ENDANGERED SPECIES
THE VANISHING U.S. FAB
PAGE 36

- What Lies Ahead for Europe's Chip Makers? 24
- For Chip Startups, Venture Capital is Tight 41
- How to Find a Global Labor Force 45
How Orbit's Fores
Out of IC Devel
Foresight Takes the Bite Out of Mixed Signal IC Design.

Partition your analog/digital ASICs — and separately design and verify critical segments through fabrication — with Tiny Chips. You'll dramatically reduce NRE costs and move confidently and quickly from prototypes into production.

Foresight Makes Silicon Affordable.

Lower your ASIC development costs with Foresight, the multi-project wafer service with guaranteed quick turnaround.

Foresight is Available:

- In 36 different CMOS Processes
- With feature sizes down to 1.2 microns
- CCD Processes

Ready. Set. Fab.

Foresight runs start every two weeks, so you can meet even the tightest deadlines — whatever your design rules.

<table>
<thead>
<tr>
<th>Foresight Run Schedule: 1991</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 10, 24</td>
</tr>
<tr>
<td>May 8, 22</td>
</tr>
<tr>
<td>Jun 5, 19</td>
</tr>
<tr>
<td>Jul 3, 17, 31</td>
</tr>
<tr>
<td>Aug 14, 28</td>
</tr>
<tr>
<td>Sep 11, 25</td>
</tr>
<tr>
<td>Oct 9, 23</td>
</tr>
<tr>
<td>Nov 6, 20</td>
</tr>
<tr>
<td>Dec 4, 18</td>
</tr>
</tbody>
</table>

Save Time and Money.

Call Orbit Semiconductor for the information you need to get started. Contact Technical Marketing, Orbit Semiconductor, 1230 Bordeaux Dr., Sunnyvale, CA 94089. Or call (408) 744-1800 or (800) 331-4617. In CA (800) 647-0222. Fax (408) 747-1263.

What others promise, we guarantee.
Good Sines & Bad Signs

Looking for a low-noise, fast-switching signal source?

Good Sines

Whether it's automatic test equipment, satellite uplinks, EW communications or imaging systems, Programmmed Test Sources has a frequency synthesizer to fit your needs. GE MRI units, Teradyne Testers, Varian Spectrometers... all use PTS synthesizers.

Bad Signs

And while other manufacturers have big dollar signs, PTS synthesizers start as low as $2,010.

PTS manufactures a complete line of precision synthesizers covering the 100 KHz to 1 GHz frequency range with switching times as fast as 1µ second for our direct digital models. And plenty of other options as well, like resolution down to .1 hertz (millihertz available as special order), GPIB and digital phase rotation.

Just as important, along with every PTS synthesizer comes our "absolutely everything covered" 2-year warranty. At the end of two years comes our flat $350* service charge for any repair up to the year 2001! PTS has a commitment to quality you won't find anywhere else.

Find out how PTS synthesizers used the world over can help you in your application today. Call for our complete catalog, or to talk to an applications engineer. *$500.00 for PTS 1000.

Call (508) 486-3008 Fax (508) 486-4495

PTS

PROGRAMMED TEST SOURCES, Inc.
9 Beaver Brook Road, P.O. Box 517, Littleton, MA 01460

CIRCLE 209
For vendor reduction. Think about it—ROHM has the broadest product line in the industry. Even broader than Motorola, Panasonic, or Siemens.

We've got the resistors, capacitors, and discretes you need every day, with AQLs in parts-per-billion. You can wring out your costs and save mountains of time.

But we're more than a jellybean store. Just look at our dense hybrids, with component counts up to 50/cm³. And our modules, printheads, flat panels and displays—subassemblies that can shave precious days off your time-to-market, or ease the hit on development budgets.

ROHM puts you in the super-market!
At commencement ceremonies throughout the country last month, speakers stood before graduating classes and spoke passionately of this generation of young people taking over the reins of power in years to come. At about that time—the last week of May—Charlie Sporck, who for the past 24 years was the guiding force behind National Semiconductor Corp., retired. In a way, Sporck's departure makes the message of those commencement addresses particularly apt for a semiconductor world in which the torch is being passed on. The old-liners have reached maturity, and their positions in the industry are being challenged by the new breed—the graduates, if you will—with their different world view. It has always been thus, but the process leaves the tantalizing questions of who these new managers are and what they will do differently.

One answer is provided by James C. Collins and William Lazier in *Reaching For Greatness: Turning Your Business into an Enduring Great Company*. They maintain that the traits of today's young managers are no different from those they are supplanting. Indeed, say the authors, who are faculty members at the Stanford University Business School, modern management practices are really age-old concepts. That's why there are companies around now that were started in the 1800s. The Stanford pair declares that the stereotypes of managers being either engineering or marketing driven are not relevant. Good managers are those who are good at both. A high-tech industry begins with a technical innovation, to stay competitive requires good business management.

Gilbert F. Amelio, the new president and CEO of National, agrees. He says that many companies know how to build state-of-the art devices, and so technology is less an art and much more a well-defined science. The CEO must be more conscious of issues such as quality, customer service, time-to-market, cost of capital, and so on. Today's young companies are headed by managers well aware of these business issues. Collins and Lazier cite T. J. Rodgers, president and CEO at Cypress Semiconductor Corp., and Bob Miller, chairman and CEO at MIPS Computer Systems Inc., as examples of engineers who have become good businessmen.

One common trait among those on Collins and Lazier's list of great companies is they are all manufacturers. Although the authors stop short of making manufacturing a requisite for greatness, the list calls into question the phenomenon of the "fabless" semiconductor company, which is discussed in our cover story on page 36. The great industrial builders provided the U.S. with the economic backbone on which it grew. Whatever the future may hold for the 1991 graduates—and for the successors to the semiconductor industry's Charlie Sporcks—let's hope they become the great builders of the 21st century. \[

JONAH McLEOD
EDITOR

ELECTRONICS • JULY 1991
The secret to better Ethernet is NICE.
And simple.

Introducing NICE. The new MB86960 Network Interface Controller with Encoder/Decoder from the Advanced Products Division of Fujitsu Microelectronics.

With the unveiling of NICE, Ethernet LAN technology reaches a new level of integration. Now LAN system designers can have an Ethernet controller, buffer management unit and 10 Mbit per second Manchester encoder/decoder on a single chip. So you can now develop high-performance LAN boards more cost effectively than ever before.

For instance, design adapter cards for high-performance buses using just two Ethernet chips instead of the usual three. Simply combine NICE with our new MB86962 10BASE-T transceiver, the most advanced solution for twisted-pair needs. Or choose our MBL8392A if you need a coax interface.

And used with our MB86953 PC Bus Interface Unit, NICE can further reduce costs and complexity when developing PC XT/AT adapter cards. Replacing the need for up to ten separate parts.

All in all, NICE has some impressive features to enhance your LAN's entire performance. Such as a data bus transfer rate of 20 Mbytes per second. A low-power standby mode. And bus compatibility for most standard microprocessors.

But what's really nice is our understanding of the marketplace. As Fujitsu's American arm, we know what it takes to get you there a lot faster. With greater cost effectiveness.

So now that the secret is out, call us at 1-800-866-8608, And discover NICE. The world's most advanced, highly-integrated Ethernet solution.

Fujitsu
Delivering the Creative Advantage.

NICE is a trademark of Fujitsu Microelectronics, Inc. XT and AT are trademarks or registered trademarks of IBM Corp. © 1991 Fujitsu Microelectronics, Inc. FUTSU MICROELECTRONICS, INC., Advanced Products Division, 77 Rio Robles, San Jose, CA 95134-1807.
COVER: ENDANGERED SPECIES
Chip makers ponder a fabless future
With state-of-the-art wafer fabs at $300 million and climbing, few U.S. semiconductor houses can afford one; industry watchers worry about the impact on quality, manufacturing know-how—and competitiveness.

Deploying labor on a global scale
Finding, training, and retaining a skilled labor force poses a strategic challenge for U.S. semiconductor manufacturers in the global village of the 1990s.

The venture pool is shrinking...
...and there's none at all available for semiconductor companies that want to build a fab; the industry is turning to partnering relationships of various sorts as an answer.

NiCad batteries: toxic shock?
With environmental concern growing over the disposal of cadmium, manufacturers of computer and telecommunications equipment are looking toward new rechargeable battery technology; the one most likely to succeed is nickel metal hydride.
NEWS ROUNDUP

18
News Front
• Lotus Development expands 1-2-3 to the Macintosh
• This PCB board "looks" like a ship
• Coalition closes in on software solution to design problem
 • How to see manufacturing differences: Berkeley study may help

22
Products to Watch
• IBM grabs the optical lead with a 3.5-in. drive
 • Fluent debuts its audio-video boards and system software
• AMD revs its MACH PLD family to 1,800 gates
 • Intel's i860 XP is a turbo processor
• Apple to deliver its multimedia architecture in late 1991

35
European Observer
• EC computer firms making hay in Eastern Europe
• Jessi and Esprit get a new CMOS mission
 • USSR to work on digital radio
• Another Eastern deal: SEL and Czechoslovak firm

WORLDWIDE NEWS

24
Semiconductors
Can big be beautiful? European chip makers prepare for a new era amid a swirl of merger talks

27
Networks
A new breed of single-chip solutions arrives to handle systems-level networking problems

28
Computers
New speed records are being set but sales stay slow in the massively parallel event of the supercomputer olympics

Companies covered in this issue, indexed to the first page of the article in which each is mentioned.

Acer Inc. ... 12
Actel Corp. ... 36
Active Memory Technology Inc. 34
Advanced Micro Devices Inc. 22, 36
Alcatel NV ... 35
Antares Group Inc. 18
Apple Computer Inc. 12
Apple Taiwan .. 12
Applied Computer Solutions Inc. 18
AT&T Co. ... 45
Battery Products Alliance 50
BBN Advanced Computers 34
Bronx 2000 ... 50
Bull SA .. 35
Chips & Technologies Inc. 41
Cypress Semiconductor Corp. 4, 36, 41
Cyrix Corp. ... 41
Datablue Europe Ltd. 24
Dynalab ... 12
Eagle Technology Inc. 27
Fluent Machines Inc. 22
Fujitsu Ltd. ... 35, 36
Gates Energy Products Inc. 50
Hitachi Ltd. ... 24
IBM Corp. ... 22, 35
ICL Ltd. ... 35
Ing. C. Olivetti & Co. 35
Intel Corp. ... 22, 36, 41
Intel Supercomputers 34
International Data Corp. 34
Kendall Square Research Co. 34
Kleiner Perkins Caufield & Byers 41
Lotus Development Corp. 18
LSI Logic Corp. ... 36, 41
Maspar Computer Corp. 34
Merrill Pickard Anderson 34
Micron Technology Inc. 36
Microsoft Corp. 18, 41
MIPS Computer Systems Inc. 4, 41
Mohr, Davidow Ventures 41
Morgenthaler Ventures 41
Motorola Inc. .. 24, 36, 45
National Semiconductor Corp. 4, 27
National Venture Capital Association 41
NCR Corp. ... 45
NCube Inc. ... 34
NEC Corp. ... 36
Novell Inc. ... 27
Ovonic Battery Co. .. 50
Paradigm Technology Inc. 41
Philips Electronics .. 24
Popov Institute .. 35
Quality Semiconductor Inc. 41
Rambus Inc. ... 41
Sevin Rosen Bayless Venture Fund 41
SGS-Thomson .. 24
Siemens AG ... 24
Sony Corp. ... 22
Standard Elektrik Lorenz AG 35
TA Associates .. 41
Tandy Corp. ... 50
Teledyne Wah Chang Albany 50
Tesla Liptovsky Hradok 35
Texas Instruments Inc. 36, 41, 45
Thinking Machines Corp. 34
Thomson SA ... 24
Toshiba Corp. .. 36, 50
University of California at Berkeley 18
University of California at Berkeley 18
Vallays Corp. ... 18
Varta Batterie AG .. 50
Verbatim Corp. .. 22
VLSI Research Inc. 36

Did you hear about the optical attenuator that fell from the sky?

It hit the ground running.

"Roger, Falcon 20, you're cleared for landing. Braking action advisory. Ice on the runway." The veteran pilot of the cargo plane had landed at Link Field before, but the tower's report was a cold reminder that the airstrip ended in a 75-foot cliff.

On touchdown, the jet skidded out of control. Within seconds, it shot off the cliff like a ski jumper and tumbled down the steep embankment, cargo flying in all directions.

Minutes later, rescue teams were helping the pilot and co-pilot from the wreckage. The pungent smell of jet fuel filled the air, so crews sprayed fire-retardant foam on everything. Including an HP optical attenuator which was on its way to a customer.

Two days later, our customer received the instrument. Fostering little hope, their engineers ran routine tests anyway. The optical attenuator not only survived, it passed all specifications.

Stories like this underscore why engineering managers give HP the highest rating for reliability. And we're always improving. Our Total Quality Control program has increased the quality of our products ten-fold over the last 10 years.

So, when design and manufacturing productivity are at stake, rely on HP. Because you never know when you'll have to hit the ground running.

There is a better way.
The competition
You can call us at

It's enough to make other VME board builders call us names. Or call it quits.
A new 23 MIPS VME single board computer based on the 88100 RISC microprocessor. Or a new 20 MIPS VME board based on the 68040 CISC microprocessor.
Both are built by Motorola. And each is offered for a modest sum.

A mere $3,995 per board.
For all you multiplication buffs out there, that comes out to just $174/MIPS for the RISC board.
A far cry from the $1,000/MIPS you've been asked to pay for somebody else's board.
And it's just $200/MIPS for the

Motorola and the () are registered trademarks of Motorola, Inc. ©1991 Motorola. All rights reserved.

World Radio History
will call us ruthless.
1-800-234-4VME.

CISC board. A whole lot less than you'll pay elsewhere.

The MVME187 (RISC) and MVME167 (CISC) boards employ VME D64 architecture. Boosting the VMEbus bandwidth to a full 40MB/s.

And both boards come with four 32-bit timers. SCSI and Ethernet connections. Plus the Motorola name and all it implies.

For a free color brochure, call the 800 number above. And see why the competition undoubtedly wishes we'd call the whole thing off.

