge
pnp.ge | 20
20
20
20
20
20 | 0.267
0.267
0.267
0.267
0.267 | 100
100
100
100
100 | *80
*100
*40
*60
*80 | 3
3
3.5
3.5
3.5 | 18
18
25
25
25 | 0.125
0.125
0.125
0.125
0.125
0.125 | - | | KSC, SY, BE
KSC, SY, BE
KSC, BE, NA
KSC, BE
KSC, BE | Circle as many numbers on the reader-service card as you like. | | Туре
На. | | Туре | | MAX. | RATIN | GS | | CHA | ARACTERI | STICS | | Remarks | |---------------------|--|---------------------------------|--|----------------------------------|---------------------------------------|--|----------------------------------|---------------------------------|--|--|---|-----------------------------|---| | ross
ndex
Key | | Mfr. | | P _c
(W) | w/°c | T _j (°C) | *CEO
*VCBO
(V) | I _€ (Å) | h _{fe} *h _{FE} | ICO
ICEO
ICEX
(mA) | fae
*f _T
(kHz) | Package
Outline
(TO-) | | | P 33 |
2N2563
2N2697
2N2698
2N2875
2N3738 | TI
SOL
SOL
TR
MO | pnp,ge
npn,si
npn,si
pnp,PLE,si
npn,si | 20
20
20
20
20
20 | 0.267
0.2
0.2
0.14
0.133 | 100
200
200
175
175 | *100
*80
*100
50
225 | 3.5
5.0
5.0
2
0.250 | 25
*40·120
*40·120
*15·60
*40·120 | 0.125
0.0001
0.0001
0.001
0.01 | 20000
20000
-
*15000 | -
-
-
-
66 | KSC, BE | | | 2N3739
2N3766
2N3767
2N3917
2N4296 | MO
MD
MO
FA
RCA | npn,si
npn, si
npn,si
npn,DPE,si
npn,TDP,si | 20
20
20
20
20
20 | 0.133
0.133
0.133
5
0.133 | 175
175
175
175
150
175 | 300
60
80
40
250 | 0.250
1
1
10
1 | *40-120
*40-160
*40-160
10
*50-150 | 0.1
0.1
0.1
0.00001
0.1 | *15000
*15000
*15000
*2500
*30 | 66
66
66
3
66 | | | P 34 | 2N4297
2N4298
2N4299
2N234A
2N235A | RCA
RCA
RCA
BE
BE | npn,TDP,si
npn,TDP,si
npn,TDP,si
pnp,ge
pnp,ge | 20
20
20
25
25 | 0.133
0.133
0.133
0.5
0.5 | 175
175
175
175
90
90 | 250
350
350
25
*50 | 1
1
1
3
3 | *75-300
*25-75
*50-150
-
- | 0.1
0.1
0.1
-
7 | *30
*30
*30
- | 66
66
66
3
3 | KSC, TI
KSC, ITT, TI | | P 35 | 2N235B
2N285A
2N285B
2N399
2N401 | BE
BE
BE
BE
BE | pnp.ge
pnp.ge
pnp.ge
— | 25
25
25
25
25
25 | 0.5
0.5
0.5
-
- | 90
95
95
-
- | *50
-
-
-
- | 3
3
3
3 | -
-
-
*34-40
31-36 | | - | 3
3
3
3
3 | ITT, TI TI TI KSC KSC | | F 33 | 2N418
2N419
2N420
2N420A
2N1218 | BE
BE
BE
SY | -
-
-
npn,AL,ge | 25
25
25
25
25
25 | - | -
-
-
-
100 | -
-
-
-
•45 | 5
3
5
5
3 | *40
35
*40
*40
*40-160 | -
-
-
3 | -
-
-
7 | 3
3
3
3 | KSC, ITT
KSC
ITT, KSC
KSC | | D 22 | 2N1483
2N1484
2N1485
2N1486
2N2308 | RCA
RCA
RCA
RCA
STC | npn, si
npn,si
npn,si
npn,si
npn | 25
25
25
25
25
25 | .143
.143
.143
.143
.143 | 200
200
200
200
200
200 | 40
55
40
55
80 | 3
3
3
3
3 | *20-60
*20-60
*35-100
35-100
*20-60 | .015
.015
.015
.015
.015 | 40
40
40
40 | 8
8
8
8 | STC
STC
STC
STC
STC | | P 36 | 2N2887
2N3018
2N3021
2N3022
2N3023 | TRWS
BE
MO
MO
MO | npn,PL,si
-
pnp,AE,si
pnp,AE,si
pnp,AE,si | 25
25
25
25
25
25 | .143
-
1.67
1.67
1.67 | 200
-
175
175
175 | *100
*100
30
45
60 | 1.2
10
3
3
3 | *15-80
*40
*20-60
*20-60
*20-60 | - | 5000

100,000
100,000
100,000 | 3 3 3 3 | MO, NA
*MTIOA | | | 2N3024
2N3025
2N3026
2N3230 | MO
MO
MO
TI | pnp, AE, si
pnp, AE, si
pnp, AE, si
npn, si | 25
25
25
25
25 | 1.67
1.67
1.67
0.143 | 175
175
175
200 | 30
45
60
60 | 3
3
3
7 | *50-180
*50-180
*50-180
*2000
20,000 | -
-
0.1 | 100,000
100,000
100,000
- | 3 3 3 - | Darlington Type | | P 37 | 2N3231
2N3441
2N3740
2N3741 | TI
RCA
MO
MO | npn,si
npn,si
pnp,si
pnp,si | 25
25
25
25
25 | 0.143
0.143
.143
.143 | 200
200
200
200
200 | 80
140
60
80 | 7
3
1
1 | *2000
20,000
*20-80
*30-100
*30-100 | 0.1
5
0.1
0.1 | -
*4000
*4000 | -
66
66
66 | Darlington Type | | | 2N3838
2N3837
2N1755
2N1756
2N1757 | TI
TI
ITT
ITT
ITT | npn,EP,si
npn,EP,si
-
- | 25
25
28
28
28 | .143
.143
-
- | 200
200
95
95
95 | 60
80
25
40
55 | 7
7
3
3
3 | *2 K-20 K
*2 K-20 K
30
30
30 | 0.01
0.01
1
1 | 40,000
40,000
15
15
15 | 21116 | Darlington, MO Darlington KSC KSC KSC | | P 38 | 2N1758
2N1759
2N1760
2N1761
2N1762 | 1TT
1TT
1TT
1TT | = | 28
28
28
28
28 | - | 95
95
95
95
95 | 65
25
40
55
65 | 3
3
3
3 | 30
60
60
60
60 | 1
1
1
1 | 15
15
15
15
15 | - | KSC
KSC
KSC
KSC
KSC | | | 2N4864
2N1978
2N2150
2N2151
2N2869 | SOL
FA
TI
TI
RCA | npn,PL,si
npn,DP,si
npn,TD,si
npn,TD,si
npn,TD,si
pnp,AJ,ge | 28
30
30
30
30
30 | 6
0.172
0.4
0.4 | 200
200
175
175
100 | 120
*60
80
80
*60 | 2
-
2
2
10 | 50-150
*30
*20-60
*40-120
*90 | 0.1
.01
0.01
0.01
0.5 | 80,000
*50000
*20
*20 | 66
-
21
††
3 | NA, SOL
†MT 21, NA, SOL
LAN, TI | | P 39 | 2N2870
2N2877
2N2878
2N2879
2N2880 | RCA
SOL
SOL
SOL
SOL | pnp, A, ge
npn, si
npn, si
npn, si
npn, si | 30
30
30
30
30
30 | -
0.3
0.3
0.3
0.3 | 100
200
200
200
200
200 | 50
*80
*80
*100
*100 | 10
5
5
5
5 | *90
*20-60
*40-120
*20-60
*40-120 | 0.5
.0001
.0001
.0001
.0001 | 450
30,000
50000
30000
50000 | 3 | LAN, TI, KSC
TI, SSP, NA
TI, SSP, NA
TI, SSP, NA
TI, SSP, NA | | D 40 | 2N2892
2N2893
2N3220
2N3221
2N3222 | FA
FA
GE
GE
GE | npn.PE.si
npn.PE.si
npn.si
npn.si
npn.si | 30
30
30
30
30
30 | -
0.4
0.4
0.4 | 200
200
175
175
175 | 80
80
80
80
60 | -
2
2
2 | *55
*80
80
160
8 | .0002
0.0002
0.1
0.1
0.1 | *50000
*50000
-
- | - | AMP, TI, NA
AMP, TI, NA
TI
TI | | P 40 | 2N3744
2N3745
2N3746
2N3747
2N3748 | SOL
SOL
SOL
SOL | npn,si
npn,si
npn,si
npn,si
npn,si | 30
30
30
30
30
30 | .3
.3
.3
.3 | 200
200
200
200
200
200 | *60
*80
*100
*60
*80 | 5
5
5
5 | *20-60
*20-60
*20-60
*40-120
*40-120 | .0001
.0001
.0001
.0001 | *30,000
*30,000
*30,000
*40,000
*40,000 | - | hex isolated col., TI
hex isolated col., TI
hex isolated col., TI
hex isolated col., TI
hex isolated col., TI | Valuable reprints are FREE if you circle them on the reader-service card. | | Type
No. | | Туре | | MAX | . RATIN | GS | | СН | ARACTERI | STICS | | Remorks | |-----------------------|--|---------------------------------|--|--|--|--|---|---------------------------------------|---|---|---|-----------------------------|--| | Cross
Index
Key | | Mfr. | | P _c (W) | w/°c | T _j | *VCEO *VCBO | I _c (A) | h _{fe} *hFE | ICO
*ICEO
*ICEX
(mA) | fae
*fT
(kHz) | Package
Outline
(TO-) | | | P 41 | 2N3749
2N3750
2N3751
2N3752
2N3850 | SOL
SOL
SOL
SOL
SSP | npn,si
npn,si
npn,si
npn,si
npn,TDP | 30
30
30
30
30
30 | .3
.3
.3
.3
0.4 | 200
200
200
200
200
200 | *100
*60
*80
*100 | 5
5
5
5 | *40-120
*100-300
*100-300
*100-300
*150 | .0001
.0001
.0001
.0001 | *40,000
*50,000
*50,000
*50,000
*40 | -
-
-
-
59 | hex isolated col., TI
hex isolated col., TI
hex isolated col., TI
hex isolated col., TI
TI | | | 2N3851
2N3852
2N3853
2N3996
2N3997 | SSP
SSP
SSP
TI | npn,TDP
npn,TDP
npn,TDP
npn,EP,si
npn,EP,si | 30
30
30
30
30
30 | 0.4
0.4
0.4
0.3
0.3 | 200
200
200
200
200
200 | *60
*60
*60
80
80 | 5
5
5
5 | *90
*150
*90
40-120
80-240 | .0001
.0001
.0001
0.005
0.005 | *30
*40
*30
40,000
40,000 | 59
59
59
- | TI
TI
TI
7/16 stud-Isol
7/16 stud-Isol | | 42 | 2N3998
2N3999
2N4075
2N4076
2N538 | TI
TI
FA
FA
SOL | npn,EP,si
npn,EP,si
npn,DPE,si
npn,DPE,si
pnp,ge | 30
30
30
30
30
34 | 0.3
0.3
.171
.171
0.46 | 200
200
200
200
200
100 | 80
80
80
80
*80 | 5
5
3
3
3.5 | 40-120
80-240
30-90
50-150
*20-50 | 0.005
0.005
.0001
.0001
2 | 40,000
40,000
*30,000
*30,000
200 | -
59
59 | 7/16 stud
7/16 stud | | . 42 | 2N538A
2N539
2N539A
2N540
2N540A | SOL
SOL
SOL
SOL | pnp.ge
pnp.ge
pnp.ge
pnp.ge
pnp.ge | 34
34
34
34
34 | 0.46
0.46
0.46
.46
0.46 | 100
100
100
100
100 | *80
*80
*80
*80
*80 | 3.5
3.5
3.5
3.5
3.5 | *20-50
*30-75
*30-75
*45-113
*45-113 | 2
2
2
2
2 | 200
200
200
200
200
200 | - | KSC
KSC
KSC
KSC | | 43 | 2N1202
2N1203
2N1261
2N1262
2N1263 | 20F
20F
20F
20F | pnp.ge
pnp.ge
pnp.ge
pnp.ge
pnp.ge | 34
34
34
34
34 | 0.46
0.46
0.46
0.46
0.46 | 100
100
100
100
100 | *80
*120
*80
*80
*80 | 3.5
3.5
3.5
3.5
3.5 | *200
*25-75
*20-50
*30-75
*45-113 | 2
2
2
2
2
2 | 200
200
200
200
200
200 | - | KSC
KSC
KSC
KSC
 | | 2N1501
2N1502
2N400
2N1011
2N2836 | SOL
SOL
BE
BE
AMP | pnp.ge
pnp.ge
pnp.ge
pnp.AJ.ge | 34
34
35
35
35
35 | 0.46
0.46
-
0.5
.66 | 100
100
-
95
90 | *60
*40
-
*80
55 | 3.5
3.5
3
5
3.5 | *25-100
*25-100
*30-40
*30-75
*30 | 2
2
-
15
.1 | 200
200
-
- | -
3
3
3 | KSC
KSC
KSC
DE, KSC, MO, ITT, TI | | 9 44 | 2N3583
2N3584
2N3585
2N3678
2N4240 | RCA
RCA
RCA
RCA
RCA | npn,si
npn,si
npn,si
npn,si
npn,si | 35
35
35
35
35
35 | 0.2
0.2
0.2
0.2
0.2
0.2 | 200
200
200
200
200
200 | 175
250
300
50
175 | *5
*5
5
10(peak)
2 | 40
*25-100
*25-100
*50-200
*30-150 | *10
*5
*5
*5
*5
*5 | -
*10,000
*60,000
*15 MHz | 66
66
66
66
66 | | | | 2N663
2N665
2N3154
2N3155
2N3156 | KSC
MO
ITT
ITT | pnp,AJ,ge
pnp,AJ,ge
-
- | 37.5
37.5
37.5
37.5
37.5
37.5 | 2
2
-
-
- | 100
100
100
100
100 | 25
40
25
40
55 | 4
5
3
3 | *25-75
*40-80
60
60 | 4
10
1
1 | 15
20
15
15
15 | 3
3
-
- | KSC
KSC
KSC | | 2 45 | 2N3157
2N3158
2N4241
2N1047
2N1047 A | ITT
ITT
AMP
TI
TI | -
pnp.ge
npn,si
pnp,si | 37.5
37.5
37.5
40
40 | -
0.5
0.228
0.228 | 100
100
100
200
200 | 65
25
*32
*80
80 | 3
3
5.0
0.500
0.500 | 60
30
*50
*12
*12 | 1
1
45
0.015
0.350 | 15
10
5
- | 3 - | KSC
KSC
STC, TR
STC, TR | | | 2N1047B
2N1047C
2N1048
2N1048A
2N1048B | TI
TI
TI
TI | npn,si
npn,si
npn,si
npn,si
npn,si | 40
40
40
40
40 | 0.228
0.228
0.228
0.228
0.228
0.228 | 200
200
200
200
200
200 | 80
80
•120
120
120 | 0.750
1
0.500
0.500
0.750 | *12
*12
*12
*12
*12
*12 | 0.050
0.010
0.015
0.350
0.100 | - | 11111 | TI, STC
STC, TR
STC, TR
TI, STC | | P 46 | 2N1048C
2N1049
2N1049A
2N1049B
2N1049C | TI
TI
TI
TI
TI | npn,si
pnp,si
npn,si
npn,si
npn,si | 40
40
40
40
40 | 0.228
0.228
0.228
0.228
0.228
0.228 | 200
200
200
200
200
200 | 120
*80
80
80
80 | 1
0.500
0.500
0.750
1 | *12
*30
*30
*30
*30 | 0.010
0.015
0.350
0.050
0.010 | - | | STC, TR
STC, TR
TI, STC | | | 2N1050
2N1050A
2N1050B
2N1050C
2N1647 | TI
TI
TI
TR | npn,si
npn,si
npn,si
npn,si
npn,PL,si | 40
40
40
40
40 | 0.228
0.228
0.228
0.228
0.228
0.267 | 200
200
200
200
200
175 | *120
120
120
120
120
*80 | 0.500
0.500
0.750
1
3 | *30
*30
*30
*30
*15-45 | 0.015
0.350
0.100
0.010
0.1 | -
-
-
-
3000 | | STC, TR
STC, TR
STC, TI
STC | | 2 47 | 2N1648
2N1649
2N1650
2N1690
2N1691 | TR
TR
TR
TI | npn,PL,si
npn,PL,si
npn,PL,si
npn,si
npn,si | 40
40
40
40
40 | 0.267
0.267
0.267
0.228
0.228 | 175
175
175
200
200 | 120
*80
120
80
120 | 3
3
3
500
500 | *15-45
*30-90
*20
*20
*20 | 0.1
0.1
0.1
0.015
0.015 | 2000
3000
2000
-
- | | STC
STC
STC
STC
STC | | | 2N2018
2N2019
2N2020
2N2021
2N2632 | TR
TR
TR
TR
SOL | npn,PL,si
npn
npn,PL,si
npn,PL,si
npn,si | 40
40
40
40
40 | 0.267
0.267
0.267
.267
.4 | 175
175
175
175
175
200 | *150
*200
*150
*200
*90 | 2
2
2
2
5.0 | *15
*15
*25
*25
*40-120 | 0,1
0,1
0,1
1,1
0.0001 | 2000
2000
3000
3000
20000 | | | | 2 48 | 2N2633
2N2634
2N2828
2N2829
2N2902 | SOL
SOL
STC
STC
TI | npn,si
npn,si
npn
npn
npn,TD,si | 40
40
40
40
40 | .4
.4
.229
.229
0.228 | 200
200
200
200
200
200 | *120
*150
60
60
120 | 5.0
5.0
3
3 | *40-120
*40-120
*20-60
*20-60
*30-90 | 0.0001
0.0001
-
-
0.25 | 20000
20000
-
-
*2 | -
*
*
57 | *7/" Hex, TI
*7/" Hex, TI | Get detailed spec sheets and application notes: use the reader-service card! ## Many parts can be plated better, faster, and more economically with BURTON'S NEW CONTINUOUS PRECIOUS METAL PLATING PROCESS Burton's new CONTINUOUS precious metal plating process normally reduces cost of precious metal substantially by putting the plating only where you want it. In addition, some parts can be plated and manufactured ready for your use (see inset)! If you use precious metal plated parts of any kind this outstanding advancement in plating techniques may save you time and money while greatly improving quality. Why not find out about it? We'd be glad to send you complete information. #### BURTON RESEARCH LABORATORIES, INC. 11240 PLAYA / CULVER CITY, CALIFORNIA / (213) 391-6325 A Division of Burton Silver Plating Company | | | | Туре | | MAX | RATIN | GS | | СН | ARACTERI | STICS | | | |-----------------------|---|---------------------------------|---|--------------------------------------|--|--|-------------------------------------|-----------------------------|--|--|---|-----------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | | P _c (W) | w/°c | T _j (°C) | VCEO
VCBO
(V) | I _c (A) | hfe
*hFE | ICO
*ICEO
*ICEX
(mA) | fae
*fT
(kHz) | Package
Outline
(TO-) | | | P 49 | 2N3199
2N3200
2N3201
2N3205
2N3206 | STC
STC
STC
STC
STC | pnp,si
pnp,si
pnp,si
pnp,si
pnp,si | 40
40
40
40
40 | 0.229
0.229
0.229
0.229
0.229
0.229 | 200
200
200
200
200
200 | -40
-60
-80
-40
-60 | -3
-3
-3
-2
-2 | *20-60
*20-60
*20-60
*20-60
*20-60 | †0.075
†0.075
†0.075
†0.075
†0.075 | | 59
59
59
59
59 | CT
CT
CT
CT
CT | | | 2N3207
2N3551
2N4004
2N4005
2N3552 | STC
TI
TI
TI | pnp,si
npn,TD,si
npn,EP,si
npn,EP,si
npn,EP,si | 40
40
40
40
40 | 0.229
0.53
0.4
0.4
0.53 | 200
175
200
200
175 | -100
60
80
100
80 | -2
12
20
20
12 | *20-60
*20-90
*30-150
*30-150
*20-90 | †0.075
10
1
1
1 | -
*40
30,000
30,000
40,000 | 59
-
-
-
- | CT
Thin-Pac
Thin-Pac
Isol Thin-Pac | | 50 | 2N3851
2N2266
2N2267
2N2268
2N2269 | TI
SOL
SOL
SOL
SOL | npn,EP,si
pnp,ge
pnp,ge
pnp,ge
pnp,ge | 40
43
43
43
43 | 0.53
0.5
0.5
0.5
0.5 | 175
125
125
125
125
125 | 60
*100
*120
*100
*120 | 12
5
5
5
5 | *20-90
*25-75
*25-75
*25-75
*25-75 | 10
2
2
2
2
2 | 40,000
200
200
200
200
200 | - | Isol Thin-Pac
KSC
KSC | | | 2N1120
2N456A
2N457A
2N458A
2N463 | BE
TI
TI
TI
†KSC | pnp,ge
pnp,ge
pnp,ge
pnp,ge
pnp,AJ,ge | 45
50
50
50
50 | 0.667
0.667
0.667
0.667 | 95
100
100
100
100 | *80
*40
*60
*80
*60 | 15
7
7
7
7
5 | 30-120
*40
*40
*40
*20-100 | 15
0.5
0.5
0.5
0.5 | -
-
4
5 | 41
3
3
3
3
3 | MO, ITT, T!
DE, BE, MO, ITT, KSC
DE, KSC, BE, MO, ITT
DE, BE, MO, ITT, KSC
†WE Orig Reg | | 51 | 2N678
2N678A
2N678B
2N678C
2N1014 | BE
BE
BE
BE | pnp,ge
pnp,ge
pnp,ge
pnp,ge
pnp,ge | 50
50
50
50
50 | 0.66
0.66
0.66
0.66
100 | 100
100
100
100 | *15
*25
*60
*60
*100 | 15
15
15
15 | *50-100
*50-100
*50-100
*50-100
*20 | 2
2
5
5 | -
-
-
- | 3
3
3
3 | KSC, TI, ITT
TI, ITT, KSC
TI, ITT, KSC
TI, ITT
KSC | | | 2N1021
2N1022
2N1069
2N1070
2N1430 | TI
TI
BE | pnp.ge
pnp.ge
npn.ge
npn.ge | 50
50
50
50
50 | 0.714
0.714
.33
.33 | 75
95
175
175 | *100
*120
45
45
40 | 5
5
4
4
10 | *60
*60
*10-50
*10-50
*30-100 | 0.10
0.13
1
1 | -
-
10
10 | 3
3
3
3
41 | DE, KSC, BE, MO, ITT
DE, KSC, BE, MO, ITT
STC, BE
STC, BE | | 52 | 2N1722
2N1722A
2N1723
2N1724
2N1724A | TI
TI
TI
TI | npn,si
npn,si
npn,si
npn,si
npn,si | 50
50
50
50
50 | 0.667
0.67
0.67
0.667
0.667 | 175
175
175
175
175 | 80
120
80
80
120 | 5
5
5
5
5 | *20
*30
*50
*20
*30 | 0.5
0.1
0.1
0.5
0.1 | - | 53
53
53
-
- | STC, TR, BE
BE, STC
BE
STC, TR, BE, MO, GE, SOI
BE, STC, GE | | | 2N1725
2N1905
2N1906
2N2811
2N2812 | TI
RCA
RCA
SOL
SOL | npn,si
pnp,AJ,ge
pnp,AJ,ge
npn,si
npn,si | 50
50
50
50
50 | 0.67
-
-
0.5
0.5 | 175
100
100
200
200 | 80
*60
*100
*80
*80 | 5
3
3
10
10 | *50
*90
*125
*20-60
*40-120 | 0.1
0.15
0.15
.0001
.0001 | -
*7500
*7500
20000
30000 | 3 3 - | BE, MO, TR,
GE
LAN
LAN
TI | | P 53 | 2N2813
2N2814
2N4301
2N236A
2N236B | SOL
SOL
TI
BE
BE | npn,si
npn,si
npn,PE,si
pnp,ge
pnp,ge | 50
50
50
60
60 | 0.5
0.5
0.5
0.83
0.83 | 200
200
200
100
100 | *120
*120
80
- | 10
10
10
3
3 | *20-60
*40-120
*30-120
- | .0001
.0001
0.01
- | 20000
30000
*40,000
- | 61
61
3
3 | TI
TI
KSC, TI
TI, KSC | | | 2N1073
2N1073A
2N1073B
2N1079
2N1080 | BE
BE
BE
TR
TR | pnp.ge
pnp.ge
pnp.ge
npn.PL.si
npn.PL.si | 60
60
60
60 | 0.833
0.833
0.833
.34 | *110
*110
+110
175
175 | •-25
•-60
•-100
•60
•60 | -10
-10
-10
3
3 | *20-60
*20-60
*20-60
*20-80
*20-80 | 15
20
20
10
10 | -
-
-
10,000
10,000 | 41
41
41
53
53 | DE, MO
DE, MO
DE, MO
TI
TI | | P 54 | 2N1210
2N1211
2N1616
2N1617
2N1618 | TR
TR
TR
STC
TR | npn,PL,si
npn,PL,si
npn,PL,si
npn,si
npn,PL,si | 60
60
60
60 | 0.40
0.40
0.40
0.40
0.40 | 175
175
175
175
175
175 | 60
*80
60
*80
*100 | 5
5
5
5
5 | *15-75
*15-75
*15-75
*15-75
*15-75 | 10
10
10
10
†1 | 3000
3000
3000
-
3000 | 53
-
61
- | BE, STC, TI
BE, TI, STC
STC, BE, TI
STC, BE, TI | | | 2N1620
2N1907
2N1908
2N2288
2N2289 | TR
TI
TI
BE
BE | npn,PL,si
pnp,ge
pnp,ge
-
- | 60
60
60
60 | 0.40
2
2
-
- | 175
100
100
-
- | *100
*100
*130
-
- | 5
20
20
10 | *15-75
*20
*20
*20-60
*20-60 | 10
0.5
0.5
-
- | 3000

-
-
- | 53
3
3
3
3 | STC, BE, TI | | 2 55 | 2N2290
2N2291
2N2292
2N2293
2N2294 | BE
BE
BE
BE
BE | - | 60
60
60
60 | - | | - | 10
10
10
10
10 | *20-60
*50-120
*50-120
*50-120
*50-120 | - | - | 3
3
3
41 | ETC
ETC
ETC | | | 2N2295
2N2296
2N2137
2N2137A
2N2138 | BE
BE
MO
MO | -
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 60
60
62.5
62.5
62.5 | -
0.83
0.83
0.83 | -
100
100
100 | -
20
20
30 | 10
10
3
3
3 | *50-120
50-120
*30-60
*30-60
*30-60 | -
2
2
2 | -
20
20
20 | 41
41
3
3
3 | | | P 56 | 2N2138A
2N2139
2N2139A
2N2140
2N2140A | MO
MO
MO
MO | pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge | 62.5
62.5
62.5
62.5
62.5 | 0.83
0.83
0.83
0.83
0.83 | 100
100
100
100
100 | 30
45
45
60 | 3
3
3
3 | *30-60
*30-60
*30-60
*30-60
*30-60 | 2
2
2
2
2
2 | 20
20
20
20
20
20 | 3
3
3
3
3 | | Complete listing of semiconductor manufacturers starts on page 86. 128 | | Type
No. | | Туре | | MAX. | RATIN | GS | | CH | CHARACTERISTICS | | | | |-----------------------|---|--|---|--------------------------------------|---|--|-----------------------------------|-----------------------------|---|--------------------------------------|--|----------------------------------|--| | Cross
Index
Key | | Mfr. | | P _c (W) | w∕°c | T _j | V
CEO
V
CBO
(V) | (A) | hfe
*hFE | ICO
*ICEO
*ICEX
(mA) | fae
* [†] T
(kHz) | Package
Outline
(TO-) | | | P 57 | 2N2141
2N2141A
2N2142
2N2142A
2N2143 | MO
MO
MO
MO | pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge | 62.5
62.5
62.5
62.5
62.5 | 0.83
0.83
0.83
0.83
0.83 | 100
100
100
100
100 | 65
65
20
20
30 | 3
3
3
3 | *30-60
*30-60
*50-100
*50-100 | 2
2
2
2
2
2 | 20
20
20
20
20
20 | 3
3
3
3
3 | | | | 2N2143A
2N2144
2N2144A
2N2145
2N2145A | MO
MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 62.5
62.5
62.5
62.5
62.5 | 0.83
0.83
0.83
0.83
0.83 | 100
100
100
100
100 | 30
45
45
60
60 | 3
3
3
3 | *50-100
*50-100
*50-100
*50-100
*50-100 | 2
2
2
2
2 | 20
20
20
20
20
20 | 3
3
3
3
3 | ETC
ETC
ETC
ETC | | P 58 | 2N2146
2N2146A
2N554
2N555
2N4070 | MO
MO
MO
SOL | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
npn,si | 62.5
62.5
65
65 | 0.83
0.83
0.72
0.72
.66 | 100
100
90
90
200 | 65
65
*15
*30
*120 | 3
3
3
3
10 | *50-100
*50-100
55
55
*40-120 | 2
2
10
20
.0001 | 20
20
6
6
*20,000 | 3
3
3
3
3 | ETC
ETC
ITT, TI, DE
DE, KSC, ITT, TI | | D 50 | 2N4071
2N3223
2N3950
2N4895
2N4896 | SOL
GE
MO
FA
FA | npn,si
npn,si
npn,si
npn,PE,si
npn,PE,si | 65
70
70
70
70 | .66
0.4
0.4
-
0.8 | 200
175
200
200
200 | *200
60
35
*120
120 | 10
2
3.3
5
5 | *40-120
160
-
*40-120
*100-300 | .0001
0.1
10
- | *20,000
-
*150,000
50
80,000 | 3
-
60
39
39 | ТІ | | P 59 | 2N4897
2N1487
2N1488
2N1489
2N1490 | FA
RCA
RCA
RCA
RCA | npn,PE,si
npn,si
npn,si
npn,si
npn,si | 70
75
75
75
75 | 0.8
.429
.429
.429
.429 | 200
200
200
200
200
200 | 150
40
55
40
55 | 5
6
6
6 | *40-120
*15-45
*15-45
*25-75
*25-75 | -025
.025
.025
.025 | 50,000
30
30
30
30 | 39
3
3
3
3 | STC, BE, TI
STC, BE, TI
STC, BE, TI
STC, BE, TI | | D.CO | 2N1511
2N1512
2N1513
2N1514
2N1703 | STC
STC
STC
STC
STC | npn,si
npn,si
npn,si
npn,si
npn,si | 75
75
75
75
75 | .429
.429
.429
.429
.429
200 | 200
200
200
200
200
.429 | 40
55
40
55
40 | 6
6
6
6
5 | *15-45
*15-45
*25-75
*25-75
*15-60 | .025
.025
.025
.025
.025 | 30
30
30
30
30
25 | 36
36
36
36
36
36 | | | P 60 | 2N2305
2N2912
2N3171
2N3172
2N3173 | STC
MO
STC
STC
STC | npn,si
pnp,EP,ge
pnp,si
pnp,si
pnp,si | 75
75
75
75
75 | 0.43
1
0.43
0.43
0.43 | 200
110
200
200
200
200 | *60
6
-40
-60
-80 | 6
25
-3
-3
-3 | *15-60
*75
*12-36
*12-36
*12-36 | 0,20
0.2
†10
†10
†10 | - | 3
8
3
3
3 | 75₩@35°C | | D. 61 | 2N3174
2N3183
2N3184
2N3185
2N3186 | STC
STC
STC
STC
STC | pnp,si
pnp,si
pnp,si
pnp,si
pnp,si | 75
75
75
75
75 | 0.43
0.43
0.43
0.43
0.43 | 200
200
200
200
200
200 | -100
-40
-60
-80
-100 | -3
-5
-5
-5
-5 | *12-36
*10-30
*10-30
*10-30
*10-30 | †10
†10
†10
†10
†10 | | 3
3
3
3
3 | | | P 61 | 2N3195
2N3196
2N3197
2N3198
3N45 | STC
STC
STC
STC
STC
SOL | pnp,si
pnp,si
pnp,si
pnp,si
pnp,ge | 75
75
75
75
75 | 0.43
0.43
0.43
0.43 | 200
200
200
200
200
100 | -40
-60
-80
-100 | -5
-5
-5
-5
12 | *10-30
*10-30
*10-30
*10-30
*30-120 | †10
†10
†10
†10
3 | -
-
-
-
600 | 3
3
3
15 | | | B 66 | 3N46
3N47
3N48
2N3264
2N3266 | SOL
SOL
SOL
RCA
RCA | pnp,ge
pnp,ge
pnp,ge
npn,si
npn,si | 75
75
75
184
*84 | 1
1
1
0.66
0.66 | 100
100
100
200
200 | *80
*40
*60
90
90 | 12
12
12
25
25 | *20-80
*30-120
*20-80
*20-80
*20-80 | 3
3
10
10 | 300
500
300
-
- | 15
15
15
-
63 | †Tc=75C, YI | | P 62 | 2N389
2N389A
2N424
2N1210
2N1235 | TI
STC
TI
TI | npn,si
npn,si
npn,si
npn,TD,si
npn,si | 85
85
85
85
85 | 0.485
0.485
0.485
0.425
0.425 | 200
0.200
200
200
200
200 | -
*60
-
60
*100 | 1.5
3
0.75
2 | 12
*12-60
12
*15
*12 | -
-
0.25
10 | -
-
*2
- | 53
53
53
53
53 | TR, STC, BE TR, STC, BE STC, TI | | | 2N1250
2N1260
2N1616A
2N1617A
2N1618A | STC
TI
STC
STC
STC | npn,si
npn,si
npn,si
npn,si
npn,si | 85
85
85
85
85 | 0.485
0.485
0.485
0.485
0.485 | 200
200
200
200
200
200 | 60
*120
60
*80
*100 | 5
2
7.5
7.5
7.5 | *15-60
*12
*10
*10
*10 | 10
10
10.20
10.20
10.20 | - | 53
53
61
61
61 | | | P 63 | 2N2383
2N2384
2N2526
2N2527
2N2528 | STC
STC
MO
MO | npn
npn
pnp, AD, ge
pnp, AD, ge
pnp, AD, ge | 85
85
85
85
85 | .5
.5
1
1
1 | 200
200
110
110
110 | 60
60
80
120
160 | 3
3
10
10 | *20-60
*20-60
*20-50
*20-50
*20-50 | -
-
3
3
3 | 12
12
12
12 | 3 3 3 | STC
***/ _w " Hex | | | 2N2832
2N2833
2N2834
2N2908
2N3163 | MO
MO
MO
STC
STC | pnp.EP.ge
pnp.EP.ge
pnp.EP.ge
npn
pnp,si | 85
85
85
85
85 | 1
1
1
.45
0.46 | 110
110
110
200
200 | 50
75
100
*80
-40 |
20
20
20
5
-3 | *25-100
*25-100
*25-100
*12-60
*12-36 | .3
.3
.3
-
†10 | 50
50
50
- | 3
3
3
53
61 | ТІ | | P 64 | 2N3164
2N3165
2N3166
2N3167
2N3168 | STC
STC
STC
STC
STC | pnp,si
pnp,si
pnp,si
pnp,si
pnp,si | 85
85
85
85
85 | 0.46
0.46
0.46
0.46
0.46 | 200
200
200
200
200
200 | -60
-80
-100
-40
-60 | -3
-3
-3
-3 | *12-36
*12-36
*12-36
*12-36
*12-36 | †10
†10
†10
†10
†10 | - | 61
61
61
53
53 | | Need a FREE personal copy of this Directory? Circle number 419. | | Type
No. | | Туре | | MAX. | RATIN | GS | | СН | ARACTERI | STICS | | | |-----------------------|--|---------------------------------|--|----------------------------|--------------------------------------|--|-----------------------------------|----------------------------|--|--------------------------------------|-----------------------|--------------------------------------|--| | Cross
Index
Key | | Mfr. | | P _c (W) | w/°C | T _j (°C) | VCEO
*VCBO
(V) | I _c (A) | hfe
*hFE | ICO
*ICEO
*ICEX
(mA) | fae
*fT
(kHz) | Package
Outline
(TO-) | Remarks | | P 65 | 2N3169
2N3170
2N3175
2N3176
2N3177 | STC
STC
STC
STC
STC | pnp,si
pnp,si
pnp,si
pnp,si
pnp,si | 85
85
85
85
85 | 0.46
0.46
0.46
0.46
0.46 | 200
200
200
200
200
200 | -80
-100
-40
-60
-80 | -3
-3
-5
-5
-5 | *12-36
*12-36
*10-30
*10-30
*10-30 | †10
†10
†10
†10
†10 | - | 53
53
61
61
61 | | | P 66 | 2N3178
2N3179
2N3180
2N3181
2N3182 | STC
STC
STC
STC
STC | pnp,si
pnp,si
pnp,si
pnp,si
pnp,si | 85
85
85
85
85 | 0.46
0.46
0.46
0.46
0.46 | 200
200
200
200
200
200 | -100
-40
-60
-80
-100 | -5
-5
-5
-5
-5 | *10-30
*10-30
*10-30
*10-30
*10-30 | †10
†10
†10
†10
†10 | - | 61
53
53
53
53
53 | | | 66 | 2N3187
2N3188
2N3189
2N3190
2N3191 | STC
STC
STC
STC
STC | pnp,si
pnp,si
pnp,si
pnp,si
pnp,si | 85
85
85
85
85 | 0.46
0.46
0.46
0.46
0.46 | 200
200
200
200
200
200 | -40
-60
-80
-100
-40 | -5
-5
-5
-5
-5 | *10-30
*10-30
*10-30
*10-30
*10-30 | †10
†10
†10
†10
†10 | - | 61
61
61
61
53 | | | P 67 | 2N3192
2N3193
2N3194
2N3577
2N3611 | STC
STC
STC
T1
MO | pnp,si
pnp,si
pnp,si
npn,TO,si
pnp,AJ,ge | 85
85
85
85
85 | 0.46
0.46
0.46
0.565 | 200
200
200
200
175
110 | -60
-80
-100
80
25 | -5
-5
-5
2
7 | *10-30
*10-30
*10-30
*12-60
*35-70 | †10
†10
†10
0.1
0.04 | -
-
-
*10 | 53
53
53
53
53
3,41 | ті | | P 6/ | 2N3612
2N3613
2N3614
2N3615
2N3616 | MO
MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 85
85
85
85
85 | 1
1
1
1 | 110
110
110
110
110 | 35
25
35
50
60 | 7
7
7
7 | *35-70
*60-120
*60-120
*30-60
*30-60 | 0.04
0.04
0.04
0.06
0.06 | - | 3,41
3,41
3,41
3,41
3,41 | TI
TI
TI
TI | | 0.60 | 2N3617
2N3618
2N176
2N178
2N250A | MO
MO
MO
MO
TI | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,ge
pnp,ge | 85
85
90
90 | 1
1
1.2
1.43
0.42 | 110
110
100
90
100 | 50
60
*40
30
*40 | 7
7
3
3
7 | *45.90
*45.90
*25.90
*15.45
*35 | 0.06
0.06
-
3
1 | -
-
7
5
- | 3,41
3,41
3
3 | TI
DE, KSC, ITT, TI
KSC, TI
KSC, BE, ITT | | P 68 | 2N251A
2N257
2N268
2N268A
2N297A | TI
CL
ITT
ITT | pnp,ge | 90
90
90
90
90 | 1.2 | 100
100
100
100
100 | *60
35
60
60 | 7
5
5
5
5 | *35
-
-
20
20 | 2
2
2
2
2
2 | 5
6
- | 3
3
3
3
3 | KSC, BE, ITT, TI
KSC, BE, TI
KSC, BE
KSC, BE, TI
MO, KSC, BE, DE, TI | | P 69 | 2N350A
2N351A
2N375
2N376A
2N627 | MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
gg,LA,qnq
gg,LA,qnq
gg,LA,qnq
gg,LA,qnq | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *50
*50
*80
*50
*40 | 3
4
3
5
10 | 20-60
*25-90
*35-90
*35-120
*10-30 | 3
3
20
3
20 | 5
5
7
5
8 | 3
3
3
3
3 | KSC, BE, TI
KSC, ITT, TI
KSC, ITT, TI
KSC | | r 03 | 2N628
2N629
2N637
2N637A
2N637B | MO
MO
BE
BE
BE | pnp.ge
pnp,AJ.ge
-
- | 90
90
90
90
90 | 1.2
1.2
-
- | 100
100
-
-
- | *60
*80
30
55
65 | 10
10
5
5
5 | *10-30
*10-30
30-60
*30-60
*30-60 | 20
20
-
- | 8 8 | 3
3
3
3 | KSC
KSC
KSC. TI
KSC. TI
KSC, TI | | P 70 | 2N638
2N638A
2N638B
2N669
2N677 | BE
BE
BE
MO
BE | -
-
pnp,AJ.ge
pnp.ge | 90
90
90
90
90 | -
-
1.6
0.66 | -
-
100
100 | 30
65
65
*40
20 | 5
5
5
3
15 | *20-40
*30-60
*20-40
90
*20-60 | -
-
3
- | -
-
5
- | 3
3
3
3
3 | KSC, TI
KSC, TI
KSC, TI
DE. KSC, TI
KSC, TI, ITT | | P 70 | 2N677A
2N677B
2N677C
2N1031
2N1031A | BE
BE
BE
BE
BE | pnp.ge
pnp.ge
pnp.ge
pnp.ge
pnp.ge | 90
90
90
90
90 | 0.66
0.66
0.66
1.25
1.25 | 100
100
100
100
100 | 30
60
70
*50
*60 | 15
15
15
15
15 | *20-60
*20-60
*20-60
*20-60
*20-60 | -
-
-
15
15 | - | 3
3
3
41
41 | KSC, TI, ITT
KSC, TI, ITT
KSC, TI, ITT
TI, ITT
TI, ITT | | | 2N1031B
2N1031C
2N1032
2N1032A
2N1032B | BE
BE
BE
BE
BE | pnp.ge
pnp.ge
pnp.ge
pnp.ge
pnp.ge | 90
90
90
90
90 | 1.25
1.25
1.25
1.25
1.25 | 100
100
100
100
100 | *90
*100
*50
*60
*90 | 15
15
15
15
15 | *20-60
*20-60
*50-100
*50-100
50-100 | 15
15
15
15
15 | - | 41
41
41
41
41 | TI, ITT
TI, ITT
ITT
ITT
ITT | | P 71 | 2N1032C
2N1136
2N1136A
2N1136B
2N1137 | BE
BE
BE
BL
BE | pnp, ge
-
-
- | 90
90
90
90
90 | 1.25
-
-
-
- | 100 | *100
30
55
65
30 | 15
5
5
5
5 | *50-100
*50-100
*50-100
*50-100
75-150 | 15
-
-
- | 9 5 | 41
3
3
3
3 | ITT
KSC, ITT, TI
KSC, ITT, TI
KSC, ITT, TI
KSC, ITT, TI | | | 2N1137B
2N1138
2N1138A
2N1138B
2N1146 | BE
BE
BE
BE
ITT | 1 | 90
90
90
90
90 | - | -
-
-
100 | 65
30
55
65
20 | 5
5
5
5
15 | *75-150
100-200
100-200
100-200
60 | -
-
-
4 | -
-
-
4 | 3
3
3
3 | KSC, ITT, TI
KSC, ITT
KSC, ITT
KSC, ITT
BE | | P 72 | 2N1146A
2N1146B
2N1146C
2N1147
2N1147A | 177
177
177
177 | - | 90
90
90
90
90 | - | 100
100
100
100
100 | 30
60
75
20
30 | 15
15
15
15
15 | 60
60
60 | 4
4
4
4 | 4
4
4
4 | 3
3
3
3 | KSC, BE
KSC, BE
KSC, BE
BE, TI
KSC, BE, TI | Reader-Service cards are good all year. | | | | | | MAX. | RATIN | GS | | СН | ARACTERI | STICS | | | |-----------------------|--|------------------------------|---|----------------------------|---------------------------------|---------------------------------|-------------------------------------|----------------------------------|---|-------------------------------|-----------------------------------|-----------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | P _c (W) | w/°c | T _j | V
CB0
(V) | l _c (A) | h _{fe} *h | ICO
*ICEO
*ICEX
(mA) | fae
*f _T
(kHz) | Package
Outline
(TO-) | Remarks | | P 73 | 2N1147B
2N1147C
2N1162
2N1162A
2N1163 | ITT
ITT
MO
MO
MO | -
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | -
1.2
1.2
1.2 | 100
100
100
100
100 | 60
75
*50
*50
*50 | 15
15
25
25
25 | 60
60
*65
*65
*65 | 4
4
3
-
- | 4
4
4
4
4 | 3 3 - 3 3 3 | KSC, BE, TI
KSC, BE, TI
BE (IT
BE, ITT | | | 2N1163A
2N1164
2N1164A
2N1165
2N1165A | MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *50
*80
*80
*80
*80 | 25
25
25
25
25
25 | *65
*65
65
*65
*65 | | 4
4
4
4 | 3
3
3
3
3 | BE
BE. ITT
BE
BE. ITT
BE | | 74 | 2N1166
2N1166 A
2N1167
2N1167 A
2N1359 | MO
MO
MO
MO | pnp.AJ.ge
pnp.AJ.ge
pnp.AJ.ge
pnp.AJ.ge
pnp.AJ.ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *100
*100
*100
*100
*50 |
25
25
25
25
25
3 | *65
*65
*65
*65
*35-90 | -
-
-
3 | 4
4
4
4
10 | 3
3
3
3
3 | BE, ITT
BE
BE, ITT
BE
KSC, BE | | 75 | 2N1360
2N1362
2N1363
2N1364
2N1365 | MO
MO
MO
MO
MO | pnp.AJ.ge
pnp.AJ.ge
pnp.AJ.ge
pnp.AJ.ge
pnp.AJ.ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *50
*100
*100
*120
*120 | 3
3
3
3 | *60-140
*35-90
*60-140
*35-90
*60-140 | 3
3
3
3
3 | 8.5
10
8.5
10
8.5 | 3
3
3
3
3 | KSC. BE
KSC, BE
KSC. BE
KSC. BE
KSC. BE | | 75 | 2N1529
2N1529 A
2N1530
2N1530 A
2N1531 | MO
MO
MO
MO
MO | pnp.AJ.ge
pnp.AJ.ge
pnp.AJ.ge
pnp.AJ.ge
pnp.AJ.ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *40
*40
*60
*60
*80 | 5
5
5
5
5 | *20
*20
*20
*20
*20
*20 | 2
2
2
2
2 | 10
10
10
10
10 | 3
3
3
3 | KSC. BE
KSC. BE
KSC, BE
KSC, BE
KSC. BE | | 76 | 2N1531A
2N1532
2N1532A
2N1533
2N1534 | MO
MO
MO
MO
MO | pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *80
*100
*100
*120
*40 | 5
5
5
5
5 | *20
*20
*20
*20
*20
*35 | 2
2
2
2
2 | 10
10
10
10
10
8.5 | 3
3
3
3
3 | KSC. BE
KSC. BE
KSC. BE
KSC, BE
DE, KSC, BE, FTT | | 76 | 2N1534A
2N1535
2N1536
2N1536A
2N1537 | MO
MO
MO
MO
MO | pnp. AJ. ge
pnp. AJ. ge
pnp. AJ. ge
pnp. AJ. ge
pnp. AJ. ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *60
*60
*80
*80
*100 | 5
5
5
5
5 | *35
*35
*35
*35
*35
*35 | 2
2
2
2
2 | 8.5
8.5
8.5
8.5
8.5 | 3
3
3
3 | KSC, BE DE, KSC, BE, ITT DE, KSC, BE, ITT KSC, BE KSC, BE, ITT, DE | | 77 | 2N1537A
2N1538
2N1539
2N1539A
2N1540 | MO
MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *100
*120
*40
*40
*60 | 5
5
5
5
5 | *35
*35
*50
*50
*50 | 2
2
2
2
2 | 8.5
8.5
4
4 | 3
3
3
3
3 | KSC, BE
KSC, BE, ITT
DE, KSC, BE, TI, ITT
KSC, BE
DE, KSC, BE, TI, ITT | | ' // | 2N1540A
2N1541
2N1541A
2N1542
2N1542A | MO
MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *60
*80
*80
*100 | 5
5
5
5
5 | *50
*50
*50
*50
*50
*50 | 2
2
2
2
2
2 | 4
4
4
4 | 3 3 3 3 | KSC, BE
DE, KSC, BE, TI, ITT
KSC, BE
DE, KSC, BE, TI, ITT
KSC, BE | | 78 | 2N1543
2N1544
2N1544A
2N1545
2N1545A | MO
MO
MO
MO
MO | pnp,AJ.ge
pnp,AJ.ge
pnp,AJ.ge
pnp,AJ.ge
pnp,AJ.ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *120
*40
*40
*60
*60 | 5
5
5
5
5 | *50
*75
*75
*75
*75
*75 | 2
2
2
2
2 | 4
4
4
4 | 3
3
3
3 | DE. KSC, BE, TI, ITT DE, KSC, BE, ITT KSC, BE DE, KSC, BE, ITT KSC, BE | | 70 | 2N1546
2N1546A
2N1547
2N1547A
2N1549 | MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *80
*80
*100
*100
20 | 5
5
5
5
15 | *75
*75
*75
*75
*75
*10 | 2
2
2
2
2
3 | 4
4
4
4
10 | 3
3
3
3 | DE. KSC, BE. ITT
KSC, BE
DE, KSC, BE, ITT
KSC, BE
KSC, BE, ITT | | 79 | 2N1548
2N1549A
2N1550
2N1551
2N1551A | MO
MO
MO
MO | pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | *120
20
30
40
40 | 5
15
15
15
15 | *75
*10
*10
*10
*10 | 2
3
3
3
3 | 4
10
10
10
10 | 3
3
3
3 | KSC, BE, ITT
KSC, BE
KSC, BE ITT
KSC, BE, ITT
KSC, BE | | 13 | 2N1552
2N1552A
2N1553
2N1553A
2N1554 | MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | 50
50
20
20
30 | 15
15
15
15
15 | *10
*10
*30
*30
*30 | 3
3
3
3 | 10
10
6
6 | 3
3
3
3 | KSC, BE, ITT KSC, BE KSC, BE, TI, ITT, DE KSC, BE KSC, BE, TI, ITT, DE | | . 00 | 2N1554A
2N1555
2N1555A
2N1556
2N1556A | MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | 30
40
40
50
50 | 15
15
15
15
15 | *30
*30
*30
*30
*30 | 3
3
3
3 | 6
6
6
6 | 3
3
3
3 | KSC, BE, TI, ITT, DE
KSC, BE, TI, ITT, DE
KSC, BE, TI, ITT, DE
KSC, BE, TI, ITT, DE | | P 80 | 2N1557
2N1557A
2N1558
2N1558A
2N1559 | MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 90
90
90
90
90 | 1.2
1.2
1.2
1.2
1.2 | 100
100
100
100
100 | 20
20
30
30
40 | 15
15
15
15
15 | *50
*50
*50
*50
*50
*50 | 3
3
3
3 | 5
5
5
5 | 3
3
3
3 | KSC, BE, ITT, DE
KSC, BE
KSC, BE, ITT, DE
KSC, BE
KSC, BE, ITT, DE | Circle as many numbers on the reader-service card as you like. | | | | | | MAX | RATIN | GS | | СН | ARACTERI | STICS | | | |-----------------------|---|--------------------------------------|---|--|--------------------------------------|--|--|----------------------------------|---|---------------------------------------|--------------------------------------|----------------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | P _c (W) | w/°c | T _j | VCEO
VCBO
(V) | (A) | hfe
*hFE | ICO
*ICEO
*ICEX
(mA) | fae
*fT
(kHz) | Package
Outline
(TO-) | Remarks | | P 81 | 2N1559A
2N1560
2N1560A
2N2061A
2N2062A | MO
MO
MO
ITT | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
— | 90
90
90
90
90 | 1.2
1.2
1.2
-
- | 100
100
100
100
100 | 40
50
50
15
15 | 15
15
15
5
5 | *50
*50
*50
20
50 | 3
3
3
2
2 | 5
5
5
1 | 3
3
3
3
3 | KSC. BE
KSC. BE, ITT, DE
KSC. BE | | | 2N2063A
2N2064A
2N2065A
2N2066A
2N2423 | 111
111
111
111
111 | - | 90
90
90
90
90 | | 100
100
100
100
100 | 20
20
40
40
75 | 5
5
5
5
5 | 20
50
20
50
20 | 2
2
5
5
5 | 5
1
5
1
3 | 3
3
3
3
3 | KSC | | P 82 | 3N 49
3N 50
3N 51
3N 52
2N 2285 | SOL
SOL
SOL
BE | pnp.ge
pnp.ge
pnp.ge
pnp.ge | 94
94
94
94
100 | 1.25
1.25
1.25
1.25 | 100
100
100
100
- | *60
*80
*40
*60
30 | 15
15
15
15
25 | *30-120
*20-80
*30-120
*20-80
*20 | 3
3
3.0
3.0 | 600
300
500
300 | -
-
-
3 | | | P 83 | 2N2286
2N2287
2N3597
2N3598
2N3599 | BE
SOL
SOL
SOL | -
npn,si
npn,si
npn,si | 100
100
100
100
100 | -
1
1
1 | -
200
200
200 | 60
80
*60
*80
*100 | 25
25
20
20
20 | *20
*20
*40-120
*40-120
*40-120 | -
0.0001
0.0001
0.0001 | -
30000
30000
30000 | 3 3 | *7/8" hex, TI
*7/8" hex, TI
*7/8" hex, TI | | r 63 | 2N 4002
2N 4003
2N 3442
2N 3445
2N 3446 | TI
TI
RCA
MO
MO | npn,EP,si
npn,EP,si
npn,si
npn,AE,si
npn,AE,si | 100
100
117
117
117 | 1
1
0.668
0.66
0.66 | 200
200
200
200
200
200 | 80
100
140
80
60 | 30
30
10
7.5
7.5 | 20-80
*20-80
*20-70
*20-60
*20-60 | 1
1
5
0.1
0.1 | 30,000
*30,000
-
-
- | 63
63
3
3 | | | | 2N3447
2N3448
2N3487
2N3488
2N3489 | MO
MO
MO
MO | npn, AE, si
npn, AE, si
npn, AE, si
npn, AE, si
npn, AE, si | 117
117
117
117
117 | 0.66
0.66
0.66
0.66
0.66 | 200
200
200
200
200
200 | 80
60
60
80
100 | 7.5
7.5
7.5
7.5
7.5 | *40-120
*40-120
*20-60
*20-60
*15-45 | 0.1
0.1
0.025
0.025
0.025 | | 3
3
61
61
61 | TI
TI
TI | | P 84 | 2N 3490
2N 3491
2N 3492
2N 4347
2N 4348 | MO
MO
MO
RCA
RCA | npn,AE,si
npn,AE,si
npn,AE,si
npn,si
npn,si | 117
117
117
117
117
120 | 0.66
0.66
0.66
0.67
0.68 | 200
200
200
200
200
200 | 60
80
100
120
120 | 7.5
7.5
7.5
10
30 | *40-120
*40-120
*30-90
*20-70
*15-60 | 0.025
0.025
0.025
1
*2 | -
-
0.8 MHz
0.7 MHz | 61
61
61
3 | TI
TI
TI | | | 2N 1899
2N 1900
2N
1901
2N 1902
2N 1903 | TRWS
TRWS
TRWS
TRWS
TRWS | npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si | 125
125
125
125
125
125 | 1.0
1
1
1
1 | 150
150
150
150
150 | *140
*140
*140
*140
*140
*140 | 10
10
10
10
10 | 5.0
*>8
5
5
**8 | 10
10
10
10
10 | 2500
5000
2000
5000
5000 | - | | | P 85 | 2N 1904
2N 3076
2N 3263
2N 3265
2N 2733 | TRWS
TRWS
RCA
RCA
SOL | npn,PL,si
npn,PL,si
npn,si
npn,si
pnp,ge | 125
125
†125
†125
†125 | 1
1.0
1
1
1.67 | 150
150
200
200
110 | *140
*140
60
60
*80 | 10
10
25
25
65 | 5
5
*25-75
*25-75
*30-120 | 10
25
4
4
5.0 | 2000
2000
-
-
350 | -
-
63
- | † Tc = 75C, TI
† Tc= 75C, TI | | | 2N2734
2N2735
2N2736
2N2737
2N2738 | 20F
20F
20F
20F | pnp.ge
pnp.ge
pnp.ge
pnp.ge | 141
141
141
141
141 | 1.67
1.67
1.67
1.67
1.67 | 110
110
110
110
110 | *60
*40
*80
*60
*40 | 65
65
65
65 | *30-120
*30-120
*30-120
*30-120
*30-120 | 5.0
5.0
5.0
5.0
5.0 | 350
350
350
350
350 | - | | | P 86 | 2N 173
2N 174
2N 174A
2N 277
2N 278 | DE
DE
DE
DE
DE | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 150
150
150
150
150 | .5
.5
.5
.5 | 100
100
100
100
100 | 45
55
40
25
30 | 15
15
15
15
15 | *37-70
*25-50
*40-80
*35-70
*35-70 | 4
4
8
8 | 10
10
10
10
10 | 36
36
36
36
36
36 | MO, RCA
MO. RCA
MO
MO, RCA
MO, RCA | | | 2N441
2N442
2N443
2N511
2N511A | DE
DE
DE
TI
TI | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,ge
pnp,ge | 150
150
150
150
150 | .5
.5
.5
2
2 | 100
100
100
100
100 | 25
30
45
•40
•60 | 15
15
15
25
25 | *20-40
*20-40
*20-40
*20
*20 | 8
4
4
0.5
0.5 | 10
10
10
-
- | 36
36
36
-
- | MO. RCA
MO. RCA
MO. RCA | | P 87 | 2N511B
2N512
2N512A
2N512B
2N513 | T1
T1
T1
T1
T1 | pnp.ge
pnp.ge
pnp.ge
pnp.ge
pnp.ge | 150
150
150
150
150 | 2
2
2
2
2 | 100
100
100
100
100 | *80
*40
*60
*80
*40 | 25
25
25
25
25
25 | *20
*20
*20
*20
*20
*20 | 0.5
0.5
0.5
0.5
0.5 | - | - | | | | 2N513A
2N513B
2N514
2N514A
2N514B | TI
TI
TI
TI | pnp.ge
pnp.ge
pnp.ge
pnp.ge
pnp.ge | 150
150
150
150
150 | 2
2
2.14
2.14
2.14 | 100
100
95
95
95 | *60
*80
40
50
60 | 25
25
25
25
25
25 | *20
*20
*40
*40
*40 | 0.5
0.5
0.2
0.2
0.2 | | - | | | P 88 | 2N1015C
2N1099
2N1100
2N1358
2N1412 | WH
DE
DE
DE
DE | npn,AJ,si
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 150
150
150
150
150 | 1.43
.5
.5
0.5
0.5 | 150
100
100
100
100 | 150
55
65
-80
100 | 7.5
15
15
-15
-15 | *10
*35-70
*25-50
*40-80
*25-50 | 10
4
4
-4
4 | 25
10
10
100
100 | 36
36
36
36
36 | STC
MO, RCA
MO, RCA
RCA, MO
RCA, MO | Reader-Service cards are good all year. Monsanto semiconductor light sources are solid state devices. They have no filaments to burn out. They emit visible or infrared light. The optical properties of the output light make them well-suited to a host of applications. Check these features: #### Physical - Unusually long life - Miniature size - Rugged #### Electrical - Low voltage operation (1.6v) - Low current requirement (5-100 ma) - Low power consumption - Fast switching (10 nsec) - Linear output - Forward bias operation #### **Optical** • Adjustable light output (0-100 ft. lamb.) - Narrow band width (half width 400Å) - Selective wave length (6000-9000Å) - Epoxy lens for light magnification and collimation We'd like to tell you more. Call (314) OXford 4-2136, or write: Monsanto Company, 800 N. Lindbergh Boulevard, St. Louis, Missouri 63166. | | | | | | MAX. | RATIN | GS | | СН | ARACTERI | TICS | | | |-----------------------|--|-------------------------------|---|--|--|--|-------------------------------------|--|---|----------------------------------|--|----------------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | P _c (₩) | ₩/°C | T _j | VCEO
VCBO | l _c (A) | hfe
*hFE | fCEO
fCEX
(mA) | fae
*fT
(kHz) | Package
Outline
(TO-) | Remarks | | P 89 | 2N1412USN
2N1936
2N1937
2N2015
2N2016 | DE
TI
TI
RCA
RCA | pnp,AJ,ge
npn,si
npn,si
npn,si
npn,si | 150
150
150
150
150 | .5
2
2
.855
.855 | 100
175
175
200
200 | 60
60
80
50
65 | 15
20
20
10 | *25-50
*12
*12
*15-50
*15-50 | 4
-
-
.05
.05 | 10
-
-
25
25 | 36
-
-
36
36 | MO
STC
STC | | | 2N2226
2N2227
2N2228
2N2229
2N2230 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 150
150
150
150
150 | 2
2
2
2
2
2.0 | 150
150
150
150
150 | 50
100
150
200
50 | 10
10
10
10
10 | *100
*100
*100
*100
*400 | 10
10
10
10
10 | 10
10
10
10
7 | † † † † † † † † | †MT 1
†MT 1
†MT 1
†MT 1
†MT 1
†'5T 1 | | P 90 | 2N2231
2N2232
2N2233
2N22338
2N3429 | WH
WH
WH
RCA
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,si
npn,AJ,si | 150
150
150
150
150 | 2.0
2.0
2.0
0.855
1.33 | 150
150
150
200
175 | 100
150
200
40
*50 | 10
10
10
7.5
7.5 | *400
*400
*400
*15-60
*10 | 10
10
10
0.2
10 | 7
7
7
20
30 | †
†
†
36 | † MT 1
† MT 1
† MT 1 | | 0.01 | 2N3430
2N3431
2N3432
2N3433
2N3434 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 150
150
150
150
150 | 1.33
1.33
1.33
1.33
1.33 | 175
175
175
175
175
175 | *100
*150
*200
*250
*30 | 7.3
7.5
7.5
7.5
7.5
7.5 | *10
*10
*10
*10
*10 | 10
10
10
10
10 | 30
30
30
30
30
30 | - | | | P 91 | 2N3470
2N3471
2N3472
2N3473
2N3474 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 150
150
150
150
150 | 2
2
2
2
2
2 | 150
150
150
150
150 | *50
*100
*150
*200
*50 | 10
10
10
10
10 | *100
*100
*100
*100
*400 | 10
10
10
10
10 | 10
10
10
10
10 | - | | | | 2N3475
2N3476
2N3477
2N3713
2N3714 | WH
WH
WH
MO
MO | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,si
npn,si | 150
150
150
150
150 | 2
2
2
.857
.857 | 150
150
150
200
200 | *100
*150
*200
60
80 | 10
10
10
10
10 | *400
*400
*400
*25-90
*25-90 | 10
10
10
10
†1
†1 | 10
10
10
*4000
*4000 | -
-
3
3 | | | P 92 | 2N3715
2N3716
2N3771
2N3772
2N3773 | MO
MO
RCA
RCA
RCA | npn,si
npn,si
npn,si
npn,si
npn,si | 150
150
150
150
150 | .857
.857
0.855
0.855
.855 | 200
200
200
200
200
200 | 60
80
40
60
140 | 10
10
30
30
30
30 | *50-150
*50-150
*15-60
*15-60
*15-60 | †1
†1
2
5
2 | *4000
*4000
*700
*700
*500 | 3
3
3
3
3 | SOL
SOL
SOL | | | 2N3789
2N3790
2N3791
2N3792
2N3846 | MO
MO
MO
TI | pnp,si
pnp,si
pnp,si
pnp,si
npn,TDM,si | 150
150
150
150
150 | .857
.857
.857
.857
.857 | 200
200
200
200
200
175 | 60
80
60
80
200 | 10
10
10
10
20 | *25-90
*25-90
*50-150
*50-150
*15-60 | †1
†1
†1
†1
†1
2 | *4000
*4000
*4000
*4000
10,000 | 3
3
3
3
63 | | | P 93 | 2N3847
2N3848
2N3849
2N3146
2N3147 | TI
TI
TI
TI | npn, TDM, si
npn, TDM, si
npn, TDM, si
pnp, ge
pnp, ge | 150
150
150
150
150 | 2
2
2
2
2
2 | 175
175
175
100
100 | 300
200
300
*150
180 | 20
20
20
15
15 | *15-60
*15-60
*15-60
*30-90
30-90 | 2
2
2
10
10 | 10,000
10,000
10,000
-
- | 63
63
63
3 | | | | 2N2075
2N2075A
2N2076
2N2076 A
2N2077 | MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 170
170
170
170
170 | 2
2
2
2
2
2 | 110
110
110•
110
110 | 65
65
55
55
45 | 15
15
15
15
15 | *25-100
*25-100
*25-100
*25-100
*25-100 | 4
4
4
4
4 | 5
5
5
5
5 | 36
36
36
36
36 | DE
DE | | P 94 | 2N2077 A
2N2078
2N2078 A
2N2079
2N2079 A | MO
MO
MO
MO | pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge | 170
170
170
170
170 | 2
2
2
2
2
2 | 110
110
110
110
110 | 45
25
25
65
65 |
15
15
15
15
15 | *25-100
*25-100
*25-100
*40-160
*40-160 | 4
4
4
4 | 5
5
5
5 | 36
36
36
36
36
36 | DE
DE | | 0.43 | 2N2080
2N2080A
2N2081
2N2081A
2N2082 | MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 170
170
170
170
170 | 2
2
2
2
2
2 | 110
110
110
110
110 | 55
55
45
45
25 | 15
15
15
15
15 | *40-160
*40-160
*40-160
*40-160
*40-160 | 4
4
4
4
4 | 5
5
5
5
5 | 36
36
36
36
36
36 | DE
DE | | P 95 | 2N2082A
2N2152
2N2152A
2N2153
2N2153A | MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 170
170
170
170
170 | 2
2
2
2
2
2 | 110
110
110
110
110 | 25
30
30
45
45 | 15
30
30
30
30
30 | *40-160
*50-100
*50-100
*50-100
*50-100 | 4
4
4
4
4 | 5
2.7
2.7
2.7
2.7 | 36
36
36
36
36
36 | | | Dec | 2N2154
2N2154A
2N2156
2N2156 A
2N2157 | MO
MO
MO
MO | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 170
170
170
170
170
170 | 2
2
2
2
2
2 | 110
110
110
110
110 | 60
60
30
30
45 | 30
30
30
30
30
30 | *50-100
*50-100
*80-160
*80-160
*80-160 | 4 4 4 4 4 | 2.7
2.7
2.7
2.7
2.7
2.7 | 36
36
36
36
36 | | | P 96 | 2N2157 A
2N2158
2N2158A
2N2357
2N2358 | MO
MO
MO
BR
BE | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
- | 170
170
170
170
170 | 2
2
2
-
- | 110
110
110
-
- | 45
60
60
30
60 | 30
30
30
50
50 | *80-160
*80-160
*80-160
*15
*15 | 4
4
4
- | 2.7
2.7
2.7
-
- | 36
36
36
41
41 | | Get detailed spec sheets and application notes: use the reader-service card! | | | | | | MAX. | RATIN | GS | | СН | ARACTERI | TICS | | | |----------------------|---|---------------------------------|---|--|--|--|--|----------------------------------|---|---------------------------------|------------------------------------|----------------------------------|---| | Crass
ndex
Key | Type
No. | Mfr. | Туре | P _c (W) | w/°c | T _j
(°C) | VCEO
*VCBO
(V) | l _c
(A) | h _{fe} *hFE | ICO
*ICEO
*ICEX
(mA) | fae
*fT
(kHz) | Package
Outline
(TO-) | Remarks | | P 97 | 2N2359
2N2728
2N2730
2N2731
2N2732 | BE
MO
SOL
SOL | pnp,AJ,ge
pnp,ge
pnp,ge
pnp,ge
pnp,ge | 170
170
170
170
170 | 2
2.0
2
2 | 110
110
110
110
110 | 80
5
*80
*60
*40 | 50
50
65
65
65 | *50
*40-130
*30-120
*30-120
*30-120 | -
5.0
5
5 | 4.5
350
350
350 | 41
36
36
36
36
36 | | | D 00 | 2N3311
2N3312
2N3313
2N3314
2N3315 | MO
MO
MO
MO
MO | pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge
pnp, AJ, ge | 170
170
170
170
170 | 2
2
2
2
2 | 110
110
110
110
110 | 20
30
40
20
30 | 5
5
5
5
5 | 60-120
60-120
60-120
100-200
100-200 | 0.3
0.3
0.3
0.3
0.3 | 1.0
1.0
1.0
1.0
1.0 | 36
36
36
36
36
36 | | | 98 | 2N3316
2N4048
2N4049
2N4050
2N4051 | MO
MO
MO
MO
MO | pnp, AJ, ge
pnp, ge
pnp, ge
pnp, ge
pnp, ge | 170
170
170
170
170 | 2
2
2
2
2
2 | 110
110
110
110
110 | 40
30
45
60
30 | 5
60
60
60 | 100-200
*60-120
*60-120
*60-120
*80-180 | 0.3
4
4
4 | 1.0
2
2
2
2
2 | 36
36
36
36
36 | | | D 00 | 2N4052
2N4053
2N2580
2N2581
2N2582 | MO
MO
DE
DE
DE | pnp.ge
pnp.ge
pnp,DD,si
npn,DD,si
npn,DD,si | 170
170
178
178
178 | - 2
2
.7
.7
.7 | 110
110
150
150
150 | 45
60
400
400
500 | 60
60
10
10 | *80-180
*80-180
10-40
*10
*10-40 | 4 4 | 2
2
50
50
50 | 36
36
36
36
36 | | | P 99 | 2N2583
2N574
2N574A
2N575
2N575A | DE
SOL
SOL
SOL | npn, DD, si
pnp, ge
pnp, ge
pnp, ge
pnp, ge | 178
187
187
187
187 | .7
2.5
2.5
2.5
2.5
2.5 | 150
100
100
100
100 | 500
*60
*80
*60
*80 | 10
10
10
25
25 | 10
*9-22
*9-22
*19-42
*19-42 | 7
20.
7
20. | 50
100
100
150
150 | 36
-
-
-
- | | | | 2N1157
2N1157A
2N2739
2N2740
2N2741 | SOL
SOL
WH
WH
WH | pnp,ge
pnp,ge
npn,AJ,si
npn,AJ,si
npn,AJ,si | 187
187
200
200
200 | 2.5
2.5
2
2
2 | 100
100
175
175
175 | *60
*80
50
100
150 | 40
40
20
20
20 | *38-84
*38-84
*10
*10 | 7
20.
15
15
15 | 200
200
14
14
14 | + + + | † MT 1
† MT 1 | | P 100 | 2N2742
2N2745
2N2746
2N2747
2N2748 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 200
200
200
200
200
200 | 2
2
2
2
2
2 | 175
175
175
175
175
175 | 200
50
100
150
200 | 20
20
20
20
20
20 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 14
14.5
14.5
14.5
14.5 | †
†
†
† | † MT 1
† MT 1
† MT 1
† MT 1 | | | 2N2751
2N2752
2N2753
2N2754
2N2757 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 200
200
200
200
200
200 | 2
2
2
2
2 | 175
175
175
175
175
175 | 50
100
150
200
50 | 20
20
20
20
20
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 16
16
16
16
14 | † MT 1
† MT 1
† | † MT 1
† MT 1
† MT 1
† MT 33 | | P 101 | 2N2758
2N2759
2N2760
2N2761
2N2763 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 200
200
200
200
200
200 | 2
2
2
2
2
2 | 175
175
175
175
175
175 | 100
150
200
250
50 | 30
30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 14
14
14
14
14
14.5 | †
†
†
† | † MT 33
† MT 33
† MT 33
† MT 33
† MT 33 | | | 2N2764
2N2765
2N2766
2N2769
2N2770 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 200
200
200
200
200
200 | 2
2
2
2
1 | 175
175
175
175
175
175 | 100
150
200
50
100 | 30
30
30
30
30
30 | *10
*10
*10
*10
10 | 15
15
15
15
15 | 14.5
14.5
14.5
16
16 | †
†
†
- | † MT 33
† MT 33
† MT 33
† MT 33 | | P 102 | 2N2771
2N2772
2N2775
2N2776
2N2777 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 200
200
200
200
200
200 | 2
2
2
2
2
2 | 175
175
175
175
175
175 | 150
200
200
200
200
200 | 30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 16
16
16
16 | †
†
†
† | † MT 33
† MT 33
† MT33
† MT33
† MT33 | | | 2N2778
2N2815
2N2816
2N2817
2N2818 | WH
STC
STC
STC
STC | npn,AJ,si
npn
npn
npn
npn | 200
200
200
200
200
200 | 2
1
1
1
1 | 175
200
1.0
200
200 | 200
80
100
150
200 | 30
20
20
20
20
20 | *10
*10-50
*10-50
*20-60
*10-50 | 15
-
-
-
- | 16
-
-
-
- | † * * * * | †MT33
*7/8" hex, TI
*7/8" hex, TI
*7/8" hex, TI
*7/8" hex, TI | | P 103 | 2N2819
2N2820
2N2821
2N2822
2N2823 | STC
STC
STC
STC
STC | npn
npn
npn
npn
npn | 200
200
200
200
200
200 | 1
1
1
1
1 | 200
200
200
200
200
200 | 80
100
150
200
80 | 25
25
25
25
25
30 | *10-50
*10-50
*10-50
*10-50
*10-40 | - | - | • | *7/8" hex, TI
*7." Hex, TI
*7." Hex, TI
*7." Hex, TI
*7." Hex, TI
*7." Hex, TI | | | 2N2824
2N2825
2N2902
2N1809
2N1810 | STC
STC
TI
WH
WH | npn
npn
npn,si
npn,AJ,si
npn,AJ,si | 200
200
240
250
250 | 1
1
1.37
2.22
2.22 | 200
200
200
175
175 | 100
150
120
50
100 | 30
30
0.5
30
30 | *10-40
*10-40
30
*10
*10 | -
0.005
15
15 | -
-
14
14 | •
•
†
† | **/** Hex. TI
/ Hex. TI
† MT 14
† MT 14 | | P 104 | 2N 1811
2N 1812
2N 1813
2N 1814
2N 1816 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 250
250
250
250
250
250 | 2.22
2.22
2.22
2.22
2.22
2.22 | 175
175
175
175
175
175 | 150
200
250
300
50 | 30
30
30
30
30
30 | *10
*10
*10
*10
*10
*10 | 15
15
15
15
15 | 14
14
14
14
14
14.5 | †
†
†
† | † MT 14
† MT 14
† MT 14
† MT 14
† MT 14 | Need a FREE personal copy of this Directory? Circle number 419. | | | | | | MAX. | RATIN | GS | | СН | ARACTERIS | TICS | | | |-----------------------
--|---------------------------------|---|---|--|---|---------------------------------------|----------------------------------|--|-------------------------------|----------------------------------|---|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | P _c (W) | w/°c | T _j (°C) | V
CEO
*V
CBO
(V) | l _c (Å) | hfe
*hFE | ICO
*ICEO
†ICEX
(mA) | fae
*fT
(kHz) | Package
Outline
(TO-) | Remorks | | P 105 | 2N 1817
2N 1818
2N 1819
2N 1823
2N 1824 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
si,LA,nqn
si,LA,nqn
is,LA,nqn | 250
250
250
250
250
250 | 2.22
2.22
2.22
2.33
2.22 | 175
175
175
175
175
175 | 100
150
200
50
100 | 30
30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 14.5
14.5
14.5
16 | †
†
†
† | † MT 14
† MT 14
† MT 14
† MT 14
† MT 14 | | | 2N1825
2N1826
2N1830
2N1831
2N1832 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 250
250
250
250
250
250 | 2.22
2.22
2.22
2.22
2.22
2.22 | 175
175
175
175
175
175 | 150
200
50
100
150 | 30
30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 16
16
14
14
14 | †
†
†
† | † MT 14
† MT 14
† MT 14
† MT 14
† MT 14 | | P 106 | 2N1833
2N2109
2N2110
2N2111
2N2112 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 250
250
250
250
250
250 | 2.22
2.22
2.22
2.22
2.22
2.22 | 175
175
175
175
175
175 | 200
50
100
150
200 | 30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 14
14
14
14
14 | †
†
†
†
† | † MT 14
† MT 17
† MT 17
† MT 17
† MT 17 | | | 2N2113
2N2114
2N2116
2N2117
2N2118 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 250
250
250
250
250
250 | 2.22
2.22
2.22
2.22
2.22
2.22 | 175
175
175
175
175
175 | 250
300
50
100
150 | 30
30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 14
14
14.5
14.5
14.5 | † | † MT 17
† MT 17
† MT 17
† MT 17
† MT 17 | | P 107 | 2N2119
2N2123
2N2124
2N2125
2N2126 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 250
250
250
250
250
250 | 2.22
2.22
2.22
2.22
2.22
2.22 | 175
175
175
175
175
175 | 200
50
100
100
150 | 30
30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
- | 14.5
16
16
16
16 | † | †MT 17
†MT 17
†MT 17
†MT 17
†MT 17 | | P 108 | 2N2130
2N2131
2N2132
2N2132
2N2133
2N3149 | WH
WH
WH
WH
STC | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn | 250
250
250
250
250
300 | 2.22
2.22
2.22
2.22
2.22 | 175
175
175
175
175
200 | 50
100
150
200
80 | 30
30
30
30
70 | *10
*10
*10
*10
*10
*10 | 15
15
15
15 | 14
14
14
14 | † † † † † * | †MT 17
†MT 17
†MT 17
†MT 17
*1 1/4 "Hex | | L 109 | 2N3150
2N3151
2N4865
2N4866
2N4079 | STC
STC
SOL
SOL
AMP | npn
 | 300
300
350
350
combined to | 2
2
0.5
0.5
o form matche | 200
200
200
200
200
d comple | 100
150
80
120
mentary pa | 70
70
100
100 | *10
*10
10-40
10-40 | -
0.1
0.1 | -
20,000
20,000 | • | *1 ½ " Hex
*1 ½ " Hex | | P 109 | 2N4107
2N4136 | AMP
AMP | 2N4105 & 2N4106
2N2430 & 2N2431 | | | | | | | | | | | Reader-Service cards are good all year. Circle as many numbers on the reader-service card as you like. Complete listing of semiconductor manufacturers starts on page 86. Need a FREE personal copy of this Directory? Circle number 419. Get detailed spec sheets and application notes: use the reader-service card! ### Only IRC offers so many types to choose from ... plus unmatched quality, price and delivery IRC offers the industry's largest selection of medium current rectifiers. Satisfy all your MIL and industrial needs from one source. Choose from over 150 different JEDEC types—ratings from 1.5 to 35 amps, to 1500 PIV. IRC's exclusive construction features mean superior quality and more dependable performance, as well as substantial cost savings. Electrical features include: chemically contoured junctions for guaranteed bulk avalanching, uniform forward characteristics and lowest reverse leakage. Mechanically, the cap header tube is pre-crimped and brazed to prevent leaks. The base, of highest torque copper, has a cold headed weld to eliminate leaks between the projection and the stud. The entire unit has a bright nickel finish that resists corrosion. #### **MIL TYPES** | RATING | SERIES | MIL | |-------------|---------------|------------------| | 0.3A, 1500V | 1N1130, 1131 | MIL-S-19500/259A | | 12A | 1N1200A-1206A | MIL-S-19500/260A | | 35A | 1N1184-1190 | MIL-S-19500/297 | For data and prices on all IRC rectifiers, write to: IRC, Inc., Semiconductor Division (formerly North American Electronics), 71 Linden Street, West Lynn, Mass. 01905. ### AND ALSO... HIGH CURRENT RECTIFIERS - All "1N" types. Forward or reverse polarity. - 100 to 275 amps, to 1400 PIV - 200°C junction capability - Fatigue-free construction - Metal-ceramic hermetic seal - Highest torque copper stud Rewarding career opportunities are immediately available. ### Low-Level Switching under one watt | | 1 - 1 | | | 14.5 | | M | X. RAT | INGS | | | CHARACTE | RISTICS | | | | |-----------------------|---|-----------------------------------|--|--------------------------------------|--|--|-------------------------------------|----------------------------------|---------------------------------|---|---|-------------------------------------|--|-----------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*f _T
(MHz) | P c (mW) | T _j | mW/°C | VCEO
VCBO
(V) | 1 C (mA) | hfe
*hFE | lCO
*lCEO
(μÅ) | Coe
*Cob
(pF) | V _{ce(sat)} | Package
Outline
(TO-) | Remarks | | LL 1 | 2N327A
2N328A
2N328B
2N329
2N329 | RA
RA
SPR
RA
RA | pnp,si
pnp,si
pnp,PL,si
pnp,si
pnp,si | 0.05
0.05
0.05
0.05
0.05 | 380
380
500
340
380 | 160
160
200
160
160 | 2.9
2.9
2.9
2.5
2.9 | 40
35
35
30
30 | 50
50
50
5
5 | *15
*30
*30
60
*60 | 0.1
0.1
0.001
0.1
0.1 | *110
*110
110
*100
*110 | 0.3
0.5
0.5
1.0
0.6 | 5
5
5
5 | SSD, CT, STC, ETC, SPR, TI, NA
SSD, CT, STC, ETC, TI, SPR, NA
SSD, CT, STC, ETC, SPR, TI, NA | | | 2N329B
2N1034
2N1035
2N1036
2N1037 | SPR
RA
RA
RA
RA | pnp,PL,si
pnp,si
pnp,si
pnp,si
pnp,si | 0.05
0.05
0.05
0.05
0.05 | 500
250
250
250
250
250 | 200
160
160
160
160 | 2.9
1.85
1.85
1.85
1.85 | 30
40
35
30
35 | 50
50
50
50
50 | *60
15
30
60
25 | 0.001
1
1
1
1 | 110
*110
*110
*110
*110 | 0.6
0.5
0.4
0.3
0.5 | 5
5
5
5 | KSC, CT, ETC, SPR, NA, SSD
KSC, CT, ETC, SPR, NA, SSD
KSC, CT, ETC, SPR, NA, SSD
KSC, CT, ETC, SPR, SSD | | LL 2 | 2N1275
2N1640
2N1641
2N519
2N519A | RA
CT
CT
GI
GI | pnp,si
pnp,SYM
pnp,SYM
pnp,AJ,ge
pnp,AJ,ge | 0.05
*0.4
*0.8
1 | 250
250
250
100
150 | 160
160
160
85
100 | 1.85
1.9
1.9
1.67
2.0 | 80
20
10
•15
•20 | 50
50
50
- | *15
*6
*10
15 | 1
0.01
0.01
2
2 | *110
*50
*50
*14
*14 | 0.3
-
-
-
- | 5
5
5
5 | CT, SPR, NA, SSD TI TI, IND | | | 2N943
2N946
2N944
2N945
2N1091 | SSD
SSD
SSD
SSD
RCA | AJ
AJ
AJ
npn,AJ,ge | 1
1
1
1 | 250
250
250
250
250
120 | 175
175
175
175
175
85 | 1.67
1.67
1.67
1.67 | 18
80
18
50
•25 | 50
50
50
50
400 | -
-
-
-
•40 | 0.002
0.004
0.003
0.004
8 | *14
*14
*14
*14
*25 | 0,003
0.005
0.004
0.005
- | 18
18
18
18
5 | CT, Chopper Pairs, SPR
CT, Chopper Pairs, SPR
CT, Chopper Pairs, SPR
CT, Chopper Pairs, SPR
GI | | LL 3 | 2N1614
2N3342
2N3344
2N3345
2N3346 | GE
SSD
SSD
SSD
SSD | eg, LA, qnq
LA, qnq
LA, qnq
LA, qnq
LA, qnq | 1
1
1
1 | 240
250
250
250
250
250 | 85
175
175
175
175 | 4
1.7
1.7
1.7
1.7 | 12
8
30
50
50 | 300
50
50
50
50 | *32
*30
*25
*15
*25 | 25
0.02
0.002
0.005
0.005 |
-
*10
*12
*12
*12 | 90
0.1
0.0012
0.003
0.0015 | 5
5
5
5 | SPR
SPR
SPR
SPR | | | 2N3842
2N3977
2N3978
2N3979
2N1642 | SPR
SPR
SPR
SPR
CT | pnp,PE,si
pnp,PE,si
pnp,PE,si
pnp,PE,si
pnp,SYM | *1
1
1
1
*1.2 | 300
400
400
400
250 | 200
200
200
200
200
160 | 1.7
2.3
2.3
2.3
1.9 | 120
10
20
35
6 | 100
100
100
100
50 | 1
*40
*30
*20
15 | 0.020
0.001
0.001
0.001
0.1 | *9
*14
*14
*14
*50 | -
0.10
0.10
0.15
- | 18
46
46
46
5 | Chopper
Chopper
Chopper
Chopper | | LL 4 | 2N594
2N3841
2N3343
2N524
2N525 | TI
SPR
SSD
GE
GE | npn,AJ,ge
pnp,PE,si
pnp,AJ,ge
pnp,AJ,ge | *1.5
*1.5
*2
2.5
2.5 | 150
300
250
225
225 | 85
200
175
85
85 | 2.5
1.7
1.85
5 | 20
100
25
30
30 | 300
100
50
500
500 | 50
1.5
20
°25-42
•34-65 | 5
0.002
0.003
10
10 | 17
•9
25
18
•18 | -
0.003
0.075
0.080 | 5
18
5
5
5 | Chapper | | | 2N526
2N527
2N356
2N356A
2N426 | GE
GE
GI
GI
TI | sp,LA,qnq
sp,LA,qnq
sp,LA,nqn
sp,LA,nqn
sp,LA,nqn | 2.5
2.5
3
3 | 225
225
100
150
150 | 85
85
85
100
100 | 5
5
2.0
2.0
2.5 | 30
30
•20
•30
•30 | 500
500
-
-
400 | *53-90
*72-121
*20-50
*20-50
*30-60 | 10
10
5
5
25 | *18
*18
*14
*14
*20 | 0.085
0.090
0.20
0.20
0.32 | 5
5
5
5 | TI
TI | | LL 5 | 2N520
2N528A
2N585
2N595
2N1012 | GI
GI
RCA
TI
GI | sg.LA,qnq
sg.LA,qnq
sg.LA,nqn
sg.LA,nqn
sg.LA,nqn | 3
3
*3
*3
3 | 100
150
120
150
150 | 85
100
71
85
100 | 1.67
2.0
-
2.5
2.0 | *15
*20
*25
15
*35 | -
200
300 | 20
40
•20
75
•40 | 2
2
3
5
5 | *14
*14
-
17
*20 | -
0.1
-
0.20 | 5
5
9
5
5 | TI
GI | | | 2N1051
2N1694
2N2946
2N404
2N404A | GE
CT
RCA | npn,DD,si
npn,ge
pnp,si
pnp,AJ,ge
pnp,AJ | 3
3
•3
4
4 | 500
75
400
150
150 | 150
85
200
85
85 | 4
-
2.3
- | 40
20
•40
24
35 | 100
25
100
100
100 | 30-100
•50
•30
•24
24 | 0.1
1.5
0.0005
2
2 | *7
6
*10
- | 3.0
-
-
0.1
0.1 | 5
5
46
5 | NA, SSD
AMP, GI, TI, RCA, NUC, GE, IEC
NUC, TI | | LL 6 | 2N1605
2N1605A
2N1808
2N3857
2N1169 | RCA
RCA
TI
NA
RCA | pnp,AJ,ge
pnp,AJ,ge
npn,AJ,ge
pnp,EP,si
npn,AJ,ge | 4
4
4
•4
4.5 | 150
200
150
600
120 | 100
100
100
200
71 | -
2.5
4.3 | *25
*40
25
*45
18 | 100
100
300
100 | *40
*40
*125
*50-200
*20 | 5
10
5
0.005
10 | *20
*20
*20
*10
19 | 0.15
0.15
0.15
0.1 | 5
5
5
8
5 | TI
TI | | | 2N1170
2N315
2N315A
2N315B
2N388 | AMP
GI
GI
GI
TI | npn,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,LA,qnq
pnp,AJ,ge | 4.5
5
5
5
5 | 120
100
150
150
150 | 71
85
100
100
100 | 2
2
2
2
2 | 20
•20
•25
•30
25 | 200
200
200
200
500 | *20
*15-30
*20-50
*20-50
*60-180 | 8
2
2
2
10 | 19
*14
*14
*14
*20 | 0.15
0.15
0.15
0.15 | 5
5
5
5 | TI, IND
TI, IND | | LL 7 | 2N388A
2N427
2N596
2N858
2N1090 | TI
TI
TI
*SPR
RCA | pnp,AJ,ge
pnp,AJ,ge
npn,AJ,ge
pnp,SP,si
npn,AJ,ge | 5
5
*5
*5 | 150
150
150
150
150
120 | 100
100
85
140
85 | 2
2.5
2.5
1.3 | 40
*30
10
40
*25 | 500
400
300
50
400 | *60-180
*40-80
100
33
*30 | 10
25
5
0.1
8 | *20
*20
17
*5
*25 | 0.32
0.07 | 5
5
5
18
5 | °PH orig Reg, CT
GI, TI | | | 2N2945
2N2946 A
2N3677
2N357
2N357A | CT
TI
CT
GI
GI | pnp,si
pnp,EP,si
pnp,si
npn,AJ,ge
npn,AJ,ge | *5
*5
5
6 | 400
400
400
100
150 | 200
200
200
85
100 | 2.3
2.3
-
2
2 | 25
• 40
20
• 20
• 30 | 100
100
100
- | *40
*50
-
*20-50
*25-75 | 0.0002
0.0005
0.001
5
5 | *10
*10
6
*14
*14 | -
0.001
0.20
0,20 | 46
46
46
5 | NA, SSD
TI
TI | | LL 8 | 2N859
2N1173
2N1319
2N2274
2N2275 | *SPR
IEC
TI
*SPR
*SPR | pnp,SP,si
npn,PE,si
pnp,AJ,ge
pnp,SP,si
pnp,SP,si | *6
6
6
*6
*6 | 150
250
120
150
150 | 140
100
71
140
140 | 1.3
2.0
-
1.3
1.3 | 40
30
•20
25
25 | 50
200
400
50
50 | 65
25-75
•30
•15
•15 | 0.1
5
2.5
0.003
0.003 | *5
14
*20
*6.0
*6.0 | 0.06
0.20
0.2
- | 18
18
5
18
18 | *PH orig Reg, CT Chopper, *PH orig Reg, CT M. Pair 2N2274*PH orig Reg, CT | Circle as many numbers on the reader-service card as you like. | | | | | (Alexa) | | M | AX. RAT | INGS | | | CHARACTE | RISTICS | | | | |-----------------------|--|--|---|--------------------------------------|--|--|-------------------------------------|--|-----------------------------------|---|--|---------------------------------------|--|----------------------------------|---| | Crass
Index
Key | Type
No. | Mfr. | Туре | fae
*fT
(MHz) | P _c
(mW) | T _j | m₩/°C | V
CEO
CBO
(V) | 1 C (mA) | hfe
hFE | ICO
*ICEO
(//A) | C _{ae} *C _{ob} (pF) | V _{ce(sat)} | Package
Outline
(TO-) | Remarks | | LL 9 | 2N2276
2N2277
2N3840
3N123
2N3317 | *SPR
*SPR
SPR
SPR
SPR
SPR | pnp,SP,si
pnp,SP,si
pnp,PE,si
pnp,PE,si
pnp,PE,si | *6
*6
*6
6
*6.4 | 150
150
400
100
150 | 140
140
200
200
200
140 | 1.3
1.3
2.3
0.58
1.3 | *15
*15
50
*30
30 | 50
50
100
20
50 | *15
*15
1.5
- | 0.003
0.003
0.0005
0.01
0.001 | *6.0
*6.0
*9
*10
*9 | | 18
18
46
72
18 | Chopper, *PH Orig Reg, CT
M. Pair 2N2276 *PH orig Reg, CT
Chopper
Dual
Chopper, CT | | | 2N860
2N2185
2N2186
2N2187
2N1000 | *SPR
*SPR
GI | pnp,SP,si
pnp,SP,si
pnp,SP,si
pnp,SP,si
npn,AJ,ge | *6.5
*6.5
*6.5
*6.5
7 | 150
150
150
150
150 | 140
140
140
140
140 | 1.3
1.3
1.3
1.3
2.0 | 25
30
30
30
*40 | 50
50
50
50
- | 33
-
-
-
•40 | 0.1
0.001
0.001
0.001
15 | *5
*6.0
*6.0
*6.0
*20 | 0.07
-
-
-
0.25 | 18
18
18
18
18 | *PH orig Reg, CT
Chopper, CT, SPR
M. Pair 2N2185; *PH orig Reg, C
M. Pair 2N2185; CT, SPR | | LL 10 | 2N1119
2N861
2N2278
2N2279
2N3318 | *SPR
*SPR
*SPR
*SPR
SPR | pnp,SAT,si
pnp,SP,si
pnp,SP,si
pnp,SP,si
pnp,SP,si | *7.2
*7.5
*7.6
*7.6
*7.6 | 150
150
150
150
150 | 140
140
140
140
140
140 | 1.3
1.3
1.3
1.3
1.3 | 10
25
15
15
15 | 50
50
50
50
50 | *25
65
-
- | 0.001
0.1
0.001
0.001
0.001 | *6.0
*5
*6.0
*6.0 | 0.08
0.06
-
- | 5
18
18
18 | °PH orig Reg, CT
°PH orig Reg, CT
Chopper °PH orig Reg, CT
M Pair 2N2278 °PH orig Reg, CT
Chopper, CT | | | 2N414
2N521
2N521A
2N579
2N581 | RCA
GI
GI
RCA | eg,LA,qnq
eg,LA,qnq
eg,LA,qnq
eg,LA,qnq | 8
8
8
8 | 150
100
150
120
150 | 85
85
100
71
85 | 1.67
2.0
- | *30
*15
*20
*20
*18 | 200
-
-
400
100 | 80
35
70
*30
30 | 2
2
2
5
3 | *11
*14
*14
- | -
-
0.2
0.2 | 5
5
9
5 | LAN, TI
TI
TI, IND
GI, IND
GI, TI, LAN, IND | | LL 11 | 2N583
2N862
2N2970
2N2971
2N358 | *SPR
SPR
SPR
GI | pnp,AJ,ge
pnp,SP,si
pnp,SP,si
pnp,SP,si
npn,AJ,ge | 8
*8
*8
*8 | 120
150
150
150
150 | 85
140
140
140
85 | 1.3
1.3
1.3
2.0 | *18
15
*30
*30
*20 | 100
50
50
50
50 | *30
33
*10
*10
*20-50 | 3
0.1
0.01
0.01
5 | -
*5
*6.0
*6
*14 | 0.2
0.07
0.08
0.08
0.20 | 1
18
5
18
5 | GI, LAN
*PH orig Reg, CT
Symmetrical
Symmetrical
TI | | | 2N358A
2N428
2N863
2N942
2N2165 | GI
TI
*SPR
SSD
SPR | npn,AJ,ge
npn,AJ,ge
pnp,SP,si
AJ
pnp,SP,si | 9
10
*10
10
*10 | 150
150
150
250
150 | 100
100
140
175
140 | 2.0
2.5
1.3
1.67
1.3 | *30
*30
15
8
30 | -
400
50
50
50 | *25-75
*60
65
*25 | 5
25
0.1
0.0025
0.020 | *14
*20
*5
*14
*6 | 0.20
0.32
0.06
0.004 | 5
5
18
18
5 | TI, IEC
IEC
*PH orig Reg
CT, Chopper Pairs, SPR
Chopper, CT | | LL 12 | 2N2166
2N2944
2N2968
2N2969
2N2677 | SPR
CT
SPR
SPR
GE | pnp,SP,si
pnp,si
pnp,SP,si
pnp,SP,si
npn,DG,si | *10
*10
*10
*10
*10 | 150
400
150
150
250 |
140
200
140
140
175 | 1.3
2.3
1.3
1.3
1.66 | 15
*15
*30
*30
*45 | 50
100
50
50
25 | -
*80
*15
*15
*20-55 | 0.020
0.0001
0.01
0.01
0.1 | *6
*10
*6
*6
*3 | -
0.06
0.06
1.5 | 5
46
5
18
46 | Chopper, CT
NA, SSD
Symmetrical
Symmetrical | | | 2N2945A
3N129
3N130
3N131
3N132 | TI
CT
CT
CT
CT | pnp EP si
pnp,EP,si
pnp,EP,si
pnp,EP,si
pnp,EP,si | *10
10
10
10
10 | 400
300
300
300
300
300 | 200
200
200
200
200
200 | 2 3
1.7
1.7
1.7
1.7 | *25
20
30
40
50 | 100
100
100
100
100 | *70
-
-
-
- | 0 0002
0.001
0.001
0.001
0.001 | *10
*6
*6
*6
*6 | 0.00003
0.00003
0.00003
0.00003 | 46
72
72
72
72
72 | Dual emitter
Dual emitter
Dual emitter
Dual emitter | | LL 13 | 3N133
2N316
2N316A
2N3019
2N3020 | CT
GI
GI
FA
FA | pnp,EP,si
pnp,AJ,ge
pnp,AJ,ge
npn,DPE,si
npn,DPE,si | 10
12
12
12
12 | 300
100
150
800
800 | 200
85
100
200
200 | 1.7
2.0
2.0
28.6
28.6 | 60
*20
*25
*140
*140 | 100
200
200
100
100 | -
*20-50
*20-50
5
4 | 0.001
2
2
- | *6
*14
*14
12
12 | 0.00003
0.18
0.18
0.2
0.2 | 72
5
5
5
5 | Dual emitter
IND
IND
NA | | | 2N3319
3N108
3N109
3N110
3N111 | SPR
TI
TI
TI | pnp,SP,si
pnp,EP,si
pnp,EP,si
pnp,EP,si
pnp,EP,si | *12
*12
*12
*12
*12 | 150
300
300
300
300
300 | 140
200
200
200
200
200 | 1.3
1.71
1.71
1.71
1.71 | *10
*50
*50
*50
*50
*50 | 50
20
20
20
20
20 | 4 | 50
0.25
0.25
0.5
0.5 | *10
*10
*10
*10
*10 | 11111 | 18
72
72
72
72
72 | Chopper, CT
Double emitter chopper
Double emitter chopper
Double emitter chopper
Double emitter chopper | | LL 14 | 2N2162
2N2163
2N337A
2N522
2N522A | SPR
SPR
GE
GI | pnp,SP,si
pnp,SP,si
npn,DG,si
pnp,AJ,ge
pnp,AJ,ge | *14
*14
*15
15 | 150
150
500
100
150 | 140
140
175
85
100 | 1.3
1.3
3.33
1.67
2.0 | 30
15
*45
*15
*20 | 50
50
20
- | 35
30
*20-55
60
100 | 0.001
0.001
0.5
2
2 | *6
*6
*3
*14
*14 | -
1.5
- | 5
5
5
5 | Chopper, CT
Chopper, CT
TR
TI
TI, IND | | | 2N580
2N1276
2N1277
2N1278
2N1279 | GE
GE
GE
GE | pnp,AJ,ge
npn,DG,si
npn,DG,si
npn,DG,si
npn,DG,si | 15
*15
*15
*15
*15 | 120
150
150
150
150 | 71
150
150
150
150 | 1.2
1.2
1.2
1.2 | *20
*40
*40
*40
*40 | 400
25
25
25
25
25 | *45
9-22
18-44
37-90
76-333 | 5
1
1
1 | *5
*5
*5.0
*5 | 0.2
1
1
1
1 | 9
5
5
5
5 | GI, IND
TR
TR
TR
TR | | LL 15 | 2N1309A
2N2349
2N2944A
2N3677
2N4007 | GI
GE
TI
CT | pnp,AJ,ge
npn,DG,si
pnp,EP si
EP,si
pnp,EP,si | 15
*15
*15
*15
*15 | 150
150
400
400
400 | 85
150
200
200
200
200 | 2.5
1.25
2.3
2.3
2.3 | *35
*40
*15
*30
20 | 300
25
100
100 | *80
*120-250
*100
-
150 | 6
1
0 0001
0.001
0.001 | 20
*4
*10
*10
6 | 0.2
1.5
-
-
0.0007 | 5
5
46
18
46 | TI Low Rec (SAT) Chopper | | | 2N4008
2N864
2N941
2N1676
2N1677 | CT
*SPR
SSD
*SPR
*SPR | pnp,EP,si
pnp,SP,si
AJ
pnp,SAT,si
pnp,SAT,si | 15
*16
16
*16
*16 | 400
150
250
100
100 | 200
140
175
140
140 | 2.3
1.3
1.67
0.87
0.87 | 35
6
8
4.5
4.5 | 100
50
50
50
50 | 150
65
•25
-
50 | 0.001
0.1
0.0025
0.001
0.001 | 6
*5
*14
*7
*7 | 0.0008
0.06
0.002
0.04
0.055 | 46
18
18
5
5 | *PH orig Reg, CT
CT, Chopper Pairs, SPR
Chopper, *PH orig Reg
Chopper, *PH orig Reg | | LL 16 | 2N2167
2N2280
2N2281
2N582
2N317 | SPR
*SPR
RCA
GI | pnp,SP,si
pnp,SP,si
pnp,SP,si
pnp,AJ,ge
pnp,AJ,ge | *16
*16
*16
18
20 | 150
150
150
150
150 | 140
140
140
85
85 | 1.3
1.3
1.3
-
2.0 | *12
*10
*10
*25
*20 | 50
50
50
100
400 | -
-
-
60
*20-60 | 0.002
0.003
0.003
2
2 | *6
*7
*7
-7
- | 0.05
-
0.2
0.20 | 5
18
18
5
5 | Chopper, CT
Chopper, *PH orig Reg, CT
M Pair 2N2280, SPR, CT
GI, TI, RCA, IND
TI, IND | | | | | | | | MA | X. RAT | INGS | | С | HARACTE | RISTICS | | | | |-----------------------|--|-------------------------------|---|--|--|--|-----------------------------------|--------------------------------|-----------------------------------|---|---------------------------------------|-----------------------------------|---------------------------------------|---------------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*f
T
(MHz) | P (m₩) | T ; | mW/°C | VCEO
• VCBO
(V) | I C (mA) | h _{fe} *h | I _{CO}
*ICEO
(μΑ) | Cae
*Cob
(pF) | V _{ce(sat)}
(V) | Package
Outline
(TO-) | Remarks | | LL 17 | 2N317A
2N1384
2N2350
2N2351
2N2352 | GI
RCA
GE
GE
GE | pnp,AJ,ge
pnp,DR,ge
npn,PL,si
npn,PL,si
npn,PL,si | 20
*20
20
20
20 | 150
240
400
400
400 | 100
85
200
200
200 | 2.0
-
2.3
2.3
2.3 | *25
*30
40
50
40 | 400
500
1
1 | *20-60
*20
*300
*120
*60 | 2
4
-
- | *14
-
20
20
20
20 | 0.20
-
0.35
0.35
0.35 | 5
11
46
46
46 | TI, IND | | | 2N2353
2N2432A
2N2678
2N4006
2N4138 | GE
TI
GE
CT
TI | npn,PL,si
npn,EP,si
npn,DG,si
pnp,EP,si
npn EP si | 20
*20
*20
20
20
*20 | 350
300
250
400
300 | 200
175
175
200
175 | -
2
1.66
2.3
2 | 25
45
•45
10
30 | 1
100
25
100
100 | *20
*50
45-150
250
*50 | -
0 01
0.1
0.001
0 01 | 20
•12
•3
6
•12 | 0.35
0,15
1.5
0.0005
0.15 | 46
18
46
46
46 | | | LL 18 | 2N523
2N523A
2N865
2N2164
2N338A | GI
GI
*SPR
SPR
GE | pnp,AJ,ge
pnp,AJ,ge
pnp,SP,si
pnp,SP,si
npn,DG,si | 21
21
•24
•24
25 | 100
150
150
150
150
500 | 85
85
140
140
175 | 1.67
2.0
1.3
1.3
3.33 | *15
*15
*10
*12
45 | -
50
50
25 | 80
125
150
40
45-150 | 2
2
0.1
0.002
0.5 | *14
*14
*5
*6 | -
0.05
-
1.5 | 5
5
18
5
5 | IND
*PH orig Reg, CT
Chopper, CT
TR | | | 2N524A
3N74
3N75
3N76
2N842 | MO
TI
TI
TI
TR | pnp,AJ,ge
npn,PL,si
npn,PL,si
npn,PL,si
npn,PE,si | 25-42
*30
*30
*30
30 | 225
300
300
300
300
300 | 100
175
175
175
175
175 | 6.67
2
2
2
2 | *45
*50
*50
*50
45 | 500
20
20
20
20
50 | 18-41
-
-
-
-
*20-55 | 10
0.01
0.01
0.01
1 | *40
*8
*8
*8 | 0.130
-
-
1.2 | 5
72
72
72
72
18 | Double emitter chapper
Double emitter chapper
Double emitter chapper | | LL 19 | 3N77
3N78
3N79
2N1060
2N525A | TI
TI
TI | npn,PL,si
npn,PL,si
npn,PL,si
npn,DM,si
pnp,AJ,ge | *30
*30
*30
30.0
34-65 | 300
200
300
350
225 | 175
175
175
175
150
100 | 2
2
2
2,0
6.67 | •40
•40
•40
40
•45 | 20
20
20
50
50 | -
-
-
20
30-64 | 0.01
0.01
0.02
0.1
10 | *8
*8
*10
*40 | -
-
0.3
0.130 | 72
72
72
72
18
5 | Double emitter chopper
Double emitter chopper
Double emitter chopper
NA | | | 2N794
2N843
2N1300
2N1854
2N3547 | TR
RCA
RCA
NA | pnp,MS,ge
npn,PE,si
pnp,MS,ge
pnp,DM,ge
pnp,DD,EP,si | 40
40
*40
40
*45 | 150
300
150
150
400 | 85
175
85
85
200 | 2
-
-
2.3 | *13
45
*13
*18
*60 | 100
50
100
100
100 | *50
*45-150
30
40-400
*35-300 | 13
1
3
4.2
•0.1025 | -
*10
-
-
*8 | -
1.2
-
0.25
1 | 18
18
5
5 | SPR
SPR, TI | | LL 20 | 2N1683
2N3547
2N526A
2N795
2N1301 | TI
NA
MO
RCA | pnp,MS,ge
pnp,DD,EP,si
pnp,AJ,ge
pnp,MS,ge
pnp,MS,ge | *50
*50 (min)
53-90
60
*60 | 150
500
225
150
150 | 85
175
100
85
85 | 3.3
6.67
- | 12
120
•45
•13
•13 | 100
-
500
100 | *50
*20
44-88
*75
30 | 3
1
10
13
3 | -
6
•40
- | 0.2
0.130
- | 5
104
5
18
5 | SPR, TI
SPR, TI | | | 2N3548
2N3549
2N398A
2N3107
2N3109 | NA
NA
MO
FA
FA | pnp,DD,EP,si
pnp,DD,EP,si
pnp,AJ,ge
npn,DPE,si
npn,DPE,si | *60
*60
65
70
70 | 400
400
150
800
800 | 200
200
100
200
200
200 | 2.3
2.3
2
4.57
4.57 | *60
*60
105
100
80 | 100
100
200
1000
1000 | *100-300
*100-500
*65
60
60 |
*1010
*0.010
12
0.01
0.01 | *8
*8
-
20
25 | 1
1
0.11
10
150 | 18
18
5
5
5 | GI, TI, RCA | | LL 21 | 2N3340
2N3341
2N527A
2N796
2N1131A | SSD
SSD
MO
SPR
HU | npn,PL
pnp,EP
pnp,AJ,ge
pnp,MS,ge
pnp | *70
*70
72-121
80
*80 | 400
400
225
150
750 | 200
200
100
85
175 | 2,28
2,28
6,67
- | 20
20
•45
•13
•60 | 30
30
500
100 | *60
*60
60-120
*85
*30 | 0.001
0.01
10
13 | *6
*6
*40
- | 0.2
0.25
0.130 | 46
46
5
18
5 | ТІ | | | 2N1132A
2N1132B
2N1252
2N3108
2N3110 | HU
HU
FA
FA
FA | pnp
pnp
npn,DD,si
npn,DPE,si
npn,DPE,si | *80
*80
*80
96
96 | 750
750
2.0
800
800 | 175
175
175
200
200 | -
13.3
4.57
4.57 | *60
*70
*30
100
80 | -
-
1000
1000 | *60
*60
*35
40
40 | -
0.1
0.01
0.01 | -
*30
20
25 | -
0.6
10
150 | 5
5
5
5 | MO
MO
SY, AL, NA, IEC | | LL 22 | 2N1139
2N1254
2N1255
2N1256
2N1257 | TR
HU
HU
HU | npn,PE,si
pnp
pnp
pnp
pnp | 100
*100
*100
*100
*100 | 500
275
275
275
275
275 | 175
175
175
175
175
175 | 6.6 | 15
30
30
40
40 | 100
-
-
-
- | *20-200
30
*60
*30
*60 | 5
-
-
- | 12
8
8
8 | 0.7
-
-
-
- | 5
5
5
5 | IEC
IEC
IEC
IEC | | | 2N1258
2N1259
2N1444
2N2102
2N2569 | HU
HU
RCA
AMP | pnp
pnp
npn,DM,si
npn,si
npn,PE,si | *100
*100
100
*100
100 | 275
275
500
5W
300 | 175
175
150
200
175 | -
4
28.6
2 | 30
50
*60
65
*20 | -
250
1A
100 | *100
*50
*25
*40-120
*50 | -
0.5
0.002
0.01 | 8
8
*32
*75
*10 | 1.5
0.5
0.2 | 5
5
5
18 | IEC
IEC
NA
CDC, GI, TR, TRWS
Chopper - Voffset = 145, AMF | | LL 23 | 2N2570
2N3883
2N4354
2N4355
2N4356 | AMP
MO
FA
FA
FA | npn,PE,si
pnp,EM,ge
pnp,PE,si
pnp,PE,si
pnp,PE,si | 100
*100
100
100
100 | 300
750
800
800
800 | 175
100
125
125
125 | 2
10
8
8
8 | *20
15
*60
*60
*80 | 100
300
600
600
600 | *50
*30
110
170
160 | 0,01
†
-
-
- | *10
*8
15.0
15.0
15.0 | 0.2
0.5
0.25
0.25
0.25 | 18
5
18
18 | Chopper - Voffset = 350, AMF
Ices = 100, TI | | | 3N71
3N72
3N73
2N1204
2N1204A | DZS
DZS
DZS
DM
OM | n,PL
n,PL
n,PL
pnp,EP,ge
pnp,EP,ge | *100
*100
*100
*110
*110 | 100
100
100
750
750 | 200
200
200
100
100 | 0.57
0.57
0.57
10
10 | *15
*15
*15
15
15 | 10
10
10
500
500 | *40
*40
*40
*15
*25 | 0.010
0.010
0.010
7
7 | *6
*6
*6
*6.5
*6.5 | 50
100
200
0.4
0.4 | 18
18
18
5
5 | Dual-Emitter Chopper, SOL
Dual-Emitter Chopper, SOL
Dual-Emitter Chopper, SOL
TI | | LL 24 | 2N1253
2N1494
2N1494A
2N2800
2N2801 | FA
MO
MO
MO
MO | npn,DD,si
pnp,EP,ge
pnp,EP,ge
pnp,AE,si
pnp,AE,si | *110
*110
*110
*120
*120 | 2.0
750
750
3W
3W | 175
100
100
200
200 | 13.3
10
10
1.73
17.3 | *30
15
15
35
35 | 500
500
800
800 | *45
*15
*25
*30-90
*17-225 | 0.1
7
7
7
†0.1
†0.1 | *30
*6.5
*6.5
*25
*25 | 0.6
0.4
0.4
0.4
0.4 | 5
31
31
5
5 | GI, AL, NA, IEC ticex ticex | Get detailed spec sheets and application notes: use the reader-service card! NOW one source for all your integrated circuit needs MOTOROLA offers every IC logic complement DTL - MDTL - MECL - MHTL - MTTL - MRTL - MW MRTL - MVTL and everything in linear, too! SEMICONDUCTOR SPECIALISTS stocks 'em all for fast same-day, off-the-shelf delivery! MDTL, MECL, MHTL, MRTL, MTTL and MVTL are trademarks of Motorola Inc. Your Franchised Motorola Distributor Semiconductor Specialists INC. CHICAGO PO Box 8725, O'Hare Int'l Airport, (312) 279-1000 • DETROIT 25127 West 6 Mile Road, (313) 255-0300 MINNEAPOLIS 7742 Morgan Avenue So., (612) UN 6-3434 • ST. LOUIS 6154 Jefferson Avenue, (314) JA 1-8866 PITTSBURGH 2011 Waverly Street, (412) 351-3611 | | | | | 6 3 | | MA | X. RAT | | | С | HARACTE | RISTICS | | | | |-----------------------|---|------------------------------|--|--|------------------------------------|--|--------------------------------------|-----------------------------------|---|---|--|--|--------------------------------------|-----------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | f _{ce} *fT (MHz) | P c (m W) | T ; | mW/°C | CEO
CBO
(V) | l C (mA) | h _{fe} | ICO
*ICEO
(μ(A) | Coe
Cob
(pF) | V _{ce(sat)} | Package
Outline
(TO-) | Remarks | | LL 25 | 2N1754
2N702
2N703
2N1495
2N1496 | *SPR
TI
TI
MO
MO | MADT,ge
npn,si
npn,si
pnp,EP,ge
pnp,EP,ge | *125
*150
*150
*150
*150 | 50
300
300
750
750 | 85
175
175
100
100 | 2
2
10
10 | *13
25
25
25
25
25 | 100
50
50
50
500 | *75
*20
*40
*25
*25 | 0.6
0.5
0.5
7 | *1.5
*3
*3
*6.5
*6.5 | 0.12
0.5
0.5
0.3
0.3 | 9
18
18
5
31 | GI, *PH orig. Reg.
