Electronics

A trainable pattern recognizer: page 86 Field effect transistors improve tuners: page 114 Weather satellite that sees at night: page 121

August 22, 1966
75 cents
A McGraw-Hill Publication

Get a record you can clearly readeven at 5 KC
 ... from the one system supplied complete with your choice of amplifier

Now you can have all the Sanborn advantages of a DC-5KC optical oscillograph supplied as a complete, integrated package ready to record plus clearer, higher resolution recordings made possible by improvements in optical system design and chart papers. Put one to 8 traces on the $8^{\prime \prime}$ ultraviolet-sensitive chart of a standard 4508B system - with p-p amplitudes up to $4^{\prime \prime}$ at DC5 kHz , to $8^{\prime \prime}$ at $\mathrm{DC}-3 \mathrm{kHz}$. Or record up to 25 channels of high frequency information with a 4524B system. Save valuable time by recording all frequencies up to 5 kc with a single set of galvanometers driven by amplifiers incorporating frequency boost and compensating circuits, thus eliminating an "inventory" of different galvanometers and the time required to install and align a new set for each recording requirement. Make signal connections quickly and conveniently to front-panel or rear input connectors, and have complete operational control with amplifier front panel basic controls for each signal. Change system sensitivity from $2.5 \mathrm{mv} /$ inch to $625 \mathrm{mv} /$ inch by easily changing 8 -channel amplifier modules (choice of three). Load paper in daylight . . . select any of 9 chart speeds by pushbutton or control them remotely . . . see fully developed traces a few seconds after recording . . . use system in mobile console, rack mount or portable cases.
Ask your local Sanborn Division/Hewlett-Packard sales office for technical data and expert application assistance. Offices in 47 U.S. and Canadian cities, and major areas overseas. Hewlett-Packard Company, Sanborn Division, Waltham, Massachusetts 02154.

Specifications - 4500 Series Optical Oscillographs
Sensitivity
$625 \mathrm{mv} / \mathrm{y}^{\prime \prime}, 50 \mathrm{mv} / 1^{\prime \prime}$, or $2.5 \mathrm{mv} / 1^{\prime \prime}$, depend. ing on amplifier chosen.
Frequency Response DC to $5 \mathrm{KC}(-3 \mathrm{db})$ at $4^{\prime \prime} \mathrm{p}-\mathrm{p}$
Common Mode
Performance
Linearity
Gain Stability
Noise
Chart Speeds
Prices

Rejec. ratio at least 140 db at DC, max. C.m. voltage $\pm 500 \vee$ (with Medium Gain Amplifier)
$11 / 2 \%$ of full scale (8 inches)
Better than $1 \%, 0^{\circ}$ to $50^{\circ} \mathrm{C}, 103$ to 127 (line) volts
$0.02^{\prime \prime}$ p-p, max.
Nine, 0.25 to $100^{\prime \prime} / \mathrm{sec}$.
Complete 8 -channel system in cabinet, with galvanometer driver amplifiers, $\$ 7400$; with medium gain amplifiers, $\$ 8980$ (F.O.B. Waltham, Mass.)

HEWLETT
PACKARD

News Features

Probing the news

141 What comes after Apollo?
145 A view from the cockpit
149 Behind the complaints on computer software
153 Open and shut case

Electronics Review

35 Space electronics:
Beyond the moon...
. . . and to the sun
36 Patents: The laser decision
37 Advanced technology: A better red
37 Industrial electronics:
Stalled traffic control
38 Computers: White elephant;
Integrator on a chip
40 Antennas: Widening the feedpoint
42 Military electronics: Bitter end
42 Components: Standard dose
44 Communications: Initial success

Electronics Abroad

209 Japan: Speeded by laser
210 West Germany: Repetitious
210 Soviet Union: Blocked out
211 Great Britain: Hard times Robot tractor
212 Italy: Just checking

Departments

4 Readers Comment
8 People
14 Meetings
16 Meeting Preview
23 Editorial
25 Electronics Newsletter
69 Washington Newsletter
167 New Products
200 New Books
202 Technical Abstracts
204 New Literature

Technical Articles

I. Design

Advanced technology

86 Training a machine to read with nonlinear threshold logic Typewriter-size pattern recognizer built of integrated circuits can sort alphabetic characters, classify wave forms and recognize geometric shapes
D.P. Hattaway, E.D. Hietanen and R.W. Rothfusz, Bendix Corp.

Circuit design 94 Designer's casebook

- Direct current regulator drives fluorescent lamps
- Thermistor measures negative resistance of tunnel diode
- Ferrite cylinder modulates microwave signals
- Glass reed switch controls operational amplifier
- Pulsed oscillator conserves power
- Amplifier provides giant input resistance

II. Applications

Communications 100 Helix antennas take turn for better (cover) A unique antenna with contrawindings connected to common feed points has large bandwidth C.W. Gerst and R.A. Worden, Syracuse University Research Corp.

Consumer 114 P-i-n diode and FET's improve f-m reception electronics

New f-m tuner has dynamic signal range exceeding 120 decibels with minimum distortion and maximum sensitivity
Fred L. Mergner, Fisher Radio Corp.

Space 121 Night and day, Nimbus 2 transmits electronics
cloud pictures
Infrared scanners have been added to automatic picture transmission system so it can report weather on the dark side of the earth
J.C. Moody and Oscar Weinstein, NASA

Title R registered U.S. Patent Office; © copyright 1966 by McGraw-Hill, Inc. All rights reserved, including the right to reproduce the contents of this publication, in whole or in part.

Electronics

Editor-in-Chief: Lewis H. Young
Senior editors
Design: Samuel Weber
Application: George Sideris
News: Kemp Anderson Jr.
Assistant to the editor: Sally Powell

Senior associate editors: John F. Mason, Don Christiansen, Robert Henkel, Joseph Mittleman

Department editors
Avionics: W.J. Evanzia
Communications: Leonard Wefler
Computers: Wallace B. Riley
Design theory: Joseph Mittleman
Electronics abroad: Arthur Erikson
Electronics review: Stanley Zarowin
Industrial electronics: Alfred Rosenblatt
Instrumentation: Carl Moskowitz
Military electronics: John F. Mason
New products: William P. O'Brien
Special projects: Don Christiansen
Staff writers: Jan Rahm, A. Thomas Thorson

Regional Bureaus

Domestic
Boston: Thomas Maguire, manager; Robin Carlson
Los Angeles: William B. Wallace, manager; June Ranill
San Francisco: Walter Barney, manager; Mary Jo Jadin
Washington: Robert W. Henkel, manager; William D. Hickman, John Rhea, correspondents; Patricia C. Hoehling

Foreign

Bonn: John Gosch
Tokyo: Charles Cohen
Copy editors
James J. Moran, David Goller, William Olcott

Graphic design

Art director: Saul Sussman
Assistant art directors: Donna M. Griffiths, Ann Mella
Production editor: Arthur C. Miller
Edltorial secretaries: Ctaire Benell, Lynn Emery, Lorraine Fabry,
Kay Fontana, Lorraine Longo, Carolyn Michnowicz

McGraw-Hill News Service

Director: John Wilhelm; Atlanta: Fran Ridgway; Chicago: Reck Johnson;
Cleveland: Arthur Zimmerman; Dallas: Marvin Reid;
Detroit: N. Hunter; Houston: Ron Lovell; Los Angeles: Michael Murphy, Gerald Parkinson San Francisco: Margaret Drossel
Seattle: Ray Bloomberg; Washington: Arthur L. Moore, Charles Gardner, Herbert W. Cheshire, Seth Payne, Warren Burkett, Warren Kornberg

McGraw-Hill World News Service

Bonn: John Johnsrud; London: John Shinn;
Mexico City: Bruce Cross; Milan: Ronald Taggiasco;
Moscow: Howard Rausch; Paris: Peter Kilborn;
Rio de Janeiro: Wes Perry; Tokyo: Marvin Petal
Circulation and Research Manager: Milton Drake
Reprints: Thomas M. Egan

Publisher: Gordon Jones

Electronics: August 22, 1966, Vol. 39, No. 17
Printed at 99 North Broadway, Albany, N.Y., 12207
Second class postage paid at Albany, N.Y.
Subscriptions are solicited only from those actively engaged in the field of the publication. Position and company connection must be indicated on orders. Subscription prices: United States and Possessions and Canada, $\$ 6.00$ one year. $\$ 9.00$ two years. $\$ 12.00$ three years. Alf other countries $\$ 20.00$ one year. Single copies, United States and Possessions and Canada 75%. Single copies all other countries $\$ 1.50$.

Published every other Monday by McGraw. Hill Inc. 330 West 42 nd Street, New York, N.Y. 10036, Founder: James H. McGraw, 1860-1948. Corporate officers: Shelton Fisher, President; John J. Cooke, Secretary; John L. McGraw, Treasurer.
Subscribers: The Publisher, upon writtten request to our New York office from any subscriber, agrees to refund that part of the subscription price applying to copies not yet mailed. Please send change of address notices or complaints to Fulfillment Manager; subscription orders to Circulation Sales Department. Electronics, at the address below. Change of address notices should provide old as well as new address, including postal zip code number. If possible, attach address label from recent issue. Allow one month for change to become effective.

Familiar techniques

To the Editor:
I have just seen the article "Integrated circuits replace the electromechanical resolver" [Jan. 10, p. 90]. I was particularly interested because I used exactly these techniques-although long before modern integrated circuits were available-in high-speed analog computations concerned with navigational problems and in particular in ground controlled interception computation, while employed by the Decca Radar Co.

In those days of vacuum tube circuitry the advantages of the method did not lie in savings of weight or power consumption but rather in its ability to provide an answer to such a trigonometric problem in a matter of a fraction of a millisecond. At the same time it allowed an electrical analog of an aircraft flight path to be constructed and displayed on a cathode-ray tube to overlay corresponding radar information.
J.S. Johnston

Technical Director

Rosemount Engineering Co.
Sussex,
England

Why the capacitor?

To the Editor:

I was intrigued by the circuit "Feedback choke reduces power supply ripple" [June 27, p. 74]. What is the purpose of the $1,000-$ microfarad 15 -volt capacitor attached to the right hand side of the choke? I suspect the circuit would work even better without it.
J.D. Easton

Department of Physics
School of Science and Engineering University of California
La Jolla, Calif.

- The author replies:

The function of the filter network at the base of Q_{2} is to provide a low ripple reference for the Darlington. I assume that the question concerning the purpose of the $1,000-\mu \mathrm{f}, 50-\mathrm{v}$ capacitor is based upon the corresponding deterioration of response time. The regulation is stated as

Did You Know Sprague Makes 51 Types of Foil and Wet Tantalum Capacitors?

Circle 338 on reader service card

Type 109D elastomer seal 85 C Type 130D elastomer seal 125 C
Type 137D hermetic seal 125 C

ASK FOR BULLETINS 3700F, 3701B, 3703
Circle 341 on reader service card

FOIL-TYPE TANTALUM CAPACITORS TO MIL-C-3965C

CL20,CL21 tubular 125 C polarized etched-foil CL22, CL23 tubular 125 C non-polar etched-foil CL24, CL25 tubular 85 C polarized etched-foil CL26, CL27 tubular 85C non-polar etched-foil CL30, CL31 tubular 125 C polarized plain-foil CL32, CL33 tubular 125C non-polar plain-foil CL34, CL35 tubular 85C polarized plain-foil CL36, CL37 tubular 85C non-polar plain-foil CL51 rectangular 85C polarized plain-foil CL52 rectangular 85 C non-polar plain-foil CL53 rectangular 85 C polarized etched-foil CL54 rectangular 85 C non-polar etched-foil

Circle 339 on reader service card

SINTERED-ANODE CUP STYLE TANTALEX ${ }^{\text {© }}$ CAPACITORS

Type 1310 85 C industrial-type Type 132D 85 C vibration-proof Type 133D 125 C vibration-proof

ASK FOR BULLETINS 3710B, 3711
Circle 342 on reader service card

SINTERED-ANODE TANTALUM CAPACITORS TO MIL-C-3965C

CL14 cylindrical, 7/8" diam.
CL16 cylindrical, $/ 8^{\prime \prime}$ diam., threaded neck CL17 cylindrical, $11 / 8^{\prime \prime}$ diam.
CL18 cylindrical, $1 \frac{1}{8}$ " diam., threaded neck CL44 cup style, uninsulated
CL45 cup style, insulated
CL55 rectangular, both terminals insulated CL64 tubular, uninsulated
CL65 tubular, insulated

125 C FOIL-TYPE TUBULAR TANTALEX ${ }^{\circ}$ CAPACITORS

\Longrightarrow SPRBGUED

Type 1200 polarized plain-foil
Type 121D non-polarized plain-foil
Type 122D polarized etched-foil
Type 123D non-polarized etched-foil
ASK FOR BULLETIN 3602C
Circle 337 on reader service card

Circle 345 on reader service card

Circle 340 on reader service card

SINTERED-ANODE CYLINDRICAL TANTALEX ${ }^{*}$ CAPACITORS

Type 1400 up to 175 C operation, $78^{\prime \prime}$ diam.

Type 1410 up to 175 C operation, $11 / 8^{\prime \prime}$ diam.

ASK FOR BULLETIN 3800
Circle 343 on reader service card

For comprehensive engineering bulletins on the capacitor types in which you are interested, write to:

Technical Literature Service
Sprague Electric Company
35 Marshall Street
North Adams, Mass. 01248

4SC-5158 R1

GENERAL RADIO at

A constant-percentage analyzer for fast measurements of complex signals from 20 Hz to 20 kHz . . . lets you measure components differing in level by as much as $80 \mathrm{~dB} .100-\mathrm{k} \Omega$ input impedance (over $500 \mathrm{M} \Omega$ with accessory preamp). Eight voltage ranges from $100 \mu \mathrm{~V}$ to 300 V , full scale ($10 \mu \vee$ full scale with preamp). Built-in amplitude calibrator. Can be line or battery operated. Output is available for automatic spectrum recording with the GR 1521 Graphic Level Recorder. Type 1568-A Wave Analyzer, $\$ 1350$.

A combination sound-level meter and recorder that lets you "leave your lab at home." With it you can make calibrated recordings for analysis at leisure and for future comparisons. Two channels: one with all standard sound-level-meter circuits plus constant-current and NAB equalization; the other with constant-current equalization for narration, test signals, or binaural recordings. $10-\mu V$ to $1-V$ input-level range . . . two tape speeds, $71 / 2$ and $15 \mathrm{in} / \mathrm{s}$. Response, flat within $\pm 3 \mathrm{~dB}$ from 15 to $16,000 \mathrm{~Hz}(71 / 2 \mathrm{in} / \mathrm{s}$, constant-current equalization) excellent signal-to-noise-ratio . . . high input impedance . monitoring meter and overload indicator after emphasis circuits ensure recordings below tape saturation levels... Type 1525-A Data Recorder, \$1995.

NeW Automatic Go, No-Go Capacitor Testing
The newest addition to the GR line of automatic test equipment, the 1781-A Digital Limit Comparator, compares measurements made by the GR 1680-A Automatic Capacitance Bridge against preset limits. The Comparator can be preset to five-figure resolution for both high- and lowcapacitance limits, as well as for high dissipation factor and/or conductance. Comparison is fast (2.5 ms) and entirely automatic. Readout is by Go, No-Go lights which also indicate reason for rejection. Outputs are provided to control sorting devices and to drive recorders. Companion Type 1680-A Automatic Capacitance Bridge Assembly provides automatic measurement of C from 0.01 pF to $1000 \mu \mathrm{~F}$ in less than $1 / 2$ second.

1-pF to 1-F Electrolytic Capacitance Bridge

Two-, three-, four, or five-terminal measurements Measures D from 0 to $10 \ldots$ Has Orthonull ${ }^{(3)}$ balancing mechanism to eliminate sliding balances on lossy capacitors . . Basic accuracy, $\pm 1 \%$ for C and $\pm 2 \%$ for D Complete with self-contained $120-\mathrm{Hz}$ generator, detector, and $0-600 \mathrm{Vdc}$ polarizing supply ... Measures leakage currents as smail as $0.5 \mu \mathrm{~A}$. Type 1617-A, $\$ 1195$.

New

Precision, Low-Temperature-Coefficient, Wire-Wound Standard Resistors

$\pm 0.01 \%$ accuracy; stability, $\pm 20 \mathrm{ppm}$ per year . . . all units are heat cycled to reduce winding strains and sealed in oil-filled cases to ensure long-term stability . . . two terminal styles: wire leads (Type 1441) and jack-top binding posts (Type 1440) ... available in $1-10$ - and $100-$ ohms, 1-, 10-, and 100 -kilohms, and 1-megohm. Prices range from $\$ 18$ to $\$ 22$.

$10 \cdot \mathrm{~Hz}$ to $100-\mathrm{kHz}$ Low-Distortion Oscillator

A sine/square-wave oscillator whose distortion is less than 0.05% for sine waves from 200 Hz to 10 kHz (open circuit, or $600-\Omega$ load), increases to less than 0.25% at 10 Hz , and 100 kHz ... Frequency characteristic is flat within $\pm 2 \% \ldots 5-\mathrm{V}$, open-circuit output . . . 60-dB step attenuator . . . Hum is less than 0.001% of full output (100 dB). Square-wave rise time is less than 100 ns ; symmetry is better than $\pm 2 \%$ over entire range . . . Synchronization provided for locking to external signals or for synchronizing other equipment. Type 1309-A, $\$ 325$.

100-MHz Pulse Generator for Under \$1000

Repetition rates from 1 to 100 MHz . . . Durations from 4 to 99 ns in $1-\mathrm{ns}$ steps . . . Rise and fall times less than 2 ns Period, duration, and delay jitter less than 0.1 ns 4 -volt output into 50 ohms . . . adjustable time delay . . Synchronizes readily with external clock signals. Type 1394-A, \$995.
Also on display: the 1394-Pl Pulse Offset Control . . . Allows clamping of output-pulse base line to any desired level over a $=2 \cdot-\mathrm{V}$ range. Price, Type $1394-\mathrm{Pl}, \$ 255$.

$70 \cdot \mathrm{MHz}$ Solid-State Synthesizer

Output ad justable up to 2 volts at accurately known, stable, sine-wave frequencies. 7 -digit readout plus continuous frequency control. Frequency-coherent signals are synthesized from internal quartz-crystal oscillator. Plug-in modules give you choice of resolution: $10 \mathrm{~Hz}, 100 \mathrm{~Hz}, 1 \mathrm{kHz}$, 10 kHz , and 100 kHz , or to better than 0.1 Hz with a continuously adjustable decade. Optional continuous tuning through any decade range up to 1 MHz . Internal calibrated sweep . . . Programmable.

This is the fourth of a series of GR synthesizers - other models cover ranges to $100 \mathrm{kHz}, 1 \mathrm{MHz}$, and 12 MHz . Prices range from $\$ 3640$ for a Type $1161-\mathrm{A} 3100-\mathrm{Hz}$-perstep, $100-\mathrm{kHz}$ Coherent Decade Frequency Synthesizer to $\$ 7065$ for a Type $1164-\mathrm{A} 7 \mathrm{C} 70-\mathrm{MHz}$ model with $0.1-\mathrm{Hz}$ resolution.

Also on Display:

- A modular pulse generator that lets you produce any pulse shape you want. A high-performance, low-cost pulse generator. - A pulse generator with less than 5-ns rise and fall times. A linear pulse amplifier with 1.2 -ampere output.- R-L-C standards, decades, and components. GR874 and GR900 Coaxial Connectors and Elements for use at frequencies from dc to 8.5 GHz , as well as for fast-rise-time, fast-pulse applications that require really low reflection and negligible pulse distortion.

> See them all at WESCON, Booths 348-351.

Reader Redick's improvement of author Quatse's circuit eliminates the $1,000 \mu \mathrm{f}$ capacitor on the output.
only 1% (not uncommonly good for a regulated supply). An improvement in regulation could be gained by elimination of the capacitor, but only at the expense of increased ripple. For this circuit, $1,000 \mu \mathrm{f}$ is about optimum. If better regulation is preferred to lower ripple, the capacitor should be entirely eliminated rather than replaced by one of lower value.

Jesse T. Quatse
Engineering Research and
Development
Carnegie Institute of Technology
Pittsburgh, Pa.

Ripple filter

To the Editor:

No doubt some of your readers are wondering why there is a 1,000 microfarad capacitor on the output of Jesse T. Quatse's regulated power supply [June 27, p. 74]. This is to filter out the ripple.

To fully understand the necessity for this, three things must be realized. First, advantage is taken of the filtering capabilities of a 1,000 μ f. condenser by placing it on the
base of Q .. This prevents any a-c feedback component from reaching the base of the pass transistor Q_{3}, thereby insuring that no regulating action can take place for a-c components appearing on the output. Second, ripple transmission to the output is further enhanced by operating transistors Q_{2} and Q_{3} backwards. In this mode their performance is reasonably marginal and, being characterized by very low gain, practically eliminates any emitter follower action that might otherwise lower the effective output impedance of the supply. And third, there really is no feedback, particularly a-c feedback, through the feedback choke, as one might imagine.

My schematic [above] suggests a couple of modifications that elim inate the need for a $1,000 \mu \mathrm{f}$ on the output; its only claim to novelty being, probably, the somewhat unnecessary inclusion of feedback choke L_{1}.

Robert P. Redick Leander McCormick Observatory University of Virginia
Charlottesville, Va.

It's not hard to locate a miniature connector smail enough to meet tight space specs. Lots of people make them. There is a small problem, though, in finding the quality you need at the price you'd like to pay.

That's why business is booming at Transitron's Precision Connector Division. We design and produce miniature and subminiature connectors to exceed - not merely meet specifications. They are built to outlast the equipment you mount them on. Precision fabrication, knowledgeable design, the finest materials provide a combination that can't be surpassed by any manufacturer. Yet in quantity they cost no more than units that will barely squeeze by incoming inspection
Send loday tor our new condensed catalog covering a complete line of miniature and subminiature connectors, as well as printed circuit connectors and nlany other types. And if you need a custon connector design, we're your source lust give us the facts.

Precision Connector Division Transitron
electronic corporation
Wakefield, Massachusetts

People

The new director of the National Bureau of Standards' Institute for Applied Technology is a man with a mission. John
P. Eberhard, 39, has set as his goal the kind of project planning pioneered by Defense Secretary Robert S. McNamara: he
 wants to see all research activity directed toward a concrete and practical objective.

Traditionally an umbrella for scientists doing a variety of basic research, the bureau was reorganized two and a half years ago into three institutes for tighter management control. Of these, Eberhard's 825 -man institute is the one with the most direct contact with industry.

Evaluation. Laboratory facilities for the applied technology group should be available when the institute completes its move out of antiquated offices in Washington and into new ones in suburban Gaithersburg, Md. A division within the institute known as the technical analysis division is responsible for evaluating the relationship between benefits and costs of the research planned by the institute. It has already grown from a stafl of two to 60 .

The institute's Clearinghouse for Federal Scientific and Technical Information (the old Office of Technical Services) at Springfield, Va., distributes 6,000 pieces of technical literature a day to schools, industry and to other Government agencies. The Center for Computer Sciences and Technology has the job of setting standards for the Federal Government-the computer industry's biggest customer. The Government accounts for 30% of the total computer market and to handle the addlitional workload, Eberhard expects this staff to increase from the present 165 to 300 or 400 .

Eberhard is one of the young men brought in at the time of the bureau's reorganization; at that time he was named deputy director. In his new post, he succeeds 36 -

The dual inline packaging on our new E-line 930 Series DTL is almost as surprising as the price tag.

Just check over these prices:

- JK Flip Flop
. (100 to 999) \$2.80
- Dual 4-input Nand Gate $\$ 1.65$
- Dual 4-input Buffer \$1.95
- Dual 4-input Expander. $\$ 1.40$
- Dual 4-input Line Driver $\$ 1.95$
- Triple 3-input Nand Gate $\$ 1.65$
- Quad 2-input Nand Gate $\$ 1.65$
- Hex 1 -input Nand Gate
\$1.65
They're the lowest on the market today, because our E-line Series DTL is packaged in our low-cost Taiwan production facility.
The other surprising feature about our dual inline packages is the specially-designed ceramic basean excellent heat dissipator. It enables us to guarantee the same levels of fan-out and noise immunity
over 0° to $75^{\circ} \mathrm{C}$ that are available in hermeticallysealed packages. Special packaging features include standard 100 mil center-to-center spacing between round kovar leads, and standard 300 mil spacing between lead ranks. Our E-line packages are easy to handle, automatically insertable, and designed for stand-off. They are also immune to chemical solvents used in cleaning the p.c. board.
And one last surprise, they're available now. IMMEDIATE DELIVERY.

Call for the name of your nearest distributor. Philco Microelectronics Division Sales Offices: 2920 San Ysidro Way, Santa Clara, California (408-245-2966) / 999 North Sepulveda, El Segundo. California (213-772-6226) / 594 Marrett Road, Lexington, Mass. (617-862-6000) / Benson Manor, Suite 114B, Washington Lane, Jenkintown, Pa (215-885-0430) / 314 South Missouri Ave., Suite 212, Clearwater, Florida (813-446-0124) / 815 Connecticut Avenue, N. W., Washington, D. C. (202-965-0903)

New from Sprague!

ISOLAYER DIFFERENTIAL AMPLIFIERS WITH DIELECTRIC ISOLATION

$V_{\text {BE }}$ voltage differential down to $\mathbf{3 m V}$ Tight beta matching-Low capacitance

		UD-2118	UD-2119	UD-2120	UD-2121
$\mathrm{BV}_{\text {Сюо }}$		50 V	50 V	30 V	30 V
$h_{\text {fE }}$	(a. $10 \mu \mathrm{~A}$	80	80	40	40
	(a. 1 mA	150	150	100	100
$\left\|\mathrm{V}_{\mathrm{EE}_{1}}-\mathrm{V}_{\mathrm{BE}_{2}}\right\|$		3 mV	5 mV	3 mV	5 mV
$\Delta\left\|\mathrm{V}_{\mathrm{BE}_{1}}-\mathrm{V}_{\mathrm{BE}_{2}}\right\|$		$5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
C_{ob}		2pF	2 pF	2pF	2 pF

Sprague Electric also makes a broad line of standard differential amplifiers, pairs, quads, and Darlington amplifiers

*trademark For complete information, write to Technical Literature Service, Sprague Electric Co., 35 Marshall St., North Adams, Mass. 01247

People

year-old Donald A. Schon, who moved on to the nonprofit Organization for Social and Technical Innovation in Cambridge, Mass.

Small electronics companies, formed by groups of executives who left larger companies, dot the West Coast. As the new companies grow, their own executives see opportunity beckoning and, in turn, depart to set up new com-
 panies. An example of this kind of proliferation could be Spectra-Physics, Inc., whose five founders left Varian Associates in 1961. Spectra-Physics thrived; it now employs about 200 people and expects $\$ 4$ million in sales this fiscal year. But three of its executives, joined by three others from still two more electronics companies, have departed to set up Coherent Radiation, Inc. They will, like Spectra-Physics make lasers. Unlike Spectra-Physics, they will make carbon-dioxide lasers.

The exodus from Spectra-Physics was led by marketing manager Eugene L. Watson. Watson, 38, says that he and his colleaguesJames L. Hobart and Wayne S. Mefferd of Spectra-Physics, Robert J. Rorden and John Cullen of Varian, and Steven M. Jarrett of TRG, Inc., had been thinking of setting up their own company for some time. It was, he says, the emergence of the CO_{2} laser that determined them to go ahead.
"This laser may be the breakthrough that will make laser welding really competitive with electron beam techniques," Watson says. "It can produce the highest average power of any radiant source that can be focused on a small spot; 1,000 watts, continuous wave, has already been achieved in the laboratory. It can vaporize any known material."

The company expects to introduce its first laser, priced at "under $\$ 10,000$," in the fall.

Power tube calculator, applications dataall free from MACHLETT

Use these aids-from Machlett-to make
better tube selections, determine
optimum cost-performance ratios and to cut operating costs

- Power Tube Calculator provides a simplified method of calculating operating parameters of high power tubes.
- Applications bulletins provide valuable performance and operating data on high power triodes and tetrodes, UHF planar triodes, pulse modulator tubes, variable vacuum capacitors and others.
- Cathode Press, the Machlett technical journal, covers latest developments in power tubes and new installations.
For calculator, bulletins and free subscription to Cathode Press, send reader service card. Or write: The Machlett Laboratories, Inc.
Springdale (Stamford), Conn. 06879

Everything you could ask for in production wiring... TERMI-POINT^ wiring devices

For dense point-to-point wiring applications TERMI-POINT tooling and products offer you an automatic, solderless, wrapless, weldless technique for wiring computer panels as well as industrial control and communications equipment.
This technique consists of a fine grain phosphor bronze clip which secures the wire firmly to a post, utilizing the spring "memory" of the metal clip. Wires can be bulk or pre-cut, solid or stranded-even enameled or tinsel! Best of all, the gas-tight, reliable connections may be serviced without electrically disturbing other connections on the same post using only lightweight hand tools! And the entire wire lead need not be replaced, just the clip, saving hal1 the servicing time.

For automated production, you merely program the TERMI-POINT automatic wiring machine to suit your requirements. This remarkable machine routes wires in the pre-set programmed pattern and cuts, strips, and terminates both ends of the lead in seconds. Programs are punched on economical 8 -column paper tape. In addition, several types of manual TERMI-POINT tools are available for servicing, testing or limited production. A variety of TERMI-POINT clips and post sizes are offered, including $.022^{\prime \prime} \times .036^{\prime \prime}$ posts which provide grid densities of $.100^{\prime \prime}$. In fact, TERMI-POINT products are under development which would reduce this grid size even more. The complete line of TERMI-POINT products includes printed circuit connectors, transition

blocks, bus bars, cable connectors, junction blocks, relay blocks, and other devices. Furthermore, large-scale wiring of these products may be accomplished by mounting them on a panel and programming the TERMI-POINT machine for high-speed automatic wiring.
Besides the speed, density, and versatility of this wiring method, it offers an unusual degree of reliability. The reason for this is AMP's special post presents relatively large contact surfaces which are wiped clean by the wire held by the TERMI-POINT clip as the post is terminated. The resulting connection is highly resistant to the effects of corrosion, vibration, and temperature extremes. It is held with a high retention force which exceeds the yield strength of the wire itself, yet the post plating remains undam. aged and the wire may be used again.
No other wiring method offers this combination of advantages!
With TERMI-POINT clips and tools, your wiring facilities will never become outdated, because unlike other automated methods, there is no
inherent limitation in density with TERMI-POINT wiring devices. In addition, AMP accepts total responsibility for the performance of the TERMI-POINT products, the technique and your completed terminations. You can save considerable time and capital investment by allowing us to wire your panels or circuit boards to your specifications.
If you plan to enlarge or improve your present wir. ing facilities, we suggest a comparative study of this new technique at your earliest convenience. Write or call today for a demonstration; or ask for information about the TERMI-POINT products which interest you most. Find out how this versatile new method can boost your future production!
*Trademark of AMP INCORPORATED
AMP
INCORPORATED
Harrisburg, Pennsylvania
A-MP* products and engineering assistance are available through subsidiary companies in: Australia - Canada - England - France • Holiand - Italy • ;apan - Mexico - \$pain - West Germany

|ultral

 The shape of
 tomorrow, today

For more than 20 years, Uitra Carbon consistently has provided industry with advanced graphite technology. "F" purity graphite for the AEC . . . semiconductor crystal crucibles, boats, headers and fixtures made from Ultra purity graphite-these are typical of our past contributions to the electronic industries.

ULTRA/GRAPHITE photo masks, for processing thin film deposition circuits, are precisely machined. Write for information to Ultra Carbon Corporation, Box 747, Bay City, Mich. 48709.

Electronics Materials Technical Conference, Metallurgical Society of the American Institute of Mining, Metallurgical and Petroleum Engineers; Sheraton Boston Hotel, Boston, Aug. 29-31.

International Conference on

 Instrumentation in Aerospace Simulation Facilities, Aerospace and Electronic Systems Group; Stanford University, Stanford, Calif., Aug. 29-31.National Conference of the Association for Computing Machinery, Association for Computing Machinery; Washington Hilton Hotel, Washington, D.C., Aug. 29-31.

Ocean Electronics Symposium, IEEE; Ilikai Hotel Convention Hall, Honolulu, Hawaii, Aug. 29-31.

Technical Conference on Preparation and Properties of Electronic Materials for the Control of Radiative Processes Metallurgical Society and the Boston Section, American Institute of Mining, Metallurgical and Petroleum Engineers, Inc.: Sheraton-Boston Hotel, Boston, Mass., Aug. 29-31.

Swiss Electronics Television, Radio and Phonograph Exhibition; Exhibition Grounds of the Zuspa, Zurich,
Aug. 31-Sept. 5.
General Assembly of the International Scientific Radio Union; Munich, Sept. 1-15.

National Radio and Television and International Electric Components Exhibition; Milan, Sept. 3-11.

International Conference on Semiconductor Physics; Tokyo, Sept. 5-9.

International Congress of Biophysics, International Organization for Pure and Applied Biophysics; Vienna, Austria, Sept. 5-9.

International Nuclear Industries Fair and Technical Meetings, Swiss Industries Fair; Basel, Switzerland, Sept. 8-14.

High Energy Physics Instrumentation Conference, Linear Accelerator Center of Stanford University, Stanford, Calif., Sept. 9-10.

International Conference on Microwave and Optical Generation, Institute of Electrical Engineers and the Institute of Electronic and Radio Engineers, Cambridge, England, Sept. 12-16.

Symposium on Power Semiconductor Technology, University of Missouri, Columbia, Mo., Sept. 15-16.

[^0]Industrial Engineers, American Society of Mechanical Engineers, American Society of Civil Engineers, IEEE; Statler Hilton, Washington, Sept. 26-27.

Inter-society Energy Conversion
Engineering Conference, American
Institute of Aeronautics and Astronautics, Society of Automotive Engineers, American Institute of Chemical Engineers, IEEE, American Nuclear Society, American Society of Mechanical Engineers and the Solar Energy Society; International Hotel, Los Angeles, Sept. 26-28.

Reinforced Plastics Conference, Society of Plastics Engineers;
Sheraton-Cleveland Hotel, Cleveland,
Sept. 29-30.
Conference on Electrical Insulation, National Academy of Sciences, National Research Council; Pocono Manor Inn, Pocono Manor, Pa., Oct. 1-3

Aerospace and Electronic Systems Convention, IEEE; Washington, Oct. 3-5*

Industry and General Applications Group Meeting, IEEE; Conrad Hilton Hotel, Chicago, Oct. 3-6.

National Electronics Conference, IEEE, Illinois Institute of Technology, University of Illinois; McCormick Place, Chicago, Oct. 3-5.

International Exhibition on Modern Electronics, Yugoslav Committee for Electronics, Telecommunications, Automation and Nucleonics; to be held at the Ljubljana Fair, Yugoslavia, Oct. 4-9.

Allerton Conference on Circuit and System Theory, IEEE, University of Illinois; Conference Center of University of Illinois, Monticello, III., Oct. 5-7.

Call for papers

International Solid State Circuits Conference, sponsored by IEEE and University of Pennsylvania at the Sheraton Hotel, Philadelphia, Feb. 15-17. Oct. 17 is deadline for submitting papers to Virgil I. Johannes, Room $3 \mathrm{E}-323$, Bell Telephone Laboratories, Holmdel, N. J.

Spring Joint Computer Conference, the American Federation of Information Processing Societies; Atlantic City, N. J., April 18-20. Nov. 1 is deadline for submitting papers to M.P. Chinitz, 326 Township Line Road, Norristown, Pa. 19403.

[^1]
NEW MICROTRANSFORMERS AND MICRO-INDUCTORS

MIL-Spec Reliability, Laminated-Core Efficiency in a $1 / 4$-inch Cube!

Now - microtransformers and micro-inductors created espe. cially for tight, hi-rel military/aerospace ervironments. The new Bourns Models 4210 and 4220 exceed the environmental requirements of MIL-T-27B and the transformer-reliability specifications of MIL-T-39013!
In performance, too, these models hit new highs. They are the only units to give you the efficiency of laminated-core construction. At 1000 cps the insertion loss is less than 3db. In high frequency operation, the model 4210 is dramatically superior to the smallest solid-core units available. In square-wave operation, droop is as low as 5%, overshoot as low as 10% and rise time as little as 100 nanoseconds. In every performance category, Models 4210 and 4220 give you the industry's highest ratio of performance to size.
Like Bourns potentiometers, the 4210 and 4220 are subjected to the intensive testing of the exclusive Bourns Reliability Assurance Program. The big " B " on the cover means there's a full measure of reliability in the package.
We specialize in winding custom microtransformers and micro
inductors to meet your exact requirements, and we substantiate performance in our qualified test laboratory. Write today for complete technical data!
Standard Specifications, Model 4210 and 4220
Size: . $25^{\circ} \times .25^{\prime \prime} \times .25^{\prime \prime}$
Maximum operating temp.: $+130^{\circ} \mathrm{C}$
Frequency response: - $2 \mathrm{db}, 400 \mathrm{cps}$ to 250 kcps (Model 4210)
Power rating: 1 watt at 10KC (Model 4210) Insertion loss: 3db max. (Model 4210)
Primary impedance range:
1002 to 200k Ω
Secondary impedance range: 3.25 to $10 \mathrm{~K} \Omega$
(Model 4210)
Turns ratios: to 15:1 (Model 4210) Inductence range: . 08 to 66 Hy (Model 4220) M FL-Specs: designed to ezceed MIL-T-27B and MIL-T-39013

Standard Models available from stock!

Precision-assembled laminated core. Cement is applied across edges of laminations and cured laminations and cured
while core is in assembly while
press.
gh-temperature plastic bobbin for outstanding dimensional stability under temperature extremes.

号

为 AssemaDouble encapsulation.
Assembly is first buffer. coated with compound which remains viscous at high temperatures and protects wires from me. protects wires from me.
chanical stress during temperature change. After buffer coating is cured, cover is mounted and cavity is filled.

Superior coils-the result of 20 years of precision wire-winding experience. Coils are produced on Bourns' own winding machines.

Printed circuit pins of goldplated nickel (MIL-STD1276 type N), molded securely into header.

PUTTING THE TAPE IN A CARTRIDGE untangles more problems than you might suspect. For example, the tape recorder/reproducer doesn't need reel motors or brakes, therefore the tension arms, tape guides and springs also are gone. Eliminate half the recorder's moving parts and you have eliminated half the maintenance woes. Since there are no reels to wind or unwind, tape tension is held to several ounces instead of pounds, resulting in extended tape life (over 35,000 passes) and longer wearing magnetic heads which require less frequent cleaning.
TAKE THE D/C-1, here's a complete instrumentation, 4 -channel, $1 / 4$-inch tape recorder with FM and DIRECT electronics, that uses NAB cartridges. The cartridges can store tape loops from 12 inches to 1700 feet in length. Four speeds ($17 / 8,33 / 4$, $71 / 2$ and 15 ips) plus Fast Forward lets you record and reproduce short loops for analysis work, or, with full loops, continuously monitor transducers to capture random events.
PERFORMANCE with the $\mathrm{D} / \mathrm{C}-1$ is generally superior to equivalent reel-to-reel instruments. The capstan drive circuitry is servo controlled to better than 0.1%. Signal-to-noise ratio is at least 43 db for $71 / 2 \mathrm{ips}$ FM operation. 2- or 4 -track IRIG heads are available and various options such as End-of-Tape sensing, Erase heads, special input-output configurations or the D/C-11 Rack Mounted versions are available.
PRICED AT APPROXIMATELY $\$ 2300$ for a complete 4-channel system with record and reproduce electronics included, the D/C-1 is perfectly suited for applications where reliability, simplicity of operation, and full performance are mandatory. If your requirements are less stringent, and your bank account is bulging, buy a reel-to-reel machine. If you want the most in value, buy a DATA/CARTRIDGE recorder.
For specification and price sheets, write:

DATA/CARTRIDGE INC. 161 Constitution Drive
Menlo Park, Calif. 94025
Phone: (415) 323-9880

Meeting preview

Military and aerospace

Engineers working in military, space and aerospace electronics will hold their first joint convention Oct. 3 to 5 in Washington. The meeting, called the Aerospace and Electronics System Convention, will replace the annual Military Electronics Convention.

The sponsors are four professional groups of the Institute of Electrical and Electronics Engi-neers-space electronics and telemetry, aerospace and navigation electronics, military electronics and aerospace systems.

Space power. The 90 technical papers will touch on a wide variety of subjects. In a session on spacecraft power supplies, C.M. MacKenzie of the National Aeronautics and Space Administration and R.C. Greenblatt and A.S. Cherdak, both of the Radio Corp. of America, will discuss a method of obtaining the most efficient transfer of power from solar cells to batteries.
In a paper on measuring the magnitude and direction of magnetic fields on the surfaces of spacecraft, B.W. Sherman and D.L. Waidelich of the University of Missouri will describe several experimental techniques; the most promising is the Stark effect, the splitting of swer lines in a strong electric field. This method has detected fields smaller than 100 volts per centimeter.

Buying policy. One panel discussion will explore the Government's procurement policies and practices.

Another panel will discuss the impact of microelectronics on system design. Topics to be emphasized are the relationship of component reliability to system reliability, the advantages of redundancy and the interfaces between microcircuits and system hardware. A third panel will explore the present requirements and future needs of military command and control systems.

Another session will be devoted to the Federal Aviation Agency's research work. There will also be reports on the progress of the national airspace system and on an advanced system for radar traffic control at air terminals.

One-girl Line

When you get a Hewtett-Packard 3439A or 3440A DVM, it doesn"t come off an assembly line. Each one is assembled by one person. from start to finish. That's one reason they are the most reliable DVM's you can buy. When people have complete responsibility for a job, they take more pride in their work. And they make fewer mistakes. The voorkmanship is superior, and it has to be: Every DVM goes through a battery of tests and inspections that are guaranteed to show up any defects. That testing includes an all-night cycling of every DVM and plug-in at $50^{\circ} \mathrm{C}$. The nest day it's checked again. If any trouble shows up, it's fixed, and the testing starts all over. We take a lot of trouble with your voltmeters. That's why you have so little trouble with them. By the time it leaves
our plant, we have enough faith in your 3439A, or your 3440A, that we're not afraid to back it up with a one-year guarantee. It's supported by service centers located alli over the country. Nobody else backs his guarantee like that. But then nobody else makes a DVA the way we do. With our kind of assembly line, we're not afraid to lay it on the line. The 3439A. Solid state. 4 -digit readout. Manual, automatic and remote ranging. Extra-high sensitivity. Ac/ dc voltage/ current resistance measurements (dc accuracy better than 0.05% of reading ± 1 digit). Price, $\$ 950$. The 3440 A has BCD output. Price, $\$ 1160$. Plug-ins, $\$ 40$ to $\$ 575$.

Data subject to change without notice. Prices f. o.b. factory

HEWLETT hp PACKARD
An extra measure of quality

A 25-watt plastic silicon transistor for under 40

It's loaded with silicon power transistors. Like our new 25 -watt B-5000 that sells for under $40 ¢$ in volume. Like our nuclear radiation devices. Like our silicon mesas, best-built and lowest priced in the business. And hundreds of other Bendix units available to meet your silicon needs exactly.

Take the new sensational low-cost B-5000 with 500,000 unit hours of successful life testing behind it. 25 watts at $2.5 \mathrm{amps}, 10$ volts and $100^{\circ} \mathrm{C}$. It's a real breakthrough. No power compromise on normal heat sinks. Outstanding hermeticity. And you name the mounting that suits your production methods best-several
established mounting techniques are available.

Or read all about our radiation-resistant 5 - and 10 -amp silicon transistors. With base transit times reduced to a
maximum of less than 0.5 nanoseconds at 1 amp collector current, they're great for use in advanced circuits hardened for nuclear radiation environments. Six packages to choose from, too.

RADIATION TYPES Max Radiation Level Exposure $=5 \times 10^{\prime \prime}$ NVT									
Symbol	Type	Pre Rad Limit			Post Rad Limit $1 \times 10^{14} \mathrm{n} / \mathrm{cm}^{2}$			Unit	Conditions
		Min	Typ	Max					
VCEO	BRIOO BRIOI	$\begin{aligned} & 40 \\ & 75 \end{aligned}$	50	-	$\begin{aligned} & 40 \\ & 75 \end{aligned}$	-	Z	V	$16 E 0=50 \mathrm{~mA}$
hFE	$\begin{aligned} & \text { BR100 } \\ & \text { BR101 } \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \end{aligned}$	100	$\begin{aligned} & 200 \\ & 150 \end{aligned}$	15	$\begin{aligned} & 25 \\ & 10 \end{aligned}$	-		$\begin{aligned} & I C=3 \mathrm{~A} \\ & V C E=5 \mathrm{~V} \end{aligned}$
VCE(s)	BR100 BRIOI		$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		1.5	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$	$\begin{aligned} & \mid C=3 A \\ & \mid B=0.3 \mathrm{~A} \end{aligned}$

Or check the chapters on our regular 3 -, 5 -, and 10 -amp units.

power and

the

is just the beginning.

3 AMP TYPES	
$V C E 0=40 \mathrm{~V}$ to 60 V	$\mathrm{VCBO}=80 \mathrm{~V}$ to 100 V
$\mathrm{Pc}=5 \mathrm{~W}$ to 7.5 W	
$\mathrm{VCE}(\mathrm{s})=0.32 \mathrm{~V}$ Typ at $1 C=1 \mathrm{~A}, 1 \mathrm{~B}=100 \mathrm{~mA}$	
$\begin{array}{ll} \text { Switching Types: } & \text { on }<35 \mathrm{~ns} \\ \mathrm{t} \text { off }<75 \mathrm{~ns} \end{array} \text { at } \mathrm{IC}=1.5 \mathrm{~A}, \mathrm{IB}=150 \mathrm{~mA}$	
Amplifier Types: Po>	W at $\mathrm{f}=50 \mathrm{MHz}, \mathrm{VCC}=28 \mathrm{~V}$, 0.5 W

5 AMP TYPES

$V C E O=40 \mathrm{~V}$ to $80 \mathrm{~V} \quad \mathrm{~V}$ CBO $=50 \mathrm{~V}$ to 90 V
$\mathrm{VCE}(\mathrm{s})=0.4 \vee$ Typ at $I C=3 \mathrm{~A}, \mid \mathrm{B}=0.3 \mathrm{~A} \quad \mathrm{Pc}=5 \mathrm{~W}$ Switching Types: t on $\leq 40 \mathrm{~ns}$ at $\mathrm{IC}=3 \mathrm{~A}, \mathrm{IB}=0.3 \mathrm{~A}$
Amplifier Types: $P_{0} \geq 8 \mathrm{~W}$ at $\mathrm{f}=50 \mathrm{MHz}, \mathrm{VCC}=30 \mathrm{~V}$, $P_{i_{n}}=1 \mathrm{~W}$

[^2]Or review the pages on our silicon mesas. Our SOAR (Safe Operating ARea) specified 2N3055 and its sister types are a natural for high power switching and amplifier applications. As well as our new B-170000 series.

B-170000 SERIES

$V C E O=40 \mathrm{~V}$ to $100 \mathrm{~V} \quad I \mathrm{C}=6 \mathrm{~A}$ to 15 A IB $=3$ A to $7 \mathrm{~A} \quad$ Ppeak to 1200 W
AMPLIFIER TYPES
fhfe $=20 \mathrm{kc}$ Typ at $I C=1 \mathrm{~A}, \mathrm{VCE}=10 \mathrm{~V}$ $\left.\begin{array}{l}\mathrm{VBE}=1.2 \mathrm{~V} \max \\ \mathrm{hFE}=20 \text { to } 120\end{array}\right\}$ at $I \mathrm{C}=500 \mathrm{~mA}, \mathrm{VCE}=4 \mathrm{~V}$ REGULATOR TYPES
$V C E(s)=0.7 \vee$ Typ at $I C=5 \mathrm{~A}, \mathrm{IB}=0.5 \cdot \mathrm{~A}$
$\mathrm{hFE}=12 \mathrm{~min}$ at $\mathrm{IC}=5 \mathrm{~A}, \mathrm{VCE}=4 \mathrm{~V}$
SWITCHING TYPES
$t r=6 \mu_{s}$ Typ
$\left.\begin{array}{l}\text { ts }=0.4 \mu \mathrm{~s} \text { Typ } \\ \mathrm{tf}=1 \mu \mathrm{~s} \text { Typ }\end{array}\right\}$ at $1 \mathrm{C}=5 \mathrm{~A}, 1 \mathrm{~B}= \pm 0.5 \mathrm{~A}$

Or take the 300 different silicon power rectifiers in the rugged JEDEC DO-4 package.

TYPES MEETINGMIL SPEC	AT $150^{\circ} \mathrm{C}$	
	$\stackrel{\text { Io }}{\text { AMPS }}$	$\begin{aligned} & \text { PRV } \\ & \text { vOLTS } \end{aligned}$
USNIN1124A, 26A,28A	1	200.600
USAFIN1199-1206	12	50-600
JAN1N1202, R,04,R,06,R	12	200-600
JANIN1614,R-16,R	5	240-720
JANIN4458, R, 59,R	5	950, 1200

It's this kind of reading material that's going to make Bendix a best seller. Why don't you throw your silicon power applications at us now? Or our nearest sales office.

See us at Wescon, Booth 1651, The Sports Arena.

from. 5 to 100,000 pf, nothing's as stable as glass

Boil, freeze, bury, drown or írradiate glass, and you won't measure any dielectric change.
Freeze a capacitive element inside that glass, and it's as immune as any capacitor can get to environment, temperature, time, voltage, moisture, frequency, vibration, shock.

That's why nothing comes closer to being a perfect circuit symbol than a CORNING® glass capacitor. And only Corning makes the glass capacitors to meet all these critical circuit needs:

High capacitance in small space. The CORNING® GLASS-K capacitor crams from 1,000 to 100,000 pf in a quarter-inch case size.

Dense circuitry, without doubts. The CORNING ${ }^{\circledR}$ TYO capacitor, from 1 to 2700 pf , has radial leads, precision case for snug upright mounting.

Documented stability and reliabil. ity. Every CORNING® CYFR capacitor, from . 5 to 10,000 pf, meets our punishing J-950 specification, and is backed by a heritage that includes use in Surveyor, Minuteman, Gemini, among others.

Low cost, high reliability. The CORNING® CYFM capacitor, from .5 to 10,000 pf, gives you CYFR-type environment-proof performance at substantial savings.

Why risk an entire system on capacitors that can't give you the assurance of Corn-
 ing dielectric stability? Send for the new CORNING ${ }^{\circledR}$ GLASS CAPACITOR GUIDE to Corning Glass Works, 3913 Electronics Dr., Raleigh, N.C.

IN HIGH POWER MODULES

kepco

MAKES THE

 DIFFERENCE!
MgORE OUTPUT WATTS PER POUND

 PER DOLLAR... PER CUBIC INCH!Wide coverage of fixed output voltages from 4.5 V dual to 120 V single
(图 Kepco patented Flux-O-Tran ${ }^{\circledR}$ provides line regulation and current limiting
[$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient operating temperature

- Highly reliable MTBF > 140,000 hours

E Convection cooling

- Short circuit proof

All silicon rectifiers
E Dual output and extra filtered models

- Versatile mounting (cased and uncased)

Rack adapters available to mount 1 to 5 units
Applicable Patent Nos, furnished on request

TYPICAL LOAD CHARACTERISTICS

SIZE "B" - 120 SERIES CASED UNIT - \$99.00**
$313 / 32^{\prime \prime} \mathrm{H} \times 5^{\prime \prime} \mathrm{W} \times 1313 / 16^{\prime \prime} \mathrm{D}$

MODEL	DC OUTPUT VOLTS	
AMPS		
PRM 6-15	6.3	$\mathbf{0 - 1 5}$
PRM 12-10	$\mathbf{1 2}$	$\mathbf{0 - 1 0}$
PRM 18-6.7	$\mathbf{1 8}$	$\mathbf{0 - 6 . 7}$
PRM 24-5	$\mathbf{2 4}$	$\mathbf{0 - 5}$
PRM 28-4.3	$\mathbf{2 8}$	$\mathbf{0 - 4 . 3}$
PRM 36-3.3	$\mathbf{3 6}$	$\mathbf{0 - 3 . 3}$
PRM 48-2.5	48	$\mathbf{0 - 2 . 5}$
PRM 60-2	60	$\mathbf{0 - 2}$
PRM 120-1	$\mathbf{1 2 0}$	$\mathbf{0 - 1}$

**Available cased only
SIZE "A" - 180 SERIES UNCASED UNIT - \$119.00*

$$
63 / 4^{\prime \prime} \mathrm{H} \times 43 / 4^{\prime \prime} \mathrm{W} \times 103 / \mathrm{s}^{\prime \prime} \mathrm{D}
$$

PRM 6-25	$\mathbf{6 . 3}$	$\mathbf{0} \mathbf{- 2 5}$
PRM 12-15	$\mathbf{1 2}$	$\mathbf{0} \mathbf{- 1 5}$
PRM 18-10	$\mathbf{1 8}$	$\mathbf{0} \mathbf{- 1 0}$
PRM 24-8	$\mathbf{2 4}$	$\mathbf{0 - 8}$
PRM 28-7	$\mathbf{2 8}$	$\mathbf{0 - 7}$
PRM 36-5	$\mathbf{3 6}$	$\mathbf{0 - 5}$
PRM 48-4	$\mathbf{4 8}$	$\mathbf{0 - 4}$
PRM 60-3	$\mathbf{6 0}$	$\mathbf{0 - 3}$
PRM 120-1.5	$\mathbf{1 2 0}$	$\mathbf{0 - 1 . 5}$

EXTRA FILTERED MODELS SIZE "C" - 180F SERIES UNCASED UNIT - \$169.00* $63 / 4^{\prime \prime} \mathrm{H} \times 43 / 4^{\prime \prime} \mathrm{W} \times 143 / \mathrm{s}^{\prime \prime} \mathrm{D}$

PRM 6-25F	$\mathbf{6 . 3}$	$\mathbf{0 - 2 5}$
PRM 12-15F	$\mathbf{1 2}$	$\mathbf{0 - 1 5}$
PRM 18-10F	$\mathbf{1 8}$	$\mathbf{0 - 1 0}$
PRM 24-8F	$\mathbf{2 4}$	$\mathbf{0 - 8}$
PRM 28-7F	$\mathbf{2 8}$	$\mathbf{0 - 7}$
PRM 36-5F	$\mathbf{3 6}$	$\mathbf{0 - 5}$
PRM 48-4F	$\mathbf{4 8}$	$\mathbf{0 - 4}$
PRM 60-3F	$\mathbf{6 0}$	$\mathbf{0 - 3}$
PRM 120-1.5F	$\mathbf{1 2 0}$	$\mathbf{0 - 1 . 5}$

DUAL OUTPUT MODELS SIZE "C" - 300 SERIES UNCASED UNIT - \$179.00*
$63 / 4^{\prime \prime} \mathrm{H} \times 43 / 4^{\prime \prime} \mathrm{W} \times 143 / 8^{\prime \prime} \mathrm{D}$

PRM $2 \times 4.5-20$	4.5	$0-20$
4.5	$0-20$	
PRM $2 \times 6-20$	6.3	$0-20$
	6.3	$0-20$
PRM $2 \times 12-12$	12	$0-12$
	12	$0-12$
PRM $2 \times 15-10$	15	$0-10$
	15	$0-10$
PRM $2 \times 18-8$	18	$0-8$
	18	$0-8$
PRM $2 \times 24-6$	24	$0-6$
	24	$0-6$
PRM $2 \times 28-5$	28	$0-5$
	28	$0-5$
PRM $2 \times 36-4$	36	$0-4$
	36	$0-4$
PRM $2 \times 48-3$	48	$0-3$
	48	$0-3$
PRM $2 \times 60-2.5$	60	$0-2.5$

*Case optional - add $\$ 10.00$ to price

KEPCO, INC. - 131.38 SANFORD AVENUE - FLUSHING, N.Y. 11352 • Phone: (212) 461.7000 - TWX \#212.539.6623 - Cable: KEPCOPOWER NEWYORK

Editorial

The high cost of insularity

Many electronics firms will remember 1966 as the year with the long, hot summer. In addition to some sizzling weather, many companies found themselves in uncommonly deep hot water because their equipment or systems did not work as well as predicted.

Third gencration computers have been coming on line a lot slower and working not nearly as well as expected at many installations [p. 149]. In New York City, a plan to control traffic electronically has stalled as a result of equipment design problems [p.37]. And in Los Angeles, a computer maker is trying to sell a large hybrid machine that the National Aeronautics and Space Administration refused to accept when development problems delayed delivery for a year [p 38].

Trouble like this is the side of engineering most companies don't want to talk about. Yet it can produce the most valuable kind of information if somebody analyzes what went wrong and then corrects it. There's an old saw that goes: "People learn more when things go wrong than when they go right."

Government agencies are notoriously guilty of trying to cover up an engineering failure as if it were a stigma. NASA, despite its legal commitment to make technical information public, is the worst offender. It has illegally classified almost everything that has gone wrong. Curtains of secrecy shrouded projects such as the ill-fated Ranger flights of a few years ago and the S-2 second stage of Saturn 5, which blew up at the Mississippi test facility. When the Houston space facility refused to accept a $\$ 1.4$-million hybrid computer, the bureaucrats imposed a steely silence on the matter. What the politicos in such agencies camnot comprehend is that an engineering failure might have a technical cause and not be caused by agency incompetence, shaky procurement practices or just plain illegal conduct.

Troubles like those mentioned earlier can be traced in part to a common technical cause: the mushrooming complexity of systems. Discussing his company's troubles with third generation computers, an IBM executive said frankly, "We underestimated the complexity of taking this step."

In electronics these days, technology is moving so fast that the people working with it sometimes lose sight of just how fast they are advancing and what a giant step forward will mean. As the system gets more complex, a small deficiency in one part can be multiplied and transmitted throughout, wrecking the entire design concept. In the less complex arrangements of the past a similar deficiency could have been entirely ignored and forgotten.

Increasing complexity puts an added burden on the engineer. He can't concem himself solely with his circuit or his portion of the system. He has to worry not only about how his portion will perform but how it will mate with the rest of the equipment and the system.
Two new areas of concern are opening up: compatibility and reliability. Although the military has forced the industry to talk about reliability, a large portion of the effort has been devoted to measuring it after the fact, through variables such as mean-time-between failures. Not enough people recognize that reliability starts in the engineering phase with the design. Engineers need to know more about what canses failures and where they start.
Compatibility is a more frustrating problem because the failure is much harder to trace. A subsystem might work perfectly when tested alone but not work at all when put into a system. In addition, nobody is willing to take the responsibility for causing the trouble and it's easy to put the blame on somebody else or some other piece of equipment.
If cataclysmic troubles with complex systems are to be avoided, the old attitudes toward compatibility and reliability will have to be dropped. An engineer has to take responsibility not only for how his design performs but also how well it matches up. Suppliers too will have to accept additional responsibility for their products.

N0W!

 Solid State Time Delay Relays for as little as
($\mathbf{P} \& \mathrm{~B}$ QUALITY, OF COURSE)

why pay for operating characteristics you don't need?

Here is a practical cost-saving answer to many timing applications which do not require the extreme precision of much more expensive relays. CH Series solid state time delay relays are quality-built to perform dependably in most industrial applications. Where more critical perameters are required, we recommend our CD Series.
SAVE UP TO $\mathbf{6 0 \%}$-You can save up to 60% of your time delay relay costs with our new CH Series. Adjustable or fixed models are available with delays on operate or release as well as "interval on".
ACCURACY $\pm 10 \%$ - Accuracy is $\pm 10 \%$ over the -10° to $55^{\circ} \mathrm{C}$ temperature range for adjustable time delays. Fixed delays have an accuracy of $\pm 5 \%$ at $25^{\circ} \mathrm{C}$ ambient temperature. Reset time is 100 milliseconds.
INTERNAL RELAY RATED 10 AMPERES-An internally-mounted DPDT relay is rated at 10 amperes, 115 VAC, resistive. Both AC and DC models are available and all come in a white nylon case with octal plug. CH relays for DC operation have an internal protection against damage by reversal of input polarity. Relays will not operate falsely nor be damaged by a transient input voltage having a magnitude up to twice rated input voltage and a duration of eight milliseconds.
Write for the complete catalog of P\&B Time Delay Relays. You can get CH Series relays from your local electronic parts distributor.

SPECIFICATIONS
CH and CD Series Comparison

	CH SERIES	CD SERIES
Dial Setting	Reference scale	Time-calibrated $\pm 5 \%$ of full scale
Temperature Range	$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Accuracy Over Temperature and Voltage Range	$\pm 10 \%$ of nominal	$\pm 5 \%$ of nominal
Transient Protection	Twice rated input voltage for 8 milliseconds	Tested to 1000 V $1 / 2$ cycle surges (on all 115 V AC models)
Inherent False Operation	Contacts may transfer momentarily if timing interval is interrupted	None
Reset Time	100 milliseconds	60 milliseconds
Repeatability	$\pm 2 \%$	$\pm 1 \%$
Polarity Reversal Protection (on DC)	Yes	Yes

PロTTER \& BRUMFIELD
Division of American Machine \& Foundry Co., Princeton, Ind.
Export: AMF International, 261 Madison Ave., New York, N.Y.

Electronics Newsletter

August 22, 1966

GT\&E researchers develop inorganic liquid laser

A room-temperature liquid laser, the first to use an inorganic compound, has been developed by the same laboratory that first developed an organic liquid laser. The work, performed at the General Telephone and Electronics Corp.'s Bayside, N.Y., laboratories, is significant because the lasing material (neodymium oxide dissolved in selenium oxychloride) is inexpensive and easy to make and not subject to breakdown when pumped at high power. In addition, the laser tube can be made in nearly any shape or size.