MOTOROLA
Computer Group
THE U.S. COMPUTER MAKER HOPES TO TAKE A BITE OF A LARGE MARKET
PLANTING ANOTHER APPLE

BY KRISTA M. CONLEY

How friendly is user-friendly? In the case of the Macintosh computer's vaunted graphical user interface, it's friendly enough to accommodate what is arguably the most difficult language in the world: Chinese. The Mac's migration to Chinese is part of Apple Computer Inc.'s strategy to edge in on a lucrative and growing market in cash-rich Taiwan. This island nation, officially called the Republic of China on Taiwan, competes with Japan in having the largest foreign-exchange reserves on the globe. Right now Taiwan is No. 1, with $75 billion to Japan's $70 billion.

Taiwan also ranks as the world's 13th-largest trading economy and America's sixth-largest trading partner, with 1990 commerce between the two countries estimated at $34 billion. Taiwan's per capita income hit $8,000 in 1990, the fourth-highest in Asia, and government planners hope that figure will reach $14,000 by the end of this year.

But this Pacific Rim tiger isn't satisfied with an economy based on low-value-added "Made in Taiwan" products, such as shoes, textiles, toys, and electronic components, which have long been its mainstay exports. Hit last year by an economic slowdown that cooled the overheated growth of the 1980s, the Taiwanese government has just embarked on a massive, six-year national development plan aimed at propelling this tiny country, which is roughly the size of Connecticut, into developed-nation status. Taiwan will spend a staggering $313 billion building up its infrastructure—roads, railroads, airports, harbors—and funding 10 high-value-added industries, including telecommunications, automation, semiconductors, and pollution control.

The economic bustle is good news for Taiwan's personal computer industry. Unlike the U.S. and western Europe, where PC sales are toddling along at single-digit growth rates, Taiwan's computer market is set to expand 15% to 20% a year through 1993, according to the American Institute in Taiwan, the U.S. government's official, quasi-diplomatic agency there. (The U.S. does not formally recognize Taiwan; America normalized relations with the People's Republic of China in 1979.)

"By 1995, Taiwan will install cumulatively a total of 30,000 large [computer] systems and 2.3 million PCs," says analyst Shirley Wang in a recent American Institute report. "Taiwan is entering into an information era. Not only are private business firms increasingly making use of computer systems to facilitate business affairs, the authorities are also aggressively taking steps to modernize administrative work to provide better services for the public," Wang says.

Apple wants a piece of the action, and it is poised to make inroads on what is currently a DOS domain occupied by Taiwanese-built IBM PC clones from companies like Acer and Mitac. Its means of entry: ZhongwenTalk, seven built-in Chinese fonts, and TurboWriter, a word-processing system developed to handle English and Chinese in a single program. A computer that can accommodate Chinese as well as a Chinese-English mix would seem to have a special competitive edge, and some Taiwan hands believe the Chinese Mac will find many willing buyers.

For his part, Woo believes the machine will have broad appeal. In his view, there is no meaningful difference among competing PC clones. "There's not that much difference in functionality and pollution control.
The Only Words You Need To Know In DSP

Easy, Plug-In Solutions

The world of DSP is far from simple. You need a secret code book to wade through its bevy of acronyms, a doctorate in mathematics to create its complex algorithms, and years of signal processing expertise to develop the necessary hardware.

Or you need Burr-Brown. We've developed a line of easy, painless, plug-in solutions that let you concentrate on your application instead of the hairy details.

From Chips to Systems

- Need a direct interface ADC or DAC for one of today's DSP processor chips?
- Need a DSP processor for your VME or PC platform?
- Need one with high speed, high accuracy data conversion, single channel or multi-channel, or high dynamic range?
- Need an easy way to create and execute DSP algorithms?
- Need an inexpensive and simple approach to analyzing your analog signals?
- Need a custom solution?

We have your solution waiting, in most cases, from off-the-shelf.

Over 30 Years of Signal Processing

Ask around. We've been making and delivering high performance precision microelectronics for over 30 years to a worldwide customer base. We're known for the highest performing data conversion products for signal processing available, and since 1986, engineers have known us for some of the best DSP tools around.

For more information about our product line or for a copy of our free brochure, call 1-800-548-6132, contact your local salesperson, or write:

Burr-Brown Corporation
P.O. Box 11400
Tucson, AZ 85734
Fax (602) 741-3895
Penton Publishing's Camera Department started recycling chemicals from film wastewater 25 years ago... long before the ecologically-smart idea was widely recognized.

For almost as many years, the Penton Press Division has been recycling scrap paper, obsolete inventory, and printing press waste materials. In 1991, Penton Press will recycle some 5500 tons of paper, 9 tons of aluminum plates, and 3 tons of scrap film negatives. Furthermore, the Press Division has invested $500,000 in air pollution control equipment.

Company-wide, the recycling spirit has spread from Cleveland headquarters to offices throughout the country. Penton employees are enthusiastic participants in expanding programs to re-use paper, aluminum cans, and other waste materials.

Penton Publishing believes these practices make a significant quality-of-life difference for people today... and will help create a safer, healthier environment for generations to come.
and performance. PCs are like a commodity, where price is the only differentiation," Woo says. He believes that Taiwan's economic development has reached the point where businesses and consumers are now looking for "quality and comfort, as well as service and support"—all of which the Chinese Mac amply supplies.

Importantly, Apple Taiwan is committed to forging partnerships with local developers to provide more innovative Chinese solutions for Mac users. "Apple cannot do it alone," Woo says. "It must rely on innovative third-party companies to round out leading-edge applications that best fit our customers' computing needs." One such deal was with a Taiwanese company called Dynalab, which developed Dynafont, one of the Mac's Chinese-language fonts.

In addition, Apple's dedication to the Taiwan market is revealed by the company's active procurement on the island. During 1989 and 1990 combined, Apple purchased $250 million worth of components from Taiwan, including integrated circuits, monitors, printed-circuit boards, and power supplies. This sourcing activity, in which Apple is joined by other U.S. computer makers buying components in Taiwan, is expected to continue.

Apple Taiwan oversees five core areas, with a startup staff of 15 employees: finance/administration, marketing, sales, distribution, and software development. There is no manufacturing arm. The company relies on direct distribution, working with 12 dealers on the island in an effort to reduce the number of levels between Apple and its Macintosh customers.

Several marketing approaches have emerged. Apple Taiwan is encouraging awareness of the Mac through advertising and the press, and attempting to prove that Apple is a long-term player in the Taiwan market. In addition, it has targeted two likely customer groups: people in creative industries, such as advertising and marketing, and people who have never used computers before.

"We want to create a market where no PC has gone before," says Woo.

For the advertising industry and other creative businesses, Apple produced a seminar to illustrate how the Mac can enhance innovation and productivity. Its next project is a "Personal Workshop" geared to small creative groups. The idea is to sell the Macintosh as a tool for productivity.

And what's it like to do business in Taiwan? "The economy of Taiwan speaks for itself," says Woo, who is very bullish on Taiwan's future despite the current slowdown. "By all means it's not paradise yet," Woo says, but he urges U.S. managers to view Taiwan's economic and political changes with a long-term perspective. One advantage to doing business in Taiwan, he says, is the plethora of highly qualified technical personnel, a skilled labor force that is supported by a competitive—and sophisticated—educational system.

There are some operational risks, however. Because the banking system is still government-run, not commercially operated, smaller companies may enjoy less access to financing than bigger ones. But the bank system is gradually opening, and industry watchers expect steady improvement in this area.

Another hangup may arise in communications: Apple Taiwan, for example, experienced a little glitch in the telecommunications area when applying for a leased line. Phone lines leading out of the country are still closely scrutinized, Woo says—"40 years ago it made sense for national security." After some bureaucratic haggling, Apple got its leased line.

On copyright matters, Woo says the government recognizes the importance of intellectual-property rights—in fact, it has raided and fined several Taiwanese companies for violations. Now that the government is committed to helping local companies develop application software, it is interested in having that software protected, says Woo. For U.S. companies, the challenge is to prove the benefits of buying original software.

Apple Taiwan represents a strategic effort by a U.S. PC manufacturer to gain market share not only through direct distribution, but through sourcing, developer partnerships, and consumer education. Woo offers this advice on doing business in Taiwan, not only to U.S. companies, but to companies operating worldwide: "Do it now," he says. "Any company interested in taking advantage of the exploding market, do it now. You'll need to position your product, nurture your business image, and cultivate relationships with your end-user. All of that takes time."
OUR MEMORY CAN GET

FLAMMABILITY

On flammability, our module people take great pains to assure that our products meet standards. As a result, we guarantee that every Samsung memory module meets or exceeds the 94V-0 Underwriters Laboratory flame classification.

ELECTROSTATIC DISCHARGE

Unlike typical modules, Samsung memory modules—including those using our 4-meg DRAM—are thoroughly tested for all the important characteristics. And although the people who do this are nice, kind folks—well, when it comes to quality control they can get testy. To guarantee specs on electrostatic discharge, for instance, they test to assure each pin will withstand a minimum of 2000 volts.

LEAKAGE

Even in the era of the 4-meg DRAM, there’s still such a thing as a module with leaky pins. Many manufacturers just don’t inspect for leakage. You guessed it, our team does comprehensive tests. All pins on all modules are 100% tested to the data sheet leakage specification.
POWER CONSUMPTION
In this day and age there are enough power-hungry things without your memory modules getting that way. You want them to consume what they say they will. Ours are thoroughly tested not to exceed the spec.

DIMENSIONAL CONTROL
A too-big or too-small module isn't good for much. Samsung modules are tested to perfectly match JEDEC standard dimensions, including 50 ± 3 mil thickness. Since they are, and are also tested on all the other features detailed here, we can't see why you'd ever buy from anyone else. For information on modules with our 4-meg DRAMs, or the rest of our line, write to the testy people at Memory Module Marketing, Samsung Semiconductor, 3725 North First Street, San Jose, CA 95134. Or call 1-800-669-5400, or 408-954 7229.
LOTUS EXPANDS 1-2-3 TO MAC

Lotus Development Corp. is busy extending its strategy to provide versions of the 1-2-3 spreadsheet for all major computer platforms. The Cambridge, Mass., firm last month finally hit the street with 1-2-3 for the Apple Macintosh after considerable slippage, and announced that a version for Microsoft Corp.'s Windows 3.0 environment will be available this summer. In another June development, Lotus brought out an updated 1-2-3 for Sun Sparc workstations, and added Lotus Realtime to its line. Realtime on Sparc workstations enables users to integrate real-time information from other data bases into 1-2-3 for immediate analysis.

COALITION CLOSES IN ON SOFTWARE SOLUTION TO DESIGN PROBLEM

The people who are trying to develop more reliable and manufacturable designs are making progress. On one front—elimination of 3-d tolerance stack-up problems—manufacturing software vendors Applied Computer Solutions Inc. and Valisys Corp. have allied with a coalition of U.S. firms to develop a state-of-the-art package that analyzes the difficulties. The partner list is an impressive collection of blue-chip American manufacturers: Chrysler, Eastman Kodak, Ford, General Dynamics, and IBM.

Stack-up problems can materialize when the manufacturing tolerances of assembled parts total up to yield assemblies that have large variations in their dimensions. The goal of the newly formed coalition is to shepherd the definition, development, and testing of advanced software that minimizes such difficulties.

The software would have applications in consumer, aerospace, and automotive electronics. It would also enable design engineers to quickly perform difficult tolerance-analysis studies.

The key benefit of the new software would be its ability to produce final designs that are desensitized to process variations, "a trick that the Japanese have mastered through many years of process control and process manipulation," says Valisys CEO John Clancy.

Real-time manufacturing data, supplier data, and other process capability statistics will feed directly into the tolerance analysis process. The new system is also expected to help perform what-if tolerance trade-offs based on actual process capabilities.
The SR620 brings graphic statistical analysis to time interval and frequency measurements. The SR620 shows you more than just the mean and standard deviation - multimode frequency distributions or systematic drift for example. Histograms or time variation plots are displayed on any X-Y oscilloscope, complete with Autoscale, Zoom, and Cursor functions. Hardcopy to plotters or printers is as easy as pushing a button.

Of course, the SR620 does everything else you'd expect from a high resolution universal counter, such as frequency, period, time interval, pulse width, rise / falltime, and phase measurements. The SR620 offers 25 ps single-shot time and 11 digit frequency resolution and complete statistical analysis, all for a fraction of the cost of comparable instruments.

For the whole picture, call SRS and ask about the SR620.

SR620 Output

HP5370B Output

50/ div rel 100,000 ns
mean R -38 ps
sigma R 044 ps
max R 096 ps

100.038 ns

The SR620 brings graphic statistical analysis to time interval and frequency measurements. The SR620 shows you more than just the mean and standard deviation - multimode frequency distributions or systematic drift for example. Histograms or time variation plots are displayed on any X-Y oscilloscope, complete with Autoscale, Zoom, and Cursor functions. Hardcopy to plotters or printers is as easy as pushing a button.

Of course, the SR620 does everything else you'd expect from a high resolution universal counter, such as frequency, period, time interval, pulse width, rise / falltime, and phase measurements. The SR620 offers 25 ps single-shot time and 11 digit frequency resolution and complete statistical analysis, all for a fraction of the cost of comparable instruments.

For the whole picture, call SRS and ask about the SR620.

SR620

- 4 ps single shot least significant digit
- 25 ps rms single shot resolution
- 1.3 GHz maximum frequency
- 10 Hz frequency resolution
- Sample size from 1 to 1 million
- Frequency, period, time interval, phase, pulse width, rise and fall time
- Statistics - mean, standard deviation, min max, and Allan variance
- Analyzer display on any X-Y oscilloscope
- Hardcopy to printer or plotter
- GPIB and RS232 interfaces
- Optional oven timebase

$4500

1290 D Reamwood Avenue, Sunnyvale, CA 94089 TEL (408) 744-9040 FAX 4087449049 TLX 706891 SRS UD
Whether you're launching a new car, a new chip, or a new magazine, you'll get it to market faster with a new HP Apollo RISC workstation.

And that speed won't cost you, either. Those 76 MIPS come for less than $20K for grayscale; $27K for color. And, if 57 MIPS will launch you fast enough, you can get that for under $12K.

Of course, you'll go nowhere fast unless your applications run on our workstations. Chances are very good that they do. The top programs are already ported. And more than 3,600 applications are now available on PA-RISC.

