STEPDOWN AUTO TRANSFORMERS

To reduce line voltage of 200-240 volts, 50-60 cycles, to 100-120 volts 50-60 cycles for operating radios, amplifiers, appliances, etc. Will safely handle any device consuming wattage up to the ratings shown. With six foot cord and female receptacle.

<table>
<thead>
<tr>
<th>Type No.</th>
<th>Application</th>
<th>Wgt. Lbs.</th>
<th>List Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-41</td>
<td>85 watt capacity</td>
<td>4</td>
<td>$7.50</td>
</tr>
<tr>
<td>R-42</td>
<td>125 watt capacity</td>
<td>5</td>
<td>8.50</td>
</tr>
<tr>
<td>R-43</td>
<td>175 watt capacity</td>
<td>5½</td>
<td>9.50</td>
</tr>
<tr>
<td>R-44</td>
<td>250 watt capacity</td>
<td>6½</td>
<td>12.50</td>
</tr>
<tr>
<td>R-45</td>
<td>500 watt capacity</td>
<td>12</td>
<td>20.00</td>
</tr>
<tr>
<td>R-46</td>
<td>1200 watt capacity</td>
<td>18</td>
<td>35.00</td>
</tr>
<tr>
<td>R-64</td>
<td>2500 watts (no cord)</td>
<td>30</td>
<td>70.00</td>
</tr>
</tbody>
</table>

LINE VOLTAGE ADJUSTERS

with meter

The perfect answer to abnormal or fluctuating line voltage. Adjust switch so that meter reads at red line and you know that your equipment is working at correct voltage.

These units combine a tapped auto-transformer with a switch and meter in a compact, rugged assembly.

The nine tap switch provides for line voltages of 60 to 140 volts on 115 volt output models and 160 to 240 volts on 230 volt output models. All units are designed for 50/60 cycle service and come complete with 6 foot input cord and plug and outlet receptacle.

<table>
<thead>
<tr>
<th>Type No.</th>
<th>Primary Voltages</th>
<th>Sec. Volts</th>
<th>Watts</th>
<th>Wgt. Lbs.</th>
<th>List Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-78</td>
<td>60,70,80,90,100,110,120,130,140</td>
<td>115</td>
<td>150</td>
<td>6</td>
<td>$18.00</td>
</tr>
<tr>
<td>R-79</td>
<td>60,70,80,90,100,110,120,130,140</td>
<td>115</td>
<td>300</td>
<td>9</td>
<td>22.00</td>
</tr>
<tr>
<td>R-80</td>
<td>60,70,80,90,100,110,120,130,140</td>
<td>115</td>
<td>600</td>
<td>13</td>
<td>30.00</td>
</tr>
<tr>
<td>R-81</td>
<td>60,70,80,90,100,110,120,130,140</td>
<td>115</td>
<td>1200</td>
<td>21</td>
<td>60.00</td>
</tr>
<tr>
<td>R-83</td>
<td>160,170,180,190,200,210,220,230,240</td>
<td>230</td>
<td>150</td>
<td>6</td>
<td>18.00</td>
</tr>
<tr>
<td>R-84</td>
<td>160,170,180,190,200,210,220,230,240</td>
<td>230</td>
<td>300</td>
<td>9</td>
<td>22.00</td>
</tr>
<tr>
<td>R-85</td>
<td>160,170,180,190,200,210,220,230,240</td>
<td>230</td>
<td>600</td>
<td>13</td>
<td>30.00</td>
</tr>
<tr>
<td>R-86</td>
<td>160,170,180,190,200,210,220,230,240</td>
<td>230</td>
<td>1200</td>
<td>21</td>
<td>60.00</td>
</tr>
</tbody>
</table>

ISOLATION TRANSFORMERS

<table>
<thead>
<tr>
<th>Type No.</th>
<th>Rating</th>
<th>Wgt. Lbs.</th>
<th>List Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-73</td>
<td>100 watts</td>
<td>6</td>
<td>$13.00</td>
</tr>
<tr>
<td>R-74</td>
<td>250 watts</td>
<td>12</td>
<td>24.00</td>
</tr>
<tr>
<td>R-75</td>
<td>600 watts</td>
<td>20</td>
<td>35.00</td>
</tr>
<tr>
<td>R-76</td>
<td>1200 watts</td>
<td>30</td>
<td>55.00</td>
</tr>
<tr>
<td>R-77</td>
<td>2500 watts (no cord)</td>
<td>70</td>
<td>95.00</td>
</tr>
</tbody>
</table>

United Transformer Corp.

150 Varick Street

New York 13, N.Y.

Export Division: 13 East 40th Street, New York 16, N.Y., Cables: "Arlab"

www.americanradiohistory.com
JULY • 1947

UHF TELEVISION RELAY EQUIPMENT
Checking transmitter of wideband F-M system designed for intercity relaying of black-and-white television signals on 1,350 mc, in Philco research laboratory. (See p 86, March)

A NEW APPROACH TO F-M/A-M RECEIVER DESIGN
Double superhetodyne with one crystal oscillator has unusual features

INTERVAL TIMER, by E. L. Deeter and W. K. Dau
A practical electronic device constructed from available components controls equipment down to 0.1 second

TRIPLE XANTENNA FOR TELEVISION AND F-M, by L. J. Wolf
Method of using single four-bay superturnstile antenna for simultaneous operation of three transmitters

TONE BURST GENERATOR, by R. G. Roush
Universal electronic switch initiates short bursts of tone for code intelligibility research

METAL-CERAMIC BRAZED SEALS, by R. J. Bondley
Titanium hydride and silver give gasfit seal stronger than ceramic, ideal for microwave tubes

CENTRAL SIGNAL GENERATOR FOR PRODUCTION TESTING, by Fred Miller
Eight modulated signals are supplied to 25 test stations in a radio receiver manufacturing plant

SENSITIVE PHOTOELECTRIC PHOTOMETER, by Frank T. Gucker, Jr.
Electronic techniques used to detect smoke before it can be seen

CLIPPING AND CLAMPING CIRCUITS, by N. W. Mather
Collection of basic circuits for removing portions of signals and for restoring or changing average values of signals

EXTERNAL CAVITY KLYSTRON, by Paul G. Bohlke and Francis C. Breeden
Tube and cavities tuning continuously from 7 to 14 cm are described

VOLTAGE-REGULATED POWER SUPPLIES, by Paul Koontz and Earle Dilotush
Practical treatment of a unit comprising a d-c pack followed by series, control and cathode-bias tubes

IMPEDANCE MEASUREMENTS AT VHF, by E. G. Hills
Technique using slotted line and reactance balancer measures antenna characteristics

CATHODE-FOLLOWER IMPEDANCE NOMOGRAP, by Melvin B. Kline
Relates output impedance, transconductance, and cathode load resistance to facilitate circuit design

BUSINESS BRIEFS

CROSSTALK

TUBES AT WORK

ELECTRON ART

NEW PRODUCTS

NEW BOOKS

INDEX TO ADVERTISERS

DONALD G. FINK, Editor; W. W. MacDONALD, Managing Editor; John Markus, Vin Zeluff, Associate Editors; Frank Rockett, A. A. McKenzie, Assistant Editors; Gladys T. Montgomery, Washington Editor; William P. O'Brien, Make-up Editor; Dexter Keezer, Director Economics Department; John Chapman, World News Director; Harry Phillips, Art Director; Eleanor Luke, Art Assistant

KEITH HENNEY, Consulting Editor

H. W. MATEER, Publisher; WALLACE B. BLOOD, Manager; D. H. Miller, H. R. Danneel, Jr., New York; Wm. S. Hodgkinson, New England; F. P. Coyle, R. E. Miller, Philadelphia; C. D. Wardner, Chicago; E. J. Smith, Cleveland; T. W. Otterson, San Francisco; Roy N. Phelan, Los Angeles; Ralph C. Maultsby, Atlanta; Paul West, London, England; J. E. Blackburn, Jr., Director of Circulation

James H. McGraw, Jr., President; Curtis W. McGraw, Senior Vice-President and Treasurer; Nelson Band, Director of Advertising; Eugene D'Olier, Editorial Assistant to the President; Joseph A. Gerard, Secretary, and J. E. Blackburn, Jr., Vice-President for circulation operations. ELECTRONICS, July 1947, Vol. 22, No. 7. Published monthly, with an additional issue in January, priced 50 cents a copy. Directory issue $2.00. Allow at least ten days for change of address. All communications about subscriptions should be addressed to the Director of Circulation. Subscription rate—United States and possessions, $6.00 a year, $6.00 for two years, $12.00 for three years. Canada (Canadian funds accepted): $7.00 a year, $14.00 for two years, $21.00 for three years. All other countries $16.00 for one year, $16.00 for two years, $32.00 for three years. Please indicate position and company connection on all subscription orders. Entered as Second Class matter August 26, 1930, at Post Office, Albany, New York, under the Act of March 3, 1925. BRANCH OFFICES: 520 North Michigan Avenue, Chicago 11, Ill.; 68 Post Street, San Francisco 4; Allwyn House, Atlanta, London, W.C. 7; Washington, D. C.; Philadelphia 3; Cleveland 15; Detroit 29; St. Louis 2; Boston 16; Atlanta 3, Ga.; 621 Sw. Hope Bldg, Los Angeles 14; 725-7 Oliver Building, Pittsburgh 22.
The tremendous number of Struthers-Dunn Relays and Timers makes it possible to meet most specifications EXACTLY—and from standard types. All are highly adaptable as to contact, coil and mounting arrangements.

STRUTHERS-DUNN, INC. • 146-150 N. 13th St., PHILADELPHIA 7, PA.

Write for Data Bulletin on any type

STRUTHERS-DUNN

ATLANTA • BALTIMORE • BOSTON • BUFFALO • CHICAGO • CINCINNATI • CLEVELAND • DALLAS
DENVER • DETROIT • HARTFORD • INDIANAPOLIS • LOS ANGELES • MINNEAPOLIS • MONTREAL
NEW YORK • PITTSBURGH • ST. LOUIS • SAN FRANCISCO • SEATTLE • SYRACUSE • TORONTO

July, 1947 — ELECTRONICS
partners in creating

Creative men... engineers and engineering draftsmen... plan and build things to last. By the same token they look for instruments and equipment that will last. The tracing paper they draw on must be permanent. Their drawings must serve as lasting records. They may even have to use these same drawings years later to make new reproductions.

For 79 years there has been a lasting partnership between Keuffel & Esser Co. equipment and materials and the engineers and draftsmen of America. This partnership has been so general, that there is scarcely an engineering or construction project but what K & E products have played their part in it.

One of these products is ALBANENE® Tracing Paper. Its 100% pure white rag fibers are stabilized and transparentized with Albanite, a K & E synthetic solid. ALBANENE is permanent. Free from oils, it cannot "bleed" nor lose its transparency with time. For complete details, write to your nearest K & E distributor or to Keuffel & Esser Co., Hoboken, N. J.

Here you see a few of the more than 150 new 25B Speech Input Consoles which have been shipped to stations all over the country. 25B's are now coming off the production line in a steady stream to fill orders being received from other broadcasters eager to install this high quality, economically priced equipment.

Broadcast studios choose the 25B because: its two main channels handle FM and AM programs simultaneously—its noise and distortion are well within all requirements for high quality FM
operation over a 15,000 cycle range—all controls are arranged for maximum operating flexibility and convenience—it’s completely wired for plug-in cable connection—all parts are accessible for inspection and maintenance—and its modern styling makes it really eye-appealing.

For early delivery of your 25B Console, get your order in now to your local Graybar Broadcast Representative or write Graybar Electric Co., 420 Lexington Ave., New York 17, N.Y.

QUALITY COUNTS

ELECTRONICS — July, 1947
YOUR REPORT

RST = 5-9-9x

with the

FOUR-20 TRANSMITTER

You can be on the air with the Four-20 Transmitter five minutes after it is unpacked. All you need is a crystal and a key and you are all set to go with a full 20 watts output at the antenna terminals.

Stability is assured by an improved oscillator circuit that allows less than five milliamperes of R.F. current to pass through the crystal. A special resistor network keeps the load on the transmitter constant with the key up or down.

And in the Four-20 the matching problem is solved by the special output coil which will match any transmission line from 50 to 600 ohms.

You will be amazed when those reports come in—RST=599X.

Write for Descriptive Booklet

For phone operation use the FOUR-11 Modulator, companion unit to the FOUR-20

HAMMARLUND

THE HAMMARLUND MFG. CO., INC., 460 W. 34TH ST., NEW YORK 1, N.Y.
MANUFACTURERS OF PRECISION COMMUNICATIONS EQUIPMENT

July, 1947 — ELECTRONICS
Get into Production in a few hours

with WHISTLER ADJUSTABLE DIES

Whistler Adjustable Perforating Dies are in use everywhere... working in both large and small presses.

Whistler perforating dies now offer a double-barreled advantage in getting into production faster. Standard sizes of round hole punches and dies... 1/8 to 3"...can be shipped promptly. Special shapes... squares, ovals, rectangles, group and notching dies, are quickly made to order.

Equally important, set-ups are simple... take only a short time. Same units can be rearranged or units added in setting up different jobs. Production is thus speeded while die costs are amortized through continued re-use.

No special tools are needed. All parts are interchangeable. The heavy duty series of punches and dies easily pierce materials up to 1/4" mild steel.

There are plenty of other advantages in using Whistler Adjustable Dies. It makes sense to get the complete story. And it's easy to do. Write for your Whistler Catalogs today.

S. B. WHISTLER & SONS, Inc.
746 MILITARY ROAD, BUFFALO 17, NEW YORK
Here's nothing like trouble to bring people together. That's how some of Revere's closest friends were gained—through a mutual struggle against difficulties, troubles such as occasionally beset any business.

Take the case of an important electronic product, originally developed for war use, since the war finding increasing applications in peacetime services. When manufacture began, rejections ran extremely high, over 40%, costs were skyrocketing, and badly-needed production was being lost. The maker asked if we would care to collaborate in solving the problem. Of course we would! After studying the subject in detail (and also under conditions of the greatest secrecy), we suggested a radical change in the properties of a non-ferrous product used in the manufacture of the vital part with which so much trouble was being experienced. New processes of manufacture were developed, and in a short time test runs of the recommended material proved successful. Rejections of finished units dropped to less than 1%. Thus an expensive and vexing bottleneck was broken, and we gained a new customer and a firm friend.

This success story demonstrates that Revere has an open mind as well as an informed one, and is always ready to question the customary, find new answers to new problems, or to old ones, for that matter. If something is worrying you in your employment of non-ferrous metals in electronics, get in touch with Revere, not for ready-made answers, but for wholehearted cooperation, a joint search for better results. This help is given freely, without obligation, through the Revere Technical Advisory Service, which has at its command the knowledge and facilities of our laboratories, and the accumulated experience of the entire Revere organization.

Let Trouble be our Introduction

This success story demonstrates that Revere has an open mind as well as an informed one, and is always ready to question the customary, find new answers to new problems, or to old ones, for that matter. If something is worrying you in your employment of non-ferrous metals in electronics, get in touch with Revere, not for ready-made answers, but for wholehearted cooperation, a joint search for better results. This help is given freely, without obligation, through the Revere Technical Advisory Service, which has at its command the knowledge and facilities of our laboratories, and the accumulated experience of the entire Revere organization.

REVERE COPPER AND BRASS INCORPORATED
Founded by Paul Revere in 1801
230 Park Avenue, New York 17, New York
BROADCASTING that earns the approval of station managers and listeners alike under any and all local conditions for reliability, efficiency and economy.

The new Collins Z1A has been the choice of keen executives for close to a score of installations in recent months. Knowledge and experience gained by Collins engineers during war time are reflected in improved design, longer life, higher safety for ears and unusual standards of trouble-free operation.

COLLINS Z1A 5kW Air Cooled BROADCAST TRANSMITTER made by COLLINS RADIO COMPANY, 11 West 42nd Street, New York 18, N.Y.

Write Application Engineering Department.

AMPEREX tubes THAT DO THE JOB!

AMPEREX experience in communication goes back a quarter of a century. The same record of performance, long life and economy marks Amperex tubes for industrial, rectification, electro medical and special purpose use. As tube specialists concerned with all electronic developments Amperex engineers are in a position to give detached counsel and information.

THE EQUIPMENT

THE OPERATION

POWER TUBE SPECIALISTS SINCE 1925

AMPEREX ELECTRONIC CORPORATION

35 Washington Street, Brooklyn 1, N. Y., Cables: "ARLAB"

In Canada and Newfoundland: ROGERS MAJESTIC LIMITED, 652 Fleet Street West, Toronto 36, Canada.
Centralab reports to

Three types of terminals for flexibility, convenience

SLOT-AND-THREAD TYPE:
.160" diameter with 3/16" x 3/16" slot in one terminal. Other terminal topped 6-32, 3/16" deep for "twinning" or convenient chassis mounting.

ROD TYPE:
.160" diameter rod type terminals. Designed for use with conventional fuse or clip-type connections. Terminals are solid brass, silver-plated.

DUO-THREAD TYPE:
one terminal topped 6-32, 3/16" deep full threads. Other terminal, 6-32, male thread 1/2" length. Designed for convenient series or tapped series connections.

Another "first" for Centralab! Designed and developed by Centralab in response to stated requirements of television project engineers. "Hi-Vo-Kaps", made with high dielectric constant Ceramic-X, are for use as filter and by-pass capacitors in video amplifiers — for high DC voltages with small component AC voltages (not for use in temperature compensation or resonant circuits). For complete information about these important new capacitors, send for bulletin 946.

Centralab's new Slide Switch promises improved AM and FM performance! Flat, horizontal design saves valuable space, allows short leads, convenient location to coils, reduced lead inductances for increased efficiency in low and high frequencies. Designed for maximum reliability and long service life.
First commercial application of the "printed circuit" and now available for the first time, Centralab's new Coup/ate offers a complete interstage coupling circuit which combines into one unit the plate load resistor, the grid resistor, the plate by-pass capacitor and the coupling capacitor.

Only four soldered connections are now required by the Coup/ate instead of the usual eight or nine ... (see above). That means fewer errors, lower costs!

Watch for something new in CRL's line of dependable, high quality ceramic by-pass and coupling capacitors. Soon available at your nearby Centralab distributor!

There's none better than this line of ceramic capacitors which combines economy, small size and extreme dependability.

Made from Centralab's original Ceramic-X, this complete line is result of our continuing research in high dielectric constant ceramics. Order bulletin 933.

Look to Centralab in 1947! First in component research that means lower costs for electronic industry. If you're planning new equipment, let Centralab's sales and engineering service work with you. Get in touch with Centralab!
Announces...

COMPLETE FM TEST EQUIPMENT
For Broadcast Stations

Here is a complete transmitter maintenance group—providing every measurement necessary for top-flight operation from microphone to antenna! Three fast, accurate precision instruments in one compact whole—specifically designed for years of trouble-free performance worthy of the finest FM broadcast equipment.

These are the -hp- instruments that comprise this group.

1. -hp- 335B Frequency and Modulation Meter.
 Continuous measurement of carrier frequency and modulation swing. Low distortion audio output for measuring and monitoring.

2. -hp- 206A Audio Signal Generator.
 Provides continuously variable audio frequency voltage having a total wave form distortion of less than 0.1% from 50 cps to 20 kc.

3. -hp- 330C Noise and Distortion Analyzer.
 Measures harmonic distortion and noise level from demodulated carrier or audio channels. Built-in-vacuum-tube-voltmeter measures audio level, frequency response and gain.

All instruments have identical panel sizes for convenient mounting in relay racks. Can be delivered in colors and finishes to match your equipment.

GET FULL INFORMATION...WRITE TODAY

HEWLETT-PACKARD COMPANY
1481A PAGE MILL ROAD + PALO ALTO, CALIFORNIA

This -hp- Maintenance Group Makes These Essential FM BROADCAST MEASUREMENTS

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier Frequency</td>
<td>Continuously monitored with accuracy well within F.C.C. limits.</td>
</tr>
<tr>
<td>Modulation Swing</td>
<td>Continuously measured at instrument installation and at control console.</td>
</tr>
<tr>
<td>Modulation Limit</td>
<td>Alarm lamp flashes on instrument and console when pre-set level is exceeded.</td>
</tr>
<tr>
<td>Aural Monitor</td>
<td>Demodulated signal provides listening check for operator.</td>
</tr>
<tr>
<td>Harmonic Distortion</td>
<td>Measured from r-f carrier or audio channel.</td>
</tr>
<tr>
<td>Noise</td>
<td>Measured accurately from FM carrier or audio channel.</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>Overall response, microphone to antenna, of individual units in transmitter set-up.</td>
</tr>
<tr>
<td>Audio Transmission</td>
<td>Accurately measures gain of audio channels.</td>
</tr>
<tr>
<td>Audio Level</td>
<td>Measured over range from +50 db to -60 db at 600 ohm level.</td>
</tr>
<tr>
<td>Equalizer Circuits</td>
<td>Characteristics of circuits and lines can be checked accurately, swiftly.</td>
</tr>
<tr>
<td>Oscilloscope Connections</td>
<td>Facilitates visual study of noise and distortion.</td>
</tr>
</tbody>
</table>
NEW! -hp- 335B

FM Monitor

Accurate, Stable, Easy to Operate

BRIEF SPECIFICATIONS

Frequency Range: Any single frequency, 88 to 108 mc.

Deviation Range: +3 kc to -3 kc.

Accuracy: Better than ±1000 cps.

Modulation Range: Modulation swing 100 kc. Scale calibrated 100% at 75 kc.

Audio Output: Supplied with 75 microsecond de-emphasis circuit, flat within ½ db of standard curve, 20 cps to 20 kc.

Monitoring Output: 1 milliwatt into 600 ohms, balanced, at 100% modulation.

Size: Panel 10½” x 19”. Depth 13”.

Precision accuracy, unique stability, new convenience and compact size—those are but a few of the reasons why this -hp- 335B is the finest instrument ever developed for FM broadcast monitoring. Here are additional advantages that help make this new -hp- instrument an ideal component of the -hp- FM group.

Simple to Operate. No adjustments required during operation.

Independent of Signal Level. Readings of frequency or modulation meter are unaffected by variations in transmitter level.

Unusual Stability. Low temperature coefficient crystal in temperature-controlled oven combined with specially developed electronic linear counter circuits provides accuracy far beyond that required. Measurements do not depend on accuracy of conventional discriminator circuits.

Remote Modulation Meter. Modulation may be monitored at control console or other remote point.

Low Distortion. Audio output for measuring purposes has less than .25% residual distortion.

Low Noise Level. Residual noise and hum in audio output are at least 75 db below 100% modulation.

Meets F.C.C. Requirements.

This instrument is small in size, easy to install, suitable for cabinet or rack panel mounting. Can be furnished to match your transmitter color scheme.

NEW! -hp- 206A

Audio Signal Generator

Distortion Less Than 0.1%

BRIEF SPECIFICATIONS

Frequency Range: 20 cps to 20 kc, 3 bands.

Output: +15 dbm to matched resistive loads, 10 volts available for open circuit.

Output Impedance: 50, 150, 600 ohms center-tapped and balanced, 600 ohms single-ended.

Frequency Response: Better than 0.2 db beyond output meter at all levels.

Distortion: Less than 0.1% above 50 cps. Less than 0.25% from 20 cps to 50 cps.

Hum Level: At least 70 db below output signal, or more than 100 db below 0 level, whichever is larger.

Size: Panel 10½” x 19”. Depth 13”.

The -hp- 206A Audio Signal Generator provides a source of continuously variable audio frequency voltage having a total distortion of less than 0.1%. This feature, combined with high stability, flat frequency response, and great accuracy of output voltage, makes it an ideal component for FM station maintenance. Here are some of this instrument's unusual advantages:

- Distortion less than 0.1% between 50 cps and 20 kc.
- Continuously variable frequency range, covered in 3 bands, micro-controlled dial, effective scale length 47”, ball-bearing smoothness for tuning ease.
- Output meter monitors output voltage signal with accuracy of at least 0.2 db.
- Special low temperature coefficient frequency determining elements provide high stability and excellent accuracy over long periods of time.
- Precision attenuators vary output signal level in 0.1 db steps over 111 db range.

This new -hp- generator is convenient to use, compact in size. It can be provided for rack or cabinet mounting, in colors matching your installation.
another “break” in the bottle-neck...

After the speaker the next major limitation in the ordinary sound system is the output transformer. New techniques in inter-modulation testing have shown it to be the factor causing non-linear distortion in many commercial amplifiers.

But the same Altec Lansing that developed the famous Duplex Speaker with its wide range, undistorted reproduction, also gives you a line of output transformers which will deliver POWER within 1 db of rating from 40 to 10,000 cycles; POWER within 2 db of rating from 25 to 15,000 cycles; and POWER within 3 db of rating from 20 to 20,000 cycles. This outstanding feature of power handling capacity is practically exclusive with Altec Lansing.

Break the bottle-neck on transmission—Go Altec Lansing all the way.

ALTEC LANSING
Transformers

ALTEC LANSING MAKES A COMPLETE LINE
OF INPUT, OUTPUT, POWER, INTERSTAGE,
MATCHING TRANSFORMERS AND CHOKES.

For full technical data, write us or see your dealer.

"KEEP ADVANCING WITH ALTEC LANSING"
That's the name to remember in PERMANENT MAGNETS

There are values in the use of permanent magnets—increased efficiencies and economies—that should be investigated by many a manufacturer of electrical and mechanical equipment. The past decade has seen great strides in the scope and utility of permanent magnets, and this progress is important to you.

Equally important are the extra values you'll find in Arnold Permanent Magnets—the natural result of specialization and leadership, and of complete quality control in every production step from melting furnace to final test. Call in an Arnold engineer to help with your design and planning—write direct or to any Allegheny Ludlum office.

THE ARNOLD ENGINEERING CO.
Subsidiary of
ALLEGHENY LUDLUM STEEL CORPORATION
147 East Ontario Street, Chicago, Illinois

Specialists and Leaders in the Design
Engineering and Manufacture of PERMANENT MAGNETS
for radio-transmitter and industrial power rectification. A three-in-one tube with large capacity that—

✓ Rectifies.
✓ Regulates voltage by accurately timed phase control.
✓ Provides one-cycle circuit-breaker action in case of transmitting-tube failure or other overload cause.

THIS brilliant G-E development in ignitron rectifiers solves an important power-supply problem for broadcast stations, users of induction heating, laboratories employing cyclotrons and synchrotrons—others which require substantial amounts of d-c current at high regulated voltages. A special plus-feature of the GL-5630 is its fast circuit-breaker action, offering improved protection against short-circuits or sudden current overloads from any cause.

Outstanding new design characteristics of the tube are (1) use of a control grid which times the flow of current with split-cycle accuracy, giving the tube its voltage-regulating and rapid circuit-breaker qualities, and (2) addition of a special potential-dividing grid that lowers the voltage gradient between anode and cathode, enabling Type GL-5630 to handle very high voltages successfully.

Construction matches the high standards of sturdiness and efficiency set by other G-E ignitrons. Outer and inner jackets are of stainless steel to minimize corrosion. "Water-spiral" cooling keeps heat dissipation uniform. All tube seals are the strong, lasting fernico metal-to-glass type.

Detailed information about Type GL-5630, including price, complete ratings, and performance curves, gladly will be supplied on request. Also, the aid of G-E tube engineers is available, should you need on-the-spot advice in applying this advanced rectifier ignitron to circuits now on your drawing-boards. Address Electronics Department, General Electric Company, Schenectady 5, N. Y.

RATINGS, TYPE GL-5630

- Peak voltage, forward or inverse: 20,000 v
- Peak current: 200 amp
- Average current: 50 amp

GENERAL ELECTRIC

First and Greatest Name in Electronics
ONE-COAT WRINKLE
is Standard for Radio-Electronic Instruments

Yes, Wrinkle is the most-used finish for instruments and cabinets in the radio and electronics industries, because Wrinkle requires no surface preparation. One coating of Wrinkle (dipped or sprayed) covers minor surface imperfections in sheets, castings, stampings, forgings, die castings, etc., cutting untold hours and dollars from production finishing costs.

Wrinkle is also the industry standard for office machines and equipment, for precision tools and instruments, for scientific apparatus, for photographic equipment, for electric motor cases, for electric and pneumatic tools, machine tools.

BUY Wrinkle... Hour saver... Dollar maker...
from any of the more than 200 licensed manufacturers.

Testimonial...
"Low reflective value... better camouflage... scratches and better wear for field work... any irregularities in material or assembly and fabrication are minimized."
RADIO CORPORATION OF AMERICA

New Wrinkle, Inc. • EST M. PERRY ST. • DAYTON 2, OHIO
These electronic components are examples of the superiority of SUPER design and craftsmanship techniques. Built into each is the kind of durable quality and performance that compliment the units in which they are used.

In addition to the components described, SUPER will build to customer specification.

Use of the Following

<table>
<thead>
<tr>
<th>SUPER ELECTRIC CO. COMPONENTS</th>
<th>420 mmFMA STANDARD GANG</th>
<th>365 mmFMA STANDARD GANG</th>
<th>35 mmF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicated by dots</td>
<td>TUNING RANGE</td>
<td>TUNING RANGE</td>
<td>TUNING RANGE</td>
</tr>
<tr>
<td>OSCILLATOR COIL</td>
<td>535-1620 kc</td>
<td>1.6-5.6 mc</td>
<td>3.6-19.25 mc</td>
</tr>
<tr>
<td>LOOP ANTENNA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANTENNA COIL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-F INTERSTAGE TRANSFORMER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAND PASS ANTENNA COIL (Double Tuned)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAND PASS R-F COIL (Double Tuned)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard I-F Transformers 455 kc

Standard F-M Coils

- I-F 10.7 mc (⅜" x ⅜" and 1¼" x 1¼" Square Can)
- Combination AM-FM I-Fs, 455 kc and 10.7 mc

Television Coils

- VIDEO I-Fs 12.75 mc and 26.4 mc
- VIDEO I-F ASSEMBLIES CENTER FREQUENCY 23.52 mc
- SOUND I-Fs 21.9 mc

Sound Discriminator — 21.9 mc

Video Peaking and Filter Coils

Loop Antennas by SUPER

1. Multi-Band Combination Loop Antenna and Radio Back
2. Broadcast Loop Antenna and Radio Back Combination with Phone Jack, Outside Antenna Connection, Aligning Trimmer
3. High Q Loop Antenna, Polyethylene Insulated Wire
4. Basket Weave Loop Antenna

SUPER ELECTRIC PRODUCTS CORPORATION

1057 Summit Avenue

Jersey City 7, N. J.
Centralab Announces a New and Revolutionary

LEVER SWITCH

With a Minimum Life Test of 25,000 Cycles!

8 Basic Combinations of Indexing Available!

COMPARE the outstanding features of Centralab's new lever switch, and you'll see why it's the finest product of its kind available today!

New, exclusive coil spring design with cam and roller offers you new dependability, long life and resistance to hard service for inter-com and test equipment use. Guaranteed minimum life of 25,000 cycles.

Combinations of spring return and positive indexing provide a flexibility which makes it adaptable to almost any circuit requirements. Available with shorting or non-shorting contacts, or combination of both. Low capacity. 30 degree indexing. Rated at 6 watts. Brass silver-plated clips and contacts. All other metal parts cadmium-plated steel.

Send today for complete information and bulletin number 970.
This is truly a practical D.C. amplifier! It opens new uses for your Brush Direct-Inking Oscillograph. As with all Brush products this new instrument represents years of intensive research in engineering and design. Write today for the complete story...Brush representatives will be glad to demonstrate.

Specifications include:

- Frequency Response—uniform from D.C. to 100 cycles per second
- Voltage Gain—1000 Approximately (one chart millimeter pen displacement per millivolt signal)
- Stability—drift—less than one chart mm. per hour
- Calibration Circuit—for convenient determination of input signal levels
- Centering Control—to position pen electrically to any point on chart
- Power Requirements—115 volts, 60 cycles
- Portability—Weight 30 pounds

a product of

The Brush Development Co.

3415 Perkins Ave., Cleveland 14, Ohio

Canadian Representatives: A. C. Wickman, (Canada) Ltd., P. O. Box 9, Station N, Toronto 14

July, 1947 — ELECTRONICS
Here's how sealed-in-glass features solved one manufacturer's problem

Fieldcrest Mills (Division of Marshall Field Company, Inc.) needed a control for their new “Fieldcrest” Thermostatic Blanket. So they asked EDISON engineers to work with them. EDISON adapted one of its sealed-in-glass controls, a thermal relay, to fit this special need, made use of its extra advantages, and solved the problem completely. This blanket control is now produced in quantity by EDISON exclusively for Fieldcrest Mills.

An EDISON sealed-in-glass control might solve one of your problems

The EDISON sealed-in-glass thermal relay times, delays, limits, or sequences automatically over a considerable range. It displaces magnetic relays in many applications. It integrates pulses and intermittent current into accumulated heat energy to operate controls.

It controls loads to eliminate magnetic relay chatter and resultant false starting. It continues, starts, or delays the operation of certain elements after a main circuit is opened or closed.

EDISON sealed-in-glass thermal relay

- **ELECTRICAL HEATER** (5 watts nominal; 150 volts AC/DC max.) deflects a bi-metal to actuate a moving contact.
- **CONTACTS** are s.p.s.t., normally open or closed. Rated at 6 amperes at 250 volts AC/DC for delays less than 1 minute. For longer delays, rating can be increased to 450 volts AC/DC if reduced to 3 amperes.
- **SPRING PRESSURE ARM**, on which one of the contacts is mounted, applies contact pressure immediately and noiselessly.
- **PRESSET OPERATING TIME**, from 5 seconds to 8 minutes.
- **AMBIENT TEMPERATURE COMPENSATION**, from -60° C. to +70° C.
- **CUSHIONING SPRINGS**, between ceramic internal support and glass envelope, absorb vibrations and shocks.
- **DIMENSIONS**: 1½" diameter; 3½" height (sealed).
- **WEIGHT**: 0.08 lb.
- **MOUNTS**: 4-pin or octal radio tube base, or special mount and lead-in arrangements, if required.

The extra advantages of this EDISON sealed-in-glass control are:

1. Protects working parts from dust, dirt, corrosion, and tampering.
2. Minimizes contact fouling, pitting, or transfer.
3. Equal AC or DC ratings.
4. Compensates for ambient temperatures.
5. Safer operation in hazardous atmospheres.
7. Light weight.
8. Rugged simplicity.
10. Operates in any position.
11. Operates at any altitude.
12. Insensitive to transients.
13. Operates continuously or intermittently.
14. Freedom from maintenance or adjustment.
15. Long, consistent operating life.
16. Low cost.

The services of EDISON engineers are available to help you work out your electrical control problems. Please include all pertinent data with your inquiry. Write for descriptive literature.
LONG SCALE, MODEL 625-N VOLT-OHM-MIL-AMMETER

DOUBLE SENSITIVITY
D. C. VOLT RANGES
0-1.25-5.25-125-500-2500 Volts, at 20,000 ohms per volt for greater accuracy on Television and other high resistance D.C. circuits.
0-2.5-10-50-250-1000-5000 Volts, at 10,000 ohms per volt.
A. C. VOLT RANGES
0-2.5-10-50-250-1000-5000 Volts, at 10,000 ohms per volt.
OHM-MEGOHMS
0-400 ohms (60 ohms center scale)
0-50,000 ohms (300 ohms center scale)
0-10 megohms (60,000 ohms center scale)
DIRECT READING OUTPUT LEVEL DECIBEL RANGES
-30 to +3, +15, +29, +43, +55, +69 DB
TEMPERATURE COMPENSATED CIRCUIT FOR ALL CURRENT RANGES D.C. MICROAMPERES
0-50 Microamperes, at 250 M.V.
D. C. MILLIAMPERES
0-10-100-1000 Milliamperes, at 250 M. V.
D. C. AMPERES
0-10 Amperes, at 250 M. V.
OUTPUT READINGS
Condenser in series with A.C. Volts for output readings.
ATTRACTIVE COMPACT CASE
Size: 2½" x 5½" x 6". A readily portable, completely insulated, black, molded case, with strap handle. A suitable black, leather carrying case (No. 629) also available, with strap handle.
LONG 5" SCALE ARC
For greater reading accuracy on the Triplett RED DOT Lifetime Guaranteed meter.
SIMPLIFIED SWITCHING CIRCUIT
Greater ease in changing ranges.

Write for descriptive folder — Address Dept E-77

Precision first...to last

Triplett

ELECTRICAL INSTRUMENT CO. BLUFFTON, OHIO

July, 1947 — ELECTRONICS
Wire and Ribbon Resistor and Radio Alloys

FOR RESISTANCE

There are Driver-Harris Alloys for every electrical resistance requirement. Most widely used are:

...Nichrome* and Nichrome* V, for winding large value resistors where overall size is limited, but dependability is a must.

...Manganin, when specifications require fixed stability and constant resistance under normally variable operating conditions; examples being precision bobbins, potentiometers, National Bureau of Standards type resistance standards.

...Advance*, most frequently specified for precision resistors in electric meters and laboratory testing devices, because in its finer sizes it has a temperature coefficient of only ±.00002/°C.

Plus a total of more than 80 electrical heat and corrosion-resistant alloys which singly, or in combination fill any electrical resistance specifications.

FOR RADIO

Always abreast of the latest developments in radio metallurgy, Driver-Harris has been headquarters for Radio Alloys since the earliest days of the industry. In greatest demand are:

...Nickel and Nichrome*, for plate strip. Thin but rigid, they take a tightly adhering heat radiation coat.

...Filnic* Alloys, in both fine wire and ribbon, take a tightly adhering oxide coat. They are spooled and packed with unusual care to assure retention of original properties in transit.

...Gridnic* Alloys, having a very low electron emission — especially suitable in tubes where back-emission is involved.

...Cathode Sleeve Material: special melted Nickel Alloys to meet any emission requirements.

Other widely accepted D-H Alloys, meeting or exceeding most radio specifications are: Niliran®, #42 Alloy, #51 Alloy, and Nickel "A", "D", "E", "Z".

For efficiency and dependability —

Specify Electrical Resistance and Radio Alloys by —

Driver-Harris COMPANY

HARRISON * NEW JERSEY

BRANCHES: Chicago • Detroit • Cleveland • Los Angeles • San Francisco • Seattle

The B. GREENING WIRE COMPANY, LTD., Hamilton, Ontario, Canada

High Band FM Comes Of Age...

Here's How It Is Done...

<table>
<thead>
<tr>
<th>MODULATOR</th>
<th>IPA EIMAC 4X500A's 3 kW</th>
<th>IPA EIMAC 3X2500A3's 12 kW</th>
<th>PA EIMAC 3X12500A3's 50 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>50w</td>
<td>3kw</td>
<td>12kw</td>
<td>50kw</td>
</tr>
</tbody>
</table>

Above: Four Eimac 4X500A tetrodes in push-pull parallel raise the power level from 50 watts to 3 kilowatts.

Right: A pair of Eimac 3X2500A3 triodes in a grounded-grid circuit provide 12 kilowatts of driving power for the final amplifier.

OPERATING CONDITIONS (Two Tubes)
- D.C. Plate Voltage: 4000 volts
- D.C. Plate Current: 14.4 amperes
- D.C. Grid Voltage: 620 volts
- D.C. Grid Current: 1.9 amperes
- Driving Power (Approx.): 12 kilowatts
- Plate Dissipation (Total): 15.4 kilowatts
- Plate Power Input: 57.6 kilowatts
- Useful Power Output: 54.4 kilowatts
- Apparent Efficiency: 94 per cent

Actual power delivered to water-cooled load. Amplifier output estimated to be 3 kw higher, due to resistance and radiation losses between amplifier and load.
...with Eimac Tubes,

Of Course...

When KSBR put the first 50-KW high-band FM transmitter on the air, Eimac tubes were in every important socket. This was only natural, as Eimac tubes have been associated with every FM transmitter development, including the original historic 1935 demonstration before the IRE.

KSBR's 50-KW amplifier was designed and built by Eimac to demonstrate the capabilities of the new Eimac 3X12500A3 multi-unit air cooled triode. A pair of these new triodes in a grounded-grid circuit easily delivers 50-KW at high-band FM frequencies, with power to spare. Performance of this sort is made possible by sound vacuum-tube engineering. Because of its unique multi-unit design, the 3X12500A3 combines high power capability with close electrode spacing and low lead inductance, thus making it possible to produce high power at VHF with low plate voltage and high over-all efficiency. These same features make the 3X12500A3 an outstanding performer at low frequencies.

Data on the 3X12500A3 and the 50-KW amplifier are available. Write to

EITEL-McCULLOUGH, INC.
1761 San Mateo Ave., San Bruno, California

The final amplifier at KSBR—the amplifier that made FM history—consists of little more than two Eimac 3X12500A3 triodes and a pair of shielded, low-loss tank circuits.

The unit is extremely compact considering its power capabilities. Width 36"; Height 70"; Depth 25".

ELECTRONICS — July, 1947
Automatic Tuning. The Collins Type 496E Autotune is an automatic repositioning mechanism designed specifically for tuning quality-built home radio receivers and for control of industrial equipment. Its guaranteed accuracy is one part in 36,000. Age, use, wear, and normal changes in operating conditions do not affect its precision or reliability.

The 496E is a commercial adaptation of the Collins Autotune system originated and patented more than a decade ago. The Autotune reached a high state of development during the war years and was a major contribution to the reliability of thousands of military radio communication equipment designed and built by Collins.

Remote Control. The 496E provides ten automatically reset positions and one position for unlimited manual adjustment of a rotating shaft. Each reset position is independently adjustable to any setting within the full range of ten revolutions of the shaft. Initial settings and desired changes can be performed by unskilled personnel. No tools are required. Control is by means of push-buttons or a tap switch located either at the unit or at any remote position. Only electrical connections are necessary between the 496E and its control unit.

Easy to Use. The operating time is a maximum of six seconds. Reset accuracy is 0.1 degree. This Autotune can be built for operation from any a-c or d-c source. Power consumption is very low. Installation is simple, requiring a single shaft coupler for connecting the Autotune to the positioned shaft.

We will be pleased to furnish engineering services to aid you in applying the Autotune to your needs. Engineering models of special designs are available at reasonable cost. Write us for further information.
"dag" colloidal graphite is a specific remedy for many troubles that eat into efficiency and profits. In the broad fields of general and extreme temperature lubrication, parting of molded materials, impregnation, opaquing, and electron behavior, there are many applications of unique, practical value.

Yet the possibilities of "dag" colloidal graphite are so far from fully realized that a staff of Acheson engineers is constantly attacking new problems... industry's problems and your problems. You have not "tried everything" until Acheson engineers have had a chance to stop your problems with "dag" colloidal graphite in one of its 18 dispersions... or to develop a new dispersion if needed!
One of the largest placer dredges ever built in the United States is intended for tin mining service off the East Indies. Massive equipment of this order presents a problem in maneuvering, particularly under such variable conditions as dredging. Where loads are massive and maneuverability tough—the Ward Leonard system of control has always been recognized as the only truly dependable means of regulating motor speeds. Hence its selection for this particular job.

Result: highest over-all efficiency under a wide range of severe operating conditions.
Ward Leonard Rheostats are the controlling elements in the Ward Leonard System of Control. Ward Leonard Field Rheostats are arranged with 72 to 165 steps of solid brass rectangular contacts and a copper graphite shoe providing the smoothest possible control. For generator fields they are available in several multiples of field resistance values and designed for a straight line relation between the steps of the rheostat and field current.

These rheostats are available in every known kind of mounting, in single and multiple plate, open or enclosed, manual or motor drive. Result: accurate selection of the right rheostat with complete confidence of trouble-free performance.

RESULT-ENGINEERED Without "CUSTOM-ENGINEERING" Costs

Knowing the results you want to obtain with an electric control, it is often possible to modify a Ward Leonard basic design to meet your specific requirements more efficiently and without the usual high cost of a "special".

BLUE MEANS Result-Engineering

In resistors, rheostats, relays and other electric controls, the distinctive blue identifies Ward Leonard "result-engineering".

FREE BULLETINS on "Result-Engineered" Rheostats
Please request on business letterhead, mentioning your title.

WARD LEONARD ELECTRIC CO.
Mount Vernon, New York • Offices in principal cities of U. S. and Canada
RESISTORS • RHEOSTATS • RELAYS • CONTROL DEVICES

are "Result-Engineered" for You
POTTER electronic control can be easily applied to any new or old machine or process which has a requirement for high accuracy of MEASUREMENT or CONTROL of discrete QUANTITIES, LENGTH, TIME, VELOCITY and FREQUENCY. In most applications the equipment pays for itself in a few weeks through the savings in labor and the elimination of spoilage and overages. Counting rates up to 1,000,000 per second and control rates up to 15,000 per minute and higher are available. Photoelectric, electromagnetic and other types of detectors are also available to provide a complete package unit. POTTER electronic control provides an effective means of counteracting rising production costs by substituting unattended automatic output for slower manual or mechanical control.

- FOR PACKAGING IN PRECISE QUANTITIES
- MEASURING AND CUTTING LINEAL FOOTAGE
- WINDING PREDETERMINED TURNS
- PILING IN PRECISE QUANTITIES
- CONTROLLING MACHINES.

For additional information and consultation on your counting, timing or control problem write to Potter Instrument Co., Dept. 6C.

POTTER INSTRUMENT COMPANY
136-56 ROOSEVELT AVENUE, FLUSHING, NEW YORK

July, 1947 — ELECTRONICS
This plastic thermostat base was't BUILT for show...

...but TO DO A JOB!

This small part is one of the thousands of bits and pieces turned out by the plastics industry which go about performing a routine, workaday service as they help the machines in our factories and homes to function more efficiently.

Like many of the others, it doesn't show. The experience and know-how that went into its production do not show either. By today's standards it is a routine, run-of-the-mill plastics application. So study it for a moment and see how far the industry has progressed. Here are bosses, shoulders, lettering and thin-walled sections, and both round and rectangular holes—all molded to close tolerances in an enclosed four-cavity, semi-automatic mold. A single operation...fast and economical for no supplementary finishing is required.

Routine? Yes...to the men of Consolidated, but only because they have kept pace with plastics progress, gaining the know-how that comes through years of experience with knotty molding problems.

Whether your new plastics project is one for show or for hidden service...routine, or one to "stump the experts"...the Consolidated staff brings you a custom molding service custom-tailored to the need. Inquiries invited.

Consolidated
MOLDED PRODUCTS Corporation
309 CHERRY STREET, SCRANTON 2, PA.
Study the insulation problem illustrated above—a 90° bend subjected to 350°F... protection of the thermostat lead and heating element lead... protection of the heater cord from internal heat.

This problem was brought to Bentley, Harris by Century Precision Works, Inc., makers of the "Glide-O-Matic" Electric Iron. After receiving and testing samples of BH Fiberglas Sleeving, this is what the manufacturer reported: "We have selected BH Fiberglas Sleeving because of its heat resistance and excellent insulation qualities. In insulating the 90° bend in the thermostat lead, the flexibility and non-fraying qualities have speeded assembly and increased production."

There are two great names in Fiberglas Sleeving—BH Extra Flexible Fiberglas Sleeving and BH Special Treated Fiberglas Sleeving, the latter for insulation requiring heat resistance up to 1200°F. Let us give you full details.

A new development, the aluminum-backed direct-view screen used on Type 10FP4 has greater brilliancy of image, increased clarity, and sharper definition. Here is the cathode-ray tube that is helping television "come into its own"!

The aluminum backing is a film of microscopic thickness, which not only permits free passage of the electrons to the screen, but by its reflective qualities increases their light-giving effect. At the same time, there is no ion penetration. Therefore, no ion spot can develop on the screen, and no ion-trap magnet is required. Cathode glow is invisible because it is intercepted by the aluminum film.

Widen the market for your television receivers—increase their popular appeal—by installing 10FP4's! General Electric tube engineers will be glad to work closely with you, to help you profit by applying this new bright-image tube. Write Electronics Department, General Electric Company, Schenectady 5, New York.

GENERAL ELECTRIC

FIRST AND GREATEST NAME IN ELECTRONICS

ELECTRONICS — July, 1947
With Civilian Plane-Builders
AND OWNERS, TOO

...AMERICAN PHILLIPS SCREWS "Win Wings"
through High Style — Peak Performance —
*Stratospheric Production Savings!

In Production: American Phillips Screws give you “air age” fastening — fast, fumble-proof, slip-proof, reject-proof. Both the work and worker are out of harm’s way — driving is automatically straight. When these engineered screws “button up” your products, time-savings soar as high as 50% — volume booms and your net looks nicer!

In Promotion: The decorative, straight-set, unburied head of the American Phillips Screw can’t catch clothes or hose — but it does catch the eye! Customers know, too, that they’re buying top serviceability — they can see it! And long life — they expect it! Join the many makers of appliances, cars, radios and other products who are cashing in on the double advantages (Production and Promotion), provided by American Phillips Screws.

AMERICAN SCREW COMPANY, PROVIDENCE 1, RHODE ISLAND
Chicago 11: 589 E. Illinois St. Detroit 2: 502 Stephenson Building

AMERICAN PHILLIPS Screws

ALL TYPES
ALL METALS: Steel, Brass, Bronze, Stainless Steel, Aluminum, Monel, Everdur (silicon bronze)

July, 1947 — ELECTRONICS
THREE THINGS EVERY ENGINEER SHOULD KNOW

about

Federal Selenium Rectifiers

FOR CONVERTING AC TO DC

1. THEIR DEVELOPMENT. The Selenium Rectifier was developed by IT&T — and was first manufactured in this country by Federal, in 1938. For the past 9 years Federal has continually improved and perfected the Selenium Rectifier — has developed every major advance in its design and construction. As a result, the Federal Selenium Rectifier is now the most efficient, compact, and economical means of converting AC to DC.

2. THEIR APPLICATION. Federal has pioneered the application of the Selenium Rectifier to new jobs in practically every field of the industry. From milliwatts to kilowatts — wherever you need DC from an AC source — you can now save space, time, and money with Federal Selenium Rectifiers.

3. THEIR DESIGN. These features make Federal your best buy in Selenium Rectifiers:

 Center-Contact Construction — permits entire stack to be permanently protected against corrosion.

 Higher Voltage Plates — give extra breakdown strength, extra dependability.

 Aluminum Plate Designs — for use where extremely light weight is desired.

 Long Life — constant use in all types of applications prove Federal’s superiority and long life.

Federal Telephone and Radio Corporation

KEEPING FEDERAL YEARS AHEAD... is IT&T's world-wide research and engineering organization, of which the Federal Telecommunication Laboratories, Nutley, N.J., is a unit.

Electronics — July, 1947

Export Distributors: — International Standard Electric Corp., 67 Broad St., N.Y.C.
CALLITE TUBE AND LAMP COMPONENTS have two basic qualities—uniformity and dependability. Other than that, the sky's the limit. No matter how unusual the shape—or size—of the required contact, we can design and manufacture them quickly and economically. For 27 years we have specialized in the field of metallurgical research. May we translate this rich experience for you into substantial savings on your assembly line? Callite Tungsten Corporation, 544 Thirty-ninth Street, Union City, New Jersey. Branches in Chicago and Cleveland.

CALLITE "M" SHAPED FILAMENT — Designed for high-power projection lamps, this filament has found many uses in other types of lamps where high wattage requires excellent heat dissipation. It employs a tungsten wire of .010" diameter wound on a .035" molybdenum mandrel at 55 turns per inch.

CALLITE COILED-COIL HEATER — A highly efficient heater for miniature tubes with emission properties equal in performance to filaments normally used in larger-envelope tubes. It employs a .375 mg tu wire heater wound on a .004" molybdenum mandrel at 800 tpi. It is then re-wound on a .030" steel mandrel and skip-turned every 68 tpi.

CALLITE CONE-SHAPED TUNGSTEN FILAMENT — Because of the limited distortion of its coils—even at elevated ambient temperatures—C-T's cone-shaped tungsten filaments are widely used in high vacuum metal evaporators and special lamp types where a high level of luminosity is required.

CALLITE MINIATURE DOUBLE HELICAL HEATER — Uniformly wound, of high tensile strength, good ductility and uniform resistance, this filament is well-adapted to high and ultra-high frequency applications, such as radar and microwave transmitting tubes. The molybdenum-tungsten-alloy wire is .0048" in diameter and 133 mm. in length, coated with alumina.

CALLITE COLD GLASS LEADS, WELDS, TUNGSTEN AND MOLYBDENUM WIRE, ROD AND SHEET, FORMED PARTS AND OTHER COMPONENTS FOR ELECTRON TUBES AND INCANDESCENT LAMPS.

WRITE FOR CATALOG No. 156

July, 1947 — ELECTRONICS

www.americanradiohistory.com
The new RCA WO-60C oscilloscope as used to adjust the ignition circuit of a resistance welder.

New RCA OSCILLOSCOPE adds "electronic vision" to measuring, inspection, comparison and control

Here's a scope that's really different—a "work horse" designed to maintain its sensitivity and precision regardless of vibration, shock, dirt, fumes, dampness, and fluctuating voltages.

Only the finest parts are used—heavy-duty components that can withstand severe overloads. It's packed with time-saving features. For example, the cathode-ray tube can be interchanged with one of a different screen persistence in ten seconds! Finger-tip accessibility of all parts, controls, and connections simplifies its use.

Profitable applications range from measuring engine and pump pressures to the designing of supersonic equipment. Hours can often be slashed off measuring jobs involving very small or rapidly changing quantities and short time intervals. You get practically unlimited speed of response, wide range (0.5 to 300,000 cycles), and smooth, stepless control. There are no moving parts to wear out.

A new bulletin is now available. Included is information on how the WO-60C can help to do a faster and more accurate job of electrical, mechanical, hydraulic, or pneumatic measuring at low cost. Write Department 30-G, for your free copy and the name of your nearest distributor.

Available from your RCA Laboratory Measuring Equipment Distributor

TEST AND MEASURING EQUIPMENT
RADIO CORPORATION OF AMERICA
ENGINEERING PRODUCTS DEPARTMENT, CAMDEN, N.J.

In Canada: RCA VICTOR Company Limited, Montreal

ELECTRONICS — July, 1947
VARNISHED TUBING

IF IT'S TURBO—IT SAFEGUARDS!

...keeps the volts where they belong!

ASK THE ELECTRICAL MANUFACTURER! The problem—to supply an insulating tubing flexible enough to sleeve over electrical conductors without cracking or peeling...strong enough to withstand pulling and tearing...uniform enough to insure smooth fit...highly resistant to heat, flame, acids alkalis and other reagents...AND, at the same time, an almost ideal dielectric. That's the problem...and the result—TURBO Varnished Tubing—a superior cotton braid insulator processed with impregnating varnishes...recommended for most insulating requirements. Note: Check the other TURBO insulating products listed below.

Fibrous Glass Tubing

Saturated Sleeving

Mica & Mica Products

Varnished Tubing

TURBO

WILLIAM BRAND & COMPANY

276 FOURTH AVE., NEW YORK 10, N.Y. - 325 W. HURON ST., CHICAGO 10, ILL.

July, 1947 — ELECTRONICS
Listen
IT'S A
New
Jensen
SPEAKER

MODEL HNP-51 Coaxial with frequency range control adjusts performance to program quality

For home entertainment, studio, monitoring and moderately high-level sound reinforcement Jensen Model HNP-51 Coaxial has no equal at any price. Actually it is a loud speaker "system" consisting of two loud speakers and a frequency-dividing network. Frequency selector switch permits adjustment to program quality and insures correct frequency response whether operating with "FM," "AM," phonograph records or transcriptions. Cut-away section shows how precision construction and workmanship is combined with the achievement of Jensen engineering traditionally committed to the highest standards in the acoustic industry. The result creates another superlative Jensen product heading the family of Jensen Coaxial speakers ranging in price from $30.00 to $125.00.

All Jensen Coaxials are available in a variety of "Bass Reflex" Cabinets to make complete Reproducers. List prices of complete reproducers range from $64.00 to $212.00.

Ask for Data Sheet No. 136 and get complete information about Jensen Coaxial Speakers and Reproducers—all are now ready for immediate delivery. A new 24-page Jensen Catalogue also awaits your request.

JENSEN MANUFACTURING CO., 6607 S. LARAMIE AVE., CHICAGO 38, U.S.A.
IN CANADA: J. R. LONGSTAFFE, LTD., 11 KING STREET, TORONTO
SERVICE-PROVED COMPONENTS

Now Available Over Wider Range of Ratings

The extensive experience gained by General Electric in design and manufacture of electronic components for the Armed Forces is now available to builders of commercial electronic equipments. In many cases the range of available ratings is wider than ever before.

PULSE TRANSFORMERS, OIL-FILLED, HERMETICALLY SEALED

Pulse transformers for use with either hard-tube or line-type modulators; Available in voltage ratings of 10 kv or above. These units are ideal for radar applications, stepping up or down, impedance matching, phase reversing and plate-current measurements. Also suitable for nuclear physics research work, television and numerous special applications in and out of the communications field.

RESONANT REACTORS, OIL-FILLED, HERMETICALLY SEALED

Resonant-charging reactors, accurately designed and constructed for radar service. Usually required in ratings of 40 kv and below, 1 ampere and below and 300 henries and below. Higher ratings are being built, and can be considered. When required, small- and medium-size designs can be provided with 3 to 1 range of inductance adjustment.

FILAMENT TRANSFORMERS, OIL-FILLED, HERMETICALLY SEALED

Filament transformers available with or without tube socket mounted integral with the high-voltage terminal; Low capacitance; Ratings to match any tubes; insulated to practically any required level.

For price and delivery on components to meet your requirements, write your nearest General Electric District Office or direct to Apparatus Dept., General Electric Company, Schenectady 5, N. Y.

GENERAL ELECTRIC

July, 1947 — ELECTRONICS
Hold that Motor Order
Mr. Manufacturer!

Before Ordering those Small Motors for Your Fall Production it will Pay You to Study this New E.A.D. Fractional H.P. Motor—the Type 93.

Specifically designed for the "big" jobs in industry's products, this new induction motor represents an important stride forward in small motor design. Experienced engineers, after intensive research and development, have consolidated in one motor all of the improvements you have been asking for.

- OVERLOAD DEVICE OPTIONAL
- AMPLE RESERVE POWER, COOL RUNNING
- EXTRA RUGGED CONSTRUCTION
- ATTRACTIVE LINES WITH EYE APPEAL
- EASILY MOUNTED IN ANY POSITION
- CONSTANT SPEED
- QUIET OPERATION
- LOW COST

Now Ready for Production and Available for Fall Delivery in the following ranges

1/12 H.P. ★ CAPACITOR
1/25 H.P. ★ SHARED POLE
★ SPLIT PHASE

Send us your requirements and specifications today and ask for information on the new Type 93!

EASTERN AIR DEVICES, INC.
585 DEAN STREET • BROOKLYN 17, N.Y.
Give your designers the go-ahead signal. Here is a "natural" that is available now.

Numerous manufacturers are already capitalizing on Plax Polyethylene's versatility and outstanding properties in sheet form, and we know that its availability in quantity will heighten demand. However, we are prepared for it. You can plan for its use with assurance.

Plax Polyethylene, with its exceptional electrical characteristics, toughness and high resistance to moisture transmission and chemical attack, is supplied in gauges from .001" to .020".

It comes in rolls 500 to 2000 feet long and 36 inches wide. If desired, rolls can be slit according to customer specifications.

For additional information on Polyethylene sheet, rod, and tubing, please write Plax.

WRITE FOR THIS POLYSTYRENE DATA
How to Machine Plax Polystyrene Products.
How to Use Coolants with Plax Polystyrene Products.
How to Cement Plax Polystyrene Products.
How to Polish Plax Polystyrene Products.
Notes on Design and Assembly of Plax Polystyrene Products.
Die-cut Parts from Plax Polystyrene.
How to Form Plax Polystyrene Rod.

AND THIS PRODUCT INFORMATION
Data Sheets on Plax Cellulose Acetate, Cellulose Acetate Butyrate, Methacrylate, Polyethylene, Polystyrene and Ethyl Cellulose Products.
Article on Plax's Blown Products.
New special plastic shapes by Plax.
Broadcasters keep on buying more and more of these popular Western Electric Cardioids. That's because they deliver quality performance, are attractive in appearance, and offer six pick-up patterns... omni-directional, bi-directional, true cardioid and three modified cardioid patterns... which enable you to master most any pick-up assignment in AM, FM, or Television broadcasting. For all-around quality of pick-up—there's nothing better than a 639B Cardioid. For full information, get in touch with your local Graybar Broadcast Representative or write Graybar Electric Co., 420 Lexington Avenue, New York 17, N. Y.

Western Electric
639B CARDIOID

Performance... Appearance... Versatility

These six pick-up patterns are available with the 639B Microphone.

Quality Counts—
PRODUCT DURABILITY

Problem: To improve life and service of gibbs and retainer plates on high speed sanders. Parts must be able to withstand considerable abuse.

Solution: The problem was solved by the use of plastics. From the big family of INSUROK Precision Plastics, Richardson Plasticians selected Laminated INSUROK, grade CG. For this material has a high natural graphitic content and is especially suited for parts subject to friction and hard usage.

For many years Richardson has been helping to solve the plastics problems of industry. Our experience is at your service. You will find it a diversified service, with skilled plasticians ready to help you mold or laminate whatever grade and type of INSUROK is best for your application.

INSUROK Precision Plastics

The RICHARDSON COMPANY

Case Histories from the RICHARDSON files

Courtesy,
Sundstrand Machine Tool Co.,
Rockford, Ill.
More Wincharger Towers Specified by Station Applicants Than All Others Combined

From actual records of the Federal Communications Commission... of 873 applications on file during a 6-weeks period early this year, 761 applications specified some make of tower. Of these 761, more than half specified Wincharger towers.

In other words... more than all the others combined.

We say no more......

ANTENNA TOWER DEPARTMENT

WINCHARGER CORPORATION SIOUX CITY IOWA U.S.A

www.americanradiohistory.com
Shown on this page are some of the types of relays designed, developed and manufactured by Allied. In addition to these, there are many others, plus variations of these types for special applications.

Type SK
The SK relay for DC is an improved version of the small telephone types. As the illustration above indicates although the SK occupies as small an area as most relays of this type it features a larger coil. Another plus feature of the SK is the novel hinge arrangement which improves the magnetic circuit. Various arrangements and several types of insulation are available. Normal power rating, 500 watts. Contact rating is 1 amperes at 24 volts DC or 115 volts AC, non-inductive. Approximate maximum weight, 1-17/32". Maximum height 1-19/32". Width 21/32".

Type B
The B is a single pole sensitive type relay particularly adaptable to applications where the source of power is limited. The base is of wear-imregnated molded bakelite. Contact gap and spring tension are adjustable in the field. The magnetic structure of the B relay is a special heat treated alloy. Nominal rating, .012 watts. Available AC or DC. Contact arrangement normally open, normally closed or double throw. Contact rating 2 amperes at 24 volts DC or 5 amperes at 115 volts AC. Weight 7 ounces. Length 2-3/4". Height 1-3/4". Width 2-3/8".

Type BO
The BO relay is an all purpose, industrial type relay. Like other Allied types it is ruggedly designed, yet features compactness and minimum weight. This relay utilizes molded bakelite insulation throughout. The BO can be furnished for AC or DC double pole normally open, normally closed, double throw. Nominal rating, 2.5 watts. A three and four pole combination is available which is known as the PO 9 and PO 12. Contact rating, 15 amperes at 24 volts AC or 110 volts DC, non-inductive. Weight 4 oz. Length 1-3/8", Height 1-7/8". Width 1-13/32".

Type AS
The AS single pole relay is a small, light, medium power relay. It has a nominal power rating of 1 watt. The AS is insulated from the frame. Another version, the AR, is alike in all characteristics except that it is grounded to the frame. The AS has many applications in all types of controls and is available in AC or DC. Contact arrangement is normally open, normally closed or double throw. Contact rating is 5 amperes at 24 volts DC or 110 volts AC non-inductive. Weight 50 grams. Length 1-3/8". Height 1-3/16". Width 15/16".

Type F
The F relay is a single pole relay for DC particularly adaptable in applications where space is limited. Bakelite insulation is used. May be supplied with other contact combinations. Silver is standard contact material, alloy contacts can be substituted. Contact rating is 3 amperes at 24 volts DC or 115 volts AC non-inductive. Nominal power rating, .750 watts. Weight 1-7/8 ounces. Length 1-3/32". Width 1-3/16". Height 1-11/32".

Type UB
The Type UB relay is an improved multiple-type relay which has many applications because of its ruggedness and ability to operate even under severe service requirements. The UB is available with a number of contact arrangements up to 4 pole double throw and is available in either AC or DC. Nominal power rating is approximately 2-1/2 watts, depending on the pile-up arrangement. Standard contacts are rated at 15 amperes at 24 volts DC or 115 volts AC non-inductive. Weight 6 ounces. Length 3-9/16". Height 2-11/16". Width 1-7/16".

For complete information on these and other Allied Relays, write for the new catalog.

Allied Control Co., Inc.
2 East End Avenue, New York 21, N.Y.

July, 1947 — Electronics
Too often, the resistor is the weakest part of an assembly . . . and the insulator the weakest part of the resistor. To overcome that difficulty many resistors are being re-designed around AlSiMag custom made insulators.

One of the most important factors of AlSiMag resistor insulation is its uniformity. It does not vary. All production is carefully checked and held to strict standards of characteristics and dimensions. For example; AlSiMag's coefficient of expansion is always uniform. This advantage is readily understood by any manufacturer who has tried to work with less uniform material.

Since AlSiMag is custom made, the design can often facilitate heat dissipation. Some designs provide minimum contact area between element and core and free air circulation around core. Cruciforms and edge wound strips answer some design problems. AlSiMag has a major advantage in its ability to withstand repeated heating and cooling. It has good resistance to heat shock. It is strong, permanently rigid, cannot char. Its insulating qualities are in the top bracket of materials used in resistors.

In many instances, the fact that AlSiMag insulators are uniform and are made to close tolerances will more than offset their higher first cost. This cost is picked up through faster assembly, fewer rejects . . . and by far longer life, more dependable operation, the reduction of equipment failures and the elimination of wasteful shut-downs.

The American Lava Corporation does not make resistors. It is the custom maker of AlSiMag insulation which is sold only to manufacturers.
RCA 1 KW FM
Broadcast Transmitter
BTF-1C

RCA KILOWATT FM

This is a Transmitter Man’s TRANSMITTER

You know what is meant by a ballplayer’s ballplayer. He looks good to the public. Sure . . . but more than that, he looks good to other ballplayers. He makes every play in just the right way—and he makes them look easy, not hard.

The RCA 1KW FM Transmitter (Type BTF-1-C) has a similar standing among transmitter men. It looks good (RCA has always been the leader in styling)—and it sounds good, too (performance specifications are unexcelled). But more than that, it has the engineering features which your engineer appreciates and wants. Some of these features, such as the mechanical design and the control circuits, are common to all RCA transmitters and are already well-known to him. Other features, listed below, are particular to this new FM transmitter.

DIRECT FM-type exciter. No fussy, complicated circuits. No trick tubes. (There are only four r-f tubes—an oscillator, two triplers and a buffer amplifier). Frequency control circuits provide crystal-equivalent stability, but are completely independent so that a failure in these circuits does not affect modulation or take the transmitter off the air. Because it uses fewer tubes, does not involve phase multiplication, this exciter is inherently capable of lower noise and distortion than any type yet developed.