TRWS, GI, NA
TRWS, FA, SY, GI, NA
TI | | | 2N2330
2N2331
2N3554
2N4402
2N1499 | MO
MO
TI
MO
PH | npn, AE.si
npn, AE.si
npn, EP.si
pnp, si
pnp, ge | *150
*150
*150
*150
*160 | 3W
1.8W
800
310
60 | 175
175
200
135
100 | 20
12
4.57
2.81 | 20
20
30
40
*20 | -
1200
600
100 | 50/-
50
*25-100
*50-150
*70 | 0.001
0001
0.5
0.1
0.6 | *10
*10
*25
-
*1.5 | 0.001
0.001
0.7
0.4
0.12 | 5
18
5
92
9 | SPR
SPR | | LL 26 | 2N1708
2N2205
2N2206
2N3485
2N3485A | RCA
SY
RCA
FA
FA | npn.PE.si
npn.PE.si
npn.PE.si
pnp.PE.si
pnp,PE.si | *200
*200
200
200
200
200 | 300
300
300
360
2000 | 175
175
175
200
200 | -
-
-
11.4
11.4 | *25
*25
*25
40
40 | 200
200
-
600
600 | *20
*20
*40
*40-120
40-120 | 12
0.025
0.025
0.020
0.020 | *6
*6
6
8 | 0.22
0.22
0.22
0.4
0.4 | 46
18
46
46
46 | FA, SY, GI, IEC
NEC
SY
TI, GE
TI, GE | | 11.02 | 2N3486
2N3486A
2N3644
2N3645
2N3830 | FA
FA
FA
TI | pnp.PE.si
pnp.PE.si
npn.DPE.si
pnp.DPE.si
npn EP si | 200
200
200
*200
*200 | 2000
2000
700
700
1000 | 200
200
125
125
200 | 11.4
11.4
7.0
7.0
5.71 | 40
40
45
60
50 | 600
600
500
500
1200 | 100-300
100-300
200
*200
*30 | 0.020
0.020
-
-
0 5 | 8
8
4.5
4.5
*12 | 0.4
0.4
-
0.3 | 46
46
-
-
5 | TI, GE
TI, GE
IEC
IEC
Comp. Dual | | LL 27 | 2N3831
2N3838
2N3905
2N4125
2N4400 | TI
TI
MO
MO
MO | npn EP si
npn pnp EP si
pnp.AE si
pnp.AE si
npn,si | *200
*200
*200
*200
*200
*200 | 1000
350
310
310
310 | 200
175
135
135
135 | 5 71
2 34
2.81
2.81
2.81 | 40
40
40
30
40 | 1200
600
200
200
200
600 | *35
*100-300
*50-150
*50-150 | 0.5
*0 01
†
0.05
0.1 | *12
*8
*4.5
*4.5
*6.5 | 0.3
0.4
0.25
0.4
0.4 | 5
89
92
92
92 | Comp Dual
Comp Dual
10.05 Icex | | LL 28 | 2N4403
2N4854
2N4855
2N827
2N2048 | MO
TI
TI
MO
*SPR | pnp,si
npn pnp EP si
npn/pnp EP si
pnp,DM,ge
MADT,ge | *200
*200
*200
*250
*250 | 310
600
600
150
150 | 135
175
175
100
100 | 2.81
4
4
2
- | 40
40
40
*20
15 | 600
60
600
100 | *100-300
*100-300
*40-120
*100
*125 | 0,1
0 01
0 01
5 | *8
*8
9
*1.5 | 0.4
0.4
0.4
0.25
0.13 | 92
5
5
18
9 | Comp. Dual
Comp. Dual
TI
*PH orig. Reg. | | LL 28 | 2N2475
2N2476
2N3015
2N3250
2N3641 | RCA
RCA
FA
FA | npn,PE,si
npn,PE,si
npn,EP,si
pnp,DPE,si
npn,PE,si | 250
250
*250
250
250
*250 | 600
600
800
360
700 | 200
200
200
200
200
125 | -
4,57
6.9
7.0 | *60
*60
30
*50
30 | -
-
200
- | *20
*40
*30-120
150
*75 | 0.2
0.2
0.2
-
0.05 | *10
*10
*8
0.25
*6.0 | 0.4
0.4
0.4
0.25
0.35 | 5
5
5
18 | SPR
TI, NA, SPR
TI
CDC, IEC, PH | | | 2N3642
2N3643
2N3903
2N3906
2N3946 | FA
FA
MO
MO
MO | npn,PE,si
npn,PE,si
npn,AE,si
pnp,AE,si
npn,AE,si | *250
*250
*250
*250
*250
*250 | 700
700
310
310
1200 | 125
125
135
135
200 | 7.0
7.0
2.81
2.81
6.9 | 45
30
40
40
40 | 200
200
200
200 | *75
*220
*50-150
*100-300
*50-150 | 0.5
0.5
†
†
† | *6.0
*6.0
*4
*4.5
*4 | 0.35
0.35
0.2
0.25
0.2 | 92
92
92
18 | CDC, IEC, PH
CDC, IEC, PH
CDC,
+U,Ub Icex
+U.05 Icex
+U.01 Icex | | LL 29 | 2N4123
2N4126
2N4401
2N784A
2N835 | MO
MO
MO
MO | npn,AE,si
pnp,AE,si
npn,si
npn,EP,si
npn,EP,si | *250
*250
*250
*300
*300 | 310
310
310
360
1W | 135
135
135
200
175 | 2.81
2.81
2.81
-
6.67 | 30
25
40
*40
*25 | 200
200
600
200
200 | *50-150
*120-360
*100-300
*25-150
20 | 0.05
0.05
0.1
0.025
0.01 | *4
*4.5
*6.5
3.5
*2.8 | 0.3
0.4
0.4
0.65
30 | 92
92
92
18
18 | ITT, SPR, IEC | | LL 30 | 2N838
2N914 46
2N2381
2N2382
2N2717 | MO
SY
MO
MO
AMP | pnp,EM.ge
pnp,PL,EP,si
pnp,EM.ge
pnp,EM,ge
pnp,AD.ge | *300
300
*300
*300
300 | 150
400
750
750
275 | 100
200
100
100
75 | 2
-
10
10
0.50 | *30
*40
15
20
*20 | 100
-
500
500
300 | *30
*30-120
*40
*40
*50 | 10
0,025
1
1 | 4
*6
*3.5
*3.5 | 0.18
0.7
0.25
0.25
0.35 | 18
46
5
5 | GI
TI
TI | | LL 30 | 2N3131
2N3251
2N3605
2N3606
2N3607 | NA
FA
GE
GE
GE | npn.si
pnp.DPE.si
npn,PEP.si
npn,PEP.si
npn,PEP.si | *300
300
300
300
300
300 | 200
360
200
200
200 | 175
200
100
100
100 | -
6.9
2.67
2.67
2.67 | 15
*50
14
14
14 | 100
200
200
200
200
200 | *30-120
300
*65
*65
*65 | 0.025
-
0.5
0.5
0.5 | *4
0.25
*4.8
*1.8
*4.8 | 0.25
0.25
0.25
0.25
0.25 | -
18
98
98
98 | TI
CDC, IEC
CDC
CDC | | | 2N3904
2N3947
2N4124
2N4264
2N4265 | MO
MO
MO
MO | npn,AE.si
npn,AE.si
npn,AE.si
npn,AE.si
npn,AE.si | *300
*300
*300
*300
*300 | 310
1200
310
310
310 | 135
200
135
135
135 | 2.81
6.9
2.81
2.81
2.81 | 40
40
25
15
12 | 200
200
200
200
200
200 | *100-300
*100-300
*120-360
*40-160
*100-400 | †
†
0.05
† | *4
*4
*4
*4 | 0.2
0.2
0.3
0.22
0.22 | 92
18
92
92
92 | CDC, fU.US Icex
f0.01 Icex
f0.1 Icex
f0.1 Icex | | LL 31 | 2N4421
2N2256
2N2257
2N2258
2N2259 | TI
MO
MO
MO
MO | npn EP si
npn,ME si
npn,ME si
pnp,ME ge
pnp,ME ge | *300
*320
*320
*320
*320 | 250
1000
1000
300
300 | 125
175
175
100
100 | 2 5
6.67
6.67
4
4 | 15
7
7
7
7 | 200
100
100
100
100 | *25
*30
*50
- | 0.6
3
3
3
3 | *5
*4
*4
*4
*4 | 0.2 | 92
18
18
18
18 | TI
TI | | | 2N834 | MO | npn,EM,sı | 350 | 1W | 175 | 6.67 | *40 | 200 | 25 | 0.01 | *2.8 | 0.25 | 18 | FA, SY, TR, GI, NA, ITT, SPF
CDC, IEC | | 11.20 | 2N3009
2N3647
2N3829 | FA
FA
TI | npn,EP,si
npn,DPE,si
pnp EP,si | *350
350
*350 | 360
400
360 | 200
200
175 | 2.06
11.43
2.4 | 15
10
20 | 200
500
200 | *30-120
25-150
*30-120 | 0.5
-
0.3 | *5
1
*6 | 0.18
0.4
0.18 | 18
46
52 | Comp_Dual | | LL 32 | 2N3973
2N3974
2N3975
2N3976
2N4420 | GE
GE
GE
TI | npn,PEP.si
npn,PEP.si
npn,PEP.si
npn,GE.si
npn EP si | *350
*350
*350
*350
*350 | 360
360
360
360
250 | 150
150
150
150
150
125 | 2.67
2.67
2.67
2.67
2.5 | *60
*60
*60
*60
20 | 400
400
400
400
200 | *35-100
*55-200
35-100
55-200
*30-120 | 0.5
0.5
0.5
0.5
0.5 | *5.2
*5.2
*5.2
*5.2
*5.2
*5 | 0.3
0.3
0.3
0.3
0.2 | 98
98
98
98
98 | | Need a FREE personal copy of this Directory? Circle number 419. | | | | | | | МА | X. RAT | INGS | | C | HARACTE | RISTICS | | | | |-----------------------|--|-----------------------------|--|---|---|--|--------------------------------------|--------------------------------|-----------------------------------|--|--|------------------------------------|--------------------------------------|-----------------------------|--| | Cross
Index
Key | Type
No. | Mfr, | Туре | fae
*f _T
(MHz) | P _c
(mW) | T _j | mW/°C | VCEO
VCBO
(V) | 1
(mA) | hfe
hFE | I _{CO}
*I _{CEO}
(µA) | Coe
*Cob
(pF) | V _{ce(sat)}
(V) | Package
Outline
(TO-) | Remarks | | LL 33 | 2N4422
2N706A | TI
Ti | npn.EP.si
npn.si | *350
400 | 250
300 | 125
175 | 2.5 | 40
20 | 200
50 | *30-120
*20 | 0 5
10 | *5
*5 | 0.2
0.6 | 92
18 | FA, SY, TR, GI, ITT, GE, MO, | | LL 33 | 2N706B
2N707 | MO
FA | npn,EP,si
npn,DD,si | *400
*400 | 300
1.0 | 175
175 | 2
6.7 | *25
*56 | 500 | 4
*12 | 0.005
0.005 | *5
*5 | 0.3
0.3 | 18
18 | RA, CDC
FA, SY, GI, TR, ITT
TRWS, MO, GI | | | 2N708 | FA | npn,DP,si | -400 | 1.2 | 200 | 6.9 | 15 | - | *50 | 0.004 | •4 | 0.3 | 18 | SY, MO, TR, GI, AMP, ITT,
NA, NUC, IEC, TI, CDC, ITT | | LL 34 | 2N742
2N828
2N2537 | MO
MO | npn,si
pnp,EM,ge
npn,AE,si | *400
*400
*400 | 500
300
3W | 200
100
200 | -
4
17.2 | 25
15
30 | 100
200
- | *25
*40
*50-150 | 0.1
0.4
0.25 | *8
3.5
*8 | 0.5
0.18
0.45 | 18
18
5 | SY, RCA, TI, LAN
SPR, GI, SY, NA, TI, GE | | LL 34 | 2N2538
2N2539
2N2540
2N2894
2N3011 | MO
MO
MO
TI
TI | npn ,AE ,si
npn,AE ,si
npn,AE ,si
pnp, EP ,si
npn,EP ,si | *400
*400
*400
*400
*400 | 3W
8W
1.8W
360
360 | 200
200
200
200
200
200 | 17.2
10.3
10.3
2.06
2.06 | 30
30
30
12
12 | -
-
200
200 | *100-300
50-150
*100-300
*40-150
*30-120 | 0.25
0.25
0.25
0.08
0.4 | *8
*8
*8
*6
*4 | 0.45
0.45
0.45
0.15
0.2 | 5
18
18
18 | SPR, GI, SY, NA, TI, GE
SPR, GI, NA, TI, GE
SPR, GI, NA, TI, GE
IEC | | | 2N3012
2N3493
2N3576
2N3722
2N3723 | FA
MO
TI
FA
FA | pnp,EP,si
npn,EA,si
pnp,EP,si
npn,PE,si
npn,PE,si | *400
*400
*400
400
400 | 360
250
360
800
800 | 200
200
175
200
200 | 2.06
1.43
2.4
22.8
22.8 | 12
8
15
60
80 | 200
-
200
500
500 | *30-120
*40-120
*40-120
- | 0.08
† 0.005
0.01
– | *6
*0.7
*4.5
9.0
9.0 | 0.15
0.13
0.15
0.75
0.75 | 18
18
18
5
5 | TI
† Icex
GE
GE | | LL 35 | 2N4304
2N4411
2N4419
2N4423
2N3648 | FA
MO
TI
TI
FA | pnp,PE,si
pnp,si
npn EP.si
pnp EP.si
npn,DPE,si | *400
*400
*400
*400
*400
450 | 1000
250
250
250
250
400 | 200
200
125
125
200 | 5.71
1.43
2.5
2.5
11.43 | *40
12
12
12
12 | 100
25
200
200
500 | *150
*40-160
*30
*40-150
30-120 | 5000
0.4
1 | 2.2
-
• 4
• 6
4 | 0.2
0.15
0.25
0.15
0.4 | 18
72
92
92
46 | Comp. Dual | | LL 36 | 2N4035
2N4046
2N4047
2N960
2N961 | FA
FA
MO
MO | pnp,PE,si
npn,PE,si
npn,PE,si
pnp,EM,ge
pnp,EM,ge | *450
450
450
*460
*460 | 1000
0.8
0.8
300
300 | 200
200
200
200
100
100 | 5.71
20
20
4
4 | *40
50
50
*15
*12 | 100
500
500
- | *200
*150
*150
*40
*40 | -
-
0.4
0.4 | 2.2
12
10
*2.2
*2.2 | 0.2
0.75
0.95
0.13
0.13 | 18
5
5
18
18 | RCA, TI
RCA, TI | | LL 30 | 2 N964
2 N965
2 N966
2 N3639
2 N4418 | MO
MO
MO
IEC
TI | pnp,EM,ge
pnp,EM,ge
pnp,EM,ge
pnp,PE,si
npn,EP,si | *460
*460
*460
500
*500 | 300
300
300
200
250 | 100
100
100
-
125 | 4
4
0.50
2 5 | *15
*12
*12
6.0
15 | -
-
80
200 | *70
*70
*70
*70
30
*40-120 | 0.4
0.4
0.4
0.01
0.4 | *2.2
*2.2
*2.2
5.5
*4 | 0.11
0.11
0.11
0.30
0.25 | 18
18
18
18
18 | RCA, TI
RCA, TI
RCA, TI | | | 2N1195
2N2368 | FA | pnp,DM,ge
npn,PE,si | *550
*550 | 250
1200 | 100
200 | 3.33
6.85 | *30
15 | 40.0
500 | 13.0
•40 | 2.0
0.1 | 4.0
*2.5 | 0.54
0.2 | 5
18 | TI, MO
TR, AL, MO, SPR. AMP. CDC. | | | 2N3646
2N4121 | FA
FA | npn,PE,si
pnp,DPE,si | 550
550 | 500
200 | 125
125 | 5.0
5 | 15
40 | 100 | *60
200 | 0.4 | *3.3
4.5 | 0.39
0.3 | - | ITT, IEC
IEC, PH
R0110 package | | LL 37 | 2N1992
2N2475
2N3010
2N3640
2N4122 | RCA
FA
FA
FA | npn,D,si
npn,PE,si
npn,EP,si
pnp,PE,si
pnp,DPE,si | *600
*600
*600
600 | 350
500
300
500
200 | 150
200
200
200
125
125 | 2
-
1.71
5.0
5 | 15
•15
6
12
40 | 50
-
50
-
100 | *45
-
*25-125
*63
300 | 0.5
0.002
0.1
0.00005 | *5
*2.1
*3
*1.85
4.5 | 0.25
0.26
0.25
0.18
0.3 | 18
18
52
- | NA
TI
IEC, PH
R0110 package | | | 2N2369 | FA | npn,PE,si | *650 | 1200 | 200 | 6.85 | 15 | 500 | *80 | 0.1 | *2.5 | 0.2 | 18 | TR, MO, AL, AMP, CDC, ITT, TI, IEC | | | 2N4207
2N4257
2N2369A | FA
FA
FA | pnp,PE,si
pnp,PE,si
npn,PE,si | *650
650
*675 | 700
500
1200 | 200
125
200 | 2.3
5
6.85 | *6
*6
15 | 50
50
200 |
*50
*30
*65 | -
-
0.05 | 3.0
*2.0
*2.3 | 0.15
0.2
0.14 | 18
18
18 | TR, AL, TI, AMP, CDC, ITT, SP | | LL 38 | 2N2787
2N2788
2N2789
2N2790
2N2791 | GI
GI
GI
GI | npn,si
npn,si
npn,si
npn,si
npn,si | *700
*700
*700
*700
*700 | 800
800
800
500
500 | 175
175
175
175
175
175 | 5.33
5.33
5.33
3.33
3.33 | 35
35
35
35
35 | - | *20-60
*40-120
*100-300
*20-60
*40-120 | 0.01
0.01
0.01
0.01
0.01 | *8
*8
*8
*8 | 0.4
0.4
0.4
0.4
0.4 | 5
5
18
18 | STC, SPR
STC, SPR
STC, SPR
STC, SPR
STC, SPR | | | 2N2792
2N4208
2N4258
2N4313
2N709 | G1
FA
FA
FA | npn,si
pnp,PE,si
pnp,PE,si
pnp,PE,si
npn,PE,si | *700
*700
700
*700
*800 | 500
700
500
500
0.5 | 175
200
125
125
200 | 3.33
2.3
5
5.0
5 | 35
*0.12
*12
*12
6 | 50
50
100 | *100-300
*30
*30
*55
*55 | 0.01
-
-
-
0.005 | *8
3.0
*2.0
3.3
*2.5 | 0.4
0.15
0.2
0.25
0.21 | 18
18
18
18 | STC, SPR SY, AL, TI, TR, VEC, AMP | | LL 39 | 2N3832
2N917
2N4209
2N918 | TI
FA
FA
FA | npn EP si
npn DP,si
pnp.PE,si
npn,PE,si | *800
*800
*850
*900 | 200
0.3
700
0.3 | 200
200
125
200 | 1 14
1.71
2.3
1.71 | 6
15
*15
15 | 35
-
50
50 | *25-125
50
*50
*50 | 0.01
0.0005
-
0.0002 | *0 85
*1.5
3.0
*1.4 | 0.25
0.4
0.2
0.12 | 72
18
18
18 | Comp, Dual
TI, RCA, AL, NA, IEC, TRWS
MO, TI, RCA, AL, TRWS, VEC,
NA, TI, IEC | | LL 40 | 2N955A
2N3959
2N3960
2N4260
2N4261 | RCA
MO
MO
MO
MO | npn,DD,ge
npn,AE,si
npn,AE,si
pnp,AE,si
pnp,AE,si | *1000
*1300
*1600
*1600
*2000 | 150
750
750
200
200 | 100
200
200
200
200
200 | -
4.3
4.3
1.14
1.14 | *12
12
12
15
15 | 150
30
30
30
30
30 | *50
*40-200
*40-200
*30-150
*30-150 | 0.6
0.1
0.1
† 0.005
† 0.005 | *4
*2.5
*2.5
*2.5
*2.5 | 0.22
0.2
0.2
0.35
0.35 | 18
18
18
72
72 | TI
ticex
ticex | | LL 4U | 2N284
2N284A
2N337
2N338
2N398 | AMP
AMP
TI
TI | pnp,AJ,ge
pnp,AJ,ge
npn,si
npn,si
pnp,AJ,ge | - | 125
125
125
125
125
50 | 75
75
150
150
55 | 2.5
2.5
1
1 | 32
60
•45
•45
105 | 125
125
20
20
100 | *45
*45
66
99
*20 | 4.5
4.5
1
1 | -
*1.2
*1.2 | 0.4
0.4
-
0.35 | 1
1
5
5
5 | GE, TR
GE, TR
MO, GI, TI, RCA | Circle as many numbers on the reader-service card as you like. | | | | | | | М | X. RAT | | | С | HARACTE | RISTICS | | | | |-----------------------|--|---|--|---------------------|--|---|---|-----------------------------------|---|--|---|---|--|----------------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*fT
(MHz) | P (m W) | т _ј
(°с) | m₩/°C | CEO
CBO
(V) | I _C | h _{fe} | ICO
*ICEO
(µA) | Cae
Cab
(pF) | V _{ce(sat)}
(V) | Package
Outline
(TO-) | Remarks | | LL 41 | 2N586
2N705
2N707A
2N710
2N711 | RCA
TI
TI
TI | pnp,AJ,ge
pnp,ge
npn,si
pnp,ge
pnp,ge | 11111 | 250
150
500
300
150 | 85
100
175
100
100 | 2
3.33
4
2 | *45
*15
40
*15
*12 | 250
50
100
50
100 | 30
•40
•9
•40
1.5 | 12
0.3
1
3
3 | -
*5
*6
-
*7.5 | 0.25
0.3
0.6
0.5
0.5 | 7
18
18
18
18 | SY, MO, RCA
MO, GI
SY, RCA, MO
SY, MO, AMP, RCA | | | 2N711A
2N711B
2N725
2N744
2N781 | TI
TI
TI
TI
SY | pnp,ge
pnp,ge
pnp,ge
npn,si
pnp,EP,ge | 111111 | 150
150
150
300
300 | 100
100
100
175
100 | 2 2 | 7
7
*15
12
*15 | 100
100
50
200
200 | *40
*40
*20
*40
*25 | 1.5
1.5
3
1
3 | *6
*6
*5
*5 | 0.30
0.25
-
0.35
0.2 | 18
18
18
18
18 | SY, MO
SY, MO
FA, SY, MO, TR, GI, ITT, IEC
AL, TI | | LL 42 | 2N782
2N797
2N849/T14
2N850/T14
2N851/T14 | 31 TI | pnp,EP,ge
npn,ge
npn,si
npn,si
npn,si | - | 300
150
300
300
300 | 100
100
175
175
175 | -
2
2
2
2
2 | *12
7
15
15
12 | 200
150
50
50
200 | *20
*40
*20
*40
*20 | 3
1
0.5
0.5 | -
*4
*5
*5
*5 | 0.2
0.14
0.6
0.6
0.35 | 18
18
50
50
50 | ТІ | | | 2N852/T14
2N985
2N1228
2N999
2N1229 | 23 TI
 T1
 HU
 FA
 HU | npn,si
pnp,ge
pnp
npn,DP,si
pnp | 11111 | 300
150
400
500
400 | 175
100
160
200
160 | 10.3 | 12
7
15
60
15 | 200
200
-
500 | *40
*60
20
-
40 | 3
0.1
0.0001
0.1 | *5
*6
-
*15 | 0.35
0.15
0.2
1.2
0.2 | 50
18
5
8
5 | MO
SPR, AMP, CT, NA, SSD
GE, NA, MO
SPR, AMP, CT, NA, SSD | | LL 43 | 2N1230
2N1231
2N1232
2N1233
2N1234 | HU
HU
HU
HU | pnp
pnp
pnp
pnp
pnp | 1 | 400
400
400
400
400 | 160
160
160
160
160 | _ | 35
35
60
60
110 | - | 20
40
20
40
20 | 0.1
0.1
0.1
0.1
0.1 | - | 0.2
0.2
0.2
0.2
0.2 | 5
5
5
5
5 | SPR, AMP, CT, NA, SSD
SPR, AMP, CT, NA, SSD
SPR, AMP, CT, NA, SSD
SPR, AMP, CT, NA, SSD
SPR, AMP, CT, SSD | | | 2N1302
2N1303
2N1304
2N1305
2N1306 | TI
TI
TI
TI | npn,ge
pnp,ge
npn,ge
pnp,ge
npn,ge | | 150
150
150
150
150 | 85
85
85
85
85 | 2.5
2.5
2.5
2.5
2.5
2.5 | *25
*30
*25
*30
*25 | 300
300
300
300
300
300 | *20
*20
*40
*40
*60 | 6
6
6
6 | *20
20
20
20
20
20 | 0.2
0.2
0.2
0.2
0.2
0.2 | 5
5
5
5 | AMP, GE, RCA, NUC, IEC
AMP, GI, RCA, NUC, GE, IEC
AMP, GI, RCA, NUC, IEC
AMP, GI, RCA, NUC, GE, IEC
AMP, GI, RCA, NUC, IEC | | LL 44 | 2N1307
2N1308
2N1309
2N1404
2N1404A | T1
T1
T1
T1 | pnp.ge
npn, ge
pnp.ge
pnp.ge
pnp.ge | - | 150
150
150
150
150 | 85
85
85
85
85 | 2.5
2.5
2.5
2.5
2.5
2.5 | *30
*25
*30
*25
*25 | 300
300
300
300
300 | *60
*80
*80
-
*30 | 6
6
5
5 | 20
20
20
*20
*20 | 0.2
0.2
0.2
0.15
0.15 | 5
5
5
5 | AMP, GI, RCA, NUC, GE, IEC
AMP, GI, RCA, NUC, IEC
AMP, GI, RCA, NUC, GE, IEC | | LL 45 | 2N1507
2N1510
2N1853
2N1917
2N1918
2N1919
2N1920
2N1921 | TI
GE
RCA
SSD
SSD
SSD
SSD | npn,si
npn,GR,ge
pnp,DM,ge
AJ
AJ
AJ | | 600
75
150
250
250
250
250 | 175
85
85
175
175
175
175 | 1.67
1.67 | *60
*75
*18
8
8
18 | 1A
20
100
50
50
50
50 | *100
*30
30-400
*25
*25
- | 1
0.5
4.2
0.002
0.006
0.002
0.003 | *35
-
-
14
*14
*14
*14
*14 | 1,5
0.26
0.2
0.002
0.004
0.003
0.004 | 5
5
5
5
5
5 | CDC, AL, TI TI TRWS, CT, Chopper Pairs, SPI Chopper Pairs, CT, SPR TRWS, AMP, CT, Chopper Pair | | 11.40 | 2N1922
2N1994
2N1995
2N1996
2N1997 | SSD
TI
TI
TI | AJ
npn,ge
npn,ge
npn,ge
pnp,ge | - | 250
150
150
150
250 | 175
85
85
85
85
100 | 1.67
2.5
2.5
2.5
2.5
3.3 | 80
15
15
15
15 | 50
300
300
300
300
500 | -
*15
*25
*35
*40 | 0.004
6
6
6
6
5 | *14
*20
*20
*20
*20
*20 | 0.005
0.25
0.25
0.25
0.25 | 5
5
5
5 | CT, Chopper Pairs, SPR ETC | | LL 46 | 2N1998
2N1999
2N2000
2N2001
2N2188 | TI
TI
TI
TI | pnp.ge
pnp.ge
pnp.ge
pnp.ge
pnp.ge | 11111 | 250
250
300
300
125 | 100
100
100
100
85 | 3.3 | 15
15
15
15
25 | 500
500
1000
1000
30 | *70
*100
*50
*100
40 | 5
5
10
6
3 | *20
*20
*35
*35
*2.5 | 0.2
0.2
0.25
0.2 | 5
5
5
5 | ETC | | LL 47 | 2N2189
2N2190
2N2191
2N2551
2N2692 | TI
TI
TI
HU
TI | pnp,ge
pnp,ge
pnp,ge
pnp
npn,si | | 125
125
125
400
300 | 85
85
85
160
175 | | 25
25
25
150
30 | 30
30
30
-
50 | 60
40
60
20
*90 | 3
3
3
-
0.01 | *2.5
*2.5
*2.5
-
*5 | -
-
-
0.2 | -
-
5
18 | | | 22 1/ | 2N2871
2N2872
2N3217
2N3218
2N3219 | HU
HU
CT
CT
CT | pnp
pnp
pnp,si
pnp,si
pnp,si | 1 - 1 - 1 | 400
400
400
400
400
400 | 160
160
200
200
200
200 | 2.3
2.3 | 60
110
*15
*25
*40 | -
100
100
100 | 20
20
10
5 | -
0.001
0.001
0.001 | -
*14
*14
*14 | - | 5
5
46
46
46 |
SPR
SPR
SPR | | LL 48 | 2N4058
2N4059
2N4060
2N4061
2N4062 | TI
TI
TI
TI
TI | pnp,PE,si
pnp,PE,si
pnp,PE,si
pnp,PE,si
pnp,PE,si
pnp,PE,si | 11111 | 250
250
250
250
250
250 | 125
125
125
125
125 | 2.5
2.5 | 30
30
30
30
30
30 | 30
30
30
30
30
30 | 100
45
45
90
110 | 0.1
0.1
0.1
0.1
0.1 | | 0.7
0.7
0.7
0.7
0.7 | 92
92
92
92
92
92 | | **NEW!** ONLY FROM INDUSTRO ## HIGH VOLTAGE **SILICON TRANSISTORS** Design Your Complementary Circuits with INDUSTRO High Voltage Transistors | PNP | | NPN | | |---|----------|---|-----------| | V_{CEO} @ $I_C = 10mA$ | 200-500V | V_{CEO} @ $I_C = 25mA$ | 200-600V | | V_{CER} @ $I_{C} = 200 \mu A$ | 200-500V | V_{CER} @ $I_{C} = 200 \mu A$ | 200-1000V | | H_{FE} @ $V_{CE} = 10V$ $I_C = 20mA$ | 30 min | H_{FE} @ $V_{CE} = 4V$ $I_C = 50mA$ | 30 min | | GBW @ $V_{CE} = 20V$
f = 5MC; $I_{C} = 10mA$ | 6 min | GBW @ $V_{CE} = 10V$
f = 20MC; $I_C = 50$ mA | 2.5 min | Write today for complete specifications. watch for... #### INDUSTRO TRANSISTOR CORPORATION 35-10 36th AVENUE/LONG ISLAND CITY, NEW YORK 11106/(212) EX 2-8000 ON READER-SERVICE CARD CIRCLE 70 # And Now... HIGHER CURRENT 1/2 AMP & 1 AMP HIGH VOLTAGE SILICON TRANSISTORS TO-5 and MD-14 200-500V TO-5 and MD-14 200-700V | PNP | | |--|----------| | V _{CEO} @ I _C = 10mA | 200-500V | | $V_{CER} @ I_C \equiv 200 \mu A$ | 200-500V | | $H_{FE} @ V_{CE} = 10V \\ I_C = .25A$ | 25 min | | $H_{FE} @ V_{CE} = 1DV$ $I_C = .1A$ | 40 min | | GBW @ V _{CE} = 10V
I _C = 50mA
f = 5 MC | 4 min | | NPN | | |--|----------| | V _{сю} | 200-500V | | VCER 1 1c = 200 | 200-700V | | H ₁₁ | 10 min | | H _{FE} @ V _{CE} = 1 0 V
I _C = .25A | 40 min | | GBW @ V _{CE} = 10V
I _C = 50mA
f = 5MC | 4 min | watch for. ### High-Level Switching one watt and above | | -3 | | | | | MA | X. RATIN | GS | | CHAR | ACTERISTI | | | and abo | |-----------------------|--|------------------------------|---|--------------------------------------|--|--|--|----------------------------------|----------------------------------|---|------------------------------------|---|-----------------------------|---------------------------------| | Cross
Index
Key | Type
Na. | Mfr. | Туре | fae
*f _T
(kHz) | P _c (₩) | т _ј
(°С) | w/°c | VCEO *VCBO (V) | I _C | h _{fe}
*h _{FE} | ICO
*ICEO
ICEX
(mA) | V _{ce(sat)}
(V) | Package
Outline
(TO-) | Remark s | | HL 1 | 2N1518
2N1519
2N1520
2N1521
2N1522 | DE
DE
DE
DE
DE | pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge
pnp,AJ,ge | 4
4
4
4 | 150
150
150
150
150 | 100
100
100
100
100 | 0.5
0.5
0.5
0.5
0.5 | 40
60
40
60
40 | 25
25
35
35
50 | *15-60
*15-60
*17-68
*17-68
*25-100 | 4
4
4
4 | 0.7
0.7
0.7
0.7
0.7 | 36
36
36
36
36 | ETC
ETC
ETC
ETC
ETC | | | 2N1523
2N2230
2N2231
2N2232
2N2233 | DE
WH
WH
WH | pnp,AJ,ge
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 4
7
7
7
7 | 150
150
150
150
150 | 100
150
150
150
150 | 0.5
2
2
2
2
2 | 60
50
100
150
200 | 50
10
10
10
10 | *25-100
*400
*400
*400
*400 | 4
10
10
10
10 | 0.7
2.2
2.2
2.2
2.2 | 36 | ETC | | HL 2 | 2N2560
2N2564
2N2565
2N618
2N1907 | TI
KSC
KSC
MO
TI | pnp,ge
pnp,ge
pnp,ge
pnp,AJ,ge
pnp,ge | 8
8
8
8.5
*10 | 20
20
20
90
60 | 100
100
100
100
100 | 0.5
0.5
0.5
1.25
2 | *40
*40
*60
*80
*100 | 3
3
3
3
20 | *20-60
*20-60
*20-60
*90
*20 | 0.65
0.65
0.65
0.8
0.5 | -
-
0.3
1.0 | -
-
3
3 | NA, KSC, BE
TI
TI
KSC | | | 2N1908
2N2226
2N2227
2N2228
2N2229 | TI
WH
WH
WH | sg,qnq
is,LA,nqn
is,LA,nqn
is,LA,nqn
is,LA,nqn | *10
10
10
10
10 | 60
150
150
150
150 | 100
150
150
150
150 | 2
2
2
2
2
2 | *130
50
100
150
200 | 20
10
10
10
10 | *20
*100
*100
*100
*100 | 0.5
10
10
10
10 | 1.0
2.2
2.2
2.2
2.2 | 3 | | | HL 3 | 2N1809
2N1810
2N1811
2N1812
2N1813 | WH
WH
WH
WH | iz,LA,nqn
iz,LA,nqn
iz,LA,nqn
iz,LA,nqn
iz,LA,nqn | 14
14
14
14
14 | 250
250
250
250
250
250 | 175
175
175
175
175
175 | 2,22
2,22
2,22
2,22
2,22
2,22 | 50
100
150
200
250 | 30
30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 0.4
0.4
0.4
0.4
0.4 | | | | | 2N1814
2N1830
2N1831
2N1832
2N1833 | WH
WH
WH
WH | is,LA,nqn
is,LA,nqn
is,LA,nqn
is,LA,nqn
is,LA,nqn | 14
14
14
14
14 | 250
250
250
250
250
250 | 175
175
175
175
175
175 | 2.22
2.22
2.22
2.22
2.22
2.22 | 300
50
100
150
200 | 30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 0.4
0.875
0.875
0.875
0.875 | | | | HL 4 | 2N2109
2N2110
2N2111
2N2112
2N2113 | WH
WH
WH
WH | is,LA,nqn
is,LA,nqn
is,LA,nqn
is,LA,nqn
is,LA,nqn | 14
14
14
14
14 | 250
250
250
250
250
250 | 0.75
175
175
175
175 | 2,22
2,22
2,22
2,22
2,22
2,22 | 50
100
150
200
250 | 30
30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 0.4
0.4
0.4
0.4
0.4 | - | | | | 2N2114
2N2130
2N2131
2N2132
2N2133 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
is,LA,nqn
is,LA,nqn
is,LA,nqn | 14
14
14
14
14 | 250
250
250
250
250
250 | 175
175
175
175
175 | 2,22
2,22
2,22
2,22
2,22
2,22 | 300
50
100
150
200 | 30
30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 0.4
0.875
0.875
0.875
0.875 | 11111 | | | HL 5 | 2N2739
2N2740
2N2741
2N2742
2N2757 | WH
WH
WH
WH | iz,LA,nqn
iz,LA,nqn
iz,LA,nqn
iz,LA,nqn
iz,LA,nqn | 14
14
14
14
14 | 200
200
200
200
200
200 | 175
175
175
175
175
175 | 2
2
2
2
2 | 50
100
150
200
50 | 20
20
20
20
20
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 0.4
0.4
0.4
0.4
0.4 | | ΤΙ | | | 2N2758
2N2759
2N2760
2N2761
2N1816 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
is,LA,nqn | 14
14
14
14
14
14.5 | 200
200
200
200
200
250 | 175
175
175
175
175
175 | 2
2
2
2
2,22 | 100
150
200
250
50 | 30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 0.4
0.4
0.4
0.4
0.63 | | TI
TI
TI | | HL 6 | 2N1817
2N1818
2N1819
2N2116
2N2117 | WH
WH
WH
WH | is, LA, nqn
is, LA, nqn
is, LA, nqn
is, LA, nqn
is, LA, nqn | 14.5
14.5
14.5
14.5
14.5 | 250
250
250
250
250
250 | 175
175
175
175
175 | 2.22
2.22
2.22
2.22
2.22
2.22 | 100
150
200
50
100 | 30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 0.63
0.63
0.63
0.63
0.63 | | | | | 2N2118
2N2119
2N2745
2N2746
2N2747 | WH
WH
WH
WH | iz, LA, nqn
iz, LA, nqn
iz, LA, nqn
iz, LA, nqn
iz, LA, nqn | 14.5
14.5
14.5
14.5
14.5 | 250
250
200
200
200
200 | 175
175
175
175
175
175 | 2.22
2.22
2
2
2 | 150
200
50
100
150 | 30
30
20
20
20 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 0.63
0.63
0.63
0.63
0.63 | 1 1 1 1 | | | HL 7 | 2N2748
2N2763
2N2764
2N2765
2N2766 | WH
WH
WH
WH | is, LA, nqn
np, AJ, si
np, AJ, si
si, LA, nqn
is, LA, nqn | 14.5
14.5
14.5
14.5
14.5 | 200
200
200
200
200
200 | 175
175
175
175
175
175 | 2
2
2
2
2 | 200
50
100
150
200 | 20
30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 0.63
0.63
0.63
0.63
0.63 | 1 1 1 1 | TI
TI
TI
TI | | uı e | 2N1823
2N1824
2N1825
2N1826
2N2123 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
is,LA,nqn | 16
16
16
16
16 | 250
250
250
250
250
250 | 175
175
175
175
175
175 | 2.22
2.22
2.22
2.22
2.22
2.22 | 50
100
150
200
50 | 30
30
30
30
30
30 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 0.74
0.74
0.74
0.74
0.74 | | | | HL 8 | 2N2124
2N2125
2N2126
2N2751
2N2752 | WH
WH
WH
WH | is, LA, nqn
is, LA, nqn
is, LA, nqn
is, LA, nqn
is, LA, nqn | 16
16
16
16
16 | 250
250
250
200
200 | 175
175
175
175
175
175 | 2.22
2.22
2.22
2
20 | 100
150
200
50
100 |
30
30
30
20
2 | *10
*10
*10
*10
*10 | 15
15
15
15
15 | 0.74
0.74
0.74
0.74
0.74 | - | | | | | | | | | м | AX. RATIN | IGS | | CHAR | ACTERISTIC | cs | | | |-----------------------|--|-------------------------------|--|--|--|--|---|----------------------------------|--|--|---|--------------------------------------|-----------------------------|--| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*f _T
(kHz) | P _c (W) | т _ј
(°С) | w/°c | VCEO
*VCBO
(V) | i _C | hfe
*hFE | ICO
*ICEO
*ICEX
(mA) | V _{ce(sat)} | Package
Outline
(TO-) | Remarks | | HL 9 | 2N2753
2N2754
2N2769
2N2770
2N2771 | WH
WH
WH
WH | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | 16
16
16
16 | 200
200
200
200
200
200 | 175
175
175
175
175 | 2
2
2
2
2
2 | 150
200
50
100
150 | 20
20
30
30
30 | *10
*10
*10
*10
*10
*10 | 15
15
15
15
15 | 0.74
0.74
0.74
0.74
0.74 | 11111 | | | HL 10 | 2N2772
2N1015
2N1015A
2N1015B
2N1015C | WH
WH
WH
WH | is, LA, nqn
npn, AJ, si
npn, AJ, si
npn, AJ, si
npn, LA, nqn | 16
25
25
25
25
25 | 200
150
150
150
150 | 175
150
150
150
150 | 2
1.43
1.43
1.43
1.43 | 200
30
60
100
150 | 30
7.5
7.5
7.5
7.5 | *10
*10
*10
*10
*10 | 1.5
10
10
10
10 | 0.74
0.5
0.5
0.5
0.5 | 11111 | STC
STC
STC
STC | | HE 10 | 2N1015D
2N1015E
2N1702
2N1016
2N1016A | WH
WH
RCA
WH
WH | npn,AJ,si
npn,AJ,si
is,nqn
is,LA,nqn
npn,AJ,si
npn,AJ,si | 25
25
25
30
30 | 150
150
75
150
150 | 150
150
200
150
150 | 1.43
1.43
0.429
1.43
1.43 | 200
250
40
30
60 | 7.5
7.5
5
7.5
7.5 | *10
*10
*15-60
*8
*10 | 10
10
0.2
10 | 0.5
0.5
-
0.6
0.6 | 3 - | STC
STC
STC
STC
STC | | WI 11 | 2N1016B
2N1016C
2N1016D
2N1016E
2N1701 | WH
WH
WH
WH
RCA | npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,FJ,si
npn,si | 30
30
30
30
30
30 | 150
150
150
150
25 | 150
150
150
150
200 | 1.43
1.43
1.43
1.43
0.143 | 100
150
200
250
40 | 7.5
7.5
7.5
7.5
7.5
2.5 | *10
*10
*10
*10
*20-80 | 10
10
10
10
10 | 0.6
0.6
0.6
0.6 | -
-
-
8 | STC
STC
STC
STC
STC | | HL 11 | 2N3851
2N3853
2N1409
2N1410
2N1768 | SSP
SSP
RA
RA | npn,TDP
npn,TDP
npn,si
npn,si
npn,si | *30
*30
*40
*40
40 | 30
30
2.8
2,8
40 | 200
200
150
150
200 | 0.4
0.4
0.22
0.22
0.22 | *100
*60
*30
*30
40 | 5
5
0.5
0.5
3 | *90
*90
*30
*60
*35-100 | 0.0001
0.0001
0.010
0.010
0.015 | 0.25
0.25
0.5
0.5 | 59
59
5 | GI
GI
STC, TI | | HL 12 | 2N1769
2N3850
2N3852
2N2310
2N2311 | SSP
SSP
RA
RA | npn,si
npn,TDP
npn,TDP
npn,si
npn,si | 40
*40
*40
*50
*50 | 40
30
30
3
3 | 200
200
200
300
300 | 0.229
0.4
0.4
0.017
0.017 | 55
*100
*60
60
100 | 3
5
5
0.5
0.5 | *35-100
*150
*150
*12
*12 | 0.015
0.0001
0.0001
10
10 | 0.25
0.25
5
5 | 59
59
46
46 | STC, TI
TI
TI | | HL 12 | 2N2312
2N2313
2N2314
2N2315
2N2316 | RA
RA
RA
RA | npn,si
npn,si
npn,si
npn,si
npn,si | *50
*50
*50
*50
*50 | 3
3
3
3 | 300
300
300
300
300
300 | 0.017
0.017
0.017
0.017
0.017
0.17 | 60
100
35
35
60 | 0.5
0.5
0.5
0.5
0.5 | *30
*30
*15
*40
*40 | 10
10
10
10
10 | 1.5
5
1.5
1.5
5 | 46
46
46
46
46 | | | | 2N2317
2N3506
2N3507
2N2270
2N3468 | RA
MO
MO
RCA
MO | npn,si
npn,EA,si
npn,EA,si
npn,si
pnp,EA,si | *50
*60
*60
*100
*150 | 3
5
5
5
5 | 300
200
200
200
200
200 | 0.17
0.029
0.029
0.0286
0.0057 | 40
40
50
45
50 | 0.5
3
3
1 | *40
*40-200
*30-150
*50-200
*25-75 | 10
†0.001
†0.001
5
0.0001 | 1.5
1.0
1.0
-
0.6 | 46
5
5
5
5 | TRWS, GI, CDC, TR, NA | | HI_ 13 | 2N3495
2N3497
2N3498
2N3499
2N3500 | MO
MO
MO
MO | pnp,EA,si
pnp,EA,si
npn,EA,si
npn,EA,si
npn,EA,si | *150
*150
*150
*150
*150 | 3
1.8
5
5 | 200
200
200
200
200
200 | 0.0172
0.0103
0.0057
0.0057
0.0057 | 120
120
100
100
150 | 100
100
0.5
0.50
0.30 | *40
*40
*40-120
*100-300
*40-120 | 0.0001
0.0001
0.00005
0.00005
0.00005 | 0.35
0.35
0.4
0.4
0.4 | 5
18
5
5
5 | TRWS
TRWS | | | 2N3501
2N3634
2N3636
2N3253
2N3444 | MO
MO
MO
MO | npn,EA,si
pnp,EA,si
pnp,EA,si
npn,AE,si
npn,AE,si | *150
*150
*150
*175
*175 | 5
5
5
5 | 200
200
200
200
200
200 | 0.0057
0.029
0.029
0.029
0.029
0.029 | 150
140
175
40
50 | 0.300
1
1
- | *100-300
*50-150
*50-150
*25-75
*20-60 | 0.00005
0.00010
0.00010
0.0005
0.0005 | 0.4
0.5
0.5
0.6
0.6 | 5
5
5
5 | TI, AL | | HL 14 | 2N3467
2N456B
2N457B
2N458B
2N1666 | MO
TI
TI
TI
AMP | pnp,EA,si
pnp,ge
pnp,ge
pnp,ge
pnp,PADT,ge | *175
*200
*200
200
200 | 5
150
150
150
30 | 200
100
100
100
90 | 0.0057
2.0
2.0
2 | 40
30
40
45
60 | 1
7
7
7
6 | *40-120
*40
*40
*40
*55 | 0.0001
0.5
0.5
7.0
< 100 | 0.5
-
-
-
- | 5
3
3
3 | T!
DE, KSC, ITT
DE, KSC, ITT
TI, DE | | | 2N1667
2N1668
2N1669
2N2397
2N3252 | AMP
AMP
AMP
SY
MO | pnp,PADT,ge
pnp,PADT,ge
pnp,PADT,ge
npn,PE,si
npn,AE,si | 200
200
200
200
200
200 | 30
30
30
300
5 | 90
90
90
200
200 | -
-
-
-
0.029 | 48
48
60
*35
30 | 6
6
6
200 | 140
75
110
*25-120
*30-90 | <100
<100
<100
0.1
0.0005 | -
-
0.3
0.5 | 3
3
3
51
5 | TI, AMP | | HL 15 | 2N3426
2N3429
2N3430
2N3431
2N3432 | FA
WH
WH
WH | npn,PE,si
npn,AJ,si
npn,AJ,si
npn,AJ,si
npn,AJ,si | *200
*200
*200
*200
*200 | 3.0
150
150
150
150 | 200
175
175
175
175 | 0.017
1.33
1.33
1.33
1.33 | 12
*50
*100
150
*200 | 1.0
7.5
7.5
7.5
7.5 | *50
*10
*10
*10
*10 | 0.0000015
10
10
10
10 | 0.18
0.9
0.9
0.9
0.9 | 11111 | | | | 2N3433
2N3434
2N3485
2N3485A
2N3486 | WH
WH
MO
MO | npn,AJ,si
npn,AJ,si
pnp,AE,si
pnp,AE,si
pnp,AE,si | *200
*200
*200
*200
*200 | 150
150
2
2
2 | 175
175
200
200
200 | 1.33
1.33
0.011
0.011
0.011 | *250
*300
40
60
40 | 7.5
7.5
0.6
0.6
0.6 | *10
*10
*40-120
*40-120
*100-300 | 10
10
0,00002
0.00001
0,00002 | 0.9
0.9
0.4
0.4 | -
46
46
46 | TI, GE
TI, GE
TI, GE | | HL 16 | 2N3486A
2N3494
2N3496
2N3635 | MO
MO
MO
MO | pnp,AE,si
pnp,EA,si
pnp,EA,si
pnp,EA,si | *200
*200
*200
*200 | 2
3
1.8
5 | 200
200
200
200
200 | 0.011
0.0172
0.0103
0.029 | 60
80
80
140 | 0.6
100
100
1 | *100-300
*40
*40
*100-300 | 0.00001
0.0001
0.0001
0.00010 | 0.4
0.3
0.3
0.5 | 46
5
18
5 | TI, GE | | | | | vei 5 | | | | AX. RATIN | | | CHARA | CTERISTIC | 5 | | | |-----------------------|--|-----------------|--|---------------------------------|--------------------------|---------------------------------|------------------------------------|-----------------------------|----------------------------|--|---|-----------------------------|-----------------------------|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*f _T
(kHz) | P _c (W) | T _j
(°C) | w/°c | VCEO
*VCBO
(V) | I _C (A) | h _{fe} *hFE | ICO
*ICEO
†ICEX
(mA) | V _{ce(sat)}
(V) | Package
Outline
(TO-) | Remarks | | HL 17 | 2N3637
2N2217 | MO
MO | pnp.EA.si
npn,EA.si | *200
250 | 5 3 | 200
175 | 0.029
0.02 | 175
30 | 1 0.8 | •100-300
20-160 | 0.00010
0.00001 | 0.5
0.4 | 5
5 | GI, SY, SPR, TR, AMP.
TI, ITT, IEC, TRWS, AL | | | 2N2218 | MO | npn,AE,si | *250 | 3 | 175 | 0.02 | 30 | 0.8 | *40-120 | 0.00001 | - | 5 | GI, SY, SPR, TR. AMP.
TRWS, AL, TI, ITT. IEC | | | 2N2219 | MO | npn,AE,si | 250 | 3 | 175 | 0.02 | 30 | 0.8 | 100-300 | 0.00001 | 0.4 | 5 | GI, SY, SFR, TR, AMP | | | 2N2219A
2N2220 | MO
MO | npn,AE,si
npn,AE,si | 250
250 | 3 | 175
175 | 0.02 | 30 | 0.8 | 100-300
20-60 | 0.00001
| 0.4 | 5 | GI, SY, SPR, TR, AMF
ITT, NA
GI, SPR, TR, AMP. | | HL 18 | | | | | | | | | | 19 | | | | AL, ITT, IEC | | | 2N2221
2N2222 | MO
MO | npn, AE, si
npn, AE, si | 250
250 | 1.8 | 175
175 | 0.012 | 30 | 0.8 | 40-120
100-300 | 0.00001 | 0.4 | 18 | GI, SPR, TR, AMP,
AL, ITT, IEC
TRWS, GI, SPR, TR
AMP, AL, TI, ITT, IEC | | | 2N3250A
2N3734 | MO
MO | pnp,AE,si
npn,AE,si | *250
*250 | 1.2 | 200 | 0.0069
0.023 | 60 | 0.2
1.5 | *50-150
*30-120 | † 0.00002
† 0.0002 | 0.25
0.2 | 18 | | | HL 19 | 2N3504
2N3735
2N3736 | FA
MO
MO | pnp,PE,si
npn,AE,si
npn,AE,si | *250
*250
*250
*250 | 1.3 | 200
200
200
200 | 0.0022
0.023
0.011 | 30
45
50
30 | 0.6
1.5
1.5 | *70
*20-80
*30-120 | 0.050
† 0.0002
† 0.0002 | 0.5
0.2
0.2 | 18
5
46 | TI, GE, NA | | 111. 13 | 2N3737
2N914/46
2N2481
2N3251A | MO
SY
MO | npn,AE,si
npn,PL,EP,si
npn,AE,si | *250
*300
*300
*300 | 2
400
1.2
1.2 | 200
200
200
200
200 | 0.011
-
0.0069
0.0069 | 50
*40
15
60 | 1.5
-
-
0.2 | *20-80
*30-120
*40-120
*100-300 | † 0.0002
0.025
0.00005
† 0.00002 | 0.2
0.7
0.25
0.25 | 46
46
18
18 | GI
TI, AL | | | 2N3647 | MO | nnn,AE,si
npn,EA,si | *350 | 2.0 | 200 | 0.011 | 10 | 0.50 | *25-150 | † 0.000025 | 0.4 | 46 | | | | 2N3510
2N3714
2N3511
2N3648 | MO
MO
MO | npn,EA,si
npn,si
npn,EA,si
npn,EA,si | *350
*400
*450
*450 | 1.2
150
1.2
2.0 | 200
200
200
200 | 0.0069
0.857
0.0069
0.011 | 10
80
15
15 | 0.50
10
0.50
0.50 | *25-150
*25-90
*30-120
*30-120 | † 0.000025
† 1.0
† 0.000025
† 0.000025 | 0.4
1.0
0.4
0.4 | 52
3
52
46 | IEC. | | HL 20 | 2N3227
2N3055 | MO
RCA | npn,AE,si
npn,si | *500
*500 | 1.2 | 200 | 0.0069 | 20
60 | 15 | *100-300
*20-70 | 0.0002
+5 | 0.25 | 18 | † Icev, MO, SOL | | | 2N3055
2N3470
2N3471
2N3472
2N3473 | WH
WH
WH | is, LA, nqn
is, LA, nqn
is, LA, nqn
is, LA, nqn | *500
*500
*500
*500 | 150
150
150
150 | 150
150
150
150 | 2
2
2
2 | *50
*100
*150
*200 | 10
10
10
10 | *100
*100
*100
*100 | 10
10
10
10 | 2.2
2.2
2.2
2.2 | 111 | | | | 2N3474
2N3475 | WH
WH | npn,AJ,si
npn,AJ,si | *500
*500 | 150
150 | 150
150 | 2 2 | *50
*100 | 10
10 | *400
*400 | 10
10 | 2.2 | - | | | 21 | 2N3476
2N3477
2N3508 | WH
WH
MO | npn,AJ,si
npn,AJ,si
npn,EA,si | *500
*500
*500 | 150
150
2.0 | 150
150
200 | 2
2
0.011 | *150
*200
20 | 10
10
- | *400
*400
*40-120 | 10
10
0.0002 | 2.2
2.2
0.25 | -
-
46 | | | HL 21 | 2N3509
2N3013 | MO
FA | npn,EA,si
npn,PE,si | *500
*550 | 2.0
1.2 | 200
200 | 0.011
0.00685 | 20
15 | - | *100-300
*60 | 0.0002
40 | 0.25
0.16 | 46
52 | TI, ITT, IEC | | | 2N3014
2N3424
2N3546 | FA
FA
MO | npn,PE,si
npn,PE,si
pnp,EA,si | *550
*600
*700 | 1.2
1.2
1.2 | 200
200
200 | 0.00685
0.29
0.0069 | 20
15
12 | | *60
*20-200
*30-120 | 40
0.000010
0.000010 | 0.4
0.15 | 52
-
18 | TI, ITT
AL, MO | | | 2N3054
2N551
2N552 | RCA
TR
TR | npn,si
npn,PL,si | *1000
3000
3000 | 25
3
3 | 200
175
175 | 0.143
025
.025 | 55
60
30 | 4
.2
.2 | *25-100
*20-80
*20-80 | 1.0
.015
.015 | 1.0 | 66
5
5 | CDC, STC, SSP
CDC, STC | | HL 22 | 2N1055
2N1212 | TR
TR | npn,PL,si
npn,PL,si
npn,PL,si | 3000
3000 | 3
85 | 175
175
175 | .025
.025
.485 | 100
60 | .2 5 | *20-80
*12-36 | .015 | 2 5 | 5 - | SSP
STC, TI | | IIL ZZ | 2N1620
2N4234 | TR
MO | npn,PL,si
pnp,si | 3000
*3000 | 60
6 | 175
200 | .40
0.034 | *100
40 | 5
3.0 | *15-75
*30-150 | 10
*1.0 | 0.6 | 53
5 | TI | | | 2N 4235
2N 4236
2N 545 | MO
MO
TR | pnp,si
pnp,si
npn,PL,si | 3000
*3000
4000 | 6
6
5 | 200
200
175 | 0.034
0.034
.045 | 60
80
60 | 3.0
3.0
.8 | *30-150
*30-150
*15-80 | *1.0
*1.0
.015 | 0.6
0.6
- | 5
5
5 | SSP, TI | | | 2N546
2N547 | TR
TR | npn,PL,si
pnp,PL,si | 4000
4000 | 5 5 | 175
175 | .045
.045 | 30
60 | .8 | *15-80
*20-80 | .015
.015 | - | 5 | SSP, TI
CDC, STC, SSP, TI | | | 2N548
2N549
2N550 | TR
TR
TR | npn,PL,si
npn,PL,si
npn,PL,si | 4000
4000
4000 | 5
5
5 | 175
175
175 | .045
.045
.045 | 30
60
30 | .8
.8
.8 | *20-80
*20-80
*20-80 | .015
.015
.015 | - | 5
5
- | CDC, STC, SSP, TI
CDC, STC, SSP, TI
CDC, STC, TI | | HL 23 | 2N1117
2N3713 | TR
MO | npn,PL,si
npn,si | 4000
*4000 | 5
150 | 175
200 | .045
.857 | 60
60 | .8
10 | *40-150
*25-90 | .015
† 1.0 | 4
1.0 | 5 3 | STC, CDC, SSP, TI | | | 2N3715
2N3716
2N3716
2N3740 | MO
MO
MO | npn,si
npn,si
npn,si
pnp,si | *4000
*4000
*4000 | 150
150
150
25 | 200
200
200
200 | .857
.857
.143 | 60
80
60 | 10
10
10 | *50-150
*50-150
*30-100 | † 1.0
† 1.0
0.1 | 1.0
1.0
0.6 | 3
3
66 | | | | 2N3741
2N1116 | MO
TR | pnp,si
npn,PL,si | *4000
6000 | 25
5 | 200
175 | .143
.045 | 80
60 | 1 .8 | *30-100
*40-150 | 0.1
.015 | 0.6 | 66
5 | STC, CDC, SSP, TI | | HL 24 | 2N1173
2N1711 | IEC
FA | npn,PE,si
npn,DP,si | 6000
*10000 | 3 3 | 150
200 | 0.0172
0.0172 | 25
•75 | - | 50
•130 | 25 .00003 | 1.0
0.5 | 18
5 | TRWS, CDC, MO,
AMP, GI, AL, TR, NA
RCA, TI, IEC | | | 2N1886
2N3738 | STC
MO | npn,si
npn,si | 10,000 | 40
20 | 175
175 | 0.265
.133 | 60
225 | 3.0
.250 | 20-80 | 0.35
0.1 | 2.5
2.5 | 59
66 | | | | 2N3739
2N3766 | MO
MO | npn,si
npn,si | *15,000
*15,000 | 20 20 | 175
175 | .133 | 300
60 | .250 | *40-200
*40-160 | 0.1
0.1 | 2.5 | 66
66 | | Need a FREE personal copy of this Directory? Circle number 419. | | | | | | | м | AX. RATIN | GS | | CHAR | ACTERISTIC | CS | | | |-----------------------|--|---|--|--|--|---|--|---|---|---|--|---|--|---| | Cross
Index
Key | Type
No. | Mfr. | Туре | fae
*f _T
(kHz) | P _c (W) | T _j
(°C) | w/°c | *VCEO
*VCBO
(V) | I _C (A) | h _{fe} *hFE | ICO
*ICEO
*ICEX
(mA) | V _{ce(sat)}
(V) | Package
Outline
(TO-) | Remarks | | HL 25 | 2N3767
2N1983
2N1984
2N1985
2N4300 | MO
FA
FA
FA
TI | npn,si
npn,DD,si
npn,DD,si
npn,DP,si
npn,PE,si | *15,000
*30000
*30000
*30000
*30,000 | 20
2
2
2
2
15 | 175
150
150
150
200 | .133
0.016
0.016
0.016
0.016
0.15 | 80
25
25
25
25
80 | 1 2 | *40-160
100
80
60
*30-120 | 0.1
0.001
0.001
0.001
0.01 | 2.5
0.25
0.25
0.25
0.25
0.3 | 66
5
5
5
5 | TRWS, CDC, AL
TRWS, CDC, AL
TRWS, CDC, AL | | | 2N698 | FA | npn,DP,si | *40000 | 3 | 200 | 0.0172 | 60 | - | *40 | - | - | 5 | TRWS, TR, GI
CDC | | 26 | 2N2852
2N2856
2N4301 | SSP
SSP
TI | npn,PE,si
npn,PE,si
npn,PE,si | *40000
*40000
*40,000 | 5
5
50 | 200
200
200 | 0.005
0.005
0.5 | *100
*60
80 | 5
5
10 | *45
45
*30-120 | 0.001
0.001
0.01 | 0.2
0.2
0.4 | 5
5
61 | Ti | | HL 26 | 2N1899
2N1901
2N1902
2N1904
2N1978 | TRWS
TRWS
TRWS
TRWS | npn,PL,si
npn,PL,si
npn,PL,si
npn,PL,si
npn,DP,si | *50000
*50000
*50000
*50000 | 125
125
125
125
125
30 | 150
150
150
150
200 | 1
1
1
0.172 | *140
*140
*140
*140
*60 | 10
10
10
10 | *10-30
*20-60
*10-30
*20-60
*30 | 10
10
10
10
0.001 | 1.0
1.0
1.0
1.0
1.0 | | | | | 2N1986 | FA | npn,DD,si | *50000 | 2 | 150 | 0.016 | 25 | - | 150 | 0.001 | 0.4 | 5 | TRWS, CDC, GI, | | | 2N1987 | FA | npn,DD,si | *50000 | 2 | 150 | 0.016 | 25 | - | 50 | 0.001 | 0.4 | 5 | AMP, AL
TRWS, CDC, GI,
AMP, AL | | HL 27 | 2N1988
2N1989
2N1991
2N3076 | FA
FA
FA
TRWS | npn,DD,si
npn,DD,si
pnp,DD,si
npn,PL,si | *50000
*50000
*50000
*50000 | 2
2
2
125 | 150
150
150
150 | 0.016
0.016
0.016
1 | 45
45
*30
*140 | -
-
-
10 | *75
*40
*30
*30-90 | 0.001
0.001
0.001
25 | 1.5
1.5
1.2
1.0 | 5
5
5 | TRWS, CDC, GI, AL
TRWS, CDC, GI, AL
TRWS, CDC, TR, MO
Single Ended
*MT-38 Case | | | 2N717 | FA | npn,DD,si | *60000 | 1.5 | 175 | 0.010 | *60 | - | *40 | .00001 | 0.7 | 18 | TRWS, CDC, TR,
GI,
AMP, NA TI, IEC | | | 2N719
2N719A | FA
FA | npn,DD,si
npn,DP,si | *60000
*60000 | 1.5 | 175
200 | 0.010
0.0103 | *120
*120 | - | °40
°40 | 0.001
.000005 | 2.5
0.8 | 18
18 | TRWS, CDC, TR, GI
TRWS, CDC, AMP | | | 2N720A | FA | npn,DP,si | *60000 | 1.8 | 200 | 0.0103 | *120 | - | *80 | .000005 | 0.9 | 18 | AL, GI, TR, TI
TRWS, CDC, GI, TI
AMP, AL, NA, TR, RCA | | HL 28 | 2N721
2N909
2N912
2N978
2N2850 | FA
FA
FA
SSP | pnp.DD,si
npn,DD,si
npn,DP,si
pnp,DD,si
npn,PE,si | *60000
*60000
*60000
*60000 | 1.5
1.5
1.8
1.25
5 | 175
175
200
150
200 | 0.010
0.010
0.0103
0.010
0.005 | 35
*60
60
20
*100 | -
-
-
-
5 | *60
*250
45
*30
*85 | 0.001
,00001
.000005
.001 | 1.0
0.3
0.16
1.3
0.15 | 18
18
18
18
5 | KSC, TR. CDC, NA,IEC
TRWS, AMP, CDC
TRWS, AMP, AL, TI, CD
TR. IEC
TI | | HL 29 | 2N2851
2N2853
2N2855
2N1972
2N1975 | SSP
SSP
SSP
FA
FA | npn,PE,si
npn,PE,si
npn,PE,si
npn,DD,si
npn,DP,si | *60000
*60000
*60000
*60000
*60000 | 5
5
5
2
3 | 200
200
200
175
200 | 0.005
0.005
0.005
0.005
0.010
0.0172 | *100
*60
60
*60
60 | 5
5
5
- | *85
*85
85
*250
45 | -
0.001
0.001
.0001
.00005 | 0.2
1.0
0.2
0.4
0.16 | 5
5
5
5
5 | TI
TI
TI
AMP, TR, TRWS, CDC
TRWS, CDC, AMP | | IIL 23 | 2N3117
2N3719
2N3720
2N3879
2N4036 | FA
MO
MO
RCA
RCA | npn,DP,si
pnp,AE,si
pnp,AE,si
npn,si
pnp,si | *60000
*60,000
*60,000
*60,000 | 1.2
6
6
35
7 | 200
200
200
200
200
200 | 0.00685
.034
.034
0.2
0.04 | 60
40
60
75
-65 | -
3
3
10(peak)
-1 | *300
*25-180
*25-180
*20-80
*40-140 | .00001
.01
.01
*5
*-0.5 _{\(\mu\)} A | 0.3
0.75
0.75
1.2
-0.65 | 18
5
5
66
5 | UC, TI, AL, NA. SSD
TI
TI | | HL 30 | 2N4037
2N4296
2N4297
2N4298
2N4299
2N4314
2N911
2N1131
2N1974
2N696 | RCA
RCA
RCA
RCA
RCA
FA
FA
FA | pnp,si
npn,TDP,si
npn,TDP,si
npn,TOP,si
npn,TOP,si
pnp,si
npn,DP,si
pnp,DD,si
npn,DP,si
npn,DD,si | *60,000
*60,000
*60,000
*60,000
*60,000
*60,000
*70000
*70000
*80000 | 7
20
20
20
20
7
1.8
2 | 200
175
175
175
175
175
200
200
175
200
175 | 0.04
0.13
0.13
0.13
0.13
0.04
0.0103
0.0133
0.0172
0.0133 | -40
250
250
350
350
-65
60
35
60
*60 | -1
1
1
1
1
1
-1
-600 | *50-250
*80
*100
*30
*80
*50-250
70
*30
70
*40 | *-5\(\mu\)A 0.1 0.1 0.1 0.1 0.1 *-5\(\mu\)A .00005 0.001 .000005 | -1.4
0.9
0.75
0.9
0.75
-1.4
0.13
1.0
0.13 | 5
66
66
66
5
18
5
5 | TRWS, AMP. AL, TI. CDI
TR, MO, TI, NA, IEC
TRWS, CDC, AMP
TRWS, TR, GI. AMP
CDC, NA, TI, ITT, IEC | | | 2N699 | FA | npn,DD,si | *80000 | 2 | 175 | 0.0133 | *120 | - | *80 | .00001 | - | 5 | TRWS, SY, TR, CDC
AMP, NA, RCA, TI | | HL 31 | 2N718 | FA | npn,DD,si | *80000 | 1.5 | 175 | 0.010 | *60 | - | *75 | .00001 | 0.7 | 18 | TRWS, CDC. SY. TR
GI, AMP, AL, NA, MO,
ITT, IEC | | UL 31 | 2N718A | FA | npn,DP,si | *80000 | 1.8 | 200 | 0.0103 | *75 | - | *80 | .000003 | 0.6 | 18 | CDC, MO, TR, GI, AMP,
AL, NA, RCA, MO,
TRWS, TI | | | 2N720 | FA | npn,DD,si | *80000 | 1.5 | 175 | 0.010 | •120 | - | *80 | .001 | 2.5 | 18 | TRWS, CDC, TR, GI
AMP, AL, NA, TI | | | 2N870 | FA | npn,DP,si | *80000 | 1.8 | 200 | 0.0103 | 60 | - | *75 | .00004 | 0.6 | 18 | GI, AMP, AL, TI, CDC. | | | 2N910 | FA | npn,DP,si | *80000 | 1.8 | 200 | 0.0103 | 60 | - | 140 | .00005 | 0.13 | 18 | TRWS, AMP, AL, TI,
CDC, NA | | HL 32 | 2N1252 | FA | npn,DD,si | *80000 | 2 | 175 | 0.0133 | *30 | - | *35 | .0001 | 0.6 | 5 | SY, AL, NA, IEC | | 02 | 2N1613
2N1973
2N2849 | FA
FA
SSP
SSP | npn,DP,si
npn,DP,si
npn,PE,si
npn,PE,si | *80000
*80000
*80000
*80000 | 3 5 5 5 | 200
200
200
200
200 | 0.0172
0.00456
0.005.
0.005 | *75
60
*100
*60 | -
5
5 | *80
140
*150
*150 | .00003
.0005
-
0.001 | 0.6
0.13
0.2
0.2 | 5
5
5
5 | TRWS, CDC, MO, TR
AMP. RCA. TI, AL, IEC
TRWS. CDC, AMP
TI | Complete listing of semiconductor manufacturers starts on page 86. | | | | | 10000 | | М | AX. RATIN | GS | | CHAR | ACTERISTIC | :S | | | |-----------------------|--|-------------------------------|---|--|--|--|---|---------------------------------|----------------------------------|--|--|--|-----------------------------|---| | Crass
Index
Key | Type
No. | Mfr. | Туре | *fT
(kHz) | P c (W) | τ _j
(°C) | w/°c | VCEO
*VCBO
(V) | I _C | hfe
*hFE | ICO
*ICEO
*ICEX
(mA) | V _{ce(sat)}
(V) | Package
Outline
(TO-) | Remarks | | HL 33 | 2N2894A
2N3919
2N3920
2N4074 | FA
FA
FA
RCA | pnp,PE,si
npn,DPE,si
npn,DPE,si
npn,DPE,si | 80,000
80000
80000
*80,000 | 1.2
15
15
2 | 200
150
150
175 | 0.0068
.200
.200
0.02 | *12
60
60
40 | 0.200
2
2
0.3 | *55
*40
*100
*150 | -
-
-
0.00001 | 0.28
.6
.6
0.22 | 18
3
3
104 | | | HL 34 | 2N3108
2N3110
2N722
2N1132 | FA
FA
FA | npn,DP,si
npn,DP,si
pnp,DD,si
pnp,DD,si | *86000
*86000
*90000 | 5
5
1.5
2 | 200
200
175 | 0.0286
0.0286
0.010
0.0133 | 60
40
35
35 | -
.00001
0.6 | *70
*70
*50
*45 | .0004
.0004
.001 | 0.16
0.16
1.0 | 5
5
18
5 | KSC, MO, TR, CDC, N.
IEC
TR, MO, TI, NA, IEC | | | 2N1838
2N1839
2N1840
2N871 | TRWS
TRWS
TRWS
FA | npn,PL,si
npn,PL,si
npn,PL,si
npn,DP,si | *90000
*90000
*90000
*100000 | 2
2
2
1.8 | 175
175
175
200 | .013
.013
.013
0.0103 | *45
*45
*25
60 | 0.50
0.50
0.50
- | *40-150
*12-50
*10-100
*130 | .0015
.0015
0.30
.0004 | 1.4
1.4
1.4
0.35 | 5
5
5
18 | CDC
CDC
CDC
CDC, GI, AMP, AL, TI
IEC | | | 2N1420 | FA | npn,DD,si | *100000 | 2 | 175 | 0.0133 | *60 | - | *200 | .00001 | 0.7 | 5 | TRWS, CDC, MO, TR.
GI, NA, AMP, CDC, IE | | UI 25 | 2N1893A
2N3053 | TRWS
RCA | npn,PL,si
npn,si | *100000
*100,000 | 3 5 | 200
200 | .017
0.0286 | 80
40 | 0.50
0.7 | *40-120
*50-250 | .0001
0.00025 | 2.0
1.4 | 5 5 | TI
GI, TR, NA
CDC, MO | | HL 35 | 2N4026
2N4027
2N4028
2N4029
2N4068 | FA
FA
FA
RCA | pnp,PE,si
pnp,PE,si
pnp,PE,si
pnp,PE,si
npn,si | 100,000
100,000
100,000
100,000
*100,000 | 2.0
2.0
2.0
2.0
2.0
0.5 | 200
200
200
200
200
175 | 0.0114
0.0114
0.0114
0.0114
0.003 | *60
*80
*60
*80
150 | 1.0
1.0
1.0
1.0
0.2 | *60
*60
*110
*110
80 | -
-
-
0.00005 | 0.25
0.25
0.25
0.25
0.25
0.68 | 18
18
18
18
18 | | | | 2N4069
2N1253
2N219A | RCA
FA
GE | npn,si
npn,DD,si
npn,PE,si | *100,000
*110000
*130000 | 1
2
2.8 | 175
175
200 | 0.006
0.0133
.016 | 150
*30
40 | 0.2
-
1 | 80
*45
*100-300 | 0.00005
.0001 | 0.68
0.6
.25 | 104
5
5 | With heat radiator
AL, NA, IEC
GI, NA, CDC, FA, MO | | או פר | 2N2193A | GE | npn,PE,si | *130000 | 2.8 | 200 | .016 | 50 | 1 | *40-120 | 10 | .25 | 5 | AL
CDC, GI, NA, MO, AL | | HL 36 | 2N2194A | GE | npn,PE,si | *130000 | 2.8 | 200 | .016 | 40 | 1 | *20-60 | 1 | .25 | 5 | CDC, GI, NA, FA,
MO, AL, TI | | | 2N2195A
2N2243A
2N2350A | GE
GE
GE | npn,PE,si
npn,PE,si
npn,PE,si | *130000
*130000
*130000 | 2.8
2.8
5 | 200
200
200 | .016
0.16
.0285 | 25
80
25 | 1
1
1 | *20
*40-120
*20 | 10
1
1 | .25
.25
.25 | 5
5
46 | CDC, GI, MO, AL, TI
GI, NA, TI, AL, CDC | | HL 37 | 2N2351A
2N2352A
2N2353A
2N2364A
2N1837 | GE
GE
GE
TRWS | npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si
npn,PL,si | *130000
*130000
*130000
*130000
*140000 | 5
5
5
5
2 | 200
200
200
200
200
175 | .0285
.0285
.0285
.0285
.013 | 50
40
25
80
*80 | 1
1
1
1
0.50 | *40-120
*20-60
*20
*40-125
*40-120 | 1
1
1
.0005 | .25
.25
.25
.25
.25
0.8 | 46
46
46
46
5 | NA
NA
NA, CDC
CDC | | | 2N3638A
2N3763
2N3765
2N3241A
2N3242A | NEC
MO
MO
RCA
RCA | pnp,PE,si
pnp,AE,si
pnp,AE,si
npn,DPE,si
npn,DPE,si | 150,000
*150,000
*150,000
*175,000
*175,000 | 0.3
4
2
2
2 | 150
200
200
175
175 | .023
.011
0.02
0.02 | 60
60
60
40
40 | 1.5
1.5
- | 30-300
*20-80
*20-80
*150
*200 | -
†.0001
†.0001
0.0001
0.00001 | 0.3
0.1
0.1
0.22
0.24 | 18
5
46
104
104 | | | 20 | 2N3762
2N3764
2N947
2N3502
2N3503 | MO
MO
FA
FA | pnp,AE,si
pnp,AE,si
npn,DP,si
pnp,PE,si
pnp,PE,si |
*180,000
*180,000
*250,000
*250,000
*250,000 | 4
2
1.2
3.0
3.0 | 200
200
200
200
200
200 | .023
.011
0.0069
0.017
0.017 | 40
40
*20
60
60 | 1.5
1.5
0.1
.600
0.6 | *30-120
*30-120
*40
*70
*70 | †.0001
†.0001
.0001
0.05
0.00000007 | 0.1
0.1
0.3
0.5
0.5 | 5
46
18
5 | GE
TI, GE, NA
TI, GE, NA | | HL 38 | 2N3505
2N4960
2N4961
2N4962
2N4963 | FA
FA
FA
FA | pnp,PE,si
npn,PE,si
npn,PE,si
npn,PE,si
npn,PE,si | *250,00
250,000
250,000
250,000
250,000 | 1.3
3.5
3.5
1.2
1.2 | 200
200
200
200
200
200 | 0.0023
0.02
0.02
0.0685
0.0685 | 45
60
80
80
80 | 0.6
0.5
0.5
0.5
0.5 | *70
100-3000
100-300
100-300
100-300 | 0.00000007
0.000001
0.000001
0.000001
0.000001 | 0.5
0.18
0.18
0.18
0.18 | 18
39
39
18
18 | TI, GE, NA | | | 2N915 | FA | npn,DP,si | *300000 | 1.2 | 200 | 0.0069 | 50 | - | *100 | .0005 | 0.8 | 18 | TRWS, AMP, NA, MO,
AL, IEC | | HL 39 | 2N3724
2N3725
2N4014 | ITT
ITT
FA | npn,PE,si
npn,PE,si
npn,PE,si | 300,000
300,000
300,000 | 3.5
3.5
1.2 | 200
200
200 | 0.02
0.02
0.00685 | 30
50
30 | 1
1
1 | 60-150
60-150
60-150 | 0.0017
0.0017
0.0017 | 0.25
0.25
0.2 | 5
5
18 | ITT | | | 2N4013
2N3512
2N708 | FA
RCA
FA | npn,PE,si
npn,EP,si
npn,DP,si | 300,000
375,000
*400000 | 1.2
4
1.2 | 200
200
200 | 0.00685
-
0.0069 | 30
*60
15 | 1
- | 60-150
80
*50 | 0.0017
0.5
.0004 | 0.2
0.28
0.3 | 18
5
18 | ITT
SY, TR, GI, AMP.
RCA, MO, FA, NA, TI
ITT, CDC, IEC | | | 2N916 | FA | npn,DP,si | *400000 | 1.2 | 200 | 0.0069 | 25 | - | *100 | .0005 | 0.4 | 18 | TRWS, AMP. NA. MO.
TI. AL, IEC | | HL 40 | 2N3299
2N3300
2N3301 | FA
FA
FA | npn,PE,si
npn,PE,si
npn,PE,si | *400,000
*400,000
*400,000 | 3.0
3.00
1.8 | 200
200
200 | 0.017
0.017
0.010 | *30
*30
*30 | Ē | *75
*220
*75 | 0.0000002
0.0000002
0.0002 | 0.4
0.4
0.4 | 5
5
18 | ITT
ITT
ITT | | | 2N3302
2N2369A
2N4137
2N2368 | FA
RCA
FA
FA | npn.PE,si
npn,PE,si
npn,PE,si
npn,PE,si | *400,000
*500,000
500,000
*550000 | 1.8
1.2
1.2
1.2 | 200
200
200
200
200 | 0.010
0.0068
0.00685
0.0685 | *30
*40
20
15 | 0.2
0.5
0.5 | *220
*40
40-120
*40 | 0.0002
30
0.0004
.0001 | 0.4
0.2
0.18
0.2 | 18
18
18
18 | TR, AL, SPR, TI, AMI
CDC, ITT, IEC | Reader-Service cards are good all year. | | | | | | | M | AX. RATIN | GS | | CHARA | CTERISTIC | :s | | | |-----------------------|---|-----------------------------|--|---|------------------------------------|---------------------------------|---|----------------------------------|----------------------------------|--|---------------------------------------|---|-----------------------------|---| | Crass
Index
Key | Type
No. | Mfr. | Туре | fae
*f _T
(kHz) | P _c (W) | Т _ј
(°С) | w/°c | VCEO
*VCBO
(V) | I _C | h _{fe}
*hFE | ICO
*ICEO
*ICEX
(mA) | V _{ce(sat)}
(V) | Package
Outline
(TO-) | Remarks | | HL 41 | 2N3209
2N2455
2N3423
2N2369 | FA
SY
FA
FA | npn,PE,si
npn,EP,ge
npn,PE,si
npn,PE,si | *550000
600,000
*600,000
*650000 | 1.2
150
1.2
1.2 | 200
100
200
200 | 0.00685
-
0.29
0.00685 | 20
*15
15
15 | 0.0002
200
.050
0.5 | *75
*20-100
*20-200
*80 | .00002
2.0
0.000010
.0001 | 0.07
.19
0.4
0.2 | 18
18
-
18 | AL, MO
AL, NUC, SPR, TI, AMP
CDC, ITT, IEC | | | 2N3303
2N917 | FA
FA | npn,PE,si
npn,DP,si | *650000
*800000 | 3.0
0.3 | 200
200 | 0.017
0.00171 | 12
15 | 1.0 | *60
50 | 0.1
.00005 | 0.18
0.4 | 18 | MO, TI
AL. TI, RCA, TRWS, | | HL 42 | 2N4251
2N418 | FA
BE | npn,PE,si
pnp,ge | 1,300,000 | 1.3
25 | 200
100 | 0.00743
0.5 | 10
- | 0.1
5 | 100-300
*40 | 0.001
1.0 | 0.25 | 46
3 | NA. IEC
KSC, ITT | | | 2N420
2N420A
2N424A
2N637
2N637A | BE
BE
STC
BE
BE | pnp.ge
pnp.ge
npn
pnp.ge
pnp.ge | - | 25
25
85
25
25 | 100
100
200
100 | 0.5
0.5
.483
0.5
0.5 | -
80
*25
*60 | 5
5
3
5 | *40
*40
*12-60
*30-60
30-60 | -
-
0.5
2-5 | -
-
.8-1.5
.5 | 3
3
53
3
3 | ITT, KSC
ITT, KSC
STC, TR, BE, TI
KSC, TI
KSC, TI | | | 2N637B
2N638
2N638A
2N638B | BE
BE
BE
BE | pnp,ge
-
-
- | - | 25
-
-
- | 100 | 0.5
-
-
- | *60
-
-
- | 5
-
-
- | *30-60
-
-
- | 2-5
-
-
- | .5
-
-
- | 3 - | KSC, TI
KSC, TI
KSC, TI
KSC, TI | | HL 43 | 2N656 | TI | npn,si | - | 4 | 200 | 0.0228 | 60
100 | - | *30 | 0.010 | 1 | - | TRWS, FA, TR, AMP.
CDC, GE, NA
TRWS, FA, TR, AMP. | | | 2N657
2N730
2N731 | TI
TI | npn,si
npn,si
npn,si | - | 0.5
0.5 | 175
175 | 3.33 | *60
*60 | 1 | *20
*40 | 1 1 | 1.5
1.5 | 18
18 | CDC, STC, SSP, GE, NA
TR, TI, CDC, NA
TR, TI, CDC, NA | | | 2N1011
2N1038
2N1039
2N1040
2N1041 | BE
TI
TI
TI | pnp,ge
pnp,ge
pnp,ge
pnp,ge
pnp,ge | | 35
20
20
20
20
20 | 95
100
100
100
100 | 0.5
0.267
0.267
0.267
0.267 | *80
*40
*60
*80
*100 | 5
3
3
3
3 | *35-75
*20
*20
*20
*20
*20 | 5
0.125
0.125
0.125
0.125 | 1.5
0.25
0.25
0.25
0.25
0.25 | 3 | MO, ITT, DE
SY, KSC
SY, KSC
SY, KSC
SY, KSC | | HL 44 | 2N1046
2N1046A
2N1046B
2N1073
2N1073A | TI
TI
TI
BE
BE | pnp,ge
pnp,ge
pnp,ge
pnp,ge
pnp,ge | - | 30
50
50
60
60 | 100
100
100
110
110 | 0.400
1.0
1.0
0.833
0.833 | 50
50
50
*25
*60 | 12
12
12
10
10 | *40
*40
*40
*20-60
*20-60 | 2.0
2.0
2.0
15
20 | 0.4
0.4
0.9
1 | 3
3
3
41
41 | OE, MO
DE, MO | | HL 45 | 2N1073B
2N1208
2N1209
2N1238
2N1239 | BE
TR
TR
HU
HU | pnp,ge
npn,PL,si
npn,PL,si
pnp
pnp | 1111 | 60
85
85
1 | 110
175
175
160
160 | 0.833
.485
.485
- | 100
60
45
15 | 10
5
5
-
- | *20-60
*15
*20-80
20
40 | 20
10
20
- | 1
5
5
-
- | 41
-
-
- | DE, MO
STC, TI
STC, TI | | 112 40 | 2N1240
2N1241
2N1242
2N1243
2N1244 | HU
HU
HU
HU
HU | pnp
pnp
pnp
pnp | - | 1
1
1
1 | 160
160
160
160
160 | - | 35
35
60
60
110 | - | 20
40
20
40
20 | - | | - | | | | 2N1990 | FA | npn,DD,si | - | 2 | 150
110 | 0.016 | *100
30 | 1 25 | *30
*35-140 | 0.001 | 0.4 | 5 | TRWS, CDC, GI,
AMP, AL, NUC, IEC | | HL 46 | 2N2285
2N2286
2N2287 | BE
BE
BE | pnp.ge
pnp.ge
pnp.ge | - | 100
100 | 110
110
110 | 1.25
1.25
1.25 | 60
80 | 25
25
25 | *35-140
*35-140 | 5 5 | - | 3 | | | IIL 40 | 2N2288
2N2289
2N2290
2N2291
2N2292 | BE
BE
BE
BE
BE | pnp.ge
pnp.ge
pnp.ge
pnp.ge | | 60
60
60
60 | 110
110
110
110
110 | 0.833
0.833
0.833
0.833
0.833 | *40
*80
*120
30
50 | 10
10
10
30
10 | *20-60
*20-60
*20-60
50-200
50-200 | 5
5
5
5
5 | | 3
3
3
3 | | | | 2N2293
2N2294
2N2295
2N2296
2N2359 | BE
BE
BE
BE
BE | npn.ge
pnp.ge
pnp.ge
pnp.ge
pnp.ge | | 60
60
60
60
170 | 110
110
110
110
110 | 0.833
0.833
0.833
0.833
2 | 70
30
50
70
30 | 10
10
10
10
10
50 | 50-200
50-200
50-200
50-200
*30-90 | 5
1
1
2
50 | | 3
41
41
41
41 | | | HL 47 | 2N2358
2N2357
2N2389
2N2390
2N2394 | BE
BE
TI
TI | pnp.ge
pnp.ge
npn,si
npn,si
pnp.si | - | 170
170
0.45
0.45
0.45 | 110
110
200
200
175 | 2
2
0.00257
0.00257
0.003 | 60
80
•75
•75
35 | 50
50
500
0.5
0.3 | *30-90
30-90
35
*100
30 | 50
50
10
10 | -
1.5
1.5
1.5 | 41
-
50
50
50 | | | HL 48 | 2N2395
2N2410
2N2411
2N2526
2N2527 | TI
TI
TI
MO
MO | npn,si
npn,si
pnp,si
pnp,AD,ge
pnp,AD,ge | | 0.45
0.8
0.3
85
85 | 200
200
200
110
110 | 0.00257
0.00457
0.00172
1.25
1.25 | 40
30
20
80
120 | 0.3
0.8
0.1
10 | *20
*30
*20
20-50
20-50 | 10
0.3
10
3 | 1.0
0.45
0.2
0.8
0.8 | 50
5
18
3
3 | SY, NA
IEC | | | 2N2528 | МО | pnp,AD,ge | - | 85 | 110 | 1.25 | 160 | 10 | 20-50 | 3 | 0.8 | 3 | DE | Circle as many numbers on the reader-service card as you like. In Making Masks for Electronic Components... there's no Margin for Error! With sharp blade, outline the areas to be masked. Do not cut through the backing sheet. The Ulano Swivel Knife does the job quickly, easily. Now carefully peel off the film as outlined leaving a completed photo mask, positive or negative, that corresponds exactly to the desired pattern. THAT'S WHY EXPERIENCED DESIGNERS AND ENGINEERS ALWAYS INSIST ON... HAND-CUT MASKING FILM FOR THE
GRAPHIC ARTS THE KNIFE-CUT, LIGHT-SAFE MASKING FILM LAMINATED TO A STABLE POLYESTER BASE The most versatile line of hand-cut masking films, including .0075—RUBYLITH 75 DR* .005 RUBYLITH 5 DR .005 AMBERLITH 5 DA These new, thick Ulano films provide the positive answers where exact register assumes a critical importance. *Available in sheets only, cut to your specifications. by Ulano" 610 DEAN STREET, BROOKLYN, N.Y. 11238 NEW YORK • CALIFORNIA • CHICAGO • ZURICH In Europe: ULANO A. G., Untere Heslibachstrasse 22, Kusnacht 8700, Switzerland Write on your letterhead for special electronic test kit (no charge) No.4127 ### Unijunction Type 1. Pulse Generation (e.g., SCR Triggering) | | Type
Number | Orig.