HP's open design allows for an easy fit into your multivendor network. As well as for easy upgrades when you're ready to grow.

The sooner you get your hands on a new HP Apollo RISC workstation, the sooner you'll be launching new products. So
For electrical CAD, software is available from Cadence Design Systems; Mentor Graphics; Zulcen; Racal-Redac; and VLSI, among others.

For Electronic Publishing, Desktop Productivity and Database, available software includes Informix; Oracle; ASK Ingres; Interleaf; and Island Graphics.

call 1-800-637-7740, Ext. 2062 for more information. It could help your business really take off.
IBM GRABS THE OPTICAL LEAD

IBM Corp. is making a strong bid to set a new data-storage standard with a 3.5-in. optical drive that operates in both the read-only and read/write modes.

The PS/2 Rewritable Optical Drive is the first to fit into the 3.5-in. form factor. It accepts 128-Mbyte removable disc cartridges that conform to physical standards already adopted by the International Standards Organization. IBM is promoting its file format as an ISO standard as well.

Early adopter Verbatim Corp., Charlotte, N.C., is shipping both the rewritable and the O-ROM (for optical read-only memory) discs that run in the drive, which features a SCSI interface and a 66-ms seek time. Verbatim will offer O-ROM authoring services that use the 3.5-in. writable disc as the source for the O-ROM master.

Although IBM appears to have a time-to-market as well as a technology lead on other systems houses, it is not alone in the small-format optical-drive race. Sony Corp. has a similar technology that utilizes a file format fairly close to IBM’s. It appears likely that IBM, Sony, and ISO can reach agreement on a single file-format standard.

O-ROM applications include the distribution of application software, data bases, and reference works. The erasable discs, on the other hand, can be thought of as 128-Mbyte floppy disks that can store data, sound, graphics, animation, and video.

Priced at $1,795, IBM’s drives are available on mid- and high-end PS/2 models that use the MicroChannel bus architecture. A
Now, more than ever, as your memory designs get larger and your design space shrinks, you need to give us a call. We have the state-of-the-art memory capacities you want, and the package size you need. One of our newest memory modules is a low power, user-configurable 64-Megabit CMOS SRAM. It’s packed into a 3.0” x 3.5” ceramic flatpack and can stand temperatures from —55°C to +125°C. And, it can be configured as 8-Meg x 8, 4-Meg x 16, or 2-Meg x 32 just by grounding a different pin. It also features a maximum read/write time of 150ns, a 5 volt supply with a 120mA operating current, data retention current of less than 1mA, and a unique internal memory redundancy correction mode. Just right for those low power battery-backed flight recorder and data logger applications. If you need more memory, these modules can be combined to get you into the Gigabit range and beyond. And, as with all of our memories and memory systems, screening and burn in to Military standards are available options. Whether you need a few megabits of SRAM or EEPROM in a 32-pin DIP, or 8-Megabit of Flash PROM in a 34-pin package, we can help. We’re currently working on a 128-Megabit Flash PROM in a 3” x 3.5” flatpack. High speed, high capacity, workable temperature ranges, and small packages, we can make it happen. We have all the building blocks for your tiny systems, the memory and density for your ultimate memory dreams, and the products to help you anywhere in between. If it’s only a 1-, 2-, or 4-Megabit SRAM or EEPROM in a miniature package, an 80C31-based Microcontroller or 68020-based computer, a single-package memory system, a shoebox-sized super-computer array, or a multi-package management information system, we have the technology and the expertise to respond. Your imagination or ours, give us a call.

White Technology, Inc.
A wholly owned subsidiary of Ammar Instrument Corporation
4246 E Wood Street • Phoenix, Arizona 85040
Tel 602-437-1520 • FAX (602) 437-9120
CIRLE 188
For European semiconductor makers, big can still be beautiful—as well as necessary. "By the year 2000," says Jurgen Knorr, senior vice president of Siemens AG, "the middle-size players will be out of the semiconductor market. You will either be a relatively small niche-player or a very large company."

Speaking in Marbella, Spain, at the recent Dataquest European Semiconductor Industry Conference, Knorr agreed with the other top executives from the world's principal chip makers. The big companies have the $10 billion needed to invest in services, which will determine market share in the coming decade. Small players, which have well-defined market niches, can also find a way to stay profitable.

The big-is-beautiful theme was particularly apt because the conference was the eye of a storm of rumors that are swirling over the continent about possible mergers of Europe's three principal manufacturers of chips. Thomson SA, France's state-owned conglomerate, is reportedly trying to interest Europe's big three—Philips, SGS-Thomson, and Siemens—in getting together. But Philips Electronics says it is not interested. And Siemens AG executives say they want to deepen their ties with SGS-Thomson Microelectronics without going through a full merger.

However, it became clear to observers at the conference that mergers won't happen in the near future despite the advantages of size as well as political pressure to make such moves. Mitigating against any consolidations are the important differences among the companies, putting each in a position to exploit different market trends.

In the case of Philips, in the past few years the Eindhoven, Netherlands-based giant has maintained its position in the consumer electronics market while suffering heavily in computers and ICs. But the overall so-called "consumerization" of electronics puts Philips in a strong position again, analysts say. "Personal computers remain the largest growth area in European electronics—set to grow 18.3% between now and 1995—as well as the principal technology driver," says Jonathan Draheim, manager of the European Semiconductor and Design Automation Group for Dataquest Europe Ltd. But, thanks to the continuing transition to multimedia that the European PC will enjoy, Draheim predicts that European chip consumption will rise dramatically from about $50 million today to about $900 million by 1996.

In addition, as the prices of liquid-crystal-display modules fall, capabilities like image compression, video conferencing, and wireless communications will all be integrated into the PC. What's more, says Draheim, the user in all likelihood will buy the PC at a large retail outlet. "There are a lot of European consumers who have not yet approached a PC, but who will want a 'personal companion' that will integrate sound, video, and telephone," he adds.

Philips is positioning itself at every level to reach this new market, as Peter Draheim, director of the Semiconductor Product Division, showed at the conference. At the chip level, Philips is beginning production of a microcontroller with an operating voltage below 2 V. That puts less demand on the batteries, Draheim points out, making the personal companion much more portable. And at the product level, Philips is preparing for the production of laptops that will integrate these media.

Even as Philips concentrates on the consumer connection, Siemens is betting on a rise in prices for high-production ICs. According to senior vice president Knorr, the Munich-based company already can produce 50 million 1-Mbit dynamic random-access memories a year, and is preparing large capacity (he would not say how much) for the 4- and 16-Mbit models.

For Knorr, the DRAM will be the technology driver in the 1990s. Comparing projections for unit price against production volume, he showed that volume would reach a peak worldwide in the next five to 10 years. Then, DRAM prices will rise again as demand outstrips capacity.

Siemens has been slower than other Europeans to open foreign markets. An-
Actual output

20 WATTS

Now AC to DC

Actually meets

MIL-STD-2000
MIL-STD-810C
MIL-S-901C
MIL-STD-461C
MIL-STD-704D
NAVMAT GUIDELINES

Mil/Pac™ high-density military power supplies. Now you can order Abbott’s full mil-qualified compact power supplies in both DC and AC input models. Mil/Pacs come in 20W, 35W and 50W configurations, with single (5, 12, 15, 24, or 28V) or dual (±12V; ±15V) outputs. DC-to-DC models accept input from 14V to 32V. AC-to-DC models accept 1034 to 126.5V rms, 47-440 Hz single phase. All Mil/Pacs operate at temperature extremes from −55°C to +100°C. All are designed with a field-proven topology that has been verified by rigorous environmental stress screening.

Mil/Pacs are available with or without MIL-STD-2000. Either way, the specs are worth reading. Just write us at 2727 South La Cienega Bl., Los Angeles, CA 90034. Or call (213) 936-8185.
The Rumors are Flying!

OrCAD has released the ESP framework for the DOS environment. EDA departments all over the world are using OrCAD's Release IV software to design faster, better, for less money.

But . . .

The industry is buzzing about something else. It seems that this design tool manufacturer is once again breaking ground. OrCAD is working with the leader of the workstation industry:

Sun Microsystems.

That's right, OrCAD EDA tools on the SPARC® platform. If you want to get information (and who wouldn't?), call

(503) 690-9881.

OrCAD

More Designs From More Designers

CIRCLE 184
analysts at the conference emphasized the need for Europe’s semiconductor industry to achieve a global presence, but offer excellent local support.

The binational SGS-Thomson Microelectronics, based in Agrate Brienza, Italy, as well as Paris, is taking a totally different approach to the changes of the 1990s. Company president Pasquale Pistorio describes them as “the marketing phase” of microelectronics. So SGS-Thomson already has a number of key customers that are well-positioned to take advantage of what will be the most promising semiconductor market in Europe in the coming decade: mixed-signal ASICs. “Europe is world leader in telecom manufacturing,” says Dataquest analyst Mike Glennon, “and telecom calls for high-performance mixed digital and analog functions.”

SGS-Thomson’s Pistorio also insisted on the importance of service in the coming decade. Indeed, its emergence was a common thread in the conversations among Europe’s semiconductor executives at the conference. “When we meet here again 10 years from now,” says Motorola Inc. vice president Barry Waite, “the companies that have survived and are sitting around this table will be the ones who have met the service challenge of the ’90s.”

Asked, however, to explain how semiconductor producers are to cope with the cost of these services, the executives from the big companies were rather vague. “The cost doesn’t matter,” declared Kazuo Kimbara, senior managing director at Hitachi Ltd.

SINGLE-CHIP ETHERNET CHECKS IN THE NEW BREED

BY JACK SHANDLE

S
ingle-chip solutions are almost as old as Silicon Valley itself. But now an increasing number of them go beyond simply squeezing two or more existing chips onto a single die. Rather, the new breed addresses specific systems-level problems, uses combination technologies, and often includes circuits that solve problems that systems developers anticipate seeing as markets evolve.

A good case in point is National Semiconductor Corp.’s single-chip Ethernet solution for twisted-pair wiring. National had plenty of feedback from systems houses, including Hewlett-Packard, Caliberon Systems, Xircom, and Eagle Technology, in designing in new features. It also has taken the commendable step of using its mixed-signal semiconductor technology to put an analog transceiver on what is mostly a digital CMOS controller chip.

The single-chip Ethernet DP83902 integrates the functions of three chips: an Ethernet controller, an encoder/decoder, and a 10-BASE-T transceiver (which connects Ethernet to twisted-pair wiring). Although aimed primarily at the twisted-pair market, the ST-NIC (serial network interface controller for twisted pair) chip also offers the option of interfacing with an attachment-unit interface, or AUI, for coaxial cable installation. “It sets the stage for us to provide a complete Ethernet adapter on a single chip,” says Edwin DeSousa, National’s product marketing manager for the ST-NIC.

Using the ST-NIC cut the design time to convert Eagle Technology’s NE2000 Ethernet card to a twisted-pair card from six months to just a month, says Ken Lamneck, managing director of Eagle Technology of San Jose, Calif. Eagle also unveiled a module that connects to the attachment-unit interface of an old Ethernet card and converts it to a twisted-pair card.

The changeover from coaxial cable to twisted pair in the U.S. will be relatively rapid—from less than 10% twisted pair in 1990 to greater than 80% by 1995, according to the Gartner Group of Stamford, Conn. Since five years is well within the planning cycle of many companies, it is good that single-chip solutions are already available.
panies, savvy Ethernet vendors are using the ST-MC chip to provide customers with interfaces to multiple media, says National's DeSousa.

Over the next months, Eagle will take even greater advantage of the chip's flexibility with designs that give the customer more media options. For example, users with definite plans to migrate from a coaxial-cable version of Ethernet to twisted-pair Ethernet can buy just one board. The ST-MC chip also gives Eagle itself a chance to keep manufacturing costs down. The integration of functions means customizing boards at the board-stuffing end instead of designing and manufacturing a different board for each transmission medium, says Lamneck.

The simple reduction in real estate made the ST-MC attractive to Xircom Inc. of Calabasas, Calif., a manufacturer of pocket LAN adapters the size of garage-door openers. Aimed at laptop and notebook computers, Xircom's products connect to the network through the machine's parallel port, since laptops do not have LAN ports. "Size and weight are clearly an issue for us," says Steve Magidson, vice president of marketing. New markets that will also benefit are those for palmtop and pen-based computers, where space is at a premium. Still another option is to add more functions.

As might be expected, CMOS ST-NIC offers significant power savings over multiple n-MOS parts. In particular, it will be useful for developing systems using IBM Corp.'s Micro Channel bus. The total bus power budget is 1.8 A. Solutions based on ST-MC will eat up about 140 mA, or just under 8%. By contrast, multiple-chip Ethernet solutions can consume 440 to 755 mA, or 24% to 45%. This leaves considerably more headroom to hang other adapter cards on the bus.

Besides its low power budget, the chip anticipates—and solves—a problem that laptop and notebook users will encounter as they try to plug in and out of different Ethernet nodes. Unlike coaxial cable, twisted-pair wiring has a polarity and if the wires are switched, no communication takes place. The ST-NIC, however, senses wiring polarity and adapts automatically.
NEW!...THE MOST POWERFUL...MOST ACCURATE CLUB IN GOLF!

The CONTROLLER® HITS 30-50 YARDS LONGER,
AUTOMATICALLY CORRECTS HOOKS AND SLICES...
...MUST CUT STROKES — OR MONEY BACK!

Put your #3, #4 and #5 woods in the cellar. Tests show our new Controller driving iron can outhit all three by 30 to 50 yards.

And that's only half the story. The Controller automatically corrects hooks and slices! The club is so powerful, so accurate, we unconditionally guarantee it will cut 5 to 10 strokes off your score — or you owe us nothing! In fact, to prove it we'll send you one risk-free.

Test it against your #3 wood. If it doesn't give you 30 more yards (if you are a fairly good golfer), send the club back for a refund.

But it will give you 30 more yards! In fact, the Controller is so powerful many golfers use it off the tee, especially on narrow fairways.

Here is the Controller's exact distance advantage as compiled by some low-80's golfers.

CONTROLLER*: 220 yards
#3 Wood: 190 yards
#4 Wood: 180 yards
#5 Wood: 170 yards

Now test the Controller's accuracy against your 3-iron. Purposely hit a shot off the toe of each club and watch what happens. Your 3-iron will hook the ball violently — the Controller will keep it down the middle! The same is true with heel shots. Your 3-iron will slice the ball violently — the Controller will automatically keep it on course!