ONLY 8 R-F TUBES in the whole transmitter (one oscillator, two triplers, one doubler, four amplifiers). There are two audio tubes, and seven tubes in the power supplies (not including voltage regulators). Thus there are only 17 tubes whose failure can take the transmitter off the air (thirteen additional tubes in regulator and control circuits do not contribute to outages). The total of 30 tubes is, we believe, the lowest number of any similar transmitter of this power.

GROUNDED GRID CIRCUIT used in final amplifier, requires no neutralization, provides greater stability than can be obtained with older, more conventional amplifier circuits. This is the easiest transmitter to adjust that you’ve ever worked on. Can be tuned in a few minutes’ time by inexperienced personnel.

DISC-SEAL TUBE, the RCA 7C24, especially designed for grounded-grid operation, is used in the final amplifier (and also in the final amplifier stages of the RCA 3KW and 10KW FM transmitters). Quantity produced, field-tested, rugged, and inexpensive—it is the best-suited tube yet designed for this use.

SHIELDED TANK CIRCUIT used in the final amplifier (and also in RCA 3’s and 10’s) is a concentric-line design in which the outer tube is at ground potential. Tube and inner line are completely enclosed providing near-perfect shielding. Only in this way can the flow of r-f currents in the cabinet be prevented. R-f radiation from the transmitter housing (and r-f pick-up in nearby audio circuits is less than with other tank circuit design).

SINGLE-ENDED OUTPUT is an important feature. Single-ended circuits are more stable and easier to adjust (no balancing) than push-pull circuits—particularly at FM frequencies. Moreover, single-ended circuits are more easily matched to the grounded transmission lines universally used in FM service.

ACCESSIBILITY is the keynote of the mechanical design. True vertical-chassis construction (used by RCA since 1935) makes every component easily reached (and easily removed)—provides unimpeded up-draft ventilation. Unit-type assembly makes for easy installation, flexibility and simple modification for higher power.

BROADCAST EQUIPMENT
RADIO CORPORATION OF AMERICA
ENGINEERING PRODUCTS DEPARTMENT, CAMDEN, N.J.

In Canada: RCA VICTOR Company Limited, Montreal

www.americanradiohistory.com
A new Du Mont instrument for peak-to-peak voltage measurements! Measures any waveform! Can be used with any oscillograph!

DU MONT TYPE 264-A

Voltage Calibrator

PLACE IT RIGHT ON TOP OF YOUR OSCILLOGRAPH!

The Du Mont Type 264-A Voltage Calibrator is designed to measure the peak-to-peak voltage of any signal being viewed on a cathode-ray oscillograph. Small, low-priced, convenient, it may be used with any commercial cathode-ray oscillograph. The output is essentially a square wave the amplitude of which is continuously variable from 0 to 100 volts. By merely throwing the selector switch, either the unknown signal or any of four ranges of calibrating voltage may be applied to the input of the oscillograph. There is no need for switching leads between signal and calibrating voltage. Unlike a voltmeter, measurements may be made of any part of a complex, composite waveform with Type 264-A.

HIGHLIGHTS...
- Independent of line-voltage variations.
- Direct-reading.
- Convenient to use.
- Low-priced.
- Small and compact.
- Overall accuracy of ±5%. Better than requirements of most electronic circuit tolerances.

SPECIFICATIONS...
- **Range:** 0-0.1; 0-1.0; 0-10; 0-100 volts.
- **Accuracy:** ±5% of full scale on each range, with variations in line voltage as great as ±10%.
- **Input Impedance:** 20 uuf (signal connected through calibrator).
- **Fuse:** ½ amp., 115 volts, 50-60 cps., 20 watts.
- **Size:** 4½" x 8" x 5¾".
- **Weight:** 5 lbs.

Descriptive bulletin sent on request.

© ALLEN B. DU MONT LABORATORIES INC.
Here, at last, is a twin-contact design in which the chance of contact failure is actually reduced to the practical limit.

Exclusive design of the CLARE Type "J" d.c. Relay allows the twin contacts to operate independently of each other so that one contact is sure to close even when the other may be blocked by presence of dirt or grit.

This sensational new relay combines the best features of the conventional telephone-type relay with the small size and light weight developed during the war for military aircraft use.

Weighing little more than two ounces, slightly over two inches in length, it has the sturdy construction, large contact spring capacity, extreme sensitivity, and adaptability to a wide range of specifications for which CLARE Relays are noted.

Modern designers, working to develop close-coupled, compact equipment to meet today's streamlined standards, welcome this highly efficient combination of capacity and small size.

CLARE Relays are especially designed for jobs where ordinary relays won't do. If you have such a relay problem, Clare Sales Engineers are located in principal cities to help you work out a Clare "Custom-Built" Relay that will just fit your needs.

Write: C. P. Clare & Co., 4719 West Sunnyside Avenue, Chicago 30, Illinois. Cable Address: CLARELAY.

In Canada: Canadian Line Materials, Ltd., Toronto 13, Ontario.

CLARE RELAYS
"Custom-Built" Multiple Contact Relays for Electrical and Industrial Use
... that operate at high temperature
... that are really moisture resistant

Sprague Types 68P and 69P MIDGET Paper Dielectric Capacitors are the first small-size tubulars to operate at 85°C, and to have adequate humidity protection. They are moderately priced to meet the needs of small radio receivers, "personal" radios and other electronic instruments where high component quality in minimum space is essential.

The usual practice in producing small capacitors is simply to "whittle down" conventional types. Dielectrics are made thinner. End seals are reduced in depth. Protective wrappers are eliminated — and troubles have invariably cropped up in direct relation to this sacrifice of normal safety factors.

Sprague Types 68P and 69P Midgets, however, prove that really small capacitors can be fully dependable. Made by new processes and with new materials, they are a direct adaptation of Sprague experience in engineering reliable, humidity resistant capacitors for the proximity fuse and other small electronic assemblies for war equipment. They operate satisfactorily at high temperatures. They meet the proposed RMA humidity specifications. So eminently satisfactory have these little capacitors proved that they are already replacing the larger-size Sprague Type AG Paper Tubular Capacitors in many applications.

Write for Sprague Engineering Data Bulletin 202

SPRAGUE ELECTRIC COMPANY, NORTH ADAMS, MASS.
NEW!

Presto's
Dual-Motor,
Direct Drive!

The new Presto 64-A transcription unit combines a number of radical improvements which are of first importance to broadcast stations, recording studios, and industrial and wired music operators.

The turntable is directly gear-driven at both 33⅓ and 78.26 rpm and two separate motors are employed—one for each speed. Speed may be changed instantly at any time by turning a mercury switch, without damage to the mechanism. No frictional, planetary, or belt operated elements are used in this new drive mechanism.

The following points are of interest: Motors—Two 1800 rpm synchronous. Speed—Total speed error is zero. Noise—At least 50 db below program. Starting—Table on speed in less than one-eighth revolution at 33⅓ rpm. Adjustment—Construction is very rugged and no attention whatsoever is required—except lubrication.

WORLD'S LARGEST MANUFACTURER OF INSTANTANEOUS SOUND RECORDING EQUIPMENT & DISCS

PRESTO RECORDING CORPORATION

242 West 55th Street, New York 19, N.Y. • Walter P. Downs, Ltd., in Canada
NOW One INSTRUMENT FOR ELECTRONIC MEASUREMENTS

WESTON ELECTRONIC ANALYZER
Incorporating:

1. A conventional Volt-Ohm-Milliammeter with self-contained power source.
2. A high-impedance electronic Volt-Ohmmeter using 115 volt, 60 cycle power.
3. A stable, probe-type Vacuum Tube Voltmeter, for use to 300 megacycles.

Accurate a-c measurements .25 volt to 120 volts, 50 cycles to 300 megacycles.
Extremely small R.F. Probe (3½" x ¾" dia.). Probe constants, 5 megohms paralleled by 5 mmfd., approx.
New unity gain d-c amplifier provides absolute stability with line voltage variations from 105 to 120 volts.
D-C Electronic amplifier ranges 3 to 1200 volts at 15 megohms, resistance ranges 3000 ohms to 3000 megohms.
Conventional 10,000 ohm per volt d-c ranges 3 to 1200 volts, 1000 ohm per volt a-c rectifier ranges 3 to 1200 volts.
Resistance ranges 3000 to 300,000 ohms where a-c power is not available.
Entire Model 769 protected from external RF influences.
Uses standard commercial types of tubes replaceable without recalibration.
Size only 10" x 13" x 6½".
Full details from your jobber or local WESTON representative. Literature available... Westen Electrical Instrument Corporation, 618 Frelinghuysen Avenue, Newark 5, New Jersey.
what am I?

I'm a low-melting, free-flowing alloy that bonds quick as a wink. Know me? I come from a complete line of non-ferrous metals and alloys you can get easily anywhere in the United States. Know me now? I'm solder, of course. Federated solder.

And each Federated solder is but one of a tremendous family of "joiners". Federated solders are supplied in all commercial forms and compositions. Federated solders are made to fit the job—to provide low-melting, quick-freezing, a specific plastic range, or other required properties.

This complete line is your assurance that Federated can supply you with the exact solder in the form you need. And Federated's technical representatives are glad to help you solve industrial soldering problems. For information and prices, call or write Federated Metals Division, American Smelting and Refining Company at 120 Broadway, New York 5, N.Y., or the office nearest you.
To improve upon the HY75 was not easy. But the new HY75A does the trick. Useful power output as a class C oscillator is up 25%. Maximum plate current is increased to 90 ma. Grid-to-plate capacitance is sharply reduced to 2.6 µF. Lead inductance is minimized. Proof of the pudding: an HY75A substituted for an HY75 in a 144-mc quarter-wave line oscillator raises the resonant frequency by 20-30 mc.

How was this accomplished? By a shorter mount, smaller elements, special high-voltage processing of the lava insulators, redesigned vertical bar grid, and zirconium-coated graphite anode. All at no extra cost to you.

When replacing the HY75, the HY75A requires only readjustment of the tank circuit and a higher value of grid resistor. For example, the HY75A can be used in the Hytron HY-Q 75 transmitter merely by retuning the shorting bar and installing a 7000-ohm grid resistor. For replacement or new vhf equipment, the rugged, instant-heating HY75A is your logical choice.
LAPP GAS-FILLED CONDENSER OFFERS NON-DETERIORATING, UNIFORM PERFORMANCE

The dielectric of the Lapp condenser is an inert gas, non-deteriorating and puncture proof. After years of service, the condenser retains the same margin of security it had when installed in the circuit. Also, it offers lower loss than solid-dielectric units, with corresponding economy of power. Not needing to “warm up,” it provides constant capacitance under temperature variation. Variable, adjustable and fixed capacitance units are available, in current ratings up to 500 amperes R.M.S., and voltage ratings up to 60 Kv peak. Fixed units have been made with capacitance up to 60,000 mmf., variable and adjustable units up to 16,000 mmf.
CAPACITORS

- Diaclor Impregnated to Assure Greater Uniformity of Production
- Stable Capacity Over a Wide Range of Temperatures
- Excellent By-Pass and Coupling Qualities
- Available Within a Range of 600 to 6000 Volts Working, or Higher... these are the credentials that qualify Sangamo Type 71 Diaclor Impregnated Capacitors as Blue-Ribbon entries for broadcast and aircraft transmitters, industrial applications, and in high-voltage circuits of all kinds.

Diaclor, the chlorinated dielectric used by Sangamo, permits greater uniformity of production because of its controllable characteristics. Smaller-sized capacitors, for use where space is at a premium, are made possible because of its high dielectric constant. Fire hazard due to accidental leakage is eliminated because Diaclor is non-inflammable and non-explosive.

Type 71 capacitors have high insulation resistance and low direct current leakage. They can be supplied with either composition rivet, screw type, hermetically-sealed pyrex glass or stand-off porcelain terminals, and with your choice of four types of mounting brackets. They are available in a wide range of capacities.

Sangamo manufactures a complete line of paper, mica, and silver capacitors for every radio and electronic application. A quarter of a century of experience in building better capacitors, with new and more exacting requirements and greater accuracy demanded each year, give Sangamo capacitors—of all kinds—Credentials that Qualify!

CREDENTIALS that QUALIFY

Write for the new Sangamo Capacitor Catalog.

SANGAMO

ELECTRIC COMPANY

SPRINGFIELD • ILLINOIS

58

July, 1947 — ELECTRONICS

www.americanradiohistory.com
INSTANT ACTION

when you want it
where you want it

with alliance MOTORS

The New Model A shaded pole induction type motor. 1/30th horsepower, size 2 3/4 inches x 4 1/2 inches, for voltages up to 220 and frequencies of 50 or 60 cycles. Suitable for driving fans, and for continuous or intermittent duty.

Alliance Powr-Pakt Motors are manufactured in shaded pole induction, and split phase resistor type. Ratings range from less than 1/400th up to 1/20th horsepower.

New uses for the Powr-Pakt line! Heating and ventilating controls, opening and closing valves, rotating fans, electronic and electric controls, signals, automatic dispensers, turntable drives, automatic tuning devices, radio controls.

Modern design calls for "tailored power"

Alliance motors are rated as low as 1/400th h.p. on up to 1/20th h.p. They are small, compact and some weigh less than one pound. They furnish economical driving energy to meet the special demands of small loads. Some are uni-directional—others are reversible—some are for continuous duty—others for intermittent operation.

Alliance Powr-Pakt motors are mass produced, precision made and low in cost. They can help you get instant action—when you want it—and where you want it! Write today.

WHEN YOU DESIGN—KEEP alliance MOTORS IN MIND

ALLIANCE MANUFACTURING COMPANY • ALLIANCE, OHIO

EXPORT DEPARTMENT, 401 BROADWAY, NEW YORK 13, NEW YORK, U. S. A.

ELECTRONICS — July, 1947
PROFESSIONAL PERFORMANCE—that keeps the original sound alive!

Stop 'WOW'!

—with a positive drive at 33.3 and 78 rpm

Remember this: When a listener becomes dissatisfied with the quality of your programs, he simply twist a dial. And in doing so, he also tunes out his pocketbook. So why jeopardize what is probably your best source of revenue—your recorded programs?

Professional recording and playback should be, and can be, 'WOW'-free. How? With the time-tested Fairchild direct-from-the-center turntable drive, shown above. It eliminates all variations in turntable speed. Evenness of speed is obtained by a carefully calculated loading of the drive mechanism to keep the motor pulling constantly; by careful precision control of all drive alignments that might cause intermittent grab and release; by carefully maintained .0002" tolerances in all critical moving parts.

Further aid to 'WOW'-free performance is provided by a perfectly balanced turntable with extra weight in the rim and a turntable clutch that permits smooth starting, stopping and shifting from 33.3 to 78 rpm in operation.

Fairchild's 'WOW'-free performance is available on professional Transcription Turntables, Studio Recorders and Portable Recorders. For complete information—and prompt delivery—address: 88-06 Van Wyck Blvd., Jamaica 1, New York.

Fairchild CAMERA
AND INSTRUMENT CORPORATION

www.americanradiohistory.com
Now, For The First Time....

The Measured Quality of Each Lot of Springs Can Be Seen at a Glance

Quality Engineers have long predicted that some day suppliers would submit a record of quality to their customers and that this record would become part of a new era in vendor-customer relationships.

That day is here for Hunter customers.

Hunter now makes available to customers a report of the measured test loads for every lot of springs in the form of a frequency distribution. These Q.R.'s (Quality Reports) will be mailed to chief engineer, inspector or other person designated. The Q.R. of the sample drawn from each lot of every item will be sent as the lot clears Hunter's final inspection.

These reports enable one to compare quality lot-for-lot, consider tolerance revisions, reduce customers' sampling without sacrificing quality insurance...will lead eventually to a comparison of quality vendor-for-vendor.

Hunter believes it is the first in industry to make this valuable service available to all customers.

HUNTER PRESSED STEEL COMPANY
LANSDALE, PENNSYLVANIA
Springs, Metal Stampings, Wire Forms, Mechanical and Electrical Assemblies
If you are trying to squeeze a lot of energy-storage capacity into a small space to reduce the size or weight of your equipment, General Electric's new Pyranolt discharge capacitors may be your answer. These new, smaller, lighter units give economical energy storage, fast discharge and service reliability.

Ambient temperature operating limits, at rated voltage, range from 0 to 50°C and the capacitance tolerances, measured at 25°C, are ±10 per cent. The performance of these compact units has been thoroughly proved by several years of laboratory tests and actual operating experience in the field. G-E light-duty energy-storage capacitors are particularly applicable to light-metal welding equipment and flash photography apparatus. Check the table below for ratings and dimensions of G-E discharge capacitors to fit your application... or mark Bulletin GEA-4646 on the coupon for more details.

PREPARED RATINGS

<table>
<thead>
<tr>
<th>D-C Voltage Rating</th>
<th>Muf</th>
<th>Wart-Seconds</th>
<th>Number of Bushings</th>
<th>Catalog Number</th>
<th>Height over Terminals</th>
<th>Case Height</th>
<th>Base Dimensions</th>
<th>Approximate Niel Weight in Pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>25</td>
<td>50</td>
<td>*2</td>
<td>2SF903</td>
<td>5 1/4 4 1/2</td>
<td>3 1/4</td>
<td>4 1/2</td>
<td>5.2</td>
</tr>
<tr>
<td>2000</td>
<td>28</td>
<td>60</td>
<td>*2</td>
<td>2SF939</td>
<td>5 1/4 4 1/2</td>
<td>3 1/4</td>
<td>4 1/2</td>
<td>5.3</td>
</tr>
<tr>
<td>2000</td>
<td>40</td>
<td>80</td>
<td></td>
<td>2SF910</td>
<td>8 1/4 7</td>
<td>3 1/4</td>
<td>4 1/4</td>
<td>7.8</td>
</tr>
<tr>
<td>2500</td>
<td>25.5</td>
<td>80</td>
<td></td>
<td>2SF911</td>
<td>8 1/4 7</td>
<td>3 1/4</td>
<td>4 1/4</td>
<td>7.8</td>
</tr>
<tr>
<td>3000</td>
<td>60</td>
<td>270</td>
<td>2</td>
<td>1SF312</td>
<td>15 1/2 13 1/2</td>
<td>4</td>
<td>8</td>
<td>26</td>
</tr>
<tr>
<td>3350</td>
<td>17.8</td>
<td>100</td>
<td></td>
<td>2SF912</td>
<td>8 1/4 7</td>
<td>3 1/4</td>
<td>4 1/4</td>
<td>7.8</td>
</tr>
<tr>
<td>4000</td>
<td>25/50</td>
<td>200/400</td>
<td>3</td>
<td>1SF309</td>
<td>15 1/2 13 1/4</td>
<td>4</td>
<td>8</td>
<td>26</td>
</tr>
<tr>
<td>4000</td>
<td>100</td>
<td>800</td>
<td>2</td>
<td>1SF311</td>
<td>15 1/2 12 1/2</td>
<td>5 1/4</td>
<td>13 1/2</td>
<td>56</td>
</tr>
<tr>
<td>4000</td>
<td>12.5</td>
<td>100</td>
<td>1</td>
<td>2SF906</td>
<td>6 1/2 5 1/4</td>
<td>3 1/4</td>
<td>4 1/4</td>
<td>6</td>
</tr>
<tr>
<td>5000</td>
<td>25/50</td>
<td>313/625</td>
<td>2</td>
<td>1SF305</td>
<td>15 1/4 13 1/2</td>
<td>4 1/4</td>
<td>13 1/2</td>
<td>46</td>
</tr>
<tr>
<td>6000</td>
<td>55</td>
<td>990</td>
<td>2</td>
<td>1SF313</td>
<td>16 1/2 12 1/2</td>
<td>5 1/4</td>
<td>12 1/2</td>
<td>56</td>
</tr>
<tr>
<td>6000</td>
<td>25</td>
<td>450</td>
<td>2</td>
<td>1SF314</td>
<td>16 1/2 13 1/4</td>
<td>4</td>
<td>8</td>
<td>26</td>
</tr>
</tbody>
</table>

*Cop-type bushings with solder lug terminals.

TWO NEW MOUNTINGS FOR GENERAL-PURPOSE RELAY

Two new mounting arrangements, this "plug-in" design and a "back-connected" design, have been added to General Electric's line of CR2790-E magnetic relays. These two new forms, plus the open and enclosed forms, make this general-purpose 10-amp relay useful in a wide variety of electronic applications.

Three contact arrangements—single-pole, single-throw; double-pole, single-throw; double-pole, double-throw—provide further design flexibility. Heavy silver contacts are rated 10 amps continuous at 115/230 volts, 60 cycles, and will safely close on 45 amps and open on 20 amps maximum. Check Bulletin GEA-4668 below for further details.

REMOTE POSITIONS THAT ARE ACCURATE

Here's a war baby that you can use. It's General Electric's d-c selsyn position-indicating equipment perfected for use in military aircraft. Transmitters will operate in ambient temperatures from −85°F to 158°F and are weather resistant. Indicators are available in two standard sizes: 1 3/4-inch dial with 1 or 2 pointers, and 2 3/4-inch dial with 1, 2, 3 or 4 pointers. Dial markings to meet your needs.

www.americanradiohistory.com
A single d-c selsyn indicating system consumes about 2 watts at either 12 or 24 volts. Any reasonable lead length may be used. Two indicating instruments can be operated from the same transmitter. Bulletin GET-1304 is a comprehensive application manual you'll find extremely helpful. Check it on the coupon.

COILS TESTED FAST

High-speed production testing of small coils is possible with this General Electric low-voltage tester which shows the presence of short-circuited turns in unmouted coils and gives an approximate indication of the number of short-circuited turns. The coil to be tested is simply slipped over the core which projects from the top of the case; the coil's leads need not be connected.

This tester was designed for manufacturers who want accurate tests of coils before assembly in small motors, relays, radios, transformers, instruments and other equipment. It is simple to operate, and connects to any 115-volt, 60-cycle supply. More information on this and another equipment for high-potential coil testing is included in Bulletin GEA-4539 . . . check it on the coupon below.

PRECISION RECTIFIER IN A SMALL PACKAGE

These new, small a-c to d-c power supplies are specially built for precision work with cathode-ray tubes, television camera tubes, radar indicator scopes, electron microscopes . . . or any job where good regulation, light weight and small size are primary considerations. These hermetically sealed, oil-filled power supplies will furnish up to 7 kv at 0.1 ma. They have a regulation of 3.5% per 0.1 ma d-c output, or better.

They easily meet Army and Navy specifications both in design and ability to withstand mechanical shock and operate continuously for long periods of time. Designed to operate in ambient temperatures from -40 C to +60 C. For quotation and further data, write General Electric Co., Section 642-15, Schenectady 5, N. Y., giving complete information on application proposed and specifications required.

25 G's WON'T BOTHER THIS SWITCHETTE

Shock, vibration, humidity and heat are all taken in stride by General Electric's tiny, light-weight Switchette. It is built to operate in ambient temperatures from 200 F to -70 F, and is tested at 95% relative humidity. Low-inertia moving parts, high contact force, and double-break contact structure make it unusually resistant to vibration. Phenolic-resin operating button assures safety from live parts during operation.

The snap-action contact construction gives the Switchette a high current rating. Because of negligible contact bounce and lightness of moving parts, it is particularly well suited to application on electronic equipment. Bulletins GEA-3818 and GEA-4259 give electrical and mechanical details; check coupon below.

GENERAL ELECTRIC COMPANY, Sec. A 642-15

Apparatus Department, Schenectady 5, N. Y.

Please send me:

<table>
<thead>
<tr>
<th>GEA-4646 (Discharge capacitors)</th>
<th>GET-1304 (Position indicators)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEA-4668 (Magnetic relays)</td>
<td>GEA-3818 (Switchettes)</td>
</tr>
<tr>
<td>GEA-4539 (Coil testers)</td>
<td>GEA-4259 (Switchettes)</td>
</tr>
</tbody>
</table>

NOTE: More data available in "Sweets' File for Product Designers"

Name: __

Company: __

Address: __

City: ___________________________ State: ____________

ELECTRONICS — July, 1947
THE HIGH STANDARD OF YOUR NAME IS ASSURED WHEN YOU BUILD IN

Potter & Brumfield
RELAYS AND TIMERS

condensing units for electrical refrigeration depend on small but rugged P&B motor-starting relays instead of centrifugal switches for positive cut out of the starting coil.

This motor-starting relay is a pertinent example of Potter & Brumfield performance engineering as a solution to difficult switching problems.

Servel, Inc., of Evansville, Indiana, found that neither centrifugal switches nor ordinary motor-starting relays would stand up in their new Supermetic electric refrigeration units. They presented the problem—which included a number of new complexities—to Potter & Brumfield engineers.

The resulting relay met all Servel requirements (including Servel's demand for unfailing dependability through a full year of rigid field tests after laboratory approval)—and is now in fully satisfactory service on thousands of the Servel units. In addition to its proved performance, the relay has the further virtues of mechanical simplicity and low fabrication cost.

For just such practical performance engineering, Potter & Brumfield engineers are always at your service. We solicit your inquiries on all types of relay problems.

Potter & Brumfield also offers a standard line of relays which are fully illustrated and described in a comprehensive 22-page catalog. Midget, power, leaf, shock-proof, plate-circuit, telephone and many other types are offered in stock assemblies. Write for your copy of the catalog.

YOUR LOCAL ELECTRONICS PARTS DISTRIBUTOR STOCKS STANDARD P&B RELAYS

Potter & Brumfield Sales Company
549 W. Washington Blvd., Chicago 6, Illinois • Factory at Princeton, Indiana
Export: 2020 Engineering Building, Chicago 6, Illinois

July, 1947 — ELECTRONICS
For years, Chicago Transformer has met with outstanding success the varying requirements of the electronics industry for top-quality, custom-built transformers and reactors. Today, C.T. is augmenting this service to the industry with a new catalog line of units, to be manufactured on a standard design basis.

Now, small quantity purchasers of transformers in the various fields of electronics—broadcast, communications, experimental, amateur, public address, and industrial control—can acquire for their equipment the advantages of progressive, practical C.T. engineering.

Modern, too, is the type of mounting used. Drawn steel cases and three variations of Chicago Transformer's famous Sealed in Steel construction will offer the combined advantages of "steel wall" protection against moisture and corrosion, efficient magnetic shielding, vibration-proof mechanical strength, compactness, and a streamlined appearance that spells "eye appeal" in finished equipment.

For further details, write for catalog
P. E.* announces distributorship of

NYLOK, THE GREATEST ADVANCE
IN THE HISTORY OF SELF-LOCKING NUTS

In every phase of electronics—when you need a self-locking nut, NYLOK is better!

It holds tighter... cannot shrink, cannot shake loose... moisture absorption is practically nil... will not distort in freezing temperatures... will not shrink in drying atmosphere... has high resistance to esters, ketones, alcohols, weak acids, and other chemicals such as 40% caustic soda solution... is unaffected by age or cold... offers low initial "on" torque... and minimum of variation in torque characteristics between nuts. Point after point, in every way, Nylok has proven superior to all other non-metallic lock-nuts. Write for prices, information and samples.

A Nylon Lock-nut for the Electronic Industry.

Eliminates the necessity for washers thus reducing manufacturing costs by saving time and labor in assembly, and also eliminates carrying more than the one item in stock.

Has unlimited re-usability. Nylok Nuts which have been used many times a day have shown even higher torque on the following day than on the last removal the previous day.

Cannot be shaken loose.

Hundreds of millions of our Fibre Lock-nuts were used during the war, but we have found Nylon so superior that our entire production has been converted to this new nut.

Nylon is not as hard as Fibre and is easier to work with. It is a non-conductor. Moisture absorption is almost nil.

New Nut Uses NYLON as Locking Element

Illustrating construction of new Nylok Nut.

A. Shows sturdy, light-weight construction embodying steel outer shell formed to accommodate steel hex nut slug and hexagonal molded Nylon insert.

B. I.D. of Nylon insert held to .001" for accurate torque control.

C. Cross section.

PRODUCTION P.E. ENGINEERING

666 VAN HOUTEN AVENUE, [Richardson Building] CLIFTON, N. J.

July, 1947 — ELECTRONICS

Made by The Nylok Corp., 475 Fifth Ave., New York 17, N. Y.
They started at the bottom to make Karp service **TOPS**

One reason why Karp craftsmanship offers extra quality and value, is that our key employees, from the president to department heads, literally came up from the ranks. They learned their valuable "know how" at the bench or machine, and their specialized experience is long.

91% of our supervisory personnel started in the shop. 80% of these men have each served the company for a period of 15 years or more. 10 of them have served a combined total of 178 years. 3 were with us 22 years ago when the organization was founded by a small group of perfectionists.

This outstanding combination of knowledge, skill and long experience builds extra (though often unseen) quality features into your finished products. It assures you of finest materials and exceptional workmanship in every detail. It means accuracy and uniformity in production, which will save you time and money in assembling. It guarantees handsome appearance, careful finishing and ruggedness for long service life.

Karp Metal Products Co., Inc.

124 - 30th Street, Brooklyn 32, New York

Custom Craftsmen in Sheet Metal
MINIATURE SOCKETS

INCORPORATING NEW CONTACTS OF REVOLUTIONARY DESIGN
AND EMBODYING FEATURES NOT AVAILABLE HERETOFORE

57 A 23 for 7/16" mounting centers and available with center shield and with or without ground strap, also with brass anti-microphonic cushion.

57 A 11 for 1" mounting centers and available with center shield and with or without ground strap.

Each socket, in Franklin's new series 57, is the development of studied research to solve the problems of tubes falling out in transit, intermittent contact, difficulty of soldering due to confined space, etc.

The solution to these problems was the development of the new Franklin contact which assures positive constant contact because it grips and holds the tube securely without the need for locking devices. The tails of these new contacts are longer and spaced wider apart to permit quick and easy soldering.

These new, series 57 miniature wafer, sockets will find high favor with engineering departments for their positive constant contact . . . with production departments for their ease of soldering and elimination of locking devices and with purchasing departments for their extremely low prices.

NEW FRANKLIN LOCK-IN SOCKET molded—acclaimed by one of the largest LOCK-IN TUBE manufacturers as the best socket developed to date—incorporates the new Franklin contact which combines positive grip on the tube pins with ease of soldering. Its improved center lock permits easy insertion of the tube and positive retention under heavy vibration or shock. The molded body has high barriers on the top and bottom isolating each contact while permitting ample float in all directions. The saddle is of heavy steel, hot tinned, with four ground tabs. This saddle provides extreme rigidity when assembled to the chassis.

and for TELEVISION FRANKLIN FEATURES the DUO DECAL

TO MEET MOST EXACTING REQUIREMENTS FOR HIGH VOLTAGE OPERATION

A.W. FRANKLIN MFG. CORP.
MANUFACTURERS OF A COMPLETE LINE OF RADIO AND TELEVISION TUBE SOCKETS

43-20 34th STREET • LONG ISLAND CITY 1, NEW YORK

July, 1947 — ELECTRONICS
WL-5551/652, used for welding service.

ORIGINATED BY
Westinghouse

FOR WELDING AND RECTIFICATION

In 1932 Westinghouse created the sealed ignitron. This advance in basic tube design greatly expanded the application of mercury-pool tubes in the fields of resistance welding and rectification.

Prompt and efficient replacement service on these and the complete line of Westinghouse quality controlled tubes is available through district warehouses and distributors throughout the country. Electronic Tube Sales Dept., Westinghouse Electric Corp., Bloomfield, N. J.

FOR WELDING

WL-5552/651
WL-5553/655
WL-5550/681

FOR RECTIFICATION

WL-5555/653B
WL-5554/679

The tubes shown here for rectification service also have ratings for welding service.

For complete ratings on these and all other types of Westinghouse electronic tubes, write to your Westinghouse District Office or Westinghouse Electronic Tube Distributor.

Westinghouse Quality Controlled Electronic Tubes
Whenever you have a broadcast equipment problem

Look ahead with General Electric!

Dimensions, styling and appearance of all G-E units are harmonious; circuits are coordinated and allow you to quickly block-build to higher power at minimum expense. General Electric equipment is engineered for economy.

Station Equipment—unmatched performance from 250 watts to 50-kw. AM or FM.

Audio Facilities—instant accessibility, complete flexibility to meet the most exacting demands.

GENERAL ELECTRIC IS AS NEAR AS YOUR TELEPHONE

<table>
<thead>
<tr>
<th>Location</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLANTA 3, GA.</td>
<td>187 Spring Street, N. W. Walkin 97@.</td>
</tr>
<tr>
<td>BOSTON 1, MASS.</td>
<td>140 Federal Street Hubbard 1800</td>
</tr>
<tr>
<td>CHICAGO 54, ILL.</td>
<td>1122 Merchandise Mart Whitehall 3913</td>
</tr>
<tr>
<td>CINCINNATI 2, OHIO</td>
<td>215 West Third St. Parkway 3431</td>
</tr>
<tr>
<td>CLEVELAND 4, OHIO</td>
<td>4966 Woodfield Avenue Edinboro 4466</td>
</tr>
<tr>
<td>DALLAS 2, TEX.</td>
<td>1801 North Lamar Street Riverside 9121</td>
</tr>
<tr>
<td>DENVER 2, COLO.</td>
<td>630 17th Street Keystone 7171</td>
</tr>
<tr>
<td>KANSAS CITY 6, MO.</td>
<td>106 West 14th Street Victor 9745</td>
</tr>
<tr>
<td>LOS ANGELES 54, CAL.</td>
<td>212 No. Vignes Street Madison 7381</td>
</tr>
<tr>
<td>MINNEAPOLIS 2, MINN</td>
<td>12 Sixth Street Main 2341</td>
</tr>
<tr>
<td>NEW YORK 22, N. Y.</td>
<td>570 Lexington Avenue Wickersham 2-4311</td>
</tr>
<tr>
<td>PHILADELPHIA 2, PA.</td>
<td>1405 Locust Street Pennypacker 5-9000</td>
</tr>
<tr>
<td>SYRACUSE 1, N. Y.</td>
<td>—Syracuse 6-4411</td>
</tr>
<tr>
<td>SAN FRANCISCO 4, CAL.</td>
<td>233 Montgomery Street Douglas 3740</td>
</tr>
<tr>
<td>SCHENECTADY, N. Y.</td>
<td>Building 267—Room 105 Schenectady 4-2211</td>
</tr>
<tr>
<td>SEATTLE 6, WASH.</td>
<td>710 Second Avenue Main 7100</td>
</tr>
<tr>
<td>WASHINGTON 5, D. C.</td>
<td>806 15th Street, N. W. Executive 3400</td>
</tr>
</tbody>
</table>

70

July, 1947 — ELECTRONICS
TOPS in performance, trim in appearance and featuring instant accessibility, General Electric broadcast equipment is being specified by progressive broadcasters everywhere. More FM transmitters have been shipped by General Electric than by any other manufacturer.

You will have easier maintenance and fewer outages with a General Electric FM transmitter. Highest quality construction, simplified design, fewer tubes, and fewer components result in lower cost-per-hour on the air.

In the studio, the new General Electric two-studio Consolette provides a compact, flexible, and economical speech-input control unit to meet the needs of every station.

Here is the 250-watt General Electric FM transmitter in operation—doing a job. It will do the same for you. When you plan to build or modernize, specify G.E.

G. E.'s two-studio
Consolette has all amplifiers and controls needed for split second control of two studios, an announce booth, two turntables, and eight remote lines.

FM Station Monitor—one unit, for complete and continuous FM monitoring, plus proof-of-performance tests.

Transmitter Console—all major station functions centralized for instantaneous control.

Circular Antenna—provides high power gain, ease of installation and low wind loading.

On the job at WEAW-FM

Mr. E. A. Wheeler, president of WEAW, Evanston, Ill., says: "General Electric quality equipment and prompt service are important when a small station undertakes independent commercial operation, and both have proved to be of value to us."
LIKE two peas in a pod, every piece of Dieflex varnished tubing or sleeving is like the next one in its faithful adherence to the high standards of quality that have made this product a time and money saver for electrical manufacturers. Such features as ability to be cut evenly and cleanly, rapid return to roundness after cutting, and excellent flexibility, make Dieflex varnished tubing products an important factor in cutting manufacturing costs.

Dieflex varnished tubing and saturated sleeving, of finely braided cotton or inorganic glass fiber, have these helpful characteristics in all VTA and ASTM grades. They will help you because they will speed your production and cut assembly costs. Insist on Dieflex and be sure you are using the best.
FOR 20 years we have been whittling away the foundations of our economic structure. We have been cutting away the incentives to "get ahead in the world," to increase production and to improve efficiency. Unless this process is reversed soon, we risk the sort of industrial stagnation that currently afflicts Great Britain so disastrously.

How far the whittling has gone is shown by the statement in the center of the page. It shows that everyone's stake in working harder and getting ahead has been reduced sharply since 1929. In that year, anyone who was even moderately successful could look forward to reaping the rewards of his success. If he earned $5,500 annually over a period of 25 years he could retire on a comfortable income of $3,000 per year. Or he could pile up enough capital to go into business for himself. He could fulfill the American dream as phrased by Abraham Lincoln in his first annual message to Congress in 1861:

"The prudent, penniless beginner in the world, labors for wages awhile, saves a surplus with which to buy tools or land for himself, then labors on his own account another while, and at length hires another new beginner to help him. This is the just and generous and prosperous system, which opens the way to all, gives hope to all, and consequent energy and progress, and improvement of condition to all."

Look at the situation today. To retire on an annual income from investment that will buy as much as $3,000 did in 1929, a young man needs to earn over $13,000 a year for 25 years. That's more than 2½ times the income he would have needed in 1929. The same thing is true of acquiring a stake in a business.

Why Try to Succeed?

While the income needed for retirement today has increased 2½ times or by more than 150%—since 1929, the average person's income has increased only 80%. So the average man's chances of achieving success are really slimmer now than a generation ago.

This 1929-47 trend is something new in America. The average person's chances of getting ahead improved during 1914-29. In that period the dollar income needed for retirement or a stake in business rose by 75%, but the average income rose by 100%. So more people were within striking distance of success and security in 1929 than in 1914. The story has been different since 1929.

Fewer people actually do achieve financial success today. Only 1% of all families now have incomes large enough to build up a retirement fund or a stake in business. In 1929 almost 6% of all families attained a comparable degree of success.

Higher taxes are the most important reason why it takes so much more now to build up a competence. They account for one-half the increase in the amount needed. The other half is explained by higher living costs and lower interest rates.

It is, of course, true that few people ever get into the higher income brackets. So the process of cutting...
away the incentives which play such a key role in our economic system affects comparatively few people immediately. It does, however, have a powerful indirect effect on all of us.

Everybody Loses

When half to four-fifths of any additional income of successful people goes to Uncle Sam a heavy drag is obviously put on doing the work to get it. Thus, we stand to lose the benefit of full use of the nation's best brains. By so doing we stifle industrial progress. And the loss in productive efficiency far outweighs the tax revenue the Treasury gains. Carried far enough, the process of stifling economic progress by slashing rewards leads straight to industrial stagnation.

The same process also multiplies the risks of embarking on new capital investment. High taxes rule out all but the most profitable new projects and restrict most expansions to boom times when profits are high. So capital investment follows a boom and bust pattern and, by so doing, contributes much to ups and downs in production and employment.

The Sorry Plight of Britain

The case of Britain today provides an object lesson of how blighted incentives produce industrial stagnation. Britain's number one economic problem is to get more production. But the tax load is so heavy it stifles the incentive to produce more.

A coal miner who works an extra shift pays about a third of his added earnings to the tax collector. And, as the London Economist comments, tax rates on business executives are so high that they kill every incentive except that to tax evasion. In short, not only is the incentive to succeed blighted, but so is the incentive to work.

A root-cause of Britain's trouble is this: The cost of an expensive program of social benefits has been piled on top of the heavy costs of paying for past wars and trying to prevent future wars. Tax rates are boosted accordingly. What her experience proves is that the attempt to provide excessive social benefits may defeat itself. It raises the tax burden on rich and poor alike and smothers the incentive to work. So the underlying basis of all economic benefits—production—is eaten away.

We in the U. S. haven't traveled as far down the stagnation road as Britain has. Taxes amount to about 26% of national income here as against about 45% there. But, unless we start soon to build up incentives to do better work, instead of whittling them away as we have been doing, we will catch up with Britain fast.

It's Late but Not Too Late

Can anything be done? Decidedly yes, particularly by tax reform and reduction in the cost of living. As far as interest rates are concerned, any large increase would raise excessively the cost of carrying our war-swollen national debt, and hence raise taxes. But some increase in what are now excessively low inter-

est rates may well be both feasible and desirable.

Action on the tax front is the first order of business. Our jerry-built tax structure is the thing that is chiefly responsible for cutting the incentives to work harder. Two things are important: 1) Government spending must be pared to the bone; 2) The tax system must be completely overhauled to remove the shackles on all-out production.

The 56th editorial in this series, published in March, outlined major steps that need to be taken in remodeling federal taxes in order to increase incentives to individual and business enterprise. The revenue bill now before Congress is no more than a short step in the right direction. Much more must be done to clear the way for high production and rising living standards.

Lifting the blight which taxes now place on incentives would help cut the high cost of living. It would stimulate greater production and greater efficiency. But a further step is necessary. Part of the benefits of improved efficiency must be passed on to consumers in the form of lower prices.

In the past few years we have been following precisely the opposite course. In many cases wages have been increased all out of proportion to increased productivity. Result—soaring prices and a severe squeeze of the consumer, to which some greedy exploitation of war-created shortages has also contributed.

To Give Ability a Chance

Our basic and most crucial problem is to get back on the track which leads to higher production and improved living standards all along the line. We got off that track in the 30's. Then, we started scrambling for larger slices of the same pie instead of trying to produce a larger pie. Now the process of getting back on the track is greatly complicated by the tremendous tax burden growing out of the war.

Yet it's not too late to turn back from the road that leads to industrial stagnation. As the statement in the center of the page shows, we could restore the odds of getting ahead to what they were in 1929. Cutting the federal budget to $25 billion a year and putting the tax structure in good order are the crucial first steps.

By taking these steps soon, Congress can go far to restore the incentives to hard work and efficiency which have been so largely washed away in the past 20 years. If they are not taken the American dream of getting ahead by hard and effective work will exist only in the history books, and our children will inherit from us an economic order without opportunity, without hope, without Individual liberty.

For over a quarter century the name Meissner has stood for the finest in electronic equipment. Founded in 1922 by William O. Meissner, (famous for his outstandingly successful inventions in communications and electronics) this company has long specialized in the development and manufacture of fine coil equipment for every application... As a result of this vast background of electronic research and experience, Meissner Coils have become the accepted standard among those who demand high quality performance. Precision-made, designed to the most exacting requirements, these superior components are backed by a twenty-five year reputation for quality and uniformity in manufacture.

A complete line, including Air Core I. Fs., Iron Core Plastic I. Fs. and standard I. Fs.

WRITE FOR NEW FREE MEISSNER CATALOG
MINIATURE FOIL PAPER METAL TUBULAR FOR TIGHT PLACES

Housed in hermetically-sealed 1/4" diameter metal tube, Solar Type QA capacitors are of ultra-compact multi-paper and foil construction. They are useful in a wide variety of applications from hearing aids to lighting devices. Capacitances up to .01 mf at voltage ratings up to 600 wvdc are standard. Mineral oil impregnated units are available as Types QAGH and QA1H for grounded and insulated sections, respectively. Halowax units may be had by specifying Types QAGH and QA1H for grounded and insulated windings, respectively.

NEW MOUNTING BASE ON ”TWIST-PRONG” DRY ELECTROLYTICS

Introduction of a new heavy Bakelite-rubber mounting base on Solar Type DY "twist-prong" dry electrolytic capacitors gives these units a more rigid base assembly than the molded rubber base formerly used. This new design permits use of Type DY units as plug-in capacitors by using the new capacitor mounting sockets recently placed on the market. To do this simply cut off the blank mounting tab on each capacitor. All terminals are clearly identified on each base and the code markings are stamped on the capacitor container.

BUSINESS BRIEFS

By W. W. MacDONALD

The Parts Show in Chicago afforded an excellent opportunity to check on the state of business, since exhibitors making components of necessity have their finger on its pulse.

Business is of course off from the abnormal wartime peak and, generally speaking, is probably going off more. Actual consumer need is high, however, despite resistance occasioned by high prices, so the expected bump should not be deep and should not last long as such bumps go.

The market is spotty, some manufacturers exhibiting concern while others appear to be feeling pretty good about prospects. The answer, which may explain why some economists are crying the blues while others are optimistic, is the simple fact that for some people, in some branches of the field, business is bad, while for other people, in other or even the same branches, business is good. It is hard to generalize and be right.

Speaking Of The Show, attendance was excellent, particularly with respect to quality. Exhibits contained many interesting new products, with only a modicum of fruit-juicers and can-openers.

Printed Circuits are moving rapidly out of the experimental stage. At least two radio set makers will be using Centralab interstage audio couplers involving the principle by fall, television receiver sub-assemblies using the scheme are likely to be seen, and one manufacturer is known to be planning an extremely small personal radio almost entirely devoid of conventional wiring and components.

Transmitter Designers take note: Fred Lack of Western Electric, speaking at a recent meeting of an RCA engineering section, said that all the signs point toward a greatly expanded transmitter market, but that while there will be many more customers in the future most of them will have less money to spend.

The key to new markets may lie more in the engineer's ability to design equipment that does a satisfactory job at low cost than in his ability to turn out gear embodying expensive refinements.

Price May Be King for awhile in the home radio receiver market. That's the way it looks at this writing. Fortunately, it is possible to make a radio do a lot of things it should do at low cost if the designer exercises his ingenuity in that direction. The receiver described on p 80 of this issue is a good example.

Many A Truth is spoken in jest. Rueful laughter greeted the recent remark of a prominent industry leader at a technical meeting to the effect that too many managers in the radio business hire engineers for the mere purpose of adapting new RCA and Hazeltine Lab circuits to production and sales requirements.

Receiver Manufacturers licensed by RCA total 154. Hazeltine has 130 on the books.

Wire Recordings can be duplicated in quantities, much like movie films. At least one company is known to be experimenting, with the object of developing a system which will permit many copies to be made simultaneously from one master. If it works out economically, and it looks as if it would, wire will ultimately be much more competitive with disks.

Induction Heating applications have sometimes dictated the use of tube-generated r-f and sometimes called for power generated at a lower frequency by rotating machines. Each method has had its field. Now we hear that there may be a wedding between the two. It seems that certain applications, such as the surface-hardening of

July, 1947 — ELECTRONICS
MUSICALLY . . . The Tuned-Ribbon message in a few words . . .

"Startlingly Realistic"

One of the many superlatives used by Electronic Industries magazine* in an editorial describing this new development. It brings to reproduced music something that was not there before.

TECHNICALLY . . . The Tuned-Ribbon Reproducer actually meets the long sought for theoretical ideal of —

- Near-zero mass
- Linear response to 15 k.c.
- Practical output (about — 30 db)
- Point Pressure 14 grams
- Jewel point
- NO torsional action

*TUNED-RIBBON Pickup model STUDIO-81
(actual size — special arm not shown)

*Send for complimentary reprint of this editorial

AUDAK COMPANY
500 Fifth Avenue
New York 18
CREATORS OF FINE ELECTRO-ACOUSTICAL APPARATUS SINCE 1915

www.americanradiohistory.com
special devices

such as fishing reels, timing devices, control motors, etc. often require small gears with specially designed teeth.

Beaver Gear engineers are trained to assist you in the design and application of these gears. In our modern plant, craftsmen—with many year’s experience in manufacturing gears—work with the latest type of equipment to assure you of receiving gears machined precisely to your specifications.

We invite you to submit your prints for quotation without obligation.

Spurs, Helicals, Straight Bevels, Sprockets, Racks, Worms, Worm Gears, Thread Grinding Complete Gear Trains

MEMBER OF

Write Today for this FREE BULLETIN

Describes Beaver Gear’s facilities and methods; also includes table of gear tooth parts.

Beaver Gear Works Inc.

1021 PARMELE STREET, ROCKFORD, ILLINOIS

BUSINESS BRIEFS (continued)

gears, might be handled more economically by preheating with a low frequency and then switching to r-f.

Television Receivers bearing nationally-known trademarks are not necessarily made by the companies whose names they bear. Some are bought from other manufacturers, much as private-brand radios are contracted for.

In the initial stages of the business at least, it is likely that this practice will be widespread. There are a number of advantages, not the least of them being the fact that buying rather than building ducks the very considerable investment in engineering, production, and testing apparatus that would otherwise be necessary.

Cathode Ray Tubes for television represent a possible bottleneck in the rapid development of the art, so much so that engineers from competitive companies are finding the welcome-mat out at RCA’s Lancaster plant, where a semi-automatic e-t tube production line is in operation. Copying of the mass-production technique is thus encouraged. For awhile at least there should be more than enough business for all.

Receiving Tube Production was, as predicted back in February, substantially in balance with demand in the Spring. Now the pendulum has swung the other way and there is an oversupply of most types. Reason is twofold; wartime increase in tube production capacity and consumer resistance to high-priced radios.

About 1,000 Models are turned out by radio receiver manufacturers in the average year, regardless of how many manufacturers there are in the field, according to Howard Sams of Photofact Service. He ought to know, since his organization must be set up to check the circuit of each new set, and has done a lot of research on the subject.

Incidentally, Howard says that few sets that find their way into the field have precisely the circuit,
or precisely the components, that manufacturers' circuit diagrams say they have.

Electronic Navigation Aids such as loran are attracting considerable attention among geophysical people. Companies searching for oil, particularly, need some method of marking the spot where the body is buried, especially if it happens to be buried beneath the sea. Electronic equipment developed during the war seems ideal for the purpose. More about it in our feature pages soon.

Aviation Communications on 121.5 mc are temporarily stymied by lack of equipment. We understand that vhf gear suitable for use in aircraft is now beginning to come off production lines, however, and that the bottleneck will probably be broken before winter.

Instrument Landing Systems used by the AAF during the war totalled roughly 200. Some 50 of them have been relocated at Airforce Fields in the United States.

Latin American Countries will purchase approximately $17,000,000 worth of American radio receivers in 1947, according to the Department of Commerce.

We Understand that South Americans have developed a distinct aversion to surplus goods, won't touch it with a 10-foot pole. IRC's Harry Ehle, who has just returned from a tropical business trip, says they have been burned by all sorts of trick merchandise and are now twice-cautious.

We Hear That the IRE will rent Grand Central Palace in New York next year, from March 17 to 30 if those dates are open. More in our "News of the Industry" department if and when it becomes official.

Story Of The Month is the one about the manufacturer that ducked a patent by turning out a cheap timer for hotel quarter-in-the-slot radios. Slick bellboys discovered a way to turn them on with a nailfile, sold this technical information to guests for 15¢.

With a STABILINE type IE Voltage Regulator in the power line, electrical apparatus is assured of constant voltage. Regardless of line changes — rapid fluctuations or slow variations — the delivered voltage is held to within ± 0.1 volts of the preset value. Typical are the performance curves of type IE5101. Although the input line voltage may vary from 95 to 135 volts, the preset output voltage is stabilized to well within ± 0.1 volts.

Fluctuating line voltage is just one problem of many in maintaining constant voltage. Others are varying frequencies, loads, power factors together with waveform distortion. An investigation of the STABILINE type IE will show, in addition to stabilization of ± 0.1 volts, such characteristics as . . . waveform distortion never exceeding 3 percent . . . regulation to within ± 0.15 volts for any load current change or load power factor change from lagging .5 to leading .9.

Write Superior Electric, 887 Laurel Street, For Information and Literature

THE SUPERIOR ELECTRIC CO
Bristol, Connecticut

Powerstat Variable Transformers • Voltbox A C Power Supply • Stabiline Voltage Regulators.
Two New Single or Double Section Switches...

...of Space Saving Design and Mallory Precision Quality

...Yet They Cost No More!

Where space is a factor—dependability essential—low cost a prerequisite—the Mallory RSA-50 and RSA-60 switches fill the bill!

These new circuit selector switches, with section and terminal design identical to that of the famous Mallory RS-50 and RS-60 switches, are designed for band and tone control switching in radio receivers and other electronic applications where medium and low torque indexing action is desired.

The index assembly is of durable design and constructed with a minimum of parts—affording dependable service life with low torque and positive indexing action.

Note these many features, inherent in all the Mallory RS series, which contribute to the dependability and quality of these two new additions to the line:

- Insulation of high-grade, low-loss laminated phenolic.
- Terminals and contacts of special Mallory spring alloy, heavily silver-plated to insure long life at low contact resistance.
- Terminals held securely by exclusive Mallory two-point fastening—heavy staples prevent loosening or twisting.
- Double wiping action on contacts with an inherent flexing feature—insures good electrical contact with the rotor shoes throughout rotation.
- Six rotor supports on the stator—insure accurate alignment.
- Brass rotor shoes, heavily silver-plated—insure low contact resistance.
- All shoes held flat and securely to phenolic rotor by rivets—prevents stubbing—insures smooth rotation—minimum of noise in critical circuits.

The RSA-50 and RSA-60 are both available in one or two section construction. The RSA-50 accommodates up to twelve terminals on either side of the section and provides from 2 to 6 positions. The RSA-60 accommodates up to ten terminals on either side of the section and provides from 2 to 5 positions. The RSA-60 has the narrow section design—ideal for under chassis mounting, where space saving is paramount.
MIXED . . . Our feelings were mixed indeed when we received in the same month two announcements from the same manufacturer of measuring equipment. One praised a newly-offered device because it did not use any vacuum tubes or other components having limited life. The other stated that another device was available having a tube conservatively operated for long life. Take your choice, limited life or long life. Both available.

This confusion points up a recurring problem in industrial uses of tubes. Tube life is still a bugaboo; it still scares too many customers who should know better. Long-life tubes are available, and conservative designs are well understood and widely employed. Tubes are used, by and large, only when they serve a purpose not otherwise obtainable with equal ease or economy. If the design is right, the device may be used without concern about tube life. If it's not right, don't buy it.

PRIVILEGE . . . Since May first last, owners of television sets served by the Norwich, Connecticut, municipal power plant have been required to pay $1.26 net extra on their electricity bill each month, not for juice (which is charged for as usual), but for the privilege of having a set connected to the system. This is, as yet, a minuscule threat to the television industry, but it is a prime example of how misinformation can get worked into the rate schedule of a public utility. The extra charge was worked out by a reputable firm of consulting engineers on the following thesis: A television set requires about five times as much power as the average radio set. It is used primarily at night. When an outstanding program is available, all the video sets are turned on, and the demand on the electric system goes up, at a time when the lighting load is already high. So extra load capacity must be provided to take care of the television sets. This capacity costs money and must be paid for, preferably by the television set owner.

So far, the argument makes some sense, or will when everyone in Norwich has a television receiver and gangs up on the power company all at once, an event several years away by any count. But the large charge of $1.26 gives us cause to wonder how it was figured out. And our wonder is increased when we hear that a large part of the charge is for demand capacity taken by 500 to 1,000 watts of extra lighting which, the consultants claim, will be turned on only when the television set is working. This is certainly a new idea to members of the television audience, most of whom have been busy turning lights off before sitting down for television entertainment. The consulting firm claims that the new television sets will have pictures so bright that the viewer cannot stand to view them without brightening up the room some 500 to 1,000 watts worth. Whew! The new picture tubes are bright all right, but they are operated at peak brightness only when sunlight streams in the windows and it is inconvenient to draw the shades. At night, the televiewer adjusts the brightness control to suit the normal room illumination. True, he doesn't have to turn off any lights. But, by all that's holy, he doesn't have to turn any on. Viewers in Norwich are advised to look for real estate across the town line. Or better yet, invite the power company manager in to see the ball game (night game, that is).

AD . . . A 50-kw broadcast station recently advertised in a Boston paper that it was "New England's Most Powerful Station" basing this claim on its allocation to a low-frequency channel. The ad goes on to explain, "The lower the position on the dial, the more power per watt." We wonder whether the power companies know about this. A 60-cycle watt, by this rule, ought to be a pretty powerful hunk, and ought to cost more in proportion. But a watt's a watt for all that, whether wiggling fast or slow. The slow ones just last a little longer, especially over the rocky soil of the Pilgrim fathers.
A New Approach to F-M/A-M Receiver Design

An eight-tube double superheterodyne, with one of the local oscillators crystal-controlled, achieves unusual selectivity, sensitivity and low noise on broadcast, shortwave and f-m bands, with a minimum of components.

FIG. 1—Simple chassis layout speeds production

For years the complaint has been heard that there have been no new ideas in the design of broadcast and shortwave receivers. The editors of Electronics were resigned to this state of affairs when Mr. B. V. K. French, who qualifies as a neutral observer, called their attention to a radio receiver incorporating many unusual engineering techniques. This receiver is the model 86CR produced by the Crosley Division of the AVCO Corp. Thus encouraged, the editors approached the Crosley organization for full details, which were graciously supplied and are herewith presented.

The receiver, chassis views of which are shown in Figs. 1, 2 and 3, is an eight-tube double superheterodyne which covers the broadcast band, a bandspread shortwave band including the 25 and 31 meter regions, and the f-m band. The aim of the design was to produce a "hot" receiver, that is, one having very high sensitivity and low noise on all bands, free from spurious responses, using a minimum of component parts, simple enough to be produced on a high-speed line, and stable enough to satisfy consumer requirements, particularly with respect to tuning.

The sensitivity on the various bands is illustrated in Fig. 4. One watt of audio power, using the RMA standard input signal (modulated 400 cps, 30-percent a-m or 22.5-ke deviation f-m), is obtained with an average input of 20 microvolts on the f-m band, 3.7 microvolts on the a-m shortwave band, and 2.5 microvolts on the a-m broadcast band.

The noise output at full audio gain, shown also in Fig. 4, is below 35 milliwatts on shortwave, and it is suppressed by a 20-microvolt input signal; on a-m broadcast using a built-in loop the noise does not exceed 500 milliwatts even with very weak input signals, and is suppressed by a 200-microvolt input signal. On f-m, the noise has the unusually low figure of 1 to 4 milliwatts independent of input. This value is so low that, in tuning from one station to another in the f-m band, no hiss is heard between stations unless the audio gain is wide open.

Freedom from spurious responses, so necessary in a highly sensitive receiver, is obtained without employing an r-f stage. Instead, the necessary selectivity against such responses is obtained, in the a-m bands, by a double superheterodyne circuit. The selectivity achieved by this arrangement is shown in Fig. 5. The response curves have a bandpass shape which maximizes the ratio of audio fidelity to selectivity. The receiver was not designed for the highest possible...
fidelity, since high selectivity was considered more essential for nighttime listening on the a-m services. High selectivity is also achieved on the f-m band. Figure 6 shows the bandpass of the 10.7-mc intermediate frequency for f-m (a conventional single superheterodyne circuit is used for f-m). The humps of this curve, separated 150 kc, are positioned so they fall on the humps of the discriminator characteristic, the combination of the two curves producing a linear detection characteristic with steep skirts (Fig. 7). As a result, the gain of the i-f stages and the voltage output of the discriminator are higher than normal, and the selectivity is greater than can be achieved with the same components conventionally tuned. No limiter is used.

Low noise is achieved on all bands by cave in front-end design and is preserved by the use of a 6AC7 high-gm converter. On the f-m band, the input circuit is an electrostatically shielded “hairpin” inductively coupled to center-topped coils, as shown in Fig. 8. The balanced circuit arrangement reduces any reradiation from the local oscillator. On the broadcast band, a low-impedance loop antenna is used, composed of a single turn of two-conductor 75-ohm polyethylene-insulated transmission line, cross connected to produce two turns.

Switching of bands is accomplished with but two switch wafers, as shown in Fig. 14. Perhaps most indicative of the extent to which parts have been eliminated is the tuning capacitor, shown in Fig. 9. This comprises but two variable sections, a split-stator unit (with copper stator plates) for local oscillator tuning, and a conventional section for tuning the broadcast-band loop.

No tuning is used in the antenna circuits for shortwave and f-m services. These input circuits are designed as broadband fixed-tuned circuits which accept the whole band. The bandpass characteristic of the antenna input circuit for the f-m band is shown in Fig. 10. As shown, the band from 88 to 108 mc is contained within this curve, with voltage gain ranging from 0.2 at the band edges, to 1.4 and 0.9 respectively at the two peaks. A similar curve for the shortwave input circuit covers the range from 9.2 to 12 mc, with voltage gains ranging from 4 to 40 over the band.

Although these variations in gain introduce corresponding variations in selectivity over the s-w and f-m bands, the overall sensitivity at the lowest points is still well above the usual performance, and the saving in component and assembly cost due to the elimination of an extra capacitor gang and switching is well justified. The overall sensitivity as a function of frequency in each band is illustrated in Fig. 11.

Further simplification in switching is obtained by the use of an unusual local oscillator circuit. The two halves of the split-stator capacitor, Fig. 9, are connected in series for tuning the f-m band, thus producing a low capacitance (about 29 µf) which tunes the single-turn silver-plated oscillator coil, shown at the front in Fig. 9. Soldered directly at the ends of this turn is a temperature-compensating 53-µf ceramic fixed capacitor.

The solid mechanical structure of this assembly, the high-capacitance design, plus the temperature compensation produce a highly stable oscillator. Drift is less than 20 kc under all normal operating conditions. The set may be tuned to any f-m channel from a cold start and requires no further retuning.

For tuning the shortwave and broadcast bands, the split-stator unit is connected in the parallel connection and additional induc-

FIG. 2—Dial panel and chassis of the receiver

FIG. 3—Layout of components provides short leads for high frequency bands
tances are switched to the center tap of the single-turn coil. Both local oscillator connections form Colpitts circuits, and the change from one to the other requires only two switch points. The local oscillator feeds 2.5 volts to the converter.

The second local oscillator, connected by the switch when in the shortwave and broadcast positions, is a crystal oscillator circuit, which requires only two components in addition to the tube, the crystal itself and a fixed resistor. The crystal, operating at 5,992.5 kc, is a hermetically sealed unit, shown in Fig. 12. This unusual mounting, derived from similar housings used in high-quality paper capacitors, offers high stability and low cost (the cost of the crystal and assembly is well under one dollar). When the set was first designed an ordinary tuned-circuit was used in the second local oscillator but this proved difficult to adjust, both in factory alignment and in field servicing. Even a minor shift in the second local oscillator frequency would so disturb the tuning as to make alignment of the first local oscillator very difficult. The adoption of the crystal-controlled circuit solved these problems at a stroke, and the alignment is now no more difficult than that of a conventional single superheterodyne.

Tube Lineup F-M A-M

Block diagrams for the f-m and a-m connections are shown in Fig. 13. In the f-m position of the wave-change switch, the first tube is the mixer, type 6AC7 with bandpass tuning. It offers the unusually high conversion gain of 40 times. The local oscillator, one half of a 7F8 double triode, is tuned through the range from 98.7 to 118.7 mc. This places the intermediate frequency at the usual value, 10.7 mc, for f-m service. The two following tubes, type 6SG7, act as i-f amplifiers, with a gain of 50 per stage. Following is a 6H6 double diode in a conventional Foster-Seeley discriminator, adjusted for 12 volts output per volt input to the discriminator with 22.5-kc deviation.

The audio output is passed to the triode section of a 6SQ7 diode-triode and thence to a 6V6 beam power output stage. Maximum power output is 8 watts.

For a-m service the double superheterodyne connection, shown at the bottom of Fig. 13, is used. The 6AC7 converter (now the first mixer) displays a conversion gain of 20 times in this circuit. The first local oscillator signal is injected into the first converter from the same local oscillator as in the f-m case, which is now switched to produce frequencies 5,825 kc higher than the incoming signal. Thus the first i-f frequency is 5,825 kc.

The 5,825-kc i-f signal is passed to the first of the 6SG7 tubes, now switched to operate as a second mixer, with a conversion gain of about 50 times. Mixed in this stage is the second local oscillator frequency, 5,992.5 kc, obtained from the crystal oscillator in the second section of the 7F8 double triode.
The difference frequency of 167.5 kc is amplified in the second 6SG7 tube with a gain of 175. This i-f signal is then demodulated in the diode section of the 6SQ7, and the resultant amplified at audio by the same circuits as in the f-m case.

Circuit Details

The complete circuit diagram of the model 86CR receiver is shown in Fig. 14. Consider first the broadcast band, in which position the wave-change switch is shown. The loop and loading coil, tuned by the larger of the two ganged capacitors, (Fig. 9) are connected to the wave-change switch (rear of section 1, tap 7 and tap 10) to the grid of the first mixer. The loading coil acts as a 5,825-kc trap.

The local oscillator operates at broadcast frequency plus 5,825 kc, by virtue of the connection through taps 2, 3, and 5 on the front of wafer section 1. These connect coils 15 and 16 and capacitors 56 and 130 between the grid and plate of the first local oscillator. The local oscillator tuning capacitor has its two sections (28B) connected in parallel by the single-turn coil (24) which acts as a short circuit at the local oscillator frequencies from 540 to 1,600 kc, plus 5,825 kc.

The intermediate frequency thus developed is passed by the first mixer to the 5,825-kc i-f transformer (coils 11, 19, and 19). The capacitors shown immediately below are connected, by the front and rear sections of wafer section 2, across the input and output coils of this transformer, thus tuning them to 5,825 kc. The link coupling (20) between coils 11 and 19 is also tuned to this frequency, so the whole transformer acts as a four-circuit transformer, having a double-humped bandpass curve.

The output of this transformer is passed to the second mixer. The second local oscillator, its plate energized through tap 1 of the front section, wafer 2, oscillates at 5,992.5 kc and its output is capacitively coupled through the rear section of wafer 2, to the grid of the second mixer, thereby developing the second i-f of 167.5 kc. This signal is passed through a dual-purpose i-f transformer which passes either the 167.5 kc or the 10.7 mc i-f, without switching, by virtue of the tuned circuits in series. The upper pair of circuits in the diagram are effectively short circuits at 167.5 kc, so only the lower pair operate. The 167.5-kc i-f is thus passed to the 6SG7 amplifier and thence to another dual-purpose coupling unit. The lower units are resonant at 167.5 kc, while the upper units (the 10.7-mc discriminator primary coil) is effectively a short circuit.

The 167.5-kc coupling unit passes the signal to the diode of the 6SQ7, where it is detected and passed, through the rear of wafer 2, to the triode section of the same tube. The tone control in the plate circuit of this triode is an unusual two-section unit, consisting of two isolated resistance segments, one across a capacitor in the bass-compensating

FIG. 7—Overall characteristic of the f-m i-f channel at 50 microvolts input

FIG. 8—The balanced antenna transformer employs electrostatic shielding

FIG. 9—Front-end tuning assembly. The single-turn coil permits use of a high-C oscillator for the f-m band
FIG. 10—Bandpass characteristic of the antenna input circuit in the f-m position. The band from 88 to 108 mc is covered without tuning, and with unusually low noise level, by a high-gm pentode converter stage.

FIG. 11—Overall sensitivity curves as functions of frequency over the three bands. The variation in sensitivity over the f-m band is due to the bandpass characteristic shown in Fig. 10.

volume-control circuit, the other in series with a capacitor to the triode plate for attenuation of high audio frequencies. This arrangement provides an unusually wide range of tone control action with minimum use of parts.