In early experiments, the GT\&E scientists, Adam Heller and Alexander Lempicki, have easily achieved 1 -joule pulsed operation from the laser, although they believe it can soon reach very high continuouswave output. The researchers say that in some modes the laser's gain is so high that it is possible to produce laser action without the usual end mirrors. Output is in the invisible infrared region- 1.06 microns.

The research team predicts that, because heat can be dissipated easily, the liquid laser can eventually reach higher outputs than crystalline lasers. Heller and Lempicki say they are planning to circulate the liquid in the tube during lasing action; this, they believe, will dissipate the heat built up in the system even faster, making higher outputs possible. Other liquid compounds are also being investigated.

NASA schedules
Apollo guidance flight test

The first flight test of the inertial guidance system that will eventually guide American astronauts to the moon is planned for the Apollo/ Uprated Saturn-I 202 mission scheduled later this month at Cape Kennedy. The system is nearly identical to the one that will be in the first manned Apollo mission. The feat may come as early as Nov. 17. The ballistic flight of 202 will take about an hour and a half as the spacecraft travels two-thirds around the globe, splashing down near Wake Island in the Pacific.
The space agency's manned flight chief, George Mueller, warned, meanwhile, that this month's 202 launch may not be the last before the design is considered ready. He also saw little chance of reaching the moon by early 1968 .

First all-IC numerical control ready for market

The first numerical control for a three-axis contouring machine built exclusively with integrated circuits will be introduced in a few weeks by the Cincinnati Milling Machine Co. Within the past year other producers have developed numerical control for point-to-point machines with only some components replaced with IC's. Cincinnati Milling claims that its equipment has been tested under production conditions for more than a year without a failure.

BARTD ponders high cost of sophistication

Though preliminary specifications for the train control and communications system have already been printed and bids are to be advertised on Aug. 30, the San Francisco Bay Area Rapid Transit District (BARTD) is still tinkering with requirements. BARTD is wondering if it might not have to pay too high a price for sophistication. Preliminary specifications, for instance, call for a train to stop within ± 1 foot. But general manager B.R. Stokes and chief engineer David G. Hammond returned from a

Electronics Newsletter

Foam waveguide can carry power of a billion watts
world tour early this month impressed with a relatively crude method being tested by the London Transport System, which makes do with a stopping tolerance of $71 / 2$ feet. BARTD has been considering other changes also.

Microwaves are a common communications medium, but they also have potential for power transmission. Two Stanford University researchers, Prof. Donald A. Dunn and graduate student Walter Loewenstern Jr., displayed last week a chunk of plastic foam waveguide suitable for transmitting a billion watts of microwave power. The foam is actually only a supporting element: the r-f energy is carried on a thin copper lining.

Dunn and Loewenstern pointed out that no devices exist yet to convert large currents to microwave energy at one end of the waveguide and back again at the other. Microwave tubes can produce about a million watts in the 8 -gigahertz range. "Theoretically," Dunn says, "there is nothing to prevent a large boost in the power of microwave tubes if lower frequencies are used."

Power would be transmitted in the TE01 mode. To keep mode conversion losses low, the waveguide must be straight and round, with a tolerance of from 10 to 100 mils in a typical 4- to 6 -foot diameter pipe. Bends would be possible if the radius of curvature were constant, and greater than a tenth of a mile.

The entire waveguide would be underground, and the foam's job would be to absorb vibrations (that would otherwise cause power losses) by converting the energy to high-loss modes.

A-c generator made of superconductors wrapped in plastic

Sperry awards

 gyroscope contract to GM divisionA generator for space, nearing the prototype stage at a small company in Cambridge, Mass., underlines the progress being made toward use of superconductors for lightweight, compact electrical machinery. The a-c generator, being developed by the Dynatech Corp. with Air Force funds, is believed to be the first totally superconducting generator. Both the field coil and armature are made of niobium tin, a superconducting compound.
Since superconducting materials offer virtually zero resistance, they provide a high current-carrying capacity in a small volume.
In the Dynatech generator, a new plastic enclosure thermally and electrically isolates the armature from the iron flux path. The multiwall, vacuum-tight plastic enclosure was developed by the Hofman-Paul Cryogenic division of the Air Reduction Co. It functions like a dewar, but because it is plastic rather than metal, it permits the flux to reach the iron return path without generating eddy currents. And because the plastic is vacuum-tight, it preserves the thermal boundary between the iron return path and the armature, virtually eliminating heat transfer.

The Sperry Gyroscope division of the Sperry Rand Corp., one of the largest manufacturers of inertial guidance systems, has awarded a \$700,000 subcontract to General Motor Corp.'s AC Spark Plug division to build four prototype gyro systems for the Navy's Integrated Light Attack Avionics System (ILAAS). ILAAS program manager, Martin Astrow of Sperry, explained, "We looked throughout industry and felt that AC could best meet our time schedule and technical needs." Sperry will, however, build the standby gyro platforms under a $\$ 400,000$ initial contract.

Don't look at the price!

Meet all your needs with one versatile instrument

FAST RESPONSE
digitizing time 6 ms

HIGH ACCURACY
 5 digits with 6 th digit (20% !) overranging

SOLID STATE RELIABILITY

no mechanical choppers

FUNCTIONAL EFFICIENCY

accessory modules readily adaptable to a wide variety of function combinations

HIGH COMMON MODE REJECTION

120 db , unfiltered, with up to 100 ohms unbalance

"Get it right the first time"
 $\mathrm{X}-1$ eliminates first reading error

You can forget about the problem of "first reading error" with the fast $\mathrm{X}-1$. You see the reading instantaneously and correctly the first time it appears. Digitizing time is 6 ms . With polarity change, settling time is about 20 ms . This makes the NLS X-1 the perfect instrument for systems.

Performance packaging

Take a look at packaging designed to improve performance, simplify maintenance, and extend the useful life of the instrument. Top-loading double drawers contain the Analog to Digital Converter and Input Accessory modules. The Power Supply module is easily accessible at the rear of the instrument.
Easy access to plug-in boards and use of repetitive boards and parts throughout the instrument minimizes the need for spare components and makes rarely required maintenance easy and economical.

The NLS X-1: Latest in a history of firsts

NLS X-1 is the latest in a line of "firsts" dating back to 1952 when Andrew F. Kay designed and built the original digital voltmeter and founded Non-Linear Systems. The reputation for outstanding quality earned by these instruments is a result of specialization in digital voltmeters and associated equipment. Concentration of effort in one field has paid off with superior products for the user from the original digital voltmeter, serial number 1 , to the $\mathrm{X}-1$, the ultimate in precision instrumentation. A total of 58 man-years of digital voltmeter design experience went into its creation. While the NLS X-1 is the latest in a history of NLS "firsts," you can be sure it's not the last. Research goes on at Non-Linear Systems be-
cause the company is dedicated to maintaining its leadership in DVM development. You can look for the

Original DVM, serial number 1 latest and the best at un-

Get full information on your NLS X-1

Tell us about your particular needs and let us show you how the NLS X-1 can do the job better than any other instrument in its price class. Fill out the attached card, or write directly to NLS, 1Dept. 800, Del Mar, Calif. 92014.

Originator of the Digital Voltmeter
non-linear systems, inc.
Del Mar, California Phone: (714) 755-1134

RESOLVER/SYNCHRO INSTRUMENTATION

A very short course for engineers engaged in testing and evaluation of resolvers and synchros as components or as system transducers.

Selecting a resolver/synchro test instrument for any engineering, production or system requirement is remarkably simple from North Atlantic's family of resolver and synchro instrumentation. Because this group has been developed to cover every area of need in both manual and automatic testing, obtaining the desired combination of performance and package configuration usually demands no more than 1) determining what you need and 2) asking for it.

Remote Readout of Angular Position

For remote indication of resolver or synchro transmitters in system testing, North Atlantic's Angle Position Indicators (Figure 1) provide the advantages of low cost and continuous counter or pointer readout. These high-performance instrument servos are accurate to 4 minutes of arc, with 30 arc seconds repeatability and 25° /second slew speed. Dual-mode capability, multi-speed inputs, integral retransmit components and other optional features are available to match application needs. Priced

Figure 1. Angle Position Indicators are available in half-rack, quarter-rack and 3 -inch round servo packages.

High-Accuracy Testing

Of Receivers And Transmitters

Measuring receiver and transmitter performance to state-of-art accuracy is readily accomplished with North Atlantic's Resolver/Synchro Simulators and Bridges (Figure 2). Each of these dual-mode instruments tests both resolvers and synchros, and provides direct in-line readout of shaft angle, accurate to 2 arc seconds. Simulators supply switch-selected line-line voltages
from 11.8 to 115 volts from either 26 or 115 volts excitation, and so can be used to test any standard receivers. Bridges have constant null voltage gradients, making them ideally suited for rapid deviation measurements. Simulators and Bridges each occupy only $31 / 2$ inches of panel height and are available in a choice of resolutions. They are priced in the $\$ 1500$ to $\$ 3000$ range.

Figure 2. Resolver/Synchro Simulator provides iceal source for receiver testing.

Automatic Measurement And Conversion

Where systems require continuous or on-command conversion of resolver or synchro angles to digits, North Atlantic's Automatic Angle Position Indicators (Figure 3) handle the job without motors, gears or relays. These solid-state automatic bridges accommodate all standard line-to-line voltages and provide both Nixie display and printer output, accurate to 0.01° and with less than 1 second update time. Many variations, including 10 are second accuracy; binary, BCD or decimal outputs; multiplexed channels and multispeed operation, are available for specific requirements. Ballpark price: $\$ 5900$.

Figure 3. Model 5450 Automatic Angle Position Indicator. It measures shaft angles, converts them to digital data

Measuring Electrical Characteristics

Combine a Resolver/Synchro Bridge and a Simulator with a North Atlantic Ratio Box, a Phase Angle Voltmeter and a test selection panel and you have an integrated test facility for determining all electrical characteristics of resolvers and synchros in component production or Quality Control. An example is the North Atlantic Resolver/Synchro Test Console shown in Figure 4. It measures phasing, electrical zero, total and fundamental nulls, phase shift and input current, as well as angular accuracy. Standard North Atlantic instruments are used as modules, making it a simple matter to fill the exact need. The unit shown sells for about $\$ 7500$.

Figure 4. Model RTS:573 Test Console is a complete facility for the production line or in quality control.

If you require performance, reliability and convenience in resolver and synchro testing, we want to send you detailed technical information on these instruments (also on related instruments for computer system interface). Or, if you prefer, we will arrange a comprehensive technical seminar at your plant. Simply write to: North Atlantic Industries, Inc., 200 Terminal Drive, Plainview, N. Y. 11803 • TWX 516-433-9271 • Phone (516) 681-8600.

Now: A Fast Signal Averager

Photo *1—Input to Model TDH-9 SENSITIVITY: $5 \mathrm{~V} / \mathrm{cm}$ TIME: $10 \mu \mathrm{sec} / \mathrm{cm}$ NOISE-TO-SIGNAL RATIO: 10:1

Photo *2-Output of Model TDH-9
SENSITIVITY: $5 \mathrm{~V} / \mathrm{cm}$
TIME: $10 \mu \mathrm{sec} / \mathrm{cm}$
TDH-9 VOLTAGE GAIN: 10

PAR Model TDH-9 Waveform Eductor

Photo \#1 is an actual oscillogram of a signal obscured by noise - a situation unfortunately prevalent in many research areas such as studies of biomedical evoked potentials, seismology, spectroscopy, fluorescent lifetime studies, and vibration analysis. Photo \#2 shows the dramatic improvement in signal-to-noise ratio when the noisy signal was processed
by the PAR Model TDH-9 Waveform Eductor.

This new instrument employs a highly efficient waveform-averaging technique, and at the same time offers the fastest sweep rates obtainable in signal processing equipment of the signalaveraging type. Sweep durations as short as 100 microseconds, with dwell times per channel of 1 microsecond, are obtainable. The high resolution capability of the Model TDH-9 allows observation of waveforms or transients which have heretofore been unresolvable by averaging instruments employing a greater number of channels.
Although the Model TDH-9 Waveform Eductor sells for only $\$ 4,200$,
we invite functional comparison with the higher-priced digital averagers. We believe you will be pleasantly surprised. For more information about the PAR Model TDH-9, ask for Bulletin No. T-126.

Have a noise problem?

PAR's technical staff, unusually knowledgeable in signal processing problems and techniques as a result of its experience in the development and application of Lock-In Amplifiers, welcomes your specific inquiries. Please call or write.

[^3]
Electronics Review

Space electronics

Beyond the moon...

The five-flight, \$195-million Lunar Orbiter program may continue long after it has accomplished its primary mission-validating landing sites for the Apollo manned spacecraft. Project officials at the National Aeronautics and Space Administration and the craft's prime contractor, the Boeing Co., are studying missions for future orbiters that may send the craft as far as Venus and Mars. NASA hopes to get funds for five more Orbiter flights in its fiscal 1968 budget.
'If we had them.' As the space agency's Lunar Orbiter program manager, Capt. Lee Scherer, put it before the first spacecraft was successfully launched toward the moon on Aug. 10, "I think we could find a use for 20 of these spacecraft, if we had them." The first two Orbiters have one of the most important jobs in the space program: pimpointing an area on the moon about two miles wide and four miles long that is flat enough and sufficiently free of boukders so the Apollo astronauts can land safely.
Definite jobs for the other three Orbiters haven't been finally decided. In the event the first two Orbiters fail in their mission, the next three could act as backups. But, NASA says, if the first two are successful, new jobs will be found for the remaining three

The Lunar Orbiters may make another contribution to the Apollo mission. The Langley Research Center, which manages the program, is working with the Manned Space Network on an idea to permit the network's stations to track future Orbiters and thus give the network practice in tracking Apollo when it orbits the moon.

After that, the opportunities for new missions are a'.nnst as limit-
less as space. One proposal, to photcgraph the back of the moon, would require no spacecraft modification, Scherer says. Also, he expects Orbiters to photograph areas around future Survevors on the lunar surface. This would permit comparisons with pictures taken on the surface.
Still another plan under consideration is to investigate the area around the crater Aristarchus, where unexplained red spots were spotted first by Russian astronomers and more recently by French and American observers. The spots

Venus or Mars. This could be accomplished relatively simply, according to the company, by redesigning part of the craft and using Mariner 4 television cameras. NASA didn't buy the idea on the spot, but gave Boeing $\$ 60,000$ to continue the studies.

In the meantime, however, the schedule calls for launching Orbiters every three months. But this may not be possible because the Deep Space Network, charged with tracking and data reception, will be busy with the Survevor and Pioneer interplanetary missions.

Lunar orbiter lowered into test chamber before its flight to the moon to snap photos of landing areas for Apollo.
have been the subject of scientific speculation that the moon may contain volcanoes, and some VASA planners hope that volcanic gases can be found for use in manufacturing rocket fuel on the moon.
Dros the word. Bocing would be just as happy to drop the term "lunar" from the spacecraft's name. The company recontly submitted an unsolicited proposal to NASA for modifying the craft to permit it to be placed in orbit around

. . . and to the sun

Another NASA program that may be expanded beyond its current role is the Pioneer interplanetary spacecraft.
The first Pioneer in the present series is still returning scientific data eight months after its launch last Dec. 16 and two months longer than the contract demanded. A second Pioneer was to be latunched on Aug. 17 to search for the tail
end of the earth's magnetosphere.
The space agency was so happy with the performance of the first satellite that it recently added another launch to the current fourflight program. NASA will decide later this year whether to add two more Pioneer fights. Tlis may be just the beginning of what promises to be an open-ended program. Several more Pioneer missions are being studied at NASA's Ames Research Center at Moffet Field, Calif.

All paid for. One reason for the satellite's popularity is that development costs have all been paid by the $\$ 55$ million spent for the first four satellites. The space agency plans to spend only $\$ 5$ million for the fifth model, now called Pioncer-E, by building it with spare parts from the original contract.

Also, Pioneer has become NASA's workhorse for studying the interplanetary environment during the current period of increased solar activity, which builds up to a peak in 1969. This job would have been performed by the Advanced Orbiting Solar Observatory, a program wiped out earlier this year by the space agency's budget squeeze.

The first five Pioneers in the current series are designed to operate in orbits around the sun. Pioneer 6, the first in the present series, is in an orbit about 75 million miles from the sun, while Pioneer 7 was to be aimed at an orbit about 105 million miles from the sun. (Spacecraft are given letter designations before a successful launch and number desig. nations afterwards.) NASA's carlier Pioneer series, numbers 1 through 5 , back in 1958 to 1960 , were not quite so successful.

Missions for the three remaining approved Pioneers haven't been lecided. But NASA program manager, Andrew Edwards Jr., believes the next one will be launched in about a year and will orbit between the earth and sum. What NASA wants most of all is to have two Pioneers operating at one time to correlate data on the sun from points inside and outside the earth's orbit. This would probably
require a launch every nine months.
Biggest hurdle. The two Pioneer Hights under study, now called F and C, would use a more powerful version of the Delta launch vehicle. NASA's Deputy Administrator Robert Scamans Jr, has yet to okay a detailed design study and the project still has to clear the biggest hurdle-approval in the fiscal 1968 budget. The two launches are planned for late 1969 and early 1970.

Looking further down the line, the Ames Center, along with TRW Systems Group of TRIV, Inc., the satellite builder, is studying a variety of exotic Pioneer missions. They include a satellite operating within the orbits of Mercury and Vemus, and probes of some 20° to 25° out of the ecliptic plane, the path in which the earth moves around the sum. Also being studied are "Biopioncers," satellites that would study biological rhythms of organisms beyond the influence of the earth's gravity. Being considered for this experiment are cockroaches, potatoes and desert pocket mice.

Patents

The laser decision

If the laser creates a billion-dollar inclustry, a sizable chunk of the gross will probably go to patent lawvers.

The latest spurt in laser patent activity started when the United States Court of Customs and Patent Appeals affirmed the patent awarded to Arthur L. Schawlow and Charles H. Townes for the Fabry-Perot type laser and rejected the appeal of Gordon Gould [Electronics, Nov. 29, 1965, p. 106].

The decision would seem to establish Schawlow, now head of the physics department at Stanford University, and Townes, his broth-er-in-law, a Massachusetts Institute of Technology professor, as co-inventors of the laser, although neither built the first operating device.

Financial rights to the Shawlow-

Charles H. Townes

Townes patent belong to Bell Telephone Laboratories, where Schawlow was an employee and Townes a consultant when the "optical maser" was conceived in 1958.
"I am glad the case is settled," says Gould, adding that this may speed action on a "roundup patent" he has filed. This includes elaims on Brewster angle windows for lasers, the helium-neon gas system and Q-switched lasers. Bell Telephone Laboratories is opposing the first two, and the Hughes Aircraft Co.-where the first laser was built in 1960 by Theodore H. Maiman -is disputing Could's claims on Q-switching.
An appeal? But the decision whether to continue litigation on the Schawlow-Townes patent rests with TRG, Inc., a subsidiary of the Control Data Corp, to which Gould's rights are assigned. Counsel for the company says it will be a few weeks before it decides whether to appeal to the U.S. Supreme Court. Also under consideration by the company is a request for a rehearing.
The court decision rested principally on Gould's failure to prove that he conceived the invention prior to July 30, 195S, when SchawLow and Townes filed their patent, and his failure to prove "reasonable diligence" in pursuing such an idea prior to his own filing date of April 6, 1959.

A few days after the court decision, the International Business Machines Corp. announced it was granted a patent covering semiconductor injection lasers. Four years ago this summer, research teams at IBM, the General Electric Co. and MIT's Lincoln Laboratory were racing to get coherent radiation from gallium-arsenide junctions. The contest ended in virtually a dead heat at the end of October, 1962, when all three disclosed they had succeeded. All used the injection technique, direct application of an electric current and conversion of this d-c power into coherent light at the diode junction.

The claims in the IBM patent specify injection lasers that emit light of energy less than the bandgap of the semiconductor material from which the laser is made.

Broad coverage. Patent rights in the semiconductor laser field are bound to get more complicated before long. The patent with perhaps the broadest coverage-a total of 10 clams-was awarded April 5 to CEE, but it had not been publicly announced by the company.

Like IBM, GE claims that its patent is the basic injection laser patent. Asked to comment on the situation, IBM would only say that it would issue a license for any company to produce the injection laser "at a reasonable fee." Neither GE nor IBM would comment when asked whether any litigation over the patent was planned.
Lincoln Labs, one of the most

Arthur L. Schawlow
active centers in development of diode lasers, received its first patent on June 28, and it covers conception of a laser that has not yet been physically achieved: a zincdoped germanium diode with infrared output.

The researchers at MIT make no clain to priority in achieving the first injection laser. They have publicly credited CE's Robert N. Hall and his coworkers with the initial success.

Advanced technology

A better red

A research team at the Massachusetts Institute of Technology's Lincoln Laboratory believes it is close to developing a better red solidstate laser. The group is now testing a new host material and is zeroing in on a new dopant to complement the host material. The lack of a good source of coherent red light has been delaying the development of large laser displays [Electronics, July 25, p. 143].

The new host material is yttrium vanadate. The Lincoln group, headed by Joseph R. O'Connor, has observed pulsed laser action at room temperature from crystals of YVO_{4} doped with neodymium. There are hints that contimouswave operation has also been observed, but O'Connor says only that he hopes to be able to report c-lv laser action next week (Aug. 29-30) in Boston at a meeting of the Metallurgical Society of the American Institute of Metallurgical, Mining and Petroleum Engineers.

Dopant search. The output of the neodymium-doped yttrium vanadate is 1.06 microns in the nearinfrared. For a visible output in the red band, the dopant under investigation is curopium, the phosphor that supplies red in color television tubes. "If it goes," says O'Connor, "europium-doped yttrium vanadate may provide one of the best red c-w lasers."

O'Connor's group is also continuing studies of the spectral properties and transitions in the neo-dymium-doped yttrium vanadate.

Radiative lifetimes of neodymium are low, so there is hope of high pulse-repetition, says O'Connor.

Work with yttrium vanadate is also being done at the Bell Telephone Laboratories, at the General Electric Co. in Cleveland and at the Union Carbide Corp,'s Electronics division in Indianapolis.

The Lincoln Laboratory team sees YVO_{4} competing successfully in many applications where YAGyttrium aluminum garnet-is now being tried. "The fluorescent spectra are simpler," savs O'Connor, "and the transitions are stronger." This means better energy-conversion; therefore, higher efficiency.
"In addition," says O'Connor, "we are hopeful that the thresholds will eventually be lower than those for "YAG."

At present, O'Connor points out, 100 to 300 watts are being obtained from YAG at a pulsed threshold of 1 to 2 joules, with 30% efficiency.

Lower threshold. In recent Lincoln Lab experiments, stimulated emission from yttrium vanadate rods was also observed at a threshold of 1 to 2 joules. The power output has not been measured, but says O'Connor, "We hope to get some accurate measurement when we have c-w action."

The single-crystal rods grown by the Linde division of Union Carbide for Lincoln Laboratory are as long as 2 inches, another advantage in using yttrium vanadate. It is a problem, says O'Connor, to get YAG crystals longer than about $1 \frac{3}{1 / 6}$ inches.

Industrial electronics

Stalled traffic control

New York's computer-operated traffic-control system has hit an engineering roadblock.

The Sperry Gyroscope Co., which has a $\$ 5.4-m$ million contract for the city system, found that its traffic-speed radar sensors weren't working properly. Although Sperry, a division of the Sperry Rand Corp., would only say that it was having "production problems," it has been learned that the
sensors were providing speed readings with errors of as much as 30%, whereas the city's specifications called for errors no larger than 2%. Sperry began to deliver the system to the city-but without the erring sensors. Traffic Commissioner Henry A. Barnes, however, objected and ordered the company to keep the gear until all the parts met the specifications. Embarrassed, Sperry pulled the equipment back while its engineers puzzled over the sensors.

To Sperry, the contract is more than a 55.4 -million order. When the first part of the computer system is completed-and no one is willing to say when that will be in light of the sensor problem-the city will be in the market for another $\$ 100$ million of electronic gear to computerize most of its traffic lights.

Foreign aid. Apparently Barnes is more certain than Sperry that the sensor problem will be solved quickly. The traffic commissioner disclosed that the company recently mentioned the possibility of using French-made sensors to replace the troublesome gear. Bames savs he rejected the plan out of hand. The use of foreign equipment, he said, would make maintenance and parts replacement a headache.

The sensor inaccuracy, explained Barnes, is caused by spurious signals that feed from the transmitter directly into the system's two receivers. Because of this, he explains, the receivers aren't able to discriminate between the spurious signals and the authentic echoes from passing vehicles.

Computers

White elephant

Webster defines white elephant as "a property requiring much care and expense and yielding little profit." Beckman Instruments, Inc., has one that cost $\$ 1.4$ million and it is sitting in its Systems division in Richmond, Calif.

Beckman's white elephant is the
world's largest hybrid computer. The company developed it for the National Aeronantios and Space Administration and it was to have been delivered to NASA's Manned Spacecraft Center in Houston, where it would have been used as a problem-solving computer for the Apollo program, mainly in development of lumar orbit simulations.

Too late. But Beckman fell 12 months behind the delivery date because of development problems and the Apollo program progressed beyond the need for the system, says the agency. So NASA terminated the contract giving Beckman "a financial consideration" and told the company to keep the computer. The space agency is now using existing data-processing facilities at Houston to perform the job originally planned for the Beckman system.

NASA officials say a $\$ 1,314,000$ contract was written on a fixedprice basis and, as a result, the space agency was not liable for the whole amount. They claim the loss to the Govermment was $\$ 84,000$ of which $\$ 50,000$ went for system development and $\$ 34,000$ for rental of interim computer equipment. Beckman had been under contract since June 25, 1964.

While Bockman seeks a buyer, the computer is being rented to companies that have special problems to solve. The rental for the complete system is $\$ 700$ an hour.

Big tasks. L.B. Horwitz, Beckman's systems division manager, commenting about the problems Beckinan encountered with the huge system, said: "With a new de-
velopment you always have problems, and we didn't appreciate in the beginning just how big a task this was."

Horwitz said a group of potential customers is interested in the system, inchiding chemical and aircraft companies which could use it for flight dynamics.

The system consists of two Beckman 2200 analog computers, a Sc1entific Data Systems, Inc., digital computer interface and peripheral equipment.

Money saver. The software includes the most complete hybrid libraty available today, according to Beckman. The concern developed a special hybrid Fortran package. The computer can handle 16 priority interrupts, an interrupt being triggered by some event that occurs during computation.

Dick Neshit, who developed the software, explained that the system's value lies in its ability to handle large, complicated problems that a digital computer alone either could not handle or would take a long time to solve.

Integrator on a chip

The first digital integrator on a monolithic chip will be introduced later this month by the General Instrument Corp. The metal oxide semiconductor (MOS) device represents a move toward development of a computer on a chip-a goal still well beyond the current state of the art.

For $\$ 500$, buyers will get a package that includes two complete

Monolithic integrator, to be introduced by General Instrument, is a step closer to the development of a computer on a single semiconductor slice.

WHO PINNED A MEDAL ON THIS

...nearly everybody!

For your next design where there's too little room for components and no room for compromise. .. turn to "tiny but tough'" TRW Type 608 Mylar* capacitors.
Excellent electrical characteristics and exceptionally small size make the Type 608 ultra-miniature a good capacitor for exacting military and instrument applications. Add the remarkable record of space-proven reliability and TRW Type 608 becomes a great capacitor! Look at these outstanding features!

- 50% smaller than MIL-C-27287
- $41 / 2 \mathrm{lb}$ lead pull capability
- Mylar-foil, tape-wrapped construction
- Exceeds electrical characteristics of many larger units
- MIL-C-27287 performance
- 50 V and 100 V , .001 to 2.0 mfd
- Temperature range -55 to $+85^{\circ} \mathrm{C}$; to $125^{\circ} \mathrm{C}$ with derating
- Tolerance to $\pm 1 \%$ available

Contact TRW Capacitor Division, Box 1000, Ogallala, Nebraska, or phone (308) 284-3611. TWX: 910-260-0321
adders on a single chip, plus two shift registers on another chip. One adder plus two shift registers make an integrator, and two or more integrators make a digital differential analyzer.
Add a chip. The dual adders are packaged in a 24 -lead Hatpack; the shift registers in the second chip can be extended to any desired length with additional flatpacks, depending on the application.
The 72 -by- 86 -mil chip contains 230 MOS transistors. It's the MOS technology-which allows for extremely dense packaging-that makes the device possible. Conventional bipolar transistors occupy 20 times more space, which explains why digital differential analyzer integrated circuits haven't been practical up to now. A similar design but with bipolar transistors would have required more than 60 chips.
The digital integrator is the equivalent of an analog resolver, and is the basic unit of the oldest digital computer designs. A digital differential analyzer, made by connecting several integrators, can solve quickly any kind of problem that can be expressed as a set of differential equations. The sine and cosine of a number, for example, can be generated with two integrators, or the natural logarithm can be generated with three integrators.

A fast and accurate inertial navigation system, for instance, can be built with an array of perhaps 20 integrators-for a total cost of about $\$ 10,000$.

But such integrators have their drawbacks: they lose all control when their power supply fails even briefly. Hence, they generally are not considered for avionics or proc-ess-control systems, where power failures can be disastrous.

Built into arrays. The principal advantage of the circuit is its economical application in a specialpurpose computer. Previously it would have been financially impractical to build large special-purpose computers with differential amalyzers. With the chips, however, sets of analyzers could be built into arrays connected with a patchboard, the way operational amplifiers are connected to analog computers to solve complex problems.

General Instrument's Radio Receptor division is using the chip in an interferometer direction fincler under a contract with the Army Signal Corps. The direction finder's computer contains 12 of the new chips, plus associated logic, and generates sines and cosines and multiplies two variables like an analog computer.
The military computer occupies less than 50 cubic inches, most of which is for code wheels for inserting constants and initial conditions. An earlier version, without the new chips, required a whole rack of electronic equipment.

Antennas

Widening the feed point

Antemnas that are used for jamming radar and communication installations should be high powered to "overcome" the enemy's signal, and wideband, so that a broad range of frequencies can be selected. Conventional wideband antemas used for this military job, such as the log periodic dipoles, however, don't hold up under powers much above 3 kilowatts, primarily because the point where the antemna is fed is small.

George A. Voronoff, an antenna designer at the Dalmo Victor Co.
of Belmont, Calif., a division of Textron, Inc., has developed an unusual \log periodic slot array that was designed to get around the limitations of the small feed. The Voronoff design is V-shaped, with two or more log periodic arrays cut into the metals walls that form the V. Down through center of the V is a strip of tapered dielectric. Power for the antenna is fed into the wide mouth of the V, and the result, says Voronoff, is an antenna with a bandwidth of 6 to 1 , with continuous-wave power as high as 154 kilowatts. The antemna that the engineer built operates at 3.5 to 8.2 gigahertz.

Although the system has obvious applications in electronic countermeasures, it could also be used for communications.

One-sided advantage. The shape of the antemna, says the designer, makes it perfect for flush-mounting in the wing of an airplane. Another advantage, says Voronoff, is that it radiates on only one side of the slots, producing a 20° by 20° beamwidth. Conventional log periodic dipole antennas produce a beamwidth of about 75° by 75°.

The antenna's range of frequencies depends on the positioning of the slots and the taper angle of the dielectric. By using a doubleridged waveguide as a feed, the antenna is able to transmit the 154 kilowatts, but with a single-ridged waveguide, the maximum power of

Log periodic slot antenna provides high power over a wide band of frequencies. Energy is fed into open end of V.

Telranaix ine 1s1 DC:10: dH

Smanimu Pulin ninit

tor your orghan oscilloscope
that accepis letter and 1-Series pluag.ins

Here's a new dc-1 GHz sampling unit with operation practically as simple as conventional plug-ins-as you can see by the front panel of the sampling plug-in. You need no pretriggers or external delay lines-the 1 S 1 unit has internal triggering with a built-in delay line.
Many other features add to the capabilities and operating ease of the Type 1 S1, such as:
A tunnel-diode trigger circuit that insures stable triggering through 1 GHz - A single control to select the sweep rate and magnify the display up to X100 when desired - Direct readout of the sweep rate even when magnified - A dcoffset control that permits observation of millivolt signals in the presence of up to ± 1 volt input levels - Less than 1 mV noise in the display, with a smoothing control for further reduction - Output signals available at the front panel for driving chart recorders-and for powering an auxiliary time domain reflectometer pulser unit.

BASIC CHARACTERISTICS

RISETIME $\leq 0.35 \mathrm{~ns}$. SENSITIVITY from $2 \mathrm{mV} / \mathrm{cm}$ through $200 \mathrm{mV} / \mathrm{cm}$, in 7 steps. DYNAMIC RANGE $\pm 2 \mathrm{~V}$. Safe overload is $\pm 5 \mathrm{~V}$. DC OFFSET range is greater than $\pm 1 \mathrm{~V}$. SWEEP RATES from $100 \mathrm{ps} / \mathrm{cm}$ to $50 \mu \mathrm{~s} / \mathrm{cm}$, with $\pm 3 \%$ accuracy normal or magnified. SAMPLESICM continuously variable. TRIGGERING ac-coupled, \pm internal, \pm external, and free run. DISPLAY MŌDES are repetitive, single display, manual scan, or external scan. VERTICAL OUTPUT is 200 mV per displayed cm through 10 k . HORIZONTAL OUTPUT is 1 V per displayed cm through 10 k .
Type 151 Sampling Plug-In Unit
Type 281 TDR Pulser Unit
U.S. Sales Prices, f.o.b. Beaverton, Orégon

For a demonstration,
call your Tektronix field engineer.

Tektronix, Inc.

the antemna is 81 kilowatts.

In one test of the Voronoff design, a slot array produced a 12 decibel gain-relatively good for a wideband antema.

The log periodic arrangement of slots was chosen so that energy would radiate over a wide range of frequencies. However, for this to occur, energy must propagate between the metal plates in the same broad range of frequencies. This is done by choosing the dielectric taper's dimensions so that the guide propagates a wideband waveguide mode-the TE_{01}-that has no cutoff frequency. [Electronics, March 31, 1961, p. 54].

Military electronics

Bitter end

After a troubled 10-year history, the final chapter has been written on the Navy's plan for a 600 -foot diameter radio telescope in Sugar Grove, W.Va.-a project that Defense Secretary Robert S. McNamara has called one of the most illconceived in recent military history.

In 1962, spiraling costs and unexpected difficulties halted construction of what would have been the world's largest steerable antenna, but some Navy diehards clung to the hope that the big dish would be built. Last month, after failing to obtain support from the Pentagon, they too threw in the sponge and settled for an $\$ 11$-million receiving station that will be erected on the site planned for the radio telescope.

The new station will serve as the Washington-area recciving point in the Navy's worldwide communications system as well as a link to the Defense Communication Agency's network. It will be operational in early 1969 and will replace a receiving facility in Cheltenham, Md., that the Navy says is being affected by electromagnetic interference as new houses are being built in the suburban areas. The Sugar Grove site is an ideal replacement because it is about 150
miles from Washington in an area nearly free from such interference.

Skyward costs. Although the Navy has never conceded it, the 600 -foot dish was to eavesdrop on radio communications from behind the Iron Curtain with moon-reflection techniques. When construction was begun in 1957, the Navy said it would take $\$ 60$ million to do the job. In 1962, with nothing but the underground facilities conpleted, however, costs had soared to $\$ 135$ million, primarily due to technical difficulties. This was too much for McNamara, who told the Navy to stop construction. At the time, he estimated it would cost $\$ 200$ million to complete the ponderous paraboloid dish. Moreover, satellite state of the art had made it possible to build eavesdropping spacecraft to orbit over the Soviet Union.

However, the West Virginia Congressional delegation, as well as the Navy, continued to campaign for the completion of the radio telescope. The Congressmen pressured the Navy to build some installation at Sugar Grove that would bring people and money into the area. In 1963 the Navy said it would build a receiving station at Sugar Grove, but it marked time for three years while the admirals sought to persuade the Defense Department to finish the 600 -foot antenna.
Equipment for the station, offices and other working space will be situated in the massive underground cavern originally dug for the radio telescope. Some 40,000 square feet on two levels had been constructed and the receiving station will use less than half of this space. The West Virginia Civil Defense Mobilization Agency has been invited to move in and share the underground facility.

The receiving station is now in the conceptual design stage, with Navy personnel doing the architectural and engineering work. Earlier work was done by the Federal Electric Corp., Paramus, N.J., a subsidiary of the International Telephone and Telegraph Corp. More than half of the $\$ 11$ million will be for electronic equipment. Ten antennas, including two with
circular arrays, will be constructed at the station.
The equipment. Many of the technical specifications for receivers have not yet been worked out, but Lt. Cmdr. W.R. Barret expects that about 30 of the estimated 100 units will be off-theshelf AN/FRR-60 models. The system design will also call for AN/ FGC-60 receivers.

The Navy's tentative schedule lists the electronics contract awards for early next summer. The Nary believes its investment in the station will he safe from electromagnetic "pollution" because West Virginia has protected the Sugar Grove area from the "encroachment" that hampers the Cheltenham station.

Components

Standard dose

The confusion caused by a hodgepodge of methods to test electronic components for resistance to radiation may be nearing an end. Standard procedures are expected to come from a study program originated by the Pentagon's Defense Atomic Support Agency.

The study, confined to those three components most susceptible to radiation damage-transistors, diodes and capacitors-has as its goal the development of standard test procedures. The program encompases germanium and silicon bipolar transistors, germanium and silicon diodes and rectifiers, and all types of capacitors.

The International Business Machines Corp.'s Electronic Systems Center of its Federal Systems division, Owego, N.Y., and the Boeing Co., Seattle, are pursuing separate seven-month studies that are scheduled to wind up in less than two months. IBM's share of the contract is $\$ 96,215$; Bocing's $\$ 63,502$.

IBM and Boeing independently selected parameters to study. The proposals of both companies will be submitted to the Pentagon agency, which will combine them in a proposal that will then go out
WE CHALLENGE YOU

PROVE FOR YOURSELF THAT THE GI EPOXY ENCAPSULATED TRANSISTORS ARE DIRECTLY Interchangeable* -ELECTRICALLY AND MECHANICALLY-WITH THE HERMETICALLY SEALED UNITS.
PLUS (for introduction to you) we'll also send:
GENERAL INSTRUMENT'S
NEW COMPLEMENTARY PAIR
2N4227 2N4228 featuring: $h_{\text {FE }} \ldots 75-150 @ I_{\mathrm{c}}=150 \mathrm{~mA}$ Fill out \& mail this coupon for your free 6 PAK today.

GENERAL INSTRUMENT CORPORATION
 GOD West John Street, Hicksville, L. I. „N. Y.

to industry for criticism. Later, IBM and Boeing representatives will meet with the agency to review the criticism fed back from potential users of the standard test procedures. The military will field test the revised procedures before freezing them as formal specifications.
Double damage. Device impairment from radiation is evidenced in two ways: gamma rays cause transient ionization effects and neutrons cause permanent displacement of atomic lattice structure. IBM's proposal will include procedures for tests made to simulate both types of damage for diodes and transistors. Parameters covered in the program include transistor beta, collector-emitter saturation voltage and primary photo current of po junctions. Neutron fluences (integrated neutron flux) up to 10^{15} neutrons/square centimeter will be considered. Test standards will be proposed for doses up to $10^{11} \mathrm{rads} /$ second and some procedures will be "suggested" to cover tests at $10^{12} \mathrm{rads} / \mathrm{sec}$. Since capacitors are highly resistant to permanent damage, capacitor test standards proposed by IBM will relate only to transient damage.

Transient-effect radiation simulators covered by the IBM proposals are pulse reactors (for capacitors), low-energy flash X-rays (for transistors) and electron linear accelerators and high-energy flash X-rays (for capacitors, transistors and diodes). Simulators for permanent damage include both pulse and steady state reactors.

Communications

Initial success

A fourth Titan-3C launch has been added to the Initial Defense Communications Satellite project with signs pointing more and more toward a gradual upgrading of the research-and-development program into an operational system for long-haul military command-andcontrol secure communications.

One reason the Initial system
looks so attractive is because the follow-on advanced satellite system is beset by political and technical problems and is slipping continually.

Also giving the Initial system a push in this direction may be the Pentagon's tactical communications satellite for aircraft, ships and troops in the field [Electronics, Aug. S, p. 61], which may handle some of the duties of the advanced system. The tactical communications satellite is moving toward a late 1968 flight demonstration and nearly every company in this business has design teams at work on the proposal.

Speculation. The fourth Initial system launch, which could come early next year, will carry three Philco Corp. satellites and at least three experimental communication satellites that would be ejected into orbit from a new dispenser. Philco is building a total of 22 fight models under the current contract, and reports of additional purchases are "purely speculation at this time," says Lt. Col. Nicholas S. Polio, Pentagon program element monitor

The first launch of the Initial system on Junc 16 performed what some project people called a "a routine miracle" by placing the seven Philco satellites and a General Electric Co.'s gravity-gradient test satellite into a random 18,200-nau-tical-mile near-synchronous orbit. The second launch, following a two-week postponement, is now poised on the pad at Cape Kennedy for an Aug. 25 launch date with eight Philco satellites.

The second launch was to have included a second-generation GE gravity-gradient test satellite, which will use mercury flywheels to damp down the satellite's oscillations faster than the one now in orbit-in 5 days instead of 60 days. Pointing accuracy also will be improved from $\pm 4^{\circ}-8^{\circ}$ to $\pm 2^{\circ}$ 2.3° degrees, GE expects.

However, because of the tight schedule the Air Force decided to postpone the second GE test until the third Initial fight. A firm schedule has not been decided for the third shot. Originally it was set for early in 1967.

Long life. There have been two
schools of thought ly military project officials on the third launch: if the second flight this week is successful, resulting in 15 satellite repeaters in orbit, then the third shot should be held and used for a replenishment launch (predicted satellite lifetime was 18 months but some now predict a 3 - to 5 -year life). Others want to put up the third group right away even if the second launch is unsuccessful.
On the fourth launch will be a satellite to test Sylvania Electric Products, Inc.'s electronically despun antenna, a technique for focusing the antenna's entire output on the earth from a spin-stabilized satellite. Applied Physics Laboratory, in a Navy-sponsored effort, will test a gravity-gradient satellite called Dodge, which is described by a Pentagon official as a "more sophisticated experiment" than the GE test. A third test satellite will be Lincoln Laboratory's LES-5 experimental satellite, which will make direct communications tests with aircraft. Special aircraft equipment built for the test will provide some multiple-access capability at low data rates. LES-5 hardware is being built at the Radio Corp. of America and Western Microwave Laboratories Inc.

The gravity-gradient stabilization and electronically despun antennas are two of the leading competitors for future military communications satellites, and some observers are calling gravity gradient the favorite for an upgraded Initial satellite.
Swinger. However, a development earlier this month could be a fly in the gravity-gradient ointment. An Air Force project official said that a solar fare on about Aug. 6 caused a "substantial" swing in the GE gravity-gradient satellite now in orbit. He wouldn't say how much it had affected the satellite -which before the flare had damped down to about $\pm 18^{\circ}$, well ahead of the original schedule. He indicated the effect from the flare was more than anticipated.
GE, however, discounted the effect of the magnetic storm activity from the sum. GE has asked for data from the Air Force for that period, William van Patten, GE project manager, said.

Until recently, there was only one type AOLux glass laser rod.

0

I

Today there are 10.

They're all made by American Optical and designed to suit the purpose of just about every system. They all require less input power than other solid-state materials.

We've expanded the line of gen-eral-purpose glass rods to include dopings of $2 \%, 3 \%$ and 6%, to give you a wider selection for high pump uniformity. This group of rods exhibits very low loss, is essentially inclusion-free, and is available with special-purpose claddings.

For you who want long fluorescent lifetime, higher efficiency for
" Q " switching and better energy storage for amplifier applications, use the AOLux long-lifetime 3\%,4\% and 6% neodymium-doped rods.
Also available is a high-durability rod for extra-large laser systems, in dopings of 3% or less. Then there are AOLux neodymium YbNd double-doped rods with a 2 millisecond lifetime, still with $1.06 \mathrm{mi}-$ cron output. And AOLux ErYbNd triple-doped rods with 14 millisecond lifetime-with outputs of 1.54 microns.

Naturally, such considerations
as present cavity configuration and power supply, output wavelength, output power, pulse duration, beam spread, repetition rate, shape of spike, cooling, etc., will condition your selection.

That's where American Optical comes in. We pioneered neody-mium-doped glass laser rods; we now offer 10 standard types. We're ready and willing to help you match our laser rods to your specifications. Contact American Optical Company, Space-Defense Division, 4709 Baum Blvd., Pittsburgh, Pa. 15213.
space.defense division-southbridge, massachusetts

last week we mailed a customer one of our tape recorders and forgot to mark it "fragile."

we didn't have to.

It came through like a phone bill. The recorder, our MTR-3200, weighed in at 44 pounds. That's pretty compact for a unit that has to store and reproduce data in the severest of environments. And the small size is an added benefit. For another, it needs only 55 watts of 28 VDC power, and operates through $10 g$ shock with less than 6% peak to peak flutter.

The MTR-3200 withstands accelerations up to 25 g while ignoring temperatures from -40° to $+71^{\circ} \mathrm{C}$. Humidity up to 95% won't seep in, and it will run at altitudes up to 150,000 feet.
Convenient plug-in modules provide 14 analog or FM, or 16 digital channels. They can be used in any combination. Six tape speeds are available in standard pairs which are electrically selectable.

The MTR-3200 provides 2400 feet of laboratory performance in a "breadbox," while conforming to IRIG standards for data reduction equipment.

If we haven't mentioned all of your requirements, and they're tough ones, let us know.

Just write your specs on anything handy. Like the back of a purchase order.
Send it to Leach Corporation, Controls Division, 717 North Coney Avenue, Azusa, California

Stackpole Ceramag® ${ }^{\circledR}$ ferrite components have been the accepted standard of the Television Industry for over twenty years.

In 1965, Stackpole began supplying Automatic Pincushion Correction Cores, a major advance, for color television receivers. 1964 saw the introduction of Stackpole 90° color components including Flyback, Yoke and Convergence Cores. As far back as 1954, these same components were introduced for the 70° color Deflection Systems.

The list of contributions Stackpole engineering and production know-how has made to the growth of color in television is long and varied. This same capability has been applied to the continual improvement of
black and white receiving equipment as well.
To be first with such items as Horizontal Output Transformer Cores and Automatic Pincushion Correction is not enough. Innovation must stand the test of performance. Stackpole Ceramag ${ }^{\circledR}$ components have, since 1947. Small wonder most manufacturers have come to depend so heavily on Stackpole's experience and quality. Stackpole Carbon Company, Electronic Components Division, St. Marys, Pennsylvania 15857. Phone: 814-781-8521. TWX: 510-693-4511.

Ceramag Ferrite Components are Coloring the Entire Television Picture

HEWLETI
PACKARD
hp 5233L 2 MHz Counter with Time Interval Capability
hp 5275A Time Interval Counter
hp H22-5211B Low-cost Counter
hp 528CA Reversible Counter
hp 5214L Preset Counter
ho 5245L Counter with 5255A
3-12.4 GHz Plug-in

From Hewlett-Packard, the world's most extensive line of electronic counters and accessory instrumentation...designed to make your measurements faster, easier, more accurate, and to make measurements that were heretofore impossible.
*Measurement code used below: F=Frequency, $P=$ Period, $M P=$ Multiple Period, MPA = Multiple Period Average, $\mathrm{T}=$ Time Interval, $\mathrm{R}=$ Ratio, $\mathrm{MR}=$ Multiple Ratio.

50 MHz COUNTER WITH PLUG-INS TO 12.4 GHz

Model 5245L Electronic Counter measures F, P, MPA, R, MR, TI. * Frequency measurement 0 Hz to 50 MHz directly; up to $100 \mathrm{MHz}, 500$ $\mathrm{MHz}, 3000 \mathrm{MHz}$ and 12.4 GHz with plug-in converters. Sensitivity, 100 mv ; time base, better than $3 / 10^{\circ} /$ day; 8 -digit in-line readout. $1 \mathrm{M} \Omega$ input, front panel trigger level control.

HP 5245 C Counter without plug-ins, $\mathbf{5 2 9 5 0}$

NEW! 1 Hz resolution at X-band in 4 seconds
HP 5255A 12.4 GHz Heterndyne Converter, $\$ 1650$
HP 5251A 100 MHz Plug-in Converter, $\$ 3 \mathrm{CO}$
HP 5252A DC to 350 MHz Prescaler Plug-in, $\$ 685$
HP 5253B 500 MHz Plug-in Converter, $\$ 500$
HP 5254A 3000 MHz Plug-in Converter, $\$ 825$
HP 5261A Video Amplifier Plug-in, s325
HP 5262A Time Interval Plug-in, $\$ 300$
HP 5264A Preset Unit Plug-in, $\$ 650$
HP 5265A DVM Plug-in, $\$ 575$

OTHER HIGH-FREQUENCY COUNTERS

Model 5244 L 50 MHz Electronic Counter measures F, P, MPA, R, MR. * Time base $\pm 2 / 10^{2} /$ month, gate times $1 \mu \mathrm{sec}-10 \mathrm{sec}, 7$-digit inline readout. $\$ 2225$

Model 3734A 2.5 MHz Electronic Counter measures $\mathrm{F}, \mathrm{P}, \mathrm{MPA}, \mathrm{R}, \mathrm{MR},\left.\mathrm{T}\right|^{*} 2 \mathrm{~Hz}$ to 2.5 MHz . Time base, $\pm 2 / 10^{6} /$ week; gate times, 0.01 1 sec (to 10 sec optional); 5 -digit in-line readout. \$1075.
Model 5233L 2 MHz Electronic Counter meas ures F, P, MPA, R, MR, TI* 0 Hz to 2 MHz . Time base, $\pm 2 / 10^{\prime} /$ month; gate times, 10 $\mu \mathrm{sec}-10 \mathrm{sec} ; 6$-digit in-line readout. $\$ 1750$.

Model 5232A 1.2 MHz Electronic Counter

 measures F, P, MPA, R, MR* 2 Hz to 1.2 MHz . Time base, $\pm 2 / 10^{\prime} /$ month; gate times, $0.01-10 \mathrm{sec}$; 6 -digit columnar readout. Model 5532 A identical but with 6 -digit in-line readout. HP 5232A, \$1300; HP 5532A, \$1450.
LOW-FREQUENCY COUNTERS

Model 5211A 300 kHz Electronic Counter measures F and $R^{*} 2 \mathrm{~Hz}$ to 300 kHz with a 4-digit columnar readout. Uses power frequency lire as time base; gate times of 0.1 and 1 second. Model $5211 B$ identical except has gate times of 0.1-10 seconds. Model H22$5211 B$ same as 5211 B but with a 4 -digit in-line readout. HP $5211 \mathrm{~A}, \$ 600$; HP $5211 \mathrm{~B}, \$ 725$; HP H22-5211B, $\$ 825$.

Model 5212A 300 kHz Electronic Counter measures F, P, MPA, R, MR* 2 Hz to 300 kHz . Time base, $\pm 2 / 10^{\circ} /$ week; gate times, 0.01 sec-10 sec; 5 -digit columnar readout. Model 5512 A identical but with 5 -digit in-line readout. HP 5212A, $\$ 925$; HP 5512A, $\$ 1050$.
Model 5223 L 300 kHz Electronic Counter measures F, P, MPA, R, MR, TI* 0 Hz to 300 kHz . Time base, $\pm 2 / 10^{\circ} /$ week; gate times, 10 $\mu \mathrm{Sec}-10 \mathrm{sec}$; 5 -digit in-line readout. $\$ 1325$.

PRESET COUNTER

Measures normalized rates, ratio, normalized ratio and time for N events to occur. Direct reading in engineering units; N may be preset to any integer between 1 and 100,000 ; range is $2 \mathrm{~Hz}-300 \mathrm{kHz}$. HP 5214L, $\$ 1475$.
10 nsec TIME INTERVAL COUNTER
Permits measuring of time interval with resoIution to 10 nsec over the full 10 nsec to 0.1 sec range. Ideal for precise digital measurement of short-time events. 7 -digit columnar readout. HP 5275A, \$2500.
REVERSIBLE PLUG-IN COUNTER
Totalizes, counts sum or difference of 2 in puts, totalizes 1 signal with direction of count as a function of polarity or quadrature phase of another signal; 2 MHz counting, 1 MHz subtracting, 250 nsec reversing. HP 5280A, \$1450; HP 5285A Plug-in for described operations, $\$ 450$.

NUCLEAR SCALER-TIMER

Accepts pulses from nuclear detectors to accumulate, display and record nuclear events. Three-mode pulse height analyzer, stability is 0.01%, 6 -digit in-line display. HP' $5201 \mathrm{~L}, \$ 1950$. Other models down to $\$ 950$.

AUTOMATIC FREQUENCY DIVIDER

Automatic direct readout of frequency, 0.3 to 12.4 GHz , on 5245 L Counter. No ambiguity offset or arithmetic processing. HP 5260A, $\$ 3250$.

DIGItal recorder

Prints 5 -lines/sec; 11 digits (12 available) 2 msec input data transfer time, plug-ins for BCD or 10 -line codes, HP $562 \mathrm{~A}, \$ 1080$ $\$ 2100$, depending upon options.

TRANSFER OSCILLATORS

Extend frequency range of 5245L Counter (with 5252A or 5253B Plug-in) and measure CW, pulsed and FM signals to 12.4 GHz and higher. HP 540B, \$1050; HP 2590B, \$1900.

DIGITAL-ANALOG CONVERTERS

Digital-Analog Converters make possible high resolution analog records from counters, scalers, DVM's; operate directly with HP and Dymec instrumentation. HP 580, $\$ 525$.

VLF COMPARATOR

A complete system for checking counter time
bases and other oscillators against
U.S. Frequency Standard broadcast by station WWVB $(60 \mathrm{kHz})$. HP $117 \mathrm{~A}, \$ 1300$.

Abstract

HP counters are subjected to tests that are much more stringent than normally expecied for commercially priced equipment. All iristruments in development undergo extensive tests such as shock, vibration, high and low temperature, humidity, electromagnetic compatibility (RFI) and line voltage and frequency. Components undergo environmental tests in the HP Components Evaluation Laboratory. Quality audits are performed regularly to ensure that original performance and quality standards are being met. Finally, each solid-state

the standard of excellence

counter gets severe temperature testing before shipment
One result of quality assurance at Hewlett-Packard is that, in long term reliability tests, twenty Model 5245L Counters survived a total of 18,077 test hours with only two disabling failures. That's an average of one failure per 4 years at 40 hours per week! Mean-time-between-failures (MTBF) exceeded military requirements comfortably. Another result: standard hp counters have passed military environmental tests and have been assigned MIL nomenclature (data upon request)

Here's a small part of hes extensive in-7 ouse test facility where instruments are ested inder extrene sluck, vibration, tempara. iure, humidity ard electromagnetic cond tions.

To force any marginal components to fail before shipment. all solid-state counters are operated at $+65^{\circ} \mathrm{C}$ for at least 16 hours in heated cabinets.

Decade counting assemblies for all solit state counters undergo a temperature of 80° C for 2 hours to force fallury of any marginal components. Despite this torture, the talure rate of decades is less than 0.5\%. The assemblies are also operated for 22 hours at room temperature.

In one of numerous ies s. all Motd ' 45 L crystal oscilleitr assemblies a.e qera:ed and obserad tor iwo weeks to de:a mine aging retes

Since the introduction of the first hp counter more than 15 years ago, Hewlett-Packard has been the leader in virtually all areas of frequency generation and measurement. Hewlett-Packard's proficiency in cesium beam frequency standards, quartz oscillators. frequency synthesizers, signal generators and other electronic equipment has enabled Hewlett-Fackard to excel in all areas of electronic counter design

The Frequency and Time Division of Hewlett-Packard concentrates the full efforts of hundreds of engineers, technicians and manufacturing people on frequency and time measurements and standards.

For more information on Hewlett-Packard frequency and time measuring instru mentation, call your field engineer or write, Hewlett-Packard, Palo Alto, California 94304, Tel. (415) 326-7000; Europe: 54 Route des Acacias, Geneva.

Data subject to change withoul notice. Prices to.b. Palo Alto. California; for prices in other countries. contact your hp field office.
announces
Vceo (sus) $325 v$ 300 v 250 v 225. 200 v
in a 10 Amp. NPN Silicon Planar Power Transistor Plus
50 mcs 150 pfs

Type Number	$\begin{aligned} & \text { Pkg. } \\ & \text { Size } \end{aligned}$	DESIGN LIMITS						PERFORMANCE SPECIFICATIONS					
		T,	θ	P_{T} Watts	$\mathrm{BV}_{\text {cmo }}$	$\begin{aligned} & V_{\text {CEO }} \\ & \text { rsus: } \end{aligned}$	BV Ebo	$h_{\text {fe }}$		$V_{\text {be }}$ (sat)	$V_{C E}$ (sat)	$I_{\text {cro }}$	f_{T}
										Volts	Volts	$\mu \mathrm{A}$	
		${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$	$\begin{gathered} 100^{\circ} \mathrm{C} \\ \text { Case } \end{gathered}$	Volts	Volts	Volts	$\begin{aligned} & \text { (3) } I_{C}=5 A \\ & V_{C E}=5 \mathrm{~V} \end{aligned}$		$\begin{aligned} \Theta_{C} & =5 \mathrm{~A} \\ 1_{B} & =0.5 \mathrm{~A} \end{aligned}$	$\begin{aligned} \text { (3) }\left.\right\|_{C} & =5 \mathrm{~A} \\ I_{\mathrm{B}} & =0.5 \mathrm{~A} \end{aligned}$	$V_{\text {cs }}=100 \mathrm{~V}$	mc
		Max.	Max	Max	Min.	Min.	Min.	Min.	Max	Max.	Max.	Max.	Min.
MHT7201	TO-3	200	1.5	65	225	200	8	20	60	1.2	0.5	1.0	50
MHT7202	TO-3	200	1.5	65	250	225	8	20	60	1.2	0.5	1.0	50
MHT7203	T0-3	200	1.5	65	275	250	8	20	60	1.2	0.5	1.0	50
MHT7204	T0-3	200	1.5	65	325	300	8	20	60	1.2	0.5	1.0	50
MHT7205	T0-3	200	1.5	65	350	325	8	20	60	1.2	0.5	1.0	50

TRANSISTOR DIVISION

1177 BLUE HERON BLVO. / RIVIERA BEACH, FLORIDA / (305) 848-4311 / TWX: (510) 952.6676 Voltage Variable Capacitors, Random/White Noise Components, Microelectronic Circuits, and High.Pac Interconnection Systems.

Doctors needed a battery they could trust inside you while it worked to save your life!

Mallory made it.

What can we do for you?

Medical Science needed a battery. A battery that literally could keep your heart beating. A battery to power a heart pacemaker-the electronic device that "shocks" sluggish hearts into a normal beat. A battery that would last three years or more in this surgically-implanted device even in the high temperature environment of the body. Medical researchers came to Mallory. Mallory provided the battery - the high-energy mercury battery made so reliably its manufacturing process practically insures zero defects.

BATTERY- POWERED MIRACLES

The high-energy density of the mercury battery and its extraordinary reliability have found many uses in medical electronics. Mercury batteries will be the source of power for new devices that help control your breathing, control hypertension, even stimulate bone growth. Mercury batteries can be made so small they will fit into "radio capsules" that transmit information from within the stomach. And, of course, fer years Mallory mercury batteries have powered hearing aids, bringing new comfort and hope to the hard-of-hearing.

THE HIGH TEMPERATURE BATTERY

One of the special attributes of the Mallory mercury battery is its ability to withstand high temperatures. No other dry battery can approach its performance when the temperature climbs above normal-the mercury system was developed in World War II specifically for use in hot climates. Today

mercury batteries rated to withstand temperatures of $160^{\circ} \mathrm{F}$ are at work in Vietnam. Geologists use them in deep-hole experiments where the temperatures approach $200^{\circ} \mathrm{F}$. And, of course, the high temperature characteristics of mercury batteries are vital to power surgically-implanted devices that must operate faithfully at $98.6^{\circ} \mathrm{F}$ for years!

OVER 1000 DIFFERENT TYPES

Mallory currently makes over 1000 batteries of all sizes and capacities. If we're not actually producing the battery you need, we'll be happy to work with you in designing a new one. Write the Application Engineering Department, Mallory Battery Company, a division of P. R. Mallory \& Co. Inc., S. Broadway, Tarrytown, N.Y. 10591. Or call 914-591-7000. In Canada: Mallory Battery Company of Canada Limited, Sheridan Park, Ontario.

Familiar withTEFLON? Try this quiz.

(1)	TEFLON is transparent!	TRUE	FALSE
(2)	TEFLON can be cemented!	TRUE	FALSE
(3)	TEFLON can be heat sealed, thermoformed, heat bonded!	true	FALSE
(4)	A TEFLON film is made by Du Pont!	true	FALSE
All are true withTEFLON FEP film: a new dimension in TEFLON			

Let us tell you more.

Du Pont Company, Room 4611, Wilmington, Delaware 19898
TEFLON FEP fluorocarbon film brings the familiar properties of TEFLON plus a new form, versatility and ease of fabrication for applications like: conveyor belting, critical industrial packaging, gaskets, roll covers, reinforced plastics curing, closures, high temperature electrical insulation, flexible flat cable, printed circuitry.
The application ! am considering is

To do the job, a material with the following critical properties is required:

TEFLON FEP FILM

Mechanical
Thermal resistanc
. fr fr Chemical resistance Reteasel resistance Release, anti-stick Electrical
. . the most inert of all plastics. superior
No tracking, non-wettable, non-flammable, low power factor and dielectric constant, dielectric strength: $4,000 \mathrm{vpm}$ for 2 mil film.
Weatherability high transmittance of ultraviolet and all but far infrared, inert to ou!door exposure
I am interested in these forms and processing techniques:
Film thickness $1 / 2,1,2,5,10,20 \mathrm{mil}$.
Heat bonding directly to metals
Heat sealing provides a plastic weld at $300^{\circ} \mathrm{C}$.
Cementing accept conventional adhesives, for laminating to metals, rubber, glass cloth, asbestos fabric, etc.
Thermoforming a true thermoplastic, thermoform at $525^{\circ}{ }^{\circ}$., with conventional equipment.
high impact, abrasion, tear strength. Useful at cryogenic temperatures
rom

MY REQUIREMENTS

Please send full appropriate technical data.
Name
 Address
City
Business Phone
\qquad thickness
substrate
yes
substrate
one side
both sides no________
yes
shape__

Company
Job Responsibility

STARI

 PITCHING!