THE GREATEST STROKE-CUTTER IN GOLF

These scientific breakthroughs make the Controller driving iron the most powerful strokecutter in golf. We believe the club will transform the game. First of all, it obsoletes fairway woods! The Controller not only hits 30 to 50 yards farther than fairway woods, it automatically corrects hooks and slices! Here's how it works.

AUTOMATIC ACCURACY

The Controller has an invisible curve across its hitting surface — a curve that's going to revolutionize your game. No other iron has it! Hit a shot off the Controller's sweet spot and it will go straight, as it would with an ordinary iron. But even pros hit off the heel and toe.

Now, here is the Controller's genius...here is why you could cut as many as 10 strokes off your score. Hit the ball off the Controller's heel or toe and its invisible curve will automatically impart a corrective spin to what would otherwise be a disastrous hook or slice. The ball will actually fade or draw back on course! It's an incredible sight and you can prove it to yourself with only a few test shots. THIS IS THE MOST IMPORTANT GOLFING BREAKTHROUGH IN GENERATIONS. ALONG WITH THE CONTROLLER'S EXTRA 30-50 YARDS, YOU SHOULD EASILY CUT 5-10 STROKES OFF YOUR GAME!

Here are more reasons why the Controller driving iron is going to give you the best golf of your life...

• it gives you the power of a driver with the control of an iron...
• its sleek, smooth head sweeps through grass more cleanly than a wood...
• its 17° loft gets your shot up faster than a #3 wood...
• its smaller head size (versus a wood) boosts clubhead speed...
• its boron-graphite shaft model adds even more clubhead speed...
• it lets you carry more wedges and putters without exceeding the 14-club limit (by eliminating your #3, #4 and #5 wood)...

The Controller is new and supply is limited. You must act now and remember, you are completely protected. If the Controller doesn't cut 5-10 strokes off your score, you may return it (undamaged, of course) for a prompt refund of its price.

FREE!...just for trying the Controller! Keep your new power pin-high with a $15.00 Rangefinder! It's yours to keep FREE! even if you return the Controller for a refund. NOW YOU CAN RANGE YOUR NEW DISTANCE LIKE AN ARTILLERY OFFICER. No batteries required. Clips to belt.

HOW TO ORDER

Send your name, address and check (or credit card number and expiration date) to the NATIONAL GOLF CENTER (Dept. DR-147), 500 So. Broad St., Meriden, CT 06450. Or call 203-238-2712 (8-8 PM, M-F). The steel-shaft CONTROLLER costs only $59.00; the carbon-graphite model costs $89.00. Add $4.75 for s/h/ins. CT and NY must add sales tax. Specify regular or stiff flex, right or left-handed. No PO. boxes, all deliveries are UPS. A refund is guaranteed if a club is returned undamaged within 30 days. Clubs are also available in ladies size, steel or graphite, same prices.

THE CONTROLLER HITS LONGER AND STRAIGHTER THAN ANY OTHER CLUB IN GOLF. IF IT DOESN'T CUT 5-10 STROKES, YOU OWE US NOTHING! ACT NOW!
Helping production cope with the pressures of high pincount packages.

THIS IS AMP TODAY.

AMP is a trademark of AMP Incorporated.
As PGA pincounts go up, so do the insertion/withdrawal forces required to socket them. When counts reach about 121, conventional socket contacts put your total insertion force in the 28 to 50 pound range—hardly conducive to efficient manufacturing.

Not so with AMP LIF PGA sockets. We use a dual-beam contact, and we stagger contact row heights to reduce insertion force requirements dramatically. For the same 121-pin package, our socket design requires an average 13.1 pounds insertion force*, 50-75% lower than conventional sockets. This can make a significant difference in everything from operator fatigue and device stress to board integrity and ease of field service.

And our exclusive design provides excellent normal contact force as well—the contacts utilize a long beam geometry, providing ample deflection with no compromise between normal force and insertion/extraction force.

Sizes: 10x10 to 25x25, with quick turnaround on special patterns. For more information, call the AMP Product Information Center at 1-800-522-6752 (fax 717-561-6110). In Canada call 416-475-6222. AMP Incorporated, Harrisburg, PA 17105-3608.

Dual-beam contact LIF PGA
Before the A500 started testing Motorola's mixed-

Can it do true mixed-mode testing?

What tools have been developed?

Before the A500 started testing Motorola's mixed-

the Teradyne A500 test system supports our Six Sigma initiative and our competitive leadership challenge.”
Director of Marketing

Motorola knows you can't have a Six Sigma process unless you can test to Six Sigma standards. That's why Motorola's MOS Digital-Analog Integrated Circuits Division chose the Teradyne A500 Analog VLSI Test System. Because, in addition to proving the A500 could handle the complex technical requirements of Motorola's advanced ISDN interfaces, we also demonstrated that we could perform to Motorola's stringent quality levels.

"Can it do scan testing? Digitize high-frequency waveforms? Do true mixed-mode testing? Does it have a flexible architecture? Can you give us the support for a Six Sigma process? Applications expertise? Complete documentation? The right tools? In each case, Teradyne answered yes.”
Manager, Advanced Test Technology

"Motorola has adopted a Six Sigma initiative which focuses attention on approaching zero-defect performance in everything we do, including our test systems. Our purchase of Motorola and X, are registered trademarks of Motorola, Inc.
standards?

With the A500, Motorola had the ability to digitize waveforms at 20 MHz, plus the high pin count necessary to guarantee that their ISDN U-Interface worked the way it was supposed to.

Best of all, the A500's full tester simulation and powerful IMAGE™ software provided the design flexibility and rapid debugging Motorola needed to deliver defect-free parts on time.

"The A500 gave us the resources we needed, in one place, to be able to have a functioning test program very quickly — at least two to three times faster than any other test system. This type of support is just what we need to get our complex circuits, such as the U-Interface transceiver, to the marketplace ahead of the competition."

Operations Manager

To Motorola, delivering Six Sigma quality is not just a promise. It's a way of doing business. And it's a test that must be passed by suppliers as well.

To see how our A500 family of test systems can help you deliver quality, call Beth Sulak at (617) 482-2700, ext. 2746.

Or call your nearest Teradyne sales office, or write: Teradyne, Inc., 321 Harrison Ave., Boston, MA 02118.
The leading vendors of MPP systems include Active Memory Technology, BBN Advanced Computers, Intel Supercomputers, Maspar Computer, NCube, and Thinking Machines. Those who responded to the IDC survey are concerned about the staying power of those vendors “ill-equipped to dedicate the appropriate resources to advance the state of the industry.”

Goldfarb says that while MPP technology faces fairly slow adoption rates over the near term, “we expect significant improvements in the software domain” from 1992 to 1995 that will substantially reduce system costs, “resulting in more rapid integration of this technology into more mainstream high-performance computing environments.”

Meanwhile, Danny Hills, chief scientist at Thinking Machines, says his firm’s new CM-200 goes a long way toward overcoming many of the software obstacles. He says it’s the first massively parallel supercomputer that provides a full general-purpose software environment. A 64,000-processor version of the system, designed to integrate into workstation networks, sells for $8 million to $10 million. The CM-200’s operating system is Unix-compatible, and is “the first in the supercomputer industry whose interface is built on the standard X Window System and OSF/Motif workstation protocols,” says Hills.

You get fast hardware and software support for all the popular languages. A software library and time saving utilities are included that make instrument control easier than ever before.

Ask about our no risk guarantee.
European computer makers are pulling ahead of their U.S. rivals in the race to dominate the East European market.

Last month, France’s Paris-based Bull SA concluded an important contract with the Czechoslovakian finance ministry, one that followed hard on the heels of a similar deal with the Polish government. Germany’s Siemens AG of Munich is dominating the former East German computer market, and ICL Ltd. of London has been successful in negotiating with the Hungarian government. Of the U.S. vendors, only IBM Corp. has been able to keep pace with the EC companies, boosting important deals in Poland and Hungary.

The problem that daunts smaller companies that would like to break into these markets is simple, analysts say: customers without cash. “Anything you do on these markets is for the long term,” says Martin Oertel, a Dataquest Inc. analyst who specializes in Eastern Europe. This gives companies like Bull, funded by the French government, and ICL, which has the deep pockets of Japan’s Fujitsu Ltd. to depend on, an enormous advantage.

On the other hand, Ing. C. Olivetti & Co. SpA, which had great success in Eastern Europe, had to back off because of funding pressure. The Ivrea, Italy-based company shipped about $3 million worth of units to Czechoslovakia and Hungary last year. But the slow payment both there and in the USSR, where Olivetti is a traditional partner, has kept it from aggressively following up those sales.

WHO’S AHEAD IN THE EAST

(1989 shipments in $ millions)

<table>
<thead>
<tr>
<th></th>
<th>CZECHOSLOVAKIA</th>
<th>HUNGARY</th>
<th>POLAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM</td>
<td>2.5</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>ICL</td>
<td>5.7</td>
<td>1.5</td>
<td>3.7</td>
</tr>
<tr>
<td>Siemens</td>
<td>5.7</td>
<td>----</td>
<td>4.2</td>
</tr>
<tr>
<td>Olivetti (as of 6/90)</td>
<td>0.95</td>
<td>2.7</td>
<td>--</td>
</tr>
</tbody>
</table>

SOURCE: INDUSTRY FIGURES

JESSI AND ESPRIT GET A NEW MISSION LIMITED TO CMOS TECHNOLOGY

Jessi is being revamped. The Joint European Submicron Silicon Initiative, which is Europe’s only hope for cooperative research among various European Community nations and companies, is radically narrowing the range of its research projects.

The original purpose of Jessi was to gather funds for a European effort like that of Sematech in the U.S. for semiconductor research. Now, Jessi and its partner program Esprit, which governs cooperative efforts in every area of microelectronics, will focus strictly on CMOS technology. “The purpose of this new effort,” an EC official says, “is to create flagship programs in an area that has been too broad up to now.”

Some observers believe that the new effort comes because of political pressure for results. The EC semiconductor industry has come under heavy criticism recently for its failure to regain market share from the U.S. and Japan. Many observers feel that Jessi and Esprit were not nearly enough to recoup. For example, French Prime Minister Edith Cresson has called for mergers among the three major European chip makers in an effort to stem the tide. The new effort is intended to answer those criticisms and avoid the political problems that a merger of EC chip makers would entail.

ANOTHER DEAL: SEL AND CZECHOSLOVAK FIRM

West European firms are continuing their drive into the potentially lush markets for communications equipment in East Europe. Among the latest moves is a joint venture between Standard Elektriz Lorenz AG (SEL), the German member of the French telecommunications group Alcatel NV, and Tesla Liptovsky Hradok of Czechoslovakia. In its first phase, the deal will involve production of SEL’s System 12 digital switch in Czechoslovakia.

The aim is the annual production of System 12 switching equipment for 250,000 subscriber lines at a plant in Liptovsky Hradok. Production will start during the second half of this year. The venture calls for initial investments of about $11.5 million, and SEL has offered to fully finance it for 10 years.

The second phase envisages extending the cooperation to encompass the manufacture of private switching equipment and telephone sets. The German-Czech agreement provides for Stuttgart-based SEL to transfer manufacturing technology to its partner, train personnel, and set up a software center.

USSR TO WORK ON DIGITAL RADIO

Soviet experts in radio broadcasting have joined their counterparts in Western Europe to develop and test a digital radio system. The Soviet partner is the Popov Institute in Leningrad, Russia’s leading organization for developments in radio and TV. It will work with companies and similar institutes in France, Germany, the Netherlands, and the UK.

Soviet participation should strengthen Europe’s position to push for a worldwide standard for digital audio broadcasting, a promising candidate to replace FM radio. Its quality not only equals that of a compact-disk system, but it provides interference-free reception in vehicles riding through areas where reflections are common. Also, both text and pictures can be transmitted, and DAB accommodates more programs in a given frequency range than does FM radio.

EUROPEAN OBSERVER

EC COMPUTER FIRMS MAKING HAY

ELECTRONICS • JULY 1991

World Business Directory
Is the U.S. in danger of not only losing semiconductor market share but also the ability to maintain the sophisticated infrastructure required for manufacturing? Concern over the chip industry's ability to keep up is rising in pace with the price tag of a state-of-the-art wafer-fabrication facility, now well over $300 million and climbing. As more and more U.S. outfits turn to overseas facilities for fabrication, the question keeps coming up: is the U.S. giving up on manufacturing? Within the industry, the answer varies from “yes” to “no” to “who cares?” But almost all semiconductor executives bewail the failure of the U.S. government to establish a more favorable environment for capital formation.

For all but the largest U.S. firms, raising and allocating the necessary capital for investments of this magnitude is extremely difficult for a variety of reasons. The oft-cited problem of satisfying the short-term appetites of stockholders is one. High interest rates that impose heavy tolls on borrowed capital is another, along with a tax structure that provides little or no incentive to businesses for making such investment domestically. The hurdle is especially difficult for small startups in an environment where venture capitalists are becoming increasingly wary of semiconductor investments (see p. 41). And the situation is not helped, some observers say, by a government that is seemingly indifferent to the importance of high technology to the economic well-being of the nation.

The fabless phenomenon has given birth to a variety of strategies to obtain manufacturing capability. Many of them exacerbate the problem, say industry observers, who view with alarm the increasing shift of manufacturing to Japan and elsewhere in the Pacific Rim, with the concomitant loss of U.S. jobs and manufacturing expertise.

Despite the worry, though, some believe that the dispersion of manufacturing is the inevitable consequence of the
dramatic changes taking place in the semiconductor marketplace. "Over the last 10 or 20 years, the market for semiconductor products has shifted from the U.S. toward the Far East, and so one phenomenon is the movement of manufacturing capacity in order to stay close to where the market is," says Wally Rhines, executive vice president of Texas Instruments Inc.'s Semiconductor Group in Dallas.

What's more, says Rhines, "fear of trade barriers is causing capacity to increase in Europe, and there's a general feeling among most major manufacturers that you need to spread your manufacturing around and not be at risk in any one geography. Next is the fact that government incentives have driven the development of undeveloped areas, which tend to attract wafer fabs to places where there hasn't been manufacturing in the past." Finally, Rhines says, "the generation of cash for investment has increasingly shifted to the Far East over the last 15 years or so. There are more investors available in the Far East now."