In the shortwave position, the wave-change switch is rotated one tap clockwise. This disconnects the broadcast loop antenna, and connects in its place the shortwave bandpass (untuned) circuit, through taps 8 and 10 of the rear section, wafer 1, to the grid of the first mixer. The shortwave input circuit is connected to the center tap of the f-m input circuit primary, thus using the built-in f-m dipole and its transmission line as a T antenna for shortwave pick-up. The change from tap 3 to 4 on the front of wafer 1, removes section 15 of the local oscillator, thus shifting its frequency higher, so that it tunes from 9 to 12 mc, plus 5,825 kc.

In the f-m position, the wave-change switch is rotated clockwise to the next tap. Wafer 1 of the wavechange switch disconnects the shortwave coil, and connects the secondary of the f-m antenna coupler to the mixer grid. The coupler consists of the single-turn hairpin primary, coupled to the 70-ohm transmission line and dipole, the latter mounted in the cabinet. The shortwave primary now serves as an i-f trap for 10.7 mc. The hairpin is electrostatically shielded from the balanced secondary coils.

The local oscillator voltage is injected at the center tap of the coil, by virtue of the connection between taps 12 and 1, on the front of wafer section 1. Other taps on the same wafer remove coils 15 and 16 in the local oscillator circuit. The single-turn local-oscillator coil resonates at the f-m station frequencies plus 10.7 mc, and the split-stator capacitors, 28B, automatically assumes the series connection, without the necessity of switching. The plate voltage for the second local oscillator is disconnected in the f-m band position, since its output is not used.

The output of the mixer, the 10.7-mc i-f signal, is passed to the same i-f transformer as in the broadcast and shortwave positions. In the f-m position, however, capacitors 61, 52, 53 and 62 are disconnected.
and capacitor 123 (shown to left of the front portion of wafer section 2) becomes effective between the input and output of the i-f transformer. These changes tune the transformer to 10.7 mc. Coil 20, at 10.7 mc is effectively an open circuit, and the link coupling between the input and output coils becomes aperiodic.

After passage through the 6SG7 first i-f amplifier, the 10.7-mc signal is passed through the second i-f transformer, which transfers from 167.5 kc to 10.7 mc operation without switching. In the f-m position, the upper tuned circuits of this unit (80 and 81) are resonant at 10.7 mc, while the lower circuits in effect constitute short circuits (being tuned to 167.5 kc). This transformer preserves the double-humped response characteristic.

The signal then passes through the second 6SG7 i-f amplifier to the discriminator transformer. The audio output of the discriminator is switched by the rear of wafer 2 to the grid of the 6SQ7 audio tube, and thence to the power output stage.

The audio fidelity on f-m is the same as on a-m. This is one of the few design decisions with which this reviewer would disagree. The explanation given by the designers is that an extension of the higher frequency range, desirable as it might be in f-m service, would require more power output for low audio frequencies than is available from the chassis.

In view of the desire to secure high sensitivity and low noise at the lowest possible cost, the upper audio frequencies are substantially attenuated. Audio output as high as 8,000 cps is audible when the tone control is in the mid position, but the receiver is not flat to this level.

The 86CR receiver design was conceived and directed by John D. Reid, manager of research and development of the Crosley Division. Messrs. Bass, Cohen, Holat, Kilgour and Sweeney, engineers of the Division, made substantial contributions and did the actual development work.—D.G.F.

![FIG. 12—Simple construction of the hermetically sealed quartz crystal unit. Little more than an inch long, it mounts like a paper bypass capacitor](image)

![FIG. 13—Arrangement of the stages for f-m and the two a-m bands](image)

![FIG. 14—Complete circuit of the Crosley model 86CR receiver. The band switch is in the b-c position. s-w, f-m, and phono are successively clockwise](image)

ELECTRONICS—July, 1947

85

www.americanradiohistory.com
By E. L. DEETER
and W. K. DAU
Naval Ordnance Laboratory
Washington, D. C.

INTERVAL TIMER

Timing periods in 0.1-second increments for the range 0.1 to 100 seconds can be set up on direct reading dials. The period depends upon reduction of control-tube bias by discharge of an RC circuit. High accuracy is attained using standard parts. A power relay in the output handles 15 amperes.

In many instances it is desirable or necessary to control automatically the operating time of electrical devices. This is especially true when the time interval is to be of short duration. The high resistance required in a conventional type of RC circuit to obtain a useful range of time periods is, however, a disadvantage. When used in photographic darkrooms where a highly humid atmosphere exists, leakage over insulation surfaces of the circuit will greatly affect the calibration and operation. It is therefore desirable to increase the maximum time interval without increasing the size of the RC elements.

The timer to be described has proven itself reliable and has operated accurately over long periods of use. In the laboratory it has been used to furnish the timing cycle for such operations as induction soldering, photographic enlarging, and contact printing. The timer, which furnishes periods in 0.1 second increments from 0.1 second to 100 seconds, is built around a straightforward circuit, incorporating some interesting features.

Basic Timing Circuit

The schematic circuit diagram shows that the control grid is normally supplied with a small bias voltage. The value is low (about 2 volts), and is variable for calibration purposes. Operating with 150 volts on the plate, the tube resistance is such as to cause the relay to close during the nonoperating period of the instrument. During this period the charge on the RC-circuit capacitor C, will be low and always less than that bias which allows the relay K, to drop out.

A double-pole single-throw transfer switch S, initiates the timing interval. The switch is momentarily held over to place the capacitor across the regulated d-c supply of 150 volts, and then released to the normal position as shown. This action places a negative bias of 150 volts on the control grid of the 6V6 tube. The primary relay K, then opens to start the timing interval and C, begins to discharge through the timing resistors shunting the capacitor. The primary relay is adjusted to close when the current through the coil is about 6 milliamperes. This value results when the control grid bias is approximately 7 volts. The maximum resistance of the RC circuit is about 10 megohms and the capacitor is 3 µf, resulting in an RC constant of 30.

The timing period corresponds to that obtained in a more conventional circuit with an RC constant of 100, and is realized because the timing cycle is dependent on the decay voltage of C, The time required for the initial 150-volt potential of C, to decay to the required 5 volts (grid bias is the sum of the emf across the 6V6 cathode resistor and potential across C,) is derived from the following equation.

\[t = \frac{RC \ln E/e}{1} \]

Where \(t \), decay time in seconds to obtain e; \(RC = \) time constant, megohms x capacitance in microfarads; \(E \), initial charge on capacitor; e, final decay voltage of interest; and ln, natural log.

Schematic circuit diagram of the timer. The period is controlled by reduction of bias on the tube. Power is handled by the second relay Ken.
Substituting values shown in the circuit diagram, \(t = 10 \times 3 \ln \frac{150}{5} = 102 \text{ sec} \).

An examination of Eq. 1 shows that the timing circuit depends not only on the RC constant but also the initial potential of the capacitor, which may be further increased to obtain greater time periods. Another advantage of this circuit is the fact that the timing interval will always terminate. Leakage will shorten the timing period, rather than prevent its termination—a preferred condition.

Relay Switching

Another problem to be considered when dealing with these types of timing circuits is that concerning the relays. The system shown exhibits none of the faults associated with several previous circuits investigated. Relay \(K \) is a miniature type and operates on a current of about 20 milliamperes. The coil resistance is 1,500 ohms. The power relay operates from 115 volts a-c and draws about 4 watts. The contacts on this relay are rated at 15 amperes, noninductive load.

The circuit operates as follows: when the timing cycle is initiated, no current is flowing through any set of contacts on \(K \). After this relay has opened, one set of contacts connects the coil of the power relay \(K \) to the 115-volt a-c supply. One set of contacts on \(K \) closes to connect the external circuit. The other set of contacts on this relay locks in the relay by connecting its coil to the a-c line in series with a 200-ohm resistor.

After this operation most of the current is removed from the contacts of the primary relay, preventing arcing of the inductive load as the armature pull increases to end the timing cycle. As the primary relay closes, one set of contacts shorts the coil of the secondary relay to open it and break the lock-in circuit. During this fraction of a second the 115 volt a-c supply is across the 200-ohm resistor.

It should be noted, in the above switching program, that the currents in the primary relay contacts are zero or very small on breaking sequences. All heavy currents are handled on contact make, when contact pressure is maximum, this fact insuring long life and trouble-free operation to the system.

Choice of Components

Precision resistors accurate to plus or minus 1 percent have been used in the model shown. After a 15-minute warmup, the timer operates with an accuracy of plus or minus 2 percent or better. Another model constructed with standard metallized resistors gave a resulting accuracy within plus or minus 5 percent.

The timing capacitor \(C \), must have a high resistance. Two commercial types found practical and inexpensive were a Tobe Filtermite rated at 3 pF, 600 volts d-c and a similar unit manufactured by Cornell-Dubilier.
The simultaneous operation of the visual and aural signals from the television transmitter into the antenna. The Superturnstile antenna has an input impedance characteristic which is sufficiently broad for the f-m transmitter to be readily coupled in through a triplexing arrangement.

Superturnstile Radiator Theory

The turnstile type of antenna consists of crossed pairs of radiators, each being approximately a half-wave in length. The pairs are mounted at 90 degrees as in Fig. 1 and fed in quadrature with currents that are equal in magnitude but 90 degrees apart in phase.

The field in any direction from either of the radiators is approximately proportional to \(\sin \alpha \), where \(\alpha \) is the angle from the radiator. Thus, the maximum radiation from radiator E-W is transmitted in the north and south directions (where \(\sin \alpha \) is unity), while no field is transmitted from radiator N-S. Similarly, maximum radiation from radiator N-S is transmitted in the east and west directions, while none is transmitted east or west from radiator E-W.

In the northeast direction, the transmitted field is the resultant of radiation from both sets of radiators. Here \(\sin \alpha \) is 0.707 for each; these are added in 90 degrees quadrature since the currents are in quadrature, so the resultant is unity. For 30 degrees and 60 degrees the values added in quadrature are 0.5 and 0.866, again giving unity. Similarly, for other angles and other quadrants the radiated field is also close to unity.

Radiator Construction

The basic Superturnstile radiator consists of an open framework of steel rods and tubes, with dimensions as shown in Fig. 2. Two of these radiators mounted at right angles on a tubular supporting steel pole form a radiating system that has a pattern and gain equivalent to two parallel dipoles spaced a half wavelength apart.

A pair of Superturnstile radiators may be considered as a large plane surface containing a slot. Figure 3 shows a flat conductor of large area, with a rectangular slot approximately a half-wave long. A generator \(G \) applies a-c voltage having an instantaneous polarity (as shown by the plus and minus signs) to the two terminals. Set up along the sides of the slot, a voltage will have a magnitude as represented by the distance of the dotted lines from the sides of the slot. The ends of the slot will be

TRIPLEX ANTENNA

FIG. 1—Horizontal plane through radiators connected in turnstile arrangement

FIG. 2—One pair of Superturnstile radiators mounted on steel pole. Other pair is at right angles to these, using same pole brackets

July, 1947 — ELECTRONICS
FOR TELEVISION AND F-M

Method of using a single four-bay Superturnstile antenna for simultaneous operation of an f-m transmitter and visual and aural transmitters of a television station, with power gain of 6.4 for f-m and 5 for television. Coupling between transmitters is negligible at ground potential. Currents will flow in the plane surface with a magnitude and instantaneous direction at the sides of the slot approximately as shown by the arrows. These currents will flow on both sides of the plane surface and will radiate equally on each side. This condition will be unaffected by openings in the plane surface as long as these openings are small compared with a wavelength.

Radiator Feed

The radiators (Fig. 2) are mounted so that contact to the supporting pole is made at places of zero potential, hence are attached directly without the necessity of any sort of insulator. The feedline for a pair of radiators is brought from the pole onto the radiator over one of the two connecting brackets. At the center of the radiator, the feedline is brought around the pole, half way to the other radiator. The inner conductor connects to the other radiator through a cross-connection strap. Thus, with the outer conductor of the feedline connected to one radiator, and the inner conductor to the other radiator, a balanced feed results. The only insulation needed is that of the end seal on the end of the feedline.

The antenna described has four identical Superturnstile radiator sections. With these, the television power gain is approximately 5, and the f-m power gain is approximately 6.4 as compared to that of a half-wave dipole (without allowance for transmission line loss). The f-m gain is higher because the height in wavelengths is greater for frequency modulation than it is at the television frequency.

Transmission Line

The transmission line between transmitter room and antenna consists of a pair of 3½-inch, 51½-ohm coaxial lines designed with conductors and insulators in accordance with RMA recommendations. Special design precautions have been taken to make certain that the lengths of line can be coupled in a satisfactory manner, and to eliminate electrical discontinuities at elbows and connections.

The 20-foot lengths of line are supplied with flanges brazed in place. These flanges are bolted together to join sections of line at installation, using O ring gaskets to keep the line pressure-tight. Differential expansion between the steel tower and the copper outer

By L. J. WOLF Engineering Products Division, RCA Victor Division Radio Corporation of America, Camden, New Jersey

FIG. 2—Currents and voltages in the region of half-wave slot in large conducting plane simulating Superturnstile

Triplexing unit in transmitter room, showing the half and quarter-wave stub sections of coaxial line that are used to keep the signals in their proper paths.
The diplexer is discussed in this article. In the fundamental diplexing circuit of Fig. 4A, the resistors represent the loads due to the radiators N-S and E-W respectively. The visual power amplifier feeds push-pull to terminals T. The aural power amplifiers feeds via a single-ended line through reactances X to terminals T. The two transmitter sources are uncoupled from each other as long as the two loads and the two reactances are equal respectively. Thus, no cross-feed between transmitter sources will exist, even for modulation sideband components which are nearly identical in frequency.

The physical realization of the bridge circuit is indicated in Fig. 4B. Each connection line represents the inner conductor of a coaxial transmission line. The outer conductors are not shown except for the cylindrical balun sleeve on the connection to the visual transmitter. The visual transmitter feed is single-ended, hence is changed to a double-ended feed by means of this balun. The visual feed is push-pull at terminals T, whereas the aural feed is push-pull at these same terminals. Loop L represents the extra quarter-wavelength of line that provides the quadrature feed of the E-W radiators with respect to the N-S radiators.

Elements X are transmission lines which are each a quarter-wave long at the midvisual frequency, which totals a half-wave in length. This length of a half-wave on terminals T shunts a high impedance across the visual input circuit. Conversely, terminals T are at the same potential with reference to each other at the aural frequency, hence no aural power can couple into the visual transmitter input.

This bridge-type circuit is particularly useful for coupling the visual and aural power amplifiers since the transmitter frequencies are quite close together. The reactance of the circuit elements changes very little from one frequency to the other, hence has no serious detuning effect on either power amplifier.

Tripleplexing System

The triplexing unit allows the power from the f-m transmitter to be coupled onto the line to the antenna, with the correct phase relationships, without cross-coupling to the television transmitter. Since the television and f-m frequencies

Diplxing unit in transmitter room. Larger lines bring in power from visual and aural power amplifiers, while two smaller lines go to antenna via triplexing unit.
are separated by a greater percentage than are television visual and aural frequencies, frequency-selective circuits are used in the triplexer.

Figure 5 illustrates the fundamental triplexing circuits used. The television transmitter TV feeds the antenna load directly as in Fig. 5A, with two half-wave circuits H, connected to the main line through two quarter-wave circuits q which are separated a quarter-wave apart along the main line. Each branch (consisting of an H and a q in series) is three-quarter-wave long, hence presents a high impedance to the main line. The characteristic impedance of these branch line elements is chosen so that this high impedance is presented to the main line over a band which is at least six megacycles wide.

The circuits associated with the f-m transmitter are added as in Fig. 5B. Circuits H are extended by stub sections h. The lower h stub is adjusted so that the combination of reactances presents a low impedance, or short-circuit at terminal S at the frequency of transmitter F-M. The upper h stub is adjusted so that the input impedance, looking to the antenna from F-M, is also matched at the f-m frequency. The voltage magnitudes under this condition are represented by the dotted lines.

Combined Diplex and Triplex System

In the complete system as used at stations WNBN and WRC-FM, a four-section Superturnstile antenna is used as shown diagrammatically in Fig. 6. The E-W and N-S radiators are fed from junction boxes JB. The feedlines from the junction boxes are all the same length, so the radiators will all be fed in phase. Each junction box assembly contains a series line transformer, to match the 51-ohm transmission line to the impedance of the four feedlines in parallel.

The twin transmission lines going down the tower are equal in length between the junction boxes and the triplexer so the phase relationship between lines, as established at the transmitter, will be maintained at the antenna. The lines are carefully installed so that the elbows in the two lines are equally spaced from the triplexer.

The triplexer is located in the transmitter room, with the two transmission lines passing through it to the diplexer. The internal circuit of the triplexer consists of matched pairs of transmission line elements.

The f-m feed into the triplexer divides as shown, with one side going through a phasing loop. This loop is a quarter-wavelength at the f-m frequency and provides the correct quadrature phase required to give a circular pattern from the turnstile antenna. Only the f-m feed is through this loop; the quadrature loop for television is separate. This arrangement provides a convenient method of maintaining the correct quadrature feeds for the two systems, even though the frequencies are different.

The diplexer terminates the two separate antenna transmission lines. One line between triplexer and diplexer is made a quarter-wave longer than the other at the television frequency. This quadrature length is separate from the f-m loop, hence sets the correct phase relationship for television independently of the f-m requirement.

The diplexer contains the visual input circuit, consisting of a single-ended circuit with a balun to convert to double-ended feed. The balun is suitably compensated to be broad-band so that it does not introduce any appreciable discontinuity over the television channel. The aural input circuit is single-ended and connects to a point where no visual voltage exists, so there is negligible coupling between visual and aural power amplifiers.

Acknowledgement is made to the members of the Television Broadcast Antenna Group of RCA Victor Division, who not only designed this equipment but also made it work, and to the engineers of the Radio Facilities Group of the National Broadcasting Company, who bore the brunt of getting the first equipment installed.
TONE BURST

The output of the trigger generator is applied to tone channels I and II, which are identical. Each channel contains two single-cycle multivibrators, designated as the delay multivibrator and the tone duration multivibrator.

The trigger from the trigger generator serves to start the delay multivibrator on its operating cycle. The duration of the cycle is variable by means of fine and coarse delay adjustments. The output voltage of this circuit is a negative rectangular wave, the leading edge being coincident with that of the trigger generator output and the trailing edge possessing the desired amount of delay.

The negative output waveform of the delay multivibrator is differentiated and negatively clipped to give at point 5 a positive trigger voltage that coincides in time with the trailing edge of the delay multivibrator output and will therefore be variable in delay with respect to the trigger generator output. This delay is adjustable from 0 to 2,000 milliseconds.

The delayed trigger is applied to the tone duration multivibrator and is used to initiate the operating cycle of this circuit. The output waveform of this multivibrator is a negative gate whose leading edge is coincident with that of the delayed trigger. The width of this gate is variable from 0 to 3,000 milliseconds by means of fine and coarse tone duration controls.

The output of the tone duration multivibrator is applied to a mixing circuit which has an additional input consisting of a continuous audio sine wave. The circuit is adjusted so that the sine wave can only appear in the output when the gate is present. By means of a d-c balance control all d-c components may be removed from this output so that it consists only of a burst of tone at a point above and below a zero reference level. The start of this tone may be delayed from the reference trigger, and the tone itself may be varied in duration.

The output of the mixing circuit in each channel is applied to a cathode follower in order that a low output impedance may be realized. The output of each cathode follower is applied to the channel mixer (a parallel T-pad network) which mixes the outputs of the two channels and provides approximately 10-dB attenuation in each channel. The output of this circuit therefore consists of the tone bursts of each channel, each of which may be independently varied in duration or delayed with respect to the other. The individual channel outputs may be obtained without mixing.

To obtain synchronous operation of the timer, provision has been made for synchronization of the repetition rate with either of the

Front panel of audio burst generator. Dials and switches serve as fine and coarse controls for repetition rate, channel 1 delay, channel 2 delay, channel 1 tone duration, and channel 2 duration. Jacks at top are for input and output of the two channels and for mixer output, to extend use of instrument

Rear view of generator. The required regulated power supply is on a separate chassis. Test point jacks at bottom of front panel permit extraction of the multivibrator voltages for other uses

In a long-range investigation of perception or understandability of code messages transmitted over communications systems, a signal generator was needed that would produce short bursts of two different tones, with the tone bursts independently controllable as to duration and spacing and with the repetition rates of the two tones synchronously related. With such a universal two-tone automatic electronic generator of code signals, complete control over all parameters that might affect intelligibility would be achieved.

To provide a source of these tone bursts, an electronic keying circuit was designed which would permit two tones to be independently turned on for variable time durations and at variable repetition rates. The four basic units in this audio timer are a trigger generator, two tone channels, and a channel mixer, arranged according to the block diagram in Fig. 1.

The trigger generator provides a synchronizing trigger voltage, variable in repetition rate from 120 per second to one in 20 seconds, which is used to start each of the tone channels on their individual operating cycles. The trigger voltage is derived from the output waveform of a balanced free-running multivibrator by means of a differentiating circuit, a positive clipper, and a phase inverter. The output is a positive trigger, which may be varied in repetition rate by adjustment of the multivibrator frequency. Waveforms at the various numbered points in Fig. 1 are shown in Fig. 2.
Four single-cycle multivibrators controlled by a free-running multivibrator serve as an adjustable electronic switch for cathode-ray oscilloscopes, generation of square waves, investigation of code intelligibility in communications systems, and general audio research.

By R. G. ROUSH
Systems Research Laboratory
The Johns Hopkins University
Baltimore, Maryland

Generator

two sine-wave input signals. The tone burst obtained from the channel whose input signal supplies synchronization will therefore be turned on and off at the same points in the cycle during each period of the repetition rate. By means of the delay and tone duration controls, these points may be selected at will, thus causing the gated tone to consist of any portion of a cycle or of any number of cycles as desired.

Trigger Generator Circuit

The multivibrator in the trigger generator circuit of Fig. 3 provides a reference timing voltage which can be varied in repetition rate from 120 cycles per second to 1 cycle in 20 seconds. It is a conventional free-running balanced multivibrator in which variable repetition rates are produced by varying the relaxation time constants uniformly in both grid circuits. The coarse adjustment permits the selection of four ranges of repetition rate by selecting four different values of capacitance in each grid circuit. Fine adjustments are made by equal variations in grid leak resistors R_1 and R_2, whose shafts are mechanically coupled.

The timing voltage is obtained from the plate of V_{1a} and is essentially of rectangular waveform. The negative drop in this waveform was chosen as the timing reference because a steep wave front is obtainable and, by use of R_3 and R_4 and proper circuit adjustment, the amplitude of this reference voltage can be made constant over the entire frequency range of the multivibrator. These resistors limit the minimum period of the multivibrator waveform on any one range setting to a value which is twice as great as the exponential rise time of the positive portion of the multivibrator output; in other words, the minimum value of $t/2$ in Fig. 2 is t_1, where t_1 is the exponential rise time and t is the period of the multivibrator. The plate voltage of V_{1a} therefore has sufficient time to reach its maximum value before conduction again occurs.

In order that the negative change be isolated from the remaining portion of waveform 1 in Fig. 2 to produce the timing reference, the multivibrator output is applied to an R-C differentiating circuit, a positive clipper, and a phase inverter.

When the input voltage to the differentiating circuit rises to the 218-volt condition, the cathode of V_{1a} is positively biased and prevents conduction. Capacitor C_1, therefore charges through R_2. When the negative drop occurs, the cathode of V_{1a} is lowered below ground potential by the amount of the drop, thus permitting C_1 to discharge through the additional path offered by the d-c resistance of V_{1a}, R_2, and R_4. The resulting waveform across R_4 is a negative trigger of approximately 11 volts amplitude, having a duration of 15 microseconds at the 4-volt level. This trigger is inverted and amplified by V_{2a}. The output of the trigger generator is therefore a positive trigger which may be

FIG. 1—Block diagram of complete electronic keying system for producing controllable short bursts of two different audio tones.

FIG. 2—Waveforms at various numbered points in Fig. 1.

ELECTRONICS — July, 1947
continuously varied in period from 8 milliseconds to 20 seconds.

Tone Channel Circuits

The delay multivibrator in the tone channel circuit in Fig. 4, used to produce a variable delay period between the trigger generator output and the start of an audio tone introduced at a later point in the circuit, is a conventional single-cycle multivibrator in which feedback is obtained through common cathode resistor R_m. With the selector switch in position 1, there is no coupling between the plate of V_m and the grid of V_a. The latter triode has its control grid returned to -210 volts through R_o and is therefore in a noneconducting state. In its quiescent condition, V_{sa} is operating as a class A amplifier with self bias. When the trigger generator output arrives, V_{sa} is instantly driven to saturation and returned to the original condition, thus producing a trigger of the same polarity but of smaller amplitude across R_o. The output of the delay multivibrator is taken from the common cathode connection and is therefore a positive trigger which is coincident in time with the trigger generator output.

For coarse delay switch settings 2 and 3, the high negative bias is removed from V_{sa} and the control grid is returned through R_o (fine delay) and R_s to a high positive bias. Since the grid-cathode resistance under this condition is exceedingly small, the grid bias on V_{sa} is essentially zero. The control grid of V_{sa} is returned to ground through the trigger generator output impedance; the bias on this tube is therefore determined by the drop across R_n. Resistors R_m and R_s were so selected that under quiescent conditions the plate current of V_{sa} produces sufficient drop across R_n to bias V_{sa} well beyond cutoff.

When the output of the trigger generator arrives, the control grid of V_{sa} is brought above cutoff, causing V_{sa} to conduct. The drop in plate voltage of V_{sa} is coupled to the grid of V_a through C_{in} or C_{out} depending upon the selector switch setting, thus driving V_{sa} considerably beyond cutoff.

Since the grid of V_{sa} is returned to B plus through grid-leak resistors R_n and R_m, the grid potential immediately begins to relax exponentially toward this value at a rate determined approximately by the time constant (C_{in} or C_{out} ($R_n + R_m$). The grid is permitted to relax toward the B plus potential on these two range settings in order that the cutoff potential curve will be intersected at a very steep angle by the grid relaxation curve, thus providing more stable operation on the short delay periods encountered on these ranges.

Coarse delay setting 4 provides essentially the same operation as settings 2 and 3 except that the control is allowed to relax toward the cathode potential instead of B plus.

When the control grid of V_{sa} has relaxed to its cutoff potential, the tube is immediately turned on and V_{sa} is turned off by virtue of the positive feedback obtained through R_m. The circuit has at this point been returned to its original quiescent condition and remains unchanged until the next trigger pulse arrives.

The plate current flowing through R_n in the quiescent condition is of much greater magnitude than the current during the operating period. The drop across R_n or the delay multivibrator output (point 4 in Fig. 1 and 2) is therefore a negative rectangular wave. The leading edge coincides with the trigger generator output and the trailing edge with the desired amount of delay, which may be varied from 0 to 2,000 milliseconds by the delay adjustments.

The output of the delay multivibrator is applied to a differentiating circuit and a negative series clipper. When the zero delay position is selected in the delay multivibrator circuits, the input to the differentiating circuit is a positive trigger which charges C_{in} through the parallel path offered by R_n and the d-c plate resistance of V_{sa} in series with R_m. The time constant of this charge path is 7.5 microseconds. Since the input trigger is approximately 15 microseconds in duration, some differentiation occurs, resulting in an output trigger across R_n which is somewhat sharper than the input and is slightly reduced in amplitude.
On the remaining delay settings (2, 3, and 4) the input to the above circuit is a negative rectangular wave. When the leading edge of the wave occurs, the negative drop is coupled through C_8 to the plate of V_{aa}, thus preventing conduction. When the trailing edge occurs, the plate of V_{aa} is driven positively so that C_8 charges through the parallel path of R_a and the R, of V_{aa} and R_a in series. The output of this circuit is therefore a positive trigger which may be delayed from 0 to 2,000 milliseconds depending upon the delay adjustments desired.

The delayed trigger voltage is fed into the single-cycle tone duration multivibrator circuit of Fig. 5. The screen grid, control grid, and cathode of V_s in conjunction with V_t are used to form a conventional triode single-cycle multivibrator. In the quiescent condition, the plate current of V_s, flowing through common cathode resistor R_a is sufficient to hold V_s well past cutoff. When the delayed trigger arrives, V_s is turned on and V_t turned off by virtue of the feedback obtained through R_a. When the grid potential of V_t has relaxed to cutoff, V_t is turned on and V_s off so that the original quiescent condition is obtained.

The output of the multivibrator is taken from the plate of V_s, which is returned to B plus through R_a. The tube in the quiescent condition is completely cut off. Since it is turned on when the trigger arrives from the delaying circuits, the plate voltage waveform is that of a negative gate with good leading and trailing edges, a condition necessary to provide satisfactory operation of the mixer amplifier.

The duration of the above waveform is determined by the off period of V_s. This period is controllable from 1 to 3,000 milliseconds by means of the fine and coarse duration adjustments R_a and S, respectively. When S is in position 4, the grid of V_t is returned to a large negative bias, resulting in continuous conduction of V_s. On position 3, the gate width may be varied continuously by R_a over the complete range (0 to 3,000 milliseconds). The grid of V_t is permitted to relax toward its cathode potential to provide these long periods.

Switch positions 1 and 2 provide gate widths of from 1 to 75 milliseconds and 3 to 500 milliseconds respectively. On these positions a positive grid bias of 86 volts is provided by voltage divider $R_{30} - R_{32}$ so that more stable operation will be obtained. Voltage divider $R_a - R_{30}$ in conjunction with the −210-volt supply reduces the output potential of the multivibrator during the quiescent condition to +25 volts. When the negative gate is present, the output potential is approximately −135 volts.

The output of the tone duration multivibrator is applied to the mixer amplifier circuit in Fig. 6, consisting of a 6SN7 twin triode which is used as a combination phase-inverter and mixer. In addition to the output of the tone duration multivibrator which is applied to the grid of V_{ba}, a continuous audio sine wave is applied to the control grid of V_{ba}. During the quiescent period of the tone duration multivibrator, the control of V_{ba} is held at +25 volts. Under this condition, the plate current of V_{ba}, flowing through common cathode resistor R_a develops sufficient voltage drop across this resistor to hold V_{ba} at cutoff. When the input of V_{aa} falls to the lower level (−135 volts), V_{ba} is cut off, thus permitting V_{ba} to function as a class A amplifier.

The plate waveform of V_{ba} is therefore a positive rectangular wave coincident with the input gate, and that of V_{ba} is an inverted (negative) rectangular wave with the amplified sine wave superimposed. These two voltages are applied across potentiometer R_a. By selecting the output from a tap on R_a, a point may be obtained at which the two rectangular waveforms exactly cancel, resulting in a gated sine-wave output which is free from any variation in d-c level.

The output of the mixer amplifier is applied to the control grid of a cathode follower through potentiometer R_a. The cathode follower is employed to provide low-impedance output.

The output of the cathode follower may be obtained directly at the channel I output jack or at the mixed output jack after being mixed in the channel mixer unit.
The channel mixer circuit in Fig. 7 is a parallel T-pad mixer in which 10 decibels of isolation is provided for each channel. The input and output impedances of the mixer unit are approximately 500 ohms. If either channel output is desired without mixing, it may be obtained at the corresponding channel jacks which isolate the mixing unit when a plug is inserted. This prevents the unwanted channel II signal from appearing in the channel I output or vice versa.

The output of the channel mixer therefore consists of the gated tones of channels I and II. Since each of the tones may be delayed from the reference trigger generator output, they may be delayed independently with respect to each other. The duration of either tone may also be independently variable.

Synchronizing Circuit

The synchronizing circuit which is employed to lock in the repetition rate at some multiple or submultiple of either of the input signal frequencies is shown in Fig. 8. It consists of amplifier stage V_m, triode saturation clipper V_{ns}, which is overdriven to produce a square wave from the amplified sine wave, a differentiating circuit made up of C_s and R_s, and R_a in parallel, and a negative clipper V_{ns}. The output of the circuit is therefore a negative trigger having a leading edge approximately coincident in time with the zero point of the negative-going portion of the input sine wave.

The trigger is coupled to the plate of V_{ta} (Fig. 3) through C_s and hence into the grid circuit of V_{1a}. During the conduction period of V_{1a}, the negative trigger is amplified, inverted, and fed back into the grid circuit of V_{1a}, where it is superimposed upon the grid relaxation curve and therefore causes the tube to conduct whenever the grid potential is brought above cutoff by one of the superimposed trigger voltages. Selection of the source of synchronization is obtained by means of a switch that in positions 1 and 3 connects the inputs of channels 1 and 2 respectively to the synchronizing circuit. In position 2, nonsynchronous operation is obtained.

Applications

Perhaps the most useful application of the timing unit for commercial purposes is for simultaneous observation of two related waveforms, such as the input and output voltages of amplifier circuits. The two voltages to be observed are applied to the individual channel inputs, and the output obtained at the mixer jack is applied to the vertical deflection amplifier of a cathode-ray oscilloscope. By synchronizing the repetition rate with the desired reference signal by the method previously described, and synchronizing the horizontal sweep of the oscilloscope with the repetition rate multivibrator output obtained at test point 1, a stationary pattern can readily be obtained. The tone duration and delay controls are then adjusted to separate the two waveforms.

To measure the phase shift between the two voltages, the repetition rate is first synchronized with one channel and then the other. The delay control of the channel providing synchronization is adjusted so that each signal is gated at the point at which its positive-going portion crosses the zero reference level. Synchronization is then returned to the reference signal and the amount of delay necessary to return the second signal to its original position gives an accurate measurement of the phase shift between the two signals.

A typical pattern obtained using this procedure is shown in Fig. 9.

The timer may also be used as a square-wave generator. Asymmetrical rectangular waves may be obtained at test points 2, 3, 4, and 5. The degree of asymmetry may be varied by the fine and coarse adjustments located directly above the respective test points on the front panel. Additional rectangular waves may be obtained at the channel output jacks by removing the input signal and adjusting the channel balance controls to give the desired amplitude and polarity. All of these waveforms are quite useful in checking the square-wave response of amplifier circuits.

This work was carried out under Task Order No. 1 of Contract N5-or1-166 between the Office of Naval Research and The Johns Hopkins University.
Metal-Ceramic Brazed Seals

New method involves applying titanium hydride to ceramic, then brazing to metals or similarly prepared ceramics with silver or any other metal that melts at 1,000 C. Resulting seal, gastight and stronger than ceramic itself, is ideal for microwave tubes.

As the radio-frequency spectrum expanded into the higher-frequency regions, conventional tubes no longer proved satisfactory. Their failure was due largely to the length and impedance of the wires leading through the stem to the tube elements.

One of the qualifications for the successful operation of a high-frequency circuit is that the portion of the circuit represented by the tube must be small in comparison with a wavelength. Disk seal or light-house tubes' effectively eliminated the lead difficulties and greatly extended the useful frequency range of space-charge-control tubes.

This extension of the operating range into the microwave region imposed new problems in construction. For efficient operation, the tube must be a small part of a wavelength, and preferably a small part of a quarter wavelength. This means that as frequency is increased, the physical size of the tube must be decreased. For a given power rating, a reduction in size can only be accomplished by an increase in the stresses on the component parts and a resultant increase in operating temperature.

At elevated temperatures, the glass portion of the vacuum enclosure is the first to fail. This failure is due to the high dielectric losses in glass at high frequency and to the logarithmic nature of the temperature coefficient of resistance of glass. The effect is cumulative. As the seal runs hotter, its resistance decreases and its loss increases. If the glass does not actually fail by melting, the loading of the circuit caused by the glass loss may limit the performance of the device.

In the case of oscillators, as the glass heats, the oscillations diminish in intensity until an equilibrium is reached. In amplifiers, the high loading caused by a poor dielectric results in low gain. The sealing of glass to metal requires that the glass be melted to effect wetting. The melting is always accompanied by dimensional changes in the glass. During subsequent annealing and exhaust treatment, the glass may sag and still further alter the geometric accuracy of the tube. This means that glass is not well adapted to the pre-

ELECTRONICS — July, 1947
cision manufacture demanded by microwave tubes. It is evident that a material possessing better properties is desirable.

Ceramics for Tubes

A superior material has been found in certain ceramics, especially those of the steatite variety. These magnesium-silicate ceramics, when compared to the glasses now available for vacuum tube construction, not only excel in electrical properties, but have superior physical properties which alone would warrant their use.

A new solution to the problem of obtaining a permanent hermetic bond between the ceramic and metal has also been found. With the newly developed techniques, the ceramic can be joined either to metals or to other ceramics with high-temperature solder. It is of course necessary to match the thermal expansion of the materials in order to avoid residual strains.

The soldering can be done simply by painting the areas of the ceramic with a mixture of powdered titanium hydride in a suitable carrier where it is desired to have the solder adhere. The treated ceramic can then be soldered like any metal part by heating it to a temperature of 900 to 1,000 ºC either in a vacuum or in extremely pure hydrogen. The solder can be added in the form of rings, washers, or powder as in any conventional soldering operation. Pure silver, eutectic silver-copper alloy, or any metal with a melting point in this temperature range can be used. In areas where the ceramic has been coated with the titanium hydride paint, the solder will spread and firmly adhere.

A suitable paint can be made by mixing 300-mesh titanium hydride powder with an easily volatilized lacquer (such as the nitrocellulose lacquers used in the preparation of heater coatings and emission mixes). The paint is applied to the ceramic in a thin, dense layer either by brushing or spraying.

During the early stages of heating, the titanium hydride dissociates and leaves a residue of pure titanium on the ceramic. The hydrogen evolved during the heating is released in the atomic state and is more chemically active than hydrogen of the same purity prepared by other means. The presence of this active hydrogen is very beneficial in cleaning the surfaces of the parts. A clean surface is always easily soldered.

Just above the temperature at which the bulk of the hydrogen is released, the silver solder melts and readily alloys with the titanium. This silver-titanium alloy forms a strong bond with the ceramic. In fact, the bond is stronger than the ceramic itself. Destruction tests always reveal a layer of ceramic clinging to the metal.

The fact that the joints can be made in a vacuum is advantageous. When silver and copper are melted in hydrogen, they adsorb large amounts of gas. This gas is later released when the metals are allowed to solidify. The resulting open structure is often a source of very slow leaks. Vacuum soldering eliminates the adsorbed gas problems and yields dense and leak-free metals. Since the parts are heated to 1,000 ºC in vacuum, they are quite thoroughly degassed. Additional lengthy exhaust treatment is often unnecessary.

Expansion of Ceramics

The thermal expansion of magnesium silicate ceramic is for all practical purposes linear. Iron containing from 14 to 30 percent chromium has almost identical thermal expansion properties. This combination of materials, when sealed, will remain free from strains over a wide range of temperatures.

To obtain low surface resistance for the radio-frequency currents and to facilitate soldering, a thin layer of copper is alloyed to the chrome-iron. Iron containing a high percentage of chromium is fairly corrosion resistant, and the copper surface further enhances this property. By limiting the surface copper to less than 10 percent of the total thickness, the expansion characteristics of the chrome-iron base are not altered.

Since there are no rapid changes in expansion (such as occur in glass near its softening point), annealing of ceramic seals is unnecessary. They are, however, subject to heat shock and in this respect are similar to glass. High temperature gradients must be avoided. The rate of heating or cooling is dependent upon the uniformity of temperature throughout the ceramic. It is not unusual to take an average size from room temperature to 900 ºC in three minutes without damage. Because of the very high softening point of the ceramics, parts can be manufactured and soldered with great accuracy and with the assurance that they will not undergo dimensional changes either during sealing or in subsequent exhaust treatment.

Gassing

Metal parts are free from oxides because the bonding of the metal to the ceramic is done in the absence of oxygen. If the seals are made in vacuum, they are exceptionally free from occluded gases. This is in sharp contrast to the glass-metal
seals, where the bond depends upon an oxide layer on the metal. The removal of excess metal oxides in the vicinity of the glass seal is a constant manufacturing problem. The freedom from oxides in the ceramic seal results in a bond that resists the attack of strongly reducing atmospheres and metallic vapors. The ability of ceramics to withstand high exhaust temperatures allows the manufacture of tubes capable of being operated under severe conditions without fear of gassing. Test samples have been operated in air at temperatures in excess of 500 °C, without signs of gas diffusion or leaks through either the ceramic or the soldered joints.

Comparison With Other Methods

Other methods of joining metals to ceramics are known and have been used. In one of the most commonly used methods, the ceramic is first metallized in a continuous band around its outer surface. This metallized surface is prepared by coating the ceramic with a paint or paste made from a low melting point glaze and a salt of gold, silver, or platinum. When this mixture is heated in air to a temperature ranging from 450 to 600 °C, the glaze melts and wets the ceramic. The precious metal then floats to the surface of the glaze and forms a continuous conductive layer. Tin or tin-lead solder is used with these precious metal coatings. To prevent the solder from alloying and completely removing the metal band, it is often necessary to cover the metallizing with a protective electrolytic plate. Because of the temperature limitations of soft-soldered joints, they are generally unsuited for most vacuum tube applications.

During the war, the Germans developed and produced a series of ceramic seal triodes for use in the microwave region. The ceramics were prepared for soldering by first coating them with a paint made from finely powdered molybdenum. When heated above 1,300 °C in a semireducing atmosphere, the molybdenum adhered to the ceramic. To facilitate subsequent soldering, the molybdenum band was painted with powdered nickel, and then heated in a hydrogen atmosphere to sinter the two metals together. At the final assembly, pure silver would alloy and bond to the nickel surface.

While the ceramic used was not of the extreme low-loss variety, it was better than most glasses and in addition had good mechanical properties.

It is interesting to note that the Germans considered the gains realized by the use of ceramic seals great enough to warrant the use of such cumbersome processing. Their involved methods of joining ceramic and metallic materials are in sharp contrast to the extreme simplicity of the titanium hydride method previously described, where all soldering and bonding is done in one operation.

Conclusions

The seals and soldering techniques just described were developed primarily for use in the vacuum envelope. However, their many unique properties are well adapted for permanently attaching supports and spacers to tube structures.

Many complicated tube structures, such as are found in cathode-ray tubes, are fabricated by clamping the metal parts to ceramic rods. These mechanical clamps often anneal and become loose during processing. By coating the ceramic rods under the clamps with powdered titanium hydride and powdered copper, and then pre-exhausting the structure in a vacuum furnace at 1,000 °C, the parts are rigidly and immovably attached.

Wiring circuits can be permanently attached to ceramic chassis units and subassemblies by printing the circuit on the ceramic part with a paint made from titanium hydride and powdered copper or silver, then firing the metals in place in a suitable atmosphere. Other applications of metallized ceramics will undoubtedly find use in various electrical fields.

Table 1—Comparison of Ceramic and Glass—Metal Seals

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Magnesium Silicate Glass (Alsimag No. 213)</th>
<th>Borosilicate Glass (Corning No. 704)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric constant (10,000 mc)</td>
<td>5.5</td>
<td>4.6</td>
</tr>
<tr>
<td>Power factor (tangent; 10,000 mc)</td>
<td>0.0002</td>
<td>0.005</td>
</tr>
<tr>
<td>Loss factor (10,000 mc)</td>
<td>0.0011</td>
<td>0.023</td>
</tr>
<tr>
<td>Volume resistance at 300 C</td>
<td>7 x 10^8</td>
<td>5.17 x 10^8</td>
</tr>
<tr>
<td>Volume resistance at 700 C</td>
<td>1 x 10^7</td>
<td>1,000</td>
</tr>
<tr>
<td>Thermal coefficient of expansion</td>
<td>10.4 x 10^-6</td>
<td>4.9 x 10^-6</td>
</tr>
<tr>
<td>Softening temperature (°C)</td>
<td>1,440</td>
<td>697</td>
</tr>
<tr>
<td>Thermal stability</td>
<td>1,000</td>
<td>450</td>
</tr>
<tr>
<td>Compressive strength</td>
<td>85,000</td>
<td>70,000 (about)</td>
</tr>
<tr>
<td>Flexural strength</td>
<td>20,000</td>
<td>8,000 (about)</td>
</tr>
</tbody>
</table>

Examples of ceramic-ceramic and metal-ceramic seals. Particles of ceramic adhere to metal brazing material when tested to destruction, showing seal to be stronger than ceramic itself.

References

Central Signal Generator for Production Testing

Quantity production of radio receivers requires a calibrated source of radio-frequency signals for aligning and testing. This can be supplied by equipment at individual testing stations or by placing the equipment in a central location and using transmission lines to the individual stations. The latter method provides a central location for all the tube equipment, where it can be maintained, adjusted and kept free of tampering by unauthorized personnel. Other factors are cost, uniformity of signals, delivery time, and economy.

The system to be described contains 24 test stations, about 7 feet apart, 12 to a floor (2 floors), with radio-frequency energy covering the intermediate frequency and several spots across the broadcast and short-wave bands. An additional station is provided in the engineering department. The r-f is controlled in amplitude and available in level from 1.0 µV to 0.1 volt.

Transmitters

A number of transmitters were built, one for each radio frequency and modulated with an identifying audio frequency. The frequencies chosen are:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Frequency</th>
<th>Modulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-F</td>
<td>455 kc</td>
<td>1,500</td>
</tr>
<tr>
<td>Broadcast</td>
<td>1,740</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>1,550</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>960</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>610</td>
<td>1,000</td>
</tr>
<tr>
<td>Short Wave</td>
<td>6 mc</td>
<td>2,000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2,500</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>3,000</td>
</tr>
</tbody>
</table>

These radio frequencies were chosen to supply the band limit, alignment points, and cross-over tracking points in each band, missing local broadcast stations. To prevent interruption of service, a spare transmitter unit is provided to replace temporarily any unit needing repair. It is equipped with plug-in coils to cover the radio frequency range and with a rotary switch to select the audio frequencies.

Each transmitter chassis contains r-f and a-f stages

The transmitters employ the circuit shown in Fig. 1. A 6V6 crystal oscillator using an AT-cut crystal is followed by a 6V6 class-C amplifier modulated by a 6V6 Heising modulator. The radio-frequency output is link coupled to a 50-ohm line. Audio signal is supplied to the modulator by a 6SJ7 tube in a Colpitts audio oscillator. This circuit was chosen because only one tube is required, there is no need for a tapped inductance coil, and it permits ease of frequency change and uniformity of transmitters with different audio frequencies.

Panel jacks are provided for reading plate and grid currents and a rear jack for reading modulation voltage. The modulation control is screwdriver adjusted at the rear of the chassis. A meter panel, with a plate current meter and a grid current meter, is used for all units. Standard phone plugs and six-foot cords make connections. A separate power supply is used for each four transmitters, and supplies 200 volts at 0.5 ampere.

Thirty-percent modulation was used at first so that sensitivities measured on the assembly lines would correspond with the standard procedure used in engineering tests. However, the modulation percentage was later raised to about 50 percent to approximate conditions of a broadcast station and resulted in a little clearer signal. The modulation voltage must be maintained constant or the apparent receiver sensitivity will also change.

A coupling unit was required to couple each transmitter of each frequency to the line, keep interaction of frequencies in the transmitters at a minimum, match the impedance of each transmitter to the line, and adjust the voltage level of each frequency on the line. Interaction of controls should be small and the voltage obtainable should be variable from one to several volts. A number of different methods, including cathode followers, were considered but the coupling was accomplished by means of the circuits shown in Fig. 2.

Basically, a series resonant circuit is used for each frequency, as it has the advantage of presenting a low impedance to the particular frequency while presenting a high
This central signal source supplies modulated frequencies to 25 test stations in a radio receiver manufacturing plant. Coupling, impedance matching, attenuator design, radiation, and leakage are discussed.

By FRED MILLER
Engineer
Packard Bell Company
Los Angeles, California

impedance to the other frequencies. This makes it possible to connect such units in parallel to the line, a great advantage as it allows a common ground system and in addition makes impedance matching easy. A series connection would add the impedance of all elements in the circuit at the frequency being considered.

The final impedance match is obtained by adjusting values of a carbon resistor in the resonant circuit. The voltage level is adjusted by a variable capacitor used to vary the coupling to the transmitter. Link coupling is used and the links fed by a 52-ohm coaxial line. The impedance match is not critical at broadcast frequencies, because the line length represents such a small portion of a wavelength; so more attention was given to obtaining the desired voltages at the output of the coupling unit.

The short-wave links are more particular. The inductance of the tuning coil for each frequency is the same as the inductance of the transmitter tank coil for that frequency. The tuning capacitors are also the same value as used in the transmitters. The low impedance of the link circuit requires a large variable capacitance for coupling and a value of 450-µµf served nicely.

One coupling unit is used for each floor (12 stations). Thus, two coupling units are fed from each transmitter. One chassis is used for both i-f units, one chassis per floor (two) for all broadcast frequencies and one chassis per floor (two) for all short waves. Broadcast-band coupling unit is shown in Fig. 3.

Transmission Lines and Nets

Four coaxial cables are used for the transmission system. One handles the i-f to eliminate the possibility of beats with other frequencies. One is used for all broadcast frequencies, one for all the short waves, and one for use at a later date for an aligning signal. These cables feed an attenuator box at each test position. The transmission lines are required to carry r-f power from the coupling units to the individual test stations. As power delivery is required at the test stations and a number of frequencies per line are used, it is necessary to match the line im-

Central signal panels contain separate transmitters for each frequency and the coupling units.
The method used to accomplish the impedance matching is a combination of line loading and resistive impedance-matching pads. The formula for a distortionless line (one in which theoretically there is no frequency or delay distortion) is $\omega L/R = \omega C/G$, where L is inductance, C is capacitance, G is conductance and R is resistance. This can be written $LG = RC$. Physical lines do not usually approach this relationship, so it is possible to improve the line by loading, usually by increasing the inductance. The LG term may also be increased by increasing the conductance (lowering the leakage resistance across the line) and accepting the attendant greater attenuation.

Our lines use the principle of loading with conductance and then making that conductance the useful load on the line. The conductance used is 625 ohms every seven feet, resulting in an attenuation of six db per hundred feet of cable and changing the characteristic impedance of the cable from 52 to 50 ohms. Because this impedance change is small, it is possible to use unloaded line from the transmitters to the point where loading begins. The lines are terminated in 50 ohms. Figure 4 shows a block diagram of the system.

As the lines are run overhead and the test positions are some distance from the loading points, it is necessary to use another line, dropping from the main cable to the test positions. This line is matched at both sending and receiving ends, but on the longer wavelengths the characteristic impedance of the line itself is not matched. This was done to be able to use a more convenient and cheaper cable. The receiving end is terminated in the attenuator box, and the sending end is matched by an impedance-matching T pad.

The line loading is 625 ohms and power is taken off in this loading. The input impedance of the impedance-matching T pad is 625 ohms and used for the conductive loading, and the output impedance made to look like 100 ohms to feed the branch line. Minimum attenuation is required to reduce loss as much as possible. To meet this condition, one series arm of the pad is made zero. An unusual feature of this pad is that the input looks like 625 ohms to the line, but the line looks like only 50 ohms to the pad. The output looks like 100 ohms and also is terminated in 100 ohms. The pad was designed to have an attenuation of 20 db or a voltage ratio of 10 to 1.

These pads are contained in J boxes which in turn are placed in a larger box every seven feet along the line. Figure 5 pictures the installation of the lines on one floor of the building and shows the conduit, J boxes, T-pad J boxes, cable drop offs, and shielded booths.
Attenuators are needed at each test station to reduce the signal level from the maximum available to a known and controlled value. Each test position is equipped with an attenuator box containing a switch for selecting one of the four lines (1-f, b-c, s-w, a-a), four variable T pads for adjusting the level of each line to 0.1 volt; a variable T pad to adjust voltage between steps of the attenuator; and a step, ladder-type attenuator producing output levels in steps of 10 from 10 µv to 0.1 volt. The four-position switch is arranged to terminate all unused lines in 100 ohms. A test connector is provided for using a vtvm in setting the input level.

It is desirable to purchase attenuators, but due to procurement problems, it was decided to build them. A simple design was required for ease of construction. The attenuator should have a flat attenuation ratio to 20 mc and steps of output voltage of 100,000 µv, 10,000 µv, 1,000 µv, 100 µv, and 10 µv. This represents a total voltage attenuation ratio of 10,000 or 80 db. If a very small amount of capacitive coupling exists across the attenuator, the attenuation ratio will change at the high-frequency end of the band to be covered. This would be undesirable as it would cause the attenuation to differ across the band. To reduce this effect the attenuation per stage is kept low (20 db) and each stage individually shielded. To reduce capacitance coupling, the switch was built into the attenuator. This allows the switch contacts to be shielded up to the actual surface of the contact itself and the spacing of contacts reduces the capacitance between them. Capacitance to ground should also be low.

The attenuator elements are formed by carbon resistors. The individual sections consist of a T pad with the series arm 82 ohms and the shunt arm 20 ohms. The circuit is shown in Fig. 6. The design follows that for any simple T pad.

Variable T Pad

Five variable T pads are used in each attenuator box. One is used on each of the four input lines to adjust the input voltage of the attenuator to exactly 0.1 volt. The voltage along the lines varies due to attenuation along the line and any slight reflections that may be present. The fifth variable T pad is used to control smoothly the voltage between steps of the ladder attenuator. It corresponds to the variable control on a signal generator and enables voltages other than steps of 10 to be obtained. All of these controls are screwdriver types so that the output voltage of the entire attenuator can be set to a value corresponding to the sensitivity of the receiver being tested, thus requiring no adjustment by the operator.

The requirements of this pad are 100-ohm input and output impedance ± 10 percent, a variable attenuation ratio of about 30 db and a reasonably flat frequency response to 20 mc. The variable T pad is made of three rheostats. Two are

FIG. 4—Arrangement of transmitters, resonant-circuit coupling units, and J-box pads

FIG. 5—Conduit and J boxes are mounted on the ceiling of the plant
linear taper 100-ohm maximum value, clockwise rotation; one is log taper (curve A) 1000-ohm maximum value, counterclockwise rotation. Rheostats for radio frequency are difficult to obtain, so a number of tests were made and it was found that a wire-wound control possessed considerable inductance, and that a high-resistance control showed a capacitive effect. A low-resistance carbon-type control is as capacitive as a high-resistance one, but the capacitive reactance is shunted by a low resistance and becomes less important. Controls made of molded composition were quite satisfactory in the 100-ohm value tested.

The output of the attenuator may be wired directly to the receiver antenna terminal, using a dummy antenna, or it may be coupled to the receiver loop, using another loop as a radiator. The loop method is favored, as it allows a greater production speed because no connections are made to the receiver. A loop was designed, keeping the distributed capacitance low, to have an impedance of 100 ohms in the middle of the broadcast band. This loop worked very satisfactorily for the i-f and short waves as well. The receiver i-f response was naturally considerably less than the other frequencies due to no front-end gain in the receiver and is in fact a desirable discrimination.

Radiation and Leakage

In a system comprising a number of watts of transmitter power and a large network of transmission lines, the problem is present of radiated radio-frequency energy getting to the receivers to be tested. This energy, arriving around or bypassing the regular system, causes trouble in a number of ways. Radiated signals are generally undesirable because of the possibility of causing local interference in nearby broadcast receivers, heterodyne whistles (in our case occurring only on very distant stations because of choice of signal frequencies), and in the case of the i-f frequency, heterodyne whistles on every signal tuned in.

More serious is the by-passing of the attenuator, thus causing the attenuation ratio to change, particularly on the 1 to 10 microvolt levels. The problem can be divided into two main classifications: radiation, and leakage. The difference between these may not be apparent, so we will define leakage as local effects, such as leakage across an attenuator due to capacitive or inductive coupling, and radiation as energy arriving through the medium of space. Its field may be considerably distorted inside a building. Conduction along the main lines is included as leakage.

Radiation occurs mainly from the transmitter and associated equipment due to the large amount of power present there. It may also occur from long runs of unshielded coaxial lines. It was decided to attempt to control direct radiation by shielding each unit and, after the equipment was placed in operation, determine if it was necessary to add further controls, such as a shielded room. It was decided that with other controls used the equipment need not be placed in a shielded room and that even the shield cans may be left off to facilitate tube or other maintenance.

When unshielded loops are used to couple power to receivers under test, the large number of loops used contribute a field strength which may be higher than the residue radiation from the transmitters. It would be uneconomical to reduce radiation from the transmitters to a point greatly lower than that from the loops. No attempt has been made to shield loops used in the open on the assembly lines, although this might be done by placing the receiver in an open metal box. Shielded booths are used at test positions where sensitive receivers are aligned. These reduce radio noise disturbances from automatic screwdriver motors, fluorescent lights, and eliminate any residual signal leakage that may be present.

Shielding Detail

One shielded booth is shown in Fig. 7. The booths are made of aluminum alloy sheets on an extruded angle frame. When all openings are closed, no broadcast stations can be received, but the booth is normally operated with no door and two openings for handling receivers. The receivers slide on a steel-topped bench equipped with a wooden insert under the coils of the receiver being tested. An 80-db line filter is installed. It is important that this filter and also the attenuator box be mounted directly on the booth metal wall to obtain a good ground. A wire or braid to ground is not sufficient. A Celotex lining improves the acoustical characteristics.

The greatest control of radiation by any single item was installing all coaxial cables in conduit. A completely closed conduit system (except for drop-off cables) was used, tying the whole system together with a common ground to the transmitter cabinets. It is unimportant whether this system is grounded to actual ground. The conduit also controlled coaxial cable radiation. This radiation occurred, not so much through the cable, but
from the outside ground conductor of the cable acting as an antenna because of a slight potential difference between the outside coaxial conductor and the transmitter ground plane. As it is difficult to determine the actual point of equal potential (the ground plane), indeed if such a point exists, and because any connection to this point must be of extremely low r-f impedance at 20 mc, it is very difficult to control this type of radiation by a simple ground connection to the transmitter frame. A special filter was constructed by soldering a few feet of the outside coaxial conductor to a metal plate in an S shape and then grounding the plate. This filter is quite effective, but placing the cable in conduit is a much better answer.

If any appreciable signal is present on the main lines, it can radiate from them, as well as be conducted along them, and cause a very difficult control problem. This is prevented by the use of filters.

Simple r-f filters are used at the transmitter units. They consist of 0.002-µf mica capacitors from B+ to ground and from both sides of the main line to ground. These are installed where the wiring enters the chassis, and the lead lengths are kept to less than one-half inch. It was found unnecessary to use filters in the main power wiring to the power supplies. Filters in the shielded booths contribute to this control, as well as reduce noise from the countless number of fluorescent lights and machinery. These filters are installed, one in each main wire, and contained in a metal box which is grounded to the booth metal wall.

Low-Frequency Padding

In production aligning of radio receivers, part of the procedure may be accomplished more rapidly, and perhaps better, with inexperienced personnel, by the use of a wide-band signal. This allows trimmers to be timed for maximum output without rocking the gang.

A number of disadvantages of the multivibrator for this use became apparent. One of the most glaring is the fall-off of radio-frequency voltage with frequency directly as the order of the harmonic. To maintain proper distribution of the harmonics, the fundamental frequency of the multivibrator should be in the audio range, say, 1,000 cps. If coverage is required to 20 mc, the output voltage falls to 1/20,000th of the fundamental and an amplifier to build this characteristic up to a flat curve and furnish an output level of about five volts to operate the system is a big order.

It was decided to use a radio-frequency oscillator sweeping across the band at an audio rate. A motor-driven capacitor was chosen for the sweep. During stepping, the signal would appear on a receiver only a few microseconds every 1/100th of a second, and to increase the length of time the signal passed the receiver frequency, frequency modulation was added by means of a reactance tube. When the circuit was tested, f-m was found to be unnecessary, and it was also found that the motor speed could be reduced to 1,500 rpm, which results in an impulse every 1/30th of a second.

Coupling units represent a somewhat different problem from the other units, as they must handle a band of frequencies. Cathode followers were chosen for this reason. They were designed to work into a 50-ohm load, and two followers were used, one for each floor.

Additional Equipment

Since the equipment was first installed, some of the features added are padding signals, an audio system, additional test stations, changing location of test stations including one in the engineering department with an additional 50 feet of line, and split test stations. The latter consists in feeding part of the four cables of a station to another station, for example, taking the i-f signal to another test position to enable another test operator to realign the i-f stages. Thus production can be increased on an assembly line by the use of two test operators. A feature being added is a monitor system to check the r-f signal level on all lines.

Test operators report that they like the system, that it is much easier for them and results in faster testing.
IMPROVEMENT in smoke filters used in Service respirators required development of a rapid and simple testing apparatus of extreme sensitivity. The same method now can be used in testing commercial smoke and dust respirators and in the scientific study of aerosols, colloidal materials dispersed in air. Aerosols made from dispersed liquids, with particles about 0.3 micron in diameter, provide the severest test of a filter.

A suitable uniform test smoke can be produced by saturating a stream of air with the vapor of a stable high-boiling liquid like dioctyl phthalate (DOP) in a heated vessel, then suddenly quenching the vapor with a stream of cold air. The test smoke must be very dilute—about 100 micrograms per liter—or it changes rapidly by coagulation and also tends to clog the filter. Smokes of this dilution are barely visible.

Fortunately, photoelectric optical methods can solve the problem, provided the test smoke is homogeneous. The amount of light scattered from such a smoke in the well-known Tyndall beam in a small cell is proportional to its concentration considerably above 100 micrograms per liter. However, the light scattered from a particular mass of smoke depends upon the size of the particles it contains. When an inhomogeneous smoke is passed through a filter, the particles of different size are removed with different efficiencies, hence the size distribution changes. In this case the relative light-scattering of the initial and filtered smokes is not a quantitative measure of their relative concentrations. This fact must be clearly understood in considering optical methods of measuring smoke-filter efficiency.

Tolman and Vliet have described a Tyndallmeter for visual photometric measurement of the light scattered at right angles from the beam. The present instrument, called a penetrometer because it was designed to measure smoke penetration through filters, employs photoelectric measurement. It was developed in the author's laboratory by Chester T. O'Konski and Dr. Hugh B. Pickard. An overall description has been published elsewhere.7 Photoelectric and electronic details are given here.

Experimental Arrangement

A schematic view of the apparatus is shown in Fig. 1. Light scattered in the smoke cell at right angles to the Tyndall light beam falls on the phototube. The resulting photocurrent, passing through a high resistor R, produces a potential drop E_a which is measured by the potentiometer, using a d-c amplifier and null-point indicator. The response of the vacuum phototube is proportional to the light falling upon it, hence the potentiometer can be calibrated directly in terms of scattered light intensity or smoke concentration. As the smoke concentration decreases from 10^{-4} to 10^{-6} gram per liter, R is increased in decimal steps from 10^7 to 10^9 ohms, thus maintaining the potential drop within a range which can be measured conveniently.

The whole apparatus is housed in a metal 12×20-inch cabinet 12 inches high, as illustrated. The gas cocks at the end of the cabinet, fastened together in pairs, lead to the raw smoke, filtered smoke, and filtered air lines. All are shown closed, bypassing the smoke cell. When the top handle is turned perpendicular to the side of the cabinet, connection is made through the cell.

Smoke Cell

The smoke cell is shown in Fig. 2. All metal parts are brass, silver-soldered where necessary to make strong joints. The 50-candlepower automobile headlight bulb is adjusted to focus a light beam in the center of the cell. The light scattered at right angles to the axis of the beam passes through two rectangular collimating slits to fall on the phototube.

The limit of sensitivity of the

By FRANK T. GUCKER, Jr.

Professor of Chemistry
Northwestern University
Evanston, III.

This paper is based upon work done for the Office of Scientific Research and Development under Contract OA-132 with Northwestern University.
PHOTOELECTRIC PHOTOMETER

Designed for laboratory tests on smoke filters, the equipment can be adapted to many industrial problems. The amount of light scattered by smoke is picked up at right angles to the main beam and measured by a phototube and d-c amplifier

The instrument depends on the stray light, which is reduced to a minimum by buffing the trade mark from the lamp, using coated lenses which are kept free of surface dust, and utilizing a carefully designed system of baffles and a V-shaped light trap in the base of the cell. The inside of the cell is covered with optical black paper. The slits before the phototube prevent it from seeing the illuminated edges of the baffles as shown. The total stray light, originally 1.5 x 10⁻⁷ lumen, was reduced to 1.0 x 10⁻⁷ lumen by coating the cell and baffles with soot from burning camphor.

It has been found that the vacuum phototube must be chosen for its stability and linear response. The S-4 surface, used in the type 929 and 935 tubes, is the one most sensitive to light from a tungsten source at a color temperature of 2,870 K. The 935, designed to minimize leakage currents which may limit the light sensitivity, was not readily available, but removal of the 929 tube base, coating the tube with high-resistance ceresin wax, and soldering connections directly to the leads, increased the resistance from between 19⁰ and 10⁸ ohms to 10⁹ or 10¹⁰ ohms. The debased 929 tube, mounted inside a sealed case as shown in Fig. 3, was employed with complete satisfaction.

D-C Amplifier

A single-stage d-c amplifier with a rugged taut-suspension pointer-type galvanometer in the balanced plate circuit, has the advantage of simplicity and stability, but requires very high resistors in the phototube circuit and an amplifier tube of correspondingly high input impedance. The characteristics of a number of tubes were studied, and the 38, 1C7G, and 1D7G were all found suitable for this purpose. The type 38 was used because of its availability.

About a third of the tubes tested could be operated at grid currents of -2 to -8 x 10⁻⁷ ampere, by making the grid sufficiently negative, reducing the heater voltage, and keeping the maximum inter-electrode potential below 15 volts, the ionizing potential of the residual gas. It was also found that the grid current-grid voltage curve of this tube could be shifted along the current axis by changing the heater-cathode potential. Internal leakage probably causes this effect, which varies somewhat from tube to tube, and may be turned to advantage in choosing operating conditions.

Another suitable d-c amplifier tube is the acorn-type 954. Its use in circuits with resistances up to 10⁹ ohms has been described and might allow an improvement in the sensitivity of the instrument.

The amplifier tube was mounted in a desiccated airtight box, next to the phototube, battery and scale...
A rubber bulb, inflated when the box was closed, reduced the tendency for breathing of humid air due to temperature change.

The wiring diagram of the apparatus is shown in Fig. 4. A potential checking circuit has been simplified for clarity. The plate-circuit galvanometer has a resistance of 1,000 ohms, and sensitivity of 0.125 microampere per millimeter. A double-pole double-throw pushbutton switch controls its sensitivity. Pushing the button connects the galvanometer across an 8,000-ohm damping resistor, giving high sensitivity. Releasing the button returns the switch to its normal position and reduces the galvanometer sensitivity by a factor of 20. When the galvanometer is balanced, a plate current of 30 to 32 microamperes across the 50,000-ohm resistor balances the potential of the last section of the plate battery (1.5 to 1.6 v).

The measurement of minute photocurrents requires correction or compensation for the following parasitics in the grid circuit: phototube leakage current of about 10⁻²⁵ ampere; amplifier grid current of -10⁻³¹ ampere or less; stray light current of about 5 x 10⁻²² ampere. In this apparatus, these are all compensated by the stray light control, connected to the second gang of the scale switch. First, this switch is turned to 0, disconnecting the potentiometer and connecting the point A directly to the grid of the tube. The grid bias L-pad and 200-ohm resistor are adjusted to balance the galvanometer in the plate circuit. Next, the scale switch is turned to E (check), connecting the highest (10⁶ ohm) resistor to the photocell. The smoke cell is swept out with filtered air, and the potential drop due to the parasitic currents is balanced by moving the stray light potentiometer B to the right. When the scale switch is turned to the 10⁵-ohm resistor, the 10,000-ohm potentiometer C is adjusted to maintain compensation on the 0.01 scale.

