

ERMALLOY DUST TOROIDS MAXIMUM STABILITY ...

The UTC type HQ permalloy dust toroids are ideal for all audio, carrier and supersonic applications. HQA coils have Q over 100 at 5,000 cycles... HQB coils, Q over 200 at 4,000 cycles...HQC coils, Q over 200 at 30 KC...HQD coils, Q over 200 at 60 KC...HQE (miniature) coils, Q over 120 at 10 KC. The toroid dust core provides very low hum pickup... excellent stability with voltage change ... negligible inductance change with temperature, etc. Precision adjusted to 1% tolerance. Hermetically sealed.

HOB CASE	Type no.		ac.	11100	172
1.5/8" × 2.5/8" × 2.1/2" High	HQA-1	5	mhy.	\$7.00	HQ
1 5/ 0 X 2 5/ 6 X 2 1/ 2 mg	HQA-2	12.5	mhy.	7.00	HQ
and the second se	HQA-3	20	mhy.	7.50	HQ
CONTRACTOR OF THE	HQA-4	30	mhy.	7.50	HQE
a a long the second second	HQA-5	50	mhy.	8.00	HQE
	HQA-6	80	mhy.	8.00	HQE
	HQA-7	125	mhy.	9.00	HQE
	HQA-8	200	mhy.	9.00	HQE

H H H н H H

	and an	
	HQE CASE	Ľ
1/2 [°] x 1	5/16"x 1 3/16"High	

HQA, HQC, HQD CASE

1 13/16"Did, x T 3/16"High

				-							
ype No.	Induct Val	tance ue	Net Price	Type No.	Induc Val	tance ue	Net Price	Type I	Induc No. Va	tance lue	Net Price
QA-1	5	mhy.	\$7.00	HQA-16	7.5	hy. 👔	\$15.00	HQC-1	1 1	mhy.	\$13.00
QA-2	12.5	mhy.	7.00	HQA-17	10.	hy.	16.00	HQC-2	2.5	mhy.	13.00
QA-3	20	mhy.	7.50	HQA-18	15.	hy.	17.00	HQC-3	5	mhy.	13.00
QA-4	30	mhy.	7.50	HQB-1	10	mhy.	16.00	HQC-4	10	mhy.	13.00
QA-5	50	mhy.	8.00	HQB-2	30	mhy.	16.00	HQC-5	20	mhy.	13.00
QA-6	80	mhy.	8.00	HQB-3	70	mhy.	16.00	HQD-1	.4	mhy.	15.00
QA-7	125	mhy.	9.00	HQB-4	120	mhy.	17.00	HQD-2	1	mhy.	15.00
QA-8	200	mhy.	9.00	HQB-5	.5	hy.	17.00	HQD-3	2.5	mhy.	15.00
QA-9	300	mhy.	10.00	HQB-6	1.	hy.	18.00	HQD-4	5	mhy.	15.00
QA-10	.5	hy.	10.00	HQB-7	2.	hy.	19.00	HQD-5	15	mhy.	15.00
QA-11	.75	hy.	10.00	HQB-8	3.5	hy.	20.00	HQE-1	5	mhy.	6.00
QA-12	1.25	hy.	11.00	HQB-9	7.5	hy.	21.00	HQE-2	10	mhy.	6.00
QA-13	2.	hy.	11.00	HQB-10	12.	hy.	22.00	HQE-3	50	mhy.	7.00
QA-14	3.	hy.	13.00	HQB-11	/18.	hy.	23.00	HQE-4	100	mhy.	7.50
QA-15	5.	hy.	14.00	HQB-12	25.	hy.	24.00	HQE-5	200	mhy.	8.00

GE AND LINE FILTERS RSTA

FILTER CASE M 1 3/16"x 1 11/16," 1 5/8"- 2 1/2"High

These U.T.C. stock units take care of most common filter applications. The interstage filters, BMI (band pass), HMI (high pass), and LMI (low pass), have a nominal impedance at 10,000 ohms. The line filters, BML (band pass), HML (high pass), and LML (low pass), are intended for use in 500/600 ohm circuits. All units are shielded for low pickup (150 mv/gauss) and are hermetically sealed.

ww.americanradio

-10		R	Ż	R		10 80	ĸG
- 20 	H MI-200	LM-200	MI-500	1.M-1000	10000000000000000000000000000000000000	LMI-10090	
-40	100 FR	500 E QUENC	500 7 Y- CYC	DO INC	SECOND	Picko 2	0

STOCK FREQUENCIES (Number after letters is frequency) Net Price \$25.00				
BM1-60	BMI-1500	LMI-200	BML-400	
BMI-100	BM1-3000	LMI-500	BML-100	
BMI-120	BMI-10000	LMI-100D	HML-200	
BMI-400	HMI-200	LMI-2000	HML-500	
BM1-500	HM1-500	LMI-3000	LML-1000	
BMI-750	HMI-1000	LMI-5000	LML-250	
BMI-1000	HM1-3000	LMI-10000	LML-400	

LML-12000

150 VARICK STREET NEW YORK 13, N.Y. EXPORT DIVISION: 13 EAST 40th STREET, NEW YORK 16 N.Y. CABLES: "ARLAB"

electronics

A McGRAW - HILL PUBLICATION

DECEMBER • 1950

MIXED HIGHS IN COLOR TELEVISION. Kodachrome shots comparing 12-mc simultaneous and 4.2-mc mixed-highs transmission (see p 122)	VER
HIGH-RELIABILITY MINIATURE TUBES, by George Gage. Tube failure in first 1,000 hours of operation is reduced from 30 to 3.2 percent	66
STORAGE DEVICES FOR COMMUNICATION, by A. J. Lephakis. Methods of improving efficiency and frequency economy in some types of communications	69
THYRATRON-CONTROLLED PHOTOELECTRIC UMPIRE, by R. F. Shea Detects passage of balls through strike zone and measures speed ball travels	74
HOW TO SELECT ANTENNA TOWERS AND MASTS, by William Schwartz. General practice with respect to self-supported and guyed structures is summarized	78
ELECTRONIC CONTROL OF HOME HEATING, by John M. Wilson. Amplifier fed by a-c bridge maintains more comfortable rooms by reacting to both outdoor and indoor temperatures	84
COLOR FUNDAMENTALS FOR TV ENGINEERS, (Part I), by D. G. Fink. First of three tutorial articles on trichromatic system	88
MIXER CRYSTAL CHECKER, by Peter D. Strum. Quickly determines sensitivity loss of silicon crystals used in first stage of microwave radar and radio receivers	94
LOAD-MATCHING DIELECTRIC HEATERS, by R. H. Hagopian. Use of transmission line as part of load tuning system simplifies load matching	98
A VARIABLE INDUCTANCE TV TUNER, by D. R. DeTar and H. T. Lyman, Jr. Continuous tuning of the vhf television channels without switches or sliding contacts	102
MOTOR MAGNETIZER, by O. E. Carlson. Alnico fields are magnetized by thyratron circuit after fractional-horsepower permanent-magnet motor is assembled	107
STABILIZED MASTER OSCILLATOR FOR MULTICHANNEL COMMUNICATION, by E. W. Pappenfus Analysis of crystal-conserving systems for multichannel operation and details of 31-tube unit having servo-motor afc	108
CRYSTAL DIODES IN TV STUDIO EQUIPMENT, by Rudolph Kuehn Circuits for gamma correction, blanking clipper and deflection failure protection	114
COMBINING SOUND LEVELS, (Reference Sheet) by W. B. Conover Nomogram permits adding decibels directly instead of power ratios	118
ANNUAL INDEX, VOLUME 23	323
BUSINESS BRIEFS 60 ELECTRON ART 124 NEW BOOKS CROSSTALK 65 NEW PRODUCTS 128 BACKTALK TUBES AT WORK 120 NEWS OF THE INDUSTRY 132 INDEX TO ADVERTISERS (Last P)	136 136 age)

DONALD G. FINK, Editor; W. W. MacDONALD, Managing Editor; John Markus, Vin Zeluff, A. A. McKenzie, Associate Editors; William P. O'Brien, James D. Fahnestock, Assistant Editors; John M. Carroll (on Military Leave), Ronald Jurgen, Ann Mastropolo, Marilyn Wood, Editorial Assistants; Gladys T. Montgomery, Washington Editor; Harry Phillips, Art Director; Eleanor Luke, Art Assistant

KEITH HENNEY, Consulting Editor

H. W. MATEER, Publisher; WALLACE B. BLOOD, Manager; R. S. Quint, Buyers' Guide Manager; D. H. Miller, James Girdwood, New York; Wm. S. Hodgkinson, New England; Warren W. Shew, Philadelphia; C. D. Wardner, Chicago; J. L. Phillips, Cleveland; J. W. Otterson, San Francisco; Carl W. Dysinger, Los Angeles; Ralph C. Maultsby, Atlanta; Bernard H. Butler, London, England

Contents Copyright 1950, by McGraw-Hill Publishing Company, Inc. All Rights Reserved. McGRAW-HILL PUBLISHING COMPANY, INCOR-PORATED. JAMES H. McGRAW (1860-1948), Founder • PUBLICATION OFFICE, 99-129 North Broadway, Albany 1, N. Y., U. S. A. EDITORIAL AND EXECUTIVE OFFICES, 330 West 42nd St., New York 18, N. Y., U. S. A.

ABD

Curtis W. McGraw, President; Willard T. Chevalier, Executive Vice-President; Jose first value sty, new rork roy fit. 1, 0. 3. A. Curtis W. McGraw, President; Willard T. Chevalier, Executive Vice-President; Josefit A. Gerardl, Vice-President and Director of Advertising; J. E. Blackburn, Jr., Vice-President and Director of Circulation: Dexter Keezer. Director of Economics Cepartment; Russell F. Anderson, Editor, World News. Latin America; \$2.00 for all other foreign countries. Buyers' Guide \$2.00. Allow at least ten days for change of address. All communications about subscriptions should be addressed to the Director of Circulation. Subscription rates—United States and possessions, 56.00 a year, \$30.00 for three years. Canada (Canadian funds accepted), \$10.00 a year, \$30.00 for two years, \$20.00 for three years. Latin America is Si5.00 for one year, \$30.00 for three years. Canada (Canadian funds accepted), \$10.00 a year, \$30.00 for three years. Latin America countries \$15.00 for one year, \$25.00 for two years, \$30.00 for three years. Canada (Canadian funds accepted), \$10.01 a year, \$30.00 for three years. Sulto of there years. All other countries \$15.00 for one year, \$25.00 for two years, \$30.00 for three years. Please Indicate position and company connection on all subscription orders. Entered as Second Class matter August 29, 1936, at Post Office, Albany, New York, under the act of March 3, 1879. BRANCH OFFICES: \$20 North Michigan Avenue, Chicago II, III, 68 Post Street, San Francisco 4; Aldwych House, Aldwych, London, W.C. 2; Washington, D. C. 4; Philadejnhia 3; Cleveland 15; Detroit 26; St. Louis 8; Boston IC; Atlanta 3, Ga; IIII Wilshire Blvd., Los Angeles 17; 738-9 Oliver Building, Pittsburgh 22, ELECTRONICS is Indexed regularly in The Engineering Index.

Let MARION help you...

...seal components hermetically
...speed up sub-assemblies

Marion portable,

bench-type induction

soldering unit . . .

MANUFACTURERS OF MARION RUGGEDIZED INSTRUMENTS

- SMALL
 COMPACT
 ADAPTABLE
 EFFICIENT
 ECONOMICAL
 EASY-TO-USE
- A PRODUCTION TOOL This unit was designed to simplify and improve both the quality and quantity of production of many different assemblies in the electronic and electrical fields. It has been used successfully for many years in the manufacture of Marion hermetically sealed instruments. Assembly applications include magnet assemblies, relay armatures, connectors, capacitors and transformer cans and germanium diode assemblies; also jewelry, watches, toys, automotive parts, household fixtures, etc.
- **HERMETICALLY SEALED COMPONENTS** Because of the present intense interest in hermetically sealed components, Marion offers the benefit of its experience in true glass-to-metal hermetic sealing with the Marion Induction Soldering Unit and Marion metalized (platinum film) glass. Marion platinum film base glass has been developed to permit higher sealing temperatures, greater thermal shock range and resoldering if necessary.
- **PROFIT FROM EXPERIENCE** Investigate now. Submit your requirements. We will be glad to supply samples and quotations. Ask for bulletin. Marion Electrical Instrument Company, 401 Canal Street, Manchester, New Hampshire.

THIS INFORMATIVE QUARTERLY WILL BE MAILED TO YOUR ADDRESS WITHOUT CHARGE

TECHNIQUE A JOURNAL OF INSTRUMENT ENGINEERING

Phonic Motors Timine Devices

An oo the state Standard Cell

NAME	 	
POSITION.	 	
COMPANY	 	 -
ADDRESS		

The Troi The POTENTIONETER

Variable Air Capacitor

Leto Loss .

MUIRHEAD & Co. LTD. PRECISION ELECTRICAL INSTRUMENT MAKERS **BECKENHAM·KENT·ENGLAND**

Telegrams and Cables: MUIRHEADS ELMERS-END

ELECTRONICS — December, 1950

MU.29

PRECISION

ELECTRICAL INSTRUMENTS

MUIRHEA

A complete line

unusual combinations of characteristics required in today's critical electronic circuits demand a complete range of resistor types. Specializing in resistors, IRC makes the widest line in the industry. This means ease of procurement—a single dependable source of supply for all your resistance needs. It also means unbiased recommendations—no substitution of units "just as good". IRC's complete line of products; complete research and testing facilities; complete network of licensees for emergency production—all add up to complete satisfaction for you.

resistors

PRECISION RESISTORS

IRC Precision Wire Wounds offer a fine balance of accuracy and dependability for close-tolerance applications. Extensively used by leading instrument makers, they excel in every significant characteristic. Catalog Bulletin D-1.

IRC Deposited Carbon PRECISTORS combine accuracy and economy for close-tolerance applications, where carbon compositions are unsuitable and wire-wound precisions too expensive. Catalog Bulletin B-4.

IRC Matched Pairs provide a dependable lowcost solution to close-tolerance requirements. Both Type BT and BW Resistors are available in matched pairs. Catalog Bulletin B-3.

IRC Sealed Precision Voltmeter Multipliers are suitable and dependable for use under the most severe humidity conditions. Each consists of several IRC Precisions mounted and interconnected, encased in a glazed ceramic tube. Catalog Bulletin D-2.

IRC Type W Wire Wound Controls ore designed for long, dependable service and balanced performance in every characteristic. These 2-watt variable wire wound units provide maximum adaptability to most rheostat and potentiometer applications within their power rating. Catalog Bulletin A-2.

IRC New Type Q Controls feature small ¹³/₆" size, rugged construction and superior performance. Increased arc of rotation permits same resistance ratios successful in larger IRC Controls. Cetalogr Bulletin A-4.

is essential

INSULATED COMPOSITION and WIRE WOUND RESISTORS

IRC Advanced Type BT Resistars meet and beat JAN-R-11 Specifications at 1/3, 1/2, 1 and 2 wattscambine extremely low operating temperature with excellent power dissipation. Catalog Bulletin 8-1.

IRC Type BW Wire Wound Resistors are exceptionally stable, inexpensive units for low range requirements. Have excellent performance recards in TV circuits, meters, analyzers, etc. Catalog Bulletin B-5.

IRC Type BTAV High Voltage

Resistors, developed for use as discharge resistors in fluorescent "Quick Start" ballasts, withstand momentary peak surge of 6000 volts. Also suited to TV bleeder circuits. Catalog Bulletin 8-1.

POWER RESISTORS

IRC Fixed and Adjustable Power Wire Wounds give balanced performance in every characteristic -are available in a full range of sizes, types and terminals for exacting, heavy-duty applications. Catalog Bulletin C-2.

IRC Type FRW Flat Wire Wound Resistors fulfill requirements of high wattage dissipation in limited space—may be mounted verti-cally or horizontally, singly ar in stacks. Catalog Bulletin C-1.

IRC Type MW Wire Wound Resistors offer low initial cost, lower mounting cost, flexibility in providing taps, and saving in space. Completely insulated against moisture. Catalog Bulletin B-2.

IRC Type LP Woter-Cooled Resistors for TV, FM and Dielectric Heating Applications. Cooled internally by high velocity stream of water; adjustable to local water pressure and power dissipation up to 5 K.W.A.C. Catalog Bulletin F-2.

INTERNATIONAL RESISTANCE CO. 403 N. BROAD ST., PHILADELPHIA 8, PA. Please send me Technical Data Building checked holewa

ricase senta nee re	control state solicitits c	incence beitrip
🖾 Bulletin A-2 (W)	Bulletin B-4 (DC)	Bulletin F+1 (MP)
🗆 Bulletin A-4 (Q)	🔲 Bulletin B-5 (BW)	🔲 Bulletin F-1 (MPM
🖸 Bulletin B-1 (BT)	🔲 Bulletin C-1 (FRW)	Dulletin F-2 (LP)
🔲 Bulletin B-1 (BTAV)	Bulletin C-2 (PWW)	🔲 Bulletin G-1 (MV)
Bulletin B-2 (MW)	🔁 Bulletin D-1 (WW)	D Bulletin G-2 (MV)
🛛 Bulletin B-3 (M/P)	Bulletin D-2 (MF)	
NAME		
TITE		

COMPANY.

ADDRESS

HIGH FREQUENCY and HIGH POWER RESISTORS

IRC Type MP High Frequency Resistors afford stability with low inherent inductance and capacity in circuits involving steep wave fronts, high frequency measuring circuits and radar pulse equipment. Available in sizes from 1/4 to 90 watts. Catalog Bulletin F-1.

Type MV High Voltage Resistors utilize IRC's famous filament resistance coating in helical turns on a ceramic tube to provide a conducting path of long, effective length. Result: Exceptional stability even in very high resistance values. Catalog Bulletin G-1.

IRC Type MVX High Ohmic, High Valtage Resistors meet requirements for a small high range unit with axial leads. Engineered for high voltage applications, MVX has exceptional stability. Catclog Bulletin G-2.

IRC Type MPM High Frequency Resistors are miniature units suitable for high frequency receiver and similar applications. Stable resistors with low inherent inductance and capacity. Body only 3/s'' long. Catalog Bulletin F-1.

Whenever the Circuit Says ------

Power Resistors . Voltmeter Multipliers • Insulated Composition Resistors • Low Wattage Wire Wounds . Volume Controls • Voltage Dividers • Precision Wire Wounds • Deposited Carbon Precistors • Ultra-HF and High Voltage Resistors • Insulated Chokes

INTERNATIONAL RESISTANCE COMPANY PHILADELPHIA 8, PENNSYLVANIA In Canada: International Resistance Company, Ltd., Torento, Licensee

IN 1950!

25 YEARS YOUNG

CITY...... ZONE STATE www.americanradiohistory.com

J. F. ARNDT & CO., ADV. AGENCY

a

GUIDED MISSILES ARE ONLY AS GOOD AS THEIR

Advanced acrodynamic design is what you expect when a top team of designers like those of the Fairchild Guided Missiles Division build a missile. But that is only part of the problem in missile manufacture.

A guided missile is packed from nose to tail with complex electronic guidance circuits that must control its flight accurately—even during the shock of launching and the high G loads of tight turns. The *avionic brain* must not "black out" even under loads well beyond those a human pilot can withstand.

In Fairchild's missiles, not only the airframe but the complete missile, including the avionic brains --that are squeezed into the cramped quarters of

snains

the missile's body—are Fairchild designed and Fairchild manufactured.

To prove the ruggedness and reliability each missile is subjected to G loads never before asked of electronic equipment, while test apparatus shows how the "bird" stays locked on the target. Flight tests confirm this amazing accuracy and ruggedness.

Here is another example of Fairchild research and development, at work for the Armed Services.

Far ahead in the field, Fairchild Guided Missiles are an example of the achievement possible when top-flight aerodynamicists and ingenious electronic engineers tackle closely interrelated problems as a single, united team.

Other Divisions: Fairchild-NEPA Division, Oak Ridge, Tenn. • Fairchild Aircraft Division, Hagerstown, Md. Fairchild Engine Division, Al-Fin Division and Stratos Corporation, Farmingdale, N. Y.

December, 1950 - ELECTRONICS

1 to 9 of a

Series

Another Engineer's Problem Solved*

SUBJECT:

Plasticon Capacitors, Pulse Forming Networks and High Voltage Power Supplies.

PROBLEM:

To obtain Capacitors, Pulse Forming Networks and Power Supplies for your specific needs, regardless of how intricate.

SOLUTION:

Send your specifications to Condenser Products Company so that our experienced staff of engineers can solve your problems.

For the past nine months, we have been running advertisements illustrating some of the engineering problems which we have solved. Reprints are available upon request. These problems are listed below:----

- No. 1—100°C Miniature Pulse Forming Networks No. 2—8000 Volt Radar-Indicator Power Supply No. 3—Zero Temperature Coefficient Capacitors No. 4—50,000 Volt Power Supply (PS-50)
- No. 5—High Voltage, High Power RF Capacitors
- No. 6–Ultra High Resistance Capacitors
- No. 7–High Power, High Temperature RF Capacitors
- No. 8–High Temperature "Computer" Capacitors

No. 9-400-2000 Cycle Power Factor Correction Capacitors

May we offer our solutions to your problems? Your inquiries will receive immediate attention.

"Designed for Application" DELAY LINES and NETWORKS

The James Millen Mfg. Co., Inc., has been producing continuous delay lines and lump constant delay networks since the origination of the demand for these components in pulse formation and other circuits requiring time delay. The most modern of these is the distributed constant delay line designed to comply with the most stringent electrical and mechanical requirements for military, commercial and laboratory equipment. Millen distributed constant line is available as bulk line for laboratory use and in either flexible or metallic hermetically sealed units adjusted to exact time delay for use in production equipment. Lump constant delay networks may be preferred for some specialized applications and can be furnished in open or hermetically sealed construction. The above illustrates several typical lines of both types. Our engineers are available to assist you in your delay line problems.

Millen delays lines are illustrated and described in our Laboratory Equipment catalogue, a copy of which will be sent upon request.

December, 1950 - ELECTRONICS

15,000 cps-71/2 inches per sec. HALF TRACK!

Greatest PORTABLE

. also available with FULL TRACK HEADS

REVOLUTIONARY ADVANCE IN TAPE RECORDING EFFICIENCY

- At 7 ½ inches per second Model 400 plays music essentially flat to 15,000 cps!
- Half-track record, erase, playback at 15 and 71/2 i.p.s. Plays back full-track recorded tape.
- Has built-in record and playback amplifiers as well as a 4-inch "VU" meter.
- Fast forward and rewind require but 90 seconds for a full 2400-foot reel!
- Tape cost savings of 4 to 1 over any 15 i.p.s. single-track recorder of comparable fidelity
- * FOR THE FIRST TIME IN TAPE RECORDING HIS-TORY ... 7 1/2 i.p.s. HALF-TRACK PERFORM-ANCE THAT EQUALS OR EXCEEDS ORDINARY 15 i.p.s. FULL-TRACK RECORDING! A full 132 minutes of playing time on a single 2400-foot reel!

WEIGHT APPROX. 62 POUNDS ... in single portable case

of them all!

ELECTRONICS --- December, 1950

AX-21

If You Need Coils Like These...

Lattice-type coils for television and radio. Wind one to four coils at once on the Universal No. 84 Coil Winder, with (in most cases) a single operator for two machines.

Speeds are from 400 to 950 rpm, and a counter control provides instant automatic stop upon completion of coil.

Quickly-adjustable "gainer" mechanism, which accurately positions wire turns, and strap-type tensions help you get accurate, uniform winding. In-built calibration facilitates change-over.

EESONA

Write for Bulletin 84-LM.

Non-insulated spool-wound coils. Wind coils on several heads at once, using the new Universal 102 High Speed Coil Winder, and synchronize output on the basis of handling time per coil.

Each head is individually operated, and you can so schedule the winding that certain heads will be producing while manual operations are performed on other heads.

With a maximum speed of 5000 rpm, the High-Speed 102 is efficient for coils having up to 15,000 turns. Oil seals make the machine oil-tight. Write for Bulletin 102-LM.

UNIVERSAL WINDING COMPANY P. O. Box 1605 Providence 1, R. I.

FOR WINDING COILS IN QUANTITY ACCURATELY . . . AUTOMATICALLY USE UNIVERSAL WINDING MACHINES

ADVENTURES IN ELECTRONIC DESIGN

Constant checking makes sure CRL switches give you desirable uniform low contact resistance. Here an engineer tests resistance by running 1 ampere through contacts.

Accelerated life test machine rotates through fixed number of positions at 1000 cycles per hour . . . proves switch springs, clips and contacts stand up under long, hard use.

Resistance of switch insulation to atmospheric change is tested in controlled temperature and humidity chamber. Test helps avoid breakdown or leakage.

Centralab Components

Yes, CRL's Medium Duty Power Switches are made to meet your individual needs . . . single, two or three poles . . . 18 contacts per section . . . up to 20 sections per shaft. Contacts and collector rings of coin silver, mounted on Grade L5 Steatite, compounded and produced right in our own plant . . . backed up by 20 years of ceramic manufacturing experience.

These switches are designed for R. F. or 7½ amp. 110-115 V. application. Voltage breakdown to ground, 3000 V. RMS 60 cyclez.

The combination of rugged construction — coin silver contacting members, plus the high insulation resistance of Grade L5 Steatite, means trouble-free performance in x-ray, lab-test equipment, high voltage transmitters and other electronic gear.

For top-performing medium duty power switches, built for life-time service — in standard or custom built models — ask about CRL's "torture tested" power switch line. Our engineers will be glad to assist you.

2

Great step forward in switching is CRL's New Rotary, Coil, Spring and Cam Index Switch. It gives you smoother action, longer life.

Centralab's development of a revolutionary, new Slide Switch vastly facilitates AM and FM set design! Flat, horizontal design saves valuable space, allows short leads, convenient location to coils, reduced lead inductances for increased efficiency in low and high frequencies. CRL Slide Switches are rugged and dependable.

for Electronic Gear

CRL's new high quality Model 2 Radiohm Controls specifically designed for TV, radio, other electronic equipment. Lower noise level, longer life.

For by-pass or coupling applications, check Centralab's original line of ce-ramic disc Hi-Kaps. Disc Hi-Kaps are smaller than a dime.

Hi-Vo-Kaps (10-20-30 kv) are filter and by-pass capacitors combining high voltage, small size and variety of ter-minal connections to fit most TV needs.

Ceramic Trimmers are made in five basic types. Full capacity change with-in 180° rotation. Spring pressure maintains constant rotor balance.

Centralab's *Ampec*, above, is an inte-gral assembly of tube sockets, capaci-tors, resistors and wiring combined into one miniature amplifier unit.

Couplate consists of plate and grid resistors, plate by pass and coupling capacitors. Minimum soldered connections speed production.

www.americanradiohistory.com

This is the new CRL Vertical Integrator Network used in TV sets. Var-iations of this Centralab integrator plate are available on special order.

IMPORTANT BULLETINS FOR YOUR TECHNICAL LIBRARY!

RODUCT PREVIEW LEVER SWITCH

PENTODE COUPLATE

SESODUCY PREVIEW

PRODUCT PREVIEW CENTRALAS. THI-VO-KAP

PREVIEW

OPRODUCT the Ampec

PRODUCT PREVIEW O THE COUPLA

2 377 B C Hr-Mars CT -----BC DISC NI-KAPS

CT PREVIEW OT - ROTARY SWITCH

Choose From This List!

Centralab Printed Electronic Circuits

973 — AMPEC — three-tube P. E. C. amplifier.

They're factual

- 42-6 COUPLATE P. E. C. interstage coupling plate.
- **42-22** VERTICAL INTEGRATOR for TV application. **42-24** CERAMIC PLATE COMPONENTS for use in low-
- power miniature electronic equipment.
- 42-27 MODEL 2 COUPLATE for small or portable set applications. 000
 - PENTODE COUPLATE specialized P. E. C. coupling plate.
- 42-9 FILPEC Printed Electronic Circuit filter.

Centralab Capacitors

- 42-3 BC TUBULAR HI-KAPS capacitors for use where temperature compensation is unimportant.
- **42-4R** BC Disc Hi-KAPS—miniature ceramic BC capacitors. **42-10R** HI-VO-KAPS high voltage capacitors for TV appli-
- cation. 42-59 — CERAMIC TUBULAR TRIMMERS — designed for TV
- and VHF application. 42-101 - CERAMIC TRIMMERS - CRL trimmer catalog.

- 981 HI-VO-KAPS capacitors for TV application. For
- jobbers. TC CAPACITORS temperature compensating capaci-42 - 18 tors
- 42-102 CAPACITORS high-voltage capacitors. 975 FT HI-KAPS feed-thru capacitors.

Centralab Switches

- 953 SLIDE SWITCH applies to AM and FM switching circuits.
- 970 --- LEVER SWITCH --- shows indexing combinations.
- 995 ROTARY SWITCH schematic application diagrams. 722 SWITCH CATALOG facts on CRL'S complete line of
- switches

Centralab Controis

- 42-19 MODEL "1" RADIOHM world's smallest commercially produced control.
- **42-85** MODEL 2 RADIOHM CRL's new line of ¹%6" diam. controls for TV AM FM.

Centralab Ceramics

- 967 CERAMIC CAPACITOR DIELECTRIC MATERIALS.
- 720 CERAMIC CATALOG CRL steatite, ceramic products.

Look to CENTRALAB in 1951! First in component research that means lower costs for the electronic industry. If you're planning new equipment, let Centralab's sales and engineering service work with you. For complete information on all CRL products, get in touch with your Centralab Representative. Or write direct.

CENTRALAB Division of Globe-Union Inc. 914 East Keefe Avenue, Milwaukee, Wisconsin TEAR OUT COUPON Yes—I would like to have the CRL bulletins, checked below, for my technical library! for the Bulletins you want 42-24 42-9 42-10R 981 953 42-19 973 **42-6 42-27 42-3 42-59 42-18 995** 967 □ 42-22 □ 999 □ 42-4R □ 42-101 □ 42-102 □ 970 720 975 722 42-85 Name. Division of GLOBE-UNION INC. • Milwaukee Address. .State. City

IN FUTURE REQUIREMENTS We do not lay claim to any special powers of prognostication, but we can compare ourselves to the seasoned hunter or veteran sailor in their ability to sense the way the wind is blowing. By maintaining constant vigil of the Horizon in our Industry, we strive to be well prepared to meet the ever changing requirements for high quality filters. In following this policy we have been able to give you 'Yes' or 'No' answers on the spot to your queries of 'is this practical' or " can this be dome?" If it can be done, we have probably tried it. If it cannot be done we are still trying to do it. This has obviated unnecessary expenditure of our customers' time and money, and has helped expedite the development of new equiprent by eliminating the several blind alleys that can be so costly. In these times. especially, the continued application of foresight, ingenuity and new idees, as well as the constant expansion of production facilities, will be the key note of our 'Burnell Customer Service."

Burnell & Company

YONKERS 2, NEW YORK CABLE ADDRESS "EURNELL

ELECTRONICS — December, 1950

TOROIDAL COILS

and **FILTERS**

10 %

Exclusive Manufacturers of Communications Network Components

OUR PROBLEM .. TODAY!

15

THE DU MONT TYPE 296 Oscillograph-record Camera

• The Type 296 is an inexpensive oscillograph-record camera, greatly improved for general-purpose application with any standard 5-inch cathode-ray oscillograph. It incorporates a compact, all-metal, 35mm camera, calibrated shutter and a high-quality 1/2.8, 75mm, coated lens which increases its capability 57% over the Type 271-A which it supersedes. Construction is rugged and durable; operation simple and foolproof. The Type 296 weighs only $4V_2$ lbs.

PRICE. . . \$149.50

The **JUMDNT** TYPE 297 Oscillograph-record Camera

♦ You've just advanced the film after making an exposure. That starts the Polaroid-Land "packaged" developing process. And while you're waiting for its completion—in just 60 seconds—you can start the next exposure or set of exposures, With the Type 297, once you've snapped the shutter, its self-contained, 60-second, developing process lets you forget about the variables of the darkroom. And with such special oscillographic features as simultaneous viewing and recording, an illuminated data-card, sturdy and easily attached mounting, and overall economy of the Polaroid film, Du Mont has added even greater meaning to this excitingly fast method for "printing" the oscillograph image.

SPECIFICATIONS

Write for bulletin on photographic techniques.

LENS-Du Mont-Wollensak f/2.8 or f/1.9, 75mm, coated.

SHUTTER - Wollensak Alphax: shutter speeds of 1/25, 1/50, 1/100 sec. Time and Bulb. FOCUS-Fixed. May be adjusted for special oscillographic work.

WRITING SPEED-Writing rates of 3.5 in usec. have been recorded consistently at 12,000 volts accelerating potential. **PRINT SIZE** $-3\frac{1}{4} \times 4\frac{1}{4}$ in. - one, two, three, or more exposures per print. **IMAGE REDUCTION RATIO** -2.25:1.

PHYSICAL SIZE-Length, 14% in.; height, 10 in.; width, 6 in. WEIGHT-12 lbs.

ALLEN B, DU MONT LABORATORIES, INC., INSTRUMENT DIVISION, 1000 MAIN AVENUE, CLIFTON, NEW JERSEY

MANY MANUFACTURERS of ELECTRICAL EQUIPMENT are finding our CLEVELITE* and COSMALITE* . . . spirally laminated paper base phenolic tubing meets their most exacting requirements. Available in diameters, wall thicknesses and lengths to meet endless adaptations. What are your requirements?

*Trade Marks

ELECTRONICS — December, 1950

Cleveland

PHENOLIC TUBES

are the first choice of the Radio and Television Industries! For example, CLEVELITE* is the proper choice for Flyback and High Voltage Transformers.

It insures perfect satisfaction.

Furthermore, CLEVELITE* high dielectric strength . . . low moisture absorption . . . strength, low loss and good machineability meet widely varied requirements and give fine performance.

PROMPT DELIVERIES are available through our large production capacity.

Inquiries invited . . . Samples gladly sent.

Why is "dag" Colloidal Graphite best for CRT Exterior Wall Coating?

BLEED STATIC FROM CABINETS!

Static charges built up in TV sets—particularly where metal CRT's are used—can be successfully bled off by coating the inside of cabinets with "dag" Dispersion #194. This reduces picture interference and also precludes shock. Easy to apply by spraying or brushing.

It's cheaper ...Has better adhesion ...Requires no baking ...Resists scratching

"dag" Exterior Coating is a lacquer-base dispersion of microscopically small graphite particles. It is easily applied to CRT surfaces by spraying, and dries very rapidly, enabling tubes to be handled in 2 or 3 minutes. Maximum adhesion is obtained by drying at room temperature for 24 hours, or by forced infra-red drying for $\frac{1}{2}$ hour.

"**dag**" Exterior Coating forms a smooth, uniform, conductive black coating on any type glass. Its adhesive properties are so good that it will resist scratching by a thumb nail or soaking in water.

Prominent CRT manufacturers have found "**dag**" colloidal graphite dispersions satisfactory and usually cheaper for wall coatings . . . for other electronics work, too. Let Acheson Colloids engineers show YOU how these versatile dispersions can solve many and varied electronics problems. Send the coupon NOW for more information.

ACHESON COLLOIDS CORPORATION Port Huron, Michigan	
Send me more information on:	
"dag" Exterior Coating for Cathode Ray Tubes "dag" Dispersion #194 for Cabinet Coating "dag" Colloidal Graphite in Electronics	
Name	
Company Name	
City	M - 5

ACHESON Colloids Corporation

Port Huron, Michigan

also...Acheson Colloids Ltd. London, England

December, 1950 --- ELECTRONICS

WIDE-RANGE, DIRECT-READING CAPACITOR ANALYZER

A laboratory-type Capacitor Analyzer meeting the need for a highly accurate, wide-range, direct-reading measuring instrument capable of determining the essential characteristics of capacitors has been announced by the Shallcross Manufacturing Co. This versatile instrument will determine capacitance values between 5mmf. and 12,000 mfd.; insulation resistance from 1.1 to 12,000 megohms; also leakage current, dielectric strength, and percentage power factor. A divided panel carrying an outline of the operating instructions makes it readily possible to use the instrument without reference to an instruction book. The Shallcross analyzer operates on 110 volt, 60-cycle alternating current. Literature giving full details will gladly be sent on request to the Shallcross Manufacturing Company, Collingdale, Pa.

MULTI-PURPOSE TRANSMISSION TEST SET

In addition to measuring the electrical characteristics of telephone lines and equipment the new Shallcross multi-purpose transmission test set may be used for efficiency tests on local and common battery telephone lines and sets, carbon microphones, receivers, and magnetic microphones. It also provides a fast, efficient means of testing capacitors, generators, ringers, insulation resistance, dials, and continuity. Key switches and dials are used to select and control the test circuits. The 693 Transmission Test Set is powered by external batteries. It features compact, substantial construction and is fully portable, thus making it ideal for either field or laboratory use. Details may be obtained from the Shallcross Manufacturing Company, Collingdale, Pennsylvania.

SHALLCROSS MATCHES YOUR Precision Resistor Requirements!

STANDARD INDUSTRIAL USES

... over 40 economical standard types and sizes, each available in numerous mechanical and electrical adaptations. Write for Shallcross Data Bulletin R3A.

ZATION PROGRAMS

For years, Shallcross has led the way in the production of truly dependable closetolerance, high-stability resistors in miniature sizes. Standard and hermetically sealed types are available.

... for SPECIAL ASSEMBLIES

Shallcross regularly produces hundreds of special precision resistor types including precision power resistors, resistors with axial or radial leads and multiunit strip resistors (illustrated) with either inductive or non-inductive windings.

...for JAN EQUIPMENT

Shallcross is in constant touch with the latest military precision resistor requirements. The present line includes 13 types designed for JAN characteristic "B" and 4 types for characteristic "A".

... for HIGH-STABILITY APPLICATIONS

Many Shallcross Akra-Ohm resistors are available with guaranteed tolerance to 0.01% and stability to 0.003%. Matched pairs and sets are supplied to close tolerances.

SHALLCROSS MANUFACTURING COMPANY COLLINGDALE, PA.

ELECTRONICS - December, 1950

www.americanradiohistorv.com

Standard TP, torithinter Am Aliputley My MBILLING Chicago "THE STANDARD BOOSTER" INC. Los Angeles OR FRINGE AREA RECEPTION Bangor, Michigan

www.americanradiohistory.cor

After 2,000,000

TARZIAN Centre-Kooled RECTIFIERS RKES (Radio, Television and Electronics)

in service

the Sarkes Tarzian

ER RECTI

re-Koole

RECTIFIER DIVISION

- For all current and voltage ranges
- **V** Revolutionary center cooling allows complete sealing against humidity
- Small size and light weight for any power rating
- V Salt spray resistant finish on request

Take advantage of our free engineering service on all types of selenium rectifiers

Dept. H, 415 North College Avenue, Bloomington, Indiana

December, 1950 - ELECTRONICS

RESERVE YOUR COPY OF THIS NEW RESEARCH BULLETIN...NOW!

Instruments

Accelerate Research

BULLITON 15-14

Here's what it Covers!

ANALYTICAL APPARATUS

- Spectrometers
- Robotized Polarographs,
- **Titrators and Stills**

Continuous Gas Analyzers

PRECISION LABORATORY INSTRUMENTS

- Special Indicators and Recorders
- High and Low Temperature **Radiation** Pyrometers
- High Vacuum Gauges
- Pressure and Force Transducers

RESEARCH APPARATUS COMPONENTS

Converters, Motors and Amplifiers

ELECTRONICS — December, 1950

THIS unique bulletin has been built around an important compilation of reference data valuable to research, development and educational programs. It serves as a guide to the thousands of modifications of the ElectroniK Potentiometer and great numbers of Brown Electronic Components which daily are making important contributions to scientific progress. Be sure to send for your copy today! MINNEAPOLIS-HONEYWELL REGULATOR Co., Industrial Division, 4428 Wayne Ave., Philadelphia 44, Pa.

MINNEAPOLIS-HONEYWELL REGULATOR CO. Industrial Division, 4428 Wayne Ave., Philadelphia 44, Pa. Gentlemen: Please put my name on your list for a free copy of New Research Bulletin No. 15-14. Title Name

Company_

Address_

23

you can depend upon MITCHELL-RAND

TO PRODUCE WAXES AND COMPOUNDS AND SOLVE INSULATION PROBLEMS

The television industry had a serious insulation problem with fly-back transformers...all available waxes were tried and they just couldn't hold up. Mitchell-Rand undertook to develop an Impregnating and Dip Coating Wax which would stand the gaff and produced

FOR INSULATING AND MOISTURE PROOFING...AND THE PROBLEM WITH FLY-BACK TRANSFORMERS FOR TELEVISION USE IS NO MORE!

R-4005 · SPECIFICA	ATIONS
MELTING POINT (DRIP)	260/265 F
COLD FLOW (M-R)	255/260 F
PENETRATIONS	Sec. Sec.
32/200/60	10-12
77/100/5	19-21
115/50/5	28-32
COLOR	Tan
APPLICATION TEMPERATURE	285/350 F
SPECIFIC GRAVITY	0.91
FLASH POINT	490 F
SOFTENING POINT (B & R)	250/260 F
DIELECTRIC DISSIPATION	
AND POWER FACTOR	0.0054
DIELECTRIC CONSTANT	2.24

R-400

R-4005 for impregnating and dip coating coils, transformers, capacitors, etc., features high melting point, low impregnating viscosity, good electrical properties, resistance to low temperature crazing, good transparency and good adhesion. R-4005 is recommended for extreme high temperature applications on parts designed to operate up to 105-110°C, and its low temperature flexibility, coupled with its low degree of thermal shrinkage, make R-4005 well suited for units that must withstand extreme low temperatures down to minus 40°C. Its low electrical loss factor recommends R-4005 for impregnating special high quality coils. By altering wax bath temperatures and preheat cycles a wide latitude of single dip coating thicknesses can be obtained. The relatively transparent coatings are easily read through, and the surfaces obtained are semi-gloss and relatively non-blocking.

HIGH

Write for your laboratory test samples ..., free upon request.

MITCHELL-RAND INSULATION CO. Inc. 51 MURRAY STREET - Cortlandt 7-9264 - NEW YORK 7, N. Y.

ST MURRAT STREET . COrtlandt 7-9264 . NEW YORK 7, N. T

A PARTIAL LIST OF M-R PRODUCTS: FIBERGLAS VARNISHED TUBING, TAPE AND CLOTH • INSULATING PAPERS AND TWINES • CABLE FILLING AND POTHEAD COMPOUNDS • FRICTION TAPE AND SPLICE • TRANSFORMER COM-POUNDS • FIBERGLAS SATURATED SLEEVING • ASBESTOS SLEEVING AND TAPE • VARNISHED CAMBRIC CLOTH AND TAPE • MICA PLATE, TAPE, PAPER, CLOTH, TUBING • FIBERGLAS BRAIDED SLEEVING • COTTON TAPES, WEBBINGS AND SLEEVINGS • IMPREGNATED VARNISH TUBING • INSULATED VARNISHES OF ALL TYPES • EXTRUDED PLASTIC TUBING

MELTING POINT

Eimac 4-10004

POWER TETRODE

High-Power Amplifier Oscillator, Modulator

Eimac tetrode type 4-1000A is the electronic workhorse of modern communication systems. It is rated at 1000 watts of plate dissipation and is capable of efficient operation well into the vhf region. Like other Eimac tetrodes, the 4-1000A is readily 100% plate modulated.

At lower frequencies power gains of over 200 can be expected. Below 30 Mc. in normal operation 15 watts drive is sufficient to obtain output power in excess of 3000 watts per tube.

At 110 Mc. in FM broadcast service a pair of these heavy duty tubes will deliver over 5000 watts of useful power output.

In the adjacent column are highlighted typical operation data in more specific applications. Complete characteristics are compiled in a new data sheet . . . available by writing direct.

A 4-1000A is the economical vacuum-tube component for modern transmitters. Initial cost is low ... tube life is long, consequently replacements are not only infrequent but also inexpensive. Consider it for your applications ... Price \$132.00.

EITEL-McCULLOUGH, Inc. San Bruno, California

Export Agents: Frazar & Hansen, 301 Clay St., San Francisco, California

Driving Power (approx.) Useful Power Output Just off the press . . . NEW, COMPLETE 4-1000A DATA ... FREE

ELECTRONICS — December, 1950

low the Leader

EIMAC 4-1000A POWER TETRODE

Filament: Thoriated Tungsten

Voltage Current

Input Output

TYPICAL OPERATION

ELECTRICAL

General Characteristics

PLATE MODULATED RADIO FREQUENCY AMPLIFIER Class-C Telephony-Carrier Conditions

Grid-Screen Amplification Factor (avg.) Direct Interelectrode Capacitances (avg.) Grid-Plate (without shietding, base grounded)

AUDIO FREQUENCY POWER AMPLIFIER

Class-AB, (Sinusoidal wave, two tubes)

D-C Plate Voltage D-C Screen Voltage Max-Signal D-C Plate Current Effective Load, Plate-to-Plate Driving Power Max-Signal Peak A-F Grid Voltage (nor tube)

(Frequencies below 30 Mc., one tube) D-C Plate Voltage - - -D-C Screen Voltage - - -D-C Plate Current - - -Driving Power

TYPICAL OPERATION, per tube (Frequencies below 30 Mc.)

RADIO FREQUENCY POWER AMPLIFIER AND OSCILLATOR Class-C Telegraphy

(per tube) Max-Signal Plate Power Output

TYPICAL OPERATION

Driving Power Plate Power Output

D-C Plate Voltage D-C Screen Voltage D-C Plate Current

7.5 Volts 21 Amperes

0.24 uufd 27.2 uufd 7.6 uufd

5000 Volts 1000 Volts 1.00 Amps. 10,000 Ohms 0 Watts 125 Volts

3100 Watts

5500 Volts

500 Volts 500 Volts 600 Ma. 9 Watts

2630 Watts

6000 Volts 500 Volts 15 Watts .7 Amps

3400 Watts

New Driving Power Behind AMERICAN PHILLIPS SCREWS!

New Campaign Goes Direct to Retail Buyers of Phillips-fastened products

Manufacturers of all types of products know the production-savings and sales-promotion power of American Phillips Screws. And now 14,000,000 prospective buyers of those products are being introduced, through the Saturday Evening Post, to the dependable "buy sign" of the Phillips Crossed Recess (the re-

Phillips Crossed Recess (the recess with the wide center opening for easy driving). They are being told that:

is a Known Quality...a mark of Top Quality throughout the product

This campaign puts greater sales drive than ever behind American Phillips Screws...another good reason why it's good business to Phillips-fasten *your* products.

THE SATURDAY EVENING

Can you find the clue ...

... to quality? × marks the spot

4-WINGED DRIVER CAN'T SLIP OUT OF PHILLIPS TAPERED RECESS

PHILLIPS HEADquarters is this new and modern 5-acre plant at Willimantic, Conn., where American is in stronger position than ever to supply the growing demand for Phillips fasteners. There's no involves to quality when you know what clue to look for, Philips Cross. Received Head Screens any proof of estimate case in today's multifactoria. They assues Justing received on this set of the set of the set of the received of the set of the set of the set of the forest set of the forest set of the forest set of the forest set of the set

art proof of extra cace in polar's manufactories. They mance lasting, creecy-free tightness at all points of fast-inlag. He on the lookout for Philop Scews . . and as everything four attennined cars to modera beating dils.

PHILLIPS Cross-Revenand-Hend SCREWS as such as bardwart, automather and will supply suchs

ALL & GARAY LARIN BLARD + N. M. AMARDA - NAVARAL BORD + 2007MBLARD - OF ANALYSIA CAMBRING - NAVARAL ANALYSIA CAMBRING - NAVARAL - NAVARA

Yes! a PHILLIPS SCREW

AMERICAN SCREW COMPANY

Plants at: WILLIMANTIC, CONN. and NOREISTOWN, PA. Warehouses at: 589 E. ILLINOIS ST. 502 STEPHENSON BLDG. CHICAGO 11 DETROIT 2

December, 1950 - ELECTRONICS

SPECIFICATIONS

PULSE LENGTH-

Continuously variable, 0.07 to 10 µsec. Direct reading panel control.

PULSE AMPLITUDE:

50 v. into 50 Ω load. Pos. & neg. pulses. 100 v. open circuit.

AMPLITUDE CONTROL:

Continuous control throughout range, 50 db in 10 db steps. 10 db fine adjustment. ment

INTERNAL IMPEDANCE:

50 Ω or less.

PULSE SHAPE

Rise and decay time approx. 0.02 µsec. (10% to 90% amplitude.)

REPETITION RATE:

50 pps to 5,000 pps. Internally or externally controlled.

SYNC IN:

May be triggered by pos. or neg. pulse of 5 v. at rates up to 5,000 pps.

SYNC OUT-

50 v. into 200 Q load. Approx. 2 µsec long. Approx. 0.25 µsec rise time.

PULSE DELAY:

Main pulse delayable 0 to 100 μ_{sec} from sync output pulse.

PULSE ADVANCE:

Main pulse can be advanced 0 to 10 #sec from sync output pulse.

POWER SUPPLY-

110/220 v; 50/60 cps.

SIZE:

Panel 101/2" high, 19" wide. Depth 12".

PRICE:

\$550.00 f.o.b. Palo Alto.

Data Subject to Change Without Notice

CONTINUOUSLY VARIABLE, HIGH POWER PULSES OF SUPERIOR WAVE FORM!

THIS NEW -hp- 212A PULSE GENERATOR saves you time and work testing "fast" circuits as well as making everyday laboratory checks of other generators, rf circuits, peak-measuring equipment, etc. It is the first commercial pulse generator to suc-cessfully combine broad laboratory usefulness with the fast rise time, high power, variable pulsing and other features demanded in radar, television and nuclear work.

ACCURATE PULSES AT END OF LONG TRANSMISSION LINE

The pulse length is continuously variable from 0.07 µsec to 10 µsec, and is varied by a direct reading panel control. Extremely fast rise and decay time, together with freedom from ringing or overshoot provide a virtually distortion-free pulse. A low internal impedance (50 ohms or less) insures a pulse shape virtually independent of load. This low impedance also makes it possible to deliver accurate pulses at a distance from the instrument, if the transmission lines are correctly terminated.

The Model 212A's repetition rate is continuously variable from 50 to 5,000 pps. It can be controlled internally, or from an external synchronizing source. Synchronizing pulses are available from the instrument either in advance of or following the output pulse. An amplifier-attenuator output system gives a low source impedance, and makes possible continuously variable pulse amplitude, positive or negative.

Brief specifications of this new -hp- instrument are shown in the adjoining column. For complete details... see your local -hp- representative... or write to the factory.

HEWLETT-PACKARD COMPANY 2040A Page Mill Road Palo Alto, California

Export: FRAZAR & HANSEN, Ltd., 301 Clay St., San Francisco, Calif., U. S. A. Offices: New York, N.Y. and Los Angeles, Calif.

2040

PUSH-BUTTON CONTROL puts tape recording facilities at your fingertips.

High-Fidelity Tape Recorder

= NEV-

This is the world's foremost professional tape recorder, the one recorder that has everything-accurate timing,

Remote Control Unit, MI-11948. Available extra.

low wow and flutter, plus quick starting. All operations are push-button controlled. All functions-including cueing—can be extended to remote positions.

Designed for applications where operating TIME and RELIABILITY are prime factors, the new Type RT-11A Recorder offers a number of exclusive features. For example, you can start or stop the tape in 0.1 second. You can jockey the tape back and forth for cueing without stopping. You can rewind a standard 101/2-inch reel in one minute!

A synchronous capstan makes it practical to hold cording time to $\pm 2\frac{1}{2}$ seconds in a 30-minute run. And with synchronizing equipment . . . for which provision is made . . . timing can be held to 0.3 second on any length program!

Many more important features, too.

Self-centering "snap-on" hub adaptors assure perfect reel alignment with either RMA or NAB reels. A complete system of control interlocking virtually eliminates the possibility of accidentally erasing a program-makes it impossible to snarl or "spill" the tape. "Microswitch" control stops the machine if the tape is severed—applies reel brakes instantaneously. The tape automatically lifts free and clear of heads during fast forward runs or rewinds. Tape alignment over the heads is held precisely by a floating casting. Starting wow is reduced to the vanishing point.

BY ALL MEANS, call your RCA Broadcast Sales Engineer for complete details. Or mail the coupon.

RCA Engineering H	roducts
Department 36L,	
Camden, New Jerse	ey 🛛

Send me more information (including price and delivery) on your new De Luxe Tape Recorder, Type RT-11A.

In Canada: RCA VICTOR Compony Limited, Montreel

Write for Complete Literature

For regulated DC problems investigate Sorensen's line of Voltage Reference Standards, DC Supplys, and NOBATRONS

MÅNUFACTURERS OF AC LINE REGULATORS, 60 AND 400 CYCLES; REGULATED DC POWER SOURCES; ELECTRONIC Inverters; voltage reference standards; custom built transformers; saturable core reactors

December, 1950 --- ELECTRONICS

It's the new Taylor Catalog...48 factfilled pages of descriptive and engineering data on Vulcanized Fibre, Phenol Fibre and Special Laminates. If you are looking for new ways and means to improve your product, and save money too, here's an idea source guaranteed to spark the imagination and give you a hat full of hints, tips and suggestions.

In this new Taylor Catalog you will find all the details you need to know about electrical, physical and chemical properties of sheets, tubes and rods. It tells you how to design, plan, and buy for maximum economy. It offers valuable tips and suggestions on how to select the right Taylor material for the job. It shows you how to machine these versatile materials . . . gives you weights, suggested applications . . . specifications.

And that's not all! There's a lot more information as well...tables, diagrams and technical data that you'll find of constant value.

This new Taylor Laminated Plastics Catalog should be in your files. For your free copy, just fill in the coupon below . . . mail it *today* . . . we'll do the rest!

TAYLOR	FIBRE CO., Dept. E 11
Norristo	wn, Pa.
Send	me my free copy of the new Taylor
Laminate	ed Plastics Catalog
NAME	
TITLE	
COMPAN	
STREET	
	TONE CYATE

TAYLOR FIBRE CO. NORRISTOWN, PENNSYLVANIA WEST COAST FACTORY: LA VERNE, CALIF.

Now, the Potter Instrument Company offers all-in-one equipment, the features heretofore available only in separate counting systems. Two complete counting channels, a 100 kc crystal oscillator time base and unique gating circuits are combined to provide the new FREQUENCY-TIME COUNTER.

FREQUENCY MEASUREMENTS	0 to 1 mc range by counting cycles per pre-selected time or by measuring time per pre-selected count. Accuracy 0.001 % minimum.
TIME INTERVAL MEASUREMENTS	0 to 10 seconds ± 10 micro-seconds.
FREQUENCY RATIO MEASUREMENTS	Ratio of two external frequencies can be measured.
SECONDARY FREQUENCY STANDARD	100 kc crystal oscillator with divided frequencies available at 10, 1 kc and 100, 10, 1 cps.
TOTALIZING COUNTER	Six decades, pulses 0 to 1 mc, sine wave 10 cps to 1 mc.
DIRECT RPM READING TACHOMETER	Through the use of an external 60 count per revolution photoelectric disc generator an accuracy of ± 1 rpm is obtained.

FEATURES

WIDE FREQUENCY RANGE — Pulses 0 to 1 megacycle — sine waves from 10 cps to 1 mc.

EXTREMELY HIGH ACCURACY— 0.001% from D to 1 megacycle.

VERSATILITY— Frequency measurements, time intervals, frequency ratios, high speed counting, rpm measurements, and a secondary frequency standard — all in one instrument.

RAPID MEASUREMENT— No adjustments or interpolations—only a few seconds for a complete measurement.

DIRECT DECIMAL READING — Frequency or time displayed on six Potter Counter Decades using the 1-2-4-8 large neon glow lamp decimal indication. Readable even under high ambient illumination.

AUTOMATIC OR MANUAL RECYCLING — The counter will retain the measurement until reset or will automatically recycle after displaying the measurement for a selected time.

by

otter

NO ADJUSTMENT— Stable decade counter frequency dividers, rather than multivibrators are used to establish the precise time base.

DEPENDABLE — The exclusive four-lamp Potter decades provide a direct on-off indication of the counter stages without the complexity and unreliability of a readout matrix. An associated glow lamp for each tube in the counting and dividing circuits simplifies tube servicing.

PERMANENT RECORD—Other versions of the Frequency Time Counter can be supplied with high speed recording devices.

POTTER INSTRUMENT COMPANY

INCORPORATED 115 CUTTER MILL RD., GREAT NECK, NEW YORK

December, 1950 - ELECTRONICS

World Renowned for <u>Dependability</u>

To thousands of equipment manufacturers the world over—the name OHMITE has become synonymous with QUALITY. These manufacturers have put OHMITE resistance products through the most rigid of all tests—performance in the field—and these superior units have provided consistently dependable performance and long life under the most difficult operating conditions.

"Be Right with OHMITE" is more than just a slogan to these users. They know that when they specify OHMITE, they get the finest resistance equipment available—anywhere!

OHMITE MFG. CO. 4818 Flournoy St. Chicago 44, III.

RESISTANCE PROBLEMS?

— let experienced OHMITE engineers solve them for you!

SWITCHES

OHMITE

TAP

Be Right with

RHEOSTATS

RESISTORS

OHMITE

TAP SWITCHES

- PREFERRED THROUGHOUT INDUSTRY

- **CERAMIC CONSTRUCTION** provides perfect insulation, unaffected by arcing. Contacts and mechanism are entirely enclosed and protected (except for Model 111).
- 2. EXTREMELY COMPACT, yet have many high-current taps, perfectly insulated. Terminals are convenient for wiring. Back-of-panel mounting.
- **3.** SILVER-TO-SILVER CONTACTS, for high electrical conductivity. Have low surface resistance, and eliminate contact maintenance.
- 4. SELF-CLEANING ROTOR CONTACT. Slightly rounded, assuring perfect seating and producing slight rubbing motion with every operation.
- 5. "SLOW-BREAK" MECHANISM, incorporating a positive cam-and-roller. Provides "slow-break, quick-make" action, particularly suited to alternating current. Minimizes sparking, extends contact life.
- **6.** "DEAD" SWITCH SHAFT. Completely insulated from the load by a high-strength driving hub which will withstand a 2000-volt test.

5 SIZES 10 to 100 Amp. A-C

AVAILABLE IN TANDEM MOUNTINGS

Have many applications, including simultaneous control of separate circuits. Extended shafts, with universal coupling for single-knob control of two or three switches.

RHEOSTATS • RESISTORS TAP SWITCHES

www.americanradiohistory.com

They're all in our reception room

How are your chances of getting an order of Karp-built cabinets or housings these days?

They're good — particularly if the work is part of a defense contract.

While both military and civilian customers are knocking at our door defense production must be given top priority.

Actually, most of the cabinets or enclosures we make are components of equipment equally useful in peace or war. Today a majority of our regular customers are simply ordering the same things they normally buy, but in greater volume.

To customers whose products are not related to defense needs, we pledge our utmost cooperation, serving them to the full extent of our ability... in the face of the shortages and restrictions that limit all of us.

KARP METAL PRODUCTS CO., INC.

215 63rd Street • Brooklyn 20, N. Y. SPECIALISTS IN FABRICATING SHEET METAL FOR INDUSTRY

ELECTRONICS - December, 1950

TWA buys Collins whf transmitters

Collins shockmounted 17L-2 transmitter

Collins 314Y-1 remote control unit

for its entire Martin 4-0-4 fleet

By its purchase of 40 Martin 4-0-4's, which will begin to go into domestic service next spring, Trans World Airlines follows its traditionally vigorous course of progress.

Also reflecting TWA's policy of providing the most efficient air transportation that modern facilities permit, is the fact that the radio complement of every one of the new 4-0-4's will include a Collins 17L-2 vhf transmitter.

TWA engineers made a careful study of available vhf transmitting equipment. They knew that vhf communication is line-of-sight communication, noise-free within its range, but not applicable over great distances. They chose the 17L-2 largely because it had the best sizeweight to power ratio.

The 17L-2, small enough to be housed in a standard $\frac{1}{2}$ ATR size case, weighs only 19 pounds. Yet it has a power output of eight watts or better into a 52-ohm load, thus assuring that transmissions will be received and acknowledged at the busiest air terminals.

In addition, it provides fingertip remote frequency control of all 180 channels reserved for aircraft communication in the vhf band. The 314Y-1 remote control unit can be located wherever it is most convenient.

All airline operations and communications people should be fully informed about this highly developed transmitter. A descriptive bulletin will be sent you on request.

IN RADIO COMMUNICATIONS, IT'S . . .

COLLINS RADIO COMPANY, Cedar Rapids, Iowa

11 West 42nd Street, NEW YORK 18

27 West Olive Avenue, BURBANK

Now **TWA** Offers <u>All-Cargo</u> "Sky Merchant" Service Coast to Coast

TRANS WORLD ATTAL

TWA 🔤 TWA 🔤 TWA 🔤 TWA 🔤 TWA 🔤 TWA 🚞 TWA 🚞 TWA 🚞 TWA

Speed your electrical-product shipments direct at low cost between major U.S. cities

Practically anything you want to ship . . . and to almost anywhere you want to ship it . . . can now go faster, more economically and more easily via TWA's new fleet of giant, 4-engine *All-Cargo* planes . . . TWA "Sky Merchants."

planes... TWA "Sky Merchants." TWA's "Sky Merchants." TWA's "Sky Merchants" offer a new daily service to and from the principal commercial and industrial markets throughout the U.S. Direct flights, with connections serving more than 60 cities. Fast, daily service coast to coast ... overnight between most points.

TWA's new All-Cargo "Sky Merchant" fleet greatly expands TWA's air freight service ... already widely used by experienced shippers throughout the world. This dependable service with its increased facilities enables you to save transit time . . . save money . . . save work . . . beat competition . . . meet deadlines . . . increase turnover . . . increase sales.

Remember—it's good business today (and every day) to speed your large or small shipments via TWA. Phone nearest office for prompt pickup . . . rates . . . information. Write today for free Air Freight folder. Address: Cargo Sales Manager, TWA, 60 East 42nd Street, New York 17, N.Y.

	FROM	то	COMMODITY	RATE PER 100 LBS. (MINIMUM WEIGHT)
TYPICAL	Philadelphia	Chicago	Radios and parts	\$5.33
	Indianapolis	Pittsburgh	Television sets	4.46
LOW TWA	Philadelphia	Chicago	Electrical; Elec- tronic merchandise	5.33
AIR CARGO	Indianapolis	San Francisco	Recordings; Radio transcriptions	21.45
RATES	New York (Newark)	Kansas City	Tel. & Tel. instru- ments; Parts; Supplies	10.38
1.0	Chicago	Pittsburgh	Machines; Machine par <mark>ts</mark>	4.24

TWA 🔤 TWA 🔤 TWA 🔤 TWA 🔤 TWA 🚍 TWA 🚍 TWA 🚍 TWA 🔤 TWA

in twittingins early in man and p

ELECTRONICS - December, 1950

TWA

TWA __ TWA

TWA TWA

That's Why INSUROK T-725

IS USED IN THIS HIGH-FREQUENCY FUNCTION SWITCH MADE BY GRIGSBY-ALLISON COMPANY

For this four-way function switch, which selects AM, FM, phono, or TV, Grigsby-Allison had to find an insulating material which would punch readily into intricate shapes. It had to possess high impact strength so that metal T-slugs, staked by a special method, would not loosen. Finally, because of the high frequencies involved, excellent electrical properties were needed in the material—even after sanding to close tolerances.

INSUROK T-725 has just the right combination of properties to meet these requirements. Equally important, Grigsby-Allison engineers can depend on these properties remaining uniform from shipment to shipment.

0 0 -

METAL STAKING

In hundreds of similar applications, laminated and molded INSUROK are solving difficult problems for industry. Investigate INSUROK for your product, today.

Write for Descriptive Data Sheet.

*Reg. U. S. Pat. Off.

The RICHARDSON COMPANY

FOUNDED 1858-LOCKLAND, OHIO

2797 Lake St., Melrose Park, Illinois (Chicago District)

SALES OFFICES: CLEVELAND • DETROIT • INDIANAPOLIS • LOCKLAND, OHIO • MILWAUKEE • NEW BRUNSWICK, N. J. • NEW YORK • PHILADELPHIA • ROCHESTER • ST. LOUIS

December, 1950 - ELECTRONICS

You Can Depend on

or many years Daven has beeen known for the quality of its attenuators. And, although Daven production has grown to include a wide variety of instruments for the electronics industry, the development of its attenuators has grown apace. Much of the testing equipment used by Daven to guide them in the manufacturing of attenuators has been developed by Daven's own engineering specialists. As a result, Daven attenuators have become the standard of the industry, by which all other similar equipment is measured. Shown and described here are two of the newest units that are typical of the vast Daven line of attenuators. Your inquiry for specific information to apply to your own particular problems is invited. Let Daven furnish you with completely detailed catalog data.

RF Attenuation Network

for Accuracy in Attenuators

This equipment is an exclusive Daven development. It is a moderately priced attenuator inco-porated in an RF Attenuation Box to insert accurate losses from D.C. to 225 MC. The unit has many applications where attenuation of UHF is desired, since it can be utilized as an all-purpose laboratory and test instrument.

SPECIFICATIONS:

ZERO INSERTION LOSS OVER ENTIRE FREQUENCY RANGE. FREQUENCY RANGE: Zero to 225 MC. IMPEDANCE ACCURACY: Within $\pm 5\%$ over frequency

range. ATTENUATION ACCURACY: ±5% over frequency range. CONNECTORS: Receptacles are supplied. Cable plugs, if required, will be supplied at a slight additional

if required, will be supplied at a slight additional cost. When ordering, specify which type connector is desired—either Series "BNC" (UG-185/U) or Series "N" (UG-58/U).

CIRCUIT: Constant input and output impedance (unbalanced). Zero initial loss. RESISTOR ACCURACY: ±2% at D.C.

RESISTOR ACCURACT: - 2% of D.C.

Carrier Frequency Decade Attenuator

This equipment is particularly applicable to extremely accurate measurements from D.C. to 200 kc. and can be used up to the lower radio frequencies. The Decade type switches make the box convenient to use. In addition, there are switch stops which prevent return from full to zero attenuation when making adjustments. A total of 110 Db, is available in 1.0 Db. steps, or 111 Db. is available in 0.1 Db. steps. Both of these types may be obtained in either a balanced H or an unbalanced T network.

SPECIFICATIONS:

ACCURACY: Each individual resistor is adjusted within ±0.25% of its correct value. The error in attenuation is less than ±1% of the indicated value, provided the output is matched by a pure resistance.

FREQUENCY ERROR: At frequencies below 200 kc., the total error in attenuation will not be greater than \pm 1% of the indicated value.

Tubular Electrolytic

SMALLER THAN ANY OTHER **DUAL TYPE**

THE LITTLE INDIAN SAYS: , "terrific for TV!"

The new Sangamo Type FM "ARROW-HEAD" tubular electrolytic capacitor is equipped with flexible, insulated wire leads and stud terminals to make installation easier by eliminating the problem of crossed wires and the need for insulating sleeves. Sangamo Arrowheads are much smaller than wax end filled types with insulated leads-smaller than any other type with dual leads!

These capacitors are housed in round alumi-

num containers which are encased in heavy insulating sleeves with mounting strap attached, and they are especially designed for the rugged television requirements where 85° C operating temperatures are encountered.

A trial of these new dry electrolytic capacitors will convince you. See your Jobber, or write for Catalog No. 800, which gives full information on the Arrowhead and the rest of the Sangamo Tribe.

ELECTRIC SANGAMO COMPANY SPRINGFIELD, ILLINOIS

IN CANADA: SANGAMO COMPANY LIMITED, LEASIDE, ONTARIO

SC50-10.4

December, 1950 --- ELECTRONICS

EXTRA RELIABILITY

G-E transmitting tubes have it! So ... Mr. Manufacturer... specify General Electric, to design max dependability into your radio equipment!

HERE are tubes better-built by G.E. for better performance! Each has that something extra in design, in manufacture, which means real dependability when the chips are down and your equipment is working peak-load and full-time.

GL-5686 . . . It's a new nine-pin miniature that does the work of a 6AO5 or 6AR5-does it consistently, because every tube gets 50 hours' service at the factory under Class A conditions, with frequent samples also being selected for full life tests. You can bank on the GL-5686!

GL-807 ... The G-E grid construction is substantial and strongwill stand up under punishment. Moreover, special G-E development work in metals and other substances gives this tube premium quality from cap-terminal through to base-pins.

GL-813 . . . Superior G-E internal shielding, in the form of a large ground-plane barrier, gives ample protection against feedback-cuts down sharply on the need to neutralize. Improved design joins with precision G-E manufacture to offer you the leading beam power tube in its class.

Why not ensure your new transmitter's performance by choosing these and other G-E tubes your customers can count on, day-in and day-out? Just write for data sheets that give all ratings, in all classes of service. Or better, ask for the help of expert G-E tube engineers, who will be glad to consult with you personally on applications. Address Electronics Department, General Electric Co., Schenectady 5, N.Y.

TYPICAL OPERATION, CLASS C TELEGRAPHY

	GL-5686	GL-807	GL-813
Plate voltage	250 v	600 v	2,000 v
Plate current	40 m a	100 ma	180 ma
Driving power (approx)	0.15 w	0.2 w	1.9 w
Power output (approx)	6. <mark>5 w</mark>	40 w	275 w
Max plate dissipation	7.5 w	25 w	100 w
Freq. at max ratings	160 mc	60 mc	30 mc

ELECTRONICS - December, 1950

GL-813

ELECTRIC

when they specified Blaw-Knox Towers for their powerful new AM, FM, TV station!

WERE's technicians couldn't actually see Blaw-Knox engineering or point to Blaw-Knox long experience in tower-building, or show off the inherent strength and efficiency of these towers—but they knew they were all there! Hence their choice. ... A quotation will prove that there's no premium

on Blaw-Knox quality. BLAW-KNOX DIVISION

OF BLAW-KNOX COMPANY 2077 Farmers Bank Building, Pittsburgh, Pa.

December, 1950 - ELECTRONICS

Deshibuted by Grayba

BLAW-KNOX ANTENNA TOWE

CLARE^{Hermetically} Sealed RELAYS

Offer the utmost perfection in True Hermetic Sealing

Here Is What CLARE Hermetic Sealing Means:

(3)

After assembly in the container, the enclosure is attached to a high vacuum pump and pumped down to a few microns pressure to remove all traces of moisture and gases.

While under this extreme vacuum, the enclosure and seals are tested for leaks by means of a Mass Spectrometer—a device so sensitive that it can detect a leak so tiny that more than thirty-one years would be required for one cubic centimeter of air to pass through it. This highly refined method of leak testing causes rejection of many enclosures which could pass the usual immersion tests without detection.

For most applications, the enclosure is then filled with dry nitrogen, which has a relatively high arcing potential.

Write for CLARE Bulletin No. 114

CLARE Hermetically Sealed Relays Protect Against These Conditions:

- Moisture, High Humidity and Ice
- Salt Air and Spray
- Fungus Growth

0

- Varying Air Pressure
- Variation of Air Density
- Dust and Dirt
- Corrosive Fumes
- Explosive Atmospheres
- Tampering

Clare Hermetically Sealed Relays are *air-tight* so that no gas or spirit can enter or escape.

This ideal condition, now available to every user of CLARE hermetically sealed relays, is the result of many years of painstaking research by the CLARE organization to produce a perfectly sealed relay at a reasonable cost to industrial relay buyers.

Hermetically sealed in an ideal atmosphere of dry inert gas, they are permanently immune to the difficult climatic and environmental conditions responsible for 95% of the failures of exposed electrical apparatus.

CLARE has today—or can provide you with—the hermetically sealed relay that you require. Over forty different series of CLARE hermetically sealed relays are described in Bulletin No. 114. Within each series, innumerable variations of coil and contact specifications are possible. Numerous other special sealed-relay units are also available.

Clare sales engineers are located in principal cities to assist you in the selection of just the right relay for your specific requirement. Look them up in your telephone directory or write: C. P. Clare & Co., 4719 West Sunnyside Ave., Chicago 30, Illinois. In Canada: Canadian Line Materials Ltd., Toronto 13. Cable Address: CLARELAY.

... First in the Industrial Field

One of four 119-foot annealing furnaces built by Surface Combustion Co., and The Electric Furnace Co., for Scovill Manufacturing Company's new \$10 million continuous strip mill. Crediting L&N D.A.T. pyrometric control on all these furnaces, Scovill says: "D.A.T. is taking a big part in helping us turn out the most uniform, high-quality brass we've ever made." Sheet is annealed in 2,000-lb coils; capacity is 32,500 lbs. per hour per furnace.

THIS "PACKAGE" OF CONTROL FITS ITSELF TO FURNACE NEEDS

And Only L&N Can Supply All Its Features!

SCOVILL'S latest success in controlling temperatures in brass strip-annealing furnaces is doubly interesting because it shows what can be done with other thousands of industrial furnaces. Small units may need only one instrument, instead of Scovill's five per furnace, but the principle's the same. Any furnace which can be controlled by turning fuel "on" at a predetermined low temperature, and turning it "off" at a predetermined high, will get its best possible regulation by D.A.T. Control.

D.A.T. excels for two reasons. First, it takes the "predetermined" out of the on-off action. Second, it adds full proportioning action. Instead of operating at predetermined temperatures, D.A.T. acts earlier or later, depending on change in heat demand. Only D.A.T. supplies all these features.

Increased production resulting from unusual uniformity is the great advantage of D.A.T. but other points are worth remembering: (1) Fuel can often be saved because less heat is lost up the stack. (2) Valve and burner sizes are not particularly critical. (3) D.A.T. can often modernize an old furnace, because it's so easy to install.

D.A.T. is just one of several L&N Controls. Call us for service or information in selecting equipment for any temperature-control problem. Address nearest office or 4979 Stenton Ave., Philadelphia 44, Pa.

TYPICAL RESULTS

D.A.T. exactly adapts its action to the upsets, load changes and lags of the furnace. This means it holds temperature in line for all normal changes in furnace charge, ambient temperature, temperature control point, etc.

D.A.T. offsets many inherent lags or delays in "sensing" temperature changes, such as that due to thermocouple protecting tubes.

D.A.T. operates equally well on furnaces of full-muffle, semimuffle, open firing and conventional radiant-tube design.

December, 1950 --- ELECTRONICS

www.americapradiohistory.com

42

Here's the motor that "couldn't be built"!

It's the Holtzer-Cabot quiet-running capacitor motor – the motor that powers the Nesbitt schoolroom ventilating unit.

Previously, the hum of A.C. motors powering these units had proved so distracting as to be impractical. Hence, when alternating current only was available, motor-generator sets were required to convert to D.C.; but this arrangement was not too satisfactory because of the excessive additional cost.

Quite a problem!

The obvious solution was a really quiet A.C. motor - something that had never been achieved up to that time. Holtzer-Cabot engineers went to work on the problem. The result was an A.C. motor that performed perfectly . . . and silently!

Today, schools from coast to coast are using Nesbitt ventilator units in each room to furnish a continuing supply of fresh sweet air. These units, many of which are powered by Holtzer-Cabot motors, operate efficiently and quietly, and make possible full concentration in the classroom.

This is just another example of Holtzer-Cabot's ability to meet the most exacting specifications in small-motor applications. Holtzer-Cabot motors range from 1/2000 up through 1½ H.P., from 24,000 RPM to 1 revolution per day!

HOLTZER-CABOT

The Holtzer-Cabot RWC-6417, an improved version of the first silent A.C. motor developed to Nesbitt Co. specifications. Single phase, 1/12 H.P. single value capacitor type, with totally enclosed wool-packed sleeve bearing and a resilient base mounting. Shaft is 43" overall, 34" in diameter, adjustable variable speed. Gives trouble-free performance.

BOSTON 19, MASSACHUSETTS Manufacturers of fine electrical apparatus since 1875

DIVISION OF NATIONAL PNEUMATIC CO., INC.

INVESTIGATE NOW... Holtzer-Cabot welcomes inquiries involving special motors

photo courtesy of John J. Nesbitt Co., Inc.

₹ 3 x .0015

ACTUAL SIZE

for by-passing and coupling applications

High capacity in extremely compact size is the distinguishing feature of Erie Disc and Plate Ceramicons. Illustrations are exact size, and their shape as well as their compactness make them amazingly easy to install in small spaces. They simplify soldering and wiring operations and speed up the assembly line.

R 002

Erie Disc and Plate Ceramicons consist of α flat ceramic dielectric with silver plates

ERIE STYLE	SIZE	CAPACITY	STAMPING
831	5/16" Max. Dia.	800 MMF	3R 800
	3/"	.001 MFD	R .001
801	B Die	.0015 MFD	R .0015
	max. Dia.	.002 MFD	FR .0,02
811	¹⁹ / ₃₂ Max. Dia.	.005 MFD	FR .005
821	Max. Dia.	.01 MFD	R 01
	10/ //	Dual .001 MFD	3R 2 x .001
812	/32	Dual .0015 MFD	R 2 x .0015
	max. Dia.	Dual .002 MFD	R 2 x .002
800	3/4"	Dual .003 MFD	R 2 x .003
011	Max. Dia.	Dual .004 MFD	F 2 x .004
883	%" x 3/4" Max.	Triple .0015 MFD	F 3 x .0015

fired onto the dielectric. Lead wires of 24 gauge tinned copper wire are firmly soldered to the silver electrodes and the unit is given a protective coating of phenolic.

Such simplicity of construction results in low series inductance and unusual efficiency in high frequency by-passing.

For complete information and samples to meet your particular needs, write us today.

SPECIFICATIONS

Voltage: Units are rated at 500 VDC. Dielectric strength test; 1.500 VDC.

Power Factor: 2.5% max. at 1 K.C. at not more than 5 volts RMS.

Insulation Resistance: 7,500 meg. Ω min.

Capacity: Capacity measurements are made at room temperature (25° C) at 1 K.C. and at not more than 5 Volts RMS. Standard tolerance is $\pm 100\%$, -0%.

Temperature Characteristics:

Capacitance shall not decrease more than 50%, nor increase more than 25% from its value at room temperature (25° C), as the temperature is varied from $\pm 10^{\circ}$ C to $\pm 75^{\circ}$ C.

December, 1950 - ELECTRONICS

Electronics Division

ERIE RESISTOR CORP., ERIE, PA.

Ask for this 88-page technical guide to the use of relays and switches

Relays and Switches

·波尔尔普尔中

relays

INDUSTRIAL CONTROL Relays Switches Telephone Type Components

for

Class "B" Relays—For extremely high speed operation and for time delays on either "operate" or "release" strokes. Available for either d-c or a-c operation.

Class "S" Relays—Astonishing power in a small, light weight relay. Hermetically sealed if desired. Unaffected by vibration, temperature, humidity. Coils up to 10,000 ohms or more.

Type 44 Stepping Switch—For d-c operation, tiny, light weight. Accommodates up to 6 bank levels with 10 points plus "home." Adaptable to 10-, 20or 30-point operation.

Type 45 Stepping Switch—For d-c operation, or supplied with built-in rectifier for a-c operation. Accommodates up to 10 or more bank levels. Adaptable to 25- or 50-point selection.

switches

Catalog No. 4071-F

For any product — for any purpose where you need relays or stepping switches—there is an Automatic Electric unit that's exactly RIGHT. Only a few are shown at the left, but all are illustrated and described in our big new catalog 4071-F.

AUTOMATIL @ ELECTRIC

Here are complete specifications and performance and mounting data on the wide range of components manufactured by Automatic Electric Company for communication, signaling, and industrial electrical control service. Here you'll find units for your jobs—including hermetically sealed and low-capacitance relays, and the most compact stepping switch on the market! Write for your copy of this new catalog. Address: AUTOMATIC ELECTRIC SALES CORPORATION, 1033 West Van Buren Street, Chicago 7, Illinois. In Canada: Automatic Electric (Canada) Ltd., Toronto. Offices in Principal Cities.

Automatic 1 1033 West Chicago 7,	Electric Sales Corporation Van Buren Street Illinois
Gentlemen Please send	: I me a copy of Catalog No. 4071-F. I an ny business letterhead and address.
attacting in	.,
Name	
Name Title	

NEW

DRIVER-HARRIS ELECTRONIC TESTING

Obsoletes Previous Methods of Testing Enameled Wire Insulation

In order to guarantee the quality of a spool of enameled wire, every inch of the wire should be checked for dielectric faults, not just a few feet. In general practice, however, only a short sample of wire is examined. This is passed through a mercury cup held at a fixed potential, and shorts through the insulation are indicated on a voltmeter. If faults do not exceed a specified maximum for a given length of wire, insulation throughout the <u>entire</u> spool is assumed to be satisfactory.

This inefficient, compromise method has two important disadvantages: (1) the small portion of wire tested may not truly represent the condition of insulation throughout the spool; (2) insulation failures are not discovered until long after the enameling process is completed.

By checking insulation continuously, as wire leaves the enameling furnaces—the only 100% dependable way—

Makers of world-famous Nichrome® and over 80 alloys for the electrical, electronic and heat-treating fields

Driver-Harris

HARRISON, NEW JERSEY

BRANCHES: Chicago, Detroit, Cleveland, Los Angeles, San Francisco Manufactured and sold in Canada by The B. GREENING WIRE COMPANY, LTD., Hamilton, Ontario, Canada

This revolutionary Dielectric Continuity Tester at Driver-Harris checks the quality of coating on 19 strands of wire simultaneoualy—as the wire leaves enameling furnaces. Tap switches on the test units are calibrated in impulses per minute required to operate an alarm. With the speed of the wire knewn, and also the maximum number of faults per 100 feet permitted by specification, each test unit is readily set to operate in conformance with the terms of the test imposec.

Driver-Harris' new test equipment obsoletes such ineffectual and wasteful procedure.

So long as specifications are met, the new Driver-Harris electronic tester permits the enameling process to continue uninterrupted. When the <u>rate</u> at which faults occur approaches the maximum number of faults permitted by specifications, the test mechanism sounds an alarm and a record is made on a moving chart.

In this way, enamel coating is not only tested for continuity throughout the entire length of spooled wire, but sub-standard enameling is detected—and can be corrected —as soon as it occurs.

Thus makers of wire-wound resistors—particularly in finer sized wire, where shorts are more likely to occur—are enabled to eliminate time-waste and material-waste in their production, and obtain superior, more dependable products.

*T. M. Reg. U. S. Pat. Off.

December, 1950 — ELECTRONICS

IMPEDANCE MEASUREMENTS

SPEED AND CONVENIENCE

Rapid, accurate measurement of impedance, reflection coefficient and standing wave ratio. Small size, convenient for field use.

50 to 500 Mc.

Can be inserted in various sizes of solid coaxial line or flexible cables.

Make three readings, plot diagram and read off impedance to \pm 5%.

\$400.00,

FTL-42A IMPEDOMETER

PRECISION

Precise impedance measurements in the range of 60 to 1000 megacycles per second. Accuracy $\pm 2\%$.

1000 to 2000 Mc range covered with slightly reduced accuracy.

Coaxial line 250 centimeters long having a surge impedance of 51.0 ohms \pm 0.5 ohms.

\$2,495.00.

FTL-30A SLOTTED LINE

Write for FTL-30A and FTL-42A brochures

ELECTRONICS - December, 1950

Federal Telecommunication Laboratories, Inc.

500 Washington Avenue

Nutley 10, New Jersey

ELECTRONICS

ELECTRONIC COMPONENTS A HIGHEST QUALITY LINE

-constantly improved and added to -

APPARATUS DEPARTMENT

• Timers

Selsyns

Relays

Amplidynes

Amplistats

Thermistors

Dynamotors

Terminal boards

Glass bushings

Control switches

- Meters and instruments
- Capacitors
- Transformers
- · Pulse-forming networks
- Delay line
- Reactors
- Thyrite
- Inductrols
- Voltage stabilizers
- Fractional hp motors

ELECTRONICS DEPARTMENT

- Tubes
- Television components
- Phono pickups
- Speakers
- Quartz crystal units
 - Germanium diodes

for your equipment designs

eners

When you're building any of thousands of complex industrial and military electronic devices, reliable components are a must.

To give you, the designers of these devices, the utmost in reliability, General Electric is constantly at work improving and redesigning in its ever growing line of electronic components.

The list at left only partially covers the thousands of parts in the complete G-E line. We'll tell you about as many of them as space will permit in these pages from month to month. Apparatus Department, General Electric Company, Schenectady 5, N.Y.

FIFFF +++++

LINE-VOLTAGE STABILIZERS — get rid of ups and downs!

When you're after a steady 115 volts at the input of your equipment and the line is fluctuating anywhere between 95 and 130, use a G-E voltage stabilizer. These units use a special transformer circuit to provide a stabilized output voltage within $\pm 1\%$ of 115 volts for fixed, unity-powerfactor loads. Fast response of G-E stabilizer restores normal output voltage in less than three cycles. 15-, 25- and 50-va stabilizers are small enough to mount on radio or electronic instrument chassis (2 inches high, 9 inches long). Standard ratings up to 5000 va are available in larger sizes. Write for Bulletin GEA-3634.

TYPE HMA RELAYS-up to 30 amps, closing

The G-E Type HMA relay is only the size of cigarette package, but it closes at currents up to 30 amperes! HMA relays have self aligning, silver-to-silver contacts; are positive in action, instantaneous in operation. They're available in either back or front connected models. For coil voltages of 6, 12, 24, 32, 48, or 125 d-c; 115 or 230 a-c. Single- or double-break contacts. Bulletin GEA-5457.

ELECTRONICS — December, 1950

R varies inversely as E⁴

With the unique electrical property of varying inversely in resistance as the fourth power (or even higher) of the applied voltage, Thyrite* resistance material has solved many problems for the design engineer.

Use it with a-c, d-c, or short duration pulses; for such applications as the limiting of voltage surges, stabilization of rectifier output voltages, controlling of voltage-selective circuits, and potentiometer division of voltages.

Thyrite comes in disk form in diameters from 0.25 to 6.00 inches, with or without mounting holes. Smaller sizes are furnished with wire leads. See Bulletin GEA-4138.

*Registered Trade Mark of General Electric Co.

General Electric Company, Apparatus Department, Sch	Section D667-8 enectady <mark>5, N.</mark> Y.
Please send me the following bu	lletins:
Indicate (V) for reference only (X) for planning an immediate project	 GEA-3634 Voltage stabilizers GEA-4138 Thyrite GEA-5457 HMA relays
Name	
Company	
Address	
City	State

SEGMENTED DEFLECTION YOKE CORES

This popular 4-segment design is highly efficient. It is easy to handle in TV production work and assures a minimum of breakage. 2-segment types are also available.

CERAMIC CORES THAT SET THE QUALITY STANDARDS

> The tremendous advance in the use of metallic oxide (non-metallic) cores has been due in large part to Stackpole powder molding experience which paved the way to fully dependable units in production quantities. Stackpole Ceramag Cores assure lower losses with higher operating efficiency, lower operating temperatures, lighter weight, smaller sizes, maximum permeability, less corona effect and minimum cost. Ceramag cores are made in two grades for high and low flux densities.

"U" and "E" CORES FOR FLYBACK TRANSFORMERS

Permeability of these Stackpole Ceramag Coresis of the order of 10 to 1 by comparison with conventional iron cores. They are materially smaller, have higher resistance and operate much cooler due to the absence of eddy current losses. Many special types are regularly produced.

TELEVISION IMAGE W-I-D-T-H CONTROL TYPES

These Stackpole Ceramag Cores assure remarkably higher standards of efficiency for TV horizontal image deflection circuits. In areas where there is a low line voltage, they give ratios of from 1 to 8 or more compared with 1-5 for previous high permeability types.

December, 1950 ---- ELECTRONICS

G-610 TRIAXIAL

a NEW loudspeaker which for the first time spans the full frequency range of the ear!

A new, skillfully integrated combination of three independently-driven units . . . two compression driver and horn combinations, plus heavy-duty direct radiator . . . with 2-channel electrical crossover and control network . . . achieving the widest frequency range and finest reproduction ever attained!

Write for Data Sheets 160 and 152 = hich describe the G-610 and other Genuine Jensen Wide Range Speakers.

JENSEN MANUFACTURING COMPANY Division of the Muter Company 6607 So. Laramie Ave., Chicago 33, POrtsmouth 7-7600 In Canada: Copper Wire Products, Ltd., 351 Carlew, Toronto

ELECTRONICS - December, 1950

Real hope and a series of the series of the

Worlds Star

On your products, too, INDIANA HYFLUX* Alnico V can give you better magnet performance. It's the *world's strongest* permanent magnet material—proved on countless different jobs by *leading users* everywhere. Get the facts on HYFLUX now. Write today for literature.

THE INDIANA STEEL PRODUCTS COMPANY

*Available only from The Indiana Steel Products Company. Specialists in Packaged Energy Since 1908 VALPARAISO • INDIANA BOSTON • CHICAGO • CLEVELAND • LOS ANGELES NEW YORK • PHILADELPHIA • ROCHESTER

December, 1950 - ELECTRONICS

Available Now! CRITICAL TV COMPONENTS

DEALERS AND SERVICEMEN—Your share of today's multi-million dollar TV replacement market is limited only by your ability to handle it. Now you can get *ferrite transformers, ferrite core yokes,* linearity controls, focus coils—the vital TV components you need—from one dependable source—General Electric! Don't wait to cash in on the biggest *new* business in television history—call your distributor today and stock the General Electric line! **RECEIVER MANUFACTURERS**—Here's a way to cut production headaches and manufacturing costs! You simplify ordering and delivery when you design G-E components into your sets. Remember, too, that your sets will be serviced *in the field* because G-E distributors and dealers everywhere stock these parts. Let us review your requirements for next year's production right now. General Electric application engineers are at your service.

ELECTRONICS - December, 1950

REPRESENTE SEALING COMPONENTS

Welcomes Exacting Demands

CORPORATION

NEO-SIL is the result of ten years of engineering research and development. Its application to our hermetic sealing components has been proven under severe and exacting tests in both our own and our customers laboratories. NEO-SIL components will help reduce your rejects resulting from breakage, strain, cracks, physical shock, etc.

NEO-SIL components will pass the grade one, class A requirements for Army, Navy and aircraft military equipment.

It costs no more to use these hermetic sealing components and their use will save you money.

For performance, quality and economyspecify NEO-SIL hermetic sealing components. Manufactured by NEO-SIL Corporation-to meet the most exacting performance demands.

SPECIALTY PRODUCTS

- 1 Molded Cables With Plugs Attached
- 2 Female 4 Pin Panel Connector
- 3 Meter Hermetic Seal Gasket
- 4 Panel Type Hermetic Seal Fuse Holder
- 5 5 Pin Female Panel Connector
- 6 Rotary Hermetically Sealing Panel Bushing
- The above items are all pressure checked at 25 pounds per square inch.

The materials and processes used in the manufacture of all sealed components are made to conform to the most rigid JAN specifications.

Your special problems are solicited.

NEO-SIL TECHNICAL DATA

NEO-SIL is a synthetic compound, which was developed expressly for the purpose of providing a suitable insulating material, which could be satisfactorily bonded to various metals, under a wide range of temperatures, be impervious to most acids and alkalies, provide a comparatively non-wetting surface, have a high insulation resistance, and meet the exacting requirements of the Janization program of the Armed Services. These compounds, in their various forms, produce component parts which are able to meet these exacting requirements.

TEST DATA

The result of the Electrical Testing Laboratories Inc., Report #330655, dated March 18, 1949, on this material shows the following:

v	olume Resistivity at	800 Volts d-c
Room Te	mperature 25°C	R.H. 30 percent
Meg	ohm-inches	ohm-centimeters
1	.4 x 10	3.5×10^{12}
Diele	ctric Constant and E	Dissipation Factor
Dielectric	Dissibation	
Constant	Factor	Loss Factor
	(1 60 cycles per s	econd
9.22	.058	5.32
	fit I megacycle pe	r second
6.17	.0455	.28
	fit 50 megacycles	per second
5.35	0.20	1.1
	Dielectric Strength :	at 60 cvcles
	Volts per mil -	- 370
Durom	eter Average - 80	* 5
Temper	rature - Rated as a	Class A material con-
servativel	$y + 105^{\circ} to -70^{\circ}$	centigrade.
The Fla	ashover Voltages inc	licated were taken at
a tempera	ature of 68° Fabren	heit and 47% Rela
tive Humi	dity.	non, and 47 % Rela-

26 CORNELISON AVE., JERSEY CITY 4, N. J.

December, 1950 - ELECTRONICS

If you are in need of accurate test equipment why not consult with PRD? You'll no doubt find we have just the item you require. Consider, for example, the versatile new instruments illustrated on this page which embody the carefully thought out design features characteristic of all of PRD's precision test equipment. These and many other new instruments are now being offered to fulfill your VHF, UHF, and microwave requirements.

TYPE 904 VHF-UHF NOISE GENERATOR — This calibrated broadband noise source permits direct measurement of noise factors as high as 20 db for r-f amplifiers and receivers operating in the range from 10 to 1000 mc/sec.

For complete information and a copy of our latest catalog, write to Department E-10.

TYPE 650 UNIVERSAL POWER BRIDGE — This direct-reading bridge may be used with either positive or negative temperature co-efficient bolometers for the accurate determination of r-f power. Full scale ranges of 0.1, 1.0, 10, and 100 milliwatts permit measurement over a wide range of power levels.

TYPES 902 and 903 BROADBAND MICRO-WAVE SIGNAL GENERATORS — These new instruments furnish c-w, pulsed, or frequency modulated r-f signals for the 3650-7300 and 6800-10,900 mc/sec. bands. Direct reading frequency dials and automatic mode tracking are employed, together with a 0-120 db cutoff attenuator calibrated directly in -dbm.

ELECTRONICS — December, 1950

MINIATURE TUBE SOCKETS

7-PIN and 9-PIN... and SUBMINIATURES

Now MYCALEX offers both 7-pin and y-pun miniature tube sockets . . . with superior low loss insulating properties, at prices that offer ceramic quality for the cost of phenolics.

PREMIUM INSULATION

PRICED COMPETITIVELY

MYCALEX miniature tube sockets are injection moulded with precision that affords uniformity and extremely close tolerances. MYCALEX insulation has high dielectric strength, very low dielectric loss, high arc resistance and great dimensional stability.

Produced in two grades: MYCALEX 410 conforms to Grade L4 specifications, having a loss factor of only .015 at 1 MC. It is priced comparably with mica filled phenolics.

MYCALEX 410X is for applications where low cost of parts is vital. It has a loss factor only one-fourth that of "everyday" quality insulating materials, and a cost no greater.

Prices gladly quoted on your specific requirements. Samples and data sheets by return mail. Our engineers will cooperate in solving your problems of design and cost.

Mycalex Tube Socket Corporation

"Under Exclusive License of Mycalex Corporation of America" 30 Rockefeller Plaza, New York 20, N. Y.

MYCALEX CORP. OF AMERICA

"Owners of 'MYCALEX' Patents"

Executive Offices: 30 Rockefeller Plaza, New York 20, N. Y.

Plant and General Offices: Clifton, N. J.

December, 1950 — ELECTRONICS

CERAMIC DISK CAPACITORS

PRODUCED BY THE MILLIONS - by the top specialists in the ceramic field

HI-Q Ceramic Disk Capacitors for by-passing, blocking, or coupling are being used by the millions by television receiver manufacturers who demand the utmost in performance.

Unit cost, time and labor may be saved by using several of the multiple capacity HI-Q Disks where applicable in your television circuit. Multiple capacities having a common ground are available in standard units as shown in the chart below. HI-Q Disks are coated with a nonhydroscopic phenolic to insure protection against moisture and high humidities. HI-Q Disks like all other HI-Q components assure you of the highest quality workmanship at the lowest possible cost.

Our Engineers are ready and willing to discuss the application of these highly efficient, dependable capacitors in your circuits. Write today for your FREE copy of the new HI-Q Datalog.

H-2 - +2+	Туре	A Diameter	B Lead Width	C Thickness
BPD.01 HI-9	B.P.D00047	5∕16″ max.	3/16" + 1/16"	5⁄32 ^{′′} max.
BPD .OI	B.P.D0008	5/16″ max.	3/16" + 1/16"	5⁄32″ max.
	B.P.D001	3⁄8″ max.	1/4" + 1/16"	5∕32 [™] max.
	B.P.D0015	3⁄8″ max.	1/4" + 1/16"	5∕32″ max.
3= 3 12	B.P.D002	7⁄16 ¹¹ max.	$\frac{1}{4}'' + \frac{1}{8}'' = 0$	5⁄32″ max.
	B.P.D004	19/32" max.	$\frac{1}{4''} + \frac{1}{8}$	5∕32″ max.
	B.P.D005	19/32 ¹¹ max.	1/4" + 1/8	5⁄32″ max.
	B.P.D01	3⁄4″ max.	3⁄8″ <u>+</u> 1⁄8″	⁵⁄32″ max.
LIL G	B.P.D. 2x.001	¹⁹ / ₃₂ " max.	3/8" + 1/8"	5/32" max.
TITS	B.P.D. 2x.0015	19/32" max.	3/8" + 1/8"	5⁄32″ max.
COMPONENTS	B.P.D. 2x.002	19/32" max.	3/8" + 1/8"	\$⁄32″ max.
Canacitors	B.P.D. 2x.003	3⁄4″ max.	3/8" ⁺ / ₋ 1/8"	\$⁄32″ max.
Capte Choke Coils	B.P.D. 2x.004	3⁄4″ max.	³ /8 ^{''} ⁺ ¹ /8 ^{''}	\$⁄32" max.
Trimmers Wound Resistors	B.P.D. 3x.0015	³⁄₄″ max.	3/8" + 1/8"	\$⁄32″ max.
Wire WOOL A WAYS	B.P.D. 3x.002	3⁄4″ max.	3⁄8″ + 1⁄8″	5⁄32″ max.
BETTER DEPENDABILITY	Insulation: Durez and Wax in Leads: 22 gauge pure tinned Capacity: Guoranteed minin All capacitance measur at 1 KC at a test voitag	npregnated. dead soft copper. um as stumped. ements made at 25°C e not aver 5 volts RMS.	Insulation Resistance : Power Factor : Max. 2. over 5 volts RMS. Test Voltage : 1500 volt	7500 megohms min, 5% at 1 KC at nat 1s D. C.
PRECISION	JOBBERS - ADI	DRESS: 740 Bellevill	e Ave., New Bedford,	, Mass.
VU0 8	lectrical ;	Reacta	nce Co	np.

SALES OFFICES: New York, Philadelphia Detroit, Chicago, Los Angeles

OLEAN, N.Y.

PLANTS: Olean, N.Y., Franklinville, N.Y. Jessup, Pa., Myrtle Beach, S.C.,

Potter & Brumfield's MT Relay the SMALLEST, MOST VERSATI telephone relay available

Rugged, compact (Miniature Telephone) Assembly saves over one-third chassis mounting space, guarantees trouble-free operation. Supplied open or hermetically sealed.

- FOUR MODELS FOR EVERY APPLICATION MTfor DC voltage operation MTAfor 60 cycle AC voltage 🕜 MTLfor sensitive DC current
 - AND ...

1 the NEW MTM

with MICROSWITCHES - AC or DC with Michael -for snap-action performance severe conditions. SHOCK and VIBRATION to BETTER 74 74 74

• Up to 16 contact springs-6 movable poles. • Bifurcated palladium or sin-

gle silver contacts up to 5 amperes.

• Maximum winding 22,000 ohms.

• Maximum sensitivity 50 M W per movable pole.

• Maximum coil dissipation 5 watts.

- Hum free on 60 cycles.
- 10 G with low coil wattage.

MTM is equipped with from one to four 1SM1 microswitches. Provides smallest size for highest shock and contact load. • Silver contacts rated 5 amperes. • One to four switches—4 form C. • Wide Temperature range. • Open or hermetically sealed.

50 9

> Potter & Brumfield is equipped to hermetically seal or enclose in dust cover any of the above relays.

Actual Size: 11/16" wide x 11/2" long

Model M1 Chassis space 1" x 1"1%" Height 25%" Up to 18 solder terminals

hensive catalog No. 109. Write today for your free copy.

problem. Forward specifications for samples and quotations.

-2 microswitches

Actual Size -2 micros 11/16" x 13/8" x 11/2"

Complete information on these assemblies as well as Potter & Brum-

field's full line of standard and special relays, timers, shaded pole

motors, and electro-mechanical assemblies is available in new compre-

P & B engineers are always ready to help solve your particular relay

ENCLOSURES

Model K2 Chassis space 1% " x 1¹³‰" Height 23‰" Octal Plug

Model P2-Clear polystyrene Chassis space 1½" x 1½" Height 2" Octal Plug

Actual Size 4 microswitches 11/16" x 178" x 1/2" high

Standard P & B relays are available at your local electronics parts distributor.

ELECTRONICS - December, 1950

nev

ACTUAL

Fit anywhere!

Suitable for 85°C. operation!

CAPACITANCE RANGE: .0001 TO .5 MFD.

VOLTAGE RANGE: 200 TO 600 V., INCLUSIVE

Sturdily built in phenolicimpregnated tubes. Ends are plastic-sealed.

WRITE FOR COMPLETE LITERATURE Representatives and Distributors Throughout the U.S.A. and Canada

PYRAMID ELECTRIC COMPANY 155 Oxford Streef Paterson, N. J., U.S.A. TELEGRAMS: WUX Paterson, N. J. CABLE ADDRESS: Pyramidusa

BUSINESS BRIEFS

By W. W. MacDONALD

Color Television has, for the moment, swept mobilization planning from the front page. Talk with anyone in our business about anything at all for more than a few minutes and it comes up. FCC-CBS ears must ring.

Parable for which we are indebted to Charlie Hirsch of Hazeltine:

"It seems the FCC wanted to adopt a child and found a yearold infant having desirable characteristics. But the child could not feed itself. Assured by psychologists that the child would surely be able to feed itself in another year and would steadily improve in other respects, the Commissioners nevertheless professed disbelief and looked elsewhere.

At the zoo they found a monkey. It was about the same size as a year-old child and had been feeding itself for the last ten years. So the FCC adopted the monkey."

SMPTE Conventioneers at Lake Placid listened to 43 technical papers. Of these, 14 were about television.

Quoting DuMont's Goldsmith: "Color films are not plentiful. Even if they were, no one has yet built teletranscription equipment capable of putting them on the air under the new FCC color television standards. Stations planning to transmit in color may have to operate quite a while using live talent, without benefit of films."

Magnetic Recording is rapidly becoming standard practice in Hollywood for original sound takes. Paramount, for example, recorded the sound for its last 21 movies that way, using 10 million feet of $17\frac{1}{2}$ -mm oxide-coated film rather than tape for the purpose. The sound was later re-recorded on the edge of 35-mm picture film for playback by conventional photoelectric methods.

At least two companies are understood to be developing mag-

netic tape which can be transferred to picture film without rerecording. That this can be done has been demonstrated experimentally. Widely sought is some method by which simultaneous recording of pictures photographically and sound magnetically can be accomplished on the same piece of film. Among the problems currently encountered is the tendency of oxides to run into picture area during development. Binders which hold the oxide in place appear to reduce the amplitude or quality of sound playback.