One result of the difficulty of ponying up $300 million for a fab has been the spawning of the so-called "fabless" company, which does only product development and marketing, contracting its manufacturing to foundries or other semiconductor vendors with excess fab capacity. Other companies are joining together in alliances and partnerships that enable them to share the cost of process development and manufacturing.

Some question the long-term competitive clout of a fabless company. If a chip house depends on outsiders to make its wafers, does it surrender control of the process and consequently the quality of its product? What happens when market demand cuts excess capacity? How do you keep up with advances in process technology?

"You can philosophize a lot about why you're fabless, and what are the positives and negatives," says John East, president and chief executive officer of Actel Corp., a vendor of field-programmable gate arrays in Sunnyvale, Calif. "But the truth is there is no choice—a startup, by definition, will be fabless."

Chips & Technologies Inc. of Milpitas, Calif., is possibly the quintessential fabless semiconductor house. Since 1985, Chips has parlayed its chip-set designs for personal computers into a highly successful business now being emulated by others. Keith Lobo, vice president and chief operating officer, pooh-poohs the idea that his company lacks control over process and calls the concern over reduced U.S. fab capacity a myth that stems from "a lot of hysteria from ill-informed individuals."

"I take issue with the concept that manufacturing large volumes of semiconductors is disappearing from the U.S.," Lobo says. "That's because there is a significant amount of investment being targeted toward the U.S. and to some extent in Western Europe by Far East companies." He cites NEC Corp.'s facilities in Roseville, Calif., and plans by Fujitsu Ltd. and Toshiba Corp. to bring up large facilities in Oregon. "The subject of ownership of that capacity is an emotional issue for debate in the U.S. economy," Lobo says, "but if you look at the issue in terms of talent utilization, job creation, capacity availability, and closeness to the customer base—and disengage all that from corporate ownership—you have a significant investment being made in the U.S. to increase that capacity. It just happens to be coming from the other side of the Pacific."

Adding to that, he says, is substantial investment in fabs in the U.S. and abroad by the American Big Three: Intel, Motorola, and TI.

As to the issue of process control, Lobo points to construction and civil engineering firms like Bechtel as a paradigm for Chips & Technologies. "They don't own steel mills, cement plants, or tile factories—they specialize in architecting and building designs for utilizing sources for all these skills, and have taken that concept to a very successful level on a global scale." Lobo implies that Chips is doing the same thing on a smaller scale.

But other semiconductor executives point to inherent disadvantages of a fabless company that Lobo tends to over-
Japan and has made a major investment in Ireland. Meanwhile, continues to upgrade its lion fab in Chandler, Ariz. Intel Corp., in Hong Kong. It recently completed a joint venture in a variety of strategies to beat the high price of fabs. Even the latter are hedging their bets with overseas manufacturing facilities and foreign partners. TI, for example, is using a variety of strategies to beat the high price of fabs (see p. 43).

Motorola Inc. is one company that is investing heavily in fab capacity in the U.S., although it is a partner with Toshiba in a joint venture in Japan and has made a major investment in Hong Kong. It recently completed the $650 million MOS XI project in Oak Hill, Texas, and is building a $325 million fab in Chandler, Ariz. Intel Corp., meanwhile, continues to upgrade its four domestic fabs and is building an advanced logic facility in Ireland.

Not quite in the same league as the Big Three, feisty memory manufacturer Micron Technology Inc. is strongly committed to fab independence in its home base in Boise, Idaho. "We've always had fabs and continue to build," says Kitt Bedard, vice president of industrial relations. "One distinct advantage is that whether there is over- or undersupply, you always have a guaranteed output. In other words, in times when there is enough capacity, people who are fabless have no trouble finding capacity. But when the market is tight, the pendulum swings, and it swings in a hurry. Perhaps more important, we control our process much better than anyone else could. We don't let anything get through that isn't up to the quality our customers demand." Nevertheless, Bedard says Micron would consider putting excess demand on someone else's fab, and would also consider offering unused capacity to outsiders.

T.J. Rodgers, the voluble president and CEO of Cypress Semiconductor Corp. in San Jose, Calif., is another who sees inevitable constraints on a fabless company. "You can get along fabless for a short period," he says, "but that's a short-term strategy. I don't see any fabless company getting over more than a few hundred million dollars before it has to grapple with its own manufacturing."

Dealing with a foundry, he says, takes a lot of effort and a lot of communication. "You have to develop an interface organization that is a lot larger and more expensive than that in a company with its own fab. When you're small it doesn't matter; because Japanese wafer yields are good and your production-control cost is dwarfed by the cost of owning a fab. But then you grow and you need a second source and another, and eventually you're dealing with nine sources, and suddenly your cost of control and engineering dealing with all these fabs gets very expensive." A believer in self-reliance, Rodgers takes pride in the fact that Cypress has had its own fab from its inception.

The fab vs. fabless controversy begins with the cost of a wafer fab at $300 million and rising, few U.S. chip makers can afford one. Fabless companies contract their manufacturing overseas, usually to Japan and the Pacific Rim.

The fabless company can't control the market price of its product, "and if you can't control your manufacturing cost at the appropriate rate," he says, "then margins decline and it starts to impact your bottom line."

East of fabless Actel agrees. "It's not too hard to convince people to build $50 million worth of wafers for me, but I expect it would be impossible to convince them to build $1 billion worth. At some point, other people are just not going to spend their money to build a facility to build wafers for us, so by definition, success will eventually force a startup to build a fab. The only argument is at what point."

Jerry Sanders, CEO of Advanced Micro Devices Inc., once famously declared that "Real men have fabs." If so, manhood comes at a substantial price. It isn't surprising that with few exceptions, the major investments in new U.S. fabs are being made by Japanese firms with deep pockets, or by the U.S. semiconductor megacompanies. Even the latter are hedging their bets with overseas manufacturing facilities and foreign partners.

A nother suggestion comes from G. Dan Hutcheson, president of VLSI Research Inc., a market-research firm in San Jose. A study published by his company indicates that if depreciation schedules for capital assets were reduced from the five- or six-year cycle now standard in the U.S.—or eliminated altogether and counted as an expense—"a company would be profitable longer, even during bad years, and would remain an attractive investment."

A Japanese manufacturer has fully depreciated its costs after only three years of the product life cycle, the study says. It can then move into a market-share-acquisition mode using profits to fund a new generation of products. A much higher degree of cooperation may also be demanded, if the recently released preliminary report of the National Advisory Committee on Semiconductors is to be believed. The report sets a 10-year goal for reaching 0.15-µm manufacturing, which will require major technological advances. Projecting that the cost of a foundry, process development, and equipment to build these advanced chips would cost billions of dollars, NACS is calling for a "new culture of cooperation and sharing" in the industry worldwide. Whether such cooperation can be achieved in a business long known for ferocious competition is problematical.
Our FB Series military solid-state relay features high speed and low off-state leakage.

Here's what you get:
- Availability to pending DESC drawing 89116 with screening to “W” and “Y” levels of MIL-R-28750.
- High-voltage output
- Very-low leakage current (200 nA)
- DC or bi-directional power FET output (see wiring diagrams)
- Ideal for ATE applications
- Optical isolation
- Fast switching speed
- Adjustable turn-on times
- Low profile 6-pin mini-DIP
- Cost efficiency

Review the electrical characteristics below and call us for immediate application assistance:

INPUT ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FB00CD</th>
<th>FB00FC</th>
<th>FB00KB</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Input Current (I_{IN})</td>
<td>±1.0</td>
<td>±0.50</td>
<td>±0.25</td>
<td>mA_{DC}</td>
</tr>
<tr>
<td>Input Current (Guaranteed On)</td>
<td>2.0</td>
<td>1.0</td>
<td>0.5</td>
<td>mA_{DC}</td>
</tr>
<tr>
<td>Input Current (Guaranteed Off)</td>
<td>±80</td>
<td>±160</td>
<td>±350</td>
<td>mA_{DC}</td>
</tr>
<tr>
<td>Input Voltage Drop at (I_{IN}) = 25mA</td>
<td>3.25</td>
<td>V_{DC}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OUTPUT ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FB00CD</th>
<th>FB00FC</th>
<th>FB00KB</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bidirectional Load Current (I_{LOAD})</td>
<td>±1.0</td>
<td>±0.50</td>
<td>±0.25</td>
<td>mA_{DC}</td>
</tr>
<tr>
<td>DC Load Current (I_{LOAD})</td>
<td>2.0</td>
<td>1.0</td>
<td>0.5</td>
<td>mA_{DC}</td>
</tr>
<tr>
<td>Bidirectional Load Voltage (V_{LOAD})</td>
<td>±80</td>
<td>±160</td>
<td>±350</td>
<td>V_{DC}</td>
</tr>
<tr>
<td>DC Load Voltage (V_{LOAD})</td>
<td>80</td>
<td>160</td>
<td>350</td>
<td>V_{DC}</td>
</tr>
<tr>
<td>ON-Resistance (R_{ON} at I_{LOAD}) max.</td>
<td>0.72</td>
<td>1.8</td>
<td>12.9</td>
<td>Ohms</td>
</tr>
<tr>
<td>Turn-On Time (t_{ON})</td>
<td>800</td>
<td>800</td>
<td>500</td>
<td>µs</td>
</tr>
<tr>
<td>Turn-Off Time (t_{OFF})</td>
<td>300</td>
<td>600</td>
<td>500</td>
<td>µs</td>
</tr>
</tbody>
</table>

Notes: 1. A series resistor is required to limit continuous input current to 50mA (peak current can be higher).
2. Rated input current is 25mA for all tests.
3. Loads may be connected to any output terminal.
4. ON resistance shown is for the bidirectional configuration. The DC ON resistance is ¼ of these values.

For immediate application assistance call 1-800-284-7007 or FAX us at 213-779-9161.

Teledyne Solid State, 12525 Daphne Avenue, Hawthorne, California 90250.
Everybody's talking about time-to-market. So let's talk about how GenRad can help you accelerate products from design through manufacturing to your customer.

Suppose, for example, we said we could help you go from the output of design to greenlighting a functional board test in just a few hours. And we could do it today. Not in a few months. Not pretty soon. Now. We can.

And that our new Time-To-Market Toolkit™ provides the technology and tools to move information from design to the test-development process. Automatically. It can. Today.

And it's designed to manage the flow of design information from several EDA vendors. And it provides an environment that brings parts list information from MIS. And layout, schematic, nodal, and I/O information from CAD and CAE as well as from ASIC simulation. It does. Today.

Sounds like we've put together some great tools to help with your concurrent engineering program, doesn't it. We have.

If you're ready for a new way of thinking about getting to market faster, request a copy of "Perspectives on Design and Test."

Call 1-800-4-GENRAD in the U.S., or the GenRad office nearest you in Austria, Canada, England, France, Germany, Italy, Japan, Singapore, Switzerland.
THE VENTURE POOL IS SHRINKING...

...AND THERE'S NONE AT ALL TO FINANCE A WAFER FAB

BY LAWRENCE CURRAN

If you're a would-be entrepreneur ready to approach a venture-capital firm with a business plan for a semiconductor startup, be prepared for a dash of cold water in the face. The funds managed by venture firms have been cut in half in recent years, and none of the remaining $1.5 billion to $2 billion per year is going into semiconductor startups that anticipate building a wafer-fabrication facility. That's because the cost of a state-of-the-art fab can exceed $250 million.

The good news is that the venture pool is still well above the levels of earlier periods, and fabless semiconductor startups can get financing if they bring to the deal marketable intellectual property—proprietary design or process innovation that gives them a competitive advantage. Increasingly, however, both fledgling and established semiconductor firms are raising money through joint ventures with partners that either help fund new foundries or provide wafer fabrication in exchange for licenses to advanced design or process technology (see p. 43).

The annual flow into venture funds has been halved from the oversaturated $4 billion of a few years back, says E. Floyd Kvamme, a general partner in the Palo Alto office of San Francisco venture firm Kleiner Perkins Caufield & Byers. Kvamme suggests that that lofty peak, reached in 1987, was way too high, resulting in a black eye for the venture industry and many doomed beginnings. "That led to a situation that was described as startup fratricide," he says. "The return on investment [for VCs] wasn't very good, but now it's better than during that period."

From that all-time high, about $1.5 billion will be committed this year, says Robert Pavey, a general partner at Morgenthaler Ventures in Cleveland and chairman of the National Venture Capital Association (NVCA), a lobbying body with a membership of 220 U.S. venture firms. Pavey emphasizes, however, that the money available now is still far greater than in the mid-1970s, when less than $100 million was invested in some years.

Pavey says the average individual investment by a venture fund is a few million dollars. "But our industry is just the tip of the iceberg," he points out, because for the first half of the 1980s, an average of another $55 billion per year was invested in entrepreneurial enterprises by private individuals. Those investments tend to be in much smaller chunks, however, averaging about $100,000 apiece.

Money is tight for two main reasons, according to Pavey. One is the cyclical nature of financial markets, which spawned easy-money cycles peaking in 1969 and 1983, alternating with tight periods centered around 1974 and about now. The second is that the return on venture-capital investments is driven by the over-the-counter stock market, "which peaked in 1983 and hasn't been very exciting since," Pavey says. "We don't get paid as well now for our winners," he adds.

Nor does the current capital-gains tax rate of 28% encourage investment,
ventures were started in the days when people would accept a cut in their payoff for their own risk after the encouraging potential investors, stops concerned about capital gains. But his to put money into venture funds.

to make it more attractive for investors the 31% ordinary income tax maximum Administration and venture capitalists able capital-gains rates then. 'The [Bush] Venture Fund. "Funds dried up in the '80s," he notes, because of more favorable '70s and opened again in the early late '80s," he notes, because of more favorable capital-gains tax rates then. "The [Bush] Administration and venture capitalists would like to see a substantial differential between that [current 28%] rate and the 31% ordinary income tax maximum to make it more attractive for investors to put money into venture funds."

Kvamme agrees: "I was asked recently about the number of investments by the venture industry in fabs in the last few years, and I couldn't think of one. Capital really isn't available for fabs." Kleiner Perkins was an early investor in both Cypress and LSI Logic Corp. in Milpitas, Calif., both of which now have fabs but were launched without them. "They used venture money to get their designs going," Kvamme says, "then built fabs with money [raised] in initial public offerings. Wafer fabrication has become a service the way assembly went years ago," he says. "If you're not adding value in fabrication, a lot of people will do it for you. Like others, I worry about that" (see p. 36).