The connection to D gives correct compensation on the 0.1 scale, while none is required on the 1 scale. The compensation is adequately independent of subsequent changes of the grid bias controls, since the total variation in the resistance of this circuit cannot exceed 3 percent.

Potentiometer Scale-Corrector

The voltage range of the two-dial percent penetration potentiometer is regulated by the sensitivity controls. The range of photocurrent measurement is determined by the position of the scale switch, the third gang of which holds four metallized resistors, nominally 10⁻⁸, 10⁻⁷, 10⁻⁶, and 10⁻⁵ ohms, mounted on a ceramic wafer. In order to make the instrument direct-reading, the successive resistors must differ by factors of exactly ten, or deviations must be compensated automatically. Since even selected resistors may differ by 10 percent from their nominal value, a simple compensating circuit connected to the first gang of the scale switch varies the emf applied to the potentiometer, in proportion to the deviations of the resistors on the different scales. The scale-correcting circuit allows the potential on the 0.1, 0.01, and 0.001 scales to be varied by ±12.5 percent of that applied to the 1 scale.

The scale-correcting potentiometers are adjusted, by means of three slotted shafts on the left-hand side of the front panel until the readings of a constant photocurrent differs by a factor of exactly 10 on two successive scales. A suitable current is produced in the phototube by means of the calibrating lamp shown in the phototube housing (Fig. 3). The light is controlled by the resistors connected to the scale check switch. Thus, to compare the 1 and 0.1 scales, the percent penetration dials are set at 10 on the 1 scale, and the scale check switch is turned to 1. Then the emf due to the steady photocurrent is balanced with the sensitivity controls. Next the dials are set at 100 on the 0.1 scale, and if necessary the amplifier is balanced by a screwdriver adjustment of the top scale-correction potentiometer. This makes the 1 and 0.1 scales consistent, and similar adjustments bring the others into harmony. In practice, the high resistors do not have to be checked frequently, although the whole process takes only a few minutes. This arrangement can be used to give the advantage of direct reading to any circuit employing a series of high resistors.

Filter-Penetration Measurements

Before making any measurements of smoke penetration, the heater-grid switch is turned on and the tube allowed to warm up for a half hour. With the scale switch on 0, the plate switch is turned on, and the amplifier is balanced with the grid bias controls. The smoke cell is flushed out with scrupulously filtered air, the potentiometer switch turned to 1.5 v and the scale switch to E. Then the parasitic currents are balanced with the
stray light controls. This adjustment is checked every half hour.

Next, the smoke cell is filled with the raw test smoke, the scale switch is turned to 1, the percent penetration dials to 100, and the sensitivity controls are adjusted to balance the amplifier. About 0.25 v is required to balance the light scattered from a DOP smoke of 0.3 micron diameter, at 100 micrograms per liter. For much more concentrated smokes, the range of the penetrometer is extended by applying 3.0 v to the potentiometer, and balancing the stray light and smoke currents as before.

The penetrometer now reads 100 percent penetration for the raw test smoke. When filtered smoke is put into the cell, the scale switch is turned to the proper point, and the amplifier balanced by adjusting the percent penetration dials, the reading gives immediately the light scattering, relative to that of the raw smoke. Thus a reading of 34 percent on the 0.001 scale corresponds to 0.034 percent of the original scattered light, and a filter penetration of 0.034 percent, if the test smoke is uniform.

The validity of the measurement of low filter penetrations with this penetrometer cannot be checked directly by gravimetric measurements. However, the self-consistency of a series of measurements can be checked by means of the well-established law of filtration of homogeneous smokes: the fractional penetration of such a smoke through a filter is independent of the smoke concentration. Thus if a composite pad is made of a series of n similar sheets of filter material, the fractional penetration of each of which is \(P_n \), the fractional penetration of the whole pad will be

\[P = P_1^n \text{ or } \log P = n \log P_n. \]

A plot of \(P \) against \(n \) on semilogarithmic paper therefore should give a straight line. Two series of

FIG. 4—Schematic circuit diagram of phototube and amplifier circuits. Voltage checking circuit for batteries has been simplified
results with one of our meters, shown in Fig. 5, are seen to follow the filtration law over a 250-fold change in concentration. These results check the validity of the penetrometer and also the homogeneity of the test smoke. A curve concave upwards indicates an inhomogeneous smoke, the larger particles of which are removed by the first few sheets.

Smoke Currents

Smoke currents may be measured directly. The percent penetration potentiometer is adjusted to read in centivolts on the 1 scale by setting the dials on 101.8, connecting the check circuit to position 7, and balancing the galvanometer with the sensitivity controls. Changing back to the usual measuring circuit, the parasitic currents are compensated as before, and the amplifier balanced with smoke in the cell. The dial setting gives the smoke current in millimicroamperes (10−9 amp).

The penetrometer may be calibrated directly in micrograms per liter of any particular smoke by measuring the concentration of a sample (by collecting and weighing the smoke in a known volume), setting the percent penetration dials to correspond, and adjusting the sensitivity dials to balance the amplifier.

Parasitic Currents

The potentiometer is adjusted to read in centivolts, its dials brought to zero and the scale switch set on 0.001. Then the top of the smoke cell is covered with a light-tight cap, and the amplifier balanced with the grid bias controls to compensate grid and leakage currents. The cell is flushed with filtered air, the cap is removed, and the amplifier balanced with the potentiometer dials, the reading of which gives the stray-light current in micromicroamperes (10−12 amp). To measure the amplifier grid current, opposite in sign from the stray-light current, the potentiometer is calibrated in centivolts, the anode switch is opened to eliminate phototube leakage and dark currents, the stray light potentiometer is turned to 0, and the amplifier balanced on the 0.001 scale, using the grid bias controls. The grid voltage includes the IR drop of the grid current, which is eliminated by turning the scale switch to 1. To rebalance the amplifier, the percent penetration potentiometer must be adjusted, and its reading corresponds to the negative grid current, in micromicroamperes.

If the anode switch is closed and the smoke cell is capped, the procedure of the preceding paragraph measures the amplifier grid current (0 to −10−12 amp) plus the phototube leakage and dark currents (about 10−14 amp), which are found by difference.

The selection of a tube with sufficiently low grid current and the choice of operating conditions, requires knowledge of the amplifier phototube characteristics, which can be determined without any auxiliary equipment as follows:

The anode switch is opened and the potentiometer calibrated in centivolts. Connecting the check circuit in position 8 opposes the grid voltage with the standard cell and potentiometer voltages in series. The grid bias then can be set on any desired value between −1.02 and −2.5 v, and the corresponding grid current measured as described in the preceding section.

Turning the plate current switch to its upward position connects a 1,000-ohm potentiometer and 400-ohm rheostat across the 1.5-v auxiliary plate battery. The measured value of the 15,000-ohm resistor and the voltage from the 1,000-ohm potentiometer required to balance the galvanometer allow the plate current to be calculated. It is simpler to make the potentiometer dial read directly in plate current, as follows: The check circuit in position 9 opposes the standard cell and 1,000-ohm potentiometer, which must be adjusted to 1.018 v to balance the galvanometer. The plate current required to give this potential drop across a resistor, for example of 13,420 ohms, would be 1.018/13,420 = 76 × 10−6 amp. After setting the potentiometer dial at 76 and balancing the galvanometer with the 400-ohm variable resistor the potentiometer scale reads directly in micromicroamperes, within a few percent.

Other Applications

The instrument here described can be applied to many other measurements beside that of smoke-filter penetration. It could be used to measure the amount of dust in flue gas, and hence determine the completeness of combustion in steam plants. It would be useful in checking the loss of fluid catalyst used in petroleum cracking, by measuring the amount in the exit gas from the regenerating units. It could be applied to the measurement of atmospheric dust and smoke contamination and to the testing of filtered air in any chemical or biological manufacturing process where dust and bacterial contamination must be prevented. Replacing the smoke cell with a cell designed for liquids would give an extremely sensitive nephelometer, with which to study the concentrations of liquid colloidal systems. The use of phototubes with different response characteristics, suitable light filters, and polaroid disks would allow the convenient measurement of many optical properties of aerosols, suspensions, or emulsoids. The sensitive photometric circuits here developed could be applied to a study of the intensities of spectral lines, fluorescence, and Raman spectra.

References

July, 1947 — ELECTRONICS
Clipping and Clamping CIRCUITS

By NORMAN W. MATHER
Assistant Professor of Electrical Engineering
Princeton University
Princeton, N. J.

Performance characteristics of basic circuits for removing that portion of a signal which exceeds a predetermined level or for passing only signals exceeding the clip level, and for restoring or changing average values of signals having level portions

CLIPPING or leveling circuits are used to perform many useful operations, such as creating square waves from sine waves, removing large noise pulses from audio-frequency signals, and removing portions of signals for special purposes.

Clipping circuits may be arranged either to remove the portion of a signal which exceeds the clip level or to pass only those signals which exceed the clip level. Some of the circuits can be modified so that the signal is clipped only a portion of the time, or so the signal is eliminated except when it arrives at the proper time.

Clamping circuits, also called d-c restorers, are used to restore or change the average value of signals which have level portions in their waveforms. The level portions of the waveforms are necessary if the clamping action is to be accomplished. Signals having random variation (or low-frequency a-c components) which are passed through a-c amplifiers usually have the low-frequency components badly distorted. Clamping circuits act to restore these components, and also to change the d-c level of the signal if desired, by periodically clamping a level portion of the signal waveform at a specified voltage.

Shunt Diode Clipping

The simple clipping circuit in Fig. 1A uses a diode in shunt with the path of the signal. Circuits of this type can be used only when the load on the circuit is small compared to the load imposed by the diode when it conducts.

This type of circuit clips or levels the signal whenever the plate voltage of the diode becomes positive because its resistance is then much smaller than that of the series resistor, so that a large voltage drop occurs in the series resistor. When the plate voltage is negative, however, the diode is essentially an open circuit and the voltage drop in the series resistor is small. Reversing anode and cathode connections gives positive output pulses.

Copper-oxide, selenium, or crystal rectifiers can be used in place of diodes, depending upon the characteristics of the signal and the circuit in which the clipping circuit is placed. Due to their large shunt capacitance, large dry-disk rectifiers are unsuitable when the signal has high-frequency components.

Application of an adjustable voltage to the cathode as in Fig. 1B makes it possible to set the voltage at which the input signal is clipped. The opposite portion of the signal can be clipped by reversing the diode. The diode and potentiometer resistance must be much smaller than the series resistance.

Series Diode Clipping

With a diode in series with the path of the signal as in Fig. 1C, the circuit can be loaded more heavily than when using a shunt diode. The values of the circuit elements are not critical insofar as the clipping action is concerned but depend upon
the application. The diode passes the signal whenever the instantaneous flow of current is in the direction which tends to make the diode plate positive. The signal is clipped when the plate voltage becomes negative. Reversing polarity of diode connections gives negative output pulses.

In the series diode circuit of Fig. 1D the clipping level is set by adjustment of the variable potentiometer. In the circuit of Fig. 1E, the clipping level is determined by a voltage wave applied from an external source. The circuit of Fig. 1F uses a series battery to change the average level of the signal and thus change the clipping level.

Series Capacitor for Bias

Circuits with adjustable clipping levels, in which the average value of the signal is changed by the d-c voltage developed across a series capacitor, appear in Fig. 2A and 2B. This voltage is developed due to the difference of the charging and discharging time constants of the circuit, which includes the capacitor and the diode. The ratio of these time constants can be changed by means of the variable resistance in the circuit, thus changing the voltage across the capacitor and the clipping level. The clipping level also depends upon the average amplitude of the signal, hence these circuits cannot be used with irregular waveforms.

Emission-Saturation Clipping

A clipping circuit which depends upon the emission saturation of a tungsten-filament tube is given in Fig. 2C. Clipping in this circuit occurs when the plate voltage is negative or when the emission limit of the filament is reached. The resistance shown in the circuit represents the load. Tungsten-filament tubes are not commonly available in small sizes; however, the type FP-400 can be used.

Grid and Plate Clipping

With grid circuit clipping as in Fig. 2D, the positive portions of the grid signal are clipped in the same way that signals are clipped in the diode circuits of Fig. 1. The signal is amplified, inverted, and the opposite portion of the signal is clipped if the grid signal becomes negative enough to cause plate current cutoff. A bias voltage may be applied in the grid circuit to change the clipping level.

Clipping in the plate circuit due to plate-current cutoff at one extreme and to space-charge limitation of plate current at the other extreme is utilized in Fig. 2E. The signal is amplified and inverted as well as clipped. A large load resistance is used in the plate circuit so that the path of operation on the plate characteristic will be as indicated. The flow of grid current in this circuit loads the circuit supplying the signal, which therefore must have a low internal impedance.

Clipping in the plate circuit of a pentode, illustrated in Fig. 2F, is similar to the action of the triode circuit of Fig. 2E except that the grid is not driven positive and thus the loading of the signal source is eliminated. The signal must not be too large and sufficient cathode bias must be used for proper operation.

Cathode-Circuit Clipping

When clipping in a cathode-follower circuit as in Fig. 3A, the top of the input signal is clipped when grid current flows due to the voltage drop in the resistor in series with the grid. The bottom of the signal is clipped when the grid-to-cathode voltage becomes negative enough to cut off plate current. A relatively large input signal is required if both the top and bottom of the input wave are to be clipped. A potentiometer across the cathode resistor adjusts the average value of the input signal and controls the grid bias voltage.

Clipping in the cathode-input amplifier of Fig. 3B occurs when grid current flows and when plate current is cut off. This circuit requires a low-impedance signal source (such as the output of a cathode follower). It has the advantage of giving voltage amplification and clipping without inverting the signal.

Coincidence Circuit

The signals in Fig. 3C are clipped except when they coincide. Either of the control grids can cut off plate current, and both are biased beyond cutoff in this circuit. When
they are both raised above their cutoff potentials, plate current flows and an output signal is obtained. Similar effects can be obtained with ordinary triodes and pentodes by applying one of the signals to the cathode, screen grid, or suppressor grid.

VR and Thyrite Clippers

Neon lamps or VR tubes can be used in the gas diode type of clipping circuit shown in Fig. 3D. The resistor is chosen so that the current conducted by the tubes stays within their ratings. The output voltage has small spikes on the leading edges because the gas tubes require a starting voltage which is greater than their normal voltage drop while conducting.

A clipping circuit using a Thyrite element appears in Fig. 3E. Thyrite devices are often used on power transmission lines to minimize voltage surges due to lightning.

Diode Clamping Circuits

In the diode clamping circuit of Fig. 4A, the upper portion of the input signal is clamped at zero voltage. By reversing the diode the opposite side of the signal can be clamped at zero voltage. Operation depends upon the difference in time constant for charging and discharging C. When charging, the diode resistance shunts R, but while discharging the diode acts as an open circuit. Selenium, copper-oxide, or crystal rectifiers can be used in place of the diode.

A clamping circuit with an adjustable clamping level is given in Fig. 4B. By placing the diode in a circuit containing an adjustable d-c voltage E, the clamping level assumes the voltage E instead of zero level. The opposite side of the signal can be clamped by reversing the diode.

Triode Clamping Circuits

Clamping in the grid circuit of a tube as in Fig. 4C involves action of the grid circuit of a tube similar to diode action, hence clamping can be obtained by using the grid in place of the plate of the diode. This operation is merely a special case of grid-leak biasing. If neither top nor bottom of the wave to be clamped has a suitable level portion, clamping can be accomplished with the synchronized clamping circuit of Fig. 4D if some intermediate portion of the wave is level. Signals which occur at random about such a level portion will cause the signal to have a varying average value as indicated by the dotted line on the input waveform. If the signal has passed through stages having a-c coupling only, these low-frequency components become out of phase with the main signal or are lost entirely. The purpose of the clamping circuit is to restore the signal to its original form.

The switching voltage is synchronized with the signal so that the tubes, which are normally biased beyond plate-current cutoff, are switched on when the portion of the signal to be clamped occurs. The tubes then conduct and cause the output to have the proper value during the clamping period. The coupling capacitor assumes a charge during this period which results in the random signal starting at the right level. Before the capacitor voltage has had time to stray far from the proper value, the circuit again clamps and the capacitor voltage is brought back to the proper value.

Synchronized clamping can also be accomplished by using diodes in place of the triode tubes of Fig. 4D. Instead of a battery or other steady voltage source, switching signals are applied to the cathode of one diode and to the anode of the other. During the time that these two signals have the same voltage, clamping occurs at this voltage, but when the cathode signal is made more positive and the anode signal is made more negative than this voltage, the circuit is free to follow the main signal voltage.
EXTERNAL CAVITY

Exploded view shows specially designed fingers on contacting plunger of coaxial cavity of Aircraft Radio Corp. for full octave coverage with 6BL6 klystron. Most of the power measurements referred to in text were made using this cavity.

Most microwave devices, especially tubes for local oscillators whose action depends upon electron bunching, operate over a relatively narrow frequency range. Ordinarily this condition is taken as a matter of fact, because equipment is generally intended for use at a single frequency. There are, however, uses in which a microwave local oscillator operable over a wide band is highly desirable. The type 6BL6 reflex klystron, when associated with a suitable cavity resonator, is such an oscillator.

Klystron Development

During the war a reflex tube (type SD835) with external cavity was developed as illustrated in Fig. 1 for the armed forces. It became evident that this tube was interesting as a general instrument and after the tube was declassified work was continued in cooperation with Wright Field, Airborne Instruments Laboratory and Aircraft Radio Corporation, one of the primary objectives being a further increase in operating bandwidth. RMA type number 6BL6 was assigned to the tube shown as Fig. 2. Electrical characteristics of the tube are summarized in Table 1.

Overall length of the tube is approximately three inches, and the largest diameter is one inch. Base pins, which fit a standard four-pin cable-connector, provide connections to heater coil, cathode, and beam-modulating electrode (normally operated at cathode potential). A miniature top cap provides connection to the reflector electrode. The heater coil is insulated from the cathode in order to avoid modulation of signal output by heater-voltage variation in applications where such modulation would be serious. Power input to the tube is of the order of 14 watts of which approximately 4.5 watts is heater power. As may be seen from Fig. 3, power output is between 100 and 150 mw. at an efficiency of about 1.5 percent.

A microwave oscillator that is easily tuned over a broad frequency band, is dependable and rugged, and in which tube replacement is easy, requires a tube having an external demountable cavity resonator. Type 6BL6 was so designed. Its disk seal structure makes possible small physical dimensions, ruggedness without too much difficulty in manufacture, good power dissipation capabilities, and ease of tube replacement without need of scrapping expensive plumbing each time a tube is changed.

The disk seals consist simply of thin copper sheets extending through the glass wall of the tube. These copper disks are backed up by being spun over metal rings to achieve mechanical strength and are

Seven individually adjusted tuning plungers in this toroidal cavity of Sylvania Electric Products for use with the external cavity klystron cover from 3.75 to 4.60 kmc

July, 1947 — ELECTRONICS
KLYSTRON

Ten centimeter klystron for use with a separate cavity can be tuned over a full octave covering the range from 7 to 14 cm in single-mode operation and giving about 100 milliwatts output. Development and characteristics of this tube and tunable cavities for use with it are described.

By PAUL G. BOHLKE and FRANCIS G. BREEDEN

Research Department
Sylvania Electric Products, Inc.
Bayside, New York

FIG. 1—Development of wide range, external cavity klystrons

gold plated to provide protection against corrosion. Diameters of the two resulting disk-cylinders are such that in the single operation of plugging a tube into the coaxial cavity, contact is established to both conductors.

The depth to which the tube can be inserted into the cavity is controlled by squaring the end of the smaller disk and holding its length to specified dimensions. If a shoulder is provided inside the center cavity conductor, tube insertion depth will be controlled by contact between this shoulder and the end of the disk. Thus in a given cavity replacement tubes will always be inserted a uniform amount. Electrical contact to the small disk is made by means of spring fingers which slide over the chamfered edge of the cylinder when the tube is inserted as in Fig. 4. Proper design and machining of these fingers, together with the shoulder stop described above, provide uniform contact for any replacement tube in a given cavity. Electrical contact is made to the lower disk by a toroidal spring held in a retaining groove in the outer cavity wall and which presses firmly against the cylinder. Spring pressure on the cylinder is readily adjusted by selection of wire size and pitch of the helix which is formed into a toroid. Using such a spring contact allows compact cavity design and small volume inside the system when tuned for highest frequency operation in a given cavity mode.

Although type 6BL6 tube is designed for use in coaxial types of cavities, it can be used to good advantage in other cavities for applications where wide tuning range is not necessary. A toroidal cavity tuned by means of radially adjustable screw plugs, will operate well with the toroidal spring contact system applied to both disks.

In the coaxial cavity arrangement of Fig. 4, the reflector voltage lead necessarily comes through inside the center conductor of the cavity, requiring good insulation. As far as the tube is concerned, insulation is achieved by the long leakage path over glass between the top cap and the smaller disk-cylinder and by using a top cap whose diameter is small compared to the inner diameter of the center cavity conductor.

Matching Tube to Cavity

Use of some of the earlier tube types disclosed a number of interesting factors which received considerable study; these included: (1) the frequency range for the 21 mode (Mode numbers are design-
ference and frequency jumping are possible.

The first of these problems to be solved was that of obtaining a proper match between tube and cavity. The curve of an ideal resonator (that is, one in which resonant wavelength plotted as a function of plunger displacement is a straight line with a given slope) had to be closely duplicated. The problem was to change the capacitance between the two resonator grids and electronic admittance of the tube in such a fashion that the tuning curve of the cavity-tube combination would be essentially a straight line, having the same slope as the curve for the ideal resonator alone. These curves, obtained by Airborne Instruments Laboratory, are compared in Fig. 5; the curve for the ideal resonator has arbitrarily been shifted to the left. The important feature is that these curves are nearly parallel, indicating the same slope.

Matching the tube to the cavity also reduced interference between modes. Part of the mode interference was due to a TE_{11} mode tuning curve intersecting the desired TEM mode near the short wavelength end of the band. Improper cavity match caused this mode to move from its calculated position outside the desired band to a point where serious difficulty resulted. Achieving proper cavity match eliminated this trouble.

Discussion of cavity matching introduces another interesting item: that of the interdependence of the electrical features of the cavity and the external physical dimensions of the tube. The diameter of the upper disk determines, to a large extent, the minimum diameter of the inner conductor of a coaxial cavity. This disk diameter was so chosen that a commercial size tubing could be used in cavity manufacture, and at the same time this size was convenient to tube design and manufacture. Because the ratio of diameters of inner and outer conductors of the cavity is fixed by electrical cavity design consideration, the diameter of the outer conductor is fixed by this choice. The diameter of the lower disk cylinder of the tube must then be larger than the upper disk cylinder and smaller than the diameter of the outer cavity conductor. One inch was chosen for the lower disk of this tube; it fits the above condition and at the same time is of ideal size for the toroidal spring contactor described above.

Frequency Moding

The second major problem to be solved was that of frequency-moding or frequency-jumping. This problem is one of eliminating combinations of cavity modes (that is, the $\lambda/4$, $3\lambda/4$ and $5\lambda/4$... modes of the cavity) for a given plunger position, which would combine with reflector modes, shown in Fig. 6, of the tube to give interference and frequency-jumping. Size consideration makes it desirable to operate on the $3\lambda/4$ mode of the cavity; thus, if the plunger is set for operation at 10 cm, the cavity is also resonant at 30 cm, 6 cm, 4.3 cm, 3.3 cm. To operate in the 21 reflector mode at 10 cm, the tube has a re-

![FIG. 2—Actual size picture of 6BL6 klystron for wider range tuning](#)

![FIG. 3—Power output from typical tube](#)

![FIG. 4—Special features of cavity](#)

![FIG. 5—Tuning curve of klystron-cavity combination](#)
reflector voltage of approximately —130 volts. For this reflector voltage, the 1\frac{3}{4} mode is approximately at 15.8 cm, the 3\frac{1}{2} mode at 7.5 cm, the 4\frac{1}{2} mode at 5.7 cm. . . If any one of these had corresponded to the wavelengths for the cavity modes, there would be the possibility of the system sustaining oscillation in either frequency, and thus mode-jumping could occur. Because operation must be continuous over the band, care had to be taken that at no point would mode interference be experienced; this is accomplished in part through achieving the proper cavity match and in part through shifting the tube characteristics by adjustment of the internal parameters.

To cover the frequency range, the position of the reflector was varied. The required range was approximately 2.0 to 4.3 kilomegacycles (kmc) and the problem of obtaining it was complicated by the requirement of operating only in the 2\frac{1}{2} mode. The spacing was adjusted to give 2.0 kmc with the reflector at about —35 volts; this value was determined primarily by considerations of reflector current tolerable in the application. The first prototypes of the 6BL6 failed to reach the higher frequency, although in a radial cavity they had operated satisfactorily. The exact reason for this discrepancy is not fully evident. However, by adjusting the internal tube parameters and the position, size, and orientation of the coupling loop, the desired range of operation in the special cavity was obtained.

Another interesting instance in which cavity and tube parameters are almost inseparable, in considering characteristics and operating limits, is in electronic tuning. A variation of reflector voltage will produce not only a change in power output, but also a variation in frequency even though the cavity setting is fixed. Figure 7 shows typical electronic tuning curves taken for optimum loading (that is, with the coupling adjusted to give maximum power output at the center points of the curves).

Cavities for the Tube

In the discussion so far, reference has been made particularly to a coaxial cavity with which much of the work was done. This cavity was chosen primarily because of an immediate application (a wide-range superheterodyne receiver) requiring special mechanical and electrical design features. Here a noncontacting plunger, which is ball bearing...
mounted making possible an exceedingly large number of tuning cycles without wear of cavity parts, is used; contacting and tube positioning design features discussed above were incorporated. A second cavity in which a considerable amount of testing was done, including most of the power output measurements, is similar in many respects to the one previously discussed except that it has a contacting-type of plunger.

A third cavity used with the tube is a radial type having seven tuning lugs, instead of one plunger, to adjust the frequency. By adjusting these lugs in or out, the cavity is tunable over a wavelength range of 6.5 to 8.1 cm rather than the full octave coverage of the other two cavities.

The low-frequency limits, other than those imposed by inherent design features of the cavities, arise primarily from limitations of voltages which can safely be applied to the tube for each reflector mode. Typical mode characteristics are shown in Fig. 6. It will be observed that the curve for each mode is terminated at a reflector voltage of -25 to -35 volts; reflector current becomes noticeable at these negative voltages. The magnitude of the reflector current which can be tolerated depends, to a great extent, upon the power supply. This tolerance established a lower practicable limit arbitrarily set at 1.25 kmc for the 13 mode and 1.8 kmc for the 21 mode. The high-frequency limit has been established so far by cavity limitations. Other factors which might affect this limit are the maximum practical limits of voltages which can be applied to the reflector and conditions such as loading, which require a lower value of electronic admittance within the tube than is obtainable.

The choice of the 21 mode resulted from a compromise between power output and stability of operation. In general, the higher order modes operate more stably, whereas the lower modes usually give higher power output. Choice of the 23 mode gives a stable mode with good power output.

Figure 6 shows the mode characteristics with a tube operating in the Airborne Instruments Laboratory cavity. Open areas represent regions in which the tube oscillates with sufficient strength to give an indication on a crystal output meter. The locus of maximum power for each mode is a line near the center of the area. The power output distribution along any ordinate across these modes follows the curves of Fig. 7.

These mode characteristics serve a very practical purpose other than to present the ranges and modes available from the tube. In a wide-range local oscillator, the frequency is changed continuously by moving the cavity plunger. These curves show the manner by which reflector voltage must be varied when the frequency is changed. As may be deduced from Fig. 6, it is usually sufficient to track the reflector voltage near the center of the characteristic. Combining this characteristic with the tuning curve, Fig. 5, it is possible to design the tracking mechanism.

Figure 8 shows power output as a function of frequency for the 21 mode. At each frequency, the power determination was made after the output had been maximized by adjusting the reflector voltage and the coupling loop. Power output is well above 100 milliwatts over most of the band. In a similar fashion, the power output of the 13 mode falls off rapidly only for frequencies below 1.3 kmc.

In conclusion, the authors wish to acknowledge, with sincere appreciation, the work done at the Radio Research Laboratory at Harvard University, that of Airborne Instruments Laboratory, and of Aircraft Radio Corporation with reference particularly to the solutions to the cavity problems, and the work of Dr. V. B. Corey while a member of the Research Laboratory, Sylvania Electric Products, Inc., relative to this project.

TABLE I—Ratings and Characteristics

<table>
<thead>
<tr>
<th>TABLE I—Ratings and Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>RATINGs</td>
</tr>
<tr>
<td>Reflector voltage ± 6 per cent (a-c or d-e)..................</td>
</tr>
<tr>
<td>Heaters current...... 6.3 volts</td>
</tr>
<tr>
<td>Max negative reflector voltage................................</td>
</tr>
<tr>
<td>Max negative reflector voltage................................</td>
</tr>
<tr>
<td>Max positive grid No. 1 voltage................................</td>
</tr>
<tr>
<td>Max grid no. 2 voltage..</td>
</tr>
<tr>
<td>Max grid no. 3 voltage..</td>
</tr>
<tr>
<td>Max operating freq...</td>
</tr>
<tr>
<td>254 mode.. 3.3 kmc</td>
</tr>
<tr>
<td>254 mode.. 4.8 kmc</td>
</tr>
<tr>
<td>254 mode.. 6.0 kmc</td>
</tr>
<tr>
<td>254 mode.. 1.25 kmc</td>
</tr>
<tr>
<td>254 mode.. 1.75 kmc</td>
</tr>
<tr>
<td>254 mode.. 2.25 kmc</td>
</tr>
<tr>
<td>Max heater-cathode voltage................................. 45 volts</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPICAL OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater voltage (a-c or d-e)..................................</td>
</tr>
<tr>
<td>Heaters current...... 6.3 volts</td>
</tr>
<tr>
<td>Grid no. 1 voltage...</td>
</tr>
<tr>
<td>Grid no. 2 voltage...</td>
</tr>
<tr>
<td>Grid no. 3 voltage...</td>
</tr>
<tr>
<td>Cathode current..</td>
</tr>
<tr>
<td>(approx)...</td>
</tr>
<tr>
<td>Reflector voltage..</td>
</tr>
<tr>
<td>Reflector voltage at f = 2.14 kmc (254 mode). -40 volts</td>
</tr>
</tbody>
</table>

Frequency range, tuning curve, and mode interference were studied with this circuit.
VOLTAGE-REGULATED POWER SUPPLIES

A nonmathematical solution is traced from simplified theory. Actual values of circuit elements necessary to build a power pack and three-tube control are computed. Practical suggestions are given for physical layout and elimination of ripple.

By PAUL KOONTZ
Instructor
YMCA Trade and Technical Schools
New York, N. Y.

and

EARLE DILATUSH
Engineer
Wilmotte Development Laboratory
New York, N. Y.

SIMPLY stated, the action of a voltage regulated power supply is to cancel any attempted fluctuation of its output voltage whether caused by input (line) change, or output (load) change. One way to become familiar with the regulating action of this circuit upon input variations is to trace the path of the supply ripple. In the usual power supply, this disturbance consists mainly of 120-cycle sine-wave a-c, with amplitude from a fraction of a volt to several volts. In Fig. 1, this voltage appears across points A and B, and produces a flow of current through \(V_1 \) (whose initial action is that of a diode) and \(R_1 \). A portion of the voltage drop across \(R_2 \), caused by this current, is applied as bias to the control grid of the amplifier tube \(V_3 \). Since \(V_1 \) holds the cathode of \(V_2 \) at a fixed point above ground, \(V_1 \) amplifies this variation, causing it to appear in inverted form across the load resistor \(R_3 \). Since \(R_3 \), also serves as the bias resistor for \(V_3 \), it produces through \(V_3 \) an inverted version of the original ripple current. Because this and the original ripple are approximately equal but opposite in phase, cancellation occurs, giving as the end result an almost ripple-free output across \(C \) and \(B \). A similar cancellation is produced by any attempted fluctuation of input voltage to the regulator.

Attempted output voltage changes caused by load variations are similarly cancelled because they, too, are applied to the grid of the amplifier tube \(V_3 \).

Expansion of Simplified Theory

It was assumed above that the grid of \(V_3 \), is the sole means of control. That is, that the change voltage applied to it by \(R_3 \) is the only acting control voltage, and that the grid of \(V_2 \), is the only point to which control voltage is applied. A complete analysis presents a different picture. Not only are other control voltages present, but they are introduced at several different points in the circuit.

Variations of the unregulated supply voltage can act as a control source when applied to any of the amplifier tube elements. When the screen of \(V_3 \), is fed by a bleeder from the unregulated supply as in Fig. 2, the variations of that supply voltage appear across the screen-to-cathode impedance of \(V_3 \) and are amplified by the screen which acts like a low-gain control grid. This control-effect produces across \(R_3 \), a voltage of the proper phase to effect cancellation of the input changes, but of an amplitude that is normally much greater than that needed for cancellation.

Similarly when \(V_3 \) is fed by a bleeder from the unregulated sup-

FIG. 1—Fundamental elements of a voltage-control designed to follow a conventional rectifier.
ply, a portion of the variation in
That supply appears across V_n which
forms the cathode circuit of V_n. Hence V_n has impressed on its cath-
ode (in series with its grid return)
a portion of the input change. The
amplitude of these changes depends on
the effective impedance of V_n, which
is usually from about 200 to 1000 ohms. The effect of these changes opposes that caused by the
grid and screen controls.

The impedance of V_n also causes
the introduction of another voltage
into the grid return of V_n. This
additional control voltage, resulting
from variations of the plate and
screen current of V_n, acts degener-
avtively to reduce the gain of V_n.

Evaluation of Control Factors

The effectiveness of the control
action of the grid may be expressed in
its simplest form as

\[
\text{Resultant fluctuation of the supply output} = \frac{\text{Attempted excursion}}{\text{Gain of the amplifier stage}}
\]

The effect of the screen control,
in the absence of grid control, may
be stated as

\[
\text{Resultant fluctuation of the supply output} = \frac{\text{Difference between (a) attempted fluctuation and (b) portion applied to screen times screen gain}}{\text{screen current of } V_n}
\]

The composite output fluctuation,
resulting from both grid and screen
control may be found by consider-
ing the result obtained from Eq. 2
as the attempted excursion in Eq. 1.

For the moment, let us assume
that the resultant fluctuation in Eq. 3 equals zero. In this event, the final
fluctuation on the output is equal
to that value which produces at
the grid of V_n an exact duplicate of the
voltage present on the cathode.

Choice of Ratings

In the average power supply, the
grid, in spite of the other controls,
is able to reduce any ripple pre-
sented to it to a value comparable
to that existing on the cathode.
This is true even though the screen
overcompensates in the usual case.
The value existing on the cathode
will vary widely when different V_n's
of the same type are substituted in
the same chassis. Conventional de-
sign for a supply furnishing an out-
put of 250 to 300 volts d-c produces
a ripple content of approximately
0.04 v rms. The d-c regulation is
usually maintained within about ±2
volts.

Before designing any regulated
supply, it is of prime importance
to list the actual demands to be
made on it. Instantaneous peak
current demand (as distinguished
from maximum average current de-
mand) is probably first in impor-
tance. These supplies are not reser-
voirs, hence lose both control and
effectiveness when subjected to any
instantaneous load even slightly
beyond their rated capacity. The
frequency of demand is unimportant,
however, if it lies below approxi-
mately 20,000 cycles per second.
Above this frequency the effective
impedance of the supply increases
rapidly because of the inability of
tube V_n in the amplifier cathode
circuit to regulate. A rise in supply
impedance can be counteracted by
shunting a paper capacitor of 1 or
2 microfarads across the regulated
output. When this capacitor is in-
cluded, the supply can be used to
feed equipment calling for micro-
second pulses of high amplitude.

Selection of the output voltage
to be provided is also important.
To reduce the cost of components,
an output range of 250 to 300 v is
favored, when that is adequate for
the equipment being fed. Higher
output voltages are easily produced,
but require more expensive
components. A wide range of output
voltage adjustment should also be
avoided unless there is a specific
need for it. The usual dependabil-
ity of domestic supply lines makes
it unnecessary to provide against
large line voltage changes.

Design of Supply Section

For design purposes, supply and
control circuits can be considered
separately. The supply portion, as
considered here, consists of the com-
ponents shown in Fig. 3. This cir-
cuit differs from an ordinary un-
regulated power supply only in the
addition of V_n, which may for
the moment be considered as a variable
series resistance introduced for con-
trol purposes.

To illustrate design procedure a
set of requirement limits has been
chosen based on commercial ratings
for supply components.

The limits decided on are: output
toltage, 250-300 v; output cur-
rent range 75-200 ma; power line
fluctuations of ±10 percent.

On the basis of these limits we
may now choose the series tube, V_3.
the rectifier tube, \(V_1 \); the filter choke, \(L_1 \); and the power transformer, \(T \).

Tubes commonly chosen for series service include 2A3, 6A3, 6B4, 6L6, 6V6, 6Y6, and 807. For our supply the recently introduced 6AS7G, a twin triode expressly designed for this service is chosen. Their extremely low plate resistance allows the use of a lower voltage drop across them, hence a reduced high-voltage winding on the power transformer. The heater-cathode rating of \(\pm 300 \) v makes possible the paralleling of their filaments with that of the amplifier tube. Only two of these tubes are needed because of their current-carrying ability, with a resultant saving of space.

A suitable filter choke will have low internal resistance and adequate current carrying capacity. Inductance rating is of secondary importance. A 5 to 10 henry choke with 50 to 200 ohms internal resistance, and rated to carry at least 225 ma will be satisfactory. The one selected for this example is rated at 5 henries at 225 ma with 100 ohms d-c resistance.

The rectifier selection is easy, for the 5U4G, 5Z3, 5T4, and the 5X4G can all handle the current and voltage requirements. The 5U4G is chosen because of its general availability.

Selecting a Power Transformer

In the selection of a power transformer, we must first determine the voltage needed out of the rectifier. This will consist of the sum of the voltage drops across the filter choke, series tubes, and output load. The use of the following procedure is necessary to determine that voltage:

1—Inspect the characteristic curves of the selected series tube. Determine from them the lowest allowable plate voltage for the maximum current specified.

Example: Each side of a 6AS7G will deliver 56 ma at 20 v, so 2 6AS7G's in parallel will provide the required 225 ma total current, including approximately 25 ma current consumed internally by the power supply.

2—Increase the minimum working plate voltage by a sufficient margin to allow for possible component variations. This also is necessary to allow proper control of the series tube, since its bias must swing symmetrically about a center point and never drop to zero.

Example: 20 v plus 20 v margin equals 40 v minimum operating plate voltage.

3—Next determine the minimum voltage allowable at the plates of the series tubes. This is the highest power-pack d-c output voltage plus the voltage determined in step 2. Note that this must be delivered to the plates of the series tubes under the condition of lowest allowable line voltage and highest rated output current of the pack.

Example: 300 v pack output plus 40 v from step 2 = 340 v delivered at 225 ma total drain, and 105 v line input.

4—Add the voltage obtained in step 3 to the IR drop across the filter choke (at full 225 ma current) to find the voltage the rectifier must deliver at lowest line input.

Example: \(E = IR = 0.225 \times 100 = 22.5 \) v choke drop. 340 v + 22.5 v = 362.5 v at 225 ma which the rectifier must supply at 105 v line input.

5—Refer to the characteristic curves of the rectifier selected. From them find the input voltage to the rectifier that will produce the output voltage determined in step 4. Be sure to take into consideration the type filter (choke or capacitor input) and the size of its components.

Example: 5U4G, capacitor input filter using 8A7 input capacitor. 350 v a-c rms in, equals the required 362.5 v out at 225 ma.

6—Calculate the highest a-c input voltage to the rectifier that will result when the line input voltage is increased to its upper limit.

Example: Voltage ratio of the power transformer equals 362.5/105 or 3.33. 125 v \(\times 3.33 = 416 \) v a-c out.

7—Again refer to the rectifier tube curves. Determine the d-c voltage out of the rectifier for the a-c voltage into it calculated in step 6.

Example: 416 v in = 435 v d-c out (at 225 ma drain).

8—See what the maximum wattage dissipation in the series tube will be, under the worst operating conditions; that is at maximum current drain, maximum line input voltage and lowest d-c output voltage.

Example: 435 v – 22.5 v choke drop = 412.5 v applied to the series tubes. This, minus 250 v (the lowest output voltage) = 162.5 v across the series tubes. Therefore, since \(W = EI \), 162.5 v \(\times 0.225 \) amp = 37 w total dissipation.

9—Using the maximum a-c input voltage to the rectifier (determined in step 6), and the minimum current drain (set by the limits), inspect the rectifier tube characteristics and find the d-c output voltage for these conditions.

Example: 5U4G, 416 v a-c, 100 ma total drain; the d-c out of the rectifier is 500 v.

This voltage, minus the lowest pack d-c output voltage set by the limits, is the maximum voltage that will appear across the series tubes.

Example: 500 v – 10 v = 250 v equals 240 v maximum across the paralleled 6AS7Gs.

10—If the ratings of the series tubes (maximum wattage and plate voltage) are not exceeded under the conditions imposed by the
limits, we may now easily determine the nominal voltage of the a-c high voltage winding on the power transformer, by multiplying its voltage ratio by the nominal line voltage.

Example: $3.33 \times 115 = 383$—so a rating of 380 v would be satisfactory.

Additional design considerations for the supply section stipulate rectifier tubes having good regulation (low internal voltage drop). If a capacitor input filter is used, the input capacitance should be at least 8μf. When a choke input filter is used a swinging choke is advisable following the rectifier tube.

Series Tube Circuit Design

Standard practice dictates the use of suppressors in control grid and plate circuits (screens, too, if used) when series tubes are paralleled for greater current capacity. Their elimination would result in highly unstable or erratic operation. It is preferable that these suppressors be mounted with one end directly supported by the tube socket lug to which it connects. Resistance values of 50 ohms for the plate, and 100 ohms for the grid and screen are satisfactory.

Design of Control Section

The control circuit shown in Fig. 4 is typical. A sharp-cutoff pentode is more suitable than a remote-cutoff pentode for use as the amplifier V_s. Its lower plate current allows the use of a high value of plate load resistance R_s, resulting in higher gain and less degeneration. The highest gain of the amplifier will be obtained when R_s approaches the plate resistance of the amplifier tube. This suggests a value for R_s of from 0.5 to 1 megohm.

The voltage reference source is usually a cold-cathode tube of the VR type, although batteries or a neon bulb could be used. Tubes are preferred because of their long life and low effective impedance. High impedances at V_s will cause an increased ripple output, as well as poorer regulation because of increased degeneration in the amplifier stage. Impedances presented by tubes of the VR type approximate 200 to 1,000 ohms.

Selection of the specific tube for any given application depends on fulfilling the following requirements:

1. The amplifier tube V_s must be provided with adequate plate voltage over the entire range of operation.

Example: (based on the limits used for computation in the supply section: 250 to 300 v at 75 to 200 ma external drain over 105 to 125 v line input.)

The amplifier plate voltage will be lowest with highest line and lowest output voltage and current—125 v line, 75 ma external drain at 250 v output. Reference to step 9 in the supply section shows 240 v across the 6AS7G's under this condition. Inspection of the characteristic curves for the 6AS7G shows that 130 v bias will be required to limit the current through each section to 25 ma (4 of the 100 ma total). The voltage between the amplifier plate and ground is the output voltage of the supply 250 v, minus the bias voltage for V_s, 130 v; or 120 v. A small voltage must be maintained between plate and cathode of the amplifier tube V_s.

2. The grid of the amplifier tube V_s should receive as large a percentage as possible of the total fluctuation present on the output. Hence the highest voltage VR tube allowable by step 1 should be used.

Example: A type OC3/VR105 is indicated here.

The bleeder consisting of R_1 and R_2 must supply V_s at least 8 ma of current, and must maintain the screen of V_s at a suitable voltage above its cathode.

Example: Lowest unregulated d-c is approximately 340 v (at 105 v line input and 225 ma total drain), therefore the total resistance R_2 plus R_1 will be: $(340-105)/0.008 = 235/0.008 = 30,000$ ohms.

The section between the screen of V_s and its cathode (plate of V_s) must have a drop of approximately 60 v for adequate screen supply. Thus R_1 will be: $60/0.008 = 7,500$ ohms. This gives suitable values of R_1 and R_2, as 22,500 ohms and 7,500 ohms respectively. Wattage ratings of R_1 and R_2 must allow for the condition of highest unregulated supply voltage (500 v as determined in step 9 of supply). Therefore $500/105/30,000 = 1.3$ ma. Wattage dissipated in $R_s = 0.013 \times 22,500 = 38$ watts. Therefore R_1 requires a 5 watt resistor. Similarly, R_2 calls for a 2 watt rating. Screen current has been neglected as negligible in these computations.

The amplifier grid bleeder consisting of R_2, R_3, and R_4, can be determined as follows: Its total resistance R_3 should be sufficient to allow the conservative use of small fixed carbon resistors at R_2 and R_4, and a standard potentiometer at R_4. However, if excessively high values are used, V_s exhibits troublesome hum pickup from its grid wiring.

Example: If 300 v is the maximum pack output, a total suitable
bleeder value will be approximately 0.25 megohm.

The necessary resistance values for \(R_e, R_s, \) and \(R \) will vary with the regulated output voltage of the pack, and while they could be computed, a simpler method for determination is available. Substitute a 0.25 megohm potentiometer for \(R_e. \) With the pack operating, adjust the potentiometer to obtain a pack output voltage approximately 10 percent higher than the highest desired output voltage. Disconnect the potentiometer, and record the resistance from arm to positive end. Reconnect the potentiometer and set the pack in operation. Readjust it to give an output voltage 10 percent lower than the lowest desired output voltage. Again disconnect, and record the resistance from the arm to minus end. You now know the values of \(R_e, R_s, \) and \(R \) that will produce the desired range. To make the resultant values of \(R_e, R_s, \) and \(R \) fall on commercial resistance values, the total bleeder resistance \(R_b \) may be adjusted upwards or downwards by a factor of plus or minus 25 percent.

Example: \(R_e, 120,000 \) ohms; \(R_s, 50,000 \) ohms; and \(R, 82,000 \) ohms for an approximate output range of 220 to 330 v for this particular supply.

The grid coupling capacitor, \(C, \) which presents a low impedance path to the grid for attempted high and medium frequency changes in the output, is usually about 0.25\(\mu \)f. Larger values, while transferring more of the low (ripple) frequency variations to the grid, may cause undesirable effects due to time lag in their transmission.

Design for Minimum Ripple

A ripple voltage of 0.02 to 0.05 v rms in the output of a standard voltage-regulated power supply is usually satisfactorily low. If troublesome, it may be reduced by carefully selecting tube \(V, \) that is used as voltage reference, particularly when the screen and \(V \) bleeder are connected to the unregulated supply voltage.

If unusually low ripple must be obtained, the circuit modification shown in Fig. 5 can be used. Analysis of the operation of this circuit will show that the degree of ripple reduction is not limited by the amplifier gain but may be made practically infinite. This effect is accomplished by feeding the screen of the amplifier tube \(V, \) a controlled amount of the input ripple. The screen, acting as a low-gain control grid, produces across the series tube a voltage equal to the original ripple but of opposite phase. Control of the amount of ripple fed to the screen grid is performed by the 0.5 megohm potentiometer.

The most satisfactory degree of ripple cancellation can be assured by placing the pack in operation with its actual load and an oscilloscope connected across the output. After all other adjustments have been made, the ripple can be cancelled by adjusting the potentiometer.

The degree of ripple cancellation does not depend on the amount of ripple present, and almost complete cancellation can usually be effected with ripple inputs of 50 v or less. One of the supply modifications this suggests is the reduction of the filter components to a single capacitor following the rectifier. Power-pack output ripple of 0.002 v or less can be obtained under these conditions. When a normal filter is used, the residual ripple may be too small to be observed on a sensitive oscilloscope.

Optimum Regulation

Variations in output voltage owing to changing load will be minimized by the use of a low impedance supply to the series tube. The use of a mercury-vapor type rectifier will often give the greatest improvement in that respect.

Any means of increasing the effective gain of the amplifier stage will also improve the regulation. Three schemes advanced for this purpose include: substitution of a constant voltage device (such as neon lamps, VR tubes, or batteries) for the portion of the amplifier grid bleeder between the grid and regulated B+; substitution of a constant current device (such as a pentode tube or inductance) for the portion of the amplifier grid bleeder between grid and \(B+; \) the use of a multiple stage amplifier.

Another method of improving regulation is to connect the screen of the amplifier tube to a bleeder from unregulated B+.

Physical Arrangement

Layout of the supply portion follows the established rules for power supplies. To avoid hum pickup by the control section it is desirable to place the entire supply section at one end of the chassis. Thus, no a-c wiring but that for the filament need be close to the sensitive control circuits.

The series tube placement requires consideration of the problem of heat elimination. Nearly a quarter of the total power consumed by the entire supply is dissipated by the series tubes under some conditions of operation.

The control portion is more demanding in its placement and wiring needs. To realize full benefits from a supply of this type, hum pickup on the amplifier tube wiring must be eliminated. All wires to the grid of the amplifier should be short, and capacitance between them and other wires or chassis reduced to a minimum. The capacitor between the amplifier grid and regulated B+ should be mounted away from the chassis to avoid unwanted capacitance to ground. The voltage adjusting potentiometer should preferably be located on the chassis adjacent to the amplifier tube socket. If panel control is required a shaft extension is preferable to locating it on the panel. Hum pickup from 60 cycles on long leads to this control is often difficult to eliminate. A safe rule to follow is to consider the amplifier tube as an r-f amplifier, and to use appropriate wiring precautions.

An oscilloscope is the only satisfactory means of observing the minute fluctuations present in the output of a voltage-regulated power supply. It is also extremely useful for trouble shooting as well as for measuring the variations present.

BIBLIOGRAPHY

IMPEDEANCE

A slotted line, used in conjunction with a variable-reactance line that balances out reactive impedances, is readily adapted to measurements of impedance, antenna phasing, and directivity comparisons. Equipment for unbalanced and balanced loads are described.

By E. G. HILLS
Engineer
Belmont Radio Corp.
Chicago, Ill.

Radio-frequency measurement in the two lower television and frequency-modulation bands cannot be conveniently made using the equipment and techniques of either the lower-frequency bands or the microwave region. However, in this region from 44 to 216 megacycles the slotted transmission line is a simple device for measuring impedances, especially if it is used somewhat differently than it is normally used in the microwave region.

Accuracy of Standing Wave Measurements

A slotted line is most accurate when used in measuring impedances that are of the same order of magnitude as the characteristic impedance of the line itself. For impedances greatly different from that of the line, the attenuation of the transmission line, if any, connecting the slotted line to the impedance being measured comes into the picture. This necessitates cumbersome corrections. Fortunately, at these frequencies coaxial cable is available that has sufficiently low attenuation so that several feet of it can be connected between the slotted line and the unknown impedance without necessitating correction for impedances that cause standing-wave ratios (swr) up to 15 to one, and still give reasonable accuracy.

Attenuation in the slotted line itself also causes errors in measurement. These errors normally appear as errors in the measured swr and in the position of a voltage or current minimum as measured with respect to some reference point, such as the point at which the unknown impedance is connected. A small percentage error in determining the position of the minimum can cause an extremely high percentage error in the measured impedance for impedances causing high swr on the measuring line.

As an example, if an impedance of 100 + j300 ohms is to be measured on a 50-ohm slotted line, a 2-percent error in swr can give a 10-percent error in resistance and a 3-percent error in reactance. An error of 2 percent of a half wavelength in determining the position of a voltage or current minimum, however, can cause a 150-percent error in resistance and a 45-percent error in reactance.

Impedance Measuring Equipment

Figure 1 shows an equipment arrangement for measuring impedance by means of two swr measurements and no position measurement. A sleeve is placed around the coaxial cable connecting the unknown impedance to the slotted line. The distance from the load end of this sleeve to the point where it is shorted to the outside of the coaxial cable is movable by means of a sliding plunger. This sleeve forms the outside conductor of a second coaxial line, which has as its inner conductor the outside conductor of the coaxial line leading from the load to the slotted line. This second larger coaxial line is shorted by the plunger at one end and has its other end connected in series with the outer conductor of the coaxial line leading to the slotted line and the unknown impedance. By varying the position of the sliding plunger the reactance introduced by the shorted line can be varied through all values both positive and negative, limited only by the Q of the line.

By sliding the plunger until the minimum swr is obtained, the reactance of the unknown impedance

FIG. 1—Basic measuring connection includes slotted line connected to load through specially-constructed variable-reactance line.
MEASUREMENTS AT VHF

will be tuned out. The swr with this tuning then indicates the resistive component of the unknown impedance by itself. The value of this resistance is the characteristic impedance of the slotted line or divided by the swr, depending upon whether the resistive component of the unknown impedance is larger or smaller than the characteristic impedance of the slotted line.

Checking Conditions

To check which of these two conditions exists, it is only necessary to short-circuit the inner coaxial cable at the load and note the position of the minimum on the slotted line. If the position is the same as it was before the short was made but after the plunger had been adjusted for minimum standing wave ratio, the resistance of the load is on the same side of the characteristic impedance of the slotted line that a short circuit is, namely lower, so that a division must be performed to get the value of the resistance. If the minimum with the short-circuit in place is 90 degrees away, the resistance is higher than the characteristic impedance of the line and a multiplication must be performed to obtain the value of the resistance.

Reduction of Data

In order to get the reactance, it is necessary to refer to one of the various transmission line charts, such as the Smith chart, which are plotted in a variety of handbooks and periodicals. Although these charts appear in several different forms and look quite different they are just different conformal transformations of the same relationships between voltages and currents at different points of a transmission line, and contain the same information.

Figure 2 shows a form of transmission line chart in which the horizontal axis represents resistance and the vertical axis represents reactance. The two circles shown represent points of constant swr which degenerate into a point at Z0 when the swr ratio is unity.

In the measurement just described, the smaller circle corresponds to the swr measured with the reactance of the unknown tuned out. One of the two points at which this circle crosses the real axis represents the resistive component of the unknown impedance. By projecting vertically upward or downward from this point until the larger circle, which corresponds to the swr of the unknown impedance with its reactance not tuned out, is reached, the point on the complex plane representing the unknown impedance is obtained. The vertical distance from the real axis gives the reactance of the unknown.

As there is a question as to whether go upward or downward, or what is the same thing, whether the sign of the unknown reactance is positive or negative, the rough position of the plunger must be noted. If this plunger is less than a quarter wavelength from the load end of its line an inductive reactance is being used to tune out the reactance of the unknown, so the unknown reactance must be negative. If the plunger is more than a quarter wave but less than a half wave from the open end, the unknown reactance is positive. For making this check on sign as well as for other uses of this variable-length coaxial line, it is convenient to place calibration marks along the line, labeling the frequencies at which different plunger positions are a quarter wavelength from the end of the line.

Sequence of Measurement

Summarizing the above, the procedure to follow in a measurement is to:

(1) Short-circuit the variable-length transmission line and measure the swr of the unknown.

(2) Also short-circuit the un-
known and find the position of a minimum on the slotted line.

(3) Remove both of the above short circuits and adjust the plunger until the minimum of the slotted line is either at the same point as it was in step 2, or if this is impossible, until it is 90 degrees away on the slotted line. In the latter case there will be two positions of the plunger that will give a minimum. One of these two minimums is much lower than the other and occurs with the plunger at a quarter wave point, at which position it is throwing a parallel resonant circuit in series with the unknown, essentially open-circuiting it. The other plunger position giving a minimum should be used.

(4) Take the standing wave ratio.

(5) Determine the resistive component of the unknown, which is the characteristic impedance of the slotted line either multiplied or divided by the standing wave ratio of step 4 depending upon the position of the minimum of step 3.

(6) Determine the reactance of the unknown from a transmission line chart, using the knowledge of the resistive component and swr of the unknown impedance, or determine it from the formula of Fig. 2 which is derived from the geometry of the circle diagram.

(7) Note the sign of the reactance from the position of the plunger in step 3.

Measuring Balanced Impedances

The equipment arrangement as shown in Fig. 1 can be used only for measuring the impedance of unbalanced circuits, that is, circuits in which one side is grounded or can be grounded without disturbing the impedance of the unknown. If a balanced antenna, the impedance of which is to be measured, can be cut in two and half of it mounted above a ground plane as in Fig. 3A, the impedance as measured with the equipment arrangement shown will be half the impedance of the balanced antenna in both its resistive and reactive components. An arrangement as shown in Fig. 3B could, of course, be used directly to measure balanced impedances.

Figure 4 shows a variable reactance that has been used very successfully for impedance measurements. It is constructed of two concentric brass tubes with a variable-

![Diagram of equipment arrangement](image-url)
position plunger short-circuiting the two together. A piece of coaxial cable is run through the center tube and its braid is soldered to this tube at the open end of the large coaxial line so formed. The length of the variable reactance must be at least a half wavelength at the lowest frequency at which it is to be used.

Another method of measuring balanced impedances, which requires no expensive special equipment and which gives quite accurate results, consists of stretching tautly a piece of 300-ohm parallel line between the impedance to be measured and a line balancer which may be one of the variable reactances of Fig. 4 with the plunger set at a point 90 degrees from the open end, and moving a pickup probe along the parallel line in order to measure swr.

Figure 5 shows a pickup probe fastened to the end of a second line balancer. If the signal generator used is not balanced and is not connected to the parallel line through a balancer, or if the pickup probe is not balanced, the results obtained will be so erratic as to be useless. Available polyethylene extruded parallel line seems to be sufficiently uniform along short lengths and to have sufficiently low losses and radiation up to 216 megacycles to give good results when impedance is computed from a measured swr and a measured minimum position.

Impedance measurements using either the two swr measurement with an unbalanced unknown or the 300-ohm parallel line with a balanced unknown can be made to an accuracy of 15 percent in both resistance and reactance for swr up to ten to one, and more accurately for lower swr.

Phase Measurement

The design and adjustment of antenna arrays can be facilitated immeasurably if suitable phase measuring equipment is available. A system for measuring phase in the 44-216 mc region, an adaptation of a method used at lower frequencies for a long time, is illustrated by the equipment arrangement of Fig. 6. This method uses the principle that the only variation between signals taken from various points of a slotted line perfectly matched to a load is one of phase, and that phase change is linear with distance as measured along the line.

In this system the output of a signal generator is connected to both a slotted line and the device under test, such as the antenna array. The slotted line is terminated in a matched resistance so that the amplitude of current along the line is constant. A sampling probe at the end of a balancer, similar to that described for measuring swr on the open parallel line, is connected through an attenuator to the sliding pickup of the slotted line.

A receiver is also connected through a flexible coaxial line to this same slotted line pickup probe in such a way that the receiver input is the sum of the signals extracted from the slotted line and brought into the sliding probe from the sampling probe. Because of this connection, the attenuator can be adjusted so that the signal sampled from, say, a dipole in the array under test is of the same amplitude as that removed from the slotted line. The position of the slide on the slotted line can be adjusted so that the phase of the signal from the slotted line is such that cancellation of the signal from the antenna dipole under test occurs.

If the balanced probe is then moved so as to sample energy from a different dipole and the position of the sliding probe is moved to that now required for cancellation, the amount it is moved along the slotted line gives the phase difference between the two dipoles. From a knowledge of the wavelength in the slotted line this difference can be expressed in degrees.

With this equipment arrangement, a minimum point is found along the slotted line every wavelength rather than every half wavelength, as in the case in swr measurements. This difference does not mean, however, that the slotted line has to be twice as long because the sampling probe can be rotated 180 degrees if the minimum tends to fall out of range of the slotted line.

The accuracy with which phase can be measured by this method de-
pends largely upon how good the slotted line is and how well it is terminated. A slight rotation of the sampling probe is of no importance as it does not normally change the phase, but only the amplitude of the picked up signal. An accuracy of measurement of between ±3 and ±5 degrees has been consistently obtained over the 44 to 216 megacycle range.

Antenna Gain Measurement

There are many different manners in which antenna gain (directivity) has been measured. Results of such measurements can be expressed in terms of the directivity of a half-wave dipole or an isotropic (completely nondirectional) radiator. The latter is used in expressing absolute gain of antenna arrays. The gain of a half-wave dipole over an isotropic radiator is 2.15 db along the centers of its major lobes.

Figure 7 illustrates an arrangement of equipment for measuring the gain of an antenna over that of a half-wave dipole quite accurately and simply. In this arrangement a signal generator is connected through a slotted line and a line balancer to the antenna under test. A signal is radiated from this antenna to a receiving antenna which is connected through a balancer to a receiver.

It is necessary that both antennas be balanced carefully in order to be sure that no currents flow on the outside of the coaxial lines leading to the signal generator and receiver. If currents do flow on these lines, they will radiate from line to line or from line to antenna and make the readings meaningless.

It is also necessary that the signal generator have an output impedance equal to the characteristic impedance of the slotted line, as will become apparent later. Because most signal generators have low output impedances, it may be necessary to connect a resistance in series with the generator output or otherwise modify the generator to obtain the required output.

With the equipment arranged as described, the signal generator attenuator should be set to such a value that a convenient output from the receiver is obtained. The antenna under test is then replaced with a half-wave dipole, not necessarily of the same impedance as the antenna under test or even a known impedance. The signal generator attenuator must then be reset until the receiver output becomes the same as it was when the antenna being tested was in use. The db difference between the two attenuator settings gives the antenna gain over a half-wave dipole, if the two antennas had exactly the same mismatches to the slotted line. The swr of the two antennas can then be measured and the ratio of the power transmission coefficients computed from the two swr values. The absolute gain of the antenna under test can then be computed as the sum of 2.15 db, the difference of signal generator attenuator settings in db and the ratio of power transmission coefficients of the two antennas expressed in db. Figure 7 gives the formula for this last quantity in terms of the two measured swr.

Conclusions

The measuring methods herein described lend themselves quite well to quick changes of frequency, even over several octaves, as is desirable for broad-band antenna work. The accuracy seems sufficiently good for most engineering purposes. There is still an ever increasing need for a piece of high-frequency impedance measuring apparatus that approximates the ohmmeter in its simplicity of operation. At present when a change is made in, say, a television antenna, it may be necessary to measure its impedance over the entire frequency range 44 to 216 megacycles to determine if the change is desirable. This measurement is obviously a time-consuming procedure.

In the setting up of a new development program there is always the problem of what fraction of the available time should be spent in constructing test equipment and what fraction of the time spent using it. The best solution to this problem as applied to antenna development may eventually result in much more convenient methods of impedance measurement. Increased accuracy is, of course, always to be desired.

References

July, 1947 — ELECTRONICS
Rigidly fastened by lugs sheared from the chassis using special tools, the Chassis Clinch is "the last word" in economy, ease of assembly, and simplicity of design. Saves valuable space! Illustrated here is complete engineering data. Cinch "Know How" in the fabrication of precision parts adds another socket to the Standard group.
Cathode Follower IMPEDANCE NOMOGRAPH

Output impedance, transconductance, and cathode load resistance are related in this last of a series of three nomographs dealing with design of cathode-followers.

The output impedance of a cathode-follower is readily found with the aid of the accompanying nomograph if transconductance and cathode load resistance are known. The pertinent design equation is obtained by starting with the relation for gain in terms of transconductance. When $R_k << r_e$

$$A = \frac{E_o}{E_i} = \frac{g_m R_k}{1 + g_m R_k}$$

(1)

Rewriting gives

$$E_o = \frac{(1/g_m) R_k}{(1/g_m) + R_k} g_m E_i$$

(2)

This represents a parallel resistance combination consisting of two resistances, $1/g_m$ and R_k, through which flows a current $g_m E_i$, as indicated in the constant-current form of the equivalent circuit on the nomograph.

Equation 2 states that the output voltage E_o is a result of an output current ($I_o = g_m E_i$) flowing through an output impedance

$$Z_o = R_k/(1 + g_m R_k)$$

(3)

This Z_o is the output impedance of the cathode-follower as given by the nomograph.

This chart should be of particular value in providing the proper termination for transmission lines and coaxial cables.

In preceding issues, a general cathode-follower nomograph related gain, amplification factor, and the ratio of cathode load resistance to tube plate resistance, and a nomograph for pentodes related gain, transconductance, and cathode load resistance.
Experimental television requirements indicate a need for certain electrolytic capacitor ratings involving special impedance values.

The units listed below are designed especially for these applications, and where special impedance values are required, they are rated in impedance (\(Z\)) rather than in capacity. Note that the maximum impedance rating in the chart is coupled with the frequency at which this rating is obtained.

Type WP520 may be used for bypassing in the audio, and synchronizing amplifier stages, and also for bypassing the deflecting amplifier cathodes.

Type FP550 is suggested for filtering the low voltage power supply. Note that the 10 mfd., 450-volt section is designed as the input and the 80 mfd. 400-volt section as the output.

Type WP505 is designed for the Video amplifier cathode bypass and is rated at 3 volts non-polarized. The impedance rating of 10 ohms is used in place of a capacity value, since this is the important characteristic. The 10-ohm value refers to the 30-cycle characteristic, the impedance of course being lower at the higher frequencies.

Type WP510 is suggested for the horizontal centering control bypass. It is rated at .5 ohms impedance rather than as a capacity value. The .5 ohm rating is at 15750 cycles and is the Mallory final inspection limit.

Type WP540 is intended for bypassing the vertical centering control and is rated at 1.0 ohm impedance at 60 cycles.

All impedance values mentioned above are the maximum passing limit at the Mallory final inspection department. Actual values normally run considerably lower than the rated impedance.

SPECIAL TELEVISION CAPACITORS—TYPE FP AND WP

<table>
<thead>
<tr>
<th>Capacity or Impedance</th>
<th>Wkg. Volts</th>
<th>Mallory Catalog Number</th>
<th>Size D x H</th>
<th>Maximum Surge Voltage</th>
<th>120 Cycle Ohms</th>
<th>DC Ma</th>
<th>Capacity Tolerance %</th>
<th>120 Cycle Ma Ripple</th>
<th>Temp. Range °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-40-40</td>
<td>25DC</td>
<td>WP520</td>
<td>1 x 2</td>
<td>40</td>
<td>7</td>
<td>.7</td>
<td>10</td>
<td>100</td>
<td>55</td>
</tr>
<tr>
<td>1u</td>
<td>450 DC</td>
<td>FP550</td>
<td>1 3/4 x 3</td>
<td>525</td>
<td>24</td>
<td>.7</td>
<td>10</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>80</td>
<td>400 DC</td>
<td></td>
<td></td>
<td>475</td>
<td>3</td>
<td>1.8</td>
<td>10</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>102 @ 30 cycles to 5 megacycles</td>
<td>3NP</td>
<td>WP505</td>
<td>3/4 x 2</td>
<td>4</td>
<td>...</td>
<td>.5</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>52 @ 15750 cycles</td>
<td>3NP</td>
<td>WP510</td>
<td>1 x 2</td>
<td>4</td>
<td>...</td>
<td>1.0</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1.02 @ 60 cycles</td>
<td>3NP</td>
<td>WP540</td>
<td>1 3/4 x 3</td>
<td>4</td>
<td>.4</td>
<td>3.0</td>
<td>10</td>
<td>100</td>
<td>...</td>
</tr>
</tbody>
</table>

* Rippled current refers to 1st section only.

Note: This ad is a copy of page 16 of the Mallory Dry Electrolytic Capacitor Catalog. Write for a copy.