Trend toward red-oxide tape and oxide-in wind, among manufacturers of magnetic recorders is noted by C. J. LeBel of Audio Devices. Only 7 percent of the machines made today call for black oxide, while the others use either black or red. Over 75 percent of all new machines use oxide-in wind.

Scanning Ads searching for electronic engineers, we note that a high percentage of those at present appearing are placed by aircraft manufacturers, or by firms primarily serving aircraft makers, or by government agencies.

Shipments of electronic apparatus in six categories to the U. S. government by RTMA members totalled \$33,393,093 in the second quarter of 1950 as against \$30,-640,943 in the first quarter. The breakdown was as follows:

Radar	\$27,676,595
Comm. equip.	4,218,508
Sonar	866,543
Nav. alds	405,501
Test. equip.	214,933
Quartz crystals	11,013

Orders received from the government during the second quarter totalled \$61,701,467 compared with \$41,305,390 in the first quarter.

Touring GE's new \$18,000,000 research laboratory in Schenectady during the recent NAS meeting, we heard about a method of measuring films down to one millionth of an inch in thickness.

"How," we asked, "do you obtain

December, 1950 - ELECTRONICS

SYLVANIA GERMANIUM DIODES SEALED-IN-GLASS

They're individually

engineered to meet YOUR

circuit requirements

1N34A -- General Purpose Diode. The workhorse of the Sylvania line, *New* higher quality standards guarantee back resistance higher than $\frac{1}{3}$ megohm at -10 volts.

1N38A – High-Resistance, 100-Volt Diode. Now specially engineered to guarantee still higher back resistance at both high and low voltage levels. 0.6 megohm at -3 volts; 0.2 megohm at -100 volts.

IN54A-Here's a real high back resistance crystal. Now guaranteed to show at least 1.4 megohms at -10 volts-averages better than 2! Use it for high efficiency in high load resistance circuits.

1N55A – **150-Volt Diode.** New more rigid specifications guarantee at least 0.3 megohm back resistance at -150 volts.

1N56A-Low Forward Impedance Diode. Average forward resistance less than 60 ohms at one volt. Ideal for

ELECTRONIC DEVICES; RADIO TUBES; TELEVISION PICTURE TUBES; ELEC-TRONIC TEST EQUIPMENT; FLUORESCENT TUBES; FLXTURES; SIGN TUBING; WIRING DEVICES; LIGHT BULBS; PHOTOLAMPS; TELEVISION SETS

~ 1			- AT	12
		HEN]	RUGG	jen j
~		- Contraction -	Je	
ST	ABLE	INJU		
The second	JUNY I	INSS		
TICAL	14-3			
HERMEITED	3	- Contraction	DEPEN	IDABLE -
f the	200	INSBA	KIL	Jul .

high efficiency operation into low impedance loads.

1N58A-General Purpose 100-Volt Diode. Now guaranteed to have resistance of at least 0.16 megohm at -100 volts. Use it for gating or clamping circuits where dependable high voltage hold-off is required.

Try these new, finer-quality Sylvania "Sealed-in-Glass" Germanium Diodes. You'll find them ideal for scores of applications calling for low power rectification at frequencies up to several hundred megacycles.

Mail the coupon today for a new FREE, 8 page booklet describing Sylvania's complete line of both glass and ceramic style Germanium Diodes and for Varistor types.

Sylvania Ele Dept. E-10 Emporium,	ectric Products Inc. 112 Penna.
Flease send ing the comp ium Diodes.	me full information concern- lete line of Sylvania German-
Name	
Company	the second s
Street	
City	ZoneState

SHOCK AND VIBRATION NEWS NEW Air-damped BARRYMOUNTS

LESS THAN i/2 INCH clearance is needed between mounting surface and shock-mounted equipment when you use Type 6475 BARRYMOUNTS in your mounting bases. Yet effective protection against the high shock of landing, taxiing, and gunfire is provided by the air damping of these unit mounts.

Bases using these mounts conform to latest government specifications and can be furnished to your load-rating and dimensional requirements. Unit BARRYMOUNTS, Type 6475, are also available for assembly directly to your equipment. Two-hole and four-hole mountings can be furnished; load ratings are from 0.3 to 3.0 pounds per mount.

FREE DATA SHEET #605. giving details of sizes and performance characteristics will be sent on request. Ask also for Catalog 502 fully describing other BARRYMOUNTS for aircraft service, and for Catalog 504 covering BARRYMOUNTS for industrial service.

		THE	137	A R		CORP.	
Main	Office	177 Sidney	St.	•	Cambi	ridge 39 Mc	issachusetts
New	York	Rochester	Philad	delphia	Washington	Cleveland	Dayton
1 1	Chic	ago Minne	apolis	St. Loui	s Los Ang	jeles Toro	nto

BUSINESS BRIEFS

films that thin for calibration?" and were told, in all seriousness, that it is merely a matter of putting ten coatings on top of each other, each coating being one tenmillionth of an inch thick. Actually, that's just what's done. The deposited layers are one molecule thick, and a molecule just happens to be one ten-millionth of an inch.

(continued)

We are reminded, somehow, of a dimly-remembered method of determining the number of cows in a field by counting something or other and dividing the result by four.

Receiver Sales by licensees during the first six months of 1950 totalled 9,016,645 units, worth \$618,907,976. Here's the way the total broke down:

Type	Units	Dollars
Electric		2 onder 0
Table (under		
\$12.50 billing		
price)	1,320,645	\$13,605,829
Table (over		
price)		
A-M	982 205	17 952 722
A-M/F-M	179.814	5.514.594
F-M (including		-,,-
converters)	7,785	157,600
Consoles	0 700	990 144
$\Lambda M/F M$	2060	220,144
Table-Radio-	2,000	200,020
Phonos		
A-M	168,052	6,755,785
A-M/F-M	6,317	247,442
Console-Radio-		
A-M	28 494	9 967 068
A-M/F-M	222.078	25,599,159
Battery	,	=0,000,100
Portable		
A-C/D-C	874,149	15,418,449
Consoles	54,942	860,008
Auto	2 147 544	55 576 098
Television	-,,	00,010,000
Converters	4,060	482,171
Radio Table		
Models	1,265,915	172,699,420
Direct viewing	1 108 775	991 785 058
Projection	6,979	1.780.042
Radio Phonos		
Direct viewing	265,992	69,721.082
Projection	29	15,246
Phone only	999 406	9 966 709
With radio	220,490	0,000,100
attachment	8,388	232.114
Without Cabinets		
A-M	5,074	145,266
A-M/B-M	9,086	354,658
relevision	30,125	5,550,107

Mercury-Arc Rectifiers are big money makers in the industrial electronics business, according to an AIEE survey. Total d-c output power provided by all presently installed units is 54-million kw, divided among users as follows :

Electrochemical 3,974,000 kw Railway Mining, steel and general Industrial 407,000

In electrochemical service over 99 percent are continuously pumped. In the third category only 33 percent are continuously pumped. Among all users the trend is toward completely sealed types.

Average yearly outage time is 50 hours, or about 0.8 percent in electrochemical service. Average life of sealed types in 24-hour-aday electrochemical service is 3.8 years.

Abstract of a paper entitled "Null Polygons", delivered before a meeting of the National Academy of Sciences:

By a null polygon we mean a plane polygon each of whose sides is of length zero. So we have *n* corners, P_1, P_2, \ldots, P_n and *n* sides $P_1P_3 = 0, \ldots, P_nP_1 = 0$. We study the set of all diagonals. They are not zero. What is the theory of the diagonals? That is the problem of this paper.

We can see how it would be.

Conclusions of a study of the effects of television on sports attendance, by Jerry Jordan (for a degree in psychology at Princeton and a master's at the University of Pennsylvania), are as follows:

"The length of time a person has owned a television set directly influences his and his family's attendance at sports events.

"When he first buys a set, attendance goes down temporarily. Later—after one season in most sports—attendance returns to normal.

"After one or two years of ownership, the tv owner's attendance rate is higher than that of non-members....

"TV owners take other members of their family out to games more frequently than non-owners.

"The long-range effect of television, as it is today, therefore, will not harm attendance at sports events, and may help to increase it."

Radio-Equipped Taxicabs now total 46,000, and are operated by 3,000 companies in 1,500 cities, according to Stanley C. Ross, president of the American Taxicab Association.

We've Just Met a Navy radioman trained to take pictures from the air. His present assignment involves taking them under water. Every time he dives he draws flight pay.

ELECTRONICS - December, 1950

SIGMA INSTRUMENTS, INC. 62 CEYLON ST., BOSTON 21, MASS.

Now...from Mallory...

Resistance Range

1 ohm to 10,000 ohms. Standard tolerance $\pm 10\%$.

Shaft Rotation

300° total. With switch, the angle of effective rotation is 270°.

Available Tapers

Number 4 linear taper is standard. Special combinations can be supplied if required.

Shaft Designs

Can be supplied with knurled and slotted shaft for push-on knob, standard screwdriver slot, or milled flats for set screw or push-on knobs.

A New 2-Watt Wire Wound Control

To the Mallory line of variable resistors there has now been added a 2-watt wire wound control with features deserving the attention of design engineers.

Precision winding, durable contacts, and sturdy design all contribute to the long life, superior performance and dependable uniformity for which all Mallory components are known.

Production samples and complete technical data are available on request.

Television Tuners, Special Switches, Controls and Resistors

SERVING INDUSTRY WITH

CapacitorsContactsControlsResistorsRectifiersVibratorsSpecialPowerSwitchesSuppliesResistance Welding Materials

ELECTRONICS....DONALD G. FINK Editor DECEMBER, 1950

CROSS TALK

▶ MIXED . . . The cover of this issue demonstrates the validity of the mixed-highs principle of color television transmission, (see also p 122 of this issue). It demonstrates that, using mixed highs, image quality can be obtained with a video band of 4.2 mc which is remarkably like the quality obtainable with a 12-mc band when mixed highs are not used. Unfortunately the mixed-highs technique cannot be used in the fieldsequential (CBS) color system; it can be used in quasi-simultaneous systems like the dot-sequential (RCA) system. In deciding in favor of the CBS system, therefore, the FCC passed up a tremendously important principle of spectrum conservation. There were, of course, extenuating circumstances which weighed against the adoption of a system using mixed highs. But the members of the FCC ignored the principle of mixedhighs; they did not balance it against the advantages of the fieldsequential system. According to the FCC "first color report", the advantages of mixed highs are mere "claims", and loss of horizontal resolution (!) was attributed to the use of mixed highs. Commissioner Jones, in his separate opinion, stated that "the principle of mixed highs is a matter of complete theory, unsupported by any scientific data other than barefaced statements . . . ". Yet Commissioner Jones saw the very pictures which appear on our cover on April 27, 1950, several months before he wrote his opinion. He evidently did not know what he was looking at: explicit scientific

proof of the efficiency of mixed highs. Or, if he did understand it, he preferred to ignore the evidence before his eyes.

The FCC, having expressed disbelief in the engineering testimony of a large segment of the industry (it will have little to do with the N.T.S.C., for example), continues to make similar errors of technical judgment. The very transmission standards adopted on October 11 for the field-sequential color system are a case in point. Nowhere in the standards is there any specification of the relative amplitude of antenna voltage on successive fields. This omission is a technical mistake which must be rectified before any equipment can be designed for the system. In the meantime, the industry is proceeding on the assumption that the missing standard, when ordered by the Commission, will follow the CBS recommendation that equal signal voltages on successive fields will produce a standard white equal to "illuminant C" (x = 0.-310, y = 0.316). Perhaps the FCC staff has a better or different idea. Whatever it is, it must be stated as a standard, and quickly.

In another part of its report, the FCC says "The Commission is aware that of necessity it must rely to a great extent upon industry experts for data and expert opinion in arriving at decisions in the field of standards; our own facilities are too limited to gather much of the data." Truer words were never said.

► ANTI-RAIN . . . Comes now the story of Dr. G. A. Sykes, whose

picture appears on p 134 of this issue. Dr. Sykes had a contract with the Palisade Amusement Park, on the cliffs opposite 125th Street, Manhattan, to the following wit: He uses a fearsome collection of surplus radio gear, including an X-band paraboloid with wires attached, to irradiate the clouds over the amusement park. His object: to dissipate the clouds in favor of good amusement-park weather, thereby putting himself in direct competition with Harvard's Dr. Howell, who had a contract with the New York Board of Estimate to make rain.

Dr. Howell makes Dr. Sykes look like a piker when it comes to takehome pay. Herr Sykes, it says here, gets \$500 for each clear day, forfeits \$1,000 for each rainy day. Just to see what kind of a horserace this is, we called up the New York Weather Bureau and found that records based on 75 years, covering the months June through September, indicate an average of 41 rainy days, against 73 clear and cloudy days, the remainder being indifferent combinations of rain, clear and cloudy. So, playing the matter strictly on form, the Doctor stands to pay out \$41,000 and take in \$36,500, for a net loss of \$4,500 per season, unless the management gives him half credit for the indifferent days, in which case he takes in another \$2,000, cutting the loss to \$2,500.

Anyway you look at it, we want no piece of that contract. Except for one thing. Dr. Sykes is using electronic devices to shade the average in his favor. Might be something in it at that!

ELECTRONICS - December, 1950

HIGH-RELIABILITY

Tube failure during the first 1,000 hours has been reduced from 30 percent to 3.2 percent in airborne communication and navigation equipment under the program for improvements in construction and manufacturing techniques sponsored by ARINC

A T THE CLOSE of the recent war, the commercial airlines were faced with the full impact of the problem of tube reliability.

Electronic tubes must necessarily be employed for the satisfactory operation of the complex gear associated with modern aircrafi. However, factors such as excessive on-off cycling of the equipment, constant vibration, and wide variations in operating voltages impose requirements which are difficult for the tubes to meet.

Under the severity of the application, the failure rates of conventional receiving tubes employed reached alarming heights. With safety of airline operations endangered and the cost of the associated maintenance excessive, the need for more reliable tubes was manifest.

To combat the situation, Aeronautical Radio Inc. presented to the tube industry a progressive program to adapt the quality of the receiving tubes employed to the requirements of the applications. This organization, commonly known as ARINC, is a non-profit technical agency maintained by the airlines to coordinate the development of electronic equipment for their use. The immediate objective of the ARINC program was the improvement of existing constructions and manufacturing techniques to the point where the highest degree of reliability could be expected from each tube. To enable the design, manufacture, and test effort to be directed effectively to the basic goal of maximum reliability, cost considerations were necessarily relegated to a position of secondary importance.

The scope of the ARINC program was intentionally limited to a relatively small number of types. By concentrating the engineering effort on a minimum number of types, the goal of quality was felt to be enhanced.

ARINC, after consulting the manufacturers of aircraft electronic equipment, chose initially 10 tube types to be included in the program. The equipment manufacturers agreed that these 10 types would fill the majority of their needs for airborne communication and navigation equipment and that they would attempt to design new equipment around these types to the exclusion of other conventional types.

Performance Checks

The program was to be dynamic. Records were to be kept of each tube in service, and each inoperative tube was to be returned to the manufacturer for engineering analysis. Based on the condition of the returned tubes and on the associated performance data, the design was to be continually modified to achieve additional reliability. Also, whatever savings were realized from improved manufacturing methods or increased production were to be reinvested in another aspect of quality such as the tightening of the control limits. The result of the dynamic aspects of the program was the production of a tube whose quality improves steadily with time.

A word should probably be said to explain the use of the word "reliable." The airlines, typical of industrial users of electronic tubes, desired relatively long life of the tubes; however, the predominant factor was satisfactory performance between predetermined replacement periods. If the tubes could be depended upon to operate for a fixed period, relatively inexpensive preventive maintenance methods could be employed; unscheduled failures which adversely affect the safety level, increase down-time of the aircraft, and increase maintenance expenses could be eliminated. Thus, the actual number of hours of tube life is less important than the fact that no failures occur during the established service time.

The objective of the ARINC program was the realization of tubes with special attention given to construction so that a very high percentage would realize a certain life. Such a tube can properly be called a high-reliability tube. The airlines clearly recognized the fact that high-reliability tubes, and not necessarily long-life tubes, were required for their applications.

No single feature distinguishes a reliable tube from a standard commercial type. Reliability is a characteristic that is built into tubes as the integrated result of special design considerations, advanced manufacturing techniques, and rigorous testing procedures.

Special Techniques

The design of the ARINC tubes must assure that the tubes have the capabilities of reliable oper-In addition to incorporatation. ing the requirements for excellent electrical performance, the high-reliability types incorporate a heater construction designed to withstand excessive heater-cathode cycling. The design also satisfies the requirements for mechanical sturdiness. To withstand shock and vibration, the lengths of the internal elements are kept to a minimum, and all parts are securely fixed in position to avoid potential short circuits.

To assure the ultimate in quality, the actual assembly of the high-re-

MINIATURE TUBES

By GEORGE GAGE

Engineer General Electric Co. Owensboro, Kentucky

liability types is separated from the assembly of the conventional receiving types. The operators are specially selected and are paid high hourly rates.

The operators are carefully instructed that quality of workmanship is the primary consideration. During the entire manufacturing procedure, extreme care is exercised. Questionable materials or parts are discarded. No attempt is made to reduce costs in any way that could conceivably impair the quality of the finished product.

Heater Construction

Because the reliability characteristic of the final tube depends on the quality of each component part, extreme care and exhaustive inspections are incorporated in every stage of production. As an example of the special manufacturing techniques employed, consider the processing of the heaters.

The heater wire is first coated with insulating material, and the diameter of the coated wire is measured with micrometers to assure uniformity of coating. The heater wire is then bent to the desired form, and the ends are clipped to the proper size. The formed heater is then checked for length and bends. The size of the bend is carefully controlled. The bend can not be excessively sharp or brittleness and mechanical weakness result. On the other hand, an excessively large bend will not fit prope ly in the cathode sleeve.

Because, in the process of forming, the insulation is cracked at the bends, additional coating is deposited on all bends, to eliminate the possibility of heater-cathode shorts, by a process known as cataphoresis. After cataphoresis, the heaters are 100-percent inspected under binocu-

On the production line where mounts for the tubes are assembled, magnifying glasses are used for inspection

lar microscopes for uniformity and bend coating. The heaters are then fired to bake the insulating coating. Following firing, uniformity of bend size is checked, and samples are subjected to rigorous brittleness tests. The heaters are then inserted in small individual glass tubes to avoid possible damage in handling.

After the heaters are in the glass tubes, a 100-percent binocular-microscope inspection is incorporated to check for chips, dryness, and other imperfections of the insulation as well as crooked heater legs and dark insulation which can result from impurities in the heater wire. The acceptable heaters are then transported to the mounting section in the glass tubes.

Before being inserted in the cathode sleeve, each heater is visually inspected by the mounting operator. After mounting, the heater is again 100-percent checked under binocular microscopes for defective insulation and defective heater welds. Thus, by exhaustive inspection technique every effort is expended to avoid defective heater units and possible heater-cathode shorts.

Comparable precautionary measures control the production and processing of all other component parts. Numerous inspections regulate the quality of the mica insulators, plates and shields, cathode tabs, sprayed cathodes, stems, and grids. Although each component is completely inspected before being sent to the mounting group, each part is reinspected by the mounting operator under a magnifying glass before being used.

As a final check, the completed assembly is 100-percent inspected under binocular microscopes. The final inspection covers a minimum of 16 items and includes, for example, checks for the grid turns (loose, tight, or distorted), heater welds (burned, cold, splashed, or poorly bedded), mica insulators (broken or defective), and cathodes (bowed, distorted, or defective). Here, as in every other inspection, any item which is of questionable quality is discarded.

Burning-In Check

After the tubes are exhausted and aged, each tube is tested for shorts, gas, and a major characteristic such as cutoff. All tubes are then given a burning-in period of 48 hours under normal operating conditions. The burning-in period has been found, after exhaustive tests, to reduce drastically the number of early-life failures. The burning-in period also serves to stabilize the electrical characteristics.

On an exacting, statistical sampling basis, the tubes are subjected to severe test conditions. In addition to the standard electrical tests, the tubes must pass the requirements for vibration, shock, glass strain, grid emission, electrode insulation, and heater-cathode leakage.

Two life tests are incorporated. The first is similar to the standard intermittent life test. To be acceptable in this case, the tubes tested must have a 95-percent realization of possible operating time. The second life test is the heater-cycling life test. In this case, 7.5 volts is applied to the heater and 100 volts d-c is applied between the heater and cathode. The voltages are applied for one minute and then removed for one minute. The tubes are tested for 2,000 cycles under these conditions.

Because of the destructive nature of the heater-cycling life test, the tubes tested are discarded. An adequate sample is tested to assure that a minimum of 99 percent of the entire product will not fail or develop an appreciable heater-cathode leakage current while operating under the conditions of the test. If the sample fails the heater-cycling life test, the entire production lot is scrapped.

Results of Program

Before the program was initiated, the commercial airlines were experiencing as high as 30 percent failures on the type 6AK5 during the first thousand hours. The failure rate, after three years of continual improvement on the 5654 (high-reliability sharp-cutoff pentode which has superseded the 6AK5 in aircraft equipment), has been reduced to 3.2 percent in the first thousand hours.

It is expected that, even without drastic changes in design and manufacturing techniques, the failure rate will be brought down to less than one percent as a result of the dynamic nature of the program. Other types on which sufficient life test data are available show equally impressive improvements.

Many of the original complaints such as heater failure due to cycling have been reduced to the vanishing point. The majority of failures currently being experienced by the airlines are emission failures as contrasted to such common causes

Tube Type	Description	Hea Voits /	ter mperes	Ma E s	ximur E.s	n Rati: Pd	ngs Service	Characteristics
GL-5654	Sharp-cutoff r-f pentode	6.3	0.175	180	140	1.7	Class A amplifier	$E_b = 120, E_{e2} = 120,$ $R_k = 200, G_m = 5,000,$ $I_b = 7.5, I_{e2} = 2.5$
GL-5670	High-frequency twin-triode	6.3	0.35	300	•••	1.5	Class A amplifier	$E_b = 150, R_k = 240, G_m = 5,500, \mu = 35, I_b = 8.2$
GL-5686	Power- amplifier pentode	6.3	0.35	250	250	7.5	Class A amplifier Class C r-f amplifier	$E_{b} = 250, E_{c2} = 250, E_{c1} = -12.5, R_{L} = 9,000, P_{0} = 2.7 E_{B} = 250, E_{c2} = 250, E_{c1} = -50, P_{0} = 0.15, P_{0} = 6.5$
GL-5725	Dual-control r-f pentode	6.3	0.175	180	140	1.7	Class A amplifier	$E_b = 120, E_{cb} = 0, *$ $E_{c1} = -2, I_b = 5.2,$ $G_m = 3,200$
GL-5726	Twin-diode	6.3	0.30		Peak	inver: d	se voltage= -coutput cu	=330, Peak current=54 ma arrent=9 ma
G L-5 749	Remote-cutoff r-f pentode	6.3	0.30	300	125	3.0	Class A amplifier	$E_b=250, E_{e2}=100,$ $R_k=68, G_m=4, 400,$ $I_b=11$
GL5750	Pentagrid converter	6.3	0.30	300	100	1.0	Converter service	$E_b=250, G_s=475, I_b=2.6$
GL-5751	High-mu twin- triode	6.3/12.6	0.350/ 0.175	300	• • ² •	1.0	Class A amplifier	$E_b=250, E_{c1}=-3, \mu=70$ $G_m=1,200, \mu=70, I_b=1.1$
GL-5814	Medium-mu twin-triode	6.3/12.6	0.350/ 0.175	300	3, 	2.75	Class A amplifier	$E_b = 250, E_{e1} = -8.5,$ $\mu = 17, G_m = 2,200,$ $I_b = 10.5$
The ratings and characteristics of all twin-section types are given for each section. * The control and suppressor grids of the 5725 may be used as independent control elements.								
5654	9 9 9 9 9 9 1 1 9 9 1 1 9 1 9	0 0 0 5686	572		341	26	9 7 7 7 5749	5750 5751
				_		_		5814

of failures as shorted elements and open heaters. In many applications, emission failures can be considered as safe failures.

It is estimated by ARINC that in 1949 the net saving to the airlines by using the two reliable types available at that time was over a quarter of a million dollars. The saving was achieved despite the fact that each tube is approximately three to five times more expensive than a similar conventional receiving type. The increased reliability of the electronic gear has also resulted in increased safety of the airline operation and a reduction in the number of delayed flights.

Nine of the original ten types are available, and the tenth is in the process of design. The characteristics are tabulated on the attached summary chart. Included in the available types are three twintriodes, three radio-frequency pentodes, a power-amplifier pentode, a twin diode, and a pentagrid converter. All are of miniature construction.

The ARINC program was initiated to develop the quality tubes required for aircraft applications. The immediate goal of fewer than 2.5 percent failures during the first thousand hours has essentially been reached, and new goals of even lower failure rates are being set. The result of the program—the production of high-reliability electronic tubes—is therefore now available to other industrial applications.
STORAGE DEVICES for Communications

Improved communications systems are predicted upon devices in which the time scale is expanded and compressed as well as upon delay types. Equipment for attaining these conditions, including electrostatic storage tubes, delay lines and flip-flop circuits, is described

S TORAGE OF information takes place, in some form or other, in all communications systems, and is evidenced by the fact that the output of a system is a weighted response to the past of the input. It is known that the output of a system does not depend alone on the present value of the input, but is also influenced, to varying degrees, by the previous behavior of the input.

This work was supported, in part, by the Signal Corps, Air Materiel Command and ONR.

> Much has been published during the last few years on the subject of new communications theory. Although it is theoretically true that systems can be designed to enhance signal-to-noise ratio or to conserve bandwidths in our diminishing radio channels, we have not yet attained the ultimate in equipment for the purpose.

> Particularly to the noncommunications type of reader this article will serve for orientation. Although the electronic circuitry of devices now a-building is not detailed, the gross outlines of the building blocks are described. —The Editors

By A. J. LEPHAKIS

Research Laboratory of Electronics Massachusetts Institute of Technology Cambridge, Mass.

In general, the storage and weighting functions of a system are combined, and the storage is not clear-cut. It is not usually possible to point to a part of the system and say that it contains, in recoverable form, all input events that have occurred in an interval T extending from the present into the past. Rather, the storage is distributed throughout the system, and the identity of individual input events is lost.

Recently, the need has developed for systems whose sole function is storage—systems that will retain all input events occurring in a particular interval, and from which the events can be individually recovered. Advances in the theory of communications have shown that an insight into many communications problems may be obtained through the use of such systems

FIG. 1—A generalized linear network is adjusted as shown at (A) and operates in the manner indicated in (B)

FIG. 2-Representative mti radar system. Scope 1 shows all targets while only moving targets are shown in scope 2

as these. The following examples will make evident the types of storage that are required in communications applications.

Networks

In connection with a current investigation of optimum linear filters', there has been developed a generalized network that can be used to synthesize linear transfer characteristics experimentally. The network, based on the Wiener-Lee canonical form, is shown in Fig. 1A.

A transfer characteristic is synthesized, in the time domain, by adjusting the network to approximate the corresponding response to a unit impulse. The adjustment is performed by applying a narrow pulse to the input and setting the amplifiers to give the desired response. The first amplifier passes the input pulse, and hence affects the amplitude of only the first output pulse. The second amplifier passes the pulse emerging from the first storage unit, and affects the amplitude of the second output pulse only. Similarly, each of the succeeding amplifiers is used to control the amplitude of an output pulse.

Once adjusted, the network responds to an input f_1 (t) by a process that is analogous to the graphical evaluation of the convolution integral. This analogy is illustrated in Fig. 1B. In the network, the variable x of the integral may be thought of as representing distance toward the right. The weighting function h(x), which is the response to a unit impulse, is contained in the amplifiers by virtue of the initial adjustments. The scanning function $f_1(t-x)$ is contained in the storage units; it may be visualized as a space plot of the voltage distribution along these units. Each amplifier multiplies corresponding points on the weighting and scanning functions, and the mixed amplifier outputs represent the value of the integral at the particular time t.

This network is an example of a system in which the storage and weighting functions are separated. Furthermore, it demonstrates the necessity for a component whose only function is storage. The requirements that the storage component must satisfy are, in this case, particularly simple. Each storage unit is required only to deliver, at a later time, a replica of its input. The simplest storage device possessing this property is a delay line. Consequently, a tapped delay line will serve as the storage component of the network.

Another interesting application of delay-type storage is found in recent work that has been done on nonlinear systems². A method has been formulated for characterizing nonlinear transducers, and a canonical form developed for a large class of such transducers that comprises a finite number of resistors, capacitors, inductors, and rectifiers. In the canonical form, the storage function of the transducer is placed in evidence as a tapped artificial delay line; weighting alone is accomplished in the remainder of the network.

Radar Applications

à

In a moving-target-indication (mti) radar system, a display is presented in which moving objects show up but stationary ones do not³. Such a display is obviously desirable when moving objects must be detected in a background of fixed objects. Storage components are essential elements of all mti systems.

The operation of such a system is illustrated by the simplified diagram of Fig. 2. The radar set sends out a pulsed oscillation that is reflected by various objects in its path. Received wave packets and the oscillator signal are mixed and detected, and an output is obtained that depends on the relative phase between the oscillator signal and each received packet. The phase relationships are functions of the distances between the radar set and the objects. The output due to a single transmitted packet is shown by the upper trace at scope 1; the first pulse is caused by object A and the second, by object B.

The output obtained when the next packet is transmitted is shown by the lower trace at scope 1. The pulse due to a fixed object such as A will be the same as before because the phase relationship between the oscillator signal and the reflected packet will not change. However, the pulse due to a moving object such as B will be different, since the change in the distance between it and the radar set will cause a change in the phase of the received packet with respect to that of the transmitted packet.

It is evident that response to fixed objects may be eliminated by subtracting the outputs due to two successive transmitted packets. In the subtraction process, the constant outputs corresponding to fixed objects will cancel, while the varying outputs corresponding to

ELECTRONICS — December, 1950

moving objects will not. The cancellation obviously cannot be accomplished without the use of storage, since the output due to each transmitted wave packet must be preserved for a time equal to the interval between successive packets.

Packets are transmitted periodically. Consequently, a delay line having a delay time equal to the packet period will serve as the storage device. If delay-line storage is used, the receiver output and the delay-line output are combined in a subtraction circuit, which gives the difference output corresponding to two successive transmitted packets. This output is shown at scope 2.

In place of a delay line and subtraction circuit, a suitable electrostatic storage tube can be used. When a spot on the target of such a tube is bombarded by the electron beam the spot is charged to a certain potential and stays at this potential for a short time. An output signal is obtained from the tube only when an uncharged spot is being charged. If a storage tube is substituted for the oscilloscope tube at scope 1, the mti difference output will be obtained directly. There will be no output corresponding to object A because any two successive traces on the storagetube target will coincide everywhere except in the interval corresponding to a moving object.

Recoding Messages

Possibly the most important communications application of storage is found in the problem of obtaining more efficient utilization of communication facilities. Although little work has been done on this problem in the past, an intelligent attack can now be made using information theory as a tool.

Quantitatively, the amount of information conveyed by an event depends on the logarithm of the reciprocal of the probability of the event. An event that is quite likely to happen conveys very little information when it does happen, whereas one that is unlikely to happen conveys considerable information when it happens.

In most communication processes, information is generated at a variable rate. The communication channels, however, are presently designed to transmit the information at the maximum rate at which it is generated. Consequently, the channels are not used in the most effic-Reduction of the ient manner. necessary bandwidth, or reduction of the average power required, or improvement of the signal-to-noise ratio, can be obtained by requiring the channels to transmit information at the average rate of generation, rather than at the maximum rate. These benefits cannot be obtained without the use of storage systems.

The basic method of smoothing the flow of information may be illustrated by a simple example. Suppose that the message to be transmitted is represented by a combination of two basic symbols, 0 and 1, which are generated at a uniform rate of S symbols per second. Suppose, further, that the

FIG. 3—Message consists of sequence of basic symbols 0 and 1. Symbols are generated at a constant rate S per second. Symbols are independent. Value of p(0) is 0.9 and p(1) is 0.1. Bandwidth of recoded message at (C) is less than original at (A)

symbols are independent, and that on the average 0 occurs nine-tenths of the time and 1 occurs one-tenth of the time. Such a message is shown in Fig. 3A.

The message may be represented electrically by a train of pulses that occur at a rate S per second, and which have two distinct states, corresponding to the two symbols. As shown in Fig. 3A, the symbol 1 may be represented by a positive pulse and the symbol 0 by absence of the pulse that would normally occur at that time. Knowledge of the pulse repetition rate and indication of the symbol 1 are sufficient to specify the message, since it is known that the symbols occur at that rate and each must be 1 or 0.

The required bandwidth of the transmission channel will be determined by the maximum number of pulses per second which it must carry. If the representation of Fig. 3A is used, the channel must be capable of carrying pulses at the rate of S per second, because it is possible, although very unlikely, that a sequence of 1's will appear somewhere in the message.

Now, suppose that instead of a pulse position being assigned to each symbol, a group of pulse positions is assigned to a group of symbols. If, for example, the symbols are taken in groups of two, as shown in Fig. 3B, four different group combinations will exist. The frequencies with which the groups occur will be different, because the symbol 0 occurs in the message more often than the symbol 1. To each group is assigned a different electrical representation. These representations are chosen in a systematic way that takes into account the relative frequencies of the groups. Representations of the more probable groups contain fewer pulse positions than those of the less probable groups'.

The recoded message is shown in Fig. 3C. The pulses representing this message are also transmitted periodically. However, the repetition rate of these pulses is made less than S per second because on the average, the recoded message will contain fewer than S pulses per second. The latter fact can be seen by considering the group probabilities and representa-

tions of Fig. 3B. On the average, group 00 occurs 0.81 of the time, and occupies one pulse position; group 01 occurs 0.09 of the time, and occupies two pulse positions; and so forth. A simple calculation shows that an average of 1.29 pulse positions per group are required. In the original representation (Fig. 3A), however, two pulse positions per group were required. Consequently, the recoded message can be transmitted at a rate of 1.29S/2 pulses per second. With this lower rate, a proportionate saving in channel bandwidth can be obtained. The use of longer groups, instead of just two-symbol groups, will generally result in a greater rate reduction.

It is seen that the flow of the information contained in the message has been smoothed out by the recoding. The more probable groups, which convey small amounts of information when they occur, are transmitted in shorter time intervals than the less probable groups. which represent larger amounts of information. This smoothing process is evidenced as an accordionlike compression and expansion of the time scale of the original representation. Recoding cannot be accomplished unless storage units are used. Without storage units, the necessary alterations in the time scale of the original message cannot be obtained.

The recoding may be carried out as shown in Fig. 4. The original message is routed to a small temporary storage unit, which has a capacity of two pulses. This unit may comprise either flip-flops or a tapped delay line. As soon as two pulses have been stored, the coder is actuated and generates the corresponding group representation. which is placed in the main storage unit. Pulses are removed from the main storage unit at a uniform rate and are transmitted.

Pulses enter the main storage unit at a variable rate, but are removed at a constant rate. On the average, the unit will be half full, since the output rate equals the average input rate. From time to time, however, the number of pulses stored will vary. Suppose, for instance, that the unit is half full, and that a long sequence of 0's occurs in the message. Under this condition, stored pulses will be removed faster than new pulses enter. If the sequence of 0's is long enough, the storage unit will be emptied and the transmission system will temporarily fail. Alternatively, suppose that the unit is half full and that a long sequence of 1's occurs in the message. In this case, new pulses will enter the unit faster than stored pulses are removed, and if the sequence is sufficiently long, the unit will be completely filled. On the basis of the group probabilities, the capacity of the storage unit can be found such that the probability of failure of the transmission system has a specified value. This probability of failure can be made smaller by increasing the capacity of the storage unit, but it can never be reduced to zero as long as only a finite amount of storage is available. In practice the probability of failure due to overloading of the storage unit need not be made zero. It is sufficient to make this probability comparable to the probability of failure due to other causes.

At the receiving end of the transmission system, the inverse process of decoding the groups must be carried out in order to obtain the

FIG. 4—Method of accomplishing recoding of Fig. 3

December, 1950 — ELECTRONICS

FIG. 5—Representation of a practical flexible storage system

original message. Storage units that function in essentially the same way as at the transmitting end are necessary, since again the time scale must be altered.

The statistical structure of most practical messages is much more complicated than that of the simple message in the preceding example. Practical messages are made up of more than two basic symbols. Also, the state of any particular symbol is affected by one or more preceding symbols. In a written message, for instance, it cannot be assumed that the occurrence of a certain letter is independent of all other letters. Rather, the fact must be considered that certain letters are more likely to occur when preceded by other particular letters, as in the combinations TH and ES. In speech, similar relations exist among the vowel and consonant sounds. In a television image, the light intensity of a particular spot is related to the intensities of other spots, both in the same and in preceding frames. The advantages of recoding can be realized in these more complicated cases. The detailed method of accomplishing the recoding will, of course, be quite complex. But, the fact remains that if recoding is to be carried out, alterations of the time scale are necessary. Highly flexible storage systems must be used at both the sending and receiving ends of the transmission system.

Most existing storage devices are capable of storing only binary pulses-pulses that can have only two states, and which can represent the binary digits of 1 and 0. This condition is not a drawback as far as the communications applications of storage are concerned. Information can be represented to any desired degree of accuracy by a sequence of binary numbers, and can therefore be electrically represented by binary pulses.

Suitable Systems

A symbolic representation of a practical storage system sufficiently flexible to be used in communications applications is shown in Fig. 5. It is assumed that the information to be stored has been put in binary form.

If alteration of the time scale of the input is to be obtained, use of delay-line-type storage devices is not practical. A storage device should be used that preserves the state and order, but not the time relationship, of stored pulses. Such a storage device might be visualized as a box partitioned into a number of compartments. Incoming symbols are dropped into successive compartments, where they remain until removed by an external device; the rate at which this device operates determines the time relationship of the output symbols. In a practical storage system, it is preferable to have two storage channels of this type, which are arranged as shown in Fig. 5. Incoming pulses are routed to one of the two channels, while pulses that were previously stored are being removed from the other. A control component automatically switches both the input and output connections when the channel from which are being recovered is pulses empty. It is seen that a continuous flow of information will be maintained through the system, but the operations of storage and recovery will never take place simultaneously in one channel. Circuit complexity is reduced because of the latter condition

Two existing storage devices are suitable for use in a storage system of this general type-flip-flops and electrostatic storage tubes. Economically, the tubes are preferable because several hundred of the compartments shown on the diagram can be provided by one tube; a highcapacity flip-flop storage system is not practical because one flip-flop is required for each storage compartment. From the speed standpoint, flip-flops are better; electrostatic tubes now available cannot be operated as fast as flip-flops.

At this laboratory, construction of a two-channel electrostatic-tube storage system has recently been completed⁵. Each channel comprises one tube, and at present has a capacity of 256 pulses. For reliable operation, the required minimum time intervals between adjacent pulses are 30 microseconds when pulses are stored, and 15 microseconds when stored pulses are recovered.

The writer gratefully acknowledges the suggestions of R. M. Fano, J. B. Wiesner, H. E. Singleton, and C. A. Stutt.

REFERENCES

(1) C. A. Stutt, private communication, Research Laboratory of Electronics, MIT,

Cambridge, Mass.
(2) H. E. Singleton, Theory of Non-linear Transducers, Technical Report No.
160, Research Laboratory of Electronics, MIT, Cambridge, Mass., May 25, 1950.
(3) L. N. Ridenour, "Radar System Engineering," McGraw-Hill Book Co., New York, 1947.
(4) R. M. Fano, The Transmission of Information, Technical Report No. 65, Re-search Laboratory of Electronics, MIT, Cambridge, Mass., March 17, 1949.
(5) A. J. Lephakis, An Electrostatic-Tube Storage System, Technical Report No. 154, Research Laboratory of Elec-tronics, MIT, Cambridge, Mass., March 27, 1950. Cambridge, Mass. (2) H. E. Singleton, Theory of Non-

Thyratron-Controlled

Jackie Robinson and Bruce Edwards, of the Brooklyn Dodgers, are shown at Vero Beach, Florida, using the electronic umpire during a practice session

FIG. 1—The ball must pass through the three intersecting planes in 1-2-3 order to record a strike

The ELECTRONIC UMPIRE arose out of a need for a device to assist pitchers and batters in learning control and judgement. Other devices were in use or had been tried out for such purposes, but they either interfered with a batter's swing or were bulky and not easily transportable. In addition to being able to call strikes, it was thought desirable to add speed measurement to the device, thus permitting a reasonably accurate appraisal of a pitcher's ability in terms of speed and control.

The electronic umpire is a portable two-unit device which can be set up in a matter of minutes wherever there is an a-c supply available. One unit is placed on the ground and carries a simulation of the home plate. Alternatively, it may be set flush with the surface of the ground. The other unit may be located anywhere within a radius of twenty-five feet from the ground unit. It provides an indication when a ball has passed through the strike zone and an indication of its speed. No lights or other equipment than the two units described above are required. The strike zone is adjustable to suit batters ranging in height from 5 ft 1 in. to 6 ft 5 in. Speed in excess of 50 ft per second may be measured to an accuracy of 5 percent.

The device may also be connected to a tape recorder to make a permanent record of each pitcher's ability and improvement. The equipment is intended primarily for training purposes.

Theory of Operation

Figure 1 illustrates the basic theory of operation. The ground unit contains three sets of phototubes and associated optical equipment, so arranged that each set of phototubes looks at a very restricted portion of the sky as, in effect, a beam. Two of these beams are vertical and one inclined. The ball, in its passage across the plate, will interrupt these beams in a certain sequence, depending upon height. If the inclined beam is made to intersect the first vertical beam at the proper knee level and the second vertical beam at the proper arm-pit level, a ball passing through the strike zone will interrupt these beams in a 1, 2, 3 sequence. The sequence for a low ball will be 2, 1, 3, and for a high ball 1, 3, 2. Of course, any ball which is wide of the plate will fail to interrupt all three beams.

To make the system responsive to interruption of the beams in only the 1, 2, 3 sequence, thyratrons in the control box are triggered by pulses produced by passage of the ball through the appropriate beam. The thyratrons are connected in series so that the first must fire to supply voltage to the second, which, in turn, must fire to supply voltage to the third. Such a system will be unresponsive to any other sequence of firing.

If the firing sequence has been correctly followed, a relay is energized and a strike indicator lamp is lighted. In addition, the pulses from the two vertical beams are used to trigger a flip-flop which controls a charging and metering

This article is based on a paper presented at the 1950 National Electronics Conference. The Conference paper will appear in the NEC Proceedings.

Photoelectric Umpire

Automatic device detects passage of baseball through an adjustable strike zone and indicates speed of ball as it crosses plate. Interconnected thyratrons prevent false operation by bat swinging through strike area. Tests indicate the electronic umpire will be as accurate as live umpires and less vulnerable to flying pop bottles

> By RICHARD F. SHEA General Electric Company Electronics Park Syracuse, New York

Figure 3 shows the circuit of one

circuit that provides a measure of time interval, and hence speed of the ball.

The device also incorporates reset circuits which serve to reset the thyratrons in a relatively short time if only one or two are fired, as by a low or high pitch. If a strike is recorded, the reset circuits will hold off for a longer period, sufficient to read the speed meter, before resetting.

Block Diagram

Figure 2 shows a block diagram of the system. Each phototube pair (two are used for each slot) has an associated preamplifier which amplifies the pulse derived from passage of the ball and applies it to the grid of the corresponding thyratron. Thyratrons 1 and 2 actuate the reset circuit, if fired. Thyratron 3 also actuates the reset circuit if a strike is called, but in such manner as to increase the reset time as described in a later section. The signals from thyratrons 1 and 3 are applied to the timing circuit, which applies a voltage to the metering circuit proportional to the interval. The meter reading is inversely proportional to speed. The reset circuit temporarily removes the plate voltage from the thyratrons and sets the timing and metering circuits back at their initial conditions. ready for another pitch.

set of phototubes and the associated amplifier. The phototubes are located in the ground unit, two to each slot. The slots are 19 inches long, and are protected against direct sunlight by rubber guard strips. In the case below the slots are located sectors of plastic lenses and mirrors which focus the sky light at a point inside the box. An aperture at this focal point prevents stray light from energizing the phototube, which is located behind it. By this means, the phototube is made responsive to the ambient sky light emanating from a very small, sharply defined sector of the sky. A ball passing through this beam will cast a shadow on the phototube and produce a unidirectional pulse which is amplified and passed along to the control unit over a 25-foot shielded cable.

The mirrors of the two vertical beams are fixed at 45 degrees; however, the mirror for the inclined beam is displaced from directly be-

FIG. 2—Speed of pitch is determined by measuring interval required for ball to pass between plane 1 and plane 3

low the slot and is rotatable by means of a calibrated knob through an angle of 51 degrees to 58 degrees, thus varying the intersection of this inclined beam with the two vertical beams to correspond to the knee and arm-pit heights of different batters.

Thyratron Circuits

Figure 4 shows the details of the thyratron circuits. One thyratron is used for the first vertical beam, but two are used for each of the other two. This is done to insure firing of the thyratrons as the ball enters the beam. If this method were not employed, it would be possible to fire the thyratron V_{2} as the ball was passing out of the slant beam, the firing occurring on the declining portion of its grid pulse instead of in the rising portion. This would result in extension of the strike zone downward and upward from that indicated by intersection of the beams.

Consider the sequence when a

FIG. 3—Phototubes and 12AX7 preamplifiers are located in ground-level plate unit

FIG. 4—Interconnected thyratron control circuit prevents false operation

strike is thrown. The ball passes through beam 1 first, which causes V_1 to fire. This applies plate voltage to V_{2B} and V_{3A} . Next, the ball passes through slant beam 2 and fires V_{24} . The pulse obtained from its cathode is differentiated and applied to V_{2B} . This now fires and applies plate voltage to V_{3B} . Lastly, the ball passes through beam 3 and fires V_{84} , and the differentiated pulse from V_{3A} fires V_{3B} , whereupon the strike relay is closed. A green indicator is lighted on the panel of the control box. It is also possible to record the word "strike" on a tape recorder which is actuated by this relay.

The timing circuit, to be described later, is actuated by the voltage appearing at the junction of the resistors R_1 and R_2 and turned off again by the voltage appearing at the cathode of V_{3B} after the strike has been thrown.

The voltage on the above divider and voltage appearing on the cathode of V_{24} are applied to the reset circuit. Thus, if only one or two thyratrons were fired, the reset circuit would be energized and would quickly restore the thyratrons to their unfired condition. In the case of a strike the strike relay operates to delay this reset operation.

Timing and Metering

Figure 5 shows this portion of the equipment. A 12AT7 is used as a conventional flip-flop, turned on by the No. 1 pulse and off by the No. 3 pulse. During the time it is on, it supplies a signal to the grid of the 6AU6 which is normally biased to cutoff. Plate current flows and charges a capacitor to a voltage proportional to the time the flip-flop has been on. This voltage is measured by a balanced d-c vacuum-tube voltmeter.

The voltmeter has two ranges, obtained by shunting the meter. One range corresponds to a minimum speed of 50 feet per second, the other 100 feet per second. The high range is adjusted by means of a variable resistor which varies the charging rate, the other range by the shunt across the meter.

The reset circuit, when actuated, opens the cathode of the first half of the flip-flop, returning it to its stand-by condition, and removes any charge from the capacitor.

Reset Circuit

The reset circuit, as illustrated in Fig. 6, employs another 2D21 thyratron in conjunction with the strike relay and the reset relay to accomplish the objectives described above.

The operation is as follows: normally, this thyratron is cut off by the -27 volt bias applied through resistors R_4 and R_5 . Actually about half this voltage is effectively on the grid, due to the voltage divider action of the resistor going back to the thyratrons. Capacitor C_3 is charged to approximately -13volts, C_2 to -27 volts. If now either thyratron V_1 or V_{24} (or both) is fired, a large positive voltage will be applied through the reset time potentiometer and will discharge

FIG 5—Two speed ranges are available—50 and 100 feet per second—each having its own calibration adjustment

FIG. 6—Reset may be accomplished either automatically or manually

FIG. 7—Electronic umpire is calibrated by a spinner disc that simulates balls traveling at different speeds

capacitor C_s . When the voltage on this capacitor drops to the proper level, the 2D21 will fire and will energize the reset relay. One set of contacts resets the flip-flop and metering circuits as described above, while another set momentarily removes B+ from the thyratrons until the 2D21 is again cut off and the relay released. It also applies this B+ to a neon indicator which gives a momentary indication of resetting. The above reset time is normally set for less than 0.1 second.

If, on the other hand, the ball passes through beam 3 before this cycle has elapsed and the strike relay becomes energized, a somewhat different cycle occurs. Capacitor C_2 , which was charged to -27 volts, is now connected to the junction of resistors R_4 and R_5 , with the result that a considerably longer period, of the order of 5 seconds, is required for the voltage on the 2D21 grid to decay to the firing level. This provides ample time to read the meter.

A momentary contact switch provides means of manually resetting the device by grounding the 2D21 grid. A double-pole switch also makes it possible to disconnect the reset circuit to hold a reading for longer periods or fire the thyratrons individually in testing.

Calibration

The electronic umpire is equipped with jacks whereby calibrating devices may be connected to it. Figure 7 shows the method used. A large 3-ft diameter spinner disc of $\frac{3}{16}$ inch Plexiglass is mounted on a variable-speed d-c motor, capable of rotating the disc at speeds up to 1,200 rpm. Two opaque areas on the rim of this disc simulate a baseball. The disc is placed so that it rotates over the ground unit, with the opaque areas alternately interrupting beams 1 and 3. Thyratrons V_1 and V_{24} are now connected in tandem so that both will fire simultaneously.

Associated with the shaft of the motor is a cam-operated switch which energizes a relay once each revolution. This relay has two sets of contacts, connected in series with a double-pole double-throw switch. When this switch is closed, the next time the cam-operated switch is closed, the relay will lock in and will hold down until the switch is opened. This will also apply plate voltage to the thyratrons. When the spinner disc interrupts the beams, the thyratrons will fire and indicate a strike in the same manner as for a pitched ball. The equipment designed as above ensures that the thyratrons are always activated at the correct time. It also permits adjustment to avoid the possibility of firing while the ball is passing through or out of the beams.

By knowing the rotational speed of the disc and the distance between slots, the equivalent linear ball speed may be calculated and the meter set at the correct reading by means of the two range adjustments.

Operational Tests

In actual tests at the Brooklyn Dodger training camp in Vero Beach, Florida, the electronic umpire demonstrated that it could call as reliably, if not more so, than a regular umpire. Extensive tests were made using a pitching machine, as well as members of the Dodgers team, and it was found that the definition of the strike zone is satisfactorily sharp on all four sides. In addition, since there are no interfering parts above the ground, a batter can take his stance over the device and swing the bat through the beams. As long as the bat is swung in the usual manner, it will interrupt the beams in the wrong sequence, and the umpire will reset before the pitch is delivered.

One compromise was necessary in the design of the device in order to accommodate curves as well as straight pitches. The No. 1 slot was made 18 inches wide and the 2 and 3 slots were made 18¹/₂ inches wide, whereas the plate is 17 inches wide. The two vertical beams are just before and after the plate. It is conceivable that a very fast breaking curve may cut one corner of the plate and miss one or two of the beams yet still be legitimately a strike. However, if the beams are widened to accommodate this possibility, it then becomes possible to call a strike on a straight ball off the side of the plate. The above compromise is apparently reasonably satisfactory from both standpoints, on the basis of tests made to date.

The author wishes to acknowledge the work of R. Spencer, D. W. Cottle, C. E. Metcalf and C. E. Theall, all of the Electronics Department, General Electric Company, who contributed most of the work on this project, and to Branch Rickey and the members of the staff of the Brooklyn Dodgers whose cooperation made the above tests possible.

FIG. 1-Wind and ice loading zones in the United States

How to Select ANTENNA TOWERS

A knowledge of mechanical design principles is essential. This article summarizes general practice with respect to self-supported and guyed structures, materials, mounts and footings. Erection and maintenance, factors which affect the choice, are also covered

E LECTRONIC ENGINEERS are frequently called upon to select structural supports for antennas. Special design is occasionally necessary but in most instances standardized supports are indicated. In either case, selection is facilitated if the engineer has a general knowledge of mechanical design principles, installation and maintenance problems. It is such knowledge that this paper is intended to summarize.

The maximum strain on most

78

By WILLIAM SCHWARTZ

Consulting Engineer New York, N. Y.

antenna supports is imposed in a horizontal direction by wind; ice coatings create additional gravity loads but their greatest imposition of stress is caused by the increment of area they add to the surface the structure presents to the wind. The wind pressure on a structure varies with the square of the wind velocity; calculations based on wind-tunnel data are given below:

Wind Velocity (mph)	Pressure (lb per sq ft) Flat Surface Round Surface		
60	13.3	8.9	
70	18.2	12.1	
80	23.7	15.8	
90	30.0	20.0	
100	37.0	24.6	
110	44.8	29.8	
125	57.9	38.6	

The profile or projected area is used for calculations of wind load. Meteorological records and re-

December, 1950 - ELECTRONICS

FIG. 2—Loading on a tapered, self-supporting tower, turned on its side in the drawing for better visualization of forces involved

FIG. 3-Cross section of triangular tower

FIG. 4—Cross section of square tower

and MASTS

search have established maximum wind and ice conditions normally to be expected in various parts of the United States. Figure 1 delineates the various wind and ice loading zones. Conservative design practice anticipates the following loadings:

	Ice-Coating (in.)	Wind-Velocity (mph)	
Light	0	60	
Medium	0.25	90	

Ice loadings are expressed as radial thicknesses to be added to the projected area of members.

The loading map does not take into account unusual local conditions which may suggest design to a higher or lower wind velocity. In areas subject to hurricanes it is usually best to select towers rated

ELECTRONICS — December, 1950

at 90 miles per hour. Hurricanes involve winds having speeds of over 125 miles per hour, but only near the eye or center of the storm; velocities in the periphery are usually below 90 miles per hour. It is therefore sometimes cheaper to replace a damaged structure with a similar structure than to replace with one which would resist the rarely encountered forces which destroyed the original.

Masts and towers are generally rated in terms of pounds of horizontal top load at a given wind velocity, or wind velocity plus a given ice load. An additional figure is often given for the gravity load which may accompany the maximum horizontal load. Thus a tower with a capacity of 200 pounds at 90

mph can be loaded with 6²/₅ square feet of flat surface, 10 square feet of round members, or any combination totaling 200 pounds of wind resistance.

Self-Supporting Structures

Stress analysis of a self-supporting structure is complicated by the fact that it is loaded as a beam and as a column at the same time. Figure 2 shows the loading on a tapered tower; it is turned on its side for better visualization of forces. Shaded area P shows the total wind load on the support structure, usually expressed in pounds per square foot and here represented as increasing toward the base because of longer bracing members and heavier corner posts at the base. The letter T denotes wind load on the antenna, and G and W are the gravity loads of the antenna and tower structures respectively, plus the weight of any ice coating.

Assuming a tower of triangular cross section, the maximum compression load imposed on member C in Fig. 3 occurs when the wind is from direction N. A line parallel to AB and one third up from the base will be the gravity or neutral axis of the section; this line has no theoretical stress. With the wind from N, C is in compression and A and B in tension.

The corner post C is a column; its tensile strength is its net area multiplied by the allowable stress of the material, but its compression strength is always something less than this. Since the wind from direction N imposes a tensile load divided between A and B, while an equal compression load is placed on C alone, and considering that the corner post in effect is stronger in tension than in compression, it becomes obvious that the compressive strength of the corner posts is the critical design factor in a self-supporting tower.

Gravity loads of all kinds are equally divided among the corner posts but unfortunately they add to the compression load on C while subtracting from the tensile load on A and B. Referring to Fig. 2, Gis constant except for the additional weight of any ice and its weight is transmitted throughout the length of the tower, while W is additive owing to the tower taper; some towers have heavier corner posts toward the base in consideration of this latter fact.

In the case of square towers P is uniform from top to base of the structure and W increases uniformly instead of geometrically. Maximum stresses occur in a section when the wind is from N as in Fig. 4. The neutral axis is a diagonal, B is in compression, D in tension, and A and C have very little stress.

Guyed Structures

The guyed structure is subject to a different set of stresses, as shown in Fig. 5. The strain taken by each guy is resolved into its horizontal and vertical components for purpose of stress analysis. The horizontal components H_a , H_b , and H_o are equal to the horizontal wind load on half of the sections adjacent to each guy point. The horizontal load on the antenna itself, I, is taken by H_o , and H, the bottom horizontal reaction, is merely half the wind load on the bottom section.

Referring to Fig. 6, $V = H \tan \phi$, and the greater ϕ becomes, corresponding to anchoring the guys closer to the base of the tower, the greater V will become for a given wind load reaction H. In effect, failure of a guyed structure results from wind load stressing the guys to the point where they pull the tower down. Good practice usually has the guys anchored from 70 to 100 percent of their height from the tower base, but some tubular masts, taking advantage of the lower wind resistance of round members, are designed to take the

downward pull of guys anchored closer. Since it is most economical to have all guys in a set anchored at one point, ϕ is usually small for the lower guys.

The summation of all vertical forces at the bottom of the tower. ΣV as in Fig. 5, is the accumulation of gravity loads of the antenna, structure and ice, plus the vertical components V_a , V_b and V_o of all the guy strains. The maximum column load on the corner posts occurs at the bottom of the structure. Since a substantial increment is added at each guy point, many large guyed towers make a change to heavier corner post sections at the guy points. The fact that a structure does not add corner-post material at each guy point, however, does not necessarily mean that it is poorly designed. Changes in corner-post section complicate section splices in some designs and there are economies in keeping the number of different sections to a minimum. Heavier material is often used higher up the tower than stress analysis alone demands.

The wind direction for maximum stress in a guyed tower is different than for a self-supporting one, and is S rather than N in Fig. 3 for a triangular section. Corner-post C again gets the greatest load, in compression, and A and B share an equal tensile load between them. A wind from N will throw the full tensile load on C alone, but the corner post is stronger in tension than in compression.

For the square tower, Fig. 4, corner-post B was in compression in the self-supporting structure; if guys are added D takes the compression load when the wind is from N and B is in tension. The guys at A and C are slack. A wind normal to any face of a guyed triangular or square tower will not impose stresses as heavy as those just described, because the compressive loads are then divided between two corner posts.

Figure 7 shows how wind pressure on a triangular section between guys stresses it as a simple beam with a uniformly distributed load. With the wind coming from direction N, this results in a compression stress in A. Thus there are three compression loads on A. the beam stress just mentioned, the vertical component of guy strain, and the gravity loads of the antenna and the structure itself plus the weight of any ice. These constitute the maximum loads of any member of the tower, and reach their highest values at the bottom.

Cross-Bracing

The cross-bracing of towers is subject to infinite variation, depending upon decisions of the individual designer. Many combinations of horizontals and diagonals can result in a sound structure, and some successful lighter designs omit either horizontal or diagonal bracing entirely.

In general, and where a structure has both, the horizontals are compression members while the diagonals distribute tensile loads among the corner posts. The corner post is a column unsupported between bracing; the greater the length of a bay the heavier the corner post must be, and the bracing must also be heavier. The designer arrives at a compromise between putting his material into corner

FIG. 5-Loading on a guyed tower, showing vertical and horizontal components

FIG. 6-Guy-angle geometry

December, 1950 - ELECTRONICS

posts or bracing and tries to get a combination which will expose a minimum of area to the wind.

A few successful designs have used wire cable for diagonal bracing, despite the fact that end connections are expensive and cable is subject to stretching.

End connections of rigid bracing usually require that the material be two to three times the diameter of the bolt or rivet in width; this often determines the minimum section which can be used for bracing. Because of corrosion, traditional structural practice has in the past prohibited the use of any section less than $\frac{1}{3}$ inch thick, but the tower industry, doing careful stress analysis and using corrosion-resisting materials and coatings, has in many instances safely disregarded this arbitrary minimum. The more massive structures are usually built entirely of standard channels and angles, but lighter towers often use specially formed sections stamped from sheet or extruded in the light metals. Round tubing is an excellent shape for corner posts as well as bracing, since it is equally strong in all directions.

Fastenings

Towers other than the most massive designs are usually factory assembled into sections which are bolted together at erection. Where rod and tubing are used, factory assembly is generally done by welding; this is highly satisfactory if the welds are sound and are carefully cleaned before galvanizing or painting. The most dangerous type of corrosion starts at improperly cleaned welds.

Factory-driven rivets give little trouble except where they have not been thoroughly descaled before finishing the structure. Bolts and nuts are usually hot-dip galvanized; the nuts are usually retapped slightly oversize after galvanizing to permit easy assembly. Electro-zinc and cadmium plating of bolts and nuts permits their manufacture with closer fits than hot-dip galvanizing, but the difficulty of maintaining quality control, especially in barrel plating, has in some instances in the past made them less uniformly corrosion-resistant. However, electrozinc and cadmium plate are excellent paint bases; even if the structure itself is not galvanized, plated fastenings are well worth their slight additional cost.

Both self-supporting and guyed towers are subject to substantial vibration in gusty winds. Investment in locknuts or lockwashers of any standard type, plated like the nuts and bolts, is well worth the cost of additional material and erection labor.

Mounts and Footings

Guyed and self-supporting structures are mounted on different types of footings. The self-supporting tower must be anchored so that each leg footing can resist a tensile pull of high magnitude. Referring to Fig. 2 and 3, this is:

Tensile Pull = $PH/3 \div J + TH'$ $\div J - (G + W) \div$ No. of corner posts. For a given top load capacity and height, a tower with a greater spread at the base will cost more than others but, where soft ground conditions require extensively spread footings, a more economical

FIG. 7—Wind pressure on triangular tower section between guys

ELECTRONICS — December, 1950

installation will result from the fact that the tensile forces the base must resist will be less, since the denominator J shown in Fig. 3 is greater. Where a self-supporting tower is used as a vertical radiator, push-pull insulators are usually employed for the legs; Fig. 8 shows how such insulators translate tensile pull on the leg into a compression strain on the porcelain.

The base of a guyed structure is less elaborate, since there are no upward components of force, but the footing, usually a slab of concrete, must be spread over enough ground to distribute vertical loads over an area which can support them without sinking. The slab must resist substantial internal shear stress unless ground conditions permit it to be small in area; it is usually provided with reinforcing bars. The horizontal loads on the base of a guyed tower, being quite small, are taken by a few bolts or anchor rods locating the tower base on its footing. Base insulators for guyed vertical radiators have to be quite substantial to take the downward thrust of the guy strains and gravity loads. However, porcelain has a high strength in compression, so pivot insulators of the type illustrated in Fig. 9 can support even the most massive structures.

Guy anchors require careful investigation of soil conditions and installation. For strains up to a few tons in medium or hard soil, galvanized guy anchors equipped with bearing plates or suitable for use with a deadman buried in the ground are often employed. These are inexpensive and easy to install; even if the largest size cannot support all the guys in a set it is worthwhile providing more than one anchorage if this allows their use. In soft soil, and where guy strains are several tons, concrete footings must generally be designed. Shaping them along the line of average direction of guy pull saves material and labor and the use of a wedge-shaped plate transmitting guy pulls to the anchor allows self-alignment of the guys.

Materials

Steel towers are low in first cost, but their weight is a factor in shipping and erection expense. Even though galvanized they are usually painted periodically in all but quite dry climates; this expense is necessary in any case where the Civil Aeronautics Authority declares a tower to be a hazard to air traffic and requires that it be painted in orange and white stripes for maximum visibility.

Aluminum has become important as a tower material since the development of strong and corrosion-resistant alloys. Having a modulus of elasticity about one third that of steel, an aluminum-alloy tower under load deflects roughly three times as much as a steel tower made to the same design. The alloys used for towers weigh about one third as much as structural steel, and their yield point in tension is about a third higher. In order to reduce deflection, deeper sections are used, but good designs are on the market which are about 40 percent of the weight of a structural steel tower having the same load capacity. They are more expensive than steel structures, but in many cases the additional first cost is offset by savings in shipping and erection.

Stainless steel is the best material for towers from the corrosion standpoint, but is quite expensive. In its annealed state, 18-8 stainless steel has a yield strength about the same as structural aluminum and higher than structural steel. However, most stainless steel used for antenna-support structures is in the form of tubing, where the cold working accompanying the drawing operations materially raises its strength. Especially where a tower need not be painted, stainless steel towers, like aluminum, effect savings in shipping, erection and maintenance.

Magnesium alloys will undoubtedly play an important part in the future of antenna support structures. Substantially lighter and more corrosion resistant than aluminum, they permit the erection of massive towers with little gear. Research is producing stronger alloys and gradually eliminating detrimental factors such as the susceptibility of magnesium to notcheffect failures.

Phenolic resin-bonded plywood was used for mass-produced masts

FIG. 8-Support for unguyed tower

up to about 100 feet in height during World War II. It has the advantages of low cost, easy erection, low maintenance and the employment of noncritical material. However, it has a shorter life and less load capacity than most metal types and must be lowered when antennas are to be tuned or serviced. Postwar development, particularly in the direction of using fiberglass as a filler material, has improved the quality of this type of product; it is especially useful for testing work and temporary installations where frequent moving of equipment is necessary.

Wooden masts and towers are rarely satisfactory at heights above 50 feet althought many up to 250 feet were built in wartime because of the shortage of metals. Design requires great care and flawless materials must be used. The allowable stress being low, sections are bulky and the wind loads consequently quite high.

Selection of Site

Guyed towers require substantial areas for guy anchorage. Installation on a rooftop adds to the height but roof framing must often be reinforced for the tower base and sometimes for guy anchorage as well. One method of anchoring guys on a rooftop of limited area is shown in Fig. 10; alternate methods include running one or more guys to the ground or to another building.

Self-supporting towers require less room for the base, but legal liability exists where the structure might fall onto property owned by others; insurance must be figured into the maintenance cost so sometimes it is cheaper to acquire land around the tower to reduce this charge. Reinforcement of roof framing to anchor a self-supporting structure is usually more costly than for a guyed structure of the same height because of the tensile loads the base must resist, but guy anchorages are eliminated.

Soil conditions should be determined before the selection of a tower to be ground mounted. Soft or swampy ground may dictate the choice of a self-supporting tower with the base spread as much as possible. A guyed structure mounted on soft ground should be as small and light as possible; some of the stainless steel towers made of round tubing are costly but their wind loads are low, their vertical thrust against the ground correspondingly small and the base required less elaborate than for more massive steel units. In temperate or cold climates the footings should go at least below the frost line for safety.

Rock footings are relatively Usually holes are drilled, simple. steel rods with appropriate crossmembers for bonding inserted, and the holes filled with concrete. In the case of the lighter structures, the rod itself can be used as an anchor bolt attached to one leg of the tower. For heavier structures a triangle or square of metal fitting the leg angles of the tower is buried.

Accessibility of the site will sometimes be a major determinant in selection of an antenna support where there are serious limitations of carriers and roads.

Erection Methods

For crane erection, either an entire structure or a few bottom sections are assembled on the ground. A truck or crawler crane hooked to

the structure just above its center of gravity lifts the unit and lines attached to the bottom end swing it into an upright position. The crane then lowers it onto the anchor bolts. Crawler cranes capable of lifting up to ten tons at the end of a 100-foot boom are available in most centers of population in this country, so units up to possibly 200 feet high can be erected by this method. However, great care must be exercised in raising units over 100 feet high, because the guyed units especially are quite limber, and buckling may occur. Rental of cranes is expensive, but the crane is needed only for the minimum hiring period of one day. Gin poles and A-frames can take the place of the crane for smaller units.

For piecemeal erection the bottom section of the structure is erected as a unit. A jib is then attached to one corner post, projecting up more than half the length of the next corner post. This jib is used with a pulley and rope to raise the members of the next bay. After the bay is completed the jib is again raised. A winch on the ground may be used to lift the material, or a jeep or truck may be used, employing a pulley on the ground to change the direction of pull. Piecemeal erection is necessary on the more massive towers; when mounted on prefabricated sections the jib may raise an entire tower section. Some manufacturers supply jibs suitable to their towers on a sale or rental basis. Where a massive structure is to be erected on a rooftop it must be determined whether there is room on the roof to install a hoisting der-

rick to lift the members or whether they must be carried up in elevators. These conditions may dictate a maximum size of members, which would control the basic design.

For boom erection many guyed masts are equipped with four sets of guys instead of the minimum The boom, which may be three. one quarter to a third the length of the mast, is attached to the mast base at right angles to it, and the base itself is equipped with a hinge. The mast, including all the guys, is assembled on the ground and the boom is attached in a vertical position. One set of guys is attached to the boom, shortened as neces-Two sets are attached to sarv. their ground anchors. The fourth set, opposite the boom, is attached to a truck or held by manpower. A line fastened to the end of the boom is pulled in the direction opposite the mast, and, as the boom end is pulled down, the mast is raised. At some point near plumb the weight of the boom balances the weight of the mast; beyond this point the mast falls into an upright position and the fourth set of guys opposite the boom must take up their slack and ease the mast into position.

Maintenance

Materials of construction, fastenings, climatic conditions and required length of life determine mantenance requirements.

Painting is the most costly repetitive item and the one most often neglected. Aluminum structures need not be painted unless they are exposed to salt air or industrial fumes corrosive to the metal; in the

FIG. 10-Use of guy anchor column on rooftop of limited area

ELECTRONICS - December, 1950

former case they need painting less often than galvanized steel if a zinc chromate priming coat has been well applied. In dry climates galvanized steel does not need painting either, though both it and aluminum are subject to weathering which may make their appearance undesirable. Galvanizing provides a better paint base than bare steel, as also do Parkerizing and similar chemical treatments for metals.

Bolts are the first parts of a tower to show signs of corrosion in most cases, even when painted. Streaks below a bolt head may indicate only the combined effects of rain and dust; nothing need be done about them until wire brushing shows bare metal has been exposed or pitting started. When bolts and nuts begin to rust on an aluminum tower wire brushing and painting will save them.

About six months after a tower has been erected, or after its first winter, all the bolts should be tightened and any showing signs of corlosion painted or replaced. Subsequent tightening need only be done once a year, but signs of misalignment or damage should be promptly attended to.

Guys should be adjusted at erection so that the structure is perfectly plumb and straight with all the slack taken out of the guys and all equally taut. Some manufacturers supply guy-tensioning devices based on spring-adjusted turnbuckles, but screw turnbuckles should be provided in addition to these. Guys should be checked four times a year or after severe storms; all wire rope is subject to stretching.

Lighter units generally have bracing handy for climbing, and more massive units are usually provided with a ladder. Where bracing is too widely spaced for climbing, extra horizontals on one face may be provided to form a ladder, or one corner post may be fitted with cantilever climbing rungs.

Tubular masts can be fitted with ladders or rungs attached to clamp rings. These, of course, add to wind resistance. A mast is usually painted by lowering it, or by using a boatswain's chair suspended from the top if it is erect.

Electronic Control of -HOME HEATING-

Amplifier fed by a-c bridge containing resistance-wire sensing elements maintains room temperature within 0.25 deg F by sensing outdoor weather changes and automatically cycling burner on and off. Outdoor sensing element automatically raises control temperature to assure constant comfort when weather turns colder

THE ULTIMATE GOAL for all good heating systems is to supply constantly just enough heat for a structure to balance heat loss—no more and no less. Only when that goal is reached can an even, steady room temperature be expected.

In a home or building with several large rooms it is desirable to control at more than one point to provide averaging results so that a better over-all condition of comfort could be maintained. Temperature within large buildings can vary considerably from one end to the other due to strong winds or sun effect, but outside temperature is the major source of heating load.

This article is based on a paper presented at the 1950 National Electronics Conference. The Conference paper will appear in the NEC Proceedings.

FIG. 1-Complete circuit of electronic control for heating systems

By JOHN M. WILSON

Chief Electronic Engineer Minneapolis-Honeywell Regulator Co. Minneapolis, Minn.

An outdoor control can help overcome system lag by altering the basic rate of heat input the instant it senses a change in temperature, rather than waiting for the outdoor temperature to be reflected through the mass of the building walls to the inside thermostat.

In mild weather a room temperature of 72 degrees may be perfectly comfortable. When outdoor temperature drops considerably, however, an inside air temperature of 72 degrees may not be sufficient for comfort because the individual is radiating heat from his body to cool walls. To overcome the sensation, during colder weather most people raise the control point of the thermostat until they again feel comfortable. It is desirable to have automatic means of doing this according to outdoor conditions, particularly at night.

Electronic System

The introduction of electronic controls to the field of heating comfort gives results never before believed practical, closely approximating the ultimate goal for heating comfort. Control within a fraction of a degree with extreme stability is realized.

The basic electronic heat control system consists of a Wheatstone bridge arrangement, an electronic amplifier and a relay. Signals are picked up by elements of the bridge circuit and amplified by the electronic amplifier, which in turn provides a signal voltage for the relay unit whose output circuit can operate any common heating system employing an oil burner, gas burner or stoker.

An electronic circuit that can control a heating system, incorporating all the features that were just considered desirable, is shown in Fig. 1. Basically it consists of a Wheatstone bridge, an amplifier and a relay.

In the lower right-hand leg of the bridge are two resistors in series, one labeled MASTER THERMOSTAT and the other AVER-AGING THERMOSTAT. A third, fourth or fifth thermostat could

December, 1950 - ELECTPONICS

Replacing tube in electronic control unit for gas furnace in home

Snipping out shorting segments from stamped wiring of electronic home heating control after soldering all joints

be added to produce nearer average control temperatures for the whole structure, but experience has shown that two thermostats give excellent control results and require a minimum of installation wiring.

A rheostat in the same leg of the bridge is integral with one of the thermostats and acts as a control point selector calibrated from 55 to 85 F.

In the upper left-hand leg of the bridge is a resistor labeled OUTDOOR ANTICIPATOR. This gives a signal to the control system as the outdoor temperature changes, thereby initiating corrective action before the space temperature varies. In addition, the value of resistance for this outdoor anticipator may be selected so that as the outdoor temperature falls the control point of the system is automatically shifted to give a slightly higher room temperature.

Circuit Operation

The output of the bridge feeds a two-stage voltage amplifier utilizing the two triode sections of a type 12SL7 tube. The voltage amplifier feeds one half-section of a 12SN7 tube, the plate circuit of which operates a relay in response to signals from the bridge circuit. The second section of the 12SN7 acts as a half-wave rectifier to furnish plate voltage for the two voltage amplifier stages.

The plate supply voltage for the power amplifier is 315 volts a-c. A large capacitance is placed across the relay coil to smooth out a-c ripple and prevent chattering.

When the bridge circuit is unbalanced sufficiently in the direction to produce 45 volts d-c across the relay, the relay pulls in and establishes a circuit to an external load (the furnace) as well as to the cycler heater. As the bridge circuit approaches balance, the voltage across the relay will drop steadily. At 25 volts the relay armature will drop out. The control system thus has a differential of 20 volts. Amplifier gain is such that this voltage differential is produced by a net charge of 0.6 ohm in bridge resistance.

For best results it has been determined that each leg of the bridge circuit should be approximately 1,000 ohms. If two thermostats are used, to average conditions in different rooms and obtain better over-all comfort, each unit will be 500 ohms at some pre-determined temperature (70 degrees). If a single thermostat is used, the entire 1,000 ohms is in one housing.

The Balco temperature-sensitive wire used for sensing elements is a nickel alloy having a positive temperature coefficient of 0.0024 ohm per ohm per degree F. With 1,000-ohm elements, the resistance will change approximately 2.4 ohms for every degree change in temperature. Since 0.6-ohm change in the bridge is required to produce the 20-volt differential to operate the relay, the system differential actually is $\frac{1}{4}$ degree F.

Typical bimetal-operated thermostats in homes are adjusted to have a minimum differential of between $1\frac{1}{2}$ to 2 degrees. The electronic system thus has a considerably greater sensitivity than conventional mechanical systems.

Heating Load

One of the most important functions of a temperature control system is to provide heat input during periods when room sensing elements are not calling for heat. This keeps the temperature and flow of the heating medium relatively constant for any given condition of load. Figures 2 and 3 indicate the importance of the cycling device in performing this function.

Figure 2 shows the load line that can be drawn for any automatically fired heating system, neglecting sun and wind loads that are other than normal. On this graph 70 degrees F has been considered the fade-out temperature, or the temperature at which no heat input to the building is required, and -40 degrees is considered the point at which the furnace would have to be running 100 percent of the time to furnish the heat necessary to overcome the losses. The graph thus gives the approximate percent on time for any outdoor temperature between -40 and +70 degrees F. This assures that the heat losses from a building are at a relatively steady rate, while the heat input as a result of burner operation is intermittent due to the on and off characteristics of conventional burners.

Figure 3A graphically demonstrates the operation of the burner and resulting room temperature conditions under 50-percent load with an average control system. The temperatures shown are arbitrary as to value, but they do indicate that there will be a considerable variation of room temperature. This graph also indicates the lag of room temperature behind the burner cycle.

In Fig. 3B, the heating load is still 50 percent but the burner operations are shorter and more frequent. Temperature fluctuations are clearly lower than for Fig. 6A.

In Fig. 3C, burner operations are still more frequent, with the total time on per hour exactly the same as in Fig. 3A. Room temperature fluctuations are now practically unnoticeable.

In general, it is safe to say that as the frequency of burner cycling is increased, for a given load, the temperature becomes more uniform. With modern-day burners, it is not practical in many cases to have cycles less than three minutes on. In the majority of domestic heating plants, a time interval or minimum cycle of $3\frac{1}{2}$ to 5 minutes will produce excellent results as far as the room temperature is concerned.

Automatic Cycling

Automatic controls have been available that mechanically set the cycling rate of a heating plant. These devices do a fine job, providing the heat loss is at a constant rate. However, as the outside temperature changes, the heat loss requirements change, and therefore the cycling rate has to be changed also. With the mechanical system this is not very practical.

An electronic cycler is used in the control system under discussion, to produce the proper frequency of burner operation under varying load conditions. This cycler consists of a bridge element (shown in Fig. 3), an electric resistance heater, a switch, and a power source, in this case a transformer. The resistance of the cycler bridge element is chosen so it will demand heat input from the burner at approximately the same rate as the heat losses from the building. The switch is a contact on the same relay that starts and stops the burner. When a call for heat is indicated, the relay closes and heat is furnished to the heater of the cycling unit. Because the bridge element of the cycler is wound close to the heater, its resistance begins to increase as soon as heat is applied. When the amount of resistance increase equals 0.6 ohm, the relay contact opens and the heater is de-ener-

FIG. 2—Typical load line for home heating system, showing percentage of time the oil burner must run for comfort at each outdoor temperature

gized. The bridge element begins to cool; when it reaches the temperature of the surrounding air, the bridge is restored to its original condition of unbalance (assuming room temperature has not yet changed) and the relay again closes to repeat the cycle. The rate of heating and cooling depends upon the cycler design.

As the resistance of the cycler increases and decreases it tends to balance and unbalance the bridge circuit periodically, even though there is no change in temperature at the thermostat units. A cycling rate for the burner is thus automatically established. The next question is how this cycling rate is automatically varied as the heating load changes.

The instant the heating load varies, due to a change in outdoor temperature, this change is felt by the outdoor anticipator which consists of a bobbin of temperaturesensitive wire located outdoors and wired in the same bridge leg as the cycler element. Electrical resistance of the outdoor anticipator decreases as the outside temperature drops, and unbalances the bridge circuit. As a result of this condition, the cycler heater must remain energized for a longer time, heating the cycler bridge element to a higher temperature, in order to restore the bridge to its original balanced condition. Because the bridge element follows a typical cooling curve, the unbalancing due to the cooling of the heater will be more rapid and the next cycle will occur sooner. The net result is an increase in the length of the burner on cycle and decrease in the length of the off cycle.

If the heat input to the building is not adequate to maintain a constant temperature, the indoor thermostats feel this change and their electrical resistance lowers slightly. The change in thermostat resistance again tends to change the cycling rate until the proper balance is obtained. Since the thermostats have roughly 15 times the nominal resistance of the cycler or the outdoor anticipator, it only takes 1/15 of a degree temperature change at the thermostat to get the same effect as a one-degree change at either the cycler or outdoor anticipator used in the system.

If the temperature outdoors rises, the cycling rate will decrease. When the heat loss of the building reduces to zero (for equal indoor and outdoor temperatures), the cycling will stop altogether.

The cycler performs one other important function in connection with a morning pickup period after a night of reduced temperatures. With a standard type of control system, the heating system is started as soon as the thermostat setting is restored to the daytime level, and runs continuously until a predetermined control point is reached. At that point the heat source is shut off, but heat stored in the furnace and in the heat distributing system continues to raise the room temperature until all excess heat is dissipated. In many cases this results in room temperatures several degrees higher than desired for short periods. With the electronic system, incorporating a cycler, the burner runs continuously until the room temperature has restored the bridge balance to a point where it comes within the field of control of the cycler. This usually occurs about 2 degrees below the desired control point; here the cycler causes the burner to begin cycling, and the control point is approached at a decreasing rate so that no overshoot occurs.

System Droop

Any type of thermostatic control system which by means of artificial heat tends to anticipate the eventual rise in room temperature has a characteristic called droop. This is the amount the room temperature must drop below the thermostat set point before the burner runs 100 percent of the time. Droop often contributes to the discomfort one feels within a building as the outdoor temperature lowers.

The electronic controls also provide droop, due to the fact that the cycler is always attempting to restore the bridge balance and shut the system off. To provide continuous burner operation, room temperature must fall enough so the decreased resistance at the thermostat more than offsets the increased resistance due to the heating of the cycler.

FIG. 3—Effect of cycling on constancy of room temperature. The more often the burner comes on, the less variation there is in room temperature

Where droop is almost impossible to eliminate in a mechanical thermostat system, it is easily overcome in the electronic system. The outdoor anticipator can be used very handily to offset droop. It can even go further and actually raise the control point as the outdoor temperature falls. Because droop is a direct function of heating load, and the load can be considered virtually a direct function of outdoor temperature, as shown in Fig. 2, a nominal resistance value can be assigned to the outdoor anticipator so that the bridge unbalance due to the cycler heating is offset by the changed resistance of the outdoor anticipator.

To correct exactly for the droop in the system, the outdoor anticipator must have sufficient authority to just overcome the cycler resistance when it is heated continually, indicating full load. Any additional resistance in the outdoor anticipator raises the control point of the system inversely as the outdoor temperature changes. Knowing the coefficient of the Balco wire used for the temperature-sensitive element, it is a simple matter to determine the amount of resistance necessary over a certain outdoor temperature span to raise the control point the desired number of degrees.

Stamped Wiring

Internal wiring for the entire amplifier is punched out of a sheet of 0.025-inch thick brass in one operation. The various circuits are held together by small webs of brass. After the components are completely wired into the amplifier, the webs or short-circuits are removed by clipping. The entire wiring grid is silver-plated for ease of soldering.

Ten screws are used to fasten the amplifier unit to its base. These same ten screws act as terminal connections to complete the circuit to the external components. This type of attachment of the amplifier to the terminal base allows a quick change in case of internal trouble, without having to change installed wiring connections. Tubes can be easily replaced from the front of the amplifier while it is mounted.

The cycler is made of plastic in a cylindrical shape with seven slots. In the bottom slot is the Nichrome heater element. The temperaturesensitive cycler element is placed in a slot which gives the desired timing, by determining the minimum burner cycle during mild weather conditions. If this is wound in the slot next to the heater, the cycler will go through its heating period in approximately 30 seconds. With the temperature-sensitive element wound in the top slot, which is the maximum distance from the heater, the approximate timing is 5 minutes. Nominal timing for most burner installations is approximately 31 minutes to provide completely satisfactory results, this timing being determined by experience on many installations.

Actual results produced with the electronic system indicate that in many cases the temperature within the controlled space varies less than one-fourth degree.

Stamped wiring, ready for placing in grooves of molded plastic chassis. With this, no wires can be omitted or connected wrong

Color Fundamentals

FIG. 1—Physical nature of color, as illustrated by the spectrum formed by passage of white light through a prism. Variation of speed of light in glass causes separation of color components

FIG. 2—Relationship between color sensations, frequency and wavelength. Additive primary colors used in tv (red, blue and green) are taken from ends and middle of spectrum

FIG. 3—Monochromatic light is formed by passing a narrow band of the spectrum through a slit in an opaque barrier. Standard I.C.I. monochromatic primary colors occur at wavelengths of 700, 546.1, and 435.8 millimicrons

T IS COMMON experience that the objects in a scene can be distinguished by characteristics independent of their geometric form. Such distinctions are based on the color quantities: brightness, hue, and saturation.

The brightness of the objects is the degree of lightness or darkness exhibited.

The hue is the redness, green-

ness, yellowness, blueness, and so on, of the objects.

The saturation is a measure of the degree of dilution of the hue by white light.

Since the eye can distinguish (by direct comparison) at least a hundred degrees of brightness, hundreds of hues, and many degrees of saturation, it is evident that the number of distinguishable

PART I of a three-part series

By DONALD G. FINK Editor, ELECTRONICS

variations in color, when viewed under suitable conditions, ranges into the tens of thousands. If the color television system were required to reproduce as individual items of information each of these distinguishable color quantities, the rate of transmitting information would be many hundreds of times as great as it is in a blackand-white system of the same resolution and continuity. This follows from the fact that such a system would have to specify, as each picture element is reproduced, not only the brightness of the picture element (as in the black-and-white system) but also its particular hue and its particular saturation. If this method of transmission were mandatory, it is doubtful that television in color would have emerged as a practical reality.

Fortunately, as we shall see in more detail later, the eye perceives color on a relatively simple basis, whereby the hundreds of distinguishable hues and saturations may be represented as combinations of three primary colors. Therefore, it is necessary to specify, as each picture element is reproduced, only the relative brightness of three specified colors, and the rate of transmitting information in a color system is only three times as great as that of a black-and-white system of the same resolution and continuity. This three-to-one increase in the transmission rate, while burdensome, is entirely feasible within the framework of established television technology. Moreover, the color values add so much to the sense of realism that it is worth sacrificing a certain amount of resolution and/or continuity to obtain them.

The exchange of one form of pictorial merit for another is clearly

December, 1950 --- ELECTRONICS

www.americanradiohistorv.com

for TV Engineers

Adoption of field-sequential color system by FCC for commercial broadcasts finds video technicians puzzling over the chromaticity diagram and wrestling with trichromatic coefficients. This series of tutorial articles on color is taken from the forthcoming second edition of "Principles of Television Engineering"

evident when an object, just resolved as such in the image, has a distinctly different color from that of its surroundings. The color distinction then aids the eye greatly to apprehend the presence of the object, and the effective resolution of the reproduced image is visibly enhanced by the addition of color. Such color contrasts have a similar effect in delineating the edges of extended objects, offering a subjective resolution noticeably greater than that of the same image viewed in black-and-white.

The presence of color brings with it severe requirements in other directions. Thus color adds to the realism of a reproduction only if the colors are in themselves reasonably realistic. The eye is accustomed to associate particular colors with certain contexts (a ruddy complexion with good health, pallor with sickness, and so on). If the colors shown are inaccurate, particularly if they have the wrong hue, the result may be so distracting as to make the color of questionable value. In such cases, in fact, the effect of realism may actually

FIG. 4—Spectral distribution curve of an extended (non-monochromatic) color source. The effect of this light on the eye is substantially the same as that of monochromatic light having a wavelength corresponding to the peak of the curve

FIG. 5—Additive method of color mixture. Colored beams are formed by passing white light through primary-color filters located side by side, then focused on same area of screen. Variations of this method are used in all color tv systems

be greater in a black-and-white image, on which the mind "paints" the missing hues in accordance with the emotional reaction of the viewer.

Physical Nature of Color

The physical nature of color phenomena is conveniently introduced by a description of the spectrum of colors formed by the dispersion of a beam of light. When a beam of white light (sunlight) is passed through a prism (Fig. 1) the beam is separated into a spectrum according to the wavelengths of the radiation. The dispersion of the light results from the fact that light of short wavelength travels slower in glass than does light of longer wavelength.

Inspection of the spectrum reveals that waves of different wavelength display different hues. In order of decreasing wavelength, the hues are red, orange, yellow, green, blue, and violet. If the light source is an incandescent solid, the colors appear to blend one into the next, in continuous fashion. If the light source is a gas or vapor, the spectrum is a discontinuous assemblage of colored lines or bands.

The limits of the visible spectrum are commonly taken as 380 to 780 millimicrons (one millimicron $= 10^{-7}$ centimeter). The range of practical interest is from 400 to 700 millimicrons. Figure 2 shows the relationship between color, frequency and wavelength of the spectrum.

If a narrow portion of the spectrum is passed through a slit (Fig. 3) light of one hue may be separated from the others. Light so separated is known as "monochromatic light". It might be expected that the sensation associated with a given spectral hue could be excited only by monochromatic light so derived from a spectrum. But such is far from the case. The sensation of monochromatic orange, for example, can be caused by viewing a combination of a monochromatic red and a monochromatic yellow.

The technique of securing monochromatic light from a spectrum provides sources of color which can be combined in various intensities. When monochromatic lights are so combined, it is found that a great variety of other colors can be formed. One group of such mixture colors comprises the so-called "desaturated colors", that is colors having a dominant hue mixed with white light. There are also mixtures, which appear to take on simultaneously two hues such as bluish red, greenish yellow and greenish blue.

Thus far we have considered colored lights of the monochromatic type only, obtained by blocking off all but part of a spectrum. It is equally feasible to use sources which radiate an extended distribution of energy with a prominent peak of energy in the visible region. As might be expected, such a source displays a hue which closely approximates the monochromatic hue corresponding to the peak of the spectral distribution curve (Fig. 4). Examples of such sources are glass or colored gelatine filters and phosphors excited by electrons. These extended sources are evidently more easily set up and manipulated than are monochromatic sources. Monochromatic sources are of interest, in fact, only because they provide light whose properties are easily defined and calibrated. Once the calibration is performed, extended sources producing the same sensation may usually be substituted for the monochromatic sources.

Trichromatic Nature of Vision

Early in the study of light it became clear that any given color can be matched very closely by combinations of three primary colors. To match the widest possible range of colors, the primary colors should be chosen in widely separated regions of the spectrum (that is those at the two ends of the spectrum, red and blue, and that at the center, green) and they should be highly saturated (that is, have little or no admixture of white light).

To match colors with primary colors, it is necessary to provide a means of varying the apparent brightness of each primary independently and to combine the three colors so that they cover the same area. Then, by adjusting the relative brightness of the three primaries, it is possible to match a very wide range of hues, with any degree of saturation. By adjusting the absolute level of brightness of the primaries, keeping their proportion unchanged, it is possible to match not only the hue and saturation of a given color. but also its absolute brightness.

The fact that three primary colors suitably combined can match virtually any color is rather difficult to explain on physiological grounds. Consider two monochromatic sources, a red of frequency 4.6 x 10¹⁴ cps (wavelength 650 millimicrons) and a yellow of frequency 5.2 x 10¹⁴ cps (wavelength 580 millimicrons). On the assumption that the eye reacts in some manner to the frequency of visible radiation, it might be expected either that both colors would be seen, or that the response should bear some relationship to the sum or difference of the two frequencies.

But the fact is that neither color is seen as such. Instead an orange hue appears. If the red and yellow have equal intensities, the orange

FIG. 6—Subtractive method of color mixture. Beam passes in succession through subtractive filters located on a line. By adjusting absorption of filters, left-over portion of white light can be made to have any required color

corresponds to a wavelength of about 600 millimicrons, or a frequency of 5.0 x 1014 cps. The frequency associated with the mixture color, orange, has no observable relationship to the two frequencies of the red and yellow stimuli which excite the sensation. Moreover, as the intensity of the red is varied relative to that of the yellow, the mixture color ranges over the whole range of hues from red to yellow, and the equivalent frequency of the mixture color changes correspondingly, while the frequencies of the sources remain fixed. Evidently, then, the eye is not a frequencysensitive device.

At present, there has been uncovered no physical demonstration of the seat of the color perception properties of the eye. It is commonly supposed that the retina contains three color receptors associated with each foveal cone in the retina. Each type of receptor responds over a range of wavelengths, but has a peak of response in a particular region of the spectrum that is, there are red-sensitive, green-sensitive and blue-sensitive receptors, each of which passes nerve impulses to the optic nerve. When a monochromatic source is viewed, it excites two (or three) of the receptors having responses at the particular wavelength present, and the resultant nerve impulses are a combination of two (or three) types which induce the sensation corresponding to the monochromatic stimulus. If two monochromatic stimuli are presented in different regions of the spectrum they may excite an identical combination of nerve impulses, and thus create the same sensation. The fact that substantially all monochromatic sensations may be matched by three primary colors is evidence that at least three types of receptors, having overlapping spectral responses, are present.

The physiological mechanism by which the eye perceives color is of little practical importance, since the properties of color vision can be expressed simply in an empirical way. The empirical approach leads to a coherent expression of color values, embodied in the chromaticity diagram which expresses color matching problems on a numerical basis.

The color combinations referred to above may be formed in two different ways, the additive method and the subtractive method. In the additive method, the primary colors exist as separate entities produced by sources (such as spectral slits or filters) located side by side. The colored lights from the three sources fall on the same surface (Fig. 5). It is not essential that the colored lights fall on the surface continuously. If they illuminate the surface in rapid sequence, persistence of vision produces the appearance of simultaneous illumination by all the sources, and the color sensation is the same as if the sources were active continuously.

All color television systems use this additive principle of combining colors. In the simultaneous color television system for example, the three primary-color images exist side by side and are either projected one over another on a viewing screen or are combined in a tricolor screen so that they fall, one superimposed on another, in the retina of the eye. In the sequential color systems, only one primary color is present at any instant of time, but the three primary colors presented in such rapid are sequence that the effect is the same as that of continuous illumination by all colors.

The primary colors used in the additive system of color reproduction are red, green, and blue. These are the hues previously identified as being located at the two ends and at the center of the spectrum. Let us consider first combinations of two primaries. When combined in the additive manner red and green produce the intermediate hues of orange and yellow. Green and blue so combined produce the green-blue hues. Red and blue combined produce the purples.

When the three primaries are combined additively, in appropriate amounts, white light is produced. This white light, if its intensity is less than that of the other light present, appears gray, and the gray so produced may have any intensity.

If the three primaries are combined in unequal proportions, the white light is tinged by the hue of the predominant primary or primaries. In this manner, a particular

FIG. 7—Essential elements of a simple colorimeter. Light of "unknown" (unspecified) color falls on one surface, while adjustable amounts of primary colors are mixed additively on other surface. By adjusting amounts of primaries, a color match can be obtained. In some cases, one primary must be transferred to unknown side to secure the match

primary hue may become "desaturated" (diluted with white light) by adding appropriate amounts of the other two primaries. Finally a hue intermediate to two primaries may be desaturated by adding an appropriate amount of the third primary.

Additive and Subtractive Color Matching

Those unfamiliar with additive color matching will object that the additive primaries, red, green, and blue, are not the primary colors with which they are familiar. The primary colors which are used in painting and in color printing and photography are the subtractive primaries. As named in common usage, the subtractive primaries are red, blue, and yellow. Actually substractive primary colors are a bluish red ("magenta"), a bluish green ("cyan"), and a greenish yellow ("lemon yellow").

These designations, as well as the appearance of the subtractive primaries, indicate that each is a mixture. The mixture is produced by the process of subtracting a particular hue from white light, leaving the remaining hues of the spectrum which in combination produce the sensation of a complex mixture color. (Fig. 6) Thus the magenta subtractive primary is formed by removing green light from white light. A magenta pigment or dye is, in fact, one which absorbs green light strongly, so that white light passing through it takes on a bluishred appearance. Similarly, cyan is produced by removing red light from white light and lemon yellow by removing blue light from white light.

Subtractive primaries are combined by placing the pigment, dyes or filters one on top of the other and passing white light through them in succession. A typical example is the Kodachrome, photographic transparency.

By so combining the subtractive primaries, it is possible to subtract from white light any portion of the visible spectrum, and leave the equivalent of a spectral hue. By thus manipulating the absorption of hues from white light, the resultant may be made equivalent to any combination of spectral hues, and the whole range of hues and saturations may be matched, substantially as if additive primaries had been used.

What, then, is the relative advantage of the additive versus the substractive process of color reproduction?

The choice depends on the manner in which the primary colors are produced. If the three primary color sources are self-luminous, and exist as separate entities and hence can be combined only by adding one to another, (Fig. 5) the additive system must be used to match the full gamut of colors. But if the three primaries are formed by passing white light in succession through three layers of colored material, one on top of the other, (Fig. 6) the materials absorbing part of the spectrum as the light passes through them, then the subtractive primaries must be used to match the full gamut of colors.

The outstanding example of the additive type of color reproduction is that performed in color television receivers, in which the primaries are self-luminous and separate. Examples of the subtractive method are painting, color printing and color photography, in which superimposed layers of dye or pigment are traversed in succession by white light, and in which the unabsorbed portion of the white light affects the retina of the eye.

An additive primary color filter absorbs from white light passing through it all the light but that of the primary. The subtractive filter is the complement of the corresponding additive filter, that is, the subtractive filter absorbs the energy which the primary filter

passes. For example, the additive red filter absorbs blue and green. passing red. The subtractive cyan filter absorbs only red, passing blue and green. In general, therefore, the absorption of subtractive filters is lower than that of the additive filters. Hence, for a given amount of white light the subtractive process produces a somewhat brighter color reproduction, and this would weigh in its favor for color television. Unfortunately this fact is overruled by the mechanics of the reproduction process which require the additive process to be used whenever the primary images are separate, self-luminous entities as they are in present-day color television receivers.

Henceforth we shall confine our attention to the additive primaries and the additive method of color matching.

The Trichromatic System

We proceed to the numerical specification of color quantities. These specifications are quantitative indices of hue and saturation which define the color filters and light sources used at the transmitter and receiver of a color television system. The basis of the specification is the chromaticity diagram. which provides not only an elegant basis of visualizing the relationships of different hues and saturations but also a figure which bounds the gamut of colors which can be matched by a given set of primary colors.

The numerical specifications of a color comprise values representative of its brightness, its hue and its saturation. It is convenient to perform the computations on a basis independent of the brightness, thus removing one of the variables from the equations. This computational device is permissible because the match between the three primary colors and the matched color is preserved when the brightness of each color is multiplied by the same factor.

Since the subjective reactions of observers to colors vary widely among individuals, it is necessary to make measurements with a number of observers and to adopt as a standard the mean values of the quantities observed. The results of

FIG. 8—Color mixture data representing the I.C.I. standard observer, showing relative amounts of I.C.I. spectral primaries which must be added or subtracted in colorimeter to match each color in the spectrum

such tests, conducted by Guild and Wright, were adopted in 1931 by the International Commission on Illumination (I.C.I., sometimes referred to as the Commission Internationale de l'Eclairage, C.I.E.) as the basis of the so-called I.C.I. System of Color Specification.

In the I.C.I. system, the red, green and blue primaries are defined as monochromatic light of the wavelengths 700, 546.1 and 435.8 millimicrons, respectively. The green and blue primaries are prominent lines in the spectrum of the mercury arc and hence are readily and precisely reproducible. The red primary is not critical as to wavelength, since the hue in this region of the spectrum remains sensibly constant over an appreciable range of wavelengths.

Taking these primaries as light sources, and combining them in a colorimeter, (Fig. 7) it is possible to determine the relative amount of light flux (lumens) of each primary which must be combined in a mixture to match a given number of lumens of each hue in the spectrum. These measurements are repeated for a large number of observers and average values are taken as representative of the "I.C.I. Standard Observer". These standard values are plotted in the three curves of Fig. 8. It will be noted that the amount of the red primary must be greater, by a factor of nearly 100, than the blue and green,

because the luminosity of the red primary is small. At the wavelength corresponding to one of the standard primaries, the amount of the other two required for a match must necessarily be zero, as is indicated in the illustration.

One striking fact is that negative amounts of the primaries are shown in Fig. 8, in the region from 450 to 550 millimicrons for example. Since a negative amount of light evidently has no physical significance, the color match is interpreted as follows: It is not possible to match the spectral hues in this region, using the standard primaries, unless the red primary is subtracted from the other In other words the primaries. spectral hue to be matched is added to the amount of red light indicated below the zero axis. This mixture color matches the combination of the amounts of green and blue indicated for that wavelength above the zero axis. Similarly, whenever negative values are shown in Fig. 8, they represent the amount of primary color which must be added to the spectral hue of a given wavelength to match the indicated positive amounts of the other two primaries at that wavelength.

Since any color can thus be matched by combining appropriate amounts of the spectral hues, Fig. 8 contains information required to determine the amounts of the standard primaries required to match any color. But these curves give no evident indication of the interrelationships among the primaries, the spectral hues and the various saturations of mixture colors. These relationships can be explicitly indicated if the information in Fig. 8 is transformed and related to a standard white light which contains equal amounts of the three primaries. The result is the chromaticity diagram.

There are two forms of the chromaticity diagram. The first, the so-called RGB diagram, is more readily understood in terms of the concepts just advanced, but has the disadvantage that certain spectral and other highly saturated colors have negative values. This may lead to confusion if the negative sign is omitted. The second type, known as the XYZ diagram, is a linear transformation of the first. The transformation replaces the negative values with corresponding positive values of a different set of variables.

The RGB Chromaticity Diagram

The RGB chromaticity diagram is based on a particular color match, that between selected primaries (as in the standard I.C.I. spectral primaries) and a standard "equal-energy" white. This white is produced by combining all the hues of an equal-energy spectrum, that is, one in which the energy present in each wavelength is the same throughout the visible region.

In performing the match between the standard primaries and the equal-energy white, one half the visual field of a colorimeter (Fig. 7) is illuminated, with l_w lumens of equal-energy white light. The amount of the selected standard primaries falling on the other half of the field is adjusted until a match is obtained, and it is found that l_{rw} lumens of red light, l_{gw} lumens of green and low of blue are required to match the white light. The white light is then removed and the "unknown" color, whose numerical specification is desired, is substituted. The flux of this color is taken as $l_c = l_w$ lumens. It is found that l_{re} lumens of the red primary, l_{ge} of the green, and l_{be} of the blue are required to match the unknown color.

ELECTRONICS — December, 1950

FIG. 9—A numerical basis for color matching is established by the RGB chromaticity diagram. Use of the triangle is detailed in Part II of this series

We then define the following quantities as describing the unknown color

$$r = \frac{l_{rc}/l_{rw}}{l_{rc}/l_{rw} + l_{gc}/l_{gw} + l_{bc}/l_{bw}}$$
(1)

$$g = \frac{l_{gc}/l_{gw}}{l_{rc}/l_{rw} + l_{gc}/l_{gw} + l_{bc}/l_{bw}}$$
(2)

$$b = \frac{l_{bc}/l_{bw}}{l_{rc}/l_{rw} + l_{pc}/l_{gw} + l_{bc}/l_{bw}}$$
(3)

The quantities r, g, and b, plotted in rectangular coordinates, constitute the chromaticity diagram.

tute the chromaticity diagram. Inspection of Eq. 1 to 3 shows

that

$$r + g + b = 1, \tag{4}$$

so it is necessary to plot only the values of r and g, in a two-dimensional plot.