Reg. | Туре | V _{OB1}
[min]
(volts) | l _V
[min]
(mA) | V _{EB2}
[max]
(volts) | η
[min-max] | R _{BBO}
[min]
(kΩ) | lp
[max]
(μ A) | l _{EO}
[max]
(μA) | V _{E(SAT)}
[max]
(valts) | Alternate
Sources and
Remarks | |-----|----------------|---------------|----------|--------------------------------------|---------------------------------|--------------------------------------|----------------|-----------------------------------|------------------------------|----------------------------------|---|-------------------------------------| | | 2N489A | GE | pn,si | 3.0 | 8.0 | 60 | 0.51-0.62 | 4.7 | 12.0 | 2.0 | 4.0 | TI, T0-5 | | | 2N490A | GE | pn,si | 3.0 | 8.0 | 60 | 0.51-0.62 | 6.2 | 12.0 | 2.0 | 4.0 | TI, TO-5 | | | 2N491A | GE | pn,si | 3.0 | 8.0 | 60 | 0.56-0.68 | 4.7 | 12.0 | 2.0 | 4.3 | TI, TO-5 | | | 2N492A | GE | pn,si | 3.0 | 8.0 | 60 | 0.56-0.68 | 6.2 | 12.0 | 2.0 | 4.3 | TI, TO-5 | | | 2N493A | GE | pn,si | 3.0 | 8.0 | 60 | 0.62-0.75 | 4.7 | 12.0 | 2.0 | 4.6 | TI, TO-5 | | | 2N494A | GE | pn,si | 3.0 | 8.0 | 60 | 0.62-0.75 | 6.2 | 12.0 | 2.0 | 4.6 | TI, TO-5 | | | 2N1671A | GE | pn,si | 3.0 | 8.0 | 30 | 0.47-0.62 | 4.7 | 25.0 | 2.0 | 5.0 | TI | | TLI | 2N1671B | GE | n, si | 3.0 | 8.0 | 30 | 0.47-0.62 | 4.7 | 6.0 | 0.2 | 5.0 | TI | | 1 | 2N2160 | GE | pn,si | 3.0 | 8.0 | 30 | 0.47-0.80 | 4.0 | 25.0 | 2.0 | - | TI, T0-5 | | | 2N2646 | GE | pn,AE,si | 3.0 | 4.0 | 30 | 0.56-0.75 | 4.7 | 5.0 | 12.0 | 2.0(typ) | MO, TI | | - 1 | 2N4893 | TI | pn,si | 3.0 | 2.0 | 30 | 0.55-0.82 | 4.0 | 5.0 | 1.0 | 4.0 | Plastic (218) TO-92 | | | SJ1034 | TI | pn,si | 3.0 | - | 30 | 0.50-0.80 | 4.0 | _ | 15.0 | _ | T0-5 | | | SJ5898 | TI | pn,si | 3.0 | 2.0 | 30 | 0.55-0.80 | 4.0 | 5.0 | 0.01 | 4.0 | T-69 (Plastic Planar | | | 2N2647 | GE | pn,si | 6.0 | 8.0 | 30 | 0.68-0.82 | 4.7 | 2.0 | 0.20 | 2.0(typ) | \ | | | SJ1158 | TI | pn,si | 6.0 | 3.0 | 30 | 0.56-0.85 | 4.0 | 5.0 | 0.01 | 4.0 | TO-18 (Planar) | | | SJ1159 | TI | pn,si | 6.0 | 4.0 | 30 | 0.65-0.85 | 4.7 | 2.0 | 0.01 | 4.0 | TO-18 (Planar) | Type 2. High-Frequency Control, Voltage-Sensing, Frequency Dividing and Short Timing Periods | | Type
Number | Orig.
Reg. | Туре | ly
[min]
(mA) | η
(min-max) | R _{BBO}
[min]
(kΩ) | (jtA) | l _p
[max]
(μ A) | V _{E(SAT)}
[max]
(volts) | V _{EB2}
[max]
(volts) | V _{OB1}
[min]
(volts) | Alternate
Sources and
Remarks | |-----|----------------|---------------|----------|---------------------|----------------|-----------------------------------|-------|--|---|--------------------------------------|--------------------------------------|-------------------------------------| | | 2N3980 | TI | pn,AE,si | 1.0 | 0.68-0.82 | 4.0 | 0.01 | 2.0 | 3.0 | 30 | 6.0 | МО | | | 2N 4891 | <u>Ti</u> | pn,si | 2.0 | 0.55-0.82 | 4.0 | 1.0 | 5.0 | 4.0 | 30 | 3.0 | TO-92 | | | 2N4892 | TI | pn,si | 2.0 | 0.55-0.82 | 4.0 | 1.0 | 5.0 | 4.0 | 30 | 3.0 | TO-92 | | | SJ993 | TI | pn,si | 4.0 | 0.56-0.75 | 4.7 | 0.01 | 5.0 | 4.0 | 30 | 3.0
3.0 | TO-18 (Planar) | | | 2N4947 | TI | pn,si | 4.0 | 0.51-0.069 | 4.0 | 2.0 | 2.0 | 3.0 | 30 | 3.0 | TO-18 | | | SJ1127 | TI | pn,si | 8.0 | 0.68-0.82 | 4.7 | 0.01 | 2.0 | 4.0 | 60 | 6.0 | TO-18 (Planar) | | TLU | 2N489 | GE | pn,si | 8.0 | 0.51-0.62 | 4.7 | 2.0 | 12.0 | 5.0 | 60 | - | TI, TO-5 | | 2 | 2N490 | GE | pn,si | 8.0 | 0.51-0.62 | 6.2 | 2.0 | 12.0 | 5.0 | 60 | - | TI, TO-5 | | | 2N491 | GE | pn,si | 8.0 | 0.56-0.68 | 4.7 | 2.0 | 12.0 | 5.0 | 60 | - | TI, TO-5 | | | 2N492 | GE | pn,si | 8.0 | 0.56-0.68 | 6.2 | 2.0 | 12.0 | 5.0 | 60 | - 1 | TI, TO-5 | | | 2N493 | GE | pn,si | 8.0 | 0.62-0.75 | 4.7 | 2.0 | 12.0 | 5.0 | 60 | _ | TI, TO-5 | | | 2N494 | GE | pn,si | 8.0 | 0.62-0.75 | 6.2 | 2.0 | 12.0 | 5.0 | 60 | - | TI, TO-5 | | | 2N1671 | TI | pn,si | 8.0 | 0.47-0.62 | 4.7 | 12.0 | 25.0 | 5.0 | 30 | - | GE, TO-5 | Type 3. Low-Frequency Control, Long Timing-Periods and Current-Sensing | | Type
Number | Orig.
Reg. | Туре | lp
[max]
(µA) | l _{EO}
[max]
(μA) | η
[min-max] | V _{OB1}
[min]
(volts) | R _{BBO}
[min]
(kΩ) | I _V
[min]
(mA) | V _{E(SAT)} [max] (volts) | V _{EB2} [max] (volts) | Alternate
Sources and
Remarks | |---------|-----------------------------|----------------|-------------------------|---------------------|----------------------------------|-------------------------------------|--------------------------------------|-----------------------------------|---------------------------------|-----------------------------------|--------------------------------|--------------------------------------| | | 2N489B
2N490B | GE
GE | pn,si
pn,si | 6.0
6.0 | 2.0
2.0 | 0.51-0.62
0.51-0.62 | 3.0
3.0 | 4.7
6.2 | 8.0
8.0 | 4.0
4.0 | 60
60 | TI, TO-5
TI, TO-5 | | | 2N491B
2N492B | GE
GE | pn,si
pn,si | 6.0
6.0 | 2.0 | 0.56-0.68
0.56-0.68 | 3.0
6.2 | 4.7
6.2 | 8.0
8.0 | 4.3
4.3 | 60
60 | TI, TO-5
TI, TO-5 | | | 2N494B | GE | pn,si | 6.0 | 2.0 | 0.62-0.75 | 3.0 | 6.2 | 8.0 | 4.6 | 60 | TI, TO-5 | | | 2N495B
2N1671B | GE
TI | pn,si
pn,si | 6.0 | 2.0
0.20 | 0.62-0.75
0.47-0.62 | 3.0 | 4.7 | 8.0
8.0 | 4.6
5.0 | 60
30 | TI, TO-5
GE, TO-5 | | JT
3 | 2N4894
2N490C | TI
GE | pn,si
n,si | 5.0
2.0 | 1.0
0.02 | 0.55-0.82
0.62-0.91 | 3.0
3.0 | 4.0
6.2 | 2.0
8.0 | 4.0 | 30
60 | T0-92 | | | 2N492C
2N494C | GE
GE | n,si
pn,si | 2.0
2.0 | 0.02
0.02 | 0.62-0.91
0.62-0.75 | 3.0
3.0 | 6.2
6.2 | 8.0
8.0 | 4.3
4.6 | 60
60 | TI, TO-5 | | | 2N1671C
2N2647
2N3980 | GE
GE
TI | pn,si
pn,si
pn,si | 2.0
2.0
2.0 | 0.02
0.20
0.01 | 0.47-0.62
0.68-0.82
0.68-0.82 | 3.0
6.0
6.0 | 4.7
4.7
4.0 | 8.0
8.0
1.0 | 5.0
2.0(typ)
3.0 | 60
30
30 | MO, TO-18 (Planar)
TO-18 (Planar) | | | 2N4948
2N4949 | TI
TI | pn,si
pn,si | 2.0
1.0 | 2.0 | 0.55-0.82
0.74-0.86 | 6.0
3.0 | 4.0
4.0 | 2.0
2.0 | 3.0
3.0 | 30
30 | TO-18
TO-18 | ### make or buy? Your answer for SEMICONDUCTOR COOLING PACKAGES could very well be ... #### Wakefield Customized Standards Confined Airflow Packages are custom engineered with modular "building block" sections combined in a variety of ways for the desired cooling system. 4 Confined Airflow Series: FCA-700, 800, 820 and 900. Modular assembly of an FCA-800. Terminal board assemblies on a standard FCA-820 Package 4 Open Airflow Series: FCA-1000, 1100, 1122 and 1200. FCA-1000 for high power devices. FCA-1122 utilizes 2 heat sinks. Mounting blocks bonded on an FCA-1200 with thermally conductive adhesive. 3 LIQUID COOLED PLATES: LCP-10, 11 (below) and 20 with custom mounting accommodations. #### Wakefield Special Coolers or Assemblies Engineered Cooling Package . . . even outlet air cools semiconductors. Unique hole and fin patterns on standard Series FSE Extrusions. Special copper heat sinks. ON READER-SERVICE CARD CIRCLE 73 specific requirements. Fins bonded, soldered, brazed or staked. Special fabrications to combine machined parts with the heat sink extrusion. CATALOG No. 17 24 pages of complete technical information WAKEFIELD ENGINEERING, INC. Wakefield, Massachusetts 01880 (617) 245-5900 • TWX 617-245-9213 ### Field-Effect Type 1(a). Analog-switching | L | he | itaj. | Analog | 1-2M | | _ | | | | | | | | |-----------------------|--|-------------------------------|--|--|---|------------------------------------|--|--------------------------------------|---|---------------------------------------|--|---------------------------------|--------------------------------------| | Cross
Index
Key | Type
No. | Mér. | Channel,
Construction,
Class And
No. of Elements | "ds(on)
{Max.}
(ahms) | l _{D(off)}
[Max.]
(μA) | Cdgs or +Csgs or +Ciss [Max.] (pF) | BVGSS
or
*BVDSS
{Min.}
(volts) | VGS (off) or °VGS(TH) [Max.] (volts) | 9{ς
[MinMax.]
(μπhos) | IGSS
or
*IDGO
{max.}
(nA) | IDSS
[MinMax.]
(mA) | TO- | Alternat
Saurce:
and
Remark | | FET 1 | K1504
2N3610
2N3376
2N3377
C6692 | KMC
PH
SI
SI
CT | p.M,4
p.M,4
p,DP,F,3
p,DP,F,3
n,EP,F,3 | 10000
3000
1500
1500
1500 | 10
-
0054
0004
0.001 | 4.5
0.6
3
2
5 | 25
• -20
30
30
25 | -8
*-7
5
5 | 800
150 (min)
800-2300
800-2300 | 0.05
0.0002
3
3
1.0 | .05
0.00001
-(0.6-6.0)
-(0.6-6.0) | 18
18
72
-
18 | Flat pack | | | 2N2497
2N3329
2N3460
D1303
DNX9 | TI
TI
AL
DIC
DIC | p,DP,F,3
p,DP,F,3
n,DPE,F,3
n,DPE,F,3
n,DPE,F,3 | 1000
1000
1000
1000
1000 | 0.01
-
-
-
- |
-
6
6
6 | -
50
25
50 | 15
5
2
2
2 | 1000-2000
1000-2000
1000-4500
1000-4500
1000-4500 | 10
10
-
-
- | 1-3
1-3
0.2-1
0.2-1
0.2-1 | 5
72
18
18
18 | UC, SI
UC, SI
DIC, SI, UC | | | TIXS11
2N2498
2N3330
2N3378
2N3379 | TI
TI
TI
SI
SI | p,PL,M,3
p,DP,F,3
p,DP,F,3
p,DP,F,3
p,DP,F,3 | 1000
800
800
750
750 | 0.01
0.01
-
0004
0004 | -
-
3
2 | 30
-
-
30
30 | *3-6
15
6
5
5 | 800 (min)
1500-3000
1500-3000
1500-2300
1500-2300 | 0.003
10
10
3
3 | 2-6
2-6
-(3-6)
-(3-6) | 72
5
72
72
72 | SI, UC
SI
Flat pack | | | 2N3437
2N3459
2N4360
C6690
C6691 | DIC
SI
FA
CT
CT | n,DPE,F,3
n,DPE,F,3
p,DP,F,3
n,EP,F,3
n,EP,F,3 | 700
700
700
700
700
700 | -
1
0,001
0.001 | 6
6
15
5 | 50
50
20
30
25 | 4
4
10
10
10 | 1500-6000
1500-6000
2000-8000
- | -
10
1.0
1.0 | 0.8-4
0.8-4
3-30 | 18
18
18
18
18 | AL, SI
AL | | FET 3 | D1184
D1302
DNX8
2N2499
2N3331 | DIC
DIC
DIC
TI
TI | n,DPE,F,3
n,DPE,F,3
n,DPE,F,3
p,DP,F,3
p,DP,F,3 | 700
700
700
700
600 | = | 6
6
6
- | 40
25
50
- | 4
4
4
15
8 | 1500-6000
1500-6000
1500-6000
2000-4000
2000-4000 | -
-
10
10 | 0.8-4
0.8-4
0.8-4
0.5-15
5-15 | 18
18
18
5
72 | SI | | | 2N3380
2N3381
2N3631
2N4343
2N3436 | SI
SI
SI
FA
DIC | p,DP,F,3
p,DP,F,3
n,M,3
p,DP,F,3
n,DPE,F,3 | 600
600
550
500
450 | 0005
0005
0001
1 | 3
2
1.6
†5 | 30
30
20
25
50 | 9.5
9.5
-6
10
8 | 1500-2300
1500-2300
1400-2800
4000-8000
2500-10,000 | 3
3
-
10
- | -(3-20)
-(3-20)
2-10
10-30
3-15 | 72
-
18
18
18 | Flat pack | | FET 4 | 2N3458
U1183
D1301
DNX7
2N4342 | SI
DIC
DIC
DIC
FA | n,DPE,F,3
n,DPE,F,3
n,DPE,F,3
n,DPE,F,3
p,DP,F,3 | 450
450
450
450
350 | -
-
-
1 | 6
6
6
6
15 | 50
40
25
50
25 | 8
8
8
8
5.5 | 2500-10,000
2500-10,000
2500-10,000
2500-10,000
2000-6000 | 0.25
-
-
-
10 | 3-15
3-15
3-15
3-15
4-12 | 18
18
18
18
18 | AL | | | 2N4381
2N4382
2N3382
2N3383
2N3608 | FA
FA
SI
SI
PH | p,DP,F,3
p,DP,F,3
p,DP,F,3
p,DP,F,3
p,M,4 | 350
350
300
300
300 | 1
1
002
002 | †5
†5
6
5 | 25
25
30
30
•-30 | 1-5
2.5-9.0
5
5
•-6 | 2000-6000
4000-8000
4500-12,500
4500-12,500
800 (min) | 1
1
15
15
0.002 | 10-30
10-30
-(3-30)
-(3-30)
0,00003 (max) | 18
18
72
-
5 | Flat pack | | FET 5 | 2N 3994
DE 1004
F10049
2N 3824
CM640 | TI
PH
FA
TI
CT | p,DP,F,3
p,M,4
p,DP,M,6
n,EP,F,3
n,EP,F,3 | 300
300
270
250
250 | 1.2
-
0.001
0.1
0.001 | 3.5
0.7
-
5 | 25
• –20
30
30
20 | 1-5.5
*-8
-6
8
1.5 | 4000-10,000
600 (min)
2000 (min)
- | 1.2
1000
-
0.1
0.4 | 2 (min)
0.0001
1000
-
0.5 (min) | 72
18
-
72
18 | UC, SI | | | UC 401
2N 3966
M1 03
HA 2010
U1 39D | UC
AL
SI
HU
SI | p,F,3
n,DP,F3
p,M,4
p,M,4
p,DP,F,6 | 250
220
200
200
200
200 | .0001
0.001
-0.0002
1000
002 | 4
1.5
4
1
6 | 30
30
-30
•-35
20 | 8
6.0
-6
•5
10 | -
-
1000-2000
5000 (min) | 0.1
0.1
-0.1
0
10 | 8 (min)
2 (min)
-
-
-(4-50) | 72
18
72
72
72
5 | Dual | | re i b | 2N3384
2N3385
2N3386
2N3387
2N33993 | SI
SI
SI
TI | p.DP,F.3
p.DP,F.3
p.DP,F.3
p.DP,F,3
p,DP,F,3 | 180
180
150
150
150 | 002
002
0025
0025
1.2 | 6
5
6
5 | 30
30
30
30
30
25 | 5
5
9.5
9.5
4-9.5 | 7500-12,500
7500-12,500
7500-15,000
7500-15,000
6000-12,000 | 15
15
15
15
15 | -(15-30)
-(15-30)
-(15-50)
-(15-50)
10 (min) | 72
-
72
-
72 | Flat pack | | ET 7 | TIS05
U139
UC451
M511
2N3972 | TI
SI
UC
SI
SI | p,DP,F,3
p,DP,F,6
p,F,3
p,M,4
p,DPE,F,3 | 150
150
150
150
150 (typ)
100 | 2
0025
.00025
-0.01
0.25 | 5
6
6
4
†25 | 25
30
25
-30
40 | 10
7
6
-6
-3 | 6000-12,000
7000 (min)

- | 2
10
0.25
-1
•0.25 | 10-45
-(9-35)
3.75-37.5
-
5-30 | 72
5
18
72
18 | Dual | | 617 | 2N4393
UC201
2N4093
CM600
UC251 | UC
UC
AL
CT
UC | n,EP,F,3
n,F,3
n,DP,F,3
n,EP,F,3
n,F,3 | 100
100
80
75
75 | 0.0001
.00025
.00002
0.003
.001 | 14
6
5.0
15
6 | -40
50
40
10
30 | -3
8
5.0
7
6 | -
-
10-30000 | -0.1
0.25
0.2
3
1 | 5-30
15 (min)
8 (min)
-
7.5-75 | 18
72
18
18
18 | | | | TIS42
TIXS42
2N3971
2N4392
2N4858 | TI
TI
SI
UC
TI | n,EP,F,3
n,EP,F,3
n,DPE,F,3
n,EP,F,3
n,EP,F,3 | 70
70
60
60 | 0.005
5
.00025
0.0001
0.00025 | †18
-
†25
14
†18 | 25
25
40
-40
40 | 10
10
-5
-5
4 | | 5
-
*0.25
-0.1
0.25 | 10 (min)
10 (min)
25-75
25-75
8-80 | 92
92
18
18
18 | AL | | ET 8 | 2N4861
MF E 2133
TIXS33
UC450
2N4092 | TI
MO
TI
UC
AL | n,EP,F,3
n,DP,F,3
n,EP,F,3
p,F,3
n,DP,F,3 | 60
60
60
60
50 | 0.00025
0.001
1
.00025
.00002 | †18
†20
–
6
5.0 | 30
30
30
25
40 | 4
-
10
10
7.0 | _
12,000
12000 (min)
_
_ | 0.25
•1
-
0.25
0.2 | 8-80
25 (min)
25 (min)
25-75
15 (min) | 18
39
72
18
18 | | | Crass
Index
Key | Type
No. | Mir. | Channel,
Construction,
Class And
No. of Elements | fds(on)
[Max.]
(ohms) | I _{D(off)}
{Max.]
(μΑ) | Cdgs *Csgs or †Ciss [Max.] (pF) | BVGSS *BVDSS [Min.] (volts) | VGS (off)
or
*VGS(TH)
[Max.]
(volts) | 94s
[MinMox.]
(µmhos) | GSS
or
DGO
[max.]
(nA) | DSS
[MinMax.]
(mA) | TO- | Alternate
Sources
and
Remarks | |-----------------------|--|----------------------------|---|----------------------------------|--|------------------------------------|---------------------------------|--|---|---|--|----------------------------------|--| | FET 9 | CM601
CM602
CM642 | CT
CT
CT | n,EP,F,3
n,EP,F,3
n,EP,F,3 | 50
50
50 | 0.003
0.003
0.001 | 15
15
5 | 15
30
20 | 10
10
3.0 | 10-30000
10-30000
- | 3
10
0.4 | -
10 (min) | 18
18
18 | | | FET | TIXS36
2N4857
2N4860
U182
CM603 | TI
TI
TI
SI
CT | n,EP,F,4
n,EP,F,3
n,EP,F,3
n,DPE,F,3
n,EP,F,3 | 50
40
40
40
40
35 | -
0.00025
0.00025
.00025
0.003 | -
†18
†18
†25(Ciss)
15 | 30
40
30
40
15 | 10
6
6
-10
10 | 10,000-20,000
-
-
-
20-60000 | 10
0.25
0.25
*0.25 | 10,000
20-100
20-100
50-150 | 18
18
18
18
18 | | | 10 | CM643
2N4091
2N4391
CM646
UC250 | CT
AL
UC
CT
UC | n,EP,F,3
n,DP,F,3
n,EP,F,3
n,EP,F,3
n,F,3 | 35
30
30
30
30 | 0,001
,00002
0,0001
0,001
,001 | 5
5.0
14
5
6 | 20
40
-40
25
30 | 5.0
10
-10
7.0
10 | - | 0.4
0.2
-0.1
0.4
0.1 | 50 (min)
30 (min)
50-150
30 (min)
50-150 | 18
18
18
18
18 | | | FET | TIXS41
2N4856
2N4859
CM647
TIS41 | TI
TI
TI
CT
TI | n,EP,F,3
n,EP,F,3
n,EP,F,3
n,EP,F,3
n,EP,F,3 | 25
25
25
25
25
25 | 0.5
0.00025
0.00025
0.001
0.0005 | -
†18
†18
5
†18 | 30
40
30
25
30 | 10
10
10
10
10 | - | 0.2
0.25
0.25
0.4
0.2 | 50 (min)
50 (min)
50 (min)
50 (min)
50 (min) | 18
18
18
18
18 | | | 11 | 2N4448
2N4446
2N4447
2N4445
2N2386 | CT
CT
CT
CT
TI | n,ED,F,3
n,EP,F,3
n,EP,F,3
n,EP,F,3
p,DP,F,3 | 12
10
6
5 | 0.003
0.003
3.0
0.003
0.01 | 20
20
20
20
20 | 20
25
20
25
- | 10
10
10
10
10 | 100,000
100,000
150,000
150,000
1000 (min) | 3.0
3.0
3.0
3.0
10 | 100 (min)
100 (min)
150 (min)
150 (min) | 46
46
46
46
5 | DIC, SI | | FET | 2N2500
2N3277
2N3278
2N3332
2N3796 | Ti
FA
FA
TI
MO | p,DP,F,3
p,DP,F,3
p,DP,F,3
p,DP,F,3
n,DP,M,3 | 11111 | 1
1
- | 4.5
4.5
-
0.8 | 25
25
25
-
•25 | 15
5
8
6
-4 | 1000-2200
100
200
1000-2200
900-1800 | 10
0.4
0.4
10
-0.001 | 1-6
0.15-0.50
0.40-0.90
1-6
0.5-3 | 5
33
33
72
18 | | | 12 | 2N3797
2N3819
2N3820
2N3821
2N3822 | MO
TI
TI
TI
TI | n,DP,M,3
n,EP,F,3
p,PL,F,3
n,EP,F,3
n,EP,F,3 | 11111 | - | 0.8
-
-
- | *25
25
20
50
50 | -4
8
8
4
6 | 1500-3000
2000-6500
800-5000
1500-4500
3000-6500 | -0.001
2
20
0.1
0.1 | 4-6
2-20
0.3-1
5
0.5-2.5
2-10 | 18
92
92
72
72 | MO, SI
MO, SI | | FET | 2N3823
2N3909
2N4220
2N4221
2N4222 | TI
TI
SI
SI | n,EP,F,3
p,PL,F,3
n,DP,F,3
n,DP,F,3
n,DP,F,3 | | - | -
2
2
2
2 | 30
20
-30
-30
-30 | 8
0.3-7.9
-4
-6
-8 | 3500-6500
1000-5000
1000-4000
2000-5000
2500-6000 | 0.5
10
-0.1
-0.1
-0.1 | 1-7.5
0.3-15
0.5-3
2-6
5-15 | 72
72
72
72
72
72 | SI
SI | | 13 | 3N124
3N125
3N126
MFE2093
MFE2094 | MO
MO
MO
MO | n,DP,F,3
n,DP,F,4
n,DP,F,4
n,DP,F,3
n,DP,F,3 | | - | 2
2
2
2
2
2 | -50
-50
-50
-50
-50 | -2.5
-4.0
-6.5
-2.5
-4.5 | 500-2000
800-2400
1200-3600
250-500
350-700 | -0.25
-0.25
-0.25
-0.1
-0.1 | 0.2-2
1.5-4.5
3.0-9.0
0.1-0.7
0.4-1.4 | 72
72
72
72
72
72 | | | FET
14 | MFE2095
TIS14
TIS34
TIXS35 | MO
TI
TI
TI | n,DP,F,3
n,EP,F,3
n,EP,F,3
n,EP,F,4 | = | - | 2 | -50
30
30
30
30 | -5.5
6.5
1-8
1-5 | 400-800
1000-7500
3500-6500
10,000-20,000 | -0.1
1
5
10 | 1-3
0.5-15
4-20
10-50 | 72
72
92
72 | | Circle as many numbers on the reader-service card as you like. Get detailed spec sheets and application notes: use the reader-service card! Valuable reprints are FREE if you circle them on the reader-service card. Need a FREE personal copy of this Directory? Circle number 419. Reader-Service cards are good all year. ### Field-Effect (continued) Type 1(b). Digital-switching | Cross
Index
Key | Type
Na. | Mfr. 13 | Channel,
Construction,
Class And
No. of Elements | VGS(TH) or "Vp [MinMax. (volts) | ^f ds (an)
[Max.]
ahms | DSS
 MinMax.
(mA) | IGSS
ar
*IDGO
[Max.]
(nA) | BVGSS *BVDSS or *BVDSX [Min.] (volts) | C _{rss} | C _{iss}
 Max.
(pF) | tan taff
 Max.
(µs) | TO- | Alternate
Sources
and
Remarks | |-----------------------|---|--|--|---|---|--|---|--|---|--|---|--|--| | FET
15 | 2N2497
2N2498
2N2499
2N2500 | TI
TI
TI | p,DP,F,3
p,DP,F,3
p,DP,F,3
p,DP,F,3 | 15 (max)
15 (max)
15 (max)
15 (max) | 1000
800
600 | 1-3
2-6
5-15
1-6 | 10
10
10
10 | | - | 32
32
32
32
32 | - | 5
5
5
5 | 21
21
21 | | FET | 2N3970
2N4343
2N4360
TISO5 | UC
FA
FA
TI | n,F,3
p,DP,F,3
p,DP,F,3
p,DP,F,3 | 10 (max) *10 *10 10 (max) | 30
350
700
150 | 50-150
10-30
3-30
10-45 | 0.25
10
10
2 | 40
25
20
25 | 6
5
5 | 25
20
20
12 | 50
-
-
- | 18
18
18
72 | AL,
SI | | 16 | TIS41
TIS42
TIXS33
TIXS41
TIXS42 | TI
TI
TI
TI | n,EP,F,3
n,EP,F,3
n,EP,F,3
n,EP,F,3
n,EP,F,3 | *10 (max) *10 (max) 10 (max) 10 (max) 10 (max) | 25
70
60
25
70 | 50 (min)
10 (min)
25 (min)
50 (min)
10 (min) | 0.2
5
-
0.2 | 30
25
30
8
25 | 8
9
5
18
9 | 18
18
20
-
18 | -
-
18
- | 18
92
72
92 | | | | 2N2386
2N3331
2N3819
2N3820 | TI
TI
TI | p,DP,F,3
p,DP,F,3
n,EP,F,3
p,PL,F,3 | 8 (max)
8 (max)
8 (max)
8 (max) | -
600
-
- | -
5-15
2-20
0.3-15 | 10
10
2
20 | -
-
25
20 | -
-
4
16 | 50
20
8
32 | - | 5
72
92
92 | DIC,
SI
SI | | FET
17 | 2N3823
2N3824
M101
TIS14 | TI
TI
SI
TI | n,EP,F,3
n,EP,F,3
n,M,4
n,EP,F,3 | 8 (max)
8 (max)
*-8 (max)
6.5 (max) | 250
300 (typ) | 1-7.5
-
4-12
0.5-15 | 0.5
0-1
-
1 | 30
50
†20
30 | 2 3 4 | 6
7.5
8 | - | 72
72
18
72 | SI,
MO
SI | | FET | 2N3330
2N3332
2N3631
2N4342
2N3329 | TI
TI
SI
FA
TI | p,DP,F,3
p,DP,F,3
n,M,4
p,DP,F,3
p,DP,F,3 | 6 (max)
6 (max)
• -6 (max)
• 5.5
5 (max) | 800
-
550
700
1000 | 2-6
1-6
2-10
4-12
1-3 | 10
10
-
10
10 | -
+20
25
- | -
1.6
5 | 20
20
7.5
20
20 | - | 72
72
18
18
72 | SI | | 18 | 2N 397 1
MIO0
2N 4856
2N 4859 | UC
SI
TI | n,F,3
n,M,4
n,EP,F,3
n,EP,F,3 | 5 (max)
*-5 (max)
*4-10
*4-10 | 350 (typ)
25
25 | 25-75
1.5-4.5
50 (min)
50 (min) | 0.25
-
0.25
0.25 | 40
†20
40
30 | 6
-
8
8 | 7.5
18
18 | 90
-
0,031
0.031 | 18
18
18
18 | AL,
SI | | FET | U182
2N3993
2N3608
HA2000
2N3821 | SI
TI
PH
HU
TI | n,DPE,F,3
p,DP,F,3
p,M,4
p,M,4
n,EP,F,3 | *- (4-10)
4-9.5
- (4-6)
4-5
4 (max) | 40
150
300
200 | 50-150
10 (min)
0.00003
-
0.5-2.5 | *0.25
1.2
0.002
-
0.1 | 40
25
-30
*-35
50 | 6
4.5
-
1
3 | 25
16
-
8
6 | 50 -
-
0.003 | 18
72
5
72
72 | SI | | 19 | T1XS36
DE 1004
2N4066
2N4067
2N4267 | TI
PH
FA
FA
FA | n,EP,F,4,4
p,M,4
p,EP,M,6
p,EP,M,6
p,EP,M,4 | 3-10
- (3-8)
3-6
3-6
3-6 | 50
300
500
250
250 | 40-200
0.0001
0.001
0.001
0.001 (max) | 10
1000
0.0025
0.0025
0.005 | 30
*-20
30
30
30 | 5
3
1,5
1.5
3 | 12
10
7
7
15 | -
0.01
0.01
- | 72
18
76
76
72 | | | FET | 2N4268
FI-0049
TIXS11
2N3972 | FA
FA
TI
UC | p,EP,M,4
p,EP,M,6
p,PL,M,4
n,F,3 | 3-6
3-6
3-6
3 (max) | 125
500
250-1000
100 | 0.001 (max)
0.001 (max)
-
5-30 | 0.005
0.0025
0.003
0.25 | 30
30
30
40 | 3
0.7 (typ)
3
6 | 15
0.5 (typ)
8
25 | -
-
-
180 | 72
-
72
18 | AL,
SI | | 20 | 2N4382
F1-100
2N4857
2N4860
2N3971 | FA
FA
TI
TI
SI | p,DP,F,3
p,EP,M,4
n,EP,F,3
n,EP,F,3
n,DPE,F,3 | *2.5-9.0
2.5-6.0
*2-6
*2-6
*-(2-5) | 350
1000
40
40
60 | 10-30
-
20-100
20-100
25-75 | 1
0.0025
0.25
0.25
•0.25 | 25
30
40
30
40 | 5
1.0
8
8
6 | 20
3.5
18
18
25 | -
0.056
0.056
90 | 18
72
18
18 | AL | | FET 21 | 2N3994
2N4352
2N4351
2N4381
T1XS35
T1S34
2N4858
2N4861
2N4861
2N3972
2N3909
2N3824 | TI
MO
MO
FA
TI
TI
TI
SI
TI
MO | p,DP,F,3
p,DP,M,4
n,DP,M,3
p,DP,F,3
n,EP,F,3
n,EP,F,3
n,EP,F,3
n,DP,E,F,3
n,DP,E,F,3 | 1-5.5
1.5-6
1.5
1-5
1-5
1-8
*0.8-4
*0.8-4
*- (0.5-3)
0.3-7.9 | 300
600
300
350
-
-
60
60
100
-
250 | 2 (min)
0-0.005
0-0.01
10-30
10-50
4-20
8-80
8-80
5-30
0.3-15 | 1.2
0.010
0.01
1
10
5
0.25
0.25
0.25
0.25 | 25
• -25
• 25
25
30
30
40
20
-50 | 5
2.5
2.5
5
5
5
2
8
6
16
3 | 16
6.5
5.5
20
12
6
18
18
25
32
6 | 0.35
0.22
-
-
0.110
0.110
180 | 72
72
72
18
72
92
18
18
18
72
72 | 21
21 | | FET 22 | 2N4065
2N4120
2N4220
2N4221
2N4221
2N4222
3N124
3N125
MFE2093
MFE2094
MFE2095 | FA FA MO | p,EP,M,4
p,EP,M,4
n,DP,F,3
n,DP,F,3
n,DP,F,4
n,DP,F,4
n,DP,F,4
n,DP,F,4
n,DP,F,3
n,DP,F,3
n,DP,F,3 | | 1500
1000
-
-
-
-
-
-
-
- | 0.0005 (max)
0.0005 (max)
0.5-3
2-6
5-15
0.2-2.0
1.5-4.5
3.0-9.0
0.1-0.7
0.4-1.4
1.0-3.0 | 0.0025
0.0025
-0.1
-0.1
-0.1
-0.25
-0.25
-0.25
-0.1 | 30
30
-30
-30
-30
-50
-50
-50
-50
-50 | 0.7
0.7
2
2
2
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0 | 4.5
6
6
6
14
14
14
6
6 | 0.65
0.65
 | 72
72
72
72
72
72
72
72
72
72
72
72
72 | \$1
\$1
\$1 | Complete listing of semiconductor manufacturers starts on page 86. Circle as many numbers on the reader-service card as you like. ### Design Data from Schweber #### **Fairchild Semiconductors** This condensed catalog presents the most complete line of advanced silicon planar and planar epitaxial devices in the industry. High performance transistors, dual transistors, differential amplifiers, and microminiature devices for the full range of military commercial-industrial and consumer product applications. Schweber Electronics Westbury, New York 11591 516-334-7474 171 #### General Electric Semiconductors The Schweber catalog of G.E. semiconductors lists the major specifications of a broad product range. Also special products to meet individual needs include tunnel diodes, light emitting diodes, light activated SCR's, unijunction transistors, etc. Fifty-five pages of G.E. product innovation.
Schweber Electronics Westbury, New York 11591 516-334-7474 172 #### Motorola Semiconductors Schweber catalog of Motorola semiconductors & integrated circuits New 1967 condensed catalog of Motorola Semiconductors and Integrated Circuits just off the press. There are 20 sections in this 36-page catalog — from Integrated Circuits to Photo-sensitive Detectors, and between these the famous Motorola Zener diodes, and others. One of the industry's deepest and broadest line of semiconductors condensed in this single catalog. Schweber Electronics Westbury, New York 11591 516-334-7474 173 #### Union Carbide FET'S & OP Amps 10-page catalog featuring Union Carbide's complete line of Field Effect Transistors. 150 different types are listed emphasizing the best in FET characteristics. Also included are a wide range of modular solid state operational amplifiers. Schweber Electronics Westbury, New York 11591 516-334-7474 174 #### Westinghouse Semiconductors Schweber catalog of Westinghouse semiconductors 20-page catalog of silicon high-power transistors, high voltage and high-power thyristor assemblies, SCR's up to 300 amps at 1200 volts low and high-power rectifiers, also fast switching type and the famous "OEM" low cost rectifiers up to 400 amps at 600 volts. Schweber Electronics Westbury, New York 11591 516-334-7474 175 #### Microwave Diodes By Micro Optics Data sheets listing silicon point contact diodes with higher power ratings. Included are stripline mixer and video detectors, varactors for parametric amplifiers, gallium arsenide diodes, PIN microwave switching diodes, step recovery diodes and others. Schweber Electronics Westbury, New York 11591 516-334-7474 176 #### Type 2(a). Low-drift, single-ended dc amplifiers | Cross
Index
Key | Type
No. | Mêr. | Channel,
Construction,
Class And
No. of Elements | I _{DX}
(MinMax.1
(mA) | gfsx
[MinMax.]
(umhas) | IGX
ar
*IGSS
[Max.]
(nA) | BVGSS
or
*BVDSS
[Min.]
(valts) | VGSX or or or VP [MinMax.] (valts) | gos x
 Max.
(µmhos) | C _{iss}
[Mox.]
(pF) | NF
[Max.]
dBor(finKHz
/ R _{gen in K(2)} | TO- | Alternate
Sources
and
Remarks | |-----------------------|--|----------------------------|---|---|---|--------------------------------------|--|--|----------------------------|------------------------------------|---|----------------------------------|--| | FET 23 | 2N3112
2N3113
2N2606 | SI
SI
SI | p,DP,F,3
p,DP,F,3
p,DP,F,3 | .008 (typ)
.008 (typ)
.01 (typ) | 20
20 (typ)
40 (typ) | *0.05
*0.05
*1 | 20
20
30 | 0.4-3.5
0.4-3.5
0.4-3.5 | = | 2
3.5
6 | = | -
18
18 | AL,
DIC | | | 2N2841 | SI | p,DP,F,3 | .014 (typ) | 50 (typ) | - | 30 | 1.2 (max) | - | 6 | 3 (1/10000) | 18 | | | | 2N2607
2N2842 | SI | p,DP,F,3 | .03 (typ) | 120 (typ)
150 (typ) | •3 | 30 | 0.4-3.5
1.2 (max) | - | 10 | 3 (1/10000) | 18 | AL,
DIC | | FET
24 | 2N2608
MFE2093
2N2843 | SI
MO
SI | p,DP,F,3
n,DP,F,3
p,DP,F,3 | .1 (typ)
0.1-0.7
0.12 (typ) | 370 (typ)
250-500
450 (typ) | *10
-0.1 | 30
-50
30 | 0.4-3.5
-2.5
1.2 (max) | 1.5 | 17 6 | 3 (1/1000) | 18
72
18 | AL | | | 3N 124
2N 2609
2N 3820
2N 390 9 | MO
SI
TI
TI | n,DP,F,4
p,DP,F,3
p,PL,F,3
p,PL,F,3 | 0.2-2
0.27 (typ)
0.3-15
0.3-15 | 500-2000
1200 (typ)
800-5000
1000-5000 | -0.25
•30
20
10 | -50
30
20
20 | -2.5
0.4-3.5
8 (max)
0.3-7.9 | 2 | 14
30
32
32 | - | 72
18
92
72 | ,AL
SI | | FET | 2N2844
MF E2094
2N3969
2N3821
2N3796 | SI
MO
AL
TI
MO | p,DP,F,3
n,DP,F,3
n,DP,F,3
n,EP,F,3
n,DP,M,3 | 0.4 (typ)
0.4-1.4
0.4-2.0
0.5-2.5
0.5-3 | 1400 (typ)
350-700
1300 (min)
1500-4500
90 0-180 0 | -
-0.1
0.1
0.1
-0.001 | 30
-50
30
50
*25 | 1.2 (max)
-4.5
•1.7 (typ)
4 (max)
-4 | -
3.0
5.0
-
25 | 30
6
5.0
6
7 | 3 (1/1000)
-
1.5 (0.1/1000)
5 (0.01/1000) | 18
72
18
72
18 | SI | | 25 | 2N4220
TIS14
2N2497
2N3329
MFE2095 | MO
TI
TI
TI
MO | n,DP,F,3
n,EP,F,3
p,DP,F,3
p,DP,F,3
n,DP,F,3 | 0.5-3
0.5-15
1-3
1-3
1.0-3.0 | 1000-4000
1000-7500
1000-2000
1000-2000
400-80 0 | -0.1
1
10
10
-0.1 | -30
30
-
-
-50 | -4
65 (max)
15 (max)
5 (max)
-5.5 | 10
-
-
-
10 | 6
8
32
20
6 | | 72
72
5
72
72 | SI
SI
SI | | 557 | 2N3968
2N2500
2N3332
2N3823
3N125 | AL
TI
TI
TI
MO | n,DP,F,3
p,DP,F,3
p,DP,F,3
n,EP,F,3
n,DP,F,4 | 1.0-5.0
1-6
1-6
1-7.5
1.5-4.5 | 2000 (min)
1000-2200
1000-2200
3500-6500
80 0 -2400 | 0.1
10
10
0.5
-0.25 | 30
-
-
30
-50 | *3 (typ) 15 (max) 6 (max) 8 (max) -4.0 | 15
-
-
-
10 | 5.0
32
20
6
14 | 1,5 (0.1/1000)
-
1 (1/1000)
2.5 (100000/1) | 18
5
72
72
72
72 | | | 26 | 2N3994
2N2498
2N3330
2N3797
2N4221 | TI
TI
MO
MO | p,DP,F,3
p,DP,F,3
p,DP,F,3
n,DP,M,3
n,DP,F,3 | 2 (min)
2-6
2-6
2-6
2-6 | 4000-10,000
1500-3000
1500-3000
1500-3000
2000-5000 | 1,2
10
10
-0.001
-0.1 | 25
-
-
•25
-30 | 1-5.5
15 (max)
6 (max)
-4
-6 | -
-
-
60
20 | 16
32
20
8
6 | -
3-1-1000
- | 72
5
72
18
72 | 12
12
12 | | | 2N3822 | TI | n,EP,F,3 | 2-10 | 3000-6500 | 0.1 | 50 | 6 (max) | - | 6 | 5(0.01/1000) | 72 | MQ
SI | | FET | 2N 38 19
2N 3967
3N 126 | T1
AL
MO | n,EP,F,3
n,DP,F,3
n,DP,F,4 | 2-20
2.5-10
3-9 | 2000-6500
2500 (min)
1200-3600 | 2
0.1
-0.25 | 25
30
-50 | 8 (max)
*2.0-5.0
-6.5 | -
35
20 | 8
5.0
14 | 1.5 (0.1/1000) | 92
18
72 | 31 | | 27 | 2N4360
2N4342
T1S34
2N2499
2N3331 | FA
FA
TI
TI | p,DP,F,3
p,DP,F,3
n,EP,F,3
p,DP,F,3
p,DP,F,3 | 3-30
4-12
4-20
5-15
5-15 | 2000-8000
2000-6000
3500-6500
2000-4000
2000-4000 | *10
*10
5
10 | 20
25
30
- | *10
*5.5
1-8
15 (max)
8 (max) | - | 5
5
6
32
20 | 1.5(0.1/10)
1.5(0.1/10)
-
-
4 (1/1000) | 18
18
92
5
72 | S1
21 | | FET | 2N4222
2N4343
2N4381
2N4382
TIXS35 | MO
FA
FA
FA
TI | n,DP,F,3
p,DP,F,3
p,DP,F,3
p,DP,F,3
n,EP,F,4 | 5-15
10-30
10-30
10-30
10-50 | 2500-6500
4000-8000
2000-6000
4000-8000
10,000-20,000 | -0.1
*10
*1
*1
10 | -30
25
25
25
25
30 | -8
*10
*1-5
*2.5-9.0
1-5 | 40
-
-
-
- | 6
5
5
5
12 | -1.5(0.1/10)
3(10/0.4)
3(10/0.4) | 72
18
18
18
18
72 | SI | | 28 | TIXS36
2N2386 | TI
TI | n,EP,F,4
p,DP,F,3 | 40-200 | 10,000-20,000
1000 (min) | 10
10 | 30 | 3-10
8 (max) | - | 12
50 | _ | 72
5 | DIC | | | HA2020
TIXS11 | HU
TI | p,M,4
p,PL,m,3 | - | 1000-2000
800 (min) | 0.003 | *-35
30 | 80 (min)
3-6 | - | 8.0 | 2(5000/.05) | 72
72 | 21 | Circle as many numbers on the reader-service card as you like. Valuable reprints are FREE if you circle them on the reader-service card. Get detailed spec sheets and application notes: use the reader-service card! Reader-Service cards are good all year. # POMER Silicon Transistor Corporation is now a major source for triple diffused planar NPN silicon power transistors. The new STT2650–STT2656 25 MHz series is immediately available from stock at low prices. They have a voltage range of 30V–150V, maximum $\rm T_{\rm j}$ is 175°C, $\rm C_{\rm ob}$ is 200pf and they are packaged in a T0-61 case. Prices for this series range from \$12 to \$36 per unit on orders of 100. High power high frequency inverters and converters, switching type regulated power supplies and power linear amplifiers are just a few applications. For further information, call or write today. #### TRIPLE DIFFUSED PLANAR-NPN | 1 | VCEO | VСВО | VEBO | lcmax. | Pmax.
(100°C) | VBE(sat) | VCE(sat) | hFE | ft _(typ) | lo | ES | |-----------|-------|-------|-------|--------|------------------|------------|------------|--------|---------------------|-------|-----| | | Volts | Volts | Volts | Amps | Watts | Volts | Volts | - | MHz | Volts | μΑ | | STT 2650 | 150 | 150 | 12 | 7.5 | 75 | 1.3 | 0.6 | 30-90 | 25 | 60 | 1 | | STT 2651 | 120 | 140 | 12 | 7.5 | 75 | 1.3 | 0.6 | 30-90 | 25 | 60 | 1 | | STT 2652 | 120 | 140 | 12 | 7.5 | 75 | 1.3 | 0.6 | 50-150 | 25 | 60 | 1 | | STT 2653 | 100 | 120 | 12 | 7.5 | 75 | 1.3 | 0.6 | 30-90 | 25 | 60 | 1 | | STT 2654 | 80 | 100 | 12 | 7.5 | 75 | 1.3 | 0.6 | 30-90 | 25 | 60 | 1 | | STT 2655 | 60 | 75 | 10 | 7.5 | 75 | 1.3 | 0.6 | 30-90 | 25 | 40 | 1 | | STT 2656 | 30 | 40 | 10 | 7.5 | 75 | 2.0 | 1.0 | 25 | 25 | 20 | 500 | | CONDI- IC | 200mA | 5mA | 10mA | | | 2A
0.2A | 2A
0.2A | 2A | 0.15A | | | | TIONS VCE | | | | | | | | 15V | 15V | | | Silicon Transistor Corporation produces the broadest line of silicon power transistors in the industry. #### SILICON TRANSISTOR CORPORATION #### Type 2(b). Differential dc amplifiers | Cross
Index
Key | Type
No. | Mfr. | Channel,
Construction,
Class And
No. of Elements | Δ VGS Δ T [Max.] (μ volts/°C) | V _{GS1} -V _{GS2}
 Max.l
(volts) | BV _{gss}
or
*BV _{DSS}
[Min.]
(volts) | Vp
or
*VGS (aff)
[Min Max.]
(valts) | GSS
or
*IGX
 Max.

(nA) | I _{DSS}
[Min Max.]
(mA) | I _{G1} - I _{G2}
[Max.]
(nA) | gfsx
[Min Max.]
(μmhos) | TO- | Alternate
Sources
and
Remarks | |-----------------------|--|----------------------------|---|---------------------------------|---|--|---|--------------------------------------|---|---|---|----------------------------|--| | FET
29 | 2N3336
2N3335
TIS27
2N3334
TIS26 | TI
TI
TI
TI . | p,DP,F,6
p,DP,F,6
n,EP,F,6
p,DP,F,6
n,EP,F,6 | 520
280
210
200
140 | 0.050
0.040
0.015
0.020
0.010 | 20
20
50
20
50 | 0.3-1.6
0.3-1.6
6 (max)
0.3-1.6
6 (max) | 10
10
0.25
10
0.25 | 0.3-1
0.3-1
0.5-8
0.3-1
0.5-8 | 20 0
100
10
50 | 600-1800
600-1800
1500-6000
600-1800
1500-6000 | 89
89
5
89
5 | nc
nc | | FET | 3N97
2N3958
MEM551
2N3333
2N3957 | SI
UC
GI
TI
UC | p,DP,F,6
n,PL,F,6
p,MOS,C,7
p,DP,F,6
n,PL,F,6 | 106
100
100
80
75 | 0.2
0.025
0.200
0.015
0.020 | 30
50
•30
20
50 | 3.3
1,0-4,5
3-6
0.3-1.6
1,0-4,5 | 5
0.0001
0.004
10
0.1 | -0.5-2.5
0.5-5.0
10 nA
0.3-1
0.5-5.0 | 3
10
-
50
10 | 250-500
1000-3000
500 (min)
600-1800
1000-3000 | 5
71
77
89
71 | | | 30 | T1S25
SU2079
SU2081
2N3935
2N3956 | TI
AL
AL
AL
UC | n,EP,F,6
n,F,6
n,DP,F,6
n,DP,F,6
n,PL,F,6 | 70
60
60
50
50 | 0.005
0.015
0.015
0.005
0.015 | 50
50
50
50
50 | 6 (max)
4 (max)
4 (typ)
3 (typ)
1.0-4.5 | 0.25
0.25
0.5
0.1
0.1 | 0.5-8
0.25-2
1.0-10
0.25-1.3
0.5-5.0 | 10
-
-
-
10 | 1500-6000
300 (min)
1500 (min)
300 (min)
1000-3000 | 5
18
18
18
71 | ис | | FET | SU 2078
SU 2080
2N 3922
2N 3955
2N 4083 | AL
AL
AL
UC
AL | n,F,6
n,DP,F,6
n,DP,F,6
n,PL,F,6
n,DP,F,6 | 35
35
25
25
25 | 0.015
0.015
0.005
0.010
0.015 | 50
50
50
50
50 | 4 (max)
4 (typ)
3 (typ)
1.0-4.5
3 (typ) | 0.25
0.5
0.25
0.0001
0.1 | 0.25-2
1,0-10
1.0-10
0.5-5.0
0.25-1.3 | -
-
-
10 | 300 (min)
1500 (min)
1500 (min)
1000-3000
300 (min) | 18
18
18
71
18 | | | 31 | 2N 4085
3N 96
2N 39 21
2N 39 34
2N 39 54 | AL
SI
AL
AL
UC | n,DP,F,6
p,DP,F,6
n,DP,F,6
n,DP,F,6
n,PL,F.6 | 25
13
10
10
10 | 0.015
0.1
0.005
0.005
0.005 | 50
30
50
50
50 | 3 (typ)
3.3 (typ)
3 (typ)
3 (typ)
1.0-4.5 | 0.25
5
0.25
0.1
0.0001 | 1.0-10
-0.5-2.5
1.0-10
0.25-1.3
0.5-5.0 | 1.0
-
-
10 | 1500 (min)
250-500
1500 (min)
300 (min)
1000-3000 | 18
5
18
18
71 | UC
UC | | FET
32 | 2N 4082
2N 4084 | AL
AL | n, DP, F, 6
n, DP, F, 6 | 10
10 | 0.015
0.015 | 50
50 | 3 (typ)
3 (typ) | 0.1
0.25 | 0.25-1.3
1.0-10 | 7 | 300 (min)
1500 (min) | 18
18 | | Need a FREE personal copy of this Directory? Circle number 419. Complete listing of semiconductor manufacturers starts on page 86. Valuable reprints are FREE if you circle them on the reader-service card. #### Type 3(a). General-purpose ac amplifiers | Cross
Index
Key | Type
No. | Mfr. | Channel,
Construction,
Class And
No. of Elements | IDSS
[MinMax.]
(mA) | 9fs
[MinMax.]
(umhos) | Vp
or
*VGS (off)
[MinMax.]
(volts) | | BVGSS
or
*BVDSS
or
*BVDGO
[Min.]
(volts) | C _{iss}
[Max.]
(pF) | C _{rss}
[Max.]
(pF) | g _{oss}
[Max.]
(µmhos) | TO - | Alternate
Sources
and
Remarks | |-----------------------|---|----------------------------|---|---|---|--|--------------------------------------|--|------------------------------------|------------------------------------|---------------------------------------|----------------------------------|--| | FET
33 | 2N4353
MEM511
MEM520
517
UC852 | GI
GI
GI
UC | p,MOS,C,4
p,MOS,C,4
p,MOS,C,4
p,MOS,C,4
p,F,3 | 5πA
10πA
10πA
50πA
0.025 (min) | 1000-4000
1000 (min)
1000 (min)
10,000 (min)
60 | 3-5
3-6
3-6
2.5-5.0
6 (max) | 1.0
1.0
0.003
1.0
2 | *30
*30
*30
*30
*30
25 | 12
8
8
25
6 | 4
3
3
10 | 350
350
350
-
- | 72
72
72
72
33
18 | | | FET | 2N2841
DNX3
2N4117
2N4117A
2N3112 | SI
DIC
SI
SI | p,DP,F,3
n,DPE,F,3
p,DPE,F,3
n,DPE,F,3
p,DP,F,3 | - (.02512) 0.025-0.25 0.03-0.09 0.03-0.09 -(.035175) | 60 (min)
200-700
70-210
70-210
50-115 | 1.7 (max)
-2 (max)
-0.6-1.8
-(0.6-1.8)
1-4 | 1
-1.0
-0.01
-0.001
0.05 | -
50
40
-40
20 | 6
-
3
3
3.5 | -
-
1.5
1.5 | -
3
3
- | 18
18
72
72
72 | UC | | 34 | 2N3113
UC750
2N3068
2N3367
2N3454 | SI
UC
AL
AL
AL | p,DP,F,3
n,F,3
n,DP,F,3
n,DP,F,3
n,DP,F,3 | -(.035175)
0.05 (min)
0.05-0.25
0.05-0.25
0_05-0_25 | 50-115
120
200-1000
100-1000
100-600 | 1-4
6 (max)
2.5 (max)
2.5 (max)
2.5 | 0.05
2
1.0
5
0.1 | 30
+50
+50 | 2.0
6
10
-
6 | - | - | 18
18
18
18 | Flatpack DIC,UC,SI DIC, UC, SI UC, SI | Reader-Service cards are good all year. Circle as many numbers on the reader-service card as you like. | Crass
Index
Key | Type
No. | Mfr. | Channel,
Construction,
Class And
No. of Elements | IDSS
[MinMax.]
(mA) | 9fs
[MinMax.]
(µmhas) | Vp
or
*VGS (off)
[MinMax.]
(volts) | IGSS
[Max.]
(nA) | BVGSS or *BVDSS or *BVDGO [Min.] (valts) | C _{iss}
[Max.]
(pF) | C _{rss}
(Max.)
(pF) | 9 _{05.5}
[Max.]
(µmhos) | TO- | Alternate
Sources
and
Remarks | |-----------------------|--|--------------------------------|--|--|---|---|------------------------------------|--|------------------------------------|------------------------------------|--|----------------------------------|---| | FET 35 | 2N3457
2N3698
DN3068A
UC801
UC803 | AL
UC
DIC
UC
UC | n,DP,F,3
p,F,3
n,DPE,F,3
p,F,3
p,F,3 | 0.05-0.25
0.05-0.25
0.05-0.25
0.05-0.25
0.05-1.5
0.05-5,0 | 150-600
250-750
200-1000
75-750
250-2500 | 2.5
0.3-1.2
-2,5 (max)
6 (max)
6 (max) | 0.04
0.1
-1.0
0.2
0.5 | 150
30
50
25
25 | 5
5
10
3
6 | 1.5
1.2
1.5
- | -
5
- | 18
72
18
72
72 | UC, SI | | FET | UC-41
UC-43
UC853
2N2842
2N4118 | 21
UC
UC
UC | p,F,3
p,F,3
p,F,3
p,DP,F,3
p,DPE,F,3 | 0.06-0.3
0.06-0.3
0.065 (min)
- (.065-,325)
0.08-0.24 | 100 (min)
100 (min)
180
180 (min)
80-250 | 1-2.5
1-2.5
6 (max)
1.7 (max)
-(1-3) | 0.01
0.01
4
3
-0.01 | 30
30
25
30
40 | 1.4
1.4
10
10
3 | -
-
-
-
1.5 | -
-
-
5 | 72
-
18
18
72 | UС | | 36 | 2N4118A
C680
C681
U197
UC751 | SI
CT
CT
SI
UC | n,DPE,F,3
n,F,3
n,F,3
n,DPE,3
n,F,3 | 0.08-0.24
0.08-0.4
0.08-0.4
0.1-1.0
0.1 (min) | 80-250
200-50 0
200-500
200
350 | -(1-3)
0.5-2.5
0.5-2.5
-(0.2-1)
6 (max) | -0.001
1.0
1.0
-0.5
2 | -40
30
30
-30
-30 | 3
5
5
7
10 | 1.5
2
2
-
- | 5
-
-
-
- | 72
5
18
18
18 | | | FET | U1285
2N2606
2N3687
U114
2N3071 | AL
SI
UC
SI
AL | n,DP,F,3
p,DPE,F,3
n,F,3
p,DP,F,3
n,F,3 | 0,1 (min)
- (0,1-0,5)
0.1-0,5
- (0,10-0,50)
0.1-0,6 | 200-1200
110-500
500-150 0
110 (min)
500-2500 | 8.0 (max)
4 (max)
0.3-1.2
1-4
2.5 (max) | 5.0
1.0
0.1
1
1.0 | †30
-40
50
30
†50 | -
6
4.0
6
15 | -
1.2
-
1.5 | - | 18
18
72
46
18 | AL, DIC, UC | | 37 | 2N3370
D1182
D1203
DN3071A
DNX6 | AL
DIC
DIC
DIC
DIC | n,DP,F,3
n,DPE,F,3
n,DPE,F,3
n,DPE,F,3
n,DPE,F,3 | 0.1-0.6
0.1-0.6
0.1-0.6
0.1-0.6
0.1-0.6 | 300-2500
500-2500
300-1500
500-2500
500-2500 | 3,5 (max)
2.5 (max)
-2.5 (max)
-2.5 (max)
2 (max) | 5.0
5
10
-1.0 | 140
50
25
50
50 | -
-
-
15
- | - | -
-
7
- | 18
18
18
18
18 | DIC,UC,SSD | | FET | MFE2093
DNX2
U110
UC850
UC701 | nc
nc
bic
wo | n,DP,F,3
n,DPE,F,3
p,DP,F,3
p,F,3
n,F,3
 0.1-0.7
0.1-1.0
- (0.1-1.0)
0.1-1
0.1-3.0 | 250-500
300-1000
110 (min)
110
150-1500 | *-2.5
-4 (max)
1-6
6 (max)
6 (max) | -0.1
-1.0
4
2
0.2 | -50
50
20
•20
40 | 6
6
6
3 | 2
-
-
- | 1.5
-
-
-
- | 72
18
18
18
18
72 | 148 | | 38 | U1280
UC703
UC804
UC21
UC23 | AL
UC
UC
UC
UC | n,DP
n,F,3
p,F,3
n,F,3
n,F,3 | 0.1-10
0.1-10
0.1-12
0.12-0.6
0.12-0.6 | 250 (min)
500-5000
500-5000
200 (min)
200 (min) | 10 (max)
6 (max)
8 (max)
1-2.5
1.0-2.5 | 0.1
0.5
0.5
0.1
0.01 | †50
40
25
30
30 | -
6
8
2
1.3 | - | - | 18
72
72
72
72
- | | | FET | U1286
UC854
2N3697
2N4119
2N4119A | AL
UC
UC
SI
SI | n,DP
p,F,3
p,F,3
p,DPE,F,3
n,DPE,F,3 | 0.2 (min)
0.2 (min)
0.2-0.6
0.20-0.60
0.2-0.6 | 1000-10,000
540
500-1000
100-330
100-330 | 8 - (max)
6 (max)
0.6-2.0
-(2-6)
-(2-6) | 10
15
0.1
-0.01
-0.001 | †30
25
30
40
–40 | -
17
5
3
3 | -
1.2
1.5
1.5 | -
-
10
10 | 18
18
72
72
72 | | | 39 | 2N 4338
2N 28 43
2N 3067
2N 3366
2N 3438 | SI
SI
AL
AL
AL | n,DPE,3
p,DPE,F,3
n,DP,F,3
n,DP,F,3
n,DP,F,3 | 0.2-0.6
- (0.2-1.0)
0.2-1.0
0.2-1.0
0.2-1.0 | 600-1800
540 (min)
300-1000
250-1000
800-4500 | 0.3-1
1.7 (max)
5 (max)
7 (max)
2.5 (max) | -0.1
10
1.0
5.0
0.5 | -50
30
†50
†40
†50 | 6
17
10
-
18 | 2 | 5
-
-
- | 18
18
18
18
18 | UC
DIC,UC,SI
DIC, UC, SI
UC, SI, DIC | | FET | 2N3453
2N3456
2N3460
D1102
D1178 | AL
AL
DIC
DIC | n,DP,F,3
n,DP,F,3
n,DP,F,3
n,DPE,F,3
n,DPE,F,3 | 0.2-1.0
0.2-1.0
0.2-1.0
0.2-1.0
0.2-1 | 150-900
300-900
800-4500
300-1000
300-1000 | 5 (max)
5 (max)
2 (max)
- (max)
-5 (max) | 0.1
0.04
0.25
-10
-5.0 | †50
†50
†50
25
50 | 6
5
18
- | 1.5 | - | 18
18
18
18
18 | UC, SI
UC, SI
UC, DIC, SI | | 40 | D1185
D1303
DN3067A
UC-40
UC-42 | DIC
DIC
DIC
UC
UC | n,DPE,F,3
n,DPE,F,3
n,DPE,F,3
p,F,3
p,F,3 | 0.2-1.0
0.2-1.0
0.2-1.0
0.2-1.0
0.2-1.0 | 800-4500
800-4500
300-1000
150 (min)
150 (min) | -2 (max)
-2 (max)
-5 (max)
2-5
1,0-2,5 | -5
-10
-1.0
0.01
0.01 | 50
25
50
30
30 | -
10
2.5
1.4 | -
1.5
- | -
20
- | 18
18
18
72
- | | | FET | U1279
3N124
UC704
U1284
2N3277 | AL
MO
UC
AL
FA | n, DP
n, DP, F, 4
n, F, 3
n, DP
p, EP, F, 3 | 0.2-1.5
0.2-2.0
0.2-24
0.2-40
0.25 (typ) | 250 (min)
500-2000
1000-10,000
1000 (min)
150 (min) | 2.5 (max)
*-2.5
8 (max)
10 (max)
5 (typ) | 0.1
-0.25
0.5
0.5
0.1 | 150
- 50
40
150
25 | -
14
8
18
- | -
2
-
- | -
2
-
- | 18
72
72
72
-
72 | | | 41 | U C752
2N2607
U133
2N3820
2N3909 | UC
SI
SI
TI | n,F,3
p,DP,F,3
p,DP,F,3
p,PL,F,3
p,PL,F,3 | 0.3 (min)
- (.30-1.5)
- (0.30-1.5)
0.3-15
0.3-15 | 1000
330 (min)
330 (min)
800-5000
1000-5000 | 6 (max)
1-4
1-4
*8 (max)
*0.3-7.9 | 6
3
3
20
10 | 30
30
50
20
20 | 17
10
10
32
32 | -
-
16
16 | - | 18
18
18
92
72 | DIC, UC, AL | | FET | UC814
UC805
2N3686
2N4867
MFE2094 | MO
C
C
C
C | p,F,3
p,F,3
n,F,3
n,DPE,3
n,DP,F,3 | 0.3-15
0.3-25
0.4-1.2
0.4-1.2
0.4-1.4 | 80 0 -5000
1000-10,000
1000-2000
700-2000
350-700 | 8 (max)
8 (max)
0.6-2,0
-(0.7-2)
*-4.5 | 2
1
0.1
-0.25
-0.1 | 25
25
50
-40
-50 | 16
12
4
25
6 | 8
-
1.2
5
2 | -
-
1.5
3.0 | 72
72
72
72
72
72 | | | 42 | C682
C683
UC20
UC22
UC855 | CT
CT
UC
UC
UC | n,F,3
n,F,3
n,F,3
n,F,3
p,F,3 | 0.4-1.6
0.4-1.6
0.4-2.0
0.4-2.0
0.44 (min) | 400-1000
400-1000
300 (min)
300 (min)
1400 | 1.0-5.0
1.0-5.0
2.0-5.0
2.0-5.0
6 (max) | 1.0
1.0
0.0 1
0.01
50 | 30
30
30
30
30
25 | 5
5
2
1.3
25 | 2
2
-
-
- | - | 5
18
72
-
18 | | | Cross
Index
Key | Type
No. | Mfr. | Channel,
Construction,
Class And
No. of Elements | IDSS
[MinMax.]
(mA) | 9fs
 MinMax.
(µmhas) | VP
or
*VGS (off)
[MinMax.]
(volts) | GSS
[Max.]
(nA) | BVGSS
or
*BVDSS
or
1BVDGO
[Min.]
(volts) | C _{iss}
[Max.]
(pF) | C _{rss}
[Max.]
(pF) | 9 _{oss}
[Max.]
(jimhos) | ТО- | Alternate
Sources
and
Remarks | |-----------------------|---|-----------------------------|---|--|---|--|-------------------------------------|--|------------------------------------|------------------------------------|--|--|--| | FET
43 | 2N2844
FP4339
U1325
2N3696
2N4339 | SI
SI
AL
UC
SI | p,DP,F,3
p,n,DPE,6
n,F,3
p,F,3
n,DPE,3 | - (0.44-2.2)
0.5
0.5 (typ)
0.5-1.5
0.5-1.5 | 1400 (min)
800
500 (min)
250-1250
800-2400 | 1.7 (max)
0.6
1.2 (max)
1-3.5
0.6-1.8 | 30
3
0.1
0.1
-0.1 | 30
40
-
30
-50 | 30
7
-
5
6 | -
3
-
1.2
2 | -
-
-
-
15 ° | 18
72
18
72
18 | UC | | FET | U203
U204
2N3070
2N3369
2N3821 | SI
SI
AL
AL
TI | n,DPE,3
n,DPE,3
n,F,3
n,DP,F,3
n,DP,F,3 | 0.5-2
0.5-2
0.5-2.5
0.5-2.5
0.5-2.5 | 300-2000
300-2000
750-2500
600-2500
1500-4500 | -(1-5)
-(1-5)
5 (max)
7 (max)
*-4 | -1
-1
1.0
5.0
-0.1 | -30
-30
†50
†40
-50 | 6
6
15
-
6 | 1.5
1.5
1.5
-
3 | 50
50
-
-
-
10 | 72
72
18
18
72 | DIC,UC,SI
DIC,UC,SI
MO, UC | | 44 | 3N89
D1181
D1202
DN3070A
DNX5 | SI
DIC
DIC
DIC | p,DP,F,4
n,DPE,F,3
n,DPE,F,3
n,DPE,F,3
n,DPE,F,3 | - (0.5-2.5)
0.5-2.5
0.5-2.5
0.5-2.5
0.5-2.5 | 450-1300
750-2500
600-2000
750-2500
750-2500 | 3.3 (typ)
5 (max)
-5 (max)
-5 (max)
4 (max) | 5
5
10
-1.0 | 30
50
25
50
50 | 3
-
-
15
- | - | -
-
30
- | 72
18
18
18
18 | | | FET | UC420
2N3796
2N4220
U1278
U89 | UC
MO
MO
AL
SI | p,F,3
n,DP,M,3
n,DP,F,3
n,DP
p,DP,F,4 | 0,5-2,5
0,5-3,0
0.5-3,0
0.5-3,0
- (0.5-5,0) | 1500 (min)
900-1800
1000-4000
350 (min)
450-1300 | 2.5 (max)
*-4
1-4
4.5 (max)
3.3 (typ) | 0,1
-0.01
-0.1
0,1
10 | 30
-25
-30
+50
20 | 8
7
6
-
3 | -
0.8
2
-
- | -
25
10
-
- | 72
18
72
18
72 | SI | | 45 | MFE3001
K1004
2N3822
TIS14
UC705 | MO
KMC
UC
TI
UC | n,DP,M,4
n,M,4
n,F,3
n,EP,F,3
n,F,3 | 0.5-6
0.5-7.0
0.5-10
0.5-15
0.5-50 | 700-3500
800 (min)
3000-6500
1000-7500
2000-20,000 | *8
12 (max)
6 (max)
*6.5 (max)
8 (max) | 0.01
0.05
0.1
1 | *20
15
50
30
40 | 5
4.5
6
8
12 | 1.5
0.7
3
4 | 1000
-
-
- | 72
18
72
72
72
72 | SI | | FET | P1003
U168
U198
2N3278
2N3084 | AL
SI
SI
FA
CT | p,PL,F,3
p,DP,F,3
n,DPE,3
p,EP,F,3
n,F,3 | 0.6-6.0
- (0.6-6)
0.6-6.0
0.67(typ)
0.8-3.0 | 1000-3500
800 (min)
600
200 (min)
400-1200 | 3 (max)
5 (max)
-(0.8-4)
8 (typ)
-10 | 3
30
-0.5
0.1
0.1 | -50
20
-30
25 · | 20
65
7
-
5 | -
-
-
2 | - | 18
18
18
72
5 | | | 46 | 2N3085
2N3086
2N3087
2N3066
2N3365 | CT
CT
CT
AL
AL | n,F,3
n,F,3
n,F,3
n,DP,F,3
n,DP,F,3 | 0.8-3.0
0.8-3.0
0.8-3.0
0.8-4.0 | 400-1200
400-1200
400-1200
400-1000
400-2000 | -10
-10
-10
10 (max)
12 (max) | 0.1
1.0
1.0
1.0
5.0 | 30
40
40
150
140 | 5
5
5
10 | 2
2
2
1.5 | - | 18
5
18
18 | DIC
DIC, UC, SI
DIC, UC, SI | | FET | 2N3437
2N3452
2N3455
2N3459
D1101 | AL
AL
AL
DIC | n,DP,F,3
n,DP,F,3
n,DP,F,3
n,DP,F,3
n,DPE,F,3 | 0.8-4.0
0.8-4.0
0.8-4.0
0.8-4.0
0.8-4.0 | 1500-6000
20 0-1200
400-1700
1500-6000
400-2000 | 5.0
10 (max)
10 (max)
4 (max)
-10 (max) | 0.5
0.1
0.0 4
0.25
-10 | †50
†50
†50
†50
†50
25 | 18
6
5
18 | -
1.5
5 | | 18
18
18
18
18 | UC, SI
UC, SI
UC, SI, DIC | | 47 | D1177
61184
D1302
DN3066A
DNXI | DIC
DIC
DIC
DIC | n,DPE,F,3
n,DPE,F,3
n,DPE,F,3
n,DPE,F,3
n,DPE,F,3 | 0.8-4.0
0.8-4.0
0.8-4.0
0.8-4.0
0.8-6 | 400-2000
1500-6000
1500-6000
400-1000
400-1500 | -10 (max)
-4 (max)
-4 (max)
-10 (max)
-8 (max) | -5
-5
-10
-1.0
-1.0 | 50
50
25
50
50 | -
-
10
- | -
-
-
1.5 | -
-
-
50
- | 18
18
18
18
18 | | | FET | UC753
2N2608
2N3578
2N2386
U112 | UC
SI
SI
TI
SI |
n,F,3
p,DP,F,3
p,DP,F,3
p,DP,F,3
p,DP,F,3 | 0.9 (min)
- (0.90-4.5)
- (0.9-4.5)
- (0.9-9.0)
- (0.9-9.0) | 2500
1000 (min)
1200-3500
1000 (min)
1000 (min) | 6 (max)
1-4
1.5-4
8 (max)
16 | 10
10
15
10
4 | 30
30
20
20
20 | 25
17
65
50
17 | - | - | 18
18
18
5
18 | AL, UC
SI,UC | | 48 | UC851
2N3328
UC807
2N3821
2N2497 | UC
SI
UC
SI
TI | p,F,3
p,DP,F,3
p,F,3
n,F,3
p,DP,F,3 | 0.9-9
-1 (max)
1 (min)
1-2.5
1-3 | 1000
100 (min)
2500-25,000
1500-4500
1000-2000 | 6 (max)
6 (max)
12 (max)
4 (max)
15 (max) | 4
1
2
0.1
10 | *20
20
20
50 | 17
4
30
6
32 | -
-
3
- | - | 18
72
18
72
5 | SI, UC | | FET | 2N3329
2N4868
MFE2095
2N3685
MPF103 | SI
SI
MO
U C
MO | p,DP,F,3
n,DPE,3
n,DP,F,3
n,F,3
n,DP,F,3 | - (1-3)
1-3
1.0-3.0
1.0-3.5
1-5 | 1000-2000
1000-3000
40 0-800
1500-2500
1000-5000 | *5 (max)
-(1-3)
*-5.5
1.0-3.5
*6 | 0.01
-0.25
-0.1
0.1
1.0 | -20
-40
-50
50
25 | 20
25
6
4.0
7 | 5
2
1.2
3 | -
4
10
-
50 | 72
72
72
72
72
72
92 | TI, UC | | 49 | UC220
2N2500
2N3332
2N3823
U1283 | UC
TI
TI
TI
AL | n,F,3
p,DP,F,3
p,DP,F,3
n,EP,F,3
n,DP | 1.0-5.0
1-6
1-6
1-7.5
1.0-10 | 3000 (min)
1000-2200
1000-2200
3500-6500
1500 (min) | 2,5 (max)
15 (max)
6 (max)
*8 (max)
2.5 (max) | 0.1
10
10
0.5
0.5 | 50
-
-
30
†50 | 7.0
32
20
6
18 | -
-
-
2 | - | 72
5
72
72
72
18 | UC
UC
UC, SI, MO | | FET | UC240
FP4340
2N4340
2N3695
2N4339 | UC
SI
UC
SI | n,F,3
p,n,DPE,6
n,DPE,3
p,F,3
p,n,DPE,6 | 1.0-10
1.2
1.2-3.6
1.25-3.75
1.5 | 1200 (min)
1300
1300-3000
1000-1750
2400 | 5.0 (max)
1
1-3
2-5
1.8 | 0.1
3
-0.1
0.1
0.1 | 50
40
-50
30
50 | 18
7
6
5
6 | -
3
2
1.2
2 | -
30
- | 18
72
18
72
18 | | | 50 | 3N125
M100
C684
C685
U1277 | MO
SI
CT
CT
AL | n,DP,F,4
n,M,3
n,F,3
n,F,3
n,DP | 1.5-4.5
1.5-4.5
1.5-6.0
1.5-6.0
1.5-8.0 | 800-2400
1000-2200
600-1500
600-1500
450 (min) | *-4.0
*-5
2.0-10
2.0-1.0
8.0 (max) | -0.25
-
1.0
1.0
0.1 | -50
20
30
30
150 | 14
-
5
5
- | 2 2 2 - | 10
-
-
-
- | 72
18
5
18
18 | | Complete listing of semiconductor manufacturers starts on page 86. | Cross
Index
Key | Type
No. | Mfr. | Channel,
Construction,
Class And
No. of Elements | IDSS
[MinMax.]
(mA) | 9fs
[MinMax.]
(umhas) | Vp
or
°VGS (off)
[MinMax.]
(valts) | GSS
[Max.]
(nA) | BVGSS
or
*BVDSS
or
*BVDGO
(Min.)
(valts) | C _{iss}
[Max.]
(pF) | C _{rss}
[Max.]
(pF) | 9 _{05.5}
[Max.]
(µmhos) | TO- | Alternate
Sources
and
Remarks | |-----------------------|--|--------------------------------|---|---|--|---|--|--|------------------------------------|------------------------------------|--|-----------------------------|--| | FET
51 | 2N4881
2N4883
2N4885
2N2498
2N3330 | AL
AL
AL
TI
SI | n
n
n
p,DP,F,3
p,DP,F,3 | 2.0
2.0
2.0
2.6
- (2-6) | 350
350
350
1500-3000
1500-3000 | *15
*10
*10
15 (max)
6 (max) | 2.0
1.0
1.0
1.0
10
0.01 | 100
100
75
-
-20 | 15
15
15
32
20 | 1.5
1.5
1.5
- | 2.5
2.5
2.5
-
- | 5
5
5
72 | SI, UC
TI, UC | | FET | 2N4221
UC410
MPF104
2N2609
2N3069 | MO
UC
MO
SI
AL | n,DP,F,3
p,F,3
n,DP,F,3
p,DP,F,3
n,F,3 | 2-6
2-6
2-9
- (2-10)
2-10 | 2000-5000
2250 (min)
1500-5500
2500 (min)
1000-2500 | * -6
4 (max)
*7
1-4
10 (max) | -0.1
0.1
1.0
30
1.0 | -30
30
25
30
†50 | 6
8
7
30
15 | 2
-
3
-
1.5 | 20
-
50
-
- | 72
72
92
18
18 | AL, UC
DIC,UC,SI | | 52 | 2N3822
D1180
D1201
DN3069 A
DNX4 | TI
DIC
DIC
DIC
DIC | n,EP,F,3
n,DPE,F,3
n,DPE,F,3
n,DPE,F,3
n,DPE,F,3 | 2-10
2-10
2-10
2-10
2-10 | 3000-6500
1000-2500
1000-2500
1000-2500
1000-2500 | *6 (max)
10 (max)
-10 (max)
-10 (max)
8 (max) | 0.1
5
10
-1.0 | 50
50
25
50
50 | 6
-
-
15
- | 3 | -
-
-
80
- | 72
18
18
18
18 | MO, SI | | FET | 2N3368
2N3819
P1004
U183
UC714 | AL
TI
AL
SI
UC | n,DP,F,3
n,EP,F,3
p,PL,F,3
n,DPE,F,3
n,F,3 | 2-12
2-20
2-20
2-20
2-20
2-20 | 1000-4000
2000-6500
2500-6000
2000-6500
2000-6500 | 12 (max)
*8 (max)
5 (max)
-8 (max)
3 (max) | 5.0
2
3
-2
1 | †40
25
-50
-25
30 | 8
20
8
8 | -
4
-
4
4 | -
-
-
50
- | 18
92
18
72
72 | DIC, UC, SI | | 53 | 2N3684
2N4869
TIS58
UC707
2N2386 | UC
SI
TI
UC
TI | n,F,3
n,DPE,3
n,EP,F,3
n,F,3
p,F,3 | 2.5-7.5
2.5-7.5
2.5-8
2.5-250
3 (typ) | 2000-3000
1300-4000
1300-4000
5000-50,000
1000-3000 | 2-5
-(1.8-5)
*0.5-5
12 (max)
8 (max) | 0.1
-0.25
4
2
10 | 50
-40
25
20
20 | 4,0
25
6
30 | 1.2
5
3
- | 10
-
-
- | 72
72
92
18
5 | SI, UC | | FET | 2N3378
2N3379
2N4341
3N126
2N4381 | SI
SI
MO
FA | p,DP,F,3
p,DP,F,3
n,DPE,3
n,DP,F,4
p,DP,F,3 | - (3-6)
- (3-6)
3-9
3-9
3-10 | 1500-2300
1500-2300
2000-4000
1200-3600
2000-6000 | 4-5
4-5
2-6
°-6.5
°1-5 | 3
3
-0.1
-0.25
0.1 | 30
30
-50
-50
•25 | 5
4
6
14
20 | 3
2
2
2
2
5 | -
-
60
20
- | 72
-
18
72
18 | | | 54 | 2N3436
2N3458
D1183
D1301
U199 | AL
AL
DIC
DIC
SI | n, DP, F, 3
n, DP
n, DPE, F, 3
n, DPE, F, 3
n, DPE, 3 | 3.0-15
3.0-15
3-15
3.0-15
3-20 | 2500-10,000
2500-10,000
2500-10,000
2500-10,000
1500 | 10 (max)
8 (max)
-8 (max)
-8 (max)
-(3-10) | 0.5
0.25
-5
-10
-0.5 | †50
†50
50
25
–30 | 18
18
-
-
7 | - | - | 18
18
18
18
18 | UC, SI
UC, SI, DIC | | FET | 2N4340
2N3797
M101
UC210
40461 | SI
MO
SI
UC
RCA | p,n,DPE,6
n,DP,M,3
n,M,3
n,F,3
n,DP,MOS,4 | 3.6
4-6
4-12
4-12
4-14 | 3000
1500-3000
1500-3300
4500 (min)
3500 (typ) | 3
• -4
• -8
4.0 (max) | 0.1
-0.001
-
0.1
0.01 | 50
-25
20
50
±25 | 6
8
-
7.0
1.2 | 2
0.8
-
-
5 | 60
-
- | 18
18
18
72 | | | 55 | MPP 105
TIS34
U 1282
2N2499
2N3331 | MO
TI
AL
TI | n,DP,F,3
n,EP,F,3
n,DP
p,DP,F,3
p,DP,F,3 | 4-16
4-20
4.0-20
5-15
5-15 | 2000-6000
3500-6500
2500 (min)
2000-4000
2000-4000 | *8
1-8
4.5 (max)
15 (max)
8 (max) | 1.0
5
0.5
10 | 25
30
50
- | 7
6
-
32
20 | 3 2 | 50
-
-
-
- | 92
92
18
5
72 | SI
SI, UC | | FET | 2N4222
UC400
P1005
3N128
TIS59 | MO
UC
AL
RCA
TI | n,DP,F,3
p,F,3
p,PL,F,3
n,DP,MOS,4
n,EP,F,3 | 5-15
5-15
5-25
5-30
6-25 | 2500-6000
3000 (min)
3500-7000
5000-12,000
2300-5000 | *-8
6 (max)
8 (max)
-
*1-9 | -0.1
0.1
3
0.05
4 | -30
30
-50
20
25 | 6
8
20
5.8 (typ)
6 | 2 - 0.2 3 | 40
-
-
-
- | 72
72
18
104
92 | SI | | 56 | 2N4882
2N4884
2N4886
U1281
2N4382 | AL
AL
AL
AL
FA | n
n
n,DP
p,DP,F,3 | 7.5
7.5
7.5
8 (max)
10-30 | 600
600
600
250 (min)
4000-8000 | *15
*10
*10
10 (max)
*2.5-9.0 | 2.0
1.0
1.0
0.1
0.1 | 100
100
75
†50
•25 | 15
15
15
-
20 | 1.5
1.5
1.5
-
5 | 5.0
5.0
5.0
-
- | 5
5
5
18
18 | | | FET | UC200
TIXS35
2N4139
MFE2097
U146 | UC
TI
AL
MO
SI | n,F,3
n,EP,F,4
n
n,DP,F,3
p,DP,F,3 | 10-30
10-50
11.0
15-50
-25 (min) | 6000 (min)
10,000-20,000
3500
10,000-20,000
60 (min) | 6.0 (max)
• 1-5
8.0
7
6 (max) | 0.1
10
1.0
1.0
10 | 50
30
†50
50
20 | 7.0
12
18
2 | 5
5
5
5 | -
35
200
- | 72
72
18
39
18 | | | 57 | 2N2841
MF E2098
TIXS36
U147
2N2842 | DIC
MO
TI
SI
DIC | n,DPE,F,3
n,DPE,3
n,EP,F,4
p,DP,F,3
p,DPE,F,3 | 25-125
40-100
40-200
-65 (min)
- (65-325) | 60-300
13,000-25,000
10,000-20,000
180 (min)
180-500 | 1.7 (max)
10
*3-10
6 (max)
1.7 (max) | 1.0
1.0
10
20
3 | -40
50
30
20
-40 | 6
20
12
-
6 | 5
5
- | 400
-
-
- | 18
39
72
18
18 | uc | | FET | U1287
U148
U149
2N3608
DE 1004 | AL
SI
SI
PH
PH | n,DP,F,3
p,DP,F,3
p,DP,F,3
p,M,4
p,M,4 | 100 (typ) | 20,000
540 (min)
1400 (min)
800 (min)
600 (min) | 15 (max)
6 (max)
6
(max)
*4 (typ) | 2.0
60
200
0.002
1000 | 30
20
20
•-30
•20 | -
-
8.0
10 | -
-
2.5
3 | - | 4
18
18
5
18 | †MT25 package
* loss (min)= 0.2
* loss (min) =0.44 | | 58 | HA2001
TIXS11
2N3376
2N3377 | HU
TI
SI
SI | p,M,4
p,PL,M,3
- | - | 1000-2000
800 (min)
800-2300
800-2300 | -
3-6
1-5
1-5 | 0
0.003
3
3 | *35
30
30
30 | 8.0
8
5
4 | 3 3 2 | - | 72
72
72 | | Need a FREE personal copy of this Directory? Circle number 419. #### Type 3(b). Low-noise ac amplifiers | Cross
Index
Key | Type
No. | Mfr. | Channel,
Construction,
Class And
No. of Elements | NF
[Max.]
dB of (f in KMz
/ R _{gen in K} Ω) | 91s
 MinMax.
(//mhos) | IDSS
[MinMax.]
(mA) | BVGSS
or
*BVDSS
[Min.]
(valts) | I _{GSS}
 Max.]
(nA) | C _{iss}
[Max.]
(pF) | Vp
or
*VGS (oH)
[MinMax.]
(volts) | TO- | Alternate
Saurces
and
Remarks | |-----------------------|---|---------------------------------|---|---|---|---|--|---|------------------------------------|--|-----------------------------------|--| | FET 59 | 2N3458
2N3796
2N3797
2N3821
2N3822 | SI
MO
MO
TI | n,DPE,F,3
n,DP,F,3
n,DP,M,3
n,EP,F,3
n,EP,F,3 | 6 (.02/1000)
5 (200000/-)
5 (200000/-)
5 (0.01/1000)
5 (0.01/1000) | 2500-10,000
900-180 0
1500-3000
1500-4500
3000-6500 | 3-15
0.5-3
4-6
0.5-2.5
2-10 | -
-25
-25
50
50 | 0.25
-0.001
-0.001
0.1 | 18
7
8
6
6 | 7.8 (max)
-4 (typ)
-4 (typ)
*4 (max)
*6 (max) | 18
72
72
72
72
72 | AL, DIC | | FET | 2N4220
2N4221
2N4222
2N4223
2N3331 | MO
MO
MO
MO
TI | n,DP,F,3
n,DP,F,3
n,DP,F,3
n,DP,F,3
p,DP,F,3 | 5 (20000/-)
5(20000/-)
5 (20000/-)
5 (20000/-)
4 (1/1000) | 1000-4000
2000-5000
2500-6000
3000-7000
2000-4000 | 0.5-3
2-6
5-15
3-18
5-15 | -30
-30
-30
-30
-30 | -0.1
-0.1
-0.1
-0.25 | 6
6
6
6
20 | -4 (typ)
-6 (typ)
-8 (typ)
*-1-7
*8 (max) | 72
72
72
72
72
72 | SI
SI
SI | | 60 | 2N3455
2N3457
2N3456
2N3460
2N3459 | \$1
\$1
\$1
\$1
\$1 | n,DPE,F,3
n,DPE,F,3
n,DPE,F,3
n,DPE,F,3
n,DPE,F,3 | 4 (.02/1000)
4 (.02/1000)
4 (.02/1000)
4 (.02/1000)
4 (.02/1000) | 400-1200
150-600
300-900
800-4500
1500-6000 | 0.8-4.0
0.05-0.25
0.2-1.0
0.2-1.0
0.8-4.0 | 50
50
50
50
50 | -0.04
-0.04
-0.04
0.25
0.25 | 5
5
5
18
18 | -9.8 (max)
-2.3 (max)
-4.8 (max)
1.8 (max)
3.4 (max) | 72
72
72
72
18
18 | AL
AL
AL, DIC
AL, DIC | | FET | 2N3088
2N3089
2N3329
2N3330
P-102 | CT
CT
TI
TI
SI | n,F,3
n,F,3
p,DP,F,3
p,DP,F,3
p,DP,F,3 | 3 (.01/1000)
3 (.01/1000)
3 (1/1000)
3 (1/1000)
3 (1/1000) | 300-900
300-900
1000-2000
1500-3000
1600 (typ) | 0.5-2.0
0.5-2.0
1-3
2-6
0.90-4.5 | 15
15
-
-
30 | 1.0
1.0
10
10
10 | 5
5
20
20
17 | 5 (typ)
5 (typ)
*5 (max)
*6 (max)
1-4 | 5
18
72
72
72
18 | DIC
SI
SI | | 61 | 2N 4381
2N 4382
U 203
2N 3823
2N 3823 | FA
FA
SI
TI
SI | p,PP,F,3
p,PP,F,3
n,DPE,3
n,EP,F,3
n,DPE,F,3 | 3(10/0.4)
3(10/0.4)
3(15/1000)
2.5 (100000/1)
2.5 (.1/1000) | 2000-6000
4000-8000
300-2000
3500-6500
3200 (min) | 10-30
10-30
0.5-2
1-7.5
4-20 | 25
25
-30
30
30 | 1
1
-1
0.5
-0.5 | 5
5
6
6 | 1-5
2.5-9.0
-(1-5)
*8 (max)
-8 (max) | 18
18
72
72
72
72 | AL | | FET | 2N4220A
2N4221A
2N4222A
2N3452
2N3453 | MO
MO
SI
SI | n,DP,F,3
n,DP,F,3
n,DP,F,3
n,DPE,F,3
n,DPE,F,3 | 2.5(0.1/1000)
2.5(0.1/1000)
2.5(0.1/1000)
2.0 (.1/1000)
2.0 (.1/1000) | 1000-4000
2000-5000
2500-6000
200-1200
150-900 | 0.5-3
2-6
5-15
0.8-4.0
0.2-1.0 | 30
30
30
50
50 | 0.1
0.1
0.1
-0.1
-0.1 | 6
6
6
6 | *4
*6
*8
-9.8 (max)
-4.8 (max) | 72
72
72
72
72
72 | AL
AL | | 62 | 2N3454
2N4342
2N4343
2N4360
2N3332 | SI
FA
FA
TI | n,DPE,F,3
p,PP,F,3
p,PP,F,3
p,PP,F,3
p,DP,F,3 | 2.0 (.1/1000)
1.5(0.1/10)
1.5(0.1/10)
1.5(0.1/10)
1(1/1000) | 100-600
2000-6000
4000-8000
2000-8000
1000-2200 | 0.05-0.25
4-12
10-30
3-30
1-6 | 50
25
25
20
- | -0.1
10
10
10
10 | 6
5
5
5
20 | -2.3 (max)
5.5
10
10
*6 (max) | 72
18
18
18
18
72 | AL | | FET | 2N4338
2N4339
2N4340
2N4341
2N4867 | SI
SI
SI
SI
SI | n,DPE,F,3
n,DPE,F,3
n,DPE,F,3
n,DPE,F,3
n,DPE,3 | 1(1/1000)
1(1/1000)
1(1/1000)
1(1/1000)
1(1/10,000) | 500-2000
600-2500
1000-3000
1300-4000
700-2000 | 0.2-0.6
0.5-1.5
1.2-3.6
3-9
0.4-1.2 | -50
-50
-50
-50
-40 | -0.1
-0.1
-0.1
-0.1
-0.25 | 6
6
6
25 | -(0.3-1.0)
-(0.5-2)
-(0.9-3.5)
-(2-6)
-(0.7-2) | 72
72
72
72
72
72 | | | 63 | 2N 4868
2N 4869
2N 3088 A
2N 3089 A
U204 | SI
SI
CT
CT
SI | n,DPE,3
n,DPE,3
n,F,3
n,F,3
n,DPE,3 | 1(1/10,000)
1(1/10,000)
0.5 (.01/1000)
0.5 (.01/1000)
0.5(15/1000) | 1000-3000
1300-4000
300-900
300-900
300-2000 | 1-3
2.5-7.5
0.5-2.0
0.5-2.0
0.5-2.0 | -40
-40
15
15
-30 | -0.25
-0.25
1.0
1.0
-1 | 25
25
5
5 | -(1-3)
-(1.8-5)
5 (typ)
5 (typ)
-(1-5) | 72
72
5
18
72 | | | FET | DN 3066 A
DN 3067 A
DN 3068 A
DN 3069 A
DN 3070 A | DIC
DIC
DIC
DIC
DIC | n,DPE,F,3
n,DPE,F,3
n,DPE,F,3
n,DPE,F,3
n,DPE,F,3 | 0.25(1/1000)
0.25(1/1000)
0.25 (1/1000)
0.25 (1/1000)
0.25 (1/1000) | 400-1000
300-1000
300-1000
1000-2500
750-2500 | 0.8-4.0
0.2-1.0
0.05-0.25
2-10
0.5-2.5 | 50
50
50
50
50 | 1.0
1.0
1
-1.0
-1.0 | 10
10
10
15
15 | - (3.5-10)
- (1.5-5)
- (.4-2.5)
- (2.5-10)
- (1.0-5) | 18
18
18
18
18 | | | 64 | DN3071A
2N3695
2N3696
2N3697
2N3698 | DIC
UC
UC
UC | n,OPE,F,3
p,F,3
p,F,3
p,F,3
p,F,3 | 0.25 (1/1000)
0.20 (-)
0.20 (-)
0.20 (-)
0.20 (-) | 500-2500
1000-1750
750-1250
500-1000
250-750 | 0.1-0.6
1.25-3.75
0.5-1.5
0.2-0.6
0.05-0.25 | 50
30
30
30
30 | -1.0
0.1
0.1
0.1
0.1 | 15
5
5
5
5 | - (0.4-7.5)
2.5
1-3.5
0.6-2.0
0.3-1.2 | 18
72
72
72
72
72 | | | FET | 2N3684
2N3685
2N3686
2N3687
UC240 | UC
UC
UC
UC | n,F,3
n,F,3
n,F,3
n,F,3
n,F,3 | 0.15 (-)
0.15 (-)
0.15 (-)
0.15 (-)
0.02 (-) | 2000-3000
1500-2500
1000-2000
500-1500
1200 (min) | 2.5-7.5
1-3.5
0.4-1.2
0.1-0.5
1-10 | 50
50
50
50
50 | 0.1
0.1
0.1
0.1
0.1 | 4
4
4
4
18 | 2-5
1-3.5
0.6-2.0
0.3-1.2
5-18 | 72
72
72
72
72
18 | | | 65 | 2N2386
2N2497
2N2498
2N2499
2N2500 | TI
TI
TI
TI | p,DP,F,3
p,DP,F,3
p,DP,F,3
p,DP,F,3
p,DP,F,3 | | 1000 (min)
1000-2000
1500-3000
2000-4000
1000-2200 | -
1-3
2-6
5-15
1-6 | | 10
10
10
10
10 | 50
32
32
32
32
32 | 8 (max)
15 (max)
15 (max)
15 (max)
15 (max) | 5
5
5
5 | SI
SI
SI
SI | | FET | 2N3819
2N3820
2N3909
3N128
TIS14 | TI
TI
TI
RCA
TI | n,EP,F,3
p,PL,F,3
p,PL,F,3
n,DP,MOS,4
n,EP,F,3 | - | 2000-6500
800-5000
1000-5000
5000-12,000
1000-7500 | 2-20
0.3-15
0.3-15
5-30
0.5-15 | 25
20
20
20
20
30 | 2
20
10
0.05 | 8
32
32
5.8
8 | *8 (max)
*8 (max)
*0,3-7,9
-
*6,5 (max) | 72
72
72
72
104
72 | SI | | 66 | TIS34
TIXS11
TIXS35
TIXS35
TIXS36 | TI
TI
TI
TI | n,EP,F,3
p,PL,M,3
n,EP,F,4
n,EP,F,4
n,EP,F,4 | - | 3500-6500
800 (min)
10,000-20,000
10,000-20,000
10,000-20,000 | 4-20

10-50
10-50
40-200 | 30
30
30
30
30 | 5
0.003
10
10
10 | 6
8
12
12
12 | 1-8
3-6
*1-5
*1-5
*3-10 | 72
72
72
72
72
72 | | #### Field-Effect (continued) #### Type 3(c). High-frequency (f≧1MHz) ac amplifiers | Cross
Index
Key | Type
Na. | Mfr. | Channel,
Construction,
Class And
No. of Elements | 943
[MinMax.]
(umhas) | C _{rss}
[Max.]
(pF) | C _{iss}
[Max.]
(pF) | 9iss
[Max.]
(jumhos) | BVGSS
or
*BVDSS
[Min.]
(volts) | ¹ DSS
[MinMax.]
(mA) | Yp
or
"YGS (off)
[MinMax.]