Make us show you in black and white how Slater can supply in quantity 1 N3189 series diodes to MIL-S-19500/ 155 and high voltage rectifiers and assemblies at the lowest price per voltage and ampere rating in the industry.

Bear down! Demand to see some of Slater's 1 ampere hermetically sealed diodes up to 1000 volts with guaranteed recovery times of less than 100 nanoseconds. Too much pressure won't be necessary. We want you to sample and test these units in your high frequency applications.

Don't let up! Ask to see how we can supply combinations of specifications in our assemblies at extremely high reliability levels previously unavailable in the incustry. The Slater SLA-01 to SLA-020 are 1/5 the size of comparable
units. They feature up to 20,000 volts PIV and 200 Mils average rectified current with extremely low leakage and forward voltage drop. Additional units up to 100 KV PIV are also available.

Go ahead, toss 'em in. We want your problems. Call us collect for samples of our single junction diffused 1 and 2 ampere silicon rectifiers with up to 2000 volts PIV. These units have a 20% safety feature on all specifications. All are controlled avalanche.

We're used to solving difficult problems when it comes to semiconductors! After all, Slater is the fastest growing semiconductor manufacturer in the industry. There must be a reason.

New low-cost Metal Glaze resistors for MIL-R-22684

4 times better load-life stability

IRC's new molded Metal Glaze resistors provide stability, reliability and precision unmatched anywhere for the price
Tested for over 15 million unit hours, they meet or exceed all MIL.R-22684 requirements. Load life stability. for in. stance, is four times better than MIL allowance. Typical ΔR is 0.5% after 1000 hours. full load at $70^{\circ} \mathrm{C}$. Even at higher temperatures, $\triangle R$ is still typically under MIL limits.
The Metal Glaze resistance element is extremely rugged. It is 100 times thicker than conventional films and is imper. vious to environmental extremes. The tough, uniform molded body resists solvents and the mechanical abuse of automatic machines.

New IRC molded Metal Glaze resistors are immediately available in four forms of packaging to cut your production costs. For complete data, prices and samples, write to: IRC, Inc., 401 N. Broad St., Philadelphia, Pa. 19108.

CAPSULE SPECIFICATIONS

MIL R-22684B WATTAGE RESISTANCE
TOLERANCES TEMPERATURE COEFFICIENT VOLTAGE
SIZE
IRC TYPE

包通 As comfortable

That's the way most engineers feel about using these 28 popular Motorola silicon annular complementary transistors in their designs.

NPN	PNP	APPLICATION
2N2218-18A 2N2219-9A	2N2904-04A 2N2221-21A	Complementary high performance STARS* 2N2906-05A 2N2222-22A medium level switch and amplifier 2N2907-07A
2Nplications.		
2N3946	2N3250-50A 2N3251-51A	Complementary high performance B0X for low level switch and amplifier applications.
2N3252	2N3467 2N3253	Complementary high performance SNOWFLAKES for high level switching applications.
2N2369	2N3546	Complementary high performance low level high speed switch applications.

Why?

Because they are versatile. They fit anywhere - do all jobs well. If there were such a thing as a "universal" transistor, these would all be top candidates for the title.

Secondly, they're reliable. That's what makes it so comfortable for the designer. He knows he can depend on each and every device with patented annular structure that he uses.

He also knows he has a dependable supply. Motorola has been making these types by the millions for years.

And the prices? They're comfortable, too. That is the nicest part.

So, why don't you get yourself some old shoes _ and get comfortable! Your local Motorola semiconductor distributor has them all in stock in up to 1000 quantities. Larger requirements can be handled by your nearest Motorola district office. For complete technical data write: Motorola Semiconductor Products Inc., Dept. TIC, Box 955, Phoenix, Arizona 85001.
*Trademark of Mótorola Inc.

A switch to insulation of MYLAR ${ }^{\text { }}$ gave Western Electric a more reliable relay

Abstract

Greater performance reliability with substantial cost savings - that's why Western Electric has switched from cellulose acetate to insulation of Mylar* polyester film in the manufacture of relays. Mylar gives not only superior cielectric strength for better insulation, but also greater physical streng-h. During assembly, it actually holds the relay terminals parallel without adcitional tools or supports. Over all, this has permitted Western Electric to reduce cosis. Relays are jusit one type of compo-

nent where MyLAs irc orovesperforma cee and saves mon $=y$. Chances are Fu could take atvanagecf its unique bylarce of properti=s: exceptional strength in thin, weight-saving gauges \ldots thermal ssatility from -60° up to $+130 \mathrm{C}^{\circ}$. . . hig moneture and chemicel resistance . . lcng-lasting flexib lity

Wly not investiga=e? For your free

cc py of the ccmplete "Fact File" on inzulation of MrLar-mail coupon.

10 gram guard

Reverse-voltage defense is just one more reason for G-E tantalum foil

Forget about a surprise reverse with G-E tantalum foil capacitors. They're designed to take it. And reverse-voltage defense is just one reason for using G-E tantalum foil. Here are three others:
PROVED IN-CIRCUIT RELIABILITY: They've been proved-and improved - for over 17 years. More than 20 million have been successfully applied. G-E tantalum foil earned a 0.00023 reliability record (per 1000 hours) on Minuteman reliability tests,
based on the Minuteman acceleration factor.
NO CATASTROPHIC FAILURES: LOW impedance circuits and catastrophic failures are no problem with G-E tantalum foils. They're self healing. LONG SHELF LIFE: We're up to the 14 year mark. . . with less than a 5% capacitance change at 25 C . That's shelf life!

G-E tantalum foil capacitors are available in ratings up to $450 \mathrm{VDC}, 0.15$ to 3500 uf, -55 to 85 or 125 C . They're
virtually risk-proof. And may cost more. But isn't a proved line your best defense?

For all the facts on G-E tantalum foil reliability, write for Reliability Report, Section 430-25, General Electric Co., Schenectady, N. Y. 12305.

ELECTRONIC COMPONENTS DIVISION

Sorensen Power Supplies for

 Scientific Instrumentation
Precision instrumentation requires precision power. Sorensen applies its advanced standard product technology to demanding custom designs. Here are three typical examples.

Model MQB72-1 is a silicon transistorized precision DC power supply designed for use with standard AEC nuclear instrument module bins. Voltage regulation is $\pm 0.02 \%$ (line and load combined) with remote sensing - Stability, $\pm 0.1 \%$ max. for 8 hours after a 30 minute warmup - Recovery time, 50μ to $\pm 0.1 \%$ of the output voltage for any line change or a 10% 100% load change. Other design features include electronic overload protection for overloads above 120% of rated output current with automatic recovery. Ripple3 millivolts (peak to peak) maximum.

Model 2400-4 high voltage DC power supply was designed to be used as part of a beam separator. Operating in pairs, these power supplies provide an electrostatic field of 800,000 volts. The application requires these units to operate for long fail-ure-free periods without maintenance. The controller unit shown above is fully metered and offers maximum personnel and equipment protection. Output voltage is $0-400 \mathrm{kV} @ 4 \mathrm{~mA}$. Line regulation is $\pm .20 \%$. At 1 mA ripple is 0.25% peak to peak. New manufacturing techniques have been used to produce this compact design.

The XLS Series is a line of xenon lamp power supplies which utilizes NO spark gaps or relays. Sorensen's unique pulse ignition circuitry guarantees instant starting and greatly increased lamp life. These supplies deliver regulated, low-ripple power with line voltage variations of 100 130 Vac or $200-260 \mathrm{Vac}$. This precise stabilization permits use of the Xenon Arc Lamp in applications such as spectrometers, precision optical systems, spectro. phosphorimetry, spectroprojection systems, solar simulation, spectrophotography, and general photographic projection systems.

For details on any Sorensen standard/custom DC power supplies, $A C$ line regulators, or frequency changers, cantact your Sorensen representative or: Raytheon Company, Sorensen Operation, Richards Avenue, Norwalk, Connecticut 06856. Tel: 203-838-6571.

RAYTHEON

SO MANY ORDERS FOR THESE MARCONI INSTRUMENTS HAVE BEEN COMING IN THAT WE NOW MAKE THEM IN THE U.S.A.

MARCONI

INSTRUMENTS

Division of English Electric Corporation
111 Cedar Lane • Englewood, N. J. Telephone: 201-567-0607 SEE US AT WESCON, HOLIYWOOD PARK, BOOTH 370-1

SOMETMES WE WONDER WHO BEN'S WORKING FOR

Ben's the head of our Technical Service Department.
And when Ben sets yrt to help you with a wire, cable or tubing problem, nobody but nobody rests until it's solved. It's more like a declaration of war. On the problem and on us, too, if Ber feels we're not jumping to help es quickly as he feels we should. (It's ro good remi ding Ben who pays his salary. We've still got the scars.)
So if you want help wit 7 an engineering or techncal problem, Ben's you-man.
Just as he's the man o help you select the right Alpha product for any particular aэpication.

Or prepare detaile 1 echnical specifications on any Alpha prodact.
Or help out with enjueering data sheets and technical monographs.
Or furrish test data.
Even though we are industry's most complete one-stop source of wire, cable and tubing, you'll find Ber will treat you as if you're the only custcme: who ever tought an Alpha product.

Maybe we do somftimes wonder whose side he's on. But there's not much doubt about it o benefits.

Like to know more ato it Alpha technical help or products? Write us. Or call your nearest Alpea distributor.

$$
\begin{aligned}
& \text { FORMICA } \\
& \text { FR-AS MULTI-LAYEA } \\
& \text { CIRCLITAY MATEAIALS }
\end{aligned}
$$

I`Es Silicon Transistor's huge array of JaN devices

ONLY RAYTHEON COMPUTER'S NEW NANOVERTER'KNOWS FOR SURE.
 pulse. The NANOVERTER comes in a standard

Raytheon Computer's new NANOVERTER can make accurate voltage measurements on 5 nanosecond pulses. It's the only instrument around today that can.
Besides a remarkable 5-nanosecond sampling device, the NANOVERTER includes a 12-bit analog-to-digital converter. Continuous throughput is as high as 45 KC with accuracy $\pm 2 \%$ of full scale. Timing is easy; the entire conversion process is controlled by a single
$51 / 4^{\prime \prime} \times 19^{\prime \prime}$ rack-mountable drawer.
Benefits of the NANOVERTER are immediately evident to those concerned with high speed transients encountered in memory and integrated circuit testing, shock and vibration analysis and other high speed pulse studies. We suggest they write today for Data File E-125. Raytheon Computer, 2700 S. Fairview Street, Santa Ana, California, 92704. Phone (714) 546-7160.

Watch the NANOVERTER run at Wescon, Booth 1238. But you'll have to be quick.
Trademark of the Raytheon Company for its data system.

SGMETBE INTERATEN GRCIITR

A subsidiary of Corning Glass Works
ouncino intunate gifidic E

- 111 East Arques Avenue, Sunnyvale, California Tel.: (408) 739-7700 TWX: (910) 339-9220

		1000-2499	1 Type $100-999$	Mixed $100-999$	$25-99$	$1-24$
SP806A	Dual 4-Input Gate Expander	2.95	3.10	3.25	3.70	4.65
SP808A	Single 8-Input NAND Gate	2.95	3.10	3.25	3.70	4.65
SP816A	Dual 4-Input NAND Gate	2.95	3.10	3.25	3.70	4.65
SP825A	J-K Binary Element	4.55	4.80	5.05	5.75	7.20
SP826A *	Dual AC Binary Element	8.00	8.40	8.80	10.10	12.60
SP840A	Dual Exclusive-OR Gate	3.30	3.50	3.70	4.20	5.25
SP855A	Dual 4-Input Power Gate	3.30	3.50	3.70	4.20	5.25
SP870A	Triple 3-Input NAND Gate	3.30	3.50	3.70	4.20	5.25
SP880A	Quadruple 2-Input NAND Gate	3.30	3.50	3.70	4.20	5.25
*Available after July 15						

SEE US AT WESCON-BOOTHS 156-158 SPORTS ARENA

MARRIAGE OF CONVENIENCE
 How Sperry blends the best of two technologies into a superior microwave source

A V band Sperry klystron with matching solid-state power supply.

System designers who want to capital ize on the obvious advantages of solid state without enduring the crippling power and frequency limitations are discovering a new solution: the packaged power supply/Klystron oscillator combination from Sperry Electronic Tube Division

Sperry now offers single low-voltage (28 volts) DC-to-microwave frequency sources which combine the best features of solid-state circuitry and klystron oscillators. The source consists of an all solid-state power supply, a rellex hystron, and (if required) a stalo cavity and an isolator.

For many applications. Sperry has already proved that such a combination can equal the size and weight of an all solid-state source and show considerable improvement in reliability, power handling capability, noise and other characteristics.

The Sperry designs are based on existing hardware and technologies. Tubes, power supplies and stalos already in production require only minor modifications to become usable components in packaged source combina-

Precise prediction of the interaction between microwave and solid-state elements requires in-depth understanding of both technologies. Such understanding is the principle ingredient in Sperry's "Storehouse of Knowledge." Put our understanding to work for you today.

DIVISION OF SPERRY RAND CORPORATION
tions. Because no development work is required, you can expect peak reliability from the first unit - the "learning curve" stage is completely eliminated.

Sperry delivers the source in a compact, integrated package . . for a typical X band application it may be as small as 100 cubic inches and weigh as little as four pounds. While power supply maintenasice should be conducted at depot level, the tube and stalo may be replaced, at any level, thanks to the fixed reflector voltage feature of Sperry reflex Klystrons.

In packaging the units, Sperry pays particular attention to environmental requirements, mounting requirements and optimum RFI shielding.

If you're concerned with the performance and reliability of an all solid-state source to meet your specifications, or if you want to avoid the agony of matching a klystron to its power supply, get more information about Sperry's packaged source capability. For your free copy of a new technical paper, ask your Cain \& Co. man or write Sperry, Gainesville, Fla.

Washington Newsletter

August 22, 1966

NASA weighs Mars mission to fill

 space gap...The space agency is considering adding a Mars mission in 1971 to fill the present four-year gap between the Mariner and the Voyager unmanned planetary exploration programs. Under intensive study at the Ames Research Center and the Jet Propulsion Laboratory is a Mariner mission to fly past Mars and eject an instrumented probe onto the planet to measure its atmosphere. Such data would help plan future manned and unmanned Voyager landings on Mars.

Some observers consider the program an answer to criticism by Rep. Joseph Karth (D., Minn.), chairman of the House Space Science and Applications subcommittee. Karth was so unhappy with NASA's lack of an instrumented probe on the 1969 Mariner that he tried to take some money from the development of the 1967 Mariner probe of Venus and put it toward development of a 1969 Mariner instrument package. Karth and others are still worried about the wide difference in opinion on just how much atmosphere Mars has [Electronics, Aug. 8, p. 61]. Planners call a Mariner/Mars shot in 1971 a logical interim mission between a Mariner flight to Mars in 1969 and the more ambitious Voyager, due to make its first flight in 1973.

At the same time, other Congressional criticism is keeping the space agency hopping. It currently is preparing justification for its controversial Mariner flyby of Venus in 1967. The House, in its conference report accompanying the NASA fiscal 1967 authorization, demanded a full report by Sept. 1 on NASA's plans to explore Venus.

Dissatisfied Congressmen are looking over the space agency's shoulder in still another area-the disappointing performance of the giant obser-vatory-class satellites. Congress is delaying a full investigation of the troublesome satellites until NASA's Observatory-Class Spacecraft Review Board has made its report.

No hearings are currently planned, but a staff study is being made for the House Science and Astronautics Committee. All NASA has been able to say about its report is that it should be finished in several weeks.
The NASA board was established right after the failure of the $\$ 50-$ million Orbiting Astronomical Observatory, which was launched April 8.

In addition, the group is investigating the Orbiting Geophysical Observatory and the Nimbus weather satellite, which also have had their share of technical difficulties.

F-111 in trouble with Congress again

Congress will take a second close look at the high-priced, sometimes overweight F-111-something that may have a significant impact on the future of the Navy-Air Force aircraft. With the Pentagon now publicly admitting that costs are soaring on the program, Sen. John L. McClellan (D., Ark.) has scheduled a new series of hearings for next spring-possibly April-by his Permanent Investigations subcommittee. McClellan's panel is the same group that tore into the Defense Department in a 10 -month investigation in 1963, when the F-111 was called the TFX.

Performance of the swing-winged aircraft will be the principal topic

Washington Newsletter

of conversation this time. The committee is not expected to get into whether Defense Department officials were purposely guilty of wrong-doing-something that got close scrutiny during the first investigations.

The F-111 program-which has bloomed into a development project involving four aircraft under the guiding hand of McNamara-has already cost the Government $\$ 788$ million in development with another $\$ 100$ million committed, the Pentagon acknowledges.

The cost of each aircraft is now estimated at $\$ 8$ million for the Navy version, the F-111B, and $\$ 5$ million for the Air Force model, the F-111A. The figures are nearly double the Pentagon's original estimates. The reasons given for the booming costs were unrealistic original cost estimates, technical difficulties on the Navy model and its Phoenix missile, and Government changes intended to boost the aircraft's capabilities.

Apathy may kill metric system bill

Patent bill

faces stiff
Senate fight

A necessary first step toward adoption of the metric system in this country may die in Congress because nobody seems to care.

A bill to authorize a study of the effects of such a switch has been passed by the Senate, but has been languishing in the House Rules Committee for more than a year. Rep. George Miller (D., Calif.), chairman of the House Science Committee and original author of the study proposal, has been promising for more than a month to press the Rules Committee to release the bill to the House floor. So far, he has failed to move, and the Rules Committee is showing no intention of acting on its own.

Long-pending legislation on Federal patent policy is being pushed toward a bitter Senate fight despite the fact that the bill is given little chance of passage. Even if the legislation-giving Federal contract administrators broad powers to assign patent rights to contractors-survives debate and a threatened filibuster in the Senate by Russell Long (D., La.), it stands little chance of success in the House.
The effect of the legislation would be to reinforce present Pentagon practices of assigning most patent rights to contractors, accelerate Na tional Aeronautics and Space Administration tendencies to freely assign such patents and overturn restrictive patent provisions in laws governing the Atomic Energy Commission, Federal Aviation Agency and other Federal organizations.

The bill had been locked up in the Senate Judiciary Committee more than a year. The committee, unable to reach any compromise, dumped the matter in the lap of the Senate for a formal expression of Congressional sentiment. If the legislation fails to pass, patent rights will have to be debated every time an R\&D bill comes before Congress.

Aeronautics satellite delayed by Comsat

The Communications Satellite Corp. will soon issue a request for proposals to study antenna design problems it is having on the planned satellite to relay very high frequency signals between aircraft and ground stations. Last week, because of antenna and other problems, Comsat told the Federal Aviation Agency that it was temporarily holding off on the experimental aeronautical services satellite planned for a 1967 launch. Comsat says it has not "formally withdrawn" its proposal to the FAA, but has told the only bidder on the program-the Hughes Aircraft Co. -that it won't accept its satellite design.

What solvent insures absolute cleaning of needle bearings?

Torrington says: FReNo in a BaronBlakeslee ultrasonic unit.

The Torrington Company of Torrington, Co in., must manufacture and deliver absolutely clean needle bearings. Only Frion solvent in a Baron-Blakeslee ultrasonic degreaser meets Torrington"s rigid standards of product-clearing. In fact,
Freon's superior performance actually raisec the general quality of the needle bearings.
Frion is a selective solvent - it cleans without affecting materials of construction. Its low surface tension penetrates the smallest pores and crevices. Its high density floats away all contaminants. Freon is r onflammable and relatively nontoxic. And its excellent stability permits reuse after simple distillátion.
Chances are rou can clean faster, better and rore economically with Freov. For more information, write Du Pont Co., Room 4346, Wilmington, Delaware 19898. (In Europe, write Du Pont de Nemours International S.A., Freon \& Valclene Department, 81 route de l'Aire, CH 1211 Geneva 24 , Switzerland.)

Better Things for Better Living
... through Chemistry

HONEYWELL PRE-AMPLIFIERS HAVE WINNING NOISE FIGURES. And satisfying low noise requirements is just one of the reasons they have earned an official APPROVED for sensitive receivers and spectrum analyzers. Off-shelf delivery makes them as easy to acquire as they are to work with.

SPECIFICATIONS

Tunable VHF Preamplifier/AP-501R* $\$ 1500$
Frequency Range $\quad 30-300 \mathrm{MHz}, 2$ bands
Gain
23 db nominal minimum $(\pm 2 \mathrm{db})$
Noise Figure
4.5 db maximum (less than 3.5 db below 250 MHz)

Bandwidth (3 db)
Band A, $30-70 \mathrm{MHz}, 2 \mathrm{MHz}$ Band B, $55-300 \mathrm{MHz}, 4 \mathrm{MHz}$ at $55 \mathrm{MHz}, 5 \mathrm{MHz}$ at 300 MHz

Tunable UHF Preamplifier/AP-502R*
\$1700

Frequency Range
Gain
Noise Figure

Bandwidth
$300-1000 \mathrm{MHz}$
26 db nominal ($\pm 3 \mathrm{db}$)
4.0 db at $300 \mathrm{MHz} ; 8 \mathrm{db}$ at 1000 MHz
3.5 mc at 300 MHz 15 mc at 1000 MHz

For specifics write to: Honeywell, Test Instrument Division, Annapolis Operation, Box 391, Annapolis, Maryland 21404. Or telephone: 301-263-2661.

approved

AP 502-R
*Electro International models.

onar manolus sustems
 Honeywell

when the decision calls for precision

SWITCH to $\mathrm{Hi}-\mathrm{Q}$ precision instrument switches!

\#18 Series three dech-three pole per deck switch with terninal boards.
$\mathrm{Hi}-\mathrm{Q}$ precision instrument switches readily fulfill standard, special, and military requirements at attractive prices through the use of modular stock units from which an almost unlimited series of configurations may be assembled....and minimum delivery time is guaranteed!

This kind of flexibility is typical of the engineering precision found in every feature-brush blades lapped and edges stoned; insulating parts custom drilled to critical tolerances; contacts of homogenous alloys for minimum EMF, positive metal-to-metal wiping, and low electrical resistance; maximum contact wiping surface to distribute frictional wear and promulgate longer life. For installation flexibility, all units are available with either solder pot or turret type terminals.

The terminal board switch is a further indicator of the advanced engineering you may expect from Hi -Q. The use of terminal boards facilitates modular wiring tarness design and reduces overall assembly costs.

Whatever your product, if design decision requires precision instrument switches, contact $\mathrm{Hi}-\mathrm{Q}$ and see what they have to offer. It's quite probable that you won't find a better answer anywhere.

Only G-E RTV silicone adhesive/sealants are UL recognized for

insulating...

sealing...

High temperature moisture sealing of heating elements. Costs less and sets up faster than epoxy. And G-E RTV stays flexible permanently.

Shock and vibration are cushioned by RTV's permanent resilience. Protects over wide temperature range. Won't harden, soften, crack or shrink.

Eliminate capping, taping and splic-
ing with RTV. Easily speeds assembly ing with RTV. Easily speeds assembly line sealing. Also used to lock nuts firmly in place.

bonding...

Laminated layers of mica sheeting are securely bonded with RTV sealant. Ready to use, it needs no catalyst and bonds without a primer.

Eliminate screws and drilling by adhering identification plates with RTV. hering identification plates wonds to metal, glass, wood, most plastics - almost all materials.

General Electric's RTV adhesive /sealant is à resilient electrical insulating material, weather-resistant and ready-to-use adhesive.

Recognized by Underwriters Laboratories for electrical uses, RTV sealant maintains its rubber-like properties at temperatures as low as $-75^{\circ} \mathrm{F}$, high temperatures up to $600^{\circ} \mathrm{F}$. It stays flexible permanently, does not crack or shrink.

For complete information on G.E.'s family of RTV silicone adhesive /sealants write Section N8209, Silicone Products Department, General Electric Company, Waterford, New York 12188.

GENERAL (\%) ELECTRIC

ULTRA-PERFORMANCE

TELONIC'S NEW MODEL 1001 SOLID-STATE SWEEP/SIGNAL GEMERATOR DELIVERS UNMATCHED FLEXIBILITY AVD FERFORMANCE FOR FREQUENCY AND CW TESTIMG FROM 100 kHz TO 20 MHz

ULTRA-WIDE SiNEEP RATIO

for Irequency response of broxd-band videol emplifier, 500 kHz to 20 मेilz.

B. Crisigl filter respoose, 3 dh bandwidth if 2.8 kHz wide at 10.3 M Fiz center
frequenco

ULTRA-STAELE

Same crystal filter as in (1B) ahove, with 1.10 the sweep width (100 A2! Div.).

1. Fine minutes later, no siz iffeant drift:
bidy marker is 100 Hz wille.

ULTRA-NARROW MARKERS

Eo Lrication of birdy marker is d ficult ro de ermine on verlical.

F. Tiled marker permils preciee frequency deberwhation.

Harmonic (1 MHz) and variable (100 $\mathrm{kHz}-20 \mathrm{MHz}$) frequency riarkers may be dev.ated from 10 kHz to as narrow as 100 Hz for precise frequency determina. tion. Unique time.o sharing circuit allows any combi, nation of markers to be displayed simultaneously without interference. Marker tilt control >rovides precise read. ings, even or steepest pari of shirt.

- MÁ VUAL OR EXTERNAL SWEEPING FOR'XY PLOT
- 2 vivis OUTPUT Withtalos do ATTEN CATION

The 1001 sweeps frequency in three ranges from below 200 Hz uf to the full range of $20 \mathrm{MHz}-$-hat's a ratio of 100,000 to 1 overall-plus, CW and modulated CW! This one instrument serves for narrow and broad rand applications in RF. IF, and video frequencies.

New solid-state power supplies forp the 1001 p-ovide exceptiona frequency stasility of 100 Hz for short lerm operation (1 min.), and 5 kHz over long term (1 hour). Calibrating and adjusting a-e minimized, test results more dependable. dearmanarion.

THE
 1001
 SWEEP/SIGNAL GENERATOR

$100 \mathrm{kHz}-20 \mathrm{MHz}$

SPECIFICATIONS
CENTER FREQUENCY
$100 \mathrm{kHz} \cdot 20 \mathrm{MHz}$ SWEPT RANGE $100 \mathrm{kHz} \cdot 20 \mathrm{MHz}$ SWEEP WIDTH

Narrow Range $200 \mathrm{~Hz}-200 \mathrm{kHz}$
Intermediate Range
$1 \mathrm{kHz}-2 \mathrm{MHz}$
Wide Range $\ldots \ldots \ldots \ldots$
SWEEP RATE
Variable
$0.01-60 \mathrm{~Hz}$
$50 / 60 \mathrm{~Hz}$
Line-Loc
1 VRMS into 50 ohms
STABILITY
Short Term (1 min.) 100 Hz
Long Term (1 hour) 5 kHz
HARMONIC MARKER 1 MHz
VARIABLE MARKER, RANGE $300 \mathrm{kHz} \cdot 20 \mathrm{MHz}$ VARIABLE MARKER, WIDTH:

Narrow
100 Hz
Intermediate
1 kHz
Wide 10 kHz
APPLICATION DATA FILE DESCRIBING USE OF TELONIC SWEEP GENERATORS IN RESEARCH, PRODUCTION AND Q.C. APPLICATIONS AVAILABLE ON REQUEST.

BEECH GROVE, INDIANA 46107
TEL: (317) 787.3231 TWX: 810-341-3202
Representatives in all major cities in the U.S. and foreign countries. Factory offices located at Maicienhead, England and Frankfurt, Germany

LIKE TO READ PERFORMANCE CHARTS?

Here are a couple we think you'll find interesting. They concern our 2SC685 transistor designed for use in line operated home radics and phonographs. This transistor can deliver an output of 1.0 watt with less than 10% distor-ion when used in class A amplifiers and is reasonably priced.

ABSOLUTE MAXIMUM RATINGS

(At $25^{\circ} \mathrm{C}$ Ambient Temperature)

Same size and shape as the JEDEC TO.66.

ELECTRICAL CHARACTERISTICS
(At $25^{\circ} \mathrm{C}$ Ambient Temperature)

Item	Symbol	Condition of Measurement			min.	cye	max.	Unit
Collector to Emitter Breakdown Voltage	$B V_{C E X}$	$I_{C}=1 \mathrm{~mA}$,	$\boldsymbol{I}_{B}=5 \mu \mathrm{~A}$		300	come	-	4
Emitter to Base Breakdown Vo.tage	$B V_{E B O}$	$I_{E}=100 \mu \mathrm{~A}$,	$I_{C}=0$		3	\%ere	-	$\%$
DC Current Transfer Ratio	$h_{F E}$	$V_{C E}=10 \mathrm{~V}$,	$I_{C}=50 \mathrm{~mA}$		30	60	150	
Gain Bandwidth Product	f_{T}	$V_{C E}=50 \mathrm{~V}$,	$I_{C}=20 \mathrm{~mA}$		-	es	-	St
Base Spreading Resistance	$r_{\text {rb }}{ }^{\prime}$	$V_{C E}=50 \mathrm{~V}$,	$I_{C}=20 \mathrm{~mA}$,	$f=50 \mathrm{Mc}$	-	\%	-	Ω
Collector Output Capacitance	Cob	$V_{C B}=50 \mathrm{~V}$,	$I_{E}=0$,	$f=1 \mathrm{Mc}$	-	8	-	pF

If you enjoyed reading the charts and found them interesting, why not inquire further to:

A BILLION STANDARD POTS AND TRIMMERS?

 (well, would you believe 211,209,077?Of course a number lixe two hundred million needs explaining. But If y and colrt up such ortims as rourtings, gangable combinations, resistance values, terminal variatiors, and other available estures, zou will find that Spectrol offers yo $2 \boldsymbol{2}, 2,209,077$ standard potenticmeters and trimmers te cikose from. Fut even as ene of the industry's lecieres sources for "stardards",

Spectued sti meintains technical eadership in the design and portion of "specials." And, the Spectrol doubleedgec cipability doesn't stop there. For n, one ekse can uffer you a broader stries of miniatura rotary silector su telies designed for direct printed-circuit-anard application, or more accurate more readatle turs -ccoentirg dials.
Still don't het ev: : Sorry ahout tha-. But make you(unn count. Wh'ic Eor a Spectrol Catalog...ar pich one in at on Wecon Booth 1201-; 202.

there are ordinary seals

... and then there's MCCoy

The seal gets special attention at $\mathrm{M}^{c} \mathrm{Coy}$ 100% inspection against temperature, altitude, vibration and shock. Only a permanent, hermetic seal can guarantee frequency stability and reliability for quality crystals. Our new Cleanseal process uses high pressures to flow metal enclosures together in a heatless "weld" that's more leak resistant than the metal itself. Heating distortion and

possible internal contamination by solder flux are eliminated. Cleanseal crystals have withstood 5000 cycles, 30 G 's vibration, and 8000 G's, 0.5 millisecond pulse shock testing. Glass crystals are vacuum sealed by flame or induction heating. $\mathrm{M}^{\mathrm{C}} \mathrm{Coy}$ has the nation's most complete line of quality high and low frequency crystals. For full details, write for our new product catalog.

MCCOY ÉLECTRONICS COMPANY
a division of
$\overline{\text { CORP }}$
Mt. HOLLY SPRINGS, PA. 17065

Package D $418160^{\prime \prime} \times 7 / 2^{\prime} \times 9 / 6 "$

Accessory metered Ponels: $\$ 40.00$

Modal	ads volt adange voc	1 max amps				Price
		6 C	30 C	60 C	11 C	
Lm. 234	O-1	8.3	ग3	6.5	5.5	8199
Lmo-0.14	014	49	4 ?	34	27	199
(mo.0.32	0-32	25	21	11	13	150
LMO.0.60	060	13	11	095	075	239
LM. 235	$85-14$	17	68	60	48	199
LM. 236	${ }^{13-23}$	5^{58}	51	45	36	209
[m.237	2232	50	44	39	31	219
LM. 230	30-60	26	23	20	16	239

I Current rating is from zero to I max. Cisrent rating applies over entire output voltage range. Current rating applies for input voltage $105-132$ VAC 55-65 cating 10%. For operation 45 cps derate current rating 10%. For operation at $360-440$ cps consult F.O.B. Factory, Melville, N. Y. All specifications and prices subject to change without notice.

Features and Data meet mil. En-

 vironment Specs. RFI-MIL-I-16910: Vibration: MIL-T-4807A: Shock: MIL-E-4970A Proc. 1 \& 2: Humidity: MIL-STD.810 - Meth. 507: / Temp. Shock: MIL-E-5272C • (ASG) Proc. 1: Altitude: MIL-E-4970A - (ASG) Proc. 1: Marking: MIL-STD-130: Quality: MIL•Q9858.Convection cooled-no heat sinking or forced air required
Wide input voltage and frequency range 105.132 VAC , ($200-250 \mathrm{VAC}$, optional at no extra charge) $45-440 \mathrm{cps}$
Regulation (line) 0.05\% plus 4MV (load) 0.03% plus 3 MV : Ripple and Noise-1 MV rms, 3 MV p to p
Temp. Coef. $-0.03 \% /{ }^{\circ} \mathrm{C}$
RACK ADAPTERS
LRA-3-51/4" height by 27/16" depth. Price $\$ 35.00$ LRA-4-3!/2" height by 14" depth. (For use with chas. sis slides) Price $\$ 55.00$
LRA-6-5/4" height by $14^{\prime \prime}$ depth. (For use with chas- LRA-5 - $3^{1 / 22^{\prime \prime}}$ height by sis slides) Price $\$ 60.00 \quad 27 / 6^{\prime \prime}$ depth. Price $\$ 35.00$

SEND FOR NEW CATALOG ON FIXED VOLTAGE AND WIDE RANGE MODULAR POWER SIJPPLIES

High purity of lithium niobate boules is maintained by meticulous boules is maintained by meticulous. control of temperal as well as microscopic precision in formulation.

GROWING
 LASER EFFICIENCY -

A tenfold increase in crystal fluorescence . . . a tunable optical source that converts a laser beam of one color to any other color in the spectrum . . . such achievements are the result of significant advances in the art of crystal chemistry. Crystals like YAG (yttrium aluminum garnet), for example, are expected to provide new host crystals for high-energy, optically-pumped ion-host lasers. Lithium niobate will provide a new and efficient means for deflection, modulation and tuning of laser outputs. Sperry's staff of crystal technologists is, in fact, actively studying no fewer than fortysix different materials and using all of the principal crystal preparation techniques: Flux growth and flame fusion as well as the Czochralski and Bridgman processes. From this research will come materials for the next generation of electronic and optical devices.

Tomorrow's answers...

 through Sperry ResearchVariable signal delay and trillionfold amplification characterize the fold amplification characteral delay performance of experimedstal small as one half-inch long.

DELAYING ACTION -

A half-inch of YIG (yttrium iron garnet) and a unique parametric pumping technique have enabled Sperry physicists to demonstrate net gain amplification of delayed microwave signals at room temperature. Variable delay and signal amplification up to 20 db net gain from L to X-band are the latest results. Without getting tangled up in miles of coaxial cable, YIG delay lines hold a key to higher resolution, less costly, Doppler and pulse-compression radar and ECM systems. Other magnetic materials are also under study for microwave and computer applications.
\square These are just a few of the many scientific achievements of Sperry Rand Research Center. Sperry can help you meet similar short or long-term technological objectives through basic and applied research in a variety of scientific disciplines. We are currently engaged in inten. sive investigation and experimentation in the following areas:

SOLID STATE SCIENCES

Microelectronics
Microwave and optical signal processing
Microwave oscillators
Laser materials and techniques Crystal chemistry Crystal chemistry
Magnetic phenomena

PLASMA PHYSICS

Microwave and optical devices Re-entry plasmas Energy conversion

Headed for the diffusion furnace - insulation deposited on silicon wafer base provides a better diffusion mask and greater dielectric strength than oxide growth methods.

THICKSKINNED -

A new microelectronic insulating technology developed by Sperry scientists promises increased electrical stability in the newest breed of semicon ductor devices and microcircuits. Reliable passivation isolates circuits from environmental deterioration without encapsulation. Insulation is deposited on the silicon base material, not grown by oxidation. Deposition is ten times faster at half the temperature required for oxide growth. Thickness can be precisely controlled in layers varying from angstroms to mils. Continuing studies are exploring possible use of this technique with other base materials, such as germanium, gallium arsenide, and indium arsenide.

ATMOSPHERIC PHYSICS

Environmental modeling
Active and passive radiometry Laser atmospheric probing

SYSTEMS RESEARCH
Radar sciences
Human factors
Applied mathematics and control theory
Data processing techniques
Underwater communications and sonar

DC DOES IT -

Sperry scientists tucked a tiny, silicon planar epitaxial diode into a small, tunable, resonant cavity and reversebiased it beyond breakdown. Applied dc inputs produced microwave outputs, either pulsed or cw . This experimental transit-time oscillator has displayed high spectral purity and easy tunability in octave bandwidths over the entire microwave frequency range. As potential replacements for conventional, low power microwave sources, such devices look especially suitable for future ground, air, or space-borne radar and communication receivers, beacons, and radar altimeters. Current experiments aim at pushing the frequency capability well up into the millimeter wave region.

specify hot carrier diodes from hpa

For high-speed sw tching in ulira-fast compute's, sampling circuits, test equip nent or UHF anc VHF mixers and detectors, vou כw'き it to yourself to investigate low noise, h gh reliability 2300 Series Hot Carrier Diodes from hp associates. Al devices in this series heve rinority warr er lifetirres óless than 100 p coseconds. Using the latest advences in metal-silicen te=hnologs; these devices cffer increased forward zurrent and higher breakdowin voltage. Operating and storage :emperatu'e range $-60^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Power dissipation at 25° に is rated at 125 nv . Peak pulse power rat ng is 5 ergs. They also neet the requirements of MIL-S-19500C.

Write today for applica: on information ard complete data, inc uding life test data, rp assuciates, 620 Pase Mill Road, Palo Alto, Californ a 94304, Tel. 415° : 21.851 C .

TYPIC.AL DEVICE SPECIFICATIOMS							
Derice	Formard Curment $1 F_{i}$	Fommard Cu'rent IF F_{2}	$\begin{gathered} \text { Breakdown } \\ \begin{array}{c} \text { oittage } \\ \text { By } \end{array} \end{gathered}$ BV	Leal age Curent 1 !	Capacitance Co	Effective Minority Carrier Lifelime*	$\begin{gathered} \text { Price } \\ 1 \text { to } 99 \\ 100 \text { to } 995 \end{gathered}$
hpa 2301 Min. Max.	$50 \mathrm{~mA}$	1 ma	30 V	300 nA	1 pf	100 ps	$\begin{array}{r} \$ 8.50 \mathrm{ea} . \\ 6.35 \mathrm{ea} . \end{array}$
$\begin{array}{r} \text { hpa } 2302 \\ \text { Min. } \\ \text { Max. } \end{array}$	35 mA	1 mA	30 V	300 nA	1 pf	$: 00 \mathrm{ps}$	$\begin{aligned} & 7.75 \mathrm{ea} \\ & 5.80 \mathrm{ea} \end{aligned}$
$\begin{array}{r} \text { Һpa } 2303 \\ \text { Min. } \\ \text { Max. } \end{array}$	35 mA	1 r\&	20 V	500 nA	$1.2 p^{-}$	100 ps	$\begin{aligned} & 7.15 \mathrm{ea.} \\ & 5.35 \mathrm{ea.} \end{aligned}$
Test Conditions	$\begin{gathered} V== \\ 1 \end{gathered}$	$\begin{aligned} & V_{F}= \\ & 0.7 \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{I}_{\mathbf{R}}= \\ 10 \mu \mathrm{~A} \end{gathered}$	$\begin{aligned} & V_{R}= \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{gathered} \left.V_{R}=1\right) \\ f=1.0 \mathrm{NH} \end{gathered}$		

*These diodes are tco fast to measure in conventional circuits utilizing stardurd reverse recovery tine measurements. Therefore, the effec ive minority carrier lifetime is specified as τ instead of Trr, Devices are hermetically sealed in a miriature glass package $0.160^{\prime \prime}$ long, $0.0 \% 0^{\circ \prime}$ in diameter, color codec.

HEWLETT

 PACKARD hp H^{P}
Weston Model 1423 Integrating DVM $1 \mu V$ Sensitivity at $50 \mathrm{M} \Omega$ for $\$ 1950$.

FEATURES: Strain gage and thermocouple type mieasurements are made with meaningful accuracy due to integrating and high sensitivity features of Model 1423. High common mode rejection allows low level measurement of potentials well above ground. Loading errors are rea'uced by 1000 times as compared to conventional DVM's.

SPECIFICATIONS: Accuracy: $0.02 \% \pm 1$ digit. Common Mode Rejection: 150 db DC \& 130 db at 60 Hz -with up to 5 K unbalance between input leads, and filter in use. Series (Normal) Mode Rejection: 60 db at 60 Hz with filter. Overranging: 15% with fifth digit display. Display Time Control: From 4 reading/second to 1 reading/15 seconds. Overall Dimensions: $6 \frac{1}{2}{ }^{\prime \prime} \times 14 \frac{1}{4} 4^{\prime \prime} \times 161 / 4^{\prime \prime}$ Price: Bench mount, $\$ 1950$; rack mount, $\$ 1995$. Price subject to change without notice.

Input Impedance \& Sensitivity
Input Impedance

Range	Minimum	Sensitivity
10.000 mV	50 megohms *	$1 \mu \mathrm{~V}$
100.00 mV	500 megohms *	$10 \mu \mathrm{~V}$
1000.0 mV	5000 megohms*	$100 \mu \mathrm{~V}$
1000.0 volts	10 megohms	$1 / 10 / 100 \mathrm{mV}$
*Typical values twice as large		

Contact Weston Instruments, Inc., Rotek Division, 11 Galen Street, Watertown, Mass. 02172
WESTON
prime source for precision... since 1888

Our Microstack will provide the memory for the Lunar Excursion Module's abort guidance system. During the round trip from the Apollo spacecraft to the moon the crew will constantly sample the Microstack memory, call up critical data, and align the LEM abort guidance system with the Apollo's primary guidance system. If required, the Microstack memory will help the Apollo's abort guidance system bring everyone back home.

Obviously, TRW was concerned with reliability when they wrote the LEM merrory syslem specifications. Like: rendom viora-tion- $)$ perating 20cos (a.070G2/cps to 2400cps ($0^{0} .070 \mathrm{G}^{2} / \mathrm{cps}$. Microstack's unique design met all specifications. It's a folded-array, developed by Indiana General. The "X" and " Y " axis are wired continuously, reducing failure-prone solter connections 80% and size and weight.
Indiana General leads in developing and
producing memory stacks and cores. We invented the ferrite memory core and still make and sell more of them than anyone.

If you need Mil. Spec. type memory units find out about Microstacks and our core capabilities. Write Mr. Thomas Loucas, Manager of Sales, Indiana General Corporation. Electronics Division/Memory Products, Keasbey, N.J.

INDIANA General [eg

When the LEM gets ready to leave the moon Indiana General will know the way back home.

Indust \because 's enthusiastic acceptance of the type BIP-8211P NIXIE ${ }^{(i)}$ tube reado 1 d driver and the versatility of its basic design has led to the dedelopment of other circuit variations. These compact, attractice modules not only save you design, development, teṣting and prediction costs, but a lso give you the best device for translating low wevel BCD inputs to decimal readout. Modules currently available foom stock include: - BIP-करु]JP-accepts 8 -line low-level (2V-35V separation) 8-4-2-1 $B C D$ and drives the standard-size rectangular NIXIE tube, type 8422. B P-822LP-accepts low-level 4-line, 8-4-2-1 BCD and drives the sta $7 \mathrm{da}-\mathrm{d}$-size rectangular NIXIE tube, type 8422. - BIP-8227Pidenti=a to the BIP-8211P except it accepts Icgic-level separations as low as 0.7 V (from $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) making it compatible with lowlevel, mon lithic, integrated circuits. BIP-\&225P-used for com puter readout, it drives a NCXIE tube with an integrai decimal point (type E-59956). Type BIP-8225P accepts tweive 4-bit, binary-input
combinations (numerals 0-9, decimal point and blanking) and has the capability of being electronically dimmed via a separate lowlevel control input. - BIP-8222P—drives the type B-59956 NIXIE tube with integral decimal point from low-level, 8-line, 8-4-2-1 BCD. Decimal point is independent of BCD input and can either be "on" or "off" wnen a numeral is "on". - BIP-8223P-identical to the BIP-8211P except it operates over the wide temperature range of $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Other modules which accept other BCD codes as well as decimal inputs are also available individually or in complete Bezel Assemblies. They are completely described in a new brochure, Bulletin 1108. For further information contact your Burroughs Stocking Dealer in your area or Burroughs Corporation in Plainfield, New Jersey. Dealers names, addresses and phone numbers are listed for your convenience.

Only Burroughs manufactures NIXIE Tubes

CALIF JR Va
Los AnE Aldes sco36
Tech-Stox,
(213) 93 -(78) TWX 213-937-2788.
Palo Alx, 34:03

San Difyon $\boldsymbol{5} 710$
San bitgon
CONNECTEUT
West tatere, 06117
Instrur en Dunamics, Inc. of Connerticut, Instrur ene Dyna
(203) 233.j5 5 .

Fort W3-n $3-6802$
R.O. Wh tese I \& Assjc., Inc
(21)

Indianaporis, 66219
R.O. Whtese \& Assoc. Inc.
(317) : : $=9-50^{-4} a_{;}$TWX 317-635-9766.

KENTUCKY Louisville, 40207 R. O. Whitesell \& Assoc., Inc. (502) 8£3.7303. MARYLAND
Silver Spring, 20910
Technical Distributors, inc.
(301) 585-7512; TWX 301 439-2200 MASSACHUSETTS
Wakefield. 01880
Wakefield. 01880 (617) 245.5100; TWX 617-245-7479 NEW JERSEY
NEW Plainfield, 07061
Plainfield, 07061 ECD P.O. Box 1226
Burrouzhs Corp. ECD, P.O. Box 122
(201) $757-5000$; TWX $710-981-7907$
NORTH CAROLINA
Winston-Salem, 27102
L. G. White \& Co., Inc.
(919) 725-3612; TWX 919-725-6262.

OHIO
Cincinnati 45231
R. O. Whiteseli \& Assoc Inc
(513) 521.2290: TWX 513.577.1750.

Cleveland, 44126
R. O. Whitesell \& Assoc., Inc.
columbus, 43212
Columbus, ${ }^{\text {Electronic }}$ Marketing Corp
(614) 299-4161; TWX 614-759-0096

Dayton 45439
R Whitesell \& Assoc., Inc.
(513) 298-9546; TWX 513.944-0526. OKLAHOMA
Midwest City, 73110
Arnold Barnes Company
(405) $737-4556$.

Phi adelphia, 19107
Phi adelphia, 19107
Herbach \& Rademan, Inc.
(215) 567-4309.

Pittshurgh, 15235
R.O. Whitesell \& Assoc., Inc.
(412) 242.0100.

TEXAS
Houston, 77027
Arnold Barnes Company
(713) 622-3620; TWX 713-571-2470, Richardson, 75081
Arnold Barnes Associates, Inc.
(214) 235-4541; TWX 214-231-1405.

San Antonio, 78216
Arnold Barnes Company
(512) 342-7311.

August 22, 1966 Highlights of this issue

Technical Articles

Training a machine to read with nonlinear threshold logic:
page 86

Helix antennas take turn for better: page 100

P-i-n diode and FET's improve f-m reception: page 114

Normally, machines that do pattern recognition are big, complex and expensive. By using integrated circuits and a tectmique called nonlinear logic in which the output is based on the weighted sum of nonlinear functions, engineers have devised a small, flexible machine. It can sort alphabetic characters, classify wave forms and recognize geometric shapes.

Helix antemnas have been around for years, but their unspectacular performance with respect to bandwidth and gain has been a handicap. Now a new class has large bandwidth and high gain. Contrawound, the antenna has a unique property: polarization, bandwidth and gain can be controlled independently. For the cover, Vincent Pollizzotto accented the contrawound design by photographing head-on through the center of the new antenna.

There was a time when the makers of fine hi-fi equipment wouldn't touch solid state components because of what they did to quality. To show how far the solid state revolution has moved, a maker of good entertainment equipment has used two kinds of solid state devices to attain dynamic signal ranges exceeding 120 decibels. The new devices cut down the interference that bothers devotees of $\mathrm{f}-\mathrm{m}$ stereo.

Satellites have made the job of predicting the weather casier, particularly in spotting sudden storms or hurricanes. There's been one notable weakness however; the satellites have worked only during daylight. In Nimbus 2, launched in May, an infrared system will transmit cloud pictures to earth even when the satellite is over the dark side of the globe.

Coming September 5
 - Using scattering parameters in design
 - Sense amplifiers with integrated circuits
 - A high-speed computer for navigation
 - Laser hardware ready for applications

Training a machine to read with nonlinear threshold logic

Typewriter-size pattern recognizer built of integrated circuits can sort alphabetic characters, classify wave forms and recognize geometric shapes;

its operation resembles the workings of the human brain

By D.P. Hattaway, E.D. Hietanen and R.W. Rothfusz
Bendix Corp., Southfield, Mich.

Can a machine be trained to duplicate the ability of the human brain to recognize patterns. geometric shapes and alphabetic characters? What circuitry is needed? How large would the machine be? What about cost and efficiency? These and many more questions face engineers vorking with the design of pattern recognition systems vital in applications such as mail sorting, language translation, aerial photography and wave-form analysis.

Artificial logic systems on which decision making depends tend to be large and complex. Yet, most humans can master such complex things as character and speech recognition in a relatively short time-and the average brain weighs only 3 pounds and occupies a volume of 100 cublic inches.
The brain, using many fairly simple logic elements, makes its clecisions because it can be trained to respond to a given set of input conditions. Because it is trainable, the brain can clevelop a pattern recognition system without having all the variables in a pattern defined beforehand. For example, the system can be trained to recognize the letter " a " without knowing how many other characters constitute the complete alphabct.
To recreate just this one function using discrete electromechanical elements takes thousands of components. The equipment would fill many rooms and the cost would be enormous. Yet at best, the machine could only compare unknown data against known. It could not alter its decision capability, as the brain does, when faced with a situation such as a misspelled word or a badly smeared letter, At best the machine could answer "unknown" whereas the brain would be able to change its mind or give the correct answer.
This limited type of pattern recognition has al-
ready been successfully incorporated in equipment. A mail sorter built by the Philco Corp. is in operation at a Detroit, Mich., post office. It sorts 36,000 letters an hour by zip code and costs somewhere between $\$ 125,000$ to $\$ 150,000$. Similar equipment, which reads only numbers, is made by the Burroughs Corp., National Cash Register Co and Rabinow Electronics, Inc.
Language-translation systems have been developed by the International Business Machines Corp. at its Thomas J. Watson Center. The systems convert Russian and Chinese from a printed page of text into a printed page of English. Both the mail sorter and language translator work on the principle of page scanning. However, other techniques are being tried.

Compact and trainable

Scientists and engineers at the Research Laboratories division of the Bendix Corp, have succeeded in combining the assets of microcircuitry and a technique called nonlinear threshold logic to make possible a typewriter-size, practical pattern recognition system. The system, a demonstration model, can be trained to pick out patterns, select or reject geometric shapes and organize groups of alphabetic characters-much as the human brain does. To recognize the patterns or characters, the system need not know beforehand all the required variables.
The usefuhess of nonlinear threshold logic has already been proved in the demonstration model which is not available commercially. Its principles can be extended to solve such additional problems as radar-target recognition, wave-form classification and extraction of signals from noise.

Patterns of up to 31 variables and 300 shapes can be identified by this trainable pattern recognizer. The system uses microcircuits to reduce the size of equipment and nonlinear threshold logic for decision making.

Transforming the input variables

The model uses nonlinear threshold logic to make decisions. Essentially, nonlinear threshold logic is a form of recognition logic where the output is based on a weighted sum of certain nonlinear functions of binary input variables. The model contains a linear threshold logic element preceded by a transformation matrix. The matrix transforms the input variables into a new set of variables that are properly classified by the linear threshold logic element. Inputs to a threshold logic element are weighted according to their importance in the decision-making process. The

Linear threshold logic circuit inputs x_{1} through x_{N} are binary. Acting with these inputs are weighted terms, a_{0} through a_{N}, of either positive or negative values.
weighted sum of the inputs is compared to a predetermined threshold to give a binary decision at the element output. By making the input weights variable, the logic element is "trained" to give a desired output for a given set of input conditions.
Binary inputs, $x_{1}, x_{2}, \ldots, x_{\mathrm{s}}$, are fed into the threshold logic circuit shown at lower left and are defined by the pattern to be recognized. For convenience they are treated as $+1,-1$ instead of the usual 1,0 . The binary inputs have algebraic weights, $a_{1}, a_{2}, \ldots, a_{y}$, that can have negative or positive values. The output of the threshold logic circuit is determined by the magnitude of the sum of the weighted binary input variables. Mathematically, the output, F, is expressed:
If: $\sum_{n=1}^{x} a_{n} x_{n} \geq a_{0}$, then $F=+1$; otherwise, $F=-1$.
The term a_{0}, is an additional algebraic quantity called the threshold.
The function realized by the circuit can be expressed by a conventional Boolean equation or truth table. To realize a particular function, an appropriate set of weights, $a_{1}, a_{2}, \ldots, a^{2}$, and threshold, a 0 , can be determined by a set of rules, or algorithms. Threshold logic can also be applied to problems where the weights are determined in an adaptive or trainable manner. Then, training algorithms are used.

Training algorithms for linear threshold logic usually takes place as follows:

- Patterns for which desired outputs are speci-

In a nonlinear threshold logic circuit elements are present that form nonlinear, binary-value functions β_{1} through β_{s}. These functions are formed before any weighting operation takes place.
fied are applied to a circuit sequentially.

- Whenever a wrong output occurs, each weight in the circuit is adjusted by an equal amount. The adjustment is in a direction that tends to make the output correct.

It is usuadly necessary to make several passes through the patterns before optimum performance is achieved. With the circuit at optimum performance, or trained, the desired function may be realized without emors, or it may be partially realized with certain patterns misclassified. Once trained, the circuit is fixed, as a pattern recognizer.

Overcoming the drawbacks

Linear threshold logic, because of the mathematics defining it, limits the functions that can be handled. ${ }^{1}$ Only a small percentage of the total possible functions can be realized for variables of five or more. To be realizable, a function must separate a group of input patterns into +1 and -1 categories by a linear equation. The function is then linearly separable.

Nonlinear threshold logic can handle a greater number of functions than can linear threshold logic. To realize nonlinearly separable functions,

x_{1}	x_{2}	x_{3}	β_{m}
-1	-1	-1	-1
-1	-1	+1	+1
-1	+1	-1	+1
-1	+1	+1	-1
+1	-1	-1	+1
+1	-1	+1	-1
+1	+1	-1	-1

Resultant β_{u} 's for every $x_{1} \bullet x_{2} \bullet x_{s}$ combination
a network of several threshold logic circuits or a more extended form of recognition logic is required. A more extended form of recognition logic, known as nonlinear threshold logic, has been investigated at the Bendix Research Laboratories and is incorporated in the trainable pattern recognizer.
Nonlinear threshold logic, as shown at left, differs from linear threshold logic by the presence of the encircled elements marked NL (nonlinear).
These elements form nonlinear, binary-valued functions, $\beta_{1}, \beta_{2}, \ldots$., β_{M}, of the input variables prior to weighting. The form of nonlinear function used in the trainable pattern recognizer is the algebraic product in which the β_{m} terms are the product of selected input variables. A switching parameter, $s^{n}{ }_{\ldots}$, identifies which of the n variables is used to form the $\mathrm{m}^{\text {th }}$ product term, β_{m}. For example, if $s^{n}{ }_{1 n}$ is 1 for $\mathrm{n}=1,2,3$ then:

$$
\beta_{t u}=\mathrm{x}_{1} \cdot \mathrm{x}_{2} \cdot \mathrm{x}_{3}
$$

Resultant values of β_{n} for every possible combination of x_{1}, x_{2}, x_{3} appear in the table at left. Any β_{11} is equal to +1 when an even number of the variables used in the algebraic product have values of -1 . Conversely, β_{m} equals -1 when an odd number of the variables have values of -1 . Training of the nonlinear threshold logic circuit adjusts both the weights (a_{3} terms) and the values of the switching parameters. Here a_{n} represents the weights that act with the corresponding $\beta_{\text {nn }}$ terms shown for the nonlinear threshold logic circnit. These are equivalent to the as weights originally shown for the linear threshold logic circuit. The difference between a_{x} and a_{x} is that the ax terms directly act with the input variables and a_{1} terms act with the derived β_{m}.
Until now, the general-training algorithm for nonlinear threshold logic has only been simulated on a general-purpose digital computer. In the simulations, the initial values of each of the $s^{\prime \prime}$.. terms are established cither randomly or empirically. As in the linear threshold logic training algorithm, the circuit is adjusted only if a wrong output occurs. An incremental adjustment is first applied to each of the weights of the circnit in a direction which tends to make the output correct. Stored quantities-in effect weights for procluct terms that can be selected later-are also adjusted using the same strategy. If the weight adjustments are insufficient to change the circuit output, an $\mathrm{s}^{\mathrm{n}}{ }_{\mathrm{m}}$ switching parameter is complemented. Thus, a new product term β_{w}, is selected. The β_{m} term selected is the one that has a stored weight differing in magnitude from the weight of the present β_{w} by the greatest amount. The stored weight for the selected β_{m} term also replaces the present weight, $a_{I I}$. The training process is repeated for every pattern for which a wrong output occurs, and can be repeated for several iterations.

It is usually necessary to limit each algebraic product to a prespecified set of input variables to keep the weight storage within reasonable limits. Certain $\mathrm{S}^{\prime \prime}{ }_{\mathrm{u}}$ switching parameters are not allowed
to become 1 during the training. For example, if there are four variables, and, for one of the algebraic product functions, β_{m}, only $\mathrm{s}^{1}{ }_{\mathrm{m}}$ and $\mathrm{s}^{3}{ }_{\mathrm{m}}$ are allowed to become 1 , the functions that are formed by β_{m} are $\beta_{\mathrm{m}}=\mathrm{x}_{1} ; \beta_{\mathrm{m}}=\mathrm{x}_{3} ; \beta_{\mathrm{m}}=\mathrm{x}_{1} \mathrm{X}_{3}$.
Thus, it is only necessary to determine appropriate weights for these three functions rather than for all possible functions of four variables.
In the trainable pattern recognizer, the algebraic products are not varied during training. They are specified beforehand, from empirical results.

Analog implementation

The schematic of the linear threshold logic element suggests an analog implementation is possible. An operational amplifier with several variable summing resistors on the input and connected as a level detector, as shown at top, right, could be used as a threshold logic clement. The inputs are weighted by properly adjusting the variable input resistors, R_{1} through R_{\times}. Another variable input resistor, R_{o}, sets the threshold level.

A major problem in the approach is finding variable elements with the appropriate characteristics. Since training signals for the logic element are in the form of electrical signals, it is clesirable to have a device whose resistance (or other parameter) can be changed by means of an electrical signal. ${ }^{3}$ Such devices exist, but none has yet reached a high state of development. A servodriven potentiometer meets the requirement, but is not feasible for a large number of logic clements because of the high cost and bulky size.

Digital implementation

The threshold logic element may also be implemented with digital techniques. The analog summing amplifier is replaced by an adder and accumulator. Various weights and the threshold value are stored in registers, each with the proper signs. Whether a given weight, a_{m}, is added or subtracted from the contents of the accumulator is determined by the corresponding coefficient β_{m}. The accumulator-sign bit indicates whether the

Operational amplifier coupled to variable-summing resistors make up an analog threshold logic element. Resistors act as a level detector.
sum of the weighted inputs is greater or less than the threshold value.

The digital approach was chosen for the demonstration unit for the following reasons:

- Weights are easily altered loy changing the content of a register.
- Time-sharing the adder and accumulator among several threshold logic elcments is possible.
- Digital circuits in microclectronic form are readily a a ailable.
- Microelectronic functional networks such as the adder, accumulator and registers can be produced in a single package.

Operating the recognizer

As shown below, the system operates in a scrial mode. The basic computing cycles are start, add, reward or punish.
A pushbutton initiates the start cycle by gating on a timing generator consisting of a binary counter and decoding gates. The counter controls the subsequent cycle or cycles. Two timing generators are provided-a bit counter (12 bits) and the word counter (10 words). During the start cycle only the word counter is gated on; during the add and increment cycles both counters are on. Control of the two counters is provided by the system control logic.
During the start cycle, the set of cross-prod-

Trainable pattern recognizer operates in a serial mode. Adder, accumulator and registers are produced with ic's.
uct functions, β_{m}, are determined from the crossproduct of the input pattern, x_{N}, and the s_{M} matrix. A cross-product term, β_{m}, was previously defined as the product of the inputs, x_{N}, for which the corresponding terms in the cross-product matrix, $s^{\mathbf{n}_{\mathrm{m}}}$, are equal to 1 . The computation of each β_{m} term is accomplished by sequentially scanning the set of input switches, x_{x}, and applying this signal to the cross-product matrix, s_{M}.
The term s_{M} represents the set of $s^{n}{ }_{n 1}$ switching parameters. Nine outputs from the cross-product matrix, s_{M}, corresponding to the β_{n} terms are gated into flip-flops. Every time an input, x_{n}, representing a -1 is scanned and the corresponding matrix switch, $\mathrm{s}^{\mathrm{n}} \mathrm{m}$, is closed, a pulse is applied to the toggle input of each β_{m} flip-flop causing it to complement. Since the flip-flop is initially cleared to a reset state at the beginning of the start cycle, an even number of -1 inputs leaves the flip-flop reset and indicates a value of +1 for β_{un}. An odd number of -1 inputs to the flip-flop leaves it set to indicate $\beta_{\mathrm{m}}=-1$. This operation occurs in every flip-flop of the β_{m} register. Thus, when all the input switches are scanned, each flip-flop contains one β_{m} term. These values are stored for use during the add and increment cycles.