We note that the quantities r, g, and b are independent of the actual numbers of lumens involved in the colorimeter, since they are defined as a ratio of the ratios l_{rc}/l_{rw} , etc. The chromaticity diagram is, therefore, independent of the brightness of the colors, and indicates only hue and saturation.

The RGB chromaticity diagram (the plot of r versus g) is shown in Fig. 9. We can locate certain colors on the diagram as follows: The

green primary evidently is matched by l_{pc} only, that is, $l_{ro} = 0$, $l_{bc} = 0$. So, by Eq. 1 to 3, g = 1, r = 0. Similarly for the red primary r =1, g = 0, and for the blue primary r = 0, g = 0.

We can also locate the point corresponding to the equal-energy reference white on which the colorimeter measurements are based. For this color, the subscript c evidently has the same meaning as w so $l_{ro} = l_{rw}; \ l_{go} = l_{gw}; \ l_{bo} = l_{bw},$ provided $l_e = l_w$ as has been assumed. Then all the ratios in Eq. 1 to 3 are unity and r =0.333, g = 0.333, b = 0.333. This point, identified as W on the diagram, represents the equal-energy white. It occupies the center of gravity of the triangle, that is, the point on which a flat plate of uniform density having the triangular shape RGB would balance.

The central location of the equalenergy-white point gives the clue to the distribution of other colors within the triangle. As a point recedes from the edge of the triangle and approaches point W, the corresponding color becomes increasingly diluted with white light, that is, the color becomes less saturated.

Mixer Crystal Checker

Quickly determines sensitivity loss of silicon crystals used in first stage of microwave radar or communications receiver, with accuracy comparable to that of more complex laboratory test setups. Basis of design is newly developed theory that minimum conversion loss can be predicted from static voltage-current curve of crystal

> By PETER D. STRUM Airborne Instruments Laboratory Mineola, New York

Using new d-c crystal checker to choose crystals for use in microwave measuring equipment in background

THE SENSITIVITY of a microwave radar or communications receiver is limited chiefly by the noise generated in its first stage and by signal losses which occur prior to amplification. The first stage of most microwave receivers is a crystal mixer; therefore, determining the quality of the mixer crystal from the standpoint of excess noise and signal loss is the most important check to be made in maintaining optimum sensitivity of the receiver.

Unless proper equipment is available for routine tests, appreciable deterioration in crystal sensitivity may go undetected. The reason is that the noise output of the receiver changes little, if any, due to crystal burnout. Usually, the only evidence of crystal burnout is a reduction in maximum range of a radar set or a reduction in signalto-noise ratio in other types of receivers. During routine operation, it is difficult to detect deteriorations in either of these parameters.

Instruments for detecting and determining the extent of the loss of sensitivity due to crystal burnout are of two general types. There are laboratory types, such as the standard-signal generator and the noise generator, with which noise figure measurements can be made. From noise figure measurements, crystal quality can be deduced, since the crystal is the chief contributor to the noise figure and the other contributing components are seldom subject to deterioration. There are also field types, such as the echo box with which overall radar system efficiency checks can

FIG. 1—Static voltage-current characteristic of typical silicon mixer crystal

be made, and the d-c crystal checker of the type measuring front-to-back resistance ratio and back current. This last type of test set, officially designated TS-268/U, has achieved widespread use even though its ability to determine the quality of a crystal is limited to an approximate indication of whether the crystal is good or bad. Design was based on an experimentally determined approximate correlation between its indications and measured values of conversion loss and noise temperature. The tolerance on the certainty of good-bad indication was found to be approximately ± 2 db and virtually no correlation was found for slightly damaged crystals.1

The crystal checker to be described here is designed for field use to give accurate indications of crystal quality. The basis for design is a recently developed theory with which the minimum conversion loss available from a crystal can be predicted from the static voltage-current curve of the crystal.²

Theoretical Background

Theoretically, the quality of a crystal as a mixer is dependent primarily on the degree of nonlinearity of the forward portion of its E-I curve and not to an appreciable extent on the front-to-back resistance ratio or back current. Figure 1 shows the E-I curve of a typical mixer crystal plotted on logarithmic coordinates. It is seen that the forward portion of the curve can be closely approximated by a straight line over any 10-to-1 range of current between the limits

3

FIG. 2—Minimum available conversion loss as function of exponent X

of 0.05 and 5 ma, which is the region of most interest for mixer calculations. At the same time, the back current is negligibly small compared to the forward current. Such an E-I characteristic can be represented mathematically by the expressions

(1)

(2)

$$i = ke^X \qquad (e > 0)$$

i = 0 (e < 0)

where i is instantaneous current, kis a constant, e is instantaneous voltage, and X is the time average of the slope, $d(\log i)/d(\log e)$, of the forward portion of Fig. 1 for the particular operating conditions. The magnitude of X is somewhat variable with d-c bias or with a nonsinusoidal local-oscillator voltage wave. However, for the excitation conditions usually met in practice, such as 0.5 to 1.0 mw applied local-oscillator power from a sinusoidal source and negligible d-c bias, X is usually between 2 and 3 for acceptable crystals.

From a harmonic analysis of the conductance pulses which occur when the crystal described in Eq. 1 and 2 is excited by a local oscillator, it was possible to calculate the minimum conversion loss available from a particular crystal. It was found that the minimum available conversion loss is a function of X only. The relation between minimum available conversion loss and X is shown in the curve of Fig. 2. This curve and the other pertinent points of the theory from which the curve was calculated have been verified experimentally.

The crystal checker described here gives an indication proportional to the parameter X.

To show how a d-c measurement can be made to give indications of X, it is necessary to go a little further into the theory.

At any point on the E-I curve of the crystal the small-signal conductance is defined as the slope di/de of the curve and the largesignal conductance is defined as the ratio i/e. In terms of the characteristic of Eq. 1 the small-signal conductance is

$$g = \frac{di}{de} = k x e^{x-1} \qquad (e > o) \qquad (3)$$

and the large-signal conductance is

$$G = \frac{i}{e} = k e^{x-1} \qquad (e > o) \tag{4}$$

where x has been used instead of X to indicate that actual instantaneous values of g or G are determined by instantaneous values of the exponent x instead of timeaverage values.

Although it was found theoretically that the minimum conversion loss available from a crystal is dependent on X, it was necessary to determine experimentally a relation between an easily measured d-c quantity and X. From a study of a large number of crystals, a close approximate relation was found between the shape of the E-I curve in the vicinity of 100 microamperes and the value of X which is obtained for conditions of zero bias and 0.5 ma rectified current due to local-oscillator excitation.

In Fig. 3 is shown the relation between instantaneous x and instantaneous large-signal conductance for six crystals having approximately equal values of X. The relation is seen to be nearly linear;

FIG. 4—Method of making d-c measurement of average value X

also, it is seen that, from the dashed line representing (x-1)proportional to 1/G, one would predict somewhat higher values of X for high-conductance crystals than the data indicates and viceversa for low-conductance crystals. This discrepancy is in the direction to account for the effect of finite back conductance of crystals. That is, for high-conductance crystals the increase of conversion loss due to back conductance is less than for low-conductance crystals. As is evident from the experimental data showing the accuracy of the tester. the compensation is approximately correct. It may, therefore, be stated that (x-1)G at 100 microamperes is approximately proportional to the value of X obtained with finite back conductance.

With reference to Fig. 4, it can be shown that a simple d-c measurement can be made that gives indications proportional to (x-1)Gand hence to X.

D-C Measurement Technique

Reference to Eq. 3 and 4 shows that

(x-1) G = g - G (5) The checker was designed to give an indication of current proportional to this difference.

An incremental change in d-c voltage is used to measure g approximately, and an initial adjustment is made to indicate G and simultaneously subtract it from g.

For all crystals, the voltage increment $\Delta e = V_1 - V_z$ is maintained constant. The voltage V_1 is made adjustable and is initially set to give a crystal current I_1 . By cali-

FIG. 5—Arrangement of components in d-c crystal checker

bration of the network used to adjust V_1 the current I_1 is established for any linear resistance between 300 and 3,000 ohms such that when the negative voltage increment $-\Delta e$ is added to V_1 the current at point B in Fig. 4 will be 100 microamperes. This type of adjustment establishes a relation between I_1 and G; therefore, the calibration of the network for adjusting V_1 could be made to indicate G directly. In the figure, the large-signal conductance is

$$G = \frac{I_1 - (I_2 + \Delta i)}{\Delta e} \tag{6}$$

which is the slope of the line AB. However, in an actual test, the magnitude of G is unimportant and the network is calibrated only in microamperes indicating I_1 .

For a nonlinear conductance such as a mixer crystal, the current indicated for the voltage V_2 will be less than 100 microamperes by an amount Δi , which can be shown to be approximately proportional to g - G. The slope of the E-I curve at point A is exactly g; however, the slope defined by points A and C is a reasonably good approximation. Therefore, the approximate expression for small-signal conductance is

$$g \cong \frac{I_1 - I_2}{\Delta e} \tag{7}$$

It therefore follows that

$$g - G \cong \frac{\Delta i}{\Delta e} \tag{8}$$

Since Δe is a constant and (g-G)is proportional to X, it is seen that Δi is proportional to X. Since the current at point B is 100 microamperes for all crystals, it is seen

FIG. 6—Correlation of checker with measured 3-cm conversion loss

that I_2 is a direct indication of Δi . The current I_2 may, therefore, be calibrated directly in X or minimum available conversion loss.

No attempt was made to analyze theoretically the probable errors of indication caused by the approximations involved in the theoretical basis for the measurement. The experimental verification showed that the errors are small from this source. The maximum errors encountered were only of the order to be expected in comparing two methods of measuring conversion loss when one method is subject to errors due to the use of a fixedtuned, fixed-adjustment mixer such as the production-testing type of conversion-loss test set.

Operation of Checker

The circuit of the crystal checker is given in Fig. 5. The initial adjustment to voltage V_1 is made by varying potentiometer R_1 with switch S_1 in the CALIBRATE position. Resistors R_2 , R_3 , R_4 and R_5 merely set the limits to which V_1 can be adjusted.

The calibration of the scale of R_1 is carried out in the following manner:

(1) Linear resistors between 300 and 3,000 ohms are placed in crystal holder K_1 .

(2) With switch S_1 in the TEST position, R_1 is adjusted for each resistor until meter M_1 indicates 100 microamperes (point *B* in Fig. 4).

(3) Switch S_1 is then placed in the CALIBRATE position and the current indicated on M_1 is marked directly under the pointer of R_1 (point A in Fig. 4.)

December, 1950 --- ELECTRONICS

(4) When enough resistors have been used to indicate the calibration law, a complete scale can be interpolated.

The voltage increment Δe is established by resistors R_a and R_7 when S_1 is placed in the TEST position and has the same value for all crystals.

When a crystal is to be tested, it is placed in K_1 with the usual precautions about static discharges and other types of accidental crystal burnout. Switch S_1 is placed in the CALIBRATE position and R_1 is adjusted until the indication on M_1 coincides with the calibrated scale reading of R_1 .

This initial adjustment establishes point A of Fig. 4. Switch S₁ is then placed in the TEST position, which establishes the voltage of V_2 or point C of Fig. 4. The indicated current, I_2 , is then a measure of X as shown above and, therefore, is a measure of minimum available conversion loss.

Crystal Checker Accuracy

A group of 88 type 1N21B crystals and a group of 40 type 1N23B crystals were used in tests to determine the accuracy of the d-c crystal checker, using production-testing types of conversion loss and noise temperature test sets as standards. The 1N21B crystals were tested on a 10-cm conversion-loss test set and a 30-mc noise temperature test set. The 1N23B crystals were tested on a 3-cm conversion-loss test set. No noise temperature measurements were made on the 1N23B crystals.

If it is considered that the checker is a device that actually measures conversion loss, the data can be analyzed to determine the mean and maximum deviations between the checker indications and the conversion loss standards. On this basis, the 1N21B crystals showed a mean deviation of 0.3 db and a maximum deviation of 1.0 db for 19 units of manufacturer A, 0.3 db and 0.7 db respectively for 25 units of manufacturer B, and 0.3 db and 1.1 db respectively for 44 units of manufacturer C. For the 40 1N23B crystals, the products of three manufacturers were considered together, giving a mean deviation of 0.2 db and a maximum deviation of 1.0 db. The data for the 1N23B crystal are plotted in Fig. 6 to show the correlation with the mean calibration curve.

On the other hand, the checker can be compared with the TS-268/U checker which gives an accept-reject indication. In this case, it should be evaluated on the same basis as the TS-268/U. The procedure to be followed, then, is logically that used in the original evaluation of the TS-268/U.

The criterion used in the evaluation of the TS-268/U was overall receiver noise figure, using an assumed noise figure of 5 db for the i-f amplifier. The noise figure limit for the 1N21B crystals was determined from the JAN limits of 6.5 db for conversion loss and 2.0 for noise temperature, plus the JAN allowed tolerances of 0.5 db for conversion loss and 0.5 for noise temperature. The data for the 1N23B crystals are insufficient for an evaluation using noise figure as a criterion; however, a similar evaluation was made based on the JAN conversion loss limit of 6.5 db plus a 0.5-db tolerance.

.americanradiohistory.com

Table I—Data Indicating Reliability of Crystal Checker Based on JAN Test Limit Plus JAN Tolerance

Туре	Number Tested	False Acceptances	False Rejections	Mean Error of False Acceptances (db)	Maximum Error of False Acceptances (db)
1N21B 1N23B	88 40	2 0	1	0.5	0.5
Totals	128	1.6%	1.6%	0.5	0.5

ELECTRONICS - December, 1950

Table II—Comparison of Reliabilities of New Crystal Checker and TS-268/U, Based on JAN Test Limit Plus JAN Tolerance

	TS- 268/U	New checker
Number tested	600	128
False acceptances, %	2.2	1.6
False rejections, γ_0 Mean error in noise figure of false ac-	12.0	0.5
Maximum error in noise figure of false	0.8	0.5
acceptances, db	-2.1	0.5

Table I shows the accept-reject evaluation of the checker for 1N21B and 1N23B crystals. In Table II, a direct comparison is made of the errors of the two checkers on the accept-reject basis. It is seen that the new checker is the more accurate by a significant margin.

These tests indicate good accuracy of the new checker with respect to the production test equipment; however, it should be pointed out that the conversion-loss test equipment has a theoretical error ranging from 0 db to about 0.5 db due to differences in impedance from crystal to crystal and separate from mismatch loss. Furthermore, the conversion loss in decibels is read on a meter scale on which 1 db occupies less than 0.2 inch. Errors in reading such a scale are of the order of ± 0.1 db. With possible errors of this magnitude, it is apparent that the accuracy of the d-c crystal checker is comparable with that of the production test equipment.

The accuracy and simplicity of operation of the checker make it a valuable aid in maintaining optimum performance of any microwave receiver or other equipment using mixer crystals.

REFERENCES

H. C. Torrey and C. A. Whitmer, "Crystal Rectifiers," Vol. 15, p 297, Radia-tion Laboratory Series, McGraw-Hill Book Co., 1948.
 J. C. Greene, J. W. Kearney and P. D. Strum, Mathematical Theory and Applications of Silicon Crystals for Mixing and Harmonic Generation at Microwave Frequencies, unpublished paper presented at 1950 IRE National Convention.

FIG. 1—Load-tuning scheme, consisting of partially parallel-tuning the dielectric load with shunt inductance to increase the apparent load impedance

MOST DIELECTRIC-HEATING applications that require 10 kw or more of power need a transmission line to connect the generator to the load because, unlike smaller r-f heating applications, it is not always possible to locate the load adjacent to the generator.

With dielectric loads, the effective series resistance of the load may be only a fraction of an ohm. Matching such a load to a 50-ohm line, for example, means a high ratio of transformation. This makes the load-matching circuit complicated and extremely critical, a serious problem for both the generator manufacturer and the user.

Load tuning can be simplified by assuming that it is not necessary to match the load to the transmission line. Since lines rarely exceed a quarter wave in length, losses due to standing waves on the line can be minimized by using a transmission line designed specifically for such use. Most r-f generators are more suitable for coupling into loads having resistance considerably less than the surge impedance of an average line, so it is impractical to transform the low resistance of the load into an apparent high resistance to match the transmission line.

A conventional load-matching system, by matching the transmission line, reflects zero reactance into the r-f generator. With the proposed method, however, no attempt is made to reflect pure resistance into the tank circuit of the generator. It is not important to have the generator operating on a fixed frequency. Reflection of some

Load-Matching

By R. H. HAGOPIAN

Industrial Electronics Engineer Westinghouse Electric Corporation Baltimore, Maryland

reactance into the tank circuit merely changes the oscillator frequency. Radiation affecting other services must, of course, be suppressed, but this does not necessarily require constant generator frequency.

Basic Theory

In the field of dielectric heating, where electromagnetic radiation must be suppressed to avoid radio interference, a coaxial line is generally used, and it usually consists of a rectangular duct and an inner conductor which is supported by insulators. The inner conductor may be any shape, and is not necessarily centrally located.

General transmission line equations are derived from analysis of a two-parallel-conductor line. Assuming that the transmission line has no losses does not introduce an appreciable error. For such lines the general steady-state equations are:

$$\mathbb{Z}_{s} = E_{R} \left(\cos \alpha + j \underline{R_{e}} \sin \alpha \right)$$
(1)

$$\frac{E_R}{Z_R} = \frac{E_R}{R_c} (\cos \alpha + j \frac{Z_R}{R_c} \sin \alpha) \quad (2)$$

$$Z_{S} = \frac{R_{o} \left(Z_{R} + j R_{o} \tan \alpha \right)}{R_{o} + j \tan \alpha} = \frac{E_{S}}{I_{S}} \quad (3)$$

where

1

1

- Z_S = sending-end impedance R_c = surge impedance of the line = $\sqrt{L/C}$
- Z_R = receiving-end impedance
- $E_S =$ rms sending-end voltage

$$I_S = \text{rms sending-end current}$$

- $E_R =$ rms receiving-end voltage
- $\alpha^{n} = \text{electrical length of the line in degrees}$
 - $= \frac{\text{length of line}}{\text{wavelength}} \times 360 \text{ degrees}$

In Eq. 3, if the receiving-end impedance is equal to the surge impedance of the line in magnitude and phase, that part of the equation enclosed by the parentheses becomes unity and the sending-end impedance is equal to the surge impedance of the line which is pure resistance at radio frequencies. Under these conditions the load is said to be matched to the line, the voltage and current on the line being constant and in phase everywhere along the line.

In the case of imperfect lines, the voltage and current will fall off in the direction of the receiving end, the rate of attenuation being a function of the conductor size and configuration. In dielectric heating work, attenuation is of little concern since the lines are relatively short and generally have very low losses.

From Eq. 3, if the line is less than a quarter wave in length and short-circuited at the receiving end, the line looks like an inductance and the reactance is given by

 $X_L = j Rc \tan \alpha$ (4) Likewise, if the line is less than a quarter wave in length and is open-circuited, the line looks capacitive.

 $X_{e} = -j Rc \cot \alpha \qquad (5)$

One other important characteristic of transmission lines is the property of load impedance transformation. A high-impedance load at the end of a quarter-wave line appears as a low-impedance load at the other end.

Rewriting Eq. 3,

$$Z_{S} = R_{e} \left(\cos \alpha + j_{Z_{R}} \sin \alpha \right)$$

$$\frac{R_{e}}{Z_{R}} \cos \alpha + j \sin \alpha$$
(6)

For a quarter-wave line, $Z_{s} = \frac{R_{s}^{2}}{m_{s}^{2}}$

$$g = \frac{R_c^2}{Z_p} \tag{7}$$

Load-Tuning

The matching scheme consists of partially parallel-tuning the dielectric load with shunt inductance to increase the apparent load imped-

December, 1950 - ELECTRONICS

Dielectric Heaters

Increased efficiency is accomplished when transmission lines coupling radio-frequency generators to loads in dielectric-heating applications are used as part of the load tuning system to simplify problems of load matching

ance, as in Fig. 1. The paralleltuned circuit is connected to the receiving end of the transmission line, terminating the line as close to the load electrode as possible.

The reason for increasing the apparent load impedance by partial tuning is that, in general, if a load is such as to require 20, 50 or 100 kw of r-f power, the dielectric load impedance is generally quite small. Such a low-impedance load at the end of the transmission line would a sending-end require voltage greater than the receiving voltage unless the line is extremely short. so that the transmission-line effect can be neglected.

In addition, the line current at the receiving end would be extremely high. When standing waves occur on transmission lines, the voltage and current maxima are displaced by 90 degrees along the line; high voltage and high current cannot appear at the same point on a transmission line. Since the high voltage is desired at the end of the line, conditions must be such as to satisfy this phenomenon.

Equation 1 shows that the receiving-end voltage $E_{\scriptscriptstyle R}$ is a function of receiving-end impedance, assuming R_{e} , E_s , and line length constant. With this method, almost any load may be properly coupled to the generator merely by partially paralleltuning it to increase the apparent load impedance at the end of the line and selecting the proper length of line to use. Experience shows that the majority of loads can be properly handled with a transmission line between $\frac{1}{2}$ and $\frac{1}{4}$ wavelength.

3

The effective impedance of the parallel circuit will depend on the load reactance and power factor. This indicates that very high capacitance loads cannot be made to present very high impedance to

ELECTRONICS — December, 1950

the transmission line; therefore, the receiving end voltage will be correspondingly lower. A high-capacitance load has large electrode area so that less electrode voltage is needed to obtain a given power. However, it is usually possible to increase the air gap between the dielectric material and the top electrode to obtain higher effective load reactance. By this means it is possible to parallel-tune the load to a higher impedance.

Use of Resonance Curve

Figure 2 is the resonance curve of a typical dielectric load of high capacitance and low power factor, encountered in the frequency range of 5 to 30 mc. This curve illustrates the importance of plotting a curve before deciding what effective load impedance can be obtained by parallel tuning.

High-Q loads narrow down the operating range and in operation the load electrode voltage may change rapidly with change of load capacitance. In the case of low-Q loads, the opposite is generally true. The magnitude of the apparent load reactance and effective series resistance is dependent on the magnitude of the dielectric load reactance and effective series resistance. For this reason, very high capacitance,

FIG. 2 — Parallel-resonance curve of fixed dielectric load of 0.46 —j23 ohms, parallel tuned with variable inductance and frequency assumed constant

FIG. 3—Sending-end resistance and reactance plotted against transmission line length with a 50-ohm line

low-power-factor loads are more difficult to work with.

The resonance curve of Fig. 2 has two recommended operating regions marked by dashed vertical lines. Operation must be sufficiently up on the curve to result in an appreciable increase in the apparent, or effective load impedance. It must be far enough away from resonance to avoid possible frequency instability and erratic operation.

The particular application dictates the choice of the side of resonance on which to operate, provided it is possible to use a transmission line of the desired length.

If the length of the transmission line is fixed by conditions other than load-tuning requirements, the length of the line may be such that tuning on either capacitive or inductive side of resonance is no

FIG. 4—Plot of voltage on the transmission line

longer a matter of choice but of necessity.

For example, with an effective high-impedance inductive load at the end of a short line, the receiving-end impedance may be extremely high. The short section of the line in effect parallel tunes the load. In this case it generally will be difficult to couple such a load to the generator properly. Under such a condition, it will be more desirable to tune the load circuit on the capacitive side of resonance.

Sending-End Impedance

After the effective load is selected from the resonance curve, the sending-end impedance of the line may be plotted against the length of line.

Figure 3 is a plot of sending-end resistance and reactance versus transmission-line length for high and low inductive and capacitive reactance loads. The high inductive and capacitive loads were selected from the resonance curve of Fig. 2. In this case of the high-reactance inductive load, the sendingend impedance rises to a very high value with a very short section of line.

A 5.5-ft line at 13.6 mc effectively parallel-resonates the load. A small change in the load impedance will cause a very large change in the sending-end impedance of the line. It may even change the sign of the effective reactance.

This emphasizes two important facts: a short transmission line cannot always be disregarded as a transmission line and treated merely as so much inductance in series with the load; and a short transmission line, with a high inductive reactance load at the receiving end, may result in the sending end impedance being in the region of parallel resonance (antiresonance). The resulting high impedance at the sending end of the line may not be suitable for coupling to the generator output circuit. In addition, since a small change in the load impedance may actually change the sign of the sending-end reactance, this may cause oscillator instability. This emphasizes the importance of plotting the sending-end impedance against transmission line length for a given parallel-tuned load at the receiving end of the line.

Another factor is that with effective capacitive loads, the sendingend impedance goes through effective series resonance before approaching parallel resonance. With this type of load, the transmission line must be considerably longer than for inductive loads to make the sending-end impedance high.

Curves such as Fig. 3 enable one to determine the approximate length of transmission line needed to couple the load properly to the generator. The length of line need not be an exact value, because it can be corrected by changing the effective impedance of the paralleltuned load circuit or by adjusting the generator coupling circuit.

Line Voltage

Figure 4 is a plot of the voltage on the line at any point, with a receiving-end voltage of one, for several typical effective loads. The sending-end voltage, in terms of the receiving-end voltage, is determined by reading the voltage on the line at a point X degrees from the receiving end, where X degrees represents the electrical length of the transmission line being used. The curve between this point and the receiving end is then the voltage distribution on the line.

For a relatively low effective reactance load at the receiving end, the maximum voltage on the line occurs some distance back from the receiving end. By proper choice of the length of line, the sending-end voltage can be less than the receiving-end voltage. Caution must be exercised with extremely high capacitance loads requiring relatively high electrode voltage, since this will place a very high voltage on the line. This can cause voltage breakdown in the line as well as oscillator instability because of the very high volt-amperes stored in the line.

Generator Coupling Circuits

The arrangement of the transmission line and load circuit to get a certain sending-end impedance is determined by the coupling circuit. The two most commonly used coupling schemes, inductive and direct, are shown in Fig. 5.

Direct coupling has the advantage of being adjustable over a wide range. The output voltage may range from a very low value to a maximum which is the full tank voltage. The load impedance that can be matched, in either case, will depend on the degree of coupling, maximum allowable current in the coupling circuit, and the maximum allowable change in oscillator frequency. The first two conditions

FIG. 5—Direct and inductive coupling schemes

December, 1950 - ELECTRONICS

usually determine the load-impedance limitations.

As a rule, within the current rating of direct-coupling circuits, lowimpedance loads are usually connected at a low-voltage point on the oscillator tank inductance, and the high-impedance loads are connected at a high-voltage point. Knowing the maximum allowable current in the coupling circuit, the lowest effective load resistance that can be coupled may be calculated from the relation $R = W/I^2$ ohms, where W = power output rating of r-f generator in watts and I = maximumrms current rating of the coupling circuit.

This is the effective load resistance in series with the coupling circuit. The effective load reactance may be any value such that, with the load resistance in series, the IZ drop is equal to the applied voltage of the coupling circuit. In somewhat similar manner it is possible to determine the maximum effective load resistance in series with the coupling circuit. In this instance it is necessary to assume that the effective load reactance is negligible in comparison with the resistance.

Thus, the applied voltage of the coupling circuit appears across the resistive load and $R = E^2/W$ ohms, where E = maximum rms voltageoutput of the coupling circuit and W = power output rating of the r-f generator.

Lead Inductance

In the case of the direct-coupled circuit, the lead inductance may require special consideration if the effective load is capacitive. Since the two reactances are in series the voltage across the load may be considerably higher than the tapped voltage on the oscillator tank inductance. The opposite is true in the case of an effective inductive load. For this reason the connecting lead inductance must always be considered.

7

The effective inductive coupling circuit is shown in Fig. 6. The induced voltage and the coupled inductance of the coupling coil must be known to determine the maximum and minimum load resistance that can be coupled to the oscillator. Capacitor C_1 is an adjustable

manner varies the voltage across the load. In the case of transmission-line load tuning, C_1 will vary

the sending-end voltage of the line. The limiting factors to consider are the resulting voltages across the coupling coil and the coupling capacitor.

type (usually high-voltage, high-

current vacuum capacitors in par-

allel), adjusted so that the load re-

actance, the coupling capacitor re-

actance, and the coupling coil reac-

reactance in the circuit and in this

Adjustment of C_1 varies the net

tance are near series resonance.

Calculation Technique

The first step is to select a reasonable load $Z_{\scriptscriptstyle S}$ from the plotted curve Z_s versus line length and calculate the current required for full output of the generator from the simple relation $I = \sqrt{W/R}$ bearing in mind that this current must not exceed the maximum allowable current in the coupling circuit.

Next, determine whether adjustment of the coupling circuit will provide the required circulating current. This is calculated from the known coupling coil induced voltage and the resultant impedance around the closed circuit. At this point the voltage across each section should be computed to see that it is not excessive.

If these checks show that the selected Z_s is satisfactory, then the transmission line length which corresponds to this value of Z_s is the proper length.

If the coupling coil reactance is high, it is recommended that the sending-end reactance be capacitive, otherwise the coupling capacitor necessary to partially seriestune the circuit may be very small, resulting in excessive voltage across it. The sending-end reactance may be inductive provided it is of low value as compared with the coupling coil inductance.

Transmission-Line Calculator

The Smith impedance chart¹ is an extremely useful tool for transmission-line calculation. The first step in the use of this chart is to rationalize the terminating impedance by dividing it by the surge impedance of the line. The rationalized load Z is located on the chart,

FIG. 6 - Effective inductive coupling circuit

bearing in mind the sign of the load reactance. The intersection of the rationalized load resistance and reactance line locates Z.

On the outer edge of the chart directly in line with Z and the center of the chart, read "wavelengths toward generator." Add to this the ratio of $l\lambda$, length of line and wavelength respectively, and rotate clockwise to this point. Locate the rationalized sending-end impedance at the intersection of the reactance and resistance curves on the line between the center and the new location of "wavelength toward generator" at the same distance from the center as Z. Multiply these readings by the surge impedance of the line for the true values.

Example

Given
$$R_c = 50$$
, load $4 + j 25$, $\frac{1}{\lambda} =$

0.125, find Z_s .

(a) Rationalized load =
$$\frac{4 + j 25}{50}$$
 =

0.08 + j 0.5.

(b) Locate Z and read 0.074 wavelength toward generator.

(c) Add 0.074 + 0.125 = 0.199 and rotate to this point.

(d) Read 0.65 + j 2.9 rationalized Z_s . (e) Multiply by 50 for true Z_s which is

32.5 + j 145 ohms. Experience has shown that the

majority of dielectric loads can be tuned by this method, with a transmission line approximately $\frac{1}{2}$ to $\frac{1}{4}$ wavelength. In most installations requiring 20 kw or more of r-f power, the load is just about this distance away from the generator

Reference

(1) P. H. Smith, Transmission-Line Calculator, ELECTRONICS, Jan. 1944.

PERMEABILITY tuning has been used for many years in the medium and high radio-frequency ranges, where its advantages of low cost, ruggedness, compactness, uniform high gain, freedom from microphonics, and complete absence of moving contacts have been useful. Attempts to cover wide tuning ranges at much higher frequencies have generally met with failure, because no core materials were available with simultaneously high Q and high permeability.

Tuning by the short-circuitedturn effect of a metallic vane has been successfully applied to relatively narrow bands, such as the f-m broadcast band, but has not been practical for much wider bands because of the marked variation in Q with frequency. By combining permeability and short-circuited-turn tuning, a system having highly desirable characteristics can be obtained.

When designed for small frequency ratios, the Q of this combination may be high, but for ratios in the order of 4-to-1 it becomes so low as to prohibit its use for many applications. However it has proven to be ideal for the television band, where a relatively wide pass band is required. The Aladdin television tuner illustrated takes advantage of the unique characteristics of this tuning scheme.

Tuning Inductor

Such a simple tuning element, shown in cross-section in Fig. 1 is advantageous in compactness, low cost, and freedom from microphonics. The ferromagnetic core is stationary, and the conductive sleeve slides into the annular space between the core and the coil form. progressively decreasing the coil inductance by shielding out the core, as well as by virtue of the short-circuited-secondary effect. A smooth gradation in frequency is obtained. By a proper choice of parameters, a substantially constant bandwidth is obtained over a wide frequency range.

The curves in Fig. 2 show how the core losses at some frequencies, and the sleeve losses at other frequencies, can be balanced to secure uniform bandwidth. The core losses are determined by the mag-

Bottom view with shield removed showing sliding-secondary tubes within coils

Cam mechanism by which the tuning cylinders are mechanically driven. Section at left remains stationary. Screws are for initial adjustment

A Variable

By D. R. DeTAR and H. T. LYMAN, Jr. Johnson Laboratories Glenbrook, Conn.

netic and electrical characteristics of the core, and its spacing from the coil turns. The sleeve losses are determined almost entirely by its proximity to the turns. The metal of which it is made and the wall thickness have little effect on either Q or tuning range.

In tuning large frequency ratios, it is sometimes desirable to use composite cores, the material at the high-frequency end having higher Q and lower permeability compared to that at the low-frequency end,

in order to obtain both sufficient coverage and uniform bandwidth. The cylindrical shape of the shorted-turn element obviates the microphonic difficulties encountered with a flat vane.

In a tuner of earlier design, two sets of such inductors were used, one set covering channels 2 to 6. and the other channels 7 to 13. The transfer switch used in this tuner required but a fraction of the number of contacts used in tuners of the tap-switch and turret types in common use. Moving contacts are a potential source of trouble in any circuit because of variation in resistance and the possibility of intermittent open circuit owing to corrosion, dirt, mechanical wear, and changes in contact pressure. At the higher frequencies, where the

The completed tuner can be adjusted through the hole in the vernier dial for the channel, then tuned in

FIG. 2-Tuning effects of core and sleeve and the bandwidths obtained

Inductance TV TUNER

Combination of permeability and shorted-secondary tuning permits covering all vhf television channels without the use of switches or sliding contacts. The new device eliminates 143 switch contacts and reduces to four the 48 tuned coils found in representative conventional designs

total circuit inductance is necessarily very small, there may be an intermittent variation in the inductance of the contacts, because of a shift of the actual contacting point within the area of the mating surfaces. For these reasons, it was felt that a mere reduction in the number of switch contacts was not sufficient, and that the design of a tuner having no moving contacts at all would be an important forward step.

The development of new magnetic materials, having much higher permeabilities, combined with good Q values, has made possible the design of the sleeve-permeability tuner illustrated. It covers the entire vhf tv band, channels 2 to 13 inclusive, with a single inductance variation. No switches or moving

contacts of any kind are required in the signal circuit.

The curve of frequency versus displacement for a tuning inductor of this type, with uniformly wound coils, is substantially a straight line for small frequency ratios, but assumes the characteristic elongated S-shape for larger ratios. In view of the wide gap between channels 6 and 7, this shape is actually advantageous, because it assigns more of the total tuning motion to the two tv bands, and less to the undesired frequencies between the bands. In the production coils, shown in Fig. 3A and 3B, this shape is greatly accentuated by bunching the turns at the center of the coil. This construction further minimizes the waste motion between the two bands as indicated in

the curve of Fig. 4.

A straight permeability tuner for this wide frequency range would require a core material of very high permeability, with resultant low Q, so that the bandwidth would be excessive over part of the range. A straight shortedturn tuner would require close spacing between coil and sleeve, causing excessive bandwidth at the highfrequency end. By using a combination of the two, it has been possible, by careful design, to maintain the desired bandwidth throughout the range.

Tuner Design

In the mechanical layout, due consideration has been given to the proper location of components to insure the shortest possible lead

FIG. 3—Intermediate-frequency coil (A) oscillator coil (B) with high-permeability core below (C) over which the aluminum shorted-secondary (D) slides

FIG. 4—Sleeve position versus frequency in the variable inductance tuner

lengths in the high-frequency circuits, minimizing undesirable capacitive and inductive couplings. access to adjustments and ease of assembly. The overall size and shape have been chosen to fit present thinking regarding receiver chassis layout. Trimmer and i-f adjustments, which usually require some touching-up when tubes are changed, are accessible from the top of the chassis. Channel-setting screws, which are properly adjusted after assembly into the chassis, are accessible from the front. Other adjustments, made only at the time of tuner assembly and test, are readily accessible from the underside of the tuner chassis.

The tuning coils are wound on thin-walled forms, using silverplated copper ribbon instead of round wire in order to obtain a high inductance ratio and a satisfactory value of Q. The turns are distributed nonuniformly (Fig. 3A) in order to provide a desirable law of inductance variation. The three r-f coils are identical except for small variations in turn spacing as required to track the different circuits. The oscillator coil is wound with fewer turns to provide the required frequency difference.

The tuning sleeves shown in Fig. 3D are formed from aluminum tubing. Higher conductive materials give no better results in this application and are more expensive and harder to fabricate. The cores are formed from materials especially developed for the purpose, having permeabilities sufficient to cover the range, and Q's as required to provide proper overall bandwidth. The oscillator cores are lower in permeability, as they cover a smaller frequency ratio, and of higher Q in order to provide better oscillator stability.

Rotary detent actuation of the channel-selector knob, as used in switch-type tuners, has enjoyed good consumer acceptance, and so was chosen for this tuner. A positive-drive helical cam, is used to transfer the knob rotation into linear motion to position the tuning sleeves. The cam has a dwell at each channel position, so that angular errors in the detent will not affect tuning accuracy. At each dwell position, an adjusting screw is provided for accurate channelfrequency setting.

A sliding carriage, bearing the four tuning sleeves, rides on accurately machined ways, and is consecutively moved to the channel positions by rotation of the cam. Fine tuning is accomplished very simply by means of a fine-thread screw that moves the carriage a small distance when the fine-tuning knob is rotated. Access to the channel-adjusting screws is through a single hole in the front plate, and one in the disc on the fine-tuning shaft, so that a screw can only be adjusted when the selector knob is set to the corresponding position, and the fine-tuning knob is in the center of its range.

Because of the large frequency range covered by the tuning coils, and the required channel-setting accuracy, a high degree of precision is necessary in positioning the sleeves. The design of the cam carriage is such as to eliminate all backlash. The tuner chassis and overall shield constitute a box structure that is very rugged. Sliding friction is held to a minimum by careful design of the carriage bearings and by supporting the cores and sleeves on flexible spring leads

Table I—Summary of Tuner Characteristics

			Pandwidth in Ma
Channel	Noise Factor in Db	Gain	On Demonst Bosponse
9		105	90 Tercent Tresponse
4	9.0	105	6.0
4.	9.7	87	6.0
0	10.0	69	6.0
7	12.0	56	7.5
9	10.0	63	6.5
11	12.1	56	6.0
13	16.0	60	6.0
Channel	Image Rejection (X Down)		I-F Rejection (X Down)
2	491		2,000 or higher
4	450		in low band.
6	333		
7	250		
9	422		3,000 or higher
11	707		in high band.
13	800		in ingri build
	000		
	Turns Ratio.		Oscillator voltage at 300-ohm
Channel	balance-to-unbalance		antenna terminals
2	71		
4.	61		
6	30		Less than 5 my
7	36		all channels balanced
ġ	20		or unbalanced
11	21		or unbalanceu.
12	20		
10	47		
to provide self-alignment and prevent binding. The actuating mechanism will continue to reproduce the initial channel-frequency settings throughout a long period, under all normal conditions of use.

Tracking of the individual circuits is mainly built-in by careful control of the effective permeability of the cores, sleeve and coil-form diameters, and by use of a specially built winding machine that spaces each turn increment accurately. To make up for unavoidable small manufacturing variations, three final adjustments are provided. The capacitance trimmers compensate for variations in lead and socket capacitances, in addition to tube capacitance, and are used for alignment of the high-frequency end. The positioning of the sleeves is most effective at the middle of the range where the inductance changes most rapidly. The positioning of the core has no effect at channel 13 where it is shielded out, and the greatest effect at channel 2. These three adjustments, together with close control in the manufacture of the tuning elements, permit tracking well within the required limits.

A close-fitting overall shield reduces oscillator radiation to a low figure, and contributes to the mechanical rigidity of the unit.

Tuner Circuit

The circuit diagram is shown in Fig. 5. The usual tube complement consists of a 6AG5 r-f amplifier and a 6J6 mixer-oscillator. A 6AK5, 6BC5 or 6BC6 may be substituted for the 6AG5, with the addition of a small unbypassed cathode resistor for agc response stabilization if desired.

The input circuit makes use of a matched-primary, tuned-secondary antenna transformer shown in Fig. 3B. The match of the primary to a 300-ohm transmission line is maintained throughout the range by the coupled reactance and loading of the tuned secondary, and by the variation of primary inductance produced by the motion of the tuning sleeve.

The characteristics of the core are so chosen that the damping is sufficient to maintain proper match and bandwidth in the lower frequency range where the r-f amplifier loading is low. In the upper frequency range, tube loading and tuning sleeve losses are such as to provide proper match and bandwidth. The primary is balanced to ground, and is electrostatically shielded from the secondary by means of a wire braid over the bifilar primary. This construction maintains the interwinding capacitance at a desirable low value. An excellent match to a 75-ohm line is obtained by connecting to one half of the primary bandwidth and power-gain being substantially the same as when a 300-ohm line is used with the full primary. By a proper choice of

FIG. 6-Test circuit used with the tuner

FIG. 5—Complete circuit diagram of the new tuner. Alternate i-f output circuit is shown at upper right

ELECTRONICS - December, 1950

turns ratio and careful matching to the antenna line, the signal-to-noise ratio and gain has been made equal to that obtained when separate aircore antenna transformers, each optimized for a particular channel, are employed in switch-type tuners.

This type of antenna transformer, when used with adequate shielding between the plate and grid circuits of the amplifier, together with an overall shield, provides excellent isolation of oscillator voltage. It is possible to hold the oscillator voltage at the antenna terminals to less than 5 millivolts, either balanced or unbalanced. By including additional shielding and other changes to isolate oscillator feedback and radiation from the i-f amplifier, the oscillator voltage appearing at the antenna terminals may be reduced still further. This is important in view of increasing restrictions on radiation.

The r-f tube is used as a conventional pentode amplifier (but the interstage coupling circuit is somewhat unusual in that low-side fixed capacitance coupling is employed between the amplifier plate coil and the mixer grid. Constant bandwidth is maintained by control of the magnetic coupling, which aids the capacitive coupling, and by making use of the variation of stray intercoil capacitance as the carriage changes position.

The 6J6 oscillator operation and mixer excitation is conventional. The use of a suitable mixer plate choke produces negative input conductance to overcome increase in the mixer grid loading at the highfrequency end.

Two i-f output circuits are shown on the schematic. One is the usual single coil for use in a staggertuned i-f amplifier, and the alternate contains a coupled-in trap for the sound carrier, which is useful in some intercarrier receivers in placing the sound carrier at the proper level with respect to the video carrier. The same dual coil construction can be used for sound take-off since Q's in the order of 130 are obtainable, even with the small shield cans used.

Test Circuit

The commonly used test circuit for the i-f output is shown in Fig.

FIG. 7—Typical response curves (A) at the r-f test point (Fig. 5); (B) test output for single coil; and (C) test output with double coil

6. It comprises a crystal, a $7-\mu\mu$ f capacitor to represent the usual i-f tube and wiring capacitances, and a low-pass filter. Sensitivities are usually expressed as the r-f input for 0.1-volt output, while the gain figures in the performance chart are expressed as a ratio:

 $Gain = \frac{0.1v \text{ i-f output} \times \text{match. pad atten.}}{\text{signal gen. input (volts)}}$

Performance

The overall performance characteristics are shown in Table I, which is further explained by the response curves of Fig. 7.

Although i-f rejection is high, still further rejection can be obtained if desired by the addition of an i-f series-tuned circuit across the mixer-grid circuit to ground. A high-Q coil and a capacitor, tuned to any frequency in the i-f band will suppress that particular frequency. A lower-Q coil may be used with a little more capacitance to achieve wider suppression. In either case little effect on the r-f response is observed, and the conversion is increased owing to elimination of i-f loading caused by residual i-f impedance in the grid circuit and by the tube interelectrode capacitance. The latter effect is, however, not so large as the mixer-plate r-f loading.

Image rejection is good and adjacent-channel attenuation is above average because of the rigid tracking and bandwidth control maintained in the manufacture of the tuner. A representative tuner response curve is shown in Fig. 7. This data is taken at the mixer grid test point.

Thermal, mechanical and voltage stability are good in all channels. Reset accuracy is well within the usual sound-channel limits, so that once the tuner is properly adjusted to each channel, very little adjustment of the fine tuning control will be required. Because there are no switch contacts or other parts to become noisy or change calibration with normal use, service difficulties are practically nonexistent, except for usual occasional tube replacement.

In the evolution of any new device, the trend is usually toward simplification. As the process of evolution continues, each succeeding degree of simplification becomes more difficult to achieve, until it becomes necessary to introduce basically new ideas to achieve further significant progress. The switchedcoil type of tuner has undergone considerable evolution, and further simplification is likely to consist of relatively minor design changes. The introduction of the radically new concept of switchless permeability tuning into this field results in a major degree of simplification in a single step.

In comparing basically different designs, the choice of criteria to provide a fair comparison is always difficult. On the basis of total number of parts (not counting fastenings such as standard screws and rivets, but counting resistors, trimmers and other components common to both designs as one part each) the subject tuner has 107 parts as compared to 298 for a popular tuner of conventional design. A major part of this simplification results from the elimination of 143 switch contacts, and the reduction in the number of tuned coils from 48 to 4.

Circuit of the unit contains a capacitor that controls the length of time the thyratron conducts the magnetizing current

Complete setup of the magnetizer and work coil. A ring magnet of the type employed in small motors is shown at left

Motor Magnetizer

To avoid accumulation of metal particles by the field magnet during assembly of small permanent-magnet motors, the complete motor is subjected to the magnetizing field after assembly. A thyratron rectifier does the job semiautomatically on the production line

CONVENTIONAL shunt-wound d-c motors and generators are limited in size reduction due to the extra heat that must be dissipated due to a wound field. The wound field is further undesired since constant field strength is not easily achieved with such construction. The constant field strength of a permanent-magnet field allows such motors to be used in many motor integrator applications, provides smaller motors and allows for precision rate or tachometer generator construction.

In the manufacture of small motors and generators it becomes necessary to magnetize such materials as Alnico V after having ground that material to precision tolerances. It is further advantageous to perform this magnetization on the completed motor or generator to prevent accumulation of metal chips and impurities.

The magnetomotive force recommended for saturation magnetization of Alnico V is 3,000 oersteds (6,000 ampere-turns per inch). This is readily obtained with a simple thyratron rectifier circuit utilizing the peak current-handling

By OSCAR E. CARLSON

Vice-President in Charge of Engineering Servo-Tek Products Company Paterson, New Jersey

capability of an Electrons, Inc. C6J tube, which is 77 amperes.

A magnetizing coil having a sufficiently large number of turns and small enough ohmic resistance to cause this current to flow through the thyratron from a 220-volt line is required. A coil meeting these requirements was constructed to allow the standard line of Servo-Tek p-m motors and rate generators to be inserted in the coil for magnetization. To date, many hundred magnets have been so charged.

Magnets of other configurations and considerably greater mass have also been charged with this unit. Experimental fields of Alnico for motors up to 1/15 horse power have been charged using other coils.

Circuit

The magnet charger operates from the 220-volt line, which, having a peak voltage value of 1.42×220 , allows for a peak current somewhat in excess of 75 amperes to flow as rectified half-wave pulses through the low-resistance charging coil. A time delay switch to provide 30 to 45-second filament warmup is used to prevent application of conduction-level grid potential during filament warmup.

Approximately 8 volts of negative bias supplied by the 1N51 germanium diode holds the C6J nonconductive. A second 1N51 charges a capacitor to approximately 8.5 volts and, when the CHARGE switch is depressed, that voltage is connected in series opposition with the negative hold-off bias and reduces the net grid voltage to a momentary zero value. A resistor discharge path for the capacitor allows the voltage to decay so as to restore the net grid voltage to a negative nonconducting value in a period of a few one-half-cycle pulses of plate current. That time may be adjusted by the potentiometer in the discharge circuit. Reliable firing repeatability not influenced by time of switch closure with respect to plate-voltage phase necessitates a setting which can hold the grid in the conduction region for at least 1.5 cycles of the plate voltage.

HE STABILITY of the transmitter and receiver in a communication link plays an important part in the channel spacing of the system. This is shown in Fig. 1A, which illustrates a typical communications receiver selectivity characteristic with the receiver tuned to a voice channel at 15 mc and having 2.5-kc sidebands centered in the selectivity curve. Reception is considered satisfactory if receiver selectivity does not drop more than 6 db at the limits of the sidebands. Undue interference from the adjacent channel can be avoided even when this is a strong signal if the attenuation of the adjacent channel is at least 60 db. If we assume a selectivity curve with a 3-to-1 shape factor, the space to the edge of the adjacent channel will be 7.5 kc, giving rise to channels of 14.990, 15.00, and 15.010 mc for the example illustrated.

If we assume an instability of 100 parts per million (0.01 percent) in the transmitter and receiver frequency-generating system, we have the condition shown in Fig. 1B. Here the transmitted frequency is assumed to have drifted higher and the receiver local oscillator lower, or vice versa, broadening the required selectivity characteristic. Of course, when transmitter and receiver drifts are in opposite directions the effects are reduced and approach the condition of Fig. 1A.

To allow for the maximum deviation of the channel within the selectivity characteristic, a bandwidth of 11 kc is required at the 6-db points of Fig. 1B. With a shape factor of 3 to 1, this results in a skirt selectivity at the 60-db point of 16.5 kc which, when added to the 2.5-kc sideband and the 1.5-kc instability assumed for the adjacent channel, calls for a channel spacing of 20.5 kc or channels centered on 14.9795, 15.0000 and 15.0205 mc. This shows the increased channel spacing and consequent reduction in the number of available channels due to instabilities in transmission and reception.

Oscillator Stability

The crystal oscillator provides a satisfactory answer to the stability problem for many applications. During World War II, however, military forces found that it was

FIG. 1—Example illustrating how transmitter and receiver frequency instability increase the spacing required between communication channels

STABILIZED

strategically unwise to be bound to a single channel or even a moderate number of channel frequencies. Accordingly, interest in variable-frequency master oscillators and other multifrequency generating schemes was renewed.

With increased development of temperature-compensating capacitors and stable permeability-tuning cores, it was possible to maintain the temperature and calibration accuracy of a variable-frequency oscillator without temperature control to within 400 parts per million for 1.5 to 1 tuning ratio. Recent developments with temperature control indicate that stabilities in the order of 200 parts per million will be attainable in the near future.

The present state of the crystal oscillator art indicates that within the range 0 to 50 C, a tolerance of 30 parts per million is possible. Use of a crystal oven reduces this to about 3 parts per million. Commercially available laboratory 100-kc standards are available with longterm stabilities of about 0.1 parts per million. About the ultimate in stability is that of the Bureau of Standards radio station WWV, which is 0.02 parts per million. With a master oscillator, equipment can be adjusted to a multiplicity of frequency channels, while the crystal oscillator is limited to just a single frequency of operation or a multiple. A system is needed that combines the accuracy of the crystal oscillator with the versatility of the master oscillator. This paper will describe several systems which provide this desired end effect.

By E. W. PAPPENFUS

Collins Radio Co

Cedar Rapids, Iowa

Multicrystal System

A method which has been used on the Collins 51R navigation receiver involves synthesis of the desired output frequency through addition of a number of stable input signals. In the descriptions to follow, the frequency values are chosen for ease of explanation and may not be ideal from the standpoint of spurious output.

As indicated in Fig. 2, a crystal oscillator and tap switch provide stable crystal-controlled frequencies from 10.2 to 12.2 mc spaced every 0.1 mc. The selected signal is fed through an isolation amplifier and bandpass filter to a mixer for combining with the output of another multicrystal oscillator that

FIG. 2—Synthesis of desired frequency by mixing outputs of two multicrystal oscillators

FIG. 3—Superheterodyne method using single crysial, harmonic amplifier and vío

MASTER OSCILLATOR for Multichannel Communication

Crystal-conserving systems for precise, stable generation of r-f energy are analyzed, with details of commercial 31-tube version using a single 100-kc crystal and motor-controlled afc to provide any desired frequency from 2 to 4.5 mc with 5-ppm accuracy

provides frequencies spaced 0.01 mc in the range of 8.200 to 8.110 mc. The difference frequency as selected in a tuned amplifier yields an output of 2 to 4 mc.

This system is readily adaptable to a direct-reading frequency dial in which megacycles and tenths of a megacycle are indicated by a dial connected to the first tap switch, and 10-kc increments are indicated by a dial connected to the second crystal tap switch. At each position of the first tap switch there are available ten different output frequencies depending upon the position of the second tap switch, so the system illustrated provides 200 10-kc steps in the range of 2 to 4 mc. This output can be multiplied as desired to provide transmitter excitation or receiver injection.

71

The disadvantage of the system is that it has certain spurious output frequencies and a stability which is less than with direct crys-

ELECTRONICS - December, 1950

tal control because the source crystals are higher in frequency than the available output from the generator.

Superheterodyne System

The foregoing system requires a large number of crystals (30 for 200 output channels). This is a disadvantage which can be avoided through the use of the circuit of Fig. 3. Here a 100-kc crystal oscillator of high stability is subdivided to 10 kc with a multivibrator or regenerative divider. The resulting highly accurate 10-kc signal is then fed into a harmonic amplifier that produces a spectrum of frequencies spaced 10 kc apart in the range of 2 to 4 mc.

The desired output frequency could be selected from the harmonic amplifier with sharp filters and a variable-frequency amplifier but it is quite difficult to secure the desired rejection at the output frequency in

w americanradiohistory com

this way. Instead, an ingenious application of the superheterodyne principle is used to secure the desired selectivity for selecting and amplifying the desired harmonic to get essentially single-frequency output. In this method (devised by M. L. Doelz-U. S. Patent No. 2,445,664), a 2.4 to 4.4-mc oscillator is fed into a mixer together with the output from the harmonic amplifier, yielding a spectrum centered on 400 kc. A highly selective 400-kc i-f amplifier can be built yielding attenuation of up to 100 db or more for the adjacent undesired channel. Output of the 2.4 to 4.4-mc variable-frequency oscillator is also fed into a second mixer along with the 400-kc i-f output signal. The difference frequency is used here to give the desired output in the range of 2 to 4 mc.

The frequency-indicating dial, which controls the tuned circuits of the variable-frequency oscillator range eight times as wide as would be the case in directly comparing the oscillator with a reference frequency. This deteriorates the accuracy of control at very low-frequency beat notes, but in the commercial version of this system the motor is responsive to applied voltages having a frequency as low as a few cycles per second so the resulting error is quite small.

The motor is a four-pole twophase instrument-type motor with a high-resistance squirrel-cage rotor. The motor operates with an applied voltage up to 400 to 500 cps, which allows a pull-in range at the comparison frequency of from 3,200 to 4,000 cps.

If greater accuracy is required, a 100-kc standard voltage can be derived from an external source to reduce the error from ± 2 parts per million as contributed by the internal crystal-controlled oscillator at 100 kc to a value of as low as 0.1 part per million using the best available laboratory standards.

It is interesting to note the contribution of the interpolation oscillator to the frequency stability of the system. The output of the interpolation oscillator is divided by eight and then compared to the master oscillator at a frequency which is always five times the output frequency of the stabilized master oscillator. Thus the error, in cycles, at the output of the interpolation oscillator is divided by a factor of 40 as referred to the output frequency of the instrument.

FIG. 7—Hermetically sealed variablefrequency oscillator, with tube sealing can removed

Since the tuning ratio of the interpolation oscillator is small, its stability is such that it does not contribute more than one to two parts per million to the output inaccuracy.

Perhaps the best method of indicating the operation of the stabilized master oscillator equipment is to give examples of the frequencies present at the different circuits for several values of output frequency. In Table I, example A shows the result of operation on a 5-kc point of the master oscillator. Example B indicates a frequency displaced from a 5-kc point by 2,170 cps. It should be borne in mind that the interpolation oscillator dial covers the range 0 to 5 kc. Because of this the base frequency, to which the interpolation dial reading must be added, changes every 5 kc on the main dial. Therefore, to tune to 3.517170 mc, the master oscillator

would be set above the 3.515 point and the interpolation dial again would read 2,170 kc.

Example C corresponds to Example B except that here an error of 300 cycles is assumed at the output frequency of the equipment. This example indicates the error voltages present in the various parts of the equipment and shows the beat frequency applied to the tuning motor.

Circuit Details

The 100-kc crystal-controlled oscillator used as a frequency standard is shown in Fig. 6. A switch allows the substitution of an external 100-kc source, in which case the left-hand section of the dual triode functions as an r-f amplifier feeding succeeding stages of the equipment. The parallel-tuned L-C circuit serves to trap out a spurious mode present in some 100-kc crystals. A

FIG. 6—Crystal oscillator that determines accuracy of output frequency generated by afc-stabilized variable-frequency oscillator

FIG. 8—Servo-motor control circuit. Audio beat frequency produced by error in master variable-frequency oscillator is amplified to drive motor that retunes vfo until beat frequency disappears

December, 1950 - ELECTRONICS

6AK5 triode-connected amplifier serves as an isolating stage between the 100-kc oscillator and the 50-kc divider. The divider has the advantage of fail-safe operation, wherein there is no spurious output if the 100-kc source fails.

The heart of the entire stabilized master oscillator is the hermetically sealed variable-frequency oscillator illustrated in Fig. 7. This oscillator uses a powdered iron core traveling within a solenoid coil, with variable space between turns to secure a linear relationship between frequency and dial rotation. By hermetically sealing the oscillator and rotating the shaft through a pressure-tight seal, it is possible to secure calibration and temperature stability of ± 800 cycles at the fundamental frequency of the oscillator. Temperature compensation is accomplished by using ceramic capacitors with the desired temperature coefficient and by appropriate design of the tank coil. Final production linearity adjustment is realized with an adjustable cam that compensates for manufacturing variations in the coil and core. The interpolation oscillator has the same physical characteristics and differs only in the resonant circuit components.

AFC Motor Control

The motor control circuits are quite interesting. The output of the 800-kc second i-f strip is subdivided in a regenerative divider and then fed into 6AL5 diodes along with the output from the 100-kc amplifier, as shown in Fig. 8. Loosely coupled resonant circuits in T_1 provide a 90degree phase shift in the 100-kc reference voltage so that push-pull two-phase a-f voltage is fed into the 2C51 d-c amplifiers. These in turn drive 5686 beam tetrode tubes that serve as power amplifiers feeding the two windings of the afc motor in push-pull. The push-pull arrangement is used to eliminate d-c flux in the motor windings. Only the flux due to the beat-frequency voltage drives the armature. Relay contacts, not shown, connect the motor windings to 60-cycle power for initial tuning of the equipment.

In tuning, a SETUP-OPERATE switch is thrown to the SETUP position, which drives the afc motor

Table I—Three	Examples	of	Frequencies	Present	in	Sta bilized
	Master		scillator Syste	m		

	100 kc stand- ard	Divider out- put	Har- monic amp mc	ls mix ko	t er	lst I-F amp kc	2 m]	nd ixe kc	r	2nd I-F amp kc	Regen dividers kc	Motor fre- quency cps	
А	100 kc	25 kc	16.600 16.625 16.650 etc	900 875 850 et	с	875 900	80 82	0		800	100	0	
В	100	25	16.650 16.675 16.700	910 885 860	. 85 . 85 . 85	8 <mark>85</mark> . 55	80	0		800	100	0	
С	100	25	16.650 16.675 16.700	862 887 912	. 35 . 35 . 35	887.35 △f = +1,500 cps	801.5 △f= +1,500 cps		5	801.5	100.187 △f = +187.5 cps	5 187.5	
				1				•			,		
	Output freq mc	t MO dial freq mc	MC free mc		М р ×10	Multi- plier (10 ×15 mc			In d	iterpol ivider kc	Interpol osc freq kc	Interpol dial kc	
A	3.5000	00 3.500) 1.160	6 666	17.5	50000 <mark>0</mark>	A		75.00	<mark>60</mark> 0	0.000		
B	3.5121	70 3.512	2 1.170	0723	17.5	60 <mark>850</mark>	в		85.85	<u>686.8</u>	2170		
С	3.5124 △f = 300 cps	70 3.512	2 1.170 △f +100)823 = cps	17.5 ک + ا	562350 ∆f = 1,500 cps		С		85. <mark>85</mark>	686.8	2170	

and capacitor to a centered position and disables the motor control circuits. The master oscillator dial is then set to frequency as closely as possible. The interpolation oscillator dial is adjusted to indicate the frequency increment to be added to the 5-kc point next below the desired frequency and an output tuning dial is set to the correct position as indicated on a direct-reading dial. A headphone jack across the motor control circuits provides aural indication of the accuracy with which the master oscillator is adjusted. If a fairly low beat note is heard (0 to 400 cps), the adjustment of the master oscillator is sufficiently accurate for afc operation. If not, further adjustment of the master oscillator dial will yield a low beat note suitable for afc control. The switch is then thrown to OPERATE, which restores the motor control circuits. The motor then operates under control of the beatfrequency signal and rapid correction of the master oscillator frequency occurs. Thereafter the frequency of the master oscillator is under continuous surveillance so that it is constantly corrected for thermal, humidity or voltage effects.

The 31 tubes used in this circuit might appear excessive until it is realized that the accuracy of adjustment and the stability after adjustment of this frequency generator are far in excess of that obtained previously in variable-frequency oscillators. A decided advantage of this method is that failure of the afc circuits does not necessarily destroy the usefulness of the system. Only three tubes are essential for operation as a normal master oscillator-power amplifier with moderate stability.

The writer wishes to express his appreciation to R. T. Cox for suggesting the basic system used in the stabilized master oscillator.

CRYSTAL DIODES

Five useful and novel circuits for video terminal gear at television studios. Included are gamma correction amplifiers, studio amplifier brightness clipper and a deflection failure protective unit for kinescopes and monitor picture units

FIG. 1—Typical voltage and current characteristics of two crystal diodes

ERMANIUM diodes have many Sapplications in video circuits as detectors and rectifiers in which unidirectional conduction is the property used. In addition, such diodes have limiting and nonlinear properties which suit them to many other circuits of use in the television studio and transmitter. Several circuits of the latter type are here described. The circuits utilize the 1N34 and 1N58 crystals. These are relatively inexpensive and typical of the class. It should not be construed, however, that these particular designations are specifically necessary in the circuits to be discussed.

The following specifications of crystal diodes are of special interest to the design engineer:

Minimum forward current—the smallest expected current at a given d-c potential applied with positive to the anode lead.

Shunt capacitance—usually 1 µµf or less for all units. Peak inverse voltage—the maxi-

Peak inverse voltage—the maximum transient voltage polarized neg-

FIG. 2—Front and back resistance plotted against voltage for the 1N34

atively at the anode which may be tolerated before breakdown occurs.

Maximum operating inverse voltage —the allowable continuous inverse voltage for satisfactory operation. Average rectified or forward cur-

Average rectified or forward current—the allowable steady current carried by the crystal without undue change of characteristics. Ambient temperature range—the

Ambient temperature range—the surrounding temperature during operation which will not be injurious to the unit, ordinarily from -50 to +70deg C, outside this range the specified ratings may take a "set" and not return to normal when room temperature is restored.

Inasmuch as the devices under discussion are nonlinear, certain typical response curves are desirable for intelligent application. Figure 1 is a plot of forward and inverse currents against respective voltages. The sudden reversal of slope at the origin is of particular value in switching and clipping actions. Such sharp cutoff characteristics make the diode a superior limiting device to a pentode.

The corresponding curves of back and front resistance as functions of respective voltages are shown in Fig. 2. It is interesting to note the shape of the back resistance-voltage curve. The maximum back impedance occurs at a rather low value of voltage and rapidly falls off in either direction. For this reason, an ohmmeter is not an accurate enough instrument to indicate the true condition of a given crystal. A relatively high back resistance and low forward resistance, however, may presuppose a working diode not necessarily within prescribed ratings.

Since the resistance varies critically with applied voltage, the proper verification of data is made by the use of a low-impedance voltage source in series with a milliammeter and the crystal under test. The usual specified voltages are positive one volt and negative ten or fifty volts. Batteries are a convenient source of test potentials.

Applications

The reproduction of a scene by television must adhere to certain standards for acceptable portrayal of scene brightnesses. A completely linear system from pickup tube to kinescope would of course reproduce identically the original material. The limited contrast range of a kinescope, however, sometimes makes it more desirable to depart from an overall unity slope response in order to accommodate a high-gamma picture.

It is not necessary for accurate representation to strictly adhere to a one-to-one transmittal of information, rather the following equation holds true: reproduced scene brightness =K (original scene hrightness)^{γ}, where K is the constant of proportionality and the ex-

December, 1950 --- ELECTRONICS

in TV Studio Equipment

By RUDOLPH KUEHN Development Engineer National Broadcasting Co., Inc. New York, N. Y.

ponent, gamma, is a measure of the change in the original scene. The system gamma is the product of the responses in each series unit. Thus, assuming a film to be televised of gamma 2 and a kinescope gamma of 2, all other equipment of unity gamma, the resulting picture will have a gamma of 4. This is too great for accommodation at the receiver.

Ordinarily, pickup tubes, except for flying spot, are operated as nonlinear devices beyond the knee of the curve at white saturation. Such operation aids the compensation of the high kinescope white gradient. but the linear black region of the pickup device does not help the very low gradient of the kinescope in this area. The object is to insert into the system a series of amplifiers whose controlled nonlinearity can overemphasize the amplification at the desired brightness levels to achieve the optimum system gamma.

Gamma Correction

If a two-stage resistance-coupled video amplifier is connected as shown in Figure 3A, a degenerative feedback loop is present through R_1 , and D_1 , when the crystal diode is conducting. At no signal R_2 is adjusted to allow V_2 to draw more current than V_1 . This establishes the voltage relationship $E_{b1} > E_{b2}$ if the circuit is otherwise symmetrical. Thus, the extent to which D_1 conducts establishes the maximum degeneration possible.

Assume a video voltage at R_{g1} with whites positive. At the plates of V_1 and D_1 the white excursion is negative, while at the plate of V_2 and the cathode of D_1 the white picture is again positive. As white sig-

ELECTRONICS — December, 1950

nal increases, V_i draws more current reducing the diode plate voltage.

In similar manner, V_2 is made to

FIG. 3—Circuits of gamma correction amplifiers. Circuit A shows a degenerative loop, B a regenerative loop and C combined positive and negative feedback

FIG. 4—Brightness control circuit for a studio video amplifier

draw less current increasing the voltage at its plate and the cathode of the diode. There exists, then, with increasing positive signal excursion on the grid of V_1 a pushpull effect tending to drive the crystal to cutoff. The overall gain of V_1 and V_{\circ} increases as the degenerative path increases its impedance with signal amplitude. Should the video at R_{a1} be opposite in polarity, the black signal material will be stretched. The point at which nonlinearity will begin depends upon the content and level of the input signal, and upon R_1 and R_2 .

Control

A convenient variable for controlling the point of diode departure is the potentiometer R_2 which changes the screen voltages of V_1 and V_2 in a push-pull manner. It is assumed that video at R_{a1} will always be maintained at constant peak-to-peak voltage, however, varying average brightnesses will change the a-c axis and thereby the relative steps which will be stretched. Use of d-c insertion in this circuit will eliminate the latter difficulty. The maximum attainable degeneration is determined by R_1 and once established would normally not be changed as an operating control. By combinations of such amplifiers the reversed S compensatory curve necessary for system linearity can be approached.

Instead of a variable degenerative path so provided, it is possible to accomplish the same thing with a controlled positive feedback as illustrated in Fig. 3B. Here D_1 and R_1 function as a regenerative loop whose impedance varies with the state of diode conduction. At zero signal R_2 is adjusted so that V_2

FIG. 5—Protection of the kinescope in case of failure of either the vertical or the horizontal sweep is provided by this circuit

draws more current than V_1 . This produces a greater voltage drop across R_{k_2} than R_{k_1} and little feedback is present.

As positive signal swing at R_{g1} increases the voltage across R_{k1} , negative signal at R_{g2} decreases the voltage across R_{k2} . This push-pull action drives D_1 into conduction, whose impedance depends on the extent of the signal and the original bias. Thus, with increasing voltage at R_{g1} , the positive feedback increases and the gain of V_1 and V_2 correspondingly is raised.

An interesting result is obtained if the degenerative and regenerative loops are included between the same two stages as in Fig. 3C. Stretching either end of a signal will result in a change of peak-topeak voltage necessitating a readjustment of output level. For a constant output, a stretch of one part of the signal is accomplished with the relative compression of the remaining signal.

If the zero-signal condition is such as to allow V_1 to draw less current than V_2 , then both positive and negative feedback will be present since both D_1 and D_2 will conduct. In this particular case the cathode resistors are not equal, with R_{i_1} being considerably smaller. If this were not the case, a complete cancellation of the two effects would cause little or no change.

With increasing positive signal both diodes are made to approach cutoff with D_2 lagging somewhat. The proper circuit components will allow a constant output voltage level to be maintained while varying the relative expansion and compression according to the setting of R_4 and the signal composition.

Brightness Clipper

A rather common requirement in studio video amplifier equipment is a means of controlling the clipping level of inserted blanking to establish brightness. In the circuit of Fig. 4, a series germanium diode is inserted in the signal line common to V_1 and V_2 . With camera signal present as shown on the grid of V_1 and blanking on the grid of V_2 , the output on the common load R_5 appears at the anode of D_1 . The point at which signal causes the diode to conduct is determined by the dynamic plate-cathode voltage of D_1 . By varying manually the current through V_1 or V_2 , the voltage at point A may be controlled. This is disadvantageous in that either the video or blanking amplifier will change transconductance with an attempted change in brightness.

Alternately, the voltage at point B may serve as the brightness control. In either case, however, a change in video peak-to-peak voltage will alter the relative a-c axis to pedestal distance due to clamp action, and this causes a shifting setup.

Should a source of voltage be

made available for point B which varies in accordance to the signal at A, then the clipping level will adjust itself to maintain a constant setup regardless of picture material or amplitude. A portion of the video from an earlier stage is amplified by V_s and rectified and filtered by D_{s} , R_4 , R_5 , and C_2 .

The filtered output of D_s controls the current in V_4 , establishing a voltage decoupled by R_s and C_1 which supplies point *B* through R_1 . In this case the effective load impedance at V_1 consists of the parallel combination of R_s and R_1 . The potentiometer in the cathode of V_4 acts as a manual brightness control. A miniature dual triode serves for V_s and V_4 and in combination with the two 1N58 germanium diodes requires little extra space and power.

Screen Burn Protection

A kinescope operating at 25 kv second anode voltage will burn almost immediately upon a loss of deflection. To protect against such occurrence, the circuit of Fig. 5 operates relays which open the ground leg of the brightness control placing full negative bias on the kinescope grid in the event of deflection failure. A portion of the voltage on the secondary of the vertical output transformer is coupled to a 1N34 detector whose output controls the grid of a triode. The plate load of the triode is a relay whose contacts break the ground side of the brightness voltage divider. A similar arrangement is provided for horizontal deflection.

The control triodes V_1 and V_2 are biased to cutoff by their respective cathode resistors R_1 and R_2 . With deflection voltage present, enough positive bias will be applied to the grids to operate the tubes and relays, thus completing the return circuit for the brightness divider. Should any deflection component fail, including those in the protective circuit, the ground return will be lifted from the brightness control and applied to the indicator pilot lamp P. The control triodes V_1 and V_2 can be in one miniature envelope. If more sensitive relays are available there is no need for d-c amplification and direct operation from the diodes is possible.

Cinch CONNECTOR PLUGS FOR COLOR TV

ADAPTERS & CONVERTERS ... COMPANION SOCKETS & PLUGS SHELL COVERS AVAILABLE FOR ALL **Cinch** PLUGS AND SOCKETS

> Multiple plugs and sockets from two contacts to thirty-five ... in either laminated or molded types ... made for chassis mounting or cable application ... Insulation material optional; paper, laminate up to and including low loss molded mica powder.

> In emergencies, national or local, universal or individual, we invite inquiries.

Available at leading electronic jobbers—everywhere.

CINCH MANUFACTURING CORPORATION

1026 South Homan Ave., Chicago 24, Illinois Subsidiary of United-Carr Fastener Corporation, Cambridge, Mass.

Combining Sound Levels

Simple nomogram dispenses with the need for log tables, decibel tables or a slide rule when determining the total acoustical power resulting from the combination of two or

more sounds

T WO OR MORE SOUNDS combine to give a total sound whose acoustical power is the sum of the power involved in the individual components. Since sound levels are expressed in decibels, the sound level of each component must be converted to its corresponding power ratio, added to the power ratio of the other components, and the total power ratio reconverted to decibels to determine the total sound level.

A straightedge intersecting the outer scales of the nomogram at positions corresponding to the individual sound levels db_1 and db_2 intersects the center scale at db_T , which is the total sound

Laboratory General Electric Company Pittsfield, Mass.

level. For example, individual sound levels of 8 and 10 decibels will be found to give a total of 12.1 decibels.

Any two equal sound levels combine to produce a sound which is 3 decibels higher than either of them separately. Thus 7.5 db and 7.5 db combine to yield 10.5 db; 0 db and 0 db give 3 db.

It is necessary to choose a con-

venient reference level such that the individual components are within 10 db of it. Thus, for the total of 62 db and 67 db, a reference level of 60 db is chosen. Since the components are 2 and 7 db above this reference, the resultant 8.2 db given by the nomogram is added to the reference, giving a total of 68.2 db.

When a difference of more than 10 db exists between two sound levels, the contribution of the smaller may be neglected.

Other Uses

One component of noise can be found when the other component and the total noise are known. This is useful in correcting sound-level meter readings for ambient noise. For example, a sound-level meter shows 64.5 db in the neighborhood of a certain machine when it is operating, and an ambient noise reading of 60 db when the machine is turned off. What is the noise level at the same location due to the machine alone? Choosing 60 db as the reference level, a straightedge is aligned with 0 db (60-60) on the db₁ scale, and 4.5 db (64.5-60) on the db_T scale, giving a reading of 2.6 db on the db₂ scale. Adding this to the reference level of 60 db results in a noise level of 62.6 db for the machine alone.

When more than two sound levels are to be combined, the total of two components is determined and combined with a third component, the new total combined with a fourth component, and so on. This same process may be employed to determine, in decibels, the rms value of a complex voltage or current wave when its harmonics are expressed in decibels.

118

ELECTRONICS REFERENCE SHEET

December, 1950 - ELECTRONICS

MALLORY SILVER CONTACTS

Fine and coin silvers, while having desirable properties for many applications, do not provide the physical properties required for some applications. To cover these applications, Mallory has developed a series of silver base alloys. These alloys have such improved characteristics as greater resistance to wear, less sticking or metal transfer, and greater hardness. Mallory is fully qualified to recommend the best contact material for your design. Write today.

Needless Contact Costs Saved By Mallory Know-How!

Important contact cost reductions usually result when Mallory is permitted to analyze applications and apply skilled attention to seemingly minor details.

In one particular case, a manufacturer of automotive voltage regulators requested that Mallory study his contact cost and performance. This study by Mallory disclosed that the amount of precious metal in the contact could be reduced considerably... without materially changing electrical characteristics. This reduction in silver content meant a saving to the customer of more than \$3500 per year!

That's value beyond expectations!

Mallory contact know-how is at your disposal. What Mallory has done for others can be done for you!

In Canada, made and sold by Johnson Matthey & Mallory, Ltd., 110 Industry St., Toronto 15, Ontario

Electrical Contacts and Contact Assemblies

SERVING INDUSTRY WITH

Capacitors	Contacts					
Controls	Resistors					
Rectifiers	Vibrators					
Special	Power					
Switches	Supplies					
Resistance Welding Materials						

ELECTRONICS — December, 1950

TUBES AT WORK

Including INDUSTRIAL CONTROL

Edited by VIN ZELUFF

Sine and Square-Wave Generator Selective Amplifier	120
Amplified Cueing for Remotes	120
Sensitive A-C VTVM	122
Stable Electronic Voltage Regulator	162
Adapt 2-Speed Tables to 3-Speed Operation	178
18-Mc Telecolor for Surgical Training	182
Cloud Base and Top Indicator	190
Capacitance-Controlled Recorder	194
Portable Geiger Counter	206
Shop Shortcuts	210

Sine and Square-Wave Generator Selective Amplifier

BASED UPON a half-lattice R-C type all-pass filter^{1,2,8} a wide-range sinewave generator has been designed and constructed which, in conjunction with a regenerative coupled cathode clipper amplifier⁴, delivers both a sine and a square wave of about 28-volt peak-to-peak amplitude from about three cps to one hundred six kc.

The circuit is essentially that of Villard³ but modified to include more direct coupling for better low-frequency characteristics and cathode-follower stages for improved isolation and low-impedance sources necessary for extending the high-frequency range.

Six controls are used. Switch 1 establishes the frequency range and ganged rheostats R_{s} and R_{s} give a fine control of frequency (a shaft rotation of 180 degrees providing a

Typical calibration curve for generatoramplifier shown in circuit diagram

20 to 1 frequency change). Potentiometer R_{i} controls the amount of feedback and the amplitude of the generated sine wave. When this control is set so that just insufficient feedback is available to maintain oscillation, the circuit from attenuator R_1 to potentiometer R_4 acts as a sharp filter, passing the frequency at which oscillation would occur were more feedback used.

Circuit diagram of sine and square-wave generator and selective amplifier capable of delivering up to 28 volts peak-to-peak from 3 cps to 106 kc

Potentiometer R_5 controls the output amplitude of the sine wave and potentiometer R_{0} similarly controls the square-wave output amplitude.

References

(1) Chance, et al., "Wave Forms", p 137, Radiation Laboratory Series, McGraw-Hill Book Co., Inc., New York, 1949. (2) E.

1949.
(2) E. W. Rosentreter, Single-Signal Single-Sideband Adaptor, ELECTRONICS, p
124, Jul. 1948.
(3) O. G. Villard, Tunable A-F Amplifier, ELECTRONICS, p 77, Jul. 1949.
(4) L. A. Goldmintz and H. L. Krause, Proc. IRE, p 1172, Sep. 1948.

Amplified Cueing for Remotes

BY ANTONIO VACCARO Chief Engineer WHEB Portsmouth, N. H.

ENGINEERS HANDLING remote broadcast pickups on a voice cue rather than a time cue often have difficulty hearing the cue because of low signal level and high adjacent crowd noise. The telephone companies restrict the levels of broadcast programs over wire lines to avoid crosstalk with communications services on adjacent wires. In order to save expense, broadcasters usually lease only one pair of wires and use the circuit for two-way communication except during the time the program is being fed from the remote location to the studio.

The circuit modification shown can be applied to any standard remote amplifier. A switch allows the engineer to feed the line into the amplifier input during the period he is waiting for the cue. By this means, the weak signal on the telephone line from the studio can be amplified to any desired level. As soon as the cue is received, the switch is returned to the normal broadcast position, and the line is then connected to the output of the remote amplifier. At the studio, the line is simultaneously switched to the transmitter. The engineer's monitoring headset is always connected to the output of the ampilfier so that he can hear the outgoing program.

Figure 1A shows the interconnection points X and Y where the normal wiring is broken to insert the switch and transformer shown in Fig. 1B. The parts indicated on the

A Masterpiece

COMPLEX, EFFICIENT ... KESTER SOLDER MAKES IT POSSIBLE

Good fast work can only be done with the best materials. Kester Plastic Rosin-Core Solder and the more active Kester "Resin-Five" Core Solder, made only from newly mined grade A Tin and Virgin Lead, are formulated especially for TV, radio, and electrical work. Kester Solders flow better ... handle easier ... faster to use. These two Solders, which are available in the usual singlecore type, can now also be had in a 3-core form.

Free Technical Manual-Send for your copy of "SOLDER and Soldering Technique."

KESTER SOLDER COMPANY

4204 Wrightwood Ave., Chicago 39, III. Newark, N. J. • Brantford, Canada

FIG. 1—Circuit modifications for a standard remote amplifier. The switch is shown in the normal or broadcast position

diagram are those actually used, but similar equipment of other manufacture can, of course, be employed. The entire modification requires a space about $1\frac{1}{2}$ by $\frac{3}{4}$ in.

Sensitive A-C VTVM

BY LAWRENCE FLEMING

Washington, D. C. National Bureau of Standards

OCCASIONS sometimes arise in research work when small voltages must be measured at some point that is isolated, either electrically or physically, from ground. The circuit of Fig. 1 provides a fullscale range of 5 millivolts a-c rms for this purpose, with about 13 db of negative feedback, and has been built to occupy a space of $6 \ge 6 \le 4$ inches, including batteries. The instrument was built to measure voltages in the 15 to 40-cycle range, but is accurate within a few percent up to about 20 kilocycles.

Low battery drain and space considerations dictated the use of low B voltage, a rather sensitive d-c indicating instrument, and an A battery common to all stages. To realize the benefits of feedback while employing a common filament battery, the feedback connection is made to the screen grid of the first stage. There are two disadvantages to this arrangement, the input capacitance is rather high and the sensitivity is not entirely independent of tube changes in the first stage because the grid-to-screen path of this stage is outside the feedback loop. In general, however, the linearity and stability of **T**HE KODACHROME pictures on the cover were taken at the laboratory of the Hazeltine Electronics Corporation at Little Neck, N. Y. to illustrate the spectrum-saving property of the mixedhighs system of color television. The images are unretouched, just as they appeared on a dichroic-mirror receiver (three picture tubes with red, green, and blue images superimposed). The images are scanned at 525 lines, 60 fields per second.

The image at upper left (A) was transmitted by the simultaneous method, using a separate 4-mc video band for each primary color, or 12 mc in all. The shot at upper right (B) shows that substantially the same result can be obtained by the mixed-highs method, using a total bandwidth of only 4.2 mc.

The explanation of this seemingly impossible compression of spectrum space is found in the lower pictures. At left (C), is the color component of the image, which is limited to a bandwidth of 0.1 mc in each primary color (0.3 mc in all) and hence contains no fine detail. At right (D), is the detailed "mixed-highs" portion of the image, containing frequencies from 0.1 to 4 mc (3.9 mc band). This image, which appears in tones of gray, is produced by combining into a single signal the high-frequency portions of the primary color signals before transmission in accordance with their relative brightnesses in the original scene. When the images shown at (C) and (D) are combined electrically, using a bandwidth of 0.3 + 3.9 = 4.2 mc, the image shown at (B) results.

In the cover pictures, the "cross-over" frequency—where color terminates and mixed highs start—is 0.1 mc. Experiments with different pictorial subjects, and with cross-over frequencies ranging betwen 0.1 and 2.0 mc, have indicated that the optimum value for broadcasting in a 6-mc channel is probably between 0.5 and 1.5 mc.

The bandwidth saving resulting from the use of mixed highs can of course be used in a channel of fixed width to increase the useful resolution. Mixed highs are useful only in quasi-simultaneous systems such as the dot-sequential and frequency-interlaced systems. As a practical matter they offer no advantage in the linesequential and field-sequential systems.

this circuit closely approach that of comparable commercial instruments, and the size and battery drain are much smaller.

The Daniels device of current amplification and current feedback¹ is employed, with the last stage designed to give the maximum transconductance commensurate with a reasonable value of d-c plate current, to keep the meter movement from being treated too roughly by overload voltages. Sen-(Continued on p 162)

FIG. 1—Vacuum-tube voltmeter for a-c, using only one 67-volt B battery and one 1.5-volt A battery

December, 1950 — ELECTRONICS

TINY • DEPENDABLE • SPACE-SAVING Cera-mite Capacitors

SPRAGUE 41 C

THE **FIRST** COMPLETE DISC CERAMIC LINE

190

SPRAGUE

SPRAGUE

36 C

Sprague-Herlec Cera-mite Capacitors are a "must" for modern television circuits.

Now available in NP0 and N750 temperature-compensating bodies and in two different high-K bodies, Cera-mites meet most application needs in the 10 mmf to 15,000 mmf capacitance range.

These miniature capacitors offer set designers maximum space economy, ease of mounting, and improved very-high-frequency performance.

The flat disc with uni-directional lead construction has minimum self-inductance and a higher self-resonant frequency than a tubular design; hence improved v-f bypass efficiency.

Sprague-Herlec Engineering Bulletin 601B gives the complete list of standard ratings as well as performance specifications. Write for your copy today!

THE ELECTRON ART

Edited by JAMES D. FAHNESTOCK

Photoelectric Analog Computer	124
Improved Microwave Spectroscope	126
Field-Sequential Color Television Tube	216
Thyratron Control Circuits for Over 180-Degree Phase Shift	222
Measuring Coupling Coefficient in Tuned R-F Transformers	232
British Speech Visualizer	239

Photoelectric Analog Computer

By ELDO C. KOENIG Electrical Engineer Allis-Chalmers Manufacturing Milwaukee, Wisconsin

THE VACUUM PHOTOCELL with a silver-cesium oxide-cesium cathode has been found to have valuable application in an electric analog computer, which is used for solving problems involving single-valued nonlinear parameters. Besides its desirable current-voltage characteristics, the cell has other very important features which make the computer relatively simple in design and operation. These features are briefly as follows:

(1) A family of curves is obtained simply by varying the amount of light excitation.

(2) Cells to represent equal nonlinear parameters can be conveniently excited from the same source of light.

(3) Particular curves of the families of curves of a group of cells excited from the same source can be obtained simultaneously by varying the voltage across the exciting lamp.

(4) Since the light excitation circuit and the cell circuits of the analog are completely isolated, there is no problem of circulating currents through metallic connections between circuits.

It was found that most cells are unstable and require some light ageing before they are suitable for use in the computer. By subjecting the cells to cyclic periods of excitation and zero excitation at higher voltages, with current outputs of relatively high values during the excitation period, they can be made to approach stable conditions. Approximately 25 of these cycles are required before they are suitable for use, and improvement progresses with continued use of the computer.

One or more photocells in combination with one or more resistors in series or parallel, and in some instances emf's within the element net work, form the several basic elements which may be used to represent nonlinear parameters of systems. An example of a basic element consisting of a cell and a resistance in parallel is shown in Fig. 1 and is the type used extensively in the computer for studies of magnetic circuits.

The resistor in parallel increases the slope of the current-voltage curve, as shown in the illustration, and thus makes possible the matching of the magnetization curve of one cubic inch of magnetic material with the characteristic curve of the basic element.

Excitation

The photocells of the basic elements of the computer are excited from six separate incandescent light sources with ten cells excited from each source. The excitation of each cell is adjustable by means of a shutter on the opening through which the light passes to the cell. The excitation of the ten cells in

One of the photocell units contains a single lamp for excitation and ten radially positioned photocells with separate apertures and outputs. Cylindrical light shield (shown in center of removed cover) fits over bulb (in center of phototube cluster)

WHICH SIMPLIFY ACCURATE MEASUREMENTS

OSCILLATOR FREQUENCY DIAL.

This large 4%'' open faced dial has eight overlapping frequency ranges, each calibrated *directly* in kilocycles or megacycles, with scales conveniently divided for maximum readability. A vernier dial drive enables fine settings to be made with ease. All frequency ranges are accurate to within $\pm 1\%$ except the 50-75 megacycle range which is accurate to $\pm 3\%$. The clearly marked range change switch located directly beneath the frequency dial facilitates rapid and positive selection of the desired frequency band.

2 Q-TUNING CAPACITANCE DIALS.

L-C dial serves twofold purpose of (1) conveniently and accurately indicating tuning capacitance directly in MMF, and (2) providing an effective inductance scale which also becomes direct reading at certain defined frequencies shown on frequency reference plate. Incremental capacitance dial at right calibrated from +3 MMF through zero to -3 MMF, accurate to ± 0.1 MMF.

3 Q-VOLTMETER AND MULTIPLIER METER.

For the indication of Q values the 160-A Q-Meter employs a Weston Model 643 Meter calibrated directly in terms of Q over the range from 20-250. The damping of the meter movement is ideal for the rapid determination of exact resonance without sluggishness or overshoot. The lance type pointer enables Q readings to be obtained to the nearest unit. Located directly beneath the Q voltmeter is the "Multiply-Q-By" meter which provides Q multiplier factors of X1 to X1.5 in 0.1 steps, X2, and X2.5 thereby extending the useful range of Q indication to 625. This meter is carefully matched to a particular thermacouple element for maximum accuracy.

50 kc. to 75 mc.

Radio frequency circuit design often requires the accurate measurement of Q, inductance and capacitance values. For this application the Type 160-A Q-Meter has become the uncompromising choice of radio and electronics engineers in this country and abroad.

Each component part and assembly used in the manufacture of this instrument is designed with the utmost care and exactness. Circuit tolerances are held to values attainable only in custom built instruments.

With the 160-A Q-Meter, as with other Boonton Radio Corporation instruments, the keynote in design is to embody accurate *direct reading* features which save time and simplify operation.

SPECIFICATIONS

Oscillator Frequency Range: 50 kc. to 75 mc. in 8 ranges. Oscillator Frequency Accuracy: $\pm 1\,\%$, 50 kc.—50 mc.

±3%, 50 mc.-75 mc.

Q Measurement Range: Directly calibrated in Q, 20-250. "Multiply—Q—By" Meter calibrated at intervals from x1 to x2, and also at x2.5, extending Q range to 625.

Q Measurement Accuracy: Approximately 5% for direct reading measurement, for frequencies up to 30 mc. Accuracy less at higher frequencies.

Capacitance Calibration Range: Main capacitor section 30-450 mmf, accuracy 1% or 1 mmf whichever is greater. Vernier capacitor section +3 mmf, zero,-3 mmf, calibrated in 0.1 mmf steps. Accuracy \pm 0.1 mmf.

Catalog "H" containing further information available upon request. (In Canada, direct inquiries to RCA Victor Co., Ltd., Montreal.)

DESIGNERS AND MANUFACTURERS OF THE Q METER • QX CHECKER FREQUENCY MODULATED SIGNAL GENERATOR • BEAT FREQUENCY GENERATOR AND OTHER DIRECT READING INSTRUMENTS

>

FIG. 1—Basic element required for magnetic saturation studies

each group, which may represent equal parameters of a system, can be varied simultaneously by changing the voltage across the exciting lamp. A master control is used for changing the voltage across all the exciting lamps and thereby can be used to adjust the excitation of all 60 of the cells simultaneously.

The photograph shows the cover removed from one of the units containing a group of ten cells excited from a single incandescent lamp. The cylinder of canvas Bakelite material, which is mounted on the inside of the cover, fits over the exciting lamp when the cover is in place. A screw shutter adjustable from the front of the cover passes in front of each of the ten openings in the cylinder to adjust for initial differences in the characteristics of the cells. Black plastic partitions separate the cells when the cover is in place and prevent the light intended for one cell from influencing the excitation of other cells.

Means are provided for cooling the exciting lamp by a blower which forces air around the lamp from the back and exhausts it through an opening in the cover.

The currents in the analog circuit are unidirectional and are not amplified. The values of current in different parts of the network system may cover a range from zero to approximately 125 microamperes. However, the current through individual cells seldom exceeds 15 microamperes.

There are 56 separate sources of unidirectional emf's available in the computer which may be connected anywhere within the analog circuit. These emf's are supplied by halfwave rectifiers and may be varied from zero to as high as 2,000 volts in some cases. As many as ten isolated voltages can be varied simultaneously.

A transformer of special design is used as a means of varying a group of isolated emf's simultaneously. The half-wave rectifiers of a group of emf sources are supplied by separate windings on the center leg of a three-legged core transformer. The single primary winding, also on the center leg, is connected to a source of alternating current supply through a continuously variable transformer, which is used to vary all of the ten unidirectional emf's simultaneously.

A second group of separate windings on an outer leg of the transformer supplies current to the heater filaments of the rectifiers. The single primary winding is connected directly to the alternating current source.

Since very small currents flow through the circuits with relatively high voltages impressed, special precautions were exercised in the construction of the instrument panels and the building of the control apparatus in order to avoid difficulties from leakage currents. The problem was alleviated to a great extent with the use of some of the more recent plastics. As a special precaution in guarding against future leakage currents, the computer apparatus was completely enclosed and air conditioned. With these precautions exercised there have been no leakage difficulties experienced.

Improved Microwave Spectroscope

MICROWAVE SPECTROSCOPY is based on sharp-line resonant absorptions that various gases exhibit throughout the microwave region. The simplest form of microwave spectroscope consists of a source of microwave energy, a section of waveguide in which the gas under study is placed, and a crystal detector. Constituents of the gas are identified by measuring frequencies of absorptions.

This system, while useful in some applications, leaves much to be desired in terms of sensitivity.

The Stark modulation system provides increased sensitivity in the detection and measurement of absorptions. The Stark system makes use of the fact that these absorption lines split up or change frequency when a d-c electric field is applied to the absorbing gas. Changes in output power (absorptions) as low as one part in 10⁸ per centimeter of absorption path are possible.

In practice, a low-frequency oscillating d-c field is applied to an insulated metallic septum which extends the full length of the waveguide absorption cell. An amplifier tuned to the Stark modulation fre-(Continued on p 214)

FIG. 1—Block diagram of components of 85-kc Stark-modulated microwave spectroscope

December, 1950 — ELECTRONICS

GANG-WAY for smooth, fast insulation

with Kodapak Sheet

... choice of leading electrical manufacturers

layer insulation.

Feeding in .005-inch Kodapak I Sheet for coil-

Gang layer insulation of transformer coils with .005-inch Kodapak I Sheet, Reproduced from photographs made in plant of Standard Transformer Company, Chiçago, Illinois, through the co-operation of the Insulation Manufacturers Corporation.

Inserting sample preparatory to voltage breakdown test on Kodapak I Sheet.

... for efficient insulation

"Kodapak" is a trade-mark

UNIFORM COVERING: Because it has excellent strength, stretch, and toughness characteristics, Kodapak Sheet is particularly suitable for use on high-speed coil winding machines. It handles well at high speeds and it may be flexed or bent without danger of breaking.

UNIFORM PROTECTION: Kodapak Sheet gives a superior winding surface *plus* high dielectric protection with a minimum of bulk. Another advantage: lacquer and solvents may be used to form a continuous waterproof seal.

GENERAL INFORMATION: Kodapak Sheet is available in various forms, including Kodapak I Sheet, cellulose acetate, gauges up to 0.060"; Kodapak II Sheet, cellulose acetate butyrate, gauges up to 0.002". For electrical applications where toughness and lower moisture absorption are required, Kodapak II Sheet is preferred, because of its physical toughness and high dielectric strength.

For further information, including other applications, write for free copy of the folder, "Kodapak Sheet for Electrical Uses."

Cellulose Froducts Division, EASTMAN KODAK COMPANY, Rochester 4, N. Y.

Sales Offices: New York, Chicago. District Sales Representatives: Cleveland, Dallas, Philadelphia, Providence. Pacific Coast Distributor: Wilson & Geo. Meyer & Co., San Francisco, Los Angeles, Portland, Seattle. Canadian Distributor: Paper Sales, Limited, Toronto, Montreal.

NEW PRODUCTS

Edited by WILLIAM P. O'BRIEN

Variety of New and Improved Test Equipment Can Aid Manufacturer and Serviceman . . . Multipurpose Tubes and Components Are Offered . . . Twenty-five Literature Items Are Reviewed

Improved Phototube

RADIO CORP. OF AMERICA, Camden. N. J., has announced an improved 5819 head-on multiplier phototube. Spectral response covers the range from about 3,000 to 6,400 angstroms. Expressly designed for scintillation-counter work, the tube utilizes a head-on construction with a photocathode measuring $1\frac{1}{2}$ in. in diameter on the inner glass surface of the face end of the bulb. Having a resolving time of only a small fraction of a second, the 5819 is capable of counting radioactive particles arriving less than one 100millionth of a second apart.

Power Level Meter

REED RESEARCH, INC., 1048 Potomac St., Washington 7, D. C. The Dio-

tron power level meter uses a temperature limited diode and feedback loop. In the measurement of erratic or nonsinusoidal wave forms, it yields a true power reading on a linear scale. Full-scale measurements of 1 mw, 10 mw, 100 mw, 1 watt and 10 watts into 600 ohms are provided. Accurately corresponding rms voltage scales are also calibrated, and the instrument is within approximately ± 2 percent from 50 cps to 10 mc.

TV Marker Generator

SYLVANIA ELECTRIC PRODUCTS INC., 1740 Broadway, New York 19, N.Y. Type 501 television marker generator provides a means of accurately marking frequencies on the ocilloscope trace of response curves while testing a tv receiver during manufacture or servicing. The tuned oscillator in the unit provides frequencies ranging from 15 to 240 mc in four bands: 15 to 30 mc, 30 to 60 mc, 60 to 120 mc and 120 to 240 mc. With an appropriate crystal inserted in the panel socket the oscillator will operate at any frequency between 2 and 20 mc, and will provide useful harmonic output up to the sixth for all-band calibration. A 4.5-mc crystal for use in servicing receivers with intercarrier sound circuits is available on special request.

Traveling-Wave Power Amplifier

FEDERAL **TELECOMMUNICATION** LABORATORIES, INC., 500 Washington Ave., Nutley 10, N. J., has announced a new traveling-wave power amplifier (model 5929) of the helix type, in the 4,000-to-5,000mc frequency range. Constructed with particular attention to interchangeability, the tube will deliver a power output in excess of 10 w with a power gain of 20 db. The r-f terminals are arranged for waveguide circuit and the tube operates with an external electromagnetic field.

Remote Control of Microwave Antennas

RADIO CORP. OF AMERICA, Camden, N. J. A rotatable field mount and a remote control unit make up a new system for remote positioning of microwave parabolic antennas in the field at distances up to 1,500

December, 1950 - ELECTRONICS

RAYTHEON

GERMANIUM CRYSTAL DIODES

Superior humidity characteristics

No wax or filler to affect operation even up to 100° C.

Improved Resistance-Temperature characteristics

Small size — 9/64" diameter, 25/64" length

Distinctive color coding

Smaller, more flexible leads for easier wiring

Completely insulated body for compact assembly

PERFORMANCE FACTS:

The following types are available in production quantities at Newton and Chicago, and in smaller quantities at our 310 Special Tube Distributors.

	CK705 General Purpose	CK706 Video Detector	CK707 50 V. dc Restorer	CK708 100 V. dc Restorer	CK710 UHF Mixer	1N66† General Purpose	1N67† High Back Resistance	1N68† 100 V. dc Restorer
MAXIMUM RATINGS (at 25°C.)								
DC Inverse Voltage (volts)	60	40	80	100	5	60	80	100
Average Rectified Current (ma.)	50	35	35	35	25	50	35	35
Peak Rectified Current (ma.)	150	125	100	100	75	150	100	100
Surge Current (for 1 sec.) (ma.)	500	300	500	500		500	500	500
Ambient Temperature for all types	— 50	to +100°C	•					
CHARACTERISTICS (at 25°C.)								
Max. Inverse Current at -2 volts (ma.)					0.5			
Max. Inverse Current at — 5 volts (ma.)			0.008				0.005	
Max. Inverse Current at — 10 volts (ma.)	0.05					0.05		
Max. Inverse Current at 50 volts (ma.)	0.8		0.10			0.8	0.05	
Max. Inverse Current at -100 volts (ma.)				0.625				0.625
Min, Forward Current at +1 volt (ma.)	5.0		3.5	3.0		5.0	4.0	3.0
Min. DC Reverse Voltage for Zero Dynamic								
Resistance (valts)	70	50	100	120		70	100	120
Shunt Capacitance (uuf)	1.0	1.0	1.0	1.0		1.0	1.0	1.0
Rectification Efficiency at 54 mc (approx. %)		60						
Rectification Efficiency at 100 mc (%)						35 (mii	n.)	
Oscillator injection current (ma.)					0.75*			
*Conversion le	er at 500 m	and noice	factor comp	arable with	1N218			
Conversion to	ss ur 500 m	. unu noise	racio comp	uruble with	111210			

†1N66, 1N67 and 1N68 must also pass humidity tests.

Other types are available for special applications.

RAYTHEON MANUFACTURING COMPANY SPECIAL TUBE SECTION + Newton 58, Massachusetts

SUBMINIATURE TUBES - GERMANIUM DIODES and TRIODES - RADIATION COUNTER TUBES - RUGGED, LONG LIFE TUBES

Excellence in Electronics

5

feet. The design of the field mount most adverse conditions. All parts provides for both azimuth and tilt and components have been selected positioning of the parabola. The in order that the oscillograph will parabola is driven with 1/6-hp withstand and record faithfully motors each providing a torque of during accelerations up to 20 g's. 10,500 in, lb at 1 rpm. The reflector The unit is especially desirable for may be rotated 370 degrees in use in instrumentation problems azimuth or tilted 15 degrees up and where space requirements 30 degrees down. Magnetic brakes limited such as in parachute ejecon each of the positioning motors tion tests and torpedo and missile aid in positioning the parabola to studies. The magazine will accomwithin \pm 10 min of an arc. Power modate a 50-foot roll of paper or required for operation is 115 v, 60 film that is 35 in. wide. Any speed cps, single phase, 6.8 amperes.

Signal Splitter

J. L. A. MCLAUGHLIN, P. O. Box 529, La Jolla, Calif., has announced the new Series 10 Signal Splitter, RADIO CORP. OF AMERICA, Camden, a selectable single-sideband converter for eliminating adjacentchannel and heterodyne interference Either sideband can be rejected with high attenuation. The equipment is available in single, dual, and triple units. Models have information bandwidths of 200, 2,500, and 5,000 cps within ± 1 db and are suitable for reception of high-speed telegraphy, voice, and transoceanic broadcast reception. They can be employed with standard single or diversity communication receivers.

are from 2 to 12 in. per second may be selected by a calibrated dial control. The unit operates on 24 v d-c and full power current requirement is 3 amperes.

Transmitter Test Equipment

N. J. Type BI-11A transmission measuring set provides direct readings of transmitter system measurements with an accuracy conforming to FCC regulations. The new unit, which is particularly useful as a rack-mounted unit in the master control room or at the transmitter of a broadcast station, eliminates lengthy calculations and intricate setups for many transmitter measurements.

ber of different grades of stripping wheels, practically all kinds of insulations can be cleanly removed without damage to the wire. The model shown will strip wires, gages 48 through 25, including Litz wire up to 50/44. It measures 10 in. wide, 15 in. deep, and weighs 38 lb complete with motor and 6-ft lead. It is available for outright purchase or may be had on a rental-test basis.

Amplifier System

THE ELECTRONIC WORKSHOP, INC., 351 Bleecker St., New York 14, N. Y. Model A-20-5 amplifier system has four input channels (including an equalizer-preamplifier for any of the available magnetic phono cartridges) with independent level adjustments. A fourposition treble cutoff filter reduces high-frequency noise and distortion. The amplifier's 18 db of feedback affords excellent loudspeaker damping and long tube life. Distortion at 20 watts is less than 1 percent. Full power is delivered over the entire audio range.