(volts) | NF
[Max.1
dBot(fin KHz
/ Rgen in KΩ] | TO- | Alternate
Sources
and
Remarks | |-----------------------|--|-------------------------------|--|---|------------------------------------|------------------------------------|-------------------------------
--|--|---|--|--|--| | FET
67 | 3N89
U89
DE 1004
2N3608
TIXS11 | SI
SI
PH
PH
TI | p.OP,F.4
p.OP,F.4
p.M.4
p.M.4
p.PL,M,3 | 450-1300
450-1800
600 (min)
800 (min)
800 (min) | -
3
2.5
3 | 3
3
10
8
8 | - | 30
30
•-20
•-30
30 | -(0.5-2.5)
- (0.5-5.0)
0.0001
0.00003 | 3.3 (typ)
3.3 (typ)
-
-
3-6 | - | 72
72
18
5
72 | | | FET | 2N3376
2N3377
2N3820
K1001
K1201 | SI
SI
TI
KMC
KMC | p,DP,F,3
p,DP,F,3
p,PL,F,3
n,M,4
n,M,4 | 800-2300
800-2300
800-5000
1000 (min)
1000 (min) | 3
2
16
0.7
0.3 | 5
4
32
4.5
3.0 | -
-
800
800 | 30
30
20
15
15 | 0.6-6
0.6-6
0.3-15
5-12
1-5 | 1-5
1-5
*8 (max)
6 (max)
5 (max) | -
-
4.5 (200 MHz)
4.5 (450 MHz) | 72
72
18
18 | | | 68 | K1202
K1501
K1502
TIS14
TIS58 | KMC
KMC
KMC
TI
TI | n,M,4
p,M,4
p,M,4
n,EP,F,3
n,EP,F,3 | 1000 (min)
1000 (min)
1000 (min)
1000-7500
1300-4000 | 0.3
0.6
0.6
4
3 | 3.0
2.0
2.0
8
6 | 800
800
800
- | 15
50
50
30
25 | 1-10
-
-
0.5-15
2.5-8 | 5 (max)
3-7
3-7
• 6.5 (max)
• 0.5-5 | - | 72
72
72
72
72
72
92 | | | FET | 2N3378
2N3379
2N3380
2N3381
2N4038 | SI
SI
SI
TRWS | p,DP,F,3
p,DP,F,3
p,DP,F,3
p,DP,F,3
n,DP,M,3 | 1500-2300
1500-2300
1500-3000
1500-3000
1500-3000 | 3
2
3
2
0.2 | 5
4
5
4
2.5 | - | 30
30
30
30
*20 | 3-6
3-6
3-20
3-20
0-0.1 | 4-5
4-5
5-9.5
5-9.5
0-2 | -
-
-
3(100 MHz/1 MΩ) | 72
FP
72
FP
72 | | | 69 | 2N4039
2N3821
2N3819
2N4224
T1S59 | TRWS
TI
TI
MO
TI | n,DP,M,3
n,EP,F,3
n,EP,F,3
n,DP,F,3
n,EP,F,3 | 1500-3000
1500-4500
2000-6500
2000-7500
2300-5000 | 0.2
3
4
2
3 | 2.5
6
8
6 | -
-
800 | *20
50
25
30
25 | 0-0.1
0.5-2.5
2-20
2-20
6-25 | - (2-6) *4 (max) *8 (max) *- (1-7.5) *1-9 | 3(100 MHz/1 MΩ)
5(0.01 kHz/1 MΩ)
-
-
- | 72
72
72
72
72
92 | SI | | FET | 2N3822
2N4223
2N3823
40460
40461 | TI
MO
TI
RCA
RCA | n,EP,F,3
n,DP,F,3
n,EP,F,3
n,DP,MOS,4
n,DP,MOS,4 | 3000-6500
3000-7000
3500-6500
3500 (typ)
3500 (typ) | 3
2
2
1.2
1.2 | 6
6
6
5 | 800
-
-
- | 50
30
30
±25
±25 | 2-10
3-18
1-7.5
9 (typ)
4-14 | *6
*- (1-7)
*8 (max)

-6 (max) | $5(0.01 \text{kHz/1 M}\Omega)$
5(200 MHz/1 kΩ)
2.5(100 MHz/1 kΩ)
- | 72
72
72
72
72
72 | | | 70 | TIS34
K1003
2N4416
2N4417
3N128 | TI
KMC
UC
UC
RCA | n,EP,F,3
n,M,4
n,F,PL,3
n,F,PL,3
n,DP,MOS,4 | 3500-6500
4000 (min)
4500-7500
4500-7500
5000-12,000 | 2
1.0
0.8
0.8
0.2 | 6
3.5
4.0
3.5
5.8 | 800
1000
1000 | 30
15
-30
-30
20 | 4-20
12-20
5.0-15
5.0-15
5-30 | 1-8
6 (max)
-6.0 (max)
-6.0 | 4.5(200 MHz)
-
-
- | 72
18
72
3
104 | | | FET
71 | TIXM12
FT57
TIXM301
TIXS35
CP651 | TI
FA
TI
TI
CT | p,DPE,ge,F,3
n,EP,M,4
p,DPE,F,ge,3
n,EP,F,4
n,EP,F,3 | 5000-20,000
6000 (min)
6500-20,000
10,000-20,000
75,000-200,000 | 4
0.8
4
5
20 | 15
2,7
15
12
50 | 1000
60 (typ)
3000
- | 20
25
20
30
20 | -(5-25)
9-26
-(5-25)
10-50
100-500 | *1-3.5
10 (max)
*1-3.5
*1-5
2-10 | -
4 at 0.1 GHz/2.5 kΩ)
-
- | -
72
72
72
5 | | | | CP650 | СТ | n,EP,F,3. | 100,000-250,000 | 20 | 50 | - | 25 | 300-1200 | 2-10 | - | 5 | | Circle as many numbers on the reader-service card as you like. Get detailed spec sheets and application notes: use the reader-service card! Need a FREE personal copy of this Directory? Circle number 419. Complete listing of semiconductor manufacturers starts on page 86. Valuable reprints are FREE if you circle them on the reader-service card. # Want to convert **DRS 102** high energy .1yf at high efficiency? **DRS 102** Convert to circuit designs using Delco high voltage silicon power. The DC to DC converter above operates directly from a 150V DC source and delivers 180 watts to the load at an efficiency of over 94 percent. The 1.1 kHz circuit operates over a temperature range of -65°C to 100°C. Frequencies of up to 25 kHz may be obtained with selected transformer core materials. And the switching job is handled easily by just two Delco NPN DTS-423 silicon transistors—priced at just \$4.95 each in 1,000 and up quantities. Delco pioneered the development of high voltage silicon power transistors to provide you high energy capability at the lowest cost. Among the many circuit benefits you get are: high reliability, reduced assembly time, and a reduction in the number, weight and ON READER-SERVICE CARD CIRCLE 91 complexity of the electronic components needed. Coupled with the low prices of the Delco silicon power line, these benefits mean real cost advantages to you. Other applications? They've proven their capability in such high energy circuits as: DC and switching regulators, ultrasonic power supplies, VLF class C amplifiers, off-line class A audio output and CRT deflection (several major TV manufacturers use them for big screen horizontal and vertical deflection). Availability? With Delco's lead in knowhow and plant facilities it's no problem. Samples or production quantities can be shipped promptly. Contact one of our distributors or a Delco sales office right now and see. For more details on the DC-DC converter circuit—ask for application note number 32. | DEVICE
TYPE | VCEX | V _{CEO} /sus (min.) | | in. @ I _C
=5 V | 1 _C max. | P _D max. | |----------------|------|------------------------------|----|------------------------------|---------------------|---------------------| | DTS-410 | 200 | 200 | 10 | 2.5A | 3.5A | 80W | | DTS-411 | 300 | 300 | 10 | 2.5A | 3.5A | 100W | | DTS-413 | 400 | 325 | 15 | 1.0A | 2.0A | 75W | | DTS-423 | 400 | 325 | 10 | 2.5A | 3.5A | 100W | | DTS-430 | 400 | 300 | 10 | 3.5A | 5.0A | 12 5W | | DTS-431 | 400 | 325 | 10 | 3.5A | 5.0A | 125W | NPN silicon transistors packaged in solid copper TO-3 case. Syracuse, New York 13203 Chicago, Illinois* 60656 1054 James Street 5151 N. Harlem Avenue (315) 472-2668 (312) 775-5411 Field Union, New Jersey* 07083 Detroit, Michigan 48202 Santa Monica, Calif.* 90401 Sales Box 1018 Chestnut Station Offices (201) 687-3770 (313) 873-6560 (213) 393-1465 General Sales Office: 700 E. Firmin, Kokomo, Ind. 46901 (317) 459-2175 *Office includes field lab and resident engineer for applications assistance DIVISION OF GENERAL MOTORS . KOKOMO, INDIANA 169 # How To Use The Transistor Cross Index Types are listed in numerical sequence. JEDEC numbered devices come first, followed by house-numbered types. The code following each type identifies its application category and the block of ten types in which it is located. A3, for example, means that the type can be found in the third block of the Audio section. | Key to the Letter Codes | LL = low-level switching | |-------------------------------|---------------------------| | A = audio and general purpose | HL = high-level switching | | P = power | FET = field-effect | | HF = high frequency | UJT= unijunction | | 2N35 A46 | 2N244 | A15 | 2N336 | A35 | 2N406 | A16 | |--------------------------|------------------|--------------|-----------------|--------------|------------------|-------------------| | 2N43A A21 | 2N250A | P68 | 2N336A | A31 | 2N407 | A28 | | 2N78A HF6 | 2N251A | P68 | 2N337 | LL40 | 2N408 | A28 | | 2N94 HF2 | 2N257 | P68 | 2N337A | LL14 | 2N409 | HF5 | | 2N94A HF3 | 2N262 | HF93 | 2N338 | LL40 | 2N410 | HF5 | | 2N102 A4 | 2N268 | P68 | 2N338A | LL18 | 2N411 | HF7 | | 2N109 A29 | 2N268A | P68 | 2N339 | P2 | 2N412 | A30 | | 2N117 A4 | 2N270 | A28 | 2N339A | A11 | 2N414 | LL11
P35, HL42 | | 2N118 A11
2N119 A22 | 2N274
2N277 | HF11
P86 | 2N340 | P2 | 2N418 | | | 2N119 A22
2N120 A35 | 2N278 | P86 | 2N340A
2N341 | A11
P2 | 2N419
2N420 | P35
P35, HL42 | | 2N120 A35
2N122 P22 | 2N279 | A13 | 2N341
2N341A | A11, P1 | 2N420A | P35, HL42 | | 2N128 HF14 | 2N280 | A22 | 2N342 | P2 | 2N424 | P62 | | 2N139 HF3 | 2N281 | A28 | 2N342A | P2 | 2N424A | HL42 | | 2N140 HF7 | 2N282 | A28 | 2N342B | P2 | 2N426 | LL5 | | 2N144 HF93 | 2N284 | LL40 | 2N343 | P2 | 2N427 | LL7 | | 2N156 P31 | 2N284A | LL40 | 2N343A | P2 | 2N428 | LL12 | | 2N158 P31 | 2N285A | P35 | 2N343B | P3 | 2N441 | P87
P87 | | 2N158A P31
2N167A HF6 | 2N285B
2N297A | P35
P69 | 2N344 | HF11 | 2N442 | | | 2N169 A25 | 2N301 | P26 | 2N345
2N346 | HF11
HF19 | 2N443
2N444 | P87
HF1 | | 2N169 A25
2N173 P86 | 2N301A | P26 | 2N350A | P69 | 2N444A | HF1 | | 2N174 P86 | 2N306 | A13 | 2N351A | P69 | 2N445 | HF2 | | 2N174A P86 | 2N315 | LL7 | 2N356 | LL5 | 2N445A | HF2 | | 2N175 A27 | 2N315A | LL7 | 2N356A | LL5 | 2N446 | HF3 | | 2N176 P68 | 2N315B | LL7 | 2N357 | LL8 | 2N446A | HF3 | | 2N178 P68 | 2N316 | LL13 | 2N357A | LL8 | 2N447 | HF7
HF7 | | 2N211 HF3
2N212 HF3 | 2N316A
2N317 | LL13
LL16 | 2N358 | LL11 | 2N447A
2N447B | HF7 | | 2N212 A29 | 2N317A | LL17 | 2N358A
2N370 | LL12
HF19 | 2N449 | A25 | | 2N213A A36 | 2N326 | P20 | 2N374 | HF93 | 2N456A | P51 | | 2N214 A23 | 2N327A | LL1 | 2N375 | P69 | 2N456B | HL14 | | 2N215 A21 | 2N328A | LL1 | 2N376A | P69 | 2N457A | P51 | | 2N217 A30 | 2N328B | LL1 |
2N384 | HF30 | 2N457B | HL14 | | 2N218 HF3 | 2N239 | LL1 | 2N388 | LL7 | 2N458A | P51
HL14 | | 2N219 HF7
2N219A HL36 | 2N329A
2N329B | LL1
LL2 | 2N388A | LL7 | 2N458B
2N463 | P51 | | 2N220 A27 | 2N330A | A12 | 2N389
2N389A | P62
P62 | 2N466 | HF30 | | 2N231 HF93 | 2N331 | A46 | 2N393 | HF13 | 2N470 | A3 | | 2N233 HF2 | 2N332 | A4 | 2N398 | LL40 | 2N471 | A4 | | 2N233A HF2 | 2N332A | А3 | 2N398A | LL21 | 2N471A | HF5 | | 2N234A P34 | 2N333 | A11 | 2N399 | P35 | 2N472 | A4 | | 2N235A P34 | 2N333A | A7 | 2N400 | P44 | 2N472A | A4, HF5 | | 2N235B P35
2N236A P53 | 2N334
2N334A | A18
A7 | 2N401
2N404 | P35
LL6 | 2N473
2N474 | HF5
HF5 | | 2N236A P53
2N236B P53 | 2N334A
2N335 | A22 | 2N404A | LL6 | 2N474
2N474A | HF5 | | 2N243 A6 | 2N335A | A18 | 2N405 | A15 | 2N475 | HF6 | | 2N475A
2N476 | HF6
HF9 | 2N529
2N530 | A6
A10 | 2N656A | P15 | 2N739 | A18, HF94 | |------------------|--------------|---------------------|------------------|------------------------------------|------------------|------------------------|--------------------------| | 2N477 | HF9 | 2N531 | A13 | 2N657 HF93, P14
2N657A | P15 | 2N739A
2N740 | HF46
A31, HF94 | | 2N478
2N479 | HF10
HF10 | 2N532
2N533 | A14
A16 | 2N658
2N659 | A13
A20 | 2N740A
2N741 | HF48
HF74 | | 2N479A | HF10 | 2N538 | P42 | 2N660 | A27 | 2N741A | HF74 | | 2N480
2N480A | HF10
A20 | 2N538A
2N539 | P43
P43 | 2N661
2N662 | A31
A13 | 2N742
2N743 | LL34
HF94 | | 2N489 | UJT2 | 2N539A | P43 | 2N663 | P45 | 2N743/46 | HF88 | | 2N489A
2N489B | UJT1
UJT3 | 2N540
2N540A | P43
P43 | 2N665
2N669 | P45
P70 | 2N743/51
2N744 | HF88
HF94, LL42 | | 2N490 | UJT2 | 2N541 | HF7 | 2N677 | P70 | 2N744/46 | HF89 | | 2N490A
2N490B | UJT1
UJT3 | 2N542
2N542A | HF7
HF7 | 2N677A
2N677B | P70
P70 | 2N744/51
2N752 | HF89
HF49 | | 2N490C
2N491 | UJT3
UJT2 | 2N543
2N543A | HF8
A32 | 2N677C
2N678 | P70 | 2N753 | HF95 | | 2N491A | UJT1 | 2N545 | HL22 | 2N678A | P51
P51 | 2N754
2N755 | HF11
HF11 | | 2N491B
2N492 | UJT3
UJT2 | 2N546
2N547 | HL23
HL23 | 2N678B
2N678C | P51
P51 | 2N756
2N756A | A4
A5 | | 2N492A | UJT1 | 2N548 | HL23 | 2N696 HF27, P7, | HL30 | 2N757 | A7 | | 2N492B
2N492C | UJT3 | 2N549
2N550 | HL23
HL23 | 2N697 HF
2N698 HF19, P12 | 30, P7
HI 26 | 2N758
2N758A | A7
A7 | | 2N493 | UJT2 | 2N551 | HL22 | 2N699 HF27, P8, | HL31 | 2N758B | HF42 | | 2N493A
2N494 | UJT1
UJT2 | 2N552
2N554 | HL22
P58 | 2N699B
2N700 | P15
HF80 | 2N759
2N759A | A17
A17 | | 2N494A
2N494B | UJT1
UJT3 | 2N555
2N563 | P58 | 2N700A | HF90
, LL25 | 2N759B | HF46 | | 2N494C | UJT3 | 2N564 | A12
A12 | 2N703 HF42 | , LL25 | 2N760
2N760A | A31
A31 | | 2N495
2N495B | HF6
UJT3 | 2N566
2N567 | A25
A35 | 2N705
2N706 HF | LL41
74, P3 | 2N760B
2N768 | HF49
HF39 | | 2N496 | HF10 | 2N568 | A35 | 2N706/51 | HF48 | 2N769 | HF83 | | 2N497
2N497A | P14
P15 | 2N569
2N570 | A38
A39 | 2N706A HF94
2N706A/51 | , LL33
HF48 | 2N779A
2N780 | HF70
A16 | | 2N498 | P14 | 2N571 | A43 | 2N706B HF75 | , LL33 | 2N781 | HF95, LL42 | | 2N498A
2N499 | P15
HF56 | 2N572
2N574 | A43
P99 | 2N706B/46
2N706B/51 | HF48
HF48 | 2N782
2N783 | HF95, LL42
HF49 | | 2N499A | HF56 | 2N574A | P99 | 2N706C | HF75 | 2N784 | HF64 | | 2N501
2N501A | HF29
HF37 | 2N575
2N575A | P99
P99 | 2N706C/46
2N706C/51 | HF48
HF48 | 2N784A
2N784/51 | HF64, LL29
HF64 | | 2N502 | HF80 | 2N579 | LL11 | 2N707 HF75, P3 | | 2N794 | HF13, LL20 | | 2N502A
2N502B | HF85
HF85 | | LL15
5, LL11 | 2N707A
2N708 HF75, P3 | LL41
, LL34, | 2N795
2N796 | HF13, LL20
HF16, LL21 | | 2N503
2N504 | HF69
HF15 | 2N582 HF10
2N583 |), LL16
LL11 | 2N709 HF87, P1 | HL39 | 2N797
2N827 | HF95, LL42
LL28 | | 2N508A | A35 | 2N585 | LL5 | 2N709/46 | HF83 | 2N828 | HF75, LL34 | | 2N511
2N511A | P87
P87 | 2N586
2N588 | LL41
HF48 | 2N709/51
2N709A | HF83
HF87 | 2N828A
2N829 | HF75
HF75 | | 2N511B
2N512 | P87
P87 | 2N594
2N595 | LL4
LL5 | 2N709A/46
2N709A/51 | HF87
HF87 | 2N834 | HF78, LL32 | | 2N512A | P87 | 2N596 | LL7 | | , LL41 | 2N834/46
2N834/51 | HF71
HF71 | | 2N512B
2N513 | P87
P88 | 2N602
2N603 | HF8
HF11 | 2N711
2N711A | LL41
LL42 | 2N835 HF64
2N835/46 | | | 2N513A | P88 | 2N604 | HF15 | 2N711B | LL42 | 2N835/51 | HF65
HF65 | | 2N513B
2N514 | P88
P88 | 2N605
2N606 | HF16
HF16 | 2N715
2N716 | HF94
HF94 | 2N838
2N840 | LL30
HF12 | | 2N514A | P88 | 2N607 | HF16 | 2N717 HF19, P5, | HL27 | 2N841 | HF13 | | 2N514B
2N515 | P88
HF2 | 2N618
2N627 | HL2
P69 | 2N718 HF27, P5
2N718A HF27, P6 | | 2N842
2N843 | HF12, LL19
HF13, LL20 | | 2N516
2N517 | HF2
HF3 | 2N628
2N629 | P69
P69 | 2N719 HF19, P5,
2N719A HF19, P6 | | 2N844
2N845 | HF16
HF16 | | 2N519 | LL2 | | , HL42 | 2N720 HF28, P5, | | 2N846A | HF70 | | 2N519A
2N520 | LL2
LL5 | | , HL42
, HL43 | 2N720A HF19, P6
2N721 P6 | , HL28
, HL28 | 2N849/TI-43 | | | 2N521 | LL11 | 2N638 P70 | , HL43 | 2N722 P6 | HL34 | 2N850/TI-43 | 1 HF95, | | 2N521A
2N522 | LL11
LL14 | | , HL43 | 2N725
2N726 | LL42
A5 | 2N851/TI-42 | LL42
2 HF95, | | 2N522A
2N523 | LL14
LL18 | 2N647 | A28 | 2N727 | A13 | | LL42 | | 2N523A | LL18 | 2N649
2N650 | A28
A14 | 2N728
2N729 | HF30
HF30 | 2N852/TI-42 | 3 HF95,
LL43 | | 2N524
2N524A | LL4
LL19 | 2N650A
2N651 | A15
A24 | 2N730
2N731 | HL43
HL43 | 2N858
2N859 | LL7
LL8 | | 2N525 | LL4 | 2N651A | A24 | 2N734 | A7 | 2N860 | LL10 | | 2N525A
2N526 | LL19
LL5 | 2N652
2N652A | A36
A36 | 2N735
2N735A | A18
HF46 | 2N861
2N862 | LL10
LL11 | | 2N526A
2N527 | LL20
LL5 | 2N653
2N654 | A15
A24 | 2N736
2N736A | A31
A26 | 2N863
2N864 | LL12
LL16 | | 2N527A | LL21 | 2N655 | A36 | 2N736B | HF48 | 2N865 | LL18 | | 2N528A | LL5 | 2N656 HF93, P14 | , HL43 | 2N738 A8 | HF94 | 2N869 | HF49, P4 | | 2N869A HF82
2N870 HF28, P7, HL32
2N871 HF30, P7, HL34
2N909 HL28
2N910 HF28, P7, HL32
2N911 HF21, P7, HL30
2N912 HF20, P7, HL28
2N914 HF71, P4
2N914/46 HF65,
LL30, HL19 | 2N999
2N1000
2N1010
2N1011
2N1012
2N1014
2N1015
2N1015A
2N1015B
2N1015C | LL43
LL10
A16
P44, HL44
LL5
P51
HL10
HL10
HL10
P88, HL10 | 2N1073
2N1073A
2N1073B
2N1079
2N1080
2N1082
2N1086
2N1086
2N1087
2N1090 | P54, HL44
P54, HL45
P54, HL45
P54
A4
A42
A43
A43
HF3, LL7 | 2N1175A
2N1177
2N1178
2N1179
2N1180
2N1183
2N1183A | LL6
LL7
HF7, LL8, HL24
A29
HF41
HF41
HF41
HF31
P21
P21 | |---|--|---|--|---|---|---| | 2N914/51 HF65
2N915 HF65, P4, HL39
2N916 HF75, P4, HL40
2N917 A22, HF88,
LL39, HL42
2N918 A22, HF89, LL39
2N923 A5 | 2N1015D
2N1015E
2N1016
2N1016A
2N1016B
2N1016C
2N1016D | HL10
HL10
HL10
HL10
HL11
HL11
HL11 | 2N1091
2N1097
2N1098
2N1099
2N1100
2N1101
2N1102 | LL3
A26
A26
P88
P88
A14
A14 | 2N1183B
2N1184
2N1184A
2N1184B
2N1185
2N1186
2N1187 | P21
P21
P21
P21
A42
A15
A24 | | 2N924 A11
2N925 A3
2N926 A11
2N927 A1
2N928 A7
2N929 A26, HF95 | 2N1016E
2N1021
2N1022
2N1023
2N1024
2N1025 | HL11
P52
P52
HF38
A2
A2 | 2N1116
2N1117
2N1118
2N1118A
2N1119
2N1120 | HL24
HL23
HF6
HF6
LL10
P51 | 2N1188
2N1189
2N1190
2N1191
2N1192
2N1193 | A36
A30
A38
A15
A21
A36 | | 2N929A HF56
2N930 A39, HF96
2N930A HF64
2N934 A18
2N935 A1
2N936 A6 | 2N1026
2N1027
2N1028
2N1031
2N1031A
2N1031B | A6
A6
A2
P70
P70
P71 | 2N1121
2N1122
2N1122A
2N1131
2N1131A
2N1132 | A26
HF14
HF14
P8, HL30
LL21
P8, HL34 | 2N1194
2N1195
2N1202
2N1203
2N1204
2N1204A | A42
HF82, LL37
P43
P43
LL24
LL24 | | 2N937 A16
2N938 A1
2N939 A6
2N940 A17
2N941 LL16
2N942 LL12
2N943 LL3 | 2N1031C
2N1032
2N1032A
2N1032B
2N1032C
2N1034
2N1035 | P71
P71
P71
P71
P71
LL2
LL2 | 2N1132A
2N1132B
2N1136
2N1136A
2N1136B
2N1137
2N1137B | LL22
LL22
P71
P71
P71
P71
P72 | 2N1206
2N1207
2N1208
2N1209
2N1210
2N1211
2N1212 | HF8, P12
HF8, P12
HL45
HL45
P54, P62
P54
HL22 | | 2N944 LL3
2N945 LL3
2N946 LL3
2N947 HF56, P4, HL38
2N955 HF90
2N955A LL40 | 2N1036
2N1037
2N1038
2N1039
2N1040
2N1041 | LL2
LL2
LL2
HL44
HL44
HL44
HL44 | 2N1138
2N1138A
2N1138B
2N1139
2N1141
2N1141A | P72
P72
P72
P72
LL22
HF96
HF96 | 2N1218
2N1219
2N1220
2N1221
2N1222
2N1223 | P35
A6
A2
A6
A2
A1 | | 2N956 HF30
2N957 A26, HF56, P2
2N960 HF79, LL36
2N961 HF79, LL36
2N962 HF79
2N963 HF66 | 2N1042
2N1043
2N1044
2N1045
2N1046
2N1046A |
P31
P31
P31
P31
HL44
HL44 | 2N1142
2N1142A
2N1143
2N1143A
2N1144
2N1145
2N1146 | HF96
HF96
HF96
HF97
A34
A34 | 2N1224
2N1225
2N1226
2N1228
2N1229
2N1230 | HF12
HF31
HF12
LL43
LL43 | | 2N964 HF79, LL36
2N964A HF79
2N965 HF80, LL36
2N966 HF80, LL36
2N967 HF66
2N968 HF70
2N969 HF70 | 2N1046B
2N1047
2N1047A
2N1047B
2N1047C
2N1048
2N1048A | HL44
P45
P46
P46
P46
P46
P46 | 2N1146
2N1146A
2N1146B
2N1146C
2N1147
2N1147A
2N1147B | P72
P72
P72
P72
P72
P72
P73 | 2N1231
2N1232
2N1233
2N1234
2N1235
2N1238 | LL43
LL43
LL43
LL43
P62
HL45 | | 2N970 HF70
2N971 HF70
2N972 HF70
2N972 HF70
2N973 HF70
2N974 HF70
2N975 HF70 | 2N1048B
2N1048C
2N1049
2N1049A
2N1049B
2N1049C | P46
P46
P46
P46
P46
P46 | 2N1147C
2N1147C
2N1149
2N1150
2N1151
2N1152
2N1153 | P73
A5
A11
A18
A22
A35 | 2N1239
2N1240
2N1241
2N1242
2N1243
2N1244
2N1247 | HL45
HL45
HL45
HL45
HL45
HL45
HF97 | | 2N976 HF83
2N978 P5, HL28
2N979 HF30
2N980 HF31
2N982 HF79
2N983 HF79 | 2N1050
2N1050A
2N1050B
2N1050C
2N1051
2N1052 | P47
P47
P47
P47
A15, LL6
HF96 | 2N1154
2N1155
2N1156
2N1157
2N1157A
2N1162 | A2
A2
A2
P100
P100
P73 | 2N1248
2N1250
2N1251
2N1252
2N1253 | A5
P63
A29
HF28, P8,
LL22, HL32
HF37, P8, | | 2N984 HF71
2N985 HF96, LL43
2N987 HF31
2N988 HF66
2N989 HF66
2N990 HF26
2N993 HF26 | 2N1054
2N1055
2N1058
2N1059
2N1060
2N1065
2N1066 | HF6
HL22
HF3
A23
LL19
HF11
HF38 | 2N1162A
2N1163
2N1163A
2N1164
2N1164A
2N1165
2N1165A | P73
P73
P74
P74
P74
P74
P74 | 2N1254
2N1255
2N1256
2N1257
2N1258
2N1259 | LL24, HL36
LL22
LL22
LL22
LL22
LL23
LL23 | | 2N995 HF42, P4
2N996 HF56, P4
2N997 A46
2N998 HF96 | 2N1067
2N1068
2N1069
2N1070 | P16
P23
P52
P52 | 2N1166
2N1166A
2N1167
2N1167A | P74
P74
P74
P74 | 2N1260
2N1261
2N1262
2N1263 | P63
P43
P43
P43 | | 2N1273 | A8 | 2N1431 | A30 | 2N1541A | P77 | 2N1646 | HF98 | |------------------|---------------|-------------------|------------|------------------|--------------|-------------------|--------------| | 2N1274 | A8 | 2N1439 | A1 | 2N1542 | P77 | 2N1647 | P47 | | 2N1275 | LL2 | 2N1440 | A3 | 2N1542A | P77 | 2N1648 | P47 | | 2N1276 | LL15 | 2N1441 | A7 | 2N1543 | P78 | 2N1649 | P47 | | 2N1277 | LL15 | 2N1442 | A14 | 2N1544 | P78 | 2N1650 | P47 | | 2N1278 | LL15 | 2N1443 | A23 | 2N1544A | P78 | 2N1654 | A13 | | 2N1279 | LL15 | 2N1444 | LL23 | 2N1545 | P78 | 2N1655 | A5 | | 2N1300 | HF14, LL20 | 2N1445 | A9, P15 | 2N1545A | P78 | 2N1656 | A14 | | 2N1301 | HF20, LL20 | 2N1469 | A17· | 2N1546 | P78 | 2N1666 | HL14 | | 2N1302 | LL44 | 2N1474 | A4 | 2N1546A | P78 | 2N1667 | HL15 | | 2N1303 | LL44 | 2N1474A | A7 | 2N1547 | P78 | 2N1668 | HL15 | | 2N1304 | LL44 | 2N1475 | A17 | 2N1547A | P78 | 2N1669 | HL15 | | 2N1305 | LL44 | 2N1476 | A4 | 2N1548 | P79 | 2N1671 | UJT2 | | 2N1306 | LL44 | 2N1477 | A13 | 2N1549 | P78 | 2N1671A | UJT1 | | 2N1307 | LL44 | 2N1479 | P16 | 2N1549A | P79 | 2N1671B | UJT1, UJT3 | | 2N1308 | LL44 | 2N1480 | P16 | 2N1550 | P79 | 2N1671C | UJT3 | | 2N1309 | LL44 | 2N1481 | P16 | 2N1551 | P79 | 2N1672 | A9 | | 2N1309A | LL15 | 2N1482 | P16 | 2N1551A | P79 | 2N1672A | A3 | | 2N1310 | A8 | 2N1483 | P36 | 2N1552 | P79 | 2N1676 | LL16 | | 2N1311 | A5 | 2N1484 | P36 | 2N1552A | P79 | 2N1677 | LL16 | | 2N1312 | A8 | 2N1485 | P36 | 2N1553 | P79 | 2N1683 | HF16, LL20 | | 2N1319 | LL8 | 2N1486 | P36 | 2N1553A | P79 | 2N1690 | P47 | | 2N1335 | HF21, P11 | 2N1487 | P59 | 2N1554 | P79 | 2N1691 | P47 | | 2N1336 | HF21, P11 | 2N1488 | P59 | 2N1554A | P80 | 2N1692 | P13 | | 2N1337 | HF21, P11 | 2N1489 | P59 | 2N1555 | P80 | 2N1693 | P13 | | 2N1338 | HF22, P11 | 2N1490 | P59 | 2N1555A | P80 | 2N1694 | LL6 | | 2N1339 | HF22, P11 | 2N1491 | HF57 | 2N1556 | P80 | 2N1700 | P16 | | 2N1340 | HF22, P11 | 2N1492 | HF64 | 2N1556A | P80 | 2N1701 | HL11 | | 2N1341 | HF22, P11 | 2N1493 | HF47, HF66 | 2N1557 | P80 | 2N1702 | HL10 | | 2N1342 | HF22, P11 | 2N1494 | LL24 | 2N1557A | P80 | 2N1703 | P60 | | 2N1358 | P88 | 2N1494A | LL24 | 2N1558 | P80 | 2N1705 | A29 | | 2N1359 | P74 | 2N1495 | LL25 | 2N1558A | P80 | 2N1707 | A15 | | 2N1360 | P75 | 2N1496 | LL25 | 2N1559 | P80 | 2N1708 | LL26 | | 2N1362 | P75 | 2N1499 | LL26 | 2N1559A | P81 | 2N1709 | HF42, P27 | | 2N1363 | P75 | 2N1499A | HF31, HF45 | 2N1560 | P81 | 2N1710 | HF39, P27 | | 2N1364 | P75 | 2N1499B | HF42 | 2N1560A | P81 | 2N1711 | HF31, P13, | | 2N1365 | P75 | 2N1500 | HF38 | 2N1561 | HF80, P13 | | HL24 | | 2N1370 | A18 | 2N1501 | P44 | 2N1562 | HF79, P13 | 2N1714 | P23 | | 2N1371 | A18 | 2N1502 | P44 | 2N1564 | A9, HF97 | 2N1715 | P23 | | 2N1372 | A8 | 2N1505 | HF22, P12 | 2N1565 | A19, HF97 | 2N1716 | P23 | | 2N1373 | A8 | 2N1506 | HF41, P12 | 2N1566 | A32, HF98 | 2N1717 | P23 | | 2N1374 | A18 | 2N1506A | HF41, P14 | 2N1566A | A27 | 2N1718 | P24 | | 2N1375 | A19 | 2N1507 | HF98, LL45 | 2N1572 | A9, HF98 | 2N1719 | P24 | | 2N1376 | A26 | 2N1510
2N1511 | LL45 | 2N1573 | A19, HF98 | 2N1720 | P24 | | 2N1377
2N1378 | A26
A30 | 2N1511
2N1512 | P60
P60 | 2N1574
2N1586 | A32, HF98 | 2N1721 | P24 | | 2N1379 | A30 | 2N1512
2N1513 | P60 | 2N1580
2N1587 | A2
A2 | 2N1722 | P52 | | 2N1380 | A8 | 2N1513 | P60 | 2N1587
2N1588 | A3 | 2N1722A
2N1723 | P52
P52 | | 2N1381 | A8 | 2N1518 | HL1 | 2N1589 | A12 | 2N1724 | P52 | | 2N1382 | A19 | 2N1519 | HL1 | 2N1590 | A12 | 2N1724A | P52 | | 2N1383 | A9 | 2N1520 | HL1 | 2N1591 | A12 | 2N1725 | P53 | | 2N1384 | LL17 | 2N1521 | HLI | 2N1592 | A29 | 2N1726 | HF32 | | 2N1391 | HF2 | 2N1522 | HLI | 2N1593 | A29 | 2N1727 | HF32 | | 2N1392 | A46 | 2N1523 | HL2 | 2N1594 | A29 | 2N1728 | HF32 | | 2N1393 | A46 | 2N1524 | HF13 | 2N1605 | LL6 | 2N1742 | HF98 | | 2N1394 | A3 | 2N1526 | HF13 | 2N1605A | LL6 | 2N1743 | HF98 | | 2N1395 | HF12 | 2N1529 | P75 | 2N1613 | HF28, P13, | 2N1744 | HF98 | | 2N1396 | HF31 | 2N1529A | P75 | | HL32 | 2N1745 | HF98 | | 2N1397 | HF38 | 2N1530 | P75 | 2N1614 | LL3 | 2N1746 | HF32 | | 2N1404 | LL44 | 2N1530A | P75 | 2N1615 | P16 | 2N1747 | HF32 | | 2N1404A | LL44 | 2N1531 | P75 | 2N1616 | P54 | 2N1748 | HF28 | | 2N1408 | A3 | 2N1531A | P76 | 2N1616A | P63 | 2N1748A | HF32 | | 2N1409 | HF14, HF16, | 2N1532 | P76 | 2N1617 | P54 | 2N1749 | HF28 | | 0114440 | P11, HL11 | 2N1532A | P76 | 2N1617A | P63 | 2N1752 | HF17 | | 2N1410 | HF14, HF16, | 2N1533 | P76 | 2N1618 | P54 | 2N1754 | HF98, LL25 | | 0411.411 | P11, HL11 | 2N1534 | P76 | 2N1618A | P63 | 2N1755 | P38 | | 2N1411 | HF11 | 2N1534A | P76 | 2N1620 | P55, HL22 | 2N1756 | P38 | | 2N1412 | P88 | 2N1535 | P76 | 2N1622 | A19 | 2N1757 | P38 | | 2N1412USI | | 2N1536 | P76 | 2N1623 | A12 | 2N1758 | P38 | | 2N1413 | A19 | 2N1536A | P76 | 2N1631 | HF15 | 2N1759 | P38 | | 2N1414
2N1415 | A26 | 2N1537 | P76 | 2N1632 | HF15 | 2N1760 | P38 | | 2N1415
2N1417 | A32
HF13 | 2N1537A
2N1538 | P77
P77 | 2N1637
2N1638 | HF15 | 2N1761 | P38 | | 2N1417
2N1418 | HF13 | 2N1538
2N1539 | P77 | 2N1638
2N1639 | HF14
HF15 | 2N1762 | P38 | | | F31, P8, HL35 | 2N1539A | P77 | 2N1640 | LL2 | 2N1768
2N1769 | HL11
HL12 | | 2N1427 | HF16 | 2N1540 | P77 | 2N1641 | LL2 | 2N1785 | HF17 | | 2N1429 | HF10 | 2N1540A | P77 | 2N1642 | LL4 | 2N1786 | HF17 | | 2N1430 | P52 | 2N1541 | P77 | 2N1643 | A3 | 2N1787 | HF17 | | | | | | | | | | | | 11500 | | | | | | | |------------------------------|-------------------------------------|----------------------------|-----------------------------|----------------------------|-------------------------------------|--------------------|----------------------------| | 2N1788 | HF32
HF32 | | IF12, P9, HL25 | 2N2093 | HF22 | 2N2178 | A5 | | 2N1789
2N1790 | HF32 | 2N1985 H | F12, P9, HL25
HF18, P10, | 2N2095
2N2096 | HF80
HF75 | 2N2185
2N2186 | LL10
LL10 | | 2N1808 | LL6 | 2111300 | HL27 | 2N2097 | HF76 | 2N2180 | LL10 | | 2N1809 | P104, HL3 | 2N1987 | HF18, P10, | 2N2098 | HF80 | 2N2188 | HF29, HF99, | | 2N1810
2N1811 | P104, HL3
P104, HL3 | 2N1988 | HL27
HF18, P10, | 2N2099
2N2100 | HF76
HF76 | 2N2189 | LL46
HF37, HF99, | | 2N1812
2N1813 | P104, HL3
P104, HL3 | 2N1989 | HL27
HF18, P10, | 2N2102
2N2106 | LL23
P3 | 2N2190 | LL47
HF29, HF99, | | 2N1814
2N1816 | P104, HL4
P104, HL6 | 2N1990 | HL27
HF99, P10, | 2N2107 | P3
P3 | | LL47 | | 2N1817
2N1818 | P105, HL6 | 2N1990
2N1991 | HL46
P10, HL27 | 2N2108
2N2109 | P106, HL4 | 2N2191 | HF37, HF100,
LL47 | | 2N1819 | P105, HL6
P105, HL6 | 2N1992 | LL37 | 2N2110
2N2111 | P106, HL4
P106, HL4 | 2N2192A
2N2193A | HF100, P12
HF39, P12, | | 2N1823
2N1824 | P105, HL8
P105, HL8 | 2N1994
2N1995 | LL46
LL46 | 2N2112
2N2113 | P106, HL4
P107, HL4 | 2N2194A | HL36
HF39, P12, | | 2N1825
2N1826
2N1830 | P106, HL8
P106, HL8
P106, HL8 | 2N1996
2N1997
2N1998 | LL46
LL46
LL46 | 2N2114
2N2116
2N2117 | P107, HL5
P107, HL6
P107, HL6 | 2N2195A | HL36
HF39, P12,
HL36 | | 2N1831 | P106, HL4
P106, HL4 | 2N1999
2N2000 | LL46
LL46 | 2N2118 | P107, HL7 | 2N2196 | P27 | | 2N1832
2N1833 | P106, HL4 | 2N2001 | LL46 | 2N2119
2N2123 | P107, HL7
P107, HL8 | 2N2197
2N2201 | P27
P27 | | 2N1837 | P8, HL37
P8, HL34 | 2N2015
2N2016 | P89
P89 | 2N2124 | P107, HL8 | 2N2202 | P28 | | 2N1838
2N1839 | P9, HL34 | 2N2017 | P16, P24 | 2N2125
2N2126 | P107, HL8
P107, HL8 | 2N2203
2N2204 | P28
P28 | | 2N1840 | P9, HL34 | 2N2018 | P48 | 2N2130 | P108, HL5 | 2N2205 | LL26 | | 2N1853 | LL45 | 2N2019 | P48 | 2N2131 | P108, HL5 | 2N2206 | LL26 | | 2N1854 |
LL20 | 2N2020 | P48 | 2N2132 | P108, HL5 | 2N2207 | HF46 | | 2N1864 | HF17 | 2N2021 | P48 | 2N2133 | P108, HL5 | 2N2217 | HF57, HL17 | | 2N1865 | HF99 | 2N2033 | P22 | 2N2137 | P56 | 2N2218 | HF57, HL17 | | 2N1866 | HF99 | 2N2034 | P22 | 2N2137A | P56 | 2N2218A | HF58 | | 2N1867 | HF99 | 2N2035 | P27 | 2N2138 | P56 | 2N2219 | HF58, HL18 | | 2N1868 | HF99 | 2N2038
2N2039 | P1
P1 | 2N2138A | P56 | 2N2219A | HF66, HL18 | | 2N1886
2N1893 | HL24
HF18 | 2N2039
2N2040 | P1 | 2N2139
2N2139A | P56
P56 | 2N2220
2N2221 | HF59, HL18
HF59, HL18 | | 2N1893A | | 2N2041 | P2 | 2N2139A
2N2140 | P56 | 2N2221A | HF59 | | 2111055/1 | HL35 | 2N2042 | A10 | 2N2140A | P56 | 2N2222 | HF59, HL18 | | 2N1899 | P85, HL26 | 2N2042A | A11 | 2N2141 | P57 | 2N2222A | HF66 | | 2N1900 | HF18, P85 | 2N2043 | A20 | 2N2141A | P57 | 2N2223 | HF18 | | 2N1901 | P85, HL26 | 2N2043A | A20 | 2N2142 | P57 | 2N2223A | HF19 | | 2N1902 | P85, HL26 | 2N2048 | HF43, LL28 | 2N2142A | P57 | 2N2225 | HF12 | | 2N1903 | HF18, P85 | 2N2048A | HF43 | 2N2143 | P57 | 2N2226 | P90, HL3 | | 2N1904 | P85, HL26 | 2N2049
2N2060 | P14 | 2N2143A | P58 | 2N2227 | P90, HL3 | | 2N1905
2N1906 | P53
P53 | 2N2060A | HF20
HF20 | 2N2144
2N2144A | P58
P58 | 2N2228
2N2229 | P90, HL3
P90, HL3 | | 2N1907 | HF8, P55, HL2 | 2N2061A | P81 | 2N2144A
2N2145 | P58 | 2N2230 | P90, HL2 | | 2N1908 | HF8, P55, HL3 | 2N2062A | P81 | 2N2145A | P58 | 2N2231 | P90, HL2 | | 2N1917 | LL45 | 2N2063A | P82 | 2N2146 | P58 | 2N2232 | P90, HL2 | | 2N1918 | LL45 | 2N2064A | P82 | 2N2146A | P58 | 2N2233 | P90, HL2 | | 2N1919 | LL45 | 2N2065A | P82 | 2N2147 | P27 | 2N2239 | P28 | | 2N1920
2N1921 | LL45 | 2N2066A
2N2067 | P82 | 2N2148 | P27 | 2N2243A | HF39, P12,
HL36 | | 2N1921
2N1922 | LL45
LL46 | 2N2067B | P24
P24 | 2N2150
2N2151 | P39
P39 | 2N2244 | A20 | | 2N1924 | A28 | 2N2067G | P24 | 2N2151
2N2152 | P95 | 2N2244 | A33 | | 2N1925 | A34 | 2N20670 | P24 | 2N2152A | P95 | 2N2246 | A40 | | 2N1926 | A38 | 2N2067W | P24 | 2N2153 | P95 | 2N2247 | A20 | | 2N1936 | P89 | 2N2068 | P25 | 2N2153A | P95 | 2N2248 | A33 | | 2N1937 | P89 | 2N2068G | P25 | 2N2154 | P96 | 2N2249 | A40 | | 2N1943
2N1958 | P15
HF33 | 2N20680
2N2075 | P25
P94 | 2N2154A
2N2156 | P96
P96 | 2N2250
2N2251 | A20
A33 | | 2N1958A | | 2N2075A | P94 | 2N2156A | P96 | 2N2251
2N2252 | A40 | | 2N1959 | HF33 | 2N2076 | P94 | 2N2157 | P96 | 2N2253 | A20 | | 2N1959A | | 2N2076A | P94 | 2N2157A | P96 | 2N2254 | A33 | | 2N1960 | HF99 | 2N2077 | P94 | 2N2158 | P96 | 2N2255 | A40 | | 2N1961 | HF99 | 2N2077A | P94 | 2N2158A | P96 | 2N2256 | HF71, LL31 | | 2N1962 | HF49 | 2N2078 | P94 | 2N2160 | 'UJT1 | 2N2257 | HF71, LL31 | | 2N1963 | HF50 | 2N2078A | P94 | 2N2162' | LL14 | 2N2258 | HF71, LL31 | | 2N1964
2N19 ⁻⁵ | HF33
HF34 | 2N2079
2N2079A | P94 | 2N2163 | LL14 | 2N2259 | HF71, LL31 | | 2N19 5
2N1972 | HF34
HF20, HL29 | 2N2079A
2N2080 | P94
P95 | 2N2164
2N2165 | LL18
LL12 | 2N2266
2N2267 | P50
P50 | | 2N1972
2N1973 | HF28, P13, | 2N2080A | P95 | 2N2166 | LL12
LL12 | 2N2268 | P50 | | | HL32 | 2N2081 | P95 | 2N2167 | LL12 | 2N2269 | P50 | | | HF8, P14, HL30 | 2N2081A | P95 | 2N2168 | HF79 | 2N2270 | P17, HL13 | | 2N1975 | HF20, P14, | 2N2082 | P95 | 2N2169 | HF79 | 2N2273 | HF59 | | 0N1070 | HL29 | 2N2082A | P95 | 2N2170 | HF72 | 2N2274 | LL8 | | 2N1978 | HF18, P39,
HL26 | 2N2084
2N2089 | HF34
HF26 | 2N2171
2N2173 | A38 | 2N2275 | LL8
HF4, LL9 | | 2N1983 | HF12, P9, HL25 | 2N2089
2N2092 | HF22 | 2N2173
2N2177 | A14
A5 | 2N2276
2N2277 | HF4, LL9 | | 2141303 | 12, 1 J, 11L2J | 2112032 | 11122 | 21121// | A5 | 21422// | 111 4, LL3 | | | | | 407 | 0110500 | LIECO | 0.000.74 | 4.7 | |--------------------|-------------------------|-------------------|-------------------------------|-------------------|------------------------------|------------------|------------------------| | 2N2278 | LL10 | 2N2387 | A27
A39 | 2N2523
2N2524 | HF60
HF64 | 2N2674
2N2675 | A7
A18 | | 2N2279
2N2280 | LL10
LL16 | 2N2388
2N2389 | A16, HF100, | 2N2525 | HF45, P30 | 2N2676 | A31 | | 2N2281 | LL16 | 2112303 | HL47 | 2N2526 | P63, HL48 | 2N2677 | LL12 | | 2N2282 | P16 | 2N2390 | HL47 | 2N2527 | P63, HL48 | 2N2678 | LL18 | | 2N2283 | P16 | 2N2391 | A6 | 2N2528 | P63, HL48 | 2N2692 | LL47 | | 2N2284 | P17 | 2N2392 | A14 | 2N2537 | HF60, LL34 | 2N2695 | HF34 | | 2N2285 | P82, HL46 | 2N2394 | HL47 | 2N2538 | HF60, LL34 | 2N2696 | HF34 | | 2N2286 | P83, HL46 | 2N2395 | HF100, HL48 | 2N2539 | HF60, LL34 | 2N2697 | P33 | | 2N2287 | P83, HL46 | 2N2397 | HF50, HL15 | 2N2540 | HF60, LL34 | 2N2698 | P33 | | 2N2288 | P55, HL46 | 2N2398 | HF100
HF100 | 2N2551
2N2552 | LL47
P31 | 2N2706
2N2707 | A24, A38
A38 | | 2N2289
2N2290 | P55, HL46
P55, HL46 | 2N2399
2N2400 | HF43 | 2N2553 | P32 | 2N2708 | HF86 | | 2N2291 | P55, HL46 | 2N2401 | HF50 | 2N2554 | P32 | 2N2709 | HF1 | | 2N2292 | P55, HL46 | 2N2402 | HF59 | 2N2555 | P32 | 2N2711 | A15 | | 2N2293 | P55, HL47 | 2N2405 | HF34 | 2N2556 | P32 | 2N2712 | A30 | | 2N2294 | P55, HL47 | 2N2410 | HF100, HL48 | 2N2557 | P32 | 2N2713 | A15 | | 2N2295 | P56, HL47 | 2N2411 | HF101 | 2N2558 | P32 | 2N2714 | A30 | | 2N2296 | P56, HL47 | 2N2412 | HF101 | 2N2559 | P32 | 2N2715 | A33
A38 | | 2N2297 | P17 | 2N2413 | HF101 - | 2N2560
2N2561 | P32, HL2
P32 | 2N2716
2N2717 | A25, LL30 | | 2N2303
2N2304 | P10
A12 | 2N2415
2N2416 | HF101
HF101 | 2N2562 | P32 | 2N2720 | HF29 | | 2N2305 | P60 | 2N2423 | P82 | 2N2563 | P33 | 2N2721 | HF29 | | 2N2308 | P36 | 2N2427 | HF18 | 2N2564 | HL2 | 2N2722 | HF34 | | 2N2310 | HL12 | 2N2428 | A38 | 2N2565 | HL2 | 2N2723 | HF102 | | 2N2311 | HL12 | 2N2429 | A43 | 2N2569 | LL23 | 2N2724 | HF102 | | 2N2312 | HL12 | 2N2430 | A27 | 2N2570 | LL23 | 2N2725 | HF102 | | 2N2313 | HL12 | 2N2431 | A34 | 2N2580 | P99 | 2N2726 | P18
P18 | | 2N2314 | HL12 | 2N2432 | HF11 | 2N2581
2N2582 | P99
P99 | 2N2727
2N2728 | P97 | | 2N2315
2N2316 | HL12
HL12 | 2N2432A
2N2451 | A23, LL18
HF29 | 2N2583 | P99 | 2N2729 | A23, HF89 | | 2N2317 | HL13 | 2N2453 | A40 | 2N2586 | A39 | 2N2730 | P97 | | 2N2318 | HF66 | 2N2453A | A40 | 2N2590 | HF26 | 2N2731 | P97 | | 2N2319 | HF66 | 2N2455 | HL41 | 2N2591 | HF34 | 2N2732 | P97 | | 2N2320 | HF67 | 2N2459 | HF46 | 2N2592 | HF39 | 2N2733 | P85
P86 | | 2N2330 | HF34, LL26 | 2N2460 | HF50 | 2N2593 | HF43 | 2N2734 | | | 2N2331 | HF34, LL26 | 2N2461 | HF56 | 2N2595
2N2596 | HF20
HF29 | 2N2735
2N2736 | P86
P86 | | 2N2338
2N2349 | P90
LL15 | 2N2462
2N2463 | FH59
HF46 | 2N2596
2N2597 | HF38 | 2N2737 | P86 | | 2N2349 | LL13 | 2N2464 | HF50 | 2N2598 | HF20 | 2N2738 | P86 | | 2N2350A | HF39, P7, | 2N2465 | HF56 | 2N2599 | HF29 | 2N2739 | P100, HL5 | | | HL36 | 2N2466 | HF60 | 2N2599A | A14 | 2N2740 | P100, HL5 | | 2N2351 | LL17 | 2N2475 | LL28, LL37 | 2N2600 | HF38 | 2N2741 | P100, HL5 | | 2N2351A | HF40, P17, | 2N2476 | HF60, LL28
HF60 | 2N2600A
2N2601 | A27
HF20 | 2N2742
2N2745 | P100, HL5
P100, HL7 | | 2N2352 | HL37
LL17 | 2N2477
2N2480 | HF93 | 2N2602 | HF29 | 2N2746 | P100, HL7 | | 2N2352A | HF40, P18, | 2N2480A | HF80 | 2N2603 | HF38 | 2N2747 | P100, HL7 | | | HL37 | 2N2481 | HL19 | 2N2604 | HF43 | 2N2748 | HF90, P100, | | 2N2353 | LL18 | 2N2483 | HF21 | 2N2605 | HF47 | 0110751 | HL7 | | 2N2353A | HF40, P18, | 2N2484 | HF20 | 2N2605A | HF15 | 2N2751 | P101, HL8 | | | HL37 | 2N2485 | HF101 | 2N2606 | FET23, FET37 | 2N2752 | P101, HL8 | | 2N2357 | P96, HL47 | 2N2486
2N2487 | HF101
HF74 | 2N2607
2N2608 | FET24, FET41
FET24, FET48 | 2N2753
2N2754 | P101, HL9
P102, HL9 | | 2N2358
2N2359 | P96, HL47
P97, HL47 | 2N2488 | HF74 | 2N2609 | FET24, FET52 | 2N2757 | P101, HL5 | | 2N2360 | HF100 | 2N2489 | HF67 | 2N2611 | P28 | 2N2758 | P101, HL6 | | 2N2361 | HF100 | 2N2494 | HF74 | 2N2613 | A41 | 2N2759 | P101, HL6 | | 2N2362 | HF100 | 2N2495 | HF47 | 2N2614 | A43 | 2N2760 | P101, HL6 | | 2N2364A | HF40, P18, | 2N2496 | HF47 | 2N2616 | A23 | 2N2761
2N2763 | P101, HL6 | | 2012260 | HL37 | 2N2497 | FET2, FET15
, FET48, FET65 | 2N2617
2N2618 | A12
HF50 | 2N2764 | P101, HL7
P102, HL7 | | 2N2368 | HF88, P4,
LL37, HL40 | 2N2498 | FET2, FET15, | 2N2618/4 | | 2N2765 | P102, HL7 | | 2N2369 HF | 85, P5, LL38, | | , FET51, FET65 | 2N2631 | P22 | 2N2766 | P102, HL7 | | 7 | HL41 | 2N2499 | FET3, FET15, | 2N2632 | P48 | 2N2769 | P102, HL9 | | 2N2369A | HF68, LL38, | FET27 | , FET55, FET65 | 2N2633 | P48 | 2N2770 | P102, HL9 | | | HL40 | 2N2500 | FET12, FET15, | 2N2634 | P48 | 2N2771 | P102, HL9 | | 2N2370 | A5 | | , FET49, FET65 | 2N2635 | HF101 | 2N2772 | P102, HL10 | | 2N2371 | A10 | 2N2501 | HF72 | 2N2645 | HF29
UJT1 | 2N2775
2N2776 | P102
P102 | | 2N2372
2N2373 | A6
A10 | 2N2509
2N2510 | HF15
HF15 | 2N2646
2N2647 | UJT1, UJT3 | 2N2777 | P102 | | 2N2373 | HF6 | 2N2511 | HF15 | 2N2649 | HF101 | 2N2778 | P103 | | 2N2378 | HF5 | 2N2512 | HF46 | 2N2650 | HF101 | 2N2781 | HF42, P28 | | 2N2381 | HF67, LL30 | 2N2515 | HF46 | 2N2654 | HF43 | 2N2782 | HF42, P28 | | 2N2382 | HF67, LL30 | 2N2516 | HF50 | 2N2656 | HF63 | 2N2783 | HF42, P28 | | 2N2383 | P63 | 2N2518 | HF46 | 2N2657
2N2658 | P15
P15 | 2N2785
2N2787 | A46
HF60, LL38 | | 2N2384
2N2386 F | P63
ET11, FET17, | 2N2519
2N2520 | HF46
HF43 | 2N2671 | HF27 | 2N2788 | HF60, LL38 | | | FET48, FET53, | 2N2521 | HF47 | 2N2672 | HF27 | 2N2789 | HF61, LL38 | | | FET65 | 2N2522 | HF50 | 2N2673 | A3 | 2N2790 | HF61, LL38 | | 2N2791 | HF61, LL38 | 2N2880 | P39 | 2N2971 | LL11 | 2N3087 | FET46 | |------------------|----------------------|------------------|------------------------|-------------------|--------------|------------------|--------------------| | 2N2792 | HF61, LL39 | 2N2881 | P22 | 2N2972 | HF24 | 2N3088 | FET61 | | 2N2795 | HF67 | 2N2882 | P22 | 2N2973 | HF24 | 2N3088A | FET63 | | 2N2796 | HF67 | 2N2883 |
HF80 | 2N2974 | HF24 | 2N3089 | FET61 | | 2N2797 | HF43 | 2N2884 | HF80 | 2N2975 | HF24 | 2N3089A | FET63 | | 2N2798
2N2799 | HF38
HF38 | 2N2885
2N2887 | HF67
HF67, P36 | 2N2976 | HF24
HF25 | 2N3107 | LL21 | | 2N2800 | LL24 | 2N2890 | P18 | 2N2977
2N2978 | HF25 | 2N3108
2N3109 | LL22, HL34
LL21 | | 2N2801 | LL24 | 2N2891 | P18 | 2N2979 | HF25 | 2N3110 | LL22, HL34 | | 2N2808 | HF90 | 2N2892 | P40 | 2N2980 | HF21 | 2N3112 | FET23, FET34 | | 2N2808A | HF91 | 2N2893 | P40 | 2N2981 | HF21 | 2N3113 | FET23, FET34 | | 2N2809 | HF90 | 2N2894 | HF72, LL34 | 2N2982 | HF26 | 2N3114 | P19 | | 2N2809A | HF91 | 2N2894A | HL33 | 2N2987 | P28 | 2N3114
2N3115 | HF61 | | 2N2810 | HF91 | 2N2895 | HF34 | 2N2988 | P29 | 2N3116 | HF61 | | 2N2810A | HF91 | 2N2896 | HF35 | 2N2989 | P29 | 2N3117 | HL29 | | 2N2811 | P53 | 2N2897 | HF35 | 2N2990 | P29 | 2N3118 | HF61 | | 2N2812 | P53 | 2N2900 | HF35 | 2N2991 | P29 | 2N3119 | HF62 | | 2N2813 | P53 | 2N2902 | P48, P104 | 2N2992 | P29 | 2N3128 | A29 | | 2N2814 | P53 | 2N2903 | A38 | 2N2993 | P29 | 2N3129 | A39 | | 2N2815 | P103 | 2N2903A | A38 | 2N2994 | P29 | 2N3130 | A35 | | 2N2816 | P103 | 2N2904 | HF51 | 2N2995 | P29 | 2N3131 | LL30 | | 2N2817 | P103 | 2N2904A | HF51 | 2N2996 | HF76 | 2N3133 | HF52 | | 2N2818 | P103 | 2N2905 | HF51 | 2N2997 | HF76 | 2N3134 | HF52 | | 2N2819 | P103 | 2N2905A | HF51 | 2N2998 | HF84 | 2N3135 | HF52 | | 2N2820 | P103 | 2N2906 | HF51 | 2N2999 | HF92 | 2N3136 | HF52 | | 2N2821 | P103 | 2N2906A | HF51 | 2N3009 | HF72, LL32 | 2N3137 | HF87 | | 2N2822 | P103 | 2N2907 | HF51 | 2N3010 | LL37 | 2N3138 | HF103 | | 2N2823 | P103 | 2N2907A | HF51 | 2N3011 | LL34 | 2N3139 | HF103 | | 2N2824 | P104 | 2N2908 | P64 | 2N3012 | LL35 | 2N3140 | HF103 | | 2N2825 | P104 | 2N2909 | A19 | 2N3013 | HF83, HL21 | 2N3141 | HF103 | | 2N2828 | P48 | 2N2911 | P23 | 2N3014 | HF83, HL21 | 2N3142 | HF103 | | 2N2829 | P48 | 2N2912 | P60 | 2N3015 | HF61, LL28 | 2N3143 | HF103 | | 2N2831 | A12
P64 | 2N2913 | HF45 | 2N3016 | HF103, P18 | 2N3144 | HF103 | | 2N2832 | P64 | 2N2914 | HF22 | 2N3017 | HF103 | 2N3145 | HF104 | | 2N2833 | | 2N2915 | HF23 | 2N3018 | HF103, P36 | 2N3146 | P93 | | 2N2834 | P64 | 2N2916 | HF23 | 2N3019 | HF26, LL13 | 2N3147 | P93 | | 2N2835 | P31 | 2N2917 | HF23 | 2N3020 | HF26, LL13 | 2N3149 | P108 | | 2N2836 | P44 | 2N2918 | HF23 | 2N3021 | P36 | 2N3150 | P108 | | 2N2837 | HF38 | 2N2919 | HF23 | 2N3022 | P36 | 2N3151 | P108 | | 2N2838 | HF39 | 2N2920 | HF24 | 2N3023 | P36 | 2N3154 | P45 | | 2N2841 | FET23, FET34, | 2N2921 | HF51 | 2N3024 | P37 | 2N3155 | P45 | | | FET57 | 2N2922 | HF52 | 2N3025 | P37 | 2N3156 | P45 | | 2N2842 | FET24, FET36, | 2N2923 | A34 | 2N3026 | P37 | 2N3157 | P45 | | | FET57 | 2N2924 | A39 | 2N3043 | HF67 | 2N3158 | P45 | | 2N2843 | FET24, FET39 | 2N2925
2N2926 | A43
A16 | 2N3049 | HF84
HL35 | 2N3163 | P64 | | 2N2844
2N2845 | FET25, FET43
HF72 | 2N2927 | HF43 | 2N3053
2N3054 | HL22 | 2N3164
2N3165 | P64
P64 | | 2N2846 | HF72 | 2N2929 | HF91 | 2N3055 | HL20 | 2N3166 | P64 | | 2N2847 | HF72 | 2N2936 | HF102 | 2N3056 | HF26, P18 | 2N3167 | P64 | | 2N2848 | HF72 | 2N2937 | HF102 | 2N3056A | P18 | 2N3168 | P64 | | 2N2849 | HL32 | 2N2942 | HF43 | 2N3057 | HF26, P19 | 2N3169 | P65 | | 2N2850
2N2851 | HL28
HL29 | 2N2943
2N2944 | HF39 | 2N3057A
2N3058 | P19 | 2N3170 | P65
P60 | | 2N2852 | HL26 | 2N2944A | HF8, LL12
A35, LL15 | 2N3059 | A34
A43 | 2N3171
2N3172 | P60 | | 2N2853 | HL29 | 2N2945 | HF4, LL8 | 2N3060 | A34 | 2N3173 | P60 | | 2N2854 | HL32 | 2N2945A | A29, LL13 | 2N3061 | A41 | 2N3174 | P61 | | 2N2855 | HL29 | 2N2946 | HF2, LL6 | 2N3062 | A28 | 2N3175 | P65 | | 2N2856 | HL26 | 2N2946A | A23, LL8 | 2N3063 | A28 | 2N3176 | P65 | | 2N2857
2N2858 | HF91 | 2N2947 | HF35 | 2N3064 | A19 | 2N3177 | P65 | | 2N2859 | P22 | 2N2948 | HF35 | 2N3065 | A19 | 2N3178 | P66 | | | P22 | 2N2949 | HF35 | 2N3066 | FET46 | 2N3179 | P66 | | 2N2860 | A13 | 2N2950 | HF35 | 2N3067 | FET39 | 2N3180 | P66 | | 2N2861 | HF102 | 2N2951 | HF52 | 2N3068 | FET34 | 2N3181 | P66 | | 2N2862 | HF102 | 2N2952 | HF52 | 2N3068A | FET35 | 2N3182 | P66 | | 2N2863 | HF102 | 2N2953 | A44 | 2N3069 | FET52 | 2N3183 | P61 | | 2N2864 | HF102 | 2N2955 | HF72 | 2N3070 | FET44 | 2N3184 | P61 | | 2N2865 | HF102 | 2N2956 | HF74 | 2N3071 | FET37 | 2N3185 | P61 | | 2N2868 | A19 | 2N2957 | HF76 | 2N3074 | HF47 | 2N3186 | P61 | | 2N2869 | P39 | 2N2958 | HF61 | 2N3075 | HF26 | 2N3187 | P66 | | 2N2870 | P39 | 2N2959 | HF61 | 2N3076 | P85, HL27 | 2N3188 | P66 | | 2N2871 | LL47 | 2N2962 | HF86 | 2N3077 | A45 | 2N3189 | P66 | | 2N2872 | LL47 | 2N2963 | HF86 | 2N3078 | A44 | 2N3190 | P66 | | 2N2874 | HF42, P28 | 2N2964 | HF86 | 2N3081 | HF44 | 2N3191 | P66 | | 2N2875 | P33 | 2N2965 | HF86 | 2N3081/46 | HF44 | 2N3192 | P67 | | 2N2876 | HF50 | 2N2966 | HF88 | 2N3081/51 | HF44 | 2N3193 | P67 | | 2N2877 | P39 | 2N2968 | LL12 | 2N3084 | FET46 | 2N3194 | P67 | | 2N2878 | P39 | 2N2969 | LL12 | 2N3085 | FET46 | 2N3195 | P61 | | 2N2879 | P39 | 2N2970 | LL11 | 2N3086 | FET46 | 2N3196 | P61 | | 2N3197 | P61 | 2N3311 P98 | 2N3404 | 420 | 2012400 | 111.12 | |----------|--------------|----------------------|------------------|----------|---------|-----------------| | 2N3198 | P61 | | | A30 | 2N3499 | HL13 | | | | 2N3312 P98 | 2N3405 | A42 | 2N3500 | HL13 | | 2N3199 | P49 | 2N3313 P98 | 2N3409 | HF58 | 2N3501 | HL14 | | 2N3200 | P49 | 2N3314 P98 | 2N3410 | HF58 | 2N3502 | HF62, HL38 | | 2N3201 | P49 | 2N3315 P98 | 2N3411 | HF58 | 2M3503 | HF62, HL38 | | 2N3202 | P23 | 2N3316 P98 | 2N3414 | A31 | 2N3504 | | | 2N3203 | P23 | | | | | HF63, HL19 | | | | 2N3317 HF8, LL9 | 2N3415 | A42 | 2N3505 | HF63, HL38 | | 2N3204 | P23 | 2N3318 HF5, LL10 | 2N3416 | A31 | 2N3506 | HL13 | | 2N3205 | P49 | 2N3319 HF8, LL14 | 2N3417 | A42 | 2N3507 | HL13 | | 2N3206 | P49 | 2N3320 HF84 | 2N3418 | P25 | 2N3508 | HL21 | | 2N3207 | P50 | 2N3321 HF84 | 2N3419 | P25 | 2N3409 | HL21 | | 2N3208 | P23 | 2N3322 HF84 | 2N3420 | P26 | | HL20 | | 2N3209 | HL41 | | | | 2N3510 | | | | | 2N3323 HF53 | 2N3421 | P26 | 2N3511 | HL20 | | 2N3212 | P26 | 2N3324 HF53 | 2N3423 HF8 | 34, HL41 | 2N3512 | HL39 | | 2N3213 | P26 | 2N3325 HF53 | | 34, HL21 | 2N3544 | HF84 | | 2N3214 | P27 | 2N3326 HF58 | | 3, HL15 | 2N3546 | HL21 | | 2N3215 | P27 | 2N3327 A43, HF77 | 2N3427 | A43 | | | | 2N3217 | LL47 | | | | 2N3547 | LL20 | | 2N3218 | | 2N3328 FET48 | 2N3428 | A44 | 2N3548 | LL21 | | | LL47 | 2N3329 FET2, FET18 | 2N3429 P90 | O, HL15 | 2N3549 | LL21 | | 2N3219 | LL47 | FET25, FET49, FET61 | 2N3430 P9 | 1, HL15 | 2N3551 | P50 | | 2N3220 | P40 | 2N3330 FET2, FET18, | | 91, HL15 | 2N3552 | P50 | | 2N3221 | P40 | FET25, FET51, FET61 | | 1, HL15 | 2N3553 | HF80 | | 2N3222 | P40 | 2N3331 FET3, FET17, | | | | | | 2N3223 | | FET27, FET55, FET60 | | 1, HL16 | 2N3554 | LL26 | | | P59 | | | 91, HL16 | 2N3563 | HF90 | | 2N3227 | HF81, HL20 | 2N3332 FET12, FET18, | 2N3436 FET4 | , FET54 | 2N3564 | HF87 | | 2N3229 | HF52 | FET26, FET49, FET62 | | 3, FET47 | 2N3565 | HF14 | | 2N3230 | P37 | 2N3333 FET30 | 2N3438 | FET40 | 2N3566 | HF14 | | 2N3231 | P37 | 2N3334 FET29 | 2N3439 | P19 | | HF21 | | 2N3241A | A39, P10, | 2N3335 FET29 | | | 2N3567 | | | | HL37 | | 2N3440 | P19 | 2N3568 | HF21 | | 2N3242A | | 2N3336 FET29 | 2N3441 | P37 | 2N3569 | HF21 | | 2113242A | A43, P10, | 2N3337 HF77 | 2N3442 | P83 | 2N3570 | HF92 | | | HL37 | 2N3338 HF77 | 2N3444 | HL14 | 2N3571 | HF91 | | 2N3244 | HF47 | 2N3339 HF77 | 2N3445 | P83 | 2N3572 | HF91 | | 2N3245 | HF44 | 2N3340 LL21 | 2N3446 | P83 | 2N3576 | HF77, LL35 | | 2N3248 | HF62 | 2N3341 LL21 | 2N3447 | P84 | | | | 2N3249 | | | | | 2N3577 | P67 | | | HF67 | 2N3342 LL3 | 2N3448 | P84 | 2N3578 | FET48 | | 2N3250 | HF62, LL28 | 2N3343 LL4 | 2N3452 FET4 | 7, FET62 | 2N3579 | A10 | | 2N3250A | HL18 | 2N3344 LL3 | 2N3453 FET40 | , FET62 | 2N3580 | A20 | | 2N3251 | HF68, LL30 | 2N3345 LL3 | | 1, FET62 | 2N3581 | A23 | | 2N3251A | HL19 | 2N3346 LL3 | | 7, FET60 | | | | 2N3252 | HF52, HL15 | 2N3365 FET46 | | | 2N3582 | A35 | | 2N3253 | HF47, HL14 | | | o, FET60 | 2N3583 | P44 | | 2N3262 | | 2N3366 FET39 | | 5, FET60 | 2N3584 | P44 | | | HF44 | 2N3367 FET34 | 2N3458 FET4 | , FET54, | 2N3585 | P44 | | 2N3263 | P85 | 2N3368 FET53 | | FET59 | 2N3588 | HF56 | | 2N3264 | P62 | 2N3369 FET44 | 2N3459 FET3 | , FET47, | 2N3589 | P29 | | 2N3265 | P85 | 2N3370 FET37 | 2113439 1213 | FET60 | | | | 2N3266 | P62 | 2N3371 HF77 | ONIZAGO FETO | | 2N3590 | P29 | | 2N3277 | FET12, FET41 | 2N3374 P19 | 2N3460 FET2, | FET40, | 2N3591 | P30 | | 2N3278 | FET12, FET46 | | 0110460 | FET60 | 2N3592 | P30 | | 2N3279 | | | 2N3462 | A32 | 2N3593 | P21 | | | HF76 | 2N3376 FET1, FET58, | 2N3463 | A32 | 2N3594 | P21 | | 2N3280 | HF76 | FET68 | 2N3467 | HL14 | 2N3595 | P30 | | 2N3281 | HF68 | 2N3377 FET1, FET58, | 2N3468 | HL13 | 2N3596 | P30 | | 2N3282 | HF68 | FET68 | 2N3469 | P15 | 2N3597 | P83 | | 2N3283 | HF62 | 2N3378 FET2, FET54, | | 91, HL20 | 2N3598 | P83 | | 2N3284 | HF62 | FET69 | | 1, HL20 | 2N3599 | P83 | | 2N3285 | HF62 | 2N3379 FET2, FET54, | | | | | | 2N3286 | HF62 | FET69 | | 91, HL20 | 2N3600 | HF88 | | 2N3287 | HF72 | | | 1, HL20 | 2N3605 | LL30 | | | | 2N3380 FET4, FET69 | | 1, HL21 | 2N3506 | LL30 | | 2N3288 | HF73 | 2N3381 FET4, FET69 | | 92, HL21 | 2N3507 | LL30 | | 2N3289 | HF68 | 2N3382 FET5 | | 2, HL21 | 2N3608 | FET5, FET19, | | 2N3290 | HF68 | 2N3383 FET5 | | 92, HL21 | | FET58, FET67 | | 2N3291 | HF62 | 2N3384 FET6 | 2N3478 | HF90 | 2N3610 | FET1 | | 2N3292 | HF58 | 2N3385 FET6 | | 26, HL16 | 2N3611 | P67 | | 2N3293 | HF58 | 2N3386 FET6 | 2N3485A LL2 | 26, HL16 | | | | 2N3294 | HF58 | 2N3387 FET6 | | | 2N3612 | P67 | | 2N3295 | | | | 27, HL16 | 2N3613 | P67 | | | HF2 | 2N3390 A44 | | 27, HL16 | 2N3614 | P67 | | 2N3296 | HF1 | 2N3391 A44 | 2N3487 | P84 | 2N3615 | P67 | | 2N3297 | HF1 | 2N3391A A44 | 2N3488 | P84 | 2N3616 | P67 | | 2N3298 | HF53 | 2N3392 A39 | 2N3489 | P84 | 2N3617 | P68 | | 2N3299 | HF76, HL40 | 2N3393 A34 | 2N3490 | P84 | | | | 2N3300 | HF76, HL40 | 2N3394 A25 |
2N3491 | P84 | 2N3618 | P68 | | 2N3301 | HF77, HL40 | 2N3395 A45 | 2N3491
2N3492 | P84 | 2N3619 | HF53 | | 2N3302 | HF77, HL40 | 2N3396 A45 | | | 2N3620 | HF53 | | 2N3303 | | | 2N3493 | LL35 | 2N3621 | HF53 | | | HF86, HL42 | 2N3397 A45 | 2N3494 | HL16 | 2N3622 | HF53 | | 2N3304 | HF86 | 2N3398 A45 | 2N3495 | HL13 | | | | 2N3307 | HF68 | 2N3399 HF84 | 2N3496 | HL16 | 2N3623 | HF53 | | 2N3308 | HF68 | 2N3402 A30 | 2N3497 | HL13 | 2N3624 | HF54 | | 2N3309 | HF68 | 2N3403 A41 | 2N3498 | HL13 | (conti | nued on p. 180) | | | | | | | | | ## **Union Carbide's New Integrated Circuit Operational Amplifier** #### The 15nA Operational Amplifier #### ADVANCED DATA SHEET FOR YOUR USE - 15nA differential input offset current (max) - 175pA/°C differential input offset current drift (max) - 5mV input offset voltage (max) - $10\mu V/^{\circ}C$ input offset voltage drift (max) - 50nA input biasing current (max) - \blacksquare ± 10V common mode voltage (min) - ±10V output voltage swing (min) 2mA output current drive (min) - 20,000 open loop voltage gain (min) - -55° C to $+125^{\circ}$ C operating temp. in TO-101 - Offset Voltage adjustable to zero with external potentiometer - Off the shelf delivery applications: A to D converter • Bridge amplifier • DC amplifier • Differential amplifier Integrater (DC to AC) • Sample and hold amplifier ON READER-SERVICE CARD CIRCLE 77 #### MONOLITHIC OPERATIONAL **AMPLIFIERS** LINEAR INTEGRATED CIRCUITS UC4000/UC4001/UC4002 The UC4000 series of operational amplifiers are constructed on a single silicon chip. The amplifier has the following features: • Offset voltage adjustable to zero with external potentiometer • ±10V common mode voltage • 15 nA differential input offset current • 100 pA/°C differential input current drift • 10 µV/°C input offset voltage drift #### MAXIMUM RATINGS - T, = 25°C (UNLESS OTHERWISE NOTED) | | UC4000/UC4001/UC4002 | |---|----------------------| | Supply Voltage | ±18.0 Volts | | Internal Power Dissipation 125°C Ambient Temp. (Note 1) | 200 mW | | Output Short Circuit Duration | 5 sec | | Differential Input Voltage | ±10.0 Volts | | Input Voltage, Common Mode | ±10.0 Volts | | Storage Temperature Range | -65°C to +200°C | | Operating Ambient Temperature Range | -55°C to +125°C | | Lead Temperature Soldering for 60 seconds | +300°C | Note 1. Rating applies for ambient temperatures to 125°C; derate linearly at 2.6 mW/°C for ambient temperatures above 125°C. @ 25°C and Supply Voltage + 15 0 Voltage To A CHARACTERISTICS | | | | UC400 | 0 | | UC400 | | | UC4002 | 2 | | | |--|------------------------------------|-------------|------------|-------------|-------------|------------|------|-------------|------------|------|----------|---| | SPECIFICATION | Sym. | Min. | Тур. | Max. | Min. | Тур. | Max. | Min. | Тур. | Max. | Unit | TEST CONDITIONS | | Large Signal, Open Loop
Voltage Gain | A _v | 20 K | | 80 K | 20 K | | 80K | 20K | | 80K | | $V_{1N} = 100 \mu V \text{ rms}$
$R_L = 10 \text{ K ohms}$
f = 100 Hz | | Large Signal, Open Loop
Voltage Gain | A _v | 15K | | | 15 K | | | 15 K | | | | $V_{IN} = 100 \ \mu V \text{ rms}$
$R_{I_s} = 10 \text{ K ohms}, f = 100 \text{ Hz}$
$(T_A = -55^{\circ}\text{C to} + 125^{\circ}\text{C})$ | | Differential Input
Impedance | R _{in}
C _{in} | 0.8 | 3.0
1.0 | | 0.8 | 3.0
1.0 | | 0.8 | 3.0
1.0 | | MΩ
pF | V _{out} = 7 V rms
f = 1 KHz | | Open Loop Output
Resistance | Rout | | 100 | | | 100 | | | 100 | | ohm | $V_{\text{out}} \leq 1 \text{ V p-p}$ $f = 100 \text{ Hz}$ | | Output Voltage Swing | Vout | ±10 | | | ±10 | | | ±10 | | | V | $R_{I_s} = 10 \text{ K ohms}$
$(T_A = -55^{\circ}\text{C to} + 125^{\circ}\text{C})$ | | Output Current | Iout | <u>+2</u> | | | ±2 | | | ±2 | | | mA | R _L = 5 K ohms | | Equivalent Input Offset Voltage (2) | V | | 3.0 | 5.0 | | 5.0 | 10.0 | | 7.0 | 10.0 | mV | R ₁ = 10 K ohms | | Equivalent Input Offset Voltage
Change with Temp. | △Vos | | | 1.8 | | | 3.6 | | | 7.2 | mV | $R_{1a} = 10 \text{ K ohms}$
$(T_A = -55^{\circ}\text{C to} + 125^{\circ}\text{C})$ | | Equivalent Average Offset Voltage Drift | $\triangle V_{\alpha_R}$ | | | 10 | | | 20 | | | 40 | μV/°C | $R_{I_a} = 10 \text{ K ohms}$
$(T_A = -55^{\circ}\text{C to} + 125^{\circ}\text{C})$ | | Offset Voltage Change with
Power Supply Variation | $\triangle V_{os}$ | | 25 | 150 | | 25 | 150 | | 25 | 150 | μV/V | $R_L = 10 \text{ K ohms}, V_{out} = 0$
$\Delta V_{PS} = 1 \text{ V rms}, f = 100 \text{ Hz}$ | | Offset Voltage Drift with Time | $\triangle V_{or}$ | | 40 | | | 100 | | | 160 | | | $V_{OS} = 0$ at start,
t = 24 hrs. | | Differential Input Offset Current | Ios | | | 15 | | | 30 | | | 50 | nA | $V_{\text{out}} = 0$, $R_{\text{L}} = 10 \text{ K ohm}$ | | Differential Input Offset Current
Change with Temp. | ΔI _{os} | | | 31.5 | | | 63.0 | | | 126 | nA | $V_{out} = 0$, $R_L = 10$ K ohms $(T_A = -55^{\circ}\text{C to } + 125^{\circ}\text{C})$ | #### ELECTRICAL CHARACTERISTICS (@ 25°C and Supply Voltage ±15.0 Volts in Test Circuit Figure No. 4 (UNLESS OTHERWISE NOTED) | | | | UC4000 | | UC4001 | | UC4002 | | | | |---|------------------|------|--------|-------------|--------|-----------|--------|------|----------|--| | SPECIFICATION | Sym. | Min. | Тур. | Max. Min. | Тур. | Max. Min. | Тур. | Max. | Unit | TEST CONDITIONS | | Average Differential Input Offset
Current Drift | ΔI _{os} | | | 175 | | 350 | | 700 | pA/°C | $V_{out} = 0$, $R_{1.} = 10$ K ohms
$(T_A = -55^{\circ}\text{C to }125^{\circ}\text{C})$ | | Differential Input Offset Current
Change with Power Supply Variation | ΔI_{ns} | | 500 | | 500 | | 500 | | pA/V | $V_{\text{out}} = 0$, $R_{\text{L}} = 10$ K ohms
$\Delta V_{\text{PS}} = 1$ V rms, $f = 100$ H | | Differential Input Offset
Current Change with Time | ΔI _{os} | | 1 | | 3 | | 5 | | nA/24 hr | $V_0 = 0$ at start, $t = 24$ hrs.