Computing β_{m}

In the simplified logic circuit that illustrates the computation of the β_{m} terms shown below, the number of inputs, switching parameters and β_{m} terms have been reduced for clarity. The input pattern, x_{N}, is $-1,+1,+1,-1,+1$, and the three
switching parameters are

$$
\begin{aligned}
& \mathrm{s}_{\mathrm{s}^{\mathrm{n}}}=1,0,1,0,1 \\
& \mathrm{~s}^{\mathrm{n}}=0,1,1,0,1 \\
& \mathrm{~s}_{5}{ }^{n}=1,1,0,1,0
\end{aligned}
$$

The resultant β_{m} terms are $\beta_{1}=-1, \beta_{3}=+1$, and $\beta_{\overline{5}}=+1$. Wave forms at the output of the OR gates show the sequence of pulses at the toggle input of the flip-flop. The wave forms are produced when the input switches are scanned by the timing signals T_{1} to T_{5}.
The start cycle terminates with an add cycle which computes the values of F. During the add cycle, the bit and word counters are used to control the movement of data in the shift register and accumulator. Data in the shift register forms the input weights (a_{m} terms). A predetermined set of $a_{t u}$ terms may be entered in parallel into the shift register by the a_{m} board and enter weights switch.

A full adder in conjunction with the accumulator provides a means of taking the sum of the a_{m} terms. The shift register stores all the positive a_{m} terms as straight binary numbers. Negative a_{m} numbers are stored in the two's-complement form of the binary number. (The two's complement of a binary number is obtained by replacing the one's with zeros and vice versa, and adding 1 to the resultant number.) Thus, both positive and negative numbers are summed by addition. As the a_{m} terms are moved out of the shift register, the corresponding β_{m} term is used to control the complement logic.

The complement logic implements the multipli-

Logic circuit shows how $\beta_{\mathrm{t} \mathrm{\prime}}$ terms are computed. Input pattern consists of x_{N} and the three switching parameters, $\mathrm{s}_{1}{ }^{1}, \mathrm{~S}_{3}{ }^{n}$ and $\mathrm{S}_{5}{ }^{\prime \prime}$. Inputs, switching parameters and β_{m} terms are reduced here for clarity.

Stages of operation for trainable pattern recognizer. Input pattern enters by means of switches x_{1} through x_{B}.
The $\beta_{\text {m }}$ terms are produced by a plugboard matrix. Computation cycle is initiated by the start pushbutton.
cation of $a_{m} \beta_{m}$. If the β_{m} term is negative, the complement logic generates the two's-complement form of the corresponding a_{111} term. For a positive β_{m} term the a_{n} term is not complemented. At the end of the add cycle the counters are gated off and the sign bit of the accumulator is stored in a flip-flop. This flip-flop drives the actual F indicator.

Depending on the value of F, the reward or punish cycle is initiated. During either cycle the bit and word counters again control the shift register and full adder to increment each of the a_{m} terms. The accummlator is not used during this cycle. Each of the a_{11} terms is incremented up or down one count by the following relationships:

REWARD

$\nabla \mathrm{a}_{\mathrm{m}}=+1, \quad$ if $\beta_{\mathrm{m}}=\mathrm{F}$
$\Delta \mathrm{a}_{\mathrm{tu}}=-1, \quad$ if $\beta_{\mathrm{m}} \neq \mathrm{F}$

PUNISH

$\Delta \mathrm{a}_{\mathrm{m}}=-1 ; \quad$ if $\beta_{\mathrm{m}}=\mathrm{F}$
$\Delta \mathrm{a}_{\mathrm{n}}=+1, \quad$ if $\beta_{\mathrm{m}} \neq \mathrm{F}$.
The incrementing is accomplished by comparing a β_{m} term with F and controlling the full adder to increment the corresponding a_{m} term.

To increment up, a 1 is applied to the full adder at the least significant bit time of the a_{m} term. To increment down, a number consisting of all one's is added to the a_{m} term. During the reward or punish cycle the output of the full adder is gated into the shift register. Therefore, at the end of the increment cycle the shift register contains new values of $a_{n 1}$ which are increased or decreased one count from the previous values. The reward or punish cycle is completed by sequencing through the add cycle, as noted, to compute a new value of F .

The trainable pattern recognizer also can automatically select the reward or punish cycle after completion of the first add cycle. In the automatic mode a switch input is provided that enters the value of the output F corresponding to the entered input pattern. After the start cycle is completed, the actual output, F_{A}, is compared with the clesired output, F_{b}. Then the reward or pumish cycle is initiated depending upon whether F_{A} and F_{D} are the same or are different. Operation stops after one reward or punish cycle; however, the operator may continue training by initiating the start cycle until F_{A} corresponds to \dot{F}_{1}.

Reward and punishment

As is illustrated in the block diagram of the trainable pattern recognizer, above, the system is essentially a cligital implementation of a nonlinear threshold-logic element. The general operation is as follows:

- An input pattern is entered into the pattern recognizer by means of switches, $x_{1}, x_{2}, \ldots, x_{9}$ arranged in a 3 by 3 matrix on the front of the recognizer's control panel.
- A plugboard matrix and associated logic produces the set of cross-product functions (β_{m} terms), for the given input pattern, 1 .
- The start pushbutton begins the computation cycle to determine the output, $F(i)$, of the pattern recognizer. The computation is based on the existing set of stored weights (a_{m} terms), and the set of cross-product functions. An operator either trains the threshold-logic element by means of the reward or punish buttons or enters another pattern into the recognizer using switches $x_{1}, x_{2}, \ldots, x_{9}$.
- If the reward button is pushed, each of the

stored weights a_{m} is incremented to increase the magnitude of weighted sum, and reinforce $F(i)$.
- If the punish button is pushed, the weights are incremented to change the sign of the weighted sum thereby changing the output $\mathrm{F}(\mathrm{i})$.
- If neither the reward nor punish buttons is pushed, no changes occur in the stored weights.
- The pattern recognizer is usually trained as follows:
- The pins in the cross-product matrix plugboard are set up to an optimum configuration for the problem. Computer simulations can determine this configuration, as described.
- Next, the clear logic button is pushed to set all the weights to zero.
During the first iteration through the patterns, both the reward and punish buttons are used in training the threshold logic element. That is, after entering a pattern and pushing the start button, the reward button is pushed if the actual output F equals the desired output; otherwise, the punish button is used. The reward or punish buttons are pushed only once for each pattern. During later
iterations through the patterns, only the punish button is used. The recognizer has learned the desired function when no patterns appear in a given iteration that produces an incorrect output from the pattern recognizer.
It is possible to enter a set of preselected weights into the trainable pattern recognizer by means of a plugboard matrix and enter weights pushbutton. In essence, the training is accomplished beforehand in a computer simulation of the problem.

Designed with IC's

The trainable pattern recognizer is constructed almost entirely of integrated circuits. Only the power supply, lamp drivers and clock circuit use discrete components. The logic circuits, which are Motorola series MC 350 devices, are of the nonsaturating, emitter-coupled type, chosen because of the low cost and availability of flat packages rather than for their high-speed capabilities.

The clock signal for the trainable pattern recognizer runs at a relatively low rate of 250 khz . It is generated by cross coupling a pair of integrated

NOR gates with discrete component RC networks Together they form an astable multivibrator. In addition to NOR gates, the integrated logic circuit complement inchudes NOR/OR gates, half-adders flip-flops and gate expanders. About 225 flatpacks are used in the trainable pattern recognizer. Power for the logic circuits is provided by a 5.2 -volt 2-ampere supply.

Circuits are interconnected by means of doublesided printed-circuit boards approximately 3 inches by 4 inches. In most cases it was possible to mount 24 flatpacks on each card using this scheme. Multilayered printed-circuit boards permit a higher packaging density per card, but the lead time and expense of multilayered boards are considerably greater, and their use was not justified in the fabrication of the demonstration device Connections to the p-c boards are made by means of a dual 64-pin connector that mates with printed-circuit contacts on the card. The flatpack leads are hand soldered to pads on the p-c board.
The card layouts are done on a standard format consisting of pads for three rows of eight flatpacks each. Careful attention is given to the layouts and intercard wiring because the high packaging density, attainable with integrated circuits, makes checkout, troubleshooting and wiring changes very difficult. A ground bus is also incorporated to minimize ground-noise problems.

The printed-circuit cards are packaged in two files of six cards each, mounted as closely together as the connectors allow. Openings in the cabinet beneath the card files provide air for convection cooling of the integrated circuits. No fans are required but careful attention is given to mounting major heat-producing components. These are in the lamp drivers and power supply on the chassis.

Conducting a simulation

Test results using the nonlinear threshold logic approach have been obtained from both computer simulations and the use of the trainable pattern recognizer. Computer simulations have dealt with problems of up to 31 variables and 300 patterns. The procedure for conducting a simulation is as follows:

- Patterns on punched cards are entered into the computer in any desired order
- Masks on each cross-product, randomly chosen and limited to a certain number of variables are also entered by means of punched cards.
- During the training the computer prints out the number of patterns wrongly classified by the existing circuit configuration.
- At the end of the final iteration, the computer prints out the final number of patterns wrongly classified and the final weights and cross-product configurations. For example, one problem dealt with a total of 100 samples of the alphabetic characters $\mathrm{X}, \mathrm{C}, \mathrm{T}$, and J . The samples included both ideal and distorted representations of the characters as indicated by the typical patterns at the top of page 92 . Each cell in the matrix was assigned
to a variable, $x_{1}, x_{2}, \ldots, x_{9}$. The absence of a dot in the $n^{1 h}$ box was interpreted as $x_{n}=+1$. Presence of a dot was interpreted as $x_{n}=-1$.

Several of the problems to which the trainable pattern recognizer was applied used the 3 by 3 alphabetic character representations, lower figure, page 92. In eight iterations through the patterns, a solution was found for the problem of separating characters into groups of A to M and N to Z

Problems involving a selected portion of the patterns were also demonstrated. For example, the pattern recognizer was successfully trained to produce a +1 output for one pattern out of a group of 10 , and in a second case, to produce a +1 out put for every other letter of a group of 10 .

Variations of geometric-shape recognition problems have been demonstrated. In the problem, it lustrated on page 92 , it was desired to produce a +1 output for square shapes and a -1 output for rectangular shapes. Only three iterations were required to train the pattern recognizer. In another example, the device was made to differentiate between horizontal lines ($a+1$ output) and vertical lines (a -1 output).

References

1. R.O. Winder, "Single-Stage Threshold Logic,' Proceedings of

Second Annual Symposium on Switching Circuit Theory and
Logical Design, AIEE Special Publication S-134, Sept, 1951.
2. W.C. Ridgeway, "An Adaptive Logic System with Generalizing Properties," Technical Report 1554•1, Stanford Electronics Laboratory, July, 1962
3. H.S. Crafts, "Components That Learn," Electronics,

March 22, 1963, p. 49.

The authors

D.P. Hattaway is a senior engineer in the control and data-handling systems department. His main experience is in development of missile guidance, analog and digital computing systems and microminiature analog-to-digital converters

E.D. Hietanen is an engineer in the control and data-handling systems department. He is working in the development of artificial-intelligence techniques and adaptive systems using statistical decision theory, pattern recognition and computer simulations of adaptive logic. networks.

R.W. Rothfusz is a senior engineer in the control and data-handling systems department. He has worked primarily on analog•digital systems for instrumentation and control. Some of his recent projects include aerial photo recognition and electronic drive systems for d-c motors.

Circuit design

Designer's casebook

Designer's casebook is a regular feature in Electronics. Readers are invited to submit novel circuit ideas, packaging schemes, or other unusual solutions to design problems. Descriptions should be short. We'll pay $\$ 50$ for each item published

Direct current regulator drives fluorescent lamps

By David B. Hoisington

U.S. Naval Postgraduate School

Monterey, Calif.

Fluorescent lamps in buses, trains, boats and other vehicles are usually energized by solid state inverters operating at frequencies above 500 hert\%.

However, fluorescent lamps can operate from a direct-current source. And with direct current there is no Hicker, little or no acoustical noise, lamp efficiency equals the efficiency at the higher frequencies and radio-frequency interference is minimized.

Dec operation has not been widely used up to now because the required resistive ballasts are very inefficient. However, modern solid state devices permit the design of efficient constant-current sources.

The solid state circuit of a current regulator for fluorescent lamps, at the right, is designed for a yacht, but is suitable for other vehicles with a 75 volt d-c source.

Switching transistor $Q_{\text {: }}$ on and off furnishes the correct average voltage and hence the current to operate the lamp. The series inductor tends to maintain lamp coment constant; the diode provides a current path when Q_{3} is off
Q_{3} is controlled by the Schmitt trigger circuit consisting of Q_{1} and Q_{2}. When lamp current rises above a preset value, the voltage developed across the series 5.6 -ohm resistor turns on Q_{1}. Inmediately, $Q_{2:}$ stops conducting and turns off $Q_{3: 3}$. When the current falls, Q : turns on. With the circuit constants in the schematic, the lamp current varies $\pm 27 \%$ from its average value at a $1-k h z$ rate.
To start the lamp, the push button is depressed, closing the circuit through the lamp heaters. This also shments the 5.6 -ohm resistor, allowing higher currents that are needed to heat the filaments. When the switch is released, the voltage surge caused by the series inductor ignites the lamp. The shunt capacitor reduces radio-frequency interference caused by plasma oscillations in the lamp.

A range of supply voltages from 60 to 75 volts can readily be accommodated by changing the

Fluorescent lamp is operated directly from d-c supply without a•c conversion. Transistors Q_{1}, Q_{2} and Q_{3} are part of a regulated constantcurrent source that controls lamp current.
value of the current-sensing resistor. This is necessary because the triggering levels of the Schmitt circuit are a function of supply voltage. In case of poor source regulation, compensating circuits may be introduced.

The efficiency of this circuit is high. Total power losses in the regulating circuit, including losses in the inductor, are only 3 watts. For the same lamp with a typical 60 -hz ballast, the loss is 4.5 watts.

Operation at relatively low d-c voltages is desirable because high voltage transistors are expensive. The peak emitter-to-collector voltage for $Q_{: 3}$ equals the supply voltage plus the forward voltage drop across the diode. This is roughly 77 volts when a 75 -volt supply is used. Modification of the circuit to permit operation with a silicon controlled rectifier would make operation practical at considerably higher supply voltages.

For reliable operation over a wide temperature range and with varying voltages and variable lamp

Lamp ratings

Lamp wattage	6	8	14	15	20
Bulb size (in.)	$5 / 8$	$5 / 8$	$11 / 2$	$1^{1 / 2}$	$1^{1 / 2}$
Operating voltage	48	57	41	46	59

characteristic, the d-c supply voltage should be at least 15% greater than the rated drop across the lamp. As in the table on page 94,6 -watt to 20 watt lamps are available with rated drops of 59 volts and less. A 40-watt T-12 lamp has a rated 106 -volt drop.

With d-c operation the bulb temperature should be at $40^{\circ} \mathrm{C}$ or above, particulatly if the lamp is
horizontally mounted. This is needed to prevent a mercury deficiency at the positive terminal after several hours of operation. An enclosed mounting will help maintain the required temperature. With vertical mounting, the negative terminal should be at the top, partly because most of the heat is developed at an anode end, and partly to aid the heavy mercury-atoms to return toward the anode.

Thermistor measures negative resistance of tunnel diode

By Dr. A. Ambrozy
Technical University, Budapest

The negative resistance of a tunnel diode theoretically could be measured simply and effectively by the circuit on the right. In this circuit, when the absolute value of the negative resistance of the diode equals the calibrated potentiometer resistance, there is no current flow. Thus the tunnel diode's absolute value can be read directly from the potentiometer. However, what is theoretically possible and what is practical are two different things; stray reactance associated with variable resistor R will cause the circuit to be unstable.
To eliminate the problem, a thermistor is substituted for the variable resistor as in the circuit shown below. The themistor cancels the negative resistance of the tumnel diode and a calibrated potentiometer, whose resistance equals that of the
thermistor, will yield the absolute value of the tunnel diode's resistance at its operating point.

The tunnel diode is supported by two lamina springs and paralleled by a disk-type thermistor in series with a disk capacitor between the springs. This keeps the inductance in the loop containing R_{D} very small and thus its reactance very low.

The thermistor is heated by direct current provided by transistor Q_{1}, with the current level adjusted with potentiometer R_{6}. A 20 -kilohertz, 5 -volt source, divided by resistors R_{3} and R_{4}, provides the alternating current which modulates the tunnel diode's bias.
The operating point of the tunnel diode is set on the negative resistance slope of its voltagecurrent characteristic by varying R_{1}. The heating current of the thermistor is adjusted at the selected

Theoretical circuit to measure a tunnel diode's negative resistance is unstable because of inherent stray reactance.

operating point until the voltage readout of the 20 -khz selective amplifier is a minimum. This occurs when the absolute value of the tumnel diode's negative resistance equals the thermistor resistance.

The value of the thermistor's resistance is determined by removing the tumnel diode from its holder or by shifting its operating point to the
valley of the characteristic curve where the tunnel diode resistance, $\mathrm{R}_{1}=\infty$. After closing the switch S_{1}, the differential bridge is balanced by the calibrated variable resistor $\mathrm{R}_{\text {.. }}$. Thus, the calibrated potentiometer equals the thermistor resistance which equals the negative resistance of the tunnel diode, $\mathrm{R}_{\mathrm{D} x}$; thus $\mathrm{R}_{v}=\mathrm{R}_{\mathrm{tI}}=\mathrm{R}_{\mathrm{D} .}$.

Ferrite cylinder modulates microwave signals

By T. Koryu Ishii and Thomas A. Kriz*
Marquette Univ., Milwaukee, Wis.

A miniature ferrite device utilizes a novel spin alignment process in the ferrite to modulate a microwave signal. Although the maximum modulation level is only 30%, this is achieved in a simply constructed device that is physically very small.
Because low intensity, external magnetic fields are used, the modulator driver can be solid state. Tested with a simple two-wire line, the unit may be incorporated in strip line circuits and consequently has applications in microwave integrated circuits.

In the simple modulator in the diagram, a ferrite cylinder surrounds a two-wire line through which a microwave signal is transmitted. The ferrite is in a remanent state, implying that a magnetic field exists without an applied magnetizing cirrent. In the modulating line, a current proportional to the desired modulation varies the ferrite's permeability. This amplitude modulates the microwave signal, becanse the ferrite behaves like an electrically controlled inductive discontinuity. In the experiment, a manganese-magnesium ferrite material was employed.

Analysis shows that modulation results from interaction of the magnetic fields of both the microwave signal and the modulating current with the ferrite's electron spins. In a remanent state, the ferrite is essentially magnetized along the closed circular path presented by the cylinder. However, within the ferrite some magnetic domains are oriented to produce components of magnetization in other directions. It is the electron spins of these domains which interact with the modulating and signal fields.
"Now with A.C. Electronics, division of General Motors Corp., Oaktree, Wis.

Modulator consists of a ferrite cylinder, a two-wire transmission line and a modulating current line. The outside diameter of the ferrite cylinder is 0.050 inches and the inside diameter is 0.030 inches.

Detected output level versus frequency (solid line) was measured with modulating pulse current of 2 amperes. High voltage standing wave ratios (broken line) partially reduces output levels.

When a microwave signal is applied it encounters a large inductive discontinuity at the ferrite. This occurs because the ferrite's relative permeability increases the lines inductance per unit length in the region near the ferrite. A small capacitive discontinuity caused by a similar abrupt change in permittivity also exists in this region. But the inductive discontinuity predominates. Applying a modulating current changes the elec-
tron spin alignment within the domains and also the magnitude of the inductive discontinuity. The equations that describe the interaction show that the magnitude of the inductive discontinuity decreases when the modulation current, $I_{a 1}$, is in a direction to drive the ferrite toward saturation. As the modulation current drops, the ferrite moves away from saturation and the inductive discontinuity increases.

In one experiment the two-wire line was connected by means of wideband transformers between two sections of X-band waveguide. A microwave source fed one waveguide scetion and the other contained a diode detector. The source produced several milliwatts ontput at a reasonably constant level over a frequency range from 7.0 to 7.45 gigahertz.

A 2-amperes pulse of modulation current resulted in a detected voltage curve plotted in the graph on page 96. At each frequency the pulse duration was 10 nanoseconds. Because the transformer tapers were not smooth, a large voltage standing-wave ratio-also shown in the graphoccurred at the low end of the band. A smoother taper would have corrected this. Actually, transformers are unnecessary; one may couple the twowire line system directly to a source and load. Radiation levels are surprisingly low because the microwave signal is propagated along the wire line as a surface wave.
The graph on the right indicates the change in detected d-c voltage as a function of d-c modulation current, I_{m}. The microwave frequency in

Detected voltage at constant frequency versus modulating current amplitude exhibits a nearly linear relationship.
this test was 7.19 Ghz and the quiescent reference level without modulation was 80 millivolts.

The frequency and impulse response data shows that the usable bandwidth for modulation is about 25 megahertz, the ferrite relaxation time being the major limitation.

The modulation curves demonstrate that the change in detected output is relatively linear with respect to amplitude of the modulation current. If square-law detection is presumed this means the modulation process is approximately squarelaw. A maximum modulation level of 30% was achieved with a modulation current of 2 amperes.

Glass reed switch controls operational amplifier

By Hays Penfield,
Harvard College Observatory, Cambridge, Mass.

High reliability, fast switching time and high leakage-resistance make the glass reed switch ideal for controlling an operational amplifier integrator.

Depending on the portion of the cycle at which switch S_{1} is opened or closed, the circuit on page 98 can gate out unwanted signals or maintain the integrated output at a specified level. It can also operate as a synchronous detector. Maximum switching speed is about 300 hertz.

Switch S_{2} removes the charge from feedback capacitor, C. With S_{2} open, the output is the time-
integral of the difference between voltage levels applied at the inputs to the d-c amplifier. When S_{1} is closed, the input signal is applied to both inputs equally and the difference signal is zero; so there is no change in integrator's output level. When S_{1} is open, the input signal is applied to only the plus side of the amplifier and the output is the timeintegral of the input. To hold a particular integration level, switch S_{1} is closed at that level. By merely reopening S_{1}, integration can continue.

Opening and closing S_{1} in synchronism with an a-c input signal allows synchronous detection and integration of the signal. The amplifier will integrate only the portion of the input signal that is present while switch S_{1} is open. The circuit is used for synchronous detection at the Harvard College Observatory.

An integrator, connected at the output of each of 21 filters separates the frequency spectrum of radio-telescope signals. The integrators switch in synchronism with the receiver's input switch that
connects alternately to the antenna and a comparison load. Synchronous switching speeds are about 4 to 5 hertz. Signals as low as 20 microvolts and integration times of more than 30 minutes have been used.

The integration factor is inversely proportional to the feedback capacitance, C. With S_{1} open, the integration factor is $10 / \mathrm{C}$ volts per volt-second. If C is 1 microfarad, and a 100 -millivolt input signal is present for 1 second, the output is 1 volt.

To zero-balance the amplifier, current is supplied to one of the inputs through a 3 megohm resistor. Adjusting the 100 kilohm potentiometer establishes the desired zero balance current. Each reed switch requires about 30 milliamperes of driving current obtained from a 2 -volt source.

Almost any d-c amplifier can be used. Circuits have operated satisfactorily with the type 1507 manufactured by the Burr-Brown Research Corp. and the $\mu \mathrm{A} 709$ manufactured by Fairchild Semiconductor, a division of Fairchild Camera and Instrument Corp.

Reed switch S_{1} controls integration in operational amplifier. Circuit integrates only when S_{1} and S_{2} are open.

Pulsed oscillator

conserves power

By R.C. Lavigne and L.L. Kleinberg

Goddard Space Flight Center, Greenbelt, Md.

The oscillator circuit shown below needs no standby power. In contrast to other oscillators that operate continuously and have their outputs gated,
this circuit is pulsed on when required. It can be used in applications such as tone generators, where the output is not needed continuously and power must be conserved.

Pulsed oscillators can also calibrate cathode-ray oscilloscopes. The gate that initiates the sweep also triggers the oscillator allowing its waveform to be displayed. If the oscillator's frequency is known, the time base can be calibrated.

The circuit, a Wien bridge oscillator, has an output-frequency range of 100 hertz to 100 kilohertz and no inductors. With no forward biasing networks, both transistors are normally off. When

TYPICAL
INPUT
PULSES

OUTPUT
PULSES

Wien bridge oscillator operates only when a gating pulse is applied to the input. Pulses at input and output indicate how amplitude of the oscillations varies with the level of the gating pulse.
a gating pulse of 5 to 10 volts is applied to the input, both transistors are turned on and oscillation occurs. If $\mathrm{R}_{2}=\mathrm{R}_{3}$ and $\mathrm{C}_{2}=\mathrm{C}_{3}$, the oscillating frequency is given by

$$
\mathrm{f}=\frac{1}{2 \pi \mathrm{R}_{2} \mathrm{C}_{2}}
$$

When the gating pulse ends, both transistors turn off until the next gating pulse is applied.

The amplitude of oscillation is determined by the amplitude of the input gating pulse as shown in the diagram. If the amplitude of oscillation rises exponentially during the gating pulse, potentiometer' R_{6} can be adjusted to increase feedback.

Values of R_{1} and C_{1} are chosen so that the time constant $\mathrm{R}_{1} \mathrm{C}_{1}$ is much longer than the period of the gating pulse. This prevents pulse droop which would result in a decaying amplitude of oscillation.

Amplifier provides 10^{15}-ohm input resistance

By A.D. Delagrange

U.S. Naval Ordnance Laboratory, Silver Springs, Md.

A buffer amplifier with an input impedance of 10^{15} ohms has been built with a metal oxide semiconductor field effect transistor (MOS FET). The impedance value is considered infinite for most circuits. Amplifier gain is unity to an accuracy of 0.1% for a 100 -kilohm load.
Designed to drive a 100 -kilohm load, the amplifier may be used directly with any system whose input-current requirement is less than 100 microamperes. For low-impedance loads the circuit at the right may be used to drive an operational amplifier in feedback configuration. A typical input and output impedance of 10^{15} ohms and 0.1 ohm respectively is possible from the over-all combination.
Input transistor Q_{1} is an enhancement-mode in-sulated-gate field-effect MOS device with an inherent input impedance of 10^{15} ohms. It is connected as a source follower (analogous to an emitter follower for a conventional transistor). Its load is transistor Q_{2}. High d-c bias without low impedance a-c signal loading is provided by transistor Q_{2}.

Transistor Q_{3} is an emitter follower also with a current-source load, Q_{4}, for additional impedance gain. Zener diode D_{3} shifts the d-c level of the output by an amount equal to the gate-source drop across the input transistor. The drain of Q_{1} is connected to the emitter follower rather than to the supply voltage. Thus, the drain-source voltage is independent of the input voltage.

Since the voltage gain of the follower circuit is less than unity, a slight amount of positive feedback is added through resistor R_{3} to increase the gain. Gain is adjusted by potentiometer R_{2}; potentiometer R_{1} adjusts the d-c zero value. Diodes D_{2},

Field effect transistor Q_{1} provides the circuit with $10^{1 "}$ ohms input impedance. The amplifier drives a 100 kilohm load and may be used directly with any system whose input current is less than 100 microamperes.
D_{4} and D_{1} are for temperature compensation. The amplifier contains several internal loops, but gain around each is considerably less than unity. There is no tendency for the transistor amplifier circuit to oscillate.
With proper adjustment, the output voltage equals the input voltage within ± 10 millivolts over the allowable range of ± 10 volts. The semiconductor device in this circuit is new and is the key element that gives the buffer amplifier its very high input impedance.

Helix antennas take turn for better

Abstract

A unique antenna with contrawindings connected to common feed points has large bandwidth; it provides flexibility in choosing polarization and can operate at high gains

By Carl W. Gerst and Robert A. Worden
Syracuse University Research Corporation, Syracuse, New York

The Air Force is testing a new class of helix an-tennas-one that provides large bandwidth and high gain at levels up to now unobtainable together. The contrawound antenna-with multiple lines wound in different directions-boasts a unique property: its polarization, bandwidth and gain can be controlled independently.

In addition, the contrawound antenna is smaller than log-periodic antennas and previous helix models. Its polarization can be linear, right-hand or left-hand circular. It can be fabricated by printed circuit techniques. Windings wound in one direction are printed on the inside of the dielectric cylinder, while contrawindings are printed on the outside.

Contrawound helix antennas can be used for receiving or low-power transmitting. Its unique capabilities make it especially valuable in military communications, space telemetry and tracking and in some commercial applications, such as television and $\mathrm{f}-\mathrm{m}$ radio broadcast receiving antennas.

The octafilar contrawound helix in the photograph on the next page operates at 300 to 3,700 megahertz. It consists of wires fitted into grooves

The authors

Carl W. Gerst, a research engineer at the Syracuse University Research Corporation's special projects laboratory, developed the theory for the antenna and broadband couplers described in the article. Since his graduation from Youngstown University in 1959, he has been engaged in the development of microwave components and systems. He is presently taking doctorate courses at Syracuse University.
Robert A. Norden, also a research engineer at the special projects laboratory, has worked on a wide variety of systems inciuding microwave ultrasonics, electronic counter-measures systems, cryogenics and wideband microwave circuits. A member of Tau Beta Pi and Eta Kappa Nu, he is completing his masters program at Syracuse University.
on a plastic cylinder. The term octafilar refers to the number of windings wound in either direction; oppositely wound helixes start at each of eight feed points. As a result, eight windings are wound in one direction on the dielectric cylindei and another eight are wound in the opposite direction. In the diagram on the next page the contrawound construction is compared with a conventional unifilar helix and a multifilar helix without contrawindings.

Ground and airborne antennas

Size and gain advantages can be visualized by comparing contrawound helix and log-periodic antennas designed for operation at 50 to 350 Mhz . Both would be about 13 feet long, but the contrawound antenna would only be about $11 / 2$ feet in diameter while the log-period antenna would be about 10 feet wide at its widest point. Both antennas would have the same gain at about 50 Mhz , but at 350 Mhz the contrawound antenna would have seven times the gain of the log-periodic antenna. The gain of the contrawound antenna increases linearly with frequency and also increases with antenna length.

Since gain implies narrower beamwidth, the antenna could also have commercial applications as television and frequency-modulated radio broadcast recciving antennas. In television, the added gain would reduce problems caused by signal reflections. The 13 -foot long antenna would receive television channels 2 to 13 and $\mathrm{f}-\mathrm{m}$ broadcasts.

Because the octafilar antenna in the photo extends well into S band, it could be used as a highgain, variable polarization antenna for space telemetry and tracking. Since its phase center varies only slightly with frequency, it can also serve as a broadband feed for parabolic dish antennas.
The polarization of such antennas can be linear, right-hand and left-hand circular. Polarization can

Octafilar contrawound antenna has eight feed points, each a terminal for two helixes wound in opposite directions. A polystyrene tube supports windings. This experimental unit operates between 300 and 3,700 megahertz.
be changed because the contrawound design is actually two multifilar antennas, wound in opposite directions. One set of windings propagates righthand circular polarization, and the other left-hand circular polarization. Linear polarization is a combination of these two types.

When linearly polarized, the antenna can be cut in half and mounted on a ground plane, as in the photograph on page 102 . Half an antenna can be used because the antenna is physically and electrically symmetrical. The ground plane acts like a mirror, making the half antemna operate as though it were a complete antenna in free space.

The small diameter and low profile of such half antennas make them suitable for aircraft. For example, mounted along the fuselage, they would cause little aerodynamic drag. Experimental antennas have diameters as small as 0.1 wavelength$1 / 5$ the diameter of a conventional helix antenna. Theoretically, smaller cliameters are possible, but experiments indicate that 16 or more windings would be needed.

Maximum bandwidths

Although the theoretical explanation for the contrawound antenna is not fully developed, experimental versions produced the predicted bandwidth, gain and polarization capabilities.
Besides the octafilar helix, a quadrifilar contrawound antenna with four windings in each direction has also been tested. The bandwidth is $5: 1$ from 800 to 4,000 Mhz. Beam patterns were good and polarization could be varied at will by changing the relative phase and amplitude of the voltages connected to the helix's terminals. Each terminal feeds a winding wound in a different direction.
Theoretical and experimental studies of noncontrawound, multifilar helixes (all windings in the same direction) prove that their maximum bandwidth is proportional to $N+1$, where N is the

Winding geometries for helix antenna are (top to bottom) conventional unifilar helix, noncontrawound bifilar helix and a contrawound version of the bifilar design. In the bifilar noncontrawound antenna, the feed points are spaced 180° apart and both windings are wound in the same direction. Maximum theoretical bandwidth is 3 to 1 . The bifilar contrawound antenna has similarly spaced feed points, but two oppositely wound helixes originate at each feed point. The contrawound antenna can also provide a 3 to 1 bandwidth. In addition it has improved polarization capabilities.
number of windings in one direc-ioz Experiments indicate this is also true for the ecr.trawound designs. Since additional windings require more Eeeds, the maximum bandwidth obtainaぇle appears to be limited only by such practical rozsiderations as the complexity of the feed syster. ${ }^{\text {a }}$ idebarc couplers for feeding the antenna ure described on page 110 .

Reason for broadband operation

The helix antenna design requies a lengthy thenretical analysis. But the reason why nore windings increase bandwidth can be explained by an argument in which the helix is related to a broadband loop antenna. Contrawound atennas may be thought of as an array of broadbene loops. Be making a single loop broadband, the entre arey can be made broadband if the loops are spacel properly. In the helix antenna, con-ol cf spacing is equivalent to adjusting the helix's fiteh ang.e.

A loop can be broadbanded by cutting it into segments and feeding each segre with signals of proper phase, as in the diagram at the top of the next page. When signal phases are correct, the
loop radiates perpendicular to the plane of the paze. Correspondingly, in the helix the direction of radiation will be along the axis of the helix.

The currents in diagonally opposite segments of the loop must flow in the same direction. The feed arrangement shown on the right side of the diagram gives the proper current flow (only one diagonal pair of segments is shown).
Each successive feed point in the loop must have a slightly different phase-the phase difference being $2 \pi / \mathrm{N} ; \mathrm{N}$ in this case is the number of segments. With this feed and phase arrangement, the currents along the segments of the loop develop electromagnetic fields that reinforce one another in the direction perpendicular to the page.
However, since the phase is fixed only at feed points in the loop, there would be errors at points on each segment distant from the feed points. Also, at any arbitrary point on each segment, phase error increases as frequency increases. This is true because the electrical length of each segment increases.

Dividing the loop into more parts cuts phase variations by reducing the segment's length while in-

Linearly polarized contrawound helix s electrical and physical symmetry permit design of half-diameter antenna on ground plane. Carl W. Gerst, left, and Robert A. Worden look at a printed circuit octafilar version with a 9-to-] bandwidth. Portions of eight windings are printem on each side of the dielectric cylinder.
creasing the number of fixed phase points. This insures that the fields add up over a wider range of frequencies. In other words, increasing the number of segments permits the loop to radiate over a broader band of frequencies.

More celis, more bandwidth

The sections of the helix antenna shown in the end view in the lower diagram, right, are analogous to the loops. The helix is sectioned so that a cell has only one concluctor at any single value of θ, where θ is the angle measured from an arbitrary reference point on the circumference.

For a unifilar helix the cell consists of a complete turn. For a bifilar antenna, the cell consists of a half turn of each winding. In general, a helix with N windings has a cell that consists of N segments, each $1 / N^{\prime}$ th of a complete turn.

The diagrams of the cells show that as the number of windings increase, the cell's length gets smaller, improving the approximation to a loop. Also. as in the loop antenna described above, the number of seginents and feed points increase with the number of windings. Since the feed points in the helix are phased in the same way as in the broadband loop it can be expected that adding windings to the helix will also help overcome phase variation problems and make the helix broadband.

Although this is only a very approximate description, it does give an idea of why the multifilar helix's maximum bandwidth is proportional to $N+1$. Experiments demonstrate that the contrawound and noncontrawound design exhibit the same bandwidth characteristics. Since the contrawound design is a combination of oppositely wound multifilar antennas, it offers variable polarization capabilities.

Based on the reasoning that additional winding increases bandwidth, a quadrifilar antenna was constructed using the optimum pitch angle of 14 specified by J.D. Kraus, ${ }^{1}$ whose extensive analysis of unifilar antennas is well known. The antenna did not show wideband characteristics, inclicating clearly that the loop argument is not exact. This was expected since the argument does not consider the pitch of the windings.

Theory of helix

The theoretical analysis outlined below considers the pitch angle as well as the diameter. Although not fully developed, the analysis considerably broadens understanding of helis antemmas.

The result of this analysis is design equations which relate the bandwidth characteristics to the helix's diameter, pitch angle and number of windings. Basically, the theoretical analysis shows that adding windings and feeding them with properly phased signals eliminates certain undesirable transmission modes or space harmonics that would otherwise cause attenuation. At certain frequencies, these undesirable harmonics (modes) begin to propagate along the helix's radius rather than

Segmented loop antenna is an approximate model of one cell in a helix antenna. The two loop segments shown in color at the left may be fed with currents in opposite directions, as at the right. This feed arrangement results in radiation perpendicular to the page when the phase difference between adjacent segments is 2π divided by the number of segments.

Loop analogy above is further developed in this diagram. The loops at the right represent cells of the helix antennas. The conventional unifilar helix (top) has only one loop segment per cell while the bifilar helix (bottom) has two per cell.
along its axis. Eliminating them increases bandwidth because energy propagates down the helix over a wider band of frequencies.

Periodic structure

The analysis makes use of the fact that the helix has a periodic geometry. Periodic structures have been studied extensively and have some well known gencral properties. ${ }^{\text {a }}$ Some of these properies as related to the helix are:
$=$ There are frequency bands in which propagation along the Z axis (the long axis of the antenna) is rapidly attenuated. These bands are called stop bands or forbidden regions; in them the helix radiates perpenclicular to the helix's axis, attenuating the signal that should radiate along the Z axis. Conversely, there are passbands in which energy propagates along the Z axis with little attenuation. The passhinds determine maximum antenna bandwidth.

- Electric fields may be analyzed by expressing them as a Fourier series. Each term of the series is called a space harmonic. These harmonics are a function of the frequency and of multiples of the θ and Z coordinates that describe the helix geometry. The existence of a particular space harmonic depends on frequency, helix geometry (in-
cluding number of windings, diameter and pitch angle) and the amplitude and phase of the voltages feeding the windings.
In the multifilar and multifilar-contrawound antennas, control of feed phasing and changes in antenna geometry eliminate radially propagating space harmonics, providing more passbands and greater bandwidth.

Space-harmonic phases

Associated with every space harmonic is a phase constant that determines how the phase of the harmonic varies with distance along the helix. For an antenna without losses, the phase constant for the n'th space harmonic is given by

$$
\begin{equation*}
\beta_{\mathrm{n}}=\beta_{0}+\frac{2 \pi \mathrm{n}}{\mathrm{P}} \tag{1}
\end{equation*}
$$

where $\beta_{n}=$ the phase constant for the n'th harmonic $\beta_{0}=$ phase constant for the zero order harmonic
$\mathrm{n}=$ any positive or negative integer including zero
$\mathrm{P}=$ the helix's pitch distance (distance between turns)
Once the modes that can exist are known, (see p. 105) the analysis strives to find how β_{n} varies with frequency, because passbands exist whenever

$$
\begin{equation*}
\mathrm{k}^{2}<\left(\beta_{o}+\frac{2 \pi \mathrm{n}}{\mathrm{P}}\right)^{2} \tag{2}
\end{equation*}
$$

where k is the free-space phase constant (the phase constant for a wave traveling at the speed of light.) Equivalent expressions for k show that it is proportional to frequency:

$$
\begin{equation*}
\mathrm{k}=\frac{2 \pi}{\lambda}=\frac{2 \pi \mathrm{f}}{\mathrm{c}}=\frac{\omega}{\mathrm{c}} \tag{3}
\end{equation*}
$$

where $\lambda=$ the free-space wavelength
$\mathrm{f}=$ the frequency in hertz
$\omega=$ the radian frequency
$\mathbf{c}=$ velocity of light in free space
To make it easier to use, expression 2 may be written:

$$
\begin{equation*}
\mathrm{k}< \pm\left(\beta_{0} \pm \frac{2 \pi}{\mathrm{P}} \mathrm{n}\right) \tag{4}
\end{equation*}
$$

To obtain an expression that includes the helix's pitch angle, ψ, both sides of the above expression are multiplied by the helix's radius, a. Since the term $2 \pi a / \mathrm{P}$ is equal to the cotangent of ψ

$$
\begin{equation*}
\mathrm{ka}< \pm\left(\beta_{0} \mathrm{a} \pm \mathrm{n} \cot \psi\right) \tag{5}
\end{equation*}
$$

A Brillouin diagram which plots frequency against phase makes these expressions more meaningful and shows the significance of passbands and forbidden regions. In the Brillouin diagram shown above for a mifilar helix, the vertical axis, ka, is proportional to frequency and the horizontal axis is proportional to the phase constant, β_{n}. The uncolored triangles represent the passband region
specified by inequality 5 . The triangle's sloping sides are determined by inequality 5 if the two terms are equated; the equation with $n=0$ and $\mathrm{n}=1$ determines the first triangle as shown on the graph. The colored area surrounding the triangles is the forbidden region; it meets the axis at multiples of cot ψ as required by inequality 5 . The portion of the forbidden region above cot ψ is the region in which the first Z harmonic would radiate perpendicular to the helix's axis causing attenuation along the axis. Similarly the second Z harmonic causes attemuation above $2 \cot \psi$.
Multifilar windings eliminate some of the harmonics. Each successive winding on the circumference is phased so that the phase difference between windings is $2 \pi \mathrm{~N}$, where N is the number of windings in one direction. To understand why this eliminates harmonics, it is necessary to examine the symmetrical properties of the helix. These symmetries require the electric fields to have the same amplitude and relative phase at periodic points in the helix.

Brillouin diagram for a unifilar antenna plots ka which is proportional to frequency against β_{0} a. Forbidden frequency regions are shown in color. Passbands appear as small triangles. Equations for the lines defining passband area are obtained by equating expression 5 in text. Forbidden region above $\cot \psi$ is where first Z harmonic causes axial attenuation: second Z harmonic causes attenuation in the region $2 \cot \psi$.

Symmetries

Type
Translational
Rotational
Screw

Description

$$
S(Z, 0)=S(Z+P, \theta)
$$

$S(Z, \theta)=S(Z+P, \theta)$
$S(Z, \theta)=S(Z, \theta+2 \pi)$
$\mathrm{S}(Z, \theta)=\mathrm{S}\left(Z+\frac{\mathrm{P}}{8}, \theta \pm \frac{2 \pi}{8}\right)$

Symmetries are indicated by a drawing of a developed contrawound quadrifilar antenna-one cut along its axis and laid flat. Equations refer to the space-harmonic functions describing electric field along helix's axis. Screw symmetry means that the space-harmonic function is identical at points 1 and 3 in colored diamond.

Brillouin diagram for quadrifilar helix antenna shows how the passband region (in color) grows in area when the Z harmonics 2, 3 and 4 are suppressed. Top of large triangle or intersection of dashed line with this triangle determines the highest operating frequency. For comparison, the small triangles along the bottom of the diagram represent the unifilar antenna's Brillouin diagram. Slope of solid line in first triangle is $\sin \psi$.

Symmetry of the helix

The multifilar contrawound helix has translational, rotational and screw symmetry, as shown in the lower diagram at the left. Translational symmetry means that a point moved a pitch distance, P, along the helix antenna's axis cannot be distinguished from the original point. Rotational symmetry means that a point moving around the circumference by 2π radians comes back to its starting place. Screw symmetry means that a point moving along the Z axis from points 1 to 2 and then rotating an angle from 2 to 3 returns to a similar point.
The translational symmetry allows the electric field to be represented by a Fourier series in harmonics of Z; rotational symmetry allows expansion of the fields in a Fourier series in harmonics of θ. However, the screw symmetry permits only certain Z harmonics for a given θ harmonic.
If $A_{m u n}$ is the magnitude of the electric field with an m'th θ harmonic and an n'th Z harmonic, then screw symmetry allows only fields where the indexes satisfy the equation:

$$
\begin{align*}
\mathrm{m}=\mathrm{n} & +\mathrm{b} 2 \mathrm{~N} \tag{6}\\
\text { where } \mathrm{b} & =0, \pm 1, \pm 2, \pm 3, \ldots \\
\mathrm{~N} & =\text { number of windings }
\end{align*}
$$

If the first θ harmonic ($\mathrm{m}=1$) of an N -filar contrawound helix is excited, the only other θ harmonics that can exist are harmonics with the coefficient:

$$
\begin{equation*}
\mathrm{m}=1+\mathrm{bN} \tag{7}
\end{equation*}
$$

Thus, it is possible to control the Z harmonics. by controlling the θ harmonics.

As an example of how θ harmonics are controlled, assume that each winding of a bifilar antenna (diagram on p. 101) is fed with voltages of equal
amplitude, but that the phases differ by 180°. This sets up a condition that allows only odd harmonics to exist. Only an clectric field that matches the phase and amplitude of the feed at the feed points can exist in the helix. The first and all odd θ harmonics can exist because they would establish such fields. But all even θ harmonics would be suppressed because each field would be in phase at the feed points; the even harmonic fields cannot exist because the feeds and the fields have to be, in this case, 180° out of phase. Because of equation 6, all even Z harmonics are also suppressed.
When the first θ harmonic is excited on a quadrifilar contrawound helix, θ harmonics such as harmonics $1,5,13$, and 17 can exist. Only the first θ harmonic contributes to the desired radiation along the axis. The other harmonics, which are at least 8 decibels below the amplitude of the first harmonic, radiate at other angles contributing to the sidelobes.

Among the Z harmonics suppressed are 2, 3 and 4 . The effect of removing these Z harmonics in a quadrifilar antenna is most easily seen by comparing its Brillouin diagram above with that of the unifilar helix.
The dotted triangles in the diagram represent the unifilar antenna's passbands. The colored triangle represents the quadrifilar antenna's passband. Because Z harmonics 2, 3 and 4 are suppressed, the forbidden regions corresponding to these harmonics are eliminated. This makes the passband triangle four times as large. Since the height of the passband triangle is proportional to frequency, the quadrifilar antenna can operate over a much broader bandwidth than the bifilar antenna.

It is now possible to study the quadrifilar antenna's Brillouin diagram more closely to determine just what is happening as the frequency
increases from zero (that is, $\mathrm{k}=0$). In the process, the design equations for the multifilar helix will be developed.

Starting at zero frequency ($k=0$) on the quadrifilar helix's Brillouin diagram, ka increases along the solid black line which has a slope of $\sin \psi$. This implies that the wave along the helix is travelling at the speed of light. In this frequency range, the energy will pwopate along the Z axis, but will not radiate into space. The energy reflects from the end of the helix and travels back to the source where it is dissipated.

The antenna continues to operate along the solid black line until the forbidden region of the first Z harmonic is reached at $\mathrm{ka}=(\mathrm{ka})_{\min }$ where

$$
\begin{equation*}
(\mathrm{ka})_{\min }=\frac{2 \pi \mathrm{a}}{\lambda_{\min }}=\frac{\cos \psi}{1+\sin \psi} \tag{8}
\end{equation*}
$$

As the frequency increases, ka cannot follow along the same curve since this would place it in a forbidden region. As a result ka jumps to the other side of the forbidden region-to the side of the large triangle. The normalized phase velocity $\mathrm{V}_{\mathrm{v}} / \mathrm{c}$ given by

$$
\begin{equation*}
\frac{\mathrm{V}_{\mathrm{p}}}{\mathrm{c}}=\frac{\mathrm{ka}}{\beta_{\mathrm{o}} \mathrm{a}} \tag{9}
\end{equation*}
$$

decreases sharply at this transition, while the normalized group velocity, given by the differential equation

$$
\begin{equation*}
\frac{V_{g}}{c}=\frac{d(k a)}{d\left(\beta_{o} a\right)} \tag{10}
\end{equation*}
$$

increases to a value of one. The phase velocity is less than V_{g} when the antenna is radiating.

As ka is further increased beyond (ka $)_{\min }$ the propagation constant follows the curve

$$
\begin{equation*}
\mathbf{k} \mathbf{a}=-\cot \psi+\beta_{o} \mathbf{a} \tag{11}
\end{equation*}
$$

Now the exact condition needed for end-fire radiation is satisfied as proved by the following.

End-fire radiation

In the diagram above/below, end-fire radiation occurs when the phase length of path 2 along a turn in the helix is 2π radians longer than the phase path 1 between turns. Radiation in path 1 must

For end-fire radiation, phase length of path 1 (dashed, colored line) must be 2π radians longer than the phase length of path 2. The diagram represents a developed, quadrifilar noncontrawound antenna-one cut along its length allowing each turn to be laid flat.
travel the pitch distance, P, to go from point A to B , where $\mathrm{P}=2 \pi \mathrm{a} \tan \psi$. To reach point B , antenna current with a phase constant along the wire, β_{W}, must travel a distance $2 \pi / \cos \psi$. The condition for end-fire radiation is then

$$
\begin{equation*}
\beta_{\mathrm{w}} \frac{2 \pi \mathrm{a}}{\cos \psi}-2 \pi=\mathrm{k} 2 \pi \tan \psi \tag{12}
\end{equation*}
$$

The phase constant along the axis of the helixthe Z axis-is related to β_{w} by

$$
\begin{equation*}
\beta_{\mathrm{W}}=\beta_{\mathrm{o}} \sin \psi \tag{13}
\end{equation*}
$$

When equations 12 and 13 are combined, the condition for end-fire radiation becomes

$$
\begin{equation*}
\mathrm{ka}=-\cot \psi+\beta_{\mathrm{o}} \mathrm{a} \tag{14}
\end{equation*}
$$

Maximum frequency

As ka increases, the propagation constant continues to satisfy equation 11 until one of the following two conditions prevents propagation:

- The line representing the wave traveling at the speed of light along the conductor (black dashed line on the ka- β_{v} a graph), intersects the passband triangle at

$$
\begin{equation*}
\mathrm{ka}=\frac{\cos \psi}{1-\sin \psi} \tag{15}
\end{equation*}
$$

At this point the phase velocity equals the group velocity.

- Or the top of the passband triangle is reached at a value of ka given by

$$
\begin{equation*}
\mathrm{ka}=\frac{\mathrm{N}}{2}(\cot \psi) \tag{16}
\end{equation*}
$$

Beyond this point, the helix is in the forbidden region.

The maximum frequency of operation for a given pitch angle is fixed by (ka $)_{\text {max }}$, which is the lower value of ka in equations 15 or 16 . The values of ka and pitch angle over which ka satisfies the end-fire radiation condition are plotted for various values of N in the graph at the right. Because ka is equal to the helix's circumference divided by the wavelength, the vertical axis is labeled normalized circumference, C_{λ}. For example, the point $k a=1$ corresponds to the frequency at which the helix's circumference is one wavelength.
The bounds of end-fire radiation for an N -filar helix are the three curves labeled

$$
\begin{align*}
& \mathrm{C}_{\lambda(\max)}=\frac{\cos \psi}{1-\sin \psi} \\
& \mathrm{C}_{\lambda(\mathrm{N})}=\frac{\mathrm{N}}{2} \cot \psi \tag{17}\\
& \mathrm{C}_{\lambda(\min)}=\frac{\cos \psi}{1+\sin \psi}
\end{align*}
$$

The pattern bounds for a good single-turn helix which Kraus determined experimentally are shown as a closed dashed curve. For pitch angles less than 20°, Kraus's experimental bounds agree quite well

Normalized circumference versus pitch angle

Helix antenna's circumference divided by wavelength, C_{λ}, is plotted against winding's pitch angle. All values of C_{λ} are measured in the area between the $\mathrm{C}_{\lambda(\mathrm{mm} / \mathrm{I})}$ and $\mathrm{C}_{\lambda(\max)}$ curves. For a given pitch angle and value of N , lowest possible operating frequency is always fixed by intersection of a vertical line from the horizontal axis and the $C_{x(m \mid n)}$ curve. Highest value of C_{λ} is determined by intersection of the same vertical line with either the $C_{\lambda(\max)}$ or appropriate $C_{\lambda(N)}$ curve, whichever is reached first.
with the theoretical bounds of equation 17 .
The next step in the analysis is to interpret the results in terms of bandwidth, defined as

$$
\begin{equation*}
B W=\frac{f_{\max }}{f_{\text {min }}}=\frac{(k a)_{\max }}{(k a)_{\text {min }}} \tag{18}
\end{equation*}
$$

For a given pitch angle and number of windings this corresponds to the vertical distance between the $\mathrm{C}_{\text {x(min) }}$ curve and either the $\mathrm{C}_{\mathrm{x}_{\text {(max) }}}$ or $\mathrm{C}_{\mathrm{A}_{(N)}}$, curve-whichever is reached first. The $\mathrm{C}_{\text {(S) }}$ curve should correspond to the number of windings in the antenna.
The exact relationship for bandwidth is that as the pitch angle, ψ, is increased from zero, the bandwidth increases according to

$$
\begin{equation*}
\mathrm{BW}=\frac{1+\sin \psi}{1-\sin \psi} \tag{19}
\end{equation*}
$$

The bandwidth increases monotonically until the pitch angle reaches $\psi_{\text {max }}$ given by

$$
\begin{equation*}
\psi_{\max }=\sin ^{-1} \frac{\mathrm{~N}}{\mathrm{~N}+2} \tag{20}
\end{equation*}
$$

At this pitch angle the bandwidth is a maximum given by

$$
\begin{equation*}
\mathrm{BW}_{\max }=\frac{1+\frac{\mathrm{N}}{\mathrm{~N}+2}}{1-\frac{\mathrm{N}}{\mathrm{~N}+2}}=\mathrm{N}+1 \tag{21}
\end{equation*}
$$

At pitch angles above $\psi_{\text {max }}$ the theoretical bandwidth is

$$
\mathrm{BW}=\frac{\mathrm{N}}{2} \frac{(\cos \psi)(\cot \psi)}{1-\sin \psi}
$$

As ψ approaches 90°, the bandwidth decreases approaching N , as shown in the graph at the right.

Designing for bandwidth

The graph at the right plots bandwidth versus pitch angle of N -filar helix antennas. As an example of how to use the graph, consider an octafilar antenna ($\mathrm{N}=8$) with a 40° pitch angle. The $\psi=40^{\circ}$ pitch angle intersects the colored line at a bandwidth of 4 . The bandwidth increases to a maximum of 9 at $\psi=53^{\circ}$. At higher values of ψ, the $\mathrm{N}=8$ curve dips and bandwidth decreases.
As the number of windings increases, so does the pitch angle at which maximum bandwidth occurs. For example, the maximum bandwidth for a bifilar helix is $\psi=30^{\circ}$; for a quadrifilar helix it is at 42° and for an octafilar helix, ψ is 53°.
With a large number of windings and high pitch angles the normalized circumferences (C_{n}) can be very small at the low-frequency end of the operating band (see graph of C_{λ} versus ψ on p . 107). For example, a 16 -filar helix with a pitch angle of 63° would operate between normalized circumference limits of 0.24 and 4.2. As a practical matter, this means that a multifilar helix antenna can be considerably smaller in diameter than a conventional helix operating with the same low-frequency limit.

Beamwidth and directivity

Beam shape of the multifilar contrawound helix can be estimated by assuming the helix is a uniformly illuminated end-fire array. The resulting radiation pattern is a $(\sin x) / x$ curve given by

$$
\begin{equation*}
E(\phi)=\frac{\sin \left[L_{\lambda}(1-\sin \phi) \pi\right]}{L_{\lambda}(1-\sin \phi) \pi} \tag{22}
\end{equation*}
$$

where $L_{\lambda}=$ length of the array in wavelengths $\theta=$ angle measured from a line perpendicular to the Z axis.
The half-power beamwidth and directivity versus electrical length is plotted in the graph on the next page.

When N equals 4, 6 and 8 the beam width versus electrical length of the multifilar helix comes very

Theoretical bandwidth for a given number of windings in one direction, N , is determined by the intersection of a vertical line with the colored line corresponding to N or with the curve in black if the pitch angle is to the left of the appropriate N curve. For example, antennas with 4 and 8 windings and a pitch angle of 40° would both have a bandwidth of 4:1. At a pitch angle of 50°, the bandwidth would be $4.5: 1$ for a quadrifilar antenna and $7: 1$ for an octafilar antenna.
close to the Hansen-Woodyard ${ }^{3}$ condition for increased directivity (supergain), shown in the graph. This slight amount of supergain might be caused by an attenuated mode ${ }^{4}$ that is within a forbidden region but propagating along the Z axis. This is not covered in the theory, but in a real antenna an attenuated mode propagating in the Z direction does exist when ka is slightly greater than $\mathrm{ka}_{\text {minn }}$. The supergain condition also produces slightly higher sidelobes than an end-fire array, because the peak of the $(\sin x) / x$ pattern shifts into a so-called invisible region.
Experiments indicate there are beamwidth anomalies for $\mathrm{N}=1$ and $\mathrm{N}=2$. At $\mathrm{N}=1$, supergain is considerably greater than in the HansenWoodyard condition. Also the beamwidth is proportional to $f^{-3 / 2}$ rather than $f^{-1 / 2}$. Beam width is proportional to f^{-1} when $N=2$. For N of 4,6 and 8 , the beamwidth varies as $f^{-1 / 2}$ in agreement with theory.

Polarization

Since the multifilar contrawound helix is really two cross-polarized antennas, the N feed points can be excited so as to produce any polarization. The diagram below indicates the feed requirements for linear (vertical) and right-hand circular polarization for $\mathrm{N}=4,6$ and 8 . The feed requirements for the linearly polarized half-helix are also shown in this diagram.

Left-hand circular polarization requires the same phase relationship as right-hand circular, but the phase progression is in reverse order. Linear polarization is achieved by summing the amplitude and phase vectors for right- and left-hand sense polari-

Beamwidth and directivity are plotted as a function of the antenna's normalized length. End-fire curve and Hansen-Woodyard curve are theoretical. Unifilar and quadrifilar curves (color) show experimental results.
zation. Since the antema has odd symmetry when excited with linear polarization, a ground plane can be placed along the plane of symmetry without disturbing the fields.

For f-nn radio and television applications, the feed network is as simple as those currently used with such broadband antennas as the \log periodic.

$N=6$

vertical
(LINEAR)

VERTICAL
ON A GROUND
PLANE

Phase and amplitude relationships required for various polarizations of quadrifilar, sexafilar, and octafilar antennas. For left-hand polarization, reverse the phase progression shown for right-hand circular polarization. For linear polarization sum the amplitude-phase vectors for right- and left-hand sense polarization.

Beam patterns of a half-plane, octafilar, contrawound helix designed for operation at 400 to 3,600 megahertz. Antenna's radius is $15 / 16$ inch and length is 18 inches. Pitch angle of each winding is 53°. At frequencies above 3,600 megahertz, sidelobe levels and back radiation increase. $C \lambda$ is normalized circumference, $L \lambda$ is normalized length, and B_{w} is beam width. Second circle in each diagram represents 3 -decibel level.

If only linear polarization is required in a quadrifilar antenna, a 300 -ohm twin lead is directly connected to the horizontal feedpoints and the other two feedpoints are shorted. This yields the correct phasing for a horizontally polarized antenna.
To reduce the antenna's size, the antenna would have six windings and a 150 -ohm twin lead. One lead would be commected to both 180° feed points; the other to the 0° feed points at the top. The two center feed points would be shorted.

Experimental results

Radiation patterns and input impedance measurements have been made for antennas with N ranging from 2 through 8 . Six radiation patterns for an octafilar contrawound helix with pitch angle of 53° appear in the diagram shown above. The antenna is mounted on a ground plane and its polarization is linear. The radiation pattern exhibits lowlevel sidelobes within its 400 to $3,600 \mathrm{Mhz}$ bandwidth. As the frequency exceeds $3,600 \mathrm{Mhz}$ large sidelobes begin to appear.

For pitch angles above $\psi_{\text {max }}$ where bandwidth decreases, the radiation patterns are not as good. As an example, full diameter quadrifilar helises with pitch angles of $40^{\circ}, 50^{\circ}$ and 60° were tested from 1 to 4 gigahertz. Since $\psi_{\text {max }}$ is 42° for a quadrifilar antenna, the radiation pattern had low sidelobes and small back radiation at $\psi=40^{\circ}$. The antennas with the 50° and 60° pitch angles exhibit high sidelobe levels or scalloped main beams.
Impedance measurements have been made on antennas with 2, 4, 6 and S windings. For each of the N input points, the input impedance to ground approaches 150 ohms. This is roughly the same input impedance that Kraus arrived at experimentally for the unifilar helix.
Much more experimental work must be done before conclusions can be drawn regarding the effects of ground plans, antenna length, and width of windings on input impedance.

Antenna feed system

The bandwidth of the couplers that link the antenna to the source voltages must equal the antenna's. Computer-designed couplers have achieved bandwidths of 8 -to-l. Couplers with bandwidths of 18 -to-1 are currently under study.