Adverse-Condition Oscillograph

CENTURY GEOPHYSICAL CORP., Tulsa, Okla. The Model 409 oscillograph has been designed especially for recording phenomena under the

Wire Stripper

RUSH WIRE STRIPPER DIVISION, THE ERASER CO., INC., 104 South State St., Syracuse 2, N.Y. Model DV wire stripper illustrated uses the principle of frictionally generated heat to melt enamel and Formex-type insulations. Through proper selection from a large num-

Mixer Crystal Test Set AIRBORNE INSTRUMENTS LABORA-TORY, 160 Old Country Road, Mine-(Continued on page 241)

December, 1950 --- ELECTRONICS

THE FOUNTAINHEAD OF MODERN TUBE DEVELOPMENT IS RCA

...with the economy of thoriated-tungsten filaments

THESE SIX improved RCA power tubes are "musts" for designers of industrial electronic heating equipment where design and operating economies alike are important considerations.

Ranging in power input from 1.5 to 650 kw, these types successfully utilize thoriated-tungsten filaments which offer marked savings in filament power and the cost of associated power equipment. The 5671 utilizes an effective lightweight radiator while the 5762 and 5786 have radiators designed to permit use of less-expensive blowers than have been required previously for similar tubes. The new and revolutionary RCA-5831 super-power beam triode with internal water cooling, is tested at one million watts input, and handles with high efficiency an input of 650 kilowatts in continuous commercial service. Air jackets for the 5671 and 5762, and water jackets for the 5770 and 5771, are available from RCA.

RCA Application Engineers are ready to consult with you on the application of these improved tubes and accessories to your specific designs. For complete technical information covering the types in which you are interested, write RCA, Commercial Engineering, Section L42R, Harrison, N. J.

ELECTRONICS - December, 1950

NEWS OF THE INDUSTRY

Edited by WILLIAM P. O'BRIEN

SMPTE Elects 1951 Officers, Confers Awards

MEETING at Lake Placid, N. Y. for its 68th Semiannual Convention October 16-20, the Society of Motion Picture and Television Engineers elected Peter Mole of the Mole-Richardson Co., Hollywood, president for 1951, Herbert Barnett of General Precision Labs... Pleasantville, N. Y., executive vicepresident and John G. Frayne of the Westrex Corp., Hollywood, editorial vice-president. Other officers of the Society include Fred T. Bowditch, engineering vice-president, Ralph B. Austrian, financial vice-president, William C. Kunzmann, convention vice-president, Frank Cahill, Jr., treasurer and Robert M. Corbin, secretary.

The new board of governors, also taking office January 1, includes William B. Lodge of CBS, Oscar F. Neu of Neumade Products Co., Frank E. Carlson of GE, Malcolm G. Townsley of Bell & Howell,

Peter Mole (left), new president of the SMPTE, and retiring president Earl Sponable

Thomas T. Moulton of 20th Century Fox, Norwood L. Simmons of Eastman Kodak and Lloyd Thompson of the Calvin Co.

Fellowship awards were made to Gerald L. Badgley, George L. Beers, Herbert E. Bragg, Fred W. Gage, Raymond L. Garman, Watson Jones, John P. Livadary, William

EMPIRE STATE TELEVISION ANTENNA

Lines of a temporary television antenna atop the Empire State Building in New York City are shown being fastened by a steepleJack perched at 1,200 feet above ground. The new 222-foot tower now being completed will accommodate video transmitters for five New York television stations: WCBS-TV, Columbia Broadcasting System, Inc.; WABD, Allen B. Du Mont Laboratories, Inc.; WPII. The Daily News; WNBT, National Broadcasting Co.; and WJZ-TV, American Broadcasting Co., Inc. Visible at the left is the needle-pointed Chrysler Building and at the right is the new United Nations Building near the East River

B. Lodge, Boyce Nemec, Charles Rosher, John H. Waddell, Emerson Yorke and Frederick J. Kolb, Jr. Frederick J. Kolb Jr. received the Journal Award, Charles R. Fordyce the Samual L. Warner Memorial Award and Vladimir K. Zworykin the Progress Medal and a certificate of honorary membership. A certicate of honorary membership was also awarded Edward W. Kellogg.

Attendance at the meeting totalled just under 300.

Priority System Announced

THE DEPARTMENT of Defense Munitions Board has announced that priority for defense contracts under NPA Regulation 2 is being handled as follows: Defense orders are identified as DO orders. This rating is the only one authorized under the regulation and all DO rated orders will have equal preferential status. The identifying digits which will be used in assigning DO numbers are: 0.1, aircraft; 02, guided missiles; 03, ships; 04, tank-automotive; 05. weapons; 06, ammunition; 07, electronic and communication equipment; 08, fuels and lubricants; 09, clothing and equipage; 10, transportation equipment; 11, building supplies and equipment for overseas (troop) construction; 21, miscellaneous; 22, Department of Defense construction (contract); 98, production equipment for certain contractors. All outstanding prime contracts now in effect and all new contracts will be rated with the exceptions of communications services, mineral aggregates, ores and scrap, and transportation services.

Rated orders must be accepted and filled regardless of existing contracts and orders except for such cases as when a delivery date on a rated order would interfere with the delivery date on a previous rated order, or if filling the order would cause a substantial loss of production.

The Board suggests that present prime contractors should check with contracting offices to make certain that all their defense contracts which are subject to rating are covered. In addition, subcontractors should begin immediately to iden-

Three speed gramophone Heavy duty two pole. Precision engineered units complete with shaded pole induction well balanced 4 pole pickup and auto-stop. motors for every shaded pole induction application.

The amazing

R Rotocam J speed phonomotors

78,45 & 333 r.p.m.

- Speed change is simple, foolproof and reliable.
- No rubber belts to stretch or perish.
- Smooth constant speed. 'Wow' negligible (under 0.2%)
- Incorporates the well-known B.S.R. 4 pole motor.
- Heavy 10" turntable fitted on precision ground taper steel spindle.
- Turntable fitted with special removable rubber mat-pioneered by us to meet the exacting "hygiene" demanded by the L.P. records.

Transcription quality at competitive prices.

Illustrated is the popular MU14 3 speed unit. Other 3 speed models are available complete with pickup and automatic stop.

Advanced design and a modern well equipped factory enable us to offer good delivery at moderate prices.

REPRODUCERS SOUND LTD. CLAREMONT WORKS, OLD HILL, STAFFS. ENGLAND. GRAMS: 'ELECTRONIC, OLD HILL, CRADLEY HEATH'

ELECTRONICS - December, 1950

11

tify those of their contracts which are with prime defense producers, who will have authority to extend the rating to them. The rating procedure in no way changes procurement practices. Contracts will be let in the same way they have in the past and those seeking contracts will follow the same procedure they have been following.

CAA Approves Omnirange Flying

FOR THE FIRST TIME since the introduction of the omnirange technique a chain of these ranges has been designated by CAA as a controlled airway, over which qualified pilots in properly equipped planes may operate under instrument flight rules. The CAA has authorized Continental Air Lines to operate on this basis.

Extending through six states, they connect such important air traffic terminals as Kansas City, Denver, and Albuquerque. Also linked by the new type of facility are Omaha, Wichita, Tulsa, Oklahoma City, El Paso, Fort Worth and other cities en route.

The new routes cover approximately 4,380 miles and are formed

- JAN. 10-12; Second High Frequency Measurements Conference, sponsored by AIEE, IRE and NBS, Hotel Statler and Dept. of Interior Auditorium, Washington, D. C.
- JAN. 22-26: AIEE Winter General Meeting, Hotel Statler, New York, N. Y.
- MARCH 5-9: ASTM Spring Meeting and Committee Week, Cincinnati, Ohio.

MAR. 19-22: IRE Annual Con-

by the signals of 41 CAA omniranges. In all, 271 omniranges have been commissioned by CAA in different parts of the United States.

The omnirange differs in two major respects from the conventional radio ranges which for 20 years have been the foundation of our air navigation system. It operates in the vhf band, thus eliminating most of the static and interference which occur in low-frequency transmission. In addition, the omnirange sends out courses in every direction, instead of just four.-(Omnirange is a contraction of omnidirectional range.)

Flying the omnirange is rela-

SUNSHINE MAKER IN ACTION

Palisades Amusement Park, N. J., was the scene of operation of Dr. G. A. Sykes, sunshine maker, while trying to outdo Dr. Howell. New York City's official rainmaker. Salary arrangement gave him \$500 per sunny day with a forfeiture of \$1,000 every rainy day. His method is to shoot electromagnetic waves into the clouds, with the hope of breaking them up and stopping rain

vention, Hotel Waldorf Astora and Grand Central Palace, New York City.

- MAY 23-24: Fifth National Convention, American Society for Quality Control, Hotel Cleveland, Cleveland, Ohio.
- JUNE 18-22: ASTM Annual Meeting, Atlantic City, N. J.

JUNE 25-29: AIEE Summer General Meeting, Royal York Hotel, Toronto, Ontario, Canada.

tively simple. Instead of listening continuously to dot-dash signals as on the four-course range, the pilot simply tunes in the omnirange and flies so as to keep a needle centered in a cockpit dial. Keeping that needle centered automatically crabs the plane into the wind just the right amount to fly a straight-line course to the omnirange.

Ultimately, CAA plans to install more than 400 omniranges for enroute flying of airways, blanketing most of the United States with their signals. They will make possible not only omnirange airways of the type just opened, but off-airway flying to hundreds of points not now served by air navigation aids. Omniranges also are used for low approach and let-down to airports under instrument conditions.

Signal Corps News

A NEW TYPE military field communications wire has been used successfully in Korea. Particularly suited to airborne operations, the wire can be laid at speeds up to 120 mph from planes. The wire consists of 2 conductors, each individually insulated and jacketed and twisted together to form a light, flexible, flatlying twisted pair. A thin covering of nylon provides a tight waterproof container for the strands. Weight is about 46 lb per mile and talking range is approximately 12½ miles.

A companion item is an improved dispenser constructed of canvas and tape which will hold one-half mile of field wire. The wire can be

(Continued on p 274)

SYLVANIA TV Picture Tubes are natural-born leaders because ... they come from a leading family

This unique combination of experience naturally fits Sylvania for top position in the TV Picture Tube field.

Maintaining this leadership is a continuing program of research and engineering. A Sylvania engineer, for example, invented the famous "Ion Trap," now licensed to numerous other picture tube makers.

Sylvania achievements in fluorescent powders, tungsten wire, and precision parts are some of the other reasons which lie behind the consistent color, greater clarity, and longer life of all Sylvania TV Picture Tubes.

Backing up each Sylvania advance is a rigid system of quality control... of checking and rechecking every step of every process...so that TV set owners everywhere will continue to look to Sylvania for the finest performance possible. New booklet gives information concerning the complete line of Sylvania Picture Tubes. Write for your copy today. Address Sylvania Electric Products Inc., Dept. R-2112, Emporium, Pa.

SYLVANIA FELECTRIC

TELEVISION PICTURE TUBES; RADIO TUBES; ELECTRONIC PRODUCTS; ELECTRONIC TEST EQUIPMENT; FLUORESCENT TUBES, FIXTURES, SIGN TUBING, WIRING DEVICES; LIGHT BULBS; PHOTOLAMPS; TELEVISION SETS

ELECTRONICS - December, 1950

NEW BOOKS

Practical Television Engineering

By SCOTT HELT. Murray Hill Books, Inc., New York 1950, 708 pages, \$7.50.

THIS volume, written by a member of the Research Division of the A. B. DuMont Laboratories and former chief engineer of the Du-Mont network, is the most comprehensive book on modern television equipment in print. Writing primarily from the standpoint of the equipment designer and operator, the author has constructed the book about 9 basic items of equipment: c-r tubes, c-r oscilloscopes, camera tubes, synchronizing generators, video amplifiers, regulated power supplies, television receivers, camera chains and transmitters, each of which is the subject of a separate chapter. The essential function of each is outlined in great detail, with full descriptions of components, circuits, and operating procedures taken from current practice. Nearly 100 pages are devoted, for example, to the circuits and functions of synchronizing generators, probably the most exhaustive treatment of the subject to appear anywhere. An introductory chapter outlines such fundamentals as picture transmission, scanning, optics and resolution, and a concluding chapter treats tv broadcast station operation from the engineering view-

RELEASED THIS MONTH

- Antennas; John D. Kraus; McGraw-Hill; \$8.00.
- Encyclopedia on Cathode-Ray Oscilloscopes and Their Uses; J. F. Rider and S. D. Uslan; John F. Rider Publisher; \$9.00.
- Photons and Electrons; K. H. Spring; Wiley; \$1.75.
- Pocket Encyclopedia of Atomic Energy; Frank Gaynor; Philosophical Library; \$7.50.
- Television, Volumes V and VI; RCA Review; \$2.50 each.

point. Throughout, the book is well-written, accurate and keyed to the essentials.

As the author states in his preface, even 700 pages are not sufficient to cover the whole subject as he would wish. Some readers may miss topics which, being remote from apparatus development, are not treated. These include vhf and uhf propagation, the analysis of transmission standards from a system point of view, and the fundamentals of color television. The book is not concerned with television systems themselves, but rather is geared directly to present equipment. As such, it is a very good book which will be welcomed by television engineers concerned with present-day problems.-D. G. F.

Radio Engineering Handbook

EDITED BY KEITH HENNEY. McGraw-Hill Book Co., New York. 1950, 4th edition, 1,197 pages, \$10.00.

A COMPLETELY ADEQUATE review of a handbook of nearly 1,200 pages would be a formidable task, and in this case cannot be attempted, so a (continued on page 138)

BACKTALK

This Department is Operated as an Open Forum Where Readers May Discuss Problems of the Electronic Industry or Comment Upon Articles that ELECTRONICS has Published

Oscillator Radiation

DEAR SIR:

IN YOUR issue of October under the heading, "Bloopers" on the *Cross Talk* page, you make reference to a letter written by me to a RTMA committee.

While I recognize the necessity of conserving space, it does seem to me that on these highly important and perhaps controversial subjects it would be better to have my letter speak for itself.

You have perhaps noticed how careful British technical journals are to reproduce verbatim the letters of their correspondents. While the Editor makes the point correctly that a letter was written by me on the subject of Radiating Receivers, my belief is that the letter that I wrote does not lend itself to the making of an abstract with the curtailment of its full meaning.

EDWIN H. ARMSTRONG Department of Electrical Engineering Columbia University New York, N. Y.

Editor's Note: Here is the Major's letter.

DR. W. R. G. BAKER, Director of Engineering, Radio and Television Manufacturers Association, New York

DEAR DR. BAKER:

The problem that is before this meeting today is only one of the many problems that have been created during the last five years by unsound engineering in the radio industry and in government and commercial circles responsible for radio matters.

The problem of radiating receivers has been a familiar one since the days of the single-circuit regenerative set and early superheterodyne set of over twenty years ago. That problem was solved and has been forgotten in the standard broadcast band for the last two decades. That we are now faced again with the same thing in the field of f-m and television broadcasting is a disgrace to the engineering profession. It is the result of the disregard of rules of engineering that were known twenty years ago. In both f-m and tv these rules have been and are now being flagrantly violated by a large part of the industry, perhaps to their immediate profit, but certainly to the ultimate

(continued on page 282)

Circuit Protection is Certain yet Flexible

General Radio Company's Variac[®] Speed Control is protected against excess current damage by the HEINEMANN CIRCUIT BREAKER shown here

In explaining the type of protection enjoyed by this Speed Control for DC motors from AC lines, the manufacturer says: "The circuit breaker is of the inverse-time-delay type and its delay characteristics are approximately matched to the overload rating of the rectifier tube. With this protection, advantage can be taken of the short-period overload capabilities of the tube without risking destruction in the event of a stall or the application of a load of excessive inertia."

In the event of short circuit or dangerous overload, the breaker trips INSTANTLY, and any danger of arcing is eliminated by the high-speed magnetic Blowout.

IOCATED

An exclusive advantage of the Heinemann Magnetic Circuit Breaker is that, being entirely magnetic, nothing heats. No time is lost waiting for thermal elements to cool. After tripping, the breaker may be snapped "ON" at once. On the other hand if the overload condition persists, the contacts remain open even if the handle is held at "ON." Consequently, this breaker offers the most flexible, yet positive type of circuit protection obtainable. It provides continual service with no maintenance; all parts are cadmium plated to prevent corrosion.

ELECTRONICS - December, 1950

TECHNICAL BOOKS

Oscilloscopes and Their Uses by John F. Rider and Seymour D. Uslan

ANSWERING THOUSANDS OF VITAL QUESTIONS COCERNING OSCILLOSCOPES

More than two years were devoted to the writing, checking, editing, and compiling of this cross section of knowledge on cathode-ray oscilloscopes, theory and applications, embracing all fields of activity.

It is the FIRST and ONLY book available to the engineering fraternity which offers complete coverage of the oscilloscope as a laboratory facility.

CONTENTS

CONTENTS 1-Introduction; 2-Principles of electrostatic Deflection and Fo-foreising; 3-Principles of Elec-tromagnetic Deflection and Fo-tromagnetic Deflection and Fo-Based and written to serve all fields, it is of the performagnetic Deflection and Fo-Based and written to perform and Fo-Based and Written to serve all fields and the performagnetic Deflection and Fo-

Planned and written to serve all fields, it is of inestimable value to persons in all forms of research; electrical, medical, industrial, geophysical, atomic-civilian and military-for visual analyses of all electric and magnetic phenomena, and many nonelectrical ac-tions such as vibration, pressure, rotary motion, heat, light etc. light, etc.

An outstanding feature of this book is a most useful An outstanding feature of this book is a most useful and comprehensive compilation of 1600 complex wave-form patterns listing the harmonics and the exact phase and amplitude of each. This information has NEVER BEFORE BEEN PUBLISHED! All 'scopes produced during the past 10 years, a total of more than 70 different models, are clearly described-with specifi-cations and schematic wiring diagrams.

Appendixes on the characteristics of Cathode-Ray Tubes, RMA Cathode-Ray Tube Basing Charts, and Cathode-Ray Photography, with an extensive Bibliogra-phy furnishing additional sources of related inforphy fu mation.

992 Pages • 500,000 Words • 3,000 Illustrations 22 Chapters • Completely Indexed • 8½ x 11" Size • Easy to Read • Cloth Bound.

Weighing 51/2 Ibs., this book is the most valuable, information-packed reference for engineers, geophysi-cists, technicians, manufacturers, teachers, libraries, Armed Forces schools and laboratories, college labora-tories, research laboratories, etc..... Only \$9.00

10-DAY MONEY-BACK GUARANTEE

Make this book PROVE its value! Unless you agree that it is everything we claim it to be—return the book, in good condition, for refund.

spot check system must be used. Keith Henney, who has had extensive experience in producing handbooks, has been assisted by 26 experts in the various phases. I am personally acquainted with more than half of them and know some of the others by reputation. In my opinion they are an unusually competent group of contributors. The editor has wisely omitted mathematical and mechanical tables. usually readily available, in order to include material of greater value, such as on waveguides. Despite the fact that emphasis is placed on practice rather than theory, a considerable amount of fundamental background theory is included, presumably to aid the engineer in using the practical material. Typical of this is the first chapter by Beverly Dudley on "Basis of Radio Communication" which is an excellent summary of the basic concepts, principles, and methods of radio engineering. Unfortunately. in paragraph 85, the implication seems to be that Kirchhoff's second law applies only to resistive circuits. and there appears to be some confusion regarding the particular solution of differential equations and the complementary function.

(continued)

NEW BOOKS

At the end of most of the chapters is an extensive list of references which will be of considerable value.

Chapter 2 on resistances would have been improved by emphasizing the merits of the Western Electric film resistors which are exceptionally good at high frequencies.

In Chapter 5, the curves shown in Fig. 19, 20, 21 do not correctly represent the phenomena and no mention is made of the effect upon the transient current of closing the circuit at different points on the electromotive force curve. The equation at the top of page 193 appears to be incorrect.

Chapter 6 provides an excellent discussion of electrical measurements; however, it should be noted that one side of equation 24 is inverted and equation 45 is dimensionally incorrect.

In Chapter 7 a notable omission is a discussion of regulating systems.

The format is quite satisfactory, the type legible, and the figures well done. Despite the fact that there

New Miniature Insulated Terminals

to help your miniaturization program

Featuring extremely small size combined with excellent dielectric properties, three new miniature insulated terminals are now available from CTC.

Designed to meet the requirements of the miniaturization programs now being carried out by manufacturers of electrical and electronic equipment, the terminals come in three lengths of dielectric and with voltage breakdown ratings up to 5800 volts. In addition. they have an extremely low capacitance to ground.

The X1980XA is the smallest terminal, having an over-all height of only three-eighths of an inch including lug. Insulators are grade L-5 ceramic, silicone impregnated for maximum resistance to moisture and fungi.

All terminals have hex-type mounting studs with 3/48 thread or .141" OD rivet style mounting. Mounting studs are cadmium plated, terminals are of bright-alloy plated brass.

Write for additional data.

December, 1950 - ELECTRONICS

made finer

Custom-made fine wire! Just specify the \odot electrical properties, flexibility, tensile strength, laying speed, uniformity and other characteristics you must have. Our Hudson and Winsted Divisions will meet and maintain your specifications.

EFOM drawn@ custom insulated@tequirements to your most exacting custom spooled Uniformity of product is guaranteed by our critical supervision which guards against variations in size, structure and electrical values. Yes, "Fine Wire Made Finer!" That is why Hudson-Winsted fine wires are the first choice of electrical, radio, television and electronic manufacturers whose products are noted for reliability and long life.

(Or Tell us your wire problems and requirements. Our research, engineering and production facilities are at your disposal. Let us quote!

BARE WIRES (HUDSON WIRE DIVISION)

Silver-plated

Phosphor-Bronze

Bronze

Silver

Monel

Lead Wire

Fuse Wire

Specialty

Wires

to your most exacting

Copper Brass Zinc Tinsel Nickel-Silven Codmium Oxygen-freg Copper

Tin

TEXTILE-COVERED WIRES

(WINSTED DIVISION) Nylon Cotton Celanese" Rayon Silk Fiberglas All available on bare or enameled wire, single or double covered.

INSULATED WIRES (WINSTED DIVISION)

MATERIALS Copper Aluminum Iron Copper-clad Steel

TYPES Instrument Tubing Litz Multiplied and Twisted COVERINGS Plain and Heavy Enamel Formvar EZsol (Liquid Nylon) Cement-coated Enamel

FINE WIRES (HUDSON & WINSTED DIVISIONS)

Specializing in fine wires, custom-drawn and insulated, to critical needs-size, material, insulation. Your consideration is called particularly to the finest wire sizes -Nos. 44 to 50.

hudson wire company

general offices: ossining, n. y. winsted division: winsted, conn.

Every Alnico permanent magnet made by Carboloy Company is subjected to many quality checks like this flux test to assure you of outstanding uniformity and performance.

Look to CARBOLOY CO., for the finest in special metals

THE SAME principles of rigid quality control are being applied to the production of Alnico permanent magnets and special metals that have made "Carboloy" the leader in the field of cemented carbides for over 22 years. You are always assured of outstanding uniformity and performance in any product that bears the Carboloy Company name.

HEVIMET

ALNICO

in a stage the

CARBIDES

You're Looking At The NEW KINNEY VACUUM PUMP MODEL CVD 3534-A Small Pump For Big Results! Here's What This Compound Vacuum Pump Gives You:

- Free air displacement of 4.9 cu. ft. per min. (139 liters per min.) . . . operates with $\frac{1}{3}$ HP motor.

McLeod gauge absolute pressure readings of 0.1 micron (0.0001 mm Hg.) or better.

"Flick-switch" readiness ... no hand starting or "warm-up" problems. Just flick the switch and Model 3534 is in operation.

The same consistent performance and long-lived efficiency that have made Kinney Pumps famous in all phases of low pressure processing.

See how Model CVD 3534 can save you money in power, processing time, and upkeep costs. Write for new Bulletin V50-A. Kinney Manufacturing Co., **3565** Washington St., Boston 30, Mass. Representatives in New York, Chicago, Cleveland, Houston, New Orleans, Philadelphia, Los Angeles, San Francisco, Seattle.

Foreign Representatives: General Engineering Co. (Radcliffe) Ltd., Station Works, Bury Road, Radcliffe, Lancashire, England ... Horrocks, Roxburgh Pty., Ltd., Melbourne, C. I. Australia ... W. S. Thomas & Taylor Pty., Ltd., Johannesburg, Union of South Africa ... Novelectric, Ltd., Zurich, Switzerland ... C.I.R.E., Piczza Cavour 25, Rome, Italy.

inne

MAKING OLD THINGS BETTER MAKING NEW THINGS POSSIBLE

KINNEY Vacuum Pumps

BALLANTINE BATTERY OPERATED ELECTRONIC VOLTMETER

Achieving a tenfold increase in sensitivity, higher input impedance, improved low frequency response and substantial reduction in size and weight.

0

2 megohms shunted by 8 mmfd on high ranges and 15 mmfd on low ranges.

FREQUENCY RANGE: 2 cycles to 150,000 cycles.

ACCURACY: 3%, except 5% below 5 cycles and above 100,000 cycles.

- Available multipliers increase the voltage range to 1,000 or 10,000 volts.
- Available precision shunt resistors permit the measurement of AC currents from 1 ampere down to onetenth of a microampere.
- Features the well-known Ballantine logarithmic voltage and uniform DB scales.
- Battery life over 100 hours.
- Can also be used as a flat pre-amplifier with a maximum gain of 60 DB. Because of the complete absence of AC hum, the amplifier section will be found extremely useful for improving the sensitivity of oscilloscopes.

MODEL 302B Size: 6%" x 7½" x 12%", Weight: 14 lbs. Price complete with cover and batteries: \$215.

For further information on this Voltmeter and the Ballantine Model 300 Voltmeter, Wide-Band Voltmeters, Peak to Peak Voltmeters and accessories such as Decade Amplifiers, Multipliers, and Precision Shunt Resistors, write for catalog.

NEW BOOKS

(continued)

N

are some errors in the book, it is a good reference for radio engineers. It contains a great deal of useful material. The majority of the chapters are exceptionally well done.—H. M. TURNER, Assoc. Prof. of Elec. Eng., Yale University.

Vacuum Equipment and Techniques

EDITED BY A. GUTHRIE AND R. K. WA-KERLING. National Nuclear Energy Series, Manhattan Project Technical Section, Division I, Vol. I. McGraw-Hill Book Co., New York, 1950, 264 pages, \$2.50.

A WELL-WRITTEN resume of work conducted by the Radiation Laboratory of the University of California in the field of high vacuum for the Manhattan District. These activities involved the testing and evaluation of pumps and gages designed for the electromagnetic separation process plant at Oak Ridge and the development of fundamental data and engineering concepts that were useful in the design of high-vacuum systems.

An excellent treatment is given of the fundamental theory of gas flow in vacuum systems. A complete treatment of problems of impedance, conductance and pumping speed is included together with both practical equations and tables for computing flow through pipes and various forms of apertures.

A description of mechanical pumps, diffusion pumps, traps and baffles includes data actually obtained as a result of the testing of representative commercial pumps and oils developed for the Y-12 diffusion plant. This data, although quite complete and indicative of problems to be encountered, in general is rather restricted to the specific 32-inch diffusion pumps studied.

The chapter on vacuum gages ionization, Philips, Pirani, Mc-Leod, Alphatron and others—is quite complete and includes data with respect to the theory and limitations of each type of unit.

The discussion of vacuum materials and equipment is a considerable improvement over earlier treatments of this subject. The suggestions, such as methods of construction for the design of vacuum-tight systems, are particularly
PHOTOGRAPHY

helps adjust an amplifier

A perfect square wave, photographed by engineers of Allen B. Du-Mont Laboratories, Inc., at the output of a highfrequency amplifier. This is the result of repeated adjustment and readjustment of a compensated attenuator and peaking coils.

Improper adjustment results in poor low-frequency response. Note tilt in top and bottom flats. Percentage of tilt is a measure of low-frequency response and low-frequency phase shift.

Effect of "under peaking" of high-frequency compensating inductances. Note that rise time of square wave has been distorted so that the leading edge is rounded instead of sharp.

>

"Over peaking" with extremely fast rise. This produces "ringing" in the leading edge of the square wave.

Far subtler differences than shown here can have large effects on performance.

How can you remember the all-important details of wave form? How can you show improvements achieved in the course of design changes and adjustments? How can you prove that a circuit long since gone from your bench behaved in a certain way?

With photography, of course. It's simple, it's indisputable, and it's permanent!

ONE FILM FOR ALL OSCILLOGRAPHY

To photograph cathode-ray traces from almost any kind of screen—whether repetitive patterns or the fastest transients—just load your camera with 35mm. Kodak Linagraph Pan Film. Your Kodak Industrial Dealer carries it in 100-foot rolls and 36-exposure cassettes.

EASTMAN KODAK COMPANY Industrial Photographic Division

Rochester 4, N.Y.

INSTRUMENT RECORDING ... a function of photography

AMERICAN TELEVISION PICTURE TUBES REFLECT THE QUALITY OF AMERICA'S FINEST RECEIVERS

The history of the contributions of American Television engineers reads like the history of Television itself.

Our engineers are credited with hundreds of "Firsts"—the first amplifier tube, the first telecasting, the first interlaced scanning and, more recently, the first to develop the "Eyesaver" principle for picture screens—the high contrast, non-halation screen that has been widely adopted by the industry.

American Television is a "House of Fundamentals." Our "knowhow" is constantly devoted to the further development of Television in all its phases.

The American Television Picture Tube is a great product of a great company. Make it your first choice—always!

THE STORY OF AMERICAN TELEVISION IS THE HISTORY OF TELEVISION

December, 1950 - ELECTRONICS

AMERICAN TELEVISION, INC.

ial connectors, "Teflon" helps eliminate distortions in the circuit.

5 reasons why **DUPONT "TEFLON**"* gives unequaled efficiency in high-frequency transmission

For high-frequency, high-voltage, hightemperature wires, the heat-resistance of "Teflon" makes it a superior insulator.

Coaxial spacers malded of "Tefton" can boost transmissionline efficiency more than 10%.

In coaxial cables, "Teflon" is resilient and flexible and has high dielectric strength and low loss factor.

"TEFLON" is supplied by Du Pont in molding powders, tape, and water dispersions. We will gladly suggest molders or fabricators who can supply finished parts of "Teflon." Write today for more information. Our technical staff will be glad to help you. E. I. du Pont de Nemours & Co., (Inc.) Polychemicals Department, Sales Offices: 350 Fifth Ave., New York 1, N. Y.; 7 S. Dearborn St., Chicago 3, Ill.; 845 E. 60th Street, Los Angeles 1, California. **DU PONT'S NEW "TEFLON"** tetrafluoroethylene resin is proving to be an excellent insulation for highfrequency wires and cables, coaxial transmission lines for FM radio and TV, and coaxial connectors. "Teflon" offers all these advantages:

() Low dielectric constant — The dielectric constant of "Teflon" (2.0) is less than half that of ceramic! This new Du Pont plastic practically eliminates reflections and distortions in a transmission line when used as insulation in coaxial cables and connectors.

2 Low loss factor—The loss factor of "Tetlon" is less than 0.0005 over the entire range of frequencies measured to date. Almost no power is lost through transmission-line spacers made of "Tetlon."

Heat-resistant — The heat-resistance of "Teflon" is higher than that of any other thermoplastic (withstands up to 500°F.). And its electrical properties show little change up to 400°F.

Tough and resilient—"Tethon" withstands abuse—won't crack if dropped. It is resilient and flexible even at extremely low temperatures. Resists damage from vibration or bending when used as insulation on wires and cables.

5 Zero moisture-absorption — "Teflon" shows a moisture-absorption of 0.00% by A.S.T.M. D570-42. Hence its electrical properties are unaffected even after prolonged soaking in water.

*REG. U. S. PAT. OFF

<text>

For INDUSTRY · RESEARCH · PRODUCTION · SERVICE You can get itat MILO!

FAIR DISTRIBUTION FOR ALL is the MILO Watchword!

Yes, in these days of war and re-armament there are plenty af shortages in electronic components and equipment. But **Milo comes through for you!** And here's why:

Because Milo believes in **just and equitable distribution to all** its customers, whether old or new. This is the fair-play creed of service

> ADVANCE ELECTRIC AEROVOX ALPHA WIRE AMERICAN TELEVISION & RADIO BELDEN • BLILEY DAVID BOGEN BUD • BURGESS BUSSMANN CLAROSTAT CONDENSER PRODUCTS CORNELL-DUBILIER CONTINENTAL CARBON DEJUR-AMSCO DIALCO • DRAKE EITEL-McCULLOUGH

MLO

CATALOG

ERIE GENERAL CEMENT GENERAL ELECTRIC GUARDIAN ELECTRIC HAMMARLUND HICKOK · HYTRON INSULINE · IRC E. F. JOHNSON KESTER KINGS FLECTRONICS LITTELFUSE 1AMES_MILLEN NATIONAL COMPANY OHMITE PAR-METAL POTTER & BROMFIELD

sticks to it, scarcities or na. Because Milo's great warehouse holds **com-**

and caaperation that built Mila-and Milo

plete stocks of all the best lines. Just look at this partial list of the more than 150 first-rate manufacturers whose products are available now from Mila:

> PRECISION APPARATUS PREMAX SANGAMO SHALLCROSS SHURE BROS. SIMPSON ELECTRIC SOLA ELECTRIC SPRAGUE STANDARD TRANSFORMER SUPERIOR ELECTRIC SYLVANIA • TUNG-SOL TRIPLETT UNGAR ELECTRIC WARD LEONARD WESTON

Milo's newest catalag, jam-packed with 1053 pages of descriptions, specifications, illustrations and prices, is the key to the latest electronics products you want. Write for it today—on your campany letterhead, please, stating your position, since it is limited to responsible officials only.

MILO doesn't just talk cooperation. MILO <u>GIVES</u> YOU COOPERATION!

Write for

your

MILO

Catalog

NEW BOOKS

useful for laboratory workers who operate in the range 10^{-4} to 1.0 mm.

Problems of leak detection are given in detail, including the theory of flow through small capillaries, the general technique of leak hunting, and the detailed operating characteristics of the helium leak detector.

This book will be found useful to any worker in the high-vacuum field. It represents a careful synopsis of the fine work done at the University of California during the war. These activities were restricted to studies of vacuum problems relating to the Manhattan District, and as might be expected, no attempt has been made to cover the broader industrial problems of high vacuum nor to include discussions of more recent industrial developments in the field.-RICHARD S. MORSE, National Research Corporation

Electronics in Engineering

By W. Ryland Hill. McGraw-Hill Book Co., Inc., New York, 1949, 274 pages, \$3.50.

ALMOST all phases of engineering are in some way concerned with electronics today. Most colleges and universities are incorporating electrical engineering courses in their mechanical, chemical and other nonelectrical engineering curricula, and this book provides an excellent text for the electronics portion of any such course.

The general pattern of the book has been tried before, and met with varying degrees of success and failure. Hill seems to have hit the right combination throughout. No attempt has been made at completeness, but no sacrifice in clarity and understanding has resulted from his conciseness.

As a typical example of the thorough treatment of various subjects, a two-stage audio amplifier circuit is presented at the end of a chapter entitled "Practical Amplifier Circuits". The circuit shown is just what the author says it is a practical amplifier circuit. All component values are given, and on the facing page, a part-by-part explanation of the function of each

BOLOMETER BRIDGE NEWG

for POWER Measurements between 5 and 4,000 Mc

Simple to Use • Accurate • Adaptable to a Wide Variety of Bolometer Elements

For either SUBSTITUTION or DIRECT-READING MEASUREMENTS

Substitution Method Accuracies better than $\pm 10\%$ · Direct-Reading Accuracies better than $\pm 20\%$ Bolometer Resistances between 25 and 400 Ohms, and Bolometer Currents to 100 ma can be accommodated.

Because measurements are made AFTER final bal-

ance, and after r-f power is removed, errors due to changes in r-f power level while making readings are eliminated, and accuracies are considerably improved.

TYPICAL MEASUREMENTS

Power Output of Oscillators · Loss Measurements · Static Characteristics of Bolometers Calibration of Voltmeters and Bolometers

Four G-R Bolometer Elements are available, with ranges and accuracies between 0 to 6 mw \pm (10%+0.05 mw) and 0 to 500 mw \pm (10%+3mw). Units of other manufacture can be used with this bridge if the resistance ranges and bolo-

meter currents of the bridge are not exceeded. Expensive and specialized accessories are not required. The standard and generally available G-R Type 874 Coaxial Elements are ideal for use as tuning units and transformers.

TYPE 1651-A BOLOMETER BRIDGE ... \$325.00 - WRITE FOR COMPLETE INFORMATION

ELECTRONICS - December, 1950

These Three Allied power relays

FROM SINGLE-POLE TO FOUR-POLE

TYPIFY ALLIED VERSATILITY

3-POLE & 4-POLE "PO" TYPE RELAY

This medium power relay is supplied with contact arrangements up to 4-pole double-throw. Standard silver contacts rated at 15 amperes for 24 volts DC or 110 volts AC non-inductive. Coil rating 2.5 watts up to 112 volts DC and 10.5 volt-amperes up to 230 volts AC. Dimensions: 3pole 2-1/4" x 1-7/8" x 1-5/8". 4-pole 2-1/4" x 1-7/8" x 2-3/16".

> Like all Allied Relays, types "AS," "BO" and "PO" may be had hermetically sealed, with choice of standard octal plug-in base or solder-type terminals.

For complete information on these and other Allied Relays, write for latest Bulletin.

SINGLE-POLE "AS" TYPE RELAY

This small, light-weight power relay is supplied with single or double-throw contacts. Standard silver contacts rated at 5 amperes for 24 volts DC or 110 volts AC non-inductive. Coil rating 1 watt up to 95 volts DC and 3.5 volt-amperes up to 230 volts AC. Dimensions: 1-3/8" x 1-5/8" x 15/16".

DOUBLE-POLE "BO" TYPE RELAY

This all-purpose power relay is supplied with single or double-throw contacts. Molded insulation throughout, Standard silver contacts rated at 15 amperes for 24 volts DC or 110 volts AC non-inductive. Coil rating of 2.5 watts up to 112 volts DC and 4.5 volt-amperes up to 250 volts AC. Dimensions: 1-7/8" x 1-13/32" x 1-5/8".

NEW RELAY GUIDE

This new folder shows 24 small, compact Allied Relays with a carefully detailed table of characteristics and specifications. Write for YOUR free capy today.

ALLIED CONTROL COMPANY, INC.

2 EAST END AVENUE, NEW YORK 21, NEW YORK

December, 1950 — ELECTRONICS

1

Adjustable...Regulated A. C. Voltage Supply... with Harmonic Filter

In the new SOLAVOLTS you have available an adjustable source of constant A.C. voltage of undistorted wave shape. They provide all of the voltage stabilizing characteristics of the standard SOLA Constant Voltage Transformer ... $\pm 1\%$ regulation for line input changes from 95-125 volts... with less than 3% total harmonic distortion of the output voltage wave.

Two regulated outputs: fixed 115 volts and adjustable 0-130 volts. Regulation is automatic; maximum response time 1.5 cycles. Except for the rotor of the autotransformer there are no moving parts, no manual adjustments and no tubes or other expendable parts.

> Write for Bulletin D-CVL 140 for Full Electrical and Mechanical Specifications and Prices

Transformers for Constant Voltage * Fluorescent Lighting * Cold Cathode Lighting * Airport Lighting * Series Lighting * Luminous Tube Signs Of Burner Ignition + X-Ray * Power * Controls * Signal Systems * etc. * SOLA ELECTRIC COMPANY, 4633 W. 16th Street, Chicago 50, Illinois

) LA

(continued)

component is presented. Nothing is taken for granted. The mathematical approach is not avoided, but it is usually accompanied by a graphical analysis and an example computation employing typical circuit values.—J.D.F.

Electromagnetic Fields, Theory and Applications, Volume I—Mapping of Fields

By ERNST WEBER. John Wiley and Sons, Inc., New York, 1950, \$10.00.

THIS BOOK presents a comprehensive account of the theory of mapping static electric and magnetic fields, with numerous examples of the application of the basic theory to engineering problems. Perhaps the most noteworthy feature is its method of presentation of the subject material. Rather than divide the material into the two usual broad categories, electrostatics and magnetostatics, the author has chosen to establish all of the basic physical relationships first, then show their use in mapping actual field distributions. Worthy of praise here is the manner in which the fundamental physical differences between electric fields and magnetic fields are carefully established.

Two chapters deal with experimental and graphical methods used to obtain the distribution of more complex fields. Here is an excellent treatment of the method of electric and magnetic images.

The last two chapters of the book lead the reader into an extensive account of the advanced analytic solution of complex field problems. The methods of conjugate functions and conformal mapping, utilizing the theory of functions of a complex variable for solution of two-dimensional problems, are described. The mathematics of threedimensional potential distribution is formulated, with an extensive discussion of orthogonal coordinate systems.

Appendices include complete lists of letter symbols, quantities, and units used, together with reviews of vector analysis, Bessel functions, Legendre functions, and an excellent general bibliography.

The book has been excellently

December, 1950 - ELECTRONICS

Bay Filter Manufacts

- HIGH-PASS FILTERS
- . LOW-PASS FILTERS
- BAND-PASS FILTERS
- BAND SUPPRESSION OR
 - **REJECTION FILTERS**

For RF or audio filtering and line RF suppression ... for harmonic attenuation and teletype communications ... for single side band and telemetering equipment—these and many more are the uses to which B & W Filters are being applied daily. Time-tested and performance-proved, each of the filters listed above offers you a combination of accuracy and ruggedness that can't be beat in commercial equipment, military equipment ... ANY EQUIPMENT.

That's why if your equipment requires filters real filters built for day-in day-out dependability — B & W is the perfect answer. For details, write today to Barker & Williamson, Dept. EL-120.

*Manufacts = Manufacturing facts

it's magic!

and that magical word in today's lower-cost higher-quality tv-radio specs is

CROLO

"Q" is of the order of 250 and up, as against 80 for average small loop mounted inside receiver. The Croloy Radio Rod fits anywhere — only 8" long by 1/2" diameter, or smaller. Pivoted and rotated for additional selectivity, or mounted vertically for omnidirectional reception. On the production line, the magnetic antenna can be mounted on chassis for complete assembly and test, before placement in cabinet.

Molded in widest ranges of shapes and sizes, Croloy provides other magical touches. Croloy deflection yokes expand TV-tube deflection angles without corresponding voltage increases. Croloy cores slash TV transformer bulk and cost. Croloy slug tuners and I. F. coils reduce cost and raise gain. Croloy components cut TV cabinet sizes and prices. Try Croloy: it's magic! Let us collaborate on your TV, radio or electronic problems and needs. Samples, engineering service, and quotations.

HENRY L. CROWLEY & COMPANY, INC. Pioneering POWERED-IRON and STEATITE products 1 Central Avenue West Orange, N. J.

Frequency Standards

GUARANTEED ACCURACY 1 part in 100,000 (.001%)

American Time Products, Inc., 580 Fifth Ave., New York 19, N. Y. Gentlemen:

Please send descriptive folder, No. 212

State....

Name

Company.....

Address

City.....

Uses

Time bases, rate indicators, clock systems, chronographs, geo-physical prospecting, control devices and for running small synchronous motors.

<u>Jeatures</u>

- 1. Bimetallic, temperature-compensated fork, no heating or heat-up time is required.
- 2. Fork is hermetically sealed, no barometric effects on frequency.
- 3. Precision type, non-ageing, low coefficient resistors used where advantageous.
- 4. Non-linear negative feedback for constant amplitude control.
- 5. No multi-vibrators used.
- 6. Synchronous clock simplifies checking with time signal.

Specifications

Accuracy—1 part in 100,000 (.001%).

Temperature coefficient—1 part in 1,000,000 per degree centigrade (or better).

Outputs-

- 1. 60 cycles, sine wave, 0-110 volts at 0 to 10 watts (adjustable).
- 2. 120 cycle pulses, 30 volts negative.
- 3. 240 cycle pulses, 30 volts positive and negative. Pulse duration, 100 micro-seconds.

product of

WHY A LEADING TELEVISION MANUFACTURER SPECIFIES CORNING METALLIZED GLASS INDUCTANCES

In high frequency tuning applications, stability is extremely important, both for ease of alignment and customer satisfaction. That is one of the reasons why the Stromberg-Carlson Company specifies Corning Metallized Glass Inductances. With Corning Inductances drift is negligible even under unusually variable ambient temperatures. Why? Because the integral contact of the fired-on metallizing with the dimensionally stable glass coil forms results in high temperature stability. High Q is inherent.

The inductance characteristics of the coils cannot be changed by rough handling or vibration. This is because the integral contact between the fired-on metallizing and the glass coil form eliminates voids between conductor and form. When used with powdered iron cores, the accuracy and rigidity of the

ELECTRONIC SALES DEPARTMENT

glass insures stable, noiseless tuning.

Corning Inductances of any given type can be accurately duplicated in quantity on a production basis. That means no assembly time wasted on coil adjustments. They are easily installed by conventional methods and can be supplied with terminals or solder spots as required.

Design versatility is another characteristic of Corning Inductances. They can be manufactured to the most exacting specifications in uniform, variable or double pitch windings. Fixed tuned, permeability tuned or permeability tuned inductance-trimmer combinations are available with standard cores and fittings. Let Corning help you increase performance at lower costs. Our engineers will be glad to discuss your inductance problems with you.

Corning means research in Glass

CORNING, N. Y.

METALLIZED GLASSWARE: INDUCTANCES · CAPACITORS · BUSHINGS · ALSO A COMPLETE LINE OF TELEVISION TUBE BLANKS

ELECTRONICS - December, 1950

in new equipment, why they meet the express requirements of today's most-used tubes and circuits. Here are the "inside" facts of CHICAGO "Sealed-in-Steel" design:

I. Drawn steel cases for "steel wall" protection against moisture, for unsur-passed strength and rigidity, for convenent mounting, and for compact, streamlined appearance.

2. Uniformly-wound precise coil structures, for cool operation and superior electrostatic shielding in power units, and minimum leakage with optimum coupling in audio units.

3. Core of high-grade, non-aging silicon steel brought to high efficiency by scientific heat-treating in CHICAGO'S own annealing ovens.

4. Core and coil vacuum-impregnated with varnish; alternating vacuum and pressure, combined with heat, removes all moisture. Final high-temperature baking achieves a perfectly impregnated coil and core locked against vibration.

5. Special, moisture-resistant compound fills all internal free space. Compound prevents corrosion and helps maintain cool operation. Heat conduction is faster than in conventional mountings where coil and core are surrounded by air.

6. Units are checked by quality controls throughout manufacture; inspected for materials and workmanship; tested electrically at various stages; rigid concluding tests insure efficient performance and long, dependable operating life.

Available in 4 Constructions to Meet Most Requirements

C-Type. With 10" color-coded stripped and tinned leads brought out leads brought out through fibre board base cover. Flangemounted unit

S-Type. Steel base cover fitted with phenolic terminal board. Convenient numbered solder lug terminals. Flange-mounted unit.

B-Type. Steel base cover soldered into case. Phenolic terminal board with solid steel pin ter-minals. Studmounted unit.

MEETS H-Type. Steel base cover deep-seal soldered into case. **JAN-T-27** Terminals hermeti-SPECS cally sealed. Cerami bushings. Stud mounted unit.

SEND FOR "NEW EQUIPMENT TRANSFORMER" CATALOG

You'll want the full details on CHICAGO'S New Equipment Line. Lists Sealed-in-Steel units for all purposes: Power, Bias, Filament, Filter, Plate, Reactor, Audio (in 3 frequency ranges), JAN-T-27, Modulation, etc. Write for your Free catalog today—or get a copy from your distributor.

NEW BOOKS

(continued)

written, is extremely well organized, and is thorough in its coverage of the subject material. It is intended primarily for use as a textbook in graduate courses in electromagnetic theory. It provides an ideal choice for such use. Numerous illustrative problems follow each chapter, and throughout the book the rationalized MKS system of units is utilized. The book is recommended for inclusion in the reference library of every practicing radio engineer and electronic physicist. It is believed that the readers of this volume will eagerly await publication of the second volume in this series covering the dynamic electromagnetic field.-JOSEPH W. KEARNEY, Airborne Instruments Laboratory

Voltage Stabilizers

BY F. A. BENSON, Electronic Engineering, 28 Essex St., Strand, London, 1950, 125 pages, 12/6.

A CONCISE monograph dealing entirely with the stabilization or regulation of electrical voltages, this book will be an extremely handy reference for an engineer or technician. The author has compiled circuits and statistics from both British and American periodicals and presents methods for applying different degrees of regulation to a wide range of voltages.

The material is divided into four main categories: stabilizers employing magnetic saturation devices, glow-discharge tubes, thermionic tubes and a catch-all chapter describing specialized stabilizers, such as those for use with highvoltage r-f supplies, various bridgetype systems and so on. In every case, the treatment is thorough and all pertinent information is presented.

Some engineers might rebel against one particular portion of the book. In describing the design of VR-tube circuits, the author goes slightly off the deep end in applying formulas, where plain and simple common-sense engineering is really needed.

An extensive table showing different types of regulating tubes is presented. This reviewer was interested and amazed to find that glow-discharge tubes are available new instruments for

Juality Control

and electronic research

DEVIATION TEST BRIDGE MODEL BL1502 AND BL1507

The Deviation Test Bridge indicates on a large illuminated scale the percentage deviation of a test component from a standard component. The bridge is particularly suited for checking resistors, capacitors and inductors in industrial plants, but has proved useful in many special measurements based on comparison between two impedances. Up to 4000 resistors or 2000 transformers may be checked per hour.

SPECIFICATIONS

Deviation Measurement Ranges: Model BL 1502: Resis-tance 10 ohm-10 megohm, capacitance 50 micromicro-farad-10 microfarad, inductance 2 millihenry-100 Henry. Frequency: 1000 cps. Model BL 1507: Capacitance 25 micromicrofarads-0.1 microfarads inductance 100 microhester 0.2 Micro

microfarads, inductance 100 microhenry-0.3 Henry, resistance 20-100,000 ohms.

Frequency: 50 kilocycles per second.

Instrument: Large moving-coil instrument to permit easy readings, and illuminated scale with zero point in the center. The instrument is safeguarded against overloads. Full scale deflection at 7% and 25%.

Accuracy: Comparison better than 0.1% at zero point, and the tolerance accuracy better than 5% at full scale deflection. No sensitivity to hum voltages.

Power Supply: 115 volts alternating current 40-120 cps. 40 watts.

Tubes: Three 6AU6, six V6GT, six 4 and one OA2. For Model BL 1507 additional 6AL5.

Dimensions: 13" (height) x 11" (width) x 8" (depth excluding dials). Weight: 15 lbs.

HETERODYNE VOLTMETER MODEL BL 2002

The Heterodyne Voltmeter Model BL 2002 is a selective tube voltmeter for the measurement of alternating current voltages in the high frequency range. The instrument is particularly designed for use in radio laboratories for measurements on radio receivers, Radar IFcircuits, for the control of signal generators, co-axial carrier frequency systems, etc. The high sensitivity makes the instrument very suitable for measuring small alternating current voltages, for example from aerials. The instrument has a meter for modulation measurements.

SPECIFICATIONS

Frequency Range: 20 kilocycles per second-27 megacycles per second in 4 ranges.

Voltage Range: Full scale deflection for 10-100-1000 microvolts, 10 and 100 millivolts, and for and 10 volts.

Input Impedance: 5 megohms in parallel with 12 micromicrofarads. With attenuator: Several thousands megohms in parallel with 3 micromicrofarads. Bandwidth: -3 db at ± 3.5 kilocycles per second, $-10 \text{ db at} \pm 6 \text{ kilocycles per second, } 40 \text{ db at} \pm 13 \text{ kilocycles per second, } -80 \text{ db at} \pm 25 \text{ kilocycles}$ per second. Intermediate frequency is 1650 kilocycles per second.

Frequency Accuracy: About $2\% \pm 2$ kilocycles per second.

Voltage Accuracy: \pm 0.5 db in the broadcast frequency range and \pm 1 db in the short-wave range. Reference Voltage: A built-in oscillator delivering exactly 1 millivolt, 100 kilocycles per second. Modulation Meter: Two ranges from 0-30% and from 0 -100%

Audible Control: Built-in loudspeaker for monitoring the input.

Tubes: Three 6J6, three 6AU6, two 6BA6, 6AL5, 7S7, six 4 and one OA2.

Power Supply: 115 volts alternating current, 40 -120 cps, 65 watts.

Dimensions: 16" (height) x 20" (width) x 9" (depth). Weight: 42 lbs.

Write for complete details.

Outside USA-Brüel & Kjaer, Naerum, Denmark

ELECTRONICS — December, 1950

NEW RMC SPECIAL PURPOSE CONDENSERS FOR YOUR SPECIAL PURPOSE PROBLEMS!

RMC Type 2K DISCAP

Negative 750TC – available in capacities between 25-75 MMF. in tolerances of $\pm 5\%$, $\pm 10\%$, $\pm 20\%$. Tested at 4000 V.D.C. Developed especially for deflection yoke applications.

RMC Type 3K DISCAP

Rated at 3000 Volts Negative 1400TC – available in capacities between 75-180 MMF. in tolerances of $\pm 5\%$, $\pm 10\%$, $\pm 20\%$. Tested at 6000 V.D.C.

Rated at 6000 Volts

Negative 750TC – available in capacities between 10-40 MMF. in tolerances of $\pm 5\%$, $\pm 10\%$, $\pm 20\%$. Tested at 12000 V.D.C. Designed for use as a damper tube by-pass.

RMC Type B-GMV and Type C Temperature Compensating DISCAPS

RMC DISCAPS are approved by leading makers of TV sets, tuners and high frequency electronic equipment. Type B-GMV DISCAPS are available in the following capacities: .001, .0015, .002, .005, 2x.001,

2x.0015, 2x.002, 2x.004, 2x.005 MFD. Type C temperature compensating DISCAPS are available in a range between NPO and N2200TC and in capacities from 5 to 150 MMF.

Every DISCAP is 100% Tested for Capacity, Leakage Resistance and Breakdown

3/4"

SEND FOR SAMPLES AND TECHNICAL DATA

RADIO MATERIALS CORPORATION GENERAL OFFICE: 1708 Belmont Ave., Chicago 13, Ill.

FACTORIES AT CHICAGO, ILL. AND ATTICA, IND.

Two RMC Plants Devoted Exclusively to Ceramic Condensers

December, 1950 — ELECTRONICS

Single Truarc Ring Slashes Unit Cost 44% ...eliminates 3 operations and 5 parts

Redesign with one Waldes Truarc Ring cuts cost of wheel used in Har-Vey Rolling Door Hardware (for residential doors) from $26.1 \notin$ to $14.5 \notin$ — a 44% saving for Metal Products Corporation, Miami. Use of Truarc cuts manufacturing time 76%. Eliminates 5 separate parts, 3 press operations. And gives a product that stands up better in use!

Redesign with Truarc Rings and you too will cut costs. Wherever you use machined shoulders, bolts, screws, nuts, cotter pins, snap rings, there's a Truarc Ring that does a better job of holding parts together. Truarc Rings are precision engineered. They make assembly and disassembly quick and easy.

See what Truarc Rings can do toward cutting overall costs for you. Send your blueprints to Waldes Truarc engineers for individual attention, without obligation.

places washer, 3 rivets, separate spacer.

SINGLE TRUARC RING LOCKS BUSHING-STAYS SECURE. Self-locking ring (type 5105) needs no groove. Re-

New Wav

		saving
eliminates drilling 3 rivet holes .	•	\$.0042
eliminates riveting washer		.0111
eliminates punching washer		.00033
eliminates washer, spacer, rivets	•	.02236
cuts cost of inserting bushing .		.00037
cuts cost of inspection		<mark>.0032</mark>
cuts cost of wheel, bushing, rivet	•	.0797
		.12126
less—cost of Truarc Ring		.00528
TOTAL SAVING PER UNIT 44%		\$.11598

Waldes Kohinoor, Ir Long Island Cit	nc., 47-16 Auste y 1, N. Y.	I Place	E-122
Please send Dat Self-Locking Rin	a Book on Wal g Types.	des Truarc	
Name			
Title			
Company			
Business Address			

> The U9S is one of the complete line of Turner units for public address, recording, amateur and commercial broadcast, and special applications. For "Sound Performance" you can rely on Turner.

THE TURNER COMPANY

905 17th Street N. E. Cedar Rapids, Iowa IN CANADA: Canadian Marconi Company, Toronto, Ont., and Branches EXPORT: Ad. Auriema, Inc., 89 Broad Street, New York 4, N.Y.

NEW BOOKS

(continued)

for regulating practically any voltage between 50 and 160 volts. This table gives type numbers and complete characteristics for VR tubes whose operating voltages are as follows: 50, 55, 60-63, 70, 75, 83-87, 90-110, 85, 97.5, 100, 105, 115-120, 120, 150, and 160. A bibliography with 292 entries, all referring to voltage-regulating circuits, is presented for further reading.—J.D.F.

THUMBNAIL REVIEWS

ELECTROMECHANICAL AND ELEC-TROACOUSTICAL ANALOGIES. By Bent Gehlshoj. Available from Scandinavian Book Service, 620 W. 158, New York, 1947, 142 pages, \$2.50. Use of admittance and impedance, whichever seems more appropriate in each case, to compute performance in mechanical and acoustical systems as well as in electromechanical transducers such as the moving-coil transducer, moving-armature transducer, capacitor transducer, piezoelectric transducer and piezoelectric resonator. Includes comprehensive bibliography.

ELECTRONIC ENGINEERING MASTER INDEX 1949. Electronics Research Pub. Co., 480 Canal, New York, 1950, 296 pages, \$17.50. Subject index to contents of almost 400 electronic and allied engineering publications issued in 1949, including some 4,000 patents. Total number of entries is over 12,000.

TV INSTALLATION TECHNIQUES. By Samuel L. Marshall. John F. Rider Publisher, Inc., New York, 1950, 336 pages, \$3.60. Written for the television receiver installer, whether serviceman, experimenter or engineer. Chapters cover: nature of television; radio propagation; antennas; transmission lines and special antenna systems; materials and methods used in installations; problems arising in television installations; receiver adjustment and service in the home; municipal regulations. Summaries and questions follow each chapter. Includes antenna design equations and procedures, calculation of forces on mast and antenna due to wind pressure and ice loading, and design of wave traps and filters for tvi.

ELEMENTS AND PRACTICE OF SOUND RECORDING. Audio Engineering Society, care of F. Sumner Hall, 153 W. 33, New York, 117 pages, \$3.00. Compilation of lecture course notes, with illustrations, on 32 lectures presented by the Society in 1949 and 1950. Six lectures deal with disc recording, six with magnetic recording and ten with film recording, with the remainder covering other aspects of recording systems.

0

HIGH-FIDELITY TECHNIQUES. By James R. Langham. Gernsback Library Book No. 42. Radcraft Publications, New York, 1950, 112 pages, \$1.00. Practical and usable engineering and construction data, interspersed with human-interest comments and anecdotes with which audio enthusiasts will heartily sympathize. The seven chapters cover: distortion; speakers and baffles; power amplifier; amplifier design; power supplies; phonographs; some last words about high fidelity.

A.S.T.M. STANDARDS ON GLASS AND GLASS PRODUCTS. American Society for Testing Materials, 1916 Race St., Philadelphia, Pa., second edition, 1950, 116 pages, \$1.50. Includes specifications for glass spool insulators and pin-type lime-glass insulators, with a method of testing these products. Woven glass tapes, tubular sleeving and braids are also covered.

December, 1950 --- ELECTRONICS

t's a fact that

Some AlSiMag precision made parts are so tiny that several thousand will go in a thimble. (For illustrative purpose, larger parts are shown here.) Certain designs in AlSiMag can be supplied with open end POLISHED SLOTS as narrow as .010."

 AlSiMag rods are regularly and economically produced within TOL-ERANCES of .0001".

 AlSiMag plates and discs can be produced FLAT within microinches.

Some AlSiMag compositions have such great resistance to HEAT SHOCK that they are used in the control of molten metals.

AlSiMag is one of the best ELECTRICAL INSULATORS at high temperatures and high frequencies.

AlSiMag has such hardness and RESISTANCE TO ABRASION that it is used for extrusion and drawing dies and also for wire recorder and thread guides.

AlSiMag tubes have been successfully produced with holes almost as small as a human hair, with wall sections of about the same thickness.

• AlSiMag Custom Made Technical Ceramics are available in a wide variety of physical characteristics. AlSiMag parts come to you ready for your assembly line. They are uniform, dimensionally accurate and economically fabricated in quantity. American Lava Corporation is known throughout the industry for its leadership in engineering and research and for its ability to produce ceramics that comply with specifications and that do the job as planned. Engineering cooperation and handmode test samples are available. Send us your problems.

AMERICAN LAVA CORPORATION

YEAR OF CERAMIC LEADERSHIP CHATTANOOGA 5, TENNESSEE

OFFICES: METROPOLITAN AREA: 671 Broad St., Newark, N. J., Mitchell 2:8159 • CHICAGO, 228 North LoSalle St., Central 6:1721 PHILADELPHIA, 1649 North Broad St., Stevenson 4-2823 • LOS ANGELES, 232 South Hill St., Mutual 9076 NEW ENGLAND, 38-B Brattle St., Cambridge, Mass., Kirkland 7:4498 • ST. LOUIS, 1123 Washington Ave., Garfield 4959

COPPER ALLOY BULLETIN

REPORTING NEWS AND TECHNICAL DEVELOPMENTS OF COPPER AND COPPER-BASE ALLOYS

Prepared Each Month by BRIDGEPORT BRASS COMPANY "Bridgeport" Headquarters for BRASS, BRONZE and COPPER

Component parts of air control unit used in such instruments as a pyrometer: 1. Control unit; 2. Covers, nozzle, mechanical motion parts removed; 3. Outer bellows removed; 4. Forged body; 5. Cover shell; 6. Inner bellows; 7. Bellows rod; 8. Valve sealing bellows; 9. Needle-valve assembly; 10. Machined washers and small parts; 11. Spring lock washers; 12. Copper tubes. Courtesy Brown Instruments Division, Minneapolis-Honeywell Regulator Company, Phila., Pa.

Copper Alloys Insure Long Life, Reliability of Air Control Unit

Varied atmospheres in oil refineries, chemical plants, heat treating rooms, pumping stations, etc., necessitate the use in sensitive control instruments of alloys capable of withstanding a wide range of corrosive conditions.

From a functional standpoint, the precision needed in various components of instruments requires alloys which can be speedily machined to close tolerances and also drawn into deep cups and shells.

The illustrated air control unit, which is employed in the Brown line of controllers, uses a wide range of copper alloys.

Penetrating Liquid Used

The body of the unit (No. 4) is a brass forging. Accurately machined diameters with clean facings are necessary in this part to accommodate sealing units. Since a hydrocarbon of low viscosity is used, even microscopic porosity would cause leakage. The forging is accurate enough dimensionally so that much machining is eliminated and at the same time no problems in holding the piece are encountered. Forging alloys containing lead are exceptionally easy to machine.

The two end covers (No. 5) are drawn shells of cartridge brass (70% copper and 30% zinc). This alloy has high ductility and is excellent for deep drawing.

Fatigue Resistance Desired

Phosphor bronze grade A (95% copper and 5% tin) was selected for the bellows as long life is essential for a quality product. This alloy has great resistance to fatigue and a low modulus of elasticity compared to steel which makes the bellows very sensitive. In addition, phosphor bronze has excellent corrosion resistance. This bronze can be coldworked to a high degree.

The washers and small parts (No. 10) are made from free machining

brass rod in screw machines, as is the shaft (No. 7).

This metal has the highest machinability of all the copper-base alloys. Turning, milling, drilling, threading and tapping operations are speeded up through the use of this alloy.

Copper tubing (No. 12) is used for conducting the hydrocarbon fluid from one chamber to another.

Clogging Danger Eliminated

Corrosion resistance in this tubing, as well as the body and other parts in contact with the hydrocarbon, is not only essential from a non-destructive standpoint but if any rust or scale were carried through the system blocking of the small orifices would occur.

The fittings are also forged brass.

Another important factor in favor of copper, brass and bronze in sealed units is the ease in which it may be soldered. Non-acid fluxes are used and only a minimum of heat is necessary to produce tinning, forming air and liquid-tight joints.

The excellent bearing qualities of the copper alloys also help to make instruments sensitive and to reduce wear to a minimum.

BRASS · BRONZE · COPPER · DURONZE - STRIP · ROD · WIRE · TUBING

MILLS IN BRIDGEPORT, CONNECTICUT INDIANAPOLIS, INDIANA In Canada:

Noranda Copper and Brass Limited, Montreal

BRIDGEPORT BRASS COMPANY BRIDGEPORT 2, CONNECTICUT Established 1865 District Offices and Warehouses in Principal Cities ELECTRONIC ENGINEERS GUARDIAN

1.12. Hardenbill With Starters

FOCUS

COIL

HERMETICALL SEALED RELAYS

NEAT

EFFICIENT

EASY-TO-SERVICE

IBRATION-PROOF

SERIES 335 RELAY

SERIES 610 AC-615 DC RELAY

Valuable information on HERMETICALLY SEALED Guardian Relays is yours for the asking. Write on your business letterhead for new completely descriptive and illustrated Catalog 5-H. No cost. No obligation.

and the assistant will be discussed in the second

THE A. N. CONNECTOR TYPE

THE OCTAL PLUG TYPE

THE LUG HEADER TYPE

1625-P W. WALNUT STREET

A COMPLETE LINE OF

GUARDIAN FOCUS COILS

CHICAGO 12, ILLINOIS

INDUSTRY

Over a million Focus Coils have rolled off Guardian's production lines into TV sets of leading manufacturers. With more than 75 types established as Guardian Standard, speedy delivery to meet today's replacement needs is a matter of routine.

Write - ASK US TO MAKE SPECIFIC RECOMMENDATIONS. NO OBLIGATION.

RELAYS SERVING

ELECTRONICS --- December, 1950

STUPAKOFF

Available as: SHEET ROD WIRE FOIL TUBING EYELETS LEADS FABRICATED SHAPES

KOVAR The Ideal Alloy for Glass Sealing

Made under conditions that approach laboratory precision methods, KOVAR* is the ideal alloy for sealing to glass. For manufacturers of electron tubes, or for others making pressure or vacuum-tight seals, Kovar provides these definite and practical advantages over other sealing alloys:

- KOVAR is designed for sealing into hard, thermal shock-resistant glass.
- KOVAR permits strain-free seals, because its expansitivity matches that of the glass over the entire working temperature range.
- KOVAR is not attacked by mercury.
- Uniform composition permits duplication of results.
- Easy to use.
- Available in a wide variety of standard and special shapes.

Complete information is available on shapes, sizes and use of Kovar. We will be glad to give you specific recommendations if you will describe your proposed applications.

*Westinghouse Trade Mark No. 337962

TUBES AT WORK (continued from page 122)

sitivity is adjusted by means of the 290-ohm feedback resistor R_s . The last two stages are triode-connected, while the first stage is pentode-connected.

There are two rules of thumb for obtaining stability in a feedback system: keep the number of reactive components to a minimum, and maintain the widest possible disparity in bandwidth between the different stages. By observing these rules, a margin of about 10 db against oscillation is realized. There are no peaks at the edges of the pass band. In circuits of this general type, incidentally, the greatest tendency toward oscillation is at low frequencies, rather than high.

A vtvm of this same type has been built that was flat to 700 kc, with a full-scale sensitivity of 100 millivolts. Three 1L4 stages were employed in pentode connection, with 22,000-ohm plate load resistors, and each screen connected directly to the 90-volt B supply.

The circuit shown is particularly tolerant of aging of the batteries. The insertion of a 1,000-ohm resistance in series with the B battery produced a change in calibration of less than 2 percent.

(1) L. Fleming, VTVM For Built-In Applications, ELECTRONICS, p 154, Sept. 1950.

Stable Electronic Voltage Regulator

BY PETER G. SULZER National Bureau of Standards Washington, D. C.

ELECTRONIC VOLTAGE REGULATORS have been employed when a d-c supply having excellent regulation and stability is required. It is the purpose of this paper to describe a circuit which produces a substantial improvement in performance with but little increase in complexity.

The regulator under consideration consists of a voltage-control tube, a d-c amplifier, a stable voltage standard, and a means for comparing the controlled voltage with the standard voltage. A popular scheme^{1,2} is that of Fig. 1 A, which contains a control tube, V_1 , a volt-

December, 1950 - ELECTRONICS

Here's the ideal amplifier for control applications

Why? Well, for one thing it's a *magnetic* amplifier. The advantages are obvious: there are no moving parts — hence, there's nothing to wear out. It's shock-proof and vibration-proof.

Secondly, it has a core of PERMERON — I-T-E's amazing new core material. We say "amazing" because *all* PERMERON cores have identical magnetization characteristics. This means designers can predict amplifier performance accurately and positively *before* undertaking the expensive job of winding and potting the reactor!

Furthermore, the lower control currents required in amplifiers made with **PERMERON** cores result in space-saving equipment with higher amplification factors and faster response time!

Magnetic amplifiers with PERMERON cores are now being produced by several large electrical manufacturers for an ever-expanding field of uses. These cores, with their amazing characteristics, have helped make magnetic amplifiers practical for many new uses and better for many old ones.

If your business is amplifiers, or controls, it will pay you to take another look at PERMERON!

For additional information write—I-T-E Rectifier Division, or consult your local I-T-E Representative

A product of Rectifier Division, I-T-E CIRCUIT BREAKER COMPANY, 19th & Hamilton Streets, Philadelphia 30, Pa.

MECHANICAL RECTIFIERS · SWITCHGEAR · UNIT SUBSTATIONS · ISOLATED PHASE BUS STRUCTURES · RESISTORS · SPECIAL PRODUCTS

ELECTRONICS - December, 1950

STANDARD RI-FI* METERS Umc. 4KC to DEVELOPED BY STODDART FOR THE ARMED FORCES. AVAILABLE COMMERCIALLY.

VLF!

14 KC

to

250 KC

NM - 10A

VHF! 15 MC to 400 MC **NMA - 5**

Sensitivity as two-terminal voltmeter, (95 ohms balanced) 2 microvolts 15-125 MC; 5 microvolts 88-400 MC. Field intensity measurements using calibrated dipole. Frequency range includes FM and TV Bands.

Commercial equivalent of AN/PKM-1. Self-contained batteries. A.C. supply optional. Sensitivity as two-terminal voltmeter, 1 microvolt. Field intensity with ½ meter rod antenna, 2 microvolts-per-meter; rotatable loop supplied. Includes standard broadcast band, radio range, WWV, and communications frequencies.

Since 1944 Stoddart RI-FI* instruments have established the Since 1744 Stoadart KI-FIC instruments have established the standard for superior quality and unexcelled performance. These instruments fully comply with test equipment requirements of such radio interference specifications as JAN-1-225, ASA C63.2, 16E4(SHIPS), AN-1-24a, AN-1-42, AN-1-27a, AN-1-40 and others. Many of these specifications were written or revised to the standards of performance demonstrated in Stoddart equipment.

375 MC to 1000 MC NM - 50A

UHF!

Sensitivity as two-terminal voltmeter, (50-ohm coaxial input) nicrovolts. Field intensity measurements using calibrated dipole. Frequency range includes Citizens Band and UHF color TV Band.

The rugged and reliable instruments illustrated above serve equally well in field or laboratory. Individually calibrated for consistent results using internal standard of reference. Meter scales marked in microvolts and DB above one microvolt. Function selector enables measurement of sinusoidal or complex waveforms, giving average, peak or quasi-peak values. Accessories provide means for measuring either conducted or radiated r.f. voltages. Graphic recorder available.

*Radio Interference and Field Intensity.

Less than 1.2 VSWR to 3000 MC. Turret Attenuator: 0, 10, 20, 30, 40, 50 DB. Accuracy ± .5 DB.

Patents applied for.

December, 1950 - ELECTRONICS

164

Collins Radio Company uses LAMICOID for resistor and condenser boards in its 18S-4 Aircraft Transmitter-Receiver, Top to bottom: LAMICOID punched, drilled and engraved; soldering connections installed; back view of complete assembly.

Samicoid means light weight strength compactness good insulating properties

in COLLINS resistor and condenser boards

LAMICOID thermosetting plastic offers properties that make it ideal for resistor and condenser boards used in Collins Radio Company Aircraft Transmitters and Receivers -where compactness and light weight are essential.

Al Almi

Holes are punched in LAMICOID on close centers without fraying, chipping or breaking out. This laminated plastic material has the strength of metal at half its weight ... provides rigid support for condensers and resistors, in a compact, lightweight unit. LAMICOID's high dielectric strength insures good insulating properties.

The selection of LAMICOID for structural-insulating elements in your equipment will assure you of low cost fabrication and top performance. Let us bring our 57 years of experience in making high quality electrical insulating materials to bear on your insulation problems. Contact our nearest sales office.

Schenectady 1, New York Offices in Principal Cities

ELECTRONICS - December, 1950

TUBES AT WORK

(continued)

KEEPS ITS FOOT DOWN ON INDUCTANCE AND CAPACITANCE

because the opposed windings are on a special flatted core

It's a Ward Leonard exclusive - a non-inductive resistor with Ayrton-Perry winding around a core that's flatted on opposite sides. Purpose of the flats? To make sure the crossings of the two windings are exactly 180° apart-thus reducing inductance and distributed capacitance to an absolute minimum.

For high watt rating in a given size unit . . . low difference in potential between adjacent turns . . . absence of undesirable high capacitance-specify Ward Leonard non-inductive resistors.

Write for Resistor Catalog. Ward Leonard Electric Company, 31 South Street, Mount Vernon, N. Y. Offices in principal cities of U.S. and Canada.

WARD LEONARD ELECTRIC COMPANY Result - Engineered Controls

RESISTORS . RHEOSTATS . RELAYS . CONTROL DEVICES

age amplifier, V_2 , and a constantvoltage glow tube, V_3 . Comparison occurs in the grid-cathode circuit of V_2 . Analysis has shown³ that one requirement for good regulation is high gain in the voltage amplifier. Thus a pentode is usually employed for V_2 , or the cascode amplifier⁴ has been used. Higher gain may be obtained with the cascade amplifier⁵ of Fig. 1B. It will be noted, however, that cathode degeneration occurs in V_2 and V_3 . In order to realize the full gain capabilities of the twostage amplifier the circuit of Fig. 1C has been devised. Here both cathodes see a low impedance through the glow tube V_4 , which is used as the voltage standard. The control grid of V_{s} is connected to a voltage divider connected across the output of the regulator. Therefore the output-voltage variations are applied to both cathodes, and it can be seen that, as a result, the effective voltage gain of V_3 is decreased by unity. This, however, is of little consequence when high-µ tubes are employed.

Performance

To calculate the performance of the regulator, consider the equivalent circuit shown in Fig. 2A, where e_i and e_a are the input and output voltages respectively, $R_{\rm p}$ and μ refer to the control tube $(V_1 \text{ in Fig.})$ 1C), e_s is the standard voltage, A_s is the voltage-amplifier gain, 1/N is the voltage-divider attenuation, and $R_{\rm L}$ is the resistance presented by the

2

Remarkable new compactness in precision control

The extreme compactness of the new Type 1623 Motor-Driven Induction Generator has been achieved with no sacrifice of general performance characteristics. Like its "bigger brothers" in the Kollsman line, the Type 1623 combines, in a single frame, motors of high torque/inertia ratio with generators offering *linear voltage vs. speed* over a wide range.

Where size and weight are prime considerations, this 4.2ounce unit will prove the solution to many precision control problems. Separate induction motors and generators are also available in the same diameter frame.

For further information on the 1623 and others in the complete Kollsman group of miniature special purpose AC motors—or if you require a unit to your own specifications write: Kollsman Instrument Division, Square D Company, 80-08 45th Avenue, Elmhurst, N. Y.

Type 1623 Motor-Driven Induction Generator

Motor characteristics: Maximum torque at stallsmooth-running (will not "cog")-fast-reversingoperates from two-phase source, or from single-phase with phase-shifting condenser-available for 60 or 400 cycle operation.

Generator characteristics: Low residual voltage and voltage "spread"—constant frequency output—amplitude directly proportional to speed.

Unit characteristics: Both rotors mounted on same shaft, assuring positive alignment-stainless steel housing-hardened beryllium copper shaft-corrosionresistant nickel steel laminations – high temperature insulation (up to 200° C. total temperature) – stainless steel precision ball bearings – weight: 4.2 ounces.

GLENDALE, CALIFORNIA

KOLLSMAN INSTRUMENT DIVISION

ELMHURST, NEW YORK

December, 1950 --- ELECTRONICS

... for using IRVINGTON **#32 RED INSULATING ENAMEL**

L'Good Reasons ...

for insulation leadership

because it costs less! Now you can save time, save money, on every electrical finishenamel job. With Irvington's new #32 Red Oilproof Insulating

It saves money

It saves money because it dries fast!

VARNISH & INSULATOR COMPANY VINCTON 6 Argyle Terrace, Irvington 11, New Jersey

Enamel, you get new speed of drying, new low cost. And you also get the bonus protection of a tough, impervious, 800 volt-

per-mil insulation. Write today for technical data and samples.

ELECTRONICS - December, 1950

/INGT/

SYNTHETIC SAPPHIRE for

Resistance to Wear

Outlasting hardened steel and cemented carbides 2 to 5,000 times.

Resistance to Friction

Affording very low friction surfaces due to hardness and surface continuity.

Resistance to Heat Distortion

Retention of form at temperatures up to $1,000^{\circ}$ C.

Retention of Insulating Properties

Excellent dielectric properties over a wide range of temperatures.

LINDE Synthetic Sapphire is available in a variety of forms. It can be polished by flame or ordinary diamond polishing; it can be formed and bent by flame. Polished sapphire surfaces keep free of dirt, and in many anti-friction applications, need not be lubricated.

The experience that LINDE engineers have in applying sapphire to industrial processes may be of help to you. Call or write the LINDE office nearest you. Get your copy of the "Synthetic Sapphire Data Sheet", and the "Synthetic Crystal Stock List" of forms available.

The term "Linde" is a trade-mark of The Linde Air Products Company.

FIG. 2—Stabilized voltage regulator circuit maintains constant output voltage for ten-percent line-voltage fluctuations and load variations from 0 to 80 ma

load. Considering incremental voltages,

$$\frac{\Delta e_i - \mu \left[A_o \frac{\Delta e_o}{N} + \Delta e_o \right]}{R_p + R_L} = \frac{\Delta e_o}{R_L} \quad (1)$$

Rearranging, it is found that

$$\frac{\Delta e_o}{\Delta e_i} = \frac{1}{1 + \mu + \frac{R_p}{R_L} + \frac{\mu A_o}{N}}$$
(2)

where $\Delta e_{o}/\Delta e_{1}$ is defined as the input regulation. It is desired to minimize this quantity, which can be accomplished conveniently by increasing A_{o} .

The output regulation can be specified in terms of the equivalent source resistance R_i . Considering the regulator as an amplifier having negative voltage feedback, it can be shown^o that the source resistance

$$R_i = \frac{R}{1 + A\beta} \tag{3}$$

where R is the output resistance of the amplifier in the absence of feedback, A is the amplifier voltage gain for the same condition, and β is the fraction of the voltage fed back. In the circuit of Fig. 1C, V_1 can be considered as a cathode follower of

output resistance $\frac{R_p}{\mu+1}$ and voltage gain $\frac{\mu R_L}{R_p + (1+\mu)R_L}$. Substituting,

$$R_{i} = \frac{\frac{R_{p}}{\mu + 1}}{1 + \left(\frac{A_{o}}{\overline{N}}\right) \left(\frac{\mu R_{L}}{R_{p} + (1 + \mu)R_{L}}\right)} \quad (4)$$

For the practical circuit of Fig. 2B, where $A_o = 4,000$, $N \approx 2$, $\mu = 5$, and $R_p = 750$ ohms, one obtains

December, 1950 — ELECTRONICS

GLOBAR brand ceramic resistors offer unusual and valuable characteristics for bettering circuit performance in radio, television and industrial applications. Manufactured to meet your exact specifications, these resistors assure extreme accuracy of operation. Precision methods of control and inspection in their manufacture provide maximum uniformity and dependability.

The accompanying table lists a few different types of resistors available. GLOBAR engineers will be glad to work with you in applying any of these or other types to your designs. In the meantime, obtain more complete in-formation by writing for Bulletins R, GR-2 and GR-3. Address Dept. V-100, The Carborundum Company, GLOBAR Division, Niagara Falls, New York.

TYPE	CHARACTERISTICS	TYPICAL APPLICATIONS
Α	Low negative vo <mark>ltage and temperature sensitivity.</mark>	General purpose resistor for radio receivers and transmitters.
В	Medium negative voltage and temperature sensitivity.	Instrument compensation. X-Ray equipment.
BNR	High negative voltage sensitivity.	Magneti <mark>c valves.</mark> Motor governors.
сх	Low negative voltage and low positive temperature sensitivity.	Radio transmitters for dummy antenna and parasitic suppressors.
F	High negative temperature sensitivity.	AC-DC radio receivers to prevent surge currents in tube and pilot light filaments.

"Carborundum" and "Globar" are registered trademarks which indicate manufacture by The Carborundum Company December, 1950 - ELECTRONICS

Stuff" puts the Heat on this Electrical Insulation

Joint sealing in concrete highway construction is an important operation, and must meet certain standards. Asphalt compounds used for joint sealing are properly heated and melted in speciallyconstructed, gas-fired kettles. During certain periods, the heating and melting kettle must run continuously for several days. Temperatures within the heating unit run as high as 450°F. Liquidified petroleum gas lines and thermostatic control lines in the unit must be insulated against open flame which could cause serious fire and damage.

BH Fiberglas Sleeving is used inside the burner wells of the Aeroil #120 DVP "Heet-Master" Double Vat Kettle because it meets a specific insulation requirement fully and completely. "BH Fiberglas Sleeving is used inside the burner wells (see sectional view above) to protect the LPG gas lines and thermostatic control lines against very high temperatures and open flames from the gas-fired torches. It affords complete protection and plays a very important part in the efficient, breakdown-free operation of this equipment."

BH Fiberglas Sleeving is as flexible as string because no hardening varnish or lacquer is used. It is heat resistant to 1200°F, if required. Won't split, crack or deteriorate. Resists grease, oils, and moisture. Use it profitably in your product or in plant equipment. Write us today about your invalidation problems.

BENTLEY, HARRIS MFG. CO., CONSHOHOCKEN, PA.

BH BH SLEEVINGS

*BH Non-Fraying Fiberglas Sleevings are made by an exclusive Bentley, Harris process (U. S. Pat. No. 2393530). "Fiberglas" is Reg. TM of Owens-Corning Fiberglas Corp.

Bentley, Harris Mfg. Co., Dept. E-43, Conshohocken, Pa.
I am interested in BH Non-Fraying Fiberglas Sleevingfor
(size or I.D.)
operating at temperatures of°F. at volts. Send samples
so I can see how BH Fiberglas Sleeving stays flexible as string, will not crack when bent.
NAMECOMPANY
ADDRESS

Send samples, pamphlet and prices on other BH Products as follows:

- Cotton or Rayon-base Sleeving and Tubing
- □ BH "649" Fiberglas Tubing and Sleeving

ELECTRONICS --- December, 1950

Mr. P.A.-Don't Gamble!

Failure to meet schedules costs you valuable dollars — jeopardizes your reputation.

Play safe. Take advantage of Donnelly's long experience in the fabrication of sheet metal to the most exacting specifications. In the electronic, radar and television industries — whether short run or big production — we are equipped to serve you to your complete satisfaction.

Don't take a chance — take Donnelly!

Donnellymanufacturing

A DIVISION OF JOHN DONNELLY & SONS 3134 WASHINGTON ST., BOSTON, MASS.

PRECISION SHEET METAL & PRESSED WOOD FABRICATION

minum Fabrication

TUBES AT WORK

(continued)

from Eq. 2 and 4, $\Delta e_{o}/\Delta e_{i} \approx 1/10,$ -000, and $R_{i} \approx 0.06$ ohm. These calculations were made for a 50-ma load ($R_{L} = 5,000$). Thus a 50-volt input change would appear as a change of but 0.005 volt at the output, while the output voltage will change 0.003 volt as the load current is increased from 0 to 50 ma.

An improvement in the performance of the circuit can be obtained by increasing A_s through regeneration. A resistor connected between the plate of V_2 and the grid of V_3 will accomplish the desired result. In this manner A_s can effectively be made infinite, with resulting perfect regulation.

Circuit

If the circuit given above is incorporated into a power supply, it is found that the output voltage will still vary as the line voltage is changed. This is caused by heater-voltage variations changing the effective bias on the control grid of V_{3} . A simple method of compensation ⁷ consists of inserting diodes V_5 and V_6 in Fig. 2B, in series with the control grid of V_{3} . If the tubes are operated from a common heater supply it is possible to obtain almost complete compensation over the normal range of heater-voltage variations.

Adjustment

In aligning the regulator, R_s was disconnected, and R_2 was set for zero diode compensation. The control R_1 was set for the desired output (between 225 and 275 volts). The d-c input of the regulator was then varied over a range of 50 volts, and R_s was selected for zero outputvoltage variation. The diode-compensation control was next set for minimum output-voltage change as the line voltage was changed \pm 10 percent.

Performance

A final check of performance showed the output voltage to be constant within 0.02 volt for \pm 10 percent line-voltage variations and for load currents from 0 to 80 ma, the maximum current for the 6Y6G. The output voltage was constant within 0.025 volt (with fixed load current) over a period of one day. The output impedance was less than

PACKAGED Functional Electronics

Components for Control Systems

mechal products

Servomechanisms Inc. designs, engineers and manufactures electronic control devices for military and commercial applications.

These devices are composed of a number of functional electronic units, which are miniaturized and packaged as plug-in components.

Control equipment is readily synthesized from these small component packages which solve the important system requirements of:

- Spatial adaptability
- Instant maintainability
- Training simplicity
- Ease of manufacture

SERVOMOCHANISMS

Old Country & Glen Cove Roads, Mineola, N. Y. Imperial Hway. & Sepulveda Blvd., Los Angeles, Calif.

ELECTRONICS - December, 1950

Firademark

USERS SAY G.E.'s New All-Purpose* Insulating Varnish G-E 9574

STATISTICS STATISTICS

J. L. Hughes, owner of the J. L. Hughes Electric Company, Columbus, Ohio, says:

READ WHAT

"We have found from test and practical experience that General Electric general-purpose varnish 9574 is tops for our work."

J. Lindborg, owner of AAA Electric Motor Service, Atlanta, Ga., says:

"Our experience has been that this varnish is as good as G.E. claims. It gives a good coat on every type of wire, bakes easily and dries to a tough coating that stands up perfectly in service."

Guy W. Probst, owner of Lockhaven Electric Repair Co., Lockhaven, Pa., says:

"I find that I only use about half as much 1201 Glyptal as a cover coat on 9574 as I had to use over the varnish I had been using, and I get higher gloss and better bonding."

These statements indicate the success of the new G-E 9574. If you are looking for an insulating varnish which bakes at low temperatures, penetrates deep coils easily, and requires no special thinner, investigate G-E 9574.

*G-E 9574 gives excellent results on all types of coils except extra-highspeed armatures. It is one of G.E.'s complete line of electrical insulating materials, including wedges, adhesives, cements, compounds, cords and twines, sleeving, wire enamels, mica, papers and fibers, permafils, tapes, tubing, varnished cloths, and varnishes.

A BAR AND AND

Here's A Bulletin You Should Have! If you haven't yet tried G-E 9574 get in touch with your local G-E Distributor, or write for our new bulletin to Section K3, Chemical Department, General Electric Company, Pittsfield, Massachusetts.

You, too, can put your confidence in

December, 1950 --- ELECTRONICS

• The trend toward hermetic sealing in all phases of electrical manufacturing is gaining impetus. Fusite has pioneered in the field of glass-to-steel hermetic terminals for use in fusion sealing—the only truly hermetic process.

• We have prepared a brochure crammed full of illustrations, specifications, diagrams, and facts about the Fusite wide line of single and multiple electrode terminals.

• We assure you that regardless of your present level of knowledge concerning glass-to-steel terminals, you do not have a complete or accurate picture of the production possibilities of fusion sealing until you know the Fusite story.

Write today for your copy of this literature, to Dept.-E.

TERMINALS ILLUSTRATED: 104SW, Left, 105SW, Right. Miniature—Straight Wire—Single—Glass-to-Steel Hermetic Terminals.

CARTHAGE AT HANNAFORD, NORWOOD, CINCINNATI 12, OHIO

BLOCK DIAGRAM OF WO-79B

\$550 SUGGESTED USER PRICE (Includes direct probe and low-capacitance probe and cables.)

Unique facilities for

Manufacturing Applications

ting word word they are stored and a source and a store they are and a source and FEATURING ...

- ✓ Frequency response flat to 5 Mc
- ✓ High-speed triggered time base with built-in delay line
- Intensifying amplifier with blanking
- ✓ High-speed sawtooth with trace expansion
- ✓ Calibrating meter for instantaneous voltage measurements
- ✔ Also internally available --extra-high anode voltage

• TV Station Monitoring

• TV Equipment Design

he RCA WO-79B Cathode-Ray Oscilloscope is a precision laboratory-type instrument of compact, portable design. With its outstanding features, this versatile instrument will handle a wide range of jobs in research and manufacturing applications.

The WO-79B is particularly useful for the observation and measurement of TV synchronizing and deflection voltages, ignition waveforms, pulses, and radar signals. It will display waveforms having a duration as short as one microsecond. Leading edges of steepfronted, narrow pulses, such as are encountered in TV sync generators and electromechanical relays, can readily be observed.

One of the unusual features is an "intensifying amplifier" which serves to blank out the return trace and intensify the brilliance of the forward trace. Also, the 'scope has a special sync amplifier and phase-polarity control which allow the instrument to sync on extremely weak signals of either positive or negative polarity.

For further information on features of the WO-79B, see your local RCA Test Equipment Distributor, or write to RCA, Commercial Engineering, Section K42Y, Harrison, N. J.

SPECIFICATIONS		
Frequency Range:		
Vert. Amplifier Flat within + 20%, 10 cps to 5 Mc/sec		
Horiz, Amplifier. Flat within ±10%, 10 cps ta 500 kc		
Deflection Factor: (vert. amplifier)		
0.18 RMS volt/inch (for 1100 valts sec. anode)		
0.27 RMS volt/inch (for 1500 valts sec. anode)		
Sawtooth Time Base		
Triggered Time Base		
Max. Writing Speed1 inch per micrasecond		
Max. Repetition Rate		
Tube Complement-3-6AC7; 4-6AG7; 3-6SN7GT; 1-6SH7;		
1-6H6; 1-2X2A; 1-5U4G; 1-0D3;		
1-3KP1 CRT; 1-6C4		
Note: Type 3KP11 CRT interchangeable with 3KP1		

Available from your RCA Test Equipment Distributor

認定

RADIO CORPORATION of AMERICA

TEST EQUIPMENT

HARRISON, N.J.

December, 1950 - ELECTRONICS

No.

1000

1000
TUBES AT WORK

(continued)

0.2 ohm at all frequencies below 200 kilocycles.

REFERENCES

(1) U. S. Patent No. 2,075,966 (A. W. (1) C. S. Vance). (2) RCA

(1) C. S. Fateht No. 2,013,365 (A. W. Vance).
(2) RCA Application Note No. 96, August, 1938.
(3) F. V. Hunt and R. W. Hickman, On Electronic Voltage Stabilizers, Rev. Sci. Instr., 10, p 6, Jan. 1939.
(4) ibid. (3).
(5) RCA Tube Handbook HB-3. Listed under tube-type 5651.
(6) H. F. Mayer, Control of Amplifier Internal Impedance, Proc. IRE, 27, p 213, Mar. 1939.
(7) G. E. Valley, Jr., and Henry Wallman, "Vacuum-Tube Amplifiers", McGraw-Hill, N. Y., 1948.

Adapt 2-Speed Tables to **3-Speed Operation**

BY LEON A. WORTMAN New York, N. Y.

NUMEROUS RECORDING COMPANIES and broadcast stations would like to be able to record and play back the 45-rpm discs. Many of them have avoided buying adaptors for their 2-speed turntables, or buying new 3-speed turntables, because of the extra costs involved. However, most studios and stations already have the gear necessary for 3-speed operation without in any way altering the turntable itself.

Reeves Sound Studios, New York City, is using the 2-speed (33¹/₃ and 78 rpm) Fairchild Unit 524 transcription playback turntable and the Fairchild Unit 523 studio model disk recorder, and they make 45-rpm masters for pressings. The setup shown in the block diagram is all that is required.

A stable audio signal generator feeds a booster amplifier to drive a power amplifier. Through experimentation, and with a disk strobe, it was learned that if the frequency

System for recording at 45-rpm using a 33-78 rpm turntable

ELECTRONICS - December, 1950

Modern Air Force Bombers carry their own radar. And the antenna base for this sky-scanning system is molded from Formica's Grade YN-25, a nylon cloth base laminate, bonded with pherolic resin.

Wilcox Electric Co., manufacturers of the unit, specified YN-25 for its un que combination of high dielectric strength and mechanical toughness. Subjected to all weather conditions and to a beating from abrasive gravel on take-offs and landings, YN 25 has proved to be "the grade that makes the grade."

Electronics industries find many uses for Formica YN-25 in applications calling for low power loss factor, high moisture resistance and outstanding mechanical strength. YN-25 is available in sheets, tubes and rods.

Whatever your requirements, Formica can meet them with one of more than 40 standard grades, or with a grade "custom-tailored" to order. Write FORMICA, 4640 Spring Grove Ave., Cincinnati 32, Ohio.

FREE YN-25 SAMPLE

See and test this unusual Formico grade for yourself . . send today for your free sample of YN-25.

We Specialize in Electronic Equipment for Research, Development, Maintenance and Production Operations

December, 1950 - ELECTRONICS

A Complete metal service right at your fingertips

Offers

SCREW MACHINE PRODUCTS

Housings **Assemblies Metal Trimminas Electronic Tube Parts**

STAMPINGS

Metal • Fibre Phenolite • Plastic

Complete Fabrication Facilities Under One Roof

B. & S. Automatic Screw Machines 6-Spindle Automatic Screw Machines • Semi-Automatic Millers, Drill Presses, Tappers • High-Speed Power Presses • Semi-Automatic and Automatic Assemblies.

Exacting Specifications Met-**Rigid Inspection System**

WE INVITE YOUR INQUIRY

WM. STEINEN MFG. CO.

Bruen Cor. Hamilton St., Newark 5, N. J.

PRODUCTS

QUALITY

service saves you time, effort and money. Send today for

your FREE copy of the 1951 ALLIED Catalog-the complete guide to electronic supplies for Industrial and Broadcast use-

ALLIED RADIO CORP.

833 W. Jackson Blvd., Dept. 11-M-O * Chicago 7, Illinois

Look for the orange package . . . the universally popular solder for use in electrical applications where bonding must be secure and free from corrosion.

The flux is in the solder . . . all you need is heat! Federated Rosin Core Solder is available in 1, 5, and 20-pound sizes.

> Federated makes every commercial solder . . . Asarco Body Filler Metal, acid-core, solid wire, spray-gun, and bar ... purity and composition guaranteed by the world's leading supplier of solder.

Division of AMERICAN SMELTING AND REFINING COMPANY 120 Broadway, New York 5, N.Y. OFFICES IN PRINCIPAL CITIES ACROSS THE NATION

THE SUPERIOR ELECTRIC COMPANY HAS A STABILINE FOR YOUR NEEDS

If you're looking for dependable automatic voltage regulation, investigate STABILINE first. You'll save time and money — you'll get longer service through better design and construction — you'll get performance and operating characteristics as advertised.

AVAILABLE IN 2 TYPES

STABILINE Type IE is instantaneous and completely electronic in action. Keeps output voltage to within $\pm 0.1\%$ of preset value regardless of wide line variations; to within $\pm 0.15\%$ regardless of load current or power factor changes. Waveform distortion *never* exceeds 3%. STABILINE Type IE is available in cabinet or rack mounting models — in numerous ratings.

TYPE EM4102

STABILINE Type EM (Electromechanical) features zero waveform distortion, insensitivity to magnitude and power factor of load, no effect on system power factor; no critical adjustments. It is available in output ratings up to 100 KVA for single and for 3 phase operation,

STABILINE Types IE and EM perform "as advertised". Each and every STABILINE Automatic Voltage Regulator is inspected and tested to the most rigid specifications. If — after you purchase a model of either type — you would like a copy of the inspection and test report, write us and a full report will be sent promptly.

WRITE US TODAY FOR FURTHER DETAILS ON THE STABILINES

412 Meadow St., BRISTOL, CONN.

POWERSTAT VARIABLE TRANSFORMERS • VOLTBOX A-C POWER SUPPLIES • STABILINE VOLTAGE REGULATORS

TUBES AT WORK

(continued)

of the line voltage feeding the turntable drive motor were made 81.003 cycles per second, the speed of rotation of the turntable would be exactly 45 rpm. That is with the Fairchild drive set for 33¹/₃-rpm operation. This results in synchronous 45-rpm operation.

The scopes read the phase difference between the signal generator and the built-in scope sweep oscillator. A change in the pattern on the scope screen indicates a shift in the frequency of the controlling signal generator and a resultant change in 45-rpm turntable speed.

Reeves uses duplicate power amplifiers driven by one signal generator to operate two Fairchild disk recorders, one for original and the other for safety recording. The power amplifiers must be capable of delivering adequate power to the drive motors. To properly drive the motors, the amplifiers should deliver an output power of from 75 to 100 watts, with good wave form, at 81 cycles. Because of the new line frequency applied to the drive motors, the drive motors require individual retuning to maintain good torque. This is easily done by the capacitor substitution method. substituting new values for the $4-\mu f$ motor starting capacitor supplied by the manufacturer.

18-Mc Telecolor for Surgical Training

INDUSTRIAL color television equipment using an 18-mc bandwidth

Color television camera used in operating room. Spotlight on top of camera was the only additional illumination needed for the image orthicon even though color wheel was used

December, 1950 — ELECTRONICS

HERMETICALLY SEALED — dust, dirt, moisture, oxidation and temperature changes can't interfere with operation.

SILENT AND CHATTERLESS

REQUIRES NO MAINTENANCE

ABSOLUTELY SAFE

Heavy-Duty Relay No. 1101

Now Available with or without Compression-Type Terminal Block

For the first time, the rugged and versatile ADLAKE No. 1101 Mercury Relay may be had with or without a compressiontype terminal block. Either style is available as a time delay or a load relay, with contact normally open or closed, for A.C. energization.

The No. 1101 Relay offers a time range of from .15 of a second to 20 minutes. Time characteristics are fixed and non-adjustable, and each relay is tamperproof. The standard finish is black enamel, wrinkled, and construction is sturdy, to withstand heavy shocks and vibrations.

The No. 1101 proved its value in such varied applications as radio transmission, timing power circuits, production line time control, voltage regulation, liquid level controls and solenoid valves. Every day, new applications for this economical relay are being discovered.

For the full story on the No. 1101 Relay, as well as the many other important Adlake Relays, drop a card to The Adams & Westlake Company, 1107 N. Michigan, Elkhart, Indiana. No obligation, of course.

Manufacturers of Hermetically Sealed Mercury Relays for Timing, Load and Control Circuits

MODEL 60 Bolometer Amplifier

- Self Contained Meterina ø
- Pull Out Meter
- . AC and DC Recorder Output **Panel Selection of 3**
- Frequencies Adjustable and Metered
- **Bolometer Bigs**

USES

The Model 60 Bolometer Amplifier is The Model 60 bolometer Amplifier is a band pass amplifier designed to am-plify the output of crystal or bolo-meter probes used in RF measuring equipment. The amplifier is suitable for all occasions where extremely low audio voltages must be amplified. The recorder output makes the unit particularly useful for antenna pattern recorders requiring either AC or DC input voltages.

DESCRIPTION

The Model 60 Bolometer Amplifier is an audio amplifier incorporating parallel 'T' null networks in a feed back circuit to provide a narrow band pass at any desired frequency within specified limits. The am-plifier includes a meter amplifier and an output meter which may be removed from the panel opening for use at remote loca-tions. The recorder output provides a choice of impedances for AC outputs as well as a DC output for those recorders requiring such an input. Input circuits are designed for operation with crystals or 300 ohm bolo-meters. meters.

CHARACTERISTICS

FREQUENCY RANGE-400 cycles to 5000 cycles (choice of 1, 2, or 3 frequencies with-in these limits) $\pm 2\%$ frequency tolerance. BANDWIDTH-(1/2 voltage points) 8% of bandpass center frequency.

INPUT VOLTAGE RANGE Meter-10.2-10.7 volt. Recorder (AC)-10.2-10.6 volt. INPUT IMPEDANCE-250 ohm to 350

ohm METER—Logarithmic meter scale (0—20 db) with 100 db decade.

RECORDER OUTPUT—AC .01—100 volts 50,000 ohms. Additional output impedances of 5000 ohms, 500 ohms, and 250 ohms. DC—0.01—0.75 volts.

BOLOMETER BIAS—Adjustable in steps of 2% current change over a range 2:1— metered directly.

POWER SUPPLY-115 volts 50/60 cycles 40 watts.

DIMENSIONS-19" wide, 83/4" high 10" deep

WEIGHT-27 lbs.

FINISH—Blue grey wrinkle panel and ma-hogany cabinet (unit may be rack mounted without cabinet if desired.)

Ask for Bulletin L-60

PICKARD & BURNS, Inc. 240 Highland Ave. Needham 94, Mass.

FOR ARMED SERVICES COMPONENT REQUIREMENTS - 1N69 AND 1N70

GERMANIUM DIODES

GENERAL ELECTRIC germanium diodes must meet the most rigid specifications, yet volume production continues to drive their prices steadily downward. Compare new G-E prices with all others... then check the following reasons for this ever-widening acceptance among electronics designers, engineers, and equipment makers:

Dual Mounting—For Convenience— Versatile G-E diodes can be mounted two ways: *clip them into place* by means of their husky, non-oxidizing nickel pin terminals... or use each diode's well-tinned, copperclad steel leads to *solder* it into the circuit. These special leads are strong and flexible conduct less heat than ordinary types, and thus prevent damage during soldering.

Platinum Whisker—For Strength—Tc assure stability and long life, the G-E diode's pigtail whisker is of platinum, which, unlike tungsten, can be strongly welded to germanium.

Moisture Resistant Insulating Case—For Protection —A special insulating case of molded, mineral-filled phenolic protects this unique welded contact. The case is also tapered to assure correct polarity mounting. These diodes are so easy to handle—you can install 'em in the dark!

Looking For A Long Life Diode? We've got 'em! The complete G-E line includes four general purpose diodes, two JAN types, two TV types (more than half a million of these have already been supplied to TV receiver manufacturers), one u-h-f model and the high quality quad of four balanced diodes. For product and application engineering service, inquire at the G-E electronics office near you, or write: General Electric Company, Electronics Park, Syracuse, N. Y.