$R_L = 10$ K Ω | | Common Mode Rejection | CMR | 90 | 100 | 90 | 100 | 90 | 100 | | dB | $e_{10} = 1 \text{ V rms}, f = 100 \text{ Hz}$ | | Common Mode Voltage
Range (Note 3) | $V_{\rm cm}$ | ±10 | | <u>+</u> 10 | | ±10 | | | V | $R_L = 10 \text{ K}, R_f = \infty$
f = 100 Hz,
$V_{out} = 7 \text{ Vrms}$ | | Common Mode Input Resistance | $R_{\rm cm}$ | | 400 | | 400 | | 400 | | МΩ | $V_{\text{out}} = 7.0 \text{ V rms}$
$V_{\text{CM}} = 7.0 \text{ V rms}$ | | Input Bias Current | Inlas | | 40 | 50 | 60 | 100 | 80 | 150 | nA | $V_{out} = 0$ | | Input Bias Current | IRins | | 150 | 250 | 300 | 400 | 500 | 600 | nA | $V_{\text{out}} = 0$ $(T_A = -55^{\circ}\text{C})$ | | Input Spot Noise Voltage | e _{II} | | 200 | | 200 | | 200 | | nv/√~ | $f = 100 \text{ Hz}$ $R_L = 10 \text{K}\Omega$ | | Small Signal Bandwidth—(Note 3) | BW | 1.0 | 2.0 | 1.0 | 2.0 | 1.0 | 2.0 | | MHz | $R_{f} = 0, R_{in} = \infty,$ $e_{in} \le 100 \text{ mV}$ | | P.S. Current Drain. +15 V | | | | 7.0 | | 7.0 | | 7.0 | ·mA | $V_{out} = 0$ | | P.S. Current Drain15 V | | | | 8.0 | | 8.0 | | 8.0 | mA | V = 0 | | Slewing Rate
(Note 3) | ∆V/∆t | 1.0 | | 1.0 | | 1.0 | | | V/µs | $R_{L} = 10 \text{ K}$
-10 V < V_{out} < +10 V
$t_{c} = 10 \text{ ns}, PRR= 1 \text{ KHz}$ | | Full Power Frequency (Note 3) | | 15 | | 15 | | 15 | | | KHz | $R_{t_0} = 10 \text{ K. } V_{out} = 7 \text{ V rms}$
$R_{t_0} = R_{t_0} = 100 \text{K}\Omega$ | Notes: 2) Adjustable to zero by external 20 K\O2 potentiometer. - 3) With compensation to provide 6 dB per octave roll-off (see Figure 3). - 4) If balance potentiometer is not used, connect pins 7 and 12 through 10K ohm resistors to pin 6 (see Figure 4). 5) Case connected to negative supply pin 2. JEDEC OUTLINE TO-101. PHYSICAL DIMENSIONS FIGURE 1. - (1) Common - (2) Negative Supply (Ref: Note 5) - (3) Output Compensation (Fig. 3 & 4) - (4) Output Compensation (Internal Resistor) - (5) Output - (6) Positive Supply - (7) Balance Potentiometer - (8) Input Compensation (Fig. 3 & 4) - (9) Input (Inverting) - (10) Input (Non-inverting) - (11) Input Compensation (Fig. 3 & 4) - (12) Balance Potentiometer (Fig. 3 & 4) TOP VIEW #### CONNECTION DIAGRAM FIGURE 2. FREQUENCY COMPENSATION CIRCUIT FOR 6 dB/OCTAVE ROLLOFF (Ref: Note 3) FIGURE 3. STANDARD TEST CIRCUIT (Ref: Note 4) FIGURE 4. 1967 UNION CARBIDE PRINTED IN U.S.A. #### ELECTRONICS If somebody beat you to it, write to: Union Carbide Electronics or call your UCE distributor IN THE WEST ARIZONA, Phoenix Avnet Electronics • (602) 272-6821 CALIFORNIA, **Culver City** Avnet Electronics • (213) 870-6141 Los Angeles K-Tronics • (213) 685-5888 Mountain View Avnet Electronics • (415) 961-7700 **Newport Beach** Western Electronic Components • (714) 540-1322 (213) 631-6119 Palo Alto Kierulff Electronics, Inc. • (415) 968-6292 San Diego Avnet Electronics • (714) 279-1550 San Diego Kierulff Electronics • (714) 278-2112 **COLORADO**, Denver Newark-Denver Electronics • (303) 757-3351 **WASHINGTON**, Seattle Washington Electronics • (206) 682-8981 Factory Sales Offices CALIFORNIA **Mountain View** (415) 969-9390 Fullerton (213) 691-0958 **ELECTRONICS** AFTER YOU PULL OUT UNION CARBIDE'S DATA SHEET L #### **SCHWEBER** FOR SAME DAY SHIPMENT OF ALL ITEMS P.S.: FOR A COMPLETE PRICE LIST CIRCLE NUMBER BELOW. ALABAMA, Huntsville 205/539-2756 MARYLAND, Silver Spring 301/587-2900 MASS., Waltham 617/891-8484 OHIO, Cleveland 216/333-7020 NEW YORK, Westbury 516/334-7474 78 Westbury, New York / Waltham, Mass. / Cleveland, Ohio / Huntsville, Ala. 516/334-7474 / 617/891-8484 / 216/333-7020 / 205/539-2756 | (continued | l
from p. 177) | 2N3732
2N3733 | P14
HF78 | 2N3827
2N3828 | HF55
HF74 | |------------------|------------------------|------------------|--------------------------------|---------------------|---------------------------| | 2N3625 | HF54 | 2N3734 | HF63, HL19 | 2N3829 | HF73, LL32 | | 2N3626 | HF54 | 2N3735 | HF63, HL19 | 2N3830 | LL27 | | 2N3627 | HF54 | 2N3736 | HF63, HL19 | 2N3831 | LL27 | | 2N3628 | HF54 | 2N3737 | HF63, HL19 | 2N3832 | HF88, LL39 | | 2N3629 | HF54 | 2N3738 | P33, HL24
P34, HL24 | 2N3837 | P38
7, P38, LL27 | | 2N3630
2N3631 | HF54
FET4, FET18 | 2N3939
2N3740 | P37, HL23 | 2N3839 | HF91 | | 2N3632 | HF77 | 2N3741 | P37, HL24 | 2N3840 | LL9 | | 2N3633 | HF92 | 2N3742 | HF12 | 2N3841 | LL4 | | 2N3634 | HL14 | 2N3743 | HF13 | 2N3842 | LL4 | | 2N3635 | HL16 | 2N3744 | P40
P40 | 2N3843 | HF40
HF40 | | 2N3636
2N3637 | HL14
HL17 | 2N3745
2N3746 | P40 | 2N3943A
2N3844 | HF40 | | 2N3638 | HF44 | 2N3747 | P40 | 2N3844A | HF40 | | 2N3638A | HL37 | 2N3748 | P40 | 2N3845 | HF40 | | 2N3639 | LL36 | 2N3749
2N3750 | P41
P41 | 2N3845A
2N3846 | HF40
P93 | | 2N3640 | LL37
LL28 | 2N3750
2N3751 | P41 | 2N3847 | P93 | | 2N3641
2N3642 | LL28 | 2N3752 | P41 | 2N3848 | P93 | | 2N3643 | LL29 | 2N3762 | HF47, HL38 | 2N3849 | P93 | | 2N3644 | LL27 | 2N3763 | HF44, HL37 | 2N3850 | P41, HL12 | | 2N3645 | LL27
LL37 | 2N3764
2N3765 | HF48, HL38
HF44, HL37 | 2N3851 P4
2N3852 | 2, P50, HL11
P42, HL12 | | 2N3646
2N3647 | LL32, HL19 | 2N3766 | HF55, P34, | 2N3853 | P42, HL11 | | 2N3648 | LL35, HL20 | | HL24 | 2N3854 | HF68 | | 2N3660 | P19 | 2N3767 | P34, HL25 | 2N3854A | HF68 | | 2N3661 | P19 | 2N3771 | P92
P92 | 2N3855 | HF73 | | 2N3662
2N3663 | HF90
HF90 | 2N3772
2N3773 | P92 | 2N3855A
2N3856 | HF73
HF74 | | 2N3665 | P19 | 2N3783 | HF88 | 2N3856A | HF74 | | 2N3666 | P20 | 2N3784 | HF86 | 2N3857, | LL6 | | 2N3677 | LL8, LL15 | 2N3785 | HF87
P93 | 2N3858 | A27
A27 | | 2N3683
2N3684 | HF84
FET53, FET65 | 2N3789
2N3790 | P83 | 2N3858A
2N3859 | A36 | | 2N3685 | FET49, FET65 | 2N3791 | P93 | 2N2859A | A36 | | 2N3686 | FET42, FET65 | 2N3792 | P93 | 2N3860 | A40 | | 2N3687 | FET37, FET65 | 2N3793 | A11
A35 | 2N3866 | HF88 | | 2N3688
2N3689 | HF78
HF78 | 2N3794
2N3796 | FET12, FET25, | 2N3877
2N3877A | A10
A10 | | 2N3690 | HF78 | | FET45, FET59 | 2N3878 | P44 | | 2N3691 | A21, HF54 | 2N3797 | FET12, FET26, | 2N3879 | HL29 | | 2N3692 | A37, HF54
HF54 | 2N3798 | FET55, FET59
HF36 | 2N3880
2N3883 | HF92
LL23 | | 2N3693
2N3694 | HF55 | 2N3799 | HF36 | 2N3900 | A44 | | 2N3695 | FET50, FET64 | 2N3800 | HF36 | 2N3900A | A44 | | 2N3696 | FET43, FET64 | 2N3801 | HF36 | 2N3903 | HF63, LL29 | | 2N3697 | FET39, FET64 | 2N3802
2N3803 | HF36
HF36 | 2N3904
2N3905 | HF69, LL31
HF63, LL27 | | 2N3698
2N3699 | FET35, FET64
P20 | 2N3804 | HF36 | 2N3906 | HF69, LL29 | | 2N3701 | HF55 | 2N3805 | HF36 | | T13, FET21, | | 2N3702 | HF35 | 2N3806 | HF37
HF37 | | ET41, FET66 | | 2N3703
2N3704 | HF35
HF35 | 2N3807
2N3808 | HF37 | 2N3916
2N3917 | P20
P34 | | 2N3705 | HF36 | 2N3809 | HF37 | 2N3919 | P30, HL33 | | 2N3706 | HF36 | 2N3810 | HF37 | 2N3920 | P30, HL33 | | 2N3707
2N3708 | A37
A22 | 2N3811
2N3818 | HF37
HF44 | 2N3921
2N3922 | FET31
FET31 | | 2N3708
2N3709 | A21 | 2N3819, | FET12, FET17, | 2N3924 | HF82 | | 2N3710 | A34 | 2.10015, | FET27, FET53, | 2N3925 | HF82 | | 2N3711 | A42 | 0110000 | FET66, FET69 | 2N3926 | HF82 | | 2N3712 | HF14
P92, HL23 | 2N3820 | FET12, FET17,
FET24, FET41, | 2N3927
2N3930 | HF82
A32 | | 2N3713
2N3714 | P92, HL23 | | FET66, FET68 | 2N3931 | A32 | | 2N3715 | P92, HL23 | 2N3821 | FET12, FET19, | 2N3932 | HF92 | | 2N3716 | P92, HL23 | FET25 | FET44, FET48, | 2N3933 | HF92 | | 2N3719
2N3720 | P20, HL29
P20, HL29 | 2N3822 | FET59, FET69
FET12, FET27, | 2N3934
2N3935 | FET31
FET30 | | 2N3720
2N3721 | A27 | 2113022 | FET45, FET52, | 2N3935
2N3946 | HF63, LL29 | | 2N3722 | LL35 | | FET59, FET70 | 2N3947 | HF69, LL31 | | 2N3723 | LL35 | 2N3823 | FET13, FET17, | 2N3948 | HF87, P3 | | 2N3724
2N3725 | HL39
HL39 | | FET26, FET49,
FET61, FET70 | 2N3950
2N3953 | HF44, P59
HF92 | | 2N3728 | HF78 | 2N3824 | FET5, FET17, | 2N3954 | FET31 | | 2N3729 | HF78 | 011000 | FET21 | 2N3955 | FET31 | | 2N3730
2N3731 | P26
P20 | 2N3825
2N3826 | HF55
A21, HF55 | 2N3956
2N3957 | FET30
FET30 | | 2143/31 | 120 | 2140020 | 7.22, 111 00 | | , 2100 | | | | | | | | ### Available from your #### **WESTERN DISTRIBUTORS:** Fortune Electronics 695 Veterans Blvd. Redwood City, California 94063 (415) 365-4000 Kierulff Electronics 3969 East Bayshore Road Palo Alto, California 94303 (415) 968-6292 Arco Pacific Bohamon Drive Menlo Park, Calif. 94025 (415) 324-1356 Liberty Electronics Corp. 339 South Isis Avenue Inglewood, California (213) 678-8111 Spectronics 131 Garnet Ridgecrest, California 93555 (714) 378-2831 Western Electronic Components 4301 Birch St. Newport Beach, California (714) 540-1322 (213) 631-6119 Newark-Denver Electronics Supply P. O. Box 22045 Denver, Colorado (303) 757-3351 Pacific Electronics 1336-4 Dillingham Blvd. Honolulu, Hawaii 96817 817-118 Sterling Electronics, Inc. 1712 Lomas Blvd., N.E. Albuquerque, New Mexico (505) 247-2486 Kicrulff Electronics 2585 Commerce Way Los Angeles, California 90022 (213) 685-5511 Ballard Supply Company 3109 Washington Blvd. Ogden, Utah 84400 (801) 394-5541 Ballard Supply Company 44 East 6th Street, South Salt Lake City, Utah 84100 (801) 364-6541 Kierulff Electronics 6133 Maynard Ave., S. Seattle, Wash. 98108 (206) PA 5-1550 Kierulff Electronics 8137 Engineer Road San Diego, California (714) 278-2112 New LM 200—Temperature range: 0 to 70°C. LM 100—Temperature range: —55 to +125°C. # Now...a Monolithic Voltage Regulator for less than \$20 #### Second of a new line of monolithic linear integrated circuits - Output adjustable from 2V to 30V. - Output currents in excess of 5A using external power transistors. - Can be used as either a linear or a high-efficiency switching regulator. The new LM200 has the same performance characteristics as the LM-100 over the commercial range. These versatile regulators feature regulation better than 1 percent for widely varying load and line conditions. Temperature stability is better than 1 percent over full temperature range. As linear regulators, both devices provide current limiting, excellent transient response and unconditional stability with any combination of resistive or reactive loads. As ON READER-SERVICE CARD CIRCLE 83 switching regulators, circuits will operate at frequencies up to 100KHZ with efficiencies better than 85 percent. Both LM200 and LM100 are immediately available from distributor stock. # Did you ever design or use a basic circuit like this? # Then you know the NSC line of Hybrid Operational Amplifiers - Hybrid construction allows component for component miniaturization of discrete designs. - Superior input characteristics (input impedance = $1 \text{ meg}\Omega \text{ max.}$) darlington configuration. - Closer temperature tracking (input offset voltage T.C. max. 30 or $10\mu\,v/^{\circ}C$ max.) NPN dice. - Output stage uses high quality PNP and NPN devices as a complementary emitter follower. Currents are possible as high as ±50 ma with a 100Ω load. - Investigate NCS's other standard hybrid products and custom circuit capability. See NSC distributor listing on page 180 | SPECIFICATIONS | NS 7560 | NS 7560A | |---|----------|----------| | Input Offset Voltage (Maximum) | 10 mv | 3 mv | | Input Offset Voltage Temperature
Coefficient (Maximum) | 30u ∨/°C | 10μ v/°C | | Input Bias Current (Maximum) | 100 na | 25 na | | Differential Input Current | | | | (Maximum) | 50 na | 2 na | | Input Bias Current Temperature | | | | Coefficient (Maximum) | 2 na/°C | 1 na/°C | | Peak Output Current (Maximum) | ±50 ma₁ | ±50 ma | | 2N3958 | FET30 | 2N4059 A22, LL48 | 2N4255 HF85 | 2N4429 | HF87 | |---------|--------------|------------------------|-----------------------|--------|--------------| | | | | | | | | 2N3959 | HF92, LL40 | 2N4060 A22, LL48 | 2N4257 LL38 | 2N4430 | HF85 | | 2N3960 | HF92, LL40 | 2N4061 A34, LL48 | 2N4258 LL39 | 2N4431 | HF85 | | 2N3961 | HF82 | 2N4062 A42, LL48 | 2N4259 HF91 | 2N4433 | HF55 | | | | 2N4063 P26 | 2N4260 HF92, LL40 | | | | 2N3962 | HF45 | | | 2N4434 | HF69 | | 2N3963 | HF45 | 2N4064 P26 | 2N4261 HF93, LL40 | 2N4435 | HF56 | | 2N3964 | HF45 | 2N4065 FET22 | 2N4264 HF69, LL31 | 2N4440 | HF82 | | | | | | | | | 2N3965 | HF45 | 2N4066 FET19 | 2N4265 HF69, LL31 | 2N4445 | FET11 | | 2N3966 | FET6 | 2N4067 FET19 | 2N4267 FET19 | 2N4446 | FET11 | | | | 2N4068 HL35 | | | | | 2N3967 | FET27 | | 2N4268 FET20 | 2N4447 | FET11 | | 2N3968 | FET26 | 2N4069 HL36 | 2N4284 A16 | 2N4448 | FET11 | | 2N3969 | FET25 | 2N4070 P58 | 2N4285 A16 | 2N4854 | A37, LL28 | | | | | | | | | 2N3970 | FET16 | 2N4071 P59 | 2N4286 A40 | 2N4855 | A21, LL28 | | 2N3971 | FET8, FET18, | 2N4072 HF83 | 2N4287 A40 | 2N4856 | FET11, FET18 | | | FET20 | 2N4073 HF83 | 2N4288 A41 | 2N4857 | FET10, FET20 | | 0110070 | | | | | | | 2N3972 | FET7, FET20, | 2N4074 A39, P10, HL33 | 2N4289 A41 | 2N4858 | FET8, FET21 | | | FET21 | 2N4075 P42 | 2N4290 A24 | 2N4859 | FET11, FET18 | | 2N3973 | LL32 | 2N4076 P42 | 2N4291 A37 | 2N4860 | FET10, FET20 | | | | | | | FETO, FETO1 | | 2N3974 | LL32 | | 2N4292 A10 | 2N4861 | FET8, FET21 | | 2N3975 | LL32 | 2N4078 P22 | 2N4293 A10 | 2N4862 | P21 | | | | 2N4079 P108 | | | | | 2N3976 | LL32 | | 2N4296 A24, P34, HL30 | 2N4863 | P21 | | 2N3977 | LL4 | 2N4082 FET32 | 2N4297 A31, P34, HL30 | 2N4864 | P39 | | 2N3978 | LL4 | 2N4083 FET31 | 2N4298 A13, P34, HL30 | 2N4865 | P108 | | | | | 2N4299 A24, P34, HL30 | | | | 2N3979 | LL4 | 2N4084 FET32 | | 2N4866 | P108 | | 2N3980 | UJT2, UJT3 | 2N4085 FET31 | 2N4300 P30, HL25 | 2N4867 | FET42,
FET63 | | 2N3993 | FET6, FET19 | 2N4086 A40 | 2N4301 P53, HL26 | 2N4868 | FET49, FET63 | | | | | | | | | 2N3994 | FET5, FET21, | | 2N4304 LL35 | 2N4869 | FET53, FET63 | | | FET26 | 2N4092 FET8 | 2N4313 LL39 | 2N4874 | HF90 | | 2N3995 | HF85 | 2N4093 FET7 | 2N4314 HL30 | 2N4875 | HF88 | | | | | | | | | 2N3996 | P42 | 2N4104 A44, HF30 | 2N4315 HF104 | 2N4876 | HF86 | | 2N3997 | P42 | 2N4105 P6 | 2N4338 FET39, FET63 | 2N4881 | FET51 | | | D40 | 2N4106 P6 | 2N4339 FET43, FET50, | | | | 2N3998 | P42 | | | 2N4882 | FET56 | | 2N3999 | P42 | 2N4107 P109 | FET63 | 2N4883 | FET51 | | 2N4000 | P30 | 2N4108 A45 | 2N4340 FET50, FET55, | 2N4884 | FET56 | | | | 2N4109 A45 | | | | | 2N4001 | P30 | | FET63 | 2N4885 | FET51 | | 2N4002 | P83 | 2N4117 FET34 | 2N4341 FET54, FF.T63 | 2N4886 | FET56 | | 2N4003 | P83 | 2N4117A FET34 | 2N4342 FET4, FET18, | 2N4891 | UJT2 | | | | | | | | | 2N4004 | P50 | 2N4118 FET36 | FET27, FET62 | 2N4892 | UJT2 | | 2N4005 | P50 | 2N4118A FET36 | 2N4343 FET4, FET16, | 2N4893 | UJT1 | | 2N4006 | LL18 | 2N4119 FET39 | FET28, FET62 | 2N4894 | UJT3 | | | | 2N4119A FET39 | | | | | 2N4007 | LL15 | | | 2N4895 | P59 | | 2N4008 | LL16 | 2N4120 FET22 | 2N4348 P84 | 2N4896 | P59 | | | | 2N4121 LL37 | | | | | 2N4012 | HF82 | | 2N4351 FET21 | 2N4897 | P59 | | 2N4013 | HL39 | 2N4122 LL37 | 2N4352 FET21 | 2N4932 | HF45 | | 2N4014 | HL39 | 2N4123 HF64, LL29 | 2N4353 FET33 | 2N4933 | HF45 | | | | 2N4124 HF69, LL31 | | | | | 2N4017 | A44 | | | 2N4947 | UJT2 | | 2N4018 | A45 | 2N4125 HF55, LL27 | 2N4355 A24, LL23 | 2N4948 | UJT3 | | 2N4019 | A45 | 2N4126 HF64, LL29 | 2N4356 LL23 | 2N4949 | UJT3 | | 2N4020 | A46 | 2N4136 P109 | 2N4357 A32 | 2N4960 | | | | | | | | HL38 | | 2N4021 | A46 | 2N4137 HL40 | 2N4358 A32 | 2N4961 | HL38 | | 2N4022 | A46 | 2N4138 A23, HF11, LL18 | 2N4360 FET3, FET16, | 2N4962 | HL38 | | | | | | | | | 2N4023 | A46 | 2N4139 FET57 | FET27, FET62 | 2N4963 | HL38 | | 2N4024 | A47 | 2N4207 LL38 | 2N4381 FET5, FET21, | 3N45 | P61 | | 2N4025 | A47 | 2N4208 LL39 | FET28, FET54, FET61 | 3N46 | P62 | | | A20, HL35 | 2N4209 LL39 | | | | | 2N4026 | | | | 3N47 | P62 | | 2N4027 | A21, HL35 | 2N4220 FET13, FET22, | FET28, FET56, FET61 | 3N48 | P62 | | 2N4028 | A37, HL35 | FET25, FET45, FET60 | 2N4391 FET10 | 3N49 | P82 | | 2N4029 | A37, HL35 | 2N4220A FET62 | 2N4392 FET8 | 3N50 | P82 | | | | | | | | | 2N4030 | A21 | 2N4221 FET13, FET22, | 2N4393 FET7 | 3N51 | P82 | | 2N4031 | A21 | FET26, FET52, FET60 | 2N4400 HF55, LL27 | 3N52 | P82 | | 2N4032 | A37 | 2N4221A FET62 | 2N4401 HF64, LL29 | 3N71 | LL24 | | | | | | | | | 2N4033 | A37 | 2N4222 FET13, FET22, | 2N4402 HF45, LL26 | 3N72 | LL24 | | 2N4035 | LL36 | FET28, FET56, FET60 | 2N4403 HF55, LL28 | 3N73 | LL24 | | | | | | | A 47 11 10 | | 2N4036 | HL29 | 2N4222A FET62 | 2N4409 HF69 | 3N74 | A47, LL19 | | 2N4037 | HL30 | 2N4223 FET60, FET70 | 2N4410 HF69 | 3N75 | A47, LL19 | | 2N4038 | FET69 | 2N4224 FET69 | 2N4411 HF78, LL35 | 3N76 | A47, LL19 | | | | | | | | | 2N4039 | FET69 | 2N4234 P20, HL22 | 2N4416 FET70 | 3N77 | A47, LL19 | | 2N4040 | P31 | 2N4235 P20, HL22 | 2N4417 FET70 | 3N78 | A47, LL19 | | 2N4041 | P26 | 2N4236 P20, HL22 | 2N4418 HF82, LL36 | 3N79 | A47, LL19 | | | | | | | | | 2N4046 | LL36 | 2N4240 P44 | 2N4419 HF78, LL35 | 3N89 | FET44, FET67 | | 2N4047 | LL36 | 2N4241 P45 | 2N4420 HF73, LL32 | 3N90 | HF4 | | 2N4048 | P98 | 2N4248 A23 | 2N4421 LL31 | 3N91 | HF4 | | | | | | | | | 2N4049 | P98 | 2N4249 A36 | 2N4422 LL33 | 3N92 | HF4 | | 2N4050 | P98 | 2N4250 A36 | 2N4423 LL35 | 3N93 | HF4 | | 2N4051 | P98 | 2N4251 HL42 | 2N4424 A42 | 3N94 | HF4 | | | | | | | | | 2N4052 | P99 | 2N4252 HF85 | 2N4425 A42 | 3N95 | HF4 | | 2N4053 | P99 | 2N4253 HF85 | 2N4427 HF88 | 3N96 | FET31 | | 2N4058 | A37, LL48 | 2N4254 HF85 | 2N4428 HF87 | 3N97 | FET30 | | | , | 100 | 111 07 | | | #### **Semiconductors and Semimetals** edited by R. K. WILLARDSON and ALBERT C. BEER This multi-volume treatise reflects the major developments, experimental techniques, and theoretical advances in the rapidly growing theoretical advances in the rapidly glowing field of semiconductors and semimetals. Vol. 1: PHYSICS OF III-V COMPOUNDS 1966, 516 pp., \$19.00 Vol. 2: PHYSICS OF III-V COMPOUNDS 1966, 432 pp., \$16.50 Vol. 3: OPTICAL PROPERTIES OF III-V COMPOUNDS June 1967, about 550 pp., \$23.00 IN FOUR VOLUMES . . . **Physics of Semiconductors** Proceedings of the 7th International Conference, Paris, 1964 edited by MICHEL HULIN 1964, 1368 pp., \$36.00 Volume 2: PLASMA EFFECTS IN SOLIDS edited by JULIEN BOK 1964, 221 pp., \$10.00 Volume 3: RADIATION DAMAGE IN SEMICONDUCTORS edited by P. BARUCH 1964, 426 pp., \$16.00 Volume 4: RADIATIVE RECOMBINATION IN SEMICONDUCTORS edited by C. BENOIT A LA GUILLAUME 1964, 296 pp., \$12.50 Available from Academic Press in all countries except Central Europe, China, and the Socialist Republics. #### Potential Barriers in Semiconductors by B. R. Gossick ... a fine look into semiconductor and metallic interfaces; it goes a distance further than most books but stays closely to the subject. -Physics Today. 1964, 153 pp., clothbound \$5.50, paperbound \$2.45 **Magnetism and Magnetic** Materials: 1966 Digest A Survey of the Technical Literature of the Preceding Year edited by C. W. HAAS and H. S. JARRETT Presents a survey and summary of papers and books on magnetism and magnetic materials that were published during 1965. Indicates the trends in magnetism and shows the connection between various individual works. 1966, 273 pp., \$11.00 A Volume of Electrical Science Series Semiconductor Devices Volume 1: SEMICONDUCTORS AND SEMICONDUCTOR DIODES by MAX J. O. STRUTT This book presents the basic theory and technology of semiconductors and semiconductor diodes for engineers and physicists. 1966, 313 pp., \$12.50 Supplements to the Solid State Physics Series #### High Field Transport in **Semiconductors** by Esther M. Conwell A comprehensive review on high field transport in semiconductors. Starting with a description of all observed phenomena and effects explained in simple physical terms, the mathematical theory is then built up systematically and applied to the quantitative treatment of various phenomena. 1967, 293 pp., approx. \$12.00 #### **Electron Radiation Damage in** Semiconductors and Metals by I. W. CORBETT A comprehensive and critical review of damage in semiconductors and metals as produced by all types of radiation. 1966, 410 pp., \$16.50 | 3N108
3N109
3N110
3N111
3N112
3N113
3N114
3N115
3N116
3N117
3N118
3N119
3N123
3N124 | A47, LL14 A47, LL14 A48, LL14 A48, LL14 HF4 HF5 HF9 HF9 HF10 HF10 HF10 LL9 FET13, FET22, | DNX6
DNX7
DNX8
DNX9
F1100
F10049
FP4339
FP4340
FT57
HA2000
HA2010
HA2010
HA2010
K1001 | FET37
FET4
FET3
FET2
FET20
FET5, FET20
FET43
FET50
FET71
FET19
FET58
FET6
FET68 | TIXS41
TIXS42
U89
U110
U112
U114
U133
U139
U139D
U146
U147
U148 | FET10, FET19,
B, FET57, FET66
FET11, FET16
FET8, FET16
FET45, FET67
FET38
FET48
FET37
FET41
FET7
FET6
FET57
FET57
FET58 | |--|--|--|---|--|--| | 3N125
3N126 | FET24, FET41
FET13, FET22,
FET26, FET50
FET13, FET22, | K1003
K1004
K1201
K1202 | FET70
FET45
FET68
FET68 | U149
U168
U182
U183 | FET58
FET46
FET10, FET18
FET53 | | 3N128 | FET27, FET54
FET56, FET66, | K1501
K1502 | FET68
FET68 | U197
U198 | FET36
FET46 | | 3N129
3N130
3N131
3N132
3N133
517
40460 | FET70
LL13
LL13
LL13
LL13
LL13
FET33
FET70 | K1504
M100
M101
M103
M511
MEM511
MEM520
MEM551 | FET1
FET18, FET50
FET17, FET55
FET6
FET7
FET33
FET33
FET30 | U199
U203
U204
U1277
U1278
U1279
U1280
U1281 | FET54
FET61
FET63
FET50
FET45
FET41
FET38
FET56 | | 40461
C680
C681
C682
C683
C684
C685
C6690 | FET55, FET70
FET36
FET36
FET42
FET50
FET50
FET50
FET3 | MFE2093
MFE2094
MFE2095
MFE2097
MFE2098 | FET13, FET22,
FET25, FET38
FET13, FET22,
FET25, FET42
FET14, FET22,
FET25, FET49
FET57
FET57 | U1282
U1283
U1284
U1285
U1286
U1287
U1325
UC20 | FET55
FET49
FET41
FET37
FET39
FET58
FET43
FET42 | | C6691
C6692
CM600
CM601
CM602
CM603 | FET3
FET1
FET7
FET9
FET9
FET10 | MFE2133
MFE3001
MPF103
MPF104
MPP105
P102 | FET8
FET45
FET49
FET52
FET56
FET61 | UC21
UC22
UC23
UC40
UC41
UC42 | FET38
FET42
FET38
FET40
FET36
FET40 | | CM640
CM642
CM643
CM646
CM647
CP650
CP651 | FET5
FET9
FET10
FET10
FET11
FET71
FET71 | P1003
P1004
P1005
SJ993
SJ1034
SJ1127
SJ1158 | FET46
FET53
FET56
UJT2
UJT1
UJT2
UJT1 | UC43
UC200
UC201
UC210
UC220
UC240
UC250 | FET36
FET57
FET7
FET55
FET49
FET50, FET65
FET10 | | D1101
D1102
D1177
D1178
D1180
D1181
D1182 | FET47
FET40
FET47
FET40
FET52
FET44
FET37 | SJ1159
SJ5898
SU2078
SU2079
SU2080
SU2081
TIS05 |
UJT1
UJT1
FET31
FET30
FET31
FET30
FET7, FET16 | UC251
UC400
UC401
UC410
UC420
UC450
UC451 | FET7
FET56
FET6
FET52
FET45
FET8
FET7 | | D1183
D1184 | FET4, FET54
FET3, FET47 | TIS14 | FET14, FET17,
FET25, FET45, | UC701
UC703 | FET38
FET38 | | D1185
D1201
D1202
D1203
D1301
D1302
D1303 | FET40
FET52
FET44
FET37
FET4, FET54
FET3, FET47
FET2, FET40 | TIS25
TIS26
TIS27
TIS34 | FET66, FET68
FET30
FET29
FET29
FET14, FET21,
FET27, FET55,
FET66, FET70 | UC704
UC705
UC707
UC714
UC750
UC751
UC752 | FET41
FET45
FET53
FET53
FET34
FET36
FET41 | | DE1004 DN3066A DN3067A DN3068A | FET5, FET19,
FET58, FET67
FET47, FET64
FET40, FET64
FET35, FET64 | TIS41
TIS42
TIS58
TIS59
TIXM12 | FET11, FET16
FET8, FET16
FET53, FET68
FET56, FET69
FET71 | UC753
UC801
UC803
UC804
UC805 | FET48
FET35
FET35
FET38
FET42 | | DN3069A
DN3070A
DN3071A
DNX1 | FET52, FET64
FET44, FET64
FET37, FET64
FET47 | TIXM301
TIXS11 | FET71
FET2, FET20,
FET28, FET58,
FET66, FET67 | UC807
UC814
UC850
UC851 | FET48
FET42
FET38
FET48 | | DNX2
DNX3
DNX4
DNX5 | FET38
FET34
FET52
FET44 | TIXS33
TIXS35 | FET8, FET16
FET14, FET21,
FET28, FET57,
FET66, FET71 | UC852
UC853
UC854
UC855 | FET33
FET36
FET39
FET42 | # IEC REDUCED THE CUSTOMER'S COST \$.87 PER BOARD # ...ON THIS STEREO PREAMPLIFIER We supplied 4 NPN Silicon planar transistors (2N3391A type), 4 miniature aluminum electrolytic capacitors, 6 subminiature polyester film capacitors and 2 metalized mylar capacitors at a cost of \$1.63 per board (production quantities). Our customer had been paying \$2.50 per board for these same components. IEC's world-wide manufacturing facilities allow us to offer quality components of guaranteed reliability at extremely competitive prices. Let us quote on your circuit Board Component requirements. IEC can supply complete printed circuit boards with components to meet your specifications. write to components division: INTERNATIONAL ELECTRONICS CORPORATION MELVILLE, L. I., N.Y., 11746 TEL 518-894-7700 TWX 212-479-9410 Your most reliable source for components #### 1967 Diode Manufacturers' List #### (According to Device Type) To find the manufacturers of a specific type of diode, locate the device type in the columns on top. Dots are placed in the column to identify the manufacturers, listed at the left. To determine the diode product line of a specific manufacturer, locate the company name in the horizontal rows at the left. Dots are placed in that manufacturer's row under each type of diode device that forms a part of his product line. | | | | | | 1 | 7 | 1 | 7 | 1 | | 1 | | 1 | 1 | 1 | 1 | //\$// | |---------------------------------|---|----------|-----------|-----|------------|-----------------|--------|---------|------------|--------|-------------|------|------------|----------------|-------------|--|--------------------------| | | / | A leight | B III les | / | E Computer | No. Lay History | W. 150 | W. Ched | Ly Company | octor. | Openie 1000 | 1810 | Role (Reg. | Color (10 loc) | P S Control | S. S | Special Purpose | | Manufacturer | 6 | /4 | /9 | -/c | 1/4 | 3/3 | 1 | 1 | 120 | 1/2 | 12 | /2 | 1 | 15 | /= | 10 | Special Purpose | | Airtron Div., Litton Industries | | | | | | | • | • | • | | | | | | | | | | Alpha Industries Inc. | | | • | • | | | • | • | • | | | | | | | | N, P | | American Electronics Labs, Inc. | | | • | | | | | • | • | | | | | | | | N, R, A, E | | American Semiconductor Inc. | | | | | | | • | | | | | • | • | | | | | | Amperex Electronic Corp. | • | • | • | • | • | | • | | • | | | • | • | • | • | • | D, F, B | | Atlantic Semiconductor Inc. | | • | | | | | | | | | | | | | | | B, H, St | | Bell, F. W., Inc. | | | | | | | | | | | | | | | | | На | | Bendix Semiconductor Div. | | • | | | | | | | | | | | | | | | | | Bradley Semiconductor Corp. | • | • | | | | | | | | | | | | | | | | | Burroughs Corp. | | | | • | | | | | | | | | | | • | | | | Computer Diode Corp. | • | • | • | • | | | • | • | • | | • | • | • | | - | | C, B, D, Df, N, R, St, U | | Conant Labs. | | • | | | | | | | | | | | | | - | | B, Se | | Continental Device Corp. | • | • | • | • | | • | • | | | | • | • | • | | | | D, F, Df, S, St | | Crystalonics Inc. | | | | | | | • | | • | | | | | | | | | | Delco Radio Div., Gen. Motors | • | • | - | | | | | | | | | | | | | | D | | Delta Semiconductors Inc. | | • | • | • | | • | • | • | • | | | • | • | | | v | F | | Dickson Electronics Corp. | | • | | | | | • | | • | • | | • | • | | | | B, C, D, St, H | | Diodes Inc. | • | • | | • | | | • | | | | | • | | | | | B, D, H, St, S | | Eastern Delta Corp. | Т | • | | | | | | | | | • | | | | | | B, S, St | | Eastron Corp. | | | | | | | • | | • | | | • | | | | | C, St | | Edal Industries | | • | | | | | • | | | | • | | | | | | B, Df, H, S, SE | | Edgerton, Germeshausen & Grier | | | | | | | | | | | | | | | | • | R | | Electro-Optical Systems Inc. | | | | | | | | | | | | | | | | • | | | Electronic Control | | | | | | | | | | | | | | • | | | | | Electronic Devices Inc. | • | • | | | | | | | | | | • | | | | | B, D, H, M, V | | Erie Technological Products | • | • | | • | | | • | | | | | | | | | | В | | Fairchild Semiconductor | • | • | | • | | • | • | • | • | | | • | • | • | | • | A, E, B | | Gemini Semiconductors | • | | • | • | • | | • | • | • | • | | | | | | | А, Б, Ві, Df, E, N, P, Т | | General Electric Co. | • | • | • | • | • | | • | • | | • | • | • | • | • | • | • | La, P | | General Instruments Corp. | | • | | • | | | • | | | | | • | • | • | | • | | Need a FREE personal copy of this Directory? Circle number 419. Complete listing of semiconductor manufacturers starts on page 86. Get detailed spec sheets and application notes: use the reader-service card! #### Key to special purpose diodes category | | y to openial parpose and | | | |----|-------------------------------------|-----|---------------------------| | Α | = Arrays | N | = Pin diodes | | В | = Bridges, stacked, or | Р | = Snap diodes | | | special assemblies | Ph | = Photo SCRs | | Bi | = Bilateral switch | R | = Radiation detectors | | C | = Multi-junction forward regulators | S | = Suppressors | | cc | = Constant-current source | Se | = Selenium rectifiers | | D | = TV dampers | St | = Stabistors | | Df | = Specially diffused silicon diodes | Sym | = Symmetrical switch | | E | = Light emitting diodes | T | = Thin-film | | F | = Controlled forward | | applications types | | | conductance diodes | Tr | = Trigger diode | | Н | = High voltage elements | U | = Multi-current reference | | Ha | = Hall effect generators | Y | = Relay diode | | La | = Lasers | | | | | | / | oso, | / | //: | W.Sower | // | // | // | // | dy/cap | // | // | (dole) | Court Party | (Alber) | Special Purpose | |---|----|--------------|--------------------------|-----|----------|----------|------|--------|----------|--------------|--------|--------|----------|-------------------|-------------|---------|--| | Manufacturer | 13 | Re 16/21/201 | Schliers
P. C. Iliers | 4/3 | For & 1. | No. Kaye | W.S. | Pays W | one Mous | 7. Schor & 1 | V. V. | 10/2/0 | Per (Per | S Serence (Lange) | 2/2 | 25/2 | Special Purpose | | General Semiconductors Inc. | • | • | | | | | • | | • | | | • | • | | | | B, C, H, U | | Green Rectifier Corp. | | • | | | | | | | | | • | | | | | | B, S, St | | H P Associates | • | | • | • | | | • | • | | | | | | | | • | E, N, P, F, B | | Heliotek Div. Textron Electronics Inc. | | | | | | | | | | | | | | | | | | | Hoffman Electronics Corp. | • | • | | • | | | | | | • | | • | • | • | | | | | Hughes Aircraft Co. Microelectronics Div. | | | | | | | • | • | • | | | • | | | | | A | | Hunt Electronics Co. | | | | | | | | | | | | | | | • | | Bi, Sym | | ITT Semiconductor | • | • | • | • | • | | • | | | | | | | | | | | | Instrument Systems Corp. | | | | | | | | 111 | | | - | | | | | | На | | International Diode Corp. | | | | • | | | • | | | | | | | | | | | | International Electronics Corp. | | • | • | • | | | • | | • | | • | • | | • | | • | | | International Rectifier Corp. | • | • | | | | | | 7 | | | | • | • | • | | | | | I R C Semiconductor | | • | | | | | | | | | | • | • | • | | | В | | K M C Semiconductor Corp. | | | | • | | | • | • | | • | | | | | | | E, R | | Kemtron Electron Prod. | | | | | | | | | | | | | | | | | St, Y | | Korad Corp. | | | | | | | | | | - | | | | | | | La | | Ledex | | • | | | | | | | | | | | | | | | | | MSI Electronics Inc. | | | | | | | | • | • | | | | | | | | | | Mallory Semiconductor Co. | | • | | | | | | | | | | • | | | | | B, Tr, St | | MicroSemiconductor Corp. | • | • | • | • | | | • | • | • | | | • | • | | | | T, A, B, C, F, H, J | | Microstate Electronics Corp. | | | | • | | | • | • | • | • | | | | | | | E, N, X | | Microwave Associates Inc. | | | • | | | | • | • | • | • | | | | - | | | N, P, Df, F | | Motorola Semiconductor
Products Inc. | | | | | | | • | • | • | | | • | | | | | CC, B, Tr | | National Electronics Corp. | | | | | | | | | | | | | | • | | | | | Nucleonic Products Co., Inc. | | • | • | • | | • | • | | • | | • | • | • | • | | • | В | | Ohmite Mfg. Co. | | | • | • | | | • | | | | | | | | | | | | Philco Corp. | | | • | • | | | | • | • | • | | | | | | • | B, CC, La, N, P, Sym,
T, U, Y, E, A | | Power Components Inc. | • | • | | | • | | • | | • | | | • | • | | | | St | | Radiation, Inc. | | | | | | | | | | | | | | | | | A | | Radio Corp. of America | | • | | | | | | | | • | | | | | | • | B, La | #### Key to special purpose diodes category | | , and a property of the proper | | | |----
--|-----|---------------------------| | A | = Arrays | N | = Pin diodes | | В | = Bridges, stacked, or | P | = Snap diodes | | | special assemblies | Ph | = Photo SCRs | | Bi | = Bilateral switch | R | = Radiation detectors | | C | = Multi-junction forward regulators | S | = Suppressors | | CC | = Constant-current source | Se | = Selenium rectifiers | | D | = TV dampers | St | = Stabistors | | Df | = Specially diffused silicon diodes | Sym | = Symmetrical switch | | E | = Light emitting diodes | T | = Thin-film | | F | = Controlled forward | | applications types | | | conductance diodes | Tr | = Trigger diode | | Н | = High voltage elements | U | = Multi-current reference | | Ha | = Hall effect generators | Y | = Relay diode | | La | == Lasers | | | | | | / | Pose | // | E Politor e | HI Speed | | // | // | // | dricab de la constante c | // | // | " ator | Com lang | le day / | Special Purpose | |--|----|--------------|-----------|-----|-------------|----------|------|---------|-----------|--------|--|--------|-----------|------------|----------|----------|-----------------| | Manufacturer | 10 | R. Pretal P. | Petitiers | 4/3 | E Computer | N. Lave | 0500 | M. Chec | V. COWSVO | Solo I | 10um | 1035/2 | P. I. Pea | Ins duelos | \$ 40° | D. C.S. | Special Purpose | | Raytheon Co. | | | | • | | | | • | • | • | | • | • | | | | E, N | | Rectico Inc. | | • | | | | | | | | | | | | | | | | | Sanford Miller | | • | | | | | | | | | | | | | | | | | Saratoga Semiconductor Div.,
Espey Mfg. | | | | | | | | | | | | | | | | | | | Sarkes Tarzian Inc. | | • | | | | | | | | | | • | | • | • | | B, H, Ph, Se | | Schauer Mfg. Corp. | | | | | | | • | | | | • | • | • | | | | | | Semcor Div., Components Inc. | | | | | | • | • | | | | | • | • | | | | | | Semicon Inc. | | • | | | | | • | | | | | | | • | | | H, B, C, St | | Semiconductor Devices Inc. | | | | • | | | | • | • | | | | | | | | N, P | | Semiconductor Specialists Inc. | | | | | | | • | | | | | • | • | | | - | | | Semi-Elements Inc. | | • | • | | • | | • | • | • | | | • | | | | • | E, La | | Semtech Corp. | | • | | • | | | • | | | | | • | • | | | | B, H, St | | Siemens America | | • | • | • | | | • | | | • | | • | | | | • | | | Silicon Transistor Corp. | | | | | | | | | | | | | | • | • | | | | Slater Electric Inc. | | • | | | | | | | | | | | | | | | B, D, Df, H | | Solar Systems Inc. | | | | | | - | | | | | | | | | | | Df | | Solid State Products Inc. | | | | | • | | | | | | | | | • | • | • | Ph | | Solitron Devices Inc. | | • | • | | | • | • | | • | | • | • | • | | | | N | | Sylvania Electric Products | | • | • | • | | • | • | • | • | • | • | | | | • | | N | | Syntron Co. | | • | | | | | | | | | | | | | • | | B, H | | T R W Semiconductors | | • | • | • | | | • | • | • | | | • | • | | | | St | | Texas Instruments Inc. | • | • | • | | | | • | • | • | • | • | • | • | • | • | • | E, St, A, F, N | | Transitron Electronic Corp. | • | • | • | • | | • | • | • | | • | | • | • | • | • | | U | | Trio Laboratories Inc. | | | | | | | | | | | | • | | | | | | | Unitrode Corp. | • | • | | • | • | | • | | | | | • | • | | | | B, C, H, N, S | | Vactec Inc. | | | | | | | | | | | | | | | | • | | | Varian/Bomac Div. | | | | | | | • | • | • | | | | | | | | N, P | | Varo, Inc., Special Products Div. | | • | | • | | | | | | | | | | | | | H, B, D, Df | | Wagner Electric | • | | | | | | | | | | | | | • | | | В | | Western Semiconductor Inc. | • | • | | • | • | | • | | • | | | • | • | • | • | | B, DF | | Westinghouse Electric Corp.,
Semiconductor Div. | | | | | | | | | | | | | | | | | | ### HOT CARRIER DIODES... Negligible charge storage Low leakage, high forward conductance Available in matched pairs and quads Low cost #### ...from HPA The performance specifications and prices in the table below show why the HPA 2900 is ideally suited for commercial applications requiring ultra-fast switching, RF/UHF mixing, detecting and limiting. Call your local HP field engineer or write direct for your data sheet. HP Associates, 620 Page Mill Road, Palo Alto, California 94304. | Typical specifications | | | | | | | | | | | | |--|--------------|----|---------------------------------------|--|--|--|--|--|--|--|--| | Forward Current | | | Breakdown Voltage
V _{BR} | | | | | | | | | | 20 mA min. @ $V_{\rm F}{=}1$ 1.0 mA min. @ $V_{\rm F}{=}0$ | | | 10 V @ I _R =10 μA | | | | | | | | | | Leakage Current | Lifetii
T | me | Price | | | | | | | | | | 100 nA @ V _R =−5.0 V | 120 | ps | 1 to 99, \$3.00
100 to 999, \$2.25 | 1. Diode-Transistor Logic | | | | | | Propaga- | | | | | Power
Diss.
mW | Sumali | Lev | els | Noise | Temp | | | |-----------------|----------------|--|--|---|---|--------------------------------------|---|---|--
---|---|--|---|--|---|---|--| | | Logic Function | Туре | Model | Mfr. | Delay
(ns) | Тур. | Max. | Fan
Typ. | -out
Max. | (/ =
per
gate) | Supply
Voltage
(Valts) | 0,. | 11:1" | Margin
(mV) | | Package
Type | Remarks | | Adders
A | | Half
Half | A51
UC1004B | SI
SPR | 35
40 | | - | - | 5 5 | 40
130 | 5
6,-3 | 1.1 | 2.7 5.8 | 700
500 | 0 to 70 | A, D | | | Binary Elements | | R-S Flip Flop
R-S Flip Flop
R-S Flip Flop
 | RD - 208
RD - 308
RD - 508
NC / PC8
NC / PC12
PC - 13
8200
UC1002B
MC282G
DT / L950
MC850 | RAD
RAD
GI
GI
VAR
SPR
MO
FA
MO | 7
7
7
8
8
8
8
10
14
18
20
20 | | 4 4 4 - 1 2 - 2 | -
-
-
2
- | 7
4
7
5
22
5
4
5
-
12
10 | 20
20
20
200
-
200
100
65
7.5
40 | 5
5
5
12, 4.2
12, 4.2
12, 4.2
6, 3
6, 3
-
5.0
5 | 0.250
0.25
0.25
0
0
0
0.5
0.4
-
0.2 | 4.5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 800
800
800
-
-
-
500
550
600 | -
0+75
-
-
-
-
-
-
-
0 to 75 | D D D A, E E C C, C, P, DIP | Expandable
Expandable
Expandable
MC'RCDT
MC RCDT
TF | | | 1 | Pulse-triggered J-K Flip-Flop J-K Flip Flop Dual J-K Flip Flop Dual J-K Flip Flop Pulse R-S R-S R-S R-S R-S | MC950
ND1003
RD-207
RD-307
RD-321
RD-307
RD-321
RD-507
SW201
SW212
950
RC202T
RC212T | MO
NA
RAD
RAD
RAD
RAD
RAD
SW
SW
SW
RA
RA | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | -
-
-
-
-
-
-
2 | - 2
3 3
 | -
-
-
-
-
-
-
10
10 | 8
4
12
3
8
3
5
12
10
10 | 40
20
95
95
95
24
95
24
95
7
7
24
9.5
9.5 | 5 6 5 5 5 5 5 5 5 6 6 5 6 6 | 0.2
0.2
0.25
0.25
0.45
0.25
0.45
0.25
0.35
0.35 | 5
4.0
3
3
3.3
3.3
3.3
2.0
2.0
5.0 | 750
800
800
800
800
800
800
550
550
600
0.55 | | A, C
D D D D D D A, D D A, C | Mod-DTL And Expand. | | | | Shift Reg. | A09 | SI | 32(0 to 1)
52(1 to 0) | - | - | - | 5 | 54 | 5 | 1.0 | 2.7 | 900 | - | A, D | | | | 2 | Shift-Reg J-K J-K R-S Flip Flop R-S, J-K Clocked R-S, J-K Clocked R-S, J-K Clocked R-S, J-K Clocked R-S, J-K R-S, J-K Clocked R-S, J-K R-S, J-K Dual Rank Dual Rank | A49 WC215 WC225 WC213 BTμ294 MC831 MC831 MC831 MC831 MC831 MC848 MC848 MC941 908 MC941 909 909 909 909 909 909 909 911151 911159 | SI
WH
WH
FA
MO
MO
MO
MO
MO
FA
FA
FA
FA
FA
FA | 32(0-1)
52(1-0)
33
33
36
40
40
40
40
40
40
40
40
40
40
40
40
40 | 2 | 3 2 | 111 | 5
12
6
12
12
7
7
7
12
11
11
11
9
11
11
9
12
7
7
7
7
7
7
7
7
7
12
11
11
11
11
11
11
11
11
11
11
11
11 | 54
60
72
60
45
20
20
35
45
45
47
160
160
160
160
180
140 | 5.0
5
5
5
5
5
5
4.5-5.5
4.5-5.5
5
4.5-5.5
5
4.5-5.5
5
4.5-5.5 | 1.1
1.0
1.0
1.0
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0 | 2.7
2.0
2.0
2.0
5
5
5
5
5
5
5
5
5
5
5
4
4
4.3
3.1
4.0
4.3 | 700 600 600 600 500 - 500 - 500 1000 1000 1000 1000 1 | 0 to 70 0 to 75 | A. D D A. C C D D D D D D D D D D D D D D D D D | SSD,RA,ITT,S
Modified DTL
Mod-DTL
Mod-DTL
Modified DTL
Modified DTL
Modified DTL
Modified DTL | | | 3 | Shift Reg. Shift Reg. R-S J-K R-S J-K R-S J-K Clocked J-K/R-S Pulse Triggered J-K/R-S Pulse Triggered J-K/R-S R-S, J-K | A03 A43 S1948 S19480 SW931 SW948 SN15850 SN15848 SN15850 DT;µ1931 DT;µ1945 MC209 MC209 MC245 PL931 S1931D S1945 S1931D S1945 SN15845 | SI SI SI SI SI SI TI TI TI TA FA MO MO PH SI SI SI TI | 40(0 to 1)
60(1 to 0)
40(0 - 1)
60(1 - 0)
40
40
40
40
40
45
45
45
50
50
50
50
50
50
50
50
50
5 | 2 | -
2
2
2
-
-
-
2
2
2
2
2
-
-
-
2
2
2
2 | - 1 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5
12
12
10
-
9
8
9
8
7
9
8
12
10
7
7
7
7
7
9
9 | 40
40
45
45
45
20
48
35
-
20
35
16
35
20
20
20
20
20
35
35
20
35
35
20
30
30
30
30
30
30
30
30
30
30
30
30
30 | 4-6
4.5 - 5.5
4.5 - 5.5
4.5 - 5.5
5.0
8, -8
5 | - | 2.7
5.0
5.0
3.0
2.6
-
-
5
5
5
5
4.0
5
5
5 | 700 600 600 1000 11000 750 750 750 500 500 500 600 750 750 750 | - 0 to 70 -25 to +125 0 to 75 0 - 75 0 to 75 0 to 75 0 to 75 - 0 to 75 - 0 to 75 - 75 0 to 75 0 -75 0 -75 0 -75 | A, D A, D D A DIP D C C A, C C A, C C D D D D D D D D D D D D | ITT, SY
SSD,RA,ITT,S
Modified DTL
Modified DTL | | | | J-K/R-S
J-K/R-S
R-S-J-K Clocked
Clocked R-S-J-K
Dual J-K
Dual J-K
Dual J-K
Dual J-K
J-K
J-K | SN15931
SN15945
SW945
945
909351
909356
909359
909956
WM503
SE125
MC259 | TI
TI
SW
SW
FA
FA
FA
WH
SIG
MO | 50
50
50
50
50
50
50
50
50
†20MHz | 2 | -
-
2
-
-
-
-
-
- | 9
12
-
-
-
10
- | 7
10
-
12
12
10
12
-
8
8 | 20
30
42
35
140
160
160
140
47
40 | 4.5-5.5
4.5-5.5
5
4.5-5.5
4.5 | -
0.4
0.2
0.4
0.4
0.5 | -
2.6
5.0
3.1
3.1
3.1
1.8
3.9 | 750
750
1000
1000
1000
1000
1000
1000
500
1000
500 | | CGGGG C | † ft | | | | | | | Propaga- | For | n-in | For | -out | Power
Diss.
mW | Supply | Lev
(Vo | els | Naise | Temp | | | |-----------------------|----------------
--|--|---|--|---|--------------------------------|---|--|--|--|--|---|--|--------------------------------|---|---| | 1 | Logic Function | Туре | Model | Mfr. | Delay
(ns) | Тур. | Max. | Тур. | Max. | per
gote) | Voltage
(Volts) | <u> </u> | "1" | Margin
(mV) | Range
(C) | Package
Type | Remarks | | inary Elements
B | 4 | - Single Single Single Phase J - K J - K Dual J - K J - K J - K J - K Dual J - K Coult C | MC260
CS704
CS729
SE124
SN5301
SN5301
SN5302
SN5304
SN7301
SN7300
SN7300
SN7300
SN7300
SN7300
SN7301
SN7302
SN7304
311BG
311CJ
WM213
RC213T
SP629 | MO
SIG
SIG
SIG
TI
TI
TI
TI
TI
TI
AL
AL
WH
RA
SIG | 60
60
60
60
60
60
60
60
60
60
60
60
60
6 | | | | 8
7
7
8
10
10
10
10
10
10
10
6
6
6
6 | 16
20
30
16
27
27
27
27
27
27/ff
120
120
120
35
40
40 | 4
+ 4 - 2
+ 4
+ 4, -2
3 - 4
3 4
12
12
12
6
6
6
4,5 | 4
0.4
0.4
0.4
-
-
-
1200
1200
1200
1.0
0.45 | .3
3.9
3.9
3.9
 | 500
1000
1000
1000
300
300
300
300
-
300
-
4800
4800
4800
550
-
1000 | 0 to 75 | A. C
F A, C. F
D D
D D
D D
G G, DIP
A. C, D
G A, D | Modified DTL
Preset & CIr
Preset & CIr
Preset & CIr
Preset & CIr
Preset & CIr
Mtt, KA | | | | 8-input
JK
J-K
J-K
J-K | C02203
RC203T
RC215T
SP620
WM215
NC PC19
WM225G | RCA
RA
RA
SIG
WH
GI
WH | 150
†5MHz
†5MHz
5 MHz
†5MHz | | 8 | 4 9 - | 5
-
5
9
5
10 | 15
75
56
28
45
200
55 | 5
6
6
4.5
6.0 | 0.1
-
0.45
1.0
0
1.0 | 3.4
-
3.9
2.0
5
2.0 | 12
0.55
0.55
1000
550
-
550 | -
-
15 to 55
0 to 125 | F
A. D
A. D
G
A. C. D
A. E
D | †clock rate
†clock rate
†clock rate
†fT
RCT | | rivers / Buffers
C | 1 | Dual 4-input Dual 4-input Dual 4-input Hex* 3-input Dual Dual Dual Dual 4-input 3-input Dual 4-input | RD - 209
RD - 309
RD - 509
RD - 509
RD - 233
8213
SE155
MC832 P
WM2343
MC932
PL 932
MC932
PL 932
S1932
S1932
CS715
SE157
SP659
729 | RAD
RAD
RAD
SPR
VAR
SIG
MO
WH
FA
MO
PH
SI
SIG
SIG
SIG
SIG
SIG
SIG
SIG
SIG
SIG | 7
7
7
7
12
14
15
16
18
20
25
20
20
20
20
20
20
20
20
20
20
20
20
20 | 5 | 4 4 4 - 15 4 4 4 4 4 2 3 3 3 - | 111111111111111111111111111111111111111 | 12
8
12
8
15
10
19
19
25
25
25
25
25
25
25
25
19
19
19 | 22
22
22
10
55
30
30
30
30
30
30
30
30
30
30
30
30
30 | + 4
+ 4
5
6
5
5
5
5
5
5
5
5
7
7
8
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9 | 0.25
0.25
0.25
0.35
0.4
0.5
0.4
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.4
0.4
0.4
0.4
0.4
0.4 | 3
3
3
3
5
5.8
3.5
3.9
5
5
5
4.0
5
5
3.9
3.9
5
5
5
5
5
6
7
7
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7 | 800
800
800
-
500
-
1000
1000
-
550
750
500
750
1000
1000
1000 | 0+75
 | D D D D D D D D D D D D D D D D D D D | Expandable Expandable Expandable "Node inputs TF Mod-DTL, SSD, RA,ITT,S Modified DTL Modified DTL | | | | Dual 4-input
Dual 4-input
Dual 4-input
Dual 4-input | SW932
932
SW944
SN15832 | SW
SW
SW
TI | 25
25
25
25
25 | 100
4
100 | 1111 | 25
30
27 | mA
-
-
20 | 25
27
20
15/ | 4-6
5
4-6
4.5 - 5.5 | 0.4
0.2
0.4
- | 2.6
5.0
2.6 | 1000
1000
1000
750 | -
0-75 | A, C
D, DIP | Expandable
Expandable
Expandable | | | 2 | Single Dual 3-input Dual 3-input Dual 5-input Dual 5-input Dual 5-input Dual input Dual output | SN15932
SN535
SN7350
RC210T
RC210G
ND1002
WM210
SE750
WC210
WC220
MC205
MC205
MC205
MC205
MC205
MC205
MC205
MC301
SN346A | TI
TI
RA
NA
WH
SIG
WH
MO
MO
AL
AL
AL
TI | 25
30
30
32
35
37
40
40
40
55
55
60
60
60
850 | -
-
-
3
-
-
2
-
5
5
5 | 2 3 2 3 3 | 111 20 | 20
10
10
-
22
20
16
16
20
20
6
6
6
6 | 15/
9/
9/ 9 inv
9.5/
20
24
36
40
40
50
300
300
300
25
160 | 6
6
6
+4,-2
5.7-6.3
5.7-6.3
6, -6
4
12
12 | 1.0
0.6
-
1200
1200 | 4.0
2.0
3-9
2.0
2.0
2.5
12000
12000 | 4800 | | D D D J A D A C A C A C A C G G G D I P D D | Modified DTL RA Expandable 1000 ohm Load Minuteman Minuteman Type | | | | Dual
Dual | A20
A60 | SI | - | - | 4 | 2 | - | 7 | 5 | 1.0 | 2.7 | 700 | 0 to 70 | A, D
A, D | | | D D | AND I | 5-input | MC203
A44
SWA04
SVA04
B207
B208
B209
B210
MC1111
MC1112
MC1113
M31BG
331CG
331CJ | MO
SI
SW
TI
VAR
VAR
VAR
MO
MO
MO
AL
AL | 4
4
4
5
10
10
10
10
15
15
15
15
60
60
60 | 6

3-4
2,2,2
2, 1
8
5
5 | 1,1 | 66666 | 4
10
10
10
10
- | 100
-
-
10
-
-
-
200
300
300
100
15
15 | 3-4
6
6
6
6
10
10
10
10
12
12 | | 2.0
-
-
-
-
-
12000
12000 | 4800 | 0-70
 | A, C
A, D
-
D
-
-
-
A
A
A
A
G
G
G, DIP | Diode Array T.F., Expand. T.F., Expand. T.F., Expand. T.F., Expand. | Temperature range is -55 to 125° C unless otherwise stated. | | | | | | Propaga- | Fa | n-in | Fon | -out | Power
Diss.
mW | Supply | Lev
(Vo | els | Naise | Temp | | | |------------|----------------
---|--|---|--|---|---|--|--|---|--|--|---|--|---|---|--| | | Logic Function | Туре | Madel | Mfr. | Delay
(ns) | Typ. | | Тур. | Max. | per
gote) | Voltage
(Valts) | _ | arj. | Margin
(mV) | Range
(°C) | Package
Type | Remarks | | Gates
D | 2 | Dual 4-input G-input Dual 3-input Dual 3-input Dual 4-input | DTµL933 MC215 MC253 MC265 CS705 MC833 MC833P MC933 PL 933 RD211 RD511 S1933 S1933D CS709 | FA MO MO SIG MO MO MO PH RAD RAD SI SI SIG | | | 4 - 3 - 4 4 4 4 3 | 1 111111111111 | 6 | 5 1 1 1 1 1 1 1 1 | -
-
+4,2
-
-
3.6
-
- | -
4
4
4
0.4
-
-
0.2 | -
.3
.3
.3
3.9
-
-
4.0 | 1000 | 0 to 75
0 to 75
0 to 75
0 to 75
 | A, C
A, C
A, C
A, C
A, C
G,P,DIP
C
C
D
D
D
D
D
D | Diode Array,
SSD,ITT,RA,S
Modified DTL
Mod/DTL
Modified DTL
Expandable
Expandable
Diode Array | | | 3 | Quad Single 6 input Dual Quad 2-input Dual 4-input Quad 2-input Dual 4-input Dual 4-input Dual 4 input Dual 4 input Dual 4 input Dual 5 input Dual 5 input Dual 7 input Dual 7 input | CS731
CS732
SE105
SE106
SP631
UC1005B
UC1006B
SW933
727
933
SN15833
SN15833
WM217
WM227 | SIG
SIG
SIG
SIG
SPR
SPR
SW
SW
TI
TI
WH | | -
-
-
8
5
4
-
-
7
11 | 2
12
6
5
2
-
-
2
4
-
7
11 | | 1 1 1 1 1 4 4 4 | | -
-
-
4.5
-
-
4.6
-
-
4.5 - 5.5
4.5 - 5.5 | | 3.9 | -
-
1000
-
-
-
-
750
750 | 15 to 55 | F F A. C F G - A. C A. C D. D. DIP A. C. D | Diode array
Diode array
RA
RA | | | AND/OR | 5-input
Dual | SN 532
SN 534 | TI
TI | 5 5 | - | - | | 4 | 10
10/ | 3-4 | - | - | 300
300 | - | D
D | Modified DTL
Modified DTL | | | NAND | - | NC-11
PC-11 | GI
GI | 8 | - | 6 | - | 5 5 | 60
60 | 12, 4.2,
12, 4.2, | 0 | 5 | - | _ | Ā
E | MC RCDT
MC RCDT | | | | Dual | PC-15 | GI | 8 | - | 3+3 | - 1 | 5 | 60 | -3
12, 4.2
-3 | 0 | 5 | - | - | E | MC RCDT | | | 5 | Dual Dual Quad 2-input Dual Dual Triple 8-input Triple 3-input Dual 4-input Dual Sextuple Dual 4-input Quad 2-input | 8214
SWA05
CA2201
UC1001B
SW70B
SW930
SWA01
SWA01
SWA02
WM224G
WM234G
WM241G
WM261G
WM296G
PL936
SW101
SW102 | VAR
SW
RCA
SPR
SW
SW
SW
WH
WH
WH
WH
PH
PH
SW | 10
12
15
15
15
17
18
18
19
19
19
19
20
20
20
20 | 5 - 20 4 4 4 3 | 15
4
8
15
10
10
4
4
-
-
-
-
2
-
- | 2
-
8
10
-
-
-
-
-
5
5 | 4
10
24
4
15
8
15
16
16
16
16
16
16
17
7 | 50
15
9.2
30
15
5
7
7
59
20
59
39
31
117
4
4
6
6 | 6.3.3
5.5
6.3
4 to 6
4 to 6
5.5
6.6
6.6
6.3.6
6.3.6
7.4, 2
7.4, 2 | 0.8
0.1
0.4
0.3
0.3
0.8
0.8
2
2
2
2
2
0.2
0.2
0.6
0.6 | 3.5
4.8
3.4
5.0
3.0
2.5
2.5
1
1
1
1
1,0
4.0
2.0
2.0 | 900
1200
500
1000
1000
900
550
550
550
550
550
500
500 | | A A A A D D D D D D C C A, E | Expandable And Expand. Expandable Expandable And Expand. And Expand. | | | 6 | Dual Dual Dual Dual Dual Dual Dual Dual 4-input Triple 3-input Dual Triple Dual Triple Dual Dual Dual 4-input Dual Dual 4-input Dual Dual Dual 4-input | SW115
SW2014
SW211
SW221
SW224
SW231
SW930
SW936
SW946
SW962
WM201
WM206
WM211
WM206
WM211
WM216
CD2202
RC223
RC224
RC224
SW15830
SN15844 | SW
SW
SW
SW
SW
SW
WH
WH
WH
WH
RCA
RA
TI | 20
20
20
20
20
20
20
20
20
20
23
23
23
23
23
23
23
25
25
25
25 | | 2 3 4 4 3 3 3 4 4 2 8 8 | 5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | 7
11
11
11
11
11
11
11
11
11
11
11
11
11 | 6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7 | +42
66
66
66
66
46
46
46
60
60
60
60
60
60
60
60
60
60
60
60
60 | | 2.0
2.0
2.0
2.0
2.0
2.0
2.6
2.6
2.6
2.0
2.0
2.0
2.0
4.0
4.0 | 500
550
550
550
550
550
1000
1000
550
55 | | A, E, D
A, D
A, D
A, D
A, C, D
D
A, D
D
A, D
D
D, DIP
D, DIP
D, DIP | And Expand. And Expand. And Expand. And Expand. Expandable RA Exp. RA RA RA RA RA RA | | | 7 | Quad 2 - input
Triple 3 - input
Dual 4 - input
Quad 2 - input
Triple 3 - input
Triple
Dual 4 - input
Triple
Dual 3 - input
Single 8 - input | SN15846
SN15862
SN15930
SN15944
SN15946
SN15962
WC206
WC211
WC216
WC221
WC224 | TI
TI
TI
TI
TI
WH
WH
WH | 25
25
25
25
25
25
25
25
25
25
25
25
25
2 | 1111111111 | -
-
-
-
3
4
3
3 | 1111111111 | 8
8
8
8
8
8
8
8 | 5/
5/
5/
15/
5/
24
16
24
16
8 | 4.5 - 5.5
4.5 - 5.5
4.5 - 5.5
4.5 - 5.5
4.5 - 5.5
4.5 - 5.5
5.7 - 6.3
5.7 - 6.3
5.7 - 6.3
5.7 - 6.3 | -
-
-
1.0
1.0
1.0 | -
-
-
-
2.0
2.0
2.0
2.0
2.0 | 750
750
750
750
750
750
750
600
600
600
600 | 0 - 75
0 to 75
-
-
0 to 75
0 to 75
0 to 75
0 to 75
0 to 75
0 to 75 | D, DIP
D, J, DIP
D
D
D
D
A
D
A
A, D | Expandable Expandable Expandable | ## TRY TI TTL IC's FROM EW...ASAP! Series 74 TTL devices from Texas Instruments offer *more* performance, *more* circuits and *more* economy than other types of digital ICs presently available. And now you can get them FAST — from the big stocks at EW. TTL circuits provide the optimum balance of performance for most applications. Key benefits: Speed (propagation delay — 13 nsec, flip-flop speeds — 30-40 nsec); $Noise\ immunity$ (D-C noise margin — 400 mV worse case, one volt typical); Economy (Because of higher complexity level, Series 74 TTL devices offer outstanding value on a cost-per-function basis. You'll find Electronic Wholesalers the BEST place to buy TI TTL circuits and the other semiconductors you need. Call us...ASAP! "SERVING THE ENTIRE SOUTHEASTERN U.S." #### **ELECTRONIC WHOLESALERS INC.** WASHINGTON, D. C. 2345 Sherman Ave., N.W. Phone 202—483-5200 BALTIMORE, MARYLAND 3200 Wilkens Avenue Phone 301—646-3600 WINSTON-SALEM, N. C. 938 Burke Street Phone 919—725-8711 MIAMI, FLORIDA 9390 N.W. 27th Avenue Phone 305—696 1620 ORLANDO, FLORIDA 345 Graham Avenue Phone 305—841-1550 | | | | | | Propaga- | 2 | n-In | | | Pawer
Diss.
mW | Supply | Lev
(Va | els | Naise | Temp | | | |--------|----------------|---|---|---|--
---|---|--|---|--|---|--|--|---|---|--|--| | | Logic Function | Туре | Madel | Mfr. | Delay
(ns) | Typ. | | Typ. | -aut
Max. | (/=
per
gate) | Voltage
(Volts) | _ | 1 | Margin
(mV) | Range
(°C) | Package
Type | Remarks | | Gate D | 8 | Triple Triple Dual 4-input Single 8-input Triple 3-input Dual 4-input Quad 2-input Dual 4-input Quad 2-input Hex Triple 3-input Dual 4-input Dual 4-input Dual 3-input Dual 3-input Dual 3-input Dual 3-input Dual 3-input Dual 4-input Dual 4-input Dual 4-input Dual 4-input Triple 3-input | WC226
WC231
WC234
WC234
WC241
WC246
WC266
WC266
WC296
WC296
WM236G
WM241G
WM261
WM221
RC201T
RC211T
RC211T
RC221T
RC221T
RC221T
RC221T
RC221T | WH
WH
WH
WH
WH
WH
WH
WH
WH
WH
WH
WH
WH
SIG
SIG
SIG | 25
25
25
25
25
25
25
25
25
25
25
25
25
2 | | 3 - 4 8 8 3 4 2 2 4 2 1 1 4 6 8 6 6 4 3 | | 8
11
8
8
8
8
8
8
8
8
8
8
8
8
11
11
11
11 | 33
33
31
16
111
33
22
22
44
48
66
33
22
22
66
7
7
7
7
112.2
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5 | 6
5.7-6.3
5.7-6.3
5.7-6.3
5.7-6.3
5.7-6.3
5.7-6.3
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6 | 1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0 | 2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0 | 600
600
600
600
600
600
600
600
600
550
55 | 0 to 75 15 to 55 15 to 55 | D D D D D D D D D D D D D D D D D D D | Expandable Expandable Expandable Expandable Expandable Expandable RA Expandable RA RA RA | | | 9 | Quad 2-input Quad 2-input Sextuple Triple 3-input 4-input 6-input 8-input Quad 2-input Quad 2-input Quad 2-input Quad 2-input Quad 2-input Dual 5-input Dual 5-input Dual 5-input Quad 2-input 4-input Dual 4-input Dual 4-input | SP680
WM246G
WM286G
RC206G
RC206G
RC206T
RC204T
RC214T
321EG
321CG
321CG
322CG
322CG
322CG
323CG
323CG
323CG
CA2200
CD2204 | SIG
WH
WH
RA
RA
RA
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL | 30
30
30
32
32
35
35
35
60
60
60
60
60
60
60 | -
-
-
-
-
2
2
2
2
5
5
5
5
2
2
2
2
-
- | 2 8 20 | -
-
-
-
-
-
-
-
-
-
-
-
-
- | 5
11
11
 | 15
32
48
9.5
9.5
9.5
9.5
9.5
96
96
98
98
15
15
15
4.6 | 4.5
6
6
6
6
6
6
6
6
12
12
12
12
12
12
12
12
12
12
12
12
12 | 1200
1200
1200
1200
1200
1200
1200 | 3.9
1
1
-
-
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000 | 4800
4800
4800
4800
4800
4800
4800 | 15 to 55 | G
D
D
D
D
D
D
A
A
D
A
A
D
G
G
G
G
G
G
G | | | | NAND/NOR | Triple 3 - input Quad 2 - input Dual 4 - input Triple 3 - input Quad 2 - input Quad 2 - input Dual 4 - input Quad 2 - input Dual 4 - input Quad 2 - input Dual 4 - input Dual 4 - input Dual 4 - input Dual 1 - input Dual 4 | RD - 205
RD - 206
RD - 210
RD - 306
RD - 310
RD - 306
RD - 310
RD - 506
RD - 510
µL 927
A10
A12
A45
A50
A52
UC1001B
MC281G
MC284G
A01
A02
A04
A04
A05
A05
A05
A13
A45
A50
A50
A50
A14
A51
A51
A51
A51
A51
A51
A51
A51
A51
A51 | RAD
RAD
RAD
RAD
RAD
RAD
RAD
SI
SI
SI
SI
SI
SI
SI
SI
SI
SI
SI
SI
SI | 7
7
7
7
7
7
7
7
7
7
7
7
10
12
12
12
12
12
12
12
12
12
12
18
18
18
18
18
18 | | 3 2 4 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 8 8 8 5 5 5 5 8 8 8 8 5 5 10 10 5 5 11 10 5 5 15 5 5 5 5 5 5 | 10
10
10
10
10
10
10
10
10
15
15
15
15
15
7,5
7,7
7 | 55555555555555555555555555555555555555 | 1.0
1.1
1.1
0.4
-
1.0
1.0 | 5
5
5
4.5
4.5
4.5
4.5
5
5
5
5
0.844
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7 | 800
800
800
800
800
800
800
800
900
900 | | D D D D D D D D D D D D D D D D D D D | Expandable Expandable SSD Line Driver Expandable Expandable W/expander | | | 11 | Quad Single 4-input Single 4-input Single 4-input Dual 4-input Quad Quad Dual Dual Dual Dual Dual Dual Dual Dual | A15
A41
A42
A46
A47
A53
A54
A55
SE111
SE113
CS701
CS701
CS721
CS727
CS727 | SI
SI
SI
SI
SIG
SIG
SIG
SIG
SIG
SIG
SIG | 18 18 18 18 18 18 19 19 20 20 20 20 20 20 20 20 20 | | 2
4
4
4
4
2
2
4
3
3
-2
2
2
2
2
3
2
5
5
3
2
5
3
2
5
3
2
5
3
2
5
3
2
5
3
2
5
3
2
5
3
2
5
3
2
5
3
2
5
3
2
5
3
2
5
3
2
5
3
2
5
3
3
2
5
3
2
5
3
3
2
5
3
3
2
5
3
3
2
5
3
3
2
5
3
3
2
5
3
3
2
5
3
3
2
5
3
3
2
5
3
2
5
3
3
2
5
3
2
5
3
2
5
3
2
5
3
2
5
3
2
5
3
2
5
3
3
2
5
3
2
5
3
2
5
3
2
5
3
2
5
3
2
5
3
2
5
3
2
5
3
2
5
3
2
5
3
2
2
5
3
2
5
3
2
5
3
2
5
3
2
5
3
2
5
3
2
5
3
2
5
3
3
2
2
5
3
2
5
3
2
5
3
3
2
5
3
2
5
3
3
2
5
3
2
3
3
2
3
2 | | 10
15
15
5
5
5
5
10
19
19
6
6
6
19
6 | 7
7
7
7
7
7
7
7
7
2
4
2
4
10
10
30
10
10
10
10
2
4 | +4
+4,-2
+4-2
+4,-2
+4
+4
+4 | 1.1
1.1
0.4
0.4
0.4
0.4
0.4
0.4 | 2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
3.9
3.9
3.9
3.9
3.9
3.9
3.9
3.9 | 900
700
700
700
700
700
700
700
700
1000
1000
1000
1000
1000
1000
1000
1000 | - 0 to 70 | D
A. D
A. D
A. D
A. D
D
F
A A. C
A F
F
F | W∕expander | | | | | | | Propaga - | Fo | n-in | For | -out | Power
Diss.
mW
(/= | Supply | Lev
(Vo | els | Noise | Temp | | | |------------|----------------|--
--|---|---|-------------|---|--------------|---------------------------|--|--|--|---|---|--|---|---| | | Logic Function | Туре | Madel | Mfr. | Delay
(ns) | Тур. | | Тур. | Max. | per
gate) | Voltage | 0,, | _ | Margin
(mV) | Range
(°C) | Package
Type | Remarks | | Gates
D | | Triple
Quad
Dual 4-input
Triple 3-input
Dual 4-input | SE170
SE180
961
963
DT _I ,L930 | SIG
SIG
SW
SW
FA | 20
20
20
20
20
25 | 4 | 3 2 - 3 4 | 9 9 - | 6 6 - 8 | 10
10
6
6
5 | +4
+4
5
5 | 0.4
0.4
0.2
0.2
0.2 | 3.9
3.9
5.0
5.0
5.0 | 1000
1000
1000
1000
750 | | F
F
A, C
A, C
A, C | Expandable | | | | Quad | DTµL946 | FA | 25 | - | 2 | - | 8 | 5 | 5 | 0.2 | 5 | 750 | - | A, C | SSD,RA,SY,IT
Expandable,
SSD,RA,ITT,S | | | | Triple | DT _I L962 | FA | 25 | - | 3 | - | 8 | 5 | 5 | 0.2 | 5 | 750 | - | A, C | Expandable,
SSD,RA,ITT,S | | | 12 | Dual 4-input | MC830 | MO | 25 | - | - | - | 8 | 5 | 5 | 0.2 | 5 | 500 | 0 to 75 | A, C | Modified DTL
Expandable | | | 12 | Dual 4-input
Quad 2-input | MC830P
MC846 | MO
MO | 25
25 | - | - | - | 8 | 5 | 5 | 0.2 | 5 | 500 | 0 to 75
0 to 75 | G,P,DIP
C | Mod-DTL
Modified DTL | | | | Quad 2-input
Triple 3-input | MC846P
MC862 | MO
MO | 25
25 | - | - | - | 8 | 5 | 5 5 | 0.2 | 5 5 | 500 | 0 to 75
0 to 75 | G,P,DIP
C | Expandable
Mod-DTL,
Modified DTL,
Expandable | | | | Triple 3-input
Dual 4-input | MC862P
MC930 | MO
MO | 25
25 | - | - | - | 8 | 5 5 | 5 | 0.2 | 5 | 500 | 0 to 75 | G,P,DIP
A, C | Mod-DTL,
Modified DTL | | | | Quad 2-input | MC946 | MO | 25 | - | - | - | 8 | 5 | 5 | 0.2 | 5 | 500 | - | С | Expandable
Modified DTL | | | | Triple 3-input | MC962 | МО | 25 | - | - | - | 8 | 5 | 5 | 0.2 | 5 | 500 | - | С | Expandable
Modified DTL,
Expandable | | | 13 | Dual 4-input Quad Quad Quad Triple Triple Single Single Dual Quad 2-input Quad 2-input Quad 2-input Triple 3-input Dual Dual Dual Dual Dual Dual Dual Dual | \$1930
\$1930D
\$1946
\$1946
\$1962
\$1962
\$1962
\$1962
\$1962
\$1962
\$100
\$1952
\$44
949
962
\$4201
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202
\$4202 |
SI
SI
SI
SI
SI
SI
SIG
SIG
SIG
SW
SW
SW
SW
MO
MO
MO
MO
MO
MO
MO | 25
25
25
25
25
25
25
25
25
25
25
25
25
2 | 4 4 4 3 2-2 | 8 8 8 2 2 2 3 3 3 4 4 3 2 2 2 2 3 3 - 2 2 3 3 - 3 3 3 3 3 3 3 | 10 32 10 9 9 | 8888885555 | 5
5
5
5
5
5
5
6
6
22
6
6
6
6
12
11
2
30
6
6
12
11
12
13
16
16
16
17
17
18
18
18
18
18
18
18
18
18
18
18
18
18 | 55555555555555555555555555555555555555 | 0.2
0.2
0.2
0.2
0.2
0.2
0.4
0.4
0.4
0.2
0.2
0.2
0.2
0.2
0.6
0.6
4
4
4
4
4
4 | 5.0
5.0
5.5
5.5
5.3.9
3.9
3.9
5.0
6.0
5.0
5.0
5.0
2.5
2.5
2.5
3.3
3.3
3.3
2.5
2.5
3.3 | 750
750
750
750
750
750
750
1000
1000
10 | 0 to 75
0 to 75
0 to 75
-
-
-
-
-
-
-
-
-
-
-
-
- | DDDDDDAA.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A. | Expandable
Expandable | | | | Dual 3-input
Dual 3-input
Dual 3-input
5-input
Dual 3-input
Dual 5-input | MC258
MC262
MC263
SN531
SN533
SN5311 | MO
MO
TI
TI
TI | 30
30
30
30
30
30 | 111111 | 2-3
3-3
3-3
-
- | 11111 | 10 | 10, 10
10/
gate | 4
4
3 to 4
3 to 4
3 - 4 | 4 4 | .3 .3 . | 500
500
500
300
300
300 | 0 to 75
0 to 75
0 to 75
-
- | A, C
A, C
A, C
D
D | Modified DTL
Modified DTL
Modified DTL | | | | Triple 3 - input | SN5331 | TI | 30 | - | - | - | 10 | 10/
gate | 3-4 | - | - | 300 | - | D | Modified DTL | | | | Quad 2-input
5-input | SN5360
SN7310 | TI
TI | 30 | _ | | - | 10 | gate
10 | 3-4 | | - | 300 | 0-70 | D | Modified DTL
Expandable | | | 14 | Dual 5-input | SN7311 | Ti | 30 | - | - | - | 10 | 10/
gate | 3-4 | - | - | - | 0-70 | 0 | CAPAIIUADIC | | | | Dual 3-input | SN7330 | TI | 30 | - | - | - | 10 | 10/
gate | 3-4 | - | - | - | 0-70 | D | | | | | Triple 3-input | SN7331
SN7360 | TI | 30 | - | - | - | 10 | 10/
gate | 3-4 | - | - | - | 0-70 | D | | | | | Quad 2-input Single 3-input Dual Dual Dual 3-input Dual 4-input | SE110
MC254
S1944
S1944D
MC650G
MC651F | SIG
MO
SI
SI
MO | 35
40
40
40
50
50 | 3 - | 3 - 4 4 4 5 | 111111 | 20
20
27
27
5 | 10/
gate
36
30
20
20
180
180 | 3-4
+ 4, -2
4
-
10
10 | -
0.4 °
4
0.2
0.2
9.7
9.7 | 3.9
.3
5
.70 | 1000
500
750
750
5V
5V | 0-70
 | A, C
A, C
D
D
A | Modified DTL
Modified DTL | | | NOR | - | NC-10 | GI | 8 | - | 4 | - | 5 | 170 | 12, 4.2, | | 5 | - | - | A | MC RCDT | | | | - | PC-10 | GI | 8 | - | 6 | - | 15 | 170 | 12, 4.2, | 0 | 5 | - | - | E | MC RCDT | | | 15 | Dual | PC-14 | GI | 8 | - | 3+3 | - | 5 | 170 | 12, 4.2,
-3 | 0 | 5 | - | - | E | MC RCDT | | | | –
Dual 3-input | 8204
999552 | VAR
FA | 10-15
17 | - | 9 | 3 | 4 16 | 100
200 | 6.3 | 0.5
0.25 | 3.5
0.85 | 300 | 0 to 1000 | | TF
Buffer | | | Exclusive - OR | Dual 4-input | ND1006
DT _I L944
MC204 | NA
FA
MO | 35
40
40 | -
-
3 | 3 4 | 10 | -
27
20 | 20
20
40 | 6
5.0
6, -6 | 0.2
0.2
0.6 | 4.0
5
2.5 | 750
750
500 | | A, C
A, C | SSD,RA,ITT,S | Temperature range is -55 to $125^{\circ}\mathrm{C}$ unless otherwise stated. | | | | | | Propaga- | Fa | n-im | Fan | -au1 | Power
Diss.
mW
(/= | Supply | Lev
(Vol | els | Naise | Temp | | | |----------------------|----------------|--|---|---|---|----------------------------|-------------------------|---------|--|--|--|--|--|--|---|--|---| | | Logic Function | Туре | Model | Mfr. | Delay
(ns) | Тур. | Max. | Typ. | Max. | per
gate) | Voltage
(Volts) | 0 | olo. | Margin
(mV) | Range
(°C) | Package
Type | Remarks | | Gates
D | Exclusive-OR | Dual 4-input
Dual 4-input
Dual 4-input
Dual
Dual
Dual
Dual
Dual | MC844
MC844P
MC944
341BG
341CG
341CJ
SN5370
SN7370 | MO
MO
AL
AL
TI
TI | 40
40
40
60
60
60
90 | -
-
4
4
4
- | 1111111 | 6 | 27
27
27
6
-
6
10 | 20
20
20
70
70
70
70
20/
20/ | 5
5
5
12
12
12
12
3-4
3-4 | 1200 | 5
5
5
12000
12000
12000
- | 500
-
500
4800
4800
4800
300 | 0 to 75
0 to 75
-
0 to +100
0 to +70
-
0-70 | A, C
G,P.DIP
A, C
G
G, DIP
D | Modified DTL
Mod-DTL
Modified DTL
Modified DTL | | Gate Expanders
E | | | RC226
RC246
A04 | RA
RA
SI | 2 2 4 | 2,3 | 6
6
6 | | - | | - | -
-
- | | - | - | -
-
A, D | Diode Array | | lmerface
F | | Input
Input
Input
Output
Output
Output | 361 BG
361 CG
361 CJ
362 BG
362 CG
362 CJ | AL
AL
AL
AL
AL | 30
30
30
11
11
30 | 1
1
1
1
1 | 111111 | 111111 | 8 8 6 6 6 | 50
50
50
150
150
150 | 12
12
12
12
12
12
12 | 1200
1200
1200
1200 | 12000
12000
12000
12000
12000
12000
12000 | 4800
4800
4800
4800
4800
4800 | - 0 to +100
0 to +70
- 0 to +100
0 to +70 | G, C
G, C
G, C
G, C
G, DIP | Dip | | Inverter
G | | Hex
Hex
Hex
Hex*
Hex
Hex* | RD-220
RD-234
RD-320
RD-334
RD-520
RD-534
RD-223 | RAD
RAD
RAD
RAD
RAD
RAD
RAD | 7
7
7
7
7
7
7 | 1111111 | $\frac{1}{\frac{1}{1}}$ | 1111111 | 8
8
5
5
8
8 | 10
10
10
10
10
10 | 5.0
5.0
5.0
5.0
5.0
5.0
5.0 | 0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.55 | 4.5
4.5
4.5
4.5
4.5
4.5
*35 | 800
-
800
-
800
-
800 |
-
-
0-75
0 to +75 | 0 0 0 0 0 | *Node inputs *Node inputs *Node inputs *Output break | | | | Quad
Hex Inverter
Hex Inverter
Hex
Hex
Hex
Hex
Dual | SE181
937
936
993751
993759
993651
993659
MC1115 | SIG
SW
SW
FA
FA
FA
MO | 20
20
25
30
30
35
35
Toff=45
Ton=20 | | 1 1 1 | 9 10 | 6
-
7
7
8
8 | 20
6
6
150
160
90
100
250 | + 4
5
5
4.5-5.5
5
4.5-5.5
5 | 0.4
0.2
0.2
0.4
0.5
0.4
0.45 | 3.9
5.0
5.0
3.8
4.3
2.6
2.6 | 1000
1000
1000
1000
1000
1000
1000 | -
-
0 tō +75
-
0 to +75 | A A, C A, C C, G C, G C, G A | | | Logic Amplifier
H | | - | 8201
8202 | VAR
VAR | 10 | 1 2 | - | 4 8 | - | 50
100 | 6, 3, -3
6, 3, -3 | 0.5
0.5 | 3.5
3.5 | | _ | - | TF
TF | | Multivibrators
 | | Single-shot
Single - shot
Monostable
2-input
Monostable | NC PC16
PC-18
728
DT _µ L951
MC851 | GI
GI
SW
FA
MO | 8
8
24
25
25 | | 5 - | -1111 | 5
5
16
10
10 | 200
200
25
35
30 | 12, 4.2
12, 4.2
5
5.0
5 | 0
0
0.2
0.2
0.2 | 5
5
5.0
5 | 1000
950 | -
-
-
0 to 75 | A, E
E
A, C
A, C
A,C,G,
P,DIP | MC RCDT
MC RCDT
RA, SSD, IT | | | | Monostable
Monostable
Single-shot | MC951
951
A08 | MO
SW
SI | 25
25
30 | 2 | -
1 | 12 | 10 - 5 | 30
32
42 | 5
5
5 | 0.2
0.2
1.0 | 5
5.0
2.7 | 1000
900 | - | A, C
A, C
A, D | Mod-DTL
Expandable | | | | Single - shot Single - shot Monostable Single - shot Single - shot Dual 1 - shot Dual 1 - shot Dual 1 - shot Single - shot | A48
8203
WC218
SN15851
SN15951
342BG
342CG
342CG
SN5380
SN7380
SE160
SE161 | SI
VAR
WH
TI
TI
AL
AL
TI
TI
SIG
SIG | 30
30
40
50
50
60
60
100
100 | 1 1 1 | 1 2 2 1 | 2 | 5
4
8
-
6
6
6
10
10
4 | 42
100
105
-
100
100
100
30
30
25
25 | 5
6. 3
5.7-6.3
4.5-5.5
12
12
12
3-4
3-4
+4,-2
+4 | 1200
1200 | 2.7
3.5
2.0
-
12000
12000
12000
-
3.9
3.9 | 700
 | 0 to 70
0 to 75
0 - 75
0 to +100
0 to +70
-70
- | A, D A, C D, DIP D G G, DIP D A, C A, F | TF
Modified DTL | | Shift Bit | | - | RC205T | RA | 200 | - | - | 4 | - | 75 | 6 | - | - | 0.55 | - | - | | Temperature range is -55 to 125 °C unless otherwise stated. Circle as many numbers on the reader-service card as you like. Complete listing of semiconductor manufacturers starts on page 86. Reader-Service cards are good all year. # 2. Resistor-Transistor Logic and Direct-Coupled Transistor Logic | | | | | | Propaga-
tion | Fa | ก-เก | Fan | -out | Power
Diss.
mW
(/= | Supply | Lev
(Vo | els | Noise | Temp | | | |--------------|----------------
--|--|---|--|-------------------|--|----------------------|--|--|--|---|---|---|---|---|--------------------| | | Logic Function | Туре | Model | Mfr. | Delay
(ns) | Typ. | Мах. | Тур. | Max. | per
gate) | Valtage
(Valts) | 0 | "1" | Margin
(mV) | Range
(°C) | Package
Type | Remarks | | Adders
A | 1 | Full
Half
Half
Half
Half
Dual H/A
Dual H/A
Dual H/A
Half | µL904
MC704
MC804
MC904
PL904
NB1004
9997021
9997022
9997029
141A | FA
MO
MO
PH
NA
FA
FA
AL | 14
14
14
14
14
17
20
20
20
21 | 2 2 | 2 2, 2 | 4, 5 | 5
16
5
5
5
-
16
16
16
10 | 45
65
45
45
45
120
120
180
42 | 3.0
3.6
3
3
3.0
3
3
3.3
3.6
3 | 0.15
0.1
0.1
0.1
0
0.18
0.2
0.25
0.3
250
mV | 1.0
1.1
1.1
1.1
0.8
1.2
0.82
0.85
0.9
810
mV | 250
-
-
300
350
300
300
300
300 | 15 to 55
0 to 100
-
-
0 to 100
0 to 70 | A. C
A. C
A. C
C. G
C. G
C. G | SSD | | | 2 | Half Half Half Full Half Half Half Half Half Half Half Ha | H11001
H11004
141B
141C
A11
MC708
MC908
MC712
MC912
SN17908L
SN17912L
PL908
PL912
MWµL908
MWµL912 | AL
AL
SI
MO
MO
MO
TI
PH
PH
FA
FA | 22
22
23
25
35
60
60
66
66
70/105
70/105
80
80
90 | 2 2 2 2 2 | 2 2 | | 655544444444444444444444444444444444444 | 42
42
42
40
15
10
12
8
10
8
10
8 | 3
3
3
5
5
3.6
3
3.6
3
3.0
3.0
4
3.0, 4 | | 1.1
1.1
810
810
-
1.1
1.1
1.1
1.1
-
0.8
0.8
0.805
0.805 | | 70
0 to 70
15 to 55
15 to 55 | B B A, C A A D A A A A A D A C A C A C | | | B B | 1 | R-S
R-S
R-S
R-S
R-S
R-S
R-S
J-K Flip-Flop
-
J-K
J-K
J-K
J-K
J-K
J-K
J-K
J-K
J-K
J | MC702G
MC802
MC902
PL902
L16A
116B
116C
RD-207
PL916
NB1002
MC723P
MC723P
MC723P
MC729P
MC790P
MC816
MC816
MC816
MC809P
MC916
MC909
MC916
MC909
MC916
MC909
MC916
MC909
MC916
MC909
MC916
MC909
MC916
MC909
MC916
MC909
MC916 | MO
MO
MO
PH
FA
AL
AL
RAD
PH
NA
MO
MO
MO
MO
MO
MO
MO
MO
MO
MO
MO
MO
MO | 14
14
14
14
14
13
17
17
20
20
22
25
35
35
35
35
35
35
35
35
35
35
35
35
35 | | 3 3 1 | 4 | 13
4
4
4
4
4
4
4
3
3
3
12
3
10
10
16
16
10
13
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | 32
22
22
22
22
20
95
54
22
78
78
75
145
54
78
65
65
84
84 | 5
3.0
-3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6 | 0.1
0.1
0.21
1.5
250
250
0.25
0
0.1
0.1
0.1
0.1
0.1
0.1
0.1 | 1.1
1.1
1.1
0.8
1.0
810
810
810
3
0.8
-
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1 | 300
300
300
250
300
265
250
800
 | 15 to 55
0 to 100
-
-
0 to 70
-
-
15 to 55
+15 to 55
+15 to 55
+15 to 55
0 to 100
0 to 75
0 to 100
0 to 75
-
0 to 100 | A, C
A, C
A, C
A, C
A, C
A, C
A, C
A, C | SSD | | | 2 | J-K 10 Toggle R-S-J-K J-K J-K J-K J-K J-K 10 Dual J-K Dual J-K Dual J-K Dual J-K Dual J-K Dual J-K J-K 10 Dual type D Type D Type D J-K 10 | 111B
112B
F _µ L9329
µL916
111C
112C
FF1514B
FF5551B
FF9551B
MC722
MC722P
MC920
114A
999421
999421
999422
999423
114B
MC778P
MC713
MC913
114C
MW _µ L913
R12001
A13 | AL FA AL IN MO MO AL FA AL CBS CBS | 39
39
40
40
42
42
42
42
50
50
50
50
50
50
50
50
50
50
50
50
50 | 1 1 1 3 4 1 1 1 1 | 3
2
1
1
-
-
-
-
1
1
-
-
-
1
1
-
-
-
1
1 | | 3
3
10
3
3
3
6
6
6
6
6
2
4
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | 84
84
54
884
884
886
666
666
22
25
15
60
350
400
40
17
12
60
115
60
61
15
60
61
61
61
61
61
61
61
61
61
61
61
61
61 | 3, 4
3, 4
3, 3
12
10
1.0
3.6
3,6
3,6
3,6
3,6
3,6
3,6
3,6
4,7 max | 250
250
0.2
0.2
0.1
0.1
0.1
250
0.2
25
0.3
250
0.1
0.1
0.1
0.1 | 810
810
1.0
1.0
810
810
810
810
810
810
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1 | 265
265
300
250
250
250
250
250
250
250
250
300
300
300
300
350
350
265
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | - 15 to 55 0 to 70 0 to 70 15 to 55 +15 to 55 - 0 to 100 0 to 70 - +15 to 55 +15 to 55 0 to 70 | A A C C A A A A A A A A A A A A G G G | SSD TF † μw † μw | | | 3 | gated Flip-Flop Flip-Flop J-K Flip-Flop Flip-Flop J-K F/F | A17
MC779P
MC787P
MC822P
MC826P
MC879P
MC887P
923 | CBS
MO
MO
MO
MO
MO
CDC | 5000 | | 1 3 | | 25
80
80
4
5
- | †528
-
30
120
-
54 | 3.6
3.6
3.6
3.6 | 0.65
0.1
0.1
0.1
0.1
0.1
0.1
0.1 | 0.30
1.1
1.1
1.1
1.1
1.1
1.1
1.1 | -
-
-
-
-
-
300 | +15 to 55
+15 to 55
0 to 75
0 to 75
0 to 75
0 to 75
15 to 55 | G
G, DIP
G, DIP
G,P,DIP
G,P,DIP
G, DIP
G, DIP | †µw | | Buffers
C | 1 | -
R-S
Hi Current
- | NB1000
101A
102A
B11004 | NA
AL
AL
AL | 8
13
13
15 | 1 1 - | 1 | 5. 25
-
-
- | -
33
83
- | 45
35
58
30 | 3 | 0.18
250
250
250
0.12 | 1.2
810
810
1.1 | 300
300
300
- | -
-
-
70 | Ā, C
A, C
B | | #### 2. RTL and DCTL (continued) | | | | | | Propaga- | Fe | n-in | F | 1-ou1 | Power
Diss.
mW
(/= | Supply | Lev
(Vo | els | Noise | Temp | | | |-----------------------|----------------|--|--|---|--|---|---|---|--|--
--|--|--|--|---|--|-------------------| | | Logic Function | Туре | Model | Mfr. | Delay
(ns) | Тур. | Мах. | Тур. | Max. | per
gate) | Voltage | | "1" | Margin
(mV) | Range
(°C) | Package
Type | Remarks | | Buffers
C | 2 | Dual Dual Dual Dual Buffer Dual Buffer Dual 3-input | BC11001
MC700
MC799P
MC800
MC899P
MC900
PL900
999521
999529 | AL
MO
MO
MO
MO
PH
FA
FA | 15
15
15
15
15
15
15
15
15
15 25
15 8 12
15 8 12 | 1 | 111111111 | 11111111 | -80
80
25
25
25
25
25
80 & 16 | 30
20
46
30
46
30
30
30
200
5250 | 3
3.6
3.6
3
3.6
3
3.0
3
3.6 | 0.12
0.1
0.1
0.1
0.1
0.1
0.1
0.2
0.3 | 1.1
1.1
1.1
1.1
1.1
0.8
0.82
0.9 | -
-
-
-
-
-
350
300 | 15 to 55
+15 to 55
0 to 100
0 to 75
-
0 to 70 | B
A, C, C, G, P, DIP
A, C | | | | 3 | R-S
R-S
Hi Current
Hi Current
Dual
Dual
Dual
Dual
Dual 3-input
Dual
Dual
Dual | FμL90029
μL900
101 B
101 C
102 B
102 C
900
MC799
MC899
MC999
MC788P
MC888P
MC709
MC798P | FA
FA
AL
AL
CDC
MO
MO
MO
MO
MO
MO | 16
16
16
16
16
16
16
20
20
20
20
24
24
57
57 | 1
1
1
1
1
-
- | 6 2 | | 80
25
15
15
57
57
30
80
25
25
80
25
30
30 | 20
30
35
35
58
58
30
36
25
25
145
145
15
30 | 3.6
3.0
3
3
3.3
3.6
3.0
3.6
3.6
3.6
3.6
3.6 | 0.15
0.15
250
250
250
0.15
0.1
0.1
0.1
0.1
0.1 | 1.0
1.0
810
810
810
1.0
1.1
1.1
1.1
1.1
1.1 | 300
250
265
250
265
250
250
-
-
- | 15 to 55 0 to 70 15 to 55 +15 to 55 0 to 100 - +15 to 55 0 to 75 15 to 55 +15 to 55 | A. C
A. C
A. C
A. C
A. C
A. C
G.P.DIP
G.P.DIP | Modified DCT | | | 4 | Dual

 | MC898 P
MC909
SN17909 L
MWμL909
PL909
MC779 P
MC787 P
MC879 P
MC887 P | MO
MO
TI
FA
PH
MO
MO
MO
MO | 57
57
70
80
80 | | 111411111 | | 30
30
30
30
30
30
80
80 | 30
10
15
10
10
-
- | 3.6
3
3.0, 4
3.0
3.6
3.6
3.6
3.6
3.6 | 0,1
0.1
-
0.220
0
0.1
0.1
0.1 | 1.1
1.1
0.805
0.8
1.1
1.1
1.1 | 150
350
-
-
- | 0 to 75 +15 to 55 +15 to 55 0 to 75 0 to 75 | G.P.DIP
A. D
A. C
G. DIP
G. DIP
G. DIP | | | Counter Adapters
D | | Hi Current | NB1001
MC701
MC801
MC901
PL901
C11001
C11004
142A
142B
142C | MO
PH
AL | 21
22
22
22
22
28
28
32
32
47 | -
-
2
-
3
3
3 | 1111111111 | 5 | -
16
5
5
25
-
10
6
5 | 55
80
55
55
55
50
50
50
50 | 3
3.6
3
3
3.0
3
3
3
3 | 0.18
0.1
0.1
0.1
0.12
0.12
250
250 | 1.2
1.1
1.1
1.1
0.8
1.1
1.1
810
810
810 | 300 -
-
-
-
-
-
300
265
250 | 15 to 55
0 to 100
-
-
-
70
-
0 to 70 | - A A . C C C C C C C C A . A . A . A . A | | | Gates
E | NAND/NOR | 3-input 2-input Dual 3-input Dual 5-input 4-input 4-input 3-input 3-input Dual 2-input Dual 2-input Dual 3-input Dual 3-input Dual 3-input Dual 3-input Dual 3-input Toual 3-input Dual 1-input 3-input 3-input 3-input 3-input 3-input 3-input 3-input | F _{\(\mu\)} L90329 F _{\(\mu\)} L91429 F _{\(\mu\)} L91529 GG3415C G11001 G11004 J11001 K11004 L11001 L11004 M11001 M11001 M11004 MC703 MC707 MC714 MC715 MC715 MC715P MC725P MC729P MC729P MC803 MC807 | FA | 10
10
10
12
12
12
12
12
12
12
12
12
12
12
12
12 | 11131111111111111111111111111111 | 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 16
16
16
6
 | 20
20
20
50
10
10
10
10
20
20
20
20
20
20
22
20
22
20
22
20
22
20
22
20
21
22
22
22
22
21
21
21
21
21
21
21
21 | 6
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | 0.25
0.25
0.25
0.27
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.10
0.10
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11
0.11 | 0.86
0.86
0.86
6
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1 | 300
300
300
1500
 | 15 to
55
15 to 55
15 to 55
15 to 55
170
170
170
170
15 to 55
15 | A, C C A, C C B B B B B B B B B A A A A A A A A A | | | | 2 | Dual 2-input Dual 3-input Dual 3-input Dual 3-input Dual 4-input 5-input Quad 2-input Triple 3-input 4-input 4-input Dual 2-input Dual 3-input 3-input Dual 3-input Dual 3-input Dual 3-input | MC814
MC815
MC815
MC825P
MC829
MC829
MC829
MC829
MC907
MC907
MC914
MC914
MC915
μ L903
μ L914
μ L915 | FA | 12
12
12
12
12
12
12
12
12
12
12
12
12
1 | | | 111111111111111111111111111111111111111 | 555555555555555555555555555555555555555 | 24
24
55
55
19
110
87
12
12
24
24
19
12
24
24 | 3.6
3.6
3.0
3.6
3.6
3.3
3
3.0
3.0
3.0 | 0.15 | 1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1 | 300
300
-
-
-
300
300
300
300
-
250
250 | 0 to 100 0 to 100 0 to 100 0 to 75 0 to 75 0 to 100 0 to 75 | A, C
G,P,DIP
G,P,DIP
G,P,DIP
G,P,DIP
A, C
A, C
A, C
A, C
A, C | SSD
SSD
SSD | Temperature range is -55 to 125°C unless otherwise stated. #### 2. RTL and DCTL (continued) | | | | | | Propaga- | | | | | Power
Diss.
mW | | Lev | els | N. | | | | |-----|----------------|--|--|--|--|---|---------------------|------------------------------------|---|--|--|--|--|---|---|--|--------| | | Logic Function | Туре | Model | Mfr. | Delay
(ns) | Typ. | Max. | Fan
Typ. | Max. | (/=
per
gate) | Supply
Voltage
(Valts) | 0.,
(A° | 115) | Maise
Margin
(mV) | Temp
Range
(°C) | Package
Type | Remark | | E E | NAND/NOR | 3-input 4-input Dual 3-input 3-input 4-input 4-input 4-input 4-input Dual 2-input Dual 3-input 4-input Dual 3-input | PL903
PL907
PL915
121A
121B
122A
122B
124B
125A
125B
126B
128B
914
123A
121C
122C
124C
125C
125C
125C
128C
128B
914 | PH
PH
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL | 12
12
12
12
12
12
12
12
12
12
12
12
12
1 | 3 4 3 2 2 3 3 3 3 3 2 2 2 2 3 3 3 2 2 - 3 | 3 3 4 4 2 5 3 4 5 5 | | 555506106106106555555555555555555555555 | 12
12
24
10
10
10
10
18
18
18
18
18
18
19
10
10
10
10
10
10
10
10
10
10
10
10
10 | | 0
0
0
250
250
250
250
250
250
250
250
25 | 0.8
0.8
0.8
810
810
810
810
810
810
810
810
810
81 | | 0 to 70
0 to 70
0 to 70
 | AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | | | | 4 | Dual 5-input Dual 2-input 4-input Dual 2-input Dual 2-input Dual 3-input Dual 3-input Dual 3-input Dual 4-input 5-input Triple 3-input Dual 4-input Dual 4-input Dual 4-input Dual 2-input Dual 3-input Dual 2-input | GG1414B 123C Fr L91029 Fr L91129 MC710 MC717P MC718P MC718P MC718P MC718P MC718P MC718P MC818P MC818P MC818P MC819P MC819P MC819P MC819P MC910 MC910 MC910 MC910 MC910 MC911 MW/L911 MW/L911 MW/L911 MW/L911 | FA MO | 20
21
25
25
27
27
27
27
27
27
27
27
27
27
27
27
27 | 3 | 5 2 4 | | 655444444444444444444444444444444444444 | 50
10
3
3
6
6
6
6
6
6
6
6
6
6
6
8.5
12
6
6
6
6
9
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4 | 3.6 | 0.2
250
0.25
0.25
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1 | 6
810
0.86
0.86
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1. | 1.5 V 250 300 300 250 - 250 250 250 150 150 150 250 250 350 | 0 to 70 15 to 55 | G A A. C C A A. C C A A. C C G.P.DIP A G.P.DIP G.P.DIP G.P.DIP G.P.DIP A G.P.DIP G.P.DIP A A. D D A A. D A. C C A A A. C | | | | NOR | 3-input 4-input Dual 2-input Dual 2-input 4-input Quad 2-input Quad 2-input Quad 2-input Quad 2-input Quad 2-input Quad 2-input Dual 3-input Dual 3-input Dual 3-input Dual Dual | NB1003
NB1007
NB1007
NB1015
µL907
999121
999122
999129
999221
999321
999329
999321
999329
RC323
RC103
RC124
RC124
RC1033 | NA
NA
NA
NA
FA
FA
FA
FA
FA
FA
FA
FA
RA
RA
RA | 11
11
11
11
11
12.0
12
12
12
12
12
12
12
12
12
12
12
12
12 | | 3 4 2.2 3.3 4 | 55555555552,5555555555555555555555 | | 19
19
38
38
12
160
160
250
80
120
3
4
15
15
2, 15 | 3
3
3.6
3
3
3.6
3.6
3.6
3.6
3.0
3.0
3.0 | 0.2
0.25
0.3
0.2
0.25
0.3
0.2
0.25
0.3
0.2
0.15
0.15
0.15 | 1.2
1.2
1.2
1.2
1.0
0.85
0.9
0.85
0.9
0.85
0.9
1.0
-1.0
3.0
1.0
3.0
1.0
3.0
1.0
3.0 | 300
300
300
300
250
350
350
300
350
300
350
300
300
300
3 | | | SSD | | | 6 | - Dual Dual Dual | RC1233
RC-1243
RC1443
RC401
RC322 | RA
RA | 20
20
20
20
23.5
25 | 3
2, 3
2, 3
-
2, 2 | | 5
2, 5
2, 5
4
2, 5 | 1 1 1 11 | 15
2, 15
2, 15
3.5
2, 5 | 3.0
3.0
3 | 0.2
0.2
-
0.15 | 1.0-
3.0
1.0-
3.0
1.0-
3.0
-
1.0-
4.0 | 300
300
300
300
300
300 | - | -
-
A, D | | Temperature range is —55 to 125°C unless otherwise stated. #### 2. RTL and DCTL (continued) | | | | | | Propaga- | Fa | n-in | Fan | -out | Power
Diss.
mW
(/= | Supply | Lev
(Vo | els | Noise | Temp | | | |----------------------|----------------|--|--|---|--|------------|---------------------|-------|--|--|---|---|--|---|--|--|---| | | Logic Function | Туре | Model | Mfr. | Delay
(ns) | Typ. | | | Max. | per
gate) | (Voltage
(Volta) | 0,, | "1" | Margin
(mV) | Range
(°C) | Package
Type | Remark | | Gates | NOR | Dual | RC324 | RA | 25 | 2, 3 | - | 2, 5 | _ | 2, 5 | 4.0 | 0.15 | 1.0- | 300 | - | - | | | E | 7 | Dual | RC342 | RA | 25 | 2, 2 | - | 2, 5 | - | 2, 5 | 4.0 | 0.15 | 4.0 | 300 | - | _ | | | | | Dual | RC344 | RA | 25 | 2, 3 | - | 2, 5 | | 2, 5 | 4.0 | 0.15 | 1.0- | 300 | _ | - | | | | | - | RC1031 | RA | 25 | 3 | - | 5 | - | 15 | 3.0 | 0.225 | | 300 | 0 to 65 | - | | | 1.00 | | _ | RC1032 | RA | 25 | 3 | _ | 4 | - | 15 | 3.0 | 0.25 | 3.0 | 200 | 0 to 65 | - | | | | 0 | - | RC1231 | RA | 25 | 3 | - | 5 | - | 15 | 3.0 | 0.225 | | 300 | 0 to 65 | | | | | 8 | - | RC1232 | RA | 25 | 3 | - | 4 | - | 15 | 3.0 | 0.25 |
3.0
1.0 - | 200 | 0 to 65 | | | | | | Dual Inverter
Dual
3-input | A10
A11
A14 | CBS
CBS | 3000
3000
3000 | - | 1 5 1 | - | 5
30
5 | †180
†816
†120 | 7
7 max
7 max | 0.30
0.30
0.30 | 2.0
0.65
0.65
0.65 | - | - | G
G | † μw
† μw
† μw | | Gate Expanders
F | | Dual 3-input Dual 3-input Dual 4-input Uual 4-input Quad 2-input Dual 4-input Dual 3-input Dual 3-input Dual 3-input Dual 2-input Dual 2-input Dual 2-input Dual 2-input | E11001
E11004
MC785P
MC785P
MC885P
MC886P
131A
131B
131C
MC721
MC921
SN17921L
PL921
F,L421921
MC779P
MC879P | AL MO MO AL AL MO MO TI PH FA MO MO | 12
12
12
12
12
12
12
12
11
12
16
17
35
40 | | 3 3 3 3 2.666 2.666 | | -
-
-
-
-
-
-
3
0.5
80 | | 3
3.6
3.6
3.6
3
3
3
3
3
3
3
3
3
3
3
6
3.6
3. | 0.12
0.12
-
-
250
250
250
0.1
0.1
-
0
0.25
0.220
0.1 | 1.1
1.1
-
-
810
810
810
1.1
1.1
-
0.8
0.86
0.805
1.1 | | 70 +15 to 55 +15 to 55 0 to 75 0 to 75 - 0 to 70 15 to 55 - 15 to 55 - 15 to 55 - 15 to 55 0 to 75 | A
A
G,P,DIP
G,P,DIP
G,P,DIP
A, C
A, C
A, A
A
A, D
-
A, C
G, DIP
G,DIP | | | nverters
G | | Quad
Hex
Quad
Hex
Quad
Hex Inverter
Hex Inverter
Quad
Quad
Quad | MC727
MC789P
MC827
MC889P
MC927
999621
999622
999629
132A
132B
132C | MO
MO
MO
FA
FA
AL
AL | 12
12
12
12
12
12
12
12
12
12
20
20 | | | | 16
16
5
5
5
16
16
16
10
6
5 | 28
165
19
55
19
120
120
180
36
36
36 | 3.6
3.6
3
3.6
3
3.6
3
3.6
3 | 0.1
0.1
0.1
0.1
0.2
0.25
0.3
250
250
250
mV
0.1 | 1.1
1.1
1.1
1.1
0.82
0.85
0.9
810
810
mV
1.1 | -
-
350
300
300
300
265
250 | 15 to 55
+15 to 55
0 to 100
0 to 75
-
0 to 100
0 to 70
-
0 to 70 | A
G,P,DIP
A, C
G,P,DIP
A, C
C, G
C, G
A, C
A, C | | | | | - | MC787P
MC887P | MO
MO | - | _ | - | _ | 80 | - | 3.6
3.6 | 0.1 | 1.1 | _ | 0 to 75 | G, DIP | | | Aultivibrator | | One-shot | 4002A | AL | *50 | 1 | - | - | 9 | 20 | 3 | 250 | 810 | 300 | - | A, C | *min. input
pulse width | | Н | | One-shot | 4002B | AL | •50 | 1 | - | - | 5 | 20 | 3 | 250 | 810 | 265 | - | A, C | *New input
pulse width | | | | One-shot
Single-shot | 4002 C
T35-002 | AL
AL | *50
100 | 1 | _ | - | 4 | 20
20 | 3 | 250
0.12 | 810
1.1 | 250 | 0 to 70 | A | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | Shift Registers
I | 1 | Half Half Half Half Half Half Half Half | NB1005
PL905
FμL90529
μL905
117A
MC705
MC706
MC805
MC806
MC906
MC906
PL906
S11001
μL906 | NA PH FA AL MO MO MO MO PH AL FA | 11
15
18
18
19
22
22
22
22
22
22
22
22
22
22
22
22
22 | 1 1 | 1 3 3 3 3 3 | × 4,5 | - 4
5
5
5
13
13
4
4
4
4
4
4 | 53
53
53
53
50
75
52
53
36
53
36
50
50
50 | 3
3.0
3
3.6
3.6
3.3
3
3.3
3.0
3.3
3.3 | 0.15 · 250
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0. | 1.2
0.8
0.86
1.0
810
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1 | 300
 | | - A. C. C. C. A. A. C. C. C. A. A. A. A. C. C. C. A. | SSD | | | 2 | Half Half Full 2-Phase JK Full Full Full Full Full Full Full Full | 117B
117C
P11001
P11004
R11001
R11004
1112A
111B
111C
112C
114A
114B
RC301
SN17913L
114C
PL913 | AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
A | 22
25
35
35
35
35
35
35
35
35
35
35
37
42
42
42
42
77
77
80 | 1
1
 | | | 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 50
50
84
84
84
84
84
84
86
60
60
15 | 333333333333333333333333333333333333333 | 250
250
0.12
0.12
0.12
250
250
250
250
250
250
250
250
250
25 | 810
810
1.1
1.1
1.1
810
810
810
810
810
810
810
810
810
81 | 265
250
-
-
300
300
265
265
250
250
300
265
390
150
250 | 0 to 70
70
70
-
-
0 to 70
0 to 70
-
-
0 to 70 | A, C
A A A A A A A A A A A A A A A A A A A | | Temperature range is -55 to 125°C unless otherwise stated. ## 3. Transistor-Transistor Logic | | | | | | Propaga- | Fa | n-in | Fan | -out | Power
Diss.