These broadband couplers are tandem combinations of other couplers. Coupling is varied by changing the spacing between strip-line conductors in the individual units.
Interconnecting two ports of a pair of couplers as in these broadland units, produces a combined coupler that can have a bandwidth greater than the individual units. Choosing units whose coupling curves (variation of coupling with frequency) compensate for each other's frequency response makes the response of the combination more uniform. The process is similar to producing a wideband filter circuit by combining narrowband circuits with slightitly different resonant frequencies.
Parallel combinations of tandem and in-line couplers reduce line losses and permit greater spacing between coupler elements. The in-line coupler has a shorter line length and consequently less line loss, but bandwidth is limited by how small the spacing between coupling points can be made. Tandem couplers are less restricted by spacing, but the length of the transmission path can result in large line losses. Combining the two coupler types eases the spacing problem and reduces line losses.

References

1. J.D. Kraus, "Antennas" McGraw.Hill Book Co., 1950, New York. 2. Dean A. Watkins, "Topics in Electromagnetic Theory," John Wiley and Sons, Inc., New York, 1958.
2. W.W. Hansen and J.R. Woodyard, "A New Principle in Directional Antenna Design," Proceedings IRE March 1938 pp. 333.345
3. Paul W. Klock, "A Study of Wave Propagation on Helices," Antenna Laboratory Technical Report, No. 68, University of Illinois, Urbana, Illinois, March 1963.

Acknowledgement

Antenna work is being sponsored by the

Versatile DTL pulse binary counter features 12 mc clock rate, 40 ns switching time.

Typical application of RM 213 is as a synchronous decade counter. Logic diagram shown here accomplishes function specified in truth table.

Raytheon pulse binary consists of bistable circuit capable of driving large capacitance loads, has steering network for trigger action.

You can use this versatile and highly reliable Raytheon RM 213 DTL as a binary counter element, shift register element, clocked RS flip-flop or as a direct RS flip-flop. Besides high speed, this pulse binary counter features: fan-out of 8 over full MIL temperature
range; low power consumption; operation from a single 6 -volt power supply.
Thirty-nine additional DTL circuits are available-including a broad range of NAND gates, NAND line drivers, hex gates, JK and RS flip-flops, and diode arrays.

For complete data on Raytheon's DTL integrated circuits, send reader service card. Or write: Raytheon Company, Components Division, 141 Spring Street, Lexington, Massachusetts 02173.

TEST THE BEST...WITH 50 hefore you huy...try ITs new

Our proposition is simply this:
We'll give your 50 molded TI integrated circuits with each order of 1000 units or more placed before November 1,1966

Do anything you like with these samples ... hammer them . . . test to destruction . . . wire into your circuits...soak in boiling water...compare with any others. Prove to yourself that they're best - by test!
Money-back guarantee-If you're still not convinced that TI molded integrated circuits do your job better than any competitive types available, just return the unused circuits. We'll give you full credit for them. This offer is good for 60 days from date of any order placed before November 1, 1966.
Offer includes popular series - Devices included in this offer are the popular digital circuits from the 930type DTL and Series 74 TTL families shown below right. Series 74 TTL is first choice of many designers for new equipment. Circuits in this line typically are 48% faster, have 25% higher fan-out and 15% better noise margin than DTL. . . at competitive prices.

Whether your system design calls for DTL or TTI circuits, youll find a wide selection of single and multiple gates and flip-flops available. With either series, high-speed logic is now available to you at lower prices per function than ever before
Rugged design proved by test - TI molded integrated circuits offer outstanding durability. The rugged, high-density package is molded from the satme encapsulant used in millions of SIL ECT ${ }^{\text {T3I }}$ transistors and is backed by over 2,000,000 actual hours of rest. Resistance to impact, heat and moisture are further borne out by testing to the following rigorous schedule without even a single failure: Thermal Shock - MIL Std. 750. Method 1056A; Temperature Cycling - MIL Std. 750, Method 1051: Moisture Resistance - MIL Std. 202C, Method 106B; Hydropressure - 3% JOY, 110 PSI for four hours.
Exclusive features save you money - You realize big reductions in total manufacturing costs with TI molded integrated circuits because they are specifically designed for use in automatic handling, assembly and test facilities. Exclusive features such as the positive index notch, pretinned leads and side-mounted lead Jesign make it possible. Even the cartridge-type shipping container lends itself to automated production line use
Fast delivery - Deliveries of TI molded integrated circuits are prompt ... prototype shipments can typically be made within days. And Tl's high production rates assure conimued availability to meet your most critical production schedules.

To obtain your 50 free evaluation samples immediately, just place your order with any TI sales office or authorized TI distributor.

All these devices are included-

Scries 74 TL
0 to 70 C Operating remp. SN7400N Quad 2-input NAND Gate SN7410N Triple 3 -inpui NAND Gate SN7420N Du.zl t-itput NAND Gate SN7430N 3-implt NAND Gate SNTH4N Dual f-terpul NAND "power" Gate SN7450N Expandable IJual AND-OR-INVERT Gate SN7451N Dual AND-OR-INVERT Giate SN7453N Expanduble I-input 4-ivide AND-UK-IV VERT Gate
SN7454N

AND-OR-INVERT Gate

SN7460N Lual 4 nput expender SN 7470 N Single-phase Flip tlop SN7472N Master-slave J-K Flip-flop 930 Type DTL 0° 1070 C SN15830N Dual + Nand Gale SN15831N RS'JK Flip-flop SNI5832N Du:al 4 Bufler SNiS833N lyal 4 Expander SN158-14N [ual + Pourer Giate SN 15845 N KS/IK Flip-tlop SN15846N Quad 2 Nand Gite SNi5850N Pulsed AC FlipSNI5851N One Stot SN15862N Triple 2 Nand Gate

fries sampies frim it modded integrated cirreuits

RESISTS SHOCK . . TI molded integrated circuits resist impacts that would smash metal packages and shatter ceramic packages as shown in top photo. You benefit from fewer failures in handling accidents and greater reliability in service. The solid molded construction gives extreme resistance to acceleration, vibration and shock as proven in acual test (see opposite page).

EASY TO ASSEMBLE ... TI molded integrated circuits are ideal for mechazized assembly, including automatic insertion and wave soldering. Faster, easier handling cuts total manufacturing costs. You realize big savings because of the in-line rigid lead pattern and convenient indexing notch. These features simplify assembly when compared with transistor-type circular lead packages.

RESISTS DAMAGE . . You a so realize savings from fewer rejects while achieving higher end-product qualty because TI molded intezrated circuits have outstanding duratility. For instance, they'll hold up to heat that would induce failures in many competitive devices. Result: fewer assemEly rejects due to high soldering temperatures.

P-i-n diode and FET's improve f-m reception

New commercial f-m tuner attains dynamic signal range exceeding 120 decibels with minimum distortion and maximum sensitivity; its secret lies in the use of new solid state components

By Fred L. Mergner
Fisher Radio Corp., Long Island City, N.Y.

Putting a p-i-n diode and field effect transistors in a frequency-modulation receiver promises to end many of the interference problems that have plagued millions of $\mathrm{f}-\mathrm{m}$ enthusiasts throughout the nation. The new commercial tuner, manufactured by the Fisher Radio Corp., model TFM-1000, is a fully transistorized stereo set that permits a dynamic signal range exceeding 120 decibels, with signal-to-noise ratio and distortion well within the requirements of high-quality instruments.
Solid state circuitry permits the new set to receive without distortion signals as low as 1.5 microvolts. And, on the other end of the scale, signals as powerful as $500,000 \mu \mathrm{~V}$ ($1 / 2$ volt) can be handled without overload and spurious response at high signal levels.
The p -i-n diode is located between the antenna and the input of the r-f amplifier. It serves as an easily controlled linear attenuator, which varies as a function of the amplitude of the input signal, and thus increases the ability of the receiver to accept a wider amplitude range of signals without distortion than previously possible.
The FET's located in the two r-f amplifier stages

The author

Fred L. Mergner has been vice president in charge of engineering of the Fisher Radio Corp. since 1957. He has worked on the development of airborne communications, broadcast and high fidelity audio equipment since receiving his master's degree in Electrical Engineering in Germany in 1938.
of the tuner, provide a gain that is reduced linearly as the signal is being amplified; thereby further extending the dynamic range of the receiver without distortion.
To the $\mathrm{f}-\mathrm{m}$ enthusiast the wide dynamic range, greater selectivity and higher signal to noise ratio means better reception and a wider choice of f -m stations for his listening pleasure. [There are about $1,180 \mathrm{f}-\mathrm{m}$ stations in the United States.]

The tuning problems

F-m reception and the problems involved in building a tuner are to a large extent determined by geography-the position of the receiver in relation to the transmitter-and factors such as the strength of the signal. F-m tuners must have more than just sensitivity. Receiving conditions, particularly in metropolitan areas, require tuners that can receive weak signals in the presence of sirong interference and that can handle very strong signals without overload distortion or spurious response.

At low signal levels, two factors affect the signal-to-noise ratio of a $f-m$ tuner: the noise figure and the amplitude-modulation rejection properties of the tuner. Both characteristics are influencedwithin limits-by the design of the tuner. The overall noise figure may be kept small by a low-noise r-f amplifier, ${ }^{1}$ proper noise match between the antenna and the r-f stage and sufficient gain in the r-f stage to overcome the noise generated by the mixer stage. A-m rejection normally is good enough in f -m receivers so that this influence can be neglected. However, other problems with f-m tuners are not so easily solved.

The bias and therefore the attenuating effect of the p-i-n diode, is controlled by an 10.7 Mhz i-f signal, passing through amplifier Q_{1} and frequency selective filter Z_{1} ard is detected and then amplified by d-c amplifier, $Q_{2}-Q_{3}$. The d-c voltage is fed back from the emitter of Q_{3} to the input to control the p -i-n diode. Agc loops in the i-f strip and between the $i-f$ and r-f stages produce, together with the $p-i-n$ loop, a total agc range exceeding 120 db .

Reception of strong signals

In an f-m tuner, strong signals-either desired or interfering-can produce overload and distortion in the intermediate-frequency amplifier and both spurious responses and cross modulation distortion in the front end-the portion between the antenna and the i-f stage, including the r-f stage and mixer. Combine this with problems involved in picking up a very weak signal, particularly in areas where there are other, stronger f -m transmitters, and one may see that overload and distortion can be generated under a variety of conditions. For example:

- Suppose an f-m enthusiast lives close to the

Three agc loops produce a dynamic agc range exceeding 120 db . Agc is applied across the i-f strip, to two $\mathrm{r}-\mathrm{f}$ stages and to the $\mathrm{p}-\mathrm{i}-\mathrm{n}$ diode to attenuate an overloading signal, which may exceed $500,000 \mu \mathrm{v}$. On the other end of the scale, signals as low as $1.5 \mu \mathrm{~V}$ can be detected satisfactorily during conditions of minimum attenuation.
broadeast transmitter. When the set is tuned to the station a strong single-frequency signal appears at the base of the last i-f transistor with an amplitude of several volts. The transistor is thus overdriven and the resulting change in base-emitter capacitance detunes the selective circuit to which it is connected, consequently distorting the over-all i-f response. In this case, the solution is to apply automatic gain control, (agc), to the r-f stage and to one or two i-f stages to reduce the maximum signal amplitude to acceptable levels. The mixer is normally exempted from age to prevent the detuning of the oscillator.

- Second, in large cities with many f-m stations,

Equivalent circuit of the p-i-n diode shows the inductance, capacitance and resistance of the basic package. The equivalent circuit changes when it is used as a variable series resistor, when the condition of minimum attenuation, left, changes to maximum attenuatior, right.
a number of strong signals will reach the antenna. Depending upon the selectivity of the tuner's r-f circuits, the signals will be more or less attenuated, but some may reach the mixer with amplitudes high enough to create mixing products with the desired frequency. An interfering frequency 5.35 megahertz higher than the desired one can create the 10.7 Mhz i-f in the mixer in four additional ways besides the desired one. The second harmonics of both the incoming desired antenna frequency and the local oscillator frequency when mixed with the second harmonic of the interfering frequency will each produce a 10.7 Mhz signal. In addition, the mixing of the fundamental oscillator frequency with the interfering signal and the mixing of the desired antenna signal with the interfering signal both produce a 5.35 Mhz signal which, when doubled in the mixer, equals 10.7 Mhz .
Normally, the selective circuits between the r-f stage and mixer will reject harmonics or subharmonics of the i-f generated by strong signals in the r-f stage. But the interference signal separated from the tuned frequency by 5.35 Mhz will reach the mixer if sufficient r-f selectivity isn't provided. For example, if a $10 \mu \mathrm{v}$ signal is amplified 20 db in the r-f stage, it reaches the mixer at $100 \mu \mathrm{v}$. An interference signal of 100 millivolts is also amplified 20 db , to 1 volt, but is attenuated by 60 db by the r-f selective circuits. Despite this attenuation, a residual interference level of $1,000 \mu \mathrm{v}$ will reach the mixer and produce spurious i-f interference. Thus, 60 db of selectivity is not enough to eliminate this type of interference.

- Third, suppose the f-m buff lives in a suburb of New York City, where he has available a wide selection of strong f-m signals and can receive some weaker signals from Philadelphia stations, which might be on frequencies near those of the New York stations. Normally automatic gain control and a high amount of r-f selectivity can eliminate or greatly reduce the problems created by strong interfering signals. Neither, however, is of help where a weak distant signal is being received in the presence of a strong interfering signal that is close in frequency (800 kilohertz or less). The result is cross modulation. The interfering signal amplitude-modulates the weaker signal on the slope of the r-f selectivity curve. Although the a-m components are subsequently removed by the limiter stages, the a-m signal can frequency-modulate the signal by changing the dynamic input capacity of the mixer. This, in turn, will change the frequency of the oscillator coupled to it. Loose coupling or a buffer stage can improve the situation.
- Finally, imagine that the f -m receiver is located an equal distance from broadcast stations that are on the same frequency and radiate approximately equal power, or that the interfering signal is originating from some form of man-made interference. Increased selectivity or age does not help in this case. However, the capture effect, one of the major attributes of $\mathrm{f}-\mathrm{m}$, enables the tuner to suppress the weaker of the two signals. If two $\mathrm{f}-\mathrm{m}$ signals
are received on the same frequency, only the stronger of the two will be found in the output. The complete suppression of the weaker carrier occurs at the receiver limiter where it is treated as noise and rejected. The minimum capture ratio of signal amplitudes for complete suppression is mainly a function of the i-f amplifier, i-f limiter and detector design. A directional antenna also helps to select the desired station by reducing the signal level of the undesired station according to its forward-backward ratio.

Cases require compromise

The four examples cited, which are typical of $f-m$ reception situations, clearly indicate that $f-m$ tuner design must meet difficult and sometimes contradictory requirements:

- A usable sensitivity (for a 30-db signal to noise + hum + distortion ratio) high enough to receive signals as low as 1.5 to $2 \mu \mathrm{v}$.
- An agc range capable of maintaining the signal in any stage of the tuner at acceptable levels.
- Sufficient r-f selectivity to attenuate undesired signals to insignificant levels at the mixer.
- A low capture ratio to suppress interfering signals at the same frequency as the desired one.
- R-f and mixer stages with wide dynamic ranges.

To meet these unusual requirements, as well as the standard performance criteria for low distortion, high adjacent and alternate selectivity and good a-m and impulse noise suppression, the advanced design group at Fisher Radio Corp. turned to new solid state devices and unique circuits.

Automatic gain control

The large dynamic range of the tuner-more than 120 db -requires approximately equal amounts of agc. To maintain a high signal to noise ratio at each stage and at all signal levels, the agc action must be fairly evenly distributed over the tuner sections. This imposes the additional requirement of a delayed attenuation of the signal ahead of the tuner's front end and in its r-f section.

Automatic gain-controlled attenuation of the signal before it reaches the front end is not easy to achieve with conventional components. The device selected for this purpose must meet several stringent requirements. The range of attenuation should be at least 30 to 40 db with a minimum value of not more than 0.25 to 0.5 db because the tuner's noise factor is increased by this amount. Also, a linear characteristic over its operating range must prevent signal mixing and generation of harmonics.

The solid state p -i-n diode ${ }^{2}$ designed by H.P. Associates, an affiliate of Hewlett Packard Co., meets these requirements. The device, whose basic circuit is on the bottom right of page 115 , is a newly developed gain-controlled attenuator.

At frequencies above 50 Mhz the device can best be described as a variable resistor rather than as a conventional diode. It is characterized by a high dynamic resistance, greater than 10,000 ohms, which is produced by a wide, high-resistivity

FET's in the r-f and mixer stages and highly selective r-f circuits assure reception of a weak signal near the frequency of a strong interfering one.
layer adjacent to its junction. This resistance may be controlled by a direct age voltage. Capacitance per unit of junction area is very low, but contuctivity of the resistive laver is increased by the presence of a stored charge (conductivity modulation). At zero bias the bulk resistance of the intrinsic region is between 7,000 and 10,000 ohms

With forward current, conductivity modulation will cause the bulk resistance, R_{I} to drop very rapidly as shown in empirical formula:

$$
\mathrm{R}_{\mathrm{I}}=\frac{26}{\mathrm{I}^{0.87}}
$$

where $I=$ forward bias current (ma).
These properties allow the p-i-n diode to function as a variable shunt or series resistor up to microwave frequencies. In the Fisher model TFM-1000, the diode is mounted into a shielded 72 -ohm cable located between the antenna and tumer input terminals so as to exhibit a minimum of bypass capacitance across it. Low-capacitance mounting ensures a maximum spread between the low and high impedance conditions and prevents the signal from
bypassing the attenuator. As a series variable resistor, the p-i-n cliode has, depending on the agc voltage (bias), a value for R_{1} of from 5 to 8,000 ohms. The conditions for minimum and maximum attenuation are shown in the equivalent circuits on the lower right of page 115 . The resistance values for R_{s} and R_{1} shown in the figure, relative to the load of 72 ohms result in a minimmem attenuation of less than 0.25 db . This is important for maintaining a low over-all noise figure.
A separate $10.7-\mathrm{Mh}$ z tuned amplifier in the block diagram on the bottom left of page 115 delivers the age voltage that, along with a d-c amplifier, controls the p-i-n diode. The tuned amplifier's action is delayed until the signal strength at the antema terminals is approximately 1 mv . This i-f amplifier has a $3-\mathrm{dl}$ b bandwidth of only 180 khz to prevent a strong undesired signal near the frequency of a desired weak signal from triggering the signal attenuator.

FET's extend range

To achieve an additional 40 db of age range in the tuner's r-f section, two cascaded field effect

The Fisher tuner TFM-1000 features two r-f stages incorporating FET's, a four gang variable tuning capacitor and six tuned circuits. The stages reject spurious response in excess of 100 db .
transistor r-f stages were placed in the tuner.
FET's are well suited for r-f amplification and mixing because, except for the amplified fundamental frequencies, they create only second-order harmonics of the applied frequencies plus their sum and difference components-which are easily filtered out in the tuned circuits. Therefore spurious responses resulting from cross modulation of two signals are readily filtered out. As the transconductance of an FET is a linear function of its gate voltages, the drain current follows a squarelaw relationship to the gate voltages. This is superior to bipolar transistors and most tubes, which have high-order nonlinear transconductance. In the latter case, the mixing of two signals generates higher order harmonics which have mixing products that are difficult to filter. In addition, in FET mixers the applied signals, desired or undesired, can cover a peak to peak range up to 5 volts before clipping. The reason: the FET's pinch-off voltage (the voltage at the gate which cuts off the transistor) can be made large, allowing a wide voltage swing before clipping, that is many times the amplitude that can be handled with bipolar transistors.

Determining the agc range

To prevent overloading the limiting stages, the maximum signal level at the input of the i-f selective section is restricted by additional age circuitry on the top of page 115. Noise considerations dictate a maximum age range of 40 to 50 db for the additional age amplifier between the mixer and i-f stage. In the TFM-1000 this is achieved by a wideband low-noise combination amplifier-attenuator which is inserted between the front end and the i-f amplifier.

In the combination amplifier-attenuator stage, a
separate transistor in the emitter of the amplifier controls the gain of the amplifier by acting as variable feedback resistance. The agc voltage derived from the i-f output controls the value of resistance. This offers the advantage of providing maximum current feedback at maximum signal level, preventing clipping.
The upper figure on page 115 shows the section of the Fisher TFM-1000 containing the p-i-n diode and age amplifier circuits. P-i-n diode D_{1} is connected between front end and antenna and can be switched either directly to the 72 -ohm terminals or, via a balun, to the 300 ohm input. Its resistance is controlled by a d-c voltage developed across part of the emitter resistor of Q_{3} which in turn is driven from a separate i-f filter, Z_{1}.

Transistor Q_{2} is also connected to Z_{1} and operates the tuning meter via potentiometer R_{1} which sets the ineter deviation at high (100 mv) signal levels while R_{2}, at the base of Q_{4}, adjusts the meter swing at approximately $100 \mu \mathrm{v}$. This double adjustment provides a large excursion at lower antenna levels without pegging the meter at high signals.

The four agc stages plus the limiter section provide the combined dynamic range of more than the 120 db required for signals as high as $500,000 \mu \mathrm{v}$. This wide range eliminates any problems with strong single signals, but as indicated, cannot ensure clean reception of a weak signal near the frequency of a strong interfering one. Rejection of most spurious responses requires age and a high amount of r-f selectivity plus the use of FET's. In the TFMI-1000 there are four (instead of the more common three) tuned r-f circuits, two combined in a highly selective and high-Q bandpass filter; plus two FET r-f stages, in addition to a FET mixer and local oscillator. The arrangement of the tuncr's front end circuitry can be seen in the photo above, its details are shown in the schematic diagram on page 117 .
The age voltage for the two gain-controlled FET r-f stages is derived from the fourth i-f amplifier stage, which also drives a narrow-band meter amplifier mounted on the i-f strip.

To meet the requirement for capture effect, the design of the TFM-1000 incorporates three stages of hard limiting and a counter detector. This detector, for which a patent has been applied, produces a pulse for every cycle of the incoming signal regardless of the frequency. The integrated output is linearly proportional to the frequency. The higher the frequency, the more the number of pulses and the larger the integrated signal. Both sections have a bandwidth of more than 10 Mhz to achieve an unusually low capture-ratio of 0.6 db , which permits an interfering-to-desired signal level ratio of 0.95 with full suppression of the interfering signal.

References

1. F.L. Mergner, "A Survey of Performance Requirements and Design Techniques for Highest Quality F-M Multiplex Reception," Journal of the Audio Engineering Society, Jan. 1965, Volume 13, No. 1.
2. The PIN Diode, Hewlett-Packard Application Note $\# 4$.

If you are thinking of something new and important in data-recording by photography, you ought to have lunch in this place

This is a dining room in the arges: plant on earth devotec to photography. A. rajority of the Kodak men yous see here ate engineere whoje entire prcfessional careers are devoted to maxirg photographic systems work suprerrely well

Let us assume yol are an engineer whose specialty does no: happen tc be photogra?hy and photographic systems and let us assume you have a photograr hic problen or a photographic sct ene whichever you choose \boldsymbol{k} consider it). It is quite possible that in chis picture is the very Euy who s best prepared in all the world to advise you tc ic-get it and think of something else.

On the other hand, since he gets paid to make
photography successf 1 , he has mach strorger motivation to figure out with you what next step to take and what you have to decide.

Eut Kociak is a huge orgarization. How do you find him? How do you get in touch with Lim?

Actually there is nothing to that proclem. We have a department whose rajor essig.zment has always seen to learn encugh about your case to get you tcgether with the rgght pasty. Yo」 addeess that ceparment as Special Applications, Eastman Kodak Cempany, Rochester, N. Y. 14650. Most contasts stari by phone: (716)-325-2C00, Ext 5129.

Kodak

WIRE HARNESS LACIMG, like most manala iobs-cosis money!

- Saving by using low cost lacing material seems good economy...

- ... until production lags and rejects pile up!

You owe it to your zero defects program to investigate Gudebrod lacing tape. Its guaranteed quality and its constant uniformity are important to you-and to your harnessing operation. Why? Because Gudebrod smooths and speeds the hand operation of lacing and knot tying. There's no need for readjusting or retying. Rejects are minimal. The result? You save time-and that saves money and hastens delivery. Gudebrod sets its manufacturing standards high and adheres to them. When you use Gudebrod tapes you can set production goals and achieve them. This is the combination that saves you money in your harness department. Ask for the Gudebrod Product Data Book.

Night and day, Nimbus 2 transmits its cloud pictures

Infrared scanners have been added to the automatic picture transmission system of the new weather satellite so it can keep the weather in view on the dark side of the earth

By John C. Moody and Oscar Weinstein
Goddard Space Flight Center, Greenbelt, Md.

Abstract

Weather satellites are no longer blind at night, and are making a thing of the past the destruction and death wreaked by storms and hurricanes striking without warning.

The newest metcorological research satellite, the Nimbus 2, launched May 15, carries an infrared system that transmits cloud pictures to earth while the satellite is orbiting over the dark side of the earth. In daylight, the pictures are taken and transmitted by a vidicon system that is an improved, longer-lived version of the vidicon system carried by Nimbus 1 .

Ground stations now receiving automatic picture transmission (APT) pictures from the vidicon television systems of Nimbus 2 and earlier weather satellites can be adapted to print out the infrared

The authors

John C. Moody has been NASA technical officer on automatic picture transmission flight equipment for two years. Before joining NASA in 1962, he worked for the Army Engineer Corps., where he developed special television systems and tubes that operate at low light levels.

Oscar Weinstein, a graduate of the Newark College of Engineering, is designing a slow-scan digital television camera system for deepspace probes. He came to NASA from the Radio Corp. of America laboratories where he helped develop the vidicon camera and automatic picture transmission systems of the early Nimbus and ESSA meteorological satellites.
scan patterns transmitted by the spacecraft. More than 160 APT stations are in use around the world, some of them homemade. A special gear box makes the slower scanning infrared compatible with the APT ground station. A new coding technique, the data code grid, tells when a picture was taken and where the satellite was at the time.

Bad weather note

Nimbus 1 and other weather satellites now in orbit have on several occasions disclosed dangerous storms brewing in remote areas and have helped meteorologists track their course. ${ }^{1}$ Analysis of cloud pictures has also helped in the forecasting of more ordinary weather and has in other ways broadened man's knowledge of his environment.

The successful operation of both the day and night equipment on Nimbus points the way to future systems of numerous satellites that would provide around-the-clock coverage of the weather at every point on earth.

Besides the high-resolution infrared system and the vidicon automatic picture transmission system, Nimbus 2 carries two other experiments-a me-dium-resolution infrared system and an advanced vidicon camera system.

The first two systems are discussed because they transmit to earth at all times as the satellite orbits the earth. The infrared transmissions can be received by modified ground stations.

The outputs of both infrared systems and the advanced vidicon system are stored on the spacecraft's tape recorders. Later, the signals are transmitted through an S-band (1.23 gigahertz) data link to the Command and Data Acquisition Stations at Fairbanks, Alaska, and at Rosman, N.C.
To provide an interface between the daylight

Line of infrared video signal. The earth scene represents only 33% of the total scan. As the radiometer scans a full 360°, it samples cold space (approximately 4° Kelvin) twice for a calibration reference. A portion of the radiometer's scan is blocked by the spacecraft. Marker pulses identify the beginning of each scan sequence.
vidicon signals and the infrared signals, the satellite carries a switching system known as HAX. It is operated by the National Aeronautics and Space Administration, which switches systems depending on whether the satellite is in daylight or darkness. HAX processes the infrared signals by amplitude modulating the video with a 2,400 -hertz subcarrier frequency required by ground stations. In turn, the subcarrier frequency modulates the spacecraft's 136.95-Mhz transmitter frequency.

Nimbus 2 is an improvement on earlier weather satellites. Tiros 8, launched in December, 1963, has an infrared sensor for horizon scanning and experimental APT camera systems; Nimbus 1, launched in August, 1964, also carried the earlier APT systems, which consisted of slow-scan vidicon cameras that photographed the earth and clouds and transmitted a narrow bandwidth signal to earth in real time. Ground stations each day received a view of the weather within several hundred miles.
An APT system is aboard the latest Environmental Science Services Administration satellite (ESSA 2). The spacecraft is in a 750 -nautical-mile circular orbit; its picture covers 1,400 miles on a side with 40% overlap along the orbital path. ESSA's transmission frequency is 137.5 Mhz . APT ground stations can be equipped to receive transmissions at both the ESSA frequency and the $136.95-\mathrm{Mh}$ N Nimbus frequency. Eventually, APTequipped weather satellites should be numerous enough to provide constant weather-picture coverage at all ground stations.

Infrared scanning

At night, the high-resolution infrared scanner depicts weather by determining the attenuation by clouds of the earth's heat energy; cold space provides a temperature reference. The system scans, line by line, through an 8.6 -milliradian aperture, perpendicular to the earth. As the craft moves, one
scan line after another translates the unobstructed and the cloud-attenuated heat of the earth into a strip picture of the weather. The high-resolution infrared radiometer's scanning rate of approximately 44.71 revolutions per minute provides contiguous coverage along the orbit track.

The spacecraft's radiometer system (HRIR) contains a mirror, inclined 45° to its axis of rotation, that scans a full 360°. The optical image of a fourinch $f / 1$ Cassegrainian telescope is mechanically chopped at the focal point to provide an a-c signal for the detector. An optical filter with a low absorption characteristic in the 3.4 - to 4.2 -micron wavelength region restricts the passage of light to the infrared band, which is detected by a lead-selenide infrared detector. As shown in the figure on page 127, the radiometer views cold space during each scan providing a calibration reference from the space temperature of approximately 4° Kelvin. The system has a dynamic range of 190° to $340^{\circ} \mathrm{K}$.

In the line of HRIR video output shown in the drawing above, the earth scene reperesents only about 33% of the total scan period. A series of seven marker pulses identify the beginning of each scan line. The pulses are triggered by a magnetic pickup which tracks the scan mirror.

The lead-selenide detector is mounted on a cooling patch attached to the spacecraft and oriented to view cold space at all times. The system, entirely passive, cools the detector sufficiently for operation in the 3.4 - to 4.2 -micron region. The HRIR system was developed at the Fort Wayne, Ind., laboratories of the International Telephone and Telegraph Corp. under a NASA contract.

Two of a kind

Before HRIR data can be transmitted, the signal must be processed to " look like" APT video signals. ${ }^{2}$ The HAX module conditions the signal by amplifying the analog output of the radiometer to
the proper peak-to-peak value (2.8 volts) and then modulating it at the 2,400 -hz subcarrier frequency. The modulator output is fed to a latching OR gate relay (K_{1} in the diagram on page 126), together with the APT video signal.
The HRIR provides a signal for both the APT transmission and for storage on the spacecraft's tape recorder. Medium resolution infrared radiometer (MRIR) and advanced vidicon carnera system (AVCS) data are transmitted only to acquisition stations. APT ground stations are not equipped to process the information.

Improved APT camera

A new type of vidicon tube, manufactured by the General Electrodynamic Corp., is used on the improved cameras on Nimbus 2. It stores the charge image in the photoconductor rather than in a dielectric layer, as in the early vidicons. Feading the charge image directly from the photoconductor provides a higher signal level, improved resolution, increased sensitivity and better signal-to-noise ratio. Earlier dielectric vidicons had short life, because of bombardment of the dielectric layer with highenergy electrons. The storing of charge in the photoconductor overcomes the bombardment problem.
The vidicon is exposed to a scene for a few milliseconds by means of a mechanical shutter, as shown in the functional block diagram below. After exposure, the charge image on the photoconductor surface is read out at a slow rate by a beam-sampling technique. Beam sampling
raises the peak signal level and consequently the signal-to-noise ratio of the processed video signal. The beam sample rate is $4,800 \mathrm{hz}$. A synchronous detector is used to obtain baseband video. After amplification, clamping and mixing of the data code grid signals, the baseband video amplitude modulates a $2,400-\mathrm{hz}$ subcarrier which is then switched into the HAX unit. The $2,400-\mathrm{hz}$ subcarrier is also used as a synchronizing signal to phase lock the facsimile recorder and camera in the ground stations. This eliminates picture skew. The long-term stability of the $2,400-\mathrm{hz}$ subcarrier is one part in 10^{6}.
The vidicon camera is programed to provide 3 seconds of start tone and 5 seconds of phasing signal before its 200 -second picture transmission. The time interval permits automatic ground stations to turn on equipment (the receivers are usually in stand-by) and set up the gain and phasing controls for printout. The sequence is immediately repeated for every picture transmission during the orbital day. The transmissions from the ESSA satellites are interrupted for 144 seconds between sequences.

The spacecraft's cameras were photometrically calibrated by a solar simulator. Ten thousand footlamberts is considered the highest level of illumination the camera will encounter. The vidicon is sensitive to visible energy in the spectral region from 0.4 to 0.7 microns; however a haze filter is provided in the lens to limit the blue end of the spectrum to approximately 0.45 microns. The filter which minimizes the effects of light scattering and

Automatic picture transmission camera system. The timer and control unit that regulate the sampling rate of the vidicon's video signal obtains its operating commands from the spacecraft's clock and ground telemetry signals.
haze in the earth's atmosphere.
The APT and HAX systems were developed by the Astro-Electronics division of the Radio Corp. of America, under a NASA contract.

Data code grid

The Nimbus 2 data code experiment provides orbital information to APT users and eliminates the need for consulting a constantly updated list of satellite positions, a publication known as an ephemeris record. ${ }^{3}$ The data code message origin-
ates at the command and data acquisition ground station and is stored on the spacecraft in the command clock. The clock, upon receiving a camera shutter signal, provides the data code message for video mixing in the camera. A series of black and white bars appears at the phasing interval of the printout, as illustrated on page 125 . The data code signal provides the ground station operator with picture time, calendar day and information on the spacecraft's orbit. With it-and initial message on orbital characteristics-the

Data code information format

Operational data code template. The data code information is divided into five words. Row 1 is for reference; row 2 contains information on the spacecraft's orbital characteristics and the time the picture was taken.

Clcud cover photograph taken by Nimbus 2 cameras. The coded signal (bars and spaces) provides time and orbital information to ground stations. The station operator uses this data to determine the spacecraft's location.

HAX interface module. On command from the ground, the HAX unit (color) selects either the infrared radiometer scanner's output or the vidicon picture for processing and transmission to ground stations.
operator can determine the craft's location and the site of the picture. To do this, he must be equipped with nomographs and geographic grids to plot the satellite's subpoint (orbit path) and to locate gengraphically the cloud features in the facsimile image.

The data code grid display consists of two rows, the first of which contains 50 character blocks of alternating white and black squares. Each character block represents four seconds of real-time transmission. The alternating white and black character blocks are for visual reference and identification only. The data is contained in the second row in binary code decimal notation. Fom weighted bit locations are provided opposite each of the 50 character blocks. The data code template on page 12.4 indicates how the bits are weighted. It also shows how the data code is divided into five words, and shows the information given by each word (see the table on page 124).

Choosing the signal

Since the HAX interface is experimental, and since NASA researchers wanted flexibility in the photographic system, they decided to control the switching unit from the ground. However, the selection between HRIR and APT data could have been made automatic by sensing the transition from daylight to night with photodiode switches, or by the spacecraft's solar angle position sensor.

The HAX unit requires on and off commands from NASA. With the on command, power is applied to the HAX circuits and to the APT transmitter by means of a latching relay K_{2}. At the same time, relay K_{1} is energized, switching the transmitter signal input from APT video to the HRIR modulation and processing circuitry. The off command removes power from the HAX infraredprocessing module and the transmitter resumes transmission of APT video
The HAX on-command may be overridden by an APT on-command, which automatically turns off the HAX module and switches the system back to nomal APT. Relays K_{3} and K_{4} control the APT camera and transmitter.

APT ground station equipment

The high-resolution infrared coverage was intended as a limited experiment, with only a few ground stations participating. However, a great many APT users showed interest in increasing their coverage. ${ }^{4.5}$ Ground stations which use an oscilloscope or kinescope for printout may adapt easily to the infrared transmission.
An APT ground station may be assembled from the following basic components.

- Antema-an antenna capable of receiving circularly polarized radio frequency waves is most satisfactory. Multiturn helix or crossed yagi array antennas with at least 10 decibel gain, operate well.

Nimbus 2 cloud pattern detection system. The infrared radiometer scans cold space, clouds and earth through a lens system and mirror inclined 45° to the spacecraft's axis of rotation. The chopper is at the focal point of the telescope and provides an a-c signal to the lead-selenide detector. The path of the infrared data is in color.

- Preamplifier-for best performance, the preamplifier should be located on the mast close to the receiving antenna. For amplifying devices, the preamplifier should use low-noise transistors, field effect transistors or Nuvistors (vacuum tubes). Preamplifiers having a gain of 20 db and a noise figure of 4 db are satisfactory.
- Receiver-any f-m receiver that can handle signals in the 136- to 138 -Mliz range, with a predetection bandwidth of at least $30 \mathrm{khz}, 8 \mathrm{db}$ or better noise figure, and with adequate sensitivity to handle a signal level of -96 dbm or less. Amature, military, police band and commercial mobile radio receivers may be adapted for APT ground stations.
- Recording equipment - commercial APT ground stations use facsimile recorders for printing the pictures, and a few are equipped for photofacsimile printout. Photofacsimile improves picture content by emphasizing certain tonal aspects.
For the best image, the recording device should be able to accommodate at least the 25 -to-1 dynamic range the vidicon camera provides. The range is linearly equivalent to a printout transfer process resulting in an image with approximately 9 steps of $\sqrt{ } 2$ transmittance increments or a density range of 1.4 units in the image. A density unit is

Facsimile printout. The high resolution infrared radiometer photograph looks like an APT picture produced during daylight by vidicon cameras. The scanning rate of the HRIR unit is only 44.7 revolutions per minute compared with the 240 rpm of the APT camera. A gear box at the ground stations adapts the facsimile recorder.
defined as $\log _{10} \mathrm{~T}_{1} / \mathrm{T}_{2}$, where $\mathrm{T}_{1} / \mathrm{T}_{22}$ is the transmission ratio of the brightest highlight to lowest lowlight. Also, more satisfactory results may be obtained when controls that shape the slope characteristics (gamma correction) are used.

An article discussing approaches to a simple APT ground station is referenced. ${ }^{6}$ A package available from the Public Information Office at Goddard Space Flight Center describes two different approaches to a ground station. ${ }^{7}$ An instruction manual that explains the modification of the Fairchild and Muirhead facsimile equipment is available from the Nimbus Data Utilization Manager, Code 450 , Nimbus Ground Station, Building 3, Goddard Space Flight Center.

Picking up HRIR pictures

Although the ground station's receiver picks up both infrared and APT signals, some facsimile recorder medifications are necessary before infrared pictures can be printed since their video format and line rate are clifferent.

The spacecraft's APT system generates data at 4 lines a second with a 95% active image time. The remaining time is devoted to the data code grid information signal. The HRIR line rate, however, is 0.745 lines a second with only 33% active image time for the earth scan.

Because of the difference in the APT and HRIR scan rates on the spacecraft, the ground station's facsimile recorder must be converted. For APT pictures, the recorders operate at 240 rpm -the line rate of the spacecraft's onboard camera-and write at 100 lines per inch. The printout is approximately S inches square. Infrared pictures from the facsimile recorder are 3 -inch wide contiguous images. The converter box has a gear ratio of $2952 / 550$ to
make the recorder rate compatible with the HRIR scanning rate. The ratio must be tightly held to avoid picture skew.

When the Nimbus HRIR was developed, it was not intencled to be used with standard APT subsystems. Consequently, it has the odd gear speed ratio. The scanning rate for the HRIR on the next Nimbus will be 48 rpm, making a gear speed ratio of 5 possible. A whole integer ratio will simplify the gearing.

Infrared pictures may also be obtained with an oscilloscope or a kinescope and a Polaroid film camera as the recording devices. The marker pulses produced by the HRIR scan (after detection) are processed in a synchronizing detector and used to trigger the horizontal sweep of the display system. The video information is then applied to the cathode of the kinescope for Z axis modulation of the scanning beam. The vertical sweep required by the kinescope may be obtained by forming a staircase function, either from the detected marker pulses or from a standard frequency tuning fork and motor-driven potentiometers.

References

1. Rudolf A. Stampfl and William G. Stroud, "Automatic Picture Transmission Tv Camera System for Meteorological Satellites, Journal of the SMPTE. February, 1964.
2. Rudolf A. Stampfl, "The Nimbus Satellite Communication System," A.V. Balakishman, Ed., Space Communications, McGraw-Hill Book Co.
3. Aracon Geophysics Division, Allied Research Associates, Inc., Concord, Mass. "The Nimbus 2 Data Code Experiment," NASA Contract NAS 5-10114, Technical Note No. 1, January, 1966. Contract NAS 5-101 C, Tech Burch, Nimbus receiving equipment 4. John Dewitt and Charles Burch, NWM Tv weather shows developed at WSM, Inc. for use on WSM-tv weather shows 5. W. Anderson, "Amateur Reception of Weather Satellite Picture Transmissions," QST Magazine, November, 1965. 6. C.M. Hunter and E. Rich, "Birds-Eye View of the Weather," Electronics, July 27, 1964.
7 Instruction Manual for the Automatic Picture Transmission 7. Instruction Manual for the Auton Model F6, NASA Contract System (APTS) Satellite Equipment,
NAS 5.667 (RCA•AED), January, 1966.

From Gun Turret to Turret Lathe... Amelco's new HNIL logic with 4 volts noise immunity helps provide accurate computer control:

A

SPECIFICATIONS

Vec	12 volts
Logical "1"	11 volts
Logical " 0 "	1.2 volts
Fan Out	5
Noise Immunity	4.2 volts
Propagation Delay	60 nSec

Now you can enjoy the advantages of dependable integrated circuitry where noise and cost have been prohibitive. Amelco's new High Noise Immunity Logic is available in a full seven element family of 12 volt circuits that provide 4 volt noise immunity over a temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. These same seven elements are also available in an operating temperature range of $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ at low, industrial prices! Use HNIL circuits in virtually any industrial or military high noise environment without fear of spurious operation. \square Amelco HNIL is available in the following elements: 301 Dual 5 -Input Buffer with Expanders, 311 J -K Flip-Flop, 321 Quad 2-Input Gate with Expanders, 322 Dual 5 .Input Gate with "Expanders, 331 Dual 5 -Input Expander, 341 Dual Exclusive "OR" with Expanders, 361 Input Interface Circuit, 362 Output Interface Circuit.

AMELCO SEMICONDUCTOR

DIVISION OF TELEDYNE, INC. - 1300 TERRA BELLA AVENUE - MOUNTAIN VIEW, CALIFORNIA - Mail Address: P. O. Box 1030 , Mountain View, California • Phone: (415) 968.9241/TNX: (415) 969-9112/Telex: 34-8416. REGIONAL OFFICES: Southwest -
 Kimberton, Pennsylvania, (215) 885-1755. Northeast-805 Higa Street, Westwood, Massachuselts, (617) 326 . 6600 . (50utheast-4070; P. 0 . Box 366, Kimberton, Pennsylvania, (215) 885-1755 - Northeast-805 Higa Street, Westwood, Massachuselts, (617) $326-6600$ - Southeast- 711 Magnolia Avenue,
Orlando, Florida, (305) 423.5833 . Midwest-650 West Algonquin Road, Des Plaines, Illinois, (312) 439:3250. (612) 646-1161. - Canada-Deskin Sales, Montreal, Quebec, (51 c) $384-1420$.

WE JUST

DROPPED OUR

RTL epoxy TO-5 prices now as low as $18^{〔}$ per 2-Input Gate function: 67^{\dagger} per JK Flip-Flop function.

$+15^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C}$

DEVICE	PART NO.	PACKAGE	1.99	100-999	1,000		
Butter	U8A990028X	Epoxy TO-5	\$ 80	\$. 54	\$. 36	FP\\|FEHILE	
Dual 2-Input Gate	U8A991428X	Epoxy TO-5	. 80	. 54	. 36	SEMICDNDUCTDA	
JK Flip-Flop	U8A992328X	Epoxy TO-5	1.50	1.00	. 67		

Wouldn't it be nice if there were some way you could get immediate delivery on Heinemann circuit breakers?

We have good news for you. There are now over 30 ways to get immediate delivery:

AUTHORIZED HEINEMANN STOCKING DISTRIBUTORS

Alabama

Electro-Tech, Inc.
Huntsville
(205) 539.1250

Arizona

Kierulff Electronics, Inc.
Phoenix
(602) 273-7331

California

Wesco Electronics
Mountain View
(415) 968 -3475

Wesco Electronics
Pasadena
(213) 795-9161

Colorado

Kierulff Electronics, Inc.
1200 Stout Street
Denver
(303) 825-7033

Florida

Parts Service Corporation
Oriando
(305) $293-5730$

Georgia

Electro-Tech, Inc.
Hapeville
(404) 758-7205

Kansas

Precision Electronic Devices, Inc.
Kansas City
(913) AD 6.4343

Kentucky

E\&H Electric Supply Company
Louisville
(502) 587-0991

Marine Electric Company, Inc.
Louisville
(502) 587-6511

Louisiana

Hall-Mark Electronics Corporation
New Orleans
(504) 242-7581

Maryland

C \& H Distributing Co., Inc.
Baltimore
(301) 727-5100

Massachusetts

Apparatus Service Company
Allston
(617) 782.7440

Electrical Supply Corporation
Cambridge
(617) 491-3300

T, F. Cushing, Inc.
Springfield
(413) 788.7341

New Jersey

Alpha Electronic Services
Pennsauken
(6c9) NO $2-1310$
Federated Purchaser, Inc.
Springfield
(201) DR 6-8900

New Mexico

Kierulif Electronics, Inc.
Alamogordo
(505) 437.0370

Kierulif Electronics, Inc.
Albuquerque
(505) 268-3901

New York

Federal Elecfronics Inc.
Vestal
(607) PI 8.8211

Schweber Electronics
Westbury, Long Island
(516) ED 4-7474

North Carolina

Electro-Tech, Inc.
Charlotte
(704) 333-0326

Ohio
The Midwest Equipment Company Cincinnati
(513) $821 \cdot 1687$

Oklahoma
Hall-Mark Electronics Corporation Tulsa
(918) TE 5-8458

Pennsylvania
West Chester Electric Supply Co. West Chester
(215) 696-7500

Texas

Warren Electric Company
Beaumont
(713) TE 3.9405

Nelson Electric Supply Company Dallas
(214) R1 1.6341

Hall-Mark Electronics Corporation Garland
(214) 276-8531

Hall-Mark Electronics Corporation Houston
(713) 781-0011

Warren Electric Company
Houston
(713) CA 5-0971

Messner Electric Supply Company Longview
(214) PLaza 3-4484

The Perry Shankle Company
San Antonio
(512) CA 3-1801

Washington
Kierulff Electronics, Inc.
Kierultf
Seattle
(206) PA 5-1550

Hoffman

micro-glass zener regulators are the most reliable ever made

$8-\mathrm{yH}$

and that's a claim you can see through

The reasons are hermetically sealed in glass. That's our exclusive way of keeping contaminants out and preventing any fusion of the metal-glass interface. The passivated silicon water looks like it's floating in the sleeve the glass doesn't touch the junction anywhere.

Take a look at the slugs; you'll see they butt right up against the wafer. No intermediate contacts. And the leads are brazed not
welded or soldered to the slugs. They conduct better that way, and are about 12 times stronger than if we'd welded or soldered them.

One thing you can't see is the coefficient of expansion of the glass, slugs and wafer. They're a matched seal. That, you can test, if you must.

Thirty-seven of our 1.5 watt regulators, IN4460 througn IN4496 replace 749 Jedec types. They're designed for micro-

How you canbeone of America's foremost authorities on magnetic shielding:

Read thisfree book.

Here's a 36-page seminar on magnetic shielding... and high-permeability Westinghouse Hipernom ${ }^{*}$

This new book on magnetic shielding is the first of its kind. It gives you the fruit of 50 years of Westinghouse leadership in magnetics research. It sums up the experience of the largest group of metallurgists specializing in magnetic alloys. It's a full seminar in when, why, and how to use magnetic shielding in low frequency applications. You get all the theory, formulae, practical tips, and technical data needed to design and evaluate shielding. One of the useful things this book documents is

Hipernom magnetic alloy. It has the highest permeability available of any magnetic alloy. Result: you can design lighter, lower-cost magnetic shielding for even your most sensitive components. This is just one sample of what you can do with this free book and Hipernom. Send for your free copy. Write: Westinghouse Metals Division, Dept. A, Box 868, Pittsburgh, Pennsylvania 15230

You can be sure if it's Westinghouse

Engineers:

1. If you're looking for money,

 our $\$ 470,000,000$ backlog of orders tells its own story.
2. If you're looking for challenge, we offer you pioneering in a brand-new ocean.

3. If you're looking for a career,

 we offer you stability and rapidly expanding opportunities for growth.
If you're looking for all three, we're looking for you.

We need qualified engineers for responsible jobs-challenging positions with commensurate pay-in all eight categories listed below.

Money? If you're a capable and imaginative engineer who is willing to take responsibility, we'll offer you a high starting salary plus wide-open promotional opportunities and liberal fringe benefits.

Challenge? We're in the forefront of revolutionary technological advances that are taking place in, under, and on the ocean. Nuclear submarine building. Oceanography. Engine room automation. Aircraft carrier design. You name it -we're in it. And we'll give you a chance to put your abilities to work-all your abilities.

Career? Newport News offers you permanence and a solid future. With us, you can build a lifetime career in your chosen field of engineering-and you can build it to any size. We want you to move ahead. How high you climb is entirely up to you.
If you're interested in advanced study, we are close to some outstanding institutions. Next door is Virginia Associated Research Center with one of the world's largest syn chrocyclotrons, where you can study in high-energy physics. Across the harbor is Old Dominion College, offering gradu-
ate courses in such subjects as Microwave Theory, Solid State Electronics and Nuclear Engineering. Within easy driving range are Virginia Institute for Scientific Research-a world leader in solid state physics-and the University of Virginia, with its new nuclear laboratory.

Sound interesting? Then act now to get details on immediate, specific career openings in your field. Our $\$ 470,000$,000 order backlog, up $\$ 50,000,000$ in three months, makes our need for qualified engineers urgent. Write or phone John J. Gaughan, employment manager. You'll get fast action.

IMMEDIATE OPENINGS IN THESE ENGINEERING CATEGORIES

Mechanical Engineers
Electrical Engineers Marine Engineers Industrial Engineers

Naval Architects
Nuclear Engineers
Civil Engineers
Metallurgical Engineers

INEETEOETETES
 NEWPORT NEWS SHIPBUILDING AND DRY DOCK COM

 Newport News, Virginia 23607 Phone: (703) $247-1211$
Write or phone for illustrated, fact-packed booklet, "Blueprint of Your Future."

Chart showing the consistency of resistance change in Allen-Bradley Type HB 2-watt resistors in all resistarce values from 10 ohms to 100 megohms during humidity test at $95 \%, 55^{\circ} \mathrm{C}$ for 113 hours.

fantastically

Chart at right shows actual per cent resistance change after temperature cycling tests (5 cycles from $-55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$) on samples regularly taken from produc. tion of over $21 / 2$ billion Allen-Bradley Type EB $1 / 2$ watt hot molded resistors.

To maintain absolute uniformity, Allen-Bradley quality contal engineers continuously take samples of resistors from production and $t \geq s t$ them. The results of these tests, as shown by the charts on this sage, are truly amazing. One chart, zovering the results of tests on 1248 samples representing production of rrore than $21 / 2$ billion resistors, shows a typical resistance change of only 1% after five cycles from $-55^{\circ} \mathrm{C}$ w $85^{\circ} \mathrm{G}$!

HOT MOLDED FIXED RESISTORS are avallable in all sta dard EIA and MIL-R-11 resistance values and tolerances plus values above and below standard limits. Shown actual size.

uniform
 billion after billion!

The other charr ploting production sampling from more than 175 million resistors in a humidity test at $95 \%, 55^{\circ} \mathrm{C}$ for 113 hours, shows only a slight deviation in resistance-and complete freedom from any wide deviations.

So far as uniformity of electrical characteristics and physical properties are concerned, Allen-Bradley hot molded resistors have no equal. That's why they are so decidedly preforred by electror ic engineers throughout the world. For complete specilicatiors, please write for Technical Bulletin 5050 : Allen-Bradlev Co, 222 W . Greenfield Avenuc. Milwankee, Wisconsin 53204.

Export Office: 630 Third Ave., New York, New York, U'S.A. 10017.

QUALITY ELECTRONIC COMPONENTS

"Only Allen-Bradley Type J pots give us the smooth control

to maintain the high calibration accuracy of our instruments"

Krohn-Hite Corporation

This quickly locates the positions of the Type J potentiometers in the illustration below.

THIS KROHN.HITE VARIAGLE FILTER provides low-pass, high-pass, band-pass, and band-reject operation with high and low cutoff frequencies independently adjustable from 0.02 cps to 20 kc .
IN THE MODEL 335, continuous tuning of the high and low cutoff frequencies is accom. plished by simultaneously varying four potentiometers with a single knob. Only A-B Type J controls have been found to provide the smooth control and precise tracking without discontinuities to achieve the required calibration accuracy.

Krohn-Hite engineers have found that only Allen-Bradley Type J potentioneters provide the smooth control, low noise, long term stability, and low temperature coefficient they require for their precision instruments such as the variable electronic filter.
The Type J control has the resistor, terminals, faceplate mounting bushing, and insulating material hot molded into a solid integral unit. The solid resistance track assures smooth, quiet control that is free from the undesirable discrete steps of wire-wound units. On accelerated tests, Type J exceeds 100,000 complete operations with less than 10% resistance change.

Insure the performance of your equipment by insisting on Allen-Bradley Type J hot molded potentioncters. Besides, when you use Allen-Bradley fixed and variable hot molded composition resistors you provide your apparatus with the label of "quality." For more complete specifications, please write for Publication 6024: Allen-Bradley Co., 222 West Greenficld Are., Milwaukec, Wis. 53204 . In Canada: Allen-Bradley Canada Lid. Export Office: 630 Third Ave., New York, N.Y., U.S.A. 10017.

ADDITIONAL ALLEN-BRADLEY HOT MOLDED VARIABLE RESISTORS
TYPE G CONTROLS are only $1 / 2^{\prime \prime}$ in diameter. Quiet, stepless operation. Rated $1 / 2$ watt at $70^{\circ} \mathrm{C}$. Values to 5 megohms. Type L are similar in construction but rated $1 / 2$ watt at $100^{\circ} \mathrm{C}$.
TYPE F CONTROLS are for mount ing directly on printed wiring boards by means of their terminals. Rated $1 / 4$ watt at $70^{\circ} \mathrm{C}$. Values to 5 megohms. Type O are similar but rated 0.4 watt at $70^{\circ} \mathrm{C}$.

TYPE R ADJUSTABLE FIXED RE SISTORS are built to withstand environmental extremes. Only $11 / 4^{\prime \prime}$ in length. Have stepless adjustment. Watertight and can be encapsulated. Rated $1 / 4$ watt at $70^{\circ} \mathrm{C}$. Values to 2.5 megohms. Type N for less severe environments are rated $1 / 3$ watt at $50^{\circ} \mathrm{C}$.

GET THESE TI DESIGNERS' KITS FROM ESCO

Here's everything you need to get a head start in modern integrated circuit design - integrated circuits in Mech-Pak carriers, breadboarding sockets, applications information. sample circuit diagrams, and complete device data - all for much less than the price of the items if purchased separately. Start now to design and hreadboard both digital and linear assemblies - and demonstrate for yourself the many economics and the high performance inherent in integrated circuit systems.

SERIES 73 KIT

CONTENTS
One SN7420 Dual 4 -input positive NAND gate Two SN7450 Dual EXCLUSIVE-OR gates with expander inputs
Four SN7470 Single-phase J-K flip-flops Four MPC-1 14-pin Mech-Pak Sockets

CONTENTS

Three SN7331 Triple 3 -input NAND/NOR gates
Two SN7302 Dual J.K flip flops with preset One SN7360 Quadruple 2-input NAND NOR gate
One SN7370 Dual EXCLUSIVE - OR gate One SN7380 "one-shot monostable multivibrator
Six MPC-1 14-pin Mech-Pak Sockets

SERIES 72 KIT

APPLICATIONS

- 4-bit Binary to Gray-code Converter
- 4-bit Binary Comparator
- Divide-by- 5 Counter
- Binary Coded Decimal Counter

APPLICATIONS

- Full Adder
- One shot Clock Inhibit
- Up-down Binary Counter

APPLICATIONS

- Variable gain a-c
amplifier
- Stable gain circuits
- Isolation amplifiers (buffer)

CEC's new Type 4-501 Resistance Temperature Transducer is destined to be a "must" for calibration labs. And for two important reasons. (1) The $4-501$ has achieved the highest state-of-the-art for accurate temperature measurement of liquids, gases and cryogenic fluids. (2) It is by far the most rugged transducer of its type ever perfected, thereby assuring contimued accuracy and stability under all normal faboratory conditions.
As the leading manufacturer of transducers, CEC anticipates rapid industrywide acceptance of this outstanding new addition to their line. Especially since the $4-501$ has been designed to operate continuously - and does not require periodic maintenance.

A choice of models

CEC's 4-501 is available in two different versiens: the $4-501-0001$ for temperature measurement of liquids, gases and

for a very special transducer

cryogenic fluids: and the 4-501-0003 for temperature measurements of liquids. Both are wire-wound, four-terminal thermally strain-frec transducers with fully-enclosed elements. Resistance measurements may be made with an extremely precise Mueller-type bridge.

Significant features

- Accuracy: each transducer is individually catibrated to its own matching table. (Either by CEC. or by the user from constants which CEC will supply.)
- Repeatability: resistance at ice point is repeatable and accurate to $1 / 1000$ of an ohm.
- Temperature Range: 4-501-0001:
$-320^{\circ} \mathrm{F}\left(-195^{\circ} \mathrm{C}\right) \mathrm{to}+800^{\circ} \mathrm{F}\left(+427^{\circ} \mathrm{C}\right)$.
4-501-0003: $32^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$ to $+800^{\circ} \mathrm{F}$ $\left(+427^{\circ} \mathrm{C}\right)$.
- Thermal Shock: will withstand instant thermal shock from hoiling water to LN_{2} without causing a shift in the ice point calibration by more than ± 0.001 ohm.
For complete information, call or write CEC for Bulletin 4501-X4.

CEC
 Data Instruments Division

CONSOLIDATED ELECTRODYNAMICS

A SUBSIDIARY OF BELL \& HOWELL/PASADERA, CALIF. 91103 INTERNATIONAL SUBStDIARIES WOKING. SURREY. ENGLAND ANO FRIEDELRG (HESSEN). W. GERMARH

New Chairman of the Board cuts costs, creates openings

Look at the specs and you'll see why so many large users already have turned to the new Weston-Daystrom 501 \& $5025 / 16^{\prime \prime}$ commercial Squaretrim ${ }^{\circledR}$ pots. They save up to 80 per cent of the PC board space formerly required - and no extra cost. Notice the extra dividends:

Convenience 3 different configurations with adjusting screw on top, side or end \cdot Tolerance $\pm 5 \%$

- Adjustability 15 mechanical turns. Slip Clutch eliminates wiper damage, cuts production delays
- Soldered Terminations for better protection against vibration, shock and humidity no pressure taps • Superior Resolution 0.125% or less • Wide Range 10Ω to 20 K • High power 0.6 watt in still air at 70C. Wide Ternperature Range -55C to 150C. Low Temperature Coefficient 70 ppm max. Low Noise 100 ohms max. ENR • Small Size $5 / 16^{\prime \prime} \times 5 / 16^{\prime \prime} \times 3 / 16^{\prime \prime}$

Weston Instruments, Inc. • Archbald Division • Archbald, Pa. 18403

HIGH GAIN FLAT BETA PNP AMPIIFIER

Unique features allow great applications versatility: No other group of low level, low noise amplifiers can approach the beta linearity of our 2N3965 and 2 N 4250 families. To this, add our high gain of 250 at $100 \mu \mathrm{~A}$, state-of-the-art noise figure of 2 db at 1 kHz , and high breakdown voltage ratings. Then consider the added versatility of availability in both metal can (2N3962-5) and epoxy packages (2N4248.50), Planar II epitaxial construction, and off-the-shelf distributor delivery. No wonder this new group

FAIRCHILD of amplifiers already looks like a record-setter. SEMICONDUCTOR Write for complete specifications.

Probing the News

Space electronics

What comes after Apollo?

Possible budget cuts are clouding the space agency's future and a lack of clearly defined goals in space is hurting the post-Apollo program

By John Rhea

Electronics Washington Bureau

Evidence is mounting that when the deadline arrives this fall for deciding on post-Apollo space missions the space agency's plans will be cut back. What major missions will come after astronauts reach the moon in the next two or three years is of prime interest to the electronics industry since it gets about half the NASA dollars.

Criticism from Congress has reached a new high, the attitude of the White House has turned cool and the National Aeronautics and Space Administration has quietly postponed major decisions on programs to follow Apollo.
Few expect any definition of goals from the White House before the end of the year-and such a decision must come from the President. The course of the war in Vietnam will play the biggest role in determining what and how big the post-Apollo program will be

The latest Congressional criticism popped up in a recent study by the House NASA Oversight Subcommittee, which bemoaned the lack of a major space goal. The study said such a goal is necessary to rally national support. The subcommittee suggested that one possibility is a program of manned planetary flybys in the mid 1970's leading to a manned planetary landing in the early 1980's.

The report continued: "With such a rallying point, a program of unmanned and manned missions could converge, providing definition and a timetable for unmanned planetary probes to gather essential scientific data, conventional and nuclear propulsion requirement de-
velopment, life support communications and other needs."

I. Space goals

Subcommittee chairman, Rep. Olin Teague (D.,Tex.) recommended that NASA submit by Dec. l a list of possible space goals so that hearings can be held before next year's budget is submitted.