GET YOURS NOW! OVER 2500 COPIES SOLD ALREADY!

SPECIFICATIONS

1N69

75

60

40

125

400

.05

5.0

0.8

-50 to +70

1N70

125

100

30

90

.41

.01 3,0 0,8

350

-50 to +70

Max Ratings at 25°C

Max Continuous Inverse Voltage

Average Rectified Current (ma)

Peak Rectified Current (ma)

Characteristics at 25°C Max Inverse Current at -50v(ma)

Max Inverse Current at -10v(ma) Min Forward Current at +1v(ma)

Average Shunt Capacitance (mmfd)

Peak Inverse Valtage

Surge Current (ma)

Temp. Range °C

DANNY DIODE

NEW DIODE HANDBOOK

Now in 2nd Printing! Here are 68 pages of facts on characteristics, advantages, and circuitry of diodes. Charts, curves, diagrams, typical applications. Leatherette bound, looseleaf style. Supplementary sheets furnished free as published. Worth many times its modest price of \$1.25. Send check or money order to: General Electric Company, Section 4120 Electronics Park, Syracuse, New York.

For Drawings That Won't Get 'EDGY' With Age...

Specify Arkwright Tracing Cloth! Then you can be sure that no matter how often a master drawing is yanked out of the cabinet, it will never become ripped, or paper-frayed around the edges to spoil your work.

Arkwright Tracing Cloth is the best insurance you can get that your drawings will never go brittle, discolor or become opaque with age. Best insurance, too, that original drawings are always sharp, clean and ghost-free. Erasures on Arkwright cloth re-ink without feathering. And every roll is carefully inspected for pinholes, thick threads or imperfections of any kind.

All good reasons for you to remember: if a drawing is worth saving, put it on Arkwright Tracing Cloth. Would you like a sample? Write Arkwright Finishing Company, Providence, R. I.

TUBES AT WORK

with 500-line horizontal resolution was demonstrated by DuMont to surgeons attending sessions of The New York Academy of Medicine at St. Clare's Hospital in New York City. Ample light for bright and clear color pictures was obtained by supplementing operating table illumination with one spotlight mounted on top of the camera, even though the image orthicon had to work through the rotating color

(continued)

Visiting doctors watching surgical operation in full color on 12½-inch screen. Fidelity is sufficient to show individual nerves and veins, and camera right alongside operating table gives better view than if looking over shoulder of surgeon

wheel of the sequential scanning system employed.

The only equipment in the operating room was the camera and a microphone for commentary by the surgeon. In an adjacent scrubroom were the four portable units needed for producing the complete picture signal—the low-voltage supply, sync generator, camera control and color mixer, and a 7-inch color monitor. The large color monitor, providing a 12½-inch picture bright enough for viewing by up to 40 persons, was located in a downstairs auditorium of the hospital and connected to the control point upstairs

December, 1950 - ELECTRONICS

BRADLEY RECTIFIERS perform as rated!

YOU CAN COUNT on performance exactly as rated with Bradley rectifiers — whether your requirements involve one unit or a hundred thousand units. Our exclusive vacuum process—as applied to selenium and copper oxide rectifiers — provides the highest type of quality control. You get the rectifier you need, predictably accurate, true to rating and long-lived even under extreme operating conditions.

SPECIAL POWER CONVERSION PROBLEMS

- the kind that get you shrugs elsewhere — are challenges that we accept and handle with speed and competence. Bradley has helped many leading manufacturers use rectifiers in new ways that have led to improved product performance. We can help you, too, on either standard or special requirements. If your product involves a rectifier — see Bradley to get the performance desired.

PHOTOELECTRIC CELLS

SEIIX SERIES Selenium for high current uses.

BRADLEY LABORATORIES, INC. 82 MEADOW STREET NEW HAVEN 10, CONNECTICUT

SERIES SERIES

Selenium for high voltage uses.

CX14 SERIES

Copper oxide for instruments,

PRECISION POTENTIOMETERS

The linear Type RL-275 illustrated is one of a series ranging from $1\frac{1}{4}$ " to 5" in diameter, with resistance ranges of 80 ohms to 500,000 ohms.

GAMEWELL Potentiometers are precision instruments in every respect. They feature extremely close limits in electrical characteristics and mechanical construction, low electrical noise, low torque, and long life—far in excess of 1,000,000 cycles of operation.

All types will operate within specified limits of performance at temperatures -55° C. to $+55^{\circ}$ C., 95% relative humidity at altitudes up to 50,000 feet. Corrosion resistant materials are used throughout and all insulating parts are fungicided. Our potentiometers meet AN-E-19 specifications,

We invite your inquiries and will gladly study and quote on special requirements.

Write for Bulletin F-68.

Newton Upper Falls 64, Massachusetts

TIME AND NUMBERS

Do you need a permanent record of time and numbers, that apply to your laboratory or production work? Streeter-Amet has the instrument which will accurately and speedily record either numbers or time or both at the same time on paper tape for easy readability.

The counter operates by any means capable of supplying a switch closure or an electrical impulse. Counts may be indexed by time or number printed alongside the count. For high speed counting of a predetermined number

of articles, Streeter-Amet Predetermined number automatically count then shut off or control associated machinery when the predetermined number is reached. An outstanding timesaver when packing a given number of articles in a carton, measuring lengths of wire or sheets in a bundle. Tell us your specific counting problem. We know we can help you economically.

ARE YOU <u>SURE</u> YOU ARE USING THE MOST EFFICIENT

ectrical

FOR YOUR JOB?

We are specialists in Electrical Papers – Let our laboratories analyze your requirements.

SEND FOR

Free Booklet "Industrial Paper — The New Production Answer."

PAT. OFF.

REG. U. S

CENTRAL PAPER COMPANY

INCORPORATED

2442 LAKESHORE DRIVE, MUSKEGON, MICH.

TRANSFORMERS & INSTRUMENTS

1010 COMPARISON BRIDGE RAPID TV PARTS TEST

NO. 1030 LOW FREQUENCY

NO. 1140 NULL DETECTOR AMPLIFIER MODEL

NO. 1180 A.C. SUPPLY I VOLT TO 100 VOLTS AT 60 CYCLES

NO. 1170 D.C. POWER SUPPLY DIRECT CURRENT UP TO 500 MA

NO. 1110 A INCREMENTAL Inductance Bridge

FOR CHECKING TELEVISION AND COMMUNICATION COMPONENTS WITH ACCURACY UNDER LOAD.

This bridge has an impedance range of one millihenry to 1000 henries in five ranges. The inductance values are read directly from a four dial decade and multiplier switch. Range of this instrument can be extended to 10,000 henries through the use of an external resistance.

The inductance accuracy is within plus or minus 1% through the frequency range from 60 to 1000 cycles. For the largest multiplier at 1000 cycles, the accuracy of the bridge is decreased to 2%. 60 or 50 cycles line frequency is generally used with this bridge.

On the 1000 henries range, the D.C. is limited to 20 MA. On the 100 henries range the D.C. is limited to 200 MA. On all lower ranges, the circuit can be one ampere maximum.

"PRODUCTS OF EXTENSIVE RESEARCH

HI FIDELITY 1/2 DB 20-30000 CYCLES

TOROIDAL INDUCTORS 60 CPS. TO I MC.

POWER TRANSFORMERS

HERMETICALLY SEALED TO MEET MIL-T-27 SPECS.

SUB MINIATURE HERMETICALLY SEALED TRANSFORMERS

SEND FOR LATEST CATALOG! FREED TRANSFORMER CO., INC. DEPT. DE 1718-36 WEIRFIELD ST., (RIDGEWOOD) BROOKLYN 27, NEW YORK

www.americanradiohistorv.com

NEW STEVENS THERMOSTAT

- close temperature control
- clean make and break

• fast response

Compactly designed for use in communications equipment, electronic devices and apparatus demanding a high degree of temperature stability, Stevens Type C* thermostats feature an electrically independent bi-metal that responds only to heat from controlled device.

Typical temperature curve at left shows how this construction completely eliminates artificial cycling or life-shortening "jitters." Current flows readily through stainless steel or alloy contact spring . . . does not pass through high resistance bi-

metal. Contacts open only when bi-metal overcomes spring pressure and friction of bi-metal strip against contact spring surface-for a clean, positive break.

Components are permanently riveted to dimensionally stable Alsimag base to further insure against erratic operation. Heavy-

duty silver contacts assure long life.

Standard and hermetically sealed Stevens Type C thermostats are carefully pre-calibrated in pots simulating actual service conditions; spot life-tests assure quality control. Specify Stevens Type C thermostats for closer temperature control-longer life. A-2299 * PATENT APPLIED FOR

STEVENS manufacturing company, inc. MANSFIELD, OHIO

TUBES AT WORK

Control point for DuMont telecolor installation at St. Clare's Hospital in New York City. Camera control and 7-inch color monitor are on top shelf, with power supply and sync generator below

with coaxial RG-11/U cable. Use of 180 fields per second gave stable, flickerless images in the closed-wire system.

Cloud Base and Top Indicator

THEORETICAL STUDIES at Evans Signal Laboratory in 1945 indicated that radar operating at approximately one centimeter should detect clouds. An experimental radar set operating at 1.25 centimeters was built at the Fort Monmouth, N. J. Laboratory and the results were encouraging.

Clouds have been detected as high as 46.000 feet and several layers of clouds have been detected and the height of the bases and tops of the layers determined. The accuracy of height information has been checked by means of test flights and found to be exceptionally good.

An A-scope indicator showing intensity of cloud echo versus height was used originally as the only indicator. Later a facsimile-type recorder was adapted to print the video information and thereby obtain a permanent record of the height of bases and tops of cloud layers.

Development models of the AN/TPQ-6 are being built by Bendix Radio for the Signal Corps. Three systems are being made with fixed vertical beam and one system

give your sets *extra* sales appeal

Television purchasers need no introduction to Stainless Steel... they've become acquainted with its light weight and superior strength in hundreds of home products. Used for picture tube cones, it gives salesmen an extra talking point in favor of your set.

Customers will be pleased to hear that Stainless cones weigh at least one-third less than all-glass cones, yet they are stronger and less susceptible to the dangers of implosion and breakage.

The weight reduction that Stainless makes possible is highly important from the manufacturing standpoint. It materially reduces the cost of handling, packing and shipping picture tubes and sets.

A new grade of U·S·S Stainless Steel-U·S·S 17-TV-has been developed especially for television applications. The unique characteristics of this new Stainless grade make possible the fusing of glass faceplate and neck to the metal cone with an airtight seal.

If you are interested in Stainless Steel for picture tubes, take advantage of the information assembled during development of U·S·S 17-TV. Send your request to United States Steel Corporation Subsidiaries, 2210 Carnegie Building, Pittsburgh 30, Pennsylvania.

AMERICAN STEEL & WIRE COMPANY, CLEVELAND · CARNEGIE-ILLINOIS STEEL CORPORATION, PITTSBURGH COLUMBIA STEEL COMPANY, SAN FRANCISCO · NATIONAL TUBE COMPANY, PITTSBURGH · TENNESSEE COAL, IRON & RAILROAD COMPANY, BIRMINGHAM UNITED STATES STEEL SUPPLY COMPANY, WAREHOUSE DISTRIBUTORS, COAST-TO-COAST · UNITED STATES STEEL EXPORT COMPANY, NEW YORK

For Screw Machine **HYSOL** 6000 Components, Gears and Punched Press Parts

A New Insulating Material with **Outstanding Electrical Properties**

An extremely high dielectric strength coupled with resistance to moisture and chemical attack make this new material ideal for electrical insulation. Hysol 6000 has good dimensional stability and does not require fabric backing. Available in rod, tube, sheet and casting resin form, Hysol 6000 may be exposed to 140° C for 100 days without embrittlement. Write for technical details and samples.

ELECTRICAL PROPERTIES

Power Factor Dielectric Constant Loss Eactor **Dielectric Strength** Arc Resistance

3.70 at 60 cycles 0.009 at 60 cycles 350 volts/mil. 135 seconds PLANTS AT OLEAN, AND

0.005 at 60 cycles

houghton laboratories. inc. OLEAN, NEW YORK

135

KENYON Fits Your Production To A ""T"

KENYON "T's"-high quality, uniform transformers, are your best bet for development, production and experimental work. For over 20 years, the KENYON "K" has been a sign of skillful engineering, progressive design and sound construction.

Now — reduce inventory problems, improve deliveries, maintain your quality — specify KENYON "T's," the finest transformer line for all high quality equipment applications.

New Catalog Edition! Write Today! KENYON new modified edition tells the com-

plete story about specific ratings on all transformers. Our standard line saves you time and expense. Send for your copy of our

latest catalog edition now!

TRANSFORMER CO., Inc.

840 BARRY STREET · NEW YORK 59, N. Y.

Dependable

uality

NEW TURRET SOCKET **ASSEMBLIES**

Designed for our 7-pin and 9-pin miniature tube sockets. Permit compact sub-assembly wiring at base of socket. Cadmium-plated brass center support has a standard length of two inches. Silver-plated brass terminal studs. Available either with holes through which leads can be drawn, or with solid studs. Center supports of varying lengths and other types of terminals can be supplied to manufacturers in quantity. Write for drawings.

Address export inquiries to Export Div., Dept. E-1250

December, 1950 --- ELECTRONICS

IN CHICAGO AND NORTHERN ILLINOIS

Industries have Room to Grow

The lofty oak from a small acorn grows"

room for deep roots and spreading branches. And room

to grow is as essential to industry as it is to mighty oaks.

Here in an area of 11,000 square miles, Chicago and Northern Illinois, there is a multitude of desirable plant sites all within easy access to the greatest industrial center of the United States, and yet all offer that advantage which is so essential in these days of industrial expansion—decentralization and room to grow.

Add to this the tremendous facilities in Chicago and Northern Illinois for transportation, marketing, research, education, culture and good living and you have a combination of industrial advantages unequalled elsewhere in the world.

TEST / DUS

IINa

Whether the requirements of your business are those of a characteristically compact industrial area or those to be found in smaller but easily accessible cities beyond, the Chicago and Northern Illinois area offers the wide diversity to include the type of space you need.

A LEFTER TO US.... describing your requirements will bring you a careful analysis of this area's advantages as they apply to your business. Or, if you wish, we will send you a carefully screened list of the available buildings or sites that would be suitable for your operations, based on the information you give us. We keep all such inquiries confidential. Just write us.

Industries in the Chicago Area have these outstanding advantages: Railroad Center of the United States • World Airport • Inland Waterways • Geographical Center of U. S. Population • Great Financial Center • The "Great Central Market" • Food Producing and Processing Center • Leader in Iron and Steel Manufacturing • Good Labor Relations Record • More Than 2,600,000 Kilowatts of Power • Tremendous Coal Reserves • Good Government • Good Living • Good Services for Local Tax Dollars,

TERRITORIAL INFORMATION DEPARTMENT

Marquette Building—140 South Dearborn Street, Chicago 3, Illinois—Phone RAndolph 6-1617

COMMONWEALTH EDISON COMPANY • PUBLIC SERVICE COMPANY OF NORTHERN ILLINOIS WESTERN UNITED GAS AND ELECTRIC COMPANY • ILLINOIS NORTHERN UTILITIES COMPANY

ELECTRONICS - December, 1950

TUBES AT WORK

(continued)

That's what this versatile interval timer by Haydon® says when its buzzer sounds off. This audible signal at cycle completion — sounds continuously until manually turned off. The unit is driven by a dependable Haydon synchronous motor; is built to give constant, efficient service over thousands of cycles.

FEATURES? LOTS OF THEM!

1. Many intervals available with a wide range of motor speeds and minor variations in design. 2. Optional buzzer for audible signal at completion of cycle; sounds continuously until manually turned off. 3. Load contact ratings: 10A, 250 VAC; 1/2 HP, 250 VAC. 4. Unusually compact design; 3-53/64" x 2-55/64" x 1-25/32". 5. Snap action device for quick break. 6. Operates at peak efficiency in any mounting position. 7. Designed for use in tight spaces.

ALL HAYDON TIMERS GIVE YOU

these features of the dependable Haydon motor Total enclosure — Very small size — Slow (450 rpm) rotor for long life, quiet operation—Controlled lubrication with separate systems for rotor and gear train — Mounting and operation in any position.

TRADE MARK REG. U. S. PAT. OFF.

For complete design and engineering specifications, write for catalog: Timing Motors No. 322 - Timers No. 323 - Clock Movements No. 324. Yours without obligation.

2436 ELM STREET TORRINGTON, CONNECTICUT

Radar indicator, recorder, and amplifier used for recording height of cloud bases and top

with the antenna positionable in azimuth and elevation. The chief difference between the experimental and development models is the The development wavelength. models operate at 0.86 cm (about 34,000 mc) and are the first Signal Corps radars to operate at this wavelength.

A few of the chief characteristics of the systems are noted below:

	Experimental Model	Development Models
Wavelength Frequency Magnetron Antenna	1.25 cm 24,000 mc 3J21 60-in. Para-	0.86 cm 34,000 mc X7107 7 ft. Metallic
	bola	Lens 7 ft. Parabola (4th System)
Range	50,000 feet	60,000 feet 100,000 feet (4thSystem)
Pulse Length Pulse Rate	1 μsec 400 cps	1 and 0.2 μsec 492 and 2,460
Beamwidth	0.6 deg	0.3 deg

Cloud information obtainable by radar can be of value both in aviation as a flying aid and in meteorology for the study of cloud structure. Development is continuing with the aim of standardizing on the best type of radar cloud detector for eventual field use by the Joint Services.

Capacitance-Controlled Recorder

FOR MANY INDUSTRIAL and laboratory processes, an indication of minute current is not sufficient and a graphical record is required. Most of the existing systems suffer from limitations, the majority of which are associated with the difficulty of operating a pen over a paper surface with the small power available

if it's TAPE...it's PRESTO if it's PRESTO...it's the BEST

PRESTO PORTABLE RECORDER PT-900

Combining the features of machines costing hundreds of dollars more, the PT-900 answers the need for a recorder of ultra-high fidelity in a completely portable, compactly designed unit. Equipped with separate amplifiers for recording and monitoring; individual heads for erase, record, playback; three microphone input; dual speed (15" and $7\frac{1}{2}$ /sec.). Frequency response from 50 to 15,000 cps.

PRESTO PORTABLE RECORDER RC-10/14

This machine is identical to the RC-10/24, except for panel size and selector control. With a panel 19''x 14'', the RC-10/14 is shown mounted in a durable, leatherette carrying case. Weighing just 68 pounds, this tape transport mechanism has all the audio quality, speed regulation and reliability of a fine console type unit, at a cost far below a studio recorder. PRESTO amplifier (model 900-A2), as shown with model PT-900, is recommended.

PRESTO RACK MOUNTED RECORDER RC-10/24

The number one choice of engineers seeking the finest tape machine for relay rack mounting. Rugged construction and precision engineering combine to bring almost faultless operation. Push-button control, three magnetic heads, speeds of 15" and $7\frac{1}{2}$ "/sec.; fast-forward and rewind speed of 250"/sec.; frequency response to 15,000 cps. Accommodates reels up to $10\frac{1}{2}$ " in diameter. Panel size: 19"x $24\frac{1}{2}$ ". Constant tape tension assured by torque motors. Illustrated with the PRESTO 900-A2 amplifier, recommended for use with this recorder.

AMERICA'S MOST⁷COMPLETE SELECTION OF FINE TAPE RECORDERS

RECORDING CORPORATION Paramus, New Jersey

In Canada: Walter P. Downs, Ltd., Dominion Square Bldg., Montreal, Canada Overseas: M. Simons & Son Company, Inc., 25 Warren Street, New York, N. Y.

with SPEER GRAPHITE ANODES

Tubes with Speer graphite anodes take accidental or deliberate overloads in their stride—cut tube damage to a minimum!—Here's why: graphite's high thermal conductivity prevents hot spots, fusing, and overheating of other tube elements. Grids run cooler. Tubes give long trouble-free service with 200% to 300% higher potential output.

Speer graphite anodes won't warp, either. Closely matched tubes can be manufactured. Frequency drift hits new lows. Stability of inter-electrode capacitances is assured.

For short wave and FM transmitters, diathermy, vhf, motor control, electrostatic precipitation, or wherever power tubes are used in electronic equipment, specify tubes with graphite anodes.

December, 1950 - ELECTRONICS

you CAN BE SURE.. IF IT'S Westinghouse

Transformer Space-saving problem

Here's a space-saving problem ... and another example of how Westinghouse applies engineering experience to handle all types of transformer problems.

The problem: To build a more compact filament transformer for use with Phanotron rectifier tubes.

First, the transformer case, core and coils had to be made smaller.

Second, the large standoff insulator between the transformer case and tube socket had to be eliminated. Because the previous case was metal, a large standoff insulator had been used to keep the tube socket, mounted on top of the transformer case, 11,000 volts from ground.

The Westinghouse solution: MOLDARTA and Type C HIPERSIL cores, two Westinghouse engineered products.

Westinghouse Type C HIPERSIL cores, 1/3 smaller

than ordinary cores, easily fit the smaller MOLDARTA transformer case.

MOLDARTA, a low power factor, low loss material, also served as the perfect insulator. Thus the large standoff insulator was eliminated . . . the desired compactness was attained . . . and a difficult spacesaving problem was solved.

If you have a tough transformer problem, take advantage of the facilities of Westinghouse for quick, practical solutions. Transformers specially designed for all types of electrical and electronic circuits, as well as a wide selection of standardized designs... produced in quantity... with quality. Call your nearby Westinghouse representative, or write Westinghouse Electric Corporation, P. O. Box 868, Pittsburgh 30, Pennsylvania. J.70569

Westinghouse

ELECTRONICS — December, 1950

TUBES AT WORK

(continued)

WORKSHOP

.

PARABOLIC ANTENNAS

Recent installations of Workshop Parabolic Antennas have replaced hundreds of telephone lines and several coaxial cables. Railroads, oil companies, and broadcast stations report remarkable savings in installation, operation, and maintenance costs.

The Workshop can supply parabolic antennas in a wide range of types, sizes, and focal lengths, plus a complete engineering service.

PARABOLAS — Precision-formed aluminum reflectors.

- **MOUNTINGS** Various types of aluminum reinforced mountings can be supplied with all antennas.
 - R. F. COMPONENTS Precision machined and heavily silver plated. Critical elements protected by low-loss plastic radome.
 - PATTERN and IMPEDANCE DATA A series of elaborate measurements of both pattern and impedance are made to adjust the settings for optimum performance.
 - **POLARIZATION** Either vertical or horizontal polarization can be obtained easily by a simple adjustment at the rear of the reflector.

ENGINEERING and CONTRACT SERVICE — If your product or service requires high-frequency antennas, get in touch with the WORKSHOP. As the pioneer and acknowledged leader in this field, we can help you. Be it research, design, test, or production, our highly-skilled staff, backed by the finest laboratory equipment in the industry, can solve your antenna problem with a minimum of time and expense. Write, or phone Needham 3-0005. No obligation.

The WORKSHOP ASSOCIATES, Inc.

Specialists in High Frequency Antennas 135 Crescent Road, Needham Heights 94, Massachusetts from low-current circuits. It is claimed that a new instrument overcomes these difficulties and provides a robust and accurate recorder which will operate in any circuit where an indicating instrument can be used.

The instrument developed by Fielden (Electronics) Ltd. of England, and described in *Electronic Engineering*, consists of a servooperated mechanism which is positionally controlled by a moving coil, moving iron vane or dynamometer movement. The pointer of the normal meter movement is replaced by a light vane which acts as one plate of a variable capacitor, another similar vane, arranged to be

Any current that deflects a normal meter movement can be recorded by the Fielden Servograph

turned by the servo mechanism, moves in the same arc as the meteroperated vane. The two are maintained at a constant spacing by an electronic capacitance relay which controls the servo motor. The current to be measured has to provide only enough energy to deflect a normal meter movement and the servo mechanism locates the pen arm with precision at the resting place of this movement.

The capacitance relay employed consists of an oscillator in which the feedback circuit is arranged as a capacitance-dividing network, of which the meter capacitor forms one arm and an internal preset capacitor another. When one capacitor is larger than the other the feedback is positive, and when one is smaller than the other the feed-

December, 1950 — ELECTRONICS

OTHER WORKSHOP ANTENNAS

- Aeronautical Ground Station For aircraft communications — omnidirectional.
- Directional and Bi-Directional For police, highway patrol, railway, forestry, utilities, oil fields. Beacon

For fire, police, taxicab, and private fleet communications. TV, FM and Amateur

WILCOX ... FIRST CHOICE of HAWAIIAN AIRLINES

VHF AIR-BORNE COMMUNICATIONS

Hawaiian Airlines selected the WILCOX TYPE 361A COMMUNICATIONS SYSTEM for all aircraft. This consists of a 50 watt transmitter, a high sensitivity receiver, and a compact power supply, each contained in a separate ½ ATR chassis. Transmitter and receiver contain frequency selector with provisions for 70 channels . . . ample for both present and future needs.

VHF GROUND STATION PACKAGED RADIO

Hawaiian Airlines selected the WILCOX TYPE 428A FACTORY PACKAGED STATION for all ground stations. This consists of the WILCOX 406A fixed frequency 50 watt transmitter, the WILCOX 305A fixed frequency receiver, the WILCOX 407A power supply, the WILCOX 614A VHF antenna, telephone handset, loudspeaker, desk front, typewriter well, and message rack.

DEPENDABLE COMMUNICATIONS FOR THE WORLD'S AIRLINES

During recent months, many of the world's foremost airlines, UNITED, EASTERN, TWA, MID-CONTINENT, BRANIFF, PIONEER, ROBINSON, and WISCONSIN CENTRAL have placed volume orders for similar communications equipment. No greater compliment could be paid to the performance, dependability, and economy of WILCOX equipment than to be "**FIRST CHOICE**" of this distinguished group.

Write **Today** for complete information on the Type 361A VHF Air-borne Communications System and the Type 428 Packaged VHF Ground Station.

WILCOX ELECTRIC COMPANY

KANSAS CITY 1,

MISSOURI, U.S.A.

Type 428 Packaged VHF Station

ELECTRONICS — December, 1950

In the shop ... 28 ranges in one case to locate circuit troubles on production equipment. On the bench ... 28 ranges in one case for checking electrical equipment during manufacture. In the lab ... 28 ranges in one case immediately available for research and development work.

28 Instrument Ranges

D-C VOLTS: 100 mv, 1/10/50/200/500/1000 volts (20,000 ohms per volt).

- A-C VOLTS: 5/15/30/150/300/750 volts.
- D-C CURRENT: 50 microamps; 1/10/100 milliamps; 1/10 amps.
- A-C CURRENT: .5/1/5/10 amps. RESISTANCE: 3000/30,000/300,000 ohms; 3/30 megohms.

Stock Accessories Available for Extending Above Ranges

It does so much, so well, for so little. Check your Weston Representative for full details or see your local jobber. Weston Electrical Instrument Corporation, 618 Frelinghuysen Avenue, Newark 5, New Jersey... manufacturers of Weston and Tagliabue Instruments.

Albany • Atlanta • Boston • Buffalo • Charlotte • Chicago • Cincinnati • Cleveland • Dallas • Derver • Detroit • Houston • Jacksonville • Knoxville • Littie Rock • Los Angeles • Meriden • Ninneapolis • Newark • New Orieans New York • Oriando • Philadelphia • Phoenix • Pittsburgh • Rochester • San Francisco • Seattia • St. Louis • Syracuse • Tuisa • Washington, D. C. • In Canada, Northern Electric Company, Ltd., Powerlite Devices, Ltd.

ELECTRONICS — December, 1950

PHALO **Offers ASSURED QUALITY**

All PHALO plastic insulated wire and cables, cord sets and other assemblies have one characteristic in common . . . they are all quality assured! The latest in testing equipment and methods guarantee this to every PHALO customer.

Your inquiry will have our prompt attention!

TUBES AT WORK

(continued)

back is negative. The circuit is so arranged that it is in oscillation when the meter capacitor is the smaller, and any conditions which cause the meter-operated vane and the servo-operated vane to close up together put the circuit out of oscillation.

The capacitance relay controls the direction of rotation of the servo motor, which is suitably geared to the pen arm of the recorder, and to the servo-operated vane in the instrument. The whole arrangement thus provides a system which maintains the two capacitor plates at constant spacing and where any electrostatic attraction between two vanes has no effect on calibration accuracy.

Operation

Let it be assumed that some increment in current has changed the position of the indicating movement. If its movement is downward, its vane leaves the servooperated vane. Conversely, if its movement is upward, it moves up to and rests against the servooperated vane. In either event the motor starts to rotate in one direction or the other, moving the servo vane to the new position.

The circuit is so adjusted that when the two plates are positioned 0.01 inch from one another the voltage present at the servo vane pulls the meter vane towards it, but in doing so switches off the oscillator and the electrostatic attraction. The meter vane starts to return to its original position, but in doing so switches on the oscillator, and the cycle is repeated. The result is that the meter vane is maintained in oscillation at several cycles per second in a very small arc of about 0.001 inch at its periphery and the servo vane remains stationary.

The meter vane takes up a mean position slightly towards the servo vane, but this disturbance is constant over the whole scale and, consequently, does not affect calibration accuracy. The fact that the meter movement is in oscillation overcomes any tendency to pivot sticking, and the accuracy is equal to that of a movement which is being very gently tapped throughout the readings.

By arranging the capacitor plates in the vertical plane the circuit

December, 1950 -- ELECTRONICS

Uncle Sam's latest jeep as quiet as proverbial mouse, because of AEROVOX

Interference Filters

• The chart sums it up. Note how radio interference generated by the ignition system and other electrical equipment is suppressed well in excess of requirements.

Uncle Sam's new jeep includes The Electric Auto-Lite Company's 24-volt waterproof electrical equipment. It must operate efficiently even under water. And radio interference must be minimized in the interests of dependable military communications. Long hours of cooperative research and engineering were spent on this noise-suppression problem. The main considerations were filters to minimize interference originating with the voltage regulator, the generator and the ignition system. Aerovox finalized the complete answer based on the three major units here presented.

And thoroughly waterproof, weatherproof and shockproof, of course.

• Capacitance applications such as this are all in the day's work for Aerovox engineers. Whatever your capacitance problems and requirements may be, Aerovox will fit the right capacitors to the right applications. Address Dept. FE.

Aerovox Type 89ZAY using a metallized paper capacitor and mounting inside voltage regulator case to work in conjunction with IN-127.

Aerovok Type IN-127 mounted inside voltage regulator (Arrow No. 1) and acting as interference eliminator for voltage regulator and generator systems.

Aerovox IN-125 which mounts on bulkhead of jeep (Arrow No. 2) and suppresses interference originating in ignition system.

ELECTRONICS - December, 1950

DUAL - HEAV Y DU REGULATED DC SUPPLIES

VFEATURES

- J DUAL regulated outputs, continuously variable, 0 to 600 volts.
- J Maximum current 200 milliamperes each, or 400 combined.
- Regulation better than .5%.
- 🖌 6.3 volts AC at 10 amperes centertapped.
- Ripple voltage less than 10 millivolts. Stabilized bias sup-
- ply.

MODEL D6 POWER SUPPLY Dual Output . . . Heavy Duty ✓ Request Bulletin No. 53 for Detailed Specifications

December, 1950 - ELECTRONICS

AMERICAN ELECTRICAL

HEATER COMPANY DETROIT 2, MICH., U.S.A.

110-1

the regulation of

the temperature of an electric soldering iron. When placed on and connected to this

temperatures.

stand, iron may be maintained at working tem-

perature or through ad-

justment on bottom of stand at low or warm

For descriptive literature write

COMPLETE LINE OF CORES TO MEET YOUR NEEDS

Now Available!

MOLYBDENUM PERMALLOY

POWDER CORES*

- ★ Furnished in four standard permeabilities — 125, 60, 26 and 14.
- ★ Available in a wide range of sizes to obtain nominal inductances as high as 281 mh/1000 turns.
- ★ These toroidal cores are given various types of enamel and varnish finishes, some of which permit winding with heavy Formex insulated wire without supplementary insulation over the core.

ELECTRONICS - December, 1950

HIGH Q TOROIDS for use in Loading Coils, Filters, Broadband Carrier Systems and Networksfor frequencies up to 200 KC

For high Q in a small volume, characterized by low eddy current and hysteresis losses, ARNOLD Moly Permalloy Powder Toroidal Cores are commercially available to meet high standards of physical and electrical requirements. They provide constant permeability over a wide range of flux density. The 125 Mu cores are recommended for use up to 15 kc, 60 Mu at 10 to 50 kc, 26 Mu at 30 to 75 kc, and 14 Mu at 50 to 200 kc. Many of these cores may be furnished stabilized to provide constant permeability $(\pm 0.1\%)$ over a specific temperature range.

* Manufactured under licensing arrangements with Western Electric Company.

All RCA television components are "originals," with electrical and mechanical specifications rigidly held to coordinated circuit and tube RCA Application Engineers are ready to work with you in the adaptation of RCA television components to your specific designs. For further information write or phone RCA, Commercial Engineering, Section L42S, Harrison, N. J., or your nearest RCA field office.

(EAST) Harrison 6-8000, 415 S. 5th St., Harrison, N. J. (MIDWEST) Whitehall 4-2900, 589 E. Illinois St., Chicago, III. (WEST) Trinity 5641, 420 S. San Pedro St., Los Angeles, Calif.

TUBES AT WORK

(continued)

operates on a change of spacing of a capacitor with a very narrow gap, and the increment in capacitance is relatively large. This factor enables the equipment to be preset and eliminates external controls. Any slight change in the performance of the capacitance relay due to tube ageing or renewal appears as a minute change in the operational distance of the capacitor gap, which if readable at all, would be taken up by the natural readjustment of the set zero on the pen of the graph recorder. The accuracy of the completed device is just as good as the basic meter movement used for its construction.

The instrument does away with flimsy pen movements and their attendant constant ink troubles. Inaccuracies due to change in pen weight as the ink pot level changes are completely eliminated. Another feature is the fact that owing to the servo-operated mechanism there is no tendency for the pen to stick, and vertical transients are recorded with accuracy. The servooperated mechanism provides ample power for the operation of cam switches which can be set to operate at any level. The instrument is capable of giving a control switching action on a differential of 0.1 percent of scale reading which, in the case of a 0-50 μa movement, allows a control switching action on 0.05 μa .

Portable Geiger Counter

BY EDWARD REIBLE

Sales Engineer Nuclear Instrument and Chemical Corp. Chicago, Ill.

AN EXTREMELY COMPACT Geiger counter weighing less than two pounds and operating from standard flashlight batteries is shown in the photograph. Detection of nuclear radiations is indi-

FIG. 1 — Flashlight - battery - powered Geiger counter provides both visible and audible indications of nuclear radiations

December, 1950 - ELECTRONICS

THE TOWER OF STRENGT

Superior construction features give LOW COST Vee-D-X sectional towers the highest safety factor of any tower in its price class.

If you have an elevated installation problem, absolute permanency of your installation is assured when you use a VEE-D-X sectional tower. Strength is a major factor. Don't take chances with structural failure. Be sure with VEE-D-X!

- Rugged, all-welded construction diagonally laced with angle iron for maximum rigidity.
- Can be erected on ground or on flat or peaked roof.
- Patented plate spaced at two foot intervals prevents twisting and affords rigidity found in no other tower.
- Safe and easy to climb.
- Completely galvanized, light weight tubular steel . . . 20 ft. section 72 lbs.

PRE-ASSEMBLED for fast, inexpensive installation

VEE-D-X towers are designed for use at any height from 10 to 140 feet. They are self-supporting up to 20 feet and, where space is limited, semi-guyed* type installations may be used at 30, 40, and 50 foot heights. Sketch at right shows the basic parts and necessary accessories for a complete installation. Three types of top mount are available. VEE-D-X towers may be ordered in separate units or as a complete package for a specific height. (Either guyed or semi-guyed.) Write the LaPointe-Plascomold Corporation of Unionville, Conn. for complete information.

*Semi-guyed towers employ one set of guy cables attached at a height of 10 ft. up the tower and anchored at a 6 ft. radius from the base.

BUILDERS OF THE WORLD'S MOST POWERFUL ANTENNAS

Top Moun

Tower Section - 20' length

Cable

Thimble

ELECTRONICS - December, 1950

VEEZDZ

IDEAL FOR COMMUNICATIONS

> MICROWAVE TELEVISION LIGHTING

New Terminal Attaching Machine-

attaches and solders various sizes and types of pre-soldered tandem terminals (supplied on reels) at rates up to 1200 per hour. Machine cuts off, clinches and solders terminals in one instantaneous operation. Eliminates handling of loose terminals, solder and flux to increase production and lower costs on long runs. Standard types available. Strong, perfectly soldered joints are assured, as absolute control of heat is maintained. Send for detailed information, enclose sample of wire and terminal now used. Address Dept. E.

For ordinary runs in moderate quantity we continue to produce

SEPARATE TERMINALS for ELECTRIC WIRES

We also make SMALL METAL STAMPINGS, exact to Customer's Prints. Modern Plant, Equipment and Methods. Precision Work. Moderate Die Charges. Prompt, Dependable Service.

12 Improvements IN NEW 1951

MODEL 0-6 PUSH-PULL

Heathkit OSCILLOSCOPE KIT

- * New AC and DC push-pull amplifler.
- * New step attenuator frequency compensated input.
- ★ New non frequency discriminating input control.
- * New heavy duty power transformer has 68% less magnetic field.
- ★ New filter condenser has separate vertical and horizontal sections.
- * New intensity circuit gives greater brilliance.
- * Improved amplifiers for better response useful to 2 megacycles.
- ★ High gain amplifiers .04 Volts RMS per inch deflection.
- ★ Improved Allegheny Ludium magnetic metal CR tube shield,
- * New synchronization circuit works with either positive or negative peaks of signal.
- * New extended range sweep circuit 15 cycles to over 100,000 cycles.
- Both vertical and horizontal amplifier use push-pull pentodes for maximum gain.

The new 1951 Heathkit Push-Pull Oscilloscope Kit is again the best buy. No other kit offers half the features — check them. Measure either AC or DC on this new scope — the first oscilloscope under \$100.00 with a DC amplifier

The vertical amplifier has frequency compensated step attenuator input into a cathode follower stage The gain control is of the non frequency discriminating type — accurate response at any setting. A push-pull pentode stage feeds the C.R. tube. New type positioning control has wide range for observing any portion of the trace.

The horizontal amplifiers are direct coupled to the C.R. tube and may be used as either AC or DC amplifiers. Separate binding posts are provided for AC or DC.

The multivibrator type sweep generator has new frequency compen-sation for the high range it covers; 15 cycles to cover 100,000 cycles. The new model 0-6 Scope uses 10 tubes in all — several more than any other. Only Heathkit Scopes have all the features.

New husky heavy duty power transformer has 50% more laminations. It runs cool and has the lowest possible magnetic field. A complete electrostatic shield covers primary and other necessary windings and has lead brought out for proper grounding.

The new filter condenser has separate filters for the vertical and horizontal screen grids and prevents interaction between them. An improved intensity circuit provides almost double previous bril-liance and better intensity modulation.

A new synchronization circuit allows the trace to be synchronized with either the positive or negative pulse, an important feature in observing the complex pulses encountered in television servicing. The magnetic alloy shield supplied for the C.R. tube is of new design and uses a special metal developed by Allegheny Ludlum for such applications applications

The Heathkit scope cabinet is of aluminum alloy for lightness of portability.

The kit is complete, all tubes, cabinet, transformer, controls, grid screen, tube shield, etc. The instruction manual has complete step-by-step assembly and pictorials of every section. Compare it with all others and you will buy a Heathkit. Model 0-6. Shipping W_{ℓ} 30 lbc Wt., 30 lbs.

-

Only

Inly

KIT

SCILLOSCOPI

Heathkit

0

New INEXPENSIVE MODEL S-2

ELECTRONIC SWITCH

Twice as much fun with your oscilloscope

wave generator over limited range. 110 Volt transformer operated comes complete with tubes, cabinet and all parts. Occupies very little space beside the scope. Better get one. You'll enjoy it immensely. Model S-2. Shipping Wt., 11 lbs.

TURES AT WORK

(continued)

COMPONENT

Until recently there has been no one place where components specifically designed for plug-in unn construction were available. It was necessary f r en-gineers to design and have parts custom made or improvise with standard components in makeshift arrangements. To provide the type of design necessary, Alden engineers are working with the industry developing a whole series of components specifically for plug-in construction.

The first problem undertaken by Alden engineers was a base specifically for plug-i v unit construction. . . . the conventional tube type bases proved unsa'is actory; they didn't stand up, the boss broke and the pins bent. To overcome these difficulties Alden designed an entirely new base. . . . the Non-Interchangeable Series bases have no molded center boss to break, pins are strong and stubby-do not bend or

break out and are Non-Interchangeable to prevent danger of mismating and costly burned out units.

Out of this work we feel that Alden's is the one place where you now can take your unitizing problems and obtain the standard bases, sockets, mountings and housings to answer most of your needs. As illustrated below, the Alden Non-Interchangeable and miniature bases have tremendous flexibility and are fast becoming the standard for plug-in construction.

The scope of the Alden "20" base as a mount-ing medium is almost unlimited . . . cards, brackets and bails can be easily and securely attached with standard assembly tools. For holding components and miniature tube sockets the Alden Terminal Card Mounting System on the Alden Base gives ease of layout and wiring assembly. Open units for heat dissipation or shielded units for protection against dust or rough handling both lend themselves to mount-ing on the Alden Base with the same facility. ing on the Alden Base with the same facility.

11 PIN NON-INTERCHANGEABLE BASES & SOCKETS

Smaller than the "20", but with the same fea-tures, the Alden "11" . . rugged for long life, non-interchangeable to prevent burned out units and isolate critical voltages or signals, variable retention force of pins and socket clips to with-stand heavy vibration or selected for easy re-moval if necessary, and locating rings and alignment indicator for quick rotation to inser-tion position, makes it practical and economical to incorporate plug-in unit construction in your design. design.

7 AND 9 PIN MINIATURE BASES & SOCKETS

Miniature and sub-miniature circuits, potted circuits, and miniaturized components easily become compact, sturdy plug-in units with the Alden 7 and 9 pln miniature plug-in bases and sockets. A wide selection of housings and mounting components are available for use with these bases.

Of particular importance is the Alden Terminal card Mounting System. Miniature cir-cuits can be assembled on the card and the as-sembly can be mounted on the base to form a complete miniature unit.

Write for new booklet on "Components for Plug-in Unit Construction."

Low-cost Geiger counter weighs only two pounds

cated both visibly and audibly with a high degree of accuracy.

The Geiger-Muller tube shown in the schematic, Fig. 1, is filled with a mixture of argon and butane. It has a stainless-steel cathode and a two-mil tungsten anode. The tube has a wall thickness of five mils and is mounted behind a thin brass window in the bottom of the instrument. Gamma rays and beta particles of medium energy may enter the tube and be counted.

High a-c voltage is supplied to the 5785 rectifier by the vibratortransformer unit. A nonlinear tapped-Thyrite resistor serves as a voltage regulator. Creation of the order of 10¹⁰ ion pairs in the G-M tube causes a voltage pulse in the circuit.

The neon-tube elements are held just below striking potential. The pulse from the G-M tube causes the neon to discharge, giving a visible flash and causing additional current to flow from a charged capacitor. This results in an audible count in the phones. The flashlight cells furnish approximately 200 mils.

SHOP SHORTCUTS

WATER-SOLUBLE crystals such as the EDT type are cut with a "string saw" in which a wet string is drawn continuously across the crystal. A tightly stretched endless string passes over four pulleys, one of which is driven by a motor, at a speed of about 100 fpm. The lower part of the string passes through water, most of which is removed by the sponge. Pressed against the string by a motor-driven feed, the crystal is accurately dissolved along

Here's magnetic data on .001" coils !

For the first time, manufacturers of high frequency electrical equipment now can have accurate magnetic data on silicon steel coils as thin as .001".

Operating advantages of the newest grades of Armco Thin-Gage Silicon Steel are demonstrated by a series of tests made in Armco's Research Laboratories. Magnetic characteristics of .001" steel have been accurately determined up to 200,000 cycles a second. These tests reveal exceptional permeability from lowest to highest inductions; low core loss over a wide range of frequencies; and adequate insulation for even the highest volt-per-turn designs.

Fully annealed

Armco Thin-Gage Electrical Steel is given a fullannealed treatment and insulated at the mill. No additional annealing is necessary except for relieving coiling strains after cores have been wound.

Whenever your applications involve changes in magnetic flux equivalent to frequencies from 400 to as high as 1,000,000 cycles a second, this steel has five definite advantages.

1. Supplied in coils 123/8" wide for high-speed manufacturing operations.

2. Skin-effect is not appreciable at high frequencies.

3. Stacking factor is high (800 sheets of Armco .001" insulated steel make a stack only 1" high).

4. Carlite Insulation on both sides assures minimum interlamination loss.

5. Hysteresis is exceptionally low for such thin steel.

Whether you are manufacturing high frequency devices or your equipment is in the "idea stage," be sure to look into the advantages of Armco Thin-Gage Silicon Steel.

ARMCO STEEL CORPORATION

6140 Curtis Street, Middletown, Ohio • Plants and sales offices from coast to coast • The Armco International Corporation, world-wide.

ELECTRONICS - December, 1950

TUBES AT WORK

UNCASED COILS

Toroids close-tolerance adjusted to your specifications. Coils are heat cycled to maintain accuracy even in toughest service conditions. Toroids have low T/C characteristics, extremely low magnetic pickup and external field. Coils may be supplied with balanced windings, also can be tapped, or have multiple winding for tight coupled impedance transformation.

PLASTIC COATED TOROIDS

Another C A C First. Our most progressive customers specify thermo-setting plastic coating for their coils, transformers, and tuned circuits. This tough resilient covering protects the coils and seals out moisture. Just another reason why the people who use toroids year after year specify C A C Toroidal Components.

CASED TOROIDS AND FILTERS

Rugged steel cases, construction meeting military specifications. Coils giving highest Q per unit volume and special capacitors provide sharper and more stable filters with a compactness never before possible. A special design for your every requirement.

Send for this FREE booklet today.

(continued)

its line of contact with the string. To obtain maximum cutting speed and eliminate human error, the saw is made self-adjusting. The string moves past a lever which operates an electrical contact. If the string is bent by excessive crystal feed the string moves a lever, thus closing the contact. Battery current then flows through a relay causing it to open the feed-drive motor When the two pulleys circuit. nearest the crystal are a foot apart, the contact lever is usually set to operate for a maximum string deflection of 3/2 in.

> Bell Telephone Laboratories, Inc. New York, N.Y.

DIRT in a velocity microphone can be detected readily by listening to the output of the microphone while it is swung at arm's length. If the microphone is clean, nothing but the rushing sound of air will be heard. If the microphone is dirty. the output will be characterized by a scratchy roughness.

Broadcast Equipment Section Radio Corp. of America Camden, N. J.

VELOCITY microphone failures caused by the presence of dirt can be practically eliminated by the use of a fine-mesh screen of magnetic The screen is slightly material. curved and is placed on each side of the ribbon assembly of the microphone. The wires become magnetized from the leakage field and catch any magnetic particles which penetrate the outer screen.

Broadcast Equipment Section Radio Corp. of America Camden, N. J.

December, 1950 - ELECTRONICS

Veeder-Root COUNTERS

HERE'S THE "\$1,000,000 QUESTION": "Can my product be made to COUNT to the greater profit of its users?"

Now ask for the answer from a Veeder-Root engineer, experienced in discovering and developing hidden COUNTability in countless products. He'll tell you, quickly and frankly, whether your product has this modern merchandising magic...and show how to bring it out. Count on him to show you how to build Veeder-Root Counters into your product as integral parts ... and then see how sales will build up! Write.

DIVEDRAP

... into this million-dollar question!

MEDIUM SIZE COUNTER (ratchet orrevolution) is built into tabulators, shoe machines, punch presses, postage meters, knitting machines, die casting machines, compressors, and what have you? One of scores of standard V-R Counters described in 8-page "COUNT BOOK" below. Send for your copy today.

"Count Anything on Earth" VEEDER-ROOT INC., HARTFORD 2, CONN.

In Canada: Veeder-Root of Canada, Ltd., 955 St. James Street, Montreal 3 In Great Britain: Veeder-Root Ltd., Kilspindie Rd., Dundec, Scotland

MANUFACTURERS OF QUALITY WIRES AND CABLES FOR THE ELECTRICAL AND ELECTRONIC INDUSTRIES

(continued from p 126) F- 85 KC TRANSFORMER I . AN A MH С-~200 µµF 0.003 NOISE S CA PACITANCE SERIES THREE 3,000 2.000 4.000 5,000 GENERATOR IMPEDANCE IN OHMS (A) 12 AY 7 NPUT 0.05 + I + OUTPOT 25 MH TO MODE -11-TO. 1 60-80MH AMPLIFIER \$1,000 ,300 ∦ 1,300\$ ±0.1 (8)

FIG. 2-Curves in A show comparison of noise factor for various input circuits including HRO and special circuit used in Westinghouse microwave spectroscope. Circuit in B shows low-noise 85kc preamplifier

quency detects a signal at that frequency when the microwave frequency is near or on an absorption line. Moving of the absorption line, first onto and then off of the microwave frequency, causes an absorption at the Stark modulation frequency.

Figure 1 shows a block diagram of a Stark-modulation microwave spectroscope developed by Westinghouse and described by William E. Good at the 1950 National Electronics Conference in Chicago. The system operates at 85 kc with a nominal bandpass of about 1,500 cps. The bandpass may be reduced to as low as 50 cps by R-C filters, and the bandpass of the 85-kc amplifier may be narrowed to 10 kc by a crystal filter, thereby improving the signal-to-noise ratio.

The most important factor in obtaining a low signal-to-noise ratio is, however, the proper use of the crystal detector. Over the range of power involved, one milliwatt to less than one microwatt, the impedance of a typical crystal may vary from 300 to 5,000 ohmstending to flatten off at the higher resistance at low power levels, and to flatten off at the low resistance value at the higher power levels and to change rapidly in between.

The problem of designing an amplifier input circuit to match this wide range of crystal impedances requires special attention in the design of a low-noise amplifier for
POPULATION - 0

Even in the most remote areas, wings aloft are guided on their way by Aerocom's new medium range Aerophare Transmitter. This transmitter was designed and built to provide long, trouble-free service with no attendants ...

even where the total population is Zero.

AEROCOM'S

Dual Automatic Package-Type Radio Beacon

for completely unattended service. This aerophare (illustrated) consists of two 100 watt (or 50 watt) transmitters, one AK-3B keyer, one ACA automatic transfer, and an antenna tuner. (Power needed 110 volt or 220 volt - 50/60 cycles)

Frequency range 200 – 415 Kcs.: self-contained P. A. coil covers entire range, 1 "plug-in" crystal oscillator coil covers 200 – 290 Kcs., other 290 – 415 Kcs, (Self-excited oscillator coils covering same ranges are available). High level plate modulation of final amplifier is used, giving 35% tone modulation in 100 watt transmitter and 35 - 50% in 50 watt model. Microphone P-T Switch when depressed interrupts tone, permitting voice operation.

Using 866A rectifiers, unit can be operated in air temperature range 0°c to + 45°c; using 3B25 rectifiers, - 35°c to + 45°c; humidity up to 95%.

Acrocom's Automatic Transfer unit will place the "stand-by" transmitter in operation when main transmitter suffers loss (or low level) of carrier power or modulation. The characteristics of the keyed call letters are so modified on "stand-by" that a distant monitoring station can determine whether the main or "stand-by" transmitter is operating.

Unit is ruggedly constructed and conservatively rated, providing low operating and maintenance costs. Engineering data on this unit and other Aerocom communications products are available on request.

CONSULTANTS, DESIGNERS AND MANUFACTURERS OF STANDARD OR SPECIAL ELECTRONIC, METEOROLOGICAL AND COMMUNICATIONS EQUIPMENT

KING-SEELEY CORPORATION designed this Progressive-made terminal to permit the housing of its oil pressure unit to "breathe" — a feature that insures the presence of atmospheric conditions inside the housing and, consequently, accurate pressure registration.

Progressive was called in to make the terminal for two reasons. We have the engineering and production skills to make the part, in all its tricky detail, according to specification. And, secondly, we do a precise job at a cost that makes it worthwhile to do business with us.

We specialize in special fasteners. Use this specialization -- you gain all ways.

THE ELECTRON ART

(continued)

the Stark-modulation frequency. Figure 2A shows curves for several input circuits including a National HRO and a special amplifier used in the Westinghouse spectroscope for amplifying the 85-kc signals. The noise measurements were made with a Sylvania type 5722 noise diode with different values of output resistors. The series-tunnel resonant circuit appeared to give the best performance over the range of impedances encountered.

The actual circuit used in the Westinghouse microwave spectroscope amplifier is shown in Fig. 2B. It employs a 12AY7 in cascode circuit. Using the Stark-modulation system, the 23,534.71-mc line of 0^{17} C¹²S⁸² gas which has an absorption coefficient of 2.0×10^{-8} cm⁻¹, in its natural isotopic abundance, was seen to be about $2\frac{1}{2}$ times noise. The sweep rate was 2 cps and the bandpass was set at 50 cps.

Frequency measurements are made by comparing absorption lines with harmonics of a 500-mc crystalcontrolled source which is modulated by a 50-mc signal. Interpolation between marker frequencies is accomplished by a Collins 51-J communications receiver whose dial is accurate to ± 2 kc.

Field-Sequential Color Television Tube

FIELD SEQUENTIAL color-television pictures can be reproduced by a special cathode-ray tube in a way that resembles the Thomas color system of color cinematography. In the Thomas color movie system, a scene is recorded on different parts of a film through primary color filters and projected through a similar set of filters by a parallaxfree optical system that superimposes the monocolor images to form a natural-color image.

In color television, a corresponding series of black and white images, containing the light and shade values for the three primary colors, appear on different parts of the screen of a cathode-ray tube, having only one gun and one deflection system. Primary color filters are placed in front of the image sections of the tube, and the color images derived therefrom are

December, 1950 --- ELECTRONICS

High score every time with 'Safe Centers!''

In Basketball there's no better assurance of victory than a lengthy lad jumping center . . . and there is nothing that scores higher in radio, TV and other electronic circuits than SELETRON miniature rectifiers with "Safe Center" plates.

When you specify SELETRON Selenium Rectifiers you eliminate arc-over danger, short circuits and heating at the center contact point. Assembly pressure, or pressure applied in mounting the rectifier cannot affect its performance – A SELETRON feature accomplished by deactivating the area of the plate under the contact washer.

The millions of SELETRON Selenium Rectifiers in satisfactory service as original equipment in the products of leading manufacturers are millions of reasons why you can specify SELETRON and be safe!

Write us for Rectifier Bulletin No. ES-34.

RADIO RECEPTOR COMPANY, INC.

Since 1922 in Radio and Electronics

Sales Department: 251 West 19th St., New York 11, N.Y. Factory: 84 North 9th St., Brooklyn 11, N.Y.

ELECTRONICS - December, 1950

(" May "

In the field of electronics and the electrical goods industry, MOSINEE is known for its *dependable uniformity*, and its scientifically controlled physical and chemical properties, such as:

Good dielectric strength . . . proper softness or stiffness . . . high tensile or tear strength . . . creped with controlled stretch or flexibility . . . specified pH for maximum-minimum acidity or alkalinity . . . accurate caliper, density, liquid repellency or absorbency.

If you have a fabricating or processing problem involving paper, a discussion with MOSINEE technicians might prove helpful. Please write Dept. E.

MOSINEE PAPER MILLS COMPANY, MOSINEE, WIS.

"Essential Paper Manufacturers"

THE ELECTRON ART

FIG. 1—Response curves for three phosphors used in banded color television tube

superimposed on a viewing screen by a suitable projection-optical system.

Individual areas are completely scanned in sequence and it is convenient to arrange the image areas one below the other. Since primary color images must be superposed optically, it is strictly a projection system and is not applicable to direct-view television.

Fluorescent Screen

The filters used (Wratten 26, 47, and 58) have an average light transmission of only about 15 percent, so that approximately 85 percent of the light is wasted. A cathode-ray tube was constructed having three image areas capable of fluorescing in the three primary colors in response to electron bombardment. The screen consists of three phosphor bands; a blue band of zinc sulphide activated with silver, a green band of zinc orthosilicate activated with manganese, and a red fluorescing band of zinc cadmium sulphide activated with silver. The spectral distribution curves of these phosphors are shown in Fig. 1. Characteristic curves have been given for two red powders which were used in different tubes. The cutoff of Wratten filter No. 26 is also shown. A substantial portion of the energy of these phosphors falls in the unwanted orange region. It is possible that cadmium phosphates or borates would have more suitable spectral distribution.

Two systems of applying the phosphor bands have been tried. In the first, the three bands are applied separately. Each band is allowed to dry before the next is applied, and so on. The second system employs a water-tight compartment screen that fits snugly against the inside of the tube face and forms

Plus These Other Specifications

1. CONTACT RATING: 2 A, 28 V, D.C.; 2A, 115 V, A.C., 400 cycle.

2. CONTACT OVERLOAD RATING: 12 A, 28 V, 20 sec.

3. ALTITUDE RATING: Dry, inert gas, pressure filled; hermetically sealed.

4. COIL RESISTANCE: 300 and 150 ohms.

5. COIL VOLTAGE: 28 V, D.C.; amperage .1.

6. TERMINAL ARRANGEMENT: Soldered connections.

7. MOUNTING: Variable.

8. VARIATIONS: Virtually innumerable, in voltage, amperage, number of poles (4 maximum) and temperatures.

* * *

Revolutionary in design, this new miniature relay was developed to meet a highly exacting set of requirements for air, ground and marine applications, including missiles and rockets, by The Hart

ELECTRONICS — December, 1950

Manufacturing Company... producer of dependable electrical controls and devices for over half a century. It incorporates a hitherto unmatched combination of characteristics. We'll gladly work with you to develop any special variation to meet your specific need.

Write today for complete information on this new "Diamond H" relay.

The Hart Mfg. Co 202 Bartholomew Hartford, Conn.	o. 7 Ave.
Send me furth <mark>er</mark> in	formation about your new relay.
Name	
Title	
Company	
Street	
City	State

L

Socket contacts are full-floating-turn through 360°. Quick, self-centering-eases inspection.

Highly legible contact numbers on insert faces.

Inserts of latest approved high dielectric materials.

Your requirements are responsible for the 8 to 10 design advantages found in each type of Cannon Plug. That's why engineers know the specification is right when it calls for CANNON. The DP Connector Series is just one of many Cannon types -world's most complete line. Request bulletins by required type or describe connector service you need.

Since 1915 LOS ANGELES 31, CALIFORNIA REPRESENTATIVES IN PRINCIPAL CITIES

Insert arrangements are available with 2 to 45 contacts ranging from 15 amp to 200 amp capacity. Continuous shielding available in Coaxial and Twinax. Metal finish on shells for shielding and bonding . . . tin plating on aluminum. Other finishes available on special request.

Type DPD Connectors are permanent installations in rack and panel equipment . . . mate automatically . . . have weight and space-saving advantages over other connector types.

THE ELECTRON ART

three sections which are simultaneously filled with the three different phosphor materials. In either case, the screen end of the tube must be separated from the gun end for application of phosphors and then reassembled after aluminizing by customary aluminum evaporating techniques.

(continued)

The area of one color image is approximately one-ninth of the entire raster area of the tube. This means that only one-ninth of the light flux which could be made available, is utilized. The situation is even less favorable when saturation phenomena of the phosphors are taken into account. It is found that the zinc sulphide and zinc cadmium sulphide types of phosphors saturate considerably at the high current densities prescribed by the

FIG. 2-Seven-inch picture tube with three phosphor bands. Tube is useful only in projection applications, and light output is limited

spot size necessitated by the small area of one color image. Their luminous efficiency drops at high beam current densities.

In view of the small size of each color image the raster-current density of the tube is unusually large and, since the heat cannot be adequately dissipated, the screen heats up. This is most undesirable because certain zinc sulphides lose luminous efficiency at elevated temperatures. The lower field-scan rate of the sequential system helps to reduce temperature rise.

While saturation limitations may one day be overcome by new and better phosphors, improvement of light loss due to insufficient utilization of the screen area may be visualized by scanning primary areas that are larger and give more light even though their aspect ratio is incorrect, so long as appropriate

December, 1950 --- ELECTRONICS

YOUR QUESTIONS...OUR ANSWERS

May bring a solution to your

D. C. AMPLIFICATION PROBLEMS!

The Microsen D. C. Amplifier is designed for stable, accurate, and economical amplification covering an exceptionally wide range of applications. These fields of application may suggest, duplicate, or offer a solution to your particular D. C. Amplification problem.

Simple, compact and portable, the Microsen D. C. Amplifier has three different ranges in a single model. The Microsen Balance, an electro mechanical feedback amplifier, combines the advantages of high torque to current input ratio with rugged, shock-resistant construction.

Available models include Voltage, Current and Potentiometer Type Amplifiers, Direct Current Converters, Direct Current Transformers, and engineered designs to meet special requirements.

Typical applications in the field of measurement include:

THERMOMETRY in combustion research, gas turbine development, thermocouple inspection, meteorology, distillation processes.

PHOTOMETRY in fluid flow and turbulence, polar-

ELECTRONICS — December, 1950

imetry, physiology of blood and density.

GAS ANALYSIS in mixture control, efficiency of filters and detection of explosive mixtures.

ELECTRICAL BRIDGES in resistor inspection, moisture detection, conductivity measurements, vacuum gauging, transient stresses.

ELECTRONICS in tube development, vacuum gauging and wave guide studies.

ELECTROLYSIS in electrolytic plating, electrolytic process and production control.

Input elements include thermocouples, photo cells, pirani gauges, strain gauges and others. The instrument is used generally with a recorder. The output can also be applied to a suitable milliammeter indicator or to actuate automatic control relays or signal devices. Design advantages include accuracy, sensitivity, stability and high speed response.

Inquiries for modification within the useful scope of the Microsen D. C. Amplifier are invited. If possible, such inquiries should contain complete application specifications.

221

ALBANY, N. Y. ATLANTA, GA. BALTIMORE, MD. BATTLE CREEK, MICH. BINGHAMTON, N. Y. BOSTON, MASS. BUFFALO, N. Y. CHARLOTTE, N. C. CHICAGO, ILL. CHICAGO, ILL. CINCINNATI, O. CLEVELAND, 0. DAYTON, O. DETROIT, MICH. FLINT, MICH. HOUSTON, TEX. INDIANAPOLIS, IND. LOS ANGELES, CAL. MILWAUKEE, WIS. NASHVILLE, TENN. NEWARK, N. J. NEWARK, N. J. NEW ORLEANS, LA. NEW YORK, N. Y. NORFOLK, VA. PHILADELPHIA, PA. PITTSBURGH, PA. SAN FRANCISCO, CAL. ST. LOUIS, MO. SPRINGFIELD, MASS. TOLEDO, O. TORONTO, CANADA

Fort Orange Radio Dist. Co. Graybar Electric Co. Radio Electric Service Co. **Electronic Supply Corp.** Federal Radio Supply Co. The Radio Shack Corp. Radio Equipment Corp. Dixie Radio Supply Co. **Allied Radio Corporation** Walker-Jimieson, Inc. United Radio, Inc. Radio & Electronic Parts Corp. SREPCO Incorporated Radio Specialties Co. **Electronic Service Co. Geophysical Supply Company** Phillip E. Graham Co., Inc. Leo J. Meyberg Co. Radio Parts Company, Inc. Electra Distributing Co. Aaron Lippman & Co. Parr Electric Co., Inc. Radio Parts, Inc. E. B. Latham & Co. **Radio Supply Company Rumsey Electric Company Cameradio Company** Leo J. Meyberg Co. Van Sickle Radio Co. Specialty Manufacturing Co. Warren Radio Co. Powertronic Equipment Ltd.

ELECTRONS INCORPORATED 127 SUSSEX AVENUE EL rectifier and control tubes are in nearby distributors' shelves for your convenience

THE ELECTRON ART

(continued)

cylindrical lens elements are also used to gather light from the whole of the scanned area and project an image having the correct aspect ratio.

Resolution

The small size of each color image imposes exacting resolution requirements, which are inherently impossible to meet with the present threeband tube. Approximately 475 lines must be resolved in each picture, a resolution of 12 lines per millimeter. Moreover, while one color-image area is approximately in the center of the screen, the other two are towards the edges, and excessive deflection defocusing cannot be tolerated. Unfortunately, a small spot size in the center and minimum defocusing towards the edges of a screen are contradicting requirements from the point of view of tube design.

A paper describing this threeband tube and its capabilities in somewhat more detail was presented by C. S. Szecho at an SMPTE Semi-annual Convention on April 25, 1950.

Thyratron Control Circuits For Over 180-Degree Phase Shift

BY CHARLES F. SPITZER Yale University New Haven, Connectiout

OCCASIONALLY, there arises need for a phase-shift network in which a small change in one of the variables brings about a larger change in the thyratron plate current than can be obtained from the conventional phase-shift circuits. The following article shows two circuits which meet this specification and outlines design procedures for their use.

Figure 1A shows the circuit most commonly encountered. Figures 1B and 1C show the vector diagram, and the phase shift as a function of the ratio X/R, respectively. It should be noted here, that for a ratio of X/R of 0.1 the phase shift is about 168 degrees. This is a satisfactory design value for nearly all applications, allowing a variation from 168 degrees to zero degrees

December, 1950 - ELECTRONICS

For the Answer to Your Insulation Problem Look Through this Line...

• Can't guarantee that the Varflex Line will solve every insulation problem. But ... Many's the problem—large, small, unusual—that Varflex Electrical Sleeving or Tubing has solved. The Varflex range of application is vast—chances are you'll find the solution to your Electrical insulating problem somewhere in the Varflex line.

VARGLAS SILICONE. That's the insulating sleeving and tubing pioneered by Varflex—that takes temperatures ranging from 500° F above to 85° F below in its efficient, resistant stride. Lead wire and treated cord too.

VARGLAS TUBING IMPREGNATED WITH GENERAL ELECTRIC PERMAFIL. Tough, flexible, heat-resistant—available in coils. Premium tubing at a reasonable price.

VARGLAS SLEEVING AND TUBING. Numerous types and grades—including synthetic treated, varnished, lacquered, saturated, litewall and others.

VARGLAS NON-FRAY SLEEVING. Three types—may be subjected to temperatures up to 1200° F—for applications where dielectric requirements are not primary.

VARFLO TUBING AND SLEEVING. New, low-priced — for applications where unusually high temperatures are not a factor. A real economy line, this.

VARFLEX COTTON TUBING AND SLEEVING. Varnish or lacquer impregnants — for applications where Fiberglas products are not required.

SYNTHOLVAR EXTRUDED PLASTIC TUBING. Low temperature flexibility—high dielectric and tensile strength—made from a standard formulation of vinyl polymers.

SAMPLES? All you want with our compliments. For free folder of our com- plete line, just clip	
and mail this coupon.	VARFLEX Corporation, 308 N. Jay St., Rome, N. Y.
	Please send me information as well as free samples of your electrical Sleeving and Tubing.
VAPELEY	t am particularly interested in samples suitable for
CORPORATION	Name Company Street
MAKERS OF ELECTRICAL INSULATING TUBING AND SLEEVING	CityZone State

ELECTRONICS — December, 1950

 \checkmark the core is stronger, and has higher resistance to vibrations and shock.

✓ the resistance wire-made to H.H. specifications especially adapted to these resistors—is more uniformly wound so that failures under stress are eliminated.

the special alloy terminals are more securely fastened to the ceramic body by spot-welding-highly resistant to corrosion.

all wire connections are protected by a positive, non-corrosive bonding.

and...

new-blue-gray enamel coating-crazeless, thermo-shockproof gives greater protection throughout the most rugged service-longer life under extremes of humidity, salt water and severest atmospheric conditions. And by withstanding higher heat these resistors afford a greater safety factor.

The fixed, the ferrule and the flat types are especially designed for and manufactured in accordance with JAN-R-26A specifications.

SEND FOR NEW RESISTOR BULLETIN TODAY

(continued)

as R is varied from R = 10 X to R = 0.

Phase Shift to 270 Degrees

The circuit shown in Fig. 2A shows a network capable of a theoretical variation over 270 degrees. The vector diagram illustrates how this circuit functions. The diameter of the outer semicircle is, as before, equal to the applied voltage $OR = E_{ca}$; the inner semicircle has a diameter determined by $\overline{OS} = E_{ca}R_1 / (R_1 + R_2)$.

The extreme range of phase variation occurs when $R_2 = 0$ and is, of course, 270 degrees. For this condition the diameter of the inner semicircle becomes equal to the applied voltage E_{ca} , also. As a result, there will be one value of phase shift for which the output voltage E_{bd} is zero. If a lesser range of phase shift is tolerable, E_{bd} will remain more and more constant in

FIG. 2—Improved circuit provides phase shifts up to 270 degrees. Vector diagram shows behavior of circuit. Note output voltage changes

December, 1950 - ELECTRONICS

NOW You can afford a High Vacuum Furnace

At last there is now available a single furnace that does away with the need to purchase equipment for each phase of your high-vacuum, high-temperature work. Because of its modest price, it will fall within the budget of most laboratories.

With this new furnace you can melt and solidify — melt and pour — add to the melt — stir — look into the hot zone — measure hot zone temperatures — introduce controlled atmospheres — degas — heat treat. It's a complete, versatile unit, capable of handling the widest variety of metallurgical research work. Write today.

FEATURES -

- Ultimate vacuum of less than, 5 x 10-5 mm. Hg.
- Working temperatures up to 2000° C.
- Temperature controllable within ± 5° C.
- Hot zone reaches temperature within one minute.
- No refractories used in hot zone.
 4" purifying type diffusion pump in-
- sures high capacity for out-gassing.
- Utilizes single turn low voltage resistance element of either tungsten or molybdenum 8" x 2½" dia.

INDUSTRIAL RESEARCH · PROCESS DEVELOPMENT HIGH VACUUM ENGINEERING AND EQUIPMENT • Constant temperature zone 6" x 2¹/₂" dia.

- Power supplied directly from mains to specially-designed variable auto transformer which is an integral part of unit.
- Either manual or automatic temperature control or both.
- Thermocouple vacuum gage is standard equipment. Other gages are available.
- Furnished complete with vacuum system, controls and gages including ammeter, volt-meter and temperature indicator.

METALLURGY • DEHYDRATION • DISTILLATION COATING • APPLIED PHYSICS

National Research Corporation Seventy Memorial Drive, Cambridge, Massachusetts

In the United Kingdom: BRITISH-AMERICAN RESEARCH, LTD., London S. W. 7 - Wishow, Lanarkshire

ELECTRONICS - December, 1950

225

for the NEWEST...FINEST...MOST SENSATIONAL

AUDIO COMPONENTS

Newest!

Jinest!

Sensational!

MOST

MINIATURES AND SUBMINIATURES

The MRB-3 miniature dynamic receiver and microphone has excellent wide-range frequency response characteristics, maintained flat by the Patented Permoflux acoustical damping method. Utilizes a self-formed voice coil. Sensitivity-115 db in 6 cc coupler with 1 m.w. input. Overall diameter 1"height 11/16". Can be supplied with miniature input or output transformers in any impedance.

T1 and T2 Transformers - and Chokes - These subminiature units provide power efficiency from 80-90% with high voltage breakdown characteristics and extremely low susceptibility to electrolytic deterioration. Frequency response is <u>+</u>2 db from 100 to 8000∼. Impedances up to 200,000 ohms and windings with inductive reactances up to one megohm. Ideal for use with Permoflux microphone-receiver units and headsets.

STANDARD HIGH FIDELITY SUPER HIGH FIDELITY DYNAMIC HEADPHONES

are world famous and quality-recognized products of Permoflux Corp. Sturdy and comfortable, they are built to withstand excessive shock, high humidities and a wide range of temperatures without impairing their high efficiency and dependable performance. Patented acoustical damping provides a flat frequency response to 4500~ in standard models and through 10,000∼ in Super High Fidelity models. Unparalled in performance for broadcast studio, aviation, laboratory, and audiometer work.

> ROYAL EIGHT " Compares with any 12" speaker

less of size or price.

This average laboratory response curve of the Permoflux 8T-8-1 proves that it compares with the finest speakers regard-

"SOUND IN DESIGN ERMOFLUX CORPORATION 4900 W. GRAND AVE., CHICAGO 39, ILL. • 236 S. VERDUGO RD.; GLENDALE 5, CALIF.

THE ELECTRON ART

(continued)

magnitude, until the system of Fig. 1 is obtained by letting $R_2 = R_1$ and $X_2 = 0.$

For design purposes a graphical construction is most expedient. Figure 3A illustrates the procedure. First, a semicircle 1 is made, with $\overline{OR} = E_{ca}$ as the diameter. The desired full range of phase shift determines the next step. Thus, if the maximum shift is to be θ degrees, a point T is located at a distance

$$\overline{TM} = E_{ca}/2 \cot (360 - \theta).$$

Also

Model MRB-3

Model TI

Model T2

DHS-17

CAA Approved

$$\overline{OT} = \overline{RT} = \frac{E_{oa}}{2\sin(360 - \theta)}.$$

either expression may be used. Next, circle 2 of radius \overline{TO} is drawn with T as the center.

The next step is the construction of circle 3 of radius \overline{MU} , with M as the center, such that the distance \overline{OU} corresponds to the smallest output voltage that can be tolerated at any one phase angle. It should be noted here that, in the limit, the minimum output voltage cannot exceed the value

$$\overline{OU} = \frac{E_{ca}}{2} \left[1 - \cot\left(180 - \theta/2\right)\right].$$

If this is less than can be tolerated. then a less generous choice of range of phase shift angle θ will have to be made.

Circles 2 and 3 intersect at two points P_1 and P_2 . Either of these points can be chosen to represent point P in Fig. 2B. This fact is illustrated in Figs. 3B and 3C.

The construction described above needs interpretation for ranges of phase shifts of less than 180 degrees. However, since from a practical point of view such cases are of

FIG. 3-Graphical method for designing circuit of Fig. 2 are shown at A. In B and C are two solutions resulting from graphical method

December, 1950 --- ELECTRONICS

8T-8-1

Eight-Inch

Speaker

with the

Blue Cone

Trifles ... that taboo Troubles-

Electronic Engineering Laboratory equipment for testing emission characteristics of nickel cathode materials.

• They're trifling things—these tiny tubes! But used as cathodes, anodes, and grids, in electronic tubes, they have to give superior performance. You can count on Superior. Electronic research and development, faster production and metallurgical control combine with close inspection, uniformity, and dependability to make Superior products the best obtainable.

Superior from the beginning pioneered in the perfection of these

vital components. Its facilities and equipment can produce the type of dependable products you have a right to expect. It's simply a matter of technology in tubing.

You may already be working with Superior. Nearly all electronic manufacturers are. If small tubing can help you, Superior can. Why not find out? Superior Tube Company, 2500 Germantown Avenue, Norristown, Pennsylvania.

Which Is The Better For Your Product . . .

SEAMLESS...? The finest tubes that can be made. Standard production is .010'' to .121'' O.D. inclusive, with wall thicknesses of .0015'' to .005''. Cathodes with larger diameters and heavier walls will be produced to customer specification. **Or LOCKSEAM*...?** Produced directly from thin nickel alloy strip stock, .040" to .100" O.D. in standard length range of 11.5 mm to 42 mm. Round, rectangular or oval, cut to specified lengths, beaded or plain.

*Mfd. under U.S. Pats. — Superior Tube Campany • Electronic Products far export through Driver-Harris Company, Harrisan, New Jersey • Harrison 6-4800

ELECTRONICS - December, 1950

The Chemical Laboratory where nickel and nickel alloys are carefully analyzed as a part of Superior quality control.

Tubular parts made to the exacting requirements of the Electronics Industry. Chemical and metallurgical engineering controls together with a penetrating production system help make Superior's electronic parts outstanding.

SEE·MEASURE·RECORD UP TO 10 transients at the same instant

H-45 FOUR CHANNEL OSCILLO-

A signal from the brain and a man ducks, blinking his eyelashes. A huge bomber takes a load under various static and dynamic conditions and a multitude of strain lines take different characteristics. Electricity passes through electronic apparatus and emanates with different voltage, current, and phase relationships.

Observing simultaneous quantities like these-in testing, production, and research -proves the value of ETC multi-channel oscilloscopes every day. No other equipment can give you such correct time relationships for a number of simultaneous phenomena. No other equipment saves you the array of instruments and varying test procedure required by other means of coincident analvsis. Write today and find out how you can save time, money, and trouble using ETC oscilloscopes, amplifiers, and tubes.

THE ELECTRON ART

(continued)

little importance, this possibility will be ignored.

Phase Shift Multiplication

Figure 4 illustrates a second method of extending the range of available phase shifts beyond 180 degrees. Its action is readily understood if, for the sake of simplicity, the value of $N^{*}k$ is assumed to be sufficiently high (10 for example) to render the loading effect of the inner circuit negligible, as regards the outer circuit. In this case

$$E_{bd} = \frac{E_{ea}}{2} / 2 \theta$$

where $\theta = \arctan X/R$ there follows, for the inner circuit $E_{c'a} = N E_{bd}$ (where N is the ratio of transformation) and

$$E_b'a' = \frac{1}{4N} E_{ca}/4\theta$$

Quite clearly, so long as loading can be ignored, this scheme can be extended to n circuits within each other, with the final result

$$E_{\rm out} = \frac{1}{2n N^{n-1}} E_{ca} / 2n\theta$$

The significance of this result lies in the fact that the original phase shift 2θ has been multiplied by a factor n, without the use of any vacuum tubes. Where transducer output is in terms of phase shift. the sensitivity of the device is readily increased by a factor of three, for example.

So long as transformers are not objectionable, a circuit similar to that of Fig. 4 should be suitable for a considerable factor as phase-shift

FIG. 4—Phase-shift multiplying circuit provides theoretical shift through 360 degrees. Greater shifts (integral multiples of 180 degrees) are possible by extending this scheme

Testing for sound lost between telephone receiver and ear. Many subjects were used in these tests.

How to compensate for a curl . . . and add to your telephone value

Bell scientists know that the telephone is not used under ideal laboratory conditions. There is never a perfect seal between receiver and user's ear. A curl may get in the way, or the hand relax a trifle. And ears come in many shapes and sizes. So some sound escapes.

Now, sound costs money. To deliver more of it to your ear means bigger wires, more amplifiers. So Bell Laboratories engineers, intent on a thrifty telephone plant, must know how much sound reaches the ear, how much leaks away. They mounted a narrow "sampling tube" on an ordinary handset. The tube extended through the receiver cap into the ear canal. As sounds of many frequencies were sent through the receiver, the tube picked up a portion, and sent it through a condenser microphone to an amplifier. That sampling showed what the ear received.

As a result, Bell scientists can compensate in advance for sound losses—build receivers that give *enough* sound, yet with no waste. That makes telephone listening always easy and pleasant.

It's another example of the way Bell Telephone Laboratories work to keep your telephone service one of today's biggest bargains.

BELL TELEPHONE LABORATORIES

Working continually to keep your telephone service big in value and low in cost.

Slotted or Phillips head machine screws, wood screws, stove bolts, tapping screws, special headed products; nuts, rivets, chaplets, wire forms, screw machine products . . . in steel, stainless steel, copper, brass, bronze, everdur, nickel, nickel silver, monel, aluminum . . .

WRITE FOR catalog of complete line of Blake & Johnson fastenings. Address Dept. E-12.

THE BLAKE & JOHNSON COMPANY, WATERVILLE 48, CONN.

THE ELECTRON ART

(continued)

FIG. 5—Practical application of the circuit shown in Fig. 4. Asterisks indicate polarity

multiplication. The output voltage is, of course, reduced by each transformer, but if a large enough voltage is available at points a-c, or if a step-up transformer is used at the output, no difficulty should be experienced from this cause. The only real objection arises from the necessity of the ganged potentiometers, which may not be readily available beyond three ganged units. If inductance or capacitance is made the variable element ganging of many units should present no problem.

Transformers can be avoided by the use of two identical resistors; in this case the system suffers from a serious difficulty, however. To avoid loading of successive stages the impedance level must be raised by a factor of at least 5 or 10 in each stage.

Since potentiometers above 10 megohms are not desirable, more than four stages may not be practical, for the following reason: If four stages are used, then the potentiometer of the outermost stage must have a range of zero to 10,000 ohms if a factor k = 10 is allowed between stages. To attain a 168degree range in each stage, the ratio X/R must be 0.1, as pointed out earlier. Thus, the reactance of the outermost stage may be only 1,000 ohms. At 60 cycles this corresponds to 2.65 μ f, which is probably as large a capacitance as one would care to use.

If an additional stage were used, the capacitor would have to be 26.5 μ f, which is clearly prohibitive in cost and space requirements. At higher frequencies, of course, many more stages can be used. It is seen

The Light

有限有些主要的基本性的

THAT MUST NOT FAIL

Automatic Airway Beacon Controlled by Telechron Timing Motor

Today's modern airfields leave nothing to chance. Airway beacons and airstrip lights flash on *automatically* at the first approach of dusk. Whether "dusk" occurs in mid-afternoon or at its duly appointed time, pilots need not fear for proper guidance while in flight. Lights respond to pre-determined light levels and function the instant they are needed.

Weston illumination controls permit this uniformly reliable regulation of lighting. Independent of human judgment or arbitrary light schedules, it is a great advance in aviation safety. These controls owe their dependability to Telechron Timing Motors - also used in aircraft instruction markers, street lighting and industrial lighting.

Instantly, constantly synchronous, Telechron Timing Motors give dependable performance every time.

Timing On Your Mind?

If you have a timing problem to contend with, a Telechron application engineer can be of great help to you. Backed by broad field experience, he can lead you to important savings in time and money. Consult him early in your planning. For immediate facts, send coupon below. TELECHRON INC. A General Electric Affiliate.

Telechron

	F	ALL TELECHRON	TIMING MUTURE	
		INSTANTLY	CONSTANTLY SYNCHRONOUS	•
TELECHRON INC. 40 Union Street Ashland, Massachusetts				
Please send me inform Synchronous Motors. My p	mation	on sizes and types of Telechron e application is:	NAME	•
Instruments Timers		Communications Equipment Other (please fill in)	COMPANY	•
Electric Appliances Cost Recorders			ADDRESS	
Advertising, Display Items Juke Boxes			CITYZONE	•
Air Conditioning & Heating Controls		□ Please send new Catalog	STATE	•

ELECTRONICS - December, 1950

SINCE ACCURACY TO WITHIN 15 MINUTES ON ALL PRODUCTION UNITS

For more than 17 years Eclipse-Pioneer has been a leader in the development of high precision synchros for aircraft, marine and industrial applications. Today, thanks to this long experience and specialization, Eclipse-Pioneer Autosyn^{*} Synchros give you a guaranteed accuracy of 15 minutes (maximum) on all individual AY 200 type 400 cycle transmitters, differential generators, control transformers and resolvers. Furthermore, this phenomenal accuracy applies to all production units in this series. Where special applications are involved, Eclipse-Pioneer will supply Autosyn Synchros with an even finer degree of accuracy. And remember, when you buy from Eclipse-Pioneer, this high precision is yours at the lowest possible cost. *REG. TRADE MARK BENDIX AVIATION CORPORATION

REG. U.S. PAT. OFF.

Typical Performance Characteristics for one AY-201-3 Autosyn Synchro when transmitting to:

	One Control Transformer	Two Control Transformers	Three Control Transformers
INPUT Voltage Frequency Current Power Impedance OUTPUT	26-volts, single-phase 400 cycles per second 105 milliamperes 0.90 watts 85+j240 ohms	26-volts, single-phase 400 cycles per second 130 milliamperes 1.4 watts 80 + j180 ohms	26-volts,single-phase 400 cycles per second 155 milliamperes 1.9 watts 77 + j149 ohms
Voltage max. (rotor output) Voltage at null Sensitivity	18.0 volts 30 millivolts 315 millivolts/degree	15.5 volts 20 millivolts 270 millivolts/degree	13.3 volts 20 millivolts 230 millivolts/degree
phase shift System accuracy (max. possible spread)	18.5 degrees 0.5 degrees	24.5 degrees 0.5 degrees	28.0 degrees 0.5 degrees
Other E-P precis Servo m zation ec transmi	ion components for serv otors and systems • ra quipment • turbine pov tting systems and sp	vo mechanism and comp ate generators • gyros ver supplies • remote i vecial purpose electr	outing equipment: • • stabili- ndicating- on tubes.
For detailed ECLIPSE-P TETERE	information, write	to Dept. C	CORPORATION
saperi cales. L			

THE ELECTRON ART

that if the loading effects are ignored, the total available range of phase shift is four times greater for this circuit than for the single circuit described initially. A variation over about 670 degrees is possible. The loading effect of the resistors replacing the transformers will reduce the overall gain somewhat.

Figure 5 shows how a two-stage circuit may be used with a thyratron. Other circuits are equally easily designed, but an isolating transformer will, in general, be necessary. It should be noted that the relative polarities of the transformer windings are of the greatest importance. In Figs. 4 and 5 small stars are used to indicate the relative polarities of primary and secondary windings. Failure to observe proper polarities will render the circuit unable to perform its intended function.

BIBLIOGRAPHY

J. C. May, H. G. Reich and J. G. Skalnik, Thyratron Phase-Control Circuits, p 107, ELECTRONICS, Jul. 1948. O. G. Villard, Jr., Tunable A-F Amplifier, p 77, ELECTRONICS, Jul. 1949.

Measure Coupling Coefficient In Tuned R-F Transformers

By S. G. FELDMAN Technical Director Robert Dean Research Division of Malan Plumbing Co., Inc. Long Island City, New York

and

M. GOLDSTEIN

Development Engineer Emerson Radio and Phonograph Corp. New York, N. Y.

IN THE DESIGN of proximitycoupled double-tuned transformers, the measurement of the coupling coefficient in terms of critical coupling has been a tedious process producing less than accurate results. The measurement can be simplified to a great extent by application of the equations resulting from the analysis of double-tuned transformers.

Proximity coupling in doubletuned transformers usually consists of the resultant of inductive coupling and distributed capacitive coupling as shown in Fig. 1A. The more common methods of measuring the amount of coupling present

December, 1950 - ELECTRONICS

(continued)

THE RADA-SWEEP

Sweeping Oscillator for Rapidly Aligning Radar IF Ampli-NEW fiers. Displays Amplitude vs Frequency Response with Frequency Marks on Standard Oscilloscope.

USES:

Can be used in the laboratory, field or in manufacture to indicate on an oscilloscope the shape of the pass band of a Radar IF Amplifier. Very greatly increases speed of operation.

FEATURES:

- Increases Production Speed when substituted for conventional CW point-by-point methods.
- . Wide Band Linear Sweep.
- Pulse Type Crystal Positioned Marks at Specified Frequencies.
- Marks Individually Switched On or Off.
- Output Amplitude Remains Virtually Constant While Sweeping.
- Output Level Control on IF and Pulse Outputs.

DESCRIPTION:

Designed specifically for producing a constant amplitude frequency modulated signal for exploring the frequency response of Radar IF amplifiers. Sweep is wide band and the center frequency may be switched to center of pass band of present amplifiers. Simple design change makes other center frequencies available. Frequency marks of pulse type are connected directly to oscilloscope and are not affected by IF amplifier under test. These marks are controlled by front panel switches which turn them on or off individually. Marks at any specified frequency can be supplied and frequency is changed by changing plug-in crystals. A wide or a narrow sweep may be selected by front panel switch.

GENERAL SPECIFICATIONS:

Center Frequencies: Switchable to 30 or 60 mc. Two additional center frequencies available on special order. Fine tune con-

- center frequencies available on special order. Fine fune con-trol for centering pattern. Sweep Width: Wide Band—20 mc. Narrow Band—3 mc. Select-able by Front Panel Switch. Markers: Pulse Type Crystal Positioned at 25, 35, 55, 65 mc. Special marker frequencies available to total of nine. Gutput: Up to 0.5 volt into 70 ohms. Switched and continuous attractors
- attenuators
- Sweep: All-electronic; Linear sawtooth; Sweeping signal available for driving horizontal amplifier of oscilloscope. Amplitude Modulation While Sweeping: Less than 0.05 db/mc.

PRICE:

\$395.00 FOB Factory with above marks Standard Marks replaced at \$10.00 each Additional Marks to total of nine \$20.00 each Prices 10% higher outside USA and Canada

ELECTRONICS - December, 1950

WHEN YOU NEED A MINIATURE TRANSFORMER THE ELECTRON ART

(continued)

SIZE AND WEIGHT Because they are designed for high operating temperatures, Hornet Transformers and Reactors have only about one-fourth the size and weight of Class A units of comparable rating.

VOLTAGE RATINGS Designs are available for RMS test voltages up to 10,000 volts at sea level, and up to 5,000 volts at 50,000 feet altitude. Power ratings from 2VA to 5KVA.

POWER FREQUENCIES These units are designed to operate on 380/1600 cps aircraft power supplies, 60 cps power supplies, and any other required power frequency.

AMBIENT TEMPERATURES Hornet Units can be designed for ambient temperatures up to 200 deg. C. Size for any given rating depends upon ambient temperature and required life.

LIFE EXPECTANCY Extensive tests indicate that the life expectancy of Hornet units at continuous winding temperatures of 200 deg. C. is over 50,000 hours.

MOISTURE RESISTANCE Since Hornet Transformers and Reactors contain only inorganic insulation, they are far more moisture resistant than conventional Class A insulated units.

EFFICIENCY Regulation and efficiency of Hornet Transformers compare favorably with Class A units.

SPECIFICATIONS Hornet Transformers meet the requirements of Government specifications covering this type of equipment.

Bulletin B300, containing full electrical and dimensional data on Hornet units, is now available. Write for it, or tell us your specifications for special units.

FIG. 1—Basic diagram showing contribution of inductive and distributedcapacitance coupling

usually determine the inductive component and neglect the other on the assumption that the capacitive coupling component is very small through proper design. This assumption is erroneous as it introduces a variable parameter that often results in unaccountable nonuniformity among mass-produced transformers. The following method will measure the composite effect of both types of coupling, and evaluate the result in percent of critical coupling.

Application and Measurement

Referring to the equivalent circuit of a proximity-coupled doubletuned transformer in Fig. 1B, analysis of the circuit results in the following equation:

$$\frac{Q_{p}'}{Q_{p}} = \frac{1}{1 + (K_{E}/K_{R})^{2}}$$
(1)

where the following terminology has been used

- $K_L = \text{coefficient}$ of inductive coupling
- $K_c = \text{coefficient of capacitive coupling}$ $K_E = K_L - K_C$ = effective coefficient of
- $K_{R} = 1/(Q_{P}Q_{S})^{\frac{1}{2}} = \text{coefficient of critical}$ coupling
- = series primary resistance at reso- R_p nance
- R_{\bullet} = series secondary resistance at resonance
- $R_{P}' =$ effective series primary resistance at resonance
- = series primary capacitance at reso-CP nance
- C_S series secondary capacitance at resonance
- Lp series primary inductance at resonance

series secondary inductance at L_S ---resonance

Qp $\omega L_P/R_P = \text{primary } Q \text{ without}$ secondary coupled Continued on page 236

December, 1950 - ELECTRONICS

INDUSTRIAL OSCILLOSCOPE—For tracing circuit trouble in electronic-control equipment, this scope is fast, accurate, and dependable. Ideal for checking welding machines, high wave capacitor discharge panels, variable speed motor controls. Set it down anywhere—the case is insulated . . . carry it easily—weighs only 27 pounds . . . use it in many ways—tests both AC and DC.

- Tests make-and-break of relay circuits
- Checks waveforms in Thyratron control
- ★ Max. input voltage 550
 ★ Sensitivity 0,15 volts dc/inch; 0,18 volts rms/inch.

IN WELDING OPERATIONS-USE IT TO

- ★ check "hard-starting" ignitrons
- ★ observe voltage shapes on tube elements in timing sequence circuits
- ★ check instantaneous regulation on high current welder supply line
- ★ se= "full heat limit adjustment"
- ★ ch∋ck relays for bounce and high resistance contactors
- ★ check "on" and "off" time in seam welders
- check behavior of peaking transformers
- ★ ch∋ck high frequency interference switch transients caused by other eculpment

INDUSTRIAL TUBE ANALYZER—Which tubes are bad? Don't guess—check them quickly, easily with this Analyzer that pays for itself in the cost of tubes you would normally scrap. Tests Thyratrons and Phanatrons with ratings up to 100 amperes peak current. Can be operated by nontechnical personnel after brief instruction. Backs up the G-E Industrial Oscilloscope to boost your maintenance efficiency, cut your costs.

GET THIS CATALOG - IT'S FREE!

Contains specifications and price information on instruments shown here as well as other items of G-E electronic test equipment. Write: General Electric Company, Section 4120, Electronics Park, Syracuse, New York.

ELECTRONICS - December, 1950

.

Electronic TEST EQUIPMEN

Completes 300 TV sets meets daily quota (at a cost of ^{\$}4.70)

Delicate coils were needed by Midwest manufacturer to complete 300 TV sets ... and Massachusetts supplier was 920 miles distant! Air Express assured delivery by 8 o'clock next morning, so manufacturer ordered 500 men to report for work. Shipment arrived 7:20 A.M.—production rolled! Shipping cost for 17-lb. carton only \$4.70! Manufacturer uses Air Express regularly to keep business in high gear.

\$4.70—and special pick-up and delivery included! Low Air Express rates cover door-to-door service. More convenient—easy to use. Just phone for pick-up! (Many low commodity rates in effect. Investigate.)

Air Express goes on all flights of Scheduled Airlines. Shipments keep moving around the clock—speeds up to 5 miles a minute. *Experienced* handling. Phone Air Express Division, Railway Express Agency, for *fast action*.

Air Express gives you all these advantages:

World's fastest transportation method.
Special door-to-door service at no extra cost.
One-carrier responsibility all the way.
1150 cities served direct by air; air-rail to 22,000 off-airline points.
Experienced Air Express has handled over 25 million shipments.

THE ELECTRON ART

 $Q_P = \omega_{LP}/\pi_P$ = ellective primary Qwith secondary coupled $L_M = K_L/(L_P L_S)^{\frac{1}{2}}$ = inductive coupling

component $C_M = (C_P C_S)^{\frac{1}{2}}/kc$ = capacitive coupling

(continued)

component = resonant frequency

$$\omega = 2\pi f$$

Equation 1 has been plotted for values of K_E/K_R up to 2, thus developing Fig 2.

Interpretation of Eq. 1 indicates that $Q_{P'}/Q_{P}$ is a function of composite coupling in percent of critical. Therefore, to evaluate Eq. 1 all that is necessary experimentally is to measure $Q_{P'}/Q_{P}$. With the aid of Fig. 2, the amount of effective coupling present in percent of critical can be readily determined.

One of the more simple methods to evaluate Q_{P}'/Q_{P} is as follows: Using a Q-meter or equivalent circuit, resonate the primary winding at the proper frequency with the secondary winding open, or shorted, or detuned, so as not to affect the primary Q (Fig. 3A). Note the Q reading as being equal to Q_P . Then tune secondary winding to resonance by an indication of minimum response in primary Q reading (Fig. 3B). Interaction between primary and secondary will require a number of resettings of primary resonance for a maximum Q read-The adjustments should be ing. continued until no further interaction is noted. The new reading obtained is $Q_{P'}$.

Examples

Example 1. On the Q-meter Q_P reads 80; Q_P' reads 40. Thus, Q_P'/Q_P equals 0.5. From Fig. 2, K_E/K_R is equal to 1.0, or the transformer is critically coupled.

Example 2. On the Q-meter Q_P reads 70; Q_P' reads 20. Thus, $Q_{P'}/Q_P$ equals 0.35. From Fig. 2, K_E/K_R is equal to 1.35, or the transformer is over-coupled. To obtain

FIG. 2—Curve for determining coupling coefficient in percent of critical coupling

and now-the **magic link** for closed circuit tv

Camera Signal

The Dumitter

www.americanradiohistory.com

Standard TV Receiver

the **dumitter**

Actually a miniature closed-circuit television transmitter. Takes signal directly from any standard camera chain, modulates a carrier frequency of either Channel 2 or 3, and feeds via cable directly through the antenna posts of standard TV receivers. Receivers operate exactly as though tuned to a telecast on that Channel.

Performance superior to other forms of transmission. Audio and video reception absolutely free from outside interference. Truly, the MAGIC LINK for closed-circuit television.

Ideal for use in industrial television applications, for field demonstrations of TV receivers, for studio use, for sales meetings, and countless other uses. Does away with expensive, bulky equipment and circuitry modification of receivers.

First with the Finest in Television

ELECTRONICS --- December, 1950

• Feeds up to 125 standard TV receivers.

- Distributes signals on standard TV Channel 2 or 3 via cable through regular antenna posts of receivers. No modification of receivers necessary. Receivers may be switched to regular telecast reception at any time.
- Feeds receivers both video and audio through single coaxial cable up to several thousand feet.
- No terminal equalization necessary as attenuation is only at carrier frequency.
- Uses signal from any standard camera chain without interim equipment.
- Completely stable requires no operator.
- Light, compact, completely stable.
- No license required.

ALLEN B. DU MONT LABORATORIES, INC. Television Transmitter Division, Clifton, N.J.

THE ELECTRON ART

FIG. 3—Techniques used in determining coefficient of coupling with Q-meter

The most accurate results, certain safeguards and precautions should be included in the measurement technique. The shunting effect of plate resistances and input grid resistances of tubes must be simulated by an equivalent resistor across each tuned circuit. The transformer shield can should be used and also grounded. The secondary winding should be properly oriented as to phase relationship. In making measurements on a transformer that is thought to be over-coupled, the reading for Q_r' must be considered in the light of a doublehumped response curve. Variation of the signal frequency source will indicate the resonant point as being a minimum lying between two maximum indications at frequencies slightly removed from the resonant frequency.

Conclusion

Although this paper is intentionally restricted to the measuring of the percent of critical coupling present in a double-tuned transformer, it may also be applied to other types as well. For instance, taking the case of an untuned primary coupled to a tuned secondary transformer, Q_{P}'/Q_{P} may be evaluated with the Q-meter method by assuming the tuned winding as being the primary. Then Q_p will be the reading obtained with untuned winding open-circuited, and Q_{P}' will be obtained by loading the untuned winding properly with a resistor simulating the desired input matching impedance. The ratio Q_{P}/Q_{P} thus obtained will indicate the amount of coupling present from Fig. 2 in

MAXIMUM

SELECTIVITY

cies beyond these limits are attenuated in excess of 60 decibels! The H-K Converter changes the audio output of two diversity receivers into direct current for the operation of teletypes or multiplex keyers. The associated receivers may be the Type HK-4921, or any other stable receiver capable of an audio frequency output centered at 4500 cycles, an output impedance of 500-600 ohms, and output power not in excess of 200 mw. The output from the HK-4922 Converter is substantially constant for all input levels from -45 dbm. to plus 25 dbm.

HEINTZ AND KAUFMAN

Frequency Shift

NVERT

(HK-4922)

SPECIFICATIONS KEYING SPEED: Up to 150 dat cycles per second. OUTPUT: 60 ma. D.C., in neutral connection; 20 ma. D.C. bi-polar. SIZE: 171/2" high; 19" wide (far standard rack or cabinet mounting), depth, 8". REQUENCY SHIFT: Design center, 850 cycles. May be operated within the limits 100 to 1400 cycles under certain conditions. WEIGHT: 54 pounds, net. POWER CONSUMPTION: 100 watts; 105-125 volts, 50/60 cycles.

For complete information about the new HK-4920 Frequency Shift Terminal consisting of two HK-4921 F.S. Receivers and an HK-4922 F.S. Converter write to

Export: M. SIMONS & SONS CO., INC., 25 Warren Street, New York City • Cable: Simontrice

THE ELECTRON ART

(continued)

percent of optimum coupling, where optimum coupling is equivalent to the condition of maximum transfer of power.

Likewise, though all the above equations are derived in percent of a reference term, their absolute magnitudes can be obtained readily, in most cases, by evaluating the reference term.

The procedures outlined in this paper should augment the present techniques available on the subject by minimizing the error, introduced upon neglecting stray capacitance coupling when measuring the coupling coefficient of tuned radiofrequency transformers.

British Speech Visualizer

A RECENT BRITISH PATENT described a device that will enable deaf people to read speech by means of twodimensional pictures of sounds. The principle used differs from the simple oscilloscope in that it gives an image corresponding to several words, every syllable having a distinct pattern.

Uses Balanced Modulator

The speech waves, from a telephone line, are fed to a balanced modulator of the carrier suppression type, together with a locally generated carrier. The sidebands which appear are passed through a narrow-band filter to an amplifier-rectifier whose output varies the brightness of a cathode-ray tube.

The locally-generated carrier is swept through a range of frequency, say 10 to 14 kc, sixty times a second, so that the incoming speech signal is scanned and the brightness of the spot on the cathode-ray tube will vary in proportion to the power component in each frequency band.

In addition, the crt is rotated continuously to present fresh screen at the rate of about one inch per second, while the deflection of the beam (at right angles to the screen travel) is locked to the frequency of the local oscillator. The persistence of the crt screen thus enables a two-dimensional pattern, corresponding to groups of syllables, to appear.

The HK-5994 Gammatron is a rugged beam pentode designed for use as an h.f. or v.h.f. oscillator or power amplifier. The anode is capable of dissipating 50 watts during continuous commercial service.[†] Cooling is accomplished by radiation and convection, and the pin type base allows for ample ventilation. The low drive requirements of the HK-5994 permits the design of lighter equipment, and also lessens or eliminates parasitics which cause TV interference. Please write for four page data sheet.

www.americanradiohistory.com

STANCOR TRANSFORMERS

Specified as original components by the biggest radio and TV set makers in the industry. They <u>have</u> to be good!

WRITE. inquiries promptly answered

STANDARD TRANSFORMER CORPORATION 3578 ELSTON AVENUE, CHICAGO 18, ILLINOIS

Write Dept. B.I. Central Scientific Company, 1700 W. Irving Park Road, Chicago 13, Illinois for engineering Bulletin 10.

SOURCE FOR ALL PARTS YOU NEED

High carbon steel, bronze, aluminum, stainless steel, monel metol, spring lock washers finished or plated with cadmium, nickel, brass or copper. Also Gorrett's Aluminum Spring Lock Washer—light in weight with strength of steel.

FLAT WASHERS

Made to meet ASA and SAE specifications in regular steel spring steel, stainless steel, brass, duminum, Alclad and copper. Can be plated with zinc, cadmium, nickel, brass, chrome... or can be parkerized.

STAMPINGS

From a small part for electronic instruments, automotive stampings and television chassis... Garrett can fabricate them better and cheaper than is possible in your own plant. Years of experience and modern high speed equipment assure speed deliveries ... finished to your specifications.

SPRINGS

Flat and coiled springs to meet every requirement.EveryGarrottspring built into it to assure satisfactory performance under all canditions. All coil springs -- compression, extension ... made to guard, square or rectangular wire.