mW
(/= | Supply | Lev
(Vo | | Noise | Temp | | | |---------------------|----------------|-----------------------------------|--------------------------|----------|---------------------|------|------|------|----------|-----------------------------|--------------------|------------|-------------------|----------------|--------------------|-----------------|---| | | Logic Function | Туре | Model | Mfr. | Delay
(ns) | Тур. | Max. | Тур. | Мах. | per
gate) | Voltage
(Volts) | 0 | "1" | Margin
(mV) | Ranga
(°C) | Package
Type | Remark | | Adders | | Half | \$G90,\$G91 | | 12 | - | - | 6 | 20 | 15 | - | | - | 1000 | - | - | D-4er in | | A | | 2-Bit | SG92,SG93
SN5482 | TI | †15 | - | - | - | 10
10 | 175 | | 0.4 | 2.4 | 1000 | - 70 | D | Temp & F.O. | | | | 2-bit
4-bit | SN7482
SN7483 | TI | †15 | - | - | - | 10 | 175
350 | 5.25 | 0.4 | 2.4 | 1000 | 0 to 70
0 to 70 | D, DIP | †Carry | | | | Full | SN5480 | TI | Add: 70 | - | | _ | - | 105 | 5.25
4.5 - 5.5 | | - | 1000 | - | D, DIP | tCarry | | | | Full | SN7480 | TI | Carry: 8
Add: 70 | | | | | 105 | 4.75 | | - | 1000 | | D | Includes
gating | | | | ruii | 3N/48U | 11 | Carry: 8 | - | - | - | - | 103 | 5.25 | - | - | 1000 | 0 to 70 | D | Includes
gating | | inary Elements
B | | R-S | SF10,SF11
SF12,SF13 | SY | 12 | - | - | 6 | 20 | 15 | - | - | - | 1000 | - | - , | Differ in
Temp & F.O. | | В | | Clocked | SF20.SF21
SF22,SF23 | SY | 12 | - | - | 6 | 20 | 15 | - | - | - | 1000 | - | - | Differ in
Temp & F.O | | | | Single-phase | SF30, SF31
SF32, SF33 | | 12 | - | - | 6 | 20 | 15 | - | - | - | 1000 | - | - | Differ in
Temp & F.O. | | | | J-K
J-K | SF50.51
SF52.53 | SY | 12
12 | - | 4 4 | - | 15
12 | 15
15 | 8 | 0.26 | 3.3 | 1000
1000 | -
0,+75 | D, G
D, G | Temp & T.O. | | | | J-K Master Slave | 900051 | FA
FA | 15
15 | - | - | - | 10 | 50
70 | 4.5-5.5 | 0.2 | 3.3
2.7
2.7 | 1000 | - | C, G
C. G | אר 'אאא 'ררר'
אר 'אאא ' <u>ו</u> רר | | | | Dual J-K | 902051
902151 | FA
FA | 15
15 | = | - | - | 10
10 | - | 4.5-5.5 | 0.2 | 2.7 | 1000 | - | C, G | - | | 1 - 3 | 1 | J-K Flip-Flop | W6 F251
900059 | WH
FA | 16.0
17 | - | 3 | 15 | 6 | 40
55 | 5.0 | 1.1 | 1.6 | 800
1050 | 0 to 70 | D
C. G | TIT KKK IK | | | | | 900159 | FA
FA | 17
17 | = | - | - | 8 | 75 | 4.5-5.5 | 0.25 | 3.2 | 1050
1050 | 0 to 70
0 to 70 | C, G
C, G | רר אא 'ניר' אא 'ניר'
אר 'ארצ' זרר אר | | | | Dual J-K-K
J-K | 902159
SN54H71 | FA
TI | 17 | +4 | - | - | 8 | 90 | 4.5-5.5 | 0.25 | 3.2 | 1050 | 0 to 70 | G | -
†Gated input | | | | J-K | SN54H72
SN74H71 | Ťi
Ti | 18
18 | †3 | - | - | 10
10 | 80
90 | 4.5-5.5 | 0.4 | 2.4 | 1000 | 0 to 70 | D
D, DIP | †Gated input | | | | J-K
Dual | SN74H72
TFF 3011 | TI
TR | 18 | 3 | 3 | - | 10 20 | 80 | | 0.4 | 2.4 | 1000 | 0 to 70 | D, DIP
A, F | | | | | Dual
Dual | TFF3013
TFF3015 | TR
TR | 18
18 | - | 3 | - | 7 | 30 | 5-6
5-6 | 0.20 | 3.0 | 1000 | - | A, F
A, F | | | | | Dual | TFF3017 | TR | 18 | = | 2 2 | - | 20
7 | 30
30 | 5-6 | 0.20 | 3.0
3.0 | 1000
1000 | - | A, F | | | | | AND inputs | TFF3241- | TR | 18 | - | 1 | - | 10 | 100 | 5 | 0.45 | 3.5 | 1000 | 0 to 75 | D,P,DIP | High speed | | | | OR inputs | TFF3341- | TR | 18 | - | 1 | - | 10 | 100 | 5 | 0.45 | 3.5 | 1000 | 0 to 75 | D,P,DIP | High speed | | | | Enable-OR input | TFF3441- | TR | 18 | - | 1 | - | 10 | 100 | 5 | 0.45 | 3.5 | 1000 | 0 to 75 | D,P,DIP | High speed | | | | Dual
J-K | SE826
579B | SIG | 20 20 | 3 | - | - | 5 | 50
30 | +5 | 0.4 | 2.4 | 1000
1000 | - | F | | | | 2 | Dual | SF120-121 | SY | 50 MHz | - | - | 6 | 11 | 55/
FF | - | - | - | - | - | D, G | Separate clos | | | | Dual | SF122-123 | SY | 50 MHz | - | - | 5 | 9 | 55/
FF | - | - | - | - | 0 to 75 | D, G | Separate cloc | | | | Dual | SF130-131 | SY | 50 MHz | - | - | 6 | 11 | 55/
FF | - | - | - | - | - | D, G | Common cloc
RA | | | | Dual | SF132-133 | SY | 50 MHz | - | - | 5 | 9 | 55/
FF | - | - | - | - | 0 to 75 | D, G | Common cloc | | | | J-K (AND inputs) J-K (AND inputs) | SF200-201
SF202-203 | SY | 50 MHz
50 MHz | - | _ | 6 | 11 | 55
55 | - | _ | - | - | 0 to 75 | D, G
D, G | RA | | | | J-K (OR inputs) | SF210-211
SF212-213 | SY | 50 MHz
50 MHz | - | - | 6 | 11 | 55
55 | - | _ | - | _ | 0 to 75 | D, G
D, G | RA | | | | J-K
J-K | SF60,61
SF62,63 | SY | 25
25 | - | 4 | - | 15
12 | 45 | 5.0
5.0 | .26
.26 | 3.3 | 1000 | -
0, +75 | D, G
D, G | | | | | Dua ¹ | SF62,63
SF100-101 | SY | 35 MHz | - | - | 6 | 11 | 45
55/
FF | - | - | 7 | - | - | D, G | Separate cloc | | | | Dual | SF102-103 | SY | 35 MHz | - | - | 5 | 9 | 55/
FF | - | - | - | - | 0 to 75 | D, G | | | | | Dual | SF110-111 | SY | 35 MHz | - | _ | 6 | 11 | 55/ | _ | _ | _ | _ | - | D, G | Common cloc | | | 3 | Dual | SF112-113 | | 35 MHz | - | _ | 5 | 9 | FF
55/ | - | _ | - | _ | 0 to 75 | D, G | RA
Common cloc | | | | Single | SE825 | SIG | 30 | _ | - | _ | 10 | FF
50 |
+5 | 0.4 | 2.4 | 1000 | _ | F | | | | | Dual latch
Dual latch | SN5474
SN7474 | TI
TI | 30
30 | - | - | - | 10 | 40 /ff | 4.5 - 5.5
4.75- | _ | - | 1000
1000 | 0 to 70 | D
D | | | | | †Dual FF | SN7476N | TI | 30 | - | - | - | 10 | | 5.25
4.75- | 0.4 | 2.4 | 1000 | U to 70 | DIP | †Clear & | | | | 4-input with | TFF3111- | TR | 30 | - | 1 | - | 15 | 75 | 5.25 | 0.45 | 3.5 | 1000 | 0 to 75 | D,P,DIP | Preset | | | | buffer
2-input with | 14
TFF3115- | | 30 | - | 1 | _ | 15 | 75 | 5 | 0.45 | | 1000 | 0 to 75 | D,P,DIP | | | | | buffer
4-input w/o | 18
TFF3121- | | 30 | - | 1 | - | 15 | 75 | 5 | 0.45 | | 1000 | 0 to 75 | D,P,DIP | | | | | buffer
2-input w/o | 24
TFF3125- | | 30 | - | 1 | _ | 15 | 75 | 5 | 0.45 | | 1000 | 0 to 75 | D,P,DIP | | | | 4 | buffer
Dual J-K | 28
TFF3173- | | | | | 1 | | | | | | 1000 | 0 to 75 | D,P,DIP | | | | | 31-3K | 74
TFF3161- | | 30 | - | 1 | - | 7 | 150 | 5 | 0.45 | | | | | | | | | 2J-2K | 64 | | 30 | - | 1 | - | 15 | 75 | 5 | 0.45 | | 1000 | 0 to 75 | D,P,DIP | | | | | | TFF3165- | | 30 | - | 1 | - | 15 | 75 | 5 | 0.45 | | 1000 | 0 to 75 | D,P,DIP | 22.1 | | | | Dual 3J-3K | TFF3181- | TR | 30 | - | 1 | - | 15 | 150 | 5 | 0.45 | 3.5 | 1000 | 0 to 75 | D,P,DIP | 22 leads | Temperature range is -55 to 125°C unless otherwise stated. | | | | | | Propaga- | Fa | n-in | Fan | -out | Power
Diss.
mW
(/= | Supply | Lev | gic
rels
lts) | Noise | Temp | | | |------------------------|----------------|---|---|--|--|---|-------------|---|--|--|---|--|--|--|--|--|--| | | Logic Function | Туре | Model | Mfr. | Delay
(ns) | Тур. | Max. | Тур. | Мах. | per
gate) | (Valtage
(Valta) | 0 | "1" | Margin
(mV) | Range
(°C) | Package
Type | Remarks | | Binary Elements
B | 5 | Dual J-K |
\$8826
\$F250,253
\$F250,261
\$F260,261
\$F263,263
\$WF250
\$WF252
\$WF252
\$WF263
\$WF261
\$WF262
\$WF262
\$NF262
\$NF263
\$NF263
\$NF264
\$NF263
\$NF264
\$NF263
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF264
\$NF26 | SY | 30 MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz
30MHz | 666666666 | | -
-
-
12
6
10
5
12
6
10
5 | 10
12
10
12
10
 | 55
55
55
55
55
55
55
55
55
55
55
55
55 | 5.0
-
-
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-5
5.25
4.75-
5.25 | 0.25
0.4
0.4
0.45
0.45
0.4
0.4
0.45 | 2.4
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5 | 1000
1000
1000
1000
1000
1000
1000
900
9 | | F D, G G D, G G D, G G D D D D D D D | | | | | J-K | SN5470 | TI | 40 | - | - | - | 10 | 60 | 4.5 to | - | - | 1000 | - | D | Single-phase | | | | J-K | SN7470 | TI | 40 | - | - | - | 10 | 60 | 5.5
4.75- | - | - | 1000 | 0-70 | D | Single phase | | | | J-K/R-S
J-K/R-S | SN54948
SN74948 | TI
TI | 40
40 | - | - | - | 10
10 | 60
60 | 5.25
4.5-5.5
4.75-
5.25 | - | - | 1000
1000 | _
0-70 | D | | | | 6 | J-K
R-S
Dual J-K
J-K
J-K
R-S
R-S | SW5470
SW7470
SN54L71
SN54L72
SN54L73
MC516
MC566
S8825
SWF10
SWF11
SWF11 | SW
SW
TI
TI
MO
MO
SIG
SW
SW
SW | 40
40
47
47
47
50
50
20 MHz
20MHz
20MHz
20MHz | 6
6
13
13
-
-
-
6
6 | 1011111111 | 10
10
-
-
-
-
-
15
7 | -
10
10
10
15
7
10
-
- | 65
65
3.5
3.5
†3.5
50
50
-
30
30 | 4.5-5.5
4.8-5.3
4.5-5.5
4.5-5.5
4.5-5.5
5
5
5.0
4.5-6
4.5-6
4.5-6 | 0.4
0.45
0.3
0.3
0.3
0.26
0.26
0.45
0.4
0.4 | 3
2.4
2.4
2.4
3.3
3.3
2.4
3 | 1000
900
1000
1000
1000
1000
1000
1000 | 0 to +75 | -
D
D
D
C
C
F | †Gated input
†Gated input
†per ff | | ÷ | 7 | R-S Dual Dual Dual Dual J-K | SWF13
SWF20
SWF21
SWF22
SWF23
SWF53
SWF50
SWF51
SWF52
SWF53
SN7492
SN7493
MC652
539B
S8424
SE424 | SW
SW
SW
SW
SW
SW
TI
TI
MO
AL
SIG
SIG | 20MHz
20MHz
20MHz
20MHz
20MHz
20MHz
20MHz
20MHz
20MHz
60
75
80 | 6 6 6 6 6 6 6 6 72 +2 -3 | 6 | 6
15
7
12
6
15
7
12
6
- | -
-
-
-
-
10
10
4 | | 4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.75-
5.25
4.75-
5.25
10
5
5.0
4.0 | 0.45
0.4
0.45
0.45
0.4
0.45
0.45
0.4
0.4
10
250
0.35
0.2 | 3
3
3
3
3
3
3
2.4
2.4
.70
3800
3.4
2.8 | 900
1000
1000
900
900
1000
1000
900
1000
1000
5V | 0 to +75 - 0 to +75 0 to 770 0 to 70 0 to 75 | | †Gated reset
†Gated reset
also 0°C to 70°C
15°C to 55°C | | | 8 | J-K R-S J-K J-K J-K J-K J-K J-K J-K J-K R-S "AND"J-K R-S "AND"J-K | 509B
MC413
MC415
MC416
MC463
MC465
MC466
MC513
MC513
MC563
MC565 | MO
MO
MO
MO
MO
MO
MO
MO
MO
MO | 180 | 3 | | | 6
12
12
12
6
6
6
6
15
15
7 | 6
30
40
50
30
40
50
30
40
30
40 | 5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 0.26
0.26
0.26
0.26
0.26 | 3800
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3 | 1000
1000
1000
1000
1000
1000
1000
100 | 0 to 75
0 to 75
0 to 75
0 to 75
0 to 75
0 to 75
0 to 75 | C,G,DIP
C,G,DIP
C,G,DIP
C,G,DIP
C,G,DIP
C | 15010350 | | Buffers
C | | Dual 4-input
Dual 4-input
Dual 4-input | 900959
900951
\$8855 | FA
FA
SIG | 8
-
12 | - |
-
-
4 | | 25
30
26 | 22/20/ | 4.5-5.5
4.5-5.5
5.0 | 0.25 | 3.2
2.7
2.4 | 1050
1000
1000 | 0 to 70 | C, G
C, G | - | | Drivers / Buffers
D | | Dual Triple 2-input Triple 2-input Dual 4-input Dual 4-input Quad 2-input | SE855
SG160,161
SG162,163
SN54932
SN74932
TNG5511- | SIG
SY
SY
TI | 15
15
15
15
18
18 | | 4 1 | | 30
15
12
30
30 | 25
15
15
25/
25/
50 | +5
-
4.5-5.5
4.75-
5.25
5 | 0.4 | 2.4
3.3
3.3
-
- | 1000
1000
1000
1000
1000
1000 | -
0 to 75
0 to 70
0 to 75 | F
D, G
D, G
D
D | | | 2.71 | 1 | Dual 4-input | 14 | SIG | 25 | _ | 4 | 20 | _ | 7.0 | 4.0 | 0.2 | 2.8 | 1000 | _ | F, G | also O°C to 70° | | | | Dual 4-input
Dual 4-input
Dual 4-input | SG130, 131
SG132,133
540B | SY | 25
25
25 | - 4 | - | - | 30
24
25 | 30
30
30 | -
-
5 | 0.26
0.26
250 | 3.3
3.3
3800 | 1000
1000
1000 | _
0 to 75
_ | D, G
D, G | w/ex & no | | | | Dual 4-input
2 NAND-2 NOR | 541B
542B | AL | 25
25 | 2 | - | - | 25
15 | 40
30 | 5 7/4 | 250
250 | 3800 | 1000
1000 | - | - | w/ex & no
pull up | Temperature range is -55 to $125^{\circ}\mathrm{C}$ unless otherwise stated. | | | | | | Propaga - | Fa | n-in | Fan | -aut | Power Diss. mW | Supply | Lev
(Vo | els | Noise | Temp | | | |----------------------|---------------------|--|--|--|--|--|-----------------------|---|---|--|--|---|---|--|---|---|---| | | Logic Function | Туре | Madel | Mfr. | Delay
(ms) | Typ. | Max. | Typ. | Max. | per
gate) | Voltage
(Valts) | 0 | "ן" | Margin
(mV) | Range
(°C) | Package
Type | Remarks | | Drivers/Buffers
D | 2 | Dual 4-input 2 NAND-2 NOR 2 NAND-2 NOR Dual 4-input Dual 4-input Quad 2-input | 580B
582B
585B
58455
511B
TNG5611- | AL
AL
SIG
AL
TR | 25
25
25
28
30 | 2 2 4 | -
-
4
-
1 | 1 11111 | 28
40
15
20
10 | 100
40
40
-
20
50 | 5
7/4
7/4
5.0
5 | 400
400
400
0.35
250
0.6 | 3800
3800
3800
3.4
3800 | 1000
1000
1000
1000
1000 | -
-
-
-
-
0 to 75 | F
D,P,DIP | w/ex & no
pull up
w/ex & no
pull up
External outp | | Gates
E | AND
1 | Triple
Dual
Triple
Dual
Dual 4-input
Dual 4-input | SN54H11
SN54H21
SN74H11
SN74H21
MC511
MC561 | TI
TI
TI
TI
MO
MO | 11
11
11
11
- | 111111 | 3
4
3
4
- | 111111 | 10
10
10
10
10 | 35
†35
35
35
- | 5.5
4.5-5.5
5.25
5.25
5 | 0.4
0.4
0.4
0.4 | 2.4
2.4
2.4
2.4 | 1000
1000
1000
1000 | -
0 to 70
0 to 70 | D
D, DIP
D, DIP
C
C | tper gate | | | AND/NOR 2 | Dual 4-input Dual 4-input Dual Exclusive OR Quad 4-input Dual Exclusive OR Quad 4-input Dual 2-input | 900851
900559
900859
SG70-71 | FA
FA
FA
FA
FA
SY | 2
2
7
7
7
9
9 | | -
6
6
6
6 | 7 | -
10
10
10
8
8
15 | -
25
25
25
25
25
20/ | - | -
0.2
0.2
0.25
0.25 | -
2.7
2.7
3.2
3.2 | 1000
1000
1050
1050 | 0 to 70
-
0 to 70
0 to 70 | C, G
C, G
C, G
C, G
C, G | Extender
Extendable
Extendable
Extendable
Extendable
Extendable
Expandable,
RA | | | AND/OR | Quad 2-input Quad 2-input Dual 4-input Dual 4-input Quad 2-input Dual 4-input Dual 4-input Dual 4-input Quad 2-input | MC409
MC410
MC411
MC459
MC460
MC509
MC510
MC559
MC560
SN54H52
MC451
W6F261 | MO
MO
MO
MO
MO
MO
MO
MO
MO
MO
MO
WO
WO
WO
WO
WO
WO
WO
WO
WO
WO
WO
WO
WO | 12
 | | | 6 | 12 | 20/ | 5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | -
-
-
-
-
-
-
-
-
-
-
-
-
0.4
0.26
1.1 | -
-
-
-
-
-
-
-
-
2.4
3.3
1.6 | -
-
-
-
-
-
-
-
1000
1000
800 | 0 to 75 | D, G C,G,DIP | Expandable Expandable Expandable | | | AND/OR/NOT | Quad 2-input Quad 2-input Dual 2 & 3-input Dual 2 & 3-input Triple 3-input Triple 3-input Dual 2-input Dual 2-input Dual 4-input Dual 4-input Dual 4-input Dual 4-input Expandable Quad Expandable Quad Expandable Quad Expandable Quad Expandable Quad Dual shaper/delay, Dual shaper/delay | SG80-81
SG82-83 | Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y | 4
4
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7 | | | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | 20
15/
15/
15/
36
-
30/
30
30
30
30
43
43
43
43
43
30/ | 4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6 | -
-
-
-
0.4
0.45
0.45
0.45
0.45
0.45
0.45 | | | 0 to 75 0 to 775 0 to 775 0 to 775 0 to 775 | D. G
D. G
D. G
D. G
D. G
D. G
D. G
D. G | RA Expandable, Expandable Expandable Expandable Expandable Expandable Expandable Expandable Expandable Expandable | | | | Dual 4-input Dual 4-input Quad 2-input Triple 3-input Dual | SG280-281
SG282-283
MC401
MC454
SWG5A | | 11
11
12
12
12 | 1111 | -
-
-
3 | 5 | 8
12
6
15 | 38/
30
25
15 | -
5
5
5 | -
0.26
0.26
0.5 | -
3.3
3.3
3.0 | -
1000
1000
1000 | 0 to 75
0 to 75
0 to 75 | D, G
D, G
C,G,DIP
C.G.DIP
A | Non-invertin
RA
Non-invertin
Expandable
Expandable | | | 5 | Dual 4-input Dual 4-input Dual 4-input Dual 4-input Dual 4-input Quad 2-input Quad 2-input Quad 2-input Quad 2-input Dual Triple 3-input Triple 3-input Triple 3-input Triple 3-input Triple 3-input Triple 3-input | SWG5B
SWG110
SWG111
SWG112
SWG5113
SWG55
SWG51
SWG52
SWG53
SWG100
SWG101
SWG102
SWG102
SWG103
SWG103 | SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
S | 12
13
13
13
13
14
14
14
15
15
15
15
15 | 20
20
20
20
20
20
20
20
20
20
20
20 | 4 | 15
7
12
6
15
7
12
6
7
15
7 | 15 | 15
20
20
20
20
20
20
20
20
20
25
25
25
25
25 | 5
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6 | 0.5
0.4
0.4
0.45
0.45
0.4
0.45
0.45
0.5
0.4
0.4
0.45
0.45 | 3.0
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | 1000
1000
1000
900
900
1000
900
900
1000
1000
1000
900
9 | - 0 to +75
0 to +75
- 0 to +75
- 0 to +75
- 0 to +75
- 0 to +75
0 to +75
0 to 70 | A | Expandable | | | AND-OR-
Inverter | Dual
Dual
-
Dual 3-input | 3N54H53
SN54H50
SN74H50
SN74H52
SN74H53
MC403 | TI
TI
TI
TI
TI
MO | 6
6
6
6
6 | 24
20
20
9
24 | 11111 | 11111 | 10
10
10
10
10
10 | 22
22
22
22
22
22
23 | 5.25
5.5
5.25
5.25
5.25
5.25 | 0.4
0.4
0.4
0.4
0.4
0.26 | 2.4
2.4
2.4
2.4
2.4
2.4
3.3 | 1000
1000
1000
1000
1000
1000 | -
0 to 70
0 to 70
0 to 70
0 to 75 | D
O
D, DIP
D, DIP
D, DIP
C,G,DIP | Expandable
Expandable
Expandable
Expandable
Expandable | | | | | | | Propaga- | | | | | Power
Diss.
mW | | Lev | els | Naise | | | | |------------|---------------------|--
---|---|--|---|-------------------|---|---|--|--|---|---|---|--|--|--| | | Logic Function | Туре | Model | Mfr. | Delay
(ns) | Typ. | Max. | Fan
Typ. | Max. | (/ =
per
gate) | Supply
Voltage
(Volts) | 0 | "]" | Margin
(mV) | Temp
Range
(°C) | Package
Type | Remarks | | Gates
E | AND-OR-
Inverter | Dual 3-input Dual 3-input Dual 3-input Triple 3-input Dual 4-input Dual 4-input Quad 2-input Triple 3-input Triple 3-input Triple 3-input Triple 3-input Dual 4-input Dual 4-input Dual 4-input Dual 4-input Dual | MC453
MC503
MC553
MC404
MC405
MC455
MC501
MC504
MC505
MC551
MC551
MC555
SN54L51
SN74H60 | MO MO MO MO MO MO MO MO MO TI TI | 11
11
11
12
12
12
12
12
12
12
12
12
12
1 | 20 | | | 6
15
7
12
12
6
15
15
15
7
7
7
7 | 30
30
30
25
20
20
30
25
20
30
25
20
41.5 | 5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26 | 3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3 | 1000
1000
1000
1000
1000
1000
1000
100 | 0 to 75 - 0 to 75 0 to 75 0 to 75 0 to 70 | C.G.DIP
C
C.G.DIP
C.G.DIP
C G.DIP
C
C
C
C
C | Expandable
Expandable
Expandable
Expandable
Expandable
Expandable
Expandable
Expandable
Expandable
Expandable | | | NAND | Dual 4-input | 583B | AL | 4 | - | - | - | 6 | 8 | 5 | 400 | 3800 | 1000 | - | С | w/ex & no | | | | Triple
Dual
Dual
Quad | SN54H10
SN54H20
SN54H40
SN74H00 | TI
TI
TI | 6 6 6 | 1111 | 3
4
4
2 | | 10
10
10
10 | 20
†20
35
†20 | 5.5
4.5-5.5
5.5
4.75-
5.25 | 0.4
0.4
0.4
0.4 | 2.4
2.4
2.4
2.4 | 1000
1000
1000
1000 | -
-
0 to 70 | D
D
D
D, DIP | tper gate | | | 8 | Triple Dual Single Dual Quad 2-input Quad 2-input Quad 2-input Quad 2-input Quad 4-input Dual 4-input Dual 4-input Dual 4-input | SN74H10
SN74H20
SN74H30
SN74H40
SWG220
SWG221
SWG222
SWG223
SWG240
SWG241
SWG242 | TI
TI
TI
TI
SW
SW
SW
SW
SW
SW
SW | 666666666666666666666666666666666666666 | -
-
2
2
2
2
4
4
4 | 3 4 8 4 | -
-
12
6
10
5
12
6 | 10 10 10 10 | 20
20
20
35
22
22
22
22
22
22
22 | 5.25
5.25
5.25
5.25
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6 | 0.4
0.4
0.4
0.4
0.4
0.4
0.45
0.45
0.4
0.4
0.45 | 2.4
2.4
2.4
2.4
3
3
3
3
3 | 1000
1000
1000
1000
1000
1000
900
900
1000
1000
900 | 0 to 70
0 to 70
0-70
-
-
0 to +75
0 to +75 | D, DIP
D, DIP
D, DIP
D, DIP | | | | 9 | Dual 4-input Quad 2-input Triple 3-input Dual 4-input 8-input 8-input 8-input 8-input 8-input 8-input 8-input 8-input 8-input Triple 3-input Dual 4-input 8-input Dual 4-input Dual 4-input Dual Triple Quad Dual Dual | SWG243
900251
900351
900451
900751
SWG262
SWG262
SWG263
900259
900359
900459
900459
5E808
SE816
SE816
SE810
SW103 | SW
FA
FA
SW
SW
SW
SW
FA
FA
FA
SIG
SIG
SIG
SW | 6
6
6
6
6
8
8
8
8
8
8
8
10
10
10
10 | 6 | 4 8 4 3 2 4 | -
-
-
12
6
10
5
-
-
-
- | 5
10
10
10
10
-
-
8
8
8
8
10
10
10
10 | 22
11/
11/
11/
11/
22
22
22
22
12/
12/
1 | 4.5-6
4.5-5.5
4.5-5.5
4.5-5.5
4.5-6
4.5-6
4.5-6
4.5-5.5
4.5-5.5
4.5-5.5 | 0.45
0.2
0.2
0.2
0.4
0.4
0.45
0.25
0.25
0.25
0.25
0.4
0.4
0.4
0.4 | 3
2.7
2.7
2.7
2.7
3
3
3
3.2
3.2
3.2
3.2
3.2
3.2
4
2.4
2.4
2.4
2.4
3.0 | 900
1000
1000
1000
1000
1000
1000
900
90 | 0 to +75 | 100000 GGGG | | | | 10 | Dual Dual Bual Bual Bual Bual Bual Bual Bual B |
SW104
SWG4A
SWG4B
SWG14
S8806
S8816
S8870
S8880
SWG41
SWG42
SWG33
SWG130
SWG132
SWG132
SWG133
SWG140
SWG142
SWG142
SWG142
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG44
SWG4 | SW S | 10
11
11
11
12
12
12
12
12
12
12
12
12
12 | | 8 3 4 4 8 8 4 3 2 | | 15
15
15
7
10
10
10
10
10 | 20
15
15
15
15
15
15
15
15
15
15
30
30
30
30
15
15
15
10
10
10 | 4.5-5.5
4.5-5.5
4.8-5.3
4.8-5.3 | 0.4 | 3.0
3.0
3.0
3.0
3.0
2.4
2.4
2.4
2.4
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3 | 1000
1000
1000
1000
1000
1000
1000
100 | 0 to +75
0 to +75
0 to +75
 | AAAAFEFF | | | | 11 | Quad 2-input Triple 3-input Dual 4-input Quad 2-input Triple 3-input Dual 4-input | SN5400
SN5410
SN5420
SN7400
SN7410
SN7420 | TI TI TI TI TI TI TI | 13
13
13
13
13
13 | | | | 10
10
10
10
10 | 10./ gate | 4.5to 5.5 4.5to 5.5 4.5 to 5.5 4.75 - 5.25 4.75 - 5.25 4.75 - 5.25 | 1 1 1 1 1 | 1 1 1 1 1 1 | 1000
1000
1000
1000
1000
1000 | -
-
-
0 · 70
0 · 70 | D D D D D | | Temperature range is -55 to 125°C unless otherwise stated. | | | | | | Propaga- | Fa | n-in | Fon | -out | Power Diss. mW (/= | Supply | Leve
(Val | els | Noise | Temp | | | |------------|----------------|---|--|--|--|--------------------------------|-------------|-------------------------------|--------------------------------|---|--|---|--|---|--------------------------------------|-----------------------|---| | | Logic Function | Туре | Model | Mfr. | Delay
(ns) | Тур. | Мах. | Тур. | Max. | per
gate) | Voltage
(Volts) | 0 | | Margin
(mV) | Range
(°C) | Package
Type | Remark | | Gates
E | NAND | Dual 4-input | SN54930 | TI | 13 | - | - | - | 10 | 10/ | 4.5-5.5 | - | - | 1000 | - | D | | | | | Quad 2-input | SN54946 | TI | 13 | - | - | - | 10 | gate
10/ | 4.5-5.5 | - | - | 1000 | - | D | | | | | Triple 3-input | SN54962 | TI | 13 | - | - | - | 10 | gate
10/ | 4.5-5.5 | - | - | 1000 | - | D | | | | | Dual 4-input | SN74930 | TI | 13 | - | - | - | 10 | gate
10/ | 4.75- | - | - | 1000 | 0 to 70 | D | | | | | Triple 3-input | SN74962 | TI | 13 | - | - | - | 10 | gate
10/ | 5.25
4.75- | - | - | 1000 | 0 to 70 | D | | | | | Quad 2-input | SN74946 | TI | 13 | - | - | - | 10 | ga te
10/ | 5.25
4.75- | - | - | 1000 | 0 to 70 | D | | | | 12 | 8-input
8-input
8-input
8-input
8-input
8-input
8-input | SW5430
SW7430
SWG60
SWG61
SWG62
SWG63
SN5430 | WZ
WZ
WZ
WZ
WZ
WZ
TI | 15
15
15
15
15
15
15 | 8
8
8
8
8 | | 10
10
7
7
12
6 | -
-
-
-
-
10 | gate
10
10
15
15
15
15
10 | 5.25
4.5-5.5
4.8-5.3
4.5-6
4.5-6
4.5-6
4.5-6 | 0.4
0.45
0.4
0.4
0.45
0.45 | 3 3 3 3 - | 1000
900
1000
1000
900
900
1000 | 0 to 75
-
0 to +75
0 to +75 | -
-
-
-
D | | | | | 8 - input | SN7430 | TI | 15 | - | - | - | 10 | 10 | 5.5
4.75 - | ~ | - | 1000 | 0 - 70 | D | | | | | 8-input
8-input | SN54965
SN74965 | TI
TI | 15
15 | - | E | - | 10
10 | 10
10 | 5.25
4.5-5.5
4.75- | _ | - | 1000
1000 | -
0 to 70 | D
D | | | | | - | SWG16 | SW | 15 | - | 8 | 7 | - | 15 | 5.25 | 0.5 | 3.0 | 1000 | - | A | | | | | 8-input
8-input
8-input
8-input
Dual 4-input
Dual 4-input
Dual 4-input | SWG120
SWG121
SWG122
SWG123
SW5440
SW7440
SN5440 | SW
SW
SW
SW
SW
TI | 16
16
16
16
17.5
17.5 | 20
20
20
20
4
4 | 111111 | 7
7
12
6
30
30 | -
-
-
-
-
30 | 15
15
15
15
10
10
25/
gate | 4.5-6
4.5-6
4.5-6
4.5-5.5
4.8-5.3
4.5 to
5.5 | 0.4
0.4
0.45
0.45
0.4
0.45 | 3 3 3 3 3 - | 1000
1000
900
900
1000
900
1000 | 0 to +75
0 to +75
0 to +75 | -
-
-
-
D | Expandable
Expandable
Expandable
Expandable
Power gate | | | | Dual 4-input | SN7440 | TI | 18 | - | - | - | 30 | 25/ | 4.75-
5.25 | - | - | 1000 | 0-70 | D | Power gate | | | | Quad 2-input | SE480 | SIG | 23 | - | 2 | 7 | - | gate
3.5 | 4.0 | 0.2 | 2.8 | 1000 | - | F, G | also 0°C to 7
15°C to 55°C | | | 13 | Quad 2-input
Dual 4-input | S8480
SE416 | SIG
SIG | 25
30 | - | 2 4 | 7 | 7 | 4.5 | 5.0
4.0 | 0.35
0.2 | 3.4
2.8 | 1000
1000 | - | F
F, G | also 0°C to 7 | | | | Dual 3-input | SE417 | SIG | 32 | - | 3 | 7 | _ | 4.5 | 4.0 | 0.2 | 2.8 | 1000 | _ | F, G | 15°C to 55° also 0°C to / | | | | Quad
Triple
Dual
Single
Dual 4-input
Dual 4-input
Dual 4-input | SN54L00
SN54L10
SN54L20
SN54L30
S8416
543B | TI
TI
TI
SIG
AL | 33
33
33
33
35
35 | -
-
-
4
4 | 2 3 4 8 4 - | | 10
10
10
10
7
6 | †1
†1
†1
1
-
2.4 | 4.5-5.5
4.5-5.5
4.5-5.5
4.5-5.5
5.0
5 | 0.3
0.3
0.3
0.3
0.35
250 | 2.4
2.4
2.4
2.4
3.4
3800 | | | D
D
D
F | tper gate
tper gate
tper gate
tper gate
w/ex & no
pull up
w/ex & no | | | 1 | | | | | | | | | | | | | | | | pull up | | | | Dual 4-input
Dual 4-input | 547B
548B | AL
AL | 35
35 | 4 | - | - | 6 | 4.8 | 5 | 250
250 | | 1000 | - | - | w/ex → no | | | | Dual 4-input | 570B | AL | 35 | 4 | - | - | 6 | 8 | 5 | 400 | 3800 | 1000 | - | _ | pull up
w/ex + no | | | | Quad 2-input | 571B | AL | 35 | 2 | - | - | 6 | 16 | 5 | 400 | 3800 | 100 | _ | С | pull up
w/ex + no | | | | Dual 3-input | 572B | AL | 35 | 4 | - | - | 6 | 8 | 5 | 400 | 3800 | 1000 | - | С | pull up
w ex + no | | | 14 | Triple 3-input | 573B | AL | 35 | 3 | - | - | 6 | 12 | 5 | 400 | 3800 | 1000 | _ | С | pull up
w/ex + no | | | | Dual 4-input
Quad 2-input
Dual 3-input
Triple 3-input
Dual 4-input | 574B
575B
576B
577B
584B | AL
AL
AL
AL | 35
35
35
35
35
35 | 4
2
3
3
4 | | 11111 | 6 6 6 | 10.4
20.8
10.4
15.6
10.2 | 5
5
5
5
5 | 400
400
400
400
400
400 | 3800
3800
3800
3800
3800
3800 | | | C - C C C | w/ex & no | | | | Dual 4-input | 587B | AL | 35 | 4 | - | - | ĥ | 8 | 5 | 400 | 3800 | 1000 | - | С | w ex &
no
pull up | | | | Dual 3-input
Quad
Dual
Dual 4-input
Quad 2-input
Dual 3-input | \$8417
\$N54H00
\$W402
530B
531B
532B | SIG
TI
SW
AL
AL
AL | 50
6
100
100
100
100 | -
-
4
2
3 | 3 2 3 | | 7
10
5
6
6
6 | -
†20
0.10
2.4
4.8
2.4 | 5.0
4.5-5.5
3.0
5
5 | 0,35
0,4
0,3
250
250
250 | 3.4
2.4
2.0
3800
3800
3800 | 1000
1000
300
1000
1000
1000 | - | F
D
A
C | tper gate w/ex + no pull up | | | 15 | Triple 3-input Dual 4-input Quad 2-input Dual 3-input Triple 3-input Dual 4-input Quad 2-input Dual 3-input | 533 B
534 B
535 B
536 B
537 B
500 B
501 B
502 B | AL
AL
AL
AL
AL
AL | 100
100
100
100
100
100
180
180 | 3 4 2 3 4 2 3 | | 1111111 | 6 6 6 6 8 8 8 | 3.6
4.8
9.6
4.8
7.2
1
2 | 5
5
4
4
5
4
4
4
4 | 250
250
250
250
250
250
250
250
250 | 3800
3800
3800
3800
3800
3800
3800
3800 | 1000
1000
1000
1000 | | | w ex no pull up w/ex & no pull up | Temperature range is -55 to 125°C unless otherwise stated. | | | | | | Propaga- | - | | | | Power
Diss.
mW | Sunnle | Lev | els | Noise | Temp | | | |------------|----------------|--|--|--|--|-----------------------------|---|-------------------------------------|--|---|---|--|---|--|---|--|--| | | Logic Function | Туре | Model | Mfr. | Delay
(ns) | Typ. | Max. | Fan
Typ. | Max. | (/ =
per
gate) | Supply
Voltage
(Volts) | 0,, | "1" | Margin
(mV) | Range
(°C) | Package
Type | Remarks | | Gates
E | NAND
16 | Triple 3-input Dual 4-input Quad 2-input Dual 3-input Triple 3-input Dual | 503B
504B
505B
506B
507B
\$N54L22 | AL
AL
AL
AL
TI | 180
180
180
180
180 | 3
4
2
3
3
20 | 111111 | 111111 | 8
8
8
8
8
10 | 1.5
2
4
2
3
†1 | 4
4
4
4
4.5-5.5 | 250
250
250
250
250
250
250
0.3 | 3800
3800
3800
3800
3800
3800
2.4 | 1000
1000
1000
1000
1000
1000 | 111111 | - C C D | w/ex
topen collecto | | | NAND/NOR | Quad 2-input Quad 2-input Qual 4-input Qual 4-input Quad Qual Single 8-input Quad 2-input Triple 3-input | SG220, 221
SG220, 221
SG240, 241
SG240, 241
SG200, 241
SG200, 241
SG200, 261
SG202, 263
SG262, 263 | SY
SY
WH
WH
SY
SY
SY
SY
SI
SI
MO
MO
MO
MO
MO
MO
MO
MO
MO
MO
MO
MO
MO | 6
6
6
6
6.0
6.0
8
8
8
8
10
10
10
10
10
10
10
10
10
10
10
10
10 | | 2 4 8 8 4 | | 12
10
12
10
6
6
11
11
9
12
10
15
15
15
12
12
12
12
16
6
6
6
15
15
17
7
7
7
7 | 22
22
22
22
21
19/
22
22
22
22
22
22
23
16.5
30
60
45
30
60
45
30
60
45
30
60 | | 0.25
0.25
0.25
0.25
1.1
1.1
-
-
0.25
0.25
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26 |
3.5
3.5
3.5
1.6
-
-
3.5
2.3
2.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3 | 1000
1000
1000
1000
800
800
-
-
1000
1000 | 0 to 75
0, +75
-
0 to 75
-55 to 165
-55 to 165
0 to 75
0 to 75
0 to 75
0 to 75 | D, G G G, DIP C, G, G | RA Expandable, R Expandable | | | 18 | Quad 2-input Single 8-input Dual 4-input Triple 3-input Quad 2-input Quad 2-input Dual Dual Dual Dual Dual Dual Dual Dual | SG142-143
TNG3041-
44
TNG3141-
44
TNG3341-
44
TNG3041
TNG3043
TNG3045
TNG3047
TNG3143
TNG3145
TNG3145
TNG3241
TNG3241
TNG3245
TNG3247
SG190,191
SG192,193
MC402
MC452 | TR T | 10
10
10
10
10
10
10
10
10
10
10
10
10
1 | | 1
1
1
1
8
8
6
6
6
4
4
3
3
3
4
4
3
3
7 | 6 | 12
10
10
10
10
20
7
20
7
20
7
20
7
20
7 | 15
24
45
65
90
15
15
15
15
15
15
15
15
15
15
15
15
15 | 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 | 0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20 | 3.5
3.5
3.5
3.5
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0 | 1000
1000
1000
1000
1000
1000
1000
100 | 0 to 75
0 to 75
0 to 75
0 to 75
0 to 75
 | D, G
D,P,DIP
D,P,DIP
D,P,DIP
D,P,DIP
A, F
A, F
A, F
A, F
A, F
A, F
A, F
C, G,DIP
C,G,DIP
C,G,DIP | High speed
High speed
High speed
High speed | | | 19 | 8-input 8-input Dual 4-input Single 8-input Expandable | MC502
MC552
MC552
SG40, SG41,
SG42, SG43
SG60, SG61,
SG62, SG69
SG2, SG69
SG2, 122, 123
TNG3013
TNG3013
TNG3013
TNG3013
TNG3011
TNG3111
TNG3113
TNG3113
TNG3113
TNG3113
TNG3113
TNG3113
TNG3113
TNG3113
TNG3113
TNG3113
TNG3113
TNG3113
TNG3113
TNG3113
TNG3113
TNG3113
TNG3113
TNG3113
TNG3113
TNG3113
TNG3113
TNG3113 | SY | 12
12
12
12
12
12
15
15
15
15
15
15
15
15
15
15
15
15
15 | | 8 8 6 6 6 4 4 4 4 3 3 3 2 2 4 4 4 3 3 3 2 2 4 4 4 3 3 3 2 2 4 4 4 3 3 3 2 2 4 4 4 3 3 3 2 2 4 4 4 3 3 3 2 2 4 4 4 3 3 3 2 2 4 4 4 3 3 3 2 2 4 4 4 3 3 3 2 2 4 4 4 3 3 3 2 2 4 4 4 3 3 3 2 2 4 4 4 3 3 3 2 2 4 4 4 3 3 3 2 2 4 4 4 3 3 3 2 2 4 4 4 3 3 3 2 2 4 4 4 3 3 3 2 2 4 4 4 3 3 3 2 2 4 4 4 3 3 3 2 2 4 4 4 3 3 3 2 2 4 4 4 3 3 3 3 | 6 6 6 | 15
7
20
20
20
20
7
7
20
7
7
7
20
7
7
7
20
7
7
7
20
7
7
7
20
7
7
20
7
7
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7 | 15
15
15
15
15
15
15
15
15
15
15
15
15
1 | 55555666666666666665555555555555555555 | 0.20
0.20
0.20
0.20
0.20
0.20
0.02
0.20
0.20
0.20
0.20
0.20
0.20
0.20 | 3.3
3.3
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0 | 1000
1000
1000
1000
1000
1000
1000
100 | | CCCAAAFFAAAFFAAAAAAAAAAAAAAAAAAAAAAAAA | Differ in
Temp & F.O.
Differ in
Temp & F.O.
Differ in
Temp & F.O. | | | 2 0 | 8-input
8-input
Dual 4-input
8-input
Dual 4-input
8-input
Dual 4-input
8-input | MC506
MC556
TTμL103
TTμL104
μ7103
μ7104
μ7105
μ7106 | MO
MO
FA
FA
PH
PH
PH | 18
18
25
30
30
30
30
30
30 | 111111 | 4
8
4
8
4
8 | -
-
-
10
10
10
10 | 15
7
15
15
 | 15
15
25
25
25
25
25
25
25 | 5.0
5
5 | 0.33 | 3.3
3.3
4
4
3.0
3.0
3.0
3.0 | 1000
1000
750
750
500
500
500
500 | | C C A. C A. C | | | | | | | | Propaga- | Fair | ı-in | Fan | -out | Power
Diss.
mW
(/= | Supply | Ley
(Vol | els | Naise | Temp | | | |--------------------|----------------|---|---|--|---|---|------------------|--------------------------------|--------------------------------|---|--|--|--|---|--|------------------------------|---| | | Logic Function | Туре | Model | Mfr. | Delay
(ns) | Тур. | Мах. | Тур. | Max. | per
gate) | Voltage
(Volts) | | -10 | Margin
(mV) | Range
(°C) | Package
Type | Remark | | ates
E | Exclusive OR | Dual 4-input
Dual 4-input
Quad 2-input
Quad 2-input | SG210,211
SG212,213
SG250,251
SG252,253 | SY | 7
7
7.5
7.5 | | 1111 | 1111 | 12
10
12
10 | 30
30
43
43 | 1111 | 0.25
0.25
0.25
0.25 | 3.5
3.5
3.5
3.5 | 1000
1000
1000
1000 | -
0 to 75
-
0, +75 | D, G
D, G
D, G
D, G | Expandable
Expandable | | | | Dual
Expandable
Expandable
Dual | SE840
SG90-91
SG92-93
S8840 | SIG
SY
SY
SIG | 10
11
11
12 | 1111 | 4
-
4 | 7
6 | 10
15
12
10 | 14
35
35
- | +5
-
-
5.0 | 0.4 | 2.4 | 1000 | 0 to 75 | F
D, G
D, G
F | RA | | | 21 | Single 8-input
Maj. Voter | \$G50,\$G51
\$G52,\$G53
\$G100,101
\$G102,103
\$G110,111 | SY | 12
12
12 | 1 1 1 | | 6 | 20 20 20 | 15
15
15 | 1 1 | - | 1 1 | 1000
1000
1000 | - | - | Differ in
Temp & F.O.
Differ in
Temp & F.O.
Differ in | | | | 4 x 4 input | SG112,113
TNG3241-
44 | TR | 12 | - | 1 | - | 10 | 22 | 5 | 0.45 | 3.5 | 1 000 | 0 to 75 | D,P,DIP | Temp & F.O
High speed | | | | Expandable | TNG3281- | TR | 12 | - | 1 | - | 10 | 22 | 5 | 0.45 | 3.5 | 1000 | 0 to 75 | D,P,DIP | High speed | | | | Dual
Quad 2-input | TNG4241-
44
TNG4446 | TR
TR | 12 | | 1 | - | 10
10 | 90 | 5 | 0.45 | 3.5 | 1000 | 0 to 75
0 to 75 | | High speed
High speed, | | | | Dual
Dual
Dual | SWG90
SWG91
SWG92
SWG93
SW5450
SW7450
SN5450 | SW
SW
SW
SW
SW
T1 | 14
14
14
15
15
15 | 6
6
6
20
20 | 11111111 | 15
7
12
6
10
10 | 10 | 30
30
30
30
10
10
14/
gate | 4.5-6
4.5-6
4.5-6
4.5-6
4.5-5.5
4.8-5.3
4.5 to
5.5 | 0.4
0.45
0.45
0.45
0.4
0.45 | 333333 | 1000
1000
900
900
1000
900
1000 | 0 to +75
0 to +75
0 to +75 | D | Expandable
Expandable
Expander
Inputs | | | | Dual |
SN5451 | TI | 15 | - | - | - | 10 | 14
gate | 4.5-5.5 | - | - | 1000 | - | D | | | | 2 2 | Dual
Dual | SN7451
SN54966 | TI | 15 | - | - | - | 10 | gate | 4.75-
5.25
4.5-5.5 | 1 | - | 1000 | 0 to 70 | 0 | | | | | Dual | SN74966 | TI | 15 | - | - | - | 10 | gate
14/ | 4.75- | _ | _ | 1000 | 0 to 70 | D | | | | | Dual | SE 440 | SIG | 23 | - | 2 | 7 | - | gate
4.5 | 5.25
4.0 | 0,2 | 2.8 | 1000 | - | F, G | also 0°C to 70 | | | | Dual
Dual 4-input
Dual 4-input
Dual 4-input
Dual 4-input | \$8440
578B
538B
508B
TNG4041- | SIG
AL
AL
AL
TR | 25
35
100
180 | 8 8 8 | 2
-
-
1 | 11111 | 7
6
6
8 | 10.4 | 5.0
5
5
4 | 0.35
400
250
250 | 3,4
3800
3800
3800 | 1000
1000
1000
1000
1000 | -
-
-
0 to 75 | F
C
C
C
D.P.DIP | 15°C to 55°C | | | | Quad 2-input | 42
TNG4541 | TR | _ | _ | 1 | _ | _ | _ | _ | 0.45 | 3.5 | 1000 | 0 to 75 | | High speed | | ate Expanders
F | 1 | Quad 2-input Quad 2-input Quad 2-input Quad 2-input Quad 2-input Dual 4-input Dual 4-input Dual 4-input Quad 2-input Quad 2-input Quad 2-input Quad 2-input Dual 4-input Dual 4-input Dual 4-input Dual 4-input Dual 4-input Dual A-input Quad 2-input Quad Quad Quad Quad Quad | SWG230
SWG231
SWG233
SWG273
SWG270
SWG277
SWG277
SWG277
SG232,233
SG230,231
SG270,271
SG272,273
SG270,271
SG272,273
SG270,271
SG272,273
SG270,271
SG272,273
SG270,271
SG272,273
SG270,271
SG272,273
SG270,271
SG272,273
SG270,271
SG272,273
SG270,271
SG272,273
SG270,271
SG272,273
SG270,271
SG272,273
SG270,271
SG272,273
SG270,271
SG272,273
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271
SG270,271 | SY | 2 | 8
8
8
8
8
8
8
8
7
 | | | 12
10
15
12
4
4 | 28
28
28
6.7
6.7
6.7
28
28
6.7
6.7
5
2
2
2
2
2
5
5 | 5.25 | 0. 25
0.4
0.45
0.4
0.4
0.4 | 3.5
3.5
3.5
3.5
3.5
2.4
2.4
2.4
2.4
2.4 | | 0 to +75
0 to +75
0 to +75
0 to +75
0 to +75
0 to 75
0 to 75 | | | | | 2 | Dual 4-input | SWG170
SWG177
SWG173
SWG180
SWG181
SWG181
SWG182
SWG182
SW5460
SW7460
SW7460
SG172,173
SG182,183
SN5460
SN7460
TNG3051 | SW
SW
SW
SW
SW
SW
SW
SW
SY
SY
TI
TI | | 8 8 8 8 8 8 8 8 4 4 | | 6 | 20 4 | 5
5
5
5
1
1
1
1
5
5
15
15
15
5/exp | 4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-6
4.5-5.3
4.5-5.3
4.5-5.5
5.5
5.5
5.5-6 | 0.20 | 3.0 | | 0 to +75
0 to +75
0 to +75
0 to +75
0 to +75
0 to +75 | D D A, F, F, A, F | Differ in
Temp & F.O
Differ in
Temp & F.O | | | | | TNG3251 | TR | - | - | | - | - | | | 0.20 | | | - | | | 4. Emitter-Coupled Logic | | | | 1 | | Propaga- | | | | | Power
Diss.
mW | | Lev | els | N. | | | | |-----------------|----------------|-----------------------------------|-------------------------|------------|---------------|------------|--------------|------|----------------------|----------------------|--------------------|----------------|------------------------|----------------|-----------------------|----------------------|--| | | Logic Function | Туре | Model | Mfr. | Delay
(ns) | Fa
Typ. | n-in
Max. | Typ. | Max. | (/ =
per
gate) | Voltage
(Volts) | 0,, | 115) | Margin
(mV) | Temp
Range
(°C) | Package
Type | Remarks | | | | Half | MC303 | МО | 7 | - | - | - | ac 15 | | -5.2 | _1 55 | -0.75 | | - | A, C | | | Adders
A | | Half | MC353 | MO | 7 | _ | | _ | dc 25
ac 15 | | -5,2 | | -0.75 | | 0 to 75 | A. C | | | | | | 1 | | | | - | | dc 25 | | | | | | 0 to 75 | G, DIP | | | | | Full | MC1019P | MO | 10 | - | | - | ac 15
dc 25 | | -5.2 | | -0.75 | | | | | | | | Full | MC1219F | MO | 10 | - | - | - | ac 15
dc 25 | | -5.2 | -1.55 | -0.75 | | , | С | | | Binary Elements | | R-S FF
J-K | WC379
MC308 | WH
MO | 6 7.5 | - | 2 | 4 | 8
ac 15 | 223
87 | -4.0
-5.2 | | -0.01
-0.75 | 150 | 1 1 | D
A, C | | | В | | J-K | MC358 | MO | 7.5 | - | 2 | - | dc 25
ac 15 | 50 | -5.2 | -1.55 | -0.75 | - | 0 to 75 | A. C | | | | | J-K | MC358A | мо | 7.5 | - | 2 | - | dc 25
ac 15 | 87 | -5.2 | -1.55 | -0.75 | - | 0 to 75 | A. C | | | | | Set-Reset | MC352 | мо | 10 | - | - | - | dc 25
25 | 35 | 10 | | 0.75 | - | 0 to 75 | A, C | | | | | J-K | MC358
SW308 | MO | 10 | _ | - | - | 25 | 52
52
42 | 10
-5.2
-5.2 | 1.55 | 0.75
-0.75
-0.75 | - | 0 to 75 | A, C
A, C
A, C | | | | | R-S | MC302 | MO | 10.5 | 2 | 15 | - | ac 15
dc 25 | | -5.2 | | | | - | | Expandable | | | | R-S | MC352A | MO | 10.5 | 2 | 15 | - | ac 15
dc 25 | 42 | -5.2 | -1.55 | -0.75 | - | 0 to 75 | A, C | Expandable | | | | J-K | MC364 | MO | 12 | - | 2 | - | ac 15
dc 25 | 118 | -5.2 | | -0.75 | | 0 to 75 | A. C | | | | | J-K | MC314 | MO | 12 | - | 2 | - | ac 15
dc 25 | | -5.2 | -1.55 | -0.75 | - | - | A. C | | | | | Ac coupled J-K | MC1013P | МО | - | - | - | - | ac 15
dc 25 | | -5.2 | -1.55 | -0.75 | - | 0 to 75 | G, DIP | | | | | J-K | MC1213F | MO | - | - | - | - | ac 15
dc 25 | 105 | -5.2 | -1 55 | -0.75 | - | - | С | | | Drivers | | Single 6-input
Line & Capacity | WC378
MC315 | WH
MO | 3 14 | - 3 | 6 | 12 | 20
50 Ω | 100 | -4
-5.2 | | -0.01
-0.75 | 150 | 1 1 | D
A, C | Expandable | | С | | Line & Capacity | MC365 | MO | 14 | 3 | 15 | _ | line
50 Ω | | -5.2 | 1 | -0.75 | | 0 to 75 | A. C | Expandable | | | | - Cilie & Capacity | MC304 | MO | - | - | - | - | line
ac 15 | 18 | -5.2 | -1.55 | -0.73 | | - | A, C | Lapandabio | | | | | MC316 | MO | | | 3 | | dc 25 | 135 | -5.2 | | -0.75 | | | C | | | | | Lamp | | | - | - | 3 | - | mA | | | | | | 0 to 75 | A. C | | | | | Lamp | MC366 | MO | | - | | - | mA | 135 | -5.2 | | -0.75 | | 0 (0 / 5 | | | | | | - | SW304
MC354 | SW
MO | - | - | - | 5 - | 25
ac 15
dc 25 | | -5.2
-5.2 | | 1 | - | 0 to 75 | A, C
A, C | | | Gates | NOR | Quad 2-input | CR2101 | RCA | 5.6 | - | 8 | - | 12 | 156 | 5.2 | -1.55 | | 320 | - | F | 1 | | D | | Dual 2-input | MC309 | MO | 6.5 | - | 2 | - | ac 15
dc 25 | 54 | -5.2 | | -0.75 | | - | A, C | | | | 1 | Dual 2-input | MC311 | MO | 6.5 | - | 2 | - | ac 15
dc 25 | | -5.2 | | -0.75 | | - | A, C | | | | | Dual 3-input | MC312 | MO | 7.5 | - | 3 | - | ac 15
dc 25 | | -5.2 | | | | - | A, C | | | | | Dual | SW309
SW310
SW311 | SW | 6 | - | 2 | - | 26 | 49 | -5.2 | -1.5 | -0.75 | - | - | A, C | Units Differ in
output con-
figuration | | | OR/NOR | Dual 4-input
Dual 3-input | WC377
WC380 | WH | 2 2 | - | 4 3 | 6 | 10
10 | 60/
60/ | -4.0
-4.0 | -0.70
-0.70 | -0.01
-0.01 | 150
150 | | D
D | | | | | Single 8-input Dual 4-input | WC381
CD2150 | WH | 3.6 | - | 8 | 6 | 10 | 100/ | -4.0
-5 | -0.70
-1.6 | -0.01
-0.76 | 150
330 | -
10 to 60 | D
F | | | | | Dual 4-input
8-input | CA2151
CA2152 | RCA
RCA | 3.6 | - | 8 | - | 12 | 175
110 | -5
-5 | -1.6 | -0.76
-1.6 | 330
330 | 10 to 60
10 to 60 | F | | | | 2 | Dual | SN7000 | TI | 5 | - | - | - | - | 40/
gate | +1.25- | - | - | 250 | 0 to 70 | D | 4 load resistor | | | | Dual | SN7001 | TI | 5 | - | - | - | - | 40/ | +1.25- | - | - | 250 | 0 to 70 | D | 2 load resistors | | | | Dual 4-input | CR2100
SW301 | RCA
SW | 5.6 | - | 8 5 | - | 12
26 | gate
115
35 | -5.2
-5.2 | | -0.75
-0.75 | 320 | - | F
A, C | | | | | - | SW306
SW307 | SW | 6 | 3 | 25 | - | 26 | 35 | -5.2 | | -0.75 | | - | A, C | Units Differ in Output | | | NOD /NAND
| Triple 2 is at | | МО | 6 | | | | ac 15 | 110 | E 2 | 1.55 | 0.75 | | 0 45 75 | G. DIP | Configuration | | | NOR/NAND | Triple 3-input | MC1007P | | 5 | - | - | - | dc 25 | | -5.2
-5.2 | | -0.75 | | 0 to 75 | G. DIP | | | | | Triple 3 input | MC1008P | MO | 5 | | - | - | ac 15
dc 25 | | -5.2 | | -0.75 | | 0 to 75 | | | | | | Triple 3-input | MC1009P | MO | 5 | - | - | - | ac 15
dc 25 | | -5.2 | | -0.75 | | 0 to 75 | G. DIP | | | | | Quad 2-input | MC1010P | MO | 5 | - | - | - | ac 15
dc 25 | | -5.2 | | -0.75 | | 0 to 75 | G, DIP | | | | 3 | Quad 2-input | MC1011P | MO | 5 | - | - | - | ac 15
dc 25 | | -5.2 | | -0.75 | | 0 to 75 | G. DIP | | | | | Quad 2-input | MC1012F | MO | 5 | - | - | - | ac 15
ad 25 | | -5.2 | | -0.75 | | - | С | | | | | Quad 2-input | MC1012P | MO | 5 | - | - | - | ac 15
dc 25 | | -5.2 | | -0.75 | | - | С | | | | | Triple 3-input | MC1207F | MO | 5 | - | - | - | ac 15
dc 25 | 110 | -5.2 | | -0.75 | | - | С | | | | | Triple 3-input | MC1208F | MO | 5 | - | - | - | ac 15
dc 25 | 75 | -5.2 | -1.55 | -075 | - | - | С | | #### 4. ECL (continued) | The same | | | | | Propaga- | Fai | ı-in | For | -out | Power
Diss.
mW
(/= | Supply | Lev
(Va | els | Naise | Temp | | | |------------------|----------------|------------------------------|-------------------|----------|---------------|------|----------|------|-----------------|-----------------------------|--------------------|----------------|----------------|----------------|--------------------|-----------------|-------------------------| | | Logic Function | Туре | Model | Mfr. | Delay
(ms) | Тур. | Мах. | Тур. | | per
gate) | Voltage
(Valts) | - | 1 | Margin
(mV) | Range
(°C) | Package
Type | Remark | | ates | NOR NAND | Triple 3-input | MC1209F | МО | 5 | - | - | _ | ac 15 | 60 | -5.2 | -1.55 | -0.75 | - | - | С | | | D | | Quad 2-input | MC1211F | МО | 5 | - | _ | - | dc 25
ac 15 | 95 | -52 | -1.55 | -0.75 | - | - | С | - | | | | Quad 2-input | MC1212F | МО | 5 | - | - | _ | dc 25
ac 15 | 65 | -5.2 | -1 55 | -0.75 | - | - | С | | | | | Dual 2-input | MC310 | MO | 6.5 | - | 2 | - | dc 25
ac 15 | 54 | -5.2 | -1.55 | -0.75 | _ | - | A, C | | | | | Quad 2-input | MC313F | МО | 6.5 | - | 2 | - | dc 25
ac 15 | 124 | -5.2 | -1 55 | -0.75 | - | _ | C | | | | 4 | Dual 2-input | MC359 | мО | 6.5 | - | 2 | _ | dc 25
ac 15 | 54 | -5.2 | -1.55 | -0.75 | _ | 0 to 75 | A. C | | | | | Dual 2 input | MC360 | мо | 6.5 | - | 2 | _ | dc 25
ac 15 | 54 | -5.2 | -1.55 | -0.75 | - | 0 to 75 | A, C | | | | | Dual 2-input | MC361 | МО | 6.5 | - | 2 | - | dc 25
ac 15 | 41 | -5.2 | -1.55 | -0 75 | - | 0 to 75 | A. C | | | | | Quad 2-input | MC363F | МО | 6.5 | _ | 2 | - | dc 25
ac 15 | 124 | -5.2 | -1.55 | -0.75 | _ | 0 to 75 | C | | | | | Dual 3-input | MC362 | MO | 7.5 | - | 3 | - | dc 25
ac 15 | 70 | -5.2 | | -0 75 | | 0 to 75 | A.C | | | | | | | | | | | - | dc 25 | | | | | | | | | | | NAND-AND | Dual 4-input | MC369F | MO | 3 | - | 4 | - | ac 15
dc 100 | 250 | -5.2 | -1.55 | -0 75 | - | 0 to 75 | С | | | | | Dual 2-input | MC369G | MO | 3 | - | 4 | - | ac 15
dc 100 | 250 | -5.2 | -1.55 | -0.75 | - | 0 to 75 | A | | | | | Dual 4-input
Dual 4-input | MC1050
MC1051 | MO
MO | 4 | - | - | - | 10 | - | -5.2
-5.2 | -1.55
-1.55 | -0.75
-0.75 | - | 0 to 70
0 to 70 | C | Comp. out
Wired OR | | | | 8-input
6-input | MC1052
MC1001P | MO
MO | 4 5 | - | - | - | 10
ac 45 | 115 | -5.2
-5.2 | -1.55
-1.55 | -0.75 | - | 0 to 70
0 to 75 | C
G. DIP | Comp. out | | | | 6-input | MC1002P | | 5 | _ | _ | - | dc 75
ac 45 | 80 | -5.2 | | -0.75 | | 0 to 75 | G. DIP | | | | | 6-input | MC1003P | | 5 | _ | - | - | dc 75
ac 45 | 40 | -5.2 | | -0.75 | | 0 to 75 | G. DIP | 3- | | | 5 | Dual 4-input | MC1004P | | 5 | _ | _ | - | dc 75
ac 15 | 95 | -5.2 | -1 55 | | - | 0 to 75 | G. DIP | | | | | Dual 4-input | MC1005P | | 5 | _ | _ | | dc 25
ac 15 | 65 | -5.2 | | -0.75 | | 0 to 75 | G. DIP | | | | | Dual 4-input | MC1006P | | 5 | _ | _ | - | dc 25
ac 15 | 45 | -5.2 | | -0.75 | | 0 to 75 | G. DIP | | | | | 6-input | MC1201F | | 5 | | | | dc 25
ac 45 | 115 | -5.2 | | 0.85 | | - 0 10 7 3 | C | | | | | 6-input | MC1202F | | 5 | _ | | - | dc 75
ac 45 | 80 | -5.2 | | -0.75 | | _ | C | | | | | 6-input | MC1203F | | 5 | _ | | - | dc 75
ac 45 | 40 | -5.2 | | -0.75 | | | C | | | | | o impar | MOLLOST | WI C | Ů | | | | dc 75 | 10 | 0.2 | 1.00 | 0.73 | | | | | | | | Dual 4-input | MC1204F | MO | 5 | - | - | - | ac 15
dc 25 | 95 | -5.2 | -1.55 | -0.75 | - | - | С | | | | | Dual 4-input | MC1205F | MO | 5 | - | - | - | ac 15
dc 25 | 65 | -5.2 | -1.55 | -0.75 | - | - | С | | | | | Dual 4-input | MC1206 F | МО | 5 | - | - | - | ac 15
dc 25 | 45 | -5.2 | -1.55 | -0.75 | - | - | С | | | | | 3-input
3-input | MC356
MC306 | MO
MO | 6 7.0 | 3 | 25
15 | = | 26
ac 15 | 35
37 | 10
-5.2 | 1.55 | 0.75 | - | 0 to 75 | A, C
A, C | Expandable | | | 6 | 3-input | MC307 | MO | 7.0 | 3 | 15 | - | dc 25
ac 15 | 15 | | -1.55 | | | _ | A, C | Expandable. | | | | 3-input | MC356 | MO | 7.0 | 3 | 15 | - | ac 15 | 37 | -5.2 | | -0.75 | | 0 to 75 | A. C | Comp. out
Expandable | | | | 3-input | MC357 | MO | 7.0 | 3 | 15 | - | dc 25
ac 15 | 15 | -5.2 | | -0.75 | | 0 to 75 | A. C | Expandable | | | | 5-input | MC301 | мо | 7.5 | _ | 5 | - | dc 25
ac 15 | 37 | -5.2 | | -0 75 | | - | A. C | Expandable | | | | 5-input | MC351 | MO | 7.5 | | 5 | _ | dc 25
ac 15 | 37 | -5.2 | | -0.75 | | 0 to 75 | A. C | | | | | 3 mput | WC331 | 1010 | 7.5 | 5 | Ĭ | | dc 25 | 37 | -3.2 | 1.55 | 0.73 | | 0 10 7 3 | n. 0 | | | ate Expanders | | 5-input
5-input | MC305
MC355 | MO
MO | 5 5 | - | 5 5 | - | - | - | -5.2
-5.2 | - | - | | -
0 to 75 | A, C
A. C | | | E | | - | SW305 | SW | 6 | - | - | - | - | - | -5.2 | - | - | - | - | A, C | | | evel Translators | | DTL to ECL | MC318 | MO | 17 | - | 2 | - | ac 15
dc 25 | 105 | -52
& +6 | -1.55 | -0.75 | - | - | A. C | | | F | | DTL to ECL | MC368 | MO | 17 | - | 2 | - | ac 15
dc 25 | 105 | -5.2
& .6 | -1.55 | -0.75 | - | 0 to 75 | A. C | | | | | ECL to DTL | MC317 | МО | 30 | - | 3 | - | 7 | 63 | -5.2
& +6 | -1.55 | -0.75 | - | - | A. C | | | | | ECL to DTL | MC367 | МО | 30 | - | 3 | - | 7 8+6 | 63 | -5.2 | -1.55 | -0.75 | - | 0 to 75 | A. C | | | | | DTL to ECL | MC1017P | МО | | - | - | - | ac 15
dc 25 | 110 | -5.2
& +6 | -1.55 | -0.75 | - | 0 to 75 | G DIP | | | | | MECL to DTL | MC1018P | MO | - | - | - | - | DTL | 70 | -5.2
&+6 | -1.55 | -0.75 | - | 0 to 75 | G. DIP | | | | | DTL to ECL | MC1217F | MO | - | - | - | - | ac 15 | 110 | -5.2 | -1.55 | -0.75 | - | - | С | | | | | MECL to DTL | MC1218F | МО | - | - | - | - | dc 25
DTL | 70 | 8+6
-5.2 | -1.55 | -0.75 | - | - | С | | | | | DTL to CML | MC1511 | MO | - | - | 1 | - | 7
25 | 25 | 8.6 | | -0.75 | 400 | - | A | | | | | CML to DTL | MC1512 | MO | - | - | 25 | - | - | 80 | - | -0.75 | 2.95 | - | - | A | | ## 5. Resistor-Capacitor Transistor Logic | | | | | | Propaga-
tion
Delay | Fa | 1-in | Fan | -out | Power
Diss.
mW
(/= | Supply
Voltage | Lev
(Vo | els | Noise
Margin | Temp
Range | Package | | |----------------------|----------------|--|--|------------------------------------|--|---------|---------------|-------------|--------------------------------|---|-------------------|--|----------------------------|---|---------------|------------------|--------------------------------| | | Logic Function | Туре | Model | Mfr. | (ns) | Тур. | Max. | Тур. | Мах. | per
gate) | | 0., | 1 | (mV) | (°C) | Type | Remark | | Binary Elements
A | | J-K
R-S-T
Schmitt Trigg
R-S FF/Counter
R-S
FF/Counter | FF7317E
FF8317E
ST2514B
SN510B
SN511B | IN
IN
IN
TI | 8
8
20
300
300 | 2 3 1 - | 2 3 1 | 11111 | 4
4
6
4
20 | 96
96
145
2@3V
2@3V | | 0.2
0.2
0.2
- | <6
<6
<12
- | 1500
1500
2500
200
200 | 11111 | G
G
D
D | TF
TF
TF
With Emitter | | | | R-S
R-S
Ripple-Counter
Ripple-Counter | SN5101B
SN5111
SN5112
SN5113
USO100A
USO101A | TI
TI
TI
TI
SPR
SPR | 300
300
300
300
300 | 111111 | 111111 | | 4
20
16
16
4
20 | 2 3V
3 3 V
3 3V
4 4 V
2-7
2-7 | 3-6
3-6 | -
-
-
2.5
2.5 | -
-
-
0.3
0.3 | 200
200
200
200
200 | 111111 | D
D
O
D | Dual Presets
Dual Preset | | Clock Driver
B | | - | SN517B | TI | - | - | - | - | 20 | 3@3V | 3-6 | - | - | 200 | - | D | | | Gates
C | NAND/NOR | Dual 3-input
Dual
R-S-J-K
R-S-T
Dual
6-input
6-input | GG3317
GG3317C
FF0451B
FF6451B
GG3714C
SN512B
SN513B | IN
IN
IN
IN
IN
TI | 4
6
12
12
50
65 - 6 V
65 @ 6 V | 3 4 3 3 | 3 1 - 1 1 1 1 | 111111 | 5
5
5
6
5
25 | 96
96
60
60
5
2 4 3 V
3 3 V | | 0.2
0.2
0.2
0.2
0.2
0.2 | <6
<6
<7
<7
<9 | 1500
1000
1.5
1.5
2.5
200
200 | 1 1 1 1 1 | 0000000 | TF With Emitter | | | | Dual 3 - input
Dual 2 - input
Triple 2 - input | SN514B
SN516B
SN5161B | TI
TI
TI | 65 6V
65@6V
65@6V | - 1 - | 1 1 1 | -
-
- | 5
25
5 | 2@3V
2@3V
2/ | | | - | 200
200
200 | - | D
D
D | Gilowei | | | | Triple 2 - input | SN5162B | TI | 65@6V | - | = | - | 25 | gate
2/
gate | 3-6 | - | - " | 200 | - | D | Emitter
Follower | | | | Exclusive OR
Pulse
Exclusive OR |
USO102A
USO103A
SN515B
SN5191 | SPR
SPR
TI
TI | 100
100
100⊕6V | 1111 | 6 6 - | | 5
25
5
5 | 2-7
2-7
2-7
3 · 3V
6@3V | | 2.5
2.5
- | 0.3 | -
200
200 | 1 1 1 | _
_
D | TOHONET | | Multivibrators
D | | Medium Delay
One-shot | DM3510B
SN518B | IN
TI | - | 1 | 1 - | - | 5
5 | 96
2@3V | 12
3-6 | 0.2 | <12 | 2500
200 | - | G
D | TF | Temperature range is -55 to 125°C unless otherwise stated. # 6. Complementary Transistor Logic | | | | | | Propaga-
tion
Delay | | n-in | Fan | -out | Power
Diss.
mW
(/= | Supply | Lev
(Vo | els | Naise | Temp | | | |-----------------|----------------|--|--|----------------------------------|----------------------------------|------|---------|----------------|----------------------------------|---|--|----------------------------------|--|-------------------------------------|--|------------------|-----------------------| | | Logic Function | Туре | Model | Mfr. | (ns) | Тур. | Мах. | Тур. | Max. | per
gate) | Voltage
(Volts) | 0,, | "']" | Margin
(mV) | Range
(°C) | Package
Type | Remarks | | Binary Elements | - | Dual-rank
Dual Rank | CTµL951
9957 | FA
FA | 15 - 20
15 | - | - 1 | 15 | _
15 | 150
150 | 4.5,-2
4.5-2 | 0.36
-0.5 | 2.25 | 400
1100 | 15 to 55
15 to 55 | G | | | Buffers
B | | Dual 2-input
J-K Master Slave
R-S Master Slave
Dual Latch | CTµL956
9956
9967
9973
9968 | FA
FA
FA
FA | 12
12
20
20
20
20 | | 11111 | 11111 | 25
25
12
12
11 | 125
125
170
150
190 | 4.5,-2
4.5-2
4.5-2
4.5-2
4.5-2 | -0.5
-0.5
-0.5 | 2.25
2.5
2.5
2.5
2.5
2.5 | 400
1100
1100
1100
1400 | 15 to 55
15 to 55
15 to 55
15 to 55
15 to 55
15 to 55 | G
G
G
G | | | Gates
C | AND
1 | 2,2,3 input
Dual 4-input
Single 8-input | СТ _µ L953
СТ _µ L954
СТ _µ L955 | FA
FA
FA | 3
3
3 | 8 8 | 111 | 12
12
12 | 111 | 111 | 4.5,-2
4.5,-2
4.5,-2 | 0.36
0.36
0.36 | 2.25 | 400
400
400 | 15 to 55
15 to 55
15 to 55 | G
G
G | | | | NOR 2 | —
Dual 2-input | CTµL952
9952 | FA - | 9 | - | - | 10 | 12 | 55
55 | 4.5,-2
4.5-2 | 0.36
-0.5 | 2.25 | 400
1100 | 15 to 55
15 to 55 | G
G | | | | AND/OR
3 | 2, 2, 3 input
Dual 4-input
Single 8-input
3, 1, 3 input
1, 1, 1, 1 input
2, 2, 2, 2 input
2, 2, 2, 2 input | 9953
9954
9955
9964
9965
9966
9971 | FA
FA
FA
FA
FA
FA | 3
3
3
3
3
3 | | 1111111 | 111111 | 11
11
11
11
11
11 | 35/
35/
35/
35/
35/
35/
35/ | 4.5-2
4.5-2
4.5-2
4.5-2
4.5-2
4.5-2
4.5-2
4.5-2 | -5
-5
-5
-5
-5
-5 | 2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5 | 111111 | 15 to 55
15 to 55
15 to 55
15 to 55
15 to 55
15 to 55
15 to 55 | 000000 | 3 inputs
2 outputs | ## 7. MOS Arrays | | | | | Propaga- | Fa | n-in | Fan | -out | Power
Diss.
mW
(/= | Supply | Lev
(Vo | els | Noise | Temp | | | |-----------------------|---|--|--|--|----------------------------|----------|-----------------|------------------------|---|--------------------------------------|---|--|------------------------------|---|-----------------|---------------------------------------| | Logic Function | Туре | Model | Mfr. | Delay
(ns) | Тур. | Мах. | Тур. | Max. | per
gate) | (Voltage
(Volts) | 0., | | Margin
(mV) | Range
(°C) | Package
Type | Remarks | | Gates | Quad | MC1020P | MO | 5 | - | - | - | ac 15 | 115 | -5.2 | 1.55 | -0.75 | - | 0 to 75 | G, DIP | | | A | Quad | MC1220F | MO | 5 | - | - | - | dc 25
ac 15 | 115 | -5.2 | 1.55 | -0.75 | - | - | С | | | | Quad | MC1221F | МО | 10 | - | - | - | dc 25
ac 15 | | -5.2 | 1.55 | -0.75 | - | - | С | | | | Quad | MC1021P | МО | 10 | - | - | - | dc 25
ac 15 | | -5.2 | 1.55 | -0.75 | - | 0 to 75 | G, DIP | | | | Dual
Dual
Dual | SC126
SC426
MEM1000 | SI
GI | 40
40
500 | -
1 | 1 1 - | - 5 | dc 25
10
10
- | 100
100
56 | 5 & 12
5 & 12
-13±1V
-26±1V | adj
adj
-2.0 | adj
adj
-10.0 | adj
adj
1000 | -
0 -75
-55 to 85 | D
D
F | | | | Dual 3-input — Dual 9-bit 4-bit Ternary Binary to Decimal Resistence | MEM1002
MEM5014
MEM1008
MEM1022
MEM1050
MEM5021
9960
TEBR-2 | GI
GI
GI
GI
GI
FA
BR | 330
-
500
1000
3200
500
50
10 | 1
1
1
1
1
1 | 11111111 | 5 5 5 5 5 5 1 1 | 11111111 | 36
150
42
50
240
78
30
>60 | | -2.0
-2.0
-2.0
-2.0
-2.0
1.0 | -10.0
-10.0
-10.0
-10.0
-10.0
-10.0
60.0
AR | 1000
1000
1000
1000 | -55 to 85
-55 to 85
-55 to 85
-55 to 85
-55 to 85
-55 to 85
0 to 75 | - GF - GG | Nixie Driver
TF, ±5PPM | | NAND/NOR
B | Dual 4-input
Dual
2-Channel
6-Channel | PL4G01
9302
D111F
Series
G116F | GME
FA
SI | 1000
18
550 | | 1111 | 1111 | 10 | 20
100
180 | -12, -24
4.5-5.5
30
-30 | - 3
0.2
- | -9
2.7
- | 1000
1000
- | | G
C, G
D | -24v clock
Buffer/Level
Shifter | | Flip-Flop
C | Dual J-K
R-S-T F/F | PL4M01
MEM1005 | GME
GI | 2500
950 | ī | - | 5 | - | 100
72 | -12, -24
-27±1V | -3
-2.0 | -10.0 | 1000
1000 | _
_55 to 85 | G | | | Analog Switch D | 4-channel 6-Channel | PL4S01
D/123F
Series | GME | -
550 | - | - | - | - | 150
180 | -15-30+
10
30 | 10 | 0 | 1000 | - | G
D | Buffer Level
Shifter | | Converter
E | BCD to Decimal
BCD to Binary
D to A | PL4G02
PL4G03
PL4S02 | GME
GME
GME | - | 7 1 1 | | | - 1-1 | 100
50
75 | -12, -24
- 24
-12, -24 | -3
-3
-3 | -9
-9
-9 | 1000
1000
1000 | | G
G | | | Counter
F | BCD Decade
Binary to BCD
Binary to Decimal | PL4C01
SN7441
9301 | GME
TI
FA | 2500
-
20 | | | | - 8 | 75
90
80 | -12, -24
5.25
4.5-5.5 | - | -9
-
2.8 | 1000 | 0 to 70 | G
DIP
G | | | Shift Reg. | 9-bit
9-bit | PL4R01
PL4R07
PL5200 | GME
GME
GME | | | 111 | 1.1.1 | | 75
75
2.5/
bit | -12, -24
-12, -24
-20 | -3
-3
-3 | - 9
- 9 | 1000
1000
1000 | 1 7 1 | G
G
A | | # 8. Miscellaneous Digital Circuits | | | | | | Propaga- | Fa | n-in | Fon | -out | Power
Diss.
mW | Supply | Lev
(Va | els | Naise | Temp | | | |-------------------|--|--|--|---|--|------------|---------------|---------|--|--------------------------------------|--|---------------------------------|---------------------------------|--|--
--|--------------------------------| | | Logic Function | Туре | Model | Mfr. | Delay
(ns) | Тур. | | Тур. | Max. | per
gate) | Voltage
(Valts) | 0 | "1" | Margin
(mV) | Range
(°C) | Package
Type | Remarks | | Counter
A | | BCD decade
BCD decade | SN5490
SN7490 | TI
TI | †12 MHz
†12 MHz | - | 1.1 | 1.1 | 1.1 | 150
150 | 4.5 - 5.5
4.75 to
5.25 | | 1 1 | 1000
1000 | -
0-70 | D
D | † Count freq.
† Count freq. | | | | Decade BCD | 9075 | FA | 80 | - | - | 4 | - | 120 | 3.6-5.5 | 0.25 | 2.5 | 250 | - | G | Preset from
0-9 | | | | Modulo 16 | 9076 | FA | 80 | - | - | 4 | - | 120 | 3.6-5.5 | 0.25 | 2.5 | 250 | - | G | Preset from
0-9 | | | | Modulo 16
Decade BCD | 9989
9958 | FA
FA | 160
300 | - | - 1 | 6 | 1 | 140
140 | 3.6-5.5
3.6-5.5 | 0.25
0.25 | 2.0 | 250
250 | 0 to 75
0 to 75 | A, G
A, G | 0-5 | | Diode Matrix
B | | - | | | †10
from 4 x 10 | _
to 15 | x 15 io | - RM s | -
eries. | 450 | 40 | - | - | - | - | D, G | †Reverse
Recovery Time | | | | _ | MC1116
MC1117 | MO
MO | - | - | - | - | 1 | - | 40(max)
40(max) | - | _ | _ | - | A | | | | | -
Dual 3-input | MC1118
MC217 | MO
MO | - | _ | - | - | - | _ | 40(max) | 4 | .3 | _ | - | A
A, C | | | | | Dual 3-input
Dual | MC267
WC217 | MO | _ | - | 7 | - | - | - | 3 | 4 | .3 | - | 0 to 75 | A, C | | | | | Triple | WC227 | WH | - | - | 10 | - | - | - | - | - | - | - | - | D | | | Level Detector | С | -
16 - bit | WM208T
SN5481 | WH | 1 MHz
Read: 25 | - | - | - | - | 150 | 4.5 - 5.5 | - | - | 1000 | - | A, C, D | | | Memory
D | | 16 - bit | SN7481 | TI | Write: 25
Read: 25 | | - | - | - | | | | | 1000 | 0-70 | D. 1 | | | | | | | | Write: 25 | - | - | - | - | 150 | 4.75 to
5.25 | - | - | | | | | | | | 8-bit
16-bit | 9030
9033 | FA
FA | 18 | _ | - | - | 10
10 | 100
160 | 4.5-5.5 | 0.2 | 2.7 | 1000
1000 | 2 | C, G
G | | | | | 4-bit
16-bit | 9959
TMC3162-
64 | FA
TR | 80 20 | - | 1 | 6 | 40mA | 125
250 | 3,3-5.0 | 0.25 | 2.5 | 250
1000 | 0 to 75 | G
D,P,DIP | Buffer | | Pulse Source
E | | | NM4002 | NOR | 25 | - | - | - | - | 590 | +20 | 0 | +3 | - | - | A, B | Apollo pre
core driver | | Schmitt Trigger | | | NC.PC17 | GI | 8 | - | 1 | - | 5 | 200 | 12, 4.2, | 0 | 5 | - | - | A, E | MC RCT | | F | | - | WC208 | WH | - | - | - | - | 4 | 15 | 5.7-6.3 | - | - | - | 0 to 75 | A, D | | | Shift Register | | 22-bit | TEBR-1 | BR | 50 | - | - | - | - | 160 | 5 | 0.2 | 2.4 | 1000 | - | G | MC; TF; | | G | | 4-bit | 9300 | FA | 17 | - | - | - | 10 | 100 | 4.5-5.5 | 0.2 | 27 | 1000 | - | C, G | 1"x1" FP
S/P, P/S | | | | 4-bit
4-bit | 9303
9997 | FA
FA | 17 40 | _ | - | - | 10 | 100 | 4.5-5.5
3.6-5.5 | | 2.7 | 1000
250 | - | C
C, G | S P, P/S
S/P, P/S | | | | 4-bit | 9998 | FA | 40 | - | - | - | 7 | 110 | | | 2.5 | 250 | - | C, G | Complementary
Outputs | | | | 5-bit Parallel in/
8-bit | MEM
SN5491 | GI
TI | -
†15MHz | 1 | 3 | 5 | - | 15
190 | -13±1V
4.5 - 5.5 | -2.0 | -10.0 | 1000 | -55 to 85 | F
D | † Shift freg. | | | | 8-bit | SN7491 | ti | † 15 MHz | - | - | - | - | 190 | 4.75 to | - | - | 1000 | 0 - 70 | D | † Shift freq. | | | | Parallel out
8-bit Parallel in | 3005PP
MEM | GI | 4 | 1 | - | 5 | - | 24 | -13±1V | -2.0 | -10.0 | 1000 | -55 to 85 | F | | | | | Serial out
12-bit Serial in | 3008PS
MEM | GI | - | 1 | _ | 5 | - | 170 | -27±1V
-27±1V | -2.0 | -10.0 | 1000 | -55 to 85 | С | | | | | Parallel out
Dual 16-bit | 3012SP
MEM | GI | - | 1 | - | 5 | _ | 100 | -13±1V | -2.0 | -10.0 | 1000 | -55 to 85 | G | | | | | Dual 16-bit | 3016-2
MEM | GI | - | 1 | _ | 5 | _ | 40 | -27±1V
-27±1V | -2.0 | -10.0 | 1000 | -55 to 85 | G | | | | | 20-bit | 3016-2D
MEM3020 | GI | _ | 1 | - | 5 | - | 50 | -13 <u>±</u> 1V | | -10.0 | | -55 to 85 | G | | | | | 1-bit. 4-bit. 16-bit | MEM3021 | GI | _ | 1 | _ | 5 | - | 150 | -27±1V
-27±1V | -2.0 | -10.0 | 1000 | -55 to 85 | G | | | | | 1-bit, 4-bit, 16-bit
Dual 25-bit
Serial Accumulator | MEM3050
MEM3064 | GI
GI | - | 1 | - | 5 | - | 30
40 | -27±1V
-27±1V
5.25 | -2.0 | -10.0
-10.0 | 1000 | -55 to 85
-55 to 85
-55 to 85 | G
F | | | Steering Gate | Н | - | NC/PC9 | GI | - | - | - | - | - | - | - | - | - | - | - | A, E | MC RCDT | | Utilogic
I | AND Gate
AND Gate
NOR Gate
NOR Gate
NOR Gate
OR Gate
OR Gate
Expander | Single
Dual
Single
Dual
Dual
Dual
Dual
Dual
Dual | SU305
SU306
SU314
SU315
SU316
SU331
SU332
SU300 | SIG
SIG
SIG
SIG
SIG
SIG
SIG | 15
15
20
20
20
20
20
20 | 1111111 | 6 3 7 3 2 2 3 | 1111111 | 10
10
17
17
17
17
17 | 5
18
18
18
36
36
5 | +4.5
+4.5
+4.5
+4.5
+4.5
+4.5
+4.5
+4.5 | 0.6
0.6
0.6
0.6
0.6 | 3.3
3.3
3.3
3.3
3.3 | 1200
1200
1200
1200
1200
1200 | -20, +85
-20, +85
-20, +85
-20, +85
-20, +85
-20, +85
-20, +85
-20, +85 | A. C C C C C A. | | | | J-K Binary | Single | SU320 | | 65 | - | - | - | 17 | 90 | +4.5 | 0.6 | 3.3 | | -20, +85
-20, +85 | A, C | | Now you can measure noise in Linear IC's, Operational Amplifiers, and other "Black Boxes" SIMPLY, RAPIDLY, and EFFICIENTLY with Quan-Tech's new Model 2283-2181 Integrated Circuit Noise Analyzer Perhaps we should have called this instrument a Black Box Noise Analyzer — it's that versatile. Basically, it will measure anything from the thermal noise of a 10K ohm resistor up to a complete amplifier with 50db or more gain, or any combination of things in between. The Model 2283 Control Unit consists of a pair of extremely low-noise power supplies, one plus and one minus, each independently variable from zero to 30 volts at 100 milliamperes for biasing IC's and Op Amps. Included in the control unit is an amplifier having a voltage gain of 10,000 and a bandwidth of 5Hz to 125KHz. A 50db variable-plus-step attenuator compensates for the gain of the device under test, and a 1KHz calibrating signal is provided for standardizing overall gain. Printed circuit cards that plug into the test jig provide almost unlimited versatility in the types of devices that can be tested. We have available standard cards with test sockets for the more commonly used linear IC's, or we'll design and build one for your pet devices, whether they be zener diodes, FET's, bi-polars or what. If you're the do-it-yourself type, be our guest and make your own. The Model 2181 Filter Unit, when used with the Control Unit, permits noise measurements to be made at five frequencies simultaneously from 10Hz to 100KHz. If you don't need the simplicity and multiple frequency readout of the Model 2181, the Model 2283 Control Unit can be used with a wave analyzer to measure noise. Naturally, we recommend either our Model 303, 304, or 305, which have bandwidths and time constants especially suited for noise measurements. Whatever your requirements, this instrument can solve many noise measuring problems in connection with the new devices now becoming available. Price: Model 2283 Control Unit \$1450. Model 2181 Filter Unit \$2500. ## 9. Linear Circuits | Function | Model | Mfr. | Frequency
Range | In put
(Volts) | Gain
(db)
or
*(Volts) | Output
(mW)
or
*(Valts) | Input
Impedance
(ahms) | Output
Impedance
(ahms) | Supply
Valtage
(Volts) | Noise
Figure
(db)
or
*(Volts) | Package
Type | Remarks | |---|--|--
--|--|--|--|---|---|--|---|--|---| | Analog switch
A | E16-501
45P912
4JP913
PC402H
PC401H
NM2017
2107B
2108B
2109B | AL
GE
GE
GI
GI
NOR
AL
AL | Ton <500 ns
Toff <600 ns
100 MHz
100 MHz
200
200
200
350 ns
350 ns
350 ns | ±5
0.0006
0.0006
3
3
5
5.6
6.5
8.5 | †40
-
-
-
-
-
- | -
-
-
-
*5.6
*6.5
*8.5 | -
10 k/3.9 k
10 k/3.9 k
10 k
10 4
10.4 nA
10.4 nA | -
-
-
-
100
50
100 | 40
20
20
+45, +28
+45, +28
10
±12
+18
±12 | 1 11111111 | A A A E E D A A A | thrE | | | 2110B
8502
2114B | AL
AL
VAR
AL | 350 ns
10 Hz – 100
900 | 10
0-20
9 | 46 | *10
10
*9 | 0.4 nA
10 k
1.0 | 50
1000
100 | †18
10 to 20
±15 | 10 | A
G | 100, 011 0211011 | | Audio Amp.
B | AMC101
TAA310
μ A702
μ A716C
PA222
NS7558
CA3000
CA3007
CA3020
TAA111
TAA121
TAA131 | AMP
FA
FA
GE
NA
RCA
RCA
RCA
SA
SA | dc-20
15+
dc to 30 MHz
0 to 200
70-14 k
dc-500
1000
1000
0.08-150
0.05-150
up to 20 | | 80
90
67-70
\$
-
56
37
22
58
65
65
65 | .002
•10
175
1000
50
-
550
- | 25-30 k
10 k
10 k
1 k
195
4000
40,000
3000 (min) | -
200
10
-
8000
60 | 5
7
+12-6/+6-3
12 to 24
22-24
12
+6,-6
6,-6
+9
7
7 | -70 dBm
-60
-
-
-
-
-
- | G
A, C
A DIP
G
A A
A S | Offset Voltage Selectable | | Broadband Amp.
C | WC183 4JP108 HX610 PA7600 CA3011 CA3012 CA3013 CA3014 SE501 WM11460 | GE
HX
PH
RCA
RCA
RCA
SIG
WH | 6 MHz
dc-150 MHz
0-200 MHz
4500
4500
100 to 20,00
100 to 20,00
dc-100 MHz | ±3V | 94
•20
52
†43
70
65
75
75
28
16 | 45
-
32
2.5
-
-
-
- | 40 k 50 k 300 k 3000 3000 3000 3000 1.3 k | 1 k
300
31.5
31.5
31.5
31.5 | 9
15
±12
6
7.5
7.5
7.5
7.5
-6.0
12 | *3
-
5
8.7
8.7
8.7
8.7
4 def | A. D
A TO-100
A A
A A
A A, C | †MHz Video Bandwidth | | D./A Switch D | 4JP380 | GE | 250 MHz | - | - | - | - | 20 | 5 | - | A
D | | | Demodulator Chopper E
Differential Amp.
F | NM2024 013-000 013-001 013-002 831B 831C 831B PC200 PC201 MC1429 MC1525 MC1526 MC1526 | AL
AL
AL
AL
AL
AL
FA
GI
GI
MO
MO
MO | 5
400
400
400
dc-400
dc-400
dc-400
dc-400
dc-400
dc-400
dc-900
20
0-20
0-20
0-20
0-20
0-20
1 MHz
1400
500
300 kHz @ 3dB BW | 26
 | 45
45
45
66
66
63
5
63
73
73
73
140
65
38 | 6-V
6 V
5 V
*6 k
*6
*5
*6
*+4.5,- | | - 5 k 5.5 6 V 200 200 17 k 2.7 k 48 † 11 k 11 k 115 k | 28 ±12 ±12 ±12 ±12 ±12 ±12 ±12 ±12 ±12 ±1 | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | A, C C C C C A A C C C C A A A A A A A A | * Offset Voltage * Offset Voltage * Offset Voltage * Offset Voltage dual input foffset voltage † CE / CC Darlington (npn) | | | NM1005
NM1006
NM1021
SE505 | NOR
NOR
NOR
SIG | 300
1 MHz
1 MHz
1000 | †2mV
†8m V
†4mV | 75
66
60
1500 | *16
*8
*6 | 3.2 k
250 k
1.5 M
4 k | 100
100
5 k | †12, -6
10
†12; -25
+6,-3 | *2.5 mV
*2mV
- | A, D
D
A, C | † Offset Voltage
† Offset Voltage
† Offset Voltage | | | 203
SN523A
SN525A
SN723
SN725
SN5231L
SN5510
SNX1312
WC115T
WC750T | TI | 500
dc-3 MHz
dc-1 MHz
dc-3 MHz
dc-45
dc-3 MHz
dc-300 MHz
50-300
dc-2 MHz | ±3
±5
±5
±5
†2 mV
±5
±4
†1 mV
240M | Open Lot
40
66
88
64
86
66
40
58
60V/V
2000 V/ | 150
4
4
4
•16
•±12
0.4
•±10
•5 | 75,000
10 k
100 k
10 k
140 k
15 k
100 k
150 k
3.5 k | 300
10 k
10 k
10 k
10 k
200
35
45
8 k
1 k | 25
±12
±12
±12
±12
±12
±6
±12
±12
±15 | 2 μV* | C A, D D A, D G D G A A | †Offset voltage
†Offset voltage
Two circuits/pkg. | | Difterential Comparator
G | μΑ710
μΑ710C
μΑ711C
ΝΜ1037
ΡΑ710 | FA
FA
NOR
PH | 40 ns
40 ns
40 ns
100
40 ns | †2 mV
†2 mV
†1 mV
±10
†2 mV | 63
63
63
*1000
64 | *+3.2,
*+3.2,
*+4.5,
*6
*+3.2
-0.5 | -0.5
-0.5
 - | 200
200
200
200
3 k
200 | +12,-6
+12,-6
+12,-6
30
+12-6 | - | A, C
A, C
A
A, C | † offset voltage
† offset voltage
dual input † offset voltag
Min-Max Limit Detecto
† Offset | | | SE560 | SIG | 10 MHz | - | 1700
Open La | - | - | - | - | - | A, C | | | | SN52710 | TI | 40 ns | ‡2 mV | 63 | *+3,2,
-0.5 | - | 200 | +12,-6 | - | D, G | †Offset voltage | | | SN52711 | TI | 40 ns | †l mV | 63 | *+4.5,
-0.5 | | 200 | +12,-6 | - | D, G | †Offset voltage | | | SN72710 | TI | 40 ns | t2 mV | 63 | *+3.2,
-0.5
*+4.5, | 1 1 1 1 1 | 200 | +12,-6
+12,-6 | | D, G
D, G | †Offset Voltage | #### 9. Linear Circuits (continued) | Function | Madel | Mfr. | Frequency
Range | In put
(Volts) | Gain
(db)
or
*(Volts) | Output
(mW)
or
*(Volts) | Input
Impedance
(ahms) | Output
Impedance
(ohms) | Supply
Valtage
(Valts) | Noise
Figure
(db)
or
*(Volts) | Package
Type | Remarks | |--|--|--|---|--|--|--|---|---|---|---|---|---| | Oriver Switch H | NM1038 | NOR | 50 | ±10 | - | - | 11 k | - | 34, 6, -6 | - | D | | | Emitter Coupled Amp.