P.R. MALLORY & CO., Inc., INDIANAPOLIS 6, INDIANA
X-Rays Predict Oil Field Flow

To help solve the riddle of how oil flows through sand and rocks under an oil field, and how it is affected by underground water and gas, an x-ray method of studying a sample taken from a drill hole has been developed by Gulf Oil Corporation. A small three-inch by one inch sample, or core, from the drill hole is used. In effect, the core is made to reproduce in miniature the layer of rock or sand from which it was taken. Study of the reactions in the sample gives a picture of flow conditions in a stratum perhaps hundreds of feet thick and miles wide. The core is subjected to artificial pressures and saturations of oil, gas, and water. The progress of these elements in the core is gaged by an x-ray unit called "apparatus for determining permeability-saturation." The x-ray beams follow the reaction by means of an opaque tracer mixed with the liquid or gas. The tracer causes variations in intensity of the beams as they pierce the core, indicating the extent of saturation. A similar technique is used in x-raying organs of the human body filled with opaque barium.

A basis for comparison is established by studies of the core at 100 percent and at zero saturation. Then an extensive series of flow experiments, reproducing conditions which might be created by various recovery methods, must be run through. The effects of gravity, capillary attraction, and the amounts of oil, gas, and water already in the sand are charted. These procedures are sometimes repeated on as many as 10 or 11 cores taken from the different layers through which the well extends.

By correlating such data, it can be determined how natural pressure, artificial gas injection, or water flooding will move oil toward well shafts through various strata of the field being studied. Methods of working the field can be planned accordingly to assure the greatest yield, and extent of yield forecast.

Permeability-saturation studies are useful in indicating whether injected gas can move oil through the strata at varying degrees of water saturation. The method also aids the operator in minimizing the escape of injected gas through nonproductive formations. The x-ray technique will also be used to explore the possibilities for salvaging more oil from abandoned wells.

Code Reception with AVC and S Meter

The unusual feature of being able to use the automatic volume control and signal-strength meter with the
Do you need an Accurate frequency source?

Here's a frequency standard accurate to one part in

If you make time-frequency measurements or if you operate two or more independent systems synchronously, the new Western Electric Primary Frequency Standard is the instrument you need.

Designed for 100 kc operation, its accuracy is rated conservatively at one part per 10⁷ per day, regardless of moderate changes in ambient temperature, air pressure and humidity. Actual tests in a government laboratory, however, have indicated a frequency variation of only 1.4 parts per 10⁹ per day...which corresponds to less than 1 1/2 cycles at 1,000 megacycles.

With such a high degree of accuracy, you would hardly expect this new Primary Frequency Standard also to be... (1) small and compact... (2) light in weight—only 90 pounds... (3) exceptionally rugged...and (4) moderate in cost...but it has all of these advantages too.

Check these points of superiority against the frequency source you are now using or contemplate purchasing, then get complete information by calling your nearest Graybar representative or writing to Graybar Electric Company, 420 Lexington Avenue, New York 17, N. Y.

Quality Counts

Western Electric
bfo operating for c-w reception is made possible in the National NC-173 by the isolation of the avc system from the c-w oscillator.

With more common receiver designs the avc system is arranged so that it is turned off automatically when the bfo is turned on. Alternatively, if the avc is separately controlled, the bfo produces a large avc voltage, making the receiver very insensitive and producing full-scale S-meter deflection, so that the avc must be turned off to use the receiver.

In the NC-173, the avc system is isolated from the bfo by shielding and by circuit arrangement. The method used is to take some of the second i-f amplifier grid voltage and amplify it in a separate high-gain 6AC7 stage, and apply the amplified voltage to half of a 6H6 rectifier to produce avc voltage. The bfo output voltage feeds in to the second detector in the usual manner. This arrangement isolates the two circuits because the bfo voltage cannot feed backward through the second i-f amplifier tube and, therefore, does not get into the avc system.

As in most receivers, the signal-strength meter is actuated by the avc system so turning the bfo on or off does not change either the signal strength meter reading or receiver gain. The avc voltage is applied to the r-f stage and both i-f stages, which produces good avc action. The system is very effective because increasing signal level reduces the gain of the second i-f stage without affecting the amount of avc voltage produced. Similarly, this system is effective because the avc voltage does not reduce the gain of the 6AC7 avc amplifier.

S Meter Circuit

As shown in the diagram, the signal strength meter is placed in a diode rectifier circuit. The meter scale is calibrated in S units from 1 to 9 with roughly 5 db per S unit, and in db above S9 from 0 to 40. S9 corresponds to approximately 50 microvolts. This arrangement permits signal strength measurements from roughly 0.5 to 5,000 microvolts. The S meter, therefore, gives readings for approximately an 80-db range of signal inputs.

The 80-db reading on the S-meter scale corresponds to approximately a 20-db change in current through the meter. This indicates that with an 80-db increase in input the avc system reduces the gain of the first r-f and first i-f stages by 60 db, so that a net increase of 20 db reaches the S meter. Reference to the transconductance versus grid bias curves for the 6SG7 tube shows that this is not at all difficult.

Similarly, these curves indicate that the second 6SG7 i-f amplifier gain can be reduced approximately 20 db to compensate for the 20-db increase in signal on its grid, thus resulting in good avc action on the signal reaching the detector.

The avc system actually handles signal variations of more than 80 db above its threshold without overload, even though off-scale deflection of the S meter is obtained. The S-meter sensitivity is controlled by the r-f gain control. Retarding the r-f gain control decreases S meter sensitivity. The S meter zero setting does not require readjustment due to the diode rectifier meter circuit.

The i-f transformers are the permeability-tuned low-impedance type. The tuning cores are arranged so that gain and selectivity do not change appreciably as the cores are moved for tuning. The low-impedance type transformer requires relatively large tuning capacitors and as a result changes in associated circuit capacitance caused by changing tubes, or tube capacitance variation due to heat or avc voltage, all have a minimum detuning effect. This type of i-f transformer also reduces stray couplings, with the result that sides of the i-f curve do not flare out as quickly off resonance.

LARGE-SCREEN COLOR TELEVISION

Three-color projector developed by RCA Laboratories for pictures on a 7½ by 10 foot screen and recently demonstrated in Philadelphia. At right are the elements of the reflective system fed by three projection-type orthicon ray tubes used for simultaneous color transmission (ELECTRONICS, p 140, Dec. 1946)

July, 1947 — ELECTRONICS
Forty-five years ago Fred started his career in steels and alloys as a plate boy in a Reading, Pennsylvania steel mill at 6¢ an hour.

Today, Fred is Hot Mill superintendent for Wilbur B. Driver Co., one of many men in our organization who have devoted their active life toward the production of better resistance alloys for industry.

The fact that Wilbur B. Driver alloys are widely accepted throughout the world—in electric heating, and for instrument and electronic applications—is a tribute to the purpose and accomplishment of these men.
Stabilizing Electrical and Mechanical Characteristics of Circuits

EXACTING REQUIREMENTS of such wartime electronic equipment as radio proximity fuzes necessitated potting the circuit components in a casting resin. An investigation of such resins was conducted at the National Bureau of Standards with the development of a material with low electrical loss and high mechanical rigidity, and with such viscosity that it would fully penetrate the equipment during potting. The new resin is particularly suitable for potting because of its very low shrinkage during gelling, thus it does not subject components to high pressure as do most such materials.

High-Frequency Resin

The casting resin for use in high-frequency high-impedance circuits has low power factor (about 0.0006 at 100 mc), low dielectric constant (2.5 at 100 mc), short polymerization period at low temperature and atmospheric pressure, high impact strength, small volume shrinkage on polymerization, dimensional and electrical stability, and low moisture absorption (0.01 percent after 24-hour immersion). In addition, this NBS Casting Resin has low viscosity and low surface tension so that it penetrates small openings; it has a dielectric strength of about 630 volts per mil (measured on a 1/16 inch sample) and a volumetric resistivity over 10^7 megohms per cubic centimeter. The cured resin can be machined.

In potting equipment that includes vacuum tubes with glass envelopes, protection from thermal...
THE NEW FM SIGNAL GENERATOR

FREQUENCY RANGE
54 to 216 MEGACYCLES

Model 202-B

THE Signal generator to help solve your FM problems

In response to widespread demands for a suitable FM Signal Generator to cover the new FCC frequency allocations, Boonton Radio Corporation now offers the Type 202-B FM Signal Generator to provide the utmost in performance. FM and television engineers will welcome the 202-B Signal Generator as the essential laboratory instrument for receiver development and research work.

Frequency coverage from 54 to 216 megacycles is provided in two ranges, 54 to 108 megacycles and 108 to 216 megacycles. A front panel modulation meter having two deviation scales, 0-80 kilocycles and 0-240 kilocycles, permits accurate modulation settings to be made.

Although fundamentally an FM instrument, amplitude modulation from zero to 50%, with meter calibrations at 30% and 50%, has been incorporated. This AM feature offers increased versatility and provides a means by which simultaneous frequency and amplitude modulation may be obtained through the use of an external audio oscillator.

The internal AF oscillator has eight modulation frequenices ranging from 50 cycles to 15 kilocycles, any one of which may be conveniently selected by a rotary type switch for either amplitude or frequency modulation.

The calibrated piston type attenuator has a voltage range of from 0.1 microvolt to 0.2 volt and is standardized by means of a front panel output monitor meter.

The output impedance of the instrument, at the terminals of the R.F. output cable, is 26.5 ohms.

Careful consideration has been given to the positioning of the main frequency dial and various controls, with modulation and output monitor meters located at eyelevel for maximum readability. Dimensions have been chosen to permit greatest economy of laboratory space. For complete details write for Catalog "D".

The design of this instrument was described on pages 96-101 of the November issue of ELECTRONICS. Reprints of this article are available upon request.

BOONTON RADIO CORPORATION

ELECTRONICS — July, 1947
and mechanical shock can be provided for the glass by rubber jacket-ets. Sharp corners should be eliminated from components to be cast as strains set up at them may cause crazing. Molds in which equipment is cast can be lubricated with Silicone grease.

Electrical equipment embedded in the resin, either complete circuits or plug-in subassemblies, are well insulated as well as protected from mechanical vibration and deteriorating atmospheres. The potting technique can be used to protect industrial equipment, to stabilize portable devices (hearing aids), and to protect components from acid fumes, high humidity, and salt spray.

Scale of N Counting Circuits

BY BRADFORD HOWLAND

Rocket Sonde Section
Naval Research Laboratory,
Washington, D. C.

EXPERIMENTS have led to development of a decade counting circuit for use with such measuring equipment as the Geiger-Mueller counter. The basic Eccles-Jordan trigger circuit exhibits two stable states corresponding to conduction in either one of two vacuum tubes. This circuit has found wide application, particularly as a scaling or counting circuit. Being a two-positioned circuit, it is best adapted for counting in powers of two (the binary numerical system), and a calculation is often necessary to convert the count to the more familiar decimal number. Recently there have been developed several ingenious decade counting circuits using combinations of scale of two circuits

Multiple Stable States

If Eccles-Jordan circuits could be constructed with more than two states of stable equilibrium, still other types of scaling and counting circuits would be possible. A generalized Eccles-Jordan circuit having N states of stable equilibrium, where N can be any integer greater than one, consisting of N tubes interconnected in symmetrical fashion is shown in Fig. 1. The interconnections are such that conduction in any one tube cuts off current in all the others. These tubes, being cut off, allow the conducting tube to continue conducting current so that the circuit is in a condition of stable equilibrium. There are N such equilibrium states corresponding to the N tubes.

Several types of scale of N circuits can be constructed using this basic circuit, perhaps the simplest being that shown in Fig. 2, which uses multigrid tubes. Conduction in any one tube drives one grid in each of the others negative, cutting off current in them. This circuit suffers from the disadvantage that the number of sensitive grids in most tubes is small, hence N is severely limited.

This limitation is avoided in the diode-triode circuit shown in Fig. 3 for which N is 5. The plates of the multiple diodes (actually several diodiodes) are connected to the grids of the several triodes. All grids are biased at zero volts. Conduction in any triode drives the cathode of the associated diode negative with respect to its plates.

(Continued on p 174)

July, 1947 — ELECTRONICS

After the circuit has been potted at low temperature it is placed in a curing oven. A hard surface can be produced by flooding with glycerol after initial gelation.
When a little means a lot

Whenever and wherever space is at a premium... in shavers, hearing aids, pocket radios, guided missiles and other radio, electrical or electronic devices... you can use one or more of these four miniature products IRC makes by the million.

For complete information, including dimensions, ratings, materials, construction, tolerances, write for comprehensive catalog bulletins, stating products in which you are interested.

MPM Resistors

\[\frac{1}{4} \text{ watt for UHF. Resistance film permanently bonded to solid ceramic rod. Length only } \frac{3}{8}'' \text{. Diameter } \frac{1}{16}'' \text{. Available resistance values 30 ohms to 1.0 megohms.} \]

BTR Resistors

\[\frac{1}{8} \text{ watt—insulated composition. Length only } \frac{1}{16}'' \text{. Diameter } \frac{1}{32}'' \text{. Resistance range 470 ohms to 22 megohms (higher on special orders).} \]

TYPE H Fingertip Control

Composition volume or tone control. Its \(\frac{1}{16}'' \) diameter and \(\frac{1}{4}'' \) overall depth include knob and bushing.

TYPE SH Fingertip Switch

Similar to TYPE H Control (left) in appearance. \(\frac{1}{16}'' \) diameter. OFF and 3 operating positions.

International Resistance Company

401 N. Broad Street, Philadelphia 8, Pennsylvania

In Canada: International Resistance Company, Ltd., Toronto, Licensee

Copyright, 1947, International Resistance Company
NEW PRODUCTS

Edited by A. A. McKENZIE

New equipment, components, packaged units, allied products; new tubes. Catalogs and manufacturers' publications reviewed.

Sonic Oscillator (1)

RAYTHEON MFG. CO., 178 Atlantic Ave., Boston 9, Mass. A new magnetostriiction oscillator operating at 9 kc provides a means for research into living organisms and chemical mixtures. The equipment consists of three parts—an electronic driver, a hollow vibrator column, and a cup assembly. Operation is simple and full power is obtained within a minute of connecting to the line. An illustrated bulletin is available.

Ham 100-Watter (2)

SUPREME TRANSMITTER CORP., 280 Ninth Avenue, New York City. Model AP-100 desk type transmitter is a six-band 100-watt-output transmitter housed in a rectangular metal cabinet measuring 20½ x 11½ x 18½ inches. It covers the 10, 11, 15, 20, 40 and 80 meter bands for cw, icw, a-m and f-m phone transmission, with frequency modulation in the 27.160 to 27.430 and 29 to 29.7 megacycle bands. The transmitter is continuously tunable throughout each band. A variable frequency oscillator followed by slug-tuned buffer and doubler stages ganged to the oscillator dial do the tuning. Band changing is accomplished in the exciter by a band selector switch and in the final stage by plugging in a coil. Power consumption is 325 watts and the approximate weight is 125 pounds.

Eight-Gun Tube (3)

ELECTRONIC TUBE CORP., 1200 E. Mermaid Ave., Philadelphia 18, Pa. The type 723P11 cathode-ray tube has been designed for special industrial and medical applications in which the registration of eight independent phenomena of transient or random natures on a single 7-inch screen is desired. The screen can be supplied in any of the standard phosphors. Voltages up to 2,000 volts for the second anode and 4,000 volts for the third anode are required.

Frequency Record (4)

UNIVERSAL MICROPHONE CO., Inglewood 2, Calif. The well-known D61A Frequency Record used for checking the audio response characteristics of pickups and complete lateral disc recording and reproducing systems is now offered as a 12-inch, 78-rpm Vinylite pressing. Both sides of the disc are recorded in duplicate.

Chokes (5)

CAMBRIDGE THERMIONIC CORP., 445 Concord Ave., Cambridge 38, Mass. The type LHC iron-core r-f choke shown at the left is available in 8 standard values from 2.5 to 125 millihenrys with a current rating of 125 milliamperes. The type LAB pie-wound r-f inductor at the right will carry a maximum of 125 milliamperes and is available in types that range in inductance between

USING THE NUMBERS

Readers desiring further details concerning any item listed in the New Products department can obtain the information by using the cards furnished as a stiff, colored insert elsewhere in this department.

Place the number (appearing to the right of the heading) of one item in which you are interested in a circle and then fill out the balance of the card according to directions appearing on the colored sheet. Unnumbered items listed at the end should be procured direct from the manufacturer or publisher upon payment of the fee noted.

July, 1947 — ELECTRONICS
Alignment with a Visual Alignment Signal Generator (VISALGEN) eliminates guess-work and time consuming plotting.

WHAT
The Visalgen Does

Aligns intermediate and radio frequency amplifiers in FM and AM Communication and Broadcast Receivers, as well as Broadband receivers of all types.

WHY
The Visalgen Is Useful

Saves time, instantaneously you see the entire frequency response curve. Indispensable for FM discriminator and overcoupled circuit alignment.

HOW
The Visalgen Operates

Gives a wide band FM output synchronized with a linear sweep, so that the overall frequency response of the circuit under test is seen on an oscilloscope screen.

WHERE
The Visalgen May Be Used

The Visalgen, available in two models: the 205TS (500 KC to 20 MC) and the 204TS (20 KC to 500 KC) is useful in Development Laboratories, Production Testing or on the service bench. In short, wherever fast accurate alignment is necessary.

A matching oscilloscope is also available in a separate cabinet or installed with either VISALGEN in a single cabinet.

IMMEDIATE DELIVERY — WRITE FOR FURTHER INFORMATION

HARVEY RADIO LABORATORIES, INC.
439 CONCORD AVENUE • CAMBRIDGE 38, MASSACHUSETTS

ELECTRONICS — July, 1947
0.75 and 15 millihenrys, a total of 8 standard values.

Simplified Loran Indicator

PHILCO CORP., Philadelphia 34, Pa. New equipment for taking more accurate loran navigational fixes has just been announced. The Seaguide uses new miniature tubes, contains a pulse-locking circuit, and weighs 35 pounds. It can be supplied for 60- or 400-cycle operation and is small enough for installation in large aircraft. Two knobs with associated counters allow the navigator to set up lines of position from two pairs of transmitting stations in rapid succession and thus show a fix.

Ultrasonic Generator

TELEVISIO PRODUCTS CO., 7466 West Irving Park Road, Chicago 34, Ill. The U-300 and U-500 Ultrasons have been developed as sources of ultrasonic energy for experiments in the superaudible region between 7.5 mc and 400 kc. A bulletin is available describing the equipment and listing a bibliography of technical references.

F-M Tuner

PACKARD-BELL Co., Inc., Box 3219 Terminal Annex, Los Angeles 54, Calif. A tuner unit for reception of f-m broadcast stations can be connected to a radio-phonograph combination or any other convenient audio amplifier and loudspeaker system. The unit is designed to adapt existing broadcast receivers to reception from the new medium.

Reluctance Pickup Preamplifier

GENERAL ELECTRIC Co., Syracuse, N. Y. A preamplifier for use with the variable reluctance pickup uses a single tube and associated circuit to match the pickup output impedance to a radio receiver audio input circuit. The combination provides sufficient preamplification to play records through the receiver, at the same time giving best tone compensation.

Playback Arm

GRAY RESEARCH AND DEVELOPMENT Co., Inc., Elmsford, Westchester Co., N. Y. Offset or straight playback arms are available for use with highly-compliant cartridges. The new arms are fabricated from magnesium and have a precision ground angular-contact ball pivot. Without cartridge the arms are priced at $35.

Plug-In Audio Facilities

THE LANGEVIN Co., 37 West 65th St., New York 23, N. Y. The rack mount illustrated is set up for three 116A preamplifier or booster amplifier types and two 117A program or monitor amplifier types. The plug-in construction allows equipment to be quickly removed and an identical component plugged into its place. Another feature of this broadcast equipment is that only the two equipment types and the two tube types are necessary between microphone and transmitter input.

Interstage Coupling Unit

CENTRALAB DIVISION of Globe-Union, Inc., Milwaukee 1, Wis. A new commercial application of printed electronic circuits is embodied in the Couplate. The standard unit designed to suffice for interstage coupling in over 90 percent of all radio receivers now in use or production measures 1 by ½ by ¼ inch. It comprises a coupling capacitor, 0.01 microfarad; plate r-f bypass, 250 micromicrofarads;
DE MORNAY • BUDD
STANDARD TEST EQUIPMENT
For Precision Measurements in the Microwave Field

The complete line of De Mornay-Budd standard test equipment covers the frequency range from 4,000 mcs. to 27,000 mcs. It provides all R. F. waveguide units necessary for delicate, precision test work requiring extremely high accuracy in attenuation measurements, impedance measurements, impedance matching, calibration of directional couplers, VSWR frequency measurements, etc.

To eliminate guesswork, each item of this De Mornay-Budd test equipment is individually tested and, where necessary, calibrated, and each piece is tagged with its electrical characteristics. All test equipment is supplied with inner and outer surfaces gold plated unless otherwise specified.

NOTE: Write for complete catalog of De Mornay-Budd Standard Components and Standard Bench Test Equipment. Be sure to have a copy in your reference files. Write for it today.

The three test set-ups illustrated above include:

- Tube Mount
- Flap Attenuator
- Frequency Meter
- Calibrated Attenuator
- Tee
- Stub Tuner
- Tunable Dummy Load
- Standing Wave Detector
- Type "N" Standing Wave Detector
- Directional Coupler
- High Power Dummy Load
- Cut-Off Attenuator

DE MORNAY • BUDD INC., 475 GRAND CONCOURSE, NEW YORK 51, NEW YORK. CABLE ADDRESS "DEMBUD," N. Y.
NEWS OF THE INDUSTRY
Edited by JOHN MARKUS

Latest list of preferred tubes; radio-conference delegates; d-f services for lost pilots; sunspot predicting service; FCC news

FCC Schedules Mobile Radiotelephone Hearing

Problems invited by rapidly expanding use of radiotelephone for communication with vehicles will be considered at an FCC hearing Sept. 8 at the Commission's offices in Washington, D. C. with respect to the service-allocation of frequencies for the General Mobile Service. Each interested person may appear and participate fully in such hearing provided he files with the Commission, on or before Aug. 15, 1947, a written notice of appearance together with 15 copies of a statement setting forth the names of the witnesses he intends to call at the hearing and a summary of the testimony and exhibits each witness will offer.

Forty channels are now provided in the 30-40 and 42-44 mc bands for Highway Mobile experimentation, including water, land, and aircraft. Twenty-four channels are set aside in the 152-152 mc band for Urban Mobile service on the basis of shared use with rural subscriber and short-distance toll telephone service.

As a general rule, highway use covers service between cities and in the open country, while urban service means local use within a radius of 25 miles.

The common carrier type of mobile radiotelephone service is expanding at a rapid rate, with urban service somewhat more in demand than highway service. The rate of expansion is delayed only by the inability of manufacturers to furnish the necessary radio equipment as rapidly as required. Even so, common carrier mobile service has been authorized in 58 cities in the United States, and also in Honolulu. It will be provided, for the most part, by the Bell System and independent telephone companies. The telephone industry has authorizations for about 5,600 mobile units in the urban service. Its projected investment totals about $6,000,000.

Thirty-seven licensees have been authorized to charge for this service.

Common carrier highway service is proposed for 79 domestic cities and two in Hawaii. Some 3,200 mobile units have been authorized in this category which, together with land stations, represent an investment of $4,500,000.

In highway system operation, the mobile service operator may have control of more than one land transmitter. When the vehicle is beyond the range of the first transmitter, another transmitter is employed, and so on progressively until the desired vehicle is contacted.

Many economic problems enter into the establishment of mobile systems by independent users. For example, the present commitments of the taxicab industry alone are reported to approach $15,000,000. Adequate systems cost between $6,000 and $10,000. Many small business organizations which could, perhaps, make good use of mobile radio communications have hesitated to go into experimental operation because of the cost and the uncertainty of being permitted to continue at the conclusion of the experimental period.

Representatives of the taxicab, intercity passenger bus, and trucking industries each petitioned the Commission for assurance that their experimental investment would not be lost as a result of future service determinations. The Commission recognizes the need for these services and is making provision for them compatible with the need of other services and the availability of frequencies.

Marine Radar Report

As a result of the International Meeting on Marine Radio Aids to Navigation (IMMRAN) held April 28 to May 9 in New York City and New London, Conn., delegates of the 31 nations attending issued the following conclusions with respect to radar: High-resolution shipborne radar with ancillary devices having suitable and approved minimum performance capabilities and operated by qualified personnel is a device having wide applicability to

Status of mobile radiotelephone service installations by the Bell System. More than 30 of the cities shown as having equipment in service (solid dots) in the 30-44 mc band also have urban mobile radiotelephone service in the 152-152 mc band.
WANTED:

Experienced Senior Project Engineers
for Responsible Positions in
the Development of . . .

OSCILLOSCOPES,
TELEVISION and
UHF EQUIPMENT

If you are an electronic engineer with an outstanding background—
academic and practical—one of these jobs may be the opportunity
you have been waiting for.

This progressive, medium-sized organization needs men with superior
ability, fully experienced in the development of oscilloscopes, television
and ultra high frequency equipment.

Applications are invited from top men to carry on projects under their
own direction in modern, fully-equipped plant situated in attractive
south-east New Jersey within one hour's ride of New York City.

If you can qualify, send us a resume of your education, experience,
age and salary requirements. Or, if you prefer, telephone us for an
appointment at Matawan 1-1049.

Lavoie Laboratories
RADIO ENGINEERS AND MANUFACTURERS
MORGANVILLE, N. J.

Specialists in the Development and Manufacture of LF and HF Equipment
maritime use for anticollision, pilotage, above-water obstacle detection, and general position-fixing within range of suitable fixed radar targets either natural or artificial (active and passive). This radar should (a) provide display of a target down to a minimum range of 100 yards, (b) provide display, as two distinct indications, of targets at the same range separated by not more than 3° in azimuth, and (3) provide display as two distinct indications, on the shortest range scale, of targets on the same azimuth separated by 100 yards in range.

A shipborne radar with reduced performance requirements and generally understood to be an anticollision radar against large ships is completely inadequate for the full requirements for position fixing and navigation in coastal and pilotage waters.

A universal performance specification for shipborne radar is an essential prerequisite of the compulsory carrying of equipment by certain classes of ships.

Early action to make the fitting of radar compulsory is not contemplated; this question can be more appropriately examined later.

The administrations of the countries in which these apparatus are manufactured should consider the possibility of issuing specifications serving as a temporary guide for the industry and the purchasers of these apparatus.

A simple and reliable overall performance monitor is essential.

A suitable device should be developed to provide accurate and positive identification by radar of navigational markers, dangers, and shore features. Reflectors should be installed on selected navigational markers in order to facilitate the differentiation of those markers from other echoes, including sea return.

A solution to the problem of inter-

(continued on p 244)

Preferred List of Army-Navy Electron Tubes

<table>
<thead>
<tr>
<th>Filament Voltage</th>
<th>Diodes Triodes</th>
<th>Diode Triodes</th>
<th>Triodes</th>
<th>Pentodes</th>
<th>Converting</th>
<th>Klystrons</th>
<th>Power Output</th>
<th>Tuning Indicators</th>
<th>Rectifiers</th>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>1A3</td>
<td></td>
<td></td>
<td>3A5</td>
<td>1T4</td>
<td>1S5</td>
<td>1R5</td>
<td>3A4</td>
<td>1Z2</td>
<td>1B3GT/8016</td>
</tr>
<tr>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>2B22</td>
<td>6A57</td>
<td>2B40</td>
<td>2C45</td>
<td>6BG4</td>
<td>6BG7*</td>
<td>66K6</td>
<td>6K22</td>
<td>6E5</td>
<td>0Z4A</td>
</tr>
<tr>
<td></td>
<td>6AL5</td>
<td>6BF6</td>
<td>6C4</td>
<td>6G5</td>
<td>6AG7</td>
<td>6AG8</td>
<td>6AJ1</td>
<td>2K26</td>
<td>6AQ5</td>
<td>6K53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6FS8</td>
<td>6F4</td>
<td>6G7*</td>
<td>6AH6</td>
<td>6AH7</td>
<td>2K29</td>
<td>6B4Q</td>
<td>6P7B</td>
<td>5F38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6S3</td>
<td>6J4</td>
<td>6G8*</td>
<td>6AN0</td>
<td>6AN2</td>
<td>2K41</td>
<td>6L2A</td>
<td>5PJ1</td>
<td>1P30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6S7</td>
<td>6K4</td>
<td>6S6H*</td>
<td>6AO6</td>
<td>6AO8</td>
<td>2K48</td>
<td>5E7G</td>
<td>7BP7A</td>
<td>1P37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6S9</td>
<td>6K6</td>
<td>6S8J*</td>
<td>6AO9</td>
<td>6AO2</td>
<td>2K50</td>
<td>6TG</td>
<td>12DP7A</td>
<td>1P39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26C6</td>
<td>26A6</td>
<td>26D6</td>
<td>26A7GT</td>
<td></td>
<td></td>
<td></td>
<td>25L6GT</td>
<td>25Z6GT</td>
</tr>
</tbody>
</table>

* Where direct interchangeability with prototype is assured and its JAN-1A specification has been issued, types with suffix letters GT, W, A, B, etc. may be used.

Triodes

<table>
<thead>
<tr>
<th>Type</th>
<th>Filament Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2C39</td>
<td>250TH</td>
<td>4D21</td>
<td>82D1</td>
<td>2E30</td>
<td>3D21A</td>
<td>2J30-34</td>
<td>4J51</td>
<td>2X9A</td>
<td>3B24</td>
<td>4B21</td>
<td>1B35</td>
</tr>
<tr>
<td>2C43</td>
<td>450TH</td>
<td>5D22</td>
<td>829B</td>
<td>3C5</td>
<td>2J41</td>
<td>4J57-59</td>
<td>3B24W</td>
<td>4B26</td>
<td>719A</td>
<td>1B36</td>
<td></td>
</tr>
<tr>
<td>6C22</td>
<td>811</td>
<td>807</td>
<td>832A</td>
<td>3E29</td>
<td>2J48</td>
<td>4J78</td>
<td>8502</td>
<td>869B</td>
<td>884</td>
<td>1B37</td>
<td></td>
</tr>
<tr>
<td>6C24</td>
<td>880</td>
<td></td>
<td></td>
<td>4C35</td>
<td>2J51</td>
<td>5J26</td>
<td>8504</td>
<td>869G</td>
<td>872A</td>
<td>1B38</td>
<td></td>
</tr>
<tr>
<td>7C24</td>
<td>889RA</td>
<td>5C22</td>
<td>2J88</td>
<td>6C21</td>
<td>2J60</td>
<td>5J32</td>
<td>8620</td>
<td>872A</td>
<td>1006</td>
<td>1B39</td>
<td></td>
</tr>
<tr>
<td>9C22</td>
<td>893AR</td>
<td></td>
<td></td>
<td>4J50</td>
<td>1006</td>
<td></td>
<td></td>
<td></td>
<td>1B41</td>
<td>1B40</td>
<td></td>
</tr>
<tr>
<td>100TH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1B42</td>
<td>1B40</td>
<td></td>
</tr>
</tbody>
</table>

Receiving types are listed in upper section, transmitting types below. This preferred list, dated Jan. 28, 1947, supersedes the previous list dated Nov. 1, 1945 and published in the March 1948 ELECTRONICS, p 300. The purpose of the list is to effect an eventual reduction in the variety of tubes used in Service equipment. It is mandatory that all tubes be used in all future design of new equipments under the jurisdiction of the Army laboratories or the Navy department be chosen from this list. Provisions are made for certain exceptions, however. For permission to use other tubes in Army equipment, write to the Army Laboratory concerned with such equipment; for Navy equipment, write to Electronics Division, Bureau of Ships, Code 390-A, Navy Department, Washington, D. C.
Here is new help on permanent magnet problems — from one of the largest, oldest and most widely experienced producers of molded and sintered components in the industry.

Stackpole *Alnico II offers notable economy in the production of units up to two ounces. Odd shapes are a specialty. Engineering recommendations based on your requirements gladly submitted.

STACKPOLE CARBON COMPANY, ST. MARYS, PA.

BRUSHES and CONTACTS (all carbon, graphite, metal and composition types) — IRON CORES — RARE METAL CONTACTS — RHEOSTAT PLATES AND DISCS — CHEMICAL CARBONS — WELDING AND BRAZING CARBONS — MOLDED PUMP and FLUID DRIVE SEALS — CARBON RHEOSTAT PILES — COIL FORMS, etc., etc.

ELECTRONICS — July, 1947
Need fastenings?
See SCOVILL!

For SEMS Washer Screw Assemblies
Washer permanently fastened on, yet free to rotate. Easier, faster driving. No fumbled, lost or forgotten washers. Matching finish on both parts. Easier ordering and balanced inventories.

For Phillips Recessed Head Screws
Increase assembly speed up to 50%! Cut down injuries to workers with no hammers, no skids. Reduce production costs. Reduce rejects! Improve product appearance! Go modern with Phillips!

For Clutch-Head Screws
The latest type recessed-head screw. Screw locks on driver. Can’t fall off. No screw-driver slippage. Easy to assemble. Exceptional driver life. Ordinary screw-driver may also be used.

For Special Cold-Forged Fastenings
Scovill is expert in cold-forging unusual special fastenings, such as the one shown. Scovill designing ability, engineering skill, men and machines save money for customers. Consult Scovill!

Look at the fastenings you’re now using—and see if they’re the best for the job. Get better results—at less cost—with modern fastenings. If you use fastenings in large quantities, it will pay you to find out what Scovill can do for you. Fill out and mail the coupon below—now!

MAIL COUPON TODAY!

SCOVILL MANUFACTURING COMPANY WATerville Screw Products Division WATerville 48, CONN.
Please supply more information on
☐ Scovill SEMS Washer Screw Assemblies
☐ Scovill PHILLIPS Recessed Head Screws
☐ Scovill CLUTCH HEAD Screws
☐ Scovill Special Cold-forged Fastenings

NAME
COMPANY
ADDRESS

TUBES AT WORK
(continued from p. 134)
as would be the case with appreciable stray coupling.

The noise limiter is the double-action automatic threshold type. Even though the threshold is raised when the beat oscillator is turned on, the limiter is effective on noise encountered during code reception due to its double action type of operation. A control on the front panel is used to adjust the threshold at which limiting action starts. The NC-173 covers the frequency range from 540 to 31,000 kc, plus the range from 48 to 56 mc.

Electronic Speed Cop
LATEST “miracle” of electronics to develop from radar techniques is a speed meter that operates on the principle that a radio wave reflected from a moving target will shift wavelength proportional to speed of movement of the target. Microwave energy is radiated from the antenna unit, a portion of the energy striking the surface of the vehicle and being reflected back to the unit. The direct and the reflected signals are received and mixed, and the output signal contains the difference frequency which is directly proportional to the vehicle speed in miles per hour. This speed is read on the linear scale of the meter, calibrated in miles per hour.

The operating zone normally extends about 150 feet in front of the antenna. Speed range of the S-1 model is 0 to 100 miles per hour, accuracy being within 2 miles per hour throughout the range.

A spring-wound graphic recorder

The electronic speed cop is pointed at advancing or receding traffic to provide direct reading of vehicle speeds.

July, 1947 — ELECTRONICS
Metallurgists, foundrymen, welders, radiographers, designers, engineers, production and quality-control engineers... here's a new book you'll want to study. It's a text of modern industrial x-ray practice... the most complete treatment of the subject yet published. Price $3.

Do you have questions about radiographic practice? Here's a book that will help you answer them... quickly, authoritatively.

It contains 122 pages of up-to-date data on such topics as radiography's function in industry; x-ray generating apparatus; factors governing exposure; the arithmetic of exposure; sensitivity and detail visibility; special technics... and many more subjects just as vital in radiation theory and practice.

This important new book on radiography is packed full of excellent illustrations... 64 descriptive photographs... 38 colorful drawings... 44 clearly presented tables and charts... all newly published. It will provide you with many answers... on where and how to use the radiographic process... how to get the best out of your x-ray equipment.

Only $3. Order your copy from your local x-ray dealer!

Eastman Kodak Company, Rochester 4, N. Y.
MEASURES 0.0001 OHM TO 11.11 MEGOHMS

TUBES AT WORK (continued)

may be plugged into an auxiliary circuit and will furnish a graphic record of the speed of the moving vehicles. This operates at a speed of 1.5 inches per minute and holds 100 feet of tape.

The instrument has numerous applications in traffic engineering studies and also in the police field.

As designed by engineers at Automatic Signal Division of Eastern Industries, Inc. of Norwalk, Conn., the meter operates either from a 6-volt automobile battery or a 115-volt 50-120 cycle power supply. The current drain from a storage battery is about 8 amperes and the a-c power rating is approximately 50 watts.

Since the speed meter radiates energy, it is necessary that a station license be obtained from the FCC. An operator's license is not required for an authorized employee to use the meter within the territory of the applicant, but the Commission's regulations require that only the holder of at least a second-class license may adjust or service the equipment.

Electronic Micrometer Uses R-F Energy

AN ELECTRONIC micrometer used to measure the displacement of a six-inch turbine shaft in its journal is so sensitive that a deflection of 0.01 inch of the center of the shaft provides a two-inch movement of the center spot on a cathode-ray tube. Readings to 0.001 inch are easily obtained and the indication on a meter is linear to within a fraction of one percent.

Developed by M. L. Greenough of the National Bureau of Standards, the instrument was primarily designed to afford a means for measuring thickness of the oil film in the bearings of a large Navy turbine shaft.

The circuit of the unit utilizes the fact that r-f energy radiated from a coil is at zero at the surface of a perfectly conducting shield adjacent to that coil. This phenomenon occurs because the eddy currents set up in the shield by the field of the radiating coil create their own opposing magnetic field at the surface of the shield. The opposing field exactly cancels the

SHALLCROSS MANUFACTURING COMPANY
ENGINEERING - MANUFACTURING - DESIGNING
DEPARTMENT E-77 COLLINGDALE, PA.
The smooth inside surface of IRV-O-VOLT tubing speeds assembly, even with stranded wire, and cuts production time and cost. In addition, the light inside varnish coating provides a margin of moisture and insulation protection should the outside varnish coating become chafed. IRV-O-VOLT tubing is mechanically strong and flexible; it cuts clean and the cut ends remain smooth and unfrayed. Because of the inside varnish coating, wicking action of the fabric base is eliminated when tubing is used with oil in transformers.

IRV-O-VOLT tubings are fabricated with specially formulated Irvington varnishes skillfully applied to selected, accurately rounded cotton, rayon, or Fiberglas tubular braid. They have high dielectric strength . . . withstand continuously high temperature . . . and are extremely resistant to oil, and moisture. Because "it's the varnish that insulates" IRV-O-VOLT tubings possess the excellent electrical characteristics and long life common to all Irvington flexible varnished insulations.

Each grade of IRV-O-VOLT varnished tubing and saturated sleeving meets its respective A.S.T.M. specification and Varnished Tubing Association Standard.

Generous samples of Irvington Varnished Tubings and Sleevings — and also lacquer-coated tubings — will be sent on request.

IRVINGTON
Varnish & Insulation Company
IRVINGTON 11, N. J.
If you’re designing a Wire Recorder

Brush Plated Wire

- Constant plating thickness assures uniform signal
- Correct balance of magnetic properties assures good frequency response and high level
- Excellent surface finish assures low noise and minimum wear
- Corrosion resistant
- Easy to handle—ductile—can be knotted

Brush Wire Recording Heads

Of principal interest are their excellent electrical characteristics, extreme simplicity of design to avoid trouble, and the "hum-bucking" characteristics, which reduce the effect of extraneous magnetic fields. When required, the head cartridge alone (pole piece and coil unit) may be supplied for incorporation into manufacturers' own head structure.

The Brush Development Co.
3405 Perkins Avenue • Cleveland 14, Ohio

TUBES AT WORK (continued)

incident field at the surface of the metal plate.

Moving the pickup coil away from the shield, in the direction of the radiating coil, allows it to pick up a certain amount of energy because the radiated field becomes stronger while the field set up by the currents of the shield becomes weaker due to the change in distance. This condition becomes more marked as the distance between the pickup coil and the shield increases.

The metal background is not a perfect conductor and the coil has measurable thickness so a minimum reading is obtained when the pickup coil is in contact with the metal background. Correction is made by addition of a third coil which permits a zero reading to be obtained.

Radio-frequency current is applied to the radiating coil, and when the micrometer is held at some distance from any metallic object, the field from the radiating coil induces voltage in the pickup coil, which is measured either on an oscilloscope or a meter.

For use as a micrometer, the coil assembly is mounted on a movable shaft so that it can approach or recede from a metallic plate. The material to be measured is placed between the pickup coil and the metallic plate and pressed lightly between them. When the material is removed, the amount of current generated in the pickup coil is an indication of the thickness of the material which occupied the space.

Calibration of the meter is made

These latest developments in magnetic recording equipment can now be obtained for radio combinations and other uses. Brush engineers are ready to assist you in your particular use of magnetic recording components.

Thickness of a paint spot is measured with the electronic micrometer by its designer M. L. Greenough of the National Bureau of Standards electronic instruments laboratory.

July, 1947 — ELECTRONICS
Lead-In Lines Play an Important Part in Television Reception

The effects of attenuation and impedance mismatch on FM and Television reception are minimized by Anaconda Type ATV* lead-in lines.

The satin-smooth polyethylene insulation of Type ATV line sheds water readily, thus avoiding subsequent impedance discontinuities. This material also has exceptionally high resistance to corrosion. Count on Anaconda to solve your high-frequency transmission problems—with anything from a new-type lead-in line to the latest development in coaxial cables.

*An Anaconda Trade-Mark

ANAConDA WIRE AND CABLE COMPANY

ELECTRONICS — July, 1947
THE BALLANTINE ELECTRONIC VOLTOMETER, DECADE AMPLIFIER AND MULTIPLIERS

since 1935 the only VOLTOMETER featuring a simplified logarithmic scale

10 MICRO VolTS to 10,000 VOLTS

ONE BILLION TO ONE — This enormous range of AC voltages is easily covered by the Model 300 Voltmeter, Model 220 Decade Amplifier and Model 402 Multipliers illustrated above. The accuracy is 2% at any point on the meter scale, over a frequency range of 10 cycles to 150 kilocycles. The Model 300 Voltmeter (AC operated) reads from .001 volt to 100 volts, the Model 220 Amplifier (battery operated) supplies accurately standardized gains of 10x and 100x and the Model 402 Multipliers extend the range of the voltmeter to 1,000 and 10,000 volts full scale.

Descriptive Bulletin No. 10 Available

BALLANTINE LABORATORIES, INC.
BOONTON, NEW JERSEY, U.S.A.

TUBES AT WORK (continued) in thousandths of an inch to give a direct measure of distance or thickness.

To measure the displacement of the turbine shaft in its journal, four of the coil units were spaced equally around the turbine shaft. Each coil unit is about ½ inch in diameter by ¼ inch in length and is able to measure distances from zero to 0.02 inch.

The coil unit can also be employed in a phonograph pickup. Then the vibration of a flat-plate armature fastened to the needle causes a change in the position of this armature with respect to the pickup coil. The modulated output may be rectified and fed into an amplifier for reproduction. In a test of this arrangement, a 455-ke signal was fed into the i-f stages of a conventional superheterodyne and satisfactory operation obtained.

If vibrations adjacent to the pickup coil are created by a metallic diaphragm, and the movement of this diaphragm in turn causes fluctuations in the output of the pickup coil a microphone can be made.

The coil unit may be also used as a thermometer. A strip of bi-metal of convenient length is so mounted that it extends in a path parallel to the end plane of the pickup coil, positioned closely adjacent to that coil. As the bi-metal bar bends in accordance with heat, its free end is brought closer to or farther from the pickup coil and an indication is given on a meter calibrated in degrees.

For use as a tachometer or speed indicator, the end plate of a flyball governor may be so mounted as to approach or recede from the pickup coil as the speed of the rotation of the governor increases or decreases. Many other uses of the unit will probably be found.

Shunt-Fed Wing Antenna

A NEW system of external antenna wiring for airplanes which will help to eliminate radio static under in-cloud weather conditions has been announced by Air Material Command engineers at Wright Field.

Present exterior antennas interrupt the sleek contours of airplanes designed for supersonic speeds, increase the drag which cuts down the speed, and present protruding...
See for yourself how Truarc slashes assembly time, cuts costs

Right before your eyes is visual proof of how much assembly time can be cut. Each of the many light streaks in the first photo traces another time-taking arm motion, increasing fatigue and reducing efficiency. In the second photo, one Waldes Truarc Retaining Ring replaces six screws and a collar. The assembler uses one tool—a pair of Truarc pliers. The single light streak means one arm-motion. Less time is required for job-training, because Truarc guarantees accurate relationship of parts regardless of the skill of the assembler. Truarc means lighter weight, less bulk. Production and maintenance men find Truarc Rings cut labor and material costs wherever they're used. Their unique taper design assures constant circularity. Their never-failing grip does a better job of holding machine parts together.

There are different Truarc rings for different applications: see what can be done for your product. Send your drawing to Waldes Truarc Technical Service Engineers for individual attention, without obligation.

2 MINUTES vs. 2 SECONDS!

WALDES KOHINOOR, INC., LONG ISLAND CITY 1, NEW YORK

WALDES TRUARC RETAINING RINGS

ELECTRONICS — July, 1947

WALDES TRUARC RETAINING RINGS ARE PROTECTED BY U. S. PATS.: 2,392,840; 2,020,411; 2,416,862 AND OTHER PATS. PEND.
The smooth performance and rugged dependability of Turner Microphones are the result of sound engineering, highest quality materials, and faultless workmanship.

For voice and music, for voice alone, or for any special sound application rely on Turner for greater satisfaction. Turner engineers will be glad to make impartial suggestions as to the right type microphone for your particular job.

ASK YOUR DEALER OR WRITE

THE TURNER COMPANY
905 17th Street N. E. • Cedar Rapids, Iowa

TUBES AT WORK (continued)
surfaces which tend to pick up ice in icing conditions. Because of this it has become necessary to devise new types of radio antennas.

Exciter coils are installed between the inboard engines and fuselage that energize the entire wing structure so that the wing itself acts as an antenna. Operation is superior to the standard wire antenna that stretches from vertical stabilizer to cowl or the trailing wire antenna. These two standard types of antennas prevent drag, icing, and oscillation problems. Icing and oscillation of the unstabilized wire antennas bring about a frying-egg sound in receivers.

Another experimental antenna installation recently made by Wright Field engineers is a flush-mounted slit antenna at the side gunner's position of a B-17, which would be adaptable to most types of aircraft. This installation is intended for use with homing devices installed in aircraft.

Shore-Based Radar for Port of Liverpool

PRECISION 3-cm radar with a sector-scanning antenna having a bearing discrimination of better than 1 degree is now being constructed by Sperry Gyroscope Co. Ltd. of England for installation at Gladstone Dock in Liverpool. Operation is scheduled to begin in the spring of 1948. The equipment will serve for harbor supervision, showing the exact positions at any instant of all ships in the channel approaches and their relationship to all buoys in the Liverpool Bay area under all weather conditions.

The control console will have five cathode-ray displays arranged in...
INDUSTRIAL high vacuum processes... the manufacture of refrigeration units, electronic tube production using trolley exhaust systems and rotary machines... demand maximum efficiency. Elimination of manual control with its waste of time and labor can be a large part of the solution.

The new DPI Solenoid High Vacuum Valves provide instant finger-tip control over high vacuum systems. They constitute a positive advance toward fully automatic control of high vacuum production. What savings they can deliver in time and effort, and how far they can "close the gap," can be determined only after individual study.
Smooth Power FEATURES FOR SMOOTH PERFORMANCE

You'll gain highly pleased customers when you equip your phonographs with Smooth Power MX Motors. That's because of finer performance given by:

1. AMPLE POWER AT CONSTANT SPEED...eliminates instantaneous speed variations.
2. SUPERIOR IDLER ARRANGEMENT...permits idler pulley to move smoothly and quietly in any horizontal direction with no vertical wobble.
3. LOW RUMBLE LEVEL...obtained by scientific noise elimination, accurate balancing and adequate cushioning.
4. ANTI-FRICTION BEARING CONSTRUCTION...precision-cast bearing brackets maintain accurate centering of shaft in bearing and rotor in field.
5. NO EXTERNAL MOVING PARTS...internal fan provides adequate cooling, simplifies shipping and installation.

Plan now to give your customers that smoother, finer performance that's a "natural" with Smooth Power Motors.

Send for details on the complete Smooth Power line of phonomotors, recorders and combination record-changer recorders. They'll make friends for your products.

TUBES AT WORK (continued)

logical relation to each other. The first will show the entire scanning sector for the 20-mile range of the equipment, and the next four will each show in enlarged form a precision picture in the limited arc and range corresponding to the portion of the Channel being monitored. Buoy and other fixed navigational marks will be plainly indicated on a chart in front of each tube so that identification of echoes from these objects is rapid and unmistakable. Rectangular grid lines over each display enable the grid reference of a new echo to be read directly for locating the position of any vessel on a chart having corresponding grid lines. Such data can be communicated directly to any vessel by radio, for navigational guidance during poor visibility. Drifting buoys can be detected quickly on the radar screens, eliminating the need for routine checks by a tender and staff.

The antenna scanner unit will be mounted on the roof of a cabin atop an 80-foot steel tower, with the remainder of the equipment in a building at the foot of the tower. Provisions are made for addition of remote displays later.

This harbor radar installation is expected to be of most value during thick weather that would otherwise neutralize the port facilities. By using radiotelephone and radar together to talk ships into and out of the port during fog, much as planes are brought down through fog by GCA, ship turn-around time can be made more nearly independent of visibility conditions. To the shipowner this can often mean the difference between the financial success or failure of a voyage.

British Metal-Spray Circuits

BY F. R. BREWSTER
McGraw-Hill World News
London, England

A METHOD of spraying metal for electrical circuits of radio and television receivers has been successfully developed by a new British firm headed by the inventor, John A. Sargrove. The method involves metal-spraying both faces of a flat plastic base molded with recesses and webs so shaped that the filler metal performs the functions of
HOW JOHN DEERE SOLVED THE PROBLEM OF THE ANONYMOUS DEALER...

WITH MEYERCORD DECALS

Today... combination "factory-dealer" Decal nameplates link John Deere's trademark with their dealer's name, address and phone number on the equipment they sell. Formerly a few scattered dealers bought their own Decal nameplates. Relatively high cost of small individual dealer purchases limited the practice to only the largest. There was no uniformity of design. Nameplates varied with each dealer. Few included the manufacturers' name.

Pooled factory buying, stimulated by direct mail to dealers, now enables John Deere to sell a standard, personalized Meyercord Decal dealer nameplate to their outlets at a fifth of the former cost. It costs the factory nothing—saves the dealer 80%.

Whether you make farm equipment, stokers, lawn mowers, electric appliances or what—the problem's the same. Of course your product is factory identified—but what about the dealer? Is he anonymous? Assure ease and speed of dealer contact for your ultimate consumer with a standard, personalized factory-controlled Meyercord Decal dealer nameplate program for your product. Meyercord Decals are durable, easily applied and can be produced in any colors, sizes, or design. Send for complete "dealer identification" details. Address Dept. 9-7.

NOTE: The big, colorful, weather-resistant Decal trademarks you see on leading makes of farm equipment today are made by Meyercord.
ANOTHER WONDER PRODUCT OF LOW PRESSURE PROCESSING

STREPTOMYCIN

Kinney High Vacuum Pumps play an important part in the freeze-dry process at the new Streptomycin Plant of Merck & Co., Inc. at Rahway, N.J. Under super sterile conditions, vapor from the sublimation dryer is frozen in a high vacuum at -80 deg. C, in the condenser and removed as snow. Kinney Vacuum Pumps are giving highly dependable service in the production of this and many other pharmaceutical, food, optical, metalurgical and other products where low absolute pressures must be maintained. Compactly designed, Kinney Vacuum Pumps save floor space, and their fast pump down and low ultimate pressures shorten production time and reduce costs. Kinney Single Stage Vacuum Pumps produce low absolute pressures to 10 microns; Compound Pumps to 0.5 micron.

Write for Bulletin V45.

KINNEY MANUFACTURING COMPANY
3563 WASHINGTON ST., BOSTON 30, MASS.

NEW YORK • CHICAGO • PHILADELPHIA • LOS ANGELES • SAN FRANCISCO
FOREIGN REPRESENTATIVES

GENERAL ENGINEERING CO. (RADCLIFFE) LTD., Station Works, Bury Road, Radcliffe, Lancashire, England

HORROCKS, ROXBURGH PTY., LTD., Melbourne, C. 1. Australia

W. S. THOMAS & TAYLOR PTY. LTD., Johannesburg, Union of South Africa

WE ALSO MANUFACTURE LIQUID PUMPS, CLUTCHES AND BITUMINOUS DISTRIBUTORS

Two tube medium-wave receiver made by spraying metal into recesses in a plastic base

wires, resistors, inductances, and capacitor plates.

At present the method is being applied to the manufacture of radio receivers, all the electronic circuits of which are turned out complete as a single unit, requiring only the insertion of tubes and electrolytic capacitors in their appropriate holders, mounting the loudspeaker, and assembling the chassis in the cabinet. The process could be used equally well to produce separate elements for each main part of the circuit such as r-f, i-f, and output stages, these units then being mounted together one above the other on metal rods. By suitable design of the circuits and by metalizing the holes through which the rods pass, connection between the units is obtained. At present, however, only fairly simple circuits for medium-wave receivers are being made.

The production method is completely automatic and continuous in flow. The plastic base pieces are fed into the apparatus at one end and a completed element is turned out at the other end every twenty seconds, after spraying, milling, lacquering, and testing. Sectionalized conveyors are employed and each phase of the production process is separated from the next by an air-lock. Each stage of the operation is electronically controlled and if any one process fails or lags, all other stages up to that point are stopped.

Radar Signals Guide Missiles in Flight

MODIFIED from fire-control radar, a new technique is now being used to control guided missiles and pilotless airplanes in flights to target areas. A B-17 was used as a missile
SWITCHES by GUARDIAN for every purpose

Scan the brief pictorial review of Guardian Contact Switch assemblies shown above and you will probably see a switch that is comparable to your needs. Each unit represents a switch so practical, so saving of assembly time, energy, materials and money, as to be worthy of your immediate consideration.

The Guardian Featherub Switch is an example of such true efficiency. It is shown to the lower right of this page. An original Guardian creation, it is actuated mechanically and is adaptable to manual, roll-over or cam action. The Guardian Featherub and all other units shown are standard items. There are hundreds of other types, all of the highest quality. Contact blades are obtainable in phosphor bronze tinned to withstand salt spray test, also in standard Guardian phosphor bronze. All switches are properly insulated. The switch you need is here singly or in combination... one or a million! Try Guardian Switches for performance, price and delivery.

Your cost-free copy of Guardian's new Catalog 10-A is waiting for you. Write on your business letterhead for it today:

GUARDIAN ELECTRIC
1625-H W. WALNUT STREET
CHICAGO 12, ILLINOIS

ELECTRONICS — July, 1947
..."the great undiscovered ocean of truth"...

We can venture into the UNKNOWN in any branch of research only as fast as we can MEASURE each new conquest.

New Hathaway instruments are being developed and standard designs are being constantly improved to keep abreast of the expanding demands of modern research.

Whatever your requirements may be in special instruments for measurement or control let Hathaway instrument engineers help you.

Radar Beacon for Lighthouse Keepers

A SMALL RADAR beacon for lighthouses, emitting signals which will be detected by radar-equipped ships, has been built by General Electric for the United States Coast Guard. It was tested at special demonstrations of merchant marine navigational aids in May at New London, Conn.

The unit should prove useful during periods of fog, rain, snow and sleet when normal sight and sound warnings are limited.

Signals from the electronic beacon will appear as a bright ray on the radar's indicator showing the exact direction of the beacon, in the same way that the conventional lighthouse is located by the beam of light it emits.

Use of such radar beacons would also aid radar navigation, especially on coast lines where the surfaces are flat and give a poor radar reflection on the screen of existing...
Kovar meets exacting requirements for sealing to glass. Here are a few outstanding features:

1. For use with hard glass, having high thermal shock properties and permits high temperature evacuation.
2. Matches expansivity of the glass over entire temperature range (up to the plastic state of the glass) resulting in strain-free seals.
3. Resists mercury attack.
4. Not subject to size limitations (seals have been made with Kovar 12" in diameter and 1/8" thick).
5. Readily seals with simple oxidation procedure.
6. Mechanical strength—full metal thickness without "feather edge."

Kovar has gained world-wide acceptance and is used by leading American and foreign manufacturers. It is easily machined or cold formed and is available in all desired shapes—sheet, strip, foil, wire, rod, leads, tubing, cups, eyelets and flanges.

When writing for literature, please state the nature of your proposed application.

Write for Literature
Fishing reel gears must operate smoothly at a speed of 3000 revolutions per minute or more, when a cast is executed. These gears must also withstand the strain of hauling in a fighting fish of unpredictable size and strength, thus rendering a dual purpose: speed and velvety smoothness in one direction—strength and durability in the other.

Instruments and machines have individual gear problems. For over a quarter of a century, Quaker City Gear Works has solved thousands of them and produced millions of gears of every description up to 60" in diameter for manufacturers in many diversified industries.

Aircraft controls, dental drills, electric clocks, gauges, indicators, heat controls, machine tools, radar, radios, washing machines and motion picture projectors are but a few of the many conveniences of modern progress which depend upon the heartbeat of Quaker City Gears. Your gear problem is our business, our large productive capacity is at your service.

YOUR INQUIRIES WILL RECEIVE PROMPT ATTENTION

The heart of the Outdoorsman Customatic reel illustrated above is but one of many gear trains developed by our engineers and produced in our fully equipped plant.

Quaker City Gear Works
INCORPORATED
1910 N. Front Street, Philadelphia 22, Pa.
WHERE SAFETY COMES FIRST!

These Federal H-F Cables are helping to make instrument landing systems safer.

... and you get the same dependability and performance in Every Federal Cable — for Every High-Frequency Application

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>FEDERAL H-F CABLES RECOMMENDED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerial Navigation Equipment</td>
<td>K-45, K-51</td>
</tr>
<tr>
<td>Amateur Radio "Hams"</td>
<td>K-1046, K-1128, K-32</td>
</tr>
<tr>
<td></td>
<td>K-49, K-45, K-38</td>
</tr>
<tr>
<td>Television and FM Lead-In</td>
<td>KT-51, K-1046</td>
</tr>
<tr>
<td></td>
<td>K-1079, K-1126</td>
</tr>
<tr>
<td>Radio Broadcast Equipment</td>
<td>K-12, K-13, K-14</td>
</tr>
<tr>
<td>Aircraft Antenna Wire</td>
<td>K-1064, K-1081</td>
</tr>
<tr>
<td>Mobile Radio Equipment</td>
<td>K-12, K-13, K-14, K-45</td>
</tr>
</tbody>
</table>

DATA FOR K-45 AND K-51 CABLES

<table>
<thead>
<tr>
<th>Nominal Attenuation (db/100ft)</th>
<th>K-45</th>
<th>K-51</th>
</tr>
</thead>
<tbody>
<tr>
<td>at 30 Mc</td>
<td></td>
<td>1.7</td>
</tr>
<tr>
<td>100 Mc</td>
<td>2.0</td>
<td>3.6</td>
</tr>
<tr>
<td>300 Mc</td>
<td>4.0</td>
<td>7.0</td>
</tr>
<tr>
<td>400 Mc</td>
<td>5.3</td>
<td>10</td>
</tr>
<tr>
<td>1000 Mc</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>3000 Mc</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Characteristic Impedance—Ohms</td>
<td>52</td>
<td>95</td>
</tr>
<tr>
<td>Capacitance per Foot (uuf)</td>
<td>29</td>
<td>16</td>
</tr>
<tr>
<td>Volts (rms)</td>
<td>15000</td>
<td>5000</td>
</tr>
</tbody>
</table>

Federal Telephone and Radio Corporation

SELENIUM and INTELIN DIVISION, 1000 Passaic Ave., East Newark, New Jersey

Export Distributors: — International Standard Electric Corp., 67 Broad St., N.Y.C.

ELECTRONICS — July, 1947
To make it easier and quicker to obtain fittings in the above illustrated Cannon Electric Type Connector Series, more than 125* radio and electrical distributors can fill your requirements. Many of these distributors carry stock items on their shelves for immediate delivery. They are ready to serve you and discuss your requirements. Contact them first.

These type series are widely used on microphones, sound equipment, in radio and electronic devices. Their quality and performance are assured by Cannon Electric's thirty-two years of continuous operation under the same management.

For a complete list of Representatives, Distributors and a Catalog covering these lines, write for Bulletins CED and RJC-1, Address Dept. G-120.

*Additional distributors are being added in certain states.

CANNON ELECTRIC DEVELOPMENT COMPANY
3209 Humboldt Street, Los Angeles 31, California
Studying the output of pulsed oscillators?

ANALYZE THEIR SPECTRA VISUALLY WITH THIS COMPACT INSTRUMENT!

THE SYLVANIA SPECTRUM ANALYSER

provides a convenient means of studying the energy spectrum of microwave generators operating as pulsed oscillators or modulated CW oscillators. The output of magnetron, klystron, rocket and similar UHF and SHF tubes can be readily investigated.

Essentially, the Sylvania Spectrum Analyzer consists of a sharply tuned superheterodyne receiver with a cathode ray oscilloscope indicator. The instrument incorporates a sawtooth generator, which performs the two functions of frequency-modulating the local oscillator and of providing the horizontal sweep for the oscilloscope. Thus automatic synchronization is assured at all times.

An input probe is provided for insertion into cavities or wave-guides.

The energy emitted by the oscillator at various frequencies is displayed on the cathode ray tube as a pattern of vertical lines. The envelope of the pattern represents the spectral distribution.

The Spectrum Analyzer illustrated—the TSX-4SE—is designed for the 9,300 Mc region. A second model—the TSS-4SE—is available for the 3,000 Mc region, and a third model—the TSK-2SE—is available for the 24,000 Mc region.

TYPICAL APPLICATIONS OF THE SPECTRUM ANALYZER

Some of the possible uses include:

Viewing the output of a radar system, to make sure that the output energy is not being wasted by being distributed over a wider frequency band than the radar receiver can accommodate.

Determining the frequency of a pulsed oscillator.

Adjusting the local oscillator frequency of a radar receiver to space it properly with respect to transmitter frequency.

Checking of pulling or shifting in frequency of the pulsed oscillator of a radar transmitter, by observing the spectrum while the antenna is in motion.

Measurement of standing wave ratios by using the Spectrum Analyzer in conjunction with a slotted section.

WRITE FOR DETAILED SPECIFICATIONS
No modern engineering achievement has contributed more to improvement in the quality of phonograph reproduction than Astatic's recent development of two new pickup cartridges employing matched, replaceable needles. It had to come! In no other way can equipment manufacturers or ultimate users be sure of the maintenance of quality phonograph reproduction.

Too many Needle Replacements have been and are still being made with Needles possessing characteristics entirely unsuitable to the cartridges in which they are used. Results, naturally, have been disappointing.

Astatic engineers, pioneering again, have found a logical answer to this problem with the development of two new Crystal Cartridges, the "Nylon" and Model "QT," both of which employ matched, replaceable needles. These Needles are engineered to match the characteristics of the "Nylon" and "QT" Cartridges and are the only needles that can be used in them.

The result is, at long last, that quality reproduction can be maintained through the life of the instrument. Many of the new record players now appearing on the market employ these new matched reproducer units. They had to come.

FIG. 3—Curve A applies to a silicon-steel core and a 0.01-µf capacitor; curve B, mu-metal core and 0.02-µf capacitor; curve C, mu-metal and 0.1 µf.

change of from 0 to 1 ma changed the frequency from 200 to 270 cycles and that 10 ma raised the frequency to 770 cycles.

A silicon-steel core of the same type was tried, but the small currents did not produce usable changes in frequency. Figure 3 shows frequency plotted against amphere turns for the center coil of the two cores. The mu-metal core has two tuning values because with the original 0.1 µf, the zero-current frequency was 120 cycles which is too low for convenient aural response.

The specifications are as follows:

- Mu-metal core, E-1 28, outside coils 1,100 turns each; inside coil, 3,060 turns, 130 ohms resistance; inductance of outside coils together, 19.0 h with 2 volts across; maximum ΔF/ΔI = 265 cycles per milliampere.

- Silicon steel core, E-1 28, outside coils 375 turns each; inside coil 2,500 turns, 125 ohms resistance; inductance of outside coils, 0.316 h with 2 volts across; maximum ΔF/ΔI = 100 cycles per milliampere.

Improved Reactor

The circuit of the final unit is shown in Fig. 4. Using the best of the reactor conditions shown in Fig. 3 required a current of 6 ma to obtain the maximum useful frequency change. In practice, much smaller currents would be encountered, so another reactor was designed and constructed having 7,500 turns on the d-c winding, but with the same a-c coils. Even more turns would be desirable, but high resistance and fine wire were thought unsatisfactory since too high a voltage drop and danger of break-
SCHWEITZER PAPER CO., INC.

New York Office: Chrysler Building, New York 17, N. Y.

Specialists in Thin Gauge Insulating Papers

Electronics — July, 1947

169

www.americanradiohistory.com
TUBES AT WORK (continued)

age would result. This design was then a compromise between maximum possible sensitivity and circuit inefficiency. The curve for frequency versus amperes turns is shown in Fig. 5. Ten amperes turns corresponds to 0.75 ma. This is sensitive to changes of less than 0.1 ma especially at low currents.

Although it is possible to shunt the d-c winding to increase the range of the instrument, this results in two undesirable characteristics. First, the change in current that is detectable is proportional to the total current. That is, if the total current is ten times that flowing through the winding, the minimum noticeable change will be 1.0 ma instead of 0.1 ma. Second, the shunting resistance increases the time required for the change to be noticed. The larger the shunt (the lower the resistance), the more slowly the frequency changes.

To overcome the first of these two effects, a second d-c winding of 100 turns was placed on the center leg. If a current is sent through this winding from d-c source in such a way as to neutralize nearly all the flux due to the current to be studied, then smaller shunts can be used, thus making the change appear to be larger. This smaller shunt also speeds up the time of response.

It would be desirable to have

![Diagram](https://example.com/diagram.png)

FIG. 4—Complete circuit of final instrument for aural indication of current changes
Picture of YOUR cable requirements being protected by **ANSONIA** Ankoseal

Complicated control cables or relatively simple communications wiring, your cables will last longer and give better service when coated with Ankoseal. Equally as important, you will secure a cable that is precisely engineered for your job.

THE ANSONIA ELECTRICAL DIVISION
ANSONIA, CONNECTICUT of

NOMA ELECTRIC CORPORATION

ELECTRONICS — July, 1947
The "quick charge" battery charger is but one of the many practical and successful applications for Haydon timing motors . . . providing trouble-free performance, greater operating efficiency and accuracy. The pointer knob is manually set to the starting point — motor and charging unit are energized. When pointer reaches zero on the dial the motor is deenergized and the battery charging unit circuit is closed.

Write for details on this and other industrial applications for Haydon timing motors. Free catalog and name of nearest representative on request.