The Teague subcommittee listed five factors to be considered in shaping any future goals: national security, economic advantage, scientific discovery, international and competitive position and technological progress. Based on the existing technology base, these factors would be used to develop a national program for both the near term (1967-76) and long term (1976-85). In its talks with the subcommit-
tee, NASA outlined five possible manned space programs to follow Apollo. Each starts at a relatively low level and consequently could be added to the late stages of the current Apollo effort. Costs range from $\$ 3$ billion annually for a program emphasizing earth orbital opcrations to what NASA calls a prestige program where the dollar curve climbs right off the chart.

Balanced blend. The prestige program soars above a $\$ 6$-billion anmual level within five years. It includes orbital stations and logistic systems, lunar stations, an orbital research complex and planetary flybes and landings. A program that concentrates only on planetary flybys and landings amounts to $\$ 4$ billion a year, and one oriented to lunar exploration

Cost of new NASA programs and starting dates. Additional cost to prepare for moon stations wouldn't begin until after the third year; for planet flybys, after the sixth year. If NASA limits itself to earth orbital missions, the cost in the tenth year will be $\$ 1.5$ billion; if it adds lunar stations, the total cost will be $\$ 3$ billion; if it goes on to planet flybys, the total bill rises to $\$ 4.2$ billion.

GLASS ENCLOSED AWPINIIT

Thermostatic DELAY RELAYS

Offer true hermetic sealing -assure maximum stability and life!

Delays: 2 to 180 seconds . . Actuated by a heater, they operate on A.C. D.C., or Pulsating Current ... Being hermetically sealed, they are not affected by altitude, moisture, or climate changes SPST only-normally open or normally closed ...Compensated for ambient temperature changes from -55° to $+80^{\circ} \mathrm{C} . \ldots$ Heaters consume approximately 2 W . and may be operated continuously . . . The units are rugged, explosion-proof, long-lived, and-inexpensive!
TYPES: Standard Radio Octal, and 9.Pin Miniature. List Price, $\$ 4.00$

PROBLEMP Send for Bulletin No. TR-8 1

AMPERITE

BALLAST REGULATORS

Hermetically sealed, they are not affected by changes in altitude, ambient temperature (-50° to $+70^{\circ}$ C.), or humidity . . . Rugged, light, compact, most inexpensive.

List Price, $\$ 3.00$
Write for 4-page Technical

1968 budget is NASA's last chance

 to get a post-Apollo program started...would be slightly less expensive.
A blend of the other four comprises what NASA calls its balanced program. This would build up to an annual rate of about $\$ 4.2$ billion by first concentrating on an orbital station and logistics system, then adding lunar stations and delivery systems and finally introducing a planetary flyby system after about six years. NASA plans to get double duty from a space station by using it also as a manned interplanetary spacecraft.

II. NASA's last chance

The fiscal 1968 budget represents NASA's last chance to get a post-Apollo program under way without breaking the continuity started by President Kennedy when lie announced the lunar landing goal on May 21, 1961. NASA has let it be known that it wants $\$ 6$ billion-a figure that includes a major start on the Saturn/Apollo applications program and the Voyager unmanned planetary explorational effort. However, NASA would settle for $\$ 5.5$ billion to make down payments on the two new programs. But industry representatives in Washington say the space agency will be lucky to get $\$ 5$ billion.

The war in Vietnam is not the only reason NASA's budget may have to be sliced. Rep. Joseph Karth (D., Minn.), who ranks right behind Teague on the House Space Committee, opposes a stepped-up manned planetary program because of high cost, low economic payoff and inadequate technological preparation. Yet it is exactly such a program that many inside NASA and industry want to rally the government and the public behind the space effort. They reason that putting an American on Mars by 1984 could do as much for the space program in the 1970's as Apollo did in this decade. A program such as Apollo applications lacks this glamor and is therefore difficult for the public to identify with.
Ominous note. Karth was the first to warn of a ceiling on NASA spending and others repeated the warning. At the recent Reliability and Maintainability Conference in New York, Karth said that until the
pressure of Vietnam eases, NASA's budget will be closer to $\$ 5$ billion than $\$ 6$ billion. Such a budget cut would mean putting off any firm start on lunar bases and manned planetary flight until the late 1970's.

President Johnson sounded a similar warning when he signed the NASA authorization bill. He cautioned that inflation might require reductions in government spending. Although his remarks referred to the steel price increases, he made it clear that the space program would suffer if government spending were slashed.

Countermoves. NASA has tipped its hand that it doesn't expect to get all the money it wants. The space agency had originally planned to let industrial prime contractors handle some projects. But to prevent layoffs NASA decided to do the work itself. The agency's largest installation, the $7,500-\mathrm{man}$ Marshall Space Flight Center in Huntsville, Ala., recently took over the Apollo Telescope Mount and the Apollo Service Module Experiments Pallet programs--both originally destined for industry. The Mariner probe of Mars in 1969 has been assigned to the Jet Propulsion Laboratory although the original plan called for an industrial prime contractor to do the work.

Time to consider. Other programs have been kept going by the simple process of extending study contracts. In this way NASA gets more time before it makes a decision on which firms to choose. The Bendix Corp. and the Boeing Co. have had their contracts extended to December. The two companies are competing for the lunar scientific survey module vehicle that will provide mobility on the moon. At that time one will be chosen to continue development.

The Lockheed Missiles and Space Co. and the Martin Co.'s Denver division won nine-month study contracts on integration of experiments into the Apollo lunar module. Both contracts were extended to 12 months and both firms have been asked to investigate using the Apollo command module and the depleted third stages of the Saturn V launch vehicle to house
scientific experiments.
Three firms are already studying ways to use spent Saturn IVB stages for earth orbital experiments -the Douglas Aircraft Co., the McDonnell Aircraft Corp. and the Grumman Aircraft Engineering Corp. Marshall is expected to call for proposals soon to develop the Spent Stage Experiment Support Module, Douglas, builder of the stage, appears a sure winner.

III. Success schedule

Already approved NASA programs are expected to cost $\$ 4.5$ hillion in fiscal 1968 no matter what the new budget amounts to. Most of this money will go to Apollo and should come close to the $\$ 3$ billion set aside for that program in the authorization for fiscal 1967. This leaves $\$ 500$ million for new programs if NASA's budget is held to $\$ 5$ billion.

Apollo applications and Voyager won't be the only programs competing for these dollars. There are the 260 -inch solid rocket motor, nuclear power systems such as SNAP8 (systems for nuclear auxiliary power), a nuclear upper stage built around the Nerva II reactor and additional purchases of approved spacecraft such as Lunar Orbiter and Pioneer. Because of this competition, one airframe marketing man speculated that "if the budget falls to the $\$ 5$-billion bottom, Voyager is in deep trouble."
The situation for all of these programs could change if Apollo ex ceeds its estimated rate of expenditure. NASA administrator James Webb and associate administrator George Mueller, who heads the manned flight program, say that Apollo is on what they call a success schedule. This means that the first American will step on the moon in this decade and the entire program will not exceed the $\$ 21.7$ billion estimate-if nothing goes wrong.
Regardless of what final decision emerges from this fall's sessions between NASA, the Budget Bureau and Congress, one thing is certain: some kind of direction must be given to the post-Apollo space program. NASA will then be able to tell the electronics industry whether it can count on the space program or whether it will have to turn elsewhere for business.

Versatility and simplicity in variable, regulated power supplies

POTENTIOMETERS TO 10 KV

New Victoreen RX- 17 series ceramic potentiometers, when used across a well-regulated high-voltage source. provide reference adjustment with a degree of simplicity never before available to circuit designers.

Long life, resistance stability and panel insulation capability to 20 kv make Victoreen RX- 17 series potentiometers ideal for reference adjustment for variable, regulated HV supplies in CRT's, TWT's, Klystrons, GM tubes, proportional counters, etc.

Two RX- 17 series are available: One for operation to 5 kv rated at 3 w , the other for 10 kv rated at 5 w . RX-17 series ceramic potentiometers are normally supplied with nominal resistance range of 1 Meg to 5000 Meg , with a linearity of $\pm 2 \%$. Full technical details on request to Applications Engineering Department.

[^4]
Circuit treasure

Solid-state selenium cartridge rectifiers

- You add rare values to your oscilloscopes, radar sets, color TV, precipitators and other low-current, high voltage equipments when you specify G-E Vac-u-sel ${ }^{\circledR}$ rectifiers.

With solid-state selenium construction and no filament to burn out, these cartridges provide high circuit reliability over proved long life spans. General Electric cartridges have recorded over 100,000 hours of "ontime". That's more than 11 years of operating time.

Polycrystalline construction gives selenium rectifiers far better resistance to transient voltage than singlecrystal devices. G-E Vac-u-sel rectifiers will operate in ambient tem-
peratures up to 130 C with no derating.
Thin cell space savings, high density phenolic housing, and greater product uniformity through Automatic Continuous Evaporation (ACE),

Typical circuit using G-E Vac-u-sel Selenium Cartridge Rectifiers-in this case as a compact 2 ma high-voltage power supply used for CRT's, X-ray tubes, and other d-c applications.
are three more reasons why you should consider Vac-u-sel rectifiers. G-E cartridges give you more PRV per inch than other similar rated units. If you require voltage ratings up to 31,500 PRV and current ranges from 1.5 to $25 \mathrm{ma}, \mathrm{G} . \mathrm{E}$. has the Vac-u-sel cartridge you need. Try them.

Call your G-E engineer/salesman or distributor for more information on Vac-u-sel cartridges or write to Section 220-37, General Electric Company, Schenectady, N. Y. In Canada: Canadian General Electric, 189 Dufferin St., Toronto, Ont. Export: Electronic Components Sales, IGE Export Division, 159 Madison Ave., New York, New York.

A view from the cockpit

Army engineers are working on a contact analog display to give pilots the most flight information in the simfilest possible way

By W.J. Evanzia

Avionics Editor

Every pilot who has flown by instruments knows one of his main difficulties is translating the readings of a conglomeration of dials and radar signals into a mental picture of what his aircraft is doingas it is doing it. Faster planes and more dials are making the problem increasingly difficult, yet the advent of air mobility in ground fighting is making it imperative that pilots be able to fly ground troops and supplies at trcetop level regardless of weather conditions.

Army system designers and human factor engineers believe that a contact analog display, as opposed to a conventional aircraft vertical and horizontal situation display, may be the best method of presenting the information visually. The Army is flight testing such a system at its Electronics Command's facilities at the Naval Air Station at Lakehurst, New Jersey.

Although the concept of analog displays is more than 10 years old, there is only one contact analog display in use-a simple one in the Navy's A6A attack plane.
"Too much information can be a pilot's biggest problem," says Willis (Bud) Dworzak of the Army Electronics Command's Avionics Laboratory at Fort Monmouth, N.J. "The number of instruments in the cockpit has increased to the point where interpretation, translation and integration of Alght information cannot be accomplished in the split-second time required to control modern aircraft."

Dworzak, project engineer for the Advanced Aircraft Instrumentation System program (AAAIS), says the contact analog display eventually may form the basis of all cockpit displays in Army aircraft, both fixed winged and helicopters. If
the tests are saccessful the concept may be incorporated into the Army's Advanced Airborne Fire Support Sysem, (AAFSS) and later in the Surveillance and Target Acquisition System, (Stass). The model being tested in a Beechcraft Twin-Bonanza J-50 consists of components already designed for other progiams.
Program's evolution. The AAAIS instrumentation system evolved from the Joint Army-Navy Instru-
mentation Research program, (Janair). Janair began in the mid-1950's and was known as the Army-Navy Instrumentation Progran, (ANIP).

Janair was a study program concerned with proving the feasibility of a variety of avionic concepts. It did not develop hardware or attempt to prove the practicality of its study projects. But after feasibility was proven, an individual service could continue the investigations and develop a working sys-

Contact analog display in a Twin-Bonanza J-50 after a test flight by Willis Dworzak, engineer for the Advanced Aircraft Instrumentation System program. The vertical panel and horizontal situation display at pilot's left gives him almost all the information he needs to fly the plan

> Portable SOLID STATE PHASE METER

MODEL. PM-720

Provides exacting accuracy with compact portability at low price. Advantages: Light weight (5 lbs.) ...31/8" height... Absolute panel meter accuracy of $\pm 1^{\circ}$ or $2 \% \ldots$ External output relative accuracy of $\pm 0.20 \%$... Equal accuracy for symmetrical waveforms of any shape... Two inputs can have amplitude differences of 1,000 to 1 without affecting phase reading... Direct phase angle readings between 0° and 360° without adjustments or phase shift insertion instruments. Price: $\$ 950$.

For complete specifications write to: R. H. DOW, MGR,, AEROMETRICS, AEROJET-GENERAL CORPORATION, P. O. Box 216.F5, SAN RAMON, CALIF.

AEROMETRICS

AEROJET
GENERAL TIRE
GENERAL
tem if it thought that a program looked promising.

I. Electronic eye

The contact analog system presents on two panel displays-one horizontal and one vertical-almost all the information a pilot needs to fly his aircraft regardless of weather conditions. The system's central computer complex also will solve navigation and fuel management problems and will ease the pilot's task of shifting from one inflight plan to another. According to Dworzak, "AAAIS has performed almost flawlessly in its carly tests."

The central computer complex of the system is a modified AN/ASN24 digital computer made by the Kearfott division of General Precision, Inc., a subsidiary of the General Precision Equipment Corp. The computer processes sensor information, stores data, conmands the display of symbols on the screen of a cathode-ray tube and solves fuel management and navigational problems. An air-data computer, made by the Bendix Eclipse-Pioneer division of the Bendix Corp., reads the plane's airspeed, heading, temperature and radar altitude and converts it into a form suitable for display.

On the contact display, the earth is depicted as a grid of squares and the sky's clouds as eircles. Lines along the earth parallel to the
course appear to converge at a point on the horizon. The position of the horizon depends on the attitude of the aircraft. If the craft is in a dive, the horizon will be high on the screen and it will appear tilted if the plane is making a turn.

The horizontal lines of the squares representing the earth are an equal distance apart. They move from the center of the picture to the bottom, and grow larger, giving the illusion of speed.

The display is created by a symbol generator and controlled by the central computer from stored information and data read out from sensors on the aircraft-for example, the altimeter, automatic direction finder and onboard radar.

The display patterns representing the earth show the plane's attitude, altitude and speed by changing perspective. The trapezoidal grid patterns representing the earth in level flight become squares if the aircraft dives and the size of the grid will change with altitude.

Black on white. From the ground up to 100 feet, the grid represents 15-foot squares and is presented as white lines on a black background. From 100 feet to 1,000 feet, the grid represents 150 -foot squares and appears as black lines on a white background. At 1,000 to 10,000 feet, the grid represents 1,500 -foot squares and the colors revert to white on black. To differ-

Flite-path contact analog display system in a Navy A6A attack bomber is tested by a field engineer. The system is the only cockpit display of its type operating in fighter aircraft. The Army's system will be more sophisticated.
entiate between the highest and lowest ranges, the width of every eighth line is doubled on the lowest range.

The display also includes an artificial flight path, a sort of "highway in the sky" superimposed on the picture tube. The image rises from the bottom of the screen like a triangle, giving the illusion of depth. If the pilot's heading is too far to the left the road will bend to the right. The pilot can reference the flight path symbol to the plane of the earth or to the air mass in which the aircraft is Alying or to the aircraft.

Speed trap. The pilot also can select a command speed and this will be displayed as a series of dashes on the right-hand side of the flight path. Should the pilot exceed his desired speed, the marker moves out of the center of the display toward the bottom; it moves in the opposite direction if the pilot is going too slow.

Auxiliary indicators located along the sides of the vertical display include a vertical tape altimeter and airspeed indicator. These instruments present qualitative barometric altitude, terrain height and airspeed. Indicated airspeed, command speed, barometric altitude and command altitude are also presented numerically on digital readouts on each instrument. Also shown numerically are miles-to-go to target or landing area, miles of fuel, minutes-to-go and minutes-offuel needed to complete the flight.

II. Horizontal display

The instrument system also has a horizontal situation display-a 6 -inch, 2 -gun cathode-ray tubeand an input panel to manually insert data. The pilot sets fixed values, such as wind velocity and direction, fuel and magnetic variation on the imput panel; these values are later used by the central computer for in-flight programing.

Inputs for the horizontal map display are generated by a vidicon seanning system developed by ACF Inclustries, Inc., which utilizes topographical data stored on 390 frames of 70 -millimeter film. Map coordinates are programed into the computer which selects the map frame and drives the map scanner in x and y coordinates through a servosystem.

Three map scales. For the development system, the Technicolor Corp. made map reductions of an 800 -nautical-mile square area of the Eastern United States in three scales. A 1:1-million scale master map, $1: 250,000$ scale for enroute navigation, and a $1: 62,500$ scale for terminal areas.

In a fixed map mode, an aircraft symbol moves over a stationary map display. In the moving map mode, the symbol is stationary and the map moves under it.

The pilot can display radar information concurent with the map and symbol presentation. The radar data is shown on a plan position indicator scan. Texas Instruments Incorporated's AN/APN-149 terrain avoidance radar provides the vidco information presented by the scan.

III. Operational systems

Some visual instrumentation systems already are in operation and a number of commercial companies are developing others. Among the most prominent is a system created by the Kaiser Aerospace and Electronics Corp., a division of Kaiser Industries Corp. The Kaiser AN/ AVA-1 Flite-path display is the only contact analog system that has been tested in combat. The system is mounted aboard the Navy's A6A Intruder bombers flying many of the low-level attack missions in Vietnam.
There are two versions of the Flite-path system: the sophisticated transistorized unit in the Navy's bombers and a smaller less complex unit for commercial planes and the Army's light aircraft. The smaller unit is built of discrete components and integrated circuits.

The Flite-path's contact analog picture shows synthetic cloud shapes to depict the sky and circles to represent the ground. The circles appear to move toward the front and speed up as the craft increases its speed. As the aircraft climbs, the circles get smaller and move more slowly.

An indicator similar in principal to the AAAIS "highway in the sky" tells the pilot if he is on course. An output from the aircraft's inertial guidance system generates the heading signals for the displays.

Seeing in 3-D. In addition to the contact analog mode, the Flite-path

Portable ELECTRONIC COUNTER
 MODEL EC. 715

A compact, high speed ($10 \mathrm{mc}-7$ digit), counter-timer providing frequency, period and time interval measurement capability found only in units of greater size, weight, and cost. Unique in performing as integrating digital voltmeter with optional voltage-to-frequency converter. Light weight (7 lbs .) enables ideal utilization for field service. Price: $\$ 1450$.

For complete specifications write to: R. H. DOW, MGR., AEROMETRICS, AEROJET-GENERAL CORPORATION, P. O. Box 216-F5, SAN RAMON, CALIF.

AEROMETRICS

AEROJET
GENERAL TIR:
general.

cabolinulit DISPROSIUT:

LANTHANUM for phosphors? catalysts? dielectrics?

 semiconductors?The key to your next research project might well be lanthanum. As a catalyst, perhaps. Rare earths proved their catalytic promise with the Durabead-5 cracking catalyst. Or lanthanum for such uses as curing phenolic resins, synthesizing ammonia, decomposing nitrogen oxides. In electronics, lanthanum shows interesting semiconductor properties, and in ceramic dielectrics to control the temperature coefficient of capacitance. The special low-temperature properties of lanthanum make it useful in memory and control devices that operate at extremely low temperatures. Other lanthanum materials ha've been suggested for use as thermionic cathodes in applications requiring high current densities and high voltages. Still others have ferroelectric properties useful in condensers, piezoelectric elements, and electrooptical systems. Strike a responsive chord? If so, please write us. We have the materials, staff and technology that can save you headaches and money! Ask for detailed literature. RARE EARTH DIVISION, West Chicago, Illinois 60185. Phone 231-0760 (Area code 312).

WE MAKE LANTHANUM MATERIALS ECONOMICALLY PRACTICAL, WONDERFULLY USEFUL, WELL WORTH YOUR CRITICAL APPRAISAL.

Behind the complaints on computer software

Makers and users have been caught off guard by the complexity of third-
generation machines; writing software is costlier than developing hardware

In Washington, a large government agency continues to operate its old computer while a new thirdgeneration machine sits idly across the room surrounded by service engineers who are trying to make it work. A chemical company has its third-generation machine running but reports that it isn't getting anywhere near the output expected. and a Midwestern aircraft company finds its third-generation machines work well as long as operators keep the demands simple.
These examples illustrate what's been happening with third-generation computers as they go on-line. Both users and manufacturers of computers have discovered that the step from second to third generation was a bigger one than they had envisioned. At the International Business Machines Corp., whose problems have been the most severe only because it has sold so many more third-generation machines than anybody else, executives say frankly, "We underestimated what had to be done. We underestimated the complexity."
The biggest problem can be summed up in an IBM manager's comment, "Everybody's late." Mainly, the lateness has been in software, the instructions with which people communicate with the computer. Some IBM prograns have fallen more than a year behind schedule. The worst snarls have happened to the operating systems and compilers. Without these programs, the computer cannot work at its planned speed or capability

I. Bad time at IBM

Problems with the system 360 stopped IBM management cold for nearly two years. Top executives spent almost all their energy re-
solving them, one IBM man says. But he adds, "Ninety percent of the difficulties have now been solved and time will cure the rest."
Three problems. IBM has had three problems with the 360 system, any one of which might have floored a company with lesser resources. First, it couldn't develop a production process that would turn out good hybrid integrated circuits fast enough. That forced delivery schectules of the machines to slide. A massive technical effort and purchasing some services like testing and some parts like ceramic substrates from outside vendors solved that problem. Then the company discovered its model alignment was all wrong. It scrapped five models and added four new ones through a second massive engineering effort. Finally, the software turned out to be more difficult to write than anybody expected and IBM is currently making a herculean effort to resolve that.

Just how big the effort is can be seen by the number of people working on system 360 software. Over 1,000 programers and testers are writing the operating system for large models. Another 1,000 people are working on compilers and other programs that the company supplies with the computer. That compares to about 200 people who prepared all the software for IBM's 7000 series of machines, its large second-generation processors.

Writing operating systems for the third-generation computers, so that the computers could run automatically, has turned out to be far tougher than anyone expected. The new computers were designed for multiprograming-that is, solving many different problems at the same time; second-generation machines run only one program at a
time. Peripheral equipment for third-generation computers includes bulk storage devices such as magnetic tape, disks and drums; only tape is used in most secondgeneration installations. The new systems work so fast there is no time for manual intervention. In contrast, the second-generation operating systems often print messages telling the operator to push a certain button.
Roomful of string. To do all these jobs as fast as required calls for a gigantic program. IBM software people say the operating system for large model system 360 computers already has one and a half million instructions and its size will triple in the next two years. So many people are writing parts of the program that putting the pieces together has been a spectacular problem. Often the pieces don't fit or a change in one part offsets every other part. Said one manager, "It's like finding the loose end of a roomful of string."

The number of instructions raises another sticky problem. The operating system requires so much computer memory that a small model of the machine doesn't have enough left to do any work. Initially IBM and other makers were selling the idea of compatibility: buy a small model and move up to the bigger models in time without changing software. But the operating system will require 14,000 bytes of information in storage at any instant so that even a computer with a $32,000-$ byte memory has only half the memory left for application programs and data. What's really needed for such a system is a memory size of about 256,000 bytes.
The complexity increase applies to other programs too. In the city of Los Angeles case, for example

Polycarbafil housing for Dictograph speaker is injection molded by Waterbury Co., Randolph, Vt. Nylafil switch housing, push-buttons and volume control wheel are molded by Hinchman Mfg. Co., Inc., Roselle, N. J.

Polycarbafil has

toughness needed for new hospital speaker

Impact strength important in speaker for hospital patients

The pillow speaker for individual hospital patients made by Dictograph Products, Danbury, Conn., must be able to withstand accidental dropping on the floor. Dictograph looked for a material that would have the impact resistance and toughness for this, plus rigidity, dimensional stability and low coefficient of thermal expansion. They chose Polycarbafil, fiberglass reinforced polycarbonate. Fiberglass reinforcement increases all of these properties.
In addition, Nylafil, fiberglass reinforced nylon, was chosen for push-buttons, volume control wheel and switch housing for its strength and wear resistance.

Compare	Physical	Properties	
Property	Unit	Unreinforced Polycarbonate	$\begin{aligned} & \text { Polyear- } \\ & \text { bafil } \\ & G-50 / 20 \end{aligned}$
Tensile Strength @ $73^{\circ} \mathrm{F}$	PSI	8,000	18,500
Flexural Strength (10) $73^{\circ} \mathrm{F}$	PSI	13,500	25.000
Coef. Linear Thermal Expansion / $/$ F.	In./In.	$1.0 \times 10-5$	$1.02 \times 10-5$
Heat Distortion Temp. (a) 66 PS !	${ }^{\circ} \mathrm{F}$	285	308
Water Absopption 24 hrs.	\%	0.15	0.11

Polycarbafil and Nylatil are only two of the full line of fiberglass reinforced thermoplastics pioneered and patented by Fiberfil. Only Fiberfil can give you complete technical data, practical experience and a full line of reinforced materials. Send for your free copy of the FRTP engineering manual. Fiberfil, Inc., Evansville, Indiana 47717.

Fiberglass Reinforced Thermoplastics

IBM's worst problems are with

 the software for the larger model machines[Electronics, July 11, 1966, p. 129], the machine has been using a Cobol E compiler that is too slow. It should be using a Cobol F that is bigger and 10 times faster, but its delivery date slipped from June, 1966 to November, 1966 and last spring slid to December.

IBM's worst problems are with the software for the big model machines which are used primarily for scientific problem solving at sophisticated computer centers. Ironically, IBM was proudest of the large model system 360 machines when they were announced in April, 1964, because the company had been notoriously weak in that segment of the market. It is still too early to tell how much the software trouble has hurt IBM's efforts to cash in on this part of the market.

II. Other side of the coin

While manufacturers are having their own problems, the customers have introduced some unexpected ones. The user has not applied himself to the problem of operating the new system as well as he could have, some manufacturers say. The machine operator has been slow in conquering the manual tasks called for in the basic elements of the 360 operating system-and only these elements have been received.

These manual requirements are numerous and complicated. Also, the machine operator knows that when the operating system finally arrives, many of these chores will be handled automatically.

Another reason the user has not got as much out of the 360 as he might have is because he doesn't understand the software now available. For example, advanced software systems sometimes require so many control cards that the programer has trouble deciding which to use. The programer uses control cards, which are actually records on magnetic tapes or disks, to tell the software what language he is using, whether he wants to compile-and-run or just compile, and whatever else he expects of it

Confused programers have been known to specify too many control cards, producing an exception-
ally slow-rumning program full of error-tracing routines, most of which were meant to be used only for severe diagnostic difficulty.

III. IBM is not alone.

According to an official of a computer users' association, no computer manufacturer has put as much effort into developing software as he should have. Production techniques and quality control have not been maintained on software to the extent they have on manufacturing facilities.

Other computer manufacturers are sympathetic to IBM's problems because they are having their problems, too. Companies that have built computers compatible with the IBM 360 systems-Honeywell, Inc., for example-are facing the same problems as IBM. Usually, however, the situation is not as critical because the programs aren't as ambitious as those that IBM is attempting, and because the companies were more cautious in promising what the system would do.

One installation that has both an IBM 360 and a third-generation computer built by Control Data Corp. reports a lot of trouble with the 360 and very little with CDC's. The CDC computer compiles only Fortran and assembles programs in its own symbolic language. The IBM software is supposed to do both of these as well as accept other languages, sort data etc.

Competitors. Because their software is not as complex, IBM's competitors have not had the same horrendous problems. In addition, some competitors' third-generation machines remain compatible with their second generation rather than directly with the 360 , and therefore avoid much of the software problem. An example is the Univac 1108, which is compatible with the Univac 1107. [Univac is a division of the Sperry Rand Corp.] But Univac is preparing a new 1108 operating system that may give it some of the kind of trouble that has plagued IBM.

IV. The outlook

It's clear that the problems with third-generation machines will be
solved; the only question is when. The manufacturers-notably IBM -whose software is late or deficient have massive efforts to deliver it or fix it. IBM, for example, has 16 system 360 computers of various models at its Poughkeepsie, N.Y. facility, solely checking out software.
Because of the critical needs of some users, however, IBM has overturned a long-time company precedent by releasing some software with restrictions until the final unrestricted program is ready. In June, it released a Fortran H compiler, designed for the largest models, with a long list which limited ways it can be used.

Software for IBM's smaller models of System 360, notably model 20 and 30, has been delivered and has worked well. Customers have received the rudimentary operating systems that run these small machines, the so-called basic operating system, disk operating system and tape operating system. A few users are staying away from the higher-level software systems, because the lower smaller systems work fairly well, even with their complicated manual controls.
Still others are modifying the available software themselves, rather than waiting for the manufacturer to deliver. This can be dangerous because the modified versions may not be compatible with the finalized manufacturersupplied program.
Because of the tremendous costs of writing complex software-an IBM man estimates his company will spend 50% more on the software than it did developing hardware for system 360-manufacturers now have a greater appreciation for it. Some are even considering charging separately for it, allowing the customer to pick the best programs for his system and application.
Such a move might allow independent software companies to enjoy a more important role. Still, the ultimate design of software and hardware is based on a compromise to produce the lowest cost system. Nobody is willing to say that greater use of independent programing firms could have prevented the problems computer users ran into when they switched to third-generation machines.

MOL Resistors

PROMPT DELIVERY
...is one reason why all major TV manufacturers use Mallory MOL film resistors.

Other reasons? Temperature coefficient only $250 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$; proved flame resistance; high stability in humidity; less than 5% resistance change after 10,000 -hour load-life test. Write for data and quotation. Mallory Controls Company, a division of P. R. Mallory \& Co. Inc., Frankfort, Indiana 46041.

SPEED TESTING \＆INCREASE PRODUCTION OUTPUT New hp Miodel 155A／1550A Push－Button，Programmable Oscilloscope

Speed production line test ng of zircuits and components with an easy，fast press／read on the new hp Model 155A／ 1550A Push－Butto）Program nable Oscilloscope！This $5 \mathrm{mv} /$ $\mathrm{cm}, 25 \mathrm{MHz}$ scope－the firs：desi三ned specifically for pro－ duction and automat c systems apzlications－increases aro－ duction output by reducing test time per unit，simplifying test procedures，minimizinc opera or errors and fatigue，and shortening training t me．
You can insert upto 18 test prog＂ams in each 1550A digital programmer，or caszade frogrammers fer additional cap． ability．Each test program cen control any pr all major scope functions－including calibrated vミrtical positioning，sensi－ tivity，input coupling sweef time，－＊igger s．Jurce，and trigger slope．Change test prograne in on \％a few minutes by chang－ ing diode pin settirgs or by iriterchanging programmers． Diode－controllec，digital progra 7ming makes the 155A／ 1550A fully compatiole with any contact－slosure－to－ground programmer for higi spee \ddagger ，autematic check－out systems．
Confidence in measurenents s substantially increased because the unique $D C$ stabilize－circuïry eliminates $D C$ drift．The trace staj＇s where it is positioned，regardless of
sensitivity or sweep．Calibrated vertical positioning over ± 25 cm Jynamic range allows waveform to be accurately offset， mapnified，and viewed in detail．Magnification with accu－ rate offset gives big display for ease of reading and greater acc 」racy．

Confidence in test results is increased by push－button pro－ granming because it makes complex tests easier to make． Tests are complete－you have full corfidence that you are shipping only good units and rejecting only bad units．
Find out how the new hp Model 1554／1550A Push－Bullon， Programmable Oscilloscope can increase your production oul out．Call your nearest hp sales off ce for a demonstration． Or，write to Hewlett－Packard，Palo Allo California 94304，Tel． （415） 326 －7000：Europe： 54 Route des．Acacias，Geheva．Price： hp Vodel 155A Oscilloscope，\＄2450．C0；hp Model 1550A Pro－ granmer，$\$ 600.00$ ，f．o．b．factory．

Open and shut case

Camera makers turn to electronic shutters to hold their positions in highly competitive market for "point-push" models

George Eastman started it all before the turn of the century when he captured a mass market for his film-loaded Kodak camera with the slogan, "You push the button-we do the rest." Ever since, competition among camera makers has centered around making picture-taking a snap.

Electronic shutters now seem poised to snap up a substantial share of this highly competitive "point-push" camera market. Already five Japanese camera makers -including household names like Canon, Yashica and Minolta-have transistor cameras on the market. They retail for $\$ 100$ to $\$ 125$ in New York City, a price bracket for the serious, but not addicted, amateur.

Two, possibly three, more camera makers will have models with electronic shutters ready for a debut at the Photokina trade fair this October at Cologne, West Germany. As a result, shutter makers now say that models with electronic shutters will account for at least 40% of Japanese camera production by the end of the year. Right now, the figure is 20% of the 250,000 cameras turned out in the country each month.
Bandwagon. Now that the Japanese have gone to market in a big

Way with electronic shutters, American and West German producers will be forced to follow suit. For the moment, the only American camera company on the market with an electronic shutter is the Polaroid Corp. Polaroid has had a two-transistor shutter for three years now but with its developed-in-the-camera film pack, Polaroid is a special case. The Eastman Kodak Co., the dominant U.S. camera maker, won't disclose its plans for electronic shutters. But it's a safe bet Kodak is keeping close watch on the competition. West German producers expect they'll be on the bandwagon within two years. Leaning on a camera display counter surrounded by a half-dozen Japanese transistor-shutter models, a camera expert at a bustling New York photo retailing shop says, "Every one will have them in the next two years."
With their share of the still-camera market on the verge of zooming, Japanese electronic shutter makers have set their sights on another mass market-home movie cameras. Electronic shutters for movie cameras, though, are trickier than still-camera shutters. For aperture control on a movie camera, a servo system is required. One Japanese
shutter maker, Copal Co., has a transistorized servosystem almost ready to go.

For the pros. Electronic shutters, too, are finding a place in the professional camera market. Two West German companies currently offer shutters for studio and press cameras. These shutters, without photocells, are at best distant cousins to the "push-point" versions. Their' chief advantage is precise timing over a long life; mechanical shutter controls lose their precision as they wear.

Compur Werk GmbH, for example, has a remote-controlled shutter for studio cameras that sets aperture over a range of $f / 4$ to $\mathrm{f} / 90$ and speed from $1 / 60$ to 32 seconds. The electronics are housed in a pocket-radio-size unit connected by cable to the camera. A two-transistor timing circuit actuates shutter magnets that open and close the blades. Diaphragm adjustment is handled by a small servomotor. Compur also produces a speed-only shutter with the electronics in the shutter mount; so does Pronto-Werk (Alfred Gauthier) GmbH .

Sturdier eye. The electronic shutters going into amateur cameras are replacing the so-called electric-eye

From New York to Tokyo, camera buyers are snapping up cameras with transistor timing circuits in the shutter.
shutters that in recent years have dominated the medium-price camera market. In the electric-eye shutter, the photocell output drives a small galvanometer inside the camera. When the shutter button is pushed, the galvanometer needle is clamped and a stepped cam rotated against it. The cam travel sets the shutter speed according to the incident light on the photocell.

This electromechanical system has a serious drawback-the delicate galvanometer. A small shock can knock the galvanometer pivots out of their bearings. Then, too, the galvanometer deteriorates with age. Most of the servicing problems for an electric-eye camera stem from the galvanometer.

Electronic shutters eliminate delicate galvanometers by means of transistor timing circuits. Basically, the photocell output charges a capacitor in a transistor switching circuit. When the capacitor charge reaches a preset value, the circuit switches to release the shutter. In the actual shutter circuits, though, refinements make operation as foolproof as possible.

I. Half-dozen

The most sophisticated electronic shutter for amateur cameras now on the market is a six-transistor unit manufactured by Seiko-K. Hattori and Co. It turns up on cameras made by Canon Camera Co., Minolta Camera Co., Olympus Optical Co., and Ricoh Co. This shutter
varies both aperture and exposure time automatically according to the incident light. The range runs from $1 / 30$ second at $f / 2$ to $1 / 500$ sccond at $\mathrm{f} / 16$.

The six transistors in the circuit (see diagram) are split up into two similar circuits, each made up of a two-transistor Schmitt trigger coupled to a single-transistor output stage. One circuit warns the photographer when there's not enough light to take a satisfactory picture. The second three-transistor circuit drives a solenoid that closes the shutter at the right instant.

Guiding light. In the warning circuit, the cadmium sulfide photocell is switched onto the trigger circuit $\left(Q_{4}\right.$ and $\left.Q_{3}\right)$ by switch S_{1} when the shutter button starts down. If there's too little light, resistance of the cell will be high and the voltage drop across it will switch the Schmitt trigger to turn on transistor $Q_{i ;}$ and light the warning lamp L .

If the light doesn't go on, depressing the shutter button further throws switch S_{2} to the timing position. At the same time, switch $\mathrm{S}_{\text {: }}$ closes to energize solenoid M_{1} : it opens the shutter to the smallest aperture, and also holds S_{3} closed. A mechanical governor then gradually opens the camera's combination shutter-iris until solenoid M_{2} snaps it closed.

Transistor Q_{3} controls the shut-ter-closing solenoid. The second Schmitt trigger (Q_{1} and Q_{2}) turns
on this stage. The trigger switches when the photocell current charges capacitor C. For flash shots, a variable resistor R_{1} sets the aperturespeed combination to match the exposure guide number.

Protected. Diodes D_{1} and D_{2} route current from the photocell to the Schmitt trigger in use. Diode D_{2} protects the shutter from damage should the camera user push the shutter button all the way down in clarkness. The diode provides a current path that charges capacitor C to reclose the shutter immediately when there's no photocell output.

The shutter circuitry also includes a battery-check switch (S_{4}). It applies an input to the warninglamp Schmitt trigger through resistor R_{2}. If the battery is good, the trigger switches and the warning lamp lights.

II. Quartet

Seiko's shutter is geared for the amateur who is content to let the camera do the rest after he's pushed the shutter button. For the more sophisticated amateur who wants to select his own aperture and thus control depth of field, Copal Co. offers a four-transistor shutter that automatically matches exposures to light conditions, film speed and aperture. Yashica and Olympus both have cameras with this shutter on the market; three other companies are negotiating with Copal to buy its shutter.

Seiko shutter circuit has six transistors. Practically all components are tucked inside shutter mount.

Copal's circuit adds up to a fourstage, direct-coupled transistor amplifier with the first three stages normally off, As soon as the shutter button is pressed, the fourth-stage turns on and powers a solenoid lateh that holds the shutter open against the force of a spring.

The first stage is held off with bias across a voltage divider, which matches the shutter circuit to the aperture. A cadmium sulfide cell charges a capacitor in the first-stage input circuit; when the charge equals the hold-off voltage, the first stage conducts. It turns on stage two, which turns on stage three, which then turns off stage four to de-energize the solenoid latch.

Warning. The Copal shutter has a maximum speed of $1 / 500$ second, meaning overexposure is possible when there's too much light and aperture. An overexposure check switch cuts out the input-circuit capacitor and cuts in a calibrated resistor in its place. If the light level is too high, the first stage turns on and the fourth stage turns off. When it does, a capacitor in the overexposure warning lamp circuit discharges to make the lamp glow.
At the slower end of the shutterspeed range, exposures run up to two minutes. To warn the user not to try to hand-hold the camera when the exposure will be longer than $1 / 30$ second, there's also a long-exposure check circuit. Like the overexposure check, it works by switching in a calibrated resistor in place of the input-circuit capacitor.

III. On the move.

Neither of the shutters now on the market gives the user a chance to preset shutter speed for stopping fast motion. But Copal has in the works a five-transistor shutter that can handle either preset speed or preset aperture.

For preset aperture, the circuit works much the same as Copal's present shutter although there are only three stages because highergain transistors are used. For preset speed, the first two stages control a pair of emitter followers that drive a small servo motor.
Copal also has well along in development a simple servo system that would drive the aperture ring of a movie camera through 100 degrees of rotation to match the iris opening to the lighting.

Dr. Milton B. Dobrin. United Geophysical Corporation. Pasadena, demonstrates optical fitering technique used
to enhance seismic data.

Laser helps seismic prospectors dig deeper

There's a vast fortune in oil to be found on seismic charts already recorded, from fields already explored. The trick is in enhancing the seismic data, in separating the significant information from noise, surface waves, diffractions, and other spurious events which obscure desired reflections. You can do it, if you can afford it and have the patience, with standard analog and digital processing methods. But if you want to dig deeper, processing hundreds of data channels at a time and monitoring the results at all stages, there's now another way to look at your data.

A new technique ${ }^{1}$, called Laserscan², processes seismic data using optical filtering methods. When spatially coherent light is passed through a seismic "section" on photographic film, the seismic signals act as an optical grating to produce a diffraction pattern. By "doctoring" the diffraction pattern, then converting it back into an image of the original section, it is possible to remove unwanted frequency or directional components. Key to the success of the method is the intense, spatially coherent monochromatic light from a Spectra-Physics CW gas laser.

Similar optical data processing methods enable the removal of raster lines from televised photos, for example, or the subtraction of interference and noise to improve visual display of low-level signals. Whether you are prospecting for oil or ideas, it may pay you to investigate other ways in which the CW gas laser has found commercial application. If you'd like to be on our mailing list to receive Laser Technical Bulletins, write us at 1255 Terra Bella Avenue, Mountain View, Calif. 94040. In Europe, Spectra-Physics, S.A., Chemin

G
Spectra-Physics de Somais 14, Pully, Switzerland.

[^5]

The 766 HF simulates a dual-beam scope at a single-beam price.
It's a 100 MHz scope with 100 mV /div sensitivity, (10 mV at 90 MHz)
6 by 10 cm scan, 13 kV HV, and algebraic add.
It operates in
12 different modes
on a single time base,
without changing plug-ins.
What more can you ask for?
Our data sheet.
FAIRCHILD
INSTRUMENTATION

Do you qualify for this prize?

Our new FX-18 Core Memory isn't for everyone. It's for the systems designer who needs 200,000 to $2,000,000$ bits of storage-too little for a full scale mass memory, yet too much to justify the cost of stringing a flock of small units together. If you're in this select group, your prize can be a saving of up to 30% on your memory system costs.
Storage capacity of the FX-18 is 16 K words $\times 32$ bits and it's a true 16 K four area format, not a patchwork of 4 K word modules. This permits significant improvements in signal-to-noise ratio over that
available with conventional single area techniques used in 4 K systems. Full cycle time for the system is 8 microseconds; $1 / 2$ cycle time is 5 microseconds. Access time is less than 4 microseconds. Included as standard on the FX-18 are both the address and data registers, logic and drive power supplies, also timing and control logic. Optional features provide a wide variety of address and operating modes for optimum flexibility.

We call the FX-18 a "small" mass memory because it fills the gap between the standard 4 thousand word units and large mass memories of 5 million bits or more. But here's the clincher. It's available at mass memory prices, between 3 cents and 4 cents per bit, and you don't have to buy 5 million bits worth.
If you've been intrigued by mass memory prices, but don't need the large capacity required to get the price down, then you qualify for the FX-18. Write for Bulletin 1087. Ferroxcube ${ }^{\text {e }}$

FERROXCUBE

CRT Character Generpator

Many modern information handling systems include a cathode ray tube display. We have built a numeric character generator at our Application Laboratories at Fairchild, to demonstrate the economy of using integrated circuits, both linear and digital, in such an application. While the unit we built displays numbers only, the same basic principles would apply to larger character generators capable of any kind of graphic display.
DESCRIPTION: Numbers are entered through an adding machine type keyboard, encoded in 1-2-4-8 BCD, and held in a "Load" register. The keyboard is also used to address any desired memory location, and to backspace if errors are made in entering numbers. When an address is entered, it is held in an address register until the coincidence circuit finds the desired memory location, at which time the number in the Load register is placed in memory. The address register is automatically incremented by one each time a number is entered unless a backspace signal is given, or a new address is entered.

The memory holds up to 64 characters, 256 bits total. It recirculates at a rate of 4 KHz , so that each character is refreshed more than 60 times a second - fast enough to eliminate any character jitter.

Numerals are derived by feeding the system clock (a free-running multivibrator at 32 KHz) through a mod 8
counter, to generate 8 segments of a figure 8 patterr. The segments go through a decoder into a blanking circuit. This circuit receives a character (4 bits) from memory, and blanks appropriate segments of the figure 8 to arrive at the desired configuration for display. To control the position of the displayed character on the CRT, the output of the mod 8 counter is also directed into a mod 16 and a mod 4 counter. The output of these counters produces a 16 step X staircase, and a 4 step Y staircase. The X and Y go through a digital to analog converter, where they are mixed and used to control the deflection amplifier. (Send for circuit note RTL1 describing counter circuits.)

All circuitry, including memory, is contained on 6 printed circuit boards. Four identical boards, approximately $4.5^{\prime \prime} \times 5^{\prime \prime}$, are used for the memory, each board containing 64 bits. The logic controlling the figure 8 pattern, the blanking, and the staircases, consists of 44 integrated circuits and takes up one of the remaining printed circuit cards. The sixth card contains the memory loading and addressing circuitry for which another 51 integrated circuits were used. In all, the unit utilizes 95 integrated circuits (exclusive of memory) compared to approximately 2000 discrete components which would be required to build a similar unit.

Logic board with counters,
blanking and D-to-A conversion circuitry.

CASE HISTORY: A system using Fairchild integrated circuits for character display on a CRT is now on the market. The system is called the S-C 1100 and is manufactured by the Data Products Division of Stromberg-Carlson Corporation in San Diego. System S-C 1100 consists of interrogater stations linked through a control unit to a remote computer. Operators can address the computer's memory to retrieve data which is then displayed on the CRT. The system has full alphanumeric capabilities and is presently in use by major companies in such applications as answering customer inquiries inventory control, purchasing, and billing procedures. Interrogating units use a standard typewriter keyboard with minor modifications, and require no spec al training to operate. Each unit requires 2000 Fairthild RT $\mu \mathrm{L}$ circuits, 915 and 927 , to replace more than 20,000 discrete components.

[^6]

Technical achievement for you... better living for you and your family

W/e are particularly anxious to meet you if you are a Circuit Des gn Eng neer; Jackaging and Nechanical Engineer; Electron Cptics, Vacuum Technology or Materials and Prozess Specialist. But whatever your technical strencths, if "roll-up-thesheeves" engineering appeals to you. we'd like to hear from you.

Here you'll find an environmen: that emphas zes the indivilual, and his personal contributio to techrical development -contrib stion by working on projects, not witinc about them. Your work will benefit advanced engineering throughout the world. Yos will benefit from technical assacia-ion with specialis:s exper enced in developing state-of-the-arl instrumentétion, ccmponents and devices.

All Tミktroni= R \& D-financed entirely from our ar nual saies of oeer $\$ 100$ million-is directed towerd commercial froducts. Our community is prosperous balarced, with a sta zility of employment not typical of every industrial canter. And as for the Green Land we live in-it speaks for itself.

If you're seeting technical advancement and better living for you and your family, why not investigate Tertronix?

Write =o D. A. Thompson, Tektrenix, Inc., P. C. Box 500D, Beaverton. Oregon 97005, or send in the coupan.

Professional Placement Mgr., Tektronix, Inc. P. O. Box 500D, Beaverton, Oregon 97005.

Please send me your \square Booklet, "Tektronix" \square Application Form:

NAME:

ADDRESS:

CITY:
STATE:
: I am interested in:-

Tektronix, Inc.

- An Equal Opportunity Employer.

Three new 400-volt silicon power transistors for military duty:

They're designed for high efficiency inverters, voltage and current regulators, control and switching circuits and high-power communications where extreme reliability is required.

DTS-423M is a NPN 3.5 -amp 400 -volt device in a TO-3 package, offering high sustaining voltage capability

DTS-431M is a NPN 5 -amp 400-volt device in a TO-3 package, offering higher gain and lower saturation resistance.

DTS-2N2580M is a NPN $10-\mathrm{amp} 400$-volt device in a TO-36 package for extra high power applications.

Specifications on all three devices are based on full
mil-type environmental tests performed in an approved military qualification test lab.

Check with our nearest sales office or Delco Radio Distributor for full details.

TYPE	Vceo	Vcbo	$\begin{aligned} & \text { VCE0 } \\ & \text { (sus) } \end{aligned}$	IC	IB	$\begin{gathered} \mathrm{hFE} \\ \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ \text { (O) } \mathrm{IC} \end{gathered}$	$\begin{aligned} & \text { R(sat) } \\ & \text { Max } \\ & \text { @ } \mathrm{IC} \\ & \hline \end{aligned}$	Power Diss Max
DIS-423M	400 V	400 V	$\begin{aligned} & 325 \mathrm{~V} \\ & (\mathrm{~min}) \end{aligned}$	3.5A	2.0 A	10 @ 2.5 A	0.8 hm (a) 1.0A	100W
DIS.431M	400 V	400 V	$\begin{aligned} & 325 \mathrm{~V} \\ & (\mathrm{~min}) \end{aligned}$	5.0A	2.0A	10@3.5A	0.28 hm (a) 2.5A	125W
DTS-2N2580M	400V	400 V	$\begin{aligned} & 325 \mathrm{~V} \\ & (\mathrm{~min}) \end{aligned}$	10.0A	2.0A	4 @ 10.0A	$0.14 \text { ohm }$ $\text { (a) } 5.0 \mathrm{~A}$	150W

SEE YOU AT WESCON, BOOTHS 1503:4, SPORTS ARENA

FIELD UNION, NEW JERSEY* DETROIT, MICHIGAN Box 1018 Chestnut Statio

OFFICES SYRACUSE, NEW YORK (315) 472-2668

SANTA MONICA, CALIFORNIA*

DELCO RADIO
Division of General Motors
Kokomo, Indiana

The future

is in these cards

The cards of the future are Vitro Microcircuit Building Blocks. Let Vitro stack them in your favor by updating your systems utilizing the latest integrated circuit systems techniques.

The Event Control Sequencer, Model 3219, is representative of the advanced equipment designed by Vitro, West Orange, where your problems in reliable data handling, timing and control can be solved by the use of microcircuits.

For application data, write: George C. Regan, Vitro Laboratories, 200 Pleasant Valley Way, West Orange, New Jersey 07052

From CEI . . a New Family ol Pre-Tuned, Crystal.Controiled Pulse and dM Receivers

- 4 AM AND 4 PULSE MODELS • COVER 60 MHz TO 150 MHz - COMPACT, ALL SOLID STATE

Introducing two new series of top-performing CEI receivers... the Type 415 for AM and Type 416 for Pulse reception. Both series cover the $60-150 \mathrm{MHz}$ range using standard tuners.
Each receiver is a completely transistorized, fixedtuned unit allowing the selection of any of four preset channels within its frequency range (see table at right for ranges of individual receivers). The four channels are factory-set to your requirements and may be easily and swiftly reset, when necessary, by field maintenance personnel.
The AM units are available with a choice of 50 or 100 kHz bandwidth. Compact and lightweight, a// these receivers offer high sensitivity and reliability and require very little power-just $31 / 2$ watts.
Signal monitor outputs of 21.4 MHz have been provided, and a matching signal monitor (CEI Type SM-4301) may be mounted alongside one or more of the receivers to provide a visual display around the tuned frequency.
Special rack-mount equipment frames are also available, designed to accommodate two, three or four of the Type 415, 416, and/or SM-4301 units.

RACK-MOUNTS \& SIGNAL MONITOR AVAILABLEShown here is a Type 416 Pulse receiver and matching Type SM-4301 signal monitor in an EF-402 equipment frame. Equipment frames are available to mount two, three or four urits.

Table of Standard Tuning Ranges
(other frequency combinations on request)

Receiver Type	Overall Frequency	Band A Frequency Range (MHz)	Band B Frequency Range (MHz)	
$415-1$	Pulse	$416-1$	$60-90$	$60-75$
$415-2$	$416-2$	$75-110$	$75-90$	$75-90$
$415-3$	$416-3$	$90-130$	$90-105$	$90-110$
$415-4$	$416-4$	$110-150$	$110-125$	$105-130$

For complete information and specifications, please contact:

GROUW UESTI

The Complete Communications Spectrum at Sylvania Electronic Systems-West

Career growth depends on opportunity, and at Sylvania Electronic Systems-West, there's the opportunity to lead not merely match - the state of the communications art. A complete spectrum of career choice, promotion, education and personal achievement is available here:

- Select your path of professional advancement, either as a senior scientist, scientist/engineer specialist, senior/ development engineer, or as a technical manager: Salary levels are equivalent, and promotion from within is the rule. - Your education can continue with company support at nearby educational institutions - Stanford, University of California (Berkeley), University of Santa Clara, and San Jose State College. In addition, Sylvania has a special employment-education Honors Program with Stanford - Live in suburban San Francisco, where climate and culture combine for the full life.
If you are seekirg professional growth and personal satisfaction why not investigate the many job opportunities at Sylvania-West - working on the most advanced electronic research and development projects. We have same opportunities at our other major centers too - in suburban Boston and Buffalo. Send your resume in confidence to:
 Manager, Professional Staffing, Sylvania Electronic Systems, Division of Sylvania Electric Products Inc., 58 Sylvan Road, Waltham, Mass. 02154.

SYLVANLA ELECTRONIC SYSTEMS
RESEARCH - SYStems development • product field engineering

AIRPAX is in production of the UGON Relay at the Cambridge Division

By arrangement with Le Prototype Mécanique of L'Ētang-La-Ville, France, Airpax introduduced the Ugon relay in the United States in mid-1965. With immediate customer acceptance and increased demands during the year, these precision relays are now in full production at the Cambridge, Maryland plant.

UGON-3
Sensitivity, 5 mw Volume, 2 cubic cm

UGON MICRO
Volume, 1 cubic cm

UGON• 7

Insulation Resistance, $>10^{8}$ megohms Capacity, <1 picofarad

The UGON relay has an extremely high sen sitivity due to the uniquely high efficiency of the magnetic circuit. Extreme resistance to shock and vibration is also provided by the rotating armature, which is statically bal. anced and magnetically balanced.

This is a uniquely different precision non-polarized relay with some remarkable qualities.

SENSITMVE

The UGON relay appears to be the smallest non-polarized sensitive - or the most sensitive small - relay in the world. The unique mechanism was invented in France and patented in the United States by Pierre Ugon. The operating power demand can be 5 milliwatts, or 200 MICROAMPS at 25 volts!

METERING

The entire UGON series of relays are precision instruments. The operate current is adjusted to a 5% tolerance, and this is maintained for the relay life, and during extremes of temperature and other environment change. In like manner, the release current is also-held precisely, usually at 70% of operate. Thus, this is a measuring instrument.

MINIATURE

The UGON-3 standard has a volume of 2 cubic centimeters, and in this volume a coil resistance as high as 60,000 ohms is a practical reality. The small UGON MICRO size has a volume of about one cubic centimeter, and is arranged for printed circuit board assembly. The contacts are rated up to 700 ma and 50 V DC maximum with a 15-watt product, a practical power gain of 3000 .

HIGH SPEED

The UGON relay is fast in spite of the extreme sensitivity. It can readily be driven up to an operate time of $1 / 2$ millisecond, and is only a few milliseconds, even near the operating threshold. This presents a favorable comparison with the average sensitive relay, which is likely to require 50 to 100 milliseconds. On AC the relay doubles frequency, and will follow a driving signal to above 800 cycles.

Flatpacks fried in peanut oil

To solder groups of small flatpacks to printed circuit boards, a Texas firm dips entire assembly into hot oil

Axial leads of flatpacks can be bent for planar mounting (left), cut for butt soldering or plu gged into circuit boards.

There's a new brand roaming the integrated circuit country west of Dallas-the Flying L Corp. of Saginaw, Texas. Its first product is an integrated circuit flatpack that may prompt systems manufacturers to trade in their soldering irons for peanut oil.
The flatpacks, as small as $1 / 8$ by $1 / 4$ inch, can be soldered en masse to printed-circuit boards by dunking an entire assembly into hot oil. Most systems manufacturers have been soldering or welding flatpack leads one at a time, or turning to large plug-in packages to avoid flatpack-assembly costs [Electronics, Nov. 1, 1965, p. 75]. "Peanut oil is the way to go," says Robert Lomerson, who founded Flying L with his brother William. He says that the Autonetics division of North American Aviation, Inc., TRW, Inc., and Ling-TemcoVought, Inc., are among manufacturers who became interested in the design after seeing prototypes.

The Lomersons contend that their packages are more effective than the large dual in-line type for mass assembly, besides being far smaller. Because dimensional control is tight, about 1 mil (0.001 inch), automatic assembly machines can handle the new packages easily, the brothers say. Cutting or bending leads provides the standoffs needed for mass soldering and for running printed wiring under the packages. If the leads are plugged in, plated-through holes are not needed for soldering. The
leads can also be welded--that was checked out at the Hughes Aircraft Co., they add.

The flatpacks are called Axpaks because they have asial leads. But the leads can be bent into a radial configuration, as shown, so they can be used as conventional flatpacks for planar mounting. Sizes range from the $1 / 8$ - by $1 / 4$-inch model costing 44 cents (this is expected to clrop to 20 cents by late 1966) to inch square, 64-lead types that cost $\$ 4.50$ and can be used for complex circuits and monolithic arrays. Lead spacing is generally the standard 50 mils, but the Lomersons plan to produce types with $25-\mathrm{mil}$ spacing.

Bending the leads doesn't stress the seals, Robert Lomerson says. The lead scals are made by fusing clear glass (7052) into slots in the package base, so the seals are encompassed by the base material. The base is generally gold-plated Kovar, but can be ceramic. Kovar is also used for the leads and the lid, which is resistance welded to

POCKET MOUNTING (DOUBLE SIDED)

Pockets cut into the circuit

 board eliminate the need for positioning fixtures.the base after an IC is mounted on the base, by the technique used to seal TO-5 cans. The seals are so strong, he says, that one prototype carried in his wallet for a year is undamaged and that packages can be heated to $500^{\circ} \mathrm{C}$ and plunged in cold water without breaking.

The preferred assembly configuration is butt soldering in oil or hot gas. The leads are cut short and lapped square with tooling plates. Then all the packages for a circuit-board assembly are positioned on the board with a punched-out positioning jig on top of the board and a magnetic sheet under the board. The soldering pads on the board are pretinned with solder. A hot peanut oil bath -chosen because it is harmless and easily cleaned off the assemblyreflows the solder and fuses the leads to the pads.

Trials indicate that leads spaced as closely as 25 mils can be soldered with oil without solder bridging between leads. This means that flatpacks with 14 leads can be made as small as 8 -lead flatpacks.

The other assemblies illustrated are made by putting the leads into slots in the board and clinching them to the underside of the board before soldering. Pockets cut into the top of the board make positioning fixtures unnecessary; two such assemblies can be cooled by a heatsink plate between the two boards.

[^7]
Bulova can supply the crystal you need

 to match your specs!Many years of supplying crystal control units for the most advanced military and space programs enable Bulova to offer a full line encompassing virtually the entire frequency spectrum - 2 kc to 125 Mc for oscillator and filter applications. We can supply every type of packaging - including koldweld and glass sealed. Our military crystals meet latest MIL.C.3098D specifications. All reasons why you should make Buiova you: single source of supply.
HIGH PRECISION GLASS SEALED CRYSTALS 1 Mc to 125 Mc . Available in vacuum sealed, glass enclosures of the HC-26/U and HC-27/U type.
Example: Precision SSB Crystals
Frequency: 1 Mc to 5 Mc Holder: HC-27/U
Tolerance: $\pm .0025 \%$ from $-55^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$, or to specification Aging: 3×10^{-8} per week after one week stabilization at $75^{\circ} \mathrm{C}$

KOLDWELD SEALED CRYSTALS - Iow aging, high reliability, 1 Mc to 125 Mc . Now available in TO-5, HC-6/U and HC. 18/U type cans sealed by the koldweid process to eliminate effects of heat and to reduce contamination.

Example: TO-5

Frequency: 15 Mc to 125 Mc Tolerance: $\pm .0025 \%$ from
$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, or to specification
Aging: 1×10^{-7} per week after one week stabilization at $75^{\circ} \mathrm{C}$
Write or call for specifications on Bulova's complete line of crystals. Address: Dept. E-17.

Bulova

FREQUENCY
CONTROL PRODUCTS

[^8]61-20 WOODSIDE AVENUE
WOODSIDE, N.Y. 11377 , (212) DE 5-6000

New Components and Hardware

Coaxial reed relay

 operates fast

A coaxial reed relay, type 100-181, features miniaturization (2×0.5 x 0.5 in.$)$, fast operate time $(600 \mu \mathrm{sec})$ and sensitive operation (100 mw) capable of switching 10 watts of r-f power.

At 125 Mhz , isolation is 43.5 db ; insertion loss, 0.16 db ; vswr, 1.159:1.

The unit is epoxy encapsulated for environmental resistance. It is suited for printed-circuit mounting. Computer Components, Inc., 88.06 Van Wyck Expressway, Jamaica, N.Y., 11418. [351]

Polar relays provide balance stability

A line of mercury-ivetted contact polar relays provide life and balance stability characteristics not available before in polar relays, according to the manufacturer.

For digital data transmission, telegraph and teleprinter service, impulse repeaters, polar signaling and polarity sensing applications, they can provide: signal ficlelity of 1% maximum initial, 2% maximum
over 20×10^{9} operations (with no maintenance or adjustment required); signaling capability to 120 baud at 1% maximum unbalance, 180 baud at 2% maximum unbalance; high contact efficiency (95\% total dwell, compared with 90% in some polar relays).

The new relays will stand off 1500-v line surges. Switching capability is 100 v -a with no life derating (500 v max, 2 amp max). Also offered are the inherent advantages of the company's mercury-wetted contact relays, including: low and consistent contact resistance, complete freedom from contact bounce and contact force with resistance being completely independent of drive level.