I | MC1110
TAA293
12X218
4JPA!13
4JP114
NM1033
PA7602
UC1501A
UC1503A
UC1505A | MO
AMP
GE
GE
NOR
NOR
PH
SPR
SPR
SPR | dc-300 MHz
0-600
10-100
100
1 MHz
dc = 190
dc = 190
0-100
3 = 250
200 Hz = 3 MHz
30 Hz = 11 MHz | 0.114 | 26
80
-
85
†3,000
45
66
76
84
60
40 | 10
-
50
45
-
•6
500
600
600 | 2 k
 | 5 k
-
250
50
10 k
2 k
2 k
†<50
150
150 | 25
15
6
6, -12
12, 6, -12
15
15 | 65 B | A
E
A
A
D
D
A | †Current gain
†Gain of 40dB | | | UC1507A
WC-934 | SPR
WH | 10 Hz - 10 MHz
0-1500 | 30 mV | 34
32 | 600 | 47 k
180 k | 150
100 | 15
±9 | 4 | D | | | General Purpose Amp. J
Limiter K | 12X207
UC1508A | GE
SPR | 10-100
50 Hz - 12 kHz | 0.0001 | *600
40 | -
16 | 10 k
40 k | 1 M | 30
15 | 10 m V rms | Α _ | | | Operational Amp. L | A13-251
800B
800B
801B
801B
801B
805B
805C
806B
805C
806B
2404B
2405B
ATF 401
TEBR-3
805-3
805-3
806-3
807-4
µA702A
µA702A | AL
AL
AL
AL
AL
AL
AL
AMP
BR
CDC
CDC
CDC
CDC
CDC
CDC
CDC
CDC
CDC
CD | 10 MHz dc-10 dc-300 MHz dc-30 MHz dc-30 MHz dc-30 MHz | - t5 mV
t10 mV
*5 mV
*10 mV
*3 mV
*3 mV
*3 mV
*3 mV
*3 mV
4.10
0.001
100 μV
100 μV
50 μV
†2 mV
†5 mV
*1 mV | 86
86
94
94
94
94
100
100
88
96
96
96
96
68 | *10
*±10
*±9
*±10
*±9
*±10
*±10
*±10
*±11
±25
25
*±14
90
90 dB
90 dB
90 dB
90 dB
90 dB
*±53
*±5.3
*±24 | 1000 KΩ
25 k
20 k
500 k | 1 k 400 400 400 150 150 150 150 150 150 150 150 150 1 | ±
12
±12
±12
±12
±15
±15
±15
±15
±15
±15
±15
±15 | | A A A A A A A A A G G G A A A A A A A | Offset voltage Tr; multi-gain | | | μ A709C
4JPA107
4JPA135
TMC40006
MC1430
MC1431
MC1433 | GE
GE
MEP
MO
MO
MO | 0 to 1 MHz
200
200
100
1 MHz @ 3dB BW
150 kHz @ 3dB BW
200 kHz @ 3dB BW | ±2.mV ±5 ±5 ±10 | 70
70
60
74
71
f 60,000 | *27
±10
*±4
-
*±5
*±5
*±5
*±13 | 300 k
750 k
1 M
100 k
15 k
600 k | 150
100
100
5 k
25
25
100 | ±15,±9
±12
±6
±12
±6
±6
±15 | - | A, C
A
A
G
A, C
A, C | 2 mV noise voltage
5 mV noise voltage
† V/V,0.3µV | | | MC1530
MC1531
MC1533 | MO
MO
MO | 1.2 MHz
400
200 kHz @3dB BW | ±5
±5
±10 | 74
71
1 60,000 | 10
10
•±13 | 10 k
1 M
1 M | 25
25
100 | ±9
±9
±15 | - | A
A
- | noise voltage Darlington Input †V/V,0.3µ V noise | | 2 | MC1709
NS7560
NS7560A
PA702A/
712 | MO
NA
NA
PH | 200 kHz @ 3 dB BW
dc-10 MHz
dc-10 MHz
0.8 MHz | ±5
5
1
†2 mV | †45,000
63
74
68 | *±14
-
-
*±5.3 | 400 k
2 5M
2.5M
25 k | 150
70
70
200 | ±15
+12,-12
+12,-12
12-6, 6-3 | 0.8μV
-
-
- | A
G
G
A, C | voltage
†V/V
† Offset Voltage
† Offset Voltage
† Offset Voltage | | | PA7026
Q25AH
Q82AH | PH
PR
PR | 0-8 MHz
0-2
dc-70 MHz | †7 mV
±10
±10 | 68
86 - 116
86 - 92 | *±5.3
24
100 | 20 k
10 ¹³
2M | 200
100 k
150 (Open
Loop) | 12-6
±15
±15 | 0.5
4 | A, C
G
G | † Offset Voltage
FETs | | | Q85AH
RA-238 | PR
RAD | 0-2000
7000 | ±11
±12 | 86 - 116
68 | 24
•21 | 10°
250,000 | 100 k
250 | ±15
-15,+25 | 2 | G
D | Offset Voltage | | | RA-239 | RAD | | ±12 | 68 | •21 | 100,000 | 150 | -15,+25 | - | D | Adjustable
Offset Voltage
Adjustable | | | RA-240 | RAD | dc-6000 | ±6 | 84 | •9.6 | 150,000 | 100 | -15,+25 | - | D | Offset Voltage
Adjustable | | | RA-335 | RAD | 7000 | ±12 | 68 | •21 | 250,000 | 250 | -15,+25 | - | D | Offset Voltage
Adjustable | | | RA-338 | RAD | 7000 | ±12 | 68 | •21 | 250,000 | 250 | -15,+25 | - | D | Offset Voltage
Adjustable | | | RA-339 | RAD | dc-15,000 | ±12 | 68 | •21 | 150,000 | 150 | -15,+25 | - | D | Offset Voltage
Adjustable | | | RA-339 | RAD | dc-15.000 | ±12 | 68 | •21 | 100,000 | 150 | -15,+25 | - | D | Offset Voltage
Adjustable | | 3 | RA-340 | RAD | dc-6000 | ±6 | 84 | •9.6 | 150,000 | 100 | -15,+25 | - | D | Offset Voltage | | | RA-340 | RAD | dc-6000 | ±6 | 84 | *9.6 | 150,000 | 100 | -15,+25 | - | D | Adjustable
Offset Voltage | | | RA-538 | RAD | dc-7000 | ±12 | 68 | •21 | 250,000 | 250 | -15,+25 | - | D | Adjustable
Offset Voltage | | | RA-539 | RAD | dc-15,000 | ±12 | 68 | •21 | 100,000 | 150 | -15,+25 | - | D | Adjustable
Offset Voltage | | | RA-540 | RAD | 0-6000 | ±6 | 84 | •9.6 | 150,000 | 100 | -15+25 | _ | 0 | Adjustable
Offset Voltage | | | CA3008
CA3015,6
CA3029 | RCA
RCA
RCA | 300
320
1000 | -4 to +1
-8,+1 | 60
70
60 | - | 14K
7.8 k
14,000 | 200
92
200 | +6,-6
+12, -12
-6,-6 | - | A. F
A, F
A | Adjustable | #### 9. Linear Circuits (continued) | Function | Madel | Mfr. | Frequency
Range | In put
(Volts) | Gain
(db)
or
*(Volts) | Output
(mW)
or
"(Volts) | Input
Impedance
(ohms) | Output
Impedance
(ohms) | Supply
Voltage
(Volts) | Noise
Figure
(db)
or
*(Volts) | Package
Type | Remarks | |-----------------------------|--|--|---|---|---|---|---|---|--|---|--------------------------------------|--| | Operational Amp. | CA3031
CA3032
SE506 | RCA
RCA
SIG | _
 | -8,+1.5
-8,+1.5
- | | | 25 k
20 k
200 k | 130
200 | +12,-6
+12,-6
+15,-15 | 111 | A
A
A, C | | | . 4 | SN 521A
SN 522A
SN 524A
SN 524A
SN 726
SN 7276
SN 52702
SN 72709
U C4000
U C4001
U C4001
U C4001
U C4002
WC161Q
PC-210H
PC212H
PC250
PC-251 | THEFT THEFT UCC WGGGGG | dc - 50
dc - 50
dc - 3 MHz
dc - 1 MHz
dc - 3 MHz
dc - 30 MHz
dc - 500
dc - 500
1500
1500
1500
1500
1500
1500
1500 | .4
.4
.5
.5
.5
.5
.25
.25 mV
.12 mV
.10 mV
.10
.10
.10
.20
.20
.20
.20
.20
.20
.20
.20
.20
.2 | Open Loc
62
60
88
54
56
67
93
86
86
86
*2200
70
64
50 | 70
4
*±5
*±5.3
*±14
**55.3
*±14
20
20
20
20
*±15
*±10 | 12 k - 100 k 12 k - 100 k 1 M 1 M 1000 k 750 k 1200 k 25 k 400K 20 k 250 k 1.5M 1.5M 1.5M 1.5M 1.5M 1.5M 1.0 k 30 k | 10 k 160 75 12 k 75 - 200 150 30 30 30 30 40 50 50 150 | 10, 6, -9 10, 6, -9 ±12 ±12 ±12 +12 -6 ±15 +12, -6 ±15 ±15 ±15 ±15 ±15 ±15 ±12 ±12 ±12 ±12 ±12 ±12 | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | D D A, D D G G D G G D G G C E E E E | Emitter follower fRL = 0.6 k\O f0ffset voltage f0ffset voltage f0ffset voltage f0ffset voltage f0ffset voltage Single & Diff Outpu Short-circuit proof | | Phase Splitter Amp. | UC1502A
UC1504A
UC1506A | SPR
SPR
SPR | 3 - 250
200 Hz - 3 MHz
30 Hz - 11 MHz | - | 84
58
39 | 160
230
230 | 2 k
20 k
20 k | 100
100
100 | 15
15
15 | - 1 + | | | | Power Amp. | MC1524
NM1003
NM1008 | MO
NOR
NOR | 300
dc - 20
dc - 20 | ±5
0 - 60
0 - 60 | *10/20/4
54
46 | 01000
8000
8000 | 8.5 k
10 k
10 k | 0.58
500
300 | ±12
36
36 | - | A
G
G | Modified To-53
Modified To-53 | | Pulse Amp. | UC1509A
UC1510A
12X264 | SPR
SPR
GE | _

10 MHz | 5
6.7
— | 22
0
25 | 1 1 1 | 20 k
40 k | 100, 10
100, 10 | 15
15
15 | 111 | _
A | | | RF/IF Amp. | 903B
903C
MC1550
PA7602
PA713 | AL
AL
MO
PH
PH | dc-110 MHz
dc-110 MHz
22 MHz
10-200 MHz
0-200 MHz | -
±5
- | 15
15
26
18
†33 | *4
*4
*4.2
*1 | 25 pF/10 mµ
25 pF/10 mµ
1800
90
450 | 7 pf/0.5 mμ
7 pf/0.6 mμ
100 k
95
900 | +12, -6
+12, -6
+6
±6
6 | -
<5
7 | A
A
A
A-C | †12 MHz Video
Bandwidth | | | CA3002
CA3004
CA3005 | RCA
RCA | 11,000
100,000
100,000 | 2.2
-2.5,
+3.5
-2.5 | 20
12
16 | - | 100,000
1.2 k | 70
2200
200 | 6,-6
+6,-6
+6,-6 | 4
6.3
7.8 | A
A | Dalluwlutii | | | CA3006
CA3028 | RCA
RCA | 100,000
100,000 | +3.5
0.8 | 16
16 | - | 1.4k | 2000 | +6,-6 | 7.8
6.8 | A
A | | | Sense Amp. | MC1540
NM2012
NM2016 | MO
NOR
NOR | 0-40 MHz
0-1 MHz
0-1 MHz | 17 mV
†1 mV
†4 mV | 39
49
54 | *5.9
*4
*4 | - | - | ±6
13
30 | - | A
A, D
A, D | Core Memory Appl
† Offset Voltage
† Offset Voltage
Temp. Compensated | | | SE500
SE504
SA10 SA11
SN5500
SN7500
SN7501 | SIG
SIG
SY
TI
TI | 0-3 MHz
3000
7 MHz
†125 ns
†125 ns
0.7μs-cycle time | -
17 mV
6
6
112-20mV | 31
30
-
-
- | 2.6 | 240
-
5 k | - | -25, 12, +3
±6
±6
±5 | 5 - | A, C
A, C
D, G
A, D
D | Digital Output 0 - 5\
† Prop. delay
† Prop. delay
†Adjustable range | | | SN7502 | TI | 1 5 μs-cycle time | †14-24mV | | *0.4
2.6 | 5 k | - | - | ±5 | D | tAdjustable range | | Summing Amp. R Video Amp. S | 4JP116
E13-511
9018
901C
NC/PC101
MC1552
MC1553
NS7512A
CA3001
CA3021
CA3022
CA3023
SA20
SN7510
WC1146
WM1146 | AL
AL
AL
GI
MO
NA
RCA
RCA
RCA
RCA
WH | 100 MHz 50 MHz dc-60 MHz dc-60 MHz 40 MHz 40 MHz 35 MHz dc-100 MHz 11,700 56,000 2500 up to 100 MHz dc-40 MHz 0-45,000 0-35 MHz | 0.26 *260 mV 260 mV 0.2 +1,-5 +1,-5 1.8 2 1 | 1 x 10°
22
24
24
20
40
55
55
25
19
56
57
53
45
39
23
20 | -
*7
*7
4.5
*2.9
*2.9
-
-
-
-
- | 1 520 550 5550 5550 1 k 10 k 10 k 10 k 500 50,000 550 360 180 2.6 k 6 k 90 100 | 1
520
500
500
500
50
50
50
70
300
1120
98,000
>5
2000
2 k | +12
±12
+12
6
6
+6
+12
-
-
24
±6
12 | -
-
3 5 @ 30 MHz
5 @ 30 MHz
-
-
-
15 ω
5 μ V
4 | A G A A A D A C | Offset Voltage | | Voltage Reg. | 2802B
2803B
BR-801 | AL
AL
BR | | +20,+14
-20,-14
±10 to ±40 | 60
60 | †*12
†*-12
*1.5 to
±38 |
 .5
.5
2 | -
-
±10 to ±40 | - | G
G | †0.2%
†0.2%
MC; TF; up to 1 am | | 1 | NC511/
PC511H
NC512/
PC512H
NC513/
PC513H
NC514/
PC514H | GI
GI
GI | 100
100
100
100 | +15 to +24
+27 to +36
-15 to -24
-27 to -36 | - | 150mA
140mA
150mA
140mA | - | 0.1
0.2
0.1
0.2 | +12
+24
-12
-24 | 0.4 mV
1 mV
0.4 mV
1 mV | A or E A or E | | Reader-Service cards are good all year. #### 9. Linear Circuits (continued) | Function | Model | Mfr. | Frequency
Range | In put
(Volts) | Gain
(db)
or
*(Volts) | Output
(mW)
or
*(Volts) | Input
Impedance
(ohms) | Output
Impedance
(ohms) | Supply
Valtage
(Valts) | Noise
Figure
(db)
or
*(Volts) | Package
Type | Remarks | |--------------|---|--|--|---|--------------------------------|--|------------------------------|--|--|---|-------------------------------|---| | Voltage Reg. | NC521/
PC521H | GI | 100 | +28 | - | *+6 | - | 0.05 | - | - | E | Imax=200 mA | | T | NC523/
PC523H | G1 | - | -28 | - | °-6 | - | 0.05 | = | - | E | Imax=200 mA | | 2 | NCS-675A
PC501H
PC502H
PC502H
PC504H
NM1006
1APU12
1APU12
3APL2
3APL2
3APL3
3APL6
3APL6
3APL10
3APL12
3APL12
3APL12
3APL12 | GI
GI
GI
GI
NOR
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TRI
TR | | + 28
+ [6to+24
+ 16 to -24
+ 28 to +36
- 28 to -36
- 20, > 30
10 -31
16 -37
22 -40
28 -40
4 -15
5 -15
7 - 18
8 -20
10 -20
12 -25
14 -30
17 -35
20 -35 | | *+5 150m 4 150m A 150m A 140m A 140 mA †1.25m A *6 *12 *18 *24 *2 *3 *4 *5 *6 *8 *10 *12 *15 *18 *22 | | 0.1
0.2
0.4
0.4
0.06
0.12
0.18
0.24
0.006
0.008
0.010
0.012
0.014
0.005
0.005
0.006
0.005
0.006 | +12
-12
+24
-24
715
-
-
-
-
- | 0.4 mV
0.4 mV
1 mV
1 mV
1 mV | | Imax = 200mA † Drive Current 1A 1A 1A 1A 3A | | 3 | 3APL27
3APL33
75TE3.7
75TE4.7
75TE5.6
75TE6.8
75TE10
75TE12
75TE12
75TE12
75TE22
75TE23
75TE33
75TE39
75TE4.8
80TF3.8
80TF6.8
80TF6.8
80TF6.8 | TRI | dc d | 29-45 35-50 > out | 70 70 | *27
*33
*3.9
*4.7
*5.6
*6.8
*10
*12
*15
*18
*22
*27
*33
*39
*47
*56
*3.9
4,7
5.6
*6.8
*8.2
*10
*15
*18
*18
*18
*18
*18
*18
*18
*18
*18
*18 | | 0 014 0.016 0.006 0.008 0.010 0.012 0.015 0.005 0.006 0.008 0.009 0.011 0.013 0.015 0.018 0.021 0.025 0.006 0.008 0.010 0.012 0.015 0.006 0.008 | | | ๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑ | 3A 3A 3A 3A 3A 37 3F 3B 3A | | 4 | 80TF18
80TF22
80TF27
80TF33
80TF39
80TF47
80TF56
WC110T | TRI
TRI
TRI
TRI
TRI
TRI
TRI | dc
dc
dc
dc
dc
dc
dc | > out
> out
> out
> out
> out
> out
> out
> out
> out | -
-
-
dc | *18
*22
*27
*33
*39
*47
*56
2A | | 0.009
0.011
0.013
0.015
0.018
0.021
0.025
0.004 | 1111111 | | G
G
-
G
G
TO-3 | 3A or 80W
3A or 80W
3A or 80W
3A or 80W
3A or 80W
3A or 80W
3A or 80W | Complete listing of semiconductor manufacturers starts on page 86. Circle as many numbers on the reader-service card as you like. Valuable reprints are FREE if you circle them on the reader-service card. ## **Microelectronic Cross-Index** This cross-index helps you locate any microelectronic circuit quickly and easily. The first digit indicates the type of logic. The letter indicates the location of the circuit in the logic family. The last digit pinpoints the location of the circuit. For example, to look up the DT μ L930, turn to letter "D" and find the entry DT μ L930. The cross-index directs you to 1D12. The number "1" refers to the first microelectronic category, "1. Diode Transistor Logic." "D" is the function category (in the case "gates"). Number 12 pinpoints the DT μ L930 in the gate table. | NUMERICAL | | 75TE56
80TF3.9 | 9T3
9T3 | 124B
124C | 2E3
2E3 | 342BG
342CG | 11
11 | |--------------------|------------|--------------------|----------------------|----------------|--------------|----------------|--------------| | 1APU6 | 9T2
9T2 | 80TF4.7 | 9T3 | 125A | 2E3 | 342CJ | 11 | | 1APU12
1APU18 | 9T2 | 80TF5.6
80TF6.8 | 9T3
9T3 | 125B
125C | 2E3
2E3 | 361BG
361CG | 1F
1F | | 1APU24 | 9T2
9T2 | 80TF8.2 | 9T3 | 126A | 2E3 | 361CJ | 1F | | 3APL2
3APL3 | 9T2 | 80TF10
80TF12 | 9T3
9T3 | 126B
126C | 2E3
2E3 | 362BG
362CG | 1F
1F | | 3APL4 | 9T2 | 80TF15 | 9T3 | 128A | 2E3 | 362CJ | 1F | | 3APL5
3APL6 | 9T2
9T2 | 80TF18
80TF22 | 9T4
9T4 | 128B
128C | 2E3
2E3 | 500B
501B | 3E15
3E15 | | 3APL8 | 9T2 | 80TF27 | 9T4 | 131A | 2F | 502B | 3E15 | | 3APL10
3APL12 | 9T2
9T2 | 80TF33
80TF39 | 9T4
9T4 | 131B
131C | 2F
2F | 503B
504B | 3E16
3E16 | | 3APL15 | 9T2 | 80TF47 | 9T4 | 132A | 2G | 505B | 3E16 | | 3APL18
3APL22 | 9T2
9T2 | 80TF56
101A | 9T4
2C1 | 132B
132C | 2G
2G | 506B
507B | 3E16
3E16 | | 3APL27 | 9T3 | 101B | 2C3 | 141A | 2A1 | 508B | 3E22 | | 3APL33 | 9T3 | 102A | 2C1 | 141B | 2A2 | 509B
511B | 3B7
3D | | 4APL08
4JP114 | 9C
9I | 102B
111A | 2C3
2B1, 2I2 | 141C
142A | 2A2
2D | 530B | 3E15 | | 4JP116 | 9R | 111B | 2B2, 2I2 | 142B | 2D | 531B | 3E15 | | 4JP380
4JP912 | 9D
9A | 111C
112A | 2B2, 2I2
2B1, 2I2 | 142C
203 | 2D
9F2 | 532B
533B | 3E15
3E15 | | 4JP913 | 9A | 112B | 2B2, 2I2 | 301BG | 1C2 | 534B | 3E15 | | 4JPA107
4JPA113 | 9L2
9I | 112C
114A | 2B2, 2l2
2B2, 2l2 | 301CG
301CJ | 1C2
1C2 | 535B
536B | 3E15
3E15 | | 4JPA135 | 9L2 | 114B | 2B2, 2I2 | 311BG | 1B4 | 537B | 3E15 | | 12X207
12X218 | 9J | 114C
116A | 2B2, 2I2
2B1 | 311CG
311CJ | 1B4
1B4 | 538B
539B | 3E22
3B8 | | 12X264 | 9F2 | 116B | 2B1 | 321BG | 1D9 | 540B | 3D | | 75TE3.9
75TE4.7 | 9T3
9T3 | 116C
117A | 2B1
2I1 | 321CG
321CJ | 1D9
1D9 | 541B
542B | 3D
3D |
 75TE5.6 | 9T3 | 117B | 212 | 322BG | 1D9 | 543B | 3E13 | | 75TE6.8
75TE8.2 | 9T3
9T3 | 117C
121A | 2l2
2E3 | 322CG
322CJ | 1D9
1D9 | 544B
547B | 3E13
3E14 | | 75TE10 | 9T3 | 121B | 2E3 | 323BG | 1D9 | 548B | 3E14 | | 75TE12
75TE15 | 9T3
9T3 | 121C
122A | 2E3
2E3 | 323CG
323CJ | 1D9
1D9 | 570B
571B | 3E14
3E14 | | 75TE18 | 9T3 | 122B | 2E3 | 331BG | 1D1 | 572B | 3E14 | | 75TE22
75TE27 | 9T3
9T3 | 122C
123A | 2E3
2E3 | 331CG
331CJ | 1D1
1D1 | 573B
574B | 3E14
3E14 | | 75TE33 | 9T3 | 123B | 2E3 | 341BG | 1D17 | 575B | 3E14 | | 75TE39
75TE47 | 9T3
9T3 | 123C
124A | 2E4
2E3 | 341CG
341CJ | 1D17
1D17 | 576B
577B | 3E14
3E14 | | | | | | | | | | | 578B | 3E14 | 9033 | 8D | 999329 | 2E5 | CA3008 | 9L3 | |----------------------|--------------------|------------------|------------|----------------------------|------------------|--|-------------| | 579B | 3B2 | 9075 | 8A | 999421 | 2B2 | CA3011 | 9C | | 580B | 3D | 9076 | 8A | 999422 | 2B2 | CA3012 | 9C | | 582B | 3D | 9300 | 8G | 999429 | 2B2 | CA3013 | 9C | | 583B | 3E7 | 9301 | 7F | 999521 | 2C2 | CA3014 | 9C | | 584B | 3E14 | 9302 | 7B | 999529 | 2C2 | CA3015, 6 | 9L3 | | 585B | 3D | 9303 | 8G | 999552 | 1D15 | CA3020 | 9B | | 587B | 3E14 | 9952 | 6C2 | 999621 | 2G | CA3021 | 9S | | 727 | 1D3 | 9953 | 6C3 | 999622 | 2G | CA3022 | 9S | | 728
729 | 11
1C1 | 9954
9955 | 6C3
6C3 | 999626
9997021 | 2G
2A1 | CA3022
CA3023
CA3028 | 9S
9P | | 800B | 9L1 | 9956 | 6B | 9997022 | 2A1 | CA3029 | 9L3 | | 800D
801B | 9L1
9L1 | 9957
9958 | 6A
8A | 9997029 | 2A1 | CA3031
CA3032 | 9L4
9L4 | | 801D
805B | 9L1
9L1 | 9959
9960 | 8D
7A | —A- | | CD2150
CD2202 | 4D2
1D6 | | 805C | 9L1 | 9964 | 6C3 | A01 | 1D10 | CD2203 | 1B4 | | 805-3 | 9L1 | 9965 | 6C3 | A02 | 1D10 | CD2205 | 1D8 | | 805-4 | 9L1 | 9966 | 6C3 | A03 | 1B3 | CR2100 | 4D2 | | 806B | 9L1 | 9967 | 6B | A04 | 1E | CR2101 | 4D1 | | 806C | 9L1 | 9968 | 6B | A05 | 1D10 | CS700 | 1D11 | | 806-3 | 9L1 | 9971 | 6C3 | A06 | 1D10 | CS701 | 1D11 | | 806-4 | 9L1 | 9973 | 6B | A07 | 1D10 | CS704 | 1B4 | | 807B | 9L1 | 9989 | 8A | A08 | 1I | CS705 | 1D2 | | 807-4 | 9L1 | 9997 | 8G | A09 | 1B2 | CS709 | 1D2 | | 831A | 9F1 | 9998 | 8G | A10 | 1D10, 3E8 | CS715 | 1C1 | | 831B
831C | 9F1 | 900051 | 3B1 | A11
A12 | 2A2, 3E8
1D10 | CS716 | 1D11 | | 831D | 9F1 | 900059 | 3B1 | A13 | 1D10, 2B2 | CS720 | 1D11 | | | 9F1 | 900151 | 3B1 | A13-251 | 9L1 | CS721 | 1D11 | | 900 | 2C3 | 900159 | 3B1 | A14 | 1D10 | CS727 | 1D11 | | 901B | 9S | 900251 | 3E9 | A15 | | CS729 | 1B4 | | 901C | 9S | 900259 | 3E9 | A16 | 1D11 | CS730 | 1D11 | | 903B | 9P | 900351 | 3E9 | | 2B2 | CS731 | 1D3 | | 903C | 9P | 900359 | 3E9 | A17 | 2B3 | CS732 | 1D3 | | 914 | 2E3 | 900451 | 3E9 | A20 | 1C2 | CTμL951 | 6A | | 923 | 2B3 | 900459 | 3E9 | A41 | 1D11 | CTμL952 | 6C1 | | 930 | 1D13 | 900551 | 3E2 | A42 | 1D11 | CTμL953 | 6C1 | | 932 | 1C1 | 900559 | 3E2 | A43 | 1B3 | CTμL954 | 6C1 | | 933 | 1D3 | 900651 | 3E2 | A44 | 1D1 | CTμL955 | 6C1 | | 936
937 | 1G
1G | 900659
900751 | 3E2
3E9 | A45
A46 | 1D10
1D11 | CT _μ L956 | 6B | | 944
945 | 1D13
1B3 | 900759
900851 | 3E9
3E2 | A47
A48 | 1D11
1I | —D— | | | 946 | 1D13 | 900859 | 3E2 | A49 | 1B2 | D13-000 | 9F1 | | 948 | 1B2 | 900951 | 3C | A50 | 1D10 | D13-001 | 9F1 | | 949 | 1D13 | 900959 | 3C | A51 | 1A | D13-002 | 9F1 | | 950 | 1B1 | 902051 | 3B1 | A52 | 1D10 | DM3510B | 5D | | 951 | 11 | 902059 | 3B1 | A53
A54 | 1D11
1D11 | DTμL930
DTμL931 | 1D12
1B3 | | 961
962 | 1D12
1D13 | 902151
902159 | 3B1
3B1 | A55
A60 | 1D11
1C2 | DT _μ L931
DT _μ L932
DT _μ L933 | 1C1
1D2 | | 963 | 1D12 | 909351 | 1B3 | AMC101 | 9B | DTμL944 | 1D16 | | 2107B | 9A | 909356 | 1B3 | | 9L1 | DTμL945 | 1B3 | | 2108B
2109B | 9A
9A | 909359
909451 | 1B3
1B2 | ATF401 —B- | | DT _μ L946 | 1D12 | | 2110B | 9A | 909456 | 1B2 | В01 | — | DTμL948 | 1B2 | | 2114B | 9A | 909459 | 1B2 | | 3E17 | DTμL950 | 1B1 | | 2404B | 9L1 | 909751 | 1B2 | B02 | 3E17 | DTμL951 | 11 | | 2405B | 9L1 | 909756 | 1B2 | B11004 | 2C1 | DTμL962 | 1D12 | | 2802B
2803B | 9T1
9T1 | 909759
909951 | 1B2
1B2 | BC11001
BR-801 | 2C2
9T1 | —Е— | | | 4002A
4002B | 2H
2H | 909956
909959 | 1B3
1B2 | —С- | | E11001 | 2F | | 4002C
8200 | 2H
1B1 | 911151
911159 | 1B2
1B2 | C11001 | 2D | E11004
E13511 | 2F
9S | | 8201
8202 | 1H
1H | 993651
993659 | 1G
1G | C11004
CA2151 | 2D
4D2 | E16-501 | 9A | | 8203
8204 | 11 | 993751 | 1G | CA2151
CA2152
CA2200 | 4D2
1D9 | —F— | FO | | 8204
8207
8208 | 1D15
1D1
1D1 | 993759
999121 | 1G
2E5 | CA2201 | 1D5 | FF0451B
FF1514B | 5C
2B2 | | 8209 | 1D1 | 999122
999129 | 2E5
2E5 | CA2204
CA3000 | 1D9
9B | FF5551B
FF7317E | 2B2
5A | | 8210 | 1D1 | 999221 | 2E5 | CA3001 | 9S | FF6451B | 5C | | 8213 | 1C1 | 999222 | 2E5 | CA3002 | 9P | FF8317E | 5A | | 8214 | 1D5 | 999229 | 2E5 | CA3004 | 9P | FF9551B | 2B2 | | 8502 | 9A | 999321 | 2E5 | CA3005 | 9B | FμL90029 | 2C3 | | 9030 | 8D | 999322 | 2E5 | CA3007 | 9B | F _μ L90329 | 2E1 | | 283, 2C4, 2G
2C3
2C3
2C5
2C5
2C5
2C5
2C5
2C5
2C5
2C5
2C6
2C7
2C7
2C7
2C7
2C7
2C7
2C7
2C7
2C7
2C7 | 2E2 | |---|--------------------| |
MMCC8999
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8932
MMCC8933
MMCC8933
MMCC8933
MMCC8932
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC8933
MMCC893 | 00 | | | 283, 2C4, 2F
2F | | MCC501
MCC501
MCC501
MCC501
MCC501
MCC501
MCC501
MCC501
MCC502
MCC502
MCC502
MCC502
MCC502
MCC503
MCC503
MCC503
MCC503
MCC503
MCC503
MCC503
MCC503
MCC503
MCC503
MCC503
MCC503
MCC503
MCC503
MCC503
MCC701
MCC701
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC703
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC70
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702
MCC702 | MC785P | | 1010
1010
1010
1010
1010
1010
1010
101 | 3E3 | | MMC282G
MC282G
MC282G
MC282G
MC282G
MC302
MC302
MC302
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC303
MC403
MC413
MC413
MC413
MC413
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC453
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53
MC53 | MC460 | | 211 2E4 2E4 2E4 2E4 2E4 2E1 | 1014
1014 | | FAL90529 FAL91029 FAL91129 FAL91129 FAL91129 FAL91129 FAL91229 FAL92129 FAL92129 FAL92129 FAL92129 FAL92329 FAL93329 FAL | 33 | | MC908
MC909
MC910
MC911
MC912 | 2A2
2C4
2E4
2E4
2A2 | MC1213F
MC1217F
MC1218F
MC1219F
MC1220F | 4B
4F
4F
4A
7A | μL907
μL914
μL915
μL916
μL927 | 2E5
2E2
2E2
2B2
1D10 | PC201
PC210H
PC212H
PC222
PC250 | | 9F1
9L4
9L4
9B
9L4 | |---|---------------------------------|---|----------------------------|--|----------------------------------|---|-----|--------------------------------| | MC913
MC914
MC915 | 2B2
2E2
2E2 | MC1221F
MC1429
MC1430 | 7A
9F1
9L2 | —N— | | PC251
PC401H
PC402H | | 9L4
9A
9A | | MC916
MC918 | 2B1
2E4 | MC1431
MC1433 | 9L2
9L2 | NB1000
NB1001 | 2B3
2D
2B1 | PC501H
PC502H
PC503H | | 9T2
9T2
9T2 | | MC920
MC921
MC926 | 2B2
2F
2B1 | MC1511
MC1512
MC1519 | 4F
4F
9F1 | NB1002
NB1003
NB1004 | 2E5
2A1 | PC504H
PL4C01 | | 9T2
7F | | MC927
MC928 | 2G
2E4 | MC1524
MC1525 | 9N
9F1 | NB1005
NN1007 | 2I1
2E5 | PL4G01
PL4G02
PL4G03 | | 7C
7E
7E | | MC929
MC930
MC931 | 2E2
1D12
1B2 | MC1526
MC1529
MC1530 | 9F1
9F1
9L2 | NB1014
NB1015
NC-10 | 2E5
2E5
1D15 | PL4M01
PL4R01 | | 7C
7G | | MC932
MC933 | 1C1
1D2 | MC1531
MC1533 | 9L2
9L2 | NC-11
NC511/PC511H | 1D5
9T1 | PL4R07
PL4S01
PL4S02 | | 7G
7D
7E | | MC944
MC945
MC946 | 1D17
1B3
1D12 | MC1540
MC1550
MC1552 | 9Q
9P
9S | NC512/PC512H
NC513/PC513H
NC514/PC514H | 9T1
9T1
9T1 | PL5200
PL900 | | 7G
2C2 | | MC948
MC950 | 1B2
1B1 | MC1553
MC1709 | 9S
9L2 | NC521/PC521H
NC523/PC523H | 9T2
9T2 | PL901
PL902
PL903 | | 2D
2B1
2E3 | | MC951
MC962
MC999 | 11
1D12
2C3 |
MEM1000
MEM1002
MEM1005 | 7A
7A
7A | NC/PC8
NC/PC9
NC/PC12 | 1B1
8H
1B1 | PL904
PL905
PL906 | | 2A1
2F, 2I1
2I1 | | MC1001P
MC1002P | 4D5
4D5 | MEM1008
MEM1022 | 7A
7A | NC/PC16
NC/PC17
NC/PC19 | 11
8E
1B4 | PL907
PL908 | | 2E3
2A2 | | MC1003P
MC1004P
MC1005P | 4D5
4D5
4D5 | MEM1050
MEM3005PP
MEM3008PS | 7A
8G
8G | NC/PC101
ND1002 | 9S
1C2 | PL909
PL910
PL911 | | 2C4
2E4
2E4 | | MC1006P
MC1007P | 4D5
4D3 | MEM3012SP
MEM3016-2
MEM3016-2D | 8G
8G
8G | ND1003
ND1006
NM1003 | 1B1
1D16
9N | PL912
PL913
PL915 | | 2A2
2I2 | | MC1008P
MC1009P
MC1010P | 4D3
4D3
4D3 | MEM3020
MEM3021 | 8G
8G | NM1004
NM1005 | 9T2
9F1 | PL916
PL921 | | 2E3
2B1
2F | | MC1011P
MC1012F
MC1012P | 4D3
4D3
4D3 | MEM3050
MEM3064
MEM5014 | 8G
8G
7A | NM1008
NM1021
NM1032 | 9N
9F1
9I | PL930
PL931
PL932 | | 1D5
1B3
1C1 | | MC1013P
MC1017P | 4B
4F | MEM5021
MW _μ L908 | 7A
2A2 | NM1033
NM1037 | 91
9F1 | PL933
PL946 | | 1D2
1D5 | | MC1018P
MC1019P
MC1020P | 4F
4A
7A | MWμL909
MWμL910
MWμL911 | 2C4
2E4
2E4 | NM1038
NM2012
NM2016 | 9H
9Q
9Q | PL5200
- | -0- | 7G | | MC1021P
MC1050
MC1051 | 7A
4D5
4D5 | MW ['] μL912
MW _μ L913
MW _μ L921 | 2A2
2B2
2F | NM2017
NM2024
NM4002 | 9A
9E
8E | Q25AH
Q82AH | | 9L2
9L2 | | MC1052
MC1110 | 4D5
9I | μ7095
μ7103 | 2E5
3E20 | NS7558
NS7512A | 9B
9S | Q85AH | | 9L2 | | MC1111
MC1112
MC1113 | 1D1
1D1
1D1 | μ7104
μ7105
μ7106 | 3E20
3E20
3E20 | NS7560
NS7560A | 9L2
9L2 | R11001 | —R— | 211 | | MC1114
MC1115 | 1D1
1G | μ A 702
μ A 702 A | 9B
9L1 | —P— | 212 | R11004
R12001
RA238 | | 2I1
2B2
9L2 | | MC1116
MC1117
MC1118 | 8B
8B
8B | μΑ702C
μΑ709
μΑ709C | 9L1
9L1
9L1 | P11001
P11004
PA702A/712 | 212
9L2 | RA239
RA240 | | 9L2
9L3 | | MC1201F
MC1202F
MC1203F | 4D5
4D5
4D5 | μΑ710
μΑ710C
μΑ711 | 9G
9A
9F1 | PA710
PA713
PA7026 | 9G
9P
9L2 | RA335
RA338
RA339 | | 9L3
9L3
9L3 | | MC1204F
MC1205F | 4D6
4D6 | μΑ711C
μΑ716C | 9G
9B | PA7600
PC-10 | 9P
1D15 | RA340
RA538 | | 9L3 | | MC1206F
MC1207F
MC1208F | 4D6
4D3
4D3 | μL900
μL902
μL903 | 2C3
2B1
2E2 | PC-11
PC-13
PC-14 | 1D5
1B1
1D15 | RA539
RA540
RC103 | | 9L3
9L3
2E5 | | MC1209F
MC1211F
MC1212F | 4D4
4D4
4D4 | μ L 904
μ L 905
μ L 906 | 2A1
2I
2I | PC-15
PC-18
PC200 | 1D5
1I
9F1 | RC123
RC124
RC144 | | 2E5
2E5
2E5 | | 111012121 | 704 | μΕσου | 21 | . 0200 | 012 | | | | | 3 8 2 2 1 3 8 2 2 1 3 8 2 2 1 3 8 2 2 1 3 8 2 2 1 3 8 2 2 1 3 8 2 2 1 3 8 2 3 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 350
350
3617
3618
364
364
364
370
370
370
370
370
370
370
370
370
370 | 352
352
352
352
352
3518
3517
3517
3517 | 3521
3521
3521
3521
3516
3516
3517
3517
3517
3517
3517
3517
3517
3517 | |--|--|---
---| | 2000111120000 | 2 E E E E E E E E E E E E E E E E E E E | | \$\text{SG211}\$ \$\text{SG211}\$ \$\text{SG211}\$ \$\text{SG221}\$ \$\text{SG222}\$ \$\text{SG222}\$ \$\text{SG223}\$ \$\text{SG233}\$ \$\text{SG233}\$ \$\text{SG233}\$ \$\text{SG233}\$ \$\text{SG240}\$ \$\text{SG240}\$ \$\text{SG240}\$ \$\text{SG244}\$ \$\text{SG244}\$ \$\text{SG244}\$ \$\text{SG244}\$ \$\text{SG246}\$ \$\text{SG245}\$ \$\text{SG246}\$ \$\text{SG245}\$ \$\text{SG246}\$ \$\text{SG266}\$ \$\text{SG2670}\$ \$\text{SG270}\$ \$\text{SG277}\$ \$\text{SG277}\$ | | | n | n | 385
385
385
3819
3819
3821
3821
3821
3823
3823
3823
3823
3823 | | SE808
SE816
SE825
SE840
SE870
SE870
SF110
SF111
SF12
SF20
SF20
SF213
SF20
SF213
SF20
SF20
SF20
SF20
SF20
SF20
SF20
SF20 | 100 | SF112-113
SF120-121
SF120-121
SF130-131
SF130-201
SF200-201
SF210-211
SF212-213
SF250
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF251
SF25 | \$F262
\$F263
\$F263
\$G40
\$G41
\$G42
\$G50
\$G51
\$G63
\$G63
\$G63
\$G63
\$G63
\$G63
\$G63
\$G70
\$G71
\$G63
\$G72
\$G83
\$G82
\$G83
\$G83
\$G83
\$G83
\$G83
\$G83
\$G83
\$G83 | | 1012
183
183
101
101
102
1014
1014
183
183
1012 | 183
1012
1012
1012
3613
3615
3613
3610
3610
386
386
385 | 3E10
211
211
211
211
211
3D
3D
1D13
1D13
1D3
1D3 | 1011
1011
1013
183
161
1012
1012
1012
1012
1012
1013
381
3813
3813
3813
3813
90
90
90
90
90
90
90 | | \$1930D
\$1931
\$1932
\$1932
\$1932
\$1933
\$1933
\$1944
\$1946
\$1946
\$1946
\$1946 | \$1948
\$1948D
\$1962
\$1962D
\$8416
\$8416
\$8424
\$8840
\$8806
\$8806
\$8825
\$8826
\$8840
\$8840
\$8840
\$8840
\$8840
\$8840
\$8840 |
\$8880
\$11001
\$11004
\$A10
\$A11
\$A20
\$C126
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$C426
\$
\$C426
\$
\$C426
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$
\$ | SE112
SE113
SE113
SE113
SE124
SE125
SE155
SE156
SE157
SE160
SE180
SE180
SE181
SE424
SE440
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500
SE500 | | 108
102
102
103
104
108
108
108
108
108
108
108
108
108
108 | 109
106
106
109
108
108
212
212
225
227
227
227 | 2E8
2E8
2E8
2E8
2E6
2E6
1D10
1D10
1B1, 2B1
1B1
1D2
1D2 | 181
162
1010
1010
1010
1010
1010
1010
1010 | | RC201T
RC202T
RC203T
RC203T
RC204T
RC205G
RC210T
RC211T
RC211T
RC211T
RC211T
RC211T | RC2217
RC223
RC224
RC2247
RC2243
RC243
RC3216
RC322
RC324
RC324
RC324 | RC1031
RC1033
RC1033
RC1231
RC1233
RC1243
RC1243
RD-205
RD-206
RD-209
RD-209
RD-210 | RD-223
RD-223
RD-223
RD-234
RD-305
RD-306
RD-306
RD-307
RD-310
RD-320
RD-320
RD-320
RD-320
RD-320
RD-506
RD-509
RD-509
RD-511
RD-510
RD-510
RD-534 | | SG293 3E4 SN518B 5D SN7430 3E12 SN74962 3E12 SG300 3E4 SN521A 9L4 SN7440 3E13 SN74965 3E12 SG301 3E4 SN522A 9L4 SN7440 3E13 SN74965 3E12 SG302 3E4 SN523A 9F2 SN7451 3E22 SNX1312 9F2 SG303 3E4 SN524A 9L4 SN7453 3E5 SP616 1D8 SG310 3E4 SN525A 9F2 SN7460 3F2 SP620 1B4 SG311 3E4 SN526A 9L4 SN7470 3B6 SP629 1B4 SG311 3E4 SN530 1B4 SN7472 3B5 SP631 1D3 SG314 3E4 SN531 1D14 SN7473 3B5 SP659 1C1 SI930 1D13 SN533 1D4 SN7476 3B3 SP659 1C1 SI931 1B3 | SG273
SG290
SG291
SG292 | 3F1
3E4
3E4
3E4 | SN514B
SN515B
SN516B
SN517B | 5C
5C
5C
5B | SN7380
SN7400
SN7410
SN7420 | 11
3E11
3E11
3E11 | SN74930
SN74932
SN74946
SN74948 | 3E12
3D
3E12
3B6 | |--|----------------------------------|--------------------------|--------------------------------------|----------------------|--------------------------------------|----------------------------|--|---------------------------| | SG301 3E4 SN522A 9L4 SN7441 7F SN74966 3E12 SG302 3E4 SN523A 9F2 SN7451 3E22 SNX1312 9F2 SG303 3E4 SN524A 9L4 SN7453 3E5 SP616 1D8 SG310 3E4 SN525A 9F2 SN7460 3E5 SP620 1B4 SG311 3E4 SN526A 9L4 SN7470 3B6 SP629 1B4 SG313 3E4 SN530 1B4 SN7472 3B5 SP631 1D3 SG314 3E4 SN530 1B4 SN7472 3B5 SP631 1D3 SI930 1D13 SN532 1D4 SN7474 3B3 SP670 1D8 SI930D 1D13 SN533 1D14 SN7476 3B3 SP680 1D9 SI931 1B3 SN534
1D4 SN7480 3A ST2514B 5A SI931 1B3 SN535 | | | | | | | | | | SG302 3E4 SN523A 9F2 SN7451 3E22 SNX1312 9F2 SG303 3E4 SN524A 9L4 SN7453 3E5 SP616 1D8 SG310 3E4 SN525A 9F2 SN7460 3F2 SP620 1B4 SG311 3E4 SN526A 9L4 SN7470 3B6 SP629 1B4 SG313 3E4 SN530 1B4 SN7472 3B5 SP631 1D3 SG314 3E4 SN531 1D14 SN7473 3B5 SP659 1C1 SI930 1D13 SN532 1D4 SN7474 3B3 SP659 1C1 SI931 1B3 SN533 1D14 SN7476 3B3 SP660 1D8 SI931 1B3 SN534 1D4 SN7480 3A ST2514B 5A SI931 1B3 SN535 1C2 SN7480 3A SU300 8I SI932 1C1 SN723 | | | | | | | | | | SG303 3E4 SN524A 9L4 SN7453 3E5 SP616 1D8 SG310 3E4 SN525A 9F2 SN7460 3F2 SP620 1B4 SG311 3E4 SN526A 9L4 SN7470 3B6 SP629 1B4 SG313 3E4 SN530 1B4 SN7472 3B5 SP631 1D3 SG314 3E4 SN531 1D14 SN7473 3B5 SP659 1C1 SI930 1D13 SN532 1D4 SN7474 3B3 SP670 1D8 SI930D 1D13 SN533 1D14 SN7476 3B3 SP680 1D9 SI931 1B3 SN534 1D4 SN7480 3A ST2514B 5A SI931D 1B3 SN535 1C2 SN7481 8D SU300 8I SI932 1C1 SN723 9F2 SN7482 3A SU305 8I SI933 1D2 SN726 | | | | | | | | | | SG311 3E4 SN526A 9L4 SN7470 3B6 SP629 1B4 SG313 3E4 SN530 1B4 SN7472 3B5 SP631 1D3 SG314 3E4 SN531 1D14 SN7473 3B5 SP659 1C1 SI930 1D13 SN532 1D4 SN7474 3B3 SP670 1D8 SI930D 1D13 SN533 1D14 SN7476 3B3 SP680 1D9 SI931 1B3 SN534 1D4 SN7480 3A ST2514B 5A SI931D 1B3 SN535 1C2 SN7481 8D SU300 8I SI932 1C1 SN723 9F2 SN7482 3A SU300 8I SI933 1D2 SN724 9L4 SN7483 3A SU306 8I SI933 1D2 SN725 9F2 SN7490 8A SU314 8I SI933 1D2 SN726 < | SG303 | 3E4 | SN524A | | SN7453 | 3E5 | SP616 | 1D8 | | SG313 3E4 SN530 1B4 SN7472 3B5 SP631 1D3 SG314 3E4 SN531 1D14 SN7473 3B5 SP659 1C1 SI930 1D13 SN532 1D4 SN7474 3B3 SP670 1D8 SI930D 1D13 SN533 1D14 SN7476 3B3 SP670 1D8 SI931 1B3 SN533 1D14 SN7476 3B3 SP680 1D9 SI931D 1B3 SN535 1C2 SN7480 3A ST2514B 5A SI932D 1C1 SN723 9F2 SN7482 3A SU300 8I SI933 1D2 SN724 9L4 SN7483 3A SU306 8I SI933 1D2 SN725 9F2 SN7490 8A SU314 8I SI945 1B3 SN5101B 5A SN7491 8G SU315 8I SI946 1B3 SN5111 | | | | | | | | | | SI930 1D13 SN532 1D4 SN7474 3B3 SP670 1D8 SI930D 1D13 SN533 1D14 SN7476 3B3 SP680 1D9 SI931 1B3 SN534 1D4 SN7480 3A ST2514B 5A SI931D 1B3 SN535 1C2 SN7481 8D SU300 8I SI932 1C1 SN723 9F2 SN7482 3A SU305 8I SI932D 1C1 SN724 9L4 SN7483 3A SU306 8I SI933 1D2 SN725 9F2 SN7490 8A SU314 8I SI933D 1D2 SN726 9L4 SN7491 8G SU315 8I SI945D 1B3 SN5101B 5A SN7492 3B7 SU316 8I SI946 1D13 SN5112 5A SN7493 3B7 SU320 8I SI962 1D13 SN5161B | SG313 | 3E4 | SN530 | 1B4 | SN7472 | 3B5 | SP631 | 1D3 | | SI930D 1D13 SN533 1D14 SN7476 3B3 SP680 1D9 SI931 1B3 SN534 1D4 SN7480 3A ST2514B 5A SI931D 1B3 SN535 1C2 SN7481 8D SU300 8I SI932 1C1 SN723 9F2 SN7482 3A SU305 8I SI932D 1C1 SN724 9L4 SN7483 3A SU306 8I SI933 1D2 SN725 9F2 SN7490 8A SU314 8I SI933D 1D2 SN726 9L4 SN7491 8G SU315 8I SI945 1B3 SN5101B 5A SN7492 3B7 SU316 8I SI945D 1B3 SN5111 5A SN7493 3B7 SU320 8I SI946 1D13 SN5112 5A SN7500 9Q SU331 8I SI962 1D13 SN5161B <t< td=""><td></td><td></td><td></td><td></td><td></td><td>3B5</td><td></td><td></td></t<> | | | | | | 3B5 | | | | SI931D 1B3 SN535 1C2 SN7481 8D SU300 8I SI932 1C1 SN723 9F2 SN7482 3A SU305 8I SI932D 1C1 SN724 9L4 SN7483 3A SU306 8I SI933 1D2 SN725 9F2 SN7490 8A SU314 8I SI933D 1D2 SN726 9L4 SN7491 8G SU315 8I SI945 1B3 SN5101B 5A SN7492 3B7 SU316 8I SI945D 1B3 SN5111 5A SN7493 3B7 SU320 8I SI946 1D13 SN5112 5A SN7500 9Q SU331 8I SI946D 1D13 SN5113 5A SN7501 9Q SU332 8I SI962 1D13 SN5161B 5C SN7502 9Q SW101 1D5 SI962D 1D13 SN5162B <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<> | | | | | | | | | | SI932 1C1 SN723 9F2 SN7482 3A SU305 8I SI932D 1C1 SN724 9L4 SN7483 3A SU306 8I SI933 1D2 SN725 9F2 SN7490 8A SU314 8I SI933D 1D2 SN726 9L4 SN7491 8G SU315 8I SI945 1B3 SN5101B 5A SN7492 3B7 SU316 8I SI945D 1B3 SN5111 5A SN7493 3B7 SU320 8I SI946 1D13 SN5112 5A SN7500 9Q SU331 8I SI946D 1D13 SN5113 5A SN7501 9Q SU332 8I SI962 1D13 SN5161B 5C SN7502 9Q SW101 1D5 SI962D 1D13 SN5162B 5C SN7510 9S SW102 1D5 SN54H00 3E15 SN5191 | | | | | | | | | | SI932D 1C1 SN724 9L4 SN7483 3A SU306 8I SI933 1D2 SN725 9F2 SN7490 8A SU314 8I SI933D 1D2 SN726 9L4 SN7491 8G SU315 8I SI945 1B3 SN5101B 5A SN7492 3B7 SU316 8I SI945D 1B3 SN5111 5A SN7493 3B7 SU320 8I SI946 1D13 SN5112 5A SN7500 9Q SU331 8I SI946D 1D13 SN5113 5A SN7501 9Q SU332 8I SI962 1D13 SN5161B 5C SN7502 9Q SW101 1D5 SI962D 1D13 SN5162B 5C SN7510 9S SW102 1D5 SN54H00 3E15 SN5191 5C SN15830 1D6 SW103 3E9 | | | | 9F2 | | | | | | SI933D 1D2 SN726 9L4 SN7491 8G SU315 8I SI945 1B3 SN5101B 5A SN7492 3B7 SU316 8I SI945D 1B3 SN5111 5A SN7493 3B7 SU320 8I SI946 1D13 SN5112 5A SN7500 9Q SU331 8I SI946D 1D13 SN5113 5A SN7501 9Q SU332 8I SI962 1D13 SN5161B 5C SN7502 9Q SW101 1D5 SI962D 1D13 SN5162B 5C SN7510 9S SW102 1D5 SN54H00 3E15 SN5191 5C SN15830 1D6 SW103 3E9 | | | | | | | | 81 | | SI945 1B3 SN5101B 5A SN7492 3B7 SU316 8I SI945D 1B3 SN5111 5A SN7493 3B7 SU320 8I SI946 1D13 SN5112 5A SN7500 9Q SU331 8I SI946D 1D13 SN5113 5A SN7501 9Q SU332 8I SI962 1D13 SN5161B 5C SN7502 9Q SW101 1D5 SI962D 1D13 SN5162B 5C SN7510 9S SW102 1D5 SN54H00 3E15 SN5191 5C SN15830 1D6 SW103 3E9 | | | | | | | | | | SI946 1D13 SN5112 5A SN7500 9Q SU331 8I SI946D 1D13 SN5113 5A SN7501 9Q SU332 8I SI962 1D13 SN5161B 5C SN7502 9Q SW101 1D5 SI962D 1D13 SN5162B 5C SN7510 9S SW102 1D5 SN54H00 3E15 SN5191 5C SN15830 1D6 SW103 3E9 | SI945 | 1B3 | SN5101B | 5A | SN7492 | 3B7 | SU316 | 81 | | SI946D 1D13 SN5113 5A SN7501 9Q SU332 8I SI962 1D13 SN5161B 5C SN7502 9Q SW101 1D5 SI962D 1D13 SN5162B 5C SN7510 9S SW102 1D5 SN54H00 3E15 SN5191 5C SN15830 1D6 SW103 3E9 | | | | | | 3B7
90 | SU320
SU331 | | | SI962D 1D13 SN5162B 5C SN7510 9S SW102 1D5 SN54H00 3E15 SN5191 5C SN15830 1D6 SW103 3E9 | SI946D | | SN5113 | 5A | SN7501 | 9Q | SU332 | 81 | | SN54H00 3E15 SN5191 5C SN15830 1D6 SW103 3E9 | | | | | | 9Q | | | | CNEAU10 20 CNE221 0F2 CN15021 1D2 CN/104 2510 | | | SN5191 | 5C | SN15830 | 1D6 | SW103 | 3E9 | | SN54H10 3E8 SN5231L 9F2 SN15831 1B3 SW104 3E10 SN54H11 3E1 SN5301 1B4 SN15832 1C1 SW115 1D6 | SN54H10 | 3E8 | SN5231L
SN5301 | 9F2 | SN15831 | 1B3 | SW104
SW115 | 3E10 | | SN54H20 3E8 SN5302 1B4 SN15833 1D3 SW201 1G1, 1D6 | | | | | | | | | | SN54H21 3E1 SN5304 1B4 SN15844 1D6 SW204 1D6 | SN54H21 | 3E1 | | | | | | 1D6 | | SN54H40 3E8 SN5311 1D14 SN15845 1B3 SW211 1D6 SN54H50 3E6 SN5331 1D14 SN15846 1D7 SW212 1B1 | | | | | | | | | | SN54H52 3E3 SN5360 1D14 SN15848 1B3 SW221 1D6 | | 3E3 | | | | | | | | SN54H53 3E3 SN5370 1D17 SN15850 1B3 SW224 1D6 SN54H60 3F1 SN5380 1I SN15851 1I SW231 1D6 | | | | | | | | | | SN54H61 3F1 SN5400 3E11 SN15862 1D7 SW301 4D2 | SN54H61 | 3F1 | SN5400 | 3E11 | SN15862 | 1D7 | SW301 | 4D2 | | SN54H62 3F1 SN5410 3E11 SN15930 1D7 SW304 4B SN54H71 3B1 SN5420 3E11 SN15931 1B3 SW305 4E | | | | | | | | | | SN54H72 3B1 SN5430 3E12 SN15932 1C2 SW306 4D2 | | 3B1 | SN5430 | 3E12 | SN15932 | 1C2 | SW306 | 4D2 | | SN54L00 3E13 SN5440 3E13 SN15933 1D3 SW307 4D2 SN54L10 3E13 SN5450 3E22 SN15944 1D7 SW308 4B | | | | | | | | | | SN54L20 3E13 SN5451 3E22 SN15945 1B3 SW309 4D1 | SN54L20 | 3E13 | SN5451 | 3E22 | SN15945 | 1B3 | SW309 | 4D1 | | SN54L22 3E16 SN5453 3F2 SN15946 1D7 SW310 4D1 SN54L30 3E13 SN5460 3F2 SN15948 1B3 SW311 4D1 | | | | | | | | | | \$N54L51 3E7 \$N5470 3B6 \$N15950 1B3 \$W402 3E15 | | | SN5470 | | SN15950 | | | | | SN54L71 3B6 SN5472 3B5 SN15951 1I SW708 1D5 SN54L72 3B6 SN5473 3B5 SN15962 1D7 SW930 1D5, 1D6 | | | | | | | | | | SN54L73 3B6 SN5474 3B3 SN17908L 2A2 SW931 1B3 | | | | | | | | | | SN74H00 3E8 SN5480 3A SN17909L 2C4 SW932 1C1
SN74H10 3E8 SN5481 8D SN17910L 2E4 SW933 1D3 | | | | | | | | | | SN74H10 3E8 SN5481 8D SN17910L 2E4 SW933 1D3 SN74H11 3E1 SN5482 3A SN17911L 2E4 SW944 1C1 | | | | | | | | | | SN74H12 3E1 SN5490 8A SN17912L 2A2 SW945 1B3 SN74H20 3E8 SN5491 8G SN17913L 2C2 SW946 1D6 | | | | | | | | | | SN74H20 3E8 SN5491 8G SN17913L 2C2 SW946 1D6 SN74H30 3E8 SN5500 9Q SN17921L 2F SW948 1B3 | | | | | | | | | | SN74H40 3E8 SN5510 9F2 SN52702 9L4 SW962 1D6 | SN74H40 | 3E8 | SN5510 | 9F2 | SN52702 | 9L4 | SW962 | 1D6 | | SN74H50 3E6 SN7000 4D2 SN52709 9L4 SW5400 3E10 SN74H52 3E6 SN7001 4D2 SN52710 9G SW5401 3E10 | | | | | | | | | | SN74H53 3E6 SN7300 1B4 SN52711 9G SW5420 3E10 | SN74H53 | 3E6 | SN7300 | 1B4 | SN52711 | 9G | SW5420 | 3E10 | | SN74H60 3E7 SN7301 1B4 SN54930 3E12 SW5430 3E12 SN74H61 3F1 SN7302 1B4 SN54932 3D SW5440 3E13 | | | | | | | | | | SN74H62 3F1 SN7304 1B4 SN54946 3E12 SW5450 3E22 | | 3F1 | SN7304 | 1B4 | SN54946 | 3E12 | SW5450 | 3E22 | | SN74H71 3B1 SN7310 1D14 SN54948 3B6 SW5460 3F2 SN74H72 3B1 SN7311 1D14 SN54962 3E12 SW5470 3B6 | | | | | | | | | | SN343A 1C2 SN7320 1D1 SN54965 3E12 SW7400 3E10 | | | | | | | | | | SN346A 1C2 SN7330 1D14 SN54966 3E22 SW7410 3E10 | _ | 1C2 | SN7330 | 1D14 | | 3E22 | SW7410 | 3E10 | | SN510B 5A SN7331 1D14 SN72702 9L4 SW7420 3E10 SN511B 5A SN7350 1C2 SN72709 9L4 SW7430 3E12 | | | | | | | | | | SN512B 5C SN7360 1D14 SN72710 9G SW7440 3E13 | SN512B | | SN7360 | | SN72710 | 9G | | | | SN513B 5C SN7370 1D17 SN72711 9G SW7450 3E22 ELECTRONIC DESIGN 9, April 26, 1967 223 | | | | 1017 | SIN/2/11 | 9G | 5W/45U | | | SW7460 | 3F2 | SWG143 | 3E10 | TNG3015 | 3E19 | W6F261 | 3E3 | |------------------|--------------|--------------------------|------------|--------------------------|--------------|------------------|----------------------| | SW7470 | 3B6 | SWG150 | 3F1 | TNG3013 | 3E19 | W6G221 | 3E17 | | SWA01 | 1D5 | SWG151 | 3F1 | TNG3031 | 3E19 | W6G241 | 3E17 | | SWA02
SWA04 | 1D5
1D1 | SWG152
SWG153 | 3F1
3F2 | TNG3041
TNG3043 | 3E18
3E18 | WC110T
WC115T | 9T4
9F2 | | SWA05 | 1D5 | SWG170 | 3F2 | TNG3045 | 3E18 | WC161Q | 9L4 | | SWF10 | 3B6 | SWG171 | 3F2 | TNG3047 | 3E18 | WC183 | 9B | | SWF11 | 3B6 | SWG172 | 3F2 | TNG3051 | 3F2 | WC206
WC208 | 1D7
8F | | SWF12
SWF13 | 3B6
3B7 | SWG173
SWG180 | 3F2
3F2 | TNG3111
TNG3113 | 3E19
3E19 | WC210 | 1C2 | | SWF20 | 3B7 | SWG181 | 3F2 | TNG3115 | 3E19 | WC211 | 1C7 | | SWF21 | 3B7 | SWG182 | 3F2 | TNG3117 | 3E19 | WC213 | 1B2 | | SWF22 | 3B7 | SWG183
SWG210 | 3F2
3E4 | TNG3131
TNG3141 | 3E19
3E18 | WC215
WC216 |
1B2
8B | | SWF23
SWF50 | 3B7
3B7 | SWG211 | 3E4 | TNG3141 | 3E18 | WC217 | 8B | | SWF51 | 3B7 | SWG212 | 3E4 | TNG3145 | 3E18 | WC218 | 11 | | SWF52 | 3B7 | SWG213 | 3E4 | TNG3147
TNG3211 | 3E18
3E19 | WC220
WC221 | 1C2
1D7 | | SWF53
SWF250 | 3B7
3B5 | SWG220
SWG221 | 3E8
3E8 | TNG3211 | 3E19 | WC224 | 1D7 | | SWF251 | 3B5 | SWG222 | 3E8 | TNG3215 | 3E19 | WC225 | 1B2 | | SWF252 | 3B5 | SWG223 | 3E8 | TNG3217
TNG3231 | 3E19
3E19 | WC226
WC227 | 1D8
8B | | SWF253
SWF260 | 3B5
3B5 | SWG230
SWG231 | 3F1
3F1 | TNG3231 | 3E18 | WC231 | 1D8 | | SWF261 | 3B5 | SWG232 | 3F1 | TNG3241-44 | 3E21 | WC234 | 1D8 | | SWF262 | 3B5 | SWG233 | 3F1 | TNG3243 | 3E18 | WC236 | 1D8 | | SWF263 | 3B5 | SWG240
SWG241 | 3E9
3E9 | TNG3245
TNG3247 | 3E18
3E18 | WC241
WC246 | 1D8
1D8 | | SWG4A
SWG4B | 3E10
3E10 | SWG242 | 3E9 | TNG3251 | 3F2 | WC261 | 1D8 | | SWG5A | 3E4 | SWG243 | 3E9 | TNG3281-84 | 3E21 | WC266 | 1D8 | | SWG5B | 3E5 | SWG250 | 3E4
3E4 | TNG3341-44
TNG3441-44 | 3E18
3E18 | WC286
WC296 | 1D8
1D8 | | SWG14
SWG16 | 3E10
3E12 | SWG251
SWG252 | 3E4
3E4 | TNG4041-42 | 3E22 | WC377 | 4D2 | | SWG21 | 3E5 | SWG253 | 3E4 | TNG4241-44 | 3E22 | WC378 | 4C | | SWG40 | 3E10 | SWG260
SWG261 | 3E9
3E9 | TNG4446
TNG4541 | 3E22
3E22 | WC379
WC380 | 4B
4D2 | | SWG41
SWG42 | 3E10
3E10 | SWG262 | 3E9 | TNG5511-12 | 3D | WC381 | 4D2 | | SWG42
SWG43 | 3E10 | SWG263 | 3E9 | TNG5611-12 | 3D | WC750T | 9F2 | | SWG50 | 3E5 | SWG270
SWG271 | 3F1
3F1 | TTμL103
TTμL104 | 3E20
3E20 | WC934
WC1146 | 91
9S | | SWG51
SWG52 | 3E5
3E5 | SWG272 | 3F1 | Τημείοσ | 3L20 | WM201 | 1D6 | | SWG53 | 3E5 | SWG273 | 3F1 | —U- | _ | WM204 | 1D8 | | SWG60 | 3E12 | —T— | | UC1001B | 1D5, 1D10 | WM206
WM208T | 1D6
8C | | SWG61
SWG62 | 3E12
3E12 | | | UC1002B | 1B1 | WM210 | 1C2 | | SWG63 | 3E12 | T35002 | 2H | UC1003B
UC1004B | 1C1
1A | WM211 | 1D6 | | SWG90 | 3E22 | TAA111
TAA121 | 9B
9B | UC1004B | 1D3 | WM213
WM214 | 1B4
1D8 | | SWG91 | 3E22 | TAA131 | 9B | UC1006B | 1D3 | WM215 | 1B4 | | SWG92
SWG93 | 3E22
3E22 | TAA293 | 91 | UC1501A | 91
9M | WM216 | 1D6 | | SWG100 | 3E5 | TAA310
TFF3011 | 9B
3B1 | UC1502A
UC1503A | 9N | WM217 | 1D3 | | SWG101 | 3E5 | TFF3013 | 3B1 | UC1504A | 9M | WM221 | 1D6 | | SWG102
SWG103 | 3E5
3E5 | TFF3015 | 3B1 | UC1505A | 91 | WM224
WM225G | 1D8
1B4 | | SWG110 | 3E5 | TFF3017 | 3B1
3B4 | UC1506A
UC1507A | 9M
9I | WM226G | 1D5, 1D8 | | SWG111 | 3E5 | TFF3111-14
TFF3115-18 | 3B4 | UC1508A | 9K | WM227 | 1D3 | | SWG112
SWG113 | 3E5
3E5 | TFF3121-24 | 3B4 | UC1509A | 90 | WM231 | 1D6 | | SWG120 | 3E13 | TFF3125-28
TFF3161-64 | 3B4
3B4 | UC1510A
UC4000 | 90
9L4 | WM234G | 1C1, 1D5
1D5, 1D8 | | SWG121 | 3E13 | TFF3165-68 | 3B4 | UC4001 | 9L4 | WM236G
WM241G | 1D3, 1D8 | | SWG122 | 3E13 | TFF3173-74 | 3B4 | UC4002 | 9L4
5A | WM246 | 1D6 | | SWG123
SWG130 | 3E13
3E10 | TFF3181-84
TFF3241-44 | 3B4
3B2 | US0100A
US0101A | 5A
5A | WM246G | 1D9 | | SWG131 | 3E10 | TFF3341-44 | 3B2 | US0102A | 5C | WM261G | 1D5, 1D8 | | SWG132
SWG133 | 3E10
3E10 | TFF3441-44 | 3B2 | US0103A | 5C | WM286G
WM296G | 1D9
1D5, 1D8 | | SWG140 | 3E10 | TMC3162-64
TMC40006 | 8D
9L2 | —w- | | WM503 | 1B4 | | SWG140
SWG141 | 3E10 | TNG3011 | 3E19 | | | WM1146 | 98 | | SWG142 | 3E10 | TNG3013 | 3E19 | W6F251 | 3B1 | WM1146Q | 9C | HYBRIDIZATION... the fine art of converting your discrete component circuit to a microcircuit. Volume microcircuit production of your analog or digital circuit is accomplished at Mepco by HYBRIDIZATION. The ability to manufacture precision passive film components is complemented by a wide variety of semiconductor attachment techniques. These capabilities provide the required flexibility to microminiaturize your circuit at the lowest possible cost. Consider these exceptional performance characteristics. - Matched semiconductor parameters - Ratio match of resistance values to .1% - Power dissipation 10 watts per sq. inch - Temperature coefficient tracking of ±20ppm maximum Write or call today for complete details. Mepco, Inc., Columbia Road, Morristown, N.J. 07960 (201) 539-2000 TWX: 710-986-7437 O.E.M. Sales Offices from Coast to Coast A Heritage of Reliability Resistors . . . Potentiometers . . . Microcircuits . . . Capacitors #### **Learn why** ## VHF transistors from ITT make circuit optimization easier 2N4130 — 50 watts at 70 MHz in a TO-3 package. 3TE225 — 50 watts at 150 MHz in strip line configuration. There's no question about it — ITT's "Predictables" will simplify your amplifier circuit design job. Performance is exceptional . . . and it's predictable. Here are two examples: 2N4130 — delivers 50 watts at 70 MHz. This transistor is resistor-stabilized for increased efficiency, and its grounded emitter minimizes capacitance. It's unusually easy to work with in Class B and C circuits and in single sideband applications. 3TE225 — offering 50 watts at 150 MHz, in the jumbo-sized 11/16" strip line package. Almost perfect stability makes tune-up easier, while low inductance adds bandwidth and simplifies matching to driver stages. Don't make circuit optimization tougher than it has to be. Get full details on the Predictables today. Use the coupon above for information; call your ITT distributor or factory representative for immediate delivery. ITT Semiconductors is a division of International Telephone and Telegraph Corporation, 3301 Electronics Way, West Palm Beach, Florida transistors TTTT FACTORIES IN WEST PALM BEACH, FLORIDA: PALO ALTO, CALIFORNIA; LAWRENCE, MASSACHUSETTS; HARLOW AND FOOTSCRAY, ENGLAND; FREIBURG AND NURENBERG, GERMANY # Did you know Sprague makes...? #### ★SERIES SE100, NE100, US700 DTL INTEGRATED CIRCUITS Two operating temperature ranges: —55 C to +125 C and 0 C to +70 C. NAND/NOR gates, clock and line drivers, gate expanders, RS/T and J-K binaries, one-shot multivibrator. On Reader Service Card Circle 822 ## UNICIRCUIT® mW RTL INTEGRATED CIRCUITS Types US-0908 through US-0921... Fully interchangeable mW digital building blocks featuring power consumption of 4 mW/node and propagation delay of 40 nsec On Reader Service Card Circle 825 ## MULTIPLE TRANSISTORS (NPN-PNP PAIRS/QUADS) AMPLIFIERS SWITCHES CHOPPERS Pairs Quads 2 NPN 4 NPN 2 PNP 4 PNP 1 NPN—1 PNP 2 NPN—2 PNP On Reader Service Card Circle 828 #### *SERIES 400 low-power TTL INTEGRATED CIRCUITS All dual or quad function devices . . . reduces can count and minimizes equipment size. Available in two package styles, three temperature ranges. On Reader Service Card Circle 823 ## UNICIRCUIT® CUSTOM HYBRID CIRCUITS Combine monolithic silicon circuits with tantalum or Ni-Cr alloy resistors. Close resistance tolerances, low temperature coefficient. Resistor matching, $\pm \frac{1}{2}\%$. On Reader Service Card Circle 826 ## ECONOLINE* PLASTIC TRANSISTORS 56 popular types, including the 2N4952... the 2N2222 replacement that can cut your costs 40%. Write for new catalog CN200A. On Reader Service Card Circle 829 #### SPRAGUE COMPONENTS INTEGRATED CIRCUITS THIN-FILM MICROCIRCUITS TRANSISTORS CAPACITORS RESISTORS PULSE TRANSFORMERS INTERFERENCE FILTERS PULSE-FORMING NETWORKS TOROIDAL INDUCTORS ELECTRIC WAVE FILTERS CERAMIC-BASE PRINTED NETWORKS PACKAGED COMPONENT ASSEMBLIES BOBBIN and TAPE WOUND MAGNETIC CORES SILICON RECTIFIER GATE CONTROLS FUNCTIONAL DIGITAL CIRCUITS #### MODULINE® MICROCIRCUITS A new concept in technology integration, with compatible 14-pin DIP mounting. Four standard circuits are available now: UM1000—4-bit D to A Converter UC1518—Video Amplifier UC1519—Sense Amplifier UC1522—Operational Amplifier On Reader Service Card Circle 821 ## *SERIES 600 DTL INTEGRATED CIRCUITS for minimum cost Two temperature ranges: 0 to +70 C and +15 to +55 C. Low power consumption: 20 mW/gate maximum. High system speed: 3 to 10 MHz. Low gate delay: 30 to 45 nsec maximum. High noise immunity: 800 mV to 2.0 V. On Reader Service Card Circle 824 #### D to A CONVERTER CIRCUITS Expandable to 12 bits with < 1/2 bit error | | 4-BIT
SERIES | 5-BIT
SERIES | |------------------|-----------------|-----------------| | Ladder Network | UT-1000 | UT-1001 | | Ladder Switch | UD-4001 | UD-4036 | | Buffer Amplifier | UD-4024 | UD-4037 | On Reader Service Card Circle 827 *Available from Sprague Electric under technology interchange with Signetics Corp. > For complete technical data on any of these products, write to: Technical Literature Service Sprague Electric Company 509 Marshall Street North Adams, Mass. 01247 **SPRAGUE**° THE MARK OF RELIABILITY # Big opportunities. Small packages: LSI From the transistor to LSI—quite a breakthrough. TI engineers don't rest on their laurels. TI-invented integrated circuits made possible an airborne computer as small as a portable television. A significant achievement. (Yesterday such a computer with discrete components would fill a room). IC techniques are now revolutionizing solid-state radar by eliminating moving parts and high power sources. And this is just the beginning. Today, with LSI (large-scale integration of component functions), TI scientists are further reducing component densities several hundred times greater than with IC's. What's next may be up to you. If you're an engineer, chemist or physicist with ideas for tomorrow, you'll find unique opportunities at TI for creative exploration into such areas as integrated circuits, radar and microwave, data processing systems, materials development, laser applications, and many other technologies. Your opportunities are as big as your ideas, even though our products may be small. Talk tomorrow with TI today. Send your confidential resume to Tom Dudley, Dept. C-497, P. O. Box 5474, Dallas, Texas 75222. ### TEXAS INSTRUMENTS INCORPORATED ON READER-SERVICE CARD CIRCLE 92 ## Looking for a book on Semiconductors?
Here's a shelf-full from Hayden: #### TRANSISTORS FOR AUDIOFREQUENCY **Guy Fontaine** The companion volume to Fontaine's DIODES AND TRANSISTORS offers highly detailed treatment of the practical aspects of semiconductors in the audiofrequency range. The book provides thorough explanation of the parameters and characteristics furnished by the manufacturer, and their various applications in the design of an audiofrequency stage. #5641. 384 pages, illustrated, clothbound. \$7.95 #### TRANSISTOR CIRCUITS IN ELECTRONICS S. S. Hakim and R. Barrett This indispensable sourcebook introduces the working principles of transistors in both amplifiers and oscillators, and linear and switching circuits. The book begins by discussing transistor characteristics and the functions performed by various types, then goes on to consider the transistor as a switch and to discuss regenerative switching circuits. In addition, the book shows how Boolean Algebra, the algebra of sets and binary arithmetic are applied in the study of computer and other logical circuits. #5034. 341 pages, illustrated, cloth. \$9.50 #### DESIGN OF TRANSISTORIZED CIRCUITS FOR DIGITAL COMPUTERS Abraham I. Pressman Here is a book that provides the design engineer with a firm grasp of the principles and practices. Primarily concerned with the design of computer building blocks using transistors, the book employs "worst case" design calculations throughout. Circuit analysis and all aspects of output wave forms are calculated by treating the transistor as a current switch. #0215. 328 pages, illustrated, cloth. \$9.95 Examine these outstanding new books for 10 full days... with no obligation! #### PRINCIPLES OF TRANSISTOR CIRCUITS S. W. Amos Keeping pace with this rapidly advancing field, the updated Third Edition offers fifty per cent more information than its distinguished predecessor. The book includes new material on dc stabilization of amplifiers by direct-coupled feedback, phase shift and Weinbridge oscillators, blocking oscillators and transistor sawtooth generators. New appendices of transistor parameters and transistor manufacturers add to the completeness of this definitive work. #5649. 293 pages, illustrated, cloth. \$7.95 #### ELECTRONICS FOUR: SEMICONDUCTORS This self-contained unit-volume from Hayden's new ELECTRONICS 1-7 course, Harry Mileaf, Editor-in-Chief, was designed to meet the requirements of modern technical education. From first response it will be a standard text in schools teaching electronics. With unparalleled 2-color illustrations, review, and reinforcement, it promotes a complete understanding of the theory, operation, design, and functions of semiconductors, providing a concise background in atomic and electron theory. Equally valid for classroom use or as a self-study text for technicians, engineers will find it valuable also for updating themselves and as a convenient reference. #5556, 118 pages, illustrated, paper. \$3.45 #### MICROELECTRONIC DESIGN **Edited by Howard Bierman** Almost 90 authoritative discussions of all aspects of microelectronics have been selected from Electronic Design and organized into a compact, convenient, and comprehensive reference. Each topic has been approached in practical and useful terms to provide a working overview of the field. #5762, 312 pp., Illustrated, \$11.50 #### **DIODES AND TRANSISTORS** **Guy Fontaine** Written to teach the language of semiconductors and its applications in all kinds of circuits, this popular work is divided into three comprehensive parts. The first section provides a thorough review of the principles underlying all semiconductor devices; section two covers diodes, the fundamental properties of point contact and PN junction diodes, plus an analysis of the performance characteristics of both; the balance of the book is devoted to transistors and gives a detailed presentation of all the parameters that could interest engineers. A final section deals with methods of designing circuits using transistors. #5500. 480 pages, illustrated, cloth. \$7.95 #### TRANSISTOR AND DIODE NETWORK PROBLEMS AND SOLUTIONS Harry E. Stockman This two-way reference demonstrates the practical application of theory and serves as sourcebook of step-by-step mathematical solutions to practical problems. With schematic situations covering the entire field of transistor and diode networks, the reader develops effective techniques by comparing his own solution methods with the author's. #5694, 332 pp., Illustrated, \$9.95 ## TRANSISTOR BASICS: A SHORT COURSE George C. Stanley, Jr. For your own review, or for training technicians, here is a fast way to gain a practical understanding of transistors. Its simplified approach to transistor circuit analysis will enable the reader to determine desired values to an accuracy adequate for almost any practical situation. Includes material on working with and handling transistors and transistor troubleshooting techniques. #5819, 112 pp., Illustrated, \$2.75 | 5649 | 5500 | 5034 | 5556 | 5819 | | |---------|------|------|------|-------|-----| | 5762 | 5641 | 0215 | 5694 | | | | Name | | | | | | | Title | | | | | | | Company | | | | | | | Address | | | | | | | City | | | | State | Zip | HAVDEN BOOK COMPANY INC. 116 W 14 St. New York N.Y. 10011 #### Check the 0-TC point in your FETs. Experiments show that theoretical values of bias current for 0-TC are not accurate. A zero-temperature-coefficient (0-TC) point that is inherently present in junction- and MOS-FETs is the devices' ideal operating point because no changes due to temperature take place there. The theoretical explanation of this phenomenon is already well documented. Let 2, 3, 4, 5 Experience shows, however, that theoretical expressions cannot be relied on for detailed circuit design. In fact, to use the 0-TC point in practical circuits, a designer must determine it for every FET type, and, quite often, for each FET of the same type. The purpose of this article, then, is to describe the 0-TC measuring techniques, to present test data for several commercially available FETs, and to review briefly applications where the 0-TC point can be used advantageously. #### Theoretical model may give imprecise results The temperature variation of drain current in J-FETs is largely due to two opposing factors. The first is the change in width of the thermally generated depletion layer at the gate-channel junction. The second is the majority-carrier mobility between the source and drain. In the references cited above it is shown that the first factor tends to increase the drain current at a rate equivalent to a change of $2.2 \text{ mV}/^{\circ}\text{C}$ at the gate. The second factor tends to decrease the gate current at a rate of approximately $0.7\%/^{\circ}\text{C}$. These two factors combined result in the following equations:¹ $$I_{DZ}$$ =0.4 I_{DSS}/V_{p}^{2} =drain current for zero TC (1) $$V_{gsz} = V_p - 0.63 = gate\text{-source voltage}$$ $$for zero TC \tag{2}$$ These equations, having been developed from a theoretical model, often do not give correct results in practice. The semiconductor doping and diffusion account for most of the differences between the actual and theoretical results. Of the two foregoing equations, the first is the more meaningful because the result, I_{DZ} , is independ- ent of the drain-to-source voltage. V_{GSZ} , on the other hand, is dependent on the drain-to-source voltage, a variable known only in the final circuit configuration. From practical considerations, therefore, the best way to establish the 0-TC point is experimentally. I_{DZ} , being a unique value, should be determined first. A second test should then be performed to determine V_{GSZ} at I_{DZ} and the proper drain-to-source voltage. The 0-TC point can be determined easily by making a plot of V_{GS} vs I_D for various temperatures, using the circuit shown in Fig. 1a. The equipment needed is an X-Y recorder, two 1. 0-TC point of a FET can be quickly determined using a simple test setup (a). A sample curve (b) has been obtained for the 2N2609 FET. Thomas H. Lynch, Systems Engineer, Perkin Elmer Aerospace Systems, Pomona, Calif. low-voltage dc supplies, and an environmental oven. A ten-turn potentiometer is used to control the gate-to-source voltage so that a smooth curve is produced on the X-Y recorder. A sample V_{as} -vs- I_D plot of a p-channel FET is shown in Fig. 1b. In lieu of using an oven, a simpler and possibly quicker method would be the use of ice water and boiling water. This method would produce both an accurate temperature reference and a very good heat sink. It is frequently impractical to bias the FET at exactly I_{DZ} . In order to determine the temperature drift errors at other drain currents, a plot similar to that of Fig. 2 can be used. It was developed by determining graphically the drift at various drain currents with the $V_{\sigma S}$ -vs- I_D plot of Fig. 1b. It can be seen that for moderate drift requirements (less than 1 mV/°C) the J-FET is well behaved over a wide range of currents. A large spread in I_{DZ} values often occurs from one sample to the next of a particular type of J-FET. This is a result of the many device conditions that affect I_{DZ} . When production requirements necessitate a specific I_{DZ} , the J-FETs can usually be specially ordered from a manufacturer. #### MOS-FET characteristics are hard to determine The temperature dependence of MOS-FET characteristics is much more difficult to define than that of J-FETs'. For this reason, an easily handled mathematical model has not as yet been developed. One of the most difficult factors to control in MOS-FET fabrication is the interface structure between the silicon drain-source channel and the silicon dioxide gate insulator. Large changes in the surface properties of the transistor are to be expected as a result of variations in cooling rate, in atmospheric purity, and in general cleanliness during the
formation of the gate insulator. A theoretical explanation of the temperature-dependent properties can, however, be made.² It can be theorized that there is a particular drain current for which a 0-TC exists. But in practice, this drain current, I_{DZ} , is impossible to predict and requires experimental determination. The same method outlined for J-FETs can be used to determine the 0-TC point of MOS-FETs experimentally. Fig. 3 shows the results of a temperature-dependent V_{cs} -vs- I_D plot for a p-channel enhancement-mode MOS-FET. For a closer analysis of the 0-TC point, it is advantageous to use zero suppression in the X-Y recorder. This quickly demonstrates nonlinearities (Fig. 4). One problem seldom admitted, yet sometimes encountered, is sodium ion drift.³ This can complicate the search for a 0-TC point because the gate voltage may not be a true indication of drain current. The ion drift rate is very temperature- 2. Maximum allowable drift for condition when a FET must be biased at an $I_{\rm D}$ different from $I_{\rm DZ}$ can be determined from the data of Fig. 1b. Devices of four manufacturers were used for this photo. 3. MOS-FETs also possess a 0-TC point, as can be seen from the plot above. Yet it is more difficult to predict and may vary from unit to unit. The existing theoretical models are not accurate. 4. A blown-up view of the 0-TC shown in Fig. 3, obtained through zero suppression in the $X \cdot Y$ recorder, demonstrates the nonlinearities in the V_{GS} -vs- I_D plot. Note the large variations in I_D . dependent. At 100° C the mobility of sodium ions through the silicon dioxide gate insulator is many times greater than at room temperature. The magnitude of the drift is vividly portrayed in Fig. 5, a plot of the drain current versus time. This defect is present in varying degrees in all MOS-FETs presently manufactured and depends on the purity of the manufacturing conditions. The problem can be alleviated by first making the V_{GS} -vs- I_D plot at the highest temperature after the drift has gone to its limit under biased conditions; then, while maintaining the gate bias voltage, cooling the device down for its lower-temperature runs. The result will be a true indication of I_{DZ} alone, if a significant drift is present. Most MOS-FETs that were tested possessed a 0-TC point. Several units checked are listed below with their approximate I_{DZ} : | Sprague | TXF200 | $50 \mu A$ | |------------|--------|------------| | Fairchild | FI100 | 100 μΑ | | General | MEM520 | 0.5 mA | | Instrument | MEM551 | 0.5 mA | | KMC | 1501 | 1.5 mA | | TRW | 2N4308 | 2.5 mA | | Siliconix | 2N3631 | 4.0 mA | Because of variations in the manufacturing conditions, however, these approximate values must not be relied on as constant. MOS-FETs, as a rule, will not perform as well as J-FETs under wide ranges of temperature because of the complex temperature compensation present at the 0-TC point. Of the types tested, the General Instrument MEM520, MEM 551 and the KMC 1501 exhibited the most stable 0-TC point over a temperature range of 0°C to 100°C. #### Where to use FETs J-FETs offer the widest latitude in design because of the diversity of the types available. Since the transconductance, g_m , of a FET is proportional to the drain current, high gain in RCA TA 2644 T = 100° C V_{GS} = 1.8 VOLTS Drift due to the sodium ion migration is demonstrated in this graph. This effect renders theoretical predictions of FET behavior very difficult. conventional circuitry requires the J-FET's I_{DZ} to be near its I_{DSS} . From Eq. 2, V_p must be about 0.63 volt if I_{DZ} is to equal I_{DSS} . Devices such as the Union Carbide 2N3687 and 2N3698 satisfy this requirement. Equation 1 shows that low I_{DZ} operation can be obtained from J-FETs that have a V_p of 4 to 6 volts. However, the stage gain will suffer unless techniques like that shown in Fig. 6 are used. In this application, a constant-current load at I_{DZ} is used to give the highest possible stage gain. A temperature-compensated power supply regulator combination (Q1 and CR1) and R1 comprise the current source. The composite stage gain can easily exceed several thousand. The use of MOS-FETs in dc amplifiers, because of the difficulties involved, is usually limited to high-input-impedance applications. The small number of different types available often limits the circuit design. Some of the problems that have to be considered are: - The unpredictability of the 0-TC point. - The 0-TC point variability with the temperature range. - Gate voltage drift due to ion migration. It is therefore necessary to design the circuit around the device once the MOS-FET's limitations have been thoroughly investigated. Large-swing open-loop dc amplifiers should be avoided. This is to prevent drift errors when a signal causes operation at a point far removed from the I_{DZ} value. The magnitude of this drift error can be calculated with a curve similar to those in Fig. 2. The effects of drift can be reduced by limiting 0-TC biased FET stages to low signal levels or by going to closed-loop operation. Closed-loop amplifiers are the best approach since they have the advantage of reducing the drift error by the loop gain. #### FETs for amplifiers and current sources The FET version of the differential amplifier poses a problem (absent with transistors) because 6. Stage gain of several thousands can be obtained by "feeding" the FET from a simple constant-current (equal to $I_{\rm DZ}$) source. of the 0-TC point. When a dc signal is applied to a 0-TC biased differential FET stage, differential drift errors will occur. These drift errors, which appear only when a signal is applied, are caused by one FET operating above, and the other operating below, the 0-TC bias point. To reduce dynamic-differential drift errors, the bias points should be a little below the 0-TC values, depending on the signal swing. This can be deduced from an analysis of the curves of Fig. 2. If high input impedances are not required, a good differential transistor such as the 2N4044 should be used instead of a FET. It has been implied that the operating point of a FET preceding a transistor can be adjusted to compensate for the drift in the transistor. A circuit of this nature should not be designed for production-line fabrication, however, because of the setup time required. Each circuit has to be individually trimmed to minimize drift, since drift rates of the FET and transistor vary from unit to unit. MOS-FETs can easily be adapted for use in a dc-coupled cascode amplifier. Because of the compound connection, both MOS-FETs should have nearly the same 0-TC point. Rather than match two units that have the same 0-TC point, use a dual-monolithic MOS-FET. Tests were performed on a General Instrument MEM551 dual unit to verify the similarity between the 0-TC points of each MOS-FET. On the whole, they were virtually identical. When properly biased in the circuit, as shown in Fig. 7, the result is an exceptionally stable dc-input amplifier. Due to the constant-current nature of FETs in the pinch-off region, they lend themselves to use as simple current sources. When using J-FETs for this application, a low V_p is desirable. This will minimize the voltage drop for current-limiting in the circuit of Fig. 7. R1 can be adjusted to produce the I_{DZ} current. Enhancement-mode MOS-FETs make simple current sources in the circuit of Fig. 8. The ratio of R1 and R2 can be adjusted to give the proper current level. The big advantage of FET current sources over conventional transistor-Zener combinations is their low minimum voltage drop for current-limiting. Motorola is producing a series of current-limiting diodes (type number MCL 1300) that are actually J-FETs with gate and source shorted. When FETs are used in this configuration, I_{DSS} current is limited. If these current-limiting diodes are to have a 0-TC current level, the J-FET used must have a V_p of about 0.63 volt. Since no data on temperature stability were supplied, tests were run on enough diodes to verify the possible existence of I_{DZ} current level. The results, shown in Fig. 9, indicate that the I_{DZ} current level exists at approximaely 0.37 mA. Motorola can supply 7. Stable single-ended dc amplifier results when a dual MOS-FET unit is used. 8. Enhancement-mode MOS-FET can be used to build a simple constant-current source. Tests on a number of current-limiting FET diodes indicate that they also possess 0-TC points. They can be obtained on special orders only. diodes selected to this current at an additional cost. All the same, of course, this particular I_{DZ} value will vary, depending upon the manufacturing control. #### References: - 1. James S. Sherwin, "The Fet as an Amplifier," 1966 WESCON Convention Record (New York: IEEE, 1966), Session 11/2. - 2. F. P. Heiman and H. S. Miller, "Temperature Dependence of n-Type MOS Transistors," *IEEE Trans. on Electron Devices*, Vol. ED-12, No. 3 (March, 1965), 142. - 3. A. S. Grove, P. Lamond et al., "Stable MOS Transistors," Electro Technology, LXXVI, No. 6 (Dec., 1965), 40. - 4. Lee L. Evans, "Biasing FETs for Zero dc Drift," Electro Technology, LXXIV, No. 2 (Aug., 1964). - 5. James S. Sherwin, "Take the Fog out of Field-Effect Design," ELECTRONIC DESIGN, XIV, No. 13 (May 24, 1966), 38-44; "Gain Insight into FET Amplifiers," Op. cit., No. 14 (June 7, 1966), 40-45; "Simplify Low Frequency FET Designs," Op. cit., No. 15 (June 21, 1966), 86-90. ## **Increase Production...Lower Your Costs!** -with AHLE ## AUTOMATIC ASSEMBLY and PRODUCTION MACHINES - CRYSTAL MOUNTING - WELDING - EXHAUSTING - SEALING - and other production operations KAHLE Engineers have the Experience and Facilities to Solve Your Production Problems! Call or write KAHLE for recommendations on your specific electronic and related manufacturing operations. KAHLE Automatic assembly and production
machines are in use by hundreds of leading manufacturers where they have earned an industry-wide reputation for high efficiency and dependable performance! 3332 HUDSON AVE., UNION CITY, N. J. 07087 Telephone: UNion 7-6500 (Area Code 201) EUROPEA S.p.A.-Via Spartaco, 16, Caravaggio (Bergamo), Italy DESIGNERS AND BUILDERS OF AUTOMATIC ASSEMBLY AND PRODUCTION MACHINES FOR ELECTRONICS MANUFACTURING ON READER-SERVICE CARD CIRCLE 94 # Name your failure rate this G-E sealed relay will give it to you But you have to let us establish: - level of confidence - operating conditions - what constitutes a failure By varying these conditions, we can give you any failure rate you want. Doesn't make sense, does it? You're supposed to set the conditions. Not us. That's why we don't establish failure rates till you give us application information. If we did, we'd hurt you. And us. You, because you might buy the wrong relay. Us, because we might hurt our reputation and lose you-a valued customer. Want realistic failure rate data and the best relay for your next project? Con- tact your G-E Electronic Components Sales Engineer. Or for latest catalog information, write General Electric Company, Section 792-40, Schenectady, New York 12305. GENERAL (%) ELECTRIC ## Stagger-tune the IC amplifier stages in an IF or RF strip design. It will have just the right gain and selectivity curve. Stagger tuning—tuning each stage of an amplifier at slightly different frequencies—can achieve: - A gain-bandwidth product greater than that of synchronously tuned cascade stages. - A selectivity curve of prescribed response. It is possible to stagger-tune *n* single stages to attain a flat band pass, an equal-ripple (Chebyshev) band pass, or many other selectivity curves with very good gain.¹ The stagger-tuned circuit can be implemented with discrete transistors, but the availability of high-performance, integrated high-frequency amplifiers at prices comparable to those of single transistors offers an attractive alternative. One such amplifier, with characteristics that are particularly suited to stagger-tuned circuits, is the Motorola MC1550.* The simplified schematic in Fig. 1 serves to explain the ac and dc operation of the MC1550. Considering dc operation first, voltage V_s and resistor R_s establish current I_{D_I} in diode D1. Since this diode is on the same silicon die as transistor Q1 and they are laid out very close to each other, the emitter current of Q1 will be within 5% of the diode current. This biasing technique exploits the matching characteristics that are available with integrated circuits and illustrates a method that would be difficult to accomplish with discrete components but is easy with integrated circuits. The current established in the emitter of Q1 will be shared between Q2 and Q3, depending on the relationship between V_{agc} and V_R . Where V_{agc} is at least 114 mV greater than V_R , Q3 is turned off and all the collector current of Q2 is transferred to Q1. Since Q3 is off, the ac gain will be at its minimum point. If, on the other hand, V_{agc} is less than V_R by 114 mV or more, all the collector current present in Q1 will flow through *Similar integrated amplifiers are Fairchild's $\mu A703C$ and RCA's CA3028. Q3. This, then, is the operating point for maximum ac gain. In ac operation, the input is applied to the base of Q1 and the output taken from the collector of Q3. Thus, the combination of Q1-Q3 acts as a common-emitter, common-base pair. This pair offers the distinct performance advantage of reducing internal feedback (y_{12}) two orders of magnitude in comparison with a single transistor. With a General Radio 1607-A immittance bridge, y_{12} was too small to measure up to frequencies of 300 MHz. This indicates that the magnitude of y_{12} is less than 0.001 mmhos over the useful frequencies of operation of the amplifier, and can, for all practical purposes, be neglected. This property of the integrated amplifier is particularly important to its tuning. Basic two-port theory gives the expressions for input and output admittances of a discrete-component amplifier as: $$Y_{in} = y_{11} - [y_{21} y_{12} / (y_{22} + Y_L)];$$ (1) $$Y_{out} = y_{22} - [y_{21} y_{12}/(y_{11} + Y_{8})].$$ (2) Equations 1 and 2 show that a change in the load Author Brent Welling checks the pass band of a staggertuned, integrated-circuit IF strip of his own design. The integrated-circuit amplifiers simplify final tuning. Brent Welling, IC Applications Engineer, Motorola Semiconductor Products, Inc., Phoenix, Ariz. due to tuning of the output circuitry changes the input admittance and hence the input tuned circuit. The output tuned circuit is likewise changed when the input tuned circuitry is altered. As a result the input and outpot tuned circuitry must be alternately juggled until some degree of accuracy is obtained. With the integrated amplifier this is not the case. Since $y_{12} \approx 0$, Eqs. 1 and 2 above reduce to $Y_{in} \approx y_{11}$ and $Y_{out} \approx y_{22}$. Hence, the input and output admittances remain constant and each tuned circuit may be tuned individually with little effect on the other. This minimizes the time needed for tuning alignment. The gain of this circuit can be varied—a performance advantage over a single transistor. A dc analysis of the amplifier shows that for full agc operation the change in emitter current of transistor Q1 (see Fig. 2) is very small ($\approx 2\%$). Because I_{e_1} varies only slightly, the input impedance variation, which depends on $r_e = KT/qI_e$, is very small. As a result there is no detuning of the input circuitry with agc. Figure 3 shows how the input resistance, R_{in} , and input capacitance, C_{in} , vary with applied ago voltage at 60 MHz when $V_{cc} = 6$ volts. As can be seen, the input impedance of the amplifier is relatively unaffected by variations in ago voltage. A schematic of the MC1550 amplifier including biasing resistors is shown in Fig. 2 with a picture of the monolithic die. The circuit is constructed on a 30-by-32-mil die using 200 ohm/square sheet resistance material and 1-by-0.5-mil emitters in the box geometry transistors. Resistors R1 and R2 bias the diode D1 and also establish a base voltage for transistor Q3. Resistors R3 and R4 serve to widen the agc voltage range from 114 mV to about 0.86 volt. This is necessary if the agc line is to be less susceptible to external noise. 1. This simplified schematic shows how voltage $V_{\rm age},$ controls the gain of the amplifier by controlling the flow of current through Q3. 2. Diode D1 lies right near transistor Q1; hence, the emitter current and diode current are within 5% of each other. The matching characteristics obtainable with integrated amplifiers are hard to match with their discrete-circuit equivalents. 3. Input impedance $\mathbf{R}_{\rm in}$ is relatively unaffected by changes in the agc voltage. 4. This cascaded tuned amplifier is for operation at a center frequency of 45 MHz with a 6-MHz bandwidth. 5. Final schematic of the 45-MHz tuned amplifier shows all pin connections and component values. #### Design steps illustrate the technique Consider the following hypothetical design for an IF amplifier: Center frequency (f_0) = 45 MHz. Bandwidth (Δf) = 6 MHz. Power gain (G_T) = 70 dB. Agc control > 50 dB. Source impedance = 50 Ω . A typical circuit for this application with transformer interstage coupling appears in Fig. 4. The individual stage requirements of this flat, staggered amplifier are as follows:³ One stage tuned to f_0 with bandwidth Δf . One stage tuned to f_0 α with $Q=2.0/\delta$. One stage tuned to f_0/α with $Q=2.0/\delta$. $(\delta=\Delta f/f_0 \text{ and } \alpha=1+0.433\delta)$ With these amplifier specifications, the following results are obtained: $\delta = 0.1333$ $\alpha = 1.0578$ One stage tuned to 45 MHz with a 6-MHz bandwidth. One stage tuned to 47.60 MHz with a 3-MHz bandwidth. One stage tuned to 42.50 MHz with a 3-MHz bandwidth. There is nothing new or tricky involved in the 6. Scope trace shows frequency response of 45-MHz stagger-tuned circuit. interstage design. The most expedient procedure is to assume that the coupling transformers are ideal, form equivalent models with one side of the transformer referred to the other side, then compute the band and center frequency from Eqs. 3 and 4 for the parallel tuned circuits: $$\Delta f = 1/2 \pi R_T C_T, \qquad (3)$$ $$f = 1/2 \pi (L_T C_T)^{1/2}, \tag{4}$$ where R_T = total parallel resistance, C_T = total parallel capacitance, L_T = total parallel inductance. Because there are two tuned circuits associated with each stage, there will, however, be an over-all bandwidth shrinkage of each stage. This is easily handled by broadbanding the output tuned circuit of stage 1 while achieving the desired selectivity and bandwidth with the input tuned circuit and vice versa with stage 3. The same procedure could be followed in the design of stage 2, broadbanding the output tuned circuit while achieving the desired bandwidth and selectivity with the input tuned circuit. In this particular instance, however, the procedure adopted was to tune synchronously both the input and the output circuits of stage 2 and take the shrinkage factor into account. A schematic of the final design showing all the pin connections is given in Fig. 5. A first prototype circuit was tuned in the following manner. Each stage was disconnected from the other stages and loading applied to each stage to simulate the actual circuitry in cascade. Each stage was then tuned to the desired center frequency with the correct bandwidth. Once each stage was tuned, the circuits were connected in cascade and final fine tuning adjustments made. With the experience gained in tuning the first prototype, a second prototype was tuned merely by sweeping the amplifier with a Jerrold 890 sweep generator
and tuning while observing the output on an oscilloscope. A photograph of the sweep is shown in Fig. 6. The final results were: | Agc
voltage | Power
gain dB | Center
frequency MHz | Bandwidth
MHz | |----------------|------------------|-------------------------|------------------| | 0.0 | 70.0 | 45.0 | 6.0 | | 0.5 | 70.0 | 45.0 | 6.0 | | 1.0 | 70.0 | 45.0 | 6.0 | | 1.5 | 70.2 | 45.0 | 6.0 | | 2.0 | 70.2 | 45.0 | 6.0 | | 2.5 | 63.5 | 45.0 | 5.9 | | 3.0 | 58.4 | 45.0 | 5.8 | | 3.5 | 46.1 | 45.0 | 5.8 | | 4.0 | 28.7 | 45.0 | 5.8 | | 4.5 | 6.2 | 45.0 | 5.7 | The agc voltage of the first stage controls the gain of the strip without severely affecting the bandwidth. Center frequency = 45 MHz.Bandwidth = 6 MHz.Power gain = 70.0 dB. The choice of which stage or stages to apply agc to is more or less arbitrary. Various agc combinations of the three stages were tried to study their effectiveness. With age applied only to the first stage, 64 dB of agc control were obtained with a maximum deviation from flatness in the pass band of 0.7 dB. With agc applied to all three stages, 90 dB of agc control were obtained with a maximum deviation from flatness in the pass band of 1 dB. These represent the two extremes. When combinations of the three stages taken two at a time were tried, they all fell within this range. Thus, for the design specification, it was sufficient to apply ago only to the first stage. The variation of bandwidth and center frequency were measured and the results are given in Fig. 7. These data indicate a maximum of 5% bandwidth deviation occurring at the low-gain (maximum agc) condition, with full agc occurring over a 2.5-volt range. With an input of 50 μV rms, the output signal into 50 ohms is 156 mV with a noise level of 6.8 mV. The results of this design strongly indicate that the MC1550, and similar integrated amplifiers, have good potential for use in both the RF and IF stages of television, radio, radar, and communications gear where high gain, wide agc, and low cost are of prime importance. The use of an integrated-circuit, high-frequency amplifier has been considered only in a stagger-tuned IF strip with a design frequency of 45 MHz. The design and tuning procedure is similar, however, for designs throughout its full range of operation—dc to 300 MHz. #### References: - 1. H. Wallman, Stagger-Tuned IF Amplifiers (MIT Radiation Laboratory Report 524, Feb., 1944). - 2. Robertson-Welling, An Integrated-Circuit RF-IF Amplifier (Motorola Semiconductor Products, Inc., Application Note AN247). - 3. D. G. Fink, Television Engineering Handbook (1st ed.; New York: McGraw-Hill Book Co., Inc., 1957). # sometimes the best things get taken for granted ask your wife. Ask Sprague Electric. Our forty-year history of steady growth and diversification is based on the reliability and high quality of our components. Our customers tend to take these qualities for granted in Sprague Electric products, and we're proud of it. Within Sprague Electric, however, establishing and maintaining this superiority isn't taken for granted. It requires exceptionally qualified research scientists, development engineers, technical managers and related personnel. To attract and hold the career-long interest of these individuals, Sprague Electric has to be an exceptional organization. It is. Our research and engineering activities employ more than 600 people. We have an unblemished record of employment stability, together with an engineering turnover rate that is perhaps the lowest in the industry. We are one of the nation's largest, most diversified and fastest-growing manufacturers of electronic components, with 25 plants in the U.S. (including a new 130,000 sq. ft. microelectronics facility in Worcester, Mass. and a new facility to be constructed in Wichita Falls, Texas). Have you been taking Sprague Electric for granted? Opportunities exist for the following: #### **ELECTRICAL/ELECTRONIC ENGINEERS** Solid State Circuit Product Development • Digital Circuit Design • Pulse Forming Networks • Component Test Equipment Design • Integrated Circuit Design • Component Q.C. • Linear Circuits Design • Microcircuits Development • Manufacturing Engineering • Interference Control • Instrumentation • Miniature High Voltage Fabrication • Regulator Design • Semiconductor Reliability • Product Marketing • Magnetic Components Design • Electrical Standards Engineering • QAR Engineering • Integrated Circuits • Production Engineering • #### CHEMISTS/PHYSICISTS/CHEMICAL ENGINEERS Paper, Film, Ceramic, Electrolytic or Tantalum Capacitor Development • Microcircuit Product and Process Development • Organic Finishes and Molding Compounds • Hybrid Microcircuit Process Formulation • Electronic Component Process Development • Pilot Plant Supervision • Evaporation Techniques • Materials Processing Engineering • #### MECHANICAL/INDUSTRIAL ENGINEERS Automatic and Semi-Automatic Manufacturing Equipment Design • MIL SPEC Electronics Assembly Production • Materials, Methods and Processes Engineering • Machine Design • Production Control (Manager) • QAR Engineering • Capacitor Production Equipment Planning • For prompt consideration of your qualifications, forward your resume to Mr. John Miller, Corporate Manager Recruitment and Staffing, Sprague Electric Company, 1025 Marshall Street, North Adams, Massachusetts 01247. An equal opportunity employer. #### SPRAGUE ELECTRIC COMPANY ON READER-SERVICE CARD CIRCLE CAREER NUMBER 901 # MOS-FET and bipolar form RC phase-shift oscillator An RC phase-shift oscillator which effectively exploits the unique characteristics of bipolar and MOS transistors is shown in the figure. This circuit configuration has several distinct advantages over other phase-shift oscillators. The feedback network is a three-section, low-pass filter. This simultaneously provides a dc bias path for the MOS transistor and an ac phase-shift network. Because of the extremely high input impedance of the MOS transistor and the low output impedance of the bipolar transistor, the filter is subjected to near ideal drive and load conditions, thus simplifying design calculations. Large resistors may be used, making very low-frequency operation practical without the necessity of large capacitors. Thus the circuit is simple to design, uses few components, and is suitable for a wide range of frequencies. R_L controls the total loop gain and should be adjusted for best output waveform. Once set, the oscillator is very stable because of its "self-bias" arrangement. The choice of a low-pass feedback network results in improved harmonic rejection. If the output is taken by another MOS-FET to 2N3608 R3 R2 C3 R1 R1 RL R1 RL **High input impedance** of a MOS-FET combined with low output impedance of the bipolar result in a simplified RC phase-shift oscillator. **VOTE!** Circle the Reader-Service-Card number corresponding to what you think is the best Idea-for-Design in this issue. SEND US YOUR IDEAS FOR DESIGN. Submit your IFD describing a new or important circuit or design technique, the clever use of a new component, or a cost-saving design tip to our Ideas-for-Design editor. If your idea is published, you will receive \$20 and become eligible for an additional \$30 (awarded for the best-of-issue Idea) and the grand prize of \$1000 for the Idea of the Year. prevent loading, an exceptionally pure sine wave can be obtained. The output dc level is approximately $V_{cc} - V_{ath}$. For identical RC sections the frequency of oscillation is: $$f_0 = 1/(2\pi 6^{1/2}RC)$$. If the time constant of each section is the same, but R3 >> R2 >> R1 and C1 >> C2 >> C3, each stage will contribute very close to 60° of phase shift and the frequency of oscillation is: $$f_0 = 3^{1/2}/(2\pi RC)$$, where RC is any filter section. Charles R. Bond, Design Engineer, Electromec Design and Development Co., Santa Clara, Calif. VOTE FOR 110 # One power supply does the work of two A common problem in a development laboratory is that of keeping several bench power supplies available. Most circuit development work requires at least two different supply voltages, but an engineer will all too often find only one power supply. The circuit shows a "little black box" that can be plugged into a single, ungrounded power supply to furnish both a positive and a negative Negative and positive voltages can be obtained from one power supply with the circuit shown. voltage, each individually adjustable. The dual control, R1 and R2, together with dual emitter follower Q1 and Q2, sets the ratio of maximum available positive to negative outputs. The other two potentiometers, with their emitter followers, allow individual control of the positive and negative outputs. If the input voltage is varied, both outputs will vary by approximately the same percentage, thus simplifying certain circuit tests. The values shown were selected to allow an input voltage of up to 40 volts. Maximum output current depends on the setting of the controls, but may be up to 50 mA. Acknowledgment: This work was performed under the auspices of the U.S. Atomic Energy Commission. Curtis Sewell, Jr., Electronic Engineer, Lawrence Radiation Laboratory, Livermore, Calif. VOTE FOR 111 #### Modified capacitive iris provides design flexibility The capacitive iris is a transverse shunt discontinuity in rectangular waveguides that is occasonally used in certain impedance matching and filter design problems. This iris is usually described quantitatively by a normalized susceptance. In standard construction (see Fig. 1a), larger values of normalized susceptance can be realized by decreasing the iris width, W. This can become quite difficult when large values of nor- 1. Increased susceptance is possible when a standard capacitive iris (a) is made out of two pieces (b). This allows greater flexibility in machining the opening. malized susceptance are desired. In a standard X-band waveguide (RG-52/U), a 0.031-inch iris width (with
rounded corners) with a 0.031-inch iris thickness provides a measured normalized susceptance of only 3.0 at 9.0 GHz. This can be increased to 8.5 by increasing the iris thickness to 0.187 inch. Further increases in iris thickness are usually not desirable for a simple shunt susceptance. Further decreases in iris width are not feasible, because end mill cutters smaller than 0.031 inch are not available. Use of the thick iris (0.187-inch thickness) makes possible iris widths smaller than 0.031 inch by constructing the iris from two pieces. This modified iris (see Fig. 1b) consists of two pieces joined together at plane X-X by two retaining screws. With a 0.187-inch iris thickness, No. 4-40 retaining screws can be used. A standard 1/16-inch end mill cutter can be used to cut irises of any width (with square corners) in the lower piece prior to assembly. In the RD-52/U waveguide, at 9.0 GHz, the following data were obtained for the modified thick irises: | Iris Width (Inches) | Normalized Susceptance | |---------------------|------------------------| | 0.020 | 12 | | 0.010 | 19 | | 0.005 | 40 | Another advantage of the thick iris is the possibility of providing a means to adjust the normalized susceptance of the iris. For the RG-52/U waveguide and an iris thickness of 0.187 inch, a No. 4-40 capacitive trimming screw can be used at plane Y-Y parallel to the retaining screws. At 9.0 GHz, with an iris width of 0.031 inch, a 0.025-inch insertion of the trimming screw increased the normalized susceptance from 8.5 to 11.0. Richard M. Kurzrok, Consulting Engineer, New York. (Work performed while the author was employed at the Advanced Communications Laboratory, Radio Corporation of America, New York.) VOTE FOR 112 #### Capacitor improves sample-and-hold circuit Conventional sample-and-hold circuits using operational amplifiers have the general form of Fig. 1a. The voltage to be held is sampled through switch S1 and stored on capacitor C1. The amplifier functions as a high-input-impedance, unitygain buffer between the voltage on the capacitor and the outside world. The charge on the storage capacitor leaks off at a rate determined by the amplifier input bias current and the shunt resistance to ground. The addition of capacitor C2, equal to C1, Marked improvement in voltage-holding ability of a sample-and-hold circuit is possible when a capacitor is added (b) to the conventional circuit (a). between the output and the inverting input of the amplifier (see Fig. 1b) improves the decay time of the circuit by better than a factor of ten. The circuit operates as before, except that leakage across C1 is now compensated for by an equivalent leakage across C2 such that the output voltage remains almost constant, depending on the degree of match between the two input bias currents and the capacitors. The output drift can even be adjusted to zero by trimming one of the capacitors to compensate for the small difference in bias currents. J. N. Giles, Fairchild Semiconductor, Mountain View, Calif. VOTE FOR 113 # A four-layer diode forms double-pulse generator A combination of a four-layer diode and two SCRs can be used to form a single, double, triple or even burst pulse generator. This circuit (see figure) performs all these functions with a minimum of components. The cost of this unit is low and the stability is quite high. R1 and C1, C2 are RC time constants selected by the gating of SCR1 or SCR2 to ground. R2 and R3 are the gate threshold controls. R3 is used primarily to effect the mode change of the generator (single, double, triple pulse). R6 controls the pulse width of the unit by changing the discharge time of the selected RC component through D1. R7 functions as a current limiter for Versatile pulse generator can be built quickly with the few components shown above. D1. Q1 serves as an isolation stage and an inverter. R3 is adjusted for maximum resistance. R2 is adjusted for single pulse. R3 is adjusted for double- or triple-pulse groups. If the range of R3 is increased, double pulse with a 4- μ s delay adjust can be made. The circuit develops 5-volt pulses with a rise time of 200 ns. The cost is about \$20.00. The frequencies available are approximately 400 Hz to 15 kHz. Gerald Lawson, PRD Electronics, Inc., Jericho, N. Y. VOTE FOR 114 # Simple trigger circuit controls flip-flop This circuit uses transistors Q3 and Q4 to provide coupling to Q1 and Q2 of the flip-flop and to trigger the flip-flop. Prior to a trigger pulse, the circuit is stable with Q1 on and Q2 off, or vice versa. Q1 is held on with base drive current from R2 and the forward-biased collector-base diode of Q3. With Q1 saturated, Q4 and Q2 are held off. On arrival of a positive trigger pulse, C1 charges through D1, D2 Q3 and Q4 provide coupling to Q1 and Q2 and trigger the flip-flop. and Q1. As the trigger pulse falls back to zero, the potential at the emitter of Q3 goes negative, which forward-biases the emitter-base diode and pulls the collector down to a saturation voltage. This has the effect of removing base charge from Q1, thus turning it off. The current through R1 is then directed through the collector-base diode of Q4 and forward-biases the emitter-base diode of Q2, turning Q2 on. This turns Q3 and Q1 off. The cycle is now repeated on the opposite side with initiation by another positive trigger pulse. Note that the basic trigger scheme may be used with any multivibrator which turns off the normally on transistor. Randy Brandt, Design Engineer, Raytheon Co., Mountain View, Calif. VOTE FOR 115 # Temperature regulator circuit stabilizes log converter The forward-biased semiconductor diode characteristic is useful in many applications where a logarithmic data conversion is desired. The diode voltage and current have the general form: $V=A\log I$. However, the constant A in this characteristic is highly temperature-dependent, giving rise to conversion errors as high as $1~\mathrm{dB/^\circ}$ C. The coefficient of the diode temperature is indispensable for converter accuracy and repeatability. The circuit shown is a simple temperature feedback control system which uses reverse-biased germanium diode D1 as a temperature sensor. The two transistors form a direct-coupled current amplifier. Resistor R2 heats diodes D1 and D_L by thermal conduction in response to current from the amplifier. As D1 heats, its saturation current increases; this in turn reduces the base current of Q1. Consequently, the heating current through R2 is reduced until system equilibrium is established. The value of R1 is adjusted so that about half the supply voltage is dropped across R2 at equilibrium. Diodes D1 and D_L should have good thermal coupling to R2 and be isolated as much as possible from other environmental changes. To achieve this, resistor R2 and the diodes are coated with heat-conducting silicone grease and wrapped in a narrow strip of aluminum foil. In addition, the diode leads are cut short and fine wire pigtails attached with low-temperature solder. The system reduces output errors due to ambient-temperature changes by a factor greater than five. The system time constant is about 30 Temperature of a diode (D_L) is maintained constant with the circuit (a). Packaging of the components enclosed by the dashed lines is shown in (b). seconds, making warm-up time less than 5 minutes. Component types and values are not critical, except that diode D1 should be germanium and transistor Q1 should be silicon. Alex Klooster, Jr., Willow Run Laboratories, Institute of Science and Technology, University of Michigan, Ann Arbor, Mich. VOTE FOR 116 # RF voltage blocks receiver during transmit This circuit provides antenna switching between transmit and receive modes. With 5 watts of transmit signal, upwards of 35 volts of RF must be controlled by a 12-volt power source. The relay is operated by applying these 12 volts to either TB+ or RB+ terminals. The opposite terminal will be grounded. The basic requirement is to conduct a transmitted signal from the transmitter power amplifier stage to the antenna while keeping high RF voltage out of the receiver. The approach is to connect the power amplifier stage to the antenna through diode D22, which is turned on by TB+ current flowing through it to the transmitter. Since this diode will not conduct with less than 0.5-volt forward bias, it also disconnects the transmitter during receive. Diode D25, which connects the receiver to the antenna, is turned on during receive by RB+ and is reversed-biased during transmit by the sum of TB+ and twice the peak RF voltage. This RF-derived voltage is developed by a half-wave voltage doubler, composed of D23 and D24 and connected in the RF line from the transmitter. Diode D26 provides a low-impedance circuit across the receiver terminals during transmit. Arleigh B. Baker, Development Engineer, E. F. Johnson Co., Waseca, Minn. VOTE FOR 117 Solid-state antenna relay employs RF voltage to block receiver during transmitting mode. # Spst switch reverses PM dc motor rotation The circuit operates as follows: with input open, Q1 is in the nonconducting state, Q2 and Q3 are conducting. L is positive with respect to R. The voltage across the motor terminals will cause the motor to rotate. R3 Q2 2N3646 R2 N3646 R5 NOO RR4 R4 PR4 R5 NOO RR4 R6 R6 NOO RR4 R6 NOO RR4 R8 NOO RR4 R6 R8 NOO RR4 R6 R8 NOO RR4 R6 R8 NOO RR4 R6 R6 NOO RR4 Any switch, spst or a transistor, placed across the input terminals will control the PM dc motor. With input closed (either by switch or transistor) Q1 conducts and causes Q4 to conduct also. The decreasing collector voltage at Q1 and Q4 causes Q2 and Q3 to turn off. R will now be positive with respect to L. The voltage across the motor terminals will then cause the motor to reverse direction. R4 is a current-limiting resistor and speed control. C1 is used to reduce arcing. The circuit shown was used in a miniature pulse control system, but could have many applications, such as