Write HAYDON, 2400 Forest Street, Forestville, Connecticut

TUBES AT WORK (continued)

some means of extending the sensitivity without the necessity of having a larger number of turns on the d-c winding than seems practical or without the need of using amplifiers. This was accomplished by constructing a second oscillator similar to the first except that the d-c winding is excited from a dry rectifier built in the cabinet. The saturating current is controlled by a variable resistor. This permits the operator to adjust the frequency of the second oscillator to give beats with the first.

Use of Beats

If the beats are set to two or three per second, for example, then when the small current change through the d-c winding of the detecting circuit takes place, causing the frequency to change only a few cycles, the beats will change. Even though the few cycles difference in the original frequency may not be discernible, the large change in the beat frequency will be easily noticed. Since the comparison oscillator need not be particularly sensitive, ordinary silicon-steel core material can be used.

The meter in which the pointer can be clamped enables a visually handicapped person to read the absolute value of a current. This meter, when used in conjunction with the current-change indicator described, enables him to make adjustments for maximum or minimum currents and then to determine the magnitude of the current.

This combination of instruments, together with several others developed during the past six years, has made it possible for the blind to perform many more operations involving electrical measurements and adjustments than heretofore.

![Graph](https://example.com/graph.png)

FIG. 5—Frequency plotted against ampere turns for the final circuit

July, 1947 — ELECTRONICS
YOU GET QUALITY PLUS ENGINEERING SERVICE WITH G-E PERMANENT MAGNETS

The Magnets that Guard your Transformer

Two G-E sintered ALNICO permanent magnets, separated by an aluminum diaphragm, function as a leak-proof magnetic coupling in this gage to accurately indicate the level of the insulating liquid in transformers. The rise or fall of the float actuates the dial pointer by means of the coupling.

In addition to the large group of sintered and cast ALNICO permanent magnets, General Electric now offers you greater flexibility of magnet design with the ductile alloys CUNICO, CUNIFE and SILMANAL and the lightweight, non-metallic VECTOLITE. Be assured of receiving magnets of the highest uniform quality resulting from precise G-E production methods, accurate testing and rigid inspection.

Let us help you with your magnet application problems. General Electric engineers, backed by years of research and magnet design experience, are at your service. Metallurgy Division, Chemical Dept., General Electric Co., Pittsfield, Mass.

SEND FOR our new bulletin, CDM-1, "G-E Permanent Magnets", specifically designed to help you with your permanent magnet problems. This bulletin contains information about the characteristics and properties of G-E permanent magnet materials, their application and design.

METALLURGY DIVISION, Section FA-7
CHEMICAL DEPARTMENT
GENERAL ELECTRIC COMPANY
PITTSFIELD, MASS.

Please send me your new bulletin, CDM-1, "G-E Permanent Magnets".

NAME
COMPANY
ADDRESS
CITY
STATE

PERMANENT MAGNETS

GENERAL ELECTRIC

ELECTRONICS — July, 1947
Pick H

- for Quicker Installation
- for Easier Replacement
- for Positive Action
- for Rugged Construction

No costly puttering when you install a Diamond-H snap switch, convenience outlet or pilot light. A gentle push and the spring mounting gives you a solid installation for top appearance and performance. Yet they can be removed instantly for inspection or replacement. Available in black, white or brown plastic, they require a mounting hole only 21/32" x 1-7/32" and a depth of 1". All three are low in cost, rugged and dependable in service.

Switch equipped with heavy silver contacts. Operating pressure, 3 to 5 oz.; 115 V., 15 A. or 230 V. 10 A.; A. C. only.

Convenience outlet, 125 V. 15 A. or 250 V. 10 A.

Diamond-H neon pilot light, an exact match to the switch and convenience outlet illustrated above.

THE HART MANUFACTURING COMPANY
202 BARTHOLOMEW AVENUE, HARTFORD, CONN.

Switching in the circuit of Fig. 2 takes place in similar manner, resistors R_s be-

![Diagram of a five-state counter circuit](image)

FIG. 3—A scale of five circuit is built using both triodes and diodes.
The Trend is Toward
ERIE "GP" CERAMICONs for By-Pass and Coupling Applications

Reasons why...

ECONOMICAL

REQUIRE LESS SPACE

EXCELLENT ELECTRICAL PROPERTIES

Mass production methods in the manufacture of ERIE "GP" Ceramicons make possible mass production prices. Available in popular capacities, quantity production, with strict adherence to quality standards, bring new price economies in ceramic condensers for practically all applications in which the condenser is not directly frequency determining.

High capacities are available in extremely compact sizes. Because they are tubular in shape, they require less area than many types of rectangular shaped condensers of equal capacities. Their physical characteristics make them easy to handle in the assembly line.

Because of their basic, simple construction ERIE "GP" Ceramicons have higher resonant frequencies. This factor is increasingly important as the higher frequencies used in FM & Television are reached.

The trend is toward ERIE "GP" Ceramicons. They are made in insulated styles in popular capacity values up to 5000 MMF, and in non-insulated styles up to 10,000 MMF. Write for full details and samples.

ERIE RESISTOR CORP., ERIE, PA.
LONDON, ENGLAND • • TORONTO, CANADA

Electronics Division

ELECTRONICS — July, 1947
How to relax, when something's needed fast!

Even if your suppliers are thousands of miles away, and you need parts and supplies right now—let others do the worrying, but never you. Specify Air Express and get delivery in a matter of hours.

Air Express goes coast-to-coast overnight, and speeds up to five miles a minute insure same-day delivery between many U.S. towns and cities. Use it regularly, and you'll be paid off in greater customer satisfaction and smooth-running, efficient operation. To solve overseas shipping problems, investigate fast, frequent, inexpensive International Air Express.

Specify Air Express—its Good Business

- Low rates—special pick-up and delivery in principal U.S. towns and cities at no extra cost.
- Moves on all flights of all Scheduled Airlines.
- Air-rail between 22,000 off-airline offices.
- Direct air service to and from scores of foreign countries.

Just phone your local Air Express Division, Railway Express Agency, for fast shipping action...Write today for Schedule of Domestic and International Rates. Address Air Express, 230 Park Ave., New York 17. Or ask for it at any Airline or Railway Express Office. Air Express Division, Railway Express Agency, representing the Airlines of the U.S.

Fastest delivery—at low rates

65 lbs. of machine parts in Louisville had to get to Dallas fast. Picked up at 5 PM on the 25th, they were delivered at 7 AM on the 26th. For complete door-to-door service, the Air Express charge was only $15.96!

July, 1947 — ELECTRONICS
The jewelled point, with 87° included angle, correct radius and fine polish, cuts a silent shiny groove for many hours. When dulled or chipped, these points may be resharpened several times. Each resharpened Audiopoint is disc-tested to insure perfect performance. For this service return points through your dealer.

With These Three Outstanding Features

- Individually disc-tested on a recording machine.
- Expertly designed to insure proper thread throw.
- A product of the manufacturer of Audiodiscs — America's leading professional recording blanks.

Professional recording engineers know, from years of experience, that Sapphire Recording Audiopoints offer the ultimate in recording stylus. Made by skilled craftsmen to most exacting specifications and individually tested in our laboratories, these Audiopoints are of consistent fine quality.

A good recording stylus requires a perfectly matched playback point. The Sapphire Audiopoint for playback fills this need completely. In materials, workmanship and design, it is the finest playback point obtainable. (Should not be used on shellac pressings.)

These Audiopoints are protectively packaged in handy cellophane covered cards — cards that are ideally suited for returning points to be resharpened.

Other Popular Audiopoints, that complete a full line of recording and playback stylus, are: Stellite Recording Audiopoint, a favorite with many professional and non-professional recordists; Diamond-Lapped Steel Audiopoint, a recording stylus particularly adapted for non-professional recordists; Playback Steel Audiopoints, the most practical playback points for general use. One hundred per cent shadowgraphed.

Although they are the finest stylus available, Audiopoints are reasonably priced. Compare them, both in performance and price, with any other stylus on the market. See your Audiodiscs and Audiopoints distributor or write.

Audio Devices, Inc.
444 Madison Ave.,
New York 22, N.Y.
POWERFUL NEWS!
SORENSEN SYSTEM NOW APPLIED TO DC VOLTAGE REGULATION

The Sorensen system of AC electronic voltage regulation provides quick, accurate response to even the smallest voltage change with a minimum wave distortion and regulation accuracy of \(\frac{3}{4} \% \) of 1%.

Arrange now to receive your personal copy of the Sorensen electronics journal "Currently" published bi-monthly.

This same electronic regulation system has been incorporated into the Nobatron, providing a source of regulated DC voltage at currents and stabilities that, in the past, was available only with batteries.

This new source of stabilized DC voltage is obtainable in six standard models operating on a 95-125 AC source of 50 to 60 cycles.

Among the more important uses for Nobatrons are DC ammeter calibration in experimental and quality control laboratories, testing of components in the automotive and aircraft industries in battery-operated relays and in other applications where it is desirable to replace a battery to guarantee continuous regulated power supply.

GENERAL AC REGULATOR SPECIFICATIONS

<table>
<thead>
<tr>
<th>Input Voltage Range</th>
<th>95-125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage Range</td>
<td>110-120</td>
</tr>
<tr>
<td>Load Range</td>
<td>25-30,000 V. A.</td>
</tr>
<tr>
<td>Regulation Accuracy</td>
<td>(\frac{3}{4} %) of 1%</td>
</tr>
<tr>
<td>Harmonic Distortion</td>
<td>5% Max. (2% in "S" Models)</td>
</tr>
<tr>
<td>Input Frequency Range</td>
<td>50-70 cycles</td>
</tr>
<tr>
<td>Inductive Power Factor Range</td>
<td>Down to 0.7 P.F.</td>
</tr>
</tbody>
</table>

For standard voltage regulation, Sorensen Model 500 is a proven leader in its field—compact, accurate and dependable. This model typifies the Sorensen line of AC and Nobatron all-purpose voltage regulators. Let a Sorensen engineer help you with your next voltage regulation problem.

SORENSEN & COMPANY, INC.
375 FAIRFIELD AVENUE - STAMFORD, CONNECTICUT

Using A 959 as Electrometer Tube

The readily available 959 acorn tube gives excellent results as an electrometer tube if used in the following way: (1) the suppressor is used as the control grid, (2) the plate is operated at 6 volts above the filament, (3) the screen is operated at 12 to 15 volts above the filament, and (4) the first grid is con-
BOTH ARE

SELF-LOCKERS

Each has the KNURLED Cup Point that makes them "Unbraco" Self-Lockers, because the knurled points dig-in and stay dug—regardless of the most chattering vibration. Yet, they can be used over and over again, so everything considered, it's no wonder that untold millions are being used throughout industry.

Each has the internal wrenching feature that facilitates high torques, compact designs, weight- and space-saving. Available in sizes from #4 to 1½" in diameter.

Write for your copy of the "Unbraco" Catalog. It describes these and other "Unbraco" Socket Screw Products.

"Unbraco" and "Hallowell" Products are sold entirely through Industrial Distributors.
FEED-THRU
AND
STAND-OFF CERAMIC CAPACITORS
are made to the same high performance standards as conventional CN and Cl type Hi-Q capacitors. Engineers who have thoroughly investigated Hi-Q capacitor performance are unanimous in their approval. We invite inquiries for samples to meet the exact needs of your applications.

OTHER Hi-Q COMPONENTS

WIRE WOUND RESISTORS

CERAMIC CAPACITORS

S. I. TYPE
Durez Coated

C. N. TYPE

Hi-Q

CHOKE COILS

Hi-Q ELECTRICAL REACTANCE CORPORATION
FRANKLINVILLE, N.Y.

Experimental Ignition Systems

IGNITION SYSTEMS, especially in aircraft, have several faults. Burning of distributor and interrupter contacts and of spark-plug electrodes limits the life of components, and high voltages on the distribution system are difficult to control, corona being particularly troublesome at high altitudes.

To overcome these and other troubles, electronic (G. V. Eltgroth, Electronic Ignition Systems, ELECTRONICS, p 106 April 1945) and other high-frequency (ELECTRONICS, p 264 Dec 1945) ignition systems have been tested. During the war, several ignition systems were experimentally developed in Germany.

The system developed at Bosch is illustrated in the accompanying drawing. The charge from the capacitor is passed through the hot cathode, hydrogen filled tube either to the distributor and thence to individual stepup transformers on

CONNECTED DIRECTLY TO THE FILAMENT. UNDER SUCH CONDITIONS THE GRID CURRENT IS ONLY 10^{-12} TO 10^{-13} AMPERES. OUTPUT IS OBTAINED ACROSS A 0.25-MEGOHM RESISTOR IN THE PLATE CIRCUIT.

TO MAINTAIN THE INPUT RESISTANCE AT OR ABOVE 10^{13} OHMS, THE SOCKET CLIP IS REMOVED AND THE CONNECTION SOLDERED DIRECTLY TO THE TUBE LEAD, AND THE TUBE DIPPED IN CERESIN WAX TO ELIMINATE SURFACE LEAKAGE. (SILICON TREATMENT COULD ALSO BE ADVANTAGEOUSLY USED FOR THIS PURPOSE AS MOISTURE CONDENSING ON IT ALSO DOES SO IN DROPLETS AND IT IS STABLE OVER A WIDE TEMPERATURE RANGE.) STABILITY OF THE TUBE CAN BE IMPROVED BY OPERATING THE FILAMENT FROM A REGULATED POWER Supply, MOST CONVENIENTLY THE SAME ONE SUPPLYING HIGH VOLTAGES FOR THE ASSOCIATED AMPLIFIER, AND AT ONLY 42 TO 44 MA. THE VOLTAGES FOR THE SCREEN AND PLATE ARE OBTAINED FROM DROPPING RESISTORS IN THE FILAMENT SUPPLY, THUS INTRODUCING A FEEDBACK EFFECT THAT ALSO IMPROVES STABILITY. BY PLACING A PHOTOCELL BETWEEN SCREEN AND SUPPRESSOR, A LIGHT-CONTROLLED CIRCUIT IS OBTAINED. EITHER METHOD OF OPERATION HAS A VARIETY OF APPLICATIONS. (PB 49879)
MITCHELL-RAND, using Owens Corning Fiberglas yarn, processes and fabricates TAPES, TUBINGS, SLEEVINGS, CORDS and CLOTHS that are the optimum in electrical insulation . . . marketed under the trade name MIRAGLAS, they protect electrical equipment from the destructive forces that play havoc with ordinary electrical insulations; overloading, extreme high or low temperatures, moisture, corrosive acids, flames or vapors, oils, grease, dust and dirt.

MIRAGLAS Fiberglas INSULATIONS have an amazing background of use throughout industry—wherever used they feature fewer breakdowns, less maintenance, elimination of waste, savings in labor and materials and prove their standing as the optimum in electrical insulation protection.

Take note of the name MIRAGLAS . . . it stands for the ultimate in Fiberglas electrical insulations . . . TAPES, TUBINGS, SLEEVINGS, CORDS, CLOTHS, ETC.

Write today for details and characteristics.

MITCHELL-RAND INSULATING CO. Inc.
51 MURRAY STREET * Cortlandt 7-9264 * NEW YORK 7, N. Y.

A PARTIAL LIST OF M-R PRODUCTS: FIBERGLAS VARNISHED TUBING, TAPE AND CLOTH • INSULATING PAPERS AND TWINES • CABLE FILLING AND POTHED COMPOUNDS • FRICION TAPE AND SPLICE • TRANSFORMER COMPOUNDS • FIBERGLAS SATURATED SLEEVING • ASBESTOS SLEEVING AND TAPE • VARNISHED CAMBRIC CLOTH AND TAPE • MICA PLATE, TAPE, PAPER, CLOTH, TUBING • FIBERGLAS BRAIDED SLEEVING • COTTON TAPE, WIRETINGS AND SLEEVINGS • IMPREGNATED VARNISH TUBING • INSULATED VARNISHIES OF ALL TYPES • EXTRUDED PLASTIC TUBING
Again a step forward—New Designs with improved performance—in the new line of Webster Electric Pickup Tone Arms. Among the many outstanding features are their low tracking pressures, attractive appearance, and freedom from resonance distortion.

Additional points that describe their merit are as follows:

- **Perfect Response**
- **Modern Styling**
- **Low Record Wear**
- **Easy to Install**
- **Feather-light Tracking**

The "S" Series is finished in rich brown, the "T" Series in fawn and the "V" Series in bronze.

Already adopted by many leading record player manufacturers for new models, they offer the finest in styling, performance and dependability.

A complete selection of cartridges is also available for the above line as well as for use with other makes of tone arms.

SERIES "S"—Sturdy die-cast zinc alloy construction with spring counterbalance maintains tracking pressure at only one ounce. Meets majority of requirements.

SERIES "T"—Stamped aluminum construction without counterbalance or springs. Internally braced to give maximum rigidity and freedom from resonance distortion. Tracking pressure 1½ ounce.

SERIES "V"—Aluminum die-cast construction. A deluxe model with high lateral ridge to assure absolute minimum in resonance distortion. Tracking pressure ¾ ounce.

Electronic impulse ignition system has accurate timing. Each sparkplug, or to a single stepup transformer and then to the spark plugs, the former being preferable as the distributor operates at lower voltage. The control circuit consisted of a perforated disk driven from the engine shaft, a light, photocell, and amplifier tube. The battery voltage in the vehicle was stepped up to 400 volts for use on the tubes. The system performed satisfactorily, but the transformers on the spark plug were unnecessarily large; timing was very good (PB 22653). The Bosch company also developed superior flywheel magnets which generated voltages for both ignition and lighting (PB 34724), and experimented on high-frequency ignition systems with negative results (PB 32589).

Other German ignition research was directed toward developing a low-voltage system. The basic technique was to guide the spark between electrodes along an insulator. A ceramic tube served best for operation from 400 to 2,500 volts (PB 13845). Elsewhere in Germany chemical igniters were tested but with unsatisfactory results (PB 6679 and PB 13845).

Millimeter Wavelengths

Generation of extremely high-frequency electromagnetic waves is done by several methods. Although the energy available at millimeter wavelengths is small compared to energies used in microwave communicational and navigational equipments, it is sufficient for laboratory studies. Furthermore, although there are limitations to the maximum frequency at which a given energy can be generated,
"It" is an icosahedron—a solid with twenty regular faces. The laws of probability say that if you roll a hundred icosahedrons on a table, eleven or more will come to rest with side "A" on top only once in a hundred throws.

Identical laws of probability rule the calls coming into your local Bell Telephone exchange. Suppose you are one of a group of a hundred telephone subscribers whose practice is to make one three-minute call each during the busiest hour of the day. The chance that eleven or more of you will be talking at once is also only one in a hundred. Thus it would be wasteful for the Bell System to supply your group with a hundred trunk circuits. Eleven trunks will suffice to give you good service.

Telephone traffic conditions vary. But you can be sure, wherever you live, that Bell Telephone Laboratories research, which pioneered in applying probability theory to telephone traffic, is everywhere helping to make the most use of costly equipment.

It tells when you will telephone
these limitations can be circumvented. The limitation of power that can be stored in a small cavity is circumvented by using multi-cavity magnetrons and by forcing the magnetron into oscillations at which the cavities are several wavelengths long, as in the Rising Sun magnetron. The beam traveling-wave tube provides a means of exchanging energy between beam and electromagnetic circuit that eliminates the resonant circuit altogether, and with it the difficulty of coupling energy into the resonant circuit, usually a cavity.

A reflex oscillator was built following an analysis of factors limiting the output power at millimeter wavelengths; it delivered several milliwatts at 5 mm. The major problem is to focus a sufficiently high-current beam through the apertures in the resonator. If the apertures are made large, the r-f field does not extend across them with the result that there is no coupling between electrons at the center of the beam and the electromagnetic field across the apertures. The aperture must therefore be made fairly small, which means forcing the dense beam of electrons into a small cross section against the mutual repulsion of the electrons. A compromise design was adopted using very fine grid wires across a small aperture. The wires were thin enough not to block the beam, but thick enough to dissipate the heat generated by electron bombardment and to have enough r-f conductivity to justify their use. The pulsed output of the tube was detected by a 1N26 crystal.

Earlier investigators generated millimeter wavelengths by magne-

<table>
<thead>
<tr>
<th>Generator</th>
<th>Wave-length in millimeters</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Split anode Magnetron</td>
<td>6.4</td>
<td>continuous</td>
</tr>
<tr>
<td>Pulsed klystron 5.80 to 4.15 (0.01 duty cycle)</td>
<td>pulsed</td>
<td></td>
</tr>
<tr>
<td>Second harmonic 6.1 to 5.4</td>
<td>continuous</td>
<td>of 1-cm klystron</td>
</tr>
<tr>
<td>Shock excitation 2.2 to 0.2</td>
<td>damped</td>
<td>of metal particles</td>
</tr>
</tbody>
</table>

Table of Methods of Generating Millimeter Wavelengths
Here is a self-retaining, self-locating and self-locking SPEED NUT designed for fluorescent tube lamp sockets. But it’s merely one of hundreds of special shapes that do more than merely hold the screw.

This SPEED NUT C6800 is zipped into the recess in the lamp socket to stay. The turned up ends of the spring arms “bite” into the plastic to lock the SPEED NUT firmly in place. It is self-locating because the extruded collar butts up against the back of the vertical slot to line up the SPEED NUT impression with the screw hole. It’s self-retaining and self-locking because of the exclusive spring tension lock of the SPEED NUT Brand of fasteners. Fits any socket of this type using standard 6-32 machine screws.

Why not let us design a fastener for you that can be applied twice as fast and do a lot of other things besides holding the screw. Write for samples or send your engineering details for a no-charge analysis.

TINNERMAN PRODUCTS, INC.

2106 Fulton Road, Cleveland 13, Ohio

In Canada: Wallace Barns Co., Ltd., Hamilton, Ontario

In England: Simmonds Aerocessories, Ltd., London

In France: Aerocessories Simmonds, S. A. Paris

In Australia: Simmonds Aerocessories, Pty, Ltd., Melbourne

Speed Nuts

MORE THAN 4000 SHAPE AND SIZES

FASTEDEST THING IN FASTENINGS

Electronics — July, 1947
TEAMED FOR

PERFECT HEARING COMFORT

Thousands of secretaries have long exclaimed, "Oh! For a transcribing machine with comfortable headphones."

And here's the perfect answer to this need... the new TELEX Monoset... now standard equipment on the Gray Manufacturing Company's new transcribing machine, the Gray Audograph. This modern under-the-chin headset is light in weight, comfortable and instantly adaptable to the user. There is no ear fatigue, no more mussed up hair with the TELEX Monoset... and it gives a new kind of performance that means improved work and improved disposition. Its electro-acoustic "heart" assures faithful sound reproduction. Its rugged plastic construction assures years of service. Yes, the TELEX Monoset teamed with the new Gray Audograph is another example of "perfect hearing comfort."

Write Department AM for information and quotations. We'll be happy to show you how the TELEX Monoset can become part of your team for perfect hearing comfort wherever headphones are needed.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Impedance</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000 ohms—Part No. 2568</td>
<td>88 d.b. above 0.000204 dynes per square centimeter for 10 micro-watt input.</td>
</tr>
<tr>
<td>500 ohms—Part No. 2569</td>
<td></td>
</tr>
<tr>
<td>128 ohms—Part No. 2570</td>
<td></td>
</tr>
</tbody>
</table>

ELECTRON ART (continued)

Electrons and spark discharges. A split anode magnetron of 0.19 mm. anode radius operating at 1,200 volts in a magnetic field of 24,000 oersteds developed 4 x 10^14 ma in an iron purite crystal receiver placed at the focus of a mirror located 15 meters from the tub. The wavelength was measured with an echelette grating spectrometer. Spark discharges between spheres produce oscillations at an approximate wavelength of 2nd/\sqrt{3} where d is the diameter of the sphere. This technique was used to obtain radiation for biologic studies. A similar method is to shock excite aluminum dipoles in a flowing stream of oil. The energy so produced is detected by a thermocouple and the wavelength measured with wire gratings. Although the power from these oscillations is low, it is sufficient for such physical measurements in the laboratory as the absorption of electromagnetic waves by gases in the study of intermolecular forces. Refinements in present techniques and new techniques may push the frequency limits higher.

(5) Montal, Angelo, A Generator of Damped Microwaves, Electrons, p. 112 Sept. 1944. A half watt at 7,000 mc is produced from an array of metallic spheres.

(7) Beringer, Robert, The Absorption of One-Half Centimeter Electromagnetic Waves in Oxygen, Phys. Rev., p. 53 July 1946. Output from one-cm klystron was fed into a silicon-tungsten crystal which produced second harmonic output for these absorption measurements.

Thermal-Magnetic Control

APPARATUS OR PROCESSES depending on temperature for proper operation can be controlled at any temperature between 180 F and 1,000 F by Curie Point alloys. These are alloys of iron in proportions to obtain the required Curie point. Below
RELAYS
for Electronic Circuits

BULLETIN 700 UNIVERSAL RELAYS are a new and important addition to the standard line of Allen-Bradley solenoid relays with a 10-ampere rating. These universal relays have two banks of contacts which permit quick and easy changes from NORMALLY OPEN TO NORMALLY CLOSED contacts...or vice versa...merely by shifting terminal connections. (See diagrams at left.) They are ideal for electronic applications in which circuit connections must be interchangeable to meet varied operating conditions. Available in 2, 4, 6, and 8 poles, with double break, silver alloy contacts which need no maintenance. There are no pins, pivots, bearings, or hinges to bind or stick. Hence, these relays are good for millions of trouble-free operations in electronic service. Send for bulletin, today.

OTHER ALLEN-BRADLEY RELAYS & CONTACTORS

BULLETIN 810 TIMING RELAYS are ideal for any service requiring an adjustable delayed action relay. Have normally open or normally closed contacts. Magnetic solenoid core is restrained from rising by the piston in oil dash-pot. Adjustable valve in piston regulates time required to pull piston through oil-seal and trip the contacts, which open or close with quick, snap action. Ideal for transmitter plate voltage control.

Allen-Bradley Co.
110 W. Greenfield Ave.
Milwaukee 4, Wis.

BULLETIN 702 SOLENOID CONTACTORS for heavy duty ratings up to 300 amperes. Arranged for 2- or 3-wire remote control with push buttons or automatic pilot devices. Enclosing cabinets for all service conditions. Double break, silver alloy contacts require no maintenance. Solenoid mechanism is simple and trouble-free.

ALLEN-BRADLEY
RESISTORS
QUALITY
RELAYS

ELECTRONICS — July, 1947
Package of
PERMANENT PERFORMANCE

- Kester Cored Solders are scientifically manufactured to provide permanent, dependable results in every type of soldering operation. They equip your product with rugged staying power—protect against service difficulties.

- Kester Cored Solders are simply and easily applied. Self-contained fluxes are positive-acting and will not disintegrate or lose their fluxing power.

- Kester Rosin-Core Solder, for electrical work, contains a patented plastic rosin flux. Ideal material for clean, tight electrical connections, Kester Rosin-Core Solder will not cause corrosion or injure insulation.

- For general soldering, use Kester Acid-Core Solder to safeguard the equipment you build... with tight, trustworthy solder bonds.

- Kester engineers are at your service, to help you select the right solder, and the correct strand and core size for every operation. Write them fully; there is no obligation.

KESTER SOLDER COMPANY
4204 WRIGHTWOOD AVENUE, CHICAGO 39, ILLINOIS

Electron Art
(continued)

this point the alloys are ferromagnetic having high permeability, above it they are paramagnetic having very low permeability. The transformation temperature is fixed by the alloy composition and is unaffected by other factors. These metals, prepared by the Curie Point Alloys Co. (Chicago), can be used in magnetic circuits to provide control. For example the metal can be the armature of a relay. While below its Curie point it will be attracted by the relay's magnetic field, but if heated above the Curie point, it will no longer be so attracted. The transformation from ferromagnetic to paramagnetic states is reversible and occurs in either direction at the same temperature in any given alloy.

Developmental Television
In France

Small television cameras and high definition pictures are being developed in France. The equipment furthest toward application is the 819 line system of La Radio-Industrie featuring a new iconoscope with a primary image only one square centimeter in area. This camera, called the Eriscope, uses 16-mm movie camera lenses giving a depth of field from two meters to infinity without refocusing. It can
Valuable, hard-to-get, electronic materials and equipment can be obtained through your WAA Approved Distributor.

Huge inventories, declared surplus by the Armed Forces, have been allocated to these Approved Distributors for efficient disposal.

The names and addresses of our distributors are listed below. They are equipped to serve your needs and will know what is immediately available.

BOSTON, MASS.
122 Brookline Ave.
Technical Apparatus Co.
165 Washington St.

BUCHANAN, MICH.
Electro-Voice, Inc.
Carroll & Cecil Sts.

CANTON, MASS.
Take Directschmann Corp.
863 Washington St.

CHICAGO, I.L.
American Condenser Co.
6410 N. Ravenson Ave.
Belmont Radio Corp.
3633 S. Racine Ave.

EMPORIUM, PENNIA.
Sylvania Electric Products, Inc.

FORT WAYNE, IND.
Elux Wire Corp.
1601 Wall St.

HOUSTON, TEXAS
Navigation Instrument Co., Inc.
P.O. Box 2007, Heights Station

LOS ANGELES, CALIF.
Color Instrument Co.
1320 S. Grand Ave.
Hoffman Radio Corp.
3761 S. Hill St.

NEWARK, N. J.
National Union Radio Corp.
57 Stout St.
Standard Artiatures Corp.
99 Sussex Ave.
Tung-Sol Lamp Works, Inc.
95—8th Ave.

NEW ORLEANS, LA.
Southern Electronic Co.
512 St. Charles St.

NEW YORK, N. Y.
Carr Industries, Inc.
1269 Atlantic Ave., B'klyn.
Communication Measurements Laboratory
1320 Greenwich St.
Electronic Corp. of America
533 W. 46th St.

EMERSON Radio & Phonograph Corp.
76—9th Ave.
General Electronics, Inc.
1819 Broadway
Hammarlund Mfg. Co., Inc.
460 W. 34th St.

Johannes & Kiegan Co., Inc.
62 Pearl St.
Newark Electric Co., Inc.
242 W. 55th St.
Smith-Moody Engineering Co.
125 Barclory St.

NORFOLK, VA.
Radio Parts Distributing Co.
128 W. Olney Road
ROCHESTER, N. Y.
W. H. Aviation Corp.
Municipal Airport

SALEM, MASS.
Hytran Radio & Electronics Corp.
76 Lafayette St.

SCHENECTADY, N. Y.
General Electric Co.
Bldg. 267, 1 River Road

WASHINGTON, D. C.
Radio Parts Distributing Co.
206—2nd Ave., S. W.
be used for normal outdoor shooting at intensities down to 500 lumens. The tube is now built of Pyrex; when molybdenum glass is available it is expected that the primary image size can be reduced to 64 square millimeters. The camera also houses a preamplifier and final stages of the sweep circuits, the generators and frequency dividers being in the fixed studio equipment.

Transmission of the doubly interlaced picture at 50 half frames per second will be at 200 mc from a transmitter to have a peak power of 1 kw. Synchronizing pulses are to be transmitted by a-m, the 10-mc picture band by f-m, and the sound by f-m on a separate 200 watt transmitter with a maximum swing of ± 75 kc and an a-f band from 30 to 15,000 cps.

Other French firms are experimenting on high definition, the system of the Compagnie des Compétiteurs having 1015 lines. The government-owned Television Française has resumed experimental daily broadcasting from its 30-kw Eiffel Tower transmitter with the prewar 450-line picture.

Survey of New Techniques

A DEVICE has been developed at Wright Field that enables a plane to fly a straight line. It operates from shoran signals and is being used in aerial mapping to permit the photoairplane to follow a straight course in taking a sequence of photographs of a large area. The Straight Line Indicator can either provide instrument indication for the pilot or operate an autopilot.

Electrical drilling of dies has been independently developed at the U. S. Bureau of Standards and the Soviet Electrical Institute. The technique as developed at the Bureau of Standards is applied to drilling diamond dies used in drawing such fine wires as those used for vacuum tube grids. The diamond is drilled by electrical sparks formed between a needle point and the diamond. Dies for 0.0004 to 0.015 inch wires are produced in 40 hrs against about 150 hrs by conventional drilling. The electrical erosion technique developed in Russia is substantially the same but is
The Type 1802-A Crystal Galvanometer (a "galvanometer" rather than a "voltmeter" because it does not have the high accuracy of most other G-R instruments) measures voltages from 30 to 1,000 Mc, and is useful up to 4,000 Mc. It is direct-reading from 0.1 volt to 100 volts and is finding considerable utility in u-h-f measurements.

Essentially it is very simple — a 1N21B crystal and a d-c amplifier. To obtain the high upper-frequency limit, however, several mechanical and electrical design problems are involved. The crystal rectifier extends the frequency range far above that obtained with the usual tube diode; however, the uniformity of commercially available crystals is below that of the v-t diodes and limits the instruments accuracy to ±5%.

The upper frequency limit is dependent upon the design of the pick-up probe. The probe assembly has been designed to minimize inductance by using cylindrical blocking and by-pass condensers. The probe design and the crystal itself result in an average probe resonant frequency of about 1800 Mc. Individual crystals modify this resonant frequency.

The amplifier uses a degenerative cathode-follower circuit arranged as a bridge system. The sensitivity of the meter is essentially independent of zero setting.

Two capacitance voltage dividers are supplied as multipliers extending the voltage ranges to 10 and 100 volts. Fittings for plugging into coaxial connectors are furnished.

TYPE 1802-A Crystal Galvanometer . . . $210.00

WE HAVE A FEW IN STOCK — Order Now for Probable Immediate Shipment
Soundcraft discs are the culmination of a five-year engineering search for wider dynamic range, lower surface noise, freedom from "grey-cuts" and "swish" in disc recording.

Soundcraft engineers have developed a coating process that now makes possible the application of high solid content, finer grained lacquers in an unusually thick, clean and uniform coating.

Check and compare these Soundcraft qualities with other blank discs you may be using now.

Background noise lowered 2—4 db
Dynamic range increased
Elimination of unpredictable "grey-cuts"
Reduction of surface "swish"
Increase of sapphire life

Here's our offer

In order that you may test for yourself our claims for Soundcraft discs, a "Broadcaster" disc will be sent without charge to anyone detaching this page and sending his name and address to us.

Reeves Soundcraft Corporation
10 East 52nd Street • New York 22, New York
your Noise Problems, too can be Solved Better with C-D Quietones

Just because Mom wants to bake a cake is no reason why she shouldn’t hear her pet soap opera. And sooner or later she’s bound to find out that some mixers don’t cause radio interference. Mixers equipped with C-D Capacitors, for example.

C-D’s experience in designing and building noise suppressors is unequalled in the capacitor industry. We are now manufacturing hundreds of types of noise filters for electrical appliances and equipment. It’s possible, of course, that the exact unit for solving your noise problem is not included. In that case, our engineers are ready and anxious to design and build the suppressor best suited to your specific requirements—better, faster, more economically. Consult with them.

Catalog of standard types will be mailed on request. Cornell-Dubilier Electric Corporation, Dept K-7, South Plainfield, New Jersey. Other large plants in New Bedford, Brookline and Worcester, Mass., and Providence, R. I.

MICA . DYKANOL . PAPER . ELECTROLYTIC

TYPICAL NOISE SUPPRESSORS

CAPACITORS #1 AND 2
Two of the Type MC Filter Capacitors designed for heavy duty service on buses, trucks, etc. for spark and noise suppression. Mechanically rugged, oil filled and impregnated and hermetically sealed.

CAPACITOR #3
A general purpose filter effectively controls radio noise energy created by fluorescent lamps. This capacitive — inductive type filter is compact and can be quickly installed in a variety of positions. Convenient leads simplify installation.
SPECIALIZATION
Moldite iron cores are produced by specialists engaged exclusively in the manufacturing of iron cores. A complete line of magnetic iron cores. For use at all frequencies including television and FM is now available.

ENGINEERING
It is a simple matter for Moldite engineers to fit the right core to your particular coil for the best results. Moldite engineers are thoroughly familiar with every iron core application and will be glad to assist you in determining which of these components can best satisfy your requirements.

PRODUCTION
With our vastly expanded production facilities, we are in the position to meet your urgent iron core requirements. Quality, economy and dependability are assured.

SAMPLES
Moldite sample iron cores will be submitted for design, test and pre-production purposes upon request of your request. Use Moldite material grade designations to insure prompt and exact duplication of the required cores. Specify "MOLDITE" for "QUALITY."

NEW PRODUCTS
(continued from p 142)
plate load resistor, 250,000 ohms; grid resistor, 500,000 ohms. Further details are outlined in Bulletin 943.

Impedance Vectorgraph (13)
SOUND APPARATUS CO., 233 Broadway, New York 7, N.Y. A direct graphical recording of resistive and reactive components of an impedance as a function of frequency is now possible with the Impedance Vectorgraph used in conjunction with a twin recorder and beat-frequency oscillator. Resistance and reactance can be separately and simultaneously recorded from 1 to 4,000 ohms in 6 ranges, with a separate expansion of either scale. Polarity of reactance is indicated. The instrument will find use in measurements of transducers, filters, and transmission lines.

Dime-Size Snap Switch (14)
MU-SWITCH CORP., Inc., Canton, Mass. The Q-Switch is a small snap-action switch designed for high-current capacity in various combi-
Announcing—

MINIGLASS QUARTZ CRYSTAL UNITS†
For Broadcast, FM and Television Applications

These compact, hermetically sealed, high performance units are designed for your multiple applications in the range of 2,500 to 10,000 kilocycles — with a tolerance of ±250 cycles at normal room temperature.

MINIGLASS crystals are designed for low cost quantity production. Available for immediate deliveries.

Manufacturers of Radio Quartz Crystals
MELVIN L. SMITH LABORATORIES
KANE, PENNSYLVANIA

†Patent Applied For
Electronic Regulated POWER SUPPLIES

PRECISION ACCURACY PERFORMANCE

Built to rigid U. S. Government Specifications

SPECIFICATIONS

INPUT—115 v, 50-60 cycle
REGULATIONS—Less than 1/20 volt change in output voltage with change of from 100-140 V.A.C. input voltage & from NO-LOAD to FULL-LOAD (over very wide latitude at center of variable range)
RIPPLE—less than 5 millivolts at all loads and voltages
DIMENSIONS—Fits any standard rack or cabinet (overall: 19 in. wide; 12 1/4 in. high; 11 in. deep; shipping wt.—100 pounds)

CONSTRUCTION FEATURES
Weston model 301 (or equal) milliammeter and voltmeter • Separate switches, pilot lights, and fuses for FIL and PLATE VOLTS • All tubes located on shockmount assemblies • Fuses mounted on front panel and easily accessible • Can vary voltage by turning small knob on front of panel. Can easily modify Type B1 from POSITIVE to NEGATIVE output voltage • Individual components numbered to correspond with wiring diagram. Rigid construction; components designed to withstand most severe military conditions—physical and electrical; were greatly under-rated.

All units checked and inspected at 150% rated load before shipment.

Tube complement: (Type A: 2-836; 6-6L6; 2-6SF5; 1-VR150; 1-VR105 (Type B1: 2-836; 2-6L6; 2-6SF5; 1-VR150; 1-VR105

IMMEDIATE DELIVERY

TYPE A—$189.00 NET PRICE—F. O. B. BALTIMORE, MD.
TYPE B1—$185.00

Complete with tubes and ready to plug in—Prices subject to change without notice

NATIONAL RADIO SERVICE CO.
Reisterstown Rd. & Cold Spring Lane • Baltimore 15, Md.

NEW PRODUCTS (continued)
nations up to single-pole, double-throw. Its small size makes it particularly applicable in industrial electronic equipment.

Facsimile Motor

CYCLOHM MOTOR CORP., 5-17 46th Road, Long Island City 1, N. Y. The Cyclohm type 29 ventilated synchronous motor can be supplied in ratings of 1/100, 1/75, and 1/50 horsepower, 1,800 rpm, 115 v, 60 cps. The motors can be used for recording and tape pulling and for facsimile recorders and transmitters.

Scratch Filter

BURNELL & Co., 45 Warburton Ave., Yonkers 2, N. Y. A new scratch filter with flat response within the pass band and extremely sharp attenuation above the cutoff frequencies is adaptable to all types of recordings. Three different cutoff frequencies are provided that can be selected on a single-circuit switch.

Heat Transfer Unit

EASTERN INDUSTRIES, INC., New Haven 6, Conn. The Model No. 1 heat transfer unit, developed for
If you want to **Save Money**

IN SILVER APPLICATIONS

use

GENERAL PLATE

Laminated Metals

Why pay the high cost of solid silver when General Plate Laminated Metal... precious metal permanently bonded to inexpensive base metal... gives you the performance characteristics of solid silver yet costs you considerably less?

By permanently bonding silver to base metals, General Plate gives you such laminated sheet, wire and tube combinations as edgelay, inlay, wholly covered or covered one side or both. Thus you get the silver exactly where you need silver performance but without the expensive solid silver cost.

You get other advantages, too. General Plate Laminated Metals are easier to fabricate, are more workable, have better spring properties, are easier to solder, and provide structural and mechanical properties not obtainable in solid silver.

General Plate Laminated Metals are also available in many other precious to base metal and base to base metal combinations. Investigate these versatile metals. Write for information or engineering assistance.

GENERAL PLATE DIVISION

of Metals & Controls Corporation

50 Church St., New York, N.Y.; 205 W. Wacker Drive, Chicago, Ill.; 2635 Page Drive, Altadena, California; Grant Bldg., Pittsburgh, Pa.

ATTLEBORO, MASSACHUSETTS
New Crystal Pickup Achieves High Stylus Compliance

Here's a crystal pickup that sets a new high in pickup standards!

- Maximum stylus life due to highly compliant mounting and low stylus force...almost impossible to chip.
- Low distortion.
- Less than ½ ounce stylus force required.
- Stylus removable and replaceable without tools.
- New crystal mounting keeps crystal effective in high humidity...in heat as high as 250°F.
- Tests show cartridge unharmed after 15 minutes in boiling water.

Get the full story on this new crystal pickup developed by the finest crystal research in the nation. Write today.

The Brush Development Co.
3405 Perkins Avenue
Cleveland 14, Ohio
SO ENDS AN UNEVENTFUL JOURNEY—a journey in which Standard Aircraft Radio has played its part towards safety—keeping contact with the ground—performing its duties reliably, day and night.

Notable amongst the new "Standard" sets for civil aviation is the S.T.R.12. V.H.F.—miniaturised—12 spot frequencies on 'send' and 'receive'—telephony and M.C.W.—overall weight 18 lb.

Standard Aircraft Radio

Standard Telephones and Cables Limited • TELECOMMUNICATION ENGINEERS • OAKLEIGH ROAD • NEW SOUTHGATE • N11

LONDON

ELECTRONICS — July, 1947
AND THE SECRET IS SCINFLEX!

Bendix-Scintilla* Electrical Connectors are precision-built to render reliable peak efficiency—day-in and day-out even under difficult operating conditions. The use of Scinflex—a new Bendix-Scintilla developed dielectric material—makes them vibration-proof, moisture-proof, pressure-tight, and materially increases flashover and creepage distances. Even under extremes of temperature—from -67° F. to $+300^\circ$ F.—their performance is remarkable. Dielectric strength is never less than 300 volts per mil.

The contacts, made of the finest materials, carry maximum currents with the lowest voltage drop known to the industry. Check the list of outstanding features below—then write for detailed information on these truly superior connectors. They belong on every job where there is no compromise with quality.

- Vibration-proof
- Moisture-proof
- Radio Quiet
- Single-piece Inserts
- No Temporary Overloads
- Pressure-light
- Minimum Weight
- High Arc Resistance
- Easy Assembly and Disassembly
- Low Electrical Resistance

supplied for developing photographic emulsions. Fluctuations in light intensity are compensated in the instrument by additional exposure time so that once a satisfactory print has been obtained it is only necessary to leave the controls set for a complete run of prints from that negative.

UHF Signal Generator

HASTINGS SALES ENGINEERING CO., 532 Commonwealth Ave., Boston 15, Mass. The General Communication Co. model P142 uhf signal generator is designed to furnish an r-f signal for calibration and alignment of receivers or for general laboratory work in the range from 1,200 to 4,000 mc. Unmodulated, pulse-modulated, or frequency-modulated signals can be selected at will. The oscillator is a velocity-variation reflex type using an adjustable cavity.

Heavy-Duty Rectifier

ELECTRONIC RECTIFIER Inc., 737 N. East St., Indianapolis, Ind. Ability to operate over a temperature range from minus 40 to 284 F, and light weight are the outstanding features of the new heavy duty magnesium-copper sulphide Lektron rectifier. Chief weight-saving feature is extension of the magnesium rectify-

*TRADEMARK

SCINTILLA MAGNETO DIVISION of
SIDNEY, NEW YORK

NEW PRODUCTS (continued)
The Finest Cored Solder in the World

ENCORE!

Ersin Multicore Solder was the first solder in the world to be made with THREE cores—and it is the only solder in the world made with extra-active non-corrosive ERSIN FLUX. No other solder offers you the same advantages of speed, efficiency, and economy per joint.

Ersin Flux, contained in the three cores of Multicore Solder, is a high grade rosin, subjected to a complex chemical process which increases its fluxing action without impairing the well-known non-corrosive properties of the original rosin.

THE ADVANTAGES OF THREE CORES

The three core construction of Multicore gives High Speed precision production. Thinner solder walls provide extra rapid melting. Flux continuity eliminates waste of solder lengths without flux.

THE ADVANTAGES OF QUALITY

Only the purest tin and lead are used in the manufacture of Ersin Multicore Solder. Multicore is made as standard in gauges between 10 and 22 S.W.G. (1.13 to .026 in., .28 to .711 mm.) and in five standard antimony-free alloys. Other alloys and gauges can be supplied to special order.

ERSIN MULTICORE IS THE ONLY THREE CORE SOLDER IN THE WORLD WHICH IS MADE WITH EXTRA-ACTIVE NON-CORROSIVE ERSIN FLUX
WHEN YOU SEE THESE SYMBOLS...

THINK OF S.S.WHITE FLEXIBLE SHAFTS

The arrow identifies these symbols as variable elements. And where there are variable elements, it pays to think of S. S. White flexible shafts. As one well-known engineer puts it—

"In electronic equipment variable elements must be strategically located for premium electrical performance. In most cases the resultant mechanical placements of these elements do not readily adapt themselves to a symmetrical front panel placement of control knobs. S.S.White flexible control shafts, as couplings between the elements and their control dials, allow us complete freedom in our mechanical and electrical design."

260-PAGE FLEXIBLE SHAFT HANDBOOK FREE TO ENGINEERS

It gives complete information and engineering data about flexible shafts and how to select and apply them. Copy free, if you write for it on your business letterhead and mention your position.

S.S.WHITEd INDUSTRIAL DIVISION

THE S. S. WHITE DENTAL MFG. CO., DEPT. C 10 EAST 40th ST., NEW YORK 16, N. Y.

NEW PRODUCTS (continued)

Projector for Television Transmitters (23)

RADIO CORP. OF AMERICA, Camden, N. J. A new 16-mm television film projector type TP-16A is a modified sound motion picture projector adapted to project onto the mosaic of a television camera pickup tube as a means of programming television broadcast stations. The scanning sequence of ordinary film has been modified in the machine by the introduction of elliptical gears so that the film motion is effectively synchronized with standard television signals. Radio-frequency voltage is used on the exciter lamp filament of the sound section and a stabilizer is provided to insure sound reproduction at virtually the originally recorded pitch.

Multitester (24)

RADIO CITY PRODUCTS Co., Inc., 127 West 26th St., New York 1, N. Y. The model 462 multitester has a d-c sensitivity of 20,000 ohms per volt, uses a germanium crystal rectifier, and employs individual unit cells for the ohmmeter. The d-c ranges are 2.5 to 5,000 volts; a-c, 2.5 to 5,000 volts; 0.1 to 500 milliamperes.
FOR YOUR CONVENIENCE . . .

PANEL INSTRUMENTS NOW AVAILABLE

Right Off the Shelf!

To supply you with instruments at the time you need them, General Electric is accumulating a stock of 3½-inch, round and rectangular panel instruments in all the popular ratings. No waiting for delayed shipments . . . just place your order and they're on the way to you.

NEW DISCOUNT BENEFITS

Also, more favorable prices, made possible by new discount benefits, are now available to you when ordering these standard types and ratings. Included in these stocks of compact, high-quality G-E instruments are ammeters, voltmeters, milliammeters, and microammeters . . . instruments for applications where AVAILABILITY counts.

INSTRUMENTS MADE TO ORDER

In addition, General Electric is equipped to solve your individual instrument problems. Requests are welcomed for special, made-to-order instruments to be incorporated in your product where standard models cannot be used. For further information contact your General Electric representative or write to Apparatus Department, General Electric Company, Schenectady 5, N. Y.

VU METERS are now normally stocked in the following styles: non-illuminated, no mask, “A” scale; illuminated, no mask, “A” or “B” scale. Black covers are standard; gray covers can be furnished.

HEADQUARTERS FOR MEASUREMENTS

GENERAL ELECTRIC

ELECTRONICS — July, 1947

www.americanradiohistory.com
For Greater Operating Efficiency

UNITED AIR LINES selects

CREI Radio Engineering Courses for Group Training of its Radio-Electric Personnel

The scheduled air lines of the U. S. offer the safest transportation in the world ... and radio-electronics lends its certain, guiding hand of assurance. United Air Lines as part of its own program for higher operating efficiency has contracted with Capitol Radio Engineering Institute for further training of RADIO-ELECTRIC PERSONNEL. Through the aid of CREI training, United is—

1. Increasing the technical ability of its technical radio personnel.
2. Enabling its staff to perform duties more efficiently and in less time.
3. Increasing the personal worth of each man to the organization and to himself.

No business is too large, few businesses are too small to profit by the CREI "Employers' Plan" of group training for technical radio personnel.

A plan similar to that now in operation at United Air Lines is flexible and can be patterned to suit your own requirements. For information please write to—

Mr. E. A. Corey

CAPITOL RADIO ENGINEERING INSTITUTE
An Accredited Technical Institute

16th and Park Road, N. W.
Washington 10, D. C.

d-c; up to 100 microamperes and 20 megohms.

Midget Inductors
CAMBRIDGE THERMIONIC CORP., 445 Concord Ave., Cambridge 38, Mass.
Type LSM midget inductors are only ½ inch high. Slug tuned, they can be used for filters, wave traps, or other inductive circuit elements.

Audio Voltmeter
FREED TRANSFORMER Co., Inc., 72 Spring St., New York 12, N. Y.
The new type 1060 vacuum-tube voltmeter can be used at audio and ultrasonic frequencies as well as for a null detector in d-c bridge measurements. Input impedance is 50 megohms shunted by 15 micro-
reasons why

Selenium Rectifiers Are Rapidly Becoming Standard in Industry for All Rectifier Applications

1. Permanent characteristics.
2. Adaptability to all types of circuits and loads.
3. Unlimited life—no moving parts.
4. Immunity to atmospheric changes.
5. High efficiency per unit weight.
6. From 1 volt to 50,000 volts rms.
7. From 10 micro-amperes to 10,000 amperes.
8. Economical—simple to install—no maintenance cost.
9. Hermetically sealed units available.

The Modern Solution for all Rectifier applications. Selenium Rectifiers are ENGINEERED FOR ENGINEERS. Selenium Corporation of America meets exacting specifications of modern electronic developments. Manufacturers of a broad line of Selenium Power and Instrument Rectifiers, Self generating Photo-Electric cells and allied scientific products. Selenium Corporation of America's engineering experience can be called upon for the development and production of special rectifiers for any application.
The Acme Voltrol provides a full range stepless control from 0 to 135 volts. Its regulation is accurate to within \(\frac{4}{10}\) volt adjustment. Unlike resistance regulators, the output voltage is practically independent of the load. Voltrol is the ideal testing instrument for predetermining the performance of any electrical device or product under voltage fluctuation conditions. Available in portable model (illustrated) and panel mounting types. Write for Bulletin 150.

An entirely new kind of testing unit that provides for actual checking of circuits at approved standard testing voltages and in addition indicates grounds, shorts or opens. 100\% leakage type transformer limits current under short circuit conditions, thereby preventing needless destruction to materials at point of breakdown. Instead of simply indicating the resistance value of the insulation, which serves no practical purpose, the Acme Insulation Tester permits the application of high voltages to positively prove the safety qualifications of the electrical device or apparatus under test. The Acme Insulation Breakdown Tester may be adjusted to supply voltages of double the rated voltage plus 1000 in accordance with Underwriters' Laboratories testing recommendations.

NEW PRODUCTS

Variable Speed Control (27)

WELTRONIC Co., 19500 West Eight Mile Road, Detroit 19, Mich. The series MCVA1 is a variable speed control for 230-volt d-c motors from a 230-volt a-c power source. The unit can be used on any shunt-wound d-c motor up to and including 1-hp rating. Remote forward, reverse, and stop pushbutton controls can be provided as well as a remote speed control. Dynamic braking of the machine is included.

X-Ray Counter (28)

WESTINGHOUSE ELECTRIC Corp., 306 Fourth Ave., Box 1017, Pittsburgh 30, Pa. The new counter that records x-rays at a speed of 1 microsecond over a wide range of intensities consists of a photomultiplier tube wrapped in a sheet of fluorescent screen covered with black pa-
You’re Looking at 9 Wire-Failure PROBLEM SOLVERS

All Permanently Insulated to Assure RELIABLE PRODUCT PERFORMANCE

If your product has the stuff that builds sales you know that performance means more than price where wire-buying is concerned. You also know that your wire has to take use, abuse and assorted operating conditions once your creations leave the shipping room. But you may not know that Rockbestos wires, cables and cords (125 different types) will give them performance-protection that salesmen can write home about — with repeat orders!

Wire-failure prevention is built into Rockbestos wires with permanent insulation — ageless impregnated asbestos so highly resistant to heat, flame and deterioration that it won’t bake brittle or flow under high temperatures or conductor heating overloads — won’t ignite under shorts or carry flame — and won’t rot or swell from exposure to grease, oil or fumes.

If you make any of the products listed, or others too numerous to mention — Rockbestos wires will more than pay their way by reducing replacements, repairs or servicing and protecting good-will:

- Airplanes
- Buses
- Calculators
- Cash Registers
- Communications and Signaling Equipment
- Electronic Controls
- Elevators
- Furnaces
- Locomotives
- X-ray Equipment
- Mining Machines
- Motors
- Ovens
- Projectors
- Ranges
- Radios
- Rheostats
- Switchboards
- Toasters
- Waffle Irons

For recommendations write to the nearest district office or:

ROCKBESTOS PRODUCTS CORPORATION
449 Nicoll Street, New Haven 4, Conn.

ROCKBESTOS
The Wire with Permanent Insulation

NEW YORK BUFFALO CLEVELAND LOS ANGELES PITTSBURGH DETROIT CHICAGO ST. LOUIS SAN FRANCISCO SEATTLE PORTLAND ORE.

ELECTRONICS — July, 1947

207
www.americanradiohistory.com
NEW PRODUCTS (continued)

per. Visible light is blocked by the paper but the tube detects and amplifies the fluorescent light that appears when an x-ray strikes the screen.

Capacitor-Resistor Bridge (29)
GENERAL ELECTRIC Co., Syracuse, N. Y. The type YCW-1 portable capacitor-resistor bridge will measure capacitance from 0.000005 to 200 microfarads in three ranges and resistance from 5 ohms to 20 megohms in two ranges. Insulation resistance, leakage current, and power factor are also indicated.

Panel Meters (30)
SHURITE METERS, 61 Hamilton St., New Haven 8, Conn. A complete line of a-c and d-c meters of the 2- and 21-inch types are available in round or rectangular cases. All d-c meters are polarized-vane and solenoid type, while the a-c meters are double-vane repulsion type. They are further described in Bulletin F-64.

Antistatic Tire Powder (31)
UNITED STATES RUBBER Co., Rockefeller Center, New York, N. Y. A powder that can be blown into auto-
Pictured here is a tuning-fork frequency standard with accuracy guaranteed to one part per million per degree Centigrade. The fork is temperature-compensated and hermetically sealed against variations of barometric pressure. This standard, when combined with basic equipment, facilitates accurate speed and time control by mechanical, electrical, acoustical or optical means.

The unit is available separately or in conjunction with complete timing instruments. Our engineers are ready to cooperate on any problem.

American Time Products, Inc.
580 Fifth Avenue
New York 19, N. Y.

OPERATED UNDER LICENSE OF THE WESTERN ELECTRIC COMPANY
Western Electric

PROGRAM DISPATCHING SYSTEM

This new Relay Type Program Dispatching System reduces your most complicated radio broadcast switching operations to the movement of one key. It speeds up switching in serving several destinations with rapidly interchanged studio, line and transmitted programs, auditions and announcements. For full details on its many operating advantages, write Graybar Electric Co., 420 Lexington Ave., New York 17, N. Y., or...

NEW PRODUCTS (continued)

mobile inner tubes reduces one particular type of static encountered in automobile radio installations. An air hose and specially designed container are used to inject a small amount of the powder into a deflated tube.

Cathode-Ray Oscilloscope

RADIO CORP. OF AMERICA, Camden, N. J. The type WQ-60C is a general-purpose oscilloscope built especially for use in industrial applications. It will handle voltages as high as 850 volts peak to peak and its low-frequency response reaches 0.5 cycles. Upper limit is 300,000 cycles. Three tubes are furnished for general applications, low-frequency work, or photographic recording. They can be quickly and easily inserted for the specific job of the moment.

Electronic Automatic Sorter

DOALL Co., 254 North Laurel Ave., Des Plaines, Ill. The model DS-20 packaged selector for mechanical parts consists of three units—gage head, master control, and segregator. The selector is adjusted by use of gage blocks. Lights indicate the go-no-go tolerances at the same time that a meter indicates exact dimensional variations from the standard. Attachments for counting numbers of pieces or making the...
Type AR-16 (Air-Spaced) Exciter Coils and Forms

These air-spaced coils are suitable for use in stages where the plate input does not exceed 50 watts and are available for the 6, 10, 20, 40 and 80 meter bands. All have separate link coupling coils and all include the PB-16 plug, which fits the XB-16 Socket.

AR-16 Coils, End Link, Center Link or Swinging Link. Net price $1.15 (Include PB-16 Plug)

PB-16, Plug in Base Only. Net price...$.27

XB-16, Plug-in Socket Only. Net price...$.33

The HRT is a new plastic tuning knob with a chrome-plated appearance circle. The HRT knob fits a 1/4" diameter shaft and is 2 1/8" in diameter. Available in Black or Gray.

HRT Knob. Net price...$.75

The HRS Knobs are a new series of plastic knobs with a chrome-plated skirt. They all fit 1/4" diameter shafts. Three types are available in Black or Gray.

HRS-1 Knob...ON-OFF through 30° rotation. Net price...$.51

HRS-2 Knob...5-0-5 through 180° rotation. Net price...$.51

HRS-3 Knob...0-10 through 300° rotation. Net price...$.51

The AR-2 and AR-5 coils are high Q permeability tuned RF coils. The AR-2 coil tunes from 75 mc to 220 mc and the AR-5 coil tunes from 37 mc to 110 mc with suitable capacitors.

AR-2 High Frequency Coil. Net price...$1.71

AR-5 High Frequency Coil. Net price...$1.66

XR-50. Net price...$1.01

XR-50 coil forms may be wound as desired to provide a permeability tuned coil. The form winding length is 13/16" and the form winding diameter is 1/4". The iron slug is 1/4" diameter by 1/4" long.

MAKERS OF LIFETIME RADIO EQUIPMENT

THE NATIONAL EMBLEM ON PARTS IS YOUR GUARANTEE OF QUALITY

For over 25 years, hams, engineers and radio technicians have agreed that National parts were thoroughly reliable in manufacture and performance. That reputation is your guarantee of quality when ordering National parts for new equipment.

If you need parts that will fit as they're supposed to, that will give you long hard service, then National's your best bet — as any radio veteran can tell you.

Send today for your copy of the new 1947 National catalog, containing over 600 parts.

National Company, Inc.
Malden, Mass.

Please write to Department 10 National Company, for further information.

THE NATIONAL EMBLEM ON PARTS IS YOUR GUARANTEE OF QUALITY

For over 25 years, hams, engineers and radio technicians have agreed that National parts were thoroughly reliable in manufacture and performance. That reputation is your guarantee of quality when ordering National parts for new equipment.

If you need parts that will fit as they're supposed to, that will give you long hard service, then National's your best bet — as any radio veteran can tell you.

Send today for your copy of the new 1947 National catalog, containing over 600 parts.

National Company, Inc.
Malden, Mass.

Please write to Department 10 National Company, for further information.
equipment operable by a sightless person can be supplied.

Amateur Frequency Meter (34)

BROWNING LABORATORIES, INC., Winchester, Mass. The model MJ-9 frequency meter provides a means for checking the frequencies of f-m or a-m transmitters operating in the amateur bands from 3.5 to 148 mc. A 500-kc crystal oscillator is used as a reference standard and the overall accuracy of the unit is 0.05 percent at all frequencies.

Phonograph Amplifier (35)

ALLIED RADIO CORP., 833 West Jackson Blvd., Chicago 7, Ill. The Knight 4-watt amplifier can be driven by any high-impedance crystal pickup and will satisfactorily operate a 10-inch speaker. It is physically small so that it can be fitted into a cabinet designed for turntable and speaker combinations.

Double Winding Relay (36)

STEVENS-ARNOLD CO., 22 Elkins St., South Boston, Mass. The type 162 relay has double windings, one of
When you specify General Electric mycalex for your designs, small as well as large electric parts can be completely insulated. This gray, stone-hard compound of glass and mica is recommended for its high dielectric strength—low loss factor—toughness—heat resistance—chemical and dimensional stability.

G-E mycalex is available in the shapes and quantities you need. It can be ordered in standard rods and sheets, or it can be molded or fabricated to your specifications. Samples will be supplied to you on request.

You can test this unique insulating material in your own plant by having G-E mycalex specialists fabricate sample parts from your designs. After testing, your designs can be converted to the speediest, most economical molding processes. For more details, send for a free copy of General Electric's booklet, "G-E MYCALEX." Just write to Section S-20, Plastics Division, Chemical Department, General Electric Company, 1 Plastics Avenue, Pittsfield, Massachusetts.

GENERAL ELECTRIC

ELECTRONICS — July, 1947
Embossed Foil Dials

Tablet & Ticket Metal Foil Radio and Instrument Dials are fabricated from special dial board with foil laminated to both sides to eliminate warping—prevent moisture absorption. Processed in colors on either silver, gold or copper shades of foil, unusually rich combinations are readily obtainable at unbelievable low costs. Then, too, the exclusive T & T Perfect O-Cut Dial Process not only produces a third dimensional effect by high embossing but also assures absolute register because cutting die is an integral part of printing and embossing plate.

Write today to Dial Division—Tablet & Ticket Co., 1021 West Adams Street, Chicago 7, for complete information.

New... improved

Precision Attenuators

by TECH Labs

The units illustrated represent a complete redesign of our older precision attenuators for laboratory standards. Flat for all frequencies in the audio range. Reasonably flat to 200 k.c. up to 70 db.

Bulletin sent on request.

New Products (continued)

which is used for operation and the other as a hold-in coil. It is made in one size with single-pole, double-throw contacts for use with resistive or capacitive loads. Catalog 214 gives complete information on how to use this device for photoflash and similar service.

Television Capacitors (37)

Cornell-Dubilier Electric Corp., South Plainfield, N. J. The type TMC series of capacitors with capacitance range from 0.005 to 0.05 microfarad in d-c voltage ratings from 2,000 to 5,000 volts has been particularly designed to meet the requirements of television equipment manufacturers. The units are tubular metal-can types with end leads.

High-Frequency Capacitors (38)

Cornell-Dubilier Electric Corp., South Plainfield, N. J. The type UP electrolytic capacitors are characterized by their ability to operate...
HIGH SPEED winding—whether bobbin, random or gang—subjects magnet wire to punishing treatment. Insulating film must be tough, yet pliable. Copper must have the proper degree of anneal. The spool-to-spool uniformity must be right.

Essex Extra-Test Magnet Wire has earned an unexcelled reputation in the most exacting applications. It helps insure coils of uniform size and resistance value—maximum turns in available space—freedom from broken wires, pile-ups, crossed turns, runbacks, spaced turns, and frequent tension adjustments. When you specify Essex Extra-Test Magnet Wire you can be sure.

Plants: Fort Wayne, Indiana; Detroit, Michigan; Anaheim, California
Warehouses* and Sales Offices: *Atlanta, Ga.; *Boston, Mass.; *Chicago, Ill.; Cleveland, Ohio; Dallas, Texas; Dayton, Ohio; *Detroit, Michigan; Kansas City, Mo.; *Los Angeles, California; Milwaukee, Wisconsin; *Newark, N. J.; Philadelphia, Pa.; *St. Louis, Mo.; *San Francisco, California.

ESSEX WIRE CORPORATION
FORT WAYNE 6, INDIANA

ELECTRONICS — July, 1947
NEW PRODUCTS (continued)

...at high temperatures. An additional feature is the elimination of intercoupling between individual sections at radio frequencies. Dimensions of the regular type UP capacitors have not been exceeded.

Multipole Sequence Relay (39)

STRUTHERS-DUNN, INC., 146 No. 13th Street, Philadelphia 7, Pa. A new reversing, separate-circuit ratchet-operated multipole sequence relay known as type 96AFA, it is adaptable to numerous applications involving the addition and subtraction of loads, as in switching in or switching out individual units from a bank of capacitors. It is a two-coil relay. One operating coil steps the cam shaft forward, a step at a time. Similarly, the second operating coil steps the shaft in the reverse direction. Mechanical stops limit the forward and reverse travel of the shaft. Standard ratchets supplied have 12 teeth. Thus a total of 12 contacts may be obtained in a sequence, with no more than 6 separate contacts between each pair of bearing supports. Operating coils are for a-c use only. Engineering data Section 4681 contains full details on this as well as other sequence relays.

Radiation Detector (40)

NORTH AMERICAN PHILIPS Co., Inc., 100 East 42nd St., New York 17, N. Y. A new compact portable Geiger-counter radiation detector uses...
NOW AVAILABLE!

New illustrated technical booklet on uses of—

PLASTICON Glassmikes

Contains the following subjects:

- CHART OF RF CURRENT RATINGS
- Glassmike characteristics and design data
- Comparison of Glassmikes and Mica Capacitors
- Uses of Glassmikes for improved RF and Audio bypassing
- Use in Audio and RF coupling
- Glassmikes in television power supplies
- Video coupling
- Vibrator buffer applications
- Geiger Counter Capacitors
- Instrument capacitors
- and many other applications

*PLASTICONS: Plastic-Film Dielectric Capacitors

Your Jobber stocks a complete line of PLASTICONS* in metal cans and Glassmikes

Condenser Products Company

1375 NORTH BRANCH STREET • CHICAGO 22, ILLINOIS

Enclose nominal charge of ten cents for handling and mailing when writing for this free booklet, or obtain from your local distributor.
TRIODE PERFORMANCE

The superiority of a triode amplifier is most apparent in the final test...listening

- TRIODE TUBES used throughout. 2—684G, 4—749A, 2—767F, 1—5U4G, 1—572G.
- Three push-pull stages preceded by an inverter stage.
- Interstage transformer insures good push-pull balance.
- Flat within 1 db to 25 cycles at full power and to 4 cycles at reduced power.
- Flat within 0.2 db to 30,000 cycles.
- 0.6% harmonic distortion and 0.2% inter-modulation distortion at 5 watts.
- Rated power—30 watts at 2% total distortion.
- AUTOMATIC BIAS CONTROL greatly increases undistorted power at moderate cost.
- Gain—55 to 120 db in various models.
- Input—38, 150, 500/600 and 500,000 ohms.
- Output—1.5 to 30 ohms and 500 ohms.
- Power available for other units—250 volts, 0.090 A DC, 6.6 volts, 5 A.
- Fuses—Main power and 684G plate line.