Mohr, Davidow Ventures, Menlo Park, Calif., is investing in semiconductor startups. But general partner William Davidow stresses that they're fabless companies—"firms that create intellectual property around semiconductors," he says. That approach is part of "a new formula for semiconductor ventures that stresses heavy emphasis on design, marketing, and sales, using an outside fab to produce wafers," says John Bayless, general partner at Sevin Rosen Bayless. "It's not realistic to ask venture-capital guys to fund a fab," Bayless says flatly, "but if a guy has a good idea and it looks like a good business, he would probably get funded. If we come to believe you have a unique process, we can help with some sort of alliance with a fab."

What are examples of fabless startups funded because of their ownership of intellectual property? Michael Child, general partner in the Palo Alto office of TA Associates, a Boston-based venture organization, says financing is available for "concepts that are design-intensive and application-specific."

One such firm that attracted TA is Paradigm Technology Inc., a 1987 San Jose startup that planned on being fabless but has since had to build a fab. Paradigm is the only semiconductor company TA has backed in the last three years, according to Child, and TA went in for the second round. The company meets TA's guidelines in that Paradigm's strength is its proprietary design for a very small memory cell that yields very fast static random-access memories that are conventionally processed and are now shipping.

After reaching agreement with an outside foundry, Paradigm soon found it couldn't rely on the fab to control the process properly and ended up building a fab of its own. Importantly, Child says, "we think their technology has application for devices other than SRAMs."

Sevin Rosen Bayless has invested in Cyrus Corp. of Richardson, Texas, from its third fund. Bayless says Cyrus has an innovative architectural approach to an Intel Corp. 80386 coprocessor that allows better performance in a lower-power device. It's also caught Intel's attention; the Santa Clara, Calif., microprocessor giant is suing the firm over intellectual property issues, but Phips adds that Cyrus has filed for patents on its architecture. Part of SRB's due diligence included an "intensive assessment before they went to market" that convinced the VCs to proceed. A
Corporate partnering is growing in popularity as a way for semiconductor companies—from startups to established leaders—to underwrite wafer fabrication. The practice has been fueled by the astronomical cost of building a foundry.

Among the industry leaders, Dallas-based Texas Instruments Inc. launched an aggressive campaign three years ago to raise outside capital. And 1988 startup Quality Semiconductor Inc., Santa Clara, Calif., has obtained financing and fabrication facilities through its licensing partners—not through VCs.

'TI and its partners have committed about $2 billion, mostly to new foundries both in the U.S. and overseas, through arrangements that will cost TI only half that amount. The company cut the cost of capital via advanced customer payments, government partnerships, and joint ventures, says Rick Clemmer, senior vice president and controller in TI's Semiconductor Group. Since 1988, TI has collected about $200 million in advance payments from customers, who are assured a long-term component supply at guaranteed prices. That money has helped expand the DMOS IV fab in Dallas.

The government partnership involves a four-year, $1.2-billion program with the Italian government, which is providing grants and loans to help underwrite upgrading and expansion of facilities in Avezzano, including submicron CMOS fab space for dynamic random-access memory devices (see p. 45).

Three joint ventures are part of the TI campaign—in Singapore, Taiwan, and Japan. In Singapore, TECH Semiconductor Singapore Pte. Ltd. will produce CMOS DRAMs beginning in 1993 in a new fab that includes Hewlett-Packard Co., Canon Inc., and the Singapore Economic Development Board as partners. Total investment in the new company is about $330 million.

The first DRAM wafers are expected soon from a joint venture in Taipei that links TI and Acer Inc., the Taiwanese manufacturer of personal computers. And ground was broken in February for a fab in Nishiwaki, Japan, being built as KTI Semiconductor Ltd. by TI and Kobe Steel Ltd. Various ownership and product-assignment formulas apply to the joint ventures.

Clemmer says these innovative ways of financing fabs sprung from TI's realization of the urgency of having wafer fabs in strategic locations to serve a worldwide semiconductor market that is estimated to reach $200 billion by 2000. "And we needed a more favor-
This microcomputer software lets you program using natural mathematical notation

Wouldn't it be nice if you could solve your mathematical problems by simply typing them into your PC just as you would write them down on paper? With TKSolverPLUS you can do just that.

- You just enter the set of equations you want to solve using natural math symbols,
- Define the variables you know,
- Specify the units of measurement you want,
- Press the solve key.

Then see your solutions in tabular form or plot the results on the screen or printer.

TK can do reverse calculations, or goal seeking! This powerful feature is best explained with this simple example.

Suppose you're buying a $15500 car and you want to compute your loan payments. You're paying $3500 down and planning a 4-year, 12 1/2% loan. You enter the equations below, plug in the values and find your monthly payment is $318.96.

\[
\text{price} - \text{down} = \text{loan} \\
\text{payment} = \text{loan} \times \left(\frac{\text{rate}}{(1 - (1 + \text{rate})^{-\text{term}})}\right)
\]

But suppose you'd rather pay $350 per month and shorten the term of the loan. Just enter your preferred payment and tell TK to solve for the new loan term — without you having to rearrange the equations.

Or perhaps you'd like to shop for a new interest rate. TK's iterative solver will compute the interest rate you need to pay off the loan in 3 1/2 years paying $350 per month.

This ability to backsolve makes TK incredibly easy to use and saves you countless hours of programming time.

Of course not everyone wants to compute loan payments. But the benefits are the same no matter what type of problems you have to solve... business, engineering, statistics, or science.

Solve dozens of linear, non-linear or differential equations simultaneously * backsolving * if, then, else rules * iterative solving * complex numbers * automatic plotting * Automatic unit conversion * over 300 built-in functions and library routines * math co-processor support * store equation models for later retrieval and use * not copy protected.

TKSolverPlus disks and full documentation $395

Satisfaction Guaranteed! Or return the program within 30 days for full credit or refund.

System Requirements: IBM PC line or 100% compatibles; 384K min memory; DOS 2.0 or higher; CGA, EGA, or Hercules graphics

Chargecard users order toll-free 800-321-7003

In Ohio 216/696-7000

Penton Education Division
1100 Superior Avenue
Cleveland, Ohio 44114
DEPLOYING LABOR ON A GLOBAL SCALE

FINDING, TRAINING, AND RETAINING A SKILLED WORK FORCE POSES A STRATEGIC CHALLENGE FOR U.S. CHIP MAKERS

BY JACK SHANDLE

Despite quantum leaps in technology, the biggest change for the semiconductor business in the 1980s was undoubtedly cultural. Chip makers stopped waiting for customers to come to them and began chasing markets as if their survival depended on it. In fact, it does. Their world will never be the same.

In this decade, the multibillion-dollar chase for markets will become increasingly global and the three classic factors of production—capital, technology, and labor—will have to be increasingly flexible. Labor poses a unique problem. Unlike capital and technology, it cannot be shipped around the world without protest. It requires an ongoing benefits-and-support infrastructure that varies from country to country. It forms unions. Finding, training, and retaining a skilled labor force indigenous to emerging markets will be a major preoccupation—and a major element in the cost equation—in the 1990s.

"While the largest single cost factor in semiconductor manufacturing relates to capital equipment, putting that equipment to effective use is crucially related to the skill set in the labor pool," says Michael Morrissey, vice president of NCR Corp.'s Microelectronics Products Division, Fort Collins, Colo. Companies like NCR, AT&T, Texas Instruments, and Motorola are painfully aware that a half-billion-dollar fab is of little use without people to run it efficiently.

How does a U.S. company find such people in developing countries on the Pacific Rim? How does it lure the best people away from domestic manufacturers in Japan and Europe? Both questions are being pondered daily in the board rooms of U.S. chip houses.

At a strategic level, a distinction must be drawn between global companies and international ones, says Dick Koeltl, chief operating officer of the MOS business unit at AT&T Microelectronics, Allentown, Pa. International companies export U.S. nationals to foreign operations. Global companies hire local people who are integrated into the parent firm—a Spanish engineer hired to help manage AT&T's Madrid fab, for example, may someday run one in the U.S. To be global requires understanding cultural issues: managers should be intimate with local customs and mores; they should have local roots and local contacts in the economic and technical community. On the other side of the coin, says Koeltl, the plant's hierarchy
SOMETHING AWFUL WILL HAPPEN IF YOU'RE OUT OF TOUCH WITH TODAY'S BUYER. NOTHING.

Salesmen who don't sell.
Marketers who miss the mark.
They're becoming more common in today's changing business marketplace, along with managers who can't, communicators who don't, and customers who say "bye" instead of "buy."

It seems that business is changing faster than minds are. So says an important new study sponsored by one of America's most prominent business-to-business communication companies, Penton Publishing.

Among the study's key findings: Today's business buyer is a moving target. People will have as many as four careers during their work life, often taking on responsibilities for which they have little experience or training. To sell to them, the research recommends specific new skills and new messages.

This study is available for you to study. It's titled "Know the Buyer Better," and that's just what it can help you do.

The research, conducted by an independent research firm, is a fact-based snapshot of today's changing marketplace based on field interviews with today's changing buyers. It's the kind of global view that most sellers are too busy to get, yet need more and more desperately.

Three points of perspective make "Know the Buyer Better" especially valuable to you.

It's focused on business. It's organized by people who really know their ABCs about SICs.

It's focused on the buyer. The study relates often confusing trends in investing, demographics, personal improvement, and others to one specific industry activity: buying.

It's focused on practicality. It's based not on what speculators or editorializers say, but what buyers themselves say.

If you market products or services business-to-business, this study will show you how to market and sell more, and more effectively.

Find out more about "Know the Buyer Better" today. Calling this toll-free number, 1-800-258-8787, ext. 100, costs nothing.

Not knowing the buyer better will cost a lot more.

Penton Publishing
Our issues address the tough issues.
must know the strategy of the overall business and have a stake in its success.

As important as labor issues are, they are not the determining factor in siting a fab or other manufacturing facility, says Steve Thomas, human resources director for Texas Instruments Inc.'s World Memory Products Division in Dallas. Usually, a chip maker decides it needs a manufacturing presence in order to participate in a geographic market, he says. Come 1992, for example, Europe will place economic restrictions on firms that do not employ people within the EC.

The other key site-selection factors are capital availability and investment incentives offered by the local government. For example, TI opted to build a MOS fab in Avezzano, Italy, in part because of the development package the government offered. Similarly, Motorola Inc.'s decision to build its Silicon Harbor design and packaging center in Hong Kong hinged on the deal it got on the land, says James Noding, president of the firm's Semiconductor Products Sector.

Once the strategic decision is made, the job of staffing begins. Unlike banana plantations, chip-making facilities are seldom hauled out of the jungle. The markets vendors are chasing are likely to be in nations that have at least a trainable work force and would love to have a fab. "The criterion for siting a plant in a particular country is that you want to sell there," says AT&T's Koeltl. "These tend to be developed countries anyway."

Moreover, the inexorable march of technology requires higher skill levels even of hourly workers. "I don't think you will see people chasing labor rates from one country to another the way they used to," says NCR's Morrissey. As the hourly worker's job becomes less and less a matter of transporting wafers from one processing line to another, new skills will kick in. "Automation will require more computer skills," says Dennis Hill, vice president of manufacturing for AT&T's MOS operation. "A tremendous amount of training has to go on and be maintained. Flexibility is important. We will need people who can do many difficult things."

The skill level at all positions will increase over the next five years, says Morrissey. "From an historical perspective," he says, "people who were on the production line are now doing things that used to be done by technicians. Technicians are doing things that engineers used to do and the margin for error is much smaller."

Training is taking up an increasing percentage of labor cost, but exactly how much seems to be each company's secret. AT&T's Hill, for example, called it "not an insignificant expense. In any given year, people are getting a couple of weeks to four weeks training on average." At AT&T's Madrid fab, training has accounted for as much as 50% of the employees' time. Similarly, when TI started gearing up its Avezzano fab, it trained 175 to 200 engineers and technicians at its Dallas, Lubbock, and Miho, Japan, CMOS memory fabs, Thomas says.

A town of 40,000, Avezzano had neither an American nor a Japanese school for the 38 children of TI employees. So TI established its own school for both the children from Texas and from Miho. Japanese and American pupils have separate classes but meet for recess, field trips, and other activities. In TI's latest joint-venture fab in Singapore, however, there was no need for a school, since an existing foreign-service contingent of about 100,000 had long since justified an American School and a Japanese School there.

Another availability of labor is a problem in some Pacific Rim countries, including Singapore, Taiwan, and Hong Kong. "Local companies in Taiwan are looking to import workers from the Philippines," says Thomas. "We were concerned about the availability of engineers because of the tremendous growth in Taiwan [see p. 12]. We attracted people by emphasizing that this was submicron technology; we beat that drum rather hard and were very pleased with the reception."

Union and government relations can sometimes be one and the same, says Thomas. "In Italy, the government plays a big role. There is a lot of trilateral decision making [company, union, and government on work hours, shift changes, shift premiums, and pay scales]. A fab typically has 12-hour shifts four days on and three days off. TI knew it had to do some real campaigning so the unions would know the rationale for a 24-hour operation—Avezzano is only Italy's second fab. That was not a problem in Taiwan, where "the government is committed to making the electronics business the leading industry."

Benefit packages are very country-specific. "We know all these things from being an international company," says Thomas. "But I think a Silicon Valley startup must go through a real culture shock." Core benefits—pension and vacation—are common, but after that, variations abound. In Japan and Taiwan, many domestic factories build dorms for fab operators, he says. "It is a unique perk. And in Japan, companies provide commutation allowances." In Thailand, says AT&T's Hill, firms are expected to provide a meal for employees.