battery-powered tape recorders and strip-chart recorders. C. B. Smith, Specialist, Assembly Processes, General Electric Co., Memory Equipment Dept., Oklahoma City, Okla. VOTE FOR 118 #### IFD Winner for Jan. 18, 1967 J. C. Rich, Engineer, Test Equipment Engineering Quality Control, General Electric, St. Petersburg, Fla. His Idea, "UJT and ac current source used to divide frequency," has been voted the \$50 Most Valuable of Issue Award. Cast Your Vote for the Best Idea in this Issue. # high performance motors By Wright Division of Sperry Rand Corporation #### High Density DC Motors with clutch-brake Enormous power is provided in small packages 2" to 4" in diameter. Offered in shunt, series, compound, and permanent magnet types. #### **Synchronous Motors** High efficiency designs available in single phase and polyphase types. They feature low noise and flutter. Six different speeds available in one unit. #### **Brushless DC Torque Motors** Torque motors with a response of four hundred millionths of a second for incremental rotation. Diameter 1 inch to 10 inches. #### **Gyro Motors** This new type of gyro motor features low power, high torque, and fast acceleration. Synchronous and induction. Half inch to seven inches in diameter. #### **AC Drive Motors** Recommended for continuous drive duty in antenna, optical, stabilizing systems. Available with synchronous or servo characteristics. Inverted or conventional. Wide variety of windings and sizes. #### **Power Stepper Motors** Powerful, permanent magnet stepper motors open whole new fields of application for the direct drive of all types of mechanical systems. Up to 600 ounce-inches torque at 15° step angle. DURHAM, NORTH CAROLINA 🗆 TELEPHONE 919/682-8161 🗆 TWX 919/682-8931 # **Products** Oxide won't penetrate boron deoxidized copper wire. Page 254 **Bipolar LSI array shifts** left or right, parallel or serial, at shift frequencies greater than 25 MHz. Page 253 Zero-voltage switching of resistive loads to 3600 watts is provided by a tiny module. A monolithic IC triggers the Triac for full-wave ac power control with less RFI. Page 248 #### Also in this section: Silicon FETs are quiet down to sub-audio frequencies. Page 248 Teflon-tipped probe treats tiny chips gently. Page 257 Design Aids, Page 268 Application Notes, Page 266 New Literature, Page 269 # IC triggers Triac for zero-voltage switching General Electric, Semiconductor Products Dept., Electronics Park, Syracuse, N. Y. Phone: (518) 374-2211. Price: \$10 to \$20 (100 lots). An ac power control module, (a Triac triggered by a monolithic IC) is a high-gain threshold and power control switch for resistance heater or tungsten lamp loads and resistance sensors. The modules are basically on-off controllers. The power switching is done by the Triac which is triggered by the monolithic integrated control circuit only at line voltage zero crossings. This mode of operation produces less RFI than mechanical switching elements The integrated control circuit, in addition to generating the proper triggering signals for the Triac. provides its own power supply and uses a differential amplifier to sense offset of a resistance bridge. The bridge consists of a user-supplied sensor resistance and reference resistance on one side, and a matched pair of resistors in the IC on the other. The usable range of sensor resistance is 5 to 50 $k\Omega$ or up to 100 $k\Omega$ at slightly less accuracy. Models are available in ratings of 10 and 15 A rms at 120 and 240 V rms, 50 and 60 Hz, for controlling resistive loads from 500 to 3600 watts. All forms of the module have an extruded aluminum heat sink. electrically isolated from all current-carrying components. IC triggers Triac for zero-voltage switching. It uses a diff-amp to sense offset of the resistance bridge formed by a sensor and reference resistance across points 1 and 3 and a matched pair of resistors in the IC. When sensor resistance is less than the reference resistance, trigger pulses are generated. Ten volts are developed across points 1 and 3. CIRCLE NO. 420 # Darlington amplifier available in flatpack Solitron Devices, Inc., Riviera Beach, Fla. Phone: (305) 848-4311. Ten-ampere silicon Darlington amplifiers are packaged in a 3/4-inch flatpack. The devices have a minimum gain of 2000 at a collector current of 5 A with V_{CE} of 5 volts. Under the same conditions, V_{RE} is 2 volts. Saturation voltage (V_{CE}) is 1.5 volts at a collector current of 5 A and a circuit gain of 500. Leakage currents are typically in the nanoampere range for both I_{CRO} and I_{EBO} . Typical gain is 50 at 5 MHz. # Silicon FETs are quiet even at sub-audio Siliconix, Inc., 1140 W. Evelyn Ave., Sunnyvale, Calif. Phone: (408) 245-1000. Price: \$11.75, \$10, \$9.40 (100 lots). The 2N4867, 68 and 69 FET series is designed for minimum noise audio and sub-audio frequency applications. Equivalent short-circuit input noise voltage is 20 nV/1/Hz at 10 Hz and 1 kHz. Thus, the FETs contribute less than the equivalent thermal noise of the signal source from 100 Hz to 10 kHz for generator resistance of 5 k Ω to 10 M Ω . Even at 20 Hz equivalent noise resistance is less than 20 k Ω . Excess noise at 10 Hz rises at 2 dB/octave. The FETs exhibit less noise than vacuum tubes, and are quieter than bipolars when generator resistance exceeds 2 k Ω . Other specifications on the 2N4867. 68 and 69 include 700, 1000 and 1300-μmho minimum transconductance, 3-to-1 spread in I_{DSS} , and 40-V breakdown voltage. They are packaged in the TO-72 case. CIRCLE NO. 422 #### Three-amp rectifier recovers in 300 ns Electronic Devices, Inc., 21 Gray Oaks Ave., Yonkers, N. Y. Phone: (914) 965-4400. P&A: \$3.37; stock. An axial-lead silicon rectifier has a forward current rating of 3 A, a surge rating of 300 A and recovery time of 300 ns from 1 A forward to 250 mA reverse. In addition to units with standard voltages of 50 to 600 PIV, 800- and 100-PIV rectifiers are available. The series is designed for use with square wave inputs of 5 to 40 kHz and sine wave inputs up to 300 kHz. CIRCLE NO. 423 #### Npns, pnps, stacked 4 to a TO-5 can Industro Transistor Corp., 35-10 36th Ave., Long Island City, N. Y. Phone: (212) 392-8000. Four pnp and npn high-voltage transistors stacked in one TO-5 package represent the only multicomponent transistor package in the high-voltage field, according to the manufacturer, Industro Transistor Corp. The units are designed to be used for high-voltage switches and solid-state relay circuits. The space savings offers an advantage over series-stacking conventional transistors to reach a required voltage. V_{CEO} up to 2000 volts is obtainable or 1000 volts for the pnp and 1000 volts for the npn. Four npns or four pnps can also be built into one unit. The 10-pin units can be customized to specific voltage requirements compatible with standard hybrid microcircuit components. To manufacture the four-in-one transistors, one metallizing pattern is used on a ceramic disc. Each disc could accommodate two transistors in the Darlington amplifier configuration. Each base lead is accessible to outside connections. CIRCLE NO. 424 We make a pile of electronic assemblies at # KEARFOTT SERVO AMPLIFIERS, PREAMPLIFIERS QUADRATURE REJECTION CIRCUITS, SOLID STATE CHOPPERS, MODULATOR/DEMODULATORS, AMPLIFIER-DEMODULATORS, BUFFER AMPLIFIERS, ISOLATION AMPLIFIERS, SUMMING ISOLATION AMPLIFIERS, AC-DC AMPLIFIERS, SIGNAL SENSORS, COMPARATOR AMPLIFIERS, MAGNETIC AMPLIFIERS, STEPPER MOTOR DRIVERS AND LOGIC. In fact, we have just added another 24 new units in our latest catalog on electronic assemblies bringing the total to over 115 miniature solid state problem solvers. Among the units added is a 50-watt-output, 90°-phase-shift servo amplifier that weighs only 14 ounces. We also have a 16-watt unit for less demanding applications. We've been producing solid state half-wave and full-wave choppers for some time, and to these we've now added DC-to-AC modulators and AC-to-DC demodulators featuring full-wave modulation or demodulation at frequencies from 50-5000 Hz. Major new additions to the product line are fourteen new stepper motor driver/logic assemblies to satisfy almost every size 8, 11, or 15 stepper motor. Like all our electronic modules, these are transistorized, lightweight, potted in high-strength epoxy and can operate over a wide temperature range. Typically, these driver/logic assemblies consist of sequential logic controlled by CW or CCW input pulse commands and output drivers to control motor-winding current. Operating in the switching mode, these drivers minimize internal power dissipation. We'd like to send you the new catalog, describing all 115 units. Just write to Kearfott Products Division, General Precision, Inc., Aerospace Group, Dept. 1450, 1150 McBride Avenue, Little Falls, New Jersey 07424. #### **KEARFOTT PRODUCTS DIVISION** **AEROSPACE GROUP** ON READER-SERVICE CARD CIRCLE 97 MODEL 3202 provides continuously adjustable high-pass, low-pass, bandpass and band-reject functions over frequency range of 20 Hz to 2 MHz. Two-channel bench unit shown; 51/4" x 85/6" x 151/4"-rack units available. The unlimited flexibility of the K-H Multifunction Variable Filters is essential for complex frequency- or time-domain measurements. Don't settle for limited single-function capability when you can take advantage of K-H's two-channel Model 3202 or the one-channel Model 3200. See functions, below. These responses are fully adjustable and may be set independently. This performance typifies the extra value you get from modern Krohn-Hite electronic instruments. Other values increase user confidence further by providing simpler, faster and lower-cost operation. Functions: Low-pass — direct coupled with low drift. High-pass — upper 3 db at 10 MHz. Bandpass — continuously variable. Band rejection — Variable Broad Band or Null. Two Response Characteristics: (1) fourthorder
Butterworth or (2) simple R-C (transient free) Zero-db Insertion Loss: all-silicon amplifiers provide "lossless" passband response. Steep (24 or 48 db per octave) attenuation slopes extend to at least 80 db. 90-db Dynamic Range: Low hum and noise (100 microvolts) eliminates costly preamplifiers. Output Impedance: 50 ohms, or lower. There's more in K-H Data Sheet 3200/3202. Write for a copy. 580 Massachusetts Avenue, Cambridge, Mass. 02139 Telephone: 617/491-3211 SEMICONDUCTORS # Versatile RF overlay packaged in plastic RCA, Electronic Components & Devices, 415 S. Fifth, Harrison, N. J. Phone: (201) 485-3900. P&A: \$40; stock. The first plastic stud package for RCA's RF overlay transistor utilizes a terminal block structure that permits a choice of stripline, bottom-mounted printed-circuit board or lumped circuit mounting. The 2N5017 overlay transistor is suited for class B and class C RF amplifier applications in military and industrial uhf communications equipment. It provides outputs of 23 watts (typical) at 225 MHz and 15 watts (minimum) at 400 MHz, operating from a 28-volt power source. Performance is reportedly improved because of low emitter and base inductances which optimize power and gain. The low base lead inductance is of particular importance in wideband equipment applications. The use of an isolated package technique eliminates circuit restrictions associated with grounded-emitter designs. The package has all electrodes embedded in the top of the case, permitting circuit components to be placed as close to the chip as possible. Small pins are placed in the electrodes to provide mechanical support to the attached components. A reduction in lead length, with a corresponding reduction in emitter lead inductance, has been achieved by bringing the leads directly out of the top of the case. CIRCLE NO. 425 Remember to return your **ELECTRONIC DESIGN** renewal card. Don't miss any issues in '67. # Silicon rectifiers withstand 7000-A surges Coyenel, Inc., 50 Rockefeller Plaza, New York. Phone: (212) 757-9130. Rated at values up to 700 A (average) and 2800 V (peak reverse voltage), a new silicon rectifier can withstand surge currents up to 7000 A (1 cycle at 60 Hz). Mechanical symmetry permits use of the same rectifier as a direct or reverse polarity device. Junction-to-case thermal resistance is 0.05°C/W. Encapsulated in a flatpack 2-1/4 inches OD and 1-1/8 inches thick, the rectifier is designed for heat-sink mounting. CIRCLE NO. 426 # Triacs control 15 A rms at peaks to 500 V General Electric, Semiconductor Products Dept., Syracuse, N. Y. Phone: (315) 456-2798. P&A: \$3.29 in 1000 lots (200 volts); stock. Types SC50 and SC51 Triacs are capable of controlling 15 A rms at peak voltages up to 500 V. They can withstand a peak one-cycle forward current of 100 A at 80°C junction temperature. Peak forward blocking voltage rating is 500 V. The operating temperature range is -40 to 115°C. The Triacs are available as either a press-fit or a stud-mounted unit. CIRCLE NO. 427 #### Silicon pin microdiodes rated to 1 kV PIV Microsemiconductor Corp., 11250 Playa Court, Culver City, Calif. Phone: (213) 391-8271. P&A: \$6 (100 lots); stock to 2 wks. Silicon pin microwave switching and limiting microdiodes have the glass hermetic seal integrally bonded to the silicon crystal surface. This provides semiconductor surface protection in excess of 1000 volts PIV. Average dissipation is 0.75 to 5 watts depending on heat sinking. Applications are phase shifters, modulators, attenuators and high-power switches. Units meet or exceed MIL-S-19500C. CIRCLE NO. 428 # GaAs Schottkys for high-power, low-noise Micro State Electronics Corp., 152 Floral Ave., Murray Hill, N. J. Phone: (201) 464-3000. Price: \$50, \$90 in evaluation quantities. Epitaxial gallium arsenide Schottky barrier diodes are designed for high-power low-noise applications. The MS-1650-X and 1651-X can withstand repetitive pulses of 10 ergs (2-ns duration) at X-band. Higher burn-out resistance is realized at lower frequencies. High cutoff frequencies and low noise follow from the low dielectric constant, low skin resistance and low series resistance. At about 10 GHz, the 1650 has a single-ended noise figure of 7 dB maximum: 6.5 dB for the 1651. These ratings are based on an IF amplifier noise figure of 1.5 at 30 MHz. The diodes are available in a low-reactance microwave pill package. Capacitance values to match system impedance requirements and matched pairs are also available. CIRCLE NO. 429 Eliminate Power Supply Obsolescence...Simplify Stocking Problems With These # New Wide Range Compacts from ERA! # Small Size, Wide Range DC Power Modules Permit Improved Design & Procurement Flexibility The new Transpac® WR Series are ultra-compact, fully repairable, 71°C silicon power modules which provide regulated DC power over an extremely wide, adjustable voltage range. Now you can use a single model for all your regulated power requirements...simplify your stocking requirements... eliminate power supply obsolescence...and enjoy significant purchasing economies. #### STANDARD MODELS | Output
Voltage (DC) | Current
(71°C) | Size WxDxH
(inches) | Weight
(lbs.) | Model | Price | |------------------------|-------------------|------------------------|------------------|--------|--------| | 1-33 | 0-500 ma | 3½ x 3¼ x 5¼ | 3.5 | WR33P5 | \$120. | | 1-33 | 0-1 amp | 3¼ x 4 x 5⅓ | 5.1 | WR331 | \$155. | | 1-18 | 0-2 amps | 4 x 4¹¼ x 5¹¾ | 6.5 | WR182 | \$170. | | 1-33 | 0-2 amps | 4½ x 5 x 6½ | 7.8 | WR332 | \$185. | | 1-33 | 0-4 amps | 5% x 7½ x 6¼ | 13.3 | WR334 | \$255. | | 1-33 | 0-8 amps | 8¾ x 7% x 6⅓ | 22.5 | WR338 | \$305. | #### **SPECIFICATIONS** Input: 105-125 VAC, 50-400 cps Ripple: Less than 800 microvolts RMS or 0.005%, whichever is greater Line Regulation: Better than ±0.01% or 5 mv for full input change Load Regulation: Better than 0.05% or 8 mv for 0-100% load change Voltage Adjustment: Continuous (Taps and screwdriver adjustment) Short Circuit Protection: Microseconds response, automatic recovery Vernier Voltage: External provision Transient Response: Less than 50 microseconds Maximum Case Temperature: 130°C Operating Temperature: -20°C to +71°C free air, full ratings Temperature Coefficient: Less than 0.01% per degrees C or 3 millivolts Long-Term Stability: Within 5 millivolts (8 hours reference) WRITE TODAY FOR CATALOG #148 #### ELECTRONIC RESEARCH ASSOCIATES, INC. Dept. ED-4, 67 Sand Park Road • Cedar Grove, N. J. 07009 • (201) 239-3000 Subsidiaries: ERA Electric Co. • ERA Acoustics Corp. • ERA Dynamics Corp. • ERA Pacific, Inc. Consistently high levels of quality control for precious metal plating requires measurement of plating thickness—in microinches—with reproducible results! To be sure that Cinch equipment would produce contacts meeting even the most rigid plating specifications, an elaborate, continuing program of quality control was developed. Based on beta ray backscatter measurements, it involved— - Devising a new BetaScope calibration system traceable to the Bureau of Standards. - Designing new methods for consistent contact alignment in the BetaScope. - Establishing new procedures for the statistical analysis of data obtained from plating thickness measurements. RESULT: Cinch can provide the exact plating thickness required at any point, or at all points, on a contact. Plating processes can be controlled to guarantee minimum plating depth because variations can be detected immediately. At Cinch, the Quality Control Director reports directly to the President. Cinch is the *only* connector manufacturer whose products are accepted without incoming inspection by one of the nation's leading communications equipment manufacturers. This sophisticated approach to quality control is another example of the extra dimension in Cinch's capabilities. Beyond the ability to develop fine products, we also offer in-depth production engineering, and tool, die, mold and equipment design and fabrication. CINCH # Bipolar LSI array shifts at 25 MHz Sylvania Electric Products, Inc., 100 Sylvan, Woburn, Mass. Phone: (617) 933-3500. A universal 4-bit shift register, containing the equivalent of 175 components on a 60 x 85-mil chip, shifts at speeds exceeding 25 MHz. The register is capable of performing parallel and serial to parallel and serial or serial to parallel conversion, storage, delay and shifting operations in all parts of digital computers or control systems and can perform arithmetic operations such as multiplication and division. The register can shift left or right from parallel units. The SM100 can also perform a serial shift right. There is a simple control signal which, upon command, will permit parallel entry into all four bits which then again, upon command, can be shifted serially. By simple wiring at the package terminals, it can be converted to a shift register that can shift left and right. It can be clocked by either of two separate clock signals. Packaging is 14-lead dual-in-line. CIRCLE NO. 430 # 16-flip-flops on one card asembly Cambridge Thermionic Corp., 445 Concord Ave., Cambridge, Mass. Phone: (617) 876-2800. As many as 16 reset-set flip-flops come on a single card assembly. Eight quadruple 2-input DTL integrated circuits are used to achieve high speed and excellent noise immunity by cross-coupling gate pairs. Customer options of 2 through 16 flip-flops are available. The set and reset inputs and outputs of all flip-flops are accessible through a 70-pin connector. CIRCLE NO. 431 #### Resistor networks ratio-matched to 0.2% 9 3 2 Microtek Electronics, Inc., 138 Alewife Brook Pkwy., Cambridge, Mass. Phone: (617) 491-4330. Matched thick-film resistor networks in values from $100~\Omega$ to $100~\mathrm{k}\Omega$ are offered. The networks are fired on a common alumina substrate to assure stability and temperature tracking. Temperature tracking of 25 ppm/°C from -55° to $+125^\circ\mathrm{C}$ is standard. Networks show less than
0.05% change in absolute resistor value after 1000 hours load life. The network shown above consists of two resistors ratio-matched to 0.2% and meets MIL-STD 202C method $106\mathrm{B}$. CIRCLE NO. 432 # IC op-amp priced at a low of \$5 Fairchild Semiconductor, 313 Fairchild Dr., Mountain View, Calif. Phone: (415) 962-2530. P&A: \$4.95 (over 10,000); stock. Fairchild Semiconductor's µA709-C op-amp is designed for industrial users now paying \$15 to \$35 for opamp modules. The unit is available in a hermetic metal TO-5 can with typical input offset current of 100 nA with an input offset voltage of 2 nA. The large signal voltage gain is 45,000 with an input voltage range of ±10 V. The typical output voltage swing is ± 14 V. In industrial use, the amplifier is suitable for dc servo systems, high-impedance analog computers, low-level instrumentation applications and for the generation of special linear and nonlinear transfer functions. CIRCLE NO. 433 Don't risk missing any issues of **ELECTRONIC DESIGN.** Send in your renewal card today. Manufacturing Company, 1026 South Homan Avenue, Chicago, Illinois 60624. Our skills and services are available to you. For Cinch creative problem solving assistance contact Cinch # Measure Film Thickness . . . accurately & conveniently measure the thickness of thin film layers, coatings and platings with the #### Watson Interference Objectives Successfully used today in semiconductor metallurgy and engineering, computer research, capacitor and quartz crystal manufacture, paint laboratories, printing, ceramics, diamond cutting, and in surface finish assessment. Attaches easily to any upright microscope with RMS Objective Thread. More effective, convenient and economical than much more expensive systems. Hacker For particulars or demonstration, write to: WILLIAM J. HACKER & CO., INC. Box 646, W. Caldwell, N.J., CA 6-8450 (Code 201) # **Boron-deoxidized copper resists oxidation** Anaconda American Brass Co., 414 Meadow St., Waterbury, Conn. Phone: (203) 757-2021. Boron-deoxidized copper alloy offers superior resistance to oxygen penetration, high purity, high electrical and thermal conductivity and good joining characteristics. Key to the resistance to oxygen penetration is the presence of the boron (approximately 0.01%) which "ties up" any oxygen already in the alloy by combining with it, thus rendering it harmless, and also "tying up" any oxygen that may be present during processing. Temperatures in excess of 2730°F are required to release the oxygen. The alloy is virtually equivalent to oxygen-free copper in other respects. Potential uses are seen in magnetrons, synchrotrons, klystrons and other electron accelerator components, transistor and diode bases, lead frames for ICs, armature and transformer windings, coaxial cables, generator connectors, connectors in signal systems, commutator bars and risers and ground and motor leads. CIRCLE NO. 435 # Magnetic film seals and shields Emerson & Cuming, Inc., 59 Walpole, Canton, Mass. Phone: (617) 828-3300. P&A: \$3 to \$5/foot; stock. RF and mechanical sealing is simplified by a flexible plastic magnet core, bonded to a highly conductive plastic film. By applying a strip of the film around the edge of an opening, the plastic magnet draws the door or cover into contact with the conductive plastic, forming the RF and mechanical seal. CIRCLE NO. 436 #### Mirror-finish metal for IC substrates Sherman Industries, Inc., American Silver Co. Div., 36-07 Prince St., Flushing, N. Y. Phone: (212) 353-8012. Mirror-finish metal strip is designed for use as metal substrates for integrated circuitry. Metal substrates tend to eliminate many of the problems of expansion usually encountered with ceramics. In addition, the metal substrates provide an integral return path, thus making it unnecessary to include a return path in the circuitry. The strip is available in copper and aluminum in widths up to 3 inches. CIRCLE NO. 437 # Clean contacts from spray can Spray Products Corp., Industrial Div., P. O. Box 1988, Camden, N. J. Phone: (609) 663-7040. A specially formulated solvent is designed for use on electric and electronic contacts. Applied as an aerosol spray from a pushbutton can, SPC electrical contact cleaner combines high density with low surface tension and viscosity to penetrate microscopic cracks and crevices. Dirt, grease and other foreign matter is either dissolved or lifted to the surface where the force of the aerosol propellent blows it away. The cleaner evaporates completely and leaves no residue. CIRCLE NO. 438 #### Low-alkali glass seals at 740°C Corning Glass Works, Corning, New York. Phone: (607) 962-4444. Heat damage and electrical degradation due to alkali poisoning are minimized when semiconductor devices are encapsulated in this sealing glass. The glass is a lead-alumino-borosilicate composition with an alkali content of less than 0.1%. It can be sealed at approximately 740°C. The expansion and viscosity of the glass provides good hermetic seals to molybdenum, Kovar and tungsten. Loss tangent is 0.001 and dielectric constant is 6.91, both at 1 MHz. The glass is available as cut tubing. CIRCLE NO. 439 # Silicon tetrachloride for wafer makers Dow Corning, 500 S. Saginaw, Midland, Mich. Phone: (517) 636-8000. Semiconductor-grade silicon tetrachloride is a clear, nonflammable, low-boiling liquid for use in the manufacture of epitaxial silicon wafers. The high-purity material enables device manufacturers to produce uncompensated epitaxial depositions with consistent control of resistivity at levels above 50 Ω cm, n-type. The silicon tetrachloride may also be doped with either ntype or p-type carriers to meet specific resistivity specifications. It is packaged in nine-liter Pyrex bottles with a 2-inch flange at the mouth. About 24 pounds of product is shipped in each bottle. With a modified cap, the bottle may be converted into a vaporizer for direct use in an epitaxial system. This makes it unnecessary to transfer to another container. CIRCLE NO. 440 # hest delivery WITHIN THE INDUSTRY # FROM THE LEADERS IN MINIATURE SOLID TANTALUM CAPACITORS. # MINITAN® ECONOTAN® solid tantalum capacitors - PROTOTYPES: SAME DAY DELIVERY. - 1000 PIECES FROM OUR CATALOG WITHIN ONE WEEK. - PRODUCTION QUANTITIES TO MEET YOUR SCHEDULE STARTING IN TWO WEEKS. COMPONENTS, INC. **MAINE DIVISION** SMITH STREET / BIDDEFORD, MAINE / 207-284-5956 # RFI-proof coax aluminum-sheathed Amphenol Corp., Amphenol Cable Div., 6235 S. Harlem Ave., Chicago. Phone: (312) 261-2000. Solid aluminum-sheath coaxial cable claims RFI shielding performance far superior to existing cables. Designated BC-59, the new cable is equivalent in size to RG59/U (0.242) inch OD). On shielding tests it was rated at 80 to 90 dB down, as opposed to 30 dB down for standard RG59/U. It is also 30% lighter and has 5% better attenuation performance. Other electrical characteristics are the same. The performance is achieved by replacing standard braided sheath with a sheath of solid aluminum foil. The foil is applied to the cable core during the jacket extrusion process. Extrusion of the polyethylene jacket over the foil chemically bonds the foil to itself and to the polyethylene. CIRCLE NO. 434 # Potting compound makes it clear Emerson & Cuming, Inc., Canton, Mass. Phone: (617) 828-3300. P&A: \$5 to \$6; stock. Eccosil 2 CN is a transparent, water-clear potting silicone. It can be cured by catalyst addition at room or somewhat higher temperature. Because of its flexibility, it provides good protection to embedded components against shock and vibration. CIRCLE NO. 441 # Flexible silicone sheet cuts reflectivity Emerson & Cuming, Inc., Microwave Products Div., Canton, Mass. Phone: (617) 828-3300. Price: \$10/square foot. A high-loss flexible silicone material when bonded to a metal surface will effectively prevent the flow of microwave currents. It will therefore reduce the back-scatter or reflectivity of metal structures caused by surface currents. It can also be draped over objects to alter reflectivity characteristics. Radiation patterns of antennas can be modified by the application of Eccosorb GDS to elements, dishes, horns, etc. CIRCLE NO. 442 # Superconductive wire useful to 100 kilogauss Avco Corp., 2385 Revere Beach Pkwy., Everett, Mass. Phone: (617) 389-3000. Composite superconductors consist of fine, high-current-density niobium-titanium wires encased in copper. They are available in round, square and strip configurations with one to 20 wires. They are useful at fields up to 100 kilogauss. Ratio between the superconductor and the copper substrate varies from one to over five. Overall current densities of more than 20,000 A per square centimeter at 45 kilogauss have been achieved. CIRCLE NO. 443 The American Semiconductor Zener Diodes Line is the prestige line for military and quality industrial installations. In many cases, they are the only types specified for critical space applications. Complete voltage range, lower dynamic impedances, higher than MIL specification performances, and immunity to shock and vibration in magnitudes exceeding 100,000 G's are the characteristics of the American Line. Write for complete details and prices on the complete zener family line in all voltage ranges and standard power ratings for your commercial applications. Dept. ED 4. # american #### SEMICONDUCTOR CORP. 4 North Hickory Avenue Arlington Heights, III. 60004 ON READER-SERVICE CARD CIRCLE 103 # Multipin tip fits any soldering iron Air-Vac Engineering Co., Inc., 100 Gulf St., Milford, Conn. Phone: (203) 874-2541. A tip for soldering and desoldering multipin components fits any standard soldering iron. The head can be used in conjunction with ring-shaped solder preforms to speed assembly of electronic circuit boards by simultaneously soldering 14 component pins. The same unit can also be used for desoldering electronic components. When placed over the pin connectors, it will simultaneously melt
the solder in all the eyelets for each part. The 14-hole tip is iron-plated copper. CIRCLE NO. 444 # Teflon-tipped probe treats chips gently Fluoroware, Inc., County Road 17, Chaska Industrial Park, Chaska, Minn. Phone: (612) 448-3131. Price: \$6.75, \$2 (tip only). A vacuum operated probe ensures gentle handling of chips, wafers, substrates and other miniature semiconductor materials. It features a Dupont Teflon FEP tip to prevent damage. Tip hole diameter is 1/16 inch. The vacuum pickup body has a tapered end to accept 3/16 to 1/4-inch ID hoses. CIRCLE NO. 445 # Waveguide cut, assembled in the field Dielectric Products Engineering Co., Inc., Littleton, Mass. Phone: (617) 486-3575. Waveguide may be cut and assembled in the field with this kit of tools and materials. It is possible to cut waveguide and mount flanges to close tolerances without welding, machining, heating or resorting to the use of dissimilar metal assemblies. Waveguide sizes from W/R 430 to W/R 2100 can be handled. The kit includes positioning and cutting guides, tools, sealant and a power saw. Vswr of field-assembled flanges is 1.02 over the waveguide band at waveguide rated power. CIRCLE NO. 446 # Air-operated tool makes solderless connections Gardner-Denver Co., Gardner Expressway, Quincy, Ill. Phone: (217) 222-5400. A lightweight, quiet, air-operated Wire-Wrap tool is designed for use with wire in size from 20 to 30 AWG. The air motor requires only 4 cfm of air. The tool is available in wrapping speeds of 3500 and 5500 rpm. CIRCLE NO. 447 Don't forget to return your **ELECTRONIC DESIGN** renewal card. ON READER-SERVICE CARD CIRCLE 104 # COOL KLYSTRONS · MAGNETRONS · TRANSFORMERS TRAVELING-WAVE TUBES · SWITCH TUBES WAVE GUIDES · DUMMY LOADS · LASERS with New ELLIS and WATTS Liquid-to-Air Heat Exchangers' One of the new Ellis and Watts Heat Exchangers may be the answer to a need for tailoring a cooling system to your type of electronic equipment. Minimum space, low noise level and optimum performance have been achieved in each of a wide range of designs which include indoor/outdoor types in ratings from 5 to 300 KW. Proved in military, aerospace and commercial applications, these designs offer flexibility for quick modification to meet any specific cooling requirements. Why not put the widely recognized Ellis and Watts custom-cooling "know-how" to work for you. Write us at the address below. *Liquid-to-Liquid Heat Exchangers also available. #### ELLIS AND WATTS COMPANY Ellis and Watts Company, P.O. Box 36033 Cincinnati, Ohio 45236 ON READER-SERVICE CARD CIRCLE 136 TEST EQUIPMENT # Machine tests chips, sorts into 10 bins Bulova Watch Co., Inc., Systems and Instruments Div., Bulova Pk., Flushing, N. Y. Phone: (212) 335-6000. P&A: \$24,300; dual version, about \$32,000; 16 wks. Transistors, diodes and integrated circuits can be tested, classified and placed in bins, automatically, at the rate of 7200 per hour, by a new system from Bulova Watch Co.'s Systems and Instruments Div. The chip tester-classifier, model 85002, tests the units before they are packaged, avoiding the waste of packaging rejects. The system will automatically feed, orient, test and sort into 10 categories square or rectangular chips from 20 to 250 mils long. It will then feed each selected classification into a magazine, keeping it properly oriented for subsequent bonding or placement operations. Testing rates range from 200 to 800 ns per piece, depending on the number of parameters. The chips are untouched by hand from insertion in the machine to placement in the magazine. Readings are taken by precious-metal contacts nested in the equipment. The machine claims distinct advantages over go-no-go wafer testing units. Testing each chip in a wafer avoids the necessity of breaking up the wafer later to separate the qualified chips from the rejects. The chips are sorted into 9 acceptable categories, according to specs, and rejects. Operation is simple and requires no special skill. A portable laboratory microscope is required for the setup for each different kind of chip to be tested. The machine measures 32 in. square by 36 in. high. A dual version is available to double the production output. CIRCLE NO. 448 # A-to-D converter digitizes at 40 MHz Northern Scientific, Inc., 2551 W. Beltline, Middleton, Wis. Phone: (608) 836-6511. P&A: \$3200 (single converter), \$4200 (dual); 30 days. A 40-MHz digitizing rate is achieved by the NS-625 dual analog-to-digital converter. The unit also features a digital-to-zero offset control, two 12-bit address scalers, independent operation for each converter, exclusive circuitry for internal rejection of noncoincident events and overflows, patchcord programing and optional internal logical level interface. The converter uses the peak detection technique. Standard output levels for the data and control signals are ± 0.5 volt for zero and 6 ± 0.5 volt for one. Coincidence circuitry provides for operation in two-parameter mode with coincidence timing adjustable from 0.5 to 2.5 μ s. Noncoincident events produce only 3-μs dead time. CIRCLE NO. 449 # Interval counter uses dc level gating Anadex Instruments, Inc., 7833 Haskell Ave., Van Nuys, Calif. Phone: (213) 782-9527. Price: \$845. Dc level gating is used in this time interval counter. It provides a variety of interval measurements such as pulse length, pulse spacing and time between electrical events. The counter has start/stop dc levels which are adjustable from +30 to -30 V with \pm slope control. A switch is provided for single-line or two-line gate inputs. Measurements from 10 μs to 100,000 s are possible. CIRCLE, NO. 450 # Time mark generator accurate to $\pm 0.007\%$ Accutronics, Inc., 12 South Island, Batavia, Ill. Phone: (312) 879-1000. P&A: \$225; stock. Six crystal-controlled frequencies from 100 Hz to 10 MHz at $\pm 0.007\%$ accuracy and a 1-V p-p calibrator at better than $\pm 0.5\%$ are provided by the Multi/marker. Mercury battery powered, it uses silicon planar epitaxial transistors throughout. The unit can be plugged directly into a scope to calibrate the sweep and vertical amplifiers. For field work it can be used as a secondary frequency standard, for calibration of counters or as a trigger source. CIRCLE NO. 451 # Low-cost pulser has 1-ns rise, fall time Hewlett-Packard, 1501 Page Mill Rd., Palo Alto, Calif. Phone: (415) 326-7000. P&A: \$990; stock after May 1. Fast, clean pulses with rise and fall times less than 1 ns are featured in model 8001A pulse generator. Overshoot and ringing on leading edges are less than 3% of pulse amplitude (6% on trailing edges). Pulse tops are flat within 2%. Pulse amplitude is continuously variable from 0.04~V to 10~V across $50~\Omega$. Pulse width is also continuously variable from 100~ns to 500~ns. CIRCLE NO. 452 It's time to renew your subscription to **ELECTRONIC DESIGN**. Return your renewal card today. #### 5-kW pulser has 10-ns rise time Velonex, 560 Robert Ave., Santa Clara, Calif. Phone: (408) 244-7370. P&A: \$4200; 30 to 60 days. A high-power pulse generator has a 10-ns rise time and a 12-ns fall time. A variable rise-fall time control plug-in and high-current and high-voltage plug-ins provide flexibility with output voltages to 1 kV, or output current to 100, A into $0.5~\Omega$. CIRCLE NO. 453 # does your design require precious metal pot wire? Secon produces high quality, precision – precious metal – potentiometer wire. We offer quick delivery for your production requirements, as well as FREE prototype samples. You get the precious metal alloy wire you need, engineered to meet your exact requirements — from 37 to over 610 ohms/cmf; low temperature coefficient of resistance — with excellent roundness and linearity. This high tensile strength wire is engineered to facilitate uniform winding — available to .0004" diameter. Supplied bare or enameled. If your requirements are for high quality, fine potentiometer wire you should write for a copy of our comprehensive brochure on wire for the potentiometer industry. Please write on your letterhead; no obligation of course. 7 INTERVALE STREET, WHITE PLAINS, N.Y. 10606 ■ (914) 949-4757 ON READER-SERVICE CARD CIRCLE 137 # Specify PERMACOR® where iron cores is our one and only business In this age of specialists, PERMACOR stands above all others in the production and design of powdered iron cores. This is our sole business and our cord specialists can solve any problem. We have a full line of stock cores and unexcelled facilities for manufacturing any custom cores. IRON CORES... Plain, Hollow, Threaded, Insert, Tuning, Cup, and Toroidal Iron Cores, Iron Coil Forms, Sleeves, Flexible Magnetic Shielding, Bobbins and special shapes...our only business and we're the world's largest. We invite your inquiry. #### PERMACOR' A Division of Radio Cores, Inc. 9540 Tulley Ave., Oak Lawn, III. 60454 Phone: 312-422-3353 # Balanced transformers cover 50 kHz to 1 GHz Relcom, 2164 E. Middlefield Rd., Mountain View, Calif. Phone: (415) 961-6265. P&A: \$11 (over 100); stock. Broadband balanced transformers for hybrid junctions, isolated vector addition and division, impedance matching (2:1, 4:1, 8:1, 16:1), balance modulators, phase detectors or phase comparators cover 50 kHz through 1 GHz. Model BT8 features frequency coverage from 1 MHz through 200 MHz with 4:1 impedance matching. Power loss is typically 1 dB, amplitude unbalance is less than 0.1 dB from 1 to 50 MHz and less than 1 dB from 50 to 200 MHz. CIRCLE NO. 454 # Coax circulator rated at 1.2 kW Litton Industries, Airtron Div., 200 E. Hanover Ave., Morris Plains, N. J. Phone: (201) 539-5500. P&A: about \$1000; 90 days. High-power coaxial three-port junction circulators can double as duplexers or low-loss isolators. Model 336265 features an average power of 1.2 kW cw with an insertion loss of 0.4 dB maximum. It covers 1.7 to 2.4 GHz, has an isolation of 20 dB, vswr of 1.2 and has 1-5/8-inch coax connectors. CIRCLE NO. 455 # Stripline
connectors for semirigid cable Elpac, Inc., 3760 Campus Dr., Newport Beach, Calif. Phone: (714) 546-8640. Miniature stripline connectors for 0.141-inch semirigid cable mate with OSM, RBM and other standard connectors. Body, flange and coupling nut are of stainless steel. The dielectric is solid Teflon. The heat-treated beryllium copper center contact makes it possible to precut the cable to exact length, and to complete the assembly without tools. The five styles are male and female, male and female square flange and male right angle. CIRCLE NO. 456 # S-band dummy load convection-cooled Microlab/FXR, 10 Microlab Rd., Livingston, N. J. Phone: (201) 992-7700. S-band dummy loads are capable of handling fully rated peak power and 20-kW average power without the use of liquid cooling. They feature a built-in forced-air cooling system equipped with an air-flow safety interlock switch. Frequency range is 2.7 to 3.3 GHz and maximum vswr is 1.2. CIRCLE NO. 457 # Submin circulator weighs 1 ounce Litton Industries, Airtron Div., 200 E. Hanover Ave., Morris Plains, N. J. Phone: (201) 539-5500. P&A: \$70 to \$100; 30 days. A subminiature three-port junction coaxial circulator, measuring 5/8 x 3/4 x 3/4 inches and weighing 1 ounce, is available in Y or T configurations. It covers a frequency range of 4.2 to 4.4 GHz. Other models are available in the frequency range of 1 to 10 GHz, covering 5 to 10% bandwidths. Isolation is 20 dB, insertion loss is 0.3 dB and vswr is 1.2. CIRCLE NO. 458 # Ten-watt TWT weighs 2.5 pounds ITT, 320 Park Ave., New York. Phone: (212) 752-6000. A lightweight 10-watt traveling-wave tube covers the 8-to-12-GHz band. Type F-2094 has 40 dB of gain at rated output. It is of metal-ceramic construction. The tube is ppm focused and forced-air cooling is used. The collector is isolated and can be used at voltages depressed up to 50% below helix-cathode voltage. A dc blocking capacitor is built into the RF output. CIRCLE NO. 459. # IF mixers cover C through Ku-band Sage Labs., Inc., 3 Huron Dr., Natick, Mass. Phone: (617) 653-084!. P&A: \$400 to \$600; 45 days. Four miniature microwave balanced mixers cover high C-band through Ku-band in four signal RF bands: 5 to 7 GHz, 7 to 9.4 GHz, 9.4 to 12 GHz and 12 to 15 GHz. IF is 3 GHz, and the LO frequency is the sum of RF and IF. Conversion loss is 15 dB, signal-to-IF isolation is greater than 40 dB, and LO-to-signal isolation is greater than 8 dB. All models use 1/4-36 connectors. CIRCLE NO. 460 # Dummy loads handle 25 to 2000 watts Raytheon Co., Special Microwave Devices Operation, 130 Second Ave., Waltham, Mass. Phone: (617) 899-8400. P&A: from \$150; 30 days. Twenty-one lightweight air-cooled dummy loads handle high power levels. For example, the LKuM1 weighs 4.8 ounces and handles 25 watts average power, while the LCH100 weighs 3.6 pounds and handles 2000 watts of average power. Available finned or unfinned, the loads operate over uhf, L, S, C, X and K-bands. CIRCLE NO. 461 Don't forget to return your **ELECTRONIC DESIGN** renewal card. ON READER-SERVICE CARD CIRCLE 139 > No. 479 Platinum Alloy Wire is manufactured exclusively in the Sigmund Cohn Corp. plant, specifically for low-noise, precision potentiometers . . . This high tensile strength, long-life potentiometer alloy wire contains 92% Platinum, 8% Tungsten . . . It is exceptionally round . . . linear . . . bright . . . strong and corrosion-resistant. Potentiometers wound with it have very low noise limits — shelf life unlimited . . . #### SIGMUND COHN CORP. 121 South Columbus Avenue Mount Vernon, N. Y. 10553 Sigmund Cohn Corp. of California, Burbank, Calif. Sigmund Cohn-Pyrofuze, Inc., Dallas, Texas oxides, metals, salts from the world's largest ion-exchange #### APPLICATIONS: facility Phosphors Electronic Ceramics High Temperature Refractories Ceramic Control Materials Metallurgy Coloring Agents Permanent Magnets Lasers Catalysts Glass, Lenses Metal Halide Lamps Like technical data on any of the above oxides or metals? Write, wire or call us about your specific interest. # MICHIGAN CHEMICAL CORPORATION Copyright 1967 by Michigan Chemical Corporation RE-67-1 # Subminiature relay has 130-mW sensitivity Bourns, Inc., 200 Columbia Ave., Riverside, Calif. Phone: (714) 684-1700. P&A: \$21.30 (10 to 24); stock. A dpdt 0.5-A relay, has 0.1-in. pin spacing, pick-up sensitivity of 130 mW and an operating temperature range of -65° to 125° C. Contact material of gold-plated semiprecious metal, highly resistant to arcing and film formation, provides an operating life of 150,000 cycles. CIRCLE NO. 462 # Logic card drives 8 transmission lines California Systems Components, Inc., 9176 Independence Ave., Chatsworth, Calif. Phone: (213) 341-1050. P&A: \$95; stock. Four independent gated transmission line driver circuits are designed into this logic card. Each driver circuit is capable of driving up to two $50\text{-}\Omega$ transmission lines in parallel. With a $25\text{-}\Omega$ max load the circuit will have less than 10-ns rise and fall times and less than 20-ns stretch. The card features DTL integrated circuits and silicon discrete transistors. CIRCLE NO. 463 # Miniature oscillator accurate to 1 part in 10* Marconi Co. Ltd., Chelmsford, Essex, England. Phone: Chelmsford 53221. A temperature stabilization technique, employing a microelectronic circuit, is embodied in a new range of miniature master oscillators. The oscillators, which have a short term stability of 1 part in 10⁸, have applications in airborne equipment and portable man-pack receivers employing the most advanced methods of radio communication. CIRCLE NO. 464 # Mercury-wetted reed bounce free Gordos Corp., 250 Glenwood Ave., Bloomfield, N. J. Phone: (201) 743-6800. Mercury-wetted reed switches, available spst-NO, are bounce-free and stable in contact resistance and pull-in sensitivity. They are capable of switching loads of 1 A at 50-Vdc for 50 x 10⁶ operations. The switch has a glass diameter of 0.25 inch, glass length of 0.7 inch and over-all uncut length of 1.625 inches. CIRCLE NO. 465 # Op-amp runs 1000 hours from two 3-V cells Analog Devices, 221 Fifth St., Cambridge, Mass. Phone: (617) 491-1650. P&A: \$30; stock. This differential dc operational amplifier gives 1000 hours service from a pair of Mallory #TR132R batteries. Besides conventional instrumentation uses, model 150 has applications in upgrading or retrofitting existing instruments and systems. It can operate (with battery pack) thousands of volts above ground, provide isolated measurement for high voltage cables, increase range, sensitivity and input impedance of d'Arsonval meters, turn dc meters into wideband ac instruments, raise input impedance of chart recorders and other apparatus, and operate remotely from solar-powered photovoltaic cells. Output is 1.5 V at 2.5 mA. CIRCLE NO. 466 # Linear amplifiers from 20 to 80 MHz Applied Research, Inc., 76 S. Bayles Ave., Port Washington, N. Y. Phone: (516) 767-8707. P&A: \$3500 and \$4500; 45 to 60 days. Two solid-state high power RF amplifiers have been developed featuring linear operation, low power drain and high power output. The units are useful in transmission systems, as spectrum analyzers, direction finders and signal sources. CIRCLE NO. 467 Remember to return your **ELECTRONIC DESIGN** renewal card. Don't miss any issues in '67. # Milwaukee offers MORE transportation Locate your plant in Milwaukee and get your products to market last EXPANDED WORLD PORT NEW EXPRESSWAYS EXPANDED AIRPORTS / NEW RAIL TERMINAL / NEW BUS TERMINAL Did you know that some other city officials actually refer to us as "hustlers"? We're delighted! Division of Economic Development Because when they call us hustlers, they're enviously referring to our extremely well organized, highly developed transport system, unequaled by any other midwestern industrial city. With your plant here, your raw products move *in* fast, your finished products move *out* fast. And all this happens at lower shipping cost than you'd experience elsewhere. Here's the run-down on our move-out: the best located deep-water world port on the Great Lakes with a natural harbor connecting three navigable rivers. This is fast access to the St. Lawrence Seaway to Europe and ideal for barge transport to the Gulf of Mexico. Rail transport? Five railroads converge on Milwaukee with reciprocal and main line switching in the city. Furthermore, Milwaukee has 62 truck lines in operation with a wide choice of terminal service. Five commercial airline carriers serve us at our rapidly expanding General Mitchell Field, private and corporate aviation is booming at Timmerman Field. Our \$400 million dollar expressway system is being rushed to completion so your product can rush to its destination. Finally, Milwaukee is "shut-down-proof". No floods, hurricanes or tornadoes. And, an occasional snowstorm is always defeated by the finest equipped force in the nation within a few hours. Rush a letter to us now! We'll "hustle" the answers you need. ______ | | end free copy of "there's
iries handled in strict cor | | | |---------|--|-----|--------------| | NAME | | | MODE | | ADDRESS | | | in Milwaukee | | CITY. | STATE | ZIP | | MILWAUKEE ... GREAT FOR BUSINESS, GREAT FOR LIVING, and growing greater ON READER-SERVICE CARD CIRCLE 141 Capacitance change of less than 2% over the temperature range of -20°C to $+60^{\circ}\text{C}$, plus high insulation resistance (10^{5} megohm-microfarads at 25°C), makes this new Modifilm the ideal capacitor for many instrument applications such as integration, long time constant networks, RC circuits, etc. They are available in many configurations including metal case hermetic sealed, plastic wrap with epoxy fill and in pre-molded phenolic cases for PC mounting. 3243 No. California Ave. Chicago, Illinois 60618 COMPONENTS # Power resistors for MIL and commercial
Shallcross Manufacturing Co., Preston Street, Selma, N. C. Phone: (919) 965-2341. Two precision wirewound power resistors are offered for military and commercial applications. One series of power resistors is produced for established reliability programs requiring documentation and meets MIL-39007. Another series is offered as a general purpose power resistor for MIL-R-26 and commercial applications. Power ratings are 1 to 15 and 1 to 18 W. CIRCLE NO. 468 # Amplifier controls fluid pressures Fluidonics, Div. of Imperial-Eastman Corp., 6300 W. Howard St., Chicago. Phone: (312) 774-1700. A pressure area amplifier for controlling high fluid pressures by using low pressure sources is offered for use with any filtered noncorrosive fluid, such as air, water, oil or natural gas. The amplifiers are available for use with corrosive fluids. The action of the amplifier is similar to that of a valve as the fluid flow can be proportionately controlled from full flow to shutoff. CIRCLE NO. 469 # 12-stage counter card for time-base generators Control Logic, Inc., 3 Strathmore Rd., Natick, Mass. Phone: (617) 655-1170. P&A: \$105.25; stock. Capable in binary or BCD code, a 12-stage counter card is particularly useful in time base generators and as frequency dividers. The 12 flip-flop stages may be used as a 4-bit to 12-bit binary or as a 1-to-3-digit BCD counter. Two or more cards may be used to construct counters of any length. The counters operate from dc to 1 MHz and have a maximum propagation delay per decade of 120 ns. CIRCLE NO. 470 # CdS photocells measure 1/4 inch across Sylvania Electric Prod., Inc., Electronic Components Group, Emporium, Pa. Phone: (315) 568-5881. Hermetically sealed photocells, measuring less than 1/4 inch in diameter, are suited for use in high-density photoconductor arrays. The TO-18 photocells are rated for 50-mW power dissipation. They are available in light/resistance ratings ranging from 3000 to 125,000 Ω (at 2 footcandles), with a dark/light resistance ratio of 100 to 1. CIRCLE NO. 471 Don't risk missing any issues of **ELECTRONIC DESIGN.** Send in your renewal card today. ## Flat-sealed contacts live to be 10 billion Tele-Norm Corp, 32-31 57th St., Woodside, N. Y. Phone: (212) 988-1935. P&A: \$5.50 to \$27 (1 to 9); stock. Flat-sealed contacts (FSC) are less than half the size of usual reed switches but operate at higher speeds for at least 10 billion operations on dry circuit switching. Form A and Form C are the same size and the magnetic latching relay available with Form A needs no holding current. For switching systems and electronic circuitry, the FSC contacts come pakaged in 1, 2, 4, 6, 10, 16 and 22-contact relays for panel mounting or for printed circuitry. CIRCLE NO. 472 # IC logic cards in 50 configurations Wyle Products Division, 133 Center St., El Segundo, Calif. Phone: (213) 322-1763. A line of IC logic cards includes positive and negative logic, mercury reed relays, input and output level converters, gate expanders and many other functions. Included in the new series is a breadboard blank card with mounting space for eight dual in-line IC packs and discrete components. CIRCLE NO 473 # You can buy a sample now of this new General Electric solid state lamp! This is the SSL-1, actual size. It's a 2- to 5-volt solid state light source that emits 40 footlamberts of visible light end on @ 50 ma. Turns on and off at the rate of 10,000 cycles per second. Resists shock and vibration better than any filament lamp. Lasts indefinitely with no loss in efficiency! SSL-1 is a remarkable new development of General Electric Miniature Lamp research. You'll want to consider it in your business, wherever tiny tough lamps are required. As an indicator or photo cell driver, it has hundreds of applications in computers, missiles, telephone equipment and aircraft, to name a few. #### **ORDER SAMPLES TODAY** Perhaps the SSL-1 can help save space, improve performance, reduce maintenance cost in *your* product. It's easy enough to find out: SSL-1 lamps are available now at just \$9.50 each. Order today. Just fill in the coupon and mail it with your check or money order. (Or contact your regular GE lamp representative.) Your calibrated SSL-1 will come to you cradled in styrofoam, protected in a rigid plastic box. Need more data? Send for free technical bulletin #3-7041. It's yours for the asking. Miniature Lamp Department # GENERAL ELECTRIC | TO: General Electric Company
Miniature Lamp Department
P.O. Box 2422, Nela Park, Cl
Attn: J. D. McMullen | eveland, Ohio 4 | 4112 | |---|-----------------|------------------| | Please send menew (| GE SSL·1 lamp(| s) at \$9.50 ea. | | Name | | | | Company | | | | Address | | | | City | State | Zip | #### **STRAPPING** No tools—just 2 components: a nylon stud (like an old time collar button) and PVC strapping... lighter and stronger than metal...yet will not damage wires like lacing or metal clamps. It's the simplest, fastest and least expensive of any tying system that is reusable for "on-the-spot" wiring changes...just strap, snap, snip! And, "feed-out" reels make use and inventory control easy. Available in a variety of colors for identification and coding. Convince yourself. Write for free samples. OTHER ELECTROVERT PRODUCTS: cradleclip; cable ties; spiroband; markers; grommet strip; wavesoldering systems. Sold Coast-te-Coast through Authorized Distributors. ON READER-SERVICE CARD CIRCLE 144 ON READER-SERVICE CARD CIRCLE 145 # Application Notes #### Photocell/IC applications Integrated circuit applications for photocells are fully described in a 6-page brochure. Features are the advantages of silicon photocells, the degree of performance of photovoltaic devices, definitions of modes of operation, application considerations and charts illustrating uses of the cells such as the discrete transistor preamp shown above. Sensor Technology, Inc. CIRCLE NO. 474 #### **DTL** applications handbook A new, 32-page Applications Handbook gives the system designer complete descriptions of Signetics DTL family. In addition to the text which presents circuit descriptions and characteristics, more than 100 illustrations present design information and detailed application examples, such as the digital comparator above, in the form of schematic and block diagrams. Signetics Corp. CIRCLE NO. 475 #### Reversible counter uses "Using a Reversible Counter" is a 44-page book surveying some varied applications for reversible counters. There is a treatment of transducers for converting length, angle, flow rate, etc., to electrical signals suitable as inputs to the counter. Transducers covered include laser interferometers, optical gratings, tachometers and several types of flow meters. An extensive list of references completes the manual. Hewlett-Packard. CIRCLE NO. 476 #### Pin diode attenuators Constant-impedance current-controlled attenuator design is detailed in an 8-page note. The attenuators span 10 MHz to 1 GHz using pin diodes. Design equations, curves and component selection are fully explored. hp Associates. CIRCLE NO. 477 #### **Printed motors** The class of servos in which the printed motor has been applied is the intermittent motion, or incrementer system. In these applications, low inertial load is required to be started and stopped rapidly and repeatedly. This 13-page brochure describes the characteristics and applications of such motors. Printed Motors Div. of Photocircuits, Inc. CIRCLE NO. 478 #### SCR control circuits A set of eight application notes details the design of SCR control circuits for varying devices. Controls for blowers, electric drills, electric fences, dc flashers and alarm circuits are included. Schematics and tables of values aid the discussions. ITT Standard. CIRCLE NO. 479 #### Regulated supply Use of an IC op-amp as the sense and control element in a power supply regulator is the theme of a 4-page loose-leaf brochure. Text and schematics describe the external circuitry needed for regulated outputs of 20 to 28 Vdc from a 30-V unregulated source. Molecular Electronics Div., Westinghouse. CIRCLE NO. 480 It's time to renew your subscription to **ELECTRONIC DESIGN**. Return your renewal card today. # $M \cdot 0 \forall$ #### for the short answer to high performance oscilloscope design The Short mesh p.d.a. 900N and 13000 extend M-OV's range of C.R.T.s. Ideal for portable oscilloscopes employing solid-state circuitry, their compact rectangular design in no way affects their high performance. Look at these features: - * Single gun mesh PDA - ★ High Sensitivity for solid-state circuitry - ★ High Brightness and writing speed - ★ Wide-band capabilities - * Aluminised Screen - * 0.7W low wattage heater (900N) | | 13000 | 900N | |------------------------|---------------------------------------|----------------------------------| | Scan size | $10 \mathrm{cm} \times 6 \mathrm{cm}$ | $7 \text{cm} \times 5 \text{cm}$ | | Line width | 0.3mm | 0.3mm | | Final
Anode Voltage | 7kV | 6kV | | Deflection
Factor | | | | Dy | 4 V/cm max. | 10 V/cm max. | | | 10 V/cm max. | 11.5 V/cm ma: | | Overall
length | 335mm. | 205 mm. | For full technical specification of 13000, 900N and the world's first dual-trace mesh PDA tube, the 1300P, write to: # Genalex THE M-O VALVE CO. LTD North America Sales Manager: David La Frenais · P.O. Box 5000 Don Mills · Ontario · Canada · Tel : 291 · 1985 ON READER-SERVICE CARD CIRCLE 146 #### **Design Aids** #### Cooling system design rule Relate actual cooling system, performance with desired system characteristics using this circular slide rule. When the selected fan's catalog performance (including horsepower) and speed are placed under the hairline, actual system performance is determined by moving the hairline to the actual operating speed. Brookside Corp. CIRCLE NO. 481 #### Miniature pulse transformers A
12-page brochure completely details pulse transformer selection, specification and measurement. A pair of nomograms relates resistance, pulse length, droop and inductance; and inductance, voltage, pulse length and current. Applications information and methods of measurement are fully covered. Pulse Engineering, Inc. CIRCLE NO. 482 #### Production line 'how to' Two pocket-sized guidebooks, "How to Use Screwdriver" and "Helping Hand for Electrical Wiring," present "how to" facts, illustrations and pointers. "Helping Hand" details techniques in electrical connections and splices. It covers a discussion of basic electricity complete with diagrams to illustrate wiring methods, tools and accessories. Sections show assembly line applications in control panels, transformers, relays and motors. The booklet includes wire size and decimal equivalent charts, an "automatic" terminal selector and a glossary. Vaco Products Co. CIRCLE NO. 483 #### Magnetic pickup handbook Magnetic pickups are completely defined in a handy 6-page fold-out booklet. A set of charts and the nomogram shown above aid in calculations. The nomogram relates the number of gear teeth, diameteral pitch, gear diameter, gear speed, surface speed, frequency, peak-to-peak voltage, gear pitch and peak-to-peak voltage at 1000 inches per second. Electro Products Laboratories, Inc. CIRCLE NO. 484 #### **Trimmer selector** Amphenol Controls' entire line of wirewound and metal film trimmers is presented in slide rule form for easy selection. The desired series number, by application and size, is set in one window and the model number is read opposite a photo of the trimmer at the right. By turning the rule over and setting the desired resistance value, part number and per cent resolution are given. Ordering may then be done by noting Amphenol prices and comparing them with those of Bourns, Dale, Spectrol, IRC, Daystrom and Helipot which are given in a handy table. Amphenol Controls Div. CIRCLE NO. 485 #### Decimal equivalent wall chart Precision Slitting, Grinding, Sanding, Shearing and Fabricating. This 16 x 10-1/2-in. wall chart converts frequently used fractions to decimals at a glance. Decimals are carried to 6 places for accuracy. Accompanying the wall chart is the latest Product Data Bulletin from the manufacturer covering electrical insulation products. Inmanco, Inc. CIRCLE NO. 486 Don't forget to return your **ELECTRONIC DESIGN** renewal card. #### New Literature #### DTL data book A 20-page data book details the DTL930 series of compatible monolithic integrated logic circuits. Circuits are shown for all data presented, specifically defining how data was derived, and circuits, logic and pin layouts, diagrams and package dimensions are presented along with details of product reliability programs. A glossary of terms defines parameters used. Descriptions are given of test techniques. Stewart-Warner Corp. CIRCLE NO. 487 #### Switch uses unlimited "Uses Unlimited" describes a dozen switch applications in solving industrial problems. One of the illustrated features describes an application in which inspection is accomplished on an eight-dimension steel stamping. Another feature deals with minimizing the effects of radio frequency interference. Other switch applications describe flow-actuated proximity, explosion-proof and mercury switches in unusual installations. Micro Switch, Div. of Honeywell. CIRCLE NO. 488 #### 360-page products catalog A 360-page volume features product listings from 113 manufacturers, with pricing up-to-date. An accurate index provides specific assistance in finding the desired product. Complete line catalogs from 21 manufacturers are available. Available on company letterhead from Esco Electronics, 3130 Valleywood Drive, Dayton, Ohio. These assemblies provide a means of transferring electrical energy from stationary to rotating elements. They are used in rotating radar antenna systems, fire control systems, missile guidance and tracking, gyroscopes, rotary components, stress and temperature analysis, power transmissions, and in many other applications where electrical connections must be maintained between stationary and rotating units. NORTHERN PRECISION LABORATORIES INC. 202 Fairfield Road • Fairfield, New Jersey 07006 • Area Code 201 227-4800 ON READER-SERVICE CARD CIRCLE 148 #### "I DON'T MIND PAYING A LITTLE LESS" With An Airways Businessman's Credit Card He'll Save Even More Money Being a practical man and a business traveler, this man knows he qualifies for a special Rent-A-Car discount by presenting his AIRWAYS BUSINESSMAN'S CREDIT CARD at any of over 200 AIRWAYS offices. He knows AIRWAYS regular rates are lower than other rent-a-car companies including their 20% corporate discounts. With an AIRWAYS BUSINESSMAN'S CREDIT CARD he knows he'll enjoy even greater savings. He knows AIRWAYS provides 1967 Chevrolets, Buicks, Pontiacs -even Cadillacs. He also knows he'll save time because he simply calls when he arrives at the airport and AIRWAYS will probably arrive before his luggage. We have downtown offices, too. He knows it - AIRWAYS knows it - now YOU Send for your free AIRWAYS BUSINESSMAN'S AIRWAYS RENT-A-CAR 5410 West Imperial Highway Los Angeles, California 90045 AIRWAYS RENT-A-CAR ON READER-SERVICE CARD CIRCLE 149 #### **NEW LITERATURE** #### Op-amp and function modules This 16-page illustrated catalog describes analog and hybrid plug-in modules along with twenty-two opamps, a line of instrumentation amps, seven function modules, a line of active filters and eleven power supplies. It includes 50 op-amps which are available in various package styles. The instrumentation amp line includes transducer amps, preamps, and galvanometer amps. The epoxy-encapsulated line of function modules includes squaring modules, a quarter-square multiplier, a noise generator, logarithmic amps, an analog comparator and electronic switch modules. Burr-Brown Research Corp. CIRCLE NO. 489 #### 82-page instruments catalog An 82-page catalog entitled "Modular Instruments" is available. It contains specifications on modular nuclear instruments. Also included is a guide to assist the user in selecting the proper combination of modules for a specific application. A separate section describing input and output accessories which are used to complete the modular system is contained. Nuclear-Chicago Corp. CIRCLE NO. 490 #### CO₂ laser applications "On the significance and use of CO₂ lasers" is an 8-page report covering theory and applications. A complete rundown on lab experiments is included. Seed Electronics Corp. CIRCLE NO. 491 #### Power transistor selection A 28-page book covers silicon and germanium transistors for military, industrial and commercial applications. Each family of transistors is presented in a separate section and includes typical h_{FE} , V_{NE} and V_{CE} curves, along with specification charts and outline dimension drawings. Suggested applications are included. Solitron Devices. CIRCLE NO. 492 #### Wire marking brochure A 12-page brochure describes a line of wire/cable harnessing, marking and accessory products. Included in the booklet are three types of harnesses, adjustable P-clips, three types of markers and grommet strip. Illustrations with dimensional drawings and tables providing physical properties, chemical properties, applications, ordering data and specifications are included. Electrovert, Inc. CIRCLE NO. 493 #### Coaxial switches A 12-page technical discussion completely covers coaxial switches. Included are principles of operation, descriptions of basic design types and relative merits, contact arrangements and switching actions, operational differences, definitions of terms and performance characteristics, drive methods, trade-off characteristics and a guide to specification. The discussion includes a comparison of the merits of electromechanical switches vs solid-state switches. Sage Labs. CIRCLE NO. 494 Remember to return your **ELECTRONIC DESIGN** renewal card. Don't miss any issues in '67. Straightening and cutting wire isn't as simple as it looks. Especially when you need a surface on which to weld or solder. Here's what we've developed on a typical .018 diameter lead. Cut Surface — 80% minimum cut (See "A" above) Cut Off Burr — Maximum .0005" above wire diameter (See "B" above) Flatness — Within .0003" Overall Length Tolerance — ±.002" Ask Art Wire. Send a print or a part for a quotation. Write for catalog and samples. #### ART WIRE & STAMPING COMPANY 17 Boyden Place, Newark, N. J. 07102 ON READER-SERVICE CARD CIRCLE 150 POSITION PRESS PEEL #### TRANS-PAK Die-Cut Symbols THE FASTEST METHOD OF PREPARING PRINTED CIRCUIT MASTERS Yes, here is the original TRANS-PAK "Position . . . Press . . . Peel" method with a brand new twist . . a new, handy dispenser that makes the preparation of printed circuit masters easier than ever before. No inking, no cutting, no stripping. One convenient package gives you terminal pads, elbows, connectors, teardrops or any other symbol, die-cut to exacting tolerances for dimensional stability and distortion-free placement. Just reach for the dispenser and "press down" a perfect symbol. Takes just seconds. TRANS-PAK pressure-sensitive die-cut symbols are available in black crepe paper and red translucent material. Never a die-charge for special orders. POSITION TITLES, WORDS, LETTERS, NUMBERS IN SECONDS, TOO! Chart-Pak Inc. A subsidiary of Avery Products Corp. 344 River Rd., Leeds, Mass. 01053 Please send catalog describing TRANS-PAK Printed Circuit Symbols. | d <u>eca-d</u> ry | PARTIFIED | |-------------------|------------| | ELECTRONIC | MINITED TO | | MARKING KIT | | Kit contains all the standard titles, codes, words, letters and numbers in dry transfer form. Rub lightly with a pentical and instantly they transfer onto schematics, terminal boards, printed circuit masters with ease. Elements appear crisp, sharp . . . look just like the finest printing. Won't move, crack or
peel. Produce razor sharp copies in most reproduction processes. ON READER-SERVICE CARD CIRCLE 151 Our precision resistors are aged to improve reliability, and we guard the process like a vintage champagne maker. Ageing is just one of many extra steps that make our precision components the most reliable you can specify. A few of our components are described briefly below. #### 1. Precision Wire-Wound Card Resistors Consider ESI resistors whenever small changes in the resistive element can affect the performance of the final assembly. Initial accuracy to $\pm 0.0015\%$. Yearly stability to ± 10 ppm. #### 2. Dekastat® Decade Resistors Designed for use with dc and at audio frequencies, these multi-decade resistors feature an accuracy of ±0.02%. All units carry a two-year guarantee. #### 3. Dekapot® Resistive Voltage Dividers These rapid-setting potentiometers have a terminal linearity up to 0.002%. Kelvin-Varley circuitry provides constant input impedance. #### 4. Dekatran Transformer Voltage Divider The patented coaxial dial is easy to read and adjust. Accuracy of 0.001% and long-term stability are achieved through gapless toroidal cores of very high permeability. esi Electro Scientific Industries, Inc. 13900 NW Science Park Drive Portland, Oregon 97229 #### Advertisers' Index | | ivertiser | Page | |--|--|---| | | IP. Incorporated ademic Press rways Rent-A-Car len-Bradley Co. nerican Semiconductors Corp. netek, Division of Lamb Electric operex Electronic Corporation nold Engineering Company, The t Wire & Stamping Company lrodyne. Inc., gat. Inc. | | | | usch & Lomb, Electronics Division ckman Instruments, Inc., Helipot Division Iden Manufacturing Company tcher Corporation, The rg-Warner rton Research Laboratories, IncBuk Company | | | | mbridge Thermionic Corporation pitol Reproductions art-Pak, Inc. ch, Division of United Carr y of Milwaukee hn Corp. Sigmund mmunication Electronics, Incorpora mponents, Inc. mputer Measurements Company mputer Test Corporation nsolidated Vacuum Corporation rnell-Dubilier Electronics | | | Da
Da
De
N
De
I
Do | le Electronics, Inc. mon Engineering, Inc. leo Radio, Division of General Motors utsch Electronic Components Division w Corning Corporation | | | ES
Ele
Ele
Ele
Ele
Ell
Eri | I/Electro Scientific Industries, Inc. cetro-Motive Mfg. Co., Inc., The cetronic Design setronic Research Associates, Inc. cetronic Wholesalers, Inc. cetrovert. Inc. cetrovert. Inc. cetrovert. Inc. cetrovert. Inc. cetrovert. Cetrove | 272
71
.91, 273
251
193
266
258 | | Ge:
Ge:
Ge:
Ge:
Gu | neral Electric Company, Electronic Components, Sales Operation neral Electric Company Miniature Lamp Dept neral Instrument Corporation neral Radio Tadio Technology Corporation | .28, 235
265
80
55
37
64 | | H
Ha
Ha
He
He | P Associates cker & Co., Inc., Wm. J. thaway Instruments, Inc., In | | | IB:
IEI
IR:
IT' | M Industrial Products RC Division, International Electron Research Corporation C. Inc. T Semiconductors dustrial Timer Corporation dustro Transistor Corporation tercontinental Instruments, Inc. ternational Electronics Corporation ternational Rectifier | 50, 51
nic
52
137
226 | | Advertiser | Page | |--|---| | KMC Semiconductor Corp. Kahle Engineering Company Kearfott Division. General Precision. Keithley Instruments Kester Solder Company Krohn-Hite Corporation Kurz-Kasch | 91
234
Inc 249
60
46, 47
250 | | Lambda Electronics Corp Licon, Division Illinois Tool Works, In | | | M-O Valve Co., Ltd. McCoy Electronics Company Mallory & Co., Inc., P. R. Mepco, Inc. Michigan Chemical Corporation Monsanto Company Motorola Semiconductor Products, Inc. | 267
58
100. 101
225
262
35. 133
c 109 | | National Semiconductor Corporation | 181, 182
270 | | Ohmite Manufacturing Company | 61 | | Penn Engineering & Manufacturing Co
Princeton Applied Research Corp | orp. 275 | | Quan-Tech Laboratories, Inc | 213 | | RCA Electronic Components and Devic | es | | RCL Electronics, Inc. Radio Cores, Inc. Raytheon Computer | | | Sanders Associates. Inc. Scanbe Manufacturing Corp. Schweber Electronics Secon Metals Corporation Semiconductor Specialists. Inc. Siemens America, Incorporated Sigma Instruments, Inc. Signetics Integrated Circuits, A Subsidiary of Corping Glass Works | 19
78
159, 179
259
141
43
42 | | Signetics Integrated Circuits, A Subsidiary of Corning Glass Works Silicon Transistor Corporation Simpson Electric Company Singer Company The—Metrics Divisi Solitron Devices, Inc. Sprague Electric Company Sylvania, Subsidiary of General Telephone & Electronics | 59
161
31
on 36
113 | | Company | 228, 240 | | | | | Tally Corporation Tektronix, Inc., Oscilloscopes Telonic Instruments, A Division of Telonic Industries, Inc. Texas Instruments Incorporated Transitron Electronic Corporation | 75
15
48
207 | | | | | Ulano | 153 | | Ulano Union Carbide Corporation 39, 178, 178A United Transformer Corp. Unitrode Corporation | Cover II | | Varian Associates Vector Electronic Co. Inc. Victoreen Instrument Company, The | 70
274
66 | | Wakefield Engineering, Inc | 155 | | Wakefield Engineering, Inc. Westinghouse Molecular Electronics Division Wright/Div. of Sperry Rand Corporate | 149
tion 246 | Union Carbide Electronics, Mountain View, California has just placed the largest exclusive advertising campaign in magazine publishing history. Their objective: To become an even greater factor in the fast-paced twenty-one billion dollar electronics industry. Their campaign: 138 pages over the next 12 months. Their magazine: Electronic Design. Union Carbide Electronics and their agency, Hal Lawrence, Inc., decided the best return on their advertising investment would be achieved by concentrating in the magazine read by the greatest number of their prime customers and prospects. They backed up their decision by scheduling multi-page semiconductor advertisements in every bi-weekly issue of Electronic Design. Advertisements that will be selling the men who specify what goes into what the sales department sells, the accounting department accounts, the production department produces. 138 pages over the next 12 months... that's **impact**. # Electronic Design MOST READ BY THE MEN WHO SPECIFY Winner of Industrial Marketing and Jesse Neal Awards for Editorial Excellence in 1966 Hayden Publishing Co., Inc., 850 Third Avenue, New York 10022 Publishers of Electronic Design and Microwaves Magazines... Hayden, Rider and Ahrens Books # Free Convection / Compact Conduction Both the 2700 and 2800 series Astrodyne heat sinks provide easy, secure mounting of transistors for printed circuit board and other applications. Model 2700 series have a thermal resistance of 10 to 30°C /watt. Fins permit optimum free air flow and minimum conduction losses. This series is well suited for close card packaging. Model 2800 units provide sufficient surface contact with chassis or other metal mounting surface to assure good heat dissipation not provided by conventional transistor mounting clips. They offer a temperature difference between transis- tor case and chassis of 2°C /watt per transistor. Both the 2700 and 2800 series feature split mounting hole with screw clamps to permit compensation for transistor case tolerances and maximum effective contact area between the case and sink. The units, as pictured, will accommodate both T0-5 and T0-9 transistor cases. Mounting holes for
other transistors can be made to customer specification. The black-anodized aluminum units are available from stock. Technical data and price information will be sent on request. #### astrodyne, inc. SUBSIDIARY OF ROANWELL CORP. 207 CAMBRIDGE ST., BURLINGTON, MASS. (617) 272-3850 ON READER-SERVICE CARD CIRCLE 153 # HIGH VOLTAGE POWER SUPPLIES Operate PHOTOMULTIPLIER and MICROWAVE tubes with Line and Load Regulation ±0.001% Output Ripple: 2 Millivolts PEAK to PEAK #### **VECTOR ENGINEERING INC.'s Model PM-1K-01A** provides a highly regulated stable source of D.C. Power. Either output terminal may be grounded thus providing a plus or minus output voltage. #### SPECIFICATIONS: Output Voltage: 200-1800 Output Current: 0-10MA Ripple: 2MV Peak to Peak Line Regulation: 0.001% Load Regulation: 0.001% Stability: 0.01%/HR Dimensions: 31/2"Hx19"Wx141/2"D Guaranteed to operate continuously in an ambient temperature of 0 to $50\,^{\circ}$ C. A pair of 2% accuracy (full scale) meters are mounted on the front panel to monitor both voltage and output current. For further information concerning this supply or other "CUSTOM DESIGNED" high voltage, regulated, low ripple, low T.C. power supplies, contact Vector Engineering, Inc. directly. VECTOR engineering inc. 58 BROWN AVENUE, SPRINGFIELD, NEW JERSEY 07081 . TEL. 201: 379-7800 ON READER-SERVICE CARD CIRCLE 154 #### **Electronic Design** # Advertising Representatives New York 10022 Robert W. Gascoigne Thomas P. Barth Samuel M. Deitch 850 Third Avenue (212) PLaza 1-5530 TWX: 867-7866 Philadelphia Fred L. Mowlds, Jr. P. O. Box 206 Merion Station, Pa. 19066 (215) MO 4-1078 oston Richard Parker 7 Redstone Lane Marblehead, Mass. 01945 (617) 742-0252 Chicago 60611 Thomas P. Kavooras Berry Conner, Jr. 720 N. Michigan (312) 337-0588 Cleveland Robert W. Patrick 8410 Treetower Drive Chagrin Falls, Ohio 44107 (216) 247-7670 Los Angeles 90303 Stanley I. Ehrenclou Terrence D. Buckley W. James Bischof 2930 W. Imperial Highway Inglewood, Calif. (213) 757-0183 San Francisco Ashley P. Hartman 175 South San Antonio Rd. Ste. 243 Los Altos, Calif. 94022 (415) 941-3084 Southwestern 75206 Tommy L. Wilson 6200 North Central Expressway Dallas, Tex. (214) EMerson 1-2311 London W. 1 Brayton C. Nichols 44 Conduit Street Verviers, Belgium Andre Jamar 1, Rue Mallar, 1 (087) 253.85 > kyo Yoshihiro Takemura International Planning Service, Inc. Room 231 Tokyu-Mita Bldg. 1, Shiba-Mita Koun-cho Minato-ku, Tokyo # Design Data from Manufacturers Advertisements of booklets, brochures, catalogs and data sheets. To order use Reader-Service Card. (Advertisement #### **Electronic Design** ELECTRONIC DESIGN'S aims are fourfold. It aids progress in the electronics manufacturing industry by promoting good design. It gives the electronic design engineer concepts and ideas that will make his job easier and more productive. The magazine serves as a central source of timely, up-to-theminute electronics information. And finally it seeks to encourage two-way communication between manufacturer and engineer. Want a subscription? ELECTRONIC DESIGN is circulated free of charge to qualified engineers and engineering management doing design work, supervising design or establishing standards in the United States, Western Europe and the United Kingdom. If you think that you are entitled to a free subscription, use the postage-free application form that you will generally find inside the back cover. When it is not included in an issue, write to us direct for an application form. If you are not qualified, you may take out a paid subscription at the following rates: \$25 a year if you live in the U.S.A. or \$35 a year if you live elsewhere. Single copies may be purchased for \$1.50 each. If you change your address, send us an old mailing label and your new address. If you have been receiving ELECTRONIC DESIGN free of charge, you will have to requalify to continue doing so. We strive for accuracy. We take the utmost pains to ensure the highest standard of accuracy throughout the magazine. A single mistake in practical design information can have serious consequences. But to err is human, and for all the care we take, an occasional error slips through. Whenever this occurs, we publish a correction at the earliest opportunity. You will find these corrections printed at the end of the Letters column. If you should spot an error, be sure to let us know. You may save your colleagues heartaches. Microfilm copies are available of complete issues of ELECTRONIC DESIGN and of single articles that have been published since the beginning of 1961. Complete issues cost 4¢ a page, individual pages cost 50¢ each, plus shipping and handling charges. The minimum charge is \$3; delivery time runs from 10 days for single pages to five weeks for complete issues. For further details and to place orders, get in touch directly with University Microfilms, Inc., 300 N. Zeeb Road, Ann Arbor, Mich. 48106; telephone (313) 761-4700. Want to contact us? If you have any inquiries about these or other matters, or if you have a manuscript outline or article idea, address your correspondence to: Howard Bierman, Editor, ELECTRONIC DESIGN, 850 Third Avenue, New York, N.Y. 10022. #### New "Tape Lift" Printed Circuit Drafting #### Aids No engineer or draftsman should be without the most up-to-date cross-reference guide to better Printed Circuit Drafting Catalog. It is complete with prices and illustrations of over 1200 sizes of "Tape Lift" pads, shapes and other aids for faster, more accurate, distortion-free printed circuit master drawings. Write for FREE catalog. #### By-Buk Company 4326 West Pico Blvd., Los Angeles, Calif. 90019 Telephone: (213) 937-3511 178 #### Engineers' Relay Handbook A definitive work that is fast becoming a standard reference text for the relay user. Prepared and edited by the National Association of Relay Manufacturers, this book is a complete guide to the principles, properties, performance characteristics, application requirements, specifications, and testing of relays. Systems and product engineers will find the Handbook an indispensable help in determining the correct types of relays for their applications. For further information about this unique sourcebook, write Dept. ED #### Hayden Book Co., Inc. 116 W. 14th Street New York, N. Y. 10011 179 #### Pem Self-clinching Solder Terminals Bulletin ST-166 describes a complete line of PEM self-clinching solder terminals for permanent mounting on thin panels. Information discloses data on PEM spline and concealed head types as well as the regular type ST. These solder terminals provide permanent electrical connections, resistant to vibrations and environmental disturbances and are electroplated with tin and stearic acid wax for ease of soldering and resistance to oxide development during storage. Bulletin ST-166 includes dimensions, installation suggestions and design limitations. #### Penn Engineering & Manufacturing Corp. Box 311 Doylestown, Pennsylvania 18901 180 # IC PACKAGING PANELS ON READER-SERVICE CARD CIRCLE 155 31 PERRY AVE., ATTLEBORO, MASS. 02703 # **RFI/EMI Detection** #### with CEI's Ultra-Sensitive New VLF-LF Receiver CEI's new Type 355 Receiver is designed for RFI and EMI detection, covering the 1 kHz to 600 kHz frequency range in a single band. Selectable IF bandwidths (1 kHz, 6 kHz, 20 kHz, 50 kHz) assure detection of both wideband and narrowband signals. All solid state, the Type 355 is unusually sensitive, with an excellent noise figure and high image and IF rejection. A modified version is also available, Type 355-1, which provides X-Y outputs to record on an X-Y plotter. For complete specifications, please contact: #### COMMUNICATION ELECTRONICS INCORPORATED 6006 Executive Blvd., Rockville, Md. 20852 · Phone (301) 933-2800 · TWX: 710-824-9603 #### ON READER-SERVICE CARD CIRCLE 156 #### Designer's Datebook | | | - | MAY | 1 | | | 1 | | | | UN | |----|----|----|-----|----|----|----|-----|----|----|----|----| | S | M | T | w | T | F | S | 1 1 | S | M | T | W | | | 1 | 2 | 3 | 4 | 5 | 6 | 1 | | | | | | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | 4 | 5 | 6 | 7 | | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 1 1 | 11 | 12 | 13 | 14 | | 21 | 22 | 23 | 24 | 25 | 26 | 27 | ш | 18 | 19 | 20 | 21 | | 28 | 29 | 30 | 31 | | | | 1 1 | 25 | 26 | 27 | 28 | For further information on meetings, use Reader Service card. #### May 1-3 Commercial Utilization of Space Meeting (Dallas) Sponsor: American Astronautical Society; P. O. Box 1415, Grand Prairie, Tex. 75050. CIRCLE NO. 495 #### May 3-5 Electronic Components Technical Conference (Washington, D.C.) Sponsors: IEEE, EIA; W. S. Hepner, Jr., Electronic Ind. Assoc., 2001 Eye St., Wash., D. C. 20006. #### May 4-5 American Society of Naval Engineers Meeting (Washington, D.C.) Sponsor: ASNE; Miss R. Leonard, ASNE, Suite 507, 1012 14 St., N.W., Washington, D. C. 20005. CIRCLE NO. 497 #### May 9-11 Frontiers of Energy Conversion— IEEE Region 6 Conference (Albuquerque, N. M.) Sponsor: Region 6 IEEE; B. D. Trembly, Barnhill Assoc., Albuquerque, N. M. 87101. CIRCLE NO. 498 #### May 16-18 National Telemetering Conference (San Francisco) Sponsors: IEEE, AIAA, ISA; Lewis Winner, 152 W. 42 St., New York, N. Y. 10036. CIRCLE NO. 499 #### May 18-19 Midwest Symposium on Circuit Theory (Lafayette, Ind.) Sponsors: IEEE, Purdue University; G. F. Lee, Purdue University, Lafayette, Ind. 47907. CIRCLE NO. 600 # new disciplines in DC #### take the NEWEST CONCEPT in Bench DC Power Supplies #### Advanced fabrication techniques result in higher quality at lower cost #### Two Compact Models Available 0-25V @ 0-400 MA ... 0-50V @ 0-200 MA • 0.01% Regulation Two extremely compact, well-regulated DC power supplies designed especially for bench use have just been added to the hp power supply line. New fabrication techniques have been employed for these supplies to minimize manufacturing costs while retaining component and circuit quality. Reliable, yet low cost, these "hand-size" battery
substitutes have over-all performance features ideal for circuit development, component evaluation, and other laboratory applications. The all-silicon circuit uses an input differential amplifier to compare the output voltage with a reference voltage derived from a temperature-compensated zener diode. These stable input and reference circuits are combined with a high gain feedback amplifier to achieve low noise, drift-free performance. Output voltage is fully adjustable down to zero. Special design precautions prevent output overshoot during turn-on or turn-off, or when AC power is suddenly removed. The front panel meter can be switched to monitor output voltage or current. Constant Voltage/Current Limiting insures short-circuit-proof operation, and permits series and parallel connection of two or more supplies when greater voltage or current is desired. The molded, impact-resistant case includes an interlocking feature for stacking several units vertically, thus minimizing bench space required for multiple supplies. Alternatively, up to three units can be mounted side by side on a standard 3½" H x 19" W rack panel. | DC Output: | Model 6215A, | | | | | | |---|--|--|--|--|--|--| | | 0-25V at 0-400 MA | | | | | | | | Model 6217A, | | | | | | | | 0-50V at 0-200 MA | | | | | | | Either positive or negative out
supply may be operated "floo | tput terminal may be grounded, or the sting" up to 300V off ground. | | | | | | | AC Input: | 105-125 VAC*, 50-400 Hz | | | | | | | Load Regulation: | 0.01% + 1 MV | | | | | | | Line Regulation: | 0.01% + 4 MV | | | | | | | Ripple & Noise: | <200 µv RMS | | | | | | | Temperature Coefficient: | <0.02% + 1 MV/° C | | | | | | | Stability for Eight Hours | | | | | | | | After 30 Minutes Warm-up: | <0.1% + 5 MV | | | | | | | Transient Recovery Time: | < 50 µs for output recovery to within 10 MV following a full load change | | | | | | | Output Impedance: | <0.03 ohms from DC to 1 KHz
<.5 ohms from 1 KHz to 100 KHz
<3 ohms from 100 KHz to 1 MHz | | | | | | | Maximum Ambient Operating | Temperature: + 55°C | | | | | | | Size: | 3¼" (8.26 cm) H x 5¼"
(13.34 cm) W x 7" (17.78 cm) D | | | | | | | Weight: | 51/4 lbs (2,38 kilograms) | | | | | | | Price—Model 6215A: | \$90.00 | | | | | | | Model 6217A: | \$90.00 | | | | | | Contact your nearest Hewlett-Packard Sales Office for full specifications # From RCA "overlay"... first high-reliability RF-power transistors available off-the-shelf | RATINGS FOR RF SERVICE | | | | | | | | |------------------------|-------------------|-------------------|--------------------|---------|--|--|--| | | 40305 | 40306 | 40307 | Units | | | | | V _{CB0} (max) | 65 | 65 | 65 | Volts | | | | | V _{CEV} (max) | 65 | 65 | 65 | Volts | | | | | V _{CEO} (max) | 40 | 40 | 40 | Volts | | | | | Ic (max) | 1.0 | 1.5 | 3.0 | Amperes | | | | | Pout (min) | 2.5W @
175 MHz | 7.5W @
100 MHz | 13.5W @
175 MHz | | | | | RCA, originator of the revolutionary "overlay" technique, introduces another new concept in rf-power transistors...high-reliability units available off-theshelf. Designed primarily for critical aerospace and military high-frequency applications, RCA 40305, 40306, and 40307 transistors go beyond the high standard of reliability established by RCA "overlay" to assure a new level of confidence...confidence for those designs where device failure cannot be tolerated. Available now, these three "overlay" transistors drastically reduce the time and effort normally demanded by hi-rel specs...response time is kept to minimum with no delivery problems. And because they are part of a formal RCA high-reliability program, the high cost of "customizing" is eliminated. Electrically similar to RCA types 2N3553, 2N3375, and 2N3632, these hi-rel devices are designed to meet MIL-S-19500. (Hi-rel selections of "overlay" types 2N3733, 2N4012, and 2N4440 are also available.) Each transistor is subjected to strictly controlled pre-conditioning tests including: - Fine Leak, 1 x 10⁻⁸ cc/sec/max. - Gross Leak, 70 psig, 16 hours min. - Acceleration Test (2006 of MIL-STD-750, 10,000 G, Y₁ axis) - Temperature Cycling (MIL-STD-202) - Power Age (168 hours) - X-ray Inspection, RCA Spec 1750326 For more information on RCA's "overlay" high-reliability capability, consult your RCA Representative. For technical data on 40305, 40306, and 40307, write: RCA Commercial Engineering, Section 1G4-4, Harrison, N.J. 07029. ALSO AVAILABLE FROM YOUR RCA DISTRIBUTOR RCA Electronic Components and Devices The Most Trusted Name in Electronics ON READER-SERVICE CARD CIRCLE 129