MANUFACTURED BY GEORGE K. GARRETT CO., INC. PHILADELPHIA 34, PA.

NEW PRODUCTS (continued from page 130)

ola, N. Y. Type 390 portable selfcontained mixer crystal test set was designed for measuring conversion loss and noise temperature of silicon crystals. The instrument is particularly suitable for production testing, incoming inspection, and field tests, has a correlation accuracy of \pm 0.5 db on conversion loss measurements and 0.5 on noise temperature mean deviation. It is intended for use at or below 10,000 mc for direct indication and above 10,000 mc for relative indication.

Fast-Writing Ink Oscillograph

SOUND APPARATUS Co., Stirling, N. J., announces a fast-writing ink oscillograph with a frequency range from 0 to 600 cycles; measuring range between 5 and 160 volts, or between 2 and 60 ma; sensitivity, about 0.1 mm per volt; impedance, 2,700 ohms. It has 10 selectable paper speeds. The record, made on transparent chart paper which can be projected and reproduced in any desired form, is in straight-line, rectangular coordinates. Maximum amplitude is $2 \times 30 = 60$ mm.

Rotary Phase Converter

EASTERN AIR DEVICES, INC., 585 Dean St., Brooklyn 17, N. Y. The P31E rotary-type phase converter is designed to convert single phase 400 cycle to three phase 400 cycle. It is 2 in. in diameter, has an overall length of 3 3/32 in. and weighs approximately 16 ounces. For power factors ranging from 100 percent to 60 percent, a balanced three-phase output can be obtained for a given load condition. It can deliver as high as 80 volt-amperes

Professional Tape Recording Equipment For Your Special Research Needs

Magnecord tape recordings <u>accurately</u> capture electronic data and test sounds just as they happen, provide a complete record of the evidence for comparison and future reference. No chance for human error . . Magnecorder gets it right the first time!

STURDY, ADAPTABLE

Magnecorders are sturdy, give perfect reproduction under the most difficult conditions. Easy to operate and trouble-free. Lightweight . . one man can carry a Magnecorder anywhere!

MODERATELY PRICED

Magnecorders are moderately priced for every industrial application. Find out how "sound" research with Magnecorder can help improve your product.

MORE RADIO STATIONS USE MAGNECORDER THAN ALL OTHER PROFESSIONAL TAPE RECORDERS COMBINED

HIGH FIDELITY-50 to 15 KC

No other recorder offers such a wide frequency range at such a low price. Special models to fit your special needs for

- NOISE ANALYSIS
 - VIBRATION TESTS
 - SOUND IMPULSES
 - TELEMETERING

Write for complete specifications

Send This Coupon TODAY

MAGNECORD, Inc., Dept. EB-12 360 North Michigan Avenue Chicago 1, Illinois	
Send me further information on recordings for industrial uses.	Magnecord tape
Name	
Company	••••••••••••••••••••••••••••••••••••••
Address	
CityZcne	State
Maguera	rd me
v. Calibration	a, INC.

with unbalance not exceeding 10 percent.

TV Antenna

THE BRACH MFG. CORP., 200 Central Ave., Newark, N. J., has developed the Bow-Tie V antenna illustrated, which requires no directors or reflectors. It is a closed circuit V antenna in which three antenna rods of the same electrical length emanate from each side of a nonhygroscopic insulator and are joined at the ends by means of shorting bars. The shorting bars provide more surface area and raise the gain of the antenna proportionately higher than would the adaption of directors or reflectors particularly on the upper channels. It will withstand high winds and ice loading as there are no free vibrating elements and it uses seamless tubing and a high impact insulator.

Bulb Temperature Pickups

TRANS-SONICS, INC., Bedford Airport, Bedford, Mass. Type 19 highspeed bulb temperature pickups are based on the resistance-thermometer principle and are suitable for the measurement of liquid, gas and metal temperature. Resistance of the sensing element changes 6.2 ohms over the specified temperature range of the instrument. As a result the pickups may be placed in a 300-ohm bridge to simulate strain gage pickups having an output voltage of 5 mv per volt. Up to 155 mv may be obtained from the pickup

ELECTRONICS — December, 1950

Need Front Surface Aluminum Mirrors

Liberty Front Surface Aluminum Mirrors are available in sizes up to 48" x 66"—and in a range of constructions to meet the most exacting requirements. The glass in these mirrors is coated with aluminum which has a protective layer of quartz. No base metal is used because bimetallic mirrors are subject to galvanic action.

Liberty Aluminum Mirrors retain their reflectivity—and they contain a minimum of pinholes. Moreover, these few pinholes do not increase in size or number in service. Liberty's patented adhesive coatings insure exceptionally strong adhesion.

The basic design superiority and quality of Liberty Front Surface Aluminum Mirrors is evidenced by an ever-increasing list of satisfied customers. We invite your comparison test order. For a quotation, use the coupon below.

FOR COMMERCIAL AND OPTICAL FIELDS where normal cleaning is sufficient and where exceptional exposure to salt water or salt atmosphere is not required, we recommend our Specification #1051, Finish #749.

FOR HIGH RESIST-ANCE TO ABRASION AND SALT AIR—and especially for high-grade optical instruments requiring maximum reflectivity and unchanging durability, we recommend our Specification #1054, Finish #752.

	1
LIBERTY MIRROR DIVISION LIBBEY OWENS FORD GLASS CO. L1125 NICHOLAS BUILDING TOLEDO 3, OHIO	
I am interested in your Liberty Front Surface Aluminum Mirrors for	
(Application) Please quote me onin size (Quantity) () Please have salesman call. Name	
	1

LIBERTY VACUUM DEPOSITED COATINGS

Liberty Mirror Division LIBBEY-OWENS-FORD GLASS CO. NICHOLAS BUILDING, TOLEDO 3, OHIO

Preferred where performance is paramount

A. W. HAYDON **D. C. TIMING MOTORS**

with Chronometric Governor

A primary power source of extreme accuracy, this revolutionary development of the A. W. Haydon Company is the first successful production com-bining the accuracy of a clock with the power of a motor. Made with jeweled movements, this extraordinary timer permits the solution of problems heretofore considered insurmountable.

Light weight Write Today for cat-lang sheet giving full information of A. W. Haydon D.C. Timing Haydon b.C. Timing Motors with Chrono-metric Governors.

Cost less when made by

ULTI-SWAGE

The economy way to get

a million small parts

similar to these —

Examine the tubular metal parts shown here twice size. If you use anything similar . . . in large quan-tities . . . important savings can be yours. Send us the part and specs. Our quotation will show why the Bead Chain Company's MULTI-SWAGE Process has long been known as the most economical method of making electronic tube contact pins, terminals, jacks and sleeves. And, why more and more users of mechanical parts (up to 1/4'' dia. and to 2" length) employ our facilities. WRITE for Data Bulletin.

THE BEAD CHAIN MANUFACTURING CO., Tr. Mark 88 MOUNTAIN GROVE ST., BRIDGEPORT 5, CONN.

CENTERS

The new Type MCT-1

telephone-type switch — the smallest made — mounts in a single round hole — eliminates need for slotting panel and drilling and tapping four small holes — provides versatile switching action in addition to its standard features.

"Universal" Type MCT-4

Mounting plate has two sets of four, tapped, mounting holes to fit all standard mounting centers.

BOTH MODELS FEATURE

Electrostatic shielding

between two sets of contact sections reduces coupling between circuits; grounding tab, integral with frame, is included in terminal assembly.

Versatile lever action

provides either locking on both sides, non-lock on both sides, non-lock on one side, lock on one side.

Contact buildups

permit all popular as well as special circuit arrangements.

Cam-spring mechanism

is especially designed for quiet opera-tion and to reduce contact bounce to a new minimum.

MCT Ratings

Palladium contacts rated at 1 amp. at 115 volts, 60 cycles, non-inductive load. Request Catalog Sheet and B/P #D35-100 giving details of contact arrangements, dimensions, and prices.

December, 1950 - ELECTRONICS

NEW PRODUCTS

(continued)

proper. The pickups can be supplied in ranges up to 1,100 C.

Null Detector Amplifier

FREED TRANSFORMER CO., INC., 1718-38 Weirfield St., Brooklyn 27, N. Y. Model 1140 is a high-gain selective, a-c operated null indicator used for bridge measurements. It may also be used as a high-gain amplifier for general laboratory work. Input impedance is 1 megohm in parallel with 25 uuf. Gain is 98 db with 1-megohm load (6 $\mu\mu f$ shunt capacitance) down 1.5 db at 25,000 cycles, down 5 db at 50,000 and down 2 db at 20 cycles. At 1 kc, 100 µv will give a 15-percent meter deflection.

THREE MILESTONES

In Transmission History

INTO HUNDREDS of thousands of homes in England recently came the modern magic of television pictures transmitted by the B.B.C. from Calais. The television link which spanned the channel was made possible by a quarter of a century's research by STANDARD in the field of Microwave technique.

In 1931 STANDARD demonstrated the first Micro-wave radio-telephone circuit between Dover and Calais; in 1934, a similar system was used to establish the first commercial Microwave telegraph link between England and France; now, for the first time in history, a television transmission has come to England from across the sea, and again a STANDARD Microwave link was used to bridge the Channel.

These three milestones in the Company's research programme are indicative of STANDARD's function-to improve and continue to improve telecommunication on land, at sea, and in the air.

Telecommunication Engineers W- C 2 Connaught House, Aldwych, London, England.

Square-Wave Generator

TEKTRONIX, INC., 712 S.E. Hawthorne Blvd., Portland, Ore. Type 105 square-wave generator is continuously variable in frequency from 25 cps to 1 mc. . Rise time of about 0.02 μ sec is maintained at all frequencies without overshoot. It is essentially a square-wave current generator with maximum current capability of 160 ma to output load. When used with the 93-ohm output

ELECTRONICS --- December, 1950

Whatever test specifications your product has to meet, you can depend on Bowser, because standard Bowser Environmental Simulation Chambers meet all Governmental test specs. In most cases one Bowser Unit will perform all the tests required. To meet unusual testing requirements special accessories and instrumentation can be furnished.

All Bowser Units are self-contained, and will automatically maintain preset conditions within close tolerances. Their design and rugged construction assures continuous operation for indefinite periods, yet they require no special skills to operate. To meet specific requirements, Units

can be provided with automatic cycling of temperature, altitude and humidity. WALK-IN CHAMBERS

Bowser also builds walk-in chambers of all sizes, field constructed or completely assembled in our plant.

BOWSER Inc., Refrig. Send me more informa High Temp. Tests Low Temp. Tests Fungus & Humidity Tests High Altitude Tests Name Company Street	Div., Terryville, Conn. trion on the following: Mildew Resistance Tests Sand & Dust Tests Explosion Proof Tests Walk-in Chambers Pos
City BOW Refrigeration	SER INC.

Photo Courtesy Photocolt Corp., New York, N. Y.

S.S.WHITE RESISTORS are of particular interest to all who need resistors with inherent low noise level and good stability in all climates. HIGH VALUE RANGE 10 to 10,000,000 MEGOHMS STANDARD RANGE 1000 OHMS to 9 MEGOHMS ARE USED IN THIS ULTRA SENSITIVE ELECTRONIC PHOTOMETER

In this instrument—designed for measurement of very low light values—S.S.White Resistors serve as the grid resistance in the all-important high-gain D.C. amplier circuit. The manufacturer, Photovolt Corp., New York, N. Y., reports that the resistors "work very satisfactorily"—which checks with the experience of the many other electronic equipment manufacturers who use S.S.White resistors.

WRITE FOR BULLETIN 4906

It gives essential data about S.S.White Resistors, including construction, characteristics, dimensions, etc. Copy with price list on request.

Dept. R 10 East 40th St. NEW YORK 16, N. Y.

S.S. White RESISTORS

December, 1950 --- ELECTRONICS

NEW PRODUCTS

(continued)

cable furnished, approximately 15 volts is available.

Precision-Built D-C Motor

LEAR, INC., 110 Ionia Ave., NW, Grand Rapids, Mich. Model BC-05C-1, a new 15,000-rpm 26-v d-c motor with 1/50 hp-output, is designed to operate over an ambient temperature range from -65 F to +165 F. The motor has a duty cycle of 3 min on and 17 min off. It weighs 0.82 lb, is corrosion resistant, and is available with any of the following features: Fastop clutch, electromagnetic brake, thermal protector, mounting option (flange or base-type), and radio noise filter.

Pulse Generator

NUCLEAR INSTRUMENT AND CHEMI-CAL CORP., 229 W. Erie St., Chicago 10, Ill. Model 1022 pulse generator, designed for checking and general test work, provides pulses, either positive or negative, with a choice of 1, 10, or 100- μ sec width. Maximum pulse amplitude is 20 v, in three ranges of 0 to 0.5, 0 to 5 and 0 to 20 v full scale reading. On 60cycle supply pulse frequency is 60 per second. If an external oscillator is connected, pulse frequency may vary between 10 and 200,000 pulses per second. Accuracy of the 3¼ x 4¼ print of 35-millisecond single-sweep transientone of series of accelerometeroutput recordings which made possible the completion of nine recorded "drop-tests" in 40 minutes.

Specifications

Lens — Special 75 mm, f/2.8 Wollensak Oscillo-anastigmat.

Shutter — Wollensak Alphax; speeds 1/25 sec. to 1/100 sec., "time," and "bulb."

Focus - Fixed (approx. 8 in.)

Picture Size - 3¼ x 4¼ in. (2 images per print; 16 exposures per roll of film).

Image Size — One-half reduction of scope image.

Writing Speed—to 1 in/µsec at 3000V accelerating potential; higher speeds at higher voltages.

 $\begin{array}{l} \mbox{Dimensions} - \mbox{Camera, } 10\frac{1}{2} \times 5\frac{1}{4} \times 6\frac{1}{4} \\ \mbox{in.; hood, } 11 \mbox{ in. length, } 7\frac{1}{2} \mbox{ in. dia.; } \\ \mbox{adapter, } 2 \mbox{ in. width, } 6\frac{5}{8} \mbox{ in. max. dia.} \end{array}$

Weight — Complete, 7¾ lb.

www.americanradiohistory.com

IT WAS MADE IN ONE MINUTE WITH THE FAIRCHILD-POLAROID® OSCILLOSCOPE CAMERA

This 3¼ x 4¼ print of an oscilloscope image saved a laboratory engineer at least half a day in his work on a series of shock tests. The print, which shows clearly a 35-millisecond single-sweep transient, was ready for evaluation a minute after the shutter was snapped. There was no waiting for processing in the laboratory's hard-working darkroom as was the case before use of new Fairchild-Polaroid Oscilloscope Camera.

With the Fairchild-Polaroid camera, you no longer need wait for darkroom processing. In fact, you can even forget the bother of focusing -just snap the shutter and remove the print from the back of the camera a minute later. Set-up time is less than two minutes. Each print records two traces for easy comparison and cost saving.

The complete equipment consists of scope adapter for any 5-inch oscilloscope, light-tight hood with viewing port, and Polaroid-Land Camera body with special lens and shifting mechanism.

Send for more data and prices on the F-284 Oscilloscope Camera Kit (camera, carrying case, and film) to: Fairchild Camera and Instrument Corporation, 88-06 Van Wyck Boulevard, Jamaica 1, N. Y. Dept. 120-13A.

Oscilloscope Camera

These "SUBS" are first-string PERFORMERS! ++++++

> If you're looking for radio, TV or electronic sub-assemblies you can depend on for uniformly high quality, prompt delivery and reasonable price, search no further!

.

Clippard Instrument Laboratory facilities are at your service to produce subassemblies which will release your assembly departments for greater production. This service, relied upon by many of the biggest (and smallest) names in the electronic field, also eliminates endless engineering and production detail.

Call on Clippard, an organization of engineering and production specialists, for prompt help on any sub-assembly or R. F. coil problem. For a no-obligation quotation, mail specs and drawings, now, to Department 6-E

Clippard INSTRUMENT LABORATORY, INC.

1125 Bank Street Cincinnati 14, Ohio MANUFACTURERS OF R. F. COILS AND ELECTRONIC EQUIPMENT

Where the Requirements are Extreme ...

Use SILVER GRAPHALLOY

For extraordinary electrical performance

IN BRUSHES

for high current density

• minimum wear

Iow contact drop

Iow electrical noise

self-lubrication

IN CONTACTS

for low resistance

non-welding character

SILVER GRAPHALLOY is a special silver-impregnated graphite

Accumulated design experience counts call on ust

GRAPHITE METALLIZING CORPORATION 1055 NEPPERHAN AVENUE, YONKERS 3, NEW YORK

December, 1950 --- ELECTRONICS

NEW PRODUCTS

(continued)

instrument is within the meter reading accuracy of 5 percent over the entire range.

Small Galvanometer

MIDWESTERN GEOPHYSICAL LABO-RATORY, Tulsa, Oklahoma, has developed the model 102 small light galvanometer which requires only 16.1 ma for 1-in. deflection at 15 inches in the 2.000-cps model, and 0.008 ma for 1-in. deflection in the 100 cps model. It is available in appropriate undamped natural frequency steps from 50 cps to 5,000 cps. It is readily adapted to any type of oscillograph and is available in magnet structures up to 50 traces. Elements are 1 in. in diameter and 23 in. long. An 18-trace model weighs only 34 pounds.

Potentiometer

ELECTRO-MEC LABORATORY, 225 Broadway, New York, N. Y. The ultra-low-torque potentiometer illustrated, was primarily designed as an industrial or aircraft instrument component, but may be used in any installation where an exceedingly small mechanical moving force needs to be converted into a corresponding electrical voltage. It Maquecorder

-1st choice For Sound Research

ATA REGURDED As it Happens

HELPS DEVELOP A BETTER PRODUCT

Here's a better way leading research departments now use to take notes on electronic data and noise . . . they record the actual results on Magnecord magnetic t a p e recordings exclusively.

A Complete "AUDIO NOTEBOOK"

Magnecorders capture the evidence as it happens . . . record it faster, cheaper, more accurately. The complete Magnecording of the data is instantly available for comparison and future reference.

GREATER FIDELITY-FLEXIBILITY

50 to 15 K.C. and over. Lowest possible distortion and flutter. Unit construction provides more flexibility in field or laboratory.

MAGNECORDER

PROFESSIONAL TAPE RECORDING EQUIPMENT

for

NOISE ANALYSIS
 SOUND IMPULSES
 VIBRATION TESTS

TELEMETERING

SPECIAL MODELS FOR YOUR SPECIAL NEEDS Write for complete specifications

Send This Coupon TODAY

Chicago Send m	1, Illinois e further infor	mation o	n Masnecoval	tan
recordin	gs for industria	l uses.		
Name				
Company				
Address.				
City		Zone	State	
1				

MORE GEO. STEVENS COIL WINDING EQUIPMENT IS IN USE THAN ALL OTHER MAKES COMBINED!

• MORE OUTPUT...LOWER COSTS... from <u>EXCLUSIVE</u> SPEED FEATURE. Universal motors permit variable speeds without changing belts and pulleys. Coil design permitting, speeds as high as 7500 RPM are not uncommon.

• **PORTABILITY.** Conveniently carried from place to place. Machines come mounted on bases to constitute one complete unit.

• MUCH LOWER ORIGINAL COST. The same investment buys more GEO. STEVENS machines than any other coil winding machines.

• LONG LIFE. Most of the original

GEO. STEVENS machines bought 14 years ago are still operating daily at full capacity.

• MUCH FASTER CHANGING OF SET-UPS than any other general purpose coil winding machine. Quickly changed gears and cams save time between jobs.

 VERY LOW MAINTENANCE. Replacement parts are inexpensive, can be replaced in minutes, and are stocked for "same day" shipment, thus saving valuable production time.
 EASIEST TO OPERATE. In one hour, any girl can learn to operate a GEO. STEVENS machine.

SPACE WINDING MACHINE, MODEL 30, winds resistors and space wound coils up to 6" long. Winds wire from No. 40 to 18. For smaller wire sizes, Model 92-6 De-Reeleris recommended instead of the bench type spool holder illustrated.

8 to 800 TURNS PER INCH is an *outstanding feature*, permitting an unusually wide range of pitch selection. 48 pitch change gears—completely enclosed for safety—give desired pitch. Up to 10,000 turns are registered by full vision 6" Clock Dial Counter.

For speedy return to starting position, the heavy traverse bar has a friction drive and uses a rack and pinion for return. Accurate location for start of coil is attained by screw adjustment on feed roller. Fine wire is wound freely and fast due to ball bearing, spring tension tailstock which also allows quick change of coil forms. Spools and tailstock may be adjusted closer or farther from winding head by moving tension bracket—because they are mounted on bed rods. Tailstock may also be moved to the front or rear for perfect alignment.

Motor equipment: 1/4 H.P. Variable Speed Universal Motor with foot treadle control. Automatic Stop with Predetermined Counter is optional – it saves time and eliminates most bad coil rejection by not requiring operator to do turns manually. Also available – MODEL 35 – same construction, same features but arranged to wind forms up to 12" long.

There is a GEO. STEVENS machine for <u>every</u> coil winding need. Machines that wind ANY kind of coil are available for laboratory or production line. . . . Send in a sample of your coil or a print to determine which model best fits your needs. Special designs can be made for special applications. Write for further information today.

World's Largest Manufacturer of Coil Winding Machines

REPRESENTATIVES Frank Tatro 6022 No. Rogers Ave., Chicago 30, Illinoic Rolph K. Reid 1911 W. 9th St., Los Angeles 6, California R. A. Staff & Co. 1213 W. 3rd St., Cleveland 13, Ohio

NEW PRODUCTS

(continued)

can be had with a shaft torque as low as 0.003 inch-ounces. Resistance values between 50 and 200,000 ohms are provided for. Accuracies as high as 0.05 percent are available and satisfactory operation under vibration at frequencies up to 200 cps has been demonstrated.

Proportional Temperature Controller

W. S. MACDONALD Co., INC., 33 University Road, Cambridge 38, Mass. Type 218 proportional temperature controller maintains the temperature of electrically heated ovens within less than 0.1 deg C at temperatures up to 1,000 C by electronic adjustment of the input power to the oven. Power flows continuously rather than in on-off cycles. The controller operates on 110 volts a-c and will control 100 watts. It measures 8 in. \times 9 in. \times 12 in. and can be adapted readily to particular installations.

Resistance Thermometer

W. S. MACDONALD CO., INC., 33 University Road, Cambridge 38, Mass. Type 1000 resistance thermometer with sensing element sealed in a quartz chamber is designed for extending the useful range of resistance thermometers to 1,000 C in measurement and control. The element is tungsten and the chamber is evacuated prior to sealing. Thermometer resistance is 25 ohms at 25 C and sensitivity is 0.1 ohm per deg C. Sensing length is 2 in. and
This EDISON RELAY is sensitive... but only to MICRO-CURRENTS

Sensitive is about the only word that can describe a relay which will operate on input powers as low as 25 micro-watts. Sensitivity also suggests lack of strength, but that's not true in this case, Electrically this Sensitive Relay will continuously withstand input powers 10,000 times its nominal ratings, and mechanically it's truly rugged. Originally developed for aircraft use, it is standard equipment on thousands of planes in the air today.

Schematic showing how coil leads are brought out to separate contacts in the relay base, permitting differential operation.

HOW YOU CAN TAKE ADVANTAGE OF THESE FEATURES

Sensitivity of this degree makes this relay well suited as a dependable circuit actuator for use directly with low output detectors, such as thermocouples, photocells, etc. It may be used for polarized or differential operation, as a null-seeking device, etc. Contacts SPST or SPDT, normally open or closed. Seated height, $2\frac{1}{4}$ "; dia. $1\frac{5}{16}$ "; weight 68 grams; 7-pin small radio tube base.

Full information available. Write for Bulletin 3004-D. 184 Lakeside Avenue, West Orange, N. J.

ELECTRONICS - December, 1950

BRIEF SPECIFICATIONS

PULSE DURATION individually adjustable from 0.15 to 1.5 microseconds; RISE TIME is .05. DECAY TIME 0.10 microseconds. SPACING between pulses variable from -0.5 to +10 microseconds. REPETITION RATE adjustable in 3 ranges, 1 to 10, 10 to 100 and 100 to 1000 cycles; can be externally triggered. OUTPUT IMPEDANCE approximately 400 ohms, maximum output voltage,-200 v. CONTROL CALIBRATION AC-CURACY ± 5% over entire range.

The Berkeley Double Pulse Generator produces two pulses individually controllable in width, amplitude and time relation to each other. Pulse amplitude is individually adjustable without cross effect from 0 to +50 v. and 0 to -200 v. A fine control, plus a 10 to 1 step attenuator permits varying the amplitude of both pulses after mixing.

TYPICAL APPLICATIONS...Resolution tests of high speed scaling circuits, response simulation of scintillation and proportional counters, evaluation of electronic gate and switch response, TV equipment testing, characteristic checks of wide band amplifiers, etc.

COMPLETE INFORMATION is yours for the asking; please request Bulletin E-902.

PYROFERRIC ACQUIRES NEW PLANT *(in MT. VERNON, N. Y.)*

To Meet Increasing Demands For Powdered Iron Cores

With expanded production facilities, PYROFERRIC is now able to meet the increasing demands for iron cores and powdered metallurgy development.

251

Do you have complete data on the revolutionary new HELIPOT-the helical potentiometer-rheostat that provides many times greater control accuracy at no increase in panel space?... or on the equally unique DUODIAL that greatly simplifies turns-indicating applications? If you are designing or manufacturing any type of precision electronic equipment, you should have this helpful catalog in your reference files ...

HELIPOT that compacts almost four feet of precision slide wire into a case only 13/4 inches in diameter-over thirty-one feet of precision slide wire into a case only 3½ inches in diameter!

It Details - the precision construction features found in the HELIPOT... the centerless ground and polished stainless steel shafts-the *double* bearings that maintain rigid shaft alignment-the positive sliding contact assembly-and many other unique features.

It IIIUIStrates - describes and gives full dimen-sional and electrical data on the many types of HELIPOTS that are available...from 3 turn, 11/2" diameter sizes ta 40 turn, 3" diameter sizes...5 ohms to 500,000 ohms...3 watts to 20 watts. Also Dual and Drum Potentiometers.

It Describes - and illustrates the various special HELIPOT designs available-double shaft extensions, multiple assemblies, integral dual units, etc.

TGIVES - full details on the DUODIAL-the new type turns-indicating dial that is ideal for use with the HELIPOT as well as with many other multiple-turn devices, both electrical and mechanical.

If you use precision electronic components in your equipment and do not have a copy of this helpful Helipot Bulletin in your files, write today for your free copy.

THE Helipot CORPORATION, SOUTH PASADENA 2, CALIF. range. Distortion at this amplitude

NEW PRODUCTS

(continued)

overall length is 18 in., Diameter of the sealed quartz chamber is ‡ in. and of the jacketed assembly. Ta in.

Image Orthicon

RADIO CORP. OF AMERICA. Harrison. N.J. Type 5826 tv camera tube is intended for studio use and other ty applications where the lighting can be controlled. It combines exceptionally high sensitivity, a resolution capability of better than 500 lines, high signal-to-noise ratioabout twice that of outdoor camera types—and improved gray-scale rendition in the vicinity of the blacks. It has a 3-in. diameter bulb and is 15[‡] in. long. A 12-page technical data bulletin is available.

Audio Oscillator

THE ELECTRONIC WORKSHOP, INC., 351 Bleecker St., New York 14, N. Y. Model 510-A audio oscillator has a frequency range of 18 cycles to 210,000 cycles in four decades. It will deliver 10 volts into 10,000 ohms with output constant within

CONICAL ENVELOPE . . . a stainless steel spinning for cathode ray assembly made of V_8 in. thick type 446 chrome iron. 16 in. diameter. $11V_2$ in. deep.

RECTANGULAR ENVELOPE . . . a special mass production product made for the television industry of $\frac{1}{8}$ in. thick type 430 chrome iron. 24 in. wide. 16 in. high. 9 In. deep.

CORONA SHIELD . . . an aluminum spinning combining hemispherical and spherical forms. Made of 250 aluminum, ½ in. thick. Overall length 20 in.

• Immediate cost reduction is today's most urgent demand — requiring more alert thinking in the designing of parts and more ingenious tooling methods. Progressive new Spincraft techniques may help simplify your production problems, just as they have helped other large and small manufacturers.

Some examples of this advanced engineering are shown here. It will pay you to study them . . . and ask yourself if you can use this pioneer company's versatile ability to help solve your electronic problems. You'll find the Spincraft Data Book a good source for ideas. Write for your copy-without obligation.

FREQUENCY MEASURING EQUIPMENT Type TME 2

(Basic range | kc/s-30 Mc/s)

Years ago, the frequency measuring equipments made by Marconi's were for their own use, because nowhere else were sufficiently accurate instruments obtainable . . . and even to-day nothing compares with this latest stroboscopic equipment. Boasting a long and distinguished pedigree, it is precision built to a unique specification and can be rapidly installed anywhere in the world. Its rated stability of 1 part in 10⁷ can be maintained indefinitely and direct readings of frequency obtained to a fraction of a cycle.

Full particulars are available from any of the addresses below.

MARCONI INSTRUMENTS LTD. U.S.A. Sales and Service: 23-25 Beaver Street, NEW YORK, 4

CANADA : CANADIAN MARCONI LTD., Marconi Building, St. Sacrament Street, MONTREAL ENGLAND (Head Office and Works) : ST. ALBANS, HERTFORDSHIRE

"Recently, one of our customers sent us, unsolicited, the findings on a test he conducted. In this experiment, PEL-X was tested along with seven similar tracing cloths and when the results were in, PEL-X topped the list on every count including evenness of pencil lines and workability – and by a substantial margin, too!"

This is proof that PEL-X can do everything as well as any other tracing cloth and some things better.

Find out for yourself just how good PEL-X really is by trying it on your drawing board. Put it to any test against any competitive tracing cloth and compare the results. We're sure you'll want to switch to PEL-X. Write for generous sample. *Name on request.

www.americanradiohistory.com

LLISTON MILLS

Thyac

Beta Gamma Survey Meter

For exacting use in the laboratory or field service—where the application places a premium on accuracy and light weight with durability, the new 389 Thyac beta gamma survey meter is the answer to reliable performance.

Check the built-in features of this new instrument:

- \vee A long life, low power vibrator power supply regulated to eliminate instrument drift, reduce calibration time, and substantially reduce battery costs.
- \vee Waterproof construction—light weight (5½ lbs.).
- V Probe assembly also permits use of the 1B106 mica window counter tube, 1B124 gamma counter tube, and the 1B126 cosmic ray tube.
- V Fingertip range control affords ease of operation during survey periods.
- \vee The use of quality parts lowers maintenance costs.

Victoreen is also a leader in supplying the finest in radiation instrument components. Our sub-miniature electrometer tubes, hi-megohm resistors, and extensive line of counter tubes are used and acclaimed by laboratories and manufacturers who are interested only in producing top quality radiation instrumentation.

Write for specifications and data sheets.

NEW PRODUCTS

(continued)

is less than 0.3 percent from 100 cycles to 15,000 cycles and rises to no more than 0.5 percent at 30 cycles. Source impedance of the cathode-follower output is 560 ohms. Total frequency error due to drift and dial calibration is less than ± 2 percent.

Built-In-Resistor Connector

ALDEN PRODUCTS Co., 117 North Main St., Brockton 64, Mass. Type 208 FERC octal-base connector has a fully-insulated 3,300-ohm resistor complete with leads built in the molding. Ready for immediate connection it enables television manufacturers to incorporate a 6AL7-GT tuning indicator in their set design, and thus obtain precision tuning for optimum audio quality at a minimum effort and cost.

Small-Armature Winder

GEO. STEVENS MFG. CO., INC., Chicago 30, Ill., has announced a new Model 36 armature winder. Wire is fed through a hollow spindle to a revolving arm that winds wire in the armature slots, permitting the armature to remain stationary so that it cannot fly out and injure the operator. The machine winds 1,000 turns per minute on either straight or skewed armatures. Very tight armatures may be wound because of the uniform tension with which the wire is automatically guided

A further adaptation of the already proven model 252 Mico Engraver. Permits accurate engraving on metal or plastic panels up to 19 inches wide and of unlimited length. Maximum height of work above table, 19 inches. Micrometer spindle and four reduction ratios are standard equipment.

MICO INSTRUMENT CO. 76E TROWBRIDGE STREET DEPT. I CAMBRIDGE 38. MASS.

ELECTRONICS — December, 1950

ECONOMY ACCURACY STABILITY STABILITY COMPACTNESS

Have your Cake ... and Eat it, too, with JELLIFF ALLOY 1000 RESISTANCE WIRE

The new high in Resistivity—100 ohms/cmf plus an impressive array of important electrical and physical characteristics, make our new ALLOY 1000 the most desirable material for windings in compact, precision resistors of all types. And the best thing about it is that you don't gain one characteristic at the cost of serious losses elsewhere. Write today for Bulletin 17, with the full story and technical data on

JELLIFF ALLOY 1000 RESISTANCE WIRE

Completely Accessible from operating surface dependable instruments

HEILAND RESEARCH CORPORATION + 130 East Fifth Ave. • Denver, Colo.

a operating sorrace

AUTOMATIC OSCILLOGRAPH RECORDER

Affording complete accessibility from operating surface and requiring only a minimum of space for mounting, the HEILAND A-708 meets the exacting specifications of research and development personnel in aircraft flight testing, laboratory and industrial testing.

Write for complete details

Type A-708...24-channel

FEATURES

Completely accessible from operating surface
Compact...can be

- mounted in a minimum of
- space...lightweight
- Can be panel mounted
- 6 to 24 channels
- Paper widths 5", 8", 12", 18"
- Simplicity of loading
- Direct monitoring of
- galvonometer light spots • Flexibility of operation
- Simultaneous viewing,
- recording and scanning
- Trace identification...zero mirror...synchronizing reference trace
- Adjustable automatic
- record length

255

NEW PRODUCTS

(continued)

Usually the tuning knobs on TV sets are down below the screen where you have to bend, stoop or squat to operate them.

It's a simple matter to put an end to this "backache" type of tuning. Just couple the knobs to the tuning elements with S.S.White remote control flexible shafts. This will allow you to place the knobs on top of the set where they are easily seen and operated from a comfortable standing position. Not only that, the shafts allow the knobs to be mounted in any desired arrangement to conform with the cabinet design.

S.S.White engineers will be glad to cooperate with you in working out the details of any flexible shaft application. Call them in today there's no obligation.

WRITE FOR NEW BULLETIN 5008

It contains the latest information and data on flexible shafts and their application. Write for a copy today.

THE SUblite	NDU	STR	IAL	DIVIS	ION
DENTAL MFG.CO.	ACACA	Dept.	E IO	East 40th	n St.
	WW/	NEW	YORK	(16. N.	Y

and laid in the slots. Amount of tension is limited solely by the strength of the wire.

Crystal Cartridge

ELECTRO - VOICE, INC., Buchanan, Mich., has developed the Model 96-T turnover cartridge for high-quality reproduction on records of all speeds. Each needle is completely isolated and there is no added distortion caused by new resonance and its subharmonics created by the unused needle. Compliance is 1.2 on 3-mil tip and 1.0 on 1-mil tip. Response is beyond 10,000 cps.

Dynamic Analyzer

INDUSTRIAL CONTROL CO., 1462 Undercliff Ave., New York 52, N. Y. Model 100-A dynamic analyzer facilitates the measurement of frequency and transient response of low-frequency systems by electrical methods. It is particularly applicable to the servomechanism, either as a closed loop, or in its individual components. The unit functions by providing periodic perturbation signals to be injected into the error or input channels of the device under test, together with sweep and comparison voltages with which to view the output member excursion on the cro. These waveshapes are generated by electromechanical elements geared together and driven by a precision speed control. Range of modulating

Highest Quality Electrical Meters Since 1910

For easier mounting and assembly and manufacturing economies. Permits substituting punched sheet-metal housings for expensive, precision-machined castings. No. FRI-5: 3/32'' bore x 5/16'' minor O.D. x 23/64''flanged diameter and 7/64'' width with exclusive MICRO

ground O.D. and outer raceway. In both Conrad (retainer) and full-race designs.

Write today for data sheet Technical Bulletin No. 50.

New Hampshire *Micro* Ball Bearings, Inc.

5 Main Street, Peterborough, New Hampshire

The GROUND Miniature Bearing

www.americanradiohistory.com

SWEEP CALIBRATOR

MODEL GL-22A

A versatile source of timing markers for accurate measurement of sweep intervals with oscilloscopes and synchroscopes.

- Positive or negative markers of 0.1, 1.0, 10, 100 micro-seconds variable to 50 volts.
- Variable width and amplitude gate for blanking or timing.
- Markers from external trigger or internal generator. May be synchronized with triggers up to 100 KC. repetition rate.
- Voltage regulation to timing circuits.

Write for free bulletin.

INSTRUMENTS

Engineered for

Engineers

POWER SUPPLY

MODEL TVN-7

The basic unit of a microwave signal generator, Square-wave modulator for low-powered velocity-modulated tubes.

- Cathode voltage continuously variable 28-480 volts. Provision for 130-300 volt range.
- Reflector voltage range 15-50 volts.
- · Provision for grid pulse modula. tion to 60 volts, reflector pulse modulation to 100 volts.
- Square-wave modulation variable from 600 to 2500 cycles.
- · Provision for external modulation.

Write for free bulletin.

FM MODULATION MONITOR

LABORATORY AMPLIFIER

MODEL TAA-16

High gain audio amplifier feeding a-c volt-meter for measurement of standing wave ratios with slotted lines.

- 500-5000 cycles with broadband selective control on front panel.
- Sensitivity: Broadband 15-microvolts; selective 10 microvolts.
- Meter scales 0-10 and standingwave voltage ratio.
- Panel switch for bolometer voltage application.
- Master gain control switch for attenuation factors of 1, 10, and 100.
- . Stable electronic power supply. Write for free bulletin.

Export Sales 9 Rockefeiler Plaza Room 1422 New York 20

MODEL MD-25

For monitoring modulation of fixed or mobile FM transmitters in bands from 30-162 mc, to comply with FCC limitations of carrier frequency swing and reduce adjacent-channel interference.

- Coverage 30-40, 40-50, 72-76, 152-162 mc.
- Flasher indicates peak modulation (peak carrier deviation).
- Meter indicates peak swings of modulation to 1 kc.
- Sensitivity: signal measurements with approximately I millivolt at anienna input.

Write for free bulletin.

NEW PRODUCTS

frequencies is from 0.1 to 50 cps

for transfer function tests. Phase measurements can be made with accuracies of $\pm 2 \deg$.

Miniature Potentiometer

THE HELIPOT CORP., 916 Meridian Ave., South Pasadena, Calif., Model AJ Helipot, a new potentiometer, occupies no more panel space than a copper penny. Designed especially for aircraft and guidedmissile control and telemetering equipment, the new potentiometer has a wire-wound resistance element 18 in. long contained in a case whose diameter is 3 in. The AJ model is available from stock and also in special resistance values from 100 to 50,000 ohms with accuracies of ± 0.5 percent and also ± 0.1 percent. Power rating is 2 w.

Regulated Power Supply

THE RICHARDSON-ALLEN CORP., 15 West 20th St., New York, N. Y., has developed a compact, portable, closely regulated power supply for use in testing laboratories, on production lines, and for testing radio communication and electrical equipment in airplanes. The unit has a selenium rectifier, full-wave, six

ELECTRONICS — December, 1950

Here may be the answer to your RECORDING problem

Sanborn Amplifier Recorders are being found outstandingly useful in a wide variety of industrial recording applications. Records are produced *directly*, and continuously, by *heated stylus* on plastic coated record paper (Permapaper), are in *true rectangular* coordinates, and are sharp, clear, and *permanent*. Elimination of the *ink flow* type of recording permits the use of these recorders in any position and at any angle. The writing arm (or arms) is driven by a D'Arsonval moving coil galvanometer with an extremely high torque movement (200,000 dyne cms per cm deflection).

The single channel Model 128 is a vacuum tube recording voltmeter capable of reproducing electrical phenomena from the order of a few millivolts to more than 200 volts. Standard paper speed is 25 mm/sec. Slower speeds of 10, 5, and 2.5 mm/sec. are available. A variety of interchangeable amplifiers is available.

The multi-channel Model 67 provides for the simultaneous registration of up to four input phenomena on one record using, in a multiple system, the same principles and methods as the single channel Model 128.

In addition, this vertically mounted, metal cased amplifier-recorder provides a choice of eight paper speeds: 50, 25, 10, 5, 2.5, 1.0, 0.5 and 0.25 mm/sec., and further provides for the use of 4-, 2-, or 1-channel recording paper. Complete versatility of recording is offered in this unit by means of interchangeable amplifiers which permit the registration of stresses, strains, velocities, etc., along with the usual D.C. or A.C. phenomena.

The recorder and amplifier units of which the above models are comprised are also available separately.

For complete catalog giving tables of constants, sizes and weights, illustrations, general description, and prices, address:

SANBORN COMPANY

Industrial Divescon

CAMBRIDGE 39, MASS

SANBORN AMPLIFIER-RECORDERS

Samborn Recorders and Amplifiers have evolved from those originally designed by Sanburn Compamy for use im electrocardiographs, and have, by actual practice, groven to have wide applications in the industrial field as well

NEW PRODUCTS

phase. Its a-c input is 220 v, three phase, 60 cycles; and it delivers d-c 24 to 32 v, 30 amperes. The supply is continuously variable by rheostat control saturable reactor. Regulation is ± 4 percent from 0 to full load.

(continued)

Ion Exchange Demineralizer

THE PENFIELD MFG. Co., Meriden, Conn., has announced a new ionexchange demineralizer for laboratories and other users of up to 10 gallons of demineralized water per hour. Designed to attach to any wall near a tap, the demineralizer has a permanent cartridge and a flow meter. An electric conductivity meter built into the unit provides a visual indication of the quality of the treated water being produced, warning when the resin charge should be renewed.

Twin Triode

GENERAL ELECTRIC CO., Syracuse, N. Y. Type 6SN7-GTA twin triode is designed for use as a combined vertical oscillator and vertical-deflection amplifier in tv receivers. Plate dissipation rating is 5.0 watts per plate or 7.5 watts for both plates; plate voltage rating, 500 volts, and heater-cathode rating, 200 volts. It carries a peak positivepulse plate voltage rating of 1,250 volts and a peak negative-pulse grid voltage rating of 200 volts for tv applications. Other uses include such general purpose applications as resistance-coupled amplifiers, phase inverters and multivibrators.

Literature_

Counter Bulletin. Durant Mfg. Co., 1929 N. Buffum St., Milwaukee 1. Wisconsin. A recent instrument counter bulletin illustrates several of the company's line of special counters that have been designed and manufactured for specific instrument applications in the electronic industry.

Thermocouple Manual. Wheelco Instruments Co., 847 W. Harrison

NEW WIDE BAND D.C. AMPLIFIER

MODEL 120

A precision instrument designed for use as a preamplifier in conjunction with an oscilloscope, vacuum tube voltmeter or other instruments.

SPECIFICATIONS

FREQUENCY RESPONSE: Within \pm 1 db between D.C. and 100,000 cycles per second.

GAIN: Approximately 100.

INPUT CONNECTION: Double channel, can be used for single ended and push-pull signals or as a differential amplifier.

INPUT IMPEDANCE: One Megohm shunted by approximately 15mmf in each channel.

DUAL INPUT ATTENUATOR: One to one, 10 to one, 100 to one and "off" positions in each channel independently adjustable.

OUTPUT CONNECTION: Push-pull or single ended. OUTPUT IMPEDANCE: Less than 50 Ohms single ended or 100 Ohms push-pull.

HUM AND NOISE LEVEL: Below 40 microvolts referred to input.

LOW DRIFT due to regulated heater voltage in input stage.

MOUNTING: Metal cabinet approximately 7" wide by 7" high by 11" deep.

fier and other Furst laboratory instruments including Regulated Power Supplies. FURST ELECTRONICS

Write for descriptive literature on the Model 120 D.C. Ampli-

10 S. Jefferson St., Chicago 6, Ill.

DEPT. 2812B 16th and PARK ROAD, N. W. WASHINGTON 10, D. C. Approved for Veteran Training

ELECTRONICS - December, 1950

14 THOPA

MICRO WAVE RELAY TOWER

supports General Electric Relay Equipment between Chicago and Grand Rapids, Michigan, designed

STAINLESS, INC.

NORTH WALES, PA.

PHONE: NORTH WALES 9859

and erected by

11-14-14-4

NEW PRODUCTS

(continued)

St., Chicago 7, Ill., has released a 42-page 1950 edition of its data book and catalog containing upto-date prices, application recommendations and pertinent information concerning instrument sensing units and associated accessories. The large standard line of thermocouples, protecting tubes, lead wire and insulators is profusely illustrated with complete descriptions and specifications clearly indicated.

Polystyrene Capacitors. United Condenser Corp., 337 E. 139th St., New York 54, N. Y., has available a 4-page folder covering a line of polystyrene capacitors characterized by extremely low losses. The power factor and dielectric absorption of the units described is on the order of 0.02 percent from d-c to the megacycle range, while the insulation resistance is approximately 20 times greater than that of high grade paper or mica capacitors at room temperature. The elements discussed are ideal for use in electronic analyzers and computers, in tuned circuits and wave filters, as standards of capacitance, and in radiation detection equipment.

Micromerograph. The Sharples Corp., 342 West 4th St., Bridgeport, Pa., has issued a booklet describing the new Micromerograph, an instrument for determining the particle-size distribution of finesieve and sub-sieve powdered materials. General description, comparison with other methods, and a drawing of the equipment are included. Also included is a reprint of a paper presented at the Third National Conference of the American Instrument Society by R. E. Payne entitled "The Measurement of the Particle Size of Sub-Sieve Powders," and a technical report. on operating ranges for the instrument.

New Equipment Catalog. Allied Radio Corp., 833 W Jackson Blvd., Chicago 7, Ill., has announced publication of its 1951, 212-page catalog covering radio, television and industrial electronic equipment. Special emphasis has been placed on equipment for industrial main-

The Green Engraver offers great speed and convenience. Quickly cuts up to four lines of letters from 3/64" to 1" on curved or flat surfaces whether made of metal, plastics or wood... operates by merely tracing master copy—anyone can do an expert job. Special attachments and engineering service available for production work. Just the thing for radio, electronic apparatus and instrument manufacturers.

For quality engraving on

- Panels
 Name Plates
 Scales
- Dials Lenses Molds Instruments

... also does routing, profiling and three dimensional modeling.

GREEN INSTRUMENT CO. 363 Putnam Ave. Cambridge, Mass,

5 amps, for cap or panel mounting. Higher ratings where circuits permit. All plugs and sockets polarized, Knife switch socket contacts phosphor bronze, cadmium plated. Engage both sides of flat plug double contact area. Bar type plug contacts hard brass cadmium plated. Body molded bakelite.

Get full details in Catalog 17. Complete Jones line of Electrical Connecting Devices, Plugs, Sockets, Terminal Strips. Write today.

ELECTRONICS - December, 1950

Millions of Coils wound on PARAMOUNT Paper Tubes

Stock Arbors or Special Tubes to Meet Every Need SQUARE, ROUND, RECTANGULAR

.450" to 25" I.P. ½" to 30" long. Tolerances ± .002"

Paramount

You find PARAMOUNT Spiral Wound Paper Tubes at the core of coil dependability in nationally known products and equipment. That's proof they're maderight to wind right and stay right on the job. Hi-Dielectric. Hi-Strength. Kraft, Fish Paper, Red Rope, or any combination, wound on automatic machines. **NEW!** Shellac-Bound Kraft paper tubing. Heated shellac forms an adhesive bond between the laminations. Absolutely moisture resistant.

SEND FOR ARBOR LIST OF OVER 1000 SIZES

Write on company letterhead for stock arbor list. Includes many odd sizes.

PAPER TUBE CORP. 616 LAFAYETTE ST., FORT WAYNE, IND. Myrs. of Paper Tubing for the Electrical Industry CABINETS • CHASSIS • PANELS • RACKS Planning ELECTRONIC EQUIPMENT ? Investigate the ECONOMIES of PAR-METAL HOUSINGS !

We manufacture Metal Housings for every purpose – from a small receiver to a deluxe broadcast transmitter. And the cost is low! Because we specialize in the Electronics field, Par-Metal Products excel in functional streamlined design, rugged construction, beautiful finish, and economy. Remember, Par-Metal equipment is made by electronic specialists, not just a sheet metal shop.

ORPORA

32-62 - 49th ST., LONG ISLAND CITY 3, N. Y.

Export Dept.: Rocke International Corp. 13 East 40 Street, New York 16, N. Y.

www.americanradiohistory.com

WRITE FOR CATA

AR:METAL

FOR EFFICIENT MAINTENANCE SPECIFY REMLER TILT-UP

Remler slide rails for rack or cabinet mounting permit complete withdrawal or inspection of top and bottom of apparatus chassis. Positive ... self-locking. Full roller type ... handles equipment up to 50 lbs. Stainless steel for Try Remler for Service-Tested "Hard-to-Get" Components

Metal-plastic components designed and manufactured to order. Write for quotations specifying electrical and mechanical characteristics. Describe application. No obligation.

military applications; cadmium plated cold rolled steel or bonderized cold rolled steel. Nickel plated brass rollers; roller studs in stainless or copper flashed cold rolled steel.

Remler Company Ltd. 2101 Bryant St. San Francisco 10, Calif.

NEW PRODUCTS

(continued)

tenance, research and production requirements. There are detailed listings of standard and specialapplication electronic tubes, test instruments, voltage stabilizers, transformers, resistors, capacitors, rheostats, relays, switches, rectifiers, tools, wire and cable, batteries, sockets, generators, power supplies and other types of equipment in the industrial field.

Thermal Time Delay Tube. Eclipse-Pioneer Division of Bendix Aviation Corp., Teterboro, N. J. Bulletin 73-3A gives a full treatment of the Chronotron tube, a temperature-resistance device mounted in a miniature-size vacuum-tube envelope. The tube described, developed primarily for use in electronic-control circuits, provides a time delay and also functions in a manner similar to an integrating device. Circuits, illustration and a technical data table are included.

Beryllium Copper. The Beryllium Corp., Reading, Pa. Technical bulletin No. 2, the second in a new series of data sheets, provides engineers with factual information on beryllium copper. The publication makes available case history and technical information on Berylco 25, Berylco 20C and investment castings. Future issues will cover other products in wrought and cast forms.

Hermetic Terminals. T. C. Wheaton Co., Millville, N. J., has published a 12-page catalog filled with engineering data to assist those confronted with the design and specification of hermetic terminals for electrical and electronic products. It contains complete details of the many terminals available. In addition, there is a special section devoted to metallized glass seals and electronic insulators and another to engineering information relating to terminal selection and use.

Soldering Gun Catalog. Weller Electric Corp., Easton, Pa. New soldering information, helpful to tv and radio technicians, electricians and industrial laboratory workers, is contained in the soldering gun

A Convenient, Low Cost, Portable

Baking and Drying

Just What You Need for Touch-Up, Complete Refinishing, De-Hydrating, Baking Industrial Finishes

Here Are a Few of Its Features

• Plugs into any 110-V AC convenient outlet; no special wiring required.

• Fan driven forced circulation moves large quantities of air through oven, assuring uniform temperature and taking off moisture.

 Costs less than 5 cents per hour to operate; uses approximately 1 KW of electricity.

 Sensitive thermometer—which can be read from outside—is available for accurate temperature control; heats up quickly.

Strong, sturdy construction.

Two models, with maximum temperatures of

225° and 325° — higher temperatures special order.

 Proved on thousands iobs.

And Up, FOB Chicago

\$**69**.50

Write for Full Details

GRIEVE-HENDRY COMPANY

1101 N. Paulina Street Chicaga 22, III.

Working with Inert Gases?

inde HELIUM · NEON ARGON · KRYPTON · XENON

Now available in commercial-size cylinders in addition to glass bulbs. Write for information on sizes, prices, rigid purity tolerances, special rare gas mixtures ...

THE LINDE AIR PRODUCTS COMPANY Unit of Union Corbide and Carbon Corporation 30 East 42nd Street III New York 17, N.Y.

In Canada: Dominion Oxygen Company, Limited, Toronto

The term "Linde" is a registered trade-mark of The Linde Air Products Company.

ELECTRONICS — December, 1950

OF ENGLAND

V. H. F. BRIDGES

Transformer Ratio-Arm principle covers 15 kc to 250 mc

Wayne-Kerr Laboratories have recently developed a range of H.F. and V.H.F. Transformer Ratio-Arm Bridges which are as stable in operation as the normal type of low frequency bridge. This has been achieved with a design which gives an extremely low impedance across the bridge terminals and between terminals and ground. Consequently, freedom from errors due to parasitic reactances permits a much greater accuracy of measurement.

Up to 100 Mc/s balanced or unbalanced measurements can be made with equal facility.

Demonstrations in New York by the U.S. Distributors ;-

Marconi Instruments Limited, 23-25, Beaver Street, New York 4. Telephone : HAnover 2-0197.

WAYNE-KERR LABORATORIES LTD., NEW MALDEN SURREY ENGLAND

for complete oscillographic recording

The S-8 Oscillograph, long the standard of oscillographic recording, has been improved to meet the expanding demands of modern research. The NEW Type S-8 Oscillograph has all the inherent capabilities you need to record rapidly changing phenomena such as vibration and dynamic strain.

A few of the newest features are:

QUICK-CHANGE TRANSMISSION - 16 record speeds over range of 120:1 FULL RESILIENT MOUNTING makes possible use of super-sensitive galvanometers

CHART TRAVEL INDICATOR provides continuous indication of chart motion NEW GALVANOMETER STAGE takes all Hathaway galvanometers for recording milliamperes, microamperes, and watts.

NEW RECORD-LENGTH CONTROL and NUMBERING SYSTEM for long, trouble-free service

All the other valuable features characteristic of the S-8 are retained. Investigate the NEW Type S-8 and its 170 types of galvanometers.

Write for Technical Bulletin 2B-1A-G.

TEFLON

has outstanding insulating properties

Power factor, less than 0.0005; dielectric constant, only 2.0—over entire frequency measured to date. Excellent dielectric and mechanical strength; zero water absorption. Serviceable in the temperature range $-90^{\circ}F$. to $500^{\circ}F$. Tough, resilient, unaffected by outdoor weathering, and completely chemical-proof.

Teflon is ideal for high-voltage, hightemperature, highor ultra-high-frequency service in TV transmitters, radio, radar and other electrical equipment. We supply Teflon spacers for coaxial cables,

Teflon inserts for coaxial connectors, all types of molded and/or machined Teflon parts.

Teflon Stock and Fabricated Parts

Sheets Cylinders Rods Tubing Bars

Immediate delivery—experimental or production quantities—from the country's most c'omplete selection of Teflon stock. Also, variations of stock shapes and sizes or special molded or machined parts exactly to specifications.

Teflon Products Division UNITED STATES GASKET C O M P A N Y 600 N. 10th St. Camden, New Jersey

NEW PRODUCTS

(continued)

catalog recently issued. The publication covers the company's complete line and features the new light-duty model with dual spotlights. It gives detailed descriptions and lists prices.

Small Converter. Minneapolis-Honeywell Regulator Co., Brown Instruments Division, Wayne and Roberts Aves., Philadelphia 44, Pa. Instrumentation data sheet No. 10.20-1; deals with the new $8\frac{1}{2}$ -oz, 400-cycle converter designed for high-altitude operation in various electronic and electrical equipment and in servomechanisms for aircraft and guided missiles. Complete description, illustration and wiring diagram are given.

Quick-Coupling Connectors. Thermo Electric Co., Inc., Fair Lawn, N. J., has just published a new section for its catalog, section 23, covering quick-coupling type thermocouple connectors and panels. The 4-page section is well illustrated and contains complete descriptive details.

Bimetal Thermostats. Stevens Mfg. Co., Inc., Mansfield, Ohio. A new bulletin describes the type S bimetal strip thermostats for use in appliances and industrial apparatus. It is illustrated with photographs of 13 standard models, schematic diagrams showing operating principles and dimensions and typical thermostat response curves.

TV Antennas. American Phenolic Corp., 1830 South 54th Ave., Chicago 50, Ill., has published a 16page booklet comprising a discussion of tv antennas based on actual field tests, dealing with the characteristics of the various types of antennas and the conditions which affect their performance. The booklet is well illustrated and contains two pages dealing with tv accessories.

Temperature Indicators. Manning, Maxwell & Moore, Inc., Bridgeport 2, Conn. Bulletin 404 introduces a line of thermocoupleactuated Microsen temperature indicators and recorders. The units

EMSCO <u>engineered</u> radio towers

For AM, FM, VHF, UHF, Microwave, Television and Radar

Emsco Towers are available for all types of broadcast and communication service. Backed by years of fabricating experience. **Emsco** towers are engineered for safety. performance and economy. Bolted construction and hot dip galvanizing insure long life, low maintenance cost and maximum electrical conductivity. Self-supporting triangular and square towers and guyed triangular towers are available in heights up to 1,000 feet with wind loadings up to 60 lbs. RMA design.

There is an EMSCO Engineered Tower to meet your needs. Write our Houston plant for bulletin.

TOWERS OF STRENGTH

EMSCO DERRICK & EQUIPMENT CO. Houston, Texas • Garland, Texas LOS ANGELES, CALIFORNIA

ELECTRONICS - December, 1950

COAXIAL SELECTOR SWITCH

50 Ohms – Type N Connectors – Manually Controlled Low VSWR – 4 Models

The COAXWITCH is an RF switch for use in coaxial circuits where it is important that the 50 OHM impedance of the cables be maintained. In a circuit sense, this switch consists of two pairs of "N" connectors spaced 4/2" apart using RG-8/U as the connecting link. The COAXWITCH itself introduces no VSWR other than that of connectors. Characteristic impedance is maintained thru all switch details. Cut-away view shows that shield as well as center conductor is switched. Beryllium copper contacts, on the gooseneck, mate directly with male "N" (Type UG > 1B/U) connectors, which connect directly to back plate of switch. Since all connectors come out in line with axis of switch, right angle connectors are usually unnecessary.

CUT-A-WAY VIEW, MODEL 74

Duplicates Precision Notches WITHOUT DIES!

The new precision DI-ACRO Notcher eliminates the need for punch press and dies on many production notching operations. It is also ideal for experimental work as it can be quickly adjusted for any size or shape notch. Many straight shearing operations can also be performed with this flexible unit.

CUTS CLEAN-NO BURRS OR

ROUGH EDGES

The powerful DI-ACRO Notcher has an exclusive roller bearing cam design which provides a tremendous pressure with a small amount of effort. The precision-ground Vee-shaped ram and blades of alloy tool steel assure clean cuts and permanent accuracy.

LARGE CAPACITY. The DI-ACRO Notcher cuts 90° notches up to 6" by 6" in 16 gauge steel in one operation. Larger notches, and wider or narrower angles, can also be obtained.

321 EIGHTH AVENUE, LAKE CITY, MINN.

SEND FOR 40-PAGE CATALOG. Gives full information on all six "DIE-LESS DUPLICATING" production boosters—DI-ACRO Benders, Brakes, Shears, Rod Parters, Punches, Notchers—with many examples of accurately duplicated parts. DI-ACRO is pronounced "DIE-ACK-RO"

Ū'n

PRECISION MACHINIS

DI-ACRO

PRODUCTION EXAMPLES

NEW PRODUCTS

(continued)

described have a -100-F to +3,000-F range and can be employed in a wide variety of electrical measuring requirements particularly where low-level electrical signals necessitate microammeter sensitivity.

Receiving Tubes. Radio Corp. of America, Harrison, N. J. The RC-16 receiving tube manual is a new edition containing over 300 pages and covering more than 460 receiving tubes and kinescopes. The section on electron tube applications has been expanded and includes formulas and examples for calculation of power output, load resistance, and distortion for several classes of amplifier service, as well as cathode-follower information. The section on installation now includes high-voltage and safety considerations for kinescopes. The section on circuits has been expanded and contains many new audio-amplifier and receivercircuit designs. Price is 50 cents.

Electron Microscopy. National Bureau of Standards, U. S. Dept. of Commerce, Washington 25, D.C., recently issued circular 502, a new compilation of technical literature on electron microscopy. Titles of the publications in the bibliography have been grouped in the following categories: Books, survey articles, instrumentation, electron optics, related instruments and applications. The 87-page circular is available from the Supt. of Documents, U. S. Government Printing Office, Washington 25, D. C., at 25 cents a copy.

Portable Sound Equipment. Newcomb Audio Products Co., 6824 Lexington Ave., Hollywood 38, Calif. A new catalog now available covers portable audio equipdesigned especially for ment schools, churches, clubs and recreational activities. It includes a wide selection of combination transcription players and p-a systems with both 2-speed and 3speed turntables. Two recently developed portable phonographs described have the exclusive Floating Sound feature that eliminates needle skipping. All models are illustrated and thoroughly de-

MFG.CO.

diacr

ELECTRONICS - December, 1950

269

Northern Radio Diversity Receivers

for the best in DIVERSITY RECEPTION

Integral assemblies of 2 or 3 specially designed Receivers with self-contained power supplies, Master Oscillator, IF Monitor, and Modulation Selector Panel. Supplied with any combination of terminal equipment for reception of radio tele-printer, undulator tape and program service, or for remote use where intelligence is transmitted via landline or UHF link.

See the specifications in the 1950 Electronics Buyers Guide. For complete data on the precision-built Northern Radio line, write today for your free latest Catalog E-4.

NORTHERN RADIO CO., inc. 143 West 22nd Street, New York 11, N.Y. Pace-Setters in Quality Communication Equipment

NEW PRODUCTS

(continued)

scribed with detailed specifications.

Photoelectric Amplifiers, De-Tec-Tronic Laboratories, Inc., 1227 N. Clark St., Chicago 10, Ill. Catalog 550 is an 8-page folder treating of a line of specially designed photoelectric amplifiers for smoke control, fire detection, counting, production-line control, inspection, burglar alarms, warning devices and many other industrial applications. Specifications are included.

C-R Equipment. Allen B. Du Mont Laboratories, Inc., 1,000 Main Ave., Clifton, N. J. A 16-page folder describes and illustrates a line of cathode-ray oscillographs, complete with specifications for each, for general laboratory and servicing applications, for precision measurement useful down to d-c and for specialized applications in h-v oscillography. Also included are auxiliary instruments, accessories and c-r tubes,

TV Components. The Plessey Co. Ltd., Ilford, Essex, England, A 24-page booklet describes and illustrates a range of ty components available to manufacturers. It contains much information of particular interest to designers. Several of the scanning and output transformers are based on the company's special tv grade of Caslam molded core material which is claimed to be suitable for tv applications by virtue of its low losses at higher audio and ultrasonic frequencies and freedom from objectionable noise producing magnetostriction effects.

Hermetically-Sealed Relays. Guardian Electric Mfg. Co., Inc., 1621 W. Walnut Ct., Chicago 12, Ill. Catalog 5-H covers a line of hermetically-sealed relays available in four standard mounting arrangements-the lug header type, Army-Navy connector type, octal plug type and the screw terminal type. A wide variety of contact combinations and operating voltage ranges available are treated. Included in the current catalog is technical information concerning the performance of "We have found Metex Electronic Gaskets excellent for HF currents inexpensive to assemble." Sylvania Electric Products Inc.

Sylvania has been using Metex gaskets for over a year as conductive shields for their TR tubes used in radar and micro-wave ranging equipment.

To quote their experience: "We have found Metal Textile knitted wire gaskets excellent for conducting high frequency currents without boundary arcing. The gaskets are resilient, and yet do not deform too readily. Best of all, the material is inexpensive to assemble through soft soldering techniques."

A Sylvania Electric TR tube showing Metex gasket loose and in position

The properties—electrical and physical—which make Metex Electronic Gaskets effective in this, and other demanding HF and UHF applications are due to their being made from *knitted* (not woven) wire mesh. The hinge-like action of the knitted mesh permits controlled resiliency of the finished gaskets. These can be die-formed to close dimensional tolerances, when required. There is practically no limit to the metal or alloy which can be used.

If the equipment you are manufacturing or designing requires a resilient conductive or shielding material, our engineers will welcome the opportunity of working with you. A letter, addressed to Mr. R. L. Hartwell, Executive Vice President and outlining your requirements, will receive immediate attention.

METAL TEXTILE CORPORATION 641 EAST FIRST AVE., ROSELLE, N. J.

ELECTRONICS - December, 1950

271

INCREASED ACCURACY

- SWEEPS .01 sec/cm to .1 µsec/cm Accuracy 5% or greater.
- .04 µsec RISE TIME
- FULLY REGULATED POWER SUPPLY.
- VOLTAGE CALIBRATOR 5% Full Scale Accuracy.

TEKTRONIX TYPE 511 AD OSCILLOSCOPE Price \$845.00 f. o. b. Factory

Increased accuracy in sweep time calibration is made possible by the use of dual Sweep Multiplier dials. The 2 megohm variable carbon resistor formerly used has been replaced by a combination of 1% fixed resistors and a variable element which comprises only 10% of the total.

Electronic regulation of all DC voltages preserves the inherent accuracy regardless of severe line voltage variations.

- advantages of Manual Channel Selection
- 15 MC Bandwidth on all channels, each channel individually adjustable.
 V Covers all 12 television channels on
- oscillator fundamental frequency ✓ Pulse type markers extending to zero
- Puse type markers extending to zero baseline at sound and video carrier frequencies—either or both markers may be turned ON or OFF. No spurious markers produced. Accuracy 0.02% crystal controlled. Additional Pip type markers for external use.
- ✓ Output 0.5 volt peak across 75 ohms on all bands.

- Zero signal output reference baseline always present.
- Provisions made for use with either 75 ahm unbalanced, or 300 ohm balanced input receivers.
- Triangular sweep, properly phased, provided for scope.
- ♥ Special filters to eliminate leakage.
- Power supply self contained and electronically regulated.

• Write for Type 1210 Data Sheet for full details • Write for Canadian office address

NEW PRODUCTS

units conforming to requirements of the ANR-20b and the 10-G vibration tests.

Geiger Counters. New York University College of Engineering, New York 53, N. Y. A recent fourpage folder illustrated with a dozen drawings explains the elements of a Geiger counter as well as the behavior of electrons, positive ions, ion clouds and impulses. A section of the folder deals with penetrating, honpenetrating and decaying cosmic - lay particles. Data is also given on special counting circuit arrangements. The publication is available at 10 cents per copy.

Test Equipment Catalog. Electronic Instrument Co., Inc., 276 Newport St., Brooklyn 12, N. Y., recently released the 1950-51 edition of their catalog for radio-television technicians, engineers and students. It describes a complete line of vacuum-tube voltmeters, oscilloscopes, sweep generators, signal generators, tube testers, signal tracers, volt-ohm-milliammeters, battery eliminators, highvoltage probes, r-f probes and crystals.

Waterproof Outlet Box. Equipment and Service Co., 6815 Oriole Drive, Dallas 9, Texas. Type 6005 Greenbilt waterproof outlet box designed for a-m, f-m and tv remotes, is illustrated and described in a recent bulletin. The unit featured has five interruption-proof all-weather outlets from one inlet. Each outlet of the product described will conservatively carry 1,500 watts and the inlet receptacle is rated at 6,000 watts, all at 115 volts. Ordering information is given.

TV Control & Resistor Replacement. Clarostat Mfg. Co., Inc., Dover, N. H., has released further data sheets covering tv control and resistor replacements. The sheets $(8\frac{1}{2} \times 11$ with standard binder punchings) constitute handy reference charts indicating model and chassis, stock and part numbers, the company's catalog number, list price, function and description.

(continued)

STAY ON THE AIR WHEN POWER FAILS...with

an ONAN Electric Plant

When storms, floods, or fires interrupt electricity and force you off the air, you lose listeners and income. Guard against loss, assure vital public service during emergencies by installing an Onan Electric Plant. Onan Standby Electric plants serve many network and private stations. Automatic models to 35,000 watts.

PORTABLE ELECTRIC PLANTS FOR MOBILE RADIO USES Supply A.C. power for broadcasting at scene of events. Can be carried by hand or in trunk of car. Weigh as little as 80 pounds. A.C. models 350 to 35,000 watts.

350 to 35,000 watts. Write for FREE Folder D. W. ONAN & SONS INC. 7017 University S. E. Minneapolis 4, Minnesota

STURDY! JOHNSON BANANA SPRING PLUGS AND JACKS

Studs extend full length of springs for added support. High grade nickel plated brass screw machine parts with accurate threads and milled nuts.

All plugs can be furnished with nickel, cadmium or silver plating if required. JOHNSON also manufactures spring

JOHNSON also manufactures spring sleeve types, removable round head tip jacks, molded round head tip jacks, insulated combination jacks, metal head tip jacks, twin tip jacks and shorting type twin tip jacks.

Main Office & Works: Chattanooga, Tenn. Needham, Mass. * Chicago * Los Angeles New York * Philadelphia

Switch instantly from light to heavy work—or vice versa—with the 250watt Weller Soldering Gun. Controlled dual heat makes the Weller Gun the only soldering tool you need for all types of work. 5-second heating saves time and current on every job, too. Your Weller Gun pays for itself in a few months!

250-Watt WELLER

SOLDERING GUN

√ Check these exclusive features

• TRIGGER-SWITCH CONTROL Governs heat and saves power because no need to unplug gun between jobs. Heat goes off when you release trigger.

5-SECOND HEATING—No waiting, no wasted current. Saves hours and dollars each month.
 SOLDERLITE—Spotlights the work. Lets you see what you're doing at all times, even in dark corners.
 LONGER REACH—Lets you get at any job with ease. Slides between wiring, into the tightest spots.
 STREAMLINED—Compact and comfortable to

hold. Pistol-balanced for fast precision soldering.
WELLERTIP—Rigid and chisel-shaped with more

area for faster heat transfer. Over/under terminals brace tip, give greater visibility.

• DUAL HEAT—Single heat 200 watts; dual heat 200/250 watts; 120 volts; 60 cycles.

See the all-purpose Weller Soldering Gun today at your distributor—or write for bulletin direct.

SOLDERING GUIDE—Get your new copy of SOLDERING TIPS—revised, up-to-date and fully illustrated 20-page booklet of practical soldering suggestions. Price 10c at your distributor, or order direct.

274

NEWS OF THE INDUSTRY

(continued from page 134)

released from the dispenser by packboard from a soldier's back without use of hands, from any land or amphibious vehicle, or any plane. A soldier who has a rifle, grenade, or bazooka can lay the wire by shooting it over rivers or cliffs. Two or more dispensers may be connected in tandem and the wire strung without splicing.

THE SIGNAL CORPS has developed a 7-contact miniature connector which is watertight in coupled and uncoupled positions. It uses butt contacts which can be easily cleaned in the field. The coupling and uncoupling action is obtained by a rotation of 30 degrees. The contacts are rated at a minimum of 2 amp at 125 v a-c. The plug is 11/16 in. in diameter and 1 in. long.

Electronic Engineers Needed

CIVILIAN electronics and communications engineers interested in assignments in the Pacific area with Airways and Air Communications Service (AACS) are requested to write the Commanding General, Headquarters AACS, Washington 25, D. C., Attn: Director of Personnel.

The AACS (part of the Military Air Transport Service) urgently needs these engineers to fill positions in grades 7 thru 12. It is the major air communications system of the USAF and as such furnishes air communications and navigational flying aids to U. S. military aircraft throughout the world.

1BCG Memorial

DEDICATION ceremonies by the Radio Club of America for a monument commemorating the first short-wave radio message across the Atlantic were held in Greenwich, Conn. a few yards from the site of the shack that housed the original transmitter.

The historic message was transmitted from amateur station 1BCG on the night of Dec. 11, 1921 using power of less than a kilowatt on a wavelength of approximately 230 meters. It was received by Paul F. Godley, who had been sent to

SCREEN ROOMS for ACCURATE RADIO-FREQUENCY MEASUREMENTS

Guesswork is eliminated when you use an ACE Pre-built Screen Room. The area background level of radio interference is suppressed and the room does not introduce any errors in your measurements. Attenuations of 100 db. —and higher—at frequencies as low as 0.15 and as high as 10,000 mc. are readily obtainable. Specially designed Screen Rooms can give attenuations as high as 140 db.

ACE attenuation characteristics have been determined by reputable electronic laboratories. These Screen Rooms are used for various applications such as evaluation and suppression of radio interference; radio and radar calibration, sensitivity, susceptibility, spurious response and radiation; measurements involving electronic instruments used in medical laboratories and many others. Write for descriptive bulletin.

Easily installed Easy to move or to enlarge

Low priced

ACE ENGINEERING and MACHINE CO., INC.

3644 N. Lawrence Street Philadelphia 40, Pa. Regent 9-1019

TOROIDAL? LAMINATED?

Your filter or inductor problem may be best solved by using toroids. Or the problem may require the use of laminations. Acme is completely equipped to design and produce, to your specifications, using whichever construction method best suits the purpose.

Division of Acme Metal Die, Inc. 212 E. 17th St., Los Angeles 15, PRospect 7457 Wave Filters • Delay Lines • Magnetic Amplifiers • Special Transformers & Chokes • Toroidal, Universal & Solenoid Wound Inductors

1691 W. Lafayette Blvd.

Detroit 16, Michigan

UNIVERSAL SCINTILLATION COUNTER for ALPHA-BETA-GAMMA Reliable—Accurate—Portable

Model 200A

Specifications:

Power: Batteries (self contained). Penlite or PM cells.
 Power Input: 6 volts 50 ma.
 Betection element: 1P21 photomultipiler and phosphor, or crystal.
 Window: Aluminum foll 1.75 mg/cm2
 Indication: Meter plus aural.
 Calibration: Disintegrations per min. for Alpha radiation. units per hour for Beta and Gamma radiation.
 Sensitivity: 150 D/M — 500.000 J/M in rages desired.
 Weight: Approx. 21/2 lbs! (one hand operation)
 Price: \$215.00.

A really "portable" precision instrument, Absence of "zero drift" especially notable, compared to usual ion chamber type instrument. Develops absolute discrimination against Beta and Gamma (when measuring Alpha radiation levels) by use of a very thin phosphor having a low counting efficiency for Beta or Gamma (approx. .0002%) but extremely high for Alpha particles. Switches easily from phosphor to crystal for counting Beta and Gamma radiations. Design and size facilitate Bench Contamination surveys.

We can supply laboratory instruments and field survey units. Model 240A—Alphatron Geiger Detector Model 241 —Geiger-Meuller Detector

Model 241 —Geiger-Meuller Detector Model 242 —Alphatron Geiger Meuller Detector Descriptive literature available on request

ALPHA NUCLEAR LABORATORIES Box 649 Asbury Park, N. J. A few "open" ferritories left. Wrife for full particulars.

SPECIALISTS IN

GEAR WORKS 1910 N. FRONT ST. PHILADELPHIA 22, PA.

Lockheed invites you to participate in its long-range production program, developing the aircraft of the future.

Lockheed offers an attractive salary commensurate with your ability and background, a future in aeronautical science. In addition, Lockheed provides generous travel allowances for those who qualify.

If you have:

- 1. An M.S. or Ph.D. in Electrical Engineering of Physics —
- A minimum of three years' experience in advanced electronic systems development, including radar microwave techniques, servomechanisms, computers and fire control —
- Familiarity with airborne electronics equipment requirements –

Write today-giving full details as to education, experience and salary requirements. Address: Karl R. Kunze, Employment Manager LOCKHEED Aircraft Corporation Burbank, California

NEWS OF THE INDUSTRY

(continued)

Monument commemorating first shortwave transatlantic radio message was recently dedicated at Greenwich, Conn., by Radio Club of America

Scotland by the American Radio Relay League for the express purpose of listening for U. S. amateur signals. The success of this test was also a turning point in commercial utilization of short waves, heretofore neglected.

Replicas of the Radio Club of America Armstrong Medals were presented to the original participants at the ceremony. Present to accept the awards were E. H. Armstrong, E. V. Amy, G. E. Burghard and P. F. Godley. Receiving awards in absentia were Minton Cronkhite, J. F. Grinan and Walker Inman.

BUSINESS NEWS

FEDERAL TELEPHONE AND RADIO CORP., Clifton, N. J., will install a ptm microwave communication system for the Trunkline Gas Co., Houston, Texas, to serve the latter's 1,300-mile pipeline from natural gas fields in Texas and Louisiana to Tuscola, Ill., where the mainline route will tie in with the Panhandle Eastern Pipeline Co. It will be the second longest microwave system used for industrial communications.

GENERAL ELECTRIC CO. will soon reopen its Clyde, N. Y., plant and transfer production of germanium products now made at its Thompson Road plant in Syracuse to the newly occupied factory. Full production of these items for use in radio and tv receivers and in industrial and

YOU specify what **YOU** need. Transicoil will make it for you. Forget confusing design troubles brought about by trying to adapt standard units to your applications. Eliminate secondary operations often necessary for installation. Transicoil precision components are made the way you want them made and shipped ready for immediate use.

FREE! COMPLETE DATA ON CONTROL MOTORS

This big chart, packed with valuable technical data, is ideal for applying Transicoil Control Motors to your products. Send for your copy today!

Other Transicoil Products: PRECISION GEAR TRAINS, INDUCTION GENERATORS, SERVO AMPLIFIERS

107 GRAND STREET

NEW YORK 13, N.Y.

ELECTRONICS - December, 1950

DC-AC CHOPPER

A model for every use. 10 — 500 cycles AC Meets AN Specifications also 60 cycles Single pole and double pole Make-before-break contacts Contacts in air or in liquid

precision vibrators having special features which contribute to long life and low noise level.

DC. N. CHOPPER DC.AC CEOPFER

MILLER HERITAL HUMAN

WRITE FOR THESE CATALOGS... **≈2328** 10-500 cycles **≈264A** 50 cycles

NEWS OF THE INDUSTRY

(continued)

military electronic equipment is expected about February 1.

RADIO CORP. OF AMERICA recently acquired a new plant with 180,000 sq ft of floor space in Cincinnati, Ohio, for the manufacture of miniature electron receiving tubes. The plant is scheduled to be in full production by the autumn of 1951.

FACSIMILE AND ELECTRONICS CORP. is the new name of Finch Telecommunications, Inc., Passaic, N. J., manufacturer of facsimile equipment for communications and reproduction purposes.

THE LAPOINTE-PLASCOMOLD CORP., manufacturer of Vee-D-X television antennas and accessories, has pur-

New La Pointe-Plascomold plant has a production area of 105,000 sq ft

chased an entire new plant at Windsor Locks, Conn., to more than double its present production.

THE AUDIO-MASTER Co., manufacturers of transcription players, have moved to larger quarters at 341 Madison Ave., New York 17, N. Y.

RADIO CORP. OF AMERICA recently re-established radio contact and telegraph service between the U. S. and Seoul, capital of South Korea. Reopening of the circuit was made possible by repairing radio transmitting and receiving facilities in Seoul which had been damaged during the North Korean occupation.

PERSONNEL

LYNN C. HOLMES, associate director of research at Stromberg-Carlson Co. since April 1950, has been named director of research for the company.

RAYMOND C. MILES, formerly with Haller, Raymond & Brown, Inc., as

Products requiring precision time performance need this dependable time control.

The ZENITH PROGRAM TIMER is an automatic switch which can be set to close an electrical circuit at any desired 5 minute interval of the 24 hours. This circuit closure can be from 5 to 60 seconds as specified and occurs precisely at the time selected. As many as 288 operations per day are possible. There are nine other models to meet all types of operation schedules.

Zenith also makes top accuracy: Transfer switches • Remote control switches • Automatic time switches • Automatic reset switches • Magnetic contactors • Interval timers • Process timers • Reversing starters • Impulse timers • Magnetic switches Synchronous motors • Work cycle timers.

IF YOU DON'T HAVE WHAT YOU NEED WE WILL MAKE IT

Write for catalog today

151 W. Walton St.

Chicago 10, III.

For Toroidal Coils

To Your Specifications and at LOW COST*

write

UNIVERSAL MFG. CO., INC. 404 Hillside Avenue Hillside, New Jersey

* This is possible due to our own specially designed winding equipment.

MIL-T-27 CANS ARE STOCK ITEMS AT Heldot We can supply all standard sizes of MIL-T-27 cans

We can supply all standard sizes of MIL-1-27 cans with or without brackets, weld studs, centrifugal hot tinned, blind inserts, compression type hermetic seal bushings on $\frac{3}{8}''-\frac{1}{2}''-\frac{5}{8}''-\frac{3}{4}''}$ centers, and stamped ratings. Custom sizes can also be supplied. Our other services include special tube bending and specialized screw machine products. Write for specifications and price list.

HELDOR METAL PRODUCTS CORP. NOTE NEW ADDRESS: 85 Academy St., Belleville 7, N. J.

The part shown above is a valve-adjustment screw which must be held to very close tolerances. Consider, for instance, the unusually short threaded section which must be concentric with the coneshaped point to center it in the valve aperture.

how would you make it?

Ordinarily, a part like this would be considered a job for other production methods—to be made in two pieces, at a sacrifice in strength and with high assembly cost—or as a screw-machine piece with great waste of metal. However, in the experienced hands of Scovill engineers, toolmakers and operators, this valve-adjustment screw is being made by *cold heading* — in one piece, to close tolerances, and at low cost.

Scovill makes a specialty of "tough" cold heading jobs. Send your sample or blueprint for fur-

ther information. It may pay you well.

"Guide to the Profitable Use of Cold Heading" — Bulletin No. 2 describes the advantages and limitations of this process for the designer. It's free for the asking.

Montclair, N. J. • Detroit • Wheaton, III. Los Angeles • Cleveland • San Francisco NEWS OF THE INDUSTRY

(continued)

chief engineer, has been named deputy head of the design and test section of the engineering and production division of Airborne Instruments Laboratory, Mineola, N. Y.

P. N. HAMBLETON, formerly of the Philco tube development laboratory, has been appointed electronics engineer in charge of the electronic laboratory at Superior Tube Co., Norristown, Pa.

JOHN N. DYER, supervisor of radar and air navigation research and development for Airborne Instruments Laboratory, Mineola, N. Y., has been named director of research and engineering for the company.

J. N. Dyer

M. A. Tuve

MERLE A. TUVE of the Carnegie Institution, Washington, D. C., has been awarded a Howard N. Potts Medal by The Franklin Institute of Philadelphia, Pa., for his supervision of the development and engineering design of the proximity fuse.

ROY W. AUGUSTINE, founder of the Joy-Kelsey Co., radio set manufacturers, and the Oxford Co., speaker manufacturers, was recently appointed to the engineering staff of the Muter Co., Chicago, Ill., television components manufacturers.

ROBERT DOWD, head of the quality control department, Tel-O-Tube Corp. of America, East Paterson, N. J., has been appointed chief field engineer for the firm.

R. G. E. HUTTER, head of the electronics research section of the physics laboratory, Sylvania Electric Products Inc., Bayside, N. Y., has been appointed adjunct professor at the Brooklyn Polytechnic Institute, where he will conduct classes in electron tube theory and electron optics.

A new concept in multiple trace oscilloscopy made possible by Waterman developed RAYONIC rectangular cathode ray tube, providing for the first time, optional screen characteristics in each channel. S-15-A is a portable twin tube, high sensitivity oscilloscope; with two independent vertical as well as horizontal channels. A "must" for investigation of electronic circuits in industry, schoolor laboratory.

Vertical channels: 10mv rms/inch, with response within -2DB from DC to 200kc, with pulse rise of 1.8 μ s. Horizontal channels: 1v rms/inch within -2DB from DC to 150kc, with pulse rise of 3 μ s. Non-frequency discriminating attenuators and gain controls, with internal calibration of traces. Repetitive or trigger time base, with linearization, from ½cps to 50kc, with \pm sync. or trigger. Mu metal shield. Filter graph screen. And a host of other features.

Here's

Why

it

Pays

You

to

Read

the

Advertising

The advertising is a rich source of valuable information. In this magazine it offers you ideas and products that may well apply advantageously to your business.

Every issue is a catalog of goods, materials, and services – quickly available to you – just for the reading.

Leaders in business and industry turn to the advertising because they've discovered it helps them run their businesses more profitably.

When you read all the ads in this magazine, the chances are good that you'll get a lead that will materially help you do a better job. For example, you may find a specific piece of equipment that will be a profitable timesaver. Or a tool that will increase worker efficiency. That's why it pays to read the advertising. It's good business.

McGRAW-HILL publications

with minimum size. Applications

- Wire & Tape Recorders
- Servo Applications
- Full Torque Under Continuous Stall

The L71WJ and L712SJ are representative examples of our Tarque Motor line. Let us have your complete specifications. For further details write to Dept. ""C".

SPEED-TORQUE CURVES ENGINEERED TO FIT YOUR NEEDS

EASTERN AIR DEVICES, INC. 585 DEAN STREET BROOKLYN 17, N.Y.

MACDONALD ELECTRONIC MICROAMMETER

THIS instrument is designed to replace high-sensitivity galvanometers in many applications. Due to its ruggedness, freedom from burnout, and relative insensitivity to shock, it an ideal instrument for use in balancing resistance bridges, measuring crystal rectifier output, photo-cell, strain-gage, thermocouple, and lead-sulphide cell currents, etc. The instrument may also be used as a DC pre-amplifier for recorders. When used in this manner, current amplification of 1,000 is available.

SPECIFICATIONS:

Sensitivity • I microampere full scale 50 microvolts full scale Ranges • 1, 3, 10, 30. 100 microamperes

Permissible overload — ½ ampere Accuracy — ±3% full scale Time constant—about 6 seconds Power supply — 110 — 125 V, 60 C.P.S. Dimensions — 7" x 8" x 9½".

W. S. MACDONALD CO., INC. CAMBRIDGE 38, MASSACHUSETTS

A Dependable Source for SPECIAL CAPACITORS

When special capacitors with unusual characteristics are required, we can fulfill your requirements and give excellent delivery. Some outstanding types are as follows:

POLYSTYRENE CAPACITORS

10

Characterized by extremely high insulation resistance and Q, and very low power factor and dielectrie absorption. Voltages from 200 volts to 50,000 volts. Write for our catalog "E".

HIGH VOLTAGE PLASTIC DIELECTRIC CAPACITORS

Available in a wide variety of capacities, voltage ratings, and housings. Write giving your exact requirements for a prompt quotation.

INTEGRATING CAPACITORS

High capacity, low bulk units with insulation resistance far superior to metallized paper. These units are wax impregnated paper capacitors rated at 50 volts DC and having a bulk of only 30 cubic inches for a 50 Mf block. Insulation resistance 5000 megohm microfarads minimum.

United Condenser Corporation

.............

337 East 139th St. New York 54, N. Y. CY press 2-5180 how can YOU use this unique Edison Thermal Relay?

If you are designing circuits requiring a time delay element, or a reliable relay where a short operating interval can be tolerated, it might be to your advantage to consider the Edison 501 Thermal Relay.

Here are 7 good reasons why:

1. Vibration and shock resistant – Guaranteed to withstand continuous vibration of 1/16'' over-all amplitude at 55 cps., and impact shock of 50 g.

2. Chatter-proof – Pre-loaded spring provides 50-gram pressure almost instantaneously, for sure, positive operation.

3. Non-position sensitive – Characteristics not affected by mounting angle – operates satisfactorily in any position. Standard intermediate octal base.

4. Ambient compensated – Automatically compensated for $\pm 60^{\circ}$ C. ambient range by extra unheated bimetal. Will operate from -60° C. to $+100^{\circ}$ C.

5. Non-arcing – Sealed-in-glass. Operates in its own arc-suppressing atmosphere. Withstands substantial currents and voltages without arc-pitting.

6. Explosion-proof – Hermetically sealed. You can specify it for safe use in corrosive or hazardous fumes and dusts. Tamper-proof, too.

7. Fungus-resistant – Available with fungus and salt-spray resistant micanol base.

LITERATURE AVAILABLE

Free illustrated Bulletin 3007A gives full details. Write today for a copy. 296 Lakeside Ave., West Orange, N. J.

BACKTALK

(continued)

detriment of the interests of the listening public.

As a specific example for the f-m field, I enclose copy of a report made to me a year ago concerning the radiation of an RCA 8X71 and a Zenith 7H822 (S-15840) table model, respectively. The report is hard to believe, but unfortunately too true. It shows the RCA set developing a radiating voltage of 1 volt across a 300-ohm transmission line, the principal cause being, of course, the failure to use an r-f amplifying stage. The corresponding value for the Zenith set was 1/50th of a volt.

The report further shows that at a distance of 50 miles from New York City the RCA set, when connected to an antenna 15 feet high, destroyed reception of WCBS-FM over a radius of $\frac{1}{2}$ mile when the oscillator was tuned to radiate on CBS' frequency. Under similar conditions, the Zenith radius of interference was under 500 feet.

At the time this type of RCA set was introduced, I learned on authority which is unimpeachable that the radiating characteristics were known to its designers but that, nevertheless, the RCA organization intended to proceed with its marketing plans. Contrast this with the fact that in the nineteen-twenties RCA, when confronted with the superheterodyne radiation problem, took the lead in finding a solution.

For a correspondingly bad example in the engineering of television sets it is necessary only to examine what happened in the Providence area, where a similarly "engineered" type of tv set, likewise made by a nationally known manufacturer, Motorola, was turned loose in quantities in that area.

In governmental circles the grade of engineering is little better. In fact, the present situation is due as much to FCC engineering incompetence as to unsound commercialism in the manufacturing industry. The discredited Norton and Allen theories (see *Proceedings*, *IRE*, Feb., 1, 1947), which moved f-m to its present wave band, brought about the interference which, without the move, could not have existed. That is not, however, the major error in judgment. The major error is the allocation of the frequencies

> 1900 ★ THE MIRACLE OF AMERICA ★ 1950 🗸

It's no stretch of the imagination, rather, robust realism to call our past half century a Miracle - U.S.A.

America has set an amazing record of progress in 50 years – but a moment in the history of civilization. A record unequalled by any other political or economic system.

Merely by broad brush strokes, we can all visualize this miracle. Remember the crystal set, the hand-cranked car, the biplane? A far cry from our FM radio, tele-vision, hydro-matic drive and supersonic planes.

And here's another phase of the miracle that went hand-in-hand with these and the myriad of intertwined technological advances — ranging from the radio telephone and Bakelite to the X-ray tube and teletype ... and to atomic energy and its untold potentialities.

- % Since 1900 we have increased our supply of machine power $4\frac{1}{2}$ times.
- Since 1900 we have more than doubled the output each of us produces for every hour we work.
- Since 1900 we have increased our annual income from less than \$2400 per household to about \$4000 (in dollars of the same purchasing power), yet ...
- Since 1900 we have cut 18 hours from our average work week-equivalent to two present average workdays.

How did we do it? The basic cause for this composite miracle has been the release of human energy through FREEDOM, COMPETITION and OPPORTU-NITY. And one of the most important results is the fact that more people are able to enjoy the products of this free energy than in any other system the world has ever known.

THIS IS THE MIRACLE OF AMERICA . . . it's only beginning to unfold.

Published in the public interest by:

McGraw-Hill Publications

ELECTRONICS - December, 1950

<section-header><text><text><image>

Standard or custom types to meet your requirements.

DYNAMIC RESISTOR CORPORATION 6 CUTTER MILL ROAD GREAT NECK, N. Y.

BACKTALK

(continued)

of an air navigation service to a place within the interference range of f-m and television sets where, with a large number of sets scattered about the country, the chance of something going wrong, even with properly designed sets, must be considered. Why some of the nonvital types of air communication services were not assigned there to serve as a buffer region so that all services adjacent to safety-of-life channels could be under CAA supervision, is something in need of much explanation.

There is likewise a second question which requires answering: Why is the guidance of a ship and its passengers entrusted to a transmitter having the peanut-like power of 200 watts-just about a quarter horsepower, when thousands of horsepower are employed in the other part of the transportation problem-that of keeping the ship in the air? Sound engineering judgment would dictate the use of sufficient power from ground transmitters to override even chance radiations from damaged f-m or ty sets or diathermy machines out of control. Equal lack of foresight came to light a few years ago when planes were provided with superheterodynes for instrument landing operation with insufficient image rejection against f-m transmitters in the center of the band.

The list of mistakes that should not have been made could be continued, but sufficient instances have been given to make the point. Chairman Coy of the Federal Communications Commission is to be commended for bringing into the open a problem which both the Commission and the industry have been aware of for at least two years. This Commission, however, would inspire more confidence were it to admit the mistakes of the former Commission, in whose actions the basic responsibility lies. The present Commission is now face to face with the laws of Nature; it will find that they are as immutable as the laws of the Medes and Persians. A refusal to recognize that a bridge is improperly designed will not prevent the future collapse of that bridge.

I suggest to the Radio and Television Manufacturers Association

BACKTALK

(continued)

if it expects to continue to do its own engineering that it take the steps necessary to see either that that engineering is done properly, or that the facts about sound engineering be so plainly presented that responsibility for their violation can be squarely placed. If it does not do this it will find its engineering being conducted for it by some government bureau, perhaps on a lower plane of competence, but none-the-less being conducted for it.

Very sincerely yours, Edwin H. Armstrong

Memorandum concerning the Observation and Measurement of Radiation Interference from Certain F-M Receivers (included with letter to Dr. Baker):

(1) Laboratory measurements were made with a vacuum-tube voltmeter to determine the magnitude of the receiver oscillator voltage appearing at the antenna posts when terminated with a 300-ohm resistor. The following results were noted:

Receiver Model	Voltage Across Antenna Terminals			
RCA 8X71	1.0 volt			
ZENITH S-15840	0.02 "			

(2) On the 23rd of June 1949, W. G. Russel, P. Sadenwater and F. Hargesheimer made a field trip to Eastern Long Island for the purpose of observing the interference created by the above f-m receivers. These tests were performed at a distance of aproximately fifty airline miles from New York City.

The RCA 8X71 receiver was connected to a folded dipole extending approximately feet above 15ground. This receiver was tuned so as to generate an oscillator frequency of 101.1 mc to coincide with the transmitting frequency of WCBS-FM. The Zenith S-15840 receiver, connected to a dipole antenna mounted on the roof of the car, was then tuned to WCBS-FM. However, the presence of the undesired signal being radiated from the RCA receiver made reception of the New York station impossible. The automobile containing the Zenith set was then driven away from the location of the RCA set until a position was reached where reception of WCBS-FM was normal and clear. The field strength of the de-

Another Murex contribution

TO THE ELECTRONICS AND ELECTRICAL INDUSTRIES TANTALUM

We also supply Tungsten and Molybdenum metals and powders, and Tantalum powders, Titanium Hydride, Zirconium Hydride, and many other metallurgical products.

In addition to Tungsten and Molybdenum we are now making pure TANTALUM ROD, SHEET and WIRE—the first time these materials have been made in Great Britain. We shall be pleased to have details of your requirements.

MUREX LTD (Powder Metallurgy Division) RAINHAM • ESSEX • ENGLAND LONDON OFFICE: CENTRAL HOUSE, UPPER WOBURN PLACE, W.C. 1.

2 KW VACUUM TUBE BOMBARDER OR INDUCTION HEATING UNIT

For Only \$650.

Never before a value like this new 2-KW bench model "Bombarder" or high frequency induction heater . . . for saving time and money in surface hardening, brazing, soldering, annealing and many other heat treating operations.

Simple . . . Easy to Operate . . . Economical Standardization of Unit Makes This New Low Price possible.

This compact induction heater saves space, yet performs with high efficiency. Operates from 220-volt line. Complete with foot switch and one heating coil made to customer's requirements. Send samples of work wanted. We will advise time cycle required for your particular job. Cost, complete, only \$650. Immediate delivery from stock.

Scientific Electric Electronic Heaters are made in the following range of Power: $1-2-3\frac{1}{2}-5-7\frac{1}{2}-10-12\frac{1}{2}-15-18-25-40-60-80-100-250KW.$

BACKTALK

(continued)

sired signal being received from WCBS-FM was measured with a field strength meter and found to be 35 microvolts at the height of the car antenna (8 feet). Under the above conditions radiation interference was considered to be intolerable whenever the RCA set was located within one-half mile of the receiving position.

A similar test run was performed using the RCA 8X71 to receive the desired signal and the Zenith set oscillator tuned to give an interfering signal. Radiation interference from the Zenith set could not be detected in the RCA 8X71 beyond a distance of 500 feet.

Electronics Quiz

THIS MONTH'S PUZZLER IS submitted by B. Lindeman of Brooklyn, New York. For his contribution, Lindeman will receive our check for \$5.00, as will other contributors whose problems appear in this department. Solution to last month's problem appears below.

What is the input impedance and the frequency for which the following circuit has

unity power factor (antiresonance)? Answer will appear next month.

Last Month's Solution

THE PROBLEM for last month, as submitted by Bob Wakeman of Bloomfield, New Jersey, was:

What is the impedance across the input terminals of the

infinite ladder shown? Assuming R_1 to be 2 ohms, and R_2

VALUE

sultant is that it eliminates the elements of chance and uncertainty from the problem and provides real facts upon which to base decisions.

ELECTRONICS - December, 1950

AMERICAN TELEVISION & RADIO CO. Quality Products Since 1931 SAINT PAUL I, MINNESOTA-U.S.A

BACKTALK

(continued)

to be 4 ohms, find R.

Solution. If we remove the first section, the resistance across the input to the second section A will

also be R, since we assumed an infinite network. Therefore the problem reduces to

$$R = R_{1} + \frac{R R_{2}}{R + R_{2}}$$

$$R^{2} = R R_{1} + R_{1} R_{2}$$

$$R = R_{1} \pm \sqrt{R_{1}^{2} + 4 R_{1} R_{2}}$$

$$R = R_{1} \pm \sqrt{R_{1}^{2} + 4 R_{1} R_{2}}$$

The minus sign before the radical would result in a negative R. so it is discarded. Thus if R_1 is 2 ohms, and R₂ is 4 ohms,

$$R = \frac{2 + \sqrt{4 + 32}}{2} = 4 \text{ ohm}$$

Red Face Department

SEVERAL READERS have kindly informed us that the solution to October's puzzle problem, as printed in the November issue, is even more of a puzzle than the original quiz problem itself. According to these hawkeyes, the solution of the integral

$$P = \frac{1}{2\pi R} \int_{0}^{2\pi} (e_{i} \sin \theta + e_{2})^{2} d\theta$$

s $\frac{e_{i}^{2}}{2R} + \frac{e_{2}^{2}}{R}$
and not $\frac{e_{1}^{2}}{2R} + \frac{e_{2}^{2}}{R} + \frac{2e_{1}e_{2}}{\pi R}$

John C. Schruder, of Purdue University, goes on to point out that the correct solution is in agreement with the well-known principle that a voltage consisting of a d-c component and a sinusoidal component will have an effective value equal to the square root of the sum of the squares of the d-c component and the effective value of the sinusoidal component. We stand corrected. The Editors.

CONTINUOUSLY VARIABLE SPEED **RECORD PLAYER**

Famous Models T-12H and T-43H

*Recommended for use with Hi-Fi amplifiers and speaker systems be-cause of low noise and rumble level, which is maximum-50 db. The only 11" dual speed turntables equipped with Hysteresis synchron-ous motors, thereby meeting standards for speed regulation and "wow" content specified by the N.A.B. Instantaneous speed shift en-gages either 78 or 331/s R.P.M. idler without stopping turntable or removing disc. T-12H - 73 - 331/s - 119.95 NET Interchangeable idlers for third speed optional

Model LP-743 Three-Speed 12" Transcription Turntable

December, 1950 - ELECTRONICS

EMPLOYMENT . BUSINESS . UNDISPLAYED RATE

\$1.50 a line, minimum 4 lines to figure ad-vance payment count 5 average words as 0

line

INFORMATION:

BOX NUMBERS count 1 line additional in undisplayed ads.

DISCOUNT of 10% if full payment is made in advance for four consecutive insertions of undisplayed ads (not including proposals).

une, INDIVIDUAL EMPLOYMENT WANTED undis-played advertising rate is one-half of above rate, payable in advance. PROPOSALS \$1.20 a line an insertion. NEW ADVERTISEMENTS received by November 30th will appear in the January issue, subject to limitation of space available. The publisher cannot accept advertising in the Searchlight Section which lists the names of the manufacturers of resistors, capacitors, rheostats, and poten-tiometers or other names designed to describe such products.

WANTED SALES REPRESENTATION

Reputable established high grade test instrument manufacturer wants sales representation in all sections of country. Prefer offices now handling high grade non-conflicting lines. Must be technically informed.

RW-8219, Electronics 330 W. 42 St., New York 18, N. Y.

REPLIES (Box No.): Address to office nearest you NEW YORK: 330 W. 42nd St. (18) CHICAGO: 520 N. Michigan Ave. (11) SAN FRANCISCO: 68 Post St. (4)

POSITIONS VACANT

FOREMAN: ARMATURE Winding Depart-ment Permanent Position AC-DC all types to 300 HP Eastern Manufacturer. Salary open. P-8142, Electronics.

ELECTRONIC ENGINEER, experienced in dielectric heating and related fields. Per-manent position in expanding organization in Southwestern city. State age, education, ex-perience and salary desired in application. P-8043, Electronics.

DEVELOPMENT ENGINEER — Electronic — Recent graduate in Electrical Engineering or Physics with interest and aptitude for develop-ment of electrical controls for special purpose production machinery. Prefer man with one to two years' experience along these lines. Ex-cellent working conditions. Permanent. Please send complete resume to P-8022, Electronics.

EMPLOYMENT SERVICES

SALARIED PERSONNEL, \$3,000-\$25,000. This confidential service, established 1927, is geared to needs of high grade men who seek a change of connection under conditions assur-ing, if employed, full protection to present position. Send name and address only for details. Personal consultation invited. Jira Thayer Jennings, Dept. L, 241 Orange St., New Haven, Conn.

WE DEAL in action: There are more attrac-tive positions, higher salaries—and greater chances for advancement than you have en-joyed in the past. But they are attracted only by the man who employs the magnetism of pro-fessional selling procedure. If you are not sat-isfied with your present position, and are cap-able of earning \$3,600 to \$50,000 a year, our service secures interviews for better-paying executives positions. Constant contact major corporations Coast to Coast and Internation-ally. Write for complimentary booklet describ-ing our confidential service. Executive Man-agement Corporation, 625 Madison Ave., New York City 22, N. Y.

Engineers - Executives - Technical Men Salaried Positions, \$4,000 to \$30,000, This Con-fidential service for men who desire a new connec-tion, will develop and conduct preliminary negotia-tions without risk to present position. Send name and address for details. TOMSETT ASSOCIATES

1207-2 Berger Bldg., Pittsburgh 19, Pa.

DIGITAL COMPUTER SPECIALIST Will consider responsible position on Project Engineer or higher level. Extensive experience in the design, construction, test & operation of high speed electronic digital computers. Now employed in this field. Also comprehensive background in communication and control theory and practice. Excellent scholastic background. Masters Degree.

PW-8104, Electronics 330 W. 42 St., New York 18, N. Y.

POSITIONS WANTED

INDUSTRIAL ELECTRONIC Technician. 2 years training at college level, 2 years prac-tical experience, seeks position with future. Young, aggressive and dependable. Location and salary secondary. PW-8151, Electronics.