What's the next big labor issue? AT&T's Koeltl thinks it will be the environment: "The U.S. is leading relative to setting goals for the workplace," Koeltl says. But that is going to become a bigger and bigger issue on a worldwide basis."
CIRCLE NUMBERS FOR MORE INFORMATION

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Title</th>
<th>Company Name</th>
<th>Company Address</th>
<th>City/State/Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21</td>
<td>41</td>
<td>61</td>
<td>81</td>
<td>101</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>42</td>
<td>62</td>
<td>82</td>
<td>102</td>
</tr>
<tr>
<td>3</td>
<td>23</td>
<td>43</td>
<td>63</td>
<td>83</td>
<td>103</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>44</td>
<td>64</td>
<td>84</td>
<td>104</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>45</td>
<td>65</td>
<td>85</td>
<td>105</td>
</tr>
<tr>
<td>6</td>
<td>26</td>
<td>46</td>
<td>66</td>
<td>86</td>
<td>106</td>
</tr>
<tr>
<td>7</td>
<td>27</td>
<td>47</td>
<td>67</td>
<td>87</td>
<td>107</td>
</tr>
<tr>
<td>8</td>
<td>28</td>
<td>48</td>
<td>68</td>
<td>88</td>
<td>108</td>
</tr>
<tr>
<td>9</td>
<td>29</td>
<td>49</td>
<td>69</td>
<td>89</td>
<td>109</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>50</td>
<td>70</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>11</td>
<td>31</td>
<td>51</td>
<td>71</td>
<td>91</td>
<td>111</td>
</tr>
<tr>
<td>12</td>
<td>32</td>
<td>52</td>
<td>72</td>
<td>92</td>
<td>112</td>
</tr>
<tr>
<td>13</td>
<td>33</td>
<td>53</td>
<td>73</td>
<td>93</td>
<td>113</td>
</tr>
<tr>
<td>14</td>
<td>34</td>
<td>54</td>
<td>74</td>
<td>94</td>
<td>114</td>
</tr>
<tr>
<td>15</td>
<td>35</td>
<td>55</td>
<td>75</td>
<td>95</td>
<td>115</td>
</tr>
<tr>
<td>16</td>
<td>36</td>
<td>56</td>
<td>76</td>
<td>96</td>
<td>116</td>
</tr>
<tr>
<td>17</td>
<td>37</td>
<td>57</td>
<td>77</td>
<td>97</td>
<td>117</td>
</tr>
<tr>
<td>18</td>
<td>38</td>
<td>58</td>
<td>78</td>
<td>98</td>
<td>118</td>
</tr>
<tr>
<td>19</td>
<td>39</td>
<td>59</td>
<td>79</td>
<td>99</td>
<td>119</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>100</td>
<td>120</td>
</tr>
</tbody>
</table>

Use this card to receive free information on the products featured in this issue.

FREE INFORMATION

Use this card to receive free information on the products featured in this issue.

Subscription Dept.

Name:
Title:
Company Name:
Company Address:
City/State/Zip:

Electronics

A Penton Publication
P O BOX 985008
CLEVELAND OH 44198-5008
USA

World Radio History
Electronics
A Penton Publication
1100 SUPERIOR AVENUE
CLEVELAND OH 44197-8058

Electronics
SUBSCRIPTION AUTHORIZATION
*Prepayment is Required

Name
Company
Address
City/Province
State/Country/Postal Code
Telephone Number

Charge my subscription to:
☐ American Express ☐ Visa
☐ Mastercard ☐ Interbank #

Account#
Date Card Expires
Signature
Date

Subscription Rates*: 1 year 2 years

<table>
<thead>
<tr>
<th></th>
<th>U.S.</th>
<th>CANADA</th>
<th>INTERNATIONAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 year</td>
<td>$60.00</td>
<td>$70.00</td>
<td>$125.00</td>
</tr>
<tr>
<td>2 years</td>
<td>$100.00</td>
<td>$120.00</td>
<td>$225.00</td>
</tr>
</tbody>
</table>

*PAY BY CREDIT CARD OR PUT IN ENVELOPE WITH YOUR CHECK, MAIL ORDER OR BANK DRAFT IN U.S. FUNDS.
187 - Sonnenschein—The dependable ones with high output.

BATTERIES

177 - Fujitsu—The secret to better Ethernet is NICE, the MB86960 Network Interface Controller with Encoder/Decoder from Fujitsu.

COMMUNICATIONS

206 - Pico—New AT Series of dc-dc converters for battery applications.

COMPONENTS

206 - Pico—Plug-in, surface-mount axial inductors toroidal insulated leads.

PACKAGES

205 - Sanyo—Special deliveries from Sanyo: components you need every day.

POWER SUPPLIES

215 - CEC—Control any IEEE-488 device you're launching, you'll get it to market faster with new HP Apollo RISC workstation.

PRINTED-CIRCUIT BOARDS

219 - Allstar—Mil-pac high-density military power supplies now ac to dc; actual out put 20 W.

TEST & MEASUREMENT

195 - GenRad—Helping you accelerate product design through testing.

WORKSTATIONS

192 - Burr-Brown—A line of easy, painless, plug-in DSP solutions that let you concentrate on your application instead of the hairy details.

SEMICONDUCTORS

173 - Analog Devices—Of all the mid-size companies in the Datasheet customer-satisfaction survey, one consistently came out on top in all five categories: Analog Devices.
NiCad Batteries: Finding a Nontoxic Substitute

With concern about cadmium growing, the electronics industry looks toward new battery technologies

By Jacqueline Damian

Back in the middle of a cold New England winter, the residents of Randolph, Vt., population 4,800, began depositing their used household batteries at 20 drop-off points around town. By Feb. 25, with some 4,500 dead batteries in hand, members of the town’s solid-waste committee started sorting them by manufacturer and packing them away in boxes to send back to their makers. “We did it to draw attention to the problem,” says committee member Karen Odato—the problem being that used batteries are hazardous waste.

The Boston Tea Party flavor of the protest was a pointed way of playing up a growing concern among environmentalists, waste-management professionals, battery makers, and consumers about the disposal of toxic metals. Particularly worrisome are the rechargeable nickel-cadmium, or NiCad, batteries used in laptop computers, portable communications gear, medical equipment, and a variety of other electronic products, among other items.

That’s because cadmium, which is a byproduct of zinc mining, is highly toxic. It’s carcinogenic when inhaled and causes kidney damage when ingested—for example, by eating fish taken from a stream that’s been contaminated by tainted groundwater.

NiCad units make up only a minuscule portion of the 167,000,000 household batteries tossed into U.S. landfills and incinerators with other garbage every year. But their impact on the environment is anything but small. “A very conservative estimate is that NiCad batteries equal only 0.1% of the total U.S. waste stream by weight,” says David Hurd, recycling operations specialist with the Bronx 2000 environmental group in New York. “Yet they represent over half the total cadmium—54%—in the waste stream.” The Environmental Protection Agency has found excessive amounts of this metal in ash from a number of municipal incinerators, and in its 1989 position paper on solid-waste disposal, the agency singled out cadmium and lead as the two toxic substances that most need to be cut back.

Prodded by the threat of legislation in 10 or 12 states prodded by the threat of legislation in 10 or 12 states

The substitutes will most likely be nickel-metal-hydride batteries, which should move into volume production next year, or lithium varieties, which are still in the R&D phase. Because of lithium’s tremendously long shelf life, researchers continue grappling with this extremely reactive metal’s main drawback: rechargeable lithium explodes in water, and reports of accidents have made potential users wary.

Another option is the venerable lead-acid battery, little brothers to the batteries that have long been used in automobiles. A scaled lead-acid battery powers the original Macintosh portable from Apple Computer Inc., for example. But computer makers—including Apple—consider these units far from ideal because of their weight and their relatively short shelf life. What’s more, from an environmental perspective, lead poses its own disposal problems.

The anti-NiCad movement has not gone unnoticed by computer makers. “We’ve been looking at the issue for a long time,” says Ed Juge, a spokesman for Tandy Corp. “NiCad is certainly the battery of choice right now, but it’s not a very environmentally friendly metal.” But the Fort Worth, Texas, company has made no decisions yet about replacing NiCad in future products, Juge says. “That decision is going to be made on the fly—you can’t plan for something that doesn’t exist yet.”

The same holds true at Compaq Computer Corp. “While we’re keeping...
on top of it, it hasn't come up as an action issue yet between Compaq and its battery vendors," says John Sweney, a spokesman for the Houston-based computer giant.

Far less glamorous than microprocessors or DRAMs, the prosaic battery is nonetheless an essential component in system design. To make a switch to a new type of battery, vendors must take into account any voltage and discharge-curve differences between the NiCads they have been using and potential replacements. However, both Sweney and Juge say that the design changes involved in a battery switch are not difficult to accommodate. "Our product life cycles are just a few years anyway," Sweney says. "Every product starts from scratch, and all our batteries are custom-made."

Although the laptop makers are keeping battery plans confidential, Juge votes for nickel-metal hydride as the probable heir apparent to NiCad in computers. "I think it's the coming thing," he says. A new Toshiba Corp. laptop is powered by a Japanese-made nickel-metal-hydride battery, and computers and communications gear from U.S. suppliers are expected late this year of early next. A number of companies are working on nickel-metal hydride, among them hydride pioneer Ovonic Battery Co. The Troy, Mich., outfit is already producing small volumes of rechargeables and manufacturing the proprietary hydrogen-based metal alloy its approach demands.

Ovonics has also licensed the technology to five battery manufacturers in the U.S., Europe, Japan, Hong Kong, and the Soviet Union. Two of them—Gates Energy Products Inc. of Gainesville, Fla., the largest North American NiCad maker, and the French giant Varta Batterie AG—are producing batteries now and expect to ramp up to volume shipments by late this year or early next. Gates products "are being sampled by all the major players in portable computers and communications," says spokeswoman Julie Vastano.

This technology appears to be safe: an independent environmental-impact study by researchers at the Teledyne Wah Chang Albany lab in Albany, Ore., found that while "cadmium will leach from NiCad batteries at hazardous levels," the new nickel-metal-hydride batteries "are less of an environmental risk" and "would not be considered a hazardous waste." They could be safely thrown into the garbage along with potato peelings and empty cat food boxes.

Another plus is that the Ovonic entry is "made to be a drop-in replacement" for NiCad batteries, says Bill Orabone, director of corporate development at Ovonics, and thus would require only minor design tweaks on the part of system builders. That's because the Ovonics technique simply replaces the cadmium used as the negative electrode of NiCad batteries with its patented metal-hydride substitute. The nickel positive electrode remains the same as in NiCads.

Moreover, the new batteries are lighter than NiCads and deliver more power than the traditional rechargeables to boot. Gates reports that its nickel-metal-hydride AA battery offers 1,100 mA/hr of capacity and could reach 1,400 mA/hr in a few years as the technology scales the learning curve and production volumes rise. That compares with 700 to 800 mA/hr for today's high-performance NiCads of the same size (a standard AA NiCad packs 500 to 600 mA/hr).

That 20% to 30% capacity gain gives computer makers two options, says John Eager, product manager for new technologies at Gates. They can keep the same size battery they were using with NiCads but add more features to their machines to take advantage of the additional power, or they can downsize both the battery and the machine, an important consideration in the world of the ever shrinking laptop. Finally, unlike NiCads, the new nickel-metal-hydride batteries do not suffer from memory effect, an annoying glitch that keeps NiCads from fully charging if users fail to totally drain them before attempting to recharge.

The downside is that system builders—and consumers—will be paying a premium for these benefits for a while. At least initially, Gates expects that the hydride units will be double the price of the NiCad batteries they are designed to replace. "If the batteries cost more it's going to force the cost of the product up," says Juge of Tandy. Another drawback, he adds, is that nickel-metal-hydride batteries can't be recharged as often as NiCads, which can take as many as 1,000 charges before they finally must be disposed of. The current crop of Gates hydride batteries can be recharged 300 to 500 times, says Eager—"we're approaching the cycle life of NiCads but obviously we're not there yet."

Even if nickel-metal-hydride or lithium rechargeables sweep into the market in a big way, however, NiCads won't disappear overnight. For one thing, hydride batteries can't be used in every rechargeable application: technical hurdles must be overcome to enable them to handle such equipment as portable power tools, which rely on short bursts of high power unlike the slow, drain of a computer.

Most of the cadmium legislation now being considered takes this fact into account. The bills aim not to ban cadmium outright but to ensure that products using it are designed so consumers can easily remove their battery packs for safe disposal. Most portable computers are among the scant 20% of NiCad-powered products in which the battery is readily accessible, not sealed inside.

Besides replacing cadmium in products wherever possible, the EPA also recommends recycling. But that option is made difficult by the fact that only one significant cadmium-recycling plant is operating in the world today—Savam, in Viviez, France. A number of organizations, including the Battery Products Alliance and the Bronx 2000 group, are looking into strategies to collect used NiCads and safely dispose of them—or send them to Europe for recycling.
DIRECT CONNeCTION ADS

New and Current Products Presented
By the Manufacturer

To Advertise Call Brian Ceraolo (201) 393-6260

Programmable Logic Design Tools
Release IV

The makers of the world's most popular schematic design Tools
also sell the BEST programmable logic design tools for only
$495. This PC-based product offers power features you need.

OrCAD

Call (503) 690-9881 for a
FREE demonstration disk.

E-Beam Direct Write

quarter micron
quick-turn

Lithography Services

FastLine Technologies, Inc.

(213) 317-5195 fax (213) 317-5483

Analog Circuit Simulation
SPICE for the PC

Intusoft has it all at an Affordable Price!

Schematic Entry • SPICE Simulation
Model Libraries • Waveform Graphics

Call Or Write For
Your Free Demo and
Information Kit
Tel. 213-633-0710

FastLine Technologies CIRCLE 116

CIRCLE 115

CIRCLE 111

CIRCLE 110

INTUSOFT

MELFESS FIVE
12304 Santa Monica Blvd., #121, Los Angeles
CA 90025, 800/533-2297

E-BEAM DIRECT WRITE

quarter micron
quick-turn

Lithography Services

FastLine Technologies, Inc.

(213) 317-5195 fax (213) 317-5483

Analog Circuit Simulation
SPICE for the PC

Intusoft has it all at an Affordable Price!

Schematic Entry • SPICE Simulation
Model Libraries • Waveform Graphics

Call Or Write For
Your Free Demo and
Information Kit
Tel. 213-633-0710

FastLine Technologies CIRCLE 116

CIRCLE 115

CIRCLE 111

INTUSOFT

MELFESS FIVE
12304 Santa Monica Blvd., #121, Los Angeles
CA 90025, 800/533-2297

PRINTERs WITH IMPACT

Citizen dot matrix impact printer mechanisms provide
for the perfect low-cost solution for point-of-sale, data
logging, etc. Avail. in 23, 28 or 40 columns, serial or
parallel, w/sprocket feed, auto-cutter & journal wind
options. Fast (120 cpi) & reliable (over 50 million char.
head life). Also avail. in stand-alone versions.