The exclusive polar relay modules are compatible with modern printed-circuit system design. Standard relay packages, interchangeable with existing polar relays for wired assemblies, are also available from the manufacturer.
C.P. Clare \& Co., 3101 Pratt Blvd., Chicago, III., 60645. [352]

Push-button switches in modular design

Low-power, modular design pushbutton switches offer the flexibility of a modular design, p-c board mounting and prompt delivery of production quantities at a price said to compete with the most economical of other units of this type.

The design provides a self-contained, precision molded module with terminals in fixed position and internal contacts protected within the module. This permits mounting as single button units or ganging up to 19 buttons on one frame.

P-c board mounting is facilitated by the design of the fixed ter-

EIMAC introduces new family of rugged triodes for industrial heating

From Eimac comes a new family of water-cooled tri odes designed especially for induction and dielectric industrial heating service. The tubes feature a new cast silicon-bronze cooler design with constant cross-section spiral water channels. This design insures uniform anode cooling with minimum water flow and back pressure For example, the $3 \mathrm{CW} 20,000 \mathrm{H} 3$ requires only 4 GPM water flow at 3.5 psi for 20 kW plate dissipation. The new tubes feature filament connecting leads-no sockets are required - and have grid flanges for low inductance connection to the grid. This new industrial family is rated at full power to 90 Mc , with reduced ratings to 140 Mc . All include anode tabs for ease of mounting into industrial machinery plus rugged, highdissipation grids for industrial oscillator service. Write Power Grid Product Manager for additional technical information, or contact your nearest Eimac distributor.

CHARACTERISTICS				
	Plate Disipation (kW)	Filament Voltage (Volts)	Input Power (kW)	Useful Output (kW)
$3 \mathrm{CW} 5,000 \mathrm{H} 3$	5.0	7.5	30	15.5 to 22.5
$3 \mathrm{CW} 10,000 \mathrm{H} 3$	10.0	7.5	40	25.0 to 30.0
$3 \mathrm{CW} 20,000 \mathrm{H} 3$	20.0	6.3	60	42.0 to 45.0
$3 \mathrm{CW} 30,000 \mathrm{H} 3$	30.0	10.0	80	55.0 to 60.0
$3 \mathrm{CW} 40,000 \mathrm{H3}$	40.0	13.0	120	75.0 to 90.0

EIMAC
Division of Varian San Carlos, California 94070

will meet MIL-S-19500/286A(EL)

Semtesh Corporation can deliver, in production quantities, 1 amp silicon rectifiers to meet MIL-S-19500/286A(EL). Peak inverse voltages from 200 to 1000 volts. Featuring solid internal construction pioneered by Semtech engineers. Hermetically sealed, designed with a rugged $\mathrm{AL}_{2} \mathrm{O}_{3}$ filled glass body ($.275^{\prime \prime}$ long by $.135^{\prime \prime}$ dia.) and solid silver leads (. $030^{\prime \prime}$ dia.).

Type No.	V_{R}	$\text { (at: } \left.T_{A} \stackrel{1_{0}}{=}+100^{\circ} \mathrm{C}\right)$	$\text { (at: } T_{A}=+150^{\circ} \mathrm{C} \text {) }$	$\begin{gathered} I_{R} \\ \text { at } V_{R} \end{gathered}$	$\begin{gathered} \text { if (surge) * } \\ \text { (at: } 1 / 120-\mathrm{sec} \text {) } \end{gathered}$
	Vdc	Adc	mAdc	$\mu \mathrm{AdC}$	Adc
1N4245	200	1.0	300	1.0	10
1N4246	400	1.0	300	1.0	10
1N4247	600	1.0	300	1.0	10
1N4248	800	1.0	300	1.0	10
1N4249	1000	1.0	300	1.0	10

$\begin{array}{ll}\text { Operating and Storage Temperature }-65^{\circ} \mathrm{C} \text { to }+15^{\circ} \mathrm{C} \\ \text { if (surge }=10 \mathrm{Adc}) \\ 10 & \text { surges of } 8.0 \mathrm{msec} \text { duration each, at intervals }\end{array}$ ${ }^{*} \mathrm{~T}_{\mathrm{A}}=+150^{\circ} \mathrm{C} \quad \begin{gathered}\text { if (surge }=1 \\ \text { of } \\ \text { minute } .\end{gathered} 1_{0}=300 \mathrm{mAdc}$

All rectifiers must meet these stringent requirements:
Reverse Current Drift Test - With specified voltage $\left(V_{R}\right)$ continuously applied, reverse current measured 30 seconds after thermal equilibrium has been reached at the temperature specified ($\mathrm{T}_{\mathrm{A}}=+150^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$) shall not vary, from reverse current measured 5 ± 1 minutes after that thermal equilibrium point, by more than $2 \mu \mathrm{Adc}$, or 10%
Reverse Recovery Test - $T_{\text {rr }}$ is 5 microsec. max.
Test conditions: 0.5 amp forward current to 1.0 amp reverse current. Recovery time measured when rectifier recovers to .25 amp .

Send for Technical Bulletins.

SEMTECH - If
 CORPORATION

Western Office: 652 Mitchell Road, Newbury Park, California, (805) 498.2111
from L.A., (213) 628-5392/TWX 805-499-7137
from L.A., 210 Main St., Downers Grove, III. (312) 968 -2322 Central Regional Office: 4957 Marn St., 1
Eastern Regional Office: 71 West 23rd St., New York, N., Switzerland (042)4 82 72/73

New Components

minals themselves. Boards may be mounted on opposite sides of the module to create a sandwich, with the switch serving as a separating supporting member. Space may be left between modules for attaching discrete components by conventional means. The fixed terminals also lend themselves readily to automatic insertion.

Standard electrical functions are $2,4,6$ or 8 poles, double throw per button. Combinations up to 16 poles, double throw per button, are available. A typical example of the small amount of mounting space required is that a 5 -button unit requires only a 1.97 -in. x 0.350 -in. panel opening.
Centralab, The Electronics division of Globe-Union Inc., P.O. Box 591, Milwaukee, Wisc., 53201. [353]

High-contact density p-c board connector

A $0.025-\mathrm{in}$. square tail contact, miniature p-c connector features cantilevered contacts for high reliability. Especially suited for automatic wire-wrapping applications, it can be used with high-density packaging sechniques that are now being developed for electronic data-processing equipment.

The unit has contacts on $0.125-\mathrm{in}$. centers and can be wired at a rate up to 750 wires per hour (using a Gardner-Denver automatic wirewrap machine). This is more than 15% faster than is possible with $0.045-\mathrm{in}$. square tail contact connectors, the company says.

The connector uses a comb contact assembly, which provides the gap uniformity of preloaded cantilevered construction and contact pressure independent of p-c board

The small pin hole in the center of this circle is more then enough light for MTI Image Orthicon Television Cameras.

MTI is the world's largest manufacturer of low light level TV systems. This simply means that low light levels are our specialty. Specifically, at 1×10^{-5} foot candles of ambient light (approaching total darkness) MTI image Orthicon TV cameras will produce high resolution pictures. So the amount of light illustrated by the pin hole is more than enough.

There are hundreds of applications for MTI low light level equipment. Here are just a few: viewing nocturnal animals performing tasks, observing stars, examining small components such as transistors, diodes, capacitors and relays for minute flaws, and so on. In any application where low light levels are of prime importance, MTI can solve your problems.

Seven different line scan frequencies are available "off the shelf". Specific details available on request. If you have an application problem, call us. We can help.

Reliability and Quality are a product of experience. Jennings has 24 years experience manufacturing vacuum capacitors. Time enough to design a lot of them. Here are a few:

Capacity (Range)	5000 pf
Peak Test Voltage	5 KV
RF Current Rating 100 Amps RMS	
Length	$2.875^{\prime \prime}$
Width	$4.125^{\prime \prime}$

Capacity (Range)	5.465 pf
Peak Test Voltage	5 KV
RF Current Rating	42 Amps RMS
Length	$5.52^{\prime \prime}$
Width	$2.312^{\prime \prime}$

Capacity (Range)	5.465 pf
Peak Test Voltage	5 KV
RF Current Rating	42 Amps
LMS	
Lenghth	$5.52^{\prime \prime}$
Width	$2.312^{\prime \prime}$
CVJW 200 (Water-Cooled)	

Capacity (Range) $\quad 25-200 \mathrm{pf}$ Peak Test Voltage $\quad 100 \mathrm{KV}$ RF Current Rating 1000 Amps RMS RF Current Rating 1000 Amps RMS
Length $15.50^{\prime \prime}$ Length Width

Capacity (Range) $\quad 25-650$ Peak Test Voltage 45 KV RF Current Rating 250 Amps RMS Length Width

New Components

insertion depth. The construction combines minimum insertion force with maximum contact pressure, providing high reliability. The comb assembly technique also permits the true tip location in the required position for automatic wrapping equipment. This accurate positioning is possible because of the force fit of the contact to the insulator.
Cinch Mfg. Co., 1026 South Homan Ave., Chicago, ilı., 60624. [354]

Single-wire connector for variety of uses

A single-wire connector, the Jiffy Junction, is a single conductor connector that may be used in a variety of applications, including as a sul)stitute for splices. The Jiffy Junction has the same high-performance rear-release contact system as in all the manufacturer's industrial connecting devices. It uses the same hand-crimp tonl, the same expendable plastic fail-safe insertion/removal tool and the same assembly procedure as is used in the company's family of rear-release electrical comectors.

The development is designed for applications where quick engagement and disengagement of single wire junctions must be reliable and at low cost. The Jiffy Junction provides a permanent mechanical connection, but can readily be disassembled should the need arise.
The Jiffy Junction offers many advantages in ground support equipment, harnessing, communications equipment, and other industrial applications. It is now available in production quantities

We expect these 150-grid relays to be copied

4 -pole

2-pole

And by 1967 they'll be a standard of the industry

Right now, these General Electric 2- and 4-pole relays are years ahead of the field. Their low, low profile-just 0.32 inch high-lets you stack more circuit boards in the same space.

They're not just cut-down versions, either. These 150 grid relays can perform right up with microminiature relays four times their size.
For example, closing force is about the same to provide snap-action, positive contact mating. In addition, General Electric 150 -grid relays meet or exceed environmental and mechanical specs of much larger microminiature relays.
And compared to relays of comparable size, G-E 150 -
grid space relays have three times the magnetic force and over twice the contact force of their nearest competitor. What's more, they're the only relays in this size range that are all welded to eliminate flux contamination.

Your G-E Electronic Components Sales Engineer can tell you more about 150 -grid space relays and help with your individual applications. Contact him. Or write for bulletin GEA-8042B, Section 792-38, General Electric Co., Schenectady, N. Y. 12305.
Specialty Control Department, Waynesboro, Va.

HOW RELIABLE ARE SUPERIOR TUBE'S CATHODES?

There's hardly a television set, radio, radar or any type of electronic equipment produced in the United States that doesn't use them.
Here are the reasons why Superior Cathodes are so widely used:

1. Superior is the world's leading independent cathode supplier offering the greatest variety of cathode types and materials.
2. Superior makes cathodes only for its customers . . . none for itself.
3. Superior has two large, modern plants, 500 miles apart, with identical facilities.
4. Superior delivers cathodes on time, every time.

When you specify or order cathodes consider Superior and protect yourself against delays in delivery.

Write today for your free copy of our Catalog 51. It belongs on your desk. Dept. 2500.

Superior Tube (51) NORRISTOWN, PA. 19404

West Coast: Pacific Tube Company, Los Angeles, California
Johnson \& Hoffman Mfg. Corp., Carle Place, N. Y.-an affiliated company making precision metal stampings and deep-drawn parts

New Components

to terminate and join Awg-20 through 24-gage wire.
The Deutsch Co., Municipal Airport, Banning, Calif. [355]

Coaxial r-f connector meets MIL-C-39012

Series N Coaxicon coaxial r-f connector has been designed and tested to meet all requirements of MIL-C-39012.

Features include positive crimp of the unit's cable conductor, braided shield, and protective sleeve with a single hand tool. All crimps for a given cable size, either single or double braicled, can be made with a single hand tool.

The solderless crimping technique holds noise level of the r-f connector to a minimum. Built-in retention dimples maintain proper positioning of the cable dielectric and outer pin before and after crimping.

Other features of the N series connector include: low vswr, coaxial cable undamageable by heat, high cable retention, and easy cable inspection.

The series N Coaxicon connector can be mated with compatible UG/U series connectors.
AMP, Inc., Harrisburg, Pa. [356]

Epoxy transfer molded pulse transformers

Pulse transformers of the TT and MPT series, produced by the epoxy transfer molding process, meet the same dimensional parameters as units which were formerly epoxy coated.

The company claims its in-plant transfer molding techniques im-

Write

 J. B. Ellis, Industrial Relations Administrator, Engineering, General Dynamics, Fort Worth Division, Post Office Box 748-A, Fort Worth, TexasResponsible assignments for creative, energetic engineers and scientists in F-111 and other advanced aircraft projects; missile projects; space systems and mission analysis projects; other R\&D assignments.

INFORMATION TECHNOLOGY

- Mission Simulation, Display Technolagy NAVIGATION, STABILITY, GUIDANCE \& CONTROL
- Stability and Control, Computer Design, Servo Analysis
ELECTRONIC SYSTEMS
- ECM, Penetration Aids

ELECTRONIC AGE

- Microwave and Computer Design ELECTRONICS LABORATORIES
- Circuit Design, Flight Test Instrumentation ELECTRICAL INSTALLATION DESIGN

or call collect

Live in or near Fort Worth, 1965's All American City - Uncongested, easy living where your dollar buys more - Superior housing, public schools and recreation - Graduate studies at local universities and colleges-Excellent benefits including a new Savings and Investment Program. Call Collect - 817. PE 2.4811Ext. 3551 - or send a complete resume of your education and experience to J. B. Ellis, Industrial Relations Administrator, Engineering, General Dynamics, Fort Worth Division, P. O. Box 748-E, Fort Worth, Texas. All equal opportunity employer.

CREATIVE STYLING DISTINCTIVE QUALITY

CABINETS

Another outstanding series of enclosures from the skilled hands of the Bud designers. Both in appearance and construction, the CLASSIC line of cabinets presents an unusual opportunity for builders of electronic equipment and systems to house their products to the best advantage.
This new line of standard cabinets has a sturdy welded frame composed of aluminum extrusions. The pancls forming the sides, top and bottom are of distinctive patterned aluminum.
CLASSIC cabinets are available in 15 sizes ranging from $31 / 2^{\prime \prime} \times 19^{\prime \prime}$ panel space to $28^{\prime \prime} \times 19^{\prime \prime}$ panel space. Beautifully finished in vinyl textured charcoal gray or sand.
Write us for literature about CLASSIC cabinets or sce them at your Authorized Bud Distributors showroom.

prove transformers' reliability, ruggedness, shape and appearance. Uniformity of performance also is said to be measurably improved by the process. These features make transfer molded pulse transformers suitable for application where long life and ability to withstand a wide range of environmental conditions are critical factors.

Standard leads available on this scries are made of tin-coated copper. Other leads of gold-plated dumet, which are stronger and suitable for welding, may be obtained on order.
PCA Electronics, Inc., 16799 Schoenborn St., Sepulveda, Calif. [357]

Trigger transformer handles 550 volts A-C

The scr series trigger transformer is conservatively rated for operation with line voltages up to 550 v a-c. Two standard epoxy encapsulated case styles are available: a radial lead type for handwired circuits and a single-ended type for printed circuit applications.

Two and three ivinding unity ratio types are off the shelf. Other ratios are available on special customer order.

The manufacturer offers a designers' sample kit containing eight key values of the radial-lead type for $\$ 45$. In quantity, the units are priced at under $\$ 2$ and delivery is stock to 3 weeks.
The Gudeman Co., 340 W . Huron St., Chicago, III. 60610. [358]

For higher resolution, lower noise, better terminal linearity, smaller size, and lower price, you simply can't beat the new Fluke 24A vernier precision potentiometer!

The unique Fluke 24A takes $81 / 2$ turns off your 10 turn precision pot and still offers better resolution than any unit of comparable size and price. Terminal linearity is excellent with no offset at either zero or 100 per cent. Noise is less than 100 ohms ENR. End resistance is less than 1 ohm. Over a wide frequency range, phase shift is zero.
It's a tough pot, too, built to meet MIL spec requirements. And cost is only $\$ 8.50$ per unit. Quantity discount applies.
For complete information, please write P. O. Box 7428, Seattle, Washington, Phone: (206) PR 6-1171.

New Semiconductors

Switching low currents with FET's

Complementary switching can now be done with metal oxide semiconductor field effect transistors. Two insulated-gate MOS FET's developed by Motorola, Inc. have leakage currents of 5 to 10 nanoamperes, making zero-current, complementary pair switching a practical reality.
The transistors, designated 2N4351 (n -channel) and 2N4352 (p-channel), are intended primarily for low-power switching applications. The FET's in the photo form a complementary switch. Driving voltage $+V$ is applied to the coupled gates; a load capacitor is connected from the coupled drains to ground. The supply is connected to the source of the p-channel FET (right) and the n -channel's source is grounded. Switching signal $+V$ simultaneonsly turns on the p-channel FET and turns off the n-channel, preventing a current drain from supply to ground.

Although the technique is not new it has been difficult to achieve with low-level currents (less than 1 milliampere). At these current levels, ordinary bipolar transistors exhibit excessive capacitance and

Specifications

Characteristics	2N4351	2 N4352	
Minimum drain=	25	-25	v d-c
source breakdown voltage			
Maximum zero-gatevoltage drain current	10	5	$\begin{aligned} & \text { nanoamps } \\ & d \cdot c \end{aligned}$
Gate-source threshold voltage	1.0 min. 5.0 max.	$\begin{aligned} & -1.5 \mathrm{~min} . \\ & -6.0 \mathrm{max} . \end{aligned}$	$v d \cdot c$
Maximum drain. source resistance	300	600	ohms
Price	\$4.50	\$4.50	(In quantities over 100)
Delivery	Available	from stock	

switch very slowly. The MOS FET's are much faster, having switching times in the hundreds of nanoseconds. The devices' very high input impedances also provide a large fan-out capability and almost no loading of the driving source. Both units are designed for the enhancement mode, or normally off operation.
The big problem in developing a complementary pair of insulatedgate FET's has been in producing an n-channel MOS FET. Motorola claims an industry first with

Lower attenuation... new HELIAX

$1 / 4^{\prime \prime}, 3 / 8^{\prime \prime}, 1 / 2^{\prime \prime}$ flexible coaxial cables for

c Military

- Eroadcast
- CATV
- Mobile Radio
- Dafe Processing and

```
Instrumentation Systems
```

These new air and foam cables offer lower attenuation in small physical sizes. Type FH 1, $1 / 4^{\prime \prime}$ Foam HELIAX has 30% lower attenuation, 60% smaller size and 50% less weight than RG8/U. The copper inner and outer conductois assure optimum electrical performance with Iong life reliability. Available in long splice free lengths with or without polyethylene jacket.
For aciditional information on HELIAX, contact your regional Andrew sales engineer or write P.O. Box 807, Chicago, Illinois 60642.

28 YEARS OF ENGINEERING INTEGRITY

Glass-Epoxy
 coppercial

through TAYLOR'S TOTAL RELIABILITY PLAN:
Raw materials, panels or punched blanks to your reliability requirements. You get what you order from a fully integrated source.

FAST DELIVERY from two fully equipped plants - one at Valley Forge, Pa., the other at La Verne, Calif. Or from warehouses in Chicago, IIl. and other key locations.

. . STANDARD AND ULTRATHIN FORMS. Standard sheets in all grades. Ultra-thin sheets and multilayer prepregs in GEC $500(\mathrm{G}-10)$ and Fireban 600 (G-10, FR-4).

FULL SIZE SHEETS, CUT. TO-SIZE PANELS or PUNCHED BLANKS to satisfy fabricating and processing requirements. Ease of fabrication is a plus value in printed circuit production.

WHITE GLOVE HANDLING in atmosphere-controlled white rooms, careful processing, extremely tight quality control and special packaging assure top performance.

Taylor's copper-clad has proven total reliability demonstrated by an ever increasing number of major OEM's and commercial etchers. This acceptance substantiates our claim for unsurpassed quality, ease of fabrication and delivery to your scheduled requirements. Let us demonstrate this reliability to you. Ask for a sample (give grade designation and copper combination) and a copy of Bulletin GB-2.
the n -channel device and expects it to be applied initially in military spacecraft where power consumption in switching is significant.
Motorola Semiconductor Products Inc., Box 955, Phoenix, Arizona 85001 [361]

Silicon transistors offer high voltages

The SDT6900 family of silicon, planar npn power transistors, available in a TO-66 package, are capable of dissipating 20 watts at $100^{\circ} \mathrm{C}$ case temperature. They are characterized at a collector current of 1 ampere and have saturation voltages (collector to emitter) of less than 0.50 v .

There are two gain ranges in the family- 20 to 60 and 40 to 120 . Each gain family is available with sustaining voltages of $125 \mathrm{v}, 150 \mathrm{v}$, 175 v , or 200 v collector to emitter.
These transistors can be used as inverters, converters, higli-frequency oscillators/amplifiers and in other military, industrial and commercial applications.
Solitron Devices, Inc., 1177 Blue Heron Blvd., Riviera Beach, Fla., [362]

Germanium transistors packaged in TO-1 case

Types 2N2430 (npn) and 2N2431 (pnp) are germanium alloy transistors packaged in a TO-1 case and designed for medium power audio applications. A pair of either will deliver up to 5 watts of output power.

The devices exhibit excellent beta linearity, according to the manufacturer, and are suited for class B push-pull applications. A 2 N 2430 may be used with a 2 N 2431 for complementary symmetry requirements in transformerless circuitry.

The transistors are claimed to feature rigid processing control to insure high reliability and excellent stability. Lower cost is achieved, the company says, by advanced, higher volume production techniques.
Nucleonic Products Co., Inc., 3133 E. 12th St., Los Angeles, Calif., [363]

THE ELECTRONICINDUSTRY IS USINGTHESETWO FAMOUS ULANOFILMS IN ULTRAMINIATUREMASK TECHNOLOGYAND COMPLEXPRINTEDCIRCUITRY

Ulano

Cut a piece of the desired film large enough to cover area to be masked. Tape it down firmly at the top with dull-side up. RUBYLITH ${ }^{M}$ • AMBERLITH ${ }^{m}$

HAND CUT MASKING FILMS FOR THE GRAPHIC ARTS

ULANO RUBYLITH... a revolutionary knife cut red as crayon tones, paste ups, benday sheets, and film is laminated to a stable transparent plastic opaquing are easily combined with versatile ULANO backing sheet. The red film is "light safe" so that RUBYLITH. when contacted to a sensitized emulsion and exposed to a suitable light source, light passes through the cut-out portions only ... not through the red film. The polyester backing is absolutely stable ... insures perfect register. © Special effects such

ULANO AMEERLITH
a companion to Rubylith master on camera copy board to secure negatives or

A wide variety of Ulano films-in rolls and sheets-is readily available
ulano
610 DEAN ST., BROOKLYN, N. Y. 11238
In Europe: ULANOA. G. Untere, Heslibáchstrasse No. 22
Kusnacht, Zurich, Switzerland
NEW YORK • CHICACO • ZURICH
ered trade marks af the Ulano Companies.

With sharp blade, out. line the areas to be masked. Do not cut through the backing through the backing
sheel. The Ulano sheel. The Ulano
Swivel Knife does the job quickly, easily.

Using the tip of the blade, lift up a corner of the filr thus separating it from the backins sheet

Now carefully preel off the film as outlined leaving a completed mask, positive or negative, that corresponds exactly to the desired pattern.

WRITE TODAY

on your letterhead for free special sample kit 1848

For solderless wrapped connections, a new automatic wire stripper

The Model 841 Solderless-Wrap Wire Stripper offers high speed preparation of 20-30 AWG solid conductor wire for insertion in a wrapping tool. It cuts wire to lengths of $1^{\prime \prime}$ to 50^{\prime} and fully strips $1 / 8^{\prime \prime}$ to $19 / 16^{\prime \prime}$ from each end without nicking or scraping, whether the insulation be PVC or something as tough as Mil-Ene, Tefllon or Kynar. With optional assemblies, you can also use it for shorter stripping of 10-32 AWG stranded wire. Write for information on this and other Eubanks wire strippers.

Insulated Wire Welding by Sippican

Sippican's HE (Hot Electrode) Welding System allows insulated wires to be reliably joined without prestripping the insulating material. Weld copper, nickel, high-resistance alloys, precious metals. Wire sizes from 0.002 to 0.020 inch. Applications include terminations for chokes, transformers, coils, precision resistors, computer memory devices; also interconnections for small motor assemblies and other small electric consumer products, integrated circuit packages, module assemblies and conventional component packages, miniature electromechanical assemblies.

The HE Welding System is available for either pincer or vertical motion joining operations. A precision temperature sensing, control and readout unit is included. (HE modification kits are available to present users of Sippican weld heads.)
for details and prices on complete system and accessories write or call -

sippican

Industrial Products Division Mattapoisett, Mass. 02739
Tel. (617) 758-6905

New Instruments

Spectrum analyzer goes portable

The first truly portable spectrum analyzer, according to its manufacturer, Tektronix, Inc., weighs about 40 pounds and is about the size of a suitcase. The company says the size of the type 491 analyzer does nothing to hurt its versatility. Its broad frequency range, from 10 megahertz to 40 gigahertz, and other capabilities make it suitable for most spectrum-analysis jobs.

Tektronix designers turned to solid state devices to cut the normally large and heavy instrument to 7 by 12 by 22 inches and to reduce the power requirements to 55 watts.

The entire intermediate frequency system as well as the display circuitry is solid state and the local oscillators are made with small planar diodes.

The instrument's sensitivity is from - 110 to -70 decibels above 1 milliwatt, depending on frequency. The sweep range of the display can be adjusted from 10 khz to 100 Mhz with a calibrated dispersion dial. The resolution range switch, coupled to the dispersion dial automatically provides resolution-1 khz/division to 10 Mhz/division - proportional to each dispersion range. The resolution switch, however, may be uncoupled by pulling the knob out to allow any setting over a range
of 100 khz to approximately 1 Mhz when low resolution or narrow dispersion are needed independently.

The oscilloscope type of triggering and sweep circuitry makes it possible to trigger from internal, external or line sources. Sweep rates are variable from 0.5 second/ division to 10 microseconds/division in a 1-2-5 sequence. An intensification circuit brightens highspeed segments of the displayed wave form.

The instrument's carrying handle adjusts to various positions to serve as a support stand. The front panel cover stores all accessories-adapters, cables, waveguide mixers and coaxial attenuators.

Specifications

Frequency ra	10 Mhz to 40 Ghz
Sensilitivity	-110 to -70 dbm , depending on frequency
Power requirements	$\begin{aligned} & 90 \text { to } 136 \text { or } 180 \text { to } 272 \mathrm{~V} \text {, } \\ & 48 \text { to } 440 \mathrm{hz} \end{aligned}$
Price	\$4,200

Tektronix Inc., P.O. Box 500, Beaverton. Ore. 97005 [371]

Transducer offers

13 pressure ranges

Model No. 109, an accurate highpressure transducer, has pressure ranges that suit it for control, meas-

adjust to every worker like fine tools!
Because Cramer Lift-Lok is infinitely adjustable! Just lift the seat and stop at the most comfortable height. It takes less time than to read this sentence. Since fatigue is a critical factor in efficiency of seated workers, it makes good sense to provide tools that minimize fatigue. With Lift-Lok every worker can seek exactly his own efficient level. Available in four base types, steel, wood or plastic seats, contoured or flat, adjustable or flexible backs. To find out about the stools that qualify as production tools, write: V.P. Sales, Cramer, 625 Adams, Kansas City, Kan. 66105.

Industrial supplier inquiries invited.

cramia moustales inc. - mansas city, kansas Fine seating-safety ladders-stands and related products for office, industry and institutions. Circle 222 on reader service card

Quality and economy in servo motors and motor-tachs depend on the manufacturer's experience

. . . and CEDAR has it!

When it comes to sizes 8,10 and 11 servo motors and motor-tachometers both with and without gear heads, Cedar is the leader, currently building at a higher rate than any other manufacturer in the country.

Because Cedar's volume is big and production techniques have been perfected and standardized, you are assured of the most economical price available. At the same time, the reliability testing and quality assurance programs built u_{p} on these units through years of experience guarantee you the finest quality and dependability.

When you need a servo motor or motor-tach, remember that the most advanced designs built with the most modern production techniques come from Cedar. Write or call us for complete information. You'll be glad you did.

GEDAR CONTROL DATA
 ENGINEERING DIVISION
 CORPORATION

5806 W. 36th St., Minneapolis, Minn. 55416 Phone (612) 929-1681

Designed for Advanced Data Systems...

The Dcs Series 400

TELCOM Receiver

Look at these features...

- All solid state design
- Superior performance
- Completely modular, plug-in construction
- RF heads for VHF and S-Band telemetry, sweep tuned and wide band heads for surveillance applications
- Plug-in pre-detection recording converter. spectrum display, electrically switchable IF Filters

Interested? Get the detailed specifications. Write for your free copy of the DCS Series 400 TELCOM Receiver brochure.
Would you like an appointment to see a TELCOM Receiver for yourself? Just call the DCS office below nearest you..

Dept. E8-6, East Liberty Street, Danbury, Conn. 06813 -elephone: 203-743-9241 - TWX 744-1970

DATA-CONTROL SYSTEMS INC. 7nstrumentation for Research

Sales Offices
Silver Spring, Md., Huntsville, Winter Park, Long Beach, Santa Clara, Albuquerque
Copenhagen London Rome Paris Munich Amsterdam

cramped Quareers

World Famous Parker Pen Co., Janesvilte, Wisconsin
Wisconsin has an abundance of room in which industry can expand . . 37 cities with populations of 5 to 10 thousand; 26 from 10 to 25 thousand; 12 from 25 to 50 thousand; and 7 with populations over 50 thousand. There are 83 cities of 5,000 population or over. And did you know that Wisconsin Power and Light Company, with an operating area of 15,000 square miles, serves more than 400 communities of all sizes. More good news, an impressive total of 292 progressive cities in Wisconsin have established controlled land for industrial parks, 73 of which are incorporated industrial site areas already developed and awaiting your inspection.
Want more facts?
Write Industrial Development, Dept. H Wisconsin Power and Light Company, P.O. Box 192, Madison, Wis. 53701.

WISCONSINRLMER
. . . investor owned

New Instruments

urement and computer applications. A Bourdon tube sensing element positions a differential transformer core in response to pressure variations.

The transducer has 13 pressure ranges, beginning at $0-30$ to $0-60$ psi and ending at $0-5,700$ to 0 $10,000 \mathrm{psi}$. The output signal is either a d-c voltage (1 to 5,1 to 9 , or 0 to 8 v) or current ($4-20 \mathrm{ma}$). A built-in solid state amplifier and power supply can be operated directly from line power.

Accuracy is within 0.5% full scale; independent linearity, $\pm 0.1 \%$ span; dead band, less than $\pm 0.01 \%$ span; frequency response, down 3 db at 10 hz .

The Bourdon tube sensing element, which is temperature compensated, is isolated from the transducer case, thus rendering the device immune from pipe strain. Fine adjustments of zero, span and linearity are made electrically to provide easy calibration.
Hagan Controls Corp., P.O. Box 11606, Pittsburgh, Pa., 15228, [372]

IC tester checks

up to 20 parameters

An integrated circuit tester with internal power supplies and pushbutton test sequencing is announced. Model 800 tests all present IC configurations, and is designed to accommodate any foreseeable future developments, according to the manufacturer.

The tester features a 10×20 cross-bar matrix, which can be programed to check up to 20 parameters. The sequencer permits rapid

What's NEW in laminated plastics? Synthane FR-16!

It's a lower-cost flame-retardant, glass epoxy laminate Designed specifically for printed circuits used in computers
Write for FR-16 Engineering Bulletin to Synthane Corporation 36 River Road, Oaks, Pa. 19456.

Laminated Plastic Sheets, Rods, Tubes and Fabricated Parts
Circle 224 on reader service card

γ			
$\Phi^{\text {th }}$		$20^{5 e}$	p
	e^{x}		
		fluence	s^{5}

Radiation Simulation Problems?

Get help with PULSE RADIATION SOURCES providing pulse widths from nanoseconds to milliseconds. Our facilities at your service include:

- TRIGA Reactors
- Accelerator Pulsed Fast Assembly
- Linear Accelerators
- Flash X-ray
- 14 Mev Neutron Generators

For information write or call now! Pulse Radiation Services, Dept. 481, General Atomic Division, General Dynamics, P. O. Box 608, San Diego, California 92112. Phone (714) 453-1000, Ext. 288.

New! Free! 1967
 - Industry's Most Complete Catalog
 Newark
 - Over 70,000 items
 - 700 Pages

INDUSTRIAL ELECTRONICS

- Over \$8,000,000 Industrial Electronics Inveritory including over 600 Standard Brand Lines

2N4296 Series

 Silicon Power Transistors with 20 watts Dissipation

These new low cost devices are designed for high voltage wide band amplifiers, switches and inverters, waveform amplifiers and other military and critical industrial applications. They offer, for the first time in a silicon power transistor:
HIGH BREAKDOWN VOLTAGE (BV CEO $^{(\text {sus })}=350 \mathrm{~V}$) HIGH GAIN BANDWIDTH ($\mathrm{f}_{\mathrm{T}}=20 \mathrm{MHz}$)
LOW CAPACITANCE ($\mathrm{C}_{\mathrm{cb}}=6 \mathrm{pF}$)
Packed in a T0-66 case these transistors are triple diffused NPN devices with exceptionally high frequency response and fast switching speed. Four types are available from stock in industrial quantities.
IMMEDIATE DELIVERY FROM STOCK • FACTORY OEM PRICES FAST EFFICIENT SERVICE FROM 7 NEWARK WAREHOUSES

Newark electronics corporation

500 North Pulaski-Chicago, Illinois 60624 AUTHORIZED RCA WAREHOUSES IN

Chicago. Illinois
(312) $638-4411$
Cincinnati, Ohio
(513) 421. 5282

Denver, Colorado (303) 757-3351

Detroit, Michigan (313) 548-02:50 Los Angeles Area (213) OR 8-0441 New York City (212) $255-4600$

Other Newark Warehouses in:
Grand Rapids, Michigan (616) 452-141.1

Push-pull, push-pull. That's the monotony of reliability.

Monotonous reliability characterizes IMC's solenoids, even at 4 millisecond speeds. There's a whole catalog of them in stock at IMC's Western Division, in sizes and configurations for avionics, instrumentation, computer peripherals and other systems.
If you need to push-pull, or to Indicate, Measure, and Control using steppers, synchros, resolvers, flag indicators or solenoids, contact the
Applications Section at 6058 Walker Ave.
Maywood, Calif., 90270. Phone (213) 583-4785
or TWX 9103213089.
For the catalog or data sheets contact the Marketing Div., 570 Main St., Westbury, N.Y. 11591 or circle the inquiry number.

Ime

repetitive testing without reprograming. The five built-in power supplies are available with optional digital programing. The built-in direct-reading meter for voltage and current is accurate to 1% of full scalc. A connection is provided for hooking up an external digital voltmeter, and the matrix provides for up to five inputs or outputs, which can be connected to external signal sources and an oscilloscope for measurements of both digital and analog devices.

Price of the model 800 is under $\$ 1,500$; delivery, 60 days. The Birtcher Corp., Instrument division, 1200 Monterey Pass Road, Monterey Park, Calif., 91754. [373]

Sweep generator is

 production oriented

A swept frequency generator has been developed for production testing of $\mathrm{a}-\mathrm{m}$ and $\mathrm{f}-\mathrm{m}$ circuits. The company says that operation

ULANO EUROPEAN TECHNICAL CENTER FOR GRAPHIC ARTS

Ulano's technical center in Switzerland is headed by the very capable Mr. Henri Kunz. He is qualified by his many years of experience in the Screen Process and Graphic Arts fields. Demonstrations and technical seminars are held in many languages throughout the year. Complete laboratory facilities have been installed to provide demonstrations of the complete Ulano line. Large stocks of all famous Ulano films are available for immediate delivery to all parts of the world.
You are invited to contact Mr. Henri Kunz at ULANO A.G., Untere, Heslibachstrasse No. 22, Kusnacht 8700, Switzerland, Telephone 905959. It is our pleasure to serve you.

TWO NEW PRESENSITIZED FILMS TO SPEED PRODUCTION - LOWER COSTS illand.

WRITE TODAY
on your letterhead for free special sample kit number 5448

HITFE PED

HEAVY-DUTY INDUSTRY PROVED
Presensitized photo film used by many leading electronic firms for clean, sharp, tough, durable almost indestructible screens of unmatched qual ity. Adheres tightly to wire, silk, nyion and dacron

PRESENSTRED

ED FOTO FILM
. 002 Polyester support guarantees good register Does not require a dark room. Very good resolu to silk suitable for halftones. Excellent adhesion to silk, nylon, dacron and meta mesh. Tough strong emulsion-good for machine printing and
long runs. long runs
J. ULANO \& COMPANY, INC.

610 Dean Street, Brooklyn, N. Y. 11238, U.S.A. Cable address: "UlanoFilm"' In Europe: ULANO A. G., Untere, Heslituachstrasse No. 22 Kusnacht, Zurich, Switzerland

Lapp insulators support most of the world's large radio towers, both self-supporting and guyed masts. Lapp has designed and built base insulators from $80,000 \mathrm{lbs}$. to $9,000,000 \mathrm{lbs}$. ultimate strength. Lapp strain insulators have been made from 1200 lbs . to $620,000 \mathrm{lbs}$. ultimate strength. \square Lapp is also a dependable supplier of entrance, spreader and stand-off insulators for transmission lines. Other Lapp insulators and our gas filled capacitors are used in transmitters and coupling networks. \square Difficult insulating problems are welcome here at Lapp. We've been solving them for almost a half century. Write Lapp Radio Specialties Division, Lapp Insulator Co., Inc., 208 Sumner St., LeRoy, N. Y. 14482.

New Instruments

of the model SV-15 is simple, to minimize operator-instruction time and reduce human error; it is a complete test facility in itself, since it will handle virtually every frequency test necessary on an $\mathrm{a}-\mathrm{m} /$ $\mathrm{f}-\mathrm{m}$ circuit; and has been priced to fit production budgets.

The instrument has a rotary frequency selector that can be instantly switched to any of 13 test frequencies, which are preset by plug-in strips. Strips may be changed for new test programs. The selector capacity is five a-m frequencies, five $f-\mathrm{m}$ frequencies, a crystal-controlled r-f/i-f channel, a swept $\mathrm{f}-\mathrm{m} / \mathrm{i}-\mathrm{f}$ channel and a swept a-m/i-f channel.

Push-button switches select the operating mode. The user can choose $\mathrm{c}-\mathrm{w}_{3}$ modulated $\mathrm{c}-\mathrm{w}$ or swept operation. These same switches also provide the proper frequency marker for each output signal. Three connections are made available on the front panel for $\mathrm{f}-\mathrm{m} / \mathrm{i}-\mathrm{f}$ plus $a-m / i-f, a-m / r-f$ and $f-m / r-f$ outputs, eliminating the need to change cables during tests. A bank of toggle switch attenuators and a rotary attenuator for each output also facilitates setting up and testing procedures.

Typical production tests made by the SV-15 include: receiver calibration, sensitivity measurement, over-all distortion measurement, alignment of bandpass circuits, sig-nal-to-noise determination, measurement of stage gain, discriminator alignment and image rejection measurement.

The SV-15 is portable, measuring 10 in. wide x 13 in . high x 18 in. deep; it weighs 40 lbs . Telonic Industries, Inc., 60 North First Ave., Beech Grove, Ind. [374]

Thermometer offers

two scale ranges

Model 390 expanded-scale thermometer measures deviation from fixed temperatures in crystal holders to a resolution of $0.01^{\circ} \mathrm{C}$. It has two ranges: $0-100^{\circ} \mathrm{C}$ selected from an over-all span of $-100^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$, and an expanded scale range of $1-0-1^{\circ} \mathrm{C}$, which measures
the deviation from a particular temperature as determined from the first range．

The taut－band，suspension－type indicating meter is equipped with a $41 / 2$－in．mirror scale and red knife－edge pointer for high reading resolution．The $100^{\circ} \mathrm{C}$ scale has $1^{\circ} \mathrm{C}$ graduations and an accuracy within $\pm 0.5^{\circ} \mathrm{C}$ ．The $1-0-1^{\circ} \mathrm{C}$ scale has $0.02^{\circ} \mathrm{C}$ graduations and within $\pm 0.1^{\circ} \mathrm{C}$ accuracy．The unit also has a 0 to approximately $43-\mathrm{mv}$ re－ corder output．
The probe consists of a minia－ ture platinum resistance element plus a 5 －ft cable with 4 equal－ length，silver－clad Pyrex glass in－ sulated leads terminated in gold－ plated contacts．It is said to pro－ vide exceptional repeatability and stability．By placing the cable in the same temperature as the sens－ ing tip，heat loss is climinated．
The thermometer is priced at about $\$ 600$ and is expected to be in full production in December．
Radio Frequency Laboratories，Inc．， Boonton，N．J．［375］

Vibration meter comes in 2 versions

A portable vibration meter，type 1－157，is suitable for both field and laboratory use．It comes in two models，one operating on a－c power， the other on d－c power；either ver－ sion is available with an alternate power pack to convert the instru－ ment or to serve as an add－on or optional feature．
Transistorized and adaptable to rack mounting or dual packaging， the 1－157 indicates peak to peak displacement and average velocity． Input signal is averaged and dis－ played on a meter to peak or aver－ age values based upon an equiv－ alent sinusoidal input．
The $1-157$ is useful wherever vi－ bration is encountered－from diesel compressors，tugboat engines and gear boxes to automobile motors， gas turbines and engine test cells． Frequency range of the unit is 5 to $2,000 \mathrm{hz}$（displacement）； 5 to 20,000 $h z$（velocity）；and frequency re－ sponse is $\pm 2 \%$ ．

Price of the unit is $\$ 1,195$ for a－c operation，and $\$ 1,135$ for d－c． Consolidated Electrodynamics Corp．，a subsidiary of Bell \＆Howell， 360 Sierra Madre Villa，Pasadena，Calif．［376］

To Solve YOUR Semiconductor Encapsulation Problems

HYSOL has more answers than anyone in the business．
HYSOL＇s HYFLO ${ }^{\circledR}$ epoxy mold－ ing powders have solved the problems of transfer molding en－ capsulation of a wide range of semiconductors，from simple to the most sophisticated．
New HYSOL liquid epoxy sys－ tems，compatible with almost every type of semiconductor， open new doors for casting or potting for short or long runs and extremely delicate items．
We have devoted thousands of laboratory man hours finding an－ swers to the kind of encapsula－ tion problems you may be facing right now．Our laboratories are ready to tackle new problems，as technology progresses，just as we have done in the past for scores of leading electronic com－ ponent manufacturers．
For application engineering help，write，wire or phone HYSOL today．For technical data on standard semiconductor en－ capsulation products，ask for bulletins E－258，E－259 and E－500．

HYSOL
HYBQL CORPロRATION－ロLEAN，NEW YロPK
Los Angeles，California／Hysol ICanada）Ltd．，Ontario／London，England

You can display anything with IEE series 10 rear-projection readouts

numbers, letters,

 words, symbols, even colors!IEE readouts display anything that can be put on film, even colors! Single-plane presentation makes for visual crispness; bright, bold characters (up to $1^{\prime \prime}$ in height) for remarkable clarity. So if readability and versatility are what you're after, look into IEE Series 10 Readouts. Five other models available with maximum character heights from $3 / 8$ " to $33 / 8^{\prime \prime}$.

Send today for complete information on IEE rear-projection readouts and accessories!

New Subassemblies and Systems

Microcircuits cut recorder cost

By extensive use of digital and linear integrated circuits, engineers at Honeywell Inc.'s Test Instrument division designed all the data-handling and transport control circuits in the model 7600 instrumentation tape recorder with ten types of active devices. Microcircuitry produced simple, inexpensive circuits reliable enough for the production line.

By standardizing the rest of the recorder's parts and placing 90% of all parts in volume production, the company says it can assemble a general-purpose instrumentation tape recorder and sell it for 20 to 30% less than comparable machines. Honeywell claims it has established an industry first by developing a general-purpose recorder suitable for virtually all instrumentation needs, except where the recorder must be portable or airborne above 10,000 feet.
As a part of the system design, a reliability study was conducted to determine the relative importance of each component and its effect on the system's reliability. From the study engincers were able to identify the components with the highest failure rate. The components with the best combination of performance and reliability (within cost guidelines) were selected.

The study also indicated that integrated circuits would give an optimum design. Only five microcircuits, four digital and one linear, and five transistors were required to build circuits to perform nearly all of the 7600's operational functions. Nearly 90% of the sockets requiring active devices were filled with two Motorola transistors, the 2 N 3904 and 2 N 3906 . The four digi-

Specifications

Weight
 Supply voltage
 Cidirectional
 tape speeds

Maximum reel size

Tape widths
Tape speed accuracy

Dynamic skew

Flutter

Capstan servos

 availableTime displacemen error

Magnetic head configuration

Electranics

Optional features

Approximately 650 lbs
105 to 129 v a-c (48 to 62 cps, single phase)
120, 60, 30, 15, 71/2, $33 / 4$, and $17 / 8$ in per sec (electrically selectable by pushbutton)
$10 \frac{1}{2}$ in. or 15 in . (depending on trans
port selected)
$1 / 4$ in.. $1 / 2$ in. or 1 in. +0. tone servo Phase 10
lock servo
Under $1 \mu \mathrm{sec}$ (between outside tracks on signal head stack at 120 ips)
0.25% peak to peak (with a tape speed of 120 ips and a measuring bandwidth of 0.1 to 10 , 000 hz
1% peak to peak (with a tape speed of $17 / 8$ ips and a measuring bandwidth of 0.1 to 312 hz
Velocity tone or phase lock
Less than $\pm 1 \mu \mathrm{sec}$ at 120 ips (phase-lock servo only)
$1 / 2$ in., 7 -track and 1 in., 14-track (standard)
1.6 Mhz direct; 80 khz $\mathrm{f}-\mathrm{m}$; 1,000 bits per in., digital
Voice annotation, switch panels, patch panels. monitor meter attenuator, panels, monitor oscilloscopes, search and control gear
tal microcircuits were Fairchild's 914 dual gate, 900 buffer, 923 j-k flip-flop and 951 one-shot multivibrator; the linear microcircuit was a Fairchild 709 amplifier. The three
other transistors were Motorola's, 2N697A and power transistors, 2 N 2156 and 2 N 1544 .

A natural result of the simplified circuit design is the small size of the spare parts kit. It contains 34 components including microcircuits, transistors, diodes, trim pots, pilot lamps and fuses plus a relay, inductor and capacitor in a container the size of a small fishing tackle box. According to Honeywell engineers, these parts will handle over 90% of the failures; a user can handle 99% of all failures with the kit and a stock of resistors.
The kit will speed repair of recorders in remote locations and foreign countries. Honeywell says it plans to offer to its 7,600 customers throughout the world free replacement for any part that fails.

Honeywell, Inc., Test Instruments division, 4800 East Dry Creek Road, Den ver, Colo. 80217. [381]

Ladder networks

 produced to order

Special ladder networks designed to meet specific circuit requirements contain wirewound resistance elements. The networks can be used as voltage attemuators and digital to analog converters in computer systems and similar applications. Their modular design makes installation in a circuit more efficient than installation of individual resistors, claims the manufacturer. It also facilitates handling and storage by reducing the number of components that must be stocked and inspected.

Ladder networks are furnished with the resistors packaged in matched sets. Depending on the type of element used, they meet or exceed requirements of MIL-R26 or MIL-R-93 in the following areas: short-time overload, mois-

MAXIMUM RELIABILITY OVER A WIDE RANGE OF AMBIENT CONDITIONS

\(\underbrace{\substack{mics
380}}\)
\(\begin{array}{ll}82 \& 150
\& 150\end{array}\)
\(\begin{array}{r}1
\hline\end{array}\)

470	750
500	800
560	820
680	

.001
.0012
.0015
.0015

TYPE J. DISCAPS

.002
.0022

SPECIFICATIONS

CAPACITANCE: Within tolerance @ 1 KC and $25^{\circ} \mathrm{C}$
CAPACITANCE TOLERANCES: $\pm 10 \%$, 20% or $+80-20 \%$
WORKING VOLTAGE: 1000 VDC
POWER FACTOR: 1.5% @ 1 KC INSULATION RESISTANCE: Greater than 7500 Megohms © 500 VDC
TEMPERATURE COEFFICIENT: Z5F, Y5F, X5F
FLASH TEST: 2000 VDC for 1 second
LIFE TEST: Per EIA RS-165 Class II
POWER FACTOR AFTER
HUMIDITY:2.5\%@IKC
INSULATION RESISTANCE AFTER HUMIDITY: Greater than 1000 Megotims than 1000 M
BODY INSULATION: DUREZ phenolic-vacuum wax impregnated
LEAD STYLES AVAILABLELong lead-\#22 AWG tinned copper-and all types for printed wire circuits.

RMC Type JL DISCAPS

 exhibit less than a $\pm 71 / 2 \%$ change in capacitance over the temperature range of -55° to $+85^{\circ} \mathrm{C}$. They are ideal units for temperature stable compensation and filter network use or other applications where stable circuit parameters are required. Rated at 1000 volts VDC, Type JL DISCAPS offer tangible cost savings over paper or general purpose mica capacitors.Write today
on your company letterhead
for your copy
of the new RMC catalog.

9 CLUES TO FINDING A RELAY... FAST!

Notice the range of the relay types above. You'll get an idea of what's available in the world's largest line of relays . . . at Struthers-Dunn. Including standards and specials. In fact, if we can't come up with the relay you're looking for, well . . . we have a feeling you'll be in for a long, hard hunt. Write for details on any type.

STRUTHERS-DIUN. Ine

Pitman, New Jersey 08071

New Subassemblies

ture resistance, shock, dielectric strength, low-temperature storage, high-temperature exposure, lowtemperature operation, temperature cycling, terminal strength, salt water, load life, vibration and temperature coefficient.

Resistors in the networks are available in a power range of from 0.1 w to 2 w each and resistance ranges of from 0.1 ohm to 500,000 ohms. The resistors can be matched to within 0.005% and have a miniminm standard tolerance of 0.02%. Operating temperature range of the networks is from - 65° to $+145^{\circ} \mathrm{C}$. Temperature coefficient match is 3 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ from $+25^{\circ}$ to $+125^{\circ} \mathrm{C}$ and $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ from $+25^{\circ}$ to $-55^{\circ} \mathrm{C}$. Output accuracy is within 0.02% of input voltage.

Resistors within the networks are potted in epoxy or silicone resin and are furnished with tinned copperweld leads. Grade A nickel or gold-flashed Dumet are also available. Special requirements for tolerance, matching and other electrical parameters can also be furnished.
Dale Electronics, Inc., Columbus, Neb., 68601. [382]

Static card reader

 used in programing

This static card reader can read 960 bits of information from a standard 12×80 IBM (lata-processing catd. Model 1280 features remote electrical contacts actuated by mechanical sensing of a punched hole in the card. This prevents electrical failures caused by paper lint building up on contact surfaces. As a safety feature to prevent erroneous readings, each card must be properly oriented when inserted, in order for the
unit to operate. When the reading has been completed, the card is automatically ejected from the reader.

The card reader is available with a choice of terminations including a push-on connector, rather than the usual solder terminations. It measures $31 / 2 \times 10^{1 / 2} \times 6 \mathrm{in}$., and is designed to provide maximum repetition of the process to save time in programing.
Electrical specifications of the 1280 include maximum switching voltage of 100 v resistive load, power dissipation of 50 iv max total per unit, and current carrying capacity per switch of 1.5 amps static. Capacitance between any two switches is 1 pf max; across open contacts, 0.5 pf max at 1 khz .
A system of clip-on bussing terminations permits the connection of inputs of the 960 discrete switches in either vertical or horizontal directions, providing voltage coding techniques in programing. All 960 switches have individual input and output terminals.
Sealectro Corp., Mamaroneck, N.Y., 10543 [383]

D-c/d-c converter delivers high voltage

A high voltage $\mathrm{d}-\mathrm{c} / \mathrm{d}-\mathrm{c}$ converter, series 800 , has been developed for such application areas as cathoderay tubes, photomultipliers, infrared systems and lasers.

Input is 12,24 , or 28 v d -c. Out put is 5 kv to 15 kv at $1.5 \mathrm{w} ; 15 \mathrm{kv}$ to 30 kv at 3 wv . Ripple is less than 0.75% peak to peak. Size for the 5 to 15 kv type is $13 / 4 \mathrm{in}$. square by $31 / 4 \mathrm{in}$. high; for the 15 to 30 $\mathrm{kv}, 21 / 2 \mathrm{in}$. square by 4 in . high.

Prices range from $\$ 157$ to $\$ 299$; delivery, two weeks
Universal Transistor Products, 380 Oak St., Copiague, L.I., N.Y., 11726. [384]

New Automatic Conveyor Control assures uniform etching of printed circuits regardless of length of production run

This new Automatic Conveyor Control monitors and adjusts etching time to make sure that the last piece to come off the etcher is exactly the same as the first. Variations in quality due to etchant depletion are eliminated, and no boards are lost due to over or under etching. You get complete use of the etchant to economical depletion. The machine operator, freed from in-process qc testing, can give full attention to overall production.
This new control system is available as optional equipment on Chemcut models 502 and 1000 horizontal conveyorized spray etchers. Since operating voltages for the system are obtained from the control panels supplied with 502 and 1000 etchers, the Automatic Conveyor Control can easily be retrofitted to etchers already in service.

CHEMCUT:

We invite your inquiry.
CHEMCUT CORPORATION 500 Science Park, State College, Pa. 16801

Circle 193 on reader service card
To order reprints: Fill in, cut out coupon below, insert in envelope and mail to: Electronics Reprint Dept.,
330 W. 42nd Street, New York, N.Y. 10036

Reprint order form

For listing of reprints available see the Reader Service Card.
Communications Satellites Part I
Send me reprints of Key no. R. 89 at 50 \& each.
For reprints of previous special reports fill in below:
Send me reprints of Key No.(s)@ \& each.
(For prices, see Reader Service Card)
Name
Number of street
City, State, Zip code

Dual output power supplies are housed in one case $3-5 / 16^{\prime \prime} \times 4-5 / 32^{\prime \prime} \times 4-11 / 16^{\prime \prime}$ high. Identical or different output voltages from 1.5 to 75 are available in 1 volt increments for each of the DC outputs. The graph below furnishes maximum current corresponding to output voltage. Select the two outputs needed and telephone Acopian for all the details - plus guaranteed 3-day shipment after receipt of your order.

TYPICAL SPECIFICATIONS
Input Voltage: 105 to 125 VAC
Line Regulation: ± 0.5 to $\pm 0.05 \%$ (depending on model)
Load Regulation: ± 1.0 to $\pm 0.05 \%$ (depending on model)
Ripple: 5 to 1 mv (depending on model)
No additional external
heat sinking required.
Write for Acopian's 16-page catalog and price list to: Acopian Corp., Easton, Penna., or call collect (215) 258-5441.

New Microwave

Traveling-wave tube produces 12 kw c -w

A 12-kilowatt continuous-wave traveling-wave tube (twot) was developed to satisfy military requirements for broadband, multifrequency communications systems in ground station satellite transmitters. It is expected to be of considerable interest to commercial satellite communications systems designers.

The tube is liquid cooled. and the metal-ceramic construction of the vacuum envelope provides a direct themal path between the interaction structure and external cooling ducts, minimizing coolant requirements.

Depressed collector operation raises the twt's efficiency to 35% over a 7.7 to 8.4 Ghz . frequency range and a coupled cavity interaction structure provides more than 30 db gain at saturation. As a result, the tube matches klystron efficiencies, while also providing 14 times their instantaneous bandwidth.
Microwave Electronics, 3165 Porter Drive, Palo Alto, Calif. [392]

Parametric amplifier boasts low noise

A parametric amplifier with a noise figure of 2 db is announced. Model

MT4010 is a complete, low noise r-f amplifier system featuring simple one-knob frequency tubing. It is suited for use in space communications, radar, radio astronomy and satellite or missile tracking.

The unit operates on the frequency range of 2.3 to 2.4 Ghz . Other specifications for the amplifier include an instantaneous bandwidth of 15 Mhz minimum and gain of 18 db minimum.
Alpha Industries, Inc., 381 Elliot St., Newton Upper Falls, Mass. [393]

Coaxial diode limiter

 spans 0.1 to 8 Ghz

A coaxial diode limiter covers the frequency range from 0.1 to 8 Chz . This passive semiconductor device provides receiver protection over a multioctave range of frequencies with insertion loss of 1.5 db maximum, flat leakage of 100 mw maximum, and extremely fast recovery time (100 nsec maximum). Peak $r-f$ input power is 20 w and average $r-f$ input power is 0.2 w .

The MA-8444-C4S is an extremely compact, lightweight (2 oz) receiver protector designed for applications including electronic countermeasures, broadband tracking and navigational radar, as well as ferrite cluplexing networks in a variety of manpack, airborne or satellite radar, beacon or communications receivers.
Microwave Associates, Inc., Burlington, Mass. [394]

Precision coaxial

standard terminations

Two new resistive terminations have been introduced for calibrating bridges, reflectometers, etc. They are the 100 -ohm type 900 -

W100 and the 200 -ohm type 900 W200. The 100 -ohm termination holds its nominal resistance within $\pm 1.5 \%$ up to 1 Ghz , within $\pm 5 \%$ to 8.5 Ghz ; the 200 -ohm unit holds its nominal resistance within \pm 1.5% to 1 Ghz , within $\pm 10 \%$ to 8.5 Ghz. Calibration charts for r-f resistance are supplied.

The position of pure resistance is nominally 4 cm from the reference plane of the GR900 connector and is further defined bv a calibration chart with each unit. The manufacturer is also introducing new short-and open-circuit terminations (types 900-WN4 and 900WO4), with the position of short or open circuits displaced 4 cm to correspond to the offset of the resistive terminations.

Each of the new terminations is priced at $\$ 60$.
The General Radio Co., West Concord, Mass., 01781. [395]

Mixer/preamplifiers weigh 2 ounces

A series of ultracompact mixer/preamplifiers is announced. Each model consists of a microvalve mixer integrated with a solid state i-f preamplifier. The package is said to be one-sixth the size of previously available devices.

Available in seven models, covering contiguous frequency bands, the "dash eleven" series provides microwave conversion over a range of 0.1 to 12.0 Ghz. I-f outputs are available at 30 or 60 Mhz , in 20 Mhz bandwidth. Over-all conversion gain is 20 db . Maximum signal imput for linear operation is -24 dbm . Power required is -20 v d-c at 10 ma .

Units measure 2 cu in., weigh 2 oz. Connectors are coavial, OSM Prices are $\$ 695$ to $\$ 995$: delivery, 5 weeks.
LEL division of Varian Associates, Akron St., Copiague, N.Y. [396]

microwave acoustic delay lines a practical reality from MEC

When it comes to specifying a state of the art device like a microwave acoustic delay line, the designer must be confident that the device is an actual piece of hardware, adaptable to the problem at hand. Laboratory curiosities won't do.
When we say that we have a product line, we mean just that. This is data that is reproducible over a wide range of environments. This is data that we guarantee on a fixed-price basis. This is the data that is the basis of our capability projections. It also represents three years of design and development experience in our laboratory and test areas.
For example: In L and S bands 1000 MHz bandwidth is "real world" at MEC
Fixed delays between .5 and $5 \mu \mathrm{sec}$. can be specified in L, S, or C band. Insertion losses of less than 70 db are standard in C band; in other ranges the loss is correspondingly less. Across 10% of L band losses are 25 db or lower.
Applications? Some of our customers have used them in altimeters, ECM systems, radar ranging systems, and for standard two-port memory and signal delay.
Whether you want octave bandwidth in L band, or wide-band coverage at higher frequencies, call MEC. We've got the capability and experience to talk microwave acoustics, and the data to back it up.
Exceptional opportunities on our technical staff for qualified engineers and scientists. An equal opportunity employer.

S band performance characteristics, M 7032

Microwave Electronics

3165 Porter Drive
Palo Alto, California
a division of Teledyne, Inc.

IF YOU DON'T RECOGNIZE THIS

IT'S NO WONDER,

because you've probably never seen 2940 feet of coaxial cable measured this way before.

HOW COULD YOU?

We used the TRW Model 46A Trigger Delay Generator, just coming on the market. It's brand new, with some inherited virtues of its predecessor, TRW Model 2A-nanosecond accuracy, high power trigger to override random noise, clear digital display, selectable triggering thresholdphis plug-in capability so you buy exactly the triggering input you need, exactly the sensitivity and spectral range your application calls for.

ASK US FOR A TECHNICAL DATA BULLETIN AND APPLICATION NOTES

giving the characteristics of the TRW Model 46A and the plug-ins, and illustrating how you can use the TRW Trigger Delay Generator, as we did, to make direct measurement of delay lines, to generate fiducial marks, calibrate oscilloscopes, and trigger the TRW Image Converter Camera or countless other laboratory instruments.

TRWinstruments

139 Illinois Street, El Segundo, California AC 213, 679-9101 Extension 22884

[^9]
Die bonder produces plastic transistors

In response to the growing demand for plastic-encapsulated transistors and semiconductors, the Kulicke and Soffa Manufacturing Co. is displaying equipment for their production at the Western Electronics Show and Convention.

An ultrasonic die bonder, shown above, takes six-inch long metal strips which have been either stamped or chemically etched. The loading mechanism, or magazine, consists of stacks of extruded pieces, with each piece holding one metal strip. The magazine can be modified to accommodate strips of varions manufacturers and will hold enough for approximately one hour's production (abont 1,000 to 1,500 units).