ELECTRONICS ENGINEER, B.E.E., M.E.E., P.E. 6 years design and development expe-rience in Electronic Circuity, Computers, Sub-miniaturization, and Servos. Author of numer-ous articles in the technical literature. Desires responsible position with company offering un-limited opportunities. Prefer N. Y.-Conn. area. PW-8184, Electronics.

BUSINESS OPPORTUNITY

If'you are contemplating relocating, you should request a copy of "Busi-ness Opportunities in Watertown, South Da-kota." Call or write Mayor Gilbert or the City Promotional Director, J. G. Ihnet.

SPECIAL SERVICE

Photo-Retouching (Airbrush). Exploded views, cutaway rendering and top quality photo-retouching, for clarity in your design details. Instruction manuals, advertis-ing and catalogues. Hirshon Photo-Retouching Service, 113 West 42nd St., LO 4-8163.

WANTED

ANYTHING within reason that is wanted in the field served by Electronics can be quickly located through bringing it to the attention of thousands of men whose interest is assured because this is the business paper they read.

OPPORTUNITIES . EQUIPMENT-USED or RESALE

DISPLAYED-RATE PER INCH

The advertising rate is \$12.80 per inch for all advertising appearing on other than a con-tract basis. Contract rates quoted on request. AN ADVERTISING INCH is measured % inch vertically on one column, 3 columns-30 inches -to a page.

ELECT.

We are empowered to buy for manufacturers and pay highest prices for

WANTED

(Additional Wanted Ads on page 319)

TUBES CONDENSERS RESISTORS

Volume controls and other electronic components.

We need everything. Send us your complete lists.

ELECTRONIC SURPLUS BROKERS New York, N. Y. 3232 Broadway Riverside 9-4955

WANTED

INSULATORS; POLE LINE HARDWARE; GUY STRAND WIRE; COPPERWELD WIRE; WESTERN ELECTRIC TOOLS; SPLICING SLEEVES

VICTOR-BERNARD INDUSTRIES NE Cor. 22nd & Lehigh Aves., Phila. 32, Pa.

W-6863, Electronics 330 W. 42nd St., New York 18, N. Y.

WANTED

Tubes, Test equipment, Condensers, & general inventories. Highest prices paid.

W-7965, Electronics 330 W. 42nd St., New York 18, N. Y.

WANTED

Teletypewriters complete, components or parts. Any quantity and condition.

W-6864, Electronics 330 W. 42nd St., New York 18, N. Y.

WANTED TO BUY

PRIVATE LABORATORY Wishes To Purchase For Its Own Use High Grade Test Equipment and Basic Radio Components, Replies Held in Confidence. W-7171, Electronics 330 W. 42nd St., New York 18, N. Y.

December, 1950 - ELECTRONICS

RCA VICTOR Camden, N. J. **Requires Experienced Electronics Engineers**

RCA's steady growth in the field of electronics results in attractive opportunities for electrical and mechanical engineers and physicists. Experienced engineers are finding the "right position" in the wide scope of RCA's activities. Equipment is being developed for the following applications: communications and navigational equipment for the aviation industry, mobile transmitters, microwave relay links, radar systems and components, and ultra high frequency test equipment.

These requirements represent permanent expansion in RCA Victor's Engineering Division at Camden, which will provide excellent opportunities for men of high caliber with appropriate training and experience.

If you meet these specifications, and if you are looking for a career which will open wide the door to the complete expression of your talents in the fields of electronics, write, giving full details to:

> National Recruiting Division Box 930, RCA Victor Division **Radio Corporation of America** Camden, New Jersey

RESEARCH ENGINEERS ELECTRICAL ENGINEERS AND PHYSICISTS

THE FRANKLIN INSTITUTE

Laboratories for Research and Development

have openings for personnel with 2-10 years experience. Advanced degrees are desirable in certain of the positions. Fields of interest covered are: Mathematical Analysis of Physical Problems. Statistical Theory of Communications, Electromagnetic Theory, Circuit Analysis, Servomechanism Theory, Electrical Computing, Advanced and Fundamental Circuit Development, Radar and Pulse Circuits, Supervision of Operation of G.C.A. or Tracking Radar, Air Traffic Control Air Navigation, Automatic Controls, Industrial or Marine Power Drives, and Electrical Machinery.

Send resume of education and experience, salary requirements and photograph to:

Personnel Department

THE FRANKLIN INSTITUTE Philadelphia 3, Pennsylvania

ELECTRONIC ENGINEERS BENDIX RADIO DIVISION **Bendix Aviation Corporation**

PRODUCTION DESIGN RESEARCH

Bendix Radio Division, a leader in the field of high quality radar and communications equipment, has positions for engineers experienced in the design and development, for production, of radio and radar equipment or electronic research.

Positions are available at all salary levels.

Good advancement opportunities, air-conditioned plant in suburban location, excellently equipped laboratories, technical library, large experimental engineering model shop.

Housing and rentals in Baltimore are plentiful. Interviews will be held in Baltimore, Chicago and New York. Please send resume of experience promptly to:

MR. W. L. WEBB, Director Engineering and Research **BENDIX RADIO DIVISION**

Bendix Aviation Corporation • Baltimore 4, Maryland

Bachelors, Masters, Ph.D's in PHYSICS or E.E. Experienced electronic engineers; supervisory personnel for vital war work

OPPORTUNITY ON LONG ISLAND

for research minded engineers

Offers attractive working conditions, salary commensurate with experience, access to graduate schools, first-rate research and development facilities; other advantages.

Projects underway in fields of microwaye receivers, transmitters, antennas; radar, air traffic control; servos, motor control systems; general electronics.

Write PERSONNEL MANAGER

firborne Instruments Laboratory INCORPORATED

160 OLD COUNTRY ROAD . MINEOLA, N. Y.

ELECTRICAL ENGINEER

Medium size midwest Company is seeking Electrical. Engineer to do research and development work on automatic control problems involving hydraulic and electronic equipment in Aircraft and Industrial field. Knowledge of analytical techniques preferred. Present research group small, but expanding, Good opportunity for the right man. Give resume of education, experience and salary requirements.

Write: SUNDSTRAND Hydraulic Division 2531 11th St. Rockford, Illinois

Opportunity with Manufacturer of Electronic, Electro-Mechanical and Radiation Instruments.

- 1. Senior Electronics Engineer Requirements: 5 years experience in design and development of pulse circuits, computers, nuclear instrumenta-tion or video circuits required. Manufacturing or production experience desirable.
- 2.
- or production experience desirable. Production Engineer Requirements: 5-10 years experience as electronic and mechan-ical instrument production engineer in small lot production. Thorough electronic theory ground-ing.
- Send complete resumes and salary requirements. BERKELEY SCIENTIFIC COMPANY P. O. Box 1826 Richmond, California

Technical Qualifications:

1. At least 3 years' practical experience in installation and maintenance.

2. Navy veterans ETM 1/c or higher. 3. Army veterans TECH/SGT or higher.

Personal Qualifications:

- 1. Age, over 22-must pass physical examination.
- Ability to assume responsibility. 3. Must stand thorough character in-
- vestigation. 4. Willing to go overseas for 1 year.

Base pay, bonus, living allowance, vacation add up to \$7,000.00 per year. Permanent connection with company possible.

Apply by Writing to

A-1, P. O. Box 3414 Philadelphia 22, Pa.

Men qualified in RADAR, COMMUNICA-TIONS or SONAR give complete history. Interview will be arranged for successful applicants.

ENGINEERING **OPPORTUNITIES** In

Wanted:

DESIGN ENGINEERS FIELD ENGINEERS TECHNICAL WRITERS

Must have at least one year's experience.

For work on airborne radar, shipborne radar, radio communications eqpt., microwave relay, or micro-wave communications.

Good pay, excellent working conditions; advancement on individual merit; location Baltimore.

Send resume of experience and education to: Manager of Industrial Relations,

WESTINGHOUSE ELECTRIC CORP.

2519 Wilkens Ave. Baltimore 3, Maryland

ELECTRONICS TECHNICIANS WANTED

The RCA Service Company, Inc., a Radio Corporation of America subsidiary, needs qualified electronics technicians for U.S. and overseas assignments. Candidates must be of good character and qualified in the installation or maintenance of RADAR or COMMUNICA-TIONS equipment or TELEVISION receivers. No age limits, but must have at least three years of practical experience.

RCA Service Company offers com-prehensive Company-paid hospitaliza-tion, accident and life insurance programs; paid vacations and holidays; periodic review for salary increases; and opportunity to obtain permanent position in our national and international service organization, engaged in the installation and maintenance of AM, FM and TV transmitters, electronic inspection devices, electron microscopes, theatre and home television, R-F heating equipment, mobile and microwave communications systems, and similar electronic equipment.

Base pay, overseas bonus, payments for actual living and other expenses, and benefits mentioned above add up to \$7,000 per year to start for overseas assignments, with periodic review of base salary thereafter. Openings also available at proportionately higher salaries for specially qualified technicians with supervisory ability.

Qualified technicians seeking an advantageous connection with a wellestablished company, having a broadbased, permanent peacetime and wartime service program, write to:

MR. G. H. METZ Personnel Manager RCA SERVICE COMPANY, INC. Camden 2, New Jersey

PHYSICISTS SR. ELECTRONIC ENGINEERS

Familiar with ultra high frequency and micro wave technique.

Experience with electronic digital and/ or analog, computer research and development program.

Salaries commensurate with experience and ability. Excellent opportunities for qualified personnel.

Contact: C. G. Jones, Personnel Department GOODYEAR AIRCRAFT CORPORATION Akron 15, Ohio

REQUIRE KEY MEN FOR RESEARCH LABORATORIES

Outstanding opportunities now available in under-Outstanding opportunities now available in under-taking highly responsible research and development work in important electro-mechanical instrumenta-tion laboratories. Require section chiefs with MS or PHD degree in E.E., M.E., or Physics with scholastic achievement in upper 10% of class. Important to have more than 5 years practical experience in developmental work, supervision of projects or group activities to qualify applicant to supervise and direct several diversified projects and administer related activities. Men with proven ingenuity, imagination, creative ability and with a record of tangible accomplish-ments can command attractive salaries.

COOK RESEARCH LABORATORIES Division of Cook Electric Company 1457 W. Diversey Parkway, Chicago 14, III.

RESEARCH AND DEVELOPMENT ENGINEERS MECHANICAL, ELECTRICAL,

and ELECTRONIC ENGINEERS and ENGINEERING PHYSICISTS

Excellent positions on experimental research and development projects related to intricate electro-mechanical and electronic devices.

Men with advanced degrees or equiv-alent experience may qualify for per-manent positions in our laboratories in New York State.

Give full details of education and experience indicating age and marital status.

P-7894, Electronics 330 W. 42 St., New York 18, N. Y.

SENIOR ELECTRONICS ENGINEER

For Design and Development of circuitry for ultrasonic equipment, timing circuits, audio oscillators, amplifiers and audio measuring equipment to meet Navy specifications.

EXPERIENCE REQUIRED:

3-5 years in development of audio or super-sonic equipment for government or industrial usage.

EDUCATION:

BS in Physics or EE

DEVELOPMENT TECHNICIANS

At least three years of experience in layout. (Including rough drafting) of electronics chassis. Should also be experienced in elec-tronic testing and trouble shooting. WRITE

Personnel Director

Box 30 State College, Pennsylvania

ELECTRONIC ENGINEERS

SENIOR ENGINEERS or PHYSICISTS Degree and experience in Radar, Pulse Circuits, Digital or Analogue Computers, or Servomechanisms JUNIOR ENGINEERS and recent graduate in EE or Physics.

ELECTRONIC ENGINEERING COMPANY 180 S. Alvarado St. Los Angeles, Calif.

LABORATORY PERSONNEL

Excellent opportunities exist for men with Excellent opportunities exist for men with Senior Matriculation or equivalent educa-tion as Laboratory Assistants. Skill in Elec-tronics, or Physics Laboratory Techniques is required. A knowledge of Machine Shop practice, Photographic Processes and/or Vacuum Techniques is also desirable. Sal-ary range from \$1650.00 to \$3000.00 per annum depending on qualifications. Living accommodation available. State age, mar-ital status, education and experience. Please quote file 10B.

NATIONAL RESEARCH COUNCIL ATOMIC ENERGY PROJECT Chalk River, Ontario, Canada

Westinghouse

SENIOR ELECTRONIC CIRCUIT PHYSICISTS

Advanced Research and Development

for

MINIMUM **REQUIREMENTS:**

1. M.S. or Ph.D. in Physics or E.E.

2. Not less than five years experience in advanced electronic circuit development with a record of accomplishment giving evidence of an unusual degree of ingenuity and ability in the field.

3. Minimum age 28 years.

Hughes Aircraft Company

Attention: Mr. Jack Harwood CULVER CITY, CALIFORNIA

PROJECT ENGINEERS

Five years or more of experience in charge of design and development of radio and communication equipment. Must be a graduate of a credited Engineering School. Well equipped laboratory in modern radio and television plant, with excellent opportunities for advancement.

Send resume of qualifications to Mr. S. F. Cascio, Personnel Director of the Halli-crafters Company 4401 West Fifth Ave., Chicago 24, Illinois

ELECTRICAL ENGINEER

Nationally known electronics firm has need in its Long Island laboratories for engineer with BS or MS to work with group on circuit and miniaturization problems, relating to electron-ics equipment and techniques. Must be cap-able of job planning and project control, Min-imum 5 years experience in both audio and TV circuits and in tube component design or equip-ment production. Prefer engineering obscicit encurs and in tube component design or equip-ment production. Prefer engineering physicist or electricol engineer with some mechanical design experience and major interest in cir-cuits. Send complete resume to

Box EE-381, 221 W. 41 St., N. Y.

SEMI CONDUCTOR RESEARCH

SEMI CONDUCTOR RESEARCH Physicists, chemists or EE's with PhD or equitra-lent and experience in the field of solid state physics for research work on semi-conductor de-vices employing germanium and silicon. An excellent opportunity in a research laboratory of a leading manufacturer with laboratories in New York State. Send complete resume. Our employees have been notified. P-8023, Electronics 330 W. 42 St., New York 18, N. Y.

MECHANICAL DESIGN **ENGINEERS**

COLLINS RADIO COMPANY, one of the leading manufacturers of radio and electronics equipment, has openings for mechanical design engineers. The work calls for the ability to lay out and design intricate mechanisms consisting of fine pitch gears, cams, and linkages as well as sheet metal structures. A thorough knowledge of working tolerances applicable to the above design functions is essential. Good advancement opportunities, excellent working conditions. Send resume of education and experience to:

> Glenn G. Johnson COLLINS RADIO COMPANY Cedar Rapids, Iowa

ELECTRONIC ENGINEERS DESIGN ENGINEER

Minimum five years experience in electronic development and circuit design for production.

PRODUCTION ENGINEER

Several years experience in electronic equipment production. Experience desirable both in large quantity commercial equipment and high quality equipment to government specifications.

Interesting work and excellent opportunity, with established Los Angeles firm. Possible interview with representatives in East.

P-8156, Electronics 1111 Wilshire Blvd., Los Angeles 17, Calif.

ELECTRICAL ENGINEER

Graduate electrical engineer with a minimum of 2 years' experience. For design and development of audio transformers and filters. Permanent position with progressive firm located in Chicago. Give details stating age, education, experience, refer-ences, availability for work and salary expected. **P-7849**, Electronics 330 W. 42nd St., New York 18, N. Y.

ATOMIC POWER **Westinghouse Electric** Corporation

Immediate Openings

For Experienced Senior and Junior Engineers

- Circuit designers, sequence control and regulating systems.
- Designer of amplifiers for indication, detection and control functions.
- Designer for servosystems in the instrument range.

For application write-

Manager, **Technical Employment**, 306 FOURTH AVE. PITTSBURGH 30, PA.

ELECTRONICS ENGINEERS

with a background in patent specification writing desired for an expanding Patent Department in a growing research and development organization located in the Midwest. Unlimited opportunity for advancement for properly qualified men. Law degree unnecessary. Must be U.S. citizen and free to make occasional trips to Washington, D. C. Please give full details in first letter.

> P-7752, Electronica 520 No. Michigan Ave. Chicago 11, Ill.

ELECTRICAL ENGINEERS

Independent industrial research and development laboratory has openings for electrical engineers with training and experience in the following fields: UHF; Instrumentation; Telemetering; Computers; Servo and Control Systems; and Electromagnetic Devices.

Candidates should have an excellent scholastic record. Ädvanced degree helpful, but not essential. Requires 2-5 years experience, with record of accomplishment in one or more of the above fields.

Good salaries for outstanding men plus other benefits—such as a retirement plan (immediate vesting), group insurance, and nearby opportunities for graduate work. Excellent opportunities for advancement.

Write, giving survey of qualifications, to

Electrical Engineering Research

ARMOUR RESEARCH FOUNDATION of Illinois Institute of Technology Technology Center CHICAGO 16, ILLINOIS

The W. L. MAXSON CORPORATION **IS SEEKING Outstanding** ENGINEERS AND PHYSICISTS with **AMBITION** to FURTHER PRESENT STANDING **Immediately**

Minimum Requirements are: 1. Five to ten years experience in advanced electronic research and development.
 Outstanding record of ingenuity.
 Ph.D., M.S. or equivalent.

Please send resume and salary requirements to:

The W. L. MAXSON

CORPORATION

460 W. 34th St.

New York 1, N. Y.

and associated work handling apparatus. Locations in Detroit, Boston, Buffalo and Richmond, Virginia. For application write:

Manager, Technical Employment Westinghouse Electric Corporation 306 Fourth Avenue Pittsburgh 30, Pennsylvania

ELECTRONICS

Sales Engineers

Positions open for sales engineers having practical experience in application of

radio frequency heating. A good knowledge of electronics and of mechanisms,

such as are used in quantity production lines, is a requirement. The work involves

application engineering and sales of induction and dielectric heating generators

NATIONAL UNION **RESEARCH DIVISION**

Electrical Engineers and Physicists are needed for research on Cathode Ray, Subminiature, Secondary Emission and other types of Vacuum Tubes.

Permanent interesting positions are available in the following fields:

Tube design & development

Tube processing High vacuum systems Solid state physics **Electron** optics Phosphorescence

Men qualified in any of the above are invited to send their resumes to:

Divisional Personnel Manager National Union Research Division 350 Scotland Rd., Orange, N. J.

CIRCUITS and MICROWAVE ENGINEERS Rapidly expanding company in instrumentation field has openings for Senior Engineers with several years of experience. Men with Masters or PhD Degrees preferred. Excellent opportunities in field of VHF, UHF and microwave test equipment. Location Brooklyn. Send complete resume to ... P-8206, Electronics 330 W. 42nd St., New York 18, N. Y.

ELECTRONIC ENGINEERS AND PHYSICISTS

Senior staff positions are available for electronic engineers and physicists with experience in the following fields:

Radiation Instrumentation Computers **Radar Systems** Microwave Components

Servomechanisms Telemetering Nuclear Physics Automatic Controls

If interested in working in a research laboratory separated from immediate production operations, send resume.

Bendix Aviation Corporation Research Laboratories 4855 Fourth Avenue, Detroit 1, Michigan

TECHNICAL EDITORS and WRITERS

These are senior positions, the men selected must be able to outline, compile, edit, proofread, plan and check art, dummy, and direct the final publi-cation of technical and scientific publications. A good working knowledge of radio and radar theory and application is essential, in addition to extensive editorial and journalistic experience. Some knowledge of structural and mechanical engineering is desirable.

Send complete resume with first letter to:

James E. Thompson Department 29 HUGHES AIRCRAFT COMPANY CULVER CITY, CALIFORNIA

All replies will be handled in the strictest confi-dence.

\$3.00

131 Liberty St., New York, N. Y. Dept. E-12

ELECTRONICS — December, 1950

www.americanradiohistory.com

COMMUNICATIONS EQUIPMENT CO.

P. J. PLISHNER

295

\$3.00

Phone: MAin 4-8373

				TOD TO	ANCEODA	AED BILVS	400 CYCLE TR	ANSFORMERS
FILTER ITEM RA	TINGS PR	RICE UTC 807	O XFRMRS	THESE XERME	ANSFURN	RRATED SPECS.	115 V 400 CY	CLE INPUT
CH488 10HY .030A CH791 Dual 1.75	125 HY 100MA	45¢ to Mul 59¢ 5119_00	t. Gds. \$1.29 incer Pl.		ARE JAN.		Ratings	Price Each \$1.49
CH917 10HY .450A CH10C 20HY .060A CH86C Dual 01-3	1 5HY 950-75MA	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	to V. coil .75 to Hdst.	Comb. Transforme	rs115V/50-60	cps input	6.4V/2.5,400VCT/35 .150a	Ma, 6.4/ 3.95
CH081 15HY .110A CH19-1 20HY 80MA		1.59 or line 1.49 5640	ke or Line	CT-861 2100VCT	.175 7.5VC1	14A, 2.5V/10A \$7.29 6.3V/1.2A 4.25	6.4V/7.5, 6.4/3.8, 6. 780V/-, 27V/4.7, 6.3/3 6.4V/88 6.4V/14	4/2.58 2.9, 1.25/.2a 1.95
CH22-1 1HY .900A CH22-1 1HY .100A CH779 .6HY .490A	2	49¢ T202-6V 69¢ 811 G	6 Pl. to 1s 1.45	CT-825 360VCT	.340 6.3VC1 /3A	7/3.6, 6.3VCT	6.3V. 9.1A, 6.3VCT/6. 3.5a	.5a, 2 x 2.5/ 2.49
CH25A SW .09/.01 CH528 20HY 100M	8HY 3/.3A A	8.95 765—Lin 1.69 25—Pl. t	e to Grd98 o Line98	CT-626 1500V CT-15A 350VCT	.160 2.5/12,	30/.100 9.95 6.3/1.8 3 1bs 2.95	5V/15A, 5000V Ins. 6.3/2.7, 6.3/.66 6.3VC	T/21A 2.77 3.95
CH043 2.2HY 80M CH047 2HY 200MA	A	59¢ 622-1:2. 79¢ 2449-PI	28 Ratio .75 6V6 to PP805	CT-071 110V CT-378 2300V	.200 33/200 4 M A 2.5/2	, 5V/10, 2.5/10 4.95 6.95	760V, 6.3V, 6.3V, 5V, 20A	320V, 6.3V/
CHC29 SW15/29HY CH867 1.8HY 180 CH323 9 1HY 900	A 150A	3.25 Class B. 95¢ 9446 Hi-	10 Watt \$4.95 Fi60-15000CPS	CT-367 580VC1 CT-721 550VCT CT-99A 2x110VCT	.100 6.3/1, .010 6.3/1A	2.5VCT/2 2.95 . 2.5VCT/7A 3.25	592V/118Ma, 6.3/8.1a W.E.	, 5V/2 4.95
CH360 15HY 15MA CH7A-1 577HY 7.7	MA	98¢ to 9Vo 1.79 353 AB1	ice Coil \$12.95 PP 6L6 to 250	CT-91A 726V CT-080 700VCT	.100 5V/3A .205 5V/3.5	V/2A 3.95	6.3V/9.1, 6.3VCT/.65 3.5A 6VCT 00006 KVA	a, 2 x 2.5V/ 2.95
CH161 Dual 30HY CH373 11 5HY 90M	0A .020A	98¢ , 12 1.39 , 25	9 voice colls 20 1.7, 16 watt\$3.95	CT-441 50V CT-408 350VCT	.200 5V/2.4 .026MA 5V/3A	, 5V/1.2 2.29 2.75	6.4V/8a, 6.4V/1a 1034VCT/.111a, 6.9V/	1.49
CH21-A .045HY .90 CH045 5HY .040A	0A	1.69 631 Mike 35¢ 959 Dyn	&Carbon Mike	CT-26B 1100VCT CT-931 585VCT	250MA 6.3V/I .086 5V/3A	.6, 400V B/9S 6.95 6.3V/6A 4.25	1, 5V2, 6.3/2, 63/1 526VCT/.50a, 6.3VCT 5VCT/29	⁷ /2a, 3.49
CH884 .01HY 2.5A CH136 25HY 80MA		1.45 2.25	rids	CT-137 350VCT CT-102 1080VCT	.026MA 5V/3A .055 25V/3/	2.75 A, 6.3V/1.8A,	400VCT/35Ma. 6.4/2. 2300VCT Large Qty	5, 6.4/15a 3.25 2.25
CH381 14HY .250A CH702 6HY .150A CH163 25HY 070A		9.95 99¢	XMTR	CT-866 330V	.065 6.3V/I	/1.2A	2.5V/1.75, 5V/3A, 6.5 6.5/2a. For SCR72	V/6.5, 3.95
CH116 .030HY 2A CHC52 10HY .600A	1	1.39	WOUND	CT-526 510VCT Filament Transfor	.025 12.5/90 mers—115V/50-0	00 MA, 6.3/.5A 1.95 30 cps input	640V/500Ma, 2.5V/1. APS/15B 360VCT/20Ma, 1500V	75a P/o 2.95
CH917 10HY .500A CH756 30HY 25MA CH67-1 .35HY .35A		2.45 Regular 1 79¢ 80 MTR 2.49 160 MTR	500 watt	1tem Rati	ng	Each .\$1.79	6.3/2.5, 6.3V.6a, P/ 2x2.5V/5A, 2.5V/10A,	0 729A 3.95 P/0 APT 4 4.95
CH38A Dual 20HY CH064 SW. 3/6HY CH366 20HY 300A	.100A .570/.130A	2.95 40 MTR 8.95 160 MTR	150 watt (7	FT-30B 58V/2.2A FT-589 78V/.300	6.3V/2A	2.25 1.95 79	Tap 1000V-750V P/o AN/APS-15	4.95
CH110 25HY .065 CH480 .333HY 1.1	2A	1.00 BC 6 2.29 PHONE	05 INTER-	FT-029 13.5V/1.4 FT-074 2.5V/10A	1A 6.3/.9A	.79	742.5V/50 MA, 709V 671V/45 Ma. 600VCT/36 MA 2 3	47 MA. 2.95
CH189 120HY 17M CH89A Dual 1.52H CH14A .100HY 1.4	A Y.167A	2.49 1.95	Easily con- verted to an ideal	FT-23-1 6.3V/3A FT-367 5VCT/3A	58VCT/40A	5VCT/6.75	x 3 1/4 1150–1150, 2 3/4 x 2	1/4 x 3 1/4
CH012 5HY .300A CH382 5HY .150A		1.95	hintercom- nunica- tions set	FT-781 866 Tran FT-36-4 6.3/2, 6.3	s. 2 x 2.5/5A 3/4.5	2.25	640 VCT/250 MA, 6.3 6.3V/.6, 5V/6A 6.3V/9.1a 2.5V/3.5a	6.3VCT/ 3.95
CH141 Dual 7-11H CH961 Dual .224	Y 75-60MA 4HY .64A	1.29 1.75	home - or f a ctory.	FT-511 3.4V/300 FTG-31 2.5V/2.5,	A, 7½H x 10 7V/7A (Tape	@ 2.5V/2.5A), 9.95	65a 2.5V/3.5a 9800V or 8600V/32 M 592 VCT/120 MA 6.3	A 3.25 12.50 V/80 5V/20 3.50
CH351 .033HY 7A CH583 .116HY .15 CH1A1 5HY 100A	0A 1	19.95 w/conver for 110V	operation.	FT-674 8.1V/1.5/ FT-157 4V/16A,	2.5V/1.75A	1.10 2.95	4540VCT/250 MA 5V/3a, 6.3V 2a	7.50
CH007 3.5HY.500	A	4.95 Used	\$3.95	FT-391 6.4V/3A FT-736 2 x 6.3V FT-461 2 x 6.3V	CT/3.2-1.2A	1.49 1.10	70 to 111V @ 247-622 5000V/290 MA, 5V/10 2200V/350	VA 1.35)A 12.50 5.45
LE LE	OR KC	ig Tuned 465	VIBRATORS	FT-899 2.5V/5.54 FT-418 6.3VCT/	A 29000 Rms	1.95	2.5V/5,5200V/2 MA 13.5 KV/3.5 MA	CT /1770 14.95
	ACH livity slug t	uned 100KC L	vdc, 5 pin \$1.00	FT-101 6V/.25A FT-738 6.3VCT/	1, 2.5V/2		6.3V/9A, 7.7V/.365A 2.5/20A	2.79
U.S.	MO Coil 2250KC	Plugin 1800	24-32 vdc. 7	FT-774 6.3V/16A Plate Transformer	s-115V/50-60	ps input Fach	6.3V/12a, 6.3V/2a, 6 AN/APQ-5 6.4VCT/7.5, 6.4VCT	-3v/1a, P/0 5.85
230 VAC. Can use ho	C, 115- P/o 32RA B okup of 4-5.5 MC, 5	Suffer Coil Dual 2-7 MC.\$1.10	Mal. Type G534C, 12	1tem Rat PT-976 Auto: 12 PT-31A 2 x 300V	0VCT/10 MA /5 MA	\$.69 .79	6.4VCT/2.5a 6.3V/2.7, 6.3V/.66A	4.35 4, 6.3VCT/ 2.95
over 20 students. speaker, blinker, freq. etc. in fiber trunk 17"x13	control, Mod. for "x104" PP-P Push	Pair of 807's or Parallel.	Mal. Type	PT-46A 4030VCT 7" L 20	N. L. 3% to 1 1bs.	8" H x 6" W X 	6.5V/12A, 250V/100 P/0 AN/APS-15	MA, 5V/2a 3.50
New	\$6.96 Sidetone Wr	ndg95¢	G629-C, 12 vdc. 4 pin	70 lbs. PT-75-2 3780/344	5/3112VCT/77	49.95 A	400VC1/35 MA, 6.4/ 2.5a 650VCT/50 MA, 6.3V	.158, 6.4V/ 2.25
DC 69	T.U. FOR OR 430	BCAR 230 XMTR	Mfrs. quan- titles in all	PT-28-1 4600VCT. PT-403 Auto: 70 PT-160 120VCT/	V/IA 770 Ma. 590VCT	2.29 /82 MA, 25 lbs.24.95	5VCT/2a, P/o R58/ 2400CT/.5MA, 640V/ 2.5V/1.75A	ARQ8 2.45 .5MA, 3.85
40 Wa Outpu	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	95c ea.	able,	PT-170 Auto: 15 PT-848 3140VCT	6/146/137/138- /750 MA for 68	71 MA	15.35VCT/1A 59.2V/.118,63V/8.1,	5V/2A, 1.95
V.F.O	1 -1,25 MC 4-5 MC w/Xta	4495KC \$1.95	ниси	PT-637 400V/20	W x 6 ³ /4" H		6.3/.9, 6/3V/.6.5V/6, 2 x 14CV/00014A, 120	640/200 MA 4.95
Availal	DIE 223 XN	NITS FOR BC	CURRENT	PT-589 9V/1.6A PT-31A 2 x 300V PT-976 120VCT/	/5 MA	.79	00012a, P/o APG2 3460V/400 Ma, P/o A 23.5V Tapped 22V/47	PT 4 7.95 MA 1.95
Less Tubes. Used. Goo dition.	d con- TU18 3000-4 TU25 3500-5	500Kc 2.25 200Kc 2.25	MICAS	PT-67-1 62V/3.54 PT-12A 280VCT/	1.2A	2.95 2.95 4.95	600VCT/36 Ma 780V, 27V/4.3, 6.3V/	2.9, 1.25V/ 1.95
Super Pro Equipt. VI	ERNIER 3 GANG	MS49 Ce	ramic Case	PT-054 980V/450 PT-997 78V/.007	MA 54 KVA	5.25 1.49	6.4V/11 Amp. P/o Al 2 x 6.3V/1.25a, P/o A	PQ7 2.25 PQ13 1.95
1st and 2nd RF 10- 20 MC Coil PT- SALLI RE ANTU sin	cision Assy used for	and 10 MS50 30M	KVW \$19.00 MF	Item Pri.	Outr	Price	80V 400 CYCLE 6.3V/1A, 2.5V/2A, P	/o PE172A 3.95
OTPT 2.5-5 MC to Coil SA-116 ANT	75 watt. 2 single	Dipole .08 M	AFD 00 10.00	STF-946 210/220 STF-443 220/440	21/4" [1 VCT	125A 6½" L X		
Coll SA161 ANT & 1 INPT 200-400 KC	Heavy Double Spaced	74" .045	MFD 00 12.00	STF-638 230	5V/9A 5	8" 15 lbs 15.95 1/2" H x 41/2" x 1.25	COLLINS ART-13 FREQ. MULT. UNIT	1619-1619-1619 Octal Base Pentog
SA 48 HI FREQ OSC 2.5-5MC Coll Spi	ing loaded Ceramic	Both for .005	KVW 24.00	STF-05A 115/230	2 x 5V/ 5" D	7.57" H x 7" x 4.25	Tubes. Comp Assy less Tubes & Colls w/ckt	Perveance 21c
20 MC Coil SAllo. Price each65¢	⁴ Metal \$3.25	49c .001	25K 35.00	STF-682 220 STF-968 230 STF-405 230/115	30-25-20 2.5V/6.5 5V 12/9	A 1.10 A 2.95	diag. Price \$8.95	5 for\$1.00
Birtcher Tube Clamps	6C 929 SCOPE H	li Gain Dynam	ic Mike Xfmr	STE-510 110/200	3 x 2.5 5½ x 2 5¥/500	5 x 4½ 5.25 A, 7 x 5¼ x 5.19.95		
Many types 3" in stock.	Oscilloscope C sing 9 tubes, U	omb. hi-gain JTC/Super Elec	DynMikeXfmr 3wdg, 600 ohm	STF-11A 220	2 x 40V 12.6/1	/.05/2 x 5V/6A. 2.95	AMPHENO	DL "AN"
write spec, 54 6E	GG, 6x5, 2x2, C Now 400 cy) easily of	T&4000 ohms T hms. Fully Sl	apped 250x150	STF-631 230 STF-96B 230	103/41 2.5V/6.5	1 x 5 x 7 30 lbs 24.95 A 1.95	CONNE	CTORS
10\$ 1.40 co	mplete w/tubes	I'sld. Price Ea	ch 49C	STE-608 220	24V/600 6.3V/1	A		
V-I	Carbon Pile	ANTENNA	MAST	STF-306 100/120	/230 Few 5VCT 10	amp10000 VCT 3.95		
Contine Bendin	Act #NOAS-858 ca Aviation. MFRS h	an't get a good ere is a sig. C	T.V. Picture orp. Ant. mast	SPECIAL	PLATE TRAN	SFORMERS	00 CD CO	
Drawin pot. Se	ng 111144 w/mnt & 30 er. #Y519. A .105-115 amns T	truction to solve t telescopes into	your problem. 3 ten ft. sect.	Item Pri. STP-945 210/20/	30 (100VC	T/300 51/4 x 4 x	LARGE VARIET	Y AVAILABLE
35°-45	C. Ser. 28YK fc Reg. Volt. 80 C	or easy stowage.	Easy to Mnt. es \$19.95	STP-444 230/460	230/105/ 5 ³ /4 ×	/115/125/ 15 lbs. 6 x 41/2	Sand your sport	and let us auote
Mark 1. Resis. in er B0463 323601-1. Bendi	closed base. Ser.	Themestat:	Switches	STP-613 230V STP-823 137V	2 x 230 222VCT	300 MA 2.95	send your specs d	
A-M Ser. #11058. Ref. & resis, in base. Type Type C. Coil amor	#5U/1304 w/rect. E 80V AC. 30 at 25C Output S	PST NO closes	at 85°69¢ ea	VARIABLE 7 Cardwell, Two	GANG	ARIABLE ARC 5		
volts 19. Ser. 3711-702. Output amps 5.7. Input	Spec. VR 9000-2C. volt 22-30 W/resis.	5 amp. c	ontacts	One 75Mmf Sect's Drive Assy an Calib Dial 5/16	d 0-30 Driv shaft.	Mc Condenser. 90:1 We Gear Ratio. 3 Sec-	MICROWAVE	WRITE FOR FLY.
Leiand Electric. These regulators are in tion, priced at \$2.75 ea	brand new condi- 24 ch.	4 Volt DC GE (/2 DPDT Swit	CR9533K 100A2 chettes\$2.95	1% Lg. \$	1.95 Prie	\$2.25	MICIONATL	ACCESSORIES
All merch. guar. M	ail orders promptly	y filled. All p	rices F.O.B.	N. Y. C. Send M	O or Chk. Onl	y shipping chgs. s	ent C.O.D. Rated con	ncerns send P. O.
MIN. ORDER \$3.				IUNS E	Ches	Roson	U. Min Dhono: Diel	DRUER \$3.00
151 Liberty	SL., New Y	UFK, N.	1. D	ерь. Б-12	Unas	. nusen	rnone: nig	uy 0=41.24
204							December 1950 -	- FLECTRONICS

131 Liberty St., New York, N. Y. Dept. E-12

CHAS. ROSEN

Phone: Digby 9-4124

ELECTRONICS - December, 1950

A.C. MOTORS

5071930, Delco, 115 V., 60 Cycle, 7000 r.p.m. Price \$4.50 each net.

36938-2, Haydon Tim-ing Motor, 110 V., 60 cycle, 2.2 w., 4/5 r.p.m. Price \$3.00 ea. net.

Type 1600 Haydon Timing Motor—110 V., 60 cycle, 3.2 w., 4 r.p.m., with brake Price \$4.00 each net.

Type 1600 Haydon Timing Motor—110 V., 60 cycle, 2.2 w., 1/240 r.p.m. Price \$3.00 each net.

Type 1600 Haydon Timing Motor 110 V., 60 cycle, 2.3 w., 1 r.p.m. Price \$2.70 each net.

Type 1600 Haydon Timing Motor, 110 V., 60 cycle, 2.2 w., 1 1/5 r.p.m.

Price \$2.70 each net. Type 1600 Haydon Timing Motor 110 V., 60 cycle, 3.5 w., 1 r.p.m. With

shift unit for automatic engaging and disengaging of gears. Price \$3.30 each net.

Type 1600 Haydon Timing Motor, 110 V., 60 cycle, 2.2 w., 1/60 r.p.m. Price \$3.00 each net.

Eastern Air Devices Type J33 Synchron-

ous Motor 115 V., 400 cycle, 3 phase, 8,000 r.p.m. Price \$8.50 each net

Telechron Synchronous Motor, Type B3, 115 V., 60 cycle, 2 r.p.m., 4 w. Price \$5.00 each net.

Barber-Colman Control Motor, Type AYLC 5091, reversible 24 volts D.C. .7 amps 1 R.P.M., Torque 500 in. Ibs. Contains 2 adjustable limit switches with contacts for position indication. Ideal for use as a remote positioner or a beam or television antenna rotator, will operate on A.C. 60 cycle.

Price \$6.50 each net

SERVO MOTORS

CK 1, Pioneer, 2 phase, 400 cycle. Price \$10.00 each net.

CK 2 Pianeer, 2 phase, 400 cycle. Price \$10.00 each net

10047-2-A Pioneer 2 phase, 400 cycle, with 40:1 reduction gear. Price \$10.00 each net

FPE-25-16 Diehl Low-Inertia 20 V., 60

cycle, 2 phase, 1600 r.p.m., 85 amps. Price \$10.00 each net.

CK2, Pioneer, 2 phase, 400 cycle, with 40:1 reduction gear.

Price \$11.50 each net. CK5 Pioneer, 2 phase, 400 cycle. Price \$20.00 ea. net.

MINNEAPOLIS-HONEYWELL TYPE B Part No. G303AY, 115 V., 400 cycle, 2 phase, built-in gear reduction, 50 Ibs. in torque. Price \$10.00 each net. ASSOCIATES

Kollsman Type 776-01 400 cycle 2 phase drag-up type, fix phase voltage 29, variable phase 35V. maximum, frequency 400 cycle.

Price \$10.50 each net. REMOTE INDICATING MAGNESYN COMPASS SET

Pioneer Type AN5730-2 Indicator and AN5730-3 Transmitter 26 V., 400 cvcle

Price \$40.00 per set new sealed boxes.

Kollsman Remote Indicating Compass Set Transmitter part No. 679-01, indicator part No. 680k-03, 26 V., 400 cycle. Price \$12.50 each net.

GYROS

Schwein Free & Rate Gyro type 46800. Consists of two 28 V D.C. constant speed gyros. Siz: 8" x 4.25" x 4.25" Size

Price \$15.00 ea, net.

Gyro, Part No. 656029, 115 volts, 400 cycle, 3 phose.

A5 Vertical Gyro, Part No. Sperry 644841, 115 V., 400 cycle, 3 phase. Price \$20.00 each net.

erry A5 Amplifier Rack Part No. 644890. Contains Weston Frequency Meter. 350 to 450 cycle and 400 Sperry cycle, 0 to 130 voltmeter.

Price \$15.00 each net. Control Unit A5 Sperry 644836. Price \$7.50 each net. Sperry A5 Azimuth Follow-Up Amplifier Part No. 656030. With tube.

Price \$5.50 each net. Sperry A5 Autopilot Indicator: contains Pioneer AY20 Autosyn 26 V., 400 Price \$9.50 ea. net. cvcle.

Pioneer Type 12800-1-D Gyro Servo 115 V., 400 cycle, 3 phase. Price \$10.00 each net. Unit.

Norden Type M7 Vertical Gyro. 26 V., Price \$19.00 each net. D.C.

Allen Calculator, Type C1 Bank and Turn Indicator, Part No. 21500, 28 V. D.C. Contains 28 V. D.C. constant speed gyro.

Price \$10.00 each net. Type C1 auto-pilot formation stick, part No. G1080A3. Price \$15.00 each net.

GOVERNMENT approved instrument repair station No. 3564.

5069625, Delco Constant Speed, 27 V., 120 r.p.m. Built-in reduction gears and governor. Price \$4.50 each net. C-28P-1A, John Oster Series Motor, 27 V., 0.7 amps., 7000 r.p.m., 1/100 h.p. Price \$4.50 each net. h.p. Jaeger Watch Co. Type 44-K-2 Contactor Motor, Operates on 3 to 4.5 volts D.C. Makes one contact per Price \$2.00 each net. second. General Electric Type 5BA10AJ52C, 27 V. D.C., 0.65 amps., 14 oz. n. torque, 145 r.p.m. Shunt Wound, 4 lead reversible. Price \$5.00 each net.
 General Electric Type 5BA10AJ37C, 27 V.D.C., 0.5 amps., 8 oz., in. torque, 250 r.p.m. Shunt Wound, 4 leads re-Price \$6.50 each net. versible. General Electric Type 5BA10J18D, 27 V. 0.7 amps. 110 R.P.M. 1 oz. ft. torque. Price \$6.50 ea. net.

D.C. ALNICO FIELD MOTORS

S. S. FD6-16, Diehl, 27 V., 10,000 r.p.m. Price \$4.50 each net. S. S. FD6-18, Diehl, 27 V., 10,000 r.p.m. Price \$4.50 each net. S. S. FD6-21, Diehl, 27 V., 10,000 r.p.m. Price \$4.50 each net. 5069466 Delco 27.5 V. 10,000 R.P.M.

Price \$10.00 ea. net 5069600 Delco 27.5 V. 250 R.P.M.

Price \$10.00 each net. 706343 Delco 27.5 V. 10,000 R.P.M. Shaft 0.5 in. long. Price \$7.50 ea. net. 5068571 Delco 27.5 V. 10,000 R.P.M.

with blower assembly. Price \$10.00 ea. net. 5071895 Delco 27.5 V. 250 R.P.M.

Price \$10.00 ea. net. 5072400 Delco 27.5 V. 10,000 R.P.M. Shaft 0.5 in. long with worm gear.

Price \$6.75 ea. net.

GENERAL ELECTRIC D. C. SELSYNS

8TJ9-PDN Transmitter, 24 V. Price \$3.75 each net.

8TJ9-PAB Transmitter 24V. Price \$3.75 each net.

8DJ11-PCY Indicator, 24 V. Dial marked -10° to +65°.

Price \$4.50 each net. 8DJ11-PCY Indicator, 24 V. Dial Marked 0 to 360

Price \$7.50 each net.

AMPLIFIER

Pioneer Gyro Flux Gate Amplifier, Type 12076-1-A

Price \$17.50 ea. net, with tubes. G. E. Servo Amplifier Type 2CV2A1, 115 V. 400 cycle. Price \$10.00 ea. net. Minneapolis Honeywell Amplifier Type G403, 115 V. 400 cycle. Price \$8.00

Write for Catalog NE100

U. S. Export License-2149

December, 1950 - ELECTRONICS

Sperry A5 Directional

Price \$17.50 each net.

SUPPLIER OF ELECTRONIC & AIRCRAFT EQUIPM

INVERTERS

Winchorger Corp. Inverter PU/16 type MG 750, Input 24 V.D.C., 60 amps. Output 115 V, 400 cvcle, 1 phase, 6.5 amps. Price \$60.00 each net.

Leland type 10285, Input 28 V. D.C. at 60 amps. Output 115 V. 3 phase at 750 V.A., 26 V., 400 cycle, single phase at 50 V.A.

Price \$100.00 each net

- 149H, Holtzer Cabot. Input 28 V. at 44 amps. Output 26 V. at 250 V.A., 400 cycle and 115 V. at 500 V.A., 400 cycle. Price \$40.00 each net.
- 149F, Holtzer Cabot. Input 28 V. at 36 amps. Output 26 V. at 250 V.A., 400 cycle and 115 V. at 500 V.A., 400 Price \$40.00 each net. cycle.
- 12117, Pioneer. Input 12 V.D.C. Output 26 V., 400 cycle, 6 V.A. Price \$22.50 each net.

12117-2 Pioneer. Input 24 V.D.C. Output 26 V. 400 cycle, 6 V.A. Price \$20.00 each net.

12116-2-A Pioneer. Input 24 volts D.C., 5 amps. Output 115 volts 400 cycle single phase 45 watts.

Price \$100.00 each net.

5D21NJ3A General Electric. Input 24 V.D.C. Output 115 V., 400 cycle at 485 V.A. Price \$25.00 each net.

PE 218, Ballentine. Input 28 V.D.C. at 90 amps. Output 115 V., 400 cycle at 1.5 K.V.A. Price \$50.00 each net.

ACTUATORS

White Rodgers Electric Co. type 6905, number 3, 12 V., D.C., 1.3 amps., 11/2 RPM, torque 75" in Ibs., contains adjustable limit switches.

Price \$10.50 each net

METERS

Weston Frequency Meter, Model 637, 350 to 450 cycles, 115 volts. Price \$10.00 each net.

Weston Voltmeter, Model 833, 0 to 130

volts, 400 cycle, Price \$4.00 each net. Weston Voltmeter. Model 606, Type 204 P, 0 to 30 volts D. C.

Price \$4.25 each net.

INSTRUMENT

SSOCIATE

Weston Ammeter. Model 506, Type S-61209, 20-0 100 amps. D. C. Price \$7.50 each net with ext. shunt.

Weston Ammeter. Type F1, Dwg. No. 116465, 0 to 150 amps. D. C.

Price \$6.00 each net. With ext. shunt \$9.00 each net.

Westinghouse Ammeter. Type 1090-D-120, 120-0-120 amp. D. C.

Price \$4.50 each net. Weston Model 545. Type 82PE Indi-cator. Calibrated 0 to 3000 RPM. 2³/₄^{''} size. Has built-in rectifier, 270° meter movement. Price \$15.00 each net.

RECTIFIER POWER SUPPLY

General Electric, Input 230 V. 60 cycle 3 phase. Output 130 amps. at 28 V. D.C. Continuous duty, fan cooled, has adjustable input taps. G.E. model No. 6RC146F. Size: Height 46", width 28", depth 171/2". Price \$200.00 each net. New

PIONEER AUTOSYNS

AY1, 26 V., 400 cycle.

Price \$5.50 each net. AY14D, 26 V., 400 cycle, new with calibration curve.

Price \$15.00 each net. AY20, 26 V., 400 cycle.

Price \$7.50 each net.

AY54D, 26 V., 400 cycle, with pointer for I 81 & I 82 Indicator. Price \$10.50 each net

PRECISION AUTOSYNS

AY131D, new with calibration curve. Price \$35.00 each net. Price \$35.00 each net. AY201-2-A.

PIONEER AUTOSYN POSITION INDICATORS

Type 5907-17. Dial graduated 0 to 360°, 26 V., 400 cycle.

Price \$15.50 each net. Type 6007-39, Dual, Dial graduated 0 to 360°, 26 V., 400 cycle. Price \$30.00 each net.

PIONEER TORQUE UNIT

Type 12606-1-A. Price \$40.00 each net.

MAGNETIC AMPLIFIER ASSEMBLY

Pioneer Magnetic Amplifier Assembly Saturable Reactor type output transformer. Designed to supply one phase of 400 cycle servo motor

Price \$8.50 each net.

ALL PRICES, F. O. B. GREAT NECK, N. Y.

PIONEER TORQUE UNIT AMPLIFIER

Type 12073-1-A, 5 tube amplifier, Mag-nesyn input, 115 V., 400 cycle. Price \$17.50 each net with tubes.

BLOWER ASSEMBLY MX-215/APG

John Oster, 28 V.D.C., 7000 r.p.m. 1/100 h.p. Price \$5.00 each net. Westinghouse Type FL Blower, 115 V., 400 cycle, 6700 r.p.m., Airflow 17 C.F.M. Price \$5.00 each net.

RATE GENERATORS

F16, Electric Indicator Co., two-phase, 22 V. per phase at 1800 r.p.m. Price \$12.00 each net.

J36A, Eastern Air Devices, .02 V. per Price \$9.00 eoch net. r.p.m.

B-68, Electric Indicator Co., Rotation Indicator, 110 V., 60 cycle, 1 phase. Price \$14.00 each net.

PM-1-M Electric Indicator Co. Same as type B35. 2 V. per 100 R.P.M. Max. speed 5,000 R.P.M. Can be used as D.C. motor, 1/77 H.P. 115 V. D.C. Price \$9.75 ea. net.

SINE-COSINE GENERATORS

(Resolvers) FPE 43-1, Diehl, 115 V., 400 cycle.

Price \$20.00 each net.

SYNCHROS

1F Special Repeater, 115 V., 400 cycle. Will operate on 60 cycle at reduced voltage.

Price \$15.00 each net. 2J1F3 Selsyn Generator 115 volts, 400 Price \$5.50 each net. cvcle.

2J1G1 Control Transformer, 57.5/57.5

V., 400 cycle. Price \$1.90 each net. 2J1H1 Selsyn Differential Generator,

57.5/57.5 V., 400 cycle. Price \$3.25 each net.

W. E. KS-5950-L2, Size 5 Generator, 115 V., 400 cycle. Price \$10.00 each net.

1G Generator 115 V., 60 cycle. Price \$40.00 each net

- 5G Generator 115 volts, 60 cycle. Price \$50.00 each net. SSF Repeater, 115/90 V., 400 cycle. Price \$19.00 each net. 2J1F1 Selsyn Generator, 115 V., 400 cycle. Price \$3.50 each net.
- 5SDG Differential Generator 90/90 V.,
- Price \$15.00 each net. 400 cycle. **1CT** Control
- Transformer, 90/55 volts, Price \$40.00 each net. 60 cycle.

POSITION TRANSMITTER

Pioneer Type 4550-2-A Position Transmitter, 26 volts 400 cycle, gear ratic 2:1. Price \$15.00 each net.

37 EAST BAYVIEW AVE., GREAT NECK, N.Y. Telephone GReat Neck 4-1147

Write for Catalog NE100

ELECTRONICS - December, 1950

Western Union address: WUX Great Neck, N. Y.

Exceptional Values From AMERICA'S LARGEST ELECTRICAL CONVERSION HOUSE

Ideal AC to DC MG set 300 watts. Rebuilt like new. Ideal MG Set, op-erative at 110/220 VAC..single phase amperes. Special \$79.50

MARATHON MOTOR GENERATORS

Input at 110 VDC Output 110VAC, 1 phase, 60 cy. 500 VA. Marine Type with voltage regulator and requency controller. \$75.00 as above with 32 VDC Input and tput. \$64.00

Same unit as a 300 VA Output.

CENTURY MOTOR GENERATOR SETS CENTORI MOTOR STATES CONTRACT, 5.5 KVA; 230 Volts, DC to 115 Volts, AC, single phase, 60 Cycles. Complete with automatic controller and push button \$445.00

ALLIS-CHALMERS MOTOR GENERATOR

Input: 115 VDC at 14 amp. 3600 RPM. Ball Bearings. Output: 1.25 KVA; 80% PF 120 Volts, AC, 1 Ph. 60 cvc. 10.4 amp. Centrifugal automatic controller per-mits line start operation. Fully enclosed. Brand New \$99.95. Also available for 230 VDC operation at the same price.

TRANSFORMERS 1 KVA: 460/230-230/115. Brand New. \$19.60

Used, guaranteed, do..... ...\$12.50

New General Electric Synchro-nous Motor or Alternator; excitation 2 Volts; operating to or delivering 110 volts, 3 phase, 60 cycles at 1800 Speed; no name plate, but lab tests determined specs General Electric Type B Flange Motor for hoisting duty. 63; H. P. separately excited. Marine Duty. Brand New, original cases; 235 Volts, DC. 1100 RPM Brand New, original cases; 235 Volts, DC. 1100 RPM 00NAN 800 CYCLE MG SETS: Operative at 110/220 00Abore unit with 220/440-3-66 motor. \$227.00 Abore unit with 220/440-3-66 motor. \$207.00 Abore unit with 220/440-3-66 motor. \$207.00 Abore unit with \$3.00

Westinghouse Transformer Controller contains 300 watts 120-220 volt transformer with multi-taps. The transformer with tap switch alone is worth more than the special price......\$6.25

TAPE WINDERS

FARE WINDERS

G. E. OIL FILLED OUTDOOR TRANSFORMERS

Brand New. 3 KVA; Type HS 3000/5200Y-115/230. Also 6000/ 10,400Y-115/230. Brand New. Either type Special......\$40.00

HOLTZER-CABOT MG 149F

Input 28 Volts, DC at 36 amps. Output 26 Volts at 250 V. A. 400 cps. and 115 Volts at 500 V. A., 400 cycles. Rebuilt like new \$24.75 new GEN. ELECTRIC AMPLIDYNES

Model 5AM73AB58: Input: 110/220 volts, single 60 cyc. Output: 250 Volts, D. C. 1.5 amp. 375 3450 RPM watts. .\$78.00
 3450
 RPM
 \$78.00

 Model 5LY132A4:
 Input: 440
 Volts, 3 ph. 60 cy. 3.5

 H.P. 7
 amps.
 3570
 RPM;
 Output: 105
 Volts, D. C.

 18
 amp.
 1.9
 K.
 W.
 \$225.00

 Model 5AM610A10
 Amplidyne
 Generator.
 3
 K.W.
 125

 Volts, DC 24
 amp.
 1765
 RPM.
 BL DP.
 \$160.00

 Input: 27
 YDC, 44
 amp.
 8300
 RPM.
 Output: 60
 VDC.

 8.8
 anp.
 530
 watts.
 \$11.45
 \$11.45

WESTINGHOUSE TRANSFORMERS

399 VA: 115/240 Volts; Brand New

GENERAL ELECTRIC DC/AC MG SETS Four Bearing Marine Units: 25 HP 230 Volts, DC Coupled to alternator 18.75 KVA; 80% PF; 1800 RPM Output: 115 Volts, AC. Single Ph. 60 cycles. Ball Bearings. 4 bearing set; marine duty. Brand New. \$545.00

HERE IS EXCEPTIONAL VALUE

HERE IS EXCEPTIONAL VALUE Robbins and Myers Motor Generator Units. Operate at 110 Volts, AC, single phase, 60 cyc. and deliver 32/40 Volts. DC. Can be used with field rheostat to supply 24/28 VDC for the operation of aero equipment from lighting line. Rated at 40 watts but will deliver 200 watts for intermittent opera-tion. Gear head built into one end rotates external shaft at 225 RPM. An exceptional value at \$18.75 each. With field rheostat \$20.00. Also available for operation at 115 VDC at \$12.50 and with rheostat at \$13.75 each. Both units have 1/4 HP Motor. Stock up on these sets while they are available. Special price on quantity. Rebuilt.

Electric Specialty High Frequency Converter Units, Primary: 32 VDC, 16 amperes, 3000 R.P.M. Ball Bearings. Secondary: 350 volts, 1500 cycles. .75 amps. 275 V.A.

ELECTRIC SPECIALTY FREQUENCY CHANGERS Type BFS52/BFR3354 Input: 220 Volts, 3 Ph. 60 cyc. 3600 HPM. Output: 250 Volts, 20 amp. single ph. 180 Cyc. 5000 VA. 3000 Watts. Brand New. Compact ball hearing units for operation of H1-cycle equipment. SFECIAL PRICE HIGH FREQUENCY UNIT. 148 cyc. 220 Watts, 1.8 amperes. An ideal unit for cyperative at 440-3:60.75 amp. Output: 70 Volts, 3 ph. 148 cyc. 220 Watts, 1.8 amperes. An ideal unit for SFECIAL PRICE State of the operation of equipment. SFECIAL PRICE State of the operation operation of the operation operation

JANETTE ROTARY CONVERTERS

110 VA. Input: 110 VDC; Output: 110 VAC, single phase, 60 cycles; 3600 speed. With filter for elimination of radio interference. Reliably Rebuilt. Special Price \$19.95

KATO ROTARY CONVERTERS

 ONAN HIGH FREQUENCY MG UNITS

 ONAN 400 CYCLE MG SETS; 4 KVA—Operative with

 110/220 VAC, 1 ϕ , 60 Cy.

 Motor rep-ind.

 Single ph

 With 3 Ph. 220/440 Motor

500 CYCLE M-G SETS British made motor generator, 8 KW, 2 bearing unit, input 180-240 VDC, output 180 volts, 1 ϕ weight app. 1000 lbs. price. FA25.00 RAYTHEON HIGH VOLTAGE TRANSFORMERS: Pri. 214/246 Volts; Sec: 5500 Volts, 1.0 amperes; test 13.500 V. Brand New. \$72.00

Rebuilt like new. Input: 86 VDC 2.85 amp. 3600 R.P.M. Output: 115 VAC. 2.18 amp. 50 P.F. Ball Bearings, Base for table or side mounting. Special \$9.80

ESCO DC/AC MG SETS. Motor: 115 Volts, 1½ HP, line start; built in voltage regulator, frequency control. filtered; ideal for television, radar or any application requiring constant voltage and frequency. Output: 115 V.A.C. 1¢, 60 Cyc. 460 V.A. Brand New.....\$120.00

ESCO DC/DC Motor

Generator Units Operate at 220 Volts, DC to deliver 110 Volts, 3.6 amperes. Two of these units can be used on 220 VDC to obtain 110-0-110 Volts DC. Special Price \$18.50

Tel HAncock 6-2480

BOSTON 10, MASSACHUSETTS

IF IT'S FROM ONE FREQUENCY TO ANOTHER; FROM DC TO AC OR AC TO DC; IF IT'S FROM ONE VOLTAGE TO ANOTHER, THEN CALL ON US.

WILLIAM I. HORLICK COMPANY

Established in 1922 409 ATLANTIC AVE.

ELECTRONICS - December, 1950

ESCO CONVERTERS

Single Ph. Built-in frequency control. Specially Priced at \$30.00

ARROW has the VALUES! RADIO EQUIPMENT

RC 100 B

This equipment made by General Electric, was designed for ground use as an identification of friendly aircraft.

CABINET CH-118 is of the Standard 19 inch rack type structural steel frame with runner angles for each of the units. A full length access door with safety interlocks forms the rear of the cabinet. \$34.95

TRANSMITTER BC-769 is designed to transmit RF pulsed signals at 470 megacycles with the use of the two type 15E Tubes operating in push-pull with resonant grid, plate and filament lines......\$19.95

KEYING UNIT BC-770 furnishes the pulse of the Transmitter. .\$14.95

AIR COMPRESSOR M-349 together with 12 feet of ¼ inch soft copper tubing and neces-sary hardware is used to fill and maintain transmission lines with dry air under pres-sure. Operation is direct from 110 V AC 60 SUES W 248 is furnished for removal of

AC 60 cycles COMPLETE UNITS	rates from 110 V \$29.50 are available at am	entire equipment
TUBE	211\$.3 307A 5.5 703A	9 803 \$2.89 832A \$7.95 0 805 3.29 837 1.19 9 807 1.89 841 .49
SPECIALS!	703A 1.3 723A/B 12.9 724B 1.8	5 813 6.95 860 4.95 9 832 2.95 864 .24
CONDENSI	ERS	PC 150 FOLUPMENT
1 mfd 6000 VDC, OIL FILL .00025 mfd. 25000 VDC. OIL 1 mfd. 600 VDC. OIL FILL	ED\$1.98 FILLED\$1.98 ED	Receiver BC 1161 A
50 mmfd—5KV—5 Amp. Va	cuum Cond. 1.19	New but less tubes
IS-185 Weston Voltmeter M VAC 25 to 2400 cycles. New	\$24.95	AS-138/ARN-10 inch streamline loop as used with direction finding receivers. Fixed posi-
BC-604 TRANSM	ITTER FM	automobiles. New \$1.95
20-28 M 11 and 15 meters. Can be meters—10 channel push but all tubes and meter but less motor. Excellent Condution Crystals—	e operated on 10 tron crystal. With s dyna- \$19.95 \$19.95	SURPRISE PACKAGE 20 lbs. Ass't radio parts. A \$25.00 value for only
BC 603		TEST EQUIPMENT
Receiver—Good. Used Complete SCR-508 Installa price and information upo	tion available —	EV-10 Precision Vacuum Tube Test Set
BC 620		Ohm Meter
Receiver-Transmitter—2 cry to 27.8 MC FM—13 tubes and Filament	ystal channels—20 s. Metered, Plate Used \$9.95	No. 803 Radio City Products Tube Tester & Set Tester
PE 97 or PE 117 or PE 120 above 6-12 volt vibrator t Used less tubes, vib. & Used, complete	Power Supply for ype. con\$2.95 \$6.95	No. E 200 Precision Signal Gen- erator used 25.00 No. M-652 Jackson Audio Oscil- lator used 30.00
FT 250 Mount for both B	C 620 and PE 97	No. 224 A Dumont Oscilloscopeused 80.00 No. 155 A RCA Oscilloscopeused 90.00 No. M-840 Triumph Oscilloscopeused 75.00
BC 223		BC-1287 Oscilloscope
Brand new Transmitter wit units, two tuning unit cases, ing case, shock mount and but less tubes at new low 1	spare tube carry- brace: \$29.95	PRICES UPON REQUEST I-98-A TS13/AP
Set of 5 tubes Tuning units are available	separately at Ea. \$2.50	I-114 P/O RC-68 TS16/APN I-135 P/O IE-17 TS19/APQ5 I-167 Weston Anal. TS27/TSM-1
PE 125-12-volt Vibrator P	ackNew \$12.95 Used 8.95	1-183 Freq. Meter TS36/AP I-185 Oscillator TS47/AP
BC 906—Freque	ncy Meter	I-187 Synchronizer IS35/AFA-1 I-189 Calibrator TS62/AP IE-19 TS102A/AP
Range 150-225 MC with mo for lower frequencies of 7 0-500 DC microammeter a pack of 1.5 V and 45 VDC. Like New-Less Batterie	TV, etc. Contains and uses Battery \$10.95	IS-185 Voltmeter TS126 ÅP TS3/AP TS-251 Less Xtal TS10A/APN
All shinments FOB wareho	use 20% Deposi	ARROW SALES, Inc.
required on all orders. M	inimum order ac.	Dept. IS
regular sales tax to your re	mittance.	U/12-14 S. Michigan Ave., Chicago 16, III.

MISCELLANEOUS SPECIALS! New

 Used
 New

 ASB 7 Indicator Scope
 \$12.95

 MN 26 C.
 17.50
 \$24.95

 RA 10 DA Receiver
 17.50
 \$24.95

 RT7/APN1 Transceiver
 6.95
 9.95

 APN 1 Complete
 24.50
 \$24.95

 RT7/APN1 Transceiver
 6.95
 9.95

 APN 1 Complete
 24.50
 \$24.95

 BC 347 Interphone Amplifier
 2.95
 \$24.50

 BC 461 Veeder Root Counter
 .98
 \$26

 BC 442 Less Condenser
 1.49
 1.95

 NPS 13 UHF Antenna, Pair
 .98
 \$26

 Control
 .95
 \$4.95

 RM 29 Remote Telephone
 7.95
 9.95

 RL 42 Antenna Gearbox Motor
 4.95

 TS 10—Sound powered phones 6.50
 750

 TS 10—Sound powered phones 6.50
 \$35.95

 Tuning Units for BC 375
 Presently most numbers are available in excellent condition with case at
 \$35.95

 Tuning Units for BC 375
 Pressently compared structure for BC 375.
 Scarps and 2.95 ea

 BC 1066 B—150 to 225 MC Portable Receiver adaptable to condition with case at</td

(Both 182F & Trans, Selsyn for \$7.00) C 385A—Headset Adapter......New 49¢ Information and Prices on Request

Information and Prices on Kequest C 639 Receiver with RA 42 Rectifier TA 1B Transceiver A 2.121 Transmitter and MP 10G Power Pack CR 269 Compass Installation 5/ARN 7 Compass Installation N 26 Compass Installation L. S. Installation (R 89-BC733) S APRI Receiver and Tuning Units SB7 Complete Radar Installation

Portable VHF Communication Unit

White wo-way radio telephone equipment designed or operation between 152 and 162 megacycles M. Adaptable for many uses, a complete nit including the rechargeable storage bat-ry weighs but fifteen pounds, and is housed i a sturdy case 11½ %25%X41%, provided with houlder straps. his brand new set of blo serve weight

his brand new set of big name manufacture comes complete, with battery, battery tray, and handset but less \$89.50 attery charger, is extra at......\$19.95

Nobile VHF Communication Unit

daptable for many mobile uses, this is a ompact unit $3\frac{16}{2}$ "x8"x15 $\frac{16}{2}$ ", operating on 152 0 162 megacycles FM. It is six-volt powered irect from storage battery. and is complete ith the tone filter and crystal; handset, con-rol box, antenna and installation kit.

COMMAND (SCR	274 N)
EQUIPMENT	-
DO 152	Used New
BC-453 BC-454	5.95
BC-455	7.95 \$9.95
BC-456	5 95 2.95
BC-458	5.95 8.95
BC-696	14.95 24.95
Control	.89 1.95
BC-442	2.95
3 Receiver Rack	1.90
Complete Command set as rem	oved from air-
craft-3 receivers-2 transmitte	ers-Relay unit
modulator and dynamotors-cr	ated COA EA
Set	\$34.50

Whether you require large quantities of relays for production runs or single units for laboratory or amateur work, Wells can make immediate delivery and save you a substantial part of the cost.

This list represents only a few types of Special Relays. We also have huge stocks of Standard D.C. Telephone Relays, Midget Relays, Contactors, Keying Relays, Rotary and Slow Acting Types as well as many others. Write or wire us about your requirements.

PRICE

\$ 2.25

5.95 3.50

12.95

6.95

4.25

4.95

8.95

8.95

4.25

1.00

3 50

3.75

.95

.95

1.65

.95

.95

.95

2.50

2.15

2.15

4.25 2.75

1.45

1.25

1.35

2.85

1.65

,95

4.50

4.50

5.50

25.00

5.50

4 50

4.50

4.50

3.50

2.75

1.95

3.45

.75

.50

STOCK NO. VOL TAGE OHMAGE CONTACTS R-503 12/32 VDC 100 3A, 2C R-749 600 VDC Max. 28 Amps. IB/38 Amps. ... R-804 550 VAC . . . R-250 115 VAC Adj. Cir. Breaker .04-.16A . . . 220 VAC. R-579 IB 27.5 VDC 115 VAC R-294 200 IΒ R-686 . . . 20 115 VAC. 115 VAC. R-246 1B R-246A 1A R-611 24 VAC 1A/30 Amps R-283 12 VDC 125 AC/10 Amps. 18/24 VDC. R-614 IA/15 Amps. 60 R-262 200 10 12 VDC. R-245 25 4 In. Micalex Lever 6/12 VDC R-527 50/50 In Series R-544 12/24 VDC 60/60 IC R-255 1 A 75 VAC. 400 CYC. 1B, 1A 3⁄8″ Stroke R-669 6 VDC 24 VDC R-660 100 R-651 Solenoid Valve 12 VDC R-295 275 Annuncitar Drop 5/8 VDC. 12 VDC. R-230 2 2A, 10 12 R-813 Wafer R-275 12 VDC 750 1A, 1B, 1C 24 VDC 70 R-716 2A/5 Amps. R-620 6/12 VDC 35 2C. 1A 9/14 VDC. R-629 40 IC 10 Amps R-778 8 VDC 4500 1C/5 Amps. 24 VDC. R-720 50 2C, Ceramic R-500 12 VDC. 10/10 2C/6 Amps R-816 12 VDC 10/15 2C/6 Amps. 48 VDC. 8000 R-811 10 R-524 24 VAC/DC. 90/120 VDC. 925 R-838 2A 100/125 VDC. R-839 1200 3A R-840 115 VDC 1200 2A 115 VDC. R-841 1200 4A 115 VDC. R-842 925 3A R-843 115 VDC. 1200 3A 115'VDC. R-844 1200 3A. 1B R-845 220 VAC. Intermit. 3A R-831 7.5/29 VDC. 1A/250A, 1000A Surge 6.5 R-837 110 VAC. 24 VDC. 2A/30 Amps. R-835 2800 1A Dble. Brk./10 Amps. 2A Ddle. Brk./10 Amps. R-836 220 VAC (Coil only, Not a complete relay) R-566 115 VAC. R-710 150-Ohms, Coil Only

MANUFACTURER & NUMBER G.E. Ant. Keying 500W 2C6530-653AR1 Allen Bradley 810 Dashpot Culter Hammer C-261173A34 Contactor Westinghouse MN Overload Adlake 60 Sec. Thermo Delay Edison 50 Sec. Thermo Delay Leach 1157T-5/20 Sec. ADJ. Delay Cramer 2 Min. Adj. Time Delay Cramer 2 Min. Auj. Time Delay Durakool BF-63 Onan Rev. Current 3H4512/R24 Rev. Current Cutout 3H2339A/EI W. U. Tel. Co. 41C Single Current 2Z7668 For Scr-274N G.E. Push Button Remote Relay #CR2791-R-106C8 G.E. Pressure Switch #2927B100-C2 Clare 400 Cannon Plunger Relay #13672 Guardian Ratchet Relay Ratchet Relay From Scr-522 Guardian BK-10 **BK-13** Guardian BK-16 Guardian BK-17A Kurman BK-24 45A High Power Str. Dunn, Latch & Reset Guardian Latch & Reset Sigma 4R Edwards Alarm Bell Allen Bradley-Bulletin #702 Motor Control Allen Bradley-Bulletin #200E Motor Control Allen Бradley-Bulletin ⊭209 Size I Motor Control W/Type "N" Thermals Allen Bradley-Bulletin #709 Size 2 Motor Control W/Type "N" Thermals Allen Bradley-Bulletin #709 Motor Control W/Type "N" Thermals Allen Bradley-Bulletin #200 Motor Control Allen Bradley-Bulletin #202 Motor Control Allen Bradley-Bulletin #704 Motor Control Leach B-8 Leach 6104 Wheelock Signal, B1/39 Wheelock Signal, A7/37 Leach #6104 Guardian #38187

Wide Selection of Electronic Components at WELLS Tubes Resistors

Resistors Condensers Wire & Cable Volume Controls Co-ax Connectors Relays Rectifiers Transformers and Chokes Micro Switches and Toggles Antennas and Accessories Electronic Assemblies Dial Light Assemblies

Each relay is new, individually boxed, and unconditionally guaranteed by Wells World's Largest Display of Radio and Electronic Components 9,000 Square Feet of Display All On One Floor

320 N. LA SALLE ST., DEPT. SL, CHICAGO 10, ILL.

ELECTRONICS — December, 1950

www.americanradiohistory.com

December, 1950 — ELECTRONICS

TEST EQUIPMENT

- X Band Spectrum Analyzer 8500-9600 Mc., calibrated linear below cut-off attenuator, calibrated frequency meter, tuned mixer, 4 i.f. stages, 3 video stages overall gain 125 db., regulated power supply.
- S Band Spectrum Analyzer 2700-3900 Mc., similar to above.
- X Band Test Load low power low power \$20.00
- X Band Below Cut-Off Wave Guide Attenuator, with calibrated dial, type N input connector, output connects to 1/2" x 1" wave guide.....\$55.00
- X Band Test Load, low power....\$15.00
- TS-62 X Band Echo Box with r.f. cable and pick-up antenna.
- TS-33 X Band Frequency Meter, 8500-9600 Mcs. Crystal detector and 50 micro-amp. meter. Indicates Resonance. Connection for scope available.
- TS-45A-APM-3 Signal Generator, 8700-9500 mc., 110 V. 60-800 cps.
- TS-35/AP X Band Signal Generator, pulsed, calibrated power meter, fre-quency meter, 8700-9500 mc.
- 30 MC I.F. STRIP, VIDEO, and AUDIO AMPLIFIER AND 110 Volt 60-2600 cps POWER SUPPLY, Bandwidth 10 mc, new, part of SPR-2 Receiver.

AMPLIFIER STRIP AM-SSA/SPR-2 contains I. F. amplifier, detector, video amplifier, pulse stretcher and audio amplifier and Rectifier Power Unit PP-155A/SPR-2 bandwidth 10 mc, center frequency 30 mc, sensitivity 50 microvolts for 10 milliwatts output. Power supply 80/115 V ac, 60-2600 cps 1.3 amps.\$65.00 less tubes

- X Band Test Load, 50 watts, average power ½" x 1" waveguide. Sand load TS 108.....\$35.00
- HI POWER X BAND TEST LOAD, dissipates 280 watts of average power for 5%" x 1¼" waveguide, VSWR less than 1.15 between 7 and 10 KMC \$150.00
- S Band Signal Generator Cavity With Cut-Off Attenuator, 2300-2950 mc., 2C40 tube, with modulator chassis \$30.00

High Pass Filter F-29/SPR-2, cuts off at 1000 mc. and below; used for receivers above 1000 mc.....\$12.00

UPN-1 S Band Beacon Receiver-Transmitter\$75.00

S Band Test Load TPS-55P/BT, 50 ohms \$12.00

High Pass Filter F-29/SPR-2, cuts off at 1000 mc and below; used for receivers above 1000 mc.....\$12.00

TS-125 CALIBRATED S BAND POWER METER with attenuator.

- TS-155 S BAND SIGNAL GENERATOR and Power Meter.
- S Band Mixer, tunable by means of slider, type N connector for the R. F. and local oscillator input, U.H.F. connector for the I.F. output, variable oscillator injection\$30.00
- TS-110 S Band Echo Box 2400-2700 mc, portable\$110.00
- HI POWER S BAND TEST LOAD, dissipates 1000 watts of average power, for 1¹/₂" x 3" waveguide. Range 2500 to 3700 MC.
- TS-203/AP CALIBRATED SELSYN. \$10.00
- GENERAL RADIO PRECISION WAVE-METER TYPE 724A, range 16 kc to 50 mc. 0.25% accuracy, V.T.V.M. resonance indicator, complete with accessories and carrying case NEW....\$175.00
- HEWLETT PACKARD AUDIO SIGNAL GENERATOR 205A.....\$230.00
- RADIO RECEIVER BC-967T2, 18-160 mc, 3 bands FM/AM, 110 V, 60 cps. \$200.00

RADIO RECEIVER BC-969-B, 15-150 kc. \$150.00

- RADAR RECEIVER BC-1068A, 150-210 mc., individual tuning for r.f. stages, bandwidth 4 mc., 115 v. 60 cy.....\$30.00
- MEASUREMENTS 78E, 50-75 mc, calibrated output.....\$100.00

FERRIS MODEL, 22A SIGNAL GENERA-TOR, 85 kc to 25 mc. Output, 2 microvolts to 1 volt. modulation variable, good working order.....\$175.00

- FERRIS MODEL, 10B SIGNAL GENERA-TOR, 85 kc to 25 mc, calibrated output, good working order.....\$100.00
- TS-184 Echo Box and Attenuator for APS-13.

TS-226 Peak Power Meter for APS-13.

- TS-89 Voltage Divider for measuring high video pulses, ratios 1:10 and 1:100 transmission flat within 2 db 150 c.p.s. to 5 mc., with cable for attaching to syndroscope.
- Waveguide Below Cut-off Attenuator L 101-A U.H.F. Connectors at each end calibration 30.100 db.....\$10.00
- FIXED ATTENUATOR PADS, 20 db+0-2 db DC-1200 mc, 50 ohms, VSWR 1.3 or less, 2 watts average power....\$30.00
- WAVEGUIDE BELOW CUT-OFF ATTEN-UATOR, Type N connectors, rack and pinion drive, attenuation variable 120 decibles, calibrated 20-120 db, frequency range 300-3000 mc.....\$35.00
- WAVEGUIDE BELOW CUT-OFF ATTEN-UATOR same as above except input is matched in range of 2200-3300 mc. VSWR less than 1.2.....\$54.00
- PULSE TRANSFORMER 132-AWP...\$8.00
- PULSE TRANSFORMER GE 69G, 828 G-1 \$6.00
- HYPERSIL CORE CHOKE, 1 Henry, Westinghouse L-422031 or L 422-32....\$3.00
- PULSE FORMING NETWORK, 20 kv., .92 micro-second, 50 ohms, 800 p.p.s. \$40.00
- PULSE INPUT TRANSFORMER, permalloy core, 50 to 4000 kc., WE-D161310, impedance ratio 120 to 2350 ohms. \$3.00
- TRANSFORMERS, 115 volts, 60 cps primaries:
 - 1. 6250, 3250 and 200 volts, tapped primary voltage doubler, 12.5 kv. ins.\$14.00
 - 2. 6250 volts 80 ma. G.E. voltage doubler, 12.5 kv. ins.....\$12.00
 - 3. 2 secondaries at 500 volts 5 amps each, at 210 pounds.....\$50.00
- W.E. NETWORKS: D161638, D-161844, D-162627, D-162629, D-162631, D-162632, D-162624, D-162635\$1.00 each
- SD-3 SHIPBOARD RADAR, New and complete with test equipment \$1050.00
- SQ RADAR, used but in good working order, complete with antenna, control unit\$650.00
- SN RADAR, used, good working order, complete\$550.00
- UG-27/U TYPE N RIGHT ANGLE ADAPT-ERS 10 for \$5.00; 1000 for \$250.00

U.H.F. RIGHT ANGLE ADAPTER 10 for \$2.50; 1000 for \$125.00

Red Bank, N. J.

ELECTRO IMPULSE LABORATORY Egtontown 3-0007

P. O. Box 250

1000 KC crystal BT cut.\$3.953" scope shield1.292 speed dial drive for $\frac{1}{2}$ " shaft ratios 5:1 1 to 1.39ATC 100 mmfd air trimmer screwdriver shaft29 $-10 + 5$ Weston modulation meter Weston 301.8.95.37 key.69.500 watt 12.5 ohm power rheostat.3.49	SPECIALS OF THE MONTH	50 mmfd 5 KV GE vacuum condenser. \$1.49 2v, 6v, 12v vibrators any type. .98 Rotary switch GE Mycalex, 2 deck SP3T. .39 1 mfd 50000 voit condenser Micamold. .2.98 2 mfd 3000v voit condenser Aerovox. .3.25 3 mfd 4000v voit condenser Aicamold. .3.95 24 mfd 1500v DC 3KV flash. Excellent for speed lamp .3.95
TUBES !! BRAND NEW! ST	ANDARD BRANDS! NO SECON	IDS! COMPARE! TUBES!!
OA3 /VR75 SC24/24G S.39 227A/5C27 OB3 /VR05 1.05 SC36/CHE 3.03 240C 1.75 OC3 /VR150 48 SC11 1.39 250R 5.95 OC3 /VR150 48 SC11 1.39 250TH 18.90 IB23 6.75 SDP1 3.10 250TH 18.90 IB23 6.75 SDP1 4.26 274A 5.95 IB24 2.95 SDP1 4.26 274A 5.95 IB23 2.75 SDP1 4.26 274A 3.95 IB20 2.77 SGPT 4.45 300B 9.95 IB20 2.77 SGPT 4.45 300B 9.95 IN21 Xuil .95 SOA 24.95 307A 24.95 IN21 Xuil .95 SOA 24.95 310A 6.95 IN23 Xuil .95 SOA 24.95 327A/5C37 2.49 IN21 Xuil .85 A20		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
SELENIUM RECTIFIERS	TRANSFORMERS-115V 60 CY HI-VOLTAGE INSULATION	EQUIPMENT SPECIALS
FULL WAVE BRIDGE TYPE Input Output 0-20V AC 0-14.5V DC Type No. Current Price 20D1 1.2 Amps. 5.249 20E1 2.4 Amps. 4.99 20X1 10.4 Amps. 8.95 20X1 17.5 Amps. 11.95 20K3 39.0 Amps. 24.95 20K3 39.0 Amps. 24.95 20K4 5.20 Amps. 29.95	HI-YOLTAGE INSULATION 6250v or 3850v or 2600v @ .056 arms\$13.95 2700v @ 2 MA; 6.3v @ .063; 2.5v @ 1.75A 2800v @ 15 MA 1000 @ 4 MA; 350-0.350v @ 150 MA; 6.3v 4.45 1020 @ 4 MA; 330-0.340v @ 150 MA; 6.3v 1020 @ 5 MA; 330-0340v @ 300 MA 4.45 1120-0 120v @ 500 MA; 122v CT @ 14A; 2.5v 1120-0 120v @ 500 MA; 132v @ 25 MA; 115/ 230 Pri 16.95	APN-1 Altimeter Xceiver Like New \$ 7.95 ATR Inverter 12v DC in 110v AC Out 125 w 14.95 Int. 100 w Cont. New 14.95 AN/CRW-2 UHF Receiver New 5.95 BC357 Beacon Receiver Good 3.45 BC453 Receiver Good 1.98 BC453 Acountol Box/BC433 Used 1.95 BC433A Control Box/BC433 Used 1.95
2085	925 v @ 10 MA: 525.6525 v @ 60 MA: 2X5 v @ 3A: 6.3v CT @ 3.64: 6.3v @ 24: 6.3v 700 0-700 v @ 100 MA: 50 V CT @ 6.3A; 5 v 2430.0430 v @ 340 MA: 6.3v CT @ 6.3A; 5 v 2500.6500 v @ 175 MA. 455 430.0-430 v @ 340 MA: 6.3v CT @ 24; 115/230 Duel Pt 0 MA: 50 V CT @ 24; 115/230 4.97 405.0-405 v @ 100 MA: 50 V CT @ 24; 115/230 4.97 405.0-405 v @ 100 MA: 50 V CT @ 24; 115/230 4.97 405.0-405 v @ 100 MA: 50 V CT @ 24; 115/230 4.97 405.0-405 v @ 100 MA: 50 V CT @ 24; 115/230 4.97 405.0-405 v @ 100 MA: 50 V CT @ 24; 115/230 4.97 4.95 4.	BC002A Control Box/SCR522 Used .39 BC078 Gibson Girl Good .395 BC078 Gibson Girl .00 .95 BC1016 Tape Recorder. .New 495.50 BC1016 Tape Recorder. .New 495 Data 10 Dynamicor 12v DC in 500v 200 MA .00 .4.95 DM 19 Dynamicor 12v DC in 500v 200 MA .00 .4.95 DM 19 Dynamicor 12v DC in 500v 200 MA .00 .4.95 MN26C Compass Receiver .000 4.95 FE04 Dynamicor/SCR522 .000 4.95 PE07 A Vibrator Power Supply .New 1.98 PE07 A Vibrator Power Supply .New .95 SCR518 Attimeter Complete .New .95 SCR518 Attimeter Complete .New 1.79 DY 9 .1.36A.51.98 10 HY 9 .00 MA.52.15 .05 HY 9 .1.36A.51.98 10 HY 9 .00 MA.52.15 .05 HY 9 .1.36A.51.98 10 HY 9 .00 MA.52.15 .05 HY 9 .1.36A.51.98 10 HY 9 .00 MA.52.15 .05 HY 9 .1.36A.51.98 10 HY 9 .00 MA.2.95 .
2085	$\begin{array}{c} 925^{\circ} \oplus 10 \text{ MA}; 525 \cdot 6255^{\circ} \oplus 636 \text{ MA}; 235^{\circ} \\ \oplus 33, 6.3^{\circ} \text{ CT} \oplus 3.64; 6.3^{\circ} \oplus 2.4; 6.3^{\circ} \\ \oplus 10 \text{ MA}; 532^{\circ} \oplus 236^{\circ} \oplus 2.4; 6.3^{\circ} \\ \oplus 10 \text{ MA}; 5^{\circ} \text{ CT} \oplus 3.64; 6.3^{\circ} \oplus 1.54; 5^{\circ} \oplus 2.55 \\ 500 \cdot 500 \oplus 155 \text{ MA}; \\ \oplus 64 \dots & 75 \text{ MA}; 6.3^{\circ} \oplus 1.54; 5^{\circ} \oplus 2.4; 115, 230 \\ \text{ MA}; 5^{\circ} \text{ CT} \oplus 54 \dots & 154; 5^{\circ} \oplus 2.4; 115, 230 \\ \text{ MA}; 5^{\circ} \text{ CT} \oplus 54 \dots & 154; 5^{\circ} \oplus 2.4; 115, 230 \\ \text{ MA}; 5^{\circ} \text{ CT} \oplus 54 \dots & 154; 5^{\circ} \oplus 2.4; 115, 230 \\ \text{ MA}; 5^{\circ} \text{ CT} \oplus 54 \dots & 154; 5^{\circ} \oplus 2.4; 115, 230 \\ \text{ MA}; 5^{\circ} \text{ CT} \oplus 54 \dots & 154; 5^{\circ} \oplus 2.4; 115, 230 \\ \text{ MA}; 5^{\circ} \text{ CT} \oplus 54 \dots & 154; 5^{\circ} \oplus 2.4; 115, 230 \\ \text{ MA}; 5^{\circ} \text{ CT} \oplus 54 \dots & 154; 5^{\circ} \oplus 64, 5^{\circ} \oplus 4.75 \\ \text{ Sobest of 10 2315^{\circ} \oplus 220 \text{ MA}; 286; 3^{\circ} \oplus 64, 5^{\circ} \oplus 4.75 \\ 520 \cdot 0.352^{\circ} \oplus 124 \text{ MA}; 255^{\circ} \text{ CD} 55^{\circ} \oplus 240 \text{ MA} \\ \text{ MA}; 255^{\circ} \text{ CT} \oplus 240 \text{ MA}; 286; 3^{\circ} \oplus 64, 5^{\circ} \oplus 4.25 \\ 300 \cdot 300^{\circ} \oplus 225^{\circ} \text{ MA}; 255^{\circ} \text{ CD} 55^{\circ} \oplus 240 \text{ MA} \\ 14, 255^{\circ} \oplus 225 \text{ MA}; 250^{\circ} \oplus 26, 54; 26^{\circ} \oplus 16, 14, 25^{\circ} \oplus 26, 54; 26^{\circ} \oplus 16, 26^{\circ} \oplus 26, 54; 26^{\circ} \oplus 16, 26^{\circ} \oplus 26, 25^{\circ} \oplus 26^{\circ} \oplus 16, 26^{\circ$	BC002A Control Box/SCR522 Used .39 BC736 Glason Girl Good .395 BC058-121 Xmitter 100-156 MC New .395 BC1016 Tape Recorder New .495 BC1016 Beacon Recover Good .495 BC1202A Beacon Recover Good .495 BC1202A Beacon Recover Good .495 Dal 19 Dynamotor 12v DC In Solov 200 M .495 EEB Foundation Unit Good .495 EB Foundation Unit Good .495 PE04 Dynamic Chest Mike New .95 PE04 Dynamic Chest Mike New .95 PE07A Vibrator Power Supply New .95 R80/AIN5 Receiver New .95 R80/AIN5 Receiver Less Tubes. Covers. Good .95 SCR518 Attimuter Complete New .95 1122 Tuning Unit/BC223 10 HY @ 200 MA.5215 .052 HY @ 1.36A.51.95 10 HY @ 200 MA.5215 .053 HY @ 155 MA. .39 10 HY @ 120 MA.155 .194 W @ 155 MA. .39 10 HY @ 120 MA.155 .194 W @ 155 MA. .39 205 HY @ 1.36A.51.95

1

a

www.americanradiohistory.com

ELECTRONICS - December, 1950

SEND BEST OFFERS ON ANY ITEMS REQUIRED

U 15U

	Ampher	ıol
	PLUGS &	REC.
AN	3102-12S-3P	
AN	3102-13-5P	
ĀN	3102-14S-2S	
AN	3102-14S-2P	
AN	3102-14-3P	
AN	3102-16S-5S	
AN	3102-18-1P	
AN	3102-18-4P	
AN	3102-20-6P	
AN	3102-20-7P	
AN	3102-22-10S	
AN	3102-22-8P	
AN	3102-22-12P	
AN	3102-28-2S	
AN	3102-28-4P	
AN	3102-40-5S	
AN	3102-40-95	
AN	3102-85-1P	
AN	3106-12S-3P	
	3106-14S-7P	
	3106-18-55	
	3106-18-205	
AN	3106-22-2P	
AN	3106-22-6P-101	
AN	3100-22-95 2106 04 10D	
AN	3106-24-19P	
	3100-20-2P	
	3100-20-20-3	
AN	3108-125-3D	
AN	3108-14S-4P	
AN	3108-16S-5P	
AN	3108-18-305	
AN	3108-18-30P	
AN	3108-18-31P	
AN	3108-W-20-5SH	2
AN	3108-22-5P	
AN	3108-22-8P	
AN	3108-22-10S	
AN	3108-22-11P	
AN	3108-24-3S	
AN	3108-28-1S	

U 101 U 102 UG 103U UG 104U NK 12-32S NK 12-21C MC 277 10H 701 PLR 56 PL 62 PLS 61 **PLP 62 PLO 63** PLF 63 PLP 65 PL 2177 PL 75 PL 90 PL 100 PL 149 PL 152A PL 153 PL 153A PL 861 8 Prong Chassis Plug-Galvin 4 Prong Socket tube Cinch Co. 2154 CN 4913 FA Cannon #2255-28 Cannon SO-46

DYNAMOTORS

24V switch units type 25
Bendix #41-1283-Input 24V output 425V
Winco Input 26.5V output 1100V
Bendix #41-1548
Westinghouse D101
Type DM 53 AZ

WIRE CABLE & CORD ASSEMBLIES

18-3 type S cord 1 shielded conductor 250 ft. coils #CD520

ADDRESS COMMUNICATIONS TO

10 Cord #18 rubber cord 250 ft. coils CD 110 CD 112 CD 113 CD 111 CD 114 CD 518 CD 982 CD 650 MIC T44A RG 23U CD 512 Coaxial loom CO 328 Earphone cords 6-2 S cord 150 reels FILTERS Filter #FL 9-3Z1890-9 Capacitor #3DB4-47 SEARCH COILS Capacitor #26F628 Capacitor #5Cl Power Units PE112A Serial \pm 648RCA Antenna Switching Unit BC961-A Relays GE 3 pole K27J852 Relays GE M29U682-1 assemblies Antenna System #AS97 Aireon Mfg. Corp. Condensers 23F237

RHEOSTATS

4570808 66-445C ED28890 130858244 Large assortment of component parts too numerous to list.

35 sets B70P1 Conversion units, complete with generators. SCR-AO-283 Radio sets

ELECTRONICS - December, 1950

SPECIAL METERS

DECIBEL METER, HIGH SPEED TYPE, MULTIRANGE. An ideal meter for RE-CORDING - SOUND - BROADCASTING -TELEPHONE-TELEGRAPH & similar applications. WESTON 301 type 61, -10 to +6 DB, 6 MW in 600 ohms; 0 DB equals 1.9 volt 5000 ohms resistance HIGH SPEED TYPE .29 to .35 seconds to find reading. Only 2-6% overthrow, 16-50 Damping factor. Complete with 3 eternal wire wound, matched precision resistors to extend the range to +10 +20 & +30 DB at zero scale. TOTAL LIST PRICE \$37.50. A REAL BUY AT ONLY \$11.50.

DECIBEL METER, GENERAL PURPOSE TYPE, SIMPSON 147, 2" Sq. flush bakelite, -10 to +6 DB 0 DB equals 1.56 volts, 5000 ohms resistance, calib. for 600 ohm line, Power 6 MW, LIST PRICE \$15.75; ONLY \$5.50.

FREQUENCY METER, 350-450 Cycles. WESTON 637, 4" Square, 4 hole mtd. 115 volt, Electrodynamometer type ONLY \$7.50.

RECTIFIER TYPE MILLIAMETER, 270° MOVEMENT, WESTON 545 type 81, 4" Airoraft type case, full sc, is 1.1 M.A.A.C. Basic movement 940 microamperes 7 ohms with full wave rectifier. Black scale with lum. markings calib. 0 to 270° @ \$6.50.

ALL ITEMS ARE BRAND NEW-SUR-PLUS-GUARANTEED. All material shipped from stock same day as order received, subject to prior sale.

SOCKET SELECTOR SET—A must for all who have occasion to check tube circuits, etc. WESTON 666—type IC. Designed for purpose of taking readings of currents, voltages and resistance and other electrical measurements in a vacuum tube circuit. It can be used with any An-alyzer or multirange volt-milliammeter. To test a tube circuit the tube is plugged into the appropriate adapter and the test plug inserted in the tube socket. This brings all currents and voltages out through a cable where they may be measured with an analyzer. Complete with Tube Base Data Connec-tions and Charts, 15 adapters, pin leads and test block. Ideal for checking television and com-plicated circuits as it REDUCES SERVIC-ING TIME TO A MINIMUM. List Price \$30.00; ONLY \$9.50.

GASOLINE HEATER ----MOTOROLA MODEL GN-3-24

An internal combustion type heater which will give 15,000 B.T.U. of heat per hour. Ideally suited for use with equip-ment, farms, boats, bungalows, cabins, trailers, work sheds, darkrooms, mobile equipment, transmitter stations, etc., and any place where a quick heat is required in volume.

any place where a quick heat is required in volume. Very economical in operation—tank holds one gallon of gasoline which is sufficient for 6 hours operation. Uses any grade gasoline. This unit is designed primarily for air-craft installation, 24-28 volts D.C. but it can be readily adapted for a 115 or 230 volt 60 cycle power supply by use of a transformer and rectifier. Simple circuit diagram for adaption to 115 or 230 volts 60 cycle use sup-plied with each unit. Can be used on 32 volt farm or boat systems as is without the installation of additional transformers, etc. Power consumption approximately 75 to 100 watts. Approximately 12" long x 9½" wide. Com-

Approximately 12" long x 9½" wide. Com-plete with technical manual and parts list. Made by Galvin (Motorola Mfg. Co.) YOUR COST ONLY \$22.50.

MARITIME SWITCHBOARD 338 Canal St., N. Y. 13, N. Y. Worth 4-8217

PANEL METERS

40 VOLTS A.C. WESTINGHOUSE NA-33. 2¹/₂" Round black scale @ \$3.95 @ \$3.95

- 150 VOLTS A.C. TRIPLETT 332-JP, 3½" Round metal case @ \$4.50
- 30 AMPERES A.C. TRIPLETT 332-JP, 3½" Round metal case @ \$1.00
- 50 AMPERES A.C. WESTINGHOUSE NA-35, 3½" Round @ \$5.50
- 35 VOLTS D.C. SIMPSON 125, 2 1/2" Round @ \$3.95 metal case

750 Volts D.C. GENERAL ELECTRIC DO-41, 3%" Rd. with ext. resistor @ \$8.50

AMPERE D.C. WESTINGHOUSE NX-35, 3½" Round (Jan MR 34W001 DCAA) \$6.00

15 AMPERES D.C. TRIPLETT 321-T, 3¹/₂" Round @ \$4.50

- 1.5 AMPS R.F. GENERAL ELECTRIC DO-44, 3¹/₂" Round @ \$5.50 @ \$5.50
- 8 AMPS R.F. WESTINGHOUSE RT-35, 3½" Square @ \$7.50

1 MILLIAMP D.C. GENERAL ELEC-TRIC DO-41, 3½" Rd. special scale @ \$5.50

800 MILLAMP D.C. GENERAL ELECTRIC DO-41 3½" Round @ \$6.00

150-0-150 MICROAMPERE, WESTON 506. @ \$5.95 2½" Round

2¹/₂" ROUND 500 MICROAMPERE D.C. GENERAL ELECTRIC DO-53 3" Sq. sc. calib. 15 @ \$5.95

This is only a partial listing of the hundreds of different types of meters we have in stock. Send for our latest circular with a complete listing of all of our New-Guaranteed - Tested Meters.

Orders accepted from rated concerns, pub-lic institutions and agencies on open ac-count, others please send 25% deposit, bal-ance C.O.D. or check with order. All prices FOB our warehouse, N.Y.C.