Large or Small SQUARE, ROUND OR RECTANGULAR PAPER TUBES

FOR COIL WINDING

Inside Perimeters from .592" to 19" With specialized experience and automatic equipment, PARAMOUNT produces a wide range of spiral wound paper tubes to meet every need...from .592" to 19" inside perimeter, including many odd sizes of square and rectangular tubes. Used by leading manufacturers. Hi-Dielectric, Hi-Strength Kraft, Fish Paper, Red Rope, or any combination, wound on automatic machines. Tolerances plus or minus .002". Made to your specifications or engineered for YOU.

SEND FOR ARBOR LIST of OVER 1000 SIZES

Paramount PAPER TUBE CORP.

616 LAFAYETTE ST., FORT WAYNE 2, IND.

Manufacturers of Paper Tubing for the Electrical Industry

NEW PRODUCTS (continued)

five tubes and can be carried in the hand or by a shoulder strap. Controls and indicators are located on a top panel so that adjustments and measurements can be made while the unit is being carried.

Snap-Action Relay (41)
GUARDIAN ELECTRIC MFG. CO., Dept. SA, 1625 West Walnut St., Chicago 12, Ill. The series 100 relay with snap-action contacts is suitable for such use as motor starting in which fast make and break are desirable.

Resistor Kit (42)
INTERNATIONAL RESISTANCE CO., 401 North Broad St., Philadelphia 8, Pa. A new basic kit of resistors suited for engineering and development laboratories, broadcast sta-

tions, schools, and colleges contains 471 basic resistors and 6 bands for adjustable types. They are all packed in a metal cabinet.

Resistance Limit Bridge (43)
HERBACH AND RADEMAN CO., 517 Ludlow St., Philadelphia 6, Pa. The RLB110M electronic resistance limit bridge has been designed for the rapid production testing of resistors in the tolerance ranges of plus and minus 5, 10, 15, or 20 percent. It is essentially a d-c Wheatstone bridge followed by a two-stage direct coupled d-c vacuum tube
WILCO PRODUCTS INCLUDE:

CONTACTS
- Silver
- Platinum
- Tungsten
- Alloys
- Sintered Powder Metal

THERMOSTATIC BIMETAL
- All temperature ranges, deflection rates and electrical resistivities

SILVER CLAD STEEL
- Jacketed wire
- Silver on steel, copper, invar or other combinations requested

ROLLED GOLD PLATE AND WIRE
- Ni-Span C
- New Constant Modulus Alloy

SPECIAL MATERIALS
- alloys by traction wire

THE H. A. WILSON COMPANY
105 Chestnut St., Newark 5, New Jersey

SPECIALISTS FOR 33 YEARS IN THE MANUFACTURE OF THERMOMETALS
ELECTRICAL CONTACTS • PRECIOUS METAL BIMETALLIC PRODUCTS

SILVER, PLATINUM, TUNGSTEN
SPECIAL ALLOYS, POWDER METALS

ASSEMBLED TO THERMOSTATIC BIMETAL, STEEL, BERYLLIUM COPPER AND OTHER NON-FERROUS METAL SPRINGS, BLADES, BRACKETS, ARMS AND SCREWS. (BRAZED, RIVETED, WELDED, SPUN)

Many manufacturers find it advantageous to turn over their contact assembly problems to Wilco. From Wilco's accumulated experience, they obtain contact assemblies precisely conforming in size, shape and material to their individual requirements.

Wilco Contact Assemblies are fabricated by an organization of thoroughly skilled engineers and craftsmen, with a 33-year record of adapting electrical contacts and thermostatic bimetallics to thousands of industrial and military applications. They embody—like all Wilco materials—the basic excellence for which Wilco has been famous since 1914.

Contact materials of maximum ductility, hardness, density, freedom from sticking, low metal transfer, high conductivity and arc-resistance... Thermostatic Bimetals meeting the most exacting standards for temperature indication, temperature control and temperature compensation... these are the advantages of Wilco contact assemblies.

Whether your requirements are for individual Wilco materials or for assemblies supplied by us complete... Wilco engineers will gladly help you meet them successfully.
PHOTO ELECTRIC CELLS

SIMPLIFY PHOTO-ELECTRIC APPARATUS

Luxtron* photocells convert light directly into electrical energy. No external source of voltage is required. Meters and relays can be operated directly from Bradley Luxtron photocells, improving control over manufacturing operations, reducing your costs. They meet the most exacting requirements. Advanced manufacturing techniques make light-actuated Bradley cells the choice all over the world.

Besides the housed model shown with its plug-in contacts, Bradley also offers tube socket, nut-and-bolt types and pigtail contact mountings. In addition, Luxtron unmounted cells are available in many different sizes and shapes.

*T. M. REG. U. S. PAT. OFF.

Illustrated literature, available on request, shows more models of Bradley photocells, plus a line of copper oxide and selenium rectifiers. Write for "The Bradley Line."

BRADLEY LABORATORIES, INC.
82 Meadow St. New Haven 10, Conn.
HOW
Resistance-Voltage Characteristics are altered by Resistor Design

Here are negative resistance-voltage curves plotted for two GLOBAR type BNR Resistors. Both resistors are voltage sensitive. However, the two curves coincide at one point only, namely, 30 volts. But, of more importance, observe how the difference in resistor design drastically alters its characteristics. Note the effect a change in the shape of the resistor has on the slope of its resistance-voltage curve. Fundamentally, this change in characteristics is accomplished by altering the specific resistance of the resistor.

Graphically presented here, this variance in characteristics—caused by resistor design points up an important factor in specifying and ordering GLOBAR resistors to meet exact needs of specific applications. It is a good reason why GLOBAR resistors are not carried in stock, but are quickly made to your requirements.

To save time and trouble in producing for you voltage sensitive resistors that will do the job for which they are intended, we ask only that you furnish a few simple facts. Briefly tabulated, this necessary information is:

1. Type of apparatus in which the resistors are to be used.
2. Method of mounting and space limitations.
3. Normal operating voltage and peak voltage if available.
4. Resistance and inductance of the circuit if available.
5. Ohmic resistance of the resistor and allowable plus and minus tolerance.
6. Maximum voltage applied continuously or intermittently.
7. Duration of load and elapse of time between its application.

For your engineering tests, we can furnish samples in a hurry. For any information that may be helpful in working out your resistor problems, feel free to call on us. The Carborundum Company, Globar Division, Niagara Falls, N.Y.
This is THE light for industrial machine "ON-OFF" signalling. A rugged conical lens, which was perfected by Gothard, together with the well balanced design of Series 1600 Indicator Light, which mounts lamp well forward, provides excellent visibility from all angles. The conical lens is molded with tiny hemispheres on the inner surface for maximum light diffusion. Lamp removes from front. Smooth, easily cleaned outer surface. Jewel colors: red, green, amber, blue, opal and clear. If you do not have a Gothard-Johnson catalog—write for it.

Gothard Division
E. F. JOHNSON COMPANY
Waseca, Minn.

Low-Voltage Power Supply
 Electro Products Laboratories, Inc., 549 West Randolph St., Chicago 6, Ill. The Model A power supply unit has been designed particularly for furnishing 6 or 12 volts of well-filtered d-c power for automobile, marine, and aircraft radio receiver testing. The unit weighs 31 pounds.

Crystal Probe
 Radio Corp. of America, Camden, N. J. The new type MI-8263 germanium crystal probe adapts the Voltohmyst and Chanalyst for circuit testing of television, frequency modulation and other vhf applications up to 100 mc.

General Purpose Motor
 L & R Mfg. Co., 577 Elm St., Arlington, N. J. The small motor illustrated is rated at 1/10 hp, 5,000 rpm, a-c or d-c and has a spindle with ¾ in. shaft extending both directions. It is equipped with
simplifies design • saves installation time • cuts waste space

NEW
GE
SELENIUM
RECTIFIER

Taking less than one cubic inch of space, this new General Electric selenium rectifier has been designed to give new economies, new design possibilities to manufacturers of small radio sets. It's a cost-saver in all stages of production from the drawing board to the assembly line. Available now, to help you cut costs, it gives you these three big advantages:

SIMPLIFIED DESIGN — A conventional circuit consists simply of a G-E selenium rectifier in series with a ballast resistor in one side of the line, feeding into a capacitor across the line.

SMALLER ASSEMBLIES — This baby rectifier fits into spaces where tubes and sockets just can't go. It lets you design for smaller assemblies, smaller cabinets — gives you more room for other parts.

LESS INSTALLATION TIME — Only two connections to make. Save time that's normally wasted in wiring for sockets and tubes. Cut assembly-line breakage losses and slowdowns.

Built for ample current capacity, the new General Electric selenium rectifier can stand up to the inverse peak voltages obtained when rectifying (half-wave) 110-125 volts rms, and feeding into a capacitor.

Normal operating temperatures of small radios were taken into consideration in the designing of the General Electric selenium rectifier. Ratings are based on ambient temperatures of 50 C to 60 C. Heavy varnish coating and spring contact construction provide uniformity of performance against variations of humidity and temperature.

Write for information that will help you to utilize the advantages of General Electric selenium rectifiers in your designs. Section A71-731, Appliance and Merchandise Department, General Electric Company, Bridgeport 2, Connecticut.

GENERAL ELECTRIC

ELECTRONICS — July, 1947
NEW PRODUCTS (continued)

double ball bearings requiring no lubrication. The price, $33 fob, includes three-step pulley, foot rheostat and reversing switch.

Contact Spring Assemblies (49)
P. R. Mallory and Co., Inc., Indianapolis 6, Ind. Three groups of contact springs can be assembled into many types of spring stackup depending upon the needs of the circuit designer. Dimensional drawings on tracing paper are available. Additional information on this specification sheet includes alloys and contact materials for special uses.

Remote-Control Tube (50)
Raytheon Mfg. Co., Newton, Mass. The type RK61 subminiature thyatron is particularly adapted for radio control in model aircraft and boats. The tube can be used as a self-quenching superregenerative detector to operate a high-resistance relay in the anode circuit upon reception of a signal. Filament voltage is 1.4 v; current is 0.05 amp. Anode voltage is 45 v.

Automatic Tube Exhaust (51)
Eisler Engineering Co., Inc., 740 South 13th St., Newark 3, N. J. The type 24 head automatic exhaust machine can be used to manufacture bulbs up to the 1,500-watt size as well as the larger types for electronic tubes. Operation of the
WAA offers you another big chance to save on your electrical material needs.

Here it is—almost $2,000,000 worth of solderless connectors and soldering lugs will be sold on sealed bids. The following Regional Offices: BOSTON, NEW YORK, PHILADELPHIA, CINCINNATI, CHICAGO, LOS ANGELES, SAN ANTONIO and SAN FRANCISCO have the largest inventories.

For full information concerning descriptions of items, location, packaging, and conditions of sale write to any of the above offices or visit your Customer Service Center. At the same time request that your name be placed on the Regional Office mailing list for this type equipment.
The New

America's Finest Business Communication Systems

Dramatically different in its impressive plastic styling, definitely advanced in functional design... that's the New AMPLICALL! Apart from exceptional fidelity of speech reproduction, the New AMPLICALL incorporates a number of exclusive advantages in operation and installation which sets it apart as a significant design achievement in the intercommunication field. New AMPLICALL Systems are available to meet every conceivable business communication requirement.

The Rauland Corporation
4265 N. Knox Avenue, Chicago 41, Illinois

Equipment is continuous and automatic, requiring only manual feeding and removal.

Replacement Vibrators (52)
American Television & Radio Co., 300 East Fourth St., St. Paul, Minn. A new line of auto radio replacement vibrators has been developed and put into production.

Capacitance Bushing (53)
Erie Resistor Corp., Erie, Pa. The new type 2373 feed-through Ceramic capacitor has been developed primarily as a heavy-current carrying insulated bushing rated at 1,000 volts d-c for use on industrial heating and similar equipment.

Railroad and Marine Speakers (54)
University Loudspeakers, Inc., 225 Varick St., N. Y. Four new speaker types, MIS, MIL, MM-2, MM-2F, ranging in power from 5 to 15 watts meet severe requirements of marine and railway installations. Dust, live steam, and salt...
THE NEW FENWAL APPLIANCE THERMOSWITCH* CONTROL

Safe • Accurate • Long-Lasting Temperature Control For All Types of Electrical Appliances

The unique and rugged design of the new Fenwal Appliance THERMOSWITCH Control provides a heat control unit that will withstand shock, vibration, tampering and other operational hazards that lower product life...and influence buying attitudes.

Note these outstanding features:
- Torque applied to terminal binding posts will not shift contact support members.
- Adjusting screw will not drift under normal vibration.
- The mounting bracket provides for side or bottom mounting, or a cross-mounting bracket is available for special applications.
- One-piece, welded case and cover assures rugged, tamper-proof unit...stable temperature settings.

TWO DISTINCTLY DIFFERENT MODELS FOR HIGH AND LOW TEMPERATURE RANGES

The Appliance THERMOSWITCH Control is available in models especially designed for both high and low temperature ranges. The high temperature model provides control over the wide range of 50°F.-600°F. The low temperature model provides extremely critical control for low temperature applications throughout its range of 50°F.-250°F. Each model assures the highest degree of efficiency and dependability; both incorporate the outstanding Fenwal characteristics.

SPECIFICATIONS

Overall case dimension: 3/4" high x 3/4" wide x 2 1/8" long.
Maximum Load Rating: 1200 watts on 110 volt 60 cycles.

TEMPERATURE RANGE:
50°F. to 250°F. (Series 30003)
50°F. to 600°F. (Series 30002)

RUGGED • COMPACT • LIGHTWEIGHT

FENWAL INCORPORATED
43 PLEASANT STREET, ASHLAND, MASSACHUSETTS

spray have no effect upon their action. They are furnished with a flanged edge for flush cabinet mounting or with an adjustable bracket for wall mounting. Impedances are 8 or 15 ohms.

Tube Tester (55)

RADIO CITY PRODUCTS CO., Inc., 127 West 26th St., New York 1, N. Y.

A portable tube and set tester, model 805B, combines a volt-ohm-millimeter, capacitor leakage tester, and roll chart for tube index. A germanium crystal diode rectifier is used for a-c measurements.

Volt-Ohm-Milliammeter (56)

TRIPLET ELECTRICAL INSTRUMENT CO., Bluffton, Ohio. The Model 2450 electronic volt-ohm-milliammeter has two voltage regulator tubes to provide stability for both the positive and negative voltages, within a line variation range of 90 to 130 volts. Ranges include: d-c volts; 0, 2.5, 10, 50, 250, 500, 1,000; a-c volts, 0, 2.5, 10, 50, 250, 500, 1,000; d-c milliamps, 0, 0.1, 1.0, 10, 50, 250,
PERMEABILITY Tuning

A distinct advance for FM-AM Receiver Design

2. Freedom from microphonics.
3. Greater frequency stability.
4. Simplified wiring and switching.
5. Shorter H. F. leads.
6. All tuning elements in one integral unit.
7. Lower overall cost.

- This company has long pioneered the permeability tuning field and has secured a number of patents which disclose substantial improvements in that field. These patents are all available for licensing upon reasonable terms. Please communicate with us if you would like to discuss the licensing of your company under these patents.

JOHNSON LABORATORIES
DIVISION OF MANTLE LAMP COMPANY OF AMERICA
223 W. Jackson Boulevard, Chicago 6, Illinois
The big JOHNSON condenser line offers an unequalled choice of types and sizes beginning with miniatures with .015" plate spacing, and extending through the passurized types which offer RMS voltage ratings to 30,000 V. and capacities to 10,000 mmf. Each type is carefully designed by electronic engineers for maximum circuit efficiency. Many exclusive JOHNSON developments such as the heavy, beaded edge plates on commercial types not only increase electrical efficiency, but reduce mounting space, and through the savings in material, lower your costs.

F-M Broadcast Antenna (57)
GENERAL ELECTRIC CO., Syracuse, N. Y. The doughnut f-m antenna unit illustrated shows the method of mounting and feeding an antenna composed of these elements. Eight units give a power gain of seven.

Water-Cooled Conductor (58)
TITEFLEX, INC., 517 Frelinghuysen Ave., Newark 5, N. J. A new water-cooled flexible, high-power, high-frequency conductor consists of a brass, water-tight convoluted inner core with an outer braid conductor. A high-frequency flexible insulation is extruded over the outer braid. Application of the conductor to high-frequency heating equipment and similar use is expected.

Literature
(59)
Metallized Capacitors. Solar Manufacturing Corp., 285 Mad-

ONAN ELECTRIC PLANTS

A.C. or D.C. POWER
PORTABLE, STANDBY OR STATIONARY

For:
Radio Station Standby
Geophysical Survey
Railroad Radio
“Spot” Recording
Mobile Radio Units
Municipal Signal Standby
Amateur Radio
Write for Folder

NEW PRODUCTS (continued)

1,000; ohms, 0 to 1,000 (midscale 10), 10,000 to 100,000; megohms, 0, 1, 10, 100, 1,000. capacitance in µf is 0, 0.05, 5, 50, 500.

1947 — ELECTRONICS
NOW—A QUALITY 2-KW INDUCTION HEATING UNIT

For Only $650.

Never before a value like this new 2-KW bench model “Bombarder” or high frequency induction heater . . . for saving time and money in surface hardening, brazing, soldering, annealing and many other heat treating operations.

Simple . . . Easy to Operate . . . Economical Standardization of Unit Makes this New Low Price Possible

This compact induction heater saves space, yet performs with high efficiency. Operates from 110-volt line. Complete with foot switch and one heating coil made to customer’s requirements. Send samples of work wanted. We will advise time cycle required for your particular job. Cost, complete, only $650. Immediate delivery from stock.

Scientific Electric Electronic Heaters are made in the following range of Power: 1-3-5-7½-10-12½-15-17-25-40-60-80-100-250KW— and range of frequency up to 300 Megs. depending on power required.

Scientific Electric

Division of “S” CORRUGATED QUENCHED GAP CO.
107 Monroe St., Garfield, N. J.

PILOT LIGHT ASSEMBLIES

PLN SERIES—Designed for NE-51 Neon Lamp

Features
- THE MULTI-VUE CAP
- BUILT-IN RESISTOR
- 110 or 220 VOLTS
- EXTREME RUGGEDNESS
- VERY LOW CURRENT

Write for descriptive booklet

The DIAL LIGHT CO. of AMERICA
FOREMOST MANUFACTURER OF PILOT LIGHTS
900 BROADWAY, NEW YORK 3, N. Y.
Telephone—Algonquin 4-5180

Scientific Electric

How to add "SELL" to your DIAlS, PANELS & PLATES

Premier Dials, Panels and Nameplates combine maximum utility with the added PLUS of sales appeal. Sharp, clear and accurate! Rich colors and "baked-in" finishes! Premier metal products reflect this superiority in increased sales for you.

PREMIER METAL ETCHING COMPANY
Quality Products for Over 35 Years
43-27 21ST STREET, LONG ISLAND CITY 1, N. Y.
DETAILED EXAMINATION OF CONTINUOUS FILM

The AVIMO Film Assessor has been designed for the projection of 35mm or 16mm Film of Oscillograph Traces or other phenomena. Frames are projected singly or continuously on to an optically flat surface and magnification is from x12 to x36. Projection of successive frames is accurate to within ± .0036 at maximum enlargement.

AVIMO Continuous Film Recording Cameras provide permanent records of oscillograph traces.

AVIMO Ltd., TAUNTON
(Eng.)
Tel. 3634
Designers and Manufacturers of Scientific Cameras

Intricate Fabricating

LET OVER TWENTY YEARS OF EXPERIENCE GUIDE YOU

ELECTRICAL INSULATION CO., INC.
12 VESTRY ST., NEW YORK 13, N. Y.

FABRICATED PHENOLIC PARTS ... SHEETS, RODS, TUBES

Speakers make the DIFFERENCE

... and what a DIFFERENCE!

General Electric Speakers are built to be different—better. For warm, live, pulsating radio and record reproduction, specify speakers by General Electric.

- Better tone quality
- High wattage handling capacity
- No warping of voice coil
- Greater design possibilities
- Overall greater efficiency
- Better controlled air gaps
- Rigidity, strength, durability

Consult General Electric now for your Speaker requirements. Write to: General Electric Company, Electronics Department, Syracuse 1, N. Y.

July, 1947 — ELECTRONICS
R-MC TRANSCRIPTION PLAYER

Model TP-16C TURNTABLE and CASE only
(Patents applied for)

Two-Speed ... 16-inch ... Low Price ... Portable
Compact ... Lightweight ... Easy to Carry...

In carrying position: 23" w., 17½" h., 8" d.

Designed and built to meet the quantity production demand for a fine tone, dependable, and very low price transcription player. Available immediately. Advanced design, expertly engineered, and sturdy-built for trouble-free performance. Meets the demands of radio stations, transcription services, advertising agencies, and schools for realistic reproduction of transcription records up to 16 inches, 78 or 33 1/3 r.p.m. Free of wow and rumble. Switch output impedance: 30, 250, and 500/600 ohms.

Constant speed heavy duty motor, silent, smooth operation. 16" TURNTABLE embodies special re-enforced construction (patent pending).

Supplied with or without professional broadcast station Reproducers. More than 1500 of these PARA-FLUX magnetic Reproducers are now on the air over FM-AM stations. Reproducer, with interchangeable heads for Vertical, Lateral, or Universal, uses same Arm and Equalizer. Model EL-2 Equalizer is of new design with all components enclosed in one compact housing.

Available immediately through Authorized Jobbers
Descritive Bulletin TP6, upon request.

RADIO-MUSIC CORP.
EAST PORT CHESTER
CONNECTICUT
Specialists in the production of highest grade Alnico Magnets.

- Production and material rigidly inspected to assure highest uniform quality.
- Castings made to order from customer's blueprints or sketches.
- Information and suggestions supplied on request.

Manufacturers of High Coercive Magnetic Alloys

10001 ERWIN AVENUE
DETROIT 5, MICHIGAN

STROMBERG-CARLSON uses-

DINION

Transformers and Coils

- Photo Flash Control
- Instrument
- Television
- Radio
- Electronics and Industrial Applications
- Electrical Coil Windings

The stringent requirements of a radio of distinction call for high calibre transformers and electrical coil windings. For superior quality and production, manufacturers use Dinion Transformers and Coils.

Specialists in Difficult Designs

DINION COIL COMPANY, INC. CALEDONIA NEW YORK

- Self-locking Acorn Palnuts are dome shaped, single thread locknuts made of tempered spring steel. They exert a powerful double-locking action that defies loosening under vibration. Low in cost—light in weight—easily, speedily applied—require but 3 bolt threads space to lock effectively.

Here are the features:

- Self-locking; replaces regular nut and lockwasher
- Holds tight under vibration
- Covers rough unsightly bolt ends, eliminating "catching" or "scratching"; adds streamlined appearance
- Saves assembly time, labor, weight and cost

INVESTIGATE Acorn Palnuts for your products. Outline your needs for samples and suggestions. Write for literature giving data on Self-locking Palnuts.
gives a complete description of the “fail-safe” electronic limit switch, with specifications and wiring diagram.

Communication Equipment. Westinghouse Electric Corp., P. O. Box 888, Pittsburgh 30, Pa., has a new 44-page booklet (B-3610) which provides designers of communication and electronic equipment with a quick list of products available for their use. It covers parts and materials for radio transmitters and receivers, radar, telephone apparatus, electronic heating sets, and electronic control.

Insulation Tester. James G. Biddle Co., 1316 Arch Street, Philadelphia 7, Pa. Bulletin 21-60 illustrates and describes the “Bridge-Meg” type of megger insulation and resistance tester. Engineers, electricians, and maintenance men will find this instrument most useful. Copies of the 12-page, slick-papered bulletin can be obtained on request.

Ferro-alloys. Electro Metallurgical Sales Corp., 30 E. 42nd St., New York 17, N. Y. A concise review of information on ferro-alloys is provided in a 64-page booklet. Interesting historical data are included along with typical analyses to assist users in selecting for specific applications.

Temperature Control. Wheelco Instruments Co., 847 Harrison St., Chicago 7, Ill. A valuable guide for anyone interested in process instrumentation is the 20-page Educational Bulletin No. 5. Included are charts, tables and diagrams explaining measurement and automatic control and the selection of proper control systems for process applications.

Depth Recorder. Bludworth Marine, 100 Gold St., New York 7, N. Y. For the latest in electronic navigation aids look to the group.
speed production—cut costs with

EJECT-O-MATIC

AUTOMATIC-FEED SOLDERING IRONS AND ACCESSORIES

HEAVY DUTY EJECT-O-MATIC

High-hear 100 and 150-watt models for general heavy electrical, electronic and repair work. Also available in long-nosed "Instrument" model. Weight only 22 oz.

STANDARD EJECT-O-MATIC

Popular 60 and 75-watt models for general radio and electrical work. Special long-nosed models available for soldering inside deep receptacles, hard-to-reach relays and assemblies. Weight only 18 oz.

VERTI-MOUNT

Treadle operated — leaves both hands free to hold work. Pre-heat and solder work with one easy foot movement. Takes all Eject-O-Matic irons.

complete line now available

TIPS — Multi-clad tips available in eight different sizes and shapes.

SPECIAL TIPS DESIGNED — MINIMUM 10 TO ORDER

Send for new catalog and prices.

MULTI-PRODUCTSTOOLCO.

123 SUSSEX AVENUE, NEWARK, N. J.

ULTRA SENSITIVE D. C. AMPLIFIER

The Model 53 Breaker-type D.C. Amplifier was developed for the measurement of d.c. and low frequency a.c. voltages in the microvolt and fractional microvolt region. It is compact, portable, and makes an excellent replacement for the suspension galvanometer. The output of the amplifier is sufficient to operate standard meters and recording devices directly.

It has been employed for the amplification of infra-red detectors, thermocouples, voltaic photo-cells, and the like, both in research and industrial applications.

Among the advantages of this amplifier are the following:

1. Noise level that approaches the theoretical limit imposed by Johnson noise.
2. Extremely low zero drift (less than 0.005 µV after warmup).
3. Freedom from the effects of vibration such as found in moving vehicles.
4. Responsiveness characteristics permitting overall amplification flat from 0 to 10 cycles per second.
5. Reliability, as demonstrated by units which have been in continuous operation for several years.

THE PERKIN-ELMER CORPORATION

GLENBROOK, CONNECTICUT

Announcing

The latest data on

BASIC RADAR CIRCUITS

Prepared by the radar specialists of the Massachusetts Institute of Technology

Now — with this single reference manual — you can quickly bring yourself abreast of developments in radar. It is the first complete and up-to-date volume on this subject, covering the subject for all engineers and physicists who are concerned with electronic applications. Reflecting the broad experience of M.I.T. radar specialists, this book deals with noise circuits and high-frequency devices common to nearly all radar equipment. The factual explanations of circuit operation are based on physical concepts and make free use of numerical examples.

PRINCIPLES OF RADAR

Just Out

NEW 2nd Edition

By members of the staff of the Radar School, Massachusetts Institute of Technology. 960 pages, 6 x 9, profusely illustrated. $5.00

Originally this book was prepared to give a sound, rapid grounding in radar principles and their wartime applications. Now, in view of the rapid and vast growth of the field in the past few years, the book has been fully revised and brought to date. It will be of interest not only to those engaged in radar work but also to those concerned with developments in high-frequency devices, television, radar and microwave communication systems, or pulse navigation systems. The book begins with a broad description of the principles of radar and continues with detailed discussions of radar system components. Expositions of circuits and devices provide an unusual combination of technical thoroughness and accurate treatment with minimum dependence upon mathematics. Emphasis on the discussion is on quantification of quantities and analysis directly from physical characteristics and physical principles.

Mail coupon for 10 DAYS' FREE EXAMINATION

McGRAW-HILL BOOK CO.,
330 W. 42nd St., New York 18

Send me M.I.T. Radar School: Principles of Radar for 10 days' examination on approval. In 10 days I will send $5.50 plus few cent postage or return book postpaid. (Postage paid on cash orders.)

Name

Address

City and State

Company

Position

For Canadian price write Embassy Book Co., 13 Richmond St. E., Toronto I

July, 1947 — ELECTRONICS
of four 4-page illustrated folders on the ultrasonic echo depth recorder. Also described is a direction finder for safe sailing regardless of visibility or adverse weather conditions.

(70) **Industrial Metals.** D. E. Makespeace Co., Attleboro, Mass., has issued an interesting new folder treating laminated and solid precious metals for industrial use, and particularly its bar contact raised lay, for the manufacture of arm or leaf contacts. The company has a special folder going into the subject more thoroughly which will be mailed on request.

(71) **Resistors.** Precision Resistor Corp., 334 Badger Ave., Newark 8, N. J. A new bulletin illustrates 19 inductive and non-inductive types. Included is a free sample as a guide for numerous wire-wound resistor applications. Copies of the latest catalog may be had on request.

(72) **Inserts.** Aircraft Radio Corp., Boonton, N. J. Those who already have the catalog of "Accessories and Component Parts for Radio and Electronic Equipment" will want a series of new bulletins recently issued that describe connectors and microwave equipment. The sheets are specially punched for ready insertion in the file.

(73) **Technical Index.** Radio Corp. of America, Princeton, N. J. The new index of RCA Technical Papers in two volumes lists all papers on subjects in the radio, electronic and related fields authored by RCA employees. Both chronological and alphabetical lists are given. Copies may be obtained free of charge upon request.

(74) **Cooling Equipment.** Rotron Division, Jenckes Knitting Machine Co., 180 Weeden St., Pawtucket, R. I. A catalog is available describing blowers and parts designed specifically for use in radio-

NEW PRODUCTS (continued)

CONCORD Radio Catalog

Industrial Electronic and Test Equipment

Radio Parts—Sets—Ham Gear—Amplifiers

It's here—ready for you now—the new, comprehensive, 1947 Concord Catalog displaying a vast, complete selection of everything in Radio and Electronics. Send for your copy now. Select your needs from value-packed pages showing thousands of items available for IMMEDIATE SHIPMENT—hundreds of them now available for the first time—featuring new, latest 1947 prices. See the new LOWER prices on finest-quality RADIO SETS, PHONOGRAPH RADIos, RECORD CHANGERS, RECORD PLAYERS, PORTABLES, AMPLIFIERS, COMPLETE SOUND SYSTEMS, TESTERS. See complete latest listings of all the well-known, standard, dependable lines of radio parts and equipment—tubes, condensers, transformers, relays, resistors, switches, speakers—all available for IMMEDIATE SHIPMENT from huge stocks in CHICAGO and ATLANTA. Whatever your needs in Radio and Electronic Parts, Supplies and Equipment—before you buy—SEE THIS GREAT NEW CONCORD CATALOG. Mail coupon for your FREE copy now.

CONCORD RADIO CORPORATION

CHICAGO 7 • ATLANTA 3

901 W. JACkSON BLVD., 255 PEACHTREE ST.

LAfAYETTE RADIO

Concord Radio Corporation, Dept. G-77

901 W. Jackson Blvd., Chicago 7, Ill.

Yes, rush FREE COPY of the comprehensive new Concord Radio Catalog.

<table>
<thead>
<tr>
<th>Name</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>City</td>
<td>State</td>
<td></td>
</tr>
</tbody>
</table>
frequency equipment. Standard units are illustrated; others, now under design, are mentioned.

(75) Reproducers. Radio-Music Corp., 136 Liberty St., New York 6, N. Y. Minute details of Para-Flux reproducer features may be found in a four-page brochure on the subject. The instrument has many readily apparent fields of use particularly in a-m and f-m broadcasting.

(76) Resistors. P. R. Mallory & Co., Inc., 3029 E. Washington St., Indianapolis 6, Ind. Request Form No. VER-1146 for an 8-page ampli tude illustrated booklet on vitreous enamel fixed and adjustable power resistors designed for industrial electronic applications.

(77) Tube Manual. General Electric Co., Electronics Dept., Tube Division, Building 267, Schenectady 5, N. Y., has made available a new 700-page technical manual on receiving tubes, for manufacturers and designers of electronic equipment. Prepared with an expander-type binder, in a stiff leatherette cover, it sells for five dollars, which includes service through 1948. In 1949 further inserts will be available at one dollar a year.

(78) Folded Antenna. Andrews Co., 363 E. 75th St., Chicago 19, Ill. Bulletins 38A and 737 describe the improved signal strength in the 30- to 44 mc band provided by the folded unipole antenna. The vertical trombone radiating element provides ideal impedance match for a 70-ohm transmission line.

(79) Squarewave Generator. Reiner Electronics Co., 152 W. 25th St., New York 1, N. Y. On two sides of a page we find a detailed report of the model 530 squarewave generator for use in production and general testing. Its chief features are the facility of synchronization with any external frequency source, a hand-calibrated frequency scale reading from 10 to
It's

- **Legri S** for
- **RESISTORS**

 Half - One - Two Watt
- **INSULATED**
- ANY **TOLERANCE**
- WE CALIBRATE RESISTORS within 1 and 2% Tolerance.
- ANY **QUANTITY**
- ANY **MAKE**

Immediate Delivery!
WE SHIP THE SAME DAY YOUR ORDER IS RECEIVED

Inquire Today!

LEGRI S COMPANY, Inc.
ELECTRONIC PARTS AND COMPONENTS
846-850 Amsterdam Ave.
NEW YORK 25, N. Y.
AC 2-0018

CONTINENTAL ELECTRIC CO.
GENEVA, ILLINOIS

"announces its BLUE SENSITIVE PHOTOTUBE"
It has duplicated the most popular of its red-sensitive

CETRON PHOTOTUBE types
by tubes with S4 (blue-sensitive) response

<table>
<thead>
<tr>
<th>Type</th>
<th>CE 1</th>
<th>CE-1 V</th>
<th>CE-25</th>
<th>CE-95</th>
<th>CE-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue-sensitive S4</td>
<td>CE 61</td>
<td>CE 61</td>
<td>CE 64</td>
<td>CE 34</td>
<td>CE 74</td>
</tr>
<tr>
<td>Min. sensitivity Class B, mu/1</td>
<td>90</td>
<td>25</td>
<td>65</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Min. sensitivity Class G, mu/1</td>
<td>180</td>
<td>55</td>
<td>130</td>
<td>26</td>
<td>180</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>CE 3</th>
<th>CE 25</th>
<th>CE 70</th>
<th>CE-20 V</th>
<th>CE-31 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue-sensitive S4</td>
<td>CE 93</td>
<td>CE 97</td>
<td>CE 94</td>
<td>CE 28</td>
<td>CE 99</td>
</tr>
<tr>
<td>Min. sensitivity Class B, mu/1</td>
<td>90</td>
<td>50</td>
<td>75</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Min. sensitivity Class G, mu/1</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>55</td>
<td>55</td>
</tr>
</tbody>
</table>

WHITEHEAD STAMPING CO.
1691 W. Lafayette Blvd.
Detroit 16, Michigan

PAMARCO DE-REELING TENSION

PAMARCO tensions are the perfect answer to lower coil winding costs!

- **FINGER-TIP TENSION CONTROL**
- **OPERATOR MAKES OWN ADJUSTMENTS**
- **NO TOOLS OR ACCESSORIES NEEDED**
- **FITS ALL COIL WINDERS**

The free-running action of the PAMARCO tension practically eliminates defective coils. Their compact size permits more simultaneous coil winds on any machine. Operator makes all adjustments for any gauge wire with simple thumbscrew.

Write for literature today

PAPER MACHINERY & RESEARCH, INC.
1014 OAK STREET • ROSELLE, NEW JERSEY

QUICK-LABELS
Mark Your Wires Faster
QUICK-LABELS code Wires, Leads, Circuits, Relays Parts, etc., faster and cheaper. Pre-cut to exact size, QUICK-LABELS come on handy cards. Ready to use, they stick-quick without moistening, replace slow and costly string tags, roll tapes, decals, stencils, metal tabs, etc. Silicone plastic coated to resist dirt, grease, abrasion. *Self Starter strip exposes ends of labels for you to grasp instantly—no more finger-picking.*

Write for Folder and FREE Sample Cards.

W. H. BRADY COMPANY
Established 1914
Manufacturers of Self-Sticking Tape Products
240 W. Wells St., Milwaukee 3, Wisconsin
Factory—Chippewa Falls, Wisconsin

CONTINENTAL ELECTRIC CO.
GENEVA, ILLINOIS

"announces its BLUE SENSITIVE PHOTOTUBE"
It has duplicated the most popular of its red-sensitive

CETRON PHOTOTUBE types
by tubes with S4 (blue-sensitive) response

<table>
<thead>
<tr>
<th>Type</th>
<th>CE 1</th>
<th>CE-1 V</th>
<th>CE-25</th>
<th>CE-95</th>
<th>CE-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue-sensitive S4</td>
<td>CE 61</td>
<td>CE 61</td>
<td>CE 64</td>
<td>CE 34</td>
<td>CE 74</td>
</tr>
<tr>
<td>Min. sensitivity Class B, mu/1</td>
<td>90</td>
<td>25</td>
<td>65</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Min. sensitivity Class G, mu/1</td>
<td>180</td>
<td>55</td>
<td>130</td>
<td>26</td>
<td>180</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>CE 3</th>
<th>CE 25</th>
<th>CE 70</th>
<th>CE-20 V</th>
<th>CE-31 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue-sensitive S4</td>
<td>CE 93</td>
<td>CE 97</td>
<td>CE 94</td>
<td>CE 28</td>
<td>CE 99</td>
</tr>
<tr>
<td>Min. sensitivity Class B, mu/1</td>
<td>90</td>
<td>50</td>
<td>75</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Min. sensitivity Class G, mu/1</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>55</td>
<td>55</td>
</tr>
</tbody>
</table>

WHITEHEAD STAMPING CO.
1691 W. Lafayette Blvd.
Detroit 16, Michigan

PAMARCO DE-REELING TENSION

PAMARCO tensions are the perfect answer to lower coil winding costs!

- **FINGER-TIP TENSION CONTROL**
- **OPERATOR MAKES OWN ADJUSTMENTS**
- **NO TOOLS OR ACCESSORIES NEEDED**
- **FITS ALL COIL WINDERS**

The free-running action of the PAMARCO tension practically eliminates defective coils. Their compact size permits more simultaneous coil winds on any machine. Operator makes all adjustments for any gauge wire with simple thumbscrew.

Write for literature today

PAPER MACHINERY & RESEARCH, INC.
1014 OAK STREET • ROSELLE, NEW JERSEY

QUICK-LABELS
Mark Your Wires Faster
QUICK-LABELS code Wires, Leads, Circuits, Relays Parts, etc., faster and cheaper. Pre-cut to exact size, QUICK-LABELS come on handy cards. Ready to use, they stick-quick without moistening, replace slow and costly string tags, roll tapes, decals, stencils, metal tabs, etc. Silicone plastic coated to resist dirt, grease, abrasion. *Self Starter strip exposes ends of labels for you to grasp instantly—no more finger-picking.*

Write for Folder and FREE Sample Cards.

W. H. BRADY COMPANY
Established 1914
Manufacturers of Self-Sticking Tape Products
240 W. Wells St., Milwaukee 3, Wisconsin
Factory—Chippewa Falls, Wisconsin
NEW PRODUCTS (continued)

100 cycles and a decade frequency multiplier to extend the range to 100 kilocycles.

(80)

Capacitors. Chicago Condenser Corp., 3055 W. Armitage Ave., Chicago 47, Ill. A small bulletin contains much data on a variety of capacitors, all non-inductively wound, having tinned copper leads.

Tube Registry

The information furnished by the RMA Data Bureau has been abridged and only the more significant dimensions are given.

Type 6AV6

Double diode, high-mu triode, heater type; T-54 integral glass envelope-base; 7-pin button base.

\[
\begin{align*}
E_r &= 6.3 \text{ v} \\
I_r &= 0.3 \text{ amp} \\
C_{\mu} &= 2.3 \mu\text{f} \\
C_{\mu \mu} &= 0.9 \mu\text{f} \\
L_r &= 2.1 \mu\text{f}
\end{align*}
\]

Typical Class A, Operation

\[
\begin{align*}
E_r &= 550 \text{ v} \\
I_r &= 1.2 \text{ ma} \\
E_h &= 2 \text{ v} \\
R_h &= 62,500 \text{ ohms} \\
\kappa &= 100 \\
\mu &= 1,000 \text{ amhos}
\end{align*}
\]

Type 5CP11A

Cathode ray tube, heater type, electrostatic focusing and deflection.

\[
\begin{align*}
E_r &= 6.3 \text{ v} \\
I_r &= 0.6 \text{ amp} \\
E_h &= 4 \text{ kv} \\
E_h &= 2 \text{ kv} \\
E_r &= 0 \text{ to 696 v} \\
D_a &= 90 \text{ v (max)} \text{ for cutoff} \\
D_a and \ D_a &= 78 \text{ to} \\
D_a and \ D_a &= 90 \text{ v per in} \\
D_a \text{ and } D_a &= 66 \text{ to}
\end{align*}
\]

P11 screen, medium shell diheptal 12-bin base.

Type 5513

Triode power amplifier and oscillator, forced air cooled, filament
PERMANENT MAGNETS MAY DO IT BETTER

In aircraft, motorcycles, speed boats, tractors, motor buses—internal combustion engines which must maintain highest efficiency depend upon the magneto. Unfailingly, it provides a HOT SPARK. After prolonged periods of idleness, magneto-equipped engines kick over instantly, even after they have been subjected to adverse temperatures or excessive moisture. The "Packaged Energy" of the permanent magnet within the magneto is the secret of this exceptional performance.

Magnetos made several decades ago are still functioning efficiently. Today, however, the development of Alnico magnetic materials has made possible the production of modern magnetos which, though amazingly more compact in design, are even more efficient in performance.

Modern Specialty Designing
Results during wartime proved that the engineers of the parts manufacturer are best equipped to design component parts. The Indiana Steel Products Company has always welcomed such assignments. We take pride in providing the outstanding design and engineering service in the permanent magnet industry. Our engineers will welcome the opportunity to assist you in your magnet problems. They can consult with you, too, about the assembly of rotors or flywheels which may greatly reduce your production costs.

THE INDIANA STEEL PRODUCTS COMPANY

PRODUCERS OF "PACKAGED ENERGY"
6 NORTH MICHIGAN AVENUE • CHICAGO 2, ILL.

SPECIALISTS IN PERMANENT MAGNETS SINCE 1910
PLANTS • VALPARAISO, INDIANA • CHAUNCEY, N. Y.

© 1947, The Indiana Steel Products Co.
WHAT, NO Wires?

NOT IN LEKTROMESH

Lektromesh... the new, one-piece solid metal-plated screen is made by electrodeposition... supplements rather than competes with woven wire. Continuous production methods permit runs of 100 foot rolls up to 35 inches in width of 40 to 120 mesh... meshes 150 to 400 in smaller units... and is furnished in nickel and copper. This unique product presents a smooth surface and is readily fabricated by stamping, welding and soldering. Combining accuracy and uniformity of openings with the smoothness of perforated metals, Lektromesh applications are unlimited. Ideal for strainers in fuel systems, dry-screening and a large number of specialized items. Distinct value lies in its even plane surface that withstands wear when exposed to doctor blades and scrapers as in continuous filters and its unique ability to screen material with minimum clogging.

Lektromesh folder and small sample available. Write Dept. L-201.

The C. O. JELLIFF MANUFACTURING CORPORATION
SOUTHPORT, CONN.

NEW PRODUCTS

(continued)

Type 2E30
Beam power amplifier and oscillator; filament type; T-5 1/4 integral glass envelope-base; miniature 7-pin button base. Filament heating time approximately 0.2 second. Maximum power output 10 watts.

Typical Class A, Operation

Type 5563
Triode thyratron, filament type, mercury vapor. Maximum ratings with mercury temperature 25 to 50 C and operation 25 to 125 cps.

Control (referred to pin 2)

Maximum ratings

Gould-Moody
"Black Seal"
ALUMINUM RECORDING BLANKS

A major advancement in the recording blank field...
IF YOU ARE AN EXPERIMENTER IN THE ELECTRONIC FIRMAMENT, YOU'LL WANT TO USE LAFAYETTE AS SUPPLY HEADQUARTERS. EVERY STAR IN THE GALAXY OF EQUIPMENT AND PARTS MANUFACTURERS IS CATALOGUED AT . . .

Lafayette
RADIO WIRE TELEVISION, INC.
FOR RADIO & ELECTRONIC EQUIPMENT
100 SIXTH AVE., NEW YORK 13
110 FEDERAL ST., BOSTON 10
24 CENTRAL AVE., NEWARK 2

MILFORD FASTENING EQUIPMENT
FOR EXTRA HEAVY DUTY
sets semi-tubular or split rivets in such diverse assemblies as WASHING MACHINES STEAM PUMPS SKATES • SAWS REFRIGERATORS CHAINS, etc.

Here is another of Milford's 15 standard models of rivet-setters for assemblies ranging from wrist-watch bracelets to refrigerators. Every single Milford rivet-setter has more than paid for itself either in cutting costs of assemblies or completing them faster. For any fastening need, check with Milford — for ideas to save time or cut costs.

THE MILFORD RIVET & MACHINE CO.
859 Bridgeport Avenue, Milford, Conn.
1002 West River Street, Elyria, Ohio
Inquiries may also be addressed to our subsidiary:
THE PENN RIVET & MACHINE CO., PHILADELPHIA 33, PENNA.

. . . a complete range of
POWER TRANSFORMERS capacities to 50 KVA

No ELECTRAN Transformer is considered a "stock" model. Each is built to function with maximum efficiency for a specific installation.

Electran production facilities are completely flexible and are especially geared for the rapid completion of small or medium quantities. Engineering facilities permit production of Transformers to your exact specifications or prints, or the complete design and engineering of Transformers to meet your specific needs when your prints are not available. Your inquiries are invited.

ELECTRAN Mfg. Co.
4589 ELSTON AVE.
CHICAGO 30, ILL.
3 WAYS TO BE AHEAD in Buying Test Equipment

1 BUY ACCURACY

2 BUY DEPENDABILITY

3 BUY SUPREME-ACY

Catalog shows dozens more

Special heads, threads end finishes on any metal or alloy adapted to cold upset. Weekly output: 25,000,000 pieces. Many specials, suggesting production savings for you, illustrated in latest catalog. Includes weights per 1M standard pieces, dec. equiv. of fractions, other purchasing and engineering helps. Write for catalog 18.

The Progressive Mfg. Co.
50 Norwood St. Torrington, Conn.

BUYING GUIDE

Model 599-A Tube and Set Tester

SPECIFICATIONS
DC Volts — 5 ranges 0/6/15/30/60/150/600/1500 volts, 1000 ohms per volt.
AC Volts — 3 ranges 0/6/15/600/1500 volts.
Current — 4 ranges 0/6/60/600 milliamperes.
Ohm Volt — 0/15/30/600 volt.
Analyzer — 4 ranges 0/200/20,000 ohms and 0/2/20 megohms.

Supreme Instrum ents Corp.
Greenwood, Miss., U.S.A.

Export Department: THE AMERICAN STEEL EXPORT CO., Inc.
347 Madison Ave., New York 17, N.Y., U.S.A.

NEWS OF THE INDUSTRY
(continued from p 146)

creasing the echoing efficiencies of small vessels is of immediate importance, and study of the conditions under which such increased echoing efficiencies should be required on small vessels should be undertaken.

A chart comparison unit is a desirable but not essential auxiliary device.

The Administrations of the various countries should, separately and independently, examine the question of the qualifications required of personnel certificated or licensed to operate or maintain shipborne radar equipment.

The question of charts for use with radar should be coordinated with the chart requirements for other navigational aids.

Shore-based radar has many possible applications to maritime usage, and operational trials should continue.

The time has not yet come for world standardization restricting shipborne radar to a single frequency band. It is desirable that operational trials should continue with shipborne radar operating in the range between 3,000 and 10,000 mc.

A true bearing display is very desirable but not indispensable.

RCA Opens Exhibit

To FAMILIARIZE the public with products and services of Radio Corporation of America, a huge showroom has been set up extending for more than 190 feet along 49th

The marine radio section of the RCA Exhibition Hall shows postwar commercial versions of loran, radar, and radiotelephone equipment.

July, 1947 — ELECTRONICS
WHO'S WHO IN SOUND

Big Entertainment Favorite
Star of stage and indoor programs. Smooth responding, good looking. Bi-directional without feedback. Level: -63db (1v/bar). Range: 40-8000 cps. 40,000 Ohms. Ask for UNIVERSAL "808" VELOCITY MICROPHONE

UNIVERSAL MICROPHONE CO
Inglewood 1, California

* Here, in expanded plant facilities, GRACOIL Coils and Transformers are expertly designed and built to exact specifications. Plan your next product with GRACOILS.

THE GRAMER COMPANY
Established in 1935
Electrical Coils and Transformers
2736 N. PULASKI RD.,
CHICAGO 39, ILL. U. S. A.

FLEXIBLE SHAFTS
Flexible shafts that carry power around any corner have many new uses in peace-time developments. Faithful, dependable power drives or remote control in airplanes, automobiles, radio, and many other commercial products. Shafts made to your specifications. Our engineering department will work out your particular power problem without obligation.

Write today for Manual D

F. W. STEWART MFG. CORP.
4311-13 RAVENSWOOD AVE.
CHICAGO 13, ILL.
WEST COAST BRANCH:
431 Venice Blvd., Los Angeles 15, Cal.

AMPERITE REGULATORS

Amperite REGULATORS are the simplest, lightest, cheapest, and most compact method of obtaining current or voltage regulation . . . For currents of .060 to 8.0 Amps . . . Hermetically sealed; not affected by altitude, ambient temperature, humidity. Write for 4-page Illustrated Bulletin.

AMPERITE CO., 561 Broadway, New York 12, N. Y.
In Canada: Atlas Radio Corp., Ltd., 560 King St., W. Toronto
CONSTRUCTION
- Soldered rotor and stator assemblies.
- Silver plated rotor contact.
- Sleeve type bearing.
- Low-loss ceramic end panel 1/8 in. sq., silicone treated.

SPECIAL FEATURES
Two methods of use, each with important advantages:
1—Series capacitor, no rotor connection—No rotor contact losses—Low Inductance.
2—Dual, split stator capacitor.—Mechanical and electrical symmetry.—
Positive wiping rotor contact.
Isolated studs allow capacitor to be mounted without ground rotor. Rotor Shaft slotted for screw-driver adjustment.
Rotor maintains setting during moderate vibration because of balanced shape.

STANDARD SIZES

<table>
<thead>
<tr>
<th>CODE</th>
<th>Cap. Per Sec. in MMFD</th>
<th>Series Cap. in MMFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFC-12</td>
<td>14.5 3.5</td>
<td>7.9 2.2</td>
</tr>
<tr>
<td>BFC-25</td>
<td>27.5 5.0</td>
<td>14.5 3.0</td>
</tr>
<tr>
<td>BFC-38</td>
<td>40.5 6.3</td>
<td>21.0 3.7</td>
</tr>
</tbody>
</table>

Inquiries are invited from manufacturers regarding special capacities and modified designs, where sizeable production will be involved.

Hex-socket screws in numbered sizes extra-dependable for electronic devices

Tiny hex-socket Cap Screws and Set Screws steeled to stand amazingly tight set-ups. Cap Screws in the numbered sizes from 1 to 10 inclusive; Set Screws from No. 2 to 10.

The Cap Screws are Allen "press-formal" for maximum strength of head and socket. This process makes the steel-fibres conform to the shape of the head, — no cut fibres. Threads also formed by pressure-process to a high Class 3 fit, ensuring a high degree of frictional holding-power.

The Set Screws have die-cut threads accurate to a high Class 3 fit, with perfectly-formed hex sockets. The screws can be held on either end of the handy hex keys and turned into the tapped hole without fingerings. Allen Hand Drivers are available to facilitate fast assembling.

In radio and television sets, radio telephones, radar equipment, electronic controls, these screws HOLD fine adjustments and intricate assemblies.

Order of your local Industrial Distributor.

THE ALLEN MFG. CO., HARTFORD 1, CONN., U. S. A.
H15 is Small in Size
Great in Performance

Smaller in size than a postage stamp and extremely light in weight, the H15 "Stabilized" Crystal is an outstanding performer. Because of an exclusive JK feature there is no mechanical strain on the leads. Neither does soldering of the leads affect crystal frequency. Can be supplied in a frequency range specified by the customer.

Write For Folder Or State Your Crystal Problems

The JAMES KNIGHTS CO.
SANDWICH, ILLINOIS

Molded Phenolic
COIL FORMS • BOBBINS

You can save on mold and piece charges at Mayfair
Coil forms or bobbins, made to your specifications.
Our mold charges are lower than were formerly considered possible.

Send print for prompt quotation

Mayfair
MOLDED PRODUCTS CORPORATION
4440 Elston Avenue • Chicago 30

MOLDED RESISTORS
The "All-Weather" Resistors

- Noiseless in operation
- Strong and durable
- Good performance in all climates

STANDARD RANGE
1000 ohms to 10 megohms
- NOISE TESTED

At slight additional cost, resistors in the Standard Range are supplied with each resistor noise tested to the following standard: "For the complete audio frequency range, resistor shall have less noise than corresponds to a change of resistance of 1 part in 1,000,000."

HIGH VALUES
15 to 1,000,000 megohms

THE S. S. WHITE DENTAL MFG. CO.
INDUSTRIAL DIVISION
DEPT. R, 10 EAST 40TH ST., NEW YORK 16, N. Y.

ELECTRIC TOOLS • Pneumatic Tools • AIRCRAFT ACCESSORIES
SMALL CUTTING AND GRINDING TOOLS • SPECIAL FORMULA SUERIES
MOLDED RESISTORS • PLASTIC SPECIALISTS • CONTRACT PLASTICS MOLDING

One of America's AAAA Industrial Enterprises

HAVE YOU EVER SEEN THE INSIDE OF AN EXPLOSION?

Seeing now made possible by remarkable new electronic features, embodied in

PRESSUREGRAPH with Syncro-Marker

Reproduces on oscillograph screen, accurate picture of pressures during and after explosion, relates pressure variations to time, top dead center, angular velocity, etc. See pressure-time characteristics of automotive, jet and Diesel engines, also compressors, pumps, etc. Operates over range from static up to 10,000 cycles at pressures from 0 to 10,000 lbs.

Send for description and full engineering data.

ELECTRO PRODUCTS LABORATORIES
549 W. Randolph St., Chicago 6, Ill. Phone ST ate 7444

www.americanradiohistory.com
THE GENERAL ELECTRIC VARIABLE RELUCTANCE PICKUP

Record enthusiasts are critical customers—whether they be devotees of Bach or boogie-woogie. Better and better reproduction of their favorite recordings is an insistent demand that must be met.

The General Electric Variable Reluctance Pickup can help you to meet that demand. It will appeal immediately to the technical mind due to its simplicity and direct resolution of difficulties often associated with phonograph pickups.

For complete information write to:
General Electric Company, Electronics Department, Syracuse 1, N.Y.

FOR LOW HUM . . .
HIGH FIDELITY

SPECIFY KENYON TELESCOPIC SHIELDED HUMBUCKING TRANSFORMERS

For low hum and high fidelity Kenyon telescoping shield transformers practically eliminate hum pick-up wherever high quality sound applications are required.

CHECK THESE ADVANTAGES

LOW HUM PICK-UP . . . Assures high gain with minimum hum in high fidelity systems.
HIGH FIDELITY . . . Frequency response flat within ±1 db from 30 to 20,000 cycles.
DIFFERENT HUM RATIOS . . . Degrees of hum reduction with P-200 series ranges from 50 db to 90 db below input level . . . made possible by unique humbucking coil construction plus multiple high efficiency electromagnetic shields.
QUALITY DESIGN . . . Electrostatic shielding between windings.
WIDE INPUT IMPEDANCE MATCHING RANGE.
EXEMPLARY OVERALL PERFORMANCE . . . Rugged construction, lightweight—mounts on either end.
Our standard line will save you time and money. Send for our catalog for complete technical data on specific types.

For any iron cored component problems that are off the beaten track, consult with our engineering department. No obligation, of course.

Kenyon Transformer Co., Inc.
840 Barry Street
New York, U.S.A.

News of the Industry (continued)

For graph circuits. The operating frequency is close to 5,000 mc. Any of the stations can be dismantled, moved to another site miles away, and placed in operation again in a matter of hours, as required to keep pace with the moves of major headquarters in highly mobile warfare.

Radio Conference

Membership of the United States delegation to the International Radio Conference which began May 15 at Atlantic City, New Jersey, is as follows:

Chairman: Charles R. Denny, Chairman, FCC.
Vice-Chairman: Frances Cull de Wolf, Chief, Telecommunications Division, Department of State.
Delegates: Gordon L. Caswell, Captain, U.S.N., Fleet Operations, Communications Officer, Navy Department.
J. Howard Dellinger, Chief, Central Radio Propagation Laboratory, Division 14, National Bureau of Standards, Department of Commerce.
F. W. E. Jim, Commissioner, FCC.
Donald E. McKay, Captain, U.S.C.G., Chief, Communications Division, United States Coast Guard, Treasury Department.
P. D. Miles, Chief, Frequency Service-Allocation Division, FCC.
Harvey H. Otterman, Assistant Chief, Telecommunications Division, Department of State.
A. G. Simson, Consultant, Communications Division, Office of the Chief Signal Officer, War Department.
Edward M. Webster, Commissioner, FCC.
Consultants: Spencer B. Alvin, Major General, U.S.A., Chief Signal Officer, United States Army, War Department.
Harold M. McClelland, Major General, U.S.A., Commanding General, Airways and Air Communications Service, War Department.
J. R. Stone, Rear Admiral, U.S.N., Director of Naval Communications, Navy Department.

In addition, there are over 20 advisers from various government departments, along with representatives of private telecommunications operating companies who have been certified as part of the delegation in an advisory capacity.

The second of the series of three conferences scheduled for this summer, the International Telecommunications Plenipotentiary Conference, convenes July 1 at Atlantic City. The International High Frequency Broadcasting Conference meets immediately after the close of the second conference.

Harvard Laboratory Renamed

Harvard University's research laboratory in physics will be called the Lyman Laboratory of Physics after
READABLE CALIBRATION

at CRITICAL CONTROL POINTS

Expanded Logarithmic Dial Scale with a Fairchild Non-Linear Pot. Total Calibration Error ± 1%

Small Uniform Meter Scale with a Conventional Linear Pot. Total Calibration Error ± 3.3%

Study the calibration sketches shown above. They illustrate how a precision Fairchild non-linear potentiometer—which permitted the uniform scale to be arbitrarily expanded into a logarithmic dial that provided a more readable calibration control at critical points—successfully replaced a less accurate linear potentiometer and a difficult-to-read meter. The change-over to a Fairchild non-linear potentiometer tripled the accuracy of control, eliminated a meter and provided greater reliability under severe operating conditions.

For data address: Dept. D, 88-06 Van Wyck Blvd., Jamaica 1, N. Y.

Advance 20-Amp. Relay

The Advance type 951 C is a heavy duty SPST relay. Its 3/8" pure silver contacts are rated at 20 Amps., 110 V.A.C. for non-inductive loads...ideal for use in motor controls where high starting currents cause special problems.

For applications in which higher currents must be handled, the Advance type 961 C may be used. This relay is similar to the one illustrated above, except that it has two sets of 3/8" pure silver contacts banded together...rated at 30 Amps., 110 V.A.C. non-inductive.

Both relays are built for heavy duty, dependable, trouble-free service...coil voltages up to 230 V.D.C. and up to 440 V.A.C.

Write today for May, 1947, catalog
June 30 in honor of Prof. Theodore Lyman, retiring director who has held this post since 1910. Prof. Lyman is internationally known for his researches in ultraviolet spectroscopy, the Bohr quantum theory of line spectra, and improved vacuum techniques. He is a past president of the American Academy of Arts and Sciences and of the American Physical Society, and holds the Rumford, Elliott Cresson, and Frederick Ives medals. His successor will be Dr. Roger W. Hickman.

Navy Science Training

APPROXIMATELY 800 Navy scientists and technicians in the Washington, D.C. area will study for advanced academic degrees this fall while continuing their government work. This will be a 100-percent increase over the Navy's 1945-46 science training program, when approximately 400 scientists enrolled in 20 courses.

Navy officials point out that such graduate study improves the performance and professional competence of personnel engaged in scientific and technical work, and at the same time is an important factor in attracting high-grade personnel.

D-F for Lost Pilots

THREE U.S. radio direction-finding networks are available to help lost civilian fliers. Largest is that of the FCC, which has ten primary d-f stations on a teletype hookup and seven others in a radio network, all ready to concentrate immediately on any transmission between 2 and 20 mc from an aircraft in distress. This network handles an average of 11 lost-aircraft emergency calls every month.

The Coast Guard has four d-f stations equipped to take bearings over the same frequency range as the FCC stations, and in addition maintains a continuous listening watch on the 8,280-ke emergency frequency.

Recently the Army offered use of its 19 vhf d-f stations in the United States to civilian fliers, for giving bearings on transmissions between
ALLIED DISCS
and RECORDING EQUIPMENT

ALLIED Discs are favored by noted broadcasters and other users, for their high fidelity. Test them on your work. One of the first companies to make instantaneous recording equipment. ALLIED offers you the benefits of its seasoned skill. Write for our New Descriptive Bulletin.

ALLIED RECORDING PRODUCTS CO.
21-09 43d Ave., LONG ISLAND CITY 1, N. Y.

BOOKS FOR THE ENGINEER
UNDERSTANDING MICROWAVES
(Chapter Heads)
The Ultra High Frequency Concept
Stationary Charge and its Field • Magnetostriction • Alternating Current and Lumped Constants • Transmission Lines
Feynman's Vector and Maxwell's Equations • Waveguides • Resonant Cavities • Antennas • Microwave Oscillators • Radar and Communication • Section Two is devoted to descriptions of Microwave Terms, Ideas and Theorems, Index.
400 PAGES PRICE $6.00

A-C CALCULATION CHARTS
Student engineers will find this book invaluable. Simplifies and speeds work. Covers all AC calculations, from 10 cycles to 1000 megacycles.
160 PAGES PRICE $7.50

JOHN F. RIDER, Publisher, Inc.
404 FOURTH AVENUE NEW YORK 16, N.Y.
EXPORT OFFICE: BAKER INTERNATIONAL ELECTRIC CRP.
53 E. 40TH STREET, NEW YORK CITY. CABLE ALLIAR

ELECTRONICS — July, 1947

applications of COSMALITE*
a spirally laminated paper base Phenolic Tube.
For coil forms in all standard broadcast receiving sets, specify #96 Cosmalite.
For permeability tuners, specify SLF Cosmalite.
LOWER COSTS . . . Quick Deliveries
Ask about our spirally wound kraft and fish paper Coil Forms and Condenser Tubes.

THE CLEVELAND CONTAINER Co.
6201 BARBERTON AVENUE CLEVELAND 7, OHIO
PRODUCTION PLANTS also at Plymouth, Wis., Ogdensburg, N. Y., Chicago, Ill., Detroit, Mich., Johnsonburg, N. J., New York Sales Office—1166 Broadway, Room 222
IN CANADA—The Cleveland Container Canada Ltd., Prescott, Ontario

Your Specifications are our Guide to your washer needs...
Design and material in washers for electrical products are important. QUADRIGA washers are made exactly to your specifications in a wide range of materials, shapes and sizes. Prompt delivery.

QUADRIGA WASHERS
All types: flat, special dimension, irregular, contour, finishing, tension, cupped and drawn, friction, dished blanks, etc. Wire Terminals. ALSO SMALL METAL STAMPINGS—ANY DESIGN.
WRITE for Quadriga Catalog.

THE QUADRIGA MANUFACTURING CO.
Inc. 1904 "Half a Century"
221A West Grand Ave. Chicago 10, III.

JUST ANOTHER TRANSFORMER? OR GUARANTEED TERMINAL PERFORMANCE!

TRANSFORMERS - COILS
Any or all Types built to individual specifications
RESEARCH-DESIGN-PRODUCTION
Single Items or Quantity Production
GOSLIN ELECTRIC AND MANUFACTURING CO.
2921 WEST OLIVE STREET
Burbank, California

for experienced cooperation "call Cleveland"
NEW USE of standard RIVNUT licks tough fastening problem...

Designs for a new bicycle required a blind fastener which would serve as a nutplate for attaching a mudguard to the tubular frame. The head of the rivet had to conform to the curvature of the tubing. A standard flat head Rivnut solved the problem.

First, the correct radius was ground into the anvil of a standard heading tool. Guide "A" was added to insure correct curvature. The heading tool then formed the ring-shaped bulge and curved head of the Rivnut at the same time! With its threads still intact, the Rivnut now provided a deeply-threaded nut plate for the mudguard attachment.

Perhaps Rivnuts will simplify your fastenings, reduce your costs. Why not consult a B. F. Goodrich Rivnut engineer?

AUTHORITATIVE LOAD CAPACITIES IN NEW "RIVNUT DATA BOOK"

Eccentric, tension, single and double shear load capacities of various Rivnuts are listed in the new, 40-page edition. Types, sizes and uses are also given. Fully illustrated, including step-by-step drawings of Rivnut installation. Write for your copy to

B. F. Goodrich DEPT. E-77, AKRON, OHIO

SIGMA LATCHING RELAY
SERIES 67Z

A substantial improvement over existing types of mechanical latch electrical reset relays.

- Perfectly balanced armature
- Unaffected by very severe vibration and shock
- Exceptional mechanical life; latching entirely unaffected by wear
- 8 separate contact positions available in any combination of Normally Open or Normally Closed circuits (Two N.O., Two N.C., — double break shown above.)
- Nominal rating per contact, 5 Amps. at 110V, A.C. (Modifiable upwards or downwards in accordance with conditions of use.)

OTHER NEW SIGMA RELAYS

- Multicontact sensitive relays, A.C. and D.C.
- Polarized relays including balanced armature 3 position (null holding) differential types with positive detent null or center.

Sigma Instruments, Inc.
Sensitive RELAYS
62 Ceylon St., Boston 21, Mass.

NEWS OF THE INDUSTRY (continued)

120 and 140.58 mc. The latter frequency has been approved for emergency GCA use by civilian planes.

A pilot requiring direction-finding assistance need only notify any available CAA facility of his difficulty, giving a list of frequencies on which he is equipped to transmit. After direction-finding personnel have been alerted, he will be told which frequency to use for a long call comprising five minutes or more of steady radio transmission with repeated identification calls. After a fix or bearing is obtained, the pilot will be given a course to fly to the nearest suitable landing field.

Sunspot Predicting Service

A NEWLY developed method for predicting sunspots affecting radio communication has been developed by scientists at the National Bureau of Standards in connection with its program for forecasting radio weather three months in advance. These predictions enable radio engineers to calculate the best usable frequencies for communication between any two points in the world for any hour of the day.