MELFESS FIVE, INC.
12304 Santa Monica Blvd., #121, Los Angeles
CA 90025, 800/533-2297

MELFESS FIVE CIRCLE 130

Black and White?
Or Full Color?
Now the choice is yours.
Simply send us your copy.
54 characters per line X 10 lines Max.
Plus a black and white glossy, color print, slide, or
transparency and a two-line headline, max. 30
characters per line. We'll do the rest. Or you can
do it all and send us your complete, 2'/16"w X
3"d Negatives (B/W or 4/C).

E-BEAM DIRECT WRITE

quarter micron
quick-turn

Lithography Services

FastLine Technologies, Inc.

(213) 317-5195 fax (213) 317-5483

Analog Circuit Simulation
SPICE for the PC

Intusoft has it all at an Affordable Price!

Schematic Entry • SPICE Simulation
Model Libraries • Waveform Graphics

Call Or Write For
Your Free Demo and
Information Kit
Tel. 213-633-0710

FastLine Technologies CIRCLE 116

CIRCLE 115

CIRCLE 111

INTUSOFT

MELFESS FIVE
12304 Santa Monica Blvd., #121, Los Angeles
CA 90025, 800/533-2297

PRINTERs WITH IMPACT

Citizen dot matrix impact printer mechanisms provide
for the perfect low-cost solution for point-of-sale, data
logging, etc. Avail. in 23, 28 or 40 columns, serial or
parallel, w/sprocket feed, auto-cutter & journal wind
options. Fast (120 cpi) & reliable (over 50 million char.
head life). Also avail. in stand-alone versions.

MELFESS FIVE, INC.
12304 Santa Monica Blvd., #121, Los Angeles
CA 90025, 800/533-2297

MELFESS FIVE CIRCLE 130

Black and White?
Or Full Color?
Now the choice is yours.
Simply send us your copy.
54 characters per line X 10 lines Max.
Plus a black and white glossy, color print, slide, or
transparency and a two-line headline, max. 30
characters per line. We'll do the rest. Or you can
do it all and send us your complete, 2'/16"w X
3"d Negatives (B/W or 4/C).

E-BEAM DIRECT WRITE

quarter micron
quick-turn

Lithography Services

FastLine Technologies, Inc.

(213) 317-5195 fax (213) 317-5483

Analog Circuit Simulation
SPICE for the PC

Intusoft has it all at an Affordable Price!

Schematic Entry • SPICE Simulation
Model Libraries • Waveform Graphics

Call Or Write For
Your Free Demo and
Information Kit
Tel. 213-633-0710

FastLine Technologies CIRCLE 116

CIRCLE 115

CIRCLE 111

INTUSOFT

MELFESS FIVE
12304 Santa Monica Blvd., #121, Los Angeles
CA 90025, 800/533-2297

PRINTERs WITH IMPACT

Citizen dot matrix impact printer mechanisms provide
for the perfect low-cost solution for point-of-sale, data
logging, etc. Avail. in 23, 28 or 40 columns, serial or
parallel, w/sprocket feed, auto-cutter & journal wind
options. Fast (120 cpi) & reliable (over 50 million char.
head life). Also avail. in stand-alone versions.

MELFESS FIVE, INC.
12304 Santa Monica Blvd., #121, Los Angeles
CA 90025, 800/533-2297

MELFESS FIVE CIRCLE 130

Black and White?
Or Full Color?
Now the choice is yours.
Simply send us your copy.
54 characters per line X 10 lines Max.
Plus a black and white glossy, color print, slide, or
transparency and a two-line headline, max. 30
characters per line. We'll do the rest. Or you can
do it all and send us your complete, 2'/16"w X
3"d Negatives (B/W or 4/C).
Instrument Control and Data Acquisition

Free 1991 color catalog of instrumentation products for personal computers and workstations—application software with graphical user interfaces acquires data from RS-232, GPIB, or VXI instruments and PC data acquisition boards, and analyzes and presents data. Includes data acquisition, GPIB, and VXIbus controller boards, and signal conditioning.

National Instruments
6504 Bridge Point Parkway, Austin, TX 78730
(512) 794-0100 • (800) 433-3488 • Fax (512) 794-8411

FREE Catalog

The World's Largest Collection of Adapters & Accessories for VLSI/Surface Mount Devices

- Emulator Pods & Adapters
- Debug Tools
- Programming Adapters
- Socket Converters
- Debugging Accessories
- Prototyping Adapters
- Custom Engineering

Emulation Technology, Inc.
2344 Walsh Ave. Santa Clara, CA 95051
Phone: 408-982-0660 Fax: 408-982-0664

Importance of Proper Design Tools

This compact, inexpensive device utilizes your configuration information, in a standard EPROM, to emulate a Xilinx XC1736 Serial PROM during debug and verification.

- Speeds development
- Eliminates wasted serial PROMs and supply problems
- Simplifies the management of experimental designs
- Eliminates the need for Xilinx programmer during debug

Works with the XACT software you already have. Can be used with an EPROM emulator to create a downloadable setup. Capacity 512K bits. Call, write, or FAX for info:

OrCAD

With Release IV of Schematic Design Tools, OrCAD now offers the ESP framework, over 20,000 unique library parts, more printer/plotter drivers, and many new features. Only $595

Call (503) 690-9881 for a FREE demonstration disk.

PCB SOFTWARE FOR THE IBM PC

With smartWORK®, create double-sided printed-circuit boards in a fraction of the time hand taping requires. It features continual design-rule checking, automatic pad shaving, and text for all 3 layers. smartWORK with autorouting is $695 (without, $495) and comes with a 30-day money-back guarantee. Credit cards welcome.

WINTEK CORP.,
1801 South St., Lafayette, IN 47904
(800) 742-6809 or (317) 448-1903.
OUR LAWYERS CAN COLLECT FOR YOU FASTER THAN A COLLECTION AGENCY.
We are a unique management firm with a Network of Collection Attorneys specializing in collection law.
INNOVATIVE NETWORK 1-800-348-DEBT

CONSULTANTS

Power Supply Design Service
Custom switching power supply design, from concept to production. Competitive rates. Low and high voltage. AC-DC, DC-DC, DC-AC, UPS. Please call for more information (9-5 EST).

PEDA
Tel.: 519-837-1666
Fax: 519-763-2742

SOFTWARE

RELIABILITY PREDICTION SOFTWARE
ARE YOUR ELECTRONIC PRODUCTS RELIABLE?
RelCalc 2 automates MIL-HDBK-217F on your IBM PC. Very easy to use. Try our Demo Package today for $25.

T-CUBED SYSTEMS 31220 La Baya Orme. 10 Westlake Village, CA 91362
FAX (818) 991-1281

USED EQUIPMENT FOR SALE

Advertiser's Index

Abbott Electronics...........25 Philips Industrial Automation...........20-21**
AMP, Inc..................30-31 Philips Test & Measurement........3**, 29**
Analog Devices...........Cov III
Burr Brown Corporation....13 Pico Electronics...........15, 27
Capital Equipment Corp.....34 Rohm Corporation.............3*
Cypress SemiconductorCov IV Samsung Electronics......16-17**
Emulation Technology........53 Samsung Semiconductor...16-17*
FastLine Technologies......52 Signum Systems.............53
Figaro USA, Inc.............53 Sonnenschein Lithium......28**
Fujitsu, LTD.................14** Sphere Digital.............53
Fujitsu Microelectronics....5 Stanford Research Systems.....19
GenRad........................40 Teledyne Relays.............39
Hewlett Packard8-9, 20*-21* Teradyne..............32-33
Intusoft...................52 Tesoft, Inc.............53
Melfess Five.................52 White Technology, Inc......23
Motorola...................10-11 Wintek.............53
National Golf Center.......29*
National Instruments........53
Nohau Corporation..........52
OrCAD.......................26, 52, 53
Orbit......................Cov II, -Pg1

*C Domestic only
** International only

The advertisers’ index is prepared as an additional service. ELECTRONICS does not assume any liability for errors or omissions.

ELECTRONICS • JULY 1991

World Radio History

54
WORST MAY BE OVER WITH A STRONG COMEBACK LIKELY

It appears we have passed the trough of the recession. Encouraging signs of renewed strength in the consumer sector, a modest pickup in housing demand, and some signals of improving capital availability should result in gradual improvement in durable and capital spending demand by the end of this year.

Comparisons will get much easier by the fourth quarter. But new mainframe product cycles, emerging availability of next-generation memory chips, continuing acceptance of enhanced networking software, and further penetration of automotive electronics all point to a much stronger recovery for the electronics industry next year than the economy as a whole.

Although the most recent data from the Commerce Department offers little to get excited about, it is not unusual for the cyclical pickup in capital goods and durable categories to lag behind the consumer sector upswing by as much as three to six months. We have witnessed a gradual improvement in electronic-component demand since early this year, and the significant weakness in the May semiconductor book-to-bill ratio suggests an earlier than usual seasonal order peak.

Computer order patterns actually worsened in April, reflecting renewed price discounting, to overshadow a modest recovery in unit demand. Small-computer price wars and the rapid transformation of PC distribution will continue to pressure margins at the manufacturing level. Electrical/electronic equipment demand is showing gradual improvement.

There is some improvement in small-business activity off the war-depressed levels of January through March. In particular, office-product demand and computer retrofit and upgrade activity are up.

By Mark L. Parr, McDonald Securities Inc., Cleveland (216-443-2379)
A DOUBLE-DIPPER? NOT THIS TIME

On April 1, I declared that the recession was over. According to a survey published shortly afterward, only 11% of economists agreed with that. Now the shoe is on the other foot, and only about 11% of them don't believe it. But wait.

The same wizards who confidently told us that no upturn was in sight and the recovery would last until the fourth quarter, if not all year, are back with a new twist. All right, they concede, the recovery is here, but it won't last. We are in for a double-dip recession starting by the end of this year. Would you buy a used forecast from these guys?

In fact, there have been several double-dip recessions in the past 20 years. But in all cases, the Fed boosted interest rates at least 3% shortly after the recovery had gotten under way. Short-term rates will remain steady for the rest of this year, although long-term rates are likely to rise about 0.5% in the second half. But that's clearly not enough to stall the recovery.

Both optimists and pessimists agree that the key will be whether consumer spending rises. In my view, that's already an open-and-shut case. Discretionary retail sales rose 4.4% in the past three months, an annual rate of almost 19%. While that pace can't continue indefinitely, it clearly points out that consumers shucked off their worries about the war and the recession and came out spending. The naysayers' approach points to the published figures showing that consumer spending in constant prices rose 1% in March but fell 0.3% in April; therefore, they say, the initial war euphoria has worn off and consumers are going back into their shells.

However, most of that April drop occurred in sales at grocery stores and gas stations. Excluding those two sectors, retail sales rose 0.4% in both March and April. Furthermore, domestic new car sales, after languishing in the dust for most of the year, bounced back to an annual rate of 6.7 million in late May. One 10-day period does not a summer make, but it cuts the legs out from under those who claim consumer spending peaked in March and then started to decline again.

Then we have the credit-crunch bears. No one would deny that credit restrictions were tightened last year, and that many builders are being forced to pay back their existing loans instead of borrowing more money for new projects. As a result, housing starts probably will increase only about 0.3% in April; therefore, they say, the initial war euphoria is already large and not to increase their payrolls. This situation is particularly true during recessions, when most of the layoffs represent reductions at larger firms.

There is no particular reason that this should present a statistical problem except that due to budget cuts, the Bureau of Labor Statistics' payroll-employment survey is increasingly out of date. It includes "old" firms that have been laying off workers, but does not yet cover "new" ones that are adding employees. Thus, the gain in employment is drastically understated as the economy begins to improve.

As a result, the survey that measures employment directly by contacting households shows a gain of 476,000 jobs over the past three months, while the survey that measures them through examination payrolls shows a loss of 651,000. However, the household survey figures decline earlier, providing adequate advance warning of a recession, and then recover earlier, providing an advance signal of an upturn. By this summer, payroll employment will also be rising steadily.

Obviously, no one has a perfect forecasting record, but the double-dip-recession scenario does not even make common sense. It ignores the fact that the Fed will not tighten later this year; that credit restrictions have already eased and construction has rebounded positively; and that employment has already turned up. The economy is on the road to recovery, and unless Saddam goes back to Kuwait, it will pick up more steam as the year advances.

MICHAEL K. EVANS is president of Evans Economics Inc. and Evans Investment Advisers in Washington. His views will appear regularly on this page.
It's nice when your customers think the world of you.

Recently, the purchasing experts at several hundred of the world's largest electronics companies were asked by Dataquest, a leading international research firm, to rate semiconductor suppliers. The rating applied to the very specific and demanding areas of price, on-time delivery, quality, technical support and attention to customer service.

Of all the mid-size suppliers these people could have chosen as best in all five areas, one company consistently came out on top - Analog Devices.

We're proud of that, and of the Dataquest Globe that symbolizes being named Supplier of the Year.

But we're not resting on our laurels. We're working just as hard as ever to keep our customers happy. Because after all, they mean the world to us.

Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106. Headquarters: (617) 929-4700. Offices, applications support and distribution available worldwide.
Faster circuits for faster systems: Here's the good book.

The 1991 Cypress Semiconductor Data Books are hot off the presses. Highlights include:

- **SPARC® RISC Microprocessors.** The fastest CMOS available. From embedded control to full chipsets.
- **Highest Speed PLDs.** Broad selection, from standards at rocket speeds to functionally specialized systems.
- **Static RAMs.** Biggest selection of high-speed devices, including our 10ns BiCMOS 64Ks.
- **VME Bus Controllers.** The space-saving solution for a broad range of processors.
- **CMOS PROMs.** The broadest line of high-performance PROMs, to 512K densities. We'll fill your order fast.
- **Specialty Memories.** Including ultra-high-speed FIFOs.
- **Multichip Modules.** Including 32-bit space and time savers.
- **And much more.** All in our new Data Book.

Call for your copy today.

*CYPRESS SEMICONDUCTOR

SPARC is a registered trademark of SPARC International, Inc.