A rotary dice tray, which can be loaded manually or automatically, keeps the dice properly oriented for replacement on the carrier strips. A mirror-equipped viewing system permits the die bonder, designated model 630, to be operated manually, semiautomatically or automatically.

For manual operation, which might be used in a pilot line, the operator picks up each die with a vacuum unit which, on signal, transfers the die from the pickup area (a grease plate) to a pocket on one side of the rotary dice tray. A mirror then swings up to show the bonding area so that the operator can observe bonding of the die to the strip. The cycle is timed so that the operator cannot align
a second die until bonding of the first die is completed.

For faster production, the die bonder is operated semiautomatically. The mirror is locked in place for viewing the grease plate and the operator aligns one die while another is being bonded. For largescale production, Kulicke and Soffa suggests placing a loaded dice tray into the die bonder's magazine. The machine then automatically picks up and bonds the dice. With the optical equipment trained on the bonding area, one attendant can periodically check several machines.

Loading dice directly into the die bonder is not as fast, the company says, as using its model 615 dice tray loader. The dice are placed randomly on a dish, ancl an operator sights and aligns each die along the cross hairs of a microscope. After $x-y$ alignment is completed, a 180° rotation will not disturb) the alignment. Cycle time is short- 0.8 second-because the die-bonder's pickup mechanism is small and has to travel only a short distance.
Not being shown at Wescon, but designed to be used in tandem with the ultrasonic die bonder, is an ultrasonic wire bonder. Model 472 is a dual-tool, semiautomatic scissors bonder with a work-handling system and magazine feed identical to the die bonder. An operator is needed to align the wires to the target areas.

Two other wire bonders, using thermocompression instead of ultrasonics, will also be sold for plastic packaging. One, model 470, will be a nailhead bonder; the other, model 471, will be a scissors bonder.

All three machines will be available later this year. The die bonder and the ultrasonic wire bonder will each cost between $\$ 8,000$ and $\$ 11$,000 , depending on modifications. The dice tray loader will cost about $\$ 2,000$.
Kulicke and Soffa Manufacturing Co., 135 Commerce Drive, Fort Washington Pa. 19034 [401]

Measuring machine

 inspects small parts

Bench model 100 Cordax digital readout measuring machine is designed for inspecting small parts, p-c boards and art, p-i-n connectors and similar components. It is equipped with a Flexowriter unit for tape-programed inspection. Measuring range is $16 \times 12 \times 10 \mathrm{in}$. under the Y -axis carriage. Readout is to 0.0001 in .
The machine measures the dimension of a part, hole or surface location with an optical electronic sensing stylus and indicates the measured dimension by digital display, or prints it out on tape or by typewriter.

The Flexowriter records sequence of inspection, nominal and actual dimensions. To inspect a dimension, the Cordax operator moves the gaging stylus to pick up the actual dimension and steps on the Flexowriter foot switch to record inspection sequence number as well as nominal and actual dimensions of the part at that point. Both sequence of inspection and nominal dimension are programed into the tape.
Cordax readout is positive with automatic plus or minus quadrant indication from floating zero. The machine can be used with the full range of Cordax accessories including automatic printout, microscope, optical viewing screen, pneumatic drill and the manufacturer's full line of probes.
The Sheffield Corp., a subsidiary of the Bendix Corp., 721 Springfield St., Dayton, Ohio. [402]

Circle 226 on reajer service card

RCL $1 / 2 "$ ROTARY SWITCHES

- Lp to 12 positions per deck with stops. - As many as 6 poles per deck. - Shorting and non-shorting poles may be grouped on one deck in any combination.
"Off-The-Shelf" Delivery - Write for complete engineering information RCL

ELECTRONICS, INC.
General Sales Office: One Hixon Place, Maplewood, New Jersey 07040

1. AMPLIFIER HANDBOOK, RICHARD F. SHEA, Editor-in-Chief, NEW! This encyclopedic volume provides a tremendous fund of highly usable information on modern amplifiers, applicable at once to your daily work, or invaluable as a ready reference for special problems. Techniques and cirspecial problems. iechnigues and cir-
cuits are covered in thorough, specific cuts are covered in thorough, specticic
detail: and additional design material prepares you for design of projected circuits not actually presented here.

In addition to discussions of network theory and major forms of devicessuch th tubes, transistors and other semiconductors, magnetic, ceramic and ionic devices, masers and lasers - the greater part of the book explains circuits used in practically every kind of amplifier, from direct current to light, from microwatts to megawatis, embracing all the devices previously described. $1280 \mathrm{pp} ., \$ 37.50$.
2. NOISE AND ITS EFFECT ON COMMUNICATION. By NELSON M. BLACHMAN. Clearly, concisely, this timely book unifies the useful information on random processes and their spectra, the effect of nonlinear transformation upon signal and noise, the statistical theory of detection, and information theory, much of it not formation theory, much of in other books. Approximately found in other hooks. Approximately
200 problems extend the subjectmater. Complicated notation and math are avoided. 224 pp., $\$ 13.50$.
3. THE PROGRAMMER'S FORTRAN II and IV: A Complete Reference. By CHARLES P. LECHT. The only book now providing full, clear treatment of both of these computer languages Their characleristics. advantages, limitations, and use. 162 pp., $\$ 7.95$.
4. MATHEMATICS OF PHYSICS AND MODERN ENGINEERING, 2nd Edition. By I. S. SOKOLNIKOFF and R. M. REDHEFFER. Hundreds of problems add to the stimulation-value of this up-to-date, exceptionally thorough volume. $\quad 752 \mathrm{pp},. \$ 14.75$.

At Your Bookstore or Direct from Publisher for

- 10 Days free examination

Conductive coating for thermoplastics

A silver-filled electrically conductive coating, E-Kote No. 3042, is designed for coating vinyl and other thermoplastic insulators. Vinyl insulated wire can be shielded with this material at a much lower cost than with wire braiding, the makers say. Illustrated is vinyl wire partially coated with the E-Kote compared with conventionally braided wire. The coating is air drying and sets up by evaporation of solvent to a volume resistivity of approximately 0.001 ohm- cm . It becomes touch dry in a half hour and completely dry within 24 hours at $77^{\circ} \mathrm{F}$.

A 3 -oz. sample kit is available from stock for $\$ 10$.
Epoxy Products Co., division of Allied Products Corp., 166 Chapel St., New Haven, Conn., 06513. [406]

Polyolefin tubing

 is heat-shrinkable

A flexible, heat-shrinkable irradiated polyolefin tubing (Insultite CP-150) is available for use in almost all electrical and electronic products, according to the manu-
facturer. Specific applications recommended include wire and cable harnessing and the insulation and protection of connectors, splices, electromechanical connections and motor leads. Solid state and other electronic components can also be quickly encapsulated with Insultite CP-150.

The company says the new material will cost 50% less than polyolefins available now. It is a commercial version of the company's FP-301 Insultite, used in military and aerospace applications. It will form a quick, permanent insulating bond and will function as an insulator or as an encapsulation for components subject to shock, strain and vibration.

In addition to not splitting nor rupturing even over irregular surfaces, Insultite CP-150 has high temperature resistance (UL rated at $125^{\circ} \mathrm{C}$). It will be available in sizes $\frac{8}{64}$ in. to 2 in . expanded inside diameter.

Cold impact is $-30^{\circ} \mathrm{C}$; heat shock, $+250^{\circ} \mathrm{C}$; heat aging, 25% at $150^{\circ} \mathrm{C}$; dielectric strength, 100 v per mil (0.001 in.); dielectric constant, 2.7 max; dissipation factor, 0.000 .3 ; volume resistivity, 10^{14} minimum; corrosion, 1% maximum change.
Electronized Chemicals Corp., a subsidiary of High Voltage Engineering Corp., Box 57, Burlington, Mass. [407]

Encapsulation systems protect semiconductors

Compatibility with nearly all materials used in semiconductor manufacture is assured by a choice of one of two new liquid encapsulation materials, according to the marnufacturer. The two chemically different systems, C58 and C59, have been developed with very similar handling properties and cured characteristics; a single system cannot be compatible with all the possible semiconductor materials.
Three potting compounds are rated to operate in the class H range. Features include high thermal conductivity, thermal stability, adhesion and toughness.
Hysol Corp., Olean, N.Y. [408]

Ask your best friend to shoot holes in your reasons for joining Martin in Florida

Once you investigate the big things happening at Martin Company in Orlando, Florida, you'll think you've got an airtight case for taking that giant step ahead in your career. But to make sure you're not swayed only by the thoughts of living in Florida, try these arguments on your best friend.

1. A challenge to work with a top-flight engineering team now designing and producing Sprint, Walleye, RADA, Shillelagh, Pershing and many other advanced systems.
2. A promise of long-term professional growth with a company that shows its faith in the future by investing over eight million dollars in new R\&D facilities in the past three years.
3. An opportunity to select from a variety of more than 150 special projects aimed at long-term business development.
4. An inspiration to produce your best work by combining a rewarding career with year-round outdoor living for your family.

We believe a healthy discussion of these points will reconfirm your decision to move up with Martin. And just in case your friend likes the move up idea, have him call us collect. Phone 305/855-6100 and ask for Don Parsons, Manager, Professional Staffing.

WITH MARTIN IN FLORIDA!

Radar Equipment Design Engineers

The Hughes Radar \& Space Electronics Laboratories have important opportunities available for experienced Engineers.

Circuit development

Engineers are desired for assign ments involving high-power transmitters for advanced design pulse/ pulse doppler radars. Desirable background would include detailed familiarity with transmitter tubes, high-voltage design, solid state techniques, microminiaturization, logic/control, pulse circuits or power supply design.
Openings are available on nearly all levels-from those with a minimum of two years of applicable, professional experience through those who are interested in and qualified for senior supervisory positions.
Accredited degree and U.S. citizenship required.
For immediate consideration, please airmail your resume to:
MR. ROBERT A. MARTIN Head of Employment Hughes Aerospace Divisions 11940 W. Jefferson Blvd. Culver City 18, California

HUGHES

HUGHES AIRCRAFT COMPANY
AEROSPACE DIVISIONS
An equal opportunity employer - M \& F

New Books

Reliability with redundancy

Failure-Tolerant Computer Design William H. Pierce
Academic Press Inc., 242 pp. $\$ 8.50$
The design of reliable systems using unreliable components is rapidly assuming central importance in microelectronics, and Pierce has written an excellent introduction to the problem. In expanding his doctoral dissertation on the subject into textbook form, the author has added a good deal of background information, and the results are sufficiently general to be of interest to all designers of complex systems. Workers in the field will appreciate the excellent 15 -page bibliography contributed by Paul A. Jensen of the Westinghouse Electric Corp.
The conflicting requirements of the general reader and the specialist have been met by relegating the details of Pierce's own contributions to seven appendixes. From the problems after each chapter we may infer that the author has tried out the material in at least one graduate course.

There are three papers considered classics in the field of failuretolerant network design. Pierce based his work on one of these, John von Neumann's "Probabilistic Logics and the Synthesis of Reliable Organisms from Unreliable Components," given orally in 1952 and published in 1956. Approximately two-thirds of the book is devoted to Von Neumann's approach which, in essence, consists of making three or more redundant calculations and deciding which answer is correct by a majority logic circuit or a "vote-taker."
In presenting the Von Neumann method, the author begins with the case of simple majority rule with three or more redundant elements in parallel. An obvious extension is a weighting factor when one output is known to be less reliable than the others. A further extension is an adaptive system where the weights given each output are adjusted according to performance. Thus, an output consistently opposite to that of the majority is gradually removed from the circuit. The final step is the modification of the computer elements themselves
so that they can perform the redundant logic.

The principal unsolved problem in redundant circuits is the location of the majority-logic or restoring elements. Should every single element be made redundant with majority logic? Or should three complete computers be used with a majority decision only at the output? The answer depends on the reliability of individual components, but the best solutions for particular situations are not yet known.

The chapter which discusses the two other classical papers-R.W. Hamming's "Error Detecting and Error Correcting Codes," published in 1950 and E.F. Moore and C.E. Shannon's "Reliable Circuits Using Less Reliable Relays," published in 1956-are less satisfying than the remainder of the book. For example, Moore and Shannon pointed out the distinction between relays which failed as short circuits and relays which failed as open circuits. Obviously, if relays fail only in the open position, a parallel combination of them could be made arbitrarily reliable. But then a short circuit would be a disaster. Moore and Shannon solved this problem by means of "compositions" in which each contact is replaced by a redundant network. Pierce blurs the distinction between open- and short-circuit failure and therefore loses much of the point of the Moore-Shannon approach.

Pierce's elementary introduction to Markov chains is an interesting digression from the main theme, but probably should have been relegated to an appendix. He also includes a chapter on coding theory which is short and curiously negative in tone. Pierce believes that coding redundancy is impractical because the decoders become complex, but it is still too early to write off this approach.

The mathematical level is such that the book can be read by any graduate engineer. The author has followed Von Neumann's mathematical point of view, however, and the book will be enjoyed more by those with some background in probability, statistics and in-

STUCK for MAGNETS?

CALL

PERMAG

We stock all sizes, all shapes, all grades, for all uses . . . all ready for 24-HOUR DELIVERY. Including soft magnetic materials - now available for the first time in small, less-than-mill-run quantities. Also, magnets engineered and fabricated to your needs. Write for cata\log and data sheets.

PERMAG PACIFIC CORP. 5441 W . 104th St . Los Angeles, Calif. 90045 / Phones: Area Code 213 776-5656. 213 670-7060 / TWX: 213670.0408
PERMAG CENTRAL CORP. 5301 D . Otto Ave. Rosemont, Des Plaines, Illinois 60018 / Phone: Area Code 312678.1120

PERMAG CORP. 88-06 Van Wyck Expressway Jamaica, New York 11418 / Phone: Area Code 212 OLympia 7-1818/TWX: 212 479-3654

Circle 228 on reader service card

Automatic Slide Voltage Regulator - Incorporates a servo mechanism and a motor ized slide regulator. Assures stabilized voltage supply continuously to various electric and elec tronic devices by eliminating injurious over and under-voltages. Compact and rugged, top performance and durability. Available at competitive prices.
General Specifications

Rated Input Voltage	100	200
Voltage Variation Range	$80-120$	$160-240$
Output Voltage	110	220
	adjustable within $\pm 20 \%$ of rated	
	voltage.	
Regulation Accuracy	within $\pm 1.5 \%$ for line variations	
	up to $\pm 20 \%$.	
Time Constant	within one second for line varia-	
	tions up to 10%.	
Regulation	over 90%	

MATSUNAGA MFG. CO., LTD. Export Division: MATSUNAGA INTERNATIONAL, LTD. Kyowa Bldg., 3-4, Shiba Kotohira-cho, Minato.ku, Tokyo, Japan
formation theory. In fact, the author's first effort is to derive some limit theorems similar to those of information theory. Several of these theorems involve the cost of a system. For example, if all the components are identical, the system cost for constant reliability grows faster than n , the number of units, and is proportional to $n \log n$.
The author has attempted to bring some order and logic into the new feld of error-tolerant circuit design. He has encompassed, with some success, the three classical mathematical approaches to decision theory, switching theory and coding theory. He has, however, ignored several hardware-oriented approaches to reliability which also show promise. The first of these is the National Aeronautics and Space Administration's "zero-defect" program, based on the premise that so-called random failures are not really random, but have causes which can be removed if sufficient care is taken. The second is that of "functional degradation" in which faihures are not catastrophic, but merely reduce the performance of the device. The third is the "self-organizing" system in which the computer organizes itself to perform a task and automatically selects operating components. There is some indication that biological computers-human brains-operate on this principle.

Ronald E. Scott
Dean of the College of
Engineering
Northeastern University
Boston, Mass.

Recently published

Electrical and Electronics Drawing, second edition, Charles J. Baer, McGraw-Hill
Book Co. 402 pp., $\$ 6.50$
Pocket Handbook for Engineers, Sigmund 1 Smith, Strum and Smith Publishers, 40 pp. two for \$1

Optimal Control, Michael Athans and Peter L Falb, McGraw-Hill Book Co., 879 pp., $\$ 24.00$

Transistor Circuit Analysis and Design, second edition, Franklin C. Fitchen,
D. Van Nostrand Co., Inc., $412 \mathrm{pp} ., \$ 8.50$

Semiconductor Circuits Handbook, Techpress, Inc., Vol. I, 191 pp., $\$ 2.95$; Vol. II, 127 pp., \$1.95

Fluid Amplifiers, edited by Joseph M. Kirshner, McGraw-Hill Book Co., 295 pp.,
$\$ 16.50$

Air Pollution Instrumentation, edited by Donald F. Adams, Instrument Society of America, Pittsburgh, 75 pp., ISA members $\$ 4.75$, nonmembers $\$ 6.50$

High quality NPN and PNP types in TO-1 case
The Nucleonic 2 N 2430 (NPN) and 2N2431 (PNP) are germanium alloy transistors designed for medium power audio applications.
These reliable devices exhibit excellent beta linearity and are especially suited for Class B push-pull applications. A pair of either type will deliver up to 5 watts of output power.
A 2N2430 may be used with a 2N2431 for complementary symmetry requirements in transformerless circuitry. Write or call NPC for specifications and our low price.

3133 East 12 th St Los Angeles Calif. 90023 - Tel: (213) 268-3464 TWX: 910-321-3077

LIVE (REALLY LIVE) and PROFIT IN THIS ALL SEASON VACATIONLAND
 - 403

 Let us show you how to mix pleasure with your profits!

 SOUTH

 SOUTH CDAKOTA

 CDAKOTA}Millions of Americans hove made SOUTH DAKOTA their ideal vocationland...Now they're learning that it's also a great BUSINESS-land..Big, uncluttered, lots of hunting, fishing, and just ploin liveability Yet close to everywhere ot the continent's crossroads.
$5 \notin$ postoge moy be all that stands between you and a new future in uncrowded SOUTH DAKOTA. Let us send you our new partfalio today.

GET THE SOUTH DAKOTA STORY

CONTACT
James W. Monroe, Director Industrial Development \& Expansion Agency Room G
Pierre, South Dakota 57501
Ph. 224-5911 Areo Code 605

Technical Abstracts

Microelectronic life

Current and future reliability requirements compared to present reliability levels
J.B. Brauer, Rome Air Development Center, Rome, N.Y.
Military and commercial users of microelectronic devices look forward to maintenance-free lifetime for devices, discard-at-failure maintenance for complex modules of entire equipment and logistics selfsupport or on-board spares. Though maintenance-free life cannot be achieved in the foreseeable future except for very simple equipment, gross simplification in maintenance and logistic procedures through modular-level repair and discard-atfailure techniques can be anticipated.

In view of present reliability techniques, can microelectronic devices be purchased that have a failwre rate of 0.001% per thousand hours? The author's answer is a resounding no.

Rome Air Development Center purchased integrated circuits from one of its most dependable suppliers for use in the Mirage 1 radar plan position indicator display. Of 600 circuits delivered, 10 failed to pass incoming inspection, 10 more were damaged during installation and two more failed during 9,000 hours of equipment operation. If only the two burn-in failures are considered, the failure rate at 60% confidence is 0.14% per thousand hours. The equipment would have to operate for another 140 years without a failure in order to achieve the 0.001% per thousand hours failure rate.

In a radar intercept calculator program, Rome had the lowest percentage (0.5%) of dead-on-arriva! devices. But five of these circuits had the lids on backwards, resulting in a p-i-n orientation 180° "out of phase." These devices could not have passed even the most basic d-c static test. Two more devices had defective resistors; one had a mask or photoresist defect and the other was damaged after photoresist application. Neither would pass a functional test.

In another program, Rome
bought 179 diode transistor logic gates for a reliability-techniques study. When the vendor's electrical acceptance test was repeated, the lot showed 3.9% failures. After 250 hours burn-in, another 24% was lost. A second lot delivered by the same vendor after he was informed of the difficulties showed no failures.

The author conchudes that, the "time-zero quality problem" (quality at user's incoming inspection) is now an order-of-magnitude more serious than problems of continuous degradation in the field.
Presented at the Fifth Annual Microelectronics Symposium, St. Louis, Mo., July 18-20.

Failure free

Ultrahigh reliability medium power traveling-wave tubes R.A. Brenam and N.A. Greco, Microwave Tube division,

Hughes Aircraft Co.

The traveling-wave tube represents one of the most important microwave devices developed in the last 20 years. Operating primarily as an amplifier in the microwave region of the electromagnetic spectrum, the tube finds applications in radar, navigation and communication systems which require amplification of radio frequency signals from 1,000 to 10,000 megahertz. The power output can vary from milliwatts to megawatts and can amplify r-f signals up to one million times at octave bandwidths.

Until five years ago a travelingwave tube was considered unreliable and its use limited to ground and airborne systems where it could be periodically replaced. To meet reliability requirements of orbital spacecraft and deep space probes, the Microwave Tube division of the Hughes Aircraft Co., developed a rugged, lightweight, medium power amplifier.

This paper discusses, in brief, the operation of a traveling-wave tube and the role played by various tube components: helix, dielectric support rods, attenuator, r-f window, metallic support rods, collector, electron gun, electron beam and magnetic field. The authors examine in detail the conditions un-

DON'T SWITCH CHANNELS. use a binary
TWO GUN OSCILLOSCOPE

This PROVEN INSTRUMENT Features:

- Two Separate Simultaneous Inputs
- DC to 5 MC Band Width
- 1 Millivolt/Cm Sensitivity
- Built-in Calibration

External Horizontal and Z Modulation Model 5Mc-2P Illustrated

Write for complete specifications
We Are Authorized to Up Date or Repair Your
Packard Bell Model 5MC-2P Scope
BINARY ELECTRONICS of California
1429 N. STATE COLLEGE BLVD.
ANAHEIM, CALIF. 92805 714-772-3070
Circle 230 on reader service card

Reprint order form

Send to: Electronics Reprint Dept. 330 West 42nd Street New York, N. Y. 10036

For listing of reprints avallable see the reader service card.
To help expedite mailing of your reprints please send cash, check or money order with your order.

For reprints of the latest special report:

Communications Satellites Part I
Send me reprints of key no R-89 at 75 7 each.

For reprints of previous special reports fill in below:

Send me reprints of key
no.(s) at \& each.

For prices see the reader service card.

Name

Number \& Street
City, State
Zip code
der which the tube must operate, because "a thorough knowledge of all possible failure modes is fundamental to any reliability program." Failure-mode analysis charts provide a concise summary of typical modes and their cause and effect relationships.

The value of the charts is that all major failure modes can be easily recognized and precautions taken. It is difficult or impossible to make fundamental design changes in the late stages of a development program because of a lack of time or prohibitive costs. Using patch up methods instead of tackling the problem head on may result in mission failure or even obsolescence of the entire system.

Presented at the 5th Reliability and Maintainability Conference, New York, July 18-20.

Sound picture in 3-D

Ultrasound holography and visual reconstruction
F.L. Thurston

Bowman Gray School of Medicine Wake Forest College
Winston-Salem, N.C.
Ultrasonic techniques offer unique advantages for internal examinations of any opaque object: the visual probe can be performed without cutting open the object and without introducing potentially harmful energy-such as X-rays. But an analysis of the returned ultrasonic signal presents problems, because the display, usually on an oscilloscope, lacks clarity and is limited to two dimensions.

However, a way to reproduce ultrasonograms in three dimension with holograph techniques [Electronics, April 18, p. 139-143] is proposed by the author. If the ultrasonic signal were to modulate a laser beam, a hologram of an object's internal structure could be produced. Holography is an optical technique for producing the image of an object in space by photographing the object's optical interference pattern with a laser and then reilhuminating the pattern. The technique could be used by doctors to prepare holograms of internal organs, which could then be studied in three dimension, or by industrial researchers to look inside a solid material.

Presented at the Symposium on Biomedical Engineering, Milwaukee, Wis., June 24-25

6 BIT A TO D CONVERTER 15,000,000 CONVERSIONS PER SECOND

TO DIGITAL CONVERTER
Well-suited for telemetering or process control Long life and high stability All solid state, silicon semi-conductors SPECIFICATIONS
Method: successive comparison. Digital 0utput: 8.C.D. 12 bit parallel. Stability: $\pm 0.2 \% / 6$ months. Conversion time: approximately $240 \mu \mathrm{~s}$. Dperating temperature: $-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. Width: 480 mm . Height: 199 mm Depth: $225 \mathrm{~m} / \mathrm{m}$. AC input: $100 / 110 / 220 / 240 \mathrm{~V} \pm 10 \% 50$ cr $60 \mathrm{c} / \mathrm{s}$.

MODEL 198 C DATA LOGGING SYSTEM All solid state
Random access analog scanner
High reliability and accuracy
Operates over large temperature ranges Low cost
SPECIFICATIONS
Scanning capability: 16 channels. Scanning speed: up to 5 channels per second. Accuracy: 0.1%. Output: printing paper tape. Logging cycles: 10 seconds to 1 hour Ispecify on ordering). AC Input: $100 / 110 / 220 / 240 \mathrm{~V} \pm 10 \% 50$ or 60 cps (specify on ordering).

DIGITAL VOLTMETER
All solid state and high speed.
SPECIFICATIONS
measuring range: (1) 0.001 to 1.599 volts
(2) 0.01 to 15.99 volts
(3) 0.1 to 159.9 volts
(4) 1 to 1,599 volts

Accuracy: 0.1% of full scale. A/D conversion time: $600 \mu \mathrm{~s}$. Max. repetition rate: 1 kc . Reading mode auto: $100 \mathrm{c} / \mathrm{s}$ repetition rate. Digital output: 4 digit decimal ${ }_{10} \mathrm{C}_{1}$, parallel code connectable to the line printer Operating temperature: 0 to $40^{\circ} \mathrm{C}$. Width: 480 mm . Height: 199 mm . Depth: 350 mm . Weight: approx. 13 kg . AC Input: $100 / 110 / 320 / 240 \mathrm{~V} 50$ or 60 cps .

CHUO ELECTRONICS CO., LTD.
 No., 21 Motohongo-machi, Hachioji-shi,

 Tokyo, JapanCIRCUIT DESIGN ENGINEERS
TEST EQUIPMENT DESIGN ENGINEERS

NAVIGATION \& COMMUNICATIONS SYSTEMS ENGINEERS
A.G.E. DESIGN ENGINEERS

Exercise and elbow room.

You'll find both at Lear Siegler
You'd like it here. Plenty of latitude at LSI. A solid, dynamic company that likes creative thinking. Actively applying new concepts, seeking new ideas in guidance and navigation systems for sub-, superand hyper-sonic air and spacecraft.
You can grow protessionally on longterm programs for design and production of advanced flight reference and navigational systems ... in a half-million square feet of newly-completed aerospace engineering facilities.
Send your resume in confidence or write for information to:

INSTRUMENT DIVISION
114 EASTERN AVE., S.E., GRAND RAPIDS, MICHIGAN 49508

R.U. answering more than advertisement? Then please send a separate reply to each box number. It will help you get an answer sooner.

EMPLOYMENT SERVICES

Your Resume-Make it sell You! Instruc tions. samples: $\$ 2$. Fxecutive. Box 246 FL Montclair, N.I. 07042 .

THE MARKET-PLACE
FOR ALL EMPLOYMENT NEEDS
Send new ads or inquiries to:

ELECTRONICS

Class. Adv. Div., P.O. Box 12, N.Y. 10036

IDDRESS BOX NO. REPLIES TO: BOR No. Chassified $A d v$. Div. of thid publication
Send to office nenvest pou.
NEW YORK, N, Y. 10036: P. O. Box 12
CHICAGO, II. 6061t: 64s N. Michigan Ave.
aAN franctisoo Cal. 94111: 255 Califormia St.

POSITION VACANT

Technical Editors-The publisher of Industrial Research and Oceanology magazines has several growth positions in the writing and editing of technical publications. Editorial offices located in scenic Indiana dunes country alonk Lake Michigan. Send resume, salary requirements, and writing samples to Ind.
trial Research Inc., Beverly Shores, Ind.

sediaillirin Setion

FOR SALE:

ELECTRIC, GAS, and VACUUM FURNACES

Forming Gats Generators. Nitrogen Generators Endothermic Generators. Ammonia Dissociators. Induction Heaters. Vacuun Metailizers. Stip Chant liecorters trommerts. spentrunhotonetpre. hefracmoneters. Cus I'urifers. Election Thbe Manulacturing. Aging. and T'psting Hailpment.

INSTRUMENTS \& MACHINES INC.

1200 Grove Street
Irvington, N.J.
201-371-7900
CIRCLE 966 ON READER SERVICE CARD CASH REWARD!!!

YoU will be rewarded with rokd, hard casla by selling ha your new. used

 gouphr new, used, excess or urwamed electronic 21. AN/ARC-34, AN/ARC-52 -55, any All AN or ARC equipment. ID indeators. Milisary Type Test Cquipment, Collins and Bendix equip. Instruments and insirminentatrevari!
J. J. CANDEE CO. Dept. E

2525 W. Burbank BIvd., Burbank, Calif. 91505 CIRCLE 967 ON READER SERVICE CARD

CIRCLE 968 ON READER SERVICE CARD SEMICONDUCTORS
MAJOR BRANDS
INTEGRATED CIRCUITS * DIF. AMPS DARIINGTONS POWER DIODES \& TRANSISTORS - SPECIAL DEVICES

Write for Catalog S-1
SEMICONDUCTOR SALES OF CALIF
1063 Perry Annex Whittier, Callf.
(213) 696-7544

CIRCLE 969 ON READER SERVICE CARD

bUYERS TURN TO THE SEARCHLIGHT SECTION IN ELECTRONICS

When you have used electronics equipment to sell, advertise in Electronics Searchlight Section for fastest results.
For information: Searchlight Section Classified Advertising Division Post Office Box 12 New York 10036

Do you need electronics engineers or technical management men? Electronics magazine is the way to recruit them. Electronics is designed specifically for the working engineer. 68,000 subscribers and an additional 133,000 pass-along readers turn to it to keep up with their industry. You can find the man that meets your qualifications with an advertisement in the Employment Opportunities Section.

For rates $\mathbb{\&}$ information write: Electronics, a Mc-Graw-Hill Publication. Classified Advertising Division, Posi Office Box 12, New York 10036.

We thought you might appreciate a little inside humor. The truth of the matter is that our down range island stations for the Eastern Test Range offer a lot more solid ground to move around in than is available on the ships in the operating fleet. The situation is usually the other way around. When one of the tracking ships is in the area, the Base Operations Manager is issuing the invitations. And not always to a movie.
The point is that both jobs are vital ones in our overall responsibility during a launch. Be it missile, manned space craft, satellite or space probe, both the BOM and SOM make important split-second decisions with the chips down. A multi-million dollar mission may depend on their know-how.
They know their technology. They take full responsibility for directing the real-time monitoring of vehicle performance in flight; using pulse and CW radar, telemetry, optics, infrared, timing, command/control, data encoding and transmission equipment of the latest design. They perform in-flight trajectory measurements, utilizing digital computers and inertial navigation systems.
If you have engineering management ability, can make instant decisions, a strong technical background in any of these areas, and an EE degree, write to Manager of Professional Employment, Guided Missiles Range Division, Pan American World Airways, Inc., Dept. 28H-4, 750 S. Orlando Avenue, Cocoa Beach, Florida. An Equal Opportunity Employer.

GUIDED MISSILES RANGE DIVISION

PAN AMERICAN WORLD AIRWAYS, INC.

Electronics Abroad

Japan

Speeded by laser

Spurred by automobile makers who want to speed the progression of their models from styling studio to production line, two Japanese electronics companies have developed laser units that translate the contours of clay mockups into digital dimensional data.

Taking the measurements of the mockups with a laser is much faster than painstaking mechanical methods and points to a slash in design lead time for automobiles. The digital dimenisonal data from the laser, recorded on tape, can be processed by computer to generate numerical control programs for automatic milli, g of body-stamping dies. Like auto makers everywhere, the Japanese auto companies that backed the laser development don't broadcast their exact lead time; but it's estimated the laser technique could halve the two-year period generally considered par to get a new model into production.

The two companies that have readied laser pick-off units are Hi tachi Ltd. and Mitsubishi Electric Corp. Hitachi appears to be out front at the moment. In addition to a laser pick-off, Hitachi has the computer software prepared and a numerical control milling machine that can turn out the dies. Such a system, Hitachi estimates, would cost somewhere between $\$ 300,000$ and $\$ 500,000$; the computer would be additional. Hitachi has no orders as yet and won't disclose which auto maker it worked with to develop the system.

For its part, Mitsubishi so far has developed only the laser pickoff, again at the instigation of an undisclosed auto maker. But Mitsubishi may be the first to put its laser unit to work in nonautomotive applications. The company is the leading Japanese producer of large dish antennas and the laser tech-

Hitachi laser unit translates contours into digital dimensions. Tube housing laser and detection system moves in and out to keep beam focused on surface.
nique could be used to check antenna accuracy. Mitsubishi also will have the inside track with a sister company that manufactures ships, airplanes and rockets. The laser technique, for example, could produce full-scale templates for airframe sections from half- or quar-ter-size models.

Two ways. Both Hitachi and Mitsubishi based their equipment on the same fundamental ideakeep a laser beam continuously focused on the target surface no matter how its contour changes. In other words, the laser head must always be kept at the same distance from the surface, moving in or out to track the contour. To achieve this, defocusing of the spot is detected in the laser head by solar cells that pick up the reflected beam. Their output is used as an error signal for a servosystem that holds the head at a fixed distance from the tracked surface. Digital dimension data then can be picked off the servodrive.

In putting the concept to work, the two firms took different tacks. The Hitachi system has a small lens to focus a neon-helium gas laser beam to a spot about 0.5 millimeter in diameter on a target

15 centimeters distant. A much larger lens-off the axis of the beam -focuses the reflected spot on an array of silicon solar cells. This arrangement, Hitachi maintains, cuts down noise since it keeps outgoing and returning laser light paths separate. The off-center lens has an added advantage: it deflects the reflected spot in one direction if the laser head is too close to the target and in the other direction if the head is too far away.

The solar-cell array that generates the error signal for the servodrive has two cells 0.5 mm square at the center; their outpu is fed to a differential amplifier to get a highly sensitive indication of balance. The two center cells are flanked by cells that put out "near" or "far" signals when there are large deviations from balance. With this arrangement, Hitachi gets a precision of $\pm 0.03 \mathrm{~mm}$ in the readout, which is displayed on an indicator as well as recorded on tape.

Pinhole. Like Hitachi, Mitsubishi uses a neon-helium laser with an output of a few milliwatts for the beam and it's kept focused on the target by a servosystem. Mitsubishi, though, puts both the out-
going and incoming light through a single inverted telescope with a large objective lens that focuses the beam to a very fine spot-25 to 50 microns in diameter.

A half-mirror in the optical system deflects the incoming reflected spot through a collimating lens and a pinhole onto a solar cell. A tuning fork vibrates the pinhole, moving it 0.5 mm up and down along the optical axis at a frequency of several hundred cycles per second. This vibration modulates the light hitting the solar cell, whose sinewave output is the error signal for the servosystem. Phase comparison of the cell output signal and the tuning-fork drive frequency indicates the direction and amount the laser head should shift to focus the beam on the target. Precision with this system, Mitsubishi reports, approaches 1 or 2 microns.

West Germany

Repetitious

Although people who receive a lot of cables may not believe it, operators of intercontinental radiotelegraph systems take great pains to make sure messages get through ungarbled. Nearly all use automatic equipment to spot transmission errors and rectify them immediately by retransmitting the correct characters.
The repetition slows the outgoing flow of information so a buffer storage is needed for information fed in for transmission. The most prevalent buffer used today is a paper-tape reperforator, a slowpoke compared to the fast transmission equipment it works with. But it now seems the tape reperforator is doomed by the advent of faster, smaller, more reliable electronic buffers.

The latest to come is a magneticcore matrix buffer developed by Siemens \& Halske AG. With no moving parts, it leapfrogs the technology of two other electronic teleprinter buffers currently available, both of which store information on rotating magnetic drums.

Multichannel. Siemens' mag-netic-core buffer stores up to 4,091 characters in the five-bit teleprinter code, the equivalent of about 30 feet of punched paper tape. Since this is more capacity than a single channel needs, Siemens has designed the buffer so it can be shared among four channels and thus replace a quartet of tape reperforators. Capacity then is 1,019 characters for each channel.

Characters can be read into the buffer at rates up to 400 a second for each channel and read out at the same maximum rate. This is some 10 times faster than the rate of a rotating drum buffer. Each character is read out in response to a request signal indicating that the transmitter has sent out clearly the preceding character. Information stored for a channel can be erased in 2 milliseconds.
Built-in converters that operate at telegraph speeds as fast as 2,400 bauds (320 characters per second) handle serial inputs and outputs of character code groups. Parallel output is also possible.

In addition to use as the buffer for automatic correction systems, the magnetic-core matrix equipment can be employed for data speed conversion, multiaddress transmission and for messageweighting centers that retransmit messages in order of priority rather than order of arrival.

Soviet Union

Blocked out

The drive by Soviet leaders Aleksei Kosygin and Leonid Brezhnev to give the Russian consumer a better break apparently won't lead to whopping orders for Western manufacturers of electronic plant equipment.
Earlier this year, Soviet durablegoods planners worked out deals with Fiat of Italy and Renault of France for auto plants. Many observers of the Russian scene expected a spate of factory-equipment contracts to follow, among them deals for consumer electronics plants. But hopes that a substantial new market for Western firms would open up have been dimmed by a recent Russian order for a complete tv tube factory from the United Incandescent Works of Budapest, Hungary.

Millions. The plant, which will cost about $\$ 7.8$ million at the official exchange rate, is scheduled for start-up early next year. Its yearly output will be 1.2 million tubes in three sizes- 19,21 , and 23 inches. At that capacity, the factory can meet about a quarter of Soviet tube needs.
In recent years, tv set production has been between 2 million and 3 million annually. From 2.9 million

Siemens' teleprinter buffer with magnetic-core matrix replaces as many as four conventional paper-tape reperforator units.
sets in 1964, output climbed to 3.7 million last year. Judging from firsthalf production, the 1966 output will top 4 million sets [Electronics, Aug. 8, p. 302]. Along with the increase in receivers, a sharp rise in the number of tv broadcast stations is in sight over the next few years. Communications Minister Nikolai Psurtsev forecasts the number of stations will grow from the existing 500 to 800 by 1970 .

Inside. Now that the Hungarians have landed the order for the tv tube plant, indicating the Soviets plan to keep their business inside their bloc wherever possible, France seems to be the only Western country that stands a chance of cashing in on the Soviet tv boom. Full-time color broadcasts will start in Russia within two years, using the French Secam system. This points to a deal on receiver fabrication know-how. And Soviet backing of Secam apparently hinged on a French promise of help on a Russian plant to produce the color tv tube developed by Compagnie Française de Télévision [Electronics May 3, p. 157]. CFT, though, still has to put the tube into production itself.

Great Britain

Hard times

At one time, throngs with an itch to buy flocked to Earls Court in London for the annual Television and Radio Show, turning it into a sellers' festival. But there'll be no carnival atmosphere at the 1966 show which makes its five-day run this week. The show is restricted to people in the trade and their disposition these days tends to be dour.
For better than two years, British consumer electronics has been going downhill and the austerity measures recently put into effect by Prime Minister George Wilson's government [Electronics, Aug. 8, p. 299] can only hurt it more.

To worsen the plight of British manufacturers, foreign competitors
have their eye on the market even though it's shrinking. During the show, the International General Electric Co., the overseas arm of the General Electric Co., will unveil its plans to market receivers, record players and tape recorders under a new brand name, "Monogram". GE's announcement came just a fortnight after the Radio Corp. of America made headlines with its plan to tap the upcoming color tv market in Britain with a color tube plant.

Sinking. The sorry state of consumer electronics in Britain shows up clearly in the industry's production figures. Five years ago, radio set makers were turning out 256 ,000 receivers a month. By last year, output had backed off to a monthly rate of 159,000 . The first two months of 1966 were even worse with a monthly average of 129,000 sets. Inroads made by foreign competitors, notably the Japanese, account in part for the decline.
Television set production shows much the same pattern. Through 1960 the industry boomed as British households acquired their first sets. Tv set makers then figured they'd have a steady replacement market. Instead, sales fluctuated as the government tightened and eased consumer credit to slow down or speed up a roller-coaster economy. From the peak of 152,000 sets per month hit in 1964, tv output slumped steadily to less than 120,000 sets monthly through the first five months of 1966.

Hoping. The only real lift in sight is the government's commitment to start color to broadcasts next fall, using the PAL system developed in West Germany [Electronics, June 13, p. 161]. At the outset, sets will retail for something like $\$ 750$, but since rentals account for more than two-thirds of the black-and-white sets now in use, market forecasters generally see an early boom for color.

This sanguine forecast discounts the discouraging experience set makers suffered when the British Broadcasting Corp. introduced its second service in 1964. Until then, tv broadcasts were on a 405-line standard in the very high frequency band. The second service
went on the air in the ultrahigh frequency band with the 625-line standard used on the Continent. Set makers expected the new standard to buoy their sales, but the boom never materialized.

Confident that history won't repeat itself when color tv gets going, RCA has teamed up with Britain's largest tv renting company, Radio Rentals Ltd., to manufacture color tubes in northern England. The company they've formed-twothirds owned by RCA and onethird by Radio Rentals-is called RCA Colour Tubes Ltd. Colour Tubes' plant will be producing 19 inch and 25 -inch tubes by mid-1967 for British and West European markets. A good part of the output will go to Radio Rentals' set-producing facility. RCA president Robert Sarnoff predicts sales of color sets in West Europe will rise from about 300,000 in 1968 to nearly 2 million by 1972.

Looking. With foreign competition growing, British manufacturers have started to seek new markets with high-volume potential. One field is domestic appliances. Manufacturers are considering solid state speed controls, level indicators and temperature sensors for washing machines, speed controls for electric drills, even Peltiereffect devices for wine coolers. But as a spokesman for the industry points out, these ideas are for production in three years or so and will be little help in the tough period immediately ahead.

Robot tractor

Electronic robots may one day drive tractors where wise men fear to tread.

The English affiliate of the Ford Motor Co. recently demonstrated a remote-controlled tractor, largely as a promotion stunt. And although there is no program at the moment to put the robot into Ford's future, plans could well change. The demonstrations uncarthed potential applications ranging from hauling logs over ice-covered rivers in Norway to handling radioactive materials from atomic power stations.
Fenlow Products Ltd. and C\&L

AMP Incorporated
12, 13, 204 Garceau, Hargrave \& McCullough Inc.
Acopian Corporation Mort Barish Associates Inc Acromag Inc.
Watkins-Rogers Inc
Aero Jet Corporation Div. of General Tire \& Rubber Corp

146, 147 D'Arcy Advertising Company
Aerovox Corporation Hi-Q Division Lescarboura Advertising Inc
Airpax Electronics Inc.
Hen Bradley Company
135, 136
Fensholt Advertising Agency
Alpha Wire Corporation Campbell-Ewald Company
Amelco Semiconductor Corporation Sturges \& Associates
American Optical Company Fuller \& Smith \& Ross Inc.
American Potash \& Chemical Corporation Walker Brooks \& Associates
Amperite Company H.J. Gold Company

- Andrew Corporation Fensholt Advertising Inc.
Astrodyne Incorporated Tech/Reps Inc

Babcock Relays Div. of Babcock Electronics Corporation Leland Oliver Company
Bendix Corporation Semiconductor Products Div. MacManus, John \& Adams Inc.
Binary Electronics of California
18, 19

Binary Electronics of California 203

- Bourns Inc. Trimpot Division Allen, Dorsey \& Hatfield Inc.
Bud Radio Company Allied Advertising Agency Inc.
Bulova Watch Company, Electronics Division Frank Best Company Inc
Burroughs Corporation, Electronic Components Div. Conti Advertising Agency Inc.

Cedar Engineering Div. of Contro Data Corporation Colle, McVoy Advertising Inc.
Chemcut Corporation Adams Associates Inc.
Chuo Denshi K. K. Standard Advertising Inc.

- Clairex Corporation Michel Cather Incorporated
Communication Electronics Inc.
Consolidated Electrodynamics Corporation
Hixson \& Jorgensen Inc
Corning Glass Works, Electronics Products Tallant Yates Inc
- Hewlett Packard (F \& T Division) Lennen \& Newell Inc
- Hewlett Packard Loveland Division 1, 17 Lennen \& Newell Inc.
Hewlett Packard Sanborn Division Culver Advertising Inc
Hitachi Adv. Ltd Dentsu Advertising Ltd.
General Radio Company
K. E. Morang Company

Globe Union Inc. International Division
Stral Advertising Company Inc.
Guoebrod Bros. Silk Company, Inc.

Hoffman Engineering Company, 132
Semiconductor Div. Semiconductor Div. Jay Chiat \& Associates
Honeywell Test Instrument
Hughes Aircraft Company
Hysol Corporation
Barber \& Drullard Inc.

- IMC Magnetics Inc

Classified Advertising

F. J. Eberle, Business Mgr.
EMPLOYMENT OPPORTUNITIES 206-207
EQUIPMENT
(Used or Surplus New) For Sale206

ADVERTISERS INDEX

Atomic Personnel Inc.
J. J. Candee 206
Instruments \& Machines Inc. 206
Lear Siegler Inc. 206
Pan Am Guided Missiles Rang 207

Semiconductor Sales of Calif.206

Radio Research Instrument Co.

- For more information on complete product line see advertisement in the latest Electronics Buyers' Guide
\square Advertisers in Overseas Advertising Section

[^10]- Sorensen Operation, Raytheon

Electronics advertisers

McGraw-Hill Book Company
Machlett Laboratories Inc

- P. R. Mallory \& Company Mfg. Division

Marconi Instrument Armand Richards Advertising Agency
Martin Company
Maryland Telecommunications Inc. Ray E. Finn Advertising
Matsunaga Mfg. Company, Ltd. Asia Advertising Agency Ltd.
Microwave Electronics Corporation Bonfield Associates
Motorola Semiconductor Products Lane \& Bird Advertising Inc.

Newark Electronics Corporation Stral Advertising Company
Newport News Shipbuilding \& Dry Dock Cargrill Wilson Acree Company
Non-Linear Systems Inc. Barnes/Champ Advertising
North Atlantic industries Inc. Murray Heyert Associates
Nucleonic Products Company Enyart \& Fose Advertising Inc.

Permag Corporation

Princeton Applied Fesearch Corporation Mort Barish Associates Inc.

RCL Electronics Inc. Morvay Advertising Agency
RHG Electronics Labs Inc. S. M. Sachs \& Associates Inc

Radio Corporation of America Al Paul Lefton \& Company
Radio Materials Company Div. of P. R. Mallory Gallay Advertising Inc
Raytheon Company, Components Division
Fuller \& Smith \& Ross Inc.
Raytheon Computer Martin Wolfson Advertising
S. D. Industrial Dept

Maurice Paulsen Advertising
Semtech Corporation Burress Advertising67

Signetics Corporation
Cunningham \& Walsh Inc
Silicon Transistor Corporation
Sippican Company

Electronic Marketing Assistance
Slater Electric Inc.
Kane Light Gladney Inc.
Solitron Devices Inc. Haselmire Pearson Advertising Company
James Advertising Inc.
Spectra-Physics

Neals \& Hickok Inc
Sperry Rand Corporation
Sprague Electric Company Harry P. Bridge Co. Electronic Components Meek \& Thomas Inc Rumrill Hoyt Inc
Struthers-Dunn Inc.
Superior Tube Company
Sylvania Electronics Systems Brian Advertising

TRW Capacitors

Tektronix Incorporated Telonic Industries Inc.
Jansen Associates Dan L. Baxter Inc. Precision Connector Div

Ulano \& Company
Ultra Carbon Corporation Philip Stogel Company Palm \& Peterson Inc

- Vitro Corporation of America

4th Cover

Hal Lawrence Advertising Incorporated

- Spectrol Electronics Company 77. OAS 3 Jones, Maher Roberts Advertising
Sperry Electronic Tube Division Reach McClinton \& Company

Stackpole Carbon Company

Stromberg Carlson Corporation Harry P. Bridge Company Gray \& Rogers Advertising

Synthane Corporation 185
Arndt, Preston, Chapin, Lamb \& Keen Inc Fuller \& Smith \& Ross Inc

75 Hugh Dwight Advertising Inc.
exas Instrument Incorporated Semiconductor Division 112, 113, 137

Transitron Electronic Corporation, Larcom Randall Advertising Inc.

81, 187
Byrde, Richard \& Pound Inc
14 Church \& Guisewite Advertising

- United Transformer Company 2nd Cover

Victoreen Instrument Company Buchen Advertising Incorporated

- Weinschel Engineering Company OAS 1 George T. Petsche Advertising
Westinghouse/ Metals Division McCann/ITSM
Westinghouse Semiconductor Division

Weston Instruments (Archbald Division)

- For more information on complete product line see advertisement in the latest Elec. tronics Buyers' Guide
- Advertisers in Overseas Advertising Section

Advertising sales staff

Frank E. LeBeau [212] 971-6464
Advertising sales manager
Allanta, Ga. 30309: Michaed H. Miller, 1375
[404] TR 5 -0523
Boston, Mass. 02116; William S. Hodgkinson
McGraw.Hill Building, Copley Square.
$[617] \mathrm{CO} 2 \cdot 1160$
[617] CO 2-1160
Chicago, III. 60611: Robert M. Denmead
A. Bradley MacKimm, 645 North Michigan

Avenue,
[312] MIO 4-5800
Cleveland, Ohio 44113: William J. Boyle, 55 Public Square, [216] SU 1.7000
Dallas, Texas 75201: Richard P. Poole, 1800 Republic National Bank Tower,
[214| |रl 7-y/21
Denver, Colo. 80202: Joseph C. Page, David M. Watson, Tower Bldg., 1:00 Broadway,
[303] 255.5484

Detroit, Michigan 48226: J Bradley
MacKimm, 856 Penobscot Building
[313] 962-1793
Houston, Texas 77002: Kerineth George,
2270 Humble Bldg..
Los Angeles, Calif. 90017: Ian C. Hill, John G. Zisch, 1125 W, 6tt St., [213] HU 2-5450
Minneapolis, Minn. 55402: J. Bradley Mackimm, 1104 Northstar Center [612] 332.7425
New York, N. Y. 10036:
Donald R. Furth [212] 971-3615
James R. Pierce [212] 9713615
George F. Werner [212] $971-3615$
Philadelphia, Pa. 19103: William J. Boyle, Warren H. Gardner, Jeffrey M. Preston, 6 Penn Center Plaza,
[215] LO 8-6161
Pittsburgh, Pa. 15222: Warren H. Gardner, 4 Gateway Center, [412] 391-1314
Portland, Ore. 97204: James T. Hauptli,
Pacific Building, Yamhill Street,
[503] CA $3-5118$
St. Louis, Mo. 63105: Robert M. Denmead The Clayton Tower, 7751 Carondelet Ave. [314] PA 5-7285
San Francisco, Callf. 94111 : James T. Hauptli, 255 California Street, [415] DO $2-4600$
London W1: John W. Patten, Edwin S. Murphy Jr., 34 Dover Street,
Hyde Park 1451
Milan: 1, via
Baracchini Phone: 86-90-617 86-90-656
Frankfurt/Maln: Gerd Hinske, Joseph Wuensch, 85 Westendstrasse
Phone: 772665 and 773659
Geneva: Michael R. Zeynel,
Phone: 319560
Paris VIII: Denis Jacob, 17 Avenue Matignon ALMA-0452
Tokyo: Nobuyuki Sato, 1, Riotohiracho Shiba, Minato-Ku [502] 0656
Osaka: Ryosi Kobayashi, 163, Umegee-cho,
Kilta-ku [362] 8771
Wallace C. Carmichael [212] 971-3191
Manager Electronics Buyers' Guide
David M. Tempest [212] 971-3139
Promotion manager
Milton Drake [212] 971-34:35
Research and circulation manager
Wallis Clarke [212] 971.21 .37
Assistant to sales manager
Wallace C. Carmichael [212] 971-3191
Business manager
Stephen R. Weiss [212] 97 1-2044
Production manager
Thomas M. Egan [212] 971 -3140
Production manager Electronics Buyers' Guide

Our DTL offers one feature we didn't license

EI

on-time delivery

ITT is licensed to build all DTL integrated circuits from the 930 series. Quantity production is a reality in ITT Semiconductors' facility in West Palm Beach, Florida.

Doubtful? Ask your ITT Semiconductor distributor, who has plenty of DTL circuits in stock. Ask your ITT Semiconductor factory salesman, who can arrange two-week ARO shipment of your quantity orders.

It's easy to recognize the DTL circuits that come from ITT in West Palm Beach. They're the ones you don't have to wait for.

ITT Semiconductors is a division of International Telephone and Telegraph Corporation, 3301 Electronics Way, West Palm Beach, Florida.

Type Number	Circuit Function
MIC930	Dual 4-input Gate with Expander
MIC932	Dual 4-input Buffer
MIC933	Dual 4-input Expander
MIC944	Dual 4-input Power Gate
MIC945	R-S or J-K Flip-Flop
MIC946	Quad 2-input Gate
MIC948	R-S or J-K Flip-Flop
MIC949	Fast Quad 2-input Gate
MIC950	Pulse-triggered Binary

Electronics reader service

Use these handy post cards for more detailed information on: products advertised, new products, new literature.

Circle the number on the Reader Service post card that corresponds to the number at the bottom of the advertisement, new product item, or new literature in which you are interested.

Please print clearly. All written information must be legible to be efficiently processed.

If someone has beaten you to the past cards, you may obtain the needed information by writing directly to the manufacturer, or by sending your name and address, plus the Reader Service number, to Electronics Reader Service department.

All inquiries from outside the U.S. that cannot reach Electronics before the expiration dates noted on the Reader Service post card, must be mailed directly to the manufacturer. The manufacturer assumes all responsibilities for responding to inquiries. Electronics merely provides and clears requests for information from inquirer to manufacturer.

Correct amount of postage must be affixed for all mailings from outside the U.S.

To subscribe to or to renew Electronics

Fill in the "For Subscriptions" area on the card if you desire to subscribe to or renew your present subscription to Electronics. Send no money. Electronics will bill you at the address indicated on the Reader Service post cerd.

Multi-product advertisements

For information on specific items in multi-product advertisements which do not have a specific Reader Service number indicated write directly to manufacturer for information on precise poduct in which you are interested.

Address

Reprint service

All Electronics editorial matter available in reprint form:

For reprints of special reports and feature articles see list on right side of this page. Send your order to Electronics Reprint Department at the address indicated. To expedite mailing of your order for single reprints please send cash, check or money order with your order.

Bulk reprints of editorial matter can be ordered from current or past issues. The minimum quantity is 100 copies. The higher the quantity ordered, the more economıal the cost per copy. Prices quoted on request.

Business reply mail

No postage stamp necessary if mailed in the United States
Postage will be paid by

Electronics
Reader service department
Bo: 444
Hightstown, N. J. 08520

Business reply mail
No postage stamp necessary if mailed in the United States

First class

Permit no. 42
Hightstown, N. J.

To order reprints or for further information, please write to: Electronics Reprint Department, 330 West 42 nd St:eet, New York, N.Y. 10036. Telephone: Area code 212 971-3140.
Prices for the below listed reprints unless otherwise specified are 1.10 copies $50 \not \subset$ each; $11-24$ copies 35ϕ each; $25-99$ copies 25ϕ each; price for 100 or more is 204 each.

You may order any of the below listed reprints by key number.
Key no. R-90 Communications Satellites Part II. 18 pages. $75 \not \subset$
Key no. R-89 Communications Sateilites Part I. 24 pages. $75 ¢$
Key no. R-88 Belting Out Plastic Transistors On Mechanized Assemisy Lines 8 pages. 25 t
Key no. R-87 The Packaging Revolution In Microelectronics (Parts IV, V and VI. 32 pages). $\$ 1.00$
Key no.,R-86 Computer Time Sharing Part II 12 pages.
Key no. R-85 U.S. Electronics Markets 1966 24 page forecast report with 6 page foldout chart.
Key no. R-84 European Electronics Markets 1966. 16 pages with 4 page follout chart.
Key no. R-83 A Look At Japanese Electronics Technology 36 pages.

Key no. R-82 Computer Time Sharing Part 120 pages
Key no. R-80 The Packaging Revulution In Microelectronics (Parts I, II, and III. 32 pages). $\$ 1.00$
Key no. R-79 MOS Integrated Circuits 12 pages.
Key no. R-78 The Overlay Transistor 15 pages.
Key no. R-77 Cold Cathode Tubes (3 part series, 28 pages).
Key no. R-76 Automated Trains: Who's Orf The Right Track? 16 pages.
Key no. R-75 Biotelemetry
[2 Part series 16 pages].
Key no. R-74 UnijunctionTransistors, 24 pages.
Key no. R-64 Field Effect Transistors (Parts I, II and III. 64 pages). $\$ 1.00$
Key no. R-63 Silicon Power Transistors 8 pages. 25 ¢
Key no. R-60 Transistor Heat Dissipators, 32 pages.
Key no. R-31 1962 Electromagnetic Spectrum Chart, [22" $\times 30^{\prime \prime}$ foldout chart]. $\$ 1.00$

Who says 1-amp epoxy rectifiers can't stand humidity?

'Nrite for free water-soaked samples from ITT:

Choose the PRV rating that fits your application best and write for samples. We'll ship them immersed. You'll find that ITT epoxy rectifiers exceed the humidity requirements of MIL-STD-750. While you're at it, check for cool operation, low thermal impedance and extreme stability. All are made possible by ITT's patented* "double nail-head" design. Send for your free bottle of ITT rectifiers today! "Patent No. 3081374

ITT SEMICONDUCTORS
3301 Electronics Way
West Palm Beach, Florida
Please send me a pair of water-soaked 1-amp silicon epoxy rectifiers with the PRV rating I have indicated
] 100 V
$\square 200 \mathrm{Y}$
$\square 300 \mathrm{~V}$
$\square 800 \mathrm{~V}$
$\square 400 \mathrm{~V}$
titLE
COMPANY
ADDRESS
CITY
StATE \qquad ZIP

From bright sunlight to overcast starlight RCA thin-film semiconductive targets in Image Orthicons offer exceptionally stable periormance in B / W and color TV

The RCA line of camera tubes includes three Image Orthicons-7629A, 7967, and 8092A-equipped with RCA's latest advance in TV technology, thin-film semiconductive targets. They offer the high gain and tube sensitivity that can be equivalent to photographic film with an ASA exposure index of more than $10,000,000$.

RCA-7629A. Easy to set up and simple to operate, this Image Orthicon makes possible very low-light-level studio operation and remote pickup. It is excellent for industrial service, taking good black-and-white pictures with scene illumination as low as 2 to $3 \mathrm{~lm} / \mathrm{ft}^{2}$.. equivalent to film with an ASA index of 20,000 .

RCA-7967. This Image Orthicon, with a multialkali photocathode features low target-to-mesh capacitance, reduced microphonics, and S-20 spectral response. It can reproduce black-and-white scenes under extremely low-light-level conditions. Its sensitivity is equivalent to photographic film having an ASA index of ten million or more!

RCA-8092A.An Image Orthicon with field mesh, this tube makes possible full color pickup with scene illumination as low as $40 \mathrm{~lm} / \mathrm{ft}^{2}$. A quality tube noted for high resolution over a wide range of incident light levels, 8092A is available in sets of 3 with color-mated characteristics, with the designation 8092A/S.

If you are designing TV cameras, check into RCA's line of Image Orthicons. You'll find the one that's right for

[^0]: Joint Engineering Management
 Conference, American Institute of

[^1]: * Meeting preview on page 16

[^2]: 10 AMP TYPES
 $V C E 0=40 \mathrm{~V}$ to $80 \mathrm{~V} \quad \mathrm{VCBO}=50 \mathrm{~V}$ to 90 V
 $\operatorname{VCE}(\mathrm{s})=0.7 \vee$ Typ at $I C=5 \mathrm{~A}, \mathrm{IB}=0.5 \mathrm{~A} \quad \mathrm{PC}=25 \mathrm{~W}$ Switching Types: t on $<40 \mathrm{~ns}$

 1 off <300 ns at $\mathrm{IC}=3 \mathrm{~A}, \mid \mathrm{B}=0.3 \mathrm{~A}$
 Amplifier Types: $P o>25 \mathrm{~W}$ at $\mathrm{f}=50 \mathrm{MHz}, \mathrm{VCC}=30 \mathrm{~V}$, $\overline{P_{i n}}=5 \mathrm{~W}$

[^3]: PPRINEETDN APPLIED RESEARCH CORP. Dept. D
 Box 565, Princeton, N. J., Tel. (609) 9246835

[^4]: Components Division
 THE VICTOREEN INSTRUMENT COMPANY 10101 WOODLAND AVENUE • CLEVELAND, OHIO 44104 evioptan sales office grove holse. london ro. isleworth, midolesex. englano

[^5]: 'milton b. dobrin, arthur l. ingalls, and james a. long, 1965, velocity and frequency filtering of SEISMIC DATA USING LASER LIGht: GEOPhYSICS V. 30. PP. 1148.117 B ,
 *Trade mark, conductron corporation

[^6]: FAIRCHILD SEMICONDUCTOR/A Division of Fairchild Camera and Instrument Corporation 313 Fairchidd Drive. Mountain View, California (415) $962-5011$ (WX $910-379.6435$

[^7]: Flying L Corp., 100 S. Saginaw Blvd.,
 Saginaw, Texas 76079
 Circle 350 on reader service card

[^8]: ELECTRONICS DIVISION
 OF BULOVA WATCH COMPANY, INC.

[^9]: Developers and manufacturers of state of the art diagnostic instruments for basic and applied research.

[^10]:

 tion; Robert M. Withelmy, Controller Presticersts; John S Cooke, Vice President and Sccretary; John L. McGraw, Treasurer. Tht
 Ry MGGraw-Hill, Inc. All rights reserved, including the right to reproduce the contents of this publication, in whole or in part.