The method of prediction utilizes available information on previous eleven-year sunspot cycles. No two cycles are ever exactly alike but an average cycle can be determined. The next step is to average the deviations of various parts of each cycle from the average or ideal cycle, to obtain a correction factor which is then applied to predictions of future values in the present cycle.

The basic information on annual sunspot numbers is obtained from the Zurich, Switzerland, Observatory which has been maintaining continuous records on all types of solar activity since 1849. In addition to this, daily soundings of the ionosphere occur all over the world at the international network of 58 ionosphere stations, which include 7 Bureau field installations, cooperating universities, and foreign research institutions. These daily soundings measure the critical frequencies (the highest frequency that will be reflected back to the earth), absorption of radio energy.
NEWS OF THE INDUSTRY (continued)

(which tells how much power must be used to transmit a particular frequency over a particular distance), and the heights of the various layers (which is accomplished through the use of radar-like echo equipment).

Groups now using the Bureau's sunspot prediction service include domestic and overseas airlines, steamship lines and the merchant marine, television and radio schools, universities, libraries, radio and telegraph companies, manufacturers of communication equipment, consulting radio engineers, press wireless and telegraph services, broadcasting companies, industrial electrical firms, navigation instrument companies, research laboratories, electric power companies, and geophysical exploration organizations.

In the Federal Government the Army and Navy are the main users; others are the Weather Bureau, State Department, FCC, CAA, Immigration and Naturalization Service, Forest Service Radio Laboratory, and Coordinator of Inter-American Affairs.

FCC Changes Regulations Governing Aeronautical Radio

NEW RULES and regulations governing aeronautical radio, comprising Part 9 of the FCC setup, became effective May 1. In effect, these changes constitute a revamping of Aeronautical Radiocommunication Service to accommodate aviation’s postwar developments and meet current needs of industry, government, and private interests.

Next to the amateur service, the aviation service now constitutes the largest single radio group licensed by the Commission. At the present time there are nearly 15,000 aviation stations, of which nearly 18,000 are aircraft and the remainder are ground facilities.

To meet a growing demand for radio communication in flying instruction, the FCC has authorized the Flying School class of station. Flying School stations may also be used by soaring societies in connection with motorless flight activities. To facilitate testing of aircraft, fre-
CARRIES AM, FM and TV ANTENNAS ALL ON THE SAME MAST

Increase your radio sales by bringing home-like reception to any AM, FM and TV set in your showroom... eliminating all interference and bothersome noises.

HERE'S HOW: The Puratone Signal Booster System is easily installed on the roof of your building. A shielded coaxial cable runs directly from the mast to the concealed amplifier on the display floor. From the amplifier a radiating wire is placed inconspicuously around the display space. No direct wire connection to radio sets required. One system serves any number of floor models. Dual wave traps in the video-type AM-FM amplifier bring in all stations at an average tone level. 30-40 DB gain on FM; 40-60 DB gain on AM. Effective for any radio department layout.

Write for illustrated circular.

L.S. BRACH MFG. CORP.
200 CENTRAL AVE., NEWARK 4, N. J.

WORLD'S OLDEST AND LARGEST MANUFACTURERS OF RADIO ANTENNAS AND ACCESSORIES

LEACH RELAYS

BETTER CONTROLS THROUGH BETTER RELAYS

LEACH MIDGET SERIES for SPACE ECONOMY in MODERN DESIGN

Leach Midget Relays meet today's demand for compact design—and assure positive, dependable control. The Midget Series offers a wide choice of types, each so tiny it weighs less than two ounces and all measure less than two inches.

When you hold a Leach Midget Relay, between just two fingers, you can readily see the evidence of manufacturing skill and Electrical-Engineering design that's typically Leach. Here, quality materials and careful workmanship challenge comparison. The term "Mighty Midgets" is aptly suited to Leach Midget Relays.

NEWS OF THE INDUSTRY (continued)

frequencies have also been allocated for the Flight Test Station.

In common effort with the CAA, frequencies are available for collecting operational data as to the value and needs of new radio systems proposed for control and navigation of aircraft.

Because there are not enough frequencies for airlines individually and exclusively, the Commission requires a licensee of any aeronautical facility to render service without discrimination to all airmen.

For private communication between individuals aboard planes in flight and persons on the ground, the Public Service type of station is provided. By use of a Public Service station, persons in aircraft may be connected to the nationwide land-line telephone system. Public Service aircraft stations on transport planes engaged in intercontinental service have been authorized to operate experimentally on the frequencies available to ship-telephone and ship-telegraph stations, to determine the feasibility of handling communications in the same manner as vessels offering public service. Should this prove successful, aircraft flying transoceanic routes will be in the same category as ocean-going ships.

MEETINGS

Sept. 8-12: Second Annual Conference and Exhibit of The Instrument Society of America, at Stevens Hotel, Chicago.

Sept. 23-25: AIEE Middle Eastern District Meeting, Dayton, Ohio.

Sept. 29-Oct. 2: Annual meeting, International Municipal Signal Association, Inc., Pantlind Hotel, Grand Rapids, Michigan; technical papers and exhibits of police and fire radio equipment.

Sept. 30-Oct. 11: National Radio

Nov. 3-5: National Electronics Conference, Edgewater Beach Hotel, Chicago.

Nov. 3-7: AIEE Midwest General Meeting, Chicago, Ill.

BUSINESS NEWS

MOTOROLA INC. is the new corporate name of the former Galvin Mfg. Corp., Chicago, Ill., manufacturer of home and car radios, aircraft radios, television receivers, and two-way radiotelephone equipment.

LITTON ENGINEERING LABORATORIES has moved into its new 17,000-sq-ft plant on Brittan Avenue in San Carlos, California. The firm's primary function is electron tube design and development. This includes manufacture of special lathes, vacuum pumps, and spot welders for tube manufacturers.

SELENIUM CORPORATION of America is now occupying its new and modern structure in El Segundo, California, having 32,000 sq ft of floor space.

RATHEON MFG. CO. has produced for Compania Radiografica Internacional de Costa Rica the first microwave radio communication equipment to be installed in Central America, operating on 4,000 mc with 50-watt c-w type magnetrons and carrying multiplexed telegraph and telephone channels operating simultaneously.

AMERICAN MICROPHONE Co., formerly of Los Angeles, is now making microphones and phone pickups in its new $100,000 plant providing 20,000 sq ft of floor space in Pasadena.

CANADIAN-ADmiral CORP. Ltd. has

NEW CROSS-SECTIONAL VIEWS

- 14-080 75 Ohm
- 14-079 150 Ohm
- 14-056 300 Ohm
- 14-023 75 Ohm

TWIN-LEAD TRANSMISSION LINEadopts a New complexion

- Amphenol, originator and long-time producer of extruded polyethylene insulated Twin-Lead for transmitting and receiving, now announces an important improvement.

At no increase in price, the dielectric insulation has been changed to solid brown Amphenol Ethylon-A containing an anti-oxidant. This new insulation is equal to the old in low loss properties. It is far superior in resistance to the effects of sunlight and moisture.

Preferred by amateurs for antennas and transmission lines. Twin-Lead transmits signals with minimum loss, is durable and inexpensive. The Ethylon-A dielectric is full thickness edge to edge, minimizing impedance changes caused by moisture collecting on the surface. Amphenol Twin-Lead is unaffected by acids, alkalies and oils. Flexibility remains unimpaired at temperature down to —70°F. The new brown Amphenol Twin-Lead is available in 75 ohm, 150 ohm and 300 ohm impedances for receiving use, and in 75 ohm type for transmitting. Write today for full data on electrical characteristics and prices.

AMERICAN PHENOLIC CORPORATION

1830 SOUTH 54TH AVENUE • CHICAGO 50, ILLINOIS
leased space in Long Branch, Ontario for the manufacture of Admiral radios in Canada.

Corning Glass Works is adding to its Charleroi, Pa. plant two new buildings to provide additional melting capacity and general floor space for enlargement of their television bulb program. Face diameters will range from 7 to 15 inches.

St. Louis Microphone Co., which recently moved into a new building in St. Louis, Missouri, is now incorporated under the laws of the State of Missouri.

Sound Apparatus Co., with main offices in New York City, has opened its new plant in Stirling, N. J. for the production of graphic level recorders for acoustical and electrical measurements. The company's research laboratories are in Millington, N. J.

PERSONNEL

Stanley Bracken, who joined Western Electric Co. immediately after graduation in 1912, has been appointed executive vice-president, replacing William F. Hosford who retired after nearly 41 years of service with the company.

S. Bracken

E. Fermi

Enrico Fermi, physicist at the Nuclear Research Institute in Chicago, was awarded the 1947 Franklin Medal, highest honor of The Franklin Institute, for his outstanding work in the field of atomic energy.

J. Montague Bridgeman now is manager of the electronics division of Photographic Survey Co., Ltd., Toronto, Canada, in charge of operation and development of electronic aids to aerial survey and exploration. He was formerly director of electronic development at

CONSANT-IMPEDANCE Controls

★ The Clarostat Series CIB Attenuator (shown) was developed to meet the need for a constant-impedance attenuator capable of handling considerable power with low insertion loss. Provides linear attenuation with ample power-handling capacity.

Recommended as output level control for power amplifiers, or as input attenuator for individual loudspeakers in P-A system.

Dissipates 10 watts at any setting. Linear up to 30 db. in 10 steps; beginning with absolute zero and progressing in 3 db. steps up to 24, and then 30, followed by infinity.

Available in several ohmages to meet all requirements. Fibro-glass resistance elements. Single-hole mounting. Only 2 1/4" long by 2" diameter.

★ DATA on request...

Write for Bulletin 111 on Series CIB Attenuator. If interested in L-pads and T-pads, ask for Bulletin 102, as well.

CLAROSTAT Controls and Reusters

CLAROSTAT MFG. CO., Inc. 285-7 N. 6th St., Brooklyn, N. Y.

July, 1947 — ELECTRONICS
NEWS OF THE INDUSTRY (continued)

Royal Canadian Air Force headquarters in Ottawa.

JULES J. BRESSLER, at one time chief engineer of Beltone Sound Systems Co., has recently been appointed field sales engineer of Atlas Sound Corporation.

C. P. Cushway
H. C. Ingles

CHARLES P. CUSHWAY has been elected executive vice-president and a director of Webster-Chicago Corporation.

HARRY C. INGLES, who as Major General and Chief Signal Officer of the U. S. Army from July 1943 to March 1947 was responsible for the Army's world-wide communications system, has been elected president and a director of the RCA Institutes, Inc.

WILBUR F. CLANCY has been promoted to assistant transmitter supervisor of station WTIC, Hartford, Conn.

HARRY F. MICKEL, formerly manager of RCA's Communications Equipment Section, recently joined the Radio Engineering Products Division of Raymond Rosen & Co. as engineering sales manager.

IRA KAMEN, formerly director of electronics for Conlan Electric Corp., is now manager of the sales and installation division of Intra-Video Corporation of America, New York, N. Y., and will supervise installation of new master antenna systems for television.

JOSEPH H. GILLIES, Philco vice-president in charge of radio production, was elected to the board of directors of Philco Corp., Philadelphia.

H. H. BEVERAGE, director of radio systems research at RCA Laboratories, was elected first vice-president of the New York Electrical Society for the 1947-1948 term.

COAXIAL CABLE RELAYS
for high frequency switching

Two Sizes: 50 Watt and 250 Watt Capacity
—standard coil operating voltages AC or DC.

Write for Descriptive Literature CE6

KEYING RELAYS • SENSITIVE AND MEDIUM DUTY POWER RELAYS

SIGNAL ENGINEERING & MFG. CO.
154 WEST 14th St., NEW YORK 11, N. Y.

Improve Radios . . . Inter-Com Systems with Cellusuede FLOCK
Add acoustical qualities to radios and inter-com systems by coating cabinets with cotton or Rayon Cellusuede Flock.
This low-cost, easily applied material helps to eliminate hum and sound interference . . . acts as a squeak-proof gasket when applied to adjoining wood or metal surfaces . . . forms a nonsagging, attractive speaker panel when sprayed on common mesh screen.
You'll notice, too, that market value as well as operating efficiency increases once you use Cellusuede Flock on many component parts of your product. Send today for samples, booklet, and prices of this extraordinary coating material.

C. P. Cushway
H. C. Ingles

CELLUSUEDE PRODUCTS, INC.
ROCKFORD, ILLINOIS

www.americanradiohistory.com
NEW BOOKS

Radar Engineering

Here is a book which represents a substantial step forward in bridging the gap between wartime secrets and engineering and educational requirements of a peacetime world. The author, drawing heavily upon past connections with the MIT Radiation Laboratory, various assignments as an expert consultant for the Office of the Secretary of War, and experiences with the Joint Army-Navy Task Force at Bikini, has admirably succeeded in reducing the rather complex subject of radar to straightforward engineering reading. Throughout all 12 chapters, the reader is continually conscious that the writer is qualified in the subject as an engineer and has excellent talent for exposition and to-the-point explanation of difficult subjects.

By way of introduction to the subject, an excellent history of radar is given starting with Maxwell and Hertz and particularly pointing out the early work of the Service laboratories and the British in this field. The book is not highly mathematical, although an understanding of calculus and harmonic functions will be of considerable assistance to the reader, particularly in the first half of the book which deals with radar fundamentals. The second half is more descriptive than mathematical, and is generally devoted to illustrations of various types of radar gear developed during the war. Chapter titles include: Introduction to Radar Concepts; Principles of Pulse Generation and Transmission; Transmission Lines, Waveguides, and Resonant Cavities; Radiators and Reflectors, Propagation, and Targets; Introduction to Radar Design; Basic Pulse Circuits; Basic Radio-frequency Circuits and Structures; Synchronization Equipment (Timers); Transmitters and Radiators; Receivers; Indicators and Scanners; Radio-frequency Measurements and Test Equipment.

The reviewer considers the two
COPPER OXIDE RECTIFIERS

Instrument Rectifiers for Better A.C. Scale

Vacuum-processed, gold-coated, full-wave bridge, Bradley instrument rectifiers allow more accurate determination of very low A.C. current. Especially designed for use where stability and permanence of calibration are important, "Coprox" rectifiers meet the most exacting requirements. Yet they cost no more than ordinary rectifiers—in most cases, less.

Temperature error is exceptionally low with Bradley rectifiers. Aging is practically nil. Shown above, CX2E4F rated up to 4.5 volts A.C., 3 volts and 5 milliamperes D.C.

Illustrated literature, available on request, shows more models of copper oxide rectifiers, plus a line of selenium rectifiers and photocells. Write for "The Bradley Line."

BRADLEY LABORATORIES, INC.
B2 Meadow St. New Haven 10, Conn.

SMALL PARTS

Filaments, anodes, supports, springs, etc. for electronic tubes. Small wire and flat metal formed parts to your prints for your assemblies. Double pointed pins. Wire straightened and cut diameter up to \(\frac{1}{8} \)-inch. Any length up to 12 feet.

LUXON fishing tackle accessories.

Inquiries will receive prompt attention.

ART WIRE AND STAMPING CO.
227 High St. Newark 2, N. J.

Tough, snug-gripping, easy to handle! XCELITE NUT DRIVERS are engineered to help your skills. Genuine shockless XCELITE handles, finest steel shafts, precision-ground heads. Ask your dealer to show you the complete XCELITE line—packed with original features for your efficiency!

PARK METALWARE CO., INC.
Dept. G
Orchard Park, New York

QUALITY TOOLS PREFERRED BY EXPERTS

T HIS new Cyclohm 29 size has no equal as a synchronous, capacitor type motor for recording, tape pulling, facsimile work and other jobs which require a quiet, smooth, vibrationless motor. Internal rotor slots permit a higher starting torque and a quieter performance. Substantial cap seats, turned in the frame and end caps, ensure perfect rigidity, accurate bearing alignment, uniform air gap, and a vibration-free motor. Supplied with either ball bearings or sleeve bearings—in ratings of 1/100, 1/75 and 1/50 horsepower, 1800 r.p.m., 115 volts, 60 cycles. Write for complete information.

CYCLOHM MOTOR CORPORATION
5-17 46TH ROAD, LONG ISLAND CITY 1, N. Y.
NEW! THE CB MODEL 182A
AUDIOMATIC GENERATOR
Automatic Beat Frequency Principle

The complete frequency characteristics at a glance on your present oscillograph!

Eliminates hand plotting for transformers, amplifiers, filters, balanced circuits, etc.

Slow sweep rate of 5 to 8 seconds included for speaker testing; hand "cranking" of frequency dial is eliminated.

A REAL TIME SAVER!
Write for full description and details.

The CLOUGH BRENGLE CO.
6014 Broadway
Chicago 40, Ill.

NEW BOOKS (continued)

chapters devoted to radio-frequency fundamentals the best easy-reading presentation he has yet seen on the subject, for in these chapters the author lucidly establishes a strong linkage between prewar radio engineering and the war-developed field of microwaves.

By way of general criticism, it is unfortunate that most of the references are to Army equipment rather than an equal balance between Army and Navy. As the author understandably points out, this discrimination was unavoidable since during the preparation of the book the Navy had not yet declassified several comparable equipments. This does not seriously detract from the book, however, since specific references are introduced chiefly to bring out principles of engineering practice and design which for the most part are common to the equipments of all the Services.

Because of the wealth of information contained therein, representing both collected works and information revealed for the first time, this book should be very useful to anyone studying, teaching, or engaged in engineering practices dealing with radar or radio.

—Harold A. Zahl

German Research in World War II

Generalization of a 200-page government technical report by scientists who examined German technical establishments immediately after their capture. Important projects are summarized, with highly interesting photographs of new equipment that received little or no field use.

References to electronic equipment, generally brief and lacking technical details, include a radio Doppler system for measuring and controlling V-2 projectile velocity, electronic chronographs, piezoelectric pressure gages for cannon, and infrared detectors and night lights. A concluding chapter gives recommendations for fostering long-term scientific research.—J.M.
This CONTACTS Section supplements other advertising in this issue with these additional announcements of products essential to efficient and economical operation and maintenance. Make a habit of checking this page, each issue.

Classified Advertising Division

ELECTRONICS
330 W. 42nd St., New York 18, N. Y.

ELECTRONICS — July, 1947
PROFESSIONAL SERVICES

CONTROLS LABORATORIES, INC.
Consulting Division
EXCEPTIONAL FACILITIES for
RESEARCH and DEVELOPMENT
Electrical and Mechanical Problems
SPECIAL PATENT SITUATIONS
Background of over 200 research projects.
Partial list of subjects available upon request
98 Union St.
Worcester 6, Mass.

When time is short...
put the solution of your problems up to a specialized Consultant whose professional card appears on this page. His broad experience may save you months of costly experimentation.

ELECTRONICS
330 West 42nd St., New York 18, N. Y.

H. RUSSELL BROWNELL
Consulting Engineer
Specializing in Measurements & Testing Instruments & Techniques - Electrical - Electronic - Magnetic.
188 West 4th St.
New York 14, N. Y.

Industrial Development Engineering Associates
Engineering Consultants
Electronic Control, Motion Picture & Sound Equipment
Development - Design - Models
4125 E. 10th St.
Indianapolis, Ind.

MEASUREMENT ENGINEERING LIMITED
Consultants on Special Equipment for measurements and production tests, communications and audio systems.
61 Duke St.
Canada

WINFIELD SCOTT McCACHREN
Consulting Radio Engineers
TELEVISION SPECIALISTS
Philadelphia: 8013 Wistar Ave.
Drexel Hill, Pa.
Bunert 5937-W

Arthur J. Sanial
Consulting Engineer
 Loudspeaker Design; Development; Mfg. Processes.
Testing and Measuring Equipment Design.
168-14 32 Rd. Flushing 9-3074 Flushing, N. Y.

YARDENY ENGINEERING CO.
Remote Controls (Wire and Wireless)
Automation Projects
Electronic - Electrical - Mechanical
Consultation - Designing - Manufacturing - Licensing
105 Chambers St.
New York, N. Y.

Eugene Mittelmann, E.E., Ph.D.
Consulting Engineer & Physicist
High Frequency Heating - Industrial Electronics
Applied Physics and Mathematics
569 W. Washington Blvd.
State 8021
Chicago 6, Ill.

ALBERT PREISMAN
Consulting Engineer
Television, Police Techniques, Video Amplifiers, Phasing Networks, Industrial Applications.
Affiliated with
MANAGEMENT-TRAINING ASSOCIATES
3208-11th St., N.W.
Washington 10, D. C.

JOSEPH RAZEK, Ph. D.
Consulting Physicist
Electric and Mechanical Engineering Problems
Instruments and Control Devices
Electronics Specialists in Colorometry, Spectroscopy and Industrial Color Control
Laboratory and Shop Facilities
202 Darby Blvd.
Lisburn, Pa.

POSITION VACANT
RESEARCH AND Development Engineer to take charge of laboratory and development work of growing medium sized manufacturer of electrical-mechanical products. Preferably with at least 10 years' experience and accomplishment with industrial concerns. Fine opportunity for capable individual with vision and energy. Give resume of experience and salary desired in first letter. P-356, Electronics, 520 N. Michigan Ave., Chicago 11, Ill.

WANTED:
Experienced Senior Project Engineers
for Responsible Positions in the Development of
OSCILLOSCOPES
TELEVISION
HIGH FREQUENCY EQUIPMENT
See Advertisement on Page 145

LAVOIE LABORATORIES
Morganville, N. J.

ADDITIONAL POSITIONS VACANT
ADVERTISEMENTS on page 263

3 Positions Now Open
Location—Long Island

PHD—Theoretical Physicist
MSIE—Electronic Project Engineer
MSME—Electro-Mechanical Design Engineer

Have you considered the advantages of a smaller Company?
1. Closer relationship with management.
2. Diversity of responsibilities
3. Closer functioning with all departments
4. Expanding process is dynamic
5. No complex wage structure
YOUR salary determined by ability!
If you are alert to progress, we would be glad to receive your resume of qualifications.
P-349, Electronics
270 West 42nd St., New York 18, N. Y.

ELECTRONICS
July, 1947

S E A R C H L I G H T S E C T I O N

EMPLOYMENT • BUSINESS • OPPORTUNITIES • EQUIPMENT - USED or RESALE
WANTED

MECHANICAL ENGINEERS AND DESIGNERS

The Collins Radio Company, of Cedar Rapids, Iowa, has always been a pioneering organization—an engineer's engineering and manufacturing concern. It was this urge that has finally led us to be among the leading manufacturers of high-quality broadcast equipment and to meet the individual requirements of some of the great air lines with especially engineered communication equipment, including the ingenious Collins Autotune—the result of research and development looking years ahead.

We are looking for ahead today in the field of quality of radio communications and other essential electronic equipment. Our plans, well advanced, offer substantial opportunity for mechanical design engineers in a field of interest, research and development. Cedar Rapids is a human, wholesome city. People enjoy living here and working in our modern plant, which is neither small nor large, but rather ideal.

If you feel qualified for one of these positions, write us fully, stating age, education and experience, as well as other pertinent data you feel might assist us in fully and promptly considering your application. All replies will be held strictly confidential. Apply to

COLLINS RADIO COMPANY
IOWA

Engineers

Experienced senior electrical and mechanical project engineers needed for responsible positions in development and production of A.M., F.M., television receivers and components. Opportunity for advancement. State qualifications in application to:

Employment Manager
NORTH AMERICAN PHILIPS CO., Inc.
145 Palisade Street
Dobbs Ferry, New York

WANTED

COMMUNICATIONS ENGINEER OR PHYSICIST

The National Geophysical Company, Inc., has an opening on its Engineering Staff for a communications engineer, or physicist with electronic training, who is interested in research and development. Projects cover all phases of geophysical work. This position is permanent, salary open. For additional details address:

National Geophysical Company, Inc.
Research Laboratory
8806 Lemmon Avenue, Dallas, Texas

WANTED

DISTRICT OFFICE OR SALES TERRITORY

By technical sales executive with time proven sales ability backed by practical experience in the sale, application and service of meters, controls, transformers, meters, electronics, variable speed devices, switchboards, radio, special machinery, Salary vary (to $10,000 immediately available. Large territory.

SALES REPRESENTATIVE

J. J. McCann
2824-119th St.
Flushing 3-8807

ENGINEERS AND/OR PHYSICISTS GRADUATES

 Experienced in microwaves and/or radar, for established research and development laboratory. Excellent opportunities. Write:

F-354, Electronics
330 West 42nd St., New York 18, N. Y.
Belgium

American Firms desirous to extend their activity to Belgium, are invited to contact with

SOCIETE INDUSTRIELLE ALFA

80, rue de la Senne

BRUSSELS

Oldest Importer of American radio, electrical and electronic material.

MICROWAVES

Supersol test equipment and map, components for microwave frequencies, first six or the last container components are listed below. All are new, silver-plated and enclosed in original packages. Components are standard square type.

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horn Antenna</td>
<td>AT-05/UP-052-19 U.</td>
<td>3.75</td>
</tr>
<tr>
<td>Bulkhead Connector</td>
<td>4 in. Long</td>
<td>5.00</td>
</tr>
<tr>
<td>90° Elbow</td>
<td>1/2" Radius</td>
<td>3.00</td>
</tr>
<tr>
<td>90° Elbow</td>
<td>1/2" Radius</td>
<td>4 in.</td>
</tr>
<tr>
<td>90° Elbow</td>
<td>5/8" Radius</td>
<td>4 in.</td>
</tr>
<tr>
<td>90° Twist</td>
<td>6 inches Long</td>
<td>7.00</td>
</tr>
<tr>
<td>45° Twist</td>
<td>6 inches Long</td>
<td>5.00</td>
</tr>
<tr>
<td>Pressurized Unit</td>
<td>8" Long</td>
<td>Valve & Meter</td>
</tr>
<tr>
<td>Crystal Mounts</td>
<td>Broadband; VSWR of 1.1</td>
<td>20.00</td>
</tr>
<tr>
<td>Directional coupler</td>
<td>21 DB; 8 in. long part of AN/CPW-4; G19T.</td>
<td>20.00</td>
</tr>
<tr>
<td>Waveguide comb.</td>
<td>Flange; UG-36/1 to 12 for 5.00</td>
<td></td>
</tr>
<tr>
<td>Waveguide comb.</td>
<td>UG-45/1; Phenomenon</td>
<td>7.00</td>
</tr>
<tr>
<td>Waveguide comb.</td>
<td>UG-52/1; Choke</td>
<td>1.00</td>
</tr>
<tr>
<td>Flexible waveguide</td>
<td>92; gold-plated; rubber covered; UG-36/1; flange com</td>
<td>4.50</td>
</tr>
<tr>
<td>Duplexer unit</td>
<td>coupling for SI; ATT is attached; Size; waveguide in and out</td>
<td>6.00</td>
</tr>
<tr>
<td>Straight sections</td>
<td>6" long; may be obtained with any comb. of components</td>
<td>4.50</td>
</tr>
<tr>
<td>Waveguide</td>
<td>RO-50/1; 1/2" x 1/4"; 10 ft. lengths</td>
<td>0.50</td>
</tr>
<tr>
<td>Waveguide</td>
<td>RO-51/U; 4/16"x1/4"; 10 ft. lengths</td>
<td>0.50</td>
</tr>
<tr>
<td>Connectors</td>
<td>UG-20/2; UG-24; UG-37; UG-38; UG-40; UG-166; UG-102; each</td>
<td>7.50</td>
</tr>
</tbody>
</table>

ALSO AVAILABLE

- Elbows, transition, signal attenuators, signal combiner, tubes, adapters, attenuators "T" sections, returning relays, wattmeters, tube mounts, magnets, thermistor mounts, etc.
- **10 CENTIMETERS**

- All test components; rigid coaxial lines; waveguides; tubes; antennas.

ELECTRONIC SURPLUS

General Radio Variable Indicators

- 107M, 1/5 to 55 MHz | $54.95

OIL FILLED CONDENSERS

- Westinghouse, 8 MFD 600 V DC | 2.29
-imoreld, 2.5-2.5-5 MFD, 600 V DC | 1.99
- Sprague, 2.5-2.5-5 MFD, 600 V DC | 4.99
- G. E. Pyranol, 4 MFD, 1000 V DC | 1.89

Industrial Condensers

- 10 MFD, 1000 V DC | 2.29
- Aerovox, 2.5-2.5-5 MFD, 1000 V DC | 3.89
- Aerovox, 2 MFD, 1000 V DC | 3.29
- Aerovox, 1 MFD, 750 V DC | 3.29
- Aerovox, 0.002 MFD, 6000 V DC | 8.49

Solar Mica

- 002 MFD, 5000 V DC | 2.49

Working Power Rheostats 75 and 50 Watt

Six Different Sizes	$2.95
Microswitches Assorted Types	$3.99
Weston Type 205P 0-60 Ammeters DC	$2.95
Weston Type 205P 0-60 Ammeters DC	$2.95

Electro Impulse Laboratory

- Box 250, Red Bank, N. J.

EE-8 B

ARMY SIGNAL CORPS FIELD TELEPHONE

Portable field unit, complete with handsets, fully equipped with ringy, coils, condenser, generator and crank, can be used on C, B, and A lines. Various Manufactures. Regular $25.00 value. Our PRICE: Without carrying cases $15.00 each. WITHOUT. With canvas carrying case, $17.50 ea. UNUSED.

IMMEDIATE DELIVERY

MASPETH TELEPHONE & RADIO CORPORATION

427 Flatbush Ave., Extension Brooklyn 1, N. Y.

Telephones

- E-Watts, A-R Watts, Nogo & Whitney Equipment

B. D. BROOKS CO., INC.

- Han. 3226
- 361 Atlantic Ave., Boston, Mass.

D.C. POWER SUPPLY UNITS

- 1500 V, 5 amp. Reasonably priced. Slightly used. Complete with transformers, tubes, general Radio #596 varia, switches, controls, etc.

IMMEDIATE DELIVERY

AMERICAN ELECTRICAL SALES CO.

- 67 E. 8th St.
- New York, N.Y.

R. C. A. TYPE 2050 THYRATRON TUBE

Immediate shipment subject to prior sale at $35.00 per hundred. Original packaging—Guaranteed perfect.

BARRY & DROWN

- 137 Main St.
- Buffalo 3, New York

WANTED

New or used radio laboratory testing and measuring equipment, including standard and manufactured. Will buy individual units or complete laboratory sets.

ELECTRONICRAFT, INC.

- Purchases Dept.
- 5 WAVERY PLACE
- TUCKAHOE, N. Y.

Searchlight Section

BELGIUM

- Oldes Importer of American radio, electrical and electronic material.

Remote Indication and Control

- Ample stock of synchros (Selsyns & Autosyns) and low-inertia servo motors.

SERVO-TEK PRODUCTS CO.

- 247 CROOKS AVE.
- CLIFTON, N. J.
CONSTANT VOLTAGE STABILIZER
General Electric

Cat. #69 G 30155 Type #CG 301552

INPUT from 100 to 127 volts at 57 to 63 c.p.s.

OUTPUT voltage taps for 110, 115, 120 & 125 volts. Output voltage under constant load will not vary more than ±1% at normal frequency when the input varies from 100 to 117 volts.

CAPACITY 59 Volt Amperes 7.7 amperes at .93 Power Factor.

DIMENSIONS 29½" H x 15¼" W x 10¼" D. Enclosed in a gray bake enamel steel case. (Illus. with cover removed) Ship. wt. 32 lbs. Net wt. 28 lbs.

NET fob. N. Y. $59.50

VARIABLE RHEOSTAT
WARD LEONARD

20 Ohms 4.05 Amperes 8" Class. Complete with handle and all accessories for rear of board mounting. Can also be used for front of board mounting.

800 Units in Stock
Special Prices on Large Quantities

Minimum Order $25 10 Pieces at $25 Each fob N. Y.

STEP DOWN TRANSFORMER

PRIMARY—115 volt 60 cycle
SECONDARY—20 volts at 10 Amperes Mfg. by Jefferson Electric Co. Type G.P. Cat. #960-001-166. Mounted in Watertight box 110 Units in stock.

Minimum Order $30 10 Pieces at $3.00 Each fob N. Y.

VIBRATOR TRANSFORMER

PRIMARY WINDING—center tapped 6 volt D.C. at 1.0 Ampere on each half of winding. Center tap is brought out directly from primary winding and also through a 3.5 Millihenry series choke.

SECONDARY WINDING—center tapped 360 volts A.C. at 30 M.A. total. Center tap is brought out directly and also through a 3 Henry series choke.

DIMENSIONS—2½" dia. x 1¾" overall height

United Transformer Co. type #2S284.

Minimum Order 50 Pieces at 60¢ Each fob N. Y.

FILAMENT TRANSFORMER

General Electric Cat. #7470560

INPUT 110 volt 60 cycle

OUTPUT 2.5 volt 40 Amperes. 100 K.V.A., 2 K.V. Insulation 590 in stock.

Minimum Order $1.75 10 Pieces at $1.75 Each fob N. Y.

All items are Surplus — New — Guaranteed
Prices are F. O. B., N. Y.—25% deposit required on C. O. C.’s. Orders accepted from rated concerns on open account.

MARITIME SWITCHBOARD

338 Canal Street — — Worth 4-8217 — — New York 13, New York

ELECTRONICS — July, 1947

www.americanradiohistory.com
COMPLETE RADAR SETS
500-60CM. SURFACE SEARCH 4, 20 and 60 miles ranges; Hazelnut, 600 KV peak power input or 2207 ma current. Complete set including: spare parts, tubes, wave guides and fittings.

MICROWAVE PLUMBING
12 CENTIMETER
Wave Guide Section 1" cover to cover $2.00
Tube $2.50
Misred Elbow over cover $1.00
Flexible "S" 3.50
Flexible 1" long hose to cover 1.00
Punhal Cavity with coax input and output 5.00

MICROWAVE ANTENNAS
Relay System Para- nol reflectors spree range: 2000 $6.45
2000 to 2400 $6.45
MPP-35 or MPP-45 $4.50
MPP-350 $6.45
MPP-350 $4.00
SG Surface Search Radar rotating antenna 2500 $30.00
SG Element 100.00

MICROWAVE TUBES
MICROCLAMP TYPES
2221 (1cm.) $20.00
2226 (8cm.) $25.00
2238 (1cm. with magnet) $35.75
KLYSTROD
25K2-525AB $7.75
25K2-525AB (1") $5.00

MICROWAVE TRANSFORMERS
RCS-145 & RCS-148 Rader Equipment
154 to 184 MHz 1 KW single output, 117 VAC...$59.00
500 Kc, 15 KW, 117 VAC...$125.00
500 Kc, 15 KW, 117 VAC...$125.00

MICROWAVE PLUMBING
10 CENTIMETER
Sand Load (Dumpty Antenna) wave guide section with coupling, exp $35.00...$28.00
Wave Guide to coax with flange, and plated app 180 deg. large, terminals 2.50
Rigid Coax Directional Coupler CD-90/UP $17.50
20 OHM disk, has short right angle, about 8" $0.50
Standing Wave Detector plunger, $1.00
Coax Rotary Joint with mounting plate $5.00
Flexible Coaxial Connector, coax to rigid coax T/P...$3.50

MICROWAVE ANTENNAS
T Sections $5.50
Wave Guide Sections 1.5" long, silver plated $1.50
Wave Guide 90 deg. bend, E plane 19" long $4.50
Wave Guide 90 deg. bend, H plane 19" long...$4.50
Directional Coupler...$11.50
S-Curve Wave Guide 8" long to cover to coax $2.50
Rotary Coupler Joint with round guide output, large $10.00
S-Curve Wave Guide 8" long to cover to coax $2.50

MICROWAVE ANTENNAS
131-E LIBERTY STREET
NEW YORK CITY 7, N. Y.

RELIANCE OFFERS FOR SALE
HIGH VOLTAGE POWER TRANSFORMER—Westinghouse U.S.N. Type No. CAY-30741-A, oil filled pri. Volts 105-115-125, 50 to 66 cycle, Secondary 12.000 K at 15 mils; 15,000 V at 20 miles; 7/14 V at 3.00.

CERAMIC CONDENSERS, all 500 volts
3.44 mfd $66.00
3.40 mfd $66.00
3.08 mfd $66.00
2.50 mfd $66.00
5.00 mfd $66.00

PORTAGE STAMP MICS
.10 mid 200 V .001 mid 200 V .001 mid 500 V .01 mid 200 V .01 mid 500 V...
$0.00 per hundred

HIGH VOLTAGE BLOCKING MICA CONDENSERS—Faradon UG373, .02 mid., 4000 peak working volts, 65A.1000 Kc, 35A-300 Kc, 20A-100 Kc $6.00

SELYS DIFFERENTIAL MOTOR—Used as a demodulator and also indicates difference between a pair of Selysens. Can be converted in 10 minutes to free running motor 3600 R.P.M. at approx. 1/70 HP. Packed, less freight, postage, handles. Complete. 8 and 115V, 40.00 each $1.75 each

PRIME CONTROL for remote control—Complete equipment with sealed packages, 115V, 40.00 each $6.25 pair each

NEW STEEL JUNCTION BOX—weldinglight. 14 qt, steel 17" x 25" x 6 1/4", bronze screw type hinges on lid. Weight per box 54 lbs. 52 each.

MICRO-COUPLED WAX, dark embers, melting temp. 185° F, similar to "Zeron 1"—Sincirur 104 lb. blocks. $0.03 lb.

ALLEN HEAD SET SCREWS
Sizes in Stock
6/32 - 1/4" $6.22 / 22
4/40 - 1/8" $6.22 / 22
4/40 - 7/32" $6.22 / 22
4/40 - 1/4" $6.22 / 22

HEAVY CARDBOARD TUBE with metal ends suitable for 3C/2/3A, Insulation 5/4". Inside length 8". $5.00 per hundred. $4.50 per thousand.

10,000 FAFNI 305 BALL BEARINGS 3-1/2" hole, 1/2" O.D. $3.05 each.

MICRO SWITCH—Push button type, normally open circuit. $4.55 each. 10 for $40.00.

ACORN TUBE SOCKET—ceramic—for 854 and 955 tubes, $1.4 each.

VARIABLE CERAMIC CAPACITOR—Centro 107 K, 150 volts, $3.50 per dozen. $2.75 per hundred.

CHROMALOX STRIP HEATER 115 V, 750 W, semi-circular 20 x 1 1/4" $1.00

RESISTOR—IRC, wire wound, 200 W, 2000 ohm, 2.50.

G. E. MOTOR 1/6 H.P. 250 V, D.C. on armature $15.00

Minimum order $5.00, F.O.B. Philadelphia.

Reliance Merchandizing Co.
Arch St. Cor. Croskey
Philadelphia 3, Pa.
Telephone - Rittenhouse 6-4927

July, 1947 — ELECTRONICS
SEARCHLIGHT SECTION

"TAB"

NEW GUARANTEED

ELECTRONIC PARTS

That's A Buy

3C24/HK246 HF TRIODE..$I.75@...Two for $2.98
.97
ßC1253 RADIOSONDE TRANSMITTER
Dl
TALKIE BC6_1 chassis & Coils &
7.95
IN
OSCILLOSCOPE 35 KIT Tubes&Pwr Suppiys. 16.95
KIT SILVER & MICA CONDENSERS..50 for $2.00
10 for 2.50
KIT CONTROLS 50-2MEGS POTS
KIT RESISTORS %&1WATT 50to2Megohms
100 for 2.50
20 for 1.00
KIT VITREOUS WW RESISTORS
KIT POWER RHEOSTATS 25&50WATT..6 for 4.95
6 for $1.75
KIT ROTARY SWITCHES
KIT KNOBS ASSTD WITH BUSIINGS 25 for 1.25
KIT FUSES ASSTD LITTLEFUSE....300 for 1.95
100 ASSTD .99
KIT MOTOR BRUSHES
100 ASSTD $.99
KIT GROMMiETS RUBBER
KIT HARDWARE GOOD ASSMNT ONE LB.. .99
KIT SPAGHETTI SLEEVING ASSTD...75 ft 1.00
.99
KIT SOLDER TWO POUNDS
AUTOSYN AY1&5 paired Indicators

866Á's COMBINATION

H

TRANSFORMER & SOCKETS

3.95
18-24V/60o
DUAL AN INDICATOR 200ndcroma, no 0 adj 1.95
Guaranteed used S. C. & NAVY EQUIP CRYSTAL
CALIB SIG GENERATOR 8-15mcs & 45to77mcs:
2nd, 3rd & 4th Harmonics usable coverage to
230mcs. Consiste of 6J5Xtalosc, 9006DET. 2/6SJ
?AMP. 9002VAR Two range ose. 5Y3G FW Rec.At:
-

CONb15lS OF TWO JAN NEW 866A TUBES.
TRANSFORMER GARDNER ELEC CASED 2.5V
10 AMP, 115V/6ocyinpt. H.V. insltd 9000V wkg
similar to illustrated unit; TAB" Tested 16000
VAC Test: Same rota as KENYON T389 -SOCKETS
CERAMIC JOHNSON 214.

"TAB" SPECIAL

$5.95

TRANSFORMER ONLY for Two 866Á's
872A's COMBINATION TRANSFORMER,
sockets
872A TRANSFORMER 115 80cy

S

60cyoP RUGGED DSGN. SPEC
BC 342 RCVR I.5tol8mo, 115V/60o

3.95
12.00
6.95

$45.00
$34.95

EBY 4 XTAL HOLDER SOCKET %&1"
Spacing
4 for $1.00
CINCH DUAL CRYSTAL HOLDER SOCKET
8 for 1.00
CKT BERS HEINEMAN .010 or 3 or 35Amp. ea. .97
CKT BERS IIEINEMAN DUAL 10Anip
2.25

KIT SOCKETS OCTAL LOCTAL, etc 50 for $2.95
50 for $1.00
KIT G&P tube Gripe asstd
WE K95825 SELENIUM RECT SUPPLY
TELEPHONE & TELETYPE BACK UNIT $25.00
4 for $1.10
WE 223B Telephone Jack SC
.75
MAZDA NE20&51 neon /25W Glolamo 10 for
MAZDA 86/CAND/12V/6W-CLEAR ..10 for .75
STROBOFLASH CONDSR 32MFD/660VAC/
7.95
...
2000WVDC GE PYRANOL Four section
STROBO TRANSF 1540cr1820V, 115/60c in... 4.95
TRAMP'115V/80cPr1, 1230VCT/262ma, 18Y/iAmp
5.98
15.95
TRANSF 115V/60cPrl, 15000V/35ma Sec
TRANSF 115V/60oP, 500 VCT/BOma, 6.3V/4A 1.49
7.50
115V /60e/P,1350VCT/150ma.6.3V /5A,5V/2A
7.95
TRANS'? 115V/60c/I KENYON 5V/115Amp
45.00
ER.3800VCT/2.7Amp,220,440V/50-600y in
6.50
TR.1100VCT/212ma, 115V/60o in Cased
6.95
TR 1300VCT/350ma, 115/80c in Cased
2 for 8.95
640VCT & 1540V/250ma Cased

HIEFF

RAYTHEON
VOLTAGE REGULATOR
CASED NEW S.C.
TROPICALIZED

9.95

Adl-Voltape Inpt tape 95.130V/60cy. OPTPT 115V
58Amos ONE HALF/I% REGULATION. WT20
lbs.

64/8H81/4Leje"W-OVERLOAD
DSGN. "TAB"

SPECI
RUGGEDD

PROTECTED.

$14"95

CRYSTAL 5025kc/.00148 accy in OVEN
VACUUM CONDENSER 100M114F/7500V
VACUUM CONDENSER 50MMF/7500V
VACUUM CONDENSER 50MMF/20000V
COIL&CRYSTALS HANDLE TALKIE perset

$9.95
4.95
4.50
6.95
1.95

IF STRIP 30mcs/85DB gain Contains 8/6ÁK5

1/6AL5 tubes compact 2x11x2-%" Htg.
12mcs band width, output jack & CO-AXIAL
input plug. SPECIAL
$9.49
SAME STRIP LESS TUBES
3.49
TEST SET OSCILLATOR TM61058 RF SIG
LABORATORY EQUIP 115V/6Ocv
95.00
TRANSTAT 88/132V/18.2AmD/110V-IN
29.50
BLOWER AIR 200cuftM Dual 115V/60cy LN" $13.95
BLOWER AIR 100cuftM 28VDC&AC inpt
4.95
BLOWER AIR SAME OPERATES 115V/6 ey 5.95
GE CKT BKR 15Amp AC/DC UND LABS
1.95
KLIXON 60AMP Circuit Breaker
.49
W. E. DYNAMIC MIKE 20ft Cable
7.95
WSTGHSE RECTOR Rectifier FW12V/2Amp. 3.95
WSTGHSE RECTOR Beet CT HV 9V/.2Amp
2 for 1.49
IT&T SELENIUM RECT 6B8AV1, FW85V/2.4
&

TEST SET 268/U

CRYSTAL
RECTIFIER
CHECKER. TESTS
CRYSTALS 1N21.
21A. 21B. 23. 23A.
23B, 25 & OTHERS
WESTON MULTICOLORED ENGLISH READING
SCALES ON Wo"
MTR. TESTER
CHECKS FORWARD & BACK
RESISTANCE IN
KILOHMS & BACK
CURRENT. CHECKS
BRITISH CRYSTALS.
COMPLETE IN NAVY
CAST ALUM.
CASE 3H6W7"H
WT 3 LBS. SPARE
PARTS. GASKET.
WATERPROOF. INSTRUCTIONS. MANUAL BATTERY INCLUDED PACKED FOR OVERSEAS
SHIPMENT. NAVY INSP (G'COST $125) GTD
NEW SPECIAL $15.95 CRYSTALS NEW 1521, 22.
23, 25 @ 350 IN34 SYLV $1.35, 2 for $2.40.

9.98
9.95
3.95
49.50
3.49

HIS' Insulator 2-t8"1) & 6" Itod
2 for $.98
SYLVANIA 1N34 CRYSTAL.. .$1.39 @...2 for 2.40
ANTENNA PARABOLIC RADAR ASSEMBLY

ANTENNA ent

6.95
IT&Tp SELENIUM 11OVDC/2.6Amp
5.95
GE INSTANTANEOUS VOLTAGE CONTROL
RELAY PJV/115V/80cy 2contaet self reset:
Calib 70/85/110/560V
5.95
CW3 RECEIVER NEW COMPLETE
13.95
COILS F3&CW3 WILCOX RCVR 5.1/10mes
1.79
$2 Min. order FOB N.Y.C. Add Postage all orders
and 25% deposit. Worth 2-7230. Send for catalog 99.
Specialists in International Export. School. College
& Industrial trade
Money -back "TAB" Guarantee.

-

CORNER CHURCH

&

LI BERTY STS., ROOM 200

July, 1947

29.50
1.49
.97
.97
4.95
1.00
1.00

3.00
1.00

2.95
5.95
1.08
1.69

39.50
RECORDER
GYRO SERVO BENDIX 12800 -TB Complete.. 14.49
RCA 808
Two for $5.00
Two for 7.81
304TL
Two for 5.00
446A/2C40
Two for 1.90
807
813
Two for 13.25
Two for 4.39
815
829B/3E29
each 2.90
845
Two for 7.25
5BPIor5CP1
each 3.95
6.25
5BP4 & SOCKET
955/750; 3824
2.95
956, 957, 958A, 959&
.90
SOCKET each
3BP1 & SOCKET
2.99
2C28/750; 1825/650 872A & SOCKET....2 for $5.40
954/50d five for $2: 868A. & SOCKET...2 for 2.00
2V3G750: 6V8/900; 6SN7-12SA7/@
.91
2050, 2x2. RK60/1641, OBLI, 1E7G-...EACH
.89
ß8A7/610; 6B8G/950:875M/55d: 3A4/@
.75
8H6/2for$1.25: 6AL5/810: 5Y3GT or 80..each .41
6SL7/810/; 6C8/$1@; 61"7/$1@; 61£7/8$
.66
6K88//8811*: 327A/95.98@; 8AR6/$.49@:1
5.75
H/
WE7VT127A®' WE703 or 888A/$5.95@:
2.99
each .80
8A105/900 five for $4.25; 6ÁC7/1852
35L6, 50L6. 3525. 125Q7. 128117
2 for 1.80
6AG7/900 6C4/650: 63J7/830: 616/980: 614/91.45:

5U40/63á; 5R4GY/$1.05: VR150/750: CK1005/$1:
WE307/$2; 9002/80d; 9006/800;V11,105/752:6AK5.
Two for $1.70: 6C8/$1.10: 384/$1 6X5/624:
5Z4/890: 1L4/$1.10: 6ÁB7/840. 6E5/69d: 6E7/$1:
12A6/$1.10; Tubes gtd exception open filaments
which are checked before shipping RR EXP.

COLLINS
ART/13
SPEECH

AMPLIFIER
COMPLETE
INPT
DYNAMIC OR CARBON MICROPHONE OR LINE
INPT: Output PP class "B" GRIDS. Noise Level
down-55DB. INCLUDES INPT TRANSF. 1st
AUDIO to PPGrids MODULATOR TUBES. IVO
sidetone adj Audio oso AMP & Hdphone monitoring
jack. WT SIBS. DIM 7-%L 3%W 5"H.
minus tubes & pwr supply. "TAB"
SPECIAL
WITH TWO OV6 & 6S17
7.49

Dept. 7E, Six Church Street, New York 6, N. Y., U.S.A.

A BUY

ELECTRONICS

Extension cord hviduty 16ft M&F plugs
TBY POWER PACK VIBRATOR & ST. BAT
GE Thermostat 25Amp/250V; ADJ 70ío170°F
SYNCHROSCOPE SP3" NAVY COMPLETE
11M53 Recede XMTT ER&TELEI'll Control

Hect

$3.49

4.95
Amp.
16.95
PRI TR 230or117/112/103 93V/7Amp GE
2mfd/2000WVDC Two for $4; 3mfd/same..2 for 5.00
5.00
2mtd/3000WVDC $3.60; 4mfd/3000WVDC
14.00
2mfd/5000WVDC $8; 4mfd/5000WVDC
75.00
2mfd/12500WVDC $25; lmfd/25000WVDC
10.95
GE VARIAC TYPE REG 115V/60c/7.6AMP
3.95
UTC LVM11/30Watt Autoformer ($11.50)
PRECISION WW ONE MEG/I% RES...3 for 2.10

THAT'S

F.S.
HD' $9.00

ANTENNA SECTIONS SCM50/39$4". ...12 for
ANTENNA SECT SCM49&50/7834",2 seo..4 pr.
AMATEUR CRYSTALS random frecs....4 for
HAM XTALS 70101m/0.1% aces,
2 for
VACUUM EXTALS GE 03.120 & 81.950kc..ea
CRYSTAL STD 200KC/0.1% Vacuum
MICROSWITCH Muleaf SPDTI5A/125V..2 for
CLOCK motor Synch 60o/10V/24RPM....2 for
FOXBORO MECHANICAL & EI.FC Graphic

NEW

AUTOTRANSF 115-230V/50-60cy/1400 Watts 19.95
AIJTOTRANSF 115/160/170/180V/80cy Cased 2.95
TRANSF IN&Outpt 440/220/110V/50-80cy/2

"TAB"

1000CYS
IN 6000HMS AT
3.79VAC NEW GTD. IND. BOXED WITH
WARE SPECIAL $4.95 @ TWO FOR
TEN FOR $42.50

te

Dynamotor 12 or 24V loot. 275V/110ma
$1"95
12V/3A
INPT FILTERS
.49
TRANSI' 2/872A inpt 220V/60cy, HV ina1....5 6.95
TRANSF 2/866A Inpt 220V/60cy, HV rosi.... 3.95
TRANSF 2500V/12ma, Inpt 115V/60cy, HV... 5.95
TRANSF 9800V/32ma PRI 115V/400cy-wke on

BAKELITE

0-DB/6MW

ANTENNA 30CM/AT5 with COAX/PL259 plug
ANTENNA 18ft/SCM ins base & and mte

&

SQ.

ISTIC
APPEAR MICE
RECTIFIER
TYPE
RANGE
MINUS TEN
PLUS SIX
DECIBLES
CAL FOR Y,
STEEL
PANEL

ANTENNA, TELESCOPIC 12" to 9ft
ANTENNA AN30B-SWIVELED 30-94" Auto

P'MAGNET

6

SE

RC35
VA" BAKELITE CASE
SQUARE
MODERN-

24" Dia

ALNICO I2/24V 'not TAB
TESTED GTD 6V 'not/
3Amp, outpt 240V/l00ma
or 125ma lot duty Rated
500V/50ma at 12 or 24V

Inpt

"DB"

METER
WESTING

Drive & SELSYN motors Plumbing & Couplings
ROTARY JOINT for 360°HORIZ CONTROL

+

DYNAMOTOR

(12

$4.95

eeTAne,
THAT'S

A BUY

267

www.americanradiohistory.com


Delivery from Stock

Inverters — Hultzzer-Cabot Types MG 149F and MG 149H; Pioneer-Bendix Types 12117 and 12123; G. E. Type 5D21NJ3A, etc.

Synchros — Diehl 400 cycle resolver (sine-cosine generator); G. E. Types 2J1MMI and 2J5HAL; Navy Types M, A, IG, IF, 5F, 5G, 5D, 5GD, 5CT, etc.; Pioneer Types AY-1, AY-14D, AY-14G, AY-54D, etc.; Kollsman Types 775-01 and 403-02.

Servo Motors — Diehl two phase 60 cycle induction motors Types FP25-3, FPE25-11 and FPE25-12F; Pioneer Type CK-5; Kollsman two phase 400 cycle drag cup motor Type 776-01.

Special — Kollsman Remote Indicating Compass System, consisting of AN5730-2 Indicator and AN5730-3 Transmitter. Price $39.50 per system.

Call ARMory 4-2677

Servo-Tek Products Co. 247 Crooks Ave., Clifton, N. J.

Special Values

Panel & Portable Meters
D. C. Microammeters: 50-100-200-500 microamps. High Resistance Voltmeters Vacuum Thermoelectric Meters 3 1/2" & 4 1/2" Round & Rectangular Multirange Portables: readings from 10 microamps. full scale

Precision Electrical Instrument Co. 145 Grand Street New York 13, N. Y.

TELEVISION EQUIPMENT

Surplus BC-1211 and BC-1212 Television Cameras and Transmitters from Army Guided Missile Program; see I.R.E. June 1946. Surplus 700B RCA Television Sweep Generators. Just a few left at $550. Surplus Selby Generators, Focus Coils, Barometers, Fractional HP Motors, Polaroid Filters, AC Voltmeters, Tube Testers, Ferris Generators.

VILLAGE RADIO EQUIPMENT CO.
201 WEST 16 ST.
NEW YORK

MOTOR GENERATORS

Brand new, built by Allia Chalmers to rigid specifications of the U. S. Navy.

K.V.A. output 1250 B. P. M. 3500
K.W. output 25 Cond. Duty Ph. Single
P.F. output 80 Cycles 60
Volts input 115 D. C. Volts output 125 A. C.
Amps. Input 14 Amps. output 10.4

Length 27"; width 12 1/2"; height 13". Compound accumulators A.C. and D.C. fields. Centrifugal starter, Splashproof cover, frequency adjustable to load plus or minus five cycles.

Price $87.50

Identical machine, but 250 volts D.C. input $125.00

Prices f.o.b. Tuckahoe, New York
IMMEDIATE DELIVERY

ELECTRONICRAFT, INC.
SURPLUS DIV. 5 Waverly Place Tuckahoe, 7 New York Phone Tuckahoe 3-0044

FOR SALE

ONE MILLION — 1,600,000 DUAL MICA CONDENSERS Assembled, partially assembled, unassembled, parts, and dies for plates.

FS-415, Electronics
320 West 42nd St., New York 18, N. Y.

FOR SALE

One general radio vacuum tube bridge model S16D, with complete set of socket adapters.

FS-544, Electronics
330 West 42nd St., New York 18, N. Y.

July, 1947 — ELECTRONICS
Meters

Surplus Bargains

WESTON MODEL #1 Portable D.C. Voltmeter
- 0-3/150 Volts — Triple Range
- Used as a reference standard. Accuracy unaffected by wide changes in temperature.

Your Cost $57.50

PORTABLE VOLTOMETER

Westinghouse PX-14

Accuracy ±1%. Scale Length: 3.2". Size: 5-1/4 x 4-1/4 x 1-1/4". List Price: $46.00

STEEL-SIX ROLLER SMITH

Portable D.C. Voltmeter. 0-15 Volts—100 Ohms per Volt. Accuracy: 1% of 1%. Mirrored scale—5.18" long. Knife edge pointer. Dimensions: 6" x 6" x 4".

Your Cost $17.50

STEPDOWN TRANSFORMER

Made by General Electric. Heavy duty stepdown transformer, with considerable overdesign. Ideal for rectifier applications, low voltage heating, general laboratory use, etc. Open frame type.

Your Cost $3.75

MICROAMPERES D.C.

0-100 Microamps, Res: 100 Ohms—3" Rd. Westinghouse NX-35. (.75$)
- Ideal for pyrometry & Photo-electric work.
- 0-300 Microamps, Rd. G. E. DW-51 or NX-33. (.37$)
- 840-10.840 Microamps (blank scale) Weston 643—4" round—metal case. (.45$)

MILLIAMPERES D. C.

0-1 Milli—3" Rd. G. E. DO-53. (.45$)
0-1 Milli—3" Rd. Weston 301. (.65$)
0-1 Milli—3" Rd. Weston 301 scale: 0.15 KV. (.75$)
0-1 Milli—3" Rd. Marion (special scale) 3.25
0-0.5 Milli—2" Rd. G. E. DW-41 (special scale) .195
0-0.5 Milli—2" Rd. Dejur 3.25
0-15 Milli—2" Rd. Weston 500. (.325$)
0-500 Milli—2" Rd. G. E. AW-41 (.250$)
1-0-1 Milli—3" Rd. Western Electric Surface (scale 100-100). (.135$)

AMPERES D. C.

0-10 Amps 3" Rd. Weston 301. (.95$)
0-1.5 Amps—4" sq. Trippelt #241. (.2.95$)
0-3 Amps —4" sq. Trippelt #241. (.2.95$)
0-10 Amps—3" Rd. Simpson #25. (.4.95$)
30-0-30 Amps—3" Rd. Simpson #25. (.4.95$)
0-150 Amps—2" Rd. Weston #506 (charging Amp cap) (with ext. 50 MV shunt) .325
0-300 Amps—3" Rd. Roller-Smith Type TD (with ext. 50 MV shunt) .2.50
0-300 Amp—same as above (without shunt) .2.50
0-300 Amp—same as above (without shunt) .6.00

VOLTS D. C.

0-10 Volts 3" Rd. Electro-Tech .3.75$.
0-20 Volts 3" Rd. Weston 506—1000 Ohms/ V. .3.50
0-50 Volts 4" Rd. Weston NX-37 200 Ohms/ V. .6.00
0-150 Volts 3" Rd. G. E. DW-41. (.4.75$)
0-150 Volts—3" Rd. Weston 301—200 Ohms/ V. (black scale) .4.95
0-150 Volts—4" Rd. Weston 643 (flame case—black scale) .6.75

VOLTS A. C.

0-15 Volts—3" Rd. G. E. AO-22 (black scale) .2.95$.
0-75 Volts—4" West. 642 (surface mg) .7.25
0-150 Volts—3" Sq. or Rd. Simpson 57 or 85. (.6.00$)
0-150 Volts—2" Rd. Watt. NA-33. (.2.95$)
0-250 Volts—4" Rd. Trippelt #534-B (surf. mg+bakelite) .4.50
0-300 Volts—4" Sq. Trippelt #431 Scale. 3-0/000 V. .4.50
0-300 Volts—4" West. 642 (flame case—black scale) .9.00

All Items Listed in This Ad Are New, Unless Otherwise Specified.

WESTON MODEL 785 INDUSTRIAL CIRCUIT TESTER

For Industrial, Labs, Shops, etc., 23 Practical Ranges

This compact sturdy instrument provides all the ranges necessary for the measurements of voltages, currents and resistances in all types of electrical equipment, signal systems, electronic maintenance and production testing.

Ranges of Measurements
- D.C. Voltage: 10 M.V. to 1000 Volts
- A.C. Voltage: 0.1 to 750 Volts
- A.C. Current: 10 M.A. to 10 Amps.
- D.C. Current: 0.5 Microamps to 10 Amps.
- Resistance: 0.5 Ohms to 30 Megohms

Your Cost $73.50

WESTON MODEL 269 FAN SHAPED METER

One of the Weston popular fan shaped line. Exceptionally long scale for size of instrument. Accuracy 1%. Scale length—4".

Spade pointer. Here is a good movement for special purposes. Comes with blank scale with 0 and 100 in. Ready for plotting calibration points. Can be used to make up any range of volts, amps, mA, etc.

Full scale deflection—5 M.A.—40 M.V. List: $29.95
Your Cost $8.95
10 for $75.00

BODINE MOTOR

A small but rugged built-in spur gear reduce motor. Three wire reversible, condenser start. Type KC-1. 115 volts — 60 cycles — 3.7 R.P.M. 7.5 watts—85 inch torque.

Your Cost $7.50

G.E. Synchronous 1 RPM Motor

Your Cost $4.95

SPECIAL METERS

0-3 Amps, R. F. Weston 425 — $5.85
0-15 Amps, R. F. Weston 507 — 3.50
Resistence Thermometer 30° F. to 230° F. with res. bulb. Weston #727 — 4.95
Weston 637 Freq. Meter—-Surface case 3/4"
- Range: 350-450 Cycles, complete — 4.95

POWERTRON Electrical Equipment Co.

119 Lafayette Street

Electronics — July, 1947

Phone: WOrth 4-8610

New York 13, N. Y.
AND AT A LOWER COST!

Automatic has applied the advanced techniques used in the K-TRAN to a plastic base dual trimmer for use in conventional I.F. Transformers.

Easier to use, better for drift, and lower in price, it is dimensionally interchangeable with the old ceramic trimmers.

It is made in two materials, Type L 64 for use up to 65° C and type L 74 up to 90° C.
MIDGET I.F. TRANSFORMERS

for all types of RADIOS

Performance equivalent to larger I.F.'s.

3/4 x 3/4 x 2" high

We are in full production on this item. When inquiring, please designate type of radio considered.

Orders accepted for PROMPT DELIVERY

Precision manufacturers of all types of IF and RF coils, chokes, and transformers.

BAACH-INTERNATIONAL

EIGHT HEAD HOT-CUT FLARE MACHINE

Automatic throughout.

Can be synchronised with automatic stem machine.

Cuts off and flares in one operation.

Production 1250 flares per hour. For miniature flares, fluorescent starters, standard size lamps, fluorescent and radio tubes.

RANGE OF MACHINE

Glass tubing

27 to 45 gauge

Length of flares

5 mm. to 80 mm.

Forms flares up to 47 mm. diam.

Dimensions

24"x24"x72" high

Net weight, 960 lbs.

Gross weight 1450 lbs.

INTERNATIONAL MACHINE WORKS

Manufacturers of High Vacuum Pumps, Automatic Machinery for Incandescent Lamps, Electronic Tubes since 1916.

2027 - 46TH STREET

NORTH BERGEN, N. J., U. S. A.

Tel. Union 3-7412.

Cable Address "Internach" North Bergen, N. J.

FS-135-C FREQUENCY STANDARD

Keeps you "ON THE BEAM"

No more "hoping" you're in the band. Mount the FS-135-C Frequency Standard in your receiver, zero beat it with WWV and you'll have a frequency meter that is really accurate.

HAMMARLUND

THE HAMMARLUND MFG. CO., INC., 450 N. 34TH ST., NEW YORK 1, N. Y.

MANUFACTURERS OF PRECISION COMMUNICATIONS EQUIPMENT

July, 1947 — ELECTRONICS

www.americanradiohistory.com
TRANSMISSION MEASURING SETS
To accurately measure transmission characteristics of audio systems and their components

These transmission measuring sets are accurately designed instruments for the measurement of the transmission characteristics of audio frequency communication systems. This equipment may be applied to measure gains or losses through amplifiers, repeaters, attenuating networks or communication lines without the use of laborious calculations, complex setups, or sensitive meters.

The sets shown here are sturdy compact units built to exacting specifications. Your further inquiry is invited. Technical questions will be answered by our Engineering Department.

TYPE 8A
A portable battery operated set...weight 14 pounds.

TRANSMITTING SECTION: Contains an internal oscillator, operating at a frequency of 1000 cycles. Output impedance is 600 ohms either balanced or unbalanced to ground. Output levels are -0.3 DBM* and -20 DBM*.

RECEIVING SECTION: Frequency response is ±0.3 DB from 30 to 10,000 cycles. Input impedance is 600 ohms terminating, and 600 ohms bridging either balanced or unbalanced to ground. Will measure levels of -30 to -10 DBM* at zero VU meter indication, when terminating a line.

DIMENSIONS: 9½" high x 6½" wide x 12½" long.

TYPE 6C
Primarily an instrument used for accurate gain and frequency response measurements. Must be used in conjunction with an external audio oscillator.

TRANSMITTING SECTION: Provides sending levels from -106 to +26 DB in steps of 1 DB for zero VU meter indication.

RECEIVING SECTION: Frequency response is ±0.3 DB from 30 to 17,000 cycles. Will measure levels of +1 to +42 DB in steps of 2DB for zero VU meter indication.

Input impedance is 600 ohms. Output impedance is 30, 50, 150, 200, 250, 500, and 600; 500 shunt and 600 shunt, either balanced or unbalanced to ground. Load impedance is 8, 15, 30, 50, 150, 200, 250, 500 and 600, either balanced or unbalanced to ground.

TYPE 7A
Primarily designed to measure losses.

TRANSMITTING SECTION: Contains an internal oscillator operating at fixed frequencies of 500, 1000, and 2500 cycles and will provide output levels of -13, 0, +4, and +10 DBM*.

RECEIVING SECTION: Frequency response is ±0.3 DB from 30 to 10,000 cycles. Will measure levels of -30 to +10 DBM* at zero VU meter indication when terminating a line. Impedance is 600 ohms in both the transmitting and receiving sections.

* DBM is based on a reference of 1 MW into 600 ohms.
For compactness PLUS maximum performance... design around RCA Miniatures

RCA Miniatures offer the engineer a wider latitude in equipment designs for all services where light weight and compactness are necessary or desirable features. And RCA has complements for virtually all applications.

MIDGET SETS
RCA Miniatures permit closer spacing of components on a smaller chassis. They are the equal of larger, comparable tube types in performance.

AUTO SETS
RCA Miniatures make feasible the design of small two-unit receivers for dashboard mounting with greater installation flexibility. Audio outputs up to 10 watts can be obtained.

TELEVISION SETS
RCA Miniatures have already accounted for a reduction of 60 per cent in chassis area, thus permitting the design of more compact models.

FM SETS
For the FM bands, RCA Miniatures have the additional advantage of providing performance superior to metal and glass types because of their lower inter-electrode capacitances, reduced lead inductance, and low-loss, button-stem bases.

COMMERCIAL AND BUSINESS EQUIPMENT
The compactness gained by using RCA Miniatures is accompanied by a proportionate reduction in weight... a matter of considerable importance in the design of business machines and mobile communications equipment.

RCA Tube Application Engineers will be pleased to consult with you on the utilization of RCA Miniatures in designs you now have under consideration. For further information write RCA, Commercial Engineering, Section R-40G, Harrison, New Jersey.

THE FOUNTAINEHEAD OF MODERN TUBE DEVELOPMENT IS RCA

RCA Laboratories, Princeton, N. J.