EW YORK'S SRADIO TUBE S EXCHANGE

						Atministration of the second				
TYPE	PRICE	TYPE	PRICE	TYPE	PRICE	TYPE	PRICE	TYPE	PRICE	TEST FOULPMENT
OA2	\$3.00	3A5	. \$1.25	304TH	\$9.00	730A	. \$5.95	876	\$.90	
OA3	1.50	3B24	3.50	307A	4.95	800	. 1.00	878	1.95	Microwave K Bana 2400 MC.
OB2	3.00	EL3C	5.50	310A	7.95	8014	3 60	885	1.75	K Brand Flan Attenuator
ŎC3	1.08	3C22	49.50	312A	3.95	803	2.95	889B.	99.50	X Bond
OD3	1.08	3C23	5.95	327A.	2.95	804	. 6.95	913	9.95	TSX-4SE Spectrum Analyzer
CIA	4 95	3024	11.45	331A.	3,95	805	12.95	914	7 95	TS 12 Unit I USWR Measuring Amplifier, 2 channel
CIB	4.95	3DP1/A	2.95	3508	2.95	807	1.69	954	.15	TS 12 Unit 2 Plumbing for above 1513
1B21A	2.75	3E29	12.50	357A.	37.50	808	95	955		12 Unit I
1823	7 95	4A1	5.50	368AS	2.95	809	11 00	950		TAA-IIBL VSWR Measuring Amplifier. Browning
1B24	7.95	4C27	10.80	385A.	4.95	812	2.95	958A		TS 33 X Band Power and Frequency Meter
1B26	1.95	4J25	99.00	388A	1.80	813	. 7.95	959		TS 36 X Band Power Meter
1832	1.10	4130	220 00	393A	5.95	815	2 25	975A	45	TS 45 X Band Signal Generator
1B38	33,00	4.131	. 99.00	MX408U.	75	827R	27.50	1280	1.25	TS 146 X Band Signal Generator TS 263 Navy Version of TS 146
1B42	5.95	4.137	99.00	417A	7.95	829	6.95	1611	1.95	TS 108
1860	49.95	4.139	99.00	4340	2.95	8294	11.95	1616		X Band Magic T Plumbing
1N21	1.35	4J41	. 99.00	446B	2.95	832.	4.95	1619		X Band Tunable Crystal Mounts
1N21A	1.75	4J57	99.00	450TL	. 35.00	832A	. 9.95	1620	4.95	TS3A/AP S Band Power and Frequency Meter
1N22	1.75	C5B	2.95	404A	6 95	834	7.95	1624	1.00	RF 4 Electrically Tuned S Band Echo Box
1N23.	2.00	5BP4	3.95	471A	2.75	836	1.95	1625	.45	BC 1277/60ABQ S Band Pulsed Signal Generator
1N23A	2.75	5CP1	2.95	527	. 12.75	837	. 1.95	1851	1.95	PE 102 High Power S Band Signal Generator
1N26	5.00	5Y29	9.95	WL530	3.50	845	5.95	8013	6.95	L DORG
1N48.	1.00	5JP1	27.50	701A	3.50	849	22.50	8014A.	24.95	Measurements Corp. type 84 Standard Signal Generator
1S21.	3.95	5JP2	7.50	703A	. 2.95	851	. 29.50	8020	1.50	TS 47, 40 to 400 MC Signal Generator
2B26.	1.75	5LP1	12.50	705A.	18.00	860	2.95	9001	1.75	Broadcast Wave Bands
2C22.		C6A	3.95	706CY	18.00	861	29.50	9002	1.50	162C Rider Chanalyst
2C34		7BP7	5.95	707A.	7.95	866A	. 1.79	9003	1.75	Ferris 22A. Signal Generator
2C40.	21.00	12AP4	55.00	7144 9	7.95	872A	2.95	9005	1.90	TS 174 Signal
2C44.	.90	15E	1.95	715B.	9.95	874	1.50	9006		Oscilloscopes
2C51.	5.95	15R.		715C	. 25.00	1				BC 1287A used in LZ sets
2E22.	3.75	FG17	3.95	718AY/EY	18.00					Supreme 564
2E30	2.25	RX21	2.95	720A/B/C/	D/Y					Audio Frequencies
2F21.	40.00	RK39	2.95	7314	95.00	350A is a	long life	WE807		RCA Audio Chanalyst
2J27	12.50	RK72	1.95	722A	1.95	350B is a	long life	WEBLEG		Hewlett Packaru
2J31.	19.95	RK73	1.95	723A/B	14.95	JOD IS A	TUNY TIN	S WEDLOG	2	TS 15/A Magnet Flux Meter
2J32	19.95	FG95	18.00	724A	. 2.95	WE 701A	can be	used for a	Super 813	General Radio V T Voltmeter 728A
2J38.	7.95	FG105	19.00	725	6.95				1	Calibrator WE 1-147
2J42.	150.00	F123	8.95	726A	6.95	-				ments Corn type 58
2J49	39.50	PG172.	18.95	726B	. 36.00	A.7.0		•		General Radio 1000 cycles type 213
2J61	45.00	211		728AY	27.00	\$10	Mini	mum U	rder	Limit Bridges
2J62	45.00	217C	18.00							Weston Meters tynes 430, 429, 741
2K25	27.50	242C	10.00				No. of Concession, Name		No. of Concession, Name	Model 40 Pyrometer
2K29	27.50	249C.	10.05		6					Rawson, meters 0-10 Microampere 0-2 Millivolt
2K39	97.50	2501 L	3 00							RADAR Sets & Parts
2K45 2V3G	299.50	HF300	10.00		1		1	74110	NICS IN	R.LLI/APR5A Receivers
2.00.	2.10				1.3	C LILLI		THE	JILS FILL	
-						S _				
DHO	NEL	NOR			1					TRUNKSTAN NEW YORKGNY
						the second se				

December, 1950 - ELECTRONICS

AVAILABLE FROM STOCK HUGE INVENTORIES AT LIFE ELECTRONIC SALES

1/2-1-2 WATT RESISTORS 5-10-20 WATT POWER RESISTORS 25 AND 50 WATT RHEOSTATS POTENTIOMETERS

> UG CONNECTORS UHF CONNECTORS AN CONNECTORS COAXIAL CABLE

RECEIVING AND TRANSMITTING TUBES CRYSTAL DIODES—SOCKETS

REGULAR AND SILVERED MICA CAPACITORS TRANSMITTING MICA CAPACITORS OIL CAPACITORS—ALL TYPES

3AG—4AG—8AG FUSES—FUSE HOLDERS

December, 1950 - ELECTRONICS

ELECTRONICS - December, 1950

100 07

FST

1923

December, 1950 - ELECTRONICS

RADAR EQUIPMENT

Search Radars

APS-2; APS-3; APS-4; APS-15; SCR-717B; SCR-720; APQ-13; **APR-1 Receiver & Tuning Units APR-4 Receiver & Tuning Units APR-5** Receivers **TPX-1** IFF Transmitters—Receivers R-69/APN-9 Loran Receivers **CPN-6 3cm Radar Beacon** AN/APG-13 Complete New SO-9 10cm Search Radar

TEST EQUIPMENT

TS-3/AP; TS-13A/P; TS-14/AP TS-15/AP; TS-16/APN TS-19/APQ; TS-23/APN; TS-24/APR-Z TS-26/TSM; TS-27/TSM; TS-33/AP TS-35/AP; TS-36/AP; TS-45 TS-47/APR; TS-59 TS-61/AP; TS-62/AP; TS-74/VPM TS-76/APM-3: TS-91: TS-98 TS-100/AP; TS-102; TS-111/CP TS-118/AP; TS-125/AP; TS-126/AP TS-127/V; TS-131/AP; TS-159/TPX-1 TS-146; TS-155/VP; TS-218/AP TS-203A/P; TS-206/AP; TS-226/AP TS-268/VB; BC-376H BC-905: BC-906: BC-978 BC-1277; BC-1236A; APA-11 LS-1 Frequency Meter LM-15 Frequency Meter 804 Measurement Corpor. Signal Generator **Test Equipment and Signal Generators** for 10 and 3 cm 1-208 FM Signal Generator All types of Magnetrons

Write for listing

LERU LABORATORIES, INC. 360 BLEECKER ST. NEW YORK 14, N. Y. Oregon 5-3525

SELENIUM RECTIFIERS	nd ASSOCIATED COMPONENTS
SINGLE PHASE	POWER SUPPLIES
Full Wave Bridge Input: 0-18 VAC Output: 0-12 VDC Type No. Current Price B1-250 250 Ma. \$.98 B1-1 1.0 Amp. 2.49 B1-3 1.5 Amp. 2.95 B1-3 5.0 Amp. 5.95 B1-5 5.0 Amp. 5.95 B1-20 20 0 Amp. 15.95 B1-30 30.0 Amp. 27.95 B1-40 40.0 Amp. 27.95 B1-40 40.0 Amp. 27.95	
Input: 0-36 VAC Output: 0-26 VDC Type No. Current Price B2-150 160 Ma. \$,98 B2-250 260 Ma. 1.25 B2-300 300 Ma. 1.50 B2-2 2.0 Amp. 4.95 B2-3X5 3 5 Amp. 6.95 B2-50 20.0 Amp. 4.95 B2-510 10.0 Amp. 9.95 B2-20 20.0 Amp. 27.95 B2-20 20.0 Amp. 27.95 B2-30 30.0 Amp. 27.95 B2-40 40.0 Amp. 27.95 B2-30 30.0 Comp. 27.95 B2-40 40.0 Amp. 44.95 Input: 0-115 VAC Output: 0-90 VDC Type No. Current Price	GENERAL PURPOSE Low voltage DC pow supplies, with variable outputs. Rugged Dependable—precision control. Features V Long life Full Wave Scienium Rectifiers V Output Voltage Continuously Adjustable fre Zero to Maximum V 3" Voltmeter and Ammeter 2% aco'y. V Stepless Control V Instant Power—No Warm-Up Period
B6-260 250 Ma. \$ 2.95 B6-600 600 Ma. 5.95 B6-750 750 Ma. 6.95 B6-1325 1.5 Amp. 10.95 B6-325 3.5 Amp. 18.95 B6-10 10.0 Amp. 24.95 B6-15 15.0 Amp. 24.95 B6-16 10.0 Amp. 36.95 B6-17 10.0 Amp. 44.95 B6-18 10.0 Amp. 44.95 B6-19 10.0 Amp. 44.95 B6-10 10.0 Amp. 44.95 B6-15 15.0 Amp. 44.95 B6-16 10.0 Amp. 44.95 B6-17 10.0 Amp. 44.95 B6-18 15.0 Amp. 44.95 B6-19 15.0 Amp. 44.95 B6-10 10.0 Amp. 44.95 B6-15 15.0 Amp. 44.95 B6-16 15.0 Amp. 44.95 B6-17 10.9 Mac 94.95 B6-18 15.9 Mac 96.95 B6-1	V Ascenitis vAC 60 Cycles V For 115 VAC 60 Cycles V Dimensions 8½" x 16%" x 8" Write for descriptive bulletin GPA Model Voltage Current Pri GPA810 0-8 VDC 10 Amps. 569 GPA1210 0-12 VDC 10 Amps. 75 GPA2810 0-28 VDC 10 Amps. 85.
Type No. Current Price C1-10 10.0 Amp. \$ 6.95 C1-20 20.0 Amp. 10.95 C1-30 30.0 Amp. 14.95 C1-40 40.0 Amp. 14.95 C1-50 50.0 Amp. 20.95 THREE PHASE Full Wave Bridge	RECTIFIER CAPACITORS CF-1 1000 MFD 15 VDC 1 CP-20 2500 MFD 15 VDC 1 CF-19 500 MFD 30 VDC 1 CF-19 500 MFD 50 VDC 1 CF-18 2000 MFD 50 VDC 3 CF-2 200 MFD 90 VDC 3 CF-2 200 MFD 150 VDC 3 CF-2 200 MFD 150 VDC 3 Mounting clamps for above capacitors 15c 15c
Input: 0-234 VAC Output: 0-250 VDC Type No. Current Price 3B13-1 1.0 Amp. \$ 22.00 3B13-2 2.0 Amp. \$ 32.00 3B13-4 4.0 Amp. \$ 56.00 3B13-5 6.0 Amp. \$ 1.50 3B13-6 6.0 Amp. \$ 1.50 3B13-10 10.0 Amp. 105.00 3B13-15] 15.0 Amp. 120.00	RECTIFIER TRANSFORMERS All Primaries 115 VAC 50 60 Cycles Type No. Volts Amps. Shpg. wt. Pri XF15-12 15 12 7 lbs. 3 XXF36-2 36 2 6 lbs. 4 TXF36-5 36 5 8 lbs. 6 TXF36-10 36 10 12 lbs. 9
RECTIFIER MOUNTING BRACKETS For Types B1 through B6, and Type C1 \$.35 per set For Types 3B. 1.05 per set	TXF36-15 36 15 20 105. 11. TXF36-20 36 20 25 105. 17. XFC18-14 18 VCT 14 10 105. 6 All TXF Types are Tapped to Deliver 32, 34, volts. XFC Type is Tapped to Deliver 16, 17.
D-C PANEL METERS Attractive, rugged, and reasonably priced. Moving vane solenoid type with accuracy within 5%. Square case. 0-6 Amperes DC 0-12 Amperes DC 0-15 Voits DC Any range \$2.49 each	VOID COLLEG- 22 prot. RECTIFIER CHOKES Type No. Hy. Amps. DC Res. Pr HY5A .028 5 .20 \$ 5 \$ HY5A .024 10 .04 9 \$ \$ HY20A .007 20 .02 13 \$ \$
ATTENTION MANUFACTURERS! We are now in a position to furnish Selenium Rectifiers, in quantity, to specifications. Excellent delivery. prompt quotations.	Goad Gree
Minimum Order \$5. All prices FOB our NYC warehouse. Send check or money order. We will ship transportation charges collect. Rated concerns send P.O., Terms Net 10 days.	71-2 Warren St. New York 7. N Phone: BEekman 3-7385-6
TELEPHONE RELAYS CLARE, TYPES C, D & E COKE, AUTOMATIC—ELECTRIC ALL TYPES of COILS and PILE-UPS Send US Your Specifications For Our Quote MONTHLY SPECIAL COCKE TELEPHONE RELAYS Coil—1300 ohms, full wound. Contacts- there make, one break. Available in quantity, Individually boxed. Brand New Price, 95 ea. CHASE ELECTRONIC SUPPLY CO. U05-07 225th St., Queens Village, N. Y. HOUIS 4-5033	Are a V. I. (very importa person) to L All our work is intended to serve With you in mind, we maintain con stocks of: Vector turret sockets and in units, turret lugs, mounting board over 2000 different AN connecto sure you get cur bargain crammed HAROLD H. POWELL 632 Arch Street

www.americanradiohistory.com

GENERAL PURPOSE Low voltage DC power supplies, with variable outputs. Rugged— Dependable—precision control.	
 V Long life Full Wave Scientum Rectifiers V Output Voltage Continuously Adjustable from Zero to Maximum V Stepless Control V Instant Power—No Warm-Up Period V Assembled and Ready to Operate V For 115 VAC 60 Cycles V Dimensions 3½" x 16¾" x 8" Write for descriptive bulletin GPA 	
Model Voltage Current Price GPA810 0-8 VDC 10 Amps. \$69.50 GPA1210 0-12 VDC 10 Amps. 75.00 GPA1210 0.28 VDC 10 Amps. 75.00	
RECTIFIER CAPACITORS CF-1 1000 MFD 15 VDC 1,95 CF-20 2500 MFD 15 VDC 1,95 CF-4 4000 MFD 15 VDC 1,25 CF-19 500 MFD 50 VDC 3,25 CF-16 2000 MFD 50 VDC 3,25 CF-21 1200 MFD 90 VDC 3,25 CF-20 200 MFD 160 VDC 1.69 CF-20 200 MFD 120 VDC 3,25 CF-10 500 MFD 200 VDC 3,25 Mounting clamps for above capacitora15c cs.	
RECTIFIER TRANSFORMERS	
Type No. Volts Amps. Shpg. wt. Price XF15-12 15 12 7 lbs. 3 .95 TXF36-2 36 2 6 lbs. 6.95 TXF36-5 36 5 8 lbs. 6.50 TXF36-10 36 10 12 lbs. 9.95 TXF36-10 36 10 2 lbs. 11.95 TXF36-20 36 20 lbs. 11.95 TXF36-20 36 20 lbs. 17.95 XFC18-14 18 VCT 14 10 lbs. 6.95 All TXF Types are Tapped to Deliver 32, 34, 26 volta. XFC Type is Tapped to Deliver 16, 17, 18 Volts Center-tapped. Volts Center-tapped. Volts Center-tapped.	
RECTIFIER CHOKES Type No. Hy. Amps. DC Res. Price HY5A .028 5 .20 \$ 5.25 HY10A .014 10 .04 \$ 5.95 HY20A .007 20 .02 13.95	
Company The Warren St. New York 7. N.Y. Phone: BEekman 3-7385-6	

Are a V. I. P. (very important person) to us.

our work is intended to serve you. h you in mind, we maintain complete ks of: Vector turret sockets and plug-nits, turret lugs, mounting boards and 2000 different AN connectors. Be you get cur bargain crammed flyers.

HAROLD H. POWELL 632 Arch Street Phila. 6, Pa. MArket 7-5650

ELECTRONIC - INDUSTRIAL - RADIO - SUPPLIES

VOLTAGE REGULATOR Raytheon CRP-301407. Prim. 92-138v, 57/63 cps. Sec. 115v, 82 kva 1% reg., 96 PF. Regulating trans., chokes, capacitors, power correct. In navy grav cabinet, 36° x 20° x 12°, net wt. 250 lbs. Only Two Left at \$97.50 "LAVOIE" VHF FREQUENCY METER 375-725 mc. and above, 0.1% Model 105SM. Features precision cavity and vernier, absorption type with amplifier. Ideal for alignment, production test and lab work. Complete with spares and individual calibration. Used units only at \$49.50

"TELRAD" FREQUENCY STANDARD Complete self contained, dual 100/1000 kc xtl, multivibrator, and harmonic amplifier. Calibrates with WWV or broadcast for high accuracy, 100 to 45,000 kc check noints severy 1000-100 kc. BROADCAST MODULATION TRANSFORMER

LARGE QUANTITIES AVAILABLE-QUOTES ON REQUEST

OIL CAPACITORS mf 5500 vdc "Ine mf 7500 vdc mf 5000 vdc \$5.80 5.50 3.95 "Inerteen

Navy gray mins, integral junction box and mouting frame-GDA GRID DIP OSCILLATOR An all-around laboratory instrument for measurement of resonant circuits, Q. Ar voltages, antennas and many other purposes—3 me to 250 me or other ex-tended ranges. Compact and complete in kit form at \$24.50 with instruction and application booklet. a ppl

NEW 44-31 DOUGLASTON PKWAY., DOUGLASTON, L.I., N.Y., U.S.A. Cable Address. ELDICOINC

BAYSIDE 9-8686

Rack mounting, used, perfect. PIEZO ELECTRIC OSCILLATOR; GENERAL RADIO 675N, Rack mounting, used perfect. \$125. HETERODYNE FREQUENCY METER, GEN-ERAL RADIO 616D. 100KC to 5000KC range in 16 bands. 117 or 220V AC operation, used, per-cat

	PR	ECIS	ION	
PO	TEN	TIO	METE	RS
RES. 600 2000 5000 20,000 20,000 20,000 20,000	Type 260 260 260 314A 281 292 Man	Watts 6 6 8 4 6 y others in	Shaft 1" L 4" L 1" L 1-% - L 1" L 1" L 7% " L 3500k	Price \$1.25 1.50 1.50 1.50 1.50 1.00 1.25
THERMO FORM 7, Each iten	COUPLE, 750 Milli	GENEF amps 2-1/J aranteed,	FOB our wa	TRIC, 85¢ ea. 5. per C arehouse
Send for largest su items at	our lates rplus sto- lowest pri	t bulletins cks. Hund cces.	, listing one reds of hard	of the to get
	S		RD	
RADI 22	O-ELEC	TRICAL SHINGTO YORK 18	N AVENUE	с <mark>тѕ</mark>

Over 20 Years Serving

Selling is our Business

RADIO & TELEVISION

PARTS and SET DISTRIBUTORS AND

MANUFACTURERS

NEWARK 2, N. J.

AGGRESSIVE-INTELLIGENT-SELLING of INTEGRITY-We CONTACT OVER 100 DISTRIBUTORS and Industrial accounts. INTENSIVE COVERAGE of 2 states, New York & New Jersey by **3 OUTSIDE MEN.**

31 CLINTON ST.

ELECTRONICS - December, 1950

Member of "THE REPRESENTATIVES"

Radio Paris Manufacturers

COMMUNICATION TRANSMITTERS 2000 to 20,000 KCS 350 Watts C.W. 250 Watts Radiotelephone

Model M1-8167 Manufactured by R.C.A.

Model M1-8167 Manufactured by R.C.A. The M1-8167 was made for US Army point-to-point ground communications use. Extremely compact (size: 60 in. High, 17 in. Wide, 27 in. Deep), and shock mounted. High speed keying and High Level Class "B" modulation incorporated. Input 190 to 250 Voits AC 50/60 cycles. No external coils needed—built in band switching and antenna tuning included. Complete with tubes, built-in shielded os-cillator unit (choice of crystal or M.O. units), with or without Speech Amplifier. Fully metered with Instantaneous switch-ing. Net weight 570 pounds. Quantities available. BRAND NEW! ORIGINAL PACKING!

BRAND NEW! ORIGINAL PACKING!

RECEIVER-TRANSMITTER COMBINATIONS

SCR-508/528 FM at 35 Watts output: 20.0-27.9 Mcs., complete with receiver and transmitter, dynamotors, control boxes, 20.0-27.9 Mcs., complete with the boxes, transmitter, dynamotors, control boxes, crystals, antennas. SCR-608/628 as above, except for fre-quency of 27.0-38.9 Mcs. TCS Mfged by Collins 40/20 W. Phone & CCW for 12 V. DC, 1.5 to 12.6 Mcs. with all

w for 12 V. DC, 1.5 to 12.0 Mcs. with all accessories. **AVT/B/A** Mged by RCA, 6-10 Watts phone and CW 2300 to 6700 Kcs. Small compact for 6 & 12 V.D.C. NEW & COM-PLETE with power supply, mike, key & antenna.

A MULTI-PURPOSE RADAR SEARCH RECEIVER ARD-2

Will measure RF signals from 80 to 3000 MCS and pulse rates from 50 to 8000 cycles. It can also locate transmitted signal sources by visual and aural indicators.

Sources by visual and aural indicators. EQUIPMENT: Consists of the following: I AN-TENNA-DETECTOR (CMD-66AFH) has variable length antennas (2), diode detector, and silver plated tuning stub with calibrated scale: I AMPLIFIER (CMD-50ADC) has three stage pulse anglifler, a trigger circuit, a pulse rate counter circuit and audio amplifler, a visual signal indicator and a rectifter power supply which is operative on 115 Volts AC, single phase, at 60 to 2400 cycle current, regulated; I TEST OSCILLA-TOR (CMD-60ABG) has cavity frequency of 400 cycles with selection of four pulse rapetition rates. With the above are included all cables with fittings, accessories, and shock mounted rack, a stel chest with somplete spare parts and 200% additional tubes and 2 technical manuals. Gross weight 113 pounds BRAND NEW! ORIGINAL PACKING!

BRAND NEW! ORIGINAL PACKING! COMPLETE!

Price, each.....\$175.00

RADIOTELEPHONES

5 WATT, Model JT-52 by Jefferson-Travis, 2 channel, crystal controlled recvr-trans-mitter, built-in speaker, hand micro-phone, 6 Volt DC power supply. Freq: 2000-3000 KCS, in compact steel cabinet, complete less xtals. New in original car-tons. In dealer quantities.

RADIO BROADCAST TRANSMITTERS PORTABLE-"TWT PB-50A"

Here is a complete portable broadcasting station made for the US Army. Operates from either 110 or 220 V. AC 50/60 cycle source. Has exceptionally high fidelity, extreme compactness and incorporates modern circuit design. Power output is 50 Watts in frequency range 1100 to 1500 Kcs, crystal or MO controlled, 100% mod-ulation. Complete.

All the above in five trunks for portability. New

WALKIE-TALKIES HANDY TALKIES

PORTABLE RADAR LORAN MOBILE EQUIPMENT

COMMUNICATION DEVICES CO.

2331 Twelfth Ave. N. Y. 27, N. Y. Cable: COMMUNIDEV Tel: AD-4-6174. 5

New Oil Condensers
2.48
A DECEMBER OF THE REAL OF THE
2MFD 5000 V DC 6" x 4" x 5"\$12.95
1MFD 2500 V DC Type TJ 25010G. 2.25
10MFD 2500 V DC Type TJ 25100GA 4.95
5MFD 600 V DC Type 609X90
IMFD 2000 V DC Type TJU 20010G 1.95
HC CONNECTORS
UG CONNECTORS
UG 9/Ueach \$0.75
UG 36/U
UG 107/Ueach 2.00
UU 234/U
UG 59/41
UG 61/AU
83 1H
83 1 SPN each 45
BRAND NEW
Weston Model 641 Wattmeter 0.4 KW
Scale & Adi, 200-250 Vts El Black 20
Amps Normal. Price
High Current Micas Type G3B 0001-
25KV
TUBES
1B24
2J36
575A
829B 11.00
832A 10.00
872A 1.25
Other Numbers Upon Request
NO RISK TO YOU
ALL MATERIAL OFFERED BRAND NEW
LEONARD GREENE
381 Tremont St., Boston, Mass
Phone: HAncock 6-4794
D.C. MICDOAMANETEDS
D.C. MICROAMMETERS
D.C. MICROAMMETERS 0-200 ua 3" sq. G.E. DO 50
D.C. MICROAMMETERS 0-200 ua 3" sq. G.E. DO 50 \$ 8.00 0-100 ua 3" sq. G.E. DO 50 10.00 0-50 ua 3" sq. G.E. DO 50 12.00
D.C. MICROAMMETERS 0-200 ua 3" sq. G.E. DO 50 \$ 8.00 0-100 ua 3" sq. G.E. DO 50 10.00 0-50 ua 3" sq. G.E. DO 50 12.00
D.C. MICROAMMETERS 0-200 ua 3" sq. G.E. DO 50 \$ 8.00 0-100 ua 3" sq. G.E. DO 50 10.00 0-50 ua 3" sq. G.E. DO 50 12.00 R.F. MILLIAMMETERS
D.C. MICROAMMETERS 0-200 ua 3" sq. G.E. DO 50 \$ 8,00 0-100 ua 3" sq. G.E. DO 50 10,00 0-50 ua 3" sq. G.E. DO 50 12,00 R.F. MILLIAMMETERS 0-115 Ma 3½" Weston 425 \$12,00 0-100 Ma 3½" Weston 425 12,00
D.C. MICROAMMETERS 0-200 ua 3" sq. G.E. DO 50\$ 8.00 0-100 ua 3" sq. G.E. DO 5010.00 0-50 ua 3" sq. G.E. DO 5012.00 R.F. MILLIAMMETERS 0-115 Ma 3½" Weston 425\$12.00 0-100 Ma 3½" Weston 425\$12.00
D.C. MICROAMMETERS 0-200 ua 3" sq. G.E. DO 50 \$ 8.00 0-100 ua 3" sq. G.E. DO 50 10.00 0-50 ua 3" sq. G.E. DO 50 12.00 R.F. MILLIAMMETERS 0-115 Ma 3½" Weston 425 \$12.00 0-100 Ma 3½" Weston 425 \$12.00 PRECISION
D.C. MICROAMMETERS 0-200 ua 3" sq. G.E. DO 50 \$ 8.00 0-100 ua 3" sq. G.E. DO 50 10.00 0-50 ua 3" sq. G.E. DO 50 12.00 R.F. MILLIAMMETERS 0-115 Ma 3½" Weston 425 \$12.00 0-100 Ma 3½" Weston 425 \$12.00 PRECISION PORTABLE INSTRUMENTS
D.C. MICROAMMETERS 0-200 ua 3" sq. G.E. DO 50 \$ 8.00 0-100 ua 3" sq. G.E. DO 50 10.00 0-50 ua 3" sq. G.E. DO 50 12.00 R.F. MILLIAMMETERS 0-115 Ma 3½" Weston 425 \$12.00 PRECISION PRECISION PORTABLE INSTRUMENTS Single or multi-range
D.C. MICROAMMETERS 0-200 ua 3" sq. G.E. DO 50 \$ 8.00 0-100 ua 3" sq. G.E. DO 50 10.00 0-50 ua 3" sq. G.E. DO 50 12.00 R.F. MILLIAMMETERS 0-115 Ma 3½" Weston 425\$12.00 0-100 Ma 3½" Weston 425 \$12.00 PRECISION PORTABLE INSTRUMENTS Single or multi-range D.C. Microammeters, from 5 ua full scale.
D.C. MICROAMMETERS 0-200 ua 3" sq. G.E. DO 50\$ 8.00 0-100 ua 3" sq. G.E. DO 5010.00 0-50 ua 3" sq. G.E. DO 5012.00 R.F. MILLIAMMETERS 0-115 Ma 3½" Weston 425\$12.00 0-100 Ma 3½" Weston 425\$12.00 PRECISION PORTABLE INSTRUMENTS Single or multi-range D.C. Microammeters, from 5 ua full scale. Thermo-couple williammeters, from 1.5
D.C. MICROAMMETERS 0-200 ua 3" sq. G.E. DO 50
D.C. MICROAMMETERS 0-200 ua 3" sq. G.E. DO 50 58.00 0-100 ua 3" sq. G.E. DO 50 10.00 0-50 ua 3" sq. G.E. DO 50 12.00 R.F. MILLIAMMETERS 0-115 Ma 3½" Weston 425 \$12.00 0-100 Ma 3½" Weston 425 \$12.00 PRECISION PRECISION PORTABLE INSTRUMENTS Single or multi-range D.C. Microammeters, from 5 ua full scale. Thermo-couple voltmeters. Ma. Thermo-couple voltmeters. Precision Electrical Instrument Co.
D.C. MICROAMMETERS 0-200 ua 3" sq. G.E. DO 50 58.00 0-100 ua 3" sq. G.E. DO 50 10.00 0-50 ua 3" sq. G.E. DO 50 12.00 R.F. MILLIAMMETERS 0-115 Ma 3½" Weston 425 \$12.00 0-100 Ma 3½" Weston 425 \$12.00 PRECISION PRECISION PORTABLE INSTRUMENTS Single or multi-range D.C. Microammeters, from 5 ua full scale. Thermo-couple voltmeters. Ma. Thermo-couple voltmeters. Precision Electrical Instrument Co. 146 Grand Street New York 13, N. Y.
D.C. MICROAMMETERS 0-200 ua 3" sq. G.E. DO 50\$ 8.00 0-100 ua 3" sq. G.E. DO 5010.00 0-50 ua 3" sq. G.E. DO 5012.00 R.F. MILLIAMMETERS 0-115 Ma 3½" Weston 425\$12.00 0-100 Ma 3½" Weston 425\$12.00 PRECISION PRECISION PORTABLE INSTRUMENTS Single or multi-range D.C. Microanmeters, from 5 ua full scale. Thermo-couple williammeters, from 1.5 Ma. Thermo-couple voltmeters. Precision Electrical Instrument Co. 146 Grand Street New York 13, N. Y.
D.C. MICROAMMETERS 0-200 ua 3" sq. G.E. DO 50\$ 8.00 0-100 ua 3" sq. G.E. DO 5010.00 0-50 ua 3" sq. G.E. DO 5012.00 R.F. MILLIAMMETERS 0-115 Ma 3½" Weston 425\$12.00 0-100 Ma 3½" Weston 425\$12.00 PRECISION PORTABLE INSTRUMENTS Single or multi-range D.C. Microammeters, from 5 ua full scale. Thermo-couple Williammeters, from 1.5 Ma. Thermo-couple voltmeters. Precision Electrical Instrument Co. 146 Grand Street New York 13, N. Y.
D.C. MICROAMMETERS 0-200 ua 3" sq. G.E. DO 50\$ 8.00 0-100 ua 3" sq. G.E. DO 5010.00 0-50 ua 3" sq. G.E. DO 5012.00 R.F. MILLIAMMETERS 0-115 Ma 3½" Weston 425\$12.00 0-100 Ma 3½" Weston 42512.00 PRECISION PORTABLE INSTRUMENTS Single or multi-range D.C. Microammeters, from 5 ua full scale. Thermo-couple Millianmeters, from 1.5 Ma. Thermo-couple voltmeters. Precision Electrical Instrument Co. 146 Grand Street New York 13, N. Y. ELECTRONIC TUBE-MAKING
D.C. MICROAMMETERS 0-200 ua 3" sq. G.E. DO 50\$ 8.00 0-100 ua 3" sq. G.E. DO 5010.00 0-50 ua 3" sq. G.E. DO 5012.00 R.F. MILLIAMMETERS 0-115 Ma 3½" Weston 425\$12.00 0-100 Ma 3½" Weston 425\$12.00 PRECISION PORTABLE INSTRUMENTS Single or multi-range D.C. Microanmeters, from 5 ua full scale. Thermo-couple voltmeters. Precision Electrical Instrument Co. 146 Grand Street New York 13, N. Y. ELECTRONIC TUBE-MAKING MACHINERY
D.C. MICROAMMETERS 0-200 ua 3" sq. G.E. DO 50 \$ 8,00 0-100 ua 3" sq. G.E. DO 50 10,00 0-50 ua 3" sq. G.E. DO 50 12,00 R.F. MILLIAMMETERS 0-115 Ma 3½" Weston 425 \$12,00 0-100 Ma 3½" Weston 425 \$12,00 PRECISION PORTABLE INSTRUMENTS Single or multi-range D.C. Microammeters, from 5 ua full scale. Thermo-couple voltmeters. Precision Electrical Instrument Co. 146 Grand Street New York 13, N. Y. ELECTRONIC TUBE-MAKING MACHINERY For manufacturing radio tubes, electronic
D.C. MICROAMMETERS 0-200 ua 3" sq. G.E. DO 50 58.00 0-100 ua 3" sq. G.E. DO 50 10.00 0-50 ua 3" sq. G.E. DO 50 12.00 R.F. MILLIAMMETERS 0-115 Ma 3½" Weston 425 \$12.00 0-100 Ma 3½" Weston 425 \$12.00 PRECISION PORTABLE INSTRUMENTS Single or multi-range D.C. Microanmeters, from 5 ua full scale. Thermo-couple voltmeters. Ma. Thermo-couple voltmeters. Precision Electrical Instrument Co. 146 Grand Street New York 13, N. Y. ELECTRONIC TUBE-MAKING MACHINERY For manufacturing radio tubes, electronic tubes, cathode-ray tubes, lamps. New and
D.C. MICROAMMETERS 0-200 ua 3" sq. G.E. DO 50\$ 8.00 0-100 ua 3" sq. G.E. DO 5010.00 0-50 ua 3" sq. G.E. DO 5012.00 R.F. MILLIAMMETERS 0-115 Ma 3½" Weston 42512.00 PRECISION PORTABLE INSTRUMENTS Single or multi-range D.C. Microammeters, from 5 ua full scale. Thermo-couple williammeters, from 1.5 Ma. Thermo-couple voltmeters. Precision Electrical Instrument Co. 146 Grand Street New York 13, N. Y. ELECTRONIC TUBE-MAKING MACHINERY For manufacturing radio tubes, electronic tubes, cathode-ray tubes, lamps. New and used. Reasonably priced, satisfaction guaranteed.

67 E. 8th St. New York, N. Y.

"K" "AN" 3108 wк 3106 GK 3102 SK 3101 NK 3100 RWK Connectors FOR IMMEDIATE DELIVERY WRITE-WIRE-PHONE WILGREEN 74 Cortlandt St. N. Y. 7, N. Y. BA-7-4862 WHOLESALE ONLY ELECTRONIC COMPONENTS AIRCRAFT EQUIPMENT HYDRAULICS RADIO & ELECTRONIC SURPLUS 13933-9 Brush St. Detroit 3, Mich. Phone Townsend 9-3403 HIGH VOLTAGE RF POWER SUPPLIES For INDUSTRIAL USE and PROJECTION TELEVISION EMBASSY ENGINEERING CO. 224 East 204 St., N.Y.C. An Investment Productive advertising is an INVESTMENT rather than an EX-PENDITURE. "Searchlight" advertisers almost invariably report prompt and satisfactory results. CONVINCED ---BE send us your advertisement TODAY. Address Classified Advertising Division

ELECTRONICS 330 W. 42nd St., New York 18, N. Y.

Although rated at 400V against an operating temperature of 72°C, these nationally famous 5+5 MFD capacitors will meet all commercial specifications and operate at 600V provided that the operating temperature (bees not exceed 40°C. Measuring 3 5/16 x 2 x 3 25/32 and packed 24 to a carton, weighing 42 pounds this item fills the need for an excellent filter and power correction device. Long lasting, extremely low in dialectric leakage and available in sufficient quantity for a large manufacturer. Small quantities—5.7. Carton quantities—5.45. Samples upon request.

WESTON LABORATORIES

Weston 93, Massachusetts

TELEMARINE . The Best in Electronic Surplus

Ine Best in Electronic Surplus BC-610 Transmitters with EC-614 Speech Amplife to and on meter operation. Output 400 watts A1, 00 watts A3, Operates from 110/1/50-60 cycles A6, Ober and Sole Spanse and Sole and

EACH \$25.00 Bot SCH & LOMB Front-End Lens Assembly, for Bot SCH & LOMB Front-End Lens Assembly, for MOUNTED LENS UNIT, also for front-end, results as good as B & L unit. Speed F1.9 f, 1, 91.44mm. outside dia at one end 60 mm. length of mount 64 mm. PRICE, EACH \$7.00

580-765 MC SUPERHET RECEIVER WITH WAVEMETER

RADAR TRAINING SET-MARK V

RADAR TRAINING SET-MARK V For Student, Schools, Labs, or actual radar ap-plication. Operates in the 580 to 765 mc region, designed especially to illustrate how radar eqpt. functions, and permits making numerous experi-ments to put over radar fundamentals. Uses above described receiver: separate transmitter using 8025 triode with 1.5 watts at antenna, with 400 KC In-ternal modulator using two 311 tubes; External modulator using two 311 tubes; External 4,000, and 1,000 cycles, and RF at 750, 350, and 175 KC, with selection switch for modulation fre-quency and wave form control, using 3 tubes, 807. 6N7, and 6J5; set of Antenna Dipole rods. Sup-piled with full instruction sheets, diagrams, cali-pration curves, tubes. NEW unused surplus. PRICE, Per Set

Technical Manual (Complete Instruction Book) for the BC-312 & BC-342 Receiver. PRICE, Postpaid. \$1.50

20-40 MC FIFLD STRENGTH AND WAVEMETER

20-40 MC FIFLD STRFNGTH AND WAVEMETER Uses a 0-100 Micro-anuneter with a 154 Penlode, to receive signals in the 20-40 mc range. 1.5 volts battery required. Tuning dial has dial lock, for fixing position, and telescopic Antenna permits ad-justing for strong or weak signals. Calibration must be solf performed. With instruction sheet and diagram NEW, unused eqpt. Dim: 64%44 x 53% PRICE Each PRICE Each HOMELIGHT 1.5 KW GAS Engine Generators, 110 V, 60 eycles, 1-phase, 60 cycles output. NEW, in original export packing, with spare parts and tools. Shing wt. 2128 lbs., cu. ft. 70. PRICE EACH HOMELIGHT 1.5 KW GAS Engine Generators, 110 V, 60 eycles, 1-phase AC. Almost New, all units thoroughly tested and guaranteed. PRICE EACH Star is build on the solution of the solution of the beat of the solution of the solution of the solution beat in the solution. Individually packed in cartons all NEW. 210 Per 3:8458, Navy #CG-21ABU. 15/230 V. 60 cycles, motor raied at % HP, generator output 250 V. DC at 375 watts. NEW, PRICE EACH Start Solution Solution Solution Solution Solution type FIX-5875617, motor type #73AB58, Navy #CG-21ABU. 115/230 V. B0 cycles, motor raied at % HP, generator output 250 V. DC at 375 watts. NEW, PRICE EACH

- TELEMARINE -COMMUNICATIONS COMPANY 540 West 27th Street NEW YORK 1, NEW YORK Cable Address: Telemarine, N. Y.

THAT'S A BUY	TUBES TESTED—GUARANTEED Prices Subject to Change	14W7 1.33 73 1.6 14X7 1.33 NR74 2 14Y4 1.20 75 8 15. 98 HY75A 4.5 15E 1.17 76 8 15R .49 77 .8 978 .8 78 .8	7 713A 1.00 9 715A 6.98 3 715B 7.98 9 715C 22.98 3 717A 61 3 720CY 45.00 3 721A 2.19	5514
OA2	*Critical Type—Write for Price 250.00 6D8	RK18. 98 79 8 18. 98 80 1.1 19. 69 81 1.9 19BC6G* 600 FG81A. 3.7 19J6*. 3.20 FG81A. 1.2 19T8* 2.90 82V 1.3 20. 1.17 83 1.2	9 722A/287A 2.75 9 723A. 6.95 5 723A/B. 14.98 5 724A/B. 2.89 9 725A. 6.39 9 726C. 39.98 9 730A. 9.89	5812. 2.99 4A1 1.29 UX6653. 69 PM5 98 8012A. 1.25 6-11 49 8013. 3.75 PM6. 98 8020. 1.25 PM7. 98 9001. 1.98 PM8. 98 9002. 1.65 9-3. 49
OB3/VR90 1.29 2A6	24.30 6F7. 1.39 7C6* 1.62 13.45 6F5. 83 7C7 .95 12.40 6F6*. 1.04 7C23. 72.00 99.00 6F6GT* 85 7E5/1201 1.25 7.150 6F7. 1.39 7E6. 1.10 1.65 6F6G .98 7F7* 1.05	RK20A. 9.90 83V 1.3 PJ21. 4.98 84/624. 9 REL21. 4.85 85 1.1 RX21. 2.50 89 7 PJ22. 29 FG104. 17.4 22. .99 FG104. 17.4 24. .89 FG105. 8.8	9 801A .29 5 802 .4.39 0 803 .3.00 9 804 .8.45 5 805 .3.59 5 807 .2.39 9 808 1.35	9003 1.98 10-4B 49 9004 .79 13-4 49 9005/RC4B 1.95 20-4 49 9006 .27 K49A 36 Sub-Mini's K55B 36 2E31 1.39 M55B 36 2E32 1.19 L62A 49 <t< td=""></t<>
01A	2.40 6H6* .99 7F8* 2.65 83 C6J 4.40 7G7/1232 1.33 .90 6J4* 6.98 7H7* 2.00 * 1.25 6J5GT* 1.50 7J7. 1.33 .75 6J5* 2.90 7K7 1.33 .98 6J7* 1.80 7L7 1.33 .18 6J8G 1.39 7N7* 2.65	HY241.39 VU1114 24A21 HY114B7 24G/3C2469 HY115/145 7 25A61.20 HY115/145 7 25A73.27 H778T.19 25A75GT.1.95 H7P7GT.19 25B5 130 H773 7	5 809	CK501AX 1.26 K80B 36 CK506AX 1.79 WL121A 2.61 CK509AX 1.26 C376 2.98 CK512AX 1.79 ZB583 3.98 CK522AX 1.79 ZB583 3.98 CK522AX 1.79 Mazda Pilots CK525AX 1.79 Mazda Pilots
1B3/8016* 2.65 2C44 1.20 C6A 1B4P .95 2C50 3.69 6A3 1B5/255 .98 2C51 5.69 6A4 1B7/GT .98 2C52 3.06 6A6 1B21/471A 2.85 2D21 1.15 6A7 1B22 3.49 2E52 1.16 6A8CT 1B23 .89 2E52 1.16 6A8CT	7.45 6K5GT 1.16 707* 95 1.39 6K6GT* 1.65 7R7* 1.16 1.60 6K7 75 757 1.33 1.33 6K8 1.07 7T7 1.03 1.05 6L5G 98 7V7 1.33 1.05 6L56 2.26 7W7* 2.65 2.00 6L5G 1.08 7V7 2.65	251362.49 11724GT. 1.4 25B06GT* 3.20 11726GT. 1.4 25C618 117276GT. 1.4 25L6GT. 87 F127A. 15.8 25N6 1.69 CV148. 4.9 25W4GT* 2.00 150T. 14.5	5 816 1.18 0 826	CK 529AX. 1.98 49, Box 10 .60 CK 531DX. 98 55, Box 10 .60 CK 531DX. 98 64, Ea07 CK 533AX. 1.39 S6/T4/3W. 16 CK 533AX. 1.39 S6/T4/3W 12 CK 534AX. 89 100W/20V 25 CK 536AX. 89 291, Box 10 .36
1824	1.30 6LGG + 1.98 XXFM 1.33 1.33 6L7 98 74* 90 1.853 1.42 6N4 2.39 724* 95 T 1.29 6N6G 1.95 10Y 29 2.90 6N7GT 1.26 12A .89 ** 3.60 6PGCT* 1.21 12A5 1.32	2525 87 FG166 49.0 25226GT* 1.50 FG172. 29.5 2679 B2B. 1.2 27	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CK538DX. 39 311/28V. 15 CK539DX. 98 313/28V. 15 CK541DX. 198 323/3V. 16 CK541DX. 198 323/3V. 10 CK551AXA 1.69 S6/6W/120V.15 CK5676. 1.49 Wstghs CK5678 2.48 C77/W/120W.15
IB38 16.00 2J22 9.45 (6.0 D) IB38 34.00 2J26 6.98 (6.0 D) IB40 4.95 2J27 13.90 (6.0 D) IB41 4.95 2J33 39.50 (6.2 D) IB42 7.50 2J31 8.90 (6.4 E)G IB46 3.69 2J32 12.80 (6.4 E)G IB46 3.69 2J33 18.45 (6.4 E)G	1.17 607	30°	5 851	CK550972.89 Med Screw Base CK5702598 15W/125V .08 CK5770398 25W/125V .08 CK5744298 Neon Bulbs CK5784598 NE16/991 .25 CK57851.98 NE2010 C'Ray Tubes NE3235
B54	2.65 65871*.1.20 12AU6*.2.00 2.88 65C7*.1.00 12AU7*.2.40 1.49 65D7GT.1.29 12AV6*.1.50 3.90 65F5.93 12AV7*.3.20 1.49 65F7.98 12AV7*.3.20 1.49 65F7*.20 12AX7*.2.40 2.49 65G7*.2.00 12AX7*.2.40 2.49 65H7GT*.2.20 12BA6*.1.80	FG33 8.90 250TL 18,77 34 1.60 282B 8.44 35/51 1.00 304TH 4.91 355.5 .95 304TL 4.91 35B5* .200 307A/ 35D5* 2.00 RK75. 6.41	5 868/PJ23. 1.90 9 869. 25.98 8 872A. 1.29 8 GE872A. 2.98 874. 35 5 878. 1.95 8 884/6Q5G. 1.45	2AP14.85 NE45/1/4 W .27 2AP57.98 NE51/NE20.10 3AP14.69 TelSildeLamps 3BP12.49 (6/12/24/48/ 3BP1A44.98 (55V, Ea18 3CP1-SI.2.20 XtalDiodes Jan 3DP14.90 N2149
ID5GP .98 2149 .39 45 6AL5* ID7G .98 2150 .27 .50 6AL5w ID8GT .98 2154 .24 .95 6AL7G IE5GP .98 2155 .92 .26 .475* IE5GP .98 2155 .92 .60.75* IF4 .99 2156 .249 .50 .60.05* IF4 .79 2161 .24.45 .60.06* .15* .92 .26 .93 .21.62 .49.95 .60.76* .15* .93 .21.62 .49.95 .60.76* .15* .93 .21.62 .49.95 .60.76* .15* .15* .15* .93 .21.62 .49.95 .60.76* .15*	2.00 65X75*1.65 12BA7*.2.40 * 2.90 65K7GT* 1.80 12BD6*.2.00 T* 2.65 65K7GT* 1.25 12BE6*.1.80 600 65N7GT* 2.20 12BF6.85 00 65N7GT*2.90 12BH7*.2.40 89 65Q7GT* 1.50 12C8.1.39 7.1.123 65R7*180 12F590	35L6GT*. 1.65 316A. .66 35W4*. 1.25 323A. 24.99 35X4 90 327A. 2.51 35Z3 .90 350A. 2.7 35Z4GT. .75 350B. 2.21 35Z5GT*. 1.50 355A. 1.41 REL36/6J4 .50 371B. .91	9 885. 1.39 9 920. 2.70 9 922. 98 9 923. 70 5 927/CE25. 1.00 5 929. 1.33 930. .87	3DP1-S2. 4.65 1N21A. 2.00 3EP1. 2.45 1N21B. 2.60 3FP7. 1.60 1N22. 2.00 3FP7A. 14.98 1N23. .49 3GP1. 4.89 1N23. .280 3HP7. 2.85 1N23B. 3.75 3HP14. 4.98 1N25. 4.80
IF0G. .98 2K23 .24.95 bAK5*. IF7G. .98 2K28 Mcd 36.98 bAK6.5*. IG4GT. .98 2K29. .29.95 bAS5*. IG5G. .98 2K39. .89.50 bAS6. IG6GT. .19 2V3G. .29.65 bAS7G. IH4G. .98 2W3GT. .98 bA76*. IH4G. .98 2W3GT. .86 AT6*. IH4C. .98 2W3GT. .98 6AU5*.		36. 69 380A 77 37. 69 388A 1.6 38. 69 393A 3.7 39/44. 69 394A 3.9 CRC40. 54 X400 14.9 41. 79 WL414. 63.9 42. 79 417A 9.4	931A. 4.98 954. .25 1955. .49 3 956. .39 9 957. .39 9 958. .39 SD968. .98	3JP1 15.00 1N26 5.20 3JP12 19.95 1N27 3.50 4AP10 4.39 1N29 3.50 5AP1 3.59 1N32 18.00 5BP1 2.25 1N34 75 5BP4 4.50 1N35 1.95 5CP1 1.75 1N46 89
110G. 98 2A2A. 1.49 bA 0.0° 1J5G. 1.20 3A4 .69 6AU7 IJ6G. 98 3A5 1.25 6AV5G IL4. 98 3A8GT 1.90 6AV6* ILA4. 1.33 3B4. 2.69 6AW6* ILA6 1.33 3B5. 98 6AX5G ILB4. 1.33 3B7/1291. .69 6B4G	2.40 60361* 1.25 128A7G1* 1.05 2.40 6015/6G7* 1.05 12857G1 .10 1* 2.65 6016G7* 1.05 12857GT .79 1.50 607G .90 12857GT .79 2.65 606* 2.25 12857GT .89 T* 1.35 606G7* 2.00 128H7 .10 1.54 6046G7* 2.45 12817GT .89	43	FM10001.50 CK100549 CK100664 CK100789 CK10893.98 CK10902.69 R1100500	5CP7 .3 39 1N48 .70 5FP5 .19.98 1N51 .70 5FP7 .1.26 1N52 .95 5FP1 .8 98 1863 .98 5GP1 .5.25 Thermistors .95 .95 5HP1 .4.95 D167019 Vol 5HP4 .97.5 Limiter 2.95 .95
LC6 1.33 3B24 2.43 0013 LC6 1.33 3B24 3.98 6B6C LD5 .98 3B25 4.60 6B7 LE3 1.33 3B27 1.95 6B6C LG5 1.41 3B28 7.85 6BA4 LH4 1.33 3C6/XXB 1.60 6BA5 LK5 .98 3C23		49 89 460/HF20015.91 50 1.95 WL468.5.83 EF50 69 RH507.9.91 50A5.5 1.35 527.12.91 50B5* 1.80 GL530.49.61 50C5 1.03 WL531.3.72 50C65 1.49 GL534.72	b) R1130B 12.00 b) HY1231Z 5.39 b) HY1269 5.39 b) 1273 1.15 1280 1.15 1609 5.98 1613/6F6X 1.06	5JP1
11361	2.00 64767	30L0G1* 1.65 1521 3.63 50X6 1.10 544 4.94 50Y6GT 90 GL546 1.60 50Y7GT 90 S50P1 19.95 52 .99 575A/975 12.66 53 1.33 601B 1 55 1.06 HY615 1.26	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7BP74.65 CW 202597 USN 7CP112.95 38C 2.95 7JP416.49 WEco 41A 1.50 9GP714.89 X talFreqStds 9JP16.45 100Kc 7.98 9LP710.98 200Kc3.98 10BP419.42 1000Kc4.42
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36 85 WL619 18.9 18.9 18.9 18.9 18.9 19.1 19	1626 49 1629 .39 1631 .80 1632 .77 1633 .75 1634 .77 1635 .149	10197424.3014700 Kc
103	2.00 784* 1.80 1407 1.33 2.00 784* 1.80 1407 1.10 * 6.00 785* 1.80 1487 1.29 .89 786* 1.80 1487 1.33 CIRCUIT BREAKERS Heinemann MagnBkrs. Amps:	70L7GT 1.95 705A 8021 66 71. 1.00 707A 13.5 72. 95 707B 24.9 CRP72. 1.37 710A/8011 75 TRANSFORM 115V/60 cyc	1641/RK60 .75 2050 .180 2051 .89 R4340 .36.00 ERS	910/3AP1. 4.63 B'kage Via 912
Di0,000 ohms 20 Steps IRC 51.98 173.8 & 7470 and 1063 to 24.72 ohms Balanced Rheostat WEco Specs KS9458	Solution of the second	TV & CR Pwr Sup role of 7" to 20" Tul Volts to 20KV rupler ckt). All T & Fil Wndgs dlv VDC/275 ma Fr 6.4V/10.3A. 5.4V/8A, 2.5V/3A,	ply Xfmr pes. Hi- w/quad- ubes, Pl rng: 300 Ill-Wave. CK706	verter Tube 2" diam. Each \$4.98 Two for 9.49 -GERMANIUM CRYSTAL DIODES Seplaces Replaces Each 1N80, 1N43, 1N48. 5.77 1N60, 1N64 54
"TAB" Specialists—We Ship Types in Stock 0.1 to 950K ohms, Ea. 35c; 10/\$3.29 1 to 15 Megohms, Ea. 70¢; 10 for \$6.49 Vacuum Precision HIVOLT Resistors Megohms—.12/25/.6/.75/.33/.99/1/1.5/2	THERMO- REGULATOR Dual Ckt, 32°&105°P. Extremely Sensi- tive & Accurate—FIRE PREY, FREEZE Pt or MAX-MIN TEMP CONTROL, RE- SEARCH. Brand New. Individ Boxed. List over \$20 SPECIAL 98c; 12for \$10	Core, Oil Impreg. 1400vct/30ma, 6.3 v/4a, 5v/3aH's: 1000vct/45ma, 795vct/80ma & 360 55ma, 3x5v/3a, 6.3vct/1a, 6.3vct 900v/35ma, 2x2.5v/2a, H'SldHiV 700vct/100ma, 115v/100ma, 2x6 1a, 5v/2a, Csd HiVins.		1N47, 1N63
RCA UNIV OUTPUT XFORMER 10W. to. 10KcMatches ANY Line or Splus w/VC's 3 to 4	1N34 CRYSTALS, ea	570v/150ma, 5v/3a, 12v/4a. 480vct/80ma, 6.3vct/4a, 5v/3a. 420vct/120ma, 6.3v/1.9a, w/inpts 12-24-115vdc & 115/230vac 360vct/340ma, 2x6.3vct/3A HiVir PLATE TRANSFORMER; 7500V or 15000V/Dbfr/35ma	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 4 3 4.29 6 5 3 4.49 6 6 3 4.69 6 6 3 4.69 6 6 3 4.69 6 8 3 5.49 6 8 3 5.49 6 8 5 3 5.69 9 8 20 3 7.20
Tube Imped Bet 50 & 10240 ohns. Over 1000 combina- tions! Acts as EXC Band Pass Filter or Freq Attn Unit for Dyn Mike. Cuts HP's or LOWS. W/data \$1.89; 3/\$4,98	UUTP7/500Watts 360007800 to 300760 ohms/2.5K vins AMERTRAN	3000W/10ma, Csd HiVinsul 1800v/Ama, H'Sid, HiVins 1200vet/300ma, 18v/la, Csd 1200vet/300ma, 18v/la, Csd HiVins FILAMENT TRANSFORM 2.5V/l2Acawndg/l2,5Kvlns 6.3vet/44(squid5.5A) H'SidHVins 1.5V/l2Acawndg/l2,5Kvlns	4.50 0001 3.29 005 1.5.6.95 0015 4.98 02 ERS 0004 \$8.98 003 0004	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
BLOWERS—Cool That Tube! 40CFM 28 vacdc\$4.98 70CFM 115v/400cy \$4.49 250CFM 28vacdc 250CFM & 28 to 115vac Transformer.	OUTPT/300Watts Hi-Fi PPS05 to Sohn VC, WEco H'Sid HiVins	6.3vot/2A 51.39; 6.3v/.6A 2.5v/2a 69; 7.5vot/12A	1.39 0015 4.98 .0005	25 22 3 31.50 35 13 3 27.50 "TAB" Money Back Guarantee (Cost of Mdse Only) \$3 Min. Order FOB NYC. Add Shop.
100CFM 115 vacdc7.98 180CFM 115vacdc10.98 175CFM 220vac11.98	1. 12E SIX CHURCH ST. NEW YORK 6,	N.Y., U.S.A CORNER CHURCH	& LIBERTY STS.	Charges & 25% Deposit. Phone: WOrth 2-7230 Prices Subject to Change

December, 1950 — ELECTRONICS

1

ĩ.

J

ĵ.

INDEX TO ADVERTISERS

Ace Engineering & Machine Co	
	274
Acheson Colloids Corp	18
Acme Electronics	275
Acme Wire Co	269
Adams & Westlake Company	183
Advertising Council	283
Aeronautical Communications Equip-	
ment. Inc.	215
Aerovox Corp.	203
Airpax Products Company	200
Alden Products Co.	210
Allen Co., Inc., L. B.	289
Allied Control Company, Inc.	148
Allied Badio Corp. 180.	262
Allmetal Screw Products Co., Inc.	184
Alpha Nuclear Laboratories.	276
Alter Lansing Corporation	208
American Electrical Heater Co.	204
American Lava Corn	159
American Screw Company	26
American Smelting & Refining Co.	181
American Tolovicion Inc	144
American Television & Redio Co	288
American Television & Ratho Co	159
Amponer Flootropic Corp. Third Co	10%
Amperita Company Inc.	212
Ampente Company, Inc	~10
Amplifian Composition	990
Anti Connecive Motel Products Co. Inc.	208
Anti-Corrosive Metal Froducts Co., Inc.	190
Arkwright Finishing Company	911
Amold Engineering Company	205
Automotio Floctuio Solos Comp	4.6
Automatic meetric sales ourp	
	40
	40
Ballantine Laboratories, Inc.	142
Ballantine Laboratories, Inc	45 142 150
Ballantine Laboratories, Inc Barker & Williamson, Inc Barry Cornoration	45 142 150 62
Ballantine Laboratories, Inc Barker & Williamson, Inc Barry Corporation Bead Chain Manufacturing Co.	43 142 150 62 244
Ballantine Laboratories, Inc Barker & Williamson, Inc Barry Corporation Bead Chain Manufacturing Co Bell Telenhone Laboratories	43 142 150 62 244 229
Ballantine Laboratories, Inc Barker & Williamson, Inc Barry Corporation Bead Chain Manufacturing Co Bell Telephone Laboratories Bendix Aviation Corporation	43 142 150 62 244 229
Ballantine Laboratories, Inc Barker & Williamson, Inc Barry Corporation Bend Chain Manufacturing Co Bell Telephone Laboratories Bendix Avlation Corporation Eclipse-Pioneer Division	45 142 150 62 244 229 232
Ballantine Laboratories, Inc Barker & Williamson, Inc Beary Corporation Bead Chain Manufacturing Co Bell Telephone Laboratorles Bendix Avlation Corporation Eclipse-Pioneer Division Bendiev Harts Mfc. Co.	142 150 62 244 229 232 173
Ballantine Laboratories, Inc Barker & Williamson, Inc Beary Corporation Bend Chain Manufacturing Co Bell Telephone Laboratories Bendix Aviation Corporation Eclipse-Pioneer Division Bentley, Harris Mfg. Co Berkeley Scientific Lorp.	45 142 150 62 244 229 232 173 251
Ballantine Laboratories, Inc Barker & Williamson, Inc Beary Corporation Bead Chain Manufacturing Co Bell Telephone Laboratories Bendix Aviation Corporation Eclipse-Pioneer Division Bentley, Harris Mfg. Co Berkeley Scientific Corp. Bird Electronic Corp.	142 150 62 244 229 232 173 251 268
Ballantine Laboratories, Inc Barker & Williamson, Inc Beary Corporation Bead Chain Manufacturing Co Bell Telephone Laboratories Bendix Aviation Corporation Eclipse-Pioneer Division Benkley, Harris Mfg. Co Berkeley Scientific Lorp. Bird Electronic Corp Birmingham Sound Reproducers Ltd.	142 150 62 244 229 232 173 251 268 133
Ballantine Laboratories, Inc Barry Corporation Bend Chain Manufacturing Co Bell Telephone Laboratories Bell Telephone Laboratories Eclipse-Pioneer Division Bentley, Harris Mfg. Co Berkeley Scientific Corp. Bird Electronic Corp. Bird Electronic Corp. Bird Electronic Corp.	142 150 62 244 229 232 173 251 268 133 257
Ballantine Laboratories, Inc Barker & Williamson, Inc Beary Corporation Bend Chain Manufacturing Co Bell Telephone Laboratories Bendix Aviation Corporation Eclipse-Fioneer Division Berkeley Scientific Lorp. Bird Electronic Corp Birmingham Sound Reproducers Ltd Birthcher Corporation	142 150 62 244 229 232 173 251 268 133 257 230
Ballantine Laboratories, Inc Barker & Williamson, Inc Benry Corporation Bend Chain Manufacturing Co Bell Telephone Laboratories Bendix Avlation Corporation Eclipse-Pioneer Division Bentley, Harris Mfg. Co Berkeley Scientific Corp. Bird Electronic Corp.	142 150 62 244 229 232 173 251 268 133 257 230 40
Ballantine Laboratories, Inc Barker & Williamson, Inc Beary Corporation Bend Chain Manufacturing Co Bell Telephone Laboratories Bendix Aviation Corporation Eclipse-Fioneer Division Berkeley Scientific Corp. Bird Electronic Corp Birmingham Sound Reproducers Ltd Birtcher Corporation Blake & Johnson Company Blake & Johnson Company Blake Corporation	142 150 62 244 229 232 173 251 268 133 257 230 125
Ballantine Laboratories, Inc Barker & Williamson, Inc Benry Corporation Bend Chain Manufacturing Co Bell Telephone Laboratories Bendix Avlation Corporation Eclipse-Pioneer Division Berkeley, Harris Mfg. Co Berkeley Scientific Corp. Bird Electronic Corp. Bird Electronic Corp. Bird Electronic Corp. Birtcher Corporation Bilaw-Knox Co. Boonton Radio Corporation.	142 150 62 244 229 232 251 268 133 257 230 40 125 246
Ballantine Laboratories, Inc Barker & Williamson, Inc Barker & Williamson, Inc Bend Chain Manufacturing Co Bell Telephome Laboratories Bendix Aviation Corporation Eclipse-Pioneer Division Berkeley Scientific Corp. Bird Electronic Corp Birmingham Sound Reproducers Ltd Birthcher Corporation Bilake & Johnson Company Blake & Johnson Company Bayerkenscher Radio Corporation Boonton Radio Corporation Bowser, Inc	142 150 62 244 229 232 1231 268 133 257 230 1256 271
Ballantine Laboratories, Inc Barker & Williamson, Inc Bearty Corporation Bend Chain Manufacturing Co Bell Telephone Laboratories Bendix Avlation Corporation Eclipse-Pioneer Division Berkeley Scientific Corp. Bird Electronic Corp. Biaw-Knox Co. Boonton Radio Corporation. Bowser, Inc. Bradley Laboratorics. Inc Bradley Laboratorics.	142 150 62 244 229 232 173 268 237 268 230 1256 240 1256 246 2173
Ballantine Laboratories, Inc Barry Corporation Bend Chain Manufacturing Co Bend Chain Manufacturing Co Bell Telephone Laboratories Bendix Avlation Corporation Eclipse-Pioneer Division Bentley, Harris Mfg. Co Berkeley Scientific Corp. Bird Electronic Corp. Bird Electronic Corp. Birther Corporation Birther Corporation Blake & Johnson Company Blake & Johnson Company Baw-Knox Co. Boonton Radio Corporation Boracke-Sieb X Ray Co., Inc Bradley Laboratories, Inc.	$\begin{array}{c} \textbf{35}\\ \textbf{142}\\ \textbf{150}\\ \textbf{62}\\ \textbf{244}\\ \textbf{229}\\ \textbf{232}\\ \textbf{173}\\ \textbf{2568}\\ \textbf{135}\\ \textbf{250}\\ \textbf{12568}\\ \textbf{13570}\\ \textbf{12566}\\ \textbf{271}\\ \textbf{160} \end{array}$
Ballantine Laboratories, Inc Barker & Williamson, Inc Beary Corporation Bend Chain Manufacturing Co Bell Telephone Laboratories Bendix Aviation Corporation Eclipse-Pioneer Division Berkeley, Harris Mfg. Co Berkeley Scientific Corp Bird Electronic Corp Birdher Corporation Bistcher Corporation Bistcher Corporation Bisteke & Johnson Company Blaw-Knox Co Boonton Radio Corporation Bowser, Inc Bradley Laboratories, Inc Bridgeport Brass Co Browning Laboratories Inc	$\begin{array}{r} \textbf{15}\\ \textbf{160}\\ \textbf{624}\\ \textbf{229}\\ \textbf{232}\\ \textbf{1731}\\ \textbf{2568}\\ \textbf{13570}\\ \textbf{405}\\ \textbf{2711}\\ \textbf{1870}\\ \textbf{258} \end{array}$
Ballantine Laboratories, Inc Barker & Williamson, Inc Benry Corporation Bend Chain Manufacturing Co Bend Chain Manufacturing Co Bend Chain Manufacturing Co Bentley, Harris Mfg. Co Berkeley Scientific Corp. Bird Electronic Corporation Blaw-Knox Co. Boonton Radio Corporation Bowser, Inc. Bracke-Sieb X Ray Co., Inc. Bradley Laboratories, Inc. Bridgeport Brass Co Browning Laboratories, Inc. Brush Development Company	$\begin{array}{c} \textbf{x}\textbf{5}\\ \textbf{1420}\\ \textbf{6249}\\ \textbf{23232}\\ \textbf{23232}\\ \textbf{233232}\\ \textbf{2333232}\\ \textbf{233232}\\ \textbf{233232}\\ \textbf{233232}\\ \textbf{233232}\\ \textbf{233232}\\$
Ballantine Laboratories, Inc Barker & Williamson, Inc Beary Corporation Bend Chain Manufacturing Co Bend Chain Manufacturing Co Bell Telephone Laboratories Bendix Aviation Corporation Berkeley, Harris Mfg. Co Berkeley Scientific Corp. Bird Electronic Corp Birmingham Sound Reproducers Ltd Birthcher Corporation Blaw-Knox Co. Boonton Radio Corporation. Blaw-Knox Co Bonton Radio Corporation. Bradley Laboratories, Inc Bridgeport Brass Co Browning Laboratories, Inc Browning Laboratories, Inc Browning Laboratories, Inc Browning Laboratories, Inc Browning Laboratories, Inc Browning Laboratories, Inc Brunell and Company.	$\begin{array}{c} {}^{+5}\\ 142\\ 150\\ 62\\ 244\\ 229\\ 232\\ 251\\ 268\\ 133\\ 257\\ 40\\ 125\\ 246\\ 1337\\ 250\\ 40\\ 125\\ 246\\ 187\\ 160\\ 258\\ 155\\ 15\\ 15\\ 5\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15$

DIAW-MIOX CO.							
Boonton Radio Corporation							1
Bowser, Inc.							2
Bracke-Sieb X Ray Co., Inc.							2
Bradley Laboratories, Inc.				4			1
Bridgeport Brass Co							1
Browning Laboratories, Inc.							2
Brush Development Compar	ł2	γ.					1
Burnell and Company	,						

Cambridge Thermionic Coru.	13
Cannon Electric Development Co.	224
Capitol Radio Engineering Institute	261
Carbolor Company	1.11
Carbony Company	1.70
Carborundum Co.	10
Carnegle-Ininois Steel Corp.	10
Central Paper Co., Inc.	10
Central Scientific Company	240
Centralab, Div. Globe-Union, Inc.	
11, 12, 13,	1
Chicago Transformer, Div. of Essex Wire	
Corp	15
Cinch Manufacturing Corp.	11'
Clare and Co., C. P.	4
Cleveland Container Company	1
Clinnard Instrument Laboratory, Inc.	24
Cohn Corporation Sigmund	28
Colline Radio Company	2
Commonwealth Edicon Company	10
Commonweatth Edison Company	010
Communications Accessories Company	ŵ.L.
Condenser Products Company	1.00
Cornell-Dublier Electric Corp.	11.
Corning Glass Works	19
Cornish Wire Company, Inc	21
Cossor (Canada) Limited	26
Cross Co., H.	28
Crowley & Co., Inc., Henry L	15
	-
Dane Electric Company	26
Daven Co., The	3
De Jur Amsco Corporation	25

De Jur Amsee Corporation 257 Dial Light Company of America 196 Dollar Company, Robert, The Communication Equipment Division 238 Heintz & Kaufman Division 239 Donnelly Mfg. A Div. of John Donnelly & Sons 174 Dow Corning Corporation 289 Driver-Harris Company 46 Du Mont Laboratories, Inc., Allen B. 16, 237 du Pont de Nemours and Co., Inc., E. J. 145 Dynamic Resistor Corporation 284

Eastman Kodak Company	
Cellulose Products Div	1
Industrial Photographic Div	1
Edison, Inc., Thomas A251,	2
Eitel-McCullough, Inc.	
Eisler Engineering Company, Inc., 180,	2
Electric Indicator Co.	2
Electrical Industries, Inc	2
Electrical Reactance Corp.	
El-Tronics, Inc.	2
Electronic Tube Corporation	2
Electrons, Inc.	2
Electro Tec Corporation	2
Emsco Derrick & Equipment Co	2
Erie Resistor Corp.	

ELECTRONICS --- December, 1950

Fairchild Camera & Instrument Corp Fairchild Engine & Airplane Corp Federal Telecommunication Laboratorles,	247 6
Inc. Fisher-Pierce Company, Inc. Formica Justilation Co.	$47 \\ 259 \\ 179$
Freed Transformer Co., Inc. Furst Electronics	189 261 177
Gamewell Company Garrett Co., Inc., George K.	188 240
General Control Company General Electric Company Apparatus Dept	49
Electronics Dept	235 147 248
Green Instrument Co.	263
Grieve-Hendry Company	265 161
Hardwick, Hindle, Inc.	224
Hart Mfg. Co. Hathaway Instrument Co.	219 265
Haydon Company, A. W. Haydon Mfg. Company, Inc.	$244 \\ 194$
Heath Company, The	209 255
Heinemann Electric Company	137
Heldor Metal Products Corp	252
Hewlett-Packard Company	27 269
Hickok Electrical Instruments Co Holliston Mills, Inc.	$257 \\ 253$
Holtzer-Cabot, Div. of National Pneu-	48
Houghton Laboratories, Inc. Hudson Wire Co.	192 139
I-T-E Circuit Breaker Company	163
Indiana Steel Products Company Inductograph Products, Inc.	52 275
Industrial Condenser Corp.	267 204
Insuline Corporation of America	248 276
International Resistance Co	5 169
J F D Manufacturing Co., Inc. Jelliff Manufacturing Corporation, C. O. Jensen Manufacturing Co. Johnson Co., E. F. Jones Div., Høward B. Cinch Mfg. Corp.	279 255 51 273 263
Kahle Engineering Co. Karn Metal Products Co., Inc.	267 33
Kartron Way Electric Company	289 233
Kenyon Transformer Company, Inc	192
Kinney Manufacturing Company	141
Knights Co., James Kollsman Instrument Div., Square D Company	168
Lambda Electronics Cornoration	276
LaPointe-Plascomold Corp.	207
Liberty Mirror Division, Libby-Owens-	+2
Ford Glass Co. Linde Air Products Co., Unit of Carbide	243
& Carbon Corp170, Lockheed Aircraft Corporation	$265 \\ 276$
MacDonald Co., Inc., W. S	281
Magnetic Amplifiers, Inc	249 262
Mallory and Company, Inc., P. R64.	119 221
Marconi Instruments, Ltd.	253
Measurements Corporation	267
Mica Insulator Company	165
Mico Instrument Co. Millen Mfg. Co., Inc., James.	255 8
Milo Radio & Electronics Corp Miniature Precision Bearings, Inc	146 289
Minneapolis-Honeywell Regulator Co., Industrial Division	23
Mitchell-Rand Insulation Co., Inc.	24
Muirhead & Co., Ltd.	3
Mycalex Tube Socket Corp.	56
National Company, Inc.	192
Neo-Sil Corp.	54 957
New Hampshire Ball Bearings, Inc. New York Transformer Co., Inc.	234
North American Aviation, Inc Northern Radio Co., Inc	200 270

PPLICATION **Circuit Tester** 20,000 Ohms per Volt

Ε 35 SERIES

Compact, laboratory style, high sensitivity test set. "Application Engineered" for production, test, laboratory, school and service-maintenance phases of modern radio-electronics-communications.

20,000 Ohms per Volt D.C. 1000 Ohms per Volt A.C. VOLTAGE RANGES: 0-3-12-60-300-1200-6000 A.C. & D.C. CURRENT RANGES: 0.120 microamos 0-1.2-12-120-1200 MA.-0-12 Amps D.C. RESISTANCE RANGES: 0-6000-600K Ohms 0-6-60 Megohms. DECIBEL RANGES: From-26 to +70 DB. Complete with batteries \$3995 and test leads

PLUS superior physical features:

- ★ 4%" wide angle meter
 ★ Heavy duty molded bakelite instrument case, size 5½ x 7¼ x 3"
 ★ Heavy gauge, anodized aluminum panel
 ★ Rotary Range and Function Selection

- Recessed 6000 volt safety jacks Only two pin jacks for all standard ranges ٠ *

LC-1 Leather Carrying Case

Custom designed top-grain cowhide case \$950 with tool and test lead compartment.

See this and other "Precision" Application En-gineered instruments on display at leading radio parts distributors. Write for latest catalog.

Export: 458 B'way, N.Y.C., U.S.A. Cables: MORHANEX In Canada: Atlas Radio Corp. Ltd., Toronto, Ontaria

	(Ex	
Ø	O	
	QUALIT O M P O	Y NENTS
Military	- Com	mercial
	-	
	*	
HERMETI	CALLY	SEALED
 VACUUM VAR Bobbins Choke Coils Oscillator Coils Relay Coils 	R.F Sole Toro Tran Coils	PREGNATED —I.F. Coils noids idal Coils smitting

Quality Coils At Competitive Prices

Send us your engineering specifications for quotations.

	Onan & Sons Inc., D. W.	273
	O'Neil-Irwin Mfg. Co. Oregon Electronics Mfg. Co	268 204
	Paramount Paper Tube Corp.	263
	Park Metalware Co., Inc.	267
	Patton-MacGuyer Co.	208
	Permonux Corp. Phalo Plastics Corporation	226 202
	Phillips & Hiss Co., Inc Pickard & Burns, Inc.	275
	Plastics & Electronics Co. Balanced Electronics Co.	289
	Polytechnic Research and Development	289
	Company, Inc. Potter & Brumfield	55 58
	Potter Instrument Co., Inc.	32
	Precision Paper Tube Co.	242
	Presto Recording Corporation Progressive Mfg. Co.	195 216
	Pyramid Electric Co	60 251
		~01
	Quaker City Gear Works, Inc.	276
	Radio Corp. of America 28, 29, 131, 178, 206, Back Co	over
	Radio Frequency Laboratories, Inc Radio Materials Corporation	259
	Radio Receptor Company, Inc.	217
	Railway Express Company, Air Express	273
	Division Rawson Electrical Instrument Co	$236 \\ 259$
	Raytheon Manufacturing Co.	129
	Remler Company, Ltd.	264
	Rex Rheostat Co. Richardson Company	289 36
	Rider Publisher, Inc., John F.	138
		~ 10
	Sanborn Company Sangamo Electric Company	260
	Sarkes Tarzian Inc. Scientific Electric Div of "S" Corru-	22
	gated Quenched Gap Co. Scoville Manufacturing Co.	286
	Servomechanisms Inc.	175
	Sigma Instruments, Inc.	63
	Sola Electric Company	289 149
-	Specialty Battery Company	30
	Speer Carbon Company Spincraft, Inc.	196 253
	Sprague Electric Company Stackhole Carbon Co	123
	Stainless, Inc.	261
	Standard Piezo Company	242
	Standard Telephones and Cables Ltd	245
	Staver Company, Incorporated	271
	Stevens Arnold Incorporated.	180 278
	Stevens Mfg. Co., Inc., Geo Stevens Manufacturing Company, Inc	250 190
	Steward Manufacturing Co., D. M Stoddart Aircraft Radio Co.	273 164
	Streeter-Amet Company Stupakoff Ceramic & Manufacturing Co.	188 162
1	Superior Electric Co. Superior Tube Company	182
	Sylvania Electric Products. Inc	135
	Taylor Fibre Co.	31
	Telechrome Incorporated	272 275
	Telechron, Inc. Teletronic Laboratory, Inc.	231 289
	Television Equipment Corp.	279
	Tensolite Insulated Wire Co., Inc	271
	Transradio, Ltd. Trans World Airlings	259
l	Turner Company	158
	Union Carbide & Carbon Corp	
	The Linde Air Products Co. Unit. 170, United Condenser Corporation	265
	United States Electronics Corporation.	392
	United States Steel Corp.	191
	United Transformer Co Second Co	ver
1	Universal Winding Company	10
	Varflex Corporation	223
	Vector Electronic Co.	282
	Victoreen Instrument Company	254
	varan Electric Company	200
	Waldes Kohinoor, Inc.	157
	Waterman Products Co., Inc.	280
	Weller Electric Corp.	274
	Weston Electrical Instrument Corp.	201
	Whitehead Stamping Company S. S 246, Whitehead Stamping Company	256 275
1	warox meetric Company	1 33

Workshop Associates, Inc Wrought Washer Manufacturing Co	198 246
Zenith Electric Co. Zetka Television Tubes, Inc Zophar Mills, Inc.	278 167 200
PROFESSIONAL SERVICES	287
SEARCHI IGHT SECTION	
(Classified Advertising)	
Positions Vacant	294 290
Positions Wanted	290 290
SPECIAL SERVICES	290
BUSINESS OPPORTUNITIES	270
EQUIPMENT	290
(Used or Surplus New) For Sale	-320
WANTED Equipment	-319
ADVERTISERS INDEX	
Airborne Instruments Laboratory, Inc Aircraft Radio Industries, Inc	291 319
Alexander, F	319 314
American Electrical Sales Co Armour Research Foundation of Electrical	318
Engineering Research Arrow Sales, Inc.	302
Bendix Aviation Corp.—Bendix Radio Div.	291
Berkeley Scientific Co.	313
C & H Sales Co.	319
Collins Radio Co	293 316
Cook Electric Co	292 318
Communications Equipment Co295, 296, Compass Communications Co	297 318
Cottone & Co., A	314 319
Electronic Surplus Brokers Eldico of New York, Inc	290 317
Electronic Engineering Co. of Calif Electronicraft, Inc.	292 304
Embassy Engineering Co Empire Electronics.	318 311
EPCO Finnegan, H	310
Goodyear Aircraft Corp	292
Greene, Leonard	318
Hatry & Young.	316 301
Hughes Aircraft Co	294 299
Kaas, Inc., Sam Lectronic Research Laboratories	308 300
Leru Laboratories, Inc	315 310
Life Electronics Sales Maritime Switchboard	312
Maxson Corp., W. L. Metropolitan Overseas Supply Corp.	314
Monmouth Radio Laboratories.	313
National Union Research Div	294
Norman Radio Distributors, Inc.	314 315
Osthy & Barton Co Peak Electronics Co	290 312
Pennsylvania State College Powell, Harold H	292 315
Precision Electrical Instrument Co RCA Service Co., Inc	318 292
Radio & Electronic Surplus. Radio Corp. of America—R.C.A. Victor Div.	291 291
Reliance Merchandizing Co.	309
Servo-Tek Products Co., Inc.	307
Sundstrand Machine Tool Co.	291 320
Telemarine Communications Co	319 290
Universal General Corp Victor-Bernard Industries	311 290
Wells Sales, Inc	303 294
Weston Laboratories	318 318

2

F

This Index is published as a convenience to the readers. Every care is taken to make it accurate, but ELECTRONICS assumes no responsibility for errors or omissions.
Index to electronics Volume XXIII

January to December issues, inclusive, 1950

Combined Index (April 1930-December 1949) available at one dollar

McGraw-Hill Publishing Company 330 West 42nd St., New York City, 18

Absorption traps, design of, Jack Avins Jan 105 Jan 105 A-C voltmeter for built-in instrumenta-tion, Lawrence Fleming (TAW)..Sept 152 Accelerator, British linear, Leonard G. Rule (TEA) Acoustic anemometer-anemoscope, Robert E. Corby. Adapt 2-speed tables to 3-speed opera-tion, L. A. Wortman (TAW)..Dec 178 Admittance analyzer, W. B. Bernard Aug 107 ug 107 Airways vhf communications R. Schafer Apr 77 A. H. Wulfsberg. Jan 81 All-purpose phonograph needles, B. B. Bauer June 74 Aluminum fins for tubes (TEA) ... Apr 206 Ammeter for vhf, electrodynamic (TEA) Amplified autor for 186 Aluminum fins for tubes (TEA) _______ Apr 206 Ammeter for vhf, electrodynamic (TEA) Sept 186 Amplified cueing for remotes, A. Vac-caro (TAW) ________ Dec 120 Amplifier card, plug-in, W. H. Lyon (TAW) ________ Sept 168 Amplifier card, plug-in, W. H. Lyon (TAW) ________ Sept 168 Amplifier for aircraft, selective mixing, Paul B. King, Jr. _______ Oct 100 Amplifier for aircraft tests, compact, John Foster, Taft Wrathall _______ Nov 81 Amplifier on aircraft tests, compact, John Foster, Taft Wrathall _______ Nov 81 Amplifier, or aircraft tests, compact, John Foster, Taft Wrathall _______ Nov 81 Amplifier, selective for sine and square waves (TAW) _________ Dec 120 Amplifier, stable instrument, Peter G. Sulzer (TAW) _________ Mar 116 Amplifier, stable instrument, Peter G. Sulzer (TAW) ________ Mar 104 Amplifier, stable instrument, Peter B. J. N. Van Scovoc, G. F. Warnke. Feb 104 Amplifier, bridged-T neutralization, H. K. Bradford (TEA) ________ Nov 214 Amplifiers, feedback, Leroy D. Barter (TEA) ________ Nov 204 Anesthesia, electronic control of, R. G. Bickford ________ Nov 204 Antenna analyzer, Alva C. Todd ________ Sept 107 Antenna analyzer, Alva C. Todd _________ Sept 107 Antenna coupler, tv, Leonard Mautner (TAW) __________ Jan 132 Antenna, designing the Bridgeport uhf, R. M. Scudder ________ Nov 72 (TAW) Antenna. designing the Bridgeport uhf, R. M. Scudder Antenna dinlexers. television. W. H. Sayer, J. M. DeBell Jr. Antenna for buses, curtain-rod f-m, Louis E. Raburn Antenna system, community tv (TAW) Antenna term Antenna towers and masts, William Antifading broadcast antenna, H. Brueck-mann May 82 Antifading broadcast antenna, H. Brueck-mann Aug 228 Antilogarithm circuit (TEA). May 200 Astronomical photometer, R. E. Corby. Stewart Becker Feb 89 Atom-smashing analysis of minute sam-ples (TEA). Mar 128 Audio amplifier with feedback, John M. Miller, Jr. Mar 106 Audio equalizer design, Charles Boegli Apr 114

Blind guidance device-optat, Apr 102 Blocking oscillator time base, Lawrence Fleming (TAW). Oct 118 Blower selection for forced-air-cooled tubes, A. G. Nekut. Aug 88 Boiler combustion control (TAW). Sept 176 Bowling-alley foul detectors, E. Jellinek May 79

 Bowling-alley foul detectors, E. Jellinek May
 May
 79

 Brain tumor diagnosis, radiation coun-ters aid, Richard G. Davis......Nov
 72

 Braing, industrial, by pulse techniques.
 J. L. Reinartz.
 Jan

 Bridged-T neutralization of pentode am-plifters, H. K. Bradford (TEA)...Nov
 78

 Bridgeport uhf television transmitter, R. F. Guy
 Anr
 70

 British cineradiograph apparatus, J. H.
 Jupe (TEA)
 Oct 182

 British linear accelerator, Leonard G.
 Ruls (TEA)
 Nov 124

 British linear accelerator, Leonard G.
 Ruls (TEA)
 Nov 124

 British television relay, John H. Jupe (TAW)
 Anr
 172

 Bradbard, Tabular (TEA)
 Nov 124
 124

 British television relay, John H. Jupe (TAW)
 Anr
 172

 Broad-band television tuners, Arnold
 Nay 102

 (TAW) Broad-band television tuners, May 102 Newton Broadcast antenna, antifading, H. Brueck-mann May 82 Broadcast array, nine-tower, C. W. Winkler, M. Brasseur, July 102 Broadcast reception, mobile f-m, R. C. Barritt, Statesinger, Jan 72 Built-in antennas for television receivers, Kurt Schlesinger, Jan 72 Business in 1950, our, Wallace B. Blood Mar 66 May 66

66 Jan 70 Capacitor test set, electrolytic. Ricardo Muniz (TAW) June 118 Capacitors. metallized paper, John H. Fisher (TEA) Oct 122 Carrier alarm, Karl Neuwirth (TAW) Carrier amplifier using air-coupled chop-per. Curtiss R. Schafer Mar 104 Carrier systems, voice-operated switch-ing of, R. C. Fox, F. S. Beale, G. W. Symonds Feb 92 Case for vhf television, D. G. Fink. Sept 66 Dec 194

Casting resin techniques, Jack Bayha July 100 Casting resin techniques, W. R. Cuming Casting resin tecnniques, W. R. Cuming June 66 Cathode follower response, reference sheet, R. H. Baer.....Oct 114 Cathode-ray photographs, improved, Nor-man Fulmer...Mar 86 Cathode-ray screens, measuring color of, A. E. Martin, S. N. Roberto....Feb 108 Ceramic material (TEA)....Mar 204 Ceramic sheets, thin (TEA)....Jan 158 Ceramic thickness gage (TEA)....Aug 182 Charger, motor-controlled, T. A. Benham (TAW).....Sept 116 Checking crystals, P. O. Farnham (TAW) June June Citizens band, crystal control for, I. Gottlieb, I. R. Mednick.....Aug Citizens band regulations, Leo M. Conner 96 Constructing helical antennas, E. D. Smith Feb 72 Constructing helical antennas, E. D. Smith May 132 Smith Ma Continuously-tuned 50-kw transmitter J. L. Hollis. J. L. Hollis. Mar 70 Control, automatic exposure, G. Bruck, J. Higgins, J. Ward. May 74 Control, for bakeries (TAW). Nov 120 Control of home heating, John M. Wil-son. Control of a none acting, solar M. Dec 84 Control, moisture content, David A. Utley (TAW). Jan 138 Controls, r-f welding, phototube, H. H. Wittenberg Jan 91 Correlation functions and communication applications, Y. W. Lee, J. B. Wiesner Counter circuit, positive gate, A. 6. Ratz (TEA) Nov 194 Counter, neon-diode ring, J. C. Manley.

Counter elecult, positive gall, Nov 194 (TEA) Counter, neon-diode ring, J. C. Manley, E. F. Buckley Crystal checker, mixer, Peter D. Strum Dec 94

Crystal control for citizens band, I. Gott-lieb, I. R. Mednick......Aug 96 Crystal diodes in tv studio equipment, Rudolph Kuehn.....Dec 114 Crystal oscillator design, overtone, George H. ListerNov 88 Crystal standardization, P. O. Farnham (TAW).....July 150 Cueing amplifier, A. Vaccaro (TAW) Dec 120 Mar 100 Cybernetics, Y. W. Lee, J. B. Wiesner June 86 Cyclotron, omegatron, a miniature (TEA) June 122 Design of absorption traps, Jack Avins Dot-sequential color tv, improvements in (TAW) Aug 154 Dot systems of color television, Part II, Wilson Boothroyd Jan 96 Dual standards for television scanning, D. G. Fink Nov 66 Dynamometer control simulates road testing of engines, R. C. Bowers. June 96 Sept 186 Sept 186 Blectrolytic capacitor test set, Ricardo Muniz (TAW)June 118 Blectron coupler, C. L. Cuccia, J. S. Donal, Jr.Mar 80 Electron microscopy in the United States, W. W. MacDonald.....Aug 66 Electron tubes-1930 to 1950, D. G. Fink 66 Electronic aids to alr navigation, A. A. McKenzie 66

Intercom, voice-switched, Ralph H. Baer 79 Interferometer, NRL microwave (TEA) 1 236 Low Microwave diffraction charts, reference sheet, Earl D. Hilburn......Sept 112 Microwave interferometer, NRL (TEA) Microwave interferometer, tath Oct 236 Microwave refractometer, recording (TEA) July 120 Microwave spectroscopy (TEA) Dec 126 Microwave sweep generator, L C. Elsa-man Nov 101 Microwave torch (TEA) Fob 120 Miniature equipment for army (TAW) Mar 116 Cappe Miniature tubes, high reliability, George

December, 1950 - ELECTRONICS

 Mobile f-m, audio
 limiter, Lawrence C. Fuller, Jr. (TAW)
 Nov 184

 Mobile f-m broadcast reception, R. C. Barritt
 Aug 74

 Modulated light densitometer, H. P. Kalmus, M. Sanders
 July 84

 Modulation, folded sideband, J. L. A. McLaughlin
 Mar 88

 Modulator, improved television, John Haughawout
 Sept 102

 Modulator, spiral beam uhf, C. L. Cuccia, J. S. Donal, Jr.
 Mar 80

 Moisture content control, David A. Utley (TAW)
 Jan 138

 Motor magnetizer, O. E. Carlson.
 Sept 116

 Motor magnetizer, O. E. Carlson.
 Jan 132

 Multiple tv antenna coupler, Leonard Multipler fm broadcasting (TAW).Nov 174
 Jan 132

 Multipler photolube improvements (TEA)
 July 165

ull detector, differential amplifier, Matthew Conrad Null

Oscillator, new uhf, D. H. Preist (TEA) Feb 120 Sing (TEA) Oscillator series sawtooth, Major Chang Sing (TEA) Oscillator time base, blocking, Lawrence Fleming (TAW) Oscillator, uhf sweep-frequency, J. E. Ebert, H. A. Finke Subert, H. A. Finke Oscillator, wide-range from, P. M. Milner (TAW) Oscillator, wide-range rc, Peter G. Sulzer Sellator, State-wave keying, J. Carl Seddon (TEA) Sellator, State-wave keying, J. Carl Seddon (TEA) Selloscopes, automatic beam-blanker for, A. L. Dunn, A. R. McIntyre, A. L. Bennett 66

Overtone crystal oscillator design, George H. Lister 88

Paper-thin ceramic sheets (TEA)...Jan 158 Parallel-pair resistance of RMA values (TAW)July 116

Parasitic arrays, optinum dimensions, Larry S. Cole, William L. Jones (TEA) Sept 102 Phasemeter for audio frequencies, pre-cision, J. Kritz Oct 102 Phasemeter, single tube audio, Joseph A. Vanous (TEA) Oct 226 Phonevision system, circuits of (TAW) Phonograph needles, all purpose, B. B. Bauer Photoconductive camera tube, Vidicon, P. K., Weimer. S. Forgue, R. R. Good-iab Photomicrography, exposure meter (TEA) Jan 123 Photomultipliers, stabilized circuit for, W. S. Plymale, Jr., D. F. Hansen. Feb 102 Phototransistor (TEA) July 122 Phototube controls r-f welding, H. H. Wittenberg Jan 91 Phototube currents, magnetic modulation of (TEA) Apr 184 Phototube improvements, multiplier (TEA) July 166 Phototube, two anode (TEA) Jan 162 Picture-tube contrast improvement, A. E. Martin, R. M. Bowie-May 110 Pin-pointing ultrasonic energy, H. J. Dana, J. L. Van Meter June 66 Plastic-embedded circuits, W. R. Cuming
 Plug-in amplifier card, W. H. Lyon
 June 66

 (TAW)
 Sept 168

 Portable Geiger counter, Edward Reible
 (TAW)

 (TAW)
 Dec 206
 93 98 Q-meter impedance charts, reference sheet, Robert MiedkeJan 112 Quench controlier for steel, W. K. Hal-stead, L. D. JaffeNov 109

 Radar, clocking meteors by c-w, Oswald

 G. Villard, Jr. (TEA)
 Apr 120

 Radar for cloud height (TAW)
 Dec 190

 Radar, homed missile (TEA)
 Jan 120

 Radar, integration noise reducer for,
 W. J. Cunningham, J. C. May, J. G.

 Skalnfk
 Sept 76

 Radar tester (TAW)
 Jan 159

 Radar tester (TAW)
 Jan 159

 Radar tester (TAW)
 Jan 159

 Radiation alarm with 0.5-second re sponse (TEA)

 Sponse (TEA)
 July 162

 Radiation at 24,000 mc, measuring moon
 Nov 124

 (TEA)
 Nov 124

Radiation, in mobile transmitters, reduc-ing unwanted, D. Plnkerton, N. Shep-herdApr Radiation monitor, gamma-ray, Leonard Balfal 96 Recording mass spectrometer (TAW) Dec 194 May Recording microwave refractometer (TEA) July Recording, video program, F. N. Gillette, G. W. King, R. A. White.......Oct Rectangular wave generator for biologi-cal studies, John W. Moore (TEA) May May 168 July 120 Oct. 90 Sept 160 R-f transformer, coupling coefficient, S. G. Feldman, M. Goldstein (TEA) 232 Ripple tank for phase front visualizatio (TEA)

www.americanradiohistory.com

Apr 106 Sound levels, combining, W. B. Con-over Spectrometer, r-f field mass (TEA) June 176 June 176 Clark Surface wave transmission line (TEA) July 175

Tachistoscope, intra-ocular, Leland L. Antes, B. H. Deatherage (TEA). Mar 178 Tachometer for small motors, Lowrie B. Sargent, Jr., Wayne Webb (TAW). Apr 118 Telemetering ocean current information (TAW) Mar 148 Telemetering system matrix, Nolan R. Best August 195 Holes F. J. Budisphla Television, international standards, D. G. Fink, A. B. Dome Sept. 70 Television intercarrier sound, Walter J. Stroh Apr 106 Television, international standards, D. G. Fink, Aug. 70 Fink Aug 70 Television manufacturing picture tubes. Earl R. Ewald Feb 76

Television modulator, improved, John HaughawoutFeb Television picture evaluation (TEA)

 Haughawout
 Feb
 86

 Television picture evaluation (TEA)
 July 163

 Television picture generator, J. R. Pop-kin-Clurman
 Aug 102

 Television, picture tube improvement,
 Aug 102

 Television production techniques,
 Ricardo Muniz
 Aug 110

 Television production techniques,
 Ricardo Muniz
 Apr 86

 Television receiver (TAW)
 Feb 152

 Television receiver (TAW)
 June 120

 Television receiver transient analysis,
 Josep Fisher

 Josep Fisher
 Sept 79

 Television receivers fall in service, why,
 John Markus

 John Markus
 July 163

 Television receivers fall in service, why,
 John 112

 John Markus
 July 164

 Television receivers fall in service, why,
 John 112

 John Markus
 July 164

 Television secanning, dual standards for,
 D. G. Fink

 D. G. Fink
 Nov 66

 Television stereo (TEA)
 Nov 126

 Television sync separation analysis,
 Wy 103

 Television sync separation analysis,
 Wy 120

 Television sync separation analysis,
 Wy 120

 Television uly 163 Jan 152 Feb 160

Traps, design of absorption, Jack Avins Jan 105 Traveling-wave tube, 1000-watt, Stanley E. Webber June 100

 Tube, color television (TEA)......Dec 216

 Tube, gated beam, Robert Adler....Feb 82

 Tube photoconductive camera, Vidicon,

 P. K. Weimer, S. Forgue, R. R. Good

 rich

 Tube, temperature-limited diode, R. D.

 rich May 200 Tube, temperature-limited diode, R. D. Campbell July 93 Tube, 1000-wait traveling wave, Stanley E. Webber June 100 Tubes, aluminum cooling fins (TEA). Apr 206 Tubes, aluminum cooling fins (TEA). Apr 206 Tubes, blower selection for cooling, A. G. Nekut Aug 88 Tubes control color prints (TAW). July 116 Tubes, electron, D. G. Fink. Apr 66 Tubes for industry, long-life, Elwood K. Morse Sept 68 Tunnes, broad-band television, Arnold Newton Tunnes, broad-band television, Arnold Newton Turntables, adapting 2-speed to 3-speed, I. A. Wortman (TAW) Turntables for wow, rumble and speed testing, R. O. Maze....July 78 TV antenna coupler, Leonard Mauther (TAW) TV antenna system, community (TAW) Sept 182 TV antenna system, community (TAW) Sept 182 TV, color fundamentals, Part I, D G. Fink Dec 83 TV, improvements in dot-sequential color (TAW) Aug 154 TV, industrial 18-mc color (TAW). Dec 182 TV photography, Maurice Distel, Alan Gross (TEA) Aug 154 TV projection for theaters (TFA). Sept 198 TV studio equipment, crystal diodes in, Rudolph Kuehn Dec 114 TV test equipment, miniature, Maryin Kaplan (TAW) May 116 TV--the international scene, D. G. Fink Aug 70 TV, three-color tube (TEA)...... May 120 TV tuner, printed-circuit (TAW)..July 118 TV tuner, variable inductance, D. R. DeTar, H. T. Lyman, Jr...... Dec 102 Two-anode phototube (TEA)Jan 162

86

Jr. Sept 102 Ultra-low frequency oscillator, Jay Edlin Stone Ultrasonic energy, pin-pointing, H. Jan 94 Ultrasonic energy, pin-pointing, H. Jan 94 Ultrasonic frequencies, synthetic crys-tals at, Charles E. Green. Apr 110 Ultrasonic generator, one-kilowatt (TAW) Apr 148 Ultrasonic vibration accelerates poly-merization (TEA) Sept 206 Ultrasonics, detecting gallstones (TEA) Feb 172 eb 172

Vhf, electrodynamic ammeter for (TEA

December, 1950 - ELECTRONICS

Voice-switched intercom, Ralph H. Baer	
Aug	79
Voltage-divider, regulated, William B.	
Bernard (TAW)Aug	158
Voltage regulator, filament (TAW), Nov	120
Voltage regulator, stable electronic,	
P. G. Sulzer (TAW)Dec	162
Voltage regulator, wide-range, Charles	
E. Green (TEA) Mar	192
Voltmeter, a-c, Lawrence Fleming	
(TAW)	152
Voltmeters, electrostatic generating	
(TEA)Apr.	200
Vtvm circuits, Myron C. Selby May	110
Vtvm, sensitive a-c, Lawrence Fleming	
(TAW)Dec	122
Wattmeter, direct reading i-f (TEA).Oct	240
Welder controls, engineering trends in	
anot Storent C Deale fallow Tales	~ 0

AUTHOR'S INDEX

Alpert, Norman, 32-channel high-speed commutator Nov 94 Antes, Leland L., Intra-ocular tachistoscope (TEA) Avins, Jack, Design of absorption traps Jan 105

Ebert, J. E., Uhf sweep-frequency oscillator June 79 Elsaman, L. C., Microwave sweep generator Nov 101 Espe, W., Getter materials for electron tubes C. C. So Evans, Wm. E. Jr., Phase-to-amplitude modulation for uhf-tv transmitters Ewald, Earl R., Manufacturing metallized picture tubes. Feb 76

Gaze, George, High reliability miniature tubes _________ Dec 66 Garner, Louis E. Jr., Photographing test patterns (TAW) _______ Feb 133 Gillette, F. N., Video program recording _______ Oct 90 Goldstein, M., Measure coupling coefficient in tuned r-f transformers (TEA) Goodrich, R., Vidicon-photoconductive camera tube ______ May 70 Gottlieb, I., Crystal control for citizens band _______ May 70 Gottlieb, I., Crystal control for citizens band _______ May 70 Gottlieb, I., Crystal control for citizens band _______ May 70 Green, Charles E., Synthetic crystals at ultrasonic frequencles _______ Mar 192 Gross, Alan, Single-frame tv photography (TEA) _______ Mar 184 Gunter, Frank B., Uhf industrial communications system _______ Sept 90 Guthrle, Andrew, Leak detectors for industrial vacuum systems _______ Sept 96 Guy, R. F., Uhf television field test. Apr 70

Hagmann, N. Automatic audio level alarm (TAW)
Oct 116
Hagopian, R. H., Load-matching dielectric heaters
Halstead, W. K. Quench controller for steel
Handel, R. R. Producing the 5820 image orthicon
Hansen, D. F. Stabilized circuit for photomultipliers
Heiser, W., Sync separator analysis. July 108
Heiser, M., June J., Microwave diffraction charts, reference sheet.
May 74
Hollman, Hans E., Vhf oscillations in incandescent lamps (TAW)
Aug 166
Hunter, L. P., Production tester for transistors
Oct 96

 Jaine, L. D., Quench controller for steel Nov 109

 Janes, R. B., Producing the 5820 image orthicon

 Jarema, Eugene D., Noise figure chart, reference sheet

 Jarema, Eugene D., Noise figure chart, reference sheet

 June

 Jarema, Eugene D., Noise figure chart, reference sheet

 June, Jane

 Johnson, R. E., Bowling-alley foul detectors

 Jones, William L., Optimum dimensions

 for parasitic arrays (TEA)

 Sept 12

 Jupe, John H., British developments in instrumentation (TAW)

 Jupe, John H., British television relay (TAW)

 Kalmus, Henry P., Modulated light densitometer

 stapan, Marvin, Miniature tv test equipment (TAW)

 Karns, D. M., Matching loads on a magic tee (TEA)

 Kerns, D. M., Watching loads on a magic tee (TEA)

 Kang, G. W. Video program recording Oct 90

Lebenbaum, Matthew T., Stagger-tuned 1-f design, reference sheet.....Aug 114 Lee, Y., Correlation functions and com-munication applicationsJune 86 Lephakis, A. J., Storage devices for communicationDec 69 Lichtman, S. W., Strip chart recording with an autoscaler (TEA)Apr 122 Linton, R. L., Jr., Graph for Smith chart (TEA)Jan 123

MacDonald, W. W., Electron microscopy in the United StatesAug Macpherson, A. C., Matching loads on a magic tee (TEA).....Sept Manley, J. C., Neon diode ring counter Sept 190 Jan 84 an 68 try Elwood K., Long-life tubes for Sept 70 68 June 118 Apr 86

Ordung, Philip F., Wideband power re-sistors (TEA)Aug 186

Preist, D. H., New uhf oscillator (TEA) Feb 120 Mar 96 Pugsley, D. W., Production experience with a 40-mc i-f receiver..........Nov 98

(TEA) Mar 122 Rudisuhle, E. J., Vhf links at Manila air-portJune 82 Rule, Leonard G., British linear accel-erator (TEA)Nov 124

Sanders, Milton, Modulated light densi Sanders, Milton, Modulated light densi-tometerJuly 84 Sanders, R. W., Closed-circuit indus-trial televisionJuly 88 Sands, L. G. Aircraft ignition tester. Oct 87 Sargent, Lowrie B. Jr., Tachometer for small motors (TAW)Apr 118 Sayer, W. H., Jr. Television antenna di-plexersJuly 74 Sayer, W. H., Jr. Television antenna di-plexers July Sayre, David, Linear sweep generation (TEA).....July July 171 (TEA) Schafer, Curtiss R., Airplane fuel gage Apr 77

Soltes, Aaron S., Beam deflection non-linear element (TEA). Aug 122 Spitzer, C. F., Thyratron control circuits for over 180-degree phase shift (TEA) 222 Stone, Jay Edlin, Ultra-low frequency oscillator Jan Stroh, Walter J., Simplified intercarrier Jay Edlin, Ultra-low frequence sound Strum, Peter D., Mixer crystal checker Dec

 Taylor, Albert H., Thermistor thermo-stats (TAW)
 July 154

 Todd, Alva C., Antenna analyzer...Sept
 82

 Turkish, M. G., Electronic inspection of engine cam contours....Oct
 74

 Utley, David A., Automatic moisture content control (TAW)......Jan 138 Vaccaro, A., Amplifier cueing for re-motes (TAW) Dec 120 Van Meter, J. L., Pin-pointing ultrasonic

Ward, J., Automatic exposure May 74 Warnke, G. F., D-C amplifier with cross-coupled input Feb 104 Webb, R. C., Simplified television for in-dustry June 70 Webb, Wayne, Tachometer for small motors (TAW) Webber, Stanley E., 1,000-watt traveling-wave tube June 100 Weimer, P., Vidicon-photoconductive comera tubes June 100 Way 70 96 94

oung, Chester W., Gain-band width nomograph, reference sheetNov 116 Young.

Zaharis, G., Television synchronizing generator May 92 Zuidhof, R., Wien-bridge network modi-fications (TEA) Sept 192

...to get more for your money Re-Tube with

replacements for your rectifier ... regardless of make!

AMPEREX TUBES

are DESIGNED by ELEC-TRONIC TUBE Specialists . . . in a laboratory that is second to none in the world—and with a background of experience that encompasses the entire history of electronic development.

are BUILT BETTER ... and while most makes may look alike, there are hundreds of little structural design differences in AMPEREX tubes that combine to make a BIG difference in stability and resistance to shock or vibration.

are LONGER LASTING... because of close electrical tolerances, conservative ratings, rigid mechanical requirements, careful construction, plus painstaking inspection and test... to assure the maximum number of operating hours within our specified ratings.

are LOWER in COST...lower in initial cost-lower in cost per operating hour-As thousands of others already have done, try AMPEREX-prove it yourself, in your equipment.

are AVAILABLE for IMMEDIATE DELIVERY...by leading radio parts distributors, who have AMPEREX tubes IN STOCK. We list a few of these establishments that are prepared to serve you instantly:

ALLIED RADIO CORP., 833 West Jackson Blvd., Chicago 7, Illinois W. D. BRILL & CO., 198 10th Street, Oakland, California JOHN COSTELOW CO., 125 Kansas Avenue, Topeka, Kansas DE MAMBRO RADIO SUPPLY INC., 111 Commonwealth Avenue, Boston 15, Massachusetts CRABTREE'S WHOLESALE RADIO, 2608 Ross Avenue, Dallas I, Texas HARVEY RADIO COMPANY, INC., 103 West 43 Street, New York 18, New York A. W. MAYER CO., 895 Boyiston Street, Boston 15, Massachusetts RADIO & ELECTRONICS PARTS CORP., 3235 Prospect Avenue, Cleveland 15, Ohio SOUTHEAST AUDIO CO., 112 West Union Street, Jacksonville, Florida UNITED RADIO SUPPLY CO., 22 N.W. 9th Avenue N.W., Portland, Oregon ZACK RADIO, 1426 Market Street, San Francisco, California

There are approximately 200 standard types in the complete line of

AMPEREX TUBES

Rectifying, Transmitting, Industrial, Radiation Counter, Electro-Medical... there's an AMPEREX tube for almost any electronic application. Have you our latest catalog? If not, write for it.

AMPEREX ELECTRONIC CORP. 25 WASHINGTON STREET, BROOKLYN 1, N. Y.

WITH AMPEREX

ww.americanradiohistory.com

In Canada and Newfoundland: Canadian Radio Manufacturing Corp. Ltd. 11-19 Brentcliffe Road, Leaside, Toronto, Ontario, Canada

321-A

857-8

How RCA Engineering in Depth

benefits electronic equipment manufacturers

• RCA Engineering in Depth begins with basic research, progresses through design and production, and ends with the field engineering group, right at your doorstep.

It is important to you because the collective experience of these engineering groups works unceasingly toward solutions of your problems ... through the development and application of improved electron tubes and components . . . and through a personal and confidential appraisal of your specific requirements and their translation into practical, economical equipment.

When you deal with RCA, you are dealing with the most seasoned, highly integrated, and extensive electronics engineering force in the field. The vast and impressive experience of this group accounts for RCA's engineering leadership in the development of better tubes and components in advance of the market.

To put RCA Engineering in Depth to work for you . . . just phone or write RCA, Commercial Engineering, Section L42R, Harrison, N. J.

